OCTOBER, 1937

REVIEWS OF MODERN PHYSICS

VOLUME 9

Theories of Optical Rotatory Power

E. U. ConpON
Palmer Physical Laboratory, Princeton University, Princeton, New Jersey

1. INTRODUCTION

Y optical rotatory power is meant the
property of a medium to rotate the plane
of polarization of linearly polarized light that is
transmitted through it. The first effect of this
kind was discovered by Arago in 1811. He
found that quartz had this property in the
direction of the optical axis, the direction along
with ordinary double refraction vanishes.

The sense of rotation bears a fixed relation
to the direction of propagation of the light, so if
the light traverses the same medium once in
each of two opposite directions—as when it is
returned through the active medium by reflection
at a mirror—the net rotation just vanishes. A
substance is said to show positive rotation if the
plane of polarization is turned in a clockwise
sense as viewed by an observer into whose eye
the light is entering. The rotation is proportional
to the thickness of the active medium traversed
and the rotatory power is defined as the angle
through which the plane of polarization is turned
per unit path in the medium.

The discovery of optically active liquids is
due to Biot.! Here, since there is no preferred
orientation of the molecules the effect must be
due to a structural peculiarity of the individual
molecules. The modern theories which relate
this property of a fluid to the structure of the
individual molecules is the subject of this report.?

Conventionally the rotatory power of a
medium is given in degrees/decimeter. This
quantity will be denoted by ¢. In the c.g.s.
system it is measured in radian/cm, and evi-
dently one has to multiply the value in degree/cm
by =/1800 to convert to radian/cm.

Another measure of rotatory power called the
specific rotatory power is also in common use.

1 Biot, Bull soc. philomath. 190 (1815).

2 The book by T. M. Lowry, Optical Rotatory Power
(Longmans, Green, 1935), contains a very thorough ac-
count of the experimental and empirical side of the subject.
In this report the general principles are briefly reviewed
and the main emphasis is devoted to a review of the appli-
cations of dispersion theory to our understanding of the
phenomenon.

It is the rotatory power divided by the density
of the active material in gram/cm3. It will be
denoted by [¢]. Itis more common in the
experimental literature to denote these quantities
by a and [a], respectively, but this departure
from the common notation is introduced here
because it is desired to reserve the letter « for
molecular polarizability corresponding to another
well-established usage.

Still another measure of rotatory power is in
common use which is called the molecular
rotatory power. It is defined as being the specific
rotatory power [¢] in degree/decimeter per
gram/cm3, multiplied by one one-hundredth of
the molecular weight and is denoted by [M].
That is,

[M]=[¢]/100;

in which p is the density and M the molecular
weight.

In the theoretical formulas the combination
oM /p often occurs where ¢ is the rotatory power
in radian/cm. It is convenient to remember
the relation,

Lel=¢/p, 1)

oM/p=(x/18)[ M]. (2)

The basic feature of propagation in an optically
active medium that is responsible for rotating
the plane of polarization is circular double
refraction. This was recognized by Fresnel.? A
substance is said to be double refracting if in a
given direction the phase velocity of propagation
of light waves is different for two different states
of polarization. In the case of optical activity
the velocity is different for right and left circu-
larly polarized waves respectively.

Although Fresnel’s work greatly antedates the
electromagnetic theory of light it is convenient
to discuss the situation at once in terms of the
modern theory. In the electromagnetic theory
there are two vectors associated with the wave
that are transverse to the direction of propaga-

3 Fresnel, Ann. Chim. Phys. 28, 147 (1925); Oeuvres com-
plétes 1, 731, Paris (1866).
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tion. These are the electric induction, D, and
the magnetic induction, B. Suppose the wave is
traveling in the direction of the unit vector k
with a velocity ¢/n where n is the index of
refraction. If we introduce unit vectors, i and j,
mutually orthogonal and orthogonal to k in such
a way that (i, j k) form the basis of a right-
handed coordinate system, then D and B may
be written in the forms,

D=R{Dei*}, B=R{Bee"},

3
Y=2mv(t—nk-r/c), @)

where Dy and B are constant vectors, expressible
in terms of i and j, and ¢ is the phase of the
wave at time ¢ and place r, it being supposed
that » is the frequency of the wave. The symbol
R{ } means that the real part of the complex
expression is to be taken.

For a right circularly polarized wave the
constant amplitude will be of the form of a
constant multiplying into (i+1%j), say D(i+17j)
for, on taking the real part of this expression,
we have

D(icos y—jsin ¢).

When ¢ =0 the vector D is parallel to i and as
times goes on y increases and the vector D
rotates in the clockwise sense as viewed by an
observer faced in the —k direction, that is,
faced so the light enters his eyes. Similarly a
left circularly polarized wave is represented by
a constant multiplying into (i—1j).

These results contain expression of the fact
that circularly polarized light can be regarded
as the superposition of two plane polarized
waves having the proper phase relation. The
factor 7 in (i+14j) may be written e**/2 from which
it is clear that the phase of the linearly polarized
constituent along j is a quarter-cycle ahead of
the linearly polarized constituent along i. Simi-
larly in the left circularly polarized wave the
component along j lags a quarter-cycle behind
the component along i.

Linearly polarized light may likewise be
regarded as arising from the superposition of two
circularly polarized waves. Consider the wave
made up of a superposition of a right circularly
polarized wave with a phase e® and a left
circularly polarized wave with a phase e~*. The
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expression for D assumes the form,
D =R{(i+7j)e?+(i—ij)e~?}
=2(icos 6—jsin §). (4)

For =0 this represents a linearly polarized
wave whose plane of polarization is given by
the vector i and for § >0 the plane of polarization
is turned clockwise through an angle & with
respect to the i axis.

Now let us suppose that the medium has
different refractive indices for right and left
circularly polarized waves which may be denoted
by #, and #,, respectively. Suppose the light
enters at the plane k-r=0 and leaves at the
plane k-r=d, so d is the length of path tra-
versed. Further suppose that the light enters
linearly polarized along i. At the exit plane the
phases of the two components will be

¥,=27mv(t—n.d/c),
Vi=2mv(t—nd/c),
so we can write . (Y,, ¥1) =¢34,

where Y=2mv(t—3(n.+n)d/c)

is the phase carresponding to the mean index of
refraction and

d=n(n;—mn,)d/\ \=c/v) (5)

arises from the difference of the two indices of
refraction.

But as we have seen, an advance in phase §
for the right and a retardation in phase & of the
left circularly polarized components results in
their superposing to produce linearly polarized
light whose plane of polarization is turned
through an angle 8. Hence the rotation per unit
path length is §/d or the rotatory power ¢ is
expressed directly in terms of the difference of
the two indices of refraction:

o= (m/N)(mi—mn,). (6)

In this equation if ¢ is expressed in degree/
decimeter, then the vacuum wave-length A must
be expressed in decimeters and ==180.

Owing to the fact that A is very small compared
to macroscopic values of d, the quantity d/\ in
(5) is large compared to unity and so appreciable
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rotations are produced in spite of (#;—#,) being
small compared to unity. It is convenient to
remember that the sense of the rotation is that
of the circularly polarized component that
travels most rapidly.

Just as optical activity is produced as an
indirect effect of the difference in velocity of
propagation of right and left circularly polarized
waves, so also there is an indirect effect, known
as circular dichroism, arising from differential
absorption of the two kinds of waves. It was
discovered by Cotton* in 1896. It is well known
that in the case of ordinary refraction the
refractivity is closely associated with the ab-
sorption bands, strong absorption bands pro-
ducing more refractivity. In the case of optically
active liquids the difference (n,—n,) is of the
order of a few parts in a million. The general
connection between refraction and absorption
suggests that a difference of this order in the
absorption coefficients is all that can be expected.
In view of the difficulties surrounding intensity
measurements it cannot be expected that such a
small difference in absorption can be detected
by measuring separately absorption coefficients
for the two kinds of circularly polarized light.

Instead we have to look for a differential
effect whose very existence is due to the difference
in the two absorption coefficients. This is
provided by studying the propagation of a
linearly polarized wave through the absorbing
medium. Let ¢ and ¢ be the absorption coeffi-
cients for left and right circularly polarized
waves and write

(1, &) =eL€/, (7

where ¢ is the mean absorption coefficient and ¢
is half the difference. Then since the intensity
of light varies as D? the amplitude of D is
subject to exponential decrease by the factors
e~42 and e~<4? for right and left circularly
polarized waves respectively after traversing a
thickness d of the medium. Hence the two
components which initially unite to give a
linearly polarized wave are of unequal amplitude
after traversing the medium. As a result they
recombine to give elliptically polarized light the
ellipticity of which is connected with the
difference of the two absorption coefficients.
4 Cotton, Ann. Chim Phys. 8, 347 (1896).
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Each amplitude will be reduced by the
common factor e~¢¢/2 corresponding to the mean
absorption coefficient, but after going through
a thickness d the amplitude will in addition to
this factor be given by

ee’dlZ(i+1:j)ei§+e—c’d/2(i _ ,ij)e—-is.

Denoting by i(8) and j(8) the unit vectors
obtained by making a clockwise rotation through
6 of the unit vectors i and j, this can be written

i(8) cosh €'d/2+1j(8) sinh €'d/2. (8)

This represents, for ¢>0, a right elliptically
polarized wave whose major amplitude is rotated
by 6 from the original direction of the linear
polarization. The ellipticity is conventionally
measured by an angle ¥ whose tangent is equal
to the ratio of the minor to the major amplitudes,
that is,

tan ¥ =tanh ¢d/2, 9)

if we adopt the convention that the ellipticity
is positive for a right elliptically polarized wave
and negative for left elliptic polarization.

The observable phenomenon known as circular
dichroism consists in this appearance of elliptic
polarization when linearly polarized light is
partially absorbed in passing through an active
medium. In view of the fact that ¢ will be small
compared to ¢ and that we must choose d such
that ed is not very great in order to have an
appreciable amount of light transmitted, we
shall always have ¢d<1 and therefore

V=3%d=%(e;—¢)d, (10)

so the ellipticity will be proportional to the
thickness d. Bruhat® has shown that the relative
error in measurement of § and ¥ is a minimum
when such a thickness of material is chosen that
the amplitude is reduced by the factor e,
that is the energy reduced by e?, or to 13.5
percent of its initial value.

2. ELECTROMAGNETIC THEORY

After the general introduction of the preceding
section we now turn to the problem of general-
izing the ordinary elementary treatments of the
electromagrnetic theory of light in such a way

as to give circular double refraction. The

§ Bruhat, Ann. de physique 3, 232 (1915).
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starting point is, of course, Maxwell’s equations:

div D=0, div B=0,
curlE=—(1/0)B, curlH=(1/c)D, (11)
D=E+4xP, B=H+4~l.

The properties of the medium find their
expression entirely in that they give rise to P,
the electric moment per unit volume and to I,
the magnetic moment per unit volume. The
theory of wave propagation, underlying all kinds
of dispersion effects, needs, in addition to Egs.
(11), a connection which relates P and I to E and
H. This connection will be provided by a detailed
application of electrodynamics to a particular
model of the material of the medium.

In the simple theory of isotropic media we have

P=«E, I=«H,
where « and «’ are scalars. Then

D=(1447r«x)E=¢E,

B=(1+4r<)H=uH, (12)

where € and u are the usual dielectric constant
and magnetic permeability. This simple con-
nection leads, as is well known, to the propaga-
tion of waves with an index of refraction given
by n*=eu. As a general rule «’ =~ 10~k except for
strongly magnetic substances which absorb light
anyway, so it is generally permissible to write,
n*=e.

The theory of crystal optics, so far as ordinary
double refraction is concerned, is given as a
generalization in which « and «’ are replaced by
tensors, although usually «’ is neglected in
comparison with « and the whole refraction
regarded as due to the electric polarization.

To get a theory of optical activity we need a
different kind of generalization of the material
connections. It turns out that the essential
point is that there be a part of P that is pro-
portional to B and a part of I that is proportional
to D. We shall assume for the moment that we
have a molecular theory which leads to con-
nections of the form

D=¢E—gH,
B=H+gE
and proceed to find solutions of the Maxwell

equations using these connections. Every vector
may be assumed to be a constant amplitude

E=¢'D+4egB,

HoB-ecp (1)
=
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multiplied into e® where ¢ is the phase as in (3).
The equations div D=0 and divB=0 lead to
k-D=0 and k-B=0 so D and B are transverse
to the direction of propagation.

Next consider the curl equations. These give

nkXE=B,
nkXH=—-D

and the material connections (13) give

E=¢1'D+41yB,
H=B—iyD,

where vy=2mvge L.

With these we may eliminate E and H from the
curl equations and obtain

n(e kX D+ivkXB) =B,
n(—iykXD+kXB) = —D.

Written out in terms of two components for B
and D these are four homogeneous equations for
the four unknown components. To make them
consistent the determinant of their coefficients
must vanish. This condition gives an equation
for n whose roots give the possible values of
the index of refraction. Writing

D=D.i+D,j,
B=B.i+B,j,

the equations are

—n(e'Dy+1yBg) =By | n(iyDy—Bs)= —D,
n(eD1+1vB1) =Bs | n(—iyD,+B;) = —D,.

The permissible values of the index of refraction
are readily found to be

n2=(etty)2 (14)

The two negative roots correspond to propaga-
tion in the direction —k and are not of interest.
The two positive roots give the indices for propa-
gation in the direction +k. The root with the
positive sign for v is easily seen to correspond
to a solution for D and B of the form of a right
circularly polarized wave, the other to left cir-
cular polarization. Since vy is a small quantity
compared with unity, it follows therefore that

n,=et—2mvg,

n=et+ 2wvg. (15)

This result combined with (6) gives a connection



436

between the rotatory power of the medium and
the parameter g introduced in (13) as follows:

@=(27/N)cg. (16)

The next problem is to see what kind of
response of the individual molecules to the fields
of the light wave is needed to give terms in the
macroscopic field equations of the type intro-
duced in (13). The effective electric field acting
on a molecule is not only the E vector of the
macroscopic field theory but an average field
due to the neighboring molecules. Lorentz®
showed that for a medium in which the molecules
are distributed at random we have to take for
the effective field, E’,

E'=E+-(4r/3)P. a7

Similar considerations hold in principle for the
magnetic field but as the intensity of magnetiza-
tion of the medium is practically negligible in
comparison with H this need not be considered.

Now let us suppose that the theory of the
response of individual molecules to the external
fields leads to formulas,

p=aE'— (8/0)H,
m=+(8/0)E,

in which p is the induced electric moment and
m is the induced magnetic moment of an indi-
vidual molecule. The essential point is the
introduction of the term involving the parameter
B. Here « is the usual polarizability term giving
an induced electric moment proportional to the
applied electric field.

The total electric and magnetic moments in
unit volume are

P=N1p,

(18)

I=N1m, (19)

where N; is the number of molecules in unit
volume. In case the medium consists of a simple
mixture of different kinds of molecules there will
be different coefficients a; and 8; for each species
and then P and I will be given by a sum of
terms one for each species each p; and m; being
multiplied by the corresponding N;, the number
of molecules of the ith species present in unit
volume.

Combining (19), (18) and (17) one can easily
find that the implied connections of D and B

8 Lorentz, Theory of Electrons, p. 305.
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with E and H are those given by (13) as already
assumed. The new result is the connection
between the individual molecular parameters «
and B8 and the molar parameters ¢ and g, which
turn out to be

47 Nia/3=(e—1)/(e+2), (20)

which is familiar from the ordinary theory of
dispersion, and the analogous expression for
the rotatory parameter, g,

4mN\(B/c)/3=¢/(e+2). (21)

Using the familiar expression n*=¢ where n
is the mean index of refraction and combining
(21) with (16) one may arrive at a formula
giving a direct connection between the rotatory
power and the molecular parameter §3:

1673N,3 n242
p=———
A2 3

(22)

This is the main result of the electromagnetic
theory in that it refers the activity of the
medium back to the parameter 8. This parameter
has to be explained in terms of detailed molecular
theories as will be seen in later sections.

From its definition in (18) we see that mole-
cules with a nonvanishing 8 have the property
that an increasing electric field produces a
magnetic moment in them, and an increasing
magnetic field produces an electric moment.
Let us try to visualize how this can come about.

The main effect when the molecule is put in
an electric field is that measured by the polar-
izability «; positive charges are displaced in the
direction of E and negative charges the other
way, the amount being proportional to the field
strength, resulting in the production of an
induced dipole moment in the molecule. If the
electric field is increasing the charges are moving
to provide the increasing displacement necessary
to go with the increasing dipole moment.
Suppose now the molecular structure is such
that these flowing charges are not allowed to
move directly from their initial to their final
positions but are constrained to move in some-
what helical paths so that there is a circulatory
component of motion around E, accompanying
the general forward motion in the direction of E.
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The currents associated with the circulatory
component of the motion give rise to a magnetic
moment that is proportional to the amount of E
and in the same direction as E. This is a simple
pictorial view of the mechanism underlying the
term involving 8 in the equation for the induced
magnetic moment.

Conversely, suppose the molecule is in a
changing magnetic field. The changing flux
through the molecule sets up induced currents
in the molecule, that is, induces a flow of charges
around the direction of H in the sense given by
Lenz’ law. The same constraints which previ-
ously required a circulatory motion to accom-
pany a general displacement, now will require a
displacement of positives one way and negatives
the other to accompany the induced circulatory
currents. Thus there will be produced a separa-
tion of positive and negative charges as a result
of the action of the induced currents. This is
the simple pictorial view of the production of
electric moment by a changing magnetic field,
the minus sign relative to the other effect being
a simple consequence of Lenz’ law for induced
currents.

At this point it is well to emphasize that the
pictorial description may with equal validity be
stated in other terms. Thus in Maxwell’s equa-
tions a changing electric field is invariably
associated with an inhomogeneity of the mag-
netic field. It is therefore meaningless to say
whether the magnetic moment we have formally
and pictorially associated with changing electric
field is really ‘‘due to’’ the changing electric field
rather than ‘“due to” the inhomogeneities of
the magnetic field. A similar remark holds, of
course, for the electric moment associated here
with a changing magnetic field.

In writing this section it has seemed best to
put all references to the original literature at
the end. It is not really worth while to trace
back the history completely for it leads into
phenomenological extensions of the old elastic
solid theory of light which today are only of
antiquarian interest. Apparently the first theory
of the kind given in this section is due to Gibbs.”
Others who contributed to the application of
the electromagnetic theory to the problem of

7 Gibbs, Collected Works, Vol. 2, p. 195. Originally pub-
lished in Am. J. Science 25, 460 (1882).
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optical activity are Drude,® Lorentz? and

Livens.1?

3. THE PARAMETER 8 AND ROTATORY DISPERSION

In the next section we shall develop the
quantum-mechanical theory of dispersion in a
form which includes the theory of the parameter
B. Before doing this it will be of interest to
consider the empirical data in relation to the
theory. It will be shown that 8 is given by

c Rba
Ba=— Z

3wh b vy 2—?

(23)

Here B, is the value of B8 appropriate to molecules
in the quantum state a, v, is the frequency of
the light absorbed in the jump a—b and Ry, is a
constant characteristic of that particular ab-
sorption line which we shall call the rofational
strength of the line vy,.

If the molecules are distributed over various
states in the thermal equilibrium appropriate
to the temperature of the medium, the number
per unit volume in the state a is Ni(a) where
this will be given by a Boltzmann distribution
formula. Then the effective value of 8 to be
used in (22) is

Nip=2.N:(a)B.. (24)

Equation (23) for B, is analogous to the
better-known equation for the polarizability o,
of molecules in the quantum state a. This
formula, due to Kramers and Heisenberg," is

2 ”baSba
ag=—3 —,
3h b pp2—r?

(25)

in which Ss, is another characteristic of the line
vee which is called the stremgth of the line."?
The strength of the line should not be confused
with the oscillator stremgth which is another
measure of the intensity of a line, important in

8 Drude, Gottinger Nachrichten (1892), p. 366.

9 Lorentz, Versuch einer Theorie . . . (Leipzig, 1906).

10 Livens, Phil. Mag. 25, 817 (1913); 26, 362, 535 (1913);
%7é1‘%88, 994 (1914); 28, 756 (1914); Physik. Zeits. 15, 385
1 .

1 Kramers and Heisenberg, Zeits. f. Physik 31, 681
(1925); Ladenburg, Zeits. f. Physik 4, 451 (1921).

12 Condon and Shortley, The Theory of Atomic Spectra
(Cambridge, 1935), p. 98.
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dispersion theory. The oscillator strength is
usually denoted by fi. It is dimensionless and
is defined by the equation,

fba= (87['2/[/382}!) VbaSbay (26)

in which ¢ and u are the charge and mass of the
electron. In terms of the oscillator strengths the
formula (25) for the polarizability becomes

62 fba

47 b vpi—vw

Og=

7

The oscillator strengths satisfy an important
sum rule,

Zb:fba =n. (28)

which was discovered independently by Thomas
and Kuhn.!® In (28) the letter » stands for the
total number of electrons in the molecule. Eq.
(28) is true for each state a of the molecule,
the sum extending over all other states.

Instead of the rotational strengths of the lines,
Kuhn!* has introduced another measure of the
importance of a line in contributing to the
rotatory power. This he calls the anisotropy
factor for the line. In the notation that is being
used here, Kuhn's anisotropy factor, g, is

gba= Rba/Sba-

The anisotropy factor is easily seen to be a
pure number.

Let us now turn to the empirical data in its
relation to these equations. When one first
approaches the study of optical activity he is
apt to be overwhelmed at the large amount of
data that exists. But as soon as one tries to use
it in connection with the theory, however, he
finds that very little of the data is complete
enough to be of any real use. In the first place
many of the measurements have been made for
a single wave-length, usually the sodium D lines,
so it is insufficient to determine the constants
Ry, and vy, of a dispersion formula for 8. This
deficiency has been emphasized by Lowry? to
whose efforts is largely due the recent tendency

(29)

13 Thomas, Naturwiss. 13, 627 (1925); Kuhn, Zeits. f.
Physik 33, 408 (1925).

14 Kuhn, Trans. Faraday Soc. ‘Discussion on Optical
Rotatory Power,” p. 299 (1930).
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of experimentalists to secure more complete
dispersion data. In the second place, the index
of refraction is usually not measured so that one
is forced to make an estimate of the (n242)/3
factor which appears in (22).

Ordinarily we may assume that all of the
molecules are in the lowest electronic state so
an averaging over initial states as in (24) is
not needed, in which case 3, refers to the normal
electronic state of the molecule. Combining (23)
and (22) we have

oM/p 167N
1n242)  3he

Ryav?

) (30)
b vt —v?

in which M is the molecular weight, p the
density and N is Avogadro’s number. In this
equation ¢ is the rotation in radian/cm. Re-
ferring to (2) one may write this as an equation
for the molecular rotatory power [M] in the
conventional units of §1. The result is”

[a] 967N Ryav?
n4+2) ke

(31)

2

b Vpat— v

An ordinary transparent liquid will have its
absorption frequencies s, in the ultraviolet and
ordinarily the data on [M] will be confined to
the visible part of the spectrum. As a conse-
quence if there are a great number of different
absorption bands in the same general region of
the ultraviolet, this will not be recognizable in
the data which refer simply to the visible
spectrum. Instead all of these frequencies will
lump together to produce a single effective term
having for its effective v;, some kind of average
of the individual »s, of the actual lines, and
having an effective rotational strength, Ry, that
is essentially the sum of the separate rotational
strengths. This is a situation that is quite
familiar in the discussion of the dispersion
formula for ordinary refractivity.

A good example of the use of (31) and the
related formulae just developed is provided by
discussing the data of Hunter!® on d-sec octyl
alcohol which has the rare virtue of including
refractive index measurements. His data are
given in Table I, which he represents by these

15 Hunter, J. Chem. Soc. 123, 1671 (1923).
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TABLE 1. Index of refraction and specific rotation of d-sec
octyl alcohol. (Hunter.)

A n [e]
6438 1.4238 8.12
5896 1.4256 9.86
5461 1.4273 11.65
5086 1.4292 13.58
4800 1.4311 15.46
4678 1.4320 16.42
4358 1.4349 19.49
4251 20.6
3969 24.2
3790 27.3
3650 29.9

empirical formulas,

n2=1.6913+0.313)2/(\2—0.0283),
[¢]=3.14/(\2—0.0283),

in which \ is in microns.

According to (31) it is not [¢] or [M] which
satisfy a formula of the type used empirically
but these quantities divided by (n2+2)/3. But
in this example the total variation in this factor
from one end of the table to the other is from
1.34 to 1.36 so we may treat the factor as
constant and equal to 1.35 without appreciable
error. The molecular weight is M =130 and
therefore by the use of Hunter's empirical
formula one obtains

[M]/3(n*+2)=1074%/(35.6 —c?),

where ¢ is the wave number in reciprocal
microns (10 cm™?). Since ¢ is proportional to »
and the formula (31) is homogeneous in the
frequency it follows that

96w NRy/he =107,

where Ry, is the effective rotational strength of
the group of ultraviolet bands whose effective
wave number is 58,800 cm™! that is, whose
effective wave-length is 1700A. The combination
of universal constants occurring here is

96w N/hc=0.943 X104

and therefore the effective rotational strength
from the data is

Rpa=1.13 X101,

There are not many cases for which the data
on rotatory dispersion are complete enough to
permit a calculation of this sort. Even so this
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merely represents the effect of lumping all the
active absorption bands at one effective average
frequency in the ultraviolet.

The quantum-mechanical theory of the next
section gives a formula for the rotational
strength, Rs,, of an individual line in terms of
matrix components of the unperturbed molecule.
There it is shown that

Ry=Im{(a|p|d)- (b|m|a)}, (32)

in which (¢|p|b) and (b|m|a) are, respectively,
the matrix components connecting states b and
a of the electric and magnetic dipole moments
of the molecule. The symbol Im{ } means
“imaginary part of'’ in the sense

Im{u+iv} =v,

if # and v are real. The electric moment of a
molecule is

p=2er;

where r1; is the position vector of the sth electron.
Nonvanishing matrix components of p may then
be expected to be of the order of the electron
charge times the radius of the first Bohr orbit,
ay, that is, of the order,

eag=2.53X10"18 c.g.s.

Similarly nonvanishing matrix components of
the magnetic dipole moment may be expected
to be of the order of the Bohr magneton, or
roughly,

eh/2uc=0.92X1072° c.g.s.

Hence on this crude estimation the expected
order of magnitude of a rotational strength,
Rba, iS

eay-eh/2uc=2.32X10-38 c.g.s.

The value just found for octyl alcohol is
about one two-hundredth of this crude estimate
which is very reasonable, considering that the
estimate was too large for a number of reasons:
(a) generally the scalar product of the two
matrix components will be smaller than the
product of their magnitudes as they will usually
not be parallel, (b) generally the product of the
two matrix components will not be purely imagi-
nary so part of the quantity is lost on taking the
imaginary part and (c) the empirical value is
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the sum of the values referring to different
absorption bands in the molecule some of which
have negative and others positive values, so
there is a tendency for the sum of many such
terms to be smaller than the average individual
term.

It is of interest to continue the discussion of
the illustrative example and to handle the
refractive index data in a manner comparable
to what has been done for rotatory dispersion.
The combination of (25) and (20) yields the

formula,
UbaSba

(n*—1)M/p 8aN

1(n2+2) 3hc b opt—o?

in which ¢4, and o are the wave number equiva-
lents of the corresponding frequencies v, and »,
and p is the density. The refractivity data on
octyl alcohol already given then lead to

S»a=83.7-10"% c.g.s.,

as the effective strength of the ultraviolet
absorption bands.

By the standard dispersion theory, the formula
for Si, which is the analog of (32) is

Swa=|[(a[p[?)[*,

so the expected order of magnitude of an Si,
term is

(34)

(eay)?=6.40-1073% c.g.s.

The experimental value just found is 13.1 times
this natural atomic unit, which is reasonable,
for none of the reasons given for smallness of
Ry, are applicable here.

We conclude the discussion of the example by
calculating the effective fs, (oscillator strength)
and g, (anisotropy factor) for the ultraviolet
bands lumped at 1700A. From (26) we have,
in general,

fb,, = (4-79 X 1029)0'5.,Sba

and hence using the values of o5, and S,, we have
fra=2.36.

This shows that transitions of more than one
electron are involved in the totality of bands
which contribute to the dispersion in the
empirical formula given by Hunter. Kuhn’s
anisotropy factor for these bands is readily
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calculated from (29) and found to be
20a=1.35X107%,

This value is typical of the values obtained for
gvo in the case of strong absorption bands for
which f, is of the order of unity.

In discussing the example we have referred
rather casually to the calculated R;, as being an
effective value representing the total contribu-
tion of a group of bands. To be more precise,
suppose a group of bands to be represented by a
single rotatory dispersion term. Then, say

Rl Rba
=2 , (35)

vi2—12 b wpgl— 2

where the equality holds for small values of ».
To get agreement of both sides in the first two
terms of a power series development in » one
must have

1172 = (L Rsa/vba") + (L Rba/vsa?),
Rl = (ZRba/Vba2)2 - (ZRba/Vba4)-

Similarly, if one is representing a whole group of
ultraviolet bands on the ordinary dispersion
formula by a single lumped term, then the
analogs of (35) and (36) are easily seen to be

V151

(36)

VbaSba
~3 (37)

’
Voo’ —¥?

y12 —_ V2

where, to get agreement in the first two terms
in a power series in the frequency, we must have

Vl_2 = (ZSba/Vbaa) - (Zsba/"ba),
512 = (Zsba/l’ba)3+ (Zsba/"bas)'

As the formulas (36) and (38) are quite
different there is no reason to expect that the
effective frequency »; in the ordinary dispersion
formula will be the same as that in the rotatory
dispersion formula, even though, of course, the
individual frequencies, vy, are the same. An
interesting illustration of this point is provided
by data obtained by Volkmann.!®* He found for
limonene the critical wave-length in a single
term formula for the refractivity to be 998A
while that for a corresponding single term
formula for rotatory power was 1878A, almost

16 Zeits. f. physik. Chemie B10, 161 (1930).

(38)
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twice as great. This comes about because the Ry,
are not all of the same sign so the contribution
of various bands deep in the ultraviolet tends to
cancel out. However, the S, are all positive so
in the refractivity the deep ultraviolet bands are
fully effective.

The case of ethyl tartrate is interesting in
that it requires two terms in its rotatory dis-
persion formula. The empirical data are from
measurements by Lowry and Cutter!” and may
be represented by the empirical formula

25.005 20.678
A2—0.03 2A2—0.056

Lel=

corresponding to absorption bands of opposite
rotatory power at 1730A and at 2360A. As a
result of the joint action of these two different
groups of absorption bands, the rotatory power
of ethyl tartrate actually passes through zero
with reversal of sign in the neighborhood of
4250A, although there is no characteristic fre-
quency of the molecule at this place in the
spectrum. The refractive index data are not
given so we merely estimate (n242)/3 to be 1.30
for want of anything better. Making the calcu-
lations exactly as for the previous calculation we
arrive at the results:

Ethyl tartrate

M=1730A,
Ry=12.1-10"%,

Ay =2360A,
R;=15.42-10—%,

The critical frequencies appearing in the
empirically determined formulas for rotatory
dispersion all lie in the ultraviolet or in the visible
part of the spectrum if the substance absorbs in
the visible. Such frequencies are associated with
electronic transitions in the molecule. All of these
compounds possess infrared absorption spectra
corresponding to changes in the state of nuclear
vibration so the question arises: is there any
contribution to the rotatory power associated
with the infrared absorption frequencies? Several
investigations'® bear on this question, the rotatory
power of several substances having been meas-

;7 L)owry and Cutter, J. Chem. Soc. London 121, 532
(1922).

18 Meyer, Ann. d. Physik 30, 607 (1909); Ingersoll,
Phil. Mag. 11, 41 (1906); Phys. Rev. 23, 489 (1906); Phys.
Rev. 9, 257 (1917); Lowry and Coude-Adams, Phil. Trans.
37226(, 39(1))(1927); Lowry and Snow, Proc. Roy. Soc. A127,

1 (1930).
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ured out to a wave-length of 2.14 microns. No
detectable irregularity in the rotation could be
found that could be associated with the infrared
absorption.

This is not surprising for we know from ordi-
nary dispersion theory that the contribution to
ordinary refractivity of the infrared bands is of
the order of 2000 times smaller than electronic
bands (of the order of the mass ratio), even for
the fundamental vibrationsin which the quantum
number changes by but one unit. These investi-
gations only went into the harmonic infrared
region where the vibrational quantum number
changes by two units which would make contri-
butions from such bands extremely weak.

4. QUANTUM MECHANICS OF ROTATORY
DISPERSION

Modern work on the problem of deriving the
parameter 8 from a molecular model dates from
the independent discovery by Born, Oseen and
Gray? in 1915 that a calculation of 8 depends
essentially on taking into account the finite ratio
of the molecular diameter to the wave-length of
light. In other words the fact that the phase of
the light wave is different for different parts of a
molecule is essential.

The molecular model used was that of a spatial
distribution of coupled oscillators and corre-
sponds to a natural extension of the form of
electron theory of dispersion then in vogue. More
or less independently of this work the same
general view was also developed by Thomson, de
Malleman and Boys.?* Kuhn? has also con-
tributed greatly to the problem by a detailed
consideration of the most simple special case of
the coupled oscillator model to show activity.
His work on this has been very stimulating to the
recent development of the subject.

The quantum-mechanical calculation of 8 was

first formulated by Rosenfeld.?? His calculations

19 Born, Physik. Zeits. 16, 251 (1915); Ann. d. Physik 55,
177 (1918); Oseen, Ann. d. Physik 48, 1 (1915); Gray,
Phys. Rev. 7, 472 (1916); Landé, Ann. d. Physik 56, 225
(1918); Gans, Zeits. f. Physik 17, 353 "(1923); 27, 164
(1924); Ann. d. Physik 79, 548 (1926).

20 J. J. Thomson, Phil. Mag. 40, 713 (1920); de Malle-
man, Rev. gen des sci. 38, 453 (1927); Boys, Proc. Roy. Soc.
144, 655 (1934); Kirkwood, J. Chem. Phys. 5, 479 (1937).

2 Kuhn, Zeits. f. physik. Chemie B4, 14 (1929).

2 Rosenfeld, Zeits. f. Physik 52, 161 (1928). An account
will also be found in Born and Jordan, Elementare Quanten-
mechanik (1930), p. 250.
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lead to the formulas (23) and (32) which have
already been discussed in the preceding section.
This work unquestionably provides an approach
that is much superior to that of the older coupled
oscillator models so that one may hope that
future work will be built on the quantum-
mechanical theory rather than on further study of
the coupled oscillator models.

In the rest of this section we give an account
of the quantum-mechanical theory for 8 following
essentially Rosenfeld’s work but differing some-
what in the details of the calculations. Readers
who are not interested in the details of quantum-
mechanical calculations will find great pleasure in
skipping the rest of this section, for all that will
be accomplished will be the derivation of Egs.
(23) and (32).

The fields of a light wave traveling in the
direction of the unit vector k are all derivable
from the vector potential A:

A=R{Aexp (i(t=k-1/c)E/h)}.  (39)

Here E=hv represents the quantum energy
associated with the wave. The electric and
magnetic vectors of the wave are given by

E=—A/c=—(E/hc)R{iAet},

(40)
H=curl A= —(E/hc)R{ik X Ae*},

where the exponents of ¢ are the same as in (39).

We may neglect the direct interaction of the
atomic nuclei in a molecule with the light wave
owing to their comparatively great mass. Hence
the interaction gives rise to a perturbation term

= - (C/MC)ZLEP;'A,'-*-S,;' (curl A).] (41)

Here e/mc refers to the charge and mass of the
electron and the subscript 2 on A and curl A
means that they are to be evaluated at the
position of the 7th electron.

We have to find how the wave function for the
molecule in a particular state labeled by quantum
numbers ¢ is affected by the perturbing action of
the light wave. For the perturbed wave function
we may write

¥ =y(a)e~i"atlh4y,(a), (42)

where y1(a) has to be determined from the
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dynamical equation of quantum mechanics

1hdV/ot= (Ho+H)Y, (43)

in which H, is the Hamiltonian for the unper-
turbed molecule. This leads to the following
equation for ¢1(a)

(Ho—1hd/dt)¢1(a) = —Hy(a)e iWat/h,  (44)

This will now be solved in the usual way. The
right-hand side is expanded in terms of the
unperturbed wave functions so

_H¢(a)e—iwat/h= %Zﬁb(b)[(b |H+ l a)ei(E—Wa)t/h
b
+ (0| H-|a)e~iE+W)tih],  (45)

where the coefficients are

(b H|a) =—! §(0)

mc

X (Eps exp (Fik- 1iE /b)Y (@) A
.E
F IO (TSN (XA (46)

Here it is to be understood that A stands in
place of A when the lower sign is used and the
approximation has been made of neglecting the
retardation factor in the small spin term on the
second line. Integration of the wave functions
over the configuration space of the molecule is
also implied in (46).

If we now expand the retardation factor and
save only the first two terms then by some easy
reductions

i

(b|H=|a)=—Ws.(b|p|a)-A
he

EWsa iE
+ 2k-(b[i)?]a)-A:Fh—(blmla)-(k)(A), (47)
c

2h%

where again 4 is to be written for A when the
lower sign is used. In (47) the following abbrevi-
ations have been introduced:

Wya=Wy—W,, p=le,~, ‘ﬁ=ezfil'i,

e
m=— Z (l'iXPi‘f‘ZSi), (48)
2mc i :
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so p, M and m are respectively the electronic
contributions to the electric dipole moment, the
electric quadrupole moment and the magnetic
moment of the molecule.

The terms in the electric quadrupole moment
do not introduce any new type of propagation of
light through the medium. They give a small
correction, of the order of a few parts in a million,
to the ordinary connection between mean re-
fractive index and the electric dipole moment and
so will be neglected in what follows. Therefore
when (47) is used in later calculations the terms
in N will simply be dropped.

Following the usual procedure one next as-
sumes an expansion for y1(a) in terms of unper-
turbed wave functions and determines coefficients
in the expansion by equating coefficients of both
sides of (44). The resulting formula for ¢,(a) is

(b H | a)ei B=wouh
Wba+E
(b I H_ l a)e-'i(l‘H-Wa) tih
4

N Wea—E ] (49)

a(@) = %gww[

The first-order correction to the diagonal
matrix element of any observable F referring to
atoms in the state a is then

2R {Y(a) F1(a)eWatih}
(aJFIb)(bIH+Ia)AmI

_ I
b Wba+E
i(a[Flb)(blﬂr—la),_,m/h} (50)
o Wba_E ) .

What is needed are the special cases of (50) in
which the values (47) are used for (6| H. |a) and
Fisidentified with p and with m. If we denote the
induced values of p and m by p; and m; we have
@IBIDG6|Hyla)
b Wba+E
(alp|b)(®|H_|a)
" Ww—E

P1=

e—iEtlh

(51)

and a corresponding expression for m;. Substi-
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tuting the expressions (47), with neglect of the
quadrupole terms as already mentioned this can
be written

pi=2YR L(alplb)(blpla)-E
b Wbaz—E2
+i———~hWb“2/E2(al plb)(b|pla)-E
Wo2— E?

W NG H
+m(alpi )(b|m|a)-

h
+i——?2<axp|b>(blm|a>-ﬂ} (52)

baz—

and the corresponding expression for m; becomes

Wba
m1=2§2R ————Wba:,_Ez(almlb)(blpla)-E
o'/ E? B)(b B
+m(a|m] Ylpla)-E}. (53)

Each of these expressions contains a term
involving

Wsa/E? 1
— —FM——
Wyt — E? Wha?—E?

The contribution to p; resulting from the E—2
part of this can be written

2th .
R{Ezb(alplb)(blpla)-E}
2 ,
~—Rlilalpplo)- B}

by the law of matrix multiplication. Now
(a|pp|a) is a diagonal matrix element of a real
observable so it is real; hence the expression
whose real part is to be taken is purely imaginary,
so the real part vanishes. A similar reduction can
also be made in the case of the corresponding
term in (53). Since the real part of X is —Im{X}
where Im{X} denotes the imaginary part of X
the induced moment expressions can finally be
written
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Woe g B)( E
m {(a|p|d)(b|pla)}-

"m Im {(a|p|d)(b|pla)}-E

" Rl |8)(5|m|a)}-H
—————— ma .
Wyt—E? aip

i (IRl Glm|a)) A,
(54)
—ZZ&R{(almlb)(bl la)}-E
m;= > Wt E? P

—'ﬁ/::‘t_—_l; Im {(a|m|1)(b|p|a)}-E.

These expressions give the coherent induced
electric and magnetic moments which are needed
for the calculation of the relations of D and B to
E and H in the medium. They can now be further
simplified by averaging over all orientations of
the molecules in space. In the ordinary case this
means that all orientations are equally likely. If
they are not equally likely and the partial lining
up of molecules is produced say by an external
electric field then special effects may arise, such
as that which has apparently been discovered by
Kunz and Babcock?*—the effect of an external
electric field on the rotatory power of an active
liquid.

The averaging over all orientations is carried
out by the following argument. One has to
average expressions of the type pm-H for all
orientations of p and m keeping fixed the
magnitudes of p and m and the angle between
them. Now pm-H is a vector in the direction of
p. As p takes on all possible directions consistent
with a fixed direction of m the average value of
pm-H will be the component of this along m,
that is p-mem-Hm, where m, is a unit vector in
the direction of m. Next we average over all
directions of m by considering first those direc-
tions making a fixed angle ¢ with H. The result
will be a vector along H of magnitudep-m cos? 6H.
Finally averaging over all directions of 6 weighting

2 Kunz and Babcock, Phil. Mag. 22, 616 (1937). See,
however, Nature 140, 194 (1937), in which further work

is reported showing that the earlier results were due to
suspended materials.
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them per unit solid angle the end result is
p-m (cos? 6),H=(1/3)p-m H.

Hence after averaging over all orientations of
the molecules the expressions for p; and m,
simplify to

pi=aE+yH— (I/C)ﬁaH,
v.E+(1/c)B.E,

which are almost exactly like Egs. (18) assumed
in the phenomenological discussion of §2. Here,
however, we have the additional results con-
necting «, 8 and ¥ with the quantum-mechanical
description of the molecular model that is given
in the following equations,

2 > ”ba](alplb)iz

(55)

m;=

ag=— , (56a)
3h b Vol — V2
2 vl b)-(b|m|
e g Im elpld) Glmia)
3n b Val— v?
VpaR b)- (b
2 Rl Glml)

3k b

Vool — v’

Here v is written for the frequency of the light
wave and vy, = Wie/h. The subscript a has been
written on the coefficients «, 8 and v to indicate
that these are attributes of molecules in the
state a.

The end result of the calculation is contained
in (55) and (56). These equations with neglect of
the terms in 8 and v correspond to the ordinary
theory of the refractive index in an isotropic
medium. It is easy to see by work analogous to
that of §2 that the term in v has only a second
order effect on the mean refractive index for
right and left circularly polarized light.?* There-

% The details are as follows: corresponding to introduc-
tion of g by (13) and (21), the quantity + leads to introduc-

tion of an f=4wNy(1 —47xNa/3)! where N is the number
of molecules per cm3 so in place of (11) one has

D=EE+fH—¢H,
B=H+fE+gE.

Using Maxwell’s equations as in Section 4 and assuming
D =di(1—7m)+ dz(14+sm),
B=b,(1—7m)+b.(14+:m),

one finds that the curl equations give

(tn~1d,— b, +Fd1)(l —im) -+ ( —in"ld,— b2+pdz) (14sm) =0,

(in"10+€71dy— Fbi)(1—2m

+ ( —in b+ e ldy— Fb,) (l+1m) =0.

One can equate to zero separately the coefficients of
(1-4m) and (14+m) in these equations to find the index
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fore its effect may be neglected and (55) reduces
precisely to (18). We see that a calculation of the
rotatory power of a given substance involves
evaluation of the numerators,

Rya=Im{(a|p|d)-(b|m|a)},

which occur in the formula (56) for 8. This part of
the problem is discussed in later sections.

We observe that vy, appears in the formula for
a at the place where v appears in that for 8, in the
numerators. The appearance of », is what gives
rise to the phenomenon of negative dispersion
shown by substances having an appreciable
number of atoms in electronically excited states.?
This raises the question: is there an analogous
negative rotatory dispersion? The question is
rather of pure theoretic interest as it is unlikely
that a sufficient concentration of excited optically
active molecules could be obtained to study the
question experimentally. The answer is in the
affirmative, and consists simply in the theorem:

Rba = Rub‘

(32)

Since R, is the strength associated with reso-
nance to the virtual jump from state a to state b
by molecules actually in state a, it follows that
R is the strength associated with resonance to
the virtual jump from state b to state a by
molecules actually in state a. The equation just
stated is obvious from (32), for interchanging @
and b replaces the matrix components by their
complex conjugates, which reverses the sign of
the imaginary part.

5. GENERAL PROPERTIES OF ROTATORY
STRENGTHS

By means of (31) the rotatory power of a
medium is expressed entirely in terms of the
rotatory strengths of the absorption lines, where

of refraction for left and right circularly polarized light,
respectively. Here

F=¢el(f—2mivg)
and F is the complex conjugate. The resulting equations give
én,1=(1—f2/e)} —2xvge),
én, 1= (1—f2/e)t+2mvgel,
which shows that f enters only as a term in f2 and does not
affect the difference (#;—n,). One has therefore
m=e+2rvg and n,=é—2mrg

as in (15).
2% Ladenburg, Rev. Mod. Phys. 5, 243 (1933).
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the rotatory strengths are defined in terms of
electric and magnetic dipole matrix components
by (32). We wish now to consider certain
properties of the Ry, which can be derived without
specialization of the molecular model.

First of all there is a sum rule, analogous
to (28),

2 Rya=0, (57)

which is true for all states, a, where the sum is
extended over all other states, . This rule was
discovered by Kuhn in connection with the
coupled oscillator model. It is easy to give a
general quantum-mechanical proof in one line:

;Rba=1m {g(alplb)'(blmla)}

=Im {(a|p-m|a)} =0,

the equality to zero following from the fact that
any diagonal matrix element of a real observable
is real and therefore its imaginary part vanishes.

Because of the sum rule the optical activity of
all substances must vanish in the limit in which
v>all v, as is readily seen from (23) or (31).
From (31) it is also evident that the rotatory
power vanishes as v—0 because of the »? factor in
the numerator. Hence rotatory power is a
property which tends to zero at both ends of the
spectrum.

Next we may consider the symmetry properties
of optical activity. This can be done inde-
pendently of any special theory of the phe-
nomenon and, in fact such considerations which
are due to Pasteur, van’t Hoff and Le Bel, lie at
the foundation of modern stereochemistry. The
basic result is: the quantity 8 is a pseudoscalar
which means that it reverses sign on passing
from a right-handed coordinate system to a
left-handed system. This means that two mole-
cules which are mirror images of each other will
have equal and opposite rotatory strengths. This
is in accord with (32) for electric dipole moment
is a polar vector whereas magnetic dipole moment
is an axial vector so their scalar product is a
pseudoscalar rather than a true invariant.2®

26 Perhaps these remarks should be made more explicit
since so little attention is paid to these points in the usual

presentations of electromagnetic theory. Let i, j, and k be
the basic vectors of a right-handed system and i/, j’, kK’
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The generality of the symmetry argument is
also its weakness. It tells us that two molecules
related as mirror images will have equal and
opposite rotatory powers, but it does not give us
the slightest clue as to what structural feature
of the molecule is responsible for the activity—
any pseudoscalar associated with the structure
might be responsible for the activity and the
symmetry argument would be unable to dis-
tinguish between them. The attempts to relate
optical activity to structure without a detailed
theory have been guided to this extent but no
more.

Thus Crum Brown?” proposed a formula for the
case of a molecule in which a single asymmetric
carbon atom was linked to four different atoms
or radicals, 4, B, C, D. If k is any scalar attribute
of each of the four radicals then the quantity,

K=(k4—k3)(k,1—kc)(k4—kp)
X (kg—kc)(ks—kp)(kc—Fkb),

be those of the left-handed system that is related to it by
inversion,
i'=—i, j=-j, ¥K=-k
The point P whose coordinates are (x, ¥, 3) in the 7 system
has coordinates (—x, —y, —2) in the ! system. The co-
ordinates of a point reverse sign on changing systems: any
vector whose components do this is called a polar vector.
With regard to the vector products we have, in the 7
system,
iXj=k, ..., ...,

so in the  system, i’ X j’= —k’ on using the transformation
equations. From this it is evident that the vector product
o? two polar vectors has components which do not reverse
sign on transforming from the r system to the ! system.
Such a vector is called an axial vector.

It is easy to see that the differential operator

.9 ,.0 o . 9
v 18x+18y+kaz i axl+"'+"'

is a polar vector and that the curl of a polar vector field is
an axial vector field while the curl of an axial vector field is
a polar vector field. Hence if the curl equations of the
electromagnetic field are to be invariant on passage from
an 7 system to an / system, it must be that B and E are of
opposite character and that D and H are of opposite
character.

It is conventional to assume that D and E are polar
vectors and B and H are axial vectors but all that the theory
requires is that the two pairs be of opposite character.
The choice is fixed by the assumption that charge density
is a true scalar and that current density is a polar vector.
If we have a simple connection whereby a vector of one
type is equated to a scalar times a vector of the other type,
it is evident that that scalar cannot be a true scalar but
must reverse sign on passing from an r system to an !
system. Such a scalar is called a pseudoscalar. Since D and
H are of opposite type it follows that g in (13) must be a
pseudoscalar and hence that 8 in (18) is also a pseudoscalar.
( ;’Qg;um Brown, Proc. Roy. Soc. Edinburgh 17, 181

1 .
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is evidently a pseudoscalar, for we may pass to
the mirror image by interchanging any two of the
groups and this reverses the sign of K. Of course,
it vanishes if any two of the k’s are equal. Crum
Brown identified the attribute £ with the mass of
the attached group and achieved some success in
correlating empirical data with it but it is now
discredited. For example Walden showed that
propyl-isopropyl-cyano-acetic acid,

n— C3H7 CN

\C/

is0— C3H7/ \COOH,

is optically active in spite of the equal masses of
the propyl and isopropyl groups. Later workers?
have tried using other attributes of the groups
in this type of formula but without much success.

6. THE CouPLED OSCILLATOR MODEL

We now come to the problem of calculating the
rotatory strengths for particular molecular
models. These are of two classes: the coupled
oscillator model of Born, Oseen!® and Kuhn,? and
the single oscillator model recently proposed by
Condon, Altar and Eyring.? This section will be
devoted to a discussion of the main results for the
coupled oscillator model and the single oscillator
model will be discussed in the next section.

It is convenient to consider first the extremely
simple version of the coupled oscillator model
which was devised by Kuhn as this shows all the
essential features of this type of model.? Suppose
we have two particles, the coordinates of which
are (x1, 0, —d/2) and (0, y;, +d/2) where d is a
constant. The arrangement in space is indicated
in Fig. 1. Let the charges and masses be e;, e; and
m1, ma, respectively, and suppose each particle to
be bound elastically to its own equilibrium
position. Also let there be a quadratic interaction
term so the potential energy of the system is
given by

28 Bose, Zeits. f. physik. Chemie 65, 695 (1909); Physik.
Zeits. 9, 680 (1908); Bose and Wellers, Zeits. f. physik.
(Cll;%rg)ie 65, 702 (1909); Walker, J. Phys. Chem. 13, 574
(1393 %6ndon, Altar and Eyring, J. Chem. Phys. 5, 753

30 The presentation here follows closely that given by
Kuhn and Freudenberg, Hand und Jahrbuch der chema-
schen Physik, Vol. 8, part 3 (1932), p. 47.



OPTICAL ROTATORY POWER

U= %k1x12+k12x1y2+ %kzyf, (58)
while the kinetic energy is given by
= %mla':12+ %mﬂ]zz. (59)

The motion is expressed in terms of normal
coordinates, §; and £, defined as follows:

xl(ml)*=£1 COs a+£z sin «,
) (60)
Yyo(ma)t= —£; sin a+&; cos a,

where the parameter « has to be so chosen that
the potential energy (58) transforms into a sum
of squares in £, and §;. The value of « is then
easily seen to be given by

(k1/my—ks/ms) sin 2«

+ki1o/(mima)t cos 2a=0, (61)

in which case the expressions for kinetic and
potential energy become

T=3¢246Y), U=2r(rn%2+r26Y),

in which
(2mv1)2= (ky/my) cos?
—2(k1s/ (myms)}) sin @ cos a+ (ks/ms) sin? a,
(2mv9)*= (k1/m1) sin® ©
+2(k1s/ (myms)?) sin & cos a+ (ks/ms) cos? a.

Hence the general motion is a superposition of
a simple harmonic motion of £; with frequency »,
and a simple harmonic motion of ¢ with fre-
quency vg. It is interesting to consider some
qualitative features of the motion. Suppose that

kis/ (mima AL (ky/my— ko /ms),

then (61) shows that « will be a small angle.
Hence by (60) the motion in the &; mode is
largely a motion of x; with a much smaller
amplitude for y, (assuming the masses to be of the
same order of magnitude). Similarly in the &,
mode the y, motion is large compared to the x;
motion. Qualitatively the two modes have vibra-
tion patterns as shown in Fig. 2. On the diagrams
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are indicated the opposite screw senses charac-
teristic of the two modes. Here the screw sense is
the direction of turn around the z axis associated

T
A
%
d 5,
* 5
X, %

F1G. 1.

F1G. 2.

with a displacement toward +2 needed to make
the direction of the first particle’s displacement
coincide with that of the second particle.

The next step in the classical discussion of the
model consists in determining the forced oscil-
lations set up by the fields of right and left
circularly polarized waves, respectively. These
forced oscillations give rise to coherent scattering
which determines the index of refraction. This is
given in full detail by Kuhn and Freudenberg?
and so need not be repeated here. Instead we shall
derive the formula for the rotatory power of this
model by applying to it the quantum-mechanical
theory of §4. This will provide an interesting
variant of their treatment and at the same time
give a proof that there is no difference between
the classical and quantum-mechanical treatment
of this model.

We need an expression for the variable part of
the electric dipole moment. This is readily seen
to be

P=31x1i+€2y2j
= (e1/(m1)* cos ai—ez/(mq)} sin aj)§,;

+(e1/(m1)} sin ai+es/(ms)? cos aj)éa.  (63)

Similarly the magnetic moment of the orbital
motion of the two charges is given by

m=(1/2¢c)[eir1 X Vi+eara X V2],

where r; and r; are the position vectors and v, and
v; the velocities of the particles. When one uses

1= (—d/2)k+xii,
Vi=211,

Iy= ("}:d/Z)k—,—yzj,
Ve=Y2],
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this can be written

m= — (d/ZC) (€1$|j+82y2i)
= —(d/2c)(e1/(m1)t cos aj —es/(ms)? sin ai)é,;
—(d/2c)(e1/(m1)? sin aj+ea/(ms)t cos ai)és. (64)

Next we have to calculate the matrix com-
ponents of p and m in order to get the rotatory
strengths given by (32). The energy levels will be
labeled by two harmonic oscillator quantum
numbers, 7, and 7, corresponding to the normal
coordinates, &; and ;. The energies are given by

W(ni, ng) = (m1+3)hvi+ (na+3)hve  (65)
and the corresponding wave functions are
Y(n1, n2) = @n,(£1/a1) @u,(£2/02), (66)
where
x(2) =——;—H,.(z)e_"/2, (67)
[2rnl(m)* ]t

in which H,(z) stands for the nth Hermitian
polynomial and

a;=(1/2x)(h/v:)}

The necessary matrix components are those for
£ and &, £ and §; appearing in (63) and (64).
These are well known from the quantum me-
chanics of the harmonic oscillator:

(=1, 2). (68)

(nin, 1 &1|mi'ny’) =a1(M1/2)¥6(ns, na’).  (69)

Here n)/=n,4+1 and (71;) stands for the larger of
n, and #,’. Here the effective mass of the oscil-
lator is unity so £, is the same as the momentum,
P, so the matrix components of £; are

(n1'ny’ | E1| mang) = 1(h/a1) (R1/2)¥8(ns, no'), (70)

in which (#;) has the same meaning as before and
the =+ sign has the same value as occurs in
n =n,241. The formulas for matrix components
for £; and £, are obtained from (69) and (70) by
obvious changes.

If we are calculating the parameter 8 for
molecules in the state (n1, n2) there will be four
other states for which there are nonvanishing
values of the rotatory strength, namely,

(r1+1, n2) and (m:—1, n,).
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Also (n1, ne+1) and (21, na—1).

The pair in the first line will have the same
resonance denominator in the formula (23) and
the same is true of the pair on the second line, so
although there are four quantum jumps which
can contribute there will only be two critical
frequencies in the dispersion formula.

If we write R, and R, for the two rotatory
strengths, it is easy to calculate by a combination
of (63), (64), (69) and (70) that

€162

sin « Ccos a.
(m1m2

This result is in accord with the sum rule of §5 in
giving R;+R;=0. In calculating this result it
will be noticed that the upward virtual jump
contributes an amount to R; that is proportional
to (n;+1), while the downward virtual jump
contributes an amount proportional to (—=,) so
the resultant effect of both contributions is an
amount which is independent of the quantum
number, #;. This, it will be recalled, is exactly
analogous to the quantum-mechanical theory of
the ordinary dispersion by a harmonic oscillator.
There the positive dispersion due to the upward
virtual jumpincreases with the quantum number,
but so also does the negative dispersion due to
the downward virtual jump, and in fact in
exactly the same way as here so that the differ-
ence is independent of the quantum number.

If we substitute these values in (23) and use the
resulting value of 8 in (22), the final result for the
rotatory power of a medium containing N; of
these models in unit volume, oriented at random,
is

27N,

o= ‘A\2.3(n?+2)-d sin a cos «

e162 I— 1

1
— 2]. (72)

(mlmz)*l_vﬁ— v pe2—y

This corresponds exactly with the result given by
Kuhn and Freudenberg® except for the factor
(1/3) in (72) which arises because (72) is the final
formula applying for random orientations of the
molecules whereas the equations (46) and (46a)

3 Kuhn and Freudenberg, reference 30, p. 59, Eqgs. (46)
and (46a).
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of Kuhn and Freudenberg have still to be
averaged. (Compare reference 30, pp. 72-76.)

It is of interest to note how (72) exhibits the
two essential features of the model: (1) the
oscillators must be coupled, for if k12 is zero then
by (61), sin 2a=0 so the rotation vanishes; and
(2) the oscillators must be offset by the distance
d as is evident from the proportionality of ¢ to d
that occurs explicitly in (72).

As the foregoing calculations illustrate all the
essential features of the coupled oscillator model,
it will not be necessary to present the detailed
calculations of the general case here. This will be
found in the original papers of Born and Oseen'®
and also in the Kuhn and Freudenberg article®
already referred to, pp. 69-72.

The results of such calculations may be stated
as follows: Let the model consist of s particles,
the charge and mass of the «th particle being e,
and m, and let x,, y. 2. be the equilibrium
coordinates of the «th particle with respect to a
coordinate system fixed in the molecule. The
potential energy will be assumed to be a general
quadratic form in the displacements of the
particles from equilibrium, %,, v., w, being the
displacements of the xth particle. This means
that in general there will be 3s different proper
frequencies and 3s normal modes of vibration,
described by 3snormal coordinates (ea=1,2- - - 3s).
Analogous to (60) we may express the connection
between the displacements and the normal
coordinates by

£a= 3 (M) (ceattatBravetveaws)  (73)
k=1

for a=1, 2, ---3s. Here the coefficients a4, Bra,
v« define an orthogonal transformation which is
determined as usual by the requirement that the
potential energy be expressed as a sum of squares
in terms of the £, coordinates. The coefficients
therefore depend on the coupling terms in the
potential energy.

The end result of the calculations is to show
that the rotatory power is given by
L.-M

27I’N1

3s
A3 X

a=1p,%2— p?

o= (74)

Here v, is the frequency associated with the
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normal coordinate £,, and the vectors L, and M,
are defined by

s ex
La= Z (axai+ﬁlaj+7kwk)y
k=1 (m‘ L
s e . . (75)
Ma= Z (axal+ﬁxal+7:ak)
k=1 (m‘ 3
X (xd+y.j+2.k).

It is easy to see that the vector L, is related to the
electric dipole moment belonging to the £, mode
of vibration and that M, is related to the
corresponding magnetic dipole moment. Hence
this classical formula is related to the quantum-
mechanical formula in a manner analogous to
that revealed by our detailed calculations of the
Kuhn model.

7. THE SINGLE OSCILLATOR MODEL

Drude?® proposed a model for optical activity
in which a single electron was constrained to
move on a helix while being elastically bound
to an equilibrium position on the curve. This
model stood in the literature for many years
until Kuhn?® in 1933 pointed out an error in the
calculations. Kuhn showed that when correctly
treated this model has no rotatory power. This
result was extremely interesting in that it
provided a case in which the rotatory power van-
ished in spite of the proper kind of dissymmetry
being present. From this result he was inclined to
conclude that coupled oscillators of the type
discussed in the preceding section were essential
to optical activity. The statement that rotatory
power requires the existence of coupled oscillators
for its explanation has been made repeatedly in
the literature in recent years.

This view can no longer be held since the work
of Condon, Altar and Eyring? has shown that it
is possible to build a model of a single charged
particle moving in a dissymmetric field which has
rotatory power. This section will be devoted to a
brief summary of that work: for further details
the original paper should be consulted.

Most of our thinking about molecular electronic

2 Drude, Gottinger Nachrichten (1892), p. 400.
# Kuhn, Zeits. f. physik. Chemie B20, 325 (1933).
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structure nowadays is done in terms of the
Hartree approximation. In this each electron is
regarded in the first approximation as moving in
a static potential field due to the average charge
distribution of the nuclei and of the other
electrons in the molecule. This has been shown to
be an accurate way of accounting for the larger
part of the interaction between electrons. The
dynamic coupling of the electrons only comes in
in higher approximations. Now the coupled
oscillator model of Born, Oseen, Kuhn and others
takes account of this dynamic coupling of the
electrons, but the question arises: If we are
proceeding in the sense of a Hartree development,
does optical activity make its appearance at the
outset, where each electron is moving in the
static average dissymmetric field of the rest of the
molecule, or does it vanish in this approximation
and first make its appearance when the dynamical
coupling of electrons is considered? Kuhn's elimi-
nation of the Drude helix model had tended to
make it appear that dynamic coupling of more
than one electron was a necessary condition, until
the single oscillator model was developed.

The single oscillator model assumes that an
electron moves in a dissymmetric potential field in
which the potential energy as a function of
Cartesian coordinates, x, xs, and x3, is given by

V='1‘k1x12+']2‘k2x22+%kax32+Ax1x2x3. (76)

The term in A is what produces the necessary
dissymmetry.

It is easy to see that an equipotential surface of
(76) is qualitatively like what one would get if he
took an ellipsoid of three unequal axes and
subjected it to a torsional stress. An equipotential
surface has elliptical cross sections when cut by
any of the planes parallel to the basic planes of
the coordinate system. For definiteness think of
the section of the surface V'=constant by a plane
x3=constant. The section by the plane x3;=01is an
ellipse whose principal axes are the x; and x,
axes. For positive x; the section is an ellipse
whose principal axes have turned around in the
sense of a right-handed screw if 2, > k2 and 4 >0.
The same screw sense holds for x3<0. Hence
there is a right-handed screw sense associated
with the x; axis under the conditions stated.

The screw sense associated with the other
coordinate axes is easily determined in the same
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way. It turns out that in every case there is a
screw sense associated with each axis and that
two of these are alike while the third one is
different. Thus in the special case

ki>ks>k; and A4 >0,

it turns out that one has a right-hand screw sense
associated with the first and third axes and a
left-hand screw sense associated with the second
axis.

In the actual calculations the Axixsx; term is
handled by perturbation theory based on a
starting solution of the anisotropic oscillator
problem represented by the quadratic terms in
the potential. Thus the stationary states are
labeled by harmonic oscillator quantum numbers
(n1mom3), corresponding to the energy levels,

W(nlnzng) = (n;-l—%)hvl

+(ne+3)hvat (ns+3)hvs, (77)

which are not affected by the perturbation energy
in at least the first two approximations. Here
v1, v, v3 are the frequencies determined by the
force constants, ki, ks, ks, in the usual way,
vi=(2n)"'(k;/u)}. By the standard form of
perturbation theory the first-order wave functions
are found and from these the matrix components
of electric and magnetic dipole moment correct to
the first order are computed.

If we consider that the ‘“‘molecules’ represented
by the model are in their lowest quantum state
(000) then in the zeroth approximation only
three upper states may be reached by ordinary
electric dipole absorption of light, namely (1 0 0),
(010) and (001). Likewise in the zeroth ap-
proximation the magnetic dipole moment has
nonvanishing matrix components connecting
(000) only with (011), (101), and (110). As
these selection rules are mutually exclusive it
follows that there is no jump from the normal
state which has simultaneously nonvanishing
matrix components of both p and m, hence the
rotatory power vanishes.

In the first approximation, however, one
may get nonvanishing rotatory power associ-
ated with transitions from the normal state to
all six of the excited states just enumerated. It
will be convenient to consider explicitly the pair
(000)—(100) and (000)—(01 1), as the other
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two pairs behave in exactly the same way and the
results for them can be obtained by cyclic
permutation of the indices. With regard to
(000)—(100), here one has a zero-order p
matrix component and is provided with a first-
order m matrix component by the dissymmetric
perturbation. In consequence this line is strong in
ordinary absorption and also contributes to the ro-
tatory power. On the other hand, (00 0)—(0 1 1)
has a vanishing zero-order p component so its
ordinary absorption power will be weak as the p
component arises entirely from the dissymmetric
perturbation. Its rotatory strength however will
be comparable with that of the other absorption
line, and in fact comes out actually equal and
opposite to it.

This important qualitative distinction between
the two lines corresponds exactly to an empirical
generalization made by Kuhn.** He points out
that empirically the strong bands (f=~1) have
very small anisotropy factors (g=10-%) whereas
the weak absorption bands (f~10-%) have much
greater anisotropy factors (g=~1072) so that in
order of magnitude the rotatory strengths
(fg=107%) are all about the same.

Thisresultreceivesa very simple interpretation

Ahe?
BO 00— ————
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on the single oscillator model independently of
the special form assumed in (76) for the effective
force field. The dissymmetry in the effective field
in which a particular electron moves is due to the
action of the other atoms than the one or two to
which the electron essentially belongs and there-
fore is weak, because the other atoms are farther
away and because the dissymmetry is a residual
high order effect due to the joint action of several
neighbors. Hence there is a tendency for the
electron to be governed by the selection rules
which would hold rigorously if the dissymmetry
were absent. In these the selection rules are
mutually exclusive, p’s matrix component van-
ishing when m's does not, and vice versa. When
the selection rule is broken down by the dis-
symmetric field this will produce two classes of
active bands, those which have a rotatory
strength arising from a large p factor and a small
m which will also have a large f value, and those
which arise from a large m combined with a
small p which will have a small f value.

Continuing the discussion of the particular
single oscillator model which uses the field (76)
we find that the value of 3 for a particle of charge
e and mass ¢ when it is in the normal state is

12(27)5u®

A similar formula may be obtained for molecules
in an arbitrary state (#i, ns, 73). The general
formula is given by Condon, Altar and Eyring.?
It is interesting here only in this connection:
it can be written in such a way that Planck’s
constant cancels out of the expression for the
rotatory power from which it follows, with the
aid of the correspondence principle, that this
same model would show optical activity even if
it were treated by classical mechanics. In other
words, the nonvanishing rotatory power of the
model is not a specific effect of quantum me-
chanics but is an essential property of the model

# Kuhn, Trans. Faraday Soc. ‘‘Discussion on Optical
Rotatory Power," 300 (1930). Also Kuhn and Freudenberg,
Hcg;d und Jahrbuch der chemischen Physik, Vol. 8, part 3,
P

{(__—)(vﬂ-{—vs)z—vl”[ 1—»

1 1 1 I’ 1 1
S G gL |
val—v?  (vstvi)2—r? vi  va/ (vitve)i— vazl_ vs?— v (vitve)2—?

1
(vatv3)2— vz] (—_—) (vatv1)2—pe?

(78)

from either the classical or the quantum-
theoretic point of view.

Turning now to the question of how this model
is to be applied to actual molecules, we see that
it is first necessary to make a definite postulate
concerning the part of the molecule which is
responsible for a particular absorption band.
This part is generally called the chromophoric
group and there exists a fairly good body of
empirical material about absorption spectra of
polyatomic molecules which enables a decision to
be made. The strongest part of the field in which
the chromophoric electron moves is that due to
the atom to which it belongs or the two atoms
which it is bonding. This part of the field has to
be estimated by the methods which are being
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developed in other connections for dealing with
molecular orbitals.

Superimposed on this local field is the field due
to the other atoms and it is this which produces
the dissymmetry. One can calculate an approxi-
mation to this field by assuming it to be due to
point charges located at the center of each atom,
the magnitudes of these charges being chosen in
such a way as to represent the observed values of
the static dipole moments arising from each bond.
Fairly definite information about this can be
obtained from the literature on dipole moments. 3%
However, at present one is balked to some extent
by lack of information about the extent to which
partially hindered free rotations are hindered and
such questions. The relation of optical rotatory
power to these questions however probably
means that in future developments study of
rotatory power can be made to throw light on
these and related problems of molecular structure.

Having made the best assumption possible
about the system of effective charges arising in
this way one may next calculate the effect of this
field on a particular electron by developing thé
field in powers of the displacement of that
electron about its mean position. In this way
quadratic and cubic terms of the type introduced
in (76) arise which result in a nonvanishing
rotatory strength for that electron’s transitions.
This method of handling the field due to neigh-
boring atoms is, of course, very much the same
as that used so successfully by Van Vleck and
others® in dealing with the effects of crystalline
fields on magnetic susceptibility.

Some detailed calculations of this type may be
found in the paper of Condon, Altar and Eyring.?

7a. ROTATORY STRENGTH AND POLARIZABILITY
orF GROUPS

Just as this review was being finished there
appeared an important paper by Kirkwood®
who shows how to relate the quantum-me-
chanical theory of rotatory power to the polariz-
ability of the groups and their mutual coupling.

% See for example, C. P. Smyth, Dipole Moments and
Molecular Structure.

3 Bethe, Ann. d. Physik 3, 133 (1929); Kramers, Proc.
Amsterdam Acad. 32, 1176; 33, 959 (1929-30); Penney
and Schlapp, Phys. Rev. 41, 194 (1932); Van Vleck,
Electric and Magnetic Susceptibilities, Chap. XI.

¢ Kirkwood, J. Chem. Phys. 5, 479 (1937).
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This section provides a brief review and com-
mentary of the paper, written as an insert after
completion of the rest of the report so the
equations here will be numbered in a separate
sequence denoted by (1a), (2a), etc. The nota-
tion of Kirkwood’s paper has been changed
where necessary to conform to that used else-
where in this report.

We suppose that the electrons in the molecule
may be unambiguously assigned to N different
groups attached to a central group. Then for the
total electric dipole moment we may write

N+1

p=2 p®

=1

(1a)

where p® is the electric dipole moment of the ith
group defined as
P =Zer,

in which r, is the position vector of an electron
in the sth group referred to an origin at the
center of mass of that group and not at the
center of mass of the molecule as formerly. Let
Ry, be the position vector of the center of mass
of the kth group relative to that of the entire
molecule then for the magnetic moment we have

e
m=—- > Ry XP;+3> m®
2mc * k

(2a)

in which Py stands for the total electronic mo-
mentum of the electrons in the kth group and
m® stands for the magnetic dipole moment of the
kth group computed with the position vectors of
the electrons measured from the center of mass
of that group. Now if we consider the electric and
magnetic dipole moments written as sums of
terms from different groups as in (1a) and (2a)
then the rotatory strength R, associated with
any one transition ¢—b can be written, from (32)

Riua=Im{(a| Sp|5)
(b] (e/2me) TR X Py T [ 0)
~Im [Z(e|p9])-(|m®|a)
+‘_§kfalp<f>|b)-Rk><<b|Pk1a><e/2mc>
+2@p010)- 0 lm® o).

(3a)

This equation corresponds to (24) of Kirkwood's
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paper. On the first line we have the sum of the
contributions from the separate groups. These
have a nonvanishing value because of the action
of the neighboring groups in producing a dis-
symmetric field as discussed in the preceding
section. The second line corresponds to the part
which is of most importance in the coupled
oscillator theories and is here in a form which
lends itself to a discussion which is the main
point of Kirkwood’s paper. The third line is
dismissed by Kirkwood as unimportant but
without a thorough investigation of its magni-
tude. This point deserves to be studied more
carefully.

The terms of the second line will now be dis-
cussed more fully. From the commutation rules
we have for any one electron Hr;—r;H="Fhp;/im
and hence summing over the electrons in any,
say the kth group

Hp® — p® H = (¢h/im)P® (4a)

which enables us to express the electronic
momentum matrix components in terms of
those of the group dipole moments:

°(5]P® ) = (riveu/<) (6] p*| @)
2mc

and therefore the particular contribution to
R;, on the second line of (3a) which we denote
denote with Ry.° is, since Im {4z} =R {z}

Roa®=(rna/OR(Z(a] D 0)- ReX B[ p® o).

Using standard properties of the mixed triple
product and the fact that R{z} =R{z} this can
be written

Rbao = (rvba/Zc)R{ Ek(Rk —R.)

(a|p®[b) X (6] p?]a)}

In the sum each pair (¢, k) appears twice, once
as (¢, k) and again as (%, 7). This result exhibits
clearly the features that were emphasized in §6
in the more classical discussion of the coupled
oscillators: Rs.® has the same dimensions as the
ordinary strength Sy namely square of dipole
moment, but is smaller for two reasons. Firstly
Ry.° is small because of the fact that (R,—Rj;),
the vector distance from group < to group k, is

(Sa)
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divided by ¢/ves the wave-length of the quantum
jump frequency of the active band in question
which is large compared to the size of the mole-
cule. Secondly, Ry° is small because it owes its
existence entirely to the weak dynamic coupling
between different groups.

To see this, consider the case in which the
dynamic coupling between groups could be
ignored. This means that the Hamiltonian can
be represented adequately as a sum of separate
Hamiltonians, one for each group and that the
ensemble of quantum numbers symbolized by
¢ and b would break up into sets referring
separately to each group. This is, ¢ would be
@1 a2 - - any1 where g refers only to the kth group.
If this were the case then the only nonvanishing
matrix components (a|p‘®|d) would be those in
which b is the same as a with regard to all other
quantum numbers than those of the 7th group
and similarly for (a|p®|b). Therefore, in the
absence of dynamic coupling the selection rules
for p® and p® are mutually exclusive and Ry.°
vanishes. Therefore, to get a nonvanishing
rotatory power it is really essential to consider
the coupling of the electronic groups in the
molecule.

Various assumptions about the nature of this
coupling might be made but if one assumes
ordinary Coulomb interaction between the
electrons in the groups then the first term in a
development in inverse powers of the distance
is the dipole-dipole interaction energy. This can
be written

N
V=Y p®.T, p¥

>5=1

T:;;=R;*[1-3R;R;;/R;*].

(6a)

where

The effect of this on the wave functions and
hence on the matrix components can be taken
into account by ordinary perturbation theory.
The details of this will be found in Kirkwood's
paper, the end result being a formula for the
rotatory strengths which depends on the polariz-
abilities of the interacting groups.

8. SoLVENT EFFECT AND THE EFFECTIVE
FieLp CORRECTION

According to the arguments of §2 which led
up to (22), the parameter B8 is a property of
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individual active molecules. If the rotatory
power, ¢, is measured and the molecular density
N, and the refractive index # are known, then
by means of (22) one may calculate an empirical
value of 8. This will be the effective value of 8
for the active molecules in the average conditions
in which they exist in the particular medium
for which the measurements were made.

The question arises: Is the parameter 8 a
constant property of the individual molecule
quite independent of the molecular environment?
In this section we wish to review the evidence
which shows that the answer to this question is
in the negative. It turns out that 8 is generally
quite sensitive to the molecular environment.
This is called the solvent effect. In this respect
B is quite different from the ordinary polariza-
bility @ which generally shows a constant value
leading to the well-known additivity laws for
ordinary molecular refractivity.

First let us consider what happens on change
of state from liquid to vapor. In the vapor state
the molecules are far apart while in the liquid
they are densely packed together. The simplest
thing to assume would be that in spite of the
change in average environment the value of §
is the same in both states. If this is the case it
s easily seen from (22) that

Lel/3(n*+2)

should be continuous at the change of state
since N; is proportional to the density, p. For
all vapors the index of refraction is so close to
unity that one may set 3(#?+2) =1. For liquids,
however, the factor is usually between 1.30 and
1.50. Hence if 8 does not change, the specific
rotatory power [¢] should show the same
discontinuity at the change of state as the factor
3(#*+2) namely a 30 to 50 percent decrease in
going from liquid to vapor.

This is in conflict with the usual statement?”
that [¢] itself is continuous with change of
state. But the available data are quite meager.
The most detailed investigation is that of Guye
and Amaral.3® Their results, however, are not
accurate enough for a definite conclusion. Their
final table of results (reference 38, p. 527) is

% For example Lowry, Optical Rotatory Power, p. 102 or
Bruhat, Traité de Polarimetrie, p. 194.

38 Guye and Amaral, Arch. Sci. Phys. Nat. Geneva 33,
409, 513 (1895).
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TABLE I1. Rotatory power in vapor and liquid states.
(Guye and Amaral.)

SUBSTANCE [¢] VaPOR [¢] LiQuip
Valeric aldehyde 7.1to 6.4 14.6
Amyl acetate 2.6 3.2 2.8
Methyl valerate 143 145 16.4
Amyl chloracetate 1.9 1.6 3.1
Diamyl 10.7 109 11.1
Amyl amine 2.1 2.2 1.8
Amyl bromide 1.9 2.8
Amyl iodide 39to 4.1 5.6
Amyl alcohol 5.8 6.5 5.1
Valeric acid 10.7  10.9 13.5

given in Table II. From the table we see that
there is no great discontinuity in [¢] at the
change of state, that in most cases [¢] for
liquid is greater than for the vapor as would be
required by constant 8 but this is not true in
every case and in no case are the data good
enough for a definite check. It appears therefore
that one can only say that 8 does not change
much on change of state, if at all.

A modern investigation of the rotatory dis-
persion of camphor in the vapor phase has been
made by Lowry and Gore.*® They measured
both the vapor at 180°C and a solution of
camphor in cyclohexane at 20°C. These data
are not comparable because of the difference in
temperature involved.

Similarly in case of inactive solvents where
there is very small disturbance of the solute
molecules by those of the solvent we should
expect to find the same value of 8 on applying
(22) to the observed rotations independently of
the choice of the solvent. This question was first
studied from this point of view by Wolf and
Volkmann® and has recently been the subject
of a long series of experimental investigations
by Rule# and his associates. In general the
results indicate that for a nonpolar active
substance in a nonpolar solvent the quantity
[¢]/3(n*+2) is more nearly constant than [¢].
But in case of polar solvents and polar active
substances there are great differences which
indicate large changes in the effective value of
B produced by solvation. Thus Pickard and

3 Lowry and Gore, Proc. Roy. Soc. A135, 13 (1932).

40 Wolf and Volkmann, Zeits. f. physik. Chemie B3, 139
(1929); Volkmann, Zeits. f. physik. Chemie B10, 161 (1930).

41 Rule, various papers in the J. Chem. Soc. London from
1931 to 1937, under the general heading, ‘“Studies in
Solvent Action.”
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Kenyon# found that the sign of the rotatory
power is different for B-hexyl stearate in two
different solvents:

[o]=+20.21
[¢]=— 8.93

A great deal of information of this kind is to be
found in Lowry’s book.

What is very important and what has been
very much neglected hitherto is the study of
rotatory dispersion in relation to solvent effect.
Clearly one may expect the rotatory contribu-
tions of different chromophoric groups to be
differently affected by association or loose
compound formation with the solvent. The data
ought to be complete enough to show how the
individual rotatory strengths, Rs,, of the various
bands, vs., change on solution.

On the theoretical side a somewhat phe-
nomenological treatment of solvent action has
been given recently by Beckmann and Cohen.*
In this they attempt to connect the solvent
action principally with a deformation of the
molecular frame.

in alcohol,

in carbon disulphide.

9. CirRcULAR DICHROISM

As mentioned in the introduction, circular
dichroism consists in a difference in the absorp-
tion of right and left circularly polarized light
by the medium. It is observed by determining
the ellipticity of the elliptically polarized light
transmitted by the active medium from a beam
that is initially linearly polarized. It is the
property that is related to optical rotatory
power in the same way that ordinary dispersion
is related to ordinary absorption.

Experimental technique for observing circular
dichroism is described in the books by Lowry
and by Bruhat already cited, also in the Cornell
lectures of Jaeger.4

In the older electronic theories of dispersion
the connection between refraction and dispersion
is always obtained by formal introduction of a
damping term in the equation of motion of the
electron. The damping term is in the form of a
force proportional to the velocity and opposite

42 Pickard and Kenyon, J. Chem. Soc. 105, 830 (1914).

43 Beckmann and Cohen, J. Chem. Phys. 4, 784 (1936).

4 Jaeger, Optical Activity and High Temperature Meas-
urements (McGraw-Hill, 1930), Appendix, page 215.

455

to it in direction so that no matter how the
electron moves energy must always be given up
to do work against this force. As is well known
this acts to cut down the sharpness of resonance
and leads to a considerable absorption of energy
at frequencies near the resonant frequency where
the forced oscillation is relatively great. Various
proposals have been made to give a physical ac-
count of the origin of the damping term, the two
most important being the radiation damping of
Planck*s and the collision damping of Lorentz.48
On the radiation damping picture the loss of
energy from the original beam is due to the
scattering of radiation in all directions by the
radiation due to the forced oscillations of the
electron. The collision damping is the expression
for the average energy loss associated with the
interruption of the forced oscillations by col-
lisions of other molecules with the resonator.4’

In dealing with the absorption of light by
matter a number of different measures of ab-
sorptive power are in common use. For theo-
retical purposes the most convenient mode of
description is by means of the complex index of
refraction, usually written n=n(1—1«). With
this form of the index of refraction in (3) the
equation for the propagation of the electric
induction for example is

D=R{De¥} =exp (—2nvnik-r/c)

XR{Dy exp Q2miv(t—nk-1/c))}, (79)

so the amplitude of D diminishes with an
exponential factor which depends on the imagi-
nary part of the index. Since the intensity of the
light wave is proportional to the mean value of
D2, the intensity falls off exponentially according
to the formula,

I=Ioe—4rn|lec’ (80)

where z is the distance traveled in the medium.
The coefficient of z in the exponential here is

called the extinction coefficient of the medium

and is usually (as in §1) denoted by € so
4rvnk  4rnk

€= =

- . (81)

4 Planck, Ann. d. Physik 60, 577 (1897).

46 ] orentz, Proc. Amsterdam Acad. 14, 518, 577 (1906).

47 For modern accounts of these theories see Margenau
and Watson, Rev. Mod. Phys. 8, 22 (1936); also Born,
Optik (Berlin, 1933), Chapter 8.
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where, as always in this report, A means the
vacuum wave-length. (In some accounts A\ means
the wave-length in the medium, i.e., our \/zn
so the n does not appear explicitly in the
numerator.)

The reader will have no difficulty in showing
that (6) and (10) can be neatly unified with the
aid of the complex index of refraction. Let us
write ¢’ for ¥/d, which is the ellipticity per unit
length and consider ¢ and ¢’ to be united into
the single complex quantity (¢—14¢’) which we
shall call the complex rotatory power.

Then (6) and (10) can be combined into the
single equation

(p—i¢)=(x/N)(m;—n,),

in which n; and n, are the complex indices of
refraction for left and right circularly polarized
light respectively. In other words, the complex
rotatory power is related to the complex indices in
the same way that ordinary rotatory power is
related to the real indices. This compact result is
extremely useful in discussing the connections
of rotatory power and circular dichroism.

Before considering the theory of circular
tichroism further it will be convenient to define
another measure of absorptive power that is
often found in the experimental literature.
This is called the molecular or molar absorption
and is also usually denoted by « but will here be
denoted by «’ to distinguish it from the imaginary
part of the complex index of refraction. It is
defined by the equation

I=1,10"~C¢

(82)

(83)

in which z is in cm and C is the concentration
of the absorbing material in mole/liter. The
connection between «’ and ¢ is evidently

€=2.303x'C. (84)

One can also introduce an easily visualized
quantity which is closely related to the molecular
absorption coefficient, namely the effective cross
section of the molecule for absorption of a light
quantum of the type under consideration. Let 4
be this effective cross section, then if there are
N, absorbing molecules per cm? the probability
of a light quantum getting through a thickness
z without being absorbed is, by familiar argu-
ments, eM14s, On the other hand if the concen-
tration is C mole/liter then N,=NC/1000 where
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N is Avogadro's number and therefore

A=(2.303/N)x'=«'-3.81-10~2t cm?. (85)

As «' in ordinary absorption bands is of the
order 10 to 10*® we see that the effective cross-
sectional area of the molecules is in general
small compared to the actual cross-sectional area
of the molecule (10716 cm?).

In the classical electron theory the absorption
is treated by introducing the damping term into
the equation of motion of the electronic oscillator.
If the electron is elastically bound to the origin
so its natural frequency is v, then its equation
of motion is assumed to be

mi+27mT o+ (27vo) 2mr =€F, (86)

where T, measures the strength of the damping
term and in what follows we assume that I'y<».
Here F stands for the effective field acting on
the electron and is the same as the E’ of (17).
If F=Fpe?"** so the frequency of the light
responsible for the forced vibrations is » then
the steady state solution of (86) becomes, in
the familiar way,
et/m

F.
472 (vo2—»2) +1vT ]

(87

er=erj e vi=

This gives us the dipole moment due to the
coherent forced oscillation and thus is the
classical analog of the quantum-theoretic dis-
persion formula (56a). In establishing the cor-
respondence the coefficient of F in (87) is
multiplied by the oscillator strength fi. as
defined in (26) and equated to the coefficient of
F in (87). If this be done we obtain for the
polarizability a modified form of (27) in which
the effect of damping is included in the de-
nominator,

VbaSba

—_— (88)
(Vba2 - V2) +1:VI‘ba

2
g =—
e
This result, obtained by formal alteration of the
denominators is correct for quantum theory, but
the full proof of it is rather elaborate and leads
into the Wigner-Weisskopf theory of natural
line widths.4® The corresponding generalization
of the theory of rotatory power to include
damping has not been worked out but from
general considerations it is fairly clear that the

48 See Breit, Rev. Mod. Phys. 5, 91 (1933).



OPTICAL ROTATORY POWER

end result would be a similar alteration of (568)
or (23) with the same change in the resonance
denominators. Thus it is probable that (23)
would become

c Rba
6(1:——'_ Z

3rh b Vbaz-‘v2+27l"i1’rba'

(89)

in which the damping constants T', are the same
as in (88). With this complex value for B, we
obtain for the complex rotatory power an
obvious generalization of (22)

167N, n2+2
(90)

Separating the real and imaginary parts we
obtain formulas for the rotation per unit length
and the ellipticity per unit length respectively,

167(’2N1 V2(Vba2— V2)Rba
= ’
3hc b [(Vbaz— V2)2+ V2I‘ba2] (91)
, 167F2N1 VsrbaRba
¢ =

g [(vpa2—v2)2+ V2I‘b.,2].

These formulas are of the same form as those
obtained originally by Drude® except that they
have been brought into correspondence with
the quantum mechanically defined rotatory
strengths, Ru,.

In applying these formulas to the experimental
data the fact of the extreme smallness of the
radiation damping coefficient must be borne in
mind. Hence when experiment gives a broad
band several hundred angstrom units in width
it will not do to choose a T, large enough to
make the absorption band extend over this
great a region according to (91). (It is easy to
see that I'y, has the meaning of being the full
width from half-maximum absorption on the
low frequency to half-maximum absorption on
the high frequency side of the band.) To do
this would call for impossibly large values of Ty,
and would give the wrong shape to the absorption
band in that weak absorption would persist to too
great a frequency range around the maximum.

Instead the actual absorption bands due to
molecules in the gas phase or especially when in
solution have to be regarded as due to an
enormous number of quite sharp lines corre-

4 Drude, Ann. d. Physik 48, 536 (1896).

3hc
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sponding to a vast number of possible rotation
and vibration transitions. It is even convenient
to think of the broadening of individual lines
by collision in this same way. A broadened line
may be regarded as the resultant effect of a
large number of sharp lines all close together
produced by different individual molecules which
have been perturbed by the surrounding mole-
cules to various degrees.

Equations of the form (91) were derived also
by Natanson®® in an important classical treat-
ment of circular dichroism. In this paper was
enunciated a generalization known as Natanson's
rule: The wave that is most strongly absorbed also
travels more slowly, for frequencies less than the
absorption frequency. The equations were studied
from an experimental point of view by Bruhat?®
who found that they represented his observations
quite accurately, these being largely confined to
studies on tartrates which involve metal ions
with visible absorption like chromium and
copper.

The modern work on circular dichroism is
largely due to Kuhn and his associates.® Bielicki
and Henri®® showed that in many absorption
bands the absorption coefficient for complicated
molecular bands follows the law,

e(v) ~ e~ 0?2,

This simply means that if the logarithm of the
absorption coefficient is plotted against the
frequency the resulting curve is a parabola with
vertex upward. Kuhn and his associates have
adopted a similar representation for the spectral
distribution of rotatory power in an absorption
band for the empirical representation of their
data. This has proved to be much more satis-
factory than the way which accounts for the
width of the band by simply choosing a very
large value of T for the band in question.

In the paper by Condon, Altar and Eyring?
explicit calculations are carried out quantum-
mechanically to show that the aborption transi-
tion probability for right and left circularly
polarized light are different when the calculations
are carried to the same degree of approximation
as is necessary to get rotatory power as in §4.

5 Natanson, J. de phys. 8, 321 (1909).

51 Bruhat, Ann. d. Physik 3, 232, 417 (1915).

5 See especially Kuhn and Braun, Zeits. f. physik.
Chemie B8, 281 (1930) and numerous other papers in the
same journal subsequently.

8 Bielicki and Henri, Physik. Zeits. 14, 516 (1913).



