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“Quantum sensing” describes the use of a quantum system, quantum properties, or quantum
phenomena to perform a measurement of a physical quantity. Historical examples of quantum sensors
include magnetometers based on superconducting quantum interference devices and atomic vapors or
atomic clocks. More recently, quantum sensing has become a distinct and rapidly growing branch
of research within the area of quantum science and technology, with the most common platforms
being spin qubits, trapped ions, and flux qubits. The field is expected to provide new opportunities—
especially with regard to high sensitivity and precision—in applied physics and other areas of science.
This review provides an introduction to the basic principles, methods, and concepts of quantum
sensing from the viewpoint of the interested experimentalist.
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I. INTRODUCTION

Can we find a promising real-world application of quantum
mechanics that exploits its most counterintuitive properties?
This question has intrigued physicists ever since quantum
theory development in the early twentieth century. Today,
quantum computers (Deutsch, 1985; DiVincenzo, 2000) and
quantum cryptography (Gisin et al., 2002) are widely believed
to be the most promising ones.
Interestingly, however, this belief might turn out to be

incomplete. In recent years a different class of applications
has emerged that employs quantum mechanical systems as

sensors for various physical quantities ranging from magnetic
and electric fields, to time and frequency, to rotations, to
temperature and pressure. “Quantum sensors” capitalize on
the central weakness of quantum systems, their strong
sensitivity to external disturbances. This trend in quantum
technology is curiously reminiscent of the history of semi-
conductors: here, too, sensors—for instance light meters
based on selenium photocells (Weston, 1931)—have found
commercial applications decades before computers.
Although quantum sensing as a distinct field of research in

quantum science and engineering is quite recent,many concepts
are well known in the physics community and have resulted
from decades of development in high-resolution spectroscopy,
especially in atomic physics and magnetic resonance. Notable
examples include atomic clocks, atomic vapor magnetometers,
and superconducting quantum interference devices. What can
be considered as “new” is that quantum systems are increasingly
investigated at the single-atom level, that entanglement is used
as a resource for increasing the sensitivity, and that quantum
systems and quantum manipulations are specifically designed
and engineered for sensing purposes.
The focus of this review is on the key concepts and

methods of quantum sensing, with particular attention to
practical aspects that emerge from nonideal experiments. As
quantum sensors we will consider mostly qubits—two-level
quantum systems. Although an overview over actual imple-
mentations of qubits is given, the review will not cover any
of those implementations in specific detail. It will also not
cover related fields including atomic clocks or photon-based
sensors. In addition, theory will be considered only up to the
point necessary to introduce the key concepts of quantum
sensing. The motivation behind this review is to offer an
introduction to students and researchers new to the field and
to provide a basic reference for researchers already active in
the field.

A. Content

The review starts by suggesting some basic definitions for
“quantum sensing” and by noting the elementary criteria for a
quantum system to be useful as a quantum sensor (Sec. II).
The next section provides an overview of the most important
physical implementations (Sec. III). The discussion then
moves on to the core concepts of quantum sensing, which
include the basic measurement protocol (Sec. IV) and the
sensitivity of a quantum sensor (Sec. V). Sections VI and VII
cover the important area of time-dependent signals and
quantum spectroscopy. The remaining sections introduce
some advanced quantum sensing techniques. These include
adaptive methods developed to greatly enhance the
dynamic range of the sensor (Sec. VIII) and techniques that
involve multiple qubits (Secs. IX and X). In particular,
entanglement-enhanced sensing, quantum storage, and quan-
tum error correction (QEC) schemes are discussed. The review
then concludes with a brief outlook on possible future
developments (Sec. XI).
There have already been several reviews that covered

different aspects of quantum sensing. Excellent introductions
into the field are the review by Budker and Romalis (2007)
and the book by Budker and Kimball (2013) on atomic vapor
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magnetometry, and the paper by Taylor et al. (2008) on
magnetometry with nitrogen-vacancy centers in diamond.
Entanglement-assisted sensing, sometimes referred to as
“quantum metrology,” “quantum-enhanced sensing,” or
“second generation quantum sensors,” is covered by
Bollinger et al. (1996) and Giovannetti, Lloyd, and
Maccone (2004, 2006, 2011). In addition, many excellent
reviews covering different implementations of quantum sen-
sors are available; these are noted in Sec. III.

II. DEFINITIONS

A. Quantum sensing

Quantum sensing is typically used to describe one of the
following:

(I) Use of a quantum object to measure a physical
quantity (classical or quantum). The quantum object
is characterized by quantized energy levels. Specific
examples include electronic, magnetic or vibrational
states of superconducting or spin qubits, neutral
atoms, or trapped ions.

(II) Use of quantum coherence (i.e., wavelike spatial or
temporal superposition states) to measure a physical
quantity.

(III) Use of quantum entanglement to improve the sensi-
tivity or precision of a measurement, beyond what is
possible classically.

Of these three definitions, the first two are rather broad
and cover many physical systems. This even includes some
systems that are not strictly “quantum.” An example is
classical wave interference as it appears in optical or mechani-
cal systems (Novotny, 2010; Faust et al., 2013). The third
definition is more stringent and a truly quantum definition.
However, since quantum sensors according to definitions I
and II are often close to applications, we will mostly focus
on these definitions and discuss them extensively in this
review. While these types of sensors might not exploit the
full power of quantum mechanics, as for type-III sensors,
they already can provide several advantages, most notably
operation at nanoscales that are not accessible to classical
sensors.
Because type-III quantum sensors rely on entanglement,

more than one sensing qubit is required. A well-known
example is the use of maximally entangled states to reach a
Heisenberg-limited measurement. Type-III quantum sensors
are discussed in Sec. X.

B. Quantum sensors

In analogy to the DiVincenzo criteria for quantum compu-
tation (DiVincenzo, 2000), a set of four necessary attributes is
listed for a quantum system to function as a quantum sensor.
These attributes include three original DiVincenzo criteria as
follows:

(1) The quantum system has discrete, resolvable energy
levels. Specifically, we assume it to be a two-level
system (or an ensemble of two-level systems) with a
lower energy state j0i and an upper energy state j1i

that are separated by a transition energy E ¼ ℏω0

(see Fig. 1).1

(2) It must be possible to initialize the quantum system
into a well-known state and to read out its state.

(3) The quantum system can be coherently manipulated,
typically by time-dependent fields. This condition is
not strictly required for all protocols; examples that
fall outside of this criterion are continuous-wave
spectroscopy or relaxation rate measurements.

The focus on two-level systems (1) is not a severe restriction
because many properties of more complex quantum systems
can be modeled through a qubit sensor (Goldstein, Lukin, and
Cappellaro, 2010). The fourth attribute is specific to quantum
sensing:

(4) The quantum system interacts with a relevant physi-
cal quantity VðtÞ, such as an electric or magnetic
field. The interaction is quantified by a coupling or
transduction parameter of the form γ ¼ ∂qE=∂Vq

which relates changes in the transition energy E to
changes in the external parameter V. In most sit-
uations the coupling is either linear (q ¼ 1) or
quadratic (q ¼ 2). The interaction with V leads to
a shift of the quantum system’s energy levels or to
transitions between energy levels (see Fig. 1).

Experimental realizations of quantum sensors can be
compared by some key physical characteristics. One charac-
teristic is to what kind of external parameter(s) the quantum
sensor responds to. Charged systems, like trapped ions, will
be sensitive to electrical fields, while spin-based systems will
mainly respond to magnetic fields. Some quantum sensors
may respond to several physical parameters.
A second important characteristic is a quantum sensor’s

“intrinsic sensitivity.” On the one hand, a quantum sensor is
expected to provide a strong response to wanted signals, while
on the other hand, it should be minimally affected by unwanted
noise. Clearly, these are conflicting requirements. In Sec. V,
we will see that the sensitivity scales as

sensitivity ∝
1

γ
ffiffiffiffiffi
Tχ

p ; ð1Þ

where γ is the above transduction parameter and Tχ is a
decoherence or relaxation time that reflects the immunity of
the quantum sensor against noise. In order to optimize the
sensitivity, γ should be large (for example, by the choice of
an appropriate physical realization of the sensor) and the
decoherence time Tχ must be made as long as possible.
Strategies to achieve the latter are discussed at length in the
later sections of this review.

FIG. 1. Basic features of a two-state quantum system. j0i is the
lower energy state and j1i is the higher energy state. Quantum
sensing exploits changes in the transition frequency ω0 or the
transition rate Γ in response to an external signal V.

1Note that this review uses ℏ ¼ 1 and expresses all energies in
units of angular frequency.
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III. EXAMPLES OF QUANTUM SENSORS

We now give an overview of the most important exper-
imental implementations of quantum sensors, following the
summary in Table I.

A. Neutral atoms as magnetic field sensors

Alkali atoms are suitable sensing qubits fulfilling the
definitions in Sec. II (Kitching, Knappe, and Donley,
2011). Their ground state spin, a coupled angular momentum
of electron and nuclear spin, can be both prepared and read
out optically by the strong spin-selective optical dipole

transition linking their s-wave electronic ground state to the
first (p-wave) excited state.

1. Atomic vapors

In the simplest implementation, a thermal vapor of atoms
serves as a quantum sensor for magnetic fields (Kominis et al.,
2003; Budker and Romalis, 2007). Held in a cell at or above
room temperature, atoms are spin polarized by an optical
pump beam. Magnetic field sensing is based on the Zeeman
effect due to a small external field orthogonal to the initial
atomic polarization. In a classical picture, this field induces
coherent precession of the spin. Equivalently, in a quantum

TABLE I. Experimental implementations of quantum sensors.

Implementation Qubit(s) Measured quantity(ies) Typical frequency Initalization Readout Typea

Neutral atoms
Atomic vapor Atomic spin Magnetic field, rotation,

time/frequency
dc-GHz Optical Optical II, III

Cold clouds Atomic spin Magnetic field,
acceleration,
time/frequency

dc-GHz Optical Optical II, III

Trapped ion(s)
Long-lived Time/frequency THz Optical Optical II, III

electronic state Rotation Optical Optical II
Vibrational mode Electric field, force MHz Optical Optical II

Rydberg atoms
Rydberg states Electric field dc, GHz Optical Optical II, III

Solid-state spins (ensembles)
NMR sensors Nuclear spins Magnetic field dc Thermal Pick-up coil II
NVb center

ensembles
Electron spins Magnetic field,

electric field,
temperature,

pressure, rotation

dc-GHz Optical Optical II

Solid-state spins (single spins)
P donor in Si Electron spin Magnetic field dc-GHz Thermal Electrical II
Semiconductor

quantum dots
Electron spin Magnetic field,

electric field
dc-GHz Electrical,

optical
Electrical, optical I, II

Single NVb center Electron spin Magnetic field,
electric field,
temperature,

pressure, rotation

dc-GHz Optical Optical II

Superconducting circuits
SQUIDc Supercurrent Magnetic field dc-GHz Thermal Electrical I, II
Flux qubit Circulating currents Magnetic field dc-GHz Thermal Electrical II
Charge qubit Charge eigenstates Electric field dc-GHz Thermal Electrical II

Elementary particles
Muon Muonic spin Magnetic field dc Radioactive

decay
Radioactive

decay
II

Neutron Nuclear spin Magnetic field,
phonon density,

gravity

dc Bragg scattering Bragg scattering II

Other sensors
SETd Charge eigenstates Electric field dc-MHz Thermal Electrical I
Optomechanics Phonons Force, acceleration,

mass, magnetic
field, voltage

kHz–GHz Thermal Optical I

Interferometer Photons, (atoms,
molecules)

Displacement,
refractive index

� � � II, III

aSensor type refers to the three definitions of quantum sensing in Sec. II.A.
bNV: nitrogen vacancy.
cSQUID: superconducting quantum interference device.
dSET: single electron transistor.
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picture, it drives spin transitions from the initial quantum state
to a distinct state, which can be monitored by a probe beam,
e.g., via the optical Faraday effect. Despite their superficial
simplicity, these sensors achieve sensitivities in the range
of 100 aT=

ffiffiffiffiffiffi
Hz

p
(Dang, Maloof, and Romalis, 2010) and

approach a theory limit of< 10 aT=
ffiffiffiffiffiffi
Hz

p
, placing them on par

with superconducting quantum interference devices
(SQUIDs) as the most sensitive magnetometers to date.
This is owing to the surprising fact that relaxation and
coherence times of spins in atomic vapors can be pushed
to the second to minute range (Balabas et al., 2010). These
long relaxation and coherence times are achieved by coating
cell walls to preserve the atomic spin upon collisions and by
operating in the spin exchange relaxation-free (SERF) regime
of high atomic density and zero magnetic field. Somewhat
counterintuitively, a high density suppresses decoherence
from atomic interactions, since collisions occur so frequently
that their effect averages out, similar to motional narrowing of
dipolar interactions in nuclear magnetic resonance (Happer
and Tang, 1973). Vapor cells have been miniaturized to a few
mm3 small volumes (Shah et al., 2007) and have been used to
demonstrate entanglement-enhanced sensing (Fernholz et al.,
2008; Wasilewski et al., 2010). The most advanced applica-
tion of vapor cells is arguably the detection of neural activity
(Livanov et al., 1978; Jensen et al., 2016), which has found
use in magnetoencephalography (Xia et al., 2006). Vapor cells
also promise complementary access to high-energy physics,
detecting anomalous dipole moments from coupling to exotic
elementary particles and background fields beyond the stan-
dard model (Smiciklas et al., 2011; Pustelny et al., 2013;
Swallows et al., 2013).

2. Cold atomic clouds

The advent of laser cooling in the 1980s spawned a
revolution in atomic sensing. The reduced velocity spread
of cold atoms enabled sensing with longer interrogation times
using spatially confined atoms, freely falling along specific
trajectories in vacuum or trapped.
Freely falling atoms have enabled the development of atomic

gravimeters (Kasevich andChu, 1992; Peters, Chung, andChu,
1999) and gyrometers (Gustavson, Bouyer, and Kasevich,
1997; Gustavson, Landragin, and Kasevich, 2000). In these
devices an atomic cloud measures acceleration by sensing the
spatial phase shift of a laser beam along its freely falling
trajectory.
Trapped atoms have been employed to detect and image

magnetic fields at the microscale, by replicating Larmor
precession spectroscopy on a trapped Bose-Einstein conden-
sate (Vengalattore et al., 2007) and by direct driving of spin-
flip transitions by microwave currents (Ockeloen et al., 2013)
or thermal radiofrequency noise in samples (Fortagh et al.,
2002; Jones et al., 2003). Sensing with cold atoms has found
application in solid-state physics by elucidating current trans-
port in microscopic conductors (Aigner et al., 2008).
Arguably the most advanced demonstrations of

entanglement-enhanced quantum sensing (definition III)
have been implemented in trapped cold atoms and vapor
cells. Entanglement, in the form of spin squeezing (Wineland
et al., 1992), has been produced by optical nondestructive

measurements of atomic population (Appel et al., 2009;
Leroux, Schleier-Smith, and Vuletić, 2010a; Louchet-
Chauvet et al., 2010; Schleier-Smith, Leroux, and Vuletić,
2010b; Bohnet et al., 2014; Cox et al., 2016; Hosten,
Engelsen et al., 2016) and atomic interactions (Esteve et al.,
2008; Riedel et al., 2010). It has improved the sensitivity of
magnetometry devices beyond the shot-noise limit (Sewell
et al., 2012; Ockeloen et al., 2013) and has increased their
bandwidth (Shah, Vasilakis, and Romalis, 2010).

B. Trapped ions

Ions, trapped in vacuum by electric or magnetic fields,
have equally been explored as quantum sensors. The most
advanced applications employ the quantized motional levels
as sensing qubits for electric fields and forces. These levels
are strongly coupled to the electric field by dipole-allowed
transitions and sufficiently (MHz) spaced to be prepared by
Raman cooling and read out by laser spectroscopy. The sensor
has a predicted sensitivity of 500 nV=m=

ffiffiffiffiffiffi
Hz

p
or 1 yN=

ffiffiffiffiffiffi
Hz

p
for the force acting on the ion (Maiwald et al., 2009; Biercuk
et al., 2010). Trapped ions have been extensively used to study
electric field noise above surfaces (Brownnutt et al., 2015),
which could arise from charge fluctuations induced by
adsorbents. Electrical field noise is a severe source of
decoherence for ion traps and superconducting quantum
processors (Labaziewicz et al., 2008) and a key limiting
factor in ultrasensitive force microscopy (Kuehn, Loring, and
Marohn, 2006; Tao and Degen, 2015).
Independently, the ground state spin sublevels of ions are

magnetic-field-sensitive qubits analogous to neutral atoms
discussed previously (Maiwald et al., 2009; Kotler et al.,
2011; Baumgart et al., 2016). Being an extremely clean
system, trapped ions have demonstrated sensitivities down to
4.6 pT=

ffiffiffiffiffiffi
Hz

p
(Baumgart et al., 2016) and served as a test bed for

advanced sensing protocols such as dynamical decoupling
(Biercuk et al., 2009; Kotler et al., 2011) and entanglement-
enhanced sensing (Leibfried et al., 2004). Recently, trapped
ions have also been proposed as rotation sensors, via matter-
wave Sagnac interferometry (Campbell and Hamilton, 2017).
Their use in practical applications, however, has proven
difficult. Practically all sensing demonstrations have focused
on single ions, which, in terms of absolute sensitivity, cannot
compete with ensemble sensors such as atomic vapors. Their
small size could compensate for this downside in applications
such as microscopy, where high spatial resolution is required.
However, operation of ion traps in close proximity to surfaces
remains a major challenge. Recent work on large ion crystals
(Arnold et al., 2015; Drewsen, 2015; Bohnet et al., 2016) opens
however the potential for novel applications to precise clocks
and spectroscopy.

C. Rydberg atoms

Rydberg atoms, atoms in highly excited electronic states,
are remarkable quantum sensors for electric fields for a similar
reason as trapped ions: In a classical picture, the loosely
confined electron in a highly excited orbit is easily displaced
by electric fields. In a quantum picture, its motional states are
coupled by strong electric dipole transitions and experience
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strong Stark shifts (Herrmann et al., 1986; Osterwalder and
Merkt, 1999). Preparation and readout of states is possible by
laser excitation and spectroscopy.
As their most spectacular sensing application, Rydberg

atoms in vacuum have been employed as single-photon
detectors for microwave photons in a cryogenic cavity in a
series of experiments that was highlighted by the Nobel prize
in physics in 2012 (Nogues et al., 1999; Gleyzes et al., 2007;
Haroche, 2013). Their sensitivity was recently improved
by employing Schrödinger cat states to reach a level of
300 nV=ðm=

ffiffiffiffiffiffi
Hz

p Þ (Facon et al., 2016).
Recently, Rydberg states have become accessible in atomic

vapor cells (Kübler et al., 2010). They have been applied to
sense weak electric fields, mostly in the GHz frequency range
(Sedlacek et al., 2012; Fan et al., 2015), and have been
suggested as a candidate for a primary traceable standard of
microwave power.

D. Atomic clocks

At first sight atomic clocks, qubits with transitions so
insensitive that their level splitting can be regarded as absolute
and serve as a frequency reference, do not seem to qualify as
quantum sensors since this very definition violates cri-
terion (4). Their operation as clocks, however, employs
identical protocols as the operation of quantum sensors, in
order to repeatedly compare the qubit’s transition to the
frequency of an unstable local oscillator and subsequently
lock the latter to the former. Therefore, an atomic clock can be
equally regarded as a quantum sensor measuring and stabiliz-
ing the phase drift of a local oscillator. Vice versa, quantum
sensors discussed previously can be regarded as clocks that
operate on purpose on a bad, environment-sensitive clock
transition in order to measure external fields.
Today’s most advanced atomic clocks employ optical tran-

sitions in single ions (Huntemann et al., 2016) or atomic clouds
trapped in an optical lattice (Takamoto et al., 2005; Hinkley
et al., 2013; Bloom et al., 2014). Interestingly, even entangle-
ment-enhanced sensing has found use in actual devices, since
some advanced clocks employ multiqubit quantum logic gates
for readout of highly stable but optically inactive clock ions
(Schmidt et al., 2005; Rosenband et al., 2008).

E. Solid-state spins: Ensemble sensors

1. NMR ensemble sensors

Some of the earliest quantum sensors have been based on
ensembles of nuclear spins. Magnetic field sensors have been
built that infer field strength from their Larmor precession,
analogous to neutral atom magnetometers described previ-
ously (Packard and Varian, 1954; Waters and Francis, 1958;
Kitching, Knappe, and Donley, 2011). Initialization of spins is
achieved by thermalization in an externally applied field,
readout by induction detection. Although the sensitivity of
these devices (10 pT=

ffiffiffiffiffiffi
Hz

p
) (Lenz, 1990) is inferior to their

atomic counterparts, they have found broad use in geology,
archaeology, and space missions thanks to their simplicity and
robustness. More recently, nuclear magnetic resonance
(NMR) sensor probes have been developed for in situ and

dynamical field mapping in clinical magnetic resonance
imaging (MRI) systems (Zanche et al., 2008).
Spin ensembles have equally served as gyroscopes

(Woodman, Franks, and Richards, 1987; Fang and Qin,
2012), exploiting the fact that Larmor precession occurs in an
independent frame of reference and therefore appears frequency
shifted in a rotating laboratory frame. In the most advanced
implementation, nuclear spin precession is read out by an atomic
magnetometer, which is equally used for compensation of the
Zeeman shift (Kornack, Ghosh, and Romalis, 2005). These
experiments reached a sensitivity of 5 × 10−7 rad=ðs= ffiffiffiffiffiffi

Hz
p Þ,

which is comparable to compact implementations of atomic
interferometers and optical Sagnac interferometers.

2. NV center ensembles

Much excitement has recently been sparked by ensembles of
nitrogen-vacancy centers (NV centers), electronic spin defects
in diamond that can be optically initialized and read out.
Densely doped diamond crystals promise to deliver “frozen
vapor cells” of spin ensembles that combine the strong
(electronic) magnetic moment and efficient optical readout of
atomic vapor cells with the high spin densities achievable in the
solid state. Although these advantages are partially offset by a
reduced coherence time (T2 < 1 ms at room temperature, as
compared to T2 > 1 s for vapor cells), the predicted sensitivity
of diamond magnetometers [250 aT=ð ffiffiffiffiffiffi

Hz
p

=cm−3=2Þ] (Taylor
et al., 2008) or gyroscopes [10−5 ðrad=sÞ=ð ffiffiffiffiffiffi

Hz
p

=mm3=2Þ]
(Ajoy and Cappellaro, 2012; Ledbetter et al., 2012) would
be competitive with their atomic counterparts.
Translation of this potential into actual devices remains

challenging, with two technical hurdles standing out. First,
efficient fluorescence detection of large NV ensembles is
difficult, while absorptive and dispersive schemes are not
easily implemented (Le Sage et al., 2012; Jensen et al.,
2014; Clevenson et al., 2015). Second, spin coherence times
are reduced 100–1000 times in high-density ensembles owing
to interaction of NV spins with parasitic substitutional nitrogen
spins incorporated during high-density doping (Acosta et al.,
2009). As a consequence, even the most advanced devices are
currently limited to∼1 pT=

ffiffiffiffiffiffi
Hz

p
(Wolf et al., 2015) and operate

several orders of magnitude above the theory limit. As a
technically less demanding application, NV centers in a
magnetic field gradient have been employed as spectrum
analyzer for high-frequency microwave signals (Chipaux et al.,
2015).
While large-scale sensing of homogeneous fields remains

a challenge, micrometer-sized ensembles of NV centers have
found application in imaging applications, serving as detector
pixels for microscopic mapping of magnetic fields. Most
prominently, this line of research has enabled imaging of
magnetic organelles in magnetotactic bacteria (Le Sage et al.,
2013) and microscopic magnetic inclusions in meteorites
(Fu et al., 2014), as well as contrast-agent-based magnetic
resonance microscopy (Steinert et al., 2013).

F. Solid-state spins: Single-spin sensors

Readout of single spins in the solid state, a major milestone
on the road toward quantum computers, has been achieved by
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both electrical and optical schemes. Electrical readout has
been demonstrated with phosphorus dopants in silicon
(Morello et al., 2010) and electrostatically defined semi-
conductor quantum dots (Elzerman et al., 2004). Optical
readout was shown with single organic molecules (Wrachtrup
et al., 1993a, 1993b), optically active quantum dots (Kroutvar
et al., 2004; Atature et al., 2007; Vamivakas et al., 2010), and
defect centers in crystalline materials including diamond
(Gruber et al., 1997) and silicon carbide (Christle et al.,
2015; Widmann et al., 2015). In addition, mechanical detec-
tion of single paramagnetic defects in silica (Rugar et al.,
2004) and real-time monitoring of few-spin fluctuations
(Budakian et al., 2005) have been demonstrated.
Among all solid-state spins, NV centers in diamond have

received by far the most attention for sensing purposes. This is
in part due to the convenient room-temperature optical
detection, and in part due to their stability in very small
crystals and nanostructures. The latter permits use of NV
centers as sensors in high-resolution scanning probe micros-
copy (Chernobrod and Berman, 2005; Balasubramanian et al.,
2008; Degen, 2008), as biomarkers within living organisms
(Fu et al., 2007), or as stationary probes close to the surface of
diamond sensor chips. Quantum sensing with NV centers has
been considered in several recent focused reviews (Rondin
et al., 2014; Schirhagl et al., 2014).
Single NV centers have been employed and/or proposed as

sensitive magnetometers (Balasubramanian et al., 2008; Degen,
2008; Maze et al., 2008; Taylor et al., 2008; Cole and
Hollenberg, 2009), electrometers (Dolde et al., 2011), pressure
sensors (Doherty et al., 2014), and thermometers (Hodges
et al., 2013; Kucsko et al., 2013; Neumann et al., 2013; Toyli
et al., 2013), using the Zeeman, Stark, and temperature shifts of
their spin sublevels. The most advanced nanosensing experi-
ments in terms of sensitivity have employed near-surface NV
centers in bulk diamond crystals. This approach has enabled
sensing of nanometer-sized voxels of nuclear or electronic
spins deposited on the diamond surface (Mamin et al., 2013;
Staudacher et al., 2013; Loretz et al., 2014; Sushkov,
Lovchinsky et al., 2014; DeVience et al., 2015; Shi et al.,
2015; Lovchinsky et al., 2016), of distant nuclear spin clusters
(Shi et al., 2014), and of 2D materials (Lovchinsky et al.,
2017). Other applications included the study of ballistic trans-
port in the Johnson noise of nanoscale conductors (Kolkowitz
et al., 2015), phases, and phase transitions of skyrmion
materials (Dovzhenko et al., 2016; Dussaux et al., 2016), as
well as of spin waves (Wolfe et al., 2014; van der Sar et al.,
2015), and relaxation in nanomagnets (Schafer-Nolte et al.,
2014; Schmid-Lorch et al., 2015).
Integration of NV centers into scanning probes has enabled

imaging of magnetic fields with sub-100 nm resolution, with
applications to nanoscale magnetic structures and domains
(Balasubramanian et al., 2008; Maletinsky et al., 2012;
Rondin et al., 2012), vortices and domain walls (Rondin
et al., 2013; Tetienne et al., 2014, 2015), superconducting
vortices (Pelliccione et al., 2016; Thiel et al., 2016), and
mapping of currents (Chang et al., 2017).
NV centers in ∼10-nm-sized nanodiamonds have also

been inserted into living cells. They have been employed
for particle tracking (McGuinness et al., 2011) and in vivo
temperature measurements (Kucsko et al., 2013; Neumann

et al., 2013; Toyli et al., 2013) and could enable real-time
monitoring of metabolic processes.

G. Superconducting circuits

1. SQUID

The SQUID is simultaneously one of the oldest and one of
the most sensitive types of magnetic sensor (Jaklevic et al.,
1965; Clarke and Braginski, 2004; Fagaly, 2006). These
devices, interferometers of superconducting conductors, mea-
sure magnetic fields with a sensitivity down to 10 aT=

ffiffiffiffiffiffi
Hz

p
(Simmonds, Fertig, and Giffard, 1979). Their sensing mecha-
nism is based on the Aharonov-Bohm phase imprinted on the
superconducting wave function by an encircled magnetic
field, which is read out by a suitable circuit of phase-sensitive
Josephson junctions.
From a commercial perspective, SQUIDs can be considered

the most advanced type of quantum sensor, with applications
ranging from materials characterization in solid-state physics
to clinical magnetoencephalography systems for measuring
small (∼100 fT) stray fields of electric currents in the brain. In
parallel to the development of macroscopic (mm-cm) SQUID
devices, miniaturization has given birth to submicron sized
“nanoSQUIDs” with possible applications in nanoscale mag-
netic, current, and thermal imaging (Vasyukov et al., 2013;
Halbertal et al., 2016). Note that because SQUIDs rely on
spatial rather than temporal coherence, they are more closely
related to optical interferometers than to the spin sensors
discussed previously.
SQUIDs have been employed to process signals from the dc

up to theGHz range (Mück,Welzel, andClarke, 2003;Hatridge
et al., 2011), the upper limit being set by the Josephson
frequency. Conceptually similar circuits, dedicated to ampli-
fication of GHz frequency signals, have been explored in great
detail in the past decade (Castellanos-Beltran et al., 2008;
Bergeal et al., 2010; HoEom et al., 2012;Macklin et al., 2015).
Arguably the most widely studied design is the Josephson
parametric amplifier, which has been pushed to a nearly
quantum-limited input noise level of only a few photons and
is now routinely used for spectroscopic single shot readout of
superconducting qubits (Vijay, Slichter, and Siddiqi, 2011).

2. Superconducting qubits

Temporal quantum superpositions of supercurrents or
charge eigenstates have become accessible in superconducting
qubits (Nakamura, Pashkin, and Tsai, 1999; Martinis et al.,
2002; Vion et al., 2002; Wallraff et al., 2004; Clarke and
Wilhelm, 2008). Being associated with large magnetic and
electric dipole moments, they are attractive candidates for
quantum sensing. Many of the established quantum sensing
protocols to be discussed in Secs. IV–VII have been
implemented with superconducting qubits. Specifically,
noise in these devices has been thoroughly studied from
the sub-Hz to the GHz range, using Ramsey interferometry
(Yoshihara et al., 2006; Yan et al., 2012), dynamical
decoupling (Nakamura, Pashkin, and Tsai, 2002; Ithier et al.,
2005; Yoshihara et al., 2006; Bylander et al., 2011; Yan
et al., 2013), and T1 relaxometry (Astafiev et al., 2004;
Yoshihara et al., 2006). These studies have been extended
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to discern charge from flux noise by choosing qubits with a
predominant electric (charge qubit) or magnetic (flux qubit)
dipole moment, or by tuning bias parameters in situ
(Bialczak et al., 2007; Yan et al., 2012). Operating qubits
as magnetic field sensors, very promising sensitivities
(3.3 pT=

ffiffiffiffiffiffi
Hz

p
for operation at 10 MHz) were demonstrated

(Bal et al., 2012). Extending these experiments to the study
of extrinsic samples appears simultaneously attractive and
technically challenging, since superconducting qubits have to
be cooled to temperatures of only a few tens of millikelvin.

H. Elementary particle qubits

Interestingly, elementary particles have been employed as
quantum sensors long before the development of atomic and
solid-state qubits. This somewhat paradoxical fact is owing to
their straightforward initialization and readout, as well as their
targeted placement in relevant samples by irradiation with a
particle beam.

1. Muons

Muons are frequently described as close cousins of
electrons. Both particles are leptons, carry an elementary
charge, and have a spin that can be employed for quantum
sensing. Sensing with muons has been termed “muon spin
rotation” (μSR). It employs antimuons (μþ) that are deter-
ministically produced by proton-proton collisions, from
decay of an intermediate positive pion by the reaction
πþ → μþ þ νμ. Here parity violation of the weak interaction
automatically initializes the muon spin to be collinear with
the particle’s momentum. Readout of the spin is straightfor-
ward by measuring the emission direction of positrons from
the subsequent decay μþ → eþ þ νe þ ν̄μ, which are pref-
erably emitted along the muon spin (Brewer and Crowe,
1978; Blundell, 1999).
Crucially, muons can be implanted into solid-state samples

and serve as local probes of their nanoscale environment for
their few microseconds long lifetime. Larmor precession
measurements have been used to infer the intrinsic magnetic
field of materials. Despite its exotic nature, the technique of
μSR has become and remained a workhorse tool of solid-state
physics. In particular, it is a leading technique to measure
the London penetration depth of superconductors (Sonier,
Brewer, and Kiefl, 2000).

2. Neutrons

Slow beams of thermal neutrons can be spin polarized by
Bragg reflection on a suitable magnetic crystal. Spin readout is
feasible by a spin-sensitive Bragg analyzer and subsequent
detection. Spin rotations (single qubit gates) are easily
implemented by application of localized magnetic fields along
parts of the neutron’s trajectory. As a consequence, many early
demonstrations of quantum effects, such as the direct meas-
urement of Berry’s phase (Bitter and Dubbers, 1987), have
employed neutrons.
Sensing with neutrons has been demonstrated in multiple

ways. Larmor precession in the magnetic field of samples has
been employed for three-dimensional tomography (Kardjilov
et al., 2008). Neutron interferometry has put limits on the

strongly coupled chameleon field (Li et al., 2016). Ultracold
neutrons have been employed as a probe for gravity on small
length scales in a series of experiments termed “qBounce.”
These experiments exploit the fact that suitable materials
perfectly reflect the matter wave of sufficiently slow neutrons
so that they can be trapped above a bulk surface by the gravity
of Earth as a “quantum bouncing ball” (Nesvizhevsky et al.,
2002). The eigenenergies of this anharmonic trap depend on
gravity and have been probed by quantum sensing techniques
(Jenke et al., 2011, 2014).
The most established technique, neutron spin echo, can

reveal materials properties by measuring small (down to neV)
energy losses of neutrons in inelastic scattering events
(Mezei, 1972). Here the phase of the neutron spin, coherently
precessing in an external magnetic field, serves as a clock to
measure a neutron’s time of flight. Inelastic scattering in a
sample changes a neutron’s velocity, resulting in a different
time of flight to and from a sample of interest. This difference
is imprinted in the spin phase by a suitable quantum sensing
protocol, specifically a Hahn echo sequence whose π pulse is
synchronized with passage through the sample.

I. Other sensors

In addition to the many implementations of quantum
sensors already discussed, three further systems deserved
special attention for their future potential or for their funda-
mental role in developing quantum sensing methodology.

1. Single electron transistors

Single electron transistors (SETs) sense electric fields by
measuring the tunneling current across a submicron con-
ducting island sandwiched between a tunneling source and
drain contacts. In the “Coulomb blockade regime” of suffi-
ciently small (typically ≈100 nm) islands, tunneling across
the device is allowed only if charge eigenstates of the island lie
in the narrow energy window between the Fermi level of
source and drain contact. The energy of these eigenstates is
highly sensitive to even weak external electric fields, resulting
in a strongly field-dependent tunneling current (Kastner,
1992; Yoo et al., 1997; Schoelkopf, 1998). SETs have been
employed as scanning probe sensors to image electric fields
on the nanoscale, shedding light on a variety of solid-state
phenomena such as the fractional quantum Hall effect or
electron-hole puddles in graphene (Ilani et al., 2004; Martin
et al., 2008). In a complementary approach, charge sensing by
stationary SETs has enabled readout of optically inaccessible
spin qubits such as phosphorus donors in silicon (Morello
et al., 2010) based on counting of electrons (Bylander, Duty,
and Delsing, 2005).

2. Optomechanics

Phonons, discrete quantized energy levels of vibration,
have recently become accessible at the “single-particle” level
in the field of optomechanics (O’Connell et al., 2010;
Aspelmeyer, Kippenberg, and Marquardt, 2014), which
studies high-quality mechanical oscillators that are strongly
coupled to light.
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While preparation of phonon number states and their coher-
ent superpositions remains difficult, the devices built to achieve
these goals have shown great promise for sensing applications.
This is mainly due to the fact that mechanical degrees of
freedom strongly couple to nearly all external fields, and that
strong optical coupling enables efficient actuation and readout
of mechanical motion. Specifically, optomechanical sensors
have been employed to detect minute forces (12 zN=

ffiffiffiffiffiffi
Hz

p
)

(Moser et al., 2013), acceleration (100 ng=
ffiffiffiffiffiffi
Hz

p
) (Krause et al.,

2012; Cervantes et al., 2014), masses (2 yg=
ffiffiffiffiffiffi
Hz

p
) (Chaste

et al., 2012), magnetic fields (200 pT=
ffiffiffiffiffiffi
Hz

p
) (Forstner et al.,

2014), spins (Rugar et al., 2004;Degen et al., 2009), andvoltage
(5 pV=

ffiffiffiffiffiffi
Hz

p
) (Bagci et al., 2014). While these demonstrations

have remained at the level of classical sensing in the sense of
this review, their future extension to quantum-enhanced mea-
surements appears most promising.

3. Photons

While this review does not discuss quantum sensing with
photons, due to the breadth of the subject, several fundamental
paradigms have been pioneered with optical sensors including
light squeezing and photonic quantum correlations. These
constitute examples of quantum-enhanced sensing according
to our definition III.
Squeezing of light, the creation of partially entangled states

with phase or amplitude fluctuations below those of a classical
coherent state of the light field, has been proposed (Caves,
1981) and achieved (Slusher et al., 1985) long before
squeezing of spin ensembles (Wineland et al., 1992; Hald
et al., 1999). Vacuum squeezed states have meanwhile been
employed to improve the sensitivity of gravitational wave
detectors. In the GEO gravitational wave detector, squeezing
has enhanced the shot-noise limited sensitivity by 3.5 dB
(LIGO Collaboration, 2011); in a proof-of-principle experi-
ment in the LIGO gravitational wave detector, the injection of
10 dB of squeezing lowered the shot noise in the interfer-
ometer output by approximately 2.15 dB (28%) (Aasi et al.,
2013), equivalent to an increase by more than 60% in the
power stored in the interferometer arm cavities. Further
upgrades associated with advanced LIGO could bring down
the shot noise by 6 dB, via frequency dependent squeezing
(Oelker et al., 2016).
In addition, quantum correlations between photons have

proven to be a powerful resource for imaging. This has been
noted very early on in the famous Hanbury Brown–Twiss
experiment, where bunching of photons is employed to filter
atmospheric aberrations and to perform “superresolution”
measurements of stellar diameters smaller than the diffraction
limit of the telescope employed (Hanbury Brown and Twiss,
1956). While this effect can still be accounted for classically, a
recent class of experiments has exploited nonclassical corre-
lations to push the spatial resolution of microscopes below the
diffraction limit (Schwartz et al., 2013). Vice versa, multi-
photon correlations have been proposed and employed to
create light patterns below the diffraction limit for super-
resolution lithography (Boto et al., 2000; D’Angelo,
Chekhova, and Shih, 2001). They can equally improve image
contrast rather than resolution by a scheme known as
“quantum illumination” (Lloyd, 2008; Tan et al., 2008;

Lopaeva et al., 2013). Here a beam of photons is employed
to illuminate an object, reflected light being detected as the
imaging signal. Entangled twins of the illumination photons
are conserved at the source and compared to reflected photons
by a suitable joint measurement. In this way, photons can be
certified to be reflected light rather than noise, enhancing
imaging contrast. In simpler schemes, intensity correlations
between entangled photons have been employed to boost
contrast in transmission microscopy of weakly absorbing
objects (Brida, Genovese, and Berchera, 2010) and the
reduced quantum fluctuations of squeezed light have been
used to improve optical particle tracking (Taylor et al., 2013).
The most advanced demonstrations of entanglement-

enhanced sensing have been performed with single photons
or carefully assembled few-photon Fock states. Most promi-
nently, these include Heisenberg-limited interferometers
(Holland and Burnett, 1993; Mitchell, Lundeen, and
Steinberg, 2004; Walther et al., 2004; Higgins et al., 2007;
Nagata et al., 2007). In these devices, entanglement between
photons or adaptive measurements are employed to push
sensitivity beyond the 1=

ffiffiffiffi
N

p
scaling of a classical interfer-

ometer where N is the number of photons (see Sec. IX).

IV. THE QUANTUM SENSING PROTOCOL

In this section, we describe the basic methodology for
performing measurements with quantum sensors. Our discus-
sion will focus on a generic scheme where a measurement
consists of three elementary steps: the initialization of the
quantum sensor, the interaction with the signal of interest, and
the readout of the final state. Phase estimation (Shor, 1994;
Kitaev, 1995) and parameter estimation (Braunstein and Caves,
1994; Braunstein, Caves, andMilburn, 1996; Goldstein, Lukin,
and Cappellaro, 2010) techniques are then used to reconstruct
the physical quantity from a series of measurements.
Experimentally, the protocol is typically implemented as an
interference measurement using pump-probe spectroscopy,
although other schemes are possible. The key quantity is then
the quantum phase picked up by the quantum sensor due to the
interaction with the signal. The protocol can be optimized for
detecting weak signals or small signal changes with the highest
possible sensitivity and precision.

A. Quantum sensor Hamiltonian

For the following discussion, we assume that the quantum
sensor can be described by the generic Hamiltonian

ĤðtÞ ¼ Ĥ0 þ ĤVðtÞ þ ĤcontrolðtÞ; ð2Þ

where Ĥ0 is the internal Hamiltonian, ĤVðtÞ is the
Hamiltonian associated with a signal VðtÞ, and ĤcontrolðtÞ is
the control Hamiltonian. We assume that Ĥ0 is known and that
ĤcontrolðtÞ can be deliberately chosen so as to manipulate or
tune the sensor in a controlled way. The goal of a quantum
sensing experiment is then to infer VðtÞ from the effect it has
on the qubit via its Hamiltonian ĤVðtÞ, usually by a clever
choice of ĤcontrolðtÞ.
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1. Internal Hamiltonian

Ĥ0 describes the internal Hamiltonian of the quantum
sensor in the absence of any signal. Typically, the internal
Hamiltonian is static and defines the energy eigenstates j0i
and j1i,

Ĥ0 ¼ E0j0ih0j þ E1j1ih1j; ð3Þ

where E0 and E1 are the eigenenergies and ω0 ¼ E1 − E0 is
the transition energy between the states (ℏ ¼ 1). Note that the
presence of an energy splitting ω0 ≠ 0 is not necessary, but it
represents the typical situation for most implementations of
quantum sensors. The qubit internal Hamiltonian may contain
additional interactions that are specific to a quantum sensor,
such as couplings to other qubits. In addition, the internal
Hamiltonian contains time-dependent stochastic terms due to
a classical environment or interactions with a quantum bath
that are responsible for decoherence and relaxation.

2. Signal Hamiltonian

The signal Hamiltonian ĤVðtÞ represents the coupling
between the sensor qubit and a signal VðtÞ to be measured.
When the signal is weak (which is assumed here) ĤVðtÞ adds a
small perturbation to Ĥ0. The signal Hamiltonian can then be
separated into two qualitatively different contributions

ĤVðtÞ ¼ ĤV∥
ðtÞ þ ĤV⊥ðtÞ; ð4Þ

where ĤV∥
is the parallel (commuting, secular) and ĤV⊥ the

transverse (noncommuting) components, respectively. The
two components can quite generally be captured by

ĤV∥
ðtÞ ¼ 1

2
γV∥ðtÞfj1ih1j − j0ih0jg;

ĤV⊥ðtÞ ¼ 1
2
γfV⊥ðtÞj1ih0j þ V†

⊥ðtÞj0ih1jg;
ð5Þ

where V∥ðtÞ and V⊥ðtÞ are functions with the same units of
VðtÞ. γ is the coupling or transduction parameter of the qubit
to the signal VðtÞ. Examples of coupling parameters include
the Zeeman shift parameter (gyromagnetic ratio) of spins in a
magnetic field, with units of Hz=T, or the linear Stark shift
parameter of electric dipoles in an electric field, with units of
Hz=ðVm−1Þ. Although the coupling is often linear, this is not
required. In particular, the coupling is quadratic for second-
order interactions (such as the quadratic Stark effect) or when
operating the quantum sensor in variance detection mode (see
Sec. IV.E.2).
The parallel and transverse components of a signal have

distinctly different effects on the quantum sensor. A commut-
ing perturbation ĤV∥

leads to shifts of the energy levels and an
associated change of the transition frequency ω0. A non-
commuting perturbation ĤV⊥ , by contrast, can induce tran-
sitions between levels, manifesting through an increased
transition rate Γ. Most often, this requires the signal to be
time dependent (resonant with the transition) in order to have
an appreciable effect on the quantum sensor.
An important class of signals are vector signal V⃗ðtÞ, in

particular, those provided by electric or magnetic fields. The

interaction between a vector signal V⃗ðtÞ ¼ fVx; Vy; VzgðtÞ
and a qubit can be described by the signal Hamiltonian

ĤVðtÞ ¼ γV⃗ðtÞ · ˆ⃗σ; ð6Þ

where σ⃗ ¼ fσx; σy; σzg is a vector of Pauli matrices. For a
vector signal, the two signal functions V∥ðtÞ and V⊥ðtÞ are

V∥ðtÞ ¼ VzðtÞ;
V⊥ðtÞ ¼ VxðtÞ þ iVyðtÞ; ð7Þ

where the z direction is defined by the qubit’s quantization
axis. The corresponding signal Hamiltonian is

ĤVðtÞ ¼ γRe½V⊥ðtÞ�σ̂x þ γIm½V⊥ðtÞ�σ̂y þ γV∥ðtÞσ̂z: ð8Þ

3. Control Hamiltonian

For most quantum sensing protocols it is required to
manipulate the qubit either before, during, or after the sensing
process. This is achieved via a control Hamiltonian ĤcontrolðtÞ
that allows implementing a standard set of quantum gates
(Nielsen and Chuang, 2000). The most common gates in
quantum sensing include the Hadamard gate and the
Pauli X and Y gates, or equivalently a set of π=2 and π
rotations (pulses) around different axes. Advanced sensing
schemes employing more than one sensor qubit may further
require conditional gates, especially controlled-NOT gates to
generate entanglement, swap gates to exploit memory qubits,
and controlled phase shifts in quantum phase estimation.
Finally, the control Hamiltonian can include control fields
for systematically tuning the transition frequency ω0. This
capability is frequently exploited in noise spectroscopy
experiments.

B. The sensing protocol

Quantum sensing experiments typically follow a generic
sequence of sensor initialization, interaction with the signal,
sensor readout, and signal estimation. This sequence can be
summarized in the following basic protocol, which is also
sketched in Fig. 2:

(1) The quantum sensor is initialized into a known basis
state, for example, j0i.

(2) The quantum sensor is transformed into the desired
initial sensing state jψ0i ¼ Ûaj0i. The transforma-
tion can be carried out using a set of control pulses
represented by the propagator Ûa. In many cases,
jψ0i is a superposition state.

(3) The quantum sensor evolves under the Hamiltonian
Ĥ [Eq. (2)] for a time t. At the end of the sensing
period, the sensor is in the final sensing state

jψðtÞi ¼ ÛHð0; tÞjψ0i ¼ c0jψ0i þ c1jψ1i; ð9Þ

where ÛHð0; tÞ is the propagator of Ĥ, jψ1i is the state
orthogonal to jψ0i, and c0, c1 are complex coefficients.
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(4) The quantum sensor is transformed into a super-
position of observable readout states jαi¼
ÛbjψðtÞi¼ c00j00iþc01j10i. For simplicity we assume
that the initialization basis fj0i; j1ig and the readout
basis fj00i; j10ig are the same and that Ûb ¼ Û†

a, but
this is not required. Under these assumptions, the
coefficients c00 ≡ c0 and c01 ≡ c1 represent the over-
lap between the initial and final sensing states.

(5) The final state of the quantum sensor is read out. We
assume that the readout is projective, although more
general positive-operator-valued-measure (POVM)
measurements may be possible (Nielsen and
Chuang, 2000). The projective readout is a Bernoulli
process that yields an answer “0” with probability
1 − p0 and an answer “1” with probability p0, where
p0 ¼ jc01j2 ∝ p is proportional to the measurable
transition probability

p ¼ 1 − jc0j2 ¼ jc1j2 ð10Þ
that the qubit changed its state during t. The binary
answer is detected by the measurement apparatus as a
physical quantity x, for example, as a voltage, current,
photon count, or polarization.

Steps 1–5 represent a single measurement cycle. Because
step 5 gives a binary answer, the measurement cycle needs to
be repeated many times in order to gain a precise estimate
for p:

(6) Steps 1–5 are repeated and averaged over a large
number of cycles N to estimate p. The repetition can
be done by running the protocol sequentially on the
same quantum system, or in parallel by averaging
over an ensemble of N identical (and noninteracting)
quantum systems.

Step 6 provides only one value for the transition probability p.
While a single value of p may sometimes be sufficient to
estimate a signal V, it is in many situations convenient or
required to record a set of values fpkg:

(7) The transition probability p is measured as a
function of time t or of a parameter of the control
Hamiltonian, and the desired signal V is inferred
from the data record fpkg using a suitable procedure.

More generally, a set of measurements can be optimized
to efficiently extract a desired parameter from the signal
Hamiltonian (see Sec. VIII). Most protocols presented in the
following implicitly use such a strategy for gaining information
about the signal.
Although this protocol is generic and simple, it is sufficient

to describe most sensing experiments. For example, classical
continuous-wave absorption and transmission spectroscopy
can be considered as an averaged variety of this protocol.
Also, the time evolution can be replaced by a spatial evolution
to describe a classical interferometer.
To illustrate the protocol, we consider two elementary

examples, one for detecting a parallel signal V∥ and one for
detecting a transverse signal V⊥. These examples will serve as
the basis for the more refined sequences discussed in later
sections.

C. First example: Ramsey measurement

The first example is the measurement of the static energy
splitting ω0 (or equivalently, a static perturbation V∥). The
canonical approach for this measurement is a Ramsey interfer-
ometry measurement (Lee, Kok, and Dowling, 2002; Taylor
et al., 2008):

(1) The quantum sensor is initialized into j0i.
(2) Using a π=2 pulse, the quantum sensor is trans-

formed into the superposition state

jψ0i ¼ jþi≡ 1ffiffiffi
2

p ðj0i þ j1iÞ: ð11Þ

(3) The superposition state evolves under the Hamilto-
nian Ĥ0 for a time t. The superposition state picks up
the relative phase ϕ ¼ ω0t, and the state after the
evolution is

jψðtÞi ¼ 1ffiffiffi
2

p ðj0i þ e−iω0tj1iÞ; ð12Þ

up to an overall phase factor.
(4) Using a second π=2 pulse, the state jψðtÞi is

converted back to the measurable state

jαi ¼ 1
2
ð1þ e−iω0tÞj0i þ 1

2
ð1 − e−iω0tÞj1i: ð13Þ

(5) The final state is read out. The transition probability is

p ¼ 1 − jh0jαij2
¼ sin2ðω0t=2Þ ¼ 1

2
½1 − cosðω0tÞ�: ð14Þ

By recording p as a function of time t, an oscillatory output
(“Ramsey fringes”) is observed with a frequency given by ω0.
Thus, the Ramsey measurement can directly provide a meas-
urement of the energy splitting ω0.

1. Initialize

5. Project, Readout

3. Evolve for time 

4. Transform

2. Transform

6. Repeat and average

“0” with probability 
“1” with probability

7. Estimate signal

FIG. 2. Basic steps of the quantum sensing process.
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D. Second example: Rabi measurement

The second elementary example is the measurement of the
transition matrix element jV⊥j:

(1) The quantum sensor is initialized into jψ0i ¼ j0i.
(3) In the absence of the internal Hamiltonian Ĥ0 ¼ 0,

the evolution is given by ĤV⊥ ¼ 1
2
γV⊥σx ¼ ω1σx,

where ω1 is the Rabi frequency. The state after
evolution is

jψðtÞi ¼ jαi ¼ 1
2
ð1þ e−iω1tÞj0i þ 1

2
ð1 − e−iω1tÞj1i:

ð15Þ

(5), (6) The final state is read out. The transition probability
is

p ¼ 1 − jh0jαij2 ¼ sin2ðω1t=2Þ: ð16Þ
In a general situation where Ĥ0 ≠ 0, the transition prob-

ability represents the solution to Rabi’s original problem
(Sakurai and Napolitano, 2011),

p ¼ ω2
1

ω2
1 þ ω2

0

sin2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
1 þ ω2

0

q
t

�
: ð17Þ

Hence, only time-dependent signals with frequency ω ≈ ω0

affect the transition probability p, a condition known as
resonance. From this condition it is clear that a Rabi
measurement can provide information not only on the
magnitude V⊥, but also on the frequency ω of a signal
(Fedder et al., 2011; Aiello, Hirose, and Cappellaro, 2013).

E. Slope and variance detection

A central objective of quantum sensing is the detection of
small signals. For this purpose, it is advantageous to measure
the deviation of the transition probability from a well-chosen
reference point p0, which we refer to as the bias point of the
measurement, corresponding to a known value of the external
signal V0 or reached by setting some additional parameters in
the Hamiltonian under the experimenter’s control. The quan-
tity of interest is then the difference δp ¼ p − p0 between
the probability measured in the presence and absence of the
signal, respectively. Experimentally, the bias point can be
adjusted by several means, for example, by adding a small
detuning to ω0 or by measuring the final state jψðtÞi along
different directions.

1. Slope detection (linear detection)

The Ramsey interferometer is most sensitive to small
perturbations δV around V0 ¼ ω0=γ when operated at the
point of maximum slope where p0 ¼ 0.5, indicated by the
filled red dot in Fig. 3(a). This bias point is reached when
ω0t ¼ kπ=2, with k ¼ 1; 3; 5;…. Around p0 ¼ 0.5, the tran-
sition probability is linear in δV and t,

δp ¼ 1
2
½1 − cosðω0tþ γδVtÞ� − 1

2

≈ �1
2
γδVt; ð18Þ

where the sign is determined by k.

Note that slope detection has a limited linear range
because phase wrapping occurs for jγδVtj > π=2. The phase
wrapping restricts the dynamic range of the quantum sensor.
Section VIII discusses adaptive sensing techniques designed
to extend the dynamic range.

2. Variance detection (quadratic detection)

If the magnitude of δV fluctuates between measurements so
that hδVi ¼ 0, readout at p0 ¼ 0.5 will yield no information
about δV, since hpi ≈ p0 ¼ 0.5. In this situation, it is advanta-
geous to detect the signal variance by biasing the measurement
to a point of minimum slope ω0t ¼ kπ, corresponding to the
bias points p0 ¼ 0 and 1 [filled blue square in Fig. 3(b)]. If the
interferometer is tuned to p0 ¼ 0, a signal with variance
hδV2i ¼ V2

rms gives rise to a mean transition probability that
is quadratic in Vrms and t (Meriles et al., 2010),

δp ¼ p ¼ h1
2
½1 − cosðω0tþ γδVtÞ�i

≈ 1
4
γ2V2

rmst2: ð19Þ

This relation holds for small γVrmst ≪ 1. If the fluctuation is
Gaussian, the result canbe extended to any largevalue of γVrmst,

p ¼ 1
2
½1 − expð−γ2V2

rmst2=2Þ�: ð20Þ

Variance detection is especially important for detecting ac
signals when their synchronization with the sensing protocol
is not possible (Sec. VI.C.4), or when the signal represents a
noise source (Sec. VII).

V. SENSITIVITY

The unprecedented level of sensitivity offered by many
quantum sensors has been a key driving force of the field. In

0

.5

1

Signal to be measured, V

p(
V

)

σp

σp

δV

VminVmin

 

δp

(a) 

(b)

δp

δV

FIG. 3. Transition probability p for a Ramsey experiment as a
function of the signal V picked up by the sensor. (a) Slope
detection: The quantum sensor is operated at the p0 ¼ 0.5 bias
point (filled red circle). A small change in the signal δV leads to a
linear change in the transition probability δp ¼ δϕ=2 ¼ γδVt=2
(empty red circle). The uncertainty σp in the measured transition
probability leads to an uncertainty in the estimated signal Vmin
(gray shade). (b) Variance detection: The quantum sensor is
operated at the p0 ¼ 0 bias point (filled blue square). A small
change in the signal δV leads to a quadratic change δp ¼
δϕ2=4 ¼ γ2δV2t2=4 (empty blue square). The information on
the sign of δV is lost. The experimental readout error σp translates
into an uncertainty in the estimated signal Vmin, according to the
slope or curvature of the Ramsey fringe (gray shade).

C. L. Degen, F. Reinhard, and P. Cappellaro: Quantum sensing

Rev. Mod. Phys., Vol. 89, No. 3, July–September 2017 035002-12



this section, we quantitatively define the sensitivity. We start
by discussing the main sources of noise that enter a quantum
sensing experiment and derive expressions for the signal-to-
noise ratio (SNR) and the minimum detectable signal, i.e., the
signal magnitude that yields unit SNR. This will lead us to a
key quantity of this paper: the sensitivity vmin defined as the
minimum detectable signal per unit time. In particular, we find
in Sec. V.B.2 that vmin is

vmin ≈
ffiffiffiffiffi
2e

p

γC
ffiffiffiffiffi
Tχ

p ð21Þ

for slope detection and

vmin ≈
ffiffiffiffiffi
2e

p

γ
ffiffiffiffi
C

p ffiffiffiffiffi
T3
χ

4

q ð22Þ

for variance detection, where Tχ is the sensor’s coherence time,
C ≤ 1 is a dimensionless constant quantifying readout effi-
ciency, and e is Euler’s number [see Eqs. (43) and (45)]. In the
remainder of the section signal averaging and theAllanvariance
are briefly discussed, and a formal definition of sensitivity by
the quantum Cramér-Rao bound (QCRB) is given.

A. Noise

Experimental detection of the probability p will have a
nonzero error σp. This error translates into an error for the
signal estimate, which is determined by the slope or curvature
of the Ramsey fringe (see Fig. 3). In order to calculate SNR
and sensitivity, it is therefore important to analyze the main
sources of noise that enter σp.

1. Quantum projection noise

Quantum projection noise is the most fundamental source
of uncertainty in quantum sensing. The projective readout
during step 5 of the quantum sensing protocol (Sec. IV.B) does
not directly yield the fractional probability p ∈ ½0 � � � 1�, but
one of the two values 0 or 1 with probabilities 1 − p and p,
respectively. In order to precisely estimate p, the experiment is
repeated N times and the occurrences of 0 and 1 are binned
into a histogram [see Fig. 4(a)]. The estimate for p is then

p ¼ N1

N
; ð23Þ

where N1 is the number of measurements that gave a result
of 1. The uncertainty in p is given by the variance of the
binomial distribution (Itano et al., 1993),

σ2p;quantum ¼ 1

N
pð1 − pÞ: ð24Þ

The uncertainty in p therefore depends on the bias point p0 of
the measurement. For slope detection, where p0 ¼ 0.5, the
uncertainty is

σ2p;quantum ¼ 1

4N
for p0 ¼ 0.5. ð25Þ

Thus, the projective readout adds noise of order 1=ð2 ffiffiffiffi
N

p Þ to
the probability value p. For variance detection, where ideally

p0 ¼ 0, the projection noise would in principle be arbitrarily
low. In any realistic experiment, however, decoherence will
shift the fringe minimum to a finite value of p, where Eq. (25)
holds up to a constant factor.

2. Decoherence

A second source of error includes decoherence and relax-
ation during the sensing time t. Decoherence and relaxation
cause random transitions between states or random phase
pickup during coherent evolution of the qubit (for more detail,
see Sec. VII). The two processes lead to a reduction of the
observed probability δp with increasing sensing time t,

δpobsðtÞ ¼ δpðtÞe−χðtÞ; ð26Þ

where δpðtÞ is the probability that would be measured in the
absence of decoherence [see Eqs. (18) and (19)]. χðtÞ is a
phenomenological decoherence function that depends on the
noise processes responsible for decoherence (see Sec. VII.B.1).
Although the underlying noise processesmay bevery complex,
χðtÞ can often be approximated by a simple power law,

χðtÞ ¼ ðΓtÞa; ð27Þ

where Γ is a decay rate and typically a ¼ 1;…; 3. The decay
rate can be associated with a decay time Tχ ¼ Γ−1 that equals
the evolution time t, where δpobs=δp ¼ 1=e ≈ 37%. The decay
time Tχ , also known as the decoherence time or relaxation time
depending on the noise process, is an important figure of merit
of the qubit, as it sets the maximum possible evolution time t
available for sensing.

(a) (b) (c)

FIG. 4. Illustration of the sensor readout. N measurements are
performed producing fxjgj¼1;…;N readings on the physical
measurement apparatus. The readings fxjg are then binned into
a histogram. (a) Ideal readout. Only two values are observed in
the histogram, xj0i and xj1i, which correspond to the qubit states
j0i and j1i. All fxjg can be assigned to 0 or 1 with 100% fidelity.
(b) Single shot readout. Most fxjg can be assigned, but there is
an overlap between histogram peaks leading to a small error.
(c) Averaged readout. fxjg cannot be assigned. The ratio between
0 and 1 is given by the relative position of the mean value x̄ and
the error is determined by the histogram standard deviation σx. R
is the ratio of readout and projection noise, and C is an overall
readout efficiency parameter that is explained in the text.
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3. Errors due to initialization and qubit manipulations

Errors can also enter through the imperfect initialization or
manipulations of the quantum sensor. An imperfect initial-
ization leads to a similar reduction in the observed probability
δpobs as with decoherence

δpobs ¼ βδp; ð28Þ
where β < 1 is a constant factor that describes the reduction of
the observed δpobs as compared to the ideal δp. Contrary to
the case of decoherence, this reduction does not depend on the
sensing time t. Errors in qubit manipulations can cause many
effects, but will typically also lead to a reduction of δp. A
more general approach, considering, e.g., faulty initialization
through a density matrix approach, is briefly discussed in the
context of quantum limits to sensitivity (see Sec. V.D). In
addition, the observed probability is sometimes reduced by the
control sequence of the sensing protocol, for example, if there
is no one-to-one mapping between the initialization, sensing,
and readout basis (steps 2 and 4 in the protocol). Since β is a
constant of time, we assume β ¼ 1 in the following for reasons
of simplicity.

4. Classical readout noise

A final source of error is the classical noise added during
the readout of the sensor. Two situations can be distinguished,
depending on whether the readout noise is small or large
compared to the projection noise. We denote them as the
“single shot” and “averaged” readout regimes, respectively.
Because of the widespread inefficiency of quantum state
readout, classical readout noise is often the dominating source
of error.

a. Single shot readout

In the single shot regime, classical noise added during the
readout process is small. The physical reading x produced by
the measurement apparatus will be very close to one of the two
values xj0i and xj1i, which would have been obtained in the
ideal case for the qubit states j0i and j1i, respectively. By
binning the physical readings xj of j ¼ 1;…; N measure-
ments into a histogram, two peaks are observed centered at xj0i
and xj1i, respectively [see Fig. 4(b)]. However, compared to
the ideal situation [Fig. 4(a)], the histogram peaks are
broadened and there is a finite overlap between the tails of
the peaks. To obtain an estimate for p, all xj are assigned to
either 0 or 1 based on a threshold value xT chosen roughly
midway between xj0i and xj1i,

N0 ¼ number of measurements xj < xT; ð29Þ

N1 ¼ number of measurements xj > xT; ð30Þ

where p ¼ N1=N. Note that the choice of the threshold is not
trivial; in particular, for an unbiased measurement, xT depends
itself on the probability p.
Because of the overlap between histogram peaks, some

values xj will be assigned to the wrong state. The error
introduced due to wrong assignments is

σ2p;readout ¼
1

N
½κ0ð1 − κ0Þpþ κ1ð1 − κ1Þð1 − pÞ�; ð31Þ

where κ0 and κ1 are the fractions of measurements that are
erroneously assigned. The actual values for κ0;1 depend on the
exact type of measurement noise and are determined by the
cumulative distribution function of the two histogram peaks.
Frequently, the peaks have an approximately Gaussian dis-
tribution such that

κ0 ≈
1

2

�
1þ erf

�jxj0i − xT j
σx

��
; ð32Þ

and likewise for κ1, where erfðxÞ is the Gauss error function.
Moreover, if κ ≡ κ0 ≈ κ1 ≪ 1 are small and of similar
magnitude,

σ2p;readout ≈
κ

N
: ð33Þ

b. Averaged readout

When the classical noise added during the quantum state
readout is large, only one peak appears in the histogram and
the xj can no longer be assigned to xj0i or xj1i. The estimate for
p is then simply given by the mean value of x,

p ¼ x̄ − xj0i
xj1i − xj0i

¼ 1

N

XN
j¼1

xj − xj0i
xj1i − xj0i

; ð34Þ

where x̄ ¼ ð1=NÞP xj is the mean of fxjg. The standard
error of p is

σ2p;readout ¼
σ2x

ðxj1i − xj0iÞ2
¼ R2

4N
; ð35Þ

where jxj1i − xj0ij is the measurement contrast and

R≡ σp;readout
σp;quantum

¼ 2
ffiffiffiffi
N

p
σx

jxj1i − xj0ij
ð36Þ

is the ratio between classical readout noise and quantum
projection noise.
As an example, we consider the optical readout of an atomic

vapor magnetometer (Budker and Romalis, 2007) or of NV
centers in diamond (Taylor et al., 2008). For this example, xj0i
and xj1i denote the average numbers of photons collected per
readout for each state. The standard error is (under suitable
experimental conditions) dominated by shot noise σx ≈

ffiffiffī
x

p
.

The readout noise parameter becomes

R ≈
2

ffiffiffī
x

p

jxj1i − xj0ij
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ=2

p
ϵ

ffiffiffi
x

p
j1i

≈
2

ϵ
ffiffiffi
x

p
j1i

; ð37Þ

where ϵ ¼ j1 − xj0i=xj1ij is a relative optical contrast between
the states 0 < ϵ < 1, and the last equation represents the
approximation for ϵ ≪ 1.
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c. Total readout uncertainty

The classical readout noise σp;readout is often combined with
the quantum projection noise σp;quantum to obtain a total
readout uncertainty,

σ2p ¼ σ2p;quantum þ σ2p;readout

≈ ð1þ R2Þσ2p;quantum ≈
σ2p;quantum

C2
¼ 1

4C2N
; ð38Þ

where C ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2

p
≈ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4κ

p
is an overall readout

efficiency parameter (Taylor et al., 2008). C ≤ 1 describes the
reduction of the signal-to-noise ratio compared to an ideal
readout (C ¼ 1); see Fig. 4. We will in the following use
Eq. (38) to derive the SNR and minimum detectable signal.

B. Sensitivity

1. Signal-to-noise ratio

The SNR for a quantum sensing experiment can be
defined as

SNR ¼ δpobs

σp
¼ δpðtÞe−χðtÞ2C

ffiffiffiffi
N

p
; ð39Þ

where δpobs is given by Eq. (26) and σp is given by Eq. (38).
To further specify the SNR, the change in probability δp can
be related to the change in signal δV as δp ¼ δVqj∂q

VpðtÞj ∝
ðγtδVÞq, with q ¼ 1 for slope detection and q ¼ 2 for variance
detection (see Fig. 3). In addition, the number of measure-
ments N is equal to T=ðtþ tmÞ, where T is the total available
measurement time and tm is the extra time needed to initialize,
manipulate, and read out the sensor. The updated SNR
becomes

SNR ¼ δVqj∂q
VpðtÞje−χðtÞ2CðtmÞ

ffiffiffiffi
T

p
ffiffiffiffiffiffiffiffiffiffiffiffi
tþ tm

p ; ð40Þ

where CðtmÞ is a function of tm because the readout efficiency
often improves for longer readout times.

2. Minimum detectable signal and sensitivity

The sensitivity is defined as the minimum detectable signal
vmin that yields unit SNR for an integration time of 1 s
(T ¼ 1 s),

vqmin ¼
eχðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
tþ tm

p
2CðtmÞj∂q

VpðtÞj
∝
eχðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
tþ tm

p
2CðtmÞγqtq

: ð41Þ

Equation (41) provides clear guidelines for maximizing the
sensitivity. First, the sensing time t should be made as long as
possible. However, because the decay function χðtÞ exponen-
tially penalizes the sensitivity for t > Tχ, the optimum sensing
time is reached when t ≈ Tχ . Second, the sensitivity can be
optimized with respect to tm. In particular, if CðtmÞ does
improve as C ∝

ffiffiffiffiffi
tm

p
, which is a typical situation when

operating in the averaged readout regime, the optimum choice
is tm ≈ t. Conversely, if C is independent of tm, for example,

because the sensor is operated in the single shot regime or
because readout resets the sensor, tm should be made as short
as possible. Finally, C can often be increased by optimizing
the experimental implementation or using advanced quantum
schemes, such as quantum logic readout.
We now evaluate Eq. (41) for the most common exper-

imental situations:

a. Slope detection

For slope detection, p0 ¼ 0.5 and δpðtÞ ≈ 1
2
γVt [Eq. (18)].

The sensitivity is

vmin ¼
eχðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
tþ tm

p
γCðtmÞt

: ð42Þ

Note that the units of sensitivity are then typically given by the
units of the signal V to be measured times Hz−1=2. Assuming
tm ≪ t, we can find an exact optimum solution with respect to
t. Specifically, for a Ramsey measurement with an exponential
dephasing e−χðtÞ ¼ e−t=T

�
2 , the optimum evolution time is

t ¼ T�
2=2 and

vmin ¼
ffiffiffiffiffi
2e

p

γC
ffiffiffiffiffi
T�
2

p for t ¼ 1

2
T�
2: ð43Þ

This corresponds to Eq. (21) highlighted in the introduction
to this section.

b. Variance detection

For variance detection, δp ≈ 1
4
γ2V2

rmst2 [Eq. (19)]. The
sensitivity is

vmin ¼
�
2eχðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
tþ tm

p
CðtmÞγ2t2

�
1=2

. ð44Þ

In the limit of tm ≈ 0 and t ≈ Tχ , this expression simplifies to

vmin ¼
ffiffiffiffiffi
2e

p

γ
ffiffiffiffi
C

p ffiffiffiffiffi
T3
χ

4

q ; ð45Þ

which corresponds to Eq. (22) highlighted in the introduction
of the section. Thus, variance detection profits more from a
long coherence time Tχ than slope detection (but is, in turn,
more vulnerable to decoherence). Alternatively, for the detec-
tion of a noise spectral density SVðωÞ, the transition proba-
bility is δp ≈ 1

2
γ2SVðωÞTχ [see Eqs. (84) and (98)] and

Svmin
ðωÞ ≈ e

γ2C
ffiffiffiffiffi
Tχ

p : ð46Þ

3. Signal integration

Equations (44)–(46) refer to the minimum detectable signal
per unit time. By integrating the signal over longer measure-
ment times T, the sensor performance can be improved.
According to Eq. (40), the minimum detectable signal for an

arbitrary time T is Vq
minðTÞ ¼ vqmin=

ffiffiffiffi
T

p
. Therefore, the
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minimum detectable signal for slope and variance detection,
Eqs. (42) and (45), respectively, scale as

VminðTÞ ¼ vminT−1=2 for slope detection; ð47Þ

VminðTÞ ¼ vminT−1=4 for variance detection: ð48Þ

The corresponding scaling for the spectral density is SVmin
¼

Svmin
T−1=2. Note that variance detection improves only ∝ T1=4

with the integration time, while slope detection improves
∝ T1=2. Hence, for weak signals with long averaging times
T ≫ Tχ , variance detection is typically much less sensitive
than slope detection. As discussed in Sec. VIII, adaptive
sensing methods can improve on these limits.

C. Allan variance

Sensors are typically also characterized by their stability
over time. Indeed, while the sensitivity calculation suggests
that one will always improve the minimum detectable signal
by simply extending the measurement time, slow variations
affecting the sensor might make this impossible. These effects
can be quantified by the Allan variance (Allan, 1966) or its
square root, the Allan deviation. While the concept is based on
a classical analysis of the sensor output, it is still important for
characterizing the performance of quantum sensors. In par-
ticular, the Allan variance is typically reported to evaluate
the performance of quantum clocks (Hollberg et al., 2001;
Leroux, Schleier-Smith, and Vuletić, 2010b).
Assuming that the sensor is sampled over time at constant

intervals ts yielding the signal xj ¼ xðtjÞ ¼ xðjtsÞ, the Allan
variance is defined as

σ2XðτÞ ¼
1

2ðN − 1Þt2s
XN−1

j¼1

ðxjþ1 − xjÞ2; ð49Þ

where N is the number of samples xj. One is typically
interested in knowing how σ2X varies with time, given the
recorded sensor outputs. To calculate σ2XðtÞ one can group the
data in variable-sized bins and calculate the Allan variance for
each grouping. The Allan variance for each grouping time
t ¼ mts can then be calculated as

σ2XðmtsÞ ¼
1

2ðN − 2mÞm2t2s

XN−2m

j¼1

ðxjþm − xjÞ2: ð50Þ

The Allan variance can also be used to reveal the performance
of a sensor beyond the standard quantum limit (SQL) (Leroux,
Schleier-Smith, and Vuletić, 2010b), and its extension to
and limits in quantum metrology were recently explored
(Chabuda, Leroux, and Demkowicz-Dobrzański, 2016).

D. Quantum Cramér-Rao bound for parameter estimation

The sensitivity of a quantum sensing experiment can be
more rigorously considered in the context of the Cramér-Rao
bound applied to parameter estimation. Quantum parameter
estimation aims at measuring the value of a continuous

parameter V that is encoded in the state of a quantum system
ρV , via its interaction with the external signal we want to
characterize. The estimation process consists of two steps: in
the first step, the state ρV is measured; in the second step, the
estimate of V is determined by data processing the measure-
ment outcomes.
In the most general case, the measurement can be described

by a POVM M ¼ fEN
x g over the N copies of the quantum

system. The measurement yields the outcome x with condi-

tional probability pNðxjVÞ ¼ Tr½EðNÞ
x ρ⊗N

V �.
With some further data processing, we arrive at

the estimate v of the parameter V. The estimation uncertainty
can be described by the probability PNðvjVÞ ≔P

x p
ðNÞ
est ðvjxÞpNðxjVÞ, where pðNÞ

est ðvjxÞ is the probability
of estimating v from the measurement outcome x.
We can then define the estimation uncertainty as ΔVN ≔ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

v½v − V�2PNðvjVÞ
p

. Assuming that the estimation pro-
cedure is asymptotically locally unbiased, ΔVN obeys the
so-called Cramér-Rao bound

ΔVN ≥ 1=γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FNðVÞ

p
; ð51Þ

where

FNðVÞ ≔
X
x

1

pNðxjVÞ
�∂pNðxjVÞ

∂V
�

2

¼
X
x

1

Tr½EðNÞ
x ρ⊗n

V �

�∂Tr½EðNÞ
x ρ⊗n

V �
∂V

�2

ð52Þ

is the Fisher information associated with the given POVM
measurement (Braunstein and Caves, 1994).
By optimizing Eq. (51) with respect to all possible POVMs,

one obtains the QCRB (Helstrom, 1967; Holevo, 1982;
Braunstein and Caves, 1994; Braunstein, 1996; Paris, 2009;
Goldstein, Lukin, and Cappellaro, 2010)

ΔVN ≥
1

γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxMðNÞ ½FNðVÞ�

p ≥
1

γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NF ðρVÞ

p ; ð53Þ

where the upper bound of maxMðNÞ ½FNðVÞ� is expressed in
terms of the quantum Fisher information F ðρVÞ, defined as

F ðρVÞ ≔ Tr½R−1
ρV ð∂VρVÞρVR−1

ρV ð∂VρVÞ�; ð54Þ

with

R−1
ρ ðAÞ ≔

X
j;k∶λjþλk≠0

2Ajkjjihkj
λj þ λk

ð55Þ

being the symmetric logarithmic derivative written in the basis
that diagonalizes the state ρV ¼ P

j λjjjihjj.
A simple case results when ρV is a pure state, obtained

from the evolution of the reference initial state j0i under the
signal Hamiltonian jψVi ¼ e−iĤV tj0i. Then the QCRB is a
simple uncertainty relation (Helstrom, 1967; Holevo, 1982;
Braunstein and Caves, 1994; Braunstein, 1996),
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ΔVN ≥
1

2γ
ffiffiffiffi
N

p
ΔH

; ð56Þ

where ΔH ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hH2i − hHi2

p
. Note that the scaling of the

QCRB with the number of copies N−1=2 is a consequence of
the additivity of the quantum Fisher information for tensor
states ρ⊗N . This is the well-known SQL. To go beyond the
SQL, one then needs to use entangled states (see Sec. IX)—in
particular, simply using correlated POVMs is not sufficient.
Thus, to reach the QCRB, local measurements and at most
adaptive estimators are sufficient, without the need for
entanglement.
While the quantum Fisher information (and the QCRB)

provide the ultimate lower bound to the achievable uncertainty
for optimized quantum measurments, the simpler Fisher
information can be used to evaluate a given measurement
protocol, as achievable within experimental constraints.
Consider, for example, the sensing protocols described in

Sec. IV. For the Ramsey protocol, the quantum sensor state
after the interaction with the signal V is given by

ρ11ðV; tÞ ¼
1

2
; ρ12ðV; tÞ ¼ −

i
2
e−iγVte−χðtÞ: ð57Þ

Here e−χðtÞ describes decoherence and relaxation as discussed
with Eq. (26). If we assume to perform a projective meas-
urement in the σx basis, fj�ig ¼ ð1= ffiffiffi

2
p Þðj0i � j1iÞ, giving

the outcome probabilities pðx�jVÞ ¼ h�jρðVÞj�i, the Fisher
information is

F ¼
X
x

1

pðxjVÞ ½∂VpðxjVÞ�2 ¼
t2cos2ðγVtÞe−2χ
1 − e−2χsin2ðγVtÞ : ð58Þ

The Fisher information thus oscillates between its minimum,
where γVt ¼ ðkþ 1=2Þπ and F ¼ 0, and its optimum, where
γVt ¼ kπ and F ¼ t2e−2χ . The uncertainty in the estimate
δV ¼ 1=γ

ffiffiffiffiffiffiffi
NF

p
therefore depends on the sensing protocol

bias point. In the optimum case F corresponds to the quantum
Fisher information and we find the QCRB

ΔVN ¼ 1

γ
ffiffiffiffiffiffiffiffi
NF

p ¼ eχ

γt
ffiffiffiffi
N

p : ð59Þ

Depending on the functional form of χðtÞ, we can further find
the optimal sensing time for a given total measurement time.
Note that if we remember that N experiments will take a time
T ¼ Nðtþ tmÞ, and we add inefficiency due to the sensor
readout, we can recover the sensitivity vmin of Eq. (42).
Similarly, we can analyze more general protocols, such

as variance detection of random fields, simultaneous estima-
tion of multiple parameters (Baumgratz and Datta, 2016), or
optimized protocols for signals growing over time (Pang and
Jordan, 2016).

VI. SENSING OF ac SIGNALS

So far we have implicitly assumed that signals are static and
deterministic. For many applications it is important to extend
sensing to time-dependent signals. For example, it may be

required to detect the amplitude, frequency, or phase of an
oscillating signal. More broadly, one may be interested in
knowing the wave form of a time-varying parameter or
reconstructing a frequency spectrum. A diverse set of quantum
sensing methods has been developed for this purpose that are
summarized in the following two sections.
Before discussing the various sensing protocols in more

detail, it is important to consider the type of information that
one intends to extract from a time-dependent signal VðtÞ. In
this Sec. VI, we assume that the signal is composed of one or a
few harmonic tones and our goal is to determine the signal’s
amplitude, frequency, phase, or overall wave form. In the
following Sec. VII, we will discuss the measurement of
stochastic signals with the intent of reconstructing the noise
spectrum or measuring the noise power in a certain bandwidth.

A. Time-dependent signals

As measuring arbitrary time-dependent signals is a complex
task, we first focus on developing a basic set of ac sensing
protocols, assuming a single-tone ac signal given by

Vðt0Þ ¼ Vpk cosð2πfact0 þ αÞ: ð60Þ

This signal has three basic parameters, including the signal
amplitude Vpk, the frequency fac, and the relative phase α. Our
aim is to measure one or several of these parameters using
suitable sensing protocols.
Signal detection can be extended to multitone signals by

summing over individual single-tone signals,

Vðt0Þ ¼
X
m

Vpk;m cosð2πfac;mt0 þ αmÞ; ð61Þ

where Vpk;m, fac;m, and αm are the individual amplitudes,
frequencies, and phases of the tones, respectively.

B. Ramsey and echo sequences

To illustrate the difference between dc and ac sensing,
we reexamine the Ramsey measurement from Sec. IV.C.
The corresponding pulse diagram is given in Fig. 5(a). This
protocol is ideally suited to measure static shifts of the
transition energy. But is it also capable of detecting dynamical
variations? In order to answer this question, one can inspect
the phase ϕ accumulated during the sensing time t due to
either a static or a time-dependent signal VðtÞ,

ϕ ¼
Z

t

0

γVðt0Þdt0: ð62Þ

For a static perturbation, the accumulated phase is simply
ϕ ¼ γVt. For a rapidly oscillating perturbation, by contrast,
phase accumulation is averaged over the sensing time, and
ϕ ¼ γhVðt0Þit ≈ 0. To answer our question, the Ramsey
sequence will be sensitive only to slowly varying signals
up to some cutoff frequency ≈t−1.
Sensitivity to alternating signals can be restored by using

time-reversal (“spin-echo”) techniques (Hahn, 1950). To
illustrate this, we assume that the ac signal goes through
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exactly one period of oscillation during the sensing time t. The
Ramsey phase ϕ due to this signal is zero because the positive
phase buildup during the first half of t is exactly canceled by
the negative phase buildup during the second half of t.
However, if the qubit is inverted at time t=2 using a π pulse
[see Fig. 5(b)], the time evolution of the second period is
reversed, and the accumulated phase is nonzero,

ϕ ¼
Z

t=2

0

γVðt0Þdt0 −
Z

t

t=2
γVðt0Þdt0 ¼ 2

π
γVpkt cos α: ð63Þ

C. Multipulse sensing sequences

The spin-echo technique can be extended to sequences with
many π pulses. These sequences are commonly referred to as
multipulse sensing sequences or multipulse control sequences
and allow for a detailed shaping of the frequency response
of the quantum sensor. To understand the ac characteristics
of a multipulse sensing sequence, we consider the phase
accumulated for a general sequence of n π pulses applied at
times 0 < tj < t, with j ¼ 1;…; n. The accumulated phase is
given by

ϕ ¼
Z

t

0

γVðt0Þyðt0Þdt0; ð64Þ

where yðt0Þ ¼ �1 is the modulation function of the sequence
that changes sign whenever a π pulse is applied (Fig. 6). For a
harmonic signal Vðt0Þ ¼ Vpk cosð2πfact0 þ αÞ the phase is

ϕ ¼ γVpk

2πfac
½sinðαÞ − ð−1Þn sinð2πfactþ αÞ

þ 2
Xn
j¼1

ð−1Þjsinð2πfactj þ αÞ�

¼ γVpktWðfac; αÞ: ð65Þ

This defines for any multipulse sequence a weighting function
Wðfac; αÞ. For composite signals consisting of several har-
monics with different frequencies and amplitudes, Eq. (61),
the accumulated phase simply represents the sum of individual

tone amplitudes multiplied by the respective weighting
functions.

1. Carr-Purcell (CP) and periodic dynamical decoupling
sequences

The simplest pulse sequences used for sensing have
been initially devised in NMR (Slichter, 1996) and have been
further developed in the context of dynamical decoupling (DD)
(Viola and Lloyd, 1998). They are composed of n equally
spaced π pulses with an interpulse duration τ. The most
common types are Carr-Purcell (CP) pulse trains (Carr and
Purcell, 1954) [Fig. 5(c)] and periodic dynamical decoupling
(PDD) sequences (Khodjasteh and Lidar, 2005) [Fig. 5(d)].
For a basic CP sequence, tj ¼ ½ð2j − 1Þ=2�τ, and the

weighting function is (Taylor et al., 2008; Hirose, Aiello,
and Cappellaro, 2012)

WCPðfac; αÞ ¼
sinðπfacnτÞ
πfacnτ

½1 − secðπfacτÞ� cosðαþ πfacnτÞ:

ð66Þ

Similarly, for a PDD sequence, tj ¼ jτ and

(a)

(b)

(c)

(d)

FIG. 5. Pulse diagrams for dc and ac sensing sequences. Narrow
blocks represent π=2 pulses and wide blocks represent π pulses,
respectively. t is the total sensing time and τ is the interpulse
delay. (a) Ramsey sequence. (b) Spin-echo sequence. (c) Carr-
Purcell (CP) multipulse sequence. (d) PDD multipulse sequence.

Signal V(t’)

t = nτ

0

Rectified signal

(a)

(b)

(c)

time t’
0

Modulation function y(t’)
+1

-1

k=1

k=3

~1/t

N=10

k=5

frequency fac [1/(2τ)]
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0.0
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0.5
W2(fac)

π π π π π π π π π π π/2π/2 τ

FIG. 6. Modulation and weight functions of a CP multipulse
sequence. (a) CP multipulse sequence. (b) Signal Vðt0Þ, modu-
lation function yðt0Þ, and “rectified” signal Vðt0Þ × yðt0Þ. The
accumulated phase is represented by the area under the curve.
(c) Weight function W̄2ðfacÞ associated with the modulation
function. k is the harmonic order of the filter resonance.

C. L. Degen, F. Reinhard, and P. Cappellaro: Quantum sensing

Rev. Mod. Phys., Vol. 89, No. 3, July–September 2017 035002-18



WPDDðfac; αÞ ¼
sinðπfacnτÞ
πfacnτ

tanðπfacτÞ sinðαþ πfacnτÞ:

ð67Þ

Because of the first (sinc) term, these weighting functions
resemble narrow-band filters around the center frequencies
fac ¼ fk ¼ k=ð2τÞ, where k ¼ 1; 3; 5;… is the harmonic
order. In fact, they can be rigorously treated as filter functions
that filter the frequency spectrum of the signal VðtÞ (see
Sec. VII). For large pulse numbers n, the sinc term becomes
very peaked and the filter bandwidth Δf ≈ 1=ðnτÞ ¼ 1=t (full
width at half maximum) becomes very narrow. The narrow-
band filter characteristics can be summed up as follows [see
Fig. 5(c)],

fk ¼ k=ð2τÞ center frequencies; ð68Þ

Δf ≈ 1=t ¼ 1=ðnτÞ bandwidth; ð69Þ

WCPðαÞ ¼
2

πk
ð−1Þk−1=2 cosðαÞ

WPDDðαÞ ¼ −
2

πk
sinðαÞ

peak transmission:

ð70Þ

The advantage of the CP and PDD sequences is that their filter
parameters can be easily tuned. In particular, the pass-band
frequency can be selected via the interpulse delay τ, while the
filter width can be adjusted via the number of pulses n ¼ t=τ
(up to a maximum value of n ≈ T2=τ). The resonance order k
can also be used to select the pass-band frequency; however,
because k ¼ 1 provides the strongest peak transmission, most
reported experiments used this resonance. The time response
of the transition probability is

p ¼ 1

2
½1 − cos (Wðfac; αÞγVpkt)�

¼ 1

2

�
1 − cos

�
2γVpkt cos α

kπ

��
; ð71Þ

where the last expression represents the resonant case
(fac ¼ k=2τ) for CP sequences [Fig. 7(b)].

2. Lock-in detection

The phase ϕ acquired during a CP or PDD sequence
depends on the relative phase difference α between the ac
signal and the modulation function yðtÞ. For a signal that is in
phase with yðtÞ, the maximum phase accumulation occurs,
while for an out-of-phase signal ϕ ¼ 0.
This behavior can be exploited to add further capabilities

to ac signal detection. Kotler et al. (2011) showed that both
quadratures of a signal can be recovered, allowing one to
perform lock-in detection of the signal. Furthermore, it is
possible to correlate the phase acquired during two subsequent
multipulse sequences to perform high-resolution spectroscopy
of ac signals (see Sec. VI.E).

3. Other types of multipulse sensing sequences

Many varieties of multipulse sequences have been con-
ceived with the aim of optimizing the basic CP design,
including improved robustness against pulse errors, better
decoupling performance, narrower spectral response and
sideband suppression, and avoidance of signal harmonics.
A systematic analysis of many common sequences was

given by Cywiński et al. (2008). One preferred is the XY4,
XY8, and XY16 series of sequences (Gullion, Baker, and
Conradi, 1990) owing to their high degree of pulse error
compensation. A downside of XY type sequences are signal
harmonics (Loretz et al., 2015) and the sidebands common to
CP sequences with equidistant pulses. Other recent efforts
include sequences with nonequal pulse spacing (Zhao,
Wrachtrup, and Liu, 2014; Casanova et al., 2015; Ajoy et al.,
2017) or sequences composed of alternating subsequences
(Albrecht and Plenio, 2015). A Floquet spectroscopy
approach to multipulse sensing (Lang, Liu, and Monteiro,
2015) and a protocol to achieve optimal band-limited control
(Frey et al., 2017) have also been proposed.

4. ac signals with random phase

Often the multipulse sequence cannot be synchronized with
the signal or the phase α cannot be controlled. Then incoherent
averaging leads to phase cancellation hϕi ¼ 0. In this case, it
is advantageous to measure the variance of the phase hϕ2i
rather than its average hϕi. (Although such a signal technically
represents a stochastic signal, which will be considered in
more detail in the next section, it is more conveniently
described here.)
For a signal with fixed amplitude but random phase, the

variance is

hϕ2i ¼ γ2V2
rmst2W̄2ðfacÞ; ð72Þ

where Vrms ¼ Vpk=
ffiffiffi
2

p
is the rms amplitude of the signal and

W̄2ðfacÞ is the average over α ¼ 0;…; 2π of the weighting
functions,

p(
t)

1.0

0.5

0.0
0

accumulated phase φ = Vt
2π 3π 4ππ

(a)

(e)

(d)

(c)

(b)

FIG. 7. Transition probability pðtÞ as a function of
phase accumulation time t. (a) Ramsey oscillation [Eq. (14)].
(b) ac signal with fixed amplitude and optimum phase [Eq. (71)].
(c) ac signal with fixed amplitude and random phase [Eq. (75)].
(d) ac signal with random amplitude and random phase
[Eq. (76)]. (e) Broadband noise with χ ¼ Γt [Eq. (83)].
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W̄2ðfacÞ ¼
1

2π

Z
2π

0

W2ðfac; αÞdα. ð73Þ

For the CP and PDD sequences, the averaged functions are
given by

W̄2
CPðfacÞ ¼

sin2ðπfacnτÞ
2ðπfacnτÞ2

½1 − sec ðπfacτÞ�2;

W̄2
PDDðfacÞ ¼

sin2ðπfacnτÞ
2ðπfacnτÞ2

tan ðπfacτÞ2; ð74Þ

and the peak transmission at fac ¼ k=2τ is W̄2 ¼ 2=ðkπÞ2.
The time response of the transition probability is (Kotler et al.,
2013)

pðtÞ ¼ 1

2
½1 − J0(

ffiffiffi
2

p
W̄ðfacÞγVrmst)�

¼ 1

2

�
1 − J0

�
2

ffiffiffi
2

p
γVrmst
kπ

��
; ð75Þ

where J0 is the Bessel function of the first kind and the second
equation reflects the resonant case [Fig. 7(c)].

5. ac signals with random phase and random amplitude

If the amplitude Vpk is not fixed, but slowly fluctuating
between different measurements, the variance hϕ2i must be
integrated over the probability distribution of Vpk. A particu-
larly important situation is a Gaussian amplitude fluctuation
with an rms amplitude Vrms. In this case, the resonant time
response of the transition probability is

pðtÞ¼ 1

2

�
1− exp

�
−
W̄2γ2V2

rmst2

2k2

�
I0

�
W̄2γ2V2

rmst2

2k2

��
; ð76Þ

where I0 is the modified Bessel function of the first kind
[Fig. 7(d)].

D. Wave form reconstruction

The detection of ac fields can be extended to the more
general task of sensing and reconstructing arbitrary time-
dependent fields. A simple approach is to record the time
response pðtÞ under a specific sensing sequence, such as a
Ramsey sequence, and to reconstruct the phase ϕðtÞ and signal
VðtÞ from the time trace (Balasubramanian et al., 2009). This
approach is, however, limited to the bandwidth of the
sequence and by readout dead times.
To more systematically reconstruct the time dependence of

an arbitrary signal, one may use a family of pulse sequences
that forms a basis for the signal. A suitable basis is Walsh
dynamical decoupling sequences (Hayes et al., 2011), which
apply a π pulse every time the corresponding Walsh function
(Walsh, 1923) flips its sign. Under a control sequence with n
π pulses applied at the zero crossings of the nth Walsh
function yðt0Þ ¼ wnðt0=tÞ, the phase acquired after an acquis-
ition period t is

ϕðtÞ ¼ γ

Z
t

0

Vðt0Þyðt0Þdt0 ¼ γVnt; ð77Þ

which is proportional to the nth Walsh coefficient Vn of Vðt0Þ.
By measuring N Walsh coefficients (by applying N different
sequences) one can reconstruct an N-point functional approxi-
mation to the field Vðt0Þ from the Nth partial sum of the
Walsh-Fourier series (Magesan et al., 2013; Cooper et al.,
2014),

VNðt0Þ ¼
XN−1

n¼0

Vnwnðt0=tÞ; ð78Þ

which can be shown to satisfy limN→∞VNðt0Þ ¼ Vðt0Þ. A
similar result can be obtained using different basis functions,
such as Haar wavelets, as long as they can be easily
implemented experimentally (Xu et al., 2016).
An advantage of these methods is that they provide

protection of the sensor against dephasing, while extracting
the desired information. In addition, they can be combined
with compressive sensing techniques (Candés, Romberg, and
Tao, 2006; Magesan, Cooper, and Cappellaro, 2013; Puentes
et al., 2014) to reduce the number of acquisitions needed to
reconstruct the time-dependent signal. The ultimate metrology
limits in wave form reconstruction have also been studied
(Tsang, Wiseman, and Caves, 2011).

E. Frequency estimation

An important capability in ac signal detection is the precise
estimation of frequencies. In quantum sensing, most fre-
quency estimation schemes are based on dynamical decou-
pling sequences. These are discussed in the following.
Fundamental limits of frequency estimation based on the
quantum Fisher information were considered by Pang and
Jordan (2016).

1. Dynamical decoupling spectroscopy

A simple approach for determining a signal’s frequency is
to measure the response to pulse sequences with different
pulse spacings τ. This is equivalent to stepping the frequency
of a lock-in amplifier across a signal. The spectral resolution
of dynamical decoupling spectroscopy is determined by the
bandwidth of the weighting functionWðfac; τÞ, which is given
by Δf ≈ 1=t [see Eq. (69)]. Because t can be made only as
long as the decoherence time T2, the spectral resolution is
limited to Δf ≈ 1=T2. The precision of the frequency esti-
mation, which also depends on the signal-to-noise ratio, is
directly proportional to Δf.

2. Correlation sequences

Several schemes have been proposed and demonstrated
to further narrow the bandwidth and to perform high-
resolution spectroscopy. All of them rely on correlation-type
measurements where the outcomes of subsequent sensing
periods are correlated.
The first method is illustrated in Fig. 8(a) in combination

with multipulse detection. The multipulse sequence is sub-
divided into two equal sensing periods of duration ta ¼ t=2
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that are separated by an incremented free evolution period t1.
Since the multipulse sequence is phase sensitive, constructive
or destructive phase build-up occurs between the two sequen-
ces depending on whether the free evolution period t1 is a half
multiple or full multiple of the ac signal period Tac ¼ 1=fac.
The final transition probability therefore oscillates with t1 as

pðt1Þ ¼ 1
2
f1 − sin½Φ cosðαÞ� sin½Φ cosðαþ 2πfact1Þ�g

≈ 1
2
f1 −Φ2 cosðαÞ cosðαþ 2πfact1Þg; ð79Þ

where Φ ¼ γVpkt=kπ is the maximum phase that can be
accumulated during either of the two multipulse sequences.
The second equation is for small signals where sinΦ ≈Φ. For
signals with random phase, Eq. (79) can be integrated over α
and the transition probability simplifies to

pðt1Þ ≈
1

2

�
1 −

Φ2

2
cosð2πfact1Þ

�
. ð80Þ

Since the qubit is parked in j0i and j1i during the free
evolution period, relaxation is no longer governed by T2, but
by the typically much longer T1 relaxation time (Laraoui and
Meriles, 2013). In this way, a Fourier-limited spectral reso-
lution of Δf ∼ 1=T1 is possible. The resolution can be further
enhanced by long-lived auxiliary memory qubits (see Sec. X)
and resolution improvements by 2–3 orders of magnitude over
dynamical decoupling spectroscopy have been demonstrated
(Pfender et al., 2016; Rosskopf et al., 2016; Zaiser et al.,
2016). The correlation protocol was further shown to elimi-
nate several other shortcomings of multipulse sequences,
including signal ambiguities resulting from the multiple
frequency windows and spectral selectivity (Boss et al., 2016).

3. Continuous sampling

The second approach is the continuous sampling of a signal,
illustrated in Fig. 8(b). The output signal can then be Fourier

transformed to extract the undersampled frequency of the
original signal. Because continuous sampling no longer relies
on quantum state lifetimes, the Fourier-limited resolution can
be extended to arbitrary values and is limited only by total
experiment duration T, and ultimately the control hardware.
The original signal frequency can then be reconstructed from
the undersampled data record using compressive sampling
techniques (Nader, Björsell, and Händel, 2011). Continuous
sampling has recently led to the demonstration of μHz spectral
resolution (Boss et al., 2017; Schmitt et al., 2017).

VII. NOISE SPECTROSCOPY

In this section, we discuss methods for reconstructing the
frequency spectrum of stochastic signals, a task commonly
referred to as noise spectroscopy. Noise spectroscopy is an
important tool in quantum sensing, as it can provide much
insight into both external signals and the intrinsic noise of the
quantum sensor. In particular, good knowledge of the noise
spectrum can help the adoption of suitable sensing protocols
(such as dynamical decoupling or quantum error correction
schemes) to maximize the sensitivity of the quantum sensor.
Noise spectroscopy relies on the systematic analysis of

decoherence and relaxation under different control sequences.
This review focuses on two complementary frameworks for
extracting noise spectra. The first concept is that of “filter
functions,” where the phase pick-up due to stochastic signals
is analyzed under different dynamical decoupling sequences.
The second concept, known as “relaxometry,” has its origins
in the field of magnetic resonance spectroscopy and is closely
related to Fermi’s golden rule.

A. Noise processes

For the following analysis we assume that the stochastic
signal VðtÞ is Gaussian. Such noise can be described by
simple noise models, such as a semiclassical Gaussian noise
or the Gaussian spin-boson bath. In addition, we assume that
the autocorrelation function of VðtÞ,

GVðtÞ ¼ hVðt0 þ tÞVðt0Þi; ð81Þ

decays on a time scale tc that is shorter than the sensing time t,
such that successive averaging measurements are not corre-
lated. The noise can then be represented by a power spectral
density (Biercuk, Doherty, and Uys, 2011),

SVðωÞ ¼
Z

∞

−∞
e−iωtGVðtÞdt; ð82Þ

that has no sharp features within the bandwidth Δf ≈ 1=t of
the sensor. The aim of a noise spectroscopy experiment is to
reconstruct SVðωÞ as a function of ω over a frequency range of
interest.
Although this section focuses on Gaussian noise with

tc ≲ t, the analysis can be extended to other noise models
and correlated noise. When tc ≫ t, the frequency and ampli-
tude of VðtÞ are essentially fixed during one sensing
period and the formalism of ac sensing can be applied (see
Sec. VI.C). A rigorous derivation for all ranges of tc, but

multipulse
sequence

V(t’)

(b)

(a)

(c)

time t’

t1

ta ta

Init Readout

ta

ts
Init Readout

FIG. 8. Correlation spectroscopy. (a) ac signal Vðt0Þ. (b) Corre-
lation sequence. Two multipulse sequences are interrupted by an
incremented delay time t1. Because the multipulse sequences are
phase sensitive, the total phase accumulated after the second
multipulse sequence oscillates with fact1. The maximum t1 is
limited by the relaxation time T1, rather than the typically short
decoherence time T2. (c) Continouous sampling. The signal is
periodically probed in intervals of the sampling time ts. The
frequency can be estimated from a sample record of arbitrary
duration, permitting an arbitrarily fine frequency resolution.
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especially tc ≈ t, is given by Cummings (1962). More complex
noise models, such as 1=f noise with no well-defined tc, or
models that require a cumulant expansion beyond a first-order
approximation on the noise strength can also be considered
(Bergli and Faoro, 2007; Ban, Kitajima, and Shibata, 2009).
Finally, open-loop control protocols have been introduced
(Cywiński, 2014; Paz-Silva and Viola, 2014; Barnes et al.,
2016; Norris, Paz-Silva, and Viola, 2016) to characterize
stationary, non-Gaussian dephasing.

B. Decoherence, dynamical decoupling, and filter functions

There have beenmany proposals for examining decoherence
under different control sequences to investigate noise spectra
(Faoro and Viola, 2004; Almog et al., 2011; Yuge, Sasaki, and
Hirayama, 2011; Young and Whaley, 2012). In particular,
dynamical decoupling sequences based on multipulse proto-
cols (Sec. VI.C) provide a systematic means for filtering
environmental noise (Álvarez and Suter, 2011; Biercuk,
Doherty, and Uys, 2011; Kotler et al., 2011). These have been
implemented in many physical systems (Bylander et al., 2011;
Bar-Gill et al., 2012; Yan et al., 2012, 2013; Dial et al., 2013;
Kotler et al., 2013; Muhonen et al., 2014; Yoshihara et al.,
2014; Romach et al., 2015). A brief introduction to the method
of filter functions is presented in the following.

1. Decoherence function χ ðtÞ
Under the assumption of a Gaussian, stationary noise, the

loss of coherence can be captured by an exponential decay of
the transition probability with time t,

pðtÞ ¼ 1
2
ð1 − e−χðtÞÞ; ð83Þ

where χðtÞ is the associated decay function or decoherence
function that was already discussed in the context of sensi-
tivity (Sec. V). Quite generally, χðtÞ can be identified with an
rms phase accumulated during time t,

χðtÞ ¼ 1
2
ϕ2
rms ð84Þ

according to the expression for variance detection, Eq. (20).
Depending on the type of noise present, the decoherence

function shows a different dependence on t. For white noise,
the dephasing is Markovian and χðtÞ ¼ Γt, where Γ is the
decay rate. For Lorentzian noise centered at zero frequency the
decoherence function is χðtÞ ¼ ðΓtÞ3. For a generic 1=f-like
decay, where the noise falls of ∝ ωa (with a around unity),
the decoherence function is χðtÞ ¼ ðΓtÞaþ1 (Cywiński et al.,
2008; Medford et al., 2012) with a logarithmic correction
depending on the ratio of total measurement time and
evolution time (Dial et al., 2013). Sometimes, decoherence
may even need to be described by several decay constants
associated with several competing processes. A thorough
discussion of decoherence is presented in the recent review
by Suter and Álvarez (2016).

2. Filter function YðωÞ
The decoherence function χðtÞ can be analyzed under the

effect of different control sequences. Assuming the control
sequence has a modulation function yðtÞ (see Sec. VI.C), the

decay function is determined by the correlation integral (de
Sousa, 2009; Biercuk, Doherty, and Uys, 2011)

χðtÞ ¼ 1

2

Z
t

0

dt0
Z

t

0

dt00yðt0Þyðt00Þγ2GVðt0 − t00Þ; ð85Þ

where GVðtÞ is the autocorrelation function of VðtÞ
[Eq. (81)]. In the frequency domain the decay function can
be expressed as

χðtÞ ¼ 2

π

Z
∞

0

γ2SVðωÞjYðωÞj2dω; ð86Þ

where jYðωÞj2 is the so-called filter function of yðtÞ, defined
by the finite-time Fourier transform

YðωÞ ¼
Z

t

0

yðt0Þeiωt0dt0: ð87Þ

[Note that this definition differs by a factor of ω2 from the
one by Biercuk, Doherty, and Uys (2011)]. Thus, the filter
function plays the role of a transfer function, and the decay of
coherence is captured by the overlap with the noise spec-
trum SVðωÞ.
To illustrate the concept of filter functions we reconsider the

canonical example of a Ramsey sensing sequence. Here the
filter function is

jYðωÞj2 ¼ sin2ðωt=2Þ
ω2

: ð88Þ

The decoherence function χðtÞ then describes the “free-
induction decay”

χðtÞ ¼ 2

π

Z
∞

0

γ2SVðωÞ
sin2ðωt=2Þ

ω2
dω ≈

1

2
γ2SVð0Þt; ð89Þ

where the last equation is valid for a spectrum that is flat
around ω≲ π=t. The Ramsey sequence hence acts as a simple
sinc filter for the noise spectrum SVðωÞ, centered at zero
frequency and with a low-pass cutoff frequency of approx-
imately π=t.

3. Dynamical decoupling

To perform a systematic spectral analysis of SVðωÞ, one can
examine decoherence under various dynamical decoupling
sequences. Specifically, we inspect the filter functions of
periodic modulation functions ync;τcðtÞ, where a basic building
block y1ðtÞ of duration τc is repeated nc times. The filter
function of ync;τcðtÞ is given by

Ync;τcðωÞ ¼ Y1;τcðωÞ
Xnc−1
k¼0

eiτck

¼ Y1;τcðωÞe−iðnc−1Þωτc=2
sinðncωτc=2Þ
sinðωτc=2Þ

; ð90Þ

where Y1;τcðωÞ is the filter function of the basic building
block. For large cycle numbers, Ync;τcðωÞ presents sharp peaks
at multiples of the inverse cycle time τ−1c , and it can be
approximated by a series of δ functions.
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Two specific examples of periodic modulation functions
include the CP and PDD sequences considered in Sec. VI.C,
where τc ¼ 2τ and nc ¼ n=2. The filter function for large
pulse numbers n is

jYn;τj2 ≈
X
k

2π

ðkπÞ2 sinc½ðω − ωkÞt=2�2

≈
X
k

2π

ðkπÞ2 tδðω − ωkÞ; ð91Þ

where ωk ¼ 2π × k=ð2τÞ are resonances with k ¼ 1; 3; 5;…
[note that these expressions are equivalent to the filters of
Eq. (74) found for random phase signals].
The decay function can then be expressed by a simple sum

of different spectral density components,

χðtÞ ¼ 2

π

Z
∞

0

γ2SVðωÞ
X
k

2π

ðkπÞ2 tδðω − ωkÞdω

¼ 4t
π2

X
k

γ2SVðωkÞ
k2

. ð92Þ

This result provides a simple strategy for reconstructing the
noise spectrum. By sweeping the time τ between pulses the
spectrum can be probed at various frequencies. Since the filter
function is dominated by the first harmonic (k ¼ 1), the
frequency corresponding to a certain τ is 1=ð2τÞ. For a more
detailed analysis the contributions from higher harmonics
as well as the exact shape of the filter functions have to be
taken into account. The spectrum can then be recovered by
spectral decomposition (Álvarez and Suter, 2011; Bar-Gill
et al., 2012).
The filter analysis can be extended to more general

dynamical decoupling sequences. In particular, Zhao,
Wrachtrup, and Liu (2014) considered periodic sequences
with more complex building blocks, and Cywiński et al.
(2008) considered aperiodic sequences such as the Uhrig
dynamical decoupling sequence.

C. Relaxometry

An alternative framework for analyzing relaxation and
doherence was developed in the field of magnetic resonance
spectroscopy and is commonly referred to as relaxometry
(Abragam, 1961). The concept was later extended to the
context of qubits (Schoelkopf et al., 2003). The aim of
relaxometry is to connect the spectral density SVðωÞ of a
noise signal VðtÞ to the relaxation rate Γ in first-order kinetics
χðtÞ ¼ Γt. Relaxometry is based on first-order perturbation
theory and Fermi’s golden rule. The basic assumptions are that
the noise process is approximately Markovian and that the
noise strength is weak, such that first-order perturbation
theory is valid. Relaxometry has found many applications
in magnetic resonance and other fields, especially for mapping
high-frequency noise based on T1 relaxation time measure-
ments (Kimmich and Anoardo, 2004).

1. Basic theory of relaxometry

To derive a quantitative relationship between the decay rate
Γ and a noise signal VðtÞ, we briefly revisit the elementary
formalism of relaxometry (Abragam, 1961). In the first step,
VðtÞ can be expanded into Fourier components,

VðtÞ ¼ 1

2π

Z
∞

−∞
dωfVðωÞe−iωt þ V†ðωÞeiωtg; ð93Þ

where VðωÞ ¼ V†ð−ωÞ. Next we calculate the probability
amplitude c1 that a certain frequency component VðωÞ causes
a transition between two orthogonal sensing states jψ0i and
jψ1i during the sensing time t. Since the perturbation is weak,
perturbation theory can be applied. The probability amplitude
c1 in first-order perturbation theory is

c1ðtÞ ¼ −i
Z

t

0

dt0hψ1jĤVðωÞjψ0ieiðω01−ωÞt0

¼ −ihψ1jĤVðωÞjψ0i
eiðω01−ωÞt − 1

iðω01 − ωÞ ; ð94Þ

where ĤVðωÞ is the Hamiltonian associated with VðωÞ and
ω01 is the transition energy between states jψ0i and jψ1i. The
transition probability is

jc1ðtÞj2 ¼ jhψ1jĤVðωÞjψ0ij2
�
sin½ðω01 − ωÞt=2�

ðω01 − ωÞ=2
�

2

≈ 2πjhψ1jĤVðωÞjψ0ij2tδðω01 − ωÞ; ð95Þ
where the second equation reflects that, for large t, the sinc
function approaches a δ function peaked at ω01. The asso-
ciated transition rate is

∂jc1ðtÞj2
∂t ≈ 2πjhψ1jĤVðωÞjψ0ij2δðω01 − ωÞ: ð96Þ

This is Fermi’s golden rule expressed for a two-level system
that is coupled to a radiation field with a continuous frequency
spectrum (Sakurai and Napolitano, 2011).
This transition rate is due to a single frequency component

of ĤVðωÞ. To obtain the overall transition rate Γ, Eq. (96) must
be integrated over all frequencies,

Γ ¼ 1

π

Z
∞

0

dω2πjhψ1jĤVðωÞjψ0ij2δðω01 − ωÞ

¼ 2jhψ1jĤVðω01Þjψ0ij2
¼ 2γ2SV01

ðω01Þjhψ1jσV=2jψ0ij2; ð97Þ

where in the last equation SV01
is the spectral density of the

component(s) of VðtÞ that can drive transitions between jψ0i
and jψ1i, multiplied by a transition matrix element
jhψ1jσV=2jψ0ij2 of order unity that represents the operator
part of ĤV ¼ VðtÞσV=2 [see Eq. (5)].
Equation (97) is an extremely simple, yet powerful and

quantitative relationship: the transition rate equals the spectral
density of the noise evaluated at the transition frequency,
multiplied by a matrix element of order unity (Abragam,
1961; Schoelkopf et al., 2003). The expression can also be
interpreted in terms of the rms phase ϕrms. According to
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Eq. (84), ϕ2
rms ¼ 2χðtÞ ¼ 2Γt, which in turn yields (setting

jhψ1jσV=2jψ0ij2 ¼ 1
4
)

ϕ2
rms ¼ γ2SV01

ðω01Þt: ð98Þ

The rms phase thus corresponds to the noise integrated over an
equivalent noise bandwidth of 1=ð2πtÞ.
The relation between the transition rate Γ and the spectral

density can be further specified for vector signals V⃗. In this
case the transition rate represents the sum of the three vector
components of Vj, where j ¼ x, y, z,

Γ ¼ 2
X

j¼x;y;z

jhψ1jĤVj
ðωjÞjψ0ij2

¼ 2
X

j¼x;y;z

γ2SVj
ðωjÞjhψ1jσ̂jjψ0ij2; ð99Þ

where SVj
ðωjÞ is the spectral density of Vj, ωj is a transition

frequency that reflects the energy exchange required for
changing the state, and σ̂j are Pauli matrices. Note that if
fjψ0i; jψ1ig are coherent superposition states, Vx and Vy

represent the components of V⊥ that are in phase and out of
phase with the coherence, rather than the static components of
the vector signal V⃗.
Relaxation rates can be measured between any set of

sensing states fjψ0i; jψ1ig, including superposition states.
This gives rise to a great variety of possible relaxometry
measurements. For example, the method can be used to probe
different vector components VjðtÞ [or commuting and non-
commuting signals V∥ðtÞ and V⊥ðtÞ, respectively] based on
the selection of sensing states. Moreover, different sensing
states typically have vastly different transition energies,
providing a means to cover a wide frequency spectrum. If
multiple sensing qubits are available, the relaxation of higher-
order quantum transitions can be measured, which gives
additional freedom to probe different symmetries of the
Hamiltonian.
An overview of the most important relaxometry protocols

is given in Table II and Fig. 9. They are briefly discussed in
the following.

2. T1 relaxometry

T1 relaxometry probes the transition rate between states j0i
and j1i. This is the canonical example of energy relaxation.
Experimentally, the transition rate is measured by initializing
the sensor into j0i at time t0 ¼ 0 and inspecting p ¼ jh1jαij2

at time t0 ¼ twithout any further manipulation of the quantum
system [see Fig. 9(a)]. The transition rate is

ðT1Þ−1 ¼ 1
2
γ2SV⊥ðω0Þ; ð100Þ

where T1 is the associated relaxation time and SV⊥ ¼ SVx
þ

SVy
. Thus, T1 relaxometry is sensitive only to the transverse

component of V⃗. Because T1 can be very long, very high
sensitivities are in principle possible, assuming that the
resonance is not skewed by low-frequency noise (Joas et al.,
2017; Stark et al., 2017). By tuning the energy splitting ω0

between j0i and j1i, for example, through the application of a
static control field, a frequency spectrum of SV⊥ðωÞ can be
recorded (Kimmich and Anoardo, 2004). For this reason and
because it is experimentally simple, T1 relaxometry has found
many applications. For example, single-spin probes have been
used to detect the presence of magnetic ions (Steinert et al.,
2013), spin waves in magnetic films (van der Sar et al., 2015),
high-frequency magnetic fluctuations near surfaces (Myers
et al., 2014; Rosskopf et al., 2014; Romach et al., 2015), and
single molecules (Sushkov et al., 2014). T1 relaxometry has
also been applied to perform spectroscopy of electronic and
nuclear spins (Hall et al., 2016). In addition, considerable
effort has been invested in mapping the noise spectrum near
superconducting flux qubits by combining several relaxometry
methods (Bialczak et al., 2007; Lanting et al., 2009; Bylander
et al., 2011; Yan et al., 2013).

3. T�
2 and T2 relaxometry

T�
2 relaxometry probes the transition rate between the

superposition states j�i ¼ ðj0i � e−iω0tj1iÞ= ffiffiffi
2

p
. This

t

t

t

Init

(a)

(b)

(c)

Readout

π/2Init π/2 Readout

π/2Init π/2 Readout

FIG. 9. Common relaxometry protocols. (a) T1 relaxometry.
(b) T�

2 relaxometry. (c) Dressed state relaxometry. Narrow black
boxes represent π=2 pulses and the gray box in (c) represents a
resonant or off-resonant drive field.

TABLE II. Summary of noise spectroscopy methods. j�i ¼ ðj0i � j1iÞ= ffiffiffi
2

p
.

Method
Sensing states
fjψ0i; jψ1ig

Sensitive to V∥
at frequency

Sensitive to V⊥
at frequency

Frequency
tunable via

Ramsey fjþi; j−ig 0 � � �a � � �
Spin echo fjþi; j−ig 1=t � � �a � � �
Dynamical decoupling fjþi; j−ig πk=τ, with k ¼ 1; 3;… � � �a Pulse spacing τ, resonance order k
T1 relaxometry fj0i; j1ig � � � ω0 Static control field
Dressed states (resonant) fjþi; j−ig ω1 � � �a Drive field amplitude ω1

Dressed states (off resonant) fjþi; j−ig ωeff ≈ Δω � � �a Detuning Δω
aAlso affected by T1 relaxation.
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corresponds to the free-induction decay observed in a Ramsey
experiment [Fig. 9(b)]. The associated dephasing time T�

2 is
given by

ðT�
2Þ−1 ¼ 1

4
γ2SV⊥ðω0Þ þ 1

2
γ2SV∥

ð0Þ; ð101Þ

where SV∥
¼ SVz

[see also Eq. (89)]. The transverse SV⊥ term
in Eq. (101) involves a “bit flip” and the parallel SV∥

term
involves a “phase flip.” Because a phase flip does not require
energy, the spectral density is probed at zero frequency. Since
SVðωÞ is often dominated by low-frequency noise, SV∥

ð0Þ is
typically much larger than SV⊥ðω0Þ and the high-frequency
contribution can often be neglected. Note that Eq. (101) is
exact only when the spectrum SV∥

ðωÞ is flat up to ω ∼ π=t.
T�
2 relaxometry can be extended to include dephasing under

dynamical decoupling sequences. The relevant relaxation time
is then usually denoted by T2 rather than T�

2. Dephasing under
dynamical decoupling is more rigorously described by using
filter functions (see Sec. VII.B.2).

4. Dressed state methods

Relaxation can also be analyzed in the presence of a
resonant drive field. This method is known as “spin locking”
in magnetic resonance (Slichter, 1996). Because of the
presence of the resonant field the degeneracy between j�i
is lifted and the states are separated by the energy ℏω1, where
ω1 ≪ ω0 is the Rabi frequency of the drive field. A phase
flip therefore is no longer energy conserving. The associated
relaxation time T1ρ is given by

ðT1ρÞ−1 ≈ 1
4
γ2SV⊥ðω0Þ þ 1

2
γ2SV∥

ðω1Þ. ð102Þ

By systematically varying the Rabi frequency ω1, the spec-
trum SV∥

ðω1Þ can be recorded (Loretz, Rosskopf, and Degen,
2013; Yan et al., 2013). Because ω1 ≪ ω0, dressed states
provide useful means for covering the medium frequency
range of the spectrum (see Fig. 10). In addition, since dressed
state relaxometry does not require sweeping a static control
field for adjusting the probe frequency, it is more versatile than
standard T1 relaxometry.
Dressed state methods can be extended to include

off-resonant drive fields. Specifically, if the drive field is
detuned by Δω from ω0, relaxation is governed by a modified
relaxation time

ðT1ρÞ−1 ≈ γ2
1

4

�
1þ Δω2

ω2
eff

�
SV⊥ðω0Þ þ

1

2

ω2
1

ω2
eff

γ2SV∥
ðωeffÞ;

ð103Þ

where ωeff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
1 þ Δω2

p
is the effective Rabi frequency. A

detuning therefore increases the accessible spectral range toward
higher frequencies. For a very large detuning the effective
frequency becomes similar to the detuning ωeff ≈ Δω, and the
drive field enters only as a scaling factor for the spectral density.
Detuned drive fields have been used to map the 1=f noise
spectrum of transmon qubits up to the GHz range (Slichter
et al., 2012).

VIII. DYNAMIC RANGE AND ADAPTIVE SENSING

“Adaptive sensing” refers to a class of techniques address-
ing the intrinsic problem of limited dynamic range in quantum
sensing: The basic quantum sensing protocol cannot simulta-
neously achieve high sensitivity and measure signals over a
large amplitude range.
The origin of this problem lies in the limited range of values

for the probability p, which must fall between 0 and 1. For the
example of a Ramseymeasurement,p oscillates with the signal
amplitude V and phase wrapping occurs once γVt exceeds
�π=2, where t is the sensing time. Given a measured transition
probability p, there is an infinite number of possible signal
amplitudes V that can correspond to this value of p (see top
row of Fig. 11). A unique assignment hence requires a priori
knowledge that V lies within �π=ð2γtÞ, or within half a
Ramsey fringe, of an expected signal amplitude. This defines
a maximum allowed signal range,

Vmax ¼
π

γt
: ð104Þ

The sensitivity of the measurement, on the other hand, is
proportional to the slope of the Ramsey fringe and reaches its
optimum when t≈T�

2. The smallest detectable signal is approx-
imately Vmin≈2=γC

ffiffiffiffiffiffiffiffiffi
T�
2T

p
, where T is the total measurement

time and C is the readout efficiency parameter [see Eqs. (43)
and (47)]. The dynamic range is then given by the maximum
allowed signal divided by the minimum detectable signal,

DR ¼ Vmax

Vmin
¼ πC

ffiffiffiffi
T

p

2
ffiffiffiffiffi
T�
2

p ∝
ffiffiffiffi
T

p
: ð105Þ

Hence, the basic measurement protocol can be applied only to
small changes of a quantity around a fixed known value,
frequently zero. The protocol does not apply to the problem
of determining the value of a large and a priori unknown
quantity. Moreover, the dynamic range improves only with the
square root of the total measurement time T.

1 GHz1 MHz1 kHzDC

Electronic spins, superconducting qubits

1 MHz1 kHz1 HzDC

Nuclear spins, trapped ions (vibrational)

Dressed states (off-resonant)

T1 relaxometry

Ramsey

Multipulse

Hahn echo

Dressed states

FIG. 10. Typical spectral range of noise spectroscopy protocols.
Scales refer to the quantum sensors discussed in Sec. III.
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A. Phase estimation protocols

Interestingly, a family of advanced sensing techniques can
efficiently address this problem and achieve a dynamic range
that scales close to DR ∝ T. This scaling is sometimes
referred to as another instance of the Heisenberg limit, because
it can be regarded as a 1=T scaling of sensitivity at a fixed
Vmax. The central idea is to combine measurements with
different sensing times t such that the least sensitive meas-
urement with the highest Vmax yields a coarse estimate of the
quantity of interest, which is subsequently refined by more
sensitive measurements (Fig. 11).

In the following we discuss protocols that use exponentially
growing sensing times tm ¼ 2mt0, where m ¼ 0; 1;…; M and
t0 is the smallest time element (see Fig. 11). Although other
scheduling is possible, this choice allows for an intuitive
interpretation: subsequent measurements estimate subsequent
digits of a binary expansion of the signal. The maximum
allowed signal is then set by the shortest sensing time
Vmax ¼ π=γt0, while the smallest detectable signal is deter-
mined by the longest sensing timeVmin ≈ 2=γC

ffiffiffiffiffiffiffiffi
tMT

p
. Because

T ∝ tM due to the exponentially growing interrogation times,
the dynamic range of the improved protocol scales as

DR ∝
ffiffiffiffiffiffiffiffi
tMT

p
t0

∝ T: ð106Þ

This scaling is obvious from an order-of-magnitude estimate:
adding an additional measurement step increases both preci-
sion and measurement duration t by a factor of 2, such that
precision scales linearly with total acquisition time T. We now
discuss three specific implementations of this idea.

1. Quantum phase estimation

All three protocols can be considered variations of the
phase estimation scheme depicted in Fig. 12(a). The scheme
was originally put forward by Shor (1994) in the seminal
proposal of a quantum algorithm for prime factorization and
was interpreted by Kitaev (1995), as a phase estimation
algorithm.
The original formulation applies to the problem of finding

the phase ϕ of the eigenvalue e2πiϕ of a unitary operator Û,
given a corresponding eigenvector jψi. This problem can be
generalized to estimating the phase shift ϕ imparted by
passage through an interferometer or exposure to an external
field. The algorithm employs a register of N auxiliary qubits
(N ¼ 3 in Fig. 12) and prepares them into a digital repre-
sentation jϕi ¼ jϕ1ijϕ2i � � �jϕMi of a binary expansion of

π/2 π/2
π/t

tM

init readout

V

t1

t0

p(V)

least 
significant
digit (LSD)

most
significant
digit (MSD)

.

.

.

maximum signal Vmax

compatible V

minimum signal Vmin

.

.

.

FIG. 11. High dynamic range sensing. A series of measurements
with different interrogation times t is combined to estimate a signal
of interest. The shortest measurement (lowest line) has the largest
allowed signal Vmax and provides a coarse estimate of the quantity,
which is subsequently refined by longer and more sensitive
measurements. Although the pðVÞ measured in a sensitive meas-
urement (top line) can correspond to many possible signal values,
the coarse estimates allow one to extract a unique signal value V.

QFT-1

UU2U4ψ

MSD

LSD

UU2U4ψ
X

X

X
R(π/4)

R(π/2)

R(π/2) MSD

LSD UU2U4ψ

X

X

X
R(Φ1)

Bayesian
estimator

R(Φ2)

R(Φ3)

MSD

X

R(Φ3)

LSD

X
R(Φ2)

X
R(Φ1)'

'

'

0H

0H

0H

0H

0H

0H

0H

0H

0H

0H

0H

0H

(a) Quantum phase estimation

(b) Adaptive

(c) Non-adaptive (Bayesian)

FIG. 12. Phase estimation algorithms. (a) Quantum phase estimation by the inverse quantum Fourier transform, as it is employed in
prime factorization algorithms (Shor, 1994; Kitaev, 1995). (b) Adaptive phase estimation. Here the quantum Fourier transform is
replaced by measurement and classical feedback. Bits are measured in ascending order, subtracting the lower digits from measurements
of higher digits by phase gates that are controlled by previous measurement results. (c) Nonadaptive phase estimation. Measurements of
all digits are fed into a Bayesian estimation algorithm to estimate the most likely value of the phase.H represents a Hadamard gate, RðΦÞ
a Z rotation by the angle Φ, and U the propagator for one time element t0. The boxes labeled by “x” represent readouts.
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ϕ ¼ P
M
m¼1 ϕm2

−m by a sequence of three processing steps
as follows:

(1) State preparation: All qubits are prepared in a
coherent superposition state jþi ¼ ðj0i þ j1iÞ= ffiffiffi

2
p

by an initial Hadamard gate. The resulting state of
the full register can then be written as

1ffiffiffiffiffiffi
2M

p
X2M−1

j¼0

jjiM; ð107Þ

where jjiM denotes the register state in binary ex-
pansion j0iM ¼ j00 � � �0i, j1iM ¼ j00 � � � 1i, j2iM ¼
j00 � � � 10i, etc.

(2) Phase encoding: The phase of each qubit is tagged
with a multiple of the unknown phase ϕ. Specifically,
qubit m is placed in state ðj0i þ e2πi2

mϕj1iÞ= ffiffiffi
2

p
.

Technically, this can be implemented by exploiting
the backaction of a controlled-Û2m gate that is acting
on the eigenvector ψ conditional on the state of qubit
m. Since ψ is an eigenvector of Ûj for arbitrary j, this
action transforms the joint qubit-eigenvector state as

1ffiffiffi
2

p ðj0i þ j1iÞ ⊗ jψi

→
1ffiffiffi
2

p ðj0i þ e2πi2
mϕj1iÞ ⊗ jψi. ð108Þ

Here the backaction on the control qubit m creates
the required phase tag. The state of the full register
evolves to

1ffiffiffiffiffiffi
2M

p
X2M−1

j¼0

e2πiϕj=2
M jji. ð109Þ

In quantum sensing, phase tagging by backaction is
replaced by the exposure of each qubit to an external
field for a time 2mt0 (or passage through an interfer-
ometer of length 2ml0).

(3) Quantum Fourier transform: In the last step, an
inverse quantum Fourier transform (QFT) (Nielsen
and Chuang, 2000) is applied to the qubits. This
algorithm can be implemented with polynomial
effort [i.e., using OðM2Þ control gates]. The QFT
recovers the phase ϕ from the Fourier series (109)
and places the register in state

jϕi ¼ jϕ1ijϕ2i � � �jϕMi: ð110Þ

A measurement of the register directly yields a digital
representation of the phase ϕ. To provide an estimate of
ϕwith 2−M accuracy, 2M applications of the phase shift
Û are required. Hence, the algorithm scales linearly
with the number of applications of Û which in turn is
proportional to the total measurement time T.

Quantum phase estimation is the core component of Shor’s
algorithm, where it is used to compute discrete logarithms
with polynomial time effort (Shor, 1994).

2. Adaptive phase estimation

While quantum phase estimation based on the QFT can be
performed with polynomial time effort, the algorithm requires
two-qubit gates, which are difficult to implement experimen-
tally, and the creation of fragile entangled states. This limitation
can be circumvented by an adaptive measurement scheme
that reads the qubits sequentially, feeding back the classical
measurement result into the quantum circuit (Griffiths andNiu,
1996). The scheme is illustrated in Fig. 12(b).
The key idea of adaptive phase estimation is to first measure

the least significant bit of ϕ, represented by the lowest qubit in
Fig. 12(b). In the measurement of the next significant bit, this
value is subtracted from the applied phase. The subtraction
can be implemented by classical unitary rotations conditioned
on the measurement result, for example, by controlled Rðπ=jÞ
gates as shown in Fig. 12(b). This procedure is then repeated
in ascending order of the bits. The QFT is thus replaced by
measurement and classical feedback, which can be performed
using a single qubit sensor.
In practical implementations (Higgins et al., 2007), the

measurement of each digit is repeated multiple times or
performed on multiple parallel qubits. This is possible because
the controlled-U gate does not change the eigenvector ψ, so that
it can be reused as often as required. TheHeisenberg limit can be
reached only if the number of resources (qubits or repetitions)
spent on each bit are carefully optimized (Berry et al., 2009;
Said, Berry, and Twamley, 2011; Cappellaro, 2012). Clearly,
most resources should be allocated to the most significant bit,
because errors at this stage are most detrimental to sensitivity.
The implementation by Bonato et al. (2016), for example,
scaled the number of resources Nm linearly according to

Nm ¼ Gþ FðM − 1 −mÞ ð111Þ

with typical values of G ¼ 5 and F ¼ 2.

3. Nonadaptive phase estimation

Efficient quantum phase estimation can also be imple-
mented without adaptive feedback, with the advantage of
technical simplicity (Higgins et al., 2009). A set of measure-
ments fxjgj¼1;…;N (where N > M) is used to separately
determine each unitary phase 2mϕwith a set of fixed, classical
phase shifts before each readout. This set of measurements
still contains all the information required to extract ϕ, which
can be motivated by the following arguments: given a
redundant set of phases, a postprocessing algorithm can
mimic the adaptive algorithm by postselecting those results
that have been measured using the phase most closely
resembling the correct adaptive choice. From a spectroscopic
point of view, measurements with different phases correspond
to Ramsey fringes with different quadratures. Hence, at least
one qubit of every digit will perform its measurement on the
slope of a Ramsey fringe, allowing for a precise measurement
of 2mϕ regardless of its value.
The phase ϕ can be recovered by Bayesian estimation.

Every measurement xj ¼ �1 provides information about ϕ,
which is described by the a posteriori probability

pðϕjxjÞ; ð112Þ
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the probability that the observed outcome xj stems from a
phase ϕ. This probability is related to the inverse conditional
probability pðxljϕÞ, the excitation probability describing
Ramsey fringes, by Bayes’s theorem. The joint probability
distribution of all measurements is obtained from the product

pðϕÞ ∝
Y
j

pðϕjxjÞ; ð113Þ

from which the most likely value of ϕ is picked as the final
result (Nusran, Ummal, and Dutt, 2012; Waldherr et al.,
2012). Here, too, acquisition time scales with the significance
of the bit measured to achieve the Heisenberg limit.

4. Comparison of phase estimation protocols

All of these variants of phase estimation achieve a DR ∝ T
scaling of the dynamic range. They differ, however, by a
constant offset. Adaptive estimation is slower than quantum
phase estimation by the QFT since it trades spatial resources
(entanglement) into temporal resources (measurement time).
Bayesian estimation in turn is slower than adaptive estimation
due to additional redundant measurements.
Experimentally, Bayesian estimation is usually simple to

implement because no real-time feedback is needed and the
phase estimation can be performed a posteriori. Adaptive
estimation is technically more demanding since real-time
feedback is involved, which often requires dedicated hardware
(such as field-programmable gate arrays or a central processing
unit) for the fast decision making. Quantum phase estimation
by the QFT, finally, requires many entangled qubits.

B. Experimental realizations

The proposals of Shor (1994), Kitaev (1995), and Griffiths
and Niu (1996) were followed by a decade where research
toward Heisenberg-limited measurements has focused mostly
on the use of entangled states, such as the N00N state (see
Sec. IX). These states promise Heisenberg scaling in the
spatial dimension (number of qubits) rather than time (Lee,
Kok, and Dowling, 2002; Giovannetti, Lloyd, and Maccone,
2004, 2006) and have been studied extensively for both spin
qubits (Bollinger et al., 1996; Leibfried et al., 2004, 2005;
Jones et al., 2009) and photons (Fonseca, Monken, and Pdua,
1999; Edamatsu, Shimizu, and Itoh, 2002; Mitchell, Lundeen,
and Steinberg, 2004; Walther et al., 2004; Nagata et al., 2007;
Xiang et al., 2011).
Heisenberg scaling in the temporal dimension has shifted into

focus with an experiment published in 2007, where adaptive
phase estimation was employed in a single-photon interferom-
eter (Higgins et al., 2007). The experiment was subsequently
extended to a nonadaptive version (Higgins et al., 2009).
Shortly after, both variants were translated into protocols for
spin-based quantum sensing (Said, Berry, and Twamley, 2011).
Meanwhile, high-dynamic-range protocols have been demon-
strated on NV centers in diamond using both nonadaptive
implementations (Nusran, Ummal, and Dutt, 2012; Waldherr
et al., 2012) and an adaptive protocol based on quantum
feedback (Bonato et al., 2016). As a final remark, we note that
a similar performance, 1=T scaling and an increased dynamic
range, may be achieved byweakmeasurement protocols, which

continuously track the evolution of the phase over the sensing
sequence (Shiga and Takeuchi, 2012; Kohlhaas et al., 2015).

IX. ENSEMBLE SENSING

Up to this point, we mainly focused on single qubit sensors.
In the following two sections, quantum sensors consisting of
more than one qubit will be discussed. The use of multiple
qubits opens up many additional possibilities that cannot be
implemented on a single qubit sensor.
This section considers ensemble sensors where many

(usually identical) qubits are operated in parallel. Apart from
a gain in readout sensitivity, multiple qubits allow for the
implementation of second-generation quantum techniques,
including entanglement and state squeezing, which provide
a true quantum advantage that cannot be realized with classical
sensors. Entanglement-enhanced sensing has been pioneered
with atomic systems, especially atomic clocks (Giovannetti,
Lloyd, and Maccone, 2004; Leibfried et al., 2004). In parallel,
state squeezing is routinely applied in optical systems, such as
optical interferometers (LIGO Collaboration, 2011).

A. Ensemble sensing without entanglement

Before discussing entanglement-enhanced sensing tech-
niques, we briefly consider the simple parallel operation of
M identical single-qubit quantum sensors. This implementation
is used, for example, in atomic vapor magnetometers (Budker
and Romalis, 2007) or solid-state spin ensembles (Wolf et al.,
2015). The use of M qubits accelerates the measurement by a
factor ofM, because the basic quantum sensing cycle (steps 1–5
of the protocol in Fig. 2) can now be operated in parallel rather
than sequentially. Equivalently, M parallel qubits can improve
the sensitivity by

ffiffiffiffiffi
M

p
per unit time.

This scaling is equivalent to the situation whereM classical
sensors are operated in parallel. The scaling can be seen as
arising from the projection noise associated with measuring the
quantum system, where it is often called the SQL (Braginskii
and Vorontsov, 1975; Giovannetti, Lloyd, andMaccone, 2004)
or shot-noise limit. In practice, it is sometimes difficult to
achieve a

ffiffiffiffiffi
M

p
scaling because instrumental stability is more

critical for ensemble sensors (Wolf et al., 2015).
For ensemble sensors such as atomic vapormagnetometers or

spin arrays, the quantity of interest is more likely the number
density of qubits, rather than the absolute number of qubitsM.
That is, how many qubits can be packed into a certain volume
without deteriorating the sensitivity of each qubit? The sensi-
tivity is then expressed per unit volume (∝ m−3=2). The
maximum density of qubits is limited by internal interactions
between the qubits. Optimal densities have been calculated
for both atomic vapor magnetometers (Budker and Romalis,
2007) and ensembles of NV centers (Taylor et al., 2008; Wolf
et al., 2015).

B. Heisenberg limit

The standard quantum limit can be overcome by using
quantum-enhanced sensing strategies to reach a more funda-
mental limit where the uncertainty σp [Eq. (25)] scales as
1=M. This limit is also known as the Heisenberg limit.
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Achieving the Heisenberg limit requires reducing the vari-
ance of a chosen quantum observable at the expense of the
uncertainty of a conjugated observable. This in turn requires
preparing the quantum sensors in an entangled state. In
particular, squeezed states (Caves, 1981; Wineland et al.,
1992; Kitagawa and Ueda, 1993) were proposed early on to
achieve the Heisenberg limit and thanks to experimental
advances have recently shown exceptional sensitivity
(Hosten, Engelsen et al., 2016).
The fundamental limits of sensitivity (quantum metrology)

and strategies to achieve them have been discussed in many
reviews (Giovannetti, Lloyd, and Maccone, 2004, 2006; 2011;
Paris, 2009; Wiseman and Milburn, 2009) and they are not
the subject of our review. In the following, we focus on the
most important states and methods that have been used for
entanglement-enhanced sensing.

C. Entangled states

1. GHZ and N00N states

To understand the benefits that an entangled state can
bring to quantum sensing, the simplest example is given by
Greenberger-Horne-Zeilinger (GHZ) states. The sensing
scheme is similar to a Ramsey protocol; however, if M qubit
probes are available, the preparation and readout pulses are
replaced by entangling operations (Fig. 13).
We can thus replace the procedure in Sec. IV.C with the

following:
(1) The quantum sensors are initialized into j0i⊗ j0i⊗ ���

⊗ j0i⊗ j0i≡j00���0i.
(2) Using entangling gates, the quantum sensors are

brought into the GHZ state jψ0i ¼ ðj00 � � � 0iþ
j11 � � � 1iÞ= ffiffiffi

2
p

.
(3) The superposition state evolves under the Hamilto-

nian Ĥ0 for a time t. The superposition state picks up
an enhanced phase ϕ ¼ Mω0t, and the state after the
evolution is

jψðtÞi ¼ 1ffiffiffi
2

p ðj00 � � � 0i þ eiMω0tj11 � � � 1iÞ. ð114Þ

(4) Using the inverse entangling gates, the state jψðtÞi
is converted back to an observable state, jαi¼
½1
2
ðeiMω0tþ1Þj01iþ1

2
ðeiMω0t−1Þj11i�j0���0i2;M.

(5) The final state is read out (only the first quantum
probe needs to be measured in the case above). The
transition probability is

p ¼ 1 − jh0jαij2
¼ 1

2
½1 − cosðMω0tÞ� ¼ sin2ðMω0t=2Þ: ð115Þ

Comparing this result with that obtained in Sec. IV.C, we see
that the oscillation frequency of the signal is enhanced by a
factor M by preparing a GHZ state, while the shot noise is
unchanged, since we still measure only one qubit. This allows
using an M-times shorter interrogation time or achieving an
improvement of the sensitivity (calculated from the QCRB) by
a factor

ffiffiffiffiffi
M

p
. While for M uncorrelated quantum probes the

QCRB of Eq. (59) becomes

ΔVN;M ¼ 1

γ
ffiffiffiffiffiffiffiffi
NF

p ¼ eχ

γt
ffiffiffiffiffiffiffiffi
MN

p ; ð116Þ

for the GHZ state, the Fisher information reflects the state
entanglement to give

ΔVN;GHZ ¼ 1

γ
ffiffiffiffiffiffiffiffi
NF

p
GHZ

¼ eχ

γMt
ffiffiffiffi
N

p . ð117Þ

Heisenberg-limited sensitivity with a GHZ state was demon-
strated using three entangled Be ions (Leibfried et al., 2004).
Unfortunately, the

ffiffiffiffiffi
M

p
advantage in sensitivity is usually

compensated by the GHZ state’s increased decoherence rate
(Huelga et al., 1997), which is an issue common to most
entangled states. Assuming, for example, that each probe is
subjected to uncorrelated dephasing noise, the rate of
decoherence of the GHZ state is M time faster than for a
product state. Then the interrogation time also needs to be
reduced by a factor M and no net advantage in sensitivity can
be obtained. This has led to the quest for different entangled
states that could be more resilient to decoherence.
Similar to GHZ states, N00N states have been conceived to

improve interferometry (Lee, Kok, and Dowling, 2002). They
were first introduced by Yurke (1986) in the context of neutron
Mach-Zender interferometry as the fermionic “response” to the
squeezed states proposed by Caves (1981), for Heisenberg
metrology.Using anM-particle interferometer, one can prepare
an entangled Fock state,

jψN00Ni ¼ ðjMiaj0ib þ j0iajMibÞ=
ffiffiffi
2

p
; ð118Þ

where jNia indicates the N-particle Fock state in spatial mode
a. Already for smallM, it is possible to show sensitivity beyond
the standard quantum limit (Kuzmich andMandel, 1998). If the
phase is applied only to mode a of the interferometer, the phase
accumulated is then

jψN00Ni ¼ ðeiMϕa jMiaj0ib þ j0iajMibÞ=
ffiffiffi
2

p
; ð119Þ

that is,M times larger than for a one-photon state. Experimental
progress has allowed one to reach “high N00N” (withM > 2)
states (Mitchell, Lundeen, and Steinberg, 2004; Walther et al.,
2004; Monz et al., 2011) by using strong nonlinearities or
measurement and feed forward. They have been used not
only for sensing but also for enhanced lithography (Boto
et al., 2000). Still, N00N states are very fragile (Bohmann,
Sperling, and Vogel, 2015) and they are afflicted by a small
dynamic range.

FIG. 13. Left: Ramsey scheme. Right: entangled Ramsey
scheme for Heisenberg-limited sensitivity
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2. Squeezing

Squeezed states are promising for quantum-limited sensing
as they can reach sensitivity beyond the standard quantum limit.
Squeezed states of light were introduced by Caves (1981) as a
mean to reduce noise in interferometry experiments. One of the
most impressive applications of squeezed states of light (Walls,
1983; Schnabel et al., 2010; LIGO Collaboration, 2011) has
been the sensitivity enhancement of the LIGO gravitational
wave detector (Aasi et al., 2013), obtained by injecting vacuum
squeezed states in the interferometer.
Squeezing has also been extended to fermionic degrees of

freedom (spin squeezing) (Kitagawa and Ueda, 1993) to reduce
the uncertainty in spectroscopy measurements of ensemble of
qubit probes. The Heisenberg uncertainty principle bounds the
minimumerror achievable in themeasurement of two conjugate
variables. While for typical states the uncertainty in the two
observables is on the same order, it is possible to redistribute the
fluctuations in the two conjugate observables. Squeezed states
are then characterized by a reduced uncertainty in one observ-
able at the expense of another observable. Thus, these states
can help improve the sensitivity of quantum interferometry, as
demonstrated byWineland et al. (1992, 1994). Similar to GHZ
and N00N states, a key ingredient to this sensitivity enhance-
ment is entanglement (Sørensen and Mølmer, 2001; Wang and
Sanders, 2003). However, the description of squeezed states is
simplified by the use of a single collective angular-momentum
variable.
The degree of spin squeezing can be measured by several

parameters. For example, from the commutation relationship
for the collective angular momentum ΔJαΔJβ ≥ jhJγij, one
can naturally define a squeezing parameter

ξ ¼ ΔJα=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jhJγi=2

q
; ð120Þ

with ξ < 1 for squeezed states. To quantify the advantage of
squeezed states in sensing, it is advantageous to directly relate
squeezing to the improved sensitivity. This may be done by
considering the ratio of the uncertainties on the acquired phase
for the squeezed state Δϕsq and for the uncorrelated state Δϕ0

in, e.g., a Ramsey measurement. The metrology squeezing
parameter, proposed by Wineland et al. (1992), is then

ξR ¼
				 jΔϕjsqjΔϕj0

				 ¼
ffiffiffiffi
N

p
ΔJyð0Þ

jhJzð0Þij
: ð121Þ

Early demonstrations of spin squeezing were obtained by
entangling trapped ions via their shared motional modes
(Meyer et al., 2001), using repulsive interactions in a Bose-
Einstein condensate (Esteve et al., 2008), or partial projection
by measurement (Appel et al., 2009). More recently, atom-
light interactions in high-quality cavities have enabled squeez-
ing of large ensembles atoms (Gross et al., 2010; Leroux,
Schleier-Smith, and Vuletić, 2010a; Louchet-Chauvet et al.,
2010; Schleier-Smith, Leroux, and Vuletić, 2010a; Bohnet
et al., 2014; Cox et al., 2016; Hosten, Engelsen et al., 2016)
that can perform as atomic clocks beyond the standard
quantum limit. Spin squeezing can also be implemented in
qubit systems (Sinha et al., 2003; Cappellaro and Lukin,
2009; Bennett et al., 2013; Auccaise et al., 2015) following
the original proposal by Kitagawa and Ueda (1993).

In this context, a simple quantum sensing scheme, follow-
ing the procedure in Sec. IV.C, could be constructed by
replacing step 2 with the preparation of a squeezed state, so
that jψ0i is a squeezed state. The state is prepared by evolving
a reference (ground) state j0i under a squeezing Hamiltonian,
such as the one-axis H1 ¼ χJ2z or two-axis H1 ¼ χðJ2x − J2yÞ
squeezing Hamiltonians. Then during the free evolution
(step 3) an enhanced phase can be acquired, similar to what
happens for entangled states. The most common sensing
protocols with squeezed states forgo step 4 and directly
measure the population difference between states j0i and
j1i. However, imperfections in this measurement limit the
sensitivity, since achieving the Heisenberg limit requires
single-particle state detection. While this is difficult to obtain
for large qubit numbers, recent advances show great promise
(Zhang et al., 2012; Hume et al., 2013) (see also the next
section on alternative detection methods). A different strategy
is to more closely follow the sensing protocol for entangled
states and refocus the squeezing (reintroducing step 4) before
readout (Davis, Bentsen, and Schleier-Smith, 2016).

3. Parity measurements

A challenge in achieving the full potential of multiqubit
enhanced metrology is the widespread inefficiency of quan-
tum state readout. Metrology schemes often require single
qubit readout or the measurement of complex, many-body
observables. In both cases, coupling of the quantum system to
the detection apparatus is inefficient, often because strong
coupling would destroy the very quantum state used in the
metrology task.
To reveal the properties of entangled states and to take

advantageof their enhanced sensitivities, an efficient observable
is the parity of the state. The parity observable was first
introduced in the context of ion qubits (Bollinger et al.,
1996; Leibfried et al., 2004) and it referred to the excited or
ground state populations of the ions. The parity has become
widely adopted for the readout ofN00N states, where the parity
measures the even and/or odd number of photons in a state
(Gerry and Mimih, 2010). Photon parity measurements are as
well used in quantummetrologywith squeezed states.While the
simplestmethod for parity detectionwould bevia single-photon
counting, and recent advances in superconducting single-
photon detectors approach the required efficiency (Natarajan,
Tanner, and Hadfield, 2012), photon numbers could also be
measured with single-photon resolution using quantum non-
demolition techniques (Imoto,Haus, andYamamoto, 1985) that
exploit nonlinear optical interactions. Until recently, parity
detection for atomic ensembles containing more than a few
particles was out of reach. However, recent breakthroughs in
spatially resolved (Bakr et al., 2009) and cavity-based atom
detection (Schleier-Smith, Leroux, and Vuletić, 2010b; Hosten,
Krishnakumar et al., 2016) enabled atom counting in meso-
scopic ensembles containing M ≳ 100 atoms.

4. Other types of entanglement

The key difficulty with using entangled states for sensing is
that they are less robust against noise. Thus, the advantage
in sensitivity is compensated by a concurrent reduction in
coherence time. In particular, it was demonstrated that for
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frequency estimation, any nonzero value of uncorrelated
dephasing noise cancels the advantage of the maximally
entangled state over a classically correlated state (Huelga
et al., 1997). An analogous result can be proven for magne-
tometry (Auzinsh et al., 2004).
Despite this limitation, nonmaximally entangled states can

provide an advantage over product states (Ulam-Orgikh and
Kitagawa, 2001; Shaji and Caves, 2007). Optimal states for
quantum interferometry in the presence of photon loss can, for
example, be found by numerical searches (Huver, Wildfeuer,
and Dowling, 2008; Lee et al., 2009).
Single-mode states have also been considered as a more

robust alternative to two-mode states. Examples include pure
Gaussian states in the presence of phase diffusion (Genoni,
Olivares, and Paris, 2011), mixed Gaussian states in the
presence of loss (Aspachs et al., 2009), and single-mode
variants of two-mode states (Maccone and Cillis, 2009).
Other strategies include the creation of states that are

more robust to the particular noise the system is subjected
to (Goldstein et al., 2011; Cappellaro et al., 2012) or the
use of entangled ancillary qubits that are not quantum
sensors themselves (Demkowicz-Dobrzanski and Maccone,
2014; Dür et al., 2014; Kessler et al., 2014; Huang,
Macchiavello, and Maccone, 2016). These are considered
in Sec. X.

X. SENSING ASSISTED BY AUXILIARY QUBITS

In the previous section we considered potential improve-
ments in sensitivity derived from the availability of multiple
quantum systems operated in parallel. A different scenario
arises when only a small number of additional quantum
systems is available, or when the additional quantum systems
do not directly interact with the signal to be measured. Even in
this situation, however, “auxiliary qubits” can aid in the sensing
task. Although auxiliary qubits—or more generally, additional
quantum degrees of freedom—cannot improve the sensitivity
beyond the quantum metrology limits, they can aid in reaching
these limits, for example, when it is experimentally difficult to
optimally initalize or read out the quantum state. Auxiliary
qubits may be used to increase the effective coherence or
memory time of a quantum sensor, either by operation as a
quantum memory or by enabling quantum error correction.
In the following we discuss some of the schemes that have

been proposed or implemented with auxiliary qubits.

A. Quantum logic clock

Clocks based on optical transitions of an ion kept in a high-
frequency trap exhibit significantly improved accuracy over
more common atomic clocks. Single-ion atomic clocks
currently detain the record for the most accurate optical
clocks, with uncertainties of 2.1 × 1018 for a 87Sr ensemble
clock (Nicholson et al., 2015) and 3.2 × 1018 for a single
trapped 171Yb (Huntemann et al., 2016).
The remaining limitations on optical clocks are related to

their long-term stability and isolation from external perturba-
tions such as electromagnetic interference. These limitations
are even more critical when such clocks are based on a string
of ions in a trap, because of the associated unavoidable electric

field gradients. Only some ion species, with no quadrupolar
moment, can then be used, but not all of them present a
suitable transition for laser cooling and state detection
beside the desired, stable clock transition. To overcome
this dilemma, quantum logic spectroscopy was introduced
(Schmidt et al., 2005). The key idea is to employ two ion
species: a clock ion that presents a stable clock transition (and
represents the quantum sensor) and a logic ion (acting as an
auxiliary qubit) that is used to prepare, via a cooling transition,
and read out the clock ion. The resulting “quantum logic” ion
clock can thus take advantage of the most stable ion
clock transitions, even when the ion cannot be efficiently
read out, thus achieving impressive clock performance
(Hume, Rosenband, and Wineland, 2007; Rosenband et al.,
2007, 2008). Advanced quantum logic clocks may incorporate
multi-ion logic (Tan et al., 2015) and use quantum algorithms
for more efficient readout (Schulte et al., 2016).

B. Storage and retrieval

The quantum state jψi can be stored and retrieved in the
auxiliary qubit. Storage can be achieved by a SWAP gate (or
more simply two consecutive C-NOT gates) on the sensing
and auxiliary qubits, respectively (Rosskopf et al., 2016).
Retrieval uses the same two C-NOT gates in reverse order. For
the example of an electron-nuclear qubit pair, C-NOT gates
have been implemented both by selective pulses (Pfender
et al., 2016; Rosskopf et al., 2016) and using coherent
rotations (Zaiser et al., 2016).
Several useful applications of storage and retrieval have

been demonstrated. The first example includes correlation
spectroscopy, where two sensing periods are interrupted by a
waiting time t1 (Laraoui and Meriles, 2013; Rosskopf et al.,
2016; Zaiser et al., 2016). The second example includes a
repetitive (quantum nondemolition) readout of the final qubit
state, which can be used to reduce the classical readout noise
(Jiang et al., 2009).

C. Quantum error correction

Quantum error correction, or QEC (Shor, 1995; Nielsen and
Chuang, 2000), aims at counteracting errors during quantum
computation by encoding the qubit information into redundant
degrees of freedom. The logical qubit is thus encoded in a
subspace of the total Hilbert space (the code) such that each
error considered maps the code to an orthogonal subspace,
allowing detection and correction of the error. Compared to
dynamical decoupling schemes, qubit protection covers the
entire noise spectrum and is not limited to low-frequency
noise. On the other hand, qubit protection can typically only
be applied against errors that are orthogonal to the signal,
because otherwise the signal itself would be “corrected.” In
particular, for vector fields, quantum error correction can be
used to protect against noise in one spatial direction while
leaving the sensor responsive to signals in the orthogonal
spatial direction. Thus, quantum error correction suppresses
noise according to spatial symmetry and not according to
frequency.
The simplest code is the three-qubit repetition code, which

corrects against one-axis noise with depth one (that is, it can
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correct up to one error acting on one qubit). For example, the
code j0iL ¼ j000i and j1iL ¼ j111i can correct against a
single qubit flip error. Note that (Ozeri, 2013; Dür et al., 2014)
equal superpositions of these two logical basis states are also
optimal to achieve Heisenberg-limited sensitivity in estimat-
ing a global phase (Bollinger et al., 1996; Leibfried et al.,
2004). While this seems to indicate that QEC codes could be
extremely useful for metrology, the method is hampered by
the fact that QEC often cannot discriminate between signal
and noise. In particular, if the signal to be detected couples to
the sensor in a similar way as the noise, the QEC code also
eliminates the effect of the signal. This compromise between
error suppression and preservation of signal sensitivity is
common to other error correction methods. For example, in
dynamical decoupling schemes, a separation in the frequency
of noise and signal is required. Since QEC works independ-
ently of noise frequency, distinct operators for the signal and
noise interactions are required. This imposes an additional
condition on a QEC code: the quantum Fisher information
(Giovannetti, Lloyd, and Maccone, 2011; Lu, Yu, and Oh,
2015) in the code subspace must be nonzero.
Several situations for QEC-enhanced sensing have been

considered. One possible scenario is to protect the quantum
sensor against a certain type of noise (e.g., single qubit, bit
flip, or transverse noise), while measuring the interaction
between qubits (Dür et al., 2014; Herrera-Martí et al., 2015).
More generally, one can measure a many-body Hamiltonian
term with a strength proportional to the signal to be estimated
(Herrera-Martí et al., 2015). Since this can typically be
achieved only in a perturbative way, this scheme still leads
to a compromise between noise suppression and effective
signal strength.
The simplest scheme for QEC is to use a single good

qubit (unaffected by noise) to protect the sensor qubit
(Ticozzi and Viola, 2006; Arrad et al., 2014; Kessler et al.,
2014; Hirose and Cappellaro, 2016). In this scheme, which
was recently implemented with NV centers (Unden et al.,
2016), the qubit sensor detects a signal along one axis (e.g.,
a phase) while being protected against noise along a
different axis (e.g., against bit flip). Because the “good”
ancillary qubit can protect only against one error event (or,
equivalently, suppress the error probability for continuous
error), the signal acquisition must be periodically interrupted
to perform a corrective step. Since the noise strength is
typically much weaker than the noise fluctuation rate, the
correction steps can be performed at a much slower rate
compared to dynamical decoupling. Beyond single qubits,
QEC was also applied to N00N states (Bergmann and van
Loock, 2016). These recent results hint at the potential of
QEC for sensing which has just about begun to be explored.

XI. OUTLOOK

Despite its rich history in atomic spectroscopy and
classical interferometry, quantum sensing is an excitingly
new and refreshing development advancing rapidly along
the sidelines of mainstream quantum engineering research.
Like no other field, quantum sensing has been uniting diverse
efforts in science and technology to create fundamental new
opportunities and applications in metrology. Input has been

coming from traditional high-resolution optical and magnetic
resonance spectroscopy, to the mathematical concepts of
parameter estimation, to quantum manipulation and entangle-
ment techniques borrowed from quantum information science.
Over the last decade, and especially in the last few years, a
comprehensive toolset has been established that can be applied
to any type of quantum sensor. In particular, these allow
operation of the sensor over a wide signal frequency range,
can be adjusted tomaximize sensitivity and dynamic range, and
allow discrimination of different types of signals by symmetry
or vector orientation. While many experiments so far made use
of single qubit sensors, strategies to implement entangled
multiqubit sensors with enhanced capabilities and higher
sensitivity are just beginning to be explored.
One of the biggest attractions of quantum sensors is their

immediate potential for practical applications. This potential
is partially due to the immense range of conceived sensor
implementations, starting with atomic and solid-state spin
systems and continuing to electronic and vibrational degrees
of freedom from the atomic to the macroscale. In fact,
quantum sensors based on SQUID magnetometers and
atomic vapors are already in everyday use and have installed
themselves as the most sensitive magnetic field detectors
currently available. Likewise, atomic clocks have become
the ultimate standard in time keeping and frequency gen-
eration. Many other and more recent implementations of
quantum sensors are just starting to make their appearance
in many different niches. Notably, NV centers in diamond
have started conquering many applications in nanoscale
imaging due to their small size.
What lies ahead in quantum sensing? On the one hand,

the range of applications will continue to expand as new
types and more mature sensor implementations become
available. Taking the impact quantum magnetometers and
atomic clocks had in their particular discipline, it can be
expected that quantum sensors will penetrate much of the
21st century technology and find their way into both high-
end and consumer devices. Advances with quantum sensors
will be strongly driven by the availability of “better”
materials and more precise control, allowing their operation
with longer coherence times, more efficient readout, and
thus higher sensitivity.
In parallel, quantum sensing will profit from efforts in

quantum technology, especially quantum computing, where
many of the fundamental concepts have been developed, such as
dynamical decoupling protocols, quantum storage, and quan-
tum error correction, as well as quantum phase estimation. Vice
versa, quantum sensing has become an important resource for
quantum technologies as it provides much insight into the
“environment” of qubits, especially through decoherence spec-
troscopy. A better understanding of decoherence in a particular
implementation of a quantum system can help the adoption of
strategies to protect the qubit and guide the engineering and
materials development. The border region between quantum
sensing and quantum simulation, in addition, is becoming a
fertile playground for emulating and detecting many-body
physics phenomena. Overall, quantum sensing has the potential
to fundamentally transform our measurement capabilities,
enabling higher sensitivity and precision, new measurement
types, and covering atomic up to macroscopic length scales.
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APPENDIX TABLE OF SYMBOLS

This Appendix contains Table III, which is a list of symbols.

TABLE III. Frequently used symbols.

Quantity Symbol Unit

Readout efficiency C 0 ≤ C ≤ 1
Dynamic range DR � � �
ac signal: frequency fac Hz
Multipulse sensing: bandwidth Δf Hz
Hamiltonian ĤðtÞ Hz
Internal Hamiltonian Ĥ0

Signal Hamiltonian ĤVðtÞ
Commuting part ĤV∥

ðtÞ
Noncommuting part ĤV⊥ðtÞ

Control Hamiltonian ĤcontrolðtÞ
Number of qubits in ensemble; other uses M � � �
Multipulse sensing: filter order k � � �
Multipulse sensing: number of pulses n � � �
Number of measurements N � � �
Transition probability p p ∈ ½0 � � � 1�
Bias point p0

Change in transition probability δp ¼ p − p0

Signal spectral density SVðωÞ Signal squared per Hz
Sensing time t s
Signal autocorrelation time tc s
Total measurement time T s
Relaxation or decoherence time Tχ s
T1 relaxation time T1

Dephasing time T�
2

Decoherence time T2

Rotating frame relaxation time T1ρ

Signal VðtÞ Varies
Parallel signal V∥ðtÞ ¼ VzðtÞ
Transverse signal V⊥ðtÞ ¼ ½V2

xðtÞ þ V2
yðtÞ�1=2

Vector signal V⃗ðtÞ ¼ fVx; Vy; VzgðtÞ
rms signal amplitude Vrms
ac signal amplitude Vpk

Minimum detectable signal amplitude Vmin
Per unit time vmin Unit signal per second

Multipulse sensing: weighting function Wðfac; αÞ,W̄ðfacÞ, etc. � � �
Physical output of quantum sensor x, xj Varies
Multipulse sensing: modulation function yðtÞ � � �
Multipulse sensing: filter function YðωÞ Hz−1

ac signal: phase α � � �
Coupling parameter γ Hz per unit signal
Decoherence or transition rate Γ s−1

Quantum phase accumulated by sensor ϕ � � �
(Table continued)
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