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A comprehensive review is presented of the physical behavior of yield stress materials in soft
condensed matter, which encompasses a broad range of materials from colloidal assemblies and gels
to emulsions and non-Brownian suspensions. All these disordered materials display a nonlinear flow
behavior in response to external mechanical forces due to the existence of a finite force threshold for
flow to occur: the yield stress. Both the physical origin and rheological consequences associated with
this nonlinear behavior are discussed and an overview is given of experimental techniques available to
measure the yield stress. Recent progress is discussed concerning a microscopic theoretical
description of the flow dynamics of yield stress materials, emphasizing, in particular, the role
played by relaxation time scales, the interplay between shear flow and aging behavior, the existence of
inhomogeneous shear flows and shear bands, wall slip, and nonlocal effects in confined geometries.
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I. INTRODUCTION TO YIELD STRESS MATERIALS

Many of the materials that we encounter in our daily life are
neither perfectly elastic solids nor simple Newtonian fluids,
and attempts to describe these materials as being either fluid or
solid often fail. Take, for instance, whipped cream and thick
syrup. When moving a spoon through these two materials, one
would conclude that syrup is the more viscous fluid. However,
when left at rest, the syrup will readily flatten and become
horizontal under the force of gravity, while whipped cream
will retain its shape for a long time, suggesting that, actually,
the whipped cream is more viscous than syrup (Fig. 1). This
paradox stems from the fact that the syrup is a Newtonian
fluid, whereas whipped cream is not a simple fluid at all, and
its flow properties cannot be reduced to a single number such
as its viscosity. Whipped cream does not flow if the imposed
stress is below a threshold value and flows rather easily after
this value is exceeded. This threshold rheology is the defining
feature of yield stress materials. Classical, everyday examples
of yield stress materials include paints, foams, wet cement,
cleansing creams, mayonnaise, and tooth paste.
Besides pharmaceutical and cosmetic applications, yield

stress materials are also used in the oil industry, where
estimating the minimum pressure required to restart a gelled
crude-oil pipeline is crucial (Chang, Nguyen, and Rønningsen,
1999). The yield stress is also relevant to the concrete

and dairy product industries, where its value is related to
the size of air bubbles that may remain trapped in the material
and directly affect its properties (vanAken, 2001; Kogan et al.,
2013). In all these fields, it is of paramount importance
to characterize as quantitatively as possible the force threshold
needed to make the material flow, i.e., the yield stress.
We review recent progress concerning the fundamental

understanding of the yield stress as well as the physical
processes relevant to experimental studies of the yielding
transition in a broad range of materials across soft condensed
matter. The existence of a threshold for flow suggests that
these materials respond in a highly nonlinear manner, which
has a dramatic impact on their dynamical properties under
flow, which we also discuss extensively. Yield stress phenom-
ena are of key importance both from a fundamental point of
view and for practical situations involving amorphous solids,
spanning a wide range of materials and spanning the fields of
hard and soft condensed matter physics.
There are a number of topical reviews available dealing with

specific aspects of yield stress materials (Coussot, 2005, 2014;
Møller, Mewis, and Bonn, 2006; Denn and Bonn, 2011;
Mansard and Colin, 2012; Balmforth, Frigaard, and Ovarlez,
2014). In addition, a collection of relevant papers appeared very
recently in a special issue celebrating the anniversary of the first
paper by Bingham describing yield stress fluids (Cloitre and
Bonnecaze, 2017; Coussot, 2017; Coussot, Malkin, and
Ovarlez, 2017; Dinkgreve, Denn, and Bonn, 2017; Ewoldt
and McKinley, 2017; Frigaard, Paso, and de Souza Mendes,
2017; Malkin, Kulichikhin, and Ilyin, 2017; Mitsoulis and
Tsamopoulos, 2017; Saramito and Wachs, 2017). The present
review attempts to give a concise overview of the physics of
yield stress materials taking a very broad perspective encom-
passing fundamental, experimental, and practical issues, along
with a discussion of some important open questions.
The review is organized as follows. In Sec. II, we give a

general overview of the various physical concepts and issues
raised by the existence of a yield stress, with emphasis on
model systems and theoretical approaches. In Sec. III, we
provide a critical review of the experimental issues that
arise due to the yield stress and of their physical causes,
with emphasis on the ubiquitous phenomenon of apparent
slippage of yield stress materials at the walls. Section IV is
devoted to the most recent developments and emerging topics
regarding flow dynamics of yield stress fluids, including time

FIG. 1. Which fluid is more viscous: whipped cream or thick
maple syrup? Slowly stirring both materials with a spoon
suggests that syrup is more viscous, while observing the flat-
tening of piles of each material with time suggests the opposite. In
fact, the question is ill posed. The flow properties of whipped
cream cannot be reduced to a single viscosity value because it is a
yield stress material, whereas syrup is simply a very viscous fluid.
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dependence and shear banding, as well as the effects of
confinement and transient fluidization behaviors. We close our
review with a summary in Sec. V.

II. GENERAL CONCEPTS ABOUT YIELD STRESS FLUIDS

A. Popular rheological models for yield stress materials

Quantifying the steady-state flow properties of a non-
Newtonian fluid requires the measurement of its full flow
curve as the shear viscosity is not a unique number. For a
simple shear geometry, the flow curve is a representation of
the dependence of the shear stress σ on the shear rate _γ. For a
Newtonian fluid, these functions are linearly related, σ ¼ η_γ,
where η is a constant viscosity. For a yield stress material,
the viscosity formally becomes a function of the shear rate
σ ¼ ηð_γÞ_γ, and the flow curve σ ¼ σð_γÞ is not a simple straight
line crossing the origin. As discussed later, for a number of
materials, the viscosity also becomes a function of the entire
measurement procedure, resulting in a complex time depend-
ence, which can make practical measurements challenging.
The most elementary model capturing the existence of a

finite yield stress is the Bingham model (Bingham, 1922):

σ < σy ⇒ _γ ¼ 0; ð1Þ
σ ≥ σy ⇒ σ ¼ σy þ ηp _γ; ð2Þ

where σy > 0 is the yield stress, and ηp is a model
parameter describing the slope of the flow curve in the fluid
region, which is defined by _γ > 0. The Bingham model is
equivalently described by an effective viscosity which is
asymptotically equal to ηp at large stresses and diverges
continuously as the stress decreases toward the yield stress
ηeffð_γÞ≡ σ=_γ ¼ ηp þ σy=_γ. Its simplicity stems from the fact
that it uses only a single material-dependent number, the yield
stress σy, to describe complex, nonlinear behavior incorpo-
rating a threshold force.
In Fig. 2 we return to the examples of whipped cream and

syrup, showing flow curves for both materials. Figure 2(a)
illustrates the fact that the Bingham model gives a reasonable
description of the measured flow curve of whipped cream with
a yield stress of about σy ≈ 33 Pa, while Fig. 2(b) shows that it
makes little sense to compare the viscosity of these two
“fluids” as, in fact, only one of them is really a fluid with a
constant viscosity.
Figure 2 also illustrates that whereas the Bingham model

appears to be an excellent fit to the flow curve of whipped
cream [Fig. 2(a)], it actually fails at low shear rates, which
becomes obvious once the resolution is improved [Fig. 2(b)].
From the latter plot, one concludes that the yield stress is about
σy ≈ 10 Pa, rather than 33 Pa. This highlights one of the many
practical problems encountered when working with complex
fluids: before a question about the flow properties of a
complex material can be satisfactorily answered, one needs
to carefully consider the exact experimental protocol as well
as the range and resolution of shear rates and stresses over
which the data are analyzed.
Two popular generalizations of the Bingham fluid model in

shear flow are the Herschel-Bulkley (Herschel and Bulkley,
1926) and Casson equations given as

Herschel-Bulkley : σ ¼ σy þ K _γn; σ ≥ σy; ð3Þ

Casson : σ1=2 ¼ σ1=2y þ ðηp _γÞ1=2; σ ≥ σy; ð4Þ

where K and n are additional parameters. Obviously, the
Bingham model is a specific instance of the Herschel-Bulkley
equation, obtained by imposing n ¼ 1.
The Herschel-Bulkley model is popular as it offers more

flexibility for fitting experimental data than the Bingham
model. It describes both the yield stress regime σ ≈ σy at low
shear rate, and a power-law shear-thinning behavior σ ≈ K _γn,
with n < 1 for larger shear rates. Across a large variety of
systems, the shear-thinning exponent n is found to have a
value in the range n ¼ 0.2�0.8, rather than the n ¼ 1 value
imposed in the Bingham model. Frequently, n changes very
little with either the density or the temperature of the material
(Vinogradov, Froishteter, and Trilisky, 1978), so that it
appears to be a relevant “material parameter,” for instance
for microgels (Roberts and Barnes, 2001; Oppong et al., 2006;
Nordstrom et al., 2010; Gutowski et al., 2012), emulsions
(Mason, Bibette, and Weitz, 1996; Bécu, Manneville, and
Colin, 2006), and foams (Princen and Kiss, 1989; Pratt and
Dennin, 2003; Höhler and Cohen-Addad, 2005; Gilbreth,
Sullivan, and Dennin, 2006). As such, its determination (or
prediction) has become a question of theoretical interest as
well, as discussed later.
The crossover between the yield stress and the shear-

thinning regimes in the Herschel-Bulkley model occurs for
a typical shear rate _γ⋆ ≈ ðσy=KÞ1=n. It is therefore tempting to
interpret the corresponding time scale 1=_γ⋆ as a relevant
microscopic time scale for the material (Bonnecaze and
Cloitre, 2010). The Herschel-Bulkley equation also predicts
the existence of a diverging time scale τ governing the
relaxation to steady state in stress-controlled experiments in
the vicinity of the yield point, i.e., for σ ≳ σy, since one gets
τ ∼ _γ−1 ≈ ½K=ðσ − σyÞ�1=n, which readily suggests an inter-
pretation of the yielding transition observed in steady-state

FIG. 2. (a) The Bingham model (solid line) provides a reason-
able fit to the experimental flow curve of whipped cream (crosses),
with yield stress σy ≈ 33 Pa. (b) The flow curves of syrup
(plusses) and whipped cream (crosses) at low shear rates. Data
points are connected by lines as guides to the eye. For stresses
above 33 Pa, whipped cream flows more easily than syrup, while
the opposite is true below 33 Pa. Using this enlarged scale, one can
see that the flow curve of whipped cream below the yield stress is
in fact not well described by the Bingham model [Eq. (1)], which
simply predicts zero shear rate all the way up to σy.
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simple shear flows in terms of a critical point (Divoux et al.,
2012; Chaudhuri and Horbach, 2013). This topic will be
discussed extensively in Sec. IV.C.

B. Physical origin of the yield stress in soft materials

To elucidate the physical origin of yield stress rheology in a
given material, ideally one wants to know under what
conditions the material exhibits a yield stress, what micro-
scopic mechanisms are responsible for the emergence of a
yield stress, and whether general rules can be formulated to
predict the actual value of the yield stress for instance as a
function of the composition and structural organization
(constituents, interactions) of the material. The emergence
of a finite yield stress is frequently referred to as a “jamming
transition” (Liu and Nagel, 2001; Trappe et al., 2001; van
Hecke, 2010): a broad range of dense amorphous materials
(from foams and grains to dense liquids) shares the important
similarity that they do not flow unless a large enough shear
stress is applied. This idea was popularized via a schematic
jamming phase diagram by Liu and Nagel (1998).
However, the existence of a similar type of transition

between fluid and amorphous solid states does not imply
that a single physical mechanism should be at work: soft
condensed materials may become solid by crossing a variety
of phase transitions, and the jamming transition is now
understood as being only one of them (Liu and Nagel,
2010; van Hecke, 2010). In the following, we describe three
important classes of yield stress materials whose solid
behavior originates from qualitatively different types of phase
transitions (or sharp dynamical crossovers), which are usually
described by different types of theoretical approaches as well.

1. Simple colloidal systems: Soft glassy materials

Suspensions of nearly hard-sphere colloidal particles are
among the most studied experimental systems in soft con-
densed matter (Pusey and van Megen, 1986; Hunter and
Weeks, 2012), as they represent good model systems to study a
large variety of physical phenomena also occurring in atomic

and molecular systems, from first-order crystallization to
glassy dynamics (Royall, Poon, and Weeks, 2013). For
colloidal particles, thermal fluctuations and Brownian motion
play key roles since they ensure that the system can reach
thermal equilibrium. However, when the volume fraction ϕ of
colloidal hard spheres is increased, the system undergoes a
colloidal glass transition that shares important similarities with
the glass transition observed upon decreasing the temperature
in molecular supercooled liquids (Pusey and van Megen,
1987). Experimentally, above a “glass transition” packing
fraction of about ϕG ≈ 0.58–0.60 (in three-dimensional sus-
pensions), the equilibrium relaxation time of the colloidal
suspension becomes so large that the particles do not signifi-
cantly diffuse over a typical experimental time scale and the
system is effectively dynamically arrested (Brambilla et al.,
2009). At packing fractions above ϕG, colloidal particles
simply perform localized back-and-forth “vibrational” motion
inside the cage formed by their neighbors. This empirical
definition of the glass transition density demonstrates that its
actual location is not very well defined experimentally, in the
sense that deciding whether a material is “solid” or simply
“very viscous” depends on the observation time scale or the
explored range of shear rates in steady-state flow curves.
The rheological consequences of the glass transition are

readily observed in the flow curves shown in Fig. 3(a)
(Petekidis, Vlassopoulos, and Pusey, 2004). An extended
Newtonian regime is observed for ϕ < ϕG, which defines a
density-dependent viscosity ηðϕÞ that is seen to increase very
rapidly as the density increases toward ϕG. A finite yield stress
σy emerges as the glass transition is crossed for ϕ > ϕG, which
increases as the colloidal glass concentration is increased
further. In the vicinity of the glass transition ϕ ≈ ϕG, a
shear-thinning regime is observed, where σ ≃ _γn with n < 1,
illustrating the general fact that glassy suspensions are easily
driven out of the linear rheological regime. In fact, accurate
measurements of the linear viscosity in hard-sphere suspen-
sions are scarce and often limited to a modest dynamic regime
(Cheng et al., 2002), precisely because it is challenging to
access the linear rheological regime. In the glass phase, the flow

FIG. 3. (a) Soft glassy rheology. Evolution of the flow curves across the thermal colloidal glass transition for a suspension of PMMA
hard spheres of size a ≈ 200 nm. From Petekidis, Vlassopoulos, and Pusey, 2004. (b) Jamming rheology. Evolution of the flow curves
for an oil-in-water emulsion with droplet size a ≈ 3.2 μm across the athermal jamming transition. From Paredes, Michels, and Bonn,
2013. In both cases, a yield stress appears above a certain critical density ϕc (dashed line), which corresponds to the glass transition ϕG
for thermal systems in (a), and to the jamming transition ϕJ for athermal particles in (b). Although the emergence of solid behavior in
both cases is conceptually very different, the flow curves of both materials are surprisingly similar.
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curves are typically well described by the Herschel-Bulkley
law, which efficiently incorporates both the yield stress and
shear-thinning behaviors in a single empirical model.
Similar flow curves are observed in many systems under-

going a glass transition, from densemolecular liquids (Berthier
and Barrat, 2002) to colloidal suspensions with soft and hard
repulsion between the particles (Petekidis, Vlassopoulos, and
Pusey, 2004; Nordstrom et al., 2010; Siebenbürger, Fuchs, and
Ballauff, 2012). In all these systems, a finite yield stress
emerges when the shear viscosity becomes so large (upon
changing density or temperature) that the system cannot flow
anymore on experimentally accessible time scales. Physically,
the yield stress results from the fact that particles move too
slowly and cannot rearrange the structure fast enough to relax
the stress introduced by an external deformation. Therefore, a
simple criterion for the emergence of a yield stress is when the
time scale for the spontaneous equilibrium relaxation, usually
called the “alpha-relaxation” time scale τα, becomes larger than
the time scale of the external deformation given by 1=_γ. In the
regime where τα _γ ≫ 1, spontaneous relaxation cannot occur
over the rheologically relevant time window and the system
appears solid. Empirically, τα closely follows the behavior of
the Newtonian viscosity τα ∝ ηðϕÞ, which explains why the
linear regime τα _γ ≪ 1 becomes difficult to study near the glass
transition, where the viscosity increases dramatically.
In such glassy materials, the yield stress is typically a

function of temperature and density. This dependence sim-
plifies considerably for the hard-sphere model, because the
hard-sphere potential contains no energy scale. In that case, the
relevant stress scale controlling solidity is σT ¼ kBT=a3, where
kB is Boltzmann’s constant, T is the temperature, and a is the
particle diameter, so that the yield stress can be rewritten as
σy ¼ σTfðϕÞ, where fðϕ < ϕGÞ ¼ 0. This behavior empha-
sizes the entropic origin of the solidity in colloidal hard spheres,
and therefore the crucial role played by thermal fluctuations in
the emergence of a yield stress in colloidal particles with purely
repulsive interactions (Petekidis, Vlassopoulos, and Pusey,
2004; Ikeda, Berthier, and Sollich, 2012).
Finally, when the colloidal glass is compressed far above

the glass transition, the interparticle distance decreases and
particles eventually come into near contact as the “random
close-packing” fraction is approached (Bernal and Mason,
1960). For rheology, this critical packing fraction is more
commonly called the “jamming” density (Liu and Nagel,
2010). As a consequence, the colloidal glass becomes stiffer
when density increases. For pure hard spheres, this results in a
strong increase of the yield stress, which appears to diverge as
a power law σy ∼ σTðϕJ − ϕÞ−γ, with an exponent γ ≈ 1 and a
jamming density ϕJ > ϕG. This functional form shows that
the yield stress vanishes for fully non-Brownian suspensions
of hard particles due to the entropic prefactor σT ¼ kBT=a3

which vanishes when the particle size becomes macroscopic,
a → ∞. Therefore, suspensions of non-Brownian hard par-
ticles such as granular particles do not belong to the family of
yield stress materials. The density dependence of mechanical
properties is much smoother for particles with non-
hard-sphere interactions, such as soft repulsive particles
(Koumakis, Pamvouxoglou et al., 2012; van der Vaart et al.,
2013), for which the concept of a sharp jamming transition

cannot be defined in the presence of thermal fluctuations
(Ikeda, Berthier, and Sollich, 2013).

2. Non-Brownian suspensions: Jammed materials

When the typical size a of colloidal particles increases,
Brownian motion becomes negligible and thermal fluctuations
are less relevant. This is because the typical time scale for a
Brownian particle to diffuse over a distance comparable to its
own size scales as a2=D0, where D0 is the single-particle
diffusion constant. For an observation time scale of the order
of 1 s, the crossover typically occurs for a particle diameter of
about a ≈ 1 μm.
Non-Brownian suspensions of soft particles, such as foams

and large emulsion droplets, become solid when the density is
increased above a critical packing fraction, which corresponds
to a genuine jamming transition; in this case, glassy dynamics
are not observed. For soft, repulsive spherical particles in three
dimensions, the transition takes place near the random close-
packing density, ϕJ ≈ 0.64–0.66. Apart from experimental
difficulties, an important source of the uncertainty concerning
the jamming density is size polydispersity. It is empirically
found that ϕJ increases systematically with the size poly-
dispersity of the sample (Hermes and Dijkstra, 2010; Torquato
and Stillinger, 2010).
In contrast with the glass transition, thermal fluctuations

play strictly no role in this process, and the emergence of solid
behavior can be obtained in model systems directly at T ¼ 0.
If the packing fraction is large enough, non-Brownian
particles come into contact and possibly deform, therefore
supporting local stresses. The key concept for jamming is the
existence of a sufficiently large number of contacts between
the particles such that mechanical equilibrium can be main-
tained throughout the sample (van Hecke, 2010), but the
detailed nature of this geometrical transition is different from a
simple percolation transition.
A second major difference with the glass transition is that

the jamming transition can in principle be defined and located
with arbitrary precision, as its definition does not rely on an
observation time scale, although, of course, additional exper-
imental difficulties might intervene (van Hecke, 2010; Ikeda,
Berthier, and Sollich, 2013). The reason is that the emergence
of solidity does not result from the competition between an
equilibrium relaxation time scale defined at rest and a finite
shear rate, as for glasses, because non-Brownian suspensions
have no spontaneous dynamics at rest. The jamming transition
and existence of a yield stress in soft materials can therefore be
described as “static” transitions resulting from a sharp
qualitative change in the microstructural properties of the
material (Parisi and Zamponi, 2010).
Another important consequence of the absence of thermal

fluctuations is the fact that the jamming transition, unlike
the glass transition, necessarily takes place far from thermal
equilibrium. In particular, this implies that the preparation
protocol of the non-Brownian packings in the vicinity of
the jamming transition becomes a relevant parameter con-
trolling the location of the transition (Donev et al., 2004;
Berthier and Witten, 2009) but, quite importantly, not its
physical nature and properties (Chaudhuri, Berthier, and
Sastry, 2010).
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In experiments and model systems studied in computer
simulations, it is found that the yield stress emerges contin-
uously with increasing packing fraction past the jamming
transition (Durian, 1995). This has been reported for foams and
emulsions, which are well described (at least near the tran-
sition) by simple models of soft repulsive spheres interacting
via truncated harmonic or Hertzian potentials of the form

Vðr < aÞ ¼ ϵ

α
ð1 − r=aÞα; ð5Þ

where r is the distance and α gives the power-law exponent for
the decay of the interactions; ϵ is an energy scale governing the
mechanical property (essentially, the softness) of the particles;
the potential is zero when particles are not in contact,
Vðr > aÞ ¼ 0. In that case, the relevant stress scale controlling
the behavior of the yield stress is of energetic (rather than
entropic) nature: σ0 ¼ ϵ=a3. As a result, the yield stress can
now be written σy ¼ σ0gðϕÞ, where gðϕ < ϕJÞ ¼ 0. A robust
finding for the behavior of the yield stress above the jamming
transition is a power-law behavior σy ¼ σ0ðϕ−ϕJÞΔ for ϕ≥ϕJ

(Durian, 1995; Olsson and Teitel, 2007). The exponent Δ can
be seen as a critical exponent characterizing the rheology of
jammed materials; we now discuss whether such scalings can
be retrieved in experiments, and how universal these would be.
Emulsions are systems for which the packing fraction can

be changed relatively easily, without changing other system
parameters much. Probably the first systematic study of flow
curves across a range of volume fractions was performed by
Mason, Bibette, and Weitz (1996), using a droplet size which
is however not quite large enough for thermal fluctuations
to be fully irrelevant. Figure 3(b) shows similar data taken
over a broader range of parameters and larger droplets so that
thermal effects are fully irrelevant (Paredes, Michels, and
Bonn, 2013). The similarity with the soft glassy rheology in
Fig. 3(a) is striking, as the material crosses over from a
Newtonian fluid at low enough density and shear rate to a
yield stress solid above jamming, where the flow curves are
again well described by the Herschel-Bulkley model with a
shear-thinning exponent n < 1. Exactly at the jamming
density, a power-law shear-thinning behavior is observed.
A detailed discussion of the exponent appearing in the
Herschel-Bulkley law can be found in Olsson and Teitel
(2012). A careful determination of n requires a power-law fit
of σ − σy as a function of _γ. It is found in simple numerical
models that such a plot actually displays two distinct power-law
regimes with two different exponents: n at small shear rates and
n0 at larger shear rates (Olsson and Teitel, 2011, 2012; Lerner,
Düring, and Wyart, 2012; Kawasaki et al., 2015). It is likely
that the fitting of experimental flow curves is dominated by the
second of these two exponents, and comparison to theory is
thus somewhat delicate. Additionally, at finite shear rates, it is
also possible that other ingredients, such as friction between
particles (Katgert,Möbius, and vanHecke, 2008; Katgert et al.,
2009; Bonnecaze and Cloitre, 2010) or energy dissipation of
the interstitial liquid [or in plateau borders for foams (Schwartz
and Princen, 1987)], start to play a significant role and also
affect the value of the shear-thinning exponent.
It is interesting to consider the limit of infinitely hard non-

Brownian (i.e., granular) suspensions, which are also often

described as possessing a yield stress. As should be clear from
the previous discussion, a yield stress can exist only in non-
Brownian repulsive objects if they can be compressed strictly
above the jamming density ϕ > ϕJ. This is by definition not
possible when particles are truly hard, such as in granular
suspensions that exist only in the fluid state ϕ < ϕJ
(Andreotti, Forterre, and Pouliquen, 2013). Careful measure-
ments on suspensions of spherical particles (Fall et al., 2009,
2013) have indeed revealed that if the particles and suspending
liquid are carefully density matched, there is no yield stress up
to random close packing, where all the particles start to touch
each other. However, as soon as there is the slightest density
mismatch, the particles cream or sediment, so that ϕ → ϕJ,
which is indeed the only density where hard particles can be
fully arrested. This makes non-density-matched suspensions
similar to dry granular systems: a sand pile has a clear, finite
angle of repose, which is equivalent to stating that it has a
yield stress (Vanel et al., 1999). As for sedimenting suspen-
sions, this is due to the gravitational forces that push the grains
together and in this way activate the frictional contacts
between the grains (Vanel et al., 1999).
A direct consequence of the hard-particle limit is then

that no time scale can be constructed from the particle
interaction, and the flow curves obtained at constant density
therefore simplify considerably and become fully
Newtonian. Very different from the flow curves shown in
Fig. 3, the rheology of this regime is described by simpler
constitutive laws (with no yield stress) that have been
carefully studied and validated by many experiments in
the community of granular media (MiDi, 2004; Andreotti,
Forterre, and Pouliquen, 2013).
In Fig. 4 we summarize the evolution of yield stress with

temperature T and packing fraction ϕ for several types of
three-dimensional assemblies of harmonic repulsive particles,
determined using computer simulations (Ikeda, Berthier, and
Sollich, 2013). This demonstrates the emergence of a yield
stress in thermalized colloidal assemblies at a packing fraction
ϕG, which depends weakly on the particle softness. This
softness is quantified by the adimensional temperature scale
kBT=ϵ, which compares thermal energy to particle repulsion.
Colloidal poly(methyl methacrylate) (PMMA) hard spheres
are typically characterized by kBT=ϵ ∼ 10−8, whereas soft
microgels are usually much softer, kBT=ϵ ∼ 10−4, emulsions
being typically intermediate, kBT=ϵ ∼ 10−6. All these systems
display a yield stress above the colloidal glass transition, and
the yield stress increases with density in the glass phase. For
hard spheres, it diverges at the jamming transition, for
emulsions it shows a strong crossover behavior, and it has
a smooth density dependence for soft microgels. In soft
systems such as foams, kBT=ϵ ∼ 10−8 is again small because
thermal fluctuations become irrelevant for such large particles,
and the emergence of the yield stress is associated with the
jamming transition, with no influence of thermal fluctuations
on the rheology. The jamming transition controls the T → 0

limit of the jamming phase diagram in Fig. 4. Such a diagram
is experimentally useful as it allows one to locate systems such
as microgels, emulsions, foams, and colloidal hard spheres on
the same graph, and to elucidate the origin of the yield stress
observed in rheological experiments.
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3. Role of attractive forces: Colloidal gels

In the previous section, particle systems with solely
repulsive forces were described from a theoretical perspective,
in which case temperature can only compete with the particle
softness, and the main control parameter is the packing
fraction. The situation becomes more complex when attractive
forces come into play. Adhesion and attractive forces are
relevant for a large number of model systems and real
materials. For instance, dense liquids do not interact via
hard-sphere potentials, but typically also possess longer-range
attractive forces, modeled for instance via a Lennard-Jones
potential (Hansen and McDonald, 2006). In colloidal systems,
attractive forces can be easily induced and tuned, using for
instance colloid-polymer mixtures (Royall, Poon, and Weeks,
2013). Many real-material systems, such as clay suspensions
or more generally colloidal gels, are Brownian systems
with attractive interactions between the colloidal particles
(Larson, 1999).
Regarding the glass transition phenomenon in simple

systems, attractive forces only weakly affect the physics, in
the sense that they contribute quantitatively to the relaxation
dynamics and details of the phase diagram, but do not change
the physical behavior qualitatively (Berthier and Tarjus,
2009, 2011).
Attractive forces in simple liquids start to change the

physics when they are strong enough to induce a nontrivial
dynamical arrest in a regime that would otherwise be
characterized by a simple fluid behavior. The simplest case
is when very strong bonds are present, which might result in a

percolating particle network that can sustain a finite stress,
as in chemical gels (Larson, 1999). Here a yield stress
emerges and coincides with a percolation transition. When
the gel is dense enough, such a network can confer a
macroscopic elasticity to the system and hence be responsible
for a yield stress. However, if the thermal energy is sufficient
to break and reform bonds within the network, for a small
applied stress the system will eventually flow at long
time scales, and the system is simply viscoelastic (it is a
“transient” gel).
Percolation represents only one of the possible routes to the

production of physical gels; several other examples have been
studied in recent years (Zaccarelli, 2007). Here we mention
three examples.

a. Nonequilibrium gels

A well-described example concerns colloidal gels that are
formed by increasing the strength of short-ranged adhesive
depletion forces, starting from an initially purely repulsive
system. It has been empirically found that “nonequilibrium
gels” can be formed over a broad range of densities as the
adhesion between particles is increased (Manley et al., 2005;
Lu et al., 2008; Royall et al., 2008). These gels are
heterogeneous, dynamically arrested structures, which thus
behave mechanically as soft solids. The current understanding
of the gelation process is that adhesion induces the analog of a
liquid-gas phase separation in the colloidal system, which may
phase separate into colloid-rich and colloid-poor phases.
However, because the attraction is very short ranged, the
coexistence curve on the colloid-rich region at large density
may hit the colloidal glass transition. The emergence of slow,
glassy dynamics may be able, in some cases, to slow down
dramatically and even fully arrest the kinetics of the phase-
separation process (Foffi et al., 2005; Lu et al., 2008; Testard,
Berthier, and Kob, 2011). At long times, the system may thus
acquire a percolating bicontinuous structure, which is
mechanically rigid and does not flow if a small shear stress
is applied. A consensus has been reached regarding the
formation of these nonequilibrium gels as reviewed by
Zaccarelli (2007), whose structure can be controlled by tuning
the flow cessation dynamics (Ovarlez, Tocquer et al., 2013;
Koumakis et al., 2015; Helal, Divoux, and McKinley, 2016).
However, the steady-state rheology of attractive gels is still a
topic of intense research (Helgeson et al., 2014; Romer et al.,
2014; Zia, Landrum, and Russel, 2014; Capellmann et al.,
2016). Indeed, colloidal gels show a pronounced time-
dependent response (Ovarlez and Chateau, 2008) and a
strong propensity to wall slip that appears to be nontrivially
coupled to spatially heterogeneous flows (Gibaud, Barentin,
and Manneville, 2008; Grenard et al., 2014), which makes
it difficult to measure flow curves and even questions the
very existence of a unique constitutive equation. The transient
and steady-state rheology of these systems is discussed in
more detail in Sec. IV.

b. Attractive glasses

The behavior of dense assemblies of attractive colloids has
also attracted a large experimental interest in the recent decade
(Sciortino and Tartaglia, 2005; Puertas and Fuchs, 2009).

FIG. 4. Three-dimensional “jamming phase diagram” showing
the reconstructed yield stress surface from numerical simulations
as a function of the thermodynamic parameters temperature and
density in a dimensionless representation (particle softness
kBT=ϵ, volume fraction φ, and stress σa3=ϵ) for a model of
soft harmonic particles. The thick lines represent the location
of typical experimental measurements in various materials:
foams (rightmost line) are mainly sensitive to jamming physics;
PMMA hard spheres (black line) to glass physics; emulsions
display an interesting interplay between glass and jamming
transitions; poly(N-isopropylacrylamide) (p-NIPAM) microgels
(leftmost line) undergo a colloidal glass transition far from the
jamming limit with no particular signature across the jamming
density. From Ikeda, Berthier, and Sollich, 2013.
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In this situation, a complex physical interplay is to be
expected, due to the competition between the nonequilibrium
kinetic arrest arising at moderate densities (leading to non-
equilibrium gelation) and the glassy physics emerging at large
densities without adhesive interaction (leading to glass for-
mation). Early studies advocated that this competition pro-
duces a novel state of arrested matter, named “attractive glass”
(Fabbian et al., 1999; Dawson et al., 2000; Pham et al., 2002;
Sciortino, 2002), actively studied both numerically and
experimentally (Pham et al., 2002, 2004; Sciortino,
Tartaglia, and Zaccarelli, 2003; Puertas, Zaccarelli, and
Sciortino, 2005; Zaccarelli et al., 2005). For a discussion
on how to experimentally differentiate a glass from both a gel
and an attractive glass, see Bonn et al. (1999) and Tanaka,
Meunier, and Bonn (2004). Because the dynamics is con-
trolled by at least two microscopic length scales (the adhesion
range responsible for initiating phase separation and the cage
size responsible for the glassy dynamic arrest), complex
relaxation patterns have been predicted (Fabbian et al., 1999;
Dawson et al., 2000) and observed (Pham et al., 2004;
Zaccarelli et al., 2005), including in rheological studies
(Koumakis and Petekidis, 2011). Whereas early interpretation
relied on the existence of an underlying peculiar form of glass
singularity predicted bymode-coupling theory (Fabbian et al.,
1999; Dawson et al., 2000), additional work has shown that
such singularity is not needed for complex time dependences
to occur (Chaudhuri, Hurtado, and Kob, 2010). The existence
of a genuine attractive glass phase has also been called into
question (Zaccarelli and Poon, 2009; Royall, Williams, and
Tanaka, 2015), and indeed the idea of a specific type of
attractive glass does not seem needed to interpret the rheology
of all concentrated attractive glasses; see, e.g., Data et al.
(2011) for an example of an attractive emulsion. From a
practical (rather than fundamental) viewpoint, the idea that
glasses with different types of frozen-in disorder may exist in
models with adhesive interactions remains valuable (Pham
et al., 2004).

c. Athermal adhesive systems

Finally, the role of attractive forces in non-Brownian
suspensions is also relevant but necessarily has a different
nature, as the adhesive forces by construction cannot compete
with thermal fluctuations. A few studies explored the emer-
gence of solidity in athermal adhesive particle systems, to
understand, in particular, how the jamming transition is
affected when adhesion is present (Lois, Blawzdziewicz, and
O’Hern, 2008; Chaudhuri, Berthier, and Bocquet, 2012; Irani,
Chaudhuri, and Heussinger, 2014). This point is relevant for
instance in the context of humid granular materials.
In particular, because adhesion creates bonds between

particles, it seems physically clear that adhesive forces can
only enhance solidity above jamming, and in this dense
regime adhesion acts as a small perturbation. On the other
hand, it appears that solid behavior can be maintained in a
density range even below the jamming transition ϕ < ϕJ,
which opens a novel regime for solid behavior which has no
analog for purely repulsive systems. In particular, a recent
numerical study suggests that a small amount of attractive
force is indeed able to generate a material with a finite yield

stress below the jamming transition, with a potentially
interesting interplay between the imposed shear flow and
the microstructure of the system, eventually giving rise to
large-scale flow inhomogeneities (Irani, Chaudhuri, and
Heussinger, 2014). This points to a possible mechanism for
shear banding, which is a topic that we discuss further later.

C. Is the yield stress real?

1. A historical debate

For many years, there has been a controversy about whether
the yield stress marks a transition between a solid and a fluid
state, or between two fluid states with drastically different
viscosities (Hartnett and Hu, 1989; Astarita, 1990; Schurz,
1990; Evans, 1992; Spaans andWilliams, 1995; Barnes, 1999,
2007). Numerous experimental studies argued that yield stress
materials actually flow like very viscous Newtonian liquids at
low stresses (Macosko, 1994; Barnes, 1999). Barnes and
Walters (1985) presented data on Carbopol microgels to
demonstrate the existence of a finite viscosity at very low
shear stresses (Fig. 5), rather than an infinite viscosity below
the yield stress, and later published a review with numerous
flow curves suggesting that yield stress materials should rather
be described as Newtonian fluids with a very large viscosity
(Barnes, 1999).
Møller, Fall, and Bonn (2009) reproduced the experiments

used to demonstrate Newtonian limits at low stresses and
indeed observed finite apparent viscosities at low stresses; see
Fig. 5. However, while all measurements collapse at high
stresses, below the yield stress they no longer do, and the
apparent viscosity depends in fact on the delay time between
the application of the stress and the viscosity measurement.
Each individual curve resembles the curves of Barnes and
others, but if all the points that do not seem to correspond to a
steady state are removed, one is left with a simple Herschel-
Bulkley material with a well-defined yield stress. The large
viscosity values obtained at low stress in fact correspond to
shear rates of the order of 10−6 s−1 or less, which are not only
reaching the accuracy limits of ordinary rheometers, but also
show that within a reasonable experimental measurement time,

FIG. 5. Viscosity vs shear stress in Carbopol. (a) From Barnes
and Walters, 1985. (b) A subsequent study of the same system.
From Møller, Fall, and Bonn, 2009. The latter showed that the
values of the low-stress viscosity plateau increase with meas-
urement time (from 10 to 3000 s, colored symbols). The insets
show that the plateau value increases as a power law with time,
with exponent of about 0.6, indicating that the measured
viscosities do not correspond to steady-state shear flows for
shear stresses below the yield stress.
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no steady state is reached where the deformation increases
linearly with time, and the total deformation imposed on the
sample remains well below unity. Consequently, the instanta-
neous shear rate cannot be interpreted as representative of a
well-defined steady-state viscosity.
Besides this fundamental problem, debates about the

existence of a yield stress demonstrate that the most ubiqui-
tous practical problem encountered by scientists and
engineers dealing with everyday materials such as food
products, powders, cosmetics, crude oils, or concrete is that
the yield stress of a given material is very difficult to
determine experimentally (Barnes, 1999; Mujumdar, Beris,
and Metzner, 2002; Møller, Mewis, and Bonn, 2006). Indeed,
James, Williams, and Williams (1987), Zhu et al. (2001), and
Nguyen et al. (2006) demonstrated that a variation of the yield
stress of more than 1 order of magnitude can be obtained,
depending on the way it is measured. This cannot be attributed
to different resolution powers of different measurement
techniques, but hinges on more fundamental complexities
resulting from the physical processes responsible for the flow
of yield stress materials.

2. Theoretical considerations about the existence of a yield stress

Can theory and simulations shed light on the debate regard-
ing the existence of a true yield stress in amorphous materials?
This is a difficult question, which cannot have a simple generic
answer, as it amounts to asking first whether genuine amor-
phous solid states exist, and second whether such states can
support a finite shear stress without flowing over arbitrarily
long time scales. Moreover, as detailed earlier, different
materials exhibit solid properties for distinct fundamental
reasons under various experimental conditions and due to
various particle interactions. Let us disentangle all these issues.
Clearly, the existence of a “real” yield stress in materials

undergoing a glass transition is at least as ambiguous as that of
a genuine fluid-to-glass phase transition, which remains an
open fundamental question. There exist theoretical approaches
and simple models, which describe the glassy phase of matter
as a genuine thermodynamic singularity accompanied by a
diverging viscosity. However, there are competing theoretical
perspectives based on the opposite idea that the glass region is
accessed by a dynamic crossover, and where the equilibrium
relaxation time scale does not truly diverge (Berthier and
Biroli, 2011). Therefore, the existence of glassy phases with
truly infinite viscosity is not settled theoretically, or, for that
matter, experimentally.
Of course, this fundamental question is not relevant in

practice, as glassy phases are experimentally produced by
going through a dynamic crossover in a nonequilibrium
manner, as explained in Sec. II.B.1. As a consequence, in
the vicinity of the experimental glass transition, flow curves
might display an apparent yield stress value when measured
over a given window of shear rates, even though the material
might eventually flow atmuch longer time scales. Deeper in the
glassy region, when the relaxation time has become larger than
any relevant experimental time scale, the distinction between a
slowly flowing fluid and a kinetically arrested material is
essentially irrelevant, and the question of the existence of a
genuine glassy phase may appear rather academic.

In glassy materials, a system prepared in the glass region
slowly ages with time because thermal fluctuations allow for a
slow exploration of its complex free-energy landscape
(Berthier and Biroli, 2011). Importantly, this also implies
that the rheological properties of glasses might depend on the
time scale used to perform the measurements. For instance, the
yield stress of the system has been observed to increase
logarithmically with the preparation time in model systems
(Varnik, Bocquet, and Barrat, 2004). Additionally, the aging
behavior observed in glasses at rest might be affected in a
nontrivial manner by an imposed shear flow, possibly result-
ing in a steady-state situation where aging is prevented by the
external shear flow, a situation coined “shear rejuvenation”
(Cloitre, Borrega, and Leibler, 2000; Bonn, Tanase et al.,
2002; Viasnoff and Lequeux, 2002; Ianni et al., 2007). The
roles played by the preparation protocol and by the aging
dynamics are similarly crucial for colloidal gels that might be
formed through nonequilibrium processes, such as kinetically
arrested phase separation. In that case, it is unclear how such a
nonequibrium competition is affected by an externally
imposed shear stress, which could for instance either “mix”
the material or break the bicontinuous structure and accelerate
the phase separation.
Assuming that genuine amorphous phases exist (where for

instance ergodicity is truly broken and the Newtonian vis-
cosity is infinite), is it necessarily obvious that such phases
should display a finite yield stress? To answer this question
one should ask whether there exists a physical dynamical
process allowing the system to relax and flow on a finite time
scale after a finite shear stress has been imposed. This problem
was addressed by Sausset, Biroli, and Kurchan (2010). Using
a simple nucleation-type argument, a stress-dependent free-
energy barrier for relaxation was constructed, which could
then be crossed using thermal fluctuations. By connecting the
constructed activation time scale to the imposed stress, a
limiting flow curve σð_γÞ was obtained, which in three spatial
dimensions is of the form

_γ ¼ σ

Gτ0
exp

�
−c

�
σ0
σ

�
4
�
; ð6Þ

where G is the elastic shear modulus, c is a constant, τ0 is a
characteristic relaxation time, and σ0 is a temperature-
dependent stress scale. Equation (6) suggests that the shear
rate should actually be finite at any imposed shear stress even
in the solid phase. This result is not inconsistent with the
existence of measured flow curves with an apparent yield
stress, as it predicts that the shear stress decreases logarithmi-
cally (very) slowly with the shear rate. It might therefore be
difficult to detect such behavior in an experiment and to
discriminate it, for instance, from a Herschel-Bulkley func-
tional form with a finite yield stress (where the yield stress
value is approached algebraically with decreasing _γ).
Interestingly, the result is not specific to amorphous materials,
but applies equally to ordered systems such as crystalline
materials. This discussion shows that despite the translational
symmetry breaking observed during the formation of the
crystal, which contrasts with the absence of such a symmetry
breaking in amorphous solids, a yield stress is conceptually
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not better defined in ordered systems. Therefore, the absence
of a real yield stress is not due to the “messy” nature of soft
amorphous materials, but has a more profound origin.
The reasoning leading to Eq. (6) and the conclusion

that a finite yield stress cannot exist even in dynamically
arrested phases rely heavily on a barrier-crossing argument,
and therefore on the presence of thermal fluctuations.
Therefore, the situation might be different in non-Brownian
suspensions undergoing a jamming transition at zero temper-
ature. For soft jammed particle systems such as foams and
large-droplet emulsions, the transition to the jammed phase is
not a dynamic crossover and the “solidity” is thus not
destroyed by (nonexisting) thermal fluctuations. In this case,
there is a priori no deep theoretical argument against the
existence of a finite yield stress, so that the flow curves shown
in Fig. 3(b) might be true examples of genuine yield stress
materials. Of course, as mentioned several times, these
experimental results do not seem to differ dramatically from
measurements performed in thermal materials, which suggests
that the experimental debate regarding the existence of a yield
stress presumably revolves around practical issues, with little
connection to the present discussion putting forward more
fundamental arguments.

D. Thixotropy in yield stress fluids

Most yield stress fluids have an underlying microstructure
that confers a macroscopic elasticity to the system. This
microscopic structure may be (partly) destroyed by the flow,
causing a reversible decrease of the viscosity with time, in
which case the system is said to be thixotropic (Mewis and
Wagner, 2009). The yield stress will be different following
flow application, with a value that may be dependent on the
rest time prior to shearing, during which the structure may also
reform. It is therefore useful in practical terms to distinguish
between thixotropic and simple (nonthixotropic) yield stress
fluids as follows:

• Simple yield stress fluids: the shear stress (and hence
the viscosity) depends only on the imposed shear rate.
Examples include nonadhesive emulsions, foams,
and Carbopol microgels (Bertola et al., 2003; Bécu,
Manneville, and Colin, 2006; Møller et al., 2009;
Ovarlez, Cohen-Addad et al., 2013).

• Thixotropic yield stress fluids: both the yield stress and
the viscosity depend on the shear history of the sample.
Examples include particle and polymer gels (Møller
et al., 2008), attractive glasses (Møller et al., 2009),
“soft” colloidal glasses (Bonn, Coussot et al., 2002),
adhesive emulsions (Ragouilliaux et al., 2007), non-
Brownian gels (Kurokawa et al., 2015), pastes (Huang
et al., 2005), and hard-sphere colloidal glasses (Møller,
Fall, and Bonn, 2009).

The distinction is straightforward, at least in principle: one
can measure the flow curve by using up and down stress
ramps, for instance, and check for reproducibility (Fig. 6). In
Fig. 6(b), we show that if the material is thixotropic, in general
the flow will have significantly “liquified” the material at high
stresses, and the branch obtained upon decreasing the stress
is significantly below the one obtained while increasing
the stress. Hysteresis is mostly negligible for simple yield

stress fluids; see Fig. 6(a). The response of a thixotropic yield
stress fluid will depend on the rate at which the stress is
ramped up and down, and the rest time in between subsequent
sweeps.
Figure 7 shows a direct qualitative observation of the effect

of stress-dependent structural organization in a colloidal gel.
At rest [Fig. 7(a)], the gel exhibits a percolated structure and
exhibits a yield stress of about 5 Pa. Just after flow [Fig. 7(b)],
the gel has broken up into individual flocs and there is no
measurable yield stress. Detailed images of the shear-induced
breakup of two-dimensional colloidal gels at interfaces for
different values of the shear rate and strain were shown by
Masschaele, Fransaer, and Vermant (2011), who quantified
the effect of surface coverage and deformation on the
morphology (i.e., transient networks or individual deformed
aggregates); the undeformed structures in these experiments
undoubtedly exhibit a yield stress, but direct mechanical
measurements are not available.
The distinction between the two main families of simple

yield stress fluids and thixotropic yield stress fluids is at
present mostly driven by empirical considerations. It would be
interesting to determine if it can also be rationalized at a more
fundamental level. Experimentally, it would be useful to
develop model systems allowing both types of behaviors to
be observed and controlled, for instance by devising materials

FIG. 6. (a) The behavior of 0.1% wt Carbopol microgel under
increasing and decreasing shear stresses shows that this material
is nonthixotropic (filled circles, up; open circles, down). (b) Thix-
otropy of a 10% wt bentonite solution under an increasing and
then decreasing stress ramp. From Møller et al., 2009.

FIG. 7. (a) A colloidal gel at rest, with a percolated structure and
a yield stress of 5 Pa, and (b) just after flow, with individual flocs
and no measurable yield stress. The gel is made up of 1.3 μm
fluorescent PMMA particles and 3 × 107 Mw polystyrene in a
mixture of decalin and cyclohexyl bromide. From Bonn and
Denn, 2009.
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that are only weakly thixotropic and where simple yield
stress behavior can be continuously recovered in some well-
controlled limit.

E. Theoretical descriptions of yield stress materials

1. Why a theory of yield stress solids is difficult

While properly defining and measuring a yield stress is a
debated issue from an experimental point of view, as empha-
sized throughout this review, in theoretical work one usually
identifies the yield stress as the shear stress measured in
steady-state shear flow in the limit where the deformation rate
goes to zero:

σy ¼ lim
_γ→0

σð_γÞ: ð7Þ

Thus, the challenge for theoreticians does not lie in the
practical definition of the yield stress or its best quantitative
determination, but in the conceptual difficulty to describe the
nonlinear mechanical properties of disordered complex solids.
An additional difficulty can be appreciated by comparing

the situation of disordered materials to that of crystalline
solids. Crystals are formed through a phase transition across
which translational invariance is broken. Because the broken
symmetry is easily identified, it is not difficult to recognize
the associated defects (such as dislocations) directly from
the structure of an imperfect crystalline system. It is well
established that nonlinear flow and mechanical deformation in
crystalline materials are mostly driven by these defects, so that
an understanding of the flow defects of crystals is indeed the
key to understanding their rheology. So, we are led to ask what
the “defects” are in an amorphous material that is formed
without breaking any obvious symmetry. Are there at least
equivalent localized structures allowing us to efficiently
describe flow and mechanical deformation in amorphous
solids? These are two long-standing questions in the area
of amorphous material rheology, which have received some
constructive answers in the last decades, mostly from numeri-
cal and experimental studies (Barrat and Lemaitre, 2011).
It has been demonstrated in many different studies that flow

in amorphous materials occurs at the microscopic scale in very
localized “zones,” sometimes identified as “shear transforma-
tion zones” (STZ) (Falk and Langer, 1998). These zones are
best observed in studies of amorphous systems which are
sheared so slowly that individual events can be resolved in
space and time, such as computer simulations in quasistatic
shear conditions (Maloney and Lemaitre, 2006) or confocal
microscopy experiments on slowly deformed colloidal glassy
systems (Schall, Weitz, and Spaepen, 2007). It has been
observed that flow occurs mostly near zones comprising a
small number of particles (say, 5 to 10) undergoing the largest
irreversible rearrangements. However, because the material is
globally an elastic solid, these local plastic events additionally
induce a long-range redistribution of the stress field in their
surroundings (Picard et al., 2004), which, in turn, can couple
to a different zone, or trigger further relaxation elsewhere in
the system. An example of such an event detected in the
numerical simulation of a slowly sheared glass model
(Tanguy, Leonforte, and Barrat, 2006) is shown in Fig. 8.
Notice however that both computational studies and colloidal

experiments are performed on disordered systems that are
prepared in physical conditions that are vastly different from
the ones relevant for molecular and polymeric glasses (i.e.
“hard” glasses), for which these ideas remain to be exper-
imentally validated.

2. Theoretical approaches

The previous section suggests that theory still has trouble
describing the transition between a fluid and an amorphous
solid (glass, gel, and jammed states), and that describing the
rheology of these materials requires in addition a description
of a nonlinear response to flow, which is typically accom-
panied by strong spatial fluctuations and localized flow
defects that may induce long-range correlations, intermittent
relaxations, and even catastrophic responses with complex
time dependences. It should therefore come as no surprise
that no complete, well-accepted, first-principle theoretical
approach exists that can account for all aspects of the rheology
of yield stress materials. Instead, several layers of (potentially
complementary) theoretical descriptions are found in the
literature. In the following, we distinguish two main types
of theoretical approaches.

FIG. 8. Changes in the local shear stresses (as indicated by the
color coding) during a localized plastic event (top); the color
coding gives the amplitude of the stress changes, and associated
displacement field (bottom) observed in the numerical simulation
of a quasistatically sheared model of atomic glass. Adapted from
Tanguy, Leonforte, and Barrat, 2006.
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a. Mode-coupling theories and trap models

In the first category of theoretical models, the focus is
primarily on a detailed description of the rheological conse-
quences of the existence of a fluid-to-amorphous solid phase
transition. In particular, numerous theoretical approaches to
the description of the glass transition in dense fluids and
colloidal systems have now been extended to account for the
mechanical properties in the vicinity of the glass transition
(Berthier and Biroli, 2011), such as for instance mode-
coupling theories (Götze, 2008) and Bouchaud’s trap model
(Bouchaud, 1992). Even in this restricted context, these
approaches differ widely.
On the one hand, mode-coupling theories were developed

as truly microscopic or “first-principle” approaches to under-
stand the dynamics of simple liquids near a glass transition
(Bengtzelius, Götze, and Sjolander, 1984; Götze, 2008).
A large amount of work has been performed to develop
tractable equations of motion that can attack complex flow
histories while retaining aspects of the driven dynamics of the
microscopic degrees of freedom.
On the other hand, trap models correspond to more

phenomenological descriptions of the glass phenomenon
and have attracted a lot of attention, in particular, in the
context of aging phenomena inside glassy phases. The
rheological trap model is called the “soft glassy rheology”
(SGR) model and has been studied extensively (Sollich et al.,
1997; Sollich, 1998), both in steady-state conditions, in the
context of rheological aging, and in even more complicated
time-dependent situations, with interesting connections to the
physics of thixotropic materials (Fielding, Sollich, and Cates,
2000). By introducing spatial dependences, the SGR model
has also been studied to give insight into spatially inhomo-
geneous flows (Fielding, Cates, and Sollich, 2009; Moorcroft,
Cates, and Fielding, 2011; Moorcroft and Fielding, 2013).

b. Shear transformation zones and elastoplastic models

A second family of theoretical models actually postulates
from the start that a solid amorphous state exists, which is
characterized by a finite yield stress. These models are then
able to explore in more detail how such a solid system might
flow under an applied shear stress larger than the yield stress.
The starting point for these models is the observation that

flow occurs in a spatially inhomogeneous manner, and occurs
mostly at localized shear transformation zones as illustrated in
Fig. 8. This empirically well-established observation made in
different systems suggests a theoretical pathway to model the
mechanical properties of yield stress amorphous solids.
Awell-studied model constructed in this manner is the shear

transformation zone model, pioneered by Falk and Langer
(1998, 2011). Building upon their numerical observations,
they devised a set of minimal equations of motion for the
dynamic evolution of a sparse population of shear trans-
formation zones. In later refinements and theoretical refor-
mulations of the model, spatiotemporal aspects were
introduced in the original mean-field version of the model,
allowing it to attack a large variety of physical situations,
from simple and time-dependent flows to shear-banding
phenomena and fractures in amorphous materials (Manning,
Langer, and Carlson, 2007; Manning et al., 2009). The shear

transformation zone model has also been used to understand
the thermodynamic properties of sheared amorphous solids
(Langer, 2004; Bouchbinder and Langer, 2009a, 2009b,
2009c), and has been generalized to also include the effects
of thermal fluctuations (Falk, Langer, and Pechenik, 2004;
Langer and Manning, 2007). The model continues to be
actively developed to more complex situations; see, e.g.,
Rycroft and Bouchbinder (2012) and Hinkle and Falk (2016).
An alternative modeling effort gaining increasing attention

builds on the observation of localized shear transformation
zones to construct “mesoscopic” elastoplastic descriptions of
the rheology of amorphous materials (Baret, Vandembroucq,
and Roux, 2002; Picard et al., 2002, 2005; Bocquet, Colin,
and Ajdari, 2009; Cheddadi et al., 2011; Rodney, Tanguy, and
Vandembroucq, 2011). These models are coarse-grained
descriptions in the sense that no attempt is made to describe
themicroscopic origins of the yield stress. Instead, they assume
that a yield stress exists and directly explore the consequences
of deforming a solid material. The clear advantage of such
models is that they open up the possibility to explore large-scale
consequences of the dynamics of shear transformation zones.
For instance, numerical simulations have revealed that elastic
deformation in the vicinity of a local rearrangement induces
long-range spatial correlations, which may induce correlations
between plastic events (Vandembroucq and Roux, 2011;
Martens, Bocquet, and Barrat, 2012). These correlations have
been observed to lead to system-spanning avalanches in
quasistatic deformations that are sometimes also described
as precursors for the formation of permanent shear bands or
strong flow localization (Falk, Langer, and Pechenik, 2004;
Maloney and Lemaitre, 2006; Shi et al., 2007; Barrat and
Lemaitre, 2011; Falk and Langer, 2011). The obvious draw-
back is that no information can be gained about the dependence
of the yield stress on external control parameters, but these
models can more efficiently explore the consequences of
nonlinear flow curves, and might be able to describe in a
relevant manner more complex situations such as shear bands,
kinetic heterogeneties under flow, fractures, time-dependent
phenomena, or flow in confined geometries, as discussed in
more detail in Sec. IV.

3. Theoretical flow curves

In the preceding section, we provided two broad classes of
methods to describe the fluid-amorphous solid transition. In
the following we ask how we can quantitatively describe and
compare their outcomes. We consider mode-coupling and soft
glassy rheology-type “trap models” separately, and therefore
consider three families of theoretical paradigms to analyze
steady-state flow curves in yield stress materials. These
approaches go beyond (or in some cases justify) the popular
Herschel-Bulkley model described in Sec. II.A, which pro-
vides an efficient fitting model but is essentially empirical.
Note that flow curves in steady-state simple shear flows

only represent one of the many aspects of the rheology of yield
stress materials, and some models also make detailed pre-
dictions for, e.g., time-dependent flows or more complex
geometries. Reviewing model predictions for all these phe-
nomena would however require a review article of its own
(Voigtmann, 2014).
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a. Soft glassy rheology

The SGR model is a direct extension of Bouchaud’s trap
model (Bouchaud, 1992) that incorporates mechanical
degrees of freedom in a minimal manner to describe the
interplay between glassy dynamics and shear deformation
(Sollich et al., 1997). The original trap model was mainly
devised to study the physics of the glass transition and the
aging dynamics in systems quenched suddenly into a glassy
phase (Bouchaud, 1992; Bouchaud and Dean, 1995). The
SGR model provides an evolution equation for the probability
distribution of the system in terms of energy and stress
variables. In the presence of a constant shear stress, steady-
state flow curves can be predicted, with a behavior that is
governed by the only control parameter of the model, namely,
the “temperature” T. Whereas the initial trap model for aging
glasses explicitly refers to T as the temperature of a thermal
bath coupled to the system, the SGR model differs somewhat
on the precise interpretation of the temperature and uses the
words “effective temperature” in order to include athermal
materials such as foams or emulsions in the same framework.
The temperature T is then thought as quantifying the strength
of “mechanical noise” triggered by the flow itself. More
detailed discussions of effective temperatures in driven mate-
rials can be found in Cugliandolo, Kurchan, and Peliti (1997),
Berthier, Barrat, and Kurchan (2000), Bouchbinder and
Langer (2009a, 2009b, 2009c), and Sollich and Cates
(2012). Recent work critically revisited the properties of
the mechanical noise triggered by shear transformation zones
(Nicolas, Martens, and Barrat, 2014), offering, in particular, a
detailed comparison between the SGR model and an alter-
native mean-field modeling proposed by Hébraud and
Lequeux (1998), where a Langevin dynamics is studied in
which noise is directly related to the amount of plastic
deformation generated in the material.
Despite its simplicity, the SGR model offers a rich variety

of possible flow curves, depending on the considered temper-
ature regime (Sollich, 1998). In the absence of a flow, the
system undergoes a glass transition at some critical temper-
ature Tc, below which ergodicity breaking occurs. With an
imposed shear flow, three temperature regimes are observed as
follows:

• First, when T > 2Tc, the system exhibits a Newtonian
flow, as expected for a simple fluid state.

• A second, somewhat unexpected regime occurs when
Tc < T < 2Tc, where the system displays a pure power-
law rheology of the form σ ≈ _γn, with a “shear-thinning”
exponent 0 < n ¼ T=Tc − 1 < 1. This regime is pecu-
liar as it corresponds to a solid system with an infinite
viscosity at rest when _γ → 0, but with no yield stress.
When the shear-thinning exponent n becomes small, it
might be difficult to distinguish this behavior from a
Herschel-Bulkley functional form. A peculiarity of this
regime is the infinite shear viscosity for temperatures that
are strictly above the glass transition temperature where
the system actually reaches thermal equilibrium. See
Lequeux and Ajdari (2001) for a detailed discussion of
this curious issue.

• In the third regime, for temperatures below the critical
temperature T < Tc, the rheology can be described by

the Herschel-Bulkley model σ ≈ σyðTÞ þ K _γn and the
shear-thinning exponent obeys 0 < n ¼ 1 − T=Tc < 1.
A temperature-dependent yield stress σyðTÞ emerges
continuously at the glass temperature, with a linear onset
σyðT ≲ TcÞ ≈ 1 − T=Tc and a smooth approach to a
finite limit at zero temperature, σyðT → 0Þ > 0.

Overall, within the SGR model, the behavior of the flow
curves is smooth at the transition temperature T ¼ Tc, where
the system has no yield stress but the shear-thinning exponent
vanishes—a situation that could easily be confused exper-
imentally with a finite yield stress.
Moreover, since all the characteristic exponents of the

model are temperature-dependent quantities, they carry no
deep physical meaning but simply reflect the complex inter-
play between the broad distribution of relaxation times in the
equilibrium model and the external mechanical forcing in the
presence of thermal fluctuations. This remark implies that no
particular scaling form is predicted to describe the flow curves
derived within the SGR model in any of the temperature
regimes, or even in the close vicinity of the critical temper-
atures of the model.

b. Mode-coupling theories

The mode-coupling theory of the glass transition is now
understood as a building block of a larger theoretical con-
struction to understand the physics of glassy materials called
random first-order transition theory, which aims at describing
dynamic and thermodynamic aspects of the statistical
mechanics of materials undergoing a fluid-to-glass transition
(Lubchenko and Wolynes, 2007; Berthier and Biroli, 2011).
The mode-coupling approach itself is not a unique theory,

and several related lines of research coexist, which differ in
their microscopic starting point but often provide similar
predictions. A few of these approaches were extended to also
include mechanical degrees of freedom, much in the spirit of
the SGR model. There are at present two main starting points
for solving the dynamics in the amorphous solid state.

• A first approach (Cugliandolo et al., 1997; Berthier,
Barrat, and Kurchan, 2000) consists of exactly solving
the driven dynamics of simple, but rather abstract, glass
models that are known to exhibit an equilibrium dy-
namics that is in the same universality class as other
mode-coupling approaches, such as, for instance,
the p-spin glass models or other disordered models
(Kirkpatrick and Thirumalai, 1987).

• A second line of work starts from microscopic equations
of motion for particles in a dense fluid, and develops
mode-coupling approximations to derive closed, but
approximate, dynamical equations for microscopic cor-
relation functions based on density fluctuations (Fuchs
and Cates, 2002; Miyazaki and Reichman, 2002; Brader
et al., 2007; Fuchs and Cates, 2009).

Both approaches have been extended to include external
driving forces and shear flows in order to study the interplay
between glassy dynamics and rheology. In mode-coupling
theories, the equilibrium dynamics (without shear flow) is
characterized by a critical temperature Tc where the (alpha)
relaxation time ταðTÞ diverges as a power law. Near the glass
transition, time-correlation functions develop a two-step
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decay with an intermediate plateau reflecting the transient
caging of the particles in the dense fluid. In rheological terms,
this simply signals that very viscous fluids near a glass
transition are viscoelastic and behave as solids at intermediate
time scales and flow at long times, associated with complex
frequency spectra for the linear rheological response. The
approach to, and departure from, this plateau regime involve
nontrivial power laws for time-correlation functions, which
are characteristic signatures of mode-coupling theories
(Götze, 2008). A known limitation of the theory is that the
algebraic divergence that it predicts for the equilibrium
relaxation time is not observed in experiments, where it is
replaced by a smooth crossover. The current view is that
mode-coupling theories describe the initial regime of slow
dynamics in glassy materials well, but fail closer to the glass
transition. Interestingly, this “mode-coupling” regime coin-
cides with the physically relevant one for colloidal systems
(Götze, 2008; Siebenbürger, Fuchs, and Ballauff, 2012),
which justifies why the mode-coupling approach is included
in this soft-matter review article.
In both mode-coupling approaches, the glass transition is

destroyed by the imposed shear flow, and the microscopic
relaxation time scale is never infinite in the presence of a finite
driving force, but rather becomes dependent on the imposed
shear rate _γ. However, the resulting flow curves differ some-
what in their details, as we discuss in the following.
In the first class of models, namely, schematic mean-field

models, the rheology exhibits Newtonian behavior at temper-
atures above Tc at very low shear rates, but the dynamics
become strongly dependent on _γ when the “dressed” Péclet
number Pe≡ τα _γ becomes larger than unity. Since the shear
flow accelerates the microscopic structural relaxation, the
viscosity decreases as _γ increases, a shear-thinning behavior.
As a result, one obtains the following scaling form for the flow
curves:

ηð_γ; TÞ ¼ η0ðTÞ
½1þ _γ=_γ0ðTÞ�1−n

; ð8Þ

where η0ðTÞ ∼ ταðTÞ is the Newtonian viscosity, _γ0ðTÞ is a
critical shear rate separating Newtonian from shear-thinning
regimes, and n is the usual shear-thinning exponent, whose
value is n ¼ 1=3 in the specific family of models studied by
Berthier, Barrat, and Kurchan (2000), but may be different in
different models (Yamamoto and Onuki, 1997).
At the glass transition, a pure power-law rheology is

thus obtained, σð_γ; T ¼ TcÞ ∼ _γn, whereas a temperature-
dependent power-law rheology is obtained in the glass phase
σð_γ; T < TcÞ ∼ _γnðTÞ with a shear-thinning exponent decreas-
ing from nðT ¼ TcÞ ¼ 1=3 to nðT → 0Þ ¼ 0, but with no
finite yield stress. Therefore, the rheology of the glass phase is
very similar to the intermediate temperature regime of the
SGR model, with the difference being that here the viscosity
divergence coincides with the equilibrium glass transition of
the model.
The absence of a yield stress is natural in the context of

mean-field approaches whose aging dynamics in the glass
phase is well understood (Cugliandolo and Kurchan, 1993). In
the absence of external flow, the system slowly relaxes along
the flat or “marginal” regions of its free-energy landscape, but

does not penetrate deeper free-energy minima. This is a
general feature of mean-field glassy dynamics (Kurchan
and Laloux, 1996). The power-law rheology found in the
glass phase directly results from this marginal dynamics,
and non-mean-field effects are believed to manifest them-
selves by the emergence of a finite yield stress, as explored by
Berthier (2003).
Using liquid-state theory to derive mode-coupling equa-

tions for glassy fluids under flow results in a set of dynamical
equations that reduce to the usual mode-coupling phenom-
enology described for the equilibrium dynamics. However, the
driven dynamics under shear flow provides a set of predictions
that differ somewhat from the schematic mean-field models,
for reasons that are more technical than physical and presum-
ably stem from the application of different types of “mean-
field” approximations. These mode-coupling equations have
been derived in a number of ways that are technically quite
involved, but all derivations essentially provide similar pre-
dictions for the flow curves (Fuchs and Cates, 2002, 2009;
Miyazaki and Reichman, 2002). The predicted flow curves in
the vicinity of the glass transition closely reflect the complexity
of the time regimes observed for time-correlation functions, as
illustrated in Fig. 9.
Specifically, the flow curves predicted by this second class

of models in the fluid region exhibit a Newtonian regime at
sufficiently small _γ followed by a strong shear-thinning
regime for large Péclet numbers Pe ¼ _γτα, as found in the
mean-field and SGR models. The flow curve at the critical
temperature T ¼ Tc obeys a Herschel-Bulkley functional
form with a finite yield stress σyðT ¼ TcÞ > 0 and a shear-
thinning exponent that takes a nonuniversal value [specific
approximations give n ≈ 0.15 (Fuchs and Cates, 2003)]. The
power-law approach to a finite yield stress closely mimics
the power-law approach to a finite plateau found for time-
correlation functions.

FIG. 9. Flow curves predicted for a range of temperatures T
across the mode-coupling critical temperature Tc; ϵ ¼ Tc − T is
the distance to the critical temperature, and the shear rate is
rescaled by a microscopic time unit τ to form a Péclet number
Pe0 ¼ _γτ. The inset shows the discontinuous emergence of the
yield stress at Tc. From Fuchs and Cates, 2003.
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Just below the glass transition, the yield stress increases
algebraically with decreasing temperature σyðT ≲ TcÞ ≈
σyðTcÞ þ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tc − T

p
, which again mimics the temperature

behavior of the plateau in time-correlation functions (indeed
the two are intimately connected within the theory). Note,
however, that the yield stress emerges discontinuously at the
critical temperature Tc, a prediction that seems unique to this
approach. However, this abrupt emergence of a yield stress
cannot exist in experiments, where a true mode-coupling
transition is not observed. In practice it is replaced by a
crossover between flow curves where the Newtonian regime
of the flowing liquid slowly shifts outside the experimental
time window, so that by construction the “first” measurable
value of the yield stress must indeed be a finite number
(Varnik and Henrich, 2006; Wittmer et al., 2013). Therefore,
the question of the (dis)continuous nature of the emergence of
a yield stress at the glass transition is ill posed. Of course,
when analyzing experimental and numerical flow curves
(which do not have a real transition) within the framework
of the mode-coupling approach (which has a real transition),
the discontinuous emergence of a yield stress is needed
(Siebenbürger, Fuchs, and Ballauff, 2012; Voigtmann, 2011).
In the glass regime, the flow curves are again well described

by a Herschel-Bulkley functional form. The limit of low
temperatures is, however, problematic within the theory as it
makes the unphysical prediction that the yield stress even-
tually vanishes in the T → 0 limit (Ikeda and Berthier, 2013).
This implies that the theory is actually not well suited to
describe the yield stress of glassy systems deep in the glass
phase, which is perhaps not surprising as its starting point is
actually an equation of motion for the fluid.
It should thus be kept in mind that mode-coupling theories

are to be used to describe the interplay of glassy dynamics and
shear flow in the immediate vicinity of kinetic arrest, over a
modest window of shear rates. All the detailed predictions of
the theory have been tested in great detail in both numerical
and experimental studies (Brader et al., 2010; Siebenbürger,
Fuchs, and Ballauff, 2012; Amann et al., 2013; Ballauff et al.,
2013; Amann et al., 2015). We emphasize that despite the
presence of a genuine critical temperature in the mode-
coupling approach and the existence of power laws controlling
the divergence of the viscosity and the discontinuous emer-
gence of a finite yield stress, no specific “critical data
collapse” of the flow curves is obtained within the theory.
The theoretical limitations of mode-coupling approaches

are fully understood in the broader context of random first-
order transition theory, where the structure and dynamics of
the glass phase are treated analytically using a completely
different method based on an approximate treatment involving
replica calculations (Mézard, Parisi, and Virasoro, 1988) to
describe the complex free-energy landscape characterizing
glassy materials (Yoshino and Mézard, 2010). Recent progress
in this direction has been substantial (Parisi and Zamponi,
2010; Charbonneau, 2014), as the nature of the equilibrium
glass transition has been analytically elucidated for particle
systems in the (abstract) limit of a large number of spatial
dimensions. This approach opens new ways to analytically
treat the nature of the glass phase, of the dynamics of the
viscous liquid near the glass transition, and potentially of its

rheological properties. Currently, the theory is being developed
to treat mechanical properties, such as the shear modulus
(Yoshino and Zamponi, 2014). Recently, stress-strain curves in
quasistatic deformation protocols have been obtained analyti-
cally (Rainone et al., 2015), thus pushing the theory closer to
being able to describe the yielding transition in glassy solids
(Urbani and Zamponi, 2017). Reconciling these thermody-
namic replica calculations to dynamic equations derivedwithin
mode-coupling theories remains an open issue (Szamel, 2010).
Another promising route is the possibility to perform a
systematic treatment of non-mean-field effects, thus paving
the way for a generalization of mode-coupling approaches that
do not suffer from the shortcomings described previously.

c. Jamming rheology

In Sec. II.B.2, we provided a qualitative description of the
flow curves obtained from simple computational models
undergoing an ideal jamming transition, in connection with
the experimental results displayed in Fig. 3(b) for emulsions
with sufficiently large (i.e., non-Brownian) droplets. In the
vicinity of the jamming transition, these flow curves can
display a number of scaling features that are fully specific to
non-Brownian assemblies of particles. Upon compression
toward ϕJ, the system exhibits a Newtonian viscosity that
diverges algebraically, accompanied by a power-law shear-
thinning behavior. Above ϕJ, a finite yield stress emerges
continuously at the transition, and its increase with packing
fraction is also described by a power law.
We emphasize that the presence of these power-law

behaviors is unique to athermal rheology, and that the situation
differs qualitatively from the behaviors observed in Brownian
systems sheared across their glass transition. There has been
some confusion in the literature about the distinction between
the two types of yield stress rheology. The scaling behavior
proposed for athermal systems has for instance been incor-
rectly applied to Brownian and thermal systems as well.
As mentioned, the distinction is readily made by looking at
adimensional shear rates (Péclet numbers) and stress scales
(Ikeda, Berthier, and Sollich, 2012, 2013, 2016).
The scaling properties of the jamming rheology near

the zero-temperature jamming transition have been fully
elucidated in computer simulations of soft repulsive potentials,
such as harmonic or Hertzian pair potentials; see Eq. (5). These
flow curves have now been characterized numerically in great
detail (Olsson and Teitel, 2007, 2012; Hatano, 2010; Ikeda,
Berthier, and Sollich, 2012;Vagberg,Olsson, andTeitel, 2014).
An approximate scaling form similar to Eq. (8) is

obtained below the jamming transition in the non-Brownian
suspension regime, where the Newtonian viscosity diverges as
η0ðϕÞ ∼ ðϕJ − ϕÞ−m, withm ≈ 1.5–2.5 (Boyer, Guazzelli, and
Pouliquen, 2011; Andreotti, Barrat, and Heussinger, 2012). A
series of recent large-scale numerical studies for nonfrictional
particles report m ≈ 2.55 (Vagberg, Olsson, and Teitel, 2014;
Kawasaki et al., 2015), but note that this power law only holds
extremely close to the jamming density, with strong correc-
tions further away from the critical point, which presumably
explain the large spread in literature values for the exponentm
of the viscosity divergence. Because the Newtonian regime is
reached at very low shear stresses where particles barely
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overlap, the particle softness does not affect the value of m,
which thus remains pertinent to describe the hard-sphere limit.
In the jammed region, the density increase of the yield stress

is well described by a power law σyðϕÞ ∼ ðϕ − ϕJÞΔ, where Δ
is a critical exponent. Because this exponent describes the
solidity of a compressed assembly of soft overlapping particles,
it is not surprising that it is found to depend on the chosen form
of the pair repulsion between the particles. In particular,
simulations show if α is the exponent describing the pair
repulsion VðrÞ in Eq. (5) (with α ¼ 2 for harmonic sphere, and
α ¼ 5=2 for Hertzian potential), then Δ is very close to the
value Δ ¼ α − 1, with small but measurable deviations from
this estimate (for instance Δ ≈ 1.15 for harmonic spheres)
(Olsson and Teitel, 2012). This estimate is reasonable as α − 1

is also the exponent controlling the increase of the pressure in
compressed packings, as predicted by dimensional analysis
(O’Hern et al., 2003). Systematic deviations Δ≳ α − 1 have
now been reported in several numerical studies (Hatano, 2010;
Olsson and Teitel, 2011, 2012; Kawasaki et al., 2015).
Finally, above jamming, the flow curves are well described

by a Herschel-Bulkley model, with a shear-thinning exponent
n ≈ 0.38 which is also independent of the form of the soft
potential (Olsson and Teitel, 2012). Exactly at the jamming
transition, a pure power-law rheology is obtained σ ∼ _γn

0
, with

another nontrivial shear-thinning exponent n0, which depends
on the form of the pair potential and is thus not universal
(Olsson and Teitel, 2012). We emphasize that a precise
determination of the various scaling regimes and the precise
values of all these critical exponents (m, Δ, n, n0) is a difficult
numerical task, which is in addition plagued by strong finite-
size effects (Vagberg et al., 2011; Kawasaki et al., 2015).
These difficulties also suggest that direct comparison to
experimental results should be done with some caution.
An important consequence of these multiple scaling

regimes is that despite the presence of power laws in the
rheology of model assemblies of soft particles, the flow curves
measured over a large domain of densities and shear rates
cannot be rescaled onto master curves, as initially proposed by
Olsson and Teitel (2007). These deviations have been
described with great analytic precision as a form of correction
to scaling in a series of studies (Vagberg et al., 2011; Vagberg,
Olsson, and Teitel, 2014); see Kawasaki et al. (2015) for a
specific illustration of a “failed” data collapse for a fully
athermal assembly of soft particles.
In addition, there is currently a large theoretical activity to

better understand the physical origin of these exponents and to
relate them to more microscopic quantities characterizing the
structure of athermal packings in the vicinity of the jamming
transition (Tighe et al., 2010; Lerner, Düring, and Wyart,
2012; DeGiuli et al., 2014; Yoshino and Zamponi, 2014).
In experiments, these scaling forms have also been used to

analyze flow curves measured in a variety of systems. Using
the exponents defined previously and assuming that power
laws hold for the entire range of explored densities and shear
rates, the flow curves measured for different volume fractions
of a given system can be collapsed onto twomaster curves (one
below and one above jamming) by rescaling both the stress and
the shear rate with appropriate powers of the distance to the
jamming transition ðϕ − ϕJÞ (Nordstrom et al., 2010; Paredes,

Michels, and Bonn, 2013; Dinkgreve et al., 2015), as shown in
Fig. 10. This type of data collapse is empirically useful, as it
organizes the experimental data around the critical density ϕJ,
while using simple, but reasonable functional forms for their
density dependence. This strategy was first employed in
numerical work (Olsson and Teitel, 2007), for which it is
now understood to be only approximately correct.
In all published cases (Nordstrom et al., 2010; Paredes,

Michels, and Bonn, 2013; Dinkgreve et al., 2015), the
rescaling appears to work well; Δ ≈ 2 and the exponent for
the rescaling of the shear rate axis is Γ ≈ 4. The observation
that the rescaling collapses the Herschel-Bulkley flow curves
above jamming then immediately implies that the shear-
thinning exponent is n ¼ Δ=Γ ≈ 1=2. The collapse of the
Newtonian flow regime curves at low shear rates below
jamming implies in turn that the exponent for the divergence
of the viscosity is m ¼ Γ − Δ ≈ 2 (Paredes, Michels, and
Bonn, 2013); see the inset of Fig. 10. This rescaling with very
similar exponents has now been observed for soft polymer
particles (p-NIPAM and Carbopol), emulsions with mobile
and immobile surfactants and foams (Nordstrom et al., 2010;
Paredes, Michels, and Bonn, 2013; Dinkgreve et al., 2015),
suggesting that either these systems have similar interactions,
or that the exponents (Δ, notably) do not sensitively depend on
the interactions, in contrast to theoretical predictions (Tighe
et al., 2010). Another possibility for the difference between
experiments and simulations could be that the simulations
and experiments use quite different regimes to determine the
critical exponents (in general, in the simulations one is much
closer to the jamming transition), so that experimentally
determined values could represent “effective” values.
Moreover, some of the analyzed systems (notably, microgels)
are not fully athermal and should perhaps be described by

FIG. 10. Master curves showing a good collapse of the flow
curves onto two branches, one for samples with ϕ < ϕJ and one
for ϕ > ϕJ, when stress and shear rate are rescaled with the
distance to jamming to a certain power. The lines are supercritical
and subcritical branches representing empirical fits of the master
curve, respectively. The inset shows a fit of the low-shear
viscosity to a power-law divergence. Flow curves were obtained
for emulsions prepared with different volume fractions of the
dispersed phase. From Paredes, Michels, and Bonn, 2013.
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exponents characteristic of the glass transition (if exponents
exist for this situation), which may be different from the
exponents from the thermal jamming transition.
Finally, it is worth mentioning that other scaling analyses

have been proposed that are also based on experimental data,
e.g., for the evolution of the yield stress or the shear modulus
(Mason, Bibette, and Weitz, 1996; Mohan, Bonnecaze, and
Cloitre, 2013; Basu et al., 2014; Scheffold et al., 2014; Kim,
Scheffold, and Mason, 2016). These remain interesting open
questions and we refer to a recent publication (Dinkgreve
et al., 2015) for a compilation of the different jamming
exponents in theory, experiment, and numerics.

III. PHYSICAL INSIGHTS FROM YIELD STRESS
MEASUREMENTS

While the definition of the yield stress from a theoretical
point of view, i.e., Eq. (7), looks very simple, its practical
determination is known to raise challenging experimental
problems. As discussed, aging and time dependences—most
generically, thixotropy—have led to long-standing controver-
sies in the rheology community. Other issues include instru-
ment artifacts or slippage of the material at the walls of the
measuring device. Such problems with the measurement of
yield stress have been reviewed from an engineering point of
view, for example, by Uhlherr et al. (2005), Nguyen et al.
(2006), Møller et al. (2009), Balmforth, Frigaard, and Ovarlez
(2014), and Coussot (2014). Here we try to clarify what
experimentalists call the “yield stress,” what they exactly
measure, and what physical mechanisms they actually probe
in the various classical techniques. We will ignore techniques
that involve complex geometries such as squeeze flows
(Rabideau and Coussot, 2009), penetrometry tests (Boujlel
and Coussot, 2012), or stop flows on inclined planes (de Kee
et al., 1990; Coussot and Boyer, 1995) in order to focus only
on techniques that rely on the drag flow produced by a
rheometer and show how their diversity proves relevant to
address specific fundamental questions pertaining to yield
stress behavior.
In rotational shear rheometry a shear stress σ is imposed

and the corresponding shear rate _γ (or strain γ) is recorded,
or vice versa. Typical geometries used for performing this
type of measurement include concentric cylinders, plate-plate,
and cone-plate geometries (Barnes, Hutton, andWalters, 1989;
Larson, 1999). In the following we first review methods that
involve liquid-to-solid transitions to determine the yield stress
and then those based on solid-to-liquid transitions (see Fig. 11).

A. Experiments probing the liquid-to-solid transition

1. Extrapolating the flow curve in the limit
of vanishing shear rates

The experiment matching the definition of Eq. (7) consists
of measuring the flow curve (σ vs _γ) by applying a steady
shear and progressively ramping down the shear rate to reach
the limit _γ → 0. The material, liquidlike at first, is thus
progressively brought into a solidlike state, ideally through
a series of steady states. The extrapolation of the stress in the
limit of vanishing shear rates points toward a stress value that
is generally referred to as the dynamic yield stress. In practice,

however, this extrapolation can be problematic as it requires
the establishment of a steady shear flow at arbitrarily low
shear rates. An alternative is to fit the flow curve to a
rheological model, such as the Bingham, Herschel-Bulkley,
or Casson models [see Fig. 11(a)] (Nguyen and Boger, 1992).
As noted, the Herschel-Bulkley model is observed to fit the
experimental data properly over several decades in the case of
dense assemblies of soft particles, such as emulsions, micro-
gels, and foams (Ovarlez, Cohen-Addad et al., 2013), and to
provide a reproducible yield stress value. For this model, the
most convincing representation of the flow curve is to plot the
viscous stress, namely, the difference between the stress and
the yield stress σ − σy versus the shear rate _γ, which should
show pure power-law behavior, as reported for instance by
Katgert et al. (2009), Fall, Paredes, and Bonn (2010), Möbius,
Katgert, and van Hecke (2010), Tighe et al. (2010), and
Shaukat, Sharma, and Joshi (2012).
However, this methodology suffers from several important

limitations. First, wall slip can affect the flow at low shear
rates, an issue that will be discussed in more detail in
Sect. III.C. Second, time-dependent phenomena such as
thixotropy cause the shape of the flow curve and therefore
its extrapolation in the limit of vanishing shear rates to depend
on the rate at which the shear rate is swept (Divoux, Grenard,
and Manneville, 2013). For some materials such as various
attractive colloidal gels (Ovarlez, Tocquer et al., 2013), this
may even be a subtle function of the previous flow history.

FIG. 11. Various methods to determine a yield stress exper-
imentally. (a) Extrapolation of the flow curve in the limit of
vanishing shear rates. Experiments performed on a Carbopol
microgel using roughened cone-and-plate fixtures. The black line
is the best Herschel-Bulkley fit. From Dimitriou, Ewoldt, and
McKinley, 2013. (b) Sketch of the stress response to a shear
start-up experiment. The yield stress can be defined as the stress
corresponding to the end of the linear regime, as the stress
maximum, or as the equilibrium stress. From Barnes and Nguyen,
2001. (c) Strain response to step stress experiments for various
stresses ranging from 0.22 to 220 Pa. From Coussot et al., 2006.
(d) Oscillatory stress sweep experiment performed on a 6%wt
carbon black gel at two different sweep rates: 7 (open) and 34
(filled) mPa s−1. Here the yield stress, defined as the intersection
of G0 (dark gray, blue) and G00 (light gray, red), depends on the
sweep rate. From Perge et al., 2014.
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The dynamic yield stress obtained for a time-dependent
material thus depends on the details of the experimental
protocol. Furthermore, from a theoretical viewpoint it is
unclear whether Eq. (7) strictly holds even for simple types
of glassy materials, whereas very little is known for physical
and nonequilibrium gels from computer simulations. Even for
athermal systems characterized by a genuine jamming tran-
sition, extracting the yield stress using extrapolations to
vanishing shear rates requires rheological measurements over
a broad time window.

2. Determining the residual stress after flow cessation

In order to minimize the influence of previous flow history
and thixotropy, some researchers prefer switching off the flow
rather than progressively decreasing the shear rate. In such a
flow cessation experiment, the sample is sheared at a given
shear rate long enough to reach steady state. Then the shear
rate is suddenly set to zero and the initially liquidlike material
turns into a solid while the stress decreases toward a constant
residual or internal stress σr; see Fig. 12. Historically, this
stress value has also been coined a yield stress by Michaels
and Bolger (1962), Tiu and Boger (1974), Nguyen and Boger
(1983), and Magnin and Piau (1990) but it was soon
recognized that this residual stress was always much smaller
than the dynamic yield stress (Keentok, 1982). In fact, the
residual stress decreases for increasing values of the shear rate
applied prior to flow cessation (Osuji, Kim, and Weitz, 2008;
Lidon, Villa, and Manneville, 2016). Therefore σr is not a
material constant but rather gives access to a history-
dependent frozen-in quantity that accounts for the microstruc-
tural anisotropy imprinted to the material by previous shear.
Still, recent years have seen a renewed interest in internal

stresses triggered by various theories for soft glasses and their
predictions of the dynamics upon flow cessation. In dense
assemblies of soft particles, the stress has been shown to relax
through two distinct steps. A rapid relaxation, interpreted as
the ballistic motion of the particles in the framework of a
micromechanical model (Seth et al., 2011), is followed by a
slower relaxation of the elastic contact forces between the
jammed particles (Mohan, Bonnecaze, and Cloitre, 2013) [see
Fig. 12(a)]. Whereas such a slow relaxation due to aging
dynamics is expected for the Brownian particles studied in
these experiments, no such slow relaxation should exist for
fully athermal soft particles, as there is nomechanism to induce
fluctuations that would allow for a slow exploration of the
complex free-energy landscape of the material. Simulations of
the behavior of non-Brownian particles after shear is suddenly
stopped confirm the rapid convergence of the residual stress to
a finite value (Chaudhuri, Berthier, and Bocquet, 2012), with
no slow relaxation involved in that relaxation process.
In hard-sphere colloidal glasses, the stress relaxes as a

power law as predicted by the SGR model (Cates et al., 2004)
and is associated with subdiffusive motions of the particles
(Ballauff et al., 2013) [see Fig. 12(b)]. This is not surprising
because the SGR model was initially devised as a rheological
model to study the interplay of aging dynamics and shear
flow in glassy materials (Sollich, 1998; Fielding, Sollich, and
Cates, 2000). By contrast, the mode-coupling approach
developed by Fuchs and Cates (2009) does not include aging

effects, and so it cannot describe the slow relaxation of the
stress after flow cessation or the subdiffusive particle displace-
ments observed in experiments (Ballauff et al., 2013; Fritschi,
Fuchs, and Voigtmann, 2014) and predicts instead a fast
convergence to an arrested state with a finite residual stress.
Finally, aging laponite clay suspensions display a sigmoidal

stress relaxation upon flow cessation with a characteristic time
that scales inversely with the quench rate (Negi and Osuji,
2010b). The latter behavior contrasts with the simpler relax-
ation reported in dense systems with strong aging and remains
to be interpreted from microscopic and/or theoretical points
of view.

B. Experiments probing the solid-to-liquid transition

1. Analyzing the transient stress response during shear start-up

When an external shear rate _γ is imposed on a soft solid at
time t ¼ 0 and is kept constant thereafter, the stress σðtÞ first

FIG. 12. (a) Stress relaxation upon flow cessation: experiments
with microgels for different preshear stresses (from 60 to 443 Pa).
The internal stress σr, defined by linear extrapolation of the stress
measured over a short time interval (<50 s) after flow cessation,
is larger for smaller preshear stress and becomes quite significant
for preshear stresses approaching the yield stress. From Mohan,
Bonnecaze, and Cloitre, 2013. (b) Evolution of the stress after
flow cessation normalized by the stress prior to flow cessation
(σss) as a function of _γ for a hard-sphere colloidal suspension. The
curves correspond to various imposed shear rates _γ prior to flow
cessation, and different packing fractions. Glass states are shown
in light gray (red), liquid states in dark gray (blue). From Ballauff
et al., 2013.
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increases linearly with the strain γ ¼ _γt which is indicative of
elastic response [see Fig. 11(b)]. It then departs from linearity
at intermediate strains, typically γ ∼ 0.1 for bentonite suspen-
sions (Nagase and Okada, 1986) and 0.2 for microgels
(Divoux, Barentin, and Manneville, 2011a). Although a
characteristic stress associated with departure from linearity
can be inferred from this early-time stress response (Lin and
Brodkey, 1985; Nagase and Okada, 1986), such a yield stress
involves an arbitrary definition of how far from linearity the
system should be. More importantly, this behavior may relate
to local yielding events rather than to global yielding of the
material. Nonetheless, this crossover from linear to nonlinear
behavior is an interesting phenomenon for which experiments
can be compared to theories and simulations perhaps more
easily than for larger strains.
Upon entering the fully nonlinear regime, σðtÞ in general

goes through a maximum before decreasing toward its steady-
state value. Such a stress overshoot is observed in a large
number of yield stress fluids such as foams (Khan, Schnepper,
and Armstrong, 1988), emulsions (Papenhuijzen, 1972;
Batista et al., 2006), microgels (Divoux, Barentin, and
Manneville, 2011a), clays (Nagase and Okada, 1986),
and attractive gels (Lidell and Boger, 1996; Koumakis and
Petekidis, 2011). The maximum value of the stress reached
during shear start-up has been widely used as an estimate of
the yield stress. However, it does not coincide with the
definition of Eq. (7) and it is now referred to as the static
yield stress (Varnik, Bocquet, and Barrat, 2004) in order to
clearly distinguish it from the dynamic yield stress inferred
from flow-curve measurements measured in the flowing
regime. In particular, as they are performed at a finite shear
rate, start-up experiments introduce the additional time scale
1=_γ and the subsequent nonlinear stress response is generally
not a function of γ only but also depends on _γ. Although the
static yield stress is not a material constant, the stress over-
shoot phenomenon still raises important fundamental ques-
tions: Does it have any simple microstructural interpretation?
Can it be predicted from theory? The influence of the various
experimental control parameters on the stress maximum,
reviewed next, might give some clues.
First, if the effect of boundaries and the possibility of wall

slip (see Sec. III.C) are ignored, the stress overshoot mainly
depends on the value of _γ (Nguyen and Boger, 1983).
Experiments performed on stabilized suspensions of silica
particles (Derec et al., 2003), Carbopol microgels (Divoux,
Barentin, and Manneville, 2011a), and attractive gels
(Koumakis and Petekidis, 2011) report a power-law increase
of the stress maximum with external shear, with an exponent ν
in the range of 0.1–0.5. This power-law scaling is captured by
fluidity models (Derec et al., 2003), Stokesian simulations
(West, Melrose, and Ball, 1994), and Brownian dynamics
simulations of particle gels (Whittle and Dickinson, 1997; Park
and Ahn, 2013), although the microscopic parameters con-
trolling the exponent ν are still unclear. Power laws also
contrast with the logarithmic increase reported for bidisperse
Lennard-Jones mixtures for which the increase of the stress
maximum can be interpreted in the framework of the Ree-
Eyring viscosity theory (Varnik, Bocquet, and Barrat, 2004;
Rottler and Robbins, 2005) and appears quite natural in
the context of aging studies of glassy materials, in which

slow aging dynamics very often leads to logarithmic time
dependences.
Second, for a given applied shear rate, the stress maximum

increases with the “sample age,” i.e., the waiting time tw
between the preshear used to reset the fluid memory and
the start-up of the shear. The overshoot eventually disappears
for waiting times shorter than 1=_γ (Derec et al., 2003;
Letwimolnun et al., 2007; Divoux, Barentin, and
Manneville, 2011b). Such a behavior is well captured by
the SGR (Fielding, Sollich, and Cates, 2000) and fluidity
models (Moorcroft, Cates, and Fielding, 2011), although both
models predict a logarithmic increase of the stress maximum
with tw, whereas experimental results rather point to a weak
power-law dependence.
Finally, regarding the local behavior of the fluid during

shear start-up, recent experimental and numerical studies have
shed new light on the nature of the stress maximum. In
Brownian colloidal systems, the stress maximum coincides
with the maximum structural anisotropy (Mohraz and
Solomon, 2005; Koumakis, Laurati et al., 2012) [see
Figs. 13(a) and 13(b)]. For attractive gels, the stress maximum
corresponds to the rupture of the gel network, while for dense
hard-sphere-like systems, individual colloids experience an
(apparent) superdiffusive motion as they are being pushed out
of their cage by shear (Zausch et al., 2008; Koumakis, Laurati
et al., 2012), which can be readily interpreted in terms of a
delayed onset of diffusive behavior. In the case of a jammed
assembly of soft particles, the deformation is almost elastic
and only a few rearrangements that are uniformly spatially
distributed have been reported in foams (Kabla, Scheibert, and
Debrégeas, 2007) [see Figs. 13(c) and 13(d)], while linear

FIG. 13. (a) Normalized off-diagonal component of the second
moment tensor of the dimensionless scattering vector q̂ weighted
by the structure factor hq̂ q̂i, and shear stress σxy vs strain γ during
a shear start-up experiment (_γ ¼ 0.17 s−1) for a polystyrene gel
(ϕ ¼ 10−3). (b) Contour plots of a representative cascade of
scattering patterns collected during a start-up experiment
(_γ ¼ 0.56 s−1) with a t ¼ 0.1, b 1.1, c 2.2, d 3.5, e 6.3, and
f 8.3 s. Maximum anisotropy is observed at t≃ 3.5 s. (a), (b)
From Mohraz and Solomon, 2005. (c) Evolutions of the shear
stress and (d) positions of the T1 events in a foam sheared in a 2D
Couette cell as a function of the applied strain during a shear start-
up experiment. Data from numerical simulations. From Kabla,
Scheibert, and Debrégeas, 2007.
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velocity profiles have been observed in microgels up to the
stress maximum (Divoux, Barentin, and Manneville, 2011b).
These recent local approaches show that shear start-up and
more specifically the stress overshoot phenomenon are power-
ful tools to finely distinguish between various types of yield
stress materials. Theoretical understanding of the full transient
scenario is, however, still far from reach.

2. Creep experiments

In a creep experiment, a constant shear stress σ is applied
from time t ¼ 0 and the strain response γðtÞ is monitored.
Although also a shear start-up experiment, this protocol does
not necessarily fluidize the material which may remain solid,
and the results may be qualitatively distinct from those
discussed in Sec. III.B.1.
For stresses applied above the yield stress, the material

eventually flows, i.e., γðtÞ increases linearly with time,
whereas for stresses lower than the yield stress, the material
behaves as a solid and γðtÞ tends toward a constant.
Equivalently, the shear rate _γðtÞ reaches a nonzero steady-
state value in the former case, while it vanishes in the latter
case. Following the discussion in Sec. III.B.1, the yield stress
measured by this approach should again provide an estimate
of the static yield stress.
This “bifurcation” between a finite steady-state viscosity

and an apparently infinite viscosity in principle provides a
well-defined estimation of the yield stress as the critical stress
separating these two regimes (Coussot et al., 2002a, 2002b,
2006; Cruz et al., 2002; Møller, Mewis, and Bonn, 2006) [see
Fig. 11(c)]. This method is cumbersome, however, as the yield
stress is obtained by dichotomy, and for each experiment the
time for the material to flow increases as the applied shear
stress gets closer to the yield stress (Møller, Fall, and Bonn,
2009). The question of deciding whether a steady state is
reached and whether the system eventually flows or not
becomes even more important in the case of very long
transients and of so-called “delayed yielding,” where no
apparent flow can be detected for long times before the
material finally yields (Uhlherr et al., 2005; Magda et al.,
2009; Gibaud, Frelat, and Manneville, 2010; Chaudhuri and
Horbach, 2013).
Besides the determination of the yield stress, the transient

strain or shear rate responses also provide potentially rich
information on the physical processes at play in soft solids
under constant stress. In particular, a robust feature of creep
responses prior to fluidization is a power-law decrease of the
shear rate (see Fig. 14) that strongly resembles the “Andrade
creep” reported for hard solids (da C. Andrade, 1910), which
has been attributed to collective dislocation dynamics (Miguel
et al., 2002; Csikor et al., 2007; Miguel, Laurson, and Alava,
2008). Power-law creep has been reported for cellulose gels
(Plazek, 1960) and more recently for various amorphous soft
solids such as polycrystalline surfactant hexagonal phases
(Bauer, Oberdisse, and Ramos, 2006), Carbopol microgels
(Divoux, Barentin, and Manneville, 2011a; Lidon, Villa, and
Manneville, 2016), core-shell p-NIPAM colloidal particles
(Siebenbürger, Ballauf, and Voigtmann, 2012), thermorever-
sible protein gels (Brenner et al., 2013), and colloidal glasses
(Sentjabrskaja et al., 2015). Yet, Andrade-like creep remains

mostly unexplored in soft materials such as yield stress fluids.
Local velocimetry suggests that the strain field remains
macroscopically homogeneous during this first regime
(Divoux, Barentin, and Manneville, 2011a; Grenard et al.,
2014). Still, characterizations at finer, ideally microscopic,
scales are needed to unveil the presence of plasticity or
microcracks during the initial loading phase and to make a
clear link between the physical mechanisms at play in the
creep of ordered solids and of disordered soft materials. New
insight can also be gained by adapting recent numerical
models to creep situations (Colombo and Gado, 2014;
Fusco, Albaret, and Tanguy, 2014).
Finally, for stresses above the yield stress, the initial power-

law creep is followed by a gradual acceleration up to an abrupt
fluidization of the material that later reaches a steady state.
The dynamics associated with fluidization are discussed in
Sec. IV.C.2 together with the characteristic time scales
involved in the yielding process. For stresses below the yield
stress, the interplay between creep deformation and aging
leads to long-time strain responses that are more complex
than pure power laws and strongly depend on the sample age,
as reported for laponite clay suspensions (Negi and Osuji,
2010a; Baldewa and Joshi, 2012) and star glassy polymers
(Christopoulou et al., 2009).

3. Large-amplitude oscillatory shear experiments

So far, the yielding transition has been considered only
from the point of view of a steady external shear. Yet, the
solidlike versus liquidlike behavior of a complex material can
also be quantified through oscillatory shear experiments. By
imposing a sinusoidal shear strain of amplitude γ0 and
frequency ω, given by γðtÞ ¼ γ0 sinðωtÞ, and measuring the
corresponding stress response σðtÞ, the storage (G0) and loss
(G00) moduli can be defined from the amplitudes of the stress
response that are, respectively, in phase and out of phase with
γðtÞ at the excitation pulsation ω (Ferry, 1980). The solid-to-
liquid transition of a yield stress material can thus be probed

FIG. 14. Shear rate responses vs time for creep experiments
at different imposed shear stresses in various materials: (a) poly-
crystalline hexagonal columnar phase. From Bauer, Oberdisse,
and Ramos, 2006. (b) Carbopol microgel. From Divoux,
Barentin, and Manneville, 2011a. (c) Core-shell PS-p-NIPAM
particle glass. From Siebenbürger, Ballauf, and Voigtmann, 2012.
(d) Carbon black gel at 8% wt. From Sprakel et al., 2011.
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by progressively increasing the amplitude γ0 of the oscillatory
strain. At low strain amplitudes, the solidlike material is
elastically deformed and the storage modulus G0 remains
roughly constant and much larger than the loss modulus G00.
This corresponds to the linear regime of deformation referred
to as “small-amplitude” oscillatory shear. At larger strain
amplitudes, the material response gets nonlinear. Under such
“large-amplitude” oscillatory shear (LAOS), G0 typically
decreases, then crosses G00 and becomes much smaller than
G00 as the material becomes liquidlike [see Fig. 11(d)].
LAOS experiments allow for a number of different esti-

mations of the yield point. By plotting G0 and G00 as functions
of either the strain amplitude γ0 or the shear stress amplitude
σ0, the stress amplitude σ0y at which the material yields may
be given by the point at whichG0 ¼ G00, which has been called
“characteristic modulus” by Larson (1999) [see Figs. 11(d)
and 15(a)], or by the intersection of power-law fits of themoduli
behaviors well above and well below the yielding point
(Rouyer, Cohen-Addad, and Höhler, 2005). Alternatively,
σ0y can be estimated by plotting σ0 vs γ0 from the intersection
between a linear behavior with slope G0 at low strains and a
power-law fit at high strains (Mason, Bibette, andWeitz, 1996;
Saint-Jalmes and Durian, 1999). These various estimates are
discussed and compared in Dinkgreve et al., 2016.
Clearly, contrary to steady-shear measurements, all LAOS

estimates of the yield stress as σ0y involve the additional time
scale 1=ω and thus do not comply with the definition of
Eq. (7) unless vanishingly small frequencies are considered.
Moreover, as already addressed in several rheology reviews
(Wilhelm, 2002; Hyun et al., 2011), the response to LAOS is
intrinsically nonlinear and needs to be analyzed considering
the full spectrum of strain or stress harmonics rather than
the sole fundamental frequency through G0 and G00 only. The
various estimates of σ0y should depend on both ω and the
harmonic content of the stress or strain response, and there is
no particular reason why they should coincide and correspond
to the dynamic yield stress inferred from steady-state mea-
surements. Finally, in the case of strongly time-dependent
materials, the estimate of σ0y is most likely to depend on the
details of the LAOS ramp protocol, as illustrated in Fig. 11(d).
Wall slip and/or bulk heterogeneous flows may complicate
yielding under oscillatory shear even more (Walls et al., 2003;
Gibaud, Frelat, and Manneville, 2010; Perge et al., 2014;
Gibaud et al., 2016).
Interest in LAOS has grown, leading to a surge in the

number of experimental and theoretical studies over the last
decade. First, LAOS has been used to unveil a striking
difference between attractive and repulsive colloidal glasses.
Whereas the elastic modulus decreases monotonically in
dense hard-sphere-like systems, attractive glasses display a
two-step yielding, which results from the existence of two
distinct microscopic length scales in the system: the adhesion
range (responsible for initiating phase separation) and the cage
size in the dense glassy phase (responsible for the dynamic
arrest) (Pham et al., 2006; Laurati, Egelhaaf, and Petekidis,
2011; Chan and Mohraz, 2012; Koumakis, Brady, and
Petekidis, 2013). Such a two-step scenario has been observed
through strain-step experiments (Koumakis and Petekidis,
2011), but its interpretation still requires full confirmation

from direct local investigations. Of course, this two-step
yielding process immediately leads to the question whether
a yield stress or even two yield stresses should be defined.
Second, physical insights into the microscopic dynamics

under LAOS have been gained by coupling oscillatory shear to
other characterization techniques, such as structural measure-
ments or local tracking of particle motion. The “light scatter-
ing echo” technique has allowed the quantification of the
global amount of irreversible rearrangements (Hébraud et al.,
1997; Petekidis, Vlassopoulos, and Pusey, 2003; Laurati,
Egelhaaf, and Petekidis, 2014). Direct optical imaging of
the microstructure has recently been used to assess the
transition to irreversibility with emphasis on the physical
properties of rearrangements such as their correlation length
(Nagamanasa et al., 2014), the presence of dynamical hetero-
geneities (Knowlton, Pine, and Cipelletti, 2014), and cage
breaking in repulsive versus attractive systems (Hermes and
Clegg, 2013) [see Fig. 15(b)]. Along the same lines, time-
resolved neutron and x-ray scattering now allows one to
follow the evolution of shear-induced anisotropy in colloidal
gels during one single LAOS cycle (Kim et al., 2014; Min
Kim et al., 2014; Rogers et al., 2014). Such measurements
come as a crucial complement to recently proposed nonlinear
analyses of rheological data during one oscillation cycle
(Ewoldt, Hosoi, and McKinley, 2008; Rogers et al., 2011;
Dimitriou, Ewoldt, and McKinley, 2013; Ewoldt, 2013;
Dimitriou and McKinley, 2014) and can be used as an
additional tool to study the yielding behavior and hence the
value of the yield stress.
Third, from a more theoretical point of view, recent

advances in modeling and simulation of LAOS flows have
also led to significant progress in unveiling the physical
importance of caging effects in the yielding of both hard-
sphere glasses (Brader et al., 2010; Koumakis, Brady, and
Petekidis, 2013) and dense assemblies of soft particles
(Mohan et al., 2013), and this situation was analyzed within

FIG. 15. (a) Evolution of the shear moduli of a Pickering
emulsion stabilized by silica colloids during a LAOS strain
amplitude sweep. The volume fraction of the oil is 65%.
(b) Confocal images of the emulsion during shear taken
40 mm into the sample to avoid wall effects and obtained at
different strains during the strain sweep. Scale bars correspond to
20 μm. For γ0 < 0.10, the droplets slide along each other but
remain trapped in the cages formed by their neighbors. For
γ0 ≃ 0.10, the moduli intersect and the droplets can be seen to
move irreversibly, although their displacement over a period is
much less than their diameter. For γ0 > 0.30, G0 and G00 increase
due to jamming, which results in apparent shear thickening, and
the droplets move rapidly during each period, over distances
larger than their own diameter. From Hermes and Clegg, 2013.
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amode-coupling approach (Seyboldt et al., 2016). The idea has
emerged that the yielding transition corresponds to a change in
the dynamics at the microscopic scale between reversible
particle trajectories at small applied stress and a chaotic
dynamics beyond the yielding point (Fiocco, Foffi, and
Sastry, 2013; Regev, Lookman, and Reichhardt, 2013;
Kawasaki and Berthier, 2016). Whereas early numerical work
seemed to predict a continuous phase transition between the
two regimes characterized by power-law divergences (Brader
et al., 2010; Perchikov and Bouchbinder, 2014), more recent
work (Kawasaki and Berthier, 2016) put forward the idea that
the transition is indeed sharp but discontinuous, akin to a
nonequilibrium first-order phase transition. In experiments,
contrasting evidence has been reported on this point (Hermes
and Clegg, 2013; Knowlton, Pine, and Cipelletti, 2014;
Denisov et al., 2015). Therefore, the nature of the yielding
transition under oscillatory shear remains to be fully elucidated.

4. Nonviscometric flows

Many flows encountered in practice are not simple visco-
metric flows. A typical example is that of a sphere falling
through a yield stress fluid; this has often been used as a
benchmark, e.g., for numerics. The fluid around the sphere
will be set in motion because of the stress exerted by the
falling sphere, but the fluid far away will remain motionless;
the question is where the yield surface (i.e., the transition from
the flowing to the nonflowing material) is localized in space.
Experiments on the flow of yield stress fluids around falling
spheres far from any boundaries have revealed the location of
the yield surface, but have also shown that the usual
constitutive equations are unable to describe this situation.
In a number of experiments, the loss of fore-aft symmetry
(Gueslin et al., 2006; Putz et al., 2008) was observed. For
thixotropic fluids (Gueslin et al., 2006), this can easily be
understood: where the sphere has passed through the material,
it has liquefied. However, similar observations made on
Carbopol gels (Putz et al., 2008) cannot be explained by
properly invariant 3D generalizations of classical models such
as the Bingham and Herschel-Bulkley fluids (Putz et al.,
2008). Symmetry breaking may in fact be an elastic effect: the
resemblance between the yield stress fluid flow around a
sphere and the flow of viscoelastic polymer solutions has been
noted. The notion of combining viscoelasticity and yield stress
behavior has spurred Saramito (2007) and de Souza Mendes
(2009, 2011) to attempt to add elasticity to the usual visco-
plastic models and developed properly invariant continuum
elastoviscoplastic constitutive equations. There has been some
success in simulating the breaking of flow foreaft symmetry
by Cheddadi et al. (2011), Fonseca et al. (2013), and dos
Santos et al. (2014). Notably, Fraggedakis, Dimakopoulos,
and Tsamopoulos (2016) have successfully simulated the flow
of Carbopol solutions past isolated spheres by incorporating
the plastic back pressure (Dimitriou, Ewoldt, and McKinley,
2013) into the Saramito model.

C. Wall slip in yield stress materials

As mentioned, in the vicinity of a smooth solid boundary,
the velocity of a yield stress fluid (vsample) may differ from the

velocity of the boundary (vwall). One may observe either
vsample < vwall (e.g., in the case of a shearing device driven at
constant velocity vwall) or vsample > vwall ¼ 0 (close to a fixed
surface or in capillary or channel flows). In both cases, the
apparent discontinuity in velocity at the wall is caused by a
thin and highly sheared region adjacent to the wall of lower
viscosity than the bulk material. This phenomenon, referred to
as apparent wall slip or more often simply as wall slip in the
literature, has first been described as an artifact that exper-
imentalists should get rid of in order to avoid misinterpretating
rheological measurements (Barnes, 1995). Although elucidat-
ing the exact microscopic structure of the lubrication layer
remains an experimental challenge due to its small width
(typically smaller than 1 μm), very high local shear rate, and
proximity to a solid boundary, it is presumably composed of a
pure solvent in the case of colloidal gels or suspensions
(Hartman Kok et al., 2002, 2004) or of a film of continuous
phase in emulsions (Princen, 1985). The emergence of local
techniques to quantify slip velocities has brought about a
better understanding of the behavior of yield stress materials
near boundaries, allowing the development of successful
microscopic models in the case of dense assemblies of soft
particles (Seth et al., 2011). In the case of attractive gels, a
recent body of evidence suggests that the dynamics close to a
wall may not be easily decoupled from the bulk dynamics and
that wall slip is not merely a rheometric complication, as
recently pointed out by Buscall (2010). This section addresses
the various issues related to wall slip in yield stress fluids in
light of such recent developments.

1. Impact on flow-curve measurements

In the presence of wall slip, the measured apparent shear
rate overestimates the true shear rate within the material (or,
correspondingly, the strain indicated by a rheometer over-
estimates the true deformation experienced by the bulk of the
material). Consequently, the apparent flow curve is shifted to
higher shear rates compared to the actual constitutive equation
of the bulk material. In general, at low shear rates, where wall-
slip effects are most pronounced, the apparent flow curve
displays a kink and/or a plateau at a stress lower than the yield
stress estimated in the absence of wall slip [see Fig. 16(a) for
examples]. This signature has been reported in the literature as
early as 1975 in the pioneering work of Vinogradov et al.
(1975) and, since then, for a broad range of yield stress
materials including colloidal gels (Buscall, McGowan, and
MortonJones, 1993; Mas and Magnin, 1994), dense Brownian
suspensions (Ballesta et al., 2008, 2012), emulsions and
microgels (Meeker, Bonnecaze, and Cloitre, 2004a, 2004b),
and foams (Marze, Langevin, and Saint-Jalmes, 2008). In
particular, wall slip leads to significant deviations from the
Herschel-Bulkley behavior at low shear rates, and the apparent
flow curve is strongly surface dependent in this limit (Seth,
Cloitre, and Bonnecaze, 2008).

2. Physical origin of wall slip in yield stress fluids

Direct flow visualization coupled to rheology has made it
possible to go one step further in interpreting the apparent
lower stress plateau in the presence of wall slip. The seminal
work of Magnin and Piau (1990) on Carbopol microgels,
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coupling rheology to direct observations of the strain field, has
inspired numerous subsequent studies coupling flow visuali-
zation to standard rheology (Kalyon et al., 1993; Aral and
Kalyon, 1994; Persello et al., 1994). Subsequently, combi-
nations of rheology and other local measurement techniques,
such as light scattering velocimetry in a Couette geometry
(Salmon, Bécu et al., 2003) and particle tracking velocimetry
in cone-and-plate (Meeker, Bonnecaze, and Cloitre, 2004a,
2004b; Ballesta et al., 2008, 2012; Paredes, Shahidzadeh-
Bonn, and Bonn, 2011) and plate-plate geometries (Seth et al.,
2012), have provided quantitative measurements of slip
velocities (defined as vs ¼ jvsample − vwallj) and wall-slip
scenarios for the different yield stress materials. Let us first
discuss the case of yield stress fluids composed of soft
deformable particles before turning to rigid particles.

a. Wall slip in the case of soft particles

In yield stress fluids made of soft particles, the solid
behavior results from the tightly packed structure of deform-
able objects, and the lubrication layers that develop at smooth
walls are intimately related to the particle deformability. For

shear rates such that σ < σy [see regime III in Fig. 16(a)], the
bulk remains unsheared and the apparent motion is entirely
due to wall slip [see Fig. 16(b)]. This situation is referred to as
“total” wall slip or “pluglike” flow. In this regime, vs has been
shown to increase as a power law of the excess stress (i.e., the
stress at the wall minus the apparent yield stress σs inferred
from the extrapolation of the flow curve to vanishing shear rates
in the smooth geometry) vs ∝ ðσ − σsÞp, where the exponent p
does not depend significantly on the packing fraction but is
strongly influenced by the chemical nature of the walls. The
slip velocity vs displays a nearly quadratic scaling, i.e., p≃ 2,
in the case of attractive or nonwetting surfaces, whereas
p ¼ 1 for repulsive and/or wetting walls (Seth, Cloitre, and
Bonnecaze, 2008; Seth et al., 2012) [see Fig. 17(a)]. Both
exponents p ¼ 1 and 2 have been successfully described at the
scale of single particles by elastohydrodynamic lubrication
theory as the result of a balance between bulk osmotic pressure
and viscous dissipation taking place in the thin lubrication layer
that separates the squeezed particles from the wall (Meeker,
Bonnecaze, and Cloitre, 2004a; Seth, Cloitre, and Bonnecaze,
2008). The upper limit of this total wall-slip regime generally
correlates well with the stress drop or “kink” on steady-state
macroscopic measurements.

FIG. 17. (a) Slip velocity vs excess stress in a dense emulsion
for stresses below the yield stress in a plate-plate geometry. The
top plate is coated with either a weakly adhering polymer surface
(open and solid squares) or a nonadhering glass surface (open and
solid circles). The wetting properties of the boundary conditions
strongly impact the behavior of the slip velocity. From Seth et al.,
2012. (b), (c) Slip velocity vs shear stress at the rotor (solid
circles) and stator (open circles) for (b) a dense emulsion ϕ ¼
0.75 and (c) a dilute emulsion ϕ ¼ 0.2. The slip velocity is linear
in the dilute regime and quadratic for dense packing for stresses
above the yield stress. From Salmon, Bécu et al., 2003. (d) Slip
velocity vs shear stress in a suspension of ammonium sulfate
particles in poly(butadiene acrylonitrile acrylic acid) terpolymer
(PBAN). Data obtained in capillary flows with dies (extrusion
nozzles) of various aspect ratios (open symbols) and a plate-plate
geometry (stars). The solid line corresponds to a linear behavior.
From Yilmazer and Kalyon, 1989.

FIG. 16. (a) Stress σ vs the apparent shear rate _γapp for a
microgel paste (open and solid circles) and an emulsion (open
and solid triangles) of packing fraction ϕ≃ 0.77 obtained in a
cone-and-plate device for smooth (open symbols) and rough
(closed symbols) surfaces. Regimes I–III refer to microgel slip
behavior discussed in the text. The inset shows the velocity
profile measured with rough surfaces for σ=σy ¼ 1.05� 0.1. (b),
(c) Velocity profiles measured with smooth surfaces for
(b) σ=σy ¼ 0.9� 0.1 and (c) 1.3� 0.1. Adapted from Meeker,
Bonnecaze, and Cloitre, 2004b.
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For larger shear rates such that σ > σy, the bulk material is
sheared but wall slip remains significant, at least for σ ≳ σy
[see regimes I and II in Figs. 16(a) and 16(c)]. In this partial
wall-slip regime, it appears that the slip velocity scales as a
power law of the slip stress only (i.e., stress at the wall). Here
the physical picture is much less clear. Both the absolute value
of vs and the exponent p depend strongly on the geometry.
For instance, in similar systems, p≃ 1 has been reported
for a plate-plate geometry (Seth et al., 2012) while p≃ 2
for a smooth Couette cell (Salmon, Bécu et al., 2003) [see
Fig. 17(b)] and for rough microchannels (Geraud, Bocquet,
and Barentin, 2013). We note that in this regime the influence
of the packing fraction in the glassy state and the impact of the
chemical nature of the walls have not been systematically
explored. Yet, as seen in Figs. 17(b) and 17(c), one finds
p≃ 2 above jamming to p≃ 1 for low packing fractions
where soft particles are no longer compressed against each
other and the yield stress vanishes. The exponent p ¼ 1 is also
found in liquidlike suspensions of rigid particles as discussed
in the next section. From a recent study on soft thermores-
ponsive particles conducted at different temperatures in a
Couette cell, it appears that the scaling of the slip velocity
depends mainly on the packing fraction (Divoux et al., 2015).
Nonetheless, more experiments in other geometries are
required to provide a truly universal scaling to the slip
velocity across the jamming transition.

b. Wall slip in the case of hard particles

Concerning wall slip in suspensions of hard particles, a
great deal of work has been done on non-Brownian systems,
which corresponds to large Péclet numbers. Over a wide range
of packing fractions, wall slip is associated with a depletion
layer near the wall, where the thickness depends on the
particle size and decreases roughly linearly with increasing
bulk packing fraction (Kalyon, 2005). The latter result may
not hold for polydisperse samples (Soltani and Yilmazer,
1998) and appears to be affected by migration effects (Jana,
Kapoor, and Acrivos, 1995), which shows that the detailed
mechanism for slip in non-Brownian systems is not fully
understood. Nonetheless, the slip velocity at the wall scales
linearly with the slip stress in a remarkably robust fashion
(Yilmazer and Kalyon, 1989; Aral and Kalyon, 1994; Jana,
Kapoor, and Acrivos, 1995; Soltani and Yilmazer, 1998) [see
Fig. 17(d)]. The chemical properties of both the particle
surface and boundary conditions seem to affect wall slip
(van Kao, Nielsen, and Hill, 1975) although their quantitative
impact on vsðσÞ remains to be determined.
For Brownian hard spheres, the thickness of the depletion

layer depends weakly on the Péclet number (Hartman Kok
et al., 2004) and decreases for increasing packing fractions
(Ballesta et al., 2008). The slip velocity scales linearly with
the slip stress for both dilute and glassy assemblies. Moreover,
wall slip in glassy samples is characterized at low shear rates
by a stress kink on the macroscopic flow curve together with
pluglike velocity profiles (Ballesta et al., 2012). The latter
result is strikingly similar to the one reported for soft particles
in contact with nonadhering surfaces in Fig. 16(a), suggesting
that a common mechanism might be at work. Attractive
colloidal gels display the same phenomenology as glassy

suspensions over a broader range of packing fractions, down
to very low values of ϕ. However, both the kink and wall slip
tend to disappear as the polydispersity is increased (Ballesta
et al., 2013). Particle migration is also more likely to play a
major role in these yield stress fluids with low packing
fractions by promoting concentration gradients and/or segre-
gation. One can thus anticipate that wall slip in attractive gels
originates from the combined effects of migration and
polydispersity, with a strong dependence on the shearing
geometry, including stress gradients.

3. Dealing with wall slip in practice

Two types of practical approaches toward wall slip have
been proposed in the literature: either to quantify the effect of
wall slip from the experimentally determined flow curve or to
eliminate it. An elegant solution due to Mooney (1931) and
further extended by Yoshimura and Prud’homme (1988),
Kiljański (1989), and Wein and Tovchigrechko (1992) con-
sists of determining the relationship between the apparent
shear stress and rate for gaps of different sizes. Combining at
least two measurements and assuming that (i) the slip velocity
is a function of stress only and (ii) slippage is the same at both
walls, one can recover the constitutive relationship σð_γÞ
corrected for wall slip (see Fig. 18). This method has been
applied to various yield stress fluids, including emulsions
(Yoshimura and Prud’homme, 1988), microgels (Meeker,
Bonnecaze, and Cloitre, 2004a), and dense suspensions
(Yilmazer and Kalyon, 1989; Kalyon et al., 1993; Hartman
Kok et al., 2002, 2004; Kalyon, 2005) although the two
assumptions on which it relies have been verified by local
measurements of slip velocities only in a few cases (Salmon,
Bécu et al., 2003; Meeker, Bonnecaze, and Cloitre, 2004a;
Habibi et al., 2016).
To prevent wall slip, the nature of the wall needs to be

modified. The use of rough boundary conditions allows one to
properly determine constitutive equations without wall slip
(Vinogradov et al., 1975). The roughness of the wall has been
tuned from a few microns to hundreds of microns by using
sandblasted surfaces (Buscall, McGowan, and MortonJones,

FIG. 18. Shear stress vs shear rate for a dense emulsion
(ϕ ¼ 0.923) measured in a plate-plate geometry with smooth
boundary conditions for two different gap sizes (500 and 750 μm,
respectively). The stress vs the shear rate computed from the
method developed by Mooney and extended by Yoshimura and
Prud’homme displays a yield stress, while this is not obvious from
the raw measurements. From Yoshimura and Prud’homme, 1988.
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1993), grooved surfaces (Magnin and Piau, 1990), serrated
tools (Nickerson and Kornfield, 2005), or by gluing water-
proof sandpaper (Seth, Cloitre, and Bonnecaze, 2008; Seth
et al., 2012) or a monolayer of particles on the cell walls (Isa,
Besseling, and Poon, 2007). The accepted paradigm is that the
roughness of the surface should be comparable to the size of
the microstructure, since a lower roughness would not be
efficient, and a higher roughness, including vane cup geo-
metries, may trigger secondary flows (Ovarlez et al., 2011). In
that respect, recent attempts to systematically explore the
effect of the roughness-to-particle-size ratio (Mansard and
Colin, 2012) look promising in order to go beyond empirical
knowledge. Last but not least, the chemical nature and wetting
properties of the walls can also be tuned to force the adhesion
of the material even for smooth interfaces. This has been
successfully achieved for colloidal silica gels at low defor-
mations using hydrophobic boundaries (Walls et al., 2003)
and for aqueous microgels and oil-in-water emulsions using
silicon boundaries (Seth, Cloitre, and Bonnecaze, 2008; Seth
et al., 2012) and chemical treatment of PMMA (Christel et al.,
2012) or glass surfaces (Paredes, Shahidzadeh, and Bonn,
2015), as illustrated in Fig. 19.

IV. STEADY-STATE FLOW DYNAMICS OF YIELD STRESS
FLUIDS: FLOW CURVES AND SHEAR BANDING

This section is devoted to the dynamics of yield stress
materials in the case where a stress above the yield stress is
applied. After briefly reviewing methods to experimentally
distinguish between simple and thixotropic yield stress fluids,
we examine the current interpretations and models for the
steady-state shear-banding flows generally observed in thixo-
tropic materials. We close this section with two topics that
have emerged within the last few years on the flow of yield
stress fluids under confinement and the time scales involved in
transient regimes of yield stress fluid flow.

A. Flow curves of simple and thixotropic yield stress fluids

As discussed in Sec. II.D, yield stress fluids can be broadly
divided into simple yield stress fluids (microgels, dense
emulsions, and foams) and thixotropic yield stress fluids (clays,
fiber suspensions, and colloidal gels) (Bonn and Denn, 2009;
Møller et al., 2009; Ovarlez et al., 2009; Ovarlez, Cohen-
Addad et al., 2013). Here we review how the distinction can be
made experimentally, before turning to the most recent ideas.

1. Distinction between flow curves

Steady-state flow curves σð_γÞ can be used to distinguish
between the two types of yield stress materials (Møller et al.,
2009) as follows:

• Simple yield stress fluids exhibit a continuous and
monotonic constitutive equation, which is well fitted
by the phenomenological Herschel-Bulkley law σ ¼
σy þ A_γn [Fig. 20(a)]. As a consequence, whatever the
applied shear rate, even in the limit of vanishing values,
there is always a finite shear stress above σy at which the
material flows. Conversely, whatever the applied shear
stress above σy, there is always a finite shear rate reached
by the material.

• In contrast, thixotropic yield stress fluids are charac-
terized by a discontinuous underlying flow curve
[Fig. 20(b)] with a pronounced time dependence. Indeed,
in addition to a yield stress σy, these materials are also
characterized by a critical shear rate _γc, below which they
cannot flow steadily in homogeneous conditions when
imposing the shear rate (Coussot, Raynaud et al., 2002).

At this stage, it is tempting to draw an analogy with
equilibrium phase transitions, where such a discontinuous
flow curve would correspond to a first-order solid-to-fluid
transition while a continuous flow curve would correspond to
a second-order solid-to-fluid transition. However, in practice it
may be difficult to discriminate between these two categories
on the sole basis of the steady-state flow curve (Dennin,
2008). This is because the flow may become unstable and
heterogeneous at low imposed shear rates (_γ < _γc), leading to
an apparent flow curve that does not necessarily reflect the
unstable constitutive behavior of the material.

2. Existence of a “viscosity bifurcation”

A practical consequence of the existence of a critical shear
rate _γc is the striking avalanchelike behavior of thixotropic

FIG. 19. Velocity profiles of a dense emulsion flowing in a
rectangular microchannel (gap w ¼ 400 μm). Images obtained by
confocal microscopy. Velocity profiles in blue (dashed lines)
correspond to smooth boundary conditions treated with a piranha
solution. The oil droplets experience wall slip. Velocity profiles
in red (continuous lines) correspond to smooth, silanized
boundary conditions. The oil droplets stick to the surface,
creating an effectively rough boundary condition. Flow rates:
0.2, 0.5, and 1.2 × 10−2 mL=min. From Paredes, Shahidzadeh,
and Bonn, 2015.
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yield stress fluids under an applied shear stress in the vicinity
of the yield stress (Coussot et al., 2002a, 2002b; Cruz et al.,
2002). Within a narrow range of stresses of a few pascals
around the yield stress, two very different macroscopic
responses can be observed [see Fig. 21]: for σ<σy, the material
deforms and progressively stops flowing as the viscosity takes
up ever-increasing values, whereas for σ > σy the material
experiences an abrupt fluidization, characterized by an increase
of the shear rate up to a finite steady-state value, which recalls
avalanche behavior.
This behavior is characteristic of thixotropic yield stress

fluids and has been coined a viscosity bifurcation in the sense
that the yield stress separates two regimes characterized by
widely different values of the steady-state viscosity. The
terminology is, however, somewhat unfortunate since a
divergence of the viscosity is also expected for σ → σþy or
_γ → 0 in simple yield stress fluids. For these materials, the

divergence is continuous and any (arbitrarily large) value of
the final viscosity can be reached close to the yield stress
without any forbidden shear rate range. In the language of
bifurcations, yielding in simple yield stress fluids would
therefore be analogous to a supercritical bifurcation while
in thixotropic yield stress fluids it would correspond to a
subcritical bifurcation.

3. Consequences for local measurements

Within the last two decades, a number of different tools
have emerged to measure the local velocity field within
standard rheological geometries, including particle tracking,
dynamic light scattering, magnetic resonance, and ultrasonic
imaging (Salmon, Manneville et al., 2003; Manneville, Bécu,
and Colin, 2004; Bonn et al., 2008; Callaghan, 2008;
Manneville, 2008; Besseling et al., 2009; Gallot et al.,
2013). As reviewed elsewhere (Ovarlez, Cohen-Addad et al.,
2013), local velocity profiles under shear allow one to make a
clearer distinction between simple and thixotropic yield stress
materials. It has been shown that, as expected from their
monotonic macroscopic rheology, simple yield stress fluids
display homogeneous velocity profiles in steady state, at least
in experimental geometries with small enough stress hetero-
geneity. In this case, the local rheology, given by the local
shear stress σðrÞ as a function of the local shear rate _γðrÞ
derived from the velocity vðrÞ, perfectly matches the global
rheology (Divoux et al., 2012; Ovarlez, Cohen-Addad et al.,
2013). In the case of wide-gap geometries, σðrÞ may vary so
much that it falls below the yield stress. This leads to a
heterogeneous flow where a solid region characterized by a
pluglike flow [where σðrÞ < σy] coexists with a flowing
region [where σðrÞ > σy]. Similar pluglike flow is observed
in the case of channel flows of simple yield stress fluids,
where the local stress necessarily vanishes in the center of the

FIG. 21. Temporal evolution of the apparent viscosity η ¼ σ=_γ
of a drilling mud for various applied shear stresses below and
above the yield stress σy ≃ 2.82 Pa. The drastic change of
behavior within a range of less than 0.1 Pa around the yield
stress illustrates the viscosity bifurcation scenario. From
Ragouilliaux et al., 2006.

FIG. 20. Representative flow curves for (a) a simple yield stress
fluid, here microgels of different cross-link densities and con-
centrations. The solid line is the equation σ=σy ¼ 1þð_γτβ=γ0Þ0.45,
where τβ is the fluid relaxation time. From Cloitre, Borrega, and
Leibler, 2003. (b) Three different thixotropic materials. From top
to bottom: a hair gel, a commercial mustard, and a bentonite
suspension. Note that each of these materials displays a minimum
shear rate _γc below which no steady flow is possible. The
horizontal dotted lines indicate the yield stresses of the different
materials. From Coussot et al., 2006.
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channel (Pérez-Gonzáles et al., 2012; Poumaere et al., 2014).
Such a shear localization due to large stress heterogeneity does
not contradict the continuous solid-fluid transition of simple
yield stress fluids. It is now clearly distinguished from the
intrinsic shear localization, referred to as “shear banding,”
observed in thixotropic yield stress fluids and discussed next
(Ovarlez et al., 2009; Ovarlez, Cohen-Addad et al., 2013).
Finally, even more subtle effects were recently discovered in
simple yield stress fluids that are made to flow in confined
geometries or during transient regimes close to the yield stress.
These effects are reviewed in Sec. IV.C.
Contrary to simple yield stress fluids, thixotropic yield

stress materials have been shown either to flow homo-
geneously (for _γ > _γc) or to display heterogeneous velocity
profiles (for _γ < _γc). In the latter case, a solidlike region
coexists with a liquidlike band sheared at _γ ¼ _γc (Møller et al.,
2008) and the relative extent of both bands ensures that the
average shear rate coincides with the macroscopic applied
shear rate (Coussot, Raynaud et al., 2002; Ovarlez et al.,
2009). As seen in Fig. 22(a) for the case of a colloidal gel, the
amount of fluidlike material increases proportionally to the
global applied shear rate for 0 < _γ < _γc. This points to an
equivalent of a “lever rule” for solid-fluid coexistence and once
again emphasizes the analogy between yielding in thixotropic
materials and a first-order phase transition. It corresponds to
true shear localization, i.e., to shear banding, in the sense that it

is observed independently of any geometry-dependent stress
heterogeneity. Table I summarizes the distinction between
shear banding (due to the existence of a critical shear rate) and
shear localization (due to stress heterogeneity). It also recalls
that in both cases, apparent slippage at the walls, which can be
seen as an extreme kind of shear localization, may come into
play as discussed in Sec. III.C.

B. Causes of steady-state shear banding

1. Competition between aging and shear rejuvenation

The existence of a critical shear rate _γc in thixotropic
yield stress materials has been explained in terms of an
underlying decreasing branch of the flow curve at low shear
rates (Olmsted, 2008; Divoux et al., 2016), as discussed for
viscoelastic “wormlike micelle” surfactant solutions (Spenley,
Cates, and McLeish, 1993). In such a scenario, the constitutive
relation of the material is actually a decreasing function for
shear rates ranging from 0 to _γc. In this shear rate range, the
flow is mechanically unstable, which leads to some sort of
phase separation into an arrested region that coexists with a
flowing band sheared at _γc (Picard et al., 2002). This
coexistence is expected to correspond to a flat portion of
the steady-state flow curve, analogous to the Maxwell plateau
in first-order phase transitions, where the size of the flowing
band should follow the lever rule mentioned in Sec. IV.A.3.
Transient measurements in the unstable shear rate range can
be used to unveil the underlying decreasing flow curve [see
Fig. 22(b)].
The unstable part of the flow curve is most often interpreted

and modeled as the result of competition between spontaneous
aging and shear-induced rejuvenation, although only indirect
evidence for such a competition has been reported up to now.
Aging processes arise from particle aggregation in systems
with microscopic attractive interactions, e.g., clays and
attractive colloidal gels, or from the thermally activated
reorganization toward minimal energy in dense systems, such
as dense emulsions or microgels (Sollich et al., 1997; Cloitre,
Borrega, and Leibler, 2000; Viasnoff and Lequeux, 2002;
Coussot, 2007). Such physical aging may occur over a wide
range of time scales and is different in nature from the
chemical aging due to slow chemical reactions, such as the
release of Naþ ions in laponite clays, which cannot be
reversed by shear (Shahin and Joshi, 2010; Shahin and
Joshi, 2012). While attractive interactions have been shown
to be a sufficient ingredient to induce shear banding (Bécu,
Manneville, and Colin, 2006; Ragouilliaux et al., 2007; Fall,
Paredes, and Bonn, 2010; Paredes, Shahidzadeh-Bonn, and
Bonn, 2011), the minimal amount of attraction necessary to
permanently form banded profiles is still an open issue. A
better understanding of the role of microscopic interactions

FIG. 22. Example of shear-banded flows. (a) Velocity profiles in
a 4° cone-and-plate geometry of a colloidal silica suspension
(Ludox TM-40) for shear rates ranging from 15 to 105 s−1.
(b) Steady-state flow curve determined by two different types
of measurements. The branch at larger shear rates is obtained
under constant external stress. The branches at lower shear
rates are determined by estimating the minimum (respectively,
maximum) shear stress with (respectively, without) flow. From
Møller et al., 2008.

TABLE I. Different types of shear localization in simple and
thixotropic yield stress fluids (YSF).

Origin of shear localization Simple YSF Thixotropic YSF

From critical shear rate Not possible Possible
From stress heterogeneity Possible Possible
Wall slip Possible Possible
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should be gained from experiments where the attraction
between microscopic constituents is continuously tuned,
e.g., in a model system of colloids or deformable droplets
(Saunders and Vincent, 1999).
The simplest phenomenological model based on the idea of

a competition between aging and shear rejuvenation is the toy
model known in the literature as the “λmodel” (Coussot et al.,
2002a; Mujumdar, Beris, and Metzner, 2002). The basic
assumptions of this model are (i) there exists a structural
parameter λ that describes the local degree of interconnection
of the microstructure, (ii) the viscosity η increases with
increasing λ, and (iii) for an aging system at low (or zero)
shear rate λ increases, while at sufficiently high shear rates the
flow breaks down the structure so that λ decreases to a low
steady-state value. For certain parameter values, this model is
easily shown to predict flow curves with a minimum at a
critical shear rate _γc, therefore qualitatively reproducing the
case of a thixotropic yield stress material showing a viscosity
bifurcation and steady-state shear banding. More refined
versions of the λ model have been proposed in the literature,
e.g., for fractal colloidal gels (Møller et al., 2008) and
elastoviscoplastic structured fluids (de Souza Mendes,
2011; de Souza Mendes and Thompson, 2013), leading to
similar results. The kinematic hardening model used by
Dimitriou, Ewoldt, and McKinley (2013) incorporates a back
stress that evolves dynamically and affects the mechanics in
the neighborhood of yielding. This back stress can be viewed
as a λ parameter in simple shear flow and causes the location of
the yield surface to adjust, depending on the deformation state.
In order to achieve a more realistic picture of the effects of

aging that accounts for the viscoelasticity of the material, a
simplified mean-field argument was proposed based on two
time scales (Coussot and Ovarlez, 2010): a macroscopic
relaxation time τrel, equivalent to the viscoelastic time, which
can easily be measured through step-strain or stress relaxation
experiments, and a microscopic restructuring time τage asso-
ciated with the fluid spontaneous aging. This model produces
a simple expression for the flow curve:

σ

Gγc
¼ τrel

_γ

γc
þ 1

1þ τage _γ=γc
; ð9Þ

where G is the characteristic elastic modulus of elements that
break above a critical strain γc. Interestingly, the predicted
flow curve has a minimum at a critical shear rate for
τrel < τage, i.e., for a sufficiently long restructuration time,
while simple yield stress behavior sets in when restructuring
becomes faster than viscoelastic relaxation, i.e., for τage < τrel
(see Fig. 23). In this model, one can thus continuously go from
a monotonic flow curve to a nonmonotonic flow curve, i.e.,
from a simple to a thixotropic yield stress fluid, by increasing
the duration of the restructuration time.
The idea of a competition between a restructuring time scale

and shear flow was implemented in the elastoplastic coarse-
grained modeling initiated by Picard et al. (2004). The
influence of the time scale competition between structural
rearrangement and elastic recovery was explored in full detail
by Martens, Bocquet, and Barrat (2012); see also Benzi et al.
(2016). This study not only confirms the nonmonotonic

character of the global flow curves for a certain set of control
parameters, but also explores the spatial consequences of the
nonmonotonicity in a realistic geometry. In particular, the
emergence of a “phase separation” between flowing and
nonflowing regions in the system, i.e., permanent shear bands,
was clearly observed, thus putting the ideas of Coussot and
Ovarlez (2010) on firmer grounds. Similar ideas involving a
self-consistent dynamics following structural reorganization
have been explored in various modeling contexts; see, for
instance, Jagla (2007), Fielding, Cates, and Sollich (2009),
Cheddadi, Saramito, and Graner (2012), Maki and Renardy
(2012), and Joshi (2015).
Although these models all give a consistent picture of a time

scale competition leading to nonmonotonic flow curves in
some well-chosen regimes, and thus may give rise to shear
bands and viscosity bifurcation, very little progress has been
made toward understanding at a more microscopic level both
the physical origin of these time scales and how to control
their evolution by tuning, for instance, the interaction between
colloidal particles. A notable exception is recent work
exploring the athermal rheology of sticky particles in the
vicinity of the jamming transition (Irani, Chaudhuri, and
Heussinger, 2014). Here it was shown that stickiness may
promote a yield stress even below jamming, which is however
easily disrupted by a slow shear flow. At larger shear rate,
particles are pushed against each other, and therefore repulsive
forces should produce an increase of the shear stress. For a
narrow range of control parameters, this competition produces
a nonmonotonic flow curve, very much in the spirit of Fig. 23.

2. Static versus dynamic yielding

Whereas nonmonotonic flow curves necessarily give rise to
shear bands (Olmsted, 2008), as observed in a variety of
complex fluids, a simpler scenario can also hold in the specific
context of yield stress materials. Because the shear bands
observed in a yield stress material delimit a flowing phase
from an arrested phase (and not two different fluids as in more

FIG. 23. Dimensionless flow curves (stress T vs shear rate Γ) for
different values of the ratio D of the fluid relaxation time τrel over
the restructuration time τage, i.e., the time for a microscopic link to
reform after being broken. From Coussot and Ovarlez, 2010.
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traditional complex fluids), shear banding can be explained by
a simple picture where a monotonic global flow curve of the
Herschel-Bulkley type with a finite dynamic yield stress σy [as
in Eq. (3)] coexists with a static branch at _γ ¼ 0 existing for
σ < σsy, where σsy is a static yield stress. In that case, a strict
inequality σsy > σy directly ensures the existence of a finite
stress regime σ ∈ ½σy; σsy�, where the shear rate is bi-valued
and can be either zero or finite; see Fig. 24.
This scenario was explored theoretically by Berthier

(2003), where the two phases were shown to correspond to
two different families of dynamical solutions under the same
external stress values in the context of a specific driven glassy
model. These solutions, respectively, correspond to a fluid and
an arrested phase. A similar explanation was shown to account
for the presence of permanent (or at least very long-lived)
shear bands in the computer simulation of a glass-forming
liquid in the glassy region below the glass transition temper-
ature (Varnik et al., 2003). There, again, a clear separation was
observed between the dynamic extrapolation of the homo-
geneous flow curve and the direct determination of the static
yield stress value. Detailed numerical studies have shown,
however, that carefully measuring these two yield stress
values is not an easy task (Xu and O’Hern, 2006; Peyneau
and Roux, 2008).
The validity of this scenario was demonstrated in a

numerical study of concentrated assemblies of soft particles
where the degree of particle adhesion was tuned continuously
(Chaudhuri, Berthier, and Bocquet, 2012), in analogy with the
experimental investigations described previously (Bécu,
Manneville, and Colin, 2006; Ragouilliaux et al., 2006;
Ovarlez et al., 2008; Fall, Paredes, and Bonn, 2010). In this
numerical study, the emergence of flow inhomogeneity was
again directly connected to a discontinuity of the flow curve at
_γ ¼ 0, which was moreover observed to be strongly enhanced
by adhesive forces, thus establishing a direct link between
increasing the adhesion and promoting shear-banding behav-
ior (Chaudhuri, Berthier, and Bocquet, 2012).

Although the flow curves depicted in Figs. 23 and 24
appear qualitatively distinct at first sight, they may become
more similar in the case where the minimum of the flow
curves in Fig. 23 occurs at the lower end of the accessible
experimental range, in which case the remaining part of the
flow curve at small _γ is “compressed” along the _γ ¼ 0 axis,
very much as in Fig. 24. In addition, in both cases a shear band
may appear where a slow (or arrested) flowing phase and a fast
flowing phase coexist, and it may be experimentally chal-
lenging to distinguish between both scenarios unless non-
banded, steady-state flows can also be characterized at very
low shear rates. The distinction could be easier in computer
simulations, where it is possible to impose a global shear rate
and follow either set of flow curves shown in Figs. 23 and 24
down to arbitrary low shear rates.

3. Flow-concentration coupling

In the case of suspensions of dense and rigid noncolloidal
particles, shear banding may also result from volume fraction
heterogeneities. As particles are denser than the surrounding
fluid, there is a competition between sedimentation and shear-
induced resuspension (Ovarlez, Bertrand, and Rodts, 2006;
Fall et al., 2009). If shear-induced resuspension is not efficient
enough, contacts between particles trigger the formation of a
percolated network and of heterogeneous volume fraction
profiles, leading to shear banding. Interestingly, such a flow-
concentration coupling argument has also been invoked to
account for shear banding in colloidal glasses (Besseling
et al., 2010). The underlying idea is that, despite a homo-
geneous stress field, minute local variations of the volume
fraction ϕ may result in significant changes in the yield stress
value, which for a homogeneous system strongly depends on
the overall volume fraction ϕ. At low applied shear rates in
sufficiently dense packings, the flow may become unstable
(Schmitt, Marques, and Lequeux, 1995): fluctuations trigger
the jamming of a region of the material, which further turns
into steady-state shear banding. This type of localization could
therefore be interpreted as a precursor to shear-induced
thickening (Fall et al., 2010), although more experimental
work is needed to draw an overall conclusion.

C. Emerging topics: Confinement and transient regimes

In the following we focus on two questions that have
recently attracted growing interest as examples of current
challenges toward understanding the dynamics of yield stress
fluids.

1. Yield stress materials in confined geometries

Flow properties of yield stress fluids have been discussed
up to now in the context of “large” geometries, i.e., with
gaps much larger than the granularity of the fluid micro-
structure, typically by at least 2 orders of magnitude.
In this limit, the macroscopic behavior does not depend on
the gap size. However, when the gap size becomes comparable
to the mesoscopic scale characteristic of the fluid micro-
structure, i.e., in a confined geometry, rheological data have
been reported to depend on the gap width (Clasen and
McKinley, 2004; Davies and Stokes, 2008; Yan et al.,

FIG. 24. Scenario for shear banding in yield stress materials.
A monotonic flow curve with a finite dynamic yield stress σy
coexists with a static branch at _γ ¼ 0 and σ < σsy, where σsy is the
static yield stress. The shear rate is bi-valued for a range of shear
stresses σ ∈ ½σy; σsy�, which may lead to shear bands. Adapted
from Berthier, 2003.
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2010). Accordingly, the local rheology in confined geometries
no longer follows the Herschel-Bulkley model valid for large
gaps (see Fig. 25), as demonstrated for emulsions (Goyon
et al., 2008; Goyon, Colin, and Bocquet, 2010) and Carbopol
microgels (Geraud, Bocquet, and Barentin, 2013) in small
microchannels.

a. Cooperative effects in simple yield stress fluids

In such a confined geometry, the effect of shear-induced
local rearrangement spans over a range larger than the single
grain, drop, or bubble scale and can become comparable to the
gap size, in which case finite-size effects influence the
measured viscosity. The idea that the flow occurs through
successive plastic events over a certain “cooperativity” length ξ
has led to the development of so-called nonlocal models
(Bocquet, Colin, and Ajdari, 2009). The simplest such model
is a spatial version of the “fluidity model” (Derec et al., 2003),
where the number of plastic events per unit time (or fluidity)
taken as f ¼ _γ=σ is influenced both by the local contribution of
the flow and by plastic events taking place at distances smaller

than ξ. In the simplest case of a one-dimensional planar shear,
this leads to the following simple differential equation for f:

ξ2
∂2f
∂x2 þ ðfbulk − fÞ ¼ 0; ð10Þ

where x is the direction of the stress gradient and fbulk denotes
the “bulk” fluidity value, i.e., the fluidity expected in a large-
gap geometry in the absence of nonlocal effects. Here
“nonlocality” stems from the double spatial derivative in
∂2f=∂x2 that involves the local fluidity over a typical size ξ.
The solution to Eq. (10) successfully accounts for experimental
flow profiles (see the inset of Fig. 25) and for dynamical arrest
in confined geometries (Chaudhuri et al., 2012).
Recently the local fluidity was related to the local shear rate

fluctuations δ_γðxÞ (Jop et al., 2012; Benzi et al., 2014). In
particular, the study by Jop et al. suggests that the nonlocal
rheology originates in the mechanical noise induced by the
flow. Such a modification of the rheology due to confinement
is not specific to yield stress materials since it also affects for
instance the flow of surfactant wormlike micelles (Masselon,
Salmon, and Colin, 2008). In fact, the leftmost term in
Eq. (10) was first introduced to model shear banding in these
systems (Dhont, 1999; Yuan, 1999). More details on current
issues raised by confinement of yield stress fluids are
summarized in the review by Mansard and Colin (2012).
Here we emphasize only that the question of whether
cooperative effects may be at play during start-up flows
should also be addressed. Indeed, in a partially fluidized
material undergoing a transient regime, the fluid at rest is
confined between the wall and the flowing band. This point,
which raises the question of whether the (possibly slow)
dynamics of cooperative effects might be related to the
diverging duration of transient regimes, is discussed in the
next section.

b. Shear-induced structuration of attractive yield stress fluids

Another striking effect of confinement on yield stress fluids
is the spectacular shear-induced structuration observed in the
case of attractive particle systems at moderate shear rates,
typically 0.1 < _γ < 10 s−1. Examples include colloid-polymer
mixtures (DeGroot et al., 1994), flocculated magnetic sus-
pensions (Navarrete, Scriven, and Macosko, 1996), carbon
nanotubes (Lin-Gibson et al., 2004), attractive emulsions
(Montesi, Peña, and Pasquali, 2004), carbon black and alumina
dispersions (Osuji, Kim, and Weitz, 2008; Negi and Osuji,
2009; Grenard, Taberlet, and Manneville, 2011), and micro-
fibrillated cellulose (Karppinen et al., 2012) (see Fig. 26). In all
these thixotropic yield stress fluids, the microstructure fully
rearranges into a striped pattern of log-rolling flocs aligned
along the vorticity direction, as demonstrated indirectly either
through light scattering measurements (DeGroot et al., 1994)
or through scanning electron microscopy (Navarrete, Scriven,
and Macosko, 1996) and optical microscopy (Lin-Gibson
et al., 2004; Montesi, Peña, and Pasquali, 2004; Osuji,
Kim, and Weitz, 2008; Negi and Osuji, 2009; Grenard,
Taberlet, and Manneville, 2011; Karppinen et al., 2012).
In some of these attractive systems, shear-induced structu-

ration has been linked to the emergence of negative normal
stresses (Lin-Gibson et al., 2004; Montesi, Peña, and Pasquali,

FIG. 25. Global and local flow curves (black solid line and
symbols, respectively) for a dense emulsion (ϕ ¼ 0.75 and 20%
polydispersity). Global data are obtained in a wide-gap Taylor-
Couette cell, while local flow curves are deduced from velocity
profiles measured in a w ¼ 250 μm thick microchannel with
rough surfaces, for various pressure drops ranging from 300 to
900 mbar (inset). No overlap of the local flow curves is observed.
Dashed lines are predictions for the local flow curves at the given
pressure drop, as obtained from the nonlocal rheological model
[see Eq. (10)] with a flow cooperativity length ξ ¼ 22.3 μm.
Inset: solid lines are the velocity profiles predicted by the
nonlocal rheological model. The y axis for the main figure is
the stress in Pa and the figure thus represents the flow curve; the
important observation is that the flow curves for different driving
pressures no longer overlap due to collective effects. From Goyon
et al., 2008.
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2004; Negi and Osuji, 2009) and it was proposed to interpret
vorticity alignment as the consequence of an elastic instability
that would occur locally within individual flocs (Lin-Gibson
et al., 2004; Montesi, Peña, and Pasquali, 2004). However,
clear experimental evidence for such an interpretation and a
detailed theory to prove the link between an elastic instability
and shear-induced structuration are still lacking.
Moreover, shear-induced structuration occurs only within a

certain range of shear rates. On the one hand, for very low
shear, wall slip becomes predominant and generally prevents
the system from being sheared in the bulk so that it remains in
a homogeneous solidlike state. On the other hand, structura-
tion does not occur above some critical shear rate, most
probably due to the predominance of viscous forces and
particle resuspension by shear. Coming up with a theory to
provide a complete physical mechanism for the present shear-
induced pattern formation and to predict both their character-
istics and the shear rate limits where they appear is an
important future challenge. Indeed, the striking effect of
confinement not only affects the interpretation of rheological
measurements but may also be of prime importance in
applications involving confined flows of attractive particle
systems. Finally, it is still unclear whether the structural
instability that leads to pattern formation in attractive, thixo-
tropic yield stress materials is related in any way to the
mechanical noise which triggers flow cooperativity in simple
yield stress fluids.

2. Origin and scaling of the yielding time scales

So far, emphasis has been put on the steady state achieved
by yield stress materials under a given shear rate or shear
stress. However, it is quite obvious that such a steady state is

not reached instantaneously and that transient regimes, e.g.,
from solidlike behavior at rest to liquidlike behavior above
yielding, convey tremendous physical information on the
yielding process.
In particular, it can be expected that upon approaching the

yield stress the time needed to reach a flowing steady state can
grow longer and longer, possibly pointing to a divergence of
some characteristic time scale. If this time scale can be reliably
estimated as a function of the various control parameters
(applied stress or shear rate, packing fraction, temperature),
then the question is whether physically relevant information
can be inferred on the yielding transition from such scalings.
The aim of this section is to review recent work focusing on
the time scales associated with yielding, open questions, and
opportunities for the future.

a. Power-law scalings of the fluidization time and transient shear
banding

It has been reported that transient regimes may become
surprisingly long lived in the vicinity of the yield stress. As
mentioned, it is not surprising that the dynamics becomes
increasingly slow upon approaching the yield stress, which
has been reported often (Aral and Kalyon, 1994;
Gopalakrishnan and Zukoski, 2007; Caton and Baravian,
2008; Rogers, Vlassopoulos, and Callaghan, 2008). More
quantitative and local insights have been gained from recent
velocimetry experiments during shear start-up and creep
experiments of simple yield stress fluids, namely, Carbopol
microgels (Divoux et al., 2010, 2012; Divoux, Barentin, and
Manneville, 2011b) and, to a lesser extent, emulsions (Bécu
et al., 2005; Perge, 2014). These experiments revealed that the
expected homogeneous velocity profiles are reached after a
transient regime that involves shear-banded velocity profiles
(see Fig. 27). In Carbopol microgels, the fluidization time τf,

FIG. 27. Transient shear banding in a Carbopol microgel in the
Taylor-Couette geometry. (a)–(e) Velocity profiles vðrÞ, where r
is the distance to the rotor, in a rough geometry at different times
during the stress relaxation for an applied shear rate of 0.7 s−1.
From Divoux et al., 2010. (f) Spatiotemporal diagram of the local
shear rate _γðr; tÞ in a smooth geometry for an applied shear rate of
0.5 s−1. The white curve traces the position δðtÞ of the interface
between the fluidized band and the solidlike region. The vertical
dashed line indicates the fluidization time τf , i.e., the time at
which the shear rate field becomes homogeneous. From Divoux
et al., 2012.

FIG. 26. Shear-induced patterns observed in various yield stress
fluids under shear in confined geometries. (a) Carbon black gel
under simple shear with a gap thickness of 173 μm as seen with
optical microscopy with large and low magnifications (left
and right, respectively). From Grenard, Taberlet, and Manneville,
2011. (b) Suspension of microfibrillated cellulose at 0.1% wt
after shearing 10 min at 0.5 s−1 in a Taylor-Couette cell. From
Karppinen et al., 2012. (c) Emulsions under simple shear for a gap
thickness of 12 μm. The arrow indicates the direction of shear.
From Montesi, Peña, and Pasquali, 2004. (d) Optical micrograph
of a quiescent semidilute non-Brownian colloidal nanotube
suspension at 0.5% wt. The gray (red) scale bar is 10 μm and
the gap thickness is 50 μm. From Lin-Gibson et al., 2004.
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i.e., the duration of the transient shear-banding regime, was
shown to follow power-law scalings τf ∼ A=_γα and τf ∼
B=ðσ − σyÞβ with α≃ 2–3 and β≃ 4–6 under imposed shear
rate and shear stress, respectively (Divoux et al., 2010, 2012;
Divoux, Barentin, and Manneville, 2011a). In all cases, the
final homogeneous flow is consistent with the global steady-
state rheology indicating simple yield stress behavior [see
Fig. 27(e)]. Interestingly, assuming that the fluidization times
under imposed shear rate and shear stress are simply propor-
tional, the above power-law scalings naturally lead to a
constitutive equation σð_γÞ that coincides with the Herschel-
Bulkley equation [Eq. (3)] in which the phenomenological
exponent n is given by n ¼ α=β≃ 1=2 (Divoux, Barentin, and
Manneville, 2011a). Therefore, the exponents governing the
transient regimes possess a striking link with the exponent that
characterizes the steady-state behavior. Such a link has been
interpreted in terms of a critical-like phenomenon (Divoux
et al., 2012; Chaudhuri and Horbach, 2013).
It is important to clearly distinguish the transient shear-

banding phenomenology from the time-dependent behavior of
thixotropic materials. Here, rather than a competition between
aging and shear rejuvenation, the transition from a solidlike to
a liquidlike state seems to involve plastic events and damage
accumulation in a way that resembles hard solids. Indeed, the
flowing band can be observed to slowly “erode” the material
at rest before the whole material experiences a rather sudden
fluidization. This induction phase suggests that erosion by the
fluidized band somehow fragilizes the bulk-arrested microgel,
bringing it to a critical state before complete, sudden fluid-
ization occurs. Such a critical state could be analogous to the
one reached by a colloidal gel experiencing “delayed sed-
imentation” right before its collapse (Buscall et al., 2009;
Teece, Faers, and Bartlett, 2011; Barlett, Teece, and Faers,
2012). However, more experiments that provide access to the
structure of the band at rest are needed to confirm such a
picture. Moreover, a systematic comparison with recent
molecular dynamic simulations of disordered systems could
help to bridge the gap between yield stress fluids and
amorphous solids (Fusco, Albaret, and Tanguy, 2014).
From a theoretical point of view, a general criterion

for the formation of transient shear bands has been proposed
(Moorcroft, Cates, and Fielding, 2011; Moorcroft and
Fielding, 2013), providing a connection with either the stress
overshoot under an imposed shear rate or the delayed yielding
under creep in yield stress fluids or viscoelastic fluids. In this
approach the power-law scaling for the fluidization time under
creep is recovered, but with a smaller exponent β≃ 1

(Moorcroft and Fielding, 2013). Another promising approach
consists of a structural model of colloidal aggregates that
incorporates viscoelasticity (Illa et al., 2013; Lehtinen et al.,
2013; Mohtaschemi et al., 2014). Such a phenomenological
model recovers power-law scalings but predicts only trivial
exponents α ¼ β ¼ 1 and thus fails to capture the link
between both transients and the steady-state rheology
observed in microgels. Finally, theories at a more microscopic
level, such as the STZ theory, suggest that the transient shear
banding and sudden fluidization is primarily a result of
microstructural disordering originating from structural
heterogeneities (Hinkle and Falk, 2016). The latter results

remain to be confirmed and extended by supplemental mea-
surements on purely repulsive systems through simpler numeri-
cal approaches such as molecular dynamics simulations.

b. Exponential scalings: Activated processes and brittlelike failure

Whereas rather few papers have focused on transient
fluidization under an applied shear rate, creep experiments
have revealed long-lived transients in numerous yield stress
fluids, including attractive gels such as carbon black gels
(Gibaud, Frelat, and Manneville, 2010; Grenard et al., 2014),
coated silica particles (Gopalakrishnan and Zukoski, 2007;
Sprakel et al., 2011), and colloidal glasses (Siebenbürger,
Ballauf, and Voigtmann, 2012). The time at which the strain
rate increases by several orders of magnitude defines a
fluidization time τf, which coincides with the establishment
of homogeneous velocity profiles (Gibaud, Frelat, and
Manneville, 2010; Grenard et al., 2014). Interestingly, in
attractive colloidal systems, τf generally decreases exponen-
tially with the applied shear stress (Gopalakrishnan and
Zukoski, 2007; Gibaud, Frelat, and Manneville, 2010;
Sprakel et al., 2011; Grenard et al., 2014). Such a scaling τf ∼
expð−σ=σ0Þ involves a characteristic stress σ0, which has been
interpreted and modeled in the framework of bond breaking
through thermally activated processes (Gopalakrishnan and
Zukoski, 2007; Lindström et al., 2012).
Alternative exponential scalings, such as the Griffith-like

scalings τf ∼ expðσ0=σÞp with p ¼ 1, 2, or 4 (Griffith, 1921;
Pomeau, 1992; Lawn, 1993; Vanel, Ciliberto, and Cortet,
2009), have been proposed in the context of yield stress fluids
(Caton and Baravian, 2008) and transient networks (Tabuteau
et al., 2009; Mora, 2011). They hint at fracturelike dynamics,
although it may be difficult to discriminate between various
exponential—or even power-law—scalings due to the limited
range of experimentally accessible shear stresses (Gibaud
et al., 2016). This raises the question of the “brittleness”
of yield stress fluids: while the physics of yielding in
concentrated, jammed assemblies of soft particles such as
microgels or emulsions appears to rely on (microscale)
plasticity associated with (macroscale) shear banding, early
studies based on direct visualization of the sample edges
have shown some colloidal systems, such as Laponite
suspensions (Magnin and Piau, 1990; Pignon, Magnin, and
Piau, 1996) and concentrated suspensions (Aral and Kalyon,
1994; Persello et al., 1994), prone to fracturelike behavior.
Revisiting these pioneering works with modern temporally
and spatially resolved techniques could classify such strain
localization in terms of fracture, wall slip, or shear banding
and sort out the possible effects of the experimental geometry
on the flow dynamics.

c. Dynamics induced by wall slip in transient and steady-state flows

In Sec. III.C we considered wall slip only through its effect
on steady-state flow curves and velocity profiles. However, it
has long been known, most prominently in the context of
polymers, that wall slip often comes with instabilities and
complex time dependences (Graham, 1995; Denn, 2001,
2008). In light of the previous discussion on fluidization time
scales, it also seems natural to ask whether slippage at the
walls shows interesting variations, both during transient
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regimes and at steady state. Surprisingly only a handful of
papers have dealt with the dynamics of wall slip in yield stress
fluids. Various start-up experiments in smooth geometries,
e.g., on emulsions (Bécu et al., 2005), Carbopol microgels
(Divoux et al., 2010), and laponite clay suspensions
(Gibaud et al., 2009), have reported slip velocities that are
strongly correlated to the fluidization dynamics and to the
temporal evolution of the shear stress as well as stick-slip
oscillations in the steady state (Pignon, Magnin, and Piau,
1996; Ianni et al., 2008; Divoux, Barentin, and Manneville,
2011a). Recent experiments of unsteady pipe flows reported a
similar coupling between the solid-to-fluid transition and wall
slip, including strongly fluctuating behaviors (Poumaere
et al., 2014).
Importantly, the work by Gibaud, Barentin, and Manneville

(2008) and Gibaud et al. (2009) on laponite suspensions
illustrates that boundary conditions not only strongly affect
the transient fluidization process but may also lead to totally
different steady states—in this case, shear banded flows
versus homogeneous flows. Recent numerical modeling
suggests that the internal stress distribution prior to shear
start-up affects the steady state (Cheddadi, Saramito, and
Graner, 2012). These results reveal the influence of both the
boundary conditions and the initial conditions on the steady
state reached after yielding, an issue that remains to be fully
explored in experiments and models.

D. Open questions

We close this section by listing the open questions that
represent the most pressing issues in current research into the
dynamics of yield stress materials.

• How does nonlocality due to confinement set in
during transient material response?

• Is there any plasticity occurring during intial
Andrade-like creep? If so, where is it localized?

• What is the physical mechanism responsible for
shear-induced structuration in confined attractive
yield stress fluids?

• What are the differences (if any) between the
material microstructure in the transient shear band
and in the rest of the sample?

• What is the nature of the wall-fluid interactions that
drive slip phenomena and how can they affect bulk
flow?

V. SUMMARY AND OUTLOOK

We have reviewed recent progress in the understanding of
yield stress fluids. Most of the recent experimental advances
are due to simultaneous measurements of flow structure and
mechanical properties. Techniques that allow one to elucidate
the flow structure such as magnetic resonance imaging,
ultrasound, or optical microscopy have revealed a richness
in the behavior of yield stress materials that was hitherto
unsuspected and have allowed for some novel physical
insight.
On the theoretical side, much progress has been accom-

plished to account for the physical origin of solid behavior in

amorphous materials across a broad range of interparticle
interactions producing glassy, jammed, and gel behaviors.
Simultaneously, computer simulations have demonstrated
their efficiency in producing convincing particle-based mod-
els of yield stress materials and allowed detailed investigations
of the rheological behavior of these systems in various
geometries. By construction, such simulations allow for a
direct study of both the macroscopic rheological response and
the microscopic dynamics. These studies have in turn allowed
the development of a new family of coarse-grained elasto-
plastic models of yield stress materials, where exploration
of larger-scale phenomena (such as shear-banding and time-
dependent flows) is better facilitated than through particle-
resolved simulations.
For many decades it has been questioned whether the yield

stress actually exists. It is now well established that it does, in
any case on experimentally relevant time scales. Different
techniques of determining the yield stress produce similar
values, provided care is taken to account for wall slip, flow
heterogeneity, and time dependences. Indeed, one of the novel
insights is that not all yield stress materials behave ideally and
that a distinction needs to made between two types of yield
stress fluids: simple and thixotropic. Simple yield stress fluids
show a flow behavior that is well reproduced by the Herschel-
Bulkley law, with no significant time dependence, while
thixotropic ones show a pronounced time dependence that
arises from aging and shear rejuvenation phenomena.
Adequate experimental protocols need to be employed that
take into account the time evolution of these materials in order
to get reproducible experimental estimates for the yield stress.
Tied in with the discussion of the yield stress is the shear

localization that is generically observed in yield stress fluids.
For simple yield stress fluids, shear banding is in general due
to stress heterogeneity, and if not, it is only transient. For
thixotropic materials, the situation is qualitatively different:
due to the interplay between aging and shear rejuvenation,
there exists a critical shear rate below which no stable
homogeneous flow is possible. If a shear rate is then imposed
macroscopically within the unstable regime, a shear band is
formed in which the material flows at the critical shear rate,
and the rest of the material remains motionless.
In addition, wall slip is commonly observed in yield stress

materials and needs to be accounted for. In rheological
measurements, wall slip is usually detected through variations
of the viscosity with the size of the gap of the measurement
geometry, which distinguishes it from the two types of shear
localization discussed previously. The correction can be done
by comparing measurements with different gap sizes and
extrapolating to an infinite gap. Besides complicating the
interpretation of rheological measurements, wall slip also
raises fascinating fundamental questions. Reaching a general
understanding of the physics of slippage phenomena in yield
stress materials appears to be a challenging task for the future.
Recently, a different type of gap-dependent viscosity was

uncovered for very small gaps, e.g., for microchannels with a
size close to that of the microstructural elements. Here, gap
dependence was attributed to collective effects or “spatial
cooperativity” when the range of shear-induced rearrange-
ments spans the whole system. There is still a lot of discussion
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on this topic, but it may challenge the simple view of yield
stress materials sketched previously.
One last burning issue concerns the full characterization

and understanding of the transient flow behavior of both
categories of yield stress fluids. The way such materials start
to flow is indeed of great practical interest. In spite of notable
recent progress this question of the yielding dynamics mostly
remains to be explored at both microscopic and mesoscopic
levels, and both experimentally and theoretically.
What is also crucial, especially for engineering purposes, is

to have a predictive constitutive equation that allows for a
general description of the flow (or not) of yield stress
materials. For polymer systems a large number of such models
have been derived from statistical mechanical approaches and
are extensively used in practice. For yield stress fluids it is
clear that three-dimensional invariant versions of the inelastic
Bingham and Herschel-Bulkley models are inadequate,
because they cannot reproduce the loss of fore-aft flow
symmetry in geometries with foreaft symmetry. Empirical
models based on equations developed for polymeric liquids
have shown promise in a few applications to complex flows,
especially creeping flow past an isolated sphere, but, unlike
the polymer counterparts, these models are not based on
microstructural considerations and have not been tested
against a full range of rheological measurements. Our limited
understanding of plasticity is also a factor in incorporating
pre-yield behavior into continuum models. One promising
research direction to solve this problem is to borrow statistical
mechanical models from the glass transition and soft-matter
physics communities such as mode-coupling theory or the soft
glassy rheology model. These would automatically also
include ageing and shear rejuvenation as these are general
features of the glass transition and could thus in the end be the
answer to the many remaining questions posed in this review.
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