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A recent rejuvenation of experimental and theoretical interest in the physics of few-body systems has
provideddeep, fundamental insights into a broad range of problems. Few-body physics is a cross-cutting
discipline not restricted to conventional subject areas such as nuclear physics or atomic or molecular
physics. To a large degree, the recent explosion of interest in this subject has been sparked by dramatic
enhancements of experimental capabilities in ultracold atomic systems over the past decade, which now
permit atoms andmolecules to be explored deep in the quantummechanical limit with controllable two-
body interactions. This control, typically enabled by magnetic or electromagnetically dressed Fano-
Feshbach resonances, allows, in particular, access to the range of universal few-body physics, where
two-body scattering lengths far exceed all other length scales in the problem. The Efimov effect, where
three particles experiencing short-range interactions can counterintuitively exhibit an infinite number of
bound or quasibound energy levels, is themost famous example of universality. Tremendous progress in
the field of universal Efimov physics has taken off, driven particularly by a combination of experimental
and theoretical studies in the past decade, and prior to the first observation in 2006, by an extensive set of
theoretical studies dating back to 1970. Because experimental observations of Efimov physics have
usually relied on resonances or interference phenomena in three-body recombination, this connects
naturally with the processes of molecule formation in a low-temperature gas of atoms or nucleons,
and more generally with N-body recombination processes. Some other topics not closely related to
the Efimov effect are also reviewed in this article, including confinement-induced resonances for
explorations of lower-dimensionality systems, and some chemically interesting systems with longer-
range forces such as the ion-atom-atom recombination problem.
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I. INTRODUCTION AND OVERVIEW

Spectacular recent breakthroughs for the three-body prob-
lem with near-resonant two-body interaction, in both experi-
ments and theories, have spawned this review of universal
few-body physics, which concentrates on systems with finite-
range interactions. Vitaly Efimov’s 1970 prediction (Efimov,
1970) that an infinite family of universal three-body states
should emerge when two or more two-body scattering lengths
are sufficiently large in magnitude first received partial
experimental confirmation in 2006 by Rudi Grimm’s group
in Innsbruck (Kraemer et al., 2006). That development was
quickly followed by many subsequent experiments (Ferlaino
et al., 2008, 2009, 2011; Ottenstein et al., 2008; Barontini
et al., 2009; Gross et al., 2009, 2010, 2011; Knoop et al.,
2009, 2010; Pollack, Dries, and Hulet, 2009; Wenz et al.,
2009; Zaccanti et al., 2009; Lompe, Ottenstein, Serwane,
Viering et al., 2010; Nakajima et al., 2010, 2011; Berninger
et al., 2011, 2013; Machtey, Kessler, and Khaykovich, 2012;
Machtey et al., 2012; Wild et al., 2012; Bloom et al., 2013;
Dyke, Pollack, and Hulet, 2013; Roy et al., 2013; Zenesini
et al., 2013; Hu et al., 2014; Huang, O’Hara et al., 2014;
Huang, Sidorenkov et al., 2014; Pires, Ulmanis et al., 2014;
Tung et al., 2014; Huang, Sidorenkov, and Grimm, 2015;
Kunitski et al., 2015; Maier et al., 2015; Johansen et al., 2016;
Ulmanis, Häfner, Pires, Kuhnle et al., 2016; Ulmanis, Häfner,
Pires, Werner et al., 2016; Wacker et al., 2016; Wang et al.,
2016; Häfner et al., 2017) bearing on various aspects of the
Efimov effect and universality; see Fig. 1. This class of
phenomena is called universal because it can occur for
systems with vastly different energy and length scales.
While it was originally predicted for few-nucleon systems
such as the triton, with energy scales of the order of 106 eV
and distance scales of the order of 10−14 m, all of the
convincing demonstrations to date have involved energy
and distance scales of order 10−12 eV and 10−7 m, respec-
tively. Some of the few-body physics topics discussed here
have already been reviewed elsewhere, and the interested
reader is encouraged to explore a large body of literature
(Ohsaki and Nakamura, 1990; Suzuki and Varga, 1998;
Nielsen et al., 2001; Jensen et al., 2004b; Braaten and
Hammer, 2006; Yurovsky, Olshanii, and Weiss, 2008;
Rittenhouse et al., 2011; Baranov et al., 2012; Blume,
2012a; Frederico et al., 2012; Petrov, 2012; Wang,

D’Incao, and Esry, 2013; Zinner and Jensen, 2013; Wang,
Julienne, and Greene, 2015a; Côté, 2016; Naidon and
Endo, 2017).

A. Systems with finite-range interactions

It is reasonable to askwhy finding a new family of resonances
has generated such excitement in few-body physics, excitement
that has translated into an exponentially growing rate of
citations for the 1970 Efimov paper during the past 15 years.
In fact these resonances are unique and counterintuitive.
For every previously known example of a system where
infinitely many bound states or resonances exist that converge
to a breakup threshold, the forces were infinite in their
extent. The best known example of this is of course the
asymptotically attractive Coulomb potential VðrÞ → −1=r
which has an energy level formula En ∝ −1=n2, and a second
example is the charge-dipole two-body potential VðrÞ →
−ðs2 þ 1=4Þ=2r2 at r > r0 which has (for a system of units
with reduced mass μ ¼ 1) an energy level formula
En ¼ E0 expð−2πn=sÞ. The presence of a finite versus infinite
number of quantized levels below a threshold hinges on the
convergence or nonconvergence of the zero-energy Jeffreys-
Wentzel-Kramers-Brillouin (JWKB) phase integral with
Langer correction included.Morse andFeshbach (1953) present
a pedagogical derivation of the Langer correction needed for
accurate semiclassical calculations, e.g., when the independent

FIG. 1. Characterization of universal Efimov trimers in ultracold
gases. (a) The universal trimer energy dependence on the inverse
two-body scattering length, i.e., a. In particular, the Efimov
trimers cross the three-body continuum at aðnÞ− , where n ¼ 1
denotes the Efimov ground state, n ¼ 2 the first excited states,
etc. Efimov states intersecting the atom-dimer continuum are

characterized by aðnÞ� for the positive two-body scattering length.
(b) A log-log plot of the recombination rates of three identical
bosons at low energies vs the inverse two-body scattering length
a. Minima in three-body recombination occur at scattering length

values denoted here as aðnÞþ . The negative values of the atom-atom
scattering length marked aðnÞ− indicate positions of the maxima in
L3 at ultracold temperatures, i.e., where Efimov states intersect
the atom-atom-atom three-body threshold.
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coordinate domain is semi-infinite or finite as is true for the
radial coordinate in three-dimensional problems. That is, one
can deduce the energy level formula relevant to a given two-
body potential energy function VðrÞ by evaluating the zero-
energy total phase

ϕ ¼
Z

∞

r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2μVðrÞ=ℏ2 −

1

4r2

r
dr.

If this ϕ is infinite, then the number of converging energy levels
will also be infinite, whereas if ϕ is finite then their number is
also finite. This type of analysis also applies to the recently
predicted “super-Efimov effect” (Nishida, Moroz, and Son,
2013; Gridnev, 2014; Moroz and Nishida, 2014; Volosniev
et al., 2014; Gao, Wang, and Yu, 2015) which is likewise
predicted to yield an infinite sequence of bound (or resonant)
levels for a systemof three fermions in two dimensions [see also
Efremov et al. (2013)] with a density of states far smaller than in
the original Efimov effect.
A common thread running through this story is the fact that

hyperspherical coordinate techniques played a key role in the
early theoretical predictions of the Thomas and Efimov effects
in the pre-1980 studies, and they have played an equally
crucial role in showing later that ultracold quantum gases
should provide a powerful way to observe universal Efimov
physics, by linking the Efimov effect quantitatively to the loss
process of three-body recombination. Hyperspherical studies
have shown unusual flexibility, as they have been used, on the
one hand, with zero-range regularized pseudopotential inter-
actions to obtain closed-form analytical results (Efimov, 1970,
1971, 1973, 1979; Macek, 1986, 2002; Watanabe and
Komine, 1989; Nielsen and Macek, 1999; Nielsen et al.,
2001; Kartavtsev and Macek, 2002; Macek, Ovchinnikov, and
Gasaneo, 2005; Mehta et al., 2008) and, on the other hand, as
the basis for quantitative numerical solutions using finite-
range analytical or numerical three-body Hamiltonians (Esry
et al., 1996; Esry, Greene, and Burke, 1999; Suno et al., 2002;
D’Incao and Esry, 2005; Esry and Greene, 2006; Wang,
D’Incao, Esry, and Greene, 2012; Wang, Wang et al., 2012).
This flexibility has led to a tremendous deepening of our
understanding of three-body recombination and atom-dimer
elastic and inelastic scattering over the past two decades, both
the quantitative understanding and, equally important, quali-
tative and semiquantitative ways to understand the main
reaction pathways which govern the corresponding physical
mechanisms. Despite this headway, there has not been a
comprehensive review or monograph that has presented the
full hyperspherical methodology, nor has there been one that
covered much of the connections with diverse areas of physics
from nuclear systems to cold atoms to exotic species and
atomic electron states, and one of the goals of the present
review is to bridge this gap in the existing literature.
The concepts of the hyperspherical approach are of course

far from being a new innovation in few-body theoretical
physics. They go back at least as far as the pioneering work
of Llewellen Hilleth Thomas (Thomas, 1935) who realized that
three nucleons whose ratio of potential range to scattering
length becomes arbitrarily small, r0=jaj → 0, must have a
ground state energy that “collapses” to E → −∞. The triton

model considered by Thomas is depicted in Fig. 2. This was
demonstrated by showing that the effective potential energy of
such a system, as a function of the hyperradius R (Thomas
denoted this variable as s), has the form−1=R2, a potential that
exhibits the well-known “fall to the center” collapse of its
ground state energy, as discussed in quantum mechanics
textbooks (Landau and Lifshitz, 1997). Another early appli-
cation of hyperspherical coordinates frameworkwas developed
by Julian Schwinger’s student at Harvard, R. E. Clapp, in his
Ph.D. thesis work on the triton binding energy (Clapp, 1949).
Fock’s 1958 study of the analytical nature of the electronic
helium atom wave function at small hyperradii also utilized
hyperspherical coordinates in a fundamental way (Fock, 1958).
Some of the deepest insights into the nature of the three-

body problem have emerged from Macek’s adiabatic hyper-
spherical methodology (Macek, 1968). The latter consists
of a comprehensive theoretical framework in which the
Hamiltonian of the system is initially diagonalized at fixed
values of the hyperradius R, yielding adiabatic curves which
represent the energies of the system as functions of R. These
give an immediate, dynamics-based representation of the
available reaction pathways for any given system and high-
light the emerged structure of the bound and quasibound states
of the system as well as their excitation and decay mechanisms
(Fano, 1976, 1983; Lin, 1986, 1995). Coupling matrix
elements can also be computed which permit, as shown in
this review article, a systematic solution of the full three-body
Schrödinger equation to the accuracy desired for arbitrary
bound state problems as well as two-body inelastic and
rearrangement collisions (Aþ BC), three-body collisions
(Aþ Bþ C), and photon-assisted collision processes (Fink
and Zoller, 1985).

B. Coulomb systems

The three-body problem in quantum mechanics with
Coulomb interactions has generated intense effort throughout
the past century. Early in the days of the “old quantum theory”
it was a major problem to understand the ground and excited
states of the helium atom. With Schrödinger’s wave mechan-
ics, in combination with other tools such as the Ritz

FIG. 2. Tritium nucleus model assumed by Thomas. The
neutron-proton interaction is characterized by a finite-range
potential VðrijÞ, whose range is given by r0, but the neutron-
neutron interaction is neglected (which is known nowadays to be
far from correct). See text for details.
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variational method, it became possible by the 1930s to
calculate properties of such low-lying states in the three-body
Coulomb problem to high precision. For higher excited states
lying in the two-body or three-body continua, however,
progress was much slower. The ability to nonperturbatively
calculate the simple process of electron impact ionization of
hydrogen at low energies (<1 eV) above the double escape
threshold, for instance, did not emerge until the 1990s (Kato
and Watanabe, 1995; McCurdy, Rescigno, and Byrum, 1997;
Robicheaux, Pindzola, and Plante, 1997; Bartlett et al., 2003;
Kadyrov et al., 2009), although important theoretical work
prior to that had identified the unusual threshold behavior for
two-electron escape (Wannier, 1953; Peterkop, 1971; Klar and
Schlecht, 1976; Greene and Rau, 1982, 1983; Fano, 1983;
Rau, 1984; Read, 1984; Selles, Mazeau, and Huetz, 1987;
Watanabe, 1991). Analogous theoretical headway occurred
over that same period for other three-body observables, such
as double photoionization of He and H− (Meyer and Greene,
1994; Meyer, Greene, and Esry, 1997; Robicheaux, Pindzola,
and Plante, 1997). Of course long before the quantal version
of the three-body problem became topical, the Newtonian
version with inverse square forces had acquired paramount
importance and was singled out by researchers such as
Poincaré and Hilbert as a crucial bottleneck that had to be
solved.
Early efforts on systems with Coulomb interactions by

Macek, Lin, and Fano demonstrated that significant insight
into the qualitative and semiquantitative nature of doubly
excited states of He and H− emerges when an adiabatic
hyperspherical approximation is implemented (Macek, 1968;
Fano, 1976; Lin, 1986; Lin and Morishita, 2000). Surprisingly
high doubly excited states of two-electron atoms can be
treated in the adiabatic scheme, as seen for calculations of
high states which yielded a simple interpretation of regular-
ities seen in photoabsorption (Sadeghpour and Greene, 1990;
Domke et al., 1991; Rau, 1992; Tang et al., 1992). Extensions
to other atomic systems such as the alkaline earth atoms
(Greene, 1981) and the negative ion of helium (Watanabe,
1982) were also developed, which showed that nonadiabatic
couplings often need to be incorporated in order for the results
to be even qualitatively useful (Christensen-Dalsgaard, 1984).
The exploration of near separability of the two-electron wave
function in alternative choices of coordinates, which yields
nontrivial insights in some cases, was reviewed by Tanner,
Richter, and Rost (2000).
Another arena where three-body Coulombic interactions

have been subjected to intensive study has been in the
context of muon-catalyzed fusion (Hino and Macek, 1996).
Interesting studies of the dtμ reaction of importance for muon-
catalyzed fusion were carried out, for instance, using hyper-
spheroidal coordinates (Hara et al., 1988; Fukuda, Ishihara,
and Hara, 1990). Another hyperspheroidal coordinate appli-
cation was to HDþ by Macek and Jerjian (1986) and by Hara,
Fukuda, and Ishihara (1989). Some of the most suitable
systems for an adiabatic representation in hyperspherical
coordinates are those with two or more equal mass particles,
such as the ion formed from two electrons and one positron,
i.e., the positronium negative ion (Botero and Greene, 1985,
1986; Fabre de la Ripelle, 1993). Also, not to be overlooked

is the fact that this approach can be made quantitatively
accurate, in some cases with direct solution of the coupled
hyperradial equations in the adiabatic representation
(Kadomtsev, Vinitsky, and Yukajlovic, 1987).
In fact the adiabatic representation has challenges as the

system grows in complexity and in the number of relevant
coupled hyperradial equations, and for such systems the
clever recasting as a set of diabatic equations, called the
“slow-variable discretization” (SVD) method proposed by
Tolstikhin, Watanabe, and Matsuzawa (1996), improves the
efficiency enormously. When propagation to very large
hyperradii is required in order to obtain accurate scattering
information, a hybrid method (Wang, D’Incao, and Greene,
2011) has proven to be quite efficient and accurate, which uses
SVD at small to intermediate hyperradii but solves the direct
coupled adiabatic equations at very large hyperradii. One of
the most recent applications of the SVD hyperspherical
treatment is an investigation of the famous Hoyle triple-α
resonance by Suno, Suzuki, and Descouvemont (2015).
Other exotic examples of three-body Coulombic systems

that have been studied include the antiproton + hydrogen atom
system, explored by Esry and Sadeghpour (2003), which gives
an idea of the prototypical hyperspherical potential curves that
emerge from applying the adiabatic hyperspherical method to
the p̄pe system, as shown in Fig. 3. A large number of
interacting channels are evident, which might initially seem
hopelessly daunting in complexity. A closer inspection shows,
however, that most of the curve crossings are highly diabatic,

0.0 2.0 4.0 6.0 8.0

R
1/2

 (a.u.)

0

10

20

30

ν(
R

)

FIG. 3. Hyperspherical potential energy curves for the even-
parity, zero angular momentum states of the p̄pe system, showing
the rich variety of collision channel pathways that exist in this
system. The states shown in the energy range displayed here are
mostly of the type of “antihydrogen plus electron.” Note that the
energy and hyperradius are displayed, respectively, here on an
“effective quantum number scale” ν≡ ½−mUðRÞ�−1=2 with m the
proton mass, and square root hyperradial scale R1=2 reflecting the
usual scaling in a Coulomb potential. For instance ν ¼ 1 corre-
sponds to the energy of the ground 1s state of the hydrogenic p̄p
state on this scale. From Esry and Sadeghpour, 2003.
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and the diabatic potential curves are remarkably simple,
suggesting approximately conserved quantum numbers.
Further examples of such simplicity emerging for a seemingly
complex system will be demonstrated throughout the present
review. Some exciting headway in treating four-body
Coulomb systems has also occurred during the last few
decades, notably by Morishita et al. (1997), Morishita and
Lin (1998, 1999), and D’Incao (2003), in a robust improve-
ment over primitive early studies (Clark and Greene, 1980;
Greene and Clark, 1984). A small number of treatments have
extended adiabatic hyperspherical ideas to more than four
particles, although they are still at a relatively primitive state at
this time (Bohn, Esry, and Greene, 1998; Blume and Greene,
2000; Kim and Zubarev, 2000; Kushibe et al., 2004; Morishita
and Lin, 2005; Sogo et al., 2005; Rittenhouse et al., 2006;
Rittenhouse and Greene, 2008; Daily and Greene, 2014; Ding
and Greene, 2017). Figure 4 shows an example of the lowest
potential energy curves obtained by Daily and Greene (2014)
for a system of three electrons and two positrons. These
potentials contain bound states of the different symmetries of
this five-body system, and they also describe the lowest
energy scattering processes.
Early interest in three-body continuum states in Coulombic

systems was mainly triggered by a desire to understand
electron impact ionization of atoms, especially in the low-
energy range, through phenomena such as the Wannier-Rau-
Peterkop threshold law for that process derived initially
through entirely classical arguments (Wannier, 1953) and
later confirmed through quantum mechanical and semiclass-
ical arguments by Peterkop (1971, 1983) and Rau (1971).
Experimental confirmations of this unusual irrational thresh-
old law for a process with both electrons escaping from a
residual particle of positive charge Ze, namely, σ ∝ Eγ , where

γ ¼ 1

4

��
100Z − 9

4Z − 1

�
1=2

− 1

�
;

were measured for electron impact ionization of atomic
helium by Cvejanovic and Read (1974) and for two-electron
photodetachment of H− (Donahue et al., 1982) (both for
Z ¼ 1; γ ¼ 1.127…Þ. Going beyond the double escape thresh-
old law proved to be highly challenging, with some of the first
credible absolute cross sections from a theoretical calculation,
for the fundamental eþ H → eþ eþ p process, emerging in
the numerical “convergent close-coupling” studies by Bray
and Stelbovics (1993), Bartlett et al. (2003), and Kadyrov
et al. (2009), performed in ordinary independent electron
coordinates. One of the first studies that obtained competi-
tively accurate results within a hyperspherical coordinate
framework was that of Kato and Watanabe (1995, 1997),
and it was followed by a subsequent detailed study by
Kazansky, Selles, and Malegat (2003), Malegat (2003,
2004), and Selles et al. (2004). Highly quantitative results
have also now been obtained for this two-electron escape
process by direct solution of the time-independent (McCurdy,
Baertschy, and Rescigno, 2004) or time-dependent (Pindzola
and Robicheaux, 1998; Pindzola et al., 2007) Schrödinger
equations. Recent years have seen extensive interest in the
time-reversed process: three-body recombination. For a low-
temperature plasma consisting of electrons and protons, this
is the reaction eþ eþ p → HðnlÞ þ e (Robicheaux, 2007;
Pohl, Vrinceanu, and Sadeghpour, 2008; Robicheaux et al.,
2010) or its antimatter analog with positrons and antiprotons;
this mechanism underpins recent exciting progress in the
formation of antihydrogen (Andresen et al., 2010, 2011).

C. Chemical physics

Another class of studies that has utilized a three-body
hyperspherical solution to solve a challenging problem in
chemical physics is the dissociative recombination (DR) of
Hþ

3 (Kokoouline, Greene, and Esry, 2001; Kokoouline and
Greene, 2003; Petrignani et al., 2011). To describe the DR
process where an electron collides with Hþ

3 and the final state
dissociates into H2 þ H or Hþ Hþ H, the use of hyper-
spherical coordinates has both a practical computational
advantage and a qualitative conceptual advantage. For in-
stance, the theory of DR is much better understood for a
diatomic target than for a polyatomic target, so the use of an
adiabatic hyperspherical representation of the nuclear posi-
tions ultimately maps polyatomic DR theory back in terms of
more familiar diatomic DR theory. Those studies also showed
that a nontrivial rearrangement collision can be controlled by
conical intersection dynamics, more specifically in this case
the Jahn-Teller effect. Part of that solution was a description
of the incident electron channels as well as the energetically
closed Rydberg channel pathways using multichannel quan-
tum defect techniques, which will not be discussed in detail
here but are summarized elsewhere in the literature
(Kokoouline, Douguet, and Greene, 2011).
In chemical physics, some of the most impressive theo-

retical studies of few-atom reactive scattering have been
carried out using a hyperspherical coordinate framework.
See for instance an early treatment by Kuppermann and
Hipes (1986) of Hþ H2 scattering. In 1985, experimentalists
Neumark and co-workers performed a groundbreaking study
(Neumark et al., 1985) of the famous Fþ H2 → FHþ H

FIG. 4. The lowest several potential energy curves for zero
angular momentum and even total parity are shown vs hyper-
radius for a five-body Coulomb system, consisting of three
electrons and two positrons. Denoting ðSþ; S−Þ the separate spin
quantum numbers of the positrons and the electrons, these
potentials shown as dashed, dash-dotted, dash-dot-dotted, and
dotted lines correspond to ðSþ; S−Þ ¼ ð1; 1

2
Þ; ð0; 1

2
Þ; ð1; 3

2
Þ; ð0; 3

2
Þ,

respectively. The horizontal solid lines ordered from lowest to
highest indicate the asymptotic fragmentation threshold energies
of Ps2 þ e−, Psþ Ps−, and 2Psþ e−. From Daily and Greene,
2014.
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reaction, which required several years before a converged
theoretical treatment using hyperspherical coordinates in a
variant of Macek’s adiabatic representation—the diabatic-by-
sector method—was developed by Launay and Le Dourneuf
(1990). Other studies of importance in hyperspherical treat-
ments of reactive scattering were developed by Pack and
Parker (1987, 1989). However, other studies of important
rearrangement reactions were carried out using Jacobi or other
coordinates, such as the calculation by Neuhauser et al.
(1991), but our focus in this article is primarily on method-
ologies that ultimately boil down to solving one or a coupled
set of one-dimensional hyperradial Schrödinger equations. A
simple and popular method for solving such coupled 1D
differential equations is the log-derivative method (Johnson,
1973; Manolopoulos, Jamieson, and Pradhan, 1993), while a
more advanced technique frequently utilized when there are
many close avoided crossings in the potential curves was
developed by Tolstikhin, Watanabe, and Matsuzawa (1996)
and implemented in various studies such as Wang, D’Incao,
and Greene (2011).
A handful of studies have even gone beyond three-atom

processes and computed scattering cross sections for reactions
involving four atoms using hyperspherical (Clary, 1991) or
other methods (Bohr et al., 2014). These studies can be viewed
as solutions to the few-body Schrödinger equation, starting
from the Born-Oppenheimer potential energy surface as a
function of the internuclear coordinates. Of course a number
of important reactive systems have two or more fundamentally
coupled potential surfaces, with or without conical intersec-
tions, and these require further sophistication even in formulat-
ing the basic Born-Oppenheimer Hamiltonian governing the
coupled electronic and nuclear degrees of freedom.

D. Fragmentation, recombination, and molecule formation

The general theory of nuclear reactions was formulated in
hyperspherical coordinates by Delves (1958, 1960), who
showed that the usual unitary scattering matrix can be defined
in general by inspecting the asymptotic form of the flux-
conserving solution at large hyperradii. Hyperspherical coor-
dinates were picked up by Smirnov and others in the Soviet
school of nuclear physics, and that work is reviewed by
Smirnov and Shitikova (1977). The work of that school
concentrated on the development of noninteracting solutions
in the hyperangular degrees of freedom, the so-called hyper-
spherical harmonics, including a graphical way to construct
the solutions, and the analog of fractional parentage coef-
ficients to achieve their antisymmetrization when applied to
several fermionic particles such as nucleons (Smirnov and
Shitikova, 1977). This was developed further in nuclear
collision theory by Barnea and Novoselsky (1997), Barnea
(1999), and Nielsen et al. (2001) More recently, a model
treatment of elastic nucleon scattering of the type Aþ A2 has
shown that there is a significant benefit from adopting
adiabatic hyperspherical ideas in the calculation, particularly
if the theory is implemented using integral relations for the
scattering amplitudes that were developed by Barletta and
Kievsky (2008, 2009) and Barletta et al. (2009).
The variant of the three-body problem involving short-range

forces, particularly relevant in nuclear physics, has served as an

independent but equally important testing ground for theory.
Whereas in ultracold atomic physics it is a recombination
process such as Aþ Bþ C → ABþ C that is of greatest
interest, which can form a diatomic molecule in a gas of free
atoms, in nuclear physics it is more typically the time reverse of
recombination, i.e., ABþ C → Aþ Bþ C whose reaction
rates and scattering amplitudes are of interest in laboratory
experiments and in astrophysical contexts. An early study by
Thomas (1935) showed that the range r0 of two-body nuclear
forces cannot be made arbitrarily smaller than the nucleon-
nucleon scattering lengths annðS¼0Þ¼−18.9, anpðS ¼ 0Þ ¼
−23.7, and anpðS ¼ 1Þ ¼ 5.43 fm, because the three-nucleon
ground statewould becomearbitrarily deep and plummet all the
way to −∞ in the limit r0 → 0, a behavior never observed
experimentally, of course, but which is now referred to as the
“Thomas collapse” effect. Interestingly, however, one sees that
the scattering lengths are generally much larger in magnitude
than the known range r0 ∼ 1–2 fm of the nucleon-nucleon
strong force. Another intriguing foray into the behavior of three
particles interacting via short-range forces came decades later
from Efimov, who predicted an effect that bears some con-
nection with the Thomas collapse effect: Efimov predicted that
for a system of three particles having infinite two-body
scattering lengths, there must be an infinite number of three-
body bound levels that become arbitrarily weak in their
binding. Efimov’s work went on to predict that in the limit
where three equal mass particles have common interparticle
scattering lengths a, the number of such universal bound levels
becomes finite and is truncated to the approximate value
N ≈ ð1=πÞ lnðjaj=r0Þ. These levels are called universal because
they depend only on the dimensionless ratio between the
scattering length and the distance r0 beyond which the two-
body interactions are negligible, and in some cases an additional
parameter is needed, such as the “three-body parameter”
discussed in Sec. III.
The recombination process that occurs when three ultracold

atoms collide, e.g., Aþ Aþ A → A2 þ A in a Bose-Einstein
condensate (BEC), became a particularly important topic in
the field of degenerate quantum gases in the mid-1990s, when
it was increasingly realized that this was the dominant loss
process in most experiments. The reason was that most of the
experimental ingenuity had been directed toward turning off
inelastic two-body losses by cleverly designing the quantum
states of the trapped atoms. This left little possibility to further
turn off inelastic three-body losses, although the gases in real
experiments were usually sufficiently dilute that the quantum
gas produced could be studied for reasonable periods of
time, usually from 0.1 to 100 s. The process of three-body
recombination was studied in a perturbative treatment by
Verhaar and collaborators for the case of spin-polarized
atomic hydrogen (de Goey et al., 1986); the rate coefficient
for the process is only of the order of 10−38 cm6=s, i.e., of
extremely low probability because it requires a spin flip via
magnetic interactions. For more typical systems such as alkali
atoms that recombine in an ultracold gas, an application of the
Verhaar approach (Moerdijk, Boesten, and Verhaar, 1996;
Moerdijk and Verhaar, 1996) predicted that the recombination
rate should scale overall as a2, i.e., as the square of the atom-
atom scattering length a.
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In fact the growth of the recombination rate coefficient K3

with a was eventually shown to be much faster than quadratic.
The first promising step toward a deeper understanding of three-
body recombination emerged from a study by Fedichev et al.
(1996) which predicted that the true scaling of K3 should vary
much more strongly with scattering length as a4. Sparked by
growing interest throughout the ultracold science community in
the need for a deeper understanding of three-body recombina-
tion, twononperturbative treatments of this process at large two-
body scattering lengths were published in 1999, one by Nielsen
and Macek (1999) and the other by Esry, Greene, and Burke
(1999). While these 1999 Letters confirmed the (Fedichev,
Reynolds, and Shlyapnikov, 1996) prediction of an overall a4

scaling of the three-body recombination rate coefficient K3,
they both found an additional Stueckelberg interference modu-
lation with the encouraging potential to cause destructive
interference at somevery largevalues ofa, potentially beneficial
for experiments where loss needs to be minimized. In addition,
Esry, Greene, and Burke (1999) predicted that an infinite
number of resonances should periodically enhance the recom-
bination rate at large negative a, and that these resonances are
Efimov states that have become unbound and merged into the
three-body continuum. In the case of homonuclear three-body
recombination, those “zero-energy” resonances are predicted to
have an approximate geometric scaling in the scattering length,
with each successive Efimov resonance occurring at a two-body
scattering length that is eπ=s0 ≈ 22.7 times larger than the
preceding one.
Following these initial predictions, subsequent theoretical

studies extended and amplified them, e.g., as reviewed with a
focus on the hyperspherical coordinate point of view by
several articles (Nielsen et al., 2001; Greene, 2010;
Rittenhouse et al., 2011; Wang, D’Incao, and Esry, 2013;
Wang, Julienne, and Greene, 2015a, 2015a). Importantly,
alternative treatments found largely similar conclusions using
methods such as effective field theory (Bedaque, Braaten, and
Hammer, 2000; Braaten and Hammer, 2001, 2003, 2006), a
separable interaction application of effective field theory
(Shepard, 2007), two exactly solvable models (Macek, Yu
Ovchinnikov, and Gasaneo, 2006; Gogolin, Mora, and Egger,
2008; Mora, Gogolin, and Egger, 2011), and the treatment by
Köhler (2002) and Lee, Köhler, and Julienne (2007) that
adopted the early theoretical nuclear physics treatment of Alt,
Grassberger, and Sandhas (1967). All of these explorations
tremendously added to confidence in the theory community
that the Efimov effect should be observable, despite the dearth
of experimental confirmation prior to 2006.
Then, however, this field received a tremendous injection of

excitement in 2006 when recombination rate measurements
for a Cs gas by Grimm’s Innsbruck group (Kraemer et al.,
2006) observed the aforementioned Efimov resonance in the
three-body rate coefficient K3 at a large negative scattering
length, in agreement with the 1999 prediction (Esry, Greene,
and Burke, 1999). That study provided the first experimental
confirmation of the Efimov effect. The scattering length
dependence of measured recombination rates in that 2006
experiment closely resembled the predicted shape (Esry,
Greene, and Burke, 1999) for a three-body Efimov resonance,
but a skeptic might argue that observation of one resonance

alone might not be convincing evidence of its Efimov
character. However, subsequent observations of three-body
recombination in numerous systems have solidified, con-
firmed, and extended that interpretation beyond any doubt.
The most dramatic signature has been observing multiple
resonances, separated by the predicted Efimov factor of 22.7
in the scattering length, and multiple predicted interference
minima, separated by that same universal factor (Esry, Greene,
and Burke, 1999; Nielsen and Macek, 1999; Braaten and
Hammer, 2006; Greene, 2010).
A further unexpected level of universality emerged from

experimental studies with three-atom recombination. The
three-body parameter had been thought by virtually all
theorists to occur “randomly” and to vary widely from system
to system. The three-body parameter can be viewed as setting
the energy E0 of the lowest Efimov state at a ¼ ∞ (unitarity),
or alternatively as the smallest scattering length að1Þ− at which a
zero-energy Efimov resonance occurs and thus sets the
location of all subsequent resonances through the universal
scaling formula aðnÞ− ¼ að1Þ− eðn−1Þπ=s0 . The remarkable surprise
was experimental evidence from the Grimm group (Berninger
et al., 2011) and several others (Gross et al., 2009, 2010,
2011; Wild et al., 2012; Dyke, Pollack, and Hulet, 2013; Roy
et al., 2013) which showed that for homonuclear three-body
systems dominated by van der Waals (vdW) −C6r−6 two-body
interactions at long range, an approximate van der Waals
universality fixes að1Þ− ≈ −10lvdW in terms of the characteristic
length lvdW ≡ ðmC6=16ℏ2Þ1=4. As Fig. 5 shows, the three-
body parameter is fixed to within approximately 15% by this
simple relation. Shortly after this experimental evidence was
published, a theoretical interpretation emerged from Wang,
D’Incao, Esry, and Greene (2012) which showed that a
classical suppression of the two-body probability density
whenever two particles approach to within r < lvdW produces
an effective hyperradial barrier that restricts three-body
motion at R < 2lvdW and sets the three-body parameter. To
clarify, there is a classical suppression because the probability
of a classical particle having local velocity vðrÞ to exist in a
region of width Δr is proportional to Δr=vðrÞ, the time spent
by the particle in that region in each traversal. In the presence

FIG. 5. Three-body parameter scaled by lvdW for three equal
mass particles. Specifically, this quantity is the value of the
(negative) atom-atom scattering length at which the first universal
Efimov resonance is observable in a zero-energy three-body
recombination process. The error bars have been calculated as the
weighted mean of the experimental results reported in Sec. III.
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of an attractive van der Waals force, the velocity increases
suddenly and dramatically when the interparticle distance r
decreases to less than the van der Waals length, causing this
probability density to plummet in such regions. The existence
of the hyperradial barrier was subsequently confirmed and
extended in further studies by Naidon, Hiyama, and Ueda
(2012) and Naidon, Endo, and Ueda (2014a, 2014b) which
stressed particularly that a key element of this van der Waals
universality is a change from a very floppy equilateral
to a roughly linear geometry that occurs near R ≈ 2lvdW;
the geometry change then triggers strong non-Born-
Oppenheimer repulsion and suppresses the three-body sol-
ution at all smaller hyperradii in the relevant potential curve.
An alternative toy model addressing the implications of two-
body van der Waals forces on the three-body approximate
universality was also published by Chin (2011). Other treat-
ments aimed at this issue of three-body parameter universality
that start from a two-channel or narrow two-body resonance
point of view are presented by Schmidt, Rath, and Zwerger
(2012), Sørensen et al. (2012), and Wang and Julienne (2014).
The case of heteronuclear universal Efimov physics appears

to be significantly more complicated, e.g., for the particularly
interesting case of heavy-heavy-light (HHL) systems that
exhibit more favorable Efimov scaling than for the homo-
nuclear three-body systems. But a degree of van der Waals
universality has been predicted by Wang, Wang et al. (2012)
to still be relevant for the “Efimov favored” HHL case. The
complexity grows for these heteronuclear systems because
more parameters control the universality, namely, two van der
Waals lengths and a mass ratio, and the universal energy
spectrum now depends on two scattering lengths that are
uncorrelated in general. Nevertheless, early experimental
evidence from two different experimental groups (Pires,
Ulmanis et al., 2014; Tung et al., 2014; Ulmanis, Häfner,
Pires, Kuhnle et al., 2016) suggests that this generalized van
der Waals universality for HHL systems is at least approx-
imately valid, but still deserves careful study in the future. A
recent experimental paper (Johansen et al., 2016) suggests
that, for Efimov physics near a narrow two-body Fano-
Feshbach resonance in the 6Li − 133Cs − 133Cs system, the
universal van der Waals theoretical predictions developed for
Efimov physics in the HHL system near a broad two-body
resonance (Wang, Wang et al., 2012) will require substantial
modifications by implementing a multichannel model for the
two-body interaction Hamiltonian as in Kartavtsev and Macek
(2002), Mehta et al. (2008), and Wang and Julienne (2014).
For light-light-heavy (LLH) three-body systems, Wang, Wang
et al. (2012) stressed that these are “Efimov unfavored, ” and it
is unlikely that a true Efimov state will be observable
experimentally.

E. Recombination processes involving cluster resonances with
more than three particles

A detailed discussion of universal four-boson and five-
boson energy levels and recombination resonances is given in
Sec. III.G, but here we point out some of the basic issues
involved in describing cluster resonances in systems of N > 3
identical bosons having short-range interactions. Most of
these systems have a pairwise attractive long-range interaction

and a strong short-range repulsion, as in the case of N bosonic
helium atoms. Simple counting then shows that in the relative
coordinate system the number of positive terms in the kinetic
energy operator is proportional to N − 1 whereas the number
of net attractive terms in the pairwise potential energy is equal
to NðN − 1Þ=2. Thus, one expects that if one is in a negative
region of the two-body scattering length a where three
particles are not quite attracted strongly enough to bind a
universal trimer state, there could be a value of the negative
scattering length a ¼ a−4B where four or more particles are able
to bind. Similarly, if one goes to a region where four particles
are not quite strongly enough to be bound, there should be a
negative value of a ¼ a−5B at which five particles are just
bound. One can explore this theoretically either by varying the
two-body potential strength to modify the scattering length
(Yamashita, Fedorov, and Jensen, 2010; von Stecher, 2010,
2011; Gattobigio, Kievsky, and Viviani, 2012; Nicholson,
2012; Yan and Blume, 2015) or by artificially changing the
particle mass in the calculations for a fixed two-body
potential, which also modifies the repulsive versus attractive
balance in the Hamiltonian (Hanna and Blume, 2006). This
concept has been studied in a number of studies, and some
universal aspects have already emerged. In particular, the most
recent discussion by Yan and Blume (2015) gives evidence
that for general short-range two-body interactions, such as
Gaussians or other short-range potentials, the N-body cluster
energies at unitarity a → ∞ are not uniquely specified since
they depend on the type of “three-body regulator” imple-
mented. However, there does appear to be a quasiuniversality
that emerges in the case of van der Waals two-body inter-
actions: the cluster bound state energies at unitarity are then
approximately fixed in terms of the van der Waals length scale.
These and other developments will be addressed in the

remainder of this review, including a detailed description
of the techniques, while stressing methods of interpretive
analysis that have been utilized to study these universal
phenomena from a hyperspherical coordinate perspective. A
recent treatment of universal five-body bound states in a mass-
imbalanced fermionic system was developed by Bazak and
Petrov (2017) using alternative (integral equation) techniques
(Pricoupenko, 2011).

II. ADIABATIC HYPERSPHERICAL TREATMENT

A Schrödinger wave equation for N interacting particles,
with masses mi moving in three dimensions per particle,
becomes in the absence of external fields, a d ¼ 3N − 3
dimensional partial differential equation (PDE) in the relative
coordinate system. When expressed in hyperspherical coor-
dinates, a single scalar coordinate, the hyperradius R defined
later, is singled out for special treatment within an adiabatic
formulation. It is possible in general to formally transform
the d-dimensional PDE, specifically the time-independent
Schrödinger equation ĤΨ ¼ EΨ for any potential energy
function dependent on the relative position coordinates only,
into an infinite set of ordinary coupled differential equations in
a single adiabatic coordinate R. Moreover, a conceptual
advantage of hyperspherical coordinates is that every possible
fragmentation mode for any system of particles occurs in the
limit R → ∞.
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The basic equations of the adiabatic representation are
simple to derive. First, write the full time-independent
Hamiltonian in the form

Ĥ ¼ T̂R þHR¼const; ð1Þ

where the termHR¼const depends on R only as a parameter and
is a Hermitian partial differential operator in all other (hyper-
angular) coordinates of the system plus spins, denoted
collectively here as fϖg. Next, solve the eigenvalue equation
at each value of R:

HR¼constΦνðR;ϖÞ ¼ uνðRÞΦνðR;ϖÞ: ð2Þ

The exact eigenfunctions of the full Ĥ can now be expanded
into the complete, orthonormal set of eigenfunctionsΦνðR;ϖÞ
with R-dependent coefficients FEνðRÞ as

ΨEðR;ϖÞ ¼ R−ðd−1Þ=2X
ν

ΦνðR;ϖÞFEνðRÞ; ð3Þ

giving an infinite set of coupled differential equations for the
hyperradial functions:�
−
ℏ2

2μ

d2

dR2
þ UνðRÞ − E

�
FEνðRÞ ¼ −

X
ν0
Ŵνν0FEν0 ðRÞ; ð4Þ

where μ is the N-body reduced mass and its explicit form is
given in Eq. (9). Observe that for a coordinate space with d
dimensions, the hyperradial kinetic energy operator has the
form

T̂R ¼ −
ℏ2

2μ

1

Rd−1
∂
∂RRd−1 ∂

∂R ;

and the rescaling of the radial function eliminates the first-order
derivative of FEνðRÞ on the left-hand side of Eq. (4). The
rescaling also adds what Fano called a “mock-centrifugal
term” to uνðRÞ, giving the full effective hyperradial Born-
Oppenheimer potential as

UνðRÞ ¼ uνðRÞ þ
ðd − 1Þðd − 3Þℏ2

8μR2
. ð5Þ

The coupling terms on the right-hand side of Eq. (4), which are
responsible for nonadiabatic couplings, are given by

Ŵνν0FEν0 ¼−
ℏ2

2μ
Qνν0 ðRÞFEν0 ðRÞ−

ℏ2

μ
Pνν0 ðRÞ

dFEν0 ðRÞ
dR

: ð6Þ

Here the two nonadiabatic coupling matrices are given by

Qνν0 ðRÞ≡ ΦνðR;ϖÞ
���� ∂2

∂R2

����Φν0 ðR;ϖÞ
� 	� 	ðRÞ

and

Pνν0 ðRÞ≡ ΦνðR;ϖÞ
���� ∂
∂R

����Φν0 ðR;ϖÞ
� 	� 	ðRÞ

;

where the double bracket notation signifies an integral (and
spin trace) only over the ϖ degrees of freedom. This set of
coupled equations is sometimes treated in the hyperradial
Born-Oppenheimer approximation which neglects the right-
hand side of Eq. (4). In that approximation, the system
moves along a single potential energy curvewith no possibility
of changing from one potential to another, and this approxi-
mation of course has no possibility of describing an inelastic
collision. But in some cases it can give a reasonable description
of energy levels and scattering phase shifts, although in most
cases a more accurate result is obtained by retaining (except
near close avoided crossings) the diagonal terms of Eq. (4)
which is usually referred to as the hyperspherical adiabatic
approximation.
While the hyperradial Born-Oppenheimer approximation,

which considers only a single term in the expansion for ΨE in
Eq. (4), is often reasonable, a far richer set of phenomena
emerges when nonadiabatic coupling effects are incorporated,
either by direct solution of the coupled radial equations
or else using semiclassical methods such as Landau-Zener-
Stückelberg or their improvements along the lines of Nikitin
(1970) and Zhu, Teranishi, and Nakamura (2001). This in fact
yields a quantitative description of phenomena such as three-
body or four-body recombination and inelastic atom-dimer or
dimer-dimer scattering.
The following development sketches one explicit version of

this recasting of the Schrödinger equation into hyperspherical
coordinates for anN-particle system in three dimensions. Note
that a similar development for N 2D particles is presented
by Daily, Wooten, and Greene (2015) in the context of the
quantum Hall effect. One first transforms the N laboratory
frame position vectors fr⃗ig in terms of a suitable set of N − 1

mass-weighted relative Jacobi coordinate vectors fρ⃗ig, plus
the center-of-mass vector which is trivial and is therefore
ignored throughout. Extensive arbitrariness and flexibility
exists for the choice of the Jacobi coordinate vectors, but
for definiteness one simple choice is based on choosing the jth
Jacobi vector as the (reduced-mass-weighted) relative vector
between particle jþ 1 and the center of mass of the preceding
group of particles 1 through j, i.e.,

ρ⃗1 ¼
ffiffiffiffiffiffiffiffiffi
μ12
μ

ð
r

r⃗2 − r⃗1Þ;

ρ⃗2 ¼
ffiffiffiffiffiffiffiffiffi
μ12;3
μ

r �
r⃗3 −

m1r⃗1 þm2r⃗2
m1 þm2

�
; etc.;

ð7Þ

where the N − 1 Jacobi reduced masses are

μ12 ¼
m1m2

m1þm2

; μ12;3 ¼
ðm1þm2Þm3

m1þm2þm3

; etc.; ð8Þ

and where the N-body reduced mass is

μ ¼ ðμ12μ12;3 � � �Þ1=ðN−1Þ: ð9Þ

Alternative choices for the overall reduced mass μ are possible
and are sometimes utilized, but this choice in Eq. (9) is
particularly desirable in many contexts because it preserves
the overall volume element. With these definitions, the

Greene, Giannakeas, and Pérez-Ríos: Universal few-body physics and cluster formation

Rev. Mod. Phys., Vol. 89, No. 3, July–September 2017 035006-9



nonrelativistic kinetic operator acquires a simple form,
namely,

T̂ ¼ −
ℏ2

2μ

XN−1

j¼1

∇⃗2
ρj ≡ −

ℏ2

2μ

Xd
i¼1

∂2

∂x2i . ð10Þ

The Cartesian coordinates of all these Jacobi vectors can thus
be collected into a single d-dimensional relative vector
x≡ fx1; x2; x3;…; xdg, and these can in turn be transformed
into hyperspherical coordinates by defining the hyperradius R
as the radius of the d-dimensional hypersphere:

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22 þ x23 þ � � � þ x2d

q
: ð11Þ

There are again many possible choices for the d − 1 hyper-
angles αk, but one simple generalization of our usual spherical
coordinates is implied by the chain (Avery, 1989):

xd ¼ R cos αd−1;

xd−1 ¼ R sin αd−1 cos αd−2;

xd−2 ¼ R sin αd−1 sin αd−2 cos αd−3;

…x2 ¼ R
Yd−1
j¼1

sin αj; and

x1 ¼ R
Yd−1
j¼2

sin αj cos α1:

ð12Þ

This easily generalizable choice of the hyperangles is some-
times referred to as the canonical choice. The ranges spanned
by these hyperangles are then

0≤ α1 ≤ 2π; 0≤ αi ≤ π; i¼ 2;…;d−1: ð13Þ

Now the nonrelativistic kinetic energy operator in hyper-
spherical coordinates can be conveniently written as

T̂ ¼ TR þ ℏ2Λ2

2μR2
; ð14Þ

where

TR ¼ −
ℏ2

2μ

1

Rd−1
∂
∂RRd−1 ∂

∂R ;

and Λ2 is the isotropic Casimir operator for the group OðdÞ
(Knirk, 1974; Smirnov and Shitikova, 1977; Cavagnero, 1984,
1986) explicitly given by

Λ2 ¼ −
X
i>j

Λ2
ij; Λij ¼ xi

∂
∂xj − xj

∂
∂xi :

The operator Λ2 is often referred to as the square of the “grand
angular momentum” operator of the system. These equations
now show how the physics of this d-dimensional problem
can be mapped exactly onto an adiabatic representation in
the single coordinate R, with potential energy curves UνðRÞ

and nonadiabatic coupling terms as in standard Born-
Oppenheimer theory. As particularly stressed by Macek
(1968) and Fano (1981b, 1983), and as we document, this
approach yields tremendous insight into many physical
systems.
Some examples of applying the adiabatic hyperspherical

representation to systems with many particles are summarized
in Sec. IV. But before turning to examples, we show how far
greater symmetry and simplicity emerge from a clever choice
of the hyperangles for three-particle systems N ¼ 3 by
adopting a “body-fixed” coordinate system of the type
suggested byWhitten and Smith (1968). The particular variant
described here adopts the conventions specified by Suno
et al. (2002).
Usually we are interested in three-body systems that have

exact separability in the relative and center-of-mass coordi-
nates, whereby the relative degrees of freedom can be
described by six coordinates, i.e., d ¼ 6 is the full dimen-
sionality of this space. Three of these coordinates are
conveniently chosen to be Euler angles fα; β; γg that connect
the body-fixed frame to the space-fixed frame. Three remain-
ing coordinates in this system are the hyperradius R and two
hyperangles θ and φ. Following Whitten and Smith (1968),
Johnson (1983), Lepetit, Peng, and Kuppermann (1990), and
Kendrick et al. (1999) with only minor modifications
described by Suno et al. (2002), this begins from the mass-
scaled Jacobi coordinates (Delves, 1960)

ρ⃗1 ¼ ðr⃗2 − r⃗1Þ=Δ; ð15Þ

ρ⃗2 ¼ Δ
�
r⃗3 −

m1r⃗1 þm2r⃗2
m1 þm2

�
; ð16Þ

with

Δ2 ¼ 1

μ

m3ðm1 þm2Þ
m1 þm2 þm3

ð17Þ

and μ is the three-body reduced mass as previously defined,
namely,

μ2 ¼ m1m2m3

m1 þm2 þm3

: ð18Þ

In this expression, particle i with mass mi has position r⃗i.
When the three particles have identical massm, the parameters
simplify to Δ ¼ ð4=3Þ1=4 and μ ¼ m=

ffiffiffi
3

p
. And specializing

the definition of the hyperradius R, it is given here by

R2 ¼ ρ21 þ ρ22; 0 ≤ R < ∞: ð19Þ

The hyperangles θ and φ are determined by the four nonzero
components of the two Jacobi vectors in the body frame x − y
plane by
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ðρ⃗1Þx ¼ R cosðθ=2 − π=4Þ sinðφ=2þ π=6Þ;
ðρ⃗1Þy ¼ R sinðθ=2 − π=4Þ cosðφ=2þ π=6Þ;
ðρ⃗2Þx ¼ R cosðθ=2 − π=4Þ cosðφ=2þ π=6Þ;
ðρ⃗2Þy ¼ −R sinðθ=2 − π=4Þ sinðφ=2þ π=6Þ;

ð20Þ

where by definition ρ1z ¼ 0 ¼ ρ2z. For definiteness, note that
the x, y, and z right-handed coordinate system of the body-
fixed frame is chosen such that the z axis is parallel to ρ⃗1 × ρ⃗2,
and the x axis is that with the smallest moment of inertia. The
ranges of the hyperangles are 0 ≤ θ ≤ π=2 and 0 ≤ φ < 2π
(Kendrick et al., 1999). If the three equal mass particles are in
fact truly identical, then the hyperangle φ can be further
restricted to the range ½0; 2π=3�. Note that in this case the
interaction potential is symmetric under the operation
φ → π=3 − φ. Then the bosonic or fermionic symmetry of
the Schrödinger solutions under exchange of any two particles
is particularly simple to impose as a boundary condition in
these coordinates. The volume element for integrals over jΨj2
is equal to

dV ≡ dϖR5dR ¼ 2 sin 2θdθdφdα sin βdβdγR5dR;

and the Euler angle ranges are 0 ≤ α < 2π, 0 ≤ β < π, and
0 ≤ γ < π. The full Schrödinger equation for the rescaled
wave function ψE ¼ R5=2Ψ describing three identical particles
now takes the form�
−

1

2μ

∂2

∂R2
þ 15

8μR2
þ Λ2

2μR2
þ VðR; θ;φÞ

�
ψE ¼ EψE. ð21Þ

In this expression, Λ2 is the squared grand angular momentum
operator and is given by (Lepetit, Peng, and Kuppermann,
1990; Kendrick et al., 1999)

Λ2

2μR2
¼ T1 þ T2 þ T3; ð22Þ

where

T1 ¼ −
2

μR2 sin 2θ
∂
∂θ sin 2θ

∂
∂θ ; ð23Þ

T2 ¼
1

μR2 sin2 θ

�
i
∂
∂φ − cos θ

Lz

2

�
2

; ð24Þ

T3 ¼
L2
x

μR2ð1 − sin θÞ þ
L2
y

μR2ð1þ sin θÞ þ
L2
z

2μR2
: ð25Þ

The total orbital angular momentum operator in the body
frame is denoted here as L⃗ ¼ fLx; Ly; Lzg. For an interacting
three-body system, one frequently adopts a sum of two-body
potential energy functions for VðR; θ;φÞ, but some explora-
tions are carried out with explicit nonpairwise additive terms
as well. That is, most explorations of universal physics have
used an approximate three-particle V of the form

VðR; θ;φÞ ¼ vðr12Þ þ vðr23Þ þ vðr31Þ; ð26Þ

where rij are the interparticle distances. For three equal mass
particles, these distances are expressed in terms of the
hyperspherical coordinates as

r12 ¼ 3−1=4R½1þ sin θ sinðφ − π=6Þ�1=2;
r23 ¼ 3−1=4R½1þ sin θ sinðφ − 5π=6Þ�1=2;
r31 ¼ 3−1=4R½1þ sin θ sinðφþ π=2Þ�1=2:

ð27Þ

As indicated, the first step in implementing the adiabatic
representation is to solve the fixed-R adiabatic eigenvalue
equation for a given symmetry LΠ to obtain the fixed-R
adiabatic eigenfunctions (Φν, sometimes referred to as chan-
nel functions) and eigenvalues [potential energy curves
UνðRÞ]. Here we adopt an abbreviated notation with Ω≡
ðθ;φ; α; β; γÞ and for some systems Ω includes spin degrees of
freedom as well. For the body-frame choice of hyperangles, it
is simplest to expand the Euler angle dependence of the Φν in
terms of normalized Wigner D functions ~DL

MKðαβγÞ, i.e., as

ΦLΠ
ν ðR;ΩÞ ¼

X
K

ϕKνðR; θ;φÞ ~DL
MKðαβγÞ: ð28Þ

This representation guarantees that ΦLΠ
ν is automatically an

eigenfunction of L⃗2, and it is also an even (odd) eigenfunction
of the parity operator Π̂ provided K is restricted to even (odd)
values, respectively. A few more details of this body-frame
representation are useful when using this representation to
convert the five-dimensional PDE (21) into a set of coupled
2D PDEs in θ;φ only. In this body-frame representation of
angular momentum, the raising and lowering operators are
defined (owing to the anomalous commutation relations of
body-frame operators) as

L� ¼ Lx ∓ iLy; ð29Þ

where

L� ~DL
M;KðαβγÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL ∓ KÞðL� K þ 1Þ

p
~DL
M;K�1ðαβγÞ;

Lz
~DL
M;KðαβγÞ ¼ K ~DL

M;KðαβγÞ:

After inserting these expressions, one obtains for each value
of fL;M;Πg a finite number of coupled 2D PDEs in θ;φ. The
terms involving L2

x and L2
y cause couplings between compo-

nents K and K � 2. While these PDEs are for complex
solutions, as written here, it is possible to take linear
combinations, e.g., ϕKðR; θ;φÞ � ϕ−KðR; θ;φÞ and reformu-
late the PDEs in terms of real functions everywhere.

A. Recombination cross sections and rate coefficients

It was proven by Delves that the hyperspherical represen-
tation preserves the usual desired properties of continuum
scattering solutions, such as flux conservation when the
Hamiltonian is Hermitian which ensures unitarity of the
scattering matrix S and symmetry of the S matrix when
the Hamiltonian is time reversal invariant. One simple con-
ceptual aspect of Macek’s adiabatic hyperspherical represen-
tation involving potential energy curves and nonadiabatic
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couplings is that the computation of the unitary S matrix can
utilize any of the powerful techniques already developed for
treating two-body inelastic scattering processes. In other
words, just as in standard multichannel scattering theory
(Rodberg and Thaler, 1970) or multichannel quantum defect
theory (Fano, 1970; Seaton, 1983; Mies, 1984; Greene and
Jungen, 1985; Aymar, Greene, and Luc-Koenig, 1996; Burke,
Greene, and Bohn, 1998; Mies and Raoult, 2000; Gao, 2001;
Ruzic, Greene, and Bohn, 2013), one simply propagates
solutions of the coupled equations in Eq. (4) out to large
distances, fits to linear combinations of energy normalized
regular and irregular radial functions ffEνðRÞ; gEνðRÞg and in
this manner obtain a real, symmetric reaction matrix Kνν0 ðEÞ
characterizing solutions from some large matching radius R0

out to infinity:

ΨEν0 ðR;ϖÞ¼
X
ν

ΦνðR;ϖÞ
Rðd−1Þ=2 ½fEνðRÞδνν0 −gEνðRÞKνν0 �. ð30Þ

Then linear combinations of those solutions can be taken to
enforce any appropriate boundary conditions at R → ∞ for
the observable quantities of interest (Fano and Rau, 1986;
Aymar, Greene, and Luc-Koenig, 1996). The usual relations
are obtained for quantities such as S ¼ ð1þ iKÞð1 − iKÞ−1
with extra long-range phase factors sometimes needed to
satisfy outgoing-wave or incoming-wave boundary conditions
[see, e.g., Sec. II of Aymar, Greene, and Luc-Koenig (1996)].
Of particular interest in the context of ultracold quantum gases
is the three-body recombination rate coefficient which was
derived by Esry, Greene, and Burke (1999). The relevant
formula for three identical bosonic particles which are in a
thermal gas rather than a BEC, after correcting for a factor of 6
error in the formulas reported in that paper, is

K3ðEÞ ¼
ℏk
μ

192π2

k5
X
ν0ν

jSν0;νj2. ð31Þ

Here k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μE=ℏ2

p
and the sum includes all entrance three-

body continuum channels (Aþ Aþ A; ν) for the symmetry of
interest, and over all final state two-body bound channels
(A2 þ A; ν0). A few words are relevant to explain how this
recombination rate coefficient is to be used in rate equations
used to model this reaction in a cold gas. This quantity K3ðEÞ
is the fundamental coefficient relevant to a single triad of
particles in the gas. The coefficient in the rate equations for the
disappearance of atoms or the appearance of dimers is another
rate coefficient L3, which is determined by the following
points. If one imagines that there are N atoms in a thermal gas
volume V, then there are gN ¼ NðN − 1ÞðN − 2Þ=3! ≈ N3=6
distinct triads of the type Aþ Aþ A in the system. If we
define a density as n≡ N=V, then the rate equation for the
disappearance of atoms from a cold trapped gas is

dn
dt

¼ −L3n3; ð32Þ

where for a thermal trapped gas,

L3 ¼ 3K3

gN
N3

≈
K3

2
.

In this last equation, the leading factor of 3 in the middle is the
number of atoms lost in each recombination event, and the
value of 3 reflects the fact that for a typical trapped gas of
atoms, a recombination event releases so much kinetic energy
that both the final dimer and the final atom following
recombination will be ejected, i.e., all three of the initially
free atoms. If an unusually deep trap is implemented, or if the
binding energy of the dimer produced is far less than the trap
depth, then that factor of 3 would of course be changed to 2
since only the dimer would escape the atom trap, although one
should then also keep track of the energy deposited into the
cloud by the remaining hot atom. As is also well known
(Kagan, Svistunov, and Shlyapnikov, 1985; Burt et al., 1997;
Söding et al., 1999), if the initial atom cloud is in a pure BEC
rather than a thermal gas, then the preceding K3 needs to be
reduced by a factor of 3!.
Some of the simplest and most important early predictions

of the low-energy recombination rate behavior include an
expected a4 scaling (Fedichev, Reynolds, and Shlyapnikov,
1996), which was later seen to be modified in a nontrivial way
that differs depending on whether the atom-atom scattering
length a is positive (Esry, Greene, and Burke, 1999; Nielsen
and Macek, 1999) or negative (Esry, Greene, and Burke,
1999). If a is large and positive, then there exists a weakly
bound dimer state whose energy is approximately −ℏ2=ma2,
and the recombination rate into that universal dimer channel
should have Stückelberg interference minima at scattering

lengths aðiÞþ whose spacings should scale geometrically with

the Efimov scaling parameter aðiþ1Þ
þ =aðiÞþ ¼ eπ=s0 ∼ 22.7. If

instead a is negative, then this implies that there is no weakly
bound universal dimer, and recombination can occur only into
deeper nonuniversal dimer channels. On this side, even though
the attraction is not strong enough to bind two atoms together
into a universal dimer, the Efimov effect can bind trimers at
certain values of aðiÞ− < 0. Moreover, the successive values of
a where a trimer can form at zero energy also obey the Efimov
scaling aðiþ1Þ

− =aðiÞ− ∼ 22.7. While the first experiments
(Ferlaino et al., 2008, 2009, 2011; Gross et al., 2009,
2010, 2011; Knoop et al., 2009, 2010; Pollack, Dries, and
Hulet, 2009; Zaccanti et al., 2009; Berninger et al., 2011,
2013; Machtey, Kessler, and Khaykovich, 2012; Machtey
et al., 2012; Dyke, Pollack, and Hulet, 2013; Zenesini et al.,
2013) were able only to observe a single Efimov resonance
(i ¼ 1) for homonuclear systems, a recent experiment by
Huang, Sidorenkov et al. (2014) observed the i ¼ 1, 2
resonances and confirmed their approximate ratio to be close
to Efimov’s predicted value.
Much subsequent theory has treated the physics of recom-

bination and developed compact analytical formulas within
the framework of zero-range models and/or effective field
theory, which are particularly convenient for analyzing exper-
imental data (Braaten and Hammer, 2006; Macek, Yu
Ovchinnikov, and Gasaneo, 2006; Gogolin, Mora, and
Egger, 2008; Mora, Gogolin, and Egger, 2011). A different
direction of extending and generalizing recombination theory
has been the treatment of recombination processes for N > 3
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particles. A generalization of Eq. (31) presented for recombi-
nation of N identical bosons into any number of bound
fragments was derived by Mehta et al. (2009):

KNðEÞ ¼ N!
ℏk
μ

�
2π

k

�
d−1 Γðd=2Þ

2πd=2

X
ν0ν

jSν0νj2: ð33Þ

Here d is the number of dimensions in the relative coordinate
space after eliminating the trivial center-of-mass motion, i.e.,
for N particles in three dimensions, d ¼ 3N − 3. This last
formula of course reduces to the above expression for K3

when N ¼ 3.

III. THE BIRTH OF FEW-BODY PHYSICS: THE EFFECTS
OF THOMAS AND EFIMOV

A. The Thomas collapse

In the early days of nuclear physics, in 1935, a mere three
years following the Chadwick discovery of the neutron, L. H.
Thomas published a seminal work about the structure of the
triton 3H (Thomas, 1935). In particular, Thomas studied the
existence of the triton ground state obtained with different
assumptions for the neutron-proton interaction, but neglecting
neutron-neutron interactions as depicted in Fig. 2. As a result,
Thomas (1935) found that the neutron-neutron potential
energy should have a repulsive character at short range,
and that the neutron-proton interaction cannot be confined
to a distance very small compared with 1 fm. These findings
constitute the very first exploration of few-body physics with
finite-range forces, and they sparked the interest of many
physicists in different fields of physics, especially atomic
physics and molecular physics in addition to nuclear physics.
The key point of Thomas (1935) is that it is possible to

account for nucleon-nucleon (or atom-atom) interactions
having an arbitrary scattering length a with many different
two-body interaction models. For a two-body model with
arbitrarily short range r0 there must be a corresponding
potential depth of order ℏ2=2mr20 in order to yield a value
of a that is independent of the potential range and fixed at an
experimentally measured value. For instance, in a spherical
square well model having depth V0 and range r0, the zero-
energy two-body scattering length for two equal mass par-
ticles of mass m and reduced mass m=2 is equal to

a ¼ r0 − tan qr0=q, where q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mV0=ℏ2

p
. As r0 is decreased

to smaller and smaller values, q must increase approximately
in proportion to 1=r0 in order to maintain any given fixed
scattering length. Thomas then examined the nature of the
three-body ground state energy in this limit of decreasing
potential range r0 but fixed two-body scattering length. The
qualitative argument is rather simple, namely, that when a
third particle is brought into the system having equal scatter-
ing lengths a, this adds two new potential energy terms to the
Hamiltonian of the same depth and range, while adding only
one new kinetic energy term. As a result, the three-body
system is shown by Thomas to have a ground state energy that
must be of the order of −ℏ2=mr20, which becomes arbitrarily
large and negative as r0 → 0.

B. Efimov physics and universality in ultracold gases

Efimov considered an analogous three-body problem which
also involved two-body scattering lengths a much larger in
magnitude than the potential range, i.e., jaj=r0 ≫ 1, except
that Efimov visualized the two-body interaction range r0 to be
fixed, and jaj → ∞.
Three identical particles with resonant two-body interaction

showed an infinite series of three-body bound states as
predicted by Efimov (1970, 1971, 1973) more than 40 years
ago. This infinity of trimer states follows a discrete symmetry
scaling, i.e., the energy of the nth and (nþ 1)th states are
related through Enþ1 ¼ λ2En, where for the particular case of
three identical bosons λ ¼ eπ=s0 with s0 ¼ 1.0062 (Efimov,
1970; Braaten and Hammer, 2006; Greene, 2010; Ferlaino
et al., 2011; Wang, D’Incao, and Esry, 2013), and hence
λ ≈ 22.7. Efimov introduced the universal theory of three-
body collisions thinking in nuclear systems as the preferable
scenario for the quest of his predictions. However, the first
experimental evidence of the prediction of Efimov came from
ultracold gases (Kraemer et al., 2006), and this early evidence
triggered an explosive growth in research into few-body
ultracold physics.
In ultracold systems the exciting capability exists to tune a

two-body atomic scattering length, using magnetic, optical, or
radio-frequency-induced Fano-Feshbach resonances (Inouye
et al., 1998; Köhler, Góral, and Julienne, 2006; Chin et al.,
2010; Hanna, Tiesinga, and Julienne, 2010; Tscherbul et al.,
2010; Owens, Xie, and Hutson, 2016). This tunability of
ultracold system Hamiltonians makes them perfect candidates
to study few-body universality. However, the formation of
universal trimers must be detected and characterized in such
systems. The most usual route to such detection is to measure
the three-body loss coefficient L3 as a function of the two-
body scattering length a, as schematically shown in Fig. 1.
Specifically, the universal Efimov trimers cause an enhance-
ment of L3 at a given two-body negative scattering length aðnÞ− ,
and the Efimov physics exhibits interference minima at values

of the positive two-body scattering length aðnÞþ , as shown in
Fig. 1. Efimov states can also be studied by radiative or
oscillatory field association as was achieved in 6Li by Lompe,
Ottenstein, Serwane, Wenz et al. (2010) and Nakajima et al.
(2011) and in 7Li by Machtey et al. (2012).

C. Faddeev equations for three identical bosons: Bound states

1. Hamiltonian and Faddeev operator equations

In the following, three spinless and equal mass particles of
bosonic character are considered which interact via short-
range fields. Note that the notation introduced for deriving the
Faddeev equations follows Gloeckle (1983). Then the total
Hamiltonian for three s-wave interacting bosons obeys the
following form:

H ¼ H0 þ V̂23 þ V̂31 þ V̂12; ð34Þ

where H0 is the three-body kinetic operator, and V̂ij indicates
the short-range potential between the ith and jth particles. For
simplicity the following notation is introduced V̂i ≡ V̂jk with
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cyclic permutation of ði; j; kÞ. The three-body Schrödinger
equation reads

�
H0 þ

X
i

V̂i

�
Ψ ¼ EΨ; ð35Þ

where Ψ indicates the three-body wave function. Employing
now the three-body noninteraction Green’s function, i.e.,
Ĝ0 ≡ ½E −H0�−1, Eq. (35) can be recast to the following form:

Ψ ¼ Ĝ0

X
i

V̂iΨ ¼ Ĝ0V̂1Ψ|fflfflffl{zfflfflffl}
ψ ð1Þ

þ Ĝ0V̂2Ψ|fflfflffl{zfflfflffl}
ψ ð2Þ

þ Ĝ0V̂3Ψ|fflfflffl{zfflfflffl}
ψ ð3Þ

; ð36Þ

where this holds as long as the Green’s function is free of
poles. In our case this is valid since we focus on the
description of three-body bound states, i.e., the energy of
any bound state is negative while the zeroth-order
Hamiltonian has only kinetic energy and is positive definite.
As Eq. (36) illustrates the total three-body wave function Ψ
can be decomposed in three components, namely,Ψ ¼ P

iψ
ðiÞ

with i ¼ 1;…; 3 where each ψ ðiÞ indicates the ith Faddeev
component of the total three-body wave function Ψ.
Physically, the ith Faddeev component, i.e., ψ ðiÞ implies that
the ith particle is a spectator particle with respect to the
interacting pair ðj; kÞ. Employing this decomposition ansatz in
Eq. (36) yields a system of three coupled Faddeev equations
which describe the bound state properties of the three-body
system

0
B@ψ ð1Þ

ψ ð2Þ

ψ ð3Þ

1
CA ¼ Ĝ0

0
B@ 0 t̂1 t̂1

t̂2 0 t̂2
t̂3 t̂3 0

1
CA
0
B@ψ ð1Þ

ψ ð2Þ

ψ ð3Þ

1
CA; ð37Þ

where the term t̂i represents the two-body transition
operator. More specifically, t̂i obeys the following Lippmann-
Schwinger equation:

t̂i ¼ V̂i þ V̂iĜ0 t̂i; for i ¼ ð1; 2; 3Þ; ð38Þ

where the term Ĝ0 denotes the Green’s function of three
noninteracting bosons. This implies that the transition oper-
ator t̂i is considered as a two-body operator embedded in a
three-body Hilbert space.
The Faddeev equations in Eq. (37) can be decoupled by

taking into account the exchange symmetry between the three
particles. Formally the exchange symmetry can be addressed
by a permutation operator Pij which permutes the ith with the
jth particle. In addition, the considered system consists of
three identical bosons, and therefore the total wave function Ψ
is symmetric. Because of this the exchange operator permutes
only the particles in the Faddeev components. By using the
permutation operator, a pair of Faddeev components (ψ ðjÞ,
ψ ðkÞ) can be expressed in terms of ψ ðiÞ and vice versa. The ψ ðiÞ

component of the Faddeev equations in Eq. (37) then takes the
following form:

ψ ðiÞ ¼ Ĝ0 t̂iðPijPjkþPikPjkÞψ ðiÞ; for ði;j;k¼ 1;2;3Þ; ð39Þ

where the indices ði; j; kÞ form a cyclic permutation.
Equation (39) represents the operator form of the Faddeev

equations and in the following Eq. (39) is expressed in
momentum space. For completeness reasons in the following
the Jacobi coordinates and the corresponding momenta are
briefly reviewed.

2. Faddeev equations in momentum representation

Consider that the motion of three bosonic particles with
masses mi with i ¼ 1;…; 3 are described by the lab coor-
dinates xi whereas their corresponding momentum is ki with
i ¼ 1;…; 3. Then in order to describe the relative motion of
three particles the following three sets of Jacobi coordinates
are introduced:

ρi ¼ xi −
mjxj þmkxk
mj þmk

and ri ¼ xj − xk; ð40Þ

where ði; j; k ¼ 1; 2; 3Þ form a cyclic permutation and the
Jacobi vector ri denotes the relative distance between the jth
and kth particles whereas the vectors ρi indicate the distance of
the ith particle, i.e., the spectator particle, from the center of
mass of the ðj; kÞ pair of atoms. Note that the coordinate of the
center of mass of three particles obeys the simple relation
R ¼ P

3
i¼1 mixi=M, where M ¼ P

3
i¼1 mi denotes the total

mass of the system.
Similarly, for the Jacobi momenta we obtain the following

relations:

qi ¼
mkkj −mjkk
mj þmk

and

pi ¼
ðmj þmkÞki −miðkj þ kkÞ

M
;

ð41Þ

where ði; j; k ¼ 1; 2; 3Þ form a cyclic permutation, qi denotes
the relative momentum of the ðj; kÞ pair, and pi indicates
the momentum of the the spectator particle relative to the
center of mass of the ðj; kÞ pair. The total momentum is given
by P ¼ P

3
i¼1 ki.

According to these definitions the kinetic operator Ĥ0 in the
momentum space takes the following form:

H0 ¼
P2

2M
þ p2i
2μ̄i

þ q2i
2μi

; ð42Þ

where μi ¼ mjmk=ðmj þmkÞ is the reduced mass of the ðj; kÞ
pair particles and μ̄i ¼ miðmj þmkÞ=M denotes the reduced
mass of the spectator particle and the center of mass of the
ðj; kÞ pair.
In the following we assumed that the collisions occur in the

frame of the total center of mass; this means P ¼ 0. Therefore,
the term P2=ð2MÞ can be removed from the total Hamiltonian
which then takes the form
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H0 ¼ p2i
2μ̄i

þ q2i
2μi

þ ViðρiÞ þ Vj

�
ri þ

mj

mj þmk
ρi

�

þ Vk

�
ri −

mk

mj þmk
ρi

�
. ð43Þ

Since the Jacobi coordinates and momenta are introduced,
the reduced Faddeev equation [see Eq. (39)] can be trans-
formed into the momentum space. For this purpose a certain
set of Jacobi momenta is chosen, i.e., ðp1; q1Þ. This means that
in this particular set of Jacobi coordinates the particle 1 is the
spectator of the pair (2,3). Upon introducing a complete set of
states jq1p1i, Eq. (39) becomes

hq1p1jψ ð1Þi ¼ G0ðq1; p1Þ
Z

dq01
ð2πÞ3

dp01
ð2πÞ3 hq1p1jt̂1jq

0
1p

0
1i

× hq01p01jP12P23 þ P13P23jψ ð1Þi; ð44Þ

where the three-body Green’s function in momentum space is
given by

G0ðq1; p1Þ ¼
�
E −

q21
2μ1

−
p2
1

2μ̄1

�−1
.

Note that for the bound trimer spectrum the total energy E is
negative; thus in this case the G0 Green’s function is free
of poles.
The matrix elements of the transition operator t̂1 in

Eq. (44) can be evaluated with the help of the corresponding
Lippmann-Schwinger equation (38):

hq1p1jt̂1jq01p01i ¼ δðp1 − p01Þhq1jt
�
E −

p2
1

2μ̄1

�
jq01i; ð45Þ

where the term tðE − p2
1=2μ̄1Þ is the two-body transition

amplitude embedded in the two-body Hilbert space. This
means that the transition amplitude obeys a two-body
Lippmann-Schwinger equation of the following form:

hq1jtðεÞjq01i ¼ hq1jV̂1jq01i þ
Z

dq001
ð2πÞ3 hq1jV̂1jq001i

×

�
ε −

q0021
2μ1

�−1
hq001jtðεÞjq01i. ð46Þ

In addition the exchange operators in Eq. (44) for equal
masses, namely, m1 ¼ m2 ¼ m3 ¼ m obey the following
relation:

hq01p01jP12P23 þ P13P23jq001p001i

¼ δ

�
q01 þ

3

4
p001 þ

q001
2

�
δ

�
p01 − q001 þ

p001
2

�

þ δ

�
q01 −

3

4
p001 þ

q001
2

�
δ

�
p01 þ q001 þ

p001
2

�
: ð47Þ

By substituting the Eqs. (45), (46), and (47) into the
reduced Faddeev equation, namely, Eq. (44), we get the
following expression:

hq1p1jψ ð1Þi ¼
�
E −

q21
m

−
3p2

1

4m

�−1

×
Z

dp01
ð2πÞ3

��
q1

����t
�
E −

3p2
1

4m

����� − p01 −
p1
2

	

×

�
p1 þ

p01
2
; p01

����ψ ð1Þ
	

þ
�
q1

����t
�
E −

3p2
1

4m

�����p01 þ p1
2

	

×

�
−p1 −

p01
2
; p01

����ψ ð1Þ
	�

: ð48Þ

3. Separable potential approximation: Two-body transition
elements and the reduced Faddeev equation

In the following we consider that the two-body interactions
can be modeled by a separable potential, such as the
Yamaguchi potential (Yamaguchi, 1954). This particular type
of potentials simplifies the Faddeev equations [see Eq. (48)]
into a one-dimensional integral equation. Assume that the two
particles interact via s-wave interactions only through the
following nonlocal potential:

hq1jV̂1jq01i ¼ −
λ

m
χðq1Þχðq01Þ; ð49Þ

where λ denotes the strength of the two-body interactions, m
indicates the mass of the particles, and the χð·Þ functions are
the so-called form factors. Typically, the χ form factors are
chosen such that the potential V yields the same scattering
length and effective-range correction as the real two-body
interactions. Note that since we are interested in three-body
bosonic collisions of neutral atoms in Sec. III.D we provide
the form factors χ which are derived from a van der Waals
potential. This particular choice of form factor incorporates in
a transparent way the pairwise two-body interactions of the
three neutral atoms.
After insertion of Eq. (46), the two-body transition matrix

elements for the separable potential in Eq. (49) obey

hq1jtðεÞjq01i ¼ −
λ

m
χðq1ÞτðεÞχðq01Þ;with

τ−1ðεÞ ¼ 1þ λ

m

Z
dq1
ð2πÞ3

jχðq1Þj2
ε − q21=m

:
ð50Þ

After specializing to states where the three particles have
total angular momentum L ¼ 0 and using the separable
potential from Eq. (49), as well as the two-body transition
matrix elements from Eq. (50), the reduced Faddeev equation
in Eq. (48) reads

hq1p1jψ ð1Þi ¼−2
λ

m

�
E−

q21
m
−
3p2

1

4m

�−1
τ

�
E−

3p2
1

4m

�

× χðq1Þ
Z

dp01
ð2πÞ3 χ

�
p01þ

p1
2

��
p1þ

p01
2
;p01jψ ð1Þ

	
:

ð51Þ
This integral equation can be further simplified by employ-

ing the following ansatz for the Faddeev component jψ ð1Þi:
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hq1p1jψ ð1Þi ¼
�
E −

q21
m

−
3p2

1

4m

�−1
χðq1ÞF ðp1Þ. ð52Þ

Substituting the ansatz of Eq. (52) into the reduced Faddeev
equation, namely, Eq. (50), an integral equation for the
amplitudes F is obtained where its arguments depend only
on the magnitude of the p1 vector states due to the s-wave
character of the two-body interactions. Under these consid-
erations the integral equation of the amplitudes F reads

F ðp1Þ ¼ −2
λ

m
τ

�
E −

3p2
1

4m

�

×
Z

dp01
ð2πÞ3

χðjp01 þ p1=2jÞχðjp1 þ p01=2jÞ
E − p2

1=m − p02
1 =m − p1 · p01=m

F ðp0
1Þ;

ð53Þ

where for a particular choice of χ form factors the preceding
equation is transformed into a matrix equation. For a given
s-wave scattering length and effective range parameters,
numerically the energy is varied in searching for roots of
the corresponding determinantal equation of Eq. (53).
Finally, note that replacement of the χ form factor by

χðq1Þ → 1 in the reduced Faddeev equation in Eq. (51) one
obtains the Skorniakov–Ter-Martirosian (STM) equation
(Skorniakov and Ter-Martirosian, 1957) for three bosons
colliding with zero-range s-wave interactions. The following
section focuses on deriving a separable potential which is
suitable for the two-body interactions of neutral atoms, i.e.,
van der Waals forces.

D. Separable potentials for van der Waals pairwise interactions

In order to study the universal aspects of the three-body
spectrum of bosonic gases it is necessary to focus on the two-
body interactions which govern the collisional behavior of
ultracold gaseous matter. More specifically, it is well known
that neutral bosonic atoms at large separation distances
experience an attractive van der Waals type of force which
asymptotically vanishes as ∼ − 1=r6. Note that we ignore the
Casimir-Polder modification due to retardation (Casimir and
Polder, 1948), which modifies this at very long range but is
largely irrelevant to the energy scale of interest here. This
particular type of interaction potential imprints universal
features onto the corresponding wave function (Gao, 1998;
Flambaum, Gribakin, and Harabati, 1999) which becomes
manifested in the spectra of three interacting bosons.
However, as shown in the preceding Sec. III.C.3, the

Faddeev equations are best simplified by using the separable
potential approach. Thus it is of major interest to construct a
separable potential which encapsulates the main features of
the van der Waals forces. Naidon, Endo, and Ueda (2014a,
2014b) showed that such a potential can be derived simply by
using the analytically known zero-energy wave function of
two particles in the presence of the van der Waals potential
(Flambaum, Gribakin, and Harabati, 1999). Namely, the zero-
energy two-body wave function for van der Waals interaction
is given by the following relation:

ϕðrÞ ¼ Γ
�
5

4

� ffiffiffiffiffiffiffiffiffiffi
r

lvdW

r
J1=4

�
2
l2
vdW

r2

�

−
lvdW

as
Γ
�
3

4

� ffiffiffiffiffiffiffiffiffiffi
r

lvdW

r
J−1=4

�
2
l2
vdW

r2

�
; ð54Þ

where as is the s-wave scattering length, and lvdW ¼
1
2
ðmC6=ℏ2Þ1=4 is the van der Waals length scale with C6

the dispersion coefficient. The quantities Γð·Þ and J�1=4ð·Þ
represent the gamma and Bessel functions, respectively.
Figure 6 depicts the wave function in Eq. (54) for an s-wave

scattering length as ¼ 50lvdW. At short distances the two-
body wave function oscillates fast enough which in essence
reflects the fact that the van der Waals potential contains many
two-body bound states. At large distances the wave function
of Eq. (54) obtains the form ϕðrÞ → 1 − r=as. It is evident that
a separable potential based on the two-body wave function
contains the correct behavior of the two-body wave function
as well as effective range effects due to the short-range
oscillatory part of ϕðrÞ. The latter is of particular importance
since Naidon, Endo, and Ueda (2014a, 2014b) demonstrated
that the universality of the three-body parameter of the Efimov
states relies exactly on the short-range oscillatory part of the
two-body wave function. The Yamaguchi potential from
Eq. (49) is adopted, where the χ function in the momentum
space is defined by

χðq1Þ ¼ 1 − q1

Z
∞

0

dr

�
1 −

r
as

− ϕðrÞ
�
sinðq1rÞ; ð55Þ

where ϕðrÞ is the zero-energy two-body rescaled radial wave
function [see Eq. (54)]. Note that the argument of the χ form
factor depends only on the magnitude of the vector q1 due to
the s-wave character of the wave function. The strength λ of
the Yamaguchi potential is determined by

FIG. 6. The two-body zero-energy wave function ϕðrÞ for the
van der Waals potential as a function of the scaled interparticle
distance r=lvdW, for an s-wave scattering length as ¼ 50lvdW.
Note that lvdW denotes the van der Waals length scale defined in
the text.
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λ ¼
�
−

1

4πas
þ 1

2π2

Z
∞

0

dq1jχðq1Þj2
�
−1
: ð56Þ

Substitution of Eqs. (55) and (56) for the nonlocal inter-
action into Eq. (49) specifies a separable potential which
mimics a van der Waals interaction between two neutral
atoms. Namely, the van der Waals separable potential in the
momentum space reads

hq1jV1jq10i ¼
χðq1Þχðq01Þ

m=4πas − ðm=2π2Þ R∞
0 dq1jχðq1Þj2

: ð57Þ

As an example, Fig. 7 illustrates the binding energies versus
the s-wave scattering length as. The two-body dimer energies
within the separable potential approximation [see Eq. (57)]
(dotted red line) are compared with the effective range theory
of van der Waals interactions given by Flambaum, Gribakin,
and Harabati (1999) (solid blue line, bottom). The solid
orange line (top) indicates the universal dimer energies.
Evidently, Fig. 7 depicts that the separable potential intro-
duced in Eq. (57) captures the essential two-body physics
beyond the effective range approximation.

E. The Efimov spectrum and its universal aspects

This section focuses on the impact of van der Waals forces
on the Efimov spectrum of three identical s-wave-interacting
bosons, the typical situation for three ultracold atoms but
irrelevant for the few-nucleon problem. In particular, the
reduced Faddeev equation (44) is numerically solved within
the separable potential approximation. The separable potential
is constructed according to the prescription given in Sec. III.D.
Specifically, use of the potential in Eq. (57) ensures that it
contains all the relevant zero-energy information about the van
der Waals potential. Under these considerations, Fig. 8 depicts
the Efimov spectrum of three neutral atoms as a function of the
s-wave scattering length. In particular, the blue curve (bottom)

and dots indicate the ground Efimov trimer state. The orange
dots and curve (top) denote the first excited state. The dashed
black curve refers to the universal dimer threshold, i.e.,
E ¼ −ℏ2=ma2s , whereas the dotted green curve corresponds
to the two-body binding energies given for the potential in
Eq. (57). Deeply in the regime of unitarity, namely, jasj → ∞,
the trimer energies for the ground and first excited states are
E1 ¼ 0.035 338l−2

vdW and E2 ¼ 6.6806 × 10−5l−2
vdW, respec-

tively, or in wave vectors we have that κ1 ¼ 0.1879l−1
vdW and

κ2 ¼ 0.008 17l−1
vdW. For the first two κ wave vectors a scaling

factor is obtained which is equal to κ1=κ2 ¼ 22.9988. The
latter deviates from the universal scaling law obtained
within the zero-range approximation which is given by
κZR1 =κZR2 ¼ 22.6944. This discrepancy between the van der
Waals approach and the zero-range approximation can be
attributed to the fact that the latter method completely neglects
effective range corrections. Specifically, the ground Efimov
state is strongly influenced by finite-range effects in the two-
body interaction potentials (Ji et al., 2015). Note that the value
obtained for κ0 is in reasonable agreement within 16% with
the corresponding calculation in Wang, D’Incao, Esry, and
Greene (2012), which was based on a local position space van
der Waals interaction. More specifically, for a hard-core van
der Waals potential tail Wang, D’Incao, Esry, and Greene
(2012) obtained the value κ0 ¼ 0.226ð2Þl−1

vdW at unitarity for
the ground Efimov state.
Away from unitarity and for negative values of the scatter-

ing length, Fig. 8 shows that the trimer states cross the three-
body threshold and become resonances in the three particle
scattering continuum. In particular, the ground state crosses
the threshold at að1Þ− ¼ −10.849lvdW, whereas the first excited
Efimov trimer merges with the three-body continuum at
að2Þ− ¼ −169.199lvdW. Note that the að1Þ− for the ground
Efimov state is in good agreement with the hyperspherical
approach employed by Wang, D’Incao, Esry, and Greene
(2012). More specifically, Wang, D’Incao, Esry, and Greene
(2012) for a hard-core van der Waals potential tail obtained the

FIG. 7. The two-body binding energy as a function of the
s-wave scattering length. The orange curve (top) refers to the
universal dimer energy, the solid blue line (bottom) indicates
the effective range theory for van der Waals interactions, and the
dotted red curve denotes the binding energy within the separable
potential approximation.

FIG. 8. The Efimov spectrum for the ground state (blue line and
dots, bottom) and the first excited (orange line and dots, top)
three-body state. The dashed black line is the universal dimer
energies. The dotted green curve refers to the dimer binding
energies calculated within the separable van der Waals potential
approach.
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value að1Þ− ¼ −9.73ð3ÞlvdW for the ground Efimov state. In
addition, the Naidon et al. model result agrees well with the
corresponding experimental values, i.e., að1Þ− ¼ −9.1lvdW
(Ferlaino et al., 2011). Remarkably, the separable potential
model presented by Naidon, Endo, and Ueda 2014a, 2014b)
reproduced the universal features of the Efimov spectrum
without utilizing any auxiliary parameter of the type that is
needed within the zero-range approximation. Recall that the
three-body spectrum for the Efimov effect is not bounded
from below in the zero-range approximation; thus an addi-
tional parameter (three-body parameter) is employed in order
to properly define the “ground Efimov state.” In the van der
Waals separable potential model the auxiliary parameter
becomes unnecessary due to the fact that the potential itself
describes not only the asymptotic behavior of the two-body
wave function but also its behavior at short distances which
oscillates rapidly. Indeed, the fast oscillations of the two-body
wave function in regions of the three-body configuration
space where two particles approach each other translates into
an effective repulsive hyperradial barrier, which in return
suppresses the probability to find three bosons at distances
less than R ∼ 2lvdW. This suppression effect was initially
understood by Wang, D’Incao, Esry, and Greene (2012) using
the hyperspherical approach where the steep attraction of the
van der Waals forces leads to an effective three-body potential
barrier at this somewhat surprisingly large hyperradius.
In order to illustrate this point from the reduced Faddeev

equation in Eq. (49) the three-body wave function is first
obtained in the momentum representation at að1Þ− . Then
following a Fourier transformation the corresponding con-
figuration space three-body wave function is expressed in
hyperspherical coordinates. After integrating the density over
all the hyperangles α, taking the square root and applying the
hyperradius kinetic operator to the resulting hyperradial wave
function, an effective potential is obtained as a function of
the hyperradius R. This effective potential is compared with
the corresponding adiabatic potential curve which contains the
diagonal correction from the diagonal nonadiabatic coupling
term Q00. Figure 9 compares the resulting implied hyperradial
potential curve from Naidon, Endo, and Ueda (2014b) with
the direct adiabatic hyperspherical solution from Wang,
D’Incao, Esry, and Greene (2012), showing good general
agreement. The dotted gray curve illustrates the asymptotic
−R−2 Efimov potential curve at unitarity for comparison.
While the effective potential curve possesses some additional
structure, Naidon, Endo, and Ueda (2014b) stated that this
structure is an artifact which mainly arises from the oscillatory
behavior of the Faddeev three-body wave function.

F. Efimov states in homonuclear systems

1. 6Li

Ultracold gases of fermionic 6Li have been the object of
different studies about Efimov physics and universality in
three-body physics (Ottenstein et al., 2008; Huckans et al.,
2009; Wenz et al., 2009; Williams et al., 2009; Lompe,
Ottenstein, Serwane, Viering et al., 2010; Nakajima et al.,
2010, 2011). It should be pointed out that it is a bit of a stretch
to include the 6Li system in our discussion of the Efimov

effect for three identical bosonic atoms. Owing to the
fermionic nature of 6Li there is no s-wave scattering between
atoms in identical spin substates, but atoms in different
substates do have an s-wave scattering length. The studies
just quoted have in fact considered atoms in three distinguish-
able substates, but unlike the case of three identical bosons,
the three interparticle scattering lengths are in general different
in the 6Li system. However, they are all large and negative and
therefore the system can be approximately mapped onto and
compared with an Efimov system with three identical bosons
in identical spin substates. In the following discussion, it
should be kept in mind that this mapping is an approximation.
Wenz et al. (2009) argued that one conjectured mapping, a
definition of an effective “homonuclear” scattering length aave
that applies when all three interspecies scattering lengths are
large and negative, is

a4ave ≡ 1
3
ða212a223 þ a213a

2
23 þ a212a

2
13Þ: ð58Þ

Nevertheless, quantities in Efimov physics such as the loss to
deeply bound dimers and the three-body parameter should
more rigorously be understood to depend in general on all
three separate scattering lengths for a fermionic atom such as
6Li, i.e., on a12, a23, and a13. In general, many of the
experimental investigations have relied upon rf techniques
for the identification of Efimov trimers. These methods
employ rf pulses to form different Efimov states, which are
detected as atom loss, thus leading to the characterization of
their binding energies (Wenz et al., 2009; Lompe, Ottenstein,
Serwane, Viering et al., 2010; Nakajima et al., 2010, 2011).
The measured trimer energies show a clear dependence on the
applied magnetic field close to the two-body Feshbach
resonances, which has been viewed as evidence for deviations
from Efimov’s universal three-body physics scenario. In
particular, the geometric scaling factor λ ¼ 22.7 is not
observed between successive resonances, and this has been
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FIG. 9. The solid gray curve depicts the three-body Faddeev
wave function in arbitrary units within the separable potential
approach as a function of the hyperradius. The dashed red line
corresponds to the hypersherical potential curve including the
diagonal adiabatic correction term Q00, while the dotted gray
curve indicates the asymptotic Efimov potential curve at unitarity.
The solid black curve indicates the effective potential implied by
the Faddeev equation solution determined within the separable
potential approximation. Adapted from Naidon, Endo, and Ueda,
2014b.
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interpreted as a magnetic field dependence of the three-body
parameter.
The apparent nonuniversality of 6Li has been an open

question in the last decade, leading two different nonuniversal
models beyond nonuniversal two-body interactions (Nakajima
et al., 2010). However, (Huang, O’Hara et al. (2014) showed
that accounting for a realistic two-body energy-dependent
scattering length and taking into account finite temperature
effects the three-body parameter for 6Li turns out to be
að1Þ− =lvdW ¼ −7.11� 0.6 which is very similar to the results
obtained for identical bosons in Tables I and II. Moreover, the
geometric scaling factor shows a 10% deviation with respect
to λ ¼ 22.7, the universal expected value.

2. 7Li

The Efimov physics in bosonic 7Li has been extensively
studied through characterizations of maxima and minima of
the three-body loss coefficient (Gross et al., 2009, 2010, 2011;
Pollack, Dries, and Hulet, 2009; Machtey, Kessler, and
Khaykovich, 2012; Dyke, Pollack, and Hulet, 2013), as well
as using radio-frequency fields to measure the binding
energies of weakly bound trimers (Machtey et al., 2012).
In particular, the Rice group identified the ground Efimov
state for 7Li in the jmF ¼ 1i hyperfine state as a resonance in
the three-body loss coefficient for a < 0. An initial suggestion
by Pollack, Dries, and Hulet (2009) that they had also
observed the first excited Efimov resonance að2Þ− was later
attributed to a calibration error. The recalibration, published in
Dyke, Pollack, and Hulet (2013), also corrected the position of
the first Efimov resonance to að1Þ− ¼ −252� 10. Efimov
physics was also observed on the a > 0 branch of the
spectrum as the expected minima in the three-body loss

coefficient (Pollack, Dries, and Hulet, 2009), yielding að1Þþ ¼
89� 4 and að2Þþ ¼ 1420� 100 when the recalibration of
Dyke, Pollack, and Hulet (2013) was applied. The ratio

að2Þþ =að1Þþ ¼ 16� 2 deviates appreciably from the expected
universal ratio of 22.7 (Esry, Greene, and Burke, 1999;
Nielsen and Macek, 1999), but this level of deviation for
the first two Efimov features is not unexpected, based on
theoretical calculations.
Similar results for the maxima of the three-body loss rate

were obtained by Gross et al. (2009, 2010, 2011) for two
different hyperfine states jmF ¼ 1i and jmF ¼ 0i as shown in

Table I. However, different results for að1Þþ in comparison with
Pollack, Dries, and Hulet (2009) were obtained as displayed in

Table I. This discrepancy for að1Þþ has been explained as a
distinct magnetic field-scattering length conversion through a
different characterization of the same Feshbach resonance
(Gross et al., 2010). In Table I the universal character is also
observed for the three-body parameter að1Þ− in terms of the van
der Waals length lvdW for 7Li-7Li. In particular, the values
obtained for að1Þ− =lvdW are very similar to the values observed
in cesium (Berninger et al., 2011), rubidium (Wild et al.,
2012), and potassium (Roy et al., 2013).

3. 39K

The study of Efimov states in bosonic 39K at ultracold
temperatures was developed mainly by the LENS group
(Zaccanti et al., 2009; Roy et al., 2013). In particular, the
study of Roy et al. (2013) is a remarkable exploration of the að1Þ−
three-body parameter universality, even including narrow
Feshbach resonances. This study was carried out by employing
different spin statesmF, aswell as different Feshbach resonances
in an ultracold gas of 39K, some showing open-channel
dominancewhile others are narrower closed-channel-dominated
resonances.
Resonances with a small resonance strength sres (Chin

et al., 2010), i.e., narrow resonances, have an intrinsic length
scale R� ¼ ℏ2=mabgδμ (Chin et al., 2010), where abg repre-
sents the background scattering length, m is the reduced mass,
and δμ is the change in the magnetic moment between the
initial and final states. Such a scenario predicted that the
Efimov physics would be dominated by the intrinsic length
associated with the resonance R�, in particular, að1Þ− ¼
−12.90R� (Petrov, 2004; Gogolin, Mora, and Egger, 2008;
Mora, Gogolin, and Egger, 2011). However, the experimental
work of Roy et al. (2013) revealed a completely different
behavior, as shown in Table II, where the three-body param-
eter jað1Þ− j=lvdW ∼ 10, which turns out to be very similar to the
experimental and theoretical values for the case of broad two-
body resonances (Berninger et al., 2011; Wang, D’Incao,
Wang, and Greene, 2012; Naidon, Endo, and Ueda, 2014a),
i.e., jað1Þ− j=lvdW ¼ 9.5. This striking result implies that the
intrinsic length scale associated with a narrow resonance
apparently plays no role in the determination of the three-body
parameter. Thus, for systems with long-range dominant van
der Waals interactions, the three-body parameter seems to be
universal.

TABLE I. Fitting parameters to a universal theory obtained by
measuring the three-body loss coefficient in 7Li. From Gross et al.,
2010.

mF að1Þþ (a0) −að1Þ− (a0) jað1Þ− j=lvdW

0 243� 35 264� 11 8.52� 0.35
þ1 247� 12 268� 12 8.65� 0.39

TABLE II. Experimentally determined three-body parameter a− for
different Feshbach resonances and spin states mF in 39K. R�
represents the intrinsic length scale and associated with it, the
resonance strength sres. The value for the three-body parameter as
a function of the van der Waals length lvdW ¼ 64.49 a0 is also
reported, as well as the initial temperature T, which implies a
saturation limit of the three-body recombination rate because the
S matrix is unitary. From Roy et al., 2013.

mF R� (a0) sres −að1Þ− (a0) jað1Þ− j=lvdW T (nK)

0 22 2.8 640� 100 10.0� 1.6 50� 5
0 456 0.14 950� 250 14.7� 3.9 330� 30
0 556 0.11 950� 150 14.7� 2.3 400� 80

þ1 22 2.8 690� 40 10.7� 0.6 90� 6
−1 23 2.6 830� 140 12.9� 2.2 120� 10
−1 24 2.5 640� 90 10.0� 1.4 20� 7
−1 59 1.1 730� 120 11.3� 1.9 40� 5
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4. 85Rb

The study of Tan’s contact in an ultracold gas of 85Rb was
realized by Wild et al. (2012). In particular, the two-body and
three-body contacts were determined, as well as the three-
body recombination rate constant, by varying the two-body
scattering length in a sweep of the magnetic field through a
Feshbach resonance. The two-body contact is an extensive
thermodynamic magnitude proportional to the derivative of
the internal energy of the ultracold gas with respect to the
scattering length (Tan, 2008a, 2008b, 2008c; Combescot,
Alzetto, and Leyronas, 2009; Werner, Tarruell, and Castin,
2009; Schakel, 2010), i.e, C2 ∝ dE=da. The three-body
contact C3 is defined in terms of the derivative of the internal
energy with respect to the three-body parameterC3 ∝ dE=da−
(Braaten, Kang, and Platter, 2011; Castin and Werner, 2011).1

The measurements of the three-body recombination rate
were performed in dilute, ultracold, noncondensed clouds
containing 1.5 × 105 atoms of 85Rb at a temperature
T ¼ 80 nK. Then the magnetic field was varied through a
Feshbach resonance in order to explore the region of negative
scattering lengths. The obtained three-body recombination
rate was fitted to the expected form for the Efimov three-
body rate (Braaten and Hammer, 2006), obtaining að1Þ− ¼
−ð759� 6Þa0. The utilized fitting function is valid only at
T ¼ 0, and hence the fitting was realized for a < 1=kthermal,
where kthermal ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mkBT

p
=ℏ. The ratio between the measured

three-body parameter and the van der Waals length is
að1Þ− =lvdW ¼ −9.24� 0.7 (Wild et al., 2012). This value is
very similar to the reported values for 133Cs (Kraemer et al.,
2006; Berninger et al., 2011) and 7Li (Gross et al., 2009,
2010, 2011).

5. 133Cs

The first experimental evidence of the Efimov effect was
observed in an ultracold gas of 133Cs (Kraemer et al., 2006) by
tuning the Cs-Cs scattering length through a Feshbach
resonance and measuring the enhancement and decreases of
the three-body loss coefficient for negative and positive
scattering lengths, respectively. At the same time, this pioneer-
ing work readily showed the possibility of using ultracold
physics in order to explore universal physics in few-body
physics (Esry and Greene, 2006).
A few years after the observation of Efimov states in

ultracold systems, Berninger et al. (2011) employed four
different Feshbach resonances to study variations of the three-
body parameter in an ultracold sample of 133Cs. For these four
observed Efimov resonances shown in Table III, the ratio of
the three-body parameter að1Þ− to the van der Waals length lvdW
is approximately equal for all the Feshbach resonances
analyzed in the experiment to within only about 15%
variations. More recently, Huang, O’Hara et al. (2014)
realized an exhaustive experimental work on the negative
scattering length branch of the two-body interaction in Cs,

confirming the universality of the Efimov scaling by seeing
for the first time two successive Efimov resonances in a
homonuclear system. Note, however, that more than one
previous experiment has observed the expected Efimov
scaling between two successive destructive interference

Stückelberg minima aðnÞþ ; it should be remembered that this
behavior of three-body recombination at positive scattering
lengths is a nonresonant manifestation of universal Efimov
physics.

G. Four-body and five-body bound states and recombination
resonances

Normally one views three-body recombination as a com-
paratively rare process in a dilute, ultracold gas. Typical Bose-
Einstein condensates, for instance, can have lifetimes of the
order of many seconds. Thus it may come as a surprise that
higher order processes involving even more than three atoms
simultaneously colliding in 3D can have even higher inelastic
collision rates in some regimes of scattering length and
density. There are theoretical predictions of this resonant
N-body recombination (Mehta et al., 2009; Wang and Esry,
2009; von Stecher, D’Incao, and Greene, 2009; Rittenhouse
et al., 2011; Blume, 2012b; Wang, Laing et al., 2012; Blume
and Yan, 2014; Yan and Blume, 2015), and a few experimental
observations (Ferlaino et al., 2009b; Pollack, Dries, and Hulet,
2009; Dyke, Pollack, and Hulet, 2013; Zenesini et al., 2013;
Ulmanis, Häfner, Pires, Kuhnle et al., 2016). While these
usually cause difficulty for applications of interest with
quantum degenerate gases or optical lattices, they can be
especially interesting and informative to study in their own
right, especially from a few-body point of view.
The four-body problem has challenged theorists for many

years (Lazauskas and Carbonell, 2006) and is still of funda-
mental importance and interest. Extensive attention has been
devoted to the question of whether there is an Efimov effect
for four or more particles. For four or more identical particles,
an early theoretical study by Amado and Greenwood (1973)
concluded: “Hence the remarkable Efimov effect seems even
more remarkably to be a property of the three-body system
only.” Later, however, a treatment by Kröger and Perne (1980)
based on a separable potential model concluded that in certain
parameter ranges there is an Efimov effect for four bosons. To
add to this apparent discrepancy between the preceding two
references mentioned, the possible existence of an Efimov
effect in a 3D four-body system with three heavy particles and

TABLE III. Experimentally determined three-body parameter a−
for different Feshbach taken from Berninger et al. (2011). The
positions of the Feshbach resonances employed are denoted by Bres,
the three-body parameter as a function of the van der Waals length
(lvdW ¼ 101 a0) is reported, and finally η− is a nonuniversal quantity
that reflects the decay into deeply bound diatomic states (Wenz et al.,
2009).

Bres (G) jað1Þ− j=lvdW η−

7.56� 0.17 8.63� 0.22 0.10� 0.03
553.30� 0.4 10.19� 0.57 0.12� 0.01
554.71� 0.80 9.48� 0.79 0.19� 0.02
853.07� 0.56 9.45� 0.28 0.08� 0.01

1Usually C3 is defined in terms of the so-called three-body
interaction parameter k� (Braaten, Kang, and Platter, 2011; Castin
and Werner, 2011), which is related to the three-body parameter by
að1Þ− ¼ ð−1.56� 5Þ=k� (Braaten and Hammer, 2006).
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one light particle was treated theoretically by Adhikari and
Fonseca (1981) and later by Naus and Tjon (1987), reaching
opposite conclusions (no and yes, respectively). A subsequent
study by Adhikari, Frederico, and Goldman (1995) suggests
that an additional short-range length (or high-momentum)
scale is required for each successively larger number N of
particles, in order to pin down the energy even of low-lying
states. Another treatment by Yamashita et al. (2006) con-
cluded that four-body bound states can exist in the universal
regime of large atom-atom scattering lengths, but they will
normally not be fixed in energy by two-body and three-body
physics alone and will require an independent four-body
parameter. This conclusion was supported by a later study as
well, namely, Hadizadeh et al. (2011).
Based on four-identical boson bound state calculations

using low-energy effective field theory, it was conjectured by
Platter, Hammer, and Meißner (2004) and Hammer and Platter
(2007) that there should be two four-boson bound states at
unitarity lying at energies between each successive pair of
Efimov trimer energies. These studies suggested, in apparent
disagreement with Yamashita et al. (2006), that the energies
are largely fixed by the three-body parameter, and at least to a
good approximation, this would mean that no additional four-
body parameter is needed. A four-body hyperspherical cal-
culation was carried out (von Stecher, D’Incao, and Greene,
2009) that was based on the use of correlated Gaussian basis
functions (Suzuki and Varga, 1998) adapted to the adiabatic
hyperspherical representation (von Stecher and Greene, 2009;
Rakshit and Blume, 2012; Mitroy et al., 2013; Daily and
Greene, 2014). Using that method, D’Incao, von Stecher, and
Greene (2009), Mehta et al. (2009), Wang and Esry (2009),
and von Stecher, D’Incao, and Greene (2009) gave supporting
evidence to that conjecture and advanced the theory to the
point where detailed predictions could be made of four-body
recombination rate coefficients and resonance positions. In the
universal limit, for instance, theory predicted (von Stecher,
D’Incao, and Greene, 2009) that the two-body scattering
lengths, where four-boson resonances would be observable as
zero-energy recombination resonances, should be at the
following values of the boson-boson scattering length: a−4B;1 ≈
0.43að1Þ− and a−4B;2 ≈ 0.9að1Þ− . These have since been confirmed
in experimental studies (Ferlaino et al., 2009) of homonuclear
recombination processes involving four or more free bosonic
atoms, although von Stecher, D’Incao, and Greene (2009)
pointed out that there was already some evidence for a four-
body process in Kraemer et al. (2006). Exciting theoretical
progress in developing a highly quantitative theoretical treat-
ment was subsequently reported for four-body resonances and
recombination by Deltuva (2010, 2011, 2012), in a momen-
tum space treatment based on a separable two-body inter-
action, a treatment that does not utilize hyperspherical
coordinates. One interesting aspect of those theoretical and
experimental efforts is the suggested implication that no
additional four-body parameter is needed to fix the universal
behavior of four interacting identical bosons, as it appears to
be fixed once the three-body parameter is known. The extent
to which this remains true for interactions of much shorter
range than van der Waals potentials remains an active topic of
investigation.

These developments in turn spawn a fundamental question:
Are the universal properties also fixed for five, six, seven, and
even more bosonic particles once the three-body parameter
is known? If the answer is yes, this is a crucial point that
can greatly simplify the development of realistic many-body
theories for interacting bosons. A number of studies (Blume
and Greene, 2000; Yamashita, Fedorov, and Jensen, 2010;
von Stecher, 2010, 2011; Gattobigio, Kievsky, and Viviani,
2012) bear directly on this question. In particular, von Stecher
(2011) predicted that a universal resonance of five identical
bosons should occur at zero energy when the two-body
scattering length is equal to a−5B;1 ≈ ð0.65� 0.01Þa−4B;1.
That prediction was tested and confirmed experimentally
by the Innsbruck group (Zenesini et al., 2013); this study
also compared a detailed theoretical and experimental esti-
mate of the direct five-body recombination rate, apparently the
first time a direct (i.e., nonstepwise) recombination process
could be observed experimentally and computed theoretically.
While this is suggestive of a general universality for all
N-boson systems, recent work by Yan and Blume (2015)
suggested that this may apply only to systems whose long-
range two-body interaction is dominated by van der Waals
interactions, as shorter range interacting systems apparently
exhibit extensive variability in their N-boson binding energies
at unitarity (Yamashita, Fedorov, and Jensen, 2010).
Following the prediction by von Stecher (2010, 2011), the

possible existence of a universal five-body recombination
resonance was tested and confirmed by Zenesini et al. (2013).
Figure 10 shows the comparison between theory and experi-
ment, in a region that includes both a universal four-body
resonance and a universal five-body resonance. These pre-
dictions of universal resonances observable in N-body recom-
bination have been extended in some impressive recent
calculations to even larger numbers of identical bosons by
Gattobigio, Kievsky, and Viviani (2011, 2012).

H. Efimov states in heteronuclear mass-imbalanced systems

The existence of an infinite series of three-body bound
states for resonant two-body interaction, as predicted by
Efimov (1970), is not only present for homonuclear systems,
as such universal three-body bound states should appear as
well for heteronuclear systems (Efimov, 1973, 1979; D’Incao
and Esry, 2006a, 2006b; Helfrich, Hammer, and Petrov, 2010;
Wang, Wang et al., 2012; Mikkelsen et al., 2015; Petrov and
Werner, 2015). In particular, in heteronuclear systems the
mass-imbalanced nature of the three-body system preserves
but modifies in an interesting way the discrete symmetry
scaling characteristic of Efimov states, i.e., aðnÞ− ¼ λaðn−1Þ− , and
hence preserving the universality of the three-body bound
states. Most importantly, it influences the scaling factor λ,
which depends on the masses of the three particles involved.
In particular, λ gets smaller as the mass imbalance of the HHL
system increases, which has sparked the study of highly mass-
imbalanced systems as the best possible scenario for studying
multiple excited Efimov states and hence exploring as deeply
and unambiguously as possible the universal characteristics
of such states. To date, heteronuclear Efimov states have
been searched for in 41K-87Rb-87Rb (Barontini et al., 2009;
Wacker et al., 2016), 39K-87Rb-87Rb (Wacker et al., 2016),
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40K-87Rb-87Rb (Bloom et al., 2013), 7Li-87Rb-87Rb (Maier
et al., 2015), and 6Li-133Cs-133Cs (Tung et al., 2014; Ulmanis
et al., 2015; Johansen et al., 2016; Ulmanis, Häfner,
Pires, Kuhnle et al., 2016; Ulmanis, Häfner, Pires, Werner
et al., 2016).
The study of three-body losses in an ultracold mixture

41K-87Rb performed by the LENS group led to the first
claimed observation of heteronuclear Efimov states, specifi-
cally for 41K-87Rb-87Rb and 41K-41K-87Rb (Barontini et al.,
2009). In particular, a three-body parameter að1Þ− ¼
ð−246� 14Þa0 was claimed to be observed for K-Rb-Rb.
However, this claimed observation of an Efimov resonance
has been questioned in the literature, in part because it is so far
from the expected theoretical range for this system. Owing to
the positive value of the Rb-Rb scattering length a ∼ 100a0,
the first Efimov resonance is expected to occur in K-Rb-Rb at
around að1Þ− ðK-RbÞ ≤ −30 000 a.u.. In a very recent follow-
up by the Aarhus experimental group, they found that there is
a two-body p-wave feature in the vicinity of the LENS group’s
claimed Efimov resonance 41K-87Rb-87Rb, which adds doubts
about the classification of that loss feature which does not fit
universal expectations for the three-body system (Wang,

Wang et al., 2012; Ulmanis, Häfner, Pires, Kuhnle et al.,
2016) Similarly, the K-K-Rb system is Efimov-unfavored
(LLH) since it has two lighter and one heavier atom, and its
first Efimov resonance was predicted to occur only for
að1Þ− ðK-RbÞ ≤ −106 a.u. Other experiments on potassium
mixtures with 87Rb with either the fermionic isotope 40K
(Bloom et al., 2013) or the bosonic isotope 39K (Wacker et al.,
2016) have failed to observe Efimov resonances at a reason-
able value of the K-Rb scattering length, results which are
more consistent with theoretical expectations. In particular,
the JILA group (Bloom et al., 2013) studied an ultracold
Bose-Fermi mixture 40K-87Rb, in which only 40K-87Rb-87Rb
supports Efimov resonances because 40K-40K-87Rb is sup-
pressed by spin statistics. The JILA group measured the three-
body recombination rate with the aim of testing whether they
could observe approximately the same Efimov resonant
position as had been seen for 41K-87Rb-87Rb (Barontini et al.,
2009). This expectation was of course fueled by the
assumption of universality of the three-body parameter
(Wang, Wang et al., 2012). However, no trace of any
Efimov resonances was observed at the expected two-body
scattering length (Bloom et al., 2013), consistent with our
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FIG. 10. (a) Schematic hyperspherical potential curve relevant to five-boson recombination when the two-body scattering length is
negative, a < 0. The curve has also labeled the JWKB phases ϕ in the two classically allowed regions or R as well as the tunneling
exponent that characterizes the region of negative incident kinetic energy. The inset shows energy levels for this five-boson system in a
spherically symmetric harmonic trap, which has avoided crossings between inner and outer region states, whose strengths enable an
estimate of the tunneling exponent γ that is important in obtaining the five-body recombination rate. (b) The experimental atom loss in a
Cs gas vs the inverse two-body scattering length, rescaled by a characteristic wave number κ of the order of 2=lvdW. (c) The energies of
trimer, tetramer, and pentamer states and the points where they merge into the zero-energy continuum. The measured loss rate
coefficients vs a in units of Bohr radii, compared with theory that includes either (d) four-body recombination only L4;eff or else (e) five-
body recombination only L5;eff. From Zenesini et al., 2013.
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current theoretical understanding (Wang, Wang et al., 2012;
Ulmanis, Häfner, Pires, Kuhnle et al., 2016).
Recently an Efimov resonance for 7Li-87Rb-87Rb was

reported (Maier et al., 2015) as a consequence of a first
exploration of the negative Li-Rb scattering length in an
ultracold mixture of bosonic 7Li and 87Rb. The observed
resonance is found at að1Þ− ¼ ð−1870� 121Þa0 in at least
approximate agreement with the universal Efimov expectation
(Wang, Wang et al., 2012), and it should be stressed that it is
vital to include in the analysis the correct heavy-heavy
scattering length (Maier et al., 2015). Note that with current
experimental capabilities it is extremely difficult to reliably
create and control atom-atom scattering lengths beyond about
10 000a0 in absolute magnitude. Only one experiment to date,
a heroic effort by the Innsbruck group in a homonuclear Cs
gas (Huang, O’Hara et al., 2014), has been able to measure
Efimov physics at a scattering length as large and negative
as −22 000a0.
The most convincing tests of universal Efimov scaling are

for the highly mass-imbalanced case of 6Li-133Cs-133Cs,
studied independently by the Heidelberg (Pires, Ulmanis
et al., 2014; Ulmanis et al., 2015; Ulmanis, Häfner, Pires,
Kuhnle et al., 2016; Ulmanis, Häfner, Pires, Werner et al.,
2016; Häfner et al., 2017) and Chicago groups (Tung et al.,
2014; Johansen et al., 2016). Theoretically, the universal
Efimov scaling factor for this system should be λ ¼ 4.88
(D’Incao and Esry, 2006a; Wang, Wang et al., 2012), which
enables experiments to observe and characterize multiple
resonances in a single Efimov series for the first time. As
in many other approaches to Efimov physics with ultracold
atoms, the Chicago and Heidelberg groups use a magnetic
Fano-Feshbach resonance for Li-Cs to vary the two-body
scattering length. The results for the observed Efimov reso-
nances, characterized by the analysis of the maxima in the
three-body loss coefficient, are shown in Table IV, where the
three-body parameter reported by the Chicago and Heidelberg
groups can be seen to agree approximately to within the error
bars. Another interesting difference probed in the experiments
by Ulmanis, Häfner, Pires, Kuhnle et al. (2016) is the

contrasting value of the first Efimov resonance depending
on the sign of the Cs-Cs scattering length. For instance, when
the Cs-Cs scattering length is large and negative as in the cases
reported in Table IV, the first resonance occurs at a Li-Cs
scattering length value equal to að1Þ− ≈ −320 a:u: But for a
different range of magnetic fields where the Cs-Cs scattering
length is positive [aðCs − CsÞ ≈ 200a0], the first resonance
occurs at að1Þ− ≈ −2000 a:u: As argued by Ulmanis, Häfner,
Pires, Kuhnle et al. (2016), this major difference can be
understood qualitatively already in the zero-range theory,
without invoking van der Waals interactions, although a full
model including van der Waals finite-range interactions is
needed to make the description quantitatively accurate. These
experiments are of course extremely difficult, and we stress
the importance of developing highly accurate two-body
scattering models before undertaking the analysis of depar-
tures from expected universal behavior.
The prediction of Efimov and the universality of the three-

body physics (Efimov, 1970, 1971) is strictly true in the case
of two-body resonant interactions and assuming T ¼ 0, since
no consideration was given to the kinetic energy of the three-
body system. A few studies have carried out the appropriate
Boltzmann average needed to derive finite temperature pre-
dictions of the three-body recombination rate, as in Rem et al.
(2013) and Petrov and Werner (2015). Thus, in realistic
systems one would expect some deviations from Efimov’s
prediction. However, the experimental observations seem to
indicate that most of the Efimov states are accurately
universal.

I. Efimov and universal bound states for fermionic systems

It is well known that there is no Efimov effect for
homonuclear trimers composed of identical fermions in a
single intrinsic spin substate. This is easy to understand
because the requirement of antisymmetry adds nodes to the
spatial wave function and this raises the kinetic energy of the
trimer internal degrees of freedom substantially. For a system
of two heavy fermions of mass M in the same spin state and a
lighter distinguishable particle of massm, the nodal constraint
of antisymmetry is weaker and some interesting predictions
for this case have been presented by Kartavtsev and Malykh
(2007, 2014). The Efimov effect emerges for this FFX system
with divergent F þ X scattering length, provided the mass
ratio is sufficiently large, namely,M=m > 13.607. For smaller
mass ratios than this critical ratio just mentioned, one observes
one or two universal states, usually denoted as “Kartavtsev-
Malykh universal trimers,” but there is no true Efimov effect
and the number of energy levels remains finite. Some level
perturbations that can affect these universal trimer states have
been identified by Safavi-Naini et al. (2013). For a detailed
recent treatment that revises some of the conclusions for the
range of mass ratios M=m < 13.607, see Kartavtsev and
Malykh (2016).
The possibility of a four-particle Efimov effect is another

intriguing prediction by Castin, Mora, and Pricoupenko
(2010), with three heavier identical fermions of mass M
and one lighter distinguishable particle of mass m.
Specifically, they predict that only in the small mass ratio
range 13.384 < M=m < 13.607 should one be able to observe

TABLE IV. Experimental Efimov resonances for 6Li-133Cs-133Cs,
with the Li-Cs scattering lengths denoted here as aðnÞ− . For the spin
states utilized in these experiments, the background Cs-Cs scattering
length in this region of magnetic field near 843G is approximately in
the range −1600a0 < aCsCs < −1000a0. The maxima of the three-
body loss rate occur at the indicated value aðnÞ− , where n stands for the
ordering of the different associated Efimov states. The three-body
parameter is denoted here as að1Þ− . The discrete symmetry scaling
factor for two successive Efimov states is denoted by λ. The
Heidelberg group results of Ulmanis et al. (2015) are shown in
the second and third columns, and the results of the Chicago group
(Tung et al., 2014) in the fourth and fifth columns. Note that the
Heidelberg group also suggests a recalibration of the Chicago group’s
data in Table 2 of Ulmanis et al. (2015), but those results are not
shown here.

n aðnÞ− (a0) λ aðnÞ− (a0) λ

1 −311� 3 −323� 8
2 −1710� 70 5.48� 0.28 −1635� 60 5.1� 0.2
3 −8540� 2700 5.00� 1.8 −7850� 1100 4.8� 0.7
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the infinite number of energy levels converging geometrically
to zero binding that characterizes Efimov physics. Recently
Bazak and Petrov (2017) predicted a pure five-body Efimov
effect, for a system of four heavy identical fermions and one
distinguishable particle, again in a small range between
13.279� 0:002 < M=m < 13.384, based on a stochastic
solution of the generalized STM equation (Pricoupenko,
2011), with techniques analogous to diffusion Monte Carlo
(MC) methods. The study by Bazak and Petrov (2017) also
predicted mass ratios where one expects universal five-body
states in regimes where no true Efimov effect exists, and a
conjecture that the 5þ 1 hexamer and higher particle numbers
will be qualitatively different rather than simply continuing
the trend, a conjecture certainly deserving to be explored. This
study agrees and improves on the accuracy of a prediction by
Blume (2012b) that a universal 3þ 1 tetramer should exist at a
mass ratio around M=m ≥ 9.5, with the new and improved
computed ratio equal to M=m ≥ 8.862� 1.

J. Naturally occurring Efimov physics in the helium trimer

The study of helium clusters—their aggregation, formation,
and collision dynamics—has been an active research topic in
chemical physics, in particular, in the field of molecular beams
(Campargue, 2001). Molecular beam experiments rely on the
supersonic expansion of a chosen gas in vacuum, which
induces the cooling of the different molecular degrees of
freedom as the gas expands in the chamber. This cooling
mechanism is due to inelastic collisions involving electronic,
rotational, and vibrational degrees of freedom, and hence it
strongly depends on the inelastic cross sections as well as the
number of collisions through the density of the gas (Zucrow
and Hoffman, 1976; Zhdanov, 2002; Montero and Pérez-Ríos,
2014). The diluteness of the gas as it moves away from the
nozzle can be controlled by the initial conditions of the
expansion: temperature, pressure, and mass flow, through
the conservation of enthalpy and mass flow of the fluid.
Therefore, any property or process related with the dynamics
of the gas, such as cluster formation, could be controlled to
some degree in those experiments. Using such methods,

Schöllkopf and Toennies (1994, 1996) experimentally
observed the helium dimer and the ground state of the helium
trimer.
Although the ground state 4He3 was observed two decades

ago, the first excited state of 4He3, which has Efimov
character, was not observed until recently (Kunitski et al.,
2015). Figure 11 summarizes both the key theoretical and
experimental results for the system. This remarkably chal-
lenging experiment was performed by joining the technology
of molecular beam experiments, atom interferometry, and
modern ionization and detection techniques. In particular,
very well-controlled nozzle conditions leading to a supersonic
expansion of He, where He trimers were selected by means of
matter-wave diffraction through a grating. Then all three
atoms of the trimer are ionized by means of a strong ultrashort
pulse, leading to the subsequent Coulomb explosion of the
trimer compounds. The momenta of the ions after the
Coulomb explosion were detected by cold target recoil ion
momentum spectroscopy (COLTRIMS) (Jagutzki et al., 2002;
Ullrich et al., 2003), which allowed analysis of the reconstruc-
tion of the initial probability distribution of the trimer atom
positions and thereby allowed a deduction of the trimer
binding energy. In this way, Kunitski et al. (2015) studied
the formation of two different He trimer states as functions
of the pressure in the nozzle, leading to the first observation of
the excited state of 4He3.
The findings of Kunitski et al. (2015) revealed the geometry

of the ground state and first excited state of the helium trimer.
In particular, for the ground trimer state a unimodal radial
distribution was observed for the atom-atom distance in the
trimer, in relation to the expected equilateral geometry.
However, for the first excited trimer state the radial distribu-
tion function shows a bimodal character, thus resembling an
isosceles triangular geometry. These results demonstrate the
Efimov character of the first excited state of the helium trimer.
In particular, the obtained binding energy is 2.60� 0.2 mK in
good agreement with recent theoretical predictions (Hiyama
and Kamimura, 2012; Kunitski et al., 2015); however, the
bimodal radial distribution deviates from what is expected
from the universal Efimov predictions for resonant two-body

(a)
(b)

FIG. 11. (a) Adiabatic Jπ ¼ 0þ hyperspherical potential curves, with the two bound state energies predicted for this symmetry drawn
into the potentials. The higher energy of the two, which has an energy so small that it appears to coincide with E ¼ 0, was predicted to be
an observable Efimov state. From Suno and Esry, 2008. (b) Experimentally measured pair distribution functions of the two helium
trimer bound states, with a theory comparison for the more diffuse state that is concluded to be an Efimov state. This measurement
used laser ionization followed by Coulomb explosion of the three resulting ions, with detection in a COLTRIMS apparatus. From
Kunitski et al., 2015.
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interaction at unitarity, which is not surprising in view of the
finite value of the He-He scattering length (Blume, Greene,
and Esry, 2000, 2014).
The most recent hyperspherical coordinate calculations of

the helium trimer properties in the electronic ground state
appear to be those of Suno and Esry (2008). Their Jπ ¼ 0þ

adiabatic potential energy curves obtained with an up to date
potential surface, which includes three-body as well as
realistic retarded two-body potential terms, are shown in
Fig. 11. The energies drawn into the lowest potential curve
are the two computed bound state energies, namely, −130.86
and −2.5882 mK. The more weakly bound of these is the one
expected to have significant Efimov state character, and it is in
fact so weakly bound that its energy is indistinguishable from
E ¼ 0 on the scale of Fig. 11.

IV. FEW-BODY PERSPECTIVES ON MANY-BODY
SYSTEMS

There are multiple ways in which few-body physics is
useful for understanding, interpreting, and predicting new
many-body phenomena. The most obvious is through the
development of detailed theoretical understanding of the
microscopic processes involving two, three, four, or some
cases even a handful more particles within a gas or lattice
array of particles. The detailed studies previously described
and other review articles (Köhler, Góral, and Julienne, 2006;
Chin et al., 2010; Wang, D’Incao, and Esry, 2013; Wang,
Julienne, and Greene, 2015a) have focused largely on two-
body phenomena such as Fano-Feshbach resonances, and on
the three-body phenomena that arise such as Efimov

resonances in three-body recombination and related behavior
such as Stückelberg interference minima. The initially sur-
prising experimental result (Cubizolles et al., 2003; Strecker,
Partridge, and Hulet, 2003; Regal, Greiner, and Jin, 2004a)
that large universal fermionic dimers have remarkably
small losses despite their large size was understood theoreti-
cally by Petrov, Salomon, and Shlyapnikov (2005a, 2005b).
This played a key role in stimulating experiments in the
Bardeen-Cooper-Schrieffer (BCS)-BEC crossover problem
and in triggering explorations of other phenomena in unitary
Fermi gases. Figure 12 shows a later theoretical treatment of
the two-component four-fermion system in hyperspherical
coordinates, including the computed dimer-dimer scattering
information. For instance, it has now become possible to map
out an extremely accurate equation of state for unitary Fermi
gases (Chevy et al., 2011; Ku et al., 2012).
Another way few-body theories have provided some useful

perspectives on Bose-Einstein condensates and degenerate
Fermi gases has simply been through applying the few-body
toolkit and ideas, such as adiabatic hyperspherical potential
curves, to the many-particle system directly. In some cases this
is done by treating only a modest number of particles
accurately, while in other cases the many-particle limit is
examined but at a relatively crude level of approximation to
estimate the many-particle potential energy curves.
Few-body physics also produces insight into systems of

trapped atoms through the use of the idea of an artificially
strong trap. The premise here is that frequently in a trapped
quantum gas with thousands or even millions of atoms, the
physical trap frequency might be only of the order of 10 Hz
and determines only a largely irrelevant energy scale for the

FIG. 12. (a) Adiabatic Jπ ¼ 0þ four-fermion hyperspherical potential curves for two spin-up and two spin-down identical fermions
with a large positive interspecies scattering length, i.e., on the BEC side of the BCS-BEC crossover problem. The dashed horizontal lines
mark the fragmentation thresholds, the lowest of which represents the dissociation of two bound universal dimers (FF0 þ FF0), the next
highest representing one bound dimer plus two free atoms (FF0 þ F þ F0), and the highest which denotes the threshold energy E ¼ 0
for complete four-body dissociation. Using these adiabatic potential energy curves and the nonadiabatic couplings, the elastic and
inelastic collision properties could be computed for this system. From von Stecher and Greene, 2009. (b) The computed elastic ardd and
inelastic aidd scattering lengths for collisions between two universal dimers, i.e., in an FF0 þ FF0 collision, shown in units of the two-
body scattering length aðF þ F0Þ as a function of energy measured in units of the dimer binding energy. Note the smallness of the
inelastic (imaginary) scattering length, first understood theoretically by Petrov, Salomon, and Shlyapnikov (2005a, 2005b), which was
crucial for understanding why the two-component Fermi gas has minimal losses close to unitarity (Cubizolles et al., 2003; Strecker,
Partridge, and Hulet, 2003; Regal, Greiner, and Jin, 2004a). These low losses were crucial in enabling the BCS-BEC crossover
experiments to be successful and create long-lived quantum gases. From D’Incao, Rittenhouse et al., 2009.
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system. More relevant by far are the typical scale of inter-
particle interactions and the average kinetic energy or temper-
ature, reflected in the separation of atoms Δr. The physical
content of this separation length scale is sometimes referred to
as the “Fermi wave number” kF ¼ 2π=Δr even when the gas
consists of some or even all bosonic particles. Then one can
gain insight by treating only two, three, or four particles in an
unphysical artificially tight “theoretical trap” designed to have
a high frequency with particle separationΔr comparable to the
Δr in the actual many-particle system. An example where this
strategy enables a simple interpretation (Borca, Blume, and
Greene, 2003) of a complicated many-body problem is the
famous “atom-molecule” coherent oscillations or quantum
beats observed in an 85Rb experiment (Donley et al., 2002),
depicted in Fig. 13.

A. Polaron physics attacked from a few-body viewpoint

When a slow electron moves inside a bulk material such as
a polar crystal or helium liquid, it attracts other particles from
the bulk and the entity behaves as a quasiparticle, as described
in early studies by Fröhlich (1954) and Feynman (1955). Such
a quasiparticle was denoted a polaron, and this term has been
generalized to describe a more general situation in which an
interaction-dressed minority particle moves in the field of
other particles in a medium. An active field of research to this
day, polarons have attracted extensive attention from exper-
imental (Michaud and Sanche, 1987) as well as theoretical
studies (Basak and Cohen, 1979; Fano and Stephens, 1986;
Stephens and Fano, 1988) in condensed-matter physics. In
recent years polaron physics has become a topic of great
interest in the ultracold atomic physics community, owing to
the promise of great control and observability. The few-body
side of polaron physics has two major areas of interest. One
aspect is to discern the details of a single quasiparticle in the
many-body environment and the more advanced topic of
interactions among two, three, or four quasiparticles, i.e., the
effect of a many-body bosonic or fermionic bath of particles
on the interactions, energy levels, and recombination of the
quasiparticles (Bellotti et al., 2016). The second area that has
received extensive attention is the behavior of few-body
analogs of a polaronic system, with small numbers of minority
and majority particles, such as the HHL and HHHL and
related problems discussed elsewhere in this review.
Polarons have received attention in ultracold atom experi-

ments and theory over the past decade or so by Astrakharchik
and Pitaevskii (2004), Cucchietti and Timmermans (2006),
Kalas and Blume (2006), Bruderer, Bao, and Jaksch (2008),
Bei-Bing and Shao-Long (2009), Schirotzek et al. (2009),
Tempere et al. (2009), Catani et al. (2012), Kohstall et al.
(2012), Koschorreck et al. (2012), Spethmann et al. (2012),
Rath and Schmidt (2013), Scelle et al. (2013), Li and Das
Sarma (2014), Grusdt et al. (2015), and Levinsen, Parish, and
Bruun (2015) and recently, as in Hu et al. (2016) and Jørgensen
et al. (2016). Some work has considered an impurity with
internal degrees of freedom called an “angulon” which is a
quasiparticle consisting of a rotating impurity dressed by the
quantal many-body environment (Schmidt and Lemeshko,
2016; Lemeshko, 2017). To date the explorations have con-
centrated on the behavior of a single impurity in a BEC or
degenerate Fermi gas (DFG), but a future few-body topic that is
still in its infancy is the study of interactions among two ormore
impurities dressed by the many-body environment. An initial
foray along those lines by Naidon (2016) treats two-body
polaron-polaron interactions. We refer the reader to the review
by Naidon and Endo (2017) and references therein.

B. Bose-Einstein condensates viewed in hyperspherical
coordinates

In the Russian nuclear physics literature, a technique
evolved during the 1960s and 1970s to treat the many-nucleon
problem, which was referred to as the “K-harmonic” theory.
This treatment was based on a particularly simple approxi-
mation formulated in hyperspherical coordinates. The basic
idea was to find the lowest grand angular momentum state, the

(a)

(b)

FIG. 13. (a) Two-body s-wave energy levels in 85Rb are shown
as a function of magnetic field near the 155 G Fano-Feshbach
resonance that was used by Donley et al. (2002) to study quantum
beats between atomic states of a quantum degenerate Rb gas and
molecular states. (b) Calculated quantum beats reflecting inter-
ference between one pathway where a given pair of atoms
remained atomic and another pathway where that pair of atoms
was bound into a long-range universal dimer for a delay time T.
These two-body calculations use an artificially tight trap
(ω0 ¼ 2π kHz) whose peak density approximately equals the
density of 17 100 atoms trapped in the actual experiment whose
geometric mean trapping frequency was ω ¼ 2π × 12 Hz. From
Borca, Blume, and Greene, 2003.
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K-harmonic jKQi. This eigenfunction of hyperangular kinetic
energy and various symmetry operators is usually an appro-
priately antisymmetrized linear combination of hyperspherical
harmonics; they are constrained to obey the symmetries of the
system such as the Pauli exclusion principle, definite parity,
and so on. This approximation then uses this single harmonic
to describe the hyperangular wave function of the system.
When this technique is applied to the description of a single-
component BEC, it is particularly simple because the K har-
monic for this system is simply the state of vanishing grand
angular momentum K ¼ 0, which is a constant in the hyper-
angular space of any N-particle system. While the resulting
wave function is not sufficiently realistic to describe the true
short-range interactions that occur whenever any two particles
approach each other, the use of the Fermi pseudopotential in
the many-body Hamiltonian implies that the average energy of
interaction can be approximately represented perturbatively
(Bohn, Esry, and Greene, 1998). In our terminology today,
we can view this as approximating the lowest adiabatic
hyperangular eigenfunction as this K harmonic, after which
perturbation theory can be applied to the interparticle
interaction term in the Hamiltonian to determine the approxi-
mate ground state potential energy curve for the many-
particle system, namely, U0ðRÞ; see Fig. 14. This treatment
does a reasonable job of predicting the approximate
maximum number of atoms that can exist in a harmonic trap
when the scattering length is negative, beyond which the
system undergoes a macroscopic collapse often referred
to as the “Bosenova” (Bradley, Sacket, and Hulet, 1997;
Donley et al., 2001). More recently, the hyperspherical
BEC theory has been extended via a renormalization
technique to treat properties of the quantum degenerate
Bose gas in the unitary limit a→∞ (Ding and Greene, 2017).
Since that simple study of Bohn, Esry, and Greene (1998),

other studies have considered improvements of the hyper-
spherical BEC treatment, including generalizations to asym-
metrical traps and attempts to better include the two-body
correlation physics beyond the simplest mean-field approxi-
mations (Watson andMcKinney, 1999;KimandZubarev, 2002;
Kushibe et al., 2004; Sorensen, Fedorov, and Jensen, 2004).

C. The unitary Bose gas

Based on what has been learned from studies of dilute Bose
gas recombination theory and experiments, one expects it to
be impossible to create a long-lived Bose-Einstein condensate
in the unitary limit where a → ∞. This conclusion is based on
the fact that three-body losses are seen to scale with the
scattering length overall as a4, aside from quantum resonance
and interference factors. Nevertheless this is a fascinating
limit, in part because it can test whether the recombination
loss rates continue to scale as a4 all the way to a → ∞ and in
part because the many-body behavior implied by the Gross-
Pitaevskii equation looks so qualitatively different for large
negative (infinitely attractive and immediate collapse) versus
large positive scattering lengths (infinitely strong repulsion).
These questions have long been of theoretical interest

(Cowell et al., 2002; Radzihovsky, Weichman, and Park,
2008; Lee and Lee, 2010), and recently they have begun to
receive experimental attention. One way to deal with the
transient nature of any short-lived quantum gas is to perform
the experiment as a “quench,” i.e., begin with a BEC at small
positive scattering length and then suddenly ramp to the range
of unitarity a → ∞. A recent experiment at JILA by Makotyn
et al. (2014) quickly stimulated extensive theoretical work
(Hudson et al., 2014; Jiang et al., 2014; Laurent, Leyronas,
and Chevy, 2014; Piatecki and Krauth, 2014; Rancon and
Levin, 2014; Sykes et al., 2014; Ancilotto et al., 2015; Kira,
2015; Corson and Bohn, 2016; Jiang, Maki, and Zhou, 2016;
Yin and Radzihovsky, 2016; Ding and Greene, 2017) to
understand their main observations, which were the following.
(i) The a4 scaling of three-body loss is no longer applicable at
very large scattering lengths, i.e., when na3 ≫ 1 where n is
the density. To understand this, Makotyn et al. (2014) defined
a characteristic wave number of the system (analogous to the
Fermi wave number) as K ≡ ð6π2nÞ1=3, which is comparable
to the inverse of the average interparticle spacing. They
proposed that in any formula involving the scattering length
a, it should be viewed as saturating at a constant value of the
order of 1=K as soon as you reach the regime Ka ≈ 1. In other
words, as soon as a → ∞, it is no longer a relevant length

(a) (b)

FIG. 14. (a) Adiabatic hyperspherical potential curves for an attractive BEC, a noninteracting BEC, and a repulsively interacting BEC.
(b) Excitation energy calculated for an attractive (a < 0) BEC in the hyperspherical adiabatic theory, compared with the random phase
approximation which is essentially identical to Bogoliubov theory. Adapted from Bohn, Esry, and Greene, 1998.
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scale in the system, and the premise is that the interparticle
spacing becomes the largest relevant scale instead. (ii) The
momentum distribution of the atom cloud was measured as a
function of time after the jump to unitarity, and it settled down
to a quasistable distribution, which was the target of various
many-body and few-body theory efforts to try to understand.
One of the main items of interest in this system, from a few-

body physics perspective, is the saturation of losses at a value far
smaller than would be expected from the zero-temperature a4

scaling. An estimate (Sykes et al., 2014) was made of the three-
body rate coefficient. L3 ≈ 3 × 10−23 cm6=s is reasonably
close (around half as large as) the measured value in the
JILA experiment of Makotyn et al. (2014). This theoretical
estimate is made using the few-body “artificial trap model”
which considers only three atoms but places them in an
artificially tight trap such that the atom density approximately
matches the experimental average density, which was
hni ¼ 5.5ð3Þ × 1012 cm−3. As discussed by Sykes et al.
(2014), one obtains somewhat poorer quantitative agreement
but still the correct order of magnitude for the loss rate at
unitarity by replacing the value of a in the universal three-body
loss rate formulas by 1=K as defined above in terms of the
average density in the gas. Other experimental studies of the
unitary Bose gas that have focused on the three-body loss rate
include Fletcher et al. (2013), Rem et al. (2013), and Eismann
et al. (2016). And another intriguing “universality limit”where
the scattering length is no longer a relevant length scale is the
opposite limit a ≈ 0, recently explored experimentally with
some phenomenological conjectures by Shotan et al. (2014).

D. Two-component Fermi gases and the BCS-BEC crossover
problem

One fascinating type of dilute quantum gas experiment
consists of distinguishable fermions, either in two or more
spin substates or else composed of two or more types of
distinguishable particles. This system received extensive
attention from many theoretical (Hui et al., 2004; Hu, Liu,
and Drummond, 2006; Hu, Drummond, and Liu, 2007; Yin
and Blume, 2015; Yan and Blume, 2016) and experimental
groups (Houbiers et al., 1997; DeMarco and Jin, 1999;
Zwierlein et al., 2004, 2006; Schunck et al., 2005; Ketterle
and Zwierlein, 2008; Ku et al., 2012) with particularly
keen interest in the community around a decade ago.
Conceptually, one typically starts the experiment by forming
a two-component degenerate Fermi gas without interactions,
i.e., with vanishing scattering length between the two com-
ponent atoms. Interactions between like fermions can usually
be ignored, unless one is close to a p-wave Fano-Feshbach
resonance. Now one increases the attraction by making the
scattering length a between unlike atoms small and negative,
i.e., −1 ≪ kfa < 0. This is the regime usually referred to as
the Bardeen-Cooper-Schrieffer region, because the weak
attraction tends to cause pairing. These BCS-type pairs are
sometimes referred to as “preformed pairs” because the
pairing occurs before the attraction is strong enough to form
true isolated dimer bound states. Of course true molecular
bound states can be formed only after the attraction has
increased beyond kfa < −1, to infinite a and then a is large
and positive which allows true universal dimers to form with

binding energy 1=2μa2. At that point, when the gas has large
and positive a, the quantum gas has experienced a “crossover”
from a degenerate Fermi gas to a BEC of weakly bound
molecules (Sá de Melo, Randeria, and Engelbrecht, 1993).
Remarkably, such a system allows an exploration of either
Fermi or Bose quantum statistics depending on the range of
scattering lengths chosen experimentally. An impressive series
of experiments has observed precisely these phenomena
(Loftus et al., 2002; Greiner, Regal, and Jin, 2003; Regal,
Greiner, and Jin, 2004b; Regal et al., 2005), and this crossover
physics has been reviewed by Regal and Jin (2007).
Of course the single-component Fermi gas is also of

interest, with all fermionic atoms in the same intrinsic spin
state. Owing to the absence of s-wave collisions in such
systems, the cross sections for two-body elastic collisions that
are needed for thermalization of the gas are generally quite
small at ultracold temperatures. Use of a p-wave Fano-
Feshbach resonance can enhance the cross sections, although
two-body losses also usually grow in the vicinity of such
resonances (Regal et al., 2003). A two-component Fermi gas
has its three-body recombination losses suppressed since
the low-temperature behavior of the rate coefficient is linear
in the temperature T, in contrast to a gas of bosons or of
three distinguishable particles which have a constant low-
temperature three-body recombination rate. A spin-polarized
gas of fermions, on the other hand, has an even stronger
suppression of the low-temperature recombination rate, which
varies as T2. This might be expected to give very long-
lived Fermi gases when fully polarized, but near a p-wave
Fano-Feshbach resonance in spin-polarized 40K (the point
where the p-wave scattering volume Vp → ∞), the recombi-
nation coefficient has been measured (Regal et al., 2003) and
calculated (Suno, Esry, and Greene, 2003a, 2003b), and found
to approach within an appreciable fraction of the unitarity
limit for the atom loss rate at total relative energy E:

Kmax
3 ¼ ℏ5

m3

144
ffiffiffi
3

p
π2

E2
: ð59Þ

In addition to an explosion of effort to understand the many-
body physics of the BCS-BEC crossover problem, there has
also been extensive fruitful effort directed toward under-
standing this system from a few-body point of view; see,
in particular, Bulgac, Drut, and Magierski (2006), Werner and
Castin (2006), Akkineni, Ceperley, and Trivedi (2007), Chang
and Bertsch (2007), Kestner and Duan (2007), Alhassid,
Bertsch, and Fang (2008), and Zinner et al. (2009). And in
fact one limit of the many-body problem, the “high energy
limit,” can be accurately treated using the virial or cluster
expansion. Exciting progress in computing virial coefficients
for three particles (Liu, Hu, and Drummond, 2009; Castin and
Werner, 2013) and for four particles (Yan and Blume, 2016)
has been contributed in landmark theoretical papers during the
past decade, as well as tested in a few impressive experiments
(Nascimbene et al., 2010).

E. A step beyond independent particles: The Tan contact

The standard methods used in most many-body calculations
usually start with a mean-field wave function ansatz, in some
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cases going one step farther to the level of Bogoliubov theory
or, what is essentially equivalent, the random phase approxi-
mation (Esry, 1997; Fetter and Walecka, 2003). These
approximations have a demonstrated track record of describ-
ing gross global properties of many-body systems, for proper-
ties such as chemical potentials, total energies, and excitation
frequencies (Dalfovo et al., 1999; Giorgini, Pitaevskii, and
Stringari, 2008). One thing that should be kept in mind about
such treatments is that they are based on ridiculously
inaccurate cartoon-level wave functions of the many-body
system at interparticle distances less than the van der Waals
length. However, the behavior over larger distances of the
order of the long de Broglie wavelengths in the system turns
out to be reasonable. To understand the flaws in the full many-
body wave function ansatz used to derive the Gross-Pitaevskii
equation, the workhorse equation of Bose-Einstein conden-
sation theory, recall that it is a product of independent orbitals
ψ , i.e., Ψðr⃗1; r⃗2;…; r⃗NÞ ¼ ψðr⃗1Þψðr⃗2Þ � � �ψðr⃗NÞ. Why is this
an absurd hypothesis? Because it says that each particle’s
probability amplitude is independent of the instantaneous
positions of all other particles; but in reality, there simply must
be, in the “true” wave function of the system, a two-body
character when the distance between any two particles of the
gas becomes comparable to the interaction length scale in the
potential energy function between those particles (the van der
Waals length in the case of isotropic atoms). For two 87Rb
atoms in spin-stretched magnetic substates, for instance, the
zero-energy wave function of any two approaching atoms in
the Rb BEC must have the 39 nodes as the interparticle
distance is varied which is guaranteed to be there by
Levinson’s theorem (Rodberg and Thaler, 1970; Taylor,
1972) since the Rb dimer has 39 triplet bound states in the
L ¼ 0 orbital partial wave. (For an ultracold atomic gas,
higher partial wave physics is normally suppressed by the
centrifugal barrier, so we focus only on the s-wave physics in
this discussion.) This behavior is often incorporated into MC
calculations by using a “Jastrow-type” variational trial func-
tion (or a guiding function in the case of diffusion MC), which
includes a product of all zero-energy two-body pair wave
functions (Dalfovo et al., 1999; Giorgini, Pitaevskii, and
Stringari, 2008; Carlson et al., 2015).
To see why the cartoon-level approximation gives such a

good description of many properties, consider the zero-range
Fermi pseudopotential representation of the interaction
between two low-energy particles, i.e.,

Vðr⃗ijÞ ¼
2πaijℏ2

μij
δðr⃗ijÞ;

where aij is the scattering length between particles i and j and
μij is their reduced mass. In the important paper by Fermi
(1934), he proved that this potential gives an accurate
interaction energy of two particles with finite-range potentials
in the zero-energy limit, even when highly inaccurate zeroth-
order wave functions are utilized; this rescues many-body
predictions of energies and other gross properties of the many-
body system. The success of this “rescue”was documented by
Holzmann and Castin (1999) who demonstrated that the
behaviors over large distance scales of mean field and

Bogoliubov wave functions are quite reasonable, even though
their Hamiltonian does not contain the large number of two-
body bound states whose presence would cause rapid, short-
range oscillations in any “exact” wave function of all alkali
metal atoms in a many-body gas.
Nevertheless, some properties of the many-body system go

beyond those global properties that are well described by a
separable wave function ansatz and its crude improvements at
the next level of approximation. One such property identified
by Shina Tan in a ground-breaking series of papers (Tan,
2008a, 2008b, 2008c) is the high energy limit of the pair
correlation function. This Tan contact parameter has now been
measured for a Fermi gas (Sagi et al., 2012, 2013) as well as
for a BEC (Wild et al., 2012), and those experiments have
confirmed the basis two-body physics on which Tan’s ideas
are based. In brief, one way of looking at the Tan contact is to
acknowledge that there will be a range of distances, as two
zero-energy particles begin to approach each other at smaller
and smaller distances rij, where the wave function must be
proportional to

Ψ ∝
1

aij
−

1

rij
. ð60Þ

In a sense the physics of the Tan contact is just the tip of the
iceberg, because at higher momenta one begins to probe the
full momentum space wave function of two-body subsystems,
which have a complicated structure that in general depends on
the detailed nature of their short-range interactions. For
instance, in a gas of Rb or K atoms, one can expect that
the momentum space wave function above kvdW ∼ 1=lvdW or
at energies above a few MHz should exhibit deviations from
the contact prediction based on the scattering length alone.
Experimental measurements to date appear to be mostly in the
10–100 kHz regime. Nevertheless, there is a wide energy
range, high compared to many-body excitation frequencies
but low compared to van der Waals energy scales, where Tan’s
contact and scattering length two-body physics control the
major departure of the atomic quantum gas from a description
in terms of noninteracting independent particle wave functions
(Blume and Daily, 2009; Braaten and Platter, 2009; Braaten,
Kang, and Platter, 2010; Yan and Blume, 2013; Hudson et al.,
2014; Sykes et al., 2014; Yin and Blume, 2015; Corson and
Bohn, 2016; Yin and Radzihovsky, 2016).

F. Toward many-body theory with realistic interactions

If a mean-field separable wave function ansatz is attempted
in a variational calculation that uses realistic atom-atom
interactions, the results are disastrous and the total energy
is overestimated by many orders of magnitude (Esry and
Greene, 1999). Basically, the mean-field wave function is
unable to make the wave function negligibly small at small
distances where the atom-atom potential is largely repulsive.
An exact solution of the Schrödinger equation would of course
make the wave functions exponentially small in such classi-
cally forbidden regions, something that no independent
particle wave function is “smart enough” to accomplish.
Quantum Monte Carlo calculations, however, are able to
solve for ground states of many-particle systems and they are

Greene, Giannakeas, and Pérez-Ríos: Universal few-body physics and cluster formation

Rev. Mod. Phys., Vol. 89, No. 3, July–September 2017 035006-29



smart enough to make the wave functions exponentially small
in regions of strong repulsion. For instance, some of the best
calculations of helium cluster energies have been obtained
using diffusion Monte Carlo calculations (Lewerenz, 1997;
Blume and Greene, 2002). Obtaining excited state information
from Monte Carlo calculations is notoriously difficult and
limited, however, which makes the technique difficult to use
for determining scattering properties.
One hybrid theory that has shown promise combines

Monte Carlo and adiabatic hyperspherical ideas (Blume
and Greene, 2000). The basic idea is to carry out a diffusion
Monte Carlo calculation to find the energy of the system at a
fixed hyperradius. By repeating the calculation for many
different hyperradii, one maps out the ground state potential
energy curve of the system. Then, within the adiabatic
approximation that neglects coupling to higher potential
curves, at least elastic scattering and a class of excited bound
state properties can be computed. That approach has been
used to compute hyperspherical potential curves (including
diagonal adiabatic correction terms) for clusters of up to N ¼
10 4He atoms, as shown in Fig. 15, and observable properties
such as binding energies and atom-cluster scattering lengths.
There appear to be no competing calculations to date of the
atom-cluster scattering lengths, for instance, beyond about
N ¼ 6 helium atoms, although excellent progress has been
achieved up to N ¼ 6, and in some cases beyond, by using
Gaussian wave functions in combination with a Hamiltonian
based on soft-core model potentials.

V. ULTRACOLD ATOMS IN LOW-DIMENSIONAL TRAPS

The experimental realization of Bose-Einstein condensation
in a dilute gas of alkali atoms in 1995 (Anderson et al., 1995;
Bradley et al., 1995; Davis et al., 1995) enabled the inves-
tigation of pure quantum systems that lie at the interface
among atomic, molecular, quantum optical physics, and

many-body physics. A key breakthrough emerging from
the control of ultracold gaseous matter is the capability to
tune interatomic interactions in strength and sign by means of
magnetic or optical Fano-Feshbach resonances (Inouye et al.,
1998; Köhler, Góral, and Julienne, 2006; Chin et al., 2010).
Nowadays, this has triggered the next generation of quantum
technologies that allow experimental creation and manipula-
tion of low-dimensional ultracold gases (Kolomeisky and
Straley, 1996; Bongs and Sengstock, 2004; Giamarchi, 2004;
Lieb, Seiringer, and Yngvason, 2004; Lewenstein et al., 2007;
Bloch, Dalibard, and Zwerger, 2008; Cazalilla et al., 2011;
McKay and DeMarco, 2011; Imambekov, Schmidt, and
Glazman, 2012; Lewenstein, Sanpera, and Ahufinger, 2012)
of bosonic or fermionic or mixed symmetry (Giorgini,
Pitaevskii, and Stringari, 2008).
Degenerate ultracold atomic gases of reduced dimensionality

then serve as a vehicle for experimental realizations and
theoretical investigations of exotic quantum phases such as
the Tonks-Girardeau (TG) gas (Tonks, 1936; Girardeau, 1960).
The TGmany-body phase consists of a one-dimensional gas of
impenetrable bosons with infinite pairwise repulsion. A funda-
mental property of the TG gas is that it can be viewed as
displaying a fermionization of the bosons. In this context,
fermionization indicates that the infinite repulsion of the bosons
creates a nodewhen any two particles touch, so that the squared
wave function of the infinitely repelling bosons coincides with
that of a noninteracting fermionic gas. When the repulsive 1D
interaction coefficient is cranked up beyond the pole and onto
the side representing infinite attraction, the bosonic ensemble
experiences a metastable many-body state, namely, the “super
Tonks-Girardeau” gas phase (Astrakharchik et al., 2005).
Clearly the strength and the sign of interactions play an essential
role in creating and probing these exoticmany-body phases. It is
therefore crucial to study in detail the collisional processes as
modified by external confining potentials. Indeed, in these
particular low-dimensional two-body systems, the confinement
generates significant modifications to the colliding pair scatter-
ing properties. Existing theoretical studies on bosonic collisions
show that resonant scattering can be induced by the confine-
ment, yielding the so-called confinement-induced resonance
(CIR) effect (Yurovsky, Olshanii, and Weiss, 2008; Dunjko
et al., 2011a). A CIR occurs when the length scale of the
confinement becomes comparable to the s-wave scattering
length of the colliding bosons and it produces a divergence
in the 1D coupling coefficient that is interpreted as a
Fano-Feshbach-like resonance. The additional control of
low-dimensional gaseous matter by varying the confinement
frequency led to the experimental creation of the TG gas
(Kinoshita, Wenger, and Weiss, 2004; Paredes et al., 2004)
and the super-TG gas (Haller et al., 2009) in cigar-shaped traps.
Evidently, the deepening understanding of collision physics

in the low-dimensional ultracold gases translates into an
ability to manipulate and even to design new many-body
phases by means of the external confinement.

A. Confinement-induced resonances: An interlude

Early seminal work by Demkov and Drukarev (1966)
treated the motion of an electron in the presence of a uniform
magnetic field as well as a zero-range potential. That study

FIG. 15. Lowest energy adiabatic hyperspherical potential
curves for N 4He atoms with N ¼ 3–10. These potential curves
are for total angular momentum L ¼ 0. They were computed in a
hybrid hyperspherical-diffusion Monte Carlo method. Based on
these potentials, approximate scattering lengths were computed,
for instance, aðHe9 þ HeÞ ¼ 67a0. Note that the potential curve
for HeN converges asymptotically to the ground state energy of
the HeN−1 cluster. From Blume and Greene, 2000.
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showed that the motion of the charged particle is bounded in
the presence of the magnetic and zero-range potentials,
whereas in the magnetic free case the zero-range potential
cannot bind the electron. Another physical system that
exhibits similar effects is the negative-ion photodetachment
in a uniform magnetic field (Blumberg, Itano, and Larson,
1979; Clark, 1983; Larson and Stoneman, 1985; Greene,
1987; Crawford, 1988; Grozdanov, 1995; Robicheaux,
Giannakeas, and Greene, 2015), where in this particular case
the electron-atom interaction is treated as a short-range
potential. Note that all these cases are half-collisions, in the
sense that they arise in photofragmentation processes, and
involve only an escape to infinity, whereas a full collision
involves both an incoming wave and an outgoing wave.
In the realm of ultracold atomic physics, Olshanii (1998)

showed in his seminal work that boson-boson collisions
in an axially symmetric waveguide rely on virtually identical
mathematics as the system treated by Demkov and Drukarev,
except with the trapping potential playing the role of the
transverse diamagnetic confinement caused by the magnetic
field. More specifically, Olshanii showed that the confinement
not only can create a new bound state, but it can also
nontrivially enhance the resonant two-body collision ampli-
tude. In many cases the reduced-dimensional bound state is
not strictly new, but can be viewed as having been shifted from
its position in the 3D or 2D system. For this reason, the term
“confinement-induced resonance” is often used synony-
mously with the term “confinement-shifted resonance.” The
following briefly summarizes the two-body scattering and its
modification under the influence of the trapping potential and
highlights the physical implications.

1. Two-body collisions in a cigar-shaped trap

Two bosonic particles in the presence of a quasi-1D
waveguide have s-wave collisions that can be modeled using
a Fermi-Huang regularized pseudopotential. The waveguide
constrains the motion of the particles transversely, and they
propagate freely in the longitudinal direction. The quadratic
nature of the trapping potential allows separation of the
Schrödinger equation into center-of-mass and relative degrees
of freedom. The relative coordinate Hamiltonian describes the
relevant collisional physics, which in cylindrical coordinates
reads

H ¼ −
ℏ2

2μ
∇2

r þ VshðrÞ þ
1

2
μω2⊥ρ2; ð61Þ

where μ is the reduced mass of the two bosons, and ω⊥ is the
frequency of the confining potential. As usual, ρ denotes the
radial polar coordinate and Vsh is the 3D Fermi-Huang
pseudopotential operator defined by

VshðrÞΨ ¼ 2πℏ2asðEÞ
μ

δðrÞ d
dr

ðrΨÞ; ð62Þ

where as indicates the s-wave scattering length, δðrÞ denotes
the three-dimensional delta function, and the quantity
d=drðr⋅Þ is the regularization operator. Note that the s-wave
scattering length in Eq. (62) depends on the relative collision

energyE in the pseudopotential, although in the ultracold limit
this energy dependence is often negligible.
Thewaveguide symmetry implies that the transverse degrees

of freedom in the scattering solutions can be expanded in terms
of two-dimensional harmonic oscillator eigenstates in the
potential 1

2
μω2⊥ρ2 and the transverse part of the Laplacian in

theHamiltonianH [see Eq. (61)]. The corresponding transverse
eigenenergies are given by Enm ¼ ℏω⊥ðnþ jmj þ 1Þ, with
n ¼ 2nρ ¼ 0; 2; 4;… the quantum number associated with
the nodes of the wave function in the ρ direction and m the
azimuthal angular momentum. This relative Hamiltonian H
possesses azimuthal symmetry, som is a good quantum number
throughout all the configuration space. Here we concentrate on
the case m ¼ 0.
Remarkably, the prescription given by Demkov and

Drukarev (1966) to regularize a divergent sum that arises
in the derivation involves a very similar mathematical analysis
as was used in the CIR treatment of Olshanii (1998) that
results in a Hurwitz zeta function that is well defined.
This means that the system strongly interacts at a finite

value of the 3D scattering length, whereas in the absence of
the confinement the two bosons exhibit a comparatively weak
interaction. This particular phenomenon is the so-called
confinement-induced resonance. The main feature of this
effect is that the corresponding resonance condition
asðEÞ=a⊥ ¼ −1=c1 can be met either by tuning the trapping
frequency or by adjusting the scattering length via a Fano-
Feshbach resonance, where a⊥ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μω⊥=ℏ
p

.
The treatment by Olshanii (1998) showed that the full

Hamiltonian in Eq. (61) can be mapped onto an effective one-
dimensional Hamiltonian with a delta function interaction
between the two bosons of strength g1D:

Heff ¼ −
ℏ2

2μ

d2

dz2
þ g1DδðzÞ; g1D ¼ ℏ2

μa⊥
2asðEÞ

a⊥ þ c1asðEÞ
;

ð63Þ

where the constant c1 is given by

c1ðkÞ ¼ ζ(1
2
; 1 − 1

4
ðka⊥Þ2); ð64Þ

with ζð·; ·Þ the Hurwitz zeta function and for ka⊥ ≪ 1we have
the value c1 ≈ −1.460 35. Here k is the wave number
associated with the total colliding energy E.
This effective two-body interaction derived from first

principles can be directly utilized in a many-body
Hamiltonian, which permits an exploration of the underlying
physics associated with the Tonks-Girardeau gas. The effec-
tive Hamiltonian based on the coupling strength g1D encap-
sulates all the relevant scattering information in the full
Hamiltonian as well as the nontrivial modifications due to
the trap. More specifically, as the ratio asðEÞ=a⊥ tends to
−1=c1 the quantity g1D → ∞. This particular feature is
depicted in Fig. 16 by the vertical dotted line where the
position of the CIR is indicated by the red star. In Fig. 16 the
coupling constant g1D is shown as a function of the ratio
asðEÞ=a⊥. The black dots correspond to the full numerical
solution of the Hamiltonian given in Eq. (61) where the two-
body interactions are modeled by a 6-10 potential, i.e.,
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VðrÞ ¼ C10=r10 − C6=r6. The solid orange line denotes the
analytical result of the coupling constant g1D given in Eq. (63)
which agrees accurately with the numerical solution.
Furthermore, Fig. 16 shows that as the ratio asðEÞ=a⊥ tends
to infinity the coupling constant tends asymptotically to a
weakly attractive limit in the effective 1D potential energy.
The resonant 3D free-space two-body interactions, on either
the repulsive or attractive side, are modified into weakly
attractive 1D forces due to the trapping geometry. This
attractive force in the waveguide is determined solely by
the c1ðkÞ constant and the oscillator length a⊥. Indeed, for
asðEÞ=a⊥ → ∞ the coupling strength is g1D → ℏ2=2μa⊥c1.
Qualitatively, the CIR can be viewed as a bound

state supported by all the closed channels whose energy
coincides with the lowest channel threshold, as in a usual
Fano-Feshbach resonance (Bergeman, Moore, and Olshanii,
2003). This multichannel bound state produces only a single
pole in the reactance operator, i.e., the tangent of the 1D even
z-parity phase shift. To follow up on this idea, one can obtain
the binding energies of the closed-channel supported bound
state from the following transcendental equation, and its
solution is the CIR resonance condition:

a⊥
as

¼ −ζ
�
1

2
;
3

2
−

Er

2ℏω⊥

�
; ð65Þ

where ζð·; ·Þ is the Hurwitz zeta function. Note that the
appropriate value of Er in the ultracold limit is in the range
of a few tens of kHz. On the other hand, the theoretical
treatment suggests that at energies below the threshold of the
open channel confinement-induced molecular states might be
supported. Equation (66) is derived by requiring all the
scattering channels to be closed yielding a wave function
that vanishes asymptotically. In this case the molecular

confinement-induced energies obey the following transcen-
dental equation:

a⊥
as

¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ℏω⊥

ℏω⊥ − Er

s
− ζ

�
1

2
;
3

2
−

Er

2ℏω⊥

�
: ð66Þ

Figure 17 illustrates the relations in Eqs. (65) and (66),
where the corresponding closed-channel bound state (solid
blue curve, top) and molecular CIR state (solid orange curve,
bottom) energies are given as a function of the ratio a⊥=as.
The dashed red lines indicate the two-dimensional harmonic
oscillator eigenenergies in the absence of short-range inter-
actions, i.e., the values Eð1Þ ¼ ℏω⊥ and Eð2Þ ¼ 3ℏω⊥. The
dashed black curve corresponds to the energy of an s-wave
molecular pair in the absence of a confining trap, i.e.,

Efree=ℏω⊥ ¼ −
a2⊥
2a2s

.

We observe that the closed-channel bound state (solid blue
curve, top) tends to 3ℏω⊥ as the ratio a⊥=as → −∞, i.e., in
the absence of a short-range interaction. As the ratio a⊥=as
approaches the value −c1 ¼ 1.460 35 the bound state from the
closed channels becomes degenerate with the threshold of
the open channel Eð1Þ ¼ ℏω⊥ (see the black star in Fig. 17),
and not coincidentally the CIR resonance occurs at
a⊥=as ¼ −c1 ¼ 1.460 35. Note that at a⊥=as > 1.460 35
and for energies less than Eð1Þ the depicted blue line (top)
does not have any physical significance and it is just an
analytic continuation of Eq. (65). In this energy regime all the
channels should be closed and Eq. (65) refers to the case
where the system possess a single open channel.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-0.15

-0.1
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FIG. 16. The one-dimensional coupling strength g1D (in units of
ℏ2=μa⊥) as a function of the ratio asðEÞ=a⊥. The solid orange
line corresponds to the analytical expression given in Eq. (63).
The black dots correspond to full numerical calculations
where the two-body interactions are modeled via a 6-10 potential.
The red star denotes the position of the confinement-induced
resonance.
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FIG. 17. Illustration of the physical origin of confinement-
induced resonances. Bound state energies in units of ℏω⊥, i.e.,
E=ℏω⊥ are depicted vs the ratio a⊥=as. The dotted red lines
indicate the energy levels of the unperturbed two-dimensional
harmonic oscillator, which act here as channel threshold energies.
The black star denotes the position of the confinement-induced
resonance relevant in the ultracold limit. The dashed curve curve
illustrates the s-wave bound state in the absence of the trapping
potential. The solid orange curve corresponds to the molecular
confinement-induced resonance. The blue curve (top) is the CIR
bound state energy supported by all the closed channels.
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This analysis illustrates that the CIR has the character of a
Fano-Feshbach resonance, where the collective bound state
attached to all the closed channels lies in the low-energy
continuum of the open channel. In addition, the confine-
ment-inducedmolecular state (see the solid orange line, bottom)
exists regardless of the strength of the short-range interactions.
This is a manifestation of the impact of the confinement since in
free-space collisions the bosonic pair forms a weakly bound
state only for positive values of the s-wave scattering length. On
the positive side of the abscissa in Fig. 17 as the ratio a⊥=as
increases we observe that the energy of the free-space weakly
boundmolecule (dashed black line) coincideswith the energyof
the confinement-induced molecular state (solid orange line,
bottom). This occurs at these values of scattering length since
the two-bodypotential is deep enough forcing thewave function
to vanish before the trapping potential becomes important.
Therefore, in this limit the confinement-inducedmolecular state
behaves as a free-space bound state. Note that similar behavior
was observed by Demkov and Drukarev (1966).
An experiment by Moritz et al. (2005) considered a Fermi

gas of 40K atoms in the presence of harmonic confinement.
The 40K atoms are prepared in two hyperfine states
jF ¼ 9=2; mF ¼ −9=2i and jF ¼ 9=2; mF ¼ −7=2i. Note
that the third hyperfine jF ¼ 9=2; mF ¼ −5=2i is not popu-
lated initially. The mutual interactions are tuned via a
Feshbach resonance whose position is located at B ¼
202.1 G and its zero crossing is at B ¼ 210 G. Thereafter,
by employing radio-frequency spectroscopy confinement-
induced molecules are generated and their binding energy
is measured as a function of the scattering length and the
confinement frequency. In Fig. 18 the binding energies of
the confinement-induced (solid black line and squares) and
Feshbach (solid blue line and circles) molecules are depicted
as a function of the magnetic field. The solid lines denote the
theoretical predictions of Dickerscheid and Stoof (2005)
whereas the scattered data are the experimental measurements.
The dashed blue line indicates the position of the Feshbach
resonance where a Feshbach molecule (blue line and circles) is

formed only on the positive side of the resonance whereas no
measurement occurs on the negative side. On the other hand,
in the case of confinement-induced molecule (black line and
squares) we observe that there is always a bound state
regardless the sign of the s-wave interactions. This is in
accordance with the theoretical predictions. In addition, note
that the intersection point of the black line with the dashed
blue line, i.e., at the position of infinite scattering length, the
binding energy acquires its universal value, i.e., EB ≈ 0.6ℏω⊥.
At this universal value the binding energy of the confinement-
induced molecules depends solely on the strength of the
confinement. Note that the strength of the confinement in
Moritz et al. (2005) is tuned by changing the lattice depth V0.
Figure 19 depicts the binding energy of the confinement-
induced molecule as a function of the confinement strength in
units of recoil energy Er. The solid black line refers to
theoretical calculations and the scatter data indicate the
radio-frequency measurements. Both theory (Dickerscheid
and Stoof, 2005) and experiment show sufficient agreement.
The minor disagreements between theory and experiment in
Figs. 18 and 19 associated with the effective-range corrections
are not included as pointed out by Peng et al. (2012).
In the analysis of s-wave confinement-induced resonances

it is evident that zero-range approximations are employed.
This means that the short-range part of the Hamiltonian is
treated in essence as a single channel. In experiments,
however (see Fig. 18), the main toolkit to tune the interactions
or the s-wave scattering length is the Feshbach resonances.
This particular aspect implies that the short-range part must be
treated as a two-channel model in order to obtain a direct
comparison with the corresponding experimental advances.
Toward this pathway a tremendous amount of theoretical
effort is focused in order to adequately incorporate the two-
channel nature of Feshbach resonances in the confinement-
induced physics (Yurovsky, 2005, 2006; Peng et al., 2012;
Saeidian, Melezhik, and Schmelcher, 2012; Kristensen and
Pricoupenko, 2015). All these works pointed out the impor-
tance of the effective range corrections particularly on the
calculation of the binding energy of confinement-induced
molecules. In addition, it was shown that the effective range

FIG. 18. Confinement-induced (black squares and line) and
Feshbach (blue line and circles) molecules. The solid lines
correspond to the theoretical predictions whereas the circles
and squares indicate the experimental measurements. The vertical
dashed line indicates the position of the Feshbach resonance.
From Moritz et al., 2005.

FIG. 19. The binding energy of the confinement-induced mol-
ecules as a function of the lattice depth V0 in recoil units (Er). The
spectra are measured very close to the Feshbach resonance at
magnetic field B ¼ 202 G. The solid black line indicates the
corresponding theoretical calculations. From Moritz et al., 2005.
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corrections become more important for narrow Feshbach
resonances. Note that similar conclusions were also drawn
for fermionic species in harmonic waveguides (Saeidian,
Melezhik, and Schmelcher, 2015).
Another aspect which was excluded from the work of

Demkov and Drukarev (1966), Olshanii (1998), and
Bergeman, Moore, and Olshanii (2003) was that the total
colliding energy is sufficient for the pair atoms such that no
excitation will occur before and after the collision. Lifting
this constraint, i.e., going beyond the single mode regime
(Moore, Bergeman, and Olshanii, 2004; Saeidian, Melezhik,
and Schmelcher, 2008; Heß, Giannakeas, and Schmelcher,
2015) predicted numerically (Saeidian, Melezhik, and
Schmelcher, 2008) and analytically (Moore, Bergeman, and
Olshanii, 2004; Heß, Giannakeas, and Schmelcher, 2015)
the emergent inelastic confinement-induced resonances for
bosonic and fermionic exchange symmetries. In particular,
Heß, Giannakeas, and Schmelcher (2015) also considered
the higher partial wave interactions going beyond s- and
p-wave interactions and obtained universal expressions for
the position of all the inelastic confinement-induced
resonances.
Kim, Melezhik, and Schmelcher (2006) studied distin-

guishable particle collisions in the presence of a harmonic
waveguide which yield the effect of dual confinement-induced
resonances. These types of resonances correspond to total
transmission due to the destructive interference of s and p-
partial waves. The importance of high partial waves on
bosonic or fermionic systems in a cigar-shaped trap were
considered by Giannakeas, Diakonos, and Schmelcher (2012).
Because of the anisotropy of the trap all the partial waves
associated with either bosonic or fermionic exchange sym-
metry are interacting, which yields in this manner coupled
l-wave confinement-induced resonances. The analysis of this
particular system is based on the idea of the local frame
transformation. This framework was employed for highlight-
ing the underlining physics of fermionic collisions in matter
waveguides by Granger and Blume (2004) avoiding the
complications of zero-range and two-channel models. The
following focuses on a system of spin-polarized fermions in
the presence of cigar-shaped traps and the underlying details
of the local frame transformation theory.

2. Fermions in a cigar-shaped trap

It is also of extensive experimental and theoretical interest
to explore near-degenerate fermionic gases in low-dimen-
sional traps, which requires a detailed understanding of
confinement-induced resonances between identical fermions.
Granger and Blume (2004) developed a scattering theory to
describe collisions between identical spin-polarized fermions
in the presence of an axially symmetric harmonic trap. Owing
to the Pauli exclusion principle, ultracold fermions interact in
3D with p-wave interactions instead of s-wave interactions
that were considered in the previous section. The p-wave
theory requires somewhat different considerations, which we
therefore consider in this section from the general viewpoint
of the K-matrix theory; this highlights the behavior imposed
on spin-polarized fermionic ensembles by the transverse
trapping potential.

Again, the relative Hamiltonian for two spin-polarized
fermions expressed in cylindrical coordinates has the same
form as given in Eq. (61). In contrast with the previous s-wave
treatment, the spherically symmetric two-body interaction is
not modeled by a pseudopotential. Instead the formulation
works directly with the short-range phase shift caused by the
spherical symmetric two-body atomic interaction. In the
following, azimuthal symmetry is assumed and our analysis
is restricted to only m ¼ 0.
In practice the length scales associated with the two

potential terms in Hamiltonian H are well separated, with
r0 the short-range potential typically orders of magnitude
smaller than the waveguide potential oscillator length in a
typical ultracold experiment a⊥ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=μω⊥
p

. At small inter-
particle distance r ≪ a⊥, the orbital angular momentum is
approximately conserved and therefore the two fermions
experience a free-space collision with total colliding energy
E ¼ ℏ2k2=ð2μÞ. As usual, μ denotes the two-body reduced
mass. In this case the l0th linearly independent energy
eigenstate expressed in spherical coordinates has the follow-
ing form at r0 ≪ r ≪ a⊥:

Ψl0 ðrÞ ¼
X
l

Flðr; θÞδll0 −Glðr; θÞK3D
ll0 ; ð67Þ

where Flðr; θÞ [Glðr; θÞ] is the energy normalized regular
[irregular] solution expressed in terms of spherical Bessel jlðrÞ
[spherical Neumann nlðrÞ] functions multiplied by the corre-
sponding spherical harmonic Yl;m¼0ðθ;ϕÞ. The summation is
performed over all odd l angular momentum due to the Pauli
exclusion principle. The quantity K3D

ll0 represents the elements
of the reaction matrix K3D in three dimensions. This K matrix
incorporates all the scattering information due to the short-range
potential VshðrÞ, and for a spherically symmetric potential it is
diagonal, but for anisotropic interactions such as the dipole-
dipole type it could acquire off-diagonal elements in other
contexts (Giannakeas, Melezhik, and Schmelcher, 2013).
At large distances the waveguide geometry prevails and

imposes cylindrical symmetry on the wave function, and the
total collision energy gets apportioned between the transversal
and longitudinal degrees of freedom. The energy can be
expressed at jzj > r0 as E¼ℏω⊥ð2nþjmjþ1Þþℏ2q2n=ð2μÞ,
where the term ℏω⊥ð2nþ jmj þ 1Þ refers to the energy of the
transversal part of the Hamiltonian and qn is the channel
momentum, i.e., the momentum of the particles in the z
direction. In this region the n0th linearly independent scattering
wave function at energy E can be expressed in cylindrical
coordinates as

Ψn0 ðrÞ ¼
X
n

fnðz; ρÞδnn0 − gnðz; ρÞK1D
nn0 ; ð68Þ

where the quantityK1D
nn0 represents the elements of the quasi-1D

reaction matrix K1D and (fnðz; ρÞ; gnðz; ρÞ) are the energy
normalized (regular, irregular) standing-wave solutions solely
in the presence of the trap. The specific form of the regular and
irregular solutions which obey the Pauli exclusion principle
have odd z parity for m ¼ 0 and are given by
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�
fnðz; ρÞ
gnðz; ρÞ

�
¼ ð2π2qnÞ−1=2ΦnðρÞ

�� sinqnz

− z
jzj cosqnz

�
; ð69Þ

where ΦnðρÞ are the m ¼ 0 eigenfunctions of the two-
dimensional harmonic oscillator and the z dependence
describes motion in the unbounded coordinate. For collisions
of spin-polarized fermions the factor z=jzj corresponds to the
antisymmetrization operator.
From the Hamiltonian H in Eq. (61) it is evident that the

corresponding Schrödinger equation is nonseparable over all
the configuration space. However, as mentioned there are two
distinct subspaces where the resulting Schrödinger equation is
separable and all the relevant scattering information can be
expressed in terms of reaction matrices, namely, K3D [see
Eq. (67)] and K1D [see Eq. (68)]. The main idea is to define a
frame transformation which will permit one to express the
K1D reaction matrix in terms of the short range K3D.
Intuitively, the frame transformationU permits us to propagate
outward to the asymptotic region the information of the
collisional events occurring close to the origin.
An unusual property of this frame transformation is that it is

not unitary. This arises due to the fact that the solutions given
in Eqs. (67) and (68) obey different Schrödinger equations.
However, the Hamiltonian H in Eq. (61) possesses length
scale separation implying the existence of an intermediate
regionwhere both potentials are negligible. Thismeans that in
this subspace Eqs. (67) and (68) approximately satisfy the
same Schrödinger equation, i.e., the Helmholtz equation.
Therefore, in this Helmholtz region one locally employs the
frame transformation. The concept of the local frame trans-
formation was introduced by Fano (1981a) andHarmin (1982a,
1982b) and extendedbyGreene (1987),Wong,Rau, andGreene
(1988), Granger and Blume (2004), Zhang and Greene (2013),
Robicheaux, Giannakeas, and Greene (2015), and Giannakeas,
Greene, and Robicheaux (2016).
The local frame transformation is derived by matching the

energy normalized regular solutions fnðrÞ and FlðrÞ on a
surface σ at a finite distance r0 < r < a⊥ inside the Helmholtz
region. Formally, for r < a⊥ U obeys

fnðrÞ¼
X
l

FlðrÞUT
ln; with UT

ln¼ Fljfnii; forr<a⊥; ð70Þhh

where UT denotes the transpose of the frame transformation
matrix U, and ·j · iihh indicates that the solutions Fl and fn are
integrated only over the solid angle Ω ¼ ðθ;ϕÞ. Note that the
matrix elements U are independent of the distance r. This
occurs since the matching of the regular solutions takes place
in the Helmholtz region where both solutions possess the
same r dependence. In addition, since the set of solutions in
Eqs. (67) and (68) are real standing-wave solutions, the
matrix U is real.
Fano (1981a) pointed out that the irregular parts of

Eqs. (67) and (68) can be interconnected by matching in
the Helmholtz region the corresponding principal value
Green’s functions, written in the different coordinate systems.
Formally, the irregular solutions obey

gnðrÞ ¼
X
l

GlðrÞ½U−1�ln; for r < a⊥: ð71Þ

After inserting Eqs. (70) and (71) into the scattering wave
function ΨðrÞ in Eq. (67), the K1D matrix can be expressed in
terms of the short range K3D compactly as

K1D ¼ UK3DUT; ð72Þ

where the short range K3D includes all the odd partial waves
for the spin-polarized fermions. Also, the K1D matrix depends
on the total collision energy E.
The K1D matrix contains information about the asymptoti-

cally open- and closed-channel components of the wave
functions. To describe the closed-channel components, sol-
utions given in Eq. (68) can be analytically continued by
setting the channel momentum qn to be qn → ijqnj in the usual
spirit of quantum defect theory. Then one can derive the local
frame transformation U which possesses the same functional
form as for the open channels. Note that the local frame
transformation U in the open channels only for p-wave
interactions obeys the relation

Ul¼1n ¼
ffiffiffi
2

p

a⊥

ffiffiffiffiffiffiffiffi
3

kqn

s
Pl¼1

�
qn
k

�
;

where Plð·Þ indicates the lth Legendre polynomial. This
yields the same expression for K1D shown in Eq. (72). The
only drawback from these manipulations is that the resulting
K1D matrix corresponds to a scattering solution which does
not (yet) obey the proper boundary conditions asymptotically.
This is because the closed-channel parts of the wave function
given in Eq. (68) contains exponentially growing pieces at
jzj → ∞. One sees readily after substituting qn → ijqnj that
the regular and irregular solutions in Eq. (69) for the closed-
channel components have exponentially both decaying and
growing pieces. Therefore, in order to enforce the physically
accepted asymptotic boundary conditions in Eq. (68) concepts
from multichannel quantum defect theory are employed
Aymar, Greene, and Luc-Koenig (1996).
Initially, the scattering wave function in Eq. (68) is

separated into open (o) and closed (c) channels. Then, linear
combinations are chosen by demanding that the exponentially
growing pieces in the closed channels are canceled. Formally,
we have the following relation for the wave function:

�Ψoo Ψoc

Ψco Ψcc

��
Boo

Bco

�
¼

��
fo 0

0 fc

�
−
�
go 0

0 gc

�
�
K1D

oo K1D
oc

K1D
co K1D

cc

���
Boo

Bco

�
;

where the matrices Boo and Bco denote the linear combination
coefficients. By eliminating the closed channels the linear
combination coefficients acquire the values

Boo ¼ 1 and Bco ¼
�
fc
gc

− K1D
cc

�
−1
K1D

co ; ð73Þ

where the term fc=gc→
jzj→∞

− i1.
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The physical wave function, which involves only open
channels asymptotically since the closed-channel components
decay exponentially, acquires the following form at jzj → ∞:

Ψphys ¼ fo − go½K1D
oo þ iK1D

oc ð1 − iK1D
cc Þ−1K1D

co �: ð74Þ

Here the effects of the closed channels on the open channel
scattering are included in the corresponding physicalKmatrix,
given by

K1D;phys
oo ≡ K1D

oo þ iK1D
oc ð1 − iK1D

cc Þ−1K1D
co : ð75Þ

The resonances of the collision complex appear as poles of the
K1D;phys

oo matrix. More specifically, the K1D;phys
oo exhibits reso-

nant features at zero eigenvalues of the matrix ð1 − iK1D
cc Þ.

Therefore, this argument can be recast into the form of a
determinantal equation:

detð1 − iK1D
cc Þ ¼ 0: ð76Þ

Note that despite the appearance of the imaginary unit i in
the preceding equations, all of these physical wave functions
and reaction matrices are real. When all channels are closed,
the roots of Eq. (76) yield the bound state energies. When one
or more channels are energetically open, the roots of the above
closed-channel determinant approximately identify the real
parts of resonance energies. Equation (76) shows why a
confinement-induced resonance can be viewed as a Fano-
Feshbach type of resonance.
Consider next the situation where the two fermions collide

in the single mode regime, meaning that the relative collision
energy lies between the lowest two transverse thresholds. In
addition, these ultracold spin-polarized fermions interact at
short distances via p-wave interactions only. Phase shifts
associated with higher 3D partial waves are entirely neglected.
Accordingly, the determinantal equation has one nonzero root,
and the K1D;phys

oo matrix takes the following form:

K1D;phys
oo ¼ K1D

oo þ iK1D
oc

�
1þ i

1 − iγ
K1D

cc

�
−1
K1D

co ; ð77Þ

where γ ¼ TrðK1D
cc;lÞ. Note that the TrðK1D

cc;lÞ is an infinite sum
which formally diverges and in order to obtain a meaningful
answer an auxiliary regularization scheme is employed. In the
particular case aRiemann zeta function regularization scheme is
used. Note that such techniques are totally avoided in the
generalized form of the local frame transformation theory
(Robicheaux, Giannakeas, and Greene, 2015; Giannakeas,
Greene, and Robicheaux, 2016). In addition, Eq. (77) is further
simplified by substituting ðK3DÞl0l00 ¼ tan δl¼1ðEÞδl0;1δl00;1,
i.e., using the fact that only p-wave phase shifts δl¼1ðEÞ are
nonzero. Next, in Eq. (77) we substitute the corresponding local
frame transformation for the closed channels only

Ul¼1n ¼
ffiffiffi
2

p

a⊥

ffiffiffiffiffiffiffiffiffiffiffiffi
3

ikjqnj

s
Pl¼1

�
ijqnj
k

�
;

where Plð·Þ indicates the lth Legendre polynomial.
Equation (77) now reads

K1D;phys
oo ¼ −

6Vp

a3⊥
q0a⊥

�
1 − 12

Vp

a3⊥
ζ

�
−
1

2
;
3

2
−

E
2ℏω⊥

��
−1
;

ð78Þ

where the terms inside the square brackets provide the
resonance condition for the position of the p-wave
confinement-induced resonances. The term Vp denotes the
energy-dependent 3D scattering volume which is defined by

VpðEÞ ¼ − tan δl¼1ðEÞ=k3 ðk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μE=ℏ2

p
Þ.

The quantity of greatest experimental relevance is the
effective interaction strength between two 1D spin-polarized
fermions which contains the corresponding p-wave confine-
ment-induced physics. As shown by Girardeau and Olshanii
(2004), Kanjilal and Blume (2004), and Pricoupenko (2008)
this effective 1D interaction is related to the corresponding
K matrix [see Eq. (78)] according to

g−1D ¼ −
ℏ2a⊥
μq0

K1D;phys
oo : ð79Þ

This coefficient controls the strength of the effective zero-
range pseudopotential that is relevant for describing the
interaction of identical fermions in 1D in both few-body
and many-body contexts, namely,

VpseudoðzÞ ¼ g−1D
d⃖
dz

δðzÞ d⃗
dz

: ð80Þ

The left (or right) arrow indicates that the derivative operator
acts on the bra (or ket), respectively. In the idealized limit of a
zero-range potential, this pseudopotential produces a discon-
tinuous wave function that obeys the required antisymmetry of
the identical fermion wave function. This might seem prob-
lematical since one normally requires wave functions in
Schrödinger wave mechanics to be continuous, but it can
be accommodated theoretically as discussed, for instance, by
Cheon and Shigehara (1999).
Figure 20 illustrates the dependence of the effective

coupling constant g−1D as a function of the Vp=a3⊥ in the

FIG. 20. The low-energy effective interaction g−1D for two spin-
polarized fermions in the presence of a harmonic confinement as
a function of Vp=a3⊥. The red star denotes the position of the p-
wave confinement-induced resonance.
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low-energy regime. The two fermions strongly interact at
the position of p-wave confinement-induced resonance (see
the red star in Fig. 20) whereas in the limit of Vp=a3⊥ → 0 the
corresponding effective interaction vanishes. Interestingly, for
strong p-wave interactions, i.e., Vp=a3⊥ → �∞ the spin-
polarized fermions experience a weak attraction due to the
transversal harmonic confinement. The location of this diver-
gent interaction strength is called the p-wave confinement-
induced resonance, and it occurs where the scattering volume
of the p-wave phase shift is finite and satisfies the resonance
condition, namely, Vp=a3⊥ ¼ ½12ζð−1=2; 3=2 − E=2ℏω⊥Þ�−1.
Apparently, the theoretical scope of confinement-induced

resonances is addressed mainly to the elastic collisional
aspects of particles with either bosonic or fermionic exchange
symmetry. However, in the experimental advances of Günter
et al. (2005), Haller et al. (2010), Lamporesi et al. (2010), and
Sala et al. (2013) the confinement-induced physics is probed
via atom loss measurements which inherently are inelastic
scattering processes. These processes mainly emerge due to
mechanisms, such as three-body recombination, coupling of
the two-body center-of-mass and relative degrees of freedom,
spin flips, etc. Theoretically, the few-body collisions in the
presence of external confinement were investigated by
Mora et al. (2004, 2005), Mora, Egger, and Gogolin (2005),
Gharashi, Daily, and Blume (2012), and Blume (2014)
addressing the three- and four-body aspects of the confine-
ment-induced physics where a detailed discussion can be
found in the excellent review by Blume (2012a).
Günter et al. (2005) experimentally investigated p-wave

collisions of spin-polarized fermions in the presence of cigar-
shaped and pancake traps. The degenerate gas constitutes of
fermionic 40K atoms where their mutual interactions are tuned
by means of a p-wave Feshbach resonance at 198 G which
possesses a double-peaked feature. As shown by Ticknor et al.
(2004) the doublet structure of a p-wave magnetic Feshbach

resonance is associated with the different projections of the
orbital angular momentum, i.e., jmj ¼ 1 and m ¼ 0 for l ¼ 1

and it occurs due to the magnetic dipole-dipole interactions.
Günter et al. (2005) showed that this feature also yields
particular signatures in low-dimensional arrangements.
Qualitatively the impact of the double-peaked Feshbach
resonance is depicted in Fig. 21 where three configurations
are considered for pancake and cigar-shaped traps. In par-
ticular, Fig. 21(a) corresponds in a pancake trap where all the
projection alignments, i.e.,jmj ¼ 1 andm ¼ 0, are considered.
In Fig. 21(b) a cigar-shaped trap is considered whose
longitudinal direction is perpendicular to the magnetic field.
This implies that the jmj ¼ 1 configuration of the p-wave
Feshbach resonance mainly contributes in the scattering
process whereas collisional events associated with m ¼ 0

component of the Feshbach resonance are suppressed. Finally,
in Fig. 21(c) the quasi-one-dimensional trap is aligned with
the magnetic field, whereby the m ¼ 0 component dominates
the p-wave collisions.
By measuring the atom loss signal the impact of the

multiplet Feshbach resonance is illustrated in Fig. 22 for five
different trap configurations. In particular, Fig. 22(a) a three-
dimensional optical trap where the double-peaked feature of
the p-wave resonance stands out. In Fig. 22(b) the potassium
atoms are confined in a pancake-shaped trap and the two

FIG. 21. Schematic illustration of the alignment of the spins
with respect to pancake and cigar-shaped traps. (a) In a pancake
configuration all the spin alignments are permitted. (b), (c) Cigar-
shaped traps where only the jmj ¼ 1 (m ¼ 0) spin configuration of
the p-wave interactions is allowed. From Günter et al., 2005.

(a)

(b)

(c)

(d)

(e)

FIG. 22. Atom loss measurements for 40K atoms around a
multiplet p-wave Feshbach resonance for (a) a three-dimensional
dipole trap, (b) a two-dimensional pancake trap, (c), (d) a quasi-
one-dimensional cigar-shaped trap whose longitudinal direction
is perpendicular (parallel) to the magnetic field, and (e) a three-
dimensional optical lattice. From Günter et al., 2005.
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components of the Feshbach resonance prevail where a
confinement-induced shift is observed with respect to the
measurements of Fig. 22(a). In Fig. 22(c) the Fermi gas is
confined in a quasi-one-dimensional trap with its longitudinal
direction positioned perpendicular to the magnetic field. In
contrast to Figs. 22(a) and 22(b), only the jmj ¼ 1 component
of p-wave resonance is pronounced whereas the trapping
potential induces a shift with respect to the corresponding
resonance in Fig. 22(a). Similarly, in Fig. 22(d) the Fermi gas
is confined in a cigar-shaped trap with the longitudinal
direction being aligned with the magnetic field. In this case,
solely the jmj ¼ 0 component of the Feshbach resonance
contributes appreciably, and it is shifted toward larger values
of field strength with respect to the corresponding measure-
ments of Fig. 22(a) verifying in this manner the theoretical
predictions of Granger and Blume (2004). Finally, a tight
three-dimensional optical lattice is considered in Fig. 22(e)
where no pronounced losses are observed since the atoms are
effectively confined in “zero” dimensions and asymptotic
scattering states are restricted.
From a theoretical viewpoint, Peng, Tan, and Jiang (2014)

considered fermionic collisions around a p-wave Feshbach
resonance in the presence of quasi-two- and quasi-one-dimen-
sional traps. In particular, Peng, Tan, and Jiang (2014) took
into account the multiplet structure of the p-wave Feshbach
resonance and studied within a zero-range model the impact of
the relative orientation of the magnetic field with the trapping
potentials on the collisional processes. In this manner, the
experimentally (Günter et al., 2005) observed spin alignment-
dependent confinement-induced resonances for spin-polarized
fermions were also verified theoretically by Peng, Tan, and
Jiang (2014).

B. Confinement-induced resonances: Delving deeper

The previous discussion considered only a quasi-one-
dimensional harmonic type of confinement for producing
confinement-induced resonances. The rapid technological
advances in laser trapping techniques have opened a new
avenue that enables ultracold atoms to be confined in arbitrary
geometries. From a theoretical viewpoint, this requires exten-
sions of the boundaries of our understanding of confinement-
induced physics to include more general types of trapping
potentials. Many of the generalizations discussed in this
section were reviewed by Blume (2012a) and Zinner (2012).
In this direction, Petrov, Holzmann, and Shlyapnikov

(2000), Petrov and Shlyapnikov (2001), Idziaszek and
Calarco (2006), and Pricoupenko (2008) considered ultracold
collisions in the presence of quasi-two-dimensional traps. In
particular, Petrov and Shlyapnikov (2001) studied bosonic
collisions in pancake-shaped traps within the zero-range
approximation. The pancake trap modifies the properties of
3D binary collisions yielding two-dimensional confinement-
induced resonances. This particular type of resonance also
fulfills a Fano-Feshbach scenario as do the quasi-one-
dimensional resonances. However, due to the pancake geom-
etry a confinement-induced resonance occurs when the
two-body potential is not sufficiently deep to produce a true
3D universal bound state, i.e., where the corresponding free-
space scattering length is negative. Again, this differs from the

quasi-one-dimensional confinement-induced resonances in
the low-energy limit, which occur at positive values of the
s-wave scattering length. The theoretical predictions of Petrov
and Shlyapnikov (2001) were experimentally confirmed by
Fröhlich et al. (2011). Fröhlich et al. (2011) explored the
collisional aspects of a two-component Fermi gas in a pancake
trap around a free-space Fano-Feshbach resonance. By
employing radio-frequency techniques the molecule forma-
tion is measured on the negative side of Fano-Feshbach
resonance.
Idziaszek and Calarco (2005) and Peng et al. (2010) studied

confinement-induced resonances in the presence of an aniso-
tropic waveguide, using a pseudopotential model of the two-
body collisions. The anisotropy is induced by considering a
transverse harmonic potential in the x-y plane, with different
frequencies in the x and y directions. Theory suggests that the
system in this type of geometry possesses only one confine-
ment-induced resonance, whose position can be tuned by
adjusting the confining frequency aspect ratio (Peng et al.,
2010). Moreover, similar conclusions emerged from Zhang
and Zhang (2011) that considered a two-channel model for the
short-range 3D interaction. The simple fact that an anisotropic
harmonic waveguide exhibits only one confinement-induced
resonance was not confirmed by the experiment of Haller et al.
(2010). More specifically, Haller et al. (2010) conducted
experiments on Cs atoms confined in quasi-one-to-quasi-two-
dimensional traps. In the regime of anisotropic traps through
atom loss measurements the corresponding observations
showed signatures of two confinement-induced resonances.
The double peak feature was theoretically resolved by

proposing two possible loss mechanisms. One was associated
with multichannel inelastic processes (Melezhik and
Schmelcher, 2011) and the second one was related to the
mere fact that the trapping potential in Haller et al. (2010)
exhibits an anharmonicity (Peng et al., 2011; Sala, Schneider,
and Saenz, 2012). The anharmonicity of the trap induces a
coupling between the center-of-mass and relative degrees of
freedom of the colliding pair. This coupling enables the two
particles to form a molecule without requiring a third particle
since the binding energy can be distributed to the center-of-
mass degrees of freedom. After implementing these consid-
erations in the theory, two confinement-induced resonances
do indeed emerge which confirm the experimental observa-
tions of Haller et al. (2010). More recently, in order to
pinpoint the physical origin of the double confinement-
induced resonances, Sala et al. (2013) considered experiments
with 6Li atoms in an anharmonic waveguide. More specifi-
cally, in that experiment, the trapping potential was loaded
with only two 6Li atoms in the ground state of the external
potential. Therefore, three-body effects as well as multichan-
nel inelastic multichannel effects were excluded (Melezhik
and Schmelcher, 2011). In this manner, a double peak
structure was observed in atom loss measurements which
are attributed to two confinement-induced resonances.
Dealing with ultracold collisions in arbitrarily shaped

transversal potentials Zhang and Greene (2013) and
Robicheaux, Giannakeas, and Greene (2015) developed
theories based on local frame transformation theory, which
can predict a broader class of confinement-induced reso-
nances. These theoretical treatments also include two-body
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collisions beyond s- or p-wave character. In addition,
Robicheaux, Giannakeas, and Greene (2015) using ideas
related to the Schwinger variational principle provided
infinity-free calculations of scattering observables based
on physical grounds and avoided the need for additional
regularization schemes which were previously utilized in the
pseudopotential approaches of Olshanii (1998), Petrov and
Shlyapnikov (2001), and Granger and Blume (2004).
However, in the treatments of Zhang and Greene (2013)
and Robicheaux, Giannakeas, and Greene (2015) the center
of mass is coupled with the relative degrees of freedom for
particles of finite mass, so they have thus far only been
applied in the limit of an infinitely massive particle which is
struck by a much lighter one. Peano et al. (2005) considered
the coupling of the center of mass in an arbitrary transversal
potential, using the Green’s function formalism to solve the
corresponding Schrödinger equation directly in the labora-
tory frame. Apart from arbitrary quasi-one-dimensional
potentials, Peano et al. (2005) considered also the case
of two-component ultracold gases in harmonic traps where
atoms have different polarizabilities; they therefore experi-
ence different harmonic oscillator confining frequencies
which results in coupled center-of-mass and relative degrees
of freedom. In both cases, Peano et al. (2005) theoretically
predicted that the corresponding scattering observables
should exhibit more than one resonant feature associated
with the confinement-induced resonances. Similarly, Kim,
Schmiedmayer, and Schmelcher (2005) developed a theory
yielding only qualitative predictions since the Hilbert space
associated with the closed-channel physics was not taken
into account. This aspect, however, was taken into account
by Melezhik and Schmelcher (2009) which predicted con-
finement-induced resonant molecular formation.
Massignan and Castin (2006) and Nishida and Tan (2008,

2010, 2011) focused on mixed-dimension collisions in ultra-
cold gases under the assumption that different atomic species
experience move in different numbers of spatial dimensions,
such as when a 3D gas of atoms interacts with either different
atoms or the same atoms in different internal states that are
trapped in an optical lattice. Again, for this mixed-dimension
system the center-of-mass and relative degrees of freedom are
inherently coupled. The concept of mixed dimensionality
arises from the fact that in a mixture of ultracold gas different
particles, i.e., A and B species, experience different confine-
ment frequencies. The confinement frequencies depend on
each atom’s polarizability and the laser frequency. Therefore,
by adjusting the laser frequency at a zero of polarizability of
one atomic species, i.e., A atoms, only the B atoms will
experience the trapping potential. The proposed technique of
Massignan and Castin (2006) and LeBlanc and Thywissen
(2007) for species-selective dipole potentials was first realized
by Catani et al. (2009). Nishida and Tan (2010) studied this
idea by considering one atomic species, e.g., A atoms, to be
totally unconfined, i.e., they move in three dimensions, while
the B atoms are trapped in a tight spherical trap (a “zero
dimension” configuration), a cigar-shaped (quasi-one-dimen-
sional configuration) trapping potential, or a pancake-shaped
trap (quasi-two-dimensional configuration). In addition, par-
ticles A and B are assumed to collide at small distances with
s-wave interactions only. This gives rise to an infinite series of

a particular type of confinement-induced resonances which
possess high orbital angular momentum character despite the
fact that the two-body collisions are dominated by s-wave
interactions (Massignan and Castin, 2006). This effect
emerges from the combination of pure s-wave interactions
and the fact that the two-body collisions take place in mixed
dimensions which couples the angular momenta of the A and
B atomic species. The theoretical predictions (Nishida and
Tan, 2008, 2010) have apparently been observed by
Lamporesi et al. (2010), who created a mixed-dimensional
confinement of two ultracold atomic species, namely, 41K and
87Rb. The 41K atoms are trapped in two dimensions whereas
the 87Rb atoms move in three dimensions, which is achieved
by implementing species-selective dipole trapping techniques
(Massignan and Castin, 2006; LeBlanc and Thywissen, 2007;
Catani et al., 2009). In this mixed-dimensional configuration
Lamporesi et al. (2010) observed up to five resonances by
measuring three-body losses, in good agreement with theo-
retical resonance positions.
Pair collisions within a three-dimensional optical latticewere

theoretically investigated by Fedichev, Bijlsma, and Zoller
(2004) and Cui, Wang, and Zhou (2010). Fedichev, Bijlsma,
and Zoller (2004) utilized the tight-binding framework and
assumed that the range of the two-body interactions is far
smaller than the lattice spacing d and the size of the ground state
in a lattice side l0. Also the curvature within the lattice sites is
approximated as a harmonic oscillator, which permits a decou-
pling of the center-of-mass and relative degrees of freedom.
Furthermore, using the tight-binding model Fedichev, Bijlsma,
and Zoller (2004) assumed that the effective mass of the
particles is large enough such that the size of the ground state
within the lattice site is small compared to the lattice spacing,
whereas effects arising fromhigherBloch bandswere excluded.
Based on these considerations Fedichev, Bijlsma, and Zoller
(2004) predicted a confinement-induced resonance that
occurs at negative values of the s-wave scattering length.
The resonance condition simply reads as ∼ l�, where
l� ¼ l0

ffiffiffiffiffiffi
D0

p
=ð4 ln 2Þ, with D0 the tunneling amplitude to

neighboring lattice sides in the lowest Bloch band. Köhl et al.
(2005) conducted experiments on a degenerate Fermi gas in the
presence of a three-dimensional optical lattice. They observed
that the Feshbach resonance within the optical lattice exhibits
an additional shift from the corresponding Feshbach resonance
in the absence of the external potential, which verified the
theoretical predictions of Fedichev, Bijlsma, and Zoller (2004).
Cui, Wang, and Zhou (2010) extended the theoretical studies of
Fedichev, Bijlsma, and Zoller (2004) and quantitatively
described Bloch wave scattering at different lattice depths.
Also, higher Bloch bands are taken into account as well as
intraband effects which occur in the lowest Bloch band. Cui,
Wang, and Zhou (2010) showed that in the case of true
molecular states and at moderate lattice depths the higher
Bloch band effects play crucial role since their neglect over-
estimates binding energies.

C. Synthetic spin-orbit coupled systems

Experimental and theoretical efforts on the confinement-
induced physics in low-dimensional systems consider a
regime where the two-body interactions are short ranged
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and isotropic. Lifting the latter constraint permits us to
generalize the concept of the confinement-induced resonances
in physical systems which are mainly governed by anisotropic
binary interactions.
The experimental realization of spin-orbit coupled Bose-

Einstein condensates opens new avenues to explore the
collisional aspects of such exotic systems. Developments in
this rapidly evolving field have been reviewed by Williams
et al. (2012) and Zhai (2015). For example, in free-space
collisions, spin-orbit coupling yields a mixed-partial wave
scattering process that alters the corresponding Wigner thresh-
old law (Cui, 2012; Duan, You, and Gao, 2013; Wang and
Greene, 2015). Zhang, Zhang, and Zhang (2012), Zhang
and Zhang (2013), and Zhang, Song, and Liu (2014) studied
the impact of reduced dimensionality on these physical
systems in the presence of quasi-one- and quasi-two-
dimensional traps.
In particular, Zhang, Song, and Liu (2014) considered

resonant collisions of spin-orbit coupled cold atoms with
Raman coupling in the presence of an axially symmetric
harmonic waveguide. As a first-order approximation, effects
due to the coupling of the center-of-mass and relative degrees
of freedom are neglected by considering the case of zero
center-of-mass momentum. Then the relative Hamiltonian,
apart from the kinetic energy, two-body, and confinement
potential terms, possesses two additional terms: (i) the spin-
orbit coupling term HSOC ¼ ðγk=mÞðσx2 − σx1Þ and (ii) the
Raman coupling term HRaman ¼ ðΩ=2Þðσz2 þ σz1Þ. σi1;2 with
i ¼ x and z represents the spin Pauli matrices for each particle,
k indicates the relative kinetic energy, and m is the atom’s
mass. Ω represents the strength of the two-photon Raman
coupling and γ ¼ 2πℏ sinðθ=2Þ=λ indicates the spin-orbit
coupling constant, where λ is the Raman laser wavelength
and θ denotes the angle between the lasers.
Both spin-orbit and Raman coupling inherently influence the

position of the resulting confinement-induced resonance. A
confinement-induced resonance always exists regardless of the
sign of the s-wave scattering length only in the case where the
Raman coupling strength is less than the spin-orbit coupling
strength, i.e.,Ω < 2γ. For strong Raman coupling, i.e.,Ω ≫ 2γ
the position of the confinement-induced resonance occurs only
at smaller values of the ratio as=a⊥, namely, as=a⊥ ∼ 1=

ffiffiffiffiffiffi
2Ω

p
.

This provides in essence an extra means to manipulate the
position of a CIR without the need of a Fano-Feshbach
resonance to tune the magnitude of the 3D scattering length.
Note that similar findings were also reported by Zhang and
Zhang (2013).

D. Confined dipoles and dynamical CIR

Collisions of magnetic dipolar atoms or polar molecules pose
another physical system whose two-body interactions are
inherently anisotropic. The concept of confinement-induced
resonances for anisotropic two-body interactions has been
considered for both quasi-two- and quasi-one-dimensional
waveguide geometries. Such dipolar systems hold particular
interest in themany-body realm for their potential to create novel
new topological phases of matter in addition to quantum
information applications (Baranov, 2008; Baranov et al.,

2012). In a numerical study, Hanna et al. (2012) explored the
impact of a pancake geometry on nonreactive polar molecules
where despite the fact that the confining potential yielded
broader resonances than the absence of a trap, the locations
of the resonances are extremely sensitive to the dipole moment
strength.
Apart from pancake geometries, the concept of dipolar

confinement-induced resonances is also investigated in har-
monic waveguides, i.e., in quasi-one-dimensional traps (Sinha
and Santos, 2007; Bartolo et al., 2013; Giannakeas, Melezhik,
and Schmelcher, 2013) where the dipoles are aligned by an
external field in a head-to-tail configuration. In particular,
Giannakeas, Melezhik, and Schmelcher (2013) and Shi and Yi
(2014) applied the local frame transformation theory and the
pseudopotential techniques, respectively, showing the exist-
ence of a broad class of dipolar confinement-induced reso-
nances which are characterized by mixed orbital angular
momentum character due to the dipole-dipole interactions
and the confinement.
Moreover, for s-wave dominated dipolar confinement-

induced resonances their position depends linearly on the ratio
of the length scale of dipolar forces over the trapping length
scale, i.e., ∼ld=a⊥. Note that ðld; a⊥Þ ¼ ðμd2=ℏ2;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=μω⊥

p Þ,
where μ indicates the reduced mass of the dipoles, d is the
corresponding dipole moment, and ω⊥ indicates the confine-
ment frequency. This linear dependence of position of the
dipolar confinement-induced resonances on the ratio ld=a⊥
means that the collisional properties of dipoles in thepresence of
a confinement can be controlled by adjusting the strength of an
external field and confining potential frequency in a regime
accessible by the experimental advances.
Furthermore, Shi and Yi (2014) showed that by tilting the

relative orientation of the external electric field with respect to
the longitudinal axis of the harmonic waveguide provides
additional means to refine the tuning of dipolar confinement-
induced resonance positions. Simoni et al. (2015) studied the
case of reactive polar molecules in cigar-shaped traps. In more
detail, Simoni et al. (2015) numerically studied the impact of
the reduced dimensionality on elastic, inelastic, and reaction
rates of collision of the reactive molecules in terms of the
collisional energy and the strength of the dipole moments. The
full four-body calculations are simplified by employing an
asymptotic effective two-body model at large distances where
the reactions are suppressed (Micheli et al., 2010). The
reaction physics is introduced through a JWKB-type boun-
dary condition at short distances that accounts for atom
exchange phenomena. By varying the angle of an external
electric field with respect to the longitudinal direction of the
trap, i.e., trap axis, it is observed that the reaction rate is
greatly suppressed for angles normal to the trap’s axis. For the
case of a bosonic KRb molecule the reaction rate can only be
efficiently suppressed under strong confinement without
yielding any significant advantages over the reaction rate
suppression in quasi-two-dimensional trapping geometries.
Photon-assisted confinement-induced resonances arise

when there is a dynamical mechanism to enhance resonant
collisions in the presence of a waveguide. Leyton et al. (2014)
considered s-wave binary collisions in the presence of an rf
driven harmonic waveguide whose confining frequency
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modulation permits the separation of the center-of-mass
degrees freedom. The resulting time-dependent Schrödinger
equation is solved within a zero-range approximation, i.e.,
using a Bethe-Peierls boundary condition at the origin of the
relative degrees of freedom. The rf modulation of the trans-
versal frequency allows the two counterpropagating atoms to
perform a transition from the continuum state to the confine-
ment-induced molecular state by emitting one or multiple
photons. This dynamical mechanism of photon-assisted con-
finement-induced resonances can result in a series of resonant
features for a given number of photons.

E. Inelastic few-body collisions in 1D

An intriguing implication of the exact integrability of the 1D
Schrödinger equation forN equalmass particles that experience
zero-range two-body potentials and the existence of an ana-
lytically known solution due toMcGuire (1964) is that there are
no inelastic collisions. One way to understand this is that every
time two particles collide, the final state of the two particles in
momentum space is kinematically identical to the initial state,
since transmission and reflection are indistinguishable. While
the absence of all inelasticity including three-body recombina-
tion for this system is straightforwardly clear, given the exact
solution of McGuire (1964), it is far from obvious how the
inelasticity turns out to vanish when studied in the adiabatic
hyperspherical representation. One way all inelasticity would
vanish for a system would be if the hyperradial degree of
freedom in the Schrödinger equation turns out to be exactly
separable, because in that case all nonadiabatic coupling
matrices would vanish. It is not that simple, however, in the
case of identical 1D bosons with zero-range interactions,
because the nonadiabatic coupling matrices are nonzero.
Hence, the different adiabatic hyperspherical channels are
coupled, at least locally. This issue was explored by Mehta
and Shepard (2005), who numerically solved the coupled
hyperradial equations that described atom-dimer scattering.
Later, three-body recombination was calculated in this 1D

identical boson system both for the zero-range potential case
and for a finite-range potential by Mehta, Esry, and Greene
(2007), again using the adiabatic hyperspherical representation.
That study confirmed as well that there is no inelasticity, i.e.,
vanishing three-body recombination rate coefficient. In the
hyperspherical representation, the recombination rate and the
rates of all other inelastic processes vanish because there is
complete destructive interference in the zero-range limit. For a
1D potential of finite range L, however, the study showed how
the recombination rate increases for nonzero L > 0. The near-
threshold behavior of the recombination rate is of interest for 1D
and quasi-1D experiments, and it was demonstrated by Mehta,
Esry, and Greene (2007) that three identical particles have the
same threshold behavior K1D

3 ∝ k7 regardless of whether the
particles are spin-polarized fermions or bosons. For three
identical bosons, in particular, this study showed more con-
cretely that in strict 1D, K1D

3 ¼ CðLÞðℏk=μÞðkaÞ6, where k is
the 1Dwave number anda is the 1D two-body scattering length.
Experimental evidence is quite limited on this topic, but the
resultsmeasured to date byTolra et al. (2004) appear not to have
reached a regime very close to the strict 1D results and are

probably better viewed as probes of the crossover regime
between 1D and 3D or between 1D and 2D.

F. 2D, quasi-2D systems, and the super-Efimov effect

Two-dimensional systems in both few-body and many-
body physics exhibit rich and fascinating behavior, involving
logarithmic dependences of nearly all quantities that depend
on distance and energy. In many-particle condensed-
matter systems, prototypical phenomena that have generated
extensive interest include the Berezinskii-Kosterlitz-Thouless
(BKT) transition (Berezinskii, 1971; Kosterlitz and Thouless,
1973; Thouless et al., 1982) relating to the formation and
binding of 2D vortices, and of course the fractional quantum
Hall effect (Stormer, Tsui, and Gossard, 1999). Underlying
the theoretical description of striking many-body phenomena
in 2D are the effective two-body and three-body interactions
that are modified when a three-dimensional gas is squeezed
into a pancake-shaped trap geometry.
The modification of the 3D atom-atom scattering informa-

tion into an effective 2D interaction was addressed by
Wódkiewicz (1991) and Kanjilal and Blume (2006), with a
more comprehensive list of references in Dunjko et al.
(2011b). Implications of 2D confinement for three-body
recombination and for the formation of many-body phases
were treated by Petrov, Holzmann, and Shlyapnikov (2000)
for a gas consisting of particles with finite-range interactions.
The three-body problem in 2D for short-range interactions has
recently been examined in a hyperspherical coordinate frame-
work by D’Incao and Esry (2014) and D’Incao, Anis, and
Esry (2015), including a nonperturbative study of three-body
recombination in that geometry. Two-body dipole-interacting
particles in a 2D or quasi-2D gas are treated in many
publications, two of which are Kanjilal, Bohn, and Blume
(2007) and D’Incao and Greene (2011). The intriguing many-
body phenomena that arise in dipolar systems have received
extensive theoretical and experimental attention, as was
reviewed by Baranov (2008) and Baranov et al. (2012).
One class of few-body treatments in two dimensions

relates to fractional quantum Hall droplets having modest
numbers of particles, typically from 3 to 10 electrons, or in the
ultracold physics context, atoms or polar molecules. A few
such explorations in recent years can be found by Daily,
Wooten, and Greene (2015), Rittenhouse, Wray, and Johnson
(2016), and Wooten, Yan, and Greene (2017), which are just a
sampling of the work that followed Laughlin (1983) on three
2D electrons in a perpendicular magnetic field. A degenerate
perturbation theory treatment of semiconductor quantum
dots in a strong magnetic field, which has numerous cases
that can serve as useful benchmark calculations for compari-
son with few-body theory, can be found in Jeon, Chang, and
Jain (2007).
A provocative few-body prediction in recent years has been

the super-Efimov effect, which deals with bound states of three
p-wave interacting fermions in 2D (Nishida, Moroz, and Son,
2013; Gridnev, 2014; Moroz and Nishida, 2014; Volosniev
et al., 2014; Gao, Wang, and Yu, 2015). The interactions are
assumed in the derivation of this effect to have a finite range, and
each interacting pair in the trimer is assumed to have a zero-
energy bound state in the symmetry with jLzj ¼ 1, also referred
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to as a resonant p-wave interaction. The resulting trimer energy
level formula predicted in this case takes the double-exponential
formEn ∝ exp½−2e3πn=4þθ�, where θ is a nonuniversal constant
defined modulo 3π=4. Because the size of these super-Efimov
states grows so rapidly with n, and also the successive binding
energies shrink dramatically as n increases, these will be
challenging to observe experimentally. Whereas the successive
energy levels in the ordinary homonuclear Efimov effect are less
bound by a factor of 515, the corresponding ratio in the super-
Efimov effect exceeds 109. More promising than the homo-
nuclear systems are heavy-heavy-light heteronuclear trimers,
whose super-Efimov states can display amore favorable scaling
(Moroz and Nishida, 2014) as is also the case in the ordinary
Efimov effect for heteronuclear trimers. Another exploration of
heavy-heavy-light trimers in 2D with resonant p-wave inter-
actions is based on the conventional Born-Oppenheimer
approximation (Efremov et al., 2013).
Recently, a theoretical treatment by Nishida (2017) intro-

duced the “semi-super-Efimov effect.” This is in a system of
four bosons in 2D, which exhibit a different scaling possible
for an infinite pattern of energy levels and state sizes, in a
scenario where the three-boson interactions are resonant
but the two-body interactions are negligible. In the semi-
super-Efimov case, the state sizes are predicted to scale
with the integer quantum number n > 0 in proportion to
exp½ðπnÞ2=27�.
The theory of the quasi-2D homonuclear three-boson prob-

lem was treated in detail by Levinsen, Massignan, and Parish
(2014) andYamashita et al. (2015). This topic is also sometimes
referred to as the crossover from 3D to 2D. This study
demonstrated how the finite number of universal three-body
states in 2D, where there is no true Efimov effect (Bruch and
Tjon, 1979; Nielsen et al., 2001; Nishida and Tan, 2011),
connects with true Efimov states in 3D as one varies the degree
of confinement in the transverse dimension. Three fermions in
2D are also treated theoretically by Ngampruetikorn, Parish,
and Levinsen (2013), by solving the STM integral equation
(Skorniakov and Ter-Martirosian, 1957).

VI. FEW-BODY PHYSICS IN NUCLEAR AND CHEMICAL
SYSTEMS

In previous sections, the current state of the art of few-body
ultracold atomic physics was presented, with an extended
discussion of universality in three-body and four-body phys-
ics. However, the domain of few-body physics extends beyond
atomic systems, reaching many different branches of physics
such as chemistry or nuclear or particle physics, among others.
Indeed, few-body physics was born in nuclear physics
motivated by the seminal paper of Thomas (1935), as
previously pointed out.
The premise of long de Broglie wavelength effective field

theory is that for the low-energy physics of a few- or many-
body system below a certain characteristic energy scale, the
behavior of the system should not be sensitive to the details of
the Hamiltonian at distances much less than λ. Indeed, the
physics behind such behavior is closely related to the concept
of renormalization group theory (Wilson, 1971, 1983; Wilson
and Kogut, 1974). One of the best pedagogical introductions
to the strategy of systematically building in the correct long

wavelength physics was presented by Lepage (1989, 1997) in
the context of nonrelativistic Schrödinger quantum mechan-
ics. In fact, the concept of effective field theory was spawned
by the seminal work of Weinberg that attempted to understand
the role of pion exchange in nuclear forces (Weinberg, 1979,
1990, 1991). Example applications to Efimov physics and
related few-body systems have been developed in detail by
Braaten and Hammer (2006). Other studies that utilize model
two-body and three-body Hamiltonians that produce key
information such as the low-energy two-body scattering
length and effective range are making use of the spirit of
low-energy effective field theories even when they proceed via
a more direct solution of the few-body Schrödinger equation.
Note that trions, excitons, and biexcitons occur as few-body
problems in semiconductor physics, as discussed by Patton,
Langbein, and Woggon (2003).
This section is devoted to the study of major developments

in few-body physics relevant for nuclear physics and chem-
istry. The few-body physics in chemical sciences will be
presented through classical trajectory calculations in hyper-
spherical coordinates involving neutrals and charged particles.

A. Hyperspherical methods in nuclear physics

The adiabatic hyperspherical technique was introduced in
previous sections of this review, with examples of its meth-
odology and applications in the field of atomic and molecular
collisions. Reiterating, the basic idea behind this method is to
reduce a complex multidimensional problem into a set of
coupled second-order ordinary differential equations in a
single variable. The same idea can of course be applied in
a field with tremendously different energy and length scales:
nuclear physics, where the nature of the nucleon-nucleon and
related interactions exhibit all the complexities of the strong
nuclear force. For instance, both exotic nuclear systems
and the three-nucleon problem, to name two classes of
problems, have been studied using the adiabatic hyperspher-
ical representation.
In nuclear physics the adiabatic hyperspherical technique

follows the same scheme as prevsiouly presented: the first step
involves a solution of the hyperangular equation where the
hyperradius R is treated as a parameter, thereby giving
hyperspherical potential energy curves and couplings.
Then, these are employed to solve a set of coupled ordinary
differential equations in the radial coordinate. With this
strategy one can tackle the few- or many-nucleon interaction
problem at different levels of sophistication. For instance, the
cosmologically important reaction of three alpha particles to
form 12C via the intermediate Hoyle state was treated within
the coupled-channel adiabatic representation by Alvarez-
Rodriguez et al. (2007, 2008) and Suno, Suzuki, and
Descouvemont (2015). The calculation of hyperspherical
potential curves and couplings by Suno, Suzuki, and
Descouvemont (2015) was based on a binary α − α model
Hamiltonian that accurately describes the 8Be resonance state,
and a three-body term was chosen to represent some exper-
imentally known properties of 12C such as some particular
energy levels. The final calculation gives a good energy and
width in agreement with experimental values for the Jπn ¼ 0þ2
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Hoyle resonance state. The relevant adiabatic hyperspherical
potential curves are shown in Fig. 23.
Note that when this technique is applied to few-nucleon

systems, one must keep in mind the distinctively different
nature of the nucleon-nucleon forces compared to the atom-
atom interactions. This difference comes from the fact that
nuclear collisions can be understood to first order as resulting
from the exchange of virtual pions between nucleons. In this
sense, pions (π) can be viewed as the quanta of the nuclear
force, and since they represent a massive scalar field their
influence is associated with a Yukawa potential e−mπr=4πr
(Weinberg, 1991). Indeed, the nucleon-nucleon potential can
be modeled using an effective field theory based on the
exchange of pions. This exchange leads to new and compli-
cated interaction terms in the nucleon-nucleon potential,
among them, the tensor interaction reads

VðrijÞ ¼ VtðrijÞðτi · τjÞ
�
3
ðσi · rijÞðσj · rijÞ

r2ij
− σi · σj

�
; ð81Þ

where σi and τi represent the nuclear spin and isospin of
nucleon i, respectively. For a more detailed modern view of
the nucleon-nucleon forces, including pionless theories and
chiral effective field theory, see Epelbaum, Hammer, and
Meissner (2009).
The very complicated nature of the nucleon-nucleon inter-

action does not prevent the success of the adiabatic hyper-
spherical technique in nuclear physics, indeed hyperspherical
coordinates were applied in the context of nuclear physics by
Delves (1960) and Smith (1960) to study three-body nuclear
systems (Levinger, 1974; Valliers, Das, and Coelho, 1976;
Fang and Tomusiak, 1977; Verma and Sural, 1979). Those
studies, however, did not implement the adiabatic formulation
and thus could not benefit from its insights and accelerated
convergence. Hyperspherical methods were also applied to
exotic nuclei, such as the hypertriton, and complex nuclei by
including realistic nucleon-nucleon potentials (Verma and
Sural, 1979, 1982; Clare and Levinger, 1985). The potential
employed included the tensor interaction and many other
components of the nucleon-nucleon force. In general, many

theorists preferred to work with a set of coupled integral
equations instead of coupled differential equations, which can
be regarded as a procedure different from the adiabatic
hyperspherical machinery most frequently adopted in atomic
physics. More recently, however, the adiabatic hyperspherical
approach has been employed to compute the triton bound state
energy (Daily, Kievsky, and Greene, 2015) in a convergence
exploration, using realistic nucleon-nucleon potentials with a
three-body force as well. Other systems that have been
considered include exotic species such as kaonic clusters
involving three and four particles (Kezerashvili, Tsiklauri, and
Takibayev, 2015).

B. Universality in nuclear systems

As previously discussed, the nuclear forces are fundamen-
tally different from the interactions in the context of ultracold
atomic physics, since they derive from the electromagnetic
interaction. Therefore, due to the very strong and short-ranged
nature of the nuclear interactions, some aspects of universality
can be expected to differ in nuclear systems compared with
atomic and molecular species. In particular, some nuclear
systems form halo nuclei (Zhukov, 1993; Tanihata, 1996;
Cobis, Fedorov, and Jensen, 1998; Jensen et al., 2004), which
is a nuclear bound state formed by a tightly bound core and one
or two valence nucleons. These valence nucleons are charac-
terized to have a very small binding energy in comparison with
the binding energy of the core nucleons, which is reflected in a
highly extended bound statewave function. For this reason, halo
nuclei exhibit very large radii compared to the core radius. The
most familiar example of a halo nucleus is the deuteron, with an
average neutron-proton separation of 3.1 fm that is 3 times
larger than both the size of its component nucleons and the range
of their interaction potential (both ≈1 fm). While halos also
exist in atomic and molecular physics, they are far more
prevalent in nuclear systems, with many studies even in large
or medium-sized nuclei; see, for instance, Hove et al. (2014,
2016) and references therein. In fact, Efimov physics can be
relevant to describing aspects of thewave function of amedium-
sized nucleus such as 62Ca with two outlying nucleons (Hagen
et al., 2013). Nevertheless this type of system exemplifies the
Efimov-unfavored scenario with two light particles and one
heavier particle discussed by Wang, Wang et al. (2012); based
on the arguments presented there, it is unlikely that a “true
Efimov state” exists in such systems.
Halo nuclei with two valence nucleons represent a good

playground for three-body physics, since these nuclear sys-
tems are potential candidates to exhibit some properties
associated with Efimov physics despite being Efimov unfa-
vored. These nuclides are found in the bottom of the neutron
drip line, the line that describes the boundary beyond which
the neutron-rich nuclides are unstable. Among the different
kinds of two-nucleon halo nuclei, the Borromean2 halo nuclei
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FIG. 23. Adiabatic hyperspherical potential curves computed
for the triple-α system for the Jπ ¼ 0þ symmetry which contains
the famous Hoyle resonance thought to be important in nucleo-
synthesis. Inset: the adiabatic potential curves at large hyper-
radius. From Suno, Suzuki, and Descouvemont, 2015.

2The term Borromean is associated with the coat of arms of the
house of the Borromeo family in northern Italy, which consists of
three interlayer rings. In particular, the symbol appears in the left
escutcheon of the coat of arms. However, a similar symbol involving
three triangles was already used in Norse mythology around the 7th
century.
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have received special attention since these have a three-body
bound state, despite the fact that none of the two-body
subsystems are bound. The most studied Borromean halo
nuclei to date have been 6He and 11Li (Zhukov, 1993;
Tanihata, 1996). A schematic representation of one such
nucleus is shown in the inset of Fig. 24, concretely for
6He. In this case, the core is an α particle and the two valence
nucleons are neutrons.
On the other hand, three-body bound states in some nuclear

systems show a universal behavior: a correlation between the
dimer-nucleon scattering length and the nucleon trimer bind-
ing energy, which is known as the Phillips line (Phillips,
1968). This correlation is independent of the model employed
for the calculations: such as a two-body contact interaction,
three-body interaction terms, and it should also be present
regardless of the method employed, i.e., an effective field
theory approach, adiabatic hyperspherical treatment, or low-
energy Faddeev equations. Figure 24 presents a Phillips plot
for the triton including different theoretical results as well as
the experimental data. This figure exhibits a linear correlation
between the triton binding energy and the doublet neutron-
deuteron scattering length a2nd. However, other kinds of
correlation may occur in different three-body nuclear bound
states (Fedorov and Jensen, 2002).
At least two halo nuclei have been seen as potential

candidates to exhibit Efimov universality. However, the
universality can be claimed convincingly only if the different
excited state of the three-body system follows the predicted
scaling law by Efimov, and those are not experimentally
accessible by any currently existing capabilities. For instance
in the case of 6He, which is also Borromean, it has been
proven that a p-wave resonance exists in the J ¼ 3=2 channel
of n − α scattering which explains the nature of the three-body
bound state. However, in the 1990s Fedorov, Jensen, and
Riisager (1994) and Amorim, Frederico, and Tomio (1997)

explored the Efimov character of several halo nuclei, assum-
ing that the ground state is also an Efimov state. Their study
suggested that 20C is the only halo nucleus candidate that has
appreciable Efimov state character, other than the triton.
Apart from normal nuclei, namely, those that appear in the

table of nuclides, there other hypernuclei that contain strange
quarks and are the so-called strange nuclei. Some of these are
classified as halo nuclei, and among them the simplest case is
the hypertriton 3

ΛH: a three-body bound state formed by a
neutron, a proton, and the Λ0. The Λ0 is the lightest Λ
hyperon, a neutrally charged baryon similar to a neutron but
slightly heavier, and its quark structure is uds; it has a
strangeness of −1. The total binding energy of 3

ΛH is
≈2.4 MeV (Fujiwara et al., 2008), whereas its breakup
energy is ∼0.14 MeV (Fujiwara et al., 2008), which is very
small in comparison with the binding energy of the deuteron
2.22 MeV, and hence it can be considered as a two-nucleon
halo nucleus. Indeed, it was extensively studied (Gongleton,
1992; Cobis, Jensen, and Fedorov, 1997; Fedorov and Jensen,
2002). All of these studies suffer, however, from needing
better experimental information concerning the n-Λ scatter-
ing length, so these works might be considered as qualitative
or semiquantitative approaches to the Efimov nature of the
hypertriton. Nevertheless, new data coming from ALICE and
STAR may help to better understand the nature of the n-Λ
interaction, as well as to yield more accurate measurements
of the lifetime of 3

ΛH (Abelev et al., 2010; Zhu, 2013; ALICE
Collaboration, 2016). On the other hand, a good under-
standing of the hyperon-nucleon interaction is needed for a
proper understanding of high-density matter systems, such
as neutron stars (Lattimer and Prakash, 2004; Weber
et al., 2007; Vidaña, 2013; Lonardoni, Pederiva, and
Gandolfi, 2014).
In nuclear systems, universal properties in the four-body

sector can be identified. The clearest example is the case of
the Tjon line (Tjon, 1975): a correlation between the binding
energy of the α particle and the triton binding energy that
persists across nearly all nucleon interaction models; in
particular, this correlation is approximately linear. The origin
of the Tjon correlation can be explained as an approximate
independence of the four-body energy level spectrum on any
four-body parameter. In other words, the Tjon analysis
suggests that there is no need for a four-body parameter
for the renormalization at leading order in the four-body
sector (Platter, Hammer, and Meißner, 2004, 2005), for
energy levels in the universal regime. However, higher order
corrections break the expected correlation leading to a band
with some scatter depending on the short-range physics,
instead of a simple, well-defined line (Nogga, Kamada, and
Glöckle, 2000).

C. Few-body physics and universality in chemistry

Traditionally the term few-body physics has been employed
in nuclear physics, and subsequently it became adopted in the
context of atomic physics, especially in ultracold atomic
systems (Hess et al., 1983, 1984; de Goey et al., 1986;
Fedichev et al., 1996; Burt et al., 1997; Esry, Greene, and
Burke, 1999; Suno, Esry, and Greene, 2003a; Weber et al.,
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FIG. 24. Phillips plot for the triton energy ET as a function of the
doublet nd scattering length a2nd. The red dots stand for different
theoretical calculations based on different kinds of two-body and
three-body interactions (Benayoun, Cignoux, and Chauvin, 1981;
Friar et al., 1984; Fedorov and Jensen, 2002), whereas the blue
square represents the experimental result. For a more detailed
presentation of the Phillips plot for the triton, see Efimov and
Tkachenko (1988). Inset: schematic representation of a halo
nuclei with two valence nucleons, namely, 6He.
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2003). However, in chemical physics it has not been the
case, even though chemical physics studies hinge on our
understanding of few-body physics. And of course a deep
understanding of fundamental processes in chemical
physics is frequently needed in other fields of physics and
chemistry, notably in astrophysics, such as the three-body
recombination of hydrogen in stellar formation (Flower and
Harris, 2007; Forrey, 2013); in theoretical chemistry: trans-
port coefficients in gases (Hirschfelder, Curtiss, and Bird,
1954; Snider, 1960; Mason and Monchick, 1962; Wang-
Chang, Uhlenbeck, and deBoer, 1964; Köhl and Schaefer,
1983; McCourt et al., 1991; Montero and Pérez-Ríos, 2014),
reactive and nonreactive scattering (Shui, 1972; Child, 1974;
Truhlar and Muckerman, 1975; Levine and Bernstein, 1987)
and three-body recombination (Mansbach and Keck, 1969;
Robicheaux, 2006; Ermolova, Rusin, and Sevryuk, 2014),
dissociative recombination of Hþ

3 (Kokoouline, Greene, and
Esry, 2001; Kokoouline and Greene, 2003; Petrignani et al.,
2011); plasma physics (Zhdanov, 2002); and in cold chem-
istry (Willitsch et al., 2008; Hall and Willitsch, 2012; Härter
et al., 2012, 2013; Willitsch, 2012; Härter and Denschlag,
2014; Krükow et al., 2016). Some of these characteristic and
fundamental processes in chemical physics are reviewed from
a few-body perspective in the present section, in particular,
those involving three-body processes, such as three-body
recombination. Special emphasis will be given to universality
in three-body recombination processes which are relevant to
hybrid trap experiments.
Three-body processes can be viewed as a chemical reaction

that converts three free atoms (or molecules or other particles)
into diatomic molecules in the absence of external fields, i.e.,
the reaction Aþ Aþ A → A2 þ A. One of the first theoretical
treatments of this reaction was developed by Keck (1960,
1967) using a variational principle following a very early
approach proposed by Wigner (1937). In particular, an upper
bound for the three-body recombination rate was computed by
dividing regions of phase space by a trial surface that acts as
the boundary between reactants and products; this is now
denoted the phase-space theory of reaction rates. Almost in
parallel, Smith (1962) developed a more microscopic treatment
for three-body recombination, and later Shui, Appleton, and
Keck (1970) extended the previous theory of Keck, applying
this theory to the recombination of nitrogen. An application to
the recombination of hydrogen (Shui, 1972, 1973) found fair
agreement with the fairly crude early experiments.
The phase-space theory of reaction rates was introduced by

Keck (1960) and an alternative was presented by Smith
(1962). Next, the mathematical foundations of a recent
approach to calculation of classical three-body recombination
rates are presented, after which applications to different
systems involving neutrals as well as charged particles will
be reviewed. Classical trajectory calculations in hyperspher-
ical approach have been employed to derive different classical
Newtonian threshold laws, which are reviewed here, with
special emphasis on their universality.

1. General classical treatment of few-body collisions

Classically, a two-body collision is envisioned as one
particle with a definite momentum moving toward a scattering

center. The cross section is defined as an effective area on the
plane perpendicular to the initial momentum of the incoming
particle which contains the scattering center (Levine and
Bernstein, 1987). In classical mechanics, the scattering cross
section is determined in terms of the scattering probability for
a given value of the impact parameter b. Recall that b is
defined as the component of the position vector which is
perpendicular to the momentum vector of the incoming
particle at infinite distance.
The concept of a two-body collision cross section is readily

generalized to an arbitrary number (n) of dimensions. In
particular, the cross section is defined as the effective
scattering volume of the n − 1 hyperplane perpendicular to
the initial momentum of the incoming particle, for a given
impact parameter b and initial momentum P0:

σprocessðP0Þ ¼
Z

℘processðb;P0Þdn−1b: ð82Þ

Here the opacity function ℘processðb;P0Þ is the probability that
a trajectory with particular initial conditions leads to the
collisional process under investigation, e.g., an inelastic
collision, or formation of a particular product, etc.
The classical dynamics of a few-body system can be

obtained by recasting the degrees of freedom of the system
at hand d as a two-body collision in a d-dimensional space, as
shown in Fig. 25. This figure represents the usual case where
the center-of-mass motion is decoupled from the relative
motion of the interacting particles. In this picture the three-
body recombination cross section is written

σrecðP0Þ ¼
R
℘recðb;P0ÞdΩ6

P0
dΩ5

bb
4dbR

dΩ6
P0

; ð83Þ

where the quantity dΩ6
P0

represents the differential element
associated with the hyperangles of the initial momentum P0.
In Eq. (83) the averaging over the degrees of freedom
associated with the initial momentum is shown explicitly,

3-d space

 N particles

 1 particle 

(3N-3)-d space

FIG. 25. Schematic representation of a general classical treat-
ment of few-body collisions. The method is based on the mapping
of the degrees of freedom of the system at hand into a problem
involving a single effective particle moving in higher dimensional
space, in particular, the dimension (n) is equal to the number of
independent relative coordinates of the system.
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whereby the final average cross section depends only on the
energy.

2. Classical trajectory calculations in hyperspherical coordinates

The classical Hamiltonian for three particles with masses
m1, m2, and m3 moving in a given potential energy landscape
Vðr1; r2; r3Þ is

H ¼ p21
2m1

þ p22
2m2

þ p23
2m3

þ Vðr1; r2; r3Þ; ð84Þ

where pi and ri represent the momentum and the vector
position of the ith particle, respectively. This Hamiltonian can
be recast in terms of the Jacobi coordinates ðρ1; ρ2Þ depicted in
Fig. 26 as in (Karplus, Porter, and Sharma, 1965)

H ¼ P2
1

2m12

þ P2
2

2m3;12
þ P2

CM

2M
þ Vðρ1; ρ2Þ: ð85Þ

Here

1

m12

¼ 1

m1

þ 1

m2

;

1

m3;12
¼ 1

m3

þ 1

m1 þm2

;

Vðρ1; ρ2Þ is the potential energy in terms of the relative Jacobi
coordinates with the c.m. momentum a separated constant of

motion. P1, P2, and PCM represent the canonical momenta
conjugate to ρ1, ρ2, and ρCM, respectively. Finally, the relative
Hamiltonian is

H ¼ P2
1

2m12

þ P2
2

2m3;12
þ Vðρ1; ρ2Þ: ð86Þ

For three particles, the Hamilton equations of motion can be
expressed in terms of Jacobi coordinates and momenta as
follows:

dρi;α
dt

¼ ∂H
∂Pi;α

; ð87aÞ

dPi;α

dt
¼ −

∂H
∂ρi;α ; ð87bÞ

where i ¼ 1, 2 and α ¼ x, y, and z label the Cartesian
coordinates of each Jacobi vector. Upon adopting the repre-
sentation of Smith (1962), a 6D position vector is constructed
from the two mass-weighted Jacobi vectors as

ρ ¼

0
B@

ffiffiffiffiffiffi
m12

μ

q
ρ1ffiffiffiffiffiffiffiffi

m3;12

μ

q
ρ2

1
CA; ð88Þ

where

μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1m2m3

M

r
.

On the other hand, an equivalent 6D vector position can be
expressed in terms of the bare Jacobi vectors as (Pérez-Ríos
et al., 2014)

ρbare ¼
�
ρ1

ρ2

�
: ð89Þ

Similarly the canonical momenta are given by

P ¼
�
P1

P2

�
ð90Þ

and

Pbare ¼

0
B@

ffiffiffiffiffiffi
μ

m12

q
P1ffiffiffiffiffiffiffiffi

μ
m3;12

q
P2

1
CA; ð91Þ

respectively. It can be shown that the relation between the
coordinates ðρ;PÞ and ðρbare;PbareÞ defines a canonical trans-
formation (Whittaker, 1937; Landau and Lifshitz, 1976;
Maslov and Fedoriuk, 1981), and hence both sets of coor-
dinates will describe the same phase-space volume. In other
words, the scattering observables will be the same for either of
these sets of coordinates, as one would expect. The 6D
position vector ρ or ρbare links the three-body problem in

FIG. 26. Schematic representation of the method developed for
treating three-body collisions. We start with the description of the
initial conditions in the 6D space associated with the three-body
problem at hand. Then, as indicated in step I, the initial conditions
are transformed into the coordinates associated with the three-
body problem in the usual 3D space. Step II represents the
solution of the Hamilton’s equations of motion in the 3D space.
Finally, by means of step III, the results are transformed back into
the 6D space, where the cross section is calculated.
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3D and the single particle problem in 6D, as schematically
presented in Fig. 26.
In the present approach the mass-weighted 6D vector

position ρ will be employed, with a minor difference from
the conventions utilized by Pérez-Ríos et al. (2014). Then the
Hamiltonian is

H ¼ P2

2μ
þ VðρÞ: ð92Þ

Now that the position and the momentum vectors have been
defined in this 6D space, the concept of an impact parameter
as the projection of the position vector onto a hyperplane
perpendicular to the initial momentum is clear. We implement
hyperspherical coordinates for the representation of the 6D
vectors. In particular, it is convenient to implement Avery’s
definition of the hyperangles (Avery, 1989), where all the
vectors can be represented by means of their magnitude r and
five different hyperangles (αi, i ¼ 1, 2, 3, 4, and 5) as

r ¼

0
BBBBBBBBBB@

rx1
rx2
rx3
rx4
rx5
rx6

1
CCCCCCCCCCA

¼

0
BBBBBBBBBB@

r sin α1 sin α2 sin α3 sin α4 sin α5
r cos α1 sin α2 sin α3 sin α4 sin α5

r cos α2 sin α3 sin α4 sin α5
r cos α3 sin α4 sin α5

r cos α4 sin α5
r cos α5

1
CCCCCCCCCCA
: ð93Þ

Here the ranges of each angle are 0 ≤ α1 ≤ 2π, 0 ≤ αi ≤ π,
i ¼ 2, 3, 4, and 5. In particular, choosing the 3D z axis parallel
to P2 expresses the initial momentum P0 as

P0 ¼

0
BBBBBBBBBB@

P0 sin αP1 sin α
P
2 sin α

P
5

P0 cos αP1 sin α
P
2 sin α

P
5

P0 cos αP2 sin α
P
5

0

0

P0 cos αP5

1
CCCCCCCCCCA
; ð94Þ

where 0 ≤ αP1 ≤ 2π, 0 ≤ αP2 ≤ π, and 0 ≤ αP5 ≤ π.
The impact parameter represents the components of the

initial vector position of the system in the hyperplane
perpendicular to the initial momentum of the incoming
particle, as was introduced previously. Let us define ~b as
the impact parameter when the 6D vector position is ρ:

~b ¼

0
BBBBBBBBBB@

~b sin α ~b
1 sin α

~b
2 sin α

~b
3 sin α

~b
4

~b cos α ~b
1 sin α

~b
2 sin α

~b
3 sin α

~b
4

~b cos α ~b
2 sin α

~b
3 sin α

~b
4

~b cos α ~b
3 sin α

~b
4

~b cos α ~b
4

0

1
CCCCCCCCCCA
; ð95Þ

where 0 ≤ α ~b
1 ≤ 2π, 0 ≤ α ~b

i ≤ π, i ¼ 2, 3, and 4. Thus, ~b is a
mass-weighted version of the bare impact parameter b.
These two impact parameters are related by d5 ~b ¼
ðm3

12m
3
3;12=μ

6Þ1=2d5b, and hence the classical cross section
is given by

σprocessðPÞ ¼
R
℘processð~b;PÞdΩ6

PdΩ5
~b
~b4d ~b

ðm3
12m

3
3;12=μ

6Þ1=2 R dΩ6
P

; ð96Þ

where a normalization mass factor emerges as a consequence
of the mass-weighted character of the 6D vector position.
The initial vector position jρ0j ¼ R is chosen in the

asymptotic region where the interaction potential is negligible,
thus the initial momentum satisfies E ¼ P2

0=2μ, where E is the
incident collision kinetic energy. The hyperangles αPi with

i ¼ 1, 2, and 5, and the impact parameter hyperangles α ~b
j with

j ¼ 1, 2, 3, and 4 are randomly generated subject to the
constrained magnitude of the impact parameter j~bj. The
random distribution of those angles must of course be chosen
consistent with their appropriate probability density function
(Pérez-Ríos et al., 2014). Exploiting the orthogonality of the
initial momentum P0 and the impact parameter ~b, the initial
vector position is written as

ρ0 ¼ ~b −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − ~b2

p
P0

P0: ð97Þ

Equation (97) generates ρ0 from R, ~b, and P0. For a given set
of initial conditions ρ0, R, P0, and ~b, the information is
transformed into the usual 3D space by means of Eqs. (88) and
(90), where Hamilton’s classical equations of motion are
numerically integrated up to a certain final time (Press et al.,
1986; Pérez-Ríos et al., 2014). Then the coordinates are
mapped back into the 6D space, and the classical three-body

He

He

He

Rb

Rb

Rb+

Ba+Rb

Rb

(a)

(b)

(c)

FIG. 27. Classical trajectories for three-body collisions at a
relative collision energy E ¼ kBT in with T in ¼ 1 mK. (The
Boltzmann constant kB is usually omitted in quoting energies
in the following.) Classical trajectories associated with a three-
body recombination event (a) Heþ Heþ He → He2 þ He with
b ¼ 97a0, (b) b ¼ 1000a0 for RbþRbþ Rbþ → Rbþ2 þ Rb, and
(c) Rbþ Rbþ Baþ → Rb − Baþ þ Rb with b ¼ 1000a0.
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cross section is calculated by means of Eq. (96). This protocol
is schematically presented in Fig. 26.
The present approach has been applied to neutral three-

body recombination (Pérez-Ríos et al., 2014) and also to
neutral-neutral-ion three-body recombination (Pérez-Ríos and
Greene, 2015). Figure 27 exhibits different trajectories asso-
ciated with recombination events in several atomic systems:
Heþ Heþ He in Fig. 27(a), Rbþ Rbþ Rbþ in Fig. 27(b),
and Rbþ Rbþ Baþ in Fig. 27(c). These trajectories
have been obtained by assuming a pairwise potential
Vðr1; r2; r3Þ ¼ vðr12Þ þ vðr23Þ þ vðr31Þ, where rij are the
interparticle distances. In particular, for the helium atom-atom
interaction the potential of Aziz, Janzen, and Moldover
(1995), designated HFD-B3-FCI1, was employed. The 3Σ
potential of Strauss et al. (2010) for Rb-Rb was employed, and
no spin-flip transitions are allowed in the theoretical model.
The ion-atom interactions are described by the model potential
−αd½1 − ðrm=rÞ2�=2r4, where αd denotes the static dipole
polarizability of Rb, which is taken as αd ¼ 320 a:u:, and rm
represents the position of the minimum of the potential. For
Rbþ-Rb, rm is taken from the quantum chemistry calculations
of Jraij et al. (2003), and the information needed for Baþ-Rb is
adapted from Krych et al. (2011). For details about the
numerical solution method, Monte Carlo sampling, and
convergence, see Pérez-Ríos et al. (2014) and Pérez-Ríos
and Greene (2015).

3. Classical three-body recombination for neutrals
and ion-neutral-neutral systems

The hyperspherical classical trajectory method (Pérez-Ríos
et al., 2014; Pérez-Ríos and Greene, 2015) has been applied to
the recombination of three neutral atoms and to the ion-
neutral-neutral recombination process. For a given collision
energy Ek ¼ P2

0=2μ, the average classical three-body cross
section is given by

σrecðP0Þ ¼
R
℘recðb;P0ÞdΩ6

P0
dΩ5

b
~b4dbR

ddΩ5
bΩ6

P0

; ð98Þ

where dΩ5
b and dΩ6

P0
stand for the differential elements in

the hyperangles associated with the impact parameter b and the
initial momentum P0, respectively. ℘recðb;PÞ represents the
opacity function or reaction probability for three-body recom-
bination, that is, the probability that the reactants transform into
the products of interest for a given set of initial conditions and
impact parameter. Generally, such a probability shows a
stereochemical dependence, but the hyperangular degrees of
freedom can be averaged out, leading to

℘recðb; P0Þ ¼
R
℘recðb;P0ÞdΩ6

P0
dΩ5

bR
dΩ6

P0

: ð99Þ

This integral is evaluated by Monte Carlo sampling over the
different initial conditions and impact parameters. The sam-
pling is performed by means of the probability distribution
function in each degree of freedom, which can be laborious but
is trivially parallelizable. The solution for ℘recðb; P0Þ in
Eq. (99) implies the maximum impact parameter that can

produce a recombination process for a fixed P0, denoted as
bmaxðP0Þ. In other words, ℘recðb; P0Þ ¼ 0 for b > bmaxðP0Þ.
Finally, the three-body recombination cross section can be
expressed as

σrecðP0Þ ¼ Ω5
b

Z
bmaxðP0Þ

0

℘recðb; P0Þb4db; ð100Þ

where Ω5
b ¼ 8π2=3 is the total integrated hyperangular solid

angle associated with b for a collision of three particles in 3D.
This integral is evaluated by means of Monte Carlo importance
sampling (Shui, 1972). Next, the energy-dependent three-body
rate constant is defined as

k3ðP0Þ ¼
P0

μ
σrecðP0Þ: ð101Þ

The results for the He-He-He classical three-body recom-
bination rate are shown in Fig. 28. The quantum mechanical
results shown in Fig. 28 were obtained using the R-matrix
method to solve the coupled hyperradial equations in the
adiabatic hyperspherical representation (Lin, 1995; Esry, Lin,
and Greene, 1996; Wang, D’Incao, and Greene, 2011) to
obtain the scattering matrix (Aymar, Greene, and Luc-Koenig,
1996). Figure 28 shows that classical trajectory results for
J ¼ 0 are in reasonably good agreement with the quantal
results at collision energies ∼1 K, which is the same order of
magnitude as the van der Waals energy: this serves approx-
imately as the transition energy between ultracold physics
and thermal physics, as was pointed out by Pérez-Ríos
et al. (2014).

FIG. 28. Energy dependence of the three-body recombination
rate of helium atoms in cm6=s, i.e., Heþ Heþ He → He2 þ He.
Classical trajectory results following the classical treatment in 6D
by means of hyperspherical coordinates are shown as red points.
The same results but restricted to total angular momentum J ¼
jρ1 × P1 þ ρ2 × P2j ¼ 0 are shown as blue circles. The quantum
calculation for a fixed angular momentum and parity Jπ ¼ 0þ is
plotted as the solid line. The quantal results show a convergence
within better than about 15% for E ¼ 1000 K regarding the
number of channels included and the parameters employed in the
calculations.
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The same classical approach has been applied to the study
of ion-neutral-neutral three-body recombination at cold tem-
peratures (Pérez-Ríos and Greene, 2015; Krükow et al., 2016),
which is important in ion-neutral hybrid trap experiments.
Indeed three-body recombination reaction is the main loss
mechanism for certain ionic species immersed in an ultracold
high-density neutral cloud (Härter et al., 2012, 2013; Härter
and Denschlag, 2014; Krükow et al., 2016). In particular,
87Rbþ-87Rb-87Rb and 138Baþ-87Rb-87Rb were studied follow-
ing the hyperspherical classical approach for collision ener-
gies ranging from 100 μK up to 10 mK, and the results are
shown in Fig. 29.
The classical trajectory results in Figs. 29(a) and 29(b)

have been obtained by restricting one of the hyperangles
associated with the momentum, guaranteeing that 95% of the
collision energy goes along the vector joining the ion and
the center of mass of the neutrals. This dynamical constraint
is a consequence of the typical experimental conditions:
the energy of the ion is typically orders of magnitude higher
than the energy of the neutrals (Willitsch et al., 2008;
Willitsch, 2012; Härter and Denschlag, 2014) because of
the trapped ion micromotion. As for the trajectories shown
in Fig. 27, the same assumptions about the potential
energy landscape and the same potentials were employed. In
Figs. 29(a) and 29(b), the three-body recombination rate
versus collision energy shows a power-law dependence.
The physics behind this numerical observation, including
its derivation, was explained by Pérez-Ríos and Greene (2015)
and is summarized next.

4. Classical threshold law for three-body recombination:
Universality in cold chemistry

In quantum mechanics the existence of threshold laws for
elastic and inelastic collisions is familiar: the well-known
Wigner threshold laws. These threshold laws represent the
general trend of the cross section for different processes (here
elastic and inelastic collisions) as functions of the collision
energy. Analogously, there are also classical threshold laws,
such as the famous Langevin cross section (Langevin, 1905)
which establishes the behavior of the cross section at low
collision energies for two-body ion-neutral collisions. Several
years after that, Wannier (1953) found the classical threshold
law for three-body collisions involving charged particles,
implementing a different approach than Langevin developed.
Interestingly, in the case of three mixed-charge particles, e.g.,
two negative electrons escaping from a positive ion, the
exponent in the energy-dependent rate constant is an irrational
number which has been experimentally confirmed by meas-
uring the double photoionization of He (Van der Wiel, 1972;
Kossmann, Schmidt, and Andersen, 1988). The unusual
threshold law exponent 1.127… was also verified experimen-
tally for the escape of two electrons from a singly charged
positive ion, as was discussed previously in Sec. I (Cvejanovic
and Read, 1974; Donahue et al., 1982). More recently, the
classical threshold law for three-body recombination involv-
ing neutral atoms with dominant long-range van der Waals
attraction, as well as for two neutral atoms and a single ion,
was obtained (Pérez-Ríos et al., 2014; Pérez-Ríos and Greene,
2015) following a classical capture model (Levine and
Bernstein, 1987).
At low collision energies the scattering properties are

mainly dominated by the long-range tail of the two-body
interaction, which here are represented as VðRÞ → −Cs=Rs,
with s > 2. We define the maximum impact parameter ~bmax as
the distance where the interaction potential is equal to the
collision energy, i.e.,

E ¼ Cs

~bsmax

: ð102Þ

This denotes the distance where the motion of the colliding
particles starts to deviate from the rectilinear uniform trajec-
tory. This distance is the equivalent to the classical capture
radius employed for the derivation of the Langevin cross
section (Langevin, 1905; Levine and Bernstein, 1987), but
assuming VðRÞ ¼ −αd=2R4 in that case. In analogy with the
classical capture model, it is assumed that all the trajectories
with ~b ≤ ~bmax will lead to a three-body recombination event,
which of course is likely to be an overestimate. The three-
body recombination cross section can then be expressed as [by
virtue of Eq. (98)]

σrecðEkÞ ¼
�
m3

12m
2
3;12

μ5

�−1=2 8π2

3

Z ~bmaxðEkÞ

0

~b4d ~b

∝ ~b5maxðEkÞ: ð103Þ

Equations (102) and (103), after incorporating the relationship

between momentum and energy (P ∝ E1=2
k ), yield

FIG. 29. Three-body recombination cross section (in a50) as a
function of the collision energy (in K). (a) 87Rbþ-87Rb-87Rb; the
circles represent the numerical results by means of CTC whereas
the dashed line stands for the power-law fit of the points.
(b) 138Baþ-87Rb-87Rb; red circles represent the numerical results
by means of CTC, the black circles denote the results using FCTC
(see text for details), and the dashed line stands for the fit of the
obtained CTC results. In both panels, the solid magenta line
represents the prediction based on the derived classical threshold
law. The fitting function assumed for both systems is
σðEkÞ ¼ γEβ

k . Adapted from Pérez-Ríos and Greene, 2015.
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k3ðEkÞ ∝ E1=2
k

1

E5=s
k

¼ Eðs−10Þ=2s
k : ð104Þ

Thus, the neutral three-body recombination rate constant
at low collision energies should vary with energy in

proportion to k3ðEkÞ ∝ E1=3
k (Pérez-Ríos et al., 2014).

Figure 28 displays a numerical calculation of the three-body
recombination rate coefficient for helium, showing that at low
collision energies k3ðEkÞ follows a power-law dependence as
a function of Ek. A fit of the classical trajectory results to the
functional form [k3ðEkÞ ¼ aEb

k] gives the dashed purple line.
The fitting parameters obtained are a ¼ 5.89� 3.145 ×
10−31 cm6=s and b ¼ −0.26� 0.07, which is consistent

with the predicted k3ðEkÞ ∝ E−1=3
k behavior (Pérez-Ríos et al.,

2014).
The preceding derivation has assumed that all of the two-

body interactions share identical long-range behavior, but an
important case to consider is when different particle pairs have
different interactions. This case has been explored in the
context of determining the threshold law for ion-neutral-
neutral three-body recombination (Pérez-Ríos and Greene,
2015). For that system, the two neutral atoms interact through
a long-range van der Waals potential VðRÞ ¼ −C6=R6,
whereas the two ion-neutral interaction is dominated by the
charge induced dipole interaction VðRÞ ¼ −αd=2R4. A
classical capture model can be employed in analogy to the
neutral three-body recombination derivation, but in this case
the capture radius is given by

E ¼ αd
~b42max

: ð105Þ

Here it has been assumed that the longer-range
attractive ion-neutral interaction dominates over the neutral-
neutral interaction. Plugging Eq. (105) into Eq. (103) the
threshold behavior of the ion-neutral-neutral three-body
recombination cross section is obtained as (Pérez-Ríos and
Greene, 2015)

σðEkÞ ∝ E−5=4
k ; ð106Þ

and the associated rate constant reads as

k3ðEkÞ ∝ E−3=4
k : ð107Þ

Figure 29 presents the numerical results for ion-neutral-
neutral three-body recombination computed classically at
low collision energies, as the points in both panes of the
figure. Also shown is the threshold law given by Eq. (106) as
the solid magenta line. Power-law fits of the numerical results
are represented by the dashed lines, and the fitting parameters
are shown in Table V. Figure 29 is a numerical confirmation
of the predicted threshold law. And the fitted exponents in
Table V confirm the validity of the derived classical thresh-
old law.
Ion-neutral-neutral collisions play an important role in

hybrid trap experiments where a high density of neutral atoms
is in the presence of a single ion or several of them (Härter
et al., 2012, 2013; Härter and Denschlag, 2014; Krükow et al.,
2016), and hence hybrid trap experiments may elucidate
the nature of ion-neutral-neutral three-body recombination.
Indeed, recently the three-body recombination rate for
138Baþ-87Rb-87Rb has been experimentally studied
(Krükow et al., 2016), and the results of the experimental
three-body recombination rate as a function of the micro-
motion energy EfMM are shown as solid symbols in Fig. 30. In
the same figure the open symbols stand for the classical
trajectory results computed using hyperspherical coordinates
(Pérez-Ríos et al., 2014). The theoretical three-body recombi-
nation rate constant presented in Fig. 30 is calculated by using
the realistic energy distribution of the ion by means of a
Monte Carlo simulation (Krükow et al., 2016). Figure 30
shows good agreement between the classical trajectory cal-
culations and the experimental results, confirming, on the one
hand, the validity of the classical Newtonian treatment in cold
chemistry, and, on the other hand, supporting the classical
threshold law, Eq. (107). Apart from the confirmation of the
threshold law, this also has important implications in the
chemistry that occurs after a three-body recombination event
in a hybrid trap experiment, since the classical results suggest
that the dominant product channel will be the formation of
shallow molecular ions (Pérez-Ríos and Greene, 2015;
Krükow et al., 2016). In fact our estimates suggest that
classical mechanics should give a reasonable description of
the three-body recombination process for Baþ-Rb-Rb down to
energies of the order of 100–200 nK.

FIG. 30. The three-body recombination rate for 138Baþ-87Rb-87Rb
is presented as a function of the controlled micromotion energy.
The experimental values are represented by solid circles, whereas
the theoretical predictions based on classical trajectory calcu-
lations are shown as the open circles. Adapted from Krükow
et al., 2016.

TABLE V. Classical threshold law for the three-body recombina-
tion (TBR) cross section. A power-law dependence of the TBR cross
section as a function of the collision energy is assumed and used as a
fitting function for the classical trajectory calculations (CTC)
numerical results presented in Fig. 29. The errors quoted for the
fitting parameters are associated with a confidence interval of 95%.
Adapted from Pérez-Ríos and Greene, 2015.

System γ (a50) β (dimensionless)
87Rbþ-87Rb-87Rb ð7.94� 2.72Þ × 1011 −1.178� 0.068
138Baþ-87Rb-87Rb ð3.57� 0.07Þ × 1011 −1.269� 0.132
Classical threshold law −1.25

Greene, Giannakeas, and Pérez-Ríos: Universal few-body physics and cluster formation

Rev. Mod. Phys., Vol. 89, No. 3, July–September 2017 035006-50



VII. CONCLUSIONS

This article reviews developments in only a modest subset
of the many extremely vigorous and dynamic topics in the
field of few-body physics. Anyone interested in exploring the
multifaceted aspects of this field and its interconnections with
nuclear physics, chemical physics, and ultracold atomic and
molecular physics is encouraged to explore the broader
literature, and a good start would be the following set of
review articles: Lin (1995), Sadeghpour et al. (2000), Nielsen
et al. (2001), Jensen et al. (2004b), Braaten and Hammer
(2006), Rittenhouse et al. (2011), Baranov et al. (2012),
Blume (2012a), Frederico et al. (2012), Petrov (2012), Wang,
D’Incao, and Esry (2013), Zinner and Jensen (2013), Wang,
Julienne, and Greene (2015a), and Naidon and Endo (2017).
The ability to control interparticle interactions through Fano-
Feshbach resonances or confinement-induced resonances
continues to trigger novel experimental efforts, and theoretical
progress on many fronts continues to be rapid as well. This
field promises to continue stimulating new surprises in few-
body and many-body physics in the years ahead. Here is one
wish list for desirable development of improved understand-
ing in several areas:

(1) Further insight into the extent of universality for
heavy-heavy-light systems with short-range inter-
actions, including the role of van der Waals forces
and the dependence on all parameters including the
mass ratio.

(2) Detailed theory and experiment to map out the
universality of three-particle systems with all masses
different, including of course the possible role of van
der Waals universality.

(3) Determination of N-body cluster states and recombi-
nation rates for both homonuclear and heteronuclear
systems, with N > 3. There is a large parameter space
to explore here, just for N ¼ 4, for instance.

(4) Controlled applications of external electromagnetic
field dressing of the few-body systems to suppress
or enhance inelastic processes. Progress in this area
could potentially lead to the formation of a long-lived
degenerate Bose gas at infinite two-body scattering
length, currently limited by three-body recombination
processes.

(5) Further development of experiments and theory for
mixed-dimension few-body systems.

(6) Experimental observation of log-periodic energy
dependence of three-body recombination, which has
been predicted to be visible for very large scattering
lengths.

(7) In the BCS-BEC crossover problem with a Fermi gas
having more than two spin components, it will be
interesting to see whether macroscopic collapse of the
gas is possible when the interaction scattering lengths
are negative, as predicted by Blume et al. (2008) and
Rittenhouse and Greene (2008).

(8) The three-body and four-body systems with strong
electric and/ormagnetic dipolar interactionshas received
some theoretical attention (Wang, D’Incao, and Greene,
2011a, 2011b) but little in the way of experimental tests
to date, and in view of extensive current interest in polar

molecule quantum gases, or strong magnetic dipolar
atomic condensates and Fermi gases, far more work is
needed from both perspectives (Baranov et al., 2012;
Zinner and Jensen, 2013; Kotochigova, 2014; Wang,
Julienne, and Greene, 2015a).

(9) It should be kept in mind that an accurate description of
the two-body scattering length dependence of few-body
phenomena hinges critically on having an accurate
description of the atom-atom scattering lengths as
functions of static and/or oscillating electromagnetic
fields. Theory has improved to the pointwhere a number
of alternative techniques can provide these data, when
developed in conjunction with experiments, including
full close-coupling calculations (Berninger et al., 2013),
the asymptotic bound state model (Tiecke et al., 2010),
and variants of multichannel quantum defect theory
with or without the additional frame transformation
approximation (Burke, Greene, and Bohn, 1998; Gao,
2008; Ruzic, Greene, and Bohn, 2013). Pires, Repp
et al. (2014) provide comparisons of these different
treatments, with application to the recently important
heteronuclear system 6Li-133Cs.While these theoretical
descriptions have been generally successful, extensions
and improvements are still desirable in order to gain
the fullest possible control of the two-body physics
underlying all of the few-body physics addressed in this
review.

(10) Further insight is also desired for systems such as the
few-body version of the fractional quantum Hall
problem, both in condensed-matter systems and in
ultracold atomic systems. Initial studies by Daily,
Wooten, and Greene (2015), Rittenhouse, Wray, and
Johnson (2016), and Wooten, Daily, and Greene
(2016) into that subject from the adiabatic
hyperspherical perspective suggest that the corre-
sponding 2D N-particle Schrödinger equation nearly
separates in the hyperradial degree of freedom, for
both bosons and fermions, as can be deduced from
potential energy curves in those references. More-
over, some of the intriguing degeneracy patterns
observed in that problem are deserving of further
exploration.
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