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Quantum crystals abound in the whole range of solid-state species. Below a certain threshold
temperature the physical behavior of rare gases (4He and Ne), molecular solids (H2 and CH4), and
some ionic (LiH), covalent (graphite), and metallic (Li) crystals can be explained only in terms of
quantum nuclear effects (QNE). A detailed comprehension of the nature of quantum solids is critical
for achieving progress in a number of fundamental and applied scientific fields such as planetary
sciences, hydrogen storage, nuclear energy, quantum computing, and nanoelectronics. This review
describes the current physical understanding of quantum crystals formed by atoms and small
molecules, as well as the wide palette of simulation techniques that are used to investigate them.
Relevant aspects in these materials such as phase transformations, structural properties, elasticity,
crystalline defects, and the effects of reduced dimensionality are discussed thoroughly. An
introduction to quantum Monte Carlo techniques, which in the present context are the simulation
methods of choice, and other quantum simulation approaches (e.g., path-integral molecular dynamics
and quantum thermal baths) is provided. The overarching objective of this article is twofold: first,
to clarify in which crystals and physical situations the disregard of QNE may incur in important bias
and erroneous interpretations. And second, to promote the study and appreciation of QNE, a topic
that traditionally has been treated in the context of condensed matter physics, within the broad and
interdisciplinary areas of materials science.
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I. INTRODUCTION

A. Quantum crystals: Definition and interests

Quantum crystals are characterized by light-weight par-
ticles interacting through weak long-range forces. At low
temperatures, the kinetic energy per particle in a quantum
crystal Ek is much larger than kBT, where kB is the Boltzmann
constant, and the spatial fluctuations about the equilibrium
lattice sites are up to 30% of the distance to the neighboring
lattice sites (that is, much larger than in any classical solid).
These qualities can be understood only in terms of quantum-
mechanical arguments. Consider, for instance, the quantum
expression of the atomic kinetic energy for a system of N
indistinguishable particles with mass m:

Ek ¼ −
ℏ2

2m

�
∇2Ψ
Ψ

�
; ð1Þ

where ℏ is the Planck constant, Ψ is the ground-state wave
function of the system, and h� � �i denotes expected value. If the
lightweight particles were to rest immobile on the positions of
the crystal arrangement R0 that minimizes their potential
energy Ep, that is, Ψ ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δðR −R0Þ

p
, Ek would diverge.

Rather, particles in a quantum crystal remain fluctuating
around such equilibrium lattice sites in order to minimize
their total energy E ¼ Ep þ Ek. The corresponding degree of
spatial delocalization is determined by a subtle balance
between the accompanying gains in kinetic and potential
energies.
Examples of quantum solids include Wigner crystals

(Wigner, 1934; Ceperley and Alder, 1980; Drummond
et al., 2004; Militzer and Graham, 2006; Drummond and
Needs, 2009), vortex lattices (Safar et al., 1992; Abo-Shaeer
et al., 2001; Cooper, Wilkin, and Gunn, 2001), dipole systems
(Astrakharchik et al., 2007; Matveeva and Giorgini, 2012;
Boninsegni, 2013a; Moroni and Boninsegni, 2014), rare
gases, molecular solids, light metals, and many other similar
systems (see the next paragraphs). For the sake of focus,
however, in this review we will concentrate on quantum
crystals formed by atoms and small molecules.
A quantitative indicator of the degree of quantumness of a

system is given by the de Boer parameter Λ� (Sevryuk,
Toennies, and Ceperley, 2010). This is defined as the ratio of
the corresponding de Broglie wavelength λðϵÞ and a typical
interatomic distance r0, namely,

Λ� ¼ λðϵÞ
r0

¼ ℏ
r0

ffiffiffiffiffiffi
mϵ

p ; ð2Þ

where ϵ is an energy scale characterizing the interactions
between particles. The smaller m and ϵ are, the larger Λ�

results. Figure 1 shows the de Boer parameter estimated in a
series of crystals that are representative of the broad
spectrum of solid-state species.1 The crystals in which
quantum nuclear effects (QNE) are expected to be large,
somewhat arbitrarily defined here as Λ� ≥ 0.012 (which in
the limiting case coincides with graphite), are indicated with
red (dark) dots. As observed, most rare gases and light-
weight molecular solids, among which we highlight helium,
hydrogen, and methane, are quantum crystals. An important
number of quantum specimens are also found in the remnant
of solid-state categories such as, for instance, metal hydride
(ionic), carbon-based (covalent), and alkali metal (metallic)
compounds.
Quantum paraelectrics, although not included in Fig. 1, also

conform to an intriguing class of quantum crystals. Quantum
paraelectrics are materials in which the onset of ferroelec-
tricity, that is, the appearance of a spontaneous and externally
switchable electrical polarization, is suppressed by quantum
nuclear fluctuations (Müller and Burkard, 1979; Rytz, Hochli,
and Bilz, 1980; Conduit and Simons, 2010). Examples of
quantum paraelectrics include SrTiO3 and KTaO3, which
normally are classified as complex oxide perovskites (Ohtomo
and Hwang, 2004; Cazorla and Stengel, 2012). Quantum
paraelectrics do not follow the conventional definition of a
quantum crystal since they contain heavy atomic species that
interact through strong covalent and ionic forces. Actually, the
size of QNE in these materials should be rather small (i.e.,
Λ� ≪ 0.01). At low temperatures, however, quantum para-
electrics are on the verge of a phase transition involving
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FIG. 1. de Boer parameter estimated in a series of crystals
spanning over the entire range of solid-state species. The cases in
which Λ� adopts a value larger than 0.012, namely, C and above,
are indicated with red (dark) dots.

1Λ� values were calculated using reported Lennard-Jones potential
parameters for “rare gas” and “molecular” solids. In the rest of the
cases, we used reported experimental cohesive energies as ϵ’s and
equilibrium lattice parameters as r0’s.
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disparate crystal structures with very similar energies and thus
the impact of QNE in these and other related materials is large
(see Sec. IX).
The study of quantum solids is important to understand

nature. Hydrogen and helium, for instance, are the most
abundant elements in the Universe; they represent∼70%–95%
of the mass of the giant planets in our Solar System such as
Jupiter and Saturn (Fortney, 2004; Baraffe, Chabrier, and
Barman, 2010). An exhaustive knowledge of their condensed
matter phases at extreme thermodynamic conditions is then
crucial for understanding the chemical composition and past
and future evolution of planetary bodies. Quantum solids are
also sought after for technological applications. Rare-gases
alloys, for instance, are intensively employed as pressure-
transmitting media in high-load compression experiments and
synthesis processes, due to their intriguing elastic properties
(Errandonea et al., 2006; Dewaele et al., 2008; Cazorla,
Errandonea, and Sola, 2009).
Other examples of scientific fields in which quantum

crystals are important include nuclear energy, gas storage,
quantum computing, and nanoelectronics. For instance, lith-
ium hydride (LiH) and deuteride (LiD) are thoroughly used in
the nuclear industry as either shielding agents or fuel in energy
reactors (Welch, 1974; Veleckis, 1977). Metal hydrides are
also promising for hydrogen storage applications (Grochala
and Edwards, 2004; Shevlin and Guo, 2009) since they can
supply large amounts of gas upon thermodynamic destabili-
zation. Likewise, carbon-based nanostructures (e.g., graphene,
nanotubes, and fullerenes) exhibit large gas uptake capacities
(Cazorla, Shevlin, and Guo, 2011; Cazorla, 2015; Gadipelli
and Guo, 2015) as a consequence of their large surface-to-
volume ratio, light atomic weight, and great thermodynamic
stability. Diamonds with negatively charged nitrogen-vacancy
centers, another type of carbonaceous nanomaterial, play a
crucial role in the development of scalable quantum comput-
ing components (Fuchs et al., 2011; Nemoto et al., 2014).
This class of crystals can also be employed as tunable
quantum simulators that, in analogy to ultracold atom gases
trapped in optical lattices (Lewestein et al., 2007), can be used
to answer fundamental questions in the fields of condensed
matter, biology, and high-energy physics (Georgescu, Ashhab,
and Nori, 2014; Wang et al., 2015). Finally, quantum para-
electrics find numerous applications in nanoelectronics as
varistors, supercapacitor electrodes, and substrates on which
to grow epitaxial films of other perovskite compounds
(Lawless, 1974; Schlom et al., 2007; Cazorla and
Stengel, 2012).
Besides their fundamental and applied interests, quantum

crystals are also important in the framework of development
and testing of new theories. The interactions between particles
in quantum crystals typically are of dispersion, hydrogen
bond, and multipole-multipole types, which are long ranged
and weak. The cohesion between atoms in solid helium, for
instance, is so weak that to a first approximation this crystal
can be described by a system of hard spheres (Kalos,
Levesque, and Verlet, 1974). Nevertheless, the description
of long-ranged and very weak interactions poses a serious
challenge to some families of first-principles methods (also
known as ab initio because they do not rely on any
predetermined knowledge of the atomic forces) as the

analytical expression of the corresponding electronic
exchange and correlation energies are intricate and difficult
to approximate for computational purposes (Klimeš and
Michaelides, 2012; Cazorla, 2015). This circumstance con-
verts quantum solids into an ideal playground in which to
perform benchmark calculations for assessing the perfor-
mance of standard and advanced electronic band-structure
first-principles methods such as density functional theory
(DFT) and the electronic quantum Monte Carlo (eQMC)
method (Driver et al., 2010; Henning et al., 2010; Clay et al.,
2014, 2016) (see Sec. III.A).
Likewise, QNE must be fully accounted for in any study

dealing with quantum solids since they may noticeably affect
the most fundamental properties of crystals such as atomic
structure, vibrational phonon excitations, magnetic spin order,
and electronic energy band gap. This fact leads to the situation
in which approaches describing QNE only at a qualitative or
approximate level (e.g., the Debye model and quasiharmonic
approximation) normally are inadequate for investigating
genuine quantum crystals [as shown, for example, by
Morales et al. (2013), Monserrat et al. (2014), and Cazorla
and Boronat (2015a)]; instead, anharmonic or full quantum
approaches based on the solution to the Schrödinger equation
or path-integral formulation of quantum mechanics due to
Feynman (1948) has to be employed (the fundamentals of
some of these simulation techniques are reviewed in Sec. II).

B. A bit of history and theory

The experimental study of quantum solids was initiated
with the solidification of 4He at the Kamerlingh Onnes
Laboratories in Leiden, by W. H. Keesom in June 1926
(Keesom, 1942; Domb and Dugdale, 1957). It was not until
the late 1960s and early 1970s, however, that with the
establishment of neutron inelastic scattering techniques solid
helium started being thoroughly investigated (Klein and
Venables, 1974). The aim of those early neutron inelastic
scattering experiments (Lipschultz et al., 1967; Minkiewicz
et al., 1968) was to understand the vibrational properties of
such a highly anharmonic solid. Actually, harmonic calcu-
lations render a mechanically unstable solid (that is, with
imaginary lattice phonon frequencies) at low densities (Wette
and Nijboer, 1965), hence it was appealing to rationalize the
real dynamics in the crystal. An interest in understanding how
hydrostatic pressure could modify the physical properties of
quantum solids started to develop also at that time (Eckert,
Thomlinson, and Shirane, 1977; Stassis et al., 1978).
Likewise, the initial theoretical efforts were concentrated in

finding a theory that could correctly describe the dynamical
stability observed in highly anharmonic crystals. This was
accomplished with the development of the self-consistent
phonon (SCP) theory (Koehler, 1966; Glyde, 1994). In the
SCP approach, one essentially assumes a harmonic solid with
force constants that best represent the real anharmonic crystal,
which are determined on the basis of a variational principle.
We note that in recent years variants of the SCP method and
other related but more advanced approaches (e.g., the vibra-
tional self-consistent-field method) have been applied with
success to the study of highly anharmonic metallic, molecular,
and superconductor materials in the context of electronic
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first-principles calculations [see, for instance, Errea,
Rousseau, and Bergara (2011), Errea, Calandra, and Mauri
(2013), Monserrat and Needs (2014), Engel, Monserrat, and
Needs (2015), Errea et al. (2015), and Paulatto et al., 2015].
In quantum crystals, due to the large excursions of the

atoms around the equilibrium positions, a good treatment of
the short-range correlations is necessary. The need to consider
such microscopic effects, which are beyond the extent of
harmonic and quasiharmonic approaches, led to the develop-
ment of the variational theory of quantum solids (Nosanow,
1966; Koehler, 1967). Nosanow proposed a general wave
function model for a quantum solid of the form

Ψðr1;…; rN ; fRIgÞ ¼
Y
j<k

fðrjkÞ
YN
i¼1

gðjri −RijÞ; ð3Þ

where RI are the position vectors defining the equilibrium
crystal lattice, ri are the position vectors of the particles,
rjk ≡ jrj − rkj, and gðrÞ and fðrÞ are Gaussian and two-body
correlation factors, respectively. The second factor in Eq. (3)
localizes each particle around a particular equilibrium lattice
site, while the first accounts for the interparticle correlations
introduced by the atomic interactions.
After McMillan’s and other works on liquid 4He

(McMillan, 1965; Schiff and Verlet, 1967), the two-body
correlation factors in Ψ are frequently expressed as
fðrÞ ¼ exp ½−ð1=2Þðb=rÞ5�. This function corresponds to
the asymptotic solution of the Schrödinger equation in the
r → 0 limit of a two-body problem in which the interparticle
interaction is of the Lennard-Jones (LJ) type. With such a
relatively simple analytical model of Ψ and by employing
Monte Carlo multidimensional integration techniques
(Metropolis et al., 1953; Wood and Parker, 1957), it was
then possible to perform variational calculations in the
ground state of solid helium (Hansen and Levesque, 1968)
and other quantum solids (Hansen, 1968; Bruce, 1972).
These advancements set the foundation of the variational
Monte Carlo (VMC) method as applied to the study of
quantum solids (see Sec. II.A.1).
Despite the fact that variational approaches may be

insightful from a physical point of view, they rarely provide
the exact quantitative answer to realistic problems. In
order to obtain the precise solution to a quantum many-body
problem, one, for instance, may deal explicitly with the
corresponding Schrödinger equation. To this end, more
sophisticated techniques than VMC, albeit related, were
developed during the 1970s, among which we highlight
the Green’s function Monte Carlo (GFMC) method due to
Kalos and co-workers (Kalos, 1962; Kalos, Levesque, and
Verlet, 1974; Ceperley, Chester, and Kalos, 1976; Whitlock
and Kalos, 1979; Whitlock et al., 1979; Schmidt and Kalos,
1984). The basic idea behind the GFMC method is to
employ Monte Carlo sampling techniques to solve the time-
independent Schrödinger equation of a many-body system,
when that is expressed as an integral equation containing a
Green’s function. Although the exact form of the Green’s
function normally is not known, this can be reproduced
with stochastic sampling techniques involving probability

distribution functions generated through the Trotter’s product
formula (Trotter, 1959); see Sec. II.A.2.
An intimately related method to the GFMC method is the

diffusion Monte Carlo (DMC) method, in which the imagi-
nary time-dependent Schrödinger equation, rather than the
time-independent one, is integrated by using an analytical
short-time approximation to the Green’s function (Ceperley
and Alder, 1980; Reynolds et al., 1982; Guardiola, 1986;
Hammond, Lester, and Reynolds, 1994). Both the GFMC and
DMC methods are exact ground-state methods in the sense
that they provide results for the energy that in principle are
affected only by statistical errors. These two methods belong
to the family known as “projection techniques,” in which a
projector operator is iteratively applied in order to cast out the
ground state of the targeted quantum many-body system [in
this latter category we also find, for instance, the reptation
Monte Carlo method due to Baroni and Moroni (1999)].
Nonetheless, the DMC method is more efficient in dealing
with arbitrary boundary conditions and potential-energy
functions (Anderson, 2002); hence the use of the GFMC
method is infrequent nowadays. In Sec. II.A.2, we review the
fundamentals of the DMC method as applied to the study of
quantum bosonic crystals.
Quantum nuclear effects are also crucial to understand

quantum solids at finite temperature (i.e., T ≠ 0). The thresh-
old temperature below which QNE are important can be
considered to be equal to the Debye temperature ΘD (Born
and Huang, 1954). ΘD is defined as ℏωm=kB, where ωm is the
largest vibrational frequency in the crystal (that is, at ΘD ≤ T
all phonon modes in the solid are excited). This threshold
temperature can be obtained directly from neutron inelastic
scattering or specific heat measurements, and in the particular
case of rare gases ΘD ranges from 25 to 85 K. It is important
to note that ΘD can increase dramatically under the applica-
tion of external pressure, hence making unavoidable the
consideration of QNE in the study of highly compressed
quantum crystals. In molecular hydrogen, for instance, the
Debye temperature at normal pressure conditions amounts to
∼100 K, whereas at P ¼ 20 GPa it turns out to be ∼1000 K
(Diatschenko et al., 1985).
The theoretical method of choice for simulation of quantum

solids at T ≠ 0 is the path-integral Monte Carlo (PIMC)
method. The PIMC method is based on Feynman’s formu-
lation of nonrelativistic quantum mechanics, which can be
thought of as a generalization of the action principle of
classical mechanics (Feynman, 1948; Feynman and Hibbs,
1965). In Feynman’s path-integral theory, however, a func-
tional integral over an infinity of possible trajectories (that is,
a path integral) replaces the notion of probability amplitude.
From a computational perspective, Feynman’s formalism
allows one to map out the atomic quantum system of interest
onto a classical model of interacting polymers that evolve in
imaginary time. This idea, which is known as the “classical
isomorphism” (Feynman, 1972; Barker, 1979; Chandler and
Wolynes, 1981; Ceperley, 1995), makes it possible to sample
the corresponding space of possible configurations with
stochastic techniques, laying the foundations of the PIMC
method. The PIMC method relies exclusively on the knowl-
edge of the many-body Hamiltonian and, in contrast to other
simulation techniques such as, for instance, the GFMC and

Claudio Cazorla and Jordi Boronat: Simulation and understanding of atomic and …

Rev. Mod. Phys., Vol. 89, No. 3, July–September 2017 035003-4



DMC methods, does not comprise the use of projector
operators (this method is explained in detail in Sec. II.B.1).
Interestingly, the PIMC approach can be generalized to zero-
temperature calculations by exploiting the formal similarities
between imaginary time propagators and thermal density
matrices (Sarsa, Schmidt, and Magro, 2000). This methodo-
logical extension is named path-integral ground state (PIGS)
and is reviewed in Sec. II.A.3.
The isomorphism between classical and quantum systems

also allows one to employ molecular dynamics (MD) simu-
lation techniques for the sampling of path integrals
(Chakravarty, 1997; Tuckerman and Hughes, 1998). In this
last framework, generally known as path-integral molecular
dynamics (PIMD), the atoms are treated as distinguishable
particles. Consequently, genuine quantum statistical effects,
that in liquids and disordered systems may give rise to
intriguing quantum phenomena such as Bose-Einstein con-
densation (BEC) and superfluidity at low temperatures, are
neglected. Nonetheless, in situations in which atomic quantum
exchanges are not relevant (i.e., high temperatures) the PIMD
formalism becomes a powerful method that can be used, for
instance, to compute quantum time-correlation functions and
transition state rates very efficiently (Gillan, 1990; Habershon
et al., 2013; Herrero and Ramírez, 2014).
Recently, an alternative to path-integral quantum simulation

approaches has been proposed that relies on the combined
action of “quantum thermal baths” (QTB) and molecular
dynamics (Wang, 2007; Buyukdagli, Savin, and Hu, 2008;
Dammak et al., 2009; Hernández-Rojas, Calvo, and
González-Noya, 2015). In the QTB formalism, the dynamics
of the system is governed by a Langevin-type equation
including dissipative and Gaussian random forces that mimics
the power spectral density given by the quantum fluctuation-
dissipation theorem (Callen and Welton, 1951). Although
quantum statistical effects are also neglected in QTB
approaches, these methods have become more popular in
recent years due to their reduced computational expense as
compared to path-integral based techniques. Meanwhile,
hybrid PIMD and QTB schemes have been recently developed
that exhibit improved convergence and scalability as com-
pared to the PIMD scheme alone (Ceriotti, Bussi, and
Parrinello, 2009; Ceriotti, Manolopoulos, and Parrinello,
2011; Ceriotti and Manolopoulos, 2012; Brieuc, Dammak,
and Hayoun, 2016). In Sec. II.B, we provide a brief intro-
duction to these emergent quantum simulation techniques.

C. Quantum versus classical solids

Let us take a deeper look into the main differences between
classical and quantum solids in the zero-temperature limit (see
Fig. 2). Atoms in a classical solid remain practically immobile
on the positions of the periodic arrangement that minimizes
their potential energy (i.e., Ek ≪ kBT), whereas in a quantum
solid particles remain loosely localized around those sites (i.e.,
Ek ≫ kBT). As a consequence, large Lindemann ratios (i.e.,
γ ≡ ffiffiffiffiffiffiffiffiffi

hu2i
p

=a, where hu2i represents the atomic mean squared
displacement and a the lattice parameter) of the order of ∼0.1
are observed in the latter case. Also, the radial pair distribution
function gðrÞ (i.e., the average number density at a distance r
from an atom divided by the overall particle density) presents

different features in the two types of crystals. In the zero-
temperature limit, the gðrÞ of a classical solid exhibits a series
of sharp peaks signaling the radial distances between crystal
lattice sites. By contrast, in a quantum solid gðrÞ is continuous
and displays a pattern of peaks and valleys that oscillates
around unity at large distances [see Fig. 2(a)]. Likewise, the
structure factor in a quantum solid, which is related to the
Fourier transform of gðrÞ, presents some broadening and
depletion of the main scattering amplitudes as compared to
that in a classical solid (Whitlock et al., 1979; Draeger and
Ceperley, 2000).
A further difference between quantum and classical crystals

is provided by the momentum distribution nðkÞ. In classical
solids, nðkÞ is always (that is, independently of the inter-
actions between the atoms) equal to the Maxwell-Boltzmann
distribution:

nðkÞclass ¼
�

1

2πα̂2

�
3=2

exp

�
−

k2

2α̂2

�
; ð4Þ

where by the equipartition theorem α̂2 ≡mkBT=ℏ2. In quan-
tum solids, however, the momenta and positions of the atoms
are not independent and consequently nðkÞ may depart
significantly from nðkÞclass. In solid 4He, for instance, nðkÞ
is non-Gaussian as it has a larger occupation of low momen-
tum states in comparison to a Maxwell-Boltzmann distribu-
tion (Diallo et al., 2004; Rota and Boronat, 2011).

FIG. 2. Sketch of the main differences between quantum
(left) and classical (right) solids in the zero-temperature limit.
(a) Radial pair distribution function gðrÞ. (b) Localization of
the atoms around their equilibrium lattice positions; in the
quantum case, lines represent the evolution of the atomic
positions along time and show the occurrence of atomic quantum
exchanges. (c) Compton profile of the longitudinal momentum
distribution JðyÞ.
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The atomic momentum distribution of condensed matter
systems can be measured by inelastic neutron scattering
performed at high momentum transfer (Glyde, 1994; Diallo
et al., 2007). In this case, the Compton profile of the
longitudinal momentum distribution JðyÞ is the quantity that
is directly measured that in the impulse approximation is
related to nðkÞ through (Withers and Glyde, 2007)

JðyÞ ¼ 2π

Z
∞

jyj
dkknðkÞ; ð5Þ

where y is a scaling variable. Compton profile experiments
can provide a wealth of information about the nature of
quantum solids (Glyde, 1994). For instance, recent neutron
scattering measurements have found that the atomic kinetic
energy in solid helium at T ≈ 0 amounts to 24.25 (0.30) K
(the number within parentheses represents the accompanying
uncertainty) (Diallo et al., 2007), which is in good agreement
with quantum Monte Carlo estimations (Ceperley, Simmons,
and Blasdell, 1996; Cazorla and Boronat, 2008a;
Vitiello, 2011).
Kinetic isotopic effects, which attribute different kinetic

energies to the isotopes of the same chemical element [see
Eq. (1)], are also indicators of the presence of QNE. The
magnitude of these effects can actually be inferred from
functions gðrÞ and nðkÞ (Boninsegni, Pierleoni, and Ceperley,
1994; Mao and Hemley, 1994; Cazorla and Boronat, 2005).
For instance, narrowing (widening) of the gðrÞ peaks may be
caused by the presence of heavier (lighter) species. Kinetic
isotopic effects can also manifest in the thermal expansion of
quantum solids (Herrero and Ramírez, 2011a; Pamuk et al.,
2012) and the P − T boundaries delimiting the stability
regions between different phases (Lorenzana, Silvera, and
Goettel, 1990; Goncharov, Hemley, and Mao, 2011).
In quantum mechanics, atoms of the same species are

indistinguishable, that is, they can exchange positions while
leaving the configuration of the system (namely, the square of
the wave function) invariant. These atomic exchanges can
occur as pairwise interchanges, three-particle, four-particle,
and so on cyclic permutations. When the particles involved in
such permutations are bosons and their number grows to
infinity, the system becomes superfluid and the atoms on it can
flow coherently without any resistance (Feynman, 1972;
Ceperley, 1995). In quantum solids, as opposed to classical
crystals, atoms can swap their positions and further delocalize
in configurational space [see Fig. 2(b) for a schematic
representation]. An illustrative example of this class of
QNE is given by solid 3He. 3He atoms, which are fermions,
have a nonzero magnetic moment and at low pressure the
stable phase is a cubic bcc crystal. At temperatures below
1.5 mK, this system adopts an exotic magnetic order that
consists of two planes of up spins followed by two planes of
down spins (Roger, Hetherington, and Delrieu, 1983). In
terms of classical interaction arguments, that is, if only
nearest-neighbor pair exchanges were important, the magnetic
order in this crystal should be antiferromagnetic. However,
quantum exchanges between more than two 3He atoms are
very frequent and as a result a strong competition between

ferromagnetism and antiferromagnetism appears in the crystal
that leads to the observed magnetic order (Ceperley, 1995).
It has been theoretically shown that in commensurate 4He

crystals (i.e., crystals with exactly two atoms per hcp unit cell,
without any point or line defects such as vacancies, disloca-
tions, or grain boundaries) typical cyclic permutations occur-
ring at a few tenths of K involve only a small number of atoms.
Consequently, the superfluid density in perfect quantum solids
is null (Ceperley and Bernu, 2004; Bernu and Ceperley, 2005;
Boninsegni, Prokof’ev, and Svistunov, 2006b). This conclu-
sion appears to be consistent with the results of most recent
and conclusive torsional oscillator experiments performed by
Kim and Chan (2012, 2014). Meanwhile, in the presence of
crystalline defects or atomic disorder, quantum Monte Carlo
calculations agree in predicting that the length of the ring
quantum exchanges increases noticeably, and thus the pos-
sibility of realizing superfluidity starts to depart from zero
(Boninsegni, Prokof’ev, and Svistunov, 2006b; Boninsegni
et al., 2007; Rota and Boronat, 2012). We must note, however,
that convincing experimental evidence of superfluidlike man-
ifestations in quantum crystals is yet elusive (Chan, Hallock,
and Reatto, 2013; Hallock, 2015). We discuss these topics in
more detail in Sec. VI.

D. Incomplete understanding of quantum crystals

Although a lot is already known about the physics of
quantum crystals, there are still a few puzzling and contro-
versial aspects that urge for an improved understanding. One
of these aspects is related to the interactions between different
types of crystalline defects, their formation energy, and
transport properties. In a seminal work, Day and Beamish
(2007) reported the experimental dependence of the shear
modulus μ in solid 4He as a function of temperature. They
found that μ increased with decreasing T below a certain
temperature of 0.15 K. The observed increase in stiffness was
rationalized in terms of line defects mobility: below a
particular temperature threshold the dislocations present in
the crystal could be pinned by 3He impurities in spite of the
incredibly small concentration of the latter (i.e., just 200 ppb
of 4He atoms). This argument has been subsequently ratified
by a number of compelling experimental works carried out by
the groups of Beamish, at the University of Alberta, and
Balibar, at the Ecole Normale Supérieure de Paris [see, for
instance, Haziot, Fefferman, Souris et al. (2013), Haziot,
Fefferman, Beamish, and Balibar (2013), Fefferman et al.
(2014), and Souris et al. (2014)]. Remarkably, Haziot et al.
(2013a) recently showed that in ultrapure single crystals of
4He the resistance to shear along one particular direction
nearly vanishes at around T ¼ 0.1 K, whereas normal elastic
behavior is observed in the others. The exact origins of this
intriguing effect, which has been termed “giant plasticity,”
however, are still under debate (Haziot et al., 2013b; Zhou
et al., 2013), and the exact ways in which dislocations and
isotopic impurities interact are not yet fully understood
(see Fig. 3).
Recent theoretical arguments by Kuklov et al. (2014)

suggest that quantum crystals might constitute a unique kind
of material in which topological lattice defects, that is,
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dislocations, could display quantum behavior such as quan-
tum tunneling of kinks and jogs. Kuklov’s hypotheses appear
to be sustained by recent experimental observations in 4He
and 3He crystals [see, for instance, Ray and Hallock (2008)
and Lisunov et al. (2015)]. Verifying such a possible quantum
scenario, however, turns out to be very challenging in practice
due to the difficulties encountered in both the experiments
and atomistic simulations. For instance, according to recent
reports it appears to be extremely challenging to grow perfect
helium crystals totally free of dislocations (Souris et al.,
2015). Concerning the calculations, a detailed and reliable
simulation of line defects entails the use of large systems
containing up to several thousands of atoms (Bulatov and Cai,
2006; Proville, Rodney, and Marinica, 2012), which currently
is on the edge of quantum simulations. Because of these
issues, many fundamental questions remain yet unanswered
such as, for instance: What is the formation energy of
dislocations in quantum solids and by which mechanisms
are these created? Can dislocations really behave as quantum
entities so that they delocalize in space? Through which exact
mechanisms do quantum impurities such as 3He atoms, which
are extremely mobile, interact with dislocations? Solving
these and other similar puzzles is crucial for advancing the
field of quantum solids; this knowledge could also have an
impact on particular areas of materials science in which
plasticity is important (e.g., fatigue in crystals and amorphous
and martensitic transformations) (Proville, Rodney, and
Marinica, 2012). We comment further on these points
in Sec. VI.
Another source of unawareness in quantum crystals is

posed by their behavior at extreme thermodynamic conditions.
When a crystal is compressed the bonds between atoms
normally are shortened so that particles become more local-
ized to avoid increasing their (highly repulsive) potential
energy. At the same time, the kinetic energy of the solid
increases due to Heisenberg’s uncertainty principle. In quan-
tum crystals, such a pressure-induced energy gain may be

compensated in part by quantum atomic exchanges and
quantum tunneling, which tend to favor the delocalization
of particles (Kosevich, 2005). The existence of proton
quantum tunneling, for instance, has been demonstrated in
solid hydrogen and ice under pressure, a quantum nuclear
effect that is key to understanding their corresponding phase
diagrams and vibrational properties (Benoit, Marx, and
Parrinello, 1998; Hemley, 2000; Howie, Scheler et al.,
2012; Drechsel-Grau and Marx, 2014). On the other hand,
quantum fluctuations in highly compressed solid hydrogen are
known to hinder molecular rotation, which counterintuitively
leads to some kind of atomic localization (Kitamura et al.,
2000; Li et al., 2013). The ways in which QNE manifest and
affect the physical properties of highly compressed quantum
crystals actually seem to be quite unpredictable.
Simulation of QNE phenomena at high pressures is

technically difficult and demands intensive computational
resources. The main reason for this is that the interactions
between atoms can no longer be correctly described with
semiempirical approaches such as, for instance, pairwise
potentials, and thereby the treatment of both the electronic
and ionic degrees of freedom needs to be done quantum
mechanically (see Sec. III). Likewise, carrying out high-P,
high-T experiments in the laboratory is extremely challenging
due to the occurrence of unwanted chemical reactions between
the samples and containers (Dewaele et al., 2010). In addition
to this, it is complicated to determine the exact atomic
structure in highly compressed solids with low-Z numbers
because their x-ray scattering cross sections are very small
(Dzyabura, Zaghoo, and Silvera, 2013; Goncharov, Howie,
and Gregoryanz, 2013). Because of all these difficulties, the
P − T phase diagram of many quantum solids remains
contentious and a complete understanding of the accompany-
ing QNE features (e.g., quantum atomic exchanges and kinetic
energy) is still pending. Further progress in this field is
essential for advancing our knowledge in condensed matter
physics and Earth and planetary sciences (see Sec. VIII for
more details).

E. Aims and organization of this review

This review is concerned with the simulation and under-
standing of quantum solids formed by atoms and small
molecules under broad P − T conditions. Important aspects
in these systems such as, for instance, their energetic and
structural properties, phase transitions, and elasticity are
discussed in detail. The effects that crystalline defects and
reduced dimensionality have on the physical properties of
archetypal quantum solids (i.e., 4He and H2) are also
reviewed. Special emphasis is put on identifying those
systems and physical situations in which QNE should be
considered in order to avoid likely misconceptions. In fact,
QNE have traditionally been analyzed in the field of con-
densed matter physics; however, comprehension of this class
of effects is also crucial for the advancement of many other
research areas such as planetary and materials sciences.
We start by explaining the basics of the simulation methods

that are used most frequently in the study of quantum crystals
(Secs. II and III). In Secs. IV–IX, we describe the phenom-
enology and current understanding of quantum solids by

FIG. 3. Shear modulus in an extremely pure 4He crystal
expressed as a function of temperature. Three different regimes
are observed that can be explained in terms of dislocation
dynamics (see text). The unsolved problem about which are
the interactions between dislocations and isotopic impurities is
noted schematically. Adapted from Haziot et al., 2013a.
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surveying a large number of experimental and theoretical
studies on archetypal and other less popular quantum crystals
(e.g., H2O, N2, CH4, LiH, and BaTiO3). Finally, we comment
on promising research directions involving quantum solids
and summarize our general conclusions in Sec. X.

II. QUANTUM SIMULATION METHODS

We review the basics of customary quantum simulation
methods that are employed for the investigation of quantum
crystals. We classify them into two major categories, namely,
ground-state (T ¼ 0) and finite-temperature (T ≠ 0) methods.
In the zero-temperature case, we differentiate between
“approximate” and “exact” techniques. Depending on the
nature of the problem that is going to be investigated and the
amount of computational resources that are available, one may
opt for using one or the other.

A. Ground-state approaches

1. Approximate methods

a. Quasiharmonic approximation

In the quasiharmonic approach (QHA) one assumes that the
potential energy of a crystal can be approximated with a
quadratic expansion around the equilibrium atomic configu-
ration of the form (Born and Huang, 1954; Kittel, 2005)

Eqh ¼ Eeq þ
1

2

X
lκα;l0κ0α0

Φlκα;l0κ0α0ulκαul0κ0α0 ; ð6Þ

where Eeq is the total energy of the perfect lattice, Φ is the
corresponding force-constant matrix, and ulκα is the displace-
ment along the Cartesian direction α of atom κ at lattice site l.
Normally, this dynamical problem is solved by introducing

ulκαðtÞ ¼
X
q

uqκα exp fi½ωt − q · ðl þ τκÞ�g; ð7Þ

where q is a wave vector in the first Brillouin zone (BZ) that is
defined by the equilibrium unit cell; l þ τκ is the vector that
locates atom κ at cell l in the equilibrium structure. The normal
modes are then found by diagonalizing the dynamical matrix:

Dq;κα;κ0α0 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

mκmκ0
p

X
l0
Φ0κα;l0κ0α0 exp ½iq ·ðτκ− l0−τκ0 Þ�; ð8Þ

and thus the crystal can be treated as a collection of
noninteracting harmonic oscillators with frequencies ωqs

(positively defined and nonzero) and energy levels:

En
qs ¼ ð1

2
þ nÞωqs; ð9Þ

where 0 ≤ n < ∞. In this approximation, the Helmholtz free
energy of a crystal with volume V at temperature T is given by

FqhðV; TÞ ¼
1

Nq
kBT

X
qs

ln

�
2 sinh

�
ℏωqsðVÞ
2kBT

��
; ð10Þ

where Nq is the total number of wave vectors used for
integration over the BZ, and the V dependence of the vibra-
tional frequencies has been noted explicitly. In the zero-
temperature limit, Eq. (10) transforms into

FqhðV; 0Þ ¼
1

Nq

X
qs

1

2
ℏωqsðVÞ; ð11Þ

which is usually referred to as the “zero-point energy” (ZPE).
We note that despite quasiharmonic approaches may not be
adequate for the study of archetypal quantum solids (Morales
et al., 2013; Monserrat et al., 2014; Cazorla and Boronat,
2015a), QHA ZPE corrections normally are decisive in
predicting accurate phase transitions in other materials
(Cazorla, Alfè, and Gillan, 2008; Shevlin, Cazorla, and
Guo, 2012; Cazorla and Íñiguez, 2013).

b. Variational Monte Carlo method

Variational theory has been one of the most fruitful
computational approaches to study quantum fluids and solids.
The strong repulsive interaction at short distances between
particles produces a failure of conventional perturbation
methods. The variational principle of quantum-mechanics
states that the expectation value of a Hamiltonian Ĥ obtained
with a model wave function jΨi provides an upper bound to
the true ground-state energy of the system E0, namely,

E ¼ hΨjĤjΨi
hΨjΨi ≥ E0: ð12Þ

In a many-body system, the evaluation of E is not an easy
task because one has to deal with a 3N-dimensional integral.
In this context, Monte Carlo integration techniques emerge
as one of the most efficient computational methods. In the
VMC method, one defines the multivariate probability density
function (pdf):

fðRÞ ¼ jΨðRÞj2R
dRjΨðRÞj2 ; ð13Þ

which is normalized and positively defined. Meanwhile, the
expectation value of the Hamiltonian can be expressed in the
following integral form:

hĤiΨ ¼
Z

dRELðRÞfðRÞ; ð14Þ

where the local energy EL is defined as

ELðRÞ ¼
1

ΨðRÞ ĤΨðRÞ: ð15Þ

In Eqs. (14) and (15) R stands for a multidimensional point
(also called the “walker”), R≡ fr1;…; rNg. The expected
value of the Hamiltonian then is calculated as the mean value
of ELðRÞ, which is evaluated in a series of points ns generated
through the pdf fðRÞ, namely,
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hĤiΨ ¼ 1

ns

Xns
i¼1

ELðRiÞ: ð16Þ

Effective sampling of the multidimensional pdf fðRÞ can be
done with the Metropolis method (Metropolis et al., 1953;
Wood and Parker, 1957). Given a trial wave function ΨðRÞ,
the VMC method provides the exact hĤiΨ value to within
statistical errors. Trial wave functions normally contain a set
of parameters that are optimized in order to find the absolute
minimum of hĤiΨ. Alternatively, one can search for the
parameter values that minimize the variance of the energy,
whose lower bound a priori is known to be zero (Hammond,
Lester, and Reynolds, 1994).
With regard to Bose crystals (that is, formed by boson

particles), the most widely used wave function is the
Nosanow-Jastrow (NJ) model:

ΨNJðr1;…; rNÞ ¼
YN
i<j

fðrijÞ
YN
i;I¼1

gðriIÞ; ð17Þ

where N is the number of particles and lattice sites, fðrÞ is a
two-body Jastrow correlation function, and gðrÞ is a one-body
localization factor that links particle i to site I (see Sec. I.B).
The Jastrow factor takes into account, at the lowest order, the
dynamical correlations between particles induced by the
interatomic potential, whereas the one-body term introduces
the symmetry of the crystal.
The wave function ΨNJ leads to an excellent description of

the equation of state (eos) and structural properties of atomic
quantum solids. However, it cannot be used to calculate
properties that directly depend on the Bose-Einstein statistics
(e.g., superfluidity and off-diagonal long-range order) because
it is not symmetric under the exchange of particles. The latter
symmetry requirement can be formally expressed as

ΨPNJðr1;…; rNÞ ¼
YN
i<j

fðrijÞ
�X

PðJÞ

YN
i¼1

gðriJÞ
�
; ð18Þ

where PðJÞ indicates a sum over all possible particle
permutations involving the lattice sites. This wave function
model, however, is technically challenging in practice since
the number of configurations that needs to be sampled to
reach convergence grows exponentially with the number of
particles.
Effective calculations involving a symmetric NJ wave

function can be done with the model

ΨSNJðr1;…; rNÞ ¼
YN
i<j

fðrijÞ
YN
J¼1

�XN
i¼1

gðriJÞ
�
; ð19Þ

which was introduced by Cazorla et al. (2009). This sym-
metric wave function possesses a localization factor that
suppresses lattice voids arising from double site occupancy,
a desirable feature that also is reproduced by the wave
function ΨPNJ.
Other symmetric wave functions have been proposed in

the context of quantum solids that do not rely on the

symmetrization of ΨNJ. These include a Bloch-like function
(Ceperley, Chester, and Kalos, 1978), inspired in the band
theory of electrons, and the shadow wave function (Galli,
Rossi, and Reatto, 2005). The first model was introduced in a
VMC study of the Yukawa system (Ceperley, Chester, and
Kalos, 1978); the resulting variational energies, however, were
significantly higher than those estimated with the nonsym-
metric NJ wave function, and the creation of vacancies or
double occupancy of the same lattice site in the crystal could
not be prevented. Consequently, this model has been over-
looked in subsequent studies. A more realistic symmetric
model is provided by the shadow wave function (Vitiello,
Runge, and Kalos, 1988; MacFarland et al., 1994), which is
defined as

Ψshðr1;…; rNÞ ¼ ΦpðRÞ
Z

dSΘðR; SÞΦsðSÞ; ð20Þ

in which auxiliary variables S (also called “shadows”) are
introduced in order to avoid the explicit definition of any
particular atomic arrangement. In Eq. (20), ΦpðRÞ and ΦsðSÞ
are Jastrow factors that correlate particles and shadows
separately; the function ΘðR; SÞ, on the other hand, introduces
a coupling between particles and shadows. The shadow
variables finally are integrated out from Ψsh in order to
remove any explicit dependence on them.

2. Diffusion Monte Carlo method

Despite the fact that variational methods may provide
qualitatively correct results, it is not possible to determine
their accuracy in absolute terms. The Green’s function
Monte Carlo method eliminates any variational constraint
by directly solving the Schrödinger equation for an N-body
problem. The most advanced form of this method is domain
GFMC, in which the corresponding Green’s function is time
independent (Kalos, 1962; Kalos, Levesque, and Verlet, 1974;
Ceperley, Chester, and Kalos, 1976; Whitlock and Kalos,
1979; Whitlock et al., 1979; Schmidt and Kalos, 1984).
A related method is the diffusion Monte Carlo method, which
is time dependent and nowadays widely used (Ceperley and
Alder, 1980; Reynolds et al., 1982; Hammond, Lester, and
Reynolds, 1994; Anderson, 2002).
The DMC method is a projector method that, by working in

imaginary time, is able to retrieve exact energy results for the
ground state of a many-particle system. In imaginary time τ
the Schrödinger equation becomes

−
∂ΨðR; τÞ

∂τ ¼ ðĤ − E0ÞΨðR; τÞ; ð21Þ

where R ¼ fr1;…; rNg and time is expressed in units of ℏ.
The time-dependent wave function of the system ΨðR; τÞ can
be expanded in terms of the complete set of eigenfunctions of
the Hamiltonian ϕiðRÞ, namely,

ΨðR; τÞ ¼
X
n

cn exp ½−ðEi − E0Þτ�ϕiðRÞ; ð22Þ

where Ei is the eigenvalue associated with ϕiðRÞ. The
asymptotic solution of Eq. (21) in the τ → ∞ limit then
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corresponds to ϕ0ðRÞ, provided that there is a nonzero overlap
between ΨðR; τ ¼ 0Þ and the true ground-state wave func-
tion ϕ0ðRÞ.
Direct application of Eq. (21) to condensed matter problems

is hindered by the repulsive interactions that atoms experience
at short distances, which translates into large energy variances.
To overcome this problem, one introduces importance sam-
pling, a technique that is widely used in the Monte Carlo (MC)
calculation of integrals. Importance sampling as applied to
Eq. (21) consists of rewriting the Schrödinger equation in
terms of the pdf:

fðR; τÞ≡ ψðRÞΨðR; τÞ; ð23Þ

where ψðRÞ is a time-independent trial wave function that at
the variational level correctly describes the ground state of the
crystal. By considering a Hamiltonian of the form

Ĥ ¼ −
ℏ2

2m
∇2

R þ V̂ðRÞ; ð24Þ

Eq. (21) turns into

−
∂fðR; tÞ

∂τ ¼ −D∇2fðR; τÞ þD∇½FðRÞfðR; τÞ�
þ ½ELðRÞ − E0� · fðR; τÞ; ð25Þ

where D≡ ℏ2=ð2mÞ, ELðRÞ≡ ψðRÞ−1HψðRÞ is the local
energy, and

FðRÞ≡ 2ψðRÞ−1∇ψðRÞ ð26Þ

is the so-called drift or quantum force. FðRÞ acts as an external
force that guides the diffusion process rendered by the first
term on the right-hand side of Eq. (25). In particular, walkers
are attracted toward regions in which the value of ψðRÞ is
large, thus avoiding the repulsive core of the interaction that
produces large fluctuations in the energy.
The right-hand side of Eq. (25) can be written as the action

of three operators Âi acting on the pdf fðR; τÞ, namely,

−
∂fðR; τÞ

∂τ ¼ ðÂ1 þ Â2 þ Â3ÞfðR; τÞ≡ ÂfðR; τÞ: ð27Þ

The operator Â1 corresponds to a free diffusion process with
coefficient D, Â2 to a driving force produced by an external
potential, and Â3 to a birth and death branching term. In the
quantum Monte Carlo method, the Schrödinger equation is
most manageable when expressed in an integral form. This is
achieved by introducing a Green’s function GðR0;R; τÞ that
describes the transition probability to move from an initial
state R to a final state R0 during the time interval Δτ; that is,

fðR0; τ þ ΔτÞ ¼
Z

GðR0;R;ΔτÞfðR; τÞdR: ð28Þ

More explicitly, the Green’s function can be expressed in
terms of the Â operator as

GðR0;R;ΔτÞ ¼ hR0j expð−ΔτÂÞjRi; ð29Þ

and can be approximated in practice with Trotter’s product
formula (Trotter, 1959):

e−τðÂ1þÂ2Þ ¼ lim
n→∞

ðe−ðτ=nÞÂ1e−ðτ=nÞÂ2Þn: ð30Þ

DMC algorithms rely on reasonable approximations to
the propagator GðR0;R;ΔτÞ in the Δτ → 0 limit, which are
iterated repeatedly until reaching the asymptotic regime
fðR; τ → ∞Þ (that is, when the ground state is effectively
sampled). The order of the employed GðR0;R;ΔτÞ approxi-
mation introduces a certain time-step bias on the results that
needs to be removed in order to provide perfectly converged
solutions (Boronat and Casulleras, 1994). In the DMC
method, the sampling of an operator Ô is performed according
to the mixed distribution fðR; τÞ [see Eq. (23)], rather than to
ϕ0ðRÞ. Consequently, the standard DMC output, the so-called
“mixed” estimator, normally is biased by the trial wave
function that is used for importance sampling. Only when
Ô is the Hamiltonian of the system or an operator that
commutes with it, does the mixed estimator and the exact
result coincide. A simple scheme that is employed to partially
remove the bias introduced by ψðRÞ is

hÔðRÞie ¼ 2hÔðRÞim − hÔðRÞiv; ð31Þ

which is built from the mixed (m) and variational (v)
estimators and is known as the “extrapolated” estimator (e)
(Ceperley and Kalos, 1979). Nevertheless, expectation values
obtained with the extrapolation approach never are totally free
of bias, and it is difficult to estimate a priori the size of the
accompanying errors. In order to overcome such limitations,
one can calculate “pure” expectation values (that is, exact to
within the statistical errors) by using the forward walking
technique (Casulleras and Boronat, 1995).

3. Path-integral ground-state Monte Carlo method

An interesting alternative to the DMC method was put
forward by Sarsa, Schmidt, and Magro (2000), based on a
previous proposal by Ceperley (1995). This method is termed
the PIGS method and it is directly related to the PIMC method
used at finite temperature (see Sec. II.B.1). The integral
version of the Schrödinger equation can be written in terms
of the Green’s function as

ΨðR; τÞ ¼
Z

dR0GðR;R0; τ − τ0ÞΨðR0; τ0Þ: ð32Þ

In the PIGS method one exploits the formal identity between
the Green’s function at imaginary time τ,GðR;R0; τ − τ0Þ, and
the statistical density matrix operator at an inverse temperature
β≡ 1=T, ρðR;R0; βÞ. The convolution property of the density
matrix permits one to estimate ρðR;R0; βÞ through a con-
volution of density matrices calculated at smaller values
β=Nb, namely,
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ρðR;R0;βÞ¼
Z

dR1 � � �dRNb−1

×ρðR;R1;β=NbÞ�� �ρðRNb−1;R
0;β=NbÞ: ð33Þ

In the PIMC (T ≠ 0) formalism, one has to deal with the
trace of the density matrix operator and hence the boundary
condition R ¼ R0 is imposed; this makes a closed path. In the
context of the classical isomorphism (Feynman, 1972; Barker,
1979; Chandler and Wolynes, 1981; Ceperley, 1995), a path is
interpreted as a polymer in which first neighbors are con-
nected with springs; moving a quantum particle is equivalent
to evolve such a polymer. In the PIGS method (T ¼ 0), in
contrast to the PIMC method, one truncates the path by
imposing that the end points R0 terminate in a trial wave
function ψ ; the path then is open. In this case, the expectation
value of an operator Ô is determined by

Ô ¼ hψ jGðτ=2ÞÔGðτ=2Þjψi
hψ jGðτÞjψi ; ð34Þ

where τ is the total imaginary time that the system takes to
move from the initial point to the end. The most remarkable
aspect of this method is that in the middle of the path τ=2 the
sampling of any operator is exact, independently of whether Ô
commutes or not with the Hamiltonian of the system. In other
words, calculation of pure estimators is the standard output in
the PIGS method, contrary to what occurs in the DMCmethod
(although for operators that commute with the Hamiltonian
both methods provide equivalent results). Actually, for non-
diagonal operators, such as, for instance, the one-body density
matrix, only the PIGS method is able to provide unbiased
zero-temperature results in an efficient manner.
In order to perform PIGS calculations as efficiently as

possible in practice, it is necessary to develop approximations
for the propagator operator that are accurate to within a certain
order in the time step. In this regard, significant progress has
been achieved in recent years by developing splitting schemes
for the exponential of the Hamiltonian operator Ĥ ¼ K̂ þ V̂
(where K̂ and V̂ are the kinetic- and potential-energy
operators, respectively) of the form:

exp½εðT̂ þ V̂Þ� ¼
YN
i¼1

expðtiεT̂Þ expðviεV̂Þ; ð35Þ

where the values of the parameters ftig and fvig are selected
in a way that satisfies forward propagation (Chin and Chen,
2002). Under this constraint, one can write algorithms that are
accurate up to fourth order (Rota et al., 2010) and which
produce consistent convergence toward the ground state (see
Sec. II.B.1). Recent applications of the PIGS method involv-
ing high-order decomposition methods showed that it is
actually possible to obtain results that are completely inde-
pendent of the trial wave function that is used as a boundary
condition (Rossi et al., 2009; Rota et al., 2010). Even in the
limiting case of considering only the symmetry requirement
of the system [e.g., ψðRÞ ¼ 1 in the bosonic case] the PIGS
method works reliably, with the only penalty of producing
slightly larger variances. These methodological advancements

permit one to achieve accurate zero-temperature results in
systems for which it is difficult to find a good trial wave
function.
A related method to the PIGS method is the reptation

quantum Monte Carlo (RQMC) method due to Baroni and
Moroni (1999); the starting point in the RQMC method is the
same as that in the PIGS method, that is, Eq. (32). The main
difference relies on the approximation that is used in the
Green’s function: the RQMC method adopts a short-time
expression similar to the one used in the DMC method [see
Eq. (29)] consisting of a drifted Gaussian that incorporates
importance sampling. The ways in which the paths are
sampled are also different in the two methods. In the case
of knowing a good trial wave function, the RQMC method
may be advantageous as the resulting energy variance can be
reduced significantly; otherwise, for the reasons explained, the
PIGS method may turn out to be a more reliable method
(Rossi et al., 2009; Rota et al., 2010).

B. Finite-temperature techniques

1. Path-integral Monte Carlo method

The PIMC method is based on the convolution property
of the thermal density matrix shown in Eq. (33). This allows
one to estimate the density matrix at low temperature from its
knowledge at higher temperatures, the latter being described
by classical statistical mechanics. The partition function Z of
a quantum system then becomes a multidimensional integral
with a distribution law that resembles that of a closed
classical polymer with an interbead harmonic coupling. If
one assumes that all particles are bosons, the corresponding
quantum statistical distribution is then positively defined
and can be interpreted as a probability distribution function
that can be sampled with standard Metropolis MC tech-
niques. The finite-T mapping of a quantum system into a
classical one composed of polymers was first proposed by
Feynman (1972) and subsequently applied by Barker (1979)
and Chandler and Wolynes (1981) to condensed matter
simulations.
The quantum partition function of a general Hamiltonian Ĥ

at temperature T is

Z ¼ Tre−βĤ: ð36Þ

The noncommutativity of operators K̂ and V̂ makes a direct
calculation of Z impractical in the quantum regime.
Nevertheless, one can exploit the following convolution
property:

e−βðK̂þV̂Þ ¼ ðe−εðK̂þV̂ÞÞM; ð37Þ

where ε ¼ β=M, since now each of the terms on the right-hand
side of the equality effectively corresponds to a higher
temperature, that is, T 0 ¼ M · T. In the lowest order approxi-
mation, known as the primitive action, the kinetic and
potential contributions are factorized as

e−εðK̂þV̂Þ ≃ e−εK̂e−εV̂ ; ð38Þ
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and the convergence to the exact result is guaranteed by the
Trotter’s product formula (Trotter, 1959):

e−βðK̂þV̂Þ ¼ lim
M→∞

ðe−εK̂e−εV̂ÞM: ð39Þ

The primitive action approximation, however, is not accu-
rate enough to reach proper convergence at very low temper-
atures, when the number of terms involved, also called
“beads,” is large. In recent years, there has been relevant
progress in achieving better convergence by using high-order
splitting schemes of the exponential operator. Fourth-order
algorithms can be developed by introducing double commu-
tators (Chin and Chen, 2002; Sakkos, Casulleras, and
Boronat, 2009) of the form

½½V̂; K̂�; V̂� ¼ ℏ2

m

XN
i¼1

jFij2; ð40Þ

where Fi is the “force” acting on particle i, namely,

Fi ¼
XN
j≠i

∇iVðrijÞ: ð41Þ

One of the most efficient splitting schemes corresponds to

e−εĤ ≃ e−v1εŴa1 e−t1εK̂e−v2εŴ1−2a1

× e−t1εK̂e−v1εŴa1 e−2t0εK̂; ð42Þ
whereWðrÞ is a generalized potential that includes the double
commutator in Eq. (40) [see Sakkos, Casulleras, and Boronat
(2009) for details on the definition of the different factors
appearing in Eq. (42)]. We note that by optimizing the value of
the parameters in this expansion, convergence with nearly
sixth-order accuracy in ε can be achieved.
From the knowledge of the quantum partition function

one can access the total and kinetic energies by using the
well-known thermodynamic relations

E ¼ hĤi ¼ −
1

Z
∂Z
∂β ; ð43Þ

Ek ¼ hK̂i ¼ m
βZ

∂Z
∂m ; ð44Þ

where the potential energy comes from the difference Ep ¼
E − Ek. The potential energy also can be computed through

ÔðRÞ ¼ −
1

β

1

ZðV̂Þ
dZðV̂ þ λÔÞ

dλ

				
λ¼0

; ð45Þ

which in general is suitable for estimating operators that depend
only on particle coordinates. We note that the kinetic-energy
expression in Eq. (44), which is known as the “thermody-
namic” estimator, presents some technical drawbacks such as a
diverging variance when the number of beads is large. Several
solutions have been proposed to overcome this limitation,
among which we highlight the “virial” estimator introduced by
Cao and Berne (1989).
An alternative to the discussed decomposition scheme of

the exponential operator is to use a pair product approximation
(Ceperley, 1995). In this case, one approximates the density

matrix by a factorization of correlations up to second order,
resembling the Jastrow approximation used for the ground
state, namely,

ρðR;R0; εÞ ¼
YN
i¼1

ρ1ðrj; r0j; εÞ
YN
i<j

ρ̂2ðrij; r0ij; εÞ: ð46Þ

In Eq. (46), ρ1 represents the density matrix for a non-
interacting system and ρ̂2 the normalized pair density matrix,
that is,

ρ̂2ðrij; r0ij; εÞ ¼
ρ2ðrij; r0ij; εÞ
ρ02ðrij; r0ij; εÞ

; ð47Þ

in which ρ2 and ρ02 are the relative density matrices of the
interacting and noninteracting systems, respectively. The pair
action is especially useful when the pair density matrix is
known analytically or an accurate approximation of it is at
hand. Application of this approach is particularly suitable for
the study of central potentials, although it is not restricted to
this type of interaction (Pierleoni and Ceperley, 2006).
The formalism explained previously applies only to dis-

tinguishable particles (i.e., “boltzmanons”), since the sym-
metry requirement under the exchange of particles has been
neglected systematically. In order to correctly describe quan-
tum Bose crystals one needs to symmetrize the corresponding
thermal density matrix, namely,

ρsðR;R0; εÞ ¼ 1

N!

X
P

ρðR;PR0; εÞ; ð48Þ

where the summation runs over all possible N! permutations
involving the system particles. In contrast to the boltzmanon
case, in which the number of closed polymers equals the
number of particles (RMþ1 ¼ R1, with M the number of
beads), the new boundary condition RMþ1 ¼ PR1 implies that
each closed polymer can represent more than one particle. The
acceptance rate for the proposed permutations then increases
with the inverse of the temperature; when the thermal wave-
length λT is comparable to the mean interparticle distance the
size of closed polymers becomes macroscopic, originating
Bose-Einstein condensation and superfluidity (see Sec. I.C).
The fraction of particles occupying the lowest momentum

state in a bosonic system, i.e., the condensate fraction
n0 ≡ nðk ¼ 0Þ, can be obtained from the long-range behavior
of the one-body density matrix, defined as

ϱ1ðr110 Þ ¼
V
Z

Z
dr2 � � � drNρsðR;R0; βÞ; ð49Þ

namely, n0 ¼ limr→∞ϱ1ðrÞ. In practice, ϱ1ðrÞ is estimated by
calculating frequency histograms over distances between r1
and r01.
Sampling the space of permutations is technically involved

because one has to guarantee ergodicity. In recent years, the
introduction of the worm algorithm has significantly improved
the efficiency in this type of calculation (Boninsegni,
Prokof’ev, and Svistunov, 2006a). The idea behind the worm

Claudio Cazorla and Jordi Boronat: Simulation and understanding of atomic and …

Rev. Mod. Phys., Vol. 89, No. 3, July–September 2017 035003-12



algorithm is to work in an extended configuration space with
two sectors. In the diagonal sector, termed Z, all paths are
closed, which corresponds to conventional PIMC simulations.
In the second sector, termed ZG, all paths are closed except
one, which is called the worm; this latter sector, therefore,
is nondiagonal. The generalized partition function then can be
written as

ZW ¼ Z þ CZG; ð50Þ

where C > 0 is a dimensionless parameter that is fixed during
the simulation. The parameter C controls the relative statistics
between sectors Z and ZG. In the nondiagonal sector one
proposes swap movements that generate multiparticle permu-
tations (i.e., by single pair permutations between the worm
and closed paths), whereas in the diagonal sector particles
evolve as boltzmanons.

2. Path-integral molecular dynamics

In the PIMD formalism, the partition function of a quantum
system is approximated with the following Maxwell-
Boltzmann expression:

Z ≈
1

N!

�
mL

2πβℏ2

�
3NL=2

×
Z YN

j¼1

YL
i¼1

drije−βðEkþEpÞ: ð51Þ

Equation (51) completely disregards possible quantum
atomic exchanges stemming from the indistinguishability of
the atoms (in contrast to the PIGS and PIMC methods, see
Secs. II.A.3 and II.B.1); that is, particles are treated as
boltzmanons. Nevertheless, in the case of quantum crystals
it is well known that the role of quantum statistics is secondary
at moderate and high temperatures (e.g., T > 100 K in
hydrogen at P ∼ 100 GPa) (McMahon et al., 2012). In those
situations, the PIMD formalism can be used to compute, for
instance, quantum time-correlation functions and transition
state rates in an efficient manner (Gillan, 1990; Habershon
et al., 2013; Herrero and Ramírez, 2014).
The key idea behind the PIMD formalism is to formulate a

Hamiltonian framework in which new space coordinates and
momenta ðuij;pijÞ are introduced for sampling the integral in
Eq. (51) with molecular dynamics techniques. In particular,
the new space coordinates and momenta are referred to the
staging modes uij that diagonalize the harmonic energy term,
namely,

Ek ¼
mL
2β2ℏ2

XN
j¼1

XL
i¼1

ðrij − rðiþ1ÞjÞ2

¼
XN
j¼1

XL
i¼2

miL
2β2ℏ2

u2
ij: ð52Þ

For a given atom j, the staging mode coordinates are defined
as u1j ¼ r1j, and

uij ¼ rij −
i − 1

i
rðiþ1Þj −

1

i
r1j

in the rest of the cases; the corresponding staging mode
masses are m1 ¼ 0, and mi ¼ ði=i − 1Þm in the rest of
the cases.
The momentum variables that are required for the molecular

dynamics algorithm to work are introduced through the
substitution of the prefactor in the partition function by a
Gaussian integral of the form

�
mL

2πβℏ2

�
3NL=2

¼ C
Z YN

j¼1

YL
i¼1

dpije
−βp2

ij=2χi ; ð53Þ

where C is a constant that depends on the staging momentum
masses, but which has no influence on the calculation of
the equilibrium properties; pij is the i staging momentum of
particle j. The masses χi in Eq. (53) can be defined as χ1 ¼ m,
and χi ¼ mi in the rest of the cases; essentially, these must be
chosen so that all i > 1 staging modes evolve in the same
time scale.
In either ðN;V; TÞ or ðN;P; TÞ PIMD simulations, control

of the temperature is achieved through a massive thermo-
statting of the system that implies a chain of Nosé-Hoover
thermostats coupled to each staging variable uij (Tuckerman
and Hughes, 1998). The involved thermostats introduce
friction terms in the corresponding dynamic equations and
thus the dynamics of the quantum system is no longer
Hamiltonian. Nevertheless, it is always possible to define a
quantity with units of energy that is well conserved during the
simulation and that can be used to check whether integration
of the equations of motion is being done correctly (Martyna,
Hughes, and Tuckerman, 1999). Finally, we note that equiv-
alent estimators in the PIMD and PIMC frameworks may
present some formal differences although only in the terms
involving momentum variables. Nevertheless, in those cases
in which quantum atomic exchanges can be safely neglected,
both PIMD and PIMC approaches should provide identical
expectation values, as it follows from the equipartition
theorem (Herrero and Ramírez, 2014).
A detailed account of the PIMD method certainly is out of

the scope of this review. The details of this technique have
been thoroughly described by Tuckerman and Hughes (1998)
and Martyna, Hughes, and Tuckerman (1999); hence we refer
the interested reader to those works.

3. Quantum thermal baths

The key idea behindQTB is to use a Langevin-type approach
in which a dissipative force and a Gaussian random force are
adjusted to have the power spectral density given by the
quantum fluctuation-dissipation theorem (Ceriotti, Bussi,
and Parrinello, 2009; Dammak et al., 2009; Barrat and
Rodney, 2011). In doing this, the internal energy of the system
can be mapped into that of an ensemble of harmonic oscillators
whose vibrationalmodes follow aBose-Einstein distribution. It
is worth noticing that while such a quantum discretization is
applied to the energy, the atoms in the system are invariably
treated as distinguishable particles. Consequently, QTB are not
well suited for describing physical phenomena in which
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quantum atomic exchanges are important, which typically
occur in disordered and incommensurate systems at low
temperatures (in contrast to the PIGS and PIMC methods,
see Secs. II.A.3 and II.B.1).
In analogy to the classical Langevin thermostat method,

each particle is coupled to a fictitious bath by introducing a
random force and a dissipation term in the equations of motion
of the form

m
d2r
dt2

¼ FðrÞ − γm
dr
dt

þ
ffiffiffiffiffiffiffiffiffi
2mγ

p
ΘðtÞ; ð54Þ

where r and F represent the atomic positions and total forces
exerted by the rest of the particles, respectively. The function
ΘðtÞ is a colored noise with a power spectral density that
follows the Bose-Einstein distribution, namely,

~ΘðωÞ ¼
Z

e−iωthΘðtÞΘðt0Þidt

¼ ℏω

�
1

2
þ 1

eℏω=kBT − 1

�
; ð55Þ

which takes into account the zero-point energy of the
system as given by the quasiharmonic approximation (see
Sec. II.A.1).
In practice, ~ΘðωÞ can be generated by using a signal-

processing method based on the filtering of white noise
(Barrat and Rodney, 2011). The implementation of QTB in
a discrete MD algorithm then is quite straightforward. QTB
neither slow down the calculations appreciably nor are
detrimental in terms of memory requirements. For these
reasons, the use of QTB for simulation of QNE is becoming
increasingly more popular in recent years (Hernández-Rojas,
Calvo, and González-Noya, 2015).
A word of caution, however, must be added here. QTB

alone fail to reproduce the correct quantum behavior in highly
anharmonic systems and processes (Ceriotti, Bussi, and
Parrinello, 2009; Barrozo and de Koning, 2011; Bedoya-
Martínez, Barrat, and Rodney, 2014). Consequently, the

conclusions attained with QTB-based methods should always
be validated against results obtained with more accomplished
quantum approaches (e.g., PIMC and PIMD). Meanwhile,
it was recently demonstrated that QTB can be used to
noticeably accelerate the convergence in PIMD calculations
(Ceriotti, Manolopoulos, and Parrinello, 2011; Ceriotti and
Manolopoulos, 2012; Brieuc, Dammak, and Hayoun, 2016).
In particular, generalized Langevin thermostats allow one to
sample the canonical distribution more efficiently by reducing
the usual ergodic problems encountered in path-integral
simulations performed with a large number of beads. It is
probably in this latter context that QTB techniques may
become particularly useful.

C. Computer packages

While the number of classical simulation packages, either
commercially or freely available, is practically countless, the
number of computer packages that allow one to simulate QNE
is very limited. In Table I, we list those computer packages
that, to the best of our knowledge, are publicly available and
can be used to simulate QNE in periodic systems, along with a
brief description of their basic capabilities. In total, they
amount to a bit more than ten.
We note that PIMD (see Sec. II.B.2) is the method that is

implemented most frequently. On the other hand, quantum
Monte Carlo techniques (i.e., VMC and DMC methods) are
available only in a few codes. Although it is not indicated in
Table I, most of the listed simulation packages also allow one
to describe the interactions between atoms through ab initio
methods (see Sec. III.A). In addition to this, they are all
designed to run in high-performance computing architectures
and can be downloaded free of charge from the Internet or
made available on request.
A likely reason behind the scarcity of studies considering

QNE may be, apart from the increased computational and
technical burdens as compared to classical calculations, the
limited number of available quantum simulation packages. We
note that most of the codes in Table I are relatively new; hence
until recently any researcher interested in simulating QNE had

TABLE I. A list of computer simulation packages that allow one to simulate quantum nuclear effects in periodic
systems. PIMD, PIMC, VMC, DMC, and PIGS in the “capabilities” column stand for, path-integral molecular
dynamics, path-integral Monte Carlo, variational Monte Carlo, diffusion Monte Carlo, and ground-state path-integral
Monte Carlo methods, respectively. CPU and GPU in the “parallelization” column stand for central and graphical
processing units.

Package Capabilities Parallelization License Reference

ABINIT PIMD CPU Free Gonze et al. (2016)
CASINO VMC/DMC CPU Free Needs et al. (2010)
CHAMP VMC/DMC CPU Free Umrigar et al. (2007)
CP2K PIMD CPU Free Hutter et al. (2014)
CPMD PIMD CPU Free Marx, Tuckerman, and Martyna (1999)
i − PI PIMD CPU Free Ceriotti, More, and Manolopoulos (2014)
OPENMM PIMD CPU/GPU Free Ceriotti, Parrinello et al. (2010)
PIMC + + PIMC CPU Free Clark and Ceperley (2008)
pi − QMC PIMD CPU Free Shumway (2005)
QL VMC GPU Free Lutsyshyn (2015)
QMCPACK VMC/DMC CPU/GPU Free Esler et al. (2012) and Kim et al. (2012)
QSATS PIGS CPU Free Hinde (2011)
QWALK VMC/DMC CPU Free Wagner, Bajdich, and Mitas (2009)
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to craft his or her own quantum implementation. Nevertheless,
we expect that due to the steady growth in computing power
and the increasing awareness of the importance of QNE
in condensed matter systems and materials, the availability
and user friendliness of quantum simulation packages will
increase over the next years.

III. MODELING OF ATOMIC INTERACTIONS

The simulation techniques that are used to describe the
atomic interactions in quantum crystals, and materials in
general, can be classified into two major categories: semi-
empirical and first principles. In semiempirical approaches,
the interparticle forces are typically modeled with analytical
functions, known as force fields or classical potentials, that are
devised to reproduce a particular set of experimental data or
the results of highly accurate calculations. The inherent
simplicity of classical potentials makes it possible to address
the study of quantum solids within ample thermodynamic
intervals and large length and time scales, with well-
established quantum simulation techniques such as the ones
discussed in Sec. II. By using semiempirical potentials and
exploiting the current computational power and algorithm
development, quantum simulations of condensed matter
systems can be routinely performed nowadays in multicore
processors. Nevertheless, in spite of their great versatility,
classical potentials may sometimes present some impeding
transferability issues. Transferability issues are related to the
impossibility of mimicking the targeted systems at conditions
different from those in which the setup of the corresponding
force field was performed. An illustrative example of such a
failure is given by the unreliable description of highly com-
pressed rare-gas crystals with pairwise potentials (Cazorla and
Boronat, 2008a, 2015a, 2015b). In addition to this, there are
many physical phenomena that simply cannot be reproduced
accurately with straightforward force fields (e.g., magnetic
spin interactions, electronic screening effects, and oxidation-
state changes, to cite just a few examples).
In this context, the output of first-principles calculations,

also known as ab initio, turns out to be crucial. In first-
principles approaches, as the name indicates, no empirical
information is assumed on the derivation of the atomic
interactions: these are directly obtained from applying the
principles of quantum mechanics to the electrons and nuclei.
Transferability issues, therefore, are absent. First-principles
approaches are in general very accurate, but they can also
be very demanding in terms of computational expense.
This circumstance makes the full ab initio study of
quantum crystals, that is, in which both the electronic and
nuclear degrees of freedom are treated quantum mechanically,
intricate and computationally very demanding (Pierleoni,
Ceperley, and Holzmann, 2004; Pierleoni and Ceperley,
2005, 2006; McMahon et al., 2012). Common acceleration
schemes within first-principles schemes involve the use of
pseudopotentials (Vanderbilt, 1990; Troullier and Martins,
1991), which avoids explicitly treating the core electrons.
This approximation is based on the fact that many material
properties can be predicted by focusing exclusively on the
behavior of valence electrons. Nonetheless, pseudopotentials
can actually be the source of potential errors. Fortunately,

some strategies can be used to minimize the impact of the
approximations introduced by pseudopotentials such as, for
instance, the projector augmented wave method (Blöchl,
1994) and linearized augmented plane waves (Andersen,
1975). Next, we concisely explain some basic aspects of
first-principles and semiempirical methods as related to the
study of quantum solids.

A. First-principles methods

In solids, the dynamics of electrons and nuclei can be
decoupled to a good approximation because their respective
masses differ by several orders of magnitude. The wave
function of the corresponding many-electron system
Ψðr1; r2;…; rNÞ therefore can be determined by solving the
Schrödinger equation involving the following nonrelativistic
Born-Oppenheimer Hamiltonian:

H ¼ −
1

2

X
i

∇2
i −

X
I

X
i

ZI

jRI − rij

þ 1

2

X
i

X
j≠i

1

jri − rjj
; ð56Þ

where ZI are the nuclear charges, ri are the positions of the
electrons, and RI are the positions of the nuclei, which are
considered fixed. Note that nonadiabatic effects beyond the
Born-Oppenheimer approximation in principle can also be
treated within first-principles methods by using wave func-
tions that explicitly depend on the electronic and nuclear
degrees of freedom (Ceperley and Alder, 1987; Tubman et al.,
2014; Yang et al., 2015). In real materials Ψ is a complex
mathematical function that in most cases is unknown.
Electrons are fermion particles, hence their wave function
must change sign when two of them exchange orbital states.
This quantum antisymmetry leads to an effective repulsion
between electrons, called the Pauli repulsion, that helps in
lowering their total Coulomb energy. At the heart of any first-
principles method is to find a good approximation to Ψ, or an
equivalent solution, that is manageable enough to perform
calculations and simultaneously correctly describes the sys-
tem of interest. Examples of ab initio methods include density
functional theory, Møller-Plesset perturbation theory (MP2),
the coupled-cluster method with single, double, and pertur-
bative triple excitations [CCSD(T)], and the electronic quan-
tum Monte Carlo method, to cite just a few. From these, DFT
and the eQMC method have been most intensively applied to
the study of quantum solids and for this reason we summarize
their foundations in what follows.

1. Density functional theory

In 1965, Kohn and Sham developed a pioneering theory
to effectively calculate the energy and properties of many-
electron systems without the need of explicitly knowing Ψ
(Kohn and Sham, 1965; Sham and Kohn, 1966). The main
idea underlying this theory, called density functional theory, is
that the exact ground-state energy E and electron density nðrÞ
can be determined by solving an effective one-electron
Schrödinger equation of the form
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Heffψ iσ ¼ ϵiσψ iσ ; ð57Þ

where i labels different one-electron orbitals and σ the
corresponding spin state. In particular,

Heff ¼ −
1

2
∇2 þ VextðrÞ þ

Z
nðr0Þ
jr − r0j dr

0 þ VxcðrÞ; ð58Þ

and

nðrÞ ¼
X
iσ

jψ iσðrÞj2; ð59Þ

where Vext represents an external field and VxcðrÞ ¼
δExc=δnðrÞ is the exchange-correlation potential.
The exchange-correlation energy has a purely quantum-

mechanical origin and can be defined as the interaction energy
difference between a quantum many-electron system and its
classical counterpart. Despite the fact that Exc represents a
relatively small fraction of the total energy, this contribution is
extremely crucial for all materials and molecules because it
directly acts on the bonding between atoms. In general, Exc½n�
is unknown and needs to be approximated. This is the only
source of fundamental error in DFT methods. The exact form
of the exchange-correlation energy can be readily expressed
through the adiabatic connection fluctuation-dissipation theo-
rem as (Langreth and Perdew, 1975; Nguyen and de Gironcoli,
2009)

Exc½n� ¼
Z

nðrÞdr
Z

nxcðr; r0Þ
jr − r0j dr0; ð60Þ

where nxcðr; r0Þ ¼ nxðr; r0Þ þ ncðr; r0Þ is the exchange-
correlation hole density at position r0 surrounding an electron
at position r. Some important constraints on nxcðr; r0Þ are
already known. For instance, nxðr; r0Þ must be nonpositive
everywhere and its space integral is equal to −1. Also, the
space integral of the correlation hole density is zero. These
constraints can be employed in the construction of approxi-
mate Exc½n� functionals.
In standard DFT approaches Exc½n� is approximated with

Eapprox
xc ½n� ¼

Z
ϵapproxxc ðrÞnðrÞdr; ð61Þ

where ϵapproxxc is made to depend on nðrÞ, ∇nðrÞ, and/or the
electronic kinetic energy τðrÞ ¼ 1

2

P
iσj∇ψ iσðrÞj2.

Next, we summarize the basic aspects of the most popular
Exc½n� functionals found in computational studies of con-
densed matter systems and materials. Additional details on
these topics can be found in recent and more specialized
reviews (Dobson and Gould, 2012; Klimeš and Michaelides,
2012; Perdew, 2013; Cazorla, 2015). We note that the current
number of commercially available and open-source DFT
computer packages is large (at least in comparison to that
of eQMC codes); a reference to some of them can be found,
for instance, in Cazorla (2015).

a. Local and semilocal functionals

In local approaches [e.g., local density approximation
(LDA)], Exc is approximated with Eq. (61) and the
exchange-correlation energy is taken to be equal to that in
a uniform electron gas of density nðrÞ, namely, ϵunifxc . The exact
ϵunifxc ½n� functional is known numerically from quantum
Monte Carlo calculations (Ceperley and Alder, 1980;
Perdew and Zunger, 1981). In order to deal with the
nonuniformity in real electronic systems, the space is parti-
tioned into infinitesimal volume elements that are considered
to be locally uniform. In semilocal approaches [e.g., gener-
alized gradient approximation (GGA)], Exc is approximated
also with Eq. (61) but ϵapproxxc is made to depend on nðrÞ and
its gradient ∇nðrÞ (Perdew et al., 1992; Perdew, Burke, and
Ernzerhof, 1996). Both local and semilocal approximations
satisfy certain exact Exc constraints (e.g., some exact scaling
relations and the exchange-correlation hole sum rules) and can
work notably well for systems in which the electronic density
varies slowly over the space (e.g., bulk crystals at equilibrium
conditions). However, by construction local and semilocal
functionals cannot account for long-range electronic correla-
tions, otherwise known as dispersion interactions, which
certainly are ubiquitous in quantum crystals.

b. Hybrid exchange functionals

Hybrid functionals comprise a combination of nonlocal
exact Hartree-Fock (HF) and local exchange energies,
together with semilocal correlation energies. The proportion
in which both nonlocal and local exchange densities are
mixed generally relies on empirical rules. The popular B3LYP
approximation (Becke, 1993), for instance, takes 20% of the
exact HF exchange energy and the rest from the GGA and
LDA functionals. Other well-known hybrid functionals are
the HSE proposed by Heyd, Scuseria, and Ernzerhof (2003),
PBE0 (Adamo and Barone, 1999), and the family of
Minnesota meta hybrid GGA (Zhao, Schultz, and Truhlar,
2005). In contrast to local and semilocal functionals, hybrids
can describe to some extent the delocalization of the
exchange-correlation hole around an electron. This character-
istic is especially useful when dealing with strongly correlated
systems containing d and f electronic orbitals (e.g., perovskite
oxides). Hybrid functionals, however, do not account for the
long-range part of the correlation hole energy and thus cannot
reproduce dispersion forces. Effective ways to correct for
these drawbacks have been proposed (Chai and Head-Gordon,
2008; Lin et al., 2013; Mardirossian and Head-Gordon, 2014).

c. Dispersion-corrected functionals

DFT-based dispersion schemes reproduce the asymptotic
1=r6 interaction between two particles separated by a distance
r in a gas. The most straightforward way of achieving this
consists of adding an attractive energy term to the exchange-
correlation energy of the form Edisp ¼ −

P
i;jCij=r6ij (i and j

label different particles). This approximation represents the
core of a suite of methods named DFT-D that, due to their
simplicity and low computational cost, are being widely
employed (Grimme, 2004). Nevertheless, DFT-D methods
present some inherent limitations. For instance, many-body
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dispersion effects and faster decaying terms such as the Bij=r8ij
and Cij=r10ij interactions are completely disregarded. Also, it is
not totally clear from where one should obtain the optimal Cij

coefficients. Several improvements on DFT-D methods have
been proposed in which the values of the dispersion coef-
ficients are made to depend somehow on the specific atomic
environment. Examples of those include the DFT-D3 method
by Grimme et al. (2010), the vdW(TS) approach by
Tkatchenko and Scheffler (2009), and the BJ model by
Becke and Johnson (2007). A further degree of elaboration
exists in which no external input parameters are needed and
the dispersion interactions are directly computed from the
electron density. In this context, the exchange-correlation
energy is expressed as Exc ¼ EGGA

x þ ELDA
c þ Enl

c , where
Enl
c is the nonlocal correlation energy. Enl

c can be calculated
as a double space integral involving the electron density and a
two-position integration kernel. This approach, introduced by
Dion et al. (2004), represents a key development in DFT
methods as it combines all types of interaction ranges within
the same formula. Refinements of this scheme were proposed
recently in which the original two-position integration kernel
is modified (Vydrov and Voorhis, 2012), or the exchange term
in Exc is replaced with other more accurate functionals (Lee
et al., 2010; Carrasco et al., 2011).

2. Electronic quantum Monte Carlo method

Here we explain the basics of the diffusion Monte Carlo
method (see Sec. II.A.2) as applied to the study of
many-electron systems [for a more technical and complete
discussion on this topic, see, for instance, Foulkes et al. (2001)
and Towler (2006)]. In electronic quantum Monte Carlo
methods one deals explicitly with the solution to the imagi-
nary time-dependent Schrödinger equation (in contrast to
DFT methods). The quantum antisymmetry of the electrons
leads to the so-called “sign problem,” which is related to
the fact that the probability distribution function f ¼ ΨTΨ0

is not positive definite everywhere (see Sec. II.A.2). If
the nodes of the guiding and true ground-state wave fun-
ctions [that is, the (3N − 1)-dimensional surfaces at which
Ψðr1; r2;…; rNÞ ¼ 0] were coincident, the sign problem
would not exist. However, in most many-electron problems
this condition is never satisfied. Several approaches have been
proposed in the literature to tackle the sign problem, among
which we highlight the “fixed-node” (FN) and “released-
node” (RN) methods.

a. Fixed-node method

In this method the nodes of the ground-state functionΨ0 are
forced to be equal to those of the guiding wave function ΨT
[see, e.g., Anderson (1975) and Anderson (1976)]. As a result,
the probability distribution function that is asymptotically
sampled is always positive because a change of sign in ΨT is
replicated by a change of sign in Ψ0. By using this approxi-
mation, however, one always obtains results that are upper
bounds to the exact ground-state energy (Reynolds et al.,
1982). When dealing with fermionic systems, therefore, it is
critically important to choose guiding wave functions with
high quality nodal surfaces. This requirement is also necessary

for guaranteeing numerical stability in the simulations, since
the divergence of the drift force F ¼ 2∇ΨT=ΨT close to a
node cannot always be counteracted by the replication of
energetically favorable configurations.
The fixed-node electronic DMC (FN-DMC) method was

first applied to the electron gas by Ceperley and Alder (1980).
Subsequently, it was employed to study solid hydrogen
(Ceperley and Alder, 1987) and other crystals containing
heavier atoms (Fahy, Wang, and Louie, 1988, 1990; Li,
Ceperley, and Martin, 1991). Wigner crystals in two and
three dimensions have also been thoroughly investigated with
eQMC methods (Tanatar and Ceperley, 1989; Drummond
et al., 2004; Drummond and Needs, 2009). Important FN-
DMC developments include the introduction of variance
minimization techniques to optimize wave functions
(Umrigar, Wilson, and Wilkins, 1988) and the use of nonlocal
pseudopotentials (Hammond, Reynolds, and Lester, 1987;
Hurley and Christiansen, 1987; Fahy, Wang, and Louie, 1988;
Mitas, Shirley, and Ceperley, 1991; Trail and Needs, 2013,
2015; Lloyd-Williams, Needs, and Conduit, 2015). We also
highlight the generalization of eQMC methods to systems
with broken time-reversal symmetry (e.g., interacting elec-
trons in an applied magnetic field or states with nonzero
angular momentum), which is known as the “fixed-phase”
approximation (Ortiz, Ceperley, and Martin, 1993). These
improvements, together with a certain availability of com-
mercial and open-source simulation packages (see Sec. II.C),
have stimulated the study of a wide range of electronic
systems with the DMC method such as, for instance, strongly
correlated oxide materials (Huihuo and Wagner, 2015;
Wagner, 2015), hydrates (Alfè et al., 2013; Cox et al.,
2014), and organic molecules (Purwanto et al., 2011; Jiang
et al., 2012).

b. Released-node method

In the RN method the nodal constraints imposed by the
guiding function are relaxed in order to adapt to those of the
exact wave function (Ceperley and Alder, 1980, 1984;
Hammond, Lester, and Reynolds, 1994; Tubman et al.,
2011). As we explain next, this technique provides a solution
that is not stable in imaginary time and thus its use is restricted
to systems in which (i) the nodes of the guiding function
are relatively accurate, or (ii) the Pauli principle is relatively
unimportant (that is, the energy difference between the many-
fermion system and its many-boson counterpart is small).
An arbitrary antisymmetric wave function ΨA can always

be expressed as a linear combination of two positive functions
such as

ΨAðr; τÞ ¼ ϕþðr; τÞ − ϕ−ðr; τÞ: ð62Þ

As both ϕþ and ϕ− are positively defined, each one can be
interpreted as a probability density and be propagated indi-
vidually. A convenient definition of ϕ� at τ ¼ 0 is

ϕ�ðτ ¼ 0Þ ¼ 1
2
ðjΨAj � ΨAÞ; ð63Þ

since at large imaginary time the corresponding projected
states are
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ϕ�ðτ → ∞Þ ¼ �CFΨF
0 þ CBΨB

0 e
ðEF

0
−EB

0
Þτ; ð64Þ

where ΨF
0 and ΨB

0 are the ground-state fermion and boson
wave functions of the Hamiltonian, respectively. ΨA consis-
tently renders the ground-state energy of the fermionic system,
namely,

ERN
0 ¼

R
ΨAðτ → ∞ÞHΨ0drR
ΨAðτ → ∞ÞΨ0dr

¼ EF
0 : ð65Þ

However, since the EF
0 − EB

0 energy difference is always
positive, the bosonic parts in ϕ� grow exponentially with
imaginary time [see Eq. (64)], leading to an energy variance of

σðERN
0 Þ ∝ eðEF

0
−EB

0
Þτ ð66Þ

that is divergent. For this reason the RNmethod is classified as
a “transient estimator” approach. In cases where the applica-
tion of the RN method is judicious, numerical weighting
techniques can be used to considerably reduce the variance
of the energy and other quantities (Hammond, Lester, and
Reynolds, 1994; Tubman et al., 2011). The RN approach can
also be employed as a measure of the quality of the upper
bounds provided by the fixed-node method (Casulleras and
Boronat, 2000; Sola, Casulleras, and Boronat, 2006).

c. Electronic guiding wave functions

In eQMC methods, the choice of the guiding function is
particularly important as it determines the degree of accuracy
in the calculations. The most widely used ΨT model is the
Slater-Jastrow wave function that is expressed as

ΨTðXÞ ¼ eJðXÞX
j

cjDjðXÞ; ð67Þ

where X ¼ ðx1;x2;…; xNÞ and xi ¼ fri; σig represent the
space and spin coordinates of electron i, eJ is the Jastrow
factor, cj are coefficients, and Di are Slater determinants of
single-particle orbitals of the form

DjðXÞ ¼

											

ϕj
1ðx1Þ ϕj

1ðx2Þ � � � ϕj
1ðxNÞ

ϕj
2ðx1Þ ϕj

2ðx2Þ � � � ϕj
2ðxNÞ

..

. ..
. ..

.

ϕj
Nðx1Þ ϕj

Nðx2Þ � � � ϕj
NðxNÞ

											
: ð68Þ

The orbitals fϕj
ig often are obtained from DFT or Hartree-

Fock calculations and are assumed to be products of factors
that depend on either the space or spin coordinates. It
is common practice in eQMC calculations to replace Dj

with products of separate up- and down-spin determinants,
since this improves the computational efficiency (Foulkes
et al., 2001).
The Jastrow factor in Eq. (67) normally contains one- and

two-body terms, namely,

JðXÞ ¼
XN
i

χðxiÞ −
1

2

XN
i

XN
j≠i

uðxi; xjÞ; ð69Þ

where the functions u describe the electron-electron correla-
tions and χ the electron-nuclear correlations. The two-electron
terms in Eq. (69) reduce the value of the wave function
whenever two electrons approach each other, hence reducing
the repulsive electron-electron interaction energy. However,
the introduction of u terms also has the unwanted effect of
pushing electrons away from regions of high-charge density
into regions of low-charge density, thus depleting the elec-
tronic density in the atomic bonds. By introducing the one-
body functions χ in the Jastrow factor this problem can be
overcome.
Another approach that is employed to improve the descrip-

tion of electron-electron correlations consists of considering
backflow correlations within the Slater determinants.
Backflow correlations were originally derived from a current
conservation argument due to Feynman (1956) to provide a
picture of excitations in liquid 4He; they represent the
characteristic flow pattern in a quantum fluid where particles
in front of a moving one go on filling the space left behind
it. The introduction of backflow correlations may relax in
practice the constraints associated with the fixed-node
approximation. For instance, it has been demonstrated that
the use of backflow wave functions in homogeneous electron
systems significantly reduces the corresponding VMC and
DMC energies (Kwon, Ceperley, and Martin, 1993, 1998;
López-Ríos et al., 2006).

3. DFT versus eQMC method

In the last decade, important methodological progress has
been made in the context of DFT calculations that allow one
now to describe the electronic features of many materials
adequately. Examples of these advancements are explained in
Sec. III.A.1 and essentially are related to the construction of
accurate and computationally efficient hybrid exchange and
dispersion-corrected functionals. A pending challenge in DFT
methods, however, is posed by the difficulties encountered in
the reproduction of many-body and Coulomb screening
effects. This type of shortcoming stems from the pairwise
additivity that is assumed in the construction of most DFT
functionals. Essentially, the interaction energy between two
atoms completely neglects the effects introduced by the
medium that separates them (Misquitta et al., 2010;
Tkatchenko, Alfè, and Kim, 2012; Gobre and Tkatchenko,
2013). In this context, the adiabatic connection fluctuation-
dissipation theorem has been exploited to calculate correlation
DFT energies that incorporate many-body terms beyond
pairwise. This is the case of the random phase approximation
to DFT (Dobson, White, and Rubio, 2006) and DFTþMBD
methods (Ruiz et al., 2012; Tkatchenko et al., 2012;
Ambrosetti et al., 2014), which at the moment are receiving
the highest attention. In the latest DFTþMBD versions, for
instance, the Schrödinger equation of a set of fluctuating and
interacting quantum harmonic oscillators is directly solved
within the dipole approximation, and the resulting many-body
energy is coupled to an approximate semilocal DFT functional
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(Tkatchenko et al., 2012; Ambrosetti et al., 2014). Many-
body DFT-based methods, however, are still in their infancy
and the associated computational expenses are elevated, hence
their applicability yet is limited.
The eQMC method, on the other hand, is inherently exact

as it accounts for any type of electronic correlation,
exchange, or many-body screening effect (although it is
affected by the sign problem explained in previous sec-
tions). A further advantage of using the eQMC method is
that it is possible to treat the zero-point motion of the nuclei
beyond the Born-Oppenheimer approximation, that is, con-
sidering nonadiabatic effects (Ceperley and Alder, 1987;
Tubman et al., 2014; Yang et al., 2015). This can be done
by using wave functions that explicitly depend on both the
electronic and nuclear degrees of freedom in projector MC
schemes (e.g., DMC and GFMC methods). Another inter-
esting feature of the eQMC method, in contraposition to
DFT methods, is that in the case of light atoms the use of
pseudopotentials can be avoided. This aspect is especially
desirable for the study of quantum solids such as H2 and
4He, since core electrons then can be simulated without
assuming any constraint (Morales, Pierleoni, and Ceperley,
2010; Morales et al., 2013).
On the down side, the eQMC method presents some

technical difficulties that are absent in DFT calculations.
For instance, the periodic Ewald sum that is used to estimate
the electron-electron interactions introduces a finite-size error
in the exchange-correlation energy, as it depends on the size
and shape of the simulation cell (Foulkes et al., 2001).
Consequently, the use of either increasingly large simulation
cells or effective correction schemes (Fraser et al., 1996; Hood
et al., 1997; Chiesa et al., 2006) is necessary to guarantee
proper convergence. For a detailed description of finite-size
error treatment in the eQMC method see the recent and
specialized articles by Drummond et al. (2008), Ma, Zhang,
and Krakauer (2011), and Holzmann et al. (2016). Another
intricacy is found in the calculation of the atomic forces.
Calculating forces using a stochastic algorithm turns out
to be difficult because straightforward derivation of the total
energy with respect to the atomic positions, as it follows from
the Hellmann-Feynman principle, leads to estimators with
very large variances. Correlated sampling techniques have
been proposed to make the statistical errors in the relative
energy of different geometries much smaller than the errors in
the separate energies (Filippi and Umrigar, 2000). Finite
difference methods, however, become already impractical
when considering systems containing a few tens of atoms.
Alternative approaches based on “zero-variance” Hellmann-
Feynman estimators (Assaraf and Caffarel, 2000; Chiesa,
Ceperley, and Zhang, 2005; Per, Russo, and Snook, 2008;
Clay et al., 2016) and sampling of pure probability distri-
butions (Badinski et al., 2010) have been introduced more
recently. Nevertheless, the central problem of efficiently
calculating accurate forces in extended systems still persists.
The great accuracy of eQMC methods does not come free

of cost. Although the scaling with respect to the number of
electrons is the same as in DFT methods, namely, N3 in
standard cases, the prefactors in the eQMC method are
considerably larger (e.g., roughly 10 and 100 times larger

in VMC and DMC methods, respectively) (Foulkes et al.,
2001; Towler, 2006). Also, the convergence of the total energy
is achieved more slowly than in DFT due to the usual MC
propagation and sampling procedures. In spite of this, thanks
to the escalating increase in computing efficiency and recent
algorithmic advances, the use of the eQMC method is
transitioning from that of benchmark calculations in few-
atom systems to that of production runs in hundreds-of-atoms
systems (Esler et al., 2012; Kim et al., 2012; Wagner, 2014).
Actually, efficient QMC-based methods have already been
developed that allow one to simulate both the electrons and
nuclei in crystals quantum mechanically (Grossman and
Mitas, 2005; Wagner and Grossman, 2010). Among those,
we highlight the coupled electron-ion Monte Carlo method
due to Pierleoni, Ceperley, and collaborators (Pierleoni,
Ceperley, and Holzmann, 2004; Pierleoni and Ceperley,
2005; Pierleoni and Ceperley, 2006), for its special relevance
to the field of quantum solids (see, for instance, Sec. VIII.A).
In view of this progress, we foresee that in the future the use of
eQMC techniques will become more popular within the
community of computational condensed matter scientists.

B. Effective interaction models

Using first-principles methods to describe the interactions
between atoms in quantum crystals normally requires inten-
sive computational resources. Fortunately, the interactions
between particles sometimes are so simple that they can be
approximated with analytical functions known as classical
interatomic potentials or force fields. In those particular cases
one can concentrate on solving the quantum-mechanical
equations for the nuclear degrees of freedom only, hence
accelerating the calculations dramatically. Classical interac-
tion models are constructed by following physical knowledge
and intuition; they normally contain a set of parameters that
are adjusted to reproduce experimental or ab initio data. The
force matching method due to Ercolessi and Adams (1994),
for instance, is a well-established force field fitting technique
that is widely employed in computational physics and
materials science (Masia, Guàrdia, and Nicolini, 2014).
Nevertheless, the ways in which classical interatomic poten-
tials are constructed are neither straightforward nor uniquely
defined, and the thermodynamic intervals over which they
remain reliable are not known a priori.
In situations where the use of first-principles methods is

prohibitive and the available classical potentials are not
versatile enough to reproduce the physical phenomena of
interest, machine learning techniques can be useful. Machine
learning (ML) is a subfield of artificial intelligence that
exploits the systematic identification of correlation in data
sets to make predictions and analysis (Behler, 2010; Rupp,
2015). Effective potentials resulting from ML are not built on
physically motivated functional forms but obtained from
purely mathematical fitting techniques that reproduce a set
of reference data as closely as possible. Some of these fitting
procedures strongly rely on the concept of artificial neural
networks, which can “learn” the topology of a potential-
energy surface (PES) from a set of reference points. ML
techniques are common tools in mathematics and computer
science and are starting to be applied with confidence in
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chemistry (Raghunathan et al., 2015) and physics (Manzhos,
Yamashita, and Carrington, 2009; Li, Kermode, and
Vita, 2015).

1. Classical potentials

The interactions between atoms in quantum solids have
been traditionally modeled with two-body potentials. The
most popular of all the two-body potentials is the LJ potential,
which is expressed as

VLJ
2 ðrÞ ¼ 4ϵ

��
σ

r

�
12

−
�
σ

r

�
6
�
; ð70Þ

where ϵ and σ are free parameters, and r is the distance
between two particles. The first term in Eq. (70) represents
repulsive short-ranged electrostatic and Pauli-like interactions
acting between electrons; the second term represents the
attractive long-ranged van der Waals interactions resulting
from instantaneous electronic dipoles. In spite of its simplicity,
the LJ potential has been used in the study of condensed
matter systems with great success; it was the first interaction
model to be systematically employed in variational
Monte Carlo simulations of quantum solids (Hansen and
Levesque, 1968; Hansen, 1968; Bruce, 1972). The LJ poten-
tial is convenient also for simulating atomic systems com-
posed of several chemical species for which the corresponding
σ’s and ϵ’s are already known; the resulting crossed inter-
actions then can be approximated to a good extent with the
LJ parameters given by the Lorentz-Berthelot rules σij ¼
ðσii þ σjjÞ=2 and ϵij ¼ ffiffiffiffiffiffiffiffiffiffi

ϵiiϵjj
p .

When two atoms are brought together, however, the value
of the repulsive LJ term in general increases too rapidly. In
quantum solids particles can be close to each other due to
their zero-point motion, hence an accurate description of the
atomic interactions at short distances is necessary even for
low densities (Ceperley and Partridge, 1986; Boronat and
Casulleras, 1994). In this context, the pairwise interaction
model originally proposed by Ahlrichs, Penco, and Scoles
(1977) is more appropriate since it reproduces ab initio results
for the repulsive interactions between closed shell atoms
(Hepburn, Scoles, and Penco, 1975). The form of this
potential is

VAziz
2 ðrÞ ¼ Ae−arþbr2 − fðrÞ

X
i¼6;8;10

Ci

ri
; ð71Þ

where A, a, b, and Ci are free parameters, and fðrÞ is an
exponential damping function that is introduced to avoid the
divergence of the 1=rn terms at small distances. Aziz and
collaborators worked extensively on this model to deliver an
accurate description of the atomic interactions inmany rare-gas
systems (Aziz et al., 1979; Aziz, Meath, and Allnatt, 1983;
Aziz, McCourt, and Wong, 1987), hence the notation
employed. Equation (71) also yields an improved description
of the long-range dispersion forces as compared to the LJ
model, since it contains several types of multipole interactions.
In some situations, a well-balanced description of solids

cannot be attained with pairwise potentials only. This is the
case, for instance, of crystals at extreme thermodynamic

conditions (Loubeyre, 1987; Cazorla and Boronat, 2008a,
2015b; Cazorla and Errandonea, 2014). A possible solution to
overcome this modeling difficulty is to go beyond pairwise
additivity, that is, to consider higher order terms in the
approximation to the atomic interactions. Several three-body
interatomic potentials have been proposed in the literature
(Axilrod and Teller, 1943; Cencek, Patkowski, and Szalewicz,
2009), and the most popular in the context of quantum solids
is (Bruch and McGee, 1973)

V3ðx; y; zÞ ¼
ν

x3y3z3
− Be−cðxþyþzÞ

× ð1þ 3 cos α cos β cos γÞ; ð72Þ

where ν, B, and c are free parameters, fx; y; zg the distance
between particles in a trimer, and fα; β; γg the corresponding
interior angles. V3 is an interatomic potential that renders triple
dipole and exchange interactions; inclusion of this type of force
appears to be necessary for obtaining a realistic description of
the energy and elastic properties of very dense quantum solids
(Grimsditch, Loubeyre, and Polian, 1986; Pechenik, Kelson,
and Makov, 2008; Cazorla and Boronat, 2015b).

2. Machine learning

When calculations are performed in a series of similar
systems or a number of configurations involving the same
system, the results contain redundant information. One
example is to run a molecular dynamics simulation in which
the total internal energy and atomic forces are calculated at
each time step; after a sufficiently long time, points which are
close in configurational space and have similar energies are
visited during the sampling of the potential-energy surface.
Such a redundancy can be exploited to perform computation-
ally intensive calculations (that is, of first-principles type) only
in a few selected configurations and to use ML to interpolate
between those, hence obtaining approximate solutions for the
remaining of configurations (see Fig. 4). The success of this
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FIG. 4. Sketch of the key idea behind machine learning for the
modeling of atomic interactions. Ab initio results (solid line),
which are obtained at high computational cost, are approximated
by interpolating with ML potentials (dashed line) between
selected reference configurations (blue dots).

Claudio Cazorla and Jordi Boronat: Simulation and understanding of atomic and …

Rev. Mod. Phys., Vol. 89, No. 3, July–September 2017 035003-20



approach depends on a balance between incurred errors due to
interpolation and invested computational effort.
ML modeling tools can provide both the energy and atomic

forces directly from the atomic positions, hence they can be
regarded as a particular class of atomistic potentials. ML
potentials, however, rely on very flexible analytic functions
rather than on physically motivated functionals. Promising
analytic approaches that have recently been proposed to
construct ML potentials include permutation invariant poly-
nomials (Brown et al., 2003), the modified Shepard method
using Taylor expansions (Bowman, Czakó, and Fu, 2011),
Gaussian processes (Bartók et al., 2010, 2013), interpolating
moving least squares (Dawes et al., 2007), and artificial neural
networks (Lorenz, Groß, and Scheffler, 2004). Artificial
neural networks, for instance, have been demonstrated to
be “universal approximators” (Behler, 2015) since they allow
one to approximate unknown multidimensional functions to
within arbitrary accuracy given a set of known function values.
To the best of our knowledge, ML potentials have not been

applied yet to the study of quantum solids. However, the
great versatility of ML approaches (Behler, 2010, 2015;
Rupp, 2015) could be exploited to describe such systems
in especially challenging situations such as, for instance,
molecular solids (e.g., H2, N2, and CH4) under extreme
thermodynamic conditions. Classical interaction models nor-
mally disregard the orientational degrees of freedom in
molecules and require the specification of bond connectivity
between atoms. Therefore, they are not able to describe the
orientational phase transitions and breaking and formation
of atomic bonds occurring at high-P and high-T conditions
(see Sec. VIII). ML potentials could represent an intermediate
solution between classical potentials and first-principles
methods, in terms of both numerical accuracy and computa-
tional burden.

IV. ARCHETYPAL QUANTUM CRYSTALS

Helium and hydrogen are the lightest elements in nature
and the paradigm of quantum solids. The classical picture
of a crystal at low temperature, with all the atoms strongly
localized around their equilibrium lattice positions, breaks
completely in solid helium and hydrogen. In archetypal
quantum crystals atoms move noticeably around the equilib-
rium lattice positions even in the limit of zero temperature,
and exchanges between few particles occur with frequency.
Consequently, the degree of anharmonicity in these systems is
very high. Quantum simulation methods beyond the harmonic
approximation (see Sec. II) in fact are necessary for correctly
describing archetypal quantum solids.

A. Helium

Helium has two stable isotopes, 4He and 3He, which are
bosonic and fermionic particles, respectively. Both isotopes
solidify under moderate pressures in the T → 0 limit, namely,
at P≃ 25 bar in 4He and 30 bar in 3He. 4He solidifies in the
hexagonal hcp phase except for a small region at low pressures
in which the stable phase is cubic bcc (see Fig. 5). Meanwhile,
3He solidifies in the cubic bcc phase with a relatively large
molar volume of V ≃ 24.5 cm3 mol−1. Under specific P − T

conditions, both isotopes transform into the cubic fcc phase
(Glyde, 1994).
At low pressure (P < 1 GPa), the thermodynamic proper-

ties of solid 4He are well known from experiments and
accurately reproduced by QMC methods. In Fig. 6, we
compare experimental and computational results for the
dependence of the energy per particle on density. The
theoretical results correspond to DMC simulations performed
by Vranješ et al. (2005) using a semiempirical pair potential
(Aziz, McCourt, and Wong, 1987); the agreement between
observations and theory is excellent. Likewise, accurate
results have also been obtained with the PIGS method
(Rossi et al., 2012). From the function E=NðρÞ one can
easily work out the pressure PðρÞ ¼ ρ2dðE=NÞ=dρ thus
obtaining the corresponding eos. Excellent agreement
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FIG. 5. Phase diagram of 4He at low pressures and
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FIG. 6. Energy per particle in solid 4He expressed as a function
of density. Open triangles represent experimental data from
Edwards and Pandorf (1965). Other symbols and lines corre-
spond to the DMC results. Solid circles and line represent results
in which the bias introduced by finite-size effects has been
reduced significantly. Solid triangles and dashed line represent
results which have been corrected only partially for the same type
of bias. Adapted from Vranješ et al., 2005.
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between theory and experiment has also been demonstrated
for this quantity [see, for instance, Cazorla and Boronat
(2008a)]. The quantum nature of solid 4He is thermodynami-
cally reflected in its high compressibility; for instance, the
corresponding experimental molar volume is reduced from
21 cm3mol−1 at 25 bar to 9 cm3 mol−1 at 5 kbar. The location
of the first-order liquid-solid phase transition is also accurately
reproduced by QMC calculations. Recent DMC estimations
provide a transition pressure of 27.3 atm, with freezing and
melting densities equal to ρf ¼ 0.437σ−3 and ρm ¼ 0.481σ−3

(σ ¼ 2.556 Å), respectively (Vranješ et al., 2005). The
corresponding experimental values are Pexpt

t ¼ 25 atm,
ρexptf ¼ 0.434σ−3, and ρexptm ¼ 0.479σ−3 (Glyde, 1994).
Valuable information on the quantum nature of a solid is

obtained from its Lindemann ratio:

γ ¼ 1

a

�
1

N

XN
i¼1

ðri − RiÞ2
�
1=2

¼ hu2i1=2
a

; ð73Þ

where Ri represent the coordinates of the perfect lattice sites,
and a the corresponding lattice constant. The parameter γ
quantifies the displacement of particles around their equilib-
rium positions. The quantum character of a solid can be said to
be proportional to the value of its Lindemann ratio. In solid
4He and 3He at ultralow temperatures, for instance, γ amounts
to ∼0.3 (Glyde, 1994), which are the largest values known in
any material at those thermodynamic conditions. The large
excursions of helium atoms around their lattice positions
allow them to explore the nonharmonic part of the potential-
energy surface, leading to high anharmonicity. Another
singular aspect in solid helium is the large kinetic energy
per particle. At P ¼ 50 atm, for instance, Ek amounts
to ∼24 K (Diallo et al., 2007), which is of the same order
of magnitude as the corresponding potential energy, namely,
∼ − 31 K (which results from a cancellation between large
repulsive and attractive terms).
The influence of Bose-Einstein statistics on the energy and

structural properties of solid 4He is negligible [∼1 μK=atom
(Clark and Ceperley, 2006)]. In fact, many of the results just
presented have been obtained with nonsymmetric wave
functions and as explained the agreement with the experi-
ments is excellent. However, quantum atomic exchanges play
a pivotal role in other intriguing properties such as, for
instance, Bose-Einstein condensation and superfluidity
(Ceperley, 1995). These phenomena occur in liquid 4He at
ultralow temperatures and, due to the extreme quantum nature
of helium, it was wondered a long time ago whether the same
effects could also be observed in the crystal phase (see Sec. VI
for a historical overview of this topic). In recent years, there
have been several theoretical works aimed at clarifying these
questions. In particular, the one-body density matrix ϱ1ðrÞ
[Eq. (49)] of solid 4He has been calculated with different
methods. Initial zero-temperature estimations based on sym-
metrized wave functions (Galli and Reatto, 2006; Cazorla
et al., 2009) provided a nonzero but small plateau at long
distances. However, unbiased ϱ1ðrÞ results obtained with the
PIGS and PIMC methods have unequivocally demonstrated
that the condensate fraction in perfect solid 4He is actually

zero (Ceperley and Bernu, 2004; Bernu and Ceperley, 2005;
Boninsegni, Prokof’ev, and Svistunov, 2006b; Clark and
Ceperley, 2006). In particular, the tail of ϱ1ðrÞ decays
exponentially at long distances as illustrated in Fig. 7 (Rota
and Boronat, 2012). Actually, the exchange frequency
between particles at different lattice sites is very small as
compared to that in the liquid phase [for instance, the
exchange frequency for 2, 3, and 4 atom exchanges is of
∼3 μK=atom (Ceperley and Bernu, 2004; Clark and Ceperley,
2006)], and long permutation cycles able to trigger super-
fluidity are highly improbable. Nevertheless, note that when a
finite and stable concentration of defects is assumed
to exist in the crystal these conclusions change drastically
(see Sec. VI).
At high pressures, the atoms in a crystal experience strong

short-range repulsions due to electrostatic forces and the Pauli
exclusion principle. Customary semiempirical potentials that
at low densities provide a good description of the crystal then
start to be unreliable due to severe transferability issues (see
Sec. III.B). This is the case of the Aziz potential for 4He (Aziz,
McCourt, and Wong, 1987), which possesses a too steep
repulsive core and leads to inaccurate results at pressures P ≥
1 GPa (Cazorla and Boronat, 2008a). Recently, dispersion-
corrected DFT has been used in combination with the DMC
method to study the quantum behavior of solid helium at
pressures up to ∼150 GPa (Cazorla and Boronat, 2015a,
2015b). Essentially, analytical potentials have been con-
structed to reproduce sets of atomic energies and forces
calculated with first-principles methods. To a first approxi-
mation (Cazorla and Boronat, 2015a), the effective pair
interaction has been obtained by fitting the static compression
curve calculated with DFT-D to an analytical function based
on the Aziz potential [see Eq. (71)] and an attenuation
repulsion factor proposed by Moraldi (2012). This has
allowed for a sizable improvement in the description of the
high-P eos as compared to the available experimental data.
However, it has been shown that such a simple approach

FIG. 7. One-body density matrix calculated in hcp 4He at
density ρ ¼ 0.0294 Å−3. Circles, squares, and diamonds stand
for results obtained at T ¼ 0, 1, and 2 K, respectively. Adapted
from Rota and Boronat, 2012.
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provides unphysical results for the elastic constants and
pressure dependence of the kinetic energy. In a later work,
Cazorla and Boronat (2015b) introduced a family of three-
body interaction potentials based on Eq. (72) that allow one to
overcome (in part) these modeling shortcomings while still
providing an accurate eos up to ∼60 GPa (see Fig. 8).
With regard to solid 3He, the number of related studies is

very limited. Besides some old variational calculations, the
most recent and accurate investigation of its thermodynamic
properties has been performed by Moroni et al. (2000) with
the DMC method. In Moroni’s work the quantum antisym-
metry of the system is neglected, that is, particles are treated as
bosons rather than as fermions. Nevertheless, since the
exchange energy in the crystal is very small (of the order
of mK) (Ceperley and Jacucci, 1987; Cândido, Hai, and
Ceperley, 2011) it can be expected that quantum symmetry
effects will play an insignificant role on the energy. The results
obtained for the dependence of the energy on density show a
discrepancy with the experimental data, which Moroni et al.
(2000) attributed to a wrong reference in the integration of the
experimental equation of state. After correction of such an
error, the agreement between theory and experiments becomes
excellent, namely, of the same quality as that achieved in
solid 4He.

B. Hydrogen

Bulk molecular hydrogen (deuterium) at zero pressure, in
contrast to 4He, solidifies at a temperature of ∼14 K (∼19 K)
due to the stronger attractive interactions between particles.
H2 (D2) molecules are composed of two hydrogen (deuterium)
atoms joined by a covalent bond, which in the parahydrogen
(orthodeuterium) state have zero angular momentum and
spherically symmetric wave functions. Both types of particles,
therefore, are bosons and the interactions between molecules
of the same species can be modeled with radial pairwise

potentials (at high pressures, however, the molecular angular
momentum is no longer zero and thereby pairwise approx-
imations to the intermolecular interactions become invalid, see
Sec. VIII.A). Actually, in most quantum simulation studies
of H2 and D2 crystals at low pressure (i.e., P ≤ 0.1 GPa) the
intermolecular forces have been modeled with the semi-
empirical Silvera-Goldman (Silvera and Goldman, 1978)
and Buck (Buck et al., 1983; Norman, Watts, and Buck,
1984) pair potentials. The effect of three-body forces on the
corresponding low-P equation of state has been explored, but
their net effects have been found to be negligible (Operetto
and Pederiva, 2006). Meanwhile, anisotropic corrections to
the pair potential have been tested against experiments and
found to be significant only at pressures higher than ∼10 GPa
(Cui et al., 1997).
In Fig. 9, we show the energy per molecule in hexagonal

hcp H2 calculated in the limit of zero temperature with the
DMCmethod and the Silvera-Goldman potential (Osychenko,
Rota, and Boronat, 2012). We note that the experimental
energy per particle is E=N ¼ −89.9 K, which is underesti-
mated (overestimated) by the Silvera-Goldman (Buck) poten-
tial model. Close to the equilibrium density the H2 kinetic
energy is 89.5 K, which roughly amounts to half of the
potential energy. In comparison to solid 4He, in which both
types of energies are nearly equal, quantum nuclear effects in
solid hydrogen turn out to be smaller (see also Fig. 1). The
energy curve of the metastable liquid is shown in Fig. 9 for
comparison. Results for the equation of state of solid and
liquid H2 are enclosed in Fig. 10. The agreement between
theory and experiments (Driessen, de Waal, and Silvera, 1979)
is quite satisfactory in the solid phase, although at pressures
beyond ∼100 MPa this starts to worsen due to the limitations
of the employed intermolecular potential (Moraldi, 2012;
Omiyinka and Boninsegni, 2013).
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As a by-product of the recent experimental activity on the
search for a supersolid state of matter (see Sec. VI), interest
has developed in studying highly disordered solids such as, for
instance, amorphous or glassy systems. A glassy state in solid
4He, termed a “superglass,” has been predicted to exhibit
superfluid behavior by Boninsegni, Prokof’ev, and Svistunov
(2006b). An analogous study has been carried out more
recently in solid H2 by Osychenko, Rota, and Boronat
(2012). In this case, PIMC simulations showed that glassy
molecular hydrogen eventually becomes superfluid at temper-
atures below ∼1 K. The critical temperature for this transition,
however, is so small that it is unlikely to be observed in
experiments (Kühnel et al., 2011).
Interestingly, the free surface of bulk H2 has also been

investigated with experiments (Brewer et al., 1990; Vilches,
1992; Kinder, Bouwen, and Schoemaker, 1995) and PIMC
simulations (Wagner and Ceperley, 1994, 1996). It was found
that the melting temperature of the bare hydrogen surface
is reduced down to ∼6 K and that zero-point molecular
fluctuations therein are considerably enhanced with respect
to bulk. For instance, at low temperatures the corresponding
Lindemann ratio increases from ∼0.1 in the inner layers up
to ∼0.2 in the outer surface (Wagner and Ceperley, 1996).
Yet, the corresponding melting temperature is still too high
to expect that liquid H2 will become superfluid (that is,
well above the predicted critical temperature Tc ∼ 1–2 K)
(Apenko, 1999).

C. Neon

Solid neon behaves more “classically” than solid helium but
more “quantumly” than the rest of the rare-gas species (see
Fig. 1). The study of this crystal is useful to understand the
transition from the quantum regime to the classical in solid-
state systems. The interest in solid neon as a case study of a
moderate quantum system dates back to the 1960s. Bernades
(1958) and Nosanow and Shaw (1962) were the first to
attempt an estimation of the kinetic energy in solid neon using

theoretical methods. By relying on variational and self-
consistent Hartree calculations performed with uncorrelated
single-particle wave functions, they reported ground-state Ek
values of ∼41 K. However, the binding energies reported
in those early works were in strong disagreement with
contemporary experiments, evidencing the need to go beyond
uncorrelated microscopic approaches. A few years later,
Koehler (1966) applied the self-consistent phonon approach
to the same system and obtained results for the cohesive
energy that were in better agreement with the experiments;
Koehler’s estimation of the kinetic energy was 42.6 K.
It was not until the 1990s that, with the development of the

deep inelastic neutron scattering technique, the kinetic energy
in quantum crystals could be measured precisely. Peek et al.
(1992) were the first to perform those measurements in solid
neon, reporting a ground-state kinetic energy of 49.1 (2.8) K.
In view of the large discrepancies found with respect to
previous estimations based on harmonic models, they sug-
gested that solid neon was highly anharmonic. Later on,
Timms et al. (1996) carried out a new series of neutron
scattering experiments in which higher momentum and energy
transfers were considered. They found that in the temperature
interval of 4–20 K their measured excess kinetic energies,
defined as Eexc ≡ Ek − 3

2
kBT, were systematically lower than

Peek’s results by a few Kelvin (see Fig. 11). The validity of
Timms et al.’s results is supported by the outcomes of several
PIMC studies based on classical interatomic potentials
(Cuccoli et al., 1993; Timms et al., 1996; Neumann and
Zoppi, 2002). More recently, Timms, Simmons, and Mayers
(2003) performed additional neutron scattering measurements
and reported that the ground-state kinetic energy in solid neon
is 41 (2) K. The accuracy of this result has been confirmed by
recent DMC calculations performed by Cazorla and Boronat
(2008b), which provide Ek ¼ 41.51 ð6Þ K in the T → 0 limit
(see Fig. 11). We note that the Lindemann ratio (see Sec. I.C)
in solid neon is approximately 3 times smaller than in helium,
namely, γNe ∼ 0.08 (Cazorla and Boronat, 2008b), pointing to
a moderate degree of quantumness.
An interesting topic in the study of solid neon is related to the

shape of its momentum distribution nðkÞ (see Fig. 11).Withers
and Glyde (2007) showed that when a crystal has a momentum
distribution that is not well described by a Gaussian, it may be
due to the fact that the system is highly anharmonic or that
quantum atomic exchanges occur frequently. While quantum
atomic exchanges are very likely to be negligible, anharmomic
effects seem to be fairly important in solid neon. This was
demonstrated by Cazorla and Boronat (2008b), who performed
different types of harmonic-based calculations and compared
their results to those obtained with full anharmonic methods.
For instance, the ground-state kinetic energy that is predicted
with the self-consistent average phonon approach (Shukla
et al., 1981) amounts to ∼47 K and the corresponding
Lindemann ratio to 0.06, which are appreciably different from
the experimental and DMC results.
Nevertheless, there is widespread agreement among exper-

imentalists and theorists in that the momentum distribution in
solid Ne is well approximated by a Gaussian function (Timms
et al., 1996; Neumann and Zoppi, 2002; Cazorla and Boronat,
2008b). The question then arises about how anharmonic (or
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quantum) a crystal must be for its nðkÞ to differ appreciably
from a Gaussian. The momentum distribution in solid 4He is
non-Gaussian as it has a large occupation of low momentum
states as compared to a Maxwell-Boltzmann distribution
(Diallo et al., 2004; Rota and Boronat, 2011). However, little
is known about the relation between anharmonicity and nðkÞ
in other quantum crystals lying in between helium and neon,
in terms of quantumness, which are mostly molecular systems
(see Fig. 1). In the case of solid para-H2, for instance, inelastic
neutron scattering experiments have provided a translational
momentum distribution that is Gaussian (Langel et al., 1988);
however, it is not clear whether this result can be attributed
to the intensive use of Gaussian approximations during the
refinement of experimental data (Colognesi et al., 2015). Is
solid helium the only quantum crystal with a non-Gaussian
nðkÞ? The answer so far seems to be yes.

Free-energy calculations based on path-integral simulations
and semiempirical pairwise potentials have also been
employed to study the quantum phase diagram of neon up
to pressures of 2–3 kbar and temperatures of 50 K (Ramírez
and Herrero, 2008; Ramírez et al., 2008; Brito and Antonelli,
2012). Significant QNE have been found in the solid-gas and
liquid-gas P − T coexistence lines, which consist of a shift of
about 1.5 K toward lower temperatures as compared to the
classical phase diagram. Moderate quantum isotopic effects
have also been observed in the triple solid-liquid-gas coex-
istence point in both experiments (Furukawa, 1972) and path-
integral calculations (Ramírez and Herrero, 2008).

V. ELASTICITY AND MECHANICAL PROPERTIES

The free energy of a crystal subjected to a homogeneous
elastic deformation is

FðV; T; ϵÞ ¼ F0ðV; TÞ þ
1

2
V
X
ij

Cijϵiϵj; ð74Þ

where F0 is the free energy of the undeformed solid, Cij are
the corresponding elastic constants, and ϵi are general strain
deformations (the latter two quantities are expressed in Voigt
notation and the subscripts indicate Cartesian directions). The
symmetry of the crystal determines the number of elastic
constants that are inequivalent and nonzero. For a crystal to be
dynamically stable, its change in free energy due to an
arbitrary strain deformation must be always positive; this
requirement leads to a number of mechanical stability con-
ditions that need to be fulfilled for any stable or metastable
state, and which depend on the particular symmetry of the
crystal (Born and Huang, 1954; Grimvall et al., 2012).
The elastic constants of a solid can be measured with

ultrasonic techniques since the velocity of density waves
depends on the elastic properties of the medium in which they
propagate. Brillouin scattering spectroscopy and synchrotron
x-ray diffraction techniques can also be employed to this end.
Likewise, the calculation of elastic constants with quantum
simulation methods is a well-established technique. At zero
temperature, one can calculate the energy of the solid as a
function of strain, using for instance the DMC or PIGS method
(see Sec. II.A), and then simply compute the value of its second
derivative numerically (Cazorla, Lutsyshyn, andBoronat, 2012,
2013). At T ≠ 0, the calculation of Cij ’s is not so straightfor-
ward since one has to consider also the effects of thermal
excitations. Schöffel and Müser (2001) were the first to under-
take such a type of calculation by using the path-integral
Monte Carlo method. They estimated the elastic constants in
solid Ar and 3He through direct derivation of the partition
function with respect to the strain components. More recently,
Peña-Ardila, Vitiello, and de Koning (2011) proposed an
alternative path-integral approach in which a suitable expres-
sion for the estimation of the stress tensor is worked out.
In this section, we review the elastic properties of perfect

quantum solids, that is, free of crystalline defects. Crystalline
defects can considerably affect the elastic behavior of quan-
tum (and also classical) crystals, so that we leave those aspects
for Sec. VI. Our analysis here is divided into low and high

FIG. 11. Quantum nuclear effects in solid neon at low temper-
atures. (Top panel) Excess kinetic energy expressed as a function
of temperature. Open up triangles: experimental data fromTimms,
Simmons, and Mayers (2003). Solid circles: measurements from
Peek et al. (1992). Solid up trianges: PIMC calculations from
Timms et al. (1996). Solid down triangle: DMC ground-state
calculations from Cazorla and Boronat (2008b). The lines in the
plot are linear fits to the experimental data. (Bottom panel)
Ground-state momentum distribution in solid Ne calculated with
the DMCmethod (green dots). The solid line (red) is a Gaussian fit
to the results, the width of which represents its uncertainty.
Adapted from Cazorla and Boronat, 2008b.
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pressures because the fundamental character of elasticity in
quantum crystals changes when moving from one regime to
the other.

A. Low-pressure regime

The elastic properties of traditional quantum solids such as
helium (Crepeau et al., 1971; Greywall, 1977) and hydrogen
(Nielsen and ller, 1971; Nielsen, 1973; Wanner and Meyer,
1973) have been measured extensively. In experiments,
however, it is difficult to determine the exact contribution
of QNE to elasticity. In this context, the outcomes of first-
principles studies can be valuable. For instance, Schöffel and
Müser (2001) performed a thorough PIMC study on the elastic
properties of solid 3He in the hexagonal hcp and cubic bcc and
fcc phases, considering low temperatures and pressures. Their
results were in good agreement with the reported experimental
data, and they concluded that QNE accounted for about 30%
of the Cij values. A similar quantum influence on the elasticity
of solid Ar was also reported (namely, ∼20%), a crystal that is
considered to behave much more classically than helium.
More recently, the elastic properties of solid 4He have been

studied in detail using different QMC techniques. Cazorla,
Lutsyshyn, and Boronat (2012) employed the DMC method to
calculate the zero-temperature elastic constants, Grüneisen
parameters, sound velocities, and Debye temperature over a
wide pressure interval of∼100 bar. The computedCij values are
in overall good agreement (i.e., discrepancies to less than 5% in
most cases) with the reported experimental data and results
obtainedusing theVMC(Pessoa,Vitiello, anddeKoning, 2010;
Pessoa, de Koning, andVitiello, 2013) and PIMC (Peña-Ardila,
Vitiello, and de Koning, 2011) methods (see Fig. 12). It was
found that the pressure dependence of all five elastic constants
close to equilibrium is practically linear (see Fig. 12).
Interestingly, the contribution of QNE to the elastic constants
in hcp 4He has been shown to be ∼30%, which roughly
coincides with the results obtained by Schöffel and Müser
(2001) in solid 3He. In essence, all these theoretical studies
conclude that QNE profoundly affect the elastic properties of
quantum crystals at low pressures (that is, P ≤ 0.01 GPa).
A fundamental question that can be easily addressed with

simulations but not with experiments is what is the limit
of mechanical stability in a quantum crystal? When the
density in a system is reduced progressively, eventually this
becomes unstable against long wavelength density fluctua-
tions. This limit, also known as the spinodal point, has been
comprehensively analyzed in liquid 4He and 3He (Boronat,
Casulleras, and Navarro, 1994; Maris, 1995; Maris and
Edwards, 2002); however, it has not been until recently that
it was estimated directly in the crystal phase (Cazorla and
Boronat, 2015c). Theoretically, the spinodal point in a crystal
is identified with the thermodynamic state at which any of the
mechanical stability conditions involving the elastic constants
is not satisfied. One can expect that, due to the presence of
QNE and inherent structural softness, the limit of mechanical
stability in quantum crystals lies very low in density.
Based on Cij calculations performed with the DMCmethod

and a semiempirical pairwise potential, Cazorla and Boronat
(2015c) estimated that the ground-state spinodal pressure

in solid 4He is Ps ¼ −33.8ð1Þ bar, which corresponds
to an atomic volume of Vs ¼ 50.81ð5Þ Å3. In particular, it
was found that the mechanical stability condition ðC33 − PÞ×
ðC11 þ C12Þ − 2ðC13 þ PÞ2 > 0 is violated at Ps. Regarding
the propagation of density waves, previous calculations based
on phenomenological models (Maris, 2009, 2010) had sug-
gested that, in analogy to the liquid phase, the sound velocities
in hcp 4He near the spinodal density could follow a power law
of the form ∝ ðP − PsÞ1=3. However, Cazorla and Boronat
(2015c) showed that quantum solids and liquids behave
radically different in the vicinity of their mechanical stability
limits; in particular, none of the sound velocity components,
either propagating along the c axis or in the basal plane, follow
the previously proposed “1=3” power law.

B. High-pressure regime

The elastic properties of archetypal quantum solids under
high pressure (i.e., P > 1 GPa) have been thoroughly
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FIG. 12. Elastic constants in solid 4He at moderate pressures.
Solid up triangles: experimental data from Crepeau et al. (1971);
open down triangles: Greywall (1977). Solid down triangles: C44

measurements from Syshchenko, Day, and Beamish (2009).
Open up triangles: VMC calculations from Pessoa, Vitiello,
and de Koning (2010). Solid circles: DMC ground-state calcu-
lations from Cazorla, Lutsyshyn, and Boronat (2012). The dashed
lines (green) represent linear fits to the DMC results. The freezing
pressures in the crystals are marked with vertical (magenta) lines.
Adapted from Cazorla, Lutsyshyn, and Boronat, 2012.
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investigated with experiments (Zha et al., 1993; Zha, Mao,
and Hemley, 2004). Surprisingly, the results of first-principles
DFT studies in which QNE are completely or partially
neglected show good agreement with the measured Cij and
sound velocity data (Nabi et al., 2005; Freiman et al., 2013;
Grechnev et al., 2015). In view of the importance of QNE on
the elastic properties of quantum crystals at low pressures (see
Sec. V.A), such good agreement could be explained in terms
of (i) a systematic error cancellation involving the disregard of
QNE, on the one hand, and an inaccurate description of the
system obtained with standard DFT functionals, on the other
hand, or (ii) a steady diminishing of the importance of QNE on
elasticity under pressure.
To the best of our knowledge, there are no fully ab initio

studies (i.e., works in which both the electronic and ionic
degrees of freedom are described with quantum-mechanical
methods) on the elastic properties of highly compressed
quantum crystals. The reason for this is likely to be the
large computational expense associated with the calculation
of partition function derivatives or the stress tensor with
sufficient accuracy (Schöffel and Müser, 2001; Peña-Ardila,
Vitiello, and de Koning, 2011). On the other hand, the
semiempirical two-body potentials that at low pressures
describe the interactions between atoms in quantum crystals
correctly become unreliable at high pressures (see Sec. III).
In addition to this, pairwise interaction models in general are
not well suited for the study of elasticity in very dense
crystals since they inevitably lead to zero values of the
Cauchy relations (Wallace, 1972; Pechenik, Kelson, and
Makov, 2008), which is inconsistent with the observations
(Zha, Mao, and Hemley, 2004). Assessing the importance
of QNE on the elasticity of quantum crystals by using
such unrealistic interatomic potentials, therefore, could be
misleading.
Cazorla and Boronat (2015b) recently introduced a set of

effective three-body potentials based on Eq. (72), to simulate
solid 4He at high pressures realistically and with affordable
computational effort (see Sec. IV.A). The new parametriza-
tions have been obtained from fits to ab initio energies and
atomic forces calculated with a dispersion-corrected DFT
functional (see Sec. III.A.1). It has been shown that an overall
improvement in the description of 4He elasticity at zero
temperature and pressures 0 ≤ P ≤ 25 GPa can be achieved
with some of the proposed three-body interaction models.
Interestingly, Cazorla and Boronat (2015b) found that the
impact of QNE on helium elastic constants becomes secon-
dary at very large densities. For instance, the inclusion of QNE
makes the value of the shear modulus C44 to decrease by less
than 4% at a pressure of ∼50 GPa (to be compared with ∼30%
found near equilibrium conditions). This conclusion appears
to be consistent with the results of a recent PIMC study
performed by Landinez-Borda, Cai, and de Koning (2014), in
which the ideal shear strength on the basal plane of solid
helium (that is, the maximum stress that the crystal can resist
without yielding irreversibly) was found to behave quite
similarly to that in classical hcp solids. Consequently, it
can be expected that by treating QNE with approximate
methods (e.g., the Debye model or quasiharmonic approx-
imations) one can obtain a reasonably good description of

elasticity in quantum solids at high pressures. It will be
interesting to test whether this is also valid in quantum
molecular crystals, the elastic properties of which remain
largely unexplored at high densities with theory.

VI. CRYSTALLINE DEFECTS

Crystals are characterized by periodic arrangements of
atoms or molecules defined by a unit cell. The regular pattern
in a solid, however, normally is interrupted by crystalline
defects, which can be classified into point, line, and planar
types. Point defects occur only at or around one lattice site,
and typical examples include vacancies, impurities, and
interstitials (Kittel, 2005); see Fig. 13. Line defects entail
entire rows of atoms that are misaligned with respect to the
others; common examples of line defects are dislocations,
which in turn are classified into “edge” and “screw” (Bulatov
and Cai, 2006; Hull and Bacon, 2011). An edge dislocation,
for instance, is created by introducing an extra half-plane of
atoms midway through the crystal (see Fig. 13). Planar defects
can occur in single crystals or in the boundaries between
single crystals and include grain and twin boundaries, steps,
and stacking faults (Kittel, 2005). The study of crystalline
defects is important since these can considerably affect the
mechanical, electrical, structural, and adsorption properties of
materials. Dislocations, for example, are key to understanding

FIG. 13. Common types of defects in crystals. (a) Representation
of point defects; V, Im, and I, respectively, stand for vacancy,
impurity, and interstitial. (b) Representation of an edge disloca-
tion, a class of line defect, in a solid with cubic symmetry.
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the microscopic origins of plasticity, that is, the regime in
which the mechanical deformation of a crystal becomes
nonreversible (Kosevich, 2005).
In 1969, Andreev and Lifshitz proposed that a state of

matter in which crystalline order and Bose-Einstein conden-
sation coexisted could occur in a quantum crystal, the so-
called supersolid. For this supersolid to exist, the presence of
crystal vacancies was a necessary condition. At that time some
experimentalists were attracted to the possibility of realizing
such an exotic state of matter, and several mass flow and
torsional oscillator experiments were carried out in solid 4He
at ultralow temperatures. In all those experiments, however, no
evidence for a supersolid state was found. Several decades
later, a renewed interest in supersolids blossomed after the
torsional oscillator experiments by Kim and Chan (2004a,
2004b). In their experiments, Kim and Chan observed a shift
in the period of the torsional oscillator of solid helium as the
temperature was lowered below ∼0.1 K. This sign was
interpreted as the mass decoupling between the normal and
superfluid fractions in the crystal. Meanwhile, a few years
later Day and Beamish (2007) measured the shear modulus in
solid helium and found a striking resemblance with respect to
the temperature dependence of the oscillation period reported
by Kim and Chan: the shear modulus increased as the
temperature was lowered below ∼0.1 K. Day and Beamish
attributed that increase in stiffness to the temperature depend-
ence of the mobility of dislocations in the solid, which could
be pinned by static 3He impurities. Day and Beamish’s
findings motivated a series of subsequent theoretical and
experimental studies which have demonstrated that a change
in the moment of inertia of the experimental torsional cell can
be correlated to a change in the structure of the solid inside of
it (Reppy, 2010; Maris, 2012; Shin et al., 2016). In 2012, Kim
and Chan completely redesigned their torsional oscillator
setup making it stiffer, and the original mass-decoupling
signal disappeared to within the experimental errors (Kim
and Chan, 2014). Thus, any convincing evidence of the
existence of a supersolid yet is to be found.
As a by-product of the frustrated investigations on super-

solids, interest in the plastic behavior of quantum solids has
emerged. Recently, Haziot et al. (2013a) showed that in
ultrapure single crystals of hcp 4He the resistance to shear
along one particular direction nearly vanishes at around T ¼
0.1 K due to free gliding of dislocations within the basal
plane. This intriguing effect has been termed giant plasticity
and vanishes in the presence of numerous 3He impurities or
when the temperature is raised.
In this section, we review the current understanding of

crystalline defects in quantum crystals. Our analysis is focused
on vacancies and dislocations since these are the two types of
defects that have been studied in more detail in solid 4He.
Special emphasis is put on identifying those aspects that
remain unknown or controversial.

A. Vacancies

Both experiments and theory agree that the vacancy
formation enthalpy ΔHv in solid 4He at ultralow temperatures
amounts to ∼15 K (Fraass, Granfors, and Simmons, 1989;

Galli and Reatto, 2004; Lutsyshyn et al., 2010). The general
understanding then is that vacancies cannot be thermally
activated in this crystal at temperatures as low as 0.1–1.0 K. In
fact, the classical equilibrium concentration of vacancies in a
crystal is given by xclassv ¼ exp ð−ΔGv=TÞ, where ΔGv is the
Gibbs free-energy difference between the perfect and incom-
mensurate (that is, defective) system. ΔGv is equal to
ΔHv − TΔSv, where ΔSv is the entropy change induced by
the presence of vacancies. In turn, ΔSv can be estimated as the
sum of a vibrational and a configurational contribution.
The vibrational contribution corresponds to the variation of
the lattice phonon frequencies as a result of the local
relaxation occurring around the vacancy; in the limit of very
small xv, this contribution can be safely neglected. The
configurational entropy stems from the equivalency between
lattice sites when creating a vacancy; this contribution is
ΔSconfv ¼ − lnðxvÞ and cannot be disregarded in the xv ≪ 1
limit. By neglecting vibrational contributions to ΔGv and
substituting the value of ΔSconfv in xclassv , one has that the
classical equilibrium concentration of vacancies in a crystal is

xclassv ¼ exp

�
−
ΔHv

2T

�
: ð75Þ

In the case of solid 4He at T ¼ 0.1 K, for instance, it follows
that xclassv ∼ 10−22 when considering ΔHv ∼ 10 K. In fact,
such a classical equilibrium concentration of vacancies is so
extremely small that in principle it is physically irrelevant.
Interestingly, Rossi et al. (2008) and Pessoa, de Koning,

and Vitiello (2009a, 2009b) have recently estimated, by using
a reversible-work approach that exploits a quantum-classical
isomorphism, that the zero-point vacancy concentration in
solid 4He is xv ∼ 10−3. Actually, this result is many orders of
magnitude larger than the classical result obtained with
Eq. (75), and it follows from assuming that the crystal
is correctly described with a shadow wave function (Vitiello,
Runge, and Kalos, 1988; MacFarland et al., 1994). A hypo-
thetical equilibrium vacancy concentration of ∼10−3, although
probably still not experimentally detectable, would start being
physically relevant to understand the behavior of defective
solid 4He. Nevertheless, since Rossi and Vitiello’s estimations
ultimately rely on a variational model, the large xclassv − xv
difference cannot be rigorously ascribed to the quantum nature
of the crystal alone.
Even when assuming that the equilibrium concentration

of vacancies in solid helium is practically null, it cannot be
discarded that in the process of growing a crystal from the
liquid phase a small concentration of point defects is created.
A possible question to answer next then is do vacancies in a
quantum crystal cluster or stay dispersed? If vacancies cluster,
then they would segregate from the perfect system and
become irrelevant. On the contrary, if vacancies remained
separated, they could affect the general properties of the
quantum crystal quite noticeably (Rota et al., 2012).
Unfortunately, there is not a general consensus between
theorists about how vacancies interact and distribute in solid
4He. Pollet et al. (2008) estimated from thermodynamic
arguments that the binding energy of a divacancy is
Ebind
div ¼ 1.4ð5Þ K; note that this result is about 2 times larger
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than the energy found by Clark and Ceperley (2008) using the
PIMC method and a semiempirical pairwise potential. It has
been argued then that if vacancies existed they would separate
into a vacancy-rich region and segregate from the perfect
crystal. Nevertheless, as noted earlier, at finite temperatures it
is crucial to also consider the entropic contributions to the
Gibbs free energy, which cannot be directly obtained from the
simulations. Actually, as shown next, from a configurational
entropy point of view it turns out to be energetically much
more favorable to have two independent vacancies in the
crystal than a bound divacancy state. By completely ignoring
vibrational effects, the corresponding entropy gain can be
estimated as

δSconf2v-div ≈ 2ΔSconfv − ΔSconfdiv ¼ − ln ð2 xvÞ; ð76Þ

where the constraint xdiv ¼ xv=2 is employed. By considering
the temperature and concentration of vacancies employed in
the PIMC simulations (Clark and Ceperley, 2008), namely,
0.2 K and ∼10−2, one obtains that T δSconf2v-div ∼ 1 K, which
actually is of the same order of magnitude than the estimated
Ebind
div . We note that the same conclusion also holds when

considering smaller T’s and xv’s. Therefore, an attractive
interaction between vacancies does not necessarily imply the
existence of vacancy clusters or vacancy segregation at finite
temperatures.
An alternative analysis to discern whether 4He vacancies

coalescence or not consists of monitoring their spatial corre-
lations in quantum Monte Carlo simulations. For instance, if a
multiple-vacancy bound state was to exist then an exponential
decay in the corresponding vacancy-vacancy pair-correlation
function should appear at separations larger than a specific
interaction distance. Following this approach, Lutsyshyn,
Cazorla, and Boronat (2010) and Lutsyshyn, Rota, and
Boronat (2011) did not find any evidence for the existence
of a multiple-vacancy bound state at zero temperature. In
particular, at the freezing point and also at higher densities the
tail in the vacancy-vacancy pair-correlation function always
exhibits an asymptotic plateau. Pessoa, de Koning, and
Vitiello (2009b) arrived at a similar conclusion by means
of VMC calculations performed with a shadow wave function
model. Contrarily, Rossi et al. (2010) reported, based on the
results of PIGS simulations, that when vacancies are present in
large concentrations (xv ∼ 1%) they tend to form bound states.
Note that other possible processes involving vacancies,

apart from clustering or dispersing in bulk, have also been
suggested; these include nucleation of dislocations (Rossi
et al., 2010) and annealing toward the interface regions
with the system container (Rossi, Reatto, and Galli, 2012).
Rigorous tests of these hypotheses in realistic crystals with
first-principles methods, however, appear to be challenging
due to the large system size and relaxation-time scales
involved in the simulations.
In spite of the ongoing controversy about the possible

existence of vacancies in quantum crystals at low T, the effects
that hypothetically dispersed vacancies would have on the
physical properties of solid helium have already been inves-
tigated thoroughly. For instance, the elastic properties of the
incommensurate crystal in the limit of zero temperature have

been analyzed by Cazorla, Lutsyshyn, and Boronat (2013); it
has been shown that when considering large vacancy con-
centrations (xv ∼ 1%) the shear modulus of the solid under-
goes a small reduction of just a few percent with respect to the
perfect crystal case.
Based on PIGS simulations and fundamental arguments,

Galli and Reatto (2006) demonstrated that BEC occurs in the
ground state of incommensurate solid 4He, that is, n0 ≠ 0 (see
Sec. II.B.1), and that the corresponding critical temperature
follows the relation T0 ∝ x2=3v . Recently, Rota and Boronat
(2012) corroborated the occurrence of vacancy-induced BEC
in solid helium at low temperatures by means of PIMC
simulations. It has been shown that below T0 vacancies
become quantum entities that completely delocalize in space;
they also found that the dependence of the critical temper-
ature on xv is best represented by a power law with coefficient
1.57 (rather than of 2=3), suggesting that the correlations
between vacancies are stronger than previously inferred.
Interestingly, recent experiments performed by Benedek
et al. (2016) appeared to support the possibility of a vacancy-
induced BEC scenario in solid helium under nonequilibrium
conditions.

B. Dislocations

Since the seminal work of Day and Beamish (2007), there is
little doubt that dislocations play a pivotal role in interpreting
the mechanical behavior of solid 4He. If in the case of point
defects it can be said that theory has led the way to their
(partial) understanding, in the case of dislocations it is the
other way around. At present, most of what we know about
dislocations in quantum solids comes from recent experiments
performed by the groups of Beamish, at the University of
Alberta, and Balibar, at the Ecole Normale Supérieure de Paris
[see, for instance, Haziot, Fefferman, Souris et al. (2013),
Haziot, Fefferman, Beamish, and Balibar (2013), Fefferman
et al. (2014), and Souris et al. (2014)]. Such a gap between
theory and experiments is due to several reasons. First, in
order to reliably simulate dislocations, large simulation cells
containing at least several thousands of atoms need to be
considered (Bulatov and Cai, 2006; Proville, Rodney, and
Marinica, 2012); this system size is actually too large to be
handled efficiently in quantum simulations. And second,
dislocations are complex topological objects that until recently
were not studied in depth in the context of low-temperature
physics, as a preponderant interest in ground-state properties
leads to consider perfect crystals by default. However, as
described next, quantum simulation of dislocations is critical
for advancing our understanding of quantum crystals.
Dislocations should be created during the growth process of

solid helium (e.g., due to thermal contraction of the samples
during cooling), as rough estimations of their formation
energy amount to several thousands of K and hence they
cannot be thermally activated at low T. Consider the classical
elastic contribution to the formation energy per unit length of
an edge dislocation (Cotterill and Doyama, 1966):

Eelast
disl =L ¼ μb2

4πð1 − νÞ ln
�
rd
rc

�
þ Eelast

core ; ð77Þ
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where μ is the shear modulus of the crystal, ν is its Poisson
ratio, b is the length of the Burgers vector describing the
dislocation, rd is the dislocation radius, rc is the dislocation
core radius, and Eelast

core is the elastic energy of the dislocation
core. Since we are interested in obtaining an approximate
order of magnitude for Eelast

disl , we can neglect the second term
in Eq. (77), which is always positive, and assume that
ln ðrd=rcÞ ∼ 1. By adopting the elastic data reported for
perfect solid 4He by Pessoa, Vitiello, and de Koning
(2010), that is, μ ¼ 17.1 MPa and ν ¼ 0.15, and a usual
Burgers vector of modulus b ¼ a=

ffiffiffi
3

p ¼ 2.1 Å, one obtains
that Eelast

disl =L ∼ 1 K=Å. Considering now that dislocations in
solid 4He typically are several μm long (see Fig. 14), one
finally obtains that, at least, Eelast

disl ∼ 104 K. Note that although
this rough estimation for the elastic formation energy of line
defects is several orders of magnitude larger than the cost of
creating, for instance, a vacancy (see Sec. VI.A), in principle it
is not possible to grow 4He crystals free of dislocations with
current state-of-the-art synthesis methods (Souris et al., 2015).
The apparently inevitable presence of dislocations in solid
helium near the zero-temperature limit already poses a
problem in the theorist’s mind.
In a series of compelling experimental works, Balibar,

Beamish, and collaborators characterized the energy, struc-
tural, and dynamic properties of dislocations in solid 4He
[for a recent review, see Balibar et al. (2016)]. The usual
experimental setup in those studies consists of a measurement
cell supplied with two piezoelectric shear plates that are
placed facing each other with a separation of a few milli-
meters; the narrow gap that is formed between the transducers
then is filled with a crystal that is oriented in a particular
direction. By applying a voltage to one of the piezoelectric
plates a shear strain is induced in the crystal, and the resulting
stress is measured by the opposite shear plate. This process is
done repeatedly by using alternating currents.
The theory underlying most of Balibar and Beamish’s

results is that due to Granato and Lücke (1956) in which
an analogy is made between the vibration of a dislocation

pinned down by impurity particles under an alternating stress
field and the classical (that is, not quantum mechanical)
problem of the forced damped vibration of a string. In
Granato and Lücke’s classical theory it is assumed that at
high temperatures dislocations interact with thermal lattice
phonons, and that as a consequence a maximum shear
modulus change of

δμ ≡ ΔC44

C44

¼ αΛL2

1þ αΛL2
ð78Þ

and a dissipation (that is, the phase difference between the
applied strain and resulting stress) of

1

Q
¼ δμBL2ωT3 ð79Þ

occur in the crystal. In the context of solid 4He, “high
temperatures” are considered to be T ≥ 0.3 K (Balibar
et al., 2016). In these equations α and B represent two
thermal phonon damping parameters [which in solid 4He
are equal to 0.019 and 905 s × m−2 K−3, respectively (Souris
et al., 2015)], Λ is the density of dislocation lines per surface
unit, L is a typical length between nodes in the dislocation
network, and ω is the frequency of the alternating strain field.
Using Eqs. (78) and (79) and from direct measurements of

δμ and 1=Q, Haziot, Fefferman, Souris et al. (2013) found that
typical values of Λ and L in solid helium are 104–106 cm−2

and 100–230 μm (see Fig. 14), which in the latter case turn out
to be macroscopic. In very high quality crystals (Souris et al.,
2015), it was observed that dislocations avoid crossing each
other by forming two-dimensional arrays of parallel lines
called “sub-boundaries,” and that they glide together parallel
to the basal planes. Remarkably, in the limit of zero temper-
ature the dissipation associated with the gliding of dislocations
in the basal plane vanishes (Fefferman et al., 2014), an effect
that has been interpreted as evidence of quantum behavior.
Nevertheless, whether such an observation implies that the
formation energy of dislocation kinks and jogs (that is, defect
perturbations that affect the straightness of the dislocation
line) also vanishes at ultralow temperatures, or that dislocation
kinks and jogs are able to quantum tunnel through small
energy barriers, yet needs to be clarified (Kuklov et al., 2014).
In this context, the outcomes of quantum simulations could be
highly valuable.
At temperatures below 0.2 K, it is found that the dynamics

of dislocations is greatly influenced by the presence of
isotopic 3He impurities. When the concentration of 3He atoms
x3 is large enough (i.e.,∼10−7 or larger) and T is progressively
reduced, the impurities start to bind to the dislocations with an
energy that, according to Souris et al. (2015) measurements, is
of 0.7(0.1) K. At those conditions, the mobility of the
dislocations also depends on the frequency of the applied
strain. At high frequencies, that is, at high dislocation speeds
of > 45 μm=s, the impurities cannot move fast enough to
follow the line defects so that they end up anchoring them.
However, at lower frequencies, and always considering
Souris et al. (2015) arguments, dislocations can actually move
dressed with 3He atoms.

FIG. 14. The measured distribution NðLNÞ of lengths LN

between dislocation network nodes in a 4He crystal at T ¼
27 mK; the contribution to the shear modulus from each dis-
location length is also indicated. From Fefferman et al., 2014.
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A pertinent comment needs to be made here. Several
nuclear magnetic resonance studies showed that at low
temperatures 3He atoms in solid 4He behave as quantum
quasiparticles that can move through the lattice at velocities as
high as ∼1 mm=s (Allen, Richards, and Schratter, 1982; Kim
et al., 2013), that is, significantly faster than 45 μm=s. How is
it then possible that impurities end up anchoring dislocations
in solid 4He? It has been argued that near the dislocation line
the mobility of isotopic impurities could be reduced consid-
erably due to the existing local strain (Balibar et al., 2016);
however, there is no quantitative evidence showing that such a
large variation of about 3 orders of magnitude in the mobility
of 3He impurities could actually be possible. Clearly, a
microscopic understanding of what are the interactions
between dislocations and quantum isotopic impurities, and
the factors that can affect the mobility of the latter, is
necessary. The outcomes of quantum simulation studies again
could be very useful in clarifying all these issues.
With regard to theory, Boninsegni et al. (2007) showed using

PIMC simulations that the core of screw dislocations with
Burgers vectors oriented perpendicular to the basal plane in
solid 4He might be superfluid. Boninsegni et al.’s predictions
led to a number of hypotheses about possible new phenomena
involving quantum dislocations such as, for instance, “super-
climb” (Söyler et al., 2009; Aleinikava, Dedits, and Kuklov,
2011) and superfluidity in dislocation networks (Boninsegni
et al., 2007). In a recent PIMC study by Landinez-Borda, Cai,
and de Koning (2016) on solid helium, it was reported that
either screwor edge dislocationswithBurgers vectors along the
basal plane are not superfluid. In particular, both types of
dislocations are predicted to dissociate into nonsuperfluid
Shockley partial dislocations separated by ribbons of stacking
fault, as it normally occurs in classical hcp crystals (Bulatov
and Cai, 2006; Hull and Bacon, 2011). Landinez-Borda, Cai,
and deKoning (2016) also concluded that the resistance to flow
of partial dislocations in solid helium is negligible (that is, the
corresponding Peierls stress is nominally zero) mostly due to
zero-point quantum fluctuations. The results presented in this
latter simulation work have provided valuable insight into the
physical origins of the observed giant plasticity effect (Haziot
et al., 2013a, 2013b; Zhou et al., 2013). Apparently, there
seems to be some inconsistencies between the conclusions
presented by Boninsegni et al. (2007) and Landinez-Borda,
Cai, and de Koning (2016) as to what concerns the superfluid
properties of dislocation cores. Note, however, that the linear
defects analyzed in those studies are different as their respective
Burgers vectors are either oriented along the c axis or contained
in the basal plane. Further quantum simulation studies indeed
appear to be necessary for clarifying the effect of Burgers
vector orientation on the transport properties of dislocations in
solid 4He.
Finally, recent experiments done by the Hallock group at

the University of Massachusetts showed unexpected mass
flow through 4He crystals at low temperatures (T < 600 mK)
when sandwiched between two regions of superfluid liquid in
which a pressure gradient is applied (Ray and Hallock, 2008,
2010; Vekhov and Hallock, 2012). This phenomenon has been
dubbed as “giant isochoric compressibility” or the “syringe
effect.” The observed mass flow was interpreted in terms of

two possible scenarios (Hallock, 2015), the climbing (i.e.,
the passing of an obstacle to start moving again) either
of superfluid dislocations (Söyler et al., 2009) or of grain
boundaries (Burovski et al., 2005; Sasaki et al., 2006; Pollet
et al., 2007; Cheng and Beamish, 2016). Recently, mass
flow phenomena have also been observed in an inverted
solid-superfluid-solid setup by Cheng et al. (2015), in which
the effects of 3He impurities concentration and distribution
were analyzed in detail. The exact atomistic mechanisms
underlying the inverted and direct syringe effects, however,
still remain open questions. New systematic experiments and
quantum simulation studies certainly are necessary to achieve
a more accomplished knowledge of mass transport along
quantum linear and planar defects (i.e., dislocations and grain
boundaries).

VII. THE ROLE OF DIMENSIONALITY

Quantum crystals at reduced dimensionality have been the
focus of numerous experimental and theoretical studies. The
interplay between quantum correlations and structural con-
finement opens a series of interesting new prospects that since
the beginning of the quantum Monte Carlo era have been
meticulously investigated with theory. The search for novel
phases and physical phenomena in quantum gases adsorbed
on graphitic and metallic substrates or on the surface of carbon
nanostructures and the interior of narrow silica pores repre-
sents well-known examples.

A. Quantum films

We focus here on helium and hydrogen since QNE are
most pronounced in these species. In very thin films one can
expect that two-dimensional effects become dominant, and
for this reason many works have concentrated on studying
the thermodynamic, structural, and dynamical properties of
purely 2D quantum many-body systems.
At zero temperature and zero pressure 2D 4He is a liquid

with an estimated equilibrium density of σ0 ¼ 0.043 Å−2 and
binding energy of E=N ¼ −0.90 K (Giorgini, Boronat, and
Casulleras, 1996). By increasing the density, the liquid
solidifies into a triangular lattice (Whitlock, Chester, and
Kalos, 1988). The liquid and solid are in equilibrium at
densities ρf ¼ 0.068 Å−2 (freezing) and ρm ¼ 0.072 Å−2
(melting), respectively. On the other hand, 3He at low
densities remains in the gas phase due to its lower mass,
and, more importantly, fermionic character (Grau, Boronat,
and Casulleras, 2002). Upon a steady increase in density the
gas eventually transforms into a triangular solid, although the
critical point associated with this transition has not yet been
characterized with precision.
The ground states of two-dimensional molecular hydrogen

and deuterium have also been investigated with QMCmethods
(Boninsegni, 2004; Cazorla and Boronat, 2008c). The primary
interest of these studies was to discern whether by reducing
the dimensionality it was possible to stabilize the liquid phase.
Those theoretical works, however, showed that the fluid is
never stable, even when considering negative pressures
(Boninsegni, 2004; Cazorla and Boronat, 2008c). In Fig. 15,
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we enclose the density dependence of the energy calculated in
2D H2 and D2 with the DMC method and Silvera-Goldman
potential (Cazorla and Boronat, 2008c). At zero pressure, both
crystals stabilize in a triangular lattice of density σ0 ¼ 0.0673
and 0.0785 Å−2, respectively. The corresponding energies per
particle at those conditions are −23.45 K in H2 and −42.30 K
in D2. This large energy difference indicates that quantum
isotopic effects are also significant in two dimensions.
With regard to the possibility of realizing H2 superfluidity

(see Sec. IV.B), several strategies have been explored in
reduced dimensionality. It was first proposed by Gordillo and
Ceperley (1997) that the intercalation of alkali atoms could
frustrate the formation of the solid due to the weaker
interaction between impurities and H2 than between hydrogen
molecules. K and Cs were considered as the likely candidates
to induce H2 melting in a PIMC study by Gordillo and
Ceperley (1997). Large superfluid fractions of ρs=ρ ∼ 0.2–0.5
were reported in the resulting hydrogen-alkali thin films.
However, subsequent quantum simulation studies performed
with a larger number of particles found very small values of
ρs=ρ in equivalent systems (Cazorla and Boronat, 2004;
Boninsegni, 2005). More recently, Cazorla and Boronat
(2013) predicted by using the DMC method and semiempir-
ical pairwise potentials that frustration of 2D solid H2 could be
achieved with sodium atoms arranged in a triangular lattice of
constant 10 Å. The main reason for this is that the forces
between Na atoms and hydrogen molecules are weaker than
those considered in previous studies, hence a significant
reduction of the equilibrium density is induced that favors
stabilization of the liquid phase. Note, however, that in a
subsequent PIMC study by Boninsegni (2016) this conclusion
was disputed by arguing that the system remains in the solid
phase independently of density and the type of alkali impurity
that is considered.
Experimental realization of quasi-two-dimensional quan-

tum solids is achieved through adsorption of quantum gases
on attractive substrates. In this context, one of the most
extensively investigated substrates is graphite. The physics
of gas-adsorption phenomena in graphite is very rich

(Bruch, Cole, and Zaremba, 1997) as a large sequence of
transitions have been experimentally observed and described
with microscopic theory (Clements et al., 1993; Clements,
Krotscheck, and Saarela, 1997). We concentrate here on
describing the properties of the first adsorbed layer and other
related phases. Note that when corrugation effects are con-
sidered in the calculations (that is, the spatial distribution of
carbon atoms in the underlying substrate is explicitly simu-
lated), one normally obtains denser commensurate phases.
According to recent quantum simulation studies performed

with semiempirical pairwise potentials, the ground state of
4He adsorbed on graphite (and graphene) is a

ffiffiffi
3

p
×

ffiffiffi
3

p
commensurate phase with a surface density of 0.0636 Å−2
(Gordillo, Cazorla, and Boronat, 2011). The liquid phase is
metastable with respect to the crystal. As the density is
increased, the commensurate crystal transforms into a tri-
angular incommensurate solid of density ∼0.08 Å−2 (Pierce
and Manousakis, 2000; Corboz et al., 2008; Gordillo and
Boronat, 2009b). This description is in excellent agreement
with the available experimental data (Bruch, Cole, and
Zaremba, 1997). By further increasing the density, a second
layer develops on top of the first with an equilibrium density
of 0.12 Å−2.
Recent QMC studies of the registered phases of H2

adsorbed on graphite and graphene provide a description that
is identical to that obtained for 4He and which is in good
agreement with the experiments (Gordillo and Boronat, 2010).
In particular, the ground state is a commensurate

ffiffiffi
3

p
×

ffiffiffi
3

p
phase that undergoes a first-order transition toward an
incommensurate triangular crystal at ρ ¼ 0.077 Å−2. The
phase diagram of D2 on graphite has been thoroughly
investigated in experiments (Bruch, Cole, and Zaremba,
1997) but not yet with theory. It is known that this is richer
than its H2 counterpart since at least two additional commen-
surate phases appear in the first adsorbed layer: the ε phase,
which is a 4 × 4 structure (0.0835 Å−2), and the δ one, cor-
responding to a 5

ffiffiffi
3

p
× 5

ffiffiffi
3

p
lattice (0.0789 Å−2). According

to DMC calculations on H2 none of these latter commensurate
phases are stable (Gordillo and Boronat, 2010).

B. One-dimensional systems

Carbon nanotubes and nanopores embedded in solid
matrices have opened the possibility of studying quantum
systems in quasi-one-dimensional geometries (Calbi et al.,
2001). Investigating individual carbon nanotubes, however,
has proved challenging due to the fact that they are normally
capped and adsorption of atoms on their interior is energeti-
cally unfavored. Meanwhile, adsorption on the intersites
and grooves formed between adjacent nanotubes have been
observed. A topic of interest in these systems is the study of
the crossover between three-dimensional and one-dimensional
physics (Gordillo and Boronat, 2009a). For instance, changes
on the superfluid fraction and condensate fraction of liquid
4He upon variation of the nanopore radius have been sys-
tematically studied by Vranješ Markić and Glyde (2015) with
PIMC simulations.
Strictly one-dimensional quantum systems possess unique

features as compared to all other low-dimensional systems.
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FIG. 15. Energy per particle in two-dimensional solid D2 (solid
line and filled circles) and two-dimensional solid H2 (dotted line
and empty triangles). From Cazorla and Boronat, 2008c.
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One of the most relevant aspects is that the presence of a hard
core in the interatomic interactions makes the quantum
statistics irrelevant. This means that simulation of fermionic
systems (e.g., 3He) can be made exactly because the nodes of
the corresponding wave function are known a priori and
hence one can get rid of the sign problem in practice (see
Sec. III.A.2). Another important characteristic is the absence
of continuous phase transitions (i.e., as described by Landau’s
theory), although the limiting T ¼ 0 case may be an exception.
Finally, if the excitation spectrum of the system is gapless,
i.e., Ek ¼ ℏjkjc, Luttinger theory applies and consequently
the behavior of correlation functions at large distance
(or small momenta) is known analytically (Giamarchi, 2004;
Imambekov, Schmidt, and Glazman, 2012). In this latter case,
the behavior of the system is universal in terms of the Luttinger
parameter K, which in a homogeneous system is directly
related to the Fermi velocity vF and speed of sound c as
K ¼ vF=c. The Fermi velocity vF is completely fixed by the
linear density ρ, whereas the speed of sound c depends on the
many-body interactions.
In Luttinger’s theory, the height of the lth peak in the static

structure factor SðkÞ is given by (Haldane, 1981)

Sðk ¼ 2lkFÞ ¼ AlN1−2l2K; ð80Þ

which diverges when K < 1=2l2. If the first peak in SðkÞ
diverges, that is, K < 1=2, the system is called a “quasicrys-
tal.” There is a number of important differences between a
quasicrystal and real crystals. A three-dimensional crystal
possesses diagonal long-range order since the density oscil-
lations in the two-body distribution function remain in phase
over long distances. In one dimension, on the contrary, that
order is lost according to a power-law decay. The height of the
first peak diverges in both cases; however, in a true crystal the
Bragg peak grows linearly with the number of particles
SðkpeakÞ ∝ N, whereas in a quasicrystal the corresponding
exponent is smaller than unity [see Eq. (80)].
QMC calculations of 1D 4He at equilibrium showed

that this is a self-bound system with a tiny binding energy
of ∼ − 4 mK (Boninsegni and Moroni, 2000; Gordillo,
Boronat, and Casulleras, 2000a). When the density is
increased, the system eventually becomes a quasicrystal.
Recently, the ground state of one-dimensional 3He has been
thoroughly studied with the DMC method (Astrakharchik and
Boronat, 2014). The lower mass of the isotope makes the
system non-self-bound, and thus it remains in the gas phase
down to zero pressure. Through calculation of the correspond-
ing Luttinger parameter one can appreciate the richness of its
behavior as a function of density (see Fig. 16).
As the interaction between hydrogen molecules is more

attractive than between helium atoms, H2 is also self-bound in
the one-dimensional limit. When H2 molecules, or helium
atoms, are adsorbed inside a nanopore the resulting phases
strongly depend on the amount of space that is available. In
very narrow nanotubes, for instance, one observes the exist-
ence of real quasi-1D systems, that is, in the Luttinger sense
(Gordillo and Boronat, 2009a). On the contrary, if the nano-
pore diameter is wide enough, particles migrate toward the
nanopore walls due to the strong attractive interactions with

them. Eventually if the nanopore interior is further enlarged,
nucleation of a narrow channel containing a liquid may occur
(Rossi, Galli, and Reatto, 2005). In the case of molecular
hydrogen, however, the possible stabilization of a 1D fluid
remains controversial (Gordillo, Boronat, and Casulleras,
2000b; Boninsegni, 2013b; Omiyinka and Boninsegni,
2016; Rossi and Ancilotto, 2016).
Recently, the adsorption of quantum gases on the external

surface of a single nanotube has drawn some attention. State-
of-the-art resonance experiments on a single suspended carbon
nanotube have been able to determine the phase diagram of the
deposited rare gases with high precision (Wang et al., 2010;
Tavernarakis et al., 2014). For instance, in the T ¼ 0 limit one
can identify either a registered

ffiffiffi
3

p
×

ffiffiffi
3

p
phase, already known

from adsorption on planar substrates, or incommensurate
phases, depending on the chemical species. Theoretical pre-
dictions on these systems (Gordillo and Boronat, 2011) agree
well with the experimental findings.

C. Clusters

Helium and hydrogen drops can be generated in the
laboratory by means of free jet expansions from a stagnation
source chamber that go through a thin walled nozzle
(Grebenev, Toennies, and Vilesov, 1998). Helium drops are
the most clean example of inhomogeneous quantum liquids
with either boson (4He) or fermion (3He) quantum statistics. In
recent years, the relevance of He drops has been reinforced by
the increasing interest in studying the behavior of small
molecules placed in their interior. In fact, quantum clusters
can act as ideal matrices in which to carry out an accurate
spectroscopy analysis of the embedded molecules. When the
guest molecule is surrounded by 4He atoms, the correspond-
ing rotational spectrum presents a peaked structure that has
been attributed to the superfluid nature of helium. By contrast,

FIG. 16. Luttinger parameter K in one-dimensional 3He
expressed as a function of the linear density ρ. The corresponding
speed of sound, as extracted from the phononic part of the static
structure factor (symbols) and thermodynamic compressibility
(line), is also shown. Adapted from Astrakharchik and
Boronat, 2014.
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in 3He drops a broad peak is recorded. This phenomenon,
termed microscopic superfluidity, has been the object of many
QMC studies in recent years (Sindzingre, Klein, and Ceperley,
1989; Sola, Casulleras, and Boronat, 2006).
H2 clusters have also been produced in the laboratory with

jet expansion techniques (Tejeda et al., 2004). The behavior of
H2 drops is richer than that of 4He since they can be either
liquid or solid depending on the number of constituent
particles. The first PIMC study on H2 clusters was carried
out by Sindzingre, Ceperley, and Klein (1991), and it was
found that clusters comprising a number of molecules up to
N ≃ 18 were superfluid at temperatures below T ¼ 2 K. In a
subsequent PIMC work (Khairallah et al., 2007) the limiting
number of molecules exhibiting superfluid behavior was
raised to N ≃ 26. The results reported by Khairallah et al.
(2007) appear to show that superfluidity is mostly localized in
the surface of the cluster, which suggests an inhomogeneous
structure formed by a solid core surrounded by a liquid
skin. This interpretation, however, has been challenged in
a later PIMC work in which it was argued that, in spite of
the local variation in molecular order, superfluidity remains a
global property of the entire cluster (Mezzacapo and
Boninsegni, 2008).
The structure and energy of small H2 clusters in the limit of

zero temperature have been studied accurately with the DMC
(Guardiola and Navarro, 2008) and PIGS (Cuervo and Roy,
2006) methods. The presence of magic-cluster sizes, identified
with a kink in the chemical potential, was reported in those
studies. The number of molecules contained in the smallest
and energetically most stable clusters appears to coincide
with the results of Raman spectroscopy measurements (Tejeda
et al., 2004). A combination of the DMC and stochastic
optimization (i.e., simulated annealing) techniques has
allowed one to determine the equilibrium structure in most
stable solid H2 clusters (Sola and Boronat, 2011). Examples of
optimal molecular arrangements obtained in those clusters are
shown in Fig. 17.

VIII. MOLECULAR CRYSTALS

Molecular systems are of critical importance in astro-
nomy, biology, and environmental science. Hydrogen is the
most abundant element in the Universe and over wide

thermodynamic conditions is most stable in molecular form
(see Sec. IV.B). Water is vital to all known forms of life and it
covers around three-fourths of the Earth’s surface. Nitrogen
and methane are found in the interior and crust of many
celestial bodies and also in organic substances. When all these
species are compressed eventually they become crystals in
which, due to the light weight of their atoms and weak
interparticle interactions, QNE play a pivotal role at low
temperatures (see Fig. 1). Next, we briefly review the knowl-
edge of the phase diagram of these compounds and highlight
the aspects that remain contentious. Because of their intrinsi-
cally rich and complex nature, it is not possible to provide a
detailed description of H2, H2O, N2, and CH4; hence we refer
the interested reader to other recent and more specialized
articles [see, for instance, McMahon et al. (2012), Goncharov,
Howie, and Gregoryanz (2013), and Herrero and Ramírez
(2014)]. For the sake of focus, only those aspects related to the
crystalline phases are considered in this section.

A. H2 at extreme P−T conditions

Because of its low-Z number, hydrogen’s x-ray scattering
cross section is very low. This means that it is extremely
challenging to determine with accuracy its atomic structure
under extreme thermodynamic conditions in the laboratory.
Infrared (IR) and Raman spectroscopy techniques were used
to monitor the changes in the vibrational properties of the
crystal that can be ascribed to a phase transition. However, due
to the high reactivity, mobility, and diffusion of the molecules
already at moderate temperatures (i.e., ≥ 250 K), this type of
measurement turns out to be very difficult (Goncharov,
Howie, and Gregoryanz, 2013). Here is where the inputs of
theory and computer simulations become critical. By compar-
ing the vibrational phonon spectra of low-energy structures
obtained in first-principles searches with experimental data,
candidate atomic structures can be identified for each of the
detected transformations. Unfortunately, for the reasons high-
lighted in Sec. I.D, the theoretical study of hot and dense solid
hydrogen is technically difficult and very sensitive to the
employed method (that is, the free-energy differences between
phases normally are very small, of the order of a few meV,
which coincide with the typical accuracy threshold in first-
principles calculations). As a consequence, the description of
hydrogen-based systems obtained with different theories may
differ (Morales et al., 2013; Drummond et al., 2015), further
complicating the characterization of solid hydrogen.
The H2 crystal phases that are experimentally well estab-

lished are denoted by I, II, III, and IV (see Fig. 18). Phase I
corresponds to the close-packed hcp structure, in which para-
H2 molecules have zero angular momentum and spherically
symmetric wave functions (Silvera, 1980). At low temper-
atures and as pressure is increased, breaking of rotational
symmetry eventually occurs and the crystal stabilizes in
phase II (Lorenzana, Silvera, and Goettel, 1990); the boundary
between phases I and II is strongly dependent on the isotope
type (see Fig. 18), which indicates the presence of important
QNE. Around 150 GPa, molecular hydrogen undergoes
another phase transformation into phase III (Hemley and
Mao, 1988; Lorenzana, Silvera, and Goettel, 1989), which has
been shown to extend up to pressures of ∼300 GPa and

FIG. 17. Optimal distribution of equilibrium sites in solid H2

clusters with N ¼ 18, 19, and 20 molecules at zero temperature.
From Sola and Boronat, 2011.
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temperatures of ∼300 K (Zha, Liu, and Hemley, 2012).
Experiments have also been able to provide constraints on
the molecular orientation in phases II and III but, due to the
reasons already specified, not complete structural character-
izations (Goncharov et al., 1998).
There have been many attempts to identify the structures of

phases II and III with theoretical methods. Because of the
technical difficulties encountered in the treatment of weak
dispersive intermolecular interactions and the indispensable
consideration of QNE, however, there is not yet general
agreement on this matter. For phase II, there is a number
of candidate structures including the orthorhombic Cmc21
(Kitamura et al., 2000), monoclinic P21=c (Zhang et al.,
2007), and orthorhombic Pca21 (Kohanoff et al., 1997;
Städele and Martin, 2000). From all these structures,
Pca21 emerges as one of the most likely molecular models
(Moraldi, 2009; McMahon et al., 2012). Experiments, how-
ever, indicate that phase II possesses only one high-frequency
Raman vibrational mode whereas the Pca21 phase has
four (Cui, Chen, and Silvera, 1995). More recently, a new
monoclinic P21=c phase containing 24 atoms in the primitive
cell has been proposed also as a likely candidate for phase II
(Pickard and Needs, 2009). This structure has been obtained
through the ab initio random structure searching method
(Pickard and Needs, 2006) and its vibrational phonon features
appear to be consistent with the Raman experiments
(Drummond et al., 2015).
With regard to phase III, it was initially proposed that a hcp

lattice with molecules tilted roughly 60° with respect to the c

axis could be a strong candidate (Natoli, Martin, and Ceperley,
1995). This suggestion is consistent with the reported spec-
troscopy data, in which intense IR activity is appreciated (Cui,
Chen, and Silvera, 1995), and with a recent x-ray diffraction
study by Akahama et al. (2010). Subsequently, Pickard and
Needs (2007) proposed, again by relying on the outcomes of
DFT-based random structure searches, a different candidate
structure consisting of 12 molecules per unit cell with the
centers close to those in a distorted hcp lattice. The symmetry
of this phase is C2=c (monoclinic) and its vibrational phonon
features are consistent with the available experimental data as
well. More recently, a hexagonal structure with P6122
symmetry has been introduced as another possible candidate
for phase III at pressures ≲200 GPa (Monserrat et al., 2016).
The vibrational properties of this new phase are also consistent
with the available Raman and infrared experimental data;
however, it appears to provide better agreement than the
monoclinic C2=c phase with the x-ray diffraction data
obtained by Akahama et al. (2010) at moderately high
pressures.
In 1995, Goncharov et al. found in deuterium a small

discontinuity in the vibron mode (that is, the intramolecular
stretching mode) and a change in the slope of the correspond-
ing I-III phase boundary at pressures around 150 GPa and
temperatures above 175 K. This small vibron discontinuity
practically disappeared at T ≥ 250 K. These observations
suggest the possible existence of a new phase denoted by I0

(see Fig. 18) that is isostructural to phase III, and of a critical
I-I0-III point. PIMC calculations by Surh et al. (1997) on a
system of quantum rotors interacting through an effective
LDA model provide some support to this hypothesis. In
subsequent spectroscopy experiments, Baer, Evans, and Yoo
(2007) found vibron signatures that are also consistent with
the existence of phase I0. However, for these latter observa-
tions to be consistent with those by Goncharov et al. (1995),
the slope of the I-I0 phase boundary needs to be negative, a
feature that was not reported in the earliest work. In a more
recent study Goncharov, Hemley, and Mao (2011) performed
a refined vibrational spectroscopy analysis and concluded
that the new data do not support the existence of phase I0.
Further systematic investigations appear to be necessary to
clarify these issues.
Recently, room-temperature static diamond-anvil-cell

(DAC) experiments have been performed in which pressures
of up to 300 GPa have been reached (Eremets and Trojan,
2011; Howie, Scheler et al., 2012; Howie, Guillaume et al.,
2012; Loubeyre, Occelli, and Dumas, 2013). Eremets and
Trojan (2011) reported that solid hydrogen becomes metallic
at a pressure of 265 GPa. Subsequent experimental studies
(Howie, Scheler et al., 2012; Howie, Guillaume et al., 2012;
Loubeyre, Occelli, and Dumas, 2013), however, do not appear
to support the validity of this result. The pressure threshold for
the insulator to metal transition in hydrogen still is believed
to lie between 325 (Goncharov et al., 2001) and 450 GPa
(Loubeyre, Occelli, and LeToullec, 2002). Such recent room-
temperature DAC studies, on the other hand, all agree that
hydrogen transforms to a new phase, denoted by IV (see
Fig. 18), at a pressure near 220 GPa. During the III-IV
transformation, a large vibron Raman frequency discontinuity
and the appearance of two IR and two Raman vibron modes

FIG. 18. High-P phase diagram of solid molecular hydrogen
and deuterium. Open and filled circles are Raman measurements
for hydrogen and deuterium, respectively, and open squares are
IR data for the hydrogen (Goncharov, Hemley, and Mao, 2011).
Triangles and the dashed lines indicate inferred boundaries for the
recently proposed phase IV (Howie, Guillaume et al., 2012). The
dashed line and the existence of phase I0 are still matters of debate
(see text). From McMahon et al., 2012.
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are observed. The existence of phase IV, therefore, now is
regarded as well established.
Again, several candidate structures have been proposed for

phase IV. Howie, Scheler et al. (2012) and Howie, Guillaume
et al. (2012) tentatively indexed it as Pbcn, based on the
results of the DFT-based random structure searches carried out
by Pickard and Needs (2007) and their experimental spec-
troscopy analysis. This new orthorhombic structure presents a
quite peculiar molecular arrangement in which consecutive
graphenelike layers alternate between ordered and disordered
structures. Chiefly, proton tunneling occurs within the gra-
phenelike disordered layers and the corresponding frequency
increases under pressure (Howie, Scheler et al., 2012).
Pickard, Martinez-Canales, and Needs (2012), however,
showed by using DFT-based methods that the Pbcn phase
is vibrationally unstable at zero temperature. They proposed a
monoclinic Pc structure to represent phase IV. This mono-
clinic phase is dynamically stable and contains 48 atoms in its
unit cell; it consists of alternating layers of weakly coupled
molecules with short intramolecular bonds, and strongly
coupled molecules forming graphenelike sheets with long
intramolecular bonds. Recent synchrotron infrared measure-
ments by Loubeyre, Occelli, and Dumas (2013) appear to
support the validity of this structural layered model. By
relying also on the results of first-principles simulations,
Liu et al. (2012) proposed a monoclinic Cc structure as a
new possible candidate for phase IV; this phase is vibration-
ally stable and structurally very similar to the Pc structure
proposed by Pickard, Martinez-Canales, and Needs (2012),
although it is thermodynamically less stable and has no
orientational order. Further systematic investigations appear
to be necessary to determine with precision the molecular
structure of phase IV.
Several other phases have been predicted to exist in solid

hydrogen at low temperatures and pressures beyond 250 GPa.
Most of those phases have been predicted based on the results
of first-principles crystal structure searches that incorporate
QNE through the quasiharmonic approximation (see
Sec. II.A.1). Pickard, Martinez-Canales, and Needs (2012)
proposed that their candidate structure for phase III, that is,
monoclinic C2=c, transforms into an orthorhombic Cmca −
12 phase containing 12 atoms per unit cell at P ¼ 285 GPa,
and that this subsequently transforms into another Cmca − 4
phase with a smaller number of atoms per unit cell at
P ¼ 385 GPa. Liu, Wang, and Ma (2012) also predicted
that at pressures higher than ∼500 GPa hydrogen transforms
into a new monoclinic C2=c phase that possesses two types
of intramolecular bonds with different lengths. In fact, new
crystal phases (e.g., IV0 and V) have been observed in DAC
experiments performed at pressures beyond ∼300 GPa
(Howie, Scheler et al., 2012; Dalladay-Simpson, Howie,
and Gregoryanz, 2016); however, their precise molecular
arrangements still remain unknown.
The possibility of stabilizing an atomic, rather than a

molecular, phase in solid hydrogen by means of pressure
has also been explored with theory. This possibility is very
interesting from a fundamental point of view as it could render a
metallic system (Wigner and Huntington, 1935). Considering
the orthorhombic Cmca − 12 phase originally proposed by
Pickard and Needs (2007) and relying on ab initio random

structure searches, McMahon and Ceperley (2011) proposed
that molecular hydrogen dissociates into a monoatomic body-
centered tetragonal structure near 500 GPa. Labet et al. (2012)
andLabet, Hoffmann, andAshcroft (2012a, 2012b, 2012c) also
analyzed in detail the process of molecular dissociation by
focusing on the structures predicted by Pickard and Needs
(2007); they found a discontinuous shift in the distances
between protons when transitioning from the orthorhombic
Cmca − 12 to the atomic phase and proposed an intermediate
phase that would allow for a continuous dissociation. More
recently, Azadi et al. (2014) concluded, based on electronic
QMC methods (see Sec. III.A.2) and considering nuclear
anharmonic contributions to the enthalpy through DFT, that
a transition from the orthorhombic Cmca − 12 to an atomic
I41=amd phase [previously introduced by Pickard and Needs
(2007)] could occur at P ¼ 374 GPa. Interestingly, Dalladay-
Simpson, Howie, and Gregoryanz (2016) reported experimen-
tal evidence for a new phase in hydrogen, denoted by V, which
at room temperature is stabilized at a pressure of 325 GPa. The
experimental evidence consists of a substantial weakening of
the vibrational Raman activity, a change in the pressure
dependence of the vibron, and a partial loss of the low-
frequency excitations. The exact crystalline structure of this
new phase still is not well established.
As explained in this section, many complex and contro-

versial aspects still need to be solved in solid hydrogen under
extreme thermodynamic conditions. On the theoretical side,
most of the predictions on phases II, III, and IV rely on
techniques that incorporate QNE only approximately (e.g.,
quasiharmonic approaches) and on standard DFT methods.
Using such approaches to reproduce the thermodynamic
stability of highly compressed hydrogen, however, seems to
be inadequate. For instance, Chen et al. (2014) recently
showed in a thorough PIMC benchmark study on H2 that
those cases in which good agreement between standard DFT
calculations and experiments is obtained, large error cancel-
lations are likely to be affecting the simulation results. Similar
conclusions have also been attained by Geneste et al. (2012),
Morales et al. (2013), and Drummond et al. (2015) by using
nonstandard computational approaches (e.g., nonharmonic
simulation methods in combination with the electronic
QMC method). In order to provide more conclusive estima-
tions in solid H2, therefore, it is necessary to employ quantum
simulation methods that simultaneously describe QNE (e.g.,
PIMD, PIMC and PIGS methods, see Sec. II) and long-range
intermolecular forces (e.g., nonstandard DFT functionals and
the eQMC method, see Sec. III) accurately.

B. Solid water

QNE are unquestionably important for understanding the
physical properties of ice. Because of the small moment of
inertia of the H2O molecule and relatively low strength of the
intermolecular hydrogen bonds, QNE persist in ice up to
temperatures of ∼100 K (Gai, Schenter, and Garrett, 1996a;
Ceriotti, Bussi, and Parrinello, 2009; Vega et al., 2010;
Moreira and de Koning, 2015). Numerous examples of these
effects can be found in the literature. For example, incoherent
single-particle tunneling has been disclosed in cubic ice at
Mbar pressures, explaining the origins of the measured H/D
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isotopic effects on the antiferroelectric iceVIII →
paraelectric VII phase transformation (Benoit, Marx, and
Parrinello, 1998; Benoit, Romero, and Marx, 2002). A recent
neutron scattering study has also revealed an anomalous
T-dependent dynamic effect in normal (hexagonal) ice Ih
(Bove et al., 2009) that has been explained in terms of
collective tunneling of protons (up to six) within locally
ordered rings (Drechsel-Grau and Marx, 2014). These find-
ings suggest that quantum many-body tunneling could also be
important in a variety of related H-bonded systems, including
other phases of ice and cyclic water clusters on metal surfaces
(Drechsel-Grau and Marx, 2014).
In analogy to solid helium and hydrogen, an interest has

developed in understanding the features of the momentum
distribution of ice. Both inelastic neutron scattering
experiments (Reiter et al., 2004; Flammini et al., 2012)
and advanced path-integral calculations (Morrone and Car,
2008; Lin et al., 2010, 2011) agree in describing the
corresponding nðkÞ with an anisotropic Gaussian. This
implies that protons experience an anisotropic quasiharmonic
effective potential with distinct principal frequencies, which
reflects the possible molecular orientation. According to both
neutron scattering experiments and path-integral calculations
(Flammini et al., 2012) the excess kinetic energy in ice Ih at
low temperatures amounts to ∼150 meV, which evidences a
marked quantum character (see Sec. I.C).
The presence of quantum isotopic effects is also notable in

solid water. The effects of hydrogen isotope substitution on the
structural, kinetic energy, and atomic delocalization properties
of ice have been investigated in detail with experiments and
path-integral calculations. For example, quantum simulations
of D2O in the Ih phase at T ¼ 100 K have found a decrease in
the crystal volume and intramolecular O-D distance of 0.6%
and 0.4%, respectively, as compared to H2O (Herrero and
Ramírez, 2011a). An increase of ∼6% in the melting temper-
ature of D2O at ambient pressure has also been predicted
with path-integral simulations (Ramírez and Herrero, 2010).
Similarly, the presence of quantum isotopic effects in highly
compressed amorphous ice has been reported by several groups
(Gai, Schenter, and Garrett, 1996b; Herrero and Ramírez,
2012). Interestingly, an anomalous thermal expansion isotopic
effect has been observed in ice; the volume of solid D2O is
larger than that of solidH2O (Röttger et al., 1994), in contrast to
what occurs in other crystals upon substitution with heavier
species. This quantum nuclear effect has been rationalized
recently by Pamuk et al. (2012) with ab initio calculations
based on the quasiharmonic approximation.
The importance of QNE on the phase diagram of ice

has been determined quantitatively with path-integral
Monte Carlo simulations based on the TIP4PQ/2005 force
field by McBride et al. (2012) (see Fig. 19). It is worth noting
that although the intermolecular potential model employed by
McBride et al. (2012) is nonflexible and nonpolarizable, the
agreement obtained with the experiments is fairly good. In
particular, quantum simulations provide phase boundaries that
are shifted ∼20 K toward lower temperatures as compared
to the observations [see Fig. 3 in McBride et al. (2012)]. As
shown in Fig. 19, QNE play a significant role in the
thermodynamic stability of the different phases of ice: the
melting lines are shifted toward higher temperatures and

the solid-solid transitions toward higher pressures. Another
important difference is that the region of thermodynamic
stability of phase II is significantly reduced in the classical
phase diagram, as this phase appears only at temperatures
below 80 K therein (that is, in the classical phase diagram of
Fig. 19 phase II is missing). The origins of these quantum
effects have been rationalized in terms of the tetrahedral
angular order ascribed to each polymorph and the volume
change involved in the phase transformations. The pressure
dependence of the crystal volume, bulk modulus, interatomic
distances, atomic delocalization, and kinetic energy in hex-
agonal ice (Ih) under pressure have also been thoroughly
analyzed with similar computational techniques by Herrero
and Ramírez (2011b).
Despite the mounting experimental and theoretical evi-

dence showing the importance of QNE, these effects are
normally disregarded in most computational studies of water
and ice at T ≠ 0 conditions. This is due in part to the
difficulties encountered in the description of molecular inter-
actions in H2O. Different types of computationally in-
expensive empirical potentials, which assume either rigid or
flexible molecules and polarizable or nonpolarizable ions
(e.g., the so-called SCP, TIP4P, q-TIP4P/F, and TIP4PQ/2005
force fields), have been employed in most simulation studies
of ice at finite temperatures. Some of those force fields
have been fitted to reproduce experimental data to be used
subsequently in classical simulation studies; hence they
already effectively incorporate QNE. Quantum calculations
based on those interaction models, therefore, may provide in
some cases worse agreement with the experiments than
classical simulation studies due to double counting of quan-
tum nuclear effects (Herrero and Ramírez, 2014). In other
words, the inaccurracies affecting common empirical inter-
action models may disguise to some extent the real influence
of QNE by providing reasonably good agreement with the
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FIG. 19. The classical phase diagram of water based on the
TIP4PQ/2005 force field (dashed blue lines) as compared to the
quantum phase diagram obtained with path-integral simulations
(solid red lines). Roman numerals label different crystal struc-
tures with hexagonal symmetry (Ih), rhombohedral (II), tetrago-
nal (III and IV), and monoclinic (V). Adapted from McBride
et al., 2012.
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experiments. In some cases it has actually been demonstrated
that the combined description of molecular interactions and
ionic effects at the quantum level is necessary for correctly
reproducing the experimental findings in ice. Examples
include the anomalous volume expansion observed in ice
isotopes (Pamuk et al., 2012) and the interpretation of
measured x-ray absorption spectra (Kong, Wu, and Car,
2012; Kang et al., 2013).
Ab initio treatment of the molecular interactions in ice has

been done mostly with DFT methods. However, the presence
of hydrogen bonds and dispersive long-range forces makes the
description of this crystal difficult, demanding the use of
computational methods going beyond standard DFT (see
Sec. III.A.1). For a detailed description of the strengths and
weaknesses of different exchange-correlation DFT approx-
imations in describing H2O-based systems, see Morales et al.
(2014) and Gillan, Alfè, and Michaelides (2016). Note that the
application of electronic quantum Monte Carlo methods to the
study of bulk ice is very rare (Santra et al., 2011), mainly due
to computational affordability issues and the likely bias
associated with the use of pseudopotentials (Driver and
Militzer, 2012).
An advantageous aspect in the simulation of ice, as

compared to that of solid helium or hydrogen, is that QNE
in principle can be correctly described with the QHA; see
Sec. II.A.1. This conclusion has been attained based on
comparisons provided between ab initio QHA results and
neutron scattering experiments [see, for instance, Senesi et al.
(2013)] and, more convincingly, between QHA and path-
integral simulations performed with the same effective inter-
action model (Pamuk et al., 2012; Ramírez et al., 2012).
Consequently, the study of the low-temperature phase diagram
and thermodynamic properties of H2O in principle is afford-
able with first-principles methods. Nevertheless, a note of
caution must be added here. Recently, Engel, Monserrat, and
Needs (2015) showed in a DFT-based study that anharmonic
contributions to the free energy can turn out to be decisive for
correctly describing the thermodynamic stability of different
ice polymorphs with very close quasiharmonic free energies.
In particular, it was shown that anharmonic quantum nuclear
effects are decisive in stabilizing the hexagonal Ih phase with
respect to cubic Ic, the latter being a form of ice presenting
stacking of layers with tetrahedrally coordinated water mol-
ecules [the so-called “stacking disordered ice,” see also Engel,
Monserrat, and Needs (2016)]. As noted by the authors of that
study, treatment of anharmonicity in general could be crucial
for correctly describing the energy differences between similar
polymorphs in hydrogen-bonded molecular crystals (which
can be relevant, for instance, to the pharmaceutical sciences).

C. Nitrogen and methane

QNE are more pronounced in molecular nitrogen (N2) and
methane (CH4) than in H2O (see Fig. 1). This is due to the fact
that the intermolecular interactions in the two former systems
are dominated by long-range dipole-dipole (CH4), dipole-
quadrupole (CH4), and quadrupole-quadrupole (N2 and CH4)
forces, which are weaker than hydrogen bonds (Cazorla,
2015). Certainly, under normal thermodynamic conditions
H2O is a liquid whereas N2 and CH4 are gases. However, the

study of QNE in solid nitrogen and methane is marginal in
comparison to that in ice (or hydrogen). Improving our
quantitative understanding of solid N2 and CH4 is actually
important for planetary and energy materials sciences. For
example, these species are believed to abound in the surface
and interior of Uranus, Neptune, and Pluto (Hubbard et al.,
1991; Protopapa et al., 2008). Meanwhile, under high
pressures (≥ 110 GPa) molecular nitrogen dissociates into
singly bonded polymeric nitrogen, the so-called cubic gauge
phase, that is being considered as a potential high-energy-
density material due to its likely metastability at ambient
pressure (Eremets et al., 2004).
The P − T phase diagrams of compressed nitrogen and

methane are very complex, which is the case for most
molecular systems due to the prominence of the orientational
degrees of freedom. N2 exhibits five solid molecular phases
at pressures below ∼10 GPa and temperatures T ≤ 300 K
(Gregoryanz et al., 2007; Tomasino et al., 2014). The low-
temperature phases in molecular nitrogen are governed by
quadrupole-quadrupole interactions and in moving from zero
to higher pressures the crystal first transforms from an
orientationally disordered cubic (α) to an ordered tetragonal
(γ) phase, and then to an ordered rhombohedral phase (ϵ);
when increasing T, a disordered hexagonal phase (β) first
appears at 2.4 GPa that subsequently transforms into a cubic
phase (δ) with orientational disorder by effect of pressure. It is
worth noting that large isotopic effects have been observed in
the P-induced α → γ transformation occurring at low temper-
atures (Scott, 1976), which indicates the presence of important
QNE. Some other phases have been observed at higher
pressures in the experiments, the structures of which are
unknown in most cases. This lack of knowledge has motivated
intense theoretical activity in the study of solid nitrogen. Over
a dozen different structures have been predicted to be stable in
the pressure range 0 ≤ P ≤ 400 GPa; among those we high-
light the layered Pba2 or Iba2 (188–320 GPa) and helical
tunnel P212121 structures (> 320 GPa) (Ma et al., 2009),
and the cluster form of nitrogen diamondoid structures
(>350 GPa) (Wang et al., 2012), which have been obtained
through systematic crystal structure searches based on DFT
methods.
Unquestionably, the results of DFT-based studies on

molecular nitrogen are invaluable for advancing the knowl-
edge of its phase diagram; however, note that most of the first-
principles investigations presented thus far systematically
neglect two basic aspects in N2 crystals: long-range dispersion
interactions and QNE (i.e., they have been performed with
standard LDA and GGA DFT exchange-correlation func-
tionals and disregarding likely zero-point motion effects even
through the quasiharmonic approximation). It could be argued
that the importance of these two elements becomes secondary
at high pressures, or that somehow they cancel out when
comparing the enthalpy of different phases. However, after
considering all the similarities between N2 and H2 in terms
of intermolecular interactions and degree of quantumness,
one can suspect that this is actually not the case (i.e., as has
been explicitly shown in solid hydrogen, see Sec. VIII.A).
Therefore, it is reasonable to think that the transition pressures
and phase boundaries reported in standard DFT studies of N2

are likely to be inaccurate. With regard to this last point, it was
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first predicted from standard DFT calculations that molecular
nitrogen transforms into a polymeric phase (i.e., cubic gauche
cg-N) prior to metallization at a pressure of ∼50 GPa
(Mailhiot, Yang, and McMahan, 1992). This transformation
has been observed subsequently in experiments, however, at
thermodynamic conditions much higher than the predicted
ones, namely, P ≥ 110 GPa and T ≥ 2000 K (Eremets et al.,
2004). Whether the causes of these discrepancies between
theory and experiments lie in the use of inaccurate DFT
functionals and neglection of QNE, the use of incorrect
molecular structures in the calculations, the existence of large
kinetic barriers for the dissociation of N2 molecules that
complicate the measurements, or a combination of all these
factors is not yet clear. Systematic computational studies
analyzing the importance of QNE and benchmarking the
description of intermolecular interactions in highly com-
pressed nitrogen, therefore, are desirable for clarifying these
issues.
To the best of our knowledge, there is only one computa-

tional study by Presber et al. (1998) in which the importance
of QNE on the orientational phase transitions of bulk solid N2

at low P and low T has been assessed. By using the PIMC
method and a classical N2 − N2 interaction potential, Presber
et al. (1998) found that the transition temperature correspond-
ing to the α → γ transformation is reduced by about 11% with
respect to the result obtained with classical methods. Note
that, in spite of the simplicity of the employed interaction
model, Presber et al.’s quantum predictions show reasonably
good agreement with the experiments.
Similarly, the impact of quantum nuclear effects on the

orientational ordering of N2 molecules adsorbed on graphite
has been investigated with PIMC methods by Marx and co-
workers in a series of works (Marx et al., 1993; Marx,
Sengupta, and Nielaba, 1993; Marx and Müser, 1999). To this
end, rigid rotors with their centers of mass pinned on a
triangular lattice commensurate with the graphite basal plane,
and molecule-molecule and molecule-surface interactions
treated with atomistic models and point charges, were ana-
lyzed. The main conclusions from those studies were that
quantum fluctuations lead to “10% effects” on the physical
properties of N2 films (Marx et al., 1993; Marx, Sengupta, and
Nielaba, 1993). For example, the temperature corresponding
to the so-called “2-in” herringbone orientational transition that
occurs at low temperatures and low densities is shifted down
by about 10% as a result of zero-point motion, in good
agreement with the experiments. These results imply that in
order to make quantitatively correct predictions in N2 crystals
QNE must be taken into account.
Regarding methane, i.e., CH4, the ground-state phase at low

pressures is a cubic structure that can be thought of as two
molecular sublattices, one of which is orientationally ordered
and the other disordered (James and Keenan, 1959). A first-
order phase transition between this cubic and a partially
ordered phase occurs at a temperature of 20.4 K (Press and
Kollmar, 1975); in CD4, a similar transition occurs but at a
higher temperature of 27.4 K (Press, 1972). This large isotopic
effect, again, marks the presence of significant QNE. In fact,
by using the PIMC method and a model potential based on
ab initio results, Müser and Berne (1996) were able to

replicate such a large isotopic shift in the transition temper-
ature, otherwise not reproducible with classical methods.
The phase diagram of methane at high pressures, on the

other hand, remains contentious. Up to nine different phases
have been observed in CH4 at pressures below ∼10 GPa
and temperatures 0 ≤ T ≤ 300 K (Bini and Pratesi, 1997;
Maynard-Casely et al., 2010), and only three of them have
been determined. For instance, based on neutron scattering
measurements Maynard-Casely et al. (2010) proposed that the
so-called phase A, which appears at pressures about 1 GPa and
temperatures above ∼100 K, consists of 21 molecules in a
rhombohedral unit cell that is strongly distorted with respect
to the cubic ground state. Using systematic crystal structure
searches based on a genetic algorithm and dispersion-
corrected DFT methods, Zhu et al. (2012) predicted a similar
candidate structure for phase A that, in contrast to the
experimentally determined one, presents orientationally dis-
ordered molecules. At pressures beyond ∼100 GPa, CH4 is
expected to become chemically unstable and to decompose
(Gao et al., 2010). Unfortunately, possibly due in part to
the lack of knowledge on the molecular phases that appear
below that pressure limit, the impact of QNE on the high-P
and low-T phase diagrams of solid methane remains largely
unexplored.
Recent simulation studies by Goldman, Reed, and Fried

(2009) and Qi and Reed (2012) showed that quantum nuclear
effects in fact are crucial for understanding the behavior of
solid CH4 at high-P and high-T conditions. By adopting a
quantum thermal bath scheme to treat QNE (see Sec. II.B.3)
and a multiscale simulation approach to model the molecular
interactions, Qi and Reed (2012) quantified the impact of
QNE on the Hugoniot of compressed methane. It has been
found that quantum nuclear effects are responsible for a
huge shift of ∼40% toward lower pressures in the onset of
decomposition. The primary factor behind such a tremendous
effect has been ascribed to the large variation in the heat
capacity that occurs when QNE are considered. A previous
work had already showed that quantum temperature correc-
tions to classical DFT calculations on the Hugoniot of
methane were as large as 20%–30%, and that these improved
the agreement with the experiments (Goldman, Reed, and
Fried, 2009).
Analogously to the situation explained for solid N2, there

is a pressing need for unraveling the influence of QNE on the
thermodynamic and structural properties of methane at low
and high pressures. From this knowledge, our description
and understanding of quantum molecular crystals could be
improved significantly.

IX. QUANTUM MATERIALS SCIENCE

Here we explain the physical properties of crystals that are
technologically relevant and at the same time are strongly
influenced by QNE. In this category we include lightweight
and metallic crystals (e.g., Li) through to heavyweight and
insulator compounds (e.g., BaTiO3). The former systems
respond to the traditional definition of a quantum crystal,
that is, solids composed of low-Z atoms that interact through
relatively weak forces; the latter systems are better described
as highly anharmonic crystals with a shallow multiwell PES.
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In this case, disparate phases, identified with local minima
in the PES, are energetically very competitive and thus
QNE play a crucial role in stabilizing one or another [see
Figs. 20(a) and 20(b)].

A. Perovskite oxides

Perovskite oxides have the general formula ABO3 in which
A and B are cations, the latter being a transition metal element
with a smaller radius than A. The ideal perovskite structure is
cubic with space group Pm3̄m, where the B cation is sixfold
coordinated with the oxygen anions and A 12-fold coordi-
nated. Perovskite oxides display many interesting physical
properties such as, for instance, ferroelectricity (e.g., BaTiO3),
ferromagnetism (e.g., SrRuO3), multiple coupled ferroic
orders (e.g., BiFeO3), and insulator-to-metallic transitions
(e.g., LaCoO3). All these properties are very sensitive to
the chemistry, crystalline defects, electrical boundary con-
ditions, and applied stress so that they can be tuned externally.
For this reason, pervoskite oxides normally are referred to as

functional materials in the literature (Ohtomo and Hwang,
2004; Schlom et al., 2007; Cazorla and Stengel, 2012).
BaTiO3 is an archetypal ferroelectric. At room temperature

this material adopts a rhombohedral (R) phase that displays
a spontaneous and switchable ferroelectric polarization. As the
temperature is raised from zero to ∼300 K, BaTiO3 goes
through the series of phase transformationsR → O → T → C,
where O stands for an orthorhombic phase, T for a tetragonal,
and C for a cubic. The same sequence of phases is observed
under pressure (see Fig. 21). The high-T cubic phase corre-
sponds to the ideal perovskite structure, which is nonpolar (that
is, has null ferroelectric polarization). The appearance of
ferroelectricity in perovskite oxides originates from a delicate
balance between long-range Coulomb interactions, that favor
the ferroelectric state, and short-range repulsive forces, that
favor the cubic nonpolar state; the hybridization between B
cation d electronic orbitals and oxygen 2p plays an essential
part in that equilibrium (Cohen, 1992). The ferroelectric phase
transition in BaTiO3 is considered to be an example of
displacive transition, in which a zone-center vibrational mode,
called “soft,” has a vanishing frequency at the phase transition
and its eigenvector is similar to the atomic displacements
observed in the ferroelectric state. Therefore, BaTiO3 is a
highly anharmonic crystal in which several phases are ener-
getically very competitive.
In 2002, Íñiguez and Vanderbilt estimated the impact of

QNE on the P − T phase diagram and ferroelectric properties
of BaTiO3. Using the PIMC approach based on an effective
Hamiltonian model fitted to DFT results, they found that the
P − T boundaries separating the regions of stability between
different phases varied considerably when considering QNE.
As shown in Fig. 21, the phase boundaries are noticeably
shifted toward lower pressures and temperatures as compared
to those in the classical phase diagram. As a result, the
agreement between theory and experiments was improved
significantly. Íñiguez and Vanderbilt (2002) also found that
the electrical polarization in BaTiO3 shrinks by about 10%
when considering quantum fluctuations, and that the same

(a)

(b)

(c)

FIG. 20. The influence of QNE in normal systems and materials
with a shallow multiwell potential-energy surface (PES). (a) The
free-energy barrier separating two local PES minima is too large
as compared to the atomic zero-point motion (ZPE), hence the
system remains indifferent. (b) The free-energy barrier separating
two different states is similar in magnitude to the ZPE; hence the
system transits from one to the other. (c) Sketch of the phase
diagram in a quantum paraelectric; δ represents a particular
tuning field (e.g., pressure).

FIG. 21. Phase diagram of BaTiO3 calculated with classical
(open circles and small labels) and quantum (solid circles
and large labels) simulation methods. From Íñiguez and
Vanderbilt, 2002.
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quantity exhibits null variation in the T → 0 limit (as expected
from quantum arguments) (Hayward and Salje, 1998).
More recently, Geneste et al. (2013) analyzed the influence

of QNE on the dielectric permittivity and piezoelectric
constants of rhombohedral BaTiO3. Using a path-integral
molecular dynamics approach based on the same effective
Hamiltonian model as that employed by Íñiguez and
Vanderbilt (2002), Geneste et al. (2013) found that inclusion
of quantum nuclear effects systematically enhances the
dielectric response and piezoelectric constants of the crystal
by approximately a factor of 2. This large effect has been
explained in terms of the strong anharmonicity of BaTiO3,
which is retained by the crystal down to zero temperature.
Geneste et al.’s findings suggest that quasiharmonic
approaches are not adequate for describing the behavior of
displacive ferroelectrics at low temperatures.
QNE can strongly influence the low-T response of a system

when it is close to a structural phase transition. In most
ferroelectrics, the stability limit of the polar phase TC falls
within a region governed by classical Boltzmann fluctuations.
In a few crystals known as “quantum paraelectrics,” however,
TC is very close to the zero-temperature limit and thus
quantum statistical fluctuations play a dominant role in the
transformation (Müller and Burkard, 1979; Rytz, Hochli, and
Bilz, 1980; Conduit and Simons, 2010). Examples of quantum
paraelectrics include the perovskite oxides SrTiO3, KTaO3,
and KTaO3-NaTaO3 and KTaO3-KNbO3 solid solutions
(Hochli and Boatner, 1979; Samara, 1988). At low temper-
atures, the dielectric properties of a quantum paraelectric are
appreciably different from those of a classical material. For
instance, the Curie-Weiss law describing the variation of the
static dielectric constant ϵ near TC, namely, ∝ ðT − TCÞ−1, is
no longer fulfilled; instead ϵ follows a ∝ T−2 relation (Hochli
and Boatner, 1979).
As the temperature is raised, or as a specific tuning parameter

that induces atomic displacements is varied (e.g., pressure),
the dielectric behavior in quantum and classical polar materials
eventually becomes analogous. Therefore, a classical-quantum
crossover regime exists in quantum paraelectrics in which
intriguing quantum phenomena can be expected [see
Fig. 20(c)]. This is the case, for instance, of ferroelectric
quantum criticality, which has been recently observed in
SrTiO3 andKTaO3 crystals (Rowley et al., 2014). In particular,
the inverse of the dielectric constant in these materials, which
below 50 K follow the nonclassical ∝ T2 dependence, expe-
riences an anomalous upturn at very low temperatures that
extends into the millikelvin range. This unexpected effect has
been rationalized in terms of quantum criticality theory, after
considering the influence of long-range dipolar interactions
and the coupling of the electrical polarization with acoustic
phonons (Rowley et al., 2014). The quantum critical regime
associated with quantum paraelectrics is significantly different
(e.g., in terms of the collective dynamics and tuning parameter)
from the better known quantum regime occurring in quantum
ferromagnetic materials (e.g., Ni3Ga and ZrZn2); interesting
new prospects in the field of quantum phase transitions,
therefore, appear to be opened.
Quantum paraelectrics are also important from a techno-

logical point of view. Currently, there is great interest in

exploiting magnetoelectric (ME) effects, which are respon-
sible for the coupling between the electrical and magnetic
degrees of freedom in multiferroic crystals, for nanoelec-
tronics applications. ME effects could be used to induce
the reversal of the magnetization in a material with an
electric field, making it possible to store information in
advanced electronic devices with minimal power consump-
tion (i.e., creating magnetic fields generally involves higher
energy expenses than electric fields). For ME effects to be
practical, the values of the magnetic and electrical suscep-
tibilities need to be large around the same transition temper-
ature. Unfortunately, this rarely occurs in any material.
Recently, Shvartsman et al. (2010) measured a large ME
effect in EuTiO3 near TN ¼ 5 K, a quantum paraelectric
that undergoes an antiferromagnetic to paramagnetic phase
transition at very low temperatures. The magnetoelectric
moments revealed at the magnetic phase transition are
comparable to those found in benchmark multiferroic crys-
tals such as TbPO4. Shvartsman et al.’s findings suggest that
quantum paraelectrics could be promising for nanoelectronic
applications.
Nonetheless, for the realization of practical devices based

on quantum paraelectrics the observed magnetoelectric
activity should be brought closer to room temperature.
High compression could represent a solution to this problem
as it can extend the regime in which QNE are important
while simultaneously shifting TN toward higher temper-
atures. In this last regard, the outcomes of quantum simu-
lation studies based on first-principles methods could be
very insightful. Actually, recent phonon calculations by
Evarestov et al. (2011) performed with hybrid DFT methods
(see Sec. III.A) have accurately reproduced the experimental
T dependence of the heat capacity in SrTiO3. On the other
hand, theoretical approaches that allow one to estimate
T-renormalized phonon modes and frequencies are already
well established (e.g., velocity autocorrelation and self-
consistent harmonic methods) (Teweldeberhan, Dubois,
and Bonev, 2010; Errea, Rousseau, and Bergara, 2011;
Paulatto et al., 2015). To the best of our knowledge,
however, full ab initio studies of quantum paraelectrics
under pressure are absent in the literature.

B. H-bond ferroelectrics

H-bond ferroelectrics normally consist of polar stacks of
sheets of hydrogen-bonded molecules. Hydrogen bonding can
create electrical dipoles in crystals among hydrogen-donating
molecules, which become partially negative, and hydrogen-
accepting molecules, which become partially positive. Upon
application of an electric field, protons associated with one
molecule shift cooperatively toward a hydrogen-bonded
neighbor, switching the molecular dipole and thus producing
a large electrical polarization (Horiuchi and Tokura, 2008).
Examples of H-bond ferroelectrics include the molecular
compounds KH2PO4 (KDP) and C4H2O4 (H2SQ), which
present some well-characterized crystal structures and can be
synthesized in both standard and deuterated forms. A key
aspect in the ferroelectric behavior of most H-bonded ferro-
electrics is the motion of H atoms in correlated double-well
potentials. This correlation consists of H atoms in neighboring
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H bonds being strongly coupled due to the energetic require-
ment for satisfying the “ice rules” (Singer et al., 2005); in
KDP and H2SQ this condition implies that each molecule
participates in four different H bonds, two of which have
donating character and the rest accepting. H-bond ferroelectric
materials currently are attracting a lot of attention because
polar order near room temperature has been revealed in some
organic species (Horiuchi et al., 2005, 2010). This finding
opens the possibility for manufacturing cheaper and more
environment friendly nanoelectronic components and devices.
Interestingly, the Curie transition temperature TC in H-bond

ferroelectrics can increase by about 100 K upon deuteration.
The origins of such an enormous isotopic effect, however,
remain contentious. Originally, a simple quantum model
consisting of proton quantum tunneling in a double-well
potential was proposed to rationalize the TC observations
(Blinc and Svetina, 1966); however, this simple model failed
to explain the so-called Ubbelohde effect, which relates the
experimentally observed elongation of H bonds upon deut-
eration to a purely geometric origin (Ubbelohde and
Gallagher, 1955). Subsequently, models involving coupled
vibrational lattice modes and proton dynamics were proposed
(Dalal, Klymachyov, and Bussmann-Holder, 1998) that led to
the conviction that quantum-tunneling effects were not nec-
essary for explaining the isotopic influence on TC (McMahon
et al., 1990). More recently, however, neutron Compton
scattering experiments performed on KDP have found evi-
dence for coherent proton quantum tunneling occurring at
temperatures above the ferroelectric transition (T ∼ 125 K),
whereas no such evidence is found in the analogous deuterated
system (Reiter, Mayers, and Platzman, 2002; Reiter et al.,
2008). On the theoretical side, some have attempted to
reconcile the differing interpretations by arguing that a
mechanism behind the Ubbelohde effect itself might be
collective quantum tunneling in atomic clusters (Koval et al.,
2002).
Quantum ab initio studies of H-bond ferroelectrics are

desirable to help in clarifying the controversy about the
relevance of QNE on the observed TC isotope dependence.
Nevertheless, due to the large size of the unit cells involved
and complex collective dynamics of hydrogen and deuterium
atoms, quantum simulation of H-bond ferroelectrics turns out
to be very challenging. To the best of our knowledge, the
number of published works on this topic can be counted on
one hand.
Srinivasan and Sebastiani (2011) performed ab initio PIMD

simulations in KDP (i.e., KH2PO4) and DKDP crystals, in
order to estimate the degree of quantum-mechanical locali-
zation of hydrogen and deuterium atoms in the paraelectric
phase. In both systems, they have found that proton quantum
delocalization in the OH � � �O hydrogen bond is necessary for
stabilization of the disordered state. The only difference
between KDP and DKDP is that quantum tunneling occurs
coherently in the former system whereas it occurs incoher-
ently in the latter, an effect that has been linked to the observed
TC dependence on the isotope.
Recently, Wikfeldt and Michaelides (2014) employed

ab initio PIMD simulations based on DFT to investigate
the importance of QNE on the atomic ordering and structure
of H2SQ (i.e., C4H2O4). Note that in this case Wikfeldt and

Michaelides explicitly considered long-range van der Waals
interactions by using a dispersion-corrected DFT functional
(see Sec. III.A). It has been found that concerted proton jumps
along H-bond chains are facilitated dramatically by quantum
tunneling of several protons occurring at the same time.
According to Wikfeldt and Michaelides’ results, QNE are
crucial in this order-disorder phase transition (that is, ferro-
electric to paraelectric). The same phenomena have been
observed also in the analogous deuterated crystal but with
a smaller magnitude, leading to an Ubbelohde effect that
is in good agreement with the experiments (i.e., elongation of
the oxygen-oxygen distances by ∼0.02 Å). Subsequently,
Wikfeldt (2014) introduced a simple model for a coupled
one-dimensional H-bond chain that has been parametrized to
DFT calculations performed in H2SQ. Such an effective
model allows for an efficient exploration of QNE in larger
systems over longer simulation times. The PIMC results
obtained with Wikfeldt’s H2SQ model in fact appear to be
consistent with the conclusions presented in a previous full
ab initio work (Wikfeldt and Michaelides, 2014).
Further systematic studies are necessary to exactly

determine how important QNE are for understanding the
proton dynamics and proton order in H-bond ferroelectrics.
The computational evidence gathered to date appears to
indicate that quantum nuclear effects certainly are crucial.
Reassuringly, in a recent ab initio PIMC study Li, Walker, and
Michaelides (2011) showed that the quantum nature of the
H bond manifests appreciably in most hydrogen-bonded
materials.

C. Lithium and related compounds

Lithium is the lightest metallic element; at ambient con-
ditions it is most stable in a cubic bcc crystal. Li represents the
prototype of a simple metal with a Fermi surface that is nearly
spherical. As pressure is increased, however, this material
undergoes a series of symmetry-breaking structural trans-
formations that provoke an increase in complexity of its
electronic band structure (Guillaume et al., 2011). The
presence of QNE in solid Li under pressure is notable.
Experimentally, large isotopic effects have been observed
in the equation of state and elastic properties of the bulk
crystal at low temperatures (T ≤ 77 K) and pressures up to
∼2 GPa (Gromnitskaya, Stal’gorova, and Stishov, 1999). For
instance, differences of about 7% have been reported for the
transversal and longitudinal sound-wave velocities in solid 6Li
and 7Li at low and high pressures. On the theoretical side,
Filippi and Ceperley (1998) analyzed the influence of quan-
tum nuclear effects on the kinetic energy of the crystal with
PIMC simulations based on a pairwise interaction potential. It
has been found that the excess kinetic energy in Li decreases
from about 10.4% of the classical value at 300 K to 4.5% at
450 K; hence QNE are important all the way up to melting.
The role of QNE in the structural and electronic properties of
small Li clusters has also been estimated as influential by
Rousseau and Marx (1998).
One of the effects of applying pressure in a crystal is to

increase the kinetic energy of the atoms. It has been argued
theoretically that if the increment in zero-point motion due
to compression is higher than that attained in the potential
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energy, eventually the crystal could melt at low temperatures.
This possibility has attracted a great deal of attention in
hydrogen since according to some theoretical arguments
and effective models a metallic liquid with exotic properties
could be stabilized in the region of Mbar pressures (Babaev,
Sudbø, and Ashcroft, 2004; Chen et al., 2013). In solid
lithium it has been experimentally observed (Lazicki, Fei, and
Hemley, 2010) and calculated with first-principles methods
(Hernández et al., 2010) that at a pressure of ∼10 GPa the
corresponding melting line develops a negative slope (in
analogy to what occurs in sodium at P ∼ 30 GPa). This
finding appears to open an alternative for the possible
realization of a ground-state metallic liquid at high pressures
(although possibly in the region of Mbar pressures, or even at
much higher pressures).
The role of QNE in the sudden drop observed in the melting

line of Li, however, remains controversial. Guillaume et al.
(2011) measured a melting temperature of ∼190 K at a
pressure of ∼40 GPa, which represents by far the lowest
melting temperature observed for any material at such
pressures. They suggested that QNE play an important role
in shaping the phase diagram of Li. This suggestion seems
to be consistent with the fact that classical first-principles
simulations (Hernández et al., 2010) provide melting temper-
atures which are about 100 K higher than the experimental
points obtained by Guillaume et al. (2011). A more recent
experiment by Schaeffer et al. (2012), however, has revealed a
totally different scenario in which excellent agreement with
the classical ab initio results by Hernández et al. (2010) is
obtained. Then, what is the real extent of QNE on the melting
properties of Li? Recently, Feng et al. (2015) have performed
a systematic first-principles PIMD study aimed at answering
this question. They found that the net effect of considering
QNE on the melting temperature of Li is minimal (e.g., a small
shift of 15 K toward lower temperatures at P ¼ 45 GPa).
Interestingly, QNE noticeably influence the free energy of
the solid and liquid phases; however, there is a strong
QNE compensation effect between them at melting (Feng
et al., 2015).
Lightweight materials based on lithium are important from

a technological point of view, and thus so are QNE. Two
interesting examples are lithium hydride (LiH) and lithium
imide (Li2NH). LiH is used in the nuclear industry as either a
shielding agent or fuel in energy reactors (Welch, 1974;
Veleckis, 1977). LiH is an ionic crystal that stabilizes in
the rock salt structure at ambient conditions; Li is the cation
(positively charged ion) and H the anion (negatively charged
ion). The presence of large QNE in LiH has been reported in
both experiments and quantum simulations (Boronat et al.,
2004). At room temperature the experimental Lindemann ratio
of the hydrogen ion amounts to 0.12 (Vidal and Vidal-Valat,
1986), which lies in between those measured for solid H2 and
Ne (i.e., 0.18 and 0.09, respectively), thus indicating very
strong quantum character.
Large quantum isotopic effects have been reported in

lithium hydride for numerous quantities including the kinetic
energy, Lindemann ratio, and lattice parameter. For example,
Cazorla and Boronat (2005) estimated by means of VMC
calculations based on classical interatomic potentials that the
kinetic energy of the hydrogen anion in LiH is 84(1) and in

LiD is 67(1) meV. Meanwhile, the corresponding Lindemann
ratio is reduced by about 24% in LiD as compared to that in
LiH. More recently, Dammak et al. (2012) found by using a
quantum thermostat approach in combination with first-
principles methods that the lattice parameter difference
between LiH and LiD amounts to 0.019 and 0.016 Å at 0
and 300 K, respectively, in fairly good agreement with the
experiments (namely, 0.016 and 0.014 Å).
QNE can also considerably affect the electronic properties

of a quantum solid, in particular, the electronic energy band
gap Eg due to the presence of electron-phonon couplings. By
using a first-principles approach that consistently takes into
account anharmonic and zero-point motion effects, Monserrat,
Drummond, and Needs (2013) calculated the quantum-
mechanical expectation value of Eg in LiH and LiD over
the temperature interval 0 ≤ T ≤ 800 K. They found that the
isotopic effect in Eg roughly amounts to 4%–7%, with LiD
always exhibiting the largest energy band gap. Interestingly,
QNE at zero temperature account for a Eg variation of ∼2%
as compared to the value calculated with classical methods,
which is ∼3.00 eV.
Lithium imide (Li2NH) is a very promising hydrogen

storage material due to its low molecular weight and central
role played in the decomposition reaction (Shevlin and Guo,
2009):

LiNH2 þ 2LiH ↔ Li2NHþ LiHþ H2

↔ Li3Nþ 2H2; ð81Þ

where in the first stage a total of 5.5 wt % H2 is released and
5.2 wt % H2 in the second. Much research of both computa-
tional and experimental nature has been devoted to understand
the atomic structure and phase transitions occurring in Li2NH.
Because of the light mass of the atoms and relatively weak
interactions between particles, QNE are likely to affect the
fundamental properties of this material. Zhang, Dyer, and
Alavi (2005) solved the Schrödinger equation of a proton in
the potential-energy surface of Li2NH calculated with DFT
methods, to analyze the influence of QNE on its dynamics. It
was found that the quantum character of H atoms is very
strong, leading to partial delocalization of the proton around
certain N centers through quantum tunneling. The origin of
this effect has been traced back to the relatively flat potential-
energy landscape of the system. The results of a more recent
computational study by Ludueña and Sebastiani (2010) based
on ab initio PIMD simulations appear to support the validity
of these results. The proton momentum distribution in Li2NH
has been experimentally measured with inelastic neutron
scattering techniques and calculated with quantum thermo-
statted ab initio molecular dynamics (Ceriotti, Miceli et al.,
2010). The reported experimental and computational nðkÞ
results are in good agreement, providing a large average
kinetic energy of 415 K for Li atoms, of 410 K for N, and of
858 K for H.
The presence of proton quantum tunneling and large zero-

point motion in Li2NH has several implications. First, the
conventional treatment of quantum nuclear effects through the
quasiharmonic approximation is not adequate in this system.
And second, the real energy barrier for hydrogen diffusion, a
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key parameter for understanding and designing new H-storage
materials, must be lower than predicted with classical simu-
lation methods. In fact, Zhang, Dyer, and Alavi (2005)
estimated that at room temperature the H diffusion coefficient
in Li2NH is about 4 orders of magnitude higher than the one
expected from classical theory. In light of these results, full
quantum treatment of hydrogen atoms in crystals similar to
Li2NH (e.g., LiBH4) may allow for an improved rational
engineering of H-storage materials.

D. Carbon-based crystals and nanomaterials

Carbon atoms are found in a large number of technologi-
cally relevant materials, including diamond and the prolific
family of carbon nanostructures (e.g., graphene, nanotubes,
and nanohorns). Diamonds, which due to their strong covalent
atomic bonds possess superlative hardness and thermal
conductivity, are used as anvil cells to study condensed matter
systems over wide P − T ranges and also have a major
industrial application as cutting and polishing tools. At low
temperatures, diamond is an archetypal quasiharmonic crystal
(Ceriotti, Bussi, and Parrinello, 2009) in which the presence of
QNE has a profound impact on its structural, elastic, and
electronic band-structure features. Herrero and Ramírez
(2000) studied the influence of zero-point motion on the
thermodynamic properties of this solid with PIMC simula-
tions based on an empirical interatomic potential. They found
that QNE account for an increase of 0.5% in the lattice
parameter and a decrease of 5% in the bulk modulus with
respect to the values obtained with classical simulation
methods. More recently, Monserrat, Drummond, and Needs
(2013) estimated with fully anharmonic first-principles
calculations that the zero-point motion renormalization of
the electronic energy band gap in diamond amounts to
−461 meV. The origins of this large effect have been
discussed in detail by Monserrat and Needs (2014) in terms
of important electron-phonon interactions differently affecting
valence and conduction band electrons (e.g., the latter are
specially sensitive to the size of the Lindemann ratio in the
crystal).
Diamondoids, namely, nanocages with formula CxHy in

which the carbon atoms are sp3 bonded as in diamond, are
biocompatible and superhard molecules. These organic nano-
particles are found in large concentrations in petroleum fluids
and currently are attracting a lot of attention due to their
potential use in drug delivery and nanotechnology applica-
tions (Mochalin et al., 2012). In analogy to diamond, a strong
electron-phonon coupling is expected to occur in diamond-
oids. Recently, Patrick and Giustino (2013) demonstrated
by means of first-principles simulations combined with
Monte Carlo sampling techniques that the role of QNE in
the “photophysics” of these molecules is pivotal. In particular,
for the theoretically calculated optical absorption spectra of
diamondoids to be in quantitative agreement with the experi-
ments, the zero-point motion of the atoms must be taken into
account. Also, the accompanying renormalization of the
electronic energy band gaps amounts to 0.4–0.6 eV, depend-
ing on the selected CxHy species, which coincides with the
results obtained by Monserrat, Drummond, and Needs (2013)
in diamond.

QNE can significantly affect the gas adsorption and trans-
port properties of carbon-based nanostructures from zero up to
room temperature. A case study that has been thoroughly
investigated with both theory and experiment is the adsorption
and diffusion of hydrogen molecules and atoms on graphene
and other related nanomaterials. Understanding this problem
correctly is critical from a technological point of view (e.g.,
for the design of improved hydrogen storage materials)
(Cazorla, 2015) and also for fundamental reasons (e.g., to
rationalize the formation of molecular hydrogen in the
interstellar medium and improve the astrophysical models
of star evolution) (Bromley et al., 2014). Experimental
evidence of the importance of QNE in hydrogenated car-
bon-based surfaces and cavities is abundant. Tanaka et al.
(2005) measured the adsorption of H2 and D2 on single-wall
carbon nanohorns at T ¼ 77 K and reported appreciably
different behaviors in the two cases. In particular, around
6%–7% more deuterium molecules are adsorbed on the
interior of the nanoparticles. The observed kinetic isotope
effect has been ascribed, on the basis of the results of path-
integral grand canonical MC simulations performed with
semiempirical potentials, to the presence of QNE that favors
the localization of D2 in the cone part of the nanohorns. A
similar adsorption isotope effect has also been reported for
graphene, which has been interpreted in terms of similar
quantum-mechanically nuclear arguments (Paris et al., 2013).
Lovell et al. (2008) studied the room-temperature adsorption
of H2 in the graphite intercalation compound KC24 with
inelastic neutron scattering techniques. By comparing their
experimental data to the results of quantum first-principles
simulations, they concluded that QNE are responsible for a
tremendous reduction of ∼60% in the amount of taken gas.
On the purely computational side, Kowalczyk et al. (2007)

described the physical adsorption of molecular hydrogen in
slitlike carbon nanopores at low temperatures and high gas
densities, using classical and path-integral grand canonical
Monte Carlo simulations based on semiempirical interatomic
potentials. It was found that classical simulations overestimate
the amount of hydrogen in carbon nanopores due to neglecting
of QNE (although the differences between the classical and
quantum predictions are ameliorated when the size of the
slit-carbon pore diameter is wider than ∼6 Å). Herrero and
Ramírez (2010) studied the finite-temperature properties of H2

molecules adsorbed in graphite using PIMD simulations and a
tight-binding potential fitted to DFT calculations. It was
shown that H2 molecules are disposed parallel to the graph-
ite-layer plane and that they can rotate freely about their center
of mass in that plane. The stretching mode of the hydrogen
molecule is found to change considerably under graphitic
confinement by reducing its frequency ∼3.5% with respect to
the isolated molecule. Herrero and Ramírez (2010) also
reported strong quantum isotopic effects in this system; for
instance, at room temperature the ratio between the kinetic
energy of H2 and D2 amounts to 1.31, where EkðH2Þ is equal
to 0.238 eV. Kowalczyk et al. (2015) also investigated the
structural and dynamical properties of hydrogen and deu-
terium molecules adsorbed in the interior of carbon-based
nanotubes at low temperatures using PIMD techniques and
classical force fields. A large isotope effect caused by QNE
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has been revealed that consists of H2 molecules diffusing 7 to
8 times faster than D2 on the inner H2=D2 monolayer that
coats the carbon atoms. This effect, which is quantum in
nature, could be exploited in lightweight isotope separation
processes employing nanoporous molecular sieves.
Several quantum studies involving a variety of simulation

techniques have also been performed to investigate the
chemisorption and diffusivity of H atoms on graphene
(Herrero and Ramírez, 2009; Garashchuk et al., 2013;
Karlický, Lepetit, and Lemoine, 2014; Bonfanti et al.,
2015). The general picture deriving from all these works is
that QNE appreciably facilitate both the adsorption and
subsequent diffusion of hydrogen atoms on the carbon sur-
face. Consequently, hydrogenation of large areas of graphene
could be achieved more easily in practice than previously
inferred from classical simulation studies. Interestingly,
Davidson et al. (2014) pointed to the need of explicitly
considering van der Waals forces in this type of quantum
simulation study; the estimated energetic barriers for the
chemisorption and diffusion of H atoms then are reduced
further, in some cases as much as ∼25% (depending on the
employed DFT functional). In view of the results presented in
the last part of this section, we can conclude that inclusion of
QNE and long-range dispersive interactions in modeling of
hydrogenated carbon-based nanomaterials is necessary for
providing a realistic estimation of gas-adsorption capacities
and transition states at low temperatures.

X. SUMMARY AND OUTLOOK

We have presented an overview of the current under-
standing of quantum crystals formed by atoms and small
molecules over wide thermodynamic intervals, focusing on
the insights provided by quantum simulations. We have
described the fundamentals of the computational methods
that are used to study QNE in quantum solids including
variational, projector, and path-integral Monte Carlo tech-
niques, among others. Also, we have explained the basic
notions of popular first-principles electronic band-structure
methods (e.g., DFT and eQMC) as applied to the description
of atomic interactions in crystals.
Our analysis shows that consideration of QNE in computer

simulation studies of rare gases, molecular solids, H-bond
ferroelectrics, lightweight ionic compounds, carbon-based
nanomaterials, and even some perovskite oxides is crucial
for understanding the origins of their energy, structural, and
functional properties at low temperatures. In most quantum
crystals (e.g., 4He, H2, Li2NH, and BaTiO3) quasiharmonic
approaches turn out to be inadequate for describing their
thermodynamic stability and the energy differences between
energetically competitive phases. One instead has to consider
using methods that fully take into account anharmonicity.
Meanwhile, the interatomic interactions in quantum solids
normally are not described correctly by standard first-
principles (LDA and GGA DFT functionals) or semiempirical
approaches. Combination of these two factors makes the
simulation of quantum solids very challenging.
QNE are important in a large number of systems and

processes that are relevant to materials science. These include
hydrogen storage (e.g., Li2NH and LiH), perovskite oxides

(e.g., BaTiO3 and SrTiO3), ferroelectricity (e.g., H-bonded
polar compounds), solid plasticity (e.g., 4He), and high-
energy density materials (e.g., N2). It is also likely that
QNE are more influential than previously assumed in systems
that are relevant to the pharmaceutical industry (molecular
crystal polymorphs) and catalysis (diffusion and adsorption of
small molecules on carbon-based and metallic surfaces). We
hope that our review will motivate new investigations in the
context of materials science that will take into consideration
the quantum nature of atoms.
In spite of all the insight gathered in quantum solids, there

are still a few remaining aspects that need to be better
understood. These are essentially related to comprehension
of (i) the behavior of different types of crystalline defects and
the interactions between them, and (ii) the energy, structural,
and dynamical properties of quantum crystals under extreme
P − T conditions. Advancing in the first of these two
challenges is crucial for substantiating the microscopic argu-
ments that have been proposed to explain the intriguing plastic
phenomena observed in solid 4He at ultralow temperatures.
In particular, a quantitative description of dislocations at the
atomic scale and their interactions with isotopic 3He impu-
rities is still pending. Quantum simulations could contribute
significantly to this endeavor. Nevertheless, due to the large
size of the simulation cells involved (∼104–105 atoms) and
inherent structural complexity of line defects, this progress is
slow at the moment (Boninsegni et al., 2007; Landinez-Borda,
Cai, and de Koning, 2016).
Meanwhile, the crystal structures appearing in the phase

diagram of most molecular solids at high pressures are either
vaguely characterized or unknown. The outcomes of system-
atic structural searches based on first-principles methods in
fact have been very useful to better identify them.
Nevertheless, the influence of QNE on the thermodynamic
stability of different high-P polymorphs generally is disre-
garded in computational studies (see, for instance, the case of
N2 and CH4), or considered straightforwardly within the
quasiharmonic approximation. It is worth stressing once again
that a consequence of applying pressure to a crystal is to
extend the temperature range over which QNE are relevant;
therefore, the presence of quantum nuclear effects such as
zero-point motion, quantum atomic exchanges, and quantum
tunneling, the majority of which are not correctly reproduced
by harmonic-based approaches, is a key aspect in under-
standing the properties of molecular solids under extreme
thermodynamic conditions. Such a comprehension is crucial
to advance our knowledge in planetary sciences.
Common to these challenges is the underlying problem of

how to correctly describe the interactions between atoms in
quantum crystals. As explained before, these interactions
require one to go beyond standard first-principles approaches
which, in addition to the unavoidable task of treating QNE,
sometimes makes the simulation of quantum solids prohibitive
in terms of computational expense. In this regard, the out-
comes of systematic benchmark studies involving nonstand-
ard DFT and eQMC methods are crucial for rigorously
establishing acceptable balances between numerical accuracy
and computational load. Further progress in current electronic
band structure algorithms, on the one hand, and improvements
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in the availability of quantum computer packages which allow
one to simulate QNE, on the other hand, would enormously
facilitate this task.
As a final reflection, we note that in a few situations QNE

are “put under the rug” by arguing that they should play a
minor role or somehow cancel out. This is normally supported
by a reasoning of the type of “good agreement with the
experiments” obtained from classical studies. Nevertheless,
several have demonstrated that the causes behind such a good
agreement sometimes can be traced back to an inaccurate
representation of the atomic forces, which can disguise the
real magnitude of QNE (see, for instance, the case of the
predicted atomization transition in solid H2 under pressure)
(Chen et al., 2014). Therefore, tests on the influence of QNE
in lightweight and highly anharmonic crystals should not be
avoided but instead performed systematically. As expressed
by Miller (2005), “If one performs only classical simulations,
one will never know whether quantum effects are important.
One must have the ability to include quantum effects into a
simulation, even if only approximately, to know when they are
important and when they are not.”
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