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IX. Nuclear Processes as Many-Body Problems

§51. Bour’s GENERAL THEORY (B32!)

OHR (B32) was the first to point out that
every nuclear process (disintegration, cap-
ture of particles, etc.) must be treated as a
many-body problem. It is not at all permissible
to use a one-body (Hartree) approximation, par-
ticularly not in the case of heavy nuclei.

Previously, the one-body approximation had
been used extensively for the treatment of nuclear
processes (cf. the detailed discussions in §73). The
method was taken over from the theory of atomic
collisions where it had proved highly successful.
Let us consider, as a typical atomic collision, the
ionization of an atom by an electron. To treat
this process, it is customary to consider the inci-
dent as well as the ejected electron as moving in
the average field of the residual ion. In this way,
“Hartree wave functions’’ are obtained for the
two electrons. Then the interaction between the
two electrons is considered as a perturbation, and
the matrix element of this perturbation is calcu-
lated with the Hartree wave functions for the
electrons. The square of the matrix element gives
the probability of the collision. This method,
known as the “method of the distorted wave
functions,” gives a good approximation whenever
the interaction between the two electrons is small
compared to the interaction between one of the
electrons and the atom or small compared to the
kinetic energy of the incident electron. This is
generally true in atomic collisions, and therefore
the method described is quite satisfactory for
them? except for very small energies of the inci-
dent electron. It is, in the case of atoms, far
superior to the often used Born approximation
in which the average interaction between atom
and incident electron is neglected.

However, the method of the distorted wave
functions is not at all applicable in nuclear
physics. As we know (§25%), the interaction be-
tween one particle and a whole nucleus is only of

L A letter and a number, e.g. B32, refer to an original
paper. A list of references is given at the end of this article.

2 It has been applied to the problem of the ionization of
the K shell (S17, M9) and to the elastic scattering of
electrons by heavy atoms (H25) with considerable success.
A wider application has thus far been prevented by
mathematical difficulties.

3 The sections §1 to §50 are contained in part A of this
report, Rev. Mod. Phys. 8, 82 (1936).

the same order of magnitude as that between two
nuclear particles. Therefore, it has in general no
sense to consider the ‘“‘average potential’’ acting
on the incident particle, in an earlier approxima-
tion than the interaction causing the nuclear
process itself. Furthermore, the interaction is, in
general, large compared to the energy of the
incident particle so that the second condition for
the applicability of the method of the distorted
wave functions is also not fulfilled.

The difference between an atomic and a
nuclear collision may be described in a variety
of ways. The descriptions are all equivalent but
differ in being more or less intuitive and in mak-
ing use of more classical or more quantum-
mechanical concepts.

In an atomic collision, the interaction be-
tween the incident particle and the individual
electrons of the atom is small, as we have already
mentioned. Therefore it is comparatively seldom
that a particle in passing through an atom im-
parts energy to an atomic electron; in other
words, inelastic collisions are rare.t In most
cases, the incident particle will go through the
atom without interacting with any particular
atomic electron and without losing any energy; it
will only be affected by the average field of force
of the atom and will be deflected thereby (elastic
scattering). The time which the particle spends
in the atom is of the order of the atomic dimen-
sions divided by the velocity of the particle. (For
electrons, the time is even smaller because the
electron is accelerated inside the atom.) Because
of this short time spent inside the atom, it is
highly improbable that, e.g., radiation is emitted
in the collision. Thus atomic collisions are char-
acterized by a very large elastic scattering, a
smaller inelastic scattering,* and a very small
probability of the emission of radiation.

If a particle falls on a nucleus, it cannot
possibly pass through it without interacting with

¢ This is correct for the collisions in which the incident
particle actually passes through the atom (close collisions)
and is, in general, deflected by a large angle. In addition,
there are numerous inelastic collisions due to particles
passing the atom at a distance (B16, W20). These ‘‘distant
collisions’ are due to the long range of the forces between
incident particle and atomic electrons (Coulomb forces).
Since the nuclear forces are short range forces, there is no
analog to the ‘‘distant collisions” in nuclear physics.
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the individual nuclear particles, for the average
distance between them is of the same order as
the range of the nuclear forces (§25) due to the
peculiar character (short range) of these forces.
An incident particle which passes between two
nuclear particles must therefore necessarily
interact strongly with them; we know that the
nuclear forces are very strong (over 10 MV) in-
side their range of action. The incident particle
will therefore lose part of its energy as soon as it
strikes the surface of the nucleus, by transferring
it to the nuclear particles. As the particle goes on,
there will be a further dissipation of its energy
among the nuclear particles. As a result, the
energy which is initially concentrated in the
incident particle, will very soon be distributed
among all the particles of the system consisting of
the original nucleus and the incident particle
(compound nucleus). Each of the particles of the
“compound nucleus” will have some energy, but
none will have sufficient energy to escape from
the rest. Only after a comparatively long time,
the energy may ‘‘by accident”” again be concen-
trated on one particle so that this particle can
escape. Even then, the escaping particle need not
be of the same kind as the incident, and even if
it is of the same kind, the energy may (and will in
general) be divided between the escaping particle
and the remaining nucleus in a way different
from the initial state of affairs; in other words,
the residual nucleus may remain in an excited
state. Only if the escaping particle is of the same
kind as the incident and the internal state of the
nucleus is not changed may we speak of an
elastic collision. It is obvious that an elastic
collision is only a very special case and must
therefore be quite a rare event compared to the
many kinds of possible inelastic collisions, i.e.,
such in which either the nucleus is excited (ordi-
nary inelastic collision) and such in which a
particle of a different kind is emitted (transmu-
tation). Furthermore it is evident that the time
spent by the particle inside the nucleus will in
general be very long; it may be several orders of
magnitude larger than the time which the particle
would need to traverse the nucleus on a straight
path without loss of velocity. This provides
ample opportunity for the emission of radiation
during the collision. Therefore the characteristics
of nuclear collisions are: a quite small probability
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of elastic scattering, a much larger probability of
inelastic scattering including transmutations,
and a comparatively high probability of the
emission of radiation. In some cases radiative
processes are even the most probable of all
(cf. §58, 61, €2).

The description of the nuclear collisions given
in the foregoing shows that the situation during
the greater part of the collision may be described
as a quasi-stationary state of the ‘‘compound
nucleus.” This compound nucleus will exist dur-
ing a time which is very large compared with the
“characteristic nuclear time’’ which may be de-
fined as the nuclear radius divided by some
average velocity of the nuclear particles, i.e.,
about’12-10713/4.10%=3-10"% sec. A theory of
nuclear collisions is therefore primarily a theory
of the (quasi-stationary) states of the compound
nucleus, and of the transitions from these states
to states in which one particle or other of the
compound nucleus is separated from the rest.
The collision may be described by the scheme:

Initial nucleus+incident particle—
compound nucleus—final nucleus
-+ outgoing particle.

It is therefore characterized by a double transi-
tion, whereas atomic collisions consist in direct
transitions from initial to final state.

We have arrived at the idea of the compound
nucleus from an almost geometrical argument,
2. from the fact that the incident particle can-
not find its way through the nucleus in between
the nuclear particles but must interact with them.
The nucleus is, in Bohr’s terminology, a “closed
system.” An additional particle cannot go
through the system but can only be amalgamated
with it. In contrast to this, an atom is an ‘“‘open
system’’ which may be traversed by an external
particle without any difficulty, and without the
particle’s becoming incorporated in the system.

The existence of quasi-stationary states of the
compound nucleus, and the nonexistence of an
analog in atomic collisions, may also be discussed
from an energetic rather than geometric point of
view. We start from the energy levels of the indi-
vidual particles (nuclear particles and electrons,

§ For the value of the nuclear radius, cf. §68. The velocity
og 4§ -10*? corresponds to a kinetic energy of about 10 MV,
cf. §26.
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respectively) in the two cases. It is true that this
method of approach, while satisfactory foratoms,
does not give a good approximation for nuclei.
However, it has the virtue of starting from the
extreme opposite to the many-body concept so
that the fact that it leads finally to the concept of
quasi-stationary states of the compound nucleus
is still more convincing.

As we know, the potential energy acting on one
nuclear particle (proton or neutron) may, with
sufficient accuracy, be represented by a simple
“rectangular’’ hole. In such a hole, the energy
levels for the individual particles are almost uni-
formly distributed from the bottom of the hole
to the top. (Strictly speaking, the density of en-
ergy levels increases as E! where E is the energy
above the bottom; cf. §25 and 53.) The depth of
the hole is about® 18 MYV. Since the binding
energy of the most loosely bound particle is of
the order 8 MV, the potential hole is normally
filled with particles up to 8 MV below the top,
i.e. to a little more than half its height. There is a
great number of empty energy levels between this
energy and the top; in fact, the number of empty
levels is greater than the number of occupied
ones. Let us now consider a state of the nucleus
which has, say, 6 MV more energy than the
ground state. Such a state may be obtained by
exciting one of the nuclear particles by 6 MV and
leaving the rest unexcited. But equally well, the
total excitation energy may be shared between
two, three or more particles. It is easily possible
that as many as ten particles share in the excita-
tion because the levels of the individual particles
lie fairly close together and it is therefore only
necessary to supply quite a small amount of
energy to each excited particle. (For a quantita-
tive discussion, cf. §53.) Thus it is obvious that
there is an enormous variety of ways in which the
given total excitation energy (6 MV) may be
shared between several particles whereas the
configuration in which all the energy is concen-
trated on one particle represents only a single
possibility.

If there were no interaction between the par-

6 Cf. (150c) §25. The nuclear radius is about R=r,4}
with 79=2.05-10"8 cm (cf. §68) and N=3}A. Therefore
the kinetic energy of the most energetic particle
To=(97/8)¥(h2/2Mr)=10.3 MV. The binding energy of
this particle is about 8 MV, therefore the depth of the
hole 10+8=18 MV.
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ticles, we would thus obtain a very large number
of energy levels of the complete nucleus corre-
sponding to the various distributions of the exci-
tation energy among the particles. Besides, we
would get a few energy levels corresponding to
the excitation of a single particle. In reality, there
is interaction between the particles which causes
a mixing of the eigenfunctions of the various
levels. Therefore, the levels do not fall into
different classes corresponding to the excitation
of one, two, three . . . particles, but each level is
of mixed character. If the nucleus is in any arbi-
trary state, its excitation energy is part of the
time concentrated on one particle, part of the
time shared between two, three etc., particles.
The exact value of the probability of the concen-
tration of the energy on one particle may be
deduced from the eigenfunction of the nuclear
state; it is certainly very small because there are
so few configurations in which the energy is con-
centrated and so many in which it is distributed.
The number of energy levels, on the other hand,
is evidently very great, i.e., the spacing between
neighboring energy levels of the nucleus as a
whole is extremely small, very much smaller than
the spacing between the energy levels of an indi-
vidual particle would be.

We have chosen the excitation energy of the
nucleus lower than the energy necessary to disso-
ciate it into a free particle plus a residual nucleus,
in order to avoid dealing with a continuous spec-
trum for the particle. However, we see now that
this restriction is irrelevant because the con-
figuration in which the energy is concentrated on
one particle is quite unimportant for the descrip-
tion of a nuclear state. Therefore, the nuclear
states which are excited by more than the disso-
ciation energy (about 8 MV) have essentially the
same character as those of lower energy; their
eigenfunctions are not very different. The only
difference is that these more highly excited states
may with a certain, quite small, probability dis-
integrate into a free particle plus a residual
nucleus. This probability is given by the coeffi-
cient with which the function representing the
excitation of a single particle is contained in the
eigenfunction of the nuclear state in question.
But apart from this comparatively rare event of
disintegration, a nucleus has a series of closely
spaced energy levels which have essentially the same
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character below and above the dissociation energy.
The character of these levels will only change de-
cidedly when the excitation energy per particle
becomes of the order of a few MV, i.e., the excita-
tion energy of the nucleus 100 MV or more.

For atoms, the situation is entirely different.
The binding energies of the individual electrons
differ by very large amounts: e.g., in the uranium
atom the binding energies of successive electrons
are approximately 110,000, 20,000, 4000, 800,
200, 40, and 6 volts. The reason for these large
differences is, of course, the character of the
atomic field, 2. a screened Coulomb field which
is extremely large near the nucleus and falls off
very rapidly at greater distances. The energy
region in which there are empty electronic levels,
extends over only a few volts. Accordingly, if we
excite only outer electrons, we can only obtain
excitation energies of a few tens of volts even if
we excite many electrons simultaneously. More-
over, since there are only very few electronsin the
outer shell as compared to the many particles in
a nucleus, there will be comparatively few ways in
which a given amount of excitation energy may
be shared between the electrons. This makes the
configuration in which the whole energy is con-
centrated on one electron, relatively more prob-
able. The atomic states whose energy is sufficient
for a dissociation, will ‘‘disintegrate’”’ much more
easily into an ion plus an electron than nuclei in
corresponding states. (In spite of all this, some
states of atoms above the ionization potential, in
which two electrons are excited, are known in
spectroscopy, especially for the alkaline earths.)

If we excite an inner electron, we obtain, of
course, a rather large excitation energy. How-
ever, the energy levels of the atom which are ob-
tained in this way, are still restricted to a minute
energy region. E.g., if we excite the K electron of
uranium and some outer electrons, we obtain a
number of energy levels all of which lie between,
say, 110,000 and 110,050 volts (above the ground
state of the atom). The spectrum of the energy
levels of the atom as a whole contains therefore
only a few very narrow regions in which there are
discrete energy levels, and these regions are
separated by immense “‘empty’’ spaces in which
there is no level at all. The reason is the small
region in which there are empty levels for the
electrons, a region which is for uranium about
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20,000 times smaller than the binding energy of
the K electrons, as compared to one-half the
binding energy of the most strongly bound par-
ticle in nuclei (see above). If we consider the
“compound system’’ formed by the addition of
an electron to an atom, i.e., a negative ion, the
situation becomes even more extreme because the
binding energy of the last electron in a negative
ion is considerably less than in an atom. Then the
bands in which the compound system possesses
energy levels, will extend only over a few volts
each. In general, the energy of an incident elec-
tron will therefore not fall into one of these re-
gions, and no quasi-stationary state of the com-
pound system will be found in the collision. (It
can be shown that the states of the compound
system are unimportant even if the energy of the
incident electron falls just into one of the energy
bands, except for very slow electrons.) Therefore
an atomic compound system has no quasi-
stationary states of any importance for atomic
collisions.

We have seen that the stationary states of the
compound nucleus are responsible for quite a
different relative magnitude of the various kinds
of nuclear collisions (elastic, inelastic, transmuta-
tion, radiation) as compared to atomic collisions.
But they have another, even more striking conse-
quence: the phenomenon of resomance. If the
energy of the incident particle is such that the
total energy of the system is just equal, or nearly
equal, to one of the energy levels of the compound
nucleus, the probability of the formation of the
compound nucleus will obviously be much greater
than if the energy of the particle falls in the
region between two resonance levels. Therefore
we shall find characteristic fluctuations of the
yield of every nuclear process with the energy,
from high values at the resonance energies to low
values between resonance levels. These resonance
phenomena are most pronounced with slow neu-
trons (Chapter X) but have also been observed in
the radiative capture of protons and in transmu-
tations caused by «-particles (Chapter XIII).

The study of the resonance phenomena in
nuclear processes is of paramount importance for
nuclear physics. First of all, the spacing between
neighboring levels of the compound nucleus may
be deduced from the resonances. The determina-
tion of the spacing as a function of the mass
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number and of the excitation energy of the nu-
cleus will enable us to check our theoretical ideas
about nuclear structure (cf. §53).

Secondly, the width of the resonance levels is
of great interest. Just as in the theory of atoms
the width of an excited level is given by the
probability of its emitting radiation (W6), so the
width of the level of a compound nucleus is given
by the total probability of the emission of par-
ticles of any kind—neutrons, protons, a-particles,
y-rays etc., by the compound nucleus. Thus the
width of the levels enables us to determine the
probability of the concentration of energy on any
one of the particles in the compound nucleus.
This may be supplemented by a study of the
relative probability of the emission of various
kinds of particles.

The experimental data on nuclear levels are
not yet very extensive. The spacing of the energy
levels seems to be of the order of 10 volts for
nuclei of atomic weight 100 or more and excita-
tion energies just sufficient for a dissociation into
a neutron and a residual nucleus (about 8 MV
excitation). (These figures are obtained from the
slow neutron experiments (§60).) For light nuclei,
spacings of a few hundred thousand volts seem to
prevail (proton capture (§81), y-ray spectra
(§89), resonances in a-particle disintegrations
(§82)). The same order of magnitude has been
found for heavy nuclei just above the ground
state (from v-ray evidence and long range
a-particles).

A survey of the experimental results for the
widths of levels will be given at the end of the
next section.

§52. THE DispeErsioN Formura (B51, B15)

The probability of a nuclear process as a func-
tion of the energy of the incident particle is given
by a formula similar to the ordinary dispersion
formula for the scattering of light. This disper-
sion formula was first derived by Breit and
Wigner (B51) for the case of one resonance level
of the compound nucleus and then generalized
by Bethe and Placzek (B15) for an arbitrary
number of resonance levels. For a general deriva-
tion, see §55.

Any nuclear process may be described as fol-
lows: a particle P falls on a nucleus 4 which is in
a state p. A compound nucleus C is formed
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which may have a number of energy levels W,.
A particle Q is emitted by the compound nucleus,
leaving a residual nucleus B in a state g. The
emitted particle Q may or may not be identical
with the incident particle P; in the first case, we
speak of scattering, in the second case of trans-
mutation. In the special case that Q is a light
quantum, we have radiative capture, while we
deal with a photoelectric effect, if P is a light
quantum and Q a material particle. For the initial
and final state energy must be conserved

WAp+ WP+EP= WBq+ WQ+EQ, (254—)

where Wy, denotes the internal energy of nucleus

A in state p, Wp the internal energy and Ep the

kinetic energy of the incident particle, etc.” For

the intermediate state (compound nucleus), of

course, conservation of energy is unnecessary.
The probability of the nuclear process

A+ P—C—>B+Q (254a)

may be calculated using the ordinary methods of
the Dirac perturbation theory. Since we are deal-
ing with a double process, a second-order per-
turbation calculation is necessary. The result for

the cross section of the process is (B15, and §55)

HAPpCr IIC’BQq
o=4r3x2| Y -
T WAp+ WP+EP_WCr+%7f7r

Here X is the ‘‘wave-length” of the incident
particle,

- (255)

X2=h?/2MEp, (256)
M=MsMp/(Ms+Mp). (256a)

H is the Hamiltonian of the interaction between
the particles concerned, HAP»¢, its matrix ele-
ment corresponding to the transition from the
initial state (nucleus 4 in state p-+particle P of
energy Ep) to the intermediate state (compound
nucleus C in state 7). To calculate the matrix
element, the wave function of the particle P must
be normalized per unit energy. v, is the total
effective width of the level 7 of the compound
nucleus. It is a sum of the partial effective widths
due to the emission of various kinds of particles
by the compound nucleus:

Y= };7'@. (257)

7 Throughout this report, we denote by W the energies
of nuclear quantum states and by E the kinetic energies
of particles.
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Among the particles Q' which may be emitted
there are the incident particle P, the outgoing
particle Q and possibly others. The width y7¢
again may be written in the form

Y =2Y"Q e (257a)
"

where ’Y'Q'ql=27r]Hc'B'Q'q'! 2 (257b)

is that part of the width of level » which is due to
the disintegration of the compound nucleus C
into a nucleus B’ in state ¢’ and a particle Q’
with an energy given by the conservation
law (254).

It must be kept in mind that for all quantities
occurring in (255) the energy of the correspond-
ing particle (P, Q or Q') must be chosen according
to the conservation law (254). Therefore all
quantities depend on the energy Ep of the inci-
dent particle. This holds also for the effective
width v, which is therefore in general not the
true width of the level . This true width T, is
obtained when the resonance energy

EPr= WCr—WAp_WP (258)
is inserted for Ep, so that
I',=v.(Ep,). (258a)

The cross section (255) shows resonance phe-
nomena. Pronounced maxima occur whenever
the energy of the incident particle Ep is near
one of the resonance energies (258). In this case,
generally one term in (255) will be predominant,
namely the one referring to the particular reso-
nance level 7 in question. Then (255) simplifies to
the “‘one level formula”

Y PpY Qq
(EP - EPr) 2+ %'er

which was first derived by Breit and Wigner.
This formula is most useful for applications and
sets the resonances in evidence very clearly. The
total probability of the production of particles of
kind Q summed over all possible levels g in
which the nucleus B may be left, is

oPPo,=7k?

(259)

Y PpY @
(Ep—Ep,)*+1v.?

if only one level of C is important.

(259a)

oPrg=3 gPrg,=mk?
q
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Special considerations are necessary if some of
the nuclear states involved are degenerate. The
calculations which have been carried out by
Bethe and Placzek replace (255) by the formula

mR2

oPPgp=—————— ¥ (2T41)
(2i+1)(2541) 6

uCTJApPlj quJBqu’i’

2 ;
" Wap+Wp+Ep—Wers+3iv,es

(260)

Here and in the following we denote by ¢, J and
' the angular momenta of initial, compound and
final nucleus; s and s’ are the spins of incident
and outgoing particle; I’ and jj’ their orbital
and total angular momenta. p, », ¢ mean all
quantum numbers of initial, compound and final
nucleus other than the angular momenta. The
sums over / and /' extend over all values of these
quantities from 0 to «, the sum over j from
|I—s| to l4+s and the sum over j' correspond-
ingly; the sums over 7J extend over all states of
the compound nucleus. The #'s are matrix ele-
ments similar to the H’s; they are defined so that
the partial width of a level is simply equal to the
square of u, viz.

(261)
(261a)

Y pp1i= (U 4pp1;)?,

Y pp= 27" ppij.
i

Furthermore, the s are real but may be positive
or negative.

If only one level is important, (260) reduces
again to the very simple formula

2J+1 'YTJPP'YTJQQ
x2 - ’ (262)
(2s+1)(2t4+1) (Ep—E,)2+1v,,2

afr

Q=T

which is the generalization of the Breit-Wigner
formula (259) for nonvanishing angular momenta
of the nuclei concerned.

The quantities H, « and v depend on the energy
of the particle involved, because the matrix ele-
ment H (or #) contains the wave function of the
incident particle. As we have mentioned, this
wave function must be normalized per unit
energy. If we assume the particle to be free and to
have an orbital momentum I/, its normalized
wave function has the form (B15, Eq. (15))
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2 dk\}1
¢= (_ —‘E—) _Xz(kf) Yim(l,ﬁo)v (263)

T r
where k=1/X is the wave number of the particle,
E=(h*/2m)k? (263a)

its energy, Y. a normalized spherical harmonic
and x; that solution of the radial wave equation,

I(1+1
(k2_<+>
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d2Xz

dr?

)x:=0, (263b)

which behaves asymptotically as sin (kr—3ir).
At small 7,

1
1-3---(21-1)(2141)

xXi= (kr)H*1. (263c)

Now for the matrix element only the behavior of
the wave function ¢ inside the nucleus is im-
portant. Therefore, if the wave-length Xx=1/k is
large compared to nuclear dimensions, we are
only interested in the values of ¢ for small
values of k7. Then, according to (263) (263c), the
matrix element will depend on & as

(dk/dE)R\H, (264a)
Since dE/dk is proportional to k (cf. 263a)), the
matrix element will be proportional to k+}. Thus
we may write

uTJszerPp kl+§=erPp X—(H—%) (264)
and, because of (261),
.erPp=(erPp)2x—(2H—l)’ (264b)

where b is a constant. Introducing the true width
T (cf. (258a)) instead of the effective width «,
and similarly the value of the matrix element at
resonance, U, instead of %, we have

wp,=Upp(Xp,/X) 4= U p,(E/Ep,) ¥+t (265)
.YrJPp= I""p,,()\p,/%)““ — PrJPp(E/EPr) l+%' (2653.)
where Xp, is the wave-length corresponding to the
resonance energy Ep,. It can easily be shown
(see B15, p. 454) that the formulae (264) (265)

hold also if the particle is not free.
If, as we have assumed, the wave-length of the
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particle is large compared to nuclear dimensions,
then only the partial wave /=0 will have ap-
preciable amplitude in the nucleus, as can be
seen directly from (263c). Therefore for slow
particles (264) (265) become

urJPp= erPpy\—l =arJvai — CrJPpEi
= U py(v/vp:)},

¥ pp=(c"' p,)2E}=etc.,

(266)
(266a)

where v is the velocity of the particle and a, b, ¢
are certain constants whose relation is obvious.

For v-rays, there is no partial wave /=0, so that
I=1 (dipole radiation) becomes the most im-
portant part. The dependence of the matrix
element for y-rays on the wave-length is again
given by (264) (cf. B15). However, in contrast
e.g., to slow neutrons, the energy of y-rays is
ordinarily very much larger than the spacing
between energy levels; therefore the ratio E/Ep,
of the actual to the resonance energy will, for
y-rays, be very near unity for all those levels rJ
which contribute appreciably to the cross section.
Thus we may, for y-rays, replace the matrix
element «# by its value at resonance U, and the
actual width y=#? by the true width I'=U?,
independent of /.

The same arguments hold for fast particles.
This is particularly welcome because the exact
behavior of the matrix element as a function of
energy cannot be obtained without assuming a
special nuclear model, as soon as the wave-length
of the particle becomes comparable with or
smaller than the nuclear dimensions. But we do
not need to know this behavior because we wish
to know the matrix elements % only in the neigh-
borhood of the resonance energy, let us say in an
energy region of the extension of a few times the
spacing between resonance levels. Inasmuch as
the spacing of levels is very small compared to
the energy of the fast particle, the matrix ele-
ment # and the effective width ¥ may be regarded
as constant over the energy region considered,
and be replaced by their values at resonance,
U and T. Or, alternatively, formulae (265) (265a)
may be used for fast particles: Even though they
are not strictly true for this case, their use is
permitted over energy regions small compared to
the particle energy itself.
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Inserting (264) into (260), we have

oFPl g = XHX-GH2) T (27 41)
(2s+1)(2:4+1) i’y
b 4 pp1i 07 paour s (267)
"Ep—Ecrs+3t7.s
with b app1i= U™ appi; Kp:tH4, (267a)
oPrg,= IZI;aP"’qW. (267b)

A and X’ are the wave-lengths of incident and out-
going particle; all the other quantities have the
same meaning as before. If only one level rJ is
important, (267) reduces to

r(2J+1)

Qe = X120 X p 2041

(2s+1)(2:+1)
PrJPpl F""qu:

er 2U+1
«(2) .
7\’ (EP"EPr)2+%7rJ2

oPrl

(268)

In this formula, only the factors X, A" and Ep itself
change with the energy Ep of the incident par-
ticle,® all the other quantities are constants
characterizing the nuclear level.

In order to discuss formulae (267) (268), it is
useful to distinguish between fast and slow inci-
dent and outgoing particles. A particle is called
slow if its wave-length is large compared to
nuclear dimensions. This is true for energies up to
a few hundred thousand volts for neutrons or
protons interacting with heavy nuclei and up to
about a million volts if they interact with light
nuclei. For a-particles, the limits are one-quarter
of these figures. y-rays can always be regarded as
slow or fast at ones discretion, it being simpler to
regard them as fast. We have then the following
cases:

8 The effective width +v,; will in general consist of con-
tributions from fast particles Q and from slow particles
which may be emitted by the compound nucleus 7J.
The contributions of the fast particles (including y-rays)
will not depend sensitively on the energy of the incident
particle, atleast not over energy regions of a few thousand
or even a few hundred thousand volts. The contributions
of the slow emitted particles will depend strongly on the
energy, according to (265a). But these contributions will
in general be small because of the small factor E!*}. Thus
in general, v,s will be approximately constant and equal
to the true width I',; over fairly large energy regions; and
only if the contribution of slow emitted particles happens

to be large will there be a noticeable dependence of v.s
on energy.

§52

A. Incident and outgoing particle fast

In this case the variation of the factors X and X’
in (267) (268) with energy is irrelevant and may
be disregarded (cf. above). The only factor de-
pending on energy is then the resonance factor
(last factor in (267) (268)).

B. Incident particle slow, outgoing particle fast

We may put /=0 for the incident particle and
neglect the dependence on the wave-length X’ of
the outgoing particle. Then (267) reduces to

afr

B E——— 2J+1
(2s+1)(2:41) l’lZ"J( +1)

U 4pposhp U poquir |2
X | T—= T (269)
" Ep—Ep.+3iv.

Q=

and if only one level is important, we obtain
from (268)

7(2J+1) I ppI'" gq

T DD e Er i
S 1 - r Y
P P red .1(270)

a-PIJ

In both (269) and (270), there appears beside the
resonance factor a factor X which indicates pro-
portionality of the cross section with the recip-
rocal of the velocity » of the incident particle
(again apart from resonance). This ‘‘1/v-factor”
makes the cross section for phenomena produced
by slow particles, especially slow neutrons, very
large (cf. Chapter X). (About the dependence
of v,s on energy, cf. footnote 8)

C. Incident particle fast, outgoing particle slow

Following the same considerations as before,
(267) reduces to

™
Pp =_———————xl_l 2]+1
7 (2s+1)(23+1) 12;;1 ( )

U 4pp1;U BogoaAprhgrt | 2
X | o . (2711)
r Ep—Ep.+3tv,s

The cross section is in this case inversely propor-
tional to X’, or directly proportional to the veloc-
ity v’ of the outgoing particle. Thus slow par-
ticles are only rarely produced in nuclear
processes.
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D. Incident and outgoing particle slow

The cross section contains apart from the
resonance factor, a factor X/X’ «v’/v. In the par-
ticular case of the elastic scattering of slow
particles, »’=v so that the cross section depends
on the energy only through the resonance factor
while there is no general trend such as the 1/v
or the v/-law. E.g., if only one level is important,
the elastic scattering becomes

m(2J41) (T pp)?

= Pr
(2s+1)(2:+1) (EP—Epr)z-}-%‘YrJ(Zzn)

afr

Pp

with the same notation as in (270).

If one or both of the particles involved are
slow, there are strict selection rules for the angu-
lar momenta. E.g., if the incident particle is slow,
its orbital momentum will be zero and therefore
its total momentum j equal to its spin s. We
have then the selection rules

l[i—s| =J=i+s; J+i=s,  (273)

which means that only a fraction of the levels of
the compound nucleus will contribute to the cross
section. If the outgoing particle is slow, there will
be a similar selection rule determining the angular
momentum ¢’ of the final nucleus. y-rays are to
be considered as ‘‘slow’’ particles in this connec-
tion, with s being replaced by /, i.e., 1 and 2 for
dipole and quadrupole radiation, respectively.
For fast material particles no useful selection
rule holds.

The application of the dispersion formulae de-
veloped in this section to the various nuclear
processes will form the main content of this re-
port. From the experimental data, we shall de-
duce the widths corresponding to the emission of
various sorts of particles. The main results known
thus far are the following:

The v-ray width seems to be of the order of
0.1 to 1 volt for most of the ‘‘slow neutron levels”
of medium heavy nuclei, i.e., for levels with an
excitation energy around 8 MV. (§61.) For light
nuclei, the y-ray width is of the order of 1 to 10
volts for rather large excitation energies (~15
MYV), according to the evidence from the capture
of protons (§81).

The neutron width is for medium heavy nuclei
(A ~100) and excitation energies around 8 MV,
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of the order of 10~3 volts at a neutron energy of
the order of a volt (§60). According to (266a), the
neutron width is cet. par. proportional to the
square root of the neutron energy. It will there-
fore be about 1 volt for neutrons of 1 MV energy,
and near 10 volts if the neutron energy is of the
order of the nuclear interaction potentials
(~20 MV). There is not much evidence on the
neutron width for light nuclei except that it is
very much larger.

The proton width is known for some very light
nuclei, e.g., Be? (§81). It contains one factor
representing the transmissibn of protons through
the potential barrier (§68) and one factor giving
the proton width without barrier. The latter
should be comparable to the neutron width; it is
of the order of 50,000 volts for the resonance level
of Be? at an excitation energy of 17 MV and a
proton energy of 400 kv. Data from other light
nuclei are similar.

The widths corresponding to the emission of
deuterons, a-particles, etc., from the compound
nucleus are, apart from the different transmission
of the potential barrier, of the same order as for
protons and neutrons (Chapter XIII).

§53. THE DisTRIBUTION OF NUCLEAR ENERGY
LeveLs. (B13, B4, B33, F30, 012)

We have already found in our qualitative dis-
cussions in §51 that the energy levels of a heavy
nucleus will be very closely spaced and that their
spacing will decrease rapidly with increasing
energy. In order to find theoretical expressions for
the magnitude of the spacing and its dependence
on the energy we must, of course, use some model
of the nucleus.

Two models suggest themselves which may be
considered as opposite extremes:

(a) We may start with free individual particles
and consider the total energy of the nucleus as
equal to the sum of the energies of the individual
particles. This amounts to assuming the interac-
tion between the particles to be small; the nucleus
would then be comparable to a gas.

(b) We may consider the interaction to be
large, more accurately, large compared to the
kinetic energy of the particles. Then the nucleus
will in first approximation correspond to a drop
of liquid, the distance between neighboring
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particles remaining almost constant all the time.
It seems that assumption (b) will come nearer
the truth.

A calculation using assumption (a) was given
by Bethe (B13) and also by Oppenheimer (012),
while assumption (b) was proposed by Bohr and
Kalckar (B33). An intermediate model, treating
the nuclear particles like the electrons in metals,
i.e., as half-free particles with correlations be-
tween their positions, was treated by Bardeen
(B4).

In all cases, we consider the nuclear problem as
a statistical one. E.g., if we take assumption (b),
we shall first find out the normal modes of vibra-
tions of the particles in a drop of liquid, and then
assume that each normal mode has an excitation
energy given by the Planck formula. Summing
the excitation energies of all normal modes, we
obtain the total excitation energy of the nucleus
as a function of the ‘‘temperature’ introduced in
the Planck formula. This relation between total
excitation energy and temperature should, of
course, be considered as a definition of the latter.

Since we are only dealing with excitation ener-
gies very small compared to the total binding
energy of the nucleus (10 as compared to
~1000 MV), the temperature is always ‘“low.”
From the relation between energy and tempera-
ture we may obtain the specific heat and the
entropy of the nucleus using the ordinary thermo-
dynamical relations. The entropy S is then by
definition related to the number of states of the
nucleus p~eS. Thus the number of states (per
energy interval) can be expressed in terms of the
excitation energy of the nucleus.

If we take a different model for the nucleus,
e.g., the free particle model, we shall only change
the relation between energy and temperature,
and therefore between the density of levels and
the excitation energy. The principle of the calcu-
lation remains unchanged. We shall therefore
carry out the calculations first assuming a gen-
eral relation between energy and temperature,
and shall specify the nuclear model only at the
end.

Our object is to obtain the average spacing of
the nuclear levels

D(U)=1/p(V), (274)

where p(U)dU is the number of levels with
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energy between U and U+dU. To obtain the
“density of levels” p(U), we consider the expres-
sion familiar from statistics:

Ze—Ekl‘rze—FIr’ (275)
k

in which the sum is to be extended over all levels
Ej of the nucleus. 7 is an arbitrary parameter,
and F(7) a certain function of 7 defined by (275).
If the levels are very dense, the expression (275)
can be written as an integral

fp(E)e—E/'dE=e‘F/'. (275a)

It will be possible to find 7(U) from this equation
if we can (1) choose the parameter 7 in such a
way that only energies near U contribute ap-
preciably to the integral in (275a), (2) determine
F as a function of 7 and both these quantities as
functions of U.

Provided 7 can be determined so that condition
(1) is fulfilled, p(E)e~#/" will have a sharp maxi-
mum near E= U. Then we have obviously

S EweEtr [ Ep(E)eEl"dE
Ze—-Ek/r - J‘p(E)e—-E/rdE

=U. (276)

This relation determines the parameter 7, as a
function of U, if the energy spectrum of the
system is known. Conversely, it expresses U as a
function of 7. The two functions U(7r) and F(r)
are connected by

d(F/r
4, dF
d(1/7) dr

(276a)

which follows immediately from (275a) (276). 7,
U and F correspond, in ordinary statistical
theory, respectively, to k7, to the energy of the
system and to the free energy.

As is shown in classical statistics, the condition
(1) will be fulfilled by the 7 as defined in (276),
provided the system contains sufficiently many
particles. Then the main contribution to the in-
tegral (275a) will come from energy levels E;

near U. Thus we may write instead of (275a)
e~Flir=p(U)e"VI"\ (), (277)

where M(U) is a quantity of the dimensions of an
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energy which is to be calculated by evaluating
the integral in (275a). It is a slowly varying func-
tion of the excitation energy U as compared to
the rapidly varying functions e~F/", ¢~U/7 and
p(U). We rewrite (277)

p(U) =e=R17/\(D).

According to the definition (276), 7 is that tem-
perature for which the average energy of the
system is U, and F is the corresponding free
energy. We introduce the abbreviation

(U~F)/r=S.

S is then the entropy divided by Boltzmann'’s
constant k. Then we have

p(U)=e5©/\(U)

(277a)

(278)

(278a)

and it remains only to obtain, in specific terms,
S(U) and MU).
For S we have, according to (276a)

S=(U—~F)/r=—dF/dr. (278b)
Also from (276a) we find
aU d*F
—_—=—r— (278¢)
dr dr?
drdU Cdr
so that S= ——*—=f , (279)
T dr T

where C is the specific heat. From (279) the well-

known relation
dS 14U

dr 71dr

(279a)

follows immediately, and, since 7 and U are
uniquely related to each other,

as 1
—_—— (279b)
aUu

expressing the elementary definition of the en-
tropy. S is therefore known as a function of U
if the relation between U and 7 is known.

To determine A, we insert (278a) in (275a) and
have

e Flr= f eSEI-ElndE/\(E), (280)

where S(E) is the entropy corresponding to the
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energy E. Since \ varies slowly with the energy,
and since the integrand is very small except for
E=~ U, we may replace A\(E) by A(U) and have,
using (277) again:

MUD) =feS<E>“S‘U)+(U‘E)/’dE. (280a)
With (279b) the exponent becomes
s 1428 U—-
—(E-U)4+-—(E-U)*+
aUu 24U? T
T
=———(E-U)2 (280b)
2724dU
The integration gives then immediately
NMU)=(Q2m)}@U/dr)t (280c¢)

With (274) and (278a), the average spacing
between levels becomes thus

D(U)=1/p(U)=N(U)e=s®

=7(2rdU/d7)e=S. (281)

We make now the more special assumption
that U depends on the temperature according to
a power law

U=ar.

(282)

This is true for the model (a) proposed above
with # equal to 2. For model (b) it is fulfilled for
low temperature (low excitation energies) with
n=17/3, and for high temperature with n=4 (see
below). With the law (282) we find, using (279),

an n
Tn——l =__.(a Un—l) 1/n
n—.

S=

— (283)

and inserting in (281)
D(U)=(2mn)}

Un+1 in n
( ) exp(— a”"U‘"‘l)’"). (284)
a n—1

The spacing decreases, according to (284), ex-
ponentially with increasing energy. The exponent
contains U?* for the Fermi gas model (model a,
n=2), U¥" for the liquid drop model at low and
U3* at high temperatures. The ‘liquid”’ model
thus gives a somewhat more rapid decrease of
the spacing.
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The exact value of « can, of course, only be
obtained from a special model. Quite generally a
increases with the number of particles 4 in the
nucleus, so that the spacing of nuclear levels
decreases with increasing 4, for constant excita-
tion energy U. The decrease with 4 is in general
more rapid the slower the decrease with increas-
ing energy; e.g., it is more rapid for the free
particle model (a) than for the ‘liquid drop”
model (b).

A. Free particle model

In this model, the nucleus is considered as a
mixture of two Fermi gases of neutrons and pro-
tons. At zero temperature, the particles occupy
all the lowest levels while the higher levels are
empty. At higher temperatures, there will be
some particles in the higher levels and some of the
lower levels will be empty.

The statistical treatment given above is not
directly applicable to this case because it pre-
supposes that the energy levels of the given sys-
tem containing, say, NV neutrons and Z protons,
are known. In the customary treatment of Fermi
statistics (and any gas statistics) not only sys-
tems of the correct number of particles are con-
sidered but also such for which the number of
particles is slightly different.

The only way in which the given number of
particles is taken into account is by making the
statistical probability a maximum for that num-
ber of particles. This is achieved by suitably
choosing a certain parameter {, the Fermi energy.
But even with the proper choice of {, there re-
mains the fact that the distribution function
derived in Fermi statistics gives a finite probabil-
ity also for the states in which the total number of
particles does not exactly have the correct value,
so that we must multiply the density p(U) ob-
tained in (281) by the probability that the num-
ber of particles of each kind has the correct value.

In addition to this, we must remember that,
owing to the selection rules, only compound
states with one or a few values of the angular
momentum are important for a given nuclear
process. Therefore, we are interested in the states
of the nucleus with a given angular momentum J.
This constant of motion should be treated in the
same way as N and Z so that we have altogether
three constants of motion besides the energy,
viz. N, Z and J.
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For generality, we assume that an arbitrary number m
of constants of motion N; Nj- - - Ny, is given. Then there
will be an equal number of parameters ¢1---¢m in the
distribution function which must be chosen in such a way
that in the average NiN,--- have their correct values.
Then we have instead of (275)

eI = Z

k, N1'...Nm’

eERNUIE A+ Nm'Em) [T (285)

The sum extends over all possible values of Ny---N,'
including their correct values Ni---N,. (285) may be
rewritten in integral form

e—d’/r_:fp(E, N/ -N,,.')e_'EIT+‘“N1’+'"+""'N’"' (2853)

with ai=¢i/r. (285b)

& must be regarded as a function of the parameters r,
a -+ an. We have

(g—g%) =7, (286)

1 /9®
()
T \da;

where the partial derivative with respect to any parameter
a; is to be taken with the other parameters ax (k#¢) and
being kept constant.

The density of levels may again be written

o(U, Ni-++Nu)=eS/x

(286a)

(287)
with

S(U, N1+ -+ Np) =(U—®)/r—as N1~ - - —an N,  (287a)
S is a function of the energy U and the ‘‘constants of
motion” Ni--+Nn only but does not depend explicitly®

on the parameters 7 and a. The derivatives of the entropy
with respect to the ‘‘constants of motion’ are

9S/aU=1/r, (288)

3S/dN;= —a;. (288a)

(288) means that formula (279b) and therefore (283) re-
mains true in our more complicated case provided the
number of particles is constant. We assume now again
that A is a slowly varying function of its arguments, and
find, similarly to (280a):

NU) = j‘eS(E)—S(U)+(U—E)/1+a1(N1’—-N1)+...
dEAN, - - -dN,'.

With (288, 288a) the exponent becomes

1 m m

33 %S

25=0j=0 ON;9N;

(289)

(Ni'— Ni)(N;' = N;)

1 da;
—5 Ty (V=N (Ny=N)), (28%)
LY )

9 This follows immediately by differentiating (287a)
with respect to any of the parameters, keeping the other
parameters and U, N;- - - N, constant. E.g.,

3S/da;=—(1/7)(0®/das) — N;=0 (cf. (286a)).

S and & correspond formally to Hamiltonian and La-
grangian in mechanics.
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where we have put
E=N/, U=N, 1/r=—ay. (289b)
The integration of (289) is then straightforward and gives
MU) = @2m)m+) /4, (290)
where A is the Jacobian
dai. AN
A= . 290.
oN; l aN:aN; ! (2902)

If we are treating a mixture of degenerate
Fermi gases, then the Fermi energy ¢; for the ¢th
kind of particles is determined solely by the
number N; of these particles, except for a very
small dependence on the excitation energy U
which we neglect. Since a;=¢{:/7, we have (cf.

289b)
day a(1/7) dao a(l/7)
aN, U  aN:  oN;
da; a(1/r)  da; 1 9¢; al/7)
aNo ~ U ' aN: roN:  oN:
da; a(1/7)
={ . (290b)
AN AN,

We add ¢; times the zeroth row to the sth row of
the determinant; then there remains in that row
only the diagonal term 77'd{;/dN;. Thus the
value of the Jacobian is

T (6(1/7))N =1 7 4N,

and the spacing between neighboring levels be-
comes (cf. (287))

(291)

1
D(U) =——=(2r) D im+1
)

P
dU » dN\}
x( fi ) s,
dr =l dg;

(292)

We now turn to the special features of the free
particle model. We assume that the particles
move in a spherical potential hole of a certain
depth, and that their interaction is small (except
inasmuch as it is expressed by the potential hole).
Neutrons and protons will obey Fermi statistics,
and the number of neutrons having a kinetic
energy between e and e+de will be given by the
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usual formula of Fermi statistics (cf. B13)

n(e)de=3Cf(e)elde (293)
with C=(2"2/97) (MR?/h?)}, (293a)
fle=1/ei0ir+1, (293b)

R being the nuclear radius and {; the Fermi energy
for neutrons. Integration gives for {:>1

N= f n(e)de= Ced(14(x/8) (r/51)*+ - - ) (294)

and for the energy
Ur=3§Cer0?(1+(572/8)(7/51)%+- - ).
From (294), we have in sufficient approximation
dN

3 3 3N
—— ~—Ct=—CiNt=— —
a¢ 2 2 26

(295)

(294a)

and a corresponding relation for the protons.
From (295), we find after a short calculation
(cf. B13)

U=Ur+Us— Uo=1mCr (51t +52Y),  (2952)

where U, is the total energy of the neutrons, U,
that of the protons, U, the zero-point energy
which depends only on the numbers of protons
and neutrons but not on the temperature 7, and
is therefore irrelevant for the determination of
the specific heat dU/dr and the entropy (cf. 278).
Since the numbers of neutrons and protons are
not very different, we may put {1={2=¢{, where
{o is an average Fermi energy for protons and
neutrons. Then

U=iniCirt=1n(A /)%, (296)

using (294) and putting N=1%4, in analogy with
our approximation®® {;=¢;=¢. From (294)
(296) we find immediately the entropy S, and
the quantities dU/dr, dN/d¢1, dZ/d¢, occurring
in (292).

We must now introduce a parameter v analo-
gous to the {’s which makes a certain value J of
the angular momentum most probable. It is more
convenient to work with the component M of J

in a given direction Z because M is the sum of

1;3T;1e justification of these approximations is proved
in B1
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the angular momentum components of the indi-
vidual particles, viz.

A
M= Zm,-.

=1

(297)

We write for the probability to find a neutron
state of energy and angular momentum m
occupied

Sfle, m)=1/(ele-$1mrmir4-1), (297a)

The expressions (294) (296) for the total number
of particles and for the total energy will be
changed only by quantities of the order y2. The
average value of the total angular momentum is

1
M= S
fmg(e, m) (e(e—n—m>/r+ )

————————————)dedm, (297b)
ele=t—ym)/T 4 q

where g(e, m) is the number of states of an indi-
vidual particle with given e and m.

The number g(e, m) of states with given e
and m of an individual particle in a spherical
potential hole of radius R, can be found as fol-
lows. Leaving out the spin, we describe each
particle state by the three quantum numbers 7,
! and m where [ is the total angular momentum,
m its component in the Z direction and » the
radial quantum number. According to the WKB
method, # is given by

R 2Me (I4+3)%\}
n7r=f( —(+—)—) dr, (298)

h? r?

min

where 7min is the value of 7 for which the inte-
grand vanishes. Since there is just one state for
each integral value nlm, the number of states of
given ! and m per unit energy is

dn 1 M p/2Me (I4+3)2\7}
gle, l,m)=—=—— ( - ) dr
de wh? h? r?
1 /2MeR? 3
- —<z+%>2). (298a)
27e h?

The total number of states of given m and energy
between ¢ and e+de becomes
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g(e, m)de=deflog(e, 1, m)di (298b)

Im|

where /y is the value of / for which (298a) vanishes.
This expression should be multiplied by 2 for
spin. Putting {1={2={, and expanding in powers
of v, (297b) becomes then

d
M= _4nyfde__(e(e—{o)/r+1)—l
de

I+
f dl ge, 1, m) f midm. (299)
J=+h)
The elementary evaluation of this integral, using
(298a), gives
M=cy
c=2(MR*/hH)A.

(299a)

with (299b)

The entropy for a given N, Z, U may thus be
written (cf. (288a))

S(N,Z, U, M)=S(N, Z, U, 0) — (M?*/2¢cr) (300)

and the density of states, for given NZU, de-
pends on M as (cf. (287))

p(N,Z, U, M)=

o(N, Z, U, 0) exp (—M?/2¢r). (300a)

We must now determine the number of states
of given J. This is equal to the difference between
the number of quantum states with M =J, and
the number of levels with M=J+1 (cf. B13)
and therefore (cf. (300a))

p(N,Z, U, J)=p(N, Z, U, 0)
X[(T+3)/er]exp [=(J+3)?/2er].

It can be shown (see (299b)) that cr is rather large
(=~1000) so that, for the important values of J,
the exponential in (301) may be neglected.
Therefore we obtain for the spacing of levels of
angular momentum J (cf. (292))

(301)

D(N, Z, U, J)=D,/(2J+1),  (302)
2ct
Dy=—————=2c(2m)27/2
p(N, Z, U, 0)
dUdN dZ dM\?}
o ___) e—S(N,Z2,U, 0 (302a)
dr dtid¢e dvy
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Inserting (296) (294a) (279) (299a) (299b) we
have
Do=3V2r374(Ac/ o)l dr 4/ b, (302b)

D= (18/5)}A2U?/¢o)e-v AV} (302¢c)11

Here the Fermi energy ¢ is according to (293a)
(294) and with N=134:

fo=(4/2C)¥=1.15P, (303)
where P=h?/Mry?, (303a)
ro=RA-}. (303b)

This radius 7, is independent of 4 if the nuclear
volume is proportional to the number of particles.

From the radii of a-radioactive nuclei
(Chapter XI)

70=2.05-10"13 cm, (303c)

so that P=10 MV, (303d)

t=11.5 MV, (303e)

which is of the same order as the binding energy
of neutrons or protons in nuclei
We introduce now the abbreviation

x=m1(AU/)t=(AU/1.17)} (Uin MV). (304a)

Then the spacing becomes (cf. (302c))
Dy=8-105x%¢= volts. (304)

For U=8 MV and 4 =120, we have x=28.7
and Dy=0.2 volt. This result for the spacing is
very small indeed!? and is certainly smaller than
the spacing observed in slow neutron experi-
ments (cf. §60) which may be of the order of 10
volts for the atomic weight and excitation energy
considered. This shows that our assumptions are
inadequate, particularly the assumption of free
particles with small interaction.

B. Free particle model with correlations

Bardeen (B4) has pointed out that the free
particle model in the form used in 4, is not in
accord with the assumption of exchange forces

11 This formula differs somewhat from that given by
Bethe (B13, Eqs. (49) (50a)). Part of the difference viz. a
factor (log 4)% is due to the improved treatment of the
angular momentum, another part (factor 23/¢) to a numer-
ical error in Bethe's paper. These errors have also been
pointed out by Bardeen.

12 [t seems somewhat surprising that the free particle
model gives too small a spacing.
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between the particles. As Van Vleck has shown
(8§36 of this report, ref. V 1 of part A), the poten-
tial acting on one particle depends strongly on
the wave number of that particle, and its abso-
lute value decreases appreciably with increasing
wave number, i.e., with increasing kinetic energy
of the particle. This means that the total energy
of an individual particle,

E= Ekin +Epot. (305)

depends much more strongly on the wave number
k than the kinetic energy itself.
We may put

(dE/dk)p—;=+v(dExin/dk)E~-;. (305a)

With the range and magnitude of the nuclear
forces derived from the binding energy of light
nuclei, Bardeen finds

(305Db)

Now the number of individual particles states
per unit energy is proportional to dk/dE, and is
therefore reduced by the ‘““correlations’ to about
one-half of its value. A reduction in the density of
individual particle states means a much larger
reduction in the density of states of the nucleus
as a whole. Quantitatively, we can take account
of the change of the density of individual states
as follows: The excitation energy U is propor-
tional to the density of individual quantum
states times the square of the temperature 7.
This follows from (296) if we consider that, with
kinetic energy alone, the density of individual
states of energy near ¢, is $Ct% (cf. (293)); it
also follows from elementary considerations on
Fermi statistics.

Thus the constant « in

U=qar?

y=2.

(306)

must be multiplied by 1/y. But, according
to (283),

S=2(al)} (306a)
Therefore, if U is kept fixed, the entropy ‘‘with

correlation” is connected to that with completely
free particles by

Scarr = Sfr'Y_} (306b)
and the quantity x in (304) has to be replaced by

x'=xyt (306¢)
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TaBLE XX. Spacing of nuclear energy levels according to
Bardeen's method. The figures give the spacing Dy (in volts)
of levels of zero angular momentum, at an energy equal to
the avgrage neutron dissociation energy Q (cf. Table XX1I,
row 0).

A 20 50 100 200

Q (MV) 9.5 8.2 16.9
Do(Re*=9-10"1 cm) 1.1-108 1 1000 10
Do(Ro*=12.5-10"1 cm) 6-104| 300 1.2 |1.2-1073

* Ro=nuclear radius for 409=230. The radius for any nucleus is
assumed to be Ro(A/Ao)!5.

The resulting spacing of energy levels, as a
function of the atomic number, is given in Table
XX for various nuclear radii and is compared to
the spacing obtained from the free particle model
without correlations.

C. Liquid drop model

It was pointed out by Bohr and Kalckar (B33)
that a nucleus should be considered as a drop of
liquid rather than as a gas because the interaction
between the nuclear particles is large and there-
fore fluctuations of the density very improbable.
A liquid drop is capable of two types of vibra-
tions, namely surface waves and volume waves.
The surface waves are not connected with any
changes in volume; the potential energy is then
only due to the surface tension and is compara-
tively small. Therefore the frequency of the sur-
face waves is rather small, and this type of waves
will most easily be excited at ‘‘low temperatures’’
i.e., in all cases relevant for nuclear disintegra-
tions. The volume waves involve a compression
of the nuclear liquid which is connected with a
large increase in potential energy, a high fre-
quency and therefore small excitation probability
at “low’ temperatures.

1. The surface waves.—For simplicity, assume
first that the surface of the liquid is plane when
there are no vibrations. Let the xy plane be the
equilibrium surface, and let {(x, y) be the (ver-
tical) displacement at a point x, y of the surface.
Then the increase in surface area is for small
displacements

3 f dxdy[(3¢/0x)*+(0¢/a)?]  (307)

integrated over the surface. If G is the total
surface energy of the liquid in equilibrium and
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S= fdxdy the total surface area, the increase in
potential energy is

V=(G/28) f dxdy[(35/0x) 4 (8¢ /0)?].  (307a)

In order to find the kinetic energy we must know the
velocity u at every point in the liquid. We assume that the
motion of the liquid is irrotational; then u may be written
as the gradient of a velocity potential which we call
ay/ot, mz.

u= — grad ay/dt. (308)

Since the surface waves are not connected with any com-
pression of the liquid, we have

divu=—A(3y/at) =0. (308a)
Then the kinetic energy becomes
=10 [wrir=14p [ (grad oy /a0
— ——~d d 8b

where p is the density. The last integral is to be extended
over the surface 2=0 of the liquid and the vanishing of the
Laplacian has been used.
From (308) it follows that the displacement may be
written
o= —grad ¢ (309)

and in particular the displacement of the particles on the
surface of the liquid

—(8¢/02) 0. (309a)
Because of the absence of volume changes we have again
Ay =0. (309b)
We assume now that ¢ is a periodic function of the co-
ordinates in the surface plane, x and y, and of ¢#. Then
from (309b) it follows that
y=a cos (k.x+k,y)e* cos wi, (309¢c)
where k= (k2+E,2)Y (309d)

while the relation between w and 2 must be calculated.
The positive sign of the term k2 in the exponent of (309c)
makes the displacement and the velocity vanish for large
negative z.

The total potential energy (307a) becomes
now, with (309a) and (309c)

V=(G/2S)a? cos? wt k‘f sin? (kx+kyy)dxdy
=1Ga? cos? wt k4, (310)

since the average of sin? over the surface is %.
Similarly, the kinetic energy (308b) becomes

T =}pSa*w? sin® wt k. (310a)

If the sum of potential and kinetic energy is to be
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constant, we must have

w=k(G/pS)}. (311)

From this expression, we can easily find the
number of normal modes per unit frequency w,
a number which is needed for calculating the
energy of the liquid drop as a function of the
temperature. Following the usual method, we
obtain for the number of normal modes per
dk.dk,

(S/An?)dk.dk,. (312)

Therefore the number of vibrations with wave
numbers between %k and k+dk is

(S/4n%)2wkdk (312a)

and that with frequencies between w and w+dw,
according to (311)

p(w)dw=(S/27m)(pS/G)3widw. (312Db)

Essentially the same formula can also be derived
for a spherical drop by a more detailed study of
its surface vibrations, using an analysis of the
deformation in spherical harmonics.

For a spherical nucleus, the surface area is

S=4xR? (313)
and thedensity p=34 M /47R3. (313a)

The surface energy G can be deduced from em-
pirical data on nuclear binding energies using
the method outlined in §30; we find

G=T4}, (314)
r=9.6 MV=~10 MV (314a)

if the nuclear radius has the value 2.05-10-134 %
(§68). If we introduce, instead of w, the quantum
energy

where

e=Fhw (315)
(312b) may be written
ps(e)de=4-3"YTP)-14tedde (315a)

with P as defined in (303a, d). For a heavy
nucleus (4 =200), this gives about .3 normal
modes of surface vibrations!?® with quantum ener-

122 From a direct analysis of the vibrations of the
spherical drop, it follows that the lowest frequency lies
actually at about 1.1 MV. Our distribution function (315a)
will therefore give a good approximation only for nuclear
temperatures of 1 MV or higher. For lighter nuclei, the
minimum temperature required increases as 47,
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gies below 1 MV. This seems reasonable in con-
nection with the fact that the low excitation
levels of radioactive nuclei lie at a few hundred
kilovolts.

2. Volume waves.—An ideal liquid will admit only logi-
tudinal volume waves. The number of normal modes is

Q(27)~3-4wk2dk = (2/37) R*wdw/ued, (316)

where %, is the velocity of sound. This quantity is connected

to the compressibility of the substance, i.e., to the second
derivative of the energy E with respect to the density o,

ot PE_ R JE

* 7 MA do* 9MA dR?

where MA is the mass, E the energy, R the radius and

o « R~3 the density of the nucleus (dE/dR=0). d?E/dR?

may be estimated from the statistical formula for the

energy as a function of the radius, (159) (159a):

E 3 B

317)

APy S 2x~3—3x1
AT, 10° T, T3
+(x1=2x% e +7id(x)}, (318)
3/m\
where To=ht/Ma?, x=—(f) 2 (318a)
2\3 7o

and Be"%/s? is the interaction between two particles. We
use for B, Tyand x the values derived from the new nuclear
radius according to the same method as used in §26, viz.
B=34 MV, T,=1.65MV,

a=5.0-10"8cm, x=23.66.

We obtain for the second derivative of E:

dE dE 1 B
Ri——p2t—— = [._ 2
x » 6AT, 1Ox +To7r’

(318b)

%3
{x2—4+ (x4 3x2+4)e? }:I. (318¢c)

Inserting the values (318b), this becomes

RYd?E/dR?) =354 MV. (319)
Therefore, according to (317)
K= Mu,®={R?/9A4)(d?E/dR?) =4 MV. (319a)

Inserting (319a) into (316), we obtain for the number of
longitudinal volume waves with a quantum energy between
eand e+de

pi(e)de=(2/37)(KP) 14ede. (320)

The total number of “longitudinal” modes of vibration
is equal to the number of particles, 4. The number of
modes of surface waves is of the order of the number of
particles in the surface, i.e., about Al For large A, this is
negligible compared to A. Thus longitudinal waves and
surface waves together do not give all possible modes of
vibration whose number must be 34 (number of degrees of
freedom). The additional modes must apparently be “‘trans-
verse”’ volume waves. If such waves have fairly short
wave-length, their frequency will be of the same order as
that of longitudinal waves of the same length: For short
waves, only the relative displacement of close neighbors
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matters, but the arrangement and interaction of close
neighbors is about the same in a liquid as in a crystal, and
in a crystal there is no great difference between the fre-
quencies of waves of the same wave-length and different
polarization provided the wave-length is short. Thus, for
short waves, we shall get approximately the correct num-
ber of modes of vibration per de if we multiply (320) by
three, i.e. the number of possible polarizations is

po()de=(2/7)(KP)- dexde. (320a)

The frequency of long transverse volume waves in a
liquid is an unsolved problem. We may only hope that such
waves are not very essential for the problem of the specific
heat. This may perhaps be justified by the fact that to a
certain extent, the long transverse waves will be replaced
by surface waves. Moreover, at the low temperatures which
are important for nuclear reactions, the influence of the
surface waves is much more important than that of the
volume waves. In the absence of any correct treatment,
we shall therefore assume (320a) to give the correct number
of volume waves for low as well as for high quantum
energy.

3. Thermal properties of the liquid drop.—The
total number of normal modes of quantum energy
between € and e+de is (cf. (315a), (320a))
p(e)de=(4-3"HTP)- 141!

+(2/7)(KP)34e*)de. (321)

The energy at the ‘‘temperature’”  is then, ac-
cording to Planck’s formula

@ ple)de 4 A3 2 At
=f =—0y/3 +_Cd ’
o edr—1 3% (rP)t = (KP)t

(322)

@ x"dx

where C,.=f =nlf(n+1), (322a)
0 er—1

C(nF1)=1-0+1) 420D ., (322b)

C4/3= 1694, Ca =6.50. (3220)

We introduce a ‘‘critical temperature’’ 7, as that

temperature at which the contributions of surface

and volume waves to the energy become equal.

According to (322),

ro= (2wCyya/ Co)33-15(K /T3 (K P)LA =15
=1.080(K/T)2/5(K P)¥4-155, (323)

At this temperature, the contributions of surface
and volume waves to U each have the value

Up=211577/53=415C, 3 12/5Cy=1/5( K /T)8/5( K P) 4 1/5
=5.60(K/T)*5(KP)*A 5. (324)
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If we insert the values of P, T' and K (cf. (303d),
(314a), (319a)), we have

Uy=8.2415 MV, (324a)

which, for A =100, has the value 20.6 MV. In
most practical cases, the excitation energy will
therefore be considerably less than 2U,, and
therefore the temperature less than 7,. This
means that surface waves are in general more im-
portant than volume waves.

We introduce the abbreviation

T=1/70. (325)
Then (322) reduces to (cf. (323), (324))
U/Uy=T"3+T* (325a)

The entropy is
drdU Uoy7 4
ALt
T dr 1o \4 3

21
250(‘1'6T4/3+T4) (326)

with  So=4U,/370=6.93(K/I')5/542/5,
With P=T'=10 MV and K=4 MV, we have
So=2.314725, (326b)

r0=4.754-15 MV, (326¢)

(326a)

Finally, the quantity X in (281) has the value
7 3
)\=(27rdU/6r)*r=)\o(ET4/3+T3) T (327)

with
M= 87 Upn)}=12.3(K/T)(KP)*=31 MV. (327a)

The temperature, T, the entropy S/S, and the
quantity A\/\o are plotted in Fig. 9 as functions of
the energy U/U,. The plots are almost straight
lines, especially for the entropy. The valuesof U,S,
and 7, for various values of the nuclear mass are
given in lines B to D of Table XXI. From these
values and from the curves of Fig. 9, the tem-
perature, entropy etc. can be obtained for any
excitation energy of the nucleus. The tempera-
tures 7 so deduced are listed in lines E to G of
Table XXI, for excitation energies of 5, 10 and
20 MV. They are seen to be much smaller than
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Fi1G. 9. Nuclear temperature r, entropy S, and \ (cf.
(281)) as functions of the excitation energy U in the liquid
drop model. The constants Us, S, 7o, Ao are given in
formulae ((324a), (326b), (326¢), (327a)).

the excitation energies U, vtz. about 1 to 2 MV
for 10 MV excitation. This is, of course, due to the
fact that the excitation energy is, even at low
temperatures, distributed among many normal
modes of vibration.

From temperature, entropy and M\, the spacing
of nuclear levels can be deduced with the help of
(281). The result is given in lines H to K of
Table XXI, for four different excitation energies
(5 to 20 MV).

Table XXI shows clearly the very rapid de-
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crease of the spacing with increasing excitation
energy and increasing size of the nucleus which is
expected from qualitative considerations (B32).
Excitation energies between 15 and 20 MV are
easily obtained if fast deuterons (kinetic energy
~5 MV) are used as projectiles, since the large
internal energy of the deuteron forms part of the
excitation energy of the compound nucleus.
With such energies and heavy nuclei, the spacing
is seen to be only of the order of a millivolt.

The dependence of the results on the assump-
tions made in the calculation is shown in lines
M and N of Table XXI. In the upper of these
lines, we have tabulated the spacing obtained
when only surface waves are considered, for
U=10 MV. The results differ only by a factor
2.5 to 3 from that found with surface and volume
waves for the same excitation energy. This is
quite welcome because our treatment of volume
waves was much less satisfactory than that of the
surface waves. This concerns the general pro-
cedure, especially the treatment of the trans-
verse volume waves, and also the determination
of the constant K which was only possible with
the help of the statistical model of nuclei whereas
I and P could be deduced from empirical data.
Therefore the small influence of the volume waves
increases our confidence in the results. Of course,
a larger influence is to be expected for higher
excitation.

In the N line of Table XXI, the spacing as
calculated, assuming the old nuclear radius de-
rived by Gamow from the one-body model of the

TaBLE XXI. Spacing of nuclear energy levels in the ‘‘liquid drop” model.

Atomic WEIGHT A 20 50 100 200
B Characteristic energy U, (MV) 13.0 14.9 17.9 20.6 23.7
C Characteristic temperature 7o (MV) 3.00 2.61 2.17 1.89 1.64
D Characteristic entropy So 5.8 7.65 11.05 14.6 19.3
E Tempera- for U= 5 MV 1.72 1.43 1.11 0.92 0.75
F ture 7 10 2.18 1.82 1.41 1.17 0.97
G (MV) 20 2.78 2.31 1.81 1.49 1.24
H for U= 5 MV 110,000 36,000 5,900 1,100 150
I Spacing U=10 MV 13,000 2,700 180 16 0.9
J D(U) in U=15 MV 2,000 240 9.5 0.35 0.007
K volts U=20 MV 400 33 0.55 0.015 1.5.-10
L U=Q 16,000 3,300 310 60 15
M Spacing for Without volume waves 30,000 9,000 500 40 2.7
N U=10 MV With 7o=1.48-10"13 100,000 30,000 4,000 500 60
0 Q=neutron dissociation energy (MV) 9.3 9.5 9.1 8.2 6.9
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a-particle disintegration, is also given. The corre-
sponding values of the spacing are, as is to be
expected, very much (up to 70 times) larger than
those derived with the larger radius. A spacing of
as much as 500 volts for 4 =100 seems quite ir-
reconcilable with the evidence from slow neutron
experiments which may be taken as an argument
for the larger nuclear radius independent of the
a-particle disintegration (Chapter XI).

The greatest interest of Table XXI lies, of
course, in comparisons with experimental data.
The most extensive of these are the data obtained
from slow neutron experiments which indicate
spacings of the order of 10-20 volts for 4 =100
and 200, and 100 to a few hundred volts for
A =50 (§60, especially Table XXII). The levels
of the compound nucleus responsible for neutron
capture are those whose excitation energy is
about equal to the dissociation energy Q of the
compound nucleus into a neutron and a residual
nucleus. This dissociation energy Q is estimated
in the last line of Table XXI from the semi-
empirical formula for mass defects (cf. §30, and
B13); the corresponding spacing is given in line L.
The values thus obtained for 4 =50, 100 and 200
compare very favorably with the average spacing
of neutron levels estimated from experimental
data.

Less satisfactory is the agreement with data
from proton capture and a-particle disintegra-
tions of very light nuclei. E.g., the levels of P%
are well known from the a-particle disintegration
of Al*". The spacing is about 0.3 to 0.5 MV for
a-particle energies of the order of 5 MV, corre-
sponding to excitation energies of about 12 MV
(cf. §82, Table XXXX). Table XXI would indi-
cate a spacing of less than 1000 volts for this
case. Similarly, 3 levels below 1 MV are known
in the capture of protons by F'* (§81), corre-
sponding to an average spacing of about 0.3 MV.
The corresponding excitation energy of the com-
pound nucleus, Ne?, is 12 MV so that, from Table
XXI, we should expect a spacing of about 1000
volts.

Part of the discrepancy in the latter case may
be attributed to the fact that the normal state
of Ne? lies particularly low compared to neigh-
boring nuclei. The reasons for this are well known
(even number of neutrons as well as protons),
but these reasons will only depress the ground
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state and not the excited states of the nucleus.
Therefore the excitation relative to the ground
state should not be taken as significant for the
‘“temperature”’ of the nucleus. Tentatively, we
may replace in such a case the ground state by
the average of the ground states of two neighbor-
ing nuclei, in our case perhaps F'® and Ne?. This
would reduce the excitation energy by about 4
MYV so that a spacing of 10 kv might be expected
from Table XXI. But even this spacing is much
smaller than the observed one.

It seems therefore that our calculations fail for
very light nuclei. This is not very surprising in
view of the assumptions made; especially the dis-
tinction between surface and volume waves
would seem objectionable when almost all the
particles in the nucleus are surface particles.
Moreover, it might be possible that the nuclear
volume increases faster than the number of par-
ticles owing to some repulsive interactions; this
would make light nuclei smaller and therefore
the spacing of their energy levels wider. However,
it seems more plausible that the discrepancies are
due to a failure of the liquid drop model; the
Bardeen model (section B) seems to give much
more reasonable values (Table XX) for the
spacing of the levels of light nuclei. It is difficult
to decide what atomic weight is required for the
validity of the liquid drop model; we shall assume
it to be valid for 4 2 50.

In conclusion, we give here the formulae for
the temperature, entropy etc. when only surface
waves are important. This assumption is a good
approximation as is shown by Table XXI. From
(322) we have then

U=4-3-1C,5(TP)-1A4 473

=4.7(TP)-t43:753, (328a)
r=0.515(T'P)271 4211377, (328b)
S=3.39(AU?/T'P)", (328¢)
A=2.75(TP/A) U, (328d)

D=)e5. (328e)

With I'=P=10MV, and Uin MV:

r=1.924-21U%7 MV, (329a)
S=0.914277477, (329b)

A=5.34-1107 MV. (329¢)
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§54. THE WIDTHS OF NUCLEAR LEVELS AND THE
EvaproraTioN MobpEeL (B33, W7, B15, F30)

There are two ways of calculating the widths
of nuclear levels: Either we may start from the
assumption that a particle falling on the nucleus
will, in a large percentage of all cases, amalgamate
with it and form a compound nucleus. This as-
sumption seems plausible because of the large
interaction between nuclear particles and is con-
firmed by slow neutron measurements (cf. Sec-
tion D); it forms the basis of the ‘‘evaporation
model” (Sections D, E) which is especially
useful for high energy particles. The other, more
ambitious method is to try to calculate the
matrix elements (widths) from the wave func-
tions (Sections A to C). Although quantitative
results have not been obtained from this method,
the formalism seems useful especially for the
treatment of the widths of low compound states
which occur, e.g., in natural radioactivity (§67).

A. Wave function of the incident particle and
nuclear potential

The matrix element is defined as

Hov= f Ve Hyabpdr,  (330)

where Y., ¥pp and Y ¢, are the wave functions of
initial nucleus, incident particle and compound
nucleus, respectively, the subscripts # p 7 specify-
ing the states of the three systems. H is the
Hamiltonian of the interaction between incident
particle and initial nucleus.

In the calculation of this matrix element, the
main uncertainty arises from the function yp,
representing the incident particle. All the other
factors, v7z. the Hamiltonian H and the wave
functions Y4, and Y, of the initial and compound
nucleus, can either be considered as known
(Hamiltonian) or can be calculated in principle
from the Schrédinger equation. It is true that this
calculation would be impracticable in the case of
complicated nuclei; but at least the functions
VYan and Y¢, are uniquely determined by the re-
spective Hamiltonians.

This is not the case for the particle wave func-
tion y¥p,. Here we can make any of three choices:

(a) We can take yp, to be a plane wave,

(b) We can take yp, as the solution of the one-
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particle Schrédinger equation in an attractive
potential extending approximately over the
volume of the nucleus,

(c) We can take a repulsive potential of the
same extension.

This ambiguity refers, of course, only to the
determination of a ‘‘zero-order potential’’ and of
the zero-order wave functions of the particle. It
is not an ambiguity in the problem of nuclear
disintegration itself but only in our method of
solving that problem. If we were able to solve
the problem rigorously, we would not need to
speak of the particle wave function, and of transi-
tions between compound and dissociated state at
all; we would only have to solve the Schrédinger
equation for the complete system, and the solu-
tion would automatically represent the com-
pound state as long as all particles are close to-
gether, and behave asymptotically like the wave
function of the initial nucleus, times a spherical
wave of the particle P, when this particle is far
away from the rest of the system. There would
then be no question as to the choice of the phase
of the particle wave function because this,
among other things, would follow directly from
the solution of the wave equation.

As it is, we cannot solve our problem rigorously
but must apply a method of successive approxi-
mations, the Schrodinger-Dirac perturbation
method. Even so, we shall certainly arrive ulti-
mately at the correct result (provided the method
converges) from whatever ‘‘zero-order wave func-
tions’’ we start. But it will take a great number of
approximations before we arrive at the correct
result if we choose an unsuitable zero-order wave
function. Therefore we want a particle wave func-
tion y¥p, which makes the perturbation theory
converge as rapidly as possible; if possible, we
want it such that the second approximation
written down in (255) already represents the
probability of the process fairly well.

It is evident that the convergence of the suc-
cessive approximations of the perturbation
theory must be very different for the three differ-
ent choices of the particle potential mentioned
above. This follows simply from the fact that, al-
though all zero-order wave functions must ulti-
mately lead to the same result, the value of the
matrix element (330) is quite different for differ-
ent ‘‘zero-order’’ potentials. If we choose an at-
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tractive potential, (330) will in the average be
much larger than if we start from plane waves,
mainly because with an attractive potential there
is a chance of having a resonance already in the
one-particle wave function yp,, which increases
the value of ¥p, inside the nucleus and hence the
matrix element (330). A repulsive potential, on
the other hand, will make (330) (in the average)
smaller than a zero potential because in a (suffi-
ciently strong) repulsive potential, ¥p, will de-
crease exponentially from the surface of the
nucleus inwards, and will be smaller than the
plane wave function even at the surface itself.
The matrix element would decrease indefinitely
with increasing repulsive potential except for the
fact that the perturbing potential H tends to
increase; H is the difference between the actual
interaction between particle P and nucleus 4,
and the ‘‘zero-order potential”’ V used to calcu-
late y¥p,. Consequently, there will be a certain
medium value of the repulsive potential V for
which (330) will be a minimum (in the average
over the states 7).

It seems likely that a repulsive potential which
just makes the average matrix elements a mini-
mum will be the best choice for the zero-order
potential. Our requirement for a good zero-order
wave function is that it shall make the higher
approximations of the perturbation theory small
compared to the first. This will be the case if the
individual matrix elements are small, particularly
for high levels 7 of the compound nucleus. It will
be shown below that indeed a repulsive potential
will make the matrix elements sufficiently small
so that, at least in a particular case, the higher
approximations of the perturbation theory are
negligible. In contrast to this, we shall find that
plane waves make the higher approximations
more important than the first, and this will hold
a fortiori for particle wave functions in an at-
tractive potential.

Our result that we have to choose a repulsive
potential to calculate the zero-order wave func-
tions for the incident particle seems very reason-
able from the standpoint of the many-body pic-
ture of the nucleus. As we have seen in §51, the
incident particle will give part of its energy to
the nuclear particles as soon as it strikes the
surface of the nucleus; it will thus lose energy as it
goes inside and its wave function will change to
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such an extent that we cannot reasonably speak
of the free particle inside the nucleus at all. It is
therefore reasonable to choose a wave function
for the incident particle which ‘‘dies out’’ inside
the nucleus.

When it had not yet been realized that the
problem of nuclear dynamics is essentially a
many-body problem, an attractive potential was
used to represent the action of the initial nucleus
on the incident particle (B12, A7). This attrac-
tive potential was taken as the average interac-
tion energy between nucleus and particle. The
use of the average potential seemed very appro-
priate in the one-body picture when the incident
particle was supposed to traverse the nucleus
more or less undisturbed. However, in the many-
body picture there is no undisturbed traversing
of the nucleus, and there appears to be no room
for the attractive average potential.

In the theory of radiation, the wave functions
of the light quantum which are used in the dis-
persion formula, are taken simply as plane waves.
This appears to be the most straightforward
procedure, more logical than to take part of the
perturbation already into account when calculat-
ing the zero order wave functions. However, the
case of radiation is particularly favorable because
the interaction between light and matter is very
small; in our problem we must apply special
tricks to enforce convergence in spite of the large
interaction. It is, of course, not clear whether our
wave functions are actually suitable to this end,
but at any rate they are more likely to be suitable
than the other possible functions.

To specify the ‘‘zero-order” potential more pre-
cisely, we have to define the magnitude of the
repulsive potential V, and its radius of action.
The latter must obviously be taken approxi-
mately equal to the nuclear radius R. If the per-
turbation theory is to have any meaning, the
wave functions of the compound states, plus
those of the dissociated states, should form as
nearly a complete set as possible; this obviously
requires that the one group of wave functions
dies out where the other goes into effect, i.e. that
the repulsive potential acts inside a sphere of
approximately the nuclear radius.

The height V, of the potential barrier must be
of the order of nuclear energies (10 MV). A
smaller height would be unfavorable because it
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would not make the particle wave function yp,
small enough inside the nucleus, a larger V,
would make the perturbing potential H too large,
as already mentioned above. If V; is chosen of
the same order as the actual interaction between
nucleus 4 and particle P, its influence will be
moderate.

In order to investigate the influence of the
higher approximations of the perturbation theory,
we calculate the elastic scattering of slow par-
ticles (wave-length X large compared to the nu-
clear radius R). The scattering may be divided
into three parts:

(a) The ‘‘zero-order’ scattering contained in
the zero-order wave function itself. Since the
particle is assumed to be slow, the repulsive po-
tential is practically impenetrable for it so that
the nucleus acts like a hard sphere of radius R.
The scattering cross section of zero order is
therefore

a1=471R2 (331)

(b) The terms in the dispersion formula (255)
(second-order scattering) which arise from energy
levels close to the particle energy. This ‘‘reso-
nance scattering’’ ¢, may be larger or smaller
than the zero-order scattering according to
whether the particle energy is near a resonance
level or far away. It has no bearing on the ques-
tion of the convergence of the perturbation cal-
culation.

(c) The terms in the dispersion formula arising
from distant energy levels. These terms do not
change appreciably with the particle energy and
may therefore be regarded as part of the potential
scattering. Their ratio to the cross section ¢; will
give us the relative importance of the second as
compared to the zero-order approximation which
we want to calculate. There is no difficulty in
separating ‘‘close’” and ‘‘distant’ levels since the
contribution of ‘“‘medium distant” levels can be
shown to be very small.

The dispersion formula (255) gives for elastic
scattering

r 2
oatos=7X? Z_____l_’_’_”____
r EP—EPr+%'i'Yr
For given states of initial nucleus and incident
particle, the matrix elements y"p, will be in the
average independent of the energy E. of the
compound nucleus, except that for very high

(332)
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compound states y"p, will fall off (see below).
Therefore the contributions to the sum over 7 in
(332) will come mainly from energy regions in
which there are many levels, i.e. from high
energies. Since for very high energies vy falls off,
the main contribution will come from the energy
region just before v starts decreasing.!® Let us
denote the particle energy at which this occurs by
E¢. Then we can replace the resonance denom-
inator in (332) by — E¢ for all important terms 7.
The sum over r may be evaluated using the com-
pleteness relation:

Tv'es/(—Ec)=—27% /Eo

f‘PCr*HlﬁAn\prd‘r

= —21rf|H¢An¢pp[2dr/Ec. (333)

The volume element dr may be written as dradp
where dr4 is the volume element in the configura-
tion space of all the particles in the original
nucleus 4, and drp the volume element for the
incident particle. Integrating over dr4 and con-
sidering the normalization of ¥ 4,, we have

f \H(ra, 70|21 9an(ra) | 2dra = D2(rp),  (333a)

where U is an irregularly varying function of the
coordinate 7p of the particle, having the magni-
tude of a nuclear energy. Inserting (333a) in (333)
(332), we have

03=(41r3x2/E02)( f U%ppzdn,)2. (334)

The wave function yp is normalized per unit
energy, corresponds to the energy Ep and to
zero angular momentum of the particle, and satis-
fies the one-particle Schrodinger equation in a
potential which has the value V,for <R and 0
for > R. (The latter assumption is equivalent to
assuming the incident particle to be a neutron.)
The usual methods give

1 E\?
———(—) ex(r—R) r<R
T(2h)r \ TV,
v= (335)

1
——sin k(r—R+1 r>R
S R /)

13 Actually, the condition is that the product of ¥ and
the density of energy levels must have a maximum.
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with k=2ME)}/k, k=QQMVy)}/k. (335a)
Therefore
oo \ E 4nr 1
4"f U= O 2t
= (U)nEY/ 20V (336)

and the second-order cross section becomes

o3=(rh*/2M)(UHn?/VeEc®.  (337)

The energies U, V, and E¢ are all of the same
order of magnitude. U must be somewhat larger
than ¥V, because it contains V, besides the nuclear
potential. We estimate U~15 MV, Vi~10 MV
and (cf. (347a)) Ec~8 MV. Therefore the last
factor in (337) will be about 0.8 MV~! and o3
is about 5-10~2 cm?. It is therefore much smaller
than o; which is of the order of 10~2 cm?. This
indicates that with our choice of the wave func-
tions, the perturbation calculation actually con-
verges quite rapidly, at least in the case of the
elastic scattering.

If we had chosen plane waves, the wave function inside

the nucleus would have had the constant value k/7(25v)?4,
so that

4r [ UNr = (2/37) (U?) k2R3 /by

= (2M/3xk?) (U)WRY/K, (336a)
_16_75 (m)hz
=g R MR (337a)

With R=10"12 cm, A%/ MR? is about 0.4 MV. For U we
take 10 MV instead of 15 MV, because it no longer in-
cludes — V. The critical energy E¢ must be chosen higher
than before;* we take E¢c=17 MV. Then the last factor in

14 The estimate of the critical energy Ep in (344) to
(347) is based on a comparison of the experimental width
of slow neutron levels with the sum of the neutron widths
of all levels as derived from the completeness relation
(336). If a different wave function is taken for the neutron
(particle P), the completeness relation will give a different
result for the sum of all neutron widths. On the other
hand, the experimental width of one level is given; there-
fore a different number of levels below E¢ will be deduced.
With plane waves, we have according to (336a) instead of

(344):
Svpy 4 MR (U
1\7(E¢)"v~————---—--——=5-109
(v'po)nw 3 R 7\7Av

taking U=10 MV, k#/MR*=04 MV, R=10" cm,
A=3.10"1° cm, y=2-10"* volts. This number of levels is
very much larger than that derived from the repulsive
potential wave functions in (344), corresponding to the
large amplitude of the plane waves inside the nucleus.
With (344a) and the assumptions leading to (347a), we find

Ucz25 MV, Ecz17 MV.

(344a)
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(337a) is about 200, and o3 becomes approximately 1000R?
=800s1, which shows that the perturbation calculation
would diverge with plane waves.

For attractive potentials the perturbation calculation
will diverge even more seriously. If k= (2M| V,|)#/k is the
wave number inside the nucleus, we have in this case

k

= 72 (e sin® xRt cost cR)1 S0 K7 (335D)
for r <R. Then
(UH)aR k?
220y =
Uppiridr xhy k2 sin? kR4 «? cos? kR’ (336b)
(U%)a? 1

=R i

TR (Bosint kR4 Vocost Ry 07D

This cross section becomes extremely large in the case of
‘“‘one-particle resonance,” i.e. if

cos kR=0. (337¢c)

In this case there can, of course, be no convergence of the
perturbation calculation. We may try to save matters by
averaging over all possible phases xR of the particle wave
function. Then we find

R (U2)Av
2 Eg*VoEY

which still becomes extremely large for small energies of
the incident particle.

Our considerations show that only with a repulsive
zero-order potential can we expect a reasonable conver-
gence of the perturbation expansion.

(o8)a= (337d)

B. Potential scattering

The two contributions to the potential scatter-
ing ¢; and o3 have opposite phase: The phase of
the wave scattered from a hard sphere (0,) is
certainly opposite to the phase of the incident
wave (the two waves must just cancel each other
at the surface of the sphere). On the other hand,
the scattered wave o3 due to the dispersion effect
of highly excited nuclear states has the same
phase as the incident wave, just as light scattered
by an atom has when the frequency of the light
is smaller than the characteristic frequency of the
atom. Thus the total potential scattering cross
section is

Opot = (\/0'1 - \/0'3) 2,

If we estimate o3 to be about 5 percent of ¢,
(see above), the total potential scattering will be
decreased by 40 percent due to the influence of
the high levels of the compound nucleus.

In order to find the interference effects between
potential scattering and resonance scattering, we
must separate the former into contributions of

(338)
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various angular momenta J of the whole system.
Neglecting o3 and assuming the orbital momen-
tum of the incident particle to be zero the contri-
bution of the angular momentum J to the cross
section of the potential scattering is

2T +1
— R, (339)
(2i+1)(2s+1)

Considering that only states of the same J inter-
fere, and considering the phase of the potential
scattering, the total elastic scattering of slow
neutrons becomes

0'1.]=4

Y 2T41)
(2i+1)(2s4+1) T

'YTJPp

X |2R4+RY, ——————
* Ep—Ep,+3ivrs

(340)

If only one resonance level is important, this re-
duces to

2J+1
(2i41)(2s+1) (Ep—Ep,)*+ 17,42
X[4R(Ep—Ep.)+xy"7pp]. (341)

TRY p P
g =47R?

Near each resonance level, the cross section has a
minimum on the side of low energies and a
maximum at an energy slightly higher than the
resonance energy Ep,. If we use the fact that
v/ p, varies inversely as the wave-length for slow
particles (cf. 266), and if we assume v,; to be
constant and equal to the true width T',;, we have

2741 mxp L pp
oc=47rR?
(214+1)(2s+1) (Ep—Ep,)?+1T,,2
X[4R(Ep—Ep,)+xp,T7p,], (341a)
2J+1 7(T44x)
o/or=1+4+ (342)
(2s+1)(224+1) 144«
With T=KPrrTJPp/RI‘TJ1
x=(Ep—Ep:)/T:y. (342a)

If the resonance scattering is large compared to
the potential scattering (7>>1), the minimum
cross section occurs at x = — 37 and the minimum
at x=1/2r, the respective values of the cross
section being
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2J+1
o'min=-(1 _“‘—_—'—"'—'—) gy, (343)
(2s+1)(2i+1)
2741
2. (343a)

Omax=~—"————_ T
(2s+1)(224+1)

C. Sum rules and dependence of the matrix ele-
ment on the energy of the compound state

We now want to discuss the average behavior
of the matrix element (330) as a function of the
energy of the compound nucleus We, and the
energy of the particle Ep. The wave functions of
the various states of the compound nucleus will
certainly not be fundamentally different. Conse-
quently, the matrix elements will also not show
any particular trend with the energy of the com-
pound state, the state of the particle being kept
fixed. This is another point in which nuclear
theory is in contrast to atomic theory: Consider,
e.g., the matrix elements of the optical transitions
from the ground state of an atom to its excited
states. (The excited states correspond to the
states of the compound nucleus, the ground state
to the initial nucleus, the light quantum to the
incident particle.) These matrix elements fall off
as the inverse third power of the principal quan-
tum number 7 of the excited state of the atom
(cf. B16, p. 442). The reason is simply that in the
excited states the valency electron gets farther
and farther away from the core of the atom, and
its probability of being in the region occupied by
the ground state decreases as #~3. On the other
hand, a nucleus in an excited state will be just as
concentrated as in its ground state, and therefore
the wave function of an excited state of the
“compound nucleus”’ will overlap just as much
with that of the initial nucleus as the wave func-
tion of the ground state of the compound nucleus.

This will, of course, not be true for extremely
high excited states of the compound nucleus. The
width of such states will be much more accurately
given by the evaporation model (Section D) ac-
cording to which the width of high compound
levels decreases as their spacing. This means a
decrease in the partial width at high energy and,
in addition, it describes the approximate quanti-
tative way in which the decrease takes place.

In order to complete our calculations in 4, we want to
estimate the critical excitation energy Uc above which the
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widths fall off, not with the correct dependence of the
widths on the energy of the compound state but with the
dependence assumed in 4, viz. constant width up to Uc and
width zero at higher energies. Such an estimate may be
obtained by combining the experimental results about
neutron width with the completeness relation and with
some assumptions about the density of nuclear energy
levels. From the experiments about neutron capture, we
may deduce a neutron width of the order of about 3-10—*
volts for a neutron energy of about 1 volt and an atomic
weight around 100. On the other hand, we have from the
completeness relation according to (333) (333a) (336):
2 rp =212, l f ver*Hy anyppdr
r r

2

=2 f Ur(rp)ypidrp= UPnEY/ Vol (344)

Since we have assumed y"p, to be in the average independ-
ent of the energy up to the critical excitation energy Uk,
the sum on the left of (344) represents just the value of a
single matrix element, times the number of states N(Uc)
contributing, i.e., the number of states with energy below
Uc. We have therefore

N(Uc) = (U*nEY/ Volya) = (1072/3:1074) =1-107, (345)

assuming U and V), to be about 107 volts. There will thus
be about ten million energy levels below the energy Ue.

The critical excitation energy Uc may then be calculated
using the values for the spacing of the levels derived from
the liquid drop model. Using the general formula (281),
we have for the number of levels below Uc

o dUu(, dU\}
N(Uo)= [ ces‘U’T(de—l:) .

According to the general thermodynamical relation (279b)
dU/r=dS. (346a)

The last factor in (346) changes slowly compared to the ex-
ponential and may therefore, without appreciable error, be
replaced by its value for U= Uc. Then we have

N(Uc) = (2nd U/dr)c™ eSO, (346b)
Using again the general formula for the spacing, this gives
N(Uc)=7(Uc)/D(Uc). (347)

The solution of this equation, for N=107 and 4 =100, is
about (cf. Table XXI)

Uc=16 MV. (347a)

Thus Ug is of the order of a nuclear energy,and E¢c = Uc—Q
is of the order of the dissociation energy Q itself.

(346)

D. The evaporation model, general theory

Frenkel (F30) and Bohr (B33) have proposed
to calculate the width of nuclear energy levels,
and in particular its dependence on the energy
of the compound and final nucleus, by analogy
with the process of evaporation. Weisskopf (W7)
has given a more detailed treatment of this
“evaporation model.” The method is especially
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valuable in predicting the energy distribution of
the particles emitted (cf. Section E).

As in the theory of the rate of vaporization,
we shall express the probability of emission of
a particle by the compound nucleus (vaporiza-
tion) in terms of the probability of the reverse
process (condensation). For this purpose, we
shall consider a large box of volume Q containing
nuclear particles (neutrons, protons) in equi-
librium with complex nuclei of various kinds. Let
g4kF(A, Wi, pa)dpa be the number of nuclei of
kind 4, whose internal quantum state is Wy
and whose center of gravity moves with the
momentum py4. gar is the statistical weight of
state k, and dp, is the volume element in
momentum space. Then, in thermal equilibrium

Q Pa
gaxF(A, Wak, pa)dpa=gas——e WaktEO/ET

(2h)? (348)
where E, is the kinetic energy
EA =PA2/2MA- (348&)

The internal energy Wa; is most conveniently
defined as the total energy minus the energy of
the free particles constituting nucleus 4. The
number of nuclei 4 having an internal energy
between W4 and W4+dW, and a momentum in
the interval dpa is

F(A, Wa, pa)p(Wa)dWadpa, (348Db)

where p(W,) is the density of energy levels of
nucleus 4, counting each level as many times as
it is degenerate.

We now consider the disintegration of the
“compound’’ nucleus C into two nuclei 4 and P.
The internal states of the latter nuclei are fixed
and may be denoted by k and » respectively.
The compound nucleus may be in a state 7 in
the interval between W¢ and We+dWe. We
denote the probability of disintegration of C into
A and P by w,pC; it will depend on W¢ and on
the states k and # of the final nuclei 4 and P.
wapC should be considered as the average of the
disintegration probabilities of the compound
states in the energy interval dW¢. The probabil-
ity of the reverse process, i.e., the recombination
of A and P to form C, will be denoted by wc4F.
This recombination will, of course, only be
possible when momentum and energy are con-
served.
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The conservation of momentum requires
Patpr=Ppc, (349)
the conservation of energy
Wer+Ec=War+Wpa+Ea+Ep, (349a)

where the E's denote kinetic, the W’s internal energies.
We introduce, besides p¢, the momentum of the relative
motion of nuclei 4 and P, viz.

p=(Mapp— Mppa)/(Ma+ Mp).

Then we have

(349b)

Es+Ep=E+Ec,

where E is the kinetic energy of the relative motion

E=p2/2M, (349d)

M =reduced mass= M Mp/(Ms+ Mp). The conservation
of energy becomes then

Wer=War+Wpa+E. (350)

The probabilities w4p® and wc4P are connected by the

principle of detailed balancing. The number of disintegra-

tion processes C—A +P must be equal to the number of
recombinations 4 +P—C. This gives

p(We)F(C, We, pe)dpcdWe-wap®
=Lg4kanF(A, W ak, pa) F(P, Wp., pp)
XdpadppwcAP. (351)
The integral on the right-hand side extends over all

directions of the relative motion p, keeping W¢ and pe
constant. Because of (349) (349b), we may write

(349¢c)

dpadpp=dpcdp (351a)

and divide right and left-hand side of (351) by dpe.
Understanding wc4P to be an average over all directions of
p, we may then carry out the integration over the angle
 and obtain, instead of dp,

4dxpldp=4np2(dp/dE)dWe, (351b)
using the conservation of energy, (350). (351) divided by
dW¢ becomes

p(We)F(C, We, po)war® =gargpaF(A, Wak, Pa)

XF(P, Wen, pp) -4mpM-wcA?. (352)

We now insert in (352) the distribution func-
tion (348). Because of the conservation of energy
(349a), the Boltzmann factors on the left and
right-hand side of (352) cancel and we obtain

PgAkgpn 41rMPQ
p(We) (2nh)*

(353)

wapl=we

Here we may replace %w,pC by the partial width
I¢ 4xpn of the compound levels referring to the
disintegration into nuclei 4 and P in the states
k and n, respectively (see the definition of T' in
§52). I means here the energy value of the width,
averaged over all compound states 7 of energy
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near We¢. Furthermore, we write

p(We)=1/D'(Wc)=1/D/,  (353a)

where D’ is the average spacing of the compound
levels. Then we have

TC gxpn/D, = QwcAPgargrn(M2/27%h2%). (354)

The probability of recombination w¢4? is pro-
portional to the number of collisions between
nuclei 4 and P. Let R be the ‘“collision radius”
of the nuclei 4 and P. If quantum effects can be
neglected, i.e., for short de Broglie wave-length
1/ Mv, this radius may be taken as the sum of the
actual radii of nuclei 4 and P. Then we must cal-
culate the probability that a particle P moving
with the velocity v hits a stationary sphere 4 of
radius R if the particle P is distributed uniformly
over the volume Q. This probability is, per unit
time,

weAP =47R%,/Q, (355)

where v, is the average value of the component of
the velocity » normal to the surface of the sphere.
As is shown easily, v,=21v. We assume now that
the average probability for recombination in a
collision is £. Then the probability of recombina-
tion becomes

weAP=71R%E/Q (355a)
and the partial width
ZaxgpPn MR?
I-‘C"AkPn/Drl = %MvZE. (355b)
T n?
Here we introduce
P'=p?/MR?=PA}, (356a)

where P is (cf. (303d)) about 10 MV and 4 the
atomic weight of the compound nucleus. Then
we have

T 41pa/Dy = (gargpa/7)(E/P')E.

The only unknown quantity in (356) is the
“‘sticking probability.”” Bohr (B33) has suggested
that £ should be almost unity, which would mean
that practically every collision between a particle
P and a nucleus 4 would lead to an amalgamation
of the two nuclei, and none of the collisions to an
elastic reflection. In this case (356) gives a partial

(356)
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width of the compound levels of the same order
as their spacing provided that the kinetic energy
Eisof order P',i.e.,about 1 MV. The total width
of the compound levels would be very much
larger because in each case a great number of
states k are possible for the ‘“‘final nucleus” 4.

The assumption ¢ =1 is very tempting because
of the very large interaction between nuclear
particles. Moreover, similar results have been ob-
tained for the probability of condensatipn of
molecules on liquids or solids of the same sub-
stance by Polanyi and Wigner (P6a). However,
these calculations were carried out assuming
equipartition of the energy, i.e., at temperatures
high compared to the Debye temperature of the
liquid or solid. In the nuclear problem, we are
dealing with “low’” temperatures. In this case,
the transfer of energy from the incident particle
(molecule) to the vibrations of the nucleus (crys-
tal lattice) might be impeded. As pointed out
by Polanyi and Wigner, this should give rise to
smaller condensation probabilities. However, no
calculations on this problem have been carried
out.

Experimentally, the “sticking probability’ £
seems indeed to be considerably less than unity.
From the experiments on the capture of slow
neutrons, we can find the partial widths of a
fairly large number of compound levels in the low
energy region. We may then assume that the
width increases as the square root of the neutron
energy (§52) as long as the neutron wave-length
remains smaller than the nuclear radius, or, in
other words, as long as E is smaller than P’
(cf. (356a)). Then we find for the neutron width
corresponding to the kinetic energy P’

I'(P')=T(E)(P'/E)}=T'P".  (357)

I'"=TE"% is given in Table XXVI for various
levels of various elements; it is about 0.2-2 milli-
volts if E is measured in volts. P’ is about + MV
for A =100 (cf. (356a)). Therefore T'(P’)=0.1 to
1 volt. On the other hand, the spacing of nuclear
levels near the neutron dissociation energy is
perhaps 5-20 volts for atomic weights of 100 to
200, both experimentally (§60) and theoretically

(§53C). Thus
I'(P’) /D’ ~0.005—0.2. (357a)

Taking 0.03 as an average, and putting gar=gpa
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=1 (see below), this gives

£=0.1, (357b)

i.e., a “sticking probability’’ of about ten percent.
It seems that in some cases the ‘‘sticking proba-
bility’’ of slow neutrons approaches unity while
in others it is as low as one percent.

Since £ is expected to increase with the energy,
and is not too far (about 1/10) from its high
energy value (unity) even at moderate energy,
we may expect this quantity to change slowly com-
pared to others such as the density of levels. This
seems to be the result of the ‘‘evaporation model”
which is most valuable in predicting the proba-
bility of nuclear disintegrations and the energy
distribution of the emitted particles. Quantita-
tively, we may expect £ to be proportional to a
low power of the temperature, perhaps directly
proportional to the total excitation energy; but
in the absence of a direct calculation this de-
pendence is merely a guess, and it is also not very
important for applications.

A word may be said about the statistical weight
factors in (356). Since accidental degeneracies are
highly improbable, these weights are given by
the spins of the nuclei, i.e.,

gAk=2'i+1, gp,.=25+1. (358)

We shall now consider particularly the compound
levels r with given angular momentum J. The
spacing D,’ was defined not taking into account
the degeneracy, and is therefore 2J+1 times
smaller than the true spacing D, ;. Therefore

(2i+1)(2s+1) 1 E

T 44pa/Dry=————————+£;, (358a)

where £, is the probability that the particles 4
and P, when colliding, stick together and form a
compound nucleus of angular momentum J. If
the orbital momentum is zero or small (slow
particles), J may have any value between |i—s]|
and ¢+s. If the probability £, is proportional to
the statistical weight, then

Er=Q2J+1)E/(2i4+1)(2s+1),

where £ is the total “sticking probability.”” Then
(358a) reduces to

FC"JAkp,./D,J=£(E/1rP/).

(358b)

(359)
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This equation was used for computing ¢ in
(357b). The computation becomes more compli-
cated when the orbital momentum I of the par-
ticle P becomes comparable to the spins s and 4
(medium fast particles). For very fast particles,
it is again easy to compute I'. Then J can take all
values up to

ly=R/x=MvR/h (360a)

and approximately
Er=£Q2J+1)/l*=(2J+1)¢P'/2E, (359b)
P gkpa/Dry=£(2i41)(25+1)/27.  (360)

The relations given in this section are, of
course, only true statistically, i.e., in the average
over a sufficiently great number of levels of com-
pound (or final) nucleus. For individual levels,
large fluctuations of the probability ¢ must be
expected. Moreover, all the formulae derived are
only valid if the wave-length of the emitted par-
ticle is smaller than the nuclear radius R, in other
words if the kinetic energy E is greater than the
characteristic energy P’. For smaller energies,
quantum effects become important; the partial
width is then proportional to the square root of
the energy (cf. (266a)) and may, according to
(359), be written

L gxpn/Dry=(&/7)(E/P"),

E<P', J<i+s. (361)

This formula is again only valid in the average
over many levels.

E. The energy distribution of the particles pro-
duced in nuclear reactions

When the energy levels of the compound
nucleus are sufficiently dense (§56), the number
of nuclear processes leading to a final nucleus 4
in state k is simply proportional to the average
partial width of the compound levels correspond-
ing to level k of the final nucleus. According to
(356), this width is proportional to

I'~(2i+1)EE, (362)

where 7 is the nuclear spin in state &, E the kinetic
energy of the particles P emitted when nucleus 4
is left in state k, and £, the “‘sticking probability”’
between particles of energy E and nuclei 4 in
state k. In first approximation, we may consider
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Eg; to be in the average independent of state k;
then the probability of formation of state % is
proportional to its statistical weight. The same is
true of the number of particles P of energy
E=Wc¢—Wp— Wy, emitted, i.e., of the number
of particles forming the ‘‘group’” corresponding
to state k.

The assumption made (E£; independent of %)
will be best justified for states k£ having not too
different energy and, if possible, otherwise similar
properties. A good example is the two lowest
states of Li’” which are supposéd to form a
‘“‘doublet’ which, in spectroscopic notation, is to
be designated as 2Pz, 32 (F10, R10). These two
states are formed in the reaction

Li*4+H?=Li"4+H.

The intensities of the two proton groups are very
nearly in the ratio 2 : 1 which is the ratio of the
statistical weights of the two states of Li’. The
ground state of Li” has 7=%; accordingly, the
more energetic proton group has the higher
intensity.

The dependence of ¢ on E over large energy
intervals is unknown, even statistically. It might
be expected that £ decreases somewhat with
decreasing energy of the state % of the final nu-
cleus (i.e., for given compound state, with in-
creasing kinetic energy E of the emitted particle)
because the transfer of the kinetic energy of the
particle to the nuclear vibrations in the condensa-
tion process may become increasingly difficult.

In many cases, especially for heavier nuclei,
we are not interested in the number of nuclear
processes leading to a definite final state & but
only in the number of processes giving particles
of kinetic energy between E and E+dE. This
probability is proportional to (362), times the
number of states of the final nucleus in the
energy interval dE, i.e.,

'wApCdE NP(WA)EEdE (363)

The most important factor here is the density of
states

p(Wa)=N"es4, (363a)

where S is the entropy of nucleus 4. We know
that the density of states increases with the exci-
tation energy W, of the final nucleus; therefore
the number of particles emitted with a kinetic
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energy between E and E+dE will increase
rapidly with decreasing kinetic energy E of the
particle. In other words, most of the particles
emitted in nuclear reactions will be comparatively
slow, leaving the residual nucleus as highly ex-
cited as possible.

The quantities £ and N in (363), (363a) are
known to vary slowly compared to the exponen-

tial. Thus, approximately,
c ’\/E eS(WAO—E)’

(364)
(364a)

WapP

where Wio=Wer—Wp

is the excitation energy of the residual nucleus
corresponding to zero kinetic energy of the emit-
ted particle, and S(W) is the entropy of nucleus
A corresponding to the energy W. (364) is sta-
tistically correct (i.e., correct disregarding fluctu-
ations due to the discrete quantum levels of the
final nucleus) no matter what the excitation
energy W,.

We now make an approximation which is only
justified if the excitation energy of the residual
nucleus, Wy, is sufficiently high. Then we may
expand the entropy in (364), viz.

S(Wao—E)=S(Wao)—E@dS/dW)+- - -

=S(Wao)—E/7+---, (365)

where 7 is the ‘“‘temperature” of nucleus 4 corre-
sponding to the excitation energy Wy,. Since
S(W 40) is independent of E, we may then write
for the distribution function of the emitted
particles

wapCdE ~e EI"EdE, (366)

a distribution strikingly similar to the Maxwell
distribution and, indeed, closely connected to it.
The distribution was derived by Weisskopf (W7)
and also in a simpler but somewhat less rigorous
way than used here by Frenkel (F30) and Bohr
(B33).

According to (366), the energy distribution of
the outgoing particles should have a maximum at
E=1r. Since the ‘‘temperatures’” of nuclei with
5 to 20 MV excitation energy are only of the
order of 1 to 4 MV, the temperature = will always
be quite small compared to the available excita-
tion energy Wao. Thus in most nuclear processes,
only a small fraction of the available energy will
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in general be taken up by the outgoing particle,
while the larger part remains in the residual nu-
cleus as excitation energy. In some cases, this
excitation energy may be large enough for the
emission of a second particle: Then we have a
so-called three-particle reaction, i.e., a reaction
leading to three final products (cf. §85). Ex-
amples are B!+ H!=Be®**+He!*=3 He!; B!+ H?
leading to the same products; Be’+He* or C'?
+H! or B'+4+H?-Be**+He*=3 Het+#n!'; NU
+H2=4 He?*, etc. In the other cases, the excita-
tion energy of the residual nucleus will be given
off as y-radiation (Chapter XIV).

The energy distribution (366) is qualitatively
confirmed in many nuclear reactions. A well-
known example is the reaction

Be®+He*=C2+-n!,

With a-particles from radon, the available energy
Waois 13 MV (cf. Table LIII). However, very few
neutrons of kinetic energy 13 MV are observed
(D21, and §99, Fig. 40) while most of them have
energies of about 4 MV which is of the same order
as the temperature of a C'? nucleus with an exci-
tation energy of 13 MV (cf. Table XX). Similar
features are shown by other reactions with large
energy evolution, such as

B10+H2=B11+H1’ N14+H2=C12+He4’

and other reactions caused by deuterons, and also
reactions caused by a-particles and giving protons
such as P3'4He*=S3¢4+H! (cf. §99, 101).
According to the distribution formula (366),
it is rather improbable that the emitted particles
carry away the whole available energy as kinetic
energy, leaving the nucleus in its ground state.
Therefore it is often difficult to observe the
“group”’ of disintegration particles corresponding
to the ground state of the final nucleus (full
energy group) and thus to obtain the total
energy evolution in the transmutation which is
important for the determination of nuclear
masses. Quantitatively, the fraction of nuclei
left in the ground state should be roughly equal
to one over the total number of excitation levels
of the residual nucleus with an excitation energy
below the total available energy Wa4o. The relative
intensity of the full energy group of particles will
therefore decrease when the available energy
(i-e., also the energy of the incident particle) in-
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creases. This is again in agreement with experi-
mental results for disintegrations produced by
a-particles: In the reaction Na?*+He¢=Mg?¢
+H!, the fastest proton group could be observed
by Konig (K21) with the relatively slow a-par-
ticles from polonium (energy 5.3 MV) but not
by May and Vadyanathan (M11) with Ra C’
alphas (7.7 MV). The danger of missing the full
energy group of disintegration particles will be
greater for heavier nuclei which have a greater
density of levels.

For charged particles, the energy distribution
(366) will be modified by the penetration through
the potential barrier which favors the emission
of high energy particles. In general, the probabil-
ity of penetration through the potential barrier
will increase faster with the particle energy than
the Boltzmann factor e~/ in (366) decreases.
Therefore the most probable energy of the out-
going particle should be about equal to the height
of the potential barrier while the emission of
particles of lower and higher energy should be
less probable. Fig. 10 gives the approximate
theoretical distribution function for protons when
the residual nucleus is Hg?® and the total avail-
‘able energy Waois 20 MV.

The influence of the potential barrier will be
considered in more detail in Chapter XIII. The
total probability of nuclear processes will be
discussed in §56. The y-ray width will be calcu-
lated in Chapter XIV.

§55. DERIVATION OF THE DISPERSION FORMULA
(B51, B33)

In this section, we shall give the derivation of
the dispersion formula (255) for nuclear processes.
We do this primarily in order to show the limita-
tions to its validity. The stattonary method of
perturbation theory will be used in our treatment.
This seems slightly simpler than the nonsta-
tionary method, especially when many levels of
the compound nucleus are involved. A proof using
the nonstationary (Dirac) method of perturba-
tion theory was given in the original paper of
Breit and Wigner.

A. One compound state

1. Notation and fundamental eguations.—For
simplicity, we treat first the case of only one
compound state of wave function x¢, and only
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Number of
Outgoing
Particles

Barrier Height

Energy

1 A
- 5 10 1 /4 20

F1c. 10. Enex}gy distribution of protons from a dis-
integration of 200, Total available energy 20 MV,
barrier height 9.6 MV.

two kinds of particles which can be emitted, P
and Q. Let x4 and xp be the wave functions of
the residual nuclei 4 and B remaining after emis-
sion of the particles P and Q, respectively. x4, xs,
X ¢ are supposed to be normalized. If the particles
P and Q are complex rather than elementary,
there will be two further wave functions xp and
x ¢ describing the internal motion of the elemen-
tary particles inside P and Q. Furthermore, there
will be two wave functions ¥p and yq describing
the motion of the centers of gravity of the par-
ticles P and Q, relative to the centers of gravity
of the respective residual nuclei. These functions
¥r and ¥ ¢ we shall not assume to be normalized.
They will be calculated, in the course of our dis-
cussion, as to form as well as to normalization.
For the moment, we mention only that ¥p» con-
sists of an incident plane wave of given amplitude,
plus an outgoing spherical wave (scattering)
whose amplitude we wish to calculate. yq is
solely an outgoing wave whose amplitude deter-
mines the probability of the disintegration
process A+ P—B+Q.

The total Hamiltonian H may be split in the
following two ways:

H=Hs+Hp+Tp+Up+Vap, (367)
H=HB+H0+T0+ Uq+ VBQ. (3678.)

Here H, contains the kinetic energies of and the
interactions between the particles contained in
nucleus 4, while Hp contains the internal energies
of the particles inside the incident nucleus P (If
P is an elementary particle, Hp=0 and xp=1).
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Tp is the kinetic energy of the motion of the
center of gravity of particle P with respect to
nucleus 4. Up is an ‘“‘effective potential energy
of the particle P’ which depends only on the
distance between particle P and nucleus 4, and
not on the internal coordinates of 4 and P. At
large distances between 4 and P, this potential
Up will be the Coulomb interaction between
nucleus 4 and particle P, if the latter is charged,
while Up will be zero, if P is neutral (neutron or
light quantum). If P is inside the nucleus, a
repulsive potential (positive Up) has to be chosen
according to the considerations of §54A.—The
last term in (367), Vp, represents the interaction
between nucleus 4 and particle P as far as it is
not contained in the effective potential Up. V4p
will depend on the internal coordinates of nuclei
A and P as well as on the distance between them.

The internal wave functions x introduced
above satisfy equations such as

Haxa=Waxa. (368)

Similar equations hold for xg, xp, xe. The wave
function of the compound nucleus satisfies

Hxc=Wexc (368a)

except at the boundary of the compound nucleus:
X c is supposed to be restricted to a finite region
of space, inside of the “‘nuclear radius,” whereas
the correct wave function has (see below) con-
tinuations extending to infinity.

We write for the wave function of the complete
system

V= xaxr¥r+xsxe¥e+cxc (369)

and try to satisfy the Schrédinger equation
HYy=WY¥ (369a)

as accurately as is possible with this form of ¥.
The energy W is

W=Ws+ Wp+Ep, (369b)

where W, and Wp are the internal energies of the
initial nuclei 4 and P and Ep the kinetic energy
of their relative motion. In order to satisfy (369a)
as well as possible we shall fulfill the three
equations

S xc*(H—-W)¥drec=0, (370)
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S xa*xp*(H—W)¥dr4drp=0, (370a)
S x8*x¢*(H—W)¥drpdrq=0. (370b)

The first of these is a scalar equation which will
serve to determine the coefficient ¢ of the com-
pound wave function x¢ in (369). The two others
are differential equations for the as yet undeter-
mined wave functions ¥pyq of incident and out-
going particle. In contrast to (370), the integra-
tions in (370a, b) do not extend over all coordi-
nates but only over the internal ones; the result
is therefore a function of the coordinate r p of
particle P with respect to nucleus 4 (or of rpq in
case of 370b).

Using the expressions (367) (367a) for H, the
Schrédinger equations (368) (368a) for the x's
and the fact that the x's are normalized, we find

c(W—We)=Sxc*(Vap—Lp)xaxr¥rdrc

+ S xc*(Vee—Lo)xaxe¥edre, (371)
Leyp=cS xa*xp*(Vap—Lp)xcdradrp
+JS | xal®|xp|*Varyrdradre
+ S xa*xp*(Vap—Lp)xsxe¥edradrr (372)

and a similar equation for y¥q. Lp is the operator
Lp=Ep— Tp'— UP
=Ep+ (ﬁ2/2MP)Ap— UP (3728.)

with Mp the reduced mass of P and 4, and Ap
the Laplacian operator with respect to the co-
ordinates of P relative to 4.

The second term in (372) gives an additional
contribution to the potential scattering. This
contribution may cause more irregular variations
of the potential scattering from nucleus to nu-
cleus than those predicted by the theory de-
veloped in §54. It is obvious how to calculate the
effect of this term in first approximation. How-
ever, in our considerations we shall disregard the
second as well as the last integral in (372): This
corresponds to the assumption that most of the
nuclear processes 4 +P—B+Q occur by way of
formation and decay of the compound state C
and only a small correction is supplied by direct
transitions. This is probably true in most prac-
tical cases.

2. Solution of equation jor particle wave func-
tions.—Thus (372) reduces to
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Lpyp= Cfo*xp*( Vap—Lp)xcdradrp. (373)

This represents, according to (372a), an inhomo-
geneous differential equation for y¥p. Since Lp is
a spherically symmetrical operator, (373) may be
separated in polar coordinates by putting

Yp= lz:\ﬁpzm(fp) Yin(dper)/7p, (373a)

where Yp1n, satisfies the differential equation
(3*/2M p)d* pim/dr*+(Ep— Up
—A(I+1)/2Mpr? )Y pim=cCpin(r) (374)
with
szm(fp)=fprzm*(l9P¢p)xA*XP*(VAP—LP)XC
Xdradrpdwp. (374a)

dwp is the element of solid angle in the coordinates
of particle P. Thus the integration in (374a) goes
over all coordinates of all particles in the system
except the distance 7p between P and 4.

The general solution of the ordinary inhomo-
geneous differential equation (374) is given by an
arbitrary solution of this equation plus any
multiple of the regular solution of the homogene-
ous equation. The right-hand side (inhomo-
geneity) will be appreciable only as long as
rp<R, i.e., as long as particle P is inside or near
the nucleus 4. For large rp, the solution of (374)
will therefore be identical with a certain solution
of the homogeneous equation. But this will in
general not be the regular solution, i.e., that solu-
tion which remains finite at the origin. Therefore
we have for the asymptotic behavior of ¥pin

Yein—apmfri(rp)+Brimgri(re),  (375)

where f and g are the regular and irregular solu-
tion of the homogeneous equation

(B*/2 M p)d?f, g/dr?
+(Ep—Up—n2(1+1)/2Mpr?)f, g=0. (375a)
At the origin, the regular solution behaves as

f~r*l (r small), (375b)

the irregular one as

(375¢)

g~rt
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Asymptotically for large 7, the behavior of f is
f=sin (kr—3}ir+3)), (376)

r—> 0,

where

k=(2MpEp)t/h=Mpv/h (376a)

is the wave number, v the velocity of particle P
(relative to nucleus 4) and §, the phase shift of
the wave (compared to a free particle wave func-
tion, with Up=0 in (375a)) due to the particle
potential Up. (376) fixes the normalization of f
and therefore the magnitude of « and 8 in (375).
For the irregular function g, we may choose any
solution of (375a) which is linearly independent
of f; the most convenient choice is

g=cos (kr—3lr+46,), r—xo, (376b)

i.e., the function shifted in phase by =/2 com-
pared to the regular solution. The two solutions
f and g satisfy for any r and any potential Up
the relation

g df/dr—f dg/dr=const=k,

which follows easily from (373a) by multiplying
the equation for f by g, that for g by f, subtracting
and integrating.

Of the constants « and 8 in (375), apin is arbi-
trary (see above) while Bp;» is uniquely deter-
mined by the differential equation (374) with
the additional condition that ¥ must be finite at
the origin. A convenient way for calculating 8 is
to use the same procedure which led to (377):
Multiply Eq. (375a) for f by ¢, Eq. (374) for ¢
by f, subtract and integrate up to a very large
distance 7. Then we obtain

& df\ 2Mp e
lim f_'f’_¢_f) thc f FriCrmdr. (378)
Jo

o \ dr dr

(377)

Using the asymptotic expression (375) for ¢ and
the relation (377) between f and g, we have

Ble= -

2Mp ad
Py cj; feiCpmdr. (379)
With (374a) and (376a), this may be rewritten

Bpim=— (Z/hi’)cffpz(fp) Yin*(Opopr)xa*xp*

X(Vap—Lp)xcdradrpdQp/rp, (379a)
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where dQp=rp*drpdwp is the volume element in
the space of particle P.!5 It is convenient to intro-
duce in (379a) the function

Frim=fpi(rp) YVin(drer)/7p. (379b)

According to (372a) (375a), F satisfies the differ-
ential equation

Lprzm=0. (379C)

Since the operator Lp is self-adjoint, its contri-
bution to (379a) obviously vanishes and we find
the final result:

I3le= -_— (2/711})6 VCApzm*, (380)

where the matrix element VC,p;, is defined by
VcAle=fXC* VapxaxpFpimdre, (380a)

dr¢ being the total volume element

dre=d714d7pdQp=d1pdTodQq. (380b)

As already mentioned, the coefficient « in
(375) may have any value as far as the differen-
tial equation (374) is concerned. In order to fix «,
we must consider the required asymptotic beha-
vior of Ypim. We know that all Yqn's (Q=pro-
duced particle) and all ¢pi,'s with m+0 must
behave asymptotically as outgoing waves:

¢le~exp (’I:klfq) (381)

without any term behaving as. e~. The only
exceptions are the partial waves m=0 for the
incident particle which contain a term due to the
incident plane wave. If we normalize the incident
plane wave per unit current, it may be written in
the familiar form (B15)

ypite=vdeik s = (47 /0)}(2ikr) 1 (2141)}
3

YPim~EXP (ika),

X Ylo(0)(ei(kr—}lr)_e—-i(kr—ilr))_ (3813)

Therefore we have for particle P and m=0:
ird(21+1)*

k ; e—-i(kr——}l‘r)_i_,yeikr’
v

(382)

\I’PlO:

where v is an arbitrary coefficient.
We compare the required asymptotic behavior

15 In contrast to drp which refers to the coordinates of
the particles inside P.
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(381) (382) to the known asymptotic behavior of
the solutions f and g of the homogeneous equa-
tion. (a) In all cases except for particle P and
m=0, we must have the asymptotic behavior

Y ~g+if=const: e, (383)

According to (375), this means
apim=1Bpim (383a)
or YPin=Brin(g+1if) (383b)

The number of outgoing particles of the kind P
and quantum numbers /m is then

(384)

opin=0p|Bprim| %

(b) If P is the incident particle and m =0, we
may put

apw=1Bp1+A4,, (385)
so that, according to (375) (376) (376b),
Yp=(Bpio— 514 )eitkr—iirtin)

_*__;_,l‘Ale—-i(kr—ilri-bl). (385a)

Comparing the coefficient of e~ with (382), we
find

273 (2l1+1)}
— 1

(386)
kot

!

The outgoing spherical wave is obtained by sub-
tracting the term [ of (381a) from (385a):

Yri®it=[Brie®+ A, sin §;Jei k-1 (386a)

Therefore the scattering intensity (number of
outgoing particles per second) is

opio=|Brie®+ A, sin &;|%p. (387)

This formula represents the interference between

potential scattering (term A4, sin §;) and scatter-

ing by way of the compound state (term Sp;).
We may now write for any value of 7:

Yeim(r) = apim fri(r) +Brimyri(r), (388)

where Bpimypi{” is a particular solution of the
inhomogeneous equation (374) which is chosen in
such a way that it goes over asymptotically into
Bg, without any term containing f. It is important
to note for the following that v as well as g and
f is real, since the differential operators in
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(375a) and (374) and the asymptotic expressions
for f, g and v are real. (The coefficient 8 may be
complex, if C is complex. However, it follows
from general considerations of spatial symmetry,
etc. that C must have the same complex phase
for all values of 7, which is sufficient to make ¥y
real.) We define now, in analogy to (379b),

Gle='YP1(7’p) Yzm(t,mpp)/fp. (388&)

Gpin is regular everywhere. Then we may
write (373a):

¥vp= 2 apimFrin+BprimGPrim. (388b)
Im

Inserting (380) (383a) (385) this becomes

V=2 A1Fpin—2(c/#0) > VCsprin*(Grint+iFpim).
1 Im (389)

3. Determination of the coefficient of the com-
pound wave function.—(389) expresses the par-
ticle wave function ¥p in terms of calculable
functions and of the constants 4, and ¢. It re-
mains to determine ¢ from Eq. (371) which has
not been used yet. We insert (389) and obtain

C(W— WC) = Z(A 15".0'—1'(26/511) VCAle*)

X ch*( VAP"'LP)XAXPFledTC
—Q2c/m) X VCsrim* S xc*(Var—Lp)xaxp
im

X GpimdTc+similar terms with BQ. (390)

The first integral here is by definition (380a) just
V¢ 4pim- The second integral is not easy to evalu-
ate, but, as we shall show, it is fortunately un-
important for the theory. This is due to the
fact that the integral, if it is complex at all, has
the same complex phase as V¢4pim; the complex
character of both quantities arises solely from
the dependence of the functions x¢ x4 xp Fand G
on the angular variables, and this dependence is
the same in both cases. Therefore the second sum
is real; let us put its value equal to }hvecr. We
can then combine the second term on the right
of (390), and the corresponding term due to the
particles Q, with the term ¢W¢ on the left, by
simply putting

(390a)
Then the left-hand side will become ¢(W—W¢').

W =We—ecp— €CQ.
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Thus the second term in (390) causes simply a
shift of the resonance energy from W¢ to W¢'.
Such a shift is known from the theory of disper-
sion of light (Dirac frequency shift). It is wholly
irrelevant for our considerations because we have
no way of calculating the correct position We
of the resonance levels, and therefore no way of
telling whether the resonance energy has been
shifted by the small amount ecp+ecq. We shall,
in the following, drop the prime in W¢'.

Inserting V¢,pin for the first integral in (390),
and taking the term arising from particle Q into
account, we obtain:

c= ZAIVCAPZO/(W_ Wc+%’i‘Yc) (391)
l

with

4 4
Ye=—— 2| VCupin| 2+;l-“ > | Vlsaoiml| 2

(391a)
hvp Im vQ im

This can immediately be reduced to the form
(257b) used in §52. We need only consider the
normalization of the radial function fp; which
enters the matrix element V (cf. (379a)). If ¢p:
is the corresponding wave function normalized
per unit energy, we have (cf. B15, (15))

o= (2/m) dk/dE)}=(2/xhv)}f (391b)
and therefore

2 X|HCipum|?

P'=P, Q Im

yo=2m (392)

where HC,pi, is the same matrix element as
V€ 4pim, only taken with wave functions normal-
ized per unit energy, v¢z.:

HCypim=(2/7#0) V4 pim. (392a)

Inserting (391) and (386) in (380) (384), we
find for the partial cross section corresponding to
the production of particle Q with orbital mo-
menta lm:

4‘UQ 47

(th) 2 Upkp2

oPoim=1v¢|Boim|2=

VCAPI’O VCBle* 2

W—We+3ive

HC 4p1roH poim*
S 2V 41)tedr ,
v W—We+3ive

X |22V +-1)keier (393)
ll

2
=473X p?
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where Xp=1/kp is the wave-length of the inci-
dent particle divided by 2x. (393) is similar to
(255). The interference terms between the various
values of I’ for the incident particle disappear
when the cross section is summed over m (B15,
appendix). If this summation is carried out, as
well as the summation over all possible magnetic
substates of the compound state C, the final
nucleus B and the spin of the outgoing particle Q,
and if the average is taken over all orientations of
the spins of the initial nucleus 4 and the incident
particle P, the one-level formula (259) is ob-
tained for the total cross section. A much more
complicated problem which has not yet been
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treated generally is the question of the angular
distribution of the outgoing particles.

The scattering cross section will contain one
term analogous to (393), and in addition a term
representing the potential scattering and the
interference between potential and resonance
scattering. According to (386a). this term is for
a given angle ¢

aPPpoz(lg) =-0P[ Z(Al sin 8,4 Bpie®t) ¥io(d) Iz
i
—0p| T Bruedt V0|2  (393a)
i

Integrated over all angles, this gives

aPprot=ypy {1 A4,]?sin? 8,4+ (A Bpw*e 2!+ A4 ,*Bpie®t) sin &,}
7

22U+ 1)l HC 4 prro*3_(2141) % sin 8.H 4 p1o

l

=d4mXp?) 2(2+1) sin? 5~ 2 Re r

where Re denotes the real part. The first
term in (394) represents the potential scattering
in the strict sense, the second the interference
between potential and resonance scattering.

B. Many compound states

We shall now discuss the more general case of
many resonance levels which we distinguish by
an index 7. Moreover, we shall consider any
number of different kinds Q of outgoing particles,
and also the possibility of various states ¢ of the
final nucleus B. Then (369) is replaced by

V= E:XB aXe¥eat 2Crxen (395)
qQ r

where the sum over Q includes the incident par-
ticle P, and the sum over r goes over all states of
the compound nucleus. Instead of (371), we ob-
tain one equation for each compound state 7:

(W-W,)= QZfXCr*( Vee—Lo)xnixe¥ed7c.
‘ (396)

(373) is replaced by one equation for each pos-
sible emitted particle Q and each possible state ¢
of the corresponding residual nucleus B, viz.

Loyo,= ZcerB *x*(Vee—Lo)xcrdrpdTq.
r (397)

W=Wo—TYive (394

The solution of Eqgs. (397) is exactly analogous to
that of (373). Defining Fg,m and Gg,m in exact
analogy to (379b) (388a), we have, analogously
to (388b),

‘I/Qﬂ=IZaqumFqum'*'ﬁqumGqum- (3973.)

The coefficients 8 are obtained in analogy to
(380) :

Boam= —(2/hvgq) 2.¢: Vg aum*, (398)

where vgq, is the velocity of particle Q if nucleus
B is left in state gq. The coefficients a are deter-
mined from the asymptotic behavior of the wave
functions, as in (383a) (385):

aQ qlm=i60q1m+A¢50p5 qpamo (3983)

with A4; given by (386). The cross section for the
production of particle Q with orbital quantum
numbers Im, and with the nucleus B being left in
state g, is given by vq,|Beqem|? as in (384): Only
for the elastic scattering (P=0Q, p=gq, m=0) a
term has to be added for the potential scattering,
as in (387) (394).

The main difference compared to the one level
case arises when we want to calculate the coeffi-
cients ¢, from the equations (396). We insert
(397a) in (396) and obtain
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CT(W" Wr) =

> iﬁoqszxCr*(VBQ—LQ)XquoFoqldec

Qalm

+ 2 ﬁoqszmr*(VBQ—LQ)XBqXQGoqtdec

Qaqlm
+24 leCr*(l”AP—LP)xApxPFPpdec. (399)
7

Here the second term is again unimportant inas-
much as it only shifts the resonance levels (cf.
(390a)).'® In the first and third terms, Lo gives
no contribution and the integrals are by defini-
tion the matrix elements (380a). Thus we have

G(W=W.) =12 BoamVC  @aum+ 241V p 0.
Qatm : (399a)

Here we insert 8 from (398), 4, from (386) and
express I by H (cf. (392a)):

(W=W,)=—13Crscs+ay, (400)

where the coefficients C are given in terms of the
matrix elements by

Crs =7 Z HCTQ qlme(hQ qlm*

Qaqlm

(400a)

and a, is a constant connected to the amplitude
of the incident wave by:

ar=V§w7iph92(21+1)4H0'p,,me“‘. (400b)
]

Whereas (390) was a linear equation for the
single unknown ¢, our result (400) represents a
system of linear equations for the (infinitely
many) unknowns c,. Although it is always pos-

16 Disregarding the first and third terms on the right-hand
side of (399), and inserting g8 from (398), we have

o (W—-W,) =§CaBray (A)

where the B,, are certain real coefficients. This system of
equations is identical with that found in a simple per-
turbation problem. Its solution leads to a new set of
eigenvalues W,/, and to a corresponding new set of wave
functions x.'=Zymxs where the coefficients v, follow

$

from (A). The coefficients B,, do not depend sensitively
on the energy W of the system. Therefore the corrected
resonance energies W,’ and the corrected wave functions
xcr will be characteristics of the compound nucleus just
as the old resonance energies W, and wave functions xcr.
Therefore we may use the set of wave functions x¢,” just
as well as x¢r, and thus eliminate the second term in (399)
entirely.
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sible to solve this system rigorously the result
will not in general be simple. However, a simple
result is always obtainable when the spacing
between adjacent energy levels W, is large com-
pared to the widths of the levels which are of the
order of the coefficients C,,. Then two cases are
possible:

(a) The energy W coincides very nearly with
one of the energy levels, let us say, W,. Then ¢,
will be very much larger than all the other ¢,’s.
This makes it permissible to neglect the other
¢,’s in the equation for ¢, which gives (cf. (400))

Cn=an/(W—' Wn+%i')’n) (401)

with 3¥a="Crn. (401a)

The other ¢,’s are then unimportant for the deter-
mination of the amplitudes B of the outgoing
wave and may therefore be neglected.!”

(b) The energy W lies in between two resonance
levels, and sufficiently far from each. Then all
the ¢,’s are small, and the sum over s in (400)
may be left out entirely. Then

cr=a,/(W—-W,) (402)
for all 7's.
The two formulae (401) (402) may be ap-

proximated by the same formula:
cr=a,/(W—W,+3iv,) (allr).

The error in this formula is small in all cases:

1. In case (b) the energy differences W—W,
are all very large compared to the widths of the
levels so that the addition of 7y, makes no ap-
preciable difference.

2. In case (a) for r=n formula (403) is iden-
tical with the correct formula (401).

3. The terms r=%n in case (a) are negligible
compared to the term #, and likewise the coeffi-
cients ¢, given by (403) are negligible compared to
¢, given by the same formula. (The ¢, (r % #) are,
of course, not correctly given by (403), cf.
footnote 17.)

(403)

17 The value of ¢, (r+n) may be obtained from (400)
by neglecting in the sum all terms except s=n. This gives,

with (401),
o 2 G =iCrnt/ (W= WatiCor)
r= W_ Wr ’

which differs from the value (403) by the second term in
the numerator. The resonmance for level n influences the
amplitudes of all other compound states as well. However,
because of the large denominator W— W, (as compared to
the denominator in (401)) ¢, is irrelevant.
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Inserting (403) in (398) (384), the dispersion
formula (255) for the cross section is obtained.
This formula is therefore proved provided the width
of the levels is small compared to their spacing. For
large width, the solution of the system (400) is
much more complicated; it will be discussed for
some special cases in the next section.

The case of degenerate levels offers no difficul-
ties: Because of the selection rules for the mag-
netic quantum number, HC gum and HCggm
cannot simultaneously be different from zero if
the magnetic quantum numbers M, and M, of
the two compound states are different. Therefore
C,, is zero if M.# M.. Similarly it can be shown
that C,, is only different from zero if 7 and s have
the same total angular momentum J (cf. B1S,
appendix). Thus the system of Egs. (400) falls
into subsets each corresponding to a given J and
M. Moreover, it follows from general considera-
tions that the coefficients C,, have the same value
for all the magnetic substates M of the given
states C,.. Therefore the systems of Egs. (400)
belonging to the same J and different M’s will all
be equivalent.

§56. FAsT PARTICLES: AVERAGE OVER THE
REsoNANCES, WIDE LEVELs

If the incident particle is fast, it will in general
not be possible to define its energy accurately
enough to observe resonance effects. This will be
particularly true if the bombarded nucleus is
heavy and has therefore closely spaced energy
levels. Even the best sources (H6) of nuclear pro-
jectiles give particles whose energies fluctuate by
about 1 percent, which means 10 kv at 1 MV
particle energy. On the other hand (cf. §53) the
spacing between neighboring energy levels is less
than 10 kv probably for all nuclei containing
more than about 50 particles, and it is only a few
volts for heavy nuclei (4 =100 or more, cf. §53).
For fast particles and heavy nuclei, it will there-
fore only be possible to observe the average cross
section of a nuclear reaction, averaged over a
large number of resonance regions. It is the pur-
pose of this section to calculate this average.

A. Width small compared to spacing

We assume first that the width of the levels of
the compound states is small compared to their
average spacing. Then the general formula (260)

H. A. BETHE

§ 56

is valid and we obtain!® by averaging over an
energy interval e:

™ ! dE Y (2J+1)
(25+1)(2i+1) € Ve Jrr!

UrJPpUr'JPpUrJQqu’JQq

X .
(E_E7J+%7:I‘rJ)(E—Er'l—%irr’./)

('-"'PPQ In=

(404)

(The #’s and v's have been replaced by the U’s
and I'’s because each term rJ gives an appreciable
contribution only near resonance, cf. §52.) The
integration is to be extended over an energy
interval e large compared to the spacing of the
levels D but small compared to the particle
energy E itself. The integration can be carried
out immediately and gives

T2X2 1
— — =3 (2J+1
(2s+1)(22+1) € g( +1)

U"’I’p UrJQqUTIJPpUT’JQ q(PrJ+ Ty J)
(ErJ'_-Er’J)2'*'%(FrJ"*'Pr'J)2 ’

(eFPgo)w=

rr/(in €)

(404a)

The sum has to be extended over all levels 7’
in the energy interval e. Here the mixed terms
7'%r can be neglected for two reasons. Firstly,
they contain in the denominator the energy
differences E,;—E, ; which are at least of the
order of the spacing of the levels, while the terms
7' =r contain the width T',; instead ; but we have
assumed from the beginning that the widths are
smaller than the spacing. Secondly, the numera-
tor in the mixed terms will be positive for about
as many terms as negative which makes the
mixed terms cancel each other. Thus (404a) re-
duces to (cf. (261))

2m2R? 12(21 1)
2s+1)(2141) e 7 +

% Z I‘rJPpI"rJQq

r (in e€) F,-J

(”PpQ q) =
(404b)

18 We use in this section the kinetic energy E=Ep of
the incident particle rather than the energy of the system
W=E+ Wa+ Wp, and the resonance energies E, as defined
in (258) rather than the total energy We, of the compound
nucleus in state r. Moreover, we replace the effective
widths v by the true widths I" (width at resonance) which
is always allowed when dealing with fast particles (cf. §52).
The indices /j/’j’ are unimportant for our considerations
and are therefore left out.
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Since the energy interval e is supposed to contain
many levels, we may replace the sum over r by
the number of levels of angular momentum J
times the average value of each term. Now the
number of levels is ¢/D;, where D is the average
spacing of levels of angular momentum J in the
given energy region, so that we find

(Pradmm s 52T 4+1)
S i) 5
I‘JJ"mFJQq
( ). o)
FJDJ Av

where the index 7 has been dropped because we
are no longer referring to a specific level of the
compound nucleus.

B. General formula for high energies

(405) may be simplified if we admit that the
average in (405) may be taken by averaging
I'q¢/Ts and I'Vp,/D; separately. This amounts
to the assumption that the partial widths I'/p,
and T'g,” have no correlation, i.e., that the levels
of the compound nucleus cannot be classified into
levels which easily emit a particle P and others
which preferably emit Q. This is actually the
basic assumption of Bohr’s model of nuclear dis-
integrations and is equivalent to the statement
that the nuclear wave functions are very different
from ‘““Hartree’’ wave functions and correspond
to ‘‘ideal random motion” of the nuclear
particles.

The expression (I'Vp,/D ;)a which now occurs
in (405) may be expressed in terms of the ‘‘stick-
ing probability” &p,s (cf. (358a)), i.e., the proba-
bility that a particle P colliding with nucleus A
in state p will stick and form a compound nucleus
of angular momentum J. We find (cf. (358a))

(eFPqo)m= 27r7~2(E/P')ZJ:£ppJ(I"a o/Tw  (406)

or, if we assume further that I'7¢,/T; is inde-
pendent of J, and use the definition of P’ in
(356a) and X*=#4?/2ME:

(0' PpQ q) N= 77R2£Pp(110 q/r) Avy
tpp= ;EPpJ

(407)

where

is the total sticking probability of particle P.
The very simple result (407) is actually not
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surprising. It can be expressed as follows: The
probability of any nuclear process is equal to the
probability of formation of the compound nucleus
from the initial particles, times the probability of
its disintegration into the particular final par-
ticles in question. The probability of formation is

(408)

opp=mR%p,,

i.e., the geometrical cross section of the nucleus
times the ‘‘sticking probability.” In fact, (408)
may be considered as the definition of the sticking
probability &.

The compound nucleus, once formed, must dis-
integrate in some way; therefore (408) must rep-
resent the total cross section for all nuclear
processes together. The probability of a particular
mode of disintegration is given by the partial
width for that mode divided by the total width,
averaged over a sufficiently large number of
levels. Expressed in a formula,

oP?94/0pp=(Tqo/T) .

This equation expresses the statement that the
disintegration of the compound nucleus is inde-
pendent of the way in which it has been formed,
i.e., independent of the nature and the quantum
state of the initial particles. This statement may
be considered the simplest expression of the ideas
of the Bohr theory of nuclear disintegrations. It
is equivalent to the absence of correlations be-
tween the partial widths I'p, and T'g, which was
used above in the proof of (407).

(409)

C. Limitations; angular momentum

The selection rules for the angular momentum
may cause ‘‘correlations’” between the partial
widths which invalidate (407). For simplicity, we
may suppose that initial nucleus, incident par-
ticle, outgoing particle and final nucleus all have
zero spin. Then the total angular momentum J
of the compound nucleus is equal to the orbital
momentum of incident and outgoing particle.
These orbital momenta must be smaller than

lpp=R/7ﬁpp and qu=R/)\Qq, (410)

respectively. Therefore the compound nucleus
may be formed in any state with J <lIp,, and, ac-
cording to our assumptions, the probability of a
given J(<!Ip,) is simply proportional to the sta-
tistical weight 2J+1. On the other hand, a com-
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pound state J can disintegrate into a particle Q
and a residual nucleus in state g only if J<lIq,.
If lg,<lp, the compound states with J between
lg, and Ilp, cannot disintegrate in this way.
Therefore, if I'q, denotes the average of T'g,s over
all levels for which this quantity is not zero (i.e.,
with J<lg,), the cross section (407) will be re-
duced by a factor

n9e=(loo/lpp)?=MqEq,/MpEp, (if n<1). (411)

Under these circumstances, the relative proba-
bility of two modes of disintegration will not
be independent of the way in which the com-
pound nucleus is formed. Compare, e.g., the dis-
integration products Pp and Qg. If Ip,>1q,, the
probabilities of emission of Pp as well as Qg are
given directly by (407), if the incident particle is
Qq. But if the incident particle is Pp, the proba-
bility of emission of Qg is reduced by the factor 7
which is smaller than unity. Thus the selection
rule for the angular momentum introduces a cer-
tain correlation (in contrast to the fundamental
assumption made in B) which favors elastic
scattering as compared to other processes, i.e.,
favors the reemission of a particle of the same
kind as the incident one.

This correlation due to the angular momentum
can easily be treated in the way indicated in
(411). Moreover, the influence of this correlation
on the probability of reactions is comparatively
small. It will be even smaller if the spins of the
nuclei concerned are not zero. However, the fact
remains that the existence of a constant of motion
such as the angular momentum will necessarily
cause a more or less serious breakdown of the
assumption of ‘random motion” of the nuclear
particles and of random distribution of the par-
tial widths. According to all our knowledge, there
is no other constant of motion besides the energy,
the angular momentum and the parity (behavior
of wave function with respect to a change of sign
of all coordinates). If there were, we should find
a more pronounced failure of the ‘random”
assumption.

D. Total width large compared to spacing of
levels, but partial width small

As we have shown in §54, the total width of
highly excited nuclear states will in general be
large compared to their spacing. We shall show
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that this does not invalidate the formulae de-
rived in 4, B provided that (1) the partial widths
are all (or practically all) small compared to the
spacing, and that (2) the partial widths of various
nuclear states have no correlation. The second
condition is in line with our general assumptions;
the first amounts to assuming the sticking prob-
ability to be small compared to unity.

Mathematically, assumption (2) means that of the terms
in the sum (400a) some will be positive and some negative
if s#7, while they are, of course, all positive for s=r.
Therefore it is reasonable to expect that the nondiagonal
elements C,, are in the average much smaller than the
diagonal elements C,, the ratio being approximately equal
to one divided by the square root of the number of terms
in the sum (i.e., the number of different modes of dis-
integration). We shall therefore neglect the “nondiagonal”
coefficients C,, entirely. This can be shown to make no
appreciable difference in some special cases.

With this assumption, (400) reduces to the form (390)
familiar from the one-level case and has the solution

¢;=a,/(E—E,+ ¥T;). (412)
Then, according to (398) (392a),
2w a:a*H ggin*Hogqim

PP gtm =— - (413
7T %(E—E,+§z‘1‘,)(E—E.—HI‘.) @13

The averaging over energy gives, similarly to (404a),

2 2 a*Hr m*Hs m I‘r I‘s

(Poamm=ry ¥ 2o Houn Mot Ts) 5,

(Er - El)2+ % (Pr+ I‘a)z

he rs (in €)

In distinction from (404a), the resonance denominators
are not much smaller for s than for » =s. But, as we have
assumed, H" and H* will have opposite signs for about as
many pairs s as for which they have the same sign, while
HrHr™ is always positive. Consequently, we expect that the
contribution of the terms r =s will be approximately propor-
tional to the number of terms 7, i.e., to the number of
levels in the energy interval ¢, which is ¢/D. On the other
hand, the contribution of the terms 7 s will be approxi-
mately proportional to the square root of the number of
pairs 7s which give an appreciable contribution. Since the
contributions are negligible if E,—E,>>(T,)a, there are,
for each 7, about T'/D contributing levels s, and therefore
altogether eI'/D? contributing pairs rs. The contribution
of these pairs is, according to the foregoing, proportional
to (eI')?/D as compared to ¢/D from the diagonal terms.
Therefore, if we only average over an energy interval
large compared to the average width of the levels, only
the diagonal terms will be important and (413a) will
reduce to

(aFPqqim)a= (27 /RD) | ar |2(Tgqtm)a/ (Tr)av,

using the relation (257b) and replacing the sum over 7 in
(413a) by the number of terms times the average of each
term. This result is the same as for total width small
compared to the spacing.

(413b)
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E. Partial width large compared to the spacing
of levels

The case of large partial width can be treated
rigorously if only one sort of particles can be
emitted by a given compound state. The system
of linear equations (400) has the general solution

a ag as

—1Ci2 —1Cn+Ey—E —iCs
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and similar expressions for the other ¢,. If only
one kind of particles P may be emitted and only
one value of the angular momentum / is possible
(m=0), then (400a) reduces to a single term, viz.

C..=mH,H*, (414a)

where H, is an abbreviation for H¢ p,;. Simi-
larly, according to (400b):
a,=AH,,

where 4 is a constant.
To evaluate the determinant N in the denom-

(414b)

€= =£[_f inator of (414), we take out of the rth row the
| —1Cor+8,.(E,—E) /| N  common factor —iwH,* and outof the rth column
(414) the factor H,. Then we have
14+i(E\—E)/n|H,|? 1 1
N=(—ir|H,\|¥)(—ir | H,|?)- - - 1 1+i(E.—E)/r|Hs |2 1 (415)

We subtract the first row from each of the other rows which does not change the value of the de-

terminant; then we have

N=II(—ir|H,|3)|| —i(Es—E)/r |H\|* {(Bs—E)/r Hy|* 0

The determinant contains now zeros everywhere
except in the diagonal, where the general element
is 1(E,—E)/w|H,|% in the first row which con-
tains unity everywhere except for the first ele-
ment, and in the first column whose elements
(except for the first) are all equal to —2(E;—E)/
w|Hy|% The determinant can now be evaluated
easily, giving

N=1(=ir| H,|)I[i(E,—E) /x| H,|*]

| H,|?
X(l-}—iz ) (415b)
8 E —_—
With 2w |H,|?=T, (416a)
this yields

N=ITI(E,—E)(1+%1‘);EF'E). (416)

The determinant M in the numerator can be
evaluated even more easily. We take out the same
factors as before except from the first row, from

. (415a)
which we take only the factor 4. Then
M,=AH, I;I2 (—ir|H.|?)

1 1 1
X|| 1 14i(E,—E)/n|Hqs|2 1 (417)

Subtracting the first row from each of the
others, we obtain a diagonal matrix with
i(E,—E)/7|H,|? as the general diagonal term
(except for r=1). Therefore

Mi=AH, 11 (E,~E). (417a)
Dividing (417a) by (416), we find
A (e )_1 (418)
o= (1+ky——) . @«
" E—~E\ "%E_E

From (418) we obtain immediately the scatter-
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ing cross section (exclusive of potential scatter-
ing), using (393) (398) (392a) (414b) (400b):

o=4713X2(2l+1)
\H |2

—1]2

(418a)

HHE—— )
3
Y SE,~E

Using (416a) and considering that the parenthesis
is independent of 7:
i(XTI./E,—E)*

o=4mx2(20+1) . (419)
1 + %(er/Er_E)z

This shows that the cross section is always
smaller than 47X2(2/+1) which represents the
area of the incident beam corresponding to the
angular momentum /. However, if the T, are
large, the difference between the cross section
and 47Xx2(2l+1) is, in general, very small. This
means that practically every particle of the given
angular momentum is scattered if the widths of
the levels are large.

There are, however, certain energies at which
the scattering will still be small. Between any
two energy levels, there is one value of the energy
for which ZI'./(E,—E) vanishes. For this sum
has the value — » if E is just larger than one of
the resonance energies E,, and it is +  just
below the next level E,.;. In between, it rises
gradually and must therefore be zero for some
energy about midway between the levels. For
this energy, the scattering will therefore vanish.
Instead of resonance maxima and practically
zero cross section in between, we find now
“resonance minima’’ with practically constant
cross section 47X? in between.

We are interested in the cross section averaged
over an energy interval large compared to the
spacing of the levels. Obviously, only the neigh-
borhood of the minima of the cross section is of
interest, because elsewhere the cross section is
constant. Near a minimum, we may in first ap-
proximation neglect the contribution of all levels
but the two neighboring ones, which we denote
by 1 and 2. Then we have for the position E, of

the minimum the relation
Pl/(Eo"El)=F2/(E2—E0). (4193)

Near the minimum we find, using (419a),
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z T, ( I n Ty E_E
"E,—E \(E,—Ey)* (Eg—Eo)z)( ~E)
(rl+ 2)8
=T Y (E_E), (419b)
DI'\T,

where D = E;— E, is the spacing of the levels. The
average of (419) over the energy interval from
E; to E, is then

on=41X2(2l+1)

( D fz 1+ (3T, E, —E)? ) (#19)
=47I'7\2(21+1)[1 —27I".DP1F2/(I‘1+ Fz)s:l.

Replacing T'; and I'; by some average value T,
we find finally

on=4rR(2]4+1)(1 — t=D/T). (420)
The number of particles zot scattered is thus pro-
portional to D/T.

The theory given in this section applies to the
elastic scattering of particles if no inelastic scat-
tering and no transmutations are possible to any
appreciable extent, and if furthermore scattered
particle and scattering nucleus have zero spin.
Then the orbital quantum numbers ! and 7 =0 of
the scattered particle are identical with the angu-
lar momentum quantum numbers J and M =0 of
the compound nucleus. There will be a set of
equations of the form (400) for each J, and each
J will give a contribution of the size (420). The
total cross section can be obtained by summing
over all J up to J=Ip, (cf. (410)) similarly to
section A of this §. The total cross section be-
comes then

oot =4TR*(1—47D/T). (420a)

The case of large partial width and many kinds
of emissible particles seems rather more difficult
to treat. However, the total cross section must
obviously be again of the order wR?, and the
probability of emission of a given kind of particle
will be related to its sticking probability in a
way similar to the case of small partial width.
This means that the emitted particles should
have approximately the Maxwellian distribution
discussed in §54D.
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X. Neutrons

§57. SLow NEUTRON PROCESSES. CLASSIFICATION
Axp Historv. (F13, A7, A10, All, D23,
B12, B32, B51, etc.)

The phenomena produced by slow neutrons
have been of the greatest importance for the de-
velopment of the modern theory of nuclear
processes. They supply the most detailed infor-
mation yet available on the energy levels of
heavy nuclei. Therefore in our discussion we shall
treat the slow neutron processes first and later
proceed to the processes produced by charged
particles. In the treatment of the latter we shall
make use of the results obtained from neutron
experiments.

By “slow neutrons”’ we understand neutrons
of energies up to a few thousand volts, including
neutrons of ‘“‘thermal’’ energy of the order kT.
Slow neutrons are produced by surrounding a
source of fast neutrons with paraffin, water or
other substances containing hydrogen. The
mechanism of the slowing down process and the
energy distribution of neutrons in hydrogenic
substances will be treated in §59. Sources of fast
neutrons will be discussed in §92.

The processes which may occur when a slow
neutron interacts with a nucleus are mainly of
three types:

A. Elastic scattering

The largest elastic scattering cross section
(12-107% cm?) has been observed in hydrogen (cf.
§14); it is used for the production of slow neu-
trons (§59). The elastic scattering is also the most
probable process in most of the other light nuclei
(except Li%, B'® and possibly N, cf. C and D)
and a number of medium heavy nuclei such as
Fe, Ni, Cu. The cross sections for these elements
vary between about 2-10-2¢ and 10-10-% cm?.
For nuclei which capture neutrons strongly (such
as Rh, Ag, Cd, Hg) the scattering cross section is
known to be small compared to the capture cross
section (D23) but it may well be of the same
absolute order of magnitude as for the elements
mentioned before. No thorough investigation of
the scattering of slow neutrons as a function of
their energy has yet been made. A more detailed
discussion of the scattering will be given in §63.

B. Simple capture of neutron with emission of
Y-rays

Processes of the type!?

ZA4nl=ZAt1 4y (421)

are known for a great number of nuclei Z4. In
these “‘simple capture processes,”” the bombarded
nucleus is transmuted into its isotope which is
one mass unit heavier. This isotope may be either
stable or radioactive. In the latter case, the
capture process is most easily detected by the
radioactivity produced. This production of arti-
ficial radioactivity was discovered by Fermi and
his collaborators in 1934 (F13). Since then, 93
radioactive isotopes have been produced by
simple capture of neutrons. About the production
of stable isotopes by neutron capture, our infor-
mation is necessarily less complete : We can only
infer it from the absorption of the neutrons.

The y-rays from capture processes have actu-
ally been found (A1l1l) and their energy (F25,
R3, K10, K11) and intensity (K9, G23) meas-
ured. They will be discussed in §90.

Not long after the discovery of the neutron-
capture processes, Fermi, Amaldi, d’Agostino,
Pontecorvo, Rasetti and Segré (A7) found that
the efficiency of the neutrons in producing radio-
active isotopes increased greatly when the neu-
trons were slowed down by passing through paraf-
fin or water. Cross sections up to 3000-10—% cm?
(Cd) were measured for the capture of these slow
neutrons, i.e., cross sections more than a hundred
times the geometrical cross section of the cap-
turing nuclei.

Attempts were made by several authors (A7,
B12, P6) to explain these large cross sections
quantum mechanically using a one-body model.
The neutron was assumed to move in a certain
potential produced by the capturing nucleus.
This model gave a capture cross section inversely
proportional to the neutron velocity and could
thus quite well explain the large increase of the
cross section observed when slowing down the
neutrons. Moreover, it gave the absolute cross
section for slow neutrons reasonably well, and it
was also capable of explaining the wide fluctua-

19 Z4 denotes a nucleus of charge Z and mass number 4.
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tions of the capture cross section from element to
element by differences in the neutron wave func-
tions in the respective potentials.?®

However, a serious difficulty soon arose in the
ratio of scattering to capture cross section. The
one-body theory predicted that the two cross
sections should, for neutrons of thermal energy,
be always of the same order of magnitude so that
a large capture cross section would in every case
imply large scattering as well. But experiments
of Dunning, Pegram, Fink and Mitchell (D23)
showed that in the strongly absorbing Cd the
scattering cross section was less than 1 percent
of the capture cross section.

The final blow to the one-body theory was the
selective absorption of neutrons found by Moon
and Tillman (M26), Amaldi and Fermi (A7) and
Szilard (S29). These authors found that neutrons
which made one substance radioactive had very
little effect in activating another substance and
vice versa. This was quite irreconcilable with the
prediction of the one-body theory that the cross
section should be inversely proportional to the
neutron velocity for any capturing nucleus.

The phenomenon of selective absorption, while
discrediting the one-body theory, led Bohr (B32)
and Breit and Wigner (B51) to the correct
theory of neutron capture based on the many-
body concept of nuclear processes. The selective
absorption of given ‘‘groups’” of neutrons by
given nuclei must be interpreted as a resonance
effect of the neutrons with a virtual energy level
of the “compound nucleus” formed by the tem-
porary addition of neutron and capturing nu-
cleus. Whenever the neutron has an energy coin-
ciding with one of these resonance levels, there
will be a large probability of neutron capture. As
the resonance levels will be different from nucleus
to nucleus, each nucleus will in general have its
own characteristic group or groups of neutrons
which are easily captured.

The Breit-Wigner theory of neutron capture
will be discussed in the next section (§58), its
application to the experiments in §§60-62. In
these latter sections, we shall discuss the experi-
mental results about the position and spacing of
the resonance levels (§60, cf. the theoretical dis-
cussions in §53), the width of the levels (§§61, 62,

20 There was, however, a difficulty about the dependence
of the cross section on atomic number (V5).
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cf. §54) and the absolute magnitude of the cross
section (§62).
C. Production of e-particles

The slow neutron is captured and an a-particle
emitted, according to the scheme

ZA4plsZAv1% (7 —2)4-i4 Hed.  (422)

Z4+1* denotes the compound nucleus which is
temporarily formed in an excited state (asterisk!).
This type of reaction is known to occur with Li®
and B'. The reactions involved are

Li*+n!=He'+H?,
BU-+n!=Li’+He".

(422a)
(422b)

These reactions were discovered (A8, C12) by
observing the heavy particles (H? and He?)
produced. The cross sections are very large,
about 3000 - 10~2* and 900 - 1024 cm? for the boron
and the lithium reaction, respectively, with neu-
trons of thermal energy. The reactions are there-
fore used as sensitive methods for the detection
of neutrons (of. also §60).

D. Production of protons
This type which may be schematically written
ZA4nl=(Z—1)4+H! (423)

has only been observed in a single instance, viz.

N4l =CH4+HL (423a)
It is likely that also the process
B0+ n!=Be!'4H! (423Db)

occurs; it has not yet been observed, but it is
energetically possible. Other processes of this
type are probably not possible energetically,
which may be seen as follows: The bombarded
nucleus Z4 is transmuted into an isobar with a
nuclear charge smaller by one unit. Since the
nucleus Z4 is known to be stable, (Z—1)4 must
have a larger atomic weight than Z4. On the
other hand, the neutron is heavier than the
hydrogen atom only by 0.8 MV (cf. Chapter
XVIII). Therefore the reaction (423) is only
possible energetically if the mass difference
(Z—1)4—Z4 is smaller than 0.8 MV. It is very
improbable that this mass difference lies just
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between 0 and +0.8 MV, as it has to in order to
make the process possible. In the cases (423a)
and (423b) this condition happens to be fulfilled,
but these are the only cases among the lighter
nuclei. For heavier nuclei, a reaction of the type
(423) would be extremely improbable even if
energetically possible, because the protons pro-
duced have very low energy (<0.8 MV) and
therefore cannot possibly penetrate the potential
barrier of a heavy nucleus with any appreciable
probability.

E. Other processes

Other processes produced by slow neutrons
seem impossible. This is certainly true for ordi-
nary inelastic collisions because ‘‘slow’’ neutrons
do not have sufficient energy to excite even the
first excited level of the bombarded nucleus
which is usually several 10,000 volts above the
ground state (cf. §88). Similarly, it seems ener-
getically impossible that a deuteron could be
emitted upon slow neutron bombardment.

Thus we are left, besides the elastic scattering,
with only three possible types of slow neutron
disintegrations, »iz. simple capture, a-emission
and proton emission. Of these, the y-emission
seems relatively very improbable for light nuclei,
simply because the interaction between nuclear
matter and the radiation field is so much smaller
than between the nuclear particles themselves.
On the other hand, for heavy nuclei the emission
of charged particles after slow neutron bombard-
ment is very improbable because of the high po-
tential barriers. Thus we have, with a given
nucleus, in general only either simple capture or
emission of charged particles. (This is not true
for reactions produced by fast neutrons, §65).
Moreover, only in one case (B!%) can a-particles
and protons be produced from the same initial
nucleus. Thus we say that as a rule slow neutrons
can cause only a single type of transmutation,
either simple capture or a-emission or proton
emission, with a given nucleus.

§58. THE BREIT-WIGNER THEORY OF SLow
NEuTRON PrOCEssEs (B51, B15)

We apply our general formula (269) to the
special case that the incident particle is a slow
neutron. With s=1, we obtain
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NO, —
077Qq=

2J+1
2(2i4+1) JlZi'( +)

xrjUrJNOUrJqu'i’ 2

E—E. 411y,

(424)

Here N denotes the neutron, the index 0 after N
indicates that the initial nucleus is in its ground
state, Q is the emitted particle, ¢ denotes the
state of the final nucleus, !’ and j’ the orbital and
total angular momentum of the emitted particle.
1 and J are the angular momenta of initial and
compound nucleus, 7 labels the states of the com-
pound nucleus. E, is the kinetic energy of a
neutron which is in exact resonance with the
state r of the compound nucleus (cf. (258)).
E is the kinetic energy of the incident neutron, X
and X, the neutron wave-lengths (divided by 27)
corresponding to E and E,. The U’s are the
matrix elements corresponding to the emission of
neutron or particle Q from the state 7 of the com-
pound nucleus, and v, is the effective width of
state 7. It has been assumed that the emitted
particle Q has high energy compared to the neu-
tron, so that "7 g, does not change appreciably
with the neutron energy and may therefore be
replaced by U™/ g, (cf. §52, (265)). For the scatter-
ing of the slow neutrons themselves, we have
according to ((340) (265a))

Moo= T (2T +1)
2(2i41) 7
h. 8 s 2
X|2R+Z Tl (425)
where Iy =(Uno)? (425a)

is the true neutron width of the nuclear level 7.

From the formulae (424) (425), the cross sec-
tion could be calculated as a function of the
energy if the matrix elements and the energy
levels of the compound nucleus were all known.
The mathematical expressions are, however,
rather complicated and not easy to interpret.
Fortunately, they simplify very much in the
cases which are of the greatest practical impor-
tance, namely when the cross section (424) is
large. This is the case

(a) if one of the resonance denominators is
small, i.e., if the energy is near a resonance level.
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In this case, the sum over 7 in (424) reduces to a
single term ; we obtain a one-level formula similar
to (270);

(b) if X is large, i.e., if the velocity of the inci-
dent neutron is very small. In this case, the
variation of the resonance factor with energy is
negligible compared to the variation of X. The
cross section is then proportional to X, i.e., in-
versely proportional to the neutron velocity v.

A. The resonance case

Formula (424) reduces to the Breit-Wigner
one-level formula

Vo T(l 1 ) XX,.FNI‘QQ
0V q=— =+ .
o\ T 241/ (E—E)+ 1y,

(426)

The =+ sign stands according to whether the
angular momentum J of the resonance level in
question is2+3 or t— % ; for 1=0, only the + sign
is possible and the value of the parenthesis be-
comes 2.

The width v in the denominator of (426) con-
tains a term due to the possibility of emitting a
neutron and a term due to emission of other par-
ticles. The neutron width varies as the square
root of the neutron energy while the other term is
practically independent of the neutron energy,
if all the other particles are fast compared to the
neutron. Thus we have

'7=I‘N(E/Ef)*+‘:'_.f‘aq. (427)

Because of the small neutron energy E, the neu-
tron width is usually small compared to the
other contributions to the width.?! Then v be-
comes independent of the energy and equal to the
true width

y~T'~¥Tq. (4272)
Qg

In general, we are interested in the fotal cross
section for the production of particles of the kind
Q and of the corresponding final nucleus B, rather
than in the partial cross section referring to a
given state g of the final nucleus B. Therefore
we sum (426) over all possible states g and obtain

2 This follows directly from the experimental ratio of
scattering to capture probability of slow neutrons, see
below.
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¥om S g W(l 1 ) h?
oV o= =—{1x
2T\ T2/ 2Mm(EE, )

I'vTo
Xt (428)
(E—E)*+1iT?

where To=2Tq, (428a)
q

is the total ‘‘particle Q width’’ of the nuclear level
and T'y the total neutron width. Now we know
from the general discussion in §57 that ordinarily
only one kind of particles can be produced with
appreciable probability under slow neutron
bombardment, »1z. either y-rays or a-particles or
protons. Furthermore, we know that the neutron
width T'y is usually small compared to the con-
tribution of the particles Q to the width (cf. (427)
and the remarks after (432)). Therefore we may
write in all practical cases

Te=T. (429)

If we measure the cross section in cm? and all
energies, including the widths, in volts, (428)
may be rewritten thus:

ooV = (o0/(1+2%))(E,/E)} (430)
with
x=2(E—E,)/T, (430a)
1 1 Ty
00=1.305- 10—“‘(1 :I:-————)—— —. (430b)
2+1/E, T

(430b) shows that the maximum cross section, at
exact resonance, gives a direct measure of the
ratio of the neutron width to the total width. This
is the basis of the experimental determinations of
the neutron width.

In (430) the factor E,./E may be put equal to
unity over the whole resonance region provided
the width T of the resonance level is small com-
pared to the resonance energy E,, which is true
for most of the neutron levels known. In this
case, the ‘‘shape’’ of the resonance level reduces,
according to (430), exactly to the familiar shape
of the optical lines. The cross section is one-half
of its maximum value if the energy differs from
the resonance energy by one-half of the ‘“‘width”
T. The case that E, and T are of the same order
will be discussed below.

The elastic scattering (425) becomes, if only one
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level is important and the potential scattering is
neglected,?

,,,. 2

UNN=~( + )7&,2 , (431)
o\ " 2i4+1) " (E—E,)+1re

making again the assumption (427). The ratio of

elastic scattering to the capture (or disintegra-
tion) cross section (428) is

¥y /a¥ o= (Tn/TQ)(E/E,)

Experiments by Dunning, Pegram, Fink and D.
P. Mitchell (D23) have shown that the scattering
of slow neutrons by Cd is very small, probably
less than one percent of the capture. Qualitatively
the same seems to be true for other strongly ab-
sorbing substances such as Ag, Rh etc. (M19,
M20). This shows that the neutron width is
generally much smaller than the vy-ray width for
medium heavy nuclei. This justifies our neglecting
I'y compared to I'q (cf. (427)). The resultis
furthermore of great importance in order to de-
cide which values to deduce from the capture
experiments for the neutron width I'y and the
emitted-particle width T'g: The capture cross
section (428) contains only the product I'yT'¢ and
the sum I'=Ty-+Tq of the two widths. From
measurements of the capture cross section we
can therefore deduce I'y and I'q but cannot de-
duce which is which. The scattering experiments
mentioned show that the larger of the two quanti-
ties must be identified with T'g, the smaller one
with T'y.

(432)

B. The 1/v region

If the energy of the incident neutron is small
compared to all the resonance energies?® E,, the
change of the resonance denominators in (424)
with neutron energy is negligible compared to
the change of the factor X. Therefore, for suffi-
ciently small neutron energy, there will always be a
region in which the capture cross section is in-
versely proportional to the neutron velocity. Just
how large this region is, depends on the position
of the first resonance level (of positive or negative
energy) and also to some extent on its width
(see below).

2 The role of the potential scattering will be treated in

23 If the resonance energy E, is negative, E must be small
compared to |E,|.
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By virtue of the large factor X, the cross section
will in general be quite large in the 1/v region.
(Exceptions may occur if there is destructive
interference between the contributions of various
nuclear levels 7 for small neutron energies E.)
The cross section of a given nucleus for slow neu-
trons will therefore, besides the resonance max-
ima, have one maximum at zero energy. While
the resonance maxima lie, in general, at different
neutron energies for different nuclei, the maxi-
mum at low energies is common for all nuclei
affected by slow neutrons. In order to separate
the characteristic resonance effects from the
effect of the very slow neutrons, it is customary
to absorb the latter by a suitable absorber. Such
an absorber is Cd ; it absorbs strongly all neutrons
up to about 0.4 volt energy (cf. §61), a thickness
of 0.3 mm being sufficient to reduce the intensity
of very slow neutrons to less than one percent.
The very slow neutrons strongly absorbed in Cd
are known in the literature as the “C group” (C
=cadmium). The activity produced in most de-
tectors, under conditions specified in the next
section, is in the average due in about equal parts
to the C neutrons and to the neutrons in the
resonance groups.

A closer examination of the validity of the 1/v
law is possible if we accept the one-level formula
(428) as valid in the 1/v region. This is in general
not justified from experiment, as will be shown in
§61. Only if the first resonance level lies very
near zero? and if, in addition, this resonance level
is “‘strong,” i.e., has large widths I'y and T'q for
the neutrons as well as for the produced particles,
may we expect the one-level formula to hold.
This seems to be the case for Rh and Cd, but,
e.g., not for Ag and I. However, the conditions
for the validity of the 1/v law will not be very
different whether the one-level or the many-level
formula is to be used.

The one-level formula (428) may be written,
after summing over ¢ and putting y=T (cf.

(427a))

E-}
N g~—

(E-E)*+ir* 39

24 “Near” must be understood in comparison with the
average spacing of the levels. However, the first level will
of course lie at an energy much higher than the limit of
validity of the 1/v law. Cf. remark after (434).
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The condition for the 1,/v law is that the relative
variation of E—* with energy shall be larger than
that of the denominator in (433), viz.:

| (d/dE) (log E7)]

>|(d/dE) log [(E—E,)*+1T?]|. (433a)
This yields
AE|E,—E|<(E.—E)*+1ir (434)

This is certainly fulfilled if E is small compared
to the larger of the two quantities?® E, and I. In
words: The 1/v law holds if the neutron energy is
small compared to the first resonance energy, or is
small compared to the width of this resonance level.

From this rule, we must expect that the 1/vlaw
holds only for a very small energy region in
heavy nuclei whose levels are very dense (§53, 60)
and narrow (§54, 61), but holds up to rather high
energies for light nuclei, corresponding to the
large spacing and width of their energy levels. In
heavy nuclei, the first resonance level is often
found at a neutron energy of about one volt
(e.g., Rh, In, Ir, cf. §60) in which case the 1/v
region will not extend much beyond thermal
energies (k7=1/40 volt at room temperature).
In some cases, such as Cd and Dy, the first
level lies even lower (§61) so that even in the
thermal region the cross section shows no pro-
portionality with the reciprocal velocity. On the
other hand, in light nuclei such as Li, B, N, the
average spacing between nuclear levels may be
expected to be of the order of hundred thousands
of volts, and thus the first level will in general lie
at an energy of this same order. But even if, by
accident, the resonance level would lie very close
to zero in one of these cases, its width would be
very large: We know from experiments on the
capture of protons by light nuclei that the width
of the levels of light nuclei corresponding to the
emission of particles is of the order of several ten
thousands of volts if the particles are sufficiently
fast (more than about 1 MV energy). This latter
condition is certainly fulfilled for the slow neu-
tron reactions in Li® and B! in which a-particles
are produced (cf. (422a) (422b), §64). For these
reactions the 1/v law will therefore hold up to
quite high neutron energies, of a few thousand

% This condition is only sufficient if I'y<KT'q. Otherwise,
T will itself depend on the energy and a more stringent
condition holds.
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volts at least. On the strength of these considera-
tions, the absorption coefficient in boron has been
used (S29, F33, W5, A7, H8, H9, G17, G18, cf.
also §60) for determining the energy of the
various resonance groups of neutrons activating
various elements.

A very direct experimental test of the 1/v law,
at least in the region of thermal energies, was
made by Rasetti, Mitchell, Fink and Pegram
(RS) for boron, and by Rasetti, Segré, Fink,
Dunning and Pegram (R4) for cadmium and
silver. A steel or aluminum disk of 50 cm diameter
was coated with the substance to be investigated
and rotated at 6000 r.p.m. so that the linear
velocity at the edge was about 140 meters/sec.,
comparable to the velocity of thermal neutrons
(2200 m/sec.). A beam of slow neutrons was sent
through the disk near the edge at an angle of
about 65° with the normal to the wheel so that
the relative velocity of the neutrons with respect
to the absorbing nuclei in the wheel differed
greatly according to whether the wheel was ro-
tated in the direction or against the direction of
the neutron beam. In spite of this change in
relative velocity, no change in the absorption of
the neutrons is expected when the 1/v law holds:
For the time the neutrons need for traversing the
wheel is independent of the velocity of the wheel,
and the 1/v law just means that the capture
probability per unit time is independent of the
velocity. Any deviation from the 1/v law must,
however, show in a different absorption of the
neutrons for the two directions of rotation of
the wheel.

The neutron intensity was measured by the
number of disintegrations produced in Li with
the help of an ionization chamber (cf. §94). No
change in the absorption, outside the statistical
error, was found for the B and Ag absorber, show-
ing that they obey the 1/v law at least in the
region of thermal energies. For Cd, however, an
increase of 6.3 percent in the absorption coeffi-
cient was observed when the Cd disk was moved
against the neutron beam. This corresponds under
the conditions of the experiment to a cross section
almost independent of the velocity (cf. §61).

C. Special cases of the one-level formula

For the applicability of the one-level formula
to slow neutrons, it is only necessary that the
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nearest level is very close as compared to the
second nearest level, but it is not necessary that
the nearest level is a real resonance level of posi-
tive energy. It is just as likely that large cross
sections for slow neutrons are due to a ‘‘negative’’
level with a negative resonance energy E,. In this
case, of course, the substance in question would
only abosorb the “C group” of neutrons and
would not show any characteristic neutron absorp-
tion band, at least not at low energy. The cross
section would be given by

T 1 h? 1
U’NQ=‘—(1_': ) i
2 2i4+1/2M|E, |} E}
I'Ty
X ?
(E+ | E.[)2+ 4T

(428b)

it would decrease monotonically with increasing
energy, first as E~%, later as E~5/2,

Another case in which no characteristic ab-
sorption can be observed but only absorption of
very slow neutrons, is the case of a resonance
level very close to zero energy whose width is
comparable to the (positive) resonance energy.
Fig. 11 gives the behavior of the cross section as a

L
0 X3 1.0 15

E/E, 20

F1c. 11. The cross section for neutron capture as a
function of energy for various ratios of width T' to resonance
energy E,. Width I = $E, (pronounced resonance),
————— I'= V2E, (almost case of Cd), —-—+— I'=4E, (al-
most 1/ law). The abscissa should be denoted E/E.,
rather than E/E,.

function of the neutron energy, for various
values of the ratio e=E,/T. There is a mono-
tonic decrease of the cross section with energy for
negative and very small positive e. For E,
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=(5!/4)I'=0.56I" the curve contains a point of
inflection with horizontal tangent at E=3E,.
For larger ¢, we find curves containing a minimum
and a maximum at the energies

Enmin™=0.6E, +(0.16E,2— 0.05T2)%.  (435)

With increasing ratio E,/T, the two extrema be-
come more pronounced and more separated from
each other, until for E,>T we have (cf. (430),
(430a))

Enin= %En Enux=E,, (4353.)
Omin = (55/2/64)(F/Er)200= 0-87(F/Er)20'0, (435b)

where oy=on. i1s the cross section at exact
resonance (430b).

§59. DirrusioN oF NEUTRONS (Al1, F18, F17)

A. General

Before we can discuss the various methods of
determining position, total width and neutron
width of resonance levels, we must investigate the
behavior of the neutrons in the hydrogen-con-
taining substance (paraffin, water) etc. which is
nsed to slow down the neutrons.

The questions to be answered are mainly the
following:

(1) What is the energy distribution of the
neutrons in a pure infinitely extended hydro-
geneous substance?

(2) What is the distribution of the neutrons in
space, and how does it depend on the neutron
energy?

(3) How are the distributions affected if an
absorbing substance is placed inside the hydro-
geneous substance?

There are some further problems which are
connected to those mentioned.

The approach to these problems is partly
theoretical and partly experimental. We shall
start from a few theoretical assumptions which
seem reasonably certain, and rely on experi-
mental determinations of the constants involved
such as the mean free path of slow neutrons, their
lifetime in hydrogeneous substances, etc. Since
most experiments were made in paraffin, we
speak of ‘‘paraffin’’ as representing hydrogeneous
substances in general. We shall follow closely
the theoretical treatment of Fermi.
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The basic theoretical facts about the scattering
of neutrons by protons are the following:

(a) In each collision with a proton the neutron
will lose energy. As long as the neutron is fast
compared to the proton, the probability that the
neutron energy lies between E and E+dE after
the collision, is

w(E)dE=dE/E,, (436)

where E, is the neutron energy before the colli-
sion. This means that any value of the final
energy of the neutron, between 0 and the initial
energy E,, is equally probable.

The proof follows immediately from the
energy-momentum considerations given in §14,
together with the fact that the scattering of neu-
trons by protons is practically spherically sym-
metrical?® in a system of reference in which the
center of gravity of the two particles is at rest
(§15). If ¢ is the deflection of the neutron in the
collision, the energy after collision is

E=E;cos? ¢ (436a)
(cf. (49d)), and the number of neutrons deflected

26 Recently, additional experimental (H15) and some
theoretical material has been advanced which is in contra-
diction with the spherical distribution of scattered fast
neutrons. The theoretical calculations of Morse, Fisk,
Schiff and Shockley (M28, M29, F22, F23) were made
using a potential between neutron and proton of the form

V=—A(e e~ .%e-ﬂr/a)

as suggested by Morse. It was found that such a potential
indeed gives larger asymmetries in the scattering than a
“‘rectangular hole”” of equivalent radius. The reason is that
the Morse potential (and similarly an exponential or a
Gauss potential) is finite though small at fairly large
distances, and therefore has a greater effect on the “‘p
wave'' (I=1) which causes the deviation from spherical
symmetry. The actual calculations were made assuming a
‘“range of the nuclear forces’' which is about 50 percent
larger than that expected from the binding energies of
light nuclei; this will tend to increase the asymmetry.
With this range, the pronounced asymmetry found experi-
mentally by Kurie (K29) and by Harkins, Kamen and
Newson (H15) could be duplicated theoretically if a
neutron energy of 25 MV was assumed. The average energy
of the Be4+Rn neutrons used experimentally, is about
S MV §§99B). Thus, even with the Morse potential which
is particularly favorable for an asymmetry, only a few
percent of the observed asymmetry would be expected if
the correct neutron energy and range of the nuclear
forces are used. In any case, an asymmetry in the scattering
can certainly only exist for fairly high neutron energies
and will be negligible below 1 MYV, i.e., in the region in
which we are primarily interested. Added in proof: The
most recent experiments of Dee (private communication
of Dr. Cockcroft) and of Kruger and Schoupp with 2.5
MV neutrons from the reaction H2+H?=He34n! give a
spherical distribution of the recoil protons within the
experimental error.
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between ¢ and o+de
const:-sin ¢ cos ¢de (436b)

(cf. (72)). Combining (436a, b), we obtain (436).

From (436) it follows, that the arithmetical
mean?’ of the energy of the neutron after one
collision is 3 E,, while the geometrical mean E, is
given by

16g (Eo/Eo) = f ﬂlog (E/E))dE/Ey= —1 (436c)
" E.=Ee. (437)

After n collisions, the geometric mean of the
neutron energy will be

Eq.=FE ™. (437a)

The actual energy distribution of the neutrons
after a number of collisions with protons was
calculated by Condon and Breit (C31).

(b) The mean free path between two collisions
decreases very rapidly with decreasing neutron
energy. In paraffin, it is about 5 cm for neutrons
of 2 MV (theoretical value, cf. (62)) and de-
creases to about 1 cm (experimental value) for
slow neutrons. The mean free path should be
constant below, say, 10,000 volts (cf. (62)). For
still slower neutrons whose energy is comparable
to the vibraticnal energy of the hydrogen in
paraffin (~0.4 volt) or smaller, the mean free
path decreases further (see Sec. C) to about 0.3
cm for thermal neutrons (experimental value)
and 0.2 cm for energy zero (theoretical, cf.
(451), (464)).

Therefore the first part of the slowing down
process will require a great amount of space, but

so that

27 There has been considerable controversy (A7, W15,
G19, C31) about which average to use. It seems to us that
the geometrical average originally suggested by Fermi
(A7) is certainly preferable. This is already borne out by
the fact that the arithmetical average of the logarithm of
the energy (which is identical with the log of the geometric
mean) decreases linearly with the number of collisions
(cf. 437a) while the arithmetical average of the energy
itself decreases exponentially, showing that (log E)a is the
more suitable quantity. Moreover, the actual values of
log E after n collisions form very nearly a Gaussian dis-
tribution around (log E)a, whereas there is nothing as
simple as a Gaussian distribution if we plot the probability
against E itself. If any average other than the geometrical
is taken, it seems to us that the average efficiency of the
neutrons in producing radioactivity etc. should be chosen;
assuming this efficiency to be roughly proportional to
1/v < E}, we would have to define the “efficiency average’
E* after one collision by

Eri/Bod= [ *(E/E)ME/Eo=1;
therefore E*=1E,.
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when the neutrons have once been decelerated to
about 100,000 volts, the remaining energy loss
will occur in a relatively very small region of
space. Ultimately, after 20 to 30 collisions, the
neutron energy will be reduced to thermal energy.
There will then, of course, be no further energy
loss, but the neutrons will only diffuse in the
paraffin. This will continue until they are ab-
sorbed, either by the protons in the paraffin
themselves, or by some other absorber inserted in
the paraffin.

The lifetime of the neutrons in pure paraffin
may be calculated from the theoretical probabil-
ity of the capture of neutrons by protons (cf. §17,
(97a)) or from experimental data (see below, sub-
section E) and is found to be about 10~* sec.
This compares to a time of about 1.3-107¢ sec.
which is necessary to slow the neutrons down to
1 volt energy. A lifetime of 10~* sec. corresponds
to somewhat over 100 collisions (cf. (485)) be-
tween neutron and protons after the neutrons
have reached thermal equilibrium. Therefore a
large fraction of the neutrons present in the paraf-
fin will have thermal energies, and consequently
a large part of the radioactivity produced in any
detector placed in the paraffin will certainly be
due to thermal neutrons.

In spite of the long time during which the
neutrons have thermal energies, they will not
diffuse over a very large distance in that time,
owing to their very small mean free path.
Measurements of Fermi give in the average a
total “‘diffusion length” of about 3} cm, taken
from the point at which the neutron first reaches
thermal energies. This may be compared with
an average path from the source to the point of
absorption, of over 18 cm. Thus we can say that
the neutrons spend most of their time as thermal
neutrons, but that the region in which they move
as thermal neutrons is small and its position is
almost exclusively determined by the path of the
neutron while it is fast. The spatial distribution
of fast and slow neutrons will show only little
difference. This has the practical consequence
that it is impossible to shield a region of space
against neutrons by just absorbing the slow
ones, e.g., by Cd screens: The slow neutrons will
be regenerated unless the fast ones are absorbed
as well which is only possible by using sufficient
amounts of paraffin. About 70 cm of water (50
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cm of paraffin) are necessary to reduce the num-
ber of neutrons to one percent. (The density of
neutrons decreases more rapidly because of the
geometrical factor 1/7%)

B. Energy distribution above 1 volt

The energy distribution of neutrons has been
derived by Fermi (F18) under the assumptions
that the energy distribution of the neutrons after
one collision with a proton is uniform, from zero
up to the initial energy E, (cf. (436)). This will
be true as long as the neutron energy is large
compared to the vibrational energy of the protons
in paraffin (cf. Section C). Therefore, the validity
of the formula to be derived will be restricted to
energies above about one volt. The mean free
path I(E) and the probability of absorption
(capture) of the neutron per unit time, 1/7, may
in the following be arbitrary functions of the
energy.

We first derive the energy distribution for the
case of negligible absorption. This assumption is
justified for pure paraffin or water, because the
mean lifetime 7 of a neutron with respect to cap-
ture by a proton, is extremely long compared to
the total time required for the slowing down to
thermal energies.

Let Q be the total number of neutrons per
second emitted by the source, and N(E)dE the
number of neutrons of a given energy E present
at any time in the whole paraffin. The decrease in
the number of neutrons of energy E per second
because of elastic collisions is, according to the
definition of the mean free path,

N(E)vdE/I(E). (438)

The number of neutrons thrown into the given
energy interval dE by a collision, is

QdE/Eq+ f odE’N(E’)[v’/l(E’)]dE/E'. (438a)
E

The first term represents the neutrons coming
into the energy interval dE by the first collision
after being emitted from the source, dE/E, being
the probability that the neutron energy falls into
the interval dE after the collision and E, being
the initial energy of the neutron. The second term
gives the neutrons of energy E produced by later
collisions: N(E')v'dE’ /I(E") gives the total number
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of collisions of neutrons in the energy interval
E’ to E'4+dE’, and dE/E' gives the probability
that the energy of such a neutron is reduced
from E’ to E.
If the distribution N(E) is to be stationary,
(438) must be equal to (438a), i.e.,
N(Eyw Q fEO N(E")Y dE'
E

(E) Eo I(E") E'

(439)

To solve this integral equation, we differentiate
with respect to E:

d / Nv 1 Nv
—— )= (439a)
dE\ | E I
which integrates immediately to
Nv/l=const/E. (439Db)

Inserting this into (439) we determine the con-
stant and find:
(

I(E) dE
N(E)dE=(Q—~ — (440)
v

In the region of slow neutrons (below 10,000
volts), /(E) becomes independent of E, so that
N(E)~E-3, (440a)

In the more general case of finite absorption, we
have instead of (439):

v 1\ Q F N dE
v ()= [ =R
I(E) 7/ E, Jg I FE

where the second term on the left represents the
neutrons of energy E absorbed per unit time.
Differentiation gives

d v 1 Nv
CREDI
dE I 7 IE

=—N ! s 441
T (l+?)(v+z/55' (141a)

The integral of this is

(441)

e ([
o1, P,

Inserting this expression for E=E, into (441)
fixes c:

: (441b)
E v+1/7

c=Q/E,. (441¢)
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The distribution function (441b, c) simplifies
considerably if, below a certain energy limit, ]
and 7 are independent of the energy. This is
almost certainly true in pure paraffin in the
energy region from 1 to about 10,000 volts. It
would also be true (with a smaller 7) if the paraf-
fin (or water) contained a neutron absorber of
small atomic weight such as Li and B. It would,
however, not be true if an absorber with a large
number of resonance absorption bands were con-
tained in the paraffin—i.e., practically any sub-
stance of higher atomic weight. If we make the
assumption of constant 7 and /, the integral in
(441Db) can be evaluated and we obtain

(442)

The constant @ can be determined by comparing
(442) to (440) because there is a region in which
1 is practically independent of the energy and at
the same time /7 is negligible. Then we find

a=2Q/m, (442a)

where m is the neutron mass.

C. Energies below 1 volt. Influence of chemical
binding (F17)

1. General remarks.—The ordinary formulae for
the scattering of neutrons by protons (§14, 15)
are derived assuming that the proton is free.
This assumption is justified as long as the neutron
energy is very large compared to the ‘“binding
energy’’ of the proton which may be identified
with % times the frequency of vibration of the
hydrogen in the paraffin molecule. This frequency
is about 3000 cm™! for the CH bond, correspond-
ing to about 0.4 volt. For slow neutrons, of
energies less than about a volt, the binding of the
protons must therefore be considered.

This binding has two effects: The first is that
it is no longer possible to freely impart energy to
the proton. The vibrations of the paraffin mole-
cules may be divided into two groups. Firstly,
vibrations in which a hydrogen atom moves rela-
tive to the rest of the molecule without any ap-
preciable motion of other atoms, and secondly,
vibrations of whole CHa groups with respect to
the rest of the molecule. The transfer of energy
to the first kind of vibrations will be similar to
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that to free protons inasmuch as there is a con-
siderable probability that the neutron loses prac-
tically all its energy in one collision. However,
such a transfer of energy is only possible as long
as the neutron energy is larger than % times the
frequency w (number of vibrations per 27 sec.)
of the respective vibrations which is rather high.
A neutron of smaller energy can transfer energy
only to the vibrations of the second kind; and the
effect of the collisions will then be similar to that
of collisions with a free? CHz molecule of mass 14.
This fact will reduce greatly the average energy
loss of the neutron per collision. Thus the neutron
energy will decrease more slowly once it has reached
the ‘‘region of the chemical bond.”

The second effect of the proton binding is to
change the probability of the collisions. We shall
show that the cross section increases so that the
mean free path decreases with decreasing energy.
In the limit of very small energies, the mean free
path is theoretically one-quarter of its value for
neutrons above 1 volt energy (cf. (451)). As far
as the efficiency of the slowing down is concerned,
this effect will work in the opposite direction of
the first, i.e., it makes the neutron lose energy
faster.

Another effect of the binding is a change in the
angular distribution of the neutrons after scatter-
ing: This distribution will be uniform (per unit
solid angle) over the whole sphere at small ener-
gies while no neutrons are deflected through more
than 90° by free protons (§15).

2. Validity of the Born approximation.—If there
is an elastic force (natural frequency w) on the
proton and an interaction V between neutron
(coordinate £) and proton (coordinate x), the
wave equation of the system is

(B2/2m) (A s+ A ) V4 (W — S mwix?
—V(jx—£[))¥=0. (443)

This wave equation looks, at first sight, rather un-
manageable: On one hand, it is not separable, and on the
other hand, it cannot be solved by regarding the inter-
action V as a small perturbation because V is of the order
of 10 MV when neutron and proton are close together, and
the Born perturbation method (cf. M32, Chapter VII)
is only applicable when the perturbation is small compared

28 Provided the neutron energy is still large compared
to the quantum energies of all the oscillations of the CH,
groups with respect to each other. For still lower energies
of the neutron, the effective mass of the atomic groups
with which the neutron collides, would be still larger.
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to the energy of the particles. However, we can show that
V may be replaced by an auxiliary potential U which may
be so chosen that it gives the same results as V for the
scattering, and at the same time can be treated as a small
perturbation.

That this is possible is due to the fact that V is restricted
to a very small region of space (~10~13 cm) while the
oscillator potential mw?x?, the wave functions of the proton
in that potential, and the plane wave representing the
neutron, change only over very large distances (~100cm).
Therefore we may solve (443) for small distances |[x—&|
between neutron and proton without paying any attention
to the oscillator potential, and join the solution to a
solution of (443) which is valid at large distances and in
which the nuclear potential is neglected. For this joining
on, which may be effected at some medium value s of
|x—&|, it is immaterial how ¥ behaves for small |x—£| <s.
Therefore the solution of (443) at large distances, and
consequently the scattering, will remain unaltered if V is
replaced by another potential U provided only the asymp-
totic behavior of the wave function for distances |t—x|
large compared to the range of the nuclear forces, is the
same in the two potentials U and V.

To discuss this asymptotic behavior, it is sufficient to
consider the wave equation of the relative motion of
neutron and proton, neglecting the oscillator potential:

(B2 /m)Apy+(E'— V(n))¥ =0, (444)

where n=§—x and im is the reduced mass. If ¥ is ex-
panded in spherical harmonics, the radial wave functions
of the partial waves [#0 will be the same as for free
particles, owing to the short range of the nuclear forces.
This means spherical symmetry of the scattering (§15).
For =0 we have (cf. §14, Eq. (51))

ry =sin K(r+r,), (445)

K=(mE")}/h. (445a)
(445) corresponds to a scattered wave of amplitude 7, in
any direction.?® The total scattering cross section oo is
(445b)

(In the notation of §14, ro=1/8 if the spins of neutron and
proton are opposite, and o= —1/a if they are parallel.)

We compare the solution (445) with the solution of the
differential equation

where

go=4mre.

(B/m)AY'+(E'— Un))y' =0, (446)
where the “auxiliary potential” U is defined by
=—"U, for <R,
U=0  for >R (4462)

If U is chosen so that the Born method is applicable, the
amplitude of the wave scattered in the direction ¢ is

29 The scattering amplitude is generally (cf. M32, p. 24)
1 & )
f(9) =ml§0(2l+1)(82 1—1)Pi(cos 9),

where §; is the phase shift of the partial wave of angular
momentum [ (cf. §14). In our case, 6,=0 for /+0 and
80=Krqo (cf. (510), (445)), so that

f(8) =2iKro/2iK =r,.
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(M32, p. 88, Eq. (5) and p. 87, Eq. (1))

f(8)=— (m/4=#®) S U(n) exp (iK(no—n) -n)dr, (447)
where no and n are unit vectors in the direction of incident
and scattered wave.

A. If we want this result to be identical with the scatter-
ing from the true nuclear potential, we have to fulfill the
following conditions:

(1) f(¥) must be independent of & (cf. above (445)).
This means that the extension R of the ‘“‘auxiliary poten-
tial” must be small compared to the wave-length 1/K, i.e.,

KRKL1. (447a)

(2) The amplitude (447) must be equal to 7,. Since the
exponential reduces to unity, owing to (447a), we have
with (446a)
f(9)=mUcR3/3K2=r,. (448)
B. In order that the Born approximation is applicable,
U, must be small compared to E’:
Uo<LE'. (448a)
This condition is reconcilable with (447a) and (448) be-
cause combination of (447a) and (448a) gives
mURY/31<KmE" /312K3=1/3K, (448b)

which is actually fulfilled according to (448) (ro~10"12 cm;
1/K =reciprocal neutron wave-length=10~? cm or more).
It is therefore possible to choose Up and R so that (447a)
and (448a) are fulfilled simultaneously.

3. Calculation of cross section.—The Schrod-
inger Eq. (443) can now be solved by the
Born method: In zero approximation, we take
plane waves for the neutron, and oscillator wave
functions for the proton. Let ¢, and ¢, be the
wave functions of the proton before and after the
collision, k and k' the initial and final wave vector
of the neutron. Then the differential cross section
per unit solid angle dw is, according to the Born
formula

vl
ox(d)dw=dw—
v

2
;—% [ exp Gis-1)-3

2

XU(|x= & )Yo(x)¥a*(x)dxdE| . (449)

Now the potential U extends only over a region
R small compared to the wave-length of the
neutron, and small compared to the amplitude of
the proton oscillator (cf. (447a)). Therefore in the
exponential £ may be replaced by x. Then the in-
tegration over & can be carried out, and we ob-
tain, using (448),

odw=(v'/)(2r0)*| S exp [i(k—k')-x]

Xo(X)¥a*(x)dx|%dw. (450)
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In the limiting case of very small neutron
energies, only elastic collisions are possible so
that o’ =v. Also, k and %’ are then very small so
that the differential cross section per unit solid
angle is 47,’dw, independent of the angle. The total
cross section is (cf. (445b))

g=16mrl=40,,

(451)

i.e., four times the cross section for free protons.
This factor 4 may be directly understood from
the Born approximation, once the validity of this
approximation has been established. According
to (449), the scattering cross section in the Born
approximation is proportional to the square of
the mass m, for a given potential energy. Now if
the protons are tightly bound, the neutron mass
has to be inserted for m, while in the case of free
protons we must use the reduced mass m/2.

For the calculation in the general case (neutron
energy comparable to Aw) we assume that the
proton is initially in the lowest vibrational state
which will practically always be true. The wave
functions of a one-dimensional oscillator are:

Yn=(2m)~tn 1Fle 1 H (8),
E=x(h/2mew)=}

(452)

where (452a)

and the Hermitian functions are defined by
(Jahnke-Emde, Tables of Functions, p. 105)

n

(e—i(E‘n)z) a0

H.(§)= e“’d (452a)

aﬂ
The normalization of (452) is such that fy,%d¢
=1. Our matrix element (450) then is a product

of three integrals referring to the x, y, and z co-
ordinates. The x integral is

dn -]
A,=02r)"n H( f e—a<e—a)2+iqz£dg) (453)
da™ - a=0

with g==(k.—k.')(h/2mw)?. (453a)
Elementary integration gives
A= (ig,)"n "le—1e, (453b)
(450) reduces to
zzn, 2ny, z2n.
odw= 4ro2(v’/v)dwg———gL——e— 2 (454)

nyln,ln,!
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F1G. 12. Influence of the chemical binding of the protons
on the slowing down of neutrons in a hydrogenous sub-
stance. Isotropic binding of hydrogen atoms assumed.
Abscissa: e=ratio of neutron energy to quantum energy
of the vibration of the hydrogen in the molecule. Ordinate:
Ratio of the cross section to that for free protons. Solid
lines: total cross section and energy loss cross section.
(The average energy loss per collision is one-half the neu-
tron energy times the ratio of energy loss cross section to
total cross section.) Broken lines: contributions of elastic
collisions (#=0) and of one (n=1) and two (#=2) quantum
excitations to the total cross section.

with
q2=Qz2+9y2+912 = (ﬁ/2mw) (k—k')2

=(E+E' —2(EE')} cos 9) /hw. (454a)

¢ is the angle of deflection of the neutron and
n n,n. the vibrational quantum numbers of the
excited state of the proton in the three directions
of space. In (454a) it has been tacitly assumed
that the vibrational frequencies are the same for
the three directions of space, but (454) will be
generally true even for anisotropic binding of the
proton (cf. below).

4. Isotropically bound protons.—Under the as-
sumption of isotropic binding, (454) may be
summed over all the substates n,#n,7. of the state
of total vibrational quantum number

n=n.+n,+n, (455a)
the summation giving
ondw=4r2(E’'/E)}q*re~ 27 sin 9dd/n!. (455)
With (454a), we may write
d¢*=2(EE'")} sin 9d9/hw. (455b)
Furthermore, we introduce the abbreviation
e=E/hw; e—n=E/hw. (456)
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2n

(1)} q
oo ($)dw=— —e 2dq?,

€ n.

Then (456a)

The total cross section for excitation of the nth
vibrational state can be obtained by integration
between the limits

Gmin=€e'—(e—n)}, Quax=¢€t+(e—n)t. (456Db)

The total cross section for excitation of level n
becomes

7a=(00/Lfa({ed—(e—m)}}?)
—fal{e+(e—m)}}D) ] (457)

with

. x «x?
fa(x)=e (1+1—!+Z+---+ ) (457a)

x

nl

For n=0 (elastic collisions) ¢ reduces to
Tam0= (00/€) (1 —€~%),

which decreases from 4¢, at e=0 to 0.98¢, at
e=1.

For large energies ¢ and all values of # not
very near ¢ the second term in the square
bracket in (457) is negligible while the first is
practically unity. Then

(458)

(e>1) (459)

=09/,

independent of #. The maximum value of 7 is
equal to e by definition (456). Therefore the total
cross section for large e is o9, and any energy loss
between zero and the total energy ehw is equally
probable, just as we found assuming free protons.

Fig. 12 gives the cross sections for elastic
scattering (z=0) and excitation of the first and
second vibrational state for neutron energies be-
tween 0 and 3Aw. The total cross section is given,
and the ‘“‘cross section for energy loss’

61=(2/e)X_na.,. (460)
n

This definition of o; makes it equal to ¢, for high
energies. For the energies considered, ¢; (in con-
trast to o.ta1) remains smaller than oy, but down
to almost e=1 the difference is not large. This
means that the efficiency of the paraffin in slow-
ing down the neutrons remains practically the
same down to a neutron energy equal to the
energy hw of the proton vibration.
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5. Quantitative considerations. Energy distribu-
tion below 1 wolt.—The calculations given are not
yet directly applicable to our problem because the
protons in paraffin are not bound isotropically.
The vibration frequency in the direction of the
line joining the carbon and hydrogen atom is
about »;=3000 cm™!, in the directions perpen-
dicular to it, »o=800 to 900 cm™. According to
the foregoing, a noticeable effect on the slowing
down of the neutrons will not be found until the
neutron energy has decreased to about hée=2mhcvs.
This means that the neutron distribution law
(440) should hold approximately down to the
energy E=hw,=~0.1 volt, with nearly constant
I(E). There will, of course, be a slight deviation
from (440) in the direction of a larger number of
neutrons for energies below, say, 1 volt, but, ac-
cording to Fig. 12, this deviation will probably be
less than a factor 2 for all energies above 1.25
hws ~0.13 volt.

Only for energies smaller than 7w, the transfer
of energy to the C—H vibration will no longer
be possible, and any further slowing down can
only occur by transferring energy to the CH,
groups as a whole. This is equivalent to an in-
crease of the “‘effective mass” of the hydrogen
from M=1 to 14 (molecular weight of CH,).
Accordingly, the average energy loss of a neutron
per collision is reduced to 2mM/(M+m)*~1/8
times the neutron energy. Therefore, if, e.g., we
let neutrons pass from a block of hot paraffin to
one of cold paraffin, it will take 8 collisions rather
than one to “cool” the neutrons to the new
temperature (more accurately: to reduce the
difference between neutron and paraffin ‘“tem-
perature”’ to 1/e times its initial value).

It might be thought that the distribution func-
tion of neutrons at energies below Awe will be
affected accordingly, so that the number of neu-
trons of energy E would be roughly 8 times the
number given by (440). This is not the case,
simply because energies of this order are no longer
in the domain of the validity of any formula
similar to (440) but are already in the domain of
the Maxwell distribution. The entire energy dis-
tribution of the neutrons can be divided into two
parts: The high energy region where the neutrons
lose energy continuously, and the low energy re-
gion where energy gains in a collision are about as
frequent as losses. In the first region formula

BETHE §59
(440) will hold, with possible corrections for the
efficiency of the decelerating process. In the
second region, we shall have a Maxwell distribu-
tion. The total number of neutrons in the Max-
well region will be equal to the number produced
per sec. Q, times the mean life 7 of a neutron.
Therefore the number having an energy between
E and E+4+dE is:

N(E)dE=27—1Qr(kT)"'Ele-E*TdE. (461)

The limit of validity between distributions (440)
and (461) will be given by that energy ekT for

which they give the same number of neutrons.
We find

€0 2eo=1(8RT/mm)¥/l(eokT). (461a)

The right-hand side is identical with the number
N of collisions before absorption, introduced by
Fermi (cf. (484)), except that the mean free path
at energy ek7 stands instead of that for energy
kT. Assuming the ratio of the mean free paths to
be 2.8 (cf. 464), the right-hand side becomes
N/2.8=53, using Fermi's determination of N.
Then (461a) has the solution

(461b)

€0=8,

corresponding to about 1600 cm™ at room tem-
perature. The Maxwell distribution thus extends
up to about twice the energy of the weaker hydrogen
bond, and joins directly to the distribution (440)
with constant | (of course, all these statements are
approximate only).

6. Anisotropic binding of hydrogen.—We now
consider the influence of the anisotropic hydrogen
bond on the elastic scattering cross section at
thermal energies. The differential cross section
(455) becomes

dadw sin xdx =4r,*27 sin 9dd3 sin xdx
X e~ %~ 4~ = ¢ sin 9d9 sin xdx

—9(1— <2 in2
Xe (1—cos &) (¢; cos®* x+ey sin x)’

(462)

where ¢ is the deflection of the neutron (angle
between k and k'), x the angle between the vector
k—k’ and the direction of the strong bond, and

61=E/hw1, é‘z:E/ﬁwz, (4628,)
(462b)

so that e ~1ie.

Since the energy is supposed to be small com-
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pared to both the bonds Aw, and 4wz, we can ex-
pand the exponential in (462). Then the integra-
tion is straightforward and gives for the total
cross section

32
Gl =40’0[1 - 26'+i-g(e'eg+ 1a?)

64 S
——(e'ezg-%- ialet —er")
35 24
204
1 (et + --)+---]. (463)
1575
where d=%e1+2e (463a)

At room temperature, kT is about 200 cm™, so
that e~1, ¢, ~, ¢ =~5%. Then the elastic cross
section becomes

(464)

Oel= 2.80‘0.

Thus the mean free path of thermal neutrons will
be about 2.8 times smaller than that of neutrons
above one volt energy.2%

7. Conclusions. Mean free path of neutrons at
and above thermal energies—Amaldi and Fermi
(A11) have measured the mean free path for
thermal neutrons by determining the number of
thermal neutrons which were scattered out of a
neutron beam by varying thicknesses of paraffin.
The number of thermal neutrons was measured
by the difference in the radioactivities produced
in a piece of rhodium with and without a screen
of cadmium. Since Cd is known to absorb the
thermal neutrons, such a measurement will in-
deed yield the number of thermal neutrons fairly
accurately. The mean free path found in this way
by Amaldi and Fermi was

lin=0.3 cm. (465)

From this together with (464) we would conclude
a mean free path for neutrons above one volt of
about

1,=0.85 cm. (465a)

Amaldi and Fermi also measured the mean
free path of these faster neutrons directly. A
detector for such neutrons, e.g., a sheet of Ag
or Rh screened by Cd, was placed on top of a
paraffin block. An absorber of the same material

292 Fermi (F17) gives 3.3 oo, assuming the hydrogen bond
to be isotropic with »=3000 cm™.
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was inserted in the paraffin, at various depths x
below the surface. The decrease in the activity of
the detector 64 was measured as a function of
the depth x simultaneously with the activity 4,
of the lower surface of the absorber itself. Then
84 /4, gives the probability that a neutron with
an energy equal to the resonance energy of ab-
sorber and detector, is able to travel a distance x
in paraffin without losing its property of being in
resonance. Since all known resonance levels have
a width small compared to the resonance energy,
almost every collision will throw a neutron out of
resonance. Therefore the measurements referred
to will give directly the mean free path /, of the
resonance neutrons. From both the measure-
ments with Ag and Rh, Amaldi and Fermi de-
duced

ly=1.1 cm. (465b)

It seems that the measurement of [, is some-
what more accurate, and we accept therefore

1,=0.9 cm (465c)

as the true value of the mean free path. Taking
the density of paraffin as 0.90, the scattering
cross section becomes

14
agg=
2-6.05-10%3-0.90-0.9

=14-10"% cm?, (466)
where 14 is the molecular weight of CH; and 2
the number of hydrogen atoms per CH. group.
Inserting this into (62), we find for the energy of
the virtual 1S state of the deuteron

¢ =105,000 volts. (467)

This figure replaces the figure of 40,000 volts
given in (62a) which was erroneous because the
effect of the chemical binding of the scattering
proton had not been taken into account.

D. Spatial distribution of the neutrons in paraffin

The spatial distribution of the neutrons is a
result of their multiple scattering during the
process of being slowed down. Fig. 13 gives the
distribution as observed by Amaldi and Fermi
(A11) for two neutron energies (thermal and Ag
resonance?®?). The quantity given is the number

30 The distribution of the Rh and I resonance neutrons
was also given by Amaldi and Fermi (A11, Fig. 7). These
distributions are very similar to those of the Ag resonance
neutrons.
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of neutrons found in a spherical shell of radius »
surrounding the source. The distribution curves
show an increase at small » because of the increase
in the area of the spherical shell, and then a de-
crease which is for large 7 practically exponential
with a decay constant of 0.106 cm~. Since we
know that the spatial distribution is primarily
determined by the diffusion of the neutrons while
fast (cf. A), the reciprocal of the decay constant,
i.e., 9.4 cm, will be a measure of the mean free
path for fast neutrons. The very complicated
energy dependence (62) of the cross section for
collisions with hydrogen atoms must be taken
into account, and it must be considered that the
neutrons which have suffered a collision have a
smaller mean free path than those which have
not. Furthermore, collisions with oxygen atoms
are very important for fast neutrons, firstly be-
cause of the rapid decrease of the hydrogen cross
section with increasing neutron energy, and
secondly because a collision with an oxygen atom
may cause a deflection of the neutron by a large
angle while the deflection in collisions with hy-
drogen atoms can at most be 90°. The very differ-
ent effect of oxygen and hydrogen collisions on
the energy and the direction of the neutron makes
the treatment of their combined effect rather
difficult. Moreover, considerable uncertainty is
introduced in the calculations because the magni-
tude of the cross section of oxygen for fast neu-
trons is known only approximately and its de-
pendence on energy not at all. Finally, the whole
problem is further complicated by the inhomo-
geneity of the neutrons from the source
(Rn+Be).

Fermi has given a general formula for the
mean square distance (#?)u of slow neutrons from
the source, taking into account all the effects
mentioned (F17). This rather complicated for-
mula was applied by Horvay (H38) to the problem
of neutron diffusion in water. Assuming for the
cross section of oxygen the reasonable value
2:107* cm? Horvay finds that the observed
value of (7?)s requires an initial average energy
of the neutrons of about 3 MV which seems
quite reasonable in comparison with the observed
distribution of neutrons from a radon-beryllium
source (D21).

Bethe (unpublished) has tried to obtain ap-
proximately the shape of the distribution curve,
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FiG. 13. Distribution of neutrons in a large volume of
water, according to Amaldi and Fermi (A11, Fig. 7).
Abscissa: Distance 7 from source in cm. Ordinate: Number
of neutrons of group 4 and C with distance between 7
and r+4dr. Solid curves: observed. Broken curves: calcu-
lated with rough assumptions.

using very simplified assumptions about the
diffusion process and determining a constant
(essentially the mean distance traveled by fast
neutrons) from the experimental data. The result
of this admittedly rough calculation is also given
in Fig. 13.

In this section, we shall limit ourselves to a
calculation of the difference between the mean
square distances of slow neutrons of different
energies from the source. This difference can be
used for a determination of neutron energies
(A11, cf. below) and is comparatively easy to
calculate because between 1 and 10,000 volts the
mean free path is practically independent of the
energy.

Let r, be the distance traveled from the source
by a neutron of final energy E; and ro=r;+r
that for energy E;. Then we want to calculate

(f22) "2 (712) N (72)Av+2(f1‘ l')m. (468)

The ‘“‘correlation term” (r;-r)y may be neg-
lected?! if a large number of collisions is neces-
sary® to slow the neutron down from E, to E.,.
We now denote the number of these collisions by
N, and the distance traveled between the » — 1st
and nth collisions by p,. Then

3 It can be shown that this term is actually compensated
by other neglections made in the course of the calculation.
3 This can always be achieved by choosing E, large.
E.g., we may choose E; equal to 10,000 volts throughout.
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= 0)n= 5 (ps)n

n=1 n

+2 Z (Pmp'n COos 19mn)kn

n<m

(469)

where 9., is the angle between the vectors g
and g.. The three quantities in the last term are
statistically independent of each other. Denoting
the mean free path between two collisions by I,
we have?

(pﬂz)AV=2l2» (pn)Av=l, (4:693.)
and therefore
(Pn=2NE(1+ 3. (cosnn)n) (470)
m—n=1
=2NP i (COS 7-?71. n+k)Av- (4703)

k

0

The sums have been extended to infinity because
the terms decrease rapidly with k.

We shall first assume that only collisions with
hydrogen atoms occur. Then the average number

of collisions necessary is (cf. (437a))
N=log (E\/E,). 471)

The average cosine of the angle of deflection in a

collision is (cf. (436b))

(cos &n, ny)aw=Jo"/? cos ¢ cos ¢ sin dd¥+
Jo™ 2 cos ¥ sin ddd=%. (472)

If ¢ is the angle between the plane of @nikx—1, ox

and the plane of gnix—1, @nir, we have

COS U, ntk=COS Fn, nyk—1COS Fnyk—1, nik
+sin Fn, nyr—1 SIN Fnyr_1, nek €OS @.  (472a)

The second term vanishes upon averaging over
¢. Therefore we have, with (472),

(cos Fn, nyr)w=1(cOS Fn, ntr-1)a(COS Fnir1, nit)a
=(cos ¥, nr)n*=(3)% (472b)
Therefore the sum over % in (470a) gives 3, and
(") n=6NI1?=06l* log E,/E,. (473)

This is the formula used by Amaldi and Fermi.

33 The probability of a given value of p, is eP:/ldp,/l
(definition of the mean free path).
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Now we take the collisions with oxygen atoms
into account. Let 2a be the ratio of the cross
sections of oxygen and hydrogen for slow neu-
trons (1 to 10,000 volts). Then the number of
collisions will now be (one oxygen atom per two
hydrogen atoms!)

N=(1+a) log (E1/En), (474)
and the mean free path
I=l/(1+a), (474a)

where [y is the mean free path with hydrogen
only. After a collision with an oxygen atom, the
direction of motion of the neutron will be prac-
tically random. Therefore the average cosine in
(472) must be multiplied by the probability that
the collision is with a hydrogen atom, giving

(COS 0‘1;, n+l) N 2/3(1 +a). (474:b)

(472b) will remain unchanged except for the last
expression. Therefore we obtain instead of (473)

(PMw=[6l?/(143a)] log (Ei/E,). (475)

ly is known from the measurements of Amaldi
and Fermi, its value is 0.9 cm in paraffin (cf.
(465c)). In water, it should be larger by the ratio
of the number of hydrogen atoms per cm? i.e., by
the factor 0.9-18/1.0-14=1.16, giving /,=1.04
cm. The cross section of oxygen for slow neu-
trons was measured by Dunning and others (D23
and Table XXVII) and found to be 3.3- 1024 cm?
so that (cf. (466))

a=3.3/2-14=0.12. (475a)
Inserting in (475), we have
("™)w=4.8 log (E1/E;) cm?. (476)

The numerical factor 4.8 differs appreciably from
the value used by Amaldi and Fermi (9.7). The
difference is due partly to the neglection of the
rather large effect of oxygen collisions, partly to
a different value used for the mean free path in
paraffin (1.1 instead of 0.9 cm). The value given
in (476) agrees very much better with the meas-
urements of Amaldi and Fermi (§60) than their
old value.

At energies below one volt, (476) will fail. We
may divide this low energy region into two parts:
The region between 1 volt and thermal energies,
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and the Maxwell region. In the first region, the
mean free path /, the energy loss, and the angular
distribution of the neutrons will be complicated
functions of the energy (cf. Section C), so that
the increase in 7? cannot be calculated in any way.
In the Maxwell region we have complete diffu-
sion and, according to (487b),

(72)Mnxwell=6L2y (477)

where L is the “diffusion length” of Maxwell
neutrons. L has been measured by Amaldi and
Fermi and found to be 2.1 cm in paraffin so that

(rz)Maxwell =26 cm? parafﬁn

=35 cm? water. (477a)

On the other hand, Amaldi and Fermi have
measured the difference in (7?), between thermal
neutrons and neutrons of about one volt energy
(resonance group of Rh). In water, this difference
is 50 cm?. This would mean that (7%),, increases by
50—35=15 cm? when the neutrons are slowed
down from 1 volt to thermal energies. This figure
is, of course, not very accurate.

E. Diffusion of thermal neutrons

When the neutrons have been slowed down to
thermal energies, they will diffuse through the
paraffin. Assuming that the mean free path is in-
dependent of the neutron velocity, and that the
scattering of thermal neutrons by protons is
isotropic, we have for the diffusion coefficient
the well-known formula

D= %lthvm

Vo= (8T /mm)}

(478)

where (478a)

is the average velocity of thermal neutrons, and
! the mean free path of thermal neutrons (cf.
(465)).

For a stationary distribution, the diffusion
equation takes the form

dF/d3t=DAF+q—F/r=0. (479)

Here F is the number of neutrons per cm?3. The
first term on the right represents the neutrons
entering a given volume element per unit time
by diffusion, the last term the number disappear-
ing from it by absorption, = being the lifetime of a
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neutron with respect to capture. The second
term, ¢, is the number of thermal neutrons pro-
duced in the volume element per second by the
neutron source; in a homogeneous block of paraf-
fin, ¢ will be a slowly varying function of the co-
ordinates whose variation we shall neglect. We
shall treat the solution of (479) for various cases
which are of practical importance:

1. Homogeneous paraffin, no absorber, homo-
geneous production of neutrons.—We have

g=const., AF=0
and therefore

F=gr. (480)

The total number of neutrons throughout the
paraffin is

S Fdv=Qr,

where Q is the total number of neutrons emitted
per second by the source.

2. Production of neutrons in a plane x=0.—We
have ¢=¢'6(x) where é is Dirac’s § function. The
solution is

(480a)

F=1q'(r/D)le1@n7}, (481)
It satisfies the condition
g=0, i.e., d*F/dx*=F/Dr for x+0. (481a)

The current starting from x=0 is equal to (cf.
(4882))

dF
— lim ZD(———) =q'. (481b)
e=0 dx /e
(Factor 2 for the two sides of the plane.)

According to (481), the probability that a
neutron emitted at x=0, reaches the plane x

without being absorbed, is proportional to
plx)=e='L, (482)
where L= (D7)} (482a)

is the “diffusion length.”

L has been measured by Amaldi and Fermi in
the following way: An absorber of thermal neu-
trons (Cd) is placed at a certain plane x=0 in
paraffin. Then the neutron distribution will be
given by (480) minus (481) where ¢ is the number
of neutrons produced by the source per cm? and
sec., and ¢’ the number absorbed in the absorber
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per cm? and sec. The activity in a detector placed
at a distance x from the absorber, is then meas-
ured with and without the absorber. The differ-
ence turns out to be indeed an exponential func-
tion of x; its rate of decay measures the diffusion
length L. The result of the measurements is

L=2.1cm. (482b)

In the actual experiment, the detector was kept
fixed at the surface of a paraffin block and the
absorber placed at various depths x. Since the
density of neutrons near the surface of a paraffin
block is a function of x, it was necessary to meas-
ure the number ¢’ of the neutrons absorbed by the
absorber itself by measuring its own activity.
The decrease in activity of the detector due to the
insertion of the absorber, divided by the activity
of the absorber, must then be proportional
to e~k

3. Lifetime of neutron in paraffin.—Using the
definition (478) of D and (482a) of L, we have

(483)

— 1
L2 = -glth'l)aT.

We define the “‘average number of collisions be-
fore absorption”’

N=v,1/ln. (484)

Then we have

L?=1l2N. (484a)

With L=2.1, Lin=0.30 (cf. (465)), we find

N=150. (485)

Considering the ratio 2.8 of the mean free paths
for faster neutrons and thermal neutrons (cf.
(464)), we find

No=1va7/ly=150/2.8=53. (485a)

A theoretical calculation of 7 on the lines of §17
gives, with the value |¢| =105 kv (cf. (467)) for
the energy of the LS state of the deuteron:

Ny=182 if the LS state of the deuteron

is stable, (486)

Ny=175 if the state is virtual.

The experimental value (485a) thus decides
uniquely in favor of a wirtual 'S state of the
deuteron. However, the agreement between the
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experimental and theoretical value of Ny is not
very good.

4. Point source of neutrons.—We assume now
g=0 everywhere except at r=0. We find

D d¥(rF)/dr*=rF/r, (487)
rF=ce "L, (487a)
and therefore
S riFridr
(rY)w=————=6L2=2NI*  (487b)
S Fridr

a result which has been used in (477).

5. Absorption of meutrons by a thick plane ab-
sorber.—If there is an absorber at x=0 which
absorbs all neutrons striking it, the neutron
density will, in first approximation, be zero at
x=0. If neutrons are produced at a rate ¢ per
cm? per sec., the neutron density at a distance +x
from the absorber is (cf. (480), and (481) with
¢’ chosen so as to make F(0)=0)

F=gr(1—e=/¥), (488)

The neutron current is, according to the defini-
tion of the diffusion coefficient

S=—Dgrad F. (488a)

Therefore the current of neutrons falling on the
absorber from the right-hand side

S=D(dF/dx)o=qD7/L=qL. (489)

All the formulae given are valid only inside the
paraffin. Near the surface of the paraffin, the
density of neutrons of more than Maxwellian
energy will be smaller than inside, and will de-
crease towards the surface. Therefore the rate of
production of Maxwell neutrons ¢ will vary
fairly rapidly and in a complicated way with the
coordinates so that the solutions given are no
longer valid. All quantitative measurements of
the absolute activity of detectors should therefore
be made inside the paraffin rather than at its
surface. The effect of an absorber for thermal
neutrons, usually Cd, in the interior of the paraf-
fin differs from that of an external surface in that
the Cd does not disturb the distribution of the
neutrons of more than thermal energy, and leaves
therefore the rate of production of thermal neu-
trons constant all over space although their actual
density will not be constant.
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F. Angular distribution of the neutrons emerging
from paraffin. Activity of detector in interior
of paraffin and near absorber. Albedo (F17)

One of the most important practical questions
about the distribution of thermal neutrons in
paraffin is the problem of the activity produced
in various conditions in a detector. The two most
important cases are:

(1) A thin detector is placed in the interior of
the paraffin, without any absorber near it.

(2) The detector is on one side covered by an
absorber for thermal neutrons (Cd).

Case 1.—If F is the density of neutrons at
some point in the interior of the paraffin, the
number of neutrons crossing unit area of the
detector at an angle ¢ with respect to its normal,
is per unit time (from both sides together)

Fv, cos ¢ sin dd¥. (490)

The number absorbed per unit time in a thin
detector of area s, thickness 8 g/cm? and absorp-
tion coefficient K cm?/g is accordingly

/2
A =sf Fu, cos ¢ sin 9d9Kd/cos ¢
0

= Fy,Kw, (490a)

where w=s6 is the weight of the detector. Thus
we can define the density of neutrons by the
activity produced in a detector

F=A4/v.Kw. (491)

Case 2.—The activity produced in a detector
placed on the front side of an absorber will be
closely connected to the neutron current emerg-
ing from the paraffin near the absorber (cf. (489)).
The connection will, however, involve the angu-
lar distribution of the neutrons emerging, which,
near an absorber, will not be uniform as in the
interior. Let us assume that the number of neu-
trons striking unit area of the absorber (and de-
tector) in the direction ¢ per second is given by an
expression of the form

f(®) sin ¥d¥ = (a cos 9+b cos? ¥) sin 9d¥,
0<d<7/2 (492)
f(®)=0, r/2<9 <.

We shall show below that the distribution actu-
ally has this form. If it does, the current is ob-
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viously given by
/2
S=f f(®) sin d9dd=3%a+3b (492a)
0
- and the activity by
A =stf(z9)(6/cos ¢) sin 9dd = Kw(a+3b)
*"(492b)
so that
A =SKw(a+13b)/(3a+3). (493)

We may also define the “effective density’’ from
the activity by means of (491)

Fott(0) = (S/va) (a+13b)/ (3a+ %)

According to (493a), the neutron density is
not exactly zero at the absorber, as we have as-
sumed in (488). On the other hand, it will still
be true (cf. (488)) that F is approximately linear
in the distance x from the absorber. We may thus
write

(493a)

F(x)=a+px (494)

and have, according to (488a) (493a) (478)
B=S/D=3S/lv,, (494a)
a=(S/v.)(a+3b)/(3a+3b).  (494b)

We may now use (494) in order to calculate
the angular distribution of the emerging neu-
trons. A neutron which has a collision at the
depth x and moves in the direction &, has the
probability exp (—x/l cos¥#) of emerging from
the parafin without further collision. The num-
ber of neutron collisions per sec. at a depth be-
tween x and x+dx is dxF(x)v,/l, by definition of
the mean free path l. Assuming isotropic colli-
sion, the fraction i sin #d¢ of the neutrons col-
liding will have the direction ¢ after collision.
Thus the total number of neutrons emerging in
the direction ¢ will be

f(#) sin ¥dd =1 sin 0d0fdxF(x)(v,,/l)e—‘” cos 3,
(495)

Inserting (494) and integrating over x, we obtain
f(®) =3v4( cos 9+l cos? &). (495a)

This proves the distribution assumed in (492),
b=1%Bly,. (495b)

with a=1%av,,
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Inserting this into (494b), we find

a=(S5/vs)(a+36l)/(Ga+3B).  (495¢)
Comparison with (494a) gives
a/Bl=3(a+3Bl)/(Ga+3Bl)  (495d)
and therefore
Bl=1/3a. (496)

Inserting this into (492) (495b), we find for the
angular distribution of the neutrons

f(®¥) ~cos 9+44/3 cos? §. (497)

This means that relatively more neutrons are
emitted in the forward direction than would be
expected according to the simple cosine law
which is valid in the interior of the paraffin (cf.
(490)). This agrees with observations of Fink
(F20). The law (497) may be expected to hold
not only for thermal neutrons emerging from
paraffin near an absorber, but generally for all
neutrons leaving a paraffin block at a surface
(provided only the mean free path of the neu-
trons is small compared to the dimensions of the
paraffin block).
The density distribution (494) becomes with
(496)
F=B(x+1/4/3).

This means that the straight line representing
the density as a function of the distance x from
the absorber, would cut the x-axis at

xo=—1/4/3. (498a)
Amaldi and Fermi have observed the density
distribution (A11, Fig. 8); it is sufficiently nearly

linear and may be extrapolated to a cut with the
abscissa at

(498)

o= —0.18 cm. (498b)

This would mean [=0.31 cm, in very good agree-
ment with the direct determination of the mean
free path /=0.30 cm (cf. (465)).

As has already been mentioned, these con-
siderations are also valid for neutrons of higher
than thermal energy at the surface of paraffin.
In calculating the effective mean free path, it
must be considered that the directions of motion
before and after a collision are correlated. By an
argument similar to that in Section D, it may be
shown that

1=3l/(143w), (499)
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where /; is the mean free path of the neutrons if
only collisions with hydrogen are counted, and «
is one-half the ratio of the cross sections of carbon
and hydrogen, i.e., about 0.14 (cf. Table XXVII).
Thus we should expect for neutrons above
thermal energy in paraffin

—%=4/3-09/1.42=1.1cm.  (499a)

The activity of the detector becomes, if we in-
sert (496) (495b) into (493),

A.=+/3SKw (500a)
and, with (489) (484a),
A,=+/3¢LKw=gluN*Kw. (500)

This may be compared with an activity in the
interior of the paraffin of (cf. (490a), (480),
(484))

Ai=qrvKw=glinNKw (501)
so that

Ai/A.=N} (502)

The activity of a thin detector in the interior of
the paraffin should thus (cf. (485)) be about 12
times greater than near an absorber. Direct ex-
periments by Amaldi and Fermi gave a ratio of
about 11, again in excellent agreement with the
value deduced from the ratio of diffusion path to
mean free path.

The ratio (502) can be interpreted using the
concept of the “albedo.” A4, is the activity ob-
served at the surface of a paraffin block. If we
have paraffin on both sides of a detector, and if
the two blocks of paraffin did not influence each
other, the activity would be 24,. In reality, each
paraffin block reflects the neutrons coming from
the other. If 8 is the reflection coefficient (albedo),
then the number of neutrons once reflected will be
24,8, that of the neutrons twice reflected 24,3?
etc., and the total activity

Ai=24./(1-8) (502a)
so that the albedo has the value?s
B=1—2N"%1=0.83. (503)

32 Added in proof: Halpern, Lueneburgand Clark (H11a)
have given a vigorous solution of the albedo problem. They

find

B=1-231N"% (503a)
if the incident neutrons are distributed according to the
cos ¢ law, and

B=1--2.48N-} (503b)

for a cos? ¢ distribution.
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§60. NeEuTRON RESONANCE ENERGIEs (G17,
G18, G18a, F33, Al11, H8, H9, H10)

The most satisfactory method for determining
neutron energies is a mechanical device which
measures directly the neutron velocity. Such a
mechanical velocity selector was constructed by
Dunning, Pegram, Fink, Mitchell and Segre
(D25, D26, F19, F20) and used in order to deter-
mine the velocity distribution of the neutrons
absorbed in Cd. The velocity selector consisted of
four Duraluminum disks each of which bore 50
sectors of sheet cadmium, the spacing between
the sectors being about the same (3.5°) as the
angle subtended by each sector (3.7°). Two
disks were mounted on a rapidly rotating shaft
(up to about 5000 r.p.m.), a distance d=>54 cm
apart; the other two were fixed within 5 mm of
the rotating disks. Each pair of disks, one rotat-
ing and the adjacent fixed one, represents a shut-
ter for the neutrons absorbable in Cd, the shutter
being opened and closed 507/60 times per second
where 7 is the number of revolutions per minute.
The two pairs of disks act as a velocity selector:
Neutrons of velocity v are strongly absorbed by
the shutters if '

v=(1007,/60)d. (504)

Thus, with d=54 cm, a speed of about #=2500
r.p.m. is necessary to absorb the ‘“Maxwell neu-
trons” of v=(2kT/m)*=2.2-10° cm/sec.

The experiments gave in fact a decrease in the
number of transmitted neutrons, as detected by
the disintegrations produced in boron with the
help of an ionization chamber. The decrease was
largest when the velocity selector rotated at a
speed of about 2500 r.p.m. As a function of the
speed of rotation, it followed closely the curve
calculated from the assumption of Maxwellian
distribution of the neutrons absorbed in cadmium
(Fig. 14). This shows that (1) Cd is indeed a
strong absorber for neutrons of thermal energies,
(2) that boron is a good detector for such neu-
trons, (3) that thermal neutrons are present in
large quantity in the interior of the paraffin and
(4) that their distribution is practically Maxwel-
lian, as we have concluded from our theoretical
investigation of the diffusion of neutrons in paraf-
fin (§59). A further confirmation of these points
is found in experiments which show a shift of the
maximum absorption to slower rotation upon
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FiG. 14. Velocity selector of neutrons. Distribution of
slow neutrons measured with the mechanical velocity
selector by Dunning, Pegram, Fink, Mitchell and Segre.
The solid curve represents the Maxwell distribution at room
temperature.

cooling of the paraffin used for slowing down the
neutrons.

The mechanical velocity selector, while suc-
cessful with thermal neutrons, does not seem ap-
plicable to the resonance groups of neutrons. As
we shall see in this section, the energies of the
neutrons causing resonance disintegration of
nuclei, range from about 1 to several hundred
volts, corresponding to velocities from 6 to 100
times thermal velocity. The rotational speed of
the velocity selector would have to be increased
in the same ratio, i.e., to between 15,000 and
250,000 r.p.m. which appears at present not to
be feasible.

Another rather direct method which might in
the future become usable is the diffraction of
neutrons by a suitable scatterer which would
serve as a measurement of the neutron wave-
length. Thus far, however, only qualitative indi-
cations of neutron diffraction have been ob-
tained (M23).

A. The boron absorption method

According to the foregoing, we are forced to
make use of less direct methods for determining
the neutron energy. The simplest of these meth-
ods is based on the assumption (§58) that the
absorption coefficient of slow neutrons iz boron
and lithium is snversely proportional to the neutron
velocity. This assumption is amply justified
theoretically by the small density and large width
to be expected for the energy levels of light nuclei,
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(§58B). In addition, it has been confirmed by
the following experiments :34

(1) Directly in the region of thermal energies
by Rasetti, Mitchell, Fink and Pegram (R4, RS)
using a mechanical arrangement which measures
directly the deviation from the 1/v law (cf. §58B,
end);

(2) Indirectly for higher energies by the fact
that the absorption coefficients of Li and B
change in the same way with energy (G17, H8);

(3) Approximately by the agreement between
the observed ratios of the resonance energies of
various elements derived by two different
methods, #z. the absorption in boron and the
spatial distribution of the resonance neutrons in
paraffin (A11, cf. §60B);

(4) Qualitatively by comparison with experi-
ments showing the order of the resonance levels
of various nuclei in the energy scale (H10, cf.
§60C).

Of the two light nuclei showing strong absorp-
tion of slow neutrons, boron is the more suitable
because its absorption coefficient (per g/cm?) is
about 10 times as high as that of Li. A high ab-
sorption coefficient is desirable in the first place in
order to keep the required thickness of the ab-
sorber small and thus the geometry manageable.
But even more important is the fact that scatter-
ing can be expected to be relatively smaller com-
pared to the capture probability if the total ab-
sorption coefficient is higher because the scatter-
ing cross section will be of the same order for all
light nuclei. Now the observed absorption is
equal to the absorption by capture plus the ab-
sorption by scattering. The capture cross section
decreases with increasing energy as E~* while the
scattering cross section remains constant. There-
fore the total absorption coefficient will cease to
depend sensitively on the energy when the cap-
ture cross section becomes equal to or smaller
than the scattering cross section. We estimate
the scattering cross section to be about 4-10-2¢
cm? (average of other light elements, cf. D23 and
Table XXVII). This must be corrected because
in the experiments neutrons moving in all direc-

3 A breakdown of the 1/v law for boron was announced
by Arsenjewa-Heil, Heil and Westcott (A16) who main-
tained that all the resonance levels found experimentally
lie actually inside the thermal region. This is due to a
faulty interpretation of their experimental results, cf.
footnote 37.
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tions inside a hemisphere are counted. Therefore
we assume the effective scattering cross section
to be half the total, i.e., 2-10-2¢ cm?. Then we
find that capture and scattering will become equal
at about 7 volts for Li (ceapt.=34-10"24 cm? at
E=FkT =~1/40 volt) and at about 2500 volts for
B(0capt. =600-102¢ cm? at E=EkT). Lithium
would therefore be useless for all resonance
groups which lie at neutron energies higher than
7 volts (cf. H9). Even for boron, the observed
absorption should be corrected for scattering
which introduces quite an appreciable correction
to the energy especially if the resonance energy
lies high. At the same time, since the scattering
cross section of boron can only be estimated
roughly, a fairly large uncertainty will remain in
the energy values given, even after the correction
for scattering has been applied.

The principle of the experiment is very simple
indeed: the absorption coefficient of boron must
be measured, once for thermal neutrons and once
for the resonance neutrons of the detector in
question. As we know (§58), any neutron detec-
tor is made radioactive by thermal neutrons as
well as by its particular ‘“resonance neutrons.”
To separate the two activities, a sheet of Cd is
placed between the neutron source and the
detector: Cd is known to absorb all the thermal
neutrons and to be practically transparent for
the neutrons of higher energy (‘‘resonance neu-
trons”) (cf. §61G). Thus the difference of the
activity in the detector with and without the Cd
absorber will give the activity produced in it by
thermal neutrons, while the activity with Cd
shield must be attributed to the resonance neu-
trons. Both the activities, resonance and thermal,
must be measured without the boron absorber
and with boron, preferably as a function of the
thickness of the latter. From these measurements,
the absorption coefficients for the two groups of
neutrons can be deduced. The energy of the
resonance group is then

Eres =Eth (Kth/Kres) 2 (505)

There is some question as to what to insert for
the thermal energy. This problem is, however,
well-defined if we remember that both the ab-
sorption in boron and the activity produced in the
detector are proportional to 1/v, ie., to E%
Denoting by K, the absorption coefficient in
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boron of neutrons of energy k7T, and introducing
x=(E/kT)} (505a)

we have for the activity transmitted through a
thickness  of boron:

1) =47, f e dre=ED (506)

The average absorption coefficient Ky is defined
by

I(l) =TI Kul, (506a)

The “effective thermal energy’’ to be inserted in
(505) is then

Euw=kT(Ko/K)% (506b)

For very small thicknesses of boron, we obtain
by a straightforward integration (B15)

Ewn=(r/4)kT. (507)

For larger thickness the integral must be evalu-
ated numerically; the result is given in Fig. 15.
Here the effective “thermal energy’ E., to be
inserted in (505) is plotted against the (natural)
logarithm of the transmission coefficient I/,
which follows directly from experiment. It is
seen that Eyy, rises only very slowly with increas-
ing thickness of the boron. For a transmission of
50 percent which is most convenient for experi-
ments, we have Ey, almost exactly equal k7T as
was already found by Goldsmith and Rasetti and
used in the evaluation of their experiments.?*
Another point which requires some attention,
is the oblique incidence of the neutrons on the
absorber. If the experiments are made at the sur-
face of the paraffin, the angular distribution of
the emerging neutrons is approximately given by
the law (497), f(#) ~ cos #4+4/3 cos? &, for both
thermal and resonance neutrons. The absorption
will thus not be exactly exponential, but will

follow the absorption law
I=1Iyc(Kl), (508)

where the function
1
o(x) = f du(l4+/3u)e==1+/(1+3+/3)  (508a)
0

has been calculated by Fermi and is given in Al1,

#a More extensive calculations on the transmission of
thermal neutrons by boron were made by Zahn (Z1a) and
Laporte (L1b).
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F1G. 15. Absorption of thermal neutrons in boron. The
detector is assumed to obey the 1/v law in the thermal
region. Abscissa: |log F| where F=1I/I,is the transmission
coefficient of the boron absorber. Ordinate: ‘‘Effective
thermal energy’’ as a fraction of 2T. In determining the
energy of resonance neutrons by the boron method, the
‘“effective energy’”’ obtained from this figure should be
inserted for the thermal energy.

Fig. 11 and in Fig. 16 of this report. From the
given transmission ratio /I, the value of x=KI
can be read from the curve and therefrom the
absorption coefficient K obtained. If the absorber
thickness for each detector is chosen so that the
transmission coefficient is the same for all
detectors, the absorption coefficient in boron for
the- various resonance groups will be inversely
proportional to the respective thickness of the
boron absorbers used, independently of the
angular distribution of the neutrons.

The most extensive measurements have been
made by Goldsmith and Rasetti (G17). The
results are listed in Table XXII. The values
given by Goldsmith and Rasetti have been cor-
rected for scattering, a cross section of 2-10%
cm? being assumed (cf. above), corresponding to
an absorption coefficient of 0.11 cm?/g due to
scattering. This makes all the energy values
slightly higher than those given by Goldsmith
and Rasetti.

The top row in Table XXII refers to thermal
neutrons,® measured with a Rh detector as the
difference between the activities without and
with Cd. The other figures refer to resonance
groups. In general, one figure is given for each
activity produced. This will represent the
energy of the strongest resonance group, or some

3 According to Fig. 15, the “effective energy’’ of thermal

neutrons corresponding to a boron transmission of 35
percent, is 1.092T =0.028 volt.
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TaBLE XXII. Neutron resonance energies
( from boron method).
THICK- K
NESS Cor-
OF B | TRANS-| ABS. |RECTED
As- mis- | COEFF.| FOR
DETEC- SORBER| SION ScaT- E
TOR FILTER | PERIOD | g/cm? %% (cm?/g) | TERING | (volt)
Rha 44 0.02 35.2 28 27.9 0.028
25 Mn | Cd 150’ 0.58 43 0.73 0.62 0
29 Cu Cd 5’ 0.58 ~50 0.57 0.46 | 100
33 As Cd 26 hr. | 0.58 54 0.49 0.38 | 150
35 Br Cd 18’ 0.58 50 0.57 0.46 | 100
45 Rh Cd 44" 0.081 50 4.15 4.05 1.3
45 Rh | Cd 3.9/ 0.054 |~57 4.6 4.5 1.1
47 Ag Cd 22" 0.108 63 2.8 2.7 3.0
47 Ag Cd +Ag| 22”70 0.108 60 2.1 2.0 5.5
47 Ag Cd 2.3 0.58 51.5 0.54 0.43 | 120
49 In Cd 137 0.108 |~S0 3 2.9 2.6
49 In Cd 54/ 0.081 53 3.8 3.7 1.6
531 Cd 25 0.58 53 0.50 0.39 | 140
75 Re Cd 20 hr. | 0.23 64 0.83 0.72 40
77 Ir Cd 19 hr. | 0.108 46 3.5 3.4 1.9
79 Au Cd 2.7d 0.108 53 2.8 2.7 3.0

; Ige;r(l)aulpr‘\gutrons.
average energy, if there are several resonance
groups of about equal intensity.

Only in the case of the short period of Ag (22"),
a separation into two resonance groups may
easily be carried out, because part of the Ag
‘“‘resonance neutrons’’ are very strongly absorbed
in Ag (A group), another part (B group) much
less strongly. This behavior suggests the presence
of two resonance levels, a narrow one (A) and a
broader one (B). The neutrons of the A group
have an average absorption coefficient of 20
cm?/g in Ag; therefore a layer of 0.25 g/cm? Ag
will absorb them almost completely while
practically not affecting group B (K~0.3 cm?/g
in Ag). The activity due to neutrons passing
through such a layer of Ag may thus be ascribed
to the B group, the rest of the activity to A.

It is seen from Table XXII that there are
several resonance levels near 1 volt, viz. Rh 44",
Rh 3.9/, In 54/, Ir 19 hr. These resonance levels
can be shown to overlap (§61E) (“D group” of
Amaldi and Fermi). The same is true for the
“A” level of Ag 22"" and the level of Au (A group,
energy near 3 volts). With the exception of
In 13" and of the “B” level of Ag 22" (5 volts),
all the remaining levels lie between 40 and 160
volts. The determination of their position is
certainly not very accurate, partly because of
the uncertainty of the scattering correction. It is
plausible to assume (cf. G17) that these higher
values actually represent averages over several
levels®s® while the lower values give the true

35 This view is confirmed by experiments of Ruben
and Libby (R17a) who show that the boron absorption
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positions of the resonance levels. If the first
resonance level lies very low compared with the
average spacing between levels, its effect will in
general be much larger than that of higher levels,
because the activity is cet. par. proportional to
E. 7% (cf. (550a)). If the first resonance energy is
of the order of the spacing of the levels, the
second, third ... levels will give contributions
of the same order as the first.

From these considerations it seems that the
average spacing between the energy levels of
medium heavy and heavy nuclei (Z>40) is
probably of the order of 10 to 30 volts, near zero
kinetic energy of the neutron (cf. §53).

For the lighter nuclei (Mn to Br), the energy
values observed are consistently high. It seems
reasonable to assume that they represent the
true position of the lowest level in spite of
being ‘“high,” because lighter nuclei are ex-
pected to have a larger spacing between the
levels (§53) and because no ‘low’” values are
observed for this lighter group. This spacing
would then appear to be of the order of a few
hundred volts, for Z near 30.

Other observations with the boron method
have been made by Amaldi and Fermi (All)
and by v. Halban and Preiswerk (H8, H9).
Amaldi and Fermi find values of the absorption
coefficient in close agreement with Goldsmith
and Rasetti, except for the thermal neutrons
(38 cm?/g instead of 28 cm?/g). The value of
Goldsmith and Rasetti was taken for the com-
putation of Table XXII; it agrees with a value
found by the same authors using an approxi-
mately parallel beam of neutrons, viz. 30 cm?/g,
whereas Livingston and Hoffman (L33) find a
value (36 cm?/g) near that of Amaldi and
Fermi. The values found for the absorption
coefficient of ‘‘resonance neutrons’ in B are

Grour ‘ Rh 44’ | Ag““A” | Ag*“B" I Br
Goldsmith and Rasetti| 4.15 2.8 2.1 | 0.5]0.57
Amaldi and Fermi 4.7 3 2.3 1.0 | —
v. Halban and Preis-| 6.3 3.4 — 10.710.35

werk

The agreement is in general satisfactory. It is
likely that for Br the determination of wv.
coefficient of the neutrons producing activity in iodine

decreases by about a factor 7 if the neutrons are first
filtered by an iodine absorber.
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Halban and Preiswerk is better, since from other
evidence (cf. Section C) it seems that the Br
level lies higher than the I level.

B. Method of the distribution of resonance neu-
trons in water

Amaldi and Fermi have also used an alter-
native method, based on the fact (§59D) that
the mean square distance of the neutrons from
the source increases with decreasing energy
(cf. (476)). The activity of various detectors
(Rh, Ag, I), screened by Cd against thermal
neutrons, was measured at various points in a
large tank of water which contained the neutron
source at its center. The distributions are shown
in A11, Fig. 7. They show a small but definite
shift towards larger distances from the source in
the order I, Ag (short period, A+B groups),
Rh (short period, marked “D” in figure). The
values of (r?), measured are 262.2, 270.6 and
276.6 cm? water, respectively, for I, Ag and Rh.
From (476) we have then for the ratio of the
energies

I:Ag:Rh=20:3.5:1. (509)

The agreement with the result of the boron
method (160 : 3.5 : 1) is rather satisfactory con-
sidering the extreme sensitivity of the energy
ratio to small errors in (7%)s. The corrections
suggested in §59D improve the agreement con-
siderably as compared to the values given by
Amaldi and Fermi (4.5 : 1.9 : 1).

C. Transformation of one resonance group into
another

v. Halban and Preiswerk have pointed out
that a neutron resonance group of high energy
will be transformed into a group of lower energy
by passing through paraffin, and have used this
fact for establishing the order of various neutron
resonance levels in the energy scale. The experi-
mental arrangement is as follows: Neutrons
emerging from a large paraffin block pass
through seven thin paraffin plates of 3 mm
thickness each. At the end of this series of plates,
a neutron detector is placed, screened by
cadmium. An absorber 4 can be interposed
between any two of the paraffin plates, or at
the end of the series right in front of the de-
tector. The activity in the detector is measured
as a function of the position of the absorber.
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Immediately behind the absorber, the charac-
teristic resonance group of the absorber will be
missing in the neutron spectrum while otherwise
the spectrum will be unaffected. However, when
the neutrons pass through paraffin after trav-
ersing the absorber, the “hole’’ in the neutron
distribution will shift to lower energies. There-
fore, if the detector is made of the same material
as the absorber, its activity will be strongly
reduced if the absorber is placed right close to it,
and will be much less reduced if paraffin is
interposed between absorber and detector (v.
Halban and Preiswerk, H8, H9). From such
measurements, the mean free path of the
resonance neutrons in paraffin may be deduced
(A11, cf. §59.C7).

If the detector has a resonance level higher
than that of the absorber, the result will be
about the same except that the influence of the
absorber is much smaller to start with, because
it is only due to the overlapping of the neutron
levels of absorber and detector. E.g., v. Halban
and Preiswerk found that a certain Ag absorber
reduced the activity of their I detector by only
5 percent but that of their Ag detector by 80
percent when there was no paraffin between
absorber and detector. -

However, when the resonance energy of the
detector is lower than that of the absorber, the
“hole’” made by the absorber in the neutron
distribution, will gradually cover the resonance
region of the detector when the neutrons pass
through paraffin. Therefore, in this case, the re-
duction of the activity of the detector by the
absorber will increase with increasing thickness
of the paraffin interposed between absorber and
detector up to a certain maximum, and start
decreasing only then. The position of the maxi-
mum will be an approximate measure of the
ratio of the resonance energies (cf. method B)
while its height will be connected to the width
of the resonance level of the absorber.

With the method described, v. Halban and
Preiswerk were able to determine the relative
positions of the resonance levels of various
elements. They found that the resonance energies
could be arranged as follows:

Br (18") >1>Ag (22) > Rh (44") ~In~Ir. (510)

This order agrees in general with the order found



§ 60

by Amaldi and Fermi from the diffusion method
B, and with that determined by the boron
absorption method A.

The value of the method of transformation of
neutron groups into each other lies firstly in the
qualitative confirmation of the assumptions made
about the boron absorption. Secondly, it is
superior for establishing the order of high
resonance energies which cannot be measured
very well by the boron method (cf. above,
scattering correction!). E.g., it shows that the Br
level is higher than that of I while the evidence
of the boron method is contradictory on this
point. Moreover, it will indicate, at least
qualitatively, when a nucleus has several reso-
nance levels: If one level of nucleus 4 lies higher,
another lower than the resonance level of a
given other substance B, then we should expect
an increase in the reduction of activity upon
interposing paraffin both when A4 is used as ab-
sorber and B as detector, and when the arrange-
ment is reversed. Applications of the method to
the determination of the width of levels will be
discussed in the following section.

D. Resonance levels of nuclei which are not
activated

The determination of the position of resonance
levels is much more difficult if the nucleus in
question is not made radioactive by neutron
capture. We can, in this case, only measure the
absorption of the activity of other detectors in
the substance in question. The information which
can be obtained about nonactivated neutron
absorbers is about the following:

(1) The absorption of thermal neutrons in the
substance can be measured. The number of
thermal neutrons can be measured either by the
activity produced in any detector, or by the dis-
integration of Li or B. In each case, the differ-
ence between the number of disintegrations
observed with and without a screen of Cd,
gives the number of thermal neutrons. By this
method, the absorption coefficients of almost all
elements for thermal neutrons has been measured
by Dunning, Pegram, Fink and Mitchell (D23)
and for some additional elements (rare earths) by
Hevesy and Levi (H31).

(2) The average absorption coefficient for
faster neutrons can be measured, using a B or Li
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chamber shielded by Cd. The ratio of this
absorption coefficient to that for thermal
neutrons Ry is a characteristic of the substance .S.
It may be compared to the corresponding ratio
R for boron. If R is approximately equal to Rp,
the 1/v-law holds approximately for the sub-
stance. Then the substance S will in general not
possess any resonance levels at low energies.
If Rs> Rp, we shall expect a resonance level of S
at low energy but above thermal energy. The
result Rg<Rp indicates a resonance level in the
thermal energy region itself or at small negative
energy.

(3) The absorption coefficient for neutrons of
certain known energies can be measured, using a
detector whose resonance level is known. E.g.,
we may measure the absorption of one-volt
neutrons by using Rh (44"'), that of three-volt
neutrons by using Ag (22”) as a detector, the
detector being in each case screened by Cd.
The interpretation is similar to, but more definite
than in (2). For a number of absorbers, notably
Cd, Hg, Sm and Gd, it has been found that the
absorption coefficient for D neutrons (Rh reso-
nance group) is almost negligibly small com-
pared to that of the thermal neutrons. The ratio
is about 1 :100 in Cd, Sm and Gd (G17), as
compared to 1 : 7 in boron. This shows that the
absorbers mentioned must kave very low resonance
levels. Their exact position depends on the width
assumed and can therefore be determined only
in connection with other experiments measuring
the width of the levels (cf. §61G).

It may happen that a given absorber shows
very strong absorption for the neutrons of a
known group. In this case, we would conclude
that the absorbing substance has a resonance
level coinciding with this group. No such case is
known among the nonactivated absorbers, and
it is indeed rather unlikely to find the level of an
absorber in this way because the energy regions
for which we possess specific detectors are very
narrow and widely separated.

(4) The approximate position of the resonance
levels of nonactivated absorbers may be ob-
tained by the method described in C. A number
of detectors must be used whose resonance
energies form an increasing series. The absorber
to be investigated is placed between the paraffin
plates and the reduction in activity measured as
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a function of the thickness of paraffin for the
various detectors. Then it will be found that for
the low-resonance detectors the intensity re-
duction will increase when a small amount of
paraffin is interposed while it will decrease for
the high-resonance detectors. The resonance
energy of the absorber will lie between that of
the last detector which shows the increase and
the first one which does not. No experiments of
this kind have yet been carried out.

(5) If the absorption of the substance is
detectable by the boron or lithium detector, the
energy of the resonance level can be estimated by
interposing a boron absorber, in addition to the
given substance, between neutron source and
boron detector. The reduction of the neutron
intensity by the substance can then be measured
as a function of the thickness of the additional
boron absorber, which determines the boron
absorption coefficient of the resonance neutrons
of the substance.

§61. ToraL (y-RaY) WIDTH OoF NEUTRON RESO-
NANCE LeEvELs (B15, All, G18a,
M2a, R4, L32)

According to the general formula (430), the
capture cross section for neutrons of a given
energy E may be written

on(E)=0o/(1+(E—E,/3T)")  (511)

provided the energy of the neutron is not too
different from the resonance energy E,. g is the
cross section at resonance (cf. 430b), T' the total
“natural width” of the level.

A. Doppler effect

In comparing this formula with experiment,
it is in some cases necessary to take account of
the Doppler effect. The velocities of the capturing
nuclei are not negligible compared to the neutron
velocities, and the Doppler width introduced in
this way is sometimes comparable to, sometimes
even larger than, the natural width.

If u, is the velocity of the capturing nucleus in the
direction of motion of the neutron, then v—u, will be the
relative velocity of neutron and nucleus. The relative
kinetic energy is then, neglecting terms of the order #2/v,

E'=im(v—u,)2=E— (2mE)}u,, (512)

where E is the absolute kinetic energy and m the mass of
the neutron. Now the probability of finding a nucleus of
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velocity u. is given by the Maxwell distribution function
w(uz)dus = (M/2xkT)leMu? 2T gy, (512a)

where M is the mass of the capturing nucleus. Inserting
(512), we find for the probability of a given E’ (for fixed E):
w(E")dE' =7 Y~ E' =B INGR1 /5 (513)

where
A=2(mEkT/ M)} (513a)

is the ‘Doppler width.”% E, has been written instead of E
because the neutron energy is supposed to be near the
resonance energy E,.

The energy to be inserted in (511) is, of course, the
relative energy E’. The effective cross section for neutrons
of energy E is then

ol B) = Son(EVw(ENAE =ooi(5, %) (514)
with
x=(E—E,)/3T, (514a)
£=T/A, (514b)
(e e 18 z—y)?
ve =35 (515)
y=(E'-E,)/3iI. (515a)

¥(£, x) is in general a complicated function of x. Simple
expressions are obtained
(a) for £ very large (purely natural width)
V(& x)=1/(1+x?)

and (514) (515) reduce to (511);
(b) for & very small (pure Doppler width) and x<<¢2

(515b)

V(g %) = frige i (515¢)
(c) for very large x>>£2and any ¢
Y(§ x)=1/(14x%); (515d)
(d) for x=0 (exact resonance) and any §
W& 0) = trheet®[1-2(38)], (516)
where @ is the Gaussian error function
B(38) =2r" Si¥ e dr. (516a)

In the special case of large ¢ (natural width), (516) reduces
to unity, meaning (cf. (514)) that in this case the cross
section at exact resonance is equal to go. In the case of
small ¢ (Doppler width) we have ¢(¢, 0) = ix*, meaning
that the cross section at resonance is reduced to

op(E;) = tnda,I'/A. (516b)

Experimentally, the quantities measured most
easily are the total activation, and the absorption
of this total activity by thin absorbers of the
same substance (‘‘absorption coefficient for self-
indication’’). The total activation is propor-
tional to

C= Sn(E)o(%, E)dE, (517)

if n(E)dE is the number of neutrons in the energy

3 A is here defined as one-half of the quantity denoted by
the same letter in the paper of Bethe and Placzek (B15).
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interval dE. Since ¢ varies rapidly, » slowly with
the energy, we have (cf. 514, 514a)

C=n(E))oosT Sdxy(, x).

As can easily be seen from the definition (515) of
¥, the integral has the value 7 independent of &
so that we obtain

C=1xTn(E,)oo.

(517a)

(518)

A thin absorber will absorb a fraction co(y, E)
of the activity produced by the neutrons of
energy E, where ¢ is a constant depending on the
thickness of the absorber in g/cm?, and 5=T/A’
where A’ is the Doppler width for the absorber.
This may be different from the Doppler width A
for the detector because the temperatures may be
different. The effective absorption ‘‘cross section
for self-indication” is then

S n(E)s(& E)o(n, E)AE

) = e EE

(519)

The integral in the numerator may be evaluated
(B15); then (519) becomes

0‘3(5, 77) = %‘70‘1‘({) 0)
§=2En(E+n?)t

In the usual case of equal temperature of ab-
sorber and emitter this becomes

¢=EVa. (520b)

According to the definition (514b) (513a) of £,
this means that ¢, is one-half of the resonance
cross section at one-half of the temperature of
absorber and detector. If the temperatures of
absorber and detector are not equal, one-half
their arithmetical mean should be inserted,
according to (520a).

From the total activity and the effective cross
section for self-indication o, we can define the
“‘effective width” of the neutron level

(520)

with (520a)

Tety=C/n(E,)os, (521)

so that (cf. 518, 520)
Terr=nT/Y(£V2, 0). (521a)
For natural width, ¢(§VZ, 0) =1 (cf. (516)) so that
Tee=7T, (I'>4), (522)
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while for pure Doppler width ¢(£v2, 0) = (7 /2)%¢
and (cf. (514b))

Ter=(27)34, (I'<KA). (523)

For intermediate values of £=I'/A, a power
series and a graph for T'es have been given by
Bethe and Placzek (B15, Fig. 2 and §5).

If the Doppler width is large compared to or of
the same order as the natural width, the cross
section for self-indication, and therefore also the
effective width, will change with temperature. In
the extreme case £<1 (pure Doppler width), o,
will be inversely proportional to the Doppler
width, i.e., proportional to 7% This behavior is
exactly the same as would be expected for
thermal neutrons assuming the validity of the
1/ law. A temperature effect of this type has
actually been observed for the resonance activity
of Ag by Arsenjewa-Heil, Heil and Westcott
(A16).% If Doppler width and natural width
are comparable, the temperature dependence of
the cross section ¢, may serve for a determina-
tion of the natural width I' from the known
Doppler width (513a).%

B. Measurements of the effective width from
activity and absorption coefficient

The effective width may be deduced (cf. (521))
from the total activity produced in a given de-
tector by the resonance neutrons and the cross-
section for self-indication if the number of neu-
trons per unit energy #(E,) is known. Let K be
the effective absorption coefficient of the detector
in cm?/g for its resonance neutrons, so that

K.=0,/M, (524)

where M is the mass of one atom of the detector.
Then the total activity of a thin detector of
weight w (in grams) is3?

B,.=n(E,)v,I‘enK,w, (5243.)
where n(E,)dE is the number of neutrons per
cm?® in the energy interval dE about E,, and
therefore n(E,)v,dE the number of neutrons in

37 The effect was incorrectly interpreted by these authors
as evidence that the Ag resonance neutrons had actually
thermal energies.

3 This experiment was first suggested and preliminary
li%?gts reported by Frisch (Copenhagen Conference, June

o® 'I:he relation between B, and C (cf. (517), (518), 521))
is
B, = (wv,/M)C. (524b)
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this energy interval striking unit area of the
detector per sec. The “‘activity” is here defined as
the number of neutrons captured per sec., or the
number of B-rays emitted per sec. by the radio-
active substance produced, immediately after an
infinite time of irradiation. The detector must be
so thin that it absorbs neither the resonance
neutrons nor the f-electrons to any appreciable
extent; otherwise corrections have to be applied
(cf. A11).

The number of neutrons #(E,) can be ex-
pressed by the number emitted from the source
with the help of (440):

n(E)v,=qlo/E,, (525)

where ¢ is the number coming from the source
per sec. and cm?® and /o, the mean free path of
neutrons above thermal energy. g is connected to
the total number Q coming from the source per
sec. by

Q= JSqd?, (525a)

the integral being extended over the whole vol-
ume of the paraffin. We should thus measure the
activity of our detector as a function of its
position, and integrate over the whole paraffin;
then we find

f B,d9=QloK wTut/Ey. (526)

Q may now be obtained from measurements of
the activity produced by thermal neutrons (in any
detector). This activity is conveniently measured
by determining the activity of the detector when
it is covered by Cd from one side, and subtracting
therefrom the activity obtained with Cd on both
sides. With a Cd cover on one side, the activity
of the detector due to thermal neutrons is,
according to (500),

Bth = ‘\/3q,LKthw, (527)

where L is the diffusion length (§59E), K, the
absorption coefficient of the detector for thermal
neutrons and ¢’ the number of thermal neutrons
produced per cm? and sec. Owing to the different
distribution of thermal and resonance neutrons
in the paraffin (cf. §59D, Fig. 13), ¢’ will in
general be different from g. However, by integra-
tion we obtain

f Bud=QLv/3Kuw,  (527a)
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where Q has the same meaning as in (526).
Combining (526) and (527a), we find*

Ter Ko LA/3

ff= Y th ’ (528)
E, K, I

Y= /B,dQ/ S BndQ

where (528a)

is the ratio of the activities. According to the
measurements of Amaldi and Fermi, L=2.1 cm
(cf. (482b)), 1,=0.9 cm (cf. (465c)) so that

V/3L/ly=4.0,
Tett/E,=4.0YKuw/K,.

(528b)
(528¢)

The actual measurements are complicated by
the fact that the activities must be measured all
over the paraffin. This can be avoided if only
relative values of the “fractional width” T'et;/E,
are required, i.e., e.g., when Tt/ E, has already
been determined for one substance. The spatial
distribution of various resonance groups is
sensibly the same (cf. A11, Fig. 7). Therefore if
B, and B, measure the activities of two detectors
at any one place (e.g., near the maximum neutron
density), we have according to (524a) (525)

Feff I‘en B, B,

() (2)-62) (), o

E. 7/, E,/, Kw/, K,w/,

A further complication is the finite absorption
of neutrons and electrons in the actual target.
This correction is somewhat ambiguous since the
absorption coefficient for resonance neutrons de-
creases rather rapidly with increasing thickness
of the absorber (cf. below, Section C) and this
decrease depends on the ratio of natural to
Doppler width (cf. above, Section A). Amaldi and
Fermi corrected their results assuming a constant
absorption coefficient which means an over-
correction, i.e., an overestimate of the true
resonance activity without absorption and there-
fore an overestimate of the width T'.¢¢ (cf. (528)).

9]t is, of course, not necessary that the activity of
thermal and resonance neutrons is determined in the same
detector. This fact was made use of in the determination
of the width of the iodine level by Amaldi and Fermi. The
activity produced by thermal neutrons in iodine is very
small, therefore a Rh detector was used to determine the
number of thermal neutrons. The numbers given for
thermal neutrons in the I column of Table XXIII refer
therefore to Rh, not to I.



§61 NUCLEAR PHYSICS 143
TABLE XXIII. Widths of neutron resonance levels. TABLE XXIV. Test of the one-level formula.
SUBSTANCE Rh Ag I SUBSTANCE Rh Ag I
J/ Breud® Y 1.16 0.72 ~ 3
= F By do 1.16 0.72 0.045 ¢ from (535) 75 13 3.3
K, (cm?/g) 19408 20 0.38 £ from Table XXIII 2 K1 40
Kin (cm?/g) 0.7 0.25 0.7
Lot/ Ey 0.17 0.036 0.33
f;c'f(fci'vﬁge XXID (1)32 ?):(1)1 1‘;8 nuclear resonance levels which is available at
(2m)3A(cf. (513a)) 0.09 0.13 0.9 present. According to the considerations in §58,
T 0.07 <0.03 15(?)

402 Thig large value for the resonance absorption coefficient of Rh
was given recently by Manley, Goldsmith and Schwinger (M2a) on
the basis of their own data and those of v. Halban and Preiswerk.
It is almost 10 times the value originally given by Amaldi and Fermi
(2.0 cm?/g) which causes large changes of all results about the Rh
level (cf. B15).

We have recalculated the correction using the
absorption curve for resonance neutrons given
in Fig. 16, curve w. We find that the A group
activity in the Ag detector of-Amaldi and Fermi
(thickness 0.057 g/cm?) is reduced by a factor
of 0.45 by absorption (Amaldi and Fermi give
0.35). For Rh, we used the most recent value of
the resonance absorption coefficient (M2a), viz.
19 cm?/g (A and F give 2.0) and find 0.079 for
the absorption factor (A and F give 0.193).

The results of Amaldi and Fermi are given in
Table XXIII. For Rh, the effective width ob-
tained is 2.5 times larger than (27)! times the
Doppler width (cf. (523)), therefore the natural
width is certainly much larger than the Doppler
width and may be calculated from (522). For Ag,
T.s; as obtained from the activity is exactly equal
to (27)} times the calculated Doppler width.
‘"Therefore the natural width must be very small
compared to the Doppler width and cannot be
calculated from Tt (Possibly measurements at
lower temperatures would allow a determination
of the natural width.) For iodine, the situation is
the same as for Rh. However, the natural width
of 15 volts obtained seems implausibly high (§87).
The reason for this is, we believe, that the ac-
tivity in iodine is due to a large number of
resonance levels of various energies, the observed
Tets being the sum of the widths of all these levels.
This assumption is plausible because the ‘“‘effec-
tive’ resonance energy of I lies very high (cf. the
remarks after Table XXII).4>

Thus the measurement in Rh seems to be the
only reliable figure for the natural width of

40b [t is also confirmed by measurements of Ruben and
Libby (R17a) (cf. reference 35a).

this width must be interpreted as the ‘‘y-ray
width,” i.e., as giving the probability of v-ray
emission from the excited state of the com-
pound nucleus. The lifetime of this state is
A/T=1.0-10"gsec.

C. Test of the one-level formula

If we assume that the cross section is, from
zero neutron energy up to the first resonance
level E,, determined by the first level alone, we
have (cf. (430))

EN 1
¢T=ao(—) _—_— (530)
E/] 1+(E,—E/3T')?
We may apply this formula to obtain the ratio of
the activities due to thermal and resonance

neutrons. For resonance neutrons we have, ac-
cording to (518), (524b), (525):

B,=glo%1roo'wI‘/ME,, (531)

independent of the ratio of Doppler width to
natural width (cf. (518)). For thermal neutrons,
we have simply to insert the average cross section
(averaged over the Maxwell distribution) into
(527). Assuming that the first resonance energy
E, is large compared to both the level width T'
and the thermal energy E~kT, we find

Bin=4/3¢'L(w/M)}0T*E, 3 (E-Y)a, (532)

where (E%), is to be calculated as the average
over the thermal neutrons striking the absorber.
Since the number of such neutrons in the energy
interval dE is proportional to the number of
Maxwell neutrons of energy E, M(E)dE, times
the velocity v~ E?}, we have

SMENE 1
S M(E)EME (EY).,

where (E%), is the average of E* over the Maxwell
distribution,

(EHn= (532a)

(EY)a=(4/m)}kT)1 (532b)
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Thus (532) becomes
Buw=3%(37)iqL(w/M)eI?E,~}(kT)%. (533)

As in Section B, we integrate the activities (531)
(533) over all the paraffin and obtain for the ratio

.fBresdQ 4(7")% lo (ErkT)§

L

(534)

" [Bad®

3
With the values i0= 0.9 cm, L=2.1 cm, this gives
r 1.75

(EAT)*

7 (534a)

In contrast to (528), T is the natural width of the
line. The denominator on the left-hand side is
proportional to the Doppler width; therefore we
have (cf. (513a), (514b))

r ) m\{/M\?Il, 1 0.884%}
(3) (m) LY Y
For the three elements listed in Table XXI11, the
results are given in Table XXIV.

The result is fairly satisfactory only for Rh.
This substance is just the one for which the one-
level formula may be expected to hold best
because it has a resonance level at very low
energy which in addition is fairly broad and can
therefore be expected to give a large contribution
to the cross section at thermal energies.

For Ag, there is no agreement at all. From the
one-level formula we should conclude a natural
width much larger than the Doppler width while
actually we found that the natural width is
negligible compared to the Doppler width. This
means that the cross section for thermal neutrons
is much larger (¥ much smaller) than would be
expected from the one-level formula. This again
is understandable because the Ag level is ex-
tremely narrow and thus cannot be expected to
give a large contribution to the thermal cross
section. Probably the ‘B’ level (cf. Table XXII)
gives a much larger contribution.

For I, the data on the thermal activity which
are available are rather scarce, the value of ¥V
being estimated. The situation is here the oppo-
site of that with Ag, showing that the I' obtained
in Table XXIII is probably grossly overesti-
mated. We suggested already in view of the very
high value of T obtained in Table XXIII that

(535)
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the “‘resonance’’ activity in iodine is presumably
due to a number (#, say) of levels. Assuming this,
(528) will give »n times the average value of
Tett/E,. Furthermore, if it is assumed that the
interference terms between the contributions of
various levels to the thermal cross section average
out, B, will be given by a formula of the type
(532) with # times the average of ¢[2E,~% over
all the levels replacing the simple ¢, I?E, %
Therefore, with this assumption of negligible
interference, formula (534) should give the aver-
age value of ¢ for the resonance levels contribut-
ing, while from Table XXIII we should get
approximately # times this average value. This
would mean that about 40/3.3=12 levels con-
tribute to the iodine activity which seems
plausible. Furthermore, it seems reasonable to
assume that the £ derived from (534) may still be
sufficiently in error to make the actual average of
£ of order unity or even smaller, corresponding to
natural widths of the individual iodine levels of
the same order as for Rh.

D. Widths from the one-level formula

From the considerations of Section C, we may
conclude that the use of the one-level formula is
justified for substances which have a not too
narrow resonance level at low energies. For these
substances, the one-level formula may be used to
calculate the width from the absorption coefhi-
cients for resonance and thermal neutrons, in the
absence of measurements of the total activity.

For this purpose, we compare the cross section
for self-indication (520) with the average cross
section for thermal neutrons which we calculate
from the one-level formula (530). We have from
(520) (520b) (521a)

0s=3mw0ol /T et (536)
and from (530) (532a) (532b)
ow=gmio?/E}kT)L (837)

The ratio of the absorption coefficients is thus
K, EMNET)?
47t , (537a)

Kth I‘I‘eff

s

Oth

a formula which could have been obtained also
from (528) and (534). If the Doppler width is
small compared to the natural width (which can
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TABLE XXV. Widths from one-level formula.
Ag 22" Ag22”
SUBSTANCE Rh44” In54 Ir Au (Group A) (B)
K, (cm?/g) 19 3.8 1.0 4 20 0.3
Kt (cm?/g) 0.7 0.6 10 025 02 0.2
E, (cf. Table XXII) 1.3 1.6 1.9 3.0 3.0 5.5
T' (from 538, volts) 0.13 0.34 1.0 0.34 0.14 1.7
E=TI'/A 4 9 30 9 2.7 23
Calculated ¥V
(cf. (535)) 2.2 1.0 0.4 1.3 3.4 0.4
Observed ¥V 1.16 —_ —_ —_ 072 ~A0.3

be checked from the result) we have, according
to (522):

I'=2rtE (kT){(Kw/K,)}. (538)
The condition I>>A is equivalent to (cf. (513a))
K, M /(E, )*

L—
Kch 7r9m kT

(538a)

This is fulfilled for all cases except for the A
group of Ag.

The results for various elements are given in
Table XXV. The absorption coefficients are due
to Amaldi and Fermi.*°c The absorption of ther-
mal neutrons must be corrected if more than one
activity is produced in the same substance, as in
Ag and In. In Ag, the ratio of the long period to
the short period activity (initial activity after
infinite irradiation) is about 1:3 (private com-
munication of Professor Goudsmit) so that 2 of
the absorption coefficient is due to the short
period. In Indium, the ratio of the activities is
Inge : Inge-=3:2 (cf. Al1) so that 60 percent of
the absorption of thermal neutrons is due to the
long period.** These figures have been used in
Table XXV. All other substances have only one
strong activity. Where possible, the absorption
coefficients measured with detector of the same
substance as the absorber were taken. RT is
taken as 0.026 volt.

As can be seen from the Table XXV, the
natural width T' turns out to be much larger than
the Doppler width in all cases except for the A
group of Ag. Thus the widths derived ought to be

dE
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fairly reliable for all cases except the Ag A group.
A check is provided by calculating ¥ from the T
obtained in Table XXV, and comparing it to the
observed ratio Y of resonance to thermal activity
wherever the latter is known. The calculated
values of Y seem to be of the right order of
magnitude (about unity) for all cases except Ag
A, the observations giving approximately equal
activity from resonance and thermal neutrons for
most substances (A1l), (G17). A reasonable
agreement (as good as for Rh) is also obtained for
the B group of Ag, supporting the hypothesis
that the B level gives the main contribution to
the cross section at thermal energies.

The widths found vary from 0.13 to 1.6 volts
which seems reasonable. Broad levels are gen-
erally connected with small absorption coeffi-
cients for the resonance neutrons. One of the
broader levels is that of Ir. The width given for
it may, however, not be quite reliable because the
absorption coefficient was measured by Amaldi
and Fermi with Rh and In as detectors, and the
resonance energy of Ir seems to be somewhat
higher than for these two substances. This makes
it likely that K, has béen underestimated, and
therefore T' overestimated, in Table XXV.

E. Overlapping of levels

In some cases, energy levels of various sub-
stances are known to overlap. This is true for Rh,
Inand Ir (“D group’) and for Au and the A level
of Ag (A group). In these cases, an estimate of
the difference of the resonance energies of the
substances in question may be obtained by
measuring the mutual absorption coefficients of
the resonance radiation and comparing them with
the absorption coefficients of each substance for
its own radiation. The width must be known for
at least one of the substances.

If the resonance energies are E; and E,, the
widths T'; and T, the absorption coefficient of
substance 1 for the activity of substance 2is
given by

dE
Kl =K1 0 ’
T )f[l+(E—E1/%I‘1)’][1+(E—Ez/%1‘z)2]/f1+(E—Ea/%1‘2)2

(539a)

40c Except for Rh, which is due to v. Halban and Preiswerk and to Manley, Goldsmith and Schwinger.
41Since we are here only interested in the ratio of the absorption coefficients, the abundance of the isotope re-

sponsible for the absorption is immaterial.
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F1G. 16a. Absorption of resonance radiation. Abscissa: K,5 where K, is the average absorption
coefficient of the resonance radiation for self-indication and small absorber thickness 8. (The figures
on the abscissa should read 0.25, 0.5, 0.75, 1.0 etc.) Ordinate: Transmitted intensity. Curve z corre-
sponds to a collimated incident beam of neutrons, curve w to an angular distribution cos 8+ v 3 cos? 9.
For comparison, curve ¢ gives the absorption for the same angular distribution with constant absorp-
tion coefficient, according to Amaldi and Fermi (A11, Fig. 2).

where K;(0) is the absorption coefficient of
substance 1 at its resonance. If the natural width
is large compared to the Doppler width, K,(0) is
twice as large as the absorption coefficient for
self-indication, K;;. Then we obtain by evaluat-
ing the integrals

K12_ 2I'(T1+4Ty)
Ky 4(Ey—E3)*+(T1+T9)?

(539)

For E;=E; and I'; =T, the right-hand side re-
duces to unity.

If all four absorption coefficients K;; K2 Ka1
K,, are known, the ratio of the widths can be
determined from (539)

I'1/Ty=K;3K2/K11K0:. (540)

The right-hand side is the product of the two
absorption coefficients with the second substance
as indicator, divided by the product with the first
as indicator. This determination of the ratio of
the widths does not make use of the one-level
formula except in the immediate neighborhood of
the resonance where it is well justified. The

difference of the resonance energies becomes,
according to (539)

| Ey—Eg| =§(T'1+T%)
[ 2K 11K

3
X —-—————1] . (541)
K12K22+K11K21

The only case in which all necessary data are
available,*s is that of Rh (44”") and In (54’). Ac-
cording to Amaldi and Fermi,

KRh Rh=2-0, KRh In=1.6,

K1 rn=3.0, Kin m=3.8, (541&)

showing that for a given absorber the absorption
is noticeably stronger when the detector is of the
same material as the absorber. The ratio of the
widths becomes according to (540)

I'ta/Tre=2.0-3.0/1.6-3.8=1.0 (540a)
in good agreement with the result found from

4s Note added in proof: With the large change in Krn rn
(from 2 to 19) necessary according to Manley, Goldsmith
and Schwinger (M2a), the data given in (541a) and the
conclusions drawn below seem very unreliable.
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F1G. 16b.

the one-level formula with the use of Kgnrn
=2.0, viz.
I'ta/Trn=0.34/0.40=0.8. (540b)

The difference in the resonance energies is
(cf. (531))

2-2.0-3.8 ¥
IEIn—ERh|=%(F1+I‘2)[—* -—1]
2.0-3.04+1.6-3.8

=3(I'1+T3)-0.50. (541b)

With I'1,=0.34 ev (Table XXV) and TI'in=Tgn,
we have 0.17 volt for the energy difference. The
sign cannot be determined from these experi-
ments, but it can be found from the absorption
coefficients of other substances, measured with a
Rh and In detector. According to Amaldiand
Fermi, the absorption coefficient of Hg is larger
(0.07 cm?/g) with Rh than with In (0.04 cm?/g)
as detector, while the ratio is inverted for Ag
(0.06 cm?/g with Rh, 0.09 cm?/g with In de-
tector) and Au (0.03 and 0.04). Since Hg has a
resonance level at very low energies (cf. end of
§60, §61G), these measurements suggest that the
In level lies higher, in agreement with the con-

clusions from the boron absorption measurement
(Table XXII).

Measurements of the overlapping of levels
would be useful (1) to check the level widths ob-
tained by other methods, (2) to check the
positions of the levels obtained from the boron
method, (3) to test whether the activity of a given
substance is due to a single level or to several—
the latter conclusion being suggested in any case
where there are serious discrepancies in the tests
(1) and (2). The “mutual absorption” method
may be one of the most sensitive for indicating
more than one level.

F. Absorption of resonance radiation

Thus far, we have only considered the absorp-
tion coefficient for very thin absorbers. In the
case of thick absorbers, the transmitted intensity
is given by

I(B)=§f

where § is the thickness of the absorber in g/cm?,
K, the absorption coefficient for thin absorbers
(=one-half the absorption for exact resonance,
cf. (520)) and x=(E—E,)/3T. It has been as-
sumed that the Doppler width is negligible com-
pared to the natural width which is true in every

dx R
1 + 26—2Krﬂl(l+z )’ (542)
x
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case investigated thus far, except for the A
group of Ag.

The transmission coefficient z(K,8)=1/I, is
given in Fig. 16, a and b, as a function of y=K,3.

We have
2(y) =e~vJo(1y), (542a)

where J is the Bessel function of zero order. For
small and large thickness, this gives:

s=1-y+4y*—(5/2)y’+ -
if y=K,0K1,

if y=K,5>1.

(542b)

z2=1/(2ry)} (542¢)

According to (542c), the transmitted intensity
decreases very slowly with thickness for thick
absorbers.

If the incident neutrons are distributed ac-
cording to the law cos #44/3 cos® & (cf. (497)),
the transmitted intensity is

/2
w(y) =f sin #dd(1+3% cos )
0

X[1+334]1"2(y/cos 9), (543)

where the detector is again assumed to be thin.

w is also given in Fig. 16. For small and large

argument we have

w=1-0.31 y(log y+2.3)
+0.40 y*(log y+3.75)+- - -

w=0.29 y~}

(y<1) (543a)
(y>1). (543b)

Further corrections must be applied for thick
detectors.

Investigations of the whole absorption curve
of a given detector for its own resonance radia-
tion might show deviations from the laws (542a)
to (543b). Such deviations, in particular a still
slower decrease of the intensity at large thick-
nesses than that indicated by (543b), would indi-
cate that the substance possesses more than one
resonance level.

G. Very low resonance levels

As already mentioned at the end of §60, several
elements have very low resonance levels, near the
thermal region, whose energy cannot be measured
directly. A method for determining the position
and width of these levels is to measure the devia-
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tion from the 1/v law in two different energy
regions.

The possible experiments are:

(1) In the region of very low energies: Deter-
mination of the dependence of the capture cross
section on temperature.

(2) Near kT : Wheel experiment of Rasetti and
collaborators (R4, R6) described in §58B.

(3) Measurement of the ‘‘absorption limit” of
the substance in question by determining the
boron absorption coefficient of the neutrons pene-
trating through the substance, using boron or
lithium indication (L32).

(4) Determination of the absorption coefficient
of the substance for D group neutrons (Rh de-
tector) and comparison with the absorption co-
efficient for thermal neutrons (A11).

The first two methods have the advantage
that they make use of the ‘“‘one-level dispersion
formula’ only over a very limited energy region
(0 to kT). On the other hand, the experiments
are not very accurate; in case (2) because of the
smallness of the effect, and in case (1) because it
is very difficult to cool neutrons efficiently to a
temperature below room temperature (F19) so
that it is not clear what to insert for the effective
temperature of the neutrons. Method (4) de-
pends on the validity of the one-level formula in
the substance investigated up to 1 volt (resonance
level of Rh) ; moreover it is experimentally rather
difficult to measure the very small absorption of
the substance for the D group. However, such
measurements have been carried out by Amaldi
and Fermi for Cd and Hg; the absorption coeffi-
cients for D neutrons are 0.05 and 0.07 cm?/g,
respectively, as compared to 14 and 1 cm?/g for
thermal neutrons. Method (3) is, in principle
capable of higher accuracy than (1) and (4), but
thus far only preliminary data on Cd are avail-
able (F33; Hoffman, Livingston and Bethe,
H34, L32).

The experiments are conveniently discussed in
terms of the capture probability p, i.e., the cross
section times the neutron velocity, or the ab-
sorption coefficient times E!. We have

p(E)~oE'~[(E—E,)*+ ()’ 1™

The measurements (1) (3) and (4) give ratios of
the capture probabilities at different energies.
Besides the absorption coefficient of Cd at

(544)
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thermal energy, pwn=15 cm?/g, we shall use the
“absorption limit” of Cd. This absorption limit
has been measured (L32) by determining the
boron absorption coefficient of the neutrons just
able to penetrate ¥ mm of Cd. We may estimate
that these neutrons have in Cd an absorption
coefficient of about

pr=~2 cm?/g.

The boron absorption coefficient was found to be
9.5 cm?/g as compared to 36 cm?/g for thermal
neutrons. This means that the energy of the
absorption limit is

E1=0.026-(36/9.5)2=0.37 volt. (544a)
According to (544), we have
15/kT\? (EL—E,)*+3iI?
3‘1=~(_) _EEFHT )
pr 2 \Eg (E,—kT)*411?

Besides, it follows from (544a) that Cd absorbs
not only thermal neutrons but also neutrons of
considerably higher energy.

Rasetti’s wheel experiment gives the logarith-
mic derivative of the capture probability with
respect to the energy, at thermal energy. This
derivative can conveniently be expressed by the
quantity

e=(dE/d log p)ser,

which has the dimension of an energy. If Ap/p is
the relative change in the absorption coefficient
when the direction of rotation of the wheel is
reversed, then

(545)

e=2muv, sin & p/Ap, (545a)

where v,=(2kT/m)? is the Maxwell velocity of
the neutrons (2200 meter/sec. for room tem-
perature), u the velocity of the edge of the wheel
(140 m/sec. in the experiments of Rasetti and
collaborators) and ¢ the angle between neutron
beam and the normal to the wheel (65° in ex-
periments). The observed value of Ap/p was 6.3
percent. Therefore, for Cd,

e=0.09; volt. (545b)
Theoretically, according to (544) (545)
E,—kT)*+(3I)?
e___( )+ @G (546)

2(E,—kT)
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¢ is positive (and therefore E,>kT) if the
capture probability increases with increasing
neutron energy, i.e., if the absorption coefficient
is larger when the wheel moves opposite to the

neutron beam.
From (544b) and (546) we have

E 2+ kT — (kT)?

2B AN—kT) (462)
where
A=e(pwm—pL)/PL. (546b)
We find for Cd
E,.=0.16 volt, (547)
I'=0.17 volt. (547a)

This result is, unfortunately, very sensitive to
small errors in Ap/p (cf. (545a)) and in the
“absorption limit” E;, of Cd. E.g., if ¢ is changed
to 0.11 volt, the result is E,=0.15; and I'=0.21¢
volt. Therefore, all that can be said at the
moment is that E, and T are of the same order
of magnitude and are both about 0.15 volt.
Similar conclusions are reached by using the
absorption coefficient for D neutrons (B15).

The cross section as a function of the energy is
given in Fig. 11 (§58), for I'/E,=V2. The curve
shows a very broad region of approximately
constant cross section which, for Cd, will extend
from about thermal energy (0.026 volt) to about
0.2 volt.

Other elements with very low resonance levels
are Sm and Hg. The main evidence comes, in
both cases, from the temperature dependence of
the cross section. Sm, like Cd, shows hardly any
change of the absorption coefficient upon cooling;
its resonance level should therefore also lie
slightly above thermal energies. For Hg, the in-
crease of the absorption at low temperatures is
slightly over normal which suggests a resonance
level at negative energy. The position of this level
may be estimated from the ratio of the absorp-
tion coefficients for D neutrons and thermal neu-
trons which is about 1 : 15 (A11) as compared to
1 : 7 for boron and other substances obeying the
1/v law. A value E,~ —0.3 volt would fit the
experimental data.
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§62. THE NEUTRON WIDTH AND THE ABSOLUTE
Cross SectioN (B15, A11, D23)

The cross section at exact resonance is, accord-
ing to (430b),

1.305-10-18 1 Ty
rom (15 )—, (548)
E, 2i4+1/ T

where I'y is the ‘“‘neutron width”’ of the resonance
level, T the total (y-ray) width, E, the resonance
energy, ¢ the spin of the capturing nucleus.
The =+ sign stands according to whether the
angular momentum of the compound state
(resonance level) is 7+3% or 1—3%; since we have
no way of knowing this angular momentum, we
neglect the term 1/(2¢+1). ¢y is measured in
cm?, E, in volts. The absorption coefficient, in
cm?/g, at exact resonance becomes then

aola a Ty
Ko= =7.87-10— ,
A ATE

r

(548a)

where 4 is the atomic weight of the capturing
element, a the abundance of the capturing
isotope in the element in question, and L
Avogadro’s number.

The observed resonance absorption coefficient
with self-indication is connected to K, by [cf.
(520) (521a)]

K,=(7T/2Tet1) Ko, (548b)
so that
E.AK, T
I'y=—. (549)
1.23-10%

If the total activity is known, Teyt can be
expressed by (528c) so that:
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In this formula, only directly observable quan-
tities occur. However, in many cases the reso-
nance absorption coefficient is known when the
total activity is unknown. In this case, (549)
may be used directly, and Tt may be replaced
by #T if it is known that the natural width is
large compared to the Doppler width (cf. §61A).
The results are given in Table XXVI. For Cd,
the absorption coefficient at resonance is about
1.7 times that at thermal energies, if the data
(547, 547a) are used. The isotope responsible for
the large cross section is probably one of odd
mass (cf. B13, p. 340). Both the odd isotopes
(111, 113) have about the same abundance
(10 and 12 percent) so that 4/a~1000.

The neutron widths observed vary mostly
between 0.5 and 2 millivolt, except for iodine
for which the data are uncertain because of the
superposition of several levels (§60A, 61C). The
neutron widths are very fundamental for nuclear
theory because they are the only existing data
on the particle width for heavy nuclei. They
form the basis of the calculation of the nuclear
radius from the a-decay (§67) and also the
basis for the estimate of the ‘‘sticking proba-
bility’’ (§54) of nuclear particles for which they
give a value of 0.01 to 1.

According to the theory (§58), the neutron
widths should cet. par. increase as the velocity
of the neutrons so that T'y'=TwxE,™} should, in
the average, be independent of E,. In fact, when
the very uncertain value for Cd is excluded no
trend of TyE,~} with the energy can be observed
in the data in Table XXVI, all values lying in
the very small region between 0.4 and 1.2-103
voltt.

Inserting T'y'E,} for the neutron width Ty, we

E.24 3L find for the cross section at exact resonance (548)
= —KuY (549a)
1.23-10% I, go-~Tx'/TE,} (550)
TABLE XXVI. Neutron widths.
SUBSTANCE Rh 44" In 54/ Ir Au Ag(A) Ag(B) 1 Cd
E, 1.3 1.6 1.9 3. 3.0 5.5 140 0.16.
Ala 100 120 190 200 220 220 130 ~1000
K, (cm?/g) 19 3.8 1.0 4 20 0.3 0.38 ~25
Tett* (volts) 0.22* 1.1 3.1 1.1 0.11* 5.3 ~1t 0.55
T'y (millivolts) 0.44 0.65 0.9 21 1.2 1.6 6 1.8
1000T v E, ¥ (volt?) 0.4 0.5 0.6 1.2 0.7 0.7 0.5 4.5
1000T /T 6 1.8 0.9 6 >30 0.9 ? 12

* When Teft was obtained from the activity, the value is marked by an asterisk. The other values of T'eft are from the one-level formula (§61D)
1 (2m)%A (cf. Table XXIII). It is assumed that the width of the iodine levels is primarily determined by Doppler broadening.
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and for the total activity (531)

B,~Ty'E, . (550a)

Therefore, if we assume Ty’ and T to be in the
average independent of the number r of the
resonance level, the absorption coefficient for
neutrons at exact resonance becomes inversely
proportional to the square root of the resonance
energy E,. This “1/v law” holds also for the
average absorption coefficient, averaged over an
energy region large compared to the spacing D
of the resonance levels which is (cf. §56)

o= (00,77 /2D)u~Ty'/DEY.  (550b)

From (550a) it follows that the contribution of
a resonance level E, to the total activity is,
under otherwise equal conditions, proportional
to E,~}, a fact which we used in interpreting
Table XXII.

In the last row, we have tabulated the ratio
of the neutron width to the y-ray width. This
ratio determines the ratio of resonance scattering
to capture (§58, 63). The ratio is seen to be
extremely small, of the order of one-thousandth,
except for Ag (A group). Only for this latter
element may we thus expect to find observable
resonance scattering, and even there the pre-
dicted magnitude of the scattering is very low
(Usc/o'capt> 1/30)

The values given for the neutron width should
be very reliable for Ag (A group) and Rh 44"
(D group) because in these cases the total
activity has been determined. The other neutron
widths (In, Ir, Au and Ag B) depend on the
applicability of the one-level dispersion formula
to thermal neutrons (§61D), which, however, is
probably justified in these cases. The data for
iodine and cadmium are rough estimates.

The cross sections observed at resonance are
very large, ranging up to about 10720 cm?
They are usually much larger than at thermal
energies so that many resonance groups may be
recognized by the fact that the activity trans-
mitted by cadmium is more strongly absorbed
in the substance of the detector itself than the
part of the activity which is absorbed in cad-
mium. Table XXVII gives the known cross
sections for thermal neutrons, resonance neutrons
and ‘“fast” neutrons (one to several MV). The
measurements of thermal and fast neutrons are
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TABLE XXVII. Neutron cross sections (in 102 cm?).

Cross SgcTioN Cross SectioN
Erp- MalN —4mM8M8M8H ————— Eie- MamNn —
MENT ProcEss THERM. Res. Fast MENT ProcEss ThERM. Res. Fast
1H E 40* 14* 17 47 Ag  22"At 14000
1D E 4.0 17 A
3 Li¢ a 900t 1.8 2.3t 30
4 Be E 5.3 Ly total 55
5B0  « 3000t 1.8 48Cd C 600 (~800001)
6C E 4.1 13 49In 54t 85/a;  1500/ay
TN  E+p 11.3 1.8 16"t 55/a2
80 E 33 total 140
9F 2.5 50 Sn 4.0 43
11 Na 4.2 518b 8
12 Mg 3.5 52 Te 8
13 Al 1.5 24 531 9.4 150 4.6
14 8i 2.5 56 Ba 140
15 P 147 57 La 80
188 14 2.6 58 Ce ~25
17Cl1 39 59 Pr 25
19K 8.2 60 Nd 220
20Ca 1.0 628m C 4300
21 8¢ 25?7 63 Eu 2500
22 Ti 119 64 Gd 30000
23V 10 65 Tb <1000
24 Cr 4.9 Dy 700
25 Mn 143 67 Ho 150
26Fe E+4C 12.0 3.0 68 Er 120
27Co 35 69 Tu 500
28Ni  E+4C 15.4 70 Yb 90
29 Cu 75 3.2 71 Lu ~400
30 Zn 4.7 33 73 Ta 27
32 Ge ~75 T4W 23 5.3
33 As 9 75 Re 90
34 Se 19 76 Os 27
35 Br 12 771Ir C 280 600
38 Sr ~9 78 Pt 25
9 Y 30 79 Au C 2500
40 7r 17 80 Hg (4 440 5.8
41Cb ~14 81Tl 11
42 Mo 7 82 Pb 9 5.7
44 Ru 12 83 Bi 8
45Rh 44" 125 6000 90 Th 32
46 Pd 92U 43

* Cf. §59C. The figure for ‘‘resonance” refers to slow neutrons
above the thermal region.

T Cross section of the isotope responsible for the absorption. In the
case of indium, a1 and a2 give the abundance of the two isotopes; it is
not known which isotope is responsible for each of the two activities.
For Ag, the abundance was taken as 50 percent for each of the two
isotopes. For Cd, 12 percent was assumed.

C =capture, .

E =elastic scattering,

a, p =a and proton emission.

mostly due to Dunning, Pegram, Fink and
Mitchell (D23) supplemented by data of Amaldi
and Fermi (A11), Hevesy and Levi (H31) and
of Powers, Fink and Pegram (P14). The reso-
nance data are due to Amaldi and Fermi. The
figures refer to the cross section at exact resonance
which is twice the observable cross section for
thin absorbers.

Remarks on Table XXVII:

The main process responsible for the observed
absorption of thermal mneutrons is indicated
wherever there was direct experimental evidence
about it. Thus hydrogen, deuterium, carbon and
oxygen are known to capture neutrons only very
slightly, showing that the cross section observed
is mainly due to elastic scattering (E). For
cadmium, it has been observed that the scatter-
ing is extremely small compared to the capture
(C) (cf. §63). On the other hand, iron and nickel
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are known from scattering experiments to have
large elastic scattering besides capture (§63).
Mainly capture has also been assumed in all
cases where the cross section is known to change
rapidly with energy and to show marked reso-
nance effects such as Rh, Ag, In, Sm. Generally,
capture may be assumed whenever the cross
section is large (more than, say, 10-10-% cm?)
for not too light nuclei (Z>10, say); but in
these cases no remark about the main process
has been made in the table. Small cross sections
are usually due to scattering. a-disintegration is
produced by slow neutrons in Li and B, proton
disintegration in nitrogen.—For fast neutrons,
scattering, a- and proton disintegration occur.

The data about the rare earths are in general
not very reliable because of the difficulties in
purification. The cross sections given for some
of the rare earths may be spurious due to im-
purities of Gd, Sm or Eu.

§63. SCATTERING OF SLOW NEUTRONS
(D23, M17-20, BS)

A

The elastic cross section for neutrons (s=3%),
including potential scattering, is in the case when
only one resonance level is important:

2

T'x
2R+X,——

oMy —[(ZJ-H) :
E—E,+3T

T202it+1)

+ (4i+1—2])4R2] (551)

T 1 4R(E—E,)+X,Tx
=41rR2+—(1 + )XJ‘N .
2 2141 (E—E,)*41I?

Here R is the (effective) nuclear radius, X, the
wave-length at exact resonance, E, the resonance
energy, 'y the neutron width and T the total
width of the resonance level. In the first line, the
first term in the square bracket gives the effect
of resonance and potential scattering for angular
momentum J, the second term is the potential
scattering for the other value of the angular
momentum possible by selection rules, viz. 2 —J,
for which there is no resonance scattering. In
the last line of (551), the first term represents
the potential scattering, the second the reso-
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nance scattering and the interference term be-
tween the two.

The behavior of the cross section (551) near the reso-
nance level E, will be governed by the ratio

p=XTw/RT. (552)

This ratio determines the ratio of the cross section at
exact resonance to that of the potential scattering alone,

or/op=1+3(1£1/(2i4+1))p% (552a)

According to Table XXVI, the ratio I'y/T in (552) is of the
order 1073 for most resonance levels observed, at resonance
energies of a few volts, corresponding to X,~3-10~% cm.
With R~10712 cm, this gives values of p smaller than unity.
This means that the resonance scattering will, for the
resonance levels listed in Table XX VI, not differ markedly
from the potential scattering. Only for cases like Ag A
(cf. Table XXVI) where I'y/T is about 30 times larger,
may we get an appreciable increase of the scattering cross
section at resonance, to 100 or more times the potential
scattering.
Introducing the abbreviation p, and writing

x=(E—E,)/iTl', o,=47R?, (553a)
we have

oy 1 p+2x

—=1 L(1 :t——-) .

ap +i 2t+1 pl +x2 (553)

This cross section has a minimum and a maximum near
the resonance energy E,. These extrema occur at

Xmin™2 = — 3o (3p2+1)} (553b)

and have the values
omin™/op=143(1£1/(2i+1))p[ £ (32 + 1)1+ 30]. (554)

If p<1, the resonance will have no appreciable effect
on the scattering. We have a minimum at E=E,—iTI" and
a maximum at E,+ iT, but they will differ only by the
relative amount p(1+1/(2¢4+1)). Essentially we have
simply the potential scattering o, =47 R2. Even for p>>1,
this potential scattering will be the main term if the energy
E is far from resonance. In almost all elements, the
scattering observed for thermal neutrons will be largely
potential scattering.

If p is large, the minimum of the cross section occurs at

Xmin= —p; Emin=Er_I‘Nkr/2R (555a)
and has the value
omin = 3op(1F 1/(2:+1)). (555}

The maximum occurs practically exactly at E,, its value
is given by (552a).

However, as already mentioned, the resonance
scattering will in general be negligible compared
to the potential scattering, except in such extra-
ordinary cases as the A level of Ag (22””) where
the total width is unusually small and therefore
the neutron width a large percentage of the total.
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Thus, as a rule, we can consider the scattering
cross section as independent of the neutron
energy.

B

The measurement of the scattering offers some
experimental difficulties, mainly because it must
be made sure that the observed scattering is
actually due to the scatterer investigated. Or-
dinarily, when scattering is measured, the de-
tector is shielded against the direct neutron beam
by absorbing materials. Even then, there will be
some activity induced in the detector even with-
out the scatterer in position, because there is
always some ‘‘stray’’ scattering material around.
It is, in this case, not always sufficient simply to
subtract the activity without scatterer from that
measured with the scatterer in place, because of
the possibility of double scattering from the
stray material and the scatterer investigated. All
substances containing hydrogen (paraffin, water,
wood, etc.) are, of course, particularly dangerous
in this respect.

The dependence of the scattering on energy may be
measured? by using suitable detectors, such as Ag and
Rh, and absorbers, such as Cd or the detector material
itself. In such experiments, the change of neutron energy in
the scattering process must be considered; but this repre-
sents a negligible correction unless the scattering cross
section depends sensitively on energy in the region investi-
gated, i.e., in all cases except the resonance scattering.

For the resonance scattering, we have to find out whether
the change of the neutron energy in the scattering process
will throw the neutrons out of the resonance region so
that they can no longer be detected by a detector of the
same material as the scatterer. For backward scattering
by an atom of weight A, the decrease in the netron energy
is 4E,/A where E, is the original neutron energy. The
energy loss in the scattering will be immaterial if it is
smaller than the effective width of the neutron level:

Teti>>4E,/A. (556)

This is fulfilled for all neutron levels listed in Table XXVI,
except for the 4 level of Ag, for which the two quantities
are of the same order. But only in this last case is the

42 ]n these experiments, even greater care has to be
taken to avoid secondary scattering, especially by sub-
stances containing hydrogen. Firstly, the scattering of
hydrogen is known to depend sensitively on energy (chem-
ical bond, cf. §59C), and secondly, the scattering by
hydrogen means a considerable energy loss. Thus neutrons
of high energy may be scattered by the primary scatterer,
then scattered again by the secondary scatterer and slowed
down to the resonance energy of the detector. Then the
detector would measure the scattering cross section of the
scatterer for a much higher energy than the detector’s
resonance region.
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investigation of the resonance scattering of interest, be-
cause in all other cases the resonance scattering is expected
not to differ appreciably from the ordinary potential
scattering (cf. above). It is generally true that the reso-
nance scattering is large only if T' is small (cf. (552)),
but that small I means, at the same time, that the condi-
tion (556) will in general not be fulfilled. Thus, whenever
the resonance scattering is large, the neutrons will be
thrown off resonance by the scattering process itself, so
that the scattered intensity can no longer be measured by
a detector of the same material as the scatterer.

C

We want to discuss the actual evaluation of
scattering experiments for the case of backward
scattering, assuming there is no secondary scat-
tering material. For simplicity, we shall treat the
problem in one dimension, and shall later discuss
the three dimensional problem in some special
cases.

Let f1(x) be the number of neutrons moving to
the right (away from the source) at a depth x
from the entrance plane of the scatterer, and f_
the number moving to the left. Then of the
neutrons moving to the right, a fraction a will be
absorbed (captured) per unit path, and a fraction
s will be scattered back where a is the absorp-
tion and s the scattering coefficient. (3s enters
because, with isotopic scattering, half of the
scattered neutrons will still move forward.) In
this way, we find the differential equations

df/dx=—(a+35)f++35f-,

~df_fdx=—(@+ifAhsfr. O
The solution is
fr=ase 4 Bsere,
fo=(2a+s—2\)ae*+ (2a+ s+ 2\) Ber® (557a)
with A= (s+a)lal (557b)

a and B are two integration constants. If the
thickness of the absorber is d, we must have

B=—ae?¥2a+s—2N)/(2a+s+2\). (557¢)

The intensity of the back scattering (reflection
coefficient) is

R—f—(0)~ s(1—e )
T £.(0) 2a+s+23—(2a+s—2\)ed

(558)

For small thickness, this reduces to the well-
known expression
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R=}sd.
For large thicknesses, we have

s 2a+s aa+ts\;
R= = —2(- ) , (559)
2a+s+2\ s s s

(558a)

a formula first derived by Bayley and Goudsmit
(BS). Thick scatterers are, in general, more con-
venient especially for strong neutron absorbers,
of which extremely thin layers would have to be
taken in order to make (558a) valid. According
to (559), the back scattering from thick scatterers
gives directly the ratio of scattering to absorption
(capture) cross section o,/d,=s/a. If ¢,>> ¢, (good
scatterers), (559) reduces to*

R=1-2(0,/0,)} 0,0,
whereas for small scattering cross section
R=g7,/40, 0> 0. (559b)

These last two formulae may easily be checked by a
three-dimensional calculation. The case of small absorption
was treated in §59F for paraffin. For the reflection coeffi-
cient (albedo) we found (cf. (503)) exactly the formula
(559a) [N in (503) is defined (cf. 484) as ¢,/04]. For strong
absorption, the observed back scattering will depend on
the angular distribution of the incident neutrons. We may
treat the cases

(a) of a collimated beam striking the scatterer per-
pendicularly

(b) of an angular distribution f(#)~cos 8+ 3¢ cos? ¢ of
the incident neutrons (¢ a constant). In case a, the number
of neutrons arriving at a depth x, is e7%*. Of these, a
fraction %ssin #d¢ is scattered into the direction ¢. The
probability that the scattered neutrons can escape from
the scatterer, is e~%%/%® % Thus we have

12 o
R=4s[" sin 9av [ emestieos gy,
=(s/2a)(1—log 2) =0.153s/a.
In case (b), a somewhat longer calculation gives
3(1—log 2)+3c/16 s 0.205+40.187c s
R=3 2= s
1+4¢ a 14c¢ a (560a)

so that R is approximately equal to o,/50,, in close but
not exact agreement with the “‘one dimensional’” formula
(559b).

D

Actual experimental data on the scattering are
very scarce. Measurements have been made by
Dunning, Pegram, Fink and D. P. Mitchell

(559a)

(560)

4 In this case, measurements of the back scattering will
serve to determine the cagture rather than the scattering
cross section, the scattering cross section being practically
equal to the total cross section measured in absorption
experiments.
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(D23) and by A. C. G. Mitchell, Murphy,
Langer and Whitaker (M17-20). Dunning and
collaborators measured the scattering from cad-
mium and found that the cross section must be
less than 1 percent of the capture cross section.
This was of great importance in disproving the
one-body theory of neutron phenomena (cf. §57),
but is in agreement with the present many-body
theory. According to Table XX VI, we expect the
resonance scattering at thermal energies to be
about 0.45 percent of the capture cross section
(with a considerable uncertainty), while the cross
section due to potential scattering may be esti-
mated as 6 to 8-10~2¢ cm? which is 0.2-0.3 percent
of the capture cross section.

Mitchell and his collaborators showed that the
scattering of thermal neutrons is very small from
Ag and Cd but large from C, Mg, Al, S, Fe, Ni,
Cu, Zn, Sn, Pb and Bi, with Cr, Mn and Hg
giving medium values. This is to be expected from
the magnitude of the total absorption cross
sections listed in Table XXVII. Assuming a
scattering cross section of a few times 10~% in
each case, and attributing the rest of the ob-
served absorption to capture, we find that the
cross sections of absorption and scattering will be
comparable for all the substances for which
“large scattering’’ was found in the experiments
but that the scattering should be negligible com-
pared to the capture in Ag and Cd. A quantita-
tive interpretation of the experiments of Mitchell
and Murphy seems not possible because the
scatterer was placed on top of a paraffin block so
that the scattered neutrons could again be
scattered by the paraffin, then again by the
substance etc., thus increasing greatly the ob-
served scattering coefficient (BS).

§64. DISINTEGRATION BY SLOW NEUTRONS
wITH EMIssION oF CHARGED
ParTICLES (A8, C12)

Disintegrations by slow neutrons with emission
of charged particles have been found in three
cases:

Li¢+n!=H34He?, I

Bi+n'=Li"+He?, II
NU¥+4pnl=CH“+HL 111
Probably the process
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B4 nt=Bel*4H! IV

is also possible. All other processes giving protons
are energetically impossible with slow neutrons
(§57D), although they are caused with great
probability by fast neutrons. Other reactions
giving o-particles also seem energetically im-
possible, on the basis of the atomic masses, for
all elements up to phosphorus except for the rare
isotopes Ne? and Si* (Table LXI). Even for
these, the energy of the emitted a-particle would
be so small (1.0 and 1.7 MV, respectively) that
it would have a very small probability of
escaping through the potential barrier.

The processes are observed through the ioniza-
tion produced by the charged particle emitted,
v12. H?, He* and H! in the three processes men-
tioned. They are used as sensitive detectors for
slow neutrons, their absorption coefficient follow-
ing the 1/v law (§58B). The absorption in boron
is used as an energy gauge for slow neutrons
(§60A).

In the reactions I and II above, the particles
produced are rather fast, iz. 4.6 MV and 3.0 MV,
respectively (total kinetic energy of both par-
ticles). They will therefore go over the top of
the Coulomb potential barrier.* Therefore it is
reasonable to assume that the ‘“‘widths” T'q cor-
responding to the emission of these charged
particles are of the same order as for neutrons of
the same energy. With this assumption and
assuming the width to be proportional to the
velocity, we have then for the neutron width

vv(E)=c(E/Eq)'Tq, (S61)

where E is the neutron energy, Eq the particle
energy and ¢ a constant of order unity. Using the

one-level formula (262), we have therefore:
1 vvTe
oNo=3mR{ 1+ ) , (561a)
2%i+1/(E—E,)*+1r?

T2
=~ 27wcAN —

Y (561b)

where X’ is the wave-length of a neutron of energy
Eq.T hasbeen put equal toT'g, and 1/(2¢+1) has
been neglected. With Eq=3.0 MV and a neutron
energy of kT=0.026 volt, we have X'=2.6-10"1

4 From the general formula (599), the barriers would be
1.4 and 2.2 MV in the two cases.
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cm and X=2.8:-10"° cm. Therefore, neglecting
E=FkT compared to E,, we obtain

No=5-10"2¢/[1+4EYT?].  (562)

The observed cross section of B!® for thermal
neutrons is
o¥=3.0-10"% cm? (562a)

(cf. Table XXVII). From a comparison of (562)
and (562a) we conclude that the resonance level
E, must be of the same order as I', which may, by
analogy to other levels of light nuclei, be assumed
to be of the order of 100,000 volts. For the com-
pound nucleus B! this means an excited level
with an excitation energy approximately equal to
the difference in mass between B?+4#! and B,
i.e. (cf. Table LXXIII)

Bio+4n!—B!'=11.5 MV. (562b)

The cross section of Li° for thermal neutrons is
smaller, vi2.

0.9-107% cm?. (562c)

Therefore the lithium resonance level should be
somewhat farther away from zero neutron energy
than the boron level. The corresponding reso-
nance level of the Li” compound nucleus lies at an
excitation energy around 7 MV.

In the case III above, the protons emitted are
very slow, having an energy of about 0.62 MV
(including C™ recoil, cf. §102B). The potential
barrier of C! for protons is probably (599) about
1.7 MV, i.e. much higher than the proton energy.
The penetrability of the potential barrier for
protons of 0.62 MV is about (cf. 600, Fig. 18)

P=e33=1/27. (563a)
The proton width will then be
To=GqP, (563)

where P is the penetrability of the barrier and
Ggq the proton width without barrier. If E,&T
which is certainly true in our case, the cross sec-
tion is proportional to T'q (cf. (561a)). The ob-
served total cross section is 11-10~%¢ cm? (Table
XXVII), including the elastic scattering which
may be 3-10~2* cm?. This leaves 8-10% cm? for
the cross section of process 111, which is just one
percent of the cross section of Li®. This is about
what would be expected from the penetrability of
the proton of 1/30, and from the fact that even
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Go must be expected to be smaller than the T'g
for the Li® reaction because the width without
barrier is known to increase with the energy of
the particle. Thus the observed cross section of
N for. slow neutrons may be interpreted by as-
suming a resonance level at about the same
neutron energy as in Li®, probably a few hundred
kilovolts.

All the numerical values given in this section
should be regarded as estimates only ; actually at
least the cross sections at two different neutron
energies (e.g. zero and a few hundred kilovolts)
are necessary to determine width and position
of the resonance levels.

§65. Fast NeEuTRONS (B32, B33, W7, D2,
E1, A7, K7, K9, L19, F13)

A. Classification of processes

Fast neutrons, of energies of several MV, may
interact with nuclei in a great variety of ways,
viz.:

(a) Elastic scattering.

(b) Inelastic scattering, the initial nucleus
being left in an excited state.

(¢) Simple capture, leading to the formation of
an, isotope one unit higher in atomic weight.

(@) Disintegration with emission of a-particles.

(e) Disintegration with emission of protons.

The processes ¢, d, e may be observed very
easily if the nucleus formed in the transmutation
is radioactive. Many instances of such transmu-
tations have been found, particularly by Fermi
and his collaborators (F13, cf. §102 of this re-
port). If the resultant nucleus is stable, the proc-
esses d, e may be ascertained by observing the
particles emitted in the process itself (a-particles
or protons). This is usually done in a cloud
chamber (cf. §94).

Process b (inelastic scattering) is certainly very
probable for all nuclei of medium and high atomic
weight. This was first shown by Danysz, Rotblat,
Wertenstein and Zyw (D2) and then confirmed
by Amaldi, d’Agostino, Fermi, Pontecorvo,
Rasetti and Segré (A7) and by Ehrenberg (E1).
These authors investigated the change of the
radioactivity induced in various substances due
to interposing various ‘‘scatterers” between a
source of fast neutrons and the detector. Scat-
terers made of C, SiO,, Ag, Au and Pb produced
a marked increase in the radioactivity induced in
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Ag and Rh indicators but a decrease in the radio-
activity in Al and Si. The two latter detectors
are made radioactive by processes d and e
mentioned above (a- and proton emission after
the capture of the neutron) which, on energetic
grounds, are only possible with fast neutrons.
On the other hand, the radioactivities in Ag and
Rh are produced by radiative neutron capture
which is much more probable with slow neutrons
(cf. below). Thus the experiments can simply be
interpreted as showing that all the scatterers in-
vestigated are very effective in slowing down ithe
neutrons.

This would be quite impossible if all collisions
between the neutron and the scattering nuclei
were elastic, because then the maximum possible
decrease in energy in one collision would be only
4/A times the initial neutron energy, for a scat-
terer of atomic weight A. Such a decrease would
not be noticeable at all for heavy substances such
as Ag, Au and Pb. It might be objected that a
large number of elastic collisions, even with a
heavy substance, would slow down the neutrons:
but with the thicknesses of material used (1-3
cm) and the scattering coefficient for fast neu-
trons known from other measurements (0.2-0.4
cm™), ordinarily only one collision can take
place. This was also proved directly by Ehren-
berg, who found a linear increase of the activity of
a Ag detector with the thickness of the Ag
scatterer interposed.

The slowing down must thus be ascribed to
inelastic scaitering of the neutrons.*® The nucleus
is excited to some excited state while the neutron
loses the corresponding amount of kinetic energy.
After the neutron has left, the nucleus will lose
its excitation energy by emitting one or several
y-rays. These y-rays from the ‘‘noncapture’’ exci-
tation of nuclei by fast neutrons have actually
been found by Lea (L19) and by Kikuchi, Aoki
and Husimi (K7, K9) and their intensity has
been measured.

No direct evidence is available for the elastic
scattering (process a), but it may safely be as-
sumed to occur by analogy with the inelastic
scattering.

4 Inelastic scattering seems much more likely than
“radiative scattering,” i.e., a process in which an incident
fast neutron produces a slower neutron plus a y-ray in the
field of the nucleus which itself is not excited in the process.
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B. Theory

The theoretical treatment of fast neutron
effects must, of course, again be based on the
general theory developed in §52. If the spacing of
the nuclear levels is comparable to the neutron
energies used, resonance effects may be observed.
It was pointed out by Gamow (GS5) that some of
the resonance levels to be expected could be pre-
dicted from the known resonance levels in a-par-
ticle reactions. E.g., in the bombardment of
Si?® by neutrons, the compound nucleus Si** is
formed whose resonance levels are known from
the reaction Mg»+ He*—Si2*—Al128+H! (ob-
servable through the radioactivity of Al*%). A
great number of similar examples could be given.
However, it is not quite certain whether the
neutron resonances thus predicted will actually
be observable: The a-particles producing the
resonances have energies less than or comparable
to the potential barrier, and therefore can only
penetrate into the nucleus when they have small
orbital momentum (§78) while the neutrons have
high energy and no potential barrier and there-
fore can have high orbital momentum. This
means that many more resonance levels will inter-
act with neutrons than with a-particles, which may
smooth out the resonances in the neutron case.

For heavier nuclei, the nuclear energy levels
will become very closely spaced and it will no
longer be possible to define the energy of the
incident neutron accurately enough to observe
any resonances. All we can do in this case is to
observe an average value of the cross section,
averaged over an energy region large compared to
the spacing between the levels as discussed in §56.

Applying formula (407) of §56 to our case, and
summing over all states g of the final nucleus, we
obtain

oN0=7R2T /T (564)

for the total probability of the production of
particle Q by a fast neutron. If we further sum
over all possible particles Q which may be pro-
duced we find

ono=TR¢.

(565)

This expression does not contain the potential
scattering op.¢. Since the mixed terms due to
interference of potential scattering and resonance
elastic scattering (cf., e.g., the term 4R(E— E,)
in (551)) vanish upon integration over a large
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energy interval, we have for the total cross sec-
tion
U'No’ = 7"sz+ Opot-

This cross section will determine the total
“absorption”’ of fast neutrons as measured by
the decrease in the intensity of a collimated
beam of fast neutrons when passing through
matter. On the other hand, the elastic scattering
may be practically eliminated from the measured
“absorption’’ by surrounding, e.g., the source of
fast neutrons with a sphere of the material to be
investigated and using a detector which responds
only to fast neutrons. Now the elastic scattering
will be practically equal to the potential scatter-
ing.*® Therefore, if we eliminate experimentally
the elastic scattering, we shall measure the cross
section (565), which gives immediately the
“sticking probability’ &.

(566)

Experimental data

Quantitative data on fast neutrons are not
easy to interpret. The reasons are firstly, that
the neutrons obtained from most sources are
not monochromatic so that it is not known to
which neutron energy the results refer. Secondly,
the methods for detecting fast neutrons vary
enormously in efficiency with changes in the
neutron energy: E.g., the number of recoil pro-
tons formed by a neutron in a thick layer of a
hydrogenous substance is about proportional to
the neutron energy (§94). Endoergic reactions
such as Si2®+n'=Al+4+H! are only possible
above a certain neutron energy, and their yield
will depend on the energy even at higher energies.
For most of these reactions, the dependence of the
yield on the neutron energy is unknown so that
no exact interpretation is possible. The experi-
mental data can thus give only qualitative ideas
about the probability of various neutron
processes.

C. The cross section for inelastic scattering

The cross section for inelastic scattering may
be deduced either from measurements of the
v-rays emitted by the nuclei after excitation by

4 The resonance part of the elastic scattering is cer-
tainly for fast neutrons quite small compared to the
inelastic scattering, because there is only one possible
final state, the ground state, in the elastic resonance
scattering but a great number of final states are possible
for the inelastic scattering.
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fast neutrons (L.19, K7, K9) or from measure-
ments of the total absorption of fast neutrons
after elimination of the elastic scattering.

The production of v-rays by fast neutrons was
first measured by Lea (L.19), using neutrons from
a Po+Be source which have in the average
energies of the order of 5 MV. He deduced from
his experiments a cross section of about 2 or
3-1072 cm? for Fe and Pb, and much less for C.
He could also show that the y-rays were in all
probability due to inelastic scattering rather than
capture of the neutrons. This is confirmed by the
experiments on the slowing down of neutrons by
heavy nuclei (see below). The cross section may
be considered an upper limit because the excited
nucleus will, in returning to its ground state, often
emit more than one quantum (§90).

Kikuchi, Aoki and Husimi (K7, K9) measured
the y-rays produced by the fast neutrons of 2 MV
from a D+ D source. They investigated a great
number of elements all over the periodic table.
The cross section was about 11072 cm? for Cu
and Fe, i.e., slightly less than found by Lea with
his faster neutrons. For heavier elements, larger
cross sections were found,¥ for light elements,
smaller ones. No detectable y-rays (less than 5
percent of those from Cu) were emitted by any
element up to oxygen. This is easily explained by
assuming that these light nuclei do not possess
any excited states below 2 MV, and can therefore
not be excited by 2 MV neutrons. This is in
agreement with Lea’s result that carbon has a
small but definite excitation probability with
his faster neutrons. The increase of the excitation
probability with increasing weight of the nucleus
should partly be due to the fact that there will
be more and more energy levels below 2 MV,
partly simply to the increase in the nuclear
radius (cf. (565)), partly perhaps to an increase in
the “sticking probability’’ £ of the neutron.

Experiments on the effective absorption of fast
neutrons will give the cross section for inelastic
scattering only if all other processes, such as cap-
ture, a- and proton disintegration, are rare com-
pared to the inelastic scattering. This condition
is probably fulfilled for not too light nuclei (cf.
Section D). As a measure of the intensity of fast

47 The exceptionally high value found for Cd (more than
4 times the copper value) is probably due to an admixture
of slow neutrons in the beam, giving capture y-rays.

H. A. BETHE

§65

neutrons, the activity induced in a silicon detec-
tor may be used (D2, E1). The activity is due to
the process Si*®®+n'=Al%4+H' which requires
neutronsof atleast 3 MV energy (cf. Table LXIII).
Ehrenberg found that this activity was reduced
by 23 percent by a Ag cylinder of 15 mm. thickness
surrounding the source of fast neutrons (Be+ Po).
This would correspond to a cross section of about
3-10~% cm? for Ag, which is compatible with the
v-ray evidence of Lea and Kikuchi.

The amount of energy lost by a fast neutron in
exciting a nucleus in the Ag scatterer may be
estimated experimentally from the increase in the
activity induced in a detector, which responds
preferably to slower neutrons (e.g. Ag or Rh).
According to the experiments (D2, E1) the radio-
activity induced in Ag increases about twice as
much as that in Si decreases. Thus, if we assume
that the decrease in the Si activity measures the
number of inelastically scattered neutrons, the
scattered neutrons must be captured three times
as easily by Ag as the original ones are. Hence we
conclude that the energy loss of a fast neutron in
an inelastic collision with a nucleus in the Ag
scatterer must be fairly large.

This is in agreement with theoretical expecta-
tions. The nucleus possesses much more levels at
higher excitation energies and each level has, in
the average, the same probability of being the
final state in the inelastic collision (§54D). Using
the theoretical expressions for the level density
of the final nucleus (§53), we find that the average
kinetic energy of the scattered neutron will be
only of the order of the ‘‘temperature” of the
residual nucleus (evaporation model, §54E).
This temperature is only of the order of 1 MV for
heavy nuclei and 10 MV excitation energy (§53,
Table XXI) so that fast neutrons lose in the
average perhaps 90 percent of their kinetic
energy in an inelastic scattering process. Weiss-
kopf (W7) has investigated this problem in detail.

In conclusion, it may be pointed out that the
observed total cross sections for fast neutrons
(cf. Table XXVII) are of the same order as the
cross sections for inelastic scattering. This shows
that certainly a very large fraction of the ‘“total
cross section’’ observed is due to inelastic scatter-
ing. Elastic (potential) scattering can, accord-
ingly, at best be of the same order as the inelastic
scattering.
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If we take a value of 3- 10~ for the total cross
section for inelastic scattering, and put R=10"1
cm (medium sized nuclei), formula (565) gives a
“sticking probability’’ near unity (cf. §54D, E).

D. Capture of fast neutrons

A quantitative estimate of the capture cross
section for fast neutrons is even more difficult to
obtain than for the inelastic scattering. Since the
capture cross section is known to be extremely
large for slow neutrons, a small admixture of slow
neutrons in a fast neutron beam may produce
larger effects than the fast neutrons themselves.
Doubts of this kind seem justified in view of the
fact that Fermi, Amaldi, d'Agostino, Rasetti and
Segré (F13) found, in their pioneer work with
supposedly fast neutrons, large activities in all
those elements which were later found to be
strongly activated by slow neutrons, and in no
other cases of capture reactions. Now it is incon-
ceivable that the capture of fast neutrons should
have anything to do with that of slow ones. Large
capture of slow neutrons is, as we know, due to
strong low resonance levels which have no in-
fluence on fast neutrons.

The activity produced by fast neutrons should
be of the same order of magnitude for all heavier
nuclei which become radioactive by neutron cap-
ture, which must be true of all nuclei of odd
charge, for simple stability reasons™ (cf. §10).
Thus a measure of the capture probability for
fast neutrons may be found in the smaller activi-
ties observed by Fermi and collaborators with
odd elements. In this way, one may estimate cross
sections of the order of 1025 cm? or less for the
capture of fast neutrons.

Such a figure seems compatible with theoretical
considerations. If only scattering and capture
are possible, the cross-section for capture is

o¥,=nR%T,/(Cx+T,),

where T, is the total radiation width and Ty the
total neutron width. The radiation width will
presumably not change very much with the
neutron energy (cf. §87); its value is, according
to the slow neutron experiments, about 0.1 to 1
volt which agrees very well with the theoretical

(567)

478 Only if the radioactive element produced has a very
long life can the apparent activity be smaller than usual.
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value obtained in §87 (~3% volt). The neutron
width I'y may be written as

U

o<E

where the sum goes over all levels of the final
nucleus (which is, in this case, identical with the
initial nucleus) which can be excited by the inci-
dent neutron, i.e., whose excitation energy U, is
less than the kinetic energy E of the incident
neutron. Each partial width I'w, is, at not too high
enérgies, proportional to the velocity of the
neutron which is emitted when the nucleus is
left in state g, i.e.,

Tye=Tn,(E—Uj)t (568a)
The constant T'y,” can be estimated from Table
XXVI and is about § to 1- 1072 volt}. Thus T'y, is
of the same order as T, if the neutron energy
E—U, is of the order of 1 MV. Therefore, even
if no excitation of the nucleus (i.e., no inelastic
scattering) is possible, the neutron width will be
larger than the radiation width for neutron
energies larger than about 1 MV. Then we may
write approximately

Tx/T,~ N(E)E}, (569)

where N(E) is the number of states of the scatter-
ing nucleus with an excitation energy less than
E, and E is measured in MV.

Since the number of states of a nucleus in-
creases extremely rapidly with increasing excita-
tion energy, the capture cross section (567) be-
comes negligibly small as soon as the neutron
energy is sufficient to excite many levels of the
scattering nucleus. Thus really fast neutrons (of
several MV energy) should have extremely small
capture probability, and only medium fast neu-
trons (E of the order of a few hundred kilovolts)
will be appreciably captured. It should be possible
to confirm this point by experiments with neu-
trons of definite energy such as those from the
H2+4H? reaction.

We may thus distinguish altogether four en-
ergy regions for neutron capture:

(1) Thermal region.
(2) Resonance region (3 to, perhaps, 1000 or
10,000 volts).
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(3) Medium fast neutrons (1 or 10 to about
500 kv).
(4) Fast neutrons (>3 MV).

In the region of medium fast neutrons, it will

scarcely be possible to investigate the individual

resonance levels. Only the general trend of the
capture cross-section with energy can be found.
This is obtained by averaging the dispersion
formula over the resonance levels which gives
(cf. (405), s=3, J=1)

A? T'volye
IME T.D

oV a=7|"2
(o¥y

(570)

The subscript ¢ denotes that an average over the
resonance levels near the neutron energy E
should be taken, D is the average spacing of these
levels. Since the region of medium energy is
defined by the fact that the radiation width is
larger than the neutron width, we have I',=T,..
Furthermore, we put

T'wo.=I'no' E2. (570a)
Then
2 Two Two
(Y y)a=m? ——=2.03-10"18 cm?, (571)
2MD E} E}

where D and E are to be measured in volts, I'yo’
in volt!. If we put for medium heavy nuclei (cf.
Table XXVI, and after Table XXII)

D =10 volts, Tyo=10"3 volts}, (571a)

we have

(6¥)a=2-10"2E~} cm?. (572)

For E~100 kv, this is of the order of 10724 cm?.

For high energies, the ratio of radiation width
to neutron width may be expressed approxi-
mately in terms of the entropy, with the help of
the formula (359) for the partial neutron width,
(347) for the number of levels of the initial nu-
cleus below the excitation energy E, and (729a)
for the radiation width. The result is

I'n/Ty~1-10°EA4 }£e5(B-S(E+Q . (573)

Here E is the neutron energy in MV, £ the stick-
ing probability, 4 the atomic weight of the scat-
tering nucleus, S(E) its entropy corresponding to
an excitation energy E, and S (E+ Q) the entropy
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of the compound nucleus whose excitation energy
is the kinetic energy of the neutron plus the neu-
tron dissociation energy Q. Table XXVIII gives
T'x/T,, i.e., the ratio of inelastic scattering to cap-
ture, for various nuclei and neutron energies, for
¢=1. Table XXVIII shows the extreme small-
ness of the capture probability for high neutron
energy.

E. a-particle and proton emission

Reactions in which an incident fast neutron
causes the emission of an a-particle or a proton
are known in great number among the lighter
nuclei. The cross sections seem to be of the order
102 cm?, as should be expected from the inelastic
scattering of neutrons (Section C). As long as
there is no potential barrier to prevent the
charged particles from escaping from the nucleus,
the ‘“proton width” and “a-particle width”
should be of the same order of magnitude as the
fast neutron width.

In many cases, the a-particles and protons pro-
duced have been observed in the cloud chamber
(for references cf. §102) and their energies meas-
ured. As far as these measurements are reliable,
they show that the residual nucleus is left in an
excited state as often as not.*® This is to be ex-
pected from our general theory, because the

TaBLE XXVIII. Ratio of the probabilities of inelastic
scattering and radiative capture for fast neutrons.

NEUTRON

ENERGY A =20 50 100 200
2 MV 1.6-10¢ 6-108 4.108 4-108
5 MV 105 5-10¢ 4-10¢ 4-10¢
10 MV 3.5-10% 2-108 1.8-105 2-10%

4 With a monochromatic group of incident neutrons, the
produced particles should fall into several groups according
to the state g of the residual nucleus, the energy of the
emitted particle being

Eq=Ep+Wa—Ws(q),

where W4 is the energy of the initial nucleus in the ground
state, Wpg(q) that of the final nucleus B in the excited
state ¢q. Unfortunately, the neutron sources available do
not give monochromatic neutrons, so that the neutron
energy itself has to be determined from the resultant
momentum of particle Q and recoil nucleus B. Such de-
terminations are extremely uncertain, giving apparent
neutron energies of all orders of magnitude, including many
which are much higher than the known maximum energy
of the neutrons in the beam (B41). Such experiments can
therefore easily lead to spurious excitation levels, or even
to results entirely irreconcilable with reasonable expecta-
tions (K31).
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“‘partial widths” T'q, corresponding to the various
states g of the residual nucleus, will be of the same
order whether ¢ is an excited or the ground state.

For elements heavier than Zn (Z=230), the
potential barriers become too high to allow the
escaping of charged particles from the nucleus to
any appreciable ‘extent (B12). Capture of fast
neutrons plus subsequent emission of charged

NUCLEAR PHYSICS

161

particles has not been observed with elements of
higher nuclear charge than 30 (F13) except for
thorium and uranium (H7, M15). For this ele-
ment, as for other natural radioactive elements,
the large energy set free by spontaneous a-dis-
integration, plus the kinetic energy of the neu-
tron, are sufficient to bring the produced a-par-
ticle over the potential barrier.

XI. o-Radioactivity

§66. THEORY OF a-RADIOACTIVITY ACCORDING
to THE ONE-BoDY MoDEL (G6, G7,
G8, G10, C32, L4, B42, S10, St1)

The theory of the emission of a-particles by
radioactive nuclei was the first successful appli-
cation of quantum theory to nuclear phenomena.
As is well known, the theory was given simul-
taneously by Condon and Gurney (C32) and by
Gamow (G7). Subsequently, a great number of
authors (G8, G10, G6, L4, B42, S10Q, S11) have
given alternative, and partly more rigorous,
mathematical methods for arriving at the same
result. All these methods are based on the one-
body model, the a-particle being considered as
moving in a certain potential created by the
nucleus. They must, accordingly, be modified to
take into account the principles of the many-
body problem (§67).

The starting point of the one-body theory is to
assume a suitable potential between an a-particle
and a nucleus of charge*® Z. If the a-particle is far
away from the nucleus, the two particles will
repel each other according to the Coulomb law,
the potential energy being

V=2Zé/r, (574)

where z=2 is the charge of the a-particle and r
the distance between the a-particle and the
center of the nucleus. When the a-particle is in-
side the nucleus, the Coulomb potential (574)
breaks down and is to be replaced by a much
lower potential energy. This potential energy
may-be assumed to be constant over the interior
of the nucleus, so that

V=V, (r<R), (574a)

49 Z is, of course, the charge of the nucleus which re-
mains after the emission of the a-particle. The radioactive
nucleus itself has therefore the charge Z+2.

where R is the radius of the nucleus. The exact
value of V,is of no great importance. It is usually
positive but in any case smaller than the kinetic
energy E of the a-particles which may be emitted
from the radioactive nucleus.

The potential as a function of the distance
is shown in Fig. 17. Its maximum occurs at 7=R
and has the value

B=zZ¢/R. (575)

B is often called the top of the potential barrier.
Itis, for the natural a-emitters, much larger than
the energy E of the emitted a-particles.

If we consider a-particles of a given energy E,
we may divide the whole space into three re-
gions, v1z.:

(1) The interior of the nucleus, 7<R: Here, the
potential energy V is less than the energy
E of the a-particle.

(2) The region of the potential barrier, i.e.,
between R and

re=22¢*/E. (575a)

In this region the potential energy is
greater than the energy of the a-particle.

(3) The outside region, r>rg, in which again
V<E.

According to classical mechanics, the a-particle
could only move in regions 1 or 3. Once it was
confined in one of these regions, e.g. inside the
nucleus, it would be compelled to stay there
forever. In wave mechanics, we have the well-
known possibility of penetration through the
“forbidden region’’ 2. This enables a particle
originally in the nucleus, to ‘leak out” and to
appear, sooner or later, as a free a-particle out-
side the nucleus (in region 3). Wave mechanics
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FiG. 17. Potential energy of an a-particle in the field of a
nucleus according to Gamow.

allows us to calculate the probability for this to
happen in a given time, and thus to compute the
lifetime of radioactive nuclei in a perfectly
straightforward way.

Hardly any other problem in quantum theory
has been treated by so many authors in so many
different ways as the radioactive decay. All the
proposed methods are, of course, equivalent
(insofar as they are correct) but they differ in
rigor and compljcation. We shall give a method
which seems about the simplest of the correct
ones.

First of all, we shall assume in this section that the
wave function of the a-particle is spherically symmetrical,
corresponding to an ‘‘s state” of the a-particle in the
nucleus. Then the wave function of the a-particle can be
written

y=u/r, (576)
where u satisfies the equation
au/drr+2ME3(E— V)u=0, (576a)

V being given by (574, 574a) and E being the experimental
a-particle energy. At large distances from the nucleus, V
is small (cf. 574) so that the solution of (576a) becomes
simply a sine or cosine function, or more generally

u=Ae'*kr+ Be~ikr (577)
with
k=(2ME)}/k (577a)
and 4 and B some constants. The first term represents an
outgoing wave, the second a wave converging towards
the nucleus, as can be seen by multiplying the time factor
e~Euh with (577). In the physical problem, an a-particle
may leave the nucleus but none comes towards it from
outside, and we are therefore interested only in the first
term, via.
u=-Ae'kr,

(577b)

H. A. BETHE

§ 66

The constant A determines the number of a-particles
leaving the nucleus per unit time:

I=vdrrt|y|2=4x|4 |, (577¢)

while the form of (577b) determines also the form of the
wave function at smaller distances from the nucleus.

To obtain the wave functions for smaller values of r,
and especially inside the nucleus, it is simplest to use the
Wentzel-Kramers-Brillouin (WKB) approximation (W10,
K24, B61) in the form due to Kramers (K24). According
to this method, the solution of (576a) is approximately

u1(r) =®74(r) cos (S75 P¥(p)dp+}r) (578)
or us(r) =& 4(r) cos (Sr5 ®H(p)dp— 1) (578a)
in region (3) (“outside” region) Here

®(r)=2M(E—-V)/h? (578b)

is proportional to the kinetic energy E— V(r) which the
a-particle has when at the point 7. 7g is the classical dis-
tance of closest approach of an a-particle of energy E
falling on the nucleus from outside as defined in (575a).
The most general solution of the Schrddinger equation
“outside"” is

u=Blu;+Bzu2. (579)
In order to make % have the form (577b) we must choose
Bz=in. (5793.)

Since for large distances 7, the potential energy may be
neglected, we have in this case

®=2ME/R =Pk (580)
and, therefore, comparing (577b) and (578):
|A]=|B:i|k. (580a)

For 7 between R and 7g, ® (cf. 578b) would be negative.
The solution # in this region is of an exponential rather
than a wave type. The continuations of the functions
wuwy (cf. 578, 578a) in the barrier region are:

ui(r)=|8(r)[“texp [+S7E |8()|'dp],  (581)
us(r) =3|®(r) |“texp [—JSi'F |®(p) |¥dp], (581a)

u; decreases from the nucleus outwards, %, increases.
Inside the nucleus, we have assumed constant potential
energy V="V, so that the wave function becomes

u=csin «r, (582)
k= 2M¥E— Vy)i/h. (582a)

At the boundary of the nucleus (r=R), the solution (582)
must be identical with the outside solution [(579) to
(581a)] as to the value of the wave function and its first
derivative. In all practical cases, #:(R) will be much larger
than u;(R), because u, contains an exponential with a
large positive exponent, #; one with large negative ex-
ponent. We may therefore put

#(R) =c sin kR =Bu,(R)

where

=B:i|®(R)|texp [JRF|®(p) |!dp], (583)
(du/dr)r=«c cos kR
=—Bi1|®(R) |texp [JRF|®(p)|}dp]. (583a)

Dividing the lower equation by the upper, we have
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kcot kR=—|®(R) |} (583b)

Since the Coulomb potential V is very large at the top
of the barrier, ®(R) is large, and usually much larger than
k. Therefore practically®

cot kR= —w, (584)
kR=m, (584a)
cos kR=—1. (584b)

This gives, according to (583a),
Bi=xc|®(R)| %€ (585)
C=J7F|2(p) |dp. (585a)

The constant ¢ may be obtained by normalizing the internal
wave function (582) to unity:

4r S utdr = _1,

with

(586)
which gives

¢=(2xR)™. (586a)

From (577c) (580a) (584a) (585) (586a) we
obtain for the number of a-particles emitted per
second

27!'21) 7r2h26_20
=0 =V] (587)

" kR B(R) |} MIR2Ze'R-—E)}

The half-life is given by 7= (log 2)/N. If we
insert® for R the value 0.9-107'2 cm derived with
this model from experiment in §68, for Z the
average nuclear charge of radioactive elements,
i.e., about 86, and for E some average energy,
let us say, 6 MV, we find

7=3.3-10-%2C,

(588)

The most important factor in this formula is €2,
where C is given by (585a). Inserting & from
(578b) and V from (574), we have

TE
C= (?.M)*h“f (2Ze*r'—E)¥dr. (588a)
R

The integration is straightforward and yields

(2M)} 2Ze? ER\!
C= [arc cos (——)
n E} zZe?

ER\? ERN\}
-( (1__)] (589)
2Ze? zZe?

= (22Ze%/hv)[arc cos x* —#}(1 —x)}]

50 Other solutions, v2z. kR =3, 5r etc. would correspond
to excited a-particle states. Since a-particles obey Bose
statistics, there is no exclusion principle for them. In the
ground state of the nucleus, all a-particles will therefore be
in the lowest level.

% Since N\’ is not sensitive to the factor multiplying
e72C, we may replace that factor by an approximate value.
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with (cf. (575)) x=ER/zZe*=E/B. (589a)

For a rough approximation, we may neglect E
compared to B=2Z¢?/R, and replace arc cos x}
by 37 —x*; then

C=wzZe?/liv— (2¢/h)(22ZMR)}.  (589b)

The error in C committed when using this
approximate formula, is about 1.5 for E=6 MV.
Correspondingly, the penetrability e=2¢ would
come out about 20 times too large.

According to (589, 589b) the ““Gamow ex-
ponent” C is the larger, the higher the nuclear
charge Z, the slower the a-particle, and the
smaller the nuclear radius R. This is very
plausible, since increasing Z increases the height,
decreasing v increases the breadth, and decreasing
R increases both height and breadth of the
potential barrier, and the penetration of the
barrier will of course be the more difficult the
higher and broader the barrier.

The formula (587) for the lifetime may be

written as follows:
7=1o/P (590)

where P is the transmission coefficient of the
potential barrier,

P=eC (591)
with C given in (589), and
70=3.3-10"% sec. (591a)

would be the lifetime without potential barrier
which is of the same order as the ‘‘period of
vibration’’ of the «-particles in the potential of
the nucleus.

For the comparison with experiment, cf. §68.

§67. MANY-BoDY THEORY OF THE
a-DEcAY (B14)

According to the many body concept (cf.
Chapter IX), the a-particle must not be con-
sidered as moving freely in a potential created
by the residual nucleus. Only when the a-particle
has left the nucleus and is sufficiently far away
from it, will it be justified to consider a-particle
and residual nucleus as two separate entities.
When the a-particle is “‘inside’ the nucleus, its
four constituent particles take part in the com-
plicated motion of the compound (initial)
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nucleus and are in no way distinguishable from
the other particles in that nucleus. The a-particle
can thus not be considered to ‘“exist” in the
radioactive nucleus before its emission but only
as formed at the moment of its emission. Accord-
ingly, the probability of a-decay is the product
of two factors:

(1) The probability of formation of the a-
particle.

(2) The probability of penetration through
the potential barrier.

The first named probability will presumably be
quite small, making the decay constant of
a-radioactive nuclei small even in the absence of
a potential barrier. The lifetime of radioactive
nuclei would, perhaps, be 107 sec. (cf. (593a))
if they had no potential barrier. This time, it is
true, is much shorter than the actual lifetimes of
a-radioactive nuclei, but it is very much longer
than the “period of vibration” 7,=10-% sec.
(cf. 591a) which would give the lifetime without
barrier in the one-body model.

Since the lifetime without barrier is much
longer in the many-body than in the one-body
theory, it is obvious that much lower and
narrower barriers are required in order to explain
the observed lifetimes of the a-radioactive nuclei.
Indeed, the nuclear radii deduced from the
many-body concept are about 40 percent larger
than those derived from the one-body model
(cf. Table XXIX), corresponding to a potential
barrier of only seventy percent of the height
required in the one-body theory.

In order to derive the nuclear radius from the
experimental data, it is, of course, necessary to
separate the probability of penetration through
the barrier (‘2" above) from the probability of
formation of the a-particle (“1” above). In order
to estimate the latter probability we assume that
the emission of an a-particle by a nucleus would,
in the absence of the potential barrier, be just
as probable as that of a neutron of the same energy.
The latter can be obtained from the ‘‘neutron
widths” measured for slow neutrons (§60), if we
admit that the neutron width is proportional to
the neutron velocity (§54, 56).

According to Table XXVI we have in the
average

TvE;t=~4-10~1 volts?, (592)
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where T'y is the neutron width of a resonance
level at the neutron energy E,. Taking E,=6 MV
which is about the average energy of a-rays,
we find

I'v=1 volt. (592a)

We assume for the a-radioactive nuclei that the
“a width in the absence of a potential barrier”
would also be

G.=1 volt. (593)

The decay constant in the absence of a barrier
would then be

G./h=10" sec.”! (593a)
and in the presence of the barrier
AN=T./h=G.P/k, (594)

where P is the penetrability given in (591)
Numerically we have;

logm A= lOglo P+ 15.2=15.2— 0869C,
where C is given by (589).

(594a)

§68. CompPARISON WITH EXPERIMENT (G9, G10)

The relation (588), (589) between the life-
time and the disintegration energy of a-radio-
active nuclei was discovered by Geiger and
Nuttall (G13) as early as 1911, on a purely
empirical basis. With the help of the approximate
formula (589b), the relation can be written in
the form

log 7=2n2Ze?/hv—K, (595)

where K is a constant involving, according to
(589b), the radius of the radioactive nucleus
(or, more accurately, of the nucleus produced in
the a-disintegration). Assuming the radius to be
about the same for all radioactive nuclei, we find
a linear relation between the logarithm of the life-
time and the reciprocal velocity of the a-particle.
Therefore, relatively small changes of the a-par-
ticle energy correspond to very large differences
in the lifetime : The slowest a-particle, that from
thorium, has an energy of 4.3 MV, the fastest
(from ThC’) one of 8.9 MV, i.e., only a little
more than twice as much. The corresponding
lifetimes are 2-10'° years and 2-10~% sec.,
differing by a factor 10%. This huge variation of
the lifetime is correctly represented by (595),
with almost the same K throughout, i.e., almost
the same nuclear radius.
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F1c. 18. The function y(x) determining the penetrability of the potential barrier (cf. (600)).
x is the ratio of particle energy to height of barrier.

Gamow (G9, G10) has compared all experi-
mental data with the theoretical formula (595).
It is most convenient to use the experimental
data for the decay constant and the energy of
the a-particle, and to compute the nuclear
radius from these data, with the help of the
theoretical formula. If the formula is correct,
the radius R must come out about the same for
all radioactive nuclei. This is actually the case
for both the one and the many-body theory, as
can be seen from Table XXIX. With the one-
body method, all radii are between 8.2 and
9.8:107'% cm, with the many-body model, they
vary between 11.3 and 13.2: 10713 cm. Exceptions
are, in both cases, the radii for the C and C’
products.

Our values for the nuclear radii from the one-
body model are, in the average, about 0.5-10-13
cm larger than Gamow’s. The main reason for
this is that we have used the exact formula (589)
rather than the approximate one (589b), for
calculating C.

Much larger are the differences between the
radii derived from the one- and the many-body
concept. In part A of this report, the radius

from the one-body concept was used (cf. §8, 26,
30, etc.). The effect of the introduction of the
new, larger radius on calculations concerning
the stability of nuclei is considerable. In the
present part B the radius derived from the
many-body problem has been used throughout.

To judge the accuracy of the nuclear radius
obtained from the many-body problem, we
investigate the influence of an error in the
estimate of G, (cf. (593)) on the calculated
radius. According to (594), a given error in G,
means an equally large error in P, only in the
opposite direction. Now, according to (589b),
small variations of R and P are connected by
the formula

0P 6R 2e
—=——(2MzZR)}.
P R

(596)

Inserting the numerical values (R=12.3-10"13

cm), this gives
8P/P=~506R/R. (596a)

Now our estimate for G, will probably be
correct within a factor 100. This means an
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uncertainty of =410 percent in the nuclear
radius. Thus we may write our result for the
average radius of the a-radioactive nuclei

R=123-10"8 cm=+10 percent.  (597)

From this radius, we may obtain the radii of other
nuclei if we assume proportionality between
nuclear volume and number of particles in the
nucleus:

R=rA?}, (598a)

where 4 is the atomic weight. Taking the average
of all the radioactive nuclei with the exception of
the C products, we find

70=12.35-10"3.219.6"¥=2.05-10"% cm. (598)

Accordingly, the height of the potential barriers
becomes

B=2Z¢!/R=0.70:2ZA* MV.  (599)

In the particular case of light nuclei we may put
A=2Z so that
B=0.55zZ1.

With the values (598) (599) for nuclear radius
and height of the potential barrier, the formula
for the penetrability of the potential barrier of a
given nucleus of charge Z and mass number 4 by
particles of charge z and mass number a takes the
simple form (cf. (591a) (589))

(599a)

P=exp [—2gv(E'/B)], (600)
where
g=12MzZe*R)}/ 1
=0.375(Zz4a/A+a)*4}, (600a)
v(x) =x"tarccos x*—(1—x)}, (600b)

For M the reduced mass has been inserted. E’ is
the total kinetic energy (of particle plus recoil
nucleus) in the system of reference in which the
center of gravity of nucleus and particle is at
rest. The function y(x) is plotted in Fig. 18 as a
function of x. If we neglect in (600a) a compared
to A and put then 4 =2Z we have

g=0.42(az)}Z%. (600c)

Values of g for various nuclei are found in Table
XXXIII, §70.

In computing Table XXIX, it is of course,
necessary to take for v in formula (589) the rela-
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tive velocity of a-particle and recoil nucleus which
is (44+4)/A times the velocity of the a-particle
itself if A is the atomic weight of the product
nucleus. Similarly, the energy E includes the
kinetic energy of the recoil nucleus.

Table XXIX includes samarium which is known (L35)
to give a-particles of 1.28 cm range, i.e., 2.46 MV energy
(the figure in the table includes again the recoil energy).
The number of a-particles emitted is about 4 per cm? of
Sm;0; per min. (R17). From the range of the a-particles
and the stopping power of Sm and O, we may estimate that
about 1.5-10'® Sm atoms per cm? are close enough to the
surface so that their a-particles may be detected. Con-
sidering the (uniform) angular distribution of the alphas,
one in four emitted particles will actually be detected.
Assuming that the radioactive isotope of Sm has an
abundance of 10 percent, we find for the decay constant
A=4-4/60-1.5-1018=1.7-10"1 sec.™ . The radius turns out
to be 9.4-1078 cm, i.e., about what would be expected
from (598a).

It is of interest to note that no a-particles of less than
4 MV have been observed from nuclei of the radioactive
families. Indeed, an energy somewhat below 4 MV would
make the penetration of the potential barrier so rare that
no radioactivity could be detected. Assuming that one
a-particle per hour per cm? constitutes the limit of observa-
bility, we may easily calculate the minimum energy of

TaBLE XXIX. a-disintegration.

NUCLEAR
DISINTE- Rapius R
GRATING | ProbuCT DEecay IN 10718 cm
ENERGY E | CONSTANT A

NuUcCLEUS z MV IN SEC.7! OLp | NEW
Th MThI | 88 4.34 1.2 -10718 | 8.7 | 11.3
RdTh | ThX | 88 5.52 1.15-107% | 8.8 | 12.3
ThX Thn 86| 5.79 2.20-10% [ 9.0 12.5
Thn ThA | 84| 6.40 1.27-1072 | 9.1 | 123
ThA ThB | 82| 6.90 5.0 8.9 12.7
ThC ThC” | 81| 6.20 6.7 -103 | 7.0 | 10.6
ThC’ ThD | 82| 8.95 [4-1077* — [ (13.9)
Ul UXI |90 4.15 5.0 -1071¢ | 9.8 | 13.2
UII Io 90| 4.76 (7-10714) | 9.6 | 13.0
Io Ra 88| 4.67 29 107 | 9.5 13.1
Ra Rn 86| 4.88 1.42-1071 | 9.0 | 12.5
Rn RaA 84/ 5.59 2.10-10°% [ 9.0 12.6
RaA RaB 82| 6.11 3.8 <10 [ 9.0 12.5
RaC RaC” | 81] 5.61 2.3 1077 | 7.2 10.9
RaC’ RaD |82 17.83 7-10* 9.4 13.9
RaF RaG | 82| 5.40 5.7 -10% | 8.2 | 11.5
Pa Ac 89| 5.16 6.9 1073 | 8.6 | 11.6
RdAc | AcX 88 6.16 425-1077 | 84| 114
AcX An 86| 5.82 7.2 <1077 | 8.8 | 12.1
An AcA 84| 6.95 1.77-1071 | 8.5 | 12.0
AcA AcB 82| 7.51 3.5 -10%2 | 8.8 | 12.8
AcC AcC” | 81| 6.74 5.3 <1073 | 7.3 | 10.6
AcC’ | AcD |82 7.8 [1-10%74 — | (13.9)
Sm Nd 60 2.55 1.7-1012 | 6.7 9.4

* Calculated from radius by means of the theoretical relation. The
radius was assumed equal to that of RaC’.
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the a-particle necessary to give an observable radio-
activity. If we assume a range of the a-particles of 1.5 cm
air, and make observations with a pure element, there
are about 2-10'? atoms per cm? whose a-particles may be
detected. Then an activity of one particle per hour per cm?
is equivalent to a decay constant A=1/3600-2-10'%, Ac-
cording to (594a), this means about C=44. Inserting this
into the approximate formula (589b), and assuming the
nuclear radius R to be proportional to Z3%, we find for the
limit of a-activity

Emin.=3.922/(44+2.412Z1)2, (601)
As a function of the nuclear charge, this gives:
zZ 10 20 30 40 50 60 70 80 90

Enin, 0.13 0.41 0.77 1.2 1.65 2.15 2.65 3.15 3.7 MV

Thus a-particles of less than 3.7 MV energy would give
no observable radioactivity for a nuclear charge of 90,
and even for Z as low as 40, an energy of more than 1.2 MV
would be required. This fact is important for considerations
about the stability of nuclei against a-decay (§8).

Of particular interest among a-emitters is Be3.
This nucleus is known to be formed in some trans-
mutation processes (Chapter XVII) and seems
to have a mass just larger than that of two
a-particles, the difference being of the order of a
few hundred thousand volts. Be® should therefore
break up spontaneously into two a-particles
(This process has not yet been observed.) The
lifetime will depend on the “‘size” of the a-particle,
i.e., on the maximum distance R up to which two
a-particles exert attractive forces upon each
other. For the values R=2.5-10"1 and 5-10-1,
which are probably too low and too high respec-
tively, and assuming Go,=1 MV for a nucleus as
light as Be?, we find the values for the lifetime
given in Table XXX. The lifetime should there-
fore be exceedingly short, even if the energy of
Be? is only 50,000 volts higher than that of two
a-particles.

The derivation of nuclear radii given here is
open to criticism on three points: Firstly, it is
questionable whether the ‘“width without bar-
rier’” is the same for a-particles as for neutrons;
secondly, the width may be larger for the ground
state than for a highly excited state; and thirdly
the radius obtained is probably the sum of the
radii of nucleus and a-particle rather than that
of the nucleus alone.

On the first point, we have very little informa-
tion. It is not known experimentally whether the
partial width for the emission of a-particles is in
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TaBLE XXX. Estimated lifetime of Be® as a function of the
energy excess E over two a-particles (in seconds).

E (1IN MV)

7 for R=2.5-10"18 cm
7 for R=5-10"18 cm

0.05 0.40

4-10713  3-10716 2-10718 2-10719 5-10720
7-10714 4-10717 3-1071% 3-10720 1-10720

0.10 0.20 0.30

the average larger or smaller than that for the
emission of neutrons or protons (leaving out the
penetrability of the potential barrier in each
case). Some experiments with light nuclei indi-
cate a larger probability for a-emission (e.g.,
F1o94n'—-N®{+ Het or O+ H?, cf. §102), others a
larger probability for emission of protons (e.g.,
Na®+4 H?=Na+4H! or Ne?+He?, cf. §101). The
rather scarce evidence on heavy nuclei is com-
patible with about equal @ priori probabilities for
a and proton emission. Theoretically, it may be
argued that the neutron width should be larger
because the neutron is an elementary particle,
but also that the a-width should be larger be-
cause there might be some slight tendency for the
preformation of a-particles in nuclei due to their
great stability. We are rather inclined to think
that, if anything, the neutron width would be
larger.

As regards the second point, some dependence
of the width on the excitation of the nucleus
seems plausible. If nuclear states are described in
terms of ‘“‘configurations” of the individual par-
ticles (Hartree approximation), the ground state
may be a mixture of a smaller number of such
configurations (perhaps a hundred) than an ex-
cited state (containing perhaps a million con-
figurations). If this is true the partial width of the
ground state corresponding to disintegration into
a definite state of the residual nucleus, plus an
a-particle, might be considerably larger than
that of an excited state; this would give some
intermediate value for the nuclear radii between
the one-body and the many-body result. Perhaps
a better estimate of the a-particle width (without
barrier) of the ground state will ultimately come
from the matrix element of B-disintegrations
(Nordheim and Yost, in course of publication).

The third question is: what exactly is meant by
“top of potential barrier’” and “nuclear radius’ ?
It must be admitted that the a-particle itself has
a finite radius, and also that the nuclear forces
have a finite range. Therefore it will not be
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necessary for a breakdown of the Coulomb law
that the center of the a-particle enters the nu-
cleus and not even that the a-particle “‘touches”
the nucleus. The effective radius, measured in the
radioactive decay, will be approximately the sum
of the radii of the nucleus itself and the a-particle,
plus a quantity of the order of the range of the
nuclear forces. Therefore the radius of the nucleus
itself may be appreciably less than the value de-
rived from the radioactive decay constant. Thus,
presumably, a smaller radius should be used in
calculations of the nuclear properties such as the
contribution of the Coulomb energy to the nu-
clear forces (§9), the semi-empirical formula for
nuclear binding energies (§30) and the density of
nuclear levels (§53). We have used the larger
radius derived from (594a) in all our calculations
but mainly because there is at the moment no
way of obtaining the radius of the nucleus itself.

For calculating the probability of nuclear dis-
integrations and especially the transmission co-
efficients of nuclear potential barriers, it seems to
be far preferable to use directly the nuclear radius
derived from the many-body picture of radio-
active decay. In all transmutation problems, the
effective radius will be determined again by the
sum of the radii of the initial nucleus and the
incident particle, plus a quantity of the order of
the nuclear forces. If the particle is an a-particle,
the situation will therefore be exactly the same as
in the natural a-decay and the nuclear radius
may be taken over immediately. For protons and
neutrons, the size of the particle itself is zero but
the extension of the forces will probably be larger
than for the saturated a-particle so that in effect
the a-particle radius may again be a good ap-
proximation. For deuterons, a larger effective
radius may be taken, perhaps 2-10~'® may be a
fair estimate of the additional term in the effec-
tive radius (i.e., of the difference between the
radii of a-particle and deuteron).

While these problems about the exact meaning
of the nuclear radius remain to be settled, there
can be no doubt that in principle the many-body
picture must be applied to the natural a-decay
just as much as to other nuclear processes. This
can most easily be seen by going to the limit of
extremely large nuclei (which do not exist in
nature), for which all the correction terms men-
tioned would be negligible.
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§69. COMPLEX «-SPECTRA. LEVELs oF RabIo-
AcTIVE NucLEl (R5a, R12, R14,
R14a, R22, R23, L23, G6)

In many cases, the a-rays emitted from a radio-
active nucleus are not homogeneous but consist
of groups differing in energy. These groups have
been studied by Rosenblum (R12, R14, R14a)
and by Rutherford, Wynn-Williams, Lewis and
Bowden (R22, R23, L23) using a magnetic
spectrograph. The main results are given in
Table XXXI. The elements not quoted, viz. UI,
UII, Io, Rn, RaA, Po, Pa, AcA, AcC’, Th, Thn,
and ThA, emit homogeneous a-rays. The dis-
integration energy is equal to the kinetic energy
of the a-particle times 4/(4 —4) where A4 is the
atomic weight of the emitting nucleus. The
relative numbers of particles in the various
groups are given in percent for the spectra
denoted as “type 1,” in particles per million for
“type IL.”

The complex a-spectra fall naturally into two
types, I and II. The spectra of type I consist of
rather closely spaced lines, the spacing being of
the order of 100 kv, of about equal intensity, the
groups of lower energy being usually less intense.
This type comprises most of the a-spectra.
Spectra of type II contain one very strong group
and several very weak groups of much higher
energy, the energy differences being of the order
of 1 MV and the ratio of intensities between 10*
and 10%. This type is only found for the very
short-lived a-emitters ThC’ and RaC’. The
interpretation is as follows:

Type I spectra correspond to transitions from
the ground state of the initial nucleus to various
excited states of the final nucleus. This hypothe-
sis, which was first suggested by Gamow (G6) is
confirmed by the internal conversion of the y-rays
emitted by the final nucleus when left in an
excited state (§88A). (The energies of the con-
version electrons correspond to the electronic
energy levels of the atom produced in the a-dis-
integration rather than of the atom emitting the
a-ray.) The longest range a-group observed
(group 0) must be attributed to a transition to
the ground state. The difference in disintegration
energy between any group # and group 0 gives
the excitation energy of the level in which the
final nucleus is left after emission of group #.
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The excitation energies derived in this way are
listed in the fourth column of Table XXXI. The
spacing between adjacent levels is smallest (about
40 kv) for the nucleus produced by a-emission
from radioactinium, »iz. actinium X ;in the aver-
age over all radioactive elements, the spacing is
about 100 kv.

Transitions to excited levels are in general less
probable because of the smaller penetrability of
the potential barrier for the slow a-particles
corresponding to such transitions. From the
general formula (589b) we find that the pene-
trability decreases approximately by a factor

P(E)/P(E—SE)=exp (1706E/E*%) (602)

for a decrease in disintegration energy by JE,
where 8E and the disintegration energy E itself
are measured in MV. For E=6 MV, this cor-
responds to a factor of about 3 for each 100 kv
decrease in disintegration energy. This means e.g.
that the disintegration probability without barrier
must be about the same for the groups 1 and 4 in
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the disintegration of thorium C, since the ob-
served numbers of particles for the two groups
are about in the ratio of the expected penetra-
bilities. On the other hand, groups 7 and 9 of
radioactinium have evidently an enormously
larger disintegration probability without barrier
than group O because they contain about as
many particles as the latter group although the
penetrability is about 30 times smaller for them.
The decrease of the penetrability is obviously the
explanation for the absence of a-groups of very
low disintegration energy, i.e., very high excita-
tion energy of the final nucleus.

The nuclear energy levels obtained from
a-groups can be checked by the y-rays emitted
from the product nucleus after the a-disintegra-
tion (§88). The most extensive comparison has
been made for ThC", i.e., the nucleus formed by
a-decay of ThC. Table XXXII gives the possible
combinations between the levels of ThC” as
derived from the a-groups (‘“‘calculated” kv,
column 2) and the observed y-rays (column 3).

TABLE XXXI. Complex a-spectra.

DISINT. ExcIt. RELAT. DISINT. Excrr. RELAT.
ELE- Group ENERGY ENERGY NUMBER ELE- Group ENERGY ENERGY NUMBER
MENT* No. MV kv OF PART. | MENT* No. MV kv OF PART.
ovpel AcX 0 5.823 0 0
: 0 4.879 0 — c . 4
Ra 1 4.695 184 — 1 5.709 114 35
RaC 0 5.612 0 45 2 5.634 189 18
1 5.550 62 55 3 5.543 280 7
RaTh 0 5.517 0 85 An 0 6.953 0 70
1 5.431 86 15 1 6.683 270 15
ThC 0 6.2007 0 27.2 2 6.556 397 11
1 6.1607 40.0 69.8 3 6.343 610 4
2 5.8729 327.8 1.80 | AcC 0 6.739 0 84
3 5.7283 472.4 0.16 1 6.383 356 16
4 5.7089 491.8 1.10
RaAct 0 6.159 0 24 Type I1
1 6.127 32 2 RaC’ 0 7.829 0 108
2 6.097 62 19 1 8.437 608 0.43
3 6.075 84 1 2 9.112 1283 0.45
4 6.030 129 3 3 9.242 1412 22
5 5.975 184 4 4 9.493 1664 0.38
6 5.921 238 3 5 9.673 1844 1.35
7 5.869 290 22 6 9.844 2015 0.35
8 5.847 312 1 7 9.968 2139 1.06
9 5.822 337 18 8 10.097 2268 0.36
10 5.776 383 3 9 10.269 2440 1.67
10 10.342 2513 0.38
11 10.526 2697 1.12
12 10.709 2880 0.23
ThC’ 0 8.948 0 108
1 9.674 726 34
2 10.745 1797 190

* Element emitting the a-particles.

T Rosenblum, Guillot and Perey (R14a) report 18 instead of 11 a-groups for RaAc and about 10 for AcX. According to the authors,
most of these new groups require confirmation as to their exact position and some as to their existence.
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TABLE XXXII. Possible combinations between nuclear levels
of ThC" and observed v-rays.

hy (kv) hy (kv)
ComBI- DEesiG-| CoMmBI- DESsIG-
NATION | CALC. | OBS. | NATION| NATION | CALC. | OBS. | NATION
4—3 194 — — 3—1 |432.4(431.7| =,
4—2 (164.0| — — 3—>0 |472.414709| s
4—1 |451.8(451.1| » 2—1 |287.8(286.9| ~va
4—0 [491.8| — — 2—0 |327.8(326.7| s
3—>2 | 1446 | — — 1—0 40.0f 39.9| ~s

The agreement is perfect within the experimental
accuracy. Of the 10 possible combinations, 6 are
“‘allowed” by optical selection rules. From obser-
vations of the internal conversion of the vy-rays
it can be shown (§88B) that all the observed
y-rays correspond to quadrupole radiation.

Type II a-spectra are interpreted as being due
to various states of the initial nucleus emitting
the a-particle. Such an emission of a-particles from
an excited state is only possible if the emission
probability is comparable with the probability of
the emission of a y-ray by which the nucleus
would go over into a lower quantum state. Since
the lifetime of nuclear states against y-emission is
only about 10~ sec. (see below, and §87, 88),
a-particle emission from excited states isonly
possible if the respective a-particles have ex-
tremely high energies. Accordingly, the emission
of a-rays of longer range than the normal group
has only been observed for the nuclei RaC’ and
ThC’ for which the normal a-particles are already
very energetic.

Neither RaC’ nor ThC’ seems to have any
a-spectrum of type I, i.e., any groups of a-par-
ticles having energy lower than and intensity
comparable to the main group (0). Thus it seems
that the final nuclei formed in the disintegrations,
212. RaD and ThD, respectively, have no excited
levels of importance. The observed long range
a-groups should thus give directly the excited
levels of the initial nuclei RaC’ and ThC'. The
level schemes obtained from the a-groups can
again be checked, to a certain extent, by the
y-rays accompanying the a-disintegration. These
y-rays are, in this case, alternative to the emis-
sion of long range a-particles and not following it.

The number of a-rays in a given long range
group is proportional to

No=FT./(T,+T.). (603)
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Here F is the probability of formation of the
excited state from which the group originates, in
the preceding disintegration, i.e., in the B-disin-
tegration of RaC and ThC, respectively. I', and
T, are the probabilities of emission of a-rays and
y-rays from the given excited level. The number
of vy-rays emitted from the same excited level
would be

N,=FI,/(T+T.). (603a)

By comparing the number of y-rays and a-rays,
we can therefore determine the ratio T',/Ts The
results are approximately (cf. §88) I',/T.~105,
90, 4000 and 100 for the levels 1 and 3 of RaC’
and the levels 1 and 2 of ThC’, respectively. This
means that y-emission is more probable in all
cases which agrees with reasonable theoretical
expectations (§88).

The most important application of the ob-
served ratio T,/T, is to estimate I',. The prob-
ability of emission of a-rays may be estimated by
the usual formula I',=G.e~*¢ where we put the
“a-ray width without barrier” G, again equal to
one volt, and calculate the penetrability exponent
C from the general formula (589), with the nu-
clear radius R=13.9-107*% cm as observed for the
ground state (group 0) of RaC’. Thus we obtain
B/Te=2.7-10"7, 9.5-10~% 1.6-10° and 6-101
sec., and therefore /T, = 3, 800, 4 and 6- 10~ sec.
for the four levels mentioned. This is the only way
available for determining the lifetimes of excited
states of radioactive nuclei for y-radiation. For a
discussion of this lifetime, cf. §87, 88C.

Since Ty is always much larger than T, the
number of nuclei formed in the excited state is
practically equal to the number of emitted
v-quanta. For all the four levels of RaC’ and
ThC’ mentioned, the probability of formation is
much less than the probability of formation of
the ground states of the respective nuclei, »iz.
about 0.4 and 0.0025 for the excited levels no. 1
and 3 of RaC’, and 0.14 and 0.02 for the two
excited levels of ThC’. The reason for this small
probability of formation is obviously the fact
that the probability of B-decay increases with
increasing B-energy (§41) and is therefore greater
when the B-decay leads to the ground state unless
this transition is forbidden.

Complete level schemes using both «- and
y-ray data have been given by Ellis (E2, E3, E4,
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E7, E8, E9) for the radioelements ThB, C, C/,
C” and D. From these level schemes, the first
evidence for the neutrino hypothesis was derived
(839), since it could be shown that the total en-
ergy evolution in the disintegration ThC—C’'—D
was the same as in the alternative disintegration
ThC—C""—D when the maximum energy of the
B-rays was considered as the disintegration
energy. Ellis (E8, E9) has also given a scheme of
levels for RaC’.—1In all cases, the relative excita-
tion probabilities of the various levels have been
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worked out. From these, the average excitation
energy can be calculated which may be compared
to the total energy evolution in the disintegration
as measured calorimetrically. The agreement is
fairly good (E2).—Attempts have been made to
assign quantum numbers (angular momentum)
to the various states, using the results about the
character (dipole or quadrupole radiation) of the
various vy-rays emitted and the selection rules
indicated by the absence of certain v lines. The
results are still questionable.

XII. Scattering of Charged Particles by Nuclei

§70. GENERAL REMARKS

The scattering of a-particles by nuclei is one
of the oldest methods for exploring nuclear fields.
More recently, the scattering of protons by pro-
tons (§18) gave the most convincing proof for
the existence of forces between like particles. The
scattering of protons and deuterons by deuterons
and a-particles will probably provide an excellent
test of our theoretical ideas about the nuclear
forces and of the approximate wave functions
used for these light nuclei (cf. Chapter I1I). The
scattering by slightly heavier nuclei, from Li to
Si or P, has given and will give evidence about
nuclear resonance levels. It appears that the
scattering of charged particles is very sensitive
to small deviations from the Coulomb field and is
therefore well suited to investigations of nuclear
forces and resonance levels. For this reason, it is
regrettable that so little attention has been paid
to this field of nuclear physics in more recent
years. Of course, it must be admitted that scatter-
ing experiments are useful only for the lighter
nuclei; for the heavier ones, the Coulomb scat-
tering is too large and masks all other effects
even if particles of sufficient energy are available
to penetrate through the Coulomb field into the
nucleus.

The theoretical treatment of the scattering is, of course,
most conveniently carried out in a coordinate system in
which the center of mass of scattered particle and scatter-
ing nucleus is at rest (C system, §14). If M, is the mass of
the scattered particle, M, that of the nucleus, and ¢ the
deflection of the scattered particle in the C system, then
the observed deflection @ of the particle in the laboratory
coordinate system (R system) is given by

M, sin ¢
M1+Mz cos ¢

provided the scattering nucleus is initially at rest. Con-
versely, ¢ may be deduced from the observed deflection ©:

tan O = (604)

sin (¢— @) = (M,/M,) sin © (604a)
or, approximately, for M,>> M;:
=0+ (M/M,) sin O. (604b)

The scattering nucleus itself experiences a recoil; the
angle between its direction of motion and that of the
incident particle is simply

e=1%(r—9). (604c)
The number of particles scattered through an angle be-
tween © and ©4-d® in the ordinary coordinate system, is
N(O) sin @d0O = N(#) sin 3d¢
N(8)[ M1 cos O+ (M2— M2sin? ©)i |
= Od
o, (M= M7 sin? ©) sin 0, (605)
where N(9) is the number scattered per unit solid angle in
the C system. For M;<< M, this reduces to:
N([142(M:1/M>) cos ©]sin 6. (605a)

The mass to be inserted into the Schrédinger equation

is the reduced mass
M=MM,/(M,+ M,). (606)

The kinetic energy associated with the relative motion of
scattered particle and scattering nucleus is

E=M7,Eo/(M1+M2)=%M”2, (606a)
where v is the velocity of the incident particle in the
laboratory system and Eo=}M;s? its kinetic energy meas-

ured in the ordinary way. The energy transferred to the
scattering nucleus in the collision is

E'=4EM MM+ M2)~2 sin? }8. (607)

The maximum fraction of the energy of the incident
particle which can be transferred is thus

E' max/Eo=4M M,/ ( M+ M,)?; (607a)

the scattered particle goes, in this case, back into the
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direction from which it came (@ =9 =180°) with a velocity
equal to (M:— M,)/(Mz+ M) times its original velocity.
All these relations follow from elementary application of
conservation of energy and momentum.

If only the Coulomb force acts between scat-
terer and scattered particle, the cross section®?
for scattering through an angle between ¢ and
9-+dd, is given by the well-known Rutherford
law

o(9) sin 9dd = 2w (2Ze?/2 Mv?)?

X (sin 38)~*sin 9d®, (608)

where Ze is the charge of the scattering nucleus,
ze that of the scattered particle, M the reduced
mass (606) and v the velocity of theincident
particle.

The Rutherford law (608) has proved correct
for the scattering of a-particles and protons by all
heavy nuclei. As is well known, the scattering of
a-particles by heavy nuclei was the original basis
of Rutherford’s proposal of the nuclear atom
(R26). The accuracy of the Rutherford law for
heavy nuclei is so great that the nuclear charge
can be determined from the scattering of
a-particles (C11).

We are interested in deviations from the
Rutherford law. Such deviations will occur (1)
if the incident particle has an energy great enough
to overcome the potential barrier of the nucleus,
and (2) if there is resonance, i.e., if the kinetic
energy of the incident particle plus the internal
energy of the initial nucleus is equal to the
energy of one of the states of the compound
nucleus.

Experiments on the scattering of particles by
nuclei can therefore be used to find resonance
levels and also to find the height of the potential
barrier. If there is a strong deviation from the
Rutherford law which is restricted to a small
energy interval, we shall attribute it to resonance.
On the other hand, a deviation which setsin
rather gradually with increasing energy, and does
not disappear upon further increase, is in general
interpreted as showing that the particle can go

%2 The cross section is so defined that the number of
particles scattered by a substance containing N scattering
nuclei per cm3, is

I= NI, o(¥) sin 9d9,

where I, is the number of incident particles per cm? per
sec., and I the number of particles scattered per sec.
through an angle between ¢ and ¢+d3d.
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over the top of the potential barrier. (For the
exact explanation, cf. §71.)

It must be admitted that the heights of poten-
tial barriers obtained from scattering are not
very accurate. The reasons for this are (1) that
the penetration through the barrier is already
fairly probable when the particle energy is still
well below the height of the barrier, (2) that the
penetration of particles of higher angular mo-
mentum keeps increasing even for energies
higher than the barrier (§78), (3) that resonances
may occur even for energies above the barrier
height (§§78, 82).

As far as the evidence goes (§§74, 75), the radii
deduced from scattering experiments seem com-
patible with the assumption that the nuclear
volume is proportional to the number of particles
in the nucleus. With this assumption, we have
found (cf. (598), (598a))

R=2.05-10"34%cm (608a)

and the expressions (599), (599a) for the height
of the potential barrier, B. In applying these
formulae, it must be kept in mind that only the
relative kinetic energy is available for overcoming
the potential barrier. With the notations used in
the beginning of this section, the relative kinetic
energy is Ma/(M1+ M) times the total kinetic
energy of the incident particle, provided the
bombarded nucleus is at rest. Therefore, if
a=M,/M, (My=proton mass) is the atomic
weight of the incident particle, the kinetic energy
must be greater than

B=0.702Z(A+a)A~* MV (609)

in order to overcome the potential barrier. Table
XXXIII gives the effective heights of the poten-
tial barriers of various nuclei for various incident
particles according to (609).

The fastest a-particles available are those from
ThC’ which have an energy of about 9 MV. Thus

TaBLE XXXIII. Effective heights B of potential barriers in
MYV. “Characteristic orbital momenta g(Z).

VA 2 4 10 20 30 50 70 92
A 4 9 20 40 66 112 174 238

NucLEUS He Be Ne Ca Zn Sn  Yb U
Height of Protons 1.1 1.5 2.7 4.2 5.3 7.3 8.8 10.4
barrier for | Deuterons | 1.3 1.6 2.8 43 54 7.4 89 10.5
a-particles | 3.5 3.9 6.2 9.0 11.0 150 18.0 209
Critical Protons 06 10 19 31 41 59 75 9.1
orbital Deuterons (0.8 1.4 2.6 43 58 83 10.6 12.8
momentum| e-particles| 1.3 2.5 5.0 84 11.5 16.4 21.0 255
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the scattering of a-particles may give evidence
about the nuclear field for nuclei up to about
Z =20 (calcium). Actual experiments have been
carried out up to Z=13 (Al, cf. §75).

From Table XXXIII we see furthermore that
about 10 MYV is required for protons and deu-
terons to go over the top of the potential barrier
of uranium. Such energies will probably soon be
available from cyclotrons.

An important point for the scattering, espe-
cially for the angular distribution of the scattered
particles, is the orbital momentum of the inci-
dent particle. If the kinetic energy of the particle
is large compared to the potential barrier, par-
ticles of orbital momentum ! will in general ap-
proach the nucleus to a minimum distance of /X
(cf., e.g. (54b, c, d)). The particles strongly
affected by the nuclear field will therefore be
those for which IX <R, i.e., whose orbital mo-
mentum is less than

ly=R/X. (610)

At low energies, when the Coulomb field is im-
portant, the problem is much more complicated
(§72, end). We may, however, formally apply
(610) to an energy just sufficient to overcome the
potential barrier: Then the wave-length is

Xp=hR}/(2Me*2Z)} (610a)
and (610) becomes (cf. (600a))
ly(B)=g(2). (611)

§71. GENERAL THEORY OF SCATTERING OF

CHARGED PARTICLES

The general theory of scattering is contained
in §55 in which the dispersion formula for nuclear
processes was derived. It is only necessary to
make a few slight changes in order to represent
correctly the asymptotic behavior of the wave
functions of a particle in a Coulomb field. This is
particularly essential because in the Coulomb
scattering the contributions of high orbital mo-
menta is very important, in contrast to the scat-
tering in all other types of fields.

In a pure Coulomb field, the wave function of
the scattered particle normalized per unit cur-
rent is (cf. M32, p. 35, and this article (100))

Yo=v letketialog k(r—2) | (37¢2/2 Mv?r sin? 1)

g i in2 ir+2i
Xy bgikr—ia log 2kr—ia log sin? }o +u’+2lvl0’ (612)
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where M is the reduced mass (606),
a=zZe?/hv, (612a)
k= Muy/h=(2ME)}/h, (612b)
e =T(14+10)/|T(1+ia)]. (612c)

The first term in (612) represents the incident,
the second the scattered wave. The square of the
absolute value of the second term, multiplied by
r’dw, gives just the Rutherford scattering cross
section for the element of solid angle

dw=2m sin 8d3.

Alternatively, we may write the Coulomb wave
function as a sum over the partial waves of
different /, viz.:

¢c='2;Azf,(r) Yi(8)/r. (613)

The radial function f; behaves asymptotically as
(cf. M32, p. 39)

fi=sin (kr —a log 2kr—3ir+7,), (613a)
where
) r+1+4ia)
A —
[T(+14ia)|
14ida)- - (141
g e
(1+a)t - - (Pfa?)}
47) (2l4+1)4!
and l=uei’”. (613c)
vik

The wave scattered by the nucleus has, ac-
cording to (373a) (383b), the general form

Yn= IZBsz(ifz"th) Yin(90)/, (614)

where f; is the regular solution (613a) in the
Coulomb potential® and g, the solution which is

33 This means that we identify the particle potential Up
(cf: §55, (367)) with the Coulomb potential. Actually,
it would probably be a better approximation to take,
inside the nucleus, a constant repulsive potential. We
would then have the Coulomb scattering, potential
scattering from the repulsive auxiliary potential between
nucleus and particle, and resonance scattering. We have
not included the nuclear potential scattering in order not
to make our formulae too complicated; also, not much
useful information can be gained by including this poten-
tial scattering.
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irregular at r=0. We have (cf. (376), (376b))
asymptotically

gl+1:fl = gilkr—a log 2kr—§lt+ﬂl>_ (6143_)

The coefficients 8 can be expressed by the A’s
(cf. (613c)); we have (cf. 380, 391, 392a)

Ay HC pyoHC pim*
vl E— Er+ %/L'Yr

(615)

Bpim=—m

A change of the magnetic quantum number of
the orbital motion of the particle from 0 to m is,
of course, only possible if at the same time the
spin of the scattering nucleus or of the scattered
particle or both change their direction. We there-
fore write (615) more fully:

.
BPI’”‘“ B pius =
AvH™Mpiopitug H™M pimpiug*

_TZ 1

ri'M E—E,—'—%’i'y,.

(615a)

where u,'u,’ are the components of the spins of
scattering nucleus and scattered particle before
the collision, w;u, the same quantities after colli-
sion, and M the magnetic quantum number of
the compound state. We have the selection rule

m4pitpe=M=p+p,'. (615b)

We insert (613c, 614a, 615a) into (614) and
add the result to (612). Then we obtain for a
given pair of spin quantum numbers piu, of
nucleus and particle,

PriE =gtk et ia log RUr=2) g, 0 05y
___v—~§6ikr-—ia log 2kr+2inor—1fp,"p,’

(616a)

Bibsg
with
2Ze?
eg—ia log sin? 506““".
2qin2l
2Mv?*sin? 3¢

420 Yim(dp) 3 2Vl +1)dei (ritni’—210)
im VM

-’ ’
fri B iy = "Ousps’

XIICfMPl'OMi'#a' chle#i#x*/(E _Er+ %177‘)-(616)

The cross section for elastic scattering through
the angle ¢ is then:
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o(8)dw= [ fo4'5 wina (S o) | 2

w
(2¢+1)(2s+1) u:"nza;uiua
(616b)

In (616b), the average has been taken over all
possible directions of the spins of nucleus 4 and
particle P in the initial state and the sum over
all directions in the final state. As a result, the
cross section (616b) is independent of the
azimuth o.

The expression (616), (616b) for the cross
section is rather complicated and no simplified
form of it has yet been worked out in the general
case. However, in some special cases it is not
difficult to reduce the expression to a simpler one.

A. Scattering nucleus and scattered particle
having zero spin

In this case, the sum over u'u,’uiu, in (616b)
reduces to a single term u/=u,/=p;i=p,=0.
The selection rules (615b) require that the com-
pound state r have zero magnetic quantum
number M. Moreover, its angular momentum J
must be equal to /. Similarly, H®"p;, can only
be different from zero if I=J=1" and m=0.
Furthermore, we have

(617)

2 —
—'7rJPPv

since the given state r of the compound nucleus
can only emit particles of angular momentum 7’
and magnetic quantum number zero, again
owing to the selection rules. Inserting (im0
from (613b), and remembering that

Vio=(4m)~4(2141)*P(9),

we have from (616):

e*2Z
0-(19) - _________g—-ia log sin? i
2 Mv»? sin? 19
+3R2Z(2J+1)Ps(9)
J

(14ia)?- - - (J+ia)?
14a?):--(J*+a?) " E—E,+31v,s

'YrJPp

(618)

Of special interest is the case of resonance, in
which the sum over 7 and J reduces to a single
term. Replacing the ‘‘effective widths” v by
the “true widths” T (cf. §52), and introducing



§71

the abbreviations

Al p, 2Mw? sin? 38

(2T +1) P (8)=2(2T+1)
T.s e*Z
X (hv/e22Z)(T7pp/T,) sin? 33P ;(8)=p, (618a)
(14ia)?- - - (J+ia)?
gia log sin? 39 =ei(', (618b)
(14a?)- - - (J2+a?)
2(E—E,)/T,=x, (618¢)
(e22Z/2Mw? sin? 19)2=0y, (618d)
we obtain for the cross section ¢(#) :
() p*+2p sin {+2px cos ¢
—=1 , (619)
(] 1+x2

oo is the Rutherford scattering cross section.

The ratio of resonance scattering to Coulomb
scattering is primarily determined by p. This
quantity is (cf. 618a) in general greater -for
large scattering angles than for small ones.
Thus the backward scattering (¢==) will show
the most pronounced deviations from the
Rutherford formula (cf. §74, 75). p increases with
increasing energy as v~FE?} (see, however, re-
mark 1 below). For a given energy, it is larger
for light than for heavy particles (v~M-%) and
larger for a small charge 2z of the scattered
particle than for a large charge. From this it
would follow that protons will show more pro-
nounced resonance scattering than deuterons,
and deuterons more than a-particles. However,
this factor is probably more than offset by the
considerations given below, cf. remark 3. Reso-
nances with levels of high angular momentum J
are stronger than for low J, provided they can
occur at all (cf. end of §72).

The factor of greatest importance is I'"p,/T',.
It represents the ratio of the partial width of
the resonance level (corresponding to emission
of the incident particle P with the scattering
nucleus being left in the ground state p) to the
total level width. In order that this ratio be
large, it is necessary that no other processes but
elastic scattering can occur with great proba-
bility. The conditions for this are:

(1) The scattered particle must not have too
high energy, because otherwise inelastic scatter-
ing will occur. Particularly if the energy Ep is
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high enough so that many levels of the scattering
nucleus can be excited, the total width corre-
sponding to all the excited states of the scattering
nucleus will in general be much greater than the
partial width corresponding to the ground state.
This fact will in many cases more than offset the
factor v in (618a), and will lead to a decrease in
the strength of resonances with increasing energy.

(2) The scattering nucleus must not be too
heavy because otherwise it will have many
excited states of low energy so that again
inelastic scattering will be very probable.

(3) The compound nucleus C must not dis-
integrate with emission of particles other than P
with any great probability. This condition will be
most easily fulfilled if P is an a-particle. Because
of the large mass defect of the a-particle, most
nuclear reactions produced by a-particles are
endoergic, and unless the kinetic energy of the
a-particle is very high, no nuclear reaction can
in general occur, especially if the scattering
nucleus itself has a very high mass defect. This
is the case for most nuclei of zero spin, which
are, strictly speaking, the only ones for which
our formulae are valid (see above).

Deuterons, and to a lesser extent protons, can
almost with every nucleus cause a variety of
nuclear processes, owing to their large internal
energy. In these cases the total level width T,
will in general be much larger than the partial
width referring to the incident particle, T7p,.
It is therefore likely that the strongest resonance
effects are found in the scattering of a-particles,
less strong effects with protons and very weak
resonances in the deuteron scattering. This will
be true in spite of the factor 1/z in (618a) which
would tend to make the proton and deuteron
resonances stronger than those for a-particles.

To obtain an estimate of the absolute magni-
tude of p, we may consider the a-particles of
polonium (energy 5.3 MV). Let us assume that
the partial width I'’p, is equal to the total T,,
and that the scattering angle is 180°. Then
approximately

p=17302J4+1)/Z. (619a)

Thus for elements up to N(Z=7), p would be
larger than unity even for J=0, i.e. for S levels
of the compound nucleus. This means, according
to (619), that the resonance scattering backward
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will, at its maximum, be more than twice the
Coulomb scattering whatever J. For elements
heavier than nitrogen, the resonance scattering
by an S level of the compound nucleus will
increase the Coulomb scattering by less than a
factor two: With the limited accuracy of the
scattering experiments, it will then be difficult to
observe resonance scattering of Po a-particles by
S resonance-levels. P resonances (J=1), on
the other hand, will correspond to an increase
in the cross section by a factor of about 10 for
nitrogen and will therefore be easily observable
up to rather high atomic number, probably as
long as the nuclear potential barrier is at all
penetrable for Po a-particles. This is a fortior:
true for D resonances.

We shall now discuss the behavior of the scattering cross
section (619) near resonance. As in all cases, the resonance
scattering is restricted to an energy region of width T,
about the resonance energy E.. An investigation of the
scattering cross section as a function of the energy of the
incident particle will therefore indicate the width of the
resonance level. The cross section has a minimum and a
maximum at

Zmin™** = (14—, (620)

where c=(p/2 cos ¢)+tan ¢. (620a)

The maximum and minimum cross section are given by
omin™*/oo=1+p[ £ (}p?+p sin {+1)}+4p+sin ¢].  (621)

If p is large, i.e., if the resonance scattering is large com-
pared to the Coulomb scattering, the minimum of the
cross section occurs at

%min=—p/coS {, (622)
i.e. (cf. 618c),
E=E,—34T.p/cos ¢. (622a)
The maximum occurs at
Xmax =c08 {/p, (622b)

which, for large p, is practically at the resonance energy.
The minimum cross section is, for large p:

Omin=0gsin? ¢ (623)
and the maximum cross section
Imax =00p(p+2 sin ¢) =app. (623a)

Inserting the values of goand p from (618a, d), this becomes
Omax = (274 1)2R%(T"pp/T,)2P (). (624)

This is the same cross section as without the Coulomb
field. It should, however, be kept in mind that the con-
dition p>>1 will never be fulfilled for small scattering
angles ¢, so that for small angles the Coulomb scattering
is always predominant.
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B. Any spin of scattering nucleus and scattered
particle, but only zero orbital momentum
important

This condition will be fulfilled for slow par-
ticles. The sum over / and m in (616) reduces to
a single term I=m=0, the sum over } to a
single term /' = 0. The magnetic quantum number
of the compound state M is equal to the sum of
the magnetic quantum numbers of the spins of
scattering nucleus and scattered particle u;/+pu.’
=uitus.. A fairly simple calculation involving
the spacial symmetry properties of the matrix
elements H in (616) (similar to the calculation in
the appendix of B15) gives for the scattering
cross section

() 1+ 2J+1 p2+42p sin ¢+ 2px cos ¢
o0 (Zi+1)(2s+1) 1+a2  (625)

similar to (619). Here 7 and s are the spins of
scattering nucleus and scattered particle, o is
the Rutherford scattering cross section (618d),
% the distance from resonance divided by half the
width of the resonance level (cf. 618c), while ¢
and p have somewhat simpler forms than in
(618a, b) because the orbital momentum of the
incident particle is now zero rather than J.
We have

¢ =alog sin? 34, (625a)
p=2hv/e*2Z)(T"p,/T,) sin? 8. (625b)

The “‘shape of the resonance line” (625) is the
same as for zero spin of nucleus and particle (cf.
619). If we compare the scattering of particles of
orbital momentum zero in both cases, we see that
the intensity of the resonance scattering is re-
duced by a factor (2J+1)/(2:+1)(2s+1) by the
existence of the spins of particle and nucleus.’ On
the other hand, there will be more resonances: if
the spins s and ¢ are zero, and the orbital mo-
mentum /=0, only S-states (J=0) of the com-
pound nucleus can give rise to resonance scatter-
ing, whereas, if s and ¢ are different from zero,
any compound state with J between |s—i| and
s+ will give resonance scattering.®

% It may be mentioned that there will be no reduction
in the intensity, and no increase in the number of resonances
if only one of the two spins, s or %, is different from zero.
However, this is only true for orbital momentum zero;
for arbitrary /, one spin different from zero is sufficient to
iiecrlease the intensity and increase the number of effective
evels.
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C. Very high density of levels (high energy)

If we average over an energy interval large
compared to the spacing of levels (cf. §56, §65),
the interference term between Coulomb scatter-
ing and resonance scattering will disappear. Then
the scattering cross section will be equal to the
Coulomb scattering, plus the average resonance
scattering, the latter having the same form as for
neutrons. The most probable process will in
general be a disintegration or inelastic scattering.
The elastic scattering will be primarily Coulomb
scattering at small angles and nuclear potential
scattering at large angles.

§72. PENETRATION OF THE POTENTIAL BARRIER
AND ANGULAR MOMENTUM

The scattering is, according to (616, 618a),
primarily determined by the matrix elements H,
or by the partial width T'"p, of the nuclear reso-
nance level, the latter being proportional to the
square of the former. The matrix elements in-
volve the wave function of the incident particle
in the nucleus (or at its surface, if the nuclear
potential suggested in §54A is accepted). This
wave function introduces the well-known pene-
trability of the potential barrier as a factor into
the matrix elements, and therefore into the
partial width of the levels and into the scattering
cross section.

Accurate tables of the wave functions of a
particle in a Coulomb field have been given by
Yost, Wheeler and Breit (Y2). They must be
used whenever the fundamental assumptions of
the theory are sufficiently justified to warrant
exact calculations, as, e.g., in the scattering of
protons by protons (B53). Similarly, when only
one resonance level is of importance, and all the
angular momenta concerned are well known, the
use of exact wave functions is desirable. Such a
case seems to be, e.g., the resonance scattering of
protons of 440 kv by Li” nuclei (cf. §75).

For estimates, especially when the properties
of the nuclei concerned are not well known, it will
be sufficient to use the WKB method for calculat-
ing wave functions. If we assume the Coulomb
potential to hold everywhere (down to r=0), the
wave function of the particle must decrease ex-
ponentially as we approach the nucleus. In the
notation of §66, we have thus to take the func-
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tion %, (except for the inside part). Therefore, if
the wave function behaves asymptotically as
(cf. 578a)

Y(r)=v=1 cos (fr‘b*(p)dp—h)

(626)
=y~ tsin (kr —a log 2kr+1n,),

its value at the surface of the nucleus (r=R)
will be

Y(R)=3(m/h)} &(R) |~

Xexp (—Lml‘l’(p)l*dp), (626a)

where |®(R)| =2mh~2(zZ¢2/R—E), (626b)
E is the particle energy, and
rg=22¢*/E. (626¢)

The exponent in (626a) is exactly the quantity C
(cf. (585a)) ; therefore the square of the exponen-
tial is simply the penetrability of the potential
barrier.

We may now change our assumptions and suppose that
there is a constant repulsive potential V, acting on the
particle when it is inside the nucleus (cf. §54A). We assume
that the transition from the Coulomb potential to this
nuclear potential is gradual so that the WKB solution
holds throughout. Then we have inside the nucleus

Y(r) =3(3m)Y(Vo— E)~te~Ce=<(E-7) (627)
with

k=(Vo—E)}2m)}/h (627a)

as in (335). If there were no potential barrier, we should
have instead of (627) (cf. 335)

Yo(r) = (3m)IEY Ve XE—n), (627b)
The ratio is
V/bo=3[V#/E(Vo—E)Jte~C. (628)

The most important factor here is, of course, the pene-
trability e €. However, there is, in addition, a factor
i[Ve/E(Vo—E)Jt This factor arises from the fact that
the potential must be assumed to change suddenly from
zero to V, when there is no potential barrier, ‘‘suddenly”
being understood in comparison with the wave-length of
the particle outside the nucleus. On the other hand, the
potential changes gradually when there is a Coulomb field.
The sudden change of potential causes a reflection of
particles at the surface of the nucleus, especially if the
particles are very slow (E<V,), tending to make the
wave function of slow particles inside the nucleus relatively
smaller in the case of free particles than in the case of a
Coulomb field. The factor *~E? in the matrix element,
and correspondingly v~E? in the width of the levels, does
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not occur in the Coulomb field but only in the case of
free particles.

Practically, this point is of little consequence,
since very slow charged particles will never be
able to penetrate into the nucleus on account of
the potential barrier. Therefore we shall, for our
purposes, write the “‘partial width” for charged
particles in the form

I'p,=G"pre 2¢=G"p,P, (629)

where G"p, is the width of the level without po-
tential barrier, and P the penetrability of the
barrier. A convenient formula for P was given
in (600).

The influence of the orbital momentum of the
particle on the penetrability may be calculated
by the WKB method (cf. §66). The only differ-
ence as compared to the case of /=0 is that we
have instead of (578b)

&,(r) =2mh2(E-V)=I(I+1)/7*. (630)
Defining C; in analogy with (585a), viz.
Tl
Co= [ |2u(p) i (630a)
R

where 7, is defined as the value of 7 for which &;
vanishes, we obtain

C, 1—-2x
——=%x**(%1r+arcsin ) (y+1-=x)t
g +4xy)t
142y v+ (y+1—x)}
i log yivi+(y )]. (631)
(1+4uxy)?

Here g is the abbreviation introduced in (600a),
x=E/B is the ratio of particle energy to barrier
height and

=1(+41)/g"

For values of ! small compared to the “critical
orbital momentum” g, i.e., for y<1, and for
%<1, this may be approximated by

Ci=Cot+3g[(y+1—x)—(1—x)1].

For energies not too near the top of the barrier,
and below the top, we may further simplify (632)
and obtain for the penetrability for the orbital
momentum /

(631a)

(632)

Pi=e"21= P, ¢~u(1-2}, (632a)

This expression falls to 1/e times its value for
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Fi1c. 19. Critical orbital momentum /. of charged particles
as a function of energy. Abscissa: Ratio of particle energy to
barrier height. Ordinate: /.2/g? where g is the characteristic
orbital momentum for the given nucleus. g=35 corresponds
approximately to deuterons on zinc, g=25 to a-particles on
uranium. The broken curve corresponds to neutral parti-
cles. The curves show clearly the sharp break when the
particle energy becomes equal to the barrier height, and
the rapid rise at energies above the barrier. They also show
that at very low energies the critical angular momentum
is larger for charged than for neutral particles.

1=0 when
ye=3g1(1 —x)7}, (632b)
which corresponds to
let+i=gyt=(Gg)1—x)" (633)

This critical orbital momentum is, for low energy
(x«<1), approximately the square root of one-half
the critical momentum g given in Table XXXIII.
Thus, e.g., slow a-particles (E<20 MV) will be
about equally effective in disintegrating uranium
when they have orbital momentum 3 as for /=0,
but much less effective when I>>3. Therefore the
angular distribution of the particles produced in
the disintegration of a heavy nucleus by a
charged particle will not be spherically sym-
metrical, even if the wave-length of the incident
particle is large compared to the nuclear radius
(Teller, unpublished; cf. §78).

With increasing energy, the critical orbital
momentum I, increases slowly. For x~1, i.e., for
particles which can just go over the top of the
barrier, (633) is no longer valid, but (632) reduces
to (Co=0)

Ci=%gyt (634)
The critical orbital momentum is then
1.(B)=($)¥gt=0.91g% (634a)

For a-particles on uranium, this gives /,(B)=8.
Fig. 19 gives I as a function of x (see §78).
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TaBLE XXXIV. Penetrabilities of potential barriers for
various orbital momenta.

Berviuium (B=3.9 MV) Carciov (Z=20, B=9.0 MV)
PENETRABILITY Pp P

z |EIMY)| I=0 =1 =2 E =0 4 8
1.6 6.2 1 14.4 0.51
14 5.5 0.82 12.6 1 0.165
12| 47 1 0.55 10.8 0.95 0.035
1.0 3.9 1 0.74 0.29 90|1 0.60 4-1073
08| 3.1 0.63 0.35 0.105 7.2]0.28 0.039 1.7-1073
07| 27 0.40 0.20 0.051 6.3 | 0.073 7.5-1073 2-1075
06| 23 0.20 0.092 0.021 5.4 10.011 7.5-10¢ 1.3-1076
0.5 1.9 |[0.077 0.028 6.5-10% | 4.5]6.5-10¢ 3.5-10"5 3.5-10°8
04 1.6 | 0.020 8.5-107% 1.2-103 | 3.6|1.2-105 7.5-1077 2-10710
0.3 1.2 |{20-10% 8-10™* 14-107¢ | 2.7]2.5-10°8 6-10710  2-10718
0.2 0.8 5-1075 1.4-1075 2-107¢ | 18| 4-1078 §-10715 10718
0.1 0.4 6-107° 2-107° 2-107°| 09 100% 4-107% 1072

For energies well above the potential barrier,
the penetrability is no longer important, and
particles of angular momentum up to ly=R/X
will be effective. As already mentioned at the end
of §70, this means that, above the barrier, higher
angular momenta become rapidly more impor-
tant. Therefore there will often be a further in-
crease of the nuclear scattering above the top of
the barrier, making the barrier appear higher
than it actually is. Indications of this effect can
be seen in the data given in §75 where the height
of the potential barriers as deduced from scatter-
ing is sometimes higher than that following from
our general interpolation formula (609).

As illustrations, we give in Table XXXIV the
penetrabilities for a-particles of the barriers of
two nuclei, a very light one (Be) and a medium
heavy one (Ca), as functions of the energy of the
particle for various orbital momenta J. The
critical orbital momentum g is about 2 for Be and
8 for Ca while I, (cf.(633)) is, for small energy,
about 1 and 2, respectively. It is seen that, for the
same ratio of energy to barrier height, the pene-
trability is much greater for Be than for Ca. Also
it is shown by the table that the penetrability is
decidedly less for the higher angular momenta
than for the lower, in accord with the considera-
tions above.

§73. THE ONE-BopY THEORY OF
SCATTERING (M32)

For light nuclei, it may be a fair approximation to treat
the scattering problem as a one-body problem, assuming a
suitable potential to act between the scattering nucleus
and the scattered particle. This method has been used
widely in the past for the analysis and interpretation of
experimental results; mainly for this reason, we discuss
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this method here although we are aware of its limitations.5

If we denote by ¢, the wave function in the pure Coulomb
field (cf. (612)), the wave function in the field of the
nucleus may be written (cf. Mott and Massey, p. 24,
Eq. (17))

v=vo+ 2 [w—Aifi(r) 1Y 10(9) /7, (635)
l

where 4, is given in (613c), f; is the radial wave function
in the Coulomb field whose asymptotic behavior is indi-
cated in (613a), and #; is the radial wave function in the
actual field, i.e. the Coulomb plus the specifically nuclear
field. The asymptotic behavior of %; will be similar to the
Coulomb wave function f;, except for a phase shift &;, viz.:

u;= B sin (kr—a log 2kr — }lr+m+8:). (635a)
5 depends on the nuclear potential and can be calculated

only if this potential is known. B; must be determined so
that u;— A.f: is purely an outgoing wave. This leads to

Bi=4,e™. (635b)

Inserting the values of 4i, By, fi, % and ¢ in (635), we
find for the scattering cross section per unit solid angle

€27
2 M2 sin? 39"

XD (2141)(e2%—1)
4

g(a) = —ia log sin2 M+ %Lx
(14sa)2- - - (I+1a)?

(14a2)- - - (B+a?) Py(cos 9) |2

(636)

This formula is similar to that obtained with the many-
body model and zero spin of nucleus and particle (618).
The main difference is that the sum over the levels r in
(618) has been replaced by #(e?%*—1). The behavior near
resonances is also quite similar to that discussed in §71A,
only the factor (I'"p,/I+)? in the maximum cross section
(624) is replaced by unity because no processes other than
elastic scattering are being considered.

The similarity between (636) and the many-body for-
mula for particles with zero spin is not accidental. If the
spins of both scattering nucleus and scattered particle are
zero, the scattered wave contains only partial waves of
zero magnetic quantum number. Therefore, for large
distances from the nucleus, we can certainly write the
wave function in the form

Y=vot+ 20 Y(8) /7, (636a)
L

where v; is an outgoing spherical wave. Furthermore, we
know that the orbital momentum ! of a particle cannot
change in the scattering process; therefore if we analyze
the total wave function ¢ in spherical harmonics and split
the radial function, multiplying each spherical harmonic,
into an incident and an outgoing part, the amplitudes of
these two parts must have the same absolute value. This
leads uniquely to the form (636) for the scattering cross
section. However, the phases §; can in general zot be found

8 The method will give incorrect results (1) if the
spins of nucleus or particle are different from zero, (2) if
disintegrations have a probability comparable to scatter-
ing, (3) if inelastic scattering has a probability comparable
to the elastic process.
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as the phase differences between the solutions of the radial
Schriédinger equations with and without the nuclear po-
tential, but they must be regarded as arbitrary constants
of much more complicated significance. Thus it will in
general be possible to determine ‘‘empirical” phases §;
suitable to represent the observed scattering, provided
scattering nucleus and scattered particle have zero spin.
But it will usually not be possible to find a suitable nuclear
potential which gives the ‘“‘observed” &;'s (cf. §74).

§74. ScATTERING BY VERY LigHT NUCLEI (UP
To He*) (C2, R25, C3, W22, T6, T7, W13)

The scattering of particles by very light nuclei
claims particular interest. In some cases it has
been possible to draw conclusions about the
fundamental forces between elementary nuclear
particles from the scattering of very light nuclei
(§14, 15, 18, and below). Since the scattering of
elementary particles (protons and neutrons) by
other elementary particles has already been
treated (§18, 14, 15), we shall here be concerned
with the scattering of protons, neutrons, deu-
terons and a-particles by deuterons and a-par-
ticles.

In all scattering experiments carried out thus
far with protons and deuterons, the effective de
Broglie wave-length X was larger than the pre-
sumable range of the nuclear forces. Under these
conditions, it is known (§14) that only the par-
ticles of angular momentum zero are affected
strongly by the nuclear forces. This fact has been
made use of in theoretical investigations (T6,
T7, M8). When protons of several MV, fast
neutrons and deuterons are used for scattering
experiments, the situation will be different.

To facilitate estimates of whether angular momenta
higher than 0 will play any role in any particular scattering
process, we have listed in Table XXXV the effective
de Broglie wave-lengths vz,

X=4.52-10"8(4+a)/A(aEo)}, (637)

TaBLE XXXV. Scattering of light nucles.

WAVE-LENGTHS \/27 =X
(in_ 10718 cm for RANGE OF THE FORCES
0o=1 (in 10713 cm)
SCATTERED PARTICLE SCATTERED PARTICLE
SCATTERING

NvucLEUS H,n D Het H,n D Het
H, n 9.06 9.60 11.30]|2 5* 4.5
D 6.78 6.38 6.78 | 5* T* 6*
H3, Hed 6.04 5.28 5.27 | 4.5* 6* 5*
Het 5.65 4.79 4.52 (4.5 6* 4

* Estimates (other figures from experiments, see below).
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for an energy Eo=1 MV. (g and 4 are the atomic weights
of scattered particle and scattering nucleus, E, the kinetic
energy of the incident particle in MV in the laboratory
coordinate system.) In addition, we have tabulated the
estimated effective radius of interaction for the particular
pair of interacting nuclei (see below, under the discussion
of the separate processes). According to the discussion
in §14, strong scattering of angular momentum ! can
be expected only if X! is amaller than the range of the
forces. E.g., for the scattering of protons by a-particles,
X=5.65E; %1073 cm while the range of the forces is
about 4-1073 cm. Therefore for proton energies above
2 MV an influence of the angular momentum /=1 is to
be expected.

We turn now to the discussion of the various
processes.

A. Scattering of neutrons by deuterons

The range of interaction between neutron and
deuteron is determined to a large extent by the
size of the deuteron. The average distance be-
tween proton and neutron in the deuteron is (cf.
§12) 4.5-1071 cm, therefore the average distance
of either proton or neutron from the center of the
deuteron is 2.2:1078 cm. With a range of the
force between two elementary particles of about 2
to 2.5-10718 cm (§21), we may estimate that a
neutron will begin to be influenced by a deuteron
at a distance of about 5-107%% cm.

The wave-length characteristic for the process
is (Table XXXV) 6.78-108BE,? where E, is
the kinetic energy of the neutron in MV. Thus
the scattering may be expected to be approxi-
mately spherically symmetrical for neutron
energies up to about 2 MV. For faster neutrons,
the partial waves =1 etc. will be affected so that
the scattering will no longer show spherical sym-
metry. The ‘‘spherical symmetry'’ refers, of
course, to the C system (cf. §70); this means
(cf. (604)) a distribution of the recoil deuterons
according to a law sin 2¢d¢, ¢ being the angle
between the motions of neutron and recoil
deuteron.

If the scattering is spherically symmetrical
(Eok2 MYV), the cross section is determined by
the phase 8, of the partial wave function /=0
(cf. (635a)). The phase shift 8, has been calcu-
lated by Massey and Mohr (M8) with the as-
sumption that the interaction between deuteron
and neutron can be represented by a potential
(cf. below). For a potential hole of radius
4.5-10~% cm which should about correspond to
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reality, they find a pronounced ‘‘Ramsauer
effect’”’ (Fig. 1 of their paper), i.e., the scattering
is low at high energies, rises to a maximum at
about 0.8 MV neutron energy and falls off again
for smaller energies. The cross section at the
maximum is 7-10~% cm?, at zero energy only
2.5-107% cm?

Experimentally, the scattering of neutrons by
deuterons has been investigated by Dunning,
Pegram, Fink and Mitchell (D23). They found
the scattering cross section to be 4:10~2¢ cm? for
very slow neutrons (absorbable by Cd, energy
probably less than 1 volt, cf. §61G) and 1.7-10~%
for ‘“fast” neutrons, being a mixture of all
energies from 1 volt to about 10 MV.

No better agreement between theoretical and
experimental value at low energy is to be expected
since the influence of the deuteron on the neutron
cannot be appropriately represented by a poten-
tial. The deuteron should be regarded as a dy-
namic system, and the proper wave function of
all three particles, the two neutrons and the pro-
ton, be calculated with the actual interaction
between them. This proper treatment of the
problem as a three-particle problem is of course
mathematically very complicated. If the problem
is treated as a two-particle one (deuteron-neu-
tron), then at least the exchange of the incident
neutron with the one contained in the deuteron
and the Majorana type of the forces should be
considered. This refinement of the theory should
be more necessary for the scattering by the deu-
teron than by any other nucleus, owing to the
small binding energy and the small number of
particles in the deuteron.

B. Scattering of protons by deuterons

If the nuclear forces are symmetrical in neu-
trons and protons (§6, 22), the force between pro-
ton and deuteron should be exactly the same as
between neutron and deuteron, except for the
Coulomb force. The phase shifts §; should there-
fore be identical for the two cases, only the scat-
tering should be calculated from (636) for pro-
tons, from (53) for neutrons. A comparison of the
scattering of neutrons and protons of the same
energy by deuterons would therefore provide a
very accurate test of the assumption that nuclear
forces are symmetrical in neutrons and protons.
Of course, it would be necessary to find the angu-
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lar distributions in both cases. Experiments on
the angular distribution and the absolute cross
section for the scattering of protons by deuterons
have been made by Tuve, Heydenburg and
Hafstad (unpublished).

C. Deuteron-deuteron

From the diameter of the deuteron (4.5-10~1
cm) we estimate that the mutual influence of two
deuterons will be appreciable up to distances of
about 7-107% cm. Accordingly, marked devia-
tions from the Rutherford scattering should set
in at very low energies, of the order of a few
hundred kv. The partial wave /=0 only should
be strongly influenced for energies up to about
1 MV. Experiments have been made by Tuve,
Heydenburg and Hafstad (unpublished).

D. a-particle—proton

The size (radius) of the a-particle is only about
2:10™ cm (§21). Therefore the range of the
forces between a-particle and protons may be
estimated to be about 4-10~1 cm. Consequently,
if a-particles are scattered in hydrogen, only the
partial wave /=0 should be materially affected
as long as the a-particle energy is less than
(11.3/4)2=8 MV (cf. Table XXXV).

Very careful experiments on the scattering of
a-particles of different velocities in hydrogen
have been carried out by Chadwick and Bieler
(C2) as early as 1921 : The experiments consisted
in observing the number and angular distribution
of the protons projected by the a-particles from
a hydrogen-containing substance such as paraffin.
Because of their longer range (§95) the protons
are much easier to observe than the scattered
a-particles. The angle ¢ between the directions of
proton and incident « is connected to the deflec-
tion ¢ of the a-particle in the center-of-mass sys-
tem by the simple relation ¢=3(r—¢) (cf.
604c). The protons emitted in a forward direc-
tion correspond thus to maximum deflection
(#=180°) of the a's and therefore their number
should show the largest relative deviation from
the Rutherford formula (cf. (618a) and text fol-
lowing (619)).

The results of Chadwick and Bieler show that
the scattering probability is many times as large
as the Rutherford law would indicate. The scat-
tering ratio (ratio of actual to Rutherford scatter-
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ing) increases with increasing energy of the
a-particles and surpasses 40 for a-particles of
the highest energy (E,=7.5 MV). For small
energies, below about 3 MV, the scattering be-
comes essentially equal to the Rutherford scat-
tering. This behavior is to be expected. If we as-
sume a range of the nuclear interaction of about
R=4.5-10" cm (see below) the height of the
potential barrieris 2¢?/ R=0.6 MV. But thekinetic
energy in the relative coordinate system in only
one-fifth of the kinetic energy of the a-particle
(cf. 606a) so that the a-particles are able to go
over the top of the potential barrier if their
energy is more than 3 MV.

The data have been analyzed theoretically by
Taylor (T6). He finds that the angular distribu-
tions can be explained very satisfactorily on the
one-body model by assuming a single phase shift
8¢ for the partial wave of zero angular momentum.
This is to be expected for a-particles of less than
8 MV (see above). The ‘‘experimental’” phases
8o can be interpreted theoretically by assuming a
potential energy of the rectangular-hole type
between proton and e-particle. The depth of the
hole which gives best agreement with the experi-
mental data, is 6 MV, the width 4.5-10713 cm.

In such a potential hole, there should be a
stable energy level at —0.8 MV, corresponding
to a stable nucleus Li® of 0.8 MV binding energy.
Such a nucleus is not known and probably does
not exist. Its energy must be higher than the
energy of He® by the amount of the Coulomb
repulsion between the proton and the a-particle.
But even He® probably does not exist (W21c)
and is unstable by 0.9 MV against disintegration
into an oa-particle and a neutron. Thus the
potential assumed by Taylor for the scattering,
does not correctly represent the interaction
between proton and a-particle in the stationary
state. However, it can hardly be expected that
this interaction can be described by a potential.
Moreover, it seems that only a slight change of
the potential would be required to make Li®
unstable, and such a change seems quite possible
in view of the crude approximation given by the
one-body model.

Experimental results apparently different from those
of Chadwick and Bieler have been obtained by Pose and
Diebner (P13). They give a scattering probability equal
to more than 100 times the Rutherford scattering for
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a-particles of only 5 MV, for which Chadwick and Bieler
found only 10 times the Rutherford scattering. Horsley
has pointed out (H37) that such a large scattering ratio
could not be explained if only the angular momentum /=0
were affected by the nuclear field, and therefore postulates
an influence of the nuclear field on the p-scattering (I=1),
contrary to our estimates above. It is true that p-scattering
might occur in a limited energy interval due to a -
resonance level. However the discrepancy between Pose-
Diebner’s and Chadwick-Bieler’s results seemed to us far
too large to be explained by experimental uncer-
tainties. Indeed, there is obviously an error in the evalua-
tion of the data of Pose and Diebner: They observe all
protons emitted in all directions making angles less than
5° with the incident alphas, corresponding to a solid
angle 27 (1—cos 5°)=2.4-10"2. The value of the solid
angle given in their paper, and obviously used in their
evaluation, is 2.5-1073. All their results should therefore
be divided by 10, which makes them agree with Chadwick
and Bieler’s values. This change invalidates the conclusions
of Horsley about the p-resonance scattering.

E. Neutron—a-particle

The interaction here should be the same as
between proton and a-particle, except for the
Coulomb force. Therefore the scattering should
be spherically symmetrical for neutron energies
up to 2 MV. Using Taylor’s potential hole for
the proton-alpha-interaction, the scattering cross
section should be of the order 6-10-%* cm? for
slow neutrons (below about 1 MYV). Experi-
mental investigations of the angular distribution
and the scattering cross section are not available,
in spite of the fact that recoil helium nuclei have
been used as a means of detecting neutrons (B40).

F. a-particle—a-particle

More extensive work has been done on this
scattering process, both theoretically and experi-
mentally, than on any of the processes previously
mentioned. The theoretical treatment is slightly
different from that of the other processes because
the symmetry of the wave function in the two
a-particles must be considered (M31, T6, T7,
and §18 of this article). a-particles obey Bose
statistics (§§4, 48) therefore the wave function
must be symmetrical in the two particles. The
particles possess no spin, so that the symmetry
requirement applies to the positional wave func-
tion directly. This symmetry condition has the
immediate consequence that no odd angular
momenta | occur in an expansion of the wave func-
tion in spherical harmonics; for we have shown in
§12 that a wave function containing a spherical
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harmonic of odd order I, changes sign when the
two particles are interchanged, while an even
harmonic remains unchanged. This fact affects,
of course, the condition for the appearance of
phase shifts other than §, in the scattering: The
first partial wave besides /=0 is /=2 rather than
l=1;but /=2 will only be affected by the nuclear
field if the range of the forces is more than twice
the effective wave-length X. From Table XXXV
we find that X=4.5 Ey~}- 10713 cm for the scatter-
ing of a-particles by a-particles. Estimating the
range of the forces to be about 4-10713 cm, we
would expect that the second spherical harmonic
will contribute to the scattering above about §
MV. This seems to be roughly correct (see below).
The higher spherical harmonics /=4 etc. should,
according to this reasoning, not come in at
energies below about 20 MV. However, there
seems to be a resonance level for /=4 at about 10
or 12 MV a-energy which increases the influence
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of the partial wave /=4.

The scattering is most conveniently expressed
in terms of its ratio to the classical scattering in a
Coulomb field,

4e? \ 2 1 1
01 SIN ®d®=81r( ) ( + )
Mo sinf ® cos! @

Xsin © cos ©dO,

(638)

where M, is the mass of the a-particle and
© =14 its deflection in the ordinary coordinate
system. The first term in the bracket, (sin @)™,
gives the number of a-particles deflected through
©; the second term, (cos ©)~*, gives the number of
o's deflected through ir—© each of which is
accompanied by a recoil a-particle in the direc-
tion O (cf. beginning of §14, and (604c)). The
ratio of the actual scattering to the Rutherford
scattering (638) is (cf. (636) ; §18; M32, Chapter
V, or T6, T7)

[g—~ia log sin? @ e—ia log cos? @ 2% . (1+ta)2 .. (l+ta)2 2
- + +— ¥ (241)(e?i01—-1) P;(cos 20)
sin? @ cos? @ a leven (14a?)---(124a?) (639)
- (sin—* ©+cos™* O) '
where function. The sum extends only over the even
a=4¢e/h. (639a) values of /, again because of the symmetry re-

The first two terms arise from the symmetriza-
tion of the wave function in incident and scatter-
ing a-particle. These terms alone give deviations
from the classical scattering which were first
pointed out by Mott (M31). In particular, for @
=45° we have sin? @=cos ? ®=3% which makes
the two terms equal and gives P=2. Thus at 45°
the scattering of a-particles is twice as large as it
would be in classical mechanics, even if there is
no action of the nuclear force at all. This has
actually been proved experimentally for slow
a-particles by Chadwick (C3). At angles other
than 45°, the deviations from classical scattering
change periodically with the velocity and the
angle ©, giving sometimes larger, sometimes
smaller scattering than classical. This effect has
been checked for various angles and velocities by
Blackett and Champion (B27).

The sum over /in (639) represents the influence
of the nuclear field. The factor 2 in front of it
arises again from the symmetrization of the wave

quirement. In all other respects, the expression is
analogous to (636).

Experiments were carried out by Rutherford
and Chadwick (R25), by Chadwick (C3), by
Wright (W22) and by Mohr and Pringle (un-
published). A theoretical analysis was made by
Taylor (T6, T7), Wright (W22) and recently by
Wheeler (to be published in Phys. Rev.).5¢
Wheeler, whose analysis is the most complete,
represented the observations in terms of the three
phase shifts §,0:0, for the three lowest values of !
possible. For each energy, the phase shifts are
determined provisionally from the scattering at
three angles, preferably 19.6°, 27.4° and 35.0°
because for these angles either P2(20) or P,(20)
vanishes. In general, 8 di@erent sets of values
for 808204 satisfy the data for the three angles.
The experimental scattering at a fourth angle,
e.g. 45° is then used to decide between these
8 sets, the decision being in general unique.

% We are indebted to Professor Wheeler for communi-
cation of his results before publication.
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F16. 20. Scattering of a-particles of 6.9 MV by He nuclei.
Solid curve calculated by Wheeler to pass through the four
experimental points indicated. (We are indebted to Pro-
fessor Wheeler for the permission to publish this and the
following figure.)

The agreement obtained with experiment is
very satisfactory, as can be seen from Fig. 20
which shows the scattering of a-particles of 6.9
MYV, the solid curve being obtained from (639)
with the suitably chosen values of the §'s.

Fig. 21 gives the phase shifts obtained in this
way, as functions of the a-particle energy. The
é's are quite small and vary regularly up to
about 5.5 MV. Above this energy, a rather sud-
den change occurs which is probably connected to
the level of Be? at 3 MV excitation energy which
is known from the nuclear reaction B""+H! (§88).
(The energy in the center of gravity system is
half the kinetic energy of the incident a-particle!)
—Wheeler has also tried to calculate the scatter-
ing on purely theoretical grounds, using only
the known forces between neutrons and protons.
These calculations, being very laborious, are
not yet completed.

§75. OTHER EXPERIMENTAL RESULTS ON
ScaTTERING (RS, R9, W11)

Most experimental results on scattering have
been obtained with a-particles as the scattered
particles. The most comprehensive experimental
paper is by Riezler (R8). In addition, older
experiments by Rutherford and Chadwick (R25)
and more recent supplementary experiments by
Riezler (R9) must be mentioned.

Wenzel (W11) has analyzed Riezler’s results
theoretically.®” His analysis is based on the one-

57 Wenzel's formulae contain an error. In his formula
(13) etc. o; should be replaced by 2g;. The error caused by
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F1G. 21. Phase shifts (in degrees) of the partial waves
!=0, 2 and 4 in the scattering of a-particles by a-particles
according to Wheeler.

body model (§73) which, as we have mentioned,
is justified (to the extent that it is used) if both
the scattered particle and the scattering nucleus
have spin zero. For the scattered particle
(a-particle) this is fulfilled, for the scattering
nucleus it is true in the case of C, O and Ne
(among the nuclei investigated), but not for
Be, B and Al. In fact, Wenzel’s analysis gives
very satisfactory results for carbon, and much
less satisfactory ones for Be and B (the other
cases were not analyzed).

If the spins of both nuclei are zero, the orbital
momentum / of the particle is identical with the
angular momentum J of the compound nucleus.
Formula (618) (or (636)) is valid for the scatter-
ing, and it is easy to estimate J from the reso-
nance maximum of the scattering (cf. the dis-
cussion of carbon, below).

All the results enumerated in the following
refer to the scattering of a-particles by the
respective nuclei.

Lithium
No experimental data.
Beryllium

Riezler (R8) finds for a-particles of 7.5 MV a
scattered intensity exceeding greatly the Ruther-
ford scattering. The ratio (observed scatt./
Coulomb scatt.) goes up to 43 for a deflection of
165° (in the center-of-gravity system). Such a
large scattering could not be produced if only the
wave of orbital momentum zero were affected by

this is not very great for /=0 and 1, but very considerable
for I=2.
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the nuclear field. p-scattering (I=1) accounts
fairly satisfactorily for the observations if the
one-body model is used (Wenzel). In the many-
body model a higher orbital momentum is
ordinarily required to give the same scattering
(§71B). From the size of the Be nucleus and the
wave-length of the a-particles it should be
expected that just the s-, - and d-scattering are
seriously affected by the nuclear field, which is
compatible with our reasoning above. Since the
top of the potential barrier lies at about 4 MV
for the scattering of a-particles by beryllium,
Riezler's a-particles go well over the top. No
experiments on the variation of the scattering
with the a-particle energy are available.®®

Boron

Riezler observed the scattering as a function
of the angle for 7.5 MV energy, finding a high
maximum at 180° as should be expected from
(618), (636). He also observed the scattering at
160° as a function of the energy, finding the ex-
pected rise with increasing energy. The highest
ratio observed is 25 (i.e., observed scattering =25
times Rutherford scattering) at 167° and 7.5 MV.
The increase of the scattering ratio occurs for
a-particle energies between 4 and 7 MV. The
potential barrier of B for a-particles is expected
to be about 5 MV high. Therefore the anomalous
scattering is obviously connected with the over-
coming of the barrier. The height of the barrier
as determined from the experiments turns out in
accord with our expectations, thus proving
approximate proportionality of nuclear volume
and atomic weight (cf. §3, and §25 to §30).
From the nuclear radius and the wave-length of
the a-particles, we find again that s-, p- and d-
particles should be influenced by the nuclear
field. In fact, the observed scattering ratio at
7.5 MV is too high to be explained by s scattering
alone while p scattering would be sufficient in
the one-body model (W11) (cf. the remarks
on Be). No resonance maximum of the scattering
was observed.

88 o-particles scattered backwards by Be have an energy
of only (9—4)%/(9+4)2=0.15 times their original energy.
If the initial energy is low, the range of the scattered
alphas is too short for observation.
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F16. 22. The scattering of a-particles by carbon, according
to experiments of Riezler.

Carbon

In contrast to the scattering by Be and B,
the scattering ratio for carbon does not increase
continuously with a-particle energy, but shows
a marked maximum at about 5 MV (cf. Fig. 22).
This is about equal to the height of the potential
barrier for C (cf. 609). The observed maximum
should be ascribed to resonance, as Wenzel has
pointed out. The scattering ratio at the maximum
is 15 for 166° deflection. A perturbation of the
s scattering alone by the nuclear field could,
according to (624), not give a scattering ratio
greater than about 3. Therefore the maximum
must be ascribed to a resonance level with J
different from zero. Indeed, the observed maxi-
mum of the scattering ratio agrees closely with
the theoretical maximum for p scattering (W11).
The width of the resonance peak is of the order
of 1 MV, which seems reasonable.

Nitrogen

No observations.

Oxygen

According to the second paper of Riezler
(R9), the scattering through about 90° begins to
deviate from Rutherford scattering at about
4 MV, decreases continuously with the energy,
and reaches 0.5 times the Rutherford value at



186

5.3 MV. The scattering can be explained by
assuming a height of the potential barrier of
about 6 MV, as compared to about 5.5 from (609).

Neon

Up to energies of 5.3 MV, no deviation from
Rutherford scattering was observed by Riezler
(R8). This is compatible with the expected
height of the barrier (6 MV).

Aluminum

For about 7 MV energy, Riezler found the
scattering to be considerably smaller than
Rutherford scattering at angles below 158°, and
larger for the largest scattering angles. From the
magnitude of the deviations, it seems that the
energy used (7 MV) is approximately equal to
the height of the potential barrier, which agrees
with our general formula (609).

Thus the scattering of a-particles by medium
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light nuclei confirms, at least qualitatively, the
proportionality of the nuclear volume with the
mass number.

A case of considerable interest, although no
experiments are yet available, is the scattering
of protons by Li’. The compound nucleus, Be?,
is known to have a resonance level at 440 kv
kinetic energy of the protons. From the general
formula (625) it follows that the resonance
scattering should increase the Coulomb scatter-
ing in the backwards direction by a factor of
about 3 (B15, p. 478). In calculating this figure,
the assumption has been made that the width of
the level is almost entirely due to the dis-
integration Be®—Li’4H! which is very plausible
because no other process seems possible (cf. §81)
except the emission of y-rays which certainly
gives a very small contribution to the width of
the level.

XIII. Distintegrations Produced by Charged Particles

§76. CLASSIFICATION OF PROCESSES

The general scheme of a nuclear disintegration
is, as we know,

A+P—C—B+0Q. (640)

The incident particle P falls on the initial nucleus
A and combines with it to form the compound
nucleus C. The latter splits into an outgoing
particle Q and a residual nucleus B. In this
chapter, we shall be concerned with processes
produced by charged particles P, of which the
most important are protons, deuterons and
a-particles.

A. The main nuclear process

The processes may first be classified into two
types according to the character of the outgoing
particle Q. Q may be either a light quantum or a
material particle. In the first case, we speak of the
simple capture of particle P, in the second case of
a disintegration in the strict sense, or a “particle
disintegration.”

In any nuclear process, charge, mass number,
energy and momentum must be conserved. The
conservation of energy and momentum will be

discussed in detail in §96. It determines the
kinetic energy of the outgoing particle in terms of
the kinetic energy of the incident particle, and of
the difference in internal energy between the
initial nuclei 44 P and the final nuclei B4+0Q. In
the case of simple capture, practically all the
momentum will be taken up by the nucleus B,
and practically all the energy by the light quan-
tum Q. In the case of particle-disintegrations,
energy and momentum will be shared between
the two resultant nuclei B and Q (see §96).

A special case of a particle disintegration is
scattering (elastic or inelastic). In this case, the
outgoing particle is identical with the incident
one. Apart from the potential scattering by the
Coulomb field, there is no essential difference
between scattering and disintegration, and the
probabilities of the two processes will, in general,
be of the same order. Experimental data on
scattering are scarce except for a-particles (§74,
75). Data on inelastic scattering, especially, are
almost unavailable and the existence of the
process can only be inferred on theoretical
grounds and from analogy with neutron experi-
ments (§65C).
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Simple capture is ordinarily less probable than
particle disintegration, including scattering, be-
cause the ‘‘radiation width” of nuclear levels is
usually smaller than the particle width (§81).
Simple capture is therefore probable only when
particle disintegrations are impossible or very
improbable for some special reason, e.g.,

(1) Because sufficient energy is not available to
make up the masses of the possible produced
particles, or (2) because the potential barrier is
too high for particles which, on energetic grounds,
might be emitted, or (3) because only enough
energy is available for slow particles to be
emitted, so that the particle width is made small
by the factor v contained in it (cf. §52B), or (4)
because the emission of particles is forbidden by
selection rules.

The last case is realized in the simple capture
of protons by Li” and F*® (cf. §81), the first in the
capture by C®. The conditions 2 and 3 are fulfilled
for the simple capture of slow neutrons by heavy
nuclei. The emission of charged particles is then
impossible because of the high barriers; the re-
emission of neutrons (elastic scattering) is im-
probable because of the small neutron velocity.
In some cases, it is possible to establish the
existence of simple capture experimentally, in
spite of its small probability. This will be the case
when the product nucleus B could not have been
produced in any other way and can be detected,
e.g., by B-radioactivity.

In any nuclear process, the residual nucleus B
may be left either in the ground state or in an
excited state. All the excited states which are
energetically possible and not improbable be-
cause of selection rules (§83) or because of con-
siderations of the penetration through the po-
tential barrier (§78), will in general be formed. To
each excited level of nucleus B there corresponds
a “‘group” of outgoing particles Q with a certain
definite energy. The group of highest kinetic
energy will correspond to the nucleus B being left
in the ground state, and the other groups, of de-
creasing kinetic energy, correspond to excited
states of nucleus B of increasing excitation
energy. This will be true for simple capture as
well as for particle disintegrations. In the case of
simple capture, the kv of the y-ray replaces the
kinetic energy of the outgoing particle. By meas-
uring the kinetic energies of the various groups of
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outgoing particles, or the spectrum of the y-rays
from the simple capture process, the excited
energy levels of the final nucleus B can be de-
duced. This has been done in a number of cases in
which the outgoing particles are protons, neu-
trons or a-particles (Chapter XVII, and §109).

The probability is, in general, of the same
order of magnitude for an excited final state of
the residual nucleus B as for the ground state (cf.
§54). Thus, if many excited states are energeti-
cally possible, only a small fraction of all disinte-
gration (or simple capture) processes will lead
directly to the ground state of the nucleus. There-
fore, it may sometimes be difficult to find the
group of particles, or the line in the capture y-ray
spectrum, which corresponds to the ground state.
On the other hand, the fotal disintegration prob-
ability will be greatly enhanced if many final
states are possible (§79).

B. Secondary processes due to the residual
nucleus

If the residual nucleus is left in an excited state
(which, according to the foregoing, is the rule
rather than the exception), we may again have
two cases. Either the excited state is below the
dissociation limit or above it.

1. y-ray spectrum.—In the first case, the only
“particles” which can be emitted by the nucleus
B, are light quanta. Therefore the residual nu-
cleus will emit one or more y-rays until it finally
arrives in its ground state. These y-rays from the
residual nucleus must not be confused with the
v-rays emitted in capture processes. The latter
are part of the main nuclear process (640) itself,
while the former are emitted after the main
process is finished. y-rays from the residual nu-
cleus have a discrete spectrum depending only on
the levels of nucleus B, while the frequency of the
capture vy-rays depends on the kinetic energy of
the incident particle so that their spectrum is
continuous if the incident particles are not
“monochromatic,” i.e., if they do not all have the
same energy.

The spectrum of the y-rays from the residual
nucleus has been observed in several cases (§89,
99-102). It provides a very important check on
the scheme of energy levels of nucleus B derived
from the groups of particles emitted in the
nuclear process itself. In cases for which these
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groups have not been measured, the y-rays from
the residual nucleus may also be used directly to
obtain a scheme of energy levels; however, the
analysis of the spectrum is often difficult, espe-
cially if there are many lines.

It need hardly be mentioned that y-rays from
the residual nucleus may be emitted after capture
processes as well as after particle disintegrations.
In the former case, it is extremely difficult to
separate the two kinds of y-rays.

2. Three-particle disintegration.—If the residual
nucleus B is, in the main nuclear process, left in
an excited state above its dissociation energy, it
may break up further, emitting material par-
ticles according to the scheme

B*—D+4S. (641)

The asterisk denotes an excited state, D is the
second residual nucleus, and S the second emitted
particle. Experimentally, such a process will
appear as a three-pariicle disintegration, according
to the scheme

A+P—C—B*+0—D+S+0Q. (641a)

Such three-particle disintegrations have been ob-
served in a number of cases (§85, 79, 80, 101D,
E, 102D) and it could be shown that the mecha-
nism is actually as indicated by the scheme
(641a), at least in the case

B4+ H!'—-»C2—Be®*+He*—3He!. (641Db)

It seems that a breaking up into three particles
in a single process is very improbable.

The emission of a material particle S by the
excited residual nucleus B*, when energetically
possible, is in general more probable than the
emission of y-rays, just as, in the “main” nuclear
process, particle disintegrations are more likely
than simple capture. The reasons and the excep-
tions are the same as discussed above, in 4.

A particular example of a three-particle dis-
integration is the case in which one or both of the
emitted particles S and Q are of the same kind as
the incident particle P, so that we have in effect
the reaction

A+P—D+P+0Q. (642)

Then it appears from the final result as if particle
P had not taken part at all in the reaction, except
by giving part of its energy to the other particles.
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The reaction appears as a noncapture disintegra-
tion according to the scheme

A—D+Q. (642a)

However, it should be remembered that actually
the mechanism of the reaction is more complica-
ted. The incident particle is first absorbed by the
initial nucleus 4, to form the compound nucleus
C. It is then reemitted, 4 being left in an excited
state. This excited state then disintegrates finally
into D+Q. Or else, the compound nucleus may
first emit particle Q, leaving the residual nucleus
B in an excited state, whereupon the reemission
of particle P follows as the last stage. The two
schemes of ‘“noncapture disintegrations’” are
thus:

A+P—C—A*+P, A*—D-+(Q (642b)

or A+P—-C—B*+Q, B*—D+P. (642c)

Both are, in principle, equally probable.
“Noncapture” disintegrations seem to occur in
several cases with fast neutrons, the neutron
losing part of its energy which is used to knock
another neutron out of the nucleus (§85, 102D).
The same statements could be made about
nucleus D, as about B. D may again be formed in
an excited state and may again emit y-rays, or,
if excited above the dissociation energy, may
disintegrate with emission of another particle, etc.

C. B-radioactivity of final nucleus

The nucleus which is finally formed, after all
particles, vy-rays, etc. have been emitted, may be
B-radioactive. It seems preferable not to include
this B-decay in the nuclear reaction at all, not
even in the secondary reactions of the type (641),
because the time required for the 8-decay is of an
entirely different order of magnitude than the
time of nuclear reactions. Even the slowest nu-
clear reactions are completed in about 107 sec.,
this figure corresponding to a width of the com-
pound nuclear level of about 0.01 volt which is
smaller than all widths found experimentally
thus far (cf. §61, Table XXVI and §81). The
same figure will represent something of an upper
limit to the lifetime of the excited levels of the
residual nucleus B against y-emission, except
possibly for low metastable levels (§87D). On the
other hand, the shortest lifetime ever observed
for a B-radioactive nucleus is 1/50 sec:, with most
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lifetimes ranging from a few seconds to a few
years. This is 10!, or more, times longer than the
duration of a nuclear reaction.

Thus it seems justified to draw a definite line
between the nuclear process itself and the
B-emission which may follow it. From this stand-
point we have to say that electrons (positive or
negative) will never be produced in a nuclear
reaction, but can only be given off later, by the
nucleus produced in the reaction. The interaction
of nuclei with the Fermi field of electrons is so
much weaker than all other interactions that we
can neglect it entirely in nuclear dynamics. We
consider the interaction of the compound nucleus
with the ‘‘fields’” of heavy particles of all kinds,
and with the electromagnetic radiation field, but
we leave out the extremely small interaction with
the B-ray field. For this reason, §-emission was
described in part A of this report, which dealt
with stationary states of nuclei rather than with
dynamic processes.

The chief function of B-radioactivity in the
study of nuclear reactions is to provide a con-
venient indicator of the production of certain
product nuclei. In fact, most of the capture proc-
esses of neutrons (Chapter X) and many of the
reactions produced by charged particles (this
chapter) have been discovered through detecting
the radioactivity of the product nucleus.

B-emission may also lead to an excited state of
the final nucleus which will therefore emit y-rays.
These y-rays can easily be separated from the
v-rays produced in the original nuclear reaction
(capture y-rays) or emitted by the residual nu-
cleus of the original reaction, because the y-rays
emitted after B-emission appear with a time lag
equal to that of the B-emission itself.

§77. GENERAL THEORY

The general expression for the disintegration
cross section is (cf. (260))

w2
=2 (27 +1
¢ (25+1)(2i+1)21:( )

UP" —

urJPp urJQq 2

x|z

— 2 (643)
" E—E.+}iv,

The notations are the same as in §52. The matrix
element #"7p, contains the wave function of the
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incident particle P, and therefore (cf. §72) the
factor Pp,} where Pp, is the transmission proba-
bility (penetrability) of the potential barrier of
the initial nucleus 4 for the incident particle P.
We put

u'Pp=wTPp PPpiy

(644)

where w is the matrix element in the absence of
the potential barrier and P the penetrability.
Similarly,

U =w"qq Pol, (644a)
where Py, is the penetrability for the outgoing
particle. It will depend on the kind Q of the
outgoing particle as well as on its energy which,
for given energy E of the incident particle, is de-
termined by the quantum state ¢ of the residual
nucleus. The ‘““matrix elements without barrier”
w are connected to the level widths without bar-
rier, G, introduced in (594), by
G"oq=(w"qy)% (644b)
For a given energy E of the incident particle,
the penetration factors P are the same for all
levels of the compound nucleus (§52). Therefore
we may write

0FPoe=PppP .57 qq, (645)
where
Pram 5 (0741)
254+ 1)(2i+1)7
Wpy wos |2
E_——E——i-;f;— (645a)

The cross section is thus a product of three fac-
tors, v12.

(1) The penetrability of the potential barrier for
the incident particle Pp,

(2) The penetrability for the outgoing par-
ticle Pg,

(3) The ‘‘internal disintegration probability”
SPqu.

If either the incident or the outgoing particle, or
both, have sufficient energy to go over the top of
the barrier, the corresponding penetrability fac-
tors must be replaced by unity.
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The discussion of formula (645, 645a) is con-
veniently carried out separately for light and for
heavy nuclei.

A. Light nuclei

The spacing between the resonance levels is
known to be wide, of the order of 1 MV (cf.
§81, 82). The resonances will therefore in general
be observable if particles of suitable energy are
available, and if the width of the resonance levels
is small compared to the spacing so that there is
actually a marked increase of the scattering cross
section at resonance. This latter condition will be
fulfilled if the energy of the resonance level is not
too high. For very high excitation energy, the
ratio of the total width to the spacing is known to
increase rapidly (§54). Therefore it is improbable
that resonances will be observed with deuterons
as the incident particle, since the high internal
energy of the deuteron makes the energy of any
compound nucleus which is formed by adding a
deuteron to an initial nucleus, very high also.

1. In the neighborhood of a fairly narrow reso-
nance level, the penetrabilities Pp, and Pg, may
be regarded as constant and be replaced by their
values at exact resonance. (645a) reduces to a
single term, and (643) to the well-known one
level formula

TR (2J+1) Tppl'70q
Q= ; (646)
(2s+1)(2¢+1) (E—E,)241iT,2

aPr

with

I'"pp=G"ppPpp, T70q=G"q.Pqs (646a)
The G’s are the partial widths without barrier, the
Is the widths with barrier, and the P’s the pene-
trabilities of the barriers at resonance. The total
width T, may or may not contain other partial
widths besides those corresponding to the emis-
sion of Pp and Qg. The experimental evidence on
resonance disintegration, and the determination
of the partial and total widths from the experi-
mental results, will be discussed in §81, 82.

2. For very low energies there will certainly be
a region in which the penetrability factor Pp, in
(645) changes much more rapidly than the inter-
nal disintegration probability s. This region cor-
responds to the 1/v region in neutron disintegra-
tions (§58B). The extension of the ‘“‘penetrability
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region’’ is determined in a way similar to that of
the 1/v region for neutrons. The penetrability
factor will govern the disintegration function as
long as the kinetic energy of the incident particle
is small compared to the energy or to the width of
the first resonance level, whichever is larger.

A narrow resonance level with small partial
widths I'"p,I'"g, can be disregarded for the pur-
pose of determining the extension of the ‘‘pene-
trability region.” Such a level will only interrupt
the general trend of the disintegration function
for a small energy interval.

In the “penetrability region,” the cross section
may be written

o=const:- Pp,Pq./E, (647)

since the factor X* in (645a) is proportional to
1/E. This formula was first suggested by Gamow
and is well confirmed for small energies of the
incident particle (§78).

For higher energies, the fluctuations of the in-
ternal disintegration cross section (645a) with
energy will greatly affect the disintegration func-
tion. It will then no longer be possible to deduce
the penetrability of the barrier directly from the
disintegration function, as has been done in the
past. Some of the important factors besides the
penetrability are discussed in §79.

B. Heavy nuclei

The spacing between the levels of heavy
nuclei is known to be of the order of only a few
volts, from neutron experiments (§60). No avail-
able source gives fast charged particles homo-
geneous enough in energy to observe such closely
spaced levels. Thus we cannot hope to observe
resonance levels in heavy nuclei with charged
particles. All we can observe is an average cross
section, averaged over an energy interval large
compared to the spacing of levels. This average
has been calculated in §56 (405).

The rather intricate influence of the angular
momentum is treated in §78B. As will be shown
there, we may write

PJPp= GPpPPpHJI’p- (648)

Here Gp, is the width without potential barrier
which is, in the average, independent of J,
and is connected to the ‘‘sticking probability”
£ (§§54, 56) approximately by (cf. 360):
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GPp= (1/27(‘) (2’L+ 1)(28+ I)Djfpp

Pp, is the penetrability of the potential barrier
for particles of zero orbital momentum, and II a
factor which decreases with increasing J and
takes into account the dependence of the pene-
trability on the angular momentum. A formula
similar to (649) holds also for particle Q.

(405) may now be rewritten

(“Pqu)Av =mXEp,Prp lcz(FQq/F) Avy

(649)

(650)

where the factor /? comes from the summation
over the angular; momenta J (cf. §78) and in-
creases slowly with the energy, while T'g, is a
suitable average of the I'/o, over J. Two cases
should now be distinguished :

(a) The total level width T' contains mainly
contributions which are not very sensitive to the
energy, i.e., contributions from the emission of
neutrons or of charged particles of energy high
enough to go over the top of the potential barrier.
Then it is convenient to replace I'q; by GoiPqq
and to write

(67PQ)n=5F7q¢PpyPqq (651)

where the ‘‘internal disintegration probability” s
is defined by

SP”Qq=7r7\21¢2€ppGQq/F (652)

and changes slowly with the energy as compared
to the penetrabilities Pp, and Pg,.

(b) The total width contains mainly contribu-
tions from the emission of slow charged particles
which must penetrate the potential barrier.
Then the influence of the potential barrier on ¢
is expressed by

UNPPPPQQ/PM, (6518.)

where Py, is an average of the penetrability over
all charged particles which can be emitted.

§78. PENETRATION THROUGH POTENTIAL
BARRIER

As we mentioned in §77, case A2, there will
always be a region at low energies in which the
disintegration function is governed by the proba-
bility of penetration through the potential
barrier, viz.

o=const-Pp,Pq,./E. (653)
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Pp, is the penetrability for the incident, Pg,
that for the outgoing particle and E the energy
of the incident particle. The penetrability may
be written in the form (600):

P =20 (EIB), (600)
where g is given in (600a), v in (600b) and B is
the height of the potential barrier (609).

In Table XXXVI (see also Fig. 23), we have
compared the “Gamow disintegration function”
(653) to the experimental data in a few cases.
The agreement is fairly satisfactory for the reac-
tions Li®*+H?—2Het, Li"4+H!—2He* in which
only incident particles of energy well below the
potential barrier were used. In other cases, the
agreement is not so satisfactory especially when
the particle energies extend over a wide range.
This is to be expected, according to the general
theory given in §77, because the internal disin-

Yield

o My¥ °
x Na*t

Barrier
Reight

Devteron Energy

| 1 1
0.5 10 15 2.0 25 My 3 as

F16. 23. Yield of the disintegrations of Mg? by deuterons.
Solid curve theoretical penetration function, broken curve
same without consideration of angular momentum. Circles
and crosses observed points for the formation of Mg?” and
Na?¢ respectively. It is seen that the experimental disinte-
gration functions rise more steeply than the ‘‘theoretical’’
curves. The agreement is slightly better when the angular
momentum is taken into account. The remaining dis-
crepancy should be attributed to the increasing number of
possible states of the final nucleus (§79).
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TABLE XXXVI. Excitation functions of nuclear reactions.
Energies in kv, excitation functions in arbitrary units.
All excitation functions are reduced to thin targets.

Excit. FUNCT. EXCITATION FUNCTION

THEOR.
ALL !

ENERGY | THEOR.
Exp. kv 1=0

Be®+H2=B10+4 !
Crane, Lauritsen and
Soltan* (C38)

ENERGY

kv THEOR. Exp.

Li+H2=2He*
Otiphant, Kinsey and
Rutherford (03)

320 1.0 0.95 0.3
120 0.33 0.19 | 400 2.2 2.1 1.5
130 0.50 0.43 | 440 2.9 2.8 2.5
147 0.92 0.92 | 480 3.8 3.8 3.7
158 1.26 1.16 | 520 4.8 4.8 4.8
173 1.52 1.82 | 560 5.7 5.8 6.6
182 213 2.42| 600 6.8 7.0 8.8

640 7.6 7. 10.7

Li"+H2=2He*4-n!
Oliphant, Kinsey and
Rutherford (O3)

Fro4+ Ht=0164Het
Henderson, Lawrence and
Livingstont (H22)

0.74 65

104 0.34 0.10 | 730 0. 0.14
115 0.51 0.29 | 1050 2.5 2.35 1.1
130 0.94 1.01 | 1180 3.4 3.3 1.45
151 1.61 1.88 | 1280 4.0 4.0 4.0
175 3.2 2.8 | 1420 5.0 5.2 5.7
1770 7.1 8.3 12.9

* The energies given by the authors have been reduced by 20 percent
(see §92C).

1 The energies have been deduced from the raenges given. They are
in the average 8 percent higher than the energies given by the authors,
which were also deduced from ranges but with the help of an incorrect
range-energy relation.

tegration probability s will change appreciably
over energy regions of the order of a MV or
more.%

A. Influence of the angular momentum, theory

Except for the very lightest nuclei, particles
with various orbital momenta will be effective for
the disintegration. Attention must then be paid to
the dependence of the disintegration probability
on the orbital momentum I of the incident par-
ticle. We shall treat this problem with the follow-
ing simplifying assumptions which will corre-
spond to reality for sufficiently heavy nuclei:

(1) The density of levels is supposed to be so

% Henderson, Lawrence and Livingston (H22) to whom
the experiments on the disintegration function of the
reaction F1*4H! are due, found what seemed to be good
agreement with the ‘“Gamow formula” (653). However,
they approximated the function vy in the penetrability
formula (600) by

v/ =3rx"4-2, (a)

which gives for the penetrability the ‘“‘simplified Gamow
formula’ (589b), i.e.

P =const-exp (—2we2Z/hv). (b)

The use of this formula is unjustified if the energy of the
particle is comparable with the height of the barrier.
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great that only the average cross section will be
measured (cf. §56, §77B).

(2) The contribution of each orbital momen-
tum / is proportional to the corresponding pene-
trability of the potential barrier P; (cf. (631)
etc.).

Furthermore we assume

(3) The spins of scattering nucleus and scat-
tered particle are zero, so that the orbital mo-
mentum / of the incident particle is identical with
the angular momentum of the compound state.
This restriction can easily be removed.

The averaged cross section is given by (405),
v12. (1=5=0)

TV ppIY gq

(UP”Qq)Av=27r27\2§:(21 +1)( ) . (654)

JT
We insert

IVp,=Gp,Py, (655)

where Gp, is the average partial width without
barrier which is supposed to be the same for all
values of J, and P; is the penetrability for par-
ticles of orbital momentum J. (655) corresponds
to assumption 2 above. For the outgoing particle
we assume an energy sufficient to carry it over the
top of the barrier, and to give T'/¢, practically
the same value for all values of J for which the
penetrability P, for the incident particle is
appreciable. Then (654) may be replaced by

aP"Qq=21r27\"’(Gp,,I‘Qq/DI‘)M§:(2]+1)PJ. (655a)

The sum over J may, for energies below the top
of the barrier, be extended from 0 to « because
there is no restriction on J but that imposed by
the decrease of the penetrability P; with in-
creasing J. (655a) may also be expressed in terms
of the sticking probability for the incident par-
ticle, using (649a):

oPPoq=mR2pp(Tqe/T) 2. (2J+1)P,;.  (656)
J

The penetrability as a function of I=J was
calculated at the end of §72. From the formulae
given there, we may compute the “effective
orbital momentum’’ /, which we define by

I2=2.(2141)P,/P,. (657)
]
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The details of the straightforward calculation
will be given in a future paper by Bethe and
Konopinski. Fig. 19 gives /.2/g* as a function of
x, where x is the ratio of particle energy to barrier
height and g the characteristic angular momen-
tum given in Table XXXIII. One curve (g=5)
corresponds approximately to the disintegration
of Zn by deuterons, the other (g=25) to the dis-
integration of uranium by a-particles. For com-
parison, the figure contains also Ji?/g?=x where
Iy is the ‘“critical orbital momentum’ of neutral
particles lo=R/X.

The effective orbital momentum I, becomes
equal to I, at high energies because then the
Coulomb potential may be neglected. At some-
what lower energies but still above the barrier,
we have [, <], because the combined action of
Coulomb repulsion and centrifugal force pro-
duces an ‘‘effective potential barrier’” for some
of the orbital momenta just below I, As the
energy decreases, this effect becomes more
pronounced. For an energy just equal to the
potential barrier, (cf. (634a))

1.(B) =g}, (657a)

while Io(B) =g (by definition, cf. 611). The ratio
is here I./ly~g~% which is about 1/3 for uranium
+a-particles. For energies below the potential
barrier, I, does not decrease much further while
1, keeps on decreasing as E*. At very low energies
(<iB), l. reaches a finite limit (cf. (633))

1(0)=(32)%,

whereas [, goes to zero. This effect, which was
already discussed in §72, means that, at low
energies, particles of higher angular momentum
penetrate the nucleus relatively more easily when
they are charged than when they are neutral
(relatively compared to particles of I=0; the
absolute penetration probability is of course
very much less for charged particles). The
Coulomb potential, so to speak, carries the par-
ticles smoothly into the nucleus.

With our definition of /. (cf. (657)), we obtain
for the cross section

o ~X2Pyl.?,

(658)

(659)

if we neglect (cf. 655a) the variation of I'q./T
and of Gp, with energy. (659) represents the
corrected penetration function of the potential
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barrier which replaces the simple Gamow func-
tion X2P,. The formula, as well as the considera-
tions leading to it, are valid if we assume that
the critical orbital momentum I,/ for the out-
going particle is much greater than /.. If the re-
verse is true, the critical orbital momentum will
be determined by the outgoing rather than by
the incident particle. If incident and outgoing
particle have about the same I, a rule-of-thumb
formula for the cross section is

o ~REP2L /(12 41."7), (659a)

where the primed quantities refer to the out-
going, the unprimed ones to the incident
particle.

B. Physical consequences of the angular mo-
mentum

The behavior of /. as a function of the energy
has consequences for the cross section, the
angular distribution of disintegration particles
and the occurrence of resonances.

(1) The cross section is given by (659).

(a) At very low energies, /;? becomes constant
and different from zero. In this region, the cross
section depends on the energy as in the Gamow
theory, i.e., as E~1P,. However, the magnitude
of the cross section is considerably (by a factor
12) larger than would be expected if only
particles of zero orbital momentum could enter
the nucleus, and also larger than the cross
section for neutral particles multiplied by the
penetrability P,. The factor l? goes, according
to (658), up to 13 for a-particles on uranium.
The effect of the angular momentum is thus
quite appreciable although very small com-
pared to the effect of the penetrability P,.

(b) At higher energies (about 1B to 2B), the
cross section is smaller than that for neutral
particles times the penetrability P,. The ratio is
given by [2/l> which reaches a minimum of
about 0.05 for a-particles on uranium.

(c) The cross section for charged particles
increases considerably for energies higher than the
potential barrier. E.g., for a-particles on uranium,
the expression (659) increases by a factor 11
from an energy just equal to the height of the
barrier, to twice that energy. Since Py=1 in
this region, the increase is entirely due to the
increased importance of higher angular mo-
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menta. This effect is probably the most im-
portant effect of the angular momentum on the
cross section; it means that the disintegration
function will, in general, keep increasing beyond
the top of the potential barrier so that barrier
heights deduced from disintegration experiments
are apt to be too high.

(2) The angular distribution of the disintegra-
tion particles will not be spherically symmetrical,
even at zero energy of the incident particle,
because even then orbital momenta of the in-
cident particle up to I, are effective. This was
first pointed out by Teller (unpublished). It is
remarkable that, in this respect, charged in-
cident particles behave quite differently from
neutral ones which always give, at small
energy, spherical distribution of the disintegra-
tion products.

(3) The rapid increase of the number of
effective angular momenta above the top of the
potential barrier accounts for the fact that in
a-particle disintegrations, resonance maxima can
only be observed for a-energies up to approxi-
mately the height of the barrier (§82).

Table XXXVI and Fig. 23 give examples of
the influence of the angular momentum on the
disintegration function. In Table XXXVI we
have examples of reactions on which measure-
ments were made only well below the top of
the barrier (B=1.6 MV for Be?+H? and B=2.5
MV for F'*+H!). The effect in this energy
region is not very great, but the agreement with
experiment is slightly improved.

The same is true for the reactions Mg?®+H?
=Mg¥+H! and Mg?+H?=Na*+He* whose
experimental disintegration functions are shown
in Fig. 23 (data from Henderson, H23). The
reaction giving a-particles has, experimentally,
a steeper disintegration function. From the
standpoint of the theory presented in this section,
the disintegration functions should be approxi-
mately the same because in both cases the
produced particle can go over the top of the
potential barrier. (In §79, the reason for the
difference will be explained.) The figure contains
the theoretical curves with and without the
angular momentum factor .?; the former curve,
which rises more steeply, agrees much better
with experiment but is still not quite steep
enough. As will be explained in the next section,
this difference is also understandable.
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C. Energies required for given yields

It is often useful to know in advance what
energies are required in order to obtain ob-
servable results in disintegration experiments.
The number of disintegrations per incident
particle is approximately

p= N 6R 7r7\2102prpFQ/I‘, (660)

where 8R is the part of the range of the incident
particles in which they are effective and IV the
number of atoms per cm?® in the disintegrated
substance. We want to compute only the order
of magnitude and we are especially interested in
heavy nuclei because for light ones the observa-
tion of disintegrations offers no difficulty. There-
fore, we use the following rough approximations:
We put Tg=T, fp=1, [2=7, x=1.5-10" cm
(deuterons of 5 MV). Furthermore we replace
NOR for the substance by one-third of that
quantity for air, corresponding to a stopping
power of 3 per atom (cf. §95); we have N,i.
=5-10" and 6R,;;~5 cm considering that the
particles will only be effective in the first part
of their range. With these constants,

p~10-4Pp. (660a)

With a current of incident particles of 10 pa (good
average for cyclotrons) the number of disintegra-
tions per sec. is then

p~101Pp, (660b)

so that, with good detecting apparatus, a
penetrability of 107'° should be just sufficient
for establishing a process. Table XXXVII gives
the energies of protons and a-particles required
to give penetrabilities of 1072, 10~% and 107,
For deuterons the energies required are about
the same as for protons for the larger pene-
trabilities (107%) and somewhat higher than for
protons for the smaller penetrabilities (10-1°).

TaBLE XXXVII. Penetration probabilities for various
particles. (The table gives the energy in MV required
for given penetration probabilities.)

PENETRATION
ProB. P PARTICLE | Z=3 7 11 19 29 50 92
10-2 Proton 0.12 0.5 08 14 22 37 6.3
a-particle | 0.94 2.2 3.1 48 6.7 100 16.0
10-5 Proton 0.04 015 03 06 1.1 2.1 4.0
a-particle | 0.34 1.1 1.7 30 46 7.5 13.0
10-10 Proton 0.02 0.06 0.12 0.3 0.5 12 2.5
a-particle | 0.08 0.6 0.9 1.8 29 52 10.0
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§79. THE COMPETITION BETWEEN THE NUCLEAR
PROCESSES

A. General formulae

The cross section for a nuclear process,
averaged over an energy region large compared
to the spacing between resonance levels, may be
written

UPqu=7r)\2prPPpchFQq/I‘y
I‘Qq'_‘GQqPQq

(661)
(661a)

(cf. (656) to (659)). All the quantities such as I’
and G denote averages over a large number of
energy levels in the energy region in question.
P, is the penetrability for the outgoing particle;
it has been assumed that this penetrability does
not depend sensitively on the orbital momentum
of the particle (otherwise cf. (659a)). Pp, is the
penetrability of the incident particle for angular
momentum zero, { its sticking probability and
I, the critical angular momentum (cf. §78).

(661) may be written as the product of the
probability of formation of the compound
nucleus and the probability of the particular
mode Qg of its disintegration. The probability of
formation,

where

opp= 7r£pp7\2Pppl;2

(662)

contains the penetration factor X*Pp,l? which
was discussed in detail in the last section, and
the “sticking probability”” & which is expected
(§54) to increase slowly with increasing energy.
For large energies, P=1, I.=l,=R/X (cf. §78)
and therefore

(E>B) (662a)

OPp= 7rR2EPp7

(cf. (408)). op, is the total cross section of all
processes which may be produced by particle P;
it depends, at low energies, mainly on the
penetrability, at high energies mainly on the
sticking probability of particle P.

The fraction of processes which lead to the
emission of particle Q and to the state g of the
final nucleus, is

Iq,/T (663)

and the total relative probability for an emission
of particle Q by the compound nucleus:

To/T. (663a)
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The probability of emission of a given kind of
particles Q is therefore determined by a com-
petition of this process with other possible processes.

B. Relative probability of emission of various
kinds of particles

From (661a):

Fo=3.Ga.Paq- (664)
q

According to the considerations above and in
§54, an individual Gq, will not depend very
much on the energy. Therefore the width corre-
sponding to a given kind Q of particles will
depend

(1) on the number of possible states ¢ of the
final nucleus

(2) on the penetrabilities Pg,.

Both these factors will depend on the energy
available in the reaction. Let

Qg=(MA+MP—MB—ﬂfQ)62 (665)

be the energy evolved in the reaction when nu-
cleus B is formed in the ground state; the M’s
denote the masses of the respective nuclei. Then
Ep+Q, will be the total energy available. It will,
in general, be shared between excitation energy
of nucleus B and kinetic energy of particle Q. We
may now distinguish between two cases:

(a) The avatlable energy Ep+Q, is larger than
the height of the barrier Bg for the outgoing par-
ticle. Then there will be some states of the final
nucleus B for which the penetrabilities Pg, are
unity. These states will, then, in general give the
largest contribution to the particle width I'g (cf.
also Fig. 10, §54). Therefore, if N(U) denotes the
number of quantum states of the firal nucleus B
below the excitation energy U, and Gg, the
average of Gq, over the various states g of nu-
cleus B, we may write

To=N(Ep+Qo—Bq)Gqu

Thus the particle width increases as the number
of available levels of the final nucleus. There will
be N(Ep+Qo—By) different groups of outgoing
particles with different kinetic energies. Most of
the outgoing particles will have energies between
Bg and Bg+ 75 where 75 is the ‘“temperature’” of
the residual nucleus B corresponding to the
excitation energy Ep+Qo—Bg (cf. §54).

(666)
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(b) The available energy Ep+Q, is smaller than
the height of the barrier Bo. Then the particle Q
will be compelled to penetrate the barrier, what-
ever the state ¢ of the final nucleus. In general,
the penetrability Pg, will be very much less for
highly excited states of B than for the ground
state. Therefore the nucleus B will, in this case,
in general be formed in a low state. Accordingly,
there will be only comparatively few strong
groups of outgoing particles. The partial width is
of the same order as for the ground state alone, viz.

PQ = GQ()PQ(). (6663)

It is obvious that the width T'q in case (a) will
ordinarily be much greater than in case (b).
Therefore the total width T will be determined by
those outgoing particles for which the net avail-
able energy Ep+Qo—Bg is largest. Since Ep is
the same for all outgoing particles, the conditions
for large contribution to the width are

(1) Large energy evolution Q,, i.e., the final
nucleus and outgoing particle must be as stable
as possible.

(2) Low barrier By, i.e., neutrons are preferred
compared to protons and deuterons, and these
compared to a-particles.

(3) In addition to these factors, of course, the
probability of formation Gg plays a part. This
factor is probably not very different for neutrons
and protons, but presumably smaller for deu-
terons and a-particles and very much smaller for
y-rays.

From these conditions we conclude:

(1) The formation of stable nuclei is in general
more probable than that of radioactive ones if
both can be formed from the same compound
nucleus.

(2) The emission of neutrons is, for heavy nu-
clei, by far the most probable nuclear process
whatever the incident particle.

(3) The emission of y-rays usually gives a neg-
ligible contribution to the total width, unless
there are special reasons which make the other
contributions exceptionally small. Such special
reasons seem to exist only in the case of slow
neutrons (cf. especially §61, 62) where the y-ray
width is 100 and more times larger than the
neutron width. The reason for this is that only
one final state is possible for the nucleus after
neutron emission, vz. the ground state of the

BETHE §79

TaBLE XXXVIII. Average energy evolution for a-particle
and proton emission in MV.

A 50 100 150 200 240
da/dA -0.9 0 0.9 ~1.9 ~ 2.5
Ua—Un 1.1 3.8 6.5 9.5 11.3
By—Bu 4.3 6.5 8.0 9.0 10.0

initial nucleus, but very many states are possible
after y-emission, v:z. all states of the final nucleus
with excitation energies below about 8 MV
(binding energy of the neutron).

(4) The emission of a-particles will in general
have a probability of the same order of magnitude
as that of protons in spite of the higher potential
barrier for alphas, because this will be compen-
sated by the greater energy evolution. If A(4) is
the mass excess (difference between exact mass
and mass number) in energy units, as a function
of the mass number 4, and Ug is the excitation
energy of the compound nucleus, the available
energy will be for proton emission,

Un=Uc+A(4)—A(H)—A(A~1), (667)
for a-emission,
Ua=Uc+A(4) —A(x) —A(A —4), (667a)
and therefore the difference is:
Ua— U =A(H)+A(4-1)
—A(a)—A(4—4). (667b)

If we assume A to be a regular function of the
atomic number, and insert the values A(H)=7.5
MV, A(a)=3.7 MV, we have

Ue—Up=3.8MV+43dA/dA.  (667c)

Using the semi-empirical formula for nuclear
masses (cf. §30) up to 4 =150, and the average
energy of natural a-particles for 4 =200 and 240,
we find the values given in Table XXXVIII. In
this table, we have also listed the difference in the
heights B of the potential barrier for a-particles
and protons, according to (609).5° It can be seen
from the table that the difference in energy evo-
lution is, in most cases, almost as great as or even
greater than the difference in height of the po-
tential barrier. Apart from the factor G which
cannot be estimated easily, the other factors in

80 The energy evolved in the reaction, Uy and Uy resp.,

is available in the center-of-gravity system. Therefore it
must be compared to the barrier height in the same system
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the partial width T'q will be about as favorable
for a-particle as for proton emission.

(5) The emission of deuterons is usually ener-
getically unfavorable because of the high internal
energy of deuterons.

We therefore come to the conclusion that in
most cases the level width I' will be determined
primarily by the neutron emission. If the neutron
emission leads to a radioactive nucleus and the
nuclear charge is not too high, proton emission
may give the main contribution to I'. For a num-
ber of light compound nuclei which are multiples

of the a-particle, viz. Be® C!2 O'® Ne? and, per-.

haps, Mg and Si?, the most important mode of
disintegration will be the emission of an a-par-
ticle. In no known instance is deuteron emission
the most probable process. y-ray emission is the
predominant process only for low excited levels
of the compound nucleus, v¢z. when no other
process is energetically possible or when the
available energy for other modes of disintegration
is very small.

The ratios of the probabilities of various proc-
esses may be of the order ten or a hundred for
medium light nuclei. For heavy nuclei, however,
these ratios will reach very large values. Consider,
e.g., the disintegration of heavy nuclei (4 =200)
by deuterons of about 5 MV. Then the available
energy Up of the residual nucleus will be about
8.5 MV when neutrons are emitted, 9 MV for
proton emission and 18 MV for a-emission. Thus
protons and a-particles will just be able to go over
the top of the barrier when the final nucleus is
left in the ground state, and at the best only
about 10 levels of the final nucleus will be possible.
For neutrons, on the other hand, all the final
levels below 8.5 MV can be reached which are
perhaps (cf. §53) one million in number. Thus the
neutron emission may be about 100,000 times as
probable as the emission of a proton or an
a-particle.

The probability of the predominant process will
have about the same properties as the over-all
probability of all possible processes (cf. 661).
The probability of all other processes will behave

approximately as
aFro=ap,l'e/I", (668)

where I’ is the partial width due to the pre-
dominant process. Now the predominant process
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is usually characterized by a large energy evolu-
tion, larger than in the other possible processes.
But the partial width I'q increases in general at
the greatest rate when the energy evolution is
small, whether the increase is due to increased
penetrability or to an increase in the number of
possible states of the final nucleus. Therefore it is
likely that T'q in (668) increases much faster with
energy than I'. Consequently, the less probable
processes have in general a greater rate of increase
with increasing emnergy. (An exception is the
emission of y-rays. This process is intrinsically
improbable in spite of the fact that the energy
evolution is greatest in this case. It therefore
becomes even more improbable with increasing
energy, cf., e.g., Table XXVIII, §65.)

More quantitatively, we may say that the
probability of a less probable process will be
approximately proportional to the ratio of the
number of possible final levels for this process to
the number for the predominant process, if in
both cases the produced particle can go over the
top of the barrier. If only the particles in the pre-
dominant process can do so, the probability of
the less probable process will be approximately
proportional to the penetrability for the particles
produced in this process, divided by the number
of final levels possible in the predominant process,
the latter factor being presumably less important
than the former. Finally, if even the particles of
the predominant process have to go through a
barrier, the probability of the other process will
be proportional to the ratio of the transmission
coefficients of the barrier for the particles in
question and the predominant ones. This is
entirely different from the elementary theory
(one-body theory) in which, of course, a pene-
trability never appears in the denominator of a
cross section formula.

C. Example: The disintegration of Mg by
deuterons

An illustration of our considerations is the dis-
integration of Mg?® by H? for which the disinte-
gration functions are shown in Fig. 23. The most
probable process in this case is no doubt

Mg+ H2 A8 Al 4 nl. (669)
Less probable is
Mg?+ H2—AIZ2-Mg?”+H!,  (669a)
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and still less probable

Mg?+H2—Al?*—»Na?{Het.  (669b)

The energy evolution in the first case is probably
about 5.5 MV (cf. Table LIX), in the second
4.2 MV (Table LVIII), while in the last it is
3.0 MV (Table LVI). The heights of the barriers
are 0, 2.8, and 5.35 MV respectively. Therefore
we have for the usable energy evolution, i.e.
the difference between energy evolution and
potential barrier:

Q—B=35.5 MV for neutron emission
1.4 MV for proton emission
—2.4 MV for a-particle emission.

(669c¢)

In the experiments of Henderson (H22), a deu-
teron energy up to 3.5 MV was used. Therefore,
with neutron emission, all levels of Al*” up to an
excitation energy of 9.0 MV are possible as final
states. The number of these levels will probably
amount to about a hundred (cf. Table XXI).
With proton emission, Mg? may be left in excited
states up to about 4.9 MV excitation energy
which may, perhaps, correspond to about 10
possible levels. The nucleus Na* which is left
after a-emission, on the other hand, can only
have up to 1 MV excitation energy—otherwise
the a-particle could not go over the top of the
potential barrier. There will hardly be more than
one or two excited levels in this region, besides
the ground state of Na%. Thus we expect that the
neutron emission is much more probable than the
proton emission, and the latter in turn more
probable than a-emission.

On the other hand, an increase in energy will
multiply the number of final levels for Na? at a
much faster rate than the number of possible
levels for Mg? or Al¥. This is due to the fact that
in the formula for the density of levels (cf. §53),

log p(U)=a+bUn. (670)

(a, b, n constants) the exponent # is smaller than
unity (3 for free particles, 4/7 for the liquid drop
model). Therefore the relative increase in the
number N of levels below a certain energy U
becomes approximately

1dN(U) 14dp
________,~V_,__=ann—l’
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which decreases with increasing excitation en-
ergy U.

These predictions agree with the experimental
results of Henderson for the disintegration func-
tions of the reactions (669a, b)which were meas-
ured by means of the radioactivity of the pro-
duced nuclei. He showed that the disintegration
function for the a-reaction (669b) was smaller
but increased more steeply (cf. Fig. 23) with
energy than that for the proton reaction (669a).
The difference in slope cannot be attributed to
the penetration of the a-particles through the
barrier because the a-particles produced by deu-
terons of more than 2.5 MV energy are able to go
over the top of the barrier. The effect of the
angular momentum (§78) can be shown to be
small owing to the large mass of the a-particle.
Therefore the difference in slope should be at-
tributed to the increase in the number of possible
states of the Na* nucleus.

D. Energy distribution of disintegration products

Of great interest is also the distribution of the
particles of a given kind among the groups, at a
fixed energy of the incident particle. For charged
outgoing particles, the intensity in any group is
proportional to the penetrability Pgq, of the po-
tential barrier for that particular group; for out-
going neutrons, Pg, should be replaced by unity.
Pg, (or unity) should be multiplied by /2(Qgq) (or
102(Qq)) if the critical angular momentum /. (or /,)
is less for the outgoing than for the incident par-
ticle (see (659a) for a more accurate expression).
If we assume that the factors /,? and /.2 must be
taken into account, the number of emitted par-
ticles with an energy between Eq and Eq+dEq
is for neutrons

nn(EQ)dEq~Eqp(Ep+Qo—Eq)dEq, (671)
for charged particles
ne(EQ)dEq~1.2Po(Eq)

Xp(Ep+Qo—Bq—Eq)dEq. (672)

Here p(U) is the density of levels of the final
nucleus at an excitation energy U, Q, the energy
evolution in the reaction, Bq the height of the
potential barrier, Po(Eg) the penetrability of the
barrier for particles of energy Eq.

The density of levels p increases with increasing
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excitation energy. Therefore neutrons will pref-
erably be emitted with small kinetic energies
(cf. §54, 65) of the order of the “temperature’ of
the residual nucleus B.

For charged particles, the energy distribution
(672) is plotted in Fig. 10 (§54). It shows a sharp
maximum at a kinetic energy Eq very near the
height Bg of the potential barrier and falls off
rapidly on the low energy side because of the
penetration factor, on the high energy side be-
cause of the Boltzmann factor. The “width” of
the distribution curve is of the order of the
“temperature” 7 which, for heavy nuclei, is
small compared to the barrier height B. The use
of the energy distribution of charged particles
emitted from heavy nuclei for a determination
of the height of the potential barrier seems very
promising. Such a determination would probably
be more accurate and more direct than that from
the excitation function (§78) or the natural
a-decay (§68).

E. Secondary processes for very heavy nuclei

As we have shown in B, by far the most prob-
able process for heavy nuclei is the emission of a
neutron. According to Section D, the energy Eq
of this neutron is in general of the order of the
temperature 7, i.e., about one MV. Therefore the
excitation energy of the remaining nucleus is
approximately

Us=~A(P)—A(Q)

—(a—1)dA/dA+Ep—Eq, (673)

where ¢ is the mass number and A(P) the mass
excess of the incident particle, and the other sym-
bols have the same meaning as above. If the inci-
dent particle is a deuteron, we have A(P)=13.7
MV, A(Q) =8.3 MV so that (cf. Table XXXVIII)
for A =200:

U3z3.5+EP'—EQ. (6733)

With deuterons of Erp=5 MV, and a neutron
energy of 1 MV, we get

Up~7.5 MV. (673b)

Now a heavy nucleus is always energetically
unstable against o-disintegration, even in its
ground state. The energy available for a-decay is
approximately, for the ground state and A4 = 200,

4dA/dA —3.T~=4 MV. (673c)
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Therefore a nucleus of 7.5 MV excitation energy
may emit a-particles of 11.5 MV. This is more
than the energy of the fastest natural a-particles
(§69) and, in addition, the nuclear charge is
somewhat less than for natural oa-emitters.
Therefore the emission of a-particles by the resid-
ual nucleus will be even more probable than
that of the long range a-groups from RaC’ and
ThC’. These latter groups have an emission
probability somewhat smaller than the prob-
ability of y-emission; consequently, in our case
the emission of a-particles will be at least equally
probable and perhaps more probable than that of
y-rays. Therefore the primary reaction will, in
many cases, be followed by the emission of an
a-particle from the residual nucleus. The com-
plete reaction scheme would thus be

ZA4H2 > (Z+1) A2 (Z 1) A+

—(Z—-1)4"3+n'+4+He. (674)

Some evidence for such a double process was
obtained by Cork and Lawrence (C35) in the
bombardment of platinum by deuterons. Ac-
cording to our consideration in B, the most
probable process should be the capture of the
deuteron followed by emission of a neutron. This
would lead to the formation of a gold nucleus,
and from the most abundant Pt isotopes,
Ptl94, 195, 196 the gold isotopes Au'®®: 196. 197 should
be obtained of which the first two should be posi-
tron radioactive. Actually, no gold activity was
observed. This seems very surprising, although
not too much emphasis should be placed on nega-
tive evidence because the isotopes in question
may have very short or very long lives and thus
escape detection. Instead of a gold activity, two
radioactive isotopes of iridium were found (be-
sides Pt isotopes which are formed by the Oppen-
heimer-Phillips mechanism, cf. §80). The forma-
tion of an Ir isotope would require either a reac-
tion of the type

Pt4+H?—Ir4-2+He! (674a)

or a double process of the type (674). The emis-
sion of an a-particle in the primary reaction, ac-
cording to (666), must be (cf. Section B) several
thousand times less probable than neutron emis-
sion. Thus, if we restrict ourselves to primary
processes only, it would be difficult to understand
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why radioactive iridium is formed and not radio-
active gold. However, the results become im-
mediately understandable when we accept the
double process (674). We must only assume that
practically all the Au nuclei formed in the pri-
mary (dn)-process will disintegrate with a-emis-
sion so that as a result Ir remains rather than Au.

According to the scheme (674), the Ir isotopes
formed from the most abundant Pt isotopes 194,
195, 196 would be Ir!®: 192,193 of which Ir!9l. 193
are the known stable isotopes so that only Ir!9?
can be radioactive. Observed are two active sub-
stances, both emitting negative electrons. The
second of these must therefore be formed from
the somewhat rarer Pt isotope, Pt'*® (abundance
7.2 percent), and must thus be Ir'%. In addition,
the formation of Ir'®® from Pt!*? might be ex-
pected; this iridium isotope should be positron
active but should only be formed in very small
amounts because the abundance of Pt!*? is only
0.8 percent.

The emission of an a-particle by the residual
nucleus should become even more probable with
faster incident particles. It may also occur as a
secondary process after the inelastic scattering of
very fast neutrons (§65). It is probably restricted
to rather heavy nuclei because the energetic in-
stability of the nucleus in the ground state against
a-decay is essential. However, very high kinetic
energy of the incident deuteron will always pro-
duce the effect.

An emission of neutrons by the residual nu-
cleus will occur at still higher deuteron energy.
Such a process would be of the type

ZA+H2 = (Z+1)4+2n, (674b)

i.e., it would lead to an isobar of the original
nucleus. If this isobar emits positrons of 1 MV
energy, it must be 2 MV heavier than the original
nucleus. The two neutrons are 3 MV heavier than
the deuteron; in addition, they require about
1 MV kinetic energy each. Thus process (674b)
will become probable for deuterons of about 7 MV
energy: it will then, by competition, make the
process (674) improbable.

F. Validity of assumptions

The considerations given here apply primarily
to heavier nuclei and high excitation energies.
These two conditions are needed to ensure a
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sufficient density of levels of the compound
nucleus in the energy region in question. The
excitation energy of the compound nucleus is

Uc=Ep+A(P)+A(A—Ap)—A(4), (675)

where 4 is the mass number of the compound
nucleus and A4p that of the incident particle. If
we again assume the mass excess A to be a regular
function of the mass number—which, of course,
is a very crude assumption for all nuclei except
the very heavy ones—we have

Uc=Ep+A(P)—ApdA/dA. (675a)

If we take, e.g., nuclei of mass number around
20, for which these considerations probably just
begin to become valid, we have dA/d4 ~—1.3
MV. Then we find for the most important pro-
jectiles:

Uc=Ep+13.74+2.6

=Ep+16 MV for deuterons  (675b)
Ep+ 8.341.3

=Ep+10 MV for neutrons (675¢)
Ep+ 7.541.3

=Ep+ 9 MV for protons (675d)
Ep+ 3.945.2

=Ep+ 9 MV for a-particles. (675€)

Thus the excitation energy of the compound nu-
cleus will always be very high when deuterons
are used as projectiles: With 3 MV kinetic energy
of the deuterons, the total excitation energy
would be about 19 MV (in the average) and the
spacing of the energy levels, according to Table
XXI only of the order of about 100 volts for
atomic weights around 20. Thus we believe that
the theory developed here will be applicable to
reactions produced by deuterons for atomic
weights as low as 20, or even lower. With neu-
trons, protons and a-particles as projectiles, the
excitation energies will be much lower, unless the
kinetic energies are extremely high, and the
spacing between levels will, for 4 =20, be at least
several kilovolts. In fact, in many cases resonance
levels have been observed for a-particle disinte-
grations which have spacings of the order of
hundreds of kilovolts. This large spacing is
probably partly due to selection rules (§82),
partly, perhaps, to incomplete resolution in the
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experiments. Quite generally, the properties of
the individual levels of the compound nucleus will
not average out as completely for neutrons, pro-
tons and o-particles as projectiles as for deuterons.
However, for atomic weights of 40 to 50 or higher,
the “‘averaged” theory given in this section will
probably be true regardless of the incident par-
ticle used, if only the energy of the incident par-
ticles has an inhomogeneity of several kilovolts
or more.

For lighter nuclei the individual properties of
the particular nucleus in question will be more
important. However, the qualitative results of
this section, concerning the relative probability of
various processes, the importance of the number
of groups of outgoing particles etc. will be valid
even for light nuclei, as is shown to a surprising
extent by the observed energy distributions of the
emitted particles (cf. above, and (366)).

§80. DISINTEGRATION BY DEUTERONS (OPPEN-
HEIMER-PHILLIPS THEORY) (O11)

Oppenheimer and Phillips (O11) have sug-
gested that nuclear reactions of the type

ZA4 D2 ZAH L H! (676)

follow a different mechanism from other reactions
which makes them more probable and less de-
pendent on energy than would be expected from
the ordinary theory. The applicability of the
Oppenheimer-Phillips (O-P) theory is restricted
to heavy nuclei for which it will, indeed, increase
the disintegration probability considerably. For
light nuclei (up to about Z=30), the difference
between the O-P theory and the ordinary
Gamow-Condon-Gurney (G-C-G) theory is un-
observably small, as will be shown below. The
disintegration functions for nuclei such as Na,
Al, etc. by deuterons can therefore not be used as
evidence for the O-P theory.

The mechanism proposed by Oppenheimer and
Phillips may be described as ‘‘partial entry” of
the deuteron into the nucleus. Since the proton in
the deuteron is reemitted in the nuclear process,
it is actually not necessary for it to enter the
nucleus but it is only necessary for the neutron
of the deuteron to come inside the nucleus Z4.
This partial entry has the great advantage that
the neutron does not need to overcome the poten-
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tial barrier of the nucleus because the electro-
static repulsion acts only on the proton in the
deuteron. The partial entry is possible by virtue
of the small dissociation energy of the deuteron
(2.2 MV). Due to this fact, the deuteron has a
very large radius even in the free state, and the
separation between neutron and proton will be
increased considerably when the deuteron is sub-
jected to a large electric field near a heavy nucleus
which will repel the proton and not act on the
neutron.

A. Disproof for light nuclei

The first condition for the applicability of the
Oppenheimer-Phillips theory is that it give a
greater probability for the entry of a neutron
than the ordinary theory of Gamow and Condon-
Gurney gives for the entry of the deuteron as a
whole. Now the neutron has to overcome the
dissociation energy I of the deuteron in order to
enter the nucleus alone, whereas the deuteron
has to overcome the Coulomb potential barrier B
in order to enter as a whole. Therefore the partial
entry will be easier than the total entry roughly if

B>I. (676a)

Now 7 is 2.2 MV. The height of the barrier for
deuterons is just of the same order of magnitude
for nuclear charge around 10. Therefore the Op-
penheimer-Phillips theory will give approxi-
mately the same result for the entrance proba-

/T P 2

F1G. 24. The penetration function Fin the Oppenheimer-
Phillips theory. Curves are given for various ratios
p=1IR/Ze® of the binding energy I of the deuteron to the
height of the potential barrier. p=0.6 corresponds ap-
proximately to Z=17, 0.4 to Z=35, 0.2 to Z=100. For
p=0.2 the penetration function following from the Gamow
theory is given by the broken line. For p=0.6, the Gamow
points fall on the O-P curve.
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bility as the Gamow-Condon-Gurney theory for
nuclei with charges around 10.

This qualitative result is confirmed by a quan-
titative calculation which will be given in more
detail in an article to appear shortly in the
Physical Review by the author (B17). Fig. 24
gives the entrance probability according to the
Oppenheimer-Phillips theory as a function of the
energy. The entrance probability has been writ-
ten in the form

2Ze? 2M\ }
P=exp[———h—(——1——) F(E/I)J, (677)

where M is the mass of the deuteron. F is plotted
in Fig. 24 as a function of the ratio of the kinetic
energy of the deuteron E to the dissociation
energy I of the deuteron, for both the Oppen-
heimer-Phillips and the Gamow-Condon-Gurney
theory. It depends on the ratio of the dissociation
energy of the deuteron to the height of the
potential barrier, viz.

p=IR/Zé. (678)

With the expression (609) for the height of the
potential barrier, we have

p=4.02-%. (678a)

The value p=0.6, which gives the lowest curve in
Fig. 24, will therefore correspond to Z=17. For
this value of p, the Gamow-Condon-Gurney
theory and the Oppenheimer-Phillips theory
differ by an almost unnoticeable amount. The
difference in F is 0.04 unit at an energy as low
as $17=0.55 MV ; at higher energies, the difference
is much less. Now

(2Ze¢/h)(2M /1) =0.60Z. (677a)

Therefore a difference of 0.04 unit in F means,
for Z=17, a factor of about 1.5 in the entrance
probability (cf. (677)). This means that for Z=17
and E=0.55 MV, the entry of the neutron alone
is 60 percent more probable than that of the
deuteron as a whole. The difference is smaller
for higher deuteron energy, because higher ki-
netic energy helps the deuteron to overcome the
Coulomb potential barrier while it does not help
the dissociation of the deuteron. E.g., for 1.1 MV
energy the difference may be about 20 percent,
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and for deuteron energies above 2.2 MV, it be-
comes unnoticeable. Such small differences are
quite unobservable and are entirely insignificant
compared to the changes of the internal disintegra-
tion probability (§77) which must be expected
over such large energy intervals.

These considerations hold a fortiori for ele-
ments lighter than Z=17, such as Na, Mg, Al,
etc. This invalidates the interpretation given for
the excitation functions observed in (dp) dis-
integrations® of these elements by Lawrence,
McMillan and Thornton (L17) and by Henderson
(H23). These authors found that their experi-
mental results did not agree with the excitation
function predicted by the simple Gamow-Con-
don-Gurney (G-C-G) theory (entry of the deu-
teron as a whole) but agreed well with the Op-
penheimer-Phillips (O-P) theory. This is in con-
trast to our result that the two theories give
identical results for the light nuclei in question.
The reason for this difference is that Oppenheimer
and Phillips calculated the excitation functions
only for zero nuclear radius, i.e., for p=0 (cf.
(678)). In this case there is, of course, a very
great difference between the probability for par-
tial entry and that for total entry of the deu-
teron, because the potential barrier for the
deuteron would become enormously high if the
Coulomb potential continued down to r=0. This
explains the large difference between the ‘“‘theo-
retical” curves for O-P and G-C-G theory ob-
tained in the papers mentioned. Moreover, it
happens that the excitation functions for differ-
ent values of the nuclear radius differ only by an
almost constant factor in the O-P theory;at small
distances from the center of the nucleus the
splitting of the deuteron into neutron plus proton
would obviously be more favorable, and the
penetration of the neutron into the nucleus de-
pends in a first approximation only on the disso-
ciation energy of the deuteron and not on the
Coulomb barrier. On the other hand, the G-C-G
excitation function becomes steeper for the
smaller nuclear radii. Consequently, we should
expect that of the disintegration functions calcu-
lated with zero nuclear radius the O-P function
will depend on the energy in about the correct

62 By a (dp) disintegration we understand a process in
which the bombarding particle is a deuteron and the
emitted one a proton.
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way whereas the G-C-G function will not. This is
the reason why agreement was found between
experiment and the simplified O-P theory.5?

B. Discussion for heavy nuclei

The difference between O-P and G-C-G
theory will be much larger for heavy nuclei. For
uranium, p (cf. (678a)) will be about 0.2. Then
the difference between the values of F for the
two theories is about 0.09 for 4.4 MV deuteron
energy, which corresponds, according to (677a),
to a factor =150 in the penetration probability,
in favor of partial entry. According to this, the
O-P theory should give markedly different results
from the G-C-G theory for heavy nuclei, and
should therefore be applied in this case.

Before it is possible to say anything definite
about the applicability of the O-P as against the
G-C-G theory to heavy nuclei, it is necessary to
investigate both in the light of the Bohr model.
The O-P process follows the scheme

ZA+H2—>ZA4H+n'—ZA+1+HY,  (679)
while the ordinary G-C-G process may be written
as

ZA4+H>—(Z4-1)4+2>Z4+1 4L HL. (679a)

Thus the O-P process is quite unusual inasmuch
as the compound nucleus is identical with the
final nucleus. The process is a pure absorption
rather than a dispersion phenomenon. It requires,
therefore, a treatment different (essentially
simpler) from that of the usual processes. The
result for the cross section for a given final state
g is approximately (cf. B17)

(04?p4)o-p =272R2%kT' %,/ Eq.

(680)

Here I'%, is the partial width of the compound
(=final) state g corresponding to the emission of
neutrons and to the state p (=ground state) of
the initial nucleus, Ey is the energy of the out-
going proton and « a constant of the order unity.

2 As a special argument for the O-P theory of (dp)
disintegrations, it was pointed out by Henderson (H23)
that the reaction Mg®+H?=Na*+He* has a much
steeper disintegration function than Mg%®+4H?=Mg?"+H!
although the initial particles are the same. This was inter-
preted as showing that in the first case the whole deuteron
must enter the nucleus, in the second only the neutron.
The correct explanation is that the number of final levels
of the final nucleus increases with the energy of the deu-
l(tg;gr)l more rapidly for the (da) than for the (dp) reaction

PHYSICS 203
We may express T in terms of the penetrability
of the barrier and of the sticking probability
(cf. 649), viz.

T QNp = DBq EN( Uq) PO'P/27r1 (6803)

where Dp, is the spacing of the levels of the final
nucleus near the state g, Po.p the Oppenheimer-
Phillips penetrability of the barrier and £y the
sticking probability of the neutron which is a
function of the excitation energy U, of nucleus B.
Summing over all states ¢, we have

o
2T, = (Po-pénn/2m)3_Dpq
2 0

=Po-pénn U’/27ﬁ (680]3)

where U’ is the maximum possible excitation
energy of the final nucleus (see below). Since U’
is of the order of Ey, we find finally

(0"'“’841)0?= TRk EAVAV(U'I) Po.p. (681)

This should be compared with the cross section
for total entry of the deuteron, viz.

(64730)6-c-6=7R%p(U,) Po-c-cTu/T,  (681a)

where Pg.cce is the Gamow-Condon-Gurney
penetrability, &p the sticking probability for the
deuteron, T'y the proton width and T the total
width of the compound level (compound nucleus
(Z4-1)4+%). The ratio is therefore

Pop Ev(U,) T

0G-C-G - P;c-c ép(U,) Ty

0o-p

(682)

Of the factors occurring in (682), the first was
found to be about 100 in favor of the Oppen-
heimer-Phillips theory. As regards the second
factor, we have shown in §54 that the sticking
probability will presumably increase with in-
creasing excitation energy U. The excitation
energy U, in the case of the ordinary G-C-G
processes is (cf. (675b)) extremely high, viz. of
the order of 20 MV. In the case of the O-P
process, we have

U,=A(H?) —A(H) —dA/dA+Ep—Ep, (683)

where A is the mass excess (cf. (667)), Ep the
kinetic energy of the incident deuteron and Ep
that of the outgoing proton. It can be shown
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(B17) that the proton energy is, in the average,
roughly equal to deuteron binding energy plus
half the kinetic energy of the incident deu-
teron, i.e.,

Ep=2.2 MV+1Ep. (683a)

With A(H?)=13.7 MV, A(H)=7.5 MV and
dA/dA=1.9 MV (4 =200), we find

U,~2 MV+3Ep. (683b)

For Ep=5 MV, this is about two MV less than
the excitation energy of a nucleus formed by
capture of a slow neutron. Therefore the sticking
probability £y will be somewhat less than for
slow neutrons, perhaps about 1/100 (cf. 357b).
On the other hand £p can be expected to be of
the order unity. Therefore the second factor
(sticking probability) will approximately cancel
the first (penetration probability).

Therefore it will depend on I'y/T which of the
two mechanisms will give the greater cross
section. If the proton width Ty gives the largest
contribution to the total width, the two kinds of
processes will be about equally probable. How-
ever, for a heavy nucleus by far the largest
contribution to the width will come from the
emission of neutrons (cf. §79) because the number
of possible levels of the residual nucleus is much
smaller for proton than for neutron emission.
Therefore, T'y<<T'. This makes the Oppenheimer-
Phillips mechanism much more probable for
heavy nuclei than the Gamow-Condon-Gurney
mechanism.

Our considerations show that the reason for
the applicability of the O-P theory is quite
different from that naively expected. What
matters is not so much the facilitated entry of
the deuteron as the facilitated escape of the
proton. This, again, is not directly affected by
the potential barrier but rather indirectly. The
fastest protons produced by deuterons of about
5 MV will, in practically all cases, be able to
go over the top of the barrier. But the barrier
reduces the number of proton groups able to go
over the top, and this is the reason which makes
the probability of a (dp) reaction small in the
ordinary scheme.

At the same time, we see that the probability
of emission of a proton according to the Oppen-
heimer-Phillips mechanism should be about the
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same as that of a neutron in the ordinary
mechanism. This fact may be useful for interpre-
tation of experiments.

A possible experimental test of the O-P theory
is afforded by the energy distribution of the
emitted protons. According to the ordinary
theory, most of the protons should have energies
about equal to the height of the potential barrier.
According to the O-P theory, the protons do
not come as near to the nucleus and therefore do
not need to have such high energy in order to
escape easily. The most probable energy of the
protons will be approximately equal to the
deuteron binding energy plus half the kinetic
energy of the incident deuterons. Thus, according
to the O-P theory, the protons should be slower
and have an energy depending on that of the
deuterons.

Since the outgoing protons have comparatively
small energy, the residual nucleus will be left
rather highly excited, the excitation energy
being, in the average, about U,=2 MV+43Ep
(cf. (683a)). This excitation energy will, for
heavy nuclei and very fast deuterons, be suffi-
cient to make the emission of an a-particle by
the residual nucleus about as probable as that
of a y-ray (cf. §79E). The available energy for
a-emission is, at 4 =200, about 6 MV+31Ep
(cf. (673c)). The energy required to make a-
emission as probable as vy-emission is about
10 MV (energy of the fastest natural alphas).
This means that deuterons of 8 MV will in
general produce the double process

ZA4H?=(Z—2)43+H!4+Het  (684)

but deuterons of 5 MV will in general not do so
to any appreciable extent; they will cause the
simple O-P process (676) instead. The process
(684) has therefore a higher threshold than the
analogous process (674) in which a neutron and
an a-particle are emitted. The reason is, of course,
that the proton emitted in the O-P process has
in general a higher energy than the neutron
emitted in a dn process.

A process of the type (684) has actually been
observed by Cork and Thornton (C36) who
bombarded gold with 7 MV deuterons and ob-
served the formation of a radioactive iridium
isotope. Cork and Thornton suggested the re-
action
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Au'¥ 4+ H2—Ir1% 4+ Het+ Ht, (684a)

which seems to be well justified theoretically by
our considerations.

Cork and Thornton observed also the simple
O-P reaction

Au+H?—Auts 4+ H. (684b)

This reaction is presumably caused by the
deuterons already slowed down (to 5 MYV,
perhaps) in the target. It would be of great
interest to observe the excitation functions of
these two reactions. Up to a certain critical
energy E,, the simple process (684b) should be
the most probable and (684a) should be much
less probable. At E,, the relative probabilities
will change rather suddenly, owing to the very
rapid increase of the a-particle penetrability
with increasing energy, so that above E, the
double process (684a) will predominate. Finally,
for deuteron energies of, perhaps, 10 MV, the
nucleus formed in the primary O-P process will
retain enough energy to emit a neutron, so that
the complete process will be

ZA+H>—ZA 4 HimZA+Hi4n!, (684c)

which is, of course, unobservable except by the
neutron emission itself. For these energies, the
double process (684) will therefore cease to be
probable, because the emission of a-particles
will be less probable (barrier!) than that of
neutrons as soon as the latter can occur on
energetic grounds.

§81. RESONANCE PHENOMENA IN THE SIMPLE
CAPTURE OF ProToNs (H4, H6)

Resonance effects with charged incident par-
ticles have been observed for two types of
processes, vi3.

(1) processes produced by a-particles (emission
of neutrons or protons).

(2) simple capture of protons.

The simple capture of protons has been studied
extensively in the following three cases:

Li'+H!'—Be**—Be®+, (685)
C24 H!—NB* 5 N13 4, (685a)
F1*4+ H'-»Ne?*>Ne®+y.  (685b)

In all three cases, the dependence of the yield on
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the proton energy was studied (H6, H4) and
resonance maxima were found. The y-spectrum
has also been investigated (§90, D13). The yield
in the reactions (685, 685b) is studied by measur-
ing the y-rays, whereas in case (685a) the radio-
activity of the product nucleus N3 is used. Other
simple capture phenomena which are known to
occur are

B4 H!—Cl 4, (685¢)
BU4H!—C2 4, (685d)
0+ H! =F74. (685€)

The first and third of these are detected through
the radioactivity of C!* (C39) and FY (D28),
respectively, the second is identified by means
of the very energetic y-rays it produces (C50).
The first process has not been investigated for
resonance. The second seems to have a resonance
maximum at 180 kv proton energy (G13a) with
a width of about 15 kv. (The same resonance
level appears in the reaction B!+ H!=Be®+ He?,
cf. §88 and W21a.) The reaction (685¢) does not
seem to show resonances (DuBridge, private
communication).

The resonances observed by Hafstad, Heyden-
burg and Tuve in the capture of protons by Li’
and F' are extremely sharp. The resonance
energies and the widths of the levels are given in
Table XXXIX. The width in the case of Li is
about 11 kv, at a proton energy of 440 kv. For
the width of the F levels, only upper limits could
be given because the observed width is not larger
than the inhomogeneity of the incident proton
beam. The data for C are taken from earlier
experiments of Hafstad and Tuve in which the
voltage definition of the incident particles was

TABLE XXXIX. Resonance levels in the simple capiure of

protons.
CAPTURING NUCLEUS Li7 Cu2 Fo
CompPoUND NUCLEUS Bes N1 Ne20
Resonance energy Eo (kv) 440 420 328 892 942
Width T (kv) 11 <40 <4 <12 <15
Angular momentum J
(probably) 1 3? odd (or even)
Parity (probably) odd ? even (or odd)
Yield at resonance (cm?) ~10727 — — — —
Integrated yield (102 volt
cm?) 17 0.9 0.9 20 9
y-ray width (volts) 4 0.08 0.6* 18% 8*
Reciprocal proton pene-
trability 3.5 50 6000 13 10.5
Proton width without bar-
rier (kv) 40 <2000 | <24000 <160 <160

* For J =0. For J =1, one-third of these figures should be taken.
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less sharp; therefore the width given in the table
is probably much larger than the actual width of
the resonance level.

The small widths observed make it likely that,
in all five cases listed, there is no ‘‘probable”
process by which the compound nucleus may
disintegrate. E.g., the compound state of Be?
concerned in the capture of protons by Li’ pre-
sumably is not able to disintegrate into two
a-particles because such a disintegration would
give a very large width of the resonance level.
Similarly, the three states of the compound nu-
cleus Ne* probably cannot disintegrate into an
0! nucleus in the normal state and an a-particle.
We shall assume that in all cases listed in Table
XXXIX, the compound nucleus can only dis-
inlegrate with the emission of protons or v-rays.

There may be two different reasons for such a
situation: (a) It may be that the emission of
protons and vy-rays are the only processes which
are energetically possible. This seems to be the
case for the N'? state. Disintegrations with emis-
sion of neutrons, deuterons and a-particles would
lead to the highly unstable or even nonexistent
nuclei N2, C* and B?, respectively; therefore
these processes will be energetically impossible.

(b) The emission of other particles may be for-
bidden by selection rules. It is very easy to see
how this may occur for an excited state of Be®.
This nucleus may break up into two a-particles.
As is well known, the spin of an a-particle is zero
and its internal wave function has even parity.%
Moreover, two a-particles obey Bose statistics,
therefore the wave function describing the rela-
tive motion of their centers of gravity must also
have even parity and must contain only even
orbital momenta (cf. §74F). Thus the complete
wave function of a “‘final state”’ containing two
a-particles must have even parity and even total
angular momentum. Therefore a state of the
compound nucleus Be® which has odd parity
and/or odd angular momentum, cannot disinte-
grate into two a-particles. We therefore ascribe
odd J or odd parity or both to the level of Be?
responsible for the capture of 440 kv protons
by Li".

In the case of Ne?, we seek a selection rule

6 This means that ¢ does not change sign upon “in-

version,” i.e., upon change of the sign of the coordinates
of all elementary particles in the a-particle.
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forbidding the disintegration into O+ He!.
These two nuclei have again zero spin and even
parity. However, there is no such strict sym-
metry requirement on the wave function describ-
ing the relative motion of the two nuclei with
respect to each other as for Be?. The only require-
ment is that the wave function should have even
parity for even orbital momentum and odd parity
for odd /. Thus the disintegration of an excited
state of Ne? will be forbidden, if it has even
angular momentum combined with odd parity,
or vice versa. This conclusion is strongly con-
firmed by the absence of a line corresponding to a
transition to the ground state in the +y-ray
spectrum (§90).

The disintegration of the compound states of
Be8 and Ne? with emission of neutrons and deu-
terons is again energetically impossible as can
easily be seen from the nuclear masses. There
remain therefore only the disintegrations with
proton and y-ray emission. Of these processes,
the y-ray emission certainly does not give a large
contribution to the level width, because we know
the interaction between matter and radiation to
be small. The main contribution to the observed
width of the resonance levels must therefore be
attributed to the protons, i.e., to the incident
particles themselves. %

The proton width may be split into a penetra-
bility factor P and a factor G giving the width
without barrier. These factors are listed in Table
XXXIX. For Be?®, a value of 40 kv is obtained
for G, giving

Gp'=GpEp~t=40,000- 340,000~ =70 volts (686)

for the “‘width at one volt energy’’% (cf. (550)).
This is to be compared to values of the order of a
millivolt for the same quantity deduced from
experiments on the capture of slow neutrons by
heavy nuclei. The great difference (factor 100,000)
is due to the much smaller number of levels in the
light nucleus Be® as compared to heavy nuclei.
The average spacing between the energy levels of
Be® may be estimated to be of the order of 1 MV,
either from theoretical calculations such as those
of Wigner and Feenberg (F10), or from the em-

pirical fact that just one resonance level has been

% For a discussion of other possibilities, cf. H6.
65 340 kv is the energy of the proton with respect to the
center of gravity; 340=440 (7/8)2.
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observed in the energy region below 1 MV which
was investigated experimentally. This spacing is
about 100,000 times larger than the average
spacing between neutron resonance levels in
heavy nuclei (§60). Therefore the reduced par-
ticle width G’ seems to be approximately propor-
tional to the spacing of energy levels, correspond-
ing to a sticking probability (§54) independent of
the nuclear mass.

For the other resonance levels, only upper
limits for the proton width without barrier can be
deduced from the experimental data. These upper
limits are rather high, and if the proton width is
really the only appreciable contribution to the
total level width, it is likely that the actual
widths of the resonance levels are much smaller
than the upper limits given in Table XXXIX.

The v-ray width T'y may be deduced from the
cross section at resonance which, with s=1 for
the proton spin, has the value (cf. (262))

oP,=27x2(2J+1/2:4+1)T,/T, (686a)
where I'=T5 is the total width and X the proton
wave-length. The resonance cross section was
only determined for the capture of protons by
Li7; it is about 10~% cm? in this case. The spin of
the compound state is probably J=1, because
this state has a strong optical transition to the
ground state (§90) which is almost certainly a 1S
state. The spin of the capturing nucleus Li’ is
known to be 7=3$. The wave-length of the protons
is 7.8-10713 cm. With these data, we find I'y=4
volts. This seems plausible in comparison with
the y-ray widths of a few tenths of a volt found
for heavy nuclei (cf. §61, 90).

The y-ray width can also be inferred from the
integrated (thick-target) cross section (cf. (517))

f oPydE=12K2(2J+1/2i+1)T,.  (687)

If the energy loss of the bombarding particle per
cm of the bombarded material is written in the
form (cf. §95)

—dE/dx= Ne (687a)

where IV is the number of disintegrable nuclei per
cm? and e a quantity of the dimension energy
times area, then the probability of capture for
each incident particle is
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pP. = f oP, dE/e. (688)

This method may be used to determine the y-ray
widths of the carbon and the fluorine levels.

For carbon, Hafstad and Tuve (H4) found,
from the intensity of the produced radioactivity,
a capture probability of about 1 in 10. This
value was confirmed by Allison (AS5). For protons
of 420 kv, we have (§95) about e=9-10715 volt
cm?. Therefore S odE=9-10"2% volt cm?. With
1=0, J=3% (most probable because of selection
rules), X=7.6-10"13, we find then I'y=0.08 volt.
The much smaller value found here as compared
to the Li case, is probably due primarily to the
smaller energy of the y-rays (2.3 as compared
to 17 MV).

The width of the fluorine levels can only be estimated
very roughly by comparing the yields reported by Hafstad
and Tuve (H4) for Li and F. They found that the y-rays
from a thick LiOH target produced an ionization of
0.26 divisions/min./ua in an ionization chamber 30 cm
from the target, while the y-rays from CaF, which corre-
sponded to the 330 kv resonance capture caused an ioniza-
tion of 0.21 div./min./ua at a distance of 12 cm. This
means a ratio of the ionizations of 0.21-122/0.26-302=0.13.
We may assume the ionization power of y-rays to be
proportional to the number of Compton electrons produced
times their average energy (or range). This gives about
equal ionization power for the fluorine and lithium gammas.
From the cross section oo of the Li capture at resonance
(1072 cm?) we find then:

Integrated cross section for Li: 4wTgp=iw-11000-10~27
=1.7-10"2 cm? volt.

Energy loss constant (e) for 440 kv protons in air: 1.03-10714
cm? volt.

Stopping power of LiOH: 2.0 times air per atom of Li,
2.3 times air per atom of Li’ (considering abundance).

Thus, number of quanta per proton:1.7-10-2/2.3-1,03-10~1
=7-10710,

Number of quanta per proton in fluorine: 0.13-7-10-10
=9.101,

Energy loss constant for 330 kv protons in CaF,: 2.3-10™14
cm? volt per F atom.

Integrated cross section for 330 kv level of F: 9-2.3-1072%
=2-10"2 cm? volt.

The intensities (integrated cross sections) for the other
two levels of F are, according to Hafstad, Heydenburg and
Tuve (H4), about 22 and 10 times those of the 330 kv
level, respectively. This corresponds to integrated cross
sections of 4.5 and 2:1072 cm? volt. Inserting the nuclear
spin 2=3} of the fluorine nucleus, and the proton wave-
lengths of 8.4, 5.1 and 4.9-1073 cm for the three resonance
levels, we obtain the figures listed in Table XXXIX for
J=0. It is seen that the y-ray widths of the two higher
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levels would appear rather large if J=0, especially con-
sidering the much lower quantum energy of the fluorine
as compared to the lithium radiation.

It may be mentioned that besides the five
resonance levels listed in Table XXXIX, some
indications of other levels have been obtained for
the proton capture by Li’, C*? and F** (H6, H4).
There seems to be a very broad level of Be® giving
rise to capture of protons of 800 kv and more by
Li", a weak narrow level and a weak broad level
of Ne? corresponding to capture of 400-700 kv
protons by F%, and a multiplet structure of the
level of N3, This shows that, at least for Ne?, the
density of nuclear energy levels is already rather
large, the spacing being of the order of 100 kv at
an excitation energy of about 14 MV. This
is, however, a somewhat larger spacing than
was calculated theoretically in §53 from the
liquid drop model, showing that this model is
probably not adequate for such a light nucleus.

Some explanation may be necessary for the
fact that no appreciable capture is observed out-
side the rather narrow resonance regions, while
other processes, leading to particle emission, are
observable for all energies of the incident par-
ticle. Presumably, the latter result is due to the
effect of very broad resonance levels whose width
is comparable to their distance apart (§84). Now
the cross section for y-ray emission near reso-
nance is inversely proportional to the total width
of the level (cf. (686a)) and will therefore be much
smaller for a broad level than for a narrow one.
On the other hand, it must be admitted that the
integrated cross section (687) is independent of
the width of the level and depends only on the
partial width for y-emission. Therefore, in thick
targets, there should be about as many capture
processes due to narrow resonance levels as due
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to broad ones. The present experimental evidence
does not extend over sufficiently many cases to
say much about this point; but DuBridge and
his collaborators have shown that at least the
capture of protons by O does not arise from
narrow resonance levels.

§82. RESONANCES IN a-PARTICLE DISINTEGRA-
TIONS. RESONANCE AND BARRIER HEIGHT

A great number of resonance levels have been
observed in disintegrations produced by a-par-
ticles. A description of the experiments is found
in §99. The experimental results are given in
Table XXXX. Most reactions have been in-
vestigated by several authors, in these cases we
have given in the table the results which we con-
sider most reliable; usually, these are the most
recent ones.

A. Barrier height and resonances

We have included in Table XXXX the height
of the potential barrier for a-particles according
to two methods, viz. (a) as derived from the
interpolation formula (609) and (b) the “‘experi-
mental’’ values given by Chadwick and Feather
(C10). These authors pointed out that disintegra-
tions should occur at any a-energy higher than
the top of the barrier, while for lower a-energies
observable intensities can only be obtained in the
resonance regions.

This consideration while correct in the old one-
body picture of nuclear disintegrations, might at
first sight seem somewhat doubtful in the many-
body picture. According to this picture, the
width of resonance levels is determined by the
most probable mode of disintegration of the com-
pound nucleus. Now in all cases listed in Table
XXXX, the particle produced in the reaction

TABLE XXXX. Barrier heights and resonance levels from a-particle disintegrations.

BARRIER IN MV

RESONANCE LEVELS

EXCITATION
CoMPOUND a-ENERGY EN. orF Comp.

NucL. REACTION THEOR. Exp. IN MV NucL. (MV) WipTH MV REF.
Ccn Be?+a=Ci24n 3.9 3.5 3.4; 4.8? 12.8; 13.8? 0.3; ~0.3 B7
Nu Blo4a=C184+H 4.6 3.6 4.2 14.8 0.5 M1i6
Ni1s Bll4a=Nt+4n 4.3 3.7 3.2? 13.4? ~0.4 C7
F18 NU+a=017+H 5.2 4.1 3.6 8.2 ~0.15? P2
Na» F194a=Ne2+H 5.7 5.0 3.7; 4.1 14.5; 14.8 0.10; 0.13 C13
Si28 Mg +a =Al274+H 6.8 6.5 5.7; 6.3 13.7; 14.2 0.12; 0.13 C13
pa A2 4o =Si30 +H 6.9 6.8 4.0; 4.5; 12.0; 12.4; ~0.10 c10

4.9; 5.3; 12.8; 13.1; 0.07; 0.13 D19
5.8; 6.6 13.6; 14.3 ~0.12
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(neutron or proton) can go over the top of the
barrier even when the energy of the a-particle is
low. Therefore the width of the levels will be de-
termined by the proton or neutron emission,
especially if the penetrability of the barrier for
a-particles is small. From this point of view,
there should be little difference in the width of
levels below and above the top of the a-particle
barrier.

However, the selection rules for the angular
momentum may cause a difference in the excita-
tion function below and above the top of the
barrier. Below the barrier, we know that only
a-particles of small orbital momentum can enter
the nucleus (§78) while sufficiently far above the
barrier, much higher orbital momenta are pos-
sible. Therefore below the barrier there will be
resonance only with compound levels of small
angular momentum J, while above also com-
pound levels of large J will be important. This
will make the spacing between “important’ reso-
nance levels much smaller above the barrier than
below it, and since the width of the levels will
stay about constant, it is to be expected that the
resonances will overlap each other at energies
above the height of the barrier, and the maxima
and minima will thus become unobservable.

This consideration justifies the reasoning of the
older theory and makes it possible to deduce
approximate barrier heights from the cessation of
pronounced resonance phenomena. This has been
done by Chadwick and Feather; their results
agree surprisingly well with the ‘‘theoretical”
values obtained from the rule that the nuclear
volume is proportional to the number of par-
ticles. This can be considered as a fairly good
experimental confirmation of this rule.

In accord with our considerations, most of the
resonances lie below the calculated top of the
barrier. The only exception is a very weak and
somewhat doubtful resonance observed by Ber-
nardini for the compound nucleus C* (reaction
Be?+He!*=C2+n!). We must expect that such
resonances above the barrier occur occasionally,
especially for very light nuclei.—Several reso-
nance levels are found very near the top of the
barrier, e.g., the highest levels in the compound
nuclei N*, Si?® and P3.
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B. Spacing of the resonances

In judging the figures in Table XXXX, we
must keep in mind that a-particle energies of less
than 3-4 MV have not been investigated because
for these energies the penetrability of the a-par-
ticle would be so small that no observable dis-
integration effects could be obtained, even at
resonance. It is to be hoped that the greater
intensity of artificial sources will make the in-
vestigation of the region of low a-particle energies
possible.

The general impression from the figures in
Table XXXX is that the resonance levels be-
come more numerous and therefore more closely
spaced for heavier nuclei. This is entirely in ac-
cord with out theoretical expectations. The aver-
age spacing is apparently slightly more than 1
MYV for the lightest, and about { MV for the
heaviest nuclei listed.

The excitation energies U of the compound
nuclei corresponding to resonance are listed in
the sixth column of Table XXXX. If M4, M,
and M are the masses of initial nucleus, a-par-
ticle and compound nucleus (ground state), re-
spectively, we have

U=(Ma+Mos—Mc)*+(Ma/Mc)Ea.  (689)

Most of the excitation energies listed are about
12-15 MV.

C. Width

The width of the resonance levels may be ob-
tained in various ways (cf. C13, C4).

1. If there are few resonances of comparatively
large width the simplest procedure is to measure
the total yield of the reaction from a thin target,
as a function of the a-particle energy. This has
been done for the reactions Be?+a=C2+1,
B+ a=C!3+H, B'4a=N"*+4nx. The method is
apt to give too large widths because of the finite
thickness of the target and the straggling of the
a-particles. Closely spaced narrow resonances
may disappear entirely.

2. With a thick target, the intensity of a given
group of produced particles (usually protons)
may be investigated as a function of the energy of
the oa-particles entering the target. From the
a-particle energy at which the group first appears,
and that at which it attains its full intensity, the
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width of the level may be inferred. The method is
subject to similar criticism as (1). It has been
the one most widely used for determining
widths (C4).

3. The inhomogeneity in energy of the protons
of a given group will also give the width of the
level, due account being taken of the momentum
relations (recoil of the disintegrated nucleus).
This method is free from corrections due to the
finite thickness of the target and to the straggling
of the a-particles but is influenced by the
straggling of the protons. Also, the proton energy
depends on the direction of emission of the pro-
tons which introduces a further inhomogeneity.
Thus the widths deduced from this method will
again be too large. We have used this method for
estimating the widths in the reaction F'°+He*
=Ne?2+4H.

4. The maximum range of the protons of a
group may be determined for the a-energy at
which the group first appears, and for the a-en-
ergy at which it attains full intensity. This
method is the most satisfactory in eliminating
straggling. Unfortunately, it is probably the most
difficult one experimentally. It has been used by
Chadwick and Constable to deduce the width of
the 4.9 MV level in the reaction Al*4-a=Si®*+H.
It was found that the maximum range of the
protons increased by about 2 cm (from 28 to 30)
when the a-particle range increased from 3.25
(first appearance of group) to 3.55 cm. This cor-
responds to an increase in proton energy of
about 0.18 MV. Considering that the protons
were observed 47z the direction of the incident
a-particles, we obtain from the momentum rela-
tions (§96) that this corresponds to an increase of
the a-energy of about 0.17 MV. For the excita-
tion energy only the kinetic energy in the center
of gravity system is available; therefore we must
reduce the width by a factor 27/31 which gives
0.15 MV. Half this value has been taken in
Table XXXX (cf. below).

In accord with our custom, we have given in
the table the width at half-maximum. Where the
shape of the yield-energy curve was not obtained
experimentally, it was assumed that the disinte-
gration becomes unobservable when the cross
section is about one-fifth of its maximum value.
According to the resonance formula, this means
that the disintegration will be observable over an
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energy region equal to twice the width T of the
level. Therefore the values given in the table are
smaller than those given, e.g., by Chadwick and
Feather, by about a factor of 2.

The width of the resonance levels must prob-
ably be attributed mainly to the produced par-
ticle, i.e., proton or neutron. The partial width
due to the a-particle will be smaller because of the
potential barrier. In almost all cases, several
groups are emitted from each resonance level,
corresponding to several states of the final
nucleus. E.g., 5 proton groups have been ob-
served for the reaction B®+a=C!3+H, 4 proton
groups for each resonance level of Al¥+4«
=Si%+H, and at least three neutron groups for
Be?+a=C2+#. The width corresponding to a
given final state is therefore only about 0.1, 0.06
and 0.02 MV for the compound nuclei C!3, N
and P, respectively. The neutrons and protons
emitted have energies of the order of 2-10 MV in
each case. Taking an average of 5 MV, we find
for the reduced width (width at one volt energy)
I"=TE} (cf. 685) about 25-50 volts for the
lighter nuclei C'* and N*, and about 10 volts for
the heavier compound nucleus P#. These values
fit in very well with the value obtained from the
capture of protons by Li” (cf. §80) viz. 70 volts.
They also show the expected tendency to de-
crease with increasing mass of the nucleus.

D. o-particle width

The «a-particle width can be deduced from the
integrated disintegration probability if it is
admitted

(1) That the a-particle width is smaller than
the width for the produced particle, and

(2) That no other process of comparable proba-
bility can occur.

Both conditions are probably fulfilled, at least
approximately, in the cases listed in Table
XXXX.

Chadwick and Constable have given the total
yield of protons from «-disintegration of Al and
F. For Al, each resonance level gives about
3.5-1077 protons per a-particle. The “energy loss
constant ¢’ (cf. (687a), §95) is, for a-particles of
5 MV in Al, about 2.3-107" volt cm?. According
to (688), this corresponds to an integrated cross
section of 0.8-10~2° cm? volts. Since for a-particles
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s=0, the formula for the integrated cross section
is (cf. (687))

fadE=21r27&a2I‘,,(2J+1)/(2i+1). (690)

The spin of Al is =1}, the wave-length of 5 MV
a-particles (with reduced mass!) 1.17-107%3 cm.
Therefore we find

2J+1)Te=060 kv. (690a)

Since the total width is only 90 kv, I', must be
considerably smaller than this amount. Therefore
we must assume that J is not zero. For the given
ratio of a-particle energy to barrier height, orbital
momenta up to about 3 or 4 will be important.
For J=2, the a-ray width would come out to be
12 kv. The penetrability of the barrier is 1/14,
giving for the «-width without barrier about
170 kv, i.e., somewhat more than the proton
width per final level (20 kv).

In a CaF, target, the yield is 9.2 and 7.2-10~7
protons per a-particle for the two resonance
levels of fluorine observed. In pure fluorine, the
yield would be 1.77 times as large (C4) since a
calcium atom has a stopping power for a-par-
ticles about 1.54 times as large as a F atom (§95).
This would give in the average for the two levels
14.5-107 protons per a-particle. The energy
loss constant in F is 2.35-107% volt cm? for an
a-energy of 3.9 MV (corresponding to the average
of the two levels), therefore the integrated cross
section is 3.4-10720 volt cm? The spin of F!? is
again 1=1 (Table XVII), the wave-length
1.40-10713 cm. This gives (2J4+1)T'.=175 kv.
Since the total widths of the levels are about
100-130 kv, the angular momenta of the levels
are obviously again greater than zero.

§83. SELEcTION RULEs (G15)

We have repeatedly drawn attention to the
importance of selection rules. Selection rules for-
bidding otherwise probable disintegrations will
reduce the width of many nuclear levels and will
thus give rise to the very sharp resonance levels
which we observe in the simple capture of pro-
tons (§81). Selection rules influence greatly the
y-ray spectrum of nuclei (§90). Selection rules
combined with the small penetrability of the po-
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tential barrier for particles of high orbital mo-
mentum will prevent all compound levels of high
angular momentum from being effective in dis-
integrations caused by a-particles as long as the
a-particle cannot go over the top of the potential
barrier (§82A), thus making the resonances ob-
servable for energies below the height of the
barrier while they are not for higher energies.

In this section we shall show that selection
rules also regulate to a considerable extent the
probability of disintegrations which show no
marked resonance effects, in particular disintegra-
tions produced by protons and deuterons in light
nuclei. This was first pointed out by Goldhaber
(G15) who concluded, from such considerations,
that the ground states of Li® and Li” should be a
3S and a 2P, state respectively, and that B
should have a triplet, B! a doublet as its ground
state. The prediction for Li® which was at the
time against evidence from hyperfine structure
(G25, and ref S2 of part A), has since then been
proved correct by the atomic beams method
(M2). Moreover, all the predictions mentioned
agree with our present theoretical ideas about
nuclear energy levels (F10).

The selection rules may be divided into two
classes: Those which should hold generally, for
any “‘coupling scheme” in the nucleus, and those
which hold only for Russell-Saunders coupling.
The first class concerns only the total angular
momentum and the parity of initial nucleus, inci-
dent particle, final nucleus and outgoing particle.
The second class will give information on the
behavior of orbital momentum and spin sep-
arately.

The selection rules for total angular momen-
tum and for orbital momentum will involve the
orbital momentum of the relative motion of the
incident and outgoing particle. The existence of
useful selection rules depends therefore on the
existence of restrictions on this orbital momen-
tum. Such restrictions will exist (a) for very slow
particles for which only the orbital momentum
zero gives a high probability of entering the
nucleus, and (b) when the two particles (viz.
incident particle and initial nucleus, or produced
particle and residual nucleus) are identical. In
case (b) the symmetry requirements for the wave
function will forbid certain values of the orbital
momentum. The most notable case is that of two
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a-particles: Because of the Bose statistics and
the zero value of the spin, only even orbital

momenta are possible (§73F).

A. Selection rules between initial and final
nuclei which hold for any coupling scheme

The vector sum of the total angular momenta
of initial nucleus and incident particle must be
equal to the vector sum of the total angular
momenta of final nucleus and outgoing particle.
Let ss’ be the spins of incident and outgoing
particle, 2 and ¢’ the (total) intrinsic angular
momenta of initial and final nucleus. If, then,
both incident and outgoing particle are slow we
have

[i—s| =i+

i+s=]d—s|. (691)

This selection rule very seldom gives any useful
information because it leaves too many possi-
bilities.

The more useful one of the general selection
rules is that relating to the parity. Any nuclear
energy level has a certain parity, e.g., the ground
states of all nuclei up to He! have even parity,
those from He* to O'¢ are probably even and odd
for even and odd mass number, respectively. The
wave function of the relative motion of two par-
ticles has even or odd parity according to whether
the orbital momentum is even or odd. The selec-
tion rule requires that the parity of the system as
a whole, i.e., the product of the intrinsic parity
and that of the center-of-gravity motion, remains
unchanged in the process. If both incident and
outgoing particle are slow, and none of these
particles is heavier than He?, this means that the
parities of initial and final nucleus must be the
same. According to the above rule, this would
forbid all processes in, which a nucleus of even
mass between 4 and 16 is transmuted into one of
odd mass in the same region in the ground state
or vice versa, i.e., all dp, dn, ap and an reactions
(cf. Chapter XVII). Thisvery restrictive selection
rule holds, however, only if both incident and out-
going particle are slow (wave-length larger than
nuclear radius), and in no practical case are both
particles slow at the same time.

However, there is one reaction which is
definitely ‘‘forbidden’” according to this parity
rule, if only the incident particle is slow. This is
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the oldest of all reactions produced by artificially
accelerated particles, viz.

Li’+H!=2He*. (692)

The ground state of Li” has almost certainly odd
parity (see above) while the intrinsic parity of all
other particles is even. The wave function de-
scribing the relative motion of the two a-particles
must be even (Bose statistics). Therefore the
process can only occur at all if the wave function
of the motion of the proton relative to the Li’
nucleus is odd. This requires at least /=1, which
makes the process improbable at low proton
energy. In fact, its probability is 30 times smaller
than that of the “‘probable’ reaction

Li*+H?=2He*. (692a)

We may, conversely, conclude from the observed
relative probabilities of reactions (692), (692a)
that the parity of Li® is even, that of Li” odd in
agreement with theoretical views.

As Breit (0O15) has pointed out, the energy de-
pendence of the disintegration cross section is
not appreciably affected by the orbital momen-
tum for slow charged particles, in contrast to
slow neutral particles. The ratio of the penetra-
bilities of the potential barrier for various orbital
momenta is practically independent of the energy
of the particle if this is small compared to the
barrier height (§72, 78). The reason for this is
that the particle energy is negligible compared to
the Coulomb potential and the centrifugal force.

B. Selection rules between initial and final
nucleus holding only for Russell-Saunders
coupling

It is reasonable to assume that in light nuclei
the resultant spin ¢ and the resultant orbital
momentum N of all particles contained in the
nucleus are good quantum numbers (F10, I1,
R10). This will be true if the magnetic spin-orbit
interaction is small compared to the average
spacing between levels. It is probable (R10) that
the spin-orbit interaction is of the order 3 MV.
Therefore Russell-Saunders coupling will break
down when the spacing between the energy
levels of the compound nucleus (not the initial or
final nucleus!) becomes of the order 3 MV or less.
This will probably occur for atomic weights
around 15 or 20, so that the Russell-Saunders
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coupling is restricted to the lightest nuclei.

The first selection rule to be added to the two
general ones mentioned in A, requires that the
resultant spin of the system does not change, i.e.,

|s—o|=s"+d', |s'—d'|=s+0a, (693)

where the primed quantities refer to the final,
the unprimed ones to the initial nuclei and s
refers to the particle, ¢ to the nucleus. It was
from this selection rule that Goldhaber derived
the spins of Li¢ Li” B and B! E.g., from the fact
that (692a) is a probable reaction, and that the
a-particles have zero and the deuteron unit spin,
it follows that Li® must also have unit spin. The
same follows from the probable reaction B+ H?
=3He* for BY. Similarly, the reaction B!+ H!
=3He! is probable, therefore B! presumably
has spin 4. For Li’ the situation is a little more
complicated. From the reactions Li¢*+H2=L{"
+H!, Li"+H?=2He*+n! which are both ‘“‘prob-
able” we can only conclude that the spin of Li’
is either % or 4. On the other hand, the reaction
Li"+H'=2He* is improbable (cf. above (692a)).
But we had already found a reason for this, viz.
the change of parity provided the orbital mo-
mentum of the incident proton is zero. It may be
argued that the reaction is not improbable
enough for a reaction violating fwo independent
selection rules so that the total spin does not
change. This would lead to ¢ =1 for Li’, in agree-
ment with present theories.

The selection rule for I is not very useful be-
cause there are in general no restrictions on the
orbital momentum of the outgoing particle.%®
Where there are restrictions; e.g. in the reactions
(692, 692a), this rule gives the same result as
the parity rule.

C. Selection rules in resonance disintegrations

As already pointed out in the beginning of this
section, more stringent selection rules hold for
resonance disintegrations than for nonresonance
processes. Angular momentum as well as parity
have to be conserved. This means quite generally

% This seems to be the case, e.g., in the reactions
2H?=H3+H! and 2H?=He’+n where the outgoing
particles are fast enough for orbital momentum 1 or even 2.
We therefore do not believe that Goldhaber’s conclusion
of zero intrinsic orbital momentum for H3 and He? from
these reactions is legitimate. From purely theoretical
reasons (Chapter IV) zero orbital momentum seems, of
course, very probable.
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that either only even or only odd values of the
orbital momentum are possible when a compound
nucleus in a given state breaks up into two given
final nuclei. For the parity is determined for the
compound state C as well as for the final nuclei
B and Q. Therefore the parity of the motion of
the nuclei B and 4 with respect to each other is
also given, and this parity determines whether
the orbital momentum is even or odd. Explicitly,
we have:

Only even I if all the nuclei C, B and Q have
even parity or if two of them have odd parity
and one even.

Only odd I if all parities are odd, or two even
and one odd.

An application of this parity rule is the excited
state of Ne? formed in the proton capture by F'?
(§81). Other applications are connected with the
vy-ray emission (§90). A further application may
be the capture of slow neutrons by B!, according
to the scheme

BU4p1= Bi* = Li7+ He? (693a)

for which the experimental determinations (cf.
§102) indicate that Li? is always formed in its
excited state of 0.44 MV excitation energy (cf.
Table LXXIV).

Another important consequence of the even-
odd rule for the orbital momentum is, of course,
that the angular distribution of the disintegration
products must be symmetrical with respect to the
plane perpendicular to the direction of the inci-
dent beam. This was actually found by Kempton,
Browne and Maasdorp (K2) for the disin-
tegration

H2+4+H2=H3*+H!,

which may be considered as evidence that even
this disintegration has resonance character.

§84. ABSOLUTE PROBABILITY OF DISINTEGRATION
PROCESSES; ANGULAR DISTRIBUTION OF
DISINTEGRATION PRODUCTS

The absolute probability of processes showing
pronounced resonance effects was already dis-
cussed in §81, 82 and was used to deduce the par-
tial widths for y-rays and a-particles of the levels
concerned. The absolute probability of processes
showing no marked resonances is a much less
clean-cut problem.
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A. Light nuclei, total cross section

It is very probable that these processes should
also be described in the general scheme of the
formation and disintegration of a compound nu-
cleus. From this point of view, even the processes
showing no marked resonance are in reality
resonance effects; but the resonance levels are so
broad compared to their spacing that the maxima
and minima are leveled out. Indications of a very
weak resonance effect are found in the reaction
most closely investigated, viz.

Li’+H! = 2He®. (694)

The disintegration function for this reaction was
observed experimentally by various authors
(D16, H6, H27, H20, O6) for energies from 8
to 1400 kv, with thin and thick targets. Breit and
his collaborators (014, 15, 16) worked out the
theoretical disintegration function with a special
model, viz. assuming that the proton moves in
the “potential’’ created by the Li” nucleus, and
that this potential is a simple rectangular hole.
They found that for certain values of the depth
of this hole, agreement could be obtained with
experiment. Furthermore they found that the
relatively high yield of the reaction at low proton
energies is irreconcilable with an orbital momen-
tum 1 of the incident proton unless one assumes
a resonance level fairly near zero proton energy.
The value 1 for the proton orbital momentum is
required by the selection rules for the parity (cf.
§83A) which should be strictly obeyed. The:con-
clusion concerning the necessity of a resonance
for slow protons is independent of the special
rectangular hole potential assumed but is simply
a consequence of the penetration of p protons
(!=1) through the Coulomb potential barrier.
Thus the calculations and experiments may be
regarded as evidence for a resonance level of Be?
at about 17 MV excitation energy, having even
parity and probably angular momentum zero% (in
contrast to the level responsible for the radiative
capture of protons by Li7, §81) and governing the
probability of the reaction (694). This level prob-

7 J must be even because disintegration into two a-par-
ticles is possible (§81). It cannot be greater than I+i+s
where /=1 is the orbital momentum, ¢=3/2 the spin of Li’
and s=1/2 that of the proton. This reduces the possible
values for J to 0 and 2. The angular distribution of the
a-particles is spherically symmetrical which makes J=0
probable.
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TABLE XXXXI. Absolute cross sections.

REAcTION D+D= Li+D= Bet+D= Li+H=
He3+4-n' 2 Het+n! Blo4nt 2Het

TARGET D2 Li Be Li

107p (800 kv) 8.0 17.1 9.5

10%p (700 kv) 6.2 8.6 5.9

¢(750 kv)(in 10715 cm? volt) 12 10 11

Cross sect. o(in 1072 cm?) 22 85 4 0.33

A (in 1071 ¢m) 74 48 45 6.0

Penetrability P 1 0.5 0.4 0.7

Sticking prob. 0.013 0.25 0.16 0.004

ably has a width of 3 MV or more, which is pre-
sumably mainly due to the disintegration into
two a-particles. There can be little doubt that
other processes, if investigated as carefully as
Li"4+H!=2He?*, will exhibit similar weak indica-
tions of resonance phenomena.

Independent of the description of the processes
as resonance effects, the cross section for probable
processes must be of the order of

G‘PQ = WXPZPPSP,

(695)

where Xp, £p and Pp are wave-length, sticking
probability and penetrability for the incident
particle. The partial width T for the outgoing
particle has been assumed equal to I' which is
approximately true for ‘‘probable’” processes.
The quantity usually measured is the total
number p of disintegrations per particle of a
given energy E; from this ¢ can be deduced with
the help of the energy loss cross section e (cf.
(688) and §95), viz.,

o=edp/dE. (696)

Table XXXXI gives the absolute yield for four
reactions for which the yield has been investi-
gated with special care by Amaldi, Hafstad,
Heydenburg and Tuve (H6, A11a). The first and
second row give the total yield p (disintegrations
per incident particle) at two energies (700 and
800 kv) of the incident particle, the third line
gives the energy loss constant ¢ for the target
substance, the fourth the cross section (at 750 kv)
derived from these data, the next two lines give
wave-length and penetrability for the incident
particle and the last the sticking probability (cf.
(695)).

The ‘‘sticking probabilities” obtained are of
the order unity for the processes Li’4+H?=2He*
+n! and Be?+H2=BY+4#%!, as should be ex-
pected. This justifies the assumption that these
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processes are ‘‘probable’’ processes. For the reac-
tion Li’+H=2He!, the sticking probability
comes out to be very small, about 1/50 of that
for the two first named processes, in accord with
the characterization of this process as, in first
approximation, ‘‘forbidden” (cf. §83). The prob-
ability of the disintegration of deuterons by
deuterons also comes out to be small. In this
case, it must of course be considered that there
is the alternative mode of disintegration into H?
and a proton, which is experimentally (and
theoretically for symmetry reasons) about as
probable as the disintegration into He34-n!.
Even so, the sticking probability would be only
1/10 of that for Li"+D, and only 0.025 in abso-
lute value. The reasons for this small internal
disintegration probability are unknown ; calcula-
tions using special models (D15) gave even
greater theoretical probabilities (and therefore
a greater discrepancy) than we would obtain
for £=1. For a possible explanation cf. B.

B. Light nuclei, angular distribution

No theoretical calculations on the angular dis-
tribution of disintegration particles have yet been
made. Except in the resonance case, such calcula-
tions would require the use of a special model.

Experimentally, the angular distribution has
been investigated for the a-particles produced in
the reaction

Li"+H! = 2He* (697)

(G14a), for the protons and neutrons from the
processes

H24+H2=H3+4+H!,
H?+4-H?=He?4-n!,

(697a)
(697b)
(K3, N4a) and for the a-particles from

B!'4-H!=Be®+{He! (697¢)

(N4a; homogeneous group of alphas of 4 cm
range). In the first case, spherical symmetry was
found with protons of 200 kv, in the other three
cases, marked maxima in the forward and back-
ward direction (about 60 percent more than at
right angles) were observed at 100-200 kv deu-
teron energies. In all cases, the distribution is
symmetrical about the ‘‘equatorial plane” as is
required for resonance disintegrations (§83C,
end).
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Inthe Li case, we assume (§83) that the incident
protons have orbital momentum one and might
therefore expect an anisotropic distribution of
the emitted a-particles; we conclude that the
compound state of Be? must have J=0 (cf. A).
In the deuteron case, at low energies primarily
deuterons of zero orbital momentum should be
effective, giving a spherically symmetrical dis-
tribution, unless /=0 is forbidden by selection
rules. The most tempting hypothesis is to assume
that the compound state of He* involved in
reactions (697a, b) has odd parity. Since deu-
terons have even intrinsic parity, this means that
only odd orbital momenta would be allowed for
their relative motion, so that /=1 gives the main
contribution. At the same time, this would ex-
plain the smallness of the absolute cross section
(cf. A). Moreover, an odd state (!P) of He! is
expected to lie near the He* dissociation energy
according to calculations of Feenberg (F9a). It
only seems difficult to understand why even
compound states should give no contribution
at all.

The nonspherical distribution of the alphas in
(697c) shows again that I=0 is probably for-
bidden by selection rules. The simplest assump-
tion is that the state of C? involved has even
parity; then, since B! has odd intrinsic parity,
only odd ! will be allowed for the incident proton.
The outgoing « must then have even I, and since
both Be® and He* have spin zero, J must be
even for the compound state. Since J=0 is
excluded on account of the nonspherical sym-
metry, and J<l+4+i4s=2, we must have J=2.

C. Heavy nuclei

In §77, we have derived a general formula for
the probability of disintegration processes pro-
duced in heavy nuclei which was supplemented in
§80 by a discussion of the special case of reactions
of the dp type. Thus far, quantitative studies of
the yield are only available for the disintegration
of Pt by deuterons of 4-5 MV. This energy,
though large, is decidedly lower than the poten-
tial barrier of Pt (~9 MV). Thus we may apply
formulae (650), (633), viz.

Tq
G'qu =A2 PPEP—IT. (698)

(1—=x)?

Here the wave-length is about 1.5-107!3 cm (for
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4.5 MV deuterons), g=11.6 for deuterons on Pt,
x=deuteron energy/height of potential barrier
=1. £p is the sticking probability for the incident
particles, Pp the penetrability of the barrier for
them. T'g is the width corresponding to the pro-
duced particles, T the total width. According to
§79, the main contribution to the latter will
probably come from neutron emission, a smaller
part from emission of protons, a still smaller part
from a-particles and a negligible fraction from
deuteron emission. We shall in the following as-
sume neutron emission; as was shown in §80,
the emission of protons, according to the Oppen-
heimer-Phillips mechanism, is about as probable
as that of neutrons according to the ordinary
mechanism. Then we may put I'o=T".
With these assumptions,

aPry=1.0-10"%Ppép. (698a)

We assume further that £¢=1 because of the high
excitation energy of the compound nucleus
formed (cf. §54). The penetrability Pp depends
on the nuclear radius. With R=12-10"1% cm we
obtain

P=5-103,
c=5-10"%, (698b)

If we take account of the rather large size of the
deuteron by assuming an effective radius of
15-1013 cm, we have instead

P=12-10-,
e=1.2-10-"". (698¢)

This last figure agrees as to order of magnitude
with the observed cross sections for the produc-
tion of radioactivity in Pt which are of the order
1028 to 10~?" cm? (C35).

In all reactions produced in Pt by deuterons, fluctua-
tions of the yield with energy have been observed which
resemble resonances. It seems practically certain that they
must not be interpreted as such. The excitation energy of
the compound nucleus formed by adding a deuteron to a
heavy nucleus, was estimated in §78 to be about 12 MV
plus the kinetic energy of the deuteron, i.e. more than
16 MV in our case. The spacing of levels at such an energy
for a nucleus as heavy as Pt is probably of the order of a
millivolt or less (§53). The observed fluctuations of the yield
have maxima and minima spaced by about 3 MV. They
can therefore not be due to resonance. A possible explana-
tion might be secular fluctuations in the matrix elements
over large energy regions, or competition of various modes
of disintegration.
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§85. THREE-PARTICLE DISINTEGRATIONS

As was already mentioned in the general dis-
cussion in §76, the residual nucleus may be left in
the primary nuclear reaction in a state above the
dissociation energy. Then it will in general dis-
integrate further, emitting a second heavy par-
ticle. A ‘“‘cascade reaction’ of this type will ap-
pear experimentally as a disintegration in which
three nuclei, including the final nucleus, are
produced.

The best investigated reaction of this type is

Bu-+H!—-C®2*—Bed*+He*—3He!. (699)

The fact that the mechanism of this reaction is
actually as indicated in (699), was first estab-
lished by Dee and Gilbert (D9) from cloud
chamber experiments. Similar to (699) is the

reaction
B4+ H?—C2*—Bet*+He*—3He!.  (699a)

Other three-body reactions with light nuclei are:

Be®*+n!
/! N
Li"+H?—Be®* 2He*+n!, (699Db)
N /
He*+He*
Be’+Het Be®* 4+ Het*
NS N
Bu+H? —»C3* 3He!+n!, (699c)
7N /
C12+nl Cl2*+nl
NU44+H2—-0W8* 5 C12* L Het—4He?, (699d)
Be'+n!'—Be™*—Be¥* +nl—2He!+ 21l (699¢)

Of these, (699b) has been known for a fairly long
time and the continuous distributions of both
neutrons (B37) and alphas (02, K2, W21c) have
been studied extensively. For the other reactions,
similar but less complete evidence has been given
(cf. Chapter XVII for discussion and references).

With heavy nuclei, evidence has been pre-
sented by Heyn (H33) for processes in which an
incident fast neutron knocks out another neutron
from a nucleus, thus decreasing the latter’s
atomic weight by one unit. An example of this
type of reaction is
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Cub3+nl—Cu®*—Cub*+n'—Cu+2n!  (700)

detected by the positron activity of Cu®?. Pool,
Cork and Thornton (P11b) have confirmed re-
action (700) and found similar reactions with
Cu®, Agl”, Agl®®, N4 and O' giving Cu®, Ag!®,
Ag!8, N3 and O'%, respectively. Other examples
are probably found in uranium and other very
heavy nuclei (H7, M15).

Another three particle disintegration has been
reported by Cork and Thornton (C35, 36) who
found that deuteron bombardment of Au pro-
duced a radioactive isotope of Ir. This means the
emission of three units of charge from the com-
pound nucleus so that they suggested the process

Aut¥ 4 H2=Auts+Hi=Ir*+H!+He'. (700a)

Such a process is very probable with the Oppen-
heimer-Phillips disintegration as the first step
(cf. §80). We have also given arguments (§79E)
for assuming that a similar process with emission
of neutrons and alpha-particles is very probable
in the reaction of deuterons with heavy nuclei,
e.g.,

Pt195 4 H? = Aut% 4 n! =11 +-n!+ He!. (700b)

According to the general theory, three-particle
reactions will have probabilities of the same order
as two-particle disintegrations provided the
necessary energy is available and no potential
barriers prevent the escaping of the emissible
particles. With large surplus energy, it may even
happen that three-particle disintegrations be-
come more important than two-particle ones,
because of the frequently mentioned tendency of
the residual nucleus to retain a large fraction of
the available energy (evaporation model, §§54,
65, 79).

With the now accepted mechanism of three
body reactions, it is, of course, not possible to
deduce the reaction energy from the upper limit
of the energy spectrum of the disintegration
products as has formerly been done (02, O3).
The maximum energy of the product particles
depends on the particular energy levels of the
nucleus formed in the intermediate stages of the
decay of the compound nucleus.

A. The disintegration of B!! by protons

After considerable controversy (K15, 02, 09,
LS5) it has been shown (D9) that the a-particles
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emitted after proton bombardment of boron fall
into three groups, viz. (for 0.2 MV proton en-
ergy):

(1) A group of homogeneous energy of about
5.7 MV;

(2) A fairly homogeneous group at about 3.85
MV;

(3) A continuous distribution extending from
very low energies to about 5 MV.

Group 3 contains roughly twice as many a-par-
ticles as 2, while group 1 contains, at low proton
energies (~200 kv) only about 1 percent of all the
particles produced.

Group 1 is to be attributed to the reaction

B!'+H!=Be®+He! (701)

as was first pointed out by Kirchner and Neuert
(K15). The Be® nucleus is, in this case, formed in
the ground state. Its mass is almost identical
with that of two a-particles (§108). The energy
evolution in the reaction (701) is 8.5 MV, of
which the a-particle receives %, the Be® nucleus
%, according to the law of conservation of mo-
mentum.

Group 2 should be attributed to the first part
of reaction (699), i.e.,

B4 H!=Be®*+He*. (701a)
Since the average energy of the a-particles in this
group is 3.85 MV, and the Be?® recoil energy is
one-half of this amount, the energy evolution
turns out to be 5.77 MV. Several corrections to
this figure have to be applied (§96, 97) but they
happen just to cancel. The total reaction energy
is about 8.57 MV (from the distribution of
group 3, see below). This gives for the excitation
energy of Be®* a value U=2.80 MV.

The particles of group 2 do not all have the
same energy, but their energy distribution corre-
sponds about to the dispersion formula, with a
width at half-maximum® of 0.51 MV. Since the

6 The most accurate way of determining the width
from the experimental data of Oliphant, Kempton and
Rutherford seems to be the following: The total number
of particles counted by these authors (09, Fig. 7) is 2245.
Of these, 30 belong to group 1. 25 particles should be sub-
tracted because O. K. R. overestimated the number of
very slow particles, assuming the distribution to be
homogeneous down to zero energy, while this is not the
case according to the theoretical distribution (Fig. 25).
Of the remaining 2190 particles, two-thirds=1460 belong
to group 3. Since this group extends almost uniformly
from 0 to 4.7 MV energy, the number of group 3 particles
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Nomber of
- -particies

B “sH"'= B s He?= 3He*

F16G. 25. Energy distribution of the a-particles emitted in
the proton bombardment of B! (without the discrete group
corresponding to the reaction B'4-H!=Be8-+He*). Lower
solid curve: theoretical distribution of the a-particles
emitted in the primary process, viz. Bi'4-H!=Be®*+4He*,
Broken curve: a-particles emitted in the break-up of the
excited Be?® (secondary reaction). Upper solid curve: total
distribution, theoretical. Circles: experimental points
(Oliphant, Kempton and Rutherford, 09).

kinetic energy of the recoiling Be® nucleus must
always be one-half of the energy of the a-particle,
the width of the Be?® level turns out to be

I'=%.0.51=0.77 MV. (702)
This means a lifetime of the excited Be? nucleus of

r=#/T=1.04-10"27/1.60-10-%-0.77

=0.85-10" sec. (702a)

Group 3 is due to the disintegration of the
excited Be® nuclei:

Bet—2Het+ U. (703)

If Q (=8.57 MV) is the total energy evolution in
the whole reaction

Bl H!=3Het+Q (703a)

and U that in the disintegration of the excited
Be?, we have for the velocity of the center of
gravity of the Be®* nucleus

v3=(Q— U/3M.)} (704)

per MV energy interval will be 1460/4.7=310. At the
maximum, the number of particles observed is 1220 per
MV. Thus 910 of these have to be attributed to group 2,
and generally the number of particles of energy E in
group 2 will be 910/[14+4(E— E,)?/*] (dispersion formula,
v =width at half-maximum). On the other hand, the total
number in group 2 must be 4:2190=730. Therefore we

have
910 3xy=730
from which v=0.51 MV.
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and for the velocity of each a-particle relative to
that center of gravity

v=(U/ M) (704a)

If we assume that there is no correlation between
the directions of the two velocities, we find that
the energies of the a-particles of group 3 will be
uniformly distributed between the limits

Enin™*=§[(Q—-U)}£(3U)}]2.  (705)

With the numerical values given above,
Enin=0.04d MV and E,.x=4.68 MV.

This distribution, when modified by the width
of the level of Be?, is well confirmed by the experi-
mental data of Oliphant, Kempton and Ruther-
ford (09, cf. D9).

The theoretical distributions for groups 2 and 3
and the total distribution are given in Fig. 25.
The agreement with experiment is excellent on
the high energy side of the main maximum, but
not so good on the low energy side. Part of this
may be due to uncertainties in the range-energy
relation.

The same order of magnitude (~3 MV) for
the energy of the first excited level of Be® was
obtained from theoretical calculations by Wigner
and Feenberg (F10). The level is, theoretically, a
1D level which is compatible with the fact that
it can disintegrate into two a-particles.

B. Other three-particle disintegrations of light
nuclei

The reaction

B4 H?=Be®**+He*=3He! (699a)

follows undoubtedly the same mechanism as
(699). The total reaction energy is considerably
higher, viz. 18.0 MV. If Be8 is left in the 3 MV
state, the first a-particle (corresponding to
group 2 in the disintegration of B!! by protons)
should receive an energy of %-15=10 MV, cor-
responding to a range of 10.5 cm. An almost
homogeneous group of this range seems to exist
(C28) but its width seems to be larger than in
reaction (709). It is very likely that, owing to the
larger energy available, a number of higher
excited levels of Be® can also be formed in this
reaction which makes the observable energy
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distribution of the a-particles more uniform and
therefore the interpretation more difficult.
The reaction

Li"4+H2?=Be?*+n!=2He*+n!
or Li"+H?=He%+4Het=2He!+4n!

(706)
(706a)

has been studied by Bonner and Brubaker
(B37, neutron distribution) and by Kempton,
Browne and Maasdorp (K2, a-particles). The
neutrons consist of a homogeneous group of
about 13.2 MV energy, corresponding to the
reaction

Li"4H?*=Bed+n! (706b)

and a practically continuous distribution ex-
tending at least up to 12.4 MV. If we wanted to
explain the occurrence of neutrons of 12.4 MV
on the basis of the mechanism (706a), we should
have to assume an excited state of Be?® at
9/8 (13.2—12.4)=0.9 MV. This is extremely
improbable in view of the fact that no trace of
such a state was observed in the process B!+ H!
=3He!, and also from the theoretical calcula-
tions of Feenberg and Wigner. Moreover, in
order to explain the continuous distribution of
neutrons on this basis, it would be necessary to
assume a continuous spectrum for Be8. This is
again quite contrary to the result from the
B!4H! reaction, and also contrary to the
fundamental assumptions of Bohr's theory of
nuclear processes. This shows that the mecha-
nism indicated in (706a), with He’+He! as
intermediate products, besides the mechanism
(706), must certainly play a part in the re-
action. %
The reaction

Be®+He*=3He!+n! (707)

was suggested by Bohr (B33) in order to explain

% This is in contrast to the interpretation of Kempton,
Browne and Maasdorp. Note added in proof: Our view is
strongly confirmed by a recent paper of Williams, Shepherd
and Haxby (W2lc). These authors have investigated the
distribution of the a-particles more accurately and find,
superposed upon the continuous distribution, a fairly
homogeneous group of energy 7.8 MV which they attribute
to reaction (706a) with He® being left in the ground state.
This gives for He® the very reasonable mass value of 5.0137,
unstable by 0.8 MV against disintegration into an a-particle
and a neutron. The width of the a-group is ~ 0.3 MV;
therefore the width of the He® ground state (9/5)-0.3=0.5;
MV, corresponding to a lifetime of 1.2-10~% sec. which
again appears very plausible. It is possible that He® can
also be formed in excited states.
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the large number of very slow neutrons among
the neutrons produced by a-bombardment of
Be®. According to the evaporation model, the
neutrons formed in the reaction

Be®+Het=C124-5! (707a)

should have, in the average, energies of the
order of the ‘‘temperature” of the C nucleus
formed, i.e., about 2-3 MV. In reality, most of
the neutrons have less than 1 MV energy
(§99, and D21). The mechanism of reaction
(707) is one of the following:

Be®+Het—Cl#*—
Be®*+Het+n!
Be®* +Het 3Het+n!, (707b)
/
He%* 4 2Het

so that the neutrons are emitted either in the
break-up of an excited Be? or an excited He?
nucleus.

The reaction (707) is confirmed by the fact
that the compound nucleus C!? when formed from
other initial particles, is known to break up into
3 a-particles and one neutron. E.g., the reaction

B+ H2=3He!+n! (707¢)

has been established both by observing large
numbers of very slow neutrons (B40) and large
numbers of slow a-particles (C28), in both
cases forming a continuous energy distribution.
The reaction

Ci24 ! = 3Hed+ 7! (707d)

has also been observed, with fast neutrons in a
cloud chamber (C8).
The process

Be?+n!=Be?+2n! (708)

is established by observing an increase in the
number of neutrons when neutrons are allowed
to fall on beryllium (R20). The evidence for

N4+ H?=4He* (709)

is the observation of very many slow a-par-
ticles, forming a continuous distribution in
energy (C29).
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XIV. y-Rays

§86. CLASSIFICATION OF y-Ravs

The v-rays emitted in nuclear processes fall
into two main classes:

1. y-rays emitted during the nuclear process
itself.

2. y-rays emitted in a secondary process
following the proper (primary) nuclear process.

The most important case™ for class 1 are the
v-rays emitted in simple capture processes.
Such y-rays have been observed from the capture
of slow neutrons by heavy nuclei and of protons
by light nuclei, and their energy has been
measured in a number of cases.

The v-rays of class 2 are emitted whenever a
primary nuclear process of any kind leads to an
excited state of the resultant nucleus. The
primary nuclear process may be:

(a) Any nuclear transmutation process, pro-
duced by any kind of incident particle and with
emission of any kind of outgoing particle
(proton, neutron, deuteron, a-particle, y-ray,
etc.). Incident and outgoing particle may be of
the same kind (inelastic scattering).

(b) A B-transformation.

(c) A natural a-decay.

Since it is the rule rather than the exception
that nuclear disintegrations lead to excited
states of the resultant nucleus, y-rays of class 2
are an extremely frequent phenomenon and
accompany practically every nuclear transmuta-
tion in which any nucleus of atomic weight
greater than 6 is formed.

The probability of the emission of y-rays of
class 2 is given by the probability of the primary
process which usually is connected with emission
of material particles. Since we know that ordi-
narily the emission of material particles in the
primary process is more probable than that of
y-rays, it follows that in general the y-rays of
class 2 are much more intense than those of
class 1. Therefore the capture y-rays can only
be observed :

70 Apart from capture processes, y-rays may be emitted
in a transition of the compound nucleus from its initial
state to another state still above the dissociation energy.
Then the later state may afterwards disintegrate with
emission of a particle. These ‘‘noncapture’ y-rays emitted
in the nuclear process itself have not yet been observed
and are presumably very rare.

(a) When, contrary to the rule, simple capture
is the only possible process. This case is realized
for slow neutrons with heavy nuclei (§57, 60-62),
for the capture of protons by C2? (§81) and
probably by a few other light nuclei.

(b) When a primary process with particle
emission is possible but never leads to an
excited state of the residual nucleus. This is
true for Li’4+H! since the w-particles emitted
apparently can not be formed in excited states.

(c) When the capture is for certain energies
enhanced by resonance while the class 2 y-rays
are not. This is true for F¥-4+H! Li’+H?,
C124H! and perhaps other nuclei.

(d) When the energy of the capture y-rays is
much higher than the maximum possible energy
of class 2 y-rays.

In all other cases, the capture y-rays will be
swamped by the much more intense (by a
factor 10,000 for light nuclei) y-rays from the
residual nucleus (‘‘class 2'").

Even in obvious capture processes such as the
capture of slow neutrons by heavy nuclei, not
all the y-radiation observed is actually capture
radiation, i.e., emitted in the capture process
itself. For we know that any primary nuclear
process will in general lead to an excited state of
the residual nucleus especially if a great number
of excited states are available as is the case for
heavy nuclei. This is, of course, also true for
the simple capture (§90). Therefore the capture
process proper will be followed by secondary
processes in which the residual nucleus loses its
excitation energy by emission of one or more
further y-quanta of class 2. Thus the observed
“capture radiation” is actually a mixture of
v-rays of classes 1 and 2.

§87. THE y-Ray WIbTH

It has long been known from the study of the
internal conversion of ‘‘natural’”’ ~y-rays (§88)
that nuclear vy-radiation has about the same
intensity whether it is dipole or quadrupole
radiation. This is very surprising indeed since
we should expect that the ratio of the two
kinds of radiation is approximately as (R/X)?
where 27X is the wave-length of the emitted
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v-ray and R the radius of the nucleus. Now for
v-rays of 1 MV energy, we have X=2-10"1
cm whereas, even for the heaviest nuclei,
R=1.3-10"2 cm. This gives (R/X)?=1/250.
Thus the quadrupole radiation should be about
250 times weaker than the dipole radiation, in
striking contrast to experiment.

A. Elementary calculation of width

This discrepancy is emphasized by considera-
tions of the absolute probability of emission of
y-rays. This absolute probability has been
measured for y-rays from natural radioactive
nuclei (§88), for y-rays from neutron capture
(8§61, 90) and from proton capture (§81, 90).
In all cases, much smaller probabilities are found
experimentally than would be expected from a
simple theoretical consideration.

Generally, the probability of a radiative transi-
tion from a state m to a state » is per unit time

ry 4

—=—— D, (710)

h 3kt
where D,,, is the matrix element of the electric
dipole moment corresponding to the transition
in question, and « the frequency of the emitted
y-ray

w=(En—FEn)/h. (710a)

The dipole moment may be expressed by the
oscillator strength which we define by

Smn=2Mot (Dmnna/€)? (710b)

where M and e are mass and charge of the proton.
Then

T,/h=(2e*w?/3Mc3)f. (711)

If we express the quantum energy #%w in MV,
we obtain

I,/h=8.0-10'(hw)*f sec.”},
T, =35.24(%w)2f volts.

(711a)
(711b)

For strong radiative transitions, we might expect
f to be of the order unity, as in atoms. Or more
generally, we may expect the sum of f over all
the lines starting from a given nuclear level to
have a value of the order unity.”

L A still larger value for T, is obtained by assuming the

dipole moment D, in (710) to be of the order of a single
elementary charge times the nuclear radius.
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Actually, the observed lifetimes of excited
states of natural radioactive nuclei are of the
order 1072 sec. (§69, 88), i.e. 10,000 times
longer than would follow from (711a) with
hw=1 and f=1. Similarly, the y-ray width of
nuclear levels T', which is simply % times the
reciprocal lifetime, is much smaller than the
values obtained from (711b). One of the largest
widths measured thus far is that of the excited
state of Be® formed in the capture of protons by
Li7 (§81): it is 4 volts at a quantum energy of
17 MV, as compared to 1500 volts from (711b)
with f=1. Again, the widths observed in the
capture of slow neutrons (§61) and of protons by
F19 (§81) are of the order of 0.1 to a few volts,
for quantum energies of about 4 to 6 MV (§90)
for which we should expect about 100 volts
from (711Db).

In all these cases, the probability of y-ray
emission is ‘‘too small” by a factor of about
100 for dipole radiation and therefore would be
about right for quadrupole radiation if we use a
similarly simple estimate for the intensity of
the latter as in (711b). This fact, in combination
with the observation mentioned above that
quadrupole radiation is of the same order of
intensity as dipole radiation, confronts us with
the problem of explaining why dipole radiation
is relatively so weak in nuclei.

B. Dipole and quadrupole radiation

A clue to the solution may be found in the
fact that a system of particles all having the same
specific charge, will not emit any dipole radiation
but will emit quadrupole and higher multipole
radiation. The general expression for the “effec-
tive electric moment”’ corresponding to a radia-
tive transition m—n is (cf. B16, Eq. (38.10))

Dy =it f V¥ exp (k1) (e;/m;)Vi¥ndr,
i (712)

where ¢; and m; are charge and mass of particle
number j, r; its position, V; the gradient operator
with respect to r;, k is the wave vector of the
light quantum, w its frequency, and ¥, ¥, initial
and final wave function of the radiating system.
For dipole radiation, the retardation factor
exp (7k-r;) should be replaced by unity:
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D,,.,,=hw“f\lf,.*2(e,-/m,')v,-‘1f,,.dr. (712a)
i

Quadrupole radiation is obtained by taking the
second term in the expansion of the exponential.
With k=w/c, we have then™

D,,m=iﬁc*1fWn*Z(e,»/mj)(r,-)k Vi¥mdr. (712b)
H

(r;)x is the component of r; in the direction k of
propagation of the light wave. Since the direction
of the dipole moment D is identical with the
direction of polarization of the light, k must
always be taken perpendicular to D (i.e., to the
direction of the gradient V;).

We must now consider that the wave functions
¥, ¥, will, of course, depend only on the relative
coordinates of the particles with respect to the
center of gravity, and not on the absolute co-
ordinate of the latter. If the r; denote absolute
coordinates, the center of gravity is

R=3myt;/M, M=3m; (713)
i i
and the relative coordinates
e;i=r;—R. (713a)

Let x;, X and £; be the x components of r;, R and
o;, respectively. Then

oV, oV, 9 OV, m;_ 9V,

ey ==y (713b)
8x,- i 3&' Bx,- 65, M BE,-
and
e; 0V, e; e\ 0V,
_’__=Z(_i_z )— (714)
im;ox; i \m; M/ 3¢

Thus the transformation to relative coordinates
makes the apparent charge of particle j different
from e;, viz.

e,-’=e,~m,-e/M, (715)

where e=D e;
[
is the total charge of the system. In the particular
case of nuclei, all the particles (neutrons and
protons) have the same mass m;, and M =m;A

2 D as defined in (712b) is k times the ‘‘quadrupole
moment”’ corresponding to the transition, cf. Section C.
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where A4 is the number of particles. Thus

e/ =e;—eZ/A, (716)
which gives for protons (¢;=e)
e/ =e(1—-2/4) (716a)
and for neutrons
e/ =—eZ/A. (716b)

For the problem of emission of dipole radiation,
neutrons should therefore be considered as hav-
ing a negative effective charge equal to about
half an elementary charge whereas protons have
a positive effective charge which is only about
half their true charge.

For a system whose particles have all the same
specific charge (i.e., ratio of charge to mass), we
obtain from (715)

(117)

This means that for such a system the dipole
moment would vanish identically whatever the wave
functions ¥,, and ¥,. Thus we may understand
the smallness of the dipole radiation if we can
show that the nucleus, though actually composed
of particles of different charge (neutrons and
protons), acts like a system of particles all having
the same charge. E.g., if the nucleus contains as
many neutrons as protons (4 =2Z), this will be
true if we assume the nuclear particles to be
combined in a-particles as subunits. Quite gener-
ally, the dipole moment will be zero if the centers
of gravity of the neutrons alone and of the pro-
tons alone coincide so that the matrix element of
their difference vanishes for all transitions. Owing
to the large forces between neutrons and protons,
this does not seem unlikely.

An alternative explanation due to Wigner
would attribute the absence of dipole radiation
in the spectra of natural radioactive elements to
the fact that all low energy levels of a nucleus
have the same “‘partition’” (W17). This explana-
tion would indeed seem much more attractive
than the vague statement that the neutrons and
protons will probably be distributed in a similar
way. However, it does not explain why the y-ray
widths of the high excited states observed in
neutron and proton capture are so much smaller
than would be expected from the elementary
calculation in 4.
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Whatever the explanation for the smallness of
the dipole radiation may be, there will be no
factors reducing the quadrupole and higher multi-
pole radiation below the value expected from
elementary considerations. E.g., if we repeat the
calculations leading to (714) for quadrupole
radiation propagated in the z direction, we find

i $i\O¥nm
‘ 2ed )—— (718)
a¢;

i \m; M

The expression in the parenthesis does 7ot vanish
when all particles have the same specific charge
because it contains the coordinates of the
particles.

This shows, at the same time, that multipole
radiation higher than quadrupole will be im-
probable compared to quadrupole radiation by
about the factors expected from elementary con-
sideration, i.e., by a factor (R/X)? for each suc-
cessive multipole. Higher multipole radiation
will therefore, in general, not occur except from
metastable states.

C. The radiation width from the liquid drop
model

Bohr has suggested the use of the liquid drop
model (§53C) to calculate the probability of
emission of radiation. Since in this model only the
density of nuclear matter is considered and not
the density of neutrons and protons separately,
the model can obviously only give quadrupole
radiation (cf. B). Moreover, at low ‘‘tempera-
ture” of the nucleus, only surface vibrations are
excited and therefore only the emission of quad-
rupole radiation by these modes of vibration is
important.

The intensity of radiation I from a system of
currents periodic in time

j(r, £) =jo(r) cos wt (719)
is, according to classical electrodynamics,
1 w?
I=—— | do|nXj|?, (720)
87 ¢3

where

j= f jo(r) exp (iwr-n/c)dr (720a)

and the integration S'do extends over all direc-
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tions of the vector n (direction of propagation of
the light). Quadrupole radiation corresponds to
the second term in the Taylor expansion of the
exponential in (720a) so that

InXj| =(w/c)|fr-n nXjodr|. (721)

Here the current density jo of the radiating sys-
tem may be expressed in terms of the charge
density p; we have from (719) and the continuity
equation:

p=posin wt, po=div jo/w. (721a)
Neglecting the magnetic dipole radiation, i.e.,

assuming

f Gosy = jos)dr=0, (721b)

we find for (721)
[nXj| =(w2/2c)|fpor-n rXndr|. (722)

Taking the direction of emission n parallel to x,
we have

[nXj| = (ew?/2¢)([xy P+ [x2])}, (722a)

where

e[xy]= f po xy dr (722b)

is the quadrupole moment of the emitting system.
If we assume that all quadrupole moments, vsz.
[xy], [x2], [y2] etc., are equal in size (statistical
equilibrium), the total radiation intensity (720)
becomes

I=e*(w®/4c%)[xy ]2

The v-ray width is % times the number of quanta
emitted :

(723)

Ty=hl/ho=1%(w/c)%[xy]* (723a)

For surface vibrations, the density of the
nuclear liquid is constant (charge density =Ze/Q
where Q is the total volume of the nucleus), and
only the shape changes. If R is the normal radius
of the nucleus, and

{(0v ‘P) =§.0(0r ‘P) Sin wtr (724)
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the displacement of the surface at a given point
3, ¢, then

e[xy]= (Ze/Q)f sin d9ddd e

R+to
Xf 7% cos ¢ sin & cos ¢ r¥dr, (724a)
(1]

assuming the polar axis =0 to be in the x
direction. Integration over 7 gives

[xy]= (3Z/41rR3)f sin? ¢ cos ¢ cos pddd o

X[ER*+R*0+0(5o?) ]

The term R’ vanishes upon integration over the
angles, the terms containing higher powers of {g
may be neglected so that

(724b)

[xy]= (3ZR/47r)f§‘o sin? ¢ cos ¢

Xcos gddde. (725)

For each normal mode of surface vibration of a
sphere, the displacement { depends on the angles
¢ and ¢ as a spherical harmonic ¥, Higher !
corresponds to higher frequencies. (725) shows
that of all the normal modes only one will give a
contribution to the quadrupole moment, viz. that
for which ¢ depends on the angles as

¢o=> cos ¢ sin I cos ¢. (725a)

This vibration corresponds to the deformation of
the sphere into an ellipsoid ; it is the vibration of
lowest frequency possible. The calculation of the
frequency is similar to that given in §53C; the
index ! of the spherical harmonic corresponds, for
high I, to kR in the old calculation. For any I,
(311) must be replaced by

W= (G/pS) I+ 2)I(I—1)R,

so that, with (313) to (314), we have for I=2
w?'=8T/(3Mr2A),

hw=(8/3)}(TP)A-.

(726)

(726a)
(726b)

The potential energy is given by an expression
similar to (307a), viz.
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V= (G/ZS)f sin dddd ¢

a2 1 A\ 2
Y )+ o
a9 sin? 9\ d¢
For a given /, the integrand reduces to (I+2)
X (—1)¢%; and if ¢ is given by (724, 725a), the

total energy in the normal mode, which is twice
the time average of 1/, becomes

E=20*G/15R?=2T' /1570

(727a)

(cf. (314)). Since the frequency of the vibration is
rather low, its excitation energy will in general be
equal to the nuclear temperature’ , so that

b=(15/2)¥ry(r/T)% (727b)
Inserting (725a) (727b) into (725), we have

[xy]=({1/5)ZRb=(3/10)}Zr2T 143} (728)
and, with (723a) (726b)
25/2 @2 T8/2P1/2 (22)2
(729)

F7= - T.
33/2.5 Ac (MC2)2 A1u/e

Inserting the numerical values '=P=10 MV,
Mc2=930 MV, we have

I, =2-10"77(22)24-11, (7292)

The factor (2Z)24 V¢ practically does not change
with the nuclear mass; it increases only from 1 at
low atomic weight to 1.5 at high 4. The nuclear
temperature 7 is, for excitation energies of the
order of 10 MV, about 1 to 2 MV. Therefore
generally

r,=0.2 to 0.5 volt. (729b)

This agrees surprisingly well with the average
radiation width observed in the capture of slow
neutrons by heavy nuclei (§61). For proton cap-
ture by light nuclei, larger widths up to 5 volts
have been observed, probably due to dipole
transitions which are not so rare in this case.
The radiation widths of low states of radio-
active nuclei (§88) are much smaller, viz. of the
order of millivolts. In our model, this may be
understood by assuming the excitation energy

73 This will not be true for low excitation energy of the
whole nucleus, e.g., for the y-rays emitted by natural
radioactive nuclei. In this case, the average excitation
energy per normal mode will be lower.
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per normal vibration (727a) to be much smaller
than at higher temperatures. A more elementary
and more satisfactory treatment seems to be to
deduce the quadrupole moment [xy] from the
observed width by means of (723a). If we meas-
ure w in MV and the quadrupole moment [xy]
in 102 cm?, we have

I',=0.013[xy JPw® volts. (730)

The quadrupole moments of the transitions listed
in Table XXXXIV are of the order 10~ cm?
which seems plausible.

For all but these very low states, the y-ray
width (729a) depends only very slightly on the
excitation energy of the nucleus and on its size.
This fact is in agreement with the observations
(see above) and in striking contrast to the par-
ticle width which, for any kind of particle, in-
creases enormously with increasing excitation
energy (cf., e.g., §65, 78, 79) and decreases very
much with increasing atomic weight (§54, 81).
This means that the emission of radiation (simple
capture) can in general only compete with that of
particles (disintegration) if the nucleus concerned
is heavy and the excitation energy low. The best
known example is the capture of slow neutrons
which is only probable for heavy nuclei (§57ff.).
The capture of fast neutrons (§65) is very im-
probable compared to inelastic scattering, the
capture of particles by light nuclei (§64, 81)
improbable compared to particle disintegrations.

The vy-ray spectrum would, according to our
liquid drop model, consist of a single line with a
frequency given by (726b), i.e., about 1 MV for
heavy, 2-3 MV for lighter nuclei. Of course, this
consequence of the model should not be taken
seriously ; but perhaps the spectrum has actually
an intensity maximum near the frequency (726b).

The formulae given (especially 729 to 729b)
refer to the total y-ray width. The width cor-
responding to a given y-ray transition is smaller
by a factor of the order of the number of possible
final states. An estimate of the partial y-ray
width will be given in §90.

D. Metastable states

Weizsicker has pointed out (W9) that some
nuclei may have low excited states whose an-
gular momentum is very different from that
of the ground state, and that such states would
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be ‘‘metastable” and may have a very long
lifetime against y-emission. As we shall show
below, lifetimes of several seconds, or even
of years, may occur. This would explain the
“isomerism’’ observed with various B-emitting
nuclei. The best established case of this kind is a
radioactive nucleus formed in Br by capture of
slow neutrons. Bromine possesses two stable
isotopes, Br” and Br® so that two radioactive
nuclei (Br®® and Br®?) would be expected from
slow neutron capture. Actually, three different
radioactive nuclei with three different periods
(18 min., 4.2 hr., 36 hr.) have been observed
(K34), all of them chemically indentical with Br.
Since no other process can occur but neutron
capture, and since no stable isotope of bromine
has.-been found despite very careful search (B28),
we are forced to conclude that either Br® or
Br#? exists in two modifications with different
half-lives.

A similar case may be indium which also has
two stable isotopes (In''® and In''®) and gives
three different periods under neutron bombard-
ment (S28). However, it is possible (L.26) that
one of these activities (33 hr.) is produced by fast
neutrons through a np reaction and is in reality
an isotope of Cd. Another case of isomerism may
be the natural B-emitters UX, and UZ (G4).

The existence of ‘‘isomeric’”’ B-emitting nuclei
violates the rule that B-emission is in general
slower than any other nuclear process, especially
v-radiation. As a rule, a nucleus formed in any
way, e.g., by neutron capture, natural a-decay
etc., will first emit y-radiation until it arrives in
its ground state, and the time required for that is
usually of the order of 1072 sec. (cf. Table
XXXXIV). The B-emission which takes several
seconds or more, can ordinarily not at all compete
with y-emission so that, in general, B-particles
cannot be emitted from excited states of nuclei.
From this consideration, any nucleus should have
one characteristic lifetime with respect to g-decay,
and isomeric nuclei could never exist.

This will be different only if there are selection
rules making the emission of y-radiation from a
certain (in general the first) excited state much
less probable than it is ordinarily. If this is the
case, the metastable state will have its own decay
period. Its decay may occur in two different
ways, v12.:
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(1) The metastable state may go over into the
ground state with emission of y-radiation, where-
upon the ground state will decay further with
B-emission. The half-life of the activity due to the
metastable state is then determined by the prob-
ability of the forbidden vy-transition. It can only
be observed as a separate period if it is longer
than the natural g-period of the ground state.
The energy spectrum of the B-rays is exactly the
same for the two periods.

(2) The metastable state may emit a B-particle
directly. This will be the case if the probability of
vy-emission is smaller than that of B-emission for
the given metastable state. The lifetime of the
metastable state may in this case be longer or
shorter than that of the ground state. The
B-emissions from the metastable and from the
ground state will in general lead to different
states of the final nucleus because the angular
momenta are very different (cf. below). Thus at
least one of the B-transformations will be fol-
lowed by a y-ray from the residual nucleus, and
the upper limits of the two B-spectra will not be

the same. In the case of Br, the 18 min. period is .

also produced by photoelectric disintegration of
Br (§91, 103) and should therefore belong to Br°.
Neither of the other two periods has been found
as yet in the photoelectric process, thus we may
provisionally ascribe them to Br#? which would
then be the nucleus possessing the metastable
level. One of the periods (35 hr.) gives B-rays of
0.8 MV (A1) and gammas (S16a), the other (4.2
hr.) gives betas of 2.05 MV and no gammas. If
our interpretation is correct, the y-rays should
have an energy of about 1.25 MV. An exact
measurement of the y-ray energy should decide
whether the 35 hr. or the 4.2 hr. activity belongs
to the metastable level of Brs2.

The probability of emission of multipole radia-
tion of order / is obtained by taking in (720a) the
Ith term in the Taylor expansion of the expo-
nential. With the direction of observation n
parallel to the x axis, we have

L (w/

= . (731
[nXj| Ty (731)

fxl'lanodT

It seems rather difficult to replace the current
distribution j, by the charge distribution p, in as
rigorous a way as that used for the quadrupole
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radiation in (722a). However, it seems to be a
fair approximation to replace (731) by

[nXj| =(w'/l!c"‘)fx’—1an podT (731a)

=[ew!/llc 1 J([xy P+ [x*"'5 1)1 (731b)
Roughly, we may estimate

[xty]~«R!, (731¢)

where « is of the order unity. Then the probability
of y-emission per second becomes, in analogy
to (723a),

T, /h=(w/c)t+i(e2/h) k2RI, (732)

Inserting the numerical values k=1, R=10"2cm
etc., we find for the lifetime against vy-emission

r=h/T,=5+10"2112(20/hiw)? 1 sec., (733)

where fiw is measured in MV.

Table XXXXII gives the lifetimes calculated
from (733) for various I's and excitation energies.
200 kv is about the average excitation energy of
the first excited state in a heavy nucleus; 50 kv
occurs frequently, e.g., in 3 of the naturally
radioactive nuclei; and 10 kv may occur occa-
sionally. Differences of the angular momentum
of as much as 4 units should not be very rare
considering that several nuclei are known with
an angular momentum of 9/2 in their ground
state. Thus it seems possible that some nuclei
may possess metastable states with lifetimes of a
year or more against y-emission which, of course,
is ample for the explanation of two “lifetimes’ of
the same radioactive isotope. If the lifetime
against y-emission is as long as this, the excited
state of a B-active nucleus will in general decay
by direct emission of a B-particle (mode 2 above).

From our considerations, it is obvious that
sufficiently metastable states will in general not
exist for light nuclei, firstly because of the small

TaBLE XXXXII. Lifetime of metastable states.

CHANGE OF ANGULAR MOMENTUM IN TRANSITION TO
GROUND STATE
EXCITATION

ENERGY 1=2 1=3
(kv) (QUADRUPOLE)| (OCTOPOLE) l=4 =5
10 6104 sec. 7 hrs. 5-104 yrs. | 5-1012 yrs.
50 2-1077 sec. 0.3 sec. 10 days 105 yrs.
200 2 -10710 gec. 2-10"%gec. | 3 sec. 10 days
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density of levels for such nuclei and secondly be-
cause of the relatively small angular momenta.
For heavy nuclei, we may expect metastable
states roughly to be as frequent as ‘‘stable”
neighboring isobars (§43), of which there are
perhaps 10 examples altogether. Metastable
states will, of course, not be restricted to 8-radio-
active nuclei but will also exist in stable nuclei:
In this case, their existence is difficult to observe
because the transition to the ground state will be
accompanied by emission of very soft y-rays
only. Finally, there is a (very small) chance that
some stable nucleus may possess a metastable
state with a lifetime of the order of 10! years;
such a nucleus might then appear under normal
conditions in two modifications, distinguishable
by their spins.

§88. y-RAavs FROM NATURAL RADIOACTIVE
SUBSTANCES

A. Frequency of natural y-rays and internal
conversion

More accurate data are available on natural
y-rays than on those emitted during or after
transmutations. This is partly due to the fact that
the natural y-rays have been studied over a
longer period of time. But the main reason is that
there is a method of study available for natural
y-rays which is not applicable to the y-rays from
transmutations of the light elements, viz. the
internal conversion.

Crudely speaking, the internal conversion may
be regarded as a photoelectric effect which the
y-ray produces in the same atom from whose
nucleus it was emitted. This internal photoelec-
tric effect is very probable because of the high
intensity of the y-radiation in the emitting atom
itself. The process will lead to the emission of one
of the external electrons™ of the atom instead of
the y-ray. If the conversion electron is ejected
from the nth electron shell whose ionization po-
tential is E,, its kinetic energy will be

™ From the historical development of the subject (cf.,
e.g., Rasetti, Nuclear Physics, p. 121) it is still customary
to call these secondary electrons ‘‘B-particles’” and to
speak of them as “‘discrete 8-spectrum” in distinction from
the continuous, true 8-spectrum. In the light of our present
knowledge, this must be regarded as a misnomer. The
terms a-, 8-, y-particles should be reserved for particles
coming from the nucleus itself. The internal conversion
electrons originate from the electron shells of the atom and

should be named in a way indicating their origin, e.g.,
conversion electrons.
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E=hy—E,. (734)

By magnetic deflection of the conversion electron
its kinetic energy may be measured quite accu-
rately. If the origin of the electron is known the
quantum energy hv can be inferred from the
kinetic energy by means of (734). The determina-
tion of Av will be quite unambiguous when con-
version electrons are ejected from several shells
by the same vy-ray. This can be recognized by the
fact that the difference between the energies of
two groups of conversion electrons is equal to the
known energy difference between two electronic
levels of the atom. Then the assignment of
the level of origin to each electron group is
straightforward.

In one case (RaB), 8 groups of conversion elec-
trons have been observed all originating from the
same y-ray (E8) by internal conversion in the
electron shells” L I, LII, L III, M I, M 11, M 111,
N I and O. From each of the groups, the same
energy for the y-quantum (52.91 kv) can be
inferred, with a mean deviation of the individual
determinations of about 0.1 percent. In most
other cases, the internal conversion in outer elec-
tron shells is too weak to be observed because
these electrons are too far from the source of the
v-radiation (nucleus). However, for a great num-
ber of y-rays at least 3 groups of conversion elec-
trons have been observed, viz. in the K, L I and
M 1 shell. Only for very weak y-ray lines, the
number of conversion electron groups is reduced
to one. In this case, there is of course no check on
the y-ray energy as in the case of several groups,
but it is safe to assume that a single group of
conversion electrons always originates from the
K shell”® because the probability of internal con-
version decreases approximately as the inverse
third power of the principal quantum number #
of the ejected electron (for s electrons).

In this way, about 50 y-ray lines originating
from 12 different nuclei have been observed. A
list of the results for the quantum energies kv, and
of the conversion groups observed in each case,
is found in Rasetti’s book on Nuclear Physics,

p- 124, etc.

% There is no conversion in the K shell because the
energy of the y-ray is not sufficient.

% This conclusion is quite safe if the energy of the
conversion electron is greater than the difference of the
ionization potentials of the K and L shell. If this is not the
case, the electron may have originated from the L I shell.
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The measurements of the electronic energies
are accurate enough to determine the atomic
number of the element from which the conversion
electrons, and therefore the ~v-rays, originate.
The y-rays observed in a radioactive transforma-
tion 4—B must in almost all cases be ascribed to
the product nucleus B, i.e., an emission after the
a- or B-particle characteristic of the main trans-
formation. This is in accord with theoretical
expectation (cf. §69).

The y-rays observed have been compared with
the groups of a-particles found in a-disintegra-
tions (§69) and gratifying agreement has been
obtained between the Av of the vy-rays and the
differences between the energies of various
a-groups (Table XXXII). Complete level schemes
have been worked out for various nuclei from a-
and y-ray data (cf. §69, end).

B. Intensity of y-rays. Dipole and quadrupole
radiation

From the observed number of internal conver-
sion electrons, the number of emitted y-rays may
be deduced if the coefficient of internal conver-
sion, «, is known. This coefficient is defined as the
ratio of the number of conversion electrons to the
number of quanta emitted. The theory of internal
conversion has been given by Taylor, Mott,
Hulme and F. Oppenheimer (H39, T4, T5). It is
found that the internal conversion coefficient
decreases rapidly with increasing quantum en-
ergy and with increasing principal and azimuthal
quantum number of the electron shell from which
the conversion electron originates. The first fact
is mainly due to the rapid increase of the prob-
ability of radiation with increasing energy. The
dependence on the quantum numbers is ex-
plained by the smaller probability of coming near
the nucleus for electrons with higher » and I. The
conversion coefficient depends also on the nature
of the radiation, being about 3 times larger for
quadrupole than for dipole radiation. The theo-
retical dependence of the conversion coefficient
in the K shell, ax, on the quantum energy kv for
dipole and quadrupole radiation is shown in
Fig. 26.

The expressions for the internal conversion
coefficient are rather complicated owing to the
complicated mathematical form of the Dirac
wave functions. An approximate expression may
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F16. 26. Internal conversion coefficient for y-rays in
heavy nuclei (Z=84), according to Taylor and Mott.
Solid curve: quadrupole radiation, broken curve: dipole
radiation. Crosses represent experimental values deter-
mined by Ellis and Aston.

be obtained (R5a, p. 139) by neglecting relativity
effects and at the same time assuming the fre-
quency of the y-ray to be large compared to the
K absorption limit of the element in question.
The result is, if axg<<1:

ﬁC 3 Ry 4 e—4n arc cot n
oo () (2) e
e? hw et —1
where Ry is the Rydberg energy (=13.54 volts),

hw the quantum energy of the y-ray, Z the
nuclear charge and

n?=Z*Ry/(hw— Z°Ry).

(735)

(735a)

The values of the conversion coefficient obtained
from (735) are, for natural radioactive nuclei,
about 5 times too small, owing to the unjustified
approximations made.”’

Experimentally, the internal conversion co-
efficient has been measured for a few y-ray lines
by comparing the number of internal conversion
electrons with the number of photoelectrons pro-
duced in some material (usually lead) exposed to
the y-rays. Since the coefficient of photoelectric
absorption is approximately known, both theo-
retically and experimentally, the absolute in-
tensity of the y-rays can be deduced from the
number of photoelectrons observed. These experi-

7 However, the formula would be correct for small
nuclear charge Z. It shows that in this case the internal
conversion coefficient would be exceedingly small so that

there seems to be no chance of observing internal con-
version of y-rays in light atoms.
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TaBLE XXXXIII. Intensities of v-ray lines from ThC''.

v

THEORETICAL CALCULATED
ak (%) 2(%)
EXCITATION
Quabp- Quabp- FROM
LINE | 10¢pak | DIPOLE[| RUPOLE | DIPOLE| RUPOLE a-GROUPS
vt 2.2 | 095 2.9 2.3 10.76 1.1
Ya 2.2 | 1.02 3.2 2.2 | 0.69 0.16
vs3 0.9 | 0.88 2.7 1.0 | 0.33 ’
Y4 28 1.76 11.3 16 2.5 1.8
Y 6.1 | 1.49 7.5 4.1 | 0.81 )

ments are not very accurate and give values for
the internal conversion coefficient which are
slightly (about 20-30 percent) higher than the
theoretical values. The agreement is, however,
sufficient to decide in most cases whether the
y-radiation investigated is dipole or quadrupole
radiation (cf. Fig. 26).

Accepting the theory as correct, the internal
conversion may be used for finding out the nature
of the radiative transition when the corre-
spondence between a-ray groups (§69) and y-rays
has been established and the intensities of the
a-groups are known. This is, e.g., possible for
ThC” (cf. Table XXXII, §69). We denote by
p1- - - ps the intensities of the six y-lines v1- - vs
observed, in number of quanta per a-disintegra-
tion, and by ¢1- - - ¢4 the “‘excitations’ of the four
excited states of ThC", i.e., the number of a-par-
ticles from the parent nucleus ThC correspond-
ing to transitions to the four excited levels of
ThC”. Then we have (cf. Table XXXI and Table
XXXII)

q.;=p1 = 110%,
GB=p2+ps3 = 0.169%,
ge=ps+ps = 1.80%,

Q1= —p1—p2—ps+ps=69.8 %.

The observed number of conversion electrons
from the K shell, pag, is listed in the second
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column of Table XXXXIII for the five™ y-rays
Y1 * +vs. In the next two columns, the theoretical
conversion coefficients for the known frequencies
of the y-rays are listed, for dipole and quadrupole
radiation. Dividing the observed pa by these
figures, the intensities p of the y-rays are ob-
tained (next two columns). It is seen that for
ps+ps reasonable agreemeat with the value
derived above (1.80 percent) is obtained by
assuming both the y-lines vy, and v; to be quadru-
pole radiation while the assumption of dipole
radiation would give about 10 times too much
v-radiation. For level 3 (v2+13), no agreement is
obtained either way but the assumption of
quadrupole radiation gives a less serious dis-
crepancy. Fo~ the line v, either dipole or quadru-
pole radiation may be assumed. Thus the evi-
dence shows that either all the five y-lines from
ThC" or at least four of them are due to quadru-
pole transitions.

In one case, viz. the third excited level of RaC’
(cf. Table XXXT) (excitation energy 1412 kv), no
actual y-ray has been observed but only an in-
ternal conversion electron. This is interpreted by
assuming that the radiative transition from level
3 to the ground state is completely forbidden,
e.g., because the two states both have angular
momentum zero. Then the internal conversion is
the only way in which the nucleus can go from
state 3 to the ground state.

C. Absolute probability of y-emission

The lifetime of nuclear states against y-emis-
sion may be estimated by comparing the inten-
sity of the long range a-particle groups from the
excited levels of ThC’ and RaC’ with that of the
y-rays from the same levels. Table XXXXIV
gives, for two levels each of RaC’ and ThC’, the
observed number N, of «y-rays (per normal

. ™y does not have sufficient quantum energy to
eject a K electron.

TaABLE XXXXIV. Lifetimes of excited states of RaC’ and ThC'.

hw Ty [xy]
Nuct. LEVEL (MV) Ny Na Eq(MV) 7 (SEC.) 7y(SEC.) (MILLIVOLTS) fo (10724 cm2)
RaC’ 1 0.61 0.4 0.43-107¢ 8.437 2.7-1077 3.-1071 2 1-1073 1.8
3* 1.41 0.0025 22-107¢ 9.242 9.5-107° 8-10—u 0.01 — —
ThC’ 1 0.73 0.14 34.10-¢6 9.674 1.6-107* 4-10™18 1.5 6-10~ 0.6
2 1.80 0.02 190-10-¢ 10.745 6-10™1 6-10713 1 6-10® 0.0C4

* Emits only conversion electrons.
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a-disintegration), the observed number N, of
long range a-particles, the disintegration energy
E,; for these a-particles, the lifetime against
a-decay 7 calculated from the energy by formulae
(594, 600) with G,=1 volt, the lifetime against
~y-emission

Tv==(1va/zvv)7a:

the y-ray width I',=%/7,, the oscillator strength
fo calculated from (711b), and the quadrupole
moment [xy] associated with the transition ac-
cording to (730).

The numbers of the excited levels are the same
as in Table XXXI. N, is as estimated by Ellis
and Aston (E8, E9). The estimates are based
primarily on observations of the number of
photoelectrons ejected from a Pt foil by the
v-rays (E9) supplemented by the intensities de-
duced from internal conversion using the theo-
retical value of the internal conversion coeffi-
cient. For the level 3 of RaC’ the figure given
is the number of internal conversion electrons
itself because for this transition no actual y-ray
is emitted (end of Section B). The calculated
lifetimes are all of the same order, v:z. a few
times 10718 sec., except for the highly forbidden
transition 3 of RaC’ for which it is, of course,
much larger. The y-ray widths of the excited
levels are of the order of a millivolt; they are, of
course, smaller than the widths of neutron cap-
ture levels (§61) because from the levels con-
sidered here only one radiative transition can oc-
cur while transitions to many different final levels
are possible from compound states responsible
for neutron capture. The quadrupole momerits
are of the order 102 cm? as should be expected.

(736)

§89. v-Ravs FrRoM REsSIDUAL NUCLEI PRODUCED
BY TRANSMUTATIONS

Not much experimental material is yet avail-
able on v-rays from nuclear transmutations.
Accounts of the experimental methods and re-
sults are given in §99-102. The most important
points in the study of y-rays are the following:

1. Nuclear energy levels. The levels of the
residual nucleus can be deduced from the groups
of outgoing particles emitted in the primary
nuclear reaction (§§99-101, 109). The differ-
ences between the energy levels so deduced must
agree with the energies of the y-rays emitted by
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the residual nucleus. Thus the y-rays provide an
important check on the energy levels derived
from particle groups. With light nuclei, it seems
also possible to compare the experimental energy
levels with theoretical expectation (F10) and to
assign quantum numbers to them.

Checks between the data from particle groups
and the y-rays observed have been obtained for
the nuclei B1® (produced in the reaction Be®+4-D
=B105!), B! (reaction B*4+D=B!'|+H), N
(from N*+D=N!*4+H) and especially C*? (re-
actions B"'4+D = C2+4-#!, Be?+He!=C"?+4#x! and
N#4+D=C"+a). The particles produced in the
reactions are neutrons, protons, and a-particles.
The particle energies can in most cases be deter-
mined more accurately than the energy of the
~y-rays, but the agreement obtained in the cases
mentioned is satisfactory (cf. §99, 101).

2. Transition probabilities. A determination of
the absolute radiative transition probabilities be-
tween the discrete levels of light nuclei does not
seem feasible because, in contrast to natural
radioactive nuclei (§88C), there is no alternative
process of known probability (a-decay!) with
which the y-ray intensity could be compared.

Measurements of the relative intensities of the
~y-ray lines starting from the same excited level
of the nucleus will, however, give the relative
transition probabilities. It seems feasible for light
nuclei to calculate these transition probabilities
theoretically from nuclear wave functions such as
those given by Wigner and Feenberg (F'10), using
the Hartree model.

The sum of the intensities of all y-ray lines
starting from a given level of the residual nucleus,
minus the intensities of the y-ray lines ending at
that level, must be equal to the intensity of the
particle group in the primary reaction which cor-
responds to the formation of the nuclear level in
question. Such comparisons of the intensity
would serve in the first place to confirm the as-
signment of y-rays to given transitions between
nuclear energy levels. In fact, such assignments
should not be called definite before a comparison
of the intensities has been made. Moreover, in-
tensity comparisons of the kind described might
give more information about the efficiency of the
apparatus used for detecting heavy particles as
well as y-rays.

A special kind of ‘‘y-rays from the residual
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nucleus’ are the y-rays emitted after an inelastic
collision. Inelastic collisions have thus far only™
been observed with fast neutrons (§65). The
y-rays emitted after the collision have been ob-
served by Lea (L19) and by Kikuchi and collabo-
rators (K7, K9, K5) for a great number of sub-
stances throughout the periodic table. The cross
section for the production of the y-rays was found
to correspond approximately to the known scat-
tering cross section for fast neutrons as should be
expected. Measurements of the frequency are not
yet available, but in view of the many levels of
heavy nuclei there can be no doubt that the
vy-spectra must be highly complex. Just as in
capture processes (§90), the ~y-emission will
ordinarily take place in steps. It would be of
interest to determine the average number of
quanta emitted per inelastically scattered
neutron.

Strictly speaking, all the y-rays from capture
processes but the one emitted first fall under the
heading of y-rays from the residual nucleus. This
distinction is, however, not of much practical use.

§90. CAPTURE v-RAvs
A. Light nuclei

The v-rays from the capture of protons have
been observed for the processes:

Li"+H!=Bet+vy, (I)

BOAH!=Clity, (II)
BU4H!=Cl4y, (III)
F4+H!=Ne?+y. (IV)

I. The y-rays from the proton bombardment of
lithium were previously reported as very com-
plex (C51). More recent experiments (D13) have
shown that there is only one strong line at 17.1
MV and probably one or more weak ones be-
tween 10 and 17 MV. The first line corresponds
to the transition to the ground state of Bel.
From the masses given in Table LXXIII (§108)
the mass difference Li’+H!—Be8 is found to be
17.0 MV. To this we must add § (relative mo-
tion!) of the energy of the incident proton of 440
kv, giving a total of 17.4 MV in good agreement
with the observed 17.1 MV. A line at 14 MV may
be expected from a transition to the excited state
of Be® of 2.8 MV excitation energy which is known

¢ 79§ Sl;:gxcept for the isolated example Li’+He!=Li"*+4He4,
cf. §99.
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from the study of the disintegration Bl4H!
=Be¥*+He!=3He* (§85). If this is true, the
line should be rather broad since the state at 2.8
MYV has a width of about 0.8 MV (§85).

The occurrence of radiative transitions to ex-
cited states of Be® has been confirmed by Laurit-
sen and his co-workers (private communication)
by the observation of groups of short range
a-particles when Li” was bombarded by protons
of 440 kv (resonance energy). The observation of
these a-particles would give the most direct evi-
dence on the position and width of the excited
states of Be?.

From the intensity of the vy-rays and simple
theoretical considerations, we can obtain rather
definite information on the angular momentum
and parity of the resonance level of Be® respon-
sible for the capture process. It seems certain
theoretically that the ground state of Be® is a
1S state of even parity. Since the y-ray width of
the resonance level is fairly large and the transi-
tion to the ground state the most intense, this
transition is almost certainly ‘‘allowed’’; it may
still be either dipole or quadrupole. If the transi-
tion is a dipole transition, the resonance level
must have odd parity and J=1. For a quadrupole
transition, we must have even parity and J=2.%
However, this is impossible because then the
resonance level could disintegrate into two a-par-
ticles (§81). Therefore the resonance level must
have J=1 and odd parity, and the y-ray emitted
must be dipole radiation. The first excited state
of Be® is presumably an even !'D state (F10);
therefore the y-ray transition to this state is also
dipole radiation.

II and III. The y-rays from these two capture
processes are both observed when the mixed
element boron is bombarded by protons (C50).
The data do not yet allow definite conclusions
but it seems certain that there is one y-ray line
corresponding to a transition into the ground
state of C? (energy about 15 MV) and several
lines corresponding to transitions to excited
states of that nucleus (cf. §101B).

IV. The y-radiation from the capture of protons
by fluorine is especially interesting since it is an
excellent example of the working of selection

rules. There seems to be a single y-ray line having

80 While in general J may change by one unit in quad-
rupole radiation, the transition 1—0 is forbidden.
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a quantum energy of 6.040.2 MV (D14). The
energy evolution from nuclear masses is 12.9 MV,
to which the kinetic energy of the incident pro-
tons (0.33 MV resonance energy) has to be added.
It seems therefore that the transition to the
ground state is forbidden. This conclusion is
even more stringent because the method used for
investigating the y-rays, »iz. the observation of
electron pairs, is most sensitive to high energy
y-rays.

The fact that the transition to the ground state
must be forbidden, may be deduced directly from
the known properties of the resonance level re-
sponsible for the capture of the protons. We know
that this resonance level must have either even J
and odd parity, or vice versa, because otherwise it
would disintegrate into O'*+He* which would be
irreconcilable with its small width (§81). Now
the ground state of Ne? is, again, almost certainly
a 1S state of even parity. Such a state combines
optically only with states of J=1 and odd parity
(dipole transitions) or of J=2 and even parity
(quadrupole transition). Both these possibilities
are excluded for the resonance level; therefore
there can be no strong y-ray corresponding to the
direct transition into the ground state, in agree-
ment with observation.®

The observed vy-radiation of 6.0 MV leads to a
state of Ne2® with an excitation energy of 7.2
MV. This is 2.5 MV more than the dissociation
energy of Ne? into an a-particle and an O!¢
nucleus. Unless there are again selection rules
forbidding it, this state of Ne? will probably dis-
integrate into O+ He* rather than emit a further
y-ray, because the potential barrier of O for
a-particles is not very high (4.5 MV). It would be
interesting to find these slow a-particles (2.0 MV)

The absolute probability of radiative transi-
tions can be found from the y-ray width of
resonance levels responsible for proton capture
(§81). The results are given in Table XXXXV.
Besides the radiation width I', observed, and the
lifetime of the excited state against y-radiation,
#/T,, we have given the effective oscillator

8 The difference between the Ne?® and the Be?® case
(cf. I) is that the resonance level of Be? is allowed to be an
odd level with J=1 while that of Ne? is not. The reason
for this is that Be® may only disintegrate into two like
particles (a-particles) which are not capable of existing in a
state of odd parity while Ne?® disintegrates into unlike

particles (O%+He!) which may have a wave function of
odd parity if only the angular momentum is also odd.
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strength f of the y-ray line emitted in the capture
process as calculated from (711b). The values
obtained (3-10~3 to 0.08) are larger than for
radioactive nuclei (§88C). This is presumably due
to the fact that the number of y-lines starting
and ending at a given level is very much greater
in a heavy (naturally radioactive) than in a light
nucleus, and therefore the f value for any single
line smaller.

B. Heavy nuclei

The v-ray spectrum emitted in the capture of
neutrons will no doubt be enormously complex
because of the extremely large number of energy
levels between the ground state and the com-
pound state responsible for the capture of the
neutron (resonance level). Because of this com-
plexity, it will, of course, not be possible to de-
duce the binding energy of the captured neutrons
from the frequency of the emitted y-rays. How-
ever, a study of the frequency distribution will
give very valuable information on the distribu-
tion of energy levels over the region between the
ground state and the dissociation energy of the
nucleus.

We assume that the dipole moment D., will, in the
average, be of the same order for transitions between any
two states r and s. More accurately, D,, shall not show
any general trend with the excitation energies U, and U,
of the two states or with their difference but shall only
vary irregularly from level to level. Then the partial
width of a level 7 due to a radiative transition to level s,
will be in the average (cf. (710))

Yrs=cwd=c'(U,— U,)3, (737)

where ¢ and ¢’ are constants.

With this assumption, we can easily calculate the pri-
mary y-ray spectrum emitted in the capture of a slow
neutron. In this case, the excitation energy U, of the
initial state is equal to the dissociation energy Q of the
nucleus. Let D(U) be the spacing of levels at the excitation
energy U. Then the number of quanta of energy between
hw and A(w+dw) emitted is given by

TABLE XXXXV. Absolute probabilities of capture of protons.

RADIA-
TION
WIDTH LIFETIME hy
PROCESS (VoL1s) SEC. MV 103/
(I) Li"+H!=Bet+4~ 4 1.6-10716 | 17 3
(V) Ce4H!'=Ni+y 0.08 8-10715| 24 3
C.6 1-10713 | 6.0 3
(IV) F134+H!=Ne?4+v |4 18 3.5-10717| 6.5?| 80
8 8:10717 | 6.6? | 40
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I(w)dw="rshdw/D(Q — hw) ~wdw/D(Q—hw). (738)

We assume for D a formula similar to that derived in §53,
13,

D(U)=Q-exp (—kU"). (738a)

(n= }for free particle model, 4/7 to § for liquid drop model.)
Then we have

I(w) ~(hw)® exp [k(Q—hw)"]. (739)

This intensity has a maximum at Aw=Qxo where xo is
determined by

(1 =xo)t™xo 1= 3nkQ"=1in log (Q/D(Q)). (739a)

The intensity falls to half its maximum value for #w
= (Q(xo=£dx) where (approximately)

- [ 1—x ]* <log 2>4.
1—xn 3

The position of the intensity maximum and
the half-width are given in Table XXXXVI for
n=3% and £ and for various values of the spacing
of levels D at dissociation energy, i.e., for various
atomic weights (cf. table XXI). It is seen that
the maximum should occur at a quantum energy
of between } and } of the dissociation energy
while the half-width should be somewhat less
than one-half of the quantum energy at the
intensity maximum. These theoretical figures
compare fairly well with the experimental de-
terminations of the quantum energy by Rasetti
(R3) and by Fleischmann (F25) who found
approximately 4-5 MYV, i.e., about half the
dissociation energy, by a method which favors
the harder components of the y-radiation.

The intensity maximum should lie at a rela-
tively higher quantum energy if the spacing of
levels is large, i.e.,, for lighter nuclei. This
tendency is supported by the increase of the
dissociation energy itself with decreasing atomic
weight. Evidence for this trend of the quantum
energy with mass number was also found by
Fleischmann. The apparent quantum energy of
the neutron capture radiation was found to be
7.7, 4.1, and 4.2 for Fe, Cd and Pb, respectively.

(739b)

TABLE XXXXVI. Posttion of intensity maximum xo and
half-width 8x of capture spectrum from theoretical
formula (approximate).

SPACING OF LEVELS AT n=0.5 n=0.75
Dissoc. ENERGY (VOLTS) x0 &% xo ox
1 0.31 0.13 ] 0.23 0.10
10 0.35 0.15 | 0.27 0.12
100 0.41 0.17 | 0.32 0.14
1000 0.48 0.20 | 0.39 0.17
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F1a. 27. Theoretical frequency distribution of the y-rays
emitted in the capture of a neutron by a heavy nucleus.
The curve refers to the radiation emitted in the capture
process itself, not including the y-rays emitted afterwards
by the residual nucleus. It has been assumed that the
optical dipole moment is the same for the transition to
each state of the final nucleus.

The expected y-ray spectrum for n=0.6 and
D(Q)=10 volts is shown in Fig. 27. The very
small intensity near the maximum possible quan-
tum energy (%w=Q) should be noticed.

As the y-ray emitted in the capture process
itself (primary y-ray) uses up only one-quarter
to one-half of the energy available, several
vy-rays will in general be emitted after this
first one. This secondary vy-radiation will ordi-
narily be softer than the primary radiation.
The number of y-rays emitted in each capture
process will in the average be between three
and ten. Experimental evidence for this fact was
obtained by Griffiths and Szilard (G23).

The total radiation width of neutron resonance levels
has been determined from neutron experiments (§61)
and theoretically (§87C) to be of the order of 0.1 to 1 volt.
From this value, we may determine the average dipole
moment 7¢®=(r,?)a corresponding to transition to one of
the final states. With the same assumptions as above, we
have for the total radiation width

4 — wd 4etre rQ(Q—U)3 .
ry=-y 28,2000 (X",
=3% a T 3pade prp U 40
= (I‘r'yD)AvNeff(Q)v (7408.)
where (Try0)av=setr 2Q3/ h3c? (740b)

is the partial y-ray width for the transition to the ground
state ¢f the dipole moment for this transition has the
“normal’’ value 7o, and

Neii(Q) = ﬁo (Q_T[])a% = j;l x3RQUDNGy  (741)
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may be called the “effective’” number of quantum states
of the nucleus below dissociation energy, in distinction
from the true number of levels

N =[dU/D(U)= [ exp [kQ"(1—2)"Jdx. (741a)

0

The quantities mentioned are listed in Table XXXXVII,
for n=0.6 (approximately corresponding to the liquid drop
model, §53) and various values of the spacing of levels at
dissociation energy, D(Q).

The “effective’” number of levels is seen to be
much smaller than the true number because
most of the levels lie very near the dissociation
energy and are therefore unimportant as final
states for y-ray emission. The partial width due
to radiative transitions to the ground state
alone turns out to be of the order of a few milli-
volt for spacings of the order 10 to 100 volts as
they are found for most elements for which the
capture of neutrons has been investigated. This
is just the same order of magnitude as for the
low excited states of radioactive nuclei (§88C).
The corresponding oscillator strength (cf. (711))
comes out between 10~5 and 10~* (for natural
radioactive nuclei 10~ to 10-3), and the average
dipole moment for each transition is of the order
of one thousandth of the nuclear radius.

§91. NucLEAR PROCESSES PRODUCED BY v-RAys

Two kinds of processes are possible when
y-rays fall on nuclei: (a) The y-ray may be
absorbed and a material particle emitted from
the nucleus (photodissociation). (b) The y-ray
may be scattered, either with or without giving
part of its energy to the nucleus (Raman and
Rayleigh scattering).

Since the emission of material particles is in
general more probable (§65, 76), photodissocia-
tion will ordinarily be the more frequent process
if it can occur energetically. Exceptions will be

TaBLE XXXXVII. Data on the capture v-ray specirum
for heavy nuclei (Total v-ray width Ty =0.5 volt, dissociation
energy Q=8 MV, n=0.6).

Spacing at dissociation energy, D(Q)

(volts) 1 10 100 1000
Total number of levels below @, N(Q) 8-10% 105 1.2-104 1.5-103
“Effective” number of levels, Negf(Q) 3000 500 90 20
Partial width for ground st. transition

(P'YO)A\: (millivolts) 0.15 1 5 25
Oscillator strength for trans. to ground

st. fo 5108 3-100%  1.5-107¢ 71074
Average dipole moment ro (cm) 4.10716  9.10"16 2-10718 4-1071
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found (1) when the emission of the material
particle is improbable because of the potential
barrier and (2) when the emitted particle is
very slow so that the factor » in the particle
width (§52) makes the emission probability
small. Scattering will be the only process occur-
ring if the energy of the y-ray is not sufficient to
dissociate the nucleus.

The photodissociation has been observed for
the deuteron (§16), for Be?, and, more recently,
for a great number of heavier nuclei (B47b, c, d).
In all cases, one of the particles into which the
nucleus dissociates is a neutron. There can be no
doubt that, in principle, all nuclei can be dis-
integrated by vy-rays of sufficiently high quantum
energy. The required dissociation energies are
listed in Table LXVII (§103); they vary from
1.5 to over 10 MV for light nuclei. It must also
be expected that particles other than neutrons
can be split off a nucleus by vy-rays, e.g. protons,
a-particles or deuterons. The relative probability
of these various types of photodissociation will
be determined by the respective ‘‘partial widths”
of the levels of the compound nucleus, i.e.
primarily by the penetrability of the potential
barrier for the particle to be emitted; the
probability will therefore be small for heavier
nuclei.’s

If the emitted particle is a slow neutron, the corre-
sponding partial width will be proportional to the neutron
velocity (cf. §52, 265a). Therefore the cross section for a
photodissociation into a slow neutron and a residual
nucleus will be

o =const - Ej, (742)
E=hv—Q (742a)

is the kinetic energy of the neutron and Q the dissociation
energy of the initial nucleus. The validity of (742) is, of
course, restricted in a similar way as the 1/v law for
neutron capture, viz. to neutron energies small compared
to the energy of the first resonance level (§58b). Moreover,
(742) holds only if the emitted neutron can have orbital
momentum zero. This means that the angular momenta of
initial and final nucleus must not differ by more than 3/2,
i.e., the sum of the neutron spin (1/2) and the angular
momentum of a y-quantum (1 for dipole radiation).82

where

81a Photodissociation with emission of an a-particle will
be probable when the energy of the y-ray is insufficient for
neutron-dissociation but sufficient to make the a-width
larger than the y-width (cf. §§79E, 80B).

8 A stricter selection rule holds if Russell-Saunders
coupling is valid in the initial and final nucleus. Then the
internal orbifal momenta of the two nuclei may differ
by 0 or 1 but must not both be zero while the “multi-
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For light nuclei, resonance effects will be
observable in the photodissociation. E.g., if the
v-rays emitted in the capture of protons by B!
fall on a C'? nucleus, this nucleus will be dissoci-
ated into B!+4H! The cross section for this
dissociation o, is connected to the cross section
for the emission of y-rays in the proton bombard-
ment of B! by

Qi+1)(2s+1) 2
(24 +1)(25"+1) K2

Here ¢’ is the angular momentum of the dissoci-
ated nucleus (C®?, ¢=0); ¢ and s those of the
dissociation products, »iz. B* and H! so that
i=1 (probably, cf. R10a) and s=3%; 25’41 is the
“‘statistical weight” for radiation, i.e., 2 (two
directions of polarization); X, and X, are the
wave-lengths of y-ray and proton, and o, is
that part of the capture cross section which
corresponds to the formation of C2in the ground
state. Let us, e.g., assume that there is a reso-
nance level for proton capture at 0.5 MV
proton energy, corresponding to X,=6.5-10"13
cm, and that the corresponding cross section is
10727 cm?, as for the capture of protons by Li’.
The quantum energy of the vy-rays emitted in
our process is 15 MV according to the masses of
the nuclei concerned, so that X,=1.3-10"2 cm.
With these data, o,» would be 8-107?7 cm? which
should be observable without too great difficulty.

For heavy nuclei, it will, of course, be im-
possible to observe resonance maxima in the
cross section for photodissociation. All we can
hope to observe is the average cross section,
averaged over energy regions large compared to
the spacing between energy levels. Unlike that
of material particles, the wave-length of y-rays
will be larger than the nuclear radius for quantum
energies below about 20 MV. Therefore only
dipole and quadrupole radiation will ever be of
any importance. For dipole radiation, only com-

ceo.  (743)

Oph

plicities”” must differ just by one. According to this rule,
the photodissociation of the deuteron is forbidden, be-
cause the internal orbital momentum of the deuteron
is zero, and that of the ‘‘residual nucleus,” viz. the proton,
is, of course, also zero. Indeed, the photodissociation of the
deuteron does not lead to a state of the dissociated system
of zero orbital momentum (s state) but to a p state (/=1),
as was shown in §16. Correspondingly, the cross section is,
in this case, proportional to E! rather than Et (cf. (265a)).
This will no longer be true if magnetic dipole radiation is
taken into account (§17).
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pound states of angular momentum J=i—1,
¢+ and ¢+1 will be important where ¢ is the
angular momentum of the ground state of the
nucleus to be dissociated. The average cross
section for photodissociation becomes thus
(cf. (405))

w2X,2 Tv/.,,[7
Ly (2J 1) ——2,
(21,+1)-' DJI‘,]

(744)

Oph =

where X, is the ‘“‘wave-length’ of the incident
y-ray, I'’,, the partial width corresponding to
emission of a y-ray which leaves the residual
nucleus in the ground state, averaged over all
levels in the energy region in question, '/ the
partial width corresponding to emission of par-
ticale Q (photodissociation), T'; the total width
and D; the average spacing of the levels of
angular momentum J. Assuming these quantities
to be independent of J and summing over the
three possible values of J (=¢—1, ¢ and i+1),
we find

I'yoT'q

(744a)

oph = 37°K,2

If the particle width T is large compared to
the y-ray width 'y which will be true for large
kinetic energies of the emitted particle (cf., e.g.,
§65), we may put I'q=T. Moreover, the partial
width T, is equal to the total y-ray width, T,
divided by the ‘‘effective number of quantum
states Nets(hv)"' of the compound nucleus below
the excitation energy hv, Net being defined as in
the preceding section. We may write

Net:s(U)=U/D(U)x(U), (745)

where « is a function which varies slowly with
the excitation energy U (slowly compared to
D(U)). According to the values given in Table
XXXXVII, « will be of the order of one to a few
thousand. Inserting (745) into (744a), we obtain

oph = 372kR,2T, /. (745a)
From neutron experiments we know that the
total y-ray width of the levels of compound
nuclei of atomic weight about 100, is, in the
average, of the order } volt. iv may be estimated
tobeabout 10 MV, corresponding tox,=1.9-10"12
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cm. With «= 2000, we obtain

apn=10"2% cm?,

(746)

The cross section observed by Bothe and Gentner
in their experiments on the photodissociation of
heavy nuclei (B47b, c, d) is of the order 10—27 cm?.
The agreement is satisfactory, in view of the
crudeness of both the theoretical and the experi-
mental estimate.

If the energy of the y-ray is only just sufficient
tu dissociate the nucleus, the cross section for
photodissociation will be small because of the
factor E? in the particle width. This decrease of
the cross section will set in when the particle
width becomes smaller than the y-ray width (cf.
§65) which will occur for a kinetic energy of the
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particle of the order of a few hundred thousand
volts.

When the y-ray energy is insufficient for disso-
ciation, the only process which may occur is the
scattering of the y-rays by the nucleus. Since, in
this case, I'y is identical with the total width T,
(745a) now holds for the scattering cross section.
The cross section for the nuclear scattering of
y-rays is thus of the order of®® 102t cm?. This is
very much less than the ordinary Klein-Nishina
scattering which amounts to 5-10723% cm? for
atomic number Z=50 and a y-ray energy of 8
MV. Thus the nuclear scattering of vy-rays will
probably be unobservable.

8 Above the dissociation energy, the scattering cross
section will be smaller by a factor I'y/T.
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FiG. 16a. Absorption of resonance radiation. Abscissa: K, where K, is the average absorption
coefficient of the resonance radiation for self-indication and small absorber thickness 8. (The figures
on the abscissa should read 0.25, 0.5, 0.75, 1.0 etc.) Ordinate: Transmitted intensity. Curve 2 corre-
sponds toa collimated incident beam of neutrons, curve w to an angular distribution cos ¢+ v 3 cos® 4.
For comfganson curve c gives the absorption for the same angular distribution with constant absorp-
tion coefficient, according to Amaldi and Fermi (Al11, Fig. 2).
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Fig. 18. The function v(x) determining the penetrability of the potential barrier (cf. (600)).
x is the ratio of particle energy to height of barrier.



F16. 24. The penetration function Fin the Oppenheimer-
Phillips theory. Curves are given for wvarious ratios
p=IR/Ze® of the binding energy I of the deuteron to the
height of the potential barrier. p=0.6 corresponds ap-
proximately to Z=17, 0.4 to Z=35, 0.2 to £Z=100. For
0 =0.2 the penetration function following from the Gamow
theory is given by the broken line. For p =0.6, the Gamow
points fall on the O-P curve.



F16. 9. Nuclear temperature r, entropy S, and A (cf.
(281)) as functions of the excitation energy U in the liquid
drop model. The constants U, S, 7o, Ao are given in
formulae ((324a), (326b), (326c), (327a)).



