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A decade ago, a brief summary of the field of the relativistic heavy ion physics could be formulated as
the discovery of strongly coupled quark-gluon plasma, sQGP for short, a near-perfect fluid with
surprisingly large entropy-density-to-viscosity ratio. Since 2010, the LHC heavy ion program added
excellent new data and discoveries. Significant theoretical efforts have been made to understand these
phenomena. Now there is a need to consolidate what we have learned and formulate a list of issues to
be studied next. Studies of angular correlations of two and more secondaries reveal higher harmonics
of flow, identified as the sound waves induced by the initial state perturbations. As in cosmology,
detailed measurements and calculations of these correlations helped to make our knowledge of the
explosion much more quantitative. In particular, their damping had quantified the viscosity. Other
kinetic coefficients—the heavy-quark diffusion constants and the jet quenching parameters—also
show enhancements near the critical point T ≈ Tc. Since densities of QGP quarks and gluons strongly
decrease at this point, these facts indicate large role of nonperturbative mechanisms, e.g., scattering on
monopoles. New studies of the pp and pA collisions at high multiplicities reveal collective
explosions similar to those in heavy ion AA collisions. These “smallest drops of the sQGP” revived
debates about the initial out-of-equilibrium stage of the collisions and mechanisms of subsequent
equilibration.
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I. INTRODUCTION

The history of the ultrarelativistic heavy ion collisions can
be roughly divided into three periods as follows:
(i) formulation of the scientific goals and forming the

community: from the 1950s to the year 2000, the start of
operation of the Relativistic Heavy Ion collider (RHIC);
(ii) crucial experimental and theoretical developments

during 2000–2004, reaching the goal of quark-gluon plasma
(QGP) production and first estimates of its properties; and
(iii) the last decade, 2005–now.
This review attempts to provide theoretical and experimen-

tal summaries in the last decade. It is mostly addressed to
people belonging to the heavy ion community. Some peda-
gogical material on heavy ion terminology, relativistic hydro-
dynamics, and holographic models is placed in the Appendix
sections at the end of the paper.
Experimental results, from RHIC and now the Large

Hadron Collider (LHC), continue to provide answers to old
question and add new puzzles. While looking through the
talks at the latest quark matter conferences, one observes a
relative weakness of the theory: this review tries to elucidate
current trends. It is not a comprehensive summary of the field.
Several important directions are not covered because (in my
opinion) they have not yet matured to a conclusive stage. One
such direction is related to fluctuations in the gauge topology
and chiral magnetic effect. Another is the RHIC beam energy
scan, with an emphasis on critical fluctuations aimed at a
possible location of the critical point. There are also other
topics not covered simply because of space limitations and
interests.

A. Before RHIC

Perhaps the first question one asks in the field is whether a
tiny system created in high energy collisions, of nucleons or
nuclei, can indeed be large enough to be treated as macro-
scopically large. An affirmative answer would mean that some
new form of matter is produced, close to its equilibrium. A

negative answer would imply that one deals with a multi-
particle system far from equilibrium.
Already in the 1950s, when only the very first hints of

multiparticle production reactions were detected in cosmic
ray events, three famous physicists conjectured that the
answer to the previous question would be positive. Fermi
(1951) argued that a strongly interacting system of
particles should rapidly equilibrate and predicted that multi-
plicity should grow with the center-of-mass (c.m.) energy

ffiffiffi
s

p
as N ∼ s1=4. Pomeranchuk (1951) replied immediately: if the
interaction is strong enough for rapid equilibration, then the
particles would be able to leave the system only at what we
now call the freezeout conditions. Landau (1953) connected
the initial stage of Fermi with the final stage of Pomeranchuck
via relativistic hydrodynamics. He pointed out that in the
expected quasiadiabatic expansion the entropy must be
preserved, and thus Fermi’s prediction for entropy and
multiplicity generation should hold.
In a later review, Landau related these expectations of very

strong coupling at high momenta scales, as expected from
QED and other quantum field theories (QFTs) known at the
time. This last argument was dramatically reversed two
decades later, when asymptotic freedom of non-Abelian
gauge theories and QCD was discovered by Gross,
Politzer, and Wilczek in 1973. This discovery initiated studies
of the high temperature T (or large chemical potential μ, or
both) limit of hadronic matter using perturbative diagrams
and their resummations. It was found that, unlike vacuum
fluctuations of the gluon fields providing the asymptotic
freedom or antiscreening, thermal fluctuations of both gluon
and quark fields lead to screening in matter; thus it was called
QGP. For early reviews on finite-T QCD, see Shuryak (1980)
and Gross, Pisarski, and Yaffe (1981). Very hot QGP is now
referred to as weakly coupled (wQGP). While the simplest
from a theoretical perspective, it is not yet reached even at the
highest temperatures at the LHC collider.
While during the 1970s and 1980s the field and its confer-

ences were mostly run by theorists, appropriate experimental
observables were high on the agenda. Collective hydrodynam-
ical explosion in the transverse plane and penetrating probes
(photons and dileptons) were emphasized (Shuryak, 1980).
Important QGP signals suggested in the 1980s were the jet
quenching (Bjorken, 1982) and subsequent melting of char-
monium and bottonium states (Matsui and Satz, 1986).
Two “experimental homes” of the field are the European

Center for Nuclear Research near Geneva, known by its
French abbreviation CERN, and Brookhaven National
Laboratory (BNL) on Long Island, New York. The first
round of fixed target experiments started in both places soon
led to the realization that the collision energy is insufficient
and thus heavy ion colliders are needed. The decision of
the U.S. nuclear physics community was to build RHIC,
completed in 2000, initially with four detectors: the larger
STAR and PHENIX and the smaller PHOBOS and
BRAMHS.
Prior to the RHIC era, it was widely assumed that the

wQGP regime extends down to the phase transition point.
Numerical simulations of QCD-like theories on supercom-
puters, using space- (Euclidean) time discretization—“lattice
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QCD” for short—had provided first-principle results on QCD
thermodynamics.1 A crossover transition at

Tc ≈ 155 MeV ð1Þ

separates the confining phase with the broken chiral symmetry
from the QGP region at T > Tc. The same value is observed
experimentally as “chemical freezeout” defining the compo-
sition of outgoing hadrons.
Most QCD theorists were skeptical, predicting that the

RHIC program, aimed at the production of a new form of
matter, would basically fail. Perturbative estimates in the
framework of various parton cascades indicated an unrealis-
tically long equilibration time and predicted “fireworks of
minijets” rather than a collective explosion.

B. RHIC runs in 2000–2005 and the strongly
coupled QGP paradigm

From the very first RHIC data, it became clear that what is
seen is a rather spectacular collective explosion, with spectra
and especially the elliptic flows found to be in excellent
agreement with predictions of relativistic hydrodynamics.
Especially successful were its versions supplemented by
hadronic cascade at freezeout (Teaney, Lauret, and Shuryak,
2001a, 2001b; Hirano et al., 2006). All relevant dependences
(as a function of2 transverse momentum p⊥, centrality, particle
mass, rapidity, and collision energy) were well reproduced.
It took a few years to document the extent of jet quenching,

but by 2004 the case for a “quark-gluon plasma discovery”
had been officially made, in a theory workshop at Brookhaven
and then in summarizing “white papers” produced by all four
RHIC collaborations. Those, especially by PHENIX (Adcox
et al., 2005) and STAR (Bellwied, 2005), are written as
extensive reviews and both are recommended as a pedagogical
introduction to the field.
Perturbative parton cascades and hydrodynamics made very

different predictions for the elliptic flow parameter3 v2. Let us
mention one of them: the dependence on the transverse
momentum v2ðp⊥Þ. The parton model describes colliding
nucleons and nuclei in terms of “partons,” quarks, and gluons
with a certain fraction of the total momentum x and “reso-
lution scale” Q. For large enough Q ≫ 1 GeV parton-parton
scattering locally knows only the direction of the impact

parameter b⃗ toward the parton it scatters with, but not the
overall impact parameter of two nuclei. So high p⊥ partons
are, to first approximation, distributed isotropically in azimu-
thal angle ϕ. Only the low p⊥ partons, with wavelength
comparable to the size of the overlapping regions of both
nuclei 1=p⊥ ∼ R may have a substantial anisotropy in ϕ. So,
in the first approximation, such models have no reason for v2
to increase with p⊥. Furthermore, since next-order inelastic
production of new partons dominates over their absorption, it

was predicted that more partons appear in the longest direction
of the overlap “almond” ϕ ¼ �π=2, so v2 was predicted to be
negative.
Hydrodynamics, on the other hand, predicts an anisotropic

explosion driven by the pressure gradient. The largest gradient
is in the shorter direction of the almond ϕ ¼ 0; π, so v2 was
predicted to be positive. Furthermore, larger p⊥ particles
originate from the edge of the fireball moving toward the
observer. The consequence of such “splash” geometry is that
v2 was predicted to increase linearly with p⊥. The observed
dependences of the elliptic flow parameter v2 for pions and
protons on the particle transverse momentum are shown in
Fig. 1: so v2 does grow linearly with pt, reaching the large
value ∼0.2 as predicted by hydrodynamics.
Note that while the agreement is quite good through the

whole kinematic region shown in this plot, theoretical curves
stop at p⊥ ≈ 2 GeV. Indeed, even the bravest theorists at the
time had not dared to venture beyond it, since it was
commonly expected that above such p⊥ one would enter a
jet-dominated regime. Yet a hydrodominated region was later
found to extend to p⊥ ∼ 4 GeV, and the transition to a
powerlike jet regime in fact is observed only at
p⊥ > 10 GeV. It turned out that the jet yield, and with it
contributions to hard particle spectra, are strongly suppressed
by jet quenching. This phenomenon is demonstrated by Fig. 2,
also from a PHENIX white paper (Adcox et al., 2005).
These observations and conclusions were of course scruti-

nized in the years to come, and the range and degree of the
agreement with this picture in fact only increased. In particu-
lar, the ellipticity parameter v2 has been measured using
correlations of several (4, 6, etc.) particles, confirming the

FIG. 1. Elliptic flow parameter v2, the experimental data vs the
hydrodynamical predictions for pions (upper plot) and protons
(lower plot). From Adcox et al., 2005.

1The thermodynamic quantities such as energy density and
pressure are briefly introduced in Appendix A.

2For the interested readers, some explanation of what those
variables are can be found in Appendix A.

3See Appendix A for the definition.
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conclusion that this is truly a collective phenomenon. Indeed
thousands of secondaries do share the same anisotropic
distribution in a given event.
These data, and their comparison with theoretical

approaches, had created a new paradigm called “strongly
coupled” quark-gluon Plasma (sQGP). In order to quantify it,
one needs to introduce certain kinetic coefficients, parameters
describing deviations from ideal hydrodynamics in an expan-
sion in gradients. The first one, the shear viscosity entering the
Navier-Stokes (NS) first-order term, is usually mentioned as a
ratio to the entropy density, since both are OðT3Þ in scale-
invariant QGP. Since the viscosity is inversely proportional to
the scattering cross section times the density, we prefer to use
the inverse ratio, entropy-density-to-viscosity. Its value turned
out to be unexpectedly large

s
η
≈ 5–10 ≫ 1. ð2Þ

Thus the sQGP is among “the most perfect fluids” known.
The only “competitor” to sQGP, with comparably large

entropy-to-viscosity ratio, is the so-called “unitary gas” of
trapped fermionic atoms, with the scattering length a → ∞.
Both fluids demonstrated spectacular elliptic flows. Note that
those two fluids are at the opposite end of the scale known to
physics: sQGP has T measured in a fraction of GeV while T of
the unitary gas is measured in nK, or 22 orders of magnitude
smaller. Yet the scale hardly matters: in fact, both of them are
nearly scale invariant by themselves. The unusual kinetic
parameters of them are two major puzzles of modern many-
body physics.
To understand why it was unexpected, it is convenient to

compare it to various predictions. Kinetic theory (valid for
weak coupling) interprets this dimensionless ratio as the
product of the particle density, transport cross section, and
inverse power of the mean velocity

s
η
∼
nσtransport

Tv̄
ð3Þ

or simply as the ratio of interparticle separation to the mean
free path. In a kinetic regime the latter is larger, so this ratio is
expected to be small. More specifically, in weakly coupled
plasma (Arnold, Moore, and Yaffe, 2003) it is

s
η
¼ g4 logð2.42=gÞ

5.12
. ð4Þ

Since it was derived assuming the “electric scale” is small
compared to momenta MD ∼ gT ≪ T, it should perhaps be
used only4 for g < 1. Equation (4), valid at high T, was not
intended to be used at T ∼ Tc, where the densities of quarks
and gluons are suppressed by confinement, specifically by the
vanishing Polyakov line hPðT → TcÞi → 0. The contribution
of the gluon-gluon scattering to the (inverse) ratio η=s
including this effect is shown in the lower part of Fig. 3.
The nonperturbative models (see Fig. 3) predict otherwise:

s=η has a peak at Tc. Qualitatively similar behavior of kinetic
coefficients is known for other fluids near their phase
transitions [see the examples in Csernai, Kapusta, and
McLerran (2006)]. The peak in shear viscosity correlates
with similar peaks claimed for other kinetic parameters: the
heavy-quark diffusion constant discussed in Sec. X and the jet
quenching parameter q̂ discussed in Sec. XI; see Fig. 57.

C. The first runs of the LHC

The European nuclear and particle physicists decided to
share the same LHC. One detector, ALICE, was built specially
for heavy ion conditions, capable to work with high multi-
plicities reaching 10 000 or so in an event. Two other
collaborations, CMS and ATLAS, although built mostly for
high energy physics goals, both include subgroups focused on
heavy ions as well.
The first runs of the LHC were expected with obvious

interest. On the one hand, the energy of this collider is about a
factor of 20 higher than that of RHIC, which leads to about
twice larger multiplicity. Hydrodynamics predicted stronger
flows: indeed, at the LHC relatively “stiff” QGP play a larger
role than “soft”matter near and below the critical point Tc. On
the other hand, entering a higher T domain means a higher
momentum scale, reaching well over 1 GeV, where many
colleagues expected the onset of asymptotic freedom and
perturbative regime.
The first LHC run took place in 2010; radial and elliptic

flows were observed to be even stronger than at RHIC,
confirming the hydrodynamic predictions once again. More
recently the energy of theLHChas been doubled, and collective
effects such as elliptic flow get further enhanced as well.

D. Why is sQGP so unusual?

Attempts to answer this question led to significant progress
in our understanding of the finite-T QCD. Its important part
are large-scale lattice gauge simulations, which not only
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FIG. 2. .The ratio RAA of the yield of high p⊥ hadrons in d-Au
and Au-Au collisions to the expected one according to parton
model scaling. Strong deviations from one of this ration indicate
the jet quenching phenomenon. From Adcox et al., 2005.

4See Fig. 4 and the discussion of this point.
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quantified the thermodynamical quantities of QGP and located
confinement and chiral symmetry breaking phase transitions,
but also elucidated physics of certain nonperturbative and
topological effects. Presenting all of these results systemati-
cally goes well beyond the present paper, which is focused on
heavy ion collisions. Instead we outline in this section the
main ideas proposed on a nontechnical intuitive level.
At high T the asymptotic freedom limits the coupling at

scale T, while plasma screening reduces the interaction below
the momentum scale gT: so the hot QGP regime is amenable
to a perturbative description. As T decreases, toward the end
of the QGP phase at Tc, the effective coupling grows.
Opinions differ on how one should describe matter in this
domain. Different schools of thought can be classified as
(i) perturbative, (ii) semiclassical, (iii) dual magnetic, and
(iv) dual holographic ones.
(i) A “perturbative school” suggests that as one reduces

temperature from its high values down to T ≈ Tc nothing

crucial happens. The basic conclusions based on perturbative
diagrams and their resummation hold. Quark and gluon
quasiparticles are dominant, together with plasma-related
phenomena such as plasmon and plasmino excitation modes.
Perturbative formulas qualitatively hold even when the run-
ning coupling reaches values of αs ¼ g2=4π ∼ 0.5, g ≈ 2.5 or
so. In particular, using this logic for viscosity calculated
perturbatively (Arnold, Moore, and Yaffe, 2003) one gets the
ratio mentioned ∼2, only a factor of 2–5 lower than the data.
Considering higher order processes one can recover this
factor; see, e.g., the discussion in Xu and Greiner (2005).
The boundary of perturbative and nonperturbative domains

is an important subject, to which, unfortunately, not enough
attention has been devoted. The perturbative (pQCD) dia-
grams provide the answer in the form of a series in powers of
αs=π ¼ g2=4π2, so naively it can be used for say αs < 1=2.
And yet, looking at the Particle Data Group plot of the running
QCD coupling, one finds that all but one coupling determi-
nations are at the scale Q ≈ 10 GeV and above. The only
exception, the τ lepton decays, defining αsðQ ¼ mτÞ is based
on a carefully selected combination of the vector and axial
spectral densities, in which the nonperturbative effects are
maximally suppressed. In general, studies of point-to-point
correlation functions, from phenomenology or lattice, are the
most direct source of information about the relative magnitude
of perturbative and nonperturbative effects. The most relevant
to the question of perturbative treatment of gluons is corre-
lators of the type

hG2
μνðxÞG2

μνð0Þi; hGμν
~GμνðxÞGαβ

~Gαβð0Þi.

As originally observed by Novikov et al. (1981), their
perturbative behavior sets at a much higher scale for
Q2 > 10 GeV2. Lattice studies confirm that and in general
show that the lowest glueball masses with the most quantum
numbers are about 2–3 GeV, while the perturbative continuum
in the spectral densities is setting in well above that.
The perturbation theory at finite T is different from its

vacuum version: resummations of the new IR divergent series
become mandatory, and the resulting series goes in powers of
g rather than αs=π. Where the perturbative series is convergent
depends on higher order coefficients, which are rarely known.
An exceptional case is the QGP free energy, to which much
effort has been invested. The first perturbative corrections,
calculated by myself in the 1970s, was an order of magnitude
smaller than the zeroth order, so the beginning of a perturba-
tive series looked promising. Many years of effort resulted in
further terms [we use those from Kajantie et al. (2003)] plotted
as a function of the coupling g in Fig. 4, as ratios to the first
Oðg2Þ perturbative effect. From this plot one can judge at
which coupling these series are reliable. Unfortunately, we do
not yet know the magnitude of perturbative corrections to
kinetic coefficients.
(ii) What can be called the “semiclassical direction” focuses

on evaluation of the path integral over the fields using
generalization of the saddle point method. The extrema of
its integrand are identified and their contributions evaluated. It
is so far most developed in the quantum-mechanical models,
for which two- and even three-loop corrections have been

gm

gg

2 3 4 5 6 7 8
0.0

0.2

0.4

0.6

0.8

1.0

T Tc

s

FIG. 3. Upper plot: The entropy-density-to-viscosity ratio s=η
vs the temperature T (GeV). The upper range of the plot s=η ¼ 4π
corresponds to the value in infinitely strongly coupled N ¼ 4
plasma (Policastro, Son, and Starinets, 2001). The curve without
points on the left side corresponds to pion rescattering according
to chiral perturbation theory (Prakash et al., 1993). The triangle
(red) corresponds to the molecular dynamics study of classical
strongly coupled colored plasma (Gelman, Shuryak, and Zahed,
2006a), and the square (black) corresponds to a numerical
evaluation (Nakamura and Sakai, 2005) on the lattice. The single
point with error bar corresponds to the phenomenological value
extracted from the data; see the text. The series of points
connected by a line correspond to gluon-monopole scattering
(Ratti and Shuryak, 2009). Lower plot: The inverse ratio η=s as a
function of the temperature normalized to its critical value T=Tc.
The solid line corresponds to gluon-monopole (gm) scattering
(Ratti and Shuryak, 2009), the same as in the upper plot, and the
dashed line shows the perturbative gluon-gluon (gg) scattering.
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calculated. In the case of gauge theories extrema are
“instantons,” a complementing perturbative series by terms
of ∼ expð−const=g2Þ times the so-called “instanton series” in
g2. This result in the so-called trans-series, which are not only
more accurate than perturbative ones, but they are supposed to
be free from ambiguities and unphysical imaginary parts
which perturbative and instanton series separately have.
For the finite-temperature applications, plugging logarith-

mic running of the coupling into such exponential terms one
finds some power dependences of the type

e−S ∼ exp

�
−
const
g2ðTÞ

�
∼
�
Λ
T

�
power

. ð5Þ

As a result, these effects are not important at high T but
explode, as inverse powers of T, near Tc.
In the 1980s–1990s it was shown how instanton-induced

interactions between light quarks break the chiral symmetries,
the UAð1Þ explicitly and SUðNfÞ spontaneously. The latter is
understood via collectivization of fermionic zero modes; for a
review, see Schafer and Shuryak (1998). Account for nonzero
average Polyakov line or nonzero vacuum expectation value
of the zeroth component of the gauge potential5 hA0i requires
redefined solitons, in which this gauge field component does
not vanish at large distances. Account for this changed
instantons into a set of Nc instanton constituents, the so-
called Lee–Li–Kraan–van Baal (LLKvB) instanton dyons, or
instanton -monopoles (Kraan and van Baal, 1998; Lee and Lu,
1998). It was recently shown that those, if dense enough, can
naturally generate both confinement and chiral symmetry
breaking; see Liu, Shuryak, and Zahed (2015) and Larsen and
Shuryak (2016), and for a recent review see Shuryak (2016).
These works are, however, too recent to have impact on heavy
ion physics, and we will not discuss it in this review.
(iii) A “dual magnetic” school consists of two distinct

approaches. A “puristic” point of view assumes that at the
momentum scale of interest the electric coupling is large
αs ≫ 1, and therefore there is no hope to progress with the

usual “electric” formulation of the gauge theory, and therefore
one should proceed with building its “magnetic” formulation,
with weak “magnetic coupling” αm ¼ 1=αs ≪ 1. Working
examples of effective magnetic theory of such kind were
demonstrated for supersymmetric theories (Seiberg and
Witten, 1994). For applications of the dual magnetic model
to QCD flux tubes see Baker, Ball, and Zachariasen (1997).
A more pragmatic point of view, known as the “magnetic

scenario,” starts with the acknowledgment that both electric
and magnetic couplings are close to 1, αm ∼ αe ∼ 1. So,
neither perturbative, semiclassical, nor dual formulation will
work quantitatively. Effective masses, couplings, and other
properties of all coexisting quasiparticles—quarks, gluons,
and magnetic monopoles—can be deduced only phenomeno-
logically from the analysis of lattice simulations. We will
discuss this scenario next in this section.
(iv) Finally, very popular during the last decade were

“holographic dualities,” connecting strongly coupled gauge
theories to a string theory in the curved space with extra
dimensions. As shown by Maldacena (1999), in the limit of
the large number of colors Nc → ∞, it is a duality to a much
simpler, and weakly coupled, theory, a modification of
classical gravity. Such duality relates problems we want to
study holographically to some problems in general relativity
(GR). In particular, the thermally equilibrated QGP at strong
coupling is related to certain black hole (BH) solutions in five
dimensions, in which the plasma temperature is identified with
the Hawking temperature, and the QGP entropy with the
Bekenstein entropy. For interested readers who need termi-
nological introduction see Appendix C. Section VII summa-
rizes studies of the out-of-equilibrium settings, in which a bulk
black hole is initially absent, but then is dynamically gen-
erated. Holographic models of the anti–de Sitter (AdS) and
QCD types also lead to new views on the QCD strings,
Reggeons, and Pomerons; see Sec. VIII.C.
Completing this round of comments, we now return to (iii),

the approach focused on magnetically charged quasiparticles,
and provide more details on its history, basic ideas, and results.
J. J. Thompson, the discoverer of the electron, noticed that

something unusual already happened for static electric and
magnetic charges existing together. While both the electric
field E⃗ (pointing from the center of the electric charge e) and
the magnetic field B⃗ (pointing from the center of the magnetic
charge g) are static (time independent), the Pointing vector

S ¼ ½E⃗ × B⃗�

indicates that the electromagnetic field energy rotates. In fact,
requiring the resulting angular momentum to be quantized, to
an integer times ℏ, one get the Dirac condition (see later).
A. Poincaré went further, allowing one of the charges to

move in the field of another. The Lorentz force

m̈r⃗ ¼ −eg
½ _⃗r × r⃗�
r3

ð6Þ

is proportional to the product of two charges, electric e and
magnetic g. The total angular momentum of the system
includes the field contribution

FIG. 4. Ratio of subsequent perturbative corrections to the first
one Oðg2Þ: g3, g4 logðgÞ, g4, g5, and g6 logðgÞ are shown vs g by
the thick black, thick dashed (blue), dotted (red), and thin blue
and brown dashed curves, respectively.

5Note that in gauge theory at finite temperatures there is a
preferable frame, in which matter is at rest. Therefore this expectation
value does not contradict Lorentz invariance of the vacuum.
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J⃗ ¼ m½r⃗ × _⃗r� þ eg
r⃗
r
. ð7Þ

Its conservation leads to unusual consequences: unlike in the
case of the usual potential forces, in this case the particle
motion is not restricted to the scattering plane, normal to J⃗, but
to a different 2D surface, called the Poincaré cone.
In the quantum-mechanical setting the problems involving a

pair of electrically and magnetically charged particles provide
further surprises. The angular momentum of the field must
take values proportional to ℏ with integer or semi-integer
coefficient: this leads to the famous Dirac quantization
condition (Dirac, 1931)

eg ¼ 1
2
ℏcn ð8Þ

(where we keep ℏ, unlike most other formulas) with an integer
n on the right-hand side (rhs). Dirac himself derived it
differently, arguing that the unavoidable singularities of the
gauge potential of the form of the Dirac strings should be pure
gauge artifacts and thus invisible. He emphatically noted
that this relation was the first suggested reason for electric
charge quantization.
Many outstanding theorists, Dirac and Tamm among them,

wrote papers about a quantum-mechanical version of the
problem of a monopole moving in a field of a charge, yet this
problem was fully solved only decades later (Boulware et al.,
1976; Schwinger et al., 1976). It is unfortunate that this
problem is not, to our knowledge, part of any textbooks on
quantum mechanics. The key element was substitution of the
usual angular harmonics Ylmðθ;ϕÞ by other functions, which
for large l, m replicates the Poincaré cone rather than the
scattering plane.
The resurfaced interest to monopoles in the 1970s was

inspired by the discovery of the ’t Hooft–Polyakov monopole
solution (’t Hooft, 1974; Polyakov, 1974) for the Georgi-
Glashowmodel, with an adjoint scalar field complementing the
non-Abelian gauge field. In the (2þ 1)-dimensional theories
such monopoles play the role of instantons: their long-range
interactionwas used by Polyakov (1977) to prove confinement,
in a gauge theory in this dimension of space-time.
In the real world, with 3þ 1 space-time dimensions, the

monopoles are quasiparticles. A different confinement mecha-
nism has been conjectured (Mandelstam, 1976; ’t Hooft,
1978): monopoles may undergo Bose-Einstein condensation,
provided their density is large enough and the temperature
sufficiently low. These ideas, known as the “dual super-
conductor” model, were later strongly supported by lattice
studies.
The monopole story continued at the level of QFTs, with

another fascinating turn. Dirac considered the electric and
magnetic charges e and g to be some fixed parameters: but in
QFTs the charges run as a function of the momentum scale.
So, to keep the Dirac condition, eðQÞ and gðQÞ must be
running in the opposite directions, keeping their product fixed.
In QCD-like theories the electric coupling is small in UV
(large Q) but increase toward IR (small Q).
One example was provided by the N ¼ 2 supersymmetric

theory for which a partial solution was found by Seiberg and

Witten (1994). In this theory, possessing adjoint scalar fields,
the monopoles do exist as particles with well-defined masses.
Furthermore, for certain special values of the vacuum expect-
ation value (VEV) of the Higgs field, they do indeed become
massless and weakly interacting, while the electric ones,
gluons and gluinos, are very heavy and strongly interacting.
The corresponding low energy magnetic theory is (super-
symmetric) QED, and its beta function, as expected, has the
opposite sign to that of the electric theory.
More examples are provided by the four-dimensional

conformal theories, such as N ¼4 super-Yang-Mills. Those
theories are electric-magnetic self-dual. This means that
monopoles, dressed by all fermions bound to them, form
the same spin multiplet as the original fields of the “electric
theory.” Therefore, the beta function of this theory should be
equal to itself with the minus sign. The only solution to that is
that it must be identically zero, so the theory is conformal.
Completing this brief pedagogical update, let us return to

Liao and Shuryak (2007), considering properties of a classical
plasma, including both electrically and magnetically charged
particles.6 Let us proceed in steps of complexity of the
problem, starting from three particles: a pair of �q static
electric charges, plus a monopole which can move in their
“dipole field.”Numerical integration of the equation of motion
showed that the monopole’s motion takes place on a curious
surface, interpolating two Poincaré cones with ends at the two
charges: so to say, two charges play ping-pong with a
monopole, without even moving. Another way to explain it
is by noting that an electric dipole is “dual” to a “magnetic
bottle,” with magnetic coils, invented to keep electrically
charged particles inside.
The next example was a cell with eight alternating static

positive and negative charges, modeling a grain of salt. A
monopole, which is initially placed inside the cell, has
formidable obstacles to get out of it: hundreds of scattering
with the corner charges happen before it takes place. The
Lorentz force acting on a magnetic charge forces it to rotate
around the electric field. Closer to the charge the field grows
and thus rotation radius decreases, and eventually two
particles collide.
Finally, multiples (hundreds) of electric and magnetic

particles were considered by Liao and Shuryak (2007),
moving according to a classical equation of motions. It was
found that their paths essentially replicate the previous
example, with each particle being in a “cage,” made by its
dual neighbors. These findings provide some explanation of
why electric-magnetic plasma has an unusually small mean
free path and, as a result, an unusually perfect collective
behavior.
At the quantum-mechanical level the many-body studies of

such plasma are still to be done. Therefore one has to rely on
kinetic theory and binary cross sections. Those for gluon-
monopole scattering were calculated by Ratti and Shuryak
(2009). It was found that gluon-monopole scattering domi-
nates over the gluon-gluon one, as far as transport cross
sections are concerned, and produces values of the viscosity

6We are not aware of other attempts to study such setting, although
it is hardly possible that nobody thought of it.
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quite comparable with that observed in sQGP experimentally,
as shown in Fig. 3. What is also worth noting is that it does
predict a maximum of this ratio at T ¼ Tc, reflecting the
behavior of the density of monopoles.
Returning to QCD-like theories which do not have powerful

extended supersymmetries that would prevent any phase
transitions and guarantee smooth transition from UV to IR,
one finds a transition to confining and chirally broken phases.
Those have certain quantum condensates which divert the
renormalization group (RG) flow to a hadronic phase at
T < Tc. Therefore the duality argument must hold at least
in the plasma phase, at T > Tc. We can follow the duality
argument and the Dirac condition only halfway, until
e2=4πℏc ∼ g2=4πℏc ∼ 1. This is a plasma of coexisting
electric quasiparticles and magnetic monopoles.
One can summarize the picture of the so-called magnetic

scenario by a schematic plot shown in Fig. 5, from Liao and
Shuryak (2007). At the top (the high T domain) and at the right
(the high density domain) one finds weakly coupled or
“electrically dominated” regimes (wQGP). On the contrary,
near the origin of the plot, in vacuum, the electric fields are
subdominant and confined into the flux tubes. The vacuum is
filled by the magnetically charged condensate, known as a dual
superconductor. The region in between (relevant for matter
produced at RHIC and the LHC) is close to the “equilibrium
line,” marked by e ¼ g on the plot. In this region both electric
and magnetic coupling are equal and thus αelectric ¼
αmagnetic ¼ 1: so neither the electric nor magnetic formulations
of the theory are simple.
Do we have any evidence of a presence or importance for

heavy ion physics of magnetic objects? Here are some
arguments for that based on lattice studies and phenomenol-
ogy, more or less in historical order.

(i) In the RHIC-LHC region Tc < T < 2Tc the VEVof the
Polyakov line hPi is substantially different from 1. Hidaka
and Pisarski (2008) argued that hPi must be incorporated
into a density of thermal quarks and gluons and thus
suppress their contributions. They called such matter “semi-
QGP” emphasizing that only about one-half of the QGP
degrees of freedom should actually contribute to thermody-
namics at such T. And yet, the lattice data insist that the
thermal energy density remains close to the T4 trend nearly
all the way to Tc.
(ii) The magnetic scenario (Liao and Shuryak, 2007)

proposed to explain this puzzle by ascribing “another half”
of such contributions to the magnetic monopoles, which are
not subject to hPi suppression because they do not have the
electric charge. A number of lattice studies found magnetic
monopoles and showed that they behave as physical quasi-
particles in the medium. Their motion definitely shows Bose-
Einstein condensation at T < Tc (D’Alessandro, D’Elia, and
Shuryak, 2010). Their spatial correlation functions are plas-
malike. Even more striking is the observation (Liao and
Shuryak, 2008) revealing magnetic coupling which grows
with T, being indeed an inverse of the asymptotic free-
dom curve.
The magnetic scenario also has difficulties. Unlike the

instanton dyons, lattice monopoles so far defined are gauge
dependent. The original t’Hooft–Polyakov solution requires
an adjoint scalar field, absent in the QCD Lagrangian, but
perhaps an effective scalar can be generated dynamically. In
the Euclidean time finite-temperature setting this is not a
problem, as A0 naturally takes this role, but it cannot be used
in real-time applications required for kinetic calculations.
(iii) Plasmas with electric and magnetic charges show

unusual transport properties: The Lorenz force enhances
the collision rate and reduces viscosity (Liao and Shuryak,
2007). Quantum gluon-monopole scattering leads to a large
transport cross section (Ratti and Shuryak, 2009), providing
small viscosity in the range close to that observed at the RHIC
and the LHC.
(iv) The high density of (noncondensed) monopoles near Tc

leads to compression of the electric flux tubes, perhaps
explaining curious lattice observations of very high tension
in the potential energy (not free energy) of the heavy-quark
potentials near Tc (Liao and Shuryak, 2007); see Sec. X.
(v) Last but not least, the peaking density of monopoles

near Tc seems to be directly relevant to jet quenching;
see Sec. XI.
Completing this introduction to monopole applications, it

is impossible not to mention the remaining unresolved issues.
Theories with adjoint scalar fields, such as, e.g., the cel-
ebrated N ¼ 2 Seiberg-Witten theory, naturally have parti-
clelike monopole solutions. However, in QCD-like theories
without scalars the exact structure of the lattice monopole are
not yet well understood. There are indications that most, if
not all, of the monopole physics can be taken care of via the
instanton dyons previously mentioned: in this case the role of
the adjoint “Higgs” is played by the time component of the
gauge potential A4. The dyon solution is well defined
and real in Euclidean time, but becomes imaginary in the
Minkowski continuation: so it is not a “particle” in the
ordinary sense.

FIG. 5. A schematic phase diagram on a (compactified) plane of
temperature and baryonic chemical potential T − μ. The shaded
(blue) region shows the magnetically dominated region g < e,
which includes the deconfined hadronic phase as well as a small
part of the QGP domain. The unshaded region includes the
electrically dominated part of QGP and the color superconducting
(CS) region, which has e-charged diquark condensates and is
therefore “magnetically confined.” The dashed line (e ¼ g) is the
line of electric-magnetic equilibrium. The solid lines indicate true
phase transitions, while the dash-dotted line is a deconfinement
crossover line. From Liao and Shuryak, 2007.
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II. THE MAIN ISSUES IN QCD AND HEAVY
ION PHYSICS

Let us start with a few super questions and comments on
them,which are common to the entire strong interactionphysics,
extending well beyond the boundaries of the heavy ion field.
(I) Can one locate the “soft-to-hard” boundary, in whatever

observables under consideration, where the transition from
weak- to strong-coupling regimes take place?
(II) Can one locate the “micro-to- macro” boundary, where

some transition in the value of the mean-free-path happens,
from large (ballistic) to small (hydrodynamic) regime? In
particular, which experimental observables best display this
transition.
(III) Can we experimentally locate the QCD critical point,

by following higher order fluctuations or correlations?
Some brief comments on these points are as follows:
(Ia) We already mentioned that a large variety of correlation

functions has been studied on the lattice and phenomeno-
logically, locating transitions between pQCD and nonpertur-
bative regimes in various channels. The closest to it in
experiments is hard exclusive processes, e.g., the pion and
nucleon form factors. To the highestQ2 ∼ 4 GeV measured so
far, neither of them had reached quantitative agreement with
the pQCD predictions. Because of its importance, the exper-
imental studies should be continued to higher momenta, until
such agreement is observed.
In the heavy ion field there exists a hotly debated “minijet”

issue. While the identified jets have rather large momenta,
p⊥ > 20 GeV or so, it is generally assumed that the parton
description is valid down to much smaller momenta. How
much smaller? Following the Dokshitser-Gribov-Lipatov-
Altarelli-Parisi (DGLAP) evolution toward small Q2 all the
way to ∼1 GeV2 one eventually reaches a negative gluon
density. This and other arguments tell us that at this scale,
1 GeV, pQCD cannot be used. At which scale Qmin one has to
stop is defined by the “higher twist effects,” not yet studied to
the extent to provide a quantitative answer.
(Ib) The fundamental process is pp scattering. Its total cross

section and elastic amplitude is described by Pomeron
phenomenology. The elastic amplitude is a function of the
momentum transfer t ¼ −q2, and its Bessel-Fourier transform
is the profile function FðbÞ, depending on the impact
parameter b. Small b is understood via a perturbative
Balitsky-Fadin-Kuraev-Lipatov (BFKL) Pomeron, while large
b is understood via some string-exchange models. In this case
the experimental data actually do indicate a sharp transition
between these regimes. Attempts to understand both regimes
in a single AdS-QCD framework have been successful
(Stoffers and Zahed, 2013). Furthermore, it has been sug-
gested that the critical b is related to critical temperature Tc of
the phase transition in the gauge theory; we discuss this in
Sec. VIII.C.
(Ic) Proceeding from elastic to inelastic collisions, when

should we describe the initial snapshots of hadrons and nuclei
in terms of partons (quarks and gluons) or nonperturbative
effective objects (monopoles, strings)? As we will discuss,
these initial effective objects produce fluctuations, which, via
long-lived hydrosound modes, are visible to the detectors.
Therefore, their number becomes experimentally observable.

(IIa) Heavy ion (AA) collisions are now complemented by
“small systems” pA and pp collisions. At high enough
multiplicity they display collective phenomena: radial, ellip-
tic, and even triangular flows. One wants to quantify the
regime change, if possible, experimentally and theoretically.
Unfortunately, so far no sharp transitions as a function of
multiplicity are detected.
(IIb) Where exactly is the boundary between the micro-

theories and macrotheories? The textbook answer is that one
can compare the micro or “mean-free-path” scale l to the size
of the system

L ≫ l ð9Þ
and if the l=L ratio is small one can use the macroscopic
theories. Small phenomenological viscosity suggests that the
mean free path in sQGP is a few times smaller than the
interparticle distance. By observing the smallest exploding
systems, one checks if this is indeed the case.

III. SOUNDS ON TOP OF THE “LITTLE BANG”

A. Comments on hydrodynamics

As emphasized in the Introduction, hydrodynamical
explosion of QGP is well documented; see, e.g., Heinz and
Snellings (2013). The interest has now shifted from a
description of the bulk of the data to special cases, with an
emphasis on the limits of the hydrodynamical description.
When one thinks of ideal hydrodynamics plus viscous

corrections, it is sometimes stated that the latter, the viscosity
times the velocity gradients, should be smaller than the main
terms. In fact it is not so: it is the terms second (and higher
order) in gradients that are neglected and thus assumed small.
Navier-Stokes hydrodynamics can successfully describe
anisotropic flows. Studies of the “anisotropic hydrodynamics”
as well as an exact solution of the Boltzmann equation in
Gubser setting are discussed in Sec. IV.C.
Another direction is the so-called higher order hydrody-

namics, attempting resummation of certain gradient terms
(Lublinsky and Shuryak, 2009); see Sec. VII.E.
All formulations of improved hydrodynamics are supposed

to shift their initiation to a somewhat earlier time or promise to
treat somewhat smaller systems. Yet, while the out-of-
equilibrium initial stage gets reduced, of course it can never
be eliminated. The distinction between the initial and the
equilibrated stages is a matter of definition: but physical
outputs, e.g., the total amount of entropy produced, should
ideally be independent of that. Unfortunately, in practice we
are still far from this ideal scenario: studies of entropy
generation at an initial stage is still in its infancy.
A few other issues remains open, related to the boundary of

hydrodynamical description.
One is the boundary at high pt. The region in which

hydrodynamical predictions describe the data goes roughly up
to p⊥ ∼ 3 GeV. (Note that it includes more than 99.9% of all
secondaries.) Collective flows decrease above this momen-
tum, and one needs to understand why. High p⊥ particles
come from an edge of the fireball, where the magnitude of the
flow is maximal. Using the saddle point method for the
Cooper-Frye integral (Blaizot and Ollitrault, 1990), one can
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see that the region from which such particles come shrinks, as
p⊥ grows. We will return to this point in connection to high-
multiplicity pp collisions and radii extracted by Hanbury-
Brown–Twiss (HBT) interferometry, see Sec. V.E. Eventually
this region shrinks to a single hydrodynamic cell of the size of a
mean-free path, and hydrodynamics can no longer be applied.
The viscosity effects lead to anisotropy of particle distri-

butions induced by flow gradients (Teaney, 2003): these
effects should be enhanced at the fireball’s edge. Gradients
add an extra power of p⊥, and the deviation in the flows from
ideal hydrodynamics should be negative. This picture quali-
tatively agrees with observations, but quantitative theory in the
window 4 < p⊥ < 10 GeV is still missing. Above it one finds
a completely different, jet-dominated, physics, which is again
under theoretical control.
Another issue is the “end of hydrodynamics” at the end of

the collisions. Because different secondaries have very differ-
ent cross sections, it has been argued that they have sequential
freezeouts depending on their value (Hung and Shuryak,
1998). Traditionally, after chemical freezeout the practical
models switch from hydrodynamics to hadronic cascade,
which implements it in detail. But recent data, especially
from ALICE, put such an approach into question. The particle
yields are described by chemical equilibrium so well, up to
light nuclei, that little space is left to inelastic rescatterings.
The hydrodynamical paradigm states that out of all indi-

vidual properties of the secondary hadrons, only one, their
masses, is important, as one translates from the distribution
over collective flow velocities to the observed momenta. All
one needs to know is that an object of mass m in a flow with
velocity v has the momentum mv, plus thermal motion which
also depends only onm. Let us check it by a direct comparison
of the spectra for a pair of hadrons with the same mass, with
otherwise completely different quantum numbers and cross
sections, e.g., p and ϕ. They can hardly be more different, a
nonstrange baryon versus a s̄s meson, so any “afterburner”
code shows their late-time dynamics to be different. And yet,
as the data shown in Fig. 6 demonstrate, their spectra are
practically identical, up to p⊥ ∼ 4 GeV=c.

B. Hydrodynamical response to perturbations

Now, assuming that the average pattern of the fireball
explosion has been well established, we are going to add
perturbations to it. The induced fluctuations and their corre-
lations is thus the next topic of our discussion.
The first method is the so-called event-by-event hydro-

dynamics, solved for some ensemble of initial conditions.
However, most of what was learned from these studies can
also be understood from a simpler approach, in which one
adds small and elementary perturbations on top of a smooth
average fireball.7 Using an analogy, instead of beating a drum

forcefully with both hands and all fingers, one may touch it
gently with a drumstick, at different locations, recording the
spectra and intensities of the sounds produced. Eventually,
summing up all the relevant modes of excitations, one gets a
complete Green’s function, from which a (linearized) descrip-
tion of any initial conditions follow.
In order to summarize what we learned from fluctuation and

correlation studies, one needs to return to the data and to the
results of multiple hydrodynamical calculations, separating
their essence from unimportant complications. A simple
pocket formula, revealing the systematics, will help us do so.
Before we get into the details, let us formulate the main

points using the drum analogy. First, perturbations on top of
the sQGP fireball basically are sounds, as those propagating
on the drum. The main phenomenon is their viscous damping;
the value of viscosity will be the main output. Unlike the
drum, the fireball is not static but exploding: therefore an
oscillating behavior is superimposed on the dynamical time
dependence of the amplitudes. Different excitations are
excited if the drum is struck at different places; similarly
we find excitation of different modes depending on their
origination point.
These calculations typically start from the angular defor-

mations of the initial state. In Fig. 7(a) one finds the
dependence of the mean harmonics (eccentricities)

ϵn ¼ hcosðnϕÞi; ð10Þ

where n is an integer and ϕ is the azimuthal angle. The angular
brackets indicate an average over events, usually for a
particular centrality bin (indicated in the upper left corner
as a fraction of the total cross section, which scales as bdb).
The bin 0%–0.2% is called the “ultracentral” one, b ≈ 0, and
50%–60% are peripheral collisions. The first comment to this
plot is that the n ¼ 2 harmonics is special; it peaks for
peripheral bins, due to collision geometry. However other
harmonics, and in fact all of them for the central bins, are
basically independent of n and centrality. What this tells us is
that statistically independent “elementary perturbations” (or
“bumps”) have small angular size δϕ ≪ 2π, so one sees here
an angular Fourier transform of the delta function.

FIG. 6. Proton-to-pion and (rescaled) ϕ=π ratios, as a function
of transverse momentum pT .

7By no means does the latter approach undermine good work in
which the former approach does. Development of stable and causal
second-order hydrodynamic codes and ensembles of initial condi-
tions is a significant achievement. The averaging hydrodynamic
results over thousands of configurations, with complicated shapes, is
a lot of work, resulting in the vn moments. Here one needs to focus on
the essence of the issue, in the simplest setting possible.
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The next observation is that the deformations are smaller for
central collisions. This is also natural: central collisions
produce larger fireballs, which have more particles and thus
fluctuate less

hϵni ∼
1ffiffiffiffiffiffiffiffiffiffi
Ncells

p ; ð11Þ

where Ncells ¼ Acell=Afireball is the number of statistically
independent cells.
Models of the initial state give not only the average

deformation but also their distributions and correlations.
Remarkably, the experimentally observed distributions over
flows PðvnÞ directly reflect the distributions of the angular
anisotropies PðϵnÞ at the initial time; see, e.g., the ϵ3 and v3
distributions in Fig. 7(b). In other words, apparently no extra
noise is generated during the hydrodynamic evolution, from
the initial state ϵn to the final state vn.

C. Acoustic systematics: The viscous damping

There is a qualitative difference between radial flow and
higher angular harmonics. While the former monotonically
grows with time, driven by the outward pressure gradient with
a fixed sign, the latter are basically sounds, or density
oscillations. Therefore the signal observed should, on general
grounds, be the product of the two factors: (i) the amplitude

reduction factor due to viscous damping and (ii) the phase
factor containing the oscillation at the freezeout. (We will
discuss the effects of the phase in the next section.)
Let us start with the “acoustic systematics” which includes

only the viscous damping factor. Somewhat surprisingly, this
simple expression describes both the data and the hydro-
dynamic calculations. More specifically, it reproduces the
dependence on the viscosity value η, the size of the system R,
and the harmonic number n.
The expression can be motivated as follows. We had already

mentioned “naive” macroscales and microscales (9): now we
define it a bit more accurately, by inserting the viscosity-to-
entropy ratio η=s ¼ lT into it

l
L
¼ η

s
1

LT
. ð12Þ

This “true micro-to-macroratio,” corresponding to the mean-
free path in kinetic theory, defines the minimal size of a
hydrodynamic cell.
One effect of viscosity on sounds is the damping of their

amplitudes. The acoustic damping formula (Staig and
Shuryak, 2011a) is

vn
ϵn

∼ exp

�
−Cn2

�
η

s

��
1

TR

��
; ð13Þ

where C is some constant. The harmonic number n appears
squared because the damping includes a square of the
gradient, the momentum of the wave. It gives the following
predictions: (i) the viscous damping is exponential in n2,
(ii) the exponent contains the product of two small factors η=s
and 1=TR, and (iii) the exponent contains 1=R which should
be understood as the largest gradient in the system, often
modeled8 as 1=R ¼ 1=Rx þ 1=Ry.
An extensive comparison of this expression with the AA

data, from central to peripheral, was done by Lacey et al.
(2013) from which we borrow Figs. 8 and 9. Figure. 8(a)
shows the well-known centrality dependence of the elliptic
and triangular flows. v2 is small for central collisions due to
the smallness of ϵ2, and also small in the very peripheral bin
because viscosity is large in small systems. Figure 8(b) shows
the lnðvn=ϵnÞ. As a function of the inverse system’s size 1=R,
both elliptic and triangular flows show perfectly linear
behavior. Further issues [the n2 dependence as well as the
linear dependences of the logðvm=ϵmÞ on the viscosity value]
are also very well reproduced; see Fig. 9. Note that this
expression works all the way to rather peripheral AA collisions
with R ∼ 1 fm and multiplicities comparable to those in the
highest pA bins. It also seems to work to the largest n so far
measured.
The acoustic damping provides correct systematics of the

harmonic strength. This increases our confidence that, in spite
of somewhat different geometry, the perturbations observed
are actually just a form of sound waves.
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FIG. 7. (a) Average initial stage deformations hϵni¼hcosðnϕÞi
for various centralities using the models indicated. From Heinz
and Snellings, 2013. (b) Data points correspond to the event- by-
event distribution of v3 measured by the ATLAS Collaboration,
compared to the distributions of initial eccentricities in the
IP-GLASMA model and the distributions of v3 from fluid
dynamic evolution with IP-GLASMA initial conditions. From
Schenke and Venugopalan, 2014.

8Remember that x and y axes are transverse to the beam, and x is
along the impact parameter. Thus for peripheral collisions Rx is
dominant in this combination.
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Since we are interested not only in large AA systems but
also in new, pA and pp, much smaller fireballs, one may use
the systematics to compare it with the new data. Using the
acoustic damping formula, one can estimate how many flow
harmonics can be observed in these cases. For central PbPb at
LHC collisions with

1

TR
¼ Oð1=10Þ ð14Þ

its product of η=s is Oð10−2Þ. One can immediately see from
this expression why harmonics up to n ¼ Oð10Þ can be
observed. Proceeding to smaller systems, by keeping a similar
initial temperature Ti ∼ 400 MeV ∼ 1=ð0.5 fmÞ but a smaller
size R, results in a macro-to-microparameter that is no longer
small, or 1=TR ∼ 1. Note that for a usual liquid or gas, with
η=s > 1, there would not be any small parameter left, and one
would have to conclude that hydrodynamics is inapplicable
for such a small system. However, since the quark-gluon
plasma is an exceptionally good liquid with a very small η=s,

one can still observe flow harmonics up to m ¼ Oð ffiffiffiffiffi
10

p Þ ∼ 3.
And indeed, v2 and v3 have been observed already in the first
round of measurements (for later data, see Fig. 22).

D. Waves from a point perturbation and harmonic spectra

The event-by-event hydrodynamics appears to be a very
complicated problem: events have multiple shapes, described
by multidimensional probability distributions Pðϵ2; ϵ3…Þ, and
different spatial shapes lead to complicated deformations of
the secondary spectra. Yet the analysis shows that all those
shapes are however mostly due to a statistical noise, and the
problem is much simpler than it naively appears to be.
The point is that the individual rows of nucleons, located at

different places in the transverse plane, by causality cannot
possibly know about fluctuations of other rows at different
locations; their fluctuations are statistically independent.
Therefore it is sufficient to study one “elementary excitation”
produced by a delta-function source in the transverse plane (in
reality, of the size of a nucleon). In other words, one needs to
find the Green’s function of the linearized hydrodynamic
equations.
A particular model of the initial state expressing locality

and statistical independence of bumps has been formulated by
Bhalerao and Ollitrault (2006): the correlator of fluctuations is
given by the Poisson local expression

hδnðxÞδnðyÞi ¼ n̄ðxÞδ2ðx − yÞ; ð15Þ

where n̄ðxÞ is the average matter distribution. The immediate
consequence of this model is that, for the central collisions (on
which we focus now), ϵm are the same for all m < mmax ¼
Oð10Þ (until the bump size gets resolved).
In order to calculate perturbations at later times one needs to

apply the Green’s functions twice, describing perturbation
propagating from the original source O to the observation
points x and y as shown in Fig. 10(a). This was first done by
Staig and Shuryak (2011b) analytically, for Gubser flow (see
Appendix B for details). One finds that the main contributions
come from two points in Fig. 10, where the “sound circle”
intersects the fireball boundary. In single-body angular dis-
tributions those two points correspond to two excesses of
particles at the corresponding two azimuthal directions. The
angle between them at Fig. 10(a) is about Δϕ ≈ 120° or 2 rad.
The azimuthal correlation function (Staig and Shuryak,
2011b) is shown in Fig. 11(a). One of its features is a peak
at zero δϕ ¼ 0: it is generated when both observed particles
come from the same azimuthal enhancement. If two particles
come from two different locations, there peaks displaced by
Δϕ ¼ �2 rad. [As shown in Fig. 10, if one shifts the position
of perturbation from (a) to (b), the peak angle Δϕ changes
toward its maximal value, πrad, or 1=2 of the circle.]
This calculation has been made and presented9 before the

experimental data were shown. The experimental correlation
function from ATLAS, for the “supercentral bin” with the
fraction of the total cross section 0%–1%, is shown in

(a) (b)

FIG. 8. (a) ATLAS data for v2 and v3 vs Npart. (b) lnðvn=ϵnÞ vs
1=R for the same data. From Lacey et al., 2013.

(a) (b) (c)

FIG. 9. (a) ATLAS data lnðvn=ϵnÞ vs n2 from viscous hydro-
dynamical calculations for three values of specific shear viscosity
as indicated. (b) lnðvn=ϵnÞ vs n2 for Pbþ Pb data. The p⊥-
integrated vn results in (a) and (b) are from ATLAS 0.1% central
Pbþ Pb collisions at nucleon-nucleon sNN ¼ 2.76 TeV; the
curves are linear fits. (c) Exponent vs viscosity-to-entropy ratio
4π=s for curves shown in (a) and (b). From Lacey et al., 2013. 9At the first day of the Quark Matter 2011 Conference at Annecy.
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Fig. 11(b). The shape of the correlator was predicted strik-
ingly well.
While there is no need to use Fourier harmonics, we insist

that the correlation function as a function of the relative angle
may teach us more than harmonics, separately studied. Note
that for the ultracentral collisions we now discuss the largest
harmonics is v3 [see Fig. 11(b)], not v2. Since starting
deformations ϵn are basically the same for all n, the difference
must come from hydrodynamics, and it does. As previously
explained using the notion of the sound horizon, the angular
distance between enhancements is about 120°, not 180°.
A very similar phenomenon takes place for the big bang

sound perturbations. All hydrodynamic harmonics get excited
at the initial time t ¼ 0 by the big bang, and all got frozen out
at the same time as well. The acquired phases depend on the
harmonic number n, because at larger n they oscillate more
rapidly. The binary correlator is proportional to cos2ðϕn

freezoutÞ
of these phases and harmonics with the optimal phases close
to π=2 or 3π=2 values show maxima, with minima in between.
Planck Collaboration data on the power spectrum of the
cosmic microwave big bang perturbations, shown in Fig. 12 as
a function of the harmonic number, display a number of such
maxima and minima.
The first calculation of the harmonic spectrum (Staig and

Shuryak, 2011b) similarly showed such oscillations, with the
first peak close to n ¼ 3 and the minimum around n ¼ 7;
see Fig. 13(a). A subsequent study of analytic linearized
perturbation on top of Gubser flow (Gorda and Romatschke,
2014) produced more information about the minimum; see
Fig. 13(b). While the minima are clearly there for one
pointlike source, its location depends on the radial location
of the original source r0. Gorda and Romatschke further
studied the question and found that for r0 ∼ 5�6 fm the
minimum shifts to m ¼ 10. The questions whether such
minima can survive realistic ensemble average, and perhaps
ever be observed experimentally, remain open. To date, high
harmonics n > 6 remains out of reach for statistical reasons.
Currently a number of groups developed sophisticated

event-by-event hydrodynamic calculations and calculated
the magnitude of harmonics: however they do so with

FIG. 10. The perturbation is shown by a small (blue) circle at
point O: its time evolution to points x and y is described by the
Green’s function of linearized hydrodynamics shown by two
lines. The perturbed region, shown by the gray circle, is inside
the sound horizon. The sound wave effect is maximal at the
intersection points of this area with the fireball boundary: Δϕ
angle is the value at which the peak in the two-body correlation
function is to be found. Shifting the location of the perturbation,
from (a) to (b), results in a rather small shift in Δϕ.

FIG. 11. (a) Calculated two-pion distribution as a function of the
azimuthal angle difference Δϕ, for viscosity-to-entropy ratios
η=s ¼ 0.134. From Staig and Shuryak, 2011b. (b) From ATLAS,
Jia, 2011. (c) From ALICE, Aamodt et al., 2011b. All for
ultracentral collisions.
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FIG. 12. A power spectrum of cosmic microwave background
radiation measured by the Planck Collaboration. From
Ade et al., 2014.
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n ¼ 2–6 that is below the discussed minimum. It is interesting
that their results are well described by expð−n2 × constÞ
dependence, expected from the acoustic damping discussed
previously; see, for example, Rose et al. (2014) and Fig. 14(a).
Gorda and Romatschke also saw this dependence; see
Fig. 14(b), but they do not agree that the coefficient is
proportional to the viscosity.
Another question about these harmonic spectra is whether

there is a maximum? This question reduces to the relation
between amplitudes of the harmonics m ¼ 2 and 3.10 The
experiments show that v3 > v2: see the ultracentral ATLAS
data shown in Fig. 13(a), as well as the CMS central bin data
in Fig. 13(b). (The latter include slightly larger impact
parameters and thus feed more geometry-related contributions
to v2.) The same conclusion stems from both calculations just
discussed (Staig and Shuryak, 2011b; Gorda and Romatschke,
2014) at large r0. Surprisingly, all sophisticated event-by-
event studies led to the opposite conclusion, namely, v3 < v2
for the ultracentral bin.

The “flow harmonics,” solutions of linearized equations on
top of average smooth flow, should make a complete set of all
possible perturbations. The functions of course depend not
only on the azimuthal angle ∼eimϕ, but on other coordinates r
and η as well. For Gubser flow (see Appendix B) one can use
the comoving coordinates ρ; θ;ϕ; η, derive linearized equa-
tions for perturbations, and separate the dependence on all
four coordinates, with analytic expressions for all harmonics.
The flow in the transverse plane r;ϕ is combined into standard
angular harmonics Ylðθ;ϕÞ, combining the azimuthal angle ϕ
and the radial coordinate r into θ. The waves in the rapidity
direction η are simple plane waves.
Can one similarly define a complete set of independent

harmonics for a generic non-Gubser setting? And, even more
importantly, can those be observed? A step in this direction
was made by Mazeliauskas and Teaney (2015) using “sub-
heading harmonics” of flow, extracted from experimental data.
Figure 15 indicates a difference between the leading and
subleading triangular flows. Note that the latter gets a sign
change along the radial direction, unlike the former one.

E. Detecting the interactions between harmonics

We already argued that the individual sources, or bumps as
we call them, are uncorrelated, and so one should not pay
attention to their interferences. The suggested picture is
similar to a number of stones thrown into the pond: the
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FIG. 13. (a) The lines are from analytic linearized hydrody-
namic calculations of the correlation function harmonics v2m,
based on a Green’s function from a point source, for four values
of viscosity 4πη=s ¼ 0, 1, 1.68, and 2 (top to bottom at the right).
The closed circles are the ATLAS data for the ultracentral bin.
From Staig and Shuryak, 2011b. (b) Calculation of harmonic
flow spectra from analytic linearized hydrodynamics at p⊥ ¼
1 GeV demonstrates the dependence of the minimum on the
location of the perturbation r0 ¼ 7.5, 8.0, 8.5, and 9 fm, by the
circles (blue), squares (red), diamonds (brown), and triangles
(green), respectively. From Gorda and Romatschke, 2014.
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FIG. 14. (a) vnf2g vs n2. The solid (blue) circles corre-
spond to viscous event-by-event hydrodynamics, in the
“IPGLASMAþMusic” model, with viscosity value η=s ¼ 0.14.
The straight line, shown to guide the eye, demonstrates that
acoustic systematics does in fact describe the results of this heavy
calculation quite accurately. The CMS data for the 0%–1%
centrality bin, shown by the squares (red), in fact display larger
deviations, perhaps oscillatory ones. From Rose et al., 2014.
(b) The harmonics induced by a fixed perturbation at r0 ¼ 4 fm for
variable viscosity. From Gorda and Romatschke, 2014.

10The harmonics m ¼ 1 is known to be especially small due to the
vanishing dipole, and so it should be removed from consideration.
We now discuss central collisions only, in which all effect comes
from fluctuations, not the geometry.
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produced expanding circles visibly interfere, but they do not
really interact with each other since the amplitude is small.
Now we look at the details of this picture. First, how many

such bumps are there? For central collisions the circumference
of the fireball is 2πRA ≈ 40 fm. The correlation length is
perhaps the typical impact parameter in NN collisions, which
at the LHC energies is b ∼

ffiffiffiffiffiffiffiffi
σ=π

p
∼ 1.6 fm. As such there are

not more than

Nsources ≈
2πRA

b
≈ 25 ð16Þ

independent sources.
The absolute scale of correlator harmonics in experiments is

of the order of a percent; see, e.g., Fig. 11(b). Of course, it
comes from an incoherent sum over the number of sources, so
one individual bump contributes only Oð10−3Þ into it. In the
wave amplitude one needs to take the square root, since one
deals with perturbation of the order of 1=30.
With such small amplitudes one might conclude that

the linear theory is completely sufficient, and all nonlinear
effects can be ignored. It is basically correct, but not near the
fireball edge. Small waves can produce large effects at the
large pt end. Indeed, at pt ∼ 3 GeV the elliptic flow gets large
vn ∼ 0.2 which makes angular distribution 100% asymmetric.
Similarly, the nonlinear interactions of flows at the edge, large
pt, are non-negligible.
For example, v4 received a contribution proportional to ϵ22,

v6 from ϵ23, etc. Detailed studies of such effects can be found in
Teaney and Yan (2012). Nonlinear effects include a particu-
larly curious case: v1 harmonics generated by nonlinear ϵ2 · ϵ3
interaction
These nonlinear effects do not originate from the nonlinear

terms in the hydrodynamic equation, but from an expansion of
the Cooper-Frye exponent expðpμuμ=TÞ, containing flow
velocity, in powers of these perturbations. Obviously they
become more important at high pt. Furthermore, while the
linear terms are also linear in pt, the nonlinear effects
mentioned are quadratic ∼p2⊥, etc. (Teaney and Yan, 2012).

F. Event-by-event vn fluctuations and correlations

At the beginning of Sec. III we already emphasized that the
main source of the vn fluctuations is that of the original
perturbations ϵn themselves; see, e.g., Fig. 7(b).

Now we return to the question: Why do the ratios vn=ϵn,
evaluated by hydro, have such a small spread? While the
practitioners of the event-by-event hydrodynamics use a large
variety of initial configurations, it turns out that just one
parameter ϵn is sufficient to predict vn. If there would be some
spread in values, the distributions in vn and ϵn would not
match that well.
Even adopting the minimalistic model, that all perturbations

come from incoherent pointlike sources, it is surprising that
event-by-event fluctuations of strength and locations of the
bumps do not create any additional spread. (Or, using the
drum analogy, does one get the same sound when the drum is
hit in a different radius?)
Trying to understand this dependence, let us return to

Fig. 10. The source located at the fireball edge, Fig. 10(a),
produces correlation at Δϕ ≈ 2 rad. As emphasized previ-
ously, projected into harmonics, it will excite the m ¼ 3 one,
since 2 rad is about 1=3 of 2π. As the source moves inward,
Fig. 10(b), the overlap of the sound circle and the fireball edge
moves to tΔϕ ∼ π, and the leading excitation becomes elliptic
m ¼ 2. The calculations show that in the latter case the
correlation gets much weaker. The observed shape of the
correlator for ultracentral collisions does have a minimum at
Δϕ ¼ π. Finally, as the source moves farther toward the
fireball center (not shown in Fig. 10), the correlation appears
at all angles equally, and its contributions to m ≠ 0 harmonics
vanishes. In summary, the harmonics we see comes mostly
from the sources located near the boundary of the fireball. The
angular correlations they induce have one universal form.
The study of flow harmonics and their correlations is a

rapidly expanding field. Correlations can be divided into those
sensitive to relative phases of the harmonics, and those which
are not. An example of the latter is

SCðm; nÞ ¼ hv2mv2ni − hv2mihv2ni. ð17Þ

ALICE provided data for SCð4; 2Þ and SCð3; 2Þ, observing
that SCð4; 2Þ > 0 but SCð3; 2Þ < 0: both qualitatively repro-
duced by hydrodynamical models.
This development requires the initial state model which is

good enough not only to predict the mean ϵn, but their
fluctuations and even respective correlations. Suppose we do
so using the Bhalerao-Ollitrault relation (15): the results
depend on integrals such as

R
d2rrPn̄ðrÞ with large powers

P ¼ 6, 8. Thus the correlations are again coming from the
very surface of the fireball at the initial time. Their absolute
magnitude suffers from significant uncertainties, but the
angular shapes and normalized correlators of harmonics
can still be under control.

G. The map of the sounds

The number of gauge field harmonics needed to describe
the initial state is rather large, counted in hundreds, much
exceeding the number of sound modes we detect at freezeout.
In Fig. 16 we show a map of those, in terms of momentum
(rather than angular momentum). The curved line, correspond-
ing to the acoustic systematics discussed previously, shows
their lifetime. This curve crosses the freezeout time: smaller k
waves can be observed at freezeout. Larger k cannot: they are

FIG. 15. The leading (left) and subleading (right) harmonics of
triangular flow. From Mazeliauskas and Teaney, 2015.
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weakened due to viscous damping. [A suggestion to detect
those via the magnetosonoluminescence (MSL) process is
discussed in Sec. IX.B.]
The fluctuation-dissipation theorem tells us that while the

initial perturbations are damped, new ones should be produced
instead. There should therefore be some noise, producing
sounds continuously during the whole hydrodynamical evo-
lution. Studies of the resulting “hydrodynamics with noise”
have been demonstrated byYoung et al. (2015). Unfortunately,
they have not separated the “initial time sounds” from the
“late-time ones.” Perhaps that can be experimentally separated
via studies of the azimuthþ rapidity correlations, exploring
the fact that the former lead to rapidity-independent modes,
and the latter are rapidity localized.
Shuryak and Staig (2013b) suggested that late-time fluc-

tuations may be generated by collapsing QGP clusters inside
the hadronic phase. Those collapse events should happen
because the QGP phase gets unstable in the bulk, once the
temperature cools to T < Tc. This phenomenon is similar to
the celebrated bubble collapse studied by Rayleigh.
Shocks and sounds are also expected to be created by jets

depositing their energy into the ambient matter. How those are
propagated via sounds was worked out by Shuryak and
Staig (2013a).

H. Sounds in the loops

The hydrodynamical longitudinal pressure waves, the
sounds, are the best quasiparticles we have. They are
Goldstone modes, related to the spontaneous breaking of
the translation invariance by matter, and thus their interaction
follows a certain pattern familiar to pion physics. For large
wavelengths they have a long lifetime, exceeding the freeze-
out time. Therefore, in both the little and the big bangs, one
can observe “frozen” traces of the initial perturbations,
provided one looks at large enough wavelengths.
Because the sounds have long lifetimes and travel far, one

may ask how an ensemble of sounds would behave, given

such long times. In other fields of physics a theory developed
for this questions is called the “acoustic turbulence.”
Furthermore, one may add to the hydrodynamical equations
a Langevin-type noise term, with some Gaussian distribution,
and formulate the resulting theory as a path integral, in the
QFT-like form. Progress in this direction was summarized in a
review by Kovtun (2012). Discussion of formal issues cannot
be made in this review, however, and thus I illustrate the
physics involved by one example only, also from Kovtun,
Moore, and Romatschke (2011).
Recall that matter viscosity can be defined via a certain

limit of the stress tensor correlator, known as the Kubo
formula. Kovtun et al. calculated “loop corrections” to this
correlator induced by the equilibrium sounds. Technically the
calculation is done as follows: in the hTμνTμ0ν0 i correlator one
substitutes a hydrodynamical expression for the stress tensor
containing sound perturbation velocities and makes it into a
loop diagram with the “sound propagators”

Δmn ¼
Z

d4xe−ipαxαhumðxÞunð0Þi ð18Þ

for two pairs of the velocities. (We use Latin indices indicating
that they are only spacelike here. For shear viscosity those
used are m ¼ x, n ¼ y.) Skipping the derivation to the answer
obtained from this calculation, which can be put into the form
of a loop correction to the viscosity

δηloop ¼
17

120π2
pmaxTðϵþ pÞ

η0
; ð19Þ

which is UV divergent and thus includes pmax, the largest
momentum which still makes sense for sound. What is
important here is that the zeroth-order viscosity enters into
the denominator. This should not be surprising: a good liquid
with small η0 supports very long-lived sounds, which can
transfer momentum at relatively large distances, which means
they produce a large contribution11 to the effective viscosity.
The same correlator of stress tensors, in the “sound

approximation” similar to that previously used, has been used
(Kalaydzhyan and Shuryak, 2015) to calculate the on-shell
rate of soundþ sound → gravity waves, from sounds gen-
erated by QCD and/or electroweak cosmological phase
transition.
Completing this section we remind the interested reader

about the existence of other hydrodynamical modes, the
rotational12 ones. Rotational modes on top of the Bjorken
flow were discussed by Floerchinger and Wiedemann (2011):
under certain conditions one hydrodynamic mode does
become unstable. Other unstable hydrodynamical modes
appear for noncentral collisions with rotation (Csernai,
Becattini, and Wang, 2014). More studies of these instabilities

FIG. 16. The log-log plane proper time τ, sound momentum k.
The solid curve indicates the amplitude damping by a factor of e:
only small-k sounds thus survive until freezeout. The shadowed
region on the right corresponds to that in which the magneto-
sonoluminescence effect may produce extra dileptons.

11Other examples of the most penetrating modes dominating
transport are ballistically moving phonons in liquid helium or
neutrinos in a supernova.

12It is well known that those are central, e.g., for the atmospheric
turbulence.
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are however necessary to see whether such instabilities can
indeed be observed.

IV. THE PREEQUILIBRIUM STATE, GLOBAL
OBSERVABLES, AND FLUCTUATIONS

A. Perturbative versus nonperturbative models

A theory of the early stage should be able to (i) specify
certain wave functions of the colliding particle, in a wide
rapidity range; (ii) explain what happens during the collision
time; and (iii) explain how the produced state evolves into the
final observed hadronic state.
It is perhaps fair to say that approaches based on the weak

coupling (pQCD) have been able to explain (i) and (ii), but not
(iii). Strong-coupling approaches, AdS/CFT (conformal field
theory) especially, explain (iii) but not the first two.
More specifically, the pQCD regime is natural for hard

processes, for which the QCD running coupling is weak.
Already in the 1970s pQCD developed a factorization frame-
work, which divided production amplitudes into “before,”
“during,” and “after” parts. The before and after parts are treated
empirically, by structure (or distribution) and fragmentation
functions. The during, near-instantaneous, part is described
by the explicit partonic processes under consideration.
The strength of this approach is based on the separation of

hard and soft scales, by some normalization scale μ, on which
the final answer should not depend. The dependence of the
parton distribution functions (PDFs) and fragmentation func-
tions on μ is described by the renormalization group tool, the
DGLAP evolution. Using it, one can tune the hard scale Q to
pertinent kinematics. It works well for truly hard processes
such as jet production atQ > 10 GeV. In the minijets domain,
at Q given by a few GeV, higher twist 1=Qn corrections are
large and not yet under theoretical control.
The described pQCD framework has also serious restric-

tions as well. The factorized PDFs by definition describe the
average nucleon (or nucleus). As soon as a particle is touched,
e.g., the impact parameter (multiplicity bin) is selected,
factorization theorems are no longer applicable. The absence
of good practical models describing partonic states with
fluctuations remains a problem: e.g., for understanding pp
collisions with multiplicity several times the average. As we
discuss in detail, pQCD can hardly be used for assessing the
transverse plane distributions or correlations of partons.
For “baseline” soft processes, minimally biased pp; pA

collisions with low multiplicity, the phenomenological models
describing QCD string production and fragmentation are rather
successful. The Lund model has branched into various “event
generators,” such as PYTHIA, popular among experimentalists.
Their key feature is independent string fragmentation.
However, new experiments focused on high-multiplicity events
found correlation phenomena clearly going beyond the reach of
these event generators.
In the case of very high multiplicity, e.g., central pA; AA,

the initial conditions for hydrodynamics are smooth and given
by the nuclear shape. The main parameter one needs to know
about the preequilibrium stage is the total amount of the
entropy generated. So far this is treated with some empirical
coefficients (entropy per parton) not yet derived.

In the next approximation one accounts for quantum
fluctuations, in the positions of the nucleons as well as in
the cross sections, via versions of the Glauber eikonal models.
They provide well-defined and reasonable predictions for
initial state perturbations ϵn, generating flow harmonics via
hydrodynamics. The GLASMA-based models include more
fluctuations, resolving partonic substructure of the nucleons:
its relevance for the results is at the moment unclear.
Partonic description of the initial state of the collision

at asymptotically high parton density evolved into the so-
called color-glass-condensate (CGC)-GLASMA paradigm
(McLerran and Venugopalan, 1994). Since at any transverse
location the number of colored objects involved can be
considered large, the color charge fluctuation should also
become large, producing strong gauge fields, the CGC. When
the gluonic fields become so strong that the occupation
numbers reach Oð1=αsÞ, the nonlinear commutator term in
non-Abelian gauge fields is as large as linear ones, and so
one should use classical nonlinear Yang-Mills equations.
GLASMA is a state made of such random classical fields,
starting from CGC at the collision time and then evolving as
the system expands, until the occupation numbers reduce to
Oð1Þ. The model remains valid provided the scale of the (two-
dimensional) parton density n ∼Q2

s, known as a saturation
momentum, remains large compared to the nonperturbative
QCD scale. At early time the charges in each “GLASMA cell”
separate longitudinally, producing longitudinal electric and
magnetic fields. Cells of area ∼1=Q2

s are statistically inde-
pendent and fluctuate with their own Poisson-like distribu-
tions. The explicit modeling of the resulting field, from cells in
the transverse plane, is now known as an impact-parameter
(IP) GLASMA model.
High-multiplicity initial states then evolve into sQGP, which

undergo hydrodynamical expansion. Reducing the multiplic-
ity, one expects to find a regime inwhich the system is too small
to have the hydrodynamical stage. How would one see that?
Let us illustrate it by one particular observable, the elliptic

flow v2. Suppose there is no sQGP stage: partons, gluons and
quarks, simply become minijets after the collision, more or
less like the Weizsacker-Williams photons do in QED.
Correlations in the collision, related to the impact parameter
plane, will produce certain vn moments. Let us discuss their
p⊥ dependence.
Hard partons at large momentum scale Q > Qs, exceeding

the saturation scale of GLASMA, cannot possibly know about
other cells and geometry: those would be produced isotropi-
cally in the transverse plane and do not contribute to vn. If they
reinteract later, the resulting showers contribute a negative
correction to v2. Softer partons, with momenta Q∼1=R≪Qs,
will know about the “overlap almond” shape of the initial
state: their distribution will be anisotropic, perhaps even
with v2 of the order of several percent as observed. Thus
the prediction would be basically flat v2ðp⊥Þ below Qs

and decreasing as p⊥ > Qs, perhaps to negative values.
Unfortunately, in practice implementation of these ideas is
difficult. The Qs value for small systems in question is in the
range of 2.5–3 GeV, close to the maxima produced be the
flow. Experiments show vn extending to higher p⊥ ∼ 5 GeV,
confusing the situation.
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Strong-coupling models of the initial stage and equilibrated
matter fall into two categories. One is classical strongly
coupled plasmas (Gelman, Shuryak, and Zahed, 2006a). Its
main feature is that the so- called plasma parameter is large

Γ ¼ V interaction

T
> 1 ð20Þ

and therefore the potential energy of a particle exceeds its
kinetic energy. Simulations and experimentswithQEDstrongly
coupled plasmas show that for relevant Γ ¼ 1–10 one deals
with strongly correlated liquids. Screening in this regime was
studied by Gelman, Shuryak, and Zahed (2006b) and viscosity
and diffusion constants by Liao and Shuryak (2007). The
second, much wider known, strong-coupling framework is
based on holography and AdS/CFT correspondence.

B. Centrality, E⊥, and fluctuations

Let us briefly remind one of some basic facts about the
global observables and their fluctuations. One of the first
practical questions for AA collisions is the determination of
centrality classes, related to observables such as the number
of participant nucleons Np, correlated to total multiplicity N
or transverse energy E⊥. The Np is defined via measurements
of near-forward moving neutrons, by forward-backward
calorimeters, complementing observables determined from
the central midrapidity detectors. Correlation plots between all
of them and precise cuts defining the centrality classes are
defined by each collaboration in their technical reports.
Historically, the ratio of the E⊥ rapidity distributions for AA

and pp collisions were fitted by a parametrization

dEAA⊥
dη = dEpp

⊥
dη

¼ ð1 − xÞNp

2
þ xNcoll ð21Þ

with a parameter x interpreted as an admixture of the “binary
collisions” Ncoll to the main soft term, proportional to the
number of participants. However, we now know that a hard
interpretation of this last term is questionable: the hard
powerlike component of the particle spectra is actually orders
of magnitude smaller than would be needed for it.
One possibility can be that such interpretation is correct at

an early time, yet with subsequent equilibration jets are
quenched and disappear from spectra; however, an extra
entropy generated by them may still survive and contribute
to the total multiplicity.
Another interesting interpretation for the multiplicity and

E⊥ distributions was provided by Tannenbaum (2014). The
notion of a participant nucleon is substituted by the “partici-
pant quark” Nqp. The model, an incarnation of the additive
quark model of the 1960s, views a nucleon as a set of three
constituent quarks, which interact separately. Defining the
number of “quark participants” Nqp he showed that, within a
1% accuracy, it is proportional to the rhs of Eq. (21). In
particular, the E⊥ is perfectly linear in Nqp; see Fig. 17(b). If
so, each participant quark is connected by the QCD string to
the other one, and those strings are the “clusters” or ancestors
for the observed secondaries. We return to the “wounded

quarks” concept in the discussion of the Pomeron in
Sec. VIII.C.
On the other hand, the additive quark model does not agree

with the CGC-GLASMA picture, in which cells or flux tubes13

of the size 1=Qs × 1=Qs are the statistically independent
sources producing the secondaries. Presumably the CGC-
GLASMA picture should be valid at a high density regime,
while simpler Lund-type models with QCD strings (and,
perhaps, constituent quarks at their ends) are true in the low-
density regime. The problem is in the data we do not exper-
imentally detect any sharp transition between the two regimes.
Let us seek further guidance from phenomenology. Note

that if the number of independently decaying clusters is N, the
width of the observed distributions should scale as OðN−1=2Þ.
The multiplicity distributions have long tails toward large
values, which are usually fitted by the negative binomial or
similar distributions with two parameters, or some similar
convolutions of two random processes with different
parameters. Its second moment should tell us how many

qpN
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FIG. 17. Distributions over participant (a) nucleons and par-
ticipant (b) quarks. From Adler et al., 2014 and Tannenbaum,
2014.

13These McLerran-Venugopalan “flux tubes” should not be con-
fused with the QCD strings: the former exist in a dense deconfined
phase, are classical and not quantized, have an arbitrary fluctuating
field strength, and thus do not have a universal tension.
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“progenitors” (clusters, clans, ancestors, cells) the system
goes through.
Let us discuss three models: (i) the usual Glauber in which

N is the number of participant nucleons Np; (ii) the
Tannenbaum modification, based on the number of participant
constituent quarks Npq; and (iii) the CGC-GLASMA, and
calculate the fluctuations.
In the last case the number of cells is

NGLASMA ∼ ðπR2ÞQ2
s . ð22Þ

For central AA the area is geometrical area ¼ 100 fm2 and

Np ∼ 400; Npq ∼ 1000; NGLASMA ∼ 104. ð23Þ
For central pA the area is given by the NN cross section
σ ∼ 100 mb ¼ 10 fm2. As such one gets a very different
number of clusters

Np ∼ 16; Npq ∼ 40; NGLASMA ∼ 103. ð24Þ

Therefore these models predict vastly different fluctuations.
A brief summary of such a comparison with data is as

follows. The participant quark model describes AuAu and
dAu data extremely well, while for pp it underpredicts the tail
of the distribution. Even six participant quarks, the maximal of
the model, is not enough; there seems to be more clusters than
that. The lesson is perhaps that the highest multiplicity pp is
indeed the first case when soft models become insufficient.
The models which have pQCD gluons in the wave function
and hard scatterings are doing better on the “tails.” In
particular, PYTHIA (pQCDþ strings) describes the high-
multiplicity tail of pp reasonably well.
An alternative approach to initial state fluctuations is

provided by the angular deformations ϵn. We argued that
those are created by a number of statistically independent
small-size sources (or bumps). For simplicity, as before, let us
focus on central collisions only, where ϵ2 is fluctuation
induced and of the same magnitude as all other harmonics.
We return to these in Sec. VI.C.

C. Anisotropy and the boundaries of hydrodynamics

Thepartonic initial state leads to the initial out-of-equilibrium
stage of the collision which is highly anisotropic in momentum
distribution. However, during the collisions, partons are natu-
rally separated in time according to different rapidities and
create “floating matter,” in which a spread of longitudinal
momenta is smaller than the transverse one. At later hydrody-
namical stage, the viscosity effects reduce such anisotropy.
Knowledge of the viscosity value allows one to calculate the
anisotropy at this stage, provided its initial value is known.
What happens in between is still a matter of debate. Weak-

coupling approaches, partonic cascades, predict anisotropy to
be rising to large values, while the strong-coupling (holo-
graphic) approaches lead to rapid convergence to small values,
consistent with hydrodynamics. For a discussion, see, e.g.,
Martinez and Strickland (2010) and subsequent papers.
The issue of anisotropy has two practical aspects. The

experimental one, to which we return in Sec. IX.C, is a

question of how one can experimentally monitor the
anisotropy of matter at various stages of the evolution. The
theoretical question is whether one can extend the hydrody-
namical description for strongly anisotropic matter. Recently
there was significant development along the lines of the
so-called anisotropic hydrodynamics (aHydro). The idea
(Martinez and Strickland, 2010; Florkowski and Ryblewski,
2011) is to introduce the asymmetry parameter into the
particle distribution, and then, from the Boltzmann equation,
derive an equation of motion for it, complementing the
equations of the hydrodynamics. Solutions of various versions
of hydrodynamics were compared to the exact solution
of the Boltzmann equation itself, derived for the Gubser
geometrical setting by Denicol et al. (2014). This paper
contains many instructive plots, from the normalized temper-
ature shown in Fig. 18 and the sheer stress Πξ

ξ shown in
Fig. 19. In both cases the pairs of points correspond to small
and very high viscosity values, separated by 2 orders of
magnitude and roughly representatives of the strongly and
weakly coupled regimes.
Gubser’s variable ρ is the “time” coordinate. In all four plots

one can see that all curves coincide in the interval −2 < ρ < 2,
but deviate from each other both at large negative values,
corresponding to the very early stages, and at large positive
ones, corresponding to very late times. In fact, all practical
applications of hydrodynamics were indeed made inside this
interval of ρ, with other regions being “before formation” and
“after freezeout.”
Solutions for two, very different, viscosities show similar

trends. Israel-Stuart hydrodynamics seems to follow the

FIG. 18. The normalized temperature for 4πη=s ¼ 1, 100,
upper, and lower plots, respectively. The meaning of the different
curves is explained in the upper plot. From Denicol et al., 2014.
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solution of the Boltzmann equation quite well. Even the free
streaming regime is not very far from all hydros and exact
Boltzmann equations: this would be surprising if we did not
already know that the radial flow, unlike higher harmonics,
can indeed be “faked.” If they would calculate the elliptic and
higher flows, the results would be quite different. One would
expect that for 4πη=s ¼ 100 all flow harmonics would be
completely obliterated. The plots for the shear stress show
different behaviors for small and large viscosities, but again all
curves coincide inside the “hydro window” of −2 < ρ < 2.
Even going well outside that domain, we never see discrep-
ancies between them by more than 20%.
The overall conclusion one can draw is quite simple: all

versions of hydrodynamics used in practice are accurate
enough for realistic viscosities 4πη=s ≈ 2 and the times the
hydrodynamics is actually applied.

V. THE SMALLEST DROPS OF QGP

We emphasized a certain gap that still exists between weak
and strong coupling estimates of the equilibration time and
viscosity. Such issues should play an enhanced role in
experiments with systems smaller than AA collisions and
should clarify the limits of hydrodynamics.
Let us start this discussion with another look at the spatial

scale corresponding to the shortest sound wavelength, for the
highest n of the vn observed. Azimuthal harmonics are waves
propagating along the fireball surface. Therefore, a successful
description of the nth harmonics implies that hydrodynamics
is still applicable at a wavelength scale 2πR=n. Taking the
nuclear radius as R ∼ 6 fm and the largest harmonics so far
observed n ¼ 6, one finds that the scale under consideration is
larger than Oð1 fmÞ. However, it is still not small enough to
resolve the nucleon substructure. That is why there is little

difference between the initial states of the Glauber model
(described in terms of nucleons) from those generated by
GLASMA models (operating on a parton level).
Why do we not see harmonics with larger n > 6? Higher

harmonics suffer stronger viscous damping. The limitation is
due to current statistical limitations of the data sample and is
thus unrelated to the limits of hydrodynamics.
In principle, one could have studied AA collisions with

smaller and smaller A, decreasing the system size smoothly,
while preserving the overall geometry. However, historically
the development was not that smooth: an unexpected discov-
ery of the so-called “ridge” at the LHC in very small systems,
pp with a high-multiplicity trigger, provided a look at the
opposite extreme case.
Before we go into detail, let us see how small these systems

really are. At freezeout the size can be directly measured,
using the so-called femtoscopy method (see Appendix A for
some explanations). The corresponding data are shown in
Fig. 20, which combines the traditional two-pion with more
novel three-pion correlation functions of identical pions.
An overall growth of the freezeout size with multiplicity,

roughly as hNchi1=3, is expected if the freezeout density is a
universal constant. While for AA collisions this simple idea
indeed works, the pp; pA data apparently form a different
line, with significantly smaller radii. Apparently those two
systems get frozen at higher density, compared to AA, but
why? To understand that recall the following freezeout

FIG. 19. The shear stress πξξ vs coordinate ρ, for viscosity
4πη=s ¼ 1, 100, the upper, and the lower plots, respectively.
From Denicol et al., 2014.

FIG. 20. (Upper) Alice data on the femtoscopy radii and
(lower) “coherence parameter” as a function of multiplicity,
for pp, pPb, PbPb collisions. From Grosse-Oetringhaus,
2014.
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condition: “the collision rate becomes comparable to the
expansion rate”

hnσvi ¼ τ−1collðnÞ ∼ τ−1expansion ¼
dnðτÞ=dτ

nðτÞ . ð25Þ

Higher density means a larger left-hand side (lhs), and thus a
larger rhs. So, pp; pA high-multiplicity systems are more
“explosive,”with a larger expansion rate. We indeed argue that
this conclusion is also confirmed by radial flow measured by
particle spectra, as well as the HBT radii.
But why are those systems more explosive? Where is the

room for that, given that even the measured final size of these
objects is smaller than in peripheral AA (which shows only a
rather modest radial flow). The only space left is at the
beginning: those systems must obviously start accelerating
earlier, from an even smaller size than seen by femtoscopy, to
produce a strong collective flow at freezeout.
Another puzzle is why central pA (a collision of a proton

with about 16 others) appears to be so similar in size and
collective flows to (same multiplicity) pp, a collision of only
two protons. We turn to its discussion in Sec. V.C.

A. Collectivity in small systems

The first discovery, in the very first LHC run, was due to the
CMS Collaboration (Khachatryan et al., 2010) which found a
ridge correlation in high-multiplicity pp events. A special
trigger was required because unfortunately the effect was first
seen only in events with a probability P ∼ 10−6.14 Switching to
central pA collisions, the CMS observed a similar ridge
there, now with much higher probability, a few percent
instead of P ∼ 10−6 (Chatrchyan et al., 2013). By subtracting
central minus peripheral correlations, ATLAS CMS and
ALICE groups soon all found that the observed ridge is
accompanied by the “antiridge” in the other hemisphere,
concluding the phenomenon is a familiar elliptic
flow v2 cosð2ϕÞ.
The PHENIX Collaboration at RHIC also found a ridgelike

correction in central dAu collisions, with the v2 value about
twice larger than in pPb at the LHC. This difference was soon
attributed to different initial conditions, for d and p beams,
since the former produces a “double explosion” by its two
nucleons. Quantitative hydrodynamical studies, such as Bozek
(2012), confirmed this simple idea. It later was additionally
confirmed by collisions of He3Au as well.
The set of data, which established collectivity of the flow

in pA beyond a reasonable doubt, came from CMS
(de Cassagnac et al., 2014). Their v2 measurements from
2, 4, 6, and 8 particle correlators are shown in Fig. 21.
Taking collectivity for granted, one can further ask if the v2

observed is caused by the precollision correlations or by the
after-collision collective flows. A nice control experiment
testing this is provided by dA and 3HeA collisions. Two

nucleons in d are on average far from each other and 2 MeV
binding is so small that one surely can ignore their initial state
correlations. As a result, whatever the “initial shape” effect in
pp, in dA it should be reduced by 1=

ffiffiffi
2

p
because two shapes

cannot be correlated. It should be reduced further in 3HeA by
1=

ffiffiffi
3

p
, if the same logic holds.

Hydrodynamical predictions are opposite: double (or triple)
initial explosions still lead to one common fireball, with the
initial anisotropies larger than in pA. Data from RHIC by
PHENIX and STAR on dAu; 3HeAu do indeed show such an
increase of the v2, v3, relative to pAu, again in quantitative
agreement with hydrodynamics (Bozek and Broniowski,
2014; Nagle et al., 2014).
ATLAS was able to perform the first measurements of

higher harmonics vn; n ¼ 2–5 in central pPb; see Fig. 22.
Except at very high p⊥, those two harmonics seem to be
comparable in magnitude: it is the first contradiction to
“viscous damping” systematics.

B. Pedagogical digression: Scale invariance
of sQGP and small systems

The acceptance of the hydrodynamical treatment of “small
system explosions” is psychologically hard for many. One
asks how is it possible to treat a fireball, of size less than 1 fm,
as a macroscopic one.15

So let us take a step back from the data and consider the
issue of scales. If one takes smaller and smaller cells of
ordinary fluid, such as water or air, eventually one reaches the
atomic scale, beyond which water or air as such do not exist: at
some scale one resolves the individual molecules. But QGP is
not like that: it is made of essentially massless quarks and
gluons which have no scale of their own. The relevant scale is
given by only one parameter T; thus QGP is approximately
scale invariant. (The second scale ΛQCD enters only via a
logarithmic running of the coupling, which is relatively slow
and can in some approximation be ignored.)
As lattice numerical calculations show (see, e.g., Fig. 64), at

T > 200 MeV the QGP thermodynamics is approximately

FIG. 21. CMS data for v2 calculated using 2, 4, 6, and 8 particle
correlations, as well as Lee-Yang zeros (basically all particles).
Good agreement between those manifest collectivity of the
phenomenon. From de Cassagnac et al., 2014.

14Dividing the cost of the LHC, ∼1010 by the number of recorded
pp events ∼1010 one finds that an event costs about a dollar each.
Therefore, high-multiplicity pp events under consideration cost
about a million dollars each, and one needs thousands of them to
construct a correlation function.

15Note that just 15 years ago the same question was asked about
systems of 6 fm size.
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scale invariant16: ϵ=T4; p=T4 are approximately T indepen-
dent. The comparison of the LHC to RHIC data further
suggests that similar scaling η=T3 ∼ const holds for viscosity
as well (although with less accuracy so far). Thus, as a first
approximation onemay assume that QGP does not have a scale
of its own. This means that it would show exactly the same
behavior if conditions related by the scale transformation

RA=RC ¼ ξ; TA=TC ¼ ξ−1 ð26Þ

are compared.
Consider a thought experiment 1, in which we compare two

systems on the same adiabatic A and C; see Fig. 23. For scale-
invariant sQGP the points A and C are related by this scale
transformation mentioned previously and have the same
entropy.17 Assuming the scale transformation is an approxi-
mate symmetry, one expects the same dynamical evolution. A
smaller-but-hotter plasma ball C will explode in exactly the
same way as its larger-but-cooler version A.
Let us now proceed to thought experiment 2, which is the

same as the previous but in QCD, with a running coupling. In
the sQGP regime it leads to (a very small, as lattice tells us)
running of s=T3, some (unknown) running of η=T3, etc. The
most dramatic effect is however not the running coupling
per se, but the lack of supersymmetry, which allows for the
chiral or deconfinement phase transition out of the sQGP
phase at T > Tc to the hadronic phase at T < Tc. The end of
the sQGP explosion D thus has an absolute scale, not subject
to a scale transformation.

Let us consider two systems A and C of the same total
entropy and multiplicity, both initiated in the sQGP phase,
with initial conditions related by the scale transformation.
Their evolution would be the same, until the larger or cooler
one reaches T ≈ Tc, where scale invariance of their evolution
ends. The final results of the explosions are not the same. In
fact, the smaller and hotter system has an advantage over the
larger and cooler one, since the larger ratio of the initial and
final scales Ti=Tf allows it to be accelerated more.
The hydrodynamic expansion does not need to stop at the

phase boundaryD. In fact, large systems as obtained in central
AA collisions are known to freezeout at Tf < Tc, down to the
100 MeV range (and indicated in the sketch by the point E).
However small systems obtained in peripheral AA or central
pA seem to freezeout at D.
In summary, we expect hydrodynamics to work as well in

smaller systems, due to approximate scale invariance of sQGP.
Including deviations from scale invariance, one finds that
small systems should explode even more violently, compared
to larger or cooler systems, since a larger fraction of time is
spent in the sQGP phase.
Another meaning of the term “small systems” is applied

when not the actual size but entropy or multiplicity is
reduced. Deviations from hydrodynamics in such cases
are seen as higher viscous corrections. For a recent dis-
cussion of those issues see Romatschke (2016) and
Spalinski (2016).

C. Comparison of the peripheral AA, central pA,
and high-multiplicity pp

From thought experiments with some ideal systems, let us
return to reality. We do it in two steps, starting in this section
with naive estimates for the three cases at hand, based on
standard assumptions about the collision dynamics, and then
returning to a more model-dependent discussion later.
We want to evaluate the initial transverse radii and

parton densities, not that of the fireball at freezeout, after a
hydrodynamic expansion. The multiplicity is however the
final one, but due to (approximate) entropy conservation

FIG. 22. vn for n ¼ 2, 3, 4, 5 vs p⊥ in GeV, for the high-
multiplicity bin indicated in the figure. The points are from
ATLAS, the lines from CMS (presentation at QM2015).

FIG. 23. Temperature T vs the fireball size R plane. The solid
blue line is the adiabatic S ¼ const, approximately TR ¼ const
for sQGP.

16At T < 200 MeV there is no scale symmetry: there is significant
change instead. It is of course taken into account in hydrodynamics
and will be discussed later in the section on HBT radii.

17Note that the holographic models interpret the “RG scale” as an
extra fifth coordinate. The evolution in scale is thus depicted as
“gravitational falling” of particles, strings, fireballs, etc., along this
coordinate. In this language, our two systems fall similarly in the
same gravity, but since the smaller system starts “higher,” it gets
larger velocity at the same “ground level,” given by a fixed scale Tc.
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during hydrodynamics we think of it as a proxy for the
entropy at all times. Entropy generated by viscosity during
expansion is relatively small and can be corrected for, if
needed.
(i) Our most studied case, the central AuAu or PbPb,

is the obvious benchmark. With the total multiplicity about
NAA ≈ 104 and transverse area of nuclei πR2

A ≈ 100 fm2 one
gets the density per area

nAA ¼ N
πR2

A

∼ 100 fm−2. ð27Þ

This can be transformed into entropy if needed, in a stan-
dard way.
(ii) Central pA (up to a few percent of the total cross

section) has a CMS track multiplicity of about 100.
Accounting for the unobserved range of p⊥; y and neutrals
increases it by about a factor of 3, so Ncentral

pA ∼ 300. The area
now corresponds to the typical impact parameter b in pp
collisions, or πhb2i ¼ σpp ≈ 10 fm2. The density per area
is then

ncentralpA ¼ Ncentral
pA

σpp
∼ 30 fm2 ð28Þ

or 1=3 of that in central AA. Using the power of the LHC
luminosity CMS can reach as a fluctuation with the proba-
bility 10−6 another increase of the multiplicity, by a factor of
2.5 or so, up to the densityNmax

pA =σpp in AA. Another approach
used is a comparison of central pA with peripheral AA of the
same multiplicity, or more or less the same number of
participants, or similar matter density.
(iii) Now we move to the last (and most controversial) case,

of the high-multiplicity pp collisions. (Needless to say the
density is very low for minimum bias events.) “High multi-
plicity” at which CMS famously discovered the ridge starts
from aboutNmax

pp > 100 × 3 (again, 100 is the number of CMS
recorded tracks and 3 is extrapolation outside the detector
covered).
The big question now is what is the area? Unlike in the case

of central pA, we do not utilize standard Glauber and full
cross section (maximal impact parameters). We instead
address a fluctuation which has small probability. In fact,
nobody knows the answer to this question. Based on the
profile of pp elastic scattering (to be discussed in
Sec. VIII.C), it should correspond to the impact parameter
b in the black disk regime. If so πb2b:d: ∼ 1=2 fm2, which leads
to density per area

nmax
pp ≈

Nmax
pp

πb2b:d:
∼ 600 fm2. ð29Þ

Other evidences about the glue distribution in a proton comes
from diffractive electroproduction, especially of γ → J=ψ .
They also suggest a rms radius of only 0.3 fm, less than one-
half of the electromagnetic radius.

In summary, in terms of the initial entropy density one
expects the following order of the densities per area involved:

dNpA
maximal

dA⊥
∼
dNAA

peripheral

dA⊥
≪

dNAA
central

dA⊥
≪

dNpp
maximal

dA⊥
. ð30Þ

One may expect that the radial flow follows the same pattern:
yet the data show it is not the case.

D. The size and radial flow puzzle for central pA

The simplest consequence of the radial flow is an increase
in mean transverse momentum. CMS data as a function of
multiplicity are shown in Fig. 24(a). While pp and pA data are
shown by points, the AA ones (from ALICE) are shown by
shaded areas. (The most central ones correspond to the upper
edge of this shaded region.)
The next experimental signature of the radial flow is that the

blueshifts it induces modify spectra of secondaries of different
mass differently. While light pions retain their exponential
shape of the pt spectra, only with a blueshifted slope

T 0 ¼ Tfeκ; ð31Þ

where κ is the transverse rapidity of the flow. Note that the
spectra of massive particles change their shape. Eventually, for
very heavy particles (e.g., d or other nuclei), their thermal
motion is negligible and their spectra depend completely on
collective velocities. Their distribution has a characteristic
peak at the fireball’s edge, with v ¼ vmax, and thus the p⊥
spectra develop a peak at p⊥ ¼ mvmax.
More specifically, flow creates a violation of them⊥ scaling

(Shuryak and Zhirov, 1980). Them⊥ slopes T 0, defined by the
exponential form (above certain pt)

dN
dydp2⊥

¼ dN
dydm2⊥

∼ exp

�
−
m⊥
T 0

�
; ð32Þ

are sensitive indicators of the radial flow. A sample of such
slopes for pA collisions, from CMS, is shown in Fig. 24. Note
that for low-multiplicity bins (marked by 8 and 32 at the
bottom right) one sees the same T 0 for all secondaries: this is
the m⊥ scaling: the flow is absent. This behavior is natural for
independent string fragmentation, rescattering, or GLASMA
models.
Flow manifests itself at higher multiplicity bins, in which

the slopes T 0 are mass dependent. As seen from Fig. 24(b),
they are growing approximately linearly with the particle
mass. The effect gets more pronounced with multiplicity: this
is the sign of stronger collective flow. Note that for the most
central pA bin this slope exceeds18 those in central PbPb
collisions at the LHC, the previous record-violent explosion.
This gives rise to what we call the radial flow puzzle.

Indeed, naive estimates of densities in the previous section
may suggest that the explosion in the highest multiplicity pA
case should still be weaker than in AA. Indeed, the system is
smaller and the initial entropy density seems to be smaller as

18Predicted to happen before the data: check version v1 of Shuryak
and Zahed (2013).
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well. Yet the data show the opposite: the observed radial flow
strength (expressed via the magnitude of the transverse
rapidity) follows a different pattern

yAA;central⊥ < ypA;central⊥ < ypp;highest⊥ . ð33Þ

Hydrodynamics is basically a bridge between the initial and
the final properties of the system. For the radial flow
dependence on the size of the system it is convenient to
follow Shuryak and Zahed (2013) based on Gubser’s flow; see
Appendix B.2. One single analytic solution describes all cases
considered: we proceed from the dimensional variables τ̄; r̄
with the bar to the dimensionless variables

t ¼ qτ̄; r ¼ qr̄ ð34Þ

rescaled by a factor q, with the dimension of an inverse length.
In such variables there is a single Gubser solution of ideal
relativistic hydrodynamics, for the transverse velocity
Eq. (B29) and the energy density Eq. (B30).
Recall our thought experiment 1 of Sec. V.B: two collisions

which are conformal copies of each other merge into a single
one in these dimensionless variables. In fact, the line (blue)19

marked AA in Fig. 25 corresponds not only to central PbPb
collisions but actually to any other AA collisions at the LHC.
The two black lines are for the pPb case; they both have
Tf ¼ 170 MeV and the same multiplicity but different scale
parameters: q ¼ 1=1.6 fm for the lower dotted line but twice
smaller initial size q ¼ 1=0.8 fm for the upper (thin solid
black) line. As the arrow indicates, in order to explain the
observed higher explosion velocity one has to move the curve
above the AA (blue) line. This implies that hydrodynamics
must be initiated from a smaller “compressed” size, according
to the “spaghetti collapse” scenario discussed in Sec. V.B. If
this is done, the freezeout surface “jumps over” our AA
benchmark blue line, and its radial flow gets stronger. The
maximal transverse velocities on these curves (located near
the turn of the freezeout surface downward) are

vpAu⊥ ¼ 0.56 < vAA⊥ ¼ 0.81 < vpAu;f⊥ ¼ 0.84. ð35Þ

The upper red line is our guess for the maximal multiplicity
pp collisions, assuming its q ¼ 1=0.5 fm: it has even stronger
radial flow, with maximal vpp⊥ ≈ 0.93. Paradoxically, small
systems are in fact larger than AA in the appropriate
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FIG. 24. (a) Average transverse momentum of identified
charged hadrons (left panel: pions, kaons, and protons) and
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function of the corrected track multiplicity for jηj < 2.4, for pp
collisions (open symbols) at several energies, and for pPb
collisions (filled symbols) at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV. (b) The slopes
of the m⊥ distribution T 0 (in GeV) as a function of the particle
mass. The numbers on the right of the lines give the track
multiplicity. From Chatrchyan et al., 2014.

FIG. 25. The freezeout surface in universal dimensionless
time t and radial distance r coordinates. The thick solid (blue)
line in the middle corresponds to central AA (PbPb) collisions,
and the thick solid (red) line on the top to the highest multiplicity
pp. The two (black) thin lines correspond to the central pPb case,
before and after collapse compression, marked pAi and pAf,
respectively. The arrow connecting them indicates the effect of
multistring collapse.

19For the record, its parameters are q ¼ 1=4.3 fm, ϵ̂0 ¼ 2531, and
Tf ¼ 120 MeV.
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dimensionless variables, and that is why their radial flow is
better developed.
In summary, the observed pattern of radial flow magnitude

can be explained if the initial size of the pA system is
significantly reduced compared to the naive estimates of the
preceding section.

E. Radial flow in high multiplicity pp

According to our estimates of the densities per area, it is
much higher for high multiplicity pp than for AA collisions.
The initial state must be in a GLASMA state, if there is one.
Unfortunately we have little theoretical guidance about the
size. After all, in this section we discuss fluctuations with a
probability ∼10−6. Lacking good theory guidance, one may
invert our logic and proceed phenomenologically as follows:
(i) The first phenomenological input, the mean p⊥ and

spectra of the identified particles, is shown in Fig. 24. The
absolute magnitude of the flows at freezeout (radial, v2, v3)
can thus be evaluated from the data.
(ii) Then one can solve hydrodynamics backward and

determine which initial conditions are required to generate it.
(iii) For consistency, one can calculate the absolute values

of the radii provided by the femtoscopy. The observed radii
show a decrease with the increase of the (total) transverse
momentum k⃗1 þ k⃗2 ¼ k⃗⊥ of the pair (Makhlin and Sinyukov,
1988). Modification of the argument is explained in Fig. 26.
At small k⊥ the detector sees hadrons emitted from the whole
fireball, but the larger k⊥ is, the brighter its small (shaded) part
becomes in which the radial flow is (a) maximal and (b) has

the same direction as k⃗t. This follows from maximization of
the Doppler-shifted thermal spectrum ∼ exp ðpμuμ=TfreezeoutÞ.
This effect was calculated (Hirono and Shuryak, 2015) and

compared with the ALICE HBT data (Aamodt et al., 2011a)
shown in Fig. 27. Strong flow in high-multiplicity pp
collisions is directly visible in the data. The effect is best
seen in the “out”-directed radius Rout (the top plot). While
low-multiplicity data (connected by the dashed blue lines) are
basically independent of the pair momentum, at high multi-
plicity (stars and dashed red lines) they decrease by a rather
large factor. Another consequence of the flow is anisotropy of
radii. In the bottom plot the ratio of two radii is shown. At
small multiplicity it is always 1 (that is, the source is isotropic)

but at high multiplicity the source becomes anisotropic, the
radii in two directions are quite different, with their ratio
dropping to about 1=3 at the largest kt. Thus, a direct
consequence of the flow is that only 1=3 of the fireball emits
pairs of such momenta.
In Fig. 28 we show a series of calculations in which the

initial QGP stage of the collision is modeled by a numerical
hydrodynamics solution close to the Gubser analytic solution

FIG. 26. Sketch of the radial flow (arrows directed radially from
the fireball center) explaining how it influences the HBT radii. At
small kt the whole fireball (the large circle) contributes, but at
larger kt one sees only the part of the fireball which is comoving
in the same direction as the observed pair. This region, shown by
the shaded ellipse, has a smaller radii and anisotropic shape, even
for central collisions.

FIG. 27. HBT radii vs the pair transverse momentum kT , for
various multiplicities of the pp collisions, from ALICE. From
Aamodt et al., 2011a.
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proportional to the size). From Hirono and Shuryak, 2015.
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with variable parameter q. [The late stages need to deviate
from the Gubser solution since near Tc the equation of state
(EOS) is very different from conformal ϵ ¼ 3p assumed in
Gubser’s derivation.]
In summary, unlike central pA the highest multiplicity pp

events are significantly denser and hotter than central AA. A
strong radial flow, seen in the spectra of identified particles
and HBT radii, requires very small, subfemtometer, initial size
of the system. In spite of the high cost associated with those
events, their studies are justified because here we produce the
most extreme state of matter ever created in the laboratory.

F. Can flows in small systems be “fake”?

The question of what we call the “fake flow” and sub-
sequent development is due to Romatschke (2015) who
considered consequences of a scenario in which quarks and
gluons at the QGP phase have no interactions, they “free
stream” from the point of the initial scattering to the hadro-
nization surface. At this surface the system switches to the
hadronic phase, treated by a standard hadronic cascade code.
In Fig. 29 one sees a comparison of the radial flow profiles

of the two cases, with and without interaction at the QGP
phase. One can see that the profiles are in fact very similar,
becoming linear Hubble-like as time goes on. In fact free
streaming generates even a bit stronger flow, because free
streaming uncouples from the longitudinal direction, and an
equilibrated medium does not. Comparing particle spectra and
HBT radii Romatschke showed that this fake radial flow is
indeed indistinguishable from the hydrodynamics.
What about flow harmonics? The results for v2 in PbPb

collisions are shown in Fig. 30. As one can see, without
hydrodynamics they nearly disappear. This is not surprising
since if there is no hydrodynamics then there are no sound
waves, and initial bumps are simply dissolved without a trace.
In fact it is an interesting question how any vn can be

generated in the free streaming. The initial momentum
distribution of partons is isotropic, and so it must be related
to the interaction after hadronization. Romatschke found that
indeed before hadronization they are absent. However, two
components of Tμν, the flow ∼uμuν part and the dissipative
Πμν part, still have nonzero values which cancel each other in

sum. After hadronization the hadronic interaction kills the
second component Πμν → 0 and reveals the effect of the
first one.
Not only are the fake flow harmonics small, they do not

show two important features of the “true” hydrodynamical
ones: (i) they do not show a strong increase with p⊥, and
(ii) they do not show a strong decrease with the number
∼ expð−n2Þ induced by the viscosity during the time before
hadronization.
Unlike the radial flow, higher harmonics in large (PbPb)

systems cannot be faked. What about smaller systems?
Romatschke gives the results for pPb at the LHC and dAu
and 3HeAu for RHIC energies. We show the first case in
Fig. 31. Again the free streaming model seems to be failing for
v2, but is somewhat marginally surviving for v3.
In summary, flow harmonics are not faked. Yet, for small

systems, taking into account remaining uncertainties of the
initial stage models and thus ϵn values, this conclusion is not
as robust as for the AA. Perhaps some scenarios, intermediate
between equilibrated hydrodynamics and free streaming, may
still fit these data.

G. Shape fluctuations: Central pA vs peripheral AA

Scaling relations between central pA and peripheral AA
were suggested by Basar and Teaney (2014). Step one of their
paper was prompted by the fact (noticed in the CMS paper

FIG. 29. Comparison of the flow profile, for hydrodynamics and
free streaming. From Romatschke, 2015.
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already) that at the same multiplicity v3 in central pA and
peripheral AA are basically the same. Some called for new
paradigms based on this fact, but in fact it is hardly surprising:
equal multiplicity means an equal number of participant
nucleons, and thus equal fluctuations of the shape. After
the geometrical contribution to v2 in peripheral AA is
removed, the remaining, fluctuation-driven, part of the elliptic
flow is exactly the same in both cases; see Fig. 32.
Their second proposal is that the p⊥ dependence of (the

fluctuating part) of the vn has a universal shape, and AA and
pA data are different only by a scale of mean p⊥:

vpAn ðptÞ ¼ vpAn

�
p⊥
κ

�
; ð36Þ

where the scaling factor is defined as

κ ¼ hp⊥ipPb
hp⊥iPbPb

≈ 1.25 ð37Þ

and is due to the difference in the radial flow.

VI. EQUILIBRATION IN QCD-BASED MODELS

A. CGC and turbulent GLASMA

The idea of continuity, from a state before collision to early
time after it, is most directly realized in the so-called CGC-
GLASMA approach. Technically it is based on the argument
(McLerran and Venugopalan, 1994) that high density of
partons leads to large color charge fluctuations, which should
create strong color fields. If fields are strong enough, then
classical Yang-Mills (YM) equations are sufficient, and those
can be solved numerically. It is important that at this stage the
fields get strong, the occupancy of gluons ng ∼ 1=αs ≫ 1,
and, by rescaling them, one can get the coupling out of the
equations. This means that GLASMA is nonperturbative, in
spite of weak coupling. It remains so until gluon occupation
numbers drop to their thermal magnitude ng ∼ 1.
When the density of gluons gets large enough and nonlinear

effects become important, the GLASMA is in its “dense
regime.” Its boundary, shown in Fig. 33, is defined by the
saturation momentum QsðxÞ, separating it from the dilute

partonic phase. QsðxÞ is expected to grow with collision
energy (smaller x) and higher atomic number A. At the highest
LHC energies and atomic numbers its value is as large as
Q2

s ∼ 10 GeV2, believed to be in the perturbative domain.
However, another boundary, of the “confining regime” at the
bottom of the figure, is indicated by extremely small
Q2 < 0.03 GeV2. This is unacceptable: the boundary of
pQCD is in fact at least a factor of 30 or more higher.
There are no gluons with virtuality below 1 GeV.20 Modern
lattice simulations show that the gluon effective mass in QGP
is of the order of 1 GeV at T ¼ Tc and grows further
at T > Tc.
The theoretical study of parton equilibration in a weak-

coupling domain has a long history. The “bottom-up”
approach (Baier et al., 2001) was based on soft gluons
radiated by scattered hard partons. The name reflects the fact
that thermal occupation starts from the IR end. (Note that it is
opposite to the “top-down” equilibration in holographic
models we discuss next.) The main predictions of that model
were the equilibration time and the initial temperature scaling
with the coupling

τeq ∼ 1=α13=5s Qs; Ti ∼ α2=5s Qs. ð38Þ

Some details were changed later. Weibel, Nielsen-Olesen, and
other instabilities that occur in the model were incorporated.
Its validity domain is restricted by its core assumption of
small-angle scattering of the gluons, justified by large impact
parameters of the order of the inverse (perturbative) Debye
mass. Perturbative means MD ≈ gT ≪ T or small g ≪ 1. For
its edge values g ¼ 1, αs ¼ 1=4π the equilibration time is
predicted to be very long τeqQs ∼ 700, exceeding the duration
of the collisions.
In the last few years several groups performed numerical

studies of parton equilibration using both the Boltzmann and

FIG. 32. The integrated v2f2g for PbPb and pPb vs multiplicity.
Left: Original values. Right: The fluctuation dependent elliptic
flow, with the geometrical part subtracted. This geometrical part
was calculated using the Phobos Glauber model and is not a fit.
From Basar and Teany, 2014.

FIG. 33. The CGC phase diagram: the saturation momentum Qs
as a function of the fraction of momentum x and the atomic
number A. From Lappi, Dumitru, and Nara, 2014.

20Recall that already the Nambu–Jona-Lasinio model of 1961 had
strong nonperturbative forces at Q < 1 GeV creating chiral sym-
metry breaking.
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the YM field equations. Typically, in such studies the coupling
constant is taken to be extremely small. In fact, so small that
one can treat not only powers of αs but even its log as a large
parameter logð1=αsÞ ≫ 1, allowing the total GLASMA evo-
lution scale

τGLASMA ∼
log2ð1=αsÞ

Qs
ð39Þ

to be considered large.
Significant progress in this direction was induced by the

incorporation of certain ideas from the general theory of
turbulent cascades. Not going into its long history, we just
mention the Kholmogorov-Zakharov stationary powerlike
solutions for Boltzmann equations for a number of systems
with various waves. Another general advance is the existence
of the time-dependent self-similar solutions. J. Berges and
collaborators developed it for scalar and gauge fields, pointing
out different regimes for UV- and IR-directed cascades and
identifying such regimes in impressive numerical simulations.
This body of work resulted in the following new scenario:

the preequilibrated stage is dominated by a nontrivial turbu-
lent attractor, a certain self-similar power solution, in which it
spent some time before progressing toward the thermal
equilibrium. An important signature of that is large momen-
tum anisotropy, measured by the ratio pl=p⊥. One group
(Epelbaum, 2014) performed a next-order GLASMA simu-
lation, with g ¼ 0.5, in which pl=p⊥ kept approximately a
constant value during the entire time of the simulation
τQs ¼ 10–40. Another group (Berges et al., 2015) found
that, at g ¼ 0.3, the longitudinal pressure pl=ϵ remains close
to zero at similar times. Both results are shown in Fig. 34.

Cascade simulations at larger couplings (Kurkela and Zhu,
2015) produce the results shown in Fig. 35. The two sets of
trajectories, shown by solid and dashed lines, start from two
different initial distributions. At zero coupling (upper left
curve) the longitudinal momenta of particles gets very small
compared to the transverse, and anisotropy steadily increases.
This is a scalinglike classical regime with a nontrivial fixed
point. However, all other paths stay more or less at the same
initial anisotropy and then rapidly turn downward to locally
isotropic distributions (marked by crosses at the bottom).
Unfortunately no simulations were done with λ between 0 and
0.5: perhaps at some critical coupling a bifurcation of the
trajectories happens, separating those who proceed toward the
new and the equilibrium fixed points. Yet the issue is rather
academic, since the realistic relevant coupling value αs ¼
g2=4π ≈ 0.3 corresponds to the ’t Hooft coupling constant
λ ¼ αsNc4π ≈ 10, which is the largest value shown in this
figure (bottom right). The corresponding curve rapidly
approaches the equilibrium point, with coordinates (1,1) in
this figure.

B. From GLASMA to hydro

The weak-coupling cascades discussed previously predict
highly anisotropic pressure pl ≪ p⊥. The question is about
the time during which this feature persists, before the viscous
hydrodynamics becomes valid. Recent research focused on a
“hydrodynamization,” a convergence of the stress tensor
calculated using GLASMA or parton cascade simulations
to a form appropriate for hydrodynamics. In other words, the
issue is the relaxation mechanism or time of the nonhydro-
dynamical modes; see, e.g., Keegan et al. (2016). Perturbative
parton cascades propose time of several fm=c, while strong-
coupling approaches such as AdS and QCD suggest an order
of magnitude shorter time, around 0.5 fm=c.
To know which value is the case one needs to do more

calculations using both approaches, especially those that can
be directly compared to the data. Surprisingly, there is
little discussion of how to measure the anisotropy time in
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FIG. 35. Trajectories of the systems on the occupancy-
anisotropy plane for various settings. The parameters λ near
the curves show the corresponding ’t Hooft coupling constant
λ ¼ g2Nc. All solid lines originate from one initial distribution
characterized by the anisotropy parameter ξ ¼ 4, and the dashed
lines originate from a different point with ξ ¼ 10. From Kurkela
and Zhu, 2015.
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FIG. 34. (a) The upper green curve is p⊥=ϵ, and the lower red is
pl=ϵ, as a function of time in units of saturation scale τQs at
g ¼ 0.5. From Epelbaum, 2014. (b) The upper blue curve is
p⊥=ϵ, and the lower red is pl=ϵ at g ¼ 0.3. From Berges et al.,
2015.
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experiment. One particular suggestion, via dilepton polariza-
tion, is discussed in Sec. IX.C.
Since the longitudinal pressure pl changes most, one can

perhaps study the effect of the longitudinal pressure on the
rapidity distribution. Historically, the original papers of
Landau focused on the longitudinal expansion. But
Landau’s initial condition, the instantaneous stopping, is
rather unrealistic in QCD. To quantify a realistic initial
rapidity distribution, from PDFs or GLASMA theory, is still
to be done.
Since the beginning of the RHIC era, the time of hydro-

dynamization has been empirically derived from a comparison
to data on the radial and especially the elliptic flows. It was
shown (Molnar and Huovinen, 2005) that the parton cascades
tend to effectively dissipate anisotropies needed for the elliptic
flows. This is especially true for high p⊥ ∼ 3 GeV and
peripheral collisions. Even for rather extreme values of the
parton cross section, a cascade and a hydrodynamical evolu-
tion diverge at rather early time (Molnar and Huovinen, 2005).
The current round of studies based on parton cascades and
kinetic equations needs to directly address these issues.
Figure 36 illustrates what is done in the IP GLASMA

approach. An important feature of GLASMA is independent
fluctuations of color in different cells, which seeds the
harmonic flows. At certain proper time, 0.2 fm=c in this

example, GLASMA evolution is stopped and the stress tensor
is matched to that of an ideal fluid. For technical reasons the
value of the viscous tensor is put to zero. How important is the
selected time 0.2 fm=c? Note that the second picture is hardly
different from the first, except the overall scale of the energy
density is reduced. Indeed, 0.2 fm is a small distance relative
to the nuclear size, and all one finds at this time is dilution due
to longitudinal stretching. By starting hydrodynamics right
from the second picture, Schenke and collaborators implicitly
assumed that hydrodynamics cells can indeed be as small as
0.2 fm, and that their code can cope with large gradients
between the cells. (Typically hydrodynamics starts at a few
times later time, 0.6 fm=c or more.)
Following the evolution to the bottom figure of Fig. 36, at

time 5.2 fm=c, one finds it to be very different. The original
bumps have disappeared and instead a new one at another
location is formed. Indeed, sound perturbations cannot stand
still and must move with the speed of sound. At intersections
of “sound circles” from the primary bumps random enhance-
ments of the density are observed. Yet since the bumps are
statistically uncorrelated, those should get averaged out, at
least in two-particle correlations, and only correlations from
the same circle will stay.
How many harmonics are needed to describe pictures such

as those shown in Fig. 36? Taking 0.2 fm as a resolution and
4 fm as the fireball size, one finds that the upper picture
requires about 20 × 20 ¼ 400 pixels to be represented by
certain stress tensor components. At the freezeout there are
only several angular harmonics observed, so 99% of the
information shown in those pictures does not survive until the
freezeout. In the hydrodynamic simulation just described
those disappear predictably, via viscous damping. It is
possible that these systematics will fail at shorter wavelengths:
so it is worth trying to measure higher harmonics. Other ways
to observe density waves can perhaps be invented: one of such
is the potential observation of those in the dileptons to be
discussed next.

C. The initial state and angular correlations

The role of the initial state is greater for “small systems.”
When a nucleon is going along the diameter of large-A
nucleus the mean number of participant nucleons is

hNpi ¼ n0σNN2RA; ð40Þ

so for pPb at the LHC one gets hNpi ≈ 16.
The question however is, where exactly in the transverse

plane is the deposited energy located?
In Fig. 37 we sketched two opposite models of the initial

state. Figure 37(a) shows each of the Np participants repre-
sented by Ng gluons (ignoring sea quarks and antiquarks)
from their PDFs each, so the total number of partons is NpNg.
We assume that these gluons are randomly distributed in a spot
of the size of the pp cross section. Figure 37(b) shows an
alternative picture, the stringy Pomerons, in which there are no
gluons but 2Np QCD strings instead. Since those are cold
(unexcited), they are shown by straight lines.

FIG. 36. Transverse energy profile from the IP-GLASMA
model for a semiperipheral (b¼8 fm) AuþAu collision at
s ¼ 200A GeV, at times τ ¼ 0.01, 0.2, and 5.2 fm=c. From τ ¼
0.01 to 0.2 fm=c the fireball evolves out of equilibrium according
to the GLASMA model. From Schenke and Venugopalan, 2014.
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Let us estimate the deformation of the initial state in central
collisions, for which there are no geometrical effects and all
deformations come from the fluctuations. As discussed, for all
n one expects the same magnitude

ϵn ∼
1ffiffiffiffi
N

p ; ð41Þ

whereN ¼ NpNg, the number of participant nucleons times the
number of gluons per participant, for Fig. 37(a) andN ¼ Np for
Fig. 37(b). Evaluating Ng from PDFs at LHC energy includes
integration from xmin ∼ 10−3 to 1: one roughly gets the ratio

ϵðbÞn

ϵðaÞn

∼
1ffiffiffiffiffiffi
Ng

p ∼ 4. ð42Þ

The elliptic and triangular flows in very peripheral AA and
central pA studied by Schenke and Venugopalan (2014)
demonstrated that the IP-GLASMA model does a good job
for the former case, but strongly underpredicts fluctuations in
the latter case; see Fig. 38.
As already discussed, in the peripheral AA ϵ2 is large,Oð1Þ,

in any model, and in order to get the right v2 one has to
have the correct viscosity—which apparently Schenke and
Venugopalan have. The central pA is indeed the test case: we
argued that the density is not yet large enough to apply the

IP-GLASMAmodel, while the stringy Pomeron model should
be applicable instead. If so, using Eq. (42) we should increase
the v2 by a factor of 4, which brings it to an agreement with the
CMS measurements. We thus conclude that the stringy model
of Fig. 37(b) is preferable over Fig. 37(a), the uncorrelated
gluons.
Previously we simplistically assumed a Glauber picture in

which each wounded nucleon (or a participant) interacts with
the projectile proton by a single Pomeron. Note that one gluon
exchange generates (at least) two strings. If strings are simply
stretched longitudinally, until they fragment independently,
the rapidity distributions would be flat (rapidity independent)
for all centrality classes. This is not the case, as seen in the
ATLAS data shown in Fig. 39. As one can see, the peripheral
bins have flat rapidity distribution: few strings are produced,
and those are extended through all rapidities. Yet central bins
for pPb have rather asymmetric distributions, with larger
multiplicity at the Pb side.
In the Pomeron language, this is explained by the “fan

diagrams,” in which one Pomeron can split into two. The
“triple Pomeron vertex” is, however, small, preventing devel-
opment of extensive “Pomeron cascades.” The multiplicity
difference between the rhs and the lhs of the plot is not too
dramatic; it certainly is not proportional to Np scaling. For
example, for the most commonly used centrality bin 1%–5%
the rapidity density dnch=dη changes from about 35 to 55,
across the rapidity interval shown in this figure. If on the Pb
end there are say Ns > 2Np ≈ 40 strings, then on the p end
there are not one or a few, but approximately 20 strings. Since
the area on the lhs is reduced by an order of magnitude or so,
and the number only by a factor of 2, it is by far a more dense
system than the rhs. One may further ask if flows, and the
development of collectivity, depend on rapidity. So far we do
not see any evidence of that. For example, the famous v2 ridge
is rapidity independent.
Finally, we briefly mention the case of high-multiplicity pp

collisions. We do not yet know ϵn in this case. Theoretical
predictions for pp cover the whole range: from elongated
transverse strings (Bjorken, Brodsky, and Scharff Goldhaber,
2013) predicting large ϵ2 ∼ 1 to a IP-GLASMA or “stringball”
picture (Kalaydzhyan and Shuryak, 2014c) which predicts
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FIG. 38. Multiplicity dependence of the root-mean-square
elliptic flow coefficient v2 in Pbþ Pb (open symbols) and
pþ Pb collisions (solid symbols) from the IP-GLASMAþ
music model (connected triangles) compared to experimental
data by the CMS Collaboration. From Schenke and
Venugopalan, 2014.

FIG. 39. Rapidity distribution in pPb collisions for different
centrality classes, from “Measurement of the centrality depend-
ence of the charged particle pseudorapidity distribution in proton-
lead collisions,” ATLAS-CONF-2013-096, https://cds.cern.ch/
record/1599773.

FIG. 37. Sketch of the initial state in central pA collisions.
(a) The IP-GLASMA model, with colored circles representing
multiple gluons. (b) Np ¼ 16 Pomerons, each represented by a
pair of cold strings. The open circles are quarks and filled blue
circles are diquarks.
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very small ϵ2 instead. Experiment gives v2 and v3 for 2
particle correlations, but 4, 6 particle correlators are still
beyond the reach for statistical reasons.

D. Multistring dynamics

A version of the initial state theory, an alternative to the
GLASMA picture at high density, is the old Lund model,
represented by event generators such as PYTHIA. It is supposed
to be applicable for lower matter density, remaining in the
confined phase. Multiple color charges, moving relativisti-
cally from each other after collisions, are connected by
multiple QCD strings. As they are rapidly stretched longitu-
dinally, the strings become nearly parallel to each other.
Note that in both GLASMA and string pictures the color

fields have a similar longitudinal structure: one difference
though is that GLASMA also has longitudinal magnetic fields.
GLASMA state dynamics leads to interesting oscillations
shown in Fig. 40: we will return to its analog in the string
model using holography later.
Transition between the two pictures (GLASMA and a

multistring state called a “spaghetti”) is expected when the
string diluteness parameter becomes of the order of 1, so they
can no longer be separated. This is expected to happen at

Nstring

area
∼

1

πr2string
∼ 10 fm2; ð43Þ

where in the numerical value we use the field radius in the
string rs ≈ 0.17 fm ∼ 1 GeV−1 from lattice measurements.
Collective interaction between the QCD strings in a

spaghetti state was studied by Kalaydzhyan and Shuryak
(2014c). An analysis of the lattice data made there confirmed
that the string interaction at large distances is mediated by the
lightest scalar σ, similar to long-distance forces between
nucleons. Specifically, the shape of the quark condensate
around the string is well described by

hq̄qðr⊥ÞWi
hWihq̄qi ¼ 1 − CK0ðmσ ~r⊥Þ ð44Þ

where K0 is the modified Bessel function and the “regular-
ized” transverse distance ~r⊥ is

~r⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2⊥ þ s2string

q
; ð45Þ

which regulates the Coulomb singularity ∼ lnðr⊥Þ at small r⊥;
see Fig. 41. The σ mass value used is mσ ¼ 600 MeV.
Since the strings are almost parallel to each other, the

problem is reduced to the set of point particles in a 2D plane
with the 2D Yukawa interaction. From the fit (44) one can see
(Kalaydzhyan and Shuryak, 2014c) that the main parameter of
the string-string interaction (in string tension units) is numeri-
cally small,

gNσT ¼ hσi2C2

4σT
≪ 1; ð46Þ

typically in the range 10−1–10−2. Therefore it was
correctly neglected in the situations for which the Lund
model was originally invented—when only Oð1Þ strings are
created.
The collective interaction plays a role when this smallness

can be compensated by a large number of strings. As seen
from Fig. 41, a magnitude of the quark condensate σ ¼ jhq̄qij
at the string position is suppressed by about 20% of its vacuum
value. In a spaghetti state one should think of the quark
condensate suppression of about 0.2 times the diluteness,
which is still less than 1.
On the other hand, about five overlapping strings are

enough to eliminate the condensate and restore the chiral
symmetry. If Ns > 30 strings implode into an area several
times smaller than σin, then the chiral condensate will be
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FIG. 41. (a) A static quark-antiquark pair is indicated by shaded
circles: those are connected by the flux tube (QCD string). At
distance r from the tube the local value of the quark condensate
q̄qðrÞ is measured. (b) Normalized chiral condensate as a
function of the coordinate r transverse to the QCD string (in
lattice units). Points are from the lattice calculation (Iritani,
Cossu, and Hashimoto, 2014). The curve is Eq. (44) with
C ¼ 0.26, sstring ¼ 0.176 fm.

FIG. 40. Oscillation of the energy density in simulations starting
from “GLASMA”-like initial conditions. k ¼ 5 is the number of
fluxes through the flux tubes. From Florkowski and Ryblewski,
2014.
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eliminated inside a larger region of 1 fm in radius, or about
3 fm2 in area. This is nothing but a hot QGP fireball.
As discussed, the strings can be viewed as a 2D gas of

particles (in transverse plane) with unit masses at positions r⃗i.
The forces between them are given by the derivative of the
energy (44), and

̈r⃗i ¼ f⃗ij ¼
r⃗ij
~rij

ðgNσTÞmσ2K1ðmσ ~rijÞ ð47Þ

with r⃗ij ¼ r⃗j − r⃗i and regularized ~r, Eq. (45). In the simu-
lations a classical molecular dynamics code was used.
The evolution consists of two qualitatively distinct parts:

(i) early implosion, which converts potential energy into
kinetic and has its peak when a fraction of the particles
“gravitationally collapses” into a tight cluster; and (ii) the
subsequent approach to a “minigalaxy” in virtual quasiequili-
brium. Only the first one is physical, as the imploded spaghetti
has density sufficient for the production of a QGP fireball, and
after that explodes hydrodynamically. The entire scenario thus
resembles the supernovae: an implosion, leading to a more
violent explosion later.
Figure 42 shows an example of the instantaneous collective

potential produced by the strings in the transverse plane. The
white regions correspond to the values of the potential smaller
than −5 × 2gNσTðfm−1Þ ≈ −400 MeV, i.e., the chiral sym-
metry can be completely restored in those regions. A suffi-
ciently strong gradient of this potential can cause quark pair
production, similar to the Schwinger process in an electric
field. One particle may fall into the well and another may fly
away, a phenomenon analogous to Hawking radiation near the
black hole.

VII. HOLOGRAPHIC EQUILIBRATION

A. Near equilibrium

The holographic equilibrium setting includes the so-called
“AdS-black hole” metric, with its horizon located at the fifth

coordinate zh ¼ 1=πT, so the gauge theory located at the
z ¼ 0 boundary feels the Hawking radiation temperature T.21

Gravity waves propagating in the AdS background metric
have certain dispersion relations ωðk⃗Þ with calculable real and
imaginary parts; an example is shown in Fig. 43. Such
quasinormal22 modes are known for various examples of
BHs for a long time; these particular ones were calculated by
Kovtun and Starinets (2005). In this channel, the lowest
eigenvalue, shown by larger dots, is close to the origin and
describes the sound mode. For reference we mention several
known terms at small k (Lublinsky and Shuryak, 2009):

ω

2πT
¼ �

~kffiffiffi
3

p
�
1þ

�
1

2
−
ln 2
3

�
~k2 − 0.088~k4

�

−
i~k2

3

�
1 −

4 − 8 ln 2þ ln22
12

~k2 − 0.15~k4
�
; ð48Þ

where ~k≡ k=2πT. First, note that at small k the imaginary
viscous term is very small23 Imω ∼ k2. Second, the dispersive
correction to the speed of sound (the k2 term in the first square
bracket) has positive coefficient. Thus AdS/CFT predicts that
one sound wave can decay into two. Third, note that higher
order corrections to viscosity are both negative. This is in
contrast to some popular second-order ad hoc schemes such as
the Israel and Stuart.
All other “nonhydrodynamical” modes have large

ImðωÞ=ð2πTÞ ¼ Oð1Þ. During the time of the order of

FIG. 42. Instantaneous collective potential in units 2gNσT for an
AA configuration with b ¼ 11 fm, gNσT ¼ 0.2, and Ns ¼ 50 at
the time τ ¼ 1 fm=c. White regions correspond to the chirally
restored phase.

FIG. 43. A set of frequency modes, on the ω complex plane(.
The dots are for a particular wave vector k, and the arrows
indicate the direction of motion as k increases. From Kovtun and
Starinets, 2005.

21Some may be confused by the known fact that Hawking
radiation leads to the evaporation of black holes. Indeed, one BH,
placed in an asymptotically flat background, cannot heat up an
infinite universe, and it does evaporate. But the AdS metric is
basically a finite box, and in this case the BH can be in a static
equilibrium state with the “heated” universe.

22As with wave functions of the α-decaying nuclei, when energy is
complex the wave function grows in space and is not normalizable,
thus the name. In nuclear physics they are called quasistationary
states.

23We used that fact in the section on the “acoustic damping”
phenomenology.
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zh ∼ 1=ð2πTÞ they all disappear since they “fall into the black
hole.”24 The essence of the AdS explanation for the rapid
equilibration is thus simple: any objects (nonhydro modes)
become invisible as they are absorbed by the black hole. The
only25 remaining memory is their total mass, which BH
transforms into the appropriate amount of Bekenstein entropy.

B. Out of equilibrium 1: The shocks

Shocks are classic examples of out-of-equilibrium phenom-
ena. They traditionally are divided into two categories: weak
and strong. In the former case the difference between matter
before and after the shock is small. Weak shock can be treated
hydrodynamically, e.g., using the NS approximation. Strong
shocks have finite jumps in matter properties. Their profiles
have large gradients: so one needs some more powerful means
to solve the problem, not relying on hydrodynamics, which is
just an expansion in gradients.
The reason we put this example as number one is because it

is the only one which can be considered in a stationary
approximation. Indeed, in the frame which moves with the
velocity of the shock, its profile is time independent.
Strong shocks in the AdS/CFT setting were discussed by

Shuryak (2012b). A hydrodynamical example with the
Navier-Stokes profile is shown in Fig. 44. Fluxes of the total
energy and momentum are tuned to be the same, from the left
to the right side of the picture. One may think of it as a low-
density QGP entering on the right with higher rapidity, which
gets suddenly excited into a higher density QGP, floating out
more slowly. It resembles a picture seen from a cockpit of a
supersonic jet.
In the AdS/CFT setting, one can solve the problem from the

first principles, by solving the Einstein equations. Since the
setting has an extra holographic dimension z, even the static
solution depends not on one but on two variables: the
longitudinal coordinates x and z. Not going into detail, the
surprising conclusion was that all corrections of the Navier-
Stokes profile of the shock happen to be small, at a scale of a
few percent, even without any apparent small parameter in the
problem.
Another tool used to correct the NS solution was the so-

called “resummed hydrodynamics” (Lublinsky and Shuryak,
2009): it also lead to corrections at the percent level.
Unfortunately, the accuracy we had on the AdS/CFT solution
was insufficient to tell whether both agree or not.
The lesson is that all higher order gradient corrections to the

NS solution have a strong tendency to cancel each other.

C. Out of equilibrium 2: The falling shell

This setting of a falling matter shell was proposed by Lin
and Shuryak (2008b). It is in a way complementary to the
previous one: there is dependence on time t but no dependence
on space x, because the shell’s motion occurs along the
holographic fifth direction z.

The physical meaning of this motion is as follows. First,
recall that the fifth coordinate z ¼ 1=r corresponds to a
momentum “scale.” Small values near the boundary (large r)
correspond to the UV end of the scales, while large z, small r
correspond to the IR or small momenta. Since everything
happens much quicker in the UV as compared to the IR, the
equilibration process naturally proceeds from UV to IR, also
known as “top-down” equilibration. The gravity force in the
AdS is directed accordingly.
One can imagine that this process can in some sense be

reduced to a thin “equilibration shock wave,” propagating in
the z direction. The key idea (Lin and Shuryak, 2008b) was
that this shock can be thought of as certain external objects, a
shell or an elastic membrane, falling under its own weight [see
Fig. 45(a)]. If this is the case, the total energy of the membrane
is conserved (potential energy goes into kinetic). The conse-
quences of this are very important: while the shell is falling
toward the AdS center, the metric, both above and below the
membrane, is actually time independent, as it depends only on
its total mass. As such there is no need to solve the Einstein
equations.26 In the case of an extreme black hole at the AdS
center [the dot (blue) in Fig. 45(a)] the solution consists of (i) a
thermal Schwarzschild-AdS metric above the shell and
(ii) “empty vacuum” or the AdS5 solution below it.

FIG. 44. Profile of a strong shock in QGP in its rest frame,
according to the Navier-Stokes hydrodynamics, as a function of
the coordinate normal to the shock front. The time goes right to
left, so the left-hand side shows the final values of the observ-
ables, while the right-hand side shows the initial ones. The
pressure, shown by the solid (blue) line, is in units of its
asymptotic value: thus the curve jumps to 1 on the left side.
The flow rapidity, shown by the dashed (black) line, is reduced.
The process is thus a rapid formation of hotter denser QGP by an
influx of a cooler and more dilute one. From Shuryak, 2012b.

24It is amusing to note that a puzzling process of QGP equilibra-
tion is, in the AdS/CFT setting, analogous to the first problem in
physics, the Galilean stones falling in gravity field.

25Plus all conserved charges, if they are there.

26It is instructive to recall Newton’s proof that a massive sphere
has the outside field the same as a point mass, and that there is no
gravity inside the sphere. This is also true if the sphere is falling. It
also remains true in general relativity.
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The only equations that need to be solved are those
describing motion of the shell itself, rðtÞ ¼ 1=zðtÞ. It is not
so trivial to derive, since the coordinates used below and
above the shell are discontinuous. Fortunately, a thin shell
collapse was already solved in the general relativity: in the
literature it is the so-called “Israel junction” condition. The
shell equation of motion in time of the distant observer t is
given by

dz
dt

¼ _z
_t
¼

f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðκ25p=6Þ2 þ ð3=2κ25pÞ2ð1 − fÞ2 − ð1þ fÞ=2

q
ðκ25p=6Þ þ ð3=2κ25pÞð1 − fÞ ;

ð49Þ

where κ25p is the product of the five-dimensional gravity
constant and the shell elastic constant, and f ¼ 1 − z4=z4h is
the standard BH function of the thermal-AdS background.
The shell starts falling with zero velocity from a certain

height and then gets accelerated to nearly the speed of light.
Finally, near the horizon position z → zh there appears a
“braking phenomenon”: the shell slows down to velocity zero.
This braking is a standard feature stemming from the use of the
distant observer time, familiar from the Schwarzschild metric.
After a solution is found, one can calculate what different

observers at the boundary, that is, in the gauge theory, will see.
In particular, one may ask if or how such an observer can tell a
static black hole (the thermal state with stationary horizon)
from that with a falling shell?
A “one-point observer” O1 [Fig. 45(b)] would simply see a

stress tensor perturbation induced a gravitational propagator
indicated by the dashed red line. Since the metric above the
shell is thermal AdS, such an observer will see the time-
independent temperature, pressure, and energy density, cor-
responding to the static final equilibrium. Yet more sophis-
ticated “two-point observers” O2 and O3 can measure certain
correlation functions of the stress tensors. They will see
contributions both from gravity waves propagating along
the line shown by the solid line above the shell, that is in
the thermal metrics, and from waves propagating along the
path shown by the dashed line which penetrate below the

shell: those would notice deviations from equilibrium. Solving
for various two-point functions in the background with a
falling shell or membrane we found these deviations. They
happen to be oscillating as a function of the wave frequency.
This observation, first puzzling, is explained (Lin and
Shuryak, 2008b) by finite “echo” times due to a signal
reflected from the shell. Thus, one can experimentally observe
an echo, coming from the fifth (nonexisting) dimension.
For further discussion of the scenarios of top-down

equilibration, with infalling scalar fields, etc.; see, e.g.,
Balasubramanian et al. (2011).

D. Out of equilibrium 3: Anisotropic plasma

Our next example, due to Chesler and Yaffe (2014),
is a setting in which one starts with some anisotropic but
homogeneous metric and follows its relaxation to equilibrium.
The metric is diagonal, with time-dependent but space-
independent components, and the resulting Einstein equations
are solved numerically.
Rapid relaxation to an equilibrium thermal-AdS solution is

observed. A number of initial states can be compared, selected
with the same equilibrium energy density (or horizon, or T) at
late time. While at early time the momentum asymmetry can
be very large (say, an order of magnitude) it becomes
exponentially small with time. Any deviations from equilib-
rium are strongly redshifted as they approach the horizon.
There are no hydrodynamical modes since the setting is

homogeneous. The lowest mode has frequency ω ¼
ð2.74þ i3.12ÞπT. Thus, the strongly coupled QGP has the
“isotropization time” as short as

τisotropization ∼
0.1
T

. ð50Þ

E. Out of equilibrium 4: Rapidity-independent collisions

The picture of “debris” created in the bulk after a high
energy collision, forming a small black hole falling toward the
AdS center (Shuryak, Sin, and Zahed, 2007), related the
exploding and cooling fireball in the real world to a hologram
of the black hole horizon moving away from the boundary.
The specific solution discussed in that paper was spherically
symmetric and thus more appropriate for cosmology than for
heavy ion applications.
A more appropriate setting with “falling” horizons, corre-

sponding to the Bjorken hydro solution (see Appendix B), was
developed by Janik and Peschanski (2006). In this case, the
horizon is rapidity independent and has a time-dependent
location zhðτÞ. At late time the solution of the Einstein
equation reproduces a Bjorken hydro, because at τ → ∞

zhðτÞ ¼ 1=πTðτÞ ∼ τ1=3. ð51Þ

The variable w ¼ Tτ has the meaning of the macroscale-to-
microscale ratio. At late time τ → ∞ it grows, indicating that
the system becomes more macroscopic and hydrodynamics
becomes more accurate. The question is when exactly does the
hydrodynamical description become valid and with what
accuracy.

FIG. 45. (a) A sketch of a falling shell geometry. Its radius is
rðtÞ ¼ 1=zðtÞ used in the text. (b) Single-point observer O1 and
the two-point observers O2 and O3 near a collapsing shell shown
by a circle.
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Figure 46 shows the time evolutions of many initial states,
all approaching the same hydrodynamical solution. Figure 46
(left) shows that this happens via convergence to certain
universal functions of the variable w ¼ τT defined by

dw
d ln τ

¼ FðwÞ. ð52Þ

Existence of such universality is the essence of the “resummed
hydro” (Lublinsky and Shuryak, 2009). Depending on the
required degree of accuracy, one may assign a specific initial
value of w at which the “hydrodynamics starts,” in the range
wi ¼ 0.4–0.6. The plot on the right demonstrates that at such
time the anisotropy is still large and viscosity is important.
The lesson from this work can be better explained by

comparing its result to naive expectations that hydrodynamics
starts when macrotimes and microtimes are the same
w ¼ τT > 1, and that the accuracy of hydrodynamics should
be bad Oð100%Þ. Calculations show instead that at a twice
smaller time w ∼ 1=2 the accuracy of (the lowest-order
Navier-Stokes) hydro suddenly becomes quite good, to a
few percent.
Why is it so? While gradients are not yet small at that time,

the combined effect of all of them is. The Lublinsky-Shuryak
resummation provides an answer: the higher-gradient series
has alternating signs, it can be Padé resummed à la a
geometric series to a decreasing function.
The issue has its practical aspect, related to one of the first

observations made at the first LHC PbPb run. It was found that
the (charged hadron) multiplicity in PbPb collisions grows
with energy a bit more rapidly than in pp:

dNPbPb

dy
ðy¼ 0; sÞ∼ s0.15;

dNpp

dy
ðy¼ 0; sÞ∼ s0.11. ð53Þ

From the RHIC energy (E ¼ 0.2 TeV) to the LHC, the double
ratio

dN
dη jPbPb;LHC= dN

dη jpp;LHC
dN
dη jAuAu;RHIC= dN

dη jpp;RHIC
¼ 1.23 ð54Þ

shows a noticeable change with the energy, which calls for an
explanation.

A simple form for the function FðwÞ was proposed by
Lublinsky and Shuryak (2011). If known, one can calculate
the entropy produced from the time wi on: it turns out to be
about 30%. Furthermore, we get the following expression for
the contribution to this double ratio:

≈ 1þ 3½η̄ðLHCÞ − η̄ðRHICÞ�
2wi þ 3η̄ðRHICÞ

and show that the observed growth can be naturally explained
by the viscosity entropy production, from RHIC to the LHC,
predicted by a number of phenomenological models.

VIII. COLLISIONS IN HOLOGRAPHY

A. “Trapped surfaces” and the entropy production

The simplest geometry to consider is the wall-on-wall
collisions, in which there is no dependence on the two
transverse coordinates, and only the remaining three (time,
longitudinal (rapidity), and the holographic direction) remain
in play. Needless to say, it is a formidable problem, solved by
Chesler and Yaffe (2014) via “nesting” of Einstein equations.
Collisions of finite size objects are even more difficult to

solve, but those historically bring a discussion of the important
issues of trapped surface formation and entropy production. It
was pioneered by Gubser, Pufu, and Yarom (2008) who
considered head-on (zero impact parameter) collisions of
point black holes. The setting is shown in Fig. 47(a).
“Trapped surface” is a technical substitute for the horizon

and its appearance in the collision basically means that there
exists a black hole inside it. Classically, all information
trapped inside it cannot be observed from outside, and lost
information is entropy. For known static black hole solutions
its area does give the black hole Bekenstein entropy.
Locating this surface allows one to limit the produced

entropy from below, by simply calculating its area. The reason
why this entropy estimate is from below is because the trapped
surface area is calculated at the early time t ¼ 0 of the
collision, not at its end. No particle can get out from a
trapped surface, but some can get into it during the system’s
evolution, increasing the black hole mass and thus its entropy.
Gubser et al. denoted the distance separating a colliding

black hole from the boundary by L; we will discuss its
physical meaning later. Naively, central collisions have only
axial O(2) symmetry in the transverse plane x⊥, but using
global AdS coordinates they found a higher O(3) symmetry of
the problem, which becomes manifest if a coordinate

q ¼ x⃗2⊥ þ ðz − LÞ2
4zL

ð55Þ

is used. It was shown that the 3D trapped surface C at the
collision moment is in this coordinate a 3-sphere, with some
radius qc. If qc is determined, the relation between the CM
collision energy and Bekenstein entropy can be calculated.
For large qc these are given by

E ≈
4L2q3c
G5

; S ≈
4πL3q2c
G5

; ð56Þ

FIG. 46. (Left) The temperature evolution combination
d logðwÞ=d log τ for different initial conditions (thin black curves)
converging into a universal function of w ¼ Tτ, compared to the
hydrodynamical prediction. (Right) The pressure anisotropy for
one of the evolutions compared to first- (NS), second-, and third-
order hydrodynamics. From Heller, Janik, and Witaszczyk, 2012.
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from which by eliminating qc one finds the main conclusion,
the entropy grows with the collision energy as

S ∼ E2=3L5=3. ð57Þ

Note that this power is in general ðd − 3Þ=ðd − 2Þ, so it is
directly related to the d ¼ 5, the dimension of AdS space.
Note also that it is different from the 1950s prediction of Fermi
and Landau who predicted S ∼ E1=2 as well as from the data,
which according to Eq. (53) indicates the power of about 0.30.
Let us now return to the meaning of the parameter L.

Gubser et al. related the “depth” of the colliding objects with
the nuclear size L ∼ 1=RA which cannot depend on the energy.
An alternative idea suggested by Lin and Shuryak (2009)
ascribed L to the (inverse) “saturation scale,” the typical
parton’s momenta in the wave function of the colliding
objects. In this case it is related to the collision energy by

L ≈
1

QsðEÞ
∼ E−α; ð58Þ

where α ≈ 1=4 is an empirical index of the PDFs. It is
especially clear if one considers wall-on-wall collisions, in
which the nuclear size RA goes to infinity, while Qs

characterize the material the wall is made of, and remains
fixed. L is not of the Oð10 fmÞ scale, but rather 2 orders of
magnitude smaller Oð0.1 fmÞ. Furthermore, it is expected to
decrease with the energy L ∼ 1=QsðEÞ. Including this modi-
fies Eq. (57) to

S ∼ Eð2=3Þ�ð5=3Þα ∼ E0.25; ð59Þ

which is in reasonable agreement with the observed
multiplicity.
The generalization of this theory to noncentral collisions

(Lin and Shuryak, 2009) leads to the results shown in
Fig. 47(b). The figure shows the dependence of the trapped
surface area on the impact parameter. Specifically, numerical
results from Lin and Shuryak (2009) (points) are compared
with the analytic series of curves (Gubser, Pufu, and Yarom,
2009), which are in excellent agreement.
From the gravity point of view the qualitative trend shown

is clear: two colliding objects may merge into a common black
hole provided only that the impact parameter is less than some
critical value bcðEÞ, depending on the collision energy.
Indeed, with b rising, the trapped energy decreases while
the total angular momentum increases, so at some point the
Kerr parameter exceeds 1 and thus no black hole can be
formed. Interestingly, the calculation shows that it happens
with a finite jump—a first-order transition27 as a function of
the impact parameter.
Just a bit below the critical value of the impact parameter,

the trapped surface and black hole exist, and nothing indicates
that at larger b none is formed. At b < bc the creation of QGP
fireball happens, while for peripheral b > bc collisions the
system remains in the hadronic phase. A jump in entropy as a
function of the impact parameter is rather surprising, but in
fact the experimental multiplicity-per-participant plots do
indeed show rapid change between non-QGP small systems
and QGP-based not-too-peripheral AA collisions. It would be
interesting to compare it with all available information on
small systems undergoing transition to an explosive regime.
Lin and Shuryak (2009) also pointed out that the simplest

geometry of the trapped surface would be that for a wall-wall
collision, in which there is no dependence on transverse
coordinates x2 and x3. Thus a sphere becomes just two points
in z, above and below the colliding bulk objects. We
elaborated on this, considering the collision of two infinite
walls made of a material with different “saturation scales”
(Lin and Shuryak, 2011), and studied conditions for trapped
surface formation.

B. From holographic to QCD strings

AdS/CFT is a duality with a string theory, so fundamental
strings are naturally present in the bulk. Already the first
calculation made in Maldacena’s original paper, the “modified
Coulomb law,” was based on the evaluation of the shape and

1

3 H3

z=L

3

C

S S2

H

R3,1 x

x1,2 z
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(b)

FIG. 47. (a) A projection of the marginally trapped surface onto
a fixed time slice of the AdS geometry. From Gubser, Pufu, and
Yarom, 2008. (b) The area of the trapped surface vs the impact
parameter, with the comparison of the numerical studies (Lin and
Shuryak, 2009) shown by points and analytic curves. The vertical
line shows the location of the critical impact parameter bc beyond
which there is no trapped surface. From Gubser, Pufu, and
Yarom, 2009.

27The first-order transition stems from the largeNc approximation:
this conclusion may perhaps be modified at finite Nc. Furthermore,
the problem of a trapped surface in quantum gravity is much too
complicated, and not studied so far.
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total energy of a “pending string,” sourced by “quarks” on the
boundary.
Extension to nonstatic strings was done in Lin and Shuryak

(2008a, 2008c). First the shape of a falling string with ends
moving away from each other with velocities�v was derived,
and second its hologram (stress tensor distribution) at the
boundary was calculated. This study can be thought of as a
strongly coupled version of Ampere’s law, with two currents
rather than charges, or as a strongly coupled version of eþe−
annihilation into two quarks. The hologram showed a near-
spherical explosion, historically an early indication that there
are no jets at strong coupling.
These works used the setting associated with conformal

gauge theory: in AdS5 string falling continues forever. This is
of course not what we observe in the real world, in which there
is confinement and there are jets. Modern strong-coupling
models moved into what is collectively known as AdS/QCD;
for a review, see, e.g., Gursoy and Kiritsis (2008) and Gursoy,
Kiritsis, and Nitti (2008). In contrast with the original
AdS/CFT, the background metric is not conformally invariant
and incorporates both confinement in the IR and the asymp-
totic freedom in the UV. These models use an additional scalar
(“dilaton”) field, which is also given a phenomenological
potential depending on the fifth coordinate.
In such settings, the bulk strings can “levitate” at some

position z�, at which the downward gravity force is compen-
sated by the uplifting dilaton gradient. The hologram of such a
levitating string at the boundary is the QCD string. Its tension,
width, and stress tensor distribution are all calculable. The
potential between point charges is still given by a pending
string. In the AdS/QCD background its energy changes from
the Coulombic potential at small r to the linear potential at
large r, showing confinement. Furthermore, allowing funda-
mental fermions in the bulk, via certain brane constructions,
and including their backreaction in a consistent manner, one
can get the so-called Veneziano limit of QCD (Nc, Nf → ∞,
x ¼ Nf=Nc ¼ fixed) (Arean et al., 2013).
Since in the UV these models possess a weak coupling

regime, one can also model perturbative GLASMA, by putting
a certain density of color sources on the two planes, departing
from each other. In such a setting there is a smooth transition
between two alternatives descriptions of the initial state we
discussed previously—from the perturbative GLASMA to a
spaghetti made of the QCD strings. When time τ is small
[Fig. 48(a)], strings are in the UV domain (at small distance
z ∼ 1=Qs from the boundary) and their hologram is
Coulombic or GLASMA-like. When strings fall farther
and reach the “levitation point” z� they start oscillating around
it (Iatrakis, Ramamurti, and Shuryak, 2015), Fig. 48(b). This
is similar to oscillations discussed by Florkowski (see
Sec. VI.D) without AdS/QCD.
AdS/QCD predictions for string-string interactions were

derived by Iatrakis, Ramamurti, and Shuryak (2015). We
already discussed this issue in the QCD context, concluding
that its long-range attraction is dominated by the σ meson
exchanges (just like between nucleons, in nuclear forces).
The question is whether it is also the case in the AdS/QCD.
AdS/QCD has very few fields in the bulk—gravitons, dilatons,
and (quark-related) “tachyons.” Their quantization along the

fifth coordinate generate towers of four-dimensional hadronic
states. Hadronic masses are just quantized fifth momentum.
From this approach one can calculate not only the masses but
also the wave functions in a scale space, as well as mixing
between the fields. A specific issue studied by Iatrakis,
Ramamurti, and Shuryak (2015) is the mechanism of hadronic
flavorless scalars, which includes the σ and others.Without any
changes in the setting of AdS/QCD we found a good
description of mixing patterns of the scalars, which puzzled
spectroscopists for decades. Since strings are gluonic objects
and σ interacts strongly with quarks, the understanding of such
mixing is crucial for obtaining realistic string-string forces.
Note that so far there is no temperature or entropy in the

problem: the dynamics is given by classical mechanics of
strings moving in certain backgrounds. If the number (or
density) of strings becomes high enough [Fig. 48(c)], one
should include the backreaction of their gravity and dilaton
field, or even include mutual attraction of strings. Such an
AdS/QCD version of multistring dynamics (Iatrakis,
Ramamurti, and Shuryak, 2015) is the holographic version
of spaghetti collapse, discussed in Sec. VI.D following
Kalaydzhyan and Shuryak (2014a). The bulk strings, if too
many, produce a gravitational collapse.

C. Holographic Pomeron

The description of hadronic cross sections and elastic
amplitudes using Reggeons and Pomerons originates from
the phenomenology as well as from the Veneziano amplitudes.
While originally derived following the resonance duality in
different channels, a nearly forgotten pre-QCD ideology of the
1960s, these expressions were historically important, as they
gave us the first hints of the existence of QCD strings.
The Pomeron is an effective object corresponding to the

“leading” Regge trajectory αðtÞ which dominates the high

z(a)

(b)

(c)

FIG. 48. (a) An early time snapshot of a pair of strings created
after one color exchange. The coordinates are explained on the
right: the colliding objects move with a speed of light away from
each other and strings are stretched. (b) Later time snapshot,
in AdS/QCD background. After strings reach the “levitation
surface, ” shown by a rectangular shape, they start to oscillate
around it. (c) In the case of high density of many strings they can
be approximated by a continuous membrane.
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energy asymptotics of the hadron-hadron cross sections.
Figure 49 is a version of the Regge plot (angular momentum
J versus the mass squaredm2 ¼ t) for glueballs. The Pomeron
corresponds to scattering and thus has small nonphysical mass
t < 0 and a noninteger J slightly above 1: the trajectory αðtÞ
has of course physical states as well. It enters the elastic cross
section in a form

dσ
dt

≈
�
s
s0

�
αðtÞ−1

≈ elnðsÞf½αð0Þ−1�þα0ð0Þtg. ð60Þ

The two main parameters of the Pomeron have a very
different origin. The intercept αð0Þ is a dimensionless index,
describing the power with which the total cross section rises.
A perturbative description of the Pomeron by the Balitsky-
Fadin-Kuraev-Lipatov (BFKL) model (Kuraev, Lipatov, and
Fadin, 1977) provides a perturbative OðαsÞ value for it. The
slope28 α0ðt ¼ 0Þ has dimension ½mass−2� and is nonperturba-
tive. Its value is related to the string tension α0 ≈ 1=ð2πσÞ,
roughly twice that of the slope observed in meson and baryon
Reggeons, related to open strings.
The Pomeron phenomenology includes elements of per-

turbative and nonperturbative physics. To make it less con-
fusing, let us consider scattering as a function of the impact
parameter b. For small color dipoles and small b the amplitude
should be perturbative, due to gluon exchanges. At large
b ∼ 1 fm it should be nonperturbative: the model description
of it is given in terms of a (double) string exchange.
The holographic models collectively known as AdS/QCD

combine a strongly coupled regime in the IR (large values of
the fifth coordinate z) with a weakly coupled regime in the UV
(Gursoy and Kiritsis, 2008). The topic of this section,
the “holographic Pomeron,” includes in fact two different
approaches to the Pomeron, which we discuss subsequently.

The first idea is to approximate the Pomeron properties via
analytic continuations of the bulk gravitons. It may look
exotic, but note that Regge trajectories are natural conse-
quence of AdS/QCD models, and that the closest state to the
Pomeron along the trajectory is a JPC ¼ 2þþ glueball, rather
well described by these models. Recent application of the
Hilbert-Einstein action to the Pomeron-Pomeron 2þþ glueball
triple vertex successfully described the double diffractive
production data which were puzzling for a long time
(Iatrakis, Ramamurti, and Shuryak, 2016). Even more recent
are successful applications of the tensor Pomeron for the
description of the RHIC polarized pp scattering; see Ewerz
et al. (2016) and subsequent works.
We will however follow in more detail the second idea by

Basar et al. (2012) and Stoffers and Zahed (2013), providing
derivation of the Pomeron-induced scattering amplitude in a
AdS/QCD, including both soft and hard regimes, and thus
providing interpolation between the “stringy” and the BFKL
limits of the Pomeron. The semiclassical derivation of the
Pomeron amplitude is given in terms of closed string
production, similar to Schwinger pair production in an electric
field. The string world volume has the shape depicted in
Fig. 50(a): it is a “tube” connecting two flat strips, the world
volume of propagating color dipoles. In Fig. 50(b) we sketch a
Pomeron in a collision of two nucleons, consisting of
three quarks and three strings, joined into a string junction.
In this case a Pomeron tube “punctures” only one of the
three surfaces. This produces one “wounded quark,” as we

MM
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FIG. 49. Glueball masses calculated on the lattice (diamonds)
organized in Regge trajectories (lines). From Shuryak and Zahed,
2014.

FIG. 50. (a) Dipole-dipole scattering configuration in Euclidean
space. The dipoles have size a and are b apart. The dipoles are
tilted by �θ=2 (Euclidean rapidity) in the longitudinal x0-xL
plane. (b) A sketch illustrating Pomeron exchange for baryon-
baryon scattering: only one pair of quarks become wounded
quarks.

28The “string scale” in the fundamental string theory is tradition-
ally called α0 still, as a historic remnant of QCD phenomenology left
in it.
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discussed in connection to Tannenbaum’s description of
fluctuations.
Direct semiclassical derivation of the scattering amplitude

(Basar et al., 2012) is based on the Nambu-Goto action (the
tube’s area). Figure 50(a) indicates a Euclidean setting in
which a difference in rapidity is represented by twisted
angle θ between the propagation vectors of the two dipoles.
Figure 50(b) illustrates a baryon-baryon scattering, in which
the Pomeron tube can be connected to any of the available
dipoles, explaining the concept of the wounded quarks
mentioned in Sec. IV.B. More than one Pomeron means more
tubes, perhaps connecting other quarks.
The classical action of this configuration provides the α0

term, while the intercept αð0Þ − 1 is in this approach generated
by the next-order (one-loop) corrections due to string vibra-
tions. The elastic amplitude squared can be cut in half by the
unitarity cut. The corresponding tube configurations, when cut
longitudinally, provide two strings of certain length and shape.
Those are two physical strings that jump from under the
barrier and appear in the Minkowskian world. They should be
used as the initial conditions for Minkowskian real-time
evolution.
The same expression for the scattering amplitude has an

alternative derivation from the string diffusion equation, in the
5D bulk. The fifth coordinate in it has a meaning of the dipole
size parameter, so motion in this coordinate is dual to the
DGLAP evolution. Scattering pp data as well as deep-
inelastic ep (DESY data) are well reproduced by this model
(Basar et al., 2012).
It was further argued by Shuryak and Zahed (2014) that

because the tube has a periodic variable resembling the
Matsubara time, its fluctuations take the thermal form. The
appearance of an effective temperature and entropy was a new
aspect to the Pomeron problem: but once recognized the
analogy to thermal strings can be exploited. It was argued that
two known regimes of the Pomeron we already mentioned
(long string exchange at large impact parameter b and
perturbative gluon exchange at small b) should be joined
by a third distinct regime, in which strings are highly excited
due to the Hagedorn phenomenon. This is what happens near
critical temperature in gluodynamics. The third regime is
known as the mixed phase, between the confined and the
deconfined phases.
Figure 51(a) shows the elastic scattering profile, defined as

the Fourier-Bessel transform of the imaginary part of the
elastic amplitude. Shown by the dashed line is the prediction
of the model with the basic first-order transition occurring at
fixed impact parameter, and a fixed size of the colliding
dipoles. The circles show a more realistic model, including
averaging over a certain distribution over the dipole sizes. The
solid line is the empirical fit to the elastic scattering amplitude
measured at the LHC. The difference between this empirical
curve and the model (circles) is relatively small in Fig. 51(a),
although it becomes more noticeable in Fig. 51(b) showing its
Fourier-Bessel transform as a function of the momentum
transfer Q. As one can see, beyond the minimum good
agreement is lost. Apparently the “transition edge” in b
predicted by the first-order transition model is sharper than
the corresponding change in the experimental data.

In summary, a decades-old Pomeron amplitude was finally
derived in a stringy AdS/QCD setting. Surprisingly, the
Pomeron is related to thermally excited strings, with an
effective temperature proportional to the inverse impact
parameter. Rapid “phase transition” in scattering amplitude
at some impact parameter, from a nearly black disk to light
gray, corresponds to the deconfinement transition. An inter-
mediate regime corresponds to highly excited strings, known
as the “stringball” regime. So far only the elastic amplitude
has been calculated, due to the tunneling (Euclidean) stage of
the evolution. Towork out subsequent evolution of the system,
extending this theory to a description of inelastic collisions
remains to be done.

D. Collisions at ultrahigh energies

Discussions about Pomeron regimes ultimately drive us to
the old question: what happens at the ultrahigh energies, well
above those of the LHC? The highest observed energies,
by Pierre Auger Observatory and similar cosmic ray detectors,
go until

Elab ≲ Emax ∼ 1020 eV; ð61Þ
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FIG. 51. (a) The solid line is the empirical LHC data para-
metrization. The dashed line is the shape corresponding to the
“excited string” approximation for fixed sizes of the dipoles,
while the circles correspond to the profile averaged over the
fluctuating dipoles. (b) The corresponding elastic amplitude (the
absolute value squared of the profile Bessel transform) as a
function of the momentum transfer. Model prediction agrees with
parametrization well at small t, up to the dip.
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where they are limited by the so-called Greisen-Zatsepin-
Kuzmin (GZK) bound, due to their inelastic interaction with
the cosmic microwave background (CMB).
For comparison with the LHC, let us convert the laboratory

energy into the center of mass frame and use a standard
Mandelstam invariant. Assuming it is the pp collision, one
finds

ffiffiffiffiffiffiffiffiffi
smax

p ¼ ð2EmaxmpÞ1=2 ≈ 450 TeV: ð62Þ

While significantly higher than the current LHC pp energyffiffiffiffiffiffiffiffiffiffi
sLHC

p ¼ 8 TeV, the jump to it from the LHC is comparable
to that from the Tevatron

ffiffiffi
s

p ¼ 1 TeV or RHICffiffiffiffiffiffiffiffiffiffiffi
sRHIC

p ¼ 0.5 TeV. In view of smooth small-power s depend-
ence of many observables, the extrapolation to the LHC
worked relatively well, and one might think that any further
extrapolations may work as well. However, smooth extrap-
olations using standard event generators do not reproduce
experimental data from the Pierre Auger Collaboration.
Models aimed to resolved the contradiction were proposed.

For example, Farrar and Allen (2013) suggested an exotic
freezeout without chiral symmetry breaking, without multi-
pion production. According to simulations presented in this
work, if mostly nucleons are produced, the Pierre Auger data
are explained.
A more modest (but still significant) change between the

LHC and the so-called ultrahigh energies was proposed by
Kalaydzhyan and Shuryak (2014b): at such energies

ffiffiffiffiffiffiffiffiffi
smax

p
even minimally biased pp collisions should be in the
“explosive regime” as discussed previously for central pA
or rare (P ∼ 10−6) high-multiplicity pp collisions at the LHC.
This is simply caused by an increase in particle density
dN=dy, by about a factor of 3. Another generic reason for this
regime change is that both primary collisions and subsequent
cascades in the Earth’s atmosphere have as targets light N, O
nuclei. Furthermore, the projectiles themselves are also most
likely some mixture of nuclei, perhaps up to Fe.
Taking into account a large pp cross section at ultrahigh

energies, ∼150 mb, one finds that its typical impact param-
eters b ≈ 2 fm. Thus the range of the interaction in the
transverse plane is comparable to the radius of the light
nuclei (oxygen RO ≈ 3 fm) and therefore even in the pO
collisions most of its 16 nucleons would become collision
“participants.” For light-light AA collisions such as OO the
number of participants changes from 32 (central) to zero.
Accidentally, the average number of participants is compa-
rable to the average number of participant nucleons hNpi ≈ 16

in central pPb collisions at the LHC.

IX. ELECTROMAGNETIC PROBES

A. Brief summary

The sources of the dileptons are split into the following
categories:
(i) Instantaneous q̄q annihilation, known as the Drell-Yan

partonic process.
(ii) q̄q annihilation at the preequilibrium stage, after the

nuclei pass each other.
(iii) q̄q annihilation in the equilibrated sQGP.

(iv) Meson-meson annihilation at the (kinetically but not
chemically) equilibrated hadronic stage.
(v) The so-called “cocktail” contribution, consisting of

leptonic decays of unstable secondaries. Electromagnetic
and electroweak decays all occur long after freezeout, so this
component can be calculated from spectra and statistically
subtracted. We do not discuss this component any longer.
The corresponding windows in the dilepton mass are,

respectively, M > 4 GeV for (i), 1 < M < 3 GeV for (iii),
and M < 1 GeV for (iv). So the early stage dileptons mostly
fall into the 3–4 GeV window.29

Among the CERN SPS dilepton experiments the most
successful was NA60, which quantified with the largest
statistics the following phenomena:
(a) Large enhancement over the cocktail at dilepton masses

M < mρ. The resulting spectral density of the electromagnetic
current in QGP was quantitatively measured.
(b) By plotting the p⊥ slope as a function of the dilepton

massM it was demonstrated that light (M < 1 GeV) dileptons
are produced when flow is fully developed, or near freezeout.
(c) The intermediate mass dileptons (IMD) in the mass

range 1 < M < 3 GeV are entirely different: they produced
early, when the flow is still absent.
(d) The IMD are mostly “prompt,” coming from QGP

thermal radiation and not from the charm decays (as was
suggested originally).
At RHIC:
(a) Low mass dileptons are also enhanced over the cocktail.

The exact magnitude of it is still somewhat disputed between
STAR and PHENIX, for the most central bin.
(b) IMD are well measured but the contribution from charm

and bottom decays remains unknown. STAR expects to use
e − μ correlations based on a new muon subsystem now
in place.
(c) Direct photons have spectra consistent with standard

rates and hydrodynamics in shape, but not in absolute
magnitude.
(d) Unexpectedly large elliptic flow v2 of direct photons

persists.
At the LHC the dilepton measurements are not yet as

developed as hadronic ones. Photons measurements by
ALICE include confirmation of a relatively large (and puzzling)
value of the direct photon ellipticity, consistent with that
originally observed byPHENIX. Figure 52 shows a comparison
to theoretical models (curves): poor agreement is known as the
“direct photon puzzle.”
Theory of the electromagnetic observables follows tradition

set up long ago (Shuryak, 1980), mostly using the production
rates based on binary collisions of partons or hadrons. Now we
know that a similar approach fails to give viscosity, a heavy-
quark diffusion coefficient, or a jet quenching parameter q̂.
Perhaps photon and dilepton production rates are larger
numerically and of more complicated nonperturbative origin.
If large v2 of the photons (measured so far with large error

29This window of masses also contains prominent peaks due to
J=ψ ;ψ 0;ψ 00 decays. Those, according to the definition used, belong
to the cocktail that should also be subtracted.
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bars) is confirmed, photons must be produced at the larger rate
at the late stage of the collisions.

B. New sources of photons and dileptons: Multigluon or
phonon+magnetic field

The production of photons and dileptons is tied to the
presence of quarks, since gluons (and monopoles abundant
near Tc) have no QED electric charge. The initial stages of the
high energy collisions are believed to be dominated by gluons.
Old perturbative arguments (Shuryak and Xiong, 1993)
suggested that chemical equilibration via quark-antiquark pair
production is relatively slow and should take place much later
than thermal equilibration of the glue. This idea led to a “hot
glue” scenario in which the quark-antiquark density at early
stages is suppressed by powers of quark fugacity ξq < 1. The
basic process of the dilepton production

qþ q̄ → γ� → lþ þ l− ð63Þ

is expected to be suppressed quadratically, ∼ξ2q.
This scenario was recently challenged: higher order proc-

esses with virtual quark loops can produce electromagnetic
effects as well, even without on-shell quarks. First, contrary to
general expectations, the quark loop effect in GLASMA was
suggested to be significant (Chiu et al., 2013), enhanced due
to multigluon, to virtual quark loop, to dilepton processes such
as, e.g.,

ggg → ðquark loopÞ → γ� → lþ þ l−: ð64Þ

The magnitude of the correction to production rates due to
these processes still needs to be quantified.
An explicit calculation of the rate of two gluon to two

photon transition gg → γγ was done by Basar, Kharzeev, and

Shuryak (2014). One of the photons is assumed to be the
ambient magnetic field at the time of collision, while both
gluons are combined into a colorless stress tensor

Tμ
μ þ B⃗ → ðquark loopÞ → γ�ð¼dileptonsÞ. ð65Þ

The terminology introduced in this paper is as follows.
The process in which glue appears as an average matter
stress tensor hTμνi, producing photons (real or virtual) due
to a time-dependent magnetic field, is called magneto-thermo-
luminescence (MTL). The average stress tensor is nearly
constant over the whole fireball, and therefore its Fourier
decomposition has very small momenta p ∼ 1=R.
Individual events, however, also possess fluctuations of the

matter stress tensor δTμν, with chaotic spatial distribution, and
thus with the Fourier transforms with non-negligible
momenta. Since those are referred to as “sounds,” their
interaction with the ambient magnetic field is called mag-
neto-sono-luminescence (MSL). If observed, the MSL process
tests both the amplitudes of the short-wavelength sounds and
also the magnitude of the magnetic field. We already dis-
cussed many uses of sounds: we here comment only on the
magnetic field. It is easy to evaluate its early values, resulting
from Maxwell equations and the currents due to the spectators
in peripheral collisions. Since sQGP is believed to be a good
conductor, these fields are expected to create currents captur-
ing a fraction of the field inside the plasma (Tuchin, 2013),
perhaps lasting for many fm=c. Magnetic field evolution is
important to know for other applications as well, e.g., chiral
magnetic effects and the like.
So far luminosity and acceptance limitations have led

experiments to focus on most luminous central collisions.
In those, however, the ambient magnetic field is absent. Now it
is perhaps time to look at dileptons in semiperipheral
collisions as well. To tell the effect of the ambient magnetic
field from others, RHIC considers runs of isotopes with
similar A but different Z, N values.

C. Dilepton polarization and the (early time)
pressure anisotropy

It is well known that when spin-1=2 particles (such as
quarks) annihilate and produce lepton pairs, the cross section
is not isotropic but has the following form:

dσ
dΩk

∼ ð1þ acos2θkÞ; ð66Þ

where the subscript corresponds to a momentum k of, say, the
positively charged lepton and θk is its direction angle relative
to the beam. The anisotropy parameter a in the Drell-Yan
region [stage (i) in the terminology introduced at the begin-
ning of this section] is produced by annihilation of the quark
and antiquark partons, collinear to the beam. In this
case, a ¼ 1.
It was suggested (Shuryak, 2012a) that the parameter a can

be used to control anisotropy of the early stages of the
collision. In particular, if it is anisotropic so that longitudinal
pressure is small relative to transverse pl < pt, the annihilat-
ing quarks should mostly move transversely to the beam,
which leads to negative a < 0. Such a regime is expected due

FIG. 52. Illustrations of the “direct photon puzzle.” (a) The
yield, (b) v2, and (c) v3 of the direct photons. Points are data and
curves are from theory based on the hydrodynamical model,
the reference indicated on the figure. From A. Drees, PHENIX
presentation at QM2015.
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to a “self-sorting” process, in which partons with different
rapidities automatically become spatially separated after the
collision.
For illustration one can use a simple one-parameter angular

distribution of quarks over their momenta p in a form

W ∼ exp½−αcos2θp� ð67Þ

and calculate aðαÞ resulting from it. This shows that a may
reach negative values as low as −0.2 at stage (ii), before it
vanishes, when equilibration is over, at stages (ii)–(iv).

X. HEAVY QUARKS AND QUARKONIA
AS sQGP PROBES

Physics of heavy-flavor quark or hadron production is a
rather large area, to which we cannot give full justice here; for
a review, see Prino and Rapp (2016). Heavy quarks provide
interesting probes for matter properties, for a number of
reasons. First, they are not produced by it, but by hard
processes at the initial collision, which are under good
theoretical control. Heavy quarks at the end are combined
with light ones into heavy-flavor mesons and baryons, some
identified by their decays. Leptons coming from c and b quark
decays are also separately identified and studied. Thus, we
know both the initial spectra, at the time of production, and the
final ones.
Heavy-quark motion inside matter is described by a number

of tools, such as Langevin or Fokker-Planck (FP) equations, or
other kinetic approaches. There are two kinetic coefficients
derived from these studies: (i) for small momenta, the
diffusion coefficients DfðTÞ, f ¼ c, b and (ii) for large
momenta, the (flavor dependent) quenching parameter q̂f.
Not going into specifics of the fits of heavy-quark spectra, let
us proceed directly to summary of the diffusion constant of the
charm quark shown in Fig. 53. As with shear viscosity, the
diffusion constant is inversely proportional to the scattering
cross section. And, as with shear viscosity, the diffusion
constant is expected to have a minimum at T ¼ Tc.
There is a well-known but persistent puzzle associated

with the diffusion constants which is worth mentioning.
Perturbatively, the gluon quenching should be stronger than
that of the quarks, by a factor of 9=4, due to color Casimir
operators. Contrary to this simple prediction, the data indicate
about the same magnitude of the suppression, for gluonic,
light quark, and even heavy quark-induced jets. The mecha-
nism which would explain this puzzle is not yet identified.

A. Quarkonium suppression

Quarkonia, bound states of c̄c or b̄b, are among the most
discussed probes of matter properties. The initially discussed
issue is the relative role of the real and imaginary parts of the
potentials and binding them. Already the first paper on QGP
signals (Shuryak, 1978) discussed an excitation process
J=ψ þ g → c̄c in QGP, an analog of the photoeffect in atomic
physics, with the conclusion that initially produced J=ψ
would be partially destroyed by it. Matsui and Satz (1986)
pointed out that, due to QGP screening, the real part of the
potential is T dependent, and therefore quarkonia binding

diminishes with increasing temperature. They predicted
sequential melting of the charmonia states, from highest to
the ground state. A quantitative study of these potentials in
weakly coupled QGP was performed by Laine et al. (2007);
for a review, see Brambilla et al. (2013). According to
these works for T > 300 MeV the imaginary part of the
potential exceeds the real part ImV > ReV and becomes
dominant.
However, ImV describes excitation to all other states

combined, and its knowledge is not sufficient if one needs
to follow the system more closely. Its usage assumes that
excited states are gone forever, completely ignoring transitions
back to the ground state. But, without the balance between
direct and inverse reactions, one cannot formulate the concept
of thermal equilibrium, which is crucial for the understanding
of chemical freezeout.
Views on how QGP affects the quarkonia yield had changed

in a complicated and confusing historical path. Instead of
following it, we proceed from simpler to more complicated
settings, namely, go thorough the following:
(0) static heavy-quark potentials,
(i) time-independent equilibrium state of charmonia,
(ii) equilibration processes and rates, and
(iii) heavy ion collisions.
(0) Static heavy-quark potentials have been extensively

studied on the lattice, at variable temperatures. A sample of
two-flavor QCD results is shown in Fig. 54. The vacuum
potential at T ¼ 0 is indicated for comparison. The free

FIG. 53. The charm quark diffusion coefficients from quenched
lattice QCD (circles, square, and triangle) compared to model
calculations based on different elastic interactions in the QGP
corresponding to the Aðp ¼ 0Þ limit: T-matrix calculations with
either free (green band) or internal energy (red band) as potential,
pQCD Born calculations from HTL and pQCD matching using a
reduced Debye mass and running coupling (Nantes, pink dash-
dotted line) or with perturbative Debye mass and fixed coupling
(Torino, cyan band), as well as schematic leading order (LO)
pQCD with fixed coupling and Debye mass mD ¼ gT (purple
dash-dotted line). The blue dashed line below Tc is a calculation
of D-meson diffusion in hadronic matter from elastic scattering
off various mesons, antibaryons, and baryons. From Prino and
Rapp, 2016.
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energy measured can be related to entropy and thus the
internal energy VðT; rÞ, by standard thermodynamic relations

VðT; rÞ ¼ FðT; rÞ − T
∂F
∂T ¼ FðT; rÞ þ TSðT; rÞ. ð68Þ

One can see from Fig. 54 that F and V are rather different. The
force, also known as the string tension, has a maximum for U,
reaching about 4 GeV in magnitude. What are their physical
meanings? Which one should be used as the potential in the
quarkonium problem?
One explanation of these lattice findings proposed by Liao

and Shuryak (2010) is based on the observation that near Tc
matter contains both “a dual superconductor” (Bose-
condensed monopoles) and a “normal” Bose gas of monop-
oles. Both components create currents around the electric flux
tubes, terminating the field outside them. The size and tension
of the flux tube thus depend on the densities of both
components, which in turn are strongly T dependent.
Its detailed discussion is out of context here, and we

mention only a clarification of the entropy associated with
the potential. Its generation is related with the level crossing
phenomena, occurring while the separation between charges is

changed. Suppose a pair of static charges are slowly moving
apart in thermal medium at certain speed v ¼ _L. For each
fixed L, there are multiple configurations of the medium
populated thermally. When L is changed, the energies of these
configurations cross each other, and at each level crossing
there is a certain probability to change or not to change the
population of the states. These probabilities strongly depend
on the speed v ¼ dL=dt. For adiabatically slow motion all the
level crossing processes happen with the probability of 1. The
adiabatic limit is identified with the free energy FðT; LÞ.
If however the motion is very fast, transitions between

crossing levels are suppressed. The internal energy VðT; LÞ,
on the other hand, is different from FðT; LÞ by subtracting the
entropy term and thus it is probed in the extremely fast motion
regime.
Such phenomena have multiple analogs in many other

contexts in physics. The oldest example is the so-called
Landau-Zener theory of electron terms in the vibrational
motion of the nuclei in a diatomic molecule. Specific electron
quantum states are defined at fixed L (the separation between
the two nuclei) with energies EnðLÞ, and certain levels cross
each other as the value of L changes. Consider two levels with
their energies given by E1ðLÞ ¼ σ1Lþ C1 and E2ðLÞ ¼
σ2Lþ C2 near the crossing point. When the two nuclei
approach the crossing point adiabatically slowly v ¼
dL=dt → 0, the electrons always change from the lowest
state to the lowest other state. But if dL=dt is finite, then the
transition to both levels at the crossing point may happen, with
certain probability. This is how initially a pure state becomes a
mixture and entropy is produced. Landau and Zener gave the
probability to remain in the original state at small velocity v in
the following form:

P ¼ exp

�
−

2πH12

vjσ1 − σ2j
�
; ð69Þ

where H12 is the off-diagonal matrix element of a two-level
model Hamiltonian describing the transition between the two
levels, and σi ¼ dEi=dL are slopes of the crossing levels. In
the opposite limit of rapid crossing, the system remains in the
original state, and no entropy is produced again. Thus, there
should be a maximum of entropy production at some speed.
For a discussion of the “entropic forces” in a heavy-quark
motion, see, e.g., Kharzeev (2014).

B. Quarkonia and lattice correlation functions

Suppose one puts one J=ψ in matter at some temperature T.
Transitions from J=ψ to its excited states will happen first,
eventually going into D̄D, with the charm quark separated.
Since D̄D can eventually occupy an infinite volume, the
separated states will dominate over the bound states. Thus,
given enough time any initial J=ψ will dissolve at any T. On
the other hand, thermal transitions may also proceed in the
opposite direction as well. Starting from a certain density of
separated charm quarks, charmonia and their ground states
J=ψ are constantly regenerated. Given sufficient time, an
equilibrium between D̄D and J=ψ will be reached. LHC data
suggest that this regime is in fact reached for charm by the
chemical freezeout (see later).
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FIG. 54. Free energy singlet potentials F1ðT; rÞ (top plot) and
the potential energy U1ðT; rÞ below and above Tc. Note that the
vertical scale is different. From Kaczmarek and Zantow, 2006.
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Heavy quarks c and b are produced in hard processes, not in
thermal reactions. Since the heavy ion collision time is small
compared to weak decays, c and b quarks are conserved, and
thus c and b chemical potentials can be introduced. (It is not
the one coupled to the charm quantum number, but to the c
and c̄ numbers separately.) This μ is such that charm fugacity
is large, defining the equilibrium production of charmonium
states.
Can the density of certain quarkonia states be defined at

T > Tc? We know for a fact that this is not so: the evidence
come from lattice static potentials described previously.
Already at T ≈ Tc there is a relatively large entropy associated
with a quark S ¼ ðU − FÞðr → ∞Þ=2T, corresponding to a
large number of states N ∼ eS.
Awell-defined field theory object is the correlation function

of local gauge invariant operators

Kðx; yÞ ¼ hc̄ΓcðxÞc̄ΓcðyÞi; ð70Þ

where the average is over the heat bath, and x or time x0 ¼ t
can be Minkowskian or Euclidean. In both cases the corre-
lation function is related to the same spectral density ~Kðω; kÞ,
characterizing the amplitude of the excitation of states with a
given energy or momentum. At low T, one can find the
individual states as certain peaks at the lines ω ¼ ωiðkÞ in the
spectral density, but with increasing T they all merge into a
smooth continuum.
Such Euclidean correlation functions have been numeri-

cally calculated on the lattice; for a review, see Mocsy,
Petreczky, and Strickland (2013). Unfortunately the problem
of spectral density reconstruction from these is, in practice,
very difficult. Highly accurate and expensive Euclidean
correlation functions are converted into relatively poorly
defined spectral densities. Even when the individual states
are seen, as some peaks in the spectral density, their widths are
hardly quantifiable. Above a certain T all peaks corresponding
to charmonium states merge into one “near-threshold bump,”
the imprint of the Sommerfeld-Gamow enhancement due to an
attractive potential ∼e−V=T > 1.

C. Quarkonia and real-time QFT formalism

A more detailed, time-dependent, set of questions can be
asked about transition rates in equilibrium matter. These have
been addressed at least at three levels: (a) real-time QFT,
(b) quantum mechanical, and (c) classical diffusion.
Real-time QFT, also known as the Schwinger-Keldysh

formalism, can follow a system from some initial to some
final state using the full Hamiltonian

hijP exp

�
−
Z

f

i
dtH

�
jfi ð71Þ

which is viewed as a sum of the subsystem in question H0 and
matter perturbation V. Diagrammatic expansions, including
two-time contours as well as a Matsubara portion of an
Euclidean time for thermal media, are widely used in con-
densed matter problems, but they are not much used so far in
the problem we discuss.

If H0 corresponds to a nonrelativistic quantum-mechanical
description of quarkonium, we call it the quantum-mechanical
approach. One can evaluate matrix elements of V over various
quarkonia states. The first considered reactions were J=ψ
excitation into unbound states of c̄c due to photoeffectlike
reactions of one gluon absorption J=ψ þ g → c̄c. For heavy
quarkonia the diagonal part of the real and imaginary parts of
the perturbation V can be considered as a modified potential;
for a review, see Brambilla et al. (2013). More generally, one
can define transition rates between states and write a rate
equation. The fundamental question here is of course whether
the “matter perturbation” V is small or not. (We argued that at
very low and very high T a perturbative approach may work,
but at least for charmonium in the near-Tc matter the answer to
this question is negative.)
Suppose the perturbation V is not small compared with the

interparticle interaction: then quantum quarkonium states are
no longer special and one can as well use for H0 just free
particles. Using mass as a large parameter, one can argue
(Svetitsky, 1988; Moore and Teaney, 2005) that even in a
strong-coupling setting the heavy-quark motion should be
described by classical stochastic equations, the Langevin or
Fokker-Plank type. Let us mention only two crucial conse-
quences of the argument. First, motion is diffusive, with
x ∼

ffiffi
t

p
as it happens in random uncorrelated directions.

Second, each step in space is very small. Suppose a pertur-
bation delivers a kick of the order T to a heavy quark of mass
M ≫ T. Its velocity is changed little, by Δv ∼ T=M and by
the time the next kick comes Δt ∼ 1=T the shift in coordinate
is small Δx ∼ 1=M.
Suppose a quark needs to diffuse a distance large enough so

that the gradient of the potential no longer pulls it toward the
antiquark. From the energy potentials V one can see that the
distance it needs to go is about 1.5 fm, or ∼10Δx jumps it can
make. However, since it is moving diffusively, to get that far
the quark would need ∼102 jumps, which can be larger than
the time available. A quantitative study of classical diffusion
in a charmonium (Young and Shuryak, 2009) confirmed that
to climb out of the attractive potential in multiple small steps is
hard. Contrary to common prejudice, using the realistic charm
diffusion constant we found that the survival probability of
J=ψ is not small but is of the order of 50% or so.
Finally, in order to model the fate of heavy quarks and

quarkonia in heavy ion collisions, one needs to follow them all
the way from initial hard collisions to the freezeout. In the
classical diffusion approach one starts with a pair distribution
in the phase space, as defined by the parton model, and at the
end project the resulting distribution to the charmonia states
using their Wigner functions.
We finish this section by presenting two opposite answers

to the question: What is the effect of the QGP production on
the charmonium survival? In 1986 it was argued by Matsui
and Satz (1986) that QGP, via the Debye screening of the color
potential, destroys charmonium states sequentially, excited
states first, and then eventually the ground states. In 2008 the
opposite was argued by Young and Shuryak (2009): strongly
coupled QGP helps to preserve charmonia. A small mean free
path and a specific bottleneck in the Fokker-Planck solution
prevents QQ̄ from moving far from each other. At the end of
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the process, c̄c pairs are projected back to the bound states,
and the ground states of charmonia dominate if the distance
between them is small.

D. Observed charmonium composition and chemical
equilibration

The simplest, and also most radical, model of charmonium
composition is a picture of its statistical hadronization; see
Andronic et al. (2007) and references therein. It assumes that,
like all light hadrons, charmonium states are produced in a
thermal equilibrium state at chemical freeze out. If so, issues
discussed in the previous section are completely irrelevant:
whatever charmonium history during the intermediate stages
may be, it is simply forgotten in equilibrium.
The data at RHIC and the LHC show that this is only

partially true, and in fact there are two components of the
charmonium population: the “survived” one and the products
of the “recombination.” Observations of the latter component
are among the most important results from heavy ion
experiments.
Let us proceed to the next-order questions, related, in

particular, to the relative population of charmonium states. If
all of them come from the statistical hadronization at chemical
freezeout, the consequence will be

Nψ 0

NJ=ψ
¼ exp

�
−
Mψ 0 −MJ=ψ

Tch

�
ð72Þ

with similar expressions for other states. However, if we have
two out-of-equilibrium components, with different history, the
answer should be different. The “survival” component, with
its flow of probability from small to large r, should be richer in
lower states. The recombination component flows the oppo-
site way, and it should have more higher states instead. In
general, two components have different centrality and pt
dependences, and in principle can be separated.

E. Are there some stationary quarkonia states in a strongly
coupled medium?

As in all other parts of heavy ion theory, there exist two
points of view, a weakly coupled and a strongly coupled one
on the quarkonia dynamics. Which one is more adequate
depends on the value of the quark mass. All approaches
assume that it is very large compared to temperature M ≫ T,
so quarkonia are not thermally produced and are nonrelativ-
istic, with v=c ≪ 1.
If frequencies of the internal motion ω ∼ v2M are small

compared to those in ambient matter ∼T, one should be able to
use static potentials from the lattice and calculate wave
functions from the corresponding Schrödinger equation.
Unfortunately, for both charmonia and bottomonia these
frequencies are a few hundreds of MeV, comparable to
energies of medium constituents, so this condition cannot
really be fulfilled. As argued, this implies that the appropriate
potential to be used should be somewhat in between the free
energy FðT; rÞ and the potential energy VðT; rÞ, correspond-
ing to slow and fast limits.

The weakly coupled point of view is valid at parametrically
large M. In this case one may argue that quarkonia interact
weakly with the matter. Excitations are rare and by integrating
an imaginary part of the potential ImV [summarized by
Brambilla et al. (2013)] over the collision time one obtains
quarkonia suppression.
The opposite picture is that very strong coupling assumes

that transitions between quarkonium states are numerous.
Large ImV exceeding the frequencies (distances between
levels) makes the initial vacuum states meaningless. The
spectral density of the correlator is smooth, without any
peaks. Indeed, there are no two-particle bound states in a
dense plasma, just certain spatial correlations between the
charges. In practice, classical approaches such as Langevin or
FP equations are used. If one starts with a close c̄c pair at
t ¼ 0, the solution to Langevin or FP equations describes
positive flow toward the large relative distance r → ∞. The
opposite setting, describing quarkonium recombination, starts
with originally unrelated c̄c at large r and calculates the
diffusion current directed toward small r. Both are followed
for some time, the sQGP era, and at freezeout the distributions
obtained (in the phase space p, r) are projected to the vacuum
quarkonia states using their Wigner functions (Young and
Shuryak, 2009).
Both the inward and outward diffusions turned out to be

rather slow. The reason for that is quite interesting. The spatial
distribution rapidly reaches a certain shape which persists with
only slow growth of its tail. The example is shown in Fig. 55.
(Note that in this case the attractive Coulomb-like potential
has been complemented by a repulsive quantum effective
potential ∼ℏ2=mr2 which generates the hole in the distribution
at small r and prevents classical falling of the charge on the
center.)
We called solutions with a nearly permanent shape and

small flux “quasiequilibrium” solutions. This concept has not
yet been noticed in this particular field30 but it deserves to be.
Let us show how quasiequilibrium solutions appear in the
quark diffusion problem, using the FP equation

∂P
∂t ¼ ∂

∂r⃗ D
�∂P
∂r⃗ þ βP

∂V
∂r⃗

�
; ð73Þ

where Pðt; r⃗Þ is the distribution over the c̄c separation r⃗ at
time t, D is the diffusion constant, β ¼ 1=T, and VðrÞ is the
interquark potential. When P ∼ expð−βVÞ the two terms on
the rhs bracket cancel, so the thermal equilibrium is time
independent. Note further that if the bracket on the rhs is
nonzero but constant, its divergence is still zero, which makes
the lhs zero.
As a result one has a family of stationary solutions,

characterized by constant fluxes. The direction depends on
the sign of the constant; it can be from small to large r as in the

30An example in a different but similar context is the so-called
globular clusters of stars inside galaxies. It is well known that they are
not in thermal equilibrium, but in a certain dynamical quasiequili-
brium, as the data show similar phase space distributions. Depending
on the environment, some are slowly evaporating, and some are
growing instead, but with the net flux small.
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charmonium suppression problem, or from large to small r for
recombination. It is these stationary states that can be called
“quarkonium states in matter.” (Note, however, that constant
flux needs to be supported at the ends: something should
produce quarkonia at one end and destroy them on the other.)

XI. JET QUENCHING

Jets are produced by hard collisions of partons, with
momentum transfer Q ≫ 1 GeV, and constitute perturbative
cascade from this scale down to on-shell hadrons. Hard
collisions in QCD are described perturbatively, while the
structure and fragmentation functions are nonperturbative
objects treated so far phenomenologically.
By “jet quenching” one means modification in jet yields

and shape, due to interaction of the leading parton and
subleading cascade with ambient matter. The cascade modi-
fication has specific features, due to the so-called Landau-
Pomeranchuck-Migdal (LPM) effect generalized from QED to
QCD. We do not discus gluon radiation, in vacuum and/or in
matter, except for Sec. XI.B on recent progress describing jets
as turbulent flow fixed points.
What will be the central focus here is the possible usage of

the jet quenching phenomenon as a matter probe. The jet
quenching parameter q̂ is defined as the mean square of
transverse momentum to a jet given to it due to scattering per
unit of length. It is a kinetic quantity proportional to the jet
scattering cross section, in many respects similar to the inverse
viscosity-to-entropy density discussed previously.

A. Is jet quenching dominated by the near-Tc matter?

Let us first consider a more general proposition: If the
scattering of QGP quasiparticles and the scattering of jets
(high p⊥ partons) on the matter is similar, one may expect

various related kinetic coefficients to have similar temperature
dependence. In particular, one may expect that

q̂ðTÞ ∼ sðTÞ
ηðTÞ . ð74Þ

From hydrodynamical studies, the rhs seems to have a peak at
T ¼ Tc. The main message here (Liao and Shuryak, 2009;
Xu, Liao, and Gyulassy, 2015) is that the lhs seems to have a
peak at T ¼ Tc as well.
There were two experimental hints which eventually led us

to this conclusion. The first was the angular dependence of the
jet quenching. At the very beginning of the RHIC era it was
noticed (Shuryak, 2002) that the simplest model, in which q̂
was assumed to be a universal constant, cannot reproduce a
direction-dependent (the ratio of in-reaction-plane to out-of-
reaction-plane) data, or v2ðlarge p⊥Þ. The relation between
them is simply

Rin=out
AA ¼ RAAð1� 2v2Þ. ð75Þ

The experimental value of v2 was, from the very first PHENIX
and STAR measurements, about two times larger than all
simple quenching models predict. It took years of slicing the
matter distributions and trying various T-dependent q̂ to find
at least one possible solution to this puzzle (Liao and Shuryak,
2009): one can get close to the observed v2 values if the jet
quenching is strongly peaked near Tc. The reason being is that
the angular asymmetry of the corresponding shell of matter is
sufficiently large.
The second hint was provided by the LHC jet data, showing

that quenching at the LHC is rather similar to that at RHIC, in
spite of the fact that the multiplicity (and thus matter density)
is two times larger there. Now we hope we understand that a
shorter time spent near Tc at the LHC, as compared to RHIC,
compensates for two times more scatterers.
Now let us have a look at the angular distribution of jet

quenching (Fig. 56), showing v2ðlarge p⊥Þ measurements at
the LHC. There are three upper (red) theory curves, and three
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FIG. 55. One-dimensional Fokker-Planck equation for an in-
teracting c̄c pair. The relaxation of the initial narrow Gaussian
distribution is shown by curves (black, red, brown, green, blue, or
top to bottom at r ¼ 0) corresponding to times t ¼ 0, 1, 5, and
10 fm, respectively. From Young and Shuryak, 2009.

FIG. 56. Jet suppression and elliptic parameter v2, data vs
models. From Xu, Liao, and Gyulassy, 2015.
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lower (violet) ones. Only the former describe the data: those
include the jet-monopole scattering. The latter, with fm ¼ 0 in
the caption, ignore it and thus fail to describe the data. In
Fig. 57 we show the q̂ðTÞ of the model for a jet with 20 GeV.
The red curve marked pQCDþ QGMP has a peak reaching
q̂=T3 ∼ 50 in the left upper corner and includes the scattering
on monopoles (this is what M in the matter description is).
Note that the blue curve at the bottom marked pQCDþ HTL,
which includes quarks and gluons only in the hard thermal
loop (HTL) approximation, has q̂=T3 ∼ 5, an order of mag-
nitude lower.
This is a concrete manifestation of what was discussed in

the Introduction, where we compared perturbative and non-
perturbative effects. The perturbative amplitude has the gluon
charge and the coupling αs ∼ g2, one g from a jet and one from
the “scatterer.” The nonperturbative amplitude still has a factor
g from a jet, times31 1=g from the field of the monopole: thus
there is no coupling.

B. “Fixed points” of the jet distributions

There have been important developments relating jet in
matter with a general turbulence theory (Blaizot, Mehtar-Tani,
and Torres, 2015). For a large enough medium, successive
gluon emissions can be considered as independent: multiple
emissions can be treated as probabilistic branching processes,
with the elementary branching rate. The inclusive gluon
distribution function

dN

d logðxÞd2k⃗
¼ Dðx; k⃗; tÞ

ð2πÞ2 ð76Þ

satisfies certain diffusion-branching equations. Integrating
over transverse momentum one gets the zeroth moment

Dðx; tÞ ¼ R
k Dðx; k; tÞ on which we focus here, for simplicity.

This moment satisfies

t�
∂Dðx; tÞ

∂t ¼
Z

dzKðzÞ
� ffiffiffi

z
x

r
D

�
x
z
; t

�
−

zffiffiffi
x

p Dðx; tÞ
�

ð77Þ

with the gain and loss terms on the rhs. Details such as the
shape of the kernel K and time parameter t� can be found in
Blaizot, Mehtar-Tani, and Torres (2015). The central point is
the analytic solution

Dðx; tÞ ¼ ðt=t�Þffiffiffi
x

p ð1 − xÞ3=2 exp
�
−

πt2

t2�ð1 − xÞ
�

ð78Þ

which balances the gain and the loss.
Note that an essential singularity at x ¼ 1 is expected: it is

known as the Sudakov suppression factor. The remarkable
news is that apart of the exponent, the shape of the x depend-
ence remains the same at all times. Only the normalization
changes. Let us see how it works in the most important small
x ≪ 1 region, where the leading x−1=2 dependence is such that
the gain and loss terms cancel. This is the quasiequilibrium
solution for the jets. As a result, jets in matter are expected to
approach some universal shape, not determined by the
particular initial conditions, but by the quasiequilibrium
solution to which it gets attracted as the process proceeds.
It is essentially the same phenomenon as seen in Fig. 55 for

diffusing charmonium: the shape itself is dictated by the
balance of the gain and loss. Both are quasiequilibrium
attractor solutions: their main feature is constant flux of a
certain quantity, from one end of the spectrum to the other.
(The flux in decaying charmonium comes from small to large
distance between quarks, in the jet case it comes from large to
small x.) Once again, the constancy of the flux in such
solutions is the key idea going back to Kolmogorov’s theory
of hydrodynamical turbulence. As Einstein once observed:
“… the number of good ideas in physics is so small, that they
keep being repeated again and again in various contexts.”

XII. NEAR THE PHASE BOUNDARY: FLUCTUATIONS
AND FREEZEOUTS

A. Chemical freezeouts

The concept of two separate freezeouts is based on the
separation of elastic and inelastic rates at low T, in magnitude.
Statistical equilibration is such a success story that we just
show current ALICE data, with the corresponding thermal fits,
in Fig. 58. For a simple statistical model with two parameters,
the quality of the data description is extraordinary.
Note that even light nuclei d; t; He3 and their antiparticles

are also included. One may wonder how d, with its B ¼
2 MeV binding energy, can be found in an environment with
ambient temperature T ∼ 160 MeV ≫ B. Should not d be
instantly destroyed in it? The answer to this and similar
questions is well known. Thermodynamics does not depend
on the d lifetime. As one deuteron is destroyed, perhaps with
some large rate, in equilibrium another one must be recreated,
by the inverse process with the same rate. The average

FIG. 57. The normalized dimensionless jet quenching parameter
q̂=T3 vs the temperature T (GeV), for a 20 GeV jet. The lower
curve marked pQCD + HTL is a standard perturbative contri-
bution of quarks and gluons. Other curves with a maximum
include contributions of scattering on monopoles. The horizontal
line crudely corresponds to the viscosity/entropy ratio in the AdS/
CFT approach.

31The term 1=g can also be called the magnetic coupling constant,
related to the electric one by the Dirac condition.
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population is conserved, and it is what the statistical mechan-
ics gives us.
Note that one deviation is K�: the model predicts more than

observed. This is expected: it is a short lived resonance which
decays when the density is still non-negligible, the products
can be rescattered, and their invariant mass moved out of the
peak. Corrections to that can be made using any cascade
codes.
Another deviation is for pþ p̄. Some argued that one

should take into account possible annihilation on the way out.
As available practical tools cascade codes were used (RQMD,
URQMD, or similar) and got large effects. This puzzle was even
much stronger at lower collision energies at which the density
of baryons is large and antibaryons were predicted to get
nearly extinct, contrary to observations.
The puzzle was resolved by Rapp and Shuryak (2001): all

cascade codes included the annihilation pþ p̄ → nπ; n ∼ 5

but not their inverse reactions. Contrary to popular belief, the
inverse reactions are not suppressed. In fact at equilibrium
their rates are exactly the same as that of the direct one.
I will show the freezeout points on the phase diagram,

which has been done many times. Let us just recall that these
seem to be remarkably close to the phase boundary, defined on
the lattice. Why should this be the case? An answer suggested
by Braun-Munzinger, Stachel, and Wetterich (2004) is also
related to the multiparticle reaction rates. Since these depend
on a high temperature power, they all should decouple very
close to the critical line

jTch − Tcj
Tc

≪ 1. ð79Þ

The new trend in freezeout physics is the focus of
susceptibilities. As pointed out by Shuryak (1998) before
the RHIC era, information about them can be provided by

measured event-by-event fluctuations. Since the susceptibil-
ities are higher order derivatives of the free energy, over T or
various chemical potentials, they are more sensitive to
singularities. This idea was applied further toward the location
of the critical point in Stephanov, Rajagopal, and Shuryak
(1999), suggesting the low energy beam-scan program at
RHIC. The results of the actual beam scan are, however, still
not finalized enough to be reviewed here.
Both the measurements of event-by-event fluctuations in

experiments and the calculation of susceptibilities on the lattice
reached significant maturity. In fact comparison between them
now allows the T − μB freezeout curve to be reconstructed,
even without using any particle ratios. An example by
Alba et al. (2014) is shown in Fig. 59. Figure 59(a) compares
a new set of freezeout parameters (points) to earlier ones from
the particle ratios. Figure 59(b) shows that as μ grows the
consistency between different ratios becomes worse. It is
generally believed that the hadron resonance gas model
describes the QCD thermodynamics at chemical freezeout
quite well.

B. From chemical to kinetic freezeouts

Separation in magnitude of the elastic and inelastic (low
energy) hadronic reactions is the basis of the “two freezeouts”
paradigm, with separate chemical Tch and kinetic Tkin temper-
atures. Its effectiveness became even more clear at the LHC,
illustrated in Fig. 60 containing the “blast wave” fitted

FIG. 58. ALICE data on particle yields compared to the thermal
model. The main fit parameters are indicated in the upper plot.
From Andronic et al., 2007.
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Edward Shuryak: Strongly coupled quark-gluon plasma in heavy …

Rev. Mod. Phys., Vol. 89, No. 3, July–September 2017 035001-48



parameters to the ALICE spectra of identified secondaries.
Unlike Tch, the kinetic Tkin strongly depends on the centrality
of PbPb collisions, decreasing to values below 0.1 GeV for the
most central bins. Cooling from 0.16 to 0.1 GeV may not look
so dramatic but one should remember that pressure and energy
density in this region are proportional to the high power of T,
and so we talk about a change by a factor 20 or so.
Let us discuss the dependences displayed in Fig. 60 in more

detail. The most central AA collisions produce the largest
systems, which also have the highest T at the early stages. The
fit displayed also shows that most central collisions produce
the lowest T at the kinetic freezeout. Indeed, the larger the
system, the smaller is its expansion rate, and thus its freezeout
at a smaller collision rate or smaller density.
Consider now the pp; pA data of Fig. 60: for them both

temperatures Tch and Tkin are much closer. An explanation to
that, discussed previously, is based on strong radial flow
related to higher expansion rates. These collisions definitely
cannot support the hadronic phase.
In summary, there is evidence that in central AA collisions

matter cools deep into the hadronic phase, retaining kinetic,
but not chemical, equilibrium. This raises some interesting
questions related to the hadronic phase, which can now be
addressed experimentally. Mentioning the relevant numbers:
Cold fireballs created in central PbPb have several thousands
of particles and their kinetic freezeout time reaches 15 fm. The
highest multiplicities in pp; pA still correspond to fireballs
with an order of magnitude less particles, and a freezeout time
and size of 3 fm or so.
Since between Tch and Tkin the particle numbers are

conserved, one should introduce new nonzero chemical
potentials, not associated with conserved quantum numbers
such as charge and baryon number. In particular, there should
be nonzero chemical potentials for pions. Whether there are
nontrivial fugacity factors at the kinetic freezeout can be
directly observed in the pion spectra, because in this case Bose
enhancement can be measured. This idea is at least 20 years
old (Bebie et al., 1992): its experimental manifestation was
also discussed by Hung and Shuryak (1998); see Fig. 61(a).
(The reference SS collisions is a much smaller system than
PbPb, and thus its chemical and kinetic freezeouts should be
close.) Figure 61(b) shows that the same effect shows up, now
at the LHC. The fit without chemical equilibrium, with

nonzero pion μ on top, provides a better description to the
spectra at small pt < 200 MeV.
It is interesting that the parameter of the fit in this last work

gives μπ ≈mπ , so they speculated if the conditions for pion
Bose-Einstein condensation (BEC) were actually reached. If
this indeed becomes true, it has been many times suggested
previously that the femtoscopy parameter λ should show it as
it is sensitive to the “degree of coherence” of the pion source.
Femtoscopy data on two and three identical pions from
ALICE can be indeed fitted with a coherent source, with a
fraction as large as 20%.
Do we actually witness the BEC formation at the LHC? In

order to answer this question it is useful to recall the BEC
discovery in experiments with ultracold atoms a decade ago.
As the atomic system undergoes evaporating cooling and its
temperature decreases, the measurements of the momentum

FIG. 60. The temperature of the kinetic freezeout vs mean
velocity of the radial flow, fitted to ALICE spectra of the
identified secondaries (π; K; p;Λ;Ξ;Ω).
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FIG. 61. (a) Points show the ratio of PbPb to SS spectra, from
NA44. The three curves are for pion chemical potential μπ ¼ 60,
80, and 100 MeV. From Hung and Shuryak, 1998. (b) Dots are
ALICE transverse momentum spectra of pions in the low-pt
region, compared to the model with (upper plot) and without
(lower plot) pion chemical potential. From Begun, Florkowski,
and Rybczynski, 2014.

Edward Shuryak: Strongly coupled quark-gluon plasma in heavy …

Rev. Mod. Phys., Vol. 89, No. 3, July–September 2017 035001-49



distribution (by switching off the trap) revealed the appear-
ance of a new and much more narrow component. Unlike the
usual thermal component, its width was independent of T and
related to the inverse spatial size of the BEC cloud.
This indeed sounds like what is observed in heavy ion

collisions: as one goes to the most central collisions and the
kinetic freezeout Tkin gets below 100 MeV, the pt spectra do
become enhanced at small momenta. The difference, however,
is in the shape: we do not see a new Gaussian, as in the atomic
experiments, but only some deformation of the spectrum,
by μ ≠ 0.
If the condensate is produced, it should be a separate

component, with μ being exactly mπ, independent of T. If the
BEC cloud contains about 1=4 of all pions, its diameter should
be large, at least of the order of 2–3 fm. The corresponding
width of momentum distribution, from the uncertainty rela-
tion, should be as small as say hpti < 0.1 GeV. Looking back
to Fig. 61(b) one, however, finds that such soft secondaries
seem to be outside of the acceptance. Thus, even if the BEC
component is there, we so far cannot see it, neither with
ALICE nor with any other LHC detectors. How then can we
get their influence in the femtoscopy?
This issue can perhaps be clarified by a short dedicated run,

in which the ALICE detector switches to a smaller (say 1=2 of
the current value) magnetic field, to improve the low pt
acceptance. Recalculating all the efficiencies is a lot of extra
work, but perhaps it is worth clarifying this interesting issue.

C. The search for the critical point and the
RHIC low energy scan

The main idea of a scan aimed at the QCD critical point
(Stephanov, Rajagopal, and Shuryak, 1999) is well known.
The critical point, if it exists, should enhance the event-by-
event fluctuations, similar to critical opalescence, known in
many cases. Technically, various effects given by diagrams
can be classified according to a number of propagators of the
critical modes, with each enhancing the effect due to large
correlation lengths. It was quantified by Stephanov (2009).
The n-particle correlators may contain up to n such propa-
gators, three-particle correlators are ∼ξ6, four-particle ones
∼ξ8, etc.; see Fig. 62. The wavy line at zero 4-momentum is
∼1=m2

σ ∼ ξ2: but the prediction is not just the power of the
propagators because the coupling of critical modes by itself
vanishes as certain power of ξ given by the critical indices.
The quartic one in the diagram considered is ∼1=ξ so the total
power is 7, not 8.
It is possible to tell the same story in a somewhat simpler

nontechnical language. The critical field we call here σ should

be viewed as some stochastic or fluctuating background field
coupled to fluctuations in a particle number (circles with
crosses in Fig. 62). One can view it being proportional to some
stochastic potential ΔVðxÞ which enters the probability in the
usual way P ∼ exp½−ΔVðxÞ=T�, so that in its minima the
probability is larger and more particles; e.g., four protons
mentioned previously all gather there. The critical point is
special in that the scale of the correlation length ξ of this
potential increases, and thus more particles have a chance to
get inside the correlation length.
Which particles should one observe? In principle σ is scalar

isoscalar, coupled to any hadron. Stephanov, Rajagopal, and
Shuryak (1999) and Stephanov (2009) considered the simplest
coupling as an example, the σππ one, and so the particles were
pions. Yet one can argue that the nucleons should work better.
First, the powers of the baryon density nB ¼ NN − NN̄
correlated together are the susceptibilities calculated on the
lattice as derivatives over μB. Second, we know from the
nucleon forces, e.g., the simplest version of the Walecka
model. that σ is the main component of the attractive nuclear
potential which binds the nuclei

ΔV ¼ g2σNN

4πr
expð−mσrÞ. ð80Þ

In vacuum the typical mass mσ ∼ 600 MeV and the inter-
nucleon distance r ∼ 1.5 fm are combined into a small
suppression factor ∼ expð−5Þ ≪ 1 explaining why the nuclear
potential scale ΔV ∼ −50 MeV is much smaller than the
nucleon mass, in spite of strong coupling. (At smaller distance
r the repulsive ω contribution dominates the attractive σ one.)
Can it be so that at the QCD critical point mσ → 0, this

small exponent disappears? If so, one should expect much
deeper ΔV, perhaps even larger than the freezeout temperature
T. Furthermore, if say ξ ¼ 2 fm, the volume 4πξ3=3 ∼ 40 fm3

is large enough to collect many nucleons, not just three or
four, as Stephanov suggested. Thus, such clustering of the
nucleons should produce large nuclear fragments, a new
signal of the critical point.
This argument, unfortunately, is still a bit naive. The critical

mode which gets long range is not just the σ field, but, because
we are at nonzero density, a certain combination of scalar σ
with vector ω fields. Therefore the repulsive forces between
nucleons may become long -range as well. To discover what
happens we need a reliable theory or some dedicated experi-
ments. Fortunately, we can do it in the coming low energy
scan. The isoscalar σ interacts with scalar, net baryon, density
ns ¼ NN þ NN̄ , while ω interacts with nB ¼ NN − NN̄ . The
powers of these differ by the nondiagonal terms such as
nucleon-antinucleon correlators Cm;n ¼ hNm

NN
n
N̄i which can

and should be measured. Perhaps restricting kinematics of all
particles involved, rapidity and momenta differences, would
further enhance the signal.
Let us now jump to the STAR data shown in Fig. 63. The

proton four-point correlator has an interesting structure: a
minimum at

ffiffiffi
s

p ¼ 20–30 GeV and perhaps a maximum at
low energy. Antiprotons have a similar shape but with much
smaller amplitude. The structure qualitatively agrees with

FIG. 62. The enhanced contribution to a four-particle correlator.
From Stephanov, 2009.
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theoretical predictions of an oscillatory behavior of the
kurtosis near the critical point.
However, before getting excited by the new large signal,

with large error bar, let us recall that it appeared as a result of
particle ID improvement, from 0.4 < p⊥ < 0.8 GeV=c to
now reaching pt ¼ 2 GeV=c. The newly open kinematic
window should be sensitive to hydrodynamic flow and
potentially to its fluctuations.
Also near the critical point one expects significant mod-

ifications of attractive (σ-related) nuclear forces: can those
affect the four-proton (antiprotons) correlations in question?
Clearly more data at the low energies are needed to

understand whether one has indeed located the QCD critical
point or not.

XIII. SUMMARY AND DISCUSSION

A. Progress on the big questions

Before we summarize conclusions on the particular sub-
jects, let us remind the reader “the big questions”mentioned in
the Introduction:
(I) Can one locate the soft-to-hard boundary, where the

transition from the strong to the weak coupling takes place?
(II) Can one locate the micro-to-macro boundary, where the

transition from the ballistic to collective regime takes place?
(III) Can we experimentally identify signals of the QCD

phase transition, in particular, locate the QCD critical point?
Somewhat surprisingly, the sharpest observed transition

discussed is in the profile of the pp elastic amplitude shown in
Fig. 51(a). Although indirectly, this sharp transition from
nearly black to light gray profile is claimed to be related to the
phase transition from the deconfined (gluonic) to confined
(stringy) regimes of the Pomeron. On the one hand, the
sharpness is surprising because it is associated with a quite
small system—the Pomeron or a pair of strings, rather than a
macroscopic system. On the other hand, the analogy origi-
nates from the phase transition in gluodynamics (strings at
early stage are considered excitable but not breakable, so no
quarks), which is the first-order transition.
The location of the micro-to-macro transition in pA and pp

collisions, as a function of multiplicity, is debatable. Data on
the mean p⊥ and slopes shown in Fig. 24 indicate smooth
growth of the radial flow: but we now know that the radial

flow can be faked. At the same time, the v2f2g as a function of
multiplicity are rather flat. Its version v2fng; n > 2, from
multiparticle correlations, show changes, but their under-
standing is still missing. Calculations of vn in dynamical
models of the Pomeron are in progress: perhaps they will
explain later the low-multiplicity side.
The theoretical justification of a successful hydrodynamical

description for small systems is getting under control. A
number of examples show rather effective cancellations of all
higher-gradient corrections. The Navier-Stokes approxima-
tion seems to be rather accurate, even in situations in which
one hardly expects it to work.
The low energy scan at RHIC shows clear experimental

evidences for “the softest point.” Attempts to locate the effects
of the QCD critical point are intriguing but not yet conclusive.

B. Sounds

The first triumph of hydrodynamics, at the onset of the
RHIC program, was the description of the “little bang.” The
magnitudes of the radial and elliptic flows were measured and
calculated, as a function of p⊥, centrality, rapidity, particle
type, and collision energy. A successful description of higher
azimuthal harmonics of the flow, withm ¼ 3–6, had followed.
As repeatedly emphasized, these are sounds, propagating on
top of the exploding fireball. The damping of these modes
agrees with acoustic-inspired formulas.
Another phenomenon, well known for the big bang

perturbations, is due to a presence of the “phase factor.”
The common freezeout times for all harmonics imply m-
dependent phases. As m grows, the phases rotate, so one
should see maxima or minima in the power spectrum. These
are not observed: the only experimental indication for that is
the triangular flow m ¼ 3 stronger than the elliptic one m ¼ 2
for the ultracentral bin.
We emphasized that we have observed harmonics only with

m < 7 because the higher ones are damped too much by the
freezeout time. Yet at the initial time the Glauber model
produced equally well harmonics up to m ¼ 20 or so, and
GLASMA-based models predict harmonics to the hundreds.
Most of them do not survive until freezeout: so, are there any
observable manifestations of their existence? The magneto-
sono-luminescence process, converting them into electromag-
netic signals, is an example of that.
The damping of harmonicswithm > 6 is also an opportunity

to observe the sources of sounds other than the initial state, in
particular, from inhomogeneities at the phase transition.
Finally, even in equilibrium there must be fluctuations

emitting sounds. These generate nontrivial “loop corrections”
to hydrodynamics. Observation of “sound background” in
hadronic matter is another challenge of the field.

C. The conflicting views of the initial state

Perhaps the most important conceptual controversy in
the field remains the conflicting conclusions coming from
weakly and strongly coupled scenarios of the initial state and
equilibration.
Significant progress in the theory of a weakly coupled

initial state is in the concept of turbulent cascades, with

FIG. 63. The kurtosis, a four-particle correlator, in units of the
width, as a function of the collision energy

ffiffiffi
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stationary and time-dependent self-similar solutions. Both
classical glue simulations and parton cascades came up with
out-of-equilibrium attractors possessing power spectra with
certain indices, which are qualitatively different from equi-
librium. From a practical perspective, these studies suggest
that the stress tensor remains anisotropic for a long time.
However, more recent works indicate that the nontrivial
attractor is only approached if the coupling is unrealistically
small.
Strongly coupled approaches, especially based on

AdS/CFT and related models, view equilibration as a process
dual to the gravitational collapse resulting in black hole
production in the bulk of AdS5. As soon as some trapped
surface (a black hole) is present, the equilibration is very
rapid: any kind of debris simply falls into it. Mathematically,
the nonhydro modes have imaginary parts comparable to the
real ones, which numerically are quite large (50). In this
scenario, there are no cascades or even quasiparticles, the only
propagating modes are sounds (dual to gravitons).
Whether the stress tensor remains anisotropic beyond the

short initial period or not is still an open question. Theoretical
efforts to combine hydrodynamics with out-of-equilibrium
parametrization of the stress tensor were discussed: the
situation at any realistic anisotropy is thus under theoretical
control.
In order to decide on the equilibration time and anisotropy,

one needs to develop experimental observables sensitive to the
early stage. Our specific proposal, the dilepton polarization,
was discussed in Sec. IX.C.

D. The smallest drops of sQGP

The major experimental discovery from the first years of
LHC operation was the observation of collective anisotropies
in “small systems”: central pA and high-multiplicity pp
collisions.
One point of view, previously advocated, is that these are

exploding fireballs. While smaller than those produced in AA
collisions, they are still “macroscopically large” and can be
described hydrodynamically. The hydrodynamical description
of strong radial and elliptic flows in these systems is very
successful.
The opposite point of view is that, from the smallest to the

highest multiplicity bins, the pA and pp collisions produce
microscopic systems which can be discussed dynamically.
The models are the same as used for minimally biased pp, and
the issue is sometimes known as “the shape of Pomeron.”
Recall that the Pomeron is based on the pQCD ladder
diagrams in weak coupling, or strings in confining models.
Both need to be developed much further to predict vn
correlations. While experiments at RHIC with d and 3He
beams disfavor such scenarios for large multiplicities, at lower
ones they should be applicable.
A positive development is that groups working on all

scenarios try now to figure out the limits of their approaches.
Inside hydrodynamics, for example, one study is of higher
gradients and their effect. In the string-based picture a
discussion appears of a string-string interaction, ignored for
a long time by event generators.

Meanwhile, phenomenologists describe the data.
Hydrodynamical treatment of high-multiplicity pA; pp events
seems to be rather successful. They require very small initial
sizes and rather high temperatures, while we do not really
understand how such systems can be produced. In particular,
the case of central pA collisions is contested between the IP-
GLASMAmodel and a string-based initial state picture. So far
one has very little theoretical control over the initial state of
the high multiplicity pp: if it exists anywhere, GLASMA
should be there. It is difficult to study this system, for
statistical reasons, but since this is the highest density system
we have, it should be pursued.

E. Heavy quarks and quarkonia

The LHC data confirmed what has already been hinted at by
the RHIC data: a significant fraction of the observed char-
monia comes from recombination of charm quarks at the
chemical freezeout. The “surviving charmonia” fraction con-
tinues to be reduced. Such a major change in charm quark
behavior from “heavy like” to “light quark like” is clearly an
important discovery.
It remains true that c and b quarks are produced differently

from the light ones, namely, in the initial partonic processes.
Yet their interaction with the ambient matter is strong. At large
pt we observe quenching Rc;b

AA comparable to that of gluons
and light quarks. At small pt we observe an elliptic flow of
open charm and changes in spectra.
Langevin and Fokker-Planck studies, however, suggest that

c quarks are not moving with the flow. At early time c and b
quarks are produced with large p⊥ and start decelerating, due
to drag, while the matter is slowly accelerating due to pressure
gradients: their velocities move toward each other, yet they do
not match even by the end. As a result, charm radial and
elliptic flows are not given by the Cooper-Frye expression.
The recombinant charmonia may perhaps be an exception.
Whether they actually co-move with the flow still needs to be
established.
On the theory front, Langevin and Fokker-Planck studies

induced new conceptual developments. In particular, we
discussed a new set of solutions of those for charmonia,
the quasiequilibrium attractors with constant particle flux.
These states, not the original bound states such as J=ψ ;ψ 0,
etc., provide a convenient basis for evaluation of the speed of
relaxation and out-of-equilibrium corrections to current charm
hadronization models.

F. Jets

The theories of hard processes (jets, charm, and bottom
production) were based on factorization theorems and a
concept of structure functions. It is a solid foundation, but
a very restrictive one. When one asks questions about jets in
high-multiplicity bins of pp collisions, one soon realizes the
corresponding structure functions do not exist: that concept
has been defined only for the minimally biased (untouched)
proton in a strictly inclusive setting. Universal structure
functions, measured rather than calculated, have served us
since the 1970s, but now they cannot be used anymore. If a
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certain fluctuation of a nucleon is selected, new models and
much more measurements are needed.
Unfortunately, there are severe practical limits: hard proc-

esses reduce the probability by several orders of magnitude, on
top of 5% trigger for central pA. Yet high LHC luminosity plus
specialized triggers should be enough to get to some of those
issues in the near future. Current jet quenching data even for
minimumbiaspA remain to be understood. Scaling arguments,
such as the ones we used for hydro in smaller-but-hotter
systems, can and should be developed and compared with
the data.
We argued that in AA collisions the jet quenching parameter

q̂ seems to be strongly enhanced at the near-critical T ≈ Tc
region. Small systems are more explosive and pass near-
freezeout stage rapidly: this should play a significant role in jet
quenching.
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APPENDIX A: HEAVY ION TERMINOLOGY

“Ion” in physics refers to atoms with some of its electrons
missing. While at various stages of the acceleration process
the degree of ionization varies, all of it is unimportant for the
collisions, which always are done with nuclei fully stripped.
By “heavy ions” we mean gold 197Au (the only stable

isotope in natural gold, and a favorite of the BNL) or lead
208Pb (the double magic nucleus used at CERN). Some
experiments with uranium U have also been done, but not
because of its size but rather due to its strong deformation.
Collision centrality in physics is defined usually via an

impact parameter b, the minimal distance between the centers
of two objects. It is a classical concept, and in quantum
mechanics channels with integer angular momentum l ¼ L=ℏ
(in units of Plank constant) are used. However, collisions at
very high energy have high angular momentum and uncer-
tainty in b is small. The standard way of thinking about
centrality is to divide any observed distribution, e.g., over the
multiplicity Pn, into the so-called centrality classes, histogram
bins with a fixed fraction of events rather than width. For
example, many plots in this review say something like
“centrality 20%–30%”: This means that the total sumP

nPn is taken to be 100%, the events are split into say
ten bins, numerated 0%–10%, 10%–20%, 20%–30%, etc., and
only events from a particular one are used on the plot under
consideration. The most central bins have the largest multi-
plicity and are always recorded, the more peripheral ones (say
80%–100%) often are not used or even recorded. While the
observables, such as mean multiplicity, decrease with central-
ity b monotonically, it is not true for individual events.
Multiple possible definitions of the centrality classes may
sound complicated, but are not, and simple models such as

Glauber nucleon scattering give quite good description of all
these distributions, so in practice any centrality measure can
safely be used.
The number of participant nucleons Np plus the number of

“spectators” is the total number of nucleons 2A. The number
of spectators (usually only the neutrons) propagating along the
beam direction are typically recorded by special small-angle
calorimeters in both directions. Two-dimensional distributions
over signals of both such calorimeters are cut into bins of
special shapes, also in a way that each bin keeps a fixed
percentage of the total. Small corrections for nucleons suffer-
ing only small angle elastic and diffractive scatterings—not
counted as “participants” are also made.
An overlap region is a region in the transverse space in

which the participant nucleons are located at the moment of
the collision. Note that due to relativistic contraction, high
energy nuclei can be viewed as purely a 2D object, with
longitudinal size reduced practically to zero: therefore the
collision moment is well defined and is the same for all
nucleons.
Flow harmonics are Fourier coefficients of the expansion in

azimuthal angle ϕ:

dN
dydp2⊥dϕ

¼ dN
dydp2⊥

�
1þ 2

X
m

vmðp⊥Þ cosðmϕÞ
�
. ðA1Þ

Its measurements require knowing the direction of the impact

parameter vector b⃗, from which the azimuthal angle ϕ is

counted. The direction of b⃗ and the beam define the so-called

collision plane. The direction of b⃗ in the transverse plane is
traditionally denoted by x, the orthogonal direction by y, and
the beam direction by z.
In practice this comes either from separate “near beam”

calorimeters, recording “spectator” nucleons, or from corre-
lations with other particles. The flow harmonics are often
introduced as a response of the system to the asymmetry
parameters ϵm describing Fourier components of matter
distribution in ϕ. Note that vm relates to momentum distri-
bution and ϵm to that in space: connection between the two is
nontrivial.
Collectivity of flow: Flow harmonics were originally

derived from two-particle correlations in relative angle, to
which they enter as a mean square

v2nf2g ¼ heinðϕ1−ϕ2Þi ¼ hjvnj2i. ðA2Þ

Alternatively, it can be derived from multihadron correlation
functions: e.g., those for four and six particles mostly used are

v4nf4g ¼ 2hjvnj2i2 − hjvnj4i; ðA3Þ

v6nf6g ¼ 1
4
ðhjvnj6i − 9hjvnj2ihjvnj4i þ 12hjvnj2i3Þ. ðA4Þ

By “collectivity” one means the fact that all such measure-
ments produce nearly the same values of the harmonic vn. In
contrast to that, the “nonflow” effects, e.g., production of
resonances, basically only affect the binary correlator vnf2g
but not the others.
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Soft and hard secondaries mentioned in the main text
indicate their dynamical origin. “Soft” come from thermal
heat bath, modified by collective flows, while the “hard” ones
are from partonic reactions and jet decay. The boundary is not
well established and depends on the reaction: soft are with
p⊥ < 4 GeV while hard is perhaps with p⊥ > 10 GeV.
Rapidity y is defined mostly for longitudinal motion, via the

longitudinal velocity being vz ¼ tanhðyÞ. There is also the
so-called space-time rapidity η ¼ ð1=2Þ log½ðtþ zÞ=ðt − zÞ�
(which should not be confused with viscosity, also designated
by η) used in hydrodynamics. Both transform additively under
the longitudinal Lorentz boost.
Sometimes one also uses transverse rapidity y⊥ related to

the velocity by v⊥¼ tanhðy⊥Þ. A pseudorapidity variable is an
approximate substitute for rapidity y, used when particle
identification is not available.
Chemical and kinetic freezeouts refer to stages of the

explosion at which the rates of the inelastic and elastic collisions
become smaller than the rate of expansion. The chemical
freezeout is called so because at this stage particle composition,
somewhat resembling a chemical composition of matter, is
finalized. The kinetic or final freezeout is where the last
rescattering happens: it is similar to the photosphere of the
Sun or to CMB photon freezeout in cosmology. The timelike
surfaces of the chemical and kinetic freezeouts are usually
approximated by isotherms with certain temperatures. The final
particle spectrum is usually defined as the so-calledCooper-Frye
integral of thermal distribution over the kinetic freezeout surface.
Femtoscopy or the HBT interferometry method came from

radio astronomy: HBT is the abbreviation for Hanbury-Brown
and Twiss who developed it there. The influence of Bose
symmetrization of the observed meson wave function in
particle physics was first emphasized by Goldhaber et al.
(1960) and applied to proton-antiproton annihilation. Its use for
the determination of the size and duration of the particle
production processes was proposed back in the 1970s
(Shuryak, 1973; Kopylov and Podgoretsky, 1974). With the
advent of heavy ion collisions this “femtoscopy” technique
grew into a large industry. Early applications for RHIC heavy
ion collisions were in certain tension with the hydrodynamical
models, although this issue was later resolved (Pratt, 2009).
QCD thermodynamics on the lattice is the calculation of the

thermodynamical observables from the first principles, the
QCD Lagrangian, using numerical simulations of the gauge
and quark fields discretized on a four-dimensional lattice in
Euclidean time. For a recent review, see, e.g., Ding,Karsch, and
Mukherjee (2015), from which we took Fig. 64. The first thing
to note is that quantities plotted are all normalized to corre-
sponding powers of the temperature given by its dimension:
scale-invariant matter corresponds to T-independent constants
at this plot. And indeed, the curves seem to approach constant at
its right side (high T). The second thing to note is that these
constants seem to be lower than the dashed line at high
temperatures, corresponding to a noninteracting quark-gluon
gas. It is interesting that the value for infinitely strongly
interacting supersymmetric plasma is predicted to be 3=4 of
this noninteracting value.
Confinement and deconfinement: The term is an abbre-

viated version of “color-electric confinement phenomenon,”

a condition that any object with (electric) color charge cannot
be in the spectrum of states in the QCD vacuum, since it must
be produced accompanied by a flux tube which carries the
electric flux to another, oppositely color charged, object.
These flux tubes are dual to those observed in superconduc-
tors: they carry electric flux, not a magnetic one. The stability
of flux tubes in superconductors against transverse expansion
is produced by a “coil” with supercurrent, made by (electri-
cally charged) Cooper pairs running around the tube. The
QCD flux tubes also have a coil with supercurrent around
them, also dual, made by magnetically charged objects.
Detailed studies of these tubes have been made by lattice
numerical simulations. Also similar to superconductivity,
confinement goes away at sufficiently large temperatures
T > Tc: this phenomenon is called “deconfinement.”
Chiral symmetry breaking and restoration: The quark mass

term is the only one in the QCD Lagrangian connecting right-
and left-handed polarizations of the quark fields. For light u,
d, s quarks one can as an approximation neglect the masses: in
this case Uð3Þ flavor rotation symmetry is doubled to
Uð3Þleft ×Uð3Þright larger symmetry. Extra new symmetry
created by relative counterrotations of the left and right parts
is known as the chiral symmetries, divided into an overall
phase Uð1Þaxial and rotations SUð3Þaxial. The former one is not
actually a symmetric since it is violated by axial anomaly
(instantons). The second one is broken spontaneously in the
QCD vacuum by quark-antiquark pairing. At sufficiently high
temperatures T > Tχ the condensate created by pairing dis-
appears, and this phenomenon is called “chiral symmetry
restoration.” In real-world QCD with quarks it turns out that
Tc of deconfinement and Tχ are too close to tell the difference,
so both are mentioned in the text simply as Tc. However, for
QCD-like theories with a different number or color charge of
the quarks lattice studies found that these two phase tran-
sitions can be separate, sometimes by a large factor.
Temperature range scanned in heavy ion experiments:

The matter produced at RHIC and the LHC has the initial
temperature T ≈ 2Tc, and the final one, at the kinetic

FIG. 64. Continuum extrapolated results for pressure, energy
density, and entropy density. Solid lines on the low temperature
side correspond to results obtained from hadron resonance gas
(HRG) model calculations. The (yellow) band marked Tc
indicates the phase transition region for deconfinement and chiral
symmetry restoration.
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freezeouts of the largest systems, is low as T ≈ 0.5Tc. Thus
the near-Tc phenomena play a significant role.

APPENDIX B: RELATIVISTIC HYDRODYNAMICS

Relativistic hydrodynamics is used to describe collective
effects which are absent in elementary processes, such as, say
eþe− annihilation into hadrons or (minimum bias) pp colli-
sions. The explosions seen in heavy ion collisions are often
called “the little bang,” in analogy with the “big bang” in
cosmology, with which it shares many concepts. One of them is
the idea of “smooth average behavior” on top ofwhich there are
“perturbations,” different on an event-by-event basis in the little
bang and on specific locations in the big bang. The former is
described by “full hydrodynamics” and the latter sometimes by
a linearized version on top of the smooth solution.
The conceptual basis of the hydrodynamics is simple: it is

just a set of local conservation laws for the stress tensor (Tμν)
and for the conserved currents (Jμi ),

∂μTμν ¼ 0; ∂μJ
μ
i ¼ 0. ðB1Þ

In equilibrium, Tμν and Jμi are related to the bulk properties of
the fluid by

Tμν ¼ ðϵþ pÞuμuν − pgμν;

Jμi ¼ niuμ. ðB2Þ

Here ϵ is the energy density, p is the pressure, ni is the number
density of the corresponding current, and uμ ¼ γð1; vÞ is the
proper velocity of the fluid. In strong interactions, the
conserved currents are isospin (JμI ), strangeness (JμS), and
baryon number (JμB). For the hydrodynamic evolution, isospin
symmetry is assumed and the net strangeness is set to zero;
therefore only the baryon current JB is considered.
In order to close up this set of equations, one also needs the

equation of state (EoS) pðϵÞ. One should also be aware of two
thermodynamical differentials

dϵ ¼ Tds; dp ¼ sdT; ðB3Þ

and the definition of the sound velocity

c2s ¼
∂p
∂ϵ ¼ s

T
∂T
∂s ; ðB4Þ

and that ϵþ p ¼ Ts. Using these equations and the thermo-
dynamical relations in the form

∂μϵ

ϵþ p
¼ ∂μs

s
; ðB5Þ

one can show that these equations imply another nontrivial
conservation law, namely, the conservation of the entropy

∂μðsuμÞ ¼ 0. ðB6Þ

Therefore in the idealized adiabatic flow all the entropy is
produced only in the discontinuities such as shock waves.

In an arbitrary coordinate system the equations of motion
can be written as

Tmn
;m ¼ 0; jm;m ¼ 0; ðB7Þ

where the semicolon indicates a covariant derivative. For
tensors of rank 1 and 2 it reads explicitly

ji;p ¼ ji;p þ Γi
pkj

k; ðB8Þ

Tik
;p ¼ Tik

;p þ Γi
pmTmk þ Γk

pmTim; ðB9Þ

where the comma denotes a simple partial derivative and the
Christoffel symbols Γs

ij are given by derivatives of the metric
tensor gabðxÞ:

Γs
ij ¼ ð1=2Þgksðgik;j þ gjk;i − gij;kÞ: ðB10Þ

As an example, let us do the following transformation from
Cartesian to light cone coordinates:

xμ ¼ ðt; x; y; zÞ → x̄m ¼ ðτ; x; y; ηÞ;
t ¼ τ cosh η; τ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p
; ðB11Þ

z ¼ τ sinh η; η ¼ ð1=2Þ ln tþ z
t − z

: ðB12Þ

In the new coordinate system the velocity field (after inserting
vz ¼ z=t) is given by

ūm ¼ γ̄ð1; v̄x; v̄y; 0Þ ðB13Þ

with v̄i ≡ vi cosh η, i ¼ x, y, and γ̄ ≡ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v̄2x − v̄2y

q
.

Now we turn to the metric of the new system. We have

ds2 ¼ gμνdxμdxν ¼ dt2 − dx2 − dy2 − dz2

¼ dτ2 − dx2 − dy2 − τ2dη2; ðB14Þ

and therefore

gmn ¼

0
BBB@

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −τ2

1
CCCA. ðB15Þ

The only nonvanishing Christoffel symbols are

Γη
ητ ¼ Γη

τη ¼ 1

τ
; Γτ

ηη ¼ τ: ðB16Þ

Dissipative corrections to the stress tensor and the current can
be written as follows:

δTμν ¼ ηð∇μuν þ∇νuμ − 2
3
Δμν∇ρuρÞ þ ξðΔμν∇ρuρÞ; ðB17Þ

δJμ ¼ k

�
ηT

ϵþ p

�
2∇μðμB=TÞ; ðB18Þ
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where the three coefficients η, ξ, and k are called the shear and
the bulk viscosities and the heat conductivity, respectively. In
these definitions the following projection operator onto the
matter rest frame was used:

∇μ ≡ Δμν∂ν; Δμν ≡ gμν − uμuν. ðB19Þ
It is further useful to relate the magnitude of the viscosity
coefficient η to a more physical observable. As such one can
use the sound attenuation length. If a sound wave has
frequency ω and wave vector q⃗, its dispersion law (the pole
position) is

ω ¼ csq −
i
2
q⃗2Γs; Γs ≡ 4

3

η

ϵþ p
. ðB20Þ

The Navier-Stokes term is the first-order expansion in
gradients: it has some issues with causality and in practice
some second-order hydrodynamic equations are used; for
more information, see, e.g., Romatschke (2010). Attempts to
do resummation of all gradient terms (Lublinsky and Shuryak,
2009) are discussed in the section on holography.
The original Landau paper focused on “longitudinal” flow

and what we now call rapidity distribution. In the heavy ion
domain we focus mostly on a “splash” in the transverse plane:
a collective transverse velocity of up to 0:8c is observed, and
thus it also requires relativistic hydrodynamics.

1. Bjorken flow

The idea of a rapidity-independent “scaling” distribution of
secondaries originates from Feynman’s early discussion of the
parton model, around 1970. The existence of a rapidity-
independent hydrodynamic solution was perhaps first noticed
by Landau, who used a rapidity variable in his classic paper as
a somewhat trivial case. The space-time picture connected
with such scaling regime was discussed by Chiu, Sudarshan,
and Wang (1975) and Gorenshtein, Zhdanov, and Sinjukov
(1978) before Bjorken’s famous paper (Bjorken, 1983) in
which the solution was explicitly spelled out.
It is instructive first to describe it in the original Cartesian

coordinates. There is no dependence on transverse coordinates
x and y, only on time t and longitudinal coordinate z. The
1þ 1D equations ∂μTμν ¼ 0 can be rewritten in the following
way:

∂
∂t ðs cosh yÞ þ

∂
∂z ðs sinh yÞ ¼ 0; ðB21Þ

∂
∂t ðT sinh yÞ þ ∂

∂z ðT cosh yÞ ¼ 0; ðB22Þ

where uμ ¼ ( cos hðyÞ; sin hðyÞ), and T and s are the temper-
ature and the energy density. The first equation manifests the
entropy conservation.
The central point is the 1D Hubble ansatz for the 4-velocity

uμ ¼ ðt; 0; 0; zÞ=τ; ðB23Þ

where τ2 ¼ t2 − z2 is the proper time. Note that all volume
elements are expanded linearly with time and move along

straight lines from the collision point. The spatial η ¼
tanh−1ðz=tÞ and the momentum rapidities y ¼ tanh−1 v are
just equal to each other. Exactly as in the big bang, for each
“observer” (the volume element) the picture is just the same,
with the pressure from the left compensated by that from the
right. The history is also the same for all volume elements, if it
is expressed in its own proper time τ. Thus one has sðτÞ, TðτÞ.
Using this ansatz, the entropy conservation becomes an
ordinary differential equation in proper time τ:

dsðτÞ
dτ

þ s
τ
¼ 0 ðB24Þ

with a solution

s ¼ const
τ

. ðB25Þ

So far all dissipative phenomena were ignored. Including the
first dissipative terms into our equations one finds the
following source for the entropy current:

1

ϵþ p
dϵ
dτ

¼ 1

s
ds
dτ

¼ −
1

τ

�
1 −

ð4=3Þηþ ξ

ðϵþ pÞτ
�

ðB26Þ

with shear and bulk viscosities η and ξ, which tells us that one
has to abandon ideal hydrodynamics at sufficiently early time.
Alternatively, one can start with curved coordinates τ and η

from the beginning, and look for an η-independent solution.
Those are comoving coordinates, in those uμ ¼ ð1; 0; 0; 0Þ but
the equations obtain an extra term from Christoffel symbols.

2. Gubser flow

The Gubser flow (Gubser, 2010; Gubser and Yarom, 2011)
is a solution which keeps the boost invariance and the axial
symmetry in the transverse plane of the Bjorken flow, but
replaces the translational invariance in the transverse plane by
symmetry under special conformal transformation. Therefore,
one restriction is that the matter is required to be conformal,
with the EOS ϵ ¼ 3p. Another is that the colliding systems
has to be of a particular shape, corresponding to a conformal
map of the sphere onto the transverse plane.
The solution of ideal hydrodynamics has three parameters:

One is dimensional q, it defines the size of the system (and is
roughly corresponding to the radii of the colliding nuclei). The
other two are dimensionless, f� characterizes the number of
degrees of freedom in the matter, and ϵ̂0 the amount of entropy
in the system.
The original setting uses the coordinates the proper time,

spatial rapidity, transverse radius, and azimuthal angle
ðτ̄; η; r̄;ϕÞ with the metric

ds2 ¼ −dτ̄2 þ τ̄2dη2 þ dr̄2 þ r̄2dϕ2. ðB27Þ

The dimensionless coordinates τ̄ ¼ qτ, r̄ ¼ qr are rescaled
versions of the actual coordinates.
Looking for solutions independent of both “angles” η;ϕ

and using transverse rapidity
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uμ ¼ ( − cosh κðτ; rÞ; 0; sinh κðτ; rÞ; 0); ðB28Þ

Gubser obtained the following solution:

v⊥ ¼ tanh κðτ; rÞ ¼
�

2q2τr
1þ q2τ2 þ q2r2

�
; ðB29Þ

ϵ ¼ ϵ̂0ð2qÞ8=3
τ4=3½1þ 2q2ðτ2 þ r2Þ þ q4ðτ2 − r2Þ2�4=3 ; ðB30Þ

where ϵ̂0 is the second parameter. Gubser and Yarom (2011)
rederived the same solution by going into the comoving frame.
In order to do so they rescaled the metric

ds2 ¼ τ2dŝ2 ðB31Þ

and performed a coordinate transformation from the τ, r to a
new set ρ, θ given by

sinh ρ ¼ −
1 − q2τ2 þ q2r2

2qτ
; ðB32Þ

tan θ ¼ 2qr
1þ q2τ2 − q2r2

. ðB33Þ

In the new coordinates the rescaled metric reads

dŝ2 ¼ −dρ2 þ cosh2 ρðdθ2 þ sin2 θdϕ2Þ þ dη2 ðB34Þ

and we use ρ as the “new time” coordinate and θ as a new
“space” coordinate. In the new coordinates the fluid is at rest.
The relation between the velocity in Minkowski space in the

ðτ; r;ϕ; ηÞ coordinates and the one in the rescaled metric in
ðρ; θ;ϕ; ηÞ coordinates corresponds to

uμ ¼ τ
∂x̂ν
∂x̂μ ûν; ðB35Þ

while the energy density transforms as ϵ ¼ τ−4ϵ̂.
The temperature [in the rescaled frame, T̂ ¼ τf1=4� T, with

f� ¼ ϵ=T4 ¼ 11 as in Gubser (2010)] is now dependent only
on the new time ρ, in the case with nonzero viscosity the
solution is

T̂¼ T̂0

ðcoshρÞ2=3þ
H0sinh3ρ

9ðcoshρÞ2=3 2F1

�
3

2
;
7

6
;
5

2
;−sinh2ρ

�
; ðB36Þ

where H0 is a dimensionless constant made out of the shear
viscosity and the temperature, η ¼ H0T3, and 2F1 is the
hypergeometric function. In the inviscid case the solution is
just the first term of Eq. (B36), and it also conserves entropy in
this case. The picture of the explosion is obtained by trans-
formation from this expression back to τ and r coordinates.
Small perturbations to the Gubser flow obey linearized

equations which have also been derived by Gubser and Yarom
(2011). We start with the zero viscosity case, so that the
background temperature (now called T0) will be given by just
the first term in Eq. (B36). The perturbations over the previous
solution are defined by

T̂ ¼ T̂0ð1þ δÞ; ðB37Þ

uμ ¼ u0μ þ u1μ; ðB38Þ

with

û0μ ¼ ð−1; 0; 0; 0Þ; ðB39Þ

û1μ ¼(0; uθðρ; θ;ϕÞ; uϕðρ; θ;ϕÞ; 0); ðB40Þ

δ ¼ δðρ; θ;ϕÞ. ðB41Þ

Plugging Eqs. (B37) and (B38) into the hydrodynamic
equations and only keeping linear terms in the perturbation,
one can get a system of coupled first-order differential
equations. Furthermore, if one ignores the viscosity terms,
one may exclude velocity and get the following (second-order)
closed equation for the temperature perturbation:

∂2δ

∂ρ2 −
1

3cosh2ρ

�∂2δ

∂θ2 þ
1

tan θ
∂δ
∂θ þ

1

sin2θ
∂2δ

∂ϕ2

�

þ 4

3
tanh ρ

∂δ
∂ρ ¼ 0. ðB42Þ

Since the initial perturbations are assumed to be rapidity
independent, we also ignored this coordinate here.
It has a number of remarkable properties: all three coor-

dinates can be separated δðρ; θ;ϕÞ ¼ RðρÞΘðθÞΦðϕÞ and a
general solution is given by

RðρÞ ¼ C1

ðcosh ρÞ2=3 P
2=3
−1=2þ1=6

ffiffiffiffiffiffiffiffiffiffi
12λþ1

p ðtanh ρÞ

þ C2

ðcosh ρÞ2=3 Q
2=3
−1=2þ1=6

ffiffiffiffiffiffiffiffiffiffi
12λþ1

p ðtanh ρÞ;

ΘðθÞ ¼ C3Pm
l ðcos θÞ þ C4Qm

l ðcos θÞ;
ΦðϕÞ ¼ C5eimϕ þ C6e−imϕ; ðB43Þ

where λ ¼ lðlþ 1Þ and P and Q are associated Legendre
polynomials. The parts of the solution depending on θ and ϕ
can be combined in order to form spherical harmonics
Ylmðθ;ϕÞ, such that δðρ; θ;ϕÞ ∝ RlðρÞYlmðθ;ϕÞ. This prop-
erty should have been anticipated, as one of the main ideas of
Gubser has been to introduce a coordinate which together with
ϕ make a map on a 2D sphere.
Gubser flow was used as a theoretical laboratory ever since.

A complete Green’s function was constructed (Staig and
Shuryak, 2011b), leading to pictures of sound circles as
discussed at the beginning of this review. Generalization to
perturbations by the quenching jets, with the sounds propa-
gating in the rapidity direction, was done by Shuryak and
Staig (2013a). For the second order (the Israel-Stuart version)
of the hydrodynamics it was done by Marrochio et al. (2015)
and Pang et al. (2015). A Boltzmann equation (in τ approxi-
mation) was also solved in such a setting; see Denicol et al.
(2014) and the discussion in Sec. IV.C.
There are also a number of phenomenological applications.

Without going into these, we just comment that we are limited
by the fact that at large r the power tail of the solution is
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completely inadequate for heavy ion collisions. As such, the
Gubser solution is like an explosion in the atmosphere, while
the real ones are in vacuum. As a result, in applications one
basically needs to amputate the unphysical regions by hand.

APPENDIX C: INTRODUCTION TO
GAUGE-GRAVITY DUALITY

The starting point of this development was (i) the discovery
of AdS/CFT correspondence (Maldacena, 1999), which a
decade later became an important tool for nuclear theorists, as
well as a prime example of the “applications” in the string
theory community. Here we briefly outline for nonspecialists
the logics of several important developments, which is needed
to understand the main text section devoted to gauge-gravity
calculations. Those include (ii) the thermodynamics of
strongly coupled N ¼ 4 plasma (Gubser, Klebanov, and
Tseytlin, 1998) and (iii) the transport properties derived from
the linearized hydrodynamics (Policastro, Son, and Starinets,
2002). Another significant achievement (iv) was the general
derivation of the full nonlinear hydrodynamics from the
gradient expansion of the Einstein equations (Natsuume
and Okamura, 2008; Bhattacharyya, Hubeny, Loganayagam
et al., 2008; Bhattacharyya, Hubeny, Minwalla, and
Rangamani, 2008).
(i) The AdS/CFT correspondence has been discovered in

studies of certain string theory construction. While strings
have one coordinate along them, and thus their world volume
has codimension 2, usually parametrized by “internal coor-
dinates” τ and σ, their dynamics is for certain consistency
reasons studied in space-times with a much higher number of
“external dimensions” D. String theory actually admits
solitons called “branes” with a certain intermediate number
of dimensions, e.g.,D3 branes with 3þ 1 internal dimensions.
The original construction contained Nc such D3 branes
stacked together at the same location in D ¼ 10 space-time.
Closed string massless excitations are known to include

states with spin up to 2, described by certain supergravity. At
largeNc the original stack generates a strong gravity described
by classical GR. A particular solution of Einstein equation
called AdS5 × S5, where AdS5 is anti–de Sitter five-
dimensional space and S5 is a five-dimensional sphere. The
metric of AdS5 does not depend on four coordinates of the
brane space-time, but only on the fifth coordinate called z, and
at z ¼ 0 it has a four-dimensional boundary. Maldacena
(1999) had conjectured that since symmetries of conformal
N ¼ 4 supersymmetric Yang-Mills (SYM) theory on this 4D
boundary and of the AdS5 solution match uniquely, there must
be certain “holographic” correspondence between them. In
particular, gauge invariant colorless operators in the boundary
theory (e.g., the stress tensor Tμν) should be related to fields in
the five-dimensional “bulk” (such as the metric gμν). Testing
the conjecture was a popular occupation in the late 1990s:
correlators in the N ¼ 4 SYM theory were calculated and
compared with those gravity calculations of certain propa-
gators and multipoint Green’s functions; all tests were positive
and the conjecture was considered true. The important
observation is that in certain limits the gauge theory has

infinite ’t Hooft coupling λ ¼ g2Nc while the bulk theory is
weakly coupled, since bulk fields are uncolored.
This discovery created a large industry which is divided

into two directions. The “top-down” one looks for exact
correspondence involving theories other than theN ¼ 4 SYM
theory: yet it seems to be impossible to find sufficiently
convenient correspondence for nonsupersymmetric QCD-like
theories. The “down-up” approach, also known as AdS/QCD,
builds holographic models for any theories, without a string
theory solution in the background. For a review of this
approach, see, e.g., Gursoy and Kiritsis (2008). One bulk
field in 5D, dilatons or gravity, generates many “radial
excitations” of hadrons and their Regge trajectories. Such
models include confinement and chiral symmetry breaking,
and to certain accuracy they do reproduce the spectroscopy of
mesons and glueballs.
(ii) The AdS5 GR solution resembles the Schwarzschild one

for a black hole, with a change of 4D Coulomb factors to 6D
ones: these six dimensions are what is left from ten dimen-
sions minus four on which no dependence is present. But the
main difference is that string theory branes happen to have
charges which make them “charged black holes,” with certain
vector fields added. Moreover, they are “extreme” black holes,
with maximal allowed charge, as a result of which their
horizon area (and thus entropy) vanishes. This is how it must
be, since we intend to describe a vacuum state of the gauge
theory on the boundary, and it should not be degenerate and
have any entropy.
It was further found that excited states of the brane

construction are described by nonextreme black holes with
a nonzero horizon. Since the metric still depends on the fifth
coordinate only, the horizon sits at some value zh, and the
physical region ranges from z ¼ 0 to zh. Schwarzschild black
holes emit Hawking radiation, and in a 4D flat universe they
therefore must eventually emit all their energy and disappear.
The “black brane” AdS5 GR solution has a different fate:
Hawking radiation heats up the Universe, including to its
boundary, to certain equilibrium static case.
Projecting this solution to gauge theory one finds thermo-

dynamics of strongly coupled N ¼ 4 plasma at nonzero
temperature T. Unlike QCD-like theories (which develops a
scale ΛQCD via running coupling), the N ¼ 4 SYM has zero
beta function and thus has no scale of its own. So its properties
must obey trivial scaling given by the dimension, e.g., the
energy density can only be ϵ ¼ CðgÞT4 with some dimension-
less coefficient depending on the coupling. At zero coupling
one has noninteracting gas or Stephan-Botzmann generaliza-
tion of thermal radiation famously explained by Planck. It was
found that (Gubser, Klebanov, and Tseytlin, 1998)

Cðg2Nc → ∞Þ ¼ 3
4
Cð0Þ. ðC1Þ

The coefficient 3=4 is in fact in better agreement with the
lattice equation of state, than 1 of ideal QGP.
(iii) The transport properties are derived in a number of

ways. Small perturbations around the thermal AdS solution
are elementary excitations of static plasma, such as sounds
or transverse dissipative modes. Linearized perturbations of
Einstein equations in the bulk correspond to solutions of the
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linearized hydrodynamics on the boundary theory. Therefore
one can find (Policastro, Son, and Starinets, 2001) the
dissipation rate of these modes and thus the shear viscosity.
(Bulk viscosity is zero because of scale invariance.) Since its
dimension T3 is the same as entropy density, most give the
value of their ratio

η

s

����
g2Nc→∞

¼ 1

4π
. ðC2Þ

In a gravity setting it is clear what happens: the excitations
are gravity waves which are simply falling into the black hole.
On the gauge theory side we have no intuition of how this
small number appears, but it is not far from experiment.
(iv) In the 19th century the hydrodynamics was an

advanced theoretical field, teaching one how to work with
partial differential equations, potentials, and rotational flows.
Stokes was one of Maxwell’s teachers, and electrodynamics
clearly has benefited from hydrodynamical methods. Landau
introduced relativistic hydrodynamics into the field of high
energy collisions. Yet from the 1970s to about 2000 hydro-
dynamics was ridiculed by high energy theorists, as a
simplistic approach incompatible with QCD and QFT’s in
general.
Apparently, this is no longer so, and one is allowed to

mention it now. In particular, relativistic hydrodynamics of
strongly coupled N ¼ 4 plasma was derived by Natsuume and
Okamura (2008) and Bhattacharyya, Hubeny, Loganayagam
et al. (2008)) as a solution to the Einstein equation with the
gradient expansion method. If the scale of inhomogeneity R is
large compared to the horizon location zh, one can think of
smoothly varying horizon zhðxμÞ, μ ¼ 0, 1, 2, 3. This variation
may or may not be small: in the latter case all nonlinear terms
of hydrodynamics naturally appear as they should. And, last
but not least, unlike phenomenological hydrodynamics (say,
of water), all the kinetic coefficients, order by order, got their
definite values. About a dozen of them have been calculated
so far.
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