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I. INTRODUCTION

It is a great honor to speak to you today about “theoretical
discoveries of topological phase transitions and topological
phases of matter.” Since the main character, David Thouless, is
not able to speak here, the two minor characters, Duncan
Haldane and I, have been asked to speak for David. This is a
very daunting task which I agonized over for a considerable
period of time as I feel inadequate for this. Eventually, time
ran out and I was forced to produce something relevant so I
decided to start by talking about my earliest experience of
David and how we ended as collaborators on our prize
winning work. Then I will summarize my understanding of
his seminal contributions to his applications of topology to
classical (ℏ ¼ 0) Berezinskii-Kosterlitz-Thouless or BKT
phase transition. David has worked on many more applica-
tions of topology to quantum mechanical systems such as the
quantum Hall effect and Duncan Haldane will talk about
David’s contributions to these.
My first experience of David Thouless took place in 1961

when I was a freshman at Cambridge University. I was in a
large introductory class on mathematics for physics waiting
for the instructor to appear to enlighten us when a young man
who was clearly too young for this advanced science course
walked in. Obviously, he had wandered into the wrong lecture
hall. To our astonishment, he stopped in front of the class and
proceeded to talk about various complicated pieces of math-
ematics which most of the class either had not met before or
had not understood. It rapidly became clear that the class was
in the presence of a mind which operated on a different level to
those of the audience. My later experiences of David merely
reinforced this early impression. My next meeting with him
was in 1971 in the Department of Mathematical Physics at
Birmingham University in England where I went by accident
as a postdoctoral fellow in high energy physics. After being
frustrated for a year, I looked for a new tractable problem and
David introduced me to the new worlds of topology and phase
transitions in two dimensional systems.

As far as I am concerned, the study of topological
excitations started in 1970 when I was a postdoc in high
energy physics at the Istituto di Fisica Teorica at Torino
University, Italy. As a very disorganized person, I failed to
submit my application for a position at CERN, Geneva in a
timely fashion and, instead, found myself without a position
for the following year. After replying to some advertisements
in the British newspapers, I was offered a postdoctoral
position in the department of Mathematical Physics at
Birmingham University in England. I did not want to go to
Birmingham which, at that time, was a large industrial city in
the flat middle of England where a lot of cars and trucks were
built. It was certainly not my ideal place to live, but my
girlfriend and I decided that it was better than the alternative of
unemployment. During my first year there, I continued some
elaborate field theory calculations but I had an unhappy
experience. I was about to write up my calculations for
publication when a preprint from a group in Berkeley doing
exactly the same thing appeared on my desk. After two or
three repeats of this, I became very disillusioned. In desper-
ation, I went around the department looking for a tractable
problem in any branch of physics. I appeared in David
Thouless’ office listening to him describing several new
and mysterious concepts such as topology, vortices in super-
fluids and dislocations in two dimensional crystals. To make
matters even worse, my knowledge of statistical mechanics
was almost nonexistent as I had omitted that course as
irrelevant to high energy physics which I considered to be
the only field of physics of any interest. However, to my
surprise, David’s ideas made sense to me as being new and
very different and they seemed worth considering. We began
to work on the problem of phase transitions mediated by
topological defects, which to my untutored mind seemed just
another application of field theoretic ideas and was therefore
worthy of consideration. Little did I know just how different
and important these ideas and their applications would be in
the following decades and where they would take us.
At this point, I would like to talk about David’s vital

contribution to our understanding of two dimensional phase
transitions. In fact, one of our motivations for looking at two
dimensions was that we thought that life was easier in two
than in three dimensions. David had already done some work
on the importance of topological defect driven phase tran-
sitions in the context of the one dimensional Ising chain with
interactions between spins decaying as 1=r2. This model can
be discussed in terms of topological defects, or domain walls,
interacting as ln r=a (Thouless, 1969) and David had shown
that the magnetization dropped discontinuously to zero at Tc
although it was not a first order transition. This was later made
quantitative by Anderson, Yuval, and Hamann (1970) who
used an early version of the renormalization group (RG). This
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work was very influential in our thinking about defect driven
phase transitions because it led us to seek other systems in
which there are point topological defects with a logarithmic
interaction. Examples of this are point vortices in 4He films, in
superconducting films and point dislocations in 2D crystals.
This, in turn, led us to the Coulomb gas description of such
systems. However, those of you who are paying attention to
the details will have noticed a serious flaw in this analogy
since our basic 1D example is different from our other systems
which are Coulomb gases in 2D. The reason why the 1D
system with logarithmic interactions works is because of the
constraint that the charges or domain walls alternate in sign
along the line. If this constraint is relaxed, the phase transition
disappears. Of course, this is not the first time that a correct
conclusion is arrived at for the wrong reason.
The first thing we had to understand was the role of long

range order in crystals and superfluids as the standard picture
of a crystal in two dimensions is a system of molecules in
which knowledge of the position of a single particle means
that one knows the positions of all the others from the equation
rðn;mÞ ¼ ne1 þme2 where e1, e2 are the fundamental lattice
vectors and n;m ¼ �1;�2;…;�∞. The problem here is the
Peierls argument (Peierls, 1934, 1935) which says that long
range order is not possible in two dimensional solids because
low energy phonons give a mean square deviation of atoms
from their equilibrium positions in an L × L system increasing
logarithmically with the size of the system L. A useful picture
of a two dimensional crystal is to consider a flat elastic sheet
on which is drawn a lattice of dots representing the atoms of a
crystal. Now, stretch some regions and compress other regions
of the sheet without tearing it representing smooth elastic
distortions of the crystal. Clearly, the dots (particles) will
move far from their initial positions—in fact a distance
proportional to

ffiffiffiffiffiffiffiffi
lnL

p
—although the lattice structure is

preserved. The absence of long range order in this form
has been shown rigorously by Mermin (1968). Similar argu-
ments show that there is no spontaneous magnetization in a
2D Heisenberg magnet (Mermin and Wagner, 1966) and that
the expectation value of the superfluid order parameter that
vanishes in a 2D Bose liquid is zero (Hohenberg, 1967).
According to the conventional wisdom of the early 1970s,

this implies that there can be no phase transition to an ordered
state at any finite temperature because an ordered state does
not exist! However, this minor contradiction did not deter
David and myself because David understood the subtleties of
the situation and could see a way out of the apparent
contradiction while I was too ignorant to realize that there
was any such contradiction. In hindsight, I understood that,
very occasionally, being ignorant of the fact that a problem is
insoluble, allows one to proceed and solve it anyway. As luck
had it, this was one of those few occasions for me. Of course,
it also helped that there existed some experimental and
numerical evidence for transitions to more ordered low
temperature phases in 2D crystals (Alder and Wainwright,
1960, 1962), very thin films of 4He (Chester, Yang, and
Stephens, 1972; Chester and Yang, 1973), and 2D models of
magnets (Stanley and Kaplan, 1966; Stanley, 1968; Moore,
1969). The most compelling piece of experimental evidence
for us is shown in Fig. 1 where the deviation of −Δf, the
decrease in the resonant frequency f of the crystal with a film
of 4He adsorbed on the surface, from the straight line is a

measure of the areal superfluid mass density. Clearly, the 2D
film undergoes an abrupt transition as the adsorbed mass
density increases with a probable finite discontinuity in ρsðTÞ.
This behavior seemed very strange as conventional wisdom
said that ρs would increase continuously from zero as the
ordered phase is entered. This needed an explanation which,
clearly, had to be rather different from anything known
previously.

II. BREAKTHROUGH

The solution to this puzzle is that there can be a more subtle
type of order called topological order in some two dimen-
sional systems. The simplest example is the Ising ferromagnet
which consists of a set of spins σ ¼ �1 on a D-dimensional
cubic lattice. The rules of statistical mechanics are (i) any
configuration of the system occurs with probability eð−E=kBTÞ
where E is the energy of that configuration and (ii) compute
the partition function ZðTÞ≡P

configs exp ð−E=kBTÞ, which
gives all necessary thermodynamic information. The most
probable excitations are the low energy ones which are
responsible for the absence of true long range order but,
otherwise, have no effect. To discuss the destruction of

FIG. 1. The horizontal axis is a measure of the total areal mass
density of the adsorbed film and the vertical axis is −Δf,
a measure of the adsorbed mass which decouples from the
oscillating substrate. Reprinted from Chester, Yang, and
Stephens, 1972.
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superfluidity and the melting of a 2D crystal, we have to
include the very improbable high energy topological defects
responsible for the destruction of a superfluid and of a crystal.
These are the vortices in a superfluid and dislocations in a
crystal (Kosterlitz and Thouless, 1972, 1973; Kosterlitz,
1974). I should point out that similar ideas had been proposed
a bit earlier by Berezinskii (1971a, 1971b) but, when we
did our work, we were not aware of this. For some reason,
our work has received much more attention than that of
Berezinskii.
Of course, you may well ask about the connection between

topology which is the study of spheres with N holes while our
physical systems all lie on a flat simply connected 2D surface
with no holes. The topology we are considering is determined
by the underlying physics and its corresponding energetics
and a phase transition can be thought of as a transition
between topological sectors defined by the topological invar-
iants. We can discuss the importance of topology by compar-
ing the 2D planar rotor magnet with two component spins and
the Heisenberg model with three component spins. For the
planar rotor model

si ¼ ðsix; siyÞ ¼ sðcosϕi; sinϕiÞ;
Ψi ¼ six þ isiy ¼ seiϕi :

where s denotes the length of the spins, usually taken as unity.
Consider a large Lx × Ly system with periodic boundary
conditions (similar considerations hold for other boundary
conditions). In the planar rotor model, the direction of
magnetization in a region is defined by the angle ϕ which
varies slowly in space. Although the angle ϕ fluctuates by a
large amount in a large system, the number of multiples of 2π
it changes by on a path which goes completely around the
system is a topological invariant, so that

1

2π

Z
Lx

0

∂ϕ
∂x dx ¼ nx;

1

2π

Z
Ly

0

∂ϕ
∂y dy ¼ ny

are numbers defining a particular metastable state. Transitions
can take place from one metastable state to another only if a
vortex-antivortex pair is formed, separates, and recombines
after one has gone right around the system. This process
causes nx or ny to change by 1, but there is an energy barrier
proportional to the logarithm of the system size to prevent
such a transition.
The same system composed of three component spins

si ¼ ðsix; siy; sizÞ ¼ sðsin θi cosϕi; sin θi sinϕi; cos θiÞ

is called the Heisenberg model. A quantity such as

1

2π

Z
Lx

0

∂ϕ
∂x

is not a topological invariant. A twist of the azimuthal
angle ϕ by 2π across the system can be continuously unwound
by changing the polar angle θ, which we take to be the
same everywhere from π=2 to zero. In fact, the Heisenberg
model in two dimensions has a single topological invariant
N ¼ 0;�1;�2;… where

N ¼ 1

4π

Z
dxdy sin θ

�∂θ
∂x

∂ϕ
∂y −

∂θ
∂y

∂ϕ
∂x

�
:

If we regard the direction of magnetization in space as giving a
mapping of the space on to the surface of a unit sphere, the
invariant N measures the number of times space encloses the
unit sphere. This invariant is of no significance in statistical
mechanics because the energy barrier separating configura-
tions with different values of N is of order unity. Thus, there is
no barrier between different topological sectors (different
values of N) which implies that there is no ordered state
for the 2D n ¼ 3 Heisenberg magnet. In the 2D planar
rotor model, there is an infinite energy barrier between
different topological sectors parametrized by nx and ny
and, in consequence, there is a phase transition when the
system can fluctuate between different topological sectors.
We can show this by showing how a configuration with

N ¼ 1 can be continuously deformed into one with N ¼ 0.
A simple example of an N ¼ 1 configuration is one where θ is
a continuous function of r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and θ ¼ π for r > a

and θðr ¼ 0Þ ¼ 0. The angle ϕðx; yÞ ¼ tan−1ðy=xÞ. The
energy of a slowly varying configuration is

E ¼ Js2

2

Z
dxdy½ð∇θÞ2 þ sin2θð∇ϕÞ2�

¼ πJs2
Z

a

0

��
dθ
dr

�
2

þ sin2θ
r2

�
rdr

for this configuration. Even if θ varies linearly between r ¼ 0
and r ¼ a, E is finite and independent of a. Of course, for
small values of a this expression for the energy is invalid, but
the number of spins in the disk of radius a is small so that any
energy barrier is also small and the topological invariant N can
be changed by small thermal fluctuations. The conclusion is
that the 2D planar rotor and related models can have a finite
temperature topologically ordered state while the three com-
ponent Heisenberg model does not. This is consistent with
numerical studies (Moore, 1969), a later renormalization
group study by Polyakov (1975) and with experiments on
superfluids (Chester, Yang, and Stephens, 1972; Chester and
Yang, 1973). Note that the calculation by Polyakov is
performed in a single topological sector N ¼ 0 so that the
absence of a phase transition in the 2D Heisenberg model is
verified by both arguments separately.

III. VORTICES IN THE PLANAR ROTOR MODEL
IN TWO DIMENSIONS

The importance of topological defects in phase transitions
in these two dimensional systems was discussed in our 1972
paper (Kosterlitz and Thouless, 1972) where our defect free
energy argument was presented. The planar rotor and the
superfluid film free energy can be written as

H
kBT

¼ K0ðTÞ
2

Z
d2r
a20

½∇θðrÞ2�

where a0 is the lattice spacing or some microscopic cutoff
length scale and
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K0ðTÞ ¼
8<
:

J
kBT

planar rotor

ℏ2ρ0s ðTÞ
m2kBT

superfluid film:

Here, J is the exchange interaction between nearest neighbor
unit length spins so that

H½fsg� ¼ J
2

X
hr;r0i

½sðrÞ− sðr0Þ�2 ¼ J
X
hr;r0i

½1− cos (θðrÞ− θðr0Þ)�.

For a 4He film,

H ¼ 1

2

Z
d2r
a20

ρ0sðT; rÞv2s ;

where vs ¼ ðℏ=mÞ∇θ is the superfluid velocity, θðrÞ is the
phase of the superfluid order parameter ψðrÞ ¼ jψðrÞjeiθðrÞ
and ρ0sðT; rÞ is the position dependent bare superfluid density.
ρ0sðT; rÞ ¼ 0 at the vortex cores and constant elsewhere. It
turns out that its exact spatial dependence is irrelevant as the
only important consequence is that there is a finite energy Ec
associated with each vortex core. The physical reason is that a
vortex core costs a finite free energy because the vortex core is
a region where the superfluid order parameter vanishes. Now
we can see how the topology arises—each vortex corresponds
to a hole in the surface and the superfluid lives on the 2D
surface with a set of holes where

H
C dθ ¼ 2πn and a vortex

can be called a topological defect.
Since vortices interact pairwise by a logarithmic energy

H
kBT

¼ −πK0ðTÞ
X
R;R0

nðRÞnðR0Þ ln
�jR −R0j

a

�

− ln y0
X
R

n2ðRÞ;

the Hamiltonian is exactly that of a neutral plasma of Coulomb
charges. Also, one can restrict consideration to the lowest
charges n ¼ 0;�1 since the larger values are suppressed by
powers of the fugacity y0 ¼ e−Ec=kBT ≪ 1. Our first attempt
at solving this was to consider a single isolated vortex of
unit circulation in a L × L system. The free energy of such
a vortex is ΔF ¼ ΔE − TΔS ¼ kBT½πK0ðTÞ − 2� lnðL=aÞ
since ΔE=ðkBTÞ ¼ πK0ðTÞ lnL=a and the entropy ΔS ¼
kB lnL2=a2. Now, at low temperature T, 2kBT < πJ, ΔF →
þ∞ and the probability of having a vortex P ∝ e−ΔF=kBT → 0

while for 2kBT > πJ, P → 1 and there will be a finite
concentration of free vortices. David and I realized that we
could treat the Coulomb plasma of n charges q ¼ þ1 and n
q ¼ −1 charges by introducing a scale dependent dielectric
function ϵðrÞ such that the force between a pair of test charges
separated by a distance r is 2πK0=rϵðrÞ ¼ 2πKðrÞ=r. The
energy of this pair is

EðrÞ ¼
Z

r

a
dr0

Kðr0Þ
r0

¼ UðrÞ lnðr=aÞ.

Our self-consistent equation for Kðr ¼ elÞ becomes

K−1ðlÞ ¼ K−1ð0Þ þ 4π3y20

Z
l

0

dl0e4l0−2πUðl0Þ:

Kosterlitz and Thouless (1972) derived this self-consistent
integral equation for the effective interaction energy
(Kosterlitz and Thouless, 1973).
The central problem is to solve this equation since it is clear

that a transition between a phase of bound dipoles and a phase
of free charges will happen when πKð∞Þ ¼ 2. However, to
find the behavior of the system near Tc requires solving the
self-consistent equation for KðlÞ. Unfortunately, KT made an
unnecessary approximation by replacing UðrÞ by KðrÞ and
solving self-consistently for KðrÞ. The approximation was
justified on the grounds that UðrÞ − KðrÞ ≪ 1 but this led to
incorrect results. A proper treatment has been given by Young
(1978) who showed that this is equivalent to the renormaliza-
tion group equations of Kosterlitz (1974):

dK−1

dl
¼ 4π3y2 þOðy4Þ;

dy
dl

¼ ð2 − πKÞyþOðy3Þ: ð1Þ

Remarkably, these approximate RG equations to lowest
order in the vortex fugacity y yield an exact, inescapable
prediction for an experimentally measurable quantity. The
flows are shown in Fig. 2. If the experimental number is
different from the theoretical prediction then, either the
experiment is wrong or the whole theory is wrong. To our
great relief and pleasure the key experiment by Bishop and
Reppy was done in 1978 (Bishop and Reppy, 1978).
The theoretical prediction (Nelson and Kosterlitz, 1977)

ρRs ðT−
c Þ

Tc
¼ 2m2kB

πℏ2
¼ 3.491 × 10−8 g cm−2 K−1

I  C>0, t<0

II C 0, 0 t 8 y0

III  C>0,  t 8 y0

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.00

0.02

0.04

0.06

0.08

0.10

K

y

FIG. 2. Renormalization group flows from Eq. (1) for the 2D
planar rotor model. Note that for T ≤ Tc, yð∞Þ ¼ 0 and
K−1

c ð∞Þ ¼ π=2.
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has been checked experimentally (Bishop and Reppy, 1978,
1980) and the data from several different experiments
(Rudnick, 1978; Rutledge, McMillan, and Mochel, 1978;
Buck and Mochel, 1981; Maps and Hallock, 1981, 1983) are
presented in Fig. 3. It is of interest to note that the
experimental data were obtained and plotted before the
authors were aware of our theoretical prediction. This can
be viewed as experimental confirmation of the BKT theory.
There has also been extensive experimental investigation into
melting in 2D by the Maret group (von Grünberg, Keim, and
Maret, 2007; Gasser et al., 2010).

IV. MELTING OF TWO DIMENSIONAL CRYSTALS

There is quantitative agreement with the theory of melting
by topological defects due to Young, Halperin and Nelson
(Halperin and Nelson, 1978, 1979; Young, 1979). In the
theory of melting of 2D crystals, one starts with the expression
for linear elasticity of a triangular lattice, which is the usual
lattice structure in 2D:

F ¼ 1

2

Z
d2rð2μ0u2ij þ λu2kkÞ;

uij ¼
1

2

�∂ui
∂rj þ

∂uj
∂ri

�
;

where uij is the linear elastic strain tensor and ui is the
displacement field. The strain field can be decomposed into a
smooth part ϕij and a singular part usijðrÞ due to dislocations
(Nabarro, 1967). These are characterized by the integral of the
displacement uðrÞ around a contour enclosing a topological
defect or dislocation

I
C
du ¼ a0bðrÞ ¼ a0½nðrÞê1 þmðrÞê2�:

Here, bðrÞ is the dimensionless Burgers vector, a0 is the
crystal lattice spacing and n,m are integers. Within continuum

elasticity theory, one can show that (Halperin and Nelson,
1978, 1979)

usijðrÞ ¼
1

2

�
1

2μ
ϵikϵjl

∂2

∂rk∂rl −
λ

4μðλþ μÞ δij∇
2

�

× a0
X
r0
bmGmðr; r0Þ;

Gmðr; r0Þ ¼ −
K0

4π

X2
n¼1

ϵnmðrn − r0nÞ
�
ln

�jr − r0j
a

����
�
þ C

�
:

From this, one obtains the energy of a set of dislocations of
Burgers vectors bðrÞ as

HD

kBT
¼ −

K0ðTÞ
8π

Z
drdr0

�
bðrÞ · bðr0Þ ln jr − r0j

a

−
bðrÞ · ðr − r0Þbðr0Þ · ðr − r0Þ

ðr − r0Þ2
�
:

In our paper, we ignored the second term in this equation on
the grounds that it is less relevant than the logarithmic term,
which was an unfortunate error. This was corrected by
Halperin and Nelson who predicted the now famous hexatic
fluid phase with sixfold orientational symmetry. We assumed
that dislocation unbinding led directly to an isotropic fluid
which is now known to be wrong. Melting in 2D is a two stage
process. At temperature Tm, the crystal melts by dislocation
unbinding to an anisotropic hexatic fluid and, at Ti > Tm,
this undergoes a transition where the algebraic orientational
order is destroyed by disclination unbinding, resulting in the
expected high temperature isotropic fluid (Halperin and
Nelson, 1978, 1979; Young, 1979).
The predictions from this theory are similar to those for

superfluid 4He films and the corresponding universal jump is
for the renormalized (measured) Young’s modulus

~KRðT−
mÞ ¼ lim

T→T−
m

4~μRðTÞ½ ~μRðTÞ þ ~λRðTÞ�
2~μRðTÞ þ ~λRðTÞ

¼ 16π;

where ~μRðTÞ is the renormalized value of μ=kBT. One of the
interesting but unmeasurable predictions of the dislocation
theory is the x-ray structure function

SðqÞ ¼ hjρðqÞj2i ¼
X
r

eiq·rheiq·½uðrÞ−uð0Þ�i∼ jq−Gj−2þηGðTÞ;

ηGðTÞ ¼
kBTjGj2

4π

3μRðTÞ þ λRðTÞ
μRðTÞ½2μRðTÞ þ λRðTÞ�

.

There are no δ-function Bragg peaks in the structure function
but algebraic peaks behaving as

SðqÞ ∼ jq −Gj−2þηGðTÞ:

We see that this diverges at q ¼ G for small jGj so that the
expected x-ray structure function looks like that sketched in
Fig. 4. This is one of the characteristic predictions of the
dislocation theory of melting but, unfortunately, it is not

FIG. 3. Results of third sound and torsional oscillator experi-
ments for the superfluid density discontinuity ρsðT−

c Þ as a
function of temperature. The solid line is the theoretical pre-
diction for the static theory. From Bishop and Reppy, 1978.
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measurable by experiment because the accessible system size
and quality are not yet sufficient.
One of the main measurable predictions of the dislocation

theory of melting is the renormalized (measured) Young’s
modulus for which there is remarkable agreement between
experiment and theory as shown in Fig. 5. Although the
theoretical predictions were made in the 1970s (Halperin and
Nelson, 1978, 1979; Young, 1979), experimental measure-
ments (Zanghellini, Keim, and von Grünberg, 2005; von
Grünberg, Keim, and Maret, 2007) were not done for several
decades because of the difficulties of realizing a suitable
experimental system. In general, these 2D systems are
extremely sensitive to perturbations due to the supporting
substrate and the theory assumes no substrate effects.
In our original papers, we did consider melting of a crystal

by dislocations but we did not discuss the fluid phase
described by a periodic lattice with a fine concentration of
free dislocations. A periodic solid has two types of order—
translational order and orientational order describing the
orientation of the crystal axes. These order parameters are
the density ρðrÞ and the orientational order parameter
ψ6ðrÞ ¼ e6iθðrÞ:

ρðrÞ ¼ ρ0ðrÞ þ
X
G

jρGðrÞjeiG·uðrÞ;

ψ6ðrÞ ¼ e6iθðrÞ:

The topological defects are (i) dislocations which are respon-
sible for the melting of the solid to an orientationally ordered
hexatic fluid, and (ii) disclinations (vortices) responsible for
the transition to a high temperature isotropic fluid (Halperin
and Nelson, 1978, 1979; Young, 1979).
The theory has been worked out by Young (1979) and

Halperin and Nelson (1978, 1979) with very detailed predic-
tions which have been confirmed by experiment (Zanghellini,
Keim, and von Grünberg, 2005; von Grünberg, Keim, and
Maret, 2007) and summarized in Fig. 5. One of the most
sensitive tests of the theory to date is the numerical simulations
by Kapfer and Krauth (2015) who performed large scale

simulations on up to 106 particles interacting by VðrÞ ¼
ϵðσ=rÞn repulsive potentials. They found that melting does
proceed via the Kosterlitz-Thouless-Halperin-Nelson-Young
(KTHNY) scenario with an intermediate hexatic fluid for
long range ðn < 6Þ potentials, which includes the colloid
experiments with n ¼ 3 (Zanghellini, Keim, and von
Grünberg, 2005; von Grünberg, Keim, and Maret, 2007)
and the electrons on the surface of 4He (Grimes and Adams,
1979) n ¼ 1 while for n > 6, the hexatic-isotropic transition
becomes first order, which agrees with the hard disk ðn ¼ ∞Þ
simulations. Note that these simulations are on larger systems
than the experimental ones.
BKT theory has also been applied to superconductivity in

thin films. In our original paper, we stated that true super-
conductivity in a 2D superconducting film could not exist
because of the finite penetration depth λðTÞ which limits the
range of the logarithmic interaction between vortices. For
separations r > λðTÞ, the vortex-vortex interaction behaves
as 1=r so that the vortices are always free at any T > 0 thus
destroying superconductivity. Although our argument is
correct, in many thin film superconductors, the penetration
depth can be Oð1 cmÞ which is a typical system size. For the
small applied currents used, this is so large that its effects are
smaller than that of the finite currents or the finite frequencies
so that the behavior of the system is indistinguishable from
that of the λ ¼ ∞ limit (Resnick et al., 1981; Hebard and
Fiory, 1983). The theory has also been applied to 2D layers
of cold atoms (Hadzibabic et al., 2006; Holzmann et al.,
2007) with reasonable agreement which may be improved in
the future.
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