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The recent prediction and subsequent creation of electron vortex beams in a number of laboratories
occurred after almost 20 years had elapsed since the recognition of the physical significance and
potential for applications of the orbital angular momentum carried by optical vortex beams. A rapid
growth in interest in electron vortex beams followed, with swift theoretical and experimental
developments. Much of the rapid progress can be attributed in part to the clear similarities between
electron optics and photonics arising from the functional equivalence between the Helmholtz
equations governing the free-space propagation of optical beams and the time-independent
Schrödinger equation governing freely propagating electron vortex beams. There are, however,
key differences in the properties of the two kinds of vortex beams. This review is primarily concerned
with the electron type, with specific emphasis on the distinguishing vortex features: notably the spin,
electric charge, current and magnetic moment, the spatial distribution, and the associated electric and
magnetic fields. The physical consequences and potential applications of such properties are pointed
out and analyzed, including nanoparticle manipulation and the mechanisms of orbital angular
momentum transfer in the electron vortex interaction with matter.
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I. INTRODUCTION

Electron vortex beams are a new member of an expanding
class of experimentally realizable freely propagating vortex
states having well-defined orbital angular momentum (OAM)
about their propagation axis, the prototypical example of
which is the much studied optical vortex beam. The term
vortex beam refers to a beam of particles (electrons, photons,
or otherwise) that is freely propagating and possesses a wave
front with quantized topological structure arising from a
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singularity in phase taking the form eilϕ with ϕ the azimuthal
angle about the beam axis and l an integer quantum number
also known as the topological charge (or winding number).
The topological structure of the wave front was first described
by Nye and Berry (1974) as a screw-type dislocation in the
wave trains in analogy with crystal defects.
Over the last two decades optical vortices have been a

subject of much interest, after the publication of the seminal
work of Allen et al. (1992) in which the quantized orbital
angular momentum of a Laguerre-Gaussian (LG) laser mode
was examined [the earlier discussion of optical vortices in
laser modes by Coullet, Gil, and Rocca (1989) did not
emphasize the quantization of the orbital angular momentum
about the propagation axis]. Since then, optical vortices have
been intensively studied leading to many diverse applications
(Allen, Padgett, and Babiker, 1999; Allen, Barnett, and
Padgett, 2003; Andrews and Babiker, 2012), including optical
tweezers and spanners for various applications (He et al.,
1995; Dholakia et al., 2002; Grier, 2003; Ladavac and Grier,
2004): micromanipulation (Galajda and Ormos, 2001);
classical and quantum communications (Yao and Padgett,
2011); phase contrast imaging in microscopy (Fürhapter et al.,
2005; Züchner, Failla, and Meixner, 2011; Baranek and
Bouchal, 2013); and further proposed applications in quantum
information and metrology (Molina-Terriza, Torres, and
Torner, 2007; Yao and Padgett, 2011) and astronomy (Lee
et al., 2006; Thidé et al., 2007; Tamburini et al., 2011). The
discussion of photonic spin and orbital angular momentum in
various situations and the similarities and differences between
the two types of angular momentum have led to new ways of
thinking about and examining orbital angular momentum in
this context. The spin and orbital angular momentum cannot
be clearly separated in general, i.e., without the imposition of
the paraxial approximation (Barnett and Allen, 1994; Van Enk
and Nienhuis, 1994; O’Neil et al., 2002), which leads to the
possibility of the entanglement of the 2 degrees of freedom
(Mair et al., 2001; Khoury and Milman, 2011). More subtle
quantum effects due to the interaction of optical vortices with
atoms and molecules involve internal atomic transitions at
near resonance with the beam frequency. Here too optical
forces and torques are at play (Babiker, Power, and Allen,
1994; Allen et al., 1996; Andersen et al., 2006; Lembessis,
Ellinas, and Babiker, 2011; Surzhykov et al., 2015), leading to
the trapping and manipulation of individual atoms in certain
regions of the beam profile, with promising applications in the
new field of atomtronics (Andersen et al., 2006; Seaman et al.,
2007; Pepino et al., 2010; Lembessis and Babiker, 2013), as
well as the proposed generation of atom vortex beams
(Hayrapetyan et al., 2013; Lembessis et al., 2014). A related
recent advance in matter vortex beams is the realization of
neutron vortex beams in the laboratory (Clark et al., 2015).
Although the basic concepts in terms of beam formation of

electron vortices essentially stem from those encountered in
the optical vortex case, the electron vortex is distinguished
by additional properties, most notably the electric charge and
half-integer spin. They are thus fermion vortex states char-
acterized by a scalar field in the form of the Schrödinger wave
function for nonrelativistic electrons and Dirac spinors for the
ultrarelativistic electron beams, while optical vortex beams are

bosonic states described by vector fields. Furthermore, there
are substantial differences in scale. Currently, electron vortices
created in a medium-voltage (100–300 kV) electron micro-
scope have de Broglie wavelengths of the order of picometers
while optical vortices in the visible range have wavelengths of
the order of several hundreds of nanometers. Electron vortex
beams can thus probe much smaller features than is possible
for the optical vortex beams, and as such the range of
applications of electron vortices is predicted to be substan-
tially different from the existing scope of optical vortex
beams.
The earliest work on particle vortex lines is due to

Bialynicki-Birula, Bialynicka-Birula, and Śliwa (2000),
Bialynicki-Birula and Bialynicka-Birula (2001), and
Bialynicki-Birula et al. (2001). The current research activity
specifically in electron vortex beams and their OAM content
was stimulated by work due to Bliokh et al. (2007), shortly
followed by the experimental realization in several laborato-
ries (Uchida and Tonomura, 2010; Verbeeck, Tian, and
Schattschneider, 2010; McMorran et al., 2011). It has now
been established that electron vortices can be created inside
electron microscopes and there exist a number of techniques
for vortex beam creation, including computer generated
holographic masks applied in similar ways to those routinely
adopted in the creation of optical vortex beams (Heckenberg,
McDuff, Smith, Rubinsztein-Dunlop, and Wegener, 1992;
Heckenberg, McDuff, Smith, and White, 1992). This review
aims to describe the recent developments in the expanding
field of electron vortex physics and highlights significant areas
of potential applications. Specifically, electron vortex beams
are hoped to lead to novel applications in microscopical
analysis, where the orbital angular momentum of the beam is
expected to provide new information about the crystallo-
graphic, electronic, and magnetic composition of the sample.
Chiral-dependent electron diffraction has been detected
(Juchtmans et al., 2015; Juchtmans, Guzzinati, and
Verbeeck, 2016) as well as the demonstration of magnetic-
dependent electron energy-loss spectroscopy (EELS)
(Verbeeck, Tian, and Schattschneider, 2010), and it is pre-
dicted that the high resolution achievable in the electron
microscope will lead to the ability to map magnetic informa-
tion at atomic or near-atomic resolution. Additionally, the
inherent phase structure of the vortex is considered ideal for
applications in high resolution phase contrast imaging, as
required for biological specimens with low absorption contrast
(Jesacher et al., 2005). Applications of electron vortex beams
are, however, not restricted to diffraction, spectroscopy, and
imaging—the orbital angular momentum of the beam may
also be used for the manipulation of nanoparticles (Gnanavel,
Yuan, and Babiker, 2012; Verbeeck, Tian, and Tendeloo,
2013), leading to electron spanners analogous to the widely
used optical tweezers and spanners. Electron vortex states are
also relevant in the context of quantum information and, in
particular, the electron vortex may potentially be used to
impart angular momentum into vortices in Bose-Einstein
condensates (Fetter, 2001). The orbital angular momentum
and magnetic properties of the electron vortex may also find
potential uses in spintronic applications, either in the char-
acterization of spintronic devices or in contexts employing
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spin-polarized current injection, through spin-to-orbital angu-
lar momentum conversion processes (Karimi et al., 2012).
Our aim in writing this review has been to strive to provide a

report on the current state of the new subject of electron vortex
beams and their interactions. We endeavored to survey much
of the relevant literature, but any omissions of specific
references would certainly be inadvertent and we apologize
for not having come across them. For more focused pro-
spectives, the interested reader can consult recently published
papers on the subject (Verbeeck et al., 2014; Harris et al.,
2015; Bliokh et al., 2017).
The outline of this review is as follows: Sec. II introduces

the quantum mechanics governing the propagation of electron
vortex beams, namely, the wave equation discussed in the
nonrelativistic and relativistic regimes. The mechanical and
electromagnetic properties arising from the vortex mass and
electric charge are then considered, along with the role of the
vortex fields in the spin-orbit interaction within the beam.
Section III covers the dynamics of the electron vortex in
external fields. Section IV discusses the various methods for
the realization of electron vortex beams in the laboratory that
have hitherto been considered, drawing comparison with the
creation of optical vortex beams wherever such an analogy can
be identified. Section V deals with the methods one can use to
analyze the various properties associated with vortex beams.
The interaction of electron vortex beams with matter is
covered in Sec. VI. The prospects of using electron vortex
beams to determine chirality and other magnetic information
are discussed in terms of both theoretical and experimental
considerations, with concluding remarks about the field given
in Sec. VII.

II. QUANTUM MECHANICS OF ELECTRON VORTEX
BEAMS

Freely propagating vortex states having the required eilϕ

phase factor may be written as solutions to the Schrödinger,
Klein-Gordon, and Dirac equations (Bliokh et al., 2007;
Bliokh, Dennis, and Nori, 2011; Schattschneider and
Verbeeck, 2011; Bliokh and Nori, 2012a, 2012b; Karlovets,
2012; van Boxem, Verbeeck, and Partoens, 2013) yielding
nonrelativistic, relativistic, and spinor electron vortex beams,
respectively. The spatial distributions of these vortex solutions
may take various forms in the relativistic, nonrelativistic,
and paraxial limits and each state is characterized by the
distinguishing feature of a vortex, namely, the node on the
propagation axis. Such states have been mostly described
either by the Bessel functions, prototypes of nondiffracting
vortex beams (McGloin and Dholakia, 2005), or by the LG
functions which are well known in optics (Allen et al., 1992),
with LG representing a beam with a well-defined waist at the
focal plane. Since both the Bessel and Laguerre-Gaussian sets
of functions form complete orthonormal basis sets, any beam,
vortex or otherwise, may be described in terms of these vortex
states. In the nonparaxial and relativistic limits of the Dirac
equation, the spin of the electron also plays a role, and the
particular distribution is modified by a spin-orbit interaction
intrinsic to the beam (see Sec. II.D). Note that there is an
interesting alternative approach describing electron vortices as
a natural consequence of the skyrmion model of a fermion

(Bandyopadhyay, Basu, and Chowdhury, 2014, 2016, 2017;
Chowdhury, Basu, and Bandyopadhyay, 2015), but this will
not be discussed any further in this review.
The remainder of this section introduces the specific

properties of the electron vortex beam mainly in the non-
relativistic and paraxial limits, focusing on solutions to the
Schrödinger equation. This will not only enable direct
comparison with the commonly applied paraxial solutions
in optics, a comparison facilitated by the functional equiv-
alence between the Schrödinger and the scalar Helmholtz
equations, but also illustrates the most important properties of
electron vortex beams and serves as a basis for understanding
more complex vortex beams.

A. Phase properties of vortex beams

The phase structure of a vortex wave is topologically
different to that of a plane wave. In contrast to a plane wave,
with phase fronts that are normal to the propagation direction,
the phase front of the vortex wave describes a helix about the
axis of propagation (Nye and Berry, 1974) such that the phase
is dependent on the angular position about the axis. This
topological structure was first described by Nye and Berry
(1974) as screw-type dislocations in wave trains, in analogy
with crystal defects. The topological charge l (also called the
winding number) quantizes this winding such that there are l
twisted wave fronts about the beams axis, or equivalently a
phase change of 2πl during a full rotation about the axis as
shown in Fig. 1. The phase factor of eilϕ that gives rise to this
helical phase structure is a characteristic feature of orbital
angular momentum (cf., the similar phase factor in the
azimuthal components of the orbital angular momentum-
containing hydrogenic wave functions). The functions char-
acterizing a vortex beam propagating with a well-defined axis
(taken along the z direction) have a general form which can be
conveniently written in cylindrical coordinates rðρ;ϕ; zÞ:

ψ lðr; tÞ ¼ uðρ; zÞeilϕeikzze−iωt; ð1Þ

with uðρ; zÞ a suitable mode function such as the Laguerre-
Gaussian functions (Sec. II.B.1), which are characterized by
the azimuthal index l and the radial index p, or the Bessel
functions of the first kind (Sec. II.B.2), which are charac-
terized by just the azimuthal index l. The helical phase
structure of the vortex beam leads to the phase at the core
of the beam as indeterminate since it is connected to all
possible phases of the wave. This central phase singularity is
not physically viable and is compensated by the requirement
that all functions must vanish on axis (at the location of the
singularity), giving the beam a cross-sectional distribution in
the form of a ring, or concentric rings. This has led to the
nickname of “doughnut” beams for a particular class of vortex
beams—the Laguerre-Gaussian vortices with nonzero wind-
ing number jlj, but zero radial index (p ¼ 0), each being a
bright ring surrounding a central dark core. The requirement
that all vortex functions must vanish on axis is, however, not
sufficient to describe a vortex beam—there must be some
topological difference between a region of the beam contain-
ing the vortex and a region that does not (Nye and Berry,
1974). For the present purposes, the topology of the vortex
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describes the connectedness of the phase fronts. The phase
front of the vortex is topologically distinct from that of a plane
wave, as one cannot be transformed into the other through
continuous deformations. Similarly, the l ¼ 1 phase front
cannot be deformed into the l ¼ 2 or any other l phase front,
and this is the reason why the winding number l has also been
termed the topological charge, characterizing the “strength” of
the vortex. As pointed out earlier, the phase front of any vortex
is characterized by the factor eilϕ leading to a phase singularity
along the propagation axis. In order to appreciate the
significance of the topological charge we assume that the
function ψ given in Eq. (1) represents a wave function of a
vortex beam state of a particle of mass m. It is easy to show
that a closed loop integration of the probability current
density

jðrÞ ¼ ℏ
2mi

fψ�ðr; tÞ∇ψðr; tÞ − ψðr; tÞ∇ψ�ðr; tÞg

along a path C encircling the axis gives a quantized value
proportional to the topological charge of the beam
(Bialynicki-Birula, Bialynicka-Birula, and Śliwa, 2000),

I
C
jðrÞ · ds ¼ 2πℏ

m
l; ð2Þ

where ds is a line displacement vector tangential to the path C.
For the vortex beam given in Eq. (1) we have the

normalized probability current density

jðrÞ ¼ ℏ
m

�
l
ρ
ϕ̂þ kzẑ

�
: ð3Þ

Integrating this about a loop enclosing the z axis gives
ð2πℏ=mÞl, while any other closed path gives zero, showing
the topological distinction between a region of space con-
taining the vortex and one that does not. Thus, on circling the
z axis an additional phase of 2πl is acquired.

B. Vortex beam solutions of the Schrödinger equation

The wave function ψðr; tÞ describing an electron vortex
beam is a solution of the Schrödinger equation, namely,

Hψðr; tÞ ¼ Eψðr; tÞ; ð4Þ

where E is the energy eigenvalue. In free space, the
Hamiltonian H is given by the kinetic energy of the electron
beam only

H ¼ p2

2m
; ð5Þ

where p is the linear momentum operator. Equation (4) can be
rearranged to look like the Helmholtz equation for mono-
chromatic light:

∇2ψðr; tÞ þ k2ψðr; tÞ ¼ 0; ð6Þ

where k is the magnitude of the wave vector of the electron
beam and is given by

k2 ¼ 2mE
ℏ2

. ð7Þ

This equivalence is the basis for treating freely propagating
electrons and light on the same footing, at least at the scalar
field level. Indeed the fields of electron microscopy, ion beam
physics, and accelerator physics started on this basis. The
same is true for the electron vortex beam research.
In general, the vortex solution of the Schrödinger equation

requires the complex wave functions to be identically zero
to cope with the phase indeterminacy at the vortex core
(Bialynicki-Birula, Bialynicka-Birula, and Śliwa, 2000). This
means that both real and imaginary parts of the wave function
should be zero separately. Each condition defines a surface
and the vortex core can be considered as the intersection of
the two surfaces, resulting in a line of vortex cores. In the
following, we first consider two simple solutions in which
the vortex core forms a straight line along the z axis. We
then introduce a specific and a general solution, which is
more useful in the context of the practical electron vortex
beams which are usually generated under bandwidth-limited

(a)

(c) (d)

(b)

FIG. 1. The phase character of l ¼ 1 and 3 vortex beams.
(a) The single helix phase front of an l ¼ 1 vortex around the
beam axis. (b) The corresponding continuous phase ramp in one
of the transverse planes perpendicular to the beam axis. The total
phase change on one rotation is exactly 2π. For the l ¼ 3 vortex
there are three helical surfaces of constant phase, each moving
around the axis as shown in (c). This leads to a total phase change
on one rotation of exactly 6π. We used wrapped phase repre-
sentation, with all phases mapped to values between 0 and 2π
[represented between blue to red in the 2D phase maps in (b) and
(d)], so there are three “artificial” phase jumps from 0 to 2π in the
phase-wrap representation as shown in (d). In both cases, the only
real phase discontinuity of significance is on the beam axis.
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conditions. In general, the vortex lines can be curved, closed,
and knotted (O’Holleran et al., 2008), but they can be
regarded as a superposition of the simpler straight vortex
lines introduced later.

1. Laguerre-Gaussian beams

Optical vortex beams are most commonly discussed in
terms of Laguerre-Gaussian modes, as these are a good
approximation to the vortex modes created from Hermite-
Gaussian laser modes (Lax, Louisell, and McKnight, 1975;
Padgett, 1996). The Laguerre-Gaussian vortex beam state
arises as a solution of the paraxial approximation of the
Helmholtz equation for light or Schrödinger equations for
electrons in free space:

�
∇2⊥ þ 2ikz

∂
∂z

�
ψ ¼ 0; ð8Þ

where ψ is a component of the vector field and the subscript⊥
in ∇⊥ indicates differentiation only with respect to in-plane
(transverse) coordinates. This equation describes a component
of the relevant field propagating in the z direction with an axial
wave vector of magnitude kz. The variations along the axis
are considered so small that the second axial derivative may
be neglected (Kogelnik and Li, 1966; Lax, Louisell, and
McKnight, 1975). The solutions of Eq. (8) represent a vortex
for which the magnitude of the transverse momentum ℏk⊥
is much smaller than the axial momentum ℏkz (overall
k2⊥ þ k2z ¼ k2). A suitable vortex solution to Eq. (8) is the
Laguerre-Gaussian form, which has a Gaussian envelope
modified radially by a Laguerre polynomial, with appropriate
phase factors. We have, written in cylindrical polar coordi-
nates r ¼ ðρ;ϕ; zÞ,

ψLG
p;l ðr; tÞ ¼

ClpzRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2R þ z2

p � ffiffiffi
2

p
ρ

wðzÞ
�l

Ll
p

�
2ρ2

w2ðzÞ
�

× eikzze−iωteilϕ

× ef−½ρ2=w2ðzÞ�þ½ikzρ2z=2ðz2Rþz2Þ�−ið2pþjljþ1Þtan−1ðz=zRÞg;

ð9Þ

where Ll
pðxÞ is the generalized Laguerre polynomial, with

azimuthal index l, radial index p ≥ 0, and normalization

factor Clp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jljþ1p!=πðjlj þ pÞ!

q
. The z dependence of the

Gaussian envelope is depicted in Fig. 2, with the characteristic
parameters of width wðzÞ and Rayleigh range zR given by

wðzÞ ¼ w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
2z
kzw2

0

�
2

s
; ð10Þ

zR ¼ kzw2
0

2
; ð11Þ

where w0 ¼ wð0Þ is the beam radius at focus. The radial
profile of the beam varies with the indices p and l. The
azimuthal index l is responsible for the beam orbital angular
momentum lℏ per electron and may take any integer value,

either positive or negative. The radial index p ≥ 0 specifies
the number of intensity maxima, i.e., the number of rings in
the radial intensity distribution, such that the beam has pþ 1

maxima (for l ¼ 0, the beam has a central spot, and p
additional rings). The transverse distributions of the
Laguerre-Gaussian beams are displayed in Fig. 3 for various
sets of l and p. As can be seen, the modes with jlj > 0 have a
central minimum, and Eq. (9) has the appropriate eilϕ phase

FIG. 2. Schematic representation of the Gaussian profile show-
ing the characteristic parameters, namely, the width wðzÞ, with w0

thewidth at the narrowest part of the beam. zR is theRayleigh range
and RðzÞ is the in-plane radius of curvature at axial position z

(a)

(d)

(g) (h) (i)

(e) (f)

(b) (c)

FIG. 3. Intensity distribution patterns for the LGpl modes,
shown in the z ¼ 0 plane. Intensity is given by jψLG

p;l j2. The
concentric ring structure of the orbital angular momentum
carrying modes is clear, with pþ 1 rings. The color scale shows
the intensity variation within individual modes (not the relative
intensity variation across all modes). The Laguerre-Gaussian
modes with l < 0 have the same intensity distributions as shown;
however, the phase (not shown) has the opposite sign.
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factor, indicating that the Laguerre-Gaussian modes are
endowed with the required feature of phase vortices.
In addition to the phase factor relating to the orbital angular

momentum, the Laguerre-Gaussian beam also has the follow-
ing Gouy phase factor:

exp

�
−ið2pþ jlj þ 1Þ arctan

�
z
zR

��
ð12Þ

which is associated with the focusing of the beam at the waist
plane (Feng and Winful, 2001; Petersen et al., 2014). As a
result a convergent Gaussian beam experiences a phase
change of π=2 as it passes through the focal plane from
−∞ to þ∞, whereas the phase shift of the Laguerre-Gaussian
beam on focusing is given as

−ð2pþ jlj þ 1Þ π
2
. ð13Þ

The Gouy phase shift arises due to the spatial confinement of
the beam, leading to momentum components in the transverse
direction that contribute to the dynamic phase of the beam
(Feng and Winful, 2001; Petersen et al., 2014). Near the focal
plane, the rate of change of the transverse momentum of the
Laguerre-Gaussian beam is larger than that of the fundamental
Gaussian beam due to the more complex radial profile. The
magnitude of the Gouy phase change thus depends on the
radial and azimuthal mode indices.

2. Bessel beams

The Bessel-type electron vortex beam wave function takes
the form

ψB
l ðr; tÞ ¼ NlJlðk⊥ρÞeilϕeikzze−iωt; ð14Þ

where Jlðk⊥ρÞ is the Bessel function of the first kind, of order
l, where, l is the topological charge, or winding number. The
wave numbers kz and k⊥ are the axial and transverse wave
vector components such that jkj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þ k2⊥

p
. Nl is a suitable

normalization factor determined by the specific boundary
conditions of the beam. Except for l ¼ 0, all other Bessel
functions satisfy Jlð0Þ ¼ 0, so that they are suitable for
describing a vortex beam. Their spatial distribution functions
are functions of the radial coordinate ρ only, so that in contrast
to Laguerre-Gaussian beams, freely propagating Bessel beams
are nondiffractive (Durnin, Miceli, and Eberly, 1987), and the
use of the full Helmholtz or Schrödinger equations coincides
with the paraxial limit in this case. The Bessel beams are
indeed the simplest type of vortex beams and so provide an
ideal theoretical platform to determine the general character-
istics of vortex beams.
The oscillatory nature of Bessel functions gives the Bessel

beam a cross section of concentric rings, decreasing in
brightness away from the axis. This concentric ring structure
is shown in Fig. 4. However, unlike the Laguerre-Gaussian
function, which decays exponentially with radial position,
the Bessel function is infinite in extent, so that in principle the
beam contains an infinite number of rings. Each ring of the
Bessel beam carries the same power in the case of an optical

vortex beam (Durnin, Miceli, and Eberly, 1987), while for
electron vortex beams the relevant property is the current,
which implies infinite power being carried by the beam, which
is of course physically unrealistic. What is meant by a physical
Bessel-type beam is a beam that has amplitude modulation
similar to a Bessel function, over a finite radius, and whose
core components behave nondiffractively (such that the
central maximum or minimum persists with very little spread-
ing) over a reasonable, but finite, propagation length
(McGloin and Dholakia, 2005). These are achievable by
several methods in optics including axicon lenses, annular
apertures, and holograms (Durnin, Miceli, and Eberly, 1987;
McGloin and Dholakia, 2005) and have also been generated in
electron optics using kinoforms (Grillo, Gazzadi et al., 2014).
A kinoform is a wave front reconstruction device (Jordan
et al., 1970).
In the momentum representation k0ðk0⊥;ϕ0; k0zÞ the Bessel

beam has the form

~ψ lðk0Þ ¼ i−l

2π

eilϕ
0

k⊥
δðkz − k0zÞδðk⊥ − k0⊥Þ; ð15Þ

which is interpreted as a superposition of plane waves of
varying k⊥ such that k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þ k2z

p
for each wave (see

Fig. 5). For a given kz the possible k⊥ lie on a ring on the
surface of constant k, so that there is a cone of plane waves
of varying k that constitute the Bessel beam (McGloin and
Dholakia, 2005; Bliokh, Dennis, and Nori, 2011), with the
phase of each given by eilφ. This is the principle by which
axicon lenses produce the rings of a Bessel-type beam
(Herman and Wiggins, 1991). The conical propagation leads
to another interesting property of the Bessel beam, namely,
that the original spatial distribution is reconstructed after
propagation past an obstruction (MacDonald et al., 1996;
McGloin and Dholakia, 2005), as has been demonstrated for
electron vortex Bessel beams (Grillo, Karimi et al., 2014).

3. Bandwidth-limited vortex beams

In electron vortex beam research, the limited transverse
spatial coherence of practical electron sources means that
finite radius vortex modes defined using a circular aperture
(or pupil) function are more appropriate in real situations. The
simplest bandwidth-limited vortex beam is generated by the
Fraunhofer diffraction of a plane wave by a spiral phase plate
with the transmission function

(a) (b) (c)

FIG. 4. The intensity jψB
l ðrÞj2 of a Bessel beam with (a) l ¼ 0,

(b) l ¼ 1, and (c) l ¼ 2. The Bessel modes with l < 0 have the
same intensity distributions as shown; however, the phase (not
shown) has the opposite sign.
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ψðρ0;ϕ0; zÞ ¼ eilϕ
0
eikzz ð16Þ

through an aperture of finite radius Rmax. We used the
convention for the momentum or Fourier space representation
of the variables as in Eq. (15), since the truncation is in
practice taking place in the aperture plane of a convergent
electron lens as shown in Fig. 6.
The diffracted beam intensity is related to the Fourier

transform of the transmitted wave, which can be written as
(Kotlyar et al., 2006, 2007; Lubk, Clark et al., 2013)

~ψðρ;ϕ; zÞ ¼ eilϕ
2πil2−lρlR2þl

max

ð2þ lÞΓð1þ lÞ

× 1F2

�
1þ l

2
; 2þ l

2
; 1þ l;−

1

4
ρR2

max

�
; ð17Þ

where pFqða; b; c; zÞ is the generalized hypergeometric func-
tion. This is a limiting case of hypergeometric-Gaussian
beams (Karimi et al., 2007) due to diffraction of apertured
spiral phase masks by a Gaussian beam.
To represent the wave form of the arbitrary beam in similar

bandwidth-limited situations, an orthonormal basis set char-
acterized by orbital angular momentum was recently reported
for vortex beams (Thirunavukkarasu et al., 2017), including
both the azimuthal and radial quantum numbers l and p,
respectively. It is based on describing the normal modes of the
transverse wave front confined to a finite radius at the pupil
or aperture plane by an orthonormal set of truncated Bessel
functions, much like the solutions of the allowed normal
modes of surface vibrations on a drum surface:

ψTBB
p;l ðρ0;ϕ0;zÞ¼Np;leikzzeilϕ

0
Jlðkpl⊥ ρ0Þ for ρ0≤Rmax; ð18Þ

where the radial and azimuthal indices are p and l, respec-
tively, following the convention used in the case of LG modes.
We again used the cylindrical coordinates ðρ0;ϕ0; zÞ to
describe the location in the aperture plane and Rmax is the
radius of the circular aperture. The magnitude of the transverse
wave vector kpl⊥ takes the discrete values λp;l=Rmax, with λp;l
the ðpþ 1Þth zero of the lth order Bessel function Jl, and Rmax
is the radius of the aperture. The truncated Bessel functions,
whose amplitudes are for ρ ≥ Rmax, together with the azimu-
thal phase factor form a complete two-dimensional basis set of
the OAM modes at the aperture plane. The Fourier transform
of these truncated Bessel beams forms a complete set of
conjugated quantum bases which we termed Fourier trans-
formed truncated Bessel beams (FT-TBB):

ψFT-TBB
p;l ðkρ;ϕ; zÞ ¼ ilλp;lJ0lðλp;lÞeilϕ

JlðkρRmaxÞ
kpl⊥ 2 − k2ρ

; ð19Þ

where kq is the transverse wave vector of the diffracted beams.
At the focal plane of a lens of power 1=f, the corresponding
radial displacement (ρ) is given by fkq=kz ð∼fkq=k0Þ. The
corresponding wave function in the focal plane coordinate
(ρ;ϕ) becomes

ψFT-TBB
p;l ðρ;ϕ; zÞ ¼ ilλp;l

f
k0

J0lðλp;lÞeilϕ
JlðkρRmaxÞ
ρ2pl

− ρ2
; ð20Þ

where ρp;l is the radius of the most prominent doughnut ring
and is given by λp;lf=Rmaxk0.
The inset in Fig. 6 shows the schematic phase distribution

of some of the low order basis wave functions of the truncated
Bessel beams (TBB). Also shown is the conjugate relationship
between the TBB and the FT-TBB.
The amplitude and phase of the first three p modes of

the l ¼ 1 FT-TBB subset are shown in Fig. 7, respectively.
These results show that the higher order radial modes are

FIG. 5. The Fourier transform of the Bessel beam results in a
set of waves of fixed kz and varying kx and ky, such that

k⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
. The vortex Bessel beam illustrated here has a

phase factor eilφ, so that the phase changes by 2πl on rotation
about the kz axis. This is illustrated for l ¼ 1. The relationship
between kz and k⊥ fixes the cone angle θ.

FIG. 6. The intensity and phase distribution of the transverse
wave functions of FT-TBB at z ¼ 0. From Thirunavukkarasu
et al., 2017 and are plotted for the same relative scale.
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distinguished by pþ 1 bright rings, reminiscent of the
corresponding LG modes (Allen et al., 1992). However, the
similarity does not extend to the additional faint ring structures
that can be seen in the amplitude distribution of the FT-TBB1;3

mode. These small ringed structures are caused by the ringing
effect of the sharply defined aperture. Another noticeable
feature is that the largest amplitude occurs when kρ
approaches kpl⊥ , in which case the wave function locally
becomes a sinc function of the radial coordinate.
This can also be understood by regarding the original

truncated beam as the product of the unobstructed Bessel
beam and a top-hat mask function. The transverse structures of
the vortex beam at the focal plane can be considered as the
convolution of the Fourier transform of the Bessel function
(whose transverse structure is a ring with a radius controlled
by the radial size of the first dark zone in the truncated beam)
and that of the top-hat mask (which is the well-known Airy
pattern with side band ring structures). This is consistent with
the mathematical form of the Fourier transform of the normal
modes in the aperture plane. As p increases, the size of the
first node ring shrinks and the Bessel ring at the focal plane
increases in size. This explains the size changes seen in
Fig. 7 (first row) for different values of p. The convolution of
the Bessel rings with the Airy pattern functions results in
sidebands, but they preserve the circular symmetry of the
main Bessel peaks. The details of the experimental realization
of the FT-TBB beams can be found in Thirunavukkarasu
et al. (2017).
The FT-TBB set of beams is one of the bandwidth-limited

vortex beams whose spatial frequency is determined by the
aperture size. As this FT-TBB set of modes forms a complete
orthonormal set, it can be used to describe any such band-
width-limited vortex beam. For example, the simplest and
most investigated bandwidth-limited electron vortex beam as

shown in Eq. (17) can be expanded in terms of linear
combinations of the FT-TBB set (Schattschneider and
Verbeeck, 2011).
Both LG and Bessel beams are unbound solutions and

are often discussed in theoretical developments because of
their mathematical simplicity. On the other hand, bandwidth-
limited beams are required for the precise description of
electron vortex beams produced in real situations.

C. Mechanical and electromagnetic properties of the electron
vortex beam

The global mechanical properties of electron vortex modes
stem from the two basic properties of electrons, namely, that
the finite electron mass leads to inertial position-dependent
mass fluxes which are associated global inertial linear and
angular momenta of the electron vortex beam while the finite
electronic charge leads to position-dependent electromagnetic
fields which are further sources of global linear and angular
momenta. It is instructive to derive these global properties
of the electron vortex with reference to the Bessel type, for
mathematical convenience. Here we outline the treatment by
Lloyd, Babiker, and Yuan (2013) who were first to show that
the mechanical and electromagnetic properties of electron
vortices emerge directly from the quantum mechanical wave
function of the vortex mode. Concentrating on the Bessel-type
vortex beam for which the wave function is given in Eq. (14)
and writing ω ¼ E=ℏ we have

ψðr; tÞ ¼ NlJlðk⊥ρÞeikzzeilϕe−iEt=ℏ. ð21Þ

The vortex beam is assumed to extend along the axis over a
length D which is much larger than the beam width. The
normalization factor Nl follows straightforwardly in the form

FIG. 7. Computer-simulated fine structure of the diffraction of truncated Bessel beams (FT-TBB): the first row is for intensity and the
second row for the corresponding phase distribution. From left to right, for the FT-TBB vortex beams with l ¼ 1 but with different radial
modes (p ¼ 0, 1, and 2). Adapted from Thirunavukkarasu et al., 2017.
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Nl ¼
�

k2⊥
2πDI ð1Þ

l

�
1=2

; ð22Þ

where I ð1Þ
l is the first moment integral of the Bessel function

defined by

I ð1Þ
l ¼

Z
∞

0

jJlðxÞj2xdx: ð23Þ

1. Inertial mechanical properties

The inertial mechanical properties are associated with the
finite electron mass and these can now be derived as follows.
The vortex wave function ψðr; tÞ gives rise to a local mass
density ρmðr; tÞ and a mass current density jmðr; tÞ which are
as follows:

ρmðr; tÞ ¼ mψ�ðr; tÞψðr; tÞ; ð24Þ

jmðr; tÞ ¼
ℏ
2i
fψ�ðr; tÞ∇ψðr; tÞ − ψðr; tÞ∇ψ�ðr; tÞg: ð25Þ

These emerge on substituting for ψðr; tÞ in the form

ρmðr; tÞ ¼ mjNlj2jJlðk⊥ρÞj2; ð26Þ

jmðr; tÞ ¼ ℏjNlj2
�
l
ρ
ϕ̂þ kzẑ

�
jJlðk⊥ρÞj2; ð27Þ

where ϕ̂ and ẑ form with ρ̂ the standard unit vector set for
cylindrical coordinates. The unit vector ẑ is along the
beam axis.
The evaluation of the global inertial linear momentum of

the vortex follows from the realization that the (local) mass
current density (jm) is the same as the (local) linear momen-
tum density [Pm, i.e., (local) linear momentum per unit
volume]. The (global) inertial linear momentum vector of
the Bessel electron vortex beam (Pm) then follows by volume
integration. We have

Pm ¼
Z

Pmðr; tÞdV ¼
Z

jmðr; tÞdV: ð28Þ

We find

Pm ¼ ℏjNlj2D

×
Z

∞

0

Z
2π

0

dϕ

�
kzẑþ

l
ρ
ϕ̂

�
jJlðk⊥ρÞj2ρdρ: ð29Þ

It is easy to see that the azimuthal component in the
integrand of Pm when integrated over the volume leads to a
zero value because of a vanishing angular integral. By contrast
the z component leads to a finite result. Direct integration of
the z component in Eq. (29) gives

Pm ¼ 2πℏkzDI ð1Þ
l jNlj2ẑ

¼ ℏkzẑ; ð30Þ

where we made use of Eq. (22). The result Pm ¼ ℏkzẑ is the
inertial linear momentum of the Bessel electron vortex beam.
Note that the inertial linear momentum is axial, involving only
the axial component kz of the wave vector. There are no in-
plane components, neither as azimuthal nor radial, and there
is no dependence on k⊥. Note also that the azimuthal linear
momentum density is nonzero, but as we have shown its
volume integral vanishes. This is consistent with the cylin-
drical symmetry of the vortex beam.
The (local) inertial orbital angular momentum density (Lm)

is defined as the moment of the (local) inertial linear
momentum density. We have

Lm ¼ r ×Pmðr; tÞ

¼ ℏjNlj2ðρρ̂þ zẑÞ ×
�
l
ρ
ϕ̂þ kzẑ

�
jJlðk⊥ρÞj2: ð31Þ

Integration of this over the volume leads us to the (global)
inertial orbital angular momentum vector (Lm). We find

Lm ¼
Z

LmdV

¼ ℏjNlj2
Z

D=2

−D=2

Z
2π

0

Z
∞

0

�
lẑ − ρkzϕ̂ −

l
ρ
zρ̂

�

× jJlðk⊥ρÞj2ρdρdϕdz: ð32Þ

It is easy to verify that the angular and radial integrals lead
to vanishing results and only the axial component survives.
Using Eq. (22) the inertial angular momentum can be written
in the form

Lm ¼ 2πlℏDI ð1Þ
l jNlj2ẑ ¼ ℏlẑ: ð33Þ

Equation (33) shows that, in general, the electron vortex beam
carries only an axial inertial orbital angular momentum equal
to ℏl and that, as is the case with the inertial linear momentum
of the vortex, there are no transverse components. The
components of the inertial angular momentum Lx and Ly

are both zero as well as the inertial linear momentum
components Px and Py. It turns out that this feature is not
a preserve of electron vortex beams alone and holds for all
pure vortex beams including the Bessel- and Laguerre-
Gaussian-optical vortex beams.

2. Electromagnetic mechanical properties

We have so far concentrated on the inertial mechanical
properties of the electron vortex beam, i.e., those due to the
finite electron mass and such a theory applies to any electri-
cally neutral particle vortex beam. However, an electron
vortex beam also carries electric and magnetic fields EðrÞ
and BðrÞ by virtue of the finite electric charge and magnetic
moment. These fields have been evaluated by Lloyd et al.
(2012) for a Bessel electron vortex beam generated under a
condition that would be found in an electron microscope. The
outlines are as follows.
Direct use of Maxwell’s equations with the charge and

current distributions of the electron vortex beam considered as
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sources enables the evaluation of the specific electric and
magnetic fields of the electron vortex beam. The Bessel
electron vortex beam defined in Eq. (14) possesses cylindri-
cally symmetric charge and current density distributions, each
varying only as a function of the radial coordinate ρ, so that
the electric and magnetic fields also have such a cylindrical
symmetry. Respectively, the charge and current densities for
the electron Bessel beam are found to be

ρeðρÞ ¼ −ejNlj2J2l ðk⊥ρÞ; ð34Þ

jeðρÞ ¼ −
eℏjNlj2
me

J2l ðk⊥ρÞ
�
l
ρ
ϕ̂þ kzẑ

�
: ð35Þ

As with a linear charge and current source, the electron vortex
beam possesses an electric field in the radial direction and a
magnetic field in the azimuthal direction. In addition, due to
the helical (solenoidlike) nature of the charged current density
distribution, the Bessel vortex beam is characterized by an

axial magnetic field component (Lloyd et al., 2012). The
electric field for the Bessel beam of the order of l is found
to be

EðρÞ ¼ −ρ̂
ejNlj2
2ε0

× ρ½J2l ðk⊥ρÞ − Jl−1ðk⊥ρÞJlþ1ðk⊥ρÞ�: ð36Þ

This is valid for any l, including the nonvortex Bessel beam of
l ¼ 0. Similarly, the azimuthal component of the magnetic
field of the same electron vortex beam is found to take the
form

BϕðρÞ ¼ eμ0ℏ
kzjNlj2
2me

× ρ½J2l ðk⊥ρÞ − Jl−1ðk⊥ρÞJlþ1ðk⊥ρÞ�: ð37Þ

Finally, the axial component of the magnetic field is given by

BzðρÞ ¼ eμ0ℏ
jNlj2
2me

�
1 −

4−lρ2l2F3½fl; lþ 1=2g; flþ 1; lþ 1; 2lþ 1g;−ρ2�
l2½ΓðlÞ�2

�
; ð38Þ

where pFq½fa1 � � � apg; fb1 � � � bqg; z� is the generalized
hypergeometric function, and ΓðxÞ is the gamma function.
This general form reduces to a series of products of
Bessel functions for particular values of l (Abramowitz
and Stegun, 1972). Equations (36)–(38) are valid for the
Bessel beam of infinite radial extent. In order to estimate
the field strengths for vortices such as would typically be
generated in an electron microscope, the wave function
Eq. (14) may be truncated after a finite number of rings, i.e.,

ψ t
lðrÞ ¼ ψ lðrÞΘðρ − ρl;nÞ; ð39Þ

where ΘðxÞ is the Heaviside step function, and ρl;n ¼
αln=k⊥ is the radius corresponding to the nth zero of the
Bessel function of the order of l, such that JlðαlnÞ ¼ 0. This
wave function may then be applied to generate the charge
and current densities of the truncated beam ðρeÞtl and jtl,
which are the sources for the electric and magnetic fields
associated with the truncated vortex beam. We now con-
sider a typical electron vortex beam created in a typical
electron microscope. We choose a truncated Bessel beam
with a single ring and the following parameters, which are
typical for contemporary electron microscopes:

beam energy∶ E ¼ 200 keV;

beam current∶ I ¼ 1 nA;

axial wave vector∶ kz ¼ 2.291 04 × 1012 m−1;

radial wave vector∶ k⊥ ¼ 2.291 04 × 1010 m−1.

The normalization factor Nl can be expressed in terms
of the beam current I, which is a measurable quantity.
We have

N2
l ¼

Ik2⊥m
2πeℏkz

R α1l
0 J2l ðxÞxdx

: ð40Þ

Figures 8 and 9 show the spatial distributions of the field
components for the truncated Bessel vortex beams having
l ¼ 1 and 10. The field strengths are seen to be rather small
for the parameters chosen. However, the field strengths
scale linearly with the electric current (I), so that, in
principle, electron vortices with larger field strengths could
be produced experimentally. The z component is particu-
larly interesting as it arises due to the vortex nature of the
beam and is highly localized in a region of the order of an
Å. Note that although the field strengths are particularly
small, their gradients are rather large within the core region
and the axial magnetic field gradient is of the order of
hundreds of Tm−1. This suggests that the electron vortex
can impart a large force on a magnetic particle. Thus the
electron vortex beam could potentially find applications
in investigation of quantum mechanical phase effects due
to localized magnetic systems and has implications for
the possibility of observing the Aharonov-Bohm effect
(Aharonov and Bohm, 1959) at small scales.
In general the vortex electric field is radial and is a

function of the radial coordinate ρ only. It can be written
succinctly as

EðρÞ ¼ ρ̂EρðρÞ; ð41Þ
while the vortex magnetic field has two orthogonal compo-
nents, one axial and another azimuthal

BðρÞ ¼ ẑBzðρÞ þ ϕ̂BϕðρÞ: ð42Þ
The (local) electromagnetic linear momentum density

emerges straightforwardly as

Lloyd et al.: Electron vortices: Beams with orbital angular …

Rev. Mod. Phys., Vol. 89, No. 3, July–September 2017 035004-10



Pem ¼ ϵ0E ×B

¼ ϵ0fẑEρBϕ − ϕ̂EρBzg; ð43Þ

and the corresponding (global) electromagnetic linear
momentum of the vortex beam follows by volume integration.
Evaluating the integral over z yields

Pem ¼ ϵ0D
Z

∞

0

ρdρ
Z

2π

0

dϕfẑEρBϕ − ϕ̂EρBzg: ð44Þ

Since the fields are functions only of ρ (Lloyd et al., 2012),
once again we note that the ϕ component gives a vanishing
integral and we are left only with the axial component. We
have

Pem ¼ ẑ2πϵ0D
Z

∞

0

EρBϕρdρ: ð45Þ

The radial integration can be done numerically using expres-
sions for the fields as functions of ρ.
Next we evaluate the electromagnetic angular momentum

contributions as the integrals of the moment of the electro-
magnetic linear momentum density. We have

Lem ¼
Z

dVr ×Pem

¼ ϵ0

Z
dVfρ̂zEρBz − ϕ̂ρEρBϕ − ẑρEρBzg; ð46Þ

and it is easy to verify that we have a vanishing ϕ integral. The
integral of the ρ component also vanishes and only an axial
component remains. We then have

Lem ¼ −ẑ2πϵ0D
Z

∞

0

EρBzρ
2dρ: ð47Þ

Equations (45) and (47) are two further contributions to the
mechanical properties of the electron vortex beam due to
the vortex electromagnetic nature to be added to Eqs. (30)
and (33) arising from the inertial properties.
Lloyd, Babiker, and Yuan (2013) considered orders of

magnitude that could arise in a feasible experimental arrange-
ment assuming electron vortices created inside a 1 nA electron
microscope of energy 200 keV and transverse wave vector
component k⊥ ¼ 0.01kz. Estimates for the electromagnetic
linear and orbital angular momenta in this scenario are found
to be as follows:

FIG. 8. The electric fields of the Bessel beams of finite radial
extent, for (a) l ¼ 1 and (b) l ¼ 10, respectively. Adapted from
Lloyd et al., 2012.

FIG. 9. The magnetic fields of the Bessel beam of finite radial
extent, for (a) l ¼ 1 and (b) 10, respectively. Note that the
z components of the magnetic fields are 2 orders of magnitude
smaller than the ϕ component. We assumed that the vortex beam
is sufficiently long, as for a current carrying solenoid, allowing us
to ignore beam ending effects. Adapted from Lloyd et al., 2012.
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Pem ≈ 10−34 kgm s−1; ð48Þ

Lem ≈ 10−48 J s. ð49Þ

These are both extremely small compared to the inertial
counterparts. The ratios are as follows:

Pem

Pm
≈ 10−12; ð50Þ

Lem

Lm
≈ 10−14; ð51Þ

so for practical purposes the electromagnetic linear and orbital
angular momenta in such an electron microscope vortex beam
are very small. However, in other contexts the electromagnetic
contributions could be non-negligible as, for example, when
the vortex beam is created in a linear accelerator.
Lloyd, Babiker, and Yuan (2013) also speculated on the

orders of magnitude when electron vortex beams are used to
rotate nanoparticles. They focused on the effects of the vortex
beam on a nanoparticle in the form of a small cylinder of
radius R and length d ¼ R whose axis is assumed to coincide
with that of the vortex beam. A laser beam acts to first levitate
the nanoparticle against gravity as well as the axial force of
the vortex beam so that we have only rotational dynamics. For
orientation as to orders of magnitude we assume that a
minimum angular momentum of ℏ is transferred to the
nanoparticle. We can estimate a value for the angular
frequency of a nanoparticle of fused silica of mass density
of approximately 2.2 × 103 kgm−3 and radius of 10−8 m and
we find using ℏ ¼ IΩ is

Ω ≈ 87.6 Hz; ð52Þ

where I is the moment of inertia of the particle about its axis.
This is much higher than the angular frequency reported by
Gnanavel, Yuan, and Babiker (2012) and Verbeeck, Tian, and
Tendeloo (2013) for a gold nanoparticle on a support. The
experiments seem to indicate that the rotation is damped due
to friction between the nanoparticle and the support. The setup
described by Lloyd, Babiker, and Yuan (2013) in which the
nanoparticle is optically levitated would eliminate the effects
of friction due to a support. Nanoparticles of fused silica
would be easier to rotate as a controlled optical levitation of a
metallic nanoparticle would be more difficult to achieve.

D. Intrinsic spin-orbit interaction

The spin-orbit interaction (SOI) arising in the nonrelativistic
limit is well understood for electrons with orbital angular
momentum bound within atomic orbitals; a similar phenome-
non can be described for a vortex propagating in a radially
inhomogeneous, but axially invariant field (Leary, Reeb, and
Raymer, 2008; Leary, Raymer, and van Enk, 2009; Lloyd et al.,
2012). The source of this coupling is well known in the case of
an external field; however, in the case of relativistic electron
vortices, an intrinsic spin-orbit interaction is also shown to arise
(Bliokh, Dennis, and Nori, 2011). The origin of the interaction
is different in the two cases (the extrinsic, nonrelativistic

coupling compared to the intrinsic coupling within the rela-
tivistic beams) however, the coupling mechanisms are similar
and may be viewed as the electron traveling in an effective
magnetic field, or alternatively as a manifestation of geometric
phase (Leary, Reeb, and Raymer, 2008; Bliokh, Dennis, and
Nori, 2011). The geometrical origins of the spin-orbit coupling
have also been invoked to explain the origin of spin-orbit
interaction in optical vortices, which of course are unaffected
by a magnetic field (Allen, Lembessis, and Babiker, 1996;
Bérard and Mohrbach, 2006; Bliokh, 2006; Leary, Raymer,
and van Enk, 2009). In this section the effects and basis of the
spin-orbit interaction in electron vortex beams are discussed.
In the relativistic and nonparaxial limits, the electron

vortex beam exhibits an intrinsic spin-orbit interaction
(Bliokh, Dennis, and Nori, 2011), in which the orbital angular
momentum depends upon the spin polarization of the beam.
Setting c ¼ 1, the relativistic and nonparaxial electron vortex
eigenstates are found to be (Bliokh, Dennis, and Nori, 2011)

Ψl ¼
eikzz−iωtffiffiffi

2
p

2
664

ffiffiffiffiffiffiffiffiffiffiffi
1þ m

E

p
w

κσz cos θw
eilϕJlðk⊥ρÞ

þ i

0
BB@

0

0

−βκ sin θ
0

1
CCAeiðl−1ÞϕJl−1ðk⊥ρÞ

þ i

0
BB@

0

0

0

ακ sin θ

1
CCAeiðlþ1ÞϕJlþ1ðk⊥ρÞ

3
775; ð53Þ

where w, the two component spinor characterizing the
electron polarization in the rest frame with E ¼ m, is given by

w ¼
�
α

β

�
; ð54Þ

with α and β the projections of the spin polarization state in
the basic eigenstates of Sz in the electron rest frame and
jαj2 þ jβj2 ¼ 1. κ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −m=E
p

and the angle θ describes
the angle of the cone of Bessel plane waves, as shown
in Fig. 5.
It can be seen that two “extra”modes arise in the relativistic

electron vortex solutions, making the relativistic electron
vortex a mixed state of l and l� 1 Bessel modes for spin
s ¼ �1=2. These modes represent contributions of the small
components of the Dirac spinor and vanish in both the
nonrelativistic and paraxial limits. In the nonrelativistic limit
κ → 0, and in the paraxial limit we have sin θ → 0 so that the
pure lmode is recovered. Such solutions demonstrate that spin
and orbital angular momentum are not always separately well
defined except within the paraxial limit, with the relativistic
electron vortex solutions showing similarities to the non-
paraxial optical vortex solutions which also demonstrate an
intrinsic spin-orbit interaction (Barnett and Allen, 1994;
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Jáuregui, 2004; Bliokh et al., 2010). Such an SOI is described
as intrinsic as it does not require the influence of an external
field or propagation medium; the nonparaxial or relativistic
solutions are eigenmodes of the total angular momentum
operator, but not separately of the spin and orbital angular
momentum operators (Barnett and Allen, 1994; Bliokh et al.,
2010; Bliokh, Dennis, and Nori, 2011).
The origin of the intrinsic spin-orbit interaction is geometric

in nature, arising from the momentum dependence of the
modified spin and orbital angular momentum operators
required to maintain the invariance of the total orbital angular
momentum J. This leads to a Berry gauge field k × S=k2, with
corresponding curvature k=k3 having a monopole structure
(Bliokh et al., 2010; Bliokh, Dennis, and Nori, 2011). This
monopole curvature leads to the accumulation of the Berry
phase about the momentum spectrum of the Bessel beam (see
Fig. 5), shifting the relative phase of the plane waves and
modifying the orbital angular momentum of the beam. The
solid angle of the curvature field subtended by the Bessel
beam spectrum determines the magnitude of the coupling; a
larger range of k⊥, i.e., a larger cone opening angle θ,
increases the Berry phase shift across the spectrum. Thus,
in the paraxial approximation the spin-orbit interaction dis-
appears, and spin and orbital angular momentum are fully
separable. The geometrical arguments discussed here are also
applicable to the extrinsic spin-orbit interactions, with the
gauge and curvature in such cases originating from a gross
orbital trajectory of the beam, such as in the photonic spin and
orbital Hall effects (Bliokh, 2006; Bliokh et al., 2008) and the
motion of electrons in an inhomogeneous effective magnetic
field (Bérard and Mohrbach, 2006; Leary, Reeb, and Raymer,
2008; Karimi et al., 2012) or the propagation of photons in an
inhomogeneous medium (Bérard and Mohrbach, 2006; Leary,
Raymer, and van Enk, 2009).
Bliokh and Nori (2012b) extended the treatment of the

electron vortex to polychromatic beams and showed that such
a beam can carry intrinsic OAM at an arbitrary angle to the
mean momentum of the beam.

III. DYNAMICS OF THE ELECTRON VORTEX IN
EXTERNAL FIELD

Electrons subject to an external magnetic field obey a
Schrödinger equation of the form

Hψ ¼ ðp − eAÞ2
2m

ψ ; ð55Þ

where pkin ¼ p − eA is the kinetic linear momentum operator
with A the magnetic vector potential. For example, for a
magnetic field B in the axial z direction, the magnetic vector
potential is azimuthal in the direction

A ¼ Bρ
2
ϕ̂: ð56Þ

Solutions of the Schrödinger equation in the presence of
several different field configurations have been investigated
(Bliokh et al., 2012; Gallatin and McMorran, 2012;
Greenshields, Stamps, and Franke-Arnold, 2012; van

Boxem, Verbeeck, and Partoens, 2013; Greenshields et al.,
2014; Velasco-Martínez et al., 2016; Schattschneider, Grillo,
and Aubry, 2017). The Landau configuration involves a
constant magnetic field in a fixed direction (Landau and
Lifshitz, 1977; Bliokh et al., 2012; Gallatin and McMorran,
2012; Greenshields, Stamps, and Franke-Arnold, 2012), while
the Aharanov-Bohm configuration can involve a single line of
flux (Bliokh et al., 2012). The vortex propagation direction
may be transverse (Gallatin and McMorran, 2012), parallel
(Bliokh et al., 2012; Greenshields, Stamps, and Franke-
Arnold, 2012) to the direction of the field, or in an arbitrary
orientation (Greenshields et al., 2014), and the interaction
between the magnetic moment with the external field leads to
interesting dynamics, as we now explain.

A. Parallel propagation

For the case when the electron vortex beam is propagating
in the same direction as the magnetic field (B ¼ Bzẑ) the
nonrelativistic Hamiltonian of the system takes the form
(Greenshields, Stamps, and Franke-Arnold, 2012)

H ¼ p2
z

2m
þ p2⊥
2m

þ 1

2
mω2

Lρ
2 þ ωLðLzẑþ gsSÞ; ð57Þ

where Lz is the axial component of the orbital angular
momentum operator, S is the spin vector operator, gs is the
gyromagnetic ratio, and ωL ¼ eBz=2m is the Larmor fre-
quency. Here the subscripts z and ⊥ stand for axial and
transverse vector components, respectively.
In the Aharonov-Bohm configuration, with a single flux

line, the solutions to Eq. (55) take the form of Bessel beams,
with current density winding around the flux line (Bliokh
et al., 2012). Similarly, the coaxially propagating eigenstates
of Eq. (55) for a vector potential as in Eq. (56) have the
form of nondiffracting Laguerre-Gaussian modes, with a fixed
“magnetic” width (wB) and magnetic Rayleigh range (zB)
given by the strength of the field (Bliokh et al., 2012;
Greenshields, Stamps, and Franke-Arnold, 2012)

wB ¼ 2

ffiffiffiffiffiffiffiffiffi
ℏ

jeBj

s
; zB ¼ 2

ffiffiffiffiffiffiffiffiffi
2Em

p

jeBj : ð58Þ

The presence of the field alters the probability current
density (Bliokh et al., 2012) j → ð1=mÞhψ jp̂ − eAjψi, so
that the z component of the observable kinetic OAM may be
written as

hLzi ¼
m
R
ρjϕdV

hψ jψi . ð59Þ

The Bessel beam eigenstates of the single flux line take the
form

ψAB ¼ NJjl−ᾱjðk⊥ÞeiðlϕþkzzÞ; ð60Þ

which are still eigenstates of L̂z, with eigenvalue ℏl, but
the observable OAM is now different. Bliokh et al. (2012)
introduced a parameter ᾱ ¼ eφ=2πℏ where φ is the magnetic
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flux. The expectation value of the observable kinetic OAM is
then given by

hLzi ¼ ℏðl − ᾱÞ; ð61Þ

while the charge density distribution is also altered, so that
Bessel beams with l ¼ �1 do not have symmetric charge
distributions in the presence of an external field. This is due to
a Zeeman interaction between the magnetic moment of the
beam and the field. Here, due to the infinitesimal localization
of the flux line along a node of the Bessel beam, there is no
energy or phase shift within the beam.
If the vector potential A relates to a constant magnetic

field B, the beam then undergoes phase and energy shifts.
In this case, the eigenfunctions of Eq. (55) take the form of
nondiffracting Laguerre-Gaussian modes, being radially
described by the Laguerre-Gaussian functions, but having
no width variation (Bliokh et al., 2012; Greenshields, Stamps,
and Franke-Arnold, 2012):

ψL ¼ Nl;p
1

wB

� ffiffiffi
2

p
ρ

wB

�jlj
Ljlj
p

�
2ρ2

w2
B

�

× e−ρ
2=w2

Beilϕeikl;pz ð62Þ

with wB given by Eq. (58), and the longitudinal (axial)
momentum now depends on the OAM and radial quantum
numbers. Since the beam propagates parallel to the field,
there is no transverse deflection, and the gross trajectory is
unchanged; however, the circulation within the vector poten-
tial alters the beam phase as well as the observable orbital
angular momentum, depending on the relative direction of the
circulation of the field and the electron vortex. The energy
eigenvalues take the form

E ¼ ℏ2k2z
2m

− ℏωLlþ ℏjωLjð2pþ jlj þ 1Þ

¼ ℏ2k2z
2m

þ ℏjωLjð2nL þ 1Þ; ð63Þ

i.e., the dynamics is that of free motion with superposed
quantized Landau levels of index nL, such that

nL ¼ pþ jlj
2
½1þ sgnðBlÞ�: ð64Þ

The second term of Eq. (63) has the form of a Zeeman
interaction between the field and the orbital angular momen-
tum, while the third term has the same form as the Gouy
phase term in the diffracting Laguerre-Gaussian beam, relat-
ing to the transverse confinement of the mode (Feng
and Winful, 2001). The Landau levels described by
Eq. (64) are due to the combined effects of the Zeeman
and Gouy phase shifts (Bliokh et al., 2012; Greenshields,
Stamps, and Franke-Arnold, 2012), where the Zeeman energy
shift may be written in terms of the observable orbital angular
momentum

E ¼ ℏ2k2z
2m

− ωLhLzi; ð65Þ

with hLzi incorporating the Gouy phase shift

hLzi ¼ ℏ

�
lþ sgnðBÞh2ρ

2

w2
B
i
�

¼ ℏ½lþ sgnðBÞð2pþ jlj þ 1Þ�: ð66Þ

The Gouy and Zeeman energy shifts lead to additional phase
accumulation on the propagation of the vortex mode,
described by the phase factor of e−iΔðz=zBÞ, with

Δ ¼ ½lþ sgnðBÞð2pþ jlj þ 1Þ�: ð67Þ

Unlike the Bessel beam eigenfunctions of the single flux
line, the charge density distributions of the Landau
Laguerre-Gaussian beams are not affected by the external
field. On the other hand, the current density is altered in a
surprising way, as shown in Fig. 10. If the beam orbital
angular momentum vector is parallel to the field direction
then the current density flow is in the same direction as that
of the free-space Laguerre-Gaussian mode, and the observ-
able OAM is enhanced. For those modes with l ≤ 0 the
observable orbital angular momentum turns out to be
independent of the orbital angular momentum of the mode
and is always greater than zero (Bliokh et al., 2012;
Greenshields, Stamps, and Franke-Arnold, 2012), so that
there is now circulation in the current density of those modes
with l ¼ 0. Additionally, the current density of the modes
with l < 0 changes direction at the radius of maximum
intensity, ρm ¼ wB

ffiffiffiffiffiffiffiffiffijlj=2p
, due to competition between the

negative intrinsic vortex current, which dominates at ρ < ρm,
and the positive circulation induced by the external potential
(Bliokh et al., 2012).
Greenshields et al. (2014) explored the conceptual issue of

conservation of orbital angular momentum for an electron
beam in a uniform collinear magnetic field. They showed that
the electric field associated with an electron beam with an
extended probability distribution, such as that discussed by
Lloyd et al. (2012) for the electron Bessel beam, when
coupled to the external magnetic field, contributes an angular
momentum which precisely ensures the conservation of the
canonical orbital angular momentum of the electron beam in a
magnetic field.

B. Transverse propagation

Substituting Eq. (56) into Eq. (55) and choosing Laguerre-
Gaussian solutions propagating perpendicular to the
magnetic field reveals interesting dynamics relating to the
orientation of the OAM vector projected onto the electron
trajectory or the helicity of the beam (Gallatin and McMorran,
2012)

Σ ¼ L · p=jpj. ð68Þ

In such a field, an electron wave packet with orbital angular
momentum follows the gross circular trajectory expected from
classical electrodynamics, orbiting around the z axis at the
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cyclotron frequency ωc ¼ ejBj=m, with the expected quan-
tized Landau levels. The spin helicity is conserved, however,
the orbital angular momentum vector is found to precess with
the Larmor frequency (equal to half the cyclotron frequency)
ωL ¼ ωc=2. Thus, on traversing a cyclotron orbit, the result-
ing orbital angular momentum vector now points in the
direction opposite to the initial orientation, as shown in
Fig. 11 (Gallatin and McMorran, 2012).
In addition to the rotation of the angular momentum vector,

the physical extent of the wave packet is also found to be
oscillatory when the propagating states are not exact eigen-
states of the Hamiltonian equation (55) (Gallatin and
McMorran, 2012; Greenshields, Stamps, and Franke-Arnold,
2012). Competition between diffractive effects arising from the
propagation of the beam and focusing effects arising due to the
confinement of the harmonic potential of the gross circular
motion cause the length and width of the wave packet to
oscillate, as can be seen in Fig. 11. These effects can be
balanced to avoid such oscillations for wave packets having the
characteristic width and the Rayleigh range determined
by the strength of the field (Bliokh et al., 2012; Gallatin
and McMorran, 2012; Greenshields, Stamps, and Franke-
Arnold, 2012):
The rotation of the orbital angular momentum helicity has

important implications for electron vortex beams subject to
transverse external fields. In particular, the transverse field
components of the magnetic electron lenses may cause some
reorientation of the orbital angular momentum vector as the
beam spirals about the focal point. In particular, this effect will
have consequences for the orientation of the beam orbital
angular momentum when the sample is inside the lens field, as

the change in orientation will not be reversed by the transverse
fields of the opposite direction at the exit of the lens. On the
other hand, these transverse components are small so that the
dominant effect is expected to come from the vortex propa-
gating coaxially with the vector potential.

FIG. 10. The effect of the magnetic field on the circulating current of the nondiffracting Laguerre-Gaussian vortex modes for a
magnetic field directed in the positive z direction, such that the vector potential has the same sense of circulation as the l > 1 vortex
modes. The local character of the azimuthal current is indicated with arrows; it can be seen that the presence of the field induces
circulation, even in the modes for which l ¼ 0. For those modes with l > 0 the observable OAM (listed at the top of each figure) is
increased from that of the bare mode, while those beams with l ≤ 0 have a fixed observable OAM, determined by the field strength and
the radial quantum number p. For those beams with l < 0 the azimuthal current changes direction at the point of maximum intensity.
The top (bottom) panel is for the nondiffracting LG vortex modes with radial index p ¼ 0 (p ¼ 1). The scale bar length is 2wB. Adapted
from Bliokh et al., 2012.

FIG. 11. Phase and intensity of the electron wave packet around
the circular cyclotron trajectory. The wave packet can be seen to
rotate at ωL ¼ ωc=2, such that after one rotation the OAM vector
points opposite to the original direction. The length and width of
the wave packet also oscillates on rotation with the cyclotron
frequency. Note that the scale of the plots of ℜðΨ1Þ is roughly 5
orders of magnitude smaller than that of the jΨ1j2 plots, so that
the phase can be seen. From Gallatin and McMorran, 2012.
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C. Rotational dynamics of vortex beams

By rotation dynamics, we mean the rotation of the trans-
verse structure of the vortex beams as a function of the
distance along the beam axis. As the beams are traveling
waves, this can also be considered as the time evolution of
the wave fronts. This is to be distinguished from the time-
dependent changes in the transverse structure of the vortex
beams at a given plane perpendicular to the beam axis. Such
time-dependent changes are due to the coherent interference
of electron waves with different energies, a process which is
more challenging to investigate experimentally.
The phase change due to the influence of a constant

magnetic field parallel to the beam axis may be observed
in the form of rotations of asymmetric superposition of vortex
states (Bliokh et al., 2012; Greenshields, Stamps, and Franke-
Arnold, 2012; Guzzinati et al., 2013). This effect is very
similar to the Faraday effect in optics causing rotation of
spin polarization (Faraday, 1936; Nienhuis, Woerdman, and
Kuščer, 1992). The orientation of linearly polarized optical
beams rotates on propagation through a magnetic field, due
to circular birefringence acting oppositely on the two spin
components. This effect is not observed for optical orbital
angular momentum, although a “mechanical Faraday effect”
can be induced with the rotation of the medium through which
the optical vortex superposition propagates (Franke-Arnold
et al., 2011). In electron beams such an orbital Faraday effect
arises due to the Zeeman interaction between the field and the
vortex magnetic moment, with apparent rotation due to the
difference in the action of the field on the phase of the vortices
counterpropagating and copropagating with the field (Bliokh
et al., 2012; Greenshields, Stamps, and Franke-Arnold, 2012).
While observable in the electron microscope as an image
rotation, it is quite distinct from the Lorentz force rotation that
is well known in electron lens systems, with the Faraday
rotation occurring even when there is no transverse motion of
the beam axis with respect to the field.
Although the presence of the field causes a change in the

phase, the rotation effect is observable only in the super-
position of vortex states, due to the rotational symmetry of the
single vortex mode. The superposition may have a zero or a
nonzero net angular momentum, referred to as “balanced” or
“unbalanced” superposition, respectively. In each case the
rotation is independent of l, depending instead on the energy
of the beam and the strength of the field. For the balanced
superposition given by

ψb ¼ ψLG
l;p þ ψLG

−l;p0 ð69Þ

the intensity distribution is that of a “petal” pattern with 2l
lobes. As discussed, the change in phase on propagation is
given as Δz=zB. For superposition with fixed energy, the
change in phase due to the presence of the field will
necessarily be different for each vortex component, with
the deviation from the kinetic phase factor given as k ¼ kz ∓
sgnðBÞΔ=zB for the �l modes, respectively. The Gouy phase
shift affects both components in the same way, whereas the
Zeeman term leads to an l dependent phase of∓ sgnðBÞlz=zB
for the �l components. The phase difference between the two
beams is observable as a rotation of the interference pattern by

an angle (Bliokh et al., 2012; Greenshields, Stamps, and
Franke-Arnold, 2012)

δϕl;−l ¼ sgnðBÞz=zB: ð70Þ

This is independent of l, varying with the strength of the field
and the energy of the beam through the characteristic length
zB ¼ ℏkz=mωL, so the characteristic frequency of the image
rotation is the Larmor frequency.
Unbalanced superpositions of two or more vortex states are

those for which the net angular momentum of the beam is
nonzero. For example,

ψub ¼ ψLG
0;p þ ψLG

l;p0 : ð71Þ

Such a superposition has an intensity profile characterized
by l off-axis vortices. In the case of the unbalanced super-
position under the influence of the magnetic field, the
existence of image rotations depends on the relative direction
of the field and the beam propagation (Bliokh et al., 2012).
For the case when the beam is propagating along the field
direction with a net positive OAM, i.e., lsgnðBÞ > 0 the mode
rotates on propagation, with the rotation angle given by

δϕ0;l ¼ 2sgnðBÞz=zB; ð72Þ

which is, once again, independent of the value of the orbital
angular momentum. On the other hand, for those situations
having lsgnðBÞ < 0 there is no image rotation at all, due to
the additional Gouy phase terms canceling with the Zeeman
phase acquired from the countercirculating field (Bliokh
et al., 2012).

D. Extrinsic spin-orbit interaction

The extrinsic SOI for electron vortex beams arises from the
magnetic moment of the electron interacting with an effective
magnetic field due to its motion within an inhomogeneous
external potential. In order to facilitate SOI in the vortex beam,
the external field must be radially inhomogeneous and axially
invariant. In the nonrelativistic limit, the appropriate SOI may
be derived by performing a Foldy-Wouthuysen transformation
of the Dirac equation in the presence of fields (Bjorken
and Drell, 1964). The Foldy-Wouthuysen transformation is a
unitary transformation U ¼ eiSðtÞ, where SðtÞ is an odd, self-
adjoint operator. The Foldy-Wouthuysen transformation
diagonalizes the Dirac Hamiltonian such that the particle
and antiparticle solutions are not mixed, allowing the small
components of the spinor wave functions to be systematically
incorporated and their residual effects ultimately neglected
(Foldy and Wouthuysen, 1950). The transformation takes the
form

HFW ¼ eiSðtÞ
�
H − iℏ

∂
∂t
�
e−iSðtÞ; ð73Þ

where H is the Dirac Hamiltonian. Applying the transforma-
tion and expanding in powers of ðmc2Þ−1 yields a series
expansion of the Dirac Hamiltonian for particle solutions. The
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first few terms give the Pauli equation, the nonrelativistic
Schrödinger equation with relativistic corrections, including
the spin-orbit interaction term

HFW ¼ mc2 þ eΦþ p2

2m
−

p4

8m3c2

−
eℏ
2m

σ ·B −
eℏ2

8m2c2
∇ ·E

−
eℏ

4m2c2
σ · ðE × p − p ×EÞ; ð74Þ

whereΦ is the Coulomb potential. The last term is relevant for
the spin-orbit interaction; since we deal with the external
electrostatic field we have∇×E¼0. AdditionallyE ¼ −∇Φ,
so that the SOI may be written as (Leary, Reeb, and Raymer,
2008; Lloyd et al., 2012)

HSO ¼ −
eℏ

4m2c2

�
1

ρ

∂Φ
∂ρ

�
σ · ðρ̂ × pÞ

¼ −
e

2m2c2

�
1

ρ

∂Φ
∂ρ

�
S ·L: ð75Þ

It can be seen that, in contrast to the atomic SOI, only the
z components of the spin and orbital angular momenta are
relevant. This SOI Hamiltonian may now be applied pertur-
batively to the nonrelativistic vortex solutions to find the
energy shift for the parallel or antiparallel spin and orbital
angular momenta:

δðl;sÞ ¼ −ℏ2lshψ jξjψi; ð76Þ

where

ξ ¼ e
2m2c2

�
1

ρ

∂Φ
∂ρ

�
: ð77Þ

For a positive Coulomb potential, with electric field pointing
radially outward, the parallel (antiparallel) states shift upward
(downward) in energy (Leary, Reeb, and Raymer, 2008; Lloyd
et al., 2012). This causes a splitting of the parallel and
antiparallel states, which can be observed in the rotation of the
superposition of parallel and antiparallel states having the
same s but opposite l. The interference between such states
gives rise to a characteristic “petal-like” interference pattern. If
the parallel and antiparallel states have slightly different beam
energies then the petal pattern will rotate as a function of time.
On the other hand, if the energy is kept fixed then the two
states will have different axial momenta, and the pattern will
rotate as a function of position (Leary, Reeb, and Raymer,
2008). This allows for the possibility of observation of the
relative splitting between the parallel and antiparallel angular
momentum vortex states.
Consider again the electron vortex of Sec. III. The extrinsic

spin-orbit coupling results may be used to find the approxi-
mate energy splitting of an electron in a vortex beam, traveling
within the mean field generated by the beam current. For an
electron vortex with l ¼ 1, the electric field is of the order of a
few hundred Vm−1, giving a splitting of E of the following
magnitude:

Δl¼1 ≈ 3 × 10−13 eV. ð78Þ

This is very small, too small for direct measurement within the
electron microscope; however, an indirect measurement might
be a possibility, such as those involving spin-flip processes of
a spin-polarized beam.
In the optical vortex case, the role of the external field is

played by the refractive index of an inhomogeneous, aniso-
tropic medium (Marrucci, Manzo, and Paparo, 2006). The
coupling between the spin and orbital angular momentum of
light has been exploited in the generation of polarized optical
vortices, using specially structured liquid crystal cells, known
as q plates (Marrucci, Manzo, and Paparo, 2006; Marrucci,
2013). Particular choices of the liquid crystal structure allow
for the complete conversion of spin angular momentum into
orbital angular momentum, controlling the sign of the result-
ing OAM through the polarization of the input mode. A
similar conversion process for electron vortex beams, involv-
ing q plates with a specially structured magnetic field
configuration, has also been proposed (Karimi et al., 2012;
Grillo et al., 2013).

E. Electron vortex in the presence of laser fields

The Schrödinger equation of a quasirelativistic electron
vortex beam in the presence of an electromagnetic field was
set out in Lloyd, Babiker, and Yuan (2012a). For relativistic
electron beams, a second-order Dirac equation incorporating a
transverse electromagnetic field A is given by (c ¼ 1)

�
ðp̂ − eAÞ2 −m2 −

ie
2
Fμνσ

μν

�
Ψ ¼ 0; ð79Þ

where p̂μ ¼ ði∂t;−i▽Þ is the electron four momentum oper-
ator, and Fμν ¼ ∂μAν − ∂νAμ is the electromagnetic field
tensor. σμν is the spin tensor defined by 2σμν ¼ γμγν − γνγμ,
with γμ the 4 × 4 Dirac matrices. Bialynicki-Birula and
Radożycki (2006) showed that classical (cyclotron) and
quantum (Landau) orbits of a charged particle in a constant
magnetic field can be controlled by electromagnetic waves
with embedded vortex lines.
One area of interest is in the interaction of the electron

vortex beam in the presence of a strong field generated by an
ultrashort light pulse. Hayrapetyan et al. (2014) examined the
case of a head-on collision of a relativistic electron vortex
beam and a short laser pulse and showed that the orbital
angular momentum components of the laser field couple to the
total angular momentum of the electrons, causing the center of
the beam to be shifted with respect to the center of the field-
free electron vortex beam. Theoretical estimates suggest that a
shift of 0.02 nm may be induced in a 300 kV electron vortex
beam using a moderately strong laser pulse, so experimental
observation is challenging but feasible.
Ivanov (2012b) considered the case for electron-photon

interactions and demonstrated the entanglement arising from
conservation of the sum of the helicity shown in Eq. (80) for
particle-particle collisions also applies in the case of electron-
photon interactions. There are also plans to use inverse
Compton scattering of laser light by electron vortex beams
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to generate structured x-ray beams (Seipt, Surzhykov, and
Fritzsche, 2014).
In addition to the dynamics of the interactions of freely

propagating vortices and antivortices, collisions between
electrons and other particles carrying orbital angular momen-
tum may also be considered (Ivanov and Serbo, 2011;
Jentschura and Serbo, 2011; Ivanov, 2012b; Seipt,
Surzhykov, and Fritzsche, 2014), with implications for
generating high energy vortices of various species. In such
two-particle scattering situations, there are several possible
outcomes—the particles may be scattered to a range of final
states, including plane-plane or vortex-plane wave states
(Ivanov and Serbo, 2011; Jentschura and Serbo, 2011), or
vortex-vortex entangled states (Ivanov, 2012b). In high energy
electron-particle scattering, due to the scattering geometry,
such collision processes are suitably described by consider-
ation of the orbital helicity of each particle, i.e., the projection
of the orbital angular momentum onto the particles momen-
tum. When both particles are allowed to scatter into a final
vortex state from an initial plane-vortex collision it is found
that there are 2 degrees of entanglement between the two
states—the transverse momentum k⊥ and the orbital helicity
Σ. It is found that the sum of the helicities of the two final
states is approximately the same as the helicity of the incident
vortex state, i.e.,

Σf;1 þ Σf;2 ≈ Σi; ð80Þ

the larger helicity tending to accompany the larger transverse
momentum, which may fall within a range determined by the
transverse momentum of the incident vortex (Ivanov, 2012b).
This result may be applied to generate vortex-entangled
particles or different species by collision, or additionally
opens up the possibility of applying vortex states to high
energy particle physics through colliding high energy vortex
electrons with protons or other particles.

IV. GENERATION OF ELECTRON VORTEX BEAMS

Because of the similarities between the wave equations
for electron and optical vortices, it has in many cases been
relatively straightforward to adapt successful ideas from
optical vortex research to similar ends in electron vortex
applications. For the particulars of optical vortex generation,
we refer the interested reader to the more recent reviews
(Molina-Terriza, Torres, and Torner, 2007; Yao and Padgett,
2011). Broadly, the methods by which electron vortex beams
may be generated may be classified into three main categories
involving phase plates, diffractive optics, and electron optics,
with those based on phase plates and diffractive optics being
analogs of optical vortex technologies and electron optics
methods forming an entirely new area. Initial success in
electron vortex beam production involved materials-based
diffractive elements and phase plates; however, the electron
optics approach appears promising in terms of versatility and
overcoming the efficiency limitations of the holographic
plates (Yuan, 2014). In addition, photoemission was consid-
ered to be a possible source of electron vortex beams
(Takahashi and Nagaosa, 2015).

A. Phase plate technology

The concept of the phase plate for an electron beam is not
new (Nagayama, 2011), with early examples such as the
Zernike phase plate designed for enhancing phase contrast
of biological materials (Kanaya et al., 1958). In the absence
of any external fields, the effective refractive index for an
electron traveling within a solid is given by (Reimer and Kohl,
2008)

neff ¼ 1 −
eU
E

E0 þ E
2E0 þ E

; ð81Þ

where E0 is the electron rest mass energy, E is the kinetic
energy of the incident electron, and U is the material specific
mean inner potential. For example, neff is approximately
1.000 82 in silicon nitride for 100 keV electrons. The relative
phase shift for a material of thickness Δt is then given by

Δϕ ¼ 2πðneff − 1ÞΔt
λ
. ð82Þ

For example, to achieve a relative phase delay of π for a
200 keV beam, which has a wavelength of 2.5 pm, a thickness
difference in a silicon nitride film of 42 nm is required (Shiloh
et al., 2014); the precise thickness may vary (Bhattacharyya,
Koch, and Rühle, 2006; Grillo, Gazzadi et al., 2014; Harvey
et al., 2014) depending on many experimental factors such
as the crystallinity of the film or the surface coating both
intended and incidental such as carbon contamination.
Spiral phase plates are well known in optical vortex beam

generation (Turnbull, 1996; Sueda et al., 2004; Yao and
Padgett, 2011) and consist of a thin film plate of a refractive
material whose thickness changes continuously about the axis.
The helical shaped thickness profiles of the plates impart
angular momenta to a transmitting laser beam. Phase plates
may be produced for millimeter wavelengths down to optical
wavelengths (Turnbull, 1996; Sueda et al., 2004; Yao and
Padgett, 2011).
The first experimental demonstration of an electron vortex

beam by Uchida and Tonomura (2010) involved the use of a
stepped spiral phase plate constructed of stacked graphite
flakes. Their stepped phase plate was made of spontaneously
stacked flakes of graphite, leading to a discrete rather than a
continuous change of its thickness profile. The edges of the
steps cause extra phase jumps to appear at different points in
the beam cross section in addition to the discrete 2π phase
change of the desired vortex structure. This was observed in
Uchida and Tonomura’s experimental results via interference
patterns and in-plane phase profile. The transmitted beam thus
did not demonstrate the required characteristics of a pure
vortex state with integer orbital angular momentum, but was
nevertheless the first experimental demonstration of a freely
propagating mixed vortex state. However, the particular
arrangement of the graphite flakes cannot be properly con-
trolled and they lead to phase defects. In addition, being made
of carbon, under the influence of the high energy electron
beam the flakes are subject to damage and deformation, and
the phase plate loses its integrity. As such, the stepped graphite
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phase plate is not suitable for long-term, reproducible vortex
generation.
The production of continuous spiral phase plates was

recently attempted using focused ion beam etching of a
silicon nitride membrane (Shiloh et al., 2014). However,
the resulting doughnut-shaped beam profile has an opening,
indicating a noninteger vortex beam has been produced
(Berry, 2004), probably because of the difficulty of achieving
precise refractive index and wavelength matching require-
ments. It was estimated that 1 nm thickness error results in
2%–3% unwanted variation in phase. On the other hand, a
similar phase variation can be obtained by a change of 1 kV in
the electron energy, indicating that there is some room for
adjustment after the phase plate has been made. Thus the
challenge of fabricating the spiral phase plate for the electron
vortex beam is to produce a thickness profile to the required
smoothness and precision. Another inherent problem of using
matter-based electron-optical elements is the unavoidable
scattering of the transmitted electrons other than those arising
from mean inner potential. This can cause undesired effects
such as additional phase shift or loss of coherence.

B. Holographic diffractive optics

Holographic reconstruction is a well-known technique
in both optical and electron microscopy (Gabor, 1948;
Tonomura, 1987; Saleh and Teich, 1991). It was used to
increase image resolution by reconstructing the image from
the interference pattern between the diffracted and nondif-
fracted components of the incident wave. The same principles
of holography may be used to reconstruct an image or a wave
function. The method involves passing an input wave through
a computer generated hologram (CGH) generated via the
interference between a reference wave and the required output
mode. Most of the holographic diffractive optical masks
produced to date are constructed out of thin membrane films
of materials such as silicon nitride. This either can be of
varying thicknesses for phase grating structures or can be of
a uniform thickness with additional heavy metal coating,
forming a binary amplitude grating structure. There was also a
proposal to use the Kapitza-Dirac effect to produce electron
vortex beams by the formation of optical dislocated gratings
(Handali, Shakya, and Barwick, 2015). When a pulsed laser
source is used this method enables pulsed electron vortex
beams to be produced for use in time-resolved studies.
The holograms employed in vortex optics are constructed

from the interference pattern between the vortex mode and a
nonvortex reference wave:

I2holoðrÞ ¼ jψvortex þ ψ ref j2; ð83Þ

where the choice is often for the reference wave to be a tilted
plane wave, although other waves such as spherical reference
waves (Saitoh et al., 2012; Verbeeck, He Tian, and Béché,
2012) can also be used.
The holographic masks for vortex beam generation are

versatile and are relatively easy to produce, however, they also
have their drawbacks. Most of the masks reported to date are
based on binary amplitude modulation holography (Verbeeck,
Tian, and Schattschneider, 2010; McMorran et al., 2011;

Clark et al., 2012), and as such produce very low intensity in
the desired diffraction orders of approximately 6% of the
incident beam intensity. This is because most of the beam
intensity incident on the mask is blocked, although improve-
ments have recently been reported with the use of phase
modulation holograms (see Sec. IV.B.3). Furthermore, since
multiple diffraction modes are produced in the binary holo-
graphic mask, the isolation of a mode of interest for specific
applications can be tricky (Idrobo and Pennycook, 2011;
Krivanek et al., 2014; Pohl et al., 2016) and this feature limits
the practical use of holographic masks as a vortex beam
generator.

1. Binarized amplitude mask

Direct interference of a vortex beam with a plane reference
wave produces a characteristic pattern of fringes with
smoothly varying intensity. The reproduction of this continu-
ous variation, in terms of varying either film thickness or some
other properties of the materials, is as or even more technically
demanding as the fabrication of a smoothly varying spiral
phase plate. A more practical alternative is to replace the
continuous intensity variation by a discrete variation, such as
the selective total removal of material in order to mask the
beam, where empty spaces correspond to fringe maxima, and
material regions of beam blocking thickness correspond to
minima of the interference pattern. Such a mask is known
as a binary amplitude hologram and is well known in optics
(Lee, 1979). For electron beams, binary holographic masks
may be relatively simply fabricated by focused ion beam (FIB)
etching or electron lithography. Using such a binarized CGH
mask, Verbeeck, Tian, and Schattschneider (2010) produced
the first pure electron vortex beam. The principles behind
generating a suitable binarized transmission grating can be
demonstrated using the case of a simple vortex mode traveling
in the z direction (neglecting any normalization factors, see
Sec. II.B.3) given by

ψvortexðrÞ≡ ψ lðrÞ ¼ eilϕeikzz. ð84Þ

The hologram pattern is generated by the interference of this
mode with a reference plane wave traveling at an angle such
that kx is the component of the plane wave momentum
orthogonal to the z direction:

ψ refðrÞ≡ ψpðrÞ ¼ eikxxeikzz. ð85Þ

Any component of the plane wave momentum in the z
direction does not contribute to the interference pattern.
The interference is constructed by evaluating the superposi-
tion of the two waves at z ¼ 0:

Iholo ¼ 1
4
jψ l þ ψpj2; ð86Þ

which is particular to the beam of interest. The prefactor is
chosen to produce a pattern which oscillates between 0 and 1.
For the phase vortex, the characteristic pattern is an edge
dislocation, with lþ 1 edges, also known as a fork disloca-
tion. The interference pattern may then be binarized by
clipping the pattern, for example,
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Ibiholoðρ;ϕÞ ¼
�
1 Iholo ≥ 0.5; ρ ≤ Rmax;

0 Iholo < 0.5; ρ > Rmax;
ð87Þ

for a maximum aperture radius Rmax. A similar process has
been followed to produce holographic masks using Bessel
or Laguerre-Gaussian vortex functions (Clark et al., 2012).
Despite the different radial structures of the Bessel, Laguerre-
Gaussian, or the simple vortex beam of Eq. (84), the resulting
binarized holographic masks are very similar (Clark et al.,
2012), indicating the binarization primarily picks out the
strong intensity modulation due to the phase variation and
“irons out” the more subtle amplitude variation of the different
types of vortex modes.
The binary masks for l ¼ 1 and l ¼ 3 Bessel beams are

displayed in Fig. 12, showing the corresponding lþ 1 edge
dislocations. Such mask patterns are then embedded into
something opaque to the radiation of interest—a printed film
(Heckenberg, McDuff, Smith, Rubinsztein-Dunlop, and
Wegener, 1992; Heckenberg, McDuff, Smith, and White,
1992) or a spatial light modulator (Yao and Padgett, 2011)
for optical beams, or in the case of electron beams a FIB
etched metal or silicon nitride film (Verbeeck, Tian, and
Schattschneider, 2010; McMorran et al., 2011)—and placed
into the path of the incident beam. Diffraction of the beam
through the masks produces the desired vortex beams.
The far-field diffraction pattern resulting from the trans-

mission of a plane wave through a CGH mask is given by the
Fourier transform of the mask. This produces a nondiffracted
zero-order beam, along with a series of vortex beams and their
complex conjugates. From ordinary diffraction grating theory,
we know that even harmonics will be absent if the widths of
the masked grating elements are half of their spacing (Born
et al., 1997). When this condition is only approximately
satisfied, a common occurrence for many binary amplitude
masks, the odd order diffraction beams are usually more
intense than the even order beams. An example for the
diffraction of a binary amplitude CGH mask is shown
in Fig. 13.
A characteristic feature of the binarization process is to

introduce higher diffraction orders, generated from the step
edge approximation to the sinusoidal transmission variation
expected from the straightforward superposition of the vortex
and the reference waves. This allows for the generation of

higher order vortex beams than those encoding the original
interference pattern, due to the inclusion of the high order
harmonics of the original superposition in the binary holo-
graphic mask. Taking advantage of this mechanism, very
high orders of orbital angular momentum have been demon-
strated in electron beams. Using a CGH mask designed for
l ¼ 25 beams, vortices with l ¼ 100 have been demonstrated
(McMorran et al., 2011). Naturally, these higher order
diffracted beams are significantly less intense than the first-
order beams. Recently, it was shown that an electron vortex
beam of winding number l ¼ 200 can be generated from the
first-order diffraction peak (Grillo et al., 2015).
The CGH mask itself is not chiral, and so unlike a phase

plate cannot impart orbital angular momentum to the trans-
mitted beam by directly modulating the phase of the wave
front. Instead, the mask decomposes the input plane wave into
a set of left- and right-handed vortices, so that the vanishing
total orbital angular momentum of the incident wave is
conserved [and so the mask may also act as a mode analyzer
(Saitoh et al., 2012)]. The various diffraction orders propagate
from the mask at some angle ϕs to the optical axis of the
incident beam, so that in the far-field different vortex beams
are angularly separated. The magnitude of the transverse wave
vector of the reference wave kx relative to the longitudinal
wave vector kz determines the angles at which the diffracted
beams exit the hologram, such that a large kx increases the

(a) (b)

FIG. 12. The typical forked mask pattern produced by binariza-
tion of the interference pattern between a Bessel vortex wave and a
plane reference wave for (a) l ¼ 1 beam, and (b) l ¼ 3 beam.

(a)

(b)

(c)

FIG. 13. The far-field diffraction pattern and phase distribution
of the binary CGH amplitude mask to produce (l ¼ 1, p ¼ 1)
FT-TBB beams shown in Fig. 7. (a) The diffracted beams, with
several diffraction orders present; high intensity is indicated by
white, zero by black. The phase of the beams is shown in (b), the
opposite phase of the two sets of sidebands can be seen, with the
nth order beams displaying a phase change of 2πn. The rainbow
scale indicates phase change from 0 (red) to 2π (purple). (c) The
intensity of the various vortex beams. The central minima of all
the diffracting beams are clear in the intensity patterns.
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angular separation between the different diffracted orders
(Heckenberg, McDuff, Smith, Rubinsztein-Dunlop, and
Wegener, 1992; McMorran et al., 2011). The angle of the
first-order diffracted beam, for a Bessel vortex beam, is

ϕs ¼
λ

d
¼ kx

kz
ð88Þ

for grating separation d, which is related inversely to kx. The
nth order diffracted beam emerges at an angle nϕs while
the zero-order beam propagates along the original direction of
the incident wave. A particular diffraction order of interest
may be realigned to this optical axis by illuminating the
hologram with a beam with transverse momentum nkx
(Schattschneider et al., 2012). The transverse momentum of
the vortex beam itself k⊥ is determined by the size of the mask
aperture; for the Bessel beam we have

k⊥ ¼ λ1l
Rmax

ð89Þ

with λ1l ≈ 3.81 the first zero of the Bessel function JlðxÞ. A
similar relationship applies for other vortex beams. For
example, in the case of the Laguerre-Gaussian modes, λ1l
is replaced by the relevant radius of the Laguerre-Gaussian
mode at z ¼ 0.
In a binary hologram, the phase information is encoded as a

lateral shift of the interference fringes, suggesting that the
phase structure of the vortex beam can be recovered whatever
the shape of the fringe (Clark et al., 2012).
CGH masks are much more versatile and controllable than

spiral phase plates as described in Sec. IV.A. Each diffraction
order is a pure phase vortex of strength nl as each is a unique
vortex “harmonic” of the incident vortex beam with orbital
angular momentum of integer order lℏ. The CGH masks may
be constructed out of materials that are resistant to beam
damage and will have a longer useful lifetime than a spiral
phase plate constructed of graphite thin films; in addition the
results are directly reproducible, and in principle any order of
orbital angular momentum may be specified, as demonstrated
by the production of electron vortex beams with high values of
orbital angular momentum (McMorran et al., 2011). On the
other hand, note that the binary CGH mask itself will block
much of the incoming beam, so that only ∼50% of the incident
intensity is transmitted. Approximately 25% of the incident
intensity is channeled into the zero-order beam, with the
higher order beam decreasing in intensity. The first-order
diffracted beams share ∼12% of the incident intensity, which
is not sufficient for many experimental applications.
Forked apertures have been used to generate electron

vortices in transmission electron microscopes (TEM)
(Verbeeck, Tian, and Schattschneider, 2010; McMorran et al.,
2011; Verbeeck et al., 2011; Schattschneider et al., 2012) and
are now a standard technique in experimental electron vortex
physics. The first proof-of-principle demonstration involved
a 5 μm diameter CGH mask cut from platinum foil, with a
single fork dislocation generating left- and right-handed
vortex beams. The second instance of this holographic vortex
generation involved silicon nitride films milled with very
high resolution features (McMorran et al., 2011); the high

resolution milling allowed for the cutting of narrowly spaced
gratinglike linear patterns, so that the diffracting beams
produced had a large angular separation. The high resolution
milling also enabled the fine features of holographic masks for
generating vortex beams of higher order to be accurately
reproduced. A forked mask encoding a vortex beam with a
topological charge l ¼ 25 was demonstrated. For structural
stability of this fine featured CGH mask, the edge dislocation
is not reproduced within the central region. However, leaving
a solid block at the very center of the mask did not seem to
significantly impair the function of the mask, and vortices
with clear central dark cores were produced with the fourth-
order diffracted beam carrying 100ℏ orbital angular momen-
tum (McMorran et al., 2011), demonstrating the versatility of
the uses of binary CGH masks over spiral phase plates.
The phase structure and vorticity of the resulting beams

were confirmed by observation of the forked interference
fringes (Verbeeck, Tian, and Schattschneider, 2010;
McMorran et al., 2011), and by the persistence of the axial
dark core of the vortex on propagation and diffraction
(McMorran et al., 2011). A beam that simply has an annular
profile will spread radially both inward and outward, oblit-
erating the central zero intensity away from the focal point,
whereas a beam with a phase singularity must preserve
this singularity as the orbital angular momentum must be
conserved.

2. Binary phase mask

The binarized CGH masks rely on the amplitude modula-
tion of the transmitted wave in order to separate the orbital
angular momentum components. Diffraction can also occur
through a phase modulating CGH grating (Grillo, Karimi
et al., 2014; Harvey et al., 2014) and offers an alternative
method for the generation of vortex beams.
As in the case of the phase plate technology, a phase CGH

mask can be produced by imprinting the desired phase change
into a silicon nitride film with the thickness variation given by

Δϕðρ;ϕÞ ¼ CUΔtðρ;ϕÞ; ð90Þ

where C is a coefficient determined by the energy of the
electron beam and U is the mean inner potential as defined in
the context of Eq. (81). The advantages of the phase grating
technique are the increased control over the radial structure of
the vortex beam and that it could potentially enable higher
intensities to be transmitted into desired orders.
As a demonstration of the control of the radial structure of

the vortex beams, Grillo, Karimi et al. (2014) were able to
demonstrate approximate nondiffracting and self-healing
electron Bessel beams over a range of 0.4 m (compared with
0.16 m for a conventional electron beam with the same spot
size). This was done by encoding the following phase
modulation into a phase mask:

Δϕlðρ;ϕÞ ¼ Δϕ0sgn

�
cos

�
k⊥ρþ lϕþ 2π

d
ρ cosϕ

��
; ð91Þ

where Δϕ0 and d are the maximum size of the phase
modulation and the wavelength of the reference plane wave
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used, respectively, and other symbols have the meaning
defined in Eq. (14). Figure 14 shows two kinds of nonzero
order beams representing approximate vortex Bessel beams.
The multiple ring structure seen is a characteristic of the
electron probability distribution of the Bessel beam. The
nondiffracting nature has been observed both in the optical
(McGloin and Dholakia, 2005) and now also in the electron
Bessel beams (Grillo, Karimi et al., 2014).
The nondiffractive nature of the electron Bessel beams

might be particularly useful in electron tomography (Midgley
and Dunin-Borkowski, 2009), where it can enable different
planes within a material to be imaged with the same
resolution, without the need to correct for the focus.
As almost all the electrons are transmitted through the

phase holographic mask, the efficiency of vortex beam
generation is expected to be higher than that of the amplitude
holographic mask. For an ideal binary phase holographic
mask, the power of diffracted electrons at the first order of
diffraction can reach up to approximately 40% of the incident
beam (Magnusson and Gaylord, 1978), which is about 4 times
higher than that generated by the amplitude holograms.
However, the pattern generated in the FIB turns into an
approximate sinusoidal form, and thus the efficiency of the
generated beam is approximately 17% smaller than an ideal
binary profile (40%) with the same size of the thickness
variation (Grillo, Karimi et al., 2014; Harvey et al., 2014).

3. Blazed phase mask

The increase in efficiency is an important goal for electron
vortex beam generation (Yuan, 2014), since significant
improvements in vortex beam brightness are required for
the various applications currently being pursued. Using a

blazed grating approach, Grillo et al. demonstrated increased
transmission of 25% intensity into the l ¼ 1 vortex mode. As
before, the specific pattern to be milled is the characteristic
forked pattern; however, with the introduction of blazing to
the grating pattern, a higher intensity may be projected into the
desired mode. As can be seen in Fig. 15 the mask fabricated by
Grillo, Gazzadi et al. (2014) was a good approximation to a
perfectly blazed grating, and as such the results show a
significant intensity decrease in the zero-order l ¼ 0 vortex,
with substantial increase in the first-order beam with l ¼ 1;
the intensity distribution of the diffraction orders is now
strongly asymmetric.
Nevertheless, one fundamental issue with this phase holo-

gram approach is the inevitable energy spread that will arise
within the beam, due to the inelastic scattering of electrons as
they pass through the mask. For certain applications this will
not be a problem as the inelastically scattered components of
the electron beam can be removed by energy filtering.
However, for applications such as spectroscopy, this may
result in unacceptable loss of intensity and the presence of
inelastically scattered components. In such instances, the use
of a purely phase shifting device such as those using electron
optics alone will be required.
Note that the theoretical maximum efficiency for an ideal

blazed phase hologram is 100% in optics. As no absorption
and scattering are involved, this value refers to both absolute
efficiency and relative transmitted efficiency in optics (Grillo,
Gazzadi et al., 2014). In the context of refractive-material-
based blazed gratings for electron vortex beam generation, the
absolute generation efficiency will be limited by the inevitable
large angle elastic scattering and incoherence due to inelastic
scattering processes. As a result, the absolute efficiency is
much lower than the relative transmission efficiency for the
electron vortex case. At the time of writing of this review, the
best transmission efficiency reported by Grillo et al. (2016) is
37% out of a theoretical limit of 38% for their partially blazed
phase mask. On the other hand, McMorran et al. (2017)
reported a much larger value of 70% for the absolute trans-
mission efficiency for their blazed mask. Clearly more work is
needed to investigate the practical limits to the generation
efficiencies using optimized blazed phase masks.

FIG. 14. Comparison of the theory and the simulation of the
nonzero order approximate Bessel-type electron vortex beam.
The topological order of the beams is denoted by n, which is
identical to the l defined in this review. Adapted from Grillo,
Karimi et al., 2014.

FIG. 15. The blazed phase grating. (a) An SEM image of the
mask, with electron-energy-loss measured thickness profile in
(b). (c) Typical heights of the grating maxima and minima, with
an ideal blazed profile in (d) for comparison. Adapted from
Grillo, Gazzadi et al., 2014.
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4. Choice of reference waves

The holographic mask production techniques outlined may
also be applied with different reference waves. Another
common choice in optics is a wave with a spherical wave
front (Heckenberg, McDuff, Smith, Rubinsztein-Dunlop, and
Wegener, 1992; Kotlyar et al., 2006), sharing an axis with the
desired mode. This also produces a characteristic interference
pattern, a spiral with l arms, as shown for the l ¼ 1 and 3
vortices in Fig. 16, alongside the corresponding binarized
mask. The action of these holographic masks on an incident
plane wave is very similar to that described for the forked
mask; however, instead of the beams being separated by an
angle, they are separated along the propagation direction. For
the l ¼ 0 nonvortex beam, the use of a spherical reference
wave of curvature 1=f results in the familiar Fresnel zone
plate, as shown in Figs. 16(a) and 16(d). The vortex and zero-
order modes transmitted through the spiral hologram pro-
duced using this reference spherical wave focuses at different
points separated by a distance f (Heckenberg, McDuff, Smith,
andWhite, 1992; Verbeeck, He Tian, and Béché, 2012). When
the beam as a whole is properly focused by an electron lens,
the zero-order beam will be in the focal plane of the electron
lens, while the first-order diffracted beams are focused at a
distance f in front and behind the focal plane of the electron
lens. For electron microscopy, this has the advantage that
overfocusing or underfocusing the beam enables the different
vortices to be brought into focus onto the focal plane, where
they may then be utilized with minimum involvement from the
other orders in the beam (Verbeeck, He Tian, and Béché,
2012). Unlike the forked masks, these underfocused or
overfocused vortex beams should be useful for scanning
electron microscopy (SEM); although the additional vortex
modes will lead to a background contribution, reducing the
signal-to-noise ratio of the vortex mode in focus.

The use of a spiral holographic mask was demonstrated for
electron vortices of various topological charges (Saitoh et al.,
2012; Verbeeck, He Tian, and Béché, 2012). As with the high
order forked mask of McMorran et al. (2011), the stability of
the mask structure requires a reinforced (Saitoh et al., 2012)
center or supporting struts (Verbeeck, He Tian, and Béché,
2012); it was found in both simulations and experiments that
the supporting struts did not significantly impair the integrity
of the vortices produced (Verbeeck, He Tian, and Béché,
2012). However, one issue with the application of a spiral
mask is that the coaxial presence of the different diffraction
orders leads to a relatively large background signal, causing
the intensity of the center of the vortex to be increased from
zero (Verbeeck, He Tian, and Béché, 2012). In order to reduce
this overlapping effect as much as possible, the focal length
of the corresponding Fresnel zone plate must be very long.
A long focal length f means the arms of the spiral would
rapidly decrease in separation toward the edge of the aperture.
This requires very fine features in the holographic mask, a
requirement similar to the case involving a large kx giving a
high diffraction angle ϕs and decreasing the grating separation
Eq. (89) in the dislocated grating mask. Additionally a highly
coherent beam with a large convergence angle is required,
stretching the limits of current microscope and FIB
technology.

C. Electron optics methods

Material-based electron optics is not flexible, requiring a
specific mask for a single type of beam generation, and is also
highly inefficient. In general, modern electron microscopy
avoids the use of such elements, instead relying almost
exclusively on carefully controlled electrostatic and magnetic
interactions to control the trajectory of the electron beams.
With the exception of apertures, the shaping of the electron
beam is in general accomplished by purely phase-transforming
devices.
Modern aberration-corrected electron microscopy already

has many multiple lenses in addition to the standard round
lens (Rose, 2008). These existing multiple lens systems have
been exploited to generate a structured phase shift to covert a
nonvortex beam into a beam containing electron vortices, with
the promise of high efficiency (Clark et al., 2013). In addition,
the lens aberration itself has also been used by Petersen et al.
(2013) to show that electron diffraction catastrophes can be
created in this way, containing arrays of intensity zeros
threading vortex cores.

1. Spin-to-orbital angular momentum conversion

One possibility is the generation of electron vortices from
spin-polarized electron beams using q filters, in analogy with
the q plates of optics. So called “q plates” have been available
in optics since 2006 and have found applications in quantum
information; these devices are based on patterned liquid
crystal (LC) filters which allow the conversion of spin-
polarized optical beams to oppositely spin-polarized vortex
beams (Marrucci, Manzo, and Paparo, 2006; Marrucci et al.,
2012). The action of the q plate is based on the birefringent
action of the LC which is also inhomogeneously patterned,

(a) (b) (c)

(d) (e) (f)

FIG. 16. Spiral interference patterns and masks of vortices
interfering with spherical waves. (a) The in-plane intensity pattern
for a nonvortex beam interfering with an outward propagating
spherical wave; binarization of this intensity pattern, forming a
Fresnel zone plate, is shown in (d). (b), (e) The continuous and
binarized interference patterns, respectively, for an l ¼ 1 vortex
beam interfering with the spherical wave. (c), (f) The same for the
l ¼ 3 vortex beam.
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such that spin and orbital angular momenta are exchanged
between the beam and the LC. The LC thickness and
patterning may be tuned in such a way as to facilitate the
transfer of the spin and angular momentum of the beam, such
that changes of spin angular momentum by 2 are accompanied
by a change in OAM of −2q, where q refers to the order of the
singular defect of the patterning of the LC optic axis. Other,
more complex LC patterning may also be utilized to produce
vector beams with specific polarization profiles (Cardano
et al., 2012).
In an electron spin-to-orbital angular momentum conver-

sion device the conversion effect is produced by the action of a
spatially varying magnetic field on the beam over a specifi-
cally matched length, inducing a spatially dependent geo-
metric (Berry) phase (Karimi et al., 2012). Such a device takes
the form of a spatially inhomogeneous Wien filter, with the
trajectory altering action of the magnetic field balanced by the
presence of an orthogonal electric field with the same spatial
inhomogeneity. As with the LC filter, the multipolar fields of
the electron q filters also contain a topological defect (a field
zero) at the center, the order of which determines the value of
q. Quadrupole fields give a q value of −1, for hexapole fields
q ¼ −2, and so forth. The filter is most effective for annular
beams, so that it is more efficient to add or subtract q units of
orbital angular momentum from a vortex beam (for example,
for discrimination between different vortex modes) rather than
create a vortex beam from a Gaussian or other nonvortex
beam.
Upon transmission through the q filter a precession of the

electron spin is induced by the magnetic field. This is
accompanied by a position-dependent geometric (Berry)
phase shift, which is the source of the orbital angular
momentum of the resulting beam (Karimi et al., 2012).
The two spin components of the electron beams are oppositely
affected, so that the resulting beam is in a mixed state having
orbital angular momentum l� q and spin angular momentum
∓ 1=2 (Schattschneider, Grillo, and Aubry, 2017). Since high
brightness spin-polarized electron beams are not currently
available, the q filter is not viable as a method of generating
useful electron vortices; however, conversely the q filter may
be used with l ¼ �1 vortex beam and appropriate apertures
and OAM sorters to obtain nonvortex spin-polarized electron
probes for various applications (Karimi et al., 2012, 2014;
Grillo et al., 2013).

2. Magnetic monopole field

The field distribution of a magnetic monopole provided the
ideal phase shift to convert a planewave into a vortex beam (Wu
and Yang, 1976). Such a monopole field has been considered
for use in electronmicroscopy as early as 1992 (Kruit and Lenc,
1992). In the absence of such monopoles, the edge fields of a
suitable thin wire magnetized along its long axis have been
shown to induce a phase ramp around the beam that approaches
2π (Béché et al., 2013; Blackburn and Loudon, 2014), opening
the possibility of producing high-intensity vortex beams, in
addition to improvements in phase contrast imaging. This
method is potentially versatile, since the phase change of the
beam depends on the magnetic flux contained within the
needle, so that higher and noninteger vortex states may also

be created (Blackburn and Loudon, 2014).When such a needle
is placed in the middle of the aperture for the vortex forming
lens, over 90% incident beam can be converted (Béché,
Juchtmans, and Verbeeck, 2017). This high efficiency is a
very useful property for many applications. This method also
has the distinct feature to be independent of the energy of the
electron beam, making it a potential avenue for producing
ultrashort pulsed electron vortex beams. The main challenges
in the use of monopolelike fields to create vortices will be
the control of the fields themselves—the field geometry and
strength are significantly affected by the thickness, width, and
magnetization of the needle. Slight artifacts of the fabrication
process may substantially affect the shape of the fields, as
discussed in detail by Blackburn and Loudon (2014), resulting
in some mixing of different vortex states (Béché, Juchtmans,
and Verbeeck, 2017).

3. Vortex lattices

Vortices were originally described as screw-type disloca-
tions in wave fields produced by the interference of three
or more plane waves (Nye and Berry, 1974). In electron
holography (Tonomura, 1987), electrostatic biprisms have
been used to split the wave front of a plane wave into two tilted
plane waves which are then deflected toward each other to
produce standing wave patterns in the overlap region. By
using two electrostatic prisms, we can obtain two overlapping
standing waves. The crossings of the nodal lines in the
standing waves are locations of vortices which form a regular
array. Both square and triangular arrays of vortices are
produced in this manner by adjusting the relative angles of
the two sets of standing waves (Niermann, Verbeeck, and
Lehmann, 2014; Dwyer et al., 2015). Such lattices will have a
pattern of vortices and antivortices regularly arranged, with
locally varying orbital angular momentum density. In the
square lattice, the resulting wave front contains an array of
dark spots, phase singularities of topological strength jlj ¼ 1
with phase circulation alternately left- or right-handed about
adjacent cores. In practice, due to position-dependent phase
shifting aberrations within the electron lenses or that caused
by the sample, there is an overall shift in the position of the
vortex cores across the array. This effect can be used to map
out the phase shift in the electron-optical systems or that
caused by the sample. Regular vortex arrays may also find
applications in spectroscopy, so that the analysis might be
performed simultaneously over a larger region of the sample,
while reducing the average distance between the vortex lines
and the atoms, and thus the off-axis contributions (see
Sec. VI.A) (Niermann, Verbeeck, and Lehmann, 2014).
A more complex form of interference of waves is that which

causes diffraction catastrophes and caustics, which can also
lead to the formation of vortex arrays (Nye, 2006; Petersen
et al., 2013). A lattice of vortex-antivortex pairs has been
shown to surround the caustics formed from both astigmatic
and coma induced diffraction catastrophes in the electron
microscope, along with the existence of additional vortices
inside the caustic. The wave fields of such caustics present
the opportunity to study complex vortex behaviors with
twisted vortex trajectories and loops being apparent
(Petersen et al., 2013).
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D. Hybrid method

1. Lens aberrations

Clark et al. (2013) used electron-optical aberration to
generate an azimuthal phase ramp at the back-focal plane
to produce an isolated electron vortex beam. Comparison of
the aberration correction series and the Fourier series of the
vortex phase shows that a good approximation to the vortex
phase ramp can be made by minimizing all aberrations except
for the various orders of astigmatism. Matching the astigma-
tism to the desired phase shifts and applying an annular
aperture to ensure beam passage through the relevant regions
of the lens and corrector allow for the appropriate phase ramp
to be created (Clark et al., 2013). The beam generated
experimentally using such a setup was demonstrated to be
a good approximation to the l ¼ 1 vortex mode, exhibiting the
axial minimum and the 0 to 2π phase variation. The modal
decomposition showed that only 32% of the transmitted beam
was in the l ¼ 1 vortex mode. However, the presence of other
vortex modes and the clear spatial asymmetry of the beam
demonstrate that the beam produced is not as pure as that
created with holographic masks (Clark et al., 2013). On the
other hand, the intensity of the vortex generated is approx-
imately twice that achieved using the amplitude binary holo-
graphic mask technique; this method is more efficient for
the generation of the jlj ¼ 1 vortex mode. However, the
generation of higher order vortices may prove to be much
more challenging due to the significantly steeper phase ramp
required.

2. Electron vortex mode converter

A mode converter for electron beams has been described
(Schattschneider, Stöger-Pollach, and Verbeeck, 2012), acting
in an analogous way to laser mode converters in optics
(Beijersbergen et al., 1993). The electron vortex implementa-
tion involves making use of astigmatic correctors specific to
the electron microscope, as well as the use of a Hilbert phase
plate. This is therefore a hybrid technique encompassing the
phase plate and electron optics approaches discussed.
The Laguerre-Gaussian vortex mode may be described as a

linear superposition of two Hermite-Gaussian modes with a
phase difference of π=2. The Hermite-Gaussian modes do not
themselves carry orbital angular momentum, however by
exploiting the difference in Gouy phase for astigmatic
Hermite-Gaussian modes, such a superposition can be pro-
duced resulting in a Laguerre-Gaussian mode with well-
defined orbital angular momentum and phase singularity
(Beijersbergen et al., 1993). The experimental procedure
for electron vortices described by Schattschneider, Stöger-
Pollach, and Verbeeck (2012) relies on a lens with variable
astigmatism, so that the focal points of the x and y transverse
parameters may be set independently. This may then be used
to generate a Laguerre-Gaussian mode from a Hermite-
Gaussian mode. An approximation to a Hermite-Gaussian
mode has been generated using a Hilbert phase plate (Danev
et al., 2002), which imparts a phase shift of π between the
two halves of the beam, similar to the phase difference of π
between the two lobes of the Hermite-Gaussian mode. The
Hermite-Gaussian mode is then passed through the astigmatic

converter, oriented at 45° to the transverse axes of the
astigmatic converter, so that the astigmatism acts on the
two x and y components. The foci of the astigmatic lens
are set so that a relative Gouy phase difference is created
between the two transverse profiles in the back-focal plane to
obtain a Laguerre-Gaussian beam profile (Schattschneider,
Stöger-Pollach, and Verbeeck, 2012).
A proof-of-principle experimental result has been demon-

strated. Although a phase singularity is apparent at the
center of the back-focal plane, the resulting profile does not
have rotational symmetry, and so the beam is not in a pure
Laguerre-Gaussian mode. The discrepancy from the simulated
results arises due to defocus and, importantly, strong beam
absorption in transmission through the Hilbert phase plate
(Schattschneider, Stöger-Pollach, and Verbeeck, 2012).
Nevertheless, the electron vortex mode converter is an attrac-
tive prospect if these effects can be overcome, as it enables
the generation of electron vortices of high intensity, of up to
90% of the incident plane wave intensity, as opposed to ≈6%
using the holographic masks.

V. VORTEX BEAM ANALYSIS

Any study of the electron vortex beam will inevitably
involve some characterization of its properties. This will also
be useful in, for example, examining transfer of orbital angular
momentum in experiments involving interactions with various
forms of matter and light. We now briefly review the
techniques that have been developed for electron vortex beam
analysis.

A. Interferometry

The simplest approach is to examine the intensity profile
of the beam cross section. For a given point in the wave front
in a vortex beam, the existence of the conjugate point with
antisymmetry in phase ensures that their coherent super-
position on the beam axis will always lead to destructive
interference. This is responsible for the persistence of the
central dark spot in the vortex beam. Thus the observation of
the doughnut ring in the beam cross section is taken to be a
signature of a nonzero topological charge. However, we also
need to know the sign and the magnitude of the topological
charge and the radial structure. For example, the radial
structure of the Laguerre-Gaussian beam is specified by the
radial index p in Eq. (9). As for the identification of the pure
OAM states, some progress has been made, as we summa-
rize next.

1. Electron holography

The interference of a pure vortex beam with a plane
reference wave results in a forked interference fringe, a
property that is fundamental to the holographic mask tech-
nology introduced in Sec. IV.B. The interference experiment
can be performed in an electron microscope equipped with an
electron biprism (Tonomura, 1987). A biprism is usually a
positively charged wire. Two halves of the wave front on
either sides of the charged wire will experience transverse
shear because the negatively charged electrons will be
attracted toward the positively charged wire. The resulting
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overlap of the wave fronts forms holographic fringes. If only a
parallel beam falls onto the regions containing the charged
wire, linear gratinglike interference structure will be observed.
In traditional electron holography, a sample is inserted in the
path of one-half of the split wave front so that the extra phase
and amplitude modification can be recorded as the additional
shift of the fringe as well as the modulation of the fringe
contrast. In vortex beam analysis, the sample may be replaced
by a vortex converter such as a spiral phase plate or an
holographic diffraction mask. The vortex phase structure
imprint on the interference fringes is a dislocation or a fork
structure, such that the number of the forks in the interference
pattern is equal to the magnitude of the topological charge and
the orientation of the fork can be related to the sign of the
topological charge of the beam. This electron holographic
method was used by Uchida and Tonomura (2010) to
demonstrate for the first time the phase structure of an electron
vortex beam.

2. Knife-edge and triangle aperture diffractive interferometry

Electron holography using the electron biprisim technique
is available only in specialized microscopes, so alternative
methods had to be developed. The simplest holography
method, without the use of an electronic biprism, is the
knife-edge holography method. This creates a reference wave
by utilizing the beam-bending effect associated with the
Fresnel diffraction of electrons from the edge of an aperture.
Verbeeck, Tian, and Schattschneider (2010) used this to
demonstrate the production of vortex beams by a holographic
mask.
A useful variation of this method is the use of a triangular

aperture. The interference of the Fresnel fringes from three
neighboring edges of the triangle results in a triangular lattice
structure which depends strongly on the topological charge of
the vortex beam (Hickmann et al., 2010). It is then a simple
matter to count the number of spots in the resulting interfer-
ence pattern to determine the topological charge.
Note that these methods work only in out-of-focus

conditions.

3. Diffraction

The phase structure of the vortex beam can also be studied
by the diffraction method. A hologram mask can be used to
determine the topological charge of the beam (Saitoh et al.,
2013; Guzzinati et al., 2014). In this method, a forked grating
structure, formed from the interference of a plane wave and a
vortex wave of topological charge of lgrating, is used as a beam
analyzer. The vortex beam is diffracted by the grating structure
and the far-field diffraction pattern is examined. The diffrac-
tion of the dislocated grating adds n × lgrating to the topological
charge of the resulting diffracted beams, where n is the order
of the diffraction and takes the values of 0;�1;�2, etc. The
total topological charge of the diffracted beams is given by

m ¼ nlgrating þ l. ð92Þ

In particular, the diffracted beam with m ¼ 0 has an intense
central spot and so can be easily identified. This allows the
OAM content of the incident beam to be easily determined

using Eq. (92), if gratings with different topological charges
are employed. Other methods such as the simple multiple pin-
hole plates have also been suggested, with mixed results due
to possible effects such as aliasing effects (Clark et al., 2014).
In general, the identification of the vortex beams of mixed

orders is difficult. But Saitoh et al. (2013) suggested that if
a pin-hole aperture is also used on the diffracted beam, the
vortex beam can be sorted into different components accord-
ing to their topological charge.

B. Mode conversion analysis

One of the simplest methods is based on the conversion
of Hermite-Gaussian modes to generate Laguerre-Gaussian
beams (Allen et al., 1992; Courtial and Padgett, 1999). Here
the mode conversion is run in reverse and the vortex beam is
decomposed into Hermite-Gaussian beams with characteristic
modes. In optics this is achieved using a cylindrical lens while
in electron optics (Guzzinati et al., 2014; Shiloh et al., 2015)
use is made of an astigmatism corrector which is readily
available in a typical electron microscope. For higher order
vortex beams, we might have mixed radial modes sharing the
same OAM quantum number. This may result in a complex
superposition of the pattern. Thus the method is more useful
for vortex beams of small topological charges. The sign of the
topological charge can be read out through the sense of the
rotation of the resulting Hermite-Gaussian pattern because of
the l-dependent Gouy rotation.
The approaches adopted so far can all be traced to original

methods developed for characterizing optical vortex beams
and they work well for single pure OAM states. The challenge
occurs when one has to deal with mixed OAM states. Optical
approaches such as multipoint interferometers (Berkhout and
Beijersbergen, 2008), geometric transformations by phase
manipulation (Berkhout et al., 2010), and the use of multiple
interferometers in a cascade setup (Leach et al., 2004) are
currently difficult to implement in the existing electron
microscope setup, so a new approach is required especially
for the characterization in the single electron region. For
practical reasons, the holographic diffraction mask and the
aperture masking methods are difficult to implement for
atomic size vortex beams, making the astigmatism trans-
formation method currently the most realistic method for
atomic scale pure vortex beams. For efficient sorting of
electron vortex beams in general, electron optics are preferred
and a refractive device was recently proposed by McMorran
et al. (2017).

C. Image rotation

Because the azimuthal dependence of a pure vortex beam is
encoded in the phase factor eilϕ independent of z, the cross-
sectional image of any pure vortex beam is circularly
symmetric so any potential rotation is not detectable. This
method is therefore not suitable for the characterization of
the rotation of the pure states. On the other hand, the circular
symmetry will be broken in a mixed state vortex beam,
resulting in an asymmetrical cross-sectional beam intensity.
This can be achieved by different methods, ranging from
simply cutting a pure vortex beam by a knife-edge-like mask
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to create an asymmetrical cross-sectional distribution
(Guzzinati et al., 2014), to the careful preparation of a
superposition of pure vortex beams (Greenshields, Stamps,
and Franke-Arnold, 2012) or a vortex-endowed C-shaped
beam (Mousley et al., 2015). The rotation of the transverse
image of the electron vortex beam can be measured as a
function of the propagation distance or as a function of
the magnetic field strength. In that way, measurements of
the image rotation along the z direction can be used to study
the Zeeman or Gouy effects of the electron vortex beam
(Schachinger et al., 2015).

1. Gouy rotation

The Gouy phase is due to spatial confinement of the vortex
beams near focus (Feng and Winful, 2001; Petersen et al.,
2014). In the absence of an external magnetic field or when the
field strength is so small that the magnetic effect can be
ignored to the first order, the main contribution to the image
rotation is due to the variation of the Gouy phase difference
between OAM beams with different topological charges. The
Gouy phase difference changes rapidly near the beam waist,
so that the Gouy rotation is most easily observed around the
focus plane, as shown by Guzzinati et al. (2013).

2. Zeeman rotation

One of the consequences of using a magnetic lens to focus
electron beams is that all electron beam trajectories with
transverse velocity components undergo Larmor precession.
In electron microscopy, this results in the well-known image
rotation phenomenon (Reimer and Kohl, 2008). Early micro-
scopists had to take this into account when comparing
microscope images taken at different magnifications as the
excitation of the magnetic field in the lens changes. In modern
transmission microscopy, lens design is such that the rotation
effect due to different lenses cancels out, so electron micro-
scopists need not be concerned with such effect.
The presence of the external magnetic field also causes

complex and interesting changes in the phase of the electron
vortex beam as described in Sec. III. However, for nanoscale
vortex beams that are being generated inside electron micro-
scopes where the saturated field strength is typically on the
order of 2 T, the effect of the magnetic field would be very
weak (Babiker, Yuan, and Lembessis, 2015). To see the
magnetic field induced rotation, one has to go to either much
stronger magnetic fields or vortex beams of large transverse
structures. In general, such rotation should be accompanied by
changes in the radial direction due to competition of the beam
diffraction and the confining effects of the magnetic field
(Greenshields, Stamps, and Franke-Arnold, 2012). In special
cases, when the vortex beam has the characteristic beam width
wB given in Eq. (58), one can study the rotation of the Landau
states given by Eq. (62).
These image rotations have been experimentally observed

in the electron microscope, for both the balanced and
unbalanced superpositions (Guzzinati et al., 2013). The
experimental situation differs from the theoretical treatments
previously outlined in that the fields are not uniform, and the
beams have a well-defined focal plane. As such, the actions of
the Zeeman and Gouy phase shifts both contribute, with the

Gouy shifts dominating in the vicinity of the focus of the
beam, due to the transverse confinement (Feng and Winful,
2001), and the Zeeman shift is more apparent at large radial
distances from the beam axis, due to the magnetic fields of the
lenses. For the unbalanced superposition, the difference
between those states, with the net OAM aligned and anti-
aligned with the direction of the magnetic field, is shown in
the net addition of the separated rotations due to the Zeeman
and Gouy terms (Guzzinati et al., 2013). Such Zeeman-Gouy
phase effects may find applications in vortex beam analysis,
since this offers a method by which oppositely oriented
vortices may be differentiated, by the observation, or lack
of, image rotations in known magnetic fields. For beams with
a Landau state transverse mode given by Eq. (62), rotation in
either Larmor, cyclotron (double Larmor), or zero frequency
have been observed (Schattschneider, Schachinger et al.,
2014), consistent with the prediction of Bliokh et al., 2012.
However, the use of the knife edge resulted in the mode
broadening due to an approximate uncertainty principle for
angular position and angular momentum (Franke-Arnold
et al., 2004), so the measurement cannot be taken for a vortex
beam in a pure Landau state.

D. Vortex-vortex interactions and collisions

General considerations of vortex-vortex collisions have
been discussed (Bialynicki-Birula, Bialynicka-Birula, and
Śliwa, 2000; Bialynicki-Birula et al., 2001; Berry and
Dennis, 2007, 2012) for the cases where there are two or
more phase singularities present in the wave field. In such
cases, the behavior of the vortices becomes somewhat
complicated, with possible phenomena including the creation,
annihilation, and crossing of vortex lines. For the electron
vortex, experimental demonstrations of wave fields with two
(Hasegawa et al., 2013) or several (Niermann, Verbeeck, and
Lehmann, 2014) phase singularities have been realized in the
electron microscope. In the first case, a specially prepared
holographic mask with two phase defects (edge dislocations)
was used to embed two phase singularities into the resulting
first-order beams (Hasegawa et al., 2013), while the second
involved two orthogonally acting biprisms arranged in such a
manner as to generate a lattice of vortices through wave
interference.
For the case when two vortices are present in the beam, the

behavior and interaction of the two vortices can be examined
as the beam passes through focus. Holographic masks
incorporating two edge defects were produced to generate
two vortices of topological change jlj ¼ 1 slightly displaced
from one another—the two vortices may be either aligned or
antialigned, in which case the behavior as they propagate takes
on a different character. For the case when the two vortices
are aligned, they are found to precess about each other within
the first-order diffracted beams, whereas for the case when
the vortices are antialigned the lines of phase singularity are
attracted to each other, eventually annihilating. Both effects
are attributed to the change in the Gouy phase as the vortices
pass through the focal point (Hasegawa et al., 2013). For the
aligned beams the Gouy phase shift occurs in the same
direction, so that the beam rotates in the same direction at
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the same rate, whereas the phase shift is opposite for the
antialigned vortices, causing them to annihilate.

E. Factors affecting the size of the vortex beam

The possibility of using electron vortex beams to probe
the properties of materials with atomic resolution requires
the generation of atomic scale vortex beams with cross
sections in the Å scale. Sub-Å focused electron probes have
been demonstrated and available for more than a decade
(Batson, Dellby, and Krivanek, 2002). In a modern trans-
mission electron microscope, a probe size as small as 0.5 Å
can be achieved using a highly coherent source with a large
convergence angle and corrective optics for the minimizing
of aberrations in the probe forming lens (Erni et al., 2009).
Can we replace the circular aperture with a top-hat-like
transmission function with an azimuthal phase gradient to
produce an electron vortex beam, such as the beam defined in
Sec. II.B.3, in the Å range? To answer this question, we need
to first define what is meant by the size of nonvortex beams as
well as that of vortex beams.
A simple estimate of the ring size of the single donut vortex

beam can be obtained by considering the quantized orbital
angular momentum of a circulating particle flux in a circle
of radius ρl. We make use of the standard expression for the
angular momentum L ¼ ρl × p and that the maximum size of
the linear momentum transferred by the diffraction of electron
beams passing through an aperture subtending a half angle α
is equal to αk0, where ℏk0 is the momentum of the electrons.
The size of the donut ring is then given by

ρl ∼
lℏ

αℏk0
¼ lλ

2πα
. ð93Þ

For all the beams passing through such an aperture, the
uncertainty principle also implies that the minimum beam size
(Δρ) due to diffractive broadening is given by

Δρ ∼
ℏ
Δp

¼ ℏ
αℏk0

∼
λ

2πα
. ð94Þ

These order-of-magnitude estimates show that both ρl and
Δρ are controlled by the convergence angle subtended by the
lens aperture (α ¼ Rmax=f) but for different physical reasons.
To be more precise, one needs to know the exact electron wave
functions because the spatial distributions of the electrons
are known to be diffuse in space and vary for different types
of vortex beams as reviewed in Sec. II.B. For example, the
size of the donut rings (ρl) in LG beams introduced in
Sec. II.B.1 scales with

ffiffi
l

p
(Lembessis and Babiker, 2016),

but for bandwidth-limited vortex beams produced by the
Fraunhofer diffraction of a finite-radius plane waves imping-
ing on a spiral phase plate (Sec. II.B.3), the ring size scales
with l (Curtis and Grier, 2003). For the FT-TBB discussed in
Sec. II.B.3, there is a nonlinear dependence on l. On the other
hand, the diffraction-limited width of an ideal nonvortex beam
is given by the size of the Airy disk [Δρ ¼ 1.22λ=α (Airy,
1834)]. Combining the two different effects an approximate
empirical formula for the overall vortex beam size (~ρl)
emerges as (Curtis and Grier, 2003)

~ρl ¼ 2.585
λf

πRmax

�
1þ l

9.80

�
: ð95Þ

This suggests that the diffraction-limited singly charged
vortex beam size is only about 10% larger than the nonvortex
beam. With a microscope capable of a 0.5 Å nonvortex beam,
a singly charged vortex beam of sub-Å size should be
possible.
Experimentally, most studied electron vortex beams can

be effectively obtained as some forms of bandwidth-limited
beams with wave function truncation by a hard aperture
at the plane of the focusing lens (Verbeeck et al., 2011;
Schattschneider et al., 2012; Béché, Juchtmans, and Verbeeck,
2017). The scalar diffraction theory of such a case was
thoroughly investigated in the course of optical vortex studies
(Kotlyar et al., 2005) and this compares favorably with the
theoretical investigations when finite source size effects or
even spherical aberration is taken into account, where appro-
priate (Schattschneider et al., 2012). In situations where a
small convergent beam is used (Verbeeck et al., 2011;
Schattschneider et al., 2012), the ring diameter of the vortex
beam can be accurately measured and the experimentally
obtained values agree with those emerging from optical
diffraction theory. For example, in a TEM with a round
condenser aperture subtending a convergence angle of
21 mrad, the size of the Airy pattern of the nonvortex beam
is 1 Å using the Rayleigh resolution criterion for the case of an
electron vortex beam with l ¼ 1 and a minimum full width at
half maximum (FWHM) diameter of 1.2 Å. The reason that it
is the FWHM that is used in this case instead of the ring size is
the broadening effect of the spatial distribution due to the
finite source size (incoherent broadening), estimated at 0.7 Å.
Incoherent broadening effects, when these are significant,
result in a less visible central dip of the vortex beam (for an
example, see Fig. 17). Incoherent broadening plays an
increasingly important role in atomic size electron vortex
beam experiments as a size-limiting factor (Löfgren et al.,
2016), but its influence can be taken into account in the same
manner as done routinely in describing focused nonvortex
beams commonly used in scanning transmission electron
microscopy (Kirkland, 2010). For an electron vortex beam
generated inside a 300 kV scanning transmission electron

FIG. 17. Vortex probes at focus of the condenser lens of a JEOL
2200FS aberration-corrected tranmission electron microscope
operating at 200 kV. The central spot is the image of the
nonvortex beam, while the other spots are images of the diffracted
vortex beams produced by a forked diffractive hologram with a
binary pattern similar to that given in Fig. 12. Sizes of the first and
second vortex cores at FWHM are 3.4 and 2.6 nm, respectively.
Because of the incoherent effect, the intensity dip is only partially
visible for the second-order vortex beam.
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microscope a probe size of the order of 0.87 Å has been
demonstrated (Béché, Juchtmans, and Verbeeck, 2017),
invalidating the early too pessimistic prediction (Idrobo and
Pennycook, 2011). As the current resolution of electron
microscopes is not yet wavelength limited, there is still scope
to reduce the vortex beam size further.

VI. INTERACTION WITH MATTER

The interaction of an electron vortex beam with single
atoms was considered (Lloyd, Babiker, and Yuan, 2012a,
2012b; Yuan, Lloyd, and Babiker, 2013; van Boxem,
Partoens, and Verbeeck, 2014, 2015), as well as Mott
scattering (Serbo et al., 2015) when the spin-orbit interaction
is taken into account. The related radiative capture of a vortex
electron by an ion was also investigated (Matula et al., 2014).
We focus on chiral-specific interactions in this section.

A. Chiral-specific spectroscopy

The practical generation of electron vortex beams was
accompanied by the suggestion that such vortex probes might
initiate, as a first application, a new type of EELS involving
orbital angular momentum transfer (Uchida and Tonomura,
2010; Verbeeck, Tian, and Schattschneider, 2010; McMorran
et al., 2011). The first experiment on EELS using electron
vortex beams was reported by Verbeeck, Tian, and
Schattschneider (2010). In this experiment, a 50 nm thick
Fe film was placed inside the field of the objective lens such
that it was magnetically saturated. A nonvortex beam was
transmitted through the iron film and the transmitted beam
then passed through a forked holographic mask at a slight
defocus such that the various orbital angular momentum
components were separated into distinct vortex beams.
Comparing the energy-loss spectra of the two first-order
transmitted vortex beams showed a dichroic effect in the iron
L2 and L3 edges, understood to indicate a transfer of orbital
angular momentum between the beam and the internal
electronic states of the iron atoms. The electron vortex
energy-loss spectrum corresponds well to similar x-ray
magnetic circular dichroism (XMCD) spectra (Thole et al.,
1992; Carra et al., 1993), so that the magnetization of the
sample is said to be clearly identified. However, since this
2010 result was reported there have been no further exper-
imental reports of an observed magnetic dichroism, and there
has been much discussion as to whether electron vortex beams
could provide an advantage over existing methods in electron
beam chiral dichroism spectroscopy. Nevertheless, a great
deal of theoretical work has been carried out, uncovering
the subtle physics involving orbital angular momentum
transfer and the best conditions for its observation (Rusz
and Bhowmick, 2013; Yuan, Lloyd, and Babiker, 2013;
Schattschneider, Löffler et al., 2014).
Comparing the results of the iron dichroism experiment

with the well-known XMCD spectra of iron suggests that there
is a similar transfer of orbital angular momentum between the
beam electron and the internal atomic states, in contrast to the
case of optical vortices, in which no orbital angular momen-
tum transfer can arise in dipole transition (Babiker et al., 2002;
Andrews, Dávila Romero, and Babiker, 2004; Jáuregui, 2004)

[see also Alexandrescu, Di Fabrizio, and Cojoc (2005)] nor
were any observed (Araoka et al., 2005; Löffler, Broer, and
Woerdman, 2011; Giammanco et al., 2017). The mechanisms
of the atomic-vortex interactions are quite different in the
optics and electron cases. In the optics case the interaction
Hamiltonian arising from the minimal coupling prescription
does not exhibit the required chirality to mediate orbital
angular momentum transfer, in contrast to the long-range
Coulomb interaction between the atomic and vortex electrons
(Lloyd, Babiker, and Yuan, 2012a, 2012b).

1. Matrix elements for OAM transfer

Writing the interaction Hamiltonian as the sum of the
Coulomb interactions between the atomic constituents and the
vortex electron, we have

Hint¼−
e2

4πϵ0

�
1

jrv−Rþðme=MÞqj−
1

jrv−Rþðmp=MÞqj
�
;

ð96Þ

whereM ¼ mp þme is the mass of the atom, and the relevant
position vectors are shown in Fig. 18. This interaction
Hamiltonian may now be expanded as a multipolar series
and applied as a scattering perturbation to a set of initial and
final states of the well-known hydrogenic wave functions and
vortex wave functions to yield the selection rules of the

FIG. 18. The atomic model system interacting with a vortex
beam whose cylindrical axis is along the z direction of the
laboratory frame of reference. The vectors re; rp;R, q, and rv
refer, respectively, to the position vectors of the atomic electron,
the nucleus, the center of mass, the internal position relative to
the center of mass, and the position variable of the vortex
electron. The corresponding ϕ’s represent the azimuthal angles
and these are important for the description of the phase factors.
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interaction (Lloyd, Babiker, and Yuan, 2012a, 2012b). In the
leading (dipole) order the transition matrix element is found
to reduce to

Mfi ¼
e2

4πϵ0
ðCþ1

l δ½ðLþlÞ;ðL0þl0þ1Þ�δm;m0−1

þ C−1l δ½ðLþlÞ;ðL0þl0−1Þ�δm;m0þ1

þ C0l δ½ðLþlÞ;ðL0þl0Þ�δm;m0 Þ; ð97Þ

where the Cl’s are complex functions of the internal coor-
dinate q to the first order. The selection rules deducible from
the matrix element show that in the dipole approximation a
single unit of orbital angular momentum may be absorbed
(released) by the atomic electron from (to) the combined
orbital angular momentum of the electron vortex and atomic
center of mass. The combination of the vortex and center of
mass orbital angular momenta allows for the possibility of
the rotation of the center of mass, provided the atom is not
fixed, which lays the foundations for the manipulation of
larger particles though OAM exchange (Gnanavel, Yuan, and
Babiker, 2012; Verbeeck, Tian, and Tendeloo, 2013). Further
analysis of the quadrupole and higher order interaction terms
demonstrates similar selection rules in which zero, one, or two
units of orbital angular momentum may be transferred; higher
order multipole terms of order nmediate the transfer of zero or
n units of orbital angular momentum.

2. The effect of off-axis vortex beam excitation

In expanding the interaction Hamiltonian about the atomic
center of mass, this analysis does not fully demonstrate the
complications arising from the extrinsic nature of the vortex
orbital angular momentum. It is illuminating to determine
the modal expansion of an off-axis beam from the perspective
of the atomic nucleus and compute the weighted scattering
amplitudes to the various possible transfer channels. The
interaction Hamiltonian remains the same as that of Eq. (96),
but now the initial and final vortex states have to be written as
expansions about the center of mass frame, rather than being
given in the laboratory frame, as before. This is accomplished
by use of the Bessel function addition theorem (Abramowitz
and Stegun, 1972) (see Fig. 18 for the relevant notation)

Jlðk⊥Þ ¼ e−ilðϕv−ϕnÞ

×
X∞
p¼−∞

Jl−pðk⊥ρnÞJpðk⊥ρ0vÞeiðl−pÞϕneipϕ
0
v : ð98Þ

This results in the original vortex beam of topological charge l
being described with respect to a new axis, the origin of which
is common with the atomic nucleus, in terms of an infinite
series of Bessel functions Jpðk⊥ρ0vÞ, with weighting functions
given by Jlþpðk⊥ρnÞ. Thus, the relative location of the atom
with respect to the axis of the incident vortex beam determines
the precise modes that the atomic electron “sees” to interact
with. For an atom situated directly on the beam axis, the
original p ¼ lmode is the only contribution, since in this case
only the weighting term J0ðk⊥ρnÞ is nonzero (see also Fig. 19,
left panel). However, for an atom displaced from the beam

axis, the next atom- centered vortex modes p ¼ l� 1 become
significant even at small distances, of the order of a fraction
of the radius corresponding to the first Bessel function zero
λ11=k⊥ ≈ 0.1 nm for l ¼ 1, i.e., within the first ring of the
Bessel beam. It is clear that slight displacement from the beam
axis leads to the contributions of vortex modes with winding
numbers different from the overall angular momentum quan-
tum number of the beam l (see also Fig. 19, right panel). The
expanded Bessel function may then be used to define an
effective operator

O ¼ hΨ0
fjHintjΨ0

ii ð99Þ

which determines the selection rules when applied to the
atomic states, where Ψ0

iðfÞ refers to the initial (final) wave

function involving the expanded Bessel function of Eq. (98).
Applying the Bessel addition theorem a second time allows
for the expansion in terms of the in-plane dipole moment of
the atom, making apparent the specific multipolar character of
the transfer interaction (Yuan, Lloyd, and Babiker, 2013).
When the atom is off axis, there are several available

channels for atomic excitation, in view of both the multipolar
nature and the specific Bessel mode of the expansion, as
illustrated in Fig. 19. It can be seen that, in contrast to the
straightforward on-axis case, for an atom localized at an off-
axis position the change in the orbital angular momentum
of the beam does not necessarily indicate a corresponding
change in the OAM of the internal dynamics of the atom. At

FIG. 19. Illustration of the various interaction channels available
in (a) the case in which the atom is situated on axis, and (b) the
off-axis case. In (a), any change in OAM of the atomic electron is
immediately apparent as a change in OAM of the transmitted
beam Δl ¼ l0 − l. The case in (b) is more complicated due to
the expansion modes having various OAM p, which may each
transfer any number of units of OAM to the atomic electron. The
resulting changes Δl values may correspond to a variety of
combinations of expansion modes and multipolar transitions, as
shown. However, due to the relative strengths of the expansion
modes and multipolar atomic transitions, the dominant interac-
tion channels arise from the dipole interaction with the p ¼ l
mode. Note that p is used here only to indicate the OAM modes
involved in an off-axis vortex beam, not as a radial index as in the
rest of the text. From Yuan, Lloyd, and Babiker, 2013.
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first sight this would seem to present a large obstacle to the
use of vortex beams to probe chiral information. However,
after taking into account the relative intensities of the various
interaction channels, one can show that for the dipole
excitation case the off-axis contributions are an order of
magnitude smaller than the on-axis contribution, with inten-
sity decaying rapidly farther away from the axis, so that the
principal transitions in any such chiral spectroscopy experi-
ment are those having the XMCD-like selection rules of
Eq. (97). Additionally, higher order multipole transitions will
contribute to the background signal, but these are also found
to be much smaller in magnitude compared to the dipole
contribution, due to the much smaller overlap of the Bessel
functions involved (Yuan, Lloyd, and Babiker, 2013).
The off-axis contributions to an experimental electron-

energy loss spectrum may be further reduced to produce an
acceptable signal-to-noise ratio, by making use of a confocal
TEM setup, ensuring that the signal contributions come from
those atoms lying on or very close to the microscope axis and
reducing the nonchiral signal from atoms displaced from the
axis (Schattschneider, Löffler et al., 2014). As pointed out,
interactions in these regions are most likely to involve the
p ¼ l modes, and thus the change in orbital angular momen-
tum of the vortex in the laboratory frame is indicative of the
atomic change in magnetic quantum number. A schematic of
such an experiment is shown in Fig. 20. A vortex beam is
incident on a sample, with the resulting transmitted beam split
into the various orbital angular momentum components by a
OAM analyzer. After passing through the sample, the trans-
mitted beam contains several different OAM components l0

from the various interactions, along with the original value l
from electrons passing through unscattered. Analysis of the
various OAM components allowed the determination of the
change in the OAM of the atom. It was shown that a suitable
analyzer may take the form of a forked holographic mask in
conjunction with a pinhole (Saitoh et al., 2013). The pinhole
will enable the isolation of specific OAM components for
measurement of EELS spectra for that channel, allowing
detection of only those transmitted electrons having l0 ¼ 0, for
example, those that have suffered a loss (gain) of one unit of
orbital angular momentum in the interaction with an l ¼
þ1 ð−1Þ incident vortex. The pinhole acts to select only those
transitions that have both p ¼ l contributions and that are
scattered to l0 ¼ p0 ¼ 0 states. Repeating the experiment
using a vortex beam of opposite OAM, i.e., −l will enable
a dichroism spectrum to be obtained.
The advantage of this method over the experiment dem-

onstrated by Verbeeck, Tian, and Schattschneider (2010)
should be an increase in signal-to-noise ratio, since the
forward and reverse interactions are treated separately (the
additional off-axis features and higher-multipole excitations
also contribute to a background noise with a nonvortex
incident beam). In this way, probing specific atomic transi-
tions is feasible with varying incident vortices, including
higher order multipole transitions using incident vortices with
orbital angular momentum greater than �ℏ. On the other
hand, since the transmitted intensities in these cases are
expected to be small, the experimental conditions must be
optimized so that long collection times may be utilized. An

experimental feasibility study is encouraging (Schachinger
et al., 2017), especially for amorphous magnetic materials.
Since they were first reported, it was suggested that electron

vortex beams may be combined with the atomic resolution
microscope probes to enable chiral spectroscopy with atomic
resolution (Verbeeck, Tian, and Schattschneider, 2010; Idrobo
and Pennycook, 2011; Verbeeck et al., 2011; Lloyd, Babiker,
and Yuan, 2012b; Rusz and Bhowmick, 2013; Yuan, Lloyd,
and Babiker, 2013). However, there is currently some debate
as to the conditions under which such high resolution will be
achievable and the limits of application of the vortex beam
(Pohl et al., 2015). Specifically, are the subnanometer scale
vortex beams described by Verbeeck et al. (2011) suitable for
atomic resolution dichroism experiments? It was argued that the
subnanometer FWHMof such beams is not sufficient due to the
inherent incoherence in the microscope. On the other hand, it
was also argued that it is only in the atomic resolution limit that
vortex chiral dichroism experiments will give any improvement
over the intrinsic electron magnetic circular dichroism (EMCD)
effect due to the crystal structure acting to diffract the vortex
modes (Rusz and Bhowmick, 2013). Simulations of inelastic
scattering of vortex beams through iron crystals up to 20 nm
thick shows that magnetic information is available only when
the radius of the vortex beam is of the order of the atomic
radius. In this case, the energy filtered diffraction signal shows a
magnetic component of approximately 10% of the background,
nonmagnetic signal and is strongly dependent on the position of

FIG. 20. Schematic of suggested experimental setup for OAM
based spectroscopy using electron vortices. A vortex beam
produced by a holographic mask or other suitable method (not
shown) is incident onto a thin sample in the specimen plane. After
interaction with the sample, the transmitted beam is then passed
through a forked mask in order to separate the various vortex
components. A pinhole placed in the diffraction plane allows
isolation of those modes that have an OAM of 0 after passing
though the mask; these can then be detected to obtain EELS.
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incidence within the unit cell, so displaying atomic resolution
(Rusz and Bhowmick, 2013).
The inelastic scattering of an electron vortex beam by atoms

was also further investigated for hydrogen by van Boxem,
Partoens, and Verbeeck (2015), by including the explicit radial
distribution functions.

3. Plasmon spectroscopy

In addition to the research into chiral excitation of core
electron transitions which is relevant to the excitation of
magnetic sublevels in the inner shell of the atoms, Asenjo-
Garcia and García de Abajo (2014) calculated the chiral
plasmon response which is due to the coupling of the charges
in the vortex beam with the electric field of the collective
motion of the valence electrons.
The application of vortex beams to EELS may also have

potential in mapping the magnetic response of materials in the
form of magnetic plasmon resonances (Mohammadi et al.,
2012). Magnetic plasmon resonances in nanoparticle arrays
are expected to lead to the production of metamaterials,
exhibiting negative permittivity and permeability in the optical
range (Podolskiy, Sarychev, and Shalaev, 2002; Sarychev,
Shvets, and Shalaev, 2006), such that vortex based magnetic
plasmon EELS (vortex-EELS) would provide an invaluable
tool for the characterization of metamaterial response. EELS
is already well applied in the determination of electric
plasmon resonances of nanoparticles (Bosman et al., 2007;
Nelayah et al., 2007; Hörl, Trügler, and Hohenester, 2013).
Vortex-EELS should provide a complementary technique,
with the additional possibility of gathering information on
both the electric and magnetic responses of nanoparticles
simultaneously in a single experiment, since the electron
vortex will also induce electron plasmon resonances in
addition to magnetic plasmon resonances.
A theoretical treatment of the magnetic response of an array

of split-ring resonators was demonstrated (Mohammadi et al.,

2012), allowing direct comparison of the electric and magnetic
plasmon resonance spectra and spatial distribution. Making
use of the duality of the electric and magnetic fields allows the
relationships between the induced resonance field and the
beam current (related by Green’s functions) to be recast into
an induced magnetic field, regulated by a magnetic Green’s
function and induced by the effective magnetic current of
the vortex beam (Mohammadi et al., 2012). From here, the
magnetic EELS spectra can be calculated using standard
finite-difference time-domain techniques. For a split-ring
resonator the results of such simulations show a strong
magnetic response on the inside of the ring, contrasting with
the electric response at the ends of the arms, as shown in
Fig. 21. The calculated spatial profiles are consistent with
previous theoretical work on electric and magnetic resonances
of nanoparticles of similar sizes and shapes (Enkrich et al.,
2005; Sarychev, Shvets, and Shalaev, 2006). Critically, the
intensity of the magnetic response is within an order of
magnitude of the electric response, indicating that measure-
ment of magnetic plasmon resonances should be experimen-
tally accessible (Mohammadi et al., 2012). Naturally, in an
experimental situation, the vortex beam will induce electric
plasmon resonances at the same time as the magnetic
resonances, which for metamaterial development will neces-
sarily be within similar energy ranges, notably within the
visible light spectrum. Energy filtering is therefore insufficient
to fully isolate the magnetic component of the EELS spec-
trum. For nanostructures for which the electric response is
well understood, separating the magnetic signal may be
possible by subtracting a separately measured non-vortex-
EELS signal from the vortex-EELS map, or by filtering the
transmitted signal by its OAM content (Mohammadi et al.,
2012). This latter method requires further investigation into
the role of orbital angular momentum transfer in magnetic
resonances, as it is not immediately apparent that OAM
transfer is a requirement for vortex-induced magnetic plasmon
resonance.

FIG. 21. Spatial maps of electron-energy-loss probability for (a) magnetic resonance at 0.863 eV, with an l ¼ 1 beam, and (b) electric
resonance at 0.8 eV with a plane wave beam, both at 100 keV beam energy. The two plasmon resonance maps show markedly different
spatial profiles, as well as the magnetic resonance response being approximately an order of magnitude less than the electric response.
From Mohammadi et al., 2012.
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B. Propagation in crystalline materials

In order that experiments involving vortex beams traveling
in real materials to be appropriately interpreted, it is necessary
that the way such a beam propagates through crystalline
structures is well understood. Any electron probe propagating
through a crystal will experience strong elastic scattering from
Coulomb interaction with the atomic nuclei, proportional to
the thickness of the sample and tilt relative to the beam axis, as
well as channeling along the atomic columns (Reimer and
Kohl, 2008; Williams and Barry Carter, 2009). Because of this
scattering potential, the trajectory of the vortex and the local
orbital angular momentum density of the beam will be altered,
since the crystal potential breaks the cylindrical symmetry of
the beam, leading to coherent superposition of OAM eigen-
states that change in composition through the crystal (Löffler,
Aiello, and Woerdman, 2012). Because of the exchange of
orbital angular momentum between the lattice and the beam
the local values of orbital angular momentum within the
crystal may be quite different from those of the original,
incident vortex beam (Löffler, Aiello, and Woerdman, 2012;
Lubk, Clark et al., 2013; Lubk, Guzzinati et al., 2013).
Additionally the trajectories of the vortex lines are no longer
simple, involving oscillatory motions, looping, and the gen-
eration of vortex-antivortex pairs (Lubk, Clark et al., 2013;
Lubk, Guzzinati et al., 2013). It is worth mentioning that the
vortex structure can also be produced by dynamical scattering
of crystals by a nonvortex incident electron beam (Allen et al.,
2001) because of multiple scattering (Nye and Berry, 1974).
Multislice simulations of the propagation of vortex beams

through iron (Löffler, Aiello, and Woerdman, 2012) and
strontium titanate (Lubk, Clark et al., 2013) crystals have
been carried out to explore the complex dynamics arising
from the interaction. Both the Fe and SrTiO3 materials are
relevant since Fe is a simple and widely available material and
is of specific interest in understanding the chiral spectros-
copy EELS results reported by Verbeeck, Tian, and
Schattschneider (2010), while the more complex SrTiO3

crystal consists of atomic species of varying mass, allowing
for more complex dynamics. In both cases, investigations
of the phase and amplitude of the wave function within the
crystal demonstrate that the resulting exit wave strongly
depends not only on the thickness of the crystal, but also
on the position of the incident beam in the unit cell, as well as
the topological charge of the vortex.
For an incident vortex beamwith l ¼ 1 the expectation value

of the orbital angularmomentumwithin the iron crystal is found
to oscillate with propagation and may take values significantly
different to the original, including noninteger values and even
reversing in sign (Löffler, Aiello, andWoerdman, 2012). For the
SrTiO3 crystal, the vortex is found to strongly channel along the
atomic columns and is protected from delocalization compared
to a nonvortex beam, remaining in an approximate angular
momentum eigenstate within a certain radius, beyond which
the wave function exhibits Rankine-like vortex behavior
(Swartzlander andHernandez-Aranda, 2007; Lubk, Clark et al.,
2013). Additionally, vortex-antivortex loops are spontaneously
generated about the surrounding atomic columns. They mani-
fest themselves as vortex-antivortex pairs in the x-y plane as the
vortex forming the loop propagates in the z direction and then

turns back on itself (Lubk, Clark et al., 2013). When the vortex
beam is incident off center on an atomic column the core of
the vortex is found to circulate around the atomic column, while
the center of mass line remains stationary.
For higher order vortex beams with l > 1 interesting

dynamics arise that are dependent on the specific symmetry
considerations about the point of incidence. The l > 1 vortex
beam splits into a number of vortex beams of various orders,
the specific order and arrangement of which depend on the
specific symmetry. As a result, the local values of orbital
angular momentum have a complicated dependence on the
strength of the incident vortex state and the specific symmetry
of the material as well as the propagation length and position
within the unit cell. This is related to the extrinsic nature of the
orbital angular momentum as discussed (see Sec. VI.A.2) and
indicates that atoms at different positions within the sample
will be subject to modes with vastly different orbital angular
momenta. This introduces complications in, for example,
electron-energy-loss spectroscopy as the atoms within the
sample interact with vortices of various strengths. For rela-
tively thick samples then, particular care must be taken in
analysis requiring direct observation of phase and intensity
contrast; however, filtering the separated scattered vortex states
will go some way to ameliorating the phase complications.
It was shown that an electron vortex beam can propagate

through atomic columns to a considerable distance by
coupling to the 2p columnar orbital with the same angular
momentum about the propagation axis. This shows that the
divergence of the electron vortex beam can be counteracted by
interacting with an atomic column (Xin and Zheng, 2012).
The interaction of an electron vortex beam with an atomic
column was also studied by Xie, Wang, and Pan (2014).
One application of electron vortex beams to crystalline

materials is in the determination of the chirality of enantiomor-
phic crystals through diffraction pattern analysis (Juchtmans
et al., 2015; Juchtmans, Guzzinati, and Verbeeck, 2016). The
other predicted application of the electron vortex beam is to
make use of the interplay between the elastic and inelastic
scattering to determine the magnetic dichroism spectroscopy
(Rusz and Bhowmick, 2013; Rusz et al., 2014). Here, as
discussed earlier, the small size of the electron vortex beam
is important in highlighting the advantage of using electron
vortex beams over conventional nonvortex beams.

C. Mechanical transfer of orbital angular momentum

The electron vortex beam carries both linear momentum
and orbital angular momentum of ℏkz and ℏl, respectively,
each along the axial direction. As for optical vortices, the
total linear and angular momentum of the electron vortex
beam have components which are nonzero only in the axial
direction, while both the linear and angular momentum
density vectors [defined in Eqs. (27) and (31)] have additional
components in the radial and azimuthal directions (Lloyd,
Babiker, and Yuan, 2013; Speirits and Barnett, 2013). These
local densities contribute to the diffractive effects within the
beam, and the azimuthal momentum density provides the
requisite angular motion contributing to the total angular
momentum; however, components of the total orbital angular
momentum do not exist neither radially nor azimuthally.
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For the electron vortex, in addition to the mechanical
momentum due to the electron mass current, the electric and
magnetic fields may also contribute to the total beam momen-
tum and angularmomentum.Aswithmechanicalmomenta, the
contributions to the total linear and angular momentum vectors
are found to exist only in the axial directions, despite the field
momentum densities having additional radial and azimuthal
components (Lloyd, Babiker, and Yuan, 2013). The contribu-
tions from the electric andmagnetic fields of the electronvortex
beam are small; for the typical beam generated within an
electron microscope, the linear and angular momentum con-
tributions due to the electromagnetic fields are approximately
10−12 and 10−14 that of the mechanical momenta, respectively.
As in the case of optical vortices being used to trap and

rotate objects from atoms to particles of micron size (He et al.,
1995; Barreiro and Tabosa, 2003; Andersen et al., 2006;
Franke-Arnold, Allen, and Padgett, 2008; Ruffner and Grier,
2012; Emile et al., 2014), the influence of an electron vortex
beam has been shown to induce rotation in nanoparticles
(Gnanavel, Yuan, and Babiker, 2012; Verbeeck, Tian, and
Tendeloo, 2013). Using the forked holographic mask tech-
nique to generate electron vortex beams within a JEOL
2200FS double aberration-corrected scanning transmission
electron microscope operated at 200 keV, gold nanoparticles
on carbon support were observed to rotate under the influence
of the vortex beams (Gnanavel, Yuan, and Babiker, 2012). The
nanometer scale vortex beams produced are shown in the focal
plane in Fig. 17, having FWHM of 2.6 and 3.4 nm, respec-
tively, for the first- and second-order beams. No central nodes
are observed in the first-order beams due to partial coherence
effects. In order to minimize these effects, the experiment was
performed at a slight defocus such that the beam profile fully
covers the 5 nm diameter gold nanoparticle.
The effects of the vortex beam on the nanoparticle were

observed using a video capture, with a rate of 0.83 frames
per second. Initially, the structural changes, translation, and
rotation of the particle are minimal; however, it was found that
after approximately 5 minutes of illumination significant
damage had occurred to the carbon substrate with the particle
essentially detached and having also undergone some struc-
tural damage. At this point, the particle is relatively free of the
van der Waals interaction and effects due to viscous trapping
potentials, and rotation is observed to occur at an average rate
of 3.75° per minute, significantly faster than previous reports
involving beams with no orbital angular momentum. Selected

frames indicating the nanoparticle rotation are shown in
Fig. 22. Although the precise mechanism of the rotation is
rather complicated, the existence of the azimuthal component
of the linear momentum density is necessary to effect rotation
about the beam axis. This rotation is shown to occur due to the
vortex nature of the beam by the relatively high rotation rate,
and the change of the direction of rotation when the particle is
illuminated with a similar beam carrying an opposite OAM
(Gnanavel, Yuan, and Babiker, 2012). A similar rotation of
gold nanoparticles was observed on silicon nitride support
(Verbeeck, Tian, and Tendeloo, 2013).
It was proposed that the angularmomentum transfer between

the beam and the particle leading to rotation arises due to the
breaking of the cylindrical symmetry of the beam (Verbeeck,
Tian, and Tendeloo, 2013) by the particle. The exact mecha-
nism of orbital angular momentum transfer between the beam
and the nanoparticle depends on a number of variables, notably
the relative size of the nanoparticle and the beam, as well as
the material properties of the particle, which affect the beam
scattering dynamics within the crystal potential, in addition to
the experimental parameters (Verbeeck, Tian, and Tendeloo,
2013). Furthermore, the requirement that the sample support be
damaged before any rotation is observed suggests that friction
between the nanoparticle and the support is the limiting factor
in this case. Indeed, after prolonged illumination under the
beam, the nanoparticle eventually becomes coated with carbon
from the support and ceases to rotate.
This suggests that the electron vortex beam may become a

useful tool in the investigation of friction at the nanoscale,
which is still not well understood (Mo, Turner, and Szlufarska,
2009). Experiments involving the rotation of various species
of nanoparticles on a range of supports may thus be consi-
dered useful in the characterization of nanoscale friction.
Additionally, a friction-free control environment could be
provided by rotation of particles while they are levitated by
an optical beam (Lloyd, Babiker, and Yuan, 2013). Similar
experiments may also be considered to explore viscous forces,
for example, by using nanoparticles suspended in liquids in
a liquid-cell sample holder. The electron vortex provides a
method by which particles may be moved transverse to a
surface, so that the friction between various surfaces and
particles may be directly investigated; this transverse motion
may also find application in nanomanipulation for various uses
(Falvo and Superfine, 2000), including molecular biophysics
applications (Bormuth et al., 2009; Balzer et al., 2013).

FIG. 22. Four snapshots of Au nanoparticles rotated by second-order vortex beams selected from a video at 1.2 s intervals. The center
dark core surrounded by the bright ring of the first-order vortex beams is partially visible at the bottom right corner. The angles of lattice
fringes correspond to 99.5°, 99.0°, 87.0°, and 84.5°, respectively. The insets show the corresponding fast Fourier transform.
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D. Polarization radiation

The magnetic moments associated with the orbital angular
momentum of the electron vortex beam can be arbitrarily
large, in principle, as the axial orbital angular momentum
can be very large. The polarization radiation associated with
the passing of a fast moving magnetic dipole moment can
display some interesting effects not seen before (Ivanov and
Karlovets, 2013a, 2013b; Konkov, Potylitsyn, and Polonskaya,
2014), such as the circular polarization of the emitting radiation.
The challenge, however, is to be able to produce coherent vortex
beams of high topological charges, not in the form of a
distribution of a number of vortices of lower order topological
charges (Freund, 1999; Ricci, Löffler, and van Exter, 2012).

VII. APPLICATIONS, CHALLENGES, AND CONCLUSIONS

We outlined the various methods currently used for the
realization of electron vortices in the laboratory. We also
emphasized the quantum nature of electron vortices as freely
propagating de Broglie vortex waves endowed with the
property of orbital angular momentum about their propagation
axis, which also coincides with the vortex core. The intrinsic
properties of electron vortices have been pointed out, spe-
cifically their mass and charge distributions and how these
determine their momentum and orbital angular momentum
contents, as well as their spin and its coupling to the orbital
angular momentum. This is particularly illuminating in terms
of revisiting some of the basics concepts involved. Progress in
the study of their interaction with matter has been summa-
rized, especially in connection with magnetic systems and the
issue of transfer of orbital angular momentum to the internal
dynamics of atomic systems. The possibility of using electron
vortices to rotate nanoparticles and current experimental work
on this has also been described.
The study of electron vortex beams and their interactions

clearly benefits from the highly advanced state of electron
optics used to produce high resolution electron microscopy,
electron spectroscopy, and electron beam lithography. This sets
electron beam technology apart from all other matter beam
technologies, with the neutron, ion, and atom beams being the
distant competitors. Currently it is much easier to generate
electron vortex beams than other matter vortex beams. The
down side of the existing electron optics technology is that they
are bulky and, unlike optical systems, not easily reconfigurable
because of the connected vacuum system essential for the free
passage of the electron beams. This means that most of the
existing vortex beam research has to be conducted within the
existing electron microscopes designed with the science of
advanced materials in mind and time shared with real-world
applications as well. Nevertheless, where existing research
facilities could be employed with little modification rapid
progress has been made. In particular, this is evident in the
development of electron vortex beam technology in electron
microscopy and our understanding of its characteristics and
there is some proof-of-principle demonstrations of its unique
capabilities. Much more research is required to understand the
intrinsic nature of some of its characteristics as well as the need
for developing optimized setups for vortex beam experiments
so that practical applications can be properly tested. Among the

optimized setups to be realized would be an electron vortex
beam source similar to that available for optical vortex beams
(Cai et al., 2012). This would be a useful alternative to the
various beam conversion schemes that have been discovered so
far. There is some encouraging experimental evidence for that
(Schmidt et al., 2014). The electron repulsion that would be
expected in a high brightness (many-electron) beamneeds to be
taken into account. A feasibility study on the shape-preserving
many-electron vortex beam design has been conducted by
Mutzafi et al. (2014) and the result is promising, indicating
that the generation of a high current electron vortex beam is
possible.
It is probably too early to apply vortex beams routinely to

study the physics of materials because, although the existing
electron beam setups are optimized for electron microscopy, a
number of electron vortex beam experiments have already led
to applications to be realized in principle. This fact allows us
to contemplate on what possible developments in the future
might be.
As pointed out at the outset, more applications of electron

vortex beams are expected to follow, in which the orbital
angular momentum of the beam is expected to provide new
information about crystallographic, electronic, and magnetic
properties of the sample. Magnetic-dependent EELS has
already been demonstrated, based on the principles of electron
vortex beams, and it is predicted that the high resolution
achievable in the electron microscope will lead to the ability to
map magnetic information at atomic or near-atomic resolu-
tion. The determination of magnetic structure at the nanoscale
has always placed a significant demand on electron micros-
copy. The linear and chiral dichroic spectroscopies (Yuan and
Menon, 1997; Schattschneider et al., 2006), based on non-
vortex beams have been developed, with the linear dichroism
being useful in the study of spin orientation in antiferromag-
netic materials and the chiral dichroism for spin orientation in
ferromagnetic materials. Electron vortex spectroscopy offers
an alternative method to access chiral-dependent electronic
excitations (Yuan, Lloyd, and Babiker, 2013).
The orbital angular momentum and magnetic properties

of the electron vortex beams may also find potential uses in
spintronic applications, either in the characterization of
spintronic devices or in contexts employing spin-polarized
current injection, through spin-to-orbital angular momentum
conversion processes (Karimi et al., 2012). The reverse
process of the spin filter using spin-orbit coupling in electron
Bessel beams was investigated theoretically (Schattschneider,
Grillo, and Aubry, 2017).
Additionally, the inherent phase structure of the vortex is

considered ideal for applications in high resolution phase
contrast imaging, as required for biological specimens with
low absorption contrast (Jesacher et al., 2005) or in revealing
local orbital angular momentum density (Juchtmans and
Verbeeck, 2016).
Applications of electron vortex beams are, however, not

restricted to spectroscopy and imaging. The orbital angular
momentumof the beammay also be used for themanipulation of
nanoparticles (Gnanavel, Yuan, and Babiker, 2012; Verbeeck,
Tian, and Tendeloo, 2013) leading to electron spanners analo-
gous to the widely used optical spanners. Electron vortex states
are also relevant in the context of quantum information
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processing and, in particular, low-energy electron vortex beams
may potentially be used to impart angular momentum on Bose-
Einstein condensates (Fetter, 2001).
It was also predicted that the large magnetic moments

associated with electron vortex beams of higher orbital
angular momentum can be used to produce novel polarization
radiation when passing through materials (Ivanov and
Karlovets, 2013a, 2013b). This has led to a drive to produce
electron beams with very large topological charges (Grillo
et al., 2015).
Both the kinematic and dynamical diffraction of electron

vortex beams by chiral crystals have been shown to be
sensitive to the helicity of the vortex beam, suggesting a
useful characterizing tool for the study of chiral crystals.
The study of an electron vortex beam with strong laser

fields has also opened up the possibility of accelerating
nonrelativistic twisted electrons using focused electromag-
netic fields (Karlovets, 2012) or beam steering using the high
electric fields due to an ultrashort pulsed beam (Hayrapetyan
et al., 2014; Bandyopadhyay, Basu, and Chowdhury, 2015).
Research into laser-electron beam interaction also allows
coherent optical vortex beams to be produced (Hemsing et al.,
2013). The inverse photoemission process involving an
electron vortex beam is another interesting problem for
further investigation (Matula et al., 2014; Zaytsev, Serbo,
and Shabaev, 2017).
In particle physics experiments, the use of vortex beams

instead of approximate plane waves would permit a direct
measurement to be made as to how the overall phase of the
plane wave scattering amplitude changes with the scattering
angle (Ivanov, 2012b; Ivanov et al., 2016; Karlovets, 2016).
This may be important for many high energy experiments in
hadron physics. It is therefore highly desirable to introduce
electron vortex beams into high energy particle accelerators.
Vortex beam-beam interactions also open up the possibility

of the creation of two vortex-entangled beams, with implica-
tions for quantum information processing (Ivanov, 2012a,
2012b).
In conclusion, our review of the emergent area of electron

vortex beams has indicated that much progress has already
been made in a relatively short period of time, particularly
over the last few years. The emphasis so far has been primarily
on the fundamental aspects of the electron vortex beams.
However, there are still many unexplored topics, ranging from
novel vortex beams (Wang and Li, 2011) to image contrast
enhancement and to exploring applications of vortex beams in
quantum information processing, just to mention a few. The
range and complexity of the phenomena involving electron
vortex beams point to a brighter future for further develop-
ments in this field.

A. Recent papers

As a sign of growing interest in the vortex beam physics,
interesting development was still continuing during the
refereeing process of this review. In particular, we highlight
the recent proposal to perform a measurement of the OAM
content of an electron vortex beam (Larocque et al., 2016)
using the microscopic version of the magnetic braking experi-
ment (Saslow, 1992; Donoso, Ladera, and Martín, 2009,

2011) or by weak measurement (Qiu, Ren, and Zhang,
2016), the possible detection of magnetic contrast in magnetic
crystal using Zeeman effect (Edström, Lubk, and Rusz, 2016a;
Edström, Lubk, and Rusz, 2016b) as well as the recent debate
about the existence of vortex structure in relativistic electron
beams (Barnett, 2017; Bialynicki-Birula and Bialynicka-
Birula, 2017).

LIST OF SYMBOLS AND ABBREVIATIONS

A vector potential of externally applied
axial magnetic field

α convergence angle of a focused electron
beam

ᾱ parameter characterizing the magnetic
correction to the effective vortex beam
topological charge

D effective length of the vortex beam
δϕ rotation angle
δl;s spin-orbit energy
Δϕ phase change
Δt film thickness of phase masks for electron

beams
E energy eigenvalue of the electron vortex

beam
E and B electric and magnetic vector fields

associated with the electron vortex beam
Fμν electromagnetic field tensor
pFq generalized hypergeometric function
gs gyromagnetic ratio
ΓðxÞ gamma function
H Hamiltonian
I beam electric current
In nth moment integral of the Bessel

function
JlðxÞ Bessel function of the first kind of order l
jðr; tÞ probability current density
jmðr; tÞ mass current density, equivalent to inertia

linear momentum density Pm

J total angular momentum of the electron
vortex beam

k wave vector of the electron wave.
κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m=E

p
kz axial wave number of the electron vortex

beam
k⊥ transverse wave number of the electron

vortex beam
l winding number, also referred to as

topological charge or azimuthal index
Iholo hologram intensity
Ll
pðxÞ generalized Laguerre polynomial with

azimuthal index l and radial index p
Lm inertial angular momentum density of the

electron vortex beam
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Lm inertial angular momentum of the
electron vortex beam

Lem electromagnetic angular momentum
density of the electron vortex beam

Lem global electromagnetic angular momen-
tum of the electron vortex beam

Lz axial component of the orbital angular
momentum operator

λp;l pth zeros of Bessel function of order l
λp;l wavelength
Mfi matrix element of interaction Hamiltonian

Hint between quantum states i and f
nðr; tÞ probability density (¼ ψ�ψ)
nL quantized Landau level index
neff effective refractive index
n order of diffraction order
Nl normalization constant for Bessel beam

wave function of the order of l
ωL Larmor frequency
ωc cyclotron frequency
ω angular frequency of the vortex beam
Ω angular frequency of nanoparticles
Pm inertia linear momentum density of the

electron vortex beam
Pm global inertia linear momentum of the

electron vortex beam
Pem linear momentum density associated with

the fields of the electron vortex beam
Pem global electromagnetic linear momentum

of the electron vortex beam
p radial index
p (canonical) linear momentum vector or

canonical linear momentum operator in

quantum formalism
pkin (kinetic) linear momentum vector

operator (¼ p − eA)
p̂ electron four momentum operator
ϕ azimuthal variable in cylindrical polar

coordinates
ϕ̂ unit vector in the azimuthal direction
φ magnetic flux
Φ electrostatic potential
ψðρ;ϕ; zÞ electron vortex wave function in cylin-

drical coordinates
ψLG
p;l wave function of Laguerre-Gaussian

electron vortex beam of winding number l

and radial index p
ψB
l wave function of Bessel electron vortex

beam of winding number l
ψLG
B wave function of electron vortex wave

function in a constant magnetic field B
ψAB wave function of electron vortex wave

function threading a single magnetic flux

ψ tB
p;l wave function of truncated Bessel beam

of winding number l and radial index p
Ψ four-component relativistic wave

function of an electron vortex beam
q topological order of defects in liquid

crystal
ρ in-plane radial variable in cylindrical

polar coordinates
ρmðr; tÞ mass density [¼ mnðr; tÞ]
ρeðr; tÞ charge density [¼ enðr; tÞ]
ρ̂ unit vector in the in-plane radial direction
rðρ;ϕ; zÞ position vector in cylindrical coordinates
ρm radius of maximum intensity of the vortex

beam
Rmax radius of the aperture or mask
RðzÞ curvature of the wave front of a Gaussian

beam
S spin half angular momentum vector

operator
SðtÞ an odd, self-adjoint operator used in

Foldy and Wouthuysen transform
s spin quantum number
Σ helicity of the beam
σi ith component of Pauli matrix
σμν spin tensor
θ angle of the cone of Bessel plane waves
ΘðxÞ Heaviside step function
uðρ; zÞ transverse mode function
wðzÞ beam radius at coordinate z from focus

plane
w0 beam radius at focus
wB beam width in the presence of magnetic

field
w two component spinor characterizing the

electron polarization in the rest frame
with E ¼ m.

ξ spin-orbit coupling constant
z z variable in cylindrical polar coordinates
ẑ unit vector in the z direction
zR Rayleigh range of the focused beam
zB magnetic Rayleigh range
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