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I. INTRODUCTION

A dynamical process like stirring a fluid holds a great deal
more interest than a static system for physicists just as it does

for everyone else. Stirring and mixing of scalars (additives,
nutrients, heat, etc.) by fluid flows is the common denomi-
nator in a wide variety of natural and industrial fluid systems
of sizes extending from micrometers to hundreds of kilo-
meters. Industrial examples range from mixing in the rapidly
expanding field of microfluidics, encompassing applications
as diverse as microelectronics cooling, microreactors, “labs on
a chip” for molecular analysis and biotechnology and “smart
pills” for targeted drug delivery, up to the mixing and thermal
processing of viscous fluids with compact processing equip-
ment. Examples in nature include magma transport in the
Earth’s mantle and dispersion of hydrocarbons within frac-
tured rock, as well as gas exchange in lung alveoli and the
distribution of blood-borne pathogens, and large-scale
dispersion of pollutants in the Earth’s atmosphere and oceans.
Given its ubiquity in industry and nature, insight into the

mechanisms underlying mixing and ways purposefully to
employ and control them have great scientific, technolo-
gical, and social relevance and are imperative for further
development of fluid-processing technologies in, especially,
microfluidics applications and process engineering. Although
this insight remains incomplete to date, important physical
and mathematical approaches for the analysis and under-
standing of mixing in laminar flows have become available
during the last three decades. Moreover, both the advancement
of measurement technologies to investigate mixing in labo-
ratory setups (such as laser-induced fluorescence, particle-
tracking velocimetry, microparticle image velocimetry, and so
on) and the rapid development of passive and active mixing
elements for microfluidic devices open the perspective for
quantitative mixing studies for industrial and microfluidic
applications. Key challenges for advancing this field may
occur to the reader during the course of this article; we defer
our thoughts on these to the discussion in Sec. IX.
The context of our review is the dynamical-systems and

mathematical-physics perspective on fluid transport and mix-
ing. Early works on the subject from the 1960s are owed to
Arnol’d (1965) and Hénon (1966); the 1980s brought Arter
(1983) and Aref (1984). Three decades have passed since Aref
(1982, 1984, 2002) introduced the term chaotic advection,1 and
over 25 years since a textbook on the field appeared (Ottino,
1989).During that time a great deal of research has been done. It
is time to summarize 30 years of chaotic advection. Our review
focuses on theoretical and mathematical-physics concepts and
numerical approaches of stirring and mixing in viscous fluids.
Its scope should be seenwithin the broader context of mixing in
fluid flows and of earlier reviews. Thus we complement the
textbook and review of Ottino (1989, 1990) with developments
from the last two decades. We have a more physical approach
than the strongly mathematical perspective of Arnol’d and
Khesin (1992) [see also Arnol’d and Khesin (1998)], which
reviewed mathematical concepts of transport for hydrodynam-
ics. Mezić (2013) discussed the Koopman operator approach
andHaller (2015) examinedLagrangian coherent structures; for

1An older term, Lagrangian turbulence, is sometimes used as a
synonym for chaotic advection, but is also applied to Lagrangian
aspects of turbulent flows in general, so we prefer the term chaotic
advection.
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this reason these two topics are reviewedherein only to a limited
extent. And, as this is a review paper and not a book, we do not
document the ever growing field of applications in exhaustive
detail, but we provide some illustrative examples. Phenomena
such as chemical reactions in flows, transport of active matter,
aggregation processes, droplet dynamics, and granular flow
[see, for example, Ottino and Khakhar (2000)] are outside the
scope of the present review and are touched upon only when
they affect our core concern. The 2000 Laporte Prize lecture
(Aref, 2002) links chaotic advection with dynamical-systems
theory, which is the central theme of this review; its basic ideas
are our starting point.
The number of papers in chaotic advection is now so

numerous that anything approaching a complete coverage of
the field is impossible. Here we present a view arising from a
group of researchers predominantly working in the field of
stirring and mixing in viscous fluids from a theoretical,
numerical, and/or mathematical-physics point of view,
although experimental excursions are not excluded. Some
of the choices to illustrate concepts are unavoidably colored
by the interests of the researchers involved in this review and
should not be considered as exhaustive.
We begin with an informal definition of chaotic advection.

We then look at the differences between open and bounded
flows; in Sec. II we look at unbounded flows, and in Sec. III we
discuss ideas on the role of walls. The new frontier is,
undoubtedly, three-dimensional (3D) unsteady flow, treated
in Sec. IV. There is ongoing interest in elucidating chaotic
advection from numerical and experimental data that we
discuss in Sec. V. In Sec. VI we discuss what is meant by a
laminar or a turbulent flow; these terms are frequently used in
this discipline and yet are open to a range of interpretations. In
Sec. VII we examine the mixed state itself; there are interesting
aspects of the mixed state, in particular, the overarching
problem of the quality of mixing and mixing measures that
are well worth looking at in more geometrical and topological
detail. “Chaotic advection plus,” treated in Sec. VIII, is a more
and more active area; the increasing range of application of
these ideas is most encouraging. Last, in Sec. IX we conclude
with perspectives on these frontiers of chaotic advection.

A. Synopsis of key concepts

At its simplest we may consider a flowing fluid to consist of
only fluid particles, aggregations of material elements small
enough to satisfy the requirements to treat the fluid as a
continuum. Each fluid particle, if a particle is conceptually or
actually marked, often called a tracer, is denoted by its
position x and moves passively with the fluid velocity u
according to the kinematic equation

dx
dt

¼ u; xð0Þ ¼ x0: ð1Þ

Deceptively simple, the kinematic equation can be taken as the
elementary definition of velocity or as defining a dynamical
system in which a given velocity field generates so-called
Lagrangian trajectories for the fluid particles. Indeed,
Eq. (1) has the formal solution xðtÞ ¼ Φtðx0Þ describing
the Lagrangian trajectory of a tracer released at x0 with a

corresponding Poincaré map defined by xkþ1 ¼ ΦðxkÞ, where
xk ¼ xðkTÞ is the tracer position after k periods of a time-
periodic flow. The velocity u is often derived from the (steady)
Navier-Stokes and continuity equations

Re u ·∇u ¼ −∇pþ∇2u; ∇ · u ¼ 0; ð2Þ

here given in nondimensional form for incompressible fluids,
with Re ¼ UL=ν the Reynolds number.
A special, but important case occurs for two-dimensional

(2D), divergence-free flows where the velocity u can be
derived from a so-called stream function Ψðx; yÞ and the
kinematic equation written in terms of the stream function as

dx
dt

¼ ∂Ψ
∂y ;

dy
dt

¼ −
∂Ψ
∂x : ð3Þ

Equation (3) is identical to Hamilton’s equations of motion for
a 1-degree-of-freedom dynamical system with the identifica-
tion of the position coordinates x and y, respectively, as
canonical position and momentum coordinates along with the
identification of Ψ with the Hamiltonian function. This crucial
insight has allowed over a century of theoretical developments
from Hamiltonian mechanics to be brought to bear on 2D flow
problems and links 2D fluid flow to many other areas of
physics.
Under quite general conditions some trajectories or sets of

trajectories advected by Eq. (1) form barriers to material
transport, manifolds such as material lines or sheets that are
invariant under the flow. These barriers are persistent and even
in transient flows are long lived. In informal terms, these
material curves or sheets are the Lagrangian coherent structures
(LCSs) (see Sec. V.A) whose material lines attract or repel the
neighboring material. LCSs can both facilitate and retard
transport fluxes; they organize and mediate all transport and
interaction of matter and energy in the flow. Finding, classify-
ing, and manipulating these structures plays the central role in
both analysis of and design with flows. These organizing
structures can meander wildly throughout the space of interest,
and the wild meanders associated with chaotic dynamics give
the title chaotic advection to this entire field of study.

B. A definition of chaotic advection

In many applications one wants to maximize the rate of
mixing of a fluid. In the simplest setting, this means that we
want to reduce as much as possible the time it takes for
molecular diffusion to homogenize an initially inhomo-
geneous distribution of a scalar tracer. If there is no advection,
molecular diffusion by itself takes a very long time to achieve
homogeneity, even in quite small containers. So we use
advection to accelerate this process. The classical and more
well-known way to do so is through turbulence: by imposing a
high Reynolds number in a 3D flow, we trigger the formation
of a Kolmogorov energy cascade (Kolmogorov, 1941a, 1941b;
Tritton, 1988; Frisch, 1996; Kundu and Cohen, 2008)
whereby energy flows from large to small scales. This energy
cascade is mirrored by a corresponding cascade in any scalar
field advected along with the flow, whose distribution devel-
ops in this process small-scale structures, which are then
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rapidly homogenized by molecular diffusion. From the point
of view of mixing, such turbulence is therefore a way to create,
quickly, small-scale structures in the spatial distribution of
advected fields, resulting in their being smoothed by diffusion.
Chaotic advection (Aref, 1984) is a different way to

generate small-scale structures in the spatial distribution of
advected fields, by using the stretching and folding property of
chaotic flows. This chaotic dynamics quickly evolves any
smooth initial distribution into a complex pattern of filaments
or sheets, depending on the dimensionality of the system,
which tends exponentially fast to a geometric pattern with a
fractal structure. Owing to the stretching, the length scales of
the structures in the contracting directions decrease exponen-
tially fast, and when they become small enough, they are
smoothed out by diffusion. This is a purely kinematic effect,
which does not need high Reynolds numbers and exists even
in time-dependent 2D Stokes flows. Chaotic advection can
thus be defined as the creation of small scales in a flow by its
chaotic dynamics. Mixing by chaotic advection has the
advantages over turbulence that it does not require the larger
input of energy needed to maintain the Kolmogorov cascade
that turbulent mixing does, and it can be set up in situations,
such as microfluidics, in which a high Reynolds number is not
an option.

C. Stirring and mixing

The terminology regarding mixing and stirring is not
always consistent in the literature. We suggest the following
(although it is impossible to be taxative, as both words are so
embedded in common usage). Stirring is advective redistrib-
ution, i.e., purely kinematic transport, and mixing is stirring
together with diffusive effects. To add molecular diffusion to
the mathematical conception of advection laid out in Sec. I.A,
one has the advection-diffusion equation

∂ϕ
∂t þ v · ∇ϕ ¼ 1

Pe
∇2ϕ ð4Þ

with appropriate boundary and initial conditions, where ϕ is
the scalar concentration and the Péclet number Pe balances
diffusive and advective time scales. The natural scale for
mixing is the Batchelor scale (Batchelor, 1959)

lB ¼
ffiffiffi
κ

λ

r
; ð5Þ

where κ is the molecular diffusivity and λ is the Lyapunov
exponent of the flow. At scales smaller than lB, diffusion
smooths out concentration gradients and mixing is achieved at
the molecular scale.
The sections of this review concentrate upon stirring (Secs. II,

III, IV, V, andVI) andmixing (Secs. VIII and IX). SectionVII is
the bridge between the two parts.

II. UNBOUNDED FLOWS

Chaos in open flows manifests itself through the appear-
ance of fractal structures in the advection of an initially
smooth distribution of passive tracers (Tél et al., 2005). These

fractal patterns arise as a direct result of the existence of a
nonattracting chaotic set in the advection dynamics (Lai and
Tél, 2011).
Let us begin by considering a 2D channel flow past an

obstacle (Fig. 1). Fluid particles come from an inflow region,
may stay in the wake of the obstacle for some time, and then
leave through the outflow. If we consider a limited region
around the obstacle as our observation region R, most fluid
particles stay only a finite time in R before escaping to the
outflow region (Jung, Tél, and Ziemniak, 1993). The dynam-
ics of advection in an open flow is therefore transient. The
transient nature of the dynamics makes mixing in open flows
qualitatively different from the closed flow case discussed in
Sec. III: the very definition of mixing and its mathematical
formulation are different.

A. The chaotic saddle and its invariant sets

In open chaotic flows, the perpetual alternation of stretching
and folding results in filaments that grow ever thinner because
of the fluid’s escape, as depicted in Fig. 2. As they become
thinner, they grow longer and more convoluted. This happens
because of the stretching and folding properties of the

x

y
RU w

FIG. 1. Setup for an open flow in a channel with an obstacle.

t=T

t=0

t=2T

t=3T

FIG. 2. Sketch of a dye droplet reaching the mixing region
(dashed line) of an open flow displaying chaotic advection. After
some time, the remaining dye approaches the unstable manifold
of the chaotic saddle. From Tél et al., 2005.
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dynamics. To understand the consequences of this stretching
and folding, let us take an initial region of the flow, located in
a place where mixing occurs, for example, immediately
behind the wake of an obstacle. If the flow is chaotic, this
initial region will be repeatedly stretched and bent back on
itself. After some time, some of the fluid in our original region
has escaped, but some has come back and intersects the
original region. This intersection is the fundamental character-
istic of a Smale horseshoe (Smale, 1967, 1998; Shub, 2005),
and it immediately follows from Smale’s results that there are
infinitely many unstable periodic orbits in the intersection
region, as well as an uncountable infinity of aperiodic orbits.
These orbits are collectively referred to as the chaotic saddle.
The set of initial conditions giving rise to trajectories that
approach one of these orbits asymptotically consists of orbits
that never escape (they are trapped) since they converge to
orbits bound to a compact region of space: the intersection
region previously discussed.
Open flows are therefore characterized by a transient

dynamics of most fluid particles. More precisely, if one
randomly picks an initial condition in the inflow region,
the corresponding trajectory will escape to the outflow region
with probability 1. In other words, the set of initial conditions
which stay trapped forever in an open flow has Lebesgue
measure zero.
Although they have zero measure in phase space, these

trapped orbits are very important for open flows, because they
govern the long-time advection dynamics: those orbits that
take a long time to escape correspond to initial conditions
lying close to the trapped trajectories. If the advective
dynamics of the open flow is chaotic, each trapped trajectory
converges asymptotically as t → ∞ to one of the orbits in the
chaotic saddle (Lai and Tél, 2011); orbits in the chaotic saddle
do not go to the outflow region for t → ∞, and they do not go
to the inflow region for t → −∞. So these orbits lie on a
confined portion of space, where mixing takes place in open

flows; we refer to this region as the mixing region from now
on. In the example of a flow past an obstacle, the mixing
region and the chaotic saddle are located in the wake of the
obstacle, and the mixing region typically extends for no more
than a few times the length of the obstacle (Jung, Tél, and
Ziemniak, 1993).
The set of trapped trajectories corresponds to the stable

manifold of the chaotic saddle (Lai and Tél, 2011).
Conversely, the set of orbits that converge to the chaotic
saddle in backward time (i.e., for t → −∞) is the saddle’s
unstable manifold. Both the stable and unstable manifolds
have important physical interpretations for the advection
dynamics. Long-lived orbits are close to the stable manifold.
The physical meaning of the unstable manifold comes from
the fact that those trajectories that stay a long time in the
mixing region, that is, those lying close to the stable manifold
in the inflow region, will trace out the unstable manifold on
their way out toward the outflow region. An initial blob of
dye, or anything else that passively follows the flow, is
repeatedly stretched and folded by the flow in the mixing
region, generating a convoluted filamentary structure that
converges to the unstable manifold; a sketch of this process is
shown in Fig. 2. As a consequence, the unstable manifold can
be directly observed in experiments by following a dye as it is
advected in the fluid (Sommerer, Ku, and Gilreath, 1996).
Once the bulk of the dye has escaped, what still remains in the
observation region shadows the unstable manifold.
An experimental example is shown in the top line of Fig. 3,

where a potential flow dipole in a Hele-Shaw cell is periodi-
cally reoriented (Metcalfe et al., 2010a, 2010b); the bottom
line shows a computed version of the same flow. The initial
condition of pink fluid is removed by inflowing blue fluid. As
the flow proceeds, the persistent pink lines thin but never leave
the cell; these are examples of filamentary manifolds. The
large pink blob is an island that incoming fluid also never
displaces.

FIG. 3. Filamentary manifolds evolving and thinning in a (top) Hele-Shaw flow experiment and (bottom) computer simulation with an
opposite inflow and outflow creating a dipole that is on for a scaled time τ, after which the dipole is reoriented by an angle Θ. A number
of iterations are shown at the bottom for τ ¼ 0.1 and Θ ¼ π=4. From Metcalfe et al., 2010a, 2010b.
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B. Partial mixing, fractals, and fractal dimensions

The repeated stretching and folding of fluid elements
caused by the presence of the chaotic saddle results in mixing.
In open flows this kinematic mechanism has only limited time
to act because of the transient nature of the advection
dynamics. One can therefore say that open chaotic flows
induce partial mixing: an initial blob of dye is deformed into a
set of very thin and long filaments along the unstable manifold
of the chaotic saddle.
We illustrate this in Fig. 4 for the blinking vortex-sink flow,

an idealized periodic open chaotic flow used to study the
dynamics of chaos and mixing in open flows (Károlyi and Tél,
1997). It consists of two sinks that are alternately open and
closed. One sink is open for half the period, while the other is
closed, and then the first sink closes while the other one opens
for the remaining half period, and so on cyclically. This is a
generalization of the famous blinking vortex system intro-
duced by Aref (1984), the difference being that the vortices are
also sinks, which creates an escape and turns the dynamics
into an open flow. A fluid particle in blinking vortex-sink flow
follows a trajectory determined by the equations of motion

_r ¼ −C=r; _φ ¼ K=r2: ð6Þ

Solving these with initial conditions r0 and φ0, we get

rðtÞ ¼ ðr20 − 2CtÞ1=2; φðtÞ ¼ φ0 −
K
C
ln
rðtÞ
r0

: ð7Þ

Without loss of generality, we choose the positions of the
vortices at x ¼ �a, y ¼ 0, where a is a parameter of the
system. Since we have an analytical expression for the motion
of fluid particles for each of the half periods, we may find an
expression for the new position rnþ1 after one period as a
function of the position rn at the beginning of the period. This
is best done using a complex representation for the position of
a fluid particle z ¼ xþ iy. The mapping from the initial
position zn to the new one znþ1 is then given by

znþ1=2¼ðznþaÞ
�
1−

CT
jznþaj2

�
1=2−iK=ð2CÞ

−a;

znþ1¼ðznþ1=2−aÞ
�
1−

CT
jznþ1=2−aj2

�
1=2−iK=ð2CÞ

þa: ð8Þ

Here znþ1=2 is an intermediate variable representing the
particle’s position after the first half period.
One can see in Fig. 4 that the filaments are arranged in

intricate layers, such that if one zooms in around a given
filament, the nearby filaments are oriented along roughly the
same direction. In other words, in the case of 2D flows, due to
stretching and folding one finds, in a small volume, an infinite
number of sections of the manifold, lined up in parallel, and
densely packed in the perpendicular direction. More precisely,
the unstable manifold is locally the direct product of a Cantor
set and a 1D smooth curve (Lai and Tél, 2011). This means
that at any given point the asymptotic distribution of any tracer
advected by the flow varies smoothly in the direction along the
unstable manifold at that point, while it varies wildly in
directions transversal to the unstablemanifold (Tél et al., 2005).
This is a defining feature of the Sinai-Ruelle-Bowen (SRB)
measures (Ott, 1993), which describe the natural probability
distributions of transient chaotic systems. Although we have
been focusing on the unstable manifold, the same properties are
shared by the stable manifold as well.
From the point of view of mixing, it is clear from Fig. 4, and

from the previous discussion on the structure of the unstable
manifolds, that there is efficient mixing in the directions
locally transversal to the unstable manifold, but no mixing
happens in the direction of the unstable manifold. Contrast
this to the case of closed flows (Sec. III), where the unstable
manifold is space filling, and mixing will eventually take place
along all directions, given enough time for the system to
evolve.
How does one quantify the amount of mixing in an open

flow? Looking at Fig. 4, one would intuitively want to
measure mixing by how much area in the picture is occupied
by points lying close to both the black and white regions. But
what does “close to” mean? We have stated that the natural
scale for mixing is the Batchelor scale, Eq. (5). The unstable
manifold separates the black and white regions in the limit
t → ∞. Let us thus define AðεÞ to be the area of the set S of

FIG. 4. Blinking vortex-sink flow: Evolution of a set of
particles. From Károlyi and Tél, 1997, and Tél et al., 2005.
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points such that their distance from the unstable manifold is
smaller than ε, restricted to a finite observation region R
containing the chaotic saddle. A can be estimated by covering
R with a grid of size ε and counting the number NðεÞ of grid
elements that intersect with the unstable manifold. A is then
given by AðεÞ ¼ NðεÞε2. The way NðεÞ scales with ε is
governed by the fractal dimension D of the unstable manifold
(Ott, 1993; Falconer, 2003):

NðεÞ ∼ ε−D: ð9Þ

The area AðεÞ therefore scales with ε as

AðεÞ ∼ ε2−D: ð10Þ

For a regular, nonchaotic 2D flow, the unstable set is a simple
1D curve, and thusD ¼ 1. In this case A is proportional to ε. If
the flow displays chaotic advection, D satisfies 1 < D ≤ 2,
and A decreases sublinearly with ε. This means that in a
chaotic flow, the mixing area AðεÞ decays very slowly with ε.
Using ε ¼ lB, from Eq. (5) we see that this results in a slow
decay of A with the diffusivity. This slow decrease of AðεÞ
with ε has many consequences for the dynamics of processes
taking place in the flow. These include a singular increase in
the rate of chemical reactions in open chaotic flows (Tél et al.,
2005) and an anomalous scaling in the collision rate of
particles (De Moura, 2011).
We have concentrated on the meaning of the fractal

dimension of the unstable manifold. The fractal dimension
of the stable manifold also has a physical meaning: it is a
measure of the sensitivity of the dynamics of fluid particles in
open flows to the initial conditions (Grebogi et al., 1983). Let
pðεÞ be the probability that the trajectories corresponding to
two initial conditions separated by a small distance ε even-
tually separate before escaping, so that they escape following
completely different paths. pðεÞ can be numerically calculated
by choosing a large number of pairs of points located
randomly in space and following their trajectories until they
escape. If, for example, they escape in different cycles
(assuming that the flow is time periodic), we consider them
to have separated. The initial conditions within a distance ε of
the stable manifold are at risk of separating, and thus pðεÞ is
proportional to AðεÞ and scales as

pðεÞ ∼ ε2−D: ð11Þ

pðεÞ can be considered as a measure of the uncertainty in the
prediction of the ultimate fate of the trajectory of a given fluid
particle, when its initial condition is given with an exper-
imental error of size ε. Decreasing ε means an increase in
accuracy in the determination of the initial condition. For
nonchaotic flows,D ¼ 1, and therefore pðεÞ ∼ ε; decreasing ε
by a factor of 10 would decrease the uncertainty by the same
factor, as one might expect. If the flow displays chaotic
advection, however, pðεÞ does not scale linearly with ε, and
the uncertainty decreases more slowly. For the case of
D ¼ 1.9, for example, it would take a decrease of 10 orders
of magnitude in ε to reduce pðεÞ by a factor of 10.

C. Hyperbolicity and the Grassberger-Kantz relation

Open hyperbolic systems have exponential decay: if we keep
track of the time evolution of a typical area of flow, the amount
QðtÞ of this initial area still remaining in the mixing region
at time t decays exponentially with t for large t: QðtÞ ∼
exp ð−κetÞ. κe is the escape rate of the flow. It satisfies
κe < λ, where λ is the chaotic saddle’s Lyapunov exponent.
The fractal dimensionD of the unstablemanifold, theLyapunov
exponent λ, and the escape rate κe are related by the
Grassberger-Kantz formula (Kantz and Grassberger, 1985):

D ¼ 2 −
κe
λ
: ð12Þ

More rigorously,we should haveD1, the information dimension
(Falconer, 2003), instead of the box-counting dimension D in
Eq. (12), but since D and D1 are almost always very close for
open flows, this approximation is valid in most cases.

D. Robustness of the chaotic saddle

In the previous discussion, and in most of what follows in
this section, we concentrate on the case of 2D flows.
Furthermore, we have concentrated on the motion of fluid
particles, that is, of passive tracers that assume exactly the
velocity of the surrounding fluid. The fractal structure of the
chaotic saddle and its associated invariant manifolds persist,
however, in the case of actual, finite-sized particles, which
have inertia and whose velocities do not coincide with that of
the fluid’s velocity field (Vilela, de Moura, and Grebogi, 2006;
Vilela et al., 2007; Cartwright et al., 2010). There are some
considerable differences between the dynamics of fluid
particles and that of inertial particles, in particular, the
possibility of the appearance of attractors in the latter case
(Benczik, Toroczkai, and Tél, 2002; Cartwright et al., 2002,
2010; Motter, Lai, and Grebogi, 2003). But even when the
global dynamics has attractors, chaotic saddles are still
present, and the system is still governed by fractal structures
in phase space connected to a chaotic saddle, as in the simpler
case of passive advection.
The same overall picture remains valid for 3D systems

(Cartwright, Feingold, and Piro, 1996; de Moura and Grebogi,
2004a; Tuval et al., 2004); in this case, the stable and unstable
manifolds are a fractal set of sheets, instead of segments.
Periodicity is also not required for the existence of the chaotic
saddle: aperiodic and random flows can also result in well-
defined fractal structures in phase space (Károlyi et al., 2004;
Rodrigues, de Moura, and Grebogi, 2010).
The conclusion is that the concepts of chaotic saddle and its

stable and unstable manifolds are remarkably robust and are
not consequences of oversimplified models of flows.

E. Transport barriers and Kolmogorov-Arnol’d-Moser islands:
The effective dimension

In discussions about chaotic open flows and the chaotic
saddle it is often assumed, sometimes tacitly, that the
dynamics is hyperbolic. The reason is partly that the hyper-
bolic case is more tractable, and there are more rigorous
results available. However, nonhyperbolicity occurs in many
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important cases and is to be expected in many very general
scenarios in fluid dynamics. For example, it can be shown
that the dynamics of 2D advection of a flow past an
obstacle becomes chaotic immediately after the transition
of the flow from stationary to time dependent, as the Reynolds
number is increased beyond a critical value; furthermore, the
dynamics is nonhyperbolic for a range of Reynolds numbers
past the transition point, independently of the shape of the
obstacle or the particular features of the flow (Biemond et al.,
2008). Many other systems of interest are nonhyperbolic,
so it is imperative to understand the mixing dynamics in the
nonhyperbolic case.
Nonhyperbolicity is manifested through the appearance of

stable orbits in space. These orbits are surrounded by stable
Kolmogorov-Arnol’d-Moser (KAM) islands (MacKay and
Meiss, 1987). KAM vortices are well known in closed flow
(Sec. III), and they have been extensively studied in that
context. What is perhaps less well known is that they can also
appear in open flows, for example, in the flow of Fig. 3, and
when they do, they play a crucial role in the mixing dynamics.
They have been observed in geophysical 2D flows, such as the
stratospheric polar vortex, which plays a crucial role in the
process of ozone depletion (Koh and Legras, 2002) and also in
ocean circulation patterns (Abraham, 1998; Abraham et al.,
2000; Boyd et al., 2000). The islands form a fractal hierar-
chical structure, with large islands being surrounded by
smaller islands, and these in turn are surrounded by even
smaller islands, and so on (Fig. 5). The presence of KAM
islands means that there is a finite volume of initial conditions
in the mixing region whose orbits do not escape, correspond-
ing to those initial conditions lying in the islands. Moreover,
fluid particles with initial conditions outside the interaction
region cannot enter the islands. As a result, the set of initial
conditions outside the mixing region whose trajectories end
up trapped there still has zero measure, as in the hyperbolic
case. However, the islands have deep consequences for the
transient dynamics, resulting in important differences between
the hyperbolic and nonhyperbolic cases.
The transport of fluid in the vicinity of the islands is

dominated by cantori, which are remnants of broken up KAM

tori. Cantori are invariant sets of the dynamics, as are KAM
islands; but in contrast to those, fluid particles can cross
from one side of a cantorus to the other (MacKay, Meiss, and
Percival, 1984; MacKay and Meiss, 1987). However, it
typically takes very long times to do so, and as a consequence
the cantori act as partial transport barriers. The overall picture
of nonhyperbolic transport is sketched in Fig. 5.
Figure 6 shows Poincaré sections for a flow simulation with

nonhyperbolic advection dynamics. The magnification shows
the striking self-similar organization of the islands. The effect
of cantori on the advection dynamics can be seen in the cloud
of points surrounding the subislands on the upper right and to
the left of the main island in the magnified figure. These points
are snapshots taken at the start of every period of a single orbit
that meanders inside the cantorus surrounding these islands.
This orbit eventually escapes after thousands of cycles.
Another cantorus can just be seen surrounding the main
island. These cantori are in turn surrounded by a larger
cantorus encircling the whole structure, which is apparent
from the higher density of points in the region around the
complex of islands in the bottom figure of Fig. 6. An
experimental example showing KAM islands in an open flow
motivated by mixers in the food industry was investigated by
Gouillart et al. (2009).

FIG. 5. KAM tori and cantori: hierarchical structure. Solid lines
indicate KAM tori and cantori are represented by the dotted lines.
From Tél et al., 2005.
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FIG. 6. Blinking vortex-sink flow [Eq. (8)]: Poincaré map with
C ¼ T ¼ a ¼ 1, K ¼ 18, parameters for which the flow is non-
hyperbolic. The map shows the orbits of a few fluid particles, with
positions taken at discrete times, at the beginning of every period of
the flow. The picture on the bottom is a magnification of a small
region of the top image and shows the self-similar structure of the
KAM islands.
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The partition of space by the KAM islands and cantori into
distinct domains separated by transport barriers has no
counterpart in hyperbolic systems and is the cause of the
profound differences in the dynamics of hyperbolic and
nonhyperbolic flows. A direct consequence of the self-similar
structure of the transport barriers depicted in Fig. 5 is the
phenomenon known as stickiness: in nonhyperbolic flows,
many trajectories spend extremely long times inside cantori,
leading to very long typical escape times compared to
hyperbolic dynamics. Once inside, an orbit may enter an
inner cantorus located within another cantorus, and so on to
arbitrarily high levels in the cantorus hierarchy. So once a fluid
particle is inside a cantorus, it will wander within a fractal
labyrinth from which escape is likely to take a very long time.
Note that the preceding discussion holds for 2D systems only.
However, with more degrees of freedom there is also the
possibility of Arnol’d diffusion (Arnol’d, 1964).
Even in nonhyperbolic flows it is still true that fluid

particles with initial conditions outside of KAM islands will
eventually escape with 100% probability: the component of
the chaotic saddle outside the islands has zero measure. But
stickiness makes escape subexponential, in marked contrast
with hyperbolic flows. In nonhyperbolic flows, the number
NðtÞ of particles with initial conditions chosen randomly in a
region with no intersection with KAM islands that have not
escaped up to time t follows a power law (Meiss and Ott,
1985):

NðtÞ ∼ t−γ; ð13Þ

with γ > 0.
It has been shown that a direct consequence of the slower

escape dynamics described by Eq. (13) is that the fractal
dimension D of the stable (and unstable) manifold is equal to
the dimension of the embedding space D ¼ 2 (Lau, Finn, and
Ott, 1991). From the interpretation of the fractal dimension as
a measure of uncertainty of transient systems, expressed
mathematically by Eq. (11), the fact that D assumes the
maximum possible value in nonhyperbolic systems suggests
that these systems have an extreme sensitivity to initial
conditions. Indeed, the exponent in Eq. (11) vanishes for
D ¼ 2, which means that the “uncertainty probability” pðεÞ
decreases more slowly than a power law for small ε. The fact
that D ¼ 2 in nonhyperbolic open flows suggests that pre-
dicting asymptotic properties of trajectories in these systems is
an almost impossible task. The reason for this unpredictability
is the very long time it takes initial conditions inside cantori to
escape: two initially close trajectories will have much more
time to spend in the mixing region to separate and follow
independent paths before they escape. Figures 5 and 6 also
suggest that the unpredictability is greater for initial con-
ditions located in deeper levels of the cantorus hierarchy, as
they have longer escape times.
To investigate the sensitivity to initial conditions in different

areas of space in Fig. 6 one may calculate numerically the
fraction fðεÞ of ε-separated pairs of points whose escape times
differ by one period or more. For a sufficiently large sample,
we expect fðεÞ ∝ pðεÞ. The result, for initial conditions taken
in two different cantori, is plotted in Fig. 7. Figure 7 seems to

go against the claim that D ¼ 2 for nonhyperbolic systems,
since this would predict that the plot of fðεÞ vs ε should be a
line with zero slope. But in nonhyperbolic systems, the ε → 0

limit in Eq. (11) converges sublogarithmically with ε (Lau,
Finn, and Ott, 1991). This extremely slow convergence means
that reaching this limit usually requires values of ε so small
they are not physically meaningful. Any model of a physical
system has a lower scale below which the model is no longer
valid: for example, the size of advected particles or the finite
resolution of our measurements. This implies that the dimen-
sion that is physically relevant for realistic systems is not the
mathematical definition Eq. (11) with its unreachable limit,
but is given instead by an effective dimension Deff (de Moura
and Grebogi, 2004b; Motter et al., 2005), defined as an
approximation of the fractal dimension for a finite range of ε:

DeffðεÞ ¼ 2 −
d ln fðεÞ
d ln ε

≈ const for ε1 < ε < ε2; ð14Þ

valid in a range ðε1; ε2Þ, with ε1≪ε2.Deff satisfiesDeffðεÞ→2

as ε → 0, in accordance with Eq. (11). From Eq. (14), the
results in Fig. 7 can be interpreted as yielding the effective
fractal dimensions of the stable and unstable manifolds for
two different locations in space: Deff ¼ 1.86 inside the
outermost cantorus, and Deff ¼ 1.98 inside one of the inner
cantori. The effective dimension therefore depends on the
position in nonhyperbolic systems, in contrast to the actual
fractal dimension, which is 2 anywhere. The greater escape
time in the inner cantori means that the invariant manifolds of
the chaotic saddle have more time to be stretched and folded
and distorted by advection, hence the greater effective
dimension.
Because of time-reversal symmetry, the stable and unstable

manifolds have the same fractal dimensions and also the same

0.00001 0.0001

1

s = 0.02

s=0.14

FIG. 7. Blinking vortex-sink flow: Fraction of uncertain pairs as
a function of separation ε between points in a pair, with η ¼ 1,
ξ ¼ 18; see Fig. 4. Initial conditions for the bottom points are
taken in the outermost cantorus, on the segment x0 ¼ 1.75,
y0 ∈ ð−1.18;−1.175Þ; for the top points, initial conditions are in
an inner cantorus, on x0 ¼ 1.75, y0 ∈ ð−1.193;−1.192Þ. The
numbers beside each line are the slope coefficients obtained from
fitting fðεÞ ∼ εs.
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effective fractal dimensions. We argued above that the fractal
dimension of the unstable manifold is a measure of lower-
scale mixing efficiency for open flows. This means that the
fluid in regions of space surrounded by cantori will be
extremely well mixed, and the efficiency of mixing increases
as we go deeper into the cantorus structure and reaches the
maximum limit ofDeff → 2 for regions buried deep within the
cantori. This picture is somewhat at odds with an idea
prevalent in this field that KAM islands are obstacles to
mixing. That view is justified in closed flows (Sec. III), where
one wants to mix the fluid homogeneously throughout the
container; this is not possible in the presence of KAM islands.
In open flows, however, the fluid to be mixed usually comes
from the inflow region, and thus from outside the KAM
islands, and so this is not an issue if the material to be mixed is
injected into the flow outside the islands. For open flows, one
wants the flow to be well mixed by the time it reaches the
outflow region. The cantori surrounding KAM islands greatly
enhance this kind of mixing, by causing fluid to spend very
long times within themselves. This comes at a cost: the time it
takes for any given piece of fluid to escape a cantorus to the
outflow is very much increased by the stickiness. If one has a
continuum input of dye or other material one wants to mix,
however, this may not be relevant in practice. All this suggests
that in open flows the best strategy to achieve optimal mixing
would be to inject material inside the cantori, but still outside
the islands.

III. THE ROLE OF WALLS

Many studies of mixing over the years have used maps of
flows in periodic domains (cat map, standard map, etc.) to
great effect to generate insight into the evolution of chaotic
dynamics. However, in actual containers the solid boundaries
throw up several new effects whose consequences for mixing
are not confined to thin boundary layers but penetrate into the
bulk of the flow. Mixing follows a different dynamics when
the flow is confined to a closed space. As discussed, in general
stirring induces chaotic advection in the flow, causing fluid
elements to be repeatedly stretched and folded, generating
over time a very fine pattern of thin filaments with a complex
structure. In a closed container, these filaments eventually
spread throughout the available space, as long as the flow has
no prominent regular islands, and total mixing is achieved in
the asymptotic limit of t → ∞. The physically relevant
questions are then related to the time scale over which mixing
is achieved, and how the system approaches the limit of
becoming perfectly mixed.

A. Things are not always exponential

The prototype of chaotic mixing is as follows: stirring a
fluid promotes chaotic advection, which leads to an expo-
nential stretching of fluid elements. These fluid elements carry
some concentration of a substance to be mixed, and as they are
stretched gradients of concentration increase exponentially.
This allows molecular diffusion to act efficiently, and the
uniformization of the concentration proceeds at a much faster
rate than it would have in the absence of stirring (Eckart, 1948;
Welander, 1954; Batchelor, 1959). Typically, this decay is

exponential in time; the decay constant is not, however,
simply the average rate of stretching (infinite-time
Lyapunov exponent), but is obtained from the distribution
of finite-time Lyapunov exponents in a nontrivial manner
(Antonsen, Fan, and Ott, 1995; Antonsen et al., 1996;
Balkovsky and Fouxon, 1999; Falkovich, Gawędzki, and
Vergassola, 2001; Thiffeault, 2008). This is the “local” picture
of chaotic mixing; in some cases it must be supplemented by a
more global approach, where one directly analyzes the
advection-diffusion operator (Pierrehumbert, 1994; Fereday
et al., 2002; Wonhas and Vassilicos, 2002; Pikovsky and
Popovych, 2003; Thiffeault and Childress, 2003; Fereday and
Haynes, 2004; Haynes and Vanneste, 2005). However,
whether the decay of concentration is locally or globally
controlled, the rate is still exponential.
This exponential decay framework is helpful, but it is

complicated by the presence of walls. In this case, several
(Jones, Thomas, and Aref, 1989; Jones and Young, 1994;
Chertkov and Lebedev, 2003; Lebedev and Turitsyn, 2004;
Schekochihin, Haynes, and Cowley, 2004; Popovych,
Pikovsky, and Eckhardt, 2007; Salman and Haynes, 2007;
Chernykh and Lebedev, 2008; MacKay, 2008; Boffetta, De
Lillo, and Mazzino, 2009; Zaggout and Gilbert, 2012) have
suggested that the no-slip boundary condition and the pres-
ence of separatrices on the walls slow down mixing: the decay
is power law rather than exponential. (This is connected to a
breakdown of hyperbolicity.) Recent experiments (Gouillart
et al., 2007, 2008, 2009; Gouillart, Thiffeault, and Dauchot,
2010b) have confirmed this hypothesis, and also showed that
for a significant period of time the rate of decay of variance is
dramatically reduced, even away from the walls, due to the
entrainment of unmixed material into the central mixing
region.
In this section we describe the limiting effect of boundaries

on chaotic mixing, following Gouillart et al. (2007, 2008). We
then explain how creating closed orbits near the wall alleviates
the problem somewhat, by “shielding” the central mixing
region from the detrimental effect of walls (Gouillart,
Dauchot, and Thiffeault, 2011; Thiffeault, Gouillart, and
Dauchot, 2011). We end by exploring mixing by nonrecip-
rocal contractible loops of the wall’s positions, a class of
protocols directly related to the concept of geometric phases
(Arrieta et al., 2015).

B. Passive scalar near a wall

Consider the experiment shown in Fig. 8(a): a dark blob of
ink in a light fluid has been stretched and folded repeatedly by
the periodic movement of a rod. The movement of the rod
defines a figure-eight stirring protocol with period T, shown as
a dashed line in Fig. 8(b). 3D effects are negligible, and the
fluid flow can be treated as a Stokes flow. The mixing pattern
has a kidney shape, and it slowly grows and approaches the
wall. The distance of closest approach at the top is dðtÞ, where
t is time.
Inside the central mixing region, we assume the action of

the flow is that of a simple chaotic mixer. By this we mean
that fluid elements are stretched, on average, at a given rate
λ (the Lyapunov exponent). Hence, after a time t a blob of
initial size δ will have length δeλt. However, because of
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diffusion, its width will stabilize at an equilibrium between
compression and diffusion at a scale lB, the Batchelor length,
Eq. (5) (Batchelor, 1959; Balkovsky and Fouxon, 1999;
Thiffeault, 2008).
We emphasize that the flow in Fig. 8(a) is globally chaotic

in the sense that it does not possess visible islands, as
evidenced by the numerical Poincaré section in Fig. 8(b).
The chaotic region extends all the way to the wall, but there
are clearly two special points at the wall, at the top and bottom
[shown as dots in Fig. 8(b)] corresponding to separatrices.
They are associated with the stable (top) and unstable (bottom)
manifolds of two distinguished nonhyperbolic (parabolic)
fixed points at the wall.
Each period the pattern gets progressively closer to the wall.

Assuming molecular diffusion can be neglected, because of
area preservation some white fluid must have entered the
central mixing region. It does so in the form of white strips,
visible as layers inside the pattern of Fig. 8(a). If we assume
that the mixing pattern grows uniformly along the periphery of
the wall, we can write the width ΔðtÞ of a strip injected at
period t=T as

ΔðtÞ ¼ dðtÞ − dðtþ TÞ≃ −T _dðtÞ ≥ 0; ð15Þ

where we also assumed that dðtÞ changes slowly in time.
Now if a white strip is injected at time τ, how long does it

persist before it is wiped out by diffusion? The answer is the
solution t to the equation

ΔðτÞe−λðt−τÞ ¼ lB: ð16Þ

This means that the strip initially had width ΔðτÞ when it
was injected, it gets compressed by the flow in the central
mixing region by a factor exp ½−λðt − τÞ� depending on its
age t − τ, and once it is compressed to the Batchelor length
lB it quickly diffuses away. Thus, we can solve Eq. (16) to
find the age the strip was when it gets wiped out by
diffusion,

t − τ ¼ λ−1 log½ΔðτÞ=lB�: ð17Þ

Eventually, at time tB, any newly injected filament will have
width equal to the Batchelor length. This occurs when

ΔðtBÞ ¼ lB; ð18Þ

which can be solved for tB given a form for ΔðtÞ. After this
time it makes no sense to talk of newly injected filaments as
“white,” since they are already dominated by diffusion at their
birth. Hence, the description we present here is valid only for
times earlier than tB, but late enough that the edge of the
mixing pattern has reached the vicinity of the wall.
In their experiments, Gouillart et al. (2007, 2008) measured

the intensity of pixels in the central mixing region. They
observed for T ≪ t≲ tB that the concentration variance is
dominated by the proportion of strips in the central region that
are still white at that time. Because of area conservation, the
total area of injected white material that is still visible at time t
is proportional to

AwðtÞ ¼ d(τðtÞ) − dðtÞ; ð19Þ

where we use Eq. (17) to solve for τðtÞ, the injection time of
the oldest strip that is still white at time t. Hence, the goal is to
estimate AwðtÞ for times T ≪ t≲ tB, since Aw is directly
proportional to the concentration variance. To do this we need
τðtÞ, which requires specifying ΔðtÞ. We now look at three
possible forms, corresponding to a free-slip wall, a no-slip
wall, and a moving no-slip wall.

C. Exponential approach to a free-slip wall

Consider first the case where dðtÞ ¼ dð0Þe−μt for some
positive constant μ. We have ΔðtÞ ¼ −T _d ¼ μTdð0Þe−μt ¼
Δð0Þe−μt. From Eq. (18), we have tB ¼ μ−1 log½Δð0Þ=lB�, and
from Eq. (17),

t − τ ¼ μ

λ − μ
ðtB − tÞ: ð20Þ

By assumption, τ < t < tB, so for consistency we require
μ < λ, i.e., the rate of approach toward the wall is slower than
the natural decay rate of the chaotic mixer. The area of white
material in the mixing region is then obtained from Eq. (19):

AwðtÞ ¼ dð0Þe−μt
�
exp

�
μ2

λ − μ
ðtB − tÞ

�
− 1

�
; ð21Þ

which in the wall-dominated regime (λ=μ ≫ 1) can be
approximated by

AwðtÞ ∼ dð0Þλ−1μ2ðtB − tÞe−μt; t≲ tB: ð22Þ

The decay rate of the white area is completely dominated by
the walls. The central mixing process is potentially more
efficient (λ > μ), but it is starved by the boundaries.
If μ > λ, we have t > tB in Eq. (20), since newly injected

strips reach the Batchelor length before strips that were
injected previously. This violates our assumptions, and we

FIG. 8. Rod mixer: (a) Experiment with a figure-eight stirring
protocol, showing an advected blob of dye (India ink) in sugar
syrup. The coordinate system used here is also indicated,
as is the distance dðtÞ between the dark mixing pattern and the
wall. (b) Numerical Poincaré section, showing the two fixed
points and their separatrices. From Thiffeault, Gouillart, and
Dauchot, 2011.
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conclude that in that case the white strips can be neglected; the
decay rate of the concentration variance is then given by the
natural decay rate λ.
As an example of an exponential approach to the wall,

consider the velocity field near a free-slip boundary,

uðθ; yÞ ¼ u0ðθÞ þOðyÞ; ð23aÞ

vðθ; yÞ ¼ −u00ðθÞyþOðy2Þ; ð23bÞ

which satisfies the incompressibility constraint. Here u is the
direction parallel to the wall, and v is perpendicular to the
wall. The perpendicular distance from the wall is y, and θ is an
angle around the circular boundary. (Since the dynamics near
the wall are slow, we can use a steady flow here to model the
time-T Poincaré map.) A separatrix is a distinguished stream-
line that ends at the boundary at some position θ ¼ θs. Along
a separatrix at θ ¼ θs, we have u0ðθsÞ ¼ 0 since the velocity
field changes sign. The rate of approach along the separatrix is
thus given by _d ¼ vðθs; dÞ ¼ −u00ðθsÞd, so that μ ¼ u00ðθsÞ.
Hence, if u00ðθsÞ > λ the rate of decay of concentration
variance will not be limited by wall effects.

D. Algebraic approach to a no-slip wall

If the fluid at the wall is subject to no-slip boundary
conditions, the Taylor expansion Eq. (23) is modified to
become

uðθ; yÞ ¼ u1ðθÞyþOðy2Þ; ð24aÞ

vðθ; yÞ ¼ −1
2
u01ðθÞy2 þOðy3Þ: ð24bÞ

The rate of approach along the separatrix at θ ¼ θs is
given by _d ¼ vðθs; dÞ ¼ − 1

2
u01ðθsÞd2, with asymptotic solu-

tion dðtÞ ∼ 2=u01ðθsÞt, for dð0Þu01ðθsÞt ≫ 1. This is indepen-
dent of the initial condition dð0Þ: asymptotically, a fluid
particle forgets its initial position; this explains why material
lines bunch up against each other faster than they approach the
wall, as reflected by the front in the upper part of Fig. 8(a). The
total area of remaining white strips at time t as given by
Eq. (19) is proportional to

AwðtÞ ¼
2

u01ðθsÞτ
−

2

u01ðθsÞt
¼ 2

u01ðθsÞ
t − τ

τt
: ð25Þ

The width of injected strips is ΔðtÞ ¼ −T _d ¼ 2T=u01ðθsÞt2.
Equation (17) cannot be solved exactly, but since τðtÞ is
algebraic its right-hand side is not large, implying that t=τ≃ 1

for large t. We can thus replace τ by t in Eq. (17) and the
denominator of Eq. (25), and find

AwðtÞ≃ 2

u01ðθsÞ
log½ΔðtÞ=lB�

λt2
;

1

dð0Þu01ðθsÞ
≪ t≪ tB: ð26Þ

Compare this to the exponential case of Eq. (22): the decay of
concentration variance is now algebraic (1=t2), with a loga-
rithmic correction. The form of Eq. (26) has been verified in

experiments using a simple map model (Gouillart et al.,
2007, 2008).

E. Dynamics near a moving no-slip wall

Now consider the case of a rotating wall, where we add a
constant speed Ω > 0 to the velocity u in Eq. (24). Again we
look for fixed points: all the parabolic fixed points on the wall
have disappeared, as well as the two separatrices. Since u1ðθÞ
is continuous, has two zeros, and u01ð0Þ > 0, u1ðθÞ must have
a minimum at some angle θ�, where u01ðθ�Þ ¼ 0 and hence
vðθ�; yÞ ¼ 0 for all y. Enforcing that the along-wall velocity
also vanishes, there will be a fixed point at y� ¼ −Ω=u1ðθ�Þ.
Now we look at the linearized dynamics near the fixed point.
Let ðθ; yÞ ¼ (θ� þ Θ;−Ω=u1ðθ�Þ þ Y); then

_Θ ¼ u1ðθ�ÞY þOðΘ2; Y2;ΘYÞ; ð27aÞ

_Y ¼ −1
2
u001ðθ�Þy2�ΘþOðΘ2; Y2;ΘYÞ: ð27bÞ

The linearized motion thus has eigenvalues λ� ¼ �λ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−u001ðθ�Þ=2u1ðθ�Þ
p

U, where the argument in the square
root is non-negative since u1ðθ�Þ < 0 and u001ðθ�Þ ≥ 0. For
u001ðθ�Þ > 0 andΩ > 0, this is a hyperbolic fixed point, and the
approach along its stable manifold is given by YðtÞ ∼
Y0 expð−λtÞ for ðΘ0; Y0Þ initially on the stable manifold.
Compare this to the 1=t approach for a fixed wall: the
approach to the fixed point is now exponential, at a rate
proportional to the speed of rotation of the wall. One expects
that this exponential decay will dominate if it is slower than
the mixing rate in the bulk. Otherwise, if λ is large enough,
then the rate of mixing in the bulk dominates.
Figure 9(a) shows a numerical simulation of the flow

pattern for a wall rotating at a rate ΩT ¼ 0.2. The hyperbolic
fixed point is indicated by a dot, as is the distance dðtÞ
between the mixing pattern and the hyperbolic point. Note the
unmixed region between the rotating wall and the mixing
pattern. Figure 9(b) is a Poincaré section that shows the
presence of the unmixed region, which consists of closed
orbits. Numerical simulations have confirmed that the decay
rate of a passive scalar in the central region is indeed

FIG. 9. Rod mixer: (a) Numerical simulation of dye advection
for a wall rotating at velocity ΩT ¼ 0.2, with the rod moving in a
figure-eight pattern. (b) Poincaré section, which shows a large
chaotic region and closed orbits near the wall, with a separatrix in
between. From Thiffeault, Gouillart, and Dauchot, 2011.
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exponential, so the rotating wall can help recover exponential
mixing (Thiffeault, Gouillart, and Dauchot, 2011). However,
the price to pay is that there is now an unmixed region
surrounding the region of good mixing. Whether this is a price
worth paying depends on the specific application.
Another strategy to mimic a moving wall, and thus

recover exponential mixing, is to move the rod in a looping
“epitrochoid” motion, shown in Fig. 10. This motion creates
closed trajectories near the wall, as is evident in the Poincaré
section, Fig. 10(b). Thiffeault, Gouillart, and Dauchot (2011)
verified experimentally that the decay of the passive scalar in
this case is indeed exponential, for the same reason as for the
moving wall. However, the analysis of the near-wall map for
this system is more complicated than for a moving wall and
has not been carried out. 3D effects also remain to be
investigated: these could hold some surprises, since the nature
of separatrices at the wall is potentially much richer.

F. Geometric mixing

Protocols aimed at efficient mixing of fluids heavily rely
upon the generation of a chaotic kinematic template. In most
cases, mixing protocols can be designed free of major
geometrical constraints. In particular, no limitation is usually
imposed upon the relative displacement of boundaries. But,
can we achieve fluid mixing if we limit the allowed motion of

boundaries to the subset returning to their original position
after each iteration of the protocol? The answer to this
question is related to the concept of geometric phases
(Shapere and Wilczek, 1989a, 1989b): the failure of system
variables to return to their original values after a closed circuit
in the parameters.
In the zero Reynolds number limit, fluid inertia is negli-

gible, fluid flow is reversible, and an inversion of the move-
ment of the walls leads, up to perturbations owing to particle
diffusion, to unmixing, as Heller (1960) and Taylor (1960)
demonstrated. This would seem to preclude the use of
reciprocating motion to stir fluid at low Reynolds numbers;
it would appear to lead to perpetual cycles of mixing and
unmixing. But, is that always the case? Can cyclic changes in
the shape of the containers lead to efficient mixing?
The well-known 2D mixer based on the journal-bearing

flow (Aref and Balachandar, 1986; Chaiken et al., 1986;
Ottino, 1989; Tabor, 1989) may be used as an example of how
nonreciprocal cycling of the deformable boundaries of a
container can be used as a tool for fluid mixing at low
Reynolds number (Arrieta et al., 2015); see Fig. 11.
Considering as parameters in this device the positions of
the outer and inner cylindrical walls of the container specified,
respectively, with the angles θ1 and θ2 from a given starting
point, a geometric phase might arise from driving this system
around a loop in the parameter space. In a Heller-Taylor–type
unmixing demonstration the parameter loop is very simple: θ1
first increases a certain amount and then decreases the same
amount while θ2 remains fixed. This loop encloses no area,
and reversibility ensures that the phase is zero. To obtain a
finite-area nonreciprocal contractible loop we can, for in-
stance, rotate first one cylinder, then the other, then reverse the
first, and finally reverse the other. If we now perform a
parameter loop by the sequence of rotations, we arrive back at
our starting point from the point of view of the positions of the
two cylinders, so it is, perhaps, surprising that the fluid inside
does not return to its initial state. We illustrate the presence of
this geometric phase in Fig. 11(a) in which an example of the
trajectory of a fluid particle is shown as the walls are driven
through a nonreciprocal contractible loop.
The long-term fluid dynamics elicited by a repeated

realization of the same contractible nonreciprocal loop is
shown in Fig. 11(b). A single fluid particle has covered most

FIG. 10. Rod mixer: The “epitrochoid” stirring protocol.
(a) Experiment and (b) Poincaré section, also showing the rod’s
trajectory. Closed orbits are present near the wall, even though the
wall is fixed. From Thiffeault, Gouillart, and Dauchot, 2011.

FIG. 11. (a) A finite-area nonreciprocal contractible loop. The journal-bearing flow with cylinder radii R1 ¼ 1.0, R2 ¼ 0.3, and
eccentricity ε ¼ 0.4, taken around a closed square parameter loop with θ1 ¼ θ2 ¼ θ ¼ 2π rad. The four segments of the loop are plotted
in different colors and shades to enable their contributions to the particle motion to be seen. A trajectory beginning at (0.0,0.8) is shown.
(b) Poincaré maps demonstrate geometric mixing for this flow for the same cylinder radii, eccentricity, and displacements as in (a).
Chaotic trajectories are marked in a different shade or color to regular ones. Ten thousand iterations of the parameter loop are shown.
(c) The L2 norm of the geometric phase grows quadratically with θ for loops with small area. Two distinct loops with equal area are
shown. From Arrieta et al., 2015.
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of the area available to it between the two cylinders. This is
fluid mixing induced entirely by a geometric phase; we call it
geometric mixing. Geometric mixing therefore creates chaotic
advection. The geometric phase scales with the area of the
parameter loop and it is independent, at least for small enough
loops, of the specifics of the trajectory in parameter space
[Fig. 11(c)].
This example illustrates a general class of protocols in

which mixing arises as a consequence of a geometric phase
induced by a contractible nonreciprocal cycle in the param-
eters defining the shape of the container. It turns out that the
mixing efficiency estimated from the stretching of material
lines is roughly proportional to the geometric phase. Mixing in
the corresponding flows can also be considered as the result of
chaos arising in the mapping describing the motion of fluid
elements during one cycle. When the cycle is reciprocal, this
map is the identity and a small departure from reciprocity
corresponds to a small departure from the identity map.
Hence, the problem of mixing by nonreciprocal cycles is
closely related to the class of dynamical systems constituted
by perturbations of the identity (Arrieta et al., 2015). The
structure of chaos in this class of dynamics has been greatly
overlooked in the literature, which points to a much needed
revisiting of this associated problem.

IV. THE NEW FRONTIER: 3D UNSTEADY FLOW

Most results to date of chaotic advection, indeed of
dynamical systems in general, have been found by examina-
tion of 2D maps or flows where stable elliptic fixed points and
the stable and unstable 1D manifolds of hyperbolic points
define just a few Lagrangian coherent structures that control
all of the transport behavior. However, in 3D there is an
explosion of complexity in the number of possible Lagrangian
structures and connections between them. This is due both to
the impossibility of the existence of any stable fixed points
and to hyperbolic manifolds existing as both sheets and
curves. It is still an open question, especially in experiment,
how these structures fit together to control mixing rates and
the distribution of material and energy in a 3D stirred flow.

A. Motivation and background

Coherence and, intimately related to that, invariance are key
notions in the investigation and classification of transport
phenomena in (laminar) fluid flows. These notions can in
general be defined in several ways (see, e.g., Sec. V). The
discussion within this section adopts the Lagrangian perspec-
tive of the organization of fluid trajectories into coherent
structures collectively defining the flow topology that geo-
metrically determines the advective transport of material. It is
important to note in this context that basically any group or
union of fluid trajectories constitutes a material entity
(Sec. V.A), suggesting a certain arbitrariness in the defini-
tion of coherent structures. An example of an (in general)
nonunique entity is a stream surface in 3D steady flows: any
material line advected unobstructed by the flow describes a
stream surface. Consider to this end Poiseuille flows, where
advection of any family of closed material curves released at
the inlet yields a valid foliation into stream surfaces

(Sec. VI.A). Connection with other properties or entities of
the system renders coherent structures in the web of
Lagrangian fluid trajectories unique. Structures tied directly
to properties of the kinematic equation governing Lagrangian
motion are, arguably, the most fundamental kind and include
entities such as separatrices due to discrete symmetries,
families of invariant surfaces due to continuous symmetries,
2D manifolds and tubes associated with closed streamlines
and periodic lines and 1D and 2D manifolds associated with
isolated stagnation and periodic points. Such structures con-
stitute elements of the flow topology or, equivalently, the
“ergodic partition” (Sec. VII.F). Coherent structures may also
be defined indirectly as, for instance, material entities dis-
tinguished by Lyapunov exponents (Sec. V.A), topological
deformation of enclosing material curves (Sec. V.D), or
leakage from Eulerian regions. However, the following dis-
cussion concerns the coherent structures directly formed by
the Lagrangian fluid trajectories.
Well-known examples of coherent structures of the

“direct” kind are the KAM islands and unstable and
stable manifolds of hyperbolic periodic points that con-
stitute the flow topologies of 2D time-periodic flows in
bounded domains (Sec. III). Lagrangian transport in other
flow configurations has received considerably less attention
and remains the subject of ongoing investigations. This
section concerns one such class of configurations: 3D
unsteady flows.
Current insight into the fundamentals of Lagrangian

transport in 3D (un)steady flows is to a great extent based
on kinematic properties of divergence-free vector fields
and volume-preserving maps. This encompasses any incom-
pressible unsteady flow ∇ · u ¼ 0 as well as any compres-
sible steady flow ∇ · ðρuÞ ¼ ∇ · u0 ¼ 0 where u0 ¼ ρu.
Groundbreaking progress has come from the 3D extensions
of the KAM theorem (Cheng and Sun, 1990a; Mezić and
Wiggins, 1994; Broer, Huitema, and Sevryuk, 1996) and the
Poincaré-Birkhoff theorem (Cheng and Sun, 1990b) that,
respectively, describe the fate of nonresonant invariant tori
and resonant trajectories in 3D volume-preserving maps. The
existence of 3D counterparts to these theorems was first
hypothesized on the basis of a classification of volume-
preserving maps by the number of action variables
(Feingold, Kadanoff, and Piro, 1987, 1988a, 1988b, 1989).
Further important results include generic reductions in flow
complexity by symmetries (Mezić and Wiggins, 1994; Haller
and Mezić, 1998), the formation of invariant manifolds of
various topologies due to constants of motion (Mezić and
Wiggins, 1994; Haller and Mezić, 1998; Gómez and Meiss,
2002; Mullowney, Julien, and Meiss, 2005), local and global
breakdown of invariant manifolds by resonances (Feingold,
Kadanoff, and Piro, 1988b; Cartwright, Feingold, and Piro,
1994; Mezić, 2001a; Vainchtein, Neishtadt, and Mezić, 2006;
Vainchtein, Widloski, and Grigoriev, 2007; Meiss, 2012), and
universal properties of the Lagrangian transport between flow
regions (MacKay, 1994; Lomeli and Meiss, 2009). These
phenomena require in principle only satisfaction of continuity
and compliance with certain kinematic conditions. However,
whether a real fluid flow indeed admits the latter conditions
(and the associated Lagrangian dynamics) depends essentially
on momentum conservation.
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Consider the 3D steady momentum equation once again

ρu · ∇u ¼ −∇pþ μ∇2u; ð28Þ

where u, as before, is the velocity, p is the pressure, ρ is the
density, and μ is the dynamic viscosity. We recast this for the
present discussion into the alternative form

ρw × u ¼ −∇ζ þ μf ; f ¼ ∇ × w; ð29Þ

with w≡ ∇ × u the vorticity, w × u the Lamb vector, and f the
flexion field, representing inertia and viscous forces, respec-
tively, and

ζ ¼ pþ ρgzþ ek ð30Þ

the Bernoulli function (Yannacopoulos et al., 1998). Here
ek ¼ ρu · u=2 is the kinetic energy, and gravity is defined as
g ¼ −gez. This form of the momentum equation directly
reveals that it reduces from the 3D steady Navier-Stokes
equation to the 3D steady Euler equation for both inviscid
(μ ¼ 0) and flexion-free ( f ¼ 0) flows. 3D steady Euler flows
are special in that universal conditions for (the absence of)
chaos can be formulated on the basis of momentum con-
servation. It is well known that they admit chaos upon
satisfying the Beltrami condition w × u ¼ 0; in all other cases
they yield u · ∇ζ ¼ 0 and possess invariant manifolds defined
by level sets of ζ (Sec. VI.A). Moreover, these invariant
manifolds are diffeomorphic to either cylinders or tori (Mezić
and Wiggins, 1994; Arnol’d and Khesin, 1998). Hence, the
Lagrangian dynamics can happen only in Euler flows (locally)
meeting the Beltrami condition. Thus the latter facilitates (yet
not per se causes) certain kinematic events. [See Arnol’d and
Khesin (1998) for further properties of 3D steady Euler
flows.] The Arnol’d-Beltrami-Childress (ABC) flow, for
example, always satisfies the Beltrami condition and is the
archetypal flow for many studies on 3D chaotic advection
(Dombre et al., 1986; Feingold, Kadanoff, and Piro, 1988b;
Cartwright, Feingold, and Piro, 1994; Haller, 2001a).
Irrotational flexion fields (∇ × f ¼ 0) imply f ¼ −∇σ, with σ

the flexion potential, reducing Eq. (29) essentially to an Euler
form ρw × u ¼ −∇ζ0, with ζ0 ¼ ζ þ μσ (Yannacopoulos et al.,
1998). Here the Beltrami condition again determines the
Lagrangian dynamics. Thus flexion-free flows, although strictly
incorporating viscous effects, behave effectively as inviscid
flows. It must be stressed that Stokes flows, although governed
by μf ¼ ∇p and thus also meeting ∇ × f ¼ 0, are excluded
from this behavior. Here the flexion potential equals
σ ¼ −p=μþ c, with c an arbitrary constant, implying ζ0 ¼ c
and, in consequence, the conservation of ζ0 tells us nothing.
Hence, akin to a Beltrami flow, ζ0 is not a useful constant of
motion. This point exposes an intriguing contrast: Euler flows
satisfy ∇ζ0 ¼ 0 only in the exceptional Beltrami case; Stokes
flows, on the other hand, invariably satisfy∇ζ0 ¼ 0. Thus Euler
flows generically are nonchaotic, while 3D Stokes flows have
no obstacle to chaos. This observation has the fundamental
implication that, lacking a universal dynamical restriction,
Stokes flows can be integrable only due to symmetries.
Realistic 3D steady flows typically have significant

inertia and viscosity, implying a rotational flexion field

[μ∇ × f ¼ ∇ × ðρw × uÞ ≠ 0], meaning that in general they
are devoid of constants of motion u · ∇ζ ¼ μu · f ≠ 0 [see
Kozlov (1993) for a rigorous discussion]. Here, similarly to
Stokes flows, absence of a universal dynamical mechanism
means integrability can ensue only from symmetries. These
must yield a flexion field perpendicular to u. It is important to
note in relation to Euler flows that realistic fluid flows admit
3D chaos without satisfying the Beltrami condition. Thus
Beltrami flows (e.g., the widely used ABC flow) may be too
restrictive for general studies on 3D chaotic advection in
realistic fluid flows (Mezić, 2002).
Laminar flows are for increasing Re progressively better

described by the Euler limit of the momentum equation and,
given that the Beltrami condition is exceptional, therefore
typically tend to become integrable. (It must be stressed that
laminar flow is assumed at all times here.) Significant viscous
effects, for example, due to (local) breakdown of symmetries
or boundary layers (locally), disrupt the integrability of the
Euler approximation and thus promote, or at least facilitate,
chaotic advection in high-Re (yet laminar) 3D steady flows
(Yannacopoulos et al., 1998; Mezić, 2001b). Conversely,
increasing Re tends to augment the Euler-flow region and,
in consequence, to suppress 3D chaos. Realistic high-Re
laminar flows thus generically lean toward a nonchaotic bulk
flow; chaos, if occurring, tends to be confined to boundary
layers and certain localized areas with symmetry breakdown.
Flows with low Re have significant viscous effects through-

out the entire flow domain and, contrary to Euler flows and
high-Re flows, in principle admit global chaos. Here chaos (or
absence thereof) is intimately related to symmetries. The
linearity of the momentum equation in the Stokes limit
(Re ¼ 0) causes symmetries in geometry and boundary
conditions to be imparted on the flow. Hence, Stokes flows,
akin to Euler flows, often are integrable yet due to different
mechanisms. Consider, for example, 3D lid-driven cavity flow
inside cubic and cylindrical domains; here symmetries result
in closed streamlines in the Stokes limit (Shankar, 1997;
Shankar and Deshpande, 2000). Nonlinearity due to fluid
inertia (Re > 0) or asymmetry in geometry and/or flow
forcing are necessary ingredients for chaos to occur in 3D
steady viscous flows (Bajer and Moffatt, 1990, 1992; Shankar,
1998; Shankar and Deshpande, 2000). This discloses a
remarkable difference with the high-Re regime in that here
increasing Re promotes rather than suppresses chaos. This
implies an essentially nonlinear dependence of the chaotic
Lagrangian dynamics on Re. However, the complete story of
the routes between the generically integrable states in the
Stokes and Euler limits remains unexplored to date.
The terrain of 3D unsteady flows is even less charted than

that of their steady counterparts. Here the left-hand side of the
momentum equation (29) becomes augmented by an unsteady
term ρ∂u=∂t and in principle any flow, including non-
Beltrami Euler flow, is nonintegrable and admits 3D chaos.
Integrability thus, reminiscent of 3D steady viscous flows,
seems to hinge entirely on symmetries and linearity and for
unsteady flows can in all likelihood be expected only in the
Stokes limit. Studies on Lagrangian dynamics in realistic 3D
unsteady fluid flows have to date been few and far between
and restricted to time-periodic flows constructed by system-
atic reorientation of piecewise steady flows: the biaxial
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unsteady spherical Couette flow (Cartwright, Feingold, and
Piro, 1995, 1996), the cubic lid-driven cavity (Anderson et al.,
1999, 2006), and the cylindrical lid-driven cavity (Malyuga
et al., 2002; Speetjens, Clercx, and van Heijst, 2004;
Pouransari, Speetjens, and Clercx, 2010).
The discussion hereafter concentrates on 3D unsteady flows

and exemplifies typical behavior by way of the cylindrical lid-
driven cavity. This system possesses a rich dynamics and thus
enables a good demonstration of what may happen in this class
of flows. Two topics are considered that, as in the simpler flow
systems previously discussed, are key to Lagrangian dynamics
and 3D chaos: first, the role of symmetries in the integrability of
the Stokes limit (Sec. IV.B); and second, the breakdown of this
integrability by fluid inertia (Sec. IV.C). These phenomena are
examined in terms of the formation of coherent structures and
the associated freedom of motion for tracers. The discussion
later on the cylindrical lid-driven cavity in essence concerns an
overview and recapitulation of the main results of the separate
studies by Malyuga et al. (2002), Speetjens, Clercx, and
van Heijst (2004, 2006a, 2006b), Pouransari, Speetjens, and
Clercx (2010), and Speetjens and Clercx (2013).

1. 3D square cylinder flow

Lagrangian features of 3D unsteady flows are exemplified
by way of a simple yet realistic fluid flow: the time-periodic
flow inside a 3D square cylinder ½r; θ; z� ¼ ½0; 1� × ½0; 2π� ×
½−1; 1� (Malyuga et al., 2002; Speetjens, Clercx, and van
Heijst, 2004). The fluid is set in motion via time-periodic
repetition of a sequence of piecewise steady translations
(“forcing steps”) of the end walls with unit velocity U ¼ 1
and relative wall displacement D ¼ L=R (L and R are
physical wall displacement and cylinder radius, respectively)
by prescribed forcing protocols. Figure 12(a) shows a sche-
matic of the flow configuration; forcing protocols are speci-
fied and are composed of the forcing steps indicated by the
arrows. Highly viscous flow conditions are assumed such that
transients during switching between forcing steps are negli-
gible (i.e., Tν=Tstep ≪ 1, with Tν ¼ R2=ν the viscous time
scale and Tstep the duration of one forcing step). Under this
premise the internal flow consists of piecewise steady flows
that are each governed by the nondimensional steady Navier-
Stokes and continuity equations (2), Re u ·∇u ¼ −∇pþ∇2u

and ∇ · u ¼ 0. Nondimensionalization follows from substitu-
tion of the scaling x ¼ Rx0, u ¼ Uu0, and p ¼ Pp0 in Eq. (28),
with primes indicating dimensionless variables (omitted for
brevity). The characteristic pressure is given by P ¼ μU=R2

and ensues from assuming laminar-flow conditions dominated
by a force balance between viscous forces and pressure
gradient. Thus the Reynolds number appears before the
inertial term and parametrizes perturbation of the Stokes limit.
The motion of passive tracers is governed by the kinematic

equation (1), with formal solution xðtÞ ¼ Φtðx0Þ describing
the Lagrangian trajectory of a tracer released at x0. The
corresponding Poincaré map [which has also been referred to
as a Liouvillian map in the case of 3D volume-preserving
flows2 (Cartwright, Feingold, and Piro, 1994, 1995, 1996)] is
defined by xkþ1 ¼ ΦðxkÞ, where xk ¼ xðkTÞ is the tracer
position after k periods of the time-periodic forcing protocol.
The following forcing protocols (denoted protocols A, B, and
C hereafter) are considered:

ΦA ¼ Fþy
B Fþx

B ; ΦB ¼ F−x
T Fþx

B ; ΦC ¼ Fþy
B F−x

T Fþx
B ;

ð31Þ

with subscripts in the forcing steps referring to the top (T) and
bottom (B) end walls and superscripts indicating the trans-
lation direction [Fig. 12(a)]. All forcing steps are trans-
formations of the base flow Fþx

B according to

Fþy
B ¼ F π=2ðFþx

B Þ; F−x
T ¼ SzF πðFþx

B Þ; ð32Þ

with F α∶θ→θþα and Sz∶ðx;y;zÞ→ðx;y;−zÞ. Furthermore,
the relative displacement is fixed at D ¼ 5, leaving only Re as
a control parameter for each forcing protocol. Maps ΦA;B;C as
well as the underlying base flow Fþx

B each exhibit particular
3D dynamics and thus serve to demonstrate fundamental
aspects of 3D flows. Results have been obtained via numerical
simulations (Pouransari, Speetjens, and Clercx, 2010).

2. Coherent structures in 3D systems

Coherent structures in the flow topology are spatial entities
in the web of Lagrangian fluid trajectories that exhibit a
certain invariance to the mapping Φ. Four kinds [based on
classifications in Guckenheimer and Holmes (1983) and
Feingold, Kadanoff, and Piro (1988b)] can be distinguished
in 3D time-periodic systems, defined by

Xk ¼ ΦkðX kÞ; ð33Þ

with Xk constituting periodic points (Pk), periodic lines (Lk),
invariant curves (Ck), and invariant surfaces (Sk) of order k
(i.e., invariant with respect to k forcing cycles). Note that
periodic lines consist of periodic points, meaning that each
constituent point is invariant; invariant curves and surfaces
are only invariant as an entire entity. Brouwer’s fixed-
point theorem states that any continuous mapping of a

(a) (b)

FIG. 12. 3D square cylinder flow: Nondimensional flow con-
figuration. (a) Flow domain and forcing. (b) Streamline portrait of
base flow Fþx

B . From Speetjens, Clercx, and van Heijst, 2004.

2The present class of divergence-free flows (∇ · u ¼ 0) may in the
literature alternatively be denoted “volume-preserving flows” or
“solenoidal flows.”
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convex space3 onto itself has at least one fixed point
(Speetjens, Clercx, and van Heijst, 2004; Zeidler, 2012).
This puts forward periodic points and associated coherent
structures as the most fundamental building blocks of 3D flow
topologies. Periodic points and lines fall within one of the
following categories: node-type and focus-type periodic
points and elliptic and hyperbolic periodic lines (Malyuga
et al., 2002). (Periodic lines admit segmentation into elliptic
and hyperbolic parts.) Isolated periodic points and hyperbolic
and elliptic lines imply pairs of stable (Ws) and unstable (Wu)
manifolds, arising as surface-curve pairs (Ws;u

2D,W
u;s
1D) for

points and as surface-surface pairs (Ws;u
2D,W

u;s
2D) for lines.

Elliptic lines form the center of concentric tubes. The 1D
manifolds of isolated periodic points define invariant curves
Ck; 2D manifolds and elliptic tubes define invariant surfaces
Sk. Period-1 structures are the most important for the flow
topology, as they determine the global organization. Higher-
order structures are embedded within lower-order ones and
thus concern ever smaller features. The following discussion
thus is restricted to period-1 structures.

B. Degrees of integrability in 3D unsteady Stokes flows

Flows often accommodate symmetries due to the geometry
of the flow domain and the mathematical structure of the
governing conservation laws. Such symmetries, if present,
play a central role in the formation of coherent structures and,
inherently, in the spatial confinement of tracer motion.
Symmetries in fact are the only mechanism that may accom-
plish integrability in 3D viscous flows (Sec. IV.A). In 2D time-
periodic flows this typically results in symmetry groups of
coherent structures or physical separation of flow regions by
symmetry axes (Franjione, Leong, and Ottino, 1989; Ottino,
Jana, and Chakravarthy, 1994; Meleshko and Peters, 1996). In
3D time-periodic flows this may furthermore suppress truly
3D dynamics (Feingold, Kadanoff, and Piro, 1988b; Mezić
and Wiggins, 1994; Haller and Mezić, 1998; Malyuga et al.,
2002; Speetjens, Clercx, and van Heijst, 2004). Such
manifestations of symmetries are demonstrated below for the
time-periodic cylinder flow in the noninertial limit Re ¼ 0.
The impact of fluid inertia is examined in Sec. IV.C.
The flow field u governed by Eq. (28) collapses to

urðxÞ ¼ urðr; zÞ cos θ;
uθðxÞ ¼ uθðr; zÞ sin θ;
uzðxÞ ¼ uzðr; zÞ cos θ; ð34Þ

in the noninertial limit. (The italic u’s refer to the actual
velocity components of the 3D velocity; the roman u’s
correspond with the part of each component that depends
on r and z.) This implies closed streamlines in the base flow
Fþx
B that are symmetric about the planes x ¼ 0 and y ¼ 0

(representing reflections) [see Fig. 12(b)] (Shankar, 1997)
and, inextricably connected with that, two constants of motion
of the generic form

F1ðxÞ ¼ f1ðr; zÞ; F2ðxÞ ¼ f2ðr; zÞ sin θ; ð35Þ

satisfying dF=dt ¼ u · ∇F ¼ 0. [An analytical expression for
F1 is given by Malyuga et al. (2002).] The properties of
Eq. (35) have essential ramifications for the flow topologies of
the forcing protocols of Eq. (31). Figure 13 offers some first
insight into the dynamics by way of the Poincaré sections of a
single passive tracer. Tracers released under protocol A
[Fig. 13(a)] are confined to invariant spheroidal surfaces on
which they perform effectively 2D (chaotic) dynamics. This
occurrence of chaos on a submanifold of codimension one is
an essentially 3D phenomenon; see, e.g., Gómez and Meiss
(2002), Meier, Lueptow, and Ottino (2007), Mullowney,
Julien, and Meiss (2005, 2008), and Sturman et al. (2008)
for dynamically similar systems. Protocol B [Fig. 13(b)]
restricts tracers to a quasi-2D (chaotic) motion within thin
shells parallel to the y-z plane. Truly 3D (chaotic) dynamics
covering the entire flow domain occurs only for protocol C
[Fig. 13(c)]. These dramatic differences in dynamics signify
the presence of geometric restrictions on the tracer motion,
akin to the KAM islands and cantori of 2D flows (Sec. II.E), in
protocolsA and B. This is a direct consequence of symmetries
as we elaborate on.
These observations furthermore demonstrate that the qual-

ity integrability takes on a subtler meaning in 3D flows, in that
various degrees of integrability—and, inherently, spatial
confinement—can be distinguished, ranging from restriction
to closed trajectories [base flow, Fig. 12(b)] to global 3D

FIG. 13. 3D square cylinder flow: Degrees of integrability of 3D
unsteady Stokes flows demonstrated by Poincaré sections of
single tracers for the time-periodic forcing protocols according to
Eq. (31). (a) Protocol A, (b) protocol B, and (c) protocol C. From
Speetjens, Clercx, and van Heijst, 2004.

3A space is termed convex if for any pair of points within the
space, any point on the line joining them is also within the space. The
present cylindrical domain is such a convex space.
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chaotic advection [protocol C, Fig. 13(c)]. The classification
of 3D time-periodic fluid flows introduced by Cartwright,
Feingold, and Piro (1996) may be understood in terms of this
notion of degrees of integrability. The cylinder flow in its
Stokes limit encompasses all degrees of integrability in 3D
time-periodic systems.

1. 2D (chaotic) dynamics within invariant manifolds

The restriction of tracers in protocol A to invariant surfaces
arises from a hidden axisymmetry in the base flow that is
retained by any forcing protocol involving reorientations of
only one end wall. According to Eq. (35), the constant of
motion F1 is invariant under the continuous transformation
F α∶ θ → θ þ α, with 0 ≤ α ≤ 2π, i.e., F αðF1Þ ¼ F1.
The level sets of F1 are defined by the surfaces of revolution
of the trajectories dr=dz ¼ urðr; zÞ=uzðr; zÞ ¼ gðr; zÞ in
the r-z plane (Speetjens, Clercx, and van Heijst, 2006a).
Figure 14(a) shows members of the infinite family of con-
centric spheroidal surfaces thus formed. Their emergence is
entirely consistent with the generic property that a continuous
symmetry in a bounded 3D steady flow (here the base flow)
partitions the flow topology into a finite number of families of
nested invariant tori or spheroids [see Theorem 4.1 in Mezić
and Wiggins (1994)]. Furthermore, spheroidal invariant sur-
faces imply closed streamlines (Mezić and Wiggins, 1994).
This explains the flow topology of the base flow in its Stokes
limit [Fig. 12(b)].

Further organization of the flow topology of protocol A
results from discrete symmetries arising from the base flow.
Transformations Eq. (32) through ΦA following Eq. (31)
translate into

ΦA ¼ S1Φ−1
A S1; ΦA ¼ ~SΦA

~S; ð36Þ

with S1∶ ðx; y; zÞ → ð−y; −x; zÞ, ~S ¼ S2F
þx
B , and

S2∶ðx; y; zÞ → ðy; x; zÞ. (Note that these symmetry operators
are consistent with the continuous axisymmetry by acting only
within a given invariant spheroid.) The time-reversal reflec-
tional symmetry S1 has the fundamental consequence that the
flow must possess at least one period-1 lineL1, viz., within the
symmetry plane I1 ¼ S1ðI1Þ (plane y ¼ −x) (Speetjens,
Clercx, and van Heijst, 2004). Coexistence of S1 with ~S
dictates that L1 be invariant to both discrete symmetries, i.e.,

L1 ¼ S1ðL1Þ ¼ ~SðL1Þ ¼ S1 ~SðL1Þ ¼ ~SS1ðL1Þ; ð37Þ

meaning they essentially shape the period-1 line and its
associated structures. The curve in Fig. 14(a) outlines the
period-1 line for D ¼ 5, where heavy and normal parts
indicate elliptic and hyperbolic segments, respectively. The
hyperbolic segment is invariant to ~S; left and right elliptic
segments form symmetry pairs related via ~S. Higher-order
periodic lines are subject to a similar organization (Speetjens,
Clercx, and van Heijst, 2006a). Experimental validation of
periodic lines and their fundamental link with symmetries was
discussed by Znaien et al. (2012).
The intrasurface topologies within the invariant spheroids

are organized by the periodic points defined by their inter-
section with the periodic lines. The segmentation into elliptic
and hyperbolic parts results in multiple kinds of intrasurface
topologies. Figure 14(b) shows an invariant spheroid that
intersects with the hyperbolic segment of the period-1 line and
exposes a topology that consists of two pairs of period-2
islands arranged around the two hyperbolic period-1 points
(dots) and enveloped by their heteroclinically interacting
manifolds (not shown). The stable ðWs

i Þ and unstable ðWu
i Þ

manifolds of each period-1 point relate via Wu
i ¼ S1ðWs

i Þ;
manifolds of the period-1 points interrelate via Wu

1 ¼ ~SðWu
2Þ

andWs
1 ¼ ~SðWs

2Þ. (Note that the intrasurface manifolds merge
into 2D manifolds Ws;u

2D in 3D space with the same symmetry
properties.) The two pairs of period-2 islands correspond to
two pairs of period-2 elliptic points (facing points make one
pair) that are on elliptic segments of two period-2 lines
intersecting the invariant surface. These entities relate, in a
similar manner as their period-1 counterparts, via symmetries
S1 and ~S. Figure 14(c) shows an invariant spheroid that
intersects with hyperbolic segments of said periodic lines,
leading to fully chaotic intrasurface dynamics.
Periodic points within invariant spheroids belonging to

periodic lines imply the map ΦA is locally area preserving in
their proximity (Gómez and Meiss, 2002). This has the
important implication that the tracer motion within each
spheroid is essentially similar to that in 2D area-preserving
maps. This underlies the 2D Hamiltonian intrasurface topol-
ogies in Fig. 14 with generic composition according to

FIG. 14. 3D square cylinder flow: Formation of spheroidal
invariant surfaces and intrasurface Hamiltonian dynamics in 3D
unsteady Stokes flows demonstrated by protocol A. Heavy and
normal sections of the period-1 line indicate elliptic and hyper-
bolic segments. Intrasurface dynamics are visualized by Poincaré
sections of a ring of tracers. (a) Spheroids and (b), (c) period-1
lines. From Speetjens, Clercx, and van Heijst, 2006a.
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Sec. II.E; compare Fig. 14(b) with Fig. 6. Imperative for the
rich intrasurface dynamics here as well as in other 3D systems
(Gómez and Meiss, 2002; Mullowney, Julien, and Meiss,
2005, 2008; Meier, Lueptow, and Ottino, 2007; Sturman et al.,
2008) is the existence of multiple isolated periodic points of
different type. This, through Brouwer’s fixed-point theorem,
suggests that convexity of the invariant surfaces is a necessary
(if not sufficient) condition. Absence of such complex
dynamics in the classical case of invariant tori, which are
nonconvex and generically accommodate a dense winding of a
single trajectory, supports this conjecture. However, conclu-
sive establishment of the conditions that admit intrasurface
chaos remains outstanding.

2. Quasi-2D (chaotic) dynamics within subregions

An immediate consequence of including both top and
bottom walls in ΦB is the vanishing of constant of motion
F1 and the associated continuous axisymmetry. Thus here
tracers are, in contrast to protocol A, no longer restricted to
invariant surfaces. Protocol B nonetheless accommodates
discrete symmetries, reading

ΦB ¼ S̄Φ−1
B S̄; ΦB ¼ S̄0Φ−1

B S̄0; ΦB ¼ SyΦBSy; ð38Þ

with Sy∶ðx; y; zÞ → ðx;−y; zÞ, S̄¼ SxF
þx
B , Sx∶ðx; y; zÞ →

ð−x; y; zÞ, S̄0 ¼ SzS̄Sz, and Sz as before. Note that symmetries
S̄ and S̄, and corresponding symmetry planes Ī ¼ S̄ðĪÞ and
Ī0 ¼ SzðĪÞ, are conjugate in that they relate via Sz; the latter is
a time-reversal symmetry hidden in S̄ and S̄0: ΦB ¼ SzΦ−1

B Sz.
Time-reversal symmetry again implies at least one period-1
line L1 within the corresponding symmetry plane. However,
coexistence of two such symmetries imposes an additional
restriction compared to protocol A in that period-1 lines
identify with the intersections L1 ∈ Ī ∩ Ī0 of the conjugate
symmetry planes so as to belong simultaneously to both
(Speetjens, Clercx, and van Heijst, 2004). The symmetry of Ī
and Ī0 about z ¼ 0 implies organization of period-1 lines into
the group

MB ¼ ffL1
z;1;L

1
z;2;…;L1

z;ng; fL1
1; SzðL1

1Þg;
fL1

2; SzðLk
2Þg;…; fL1

m; SzðL1
mÞgg; ð39Þ

with Lk
z;i ¼ SzðLk

z;iÞ (i ∈ ½1; n�) period-1 lines within z ¼ 0

and fLk
i ; SzðLk

i Þg (i ∈ ½1; m�) symmetry pairs about z ¼ 0.
Note that all period-1 lines possess the self-symmetry Lk

z;i ¼
SyðLk

z;iÞ and Lk
i ¼ SyðLk

i Þ about the plane y ¼ 0. Thus here a
symmetry group of period-1 lines forms; for protocol A a
single period-1 line consisting of symmetric segments forms.
Mass conservation implies at least one period-1 line that,

for given symmetries, must sit in the plane z ¼ 0, meaning
that Lk

z;1 always exists. Figure 15(a) shows a typical symmetry
group MB ¼ fLk

z;1;L
k
1; SzðLk

1Þg of period-1 lines, with Lk
z;1

fully hyperbolic and the conjugate pair fLk
1; SzðLk

1Þg fully

elliptic. The stable and unstable manifolds Ws=u
2D of line

segment p1 − p2 of Lk
z;1, relating via Wu

2D ¼ SzðWs
2DÞ, are

shown in Fig. 15(b) and envelop the elliptic region comprising
concentric tubes (the 3D counterparts to KAM islands)

centered on the elliptic lines (not shown). The manifolds
extend primarily in the direction normal toLk

z;1 (i.e., parallel to
the y-z plane) and exhibit only marginal y-wise variation.
Moreover, they exhibit transversal interaction, which is a
fingerprint of chaotic dynamics in 2D systems. This manifold
behavior causes the quasi-2D chaotic tracer motion within
a thin layer normal to the period-1 lines, as illustrated in
Fig. 13(b). Tracers released near the elliptic segments exhibit
similar behavior by remaining confined to thin slices of
elliptic tubes (not shown). Hence, tracer dynamics within
each layer is of a basically Hamiltonian nature and is thus
intimately related to the intrasurface dynamics of protocol A.
A primary difference with the latter is that tracers are not
strictly confined to an invariant surface. Whether these less
restrictive conditions may be of any consequence is an open
question. Protocols A and B thus reveal that time-reversal
symmetries, through their link with periodic lines, imply
effectively (quasi-)2D dynamics. This suppression of truly 3D
dynamics is an essentially 3D manifestation of this kind of
symmetries; their role in 2D systems primarily concerns
formation of symmetry groups.

3. Unrestricted 3D (chaotic) dynamics

Inclusion of a third forcing step results in a flow that is
devoid of global symmetries. This in principle paves the way

FIG. 15. 3D square cylinder flow: Formation of periodic lines
and isolated periodic points and associated manifolds in 3D
unsteady Stokes flows demonstrated by protocols B and C.
(a) Period-1 lines for protocol B. From Speetjens, Clercx, and
van Heijst, 2004. (b) Manifolds of segment p1 − p2. (c) Manifold
pairs for protocol C. (b), (c) From Speetjens, 2001.
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to 3D chaotic advection for viscous flows. In particular the
absence of time-reversal symmetries is of fundamental con-
sequence in that periodic lines must thus no longer be present.
However, the current flow must, according to Brouwer’s
fixed-point theorem, accommodate at least one isolated
period-1 point (Sec. IV.A.2). Two node-type period-1 points
indeed exist and have associated manifold pairs (Wu

2D, W
s
1D)

with essentially 3D foliations that densely fill the entire flow
domain [Fig. 15(c)]. (The 2D manifolds have a dominant
stretching direction and thus assume a particular shape.) Here
the stable and unstable manifolds, in contrast with those
associated with periodic lines, are not related via a time-
reversal symmetry. This asymmetry in time results in essen-
tially 3D transport and is a key element in the truly 3D chaotic
dynamics demonstrated in Fig. 13(c). Moreover, the role of
manifolds is fundamentally different here compared with
protocols A and B. The stability properties of the manifolds
admit only homoclinic or heteroclinicW2D–W1D interactions;
any interactions between the 2D manifolds are impossible on
grounds of identical stability. [Figure 17(a), for example,
shows a homoclinic transversal Ws

2D–W
u
1D interaction for

protocol A at Re ¼ 100.] Furthermore, interactions between
2D manifolds of isolated periodic points can generically
happen only through either merger into heteroclinic surfaces
or formation of a heteroclinic orbit connecting both points by
transversal intersection. 3D counterparts to transversal mani-
fold interaction as, for example, shown in Fig. 15(b) for
protocol B are nonexistent for isolated periodic points.4 This
suggests that, contrary to the (quasi-)2D dynamics associated
with periodic lines, the intrinsic hyperbolicity of isolated
period-1 points generically suffices for 3D chaotic advection
to occur (Speetjens, Clercx, and van Heijst, 2004). Formation
of transport barriers by heteroclinic merger of 2D manifolds is
the sole nonchaotic case. However, that is an atypical case in
3D unsteady flows.

C. Breakdown of invariant manifolds by fluid inertia

Fluid inertia Re > 0 has a strong impact upon transport
properties. It eliminates any symmetry that hinges upon
linearity of the Stokes limit of the momentum equation and
may thus facilitate (if not directly cause) 3D chaotic advection
(Bajer and Moffatt, 1992; Cartwright, Feingold, and Piro,
1996). In our example, the cylinder flow, inertia introduces a
secondary circulation to the base flow Fþx

B transverse to its
primary circulation in the noninertial limit [Fig. 16(a)]. This
breaks the symmetry about x ¼ 0 and causes the closed
streamlines to become nonclosed and wrapped around invari-
ant tori defined by the level sets of a new constant of motion F̄
that emerges in favor of constants of motion F1;2 (Cartwright,
Feingold, and Piro, 1996). (The symmetry of the base flow
about y ¼ 0 is preserved for Re > 0.) These tori, in turn,
undergo a progressive disintegration into tori with winding

numbers5 W > 1 [island chains in Fig. 16(b)] and chaotic seas
[Fig. 16(c)] with increasing Re, according to the Hamiltonian
response scenario for 2D time-periodic systems to perturba-
tions and described by the KAM and Poincaré-Birkhoff
theorems (Ottino, 1989; Cartwright, Feingold, and Piro,
1996). The cross sections in Fig. 16 are dynamically equiv-
alent to said 2D systems (Bajer, 1994; Cartwright, Feingold,
and Piro, 1996); compare their structure with Fig. 5.

1. Response of invariant tori

Toroidal invariant surfaces in the Poincaré maps of 3D time-
periodic flows exhibit similar behavior in that they also partly
survive (inertia-induced) perturbations; this results in Poincaré
sections of composition similar to the 3D streamline portrait in
Fig. 16 yet typically comprising various arrangements of
multiple families of tori (Dombre et al., 1986; Feingold,
Kadanoff, and Piro, 1987, 1988b; Cartwright, Feingold, and
Piro, 1994). This survival of invariant tori is described by a 3D
counterpart to the KAM theorem (Cheng and Sun, 1990a;
Mezić and Wiggins, 1994; Broer, Huitema, and Sevryuk,
1996). Invariant tori accommodating resonant (i.e., closed)

y y

z z

x y

(a)

(b) (c)

FIG. 16. 3D square cylinder flow: Formation and subsequent
breakdown of invariant tori due to fluid inertia demonstrated by
the base flow Fþx

B . (a) A single streamline for Re ¼ 100; (b), (c):
cross sections of the streamline pattern with plane x ¼ 0.12 at
Re ¼ 50 and 100, respectively. From Speetjens, 2001.

4The periodic points by definition are asymptotic limits of any
transversal intersections. Topological consistency then admits two
situations: (i) periodic points are part of the intersection (i.e., the
heteroclinic orbit), and (ii) intersections are isolated points
(W2D–W1D interactions).

5The winding number or rotation numberW represents the number
of revolutions around the axis of rotation required for completing a
full loop on a closed trajectory. The closed streamlines in Fig. 12(b),
for example, have W ¼ 1.
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trajectories with W > 1 disintegrate into tori with W > 1 in a
way similar to the 3D steady case [Fig. 16(b)] (Cartwright,
Feingold, and Piro, 1996). The fate of such resonant trajecto-
ries is described by the 3D counterpart to the Poincaré-
Birkhoff theorem (Cheng and Sun, 1990b).
A special case exists in perturbed time-periodic systems

near the limiting caseW ¼ 1. Trajectories in the Poincaré map
in general wrap themselves densely around invariant tori in a
manner akin to the perturbed base flow (Fig. 16). However,
so-called resonant sheets, material surfaces in the unperturbed
flow composed of period-p points with p ≥ 1, interrupt this
process and, if occurring, cause local defects in the tori by
which tracers can randomly jump between their intact sec-
tions. This behavior is termed resonance-induced dispersion
(or resonance-induced diffusion) and facilitates global tracer
distribution (Feingold, Kadanoff, and Piro, 1988b; Piro and
Feingold, 1988; Cartwright, Feingold, and Piro, 1994, 1995,
1996). Resonance-induced dispersion is extremely slow com-
pared to truly 3D chaotic advection, since tracers are confined
to segments of tori in between jumps. Tracers nonetheless
describe space-filling trajectories that visit the entire domain
in the course of time. The dynamics within the jump zones is
governed by isolated periodic points that remain from the
(originally entirely periodic) resonance sheets upon perturba-
tion. The associated manifold pairs (Ws;u

2D,W
u;s
1D) intersect these

zones transversally and thus enable the jumping between
segments of tori that underlies resonance-induced dispersion
(Mezić, 2001a).

2. Response of invariant spheroids

Studies on the responses of invariant surfaces to perturba-
tions are almost exclusively restricted to tori. However, the
classification theorem for closed surfaces states that any
orientable closed surface, which includes level sets of a
constant of motion in bounded flows, is topologically equiv-
alent to a sphere or a connected sum of tori (Alexandroff,
1961). This puts forward invariant spheroids, besides invariant
tori, as a second fundamental form of invariant surfaces
relevant in the present context (Speetjens, 2001); recall in
this regard that tori and spheroids are also the key invariant
surfaces in 3D steady flows (Sec. IV.B.1). Essentially different
dynamics upon perturbation are likely on grounds of funda-
mental topological properties. Tori are doubly connected
nonconvex manifolds, and spheroids are singly connected
convex manifolds. Tori accommodate trajectories that are
either closed or densely wrapped, and spheroids typically
accommodate chaotic seas and elliptic islands. Model flows
offer a way to investigate the response of invariant spheroids
to inertial perturbations under realistic conditions. This may
contribute to a more complete picture of the fate of invariant
surfaces subject to inertial perturbations.
The effect of fluid inertia upon invariant spheroids can be

demonstrated for protocol A; this is representative of generic
forcing protocols with such a topology (Pouransari, Speetjens,
and Clercx, 2010). Inertia breaks both the time-reversal
reflectional symmetry S1 in Eq. (36) and the continuous
axisymmetry due to constant of motion F1; only symmetry ~S
is preserved for Re > 0 (Speetjens, Clercx, and van Heijst,
2006a). This causes the period-1 line L1 [Fig. 14(a)] to give

way to a focus-type isolated period-1 point with a (Ws
2D,W

u
1D)

manifold pair that, for sufficiently high Re, completely
destroys the invariant spheroids and, in consequence, yields
3D chaotic tracer motion. Figure 17 demonstrates this process
for Re ¼ 100, where, consistent with permissible manifold
interactions of isolated periodic points (Sec. IV.B.3), homo-
clinic transversal Ws

2D–W
u
1D interaction occurs. However,

even minute departures from the noninertial limit may change
the flow topology drastically. This is discussed next.
Secondary circulation causes progressive drifting of tracers

transverse to the invariant spheroids that grows stronger with
increasing Re. This is demonstrated in Fig. 18 by means of the
r-z projection of a Poincaré section of a single tracer for 104

forcing periods. The drifting tracers remain confined within
thin shells centered upon the invariant spheroids for Re≲ 0.1
[Figs. 18(a) and 18(b)] for time spans of Oð2 × 104Þ periods
due to the averaging out of transverse excursions (“averaging
principle”) (Arnol’d, 1978). Thus invariant spheroids survive
in an approximate way as so-called adiabatic shells (Speetjens,
Clercx, and van Heijst, 2006a). However, this survival occurs
only for regions with chaotic intrasurface dynamics. This puts
forth the rather intriguing notion that intrasurface chaos
promotes the persistence of partial transport barriers, or
equivalently that 2D chaos suppresses the onset of 3D chaos.
The formation of a complete adiabatic shell in Fig. 18(b) thus
signifies an underlying invariant spheroid with fully chaotic
tracer motion. Chaotic and nonchaotic regions of invariant
spheroids [e.g., shown in Fig. 14(b)] transform into incom-
plete adiabatic shells and elliptic tubes, respectively, that
merge into intricate adiabatic structures by a mechanism
termed resonance-induced merger (Speetjens, Clercx, and
van Heijst, 2006a, 2006b). Figure 19 shows an adiabatic
structure formed by a resonance-induced merger, comprising
an inner and outer adiabatic shell, connected via an elliptic
tube on each elliptic segment of the period-1 line for Re ¼ 0.1.
Both tubes, similarly to the underlying elliptic segments of the
period-1 line of the noninertial limit, form a symmetry pair
related via ~S. A resonance-induced merger thus results in a

(a) (b)

FIG. 17. 3D square cylinder flow: Emergence of 3D global
chaos and isolated periodic points with associated manifolds due
to inertia-induced breakdown of spheroidal invariant surfaces in
3D unsteady flows demonstrated by protocol A at Re ¼ 100.
(a) Manifold pair (Ws

2D;W
u
1D) of the isolated periodic point, and

(b) Poincaré section of a single tracer. (a) From Speetjens, 2001.
(b) From Speetjens, Clercx, and van Heijst, 2006a.
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family of nested closed adiabatic structures that are topologi-
cally equivalent to tori. A similar adiabatic structure due to a
resonance-induced merger is shown in Fig. 20, but with the
following two differences: (i) connecting tubes undergo a

bifurcation from period-2 (P2) to period-4 (P4) structures;
(ii) inner (Ai) and outer (Ao) shells are “leaky.” This leakiness
causes tracer exchange with a chaotic environment (not
shown) and thus sets up a net tracer circulation through the
structure from outer to inner shell. This temporary tracer
entrapment within a coherent structure [residence timeOð103Þ
periods] bears a certain resemblance to prolonged confine-
ment in the chaotic saddle region (Sec. II.A) and stickiness
near cantori (Sec. II.E) in 2D (open) flows.
This exposes a fundamental difference in response scenar-

ios of invariant tori and spheroids. The case of tori seems
fairly well understood, although a complete rigorous descrip-
tion of the breakdown and survival mechanisms remains
outstanding. The dynamics of perturbed invariant spheroids,
on the other hand, remains largely an open problem. Fully
chaotic spheroids survive weak inertia as complete adiabatic
shells and constitute transport barriers akin to those of the
noninertial limit. Nonchaotic regions on subfamilies of
invariant spheroids have fundamental ramifications by caus-
ing the formation of intricate adiabatic structures through a
resonance-induced merger. Its occurrence for a wide range of
forcing protocols (Speetjens, Clercx, and van Heijst, 2006a,
2006b; Pouransari, Speetjens, and Clercx, 2010) and different
systems (Moharana et al., 2013) suggests that resonance-
induced merger is a universal phenomenon and is part of an
essentially 3D route to chaos. The study by Wu et al. (2014)
supports this assertion by demonstrating that a resonance-
induced merger can in fact be triggered by weak perturbations
of arbitrary nature and provides the first experimental
evidence of its physical existence.
Resonances as a key mechanism in response scenarios are

the common denominator for tori and spheroids. However,
their emergence and manifestation are very different. Known
resonances on tori in time-periodic systems include isolated
closed trajectories and, in the case of the very dense windings
underlying resonance-induced dispersion, resonant sheets:
material surfaces of period-p points. The former cause
disintegration of the entire torus in question; the latter break
up into disconnected segments. Whether further types may
exist is open. Topological considerations suggest strings of
isolated period-p points as a special case of isolated closed

(a) (b)

(c)

FIG. 18. 3D square cylinder flow: Inertia-induced drifting of
tracers transverse to invariant spheroids in 3D unsteady flows
demonstrated by the Poincaré section of a single tracer (10 000
periods) for protocol A. The asterisk denotes the initial tracer
position. (a) Re ¼ 0, (b) Re ¼ 0.1, and (c) Re ¼ 1. From
Speetjens, Clercx, and van Heijst, 2006a.

(a) (b)

FIG. 19. 3D square cylinder flow: Formation of adiabatic
structures by resonance-induced merger of adiabatic shells and
elliptic tubes in 3D unsteady flows for small departures from
the noninertial limit demonstrated for protocol A. Re ¼ 0.1.
(a) Perspective view and (b) slice centered upon symmetry plane
y ¼ −x. From Speetjens, Clercx, and van Heijst, 2006a.

(a) (b)

FIG. 20. 3D square cylinder flow: Formation of leaky adiabatic
structures by resonance-induced merger in 3D unsteady flows for
small departures from the noninertial limit demonstrated for
protocolA. Re ¼ 0.1. (a) Perspective view and (b) r-z projection.
From Speetjens, Clercx, and van Heijst, 2006a.
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trajectories (i.e., a localized counterpart to resonant sheets).
Resonances on spheroids emerge as periodic points belonging
to periodic lines in the 3D domain. Resonance-induced merger
seems to rely, in particular, on isolated degenerate periodic
points connecting elliptic and hyperbolic segments of periodic
lines. Moreover, instead of causing disintegration and chaos,
resonance-induced merger reorganizes and reorders the flow
topology through the formation of distinct coherent structures.
Resonance-induced dispersion and resonance-induced merger
nonetheless exhibit a remarkable similarity that hints at a
comparable mechanism. Tracer switching effectuated by the
isolated periodic points inside the perturbed resonant sheets
during resonance-induced dispersion, demonstrated by Mezić
(2001a) and supported by experiments in Solomon and Mezić
(2003), bears a great resemblance to the migration of tracers
from an adiabatic shell into an elliptic tube in the case of
resonance-induced merger. Further explorations are needed
and it may be of interest to compare other studies on resonance
phenomena (Litvak-Hinenzon and Rom-Kedar, 2002;
Vainchtein, Neishtadt, and Mezić, 2006).

V. CHAOTIC ADVECTION FROM DATA

An accurate prediction of material transport in geophysical
flows is growing in importance in the aftermath of large-scale
catastrophic events such as the volcanic eruption of
Eyjafjallajökull (Iceland, 2010), the Deepwater Horizon oil
spill (Gulf of Mexico, 2010) [see, e.g., Domingos and Cardoso
(2013)], and the nuclear disaster in Fukushima (Japan, 2011)
[see, e.g., Domingos and Cardoso (2015)]. The main avenues
for the material transport have been connected to the skeleton of
chaotic advection, and detecting these routes from measured
data in (near) real time has become one of the major goals at the
intersection of dynamical systems and fluid dynamics. Most
approaches use data in the form of numerical vector fields,
interpolated and extrapolated from telemetry, e.g., from high-
frequency radar and satellite altimetry, although Lagrangian
sensor data are also available and studied. The approaches
reviewed here are aimed at defining and computing skeletons of
chaotic advection directly from available data, without inter-
mediary equation-based models.

A. Lagrangian coherent structures

As we have seen, invariant manifolds play a central role in
the analysis of time-invariant velocity fields as they act as
barriers for material transport. If in addition an invariant
manifold attracts or repels nearby material, it organizes
behavior of the flow in its vicinity. Since invariant manifolds
align locally with eigenvectors of the linearized velocity field,
methods based on flow linearization are able to accurately
compute routes for material transport in time-invariant flows.
For time-varying flows, however, manifolds that align with
eigenvectors of linearized flow do not act as barriers to
material transport. Therefore, a different strategy is needed
to find lower-dimensional structures that organize the flow.
All material lines advected by the flow are barriers to

material transport. In informal terms, Lagrangian coherent
structures are those material lines that strongly attract or repel
the neighboring material. The initial operational definition

specified attracting (respectively, repelling) LCSs as material
lines that are linearly stable in forward (respectively, back-
ward) time for a longer period than any of their neighbors
(Haller, 2000, 2001a, 2001b, 2002; Haller and Yuan, 2000).
LCSs were initially approximated by ridges of finite-time

Lyapunov exponent (FTLE) and finite-size Lyapunov expo-
nent (FSLE) fields, which were assumed to exist near true
LCSs (Joseph and Legras, 2002; Shadden, Lekien, and
Marsden, 2005; Haller and Sapsis, 2011; Tallapragada and
Ross, 2013). FTLEs and FSLEs measure the rate of separation
between nearby trajectories, which is associated with the
linear stability of those trajectories. Since FTLE or FSLE
fields are relatively easy to compute and understand, they were
quickly adopted as proxies to the routes of material transport
in geophysical studies, e.g., by Rypina et al. (2007), Shadden
et al. (2009), and Bettencourt, Lopez, and Hernandez-
Garcia (2012), but also in analyses of mixing, e.g., by
Lukens, Yang, and Fauci (2010). Postprocessing and the
use of FTLE or FSLE fields remains a challenge as they
may indicate the presence of LCSs where there are none
(Karrasch and Haller, 2013). In certain cases, FTLE or
FSLE analysis is justified only in a qualitative, but not
quantitative sense (BozorgMagham, Ross, and Schmale,
2013). Nevertheless, the ease of interpretation of FTLE fields
means that they remain an active area of research in exper-
imental studies (Raben, Ross, and Vlachos, 2013).
Lagrangian coherent structures have recently been redefined

with the requirements that the defined structures be objective
with respect to the reference frame, observable over finite-time
periods, coherent under Lagrangian transport, and spatially
continuous, as detailed by Haller (2015). Under these require-
ments, a variational principle for LCSs has been formulated,
which is then used as an operational procedure for calculating
the LCS (Haller, 2011; Haller and Beron-Vera, 2012; Blazevski
and Haller, 2014). According to the variational definition,
LCSs are shadowed by minimal geodesics induced by the
Riemannian metric of the Cauchy-Green strain tensor CtðxÞ ¼
∇Φ⊤

t ∇Φt, i.e., the “absolute-value squared” of the Jacobian
matrix∇Φt of the flowmap. Figure 21 shows an example of the
invariant manifolds found in this manner in a jet flow. The
theory presently covers a broad array of LCSs in 2D and 3D
velocity fields, classified according to the type of deformation
they exert on the surrounding material (Haller, 2015).
Compared to FTLE or FSLE computations, the variational

definition results in a computationally more involved pro-
cedure. The algorithm has been made more accessible through
a freely available LCS toolbox for MATLAB.6 As an example of
the use of this approach, we highlight detection of an elliptic
LCS that matches a physically observed phenomenon known
as the Agulhas ring, associated with the transport of cold water
from the southern tip of Africa (Beron-Vera et al., 2013) (see
Fig. 22). A recent detailed review of the Lagrangian coherent
structure theory (Haller, 2015) provides further references to
studies that have applied variational LCSs to the analysis of
geophysical flows, now casting and forecasting, as well as
discussions of numerical considerations associated with the
technique.

6http://georgehaller.com/software/software.html.
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B. Coherent sets

Instead of looking at barriers to transport, as is the case with
Lagrangian coherent structures, a skeleton of chaotic advec-
tion can be proposed to be a collection of regions from which
tracer material does not leak out. Such collections are routes
through which the material travels, therefore serving as a road
map for transport.
For a tracer distributed in the set A at initial time t0,

ΦtðA; t0Þ represents the set containing the tracer after it is
advected by the flow over the time interval t. The sets C0

(source) and Ct (target) are a coherent pair if the tracer placed
in the source fills the target entirely, without leaking, that is

μ½ΦtðC0; t0Þ ∩ Ct� ≈ μ½Ct�; ð40Þ

where the size of sets is measured by an application-relevant
measure μ, e.g., fluid volume. Finding pairs of coherent sets

can be formulated as a variational problem based on the linear
Perron-Frobenius transfer operator. The transfer operator acts
on tracer distributions λ by composing them with the flow
map ½Pt0;tλ�ðAÞ ≔ λ½Φ−tðA; t0Þ�. A solution to the search for
coherent pairs is conveniently given by the eigenfunctions of
the transfer operator. Similar methods were previously used
successfully in the reconstruction of invariant measures
of dynamical systems in Dellnitz and Junge (1999, 2002),

FIG. 22. A satellite image showing chlorophyll being carried by
an Agulhas ring away from the southern tip of Africa (bottom
right in the image). Superimposed in black is an elliptic
Lagrangian coherent structure corresponding to the ring. From
Beron-Vera et al., 2013.

FIG. 23. Coherent set of the Antarctic atmospheric vortex, visualized using the Perron-Frobenius technique. Images within each row
are different views of the same set; rows are visualizations for data recorded seven days apart. From Froyland, Santitissadeekorn, and
Monahan, 2010.

FIG. 21. Elliptic and forward and backward hyperbolic
Lagrangian coherent structures (LCSs) in a time-periodic Bickley
jet, detected based on the variational redefinition of LCSs. From
Haller and Beron-Vera, 2012.
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almost-invariant sets in time-independent dynamical
systems in Froyland and Dellnitz (2003) and Froyland and
Padberg (2009), and coherent pairs in time-dependent flows in
Froyland, Lloyd, and Santitissadeekorn (2010) and Froyland,
Santitissadeekorn, and Monahan (2010).
Numerical approaches predominantly rely on Ulam approx-

imations of transfer operators, which discretize the fluid
domain into smaller cells. Launching a large number of
Lagrangian particles from each set, the transfer operator is
approximated by a large, but sparse, Markov chain transition
matrix. Discretization cells corresponding to nonzero ele-
ments of eigenvectors of the Ulam matrix form sets that
approximate coherent pairs, as explained in the review by
Froyland and Padberg-Gehle (2013) (see Fig. 23).
In the context of fluid flows, the transfer operator approach

was applied to geophysical transport: e.g., atmospheric flows
in Santitissadeekorn, Froyland, and Monahan (2010), and
oceanic flows in Froyland et al. (2012) and Sebille, England,
and Froyland (2012). Case studies comparing Lagrangian
coherent structures and coherent sets (Froyland and
Padberg, 2009; Tallapragada and Ross, 2013) show that
both approaches capture similar features in flows, which is
explained by Froyland and Padberg-Gehle (2012). A further
connection between coherent sets and braid-theoretic studies
of mixing (see Sec. V.D) can be found in Grover et al. (2012).
That study points out that while material in coherent sets
might not be well mixed with the surrounding fluid, the
coherent sets may act as “ghost” rods that stir the fluid around
them, promoting efficient mixing in the rest of the fluid.

C. Mesochronic analysis

Given any observable function, i.e., a field over states
fðx0; t0Þ, we can generate its time-averaged, or mesochronic,
counterpart ~ftðx0; t0Þ by evolving a trajectory xtðx0; t0Þ from
the initial condition ðx0; t0Þ and computing the Lagrangian
average of f along it:

~ftðx; t0Þ ≔
1

t

Z
t0þt

t0

f(xτðx; t0Þ; τ)dτ: ð41Þ

It is a well-known result in ergodic theory that such functions
will be constant over sets invariant under dynamics when
t → ∞, regardless of f initially chosen. This result was
exploited by Mezić (1994) and later by Mezić and Wiggins
(1999), Levnajić and Mezić (2010), and Budišić, Mohr, and
Mezić (2012) to construct an ergodic partition for closed,
autonomous, and periodic dynamical systems (see also
Sec. VII.F).
In data-based systems, the averaging period t is always

finite, but dynamically relevant information can still be
extracted from ~f, in particular, if the observable f is chosen
to relate to the velocity vector field u of the flow. [These
methods are referred to as parcel schemes by Samelson (2013)
and as Lagrangian descriptors by Mancho et al. (2013).] The
first attempt at doing so in the context of chaotic advection
was by Malhotra, Mezić, and Wiggins (1998), who computed
so-called patchiness plots by averaging the magnitude of the
velocity field kuk. The boundaries in patchiness plots were

recognized by Poje, Haller, and Mezić (1999) to correspond to
certain analogs of invariant manifolds in 2D turbulence (Haller
and Poje, 1998). The same quantity was again studied by
Madrid and Mancho (2009) and Mancho et al. (2013) and
shown to align with ridges of the finite-time Lyapunov
exponent field. Instead of the norm of velocity, Haller and
Iacono (2003) computed time averages of scalar quantities
related to the Jacobian matrix ∇u and showed that it is
possible to produce a finer characterization of deformation in a
flow which, again, agreed with proxies of Lagrangian coher-
ent structures.
Instead of averaging scalars related to the velocity field,

Mezić et al. (2010) computed time averages of the velocity
vector field itself, producing the so-called mesochronic
velocity. These averages ~ut, computed using Eq. (41), are
directly related to the flow map Φt as the average velocity is
just the displacement caused by dynamics, divided by the
duration of the motion:

~utðx; t0Þ ¼ ½Φtðx; t0Þ − x�=t: ð42Þ

The mesochronic velocity Jacobian matrix ∇ ~ut is there-
fore directly related to the Jacobian matrix of the flow
map ∇Φt. Since the spatial derivative ∇ and the averaging
integral t−1

R t0þt
t0 dτ do not commute, this analysis is different

from the analysis by Haller and Iacono (2003) mentioned
earlier. Unlike maximal finite-time Lyapunov exponents
t−1 log k∇Φtk that measure the magnitude of deformation
that the material experiences, the scalar field det∇ ~ut uncovers
the character of deformation for planar incompressible flows,
e.g., strain (mesohyperbolicity) or rotation (mesoellipticity).
Partitioning the state space based on values of det∇ ~ut is a
direct generalization of the Okubo-Weiss deformation
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FIG. 24. Satellite images of bacterial abundance in the (a),
(c) Gulf of Mexico and (b), (d) computed mesohyperbolic
regions show that finite-time deformation computed from
time-averaged velocity indicates chaotic advection activity. From
Valentine et al., 2012.
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criterion (Okubo, 1970; Weiss, 1991) from infinitesimal to
finite advection times. Note that Greene (1968, 1979) pre-
viously used a similar quantity to predict the order of
destruction of KAM tori in perturbed Hamiltonian maps,
the phenomenon shown to be relevant to mixing in Sec. IV.C.
The mesochronic calculations were further generalized to 3D
flows by Budišić et al. (2016).
The analysis of the mesochronic Jacobian has been applied

to the prediction of the oil-slick transport in the aftermath of
the Deepwater Horizon spill. Mezić et al. (2010) showed that
regions of hyperbolicity correspond to jets that dispersed the
slick, while elliptical zones correspond to eddies in which the
slick accumulated. In a follow-up paper, the technique
contributed toward resolving the problem of “missing oil,”
indicating the correct locations and volumes of the oil post-
spill (Valentine et al., 2012) (see Fig. 24).

D. Braids of Lagrangian trajectories

Although flows are most commonly analyzed through their
vector fields, in certain situations data available about the flow
are too sparse to allow interpolation of the (continuous) vector
field. An example is the Argo program7 that measures global
oceans using sensors relaying their positions, temperature, and
salinity as they are advected by ocean currents. In other
cases, recorded data are sparse because detailed data would be
too complex to use and act upon. For example, industrial
stirring devices often use stirring rods following simple
protocols that induce complicated flows surrounding them
(Sec. VIII.A). In both of these instances, braid-based
approaches are able to estimate properties of the flow from
only a few Lagrangian trajectories, whether sensor or stirring-
rod paths, significantly reducing the need for detailed
measurements.

A seminal paper by Boyland, Aref, and Stremler (2000)
[anticipated a decade earlier by MacKay (1990)] takes
Lagrangian trajectories of a time-varying planar flow and
treats them as entangled strands in the 3D space-time domain,
resulting in an approach termed braid dynamics. The tangle of
trajectories is represented by a braid, which is a sequence of
symbols encoding only relative positions of trajectories and
their exchanges. Braids can be interpreted as reduced models
of flows, acting on closed material lines tightened around
trajectories to form so-called loops, which are deformed by
interchanges of trajectories.
Regardless of the number and locations of trajectories

forming the braid, topological entropy of the braid is
always the lower bound for the topological entropy of the
flow, which, in turn, is connected to mixing rates (see
Sec. VII). Such lower bounds have been used to optimize
stirring protocols used for mixing in viscous fluids (Boyland,
Aref, and Stremler, 2000; Thiffeault and Finn, 2006; Finn and
Thiffeault, 2011) (see Fig. 25). As an analysis procedure, the
entropy of the flow can be bounded by either computing
braids of individual trajectories, as in Thiffeault (2005, 2010),
or braids of coherent structures that act as “ghost rods,”
stirring the surrounding fluid, as in Gouillart, Thiffeault, and
Finn (2006), Stremler et al. (2011), Grover et al. (2012), and
Tumasz and Thiffeault (2013).
The topological entropy of a braid is the fastest rate at

which a loop can be deformed under a braid. The slowest rates
of deformation are also significant, as minimally growing
loops can enclose trajectories that remain trapped together
in a coherent structure (Allshouse and Thiffeault, 2012). Such
loops then provide approximations to boundaries of coherent
structures, which may be computed from several trajectories
alone, instead of from the fully resolved velocity field;
see Fig. 26.
The braid approach allows one to process extremely sparse

data of planar flows in a computationally efficient manner and

FIG. 25. A braid constructed from the motion of stirrers in a vat,
along with a sample material line deformed by the motion. From
Thiffeault and Finn, 2006.

FIG. 26. An approximation to the boundary of a coherent
structure in a stirred vat of fluid estimated from only 40 sampled
trajectories. Compare Lagrangian coherent structure computation
that would require knowledge of the entire vector field. From
Allshouse and Thiffeault, 2012.

7http://www.argo.ucsd.edu.
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to obtain estimates of mixing rates and coherent structures.
The computations involved in braid dynamics may be unfa-
miliar to researchers in fluid dynamics. However, they can
readily be performed with the help of freely available
software.8 Unfortunately, the braid approach does not so far
extend to 3D fluid flows.

VI. LAMINAR VERSUS TURBULENT FLOWS

A fundamental dichotomy between laminar and turbulent
flows was mentioned in the Introduction and at points
throughout this review and exists in the fluid dynamics
literature more generally. We believe, however, that a more
refined categorization of fluid flows is required; we provide a
road map for rethinking this question, based on what has been
learned in the last several decades through studies of chaotic
advection.

A. Laminar flows

The basic image of laminar flow is that the flow takes place
in layers. Thus a good initial definition of laminar flow is that
the velocity field has a codimension-1 foliation whose leaves
are invariant. A codimension-1 foliation of an n-dimensional
manifold is a decomposition into injectively immersed sub-
manifolds9 called leaves such that in a neighborhood of any
point the decomposition is diffeomorphic to the decomposi-
tion of Rn into the planes xn ¼ const, where xn is the last
coordinate in Rn. Our discussion will progress from steady
flows to time-dependent flows.
All steady mass-preserving flows10 in 2D are laminar, or

almost so. The leaves can be taken to be the level sets of the
stream function. Yet this example already shows that the
definition needs generalizing to allow finitely many singular
leaves of lower dimension. The problem is that although the
generic level set is a smooth 1D submanifold, for critical
values of the stream function the level set may be a single
point or contain saddle points or worse. There are various
ways of prescribing which forms of singular leaf are allowed
and how the leaves fit together around it. This is especially
well worked out in the theory of pseudo-Anosov maps [for
references aimed at chaotic advection, see Boyland, Aref, and
Stremler (2000) and MacKay (2001)], but there are various
not-quite-equivalent formulations, so we refrain from being
prescriptive.
The case of 2D steady mass-preserving flows illustrates

another feature of laminar flows that may arise. If the 2D
manifold is not simply connected then for a vector field v

preserving a nondegenerate 2-form11 ω (formulating mass
preservation in a way that is more general than volume
preservation) there is not necessarily a single-valued stream
function, but the flow still preserves a closed 1-form12

α ¼ ivω. For example, the vector field _x ¼ 1, _y ¼ V (con-
stant) on the 2-torus R2=Z2 preserves area ω ¼ dx ∧ dy and
the 1-form αðξÞ ¼ ωðv; ξÞ ¼ ξy − Vξx for tangent vectors
ξ ¼ ðξx; ξyÞ, which is dΨðξÞ for Ψ ¼ y − Vx on R2, but Ψ
is multivalued13 on T2. Then the level sets ofΨ are replaced by
the integral submanifolds of the 1-form, which in general are
only injectively immersed submanifolds rather than true
submanifolds (e.g., V irrational in the example). Indeed in
this example they densely wind round T2. It is the density of
invariant leaves that gives a laminar flow the potential for
chaotic mixing, in contrast to those with a single-valued
stream function. This simple example does not have chaotic
mixing but we will show examples in Sec. VI.B that do.
Moving to steady 3D flows, the prime example of Poiseuille

flow in a circular pipe is laminar: the obvious foliation by
concentric cylinders works provided we allow the singular 1D
leaf down the axis. But this example also allows many other
foliations with invariant leaves. Choose any foliation of an
initial cross section and let its leaves flow with the vector field
to give a foliation of the whole domain. So there is a high
degree of nonuniqueness in the foliation. If one adds swirl this
still works.
Any steady 3D mass-preserving flow with a continuous

symmetry is laminar (Mezić and Wiggins, 1994; Haller and
Mezić, 1998), because it has a stream function whose level sets
make the leaves. Here is an outline proof: Given a 3-form ω
representing mass density, a velocity field v preserving ω and a
vector field u representing a symmetry (i.e., also preserving
mass and commuting with v) and independent of v modulo a
set of zero volume, let γ ¼ iviuω. It is a 1-form and calculation
shows that it is closed (dγ ¼ 0). Thus the field of planes defined
by γ ¼ 0 is integrable to a foliation. Its leaves are invariant
because iviuωðvÞ ¼ 0 by antisymmetry of ω. The constructed
foliation is also invariant under the symmetry.
What about dynamically defined classes of steady flow, such

as Euler flows or Stokes flows? For steady Euler flows the
Bernoulli function [Eq. (30)] is conserved so its level setsprovide
a foliation with invariant leaves, unless the Bernoulli function is
constant. In the latter case curl v ¼ κ0v for some function κ0 of
position, and κ0 is conserved so its level sets provide a foliation
with invariant leaves, unless κ0 is constant. The latter case gives
the Beltrami flows, for which a complete understanding is still

8
MATLAB toolbox braidlab; see Thiffeault and Budišić (2014).

9An injectively immersed submanifold of a manifold M is the
image of a one-to-one differentiable map f∶N→M from a reference
manifold N into M for which the derivative Df has maximal rank
everywhere.

10Mass preservation allows more generality than volume preser-
vation, e.g., compressible flow, and gives the same results, suitably
interpreted. Thus there is a preserved stream function Ψ, such that the
velocity is given by vx ¼ ð1=ρÞ∂Ψ=∂y, vy ¼ −ð1=ρÞ∂Ψ=∂x, where
ρdx ∧ dy is the preserved mass form.

11An n-form is an antisymmetric n-linear functional of n tangent
vectors at each point. If n is the dimension of the manifold, the
n-form is nondegenerate if at every point there is an n-tuple of
tangent vectors on which it is nonzero.

12The operator iv is the contraction with the vector field v as the
first argument; thus for all tangent vectors ξ, αðξÞ ¼ ωðv; ξÞ. An
n-form α is closed if its exterior derivative dα is zero; equivalently if
the integral of α over the boundary of any (nþ 1)-dimensional ball is
zero, which is true here because v preserves ω.

13A closed 1-form is called exact if it can be written as dΨ for
some single-valued function Ψ, which is then a genuine stream
function.
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lacking (Arnol’d and Khesin, 1998, Chap. II.1). Is every 3D
Stokes flow laminar in this sense? Following Boyland, Aref,
and Stremler (2000), we feel that this is probably true, because
they minimize the dissipation rate, which should make them
analogous to Thurston’s simplest representatives of isotopy
classes of surface homeomorphisms, each of which has an
invariant foliation (two in the case of pseudo-Anosov compo-
nents), but we are not aware of a definitive answer.
Are there 3D steady mass-preserving flows which are not

laminar? One might be tempted to say that any chaotic flow
would give an example, because most candidate leaves grow
exponentially under the flow, but in fact the best forms of
chaotic flow possess invariant foliations. Specifically, each
uniformly hyperbolic 3D mass-preserving steady vector
field has a forward contracting foliation and a backward
contracting foliation (with no singularities, even). An example
is Arnol’d’s fast dynamo flow [see, e.g., Chap. II.5.E of
Arnol’d and Khesin (1998)], the vector field (0,0,1) on the
manifold made by identifying horizontally opposite sides of a
cube by translation and the top to the bottom by the matrix

A ¼
�
2 1

1 1

�
.

The foliation by the surfaces γy − x ¼ C is constant, where
γ ¼ ð1þ ffiffiffi

5
p Þ=2 is invariant. To interpret this correctly, one

has to identify the values Cþ 1, C − γ, and γ2C with C. Thus
each leaf is dense in the manifold. The foliation yþ γx ¼
const is also invariant. The flow is chaotic in many good
senses: in particular, displacements in the direction ðγ; 1; 0Þ
grow exponentially at rate 2 log γ. Although it looks artificial,
versions of this flow can be made in 3D containers in
Euclidean space (MacKay, 2008).
A genuine obstacle to laminar flow is elliptic periodic

orbits. If a leaf passes through an elliptic periodic orbit then
after one period the leaf comes back rotated by an amount not
equal to 0 or π, contradicting the condition for a foliation. One
can allow a finite number of elliptic periodic orbits by our
decision to allow finitely many singularities in the foliation,
but it would probably be a mistake to allow infinitely many, or
at least to allow singularities to have accumulation points.
Thus any mass-preserving steady 3D flow with a set of
elliptic periodic orbits with an accumulation point is not
laminar. Generically, within the class of smooth-enough mass-
preserving steady 3D flows, if there is one elliptic periodic
orbit then it is an accumulation point of others. So, except for
the highly exceptional integrable cases (i.e., those with a
stream function), and the hyperbolic cases, all the rest are very
likely not laminar, unless those arising dynamically are a
special subset (as we guess may be the case for Stokes flows).
A generalization of the concept of invariant foliation that

may be useful is that of measurable partition (Rokhlin, 1960;
Mezić, 1994). In this case, the elements of the partition are not
necessarily submanifolds and can even be fractal sets. If a flow
possesses an invariant, nontrivial14 measurable partition it
could be considered laminar. Nontriviality could be too weak

though, because a flow on an annulus that mixes the top half
of the annulus and the bottom part of the annulus separately
would have only two, thick laminae. Recently, the concept of
an ergodic quotient was introduced for flows in bounded
domains (Levnajić and Mezić, 2010; Budišić and Mezić,
2012). Roughly speaking, the ergodic quotient space is
obtained by identifying each subset of the physical space
that the bounded fluid flow “samples” well (precisely speak-
ing, time averages of continuous functions are equal to space
averages with respect to a measure defined on that subset; e.g.,
the invariant subset might be a torus, the flow might induce a
dense winding on the torus and the measure is the surface area
on the torus, and then the ergodic quotient is a single point).
The ergodic quotient of a flow on the annulus already
described would consist of two points, representing the top
and bottom parts of the annulus. However, a shear flow in such
an annulus—produced, e.g., by the outside circle of the
annulus rotating and the inside also rotating at smaller angular
velocity, as in Couette flow—would have an ergodic quotient
that is a closed interval and is thus 1D. We could then say that
the flow is d laminar with (possibly nonuniform) thickness of
the laminae, provided the fractal dimension of the nontrivial
ergodic quotient is 1 − d. In the case of d ¼ 0, we retain the
label of “laminar” instead of “0 laminar.”
Let us move now to time-dependent flows. For these

flows it is essential to consider the vector field as living in
a domain of space-time rather than just space. So an n-D time-
dependent flow corresponds to a vector field on an (nþ 1)-D
manifold, where the t component is just 1. Our definition
proposes that the flow is laminar if there is an n-D foliation of
this (nþ 1)-D space-time, with invariant leaves. Let us think
about this for n ¼ 2. As for Poiseuille flow, any foliation of the
initial domain at t ¼ 0 is transported to a foliation of the whole
space-time with invariant leaves. But the leaves may become
more and more contorted at large times. So we put a restriction
on the types of foliation that we allow, namely, the diffeo-
morphisms that map the local decompositions onto the planes
xn ¼ const should be bounded in C2. In the case of periodic
time dependence, we would furthermore want the foliation to
have the same period in time. Thus, because of elliptic islands,
the beloved example of blinking vortex flow (Aref, 1984) is
almost certainly not laminar.

B. Turbulent flows

A good starting point for considering turbulent flow is the
viewpoint of Taylor (1954) that a flow is turbulent if the
velocity autocorrelation integral in time converges. To define
this, a (possibly time-dependent) velocity field v in a subset
of Euclidean space induces a flow map ϕt;s from time s to
time t. Let

Cijðτ; tÞ ¼
Z

vi(ϕtþτ;tðxÞ; tþ τ)vjðx; tÞμtðdxÞ

where μt represents the mass density at position x and time t.
Say the flow is turbulent if

Z
∞

0

Cijðτ; tÞdτ < ∞
14A trivial measurable partition of a set A consists of the set itself

and the empty set.
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for each t. Probably if it holds for one value of t then it holds
for all, though we have not seen this proved.
Note, however, that Taylor’s condition can hold for some

steady flows, contradicting the commonly held notion that
turbulent flows must be time dependent. For example,
modify the vector field in Arnol’d’s fast dynamo flow to
(0; 0; gðx; y; zÞ) for some function g > 0 such that gðx; y; 1Þ ¼
g(Aðx; yÞ; 0) and the ratio of period to number of revolutions
in z is different for two periodic orbits. Then the flow
preserves the modified mass g−1dx ∧ dy ∧ dz and by
Anosov’s alternative (Anosov, 1967) it is mixing in the
ergodic theorist’s sense, i.e., CðτÞ¼ R

ψðϕτxÞχðxÞdμðxÞ→0

as τ → ∞ for all pairs of functions ψ ∈ L∞, χ ∈ L1.
A stronger nontriviality condition on g probably makesR
∞
0 CðτÞdτ converge.15 Note that this flow preserves the same
foliation as for the case g ¼ 1, and so is also laminar.
On the other hand, Taylor’s condition never holds for steady

flows with no-slip boundaries. The issue is that the volume
remaining in a neighborhood of the boundary for time at least
τ is at least C=τ for some C (depending on the neighborhood),
and thus the velocity autocorrelation integral diverges (Jones
and Young, 1994). The effect of walls has been addressed
further in Sec. III.
Also, there are flows that are neither turbulent nor

laminar. Take, for example, a steady 3D flow with infinitely
many elliptic periodic orbits. As discussed in the previous
section it is not laminar. Yet if the elliptic periodic orbits are
surrounded by a set of positive volume of invariant tori, as
given generically by KAM theory for smooth-enough mass-
preserving vector fields, then the velocity autocorrelation
integral diverges.
Note that Taylor’s notion is in essence a Lagrangian notion,

since it requires integration of physical quantities along
particle paths. It can be easily reformulated in the context
of the Koopman operator (Mezić, 2013), requiring that the
Koopman operator spectrum of the solution of the dynamical
evolution equation (e.g., the Navier-Stokes equation) with
appropriate initial and boundary conditions does not have any
eigenvalues and associated eigenfunctions, except for trivial
(constant) ones (Arnol’d and Avez, 1968). In other words, the
flow generated by the solution has the mixing property. An
alternative Eulerian view would be to require integrability
over time of the Eulerian velocity autocorrelation function that
is given by

Cijðτ; tÞ ¼
Z

viðx; tþ τÞvjðx; tÞdt

for every x. This, in fact, can be related to properties of another
Koopman operator, the one associated with the velocity phase
space. In particular, the property would be implied if the

related Navier-Stokes attractor has the mixing property.
Nevertheless, even this is not enough to capture the full idea
of what most mean by “turbulence”: the definition does not
say anything about the spatial distribution of eddies and their
size structure, an important notion in the turbulent energy
transfer context (Frisch, 1996). Specifically, a flow with a very
simple spatial dependence—with all the velocity vectors
pointing in one direction—but complex temporal dependence
could have the mixing property on the strange attractor in
Navier-Stokes phase space, and so be turbulent in the sense set
out here, but clearly does not have the energy-cascade
property of turbulence. Such a flow would also be laminar
in the sense of our previous discussion.

C. Synthesis

Is laminar versus turbulent flow really a dichotomy? The
answer is clearly no. We have shown that with common
definitions there are flows that are both laminar and turbulent
and there are flows that are neither. And we have not even
addressed the case of flows that one might want to say are
laminar in some regions and turbulent in others. The variety of
flows that exist is not captured by the current simplistic
laminar versus turbulent classification. More work needs
to be done and we hope that this discussion might provide
some ideas.

VII. THE STRUCTURE OF THE MIXED STATE: QUALITY
AND MEASURES OF MIXING

At the heart of all applications of chaotic advection lies the
desire to exploit the inherent complexity in deterministic
chaotic dynamics for fluid mixing. There are several different
mathematical diagnostics for revealing this complexity, for
example, recurrence, transitivity, ergodicity, and entropy;
which is the most relevant will depend on the particular
application. The most natural one of concern for mixing
applications is arguably the measure-theoretic notion of
(strong) mixing: a measure preserving (invertible) transfor-
mation f∶ M → M is strong mixing16 if for any two meas-
urable sets A; B ⊂ M,

lim
n→∞

μ(A ∩ fnðBÞ) ¼ μðAÞμðBÞ=μðMÞ: ð43Þ

We understand the meaning of Eq. (43) as follows: in a
container M of fluid, if B, a region originally occupied by a
tracer, is mixed to become StB [in continuous time, or
equivalently fnðBÞ in discrete time], as depicted in Fig. 27,
then for any arbitrary part A of the container, the amount of
tracer in A after mixing is μ(A ∩ fnðBÞ)=μðAÞ and in the limit
n → ∞ this should be μðBÞ=μðMÞ. For incompressible fluids
the measure μ can be assumed to be Lebesgue, that is, area or
volume and we may normalize the volume of the domain to
μðMÞ ¼ 1. This definition effectively says that any two sets

15Taylor’s definition of turbulence is not immediately applicable
here because Arnol’d’s flow does not live on a subset of Euclidean
space, so the meaning of multiplying components of a vector at
different points is unclear. However, one can probably turn it into an
example in a bounded container with stress-free boundaries for which
the velocity autocorrelation function does make sense and is
integrable, so this example shows that turbulence might not require
time dependence.

16Typically in ergodic theory the short form mixing is used as a
synonym for strong mixing, but here we use the full term to avoid
confusion both with the everyday sense of the term mixing and with
the fluid dynamical definition we put forward in Sec. I.
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become asymptotically independent of each other for a strong
mixing system, as illustrated in Fig. 27. Strong mixing implies
the weaker property of weak mixing,

lim
n→∞

1

n

Xn−1
k¼0

jμ(A ∩ fnðBÞ) − μðAÞμðBÞj ¼ 0: ð44Þ

In turn weak mixing implies ergodicity, which can be defined
by

lim
n→∞

1

n

Xn−1
k¼0

μ(A ∩ fnðBÞ) ¼ μðAÞμðBÞ: ð45Þ

Note that for each of these properties we consider the
quantity μ(A ∩ fnðBÞ) in relation to μðAÞμðBÞ. Setting
μ(A∩fnðBÞ)−μðAÞμðBÞ≡ξf;n we see that f is strong mixing
if ξf;n converges to 0 as n → ∞, weak mixing if jξf;nj
converges to 0 in the sense of Cesàro summation, and ergodic
if ξf;n converges to 0 in the Cesàro sense. The hierarchy is
strict: strong mixing implies weak mixing, which itself implies
ergodicity. The converse is not true; an irrational rotation is an
example of an ergodic system that is not weak mixing, while
an interval exchange transformation can be weak mixing but
not strong mixing.
Mathematical models that underpin the basics of fluid

mixing devices can be proven to exhibit this behavior. For
example, the cat map A—an integral part of the Arnol’d fast
dynamo model discussed in Sec. VI—a paradigmatic model of
repeated shearing in orthogonal directions, can be shown to be
strong mixing and to have positive topological entropy (equal
to the logarithm of its largest eigenvalue). Another less simple
yet analyzable example is the map of Cerbelli and Giona
(2005), which is strong mixing yet shows a multifractal
structure [some aspects of this case are further treated by
MacKay (2006)]. In practice, however, it may be implausible to
expect the strong-mixing property Eq. (43), and impossible to
verify, since to do so requires computing over all possible
regions A and B. These issues, coupled with the ubiquity of
mixing problems in applications, have led to reformulations
of Eq. (43). For example, in Sec. VII.D we discuss weak
convergence, and a method to establish this condition, while in

Sec. VII.E we describe the decay of correlations of observable
functions, which is used in ergodic theory to estimate rates of
mixing. These two notions are closely related, but we will
describe each in terminology and notation most closely
associated with their own bodies of literature.
First we observe that taking a physical measurement such as

concentration involves a choice of scale. In Secs. VII.A,
VII.B, and VII.C we take a new look at classical ideas of
measuring the quality of a mixture, in which the choice of
scale provides details of interest about a mixing process.
Section VII.D contrasts this with the recent concept of
multiscale measures for mixing.
The quality or “goodness” of mixing may be quantified by

using statistical quantities like the coarse-grained density and
the entropy. These quantities may be employed for this
purpose if at any moment in time the distribution of the
(marked) fluid to be mixed in the ambient fluid domain is
exactly known. We restrict ourselves here to 2D incompress-
ible flow, focusing on the problem of a blob of colored fluid
introduced into a fluid in which some specified flow is
present. We use the concept of the coarse-grained density
of the distribution—introduced by Gibbs (1902)—as a basic
measure of the three criteria of the mixed state: the averaged
square density (Welander, 1955), the entropy (Gibbs, 1902),
and the intensity of segregation (Danckwerts, 1952). By using
these criteria we can estimate the time necessary for the mixed
state to become uniform within some specified range, for a
given volume element size (the “grain”). Note that the three
criteria are not independent and that they are statistical
measures of the first order. For a more complete description
of a mixture, we also use the scale of segregation
(Danckwerts, 1952), which is a statistical measure of the
second order and represents an average of the size of the
clumps of the mixed component. The first-order statistics
provide information related to the coarse-grained density
distribution calculated in each grain at a time. And the
second-order statistics gives information about the correla-
tions of this density in two different grains at the same
moment of time.

A. Definitions of mixing quality

We first illustrate the concept of coarse-grained density as a
quantification of mixing in an example problem of 2D stirring
in a square cavity. The cavity is covered by a grid of Nδ square
cells of side δ and area Sδ ¼ δ2 and initially contains a square
black blob in its center. The area of the cavity is S ¼ NδSδ,
while the blob’s area is Sb, which is conserved under area-
preserving stirring. We denote the area of the blob inside cell n

by SðnÞb , and the proportion of black Dn ¼ SðnÞb =Sδ, which may
be considered a probability density. Calculating the average of
Dn by summing over cells we obtain

hDi ¼ 1

Nδ

XNδ

n¼1

Dn ¼
1

NδSδ

XNδ

n¼1

SðnÞb ¼ Sb
S
;

where the ratio of the area is Sb of the colored matter and the
total area is S of the cavity. This value does not change in the
course of the stirring and is the mean or uniform density hDi

FIG. 27. An advected patch StB that has undergone strong
mixing. At late times the patch covers an arbitrary reference
patch A.
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of the colored blob in the cavity. (The angle brackets here and
later denote an average over the cavity.) However, using the

square density defined by D2
n ¼ ðSðnÞb =SδÞ2 and averaging

over the area of the cavity, keeping the cell area constant as
before, we get the following inequality:

hD2i ¼ 1

Nδ

XNδ

n¼1

D2
n ¼

1

S

XNδ

n¼1

DnS
ðnÞ
b ≤

Sb
S

ð46Þ

because Dn ≤ 1.
Figure 28 shows a square cavity with a central black

blob for two different grid sizes. Calculations given in
detail by Krasnopolskaya and Meleshko (2009) show
how the averages hDi and hD2i depend on the cell size.
In Figs. 28(a) and 28(b) grid cells are either completely filled
or completely empty, giving Dn ¼ 1 or 0 for each n. Thus

we have hDi ¼ hD2i ¼ 1=4. Figures 28(c) and 28(d) show
the blob after stirring has taken place. Now in Fig. 28(c)
Dn can take values 0, 1, 1=2, or 3=4, and we have
hD2i ¼ 35=256 < hDi ¼ 1=4, while in Fig. 28(d) all cells
are either completely filled or empty, so that hDi¼hD2i¼1=4.
Similarly in Figs. 28(e) and 28(f), after further stirring,
we have hD2i ¼ 3=40 < hDi ¼ 1=4 when δ ¼ 4, and
hDi ¼ hD2i ¼ 1=4 when δ ¼ 1. Thus for δ ¼ 4, hD2i
decreases with the thinning of the black striations, while if
δ ¼ 1, all cells are filled or empty, and hD2i does not change.
In terms of statistical mechanics, Dn is the coarse-grained
density, which is different from the fine-grained density fd of
the infinitesimal, superdifferential elements dSf, which are
always assumed to be small compared to the width of the area
of the colored matter. Moreover, dSf is always so small that
either it is located inside the colored matter and fd ¼ 1 or it is
outside and fd ¼ 0 (Gibbs, 1902).
It was shown by Gibbs, for the special case of mixing two

fluids approaching the perfectly mixed state, that the final state
of mixing is characterized by a minimum statistical square
density, i.e.,

hðDn − hDiÞ2i≡ hD2i − hDi2 → 0: ð47Þ

Thus, going to a uniform mixture in time, the mean square
density hD2i will approach its minimum hDi2. The rate of
decrease of these values is not only time dependent but also
depends on the cell sizes.
It is also possible to use the analogy of entropy, i.e.,

−Dn logDn, instead of D2
n as a statistical measure. If each cell

is empty or completely filled, the entropy −Dn logDn equals
zero. The entropy measure changes only in those boxes where
0 < Dn < 1. Moreover, for 0 < Dn < 1, − logDn is always
positive, so the more boxes (partially) covered by colored
material the larger is −

PNδ
n¼1 Dn logDn. As a result, for a

good mixing process, the entropy of the mixture e ¼
−hD logDi will grow in time to its maximum. The entropy
measure is not independent of the square density measure;
both of them have first-order statistics (one element of area at
a time).
Danckwerts (1952) defined two properties that are useful in

evaluating the quality of mixing with diffusion and chemical
reactions: the scale of segregation LC (the measure of the
second-order statistics) and the intensity of segregation IC (the
measure of the first-order statistics). The scale of segregation
is a measure of the size of clumps in a mixture, while the
intensity of segregation refers to the variance in composition.
For the intensity of segregation Danckwerts introduced

IC ¼
R
SðC − hCiÞ2dS
hCið1 − hCiÞS ¼ hðC − hCiÞ2i

hCið1 − hCiÞ ; ð48Þ

where C is the local concentration, which is in Gibbs’s
and Welander’s definitions equal to the fine-grained density
fd. It is easy to see that for the fine-grained density
hðfd − hfdiÞ2i ¼ hfdi − hfdi2, and in that case IC always
equals to 1. Consequently, for mixing without diffusion and
chemical reactions the intensity of segregation IC is not
decreasing, but equals a constant, initial value.

(a) (b)

(c) (d)

(e) (f)

FIG. 28. Square cavity with black blob initially in the center
and after subsequent stirring. The left column has a grid of cell
size δ ¼ 4, while the right column has δ ¼ 1. Calculations
make explicit the dependence of hDi and hD2i on scale. From
Krasnopolskaya and Meleshko, 2009.

Hassan Aref et al.: Frontiers of chaotic advection

Rev. Mod. Phys., Vol. 89, No. 2, April–June 2017 025007-32



Therefore, onemay suggest amodification of the intensity of
segregation by making Gibbs’s mean square density Eq. (47)
dimensionless by dividing by hDið1 − hDiÞ,

I ¼ hðDn − hDiÞ2i
hDið1 − hDiÞ : ð49Þ

For good mixing hðDn − hDiÞ2i tends to zero, which means
that I also tends to zero. [This definition of I is different from a
similar measure IO proposed by Ottino (1989), who defined IO
as the square root of the mean square density divided by hDi2,
so I2O ¼ hðDn − hDiÞ2i=hDi2.] For the calculation of I as
proposed in Eq. (49) and what is in fact the coarse-grained
modification of IC, it is necessary to adopt an additional
assumption when considering mixing by a set of N points: it
is assumed that each of the N points (which together represent
the colored blob) carries a small undeformed area equal to
Sb=N, which cannot be a correct approximation for continuous
mixing flow with large stretching and folding.
The scale of segregation LC was defined by Danckwerts

(1952) by means of the correlation function

KCðηÞ ¼ hðC1 − hCiÞðC2 − hCiÞi; ð50Þ
which shows how the concentration fluctuations C − hCi at
points 1 and 2, separated by the vector η, differ from each
other. The normalized correlation function is called the
correlation coefficient

ρcðηÞ ¼
hðC1 − hCiÞðC2 − hCiÞi

hðC − hCiÞ2i : ð51Þ

It is obvious that ρð0Þ ¼ 1. When jηj exceeds a certain value,
the relationship between the concentrations at points 1 and 2
may become random whenKCðηÞ is equal to zero. If a mixture
consists of clumps jηj at which KCðηÞ is equal to zero (say,
jηj ¼ ξ) is approximately the average clump size in the
direction η. More precisely, the average clump radius in the
direction of η is LCðηÞ ¼

R ξ
0 ρcðηÞdjηj.

The mixing patterns which we are discussing do not consist
of a random distribution of clumps, but of layered structures.
However, the coarse-grained representations of these patterns
may look like a collection of clumps. If we indicate cells
for which the density Dn is larger than hDi with black, the
cells for which Dn equals hDi with gray, and cells where
0 ≤ Dn < hDi with white, then such a representation has the
appearance of a collection of white and black clumps with
gray clumps in between them as a transition. Moreover, with
the coarse-grained correlation function defined as KðηÞ ¼
hðD1 − hDiÞðD2 − hDiÞi (where D1 and D2 correspond to
coarse-grained density in boxes 1 and 2 separated by vector η),
the short-term regularity (when K > 0) in the interval ð0; ξÞ
gives important information about the mixture pattern and can
be examined. Short-term regularity means that on average in
two boxes at any distance jηj < ξ the fluctuations Dn − hDi
have the same sign (i.e., the same color) and thus K > 0. For
jηj ¼ ξ the fluctuations become uncorrelated and therefore
K ¼ 0. Thus, the distance jηj ¼ ξ in the direction η is related
to the average clump size in this direction, and the value of the
scale of segregation

LðηÞ ¼
Z

ξ

0

hðD1 − hDiÞðD2 − hDiÞi
hðD − hDiÞ2i djηj ð52Þ

gives the average radius of the clump. Complementary to the
intensity of segregation I, the scale of segregation L can be
used as a measure of clump sizes of the coarse-grained
description of mixing patterns. The dynamics of such scales
should reflect the changes of sizes of unmixed regions, where
Dn is always larger than hDi.

B. Gibbs’s example of mixing

In his example of fluid stirring, Gibbs (1902) described the
case of the advection of colored fluid in the annular domain
between two infinite coaxial cylinders rotating at different
speeds. The cross-sectional area between the cylinders is
shown in Fig. 29, with the dyed (black) fluid occupying a 90°
sector between the cylinders. The flow is driven by the
rotation of the outer cylinder: the tangential velocity is
V2 ≠ 0 at r ¼ 2, while the inner cylinder is kept fixed
(V1 ¼ 0 at r ¼ 1). This forcing drives a purely azimuthal
flow, with the azimuthal velocity component given by
(Krasnopolskaya and Meleshko, 2004, 2009)

uθ ¼ Arþ B
r
; A ¼ V2b

b2 − a2
; B ¼ −

V2a2b
b2 − a2

: ð53Þ

For the case under consideration a ¼ 1 and b ¼ 2, therefore,
A ¼ 2=3V2 and B ¼ −2=3V2. The advection equations are
dr=dt ¼ ur ¼ 0, rdθ=dt ¼ uθ, and with initial conditions
r ¼ rin; θ ¼ θin at t ¼ 0, these equations describe the motion
of a passive Lagrangian particle in a position ðr; θÞ at time t in
the known Eulerian velocity field v ¼ ður; uθÞ.
The advection of the colored fluid may be studied by using

the contour tracking method (Krasnopolskaya et al., 1996), in
which the interface between colored and uncolored fluid is
covered by a number of passive tracer particles. After 12
complete revolutions of the outer cylinder the colored fluid

FIG. 29. Gibbs’s example: The geometry of the Gibbs problem,
with viscous fluid occupying the annular region between two
coaxial cylinders The outer cylinder is rotated at a constant speed
(V2), while the inner cylinder is kept at rest. Initially, the dyed
fluid (black) occupies a 90° sector.
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occupies a spiral-shaped region as shown in Fig. 30(a). For
continued rotation of the outer cylinder, the number of
windings of the spiral pattern increases steadily: for an infinite
number of revolutions the number of windings would be
infinite and the mixture uniform.
We now apply the square density and intensity of segre-

gation measures to quantify the mixing quality. Figure 30(b)
replicates Fig. 30(a), but now in the form of the square density
(Dn) distribution for a cell size δ ¼ 0.2. A similar pattern is
shown in Fig. 30(c), but for δ ¼ 0.1. Comparison of the latter

FIG. 30. Gibbs’s example: The evolution of the colored
fluid (a) after 12 revolutions of the outer cylinder and the
corresponding square density distribution (hD2i) for
(b) δ ¼ 0.2 and (c) δ ¼ 0.1. From Krasnopolskaya and
Meleshko, 2009.

FIG. 31. Gibbs’s example: Calculated evolution of the intensity
of segregation I and the square density hD2i=hDi2 − 1 as a
function of time t=T, with T the time of a half revolution of the
outer cylinder. From Krasnopolskaya and Meleshko, 2009.

FIG. 32. Wedge-cavity flow: geometry.
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two graphics shows that for a coarser grid (larger cells) the
mixture looks uniform, while for a finer grid (smaller cells) the
mixing is nonuniform, with empty (white) cells occurring in
between the black cells.
The evolution of the intensity of segregation I as a function

of t=T (with T the time of a half revolution of the outer
cylinder) as calculated for δ ¼ 0.1 and the square density
hD2i=hDi2 − 1 is shown in Fig. 31. It is observed that the
mixture becomes more uniform with increasing number of
revolutions. In this case the intensity of segregation I is more
convenient as a criterion because it changes between two fixed
values: it decreases from 1 (initial state) to 0 (complete
mixing).

C. A second example: Mixing in a wedge cavity

1. Definition of the problem

As a second example, we consider a 2D creeping flow of an
incompressible viscous fluid in an annular wedge cavity
a ≤ r ≤ b, jθj ≤ θ0 (Fig. 32), driven by periodically time-
dependent tangential velocities VbotðtÞ and V topðtÞ at the
curved bottom and top boundaries r ¼ a and r ¼ b, respec-
tively. The sidewalls a ≤ r ≤ b and jθj ¼ θ0 are fixed. We
consider a discontinuous mixing protocol with the bottom and
top walls alternatingly rotating over an angle Θ in clockwise
and counterclockwise directions, respectively. More specifi-
cally, we consider the case VbotðtÞ ¼ 2aΘ=T, V topðtÞ ¼ 0, for
kT < t ≤ ðkþ 1=2ÞT; VbotðtÞ ¼ 0, V topðtÞ ¼ −2bΘ=T; for
ðkþ 1=2ÞT < t ≤ ðkþ 1ÞT, where k ¼ 0; 1; 2;…;Θ is the
angle of wall rotation and T is the period of the wall motion.
The radial and azimuthal velocity components ur and uθ

can be expressed by means of the stream function Ψðr; θ; tÞ as
ur ¼ ð1=rÞ∂Ψ=∂θ, uθ ¼ −∂Ψ=∂r. For a quasistationary
creeping flow in the Stokes regime the stream function Ψ
satisfies the biharmonic equation ∇2∇2Ψ ¼ 0, with ∇2 the
Laplace operator and the boundary conditions Ψ ¼ 0,
∂Ψ=∂r ¼ −Vbot at r ¼ a, jθj ≤ θ0; Ψ ¼ 0, ∂Ψ=∂r ¼ −V top

at r ¼ b, jθj ≤ θ0; Ψ ¼ 0, ∂Ψ=∂θ ¼ 0 at a ≤ r ≤ b, jθj ¼ θ0.
Therefore, we have the classical biharmonic problem for
the stream function Ψ with prescribed values of this function
and its outward normal derivative at the boundary. This
wedge-cavity flow problem was solved analytically by
Krasnopolskaya et al. (1996). Their analytical solution was
used for the numerical evolution of the interface line between
the marker fluid and the ambient fluid, which was carried out
by the “dynamical” contour tracking algorithm.

2. Wedge-cavity flow

The results discussed here correspond to a typical wedge
cavity with sector angle θ0 ¼ π=4 and radius ratio b=a ¼ 2
(see Fig. 32). Using the dimensionless parameter H ¼ Θ=θ0
and a fixed value for the period Tp, the discontinuous mixing
protocol is completely defined. The value of H is proportional
to the displacement of the top and bottom walls during one
period. Multiplied by the number of periods M, the value
HMTp serves as a measure of the energy supplied during
the mixing process. In what follows we restrict to the cases
H ¼ 2 and 4.

Figure 33 shows a composite picture of four cavities with
different mixtures, obtained by numerically tracking the
contours of initially circular blobs for different mixing
protocols or initial positions. The shaded (colored) circles
represent the initial positions of the blobs. The upper, lower,
and right cavities represent the results of mixing with the same
periodic protocol with H ¼ 4 after 12 periods (M ¼ 12). The
left cavity, in which the initial blob is spread slightly
throughout the cavity region, demonstrates the result of
mixing for H ¼ 2. Despite the fact that for this specific case
the mixing process was performed for twice as long, i.e.,
during 24 periods (M ¼ 24) so that the general work W ¼
Θðaþ bÞM=ðθ0aÞ ¼ 3HM for all the cavities is the same, the
results of the mixing in the four cases are different. The best
mixing corresponds to the case represented in the lower cavity,
where the initial spot is divided into four small round spots,
placed in different parts of the cavity. The upper picture
corresponds to the mixing of one blob placed initially around a
single hyperbolic periodic point of period 1 for the protocol
with H ¼ 4 (Krasnopolskaya et al., 1999; Krasnopolskaya
and Meleshko, 2004). Since the selected periodic point is
hyperbolic, the unstable manifold passes through it, and points
in its vicinity are characterized by chaotic trajectories, the
initial green blob becomes fairly uniformly distributed
throughout the cavity. The right cavity gives the result of
mixing with the same protocol as in the upper cavity, but with
a slightly different initial position of the blob. In this case, the

FIG. 33. Wedge-cavity flow: Mixing patterns obtained in the
wedge-cavity flow for different initial positions of the tracer blobs
[shaded (colored) circles] and different wall displacements H.
Upper, lower, and right cavities show the results for the same
protocol H ¼ 4 and M ¼ 12 for different initial positions of the
blob. Upper: blob initially placed around a single hyperbolic
point; right: for a slightly different initial position; lower: blob
split up into four smaller blobs, located in different positions.
Left cavity: initial blow positioned around an elliptic point of
period-1, for H ¼ 2. In all cases the energy input was 3HM.
Adapted from Krasnopolskaya et al., 1999.
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spreading of the blob over the cavity is less efficient. The left
cavity shows the worst mixing result: the initial position of the
spot was chosen around elliptic points of period 1 (for a single
protocol H ¼ 2). Under this protocol there is one elliptic
period-1 point. An initial blob placed around an elliptical
point results in very poor mixing. The areas around the elliptic
points are only slightly deformed during the mixing protocol,
returning all material in the area around the elliptic point
(Meleshko et al., 1996).

3. First-order measures of mixing

For the case shown in the upper cavity of Fig. 33, i.e., with
the blob initially located around a hyperbolic point, we
consider the statistical measures of the quality of the mixed
state. For this purpose the area of the cavity is covered with
cells of uniform size. The evolution of the three criteria based
on the coarse-grained density D is shown in Fig. 34 for
different cell sizes. The mixing process is characterized by a
decrease of square density hD2i=hDi2 [Fig. 34(a)], by a
decrease of the intensity of segregation I [Fig. 34(b)], and
by an increase of the entropy e2=e20 [Fig. 34(c)]. The three
curves in each figure correspond to three different cell sizes,
the labels 1, 2, and 3 corresponding to δ ¼ 0.1a, 0.05a, and
0.025a, respectively. From Figs. 34(a) and 34(b) it follows
that the intensity and the square density show the same
evolution but over different scales: the square density has
values approximately in the range between 20 and 2, and the
intensity is in the range between 1 and 0. As the intensity
always lies in the same range (0,1), using this criterion it is
possible to compare mixing processes for different values of
the ratio Sb=S and to compare different mixtures with the same
ratio Sb=S. For instance, it is easy to answer the question after

how much time of mixing the intensity of segregation will
have some given value for different box sizes (which basically
represents the problem of scaling in mixing processes), by
drawing a horizontal line: I ¼ const. By stating that a mixture
is uniform enough, for a given box size, when I is less than
some minimum value Imin, we know how long we have to
proceed with the mixing for other box sizes, i.e., for differ-
ently sized mixers. For example, if Imin ¼ 0.05, then, for the
box size δ ¼ 0.1a [curve 1, Fig. 34(b)] the mixture is uniform
for t=T > 25 according to this requirement.
Alternatively, we can use the entropy [Fig. 34(c)] or the

quality Q, defined as the reciprocal of the intensity I [see
Fig. 34(d)], which both increase during the mixing process.
For the same cell size δ, the same value of the mixing quality
(or intensity) can be repeatedly reached. The quality of a
mixture can decrease for some time during the mixing process,
after which it increases again.
Figure 35 shows the results of mixing for the same protocol

with H ¼ 4 in four equal wedge cavities for different initial
locations of the blobs (green circular patches). The left and
right cavities have the initial blob centered around a hyper-
bolic point of period 2 and covering three hyperbolic points
of period 6 and one of period 4. For this case the stretching of
the contour (length of interface) is the largest, while the
distribution of the deformed blob (indicated by the red color)
over the cavity is poorest. The graphs show the distribution of
the blob material after 18.5 (right cavity) and 19 half periods
(left). The length of the contour of the initial green circle is
extended 1760 (right) and 2010 (left) times, respectively.
Visual inspection shows, however, that large parts of the
cavity, in particular, in the central area, are not covered by the
red blob material. The distribution of the colored fluid over

(c) (d)

(a) (d)

FIG. 34. Wedge-cavity flow: Evolution of (a) the square density,
(b) intensity of segregation, (c) entropy, and (d) quality of mixing.
The initial blob is that shown as a green circle in the upper cavity
of Fig. 33. From Krasnopolskaya et al., 1999.

FIG. 35. Wedge-cavity flow: Mixing patterns generated by the
same protocol for different initial locations of the circular blobs.
In the left and right cavities the stretching is large, the upper
cavity shows large stretching and relatively good mixing, and the
bottom cavity shows poor stretching combined with best mixing.
Adapted from Krasnopolskaya et al., 1999.
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the cavity domain can be quantified, for example, by the
intensity of segregation I; for box size δ ¼ 0.025a we find
I ¼ 0.21 (right) and 0.20 (left), respectively. For the calcu-
lation shown in the upper cavity, the initial position of the blob
was chosen around the other hyperbolic points of period 2.
Stretching of the contour line in this case was almost as large
as in previous cases: the line stretched with a factor of 1850.
However, the quality of the mixture is much better as there are
no large uncovered parts. In this case the intensity of
segregation for box size δ ¼ 0.025a has a value of I ¼ 0.17.
The bottom cavity in Fig. 35 shows a calculation for the

initial position of the blob around a hyperbolic point of period
1. Stretching of the contour line of the initial green blob is
lower than in the previous cases with a factor of only 986.
However, the mixture in the bottom cavity shows that the red
color was distributed over all the subregions of the cavity,
having an intensity of segregation value of I ¼ 0.15. The
greatest stretching of the length of the initial contour does not
guarantee the best quality of mixture.

4. Second-order measures of mixing

Beyond first-order mixing measures there are second-order
mixing measures that indicate the relative size of unmixed
“rubbery” domains. Criteria like those could be, in practical
terms, more relevant than those of the first-order statistics
dealt with so far. In Fig. 36(a) the evolution of the scale of
segregation L in the two directions x and y is shown for the
same mixing process as was used for calculations of the first-
order statistics (Fig. 34) for the same three box sizes δ.
Initially, the scales in the x (solid lines) and y directions
(dashed lines) are almost equal and give the approximate value
of the radius of the initial blob (R ¼ 0.2a). For box counting
with δ ¼ 0.1a [curves 1 in Fig. 36(a)] the error of the value of
R is about 9%; for cell size δ ¼ 0.05a [curves 2 in Fig. 36(a)]
it is slightly larger, just as for δ ¼ 0.025a [curves 3 in
Fig. 36(a)]. Over the course of time, owing to the anisotropy
of the patterns (see Fig. 35), the scales of segregation in the x
direction Lx ¼ LðxÞ=a and in the y direction Ly ¼ LðyÞ=a
diverge. Nevertheless, both have a tendency to decrease, but
not uniformly in time. In Fig. 36(b) the dependence of the
averaged scale L ¼ ðLx þ LyÞ=2 on the number of half

periods 2t=T is presented for the three box sizes. After the
first two periods of mixing, the curves can be approximated by
exponential functions of the form ci þ exp½−c1ð2t=T þ c2Þ�.
These functions are drawn in Fig. 36(b) as dashed lines 4, 5,
and 6, respectively. Using these approximations we can
roughly estimate after how many periods the averaged scale
of segregation L will be smaller than some given value. For
example, for box size δ ¼ 0.05a, L becomes less than δ=2 (the
unmixed rubbery domain is smaller than the area of the box)
after approximately 35 periods. To find the value of periods
ðt=TÞ we use the expression for curve 5 (for the chosen
δ ¼ 0.05a), which approximates the value of L, and sub-
sequently solve the equation exp½−c1ð2t=T þ c2Þ� < δ=2.
This shows that 2t=T should be larger than 70.
Thus, the existence and the evolution of the unmixed

rubbery domains in the mixture pattern can be determined
from the behavior of the scales of segregation. For one
unmixed zone, as in the initial situation with one circular
blob, the scale L, as defined in Eq. (52), directly gives the size
of the blob. For well-mixed patterns of high quality, the
nonzero L values indicate the existence of unmixed domains
that very slowly decline (or even stabilize when the zone does
not diminish in size at all) despite the continuing mixing.
The evolution of the first-order statistics measures (square

density hD2i, intensity of segregation I, entropy e, and quality
Q) are different from the dynamics of the scale of segregation.
The first ones reflect the distribution of filaments over the
mixing domain (for the uniform mixture the coarse-grained
density should be less than 1 and larger than 0 all over domain,
so filaments should be everywhere), while the latter shows the
behavior of the unmixed domains of the coherent structure
(Danckwerts, 1952). They also change in opposite ways when
changing the box size. The smaller the box size δ, the worse is
the mixing according to the first measures and the better
according to the scale measures, which decrease with decreas-
ing cell size δ. Therefore, it is necessary to use both measures
to judge how well or how badly materials are mixed.

D. Mix norms

The issue with applying these mixing measures has always
been the arbitrariness of the choice of scale. But recent
proposals for multiscale mixing measures get around this
issue, and in this section we discuss a multiscale mixing
measure originally introduced by Mathew, Mezić, and Petzold
(2005). While the multiscale measure does not require
diffusion to represent the amount of homogenization, it is
convenient to begin the discussion by recalling the advection-
diffusion equation ∂C=∂tþ u · ∇C ¼ κ∇2C, where C is a
concentration field in a finite domain Ω, with no-net-flux
boundary conditions. We assume without loss of generality
that

Z
Ω
CdΩ ¼ 0; ð54Þ

and define the L2 norm, or variance, as

∥C∥22 ¼
Z
Ω
C2dΩ: ð55Þ

(b)(a)

FIG. 36. Wedge-cavity flow: Evolution of the scales of
segregation (a) Lx and Ly, (b) the averaged scale L (solid)
with the approximation curves 4 (ci ¼ 0.03), 5 (ci ¼ 0), and
6 (ci ¼ −0.02), c1 ¼ 1=50 and c2 ¼ 113. From Krasnopolskaya
et al., 1999.
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The variance evolves according to

d
dt

∥C∥22 ¼ −2κ∥∇C∥22; ð56Þ

and so decays in time as the system mixes. The variance
indicates the extent to which the concentration has homog-
enized and is thus a good measure of the amount of mixing
that has occurred. However, a full computation of variance
requires knowledge of small scales in C, which we are not
necessarily interested in. It would be better to use a measure
that down plays the small scales. This is more in keeping
with the definition of mixing in the sense of ergodic theory
(Lasota and Mackey, 1994). We thus proceed to consider the
pure advection equation

∂C
∂t þ u · ∇C ¼ 0: ð57Þ

Note that in this case Eq. (56) predicts that the variance
satisfies

d
dt

∥C∥22 ¼ 0; ð58Þ

and cannot therefore be used as a measure of mixing.
The advection equation (57) returns us to the ergodic sense

of mixing of Eq. (43). Consider the advection due to the
velocity field to be a time-dependent operator St∶Ω → Ω that
moves an initial patch of dye according to

C0ðxÞ ↦ Cðx; tÞ ¼ StC0ðxÞ: ð59Þ

If we consider a region A of uniform concentration defined by

C0ðxÞ ¼
�
1 if x ∈ A;

0 otherwise;
ð60Þ

then the volume of the region A remains constant in time by
incompressibility and can be associated with the Lebesgue
measure μðAÞ. For a flow enjoying the property of strong
mixing Eq. (43) is satisfied, with f representing a stroboscopic
map of the operator St.
The intersection of the advected patch B with the reference

patch A as in Fig. 27 is analogous to projection onto L2

functions. This motivates the following weak convergence
condition:

lim
t→∞

hCðx; tÞ; gi ¼ ḡ; ð61Þ

for all functions g ∈ L2ðΩÞ with spatial mean ḡ, where the
inner product is defined by

hh; gi ¼
Z
Ω
hðxÞgðxÞdΩ; ð62Þ

and h ∈ L2ðΩÞ if
R
Ω jhj2dΩ < ∞. Weak convergence is

equivalent to mixing as a consequence of the Riemann-
Lebesgue lemma. The equivalent conditions Eqs. (43) and
(61) require computing over all patches A or functions g,

respectively. Thus, neither of these conditions, taken in
isolation, is very useful in practice. However, we now describe
a theorem that shows that there is a simpler way to determine
whether or not weak convergence is satisfied.
Mathew, Mezić, and Petzold (2005) introduced the mix

norm, which for mean-zero functions is equivalent to

∥C∥ _H−1=2 ≔ ∥∇−1=2C∥2: ð63Þ

Doering and Thiffeault (2006), Lin, Thiffeault, and Doering
(2011), and Thiffeault (2012) generalized the mix norm to

∥C∥ _Hq ≔ ∥∇qC∥2; q < 0; ð64Þ

which formally is a negative homogeneous Sobolev pseudo-
norm. This norm can be interpreted for negative q via
eigenfunctions of the Laplacian operator. For example, in a
periodic domain, we have

∥C∥2_Hq ¼
X
k

jkj2qjĈkj2; ð65Þ

from which we see that, for q < 0, ∥C∥q_H smooths C before

taking the L2 norm. The theorem

lim
t→∞

∥C∥ _Hq ¼ 0; q < 0⇔ C converges weakly to 0; ð66Þ

due to Mathew, Mezić, and Petzold (2005), Lin, Thiffeault,
and Doering (2011), and Thiffeault (2012) shows that we can
track any mix norm to determine whether a system is mixing.
The existence of this quadratic norm facilitates optimization of
the velocity field to achieve good mixing. Mathew et al.
(2007) used optimal control to optimize the decay of the
q ¼ −1=2 mix norm. Lin, Thiffeault, and Doering (2011)
optimized the instantaneous decay rate of the q ¼ −1 norm
using the method of steepest descent, which is easier to
compute numerically but yields suboptimal, but nonetheless
very effective, stirring velocity fields. A comparison of the
methods for optimized mixing is shown in Fig. 37. The solid
line decays faster, but this is merely because _H−1 cannot be
compared directly with _H−1=2. The corresponding evolution of

FIG. 37. Mix norms: Comparison for a flow optimized using the
separate methods of optimal control and optimal instantaneous
decay. From Lin, Thiffeault, and Doering, 2011.
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the concentration field for the case q ¼ −1 from Lin,
Thiffeault, and Doering (2011) is shown in Fig. 38. For a
complete review, see Thiffeault (2012).

E. Rates of mixing

Many applications may require the mixing of a particular
scalar field, for example, concentration or temperature. This
problem leads to a natural reformulation of Eq. (43) in
functional form. Such an expression can then be used to
ask how quickly a mixing system achieves its goal. This
procedure is a common one in the study of ergodic theory of
dynamical systems, in abstract situations apparently uncon-
nected with fluid flow. Nevertheless, rigorous results from this
field can be appropriately applied to physical systems.
More formally, suppose a system has the strong-mixing

property expressed by Eq. (43). Observe first that μðAÞ ¼R
M χAdμ, where χA is the characteristic indicator function for
the set A. We can rewrite Eq. (43) as

lim
n→∞

Z
M
χfnðAÞ∩Bdμ −

Z
M
χAdμ

Z
M
χBdμ ¼ 0:

Now χfnðAÞ∩B ¼ χBχfnðAÞ ¼ χBχA ∘ f−n, since fnðAÞ is the set
of points that maps into A under f−n. Hence the mixing
condition can be written as

lim
n→∞

Z
M
χBðχA ∘ f−nÞdμ −

Z
χAdμ

Z
χBdμ ¼ 0:

Replacing the characteristic indicator function χ with a pair of
arbitrary scalar (observable) functions ϕ, ψ (typically chosen
to possess some regularity properties) defines the correlation
function

Cnðϕ;ψÞ ¼
����
Z

ϕðψ ∘ f−nÞdμ −
Z

ϕdμ
Z

ψdμ

����: ð67Þ

The decay of this correlation function then gives a measure of
the rate of mixing of f.
In principle, for a mixing chaotic system, the exponential

separation of nearby initial conditions should cause Cn to
decay to zero at an exponential rate, that is,

Cn ¼ Oðe−anÞ ð68Þ
for some constant a > 0. One can establish an exponential
decay rate in Eq. (67) for the cat mapA (recall again theArnol’d
fast dynamo of Sec. VI) and analytic observables relatively
easily. Expanding φ and ψ as a Fourier series (here also
assuming without loss of generality that ψ has zero mean),

φðxÞ ¼
X
k∈Z2

akeik·x; ψðxÞ ¼
X
j∈Z2

bjeij·x;

the analyticity assumption guarantees that the coefficients ak
andbj decay exponentially quickly. Linearity and orthogonality
mean that Eq. (67) can be written as

Cnðφ;ψÞ ¼
Z X

k∈Z2

akeik·A
nx
X
j∈Z2

bjeij·xdx

¼
X
k∈Z2

akb−kAn :

SinceA is a hyperbolicmatrix, the exponential growth of jkAnj
together with the exponential decay of Fourier coefficients
yields superexponential decay of Cn (Baladi, 2000). Note that
this calculation is possible only because the map is linear, with
constant Jacobian. The same properties also reveal why the cat
map is a poor model for real mixing devices. It cannot represent
any nonlinear or nonuniform behavior.
In practice it has been observed that the presence of

boundaries can slow this rate. This phenomenon can also
be demonstrated in the measure-theoretic viewpoint by
computation of the decay of correlations for linked twist
maps (Sturman, Ottino, and Wiggins, 2006). These form a
class of maps that can be thought of as nonuniformly hyper-
bolic generalizations of the cat map and that include boundary
regions at which particular hydrodynamical boundary behav-
ior can be modeled. Using a Young tower (Young, 1998)
approach, Springham and Sturman (2013) demonstrated that
in linked twist maps Cn decays at a polynomial rate for all
choices of scalar observables φ and ψ (with Hölder regular-
ity). Moreover, the contribution to Cn from the boundary
regions can be computed explicitly, as in Sturman and
Springham (2013), suggesting that a linked twist map
achieves its upper bound on mixing rate, that is,

Cn ¼ Oðn−bÞ ð69Þ

for some constant b > 0, and hence that the exponent in the
underlying power law is determined entirely by the boundary
conditions.
Dynamical complexity of polynomial order is also a feature

of another class of system. Interval exchange transformations
(Keane, 1975) and their generalizations known as piecewise
isometries (Goetz, 2000) have no hyperbolic behavior and can

FIG. 38. Evolution of the concentration field for the flow
optimized in the case q ¼ −1. From Lin, Thiffeault, and Doering,
2011.
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be shown to have zero topological entropy (Buzzi, 2001).
Instead, their complexity comes from discontinuities in the
system and as such can create mixing by cutting and shuffling,
rather than by stretching and folding (Sturman, 2012). A
natural place to find isometric dynamics is in materials that
exhibit highly localized, discontinuous deformations such as
slip surfaces and shear bands, e.g., colloidal suspensions,
plastics, polymers, alloys, and granular matter. Moreover,
some of these classes of materials, along with valved fluid
systems, e.g., piping or vascular networks, multifunctional
microfluidic analysis chips, river networks with locks, or the
heart, can undergo a combination of cutting and shuffling
along with stretching and folding (Smith et al., 2016).

F. Visualization

To inspect mixing in a fluid, it is reasonable to identify and
visualize sets connected by fluid transport over a time period
of interest. Any dynamics with mixing property would
transport material between any two arbitrary sets, given a
sufficiently long time window. Conversely, if there is a barrier
separating the fluid into isolated islands, the fluid would not
be well mixed globally; however, the fluid inside individual
islands may still be mixed. Technically, the existence of
material transport connecting all subsets over long time win-
dows is ergodicity: a mixing flow is ergodic a fortiori, but
the two concepts are not equivalent, as we discussed earlier.
Nevertheless, ergodicity can in practice be used as a first
approximation to mixing. Construction of the ergodic partition,
i.e., the collection of sets whose interiors contain ergodic
dynamics, involves the intersection of level sets of a sequence
of static scalar fields averaged over Lagrangian particle paths
(Mezić and Wiggins, 1999). This process is the basis for a
numerical algorithm described by Budišić and Mezić (2012),
which not only approximates the ergodic partition, but also
aggregates smaller, dynamically similar ergodic sets into larger
invariant structures, allowing inspection of fluid features both
on coarser and on finer scales; see Fig. 39.
The averaging algorithm for the ergodic partition can

handle relatively sparse and restricted sets of initial points
from which particles are launched. However, it requires time
periods long enough for the particle paths to explore the

mixing region. If only short bursts of dynamics are available,
but the initial conditions can be densely sampled, an alter-
native is to form a Ulam approximation of the flow. The Ulam
method approximates the transfer operator of the flow, which
describes how densities are advected, by a Markov chain
transition matrix. To identify and visualize invariant and
almost-invariant sets, eigenvectors of the transition matrix
are used to color the state space, as described by Dellnitz and
Junge (2002), Froyland and Padberg (2009), and Froyland,
Santitissadeekorn, and Monahan (2010).
In the ideal setting, the ergodic partition and the Ulam

approximation are two sides of the same coin: they relate to
the Koopman and Perron-Frobenius operators (Budišić, Mohr,
and Mezić, 2012), respectively, which form a dual pair.
Practically, the two approaches have different numerical
properties. To discover the true ergodic partition, the ergodic
partition algorithm relies on long-time averages of a set of
functions. Convergence of such averages can be expected in
OðT−1Þ for regular dynamics and OðT−1=2Þ for fully chaotic
dynamics. For intermittent chaos, however, convergence can
be much slower, although regions of intermittency are small in
most problems and do not cause problems as explained by
Levnajić and Mezić (2010). The Ulam approximation, on the
other hand, requires only short bursts of dynamics. To form
the Ulam matrix, the state space is discretized into cells, which
introduces a numerical stochastic element to the dynamics.
This poses a problem in regions with many barriers to
transport, since a poor choice of discretization can artificially
connect otherwise independent regions. As the ergodic par-
tition algorithm classifies trajectories directly, it does not
suffer from the same problem.

G. Summary of results on the structure of the mixed state

We briefly summarize the main conclusions of this section.
Based upon the area-preservation property of a closed contour
under topological transformation in an incompressible 2D flow,
one suggestion for quantifying distributive mixing is to use the
modified quantities of intensity of segregation and scale of
segregation. All quantitative measures such as square density,
intensity and scale of segregation, and entropy reveal non-
monotonic behavior in timewhile approaching their limits for a
uniform mixture. In order to properly judge how well or how
badly two substances are mixed, it is recommended to use both
first-order measures (square density hD2i, intensity of segre-
gation I, entropy e, and quality Q) and second-order measures
(e.g., the scale of segregation L) of the mixing quality. Large
(exponential) stretching rates do not always correspond to the
best quality of mixture. Many of these quantities have a
dependence on the scale at which they are computed. The
concept of mix norm circumvents this problem.
A related point can be made in the context of decay of

correlations in smooth ergodic theory. Equations (68) and (69)
represent exponential and polynomial decay of correlations,
respectively. Certainly, exponential decay will tend to zero at a
faster rate than algebraic decay, but there is nothing in Eqs. (68)
and (69) to suggest when this faster rate will occur. Although
exponential mixing is a desirable property, it is quite possible
that in finite time a chaotic system with an exponential tail may
be beaten by a system with a polynomial tail. [An alternative

FIG. 39. Filtering of invariant sets of a dynamical system using
ergodic averages. The modulus (left) and phase (right) of a
period-3 harmonic average of an observable along trajectories of
the Chirikov standard map. Nonzero level sets of the modulus
indicate period-3 sets (invariant sets of the map composed 3 times
with itself). The phase of those sets indicates the order in which a
trajectory visits subsets of the periodic sets. From Budišić, Mohr,
and Mezić, 2012.

Hassan Aref et al.: Frontiers of chaotic advection

Rev. Mod. Phys., Vol. 89, No. 2, April–June 2017 025007-40



quantification of the rate of mixing was proposed by MacKay
(2008), namely, the decay of the “transportation” distance from
an advected measure to the equilibrium measure.]
We comment on the relationship between two different

viewpoints on the dynamics. Topological ideas have been
fruitful in providing bounds on rates of mixing via rates of
stretching. In particular, Boyland, Aref, and Stremler (2000)
and Thiffeault and Finn (2006) classified and optimized the
efficiency of stirring as measured by the stretching of
distinguished material lines in the fluid. The resulting braid
dynamics imposes a minimum complexity on the flow, and the
Thurston-Nielsen classification theorem reveals particular
protocols of moving rods that achieve this complexity. This
topological approach leads to a lower bound for the best
mixing behavior, while the measure-theoretic approach
described leads to an upper bound for the worst behavior.
These two differing conclusions are the result of effectively
considering the same dynamics in two different ways. An
understanding of the gap (or perhaps overlap) between the
topological bound and the measure-theoretic bound is likely to
be a considerable mathematical challenge, but also promises
to offer new insight into the details of mixing processes.

VIII. CHAOTIC ADVECTION PLUS: SOME
ILLUSTRATIVE APPLICATIONS

The general picture presented in this review shows the
chaotic advection of fluid as a consequence of the dynamical
system induced by the kinematic equation. Fluid elements can
take regular paths, where regular regions are barriers to mixing
and transport, or chaotic paths, where chaotic regions have
rapid mixing. Aref (1990) termed the geometry created by all
the paths that can be taken by passive fluid particles the
kinematic template of the flow. But while the kinematic
template is at the heart of all applications of chaotic flow,
few applications involve only the kinematic template of
chaotic fluid advection. In applied chaos this “pure” form
of motion is almost never encountered. Applications have
multiple physical forces driving multiple modes of fluid or
particle motion in addition to the continuum stirred advection
of a carrier fluid (Metcalfe, 2010; Metcalfe et al., 2012).
The pathway to creative application lies in understanding the

interaction of the kinematic template with these other, multiple
application-dependent physical forces. However, little system-
atic knowledge exists on the question of how nonpassive
phenomena interact with the kinematic template to change
the organization of their own flow and transport properties. For
instance, transport of elements that are not passive scalars (e.g.,
solid particles, liquid droplets, biological cells, small self-
propelling organisms) or of materials that can react and diffuse
(e.g., heat, chemical species) plays an essential role in many
industrial, geophysical, and biological applications. The inter-
action of the chaotic flow template and these particular physical
forces results in an expanded dynamical system with the
particles or scalars that is no longer conservative and is instead
dissipative (in the dynamical-systems sense of a contracting
phase space, not of fluid energy dissipation). This leads to
attractors and repellors in particulate systems (Babiano et al.,
2000; Cartwright, Magnasco, and Piro, 2002; Torney and
Neufeld, 2007; Metcalfe et al., 2012) and strange eigenmodes

with diffusive scalar fields (Pierrehumbert, 1994; Liu and
Haller, 2004; Lester et al., 2008, 2009, 2010). The kinematic
template can be identical in all these cases, but as the additional
physics works through and interactions are mediated by the
advection, the transport properties of the expanded systems can
be quite different.
Examples occur in every domain in which fluid motion

exists; Fig. 40 shows schematically some selected applications
where mediation of physical forces by the kinematic template
is essential. This section can give only a flavor of the full range
of applications possible with chaotic advection; next we have
chosen some that we find particularly interesting.

A. Heat transfer

Control of heat transfer, its augmentation or suppression, is
pivotal for the efficiency of many processes (Gollub et al.,
2006). Understanding laminar-flow heat transfer in foods,
polymers, energy systems, the Earth’s subsurface, etc., is
particularly problematic (Perugini, Poli, and Mazzuoli, 2003;
Perugini et al., 2012; El Omari et al., 2015; Petrelli et al., 2016).
Without turbulence to continually refresh material near heat
transfer boundaries, the temperature gradients at those boun-
daries lessen and heat transfer slows (Le Guer and El Omari,
2012; Metcalfe et al., 2012). Chaotic advection can provide a
means to deal with industrial applications that involve highly
viscous complex fluids and highly exothermic reactions that are
difficult to control. In such cases, it is important to control the
rapid temperature increase resulting from fast reactions in order
to obtain the desired products. Heat removal is then a crucial
factor in controlling such fast reactions. This problem can be
tackled by using a large surface area per unit volume ratio for the
reactor (i.e., the case of microreactors), but this solution is
sometimes inappropriate when large volumes of fluid are

FIG. 40. The chaotic kinematic flow template (center) mediates
the interaction of all other physical processes to determine the
outcome of applications (outer ring).

Hassan Aref et al.: Frontiers of chaotic advection

Rev. Mod. Phys., Vol. 89, No. 2, April–June 2017 025007-41



considered, for example. Another typical industrial solution is
to increase surface area by making the fluid transfer conduits
very narrow. However, this has a large pumping energy penalty
that increases rapidly with the fluid viscosity. These problems
are relevant in many conventional industrial domains, in which
thepotentialities of chaotic advection are notwell recognized. In
a large majority of industrial reactors, heat transfer for either
heating or cooling processes is achieved through thewalls of the
reactor. Furthermore, many industrial fluids have non-
Newtonian rheological behavior (Arratia et al., 2005), and their
physical properties can also depend on the temperature.
Nowadays, highly energy-efficient heat transfer devices have
been designed by considering chaotic flow coupled to the
diffusing temperature field (Lester, Metcalfe, and Rudman,
2007; Lester, Rudman, and Metcalfe, 2009; Metcalfe and
Lester, 2009).

1. Effect of the Péclet number

As homogenizing the temperature field is equivalent to
mixing a diffusing passive scalar, the analysis proceeds via the
strange eigenmode solutions to the advection-diffusion equa-
tion, Eq. (4). The solution to Eq. (4) is given by a sum of the
natural modes φkðx; tÞ of the advection-diffusion operator

ϕðx; tÞ ¼
XK
k¼0

αkφkðx; tÞeλkt; ð70Þ

where the sum is ordered by the magnitude of the real parts of
the eigenvalues λk, with initial weights αk; and physically the
λk have negative real parts (Liu and Haller, 2004).
For the problem of material entering a device at one uniform

temperature and leaving at a different uniform temperature,
only the time to achieve thermal homogenization matters. This
time is given by the most slowly decaying term in Eq. (70):

ϕðx; tÞ → α0φ0ðx; tÞeλ0t: ð71Þ

The long-time transport rate is given by Reðλ0Þ, and the
problem reduces to designing a device that minimizes

Reðλ0Þ while keeping relatively open flow conduits, i.e., to
simultaneously minimizing the thermal homogenization time
and the pumping energy.
Lester, Metcalfe, and Rudman (2007), Lester et al. (2008),

and Lester, Rudman, and Metcalfe (2009) used such a
procedure to design a heat exchanger based on the rotated
arc mixing (RAM) flow (Metcalfe et al., 2006). RAM flow
consists of an open tube through which fluid flows. Along the
length of the tube portions of the boundary are in motion for a
duration τ, imparting cross-sectional streamlines shown at the
top left of Fig. 41. This cross-sectional flow is periodically
reoriented by an angle Θ as material moves down the tube.
The chaotic and symmetry properties of this flow have been
extensively studied (Speetjens, Metcalfe, and Rudman, 2006;
Speetjens, Rudman, and Metcalfe, 2006; Metcalfe, 2010). The
top row in Fig. 41 shows Poincaré sections for passive fluid
advection at selected values of τ and Θ chosen to illustrate the
connections between structures of various sizes in the chaotic
advection field and the resultant scalar distribution when
various levels of diffusion are added. Each column shows the
eigenmode associated with the flow at the top for the Péclet
number indicated. The initial condition is a Gaussian blob of
heat (red color) in the center of the circle. For low enough
values of Pe (bottom row) the asymptotic pattern is a
deformed version of the initial condition that varies hardly
at all even with large structural changes in the fluid advection.
With increasing Pe the scalar patterns can either be dominated
by large-scale structures in the advection (middle two

FIG. 41. Dominant scalar concentration pattern in a RAMmixer
for various reorientation parameter settings of the base flow in the
top left, as defined in the text. (Top row) Poincaré sections
(essentially infinite Péclet number results). (Columns) Below
each Poincaré section are the patterns obtained at the indicated
Péclet numbers.

FIG. 42. How a scalar pattern evolves though a cycle of duration
τ in a RAM flow. At 0 the moving boundary indicated by the
arrow moves. Region (a) has been stretched and folded; diffusion
heals the pattern along folds. Simultaneously advection stretches
and makes new folds around the region (b). The pattern at τ
resumes its original shape, rotated by Θ. From Lester, Metcalfe,
and Rudman, 2014.
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columns) or they can seemingly decouple from the advection
field either when island structures in the advection field are
small enough (rightmost column) or when there is global
chaos (leftmost column). However, other work suggests that
the advection and scalar fields are not really decoupled: it is
just that Poincaré sections do not show the relation because it
occurs in the stretching field.
Figure 42 illustrates the cooperation between advection and

diffusion as the pattern φ0 evolves through one reorientation
interval. At 0 the boundary arc indicated by the arrow moves.
Region (a) has been stretched and folded during the previous
interval and during the subsequent interval diffusion “heals”
the pattern along this fold. Simultaneously advection stretches
and makes new folds around the region (b). The pattern at τ
resumes its original shape, rotated by Θ. Diffusion heals the
pattern wherever folds bring parts of the pattern close together,
and folding appears to play a larger role in sustaining the
pattern than is often credited.
Experimental data for chaotic heat transfer are more

difficult to acquire, depending on what type of data are
needed. Overall heat transfer measurements for an optimized
RAM heat exchanger show that the heat transfer rates are 4–10
times larger than for an open tube with total pumping energy
reductions of 60%–80% compared to an open tube, depending
on Pe and fluid rheology. Temperature pattern data are scarce,
but experiments are beginning to produce them: Fig. 43 shows
the measured temperature field compared with a numerical
computation of the same flow (Baskan et al., 2015).

2. Thermal boundary condition

Consider a typical mixer composed of two circular rods
inside a cylindrical tank. The tank and the rods are heated or

cooled and can rotate around their respective axes. This two-
rod mixer is suitable for obtaining global chaotic flow without
large KAM regions (El Omari and Le Guer, 2009, 2010a).
Consider a highly viscous fluid of Re ≈ 1 with a high Prandtl
number Pr ¼ 104, so that it is difficult to mix. Because of the
combination of mixing with heat transfer, the wall boundary
condition plays a particular role that is different from the
mixing of a passive scalar considered without heating or
cooling. The role of the wall has been discussed in Sec. II
where the notion of a chaotic saddle in open flow is presented
and in Sec. III where the case of a slip boundary is considered
in a 2D bounded flow. El Omari and Le Guer (2010a, 2010b)
have shown for both Newtonian and non-Newtonian fluids
and for a constant wall temperature boundary condition that
the efficiency of thermal exchange is strongly dependent on
the choice of the stirring protocol imposed on the walls. The
main conclusion from these works is that maximizing heat
transfer from the wall boundaries requires that the walls (i.e.,
the tank or rods here) move alternately. This way, one avoids
the development of closed streamlines near the wall, which
reduces advection from the wall zones and prevents the
persistence of confined hot or cold fluid zones. Continuous
modulation of wall movement is not sufficient to produce
effective chaotic mixing and the existence of stagnation points
on the static walls is necessary to create separatrices from
which heteroclinic tangles are created (see Fig. 44). Thus,
thermal chaotic mixing is controlled by the topology of the
flow near the moving or nonmoving walls. However, the
choice of a thermal wall boundary condition, either constant
wall boundary condition or constant wall heat flux, gives rise
to fundamental differences in the evolution of the fluid
temperature and its homogenization.
For a constant wall temperature boundary condition (i.e.,

Dirichlet condition), the imposed wall temperature repre-
sents an asymptotic limit for the evolution of the mean fluid

FIG. 43. The two leading eigenmodes (labeled 0 and 1) of the
temperature evolution for a RAM flow at Pe ¼ 104 from (left
column) computation and (right column) experiment. For
numerical data Re ¼ 0; for experimental data Re ¼ 0.1. From
Baskan et al., 2015.

FIG. 44. Two-rod mixer: Instantaneous temperature fields and
streamlines after four periods of stirring. The rods and the tank
rotate in the same direction. Continuously modulated stirring
protocol (CM—left) vs alternated stirring protocol (ALT—right).
The dots at the wall indicate stagnation points from which fluid is
extracted toward the center of the mixer. Large zones of unheated
fluid are observed in the CM case. Case of a constant
wall temperature boundary condition. From Le Guer and
El Omari, 2012.
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temperature, and the rapidity with which this limit is
reached is controlled by the efficiency of the mixing. In
contrast, for a constant heat flux boundary condition (i.e.,
Neumann condition), there is no asymptotic limit for the
evolution of the mean fluid temperature because its evolu-
tion is prescribed by the imposed heat flux density. In this
case, the efficiency of mixing (of the stirring protocol)
controls the heat homogenization only. As a consequence,
the stirring strategy and the choice of the mixing measures
must be selected in agreement with the type of the wall
heating considered. This is illustrated in Fig. 45 for the two
different boundary conditions and for three stirring protocols
[nonmodulated (NM), continuously modulated (CM), and
alternated (ALT)]. This figure displays the greater efficiency
of the alternated stirring protocol for both thermal boundary
conditions. Similarly to the nonmodulated stirring protocols,
the continuously modulated stirring protocols give rise to
closed streamlines in the vicinity of the walls that prevent
the radial transport of the temperature scalar inside the
mixer. Thus, close to the rotating boundaries, radial heat
transfer is achieved only by conduction across the stream-
lines; these streamlines act as an insulation medium
(Gouillart, Thiffeault, and Dauchot, 2010b).

3. Effect of fluid rheology

In order to show the impact of fluid rheological behavior on
the pattern of the temperature field, we illustrate in Fig. 46 the
temperature fields and the corresponding streamlines for
shear-thinning (left) and shear-thickening (right) fluids in
the case of the alternated stirring protocol. The Ostwald–
de Waele power-law model ηð _γÞ ¼ kð _γÞn−1 is chosen for the
apparent viscosity. Two values of the behavior index n are
considered, n ¼ 0.5 and 1.5, corresponding to shear-thinning
and shear-thickening fluids, respectively. The values of the
consistency index k are adjusted to keep the generalized
Reynolds number the same as the corresponding Newtonian
case of Fig. 44. Compared to Newtonian and shear-thinning
fluids, the shear-thickening fluid is more driven by the wall
due to its higher viscosity, resulting in larger vortices and more
extended hot fluid streaks originating from the parietal para-
bolic points. This greater fluid driving also increases the
folding of temperature striations. Thus, the mixing efficiency

FIG. 45. Two-rod mixer: Time evolution of the temperature
standard deviation σ for the nonmodulated (NM), continuously
modulated (CM), and alternated (ALT) stirring protocols. The
nondimensional mean temperature T�

m is also given. Modulation
period is 30 s. (Top) The imposed heat flux, and (bottom) the
imposed temperature (note that in the latter case the σ axis has a
logarithmic scale). From El Omari and Le Guer, 2012.

FIG. 46. Two-rod mixer: Instantaneous temperature fields and
streamlines after four periods of stirring for shear-thinning (left)
and shear-thickening (right) rheological fluid behaviors for the
alternated stirring protocol. Case of a constant wall temperature
boundary condition. From Le Guer and El Omari, 2012.

FIG. 47. Two-rod mixer: Temperature fields and streamlines
after four periods of stirring during a heating process (left) and a
cooling process (right) for a Newtonian temperature-dependent
fluid (B ¼ 5) and the alternated stirring protocol. Case of a
constant wall temperature boundary condition. From Le Guer and
El Omari, 2012.
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for this fluid is higher than that of the two other fluids. The
vortices created in the shear-thinning fluid are smaller because
of the viscosity reduction in the sheared fluid near the rotating
walls. Fluid driving forces and mixing efficiency are then
weak. The effects of the temperature dependence of viscosity
on chaotic mixing are also important. As discussed, fluid
viscosity in the vicinity of the moving walls has a major
influence on the fluid displacement and on the creation of
large vortices accompanied by separatrices that help to
promote mixing. When the temperature dependence is taken
into account, the heating and cooling processes have different
evolutions. This temperature dependence can be modeled by
an exponential model as η ¼ η0 exp ð−BT�Þ (Le Guer and El
Omari, 2012). The results obtained for the Pearson number
B ¼ 5 (relevant to melted polymers, for example) are shown
in Fig. 47 and may be compared to those of the non-
temperature-dependent case (B ¼ 0) of Fig. 44 (right). In
contrast to the non-temperature-dependent case, the velocity
field for B ≠ 0 is not reproducible from period to period owing
to the continuous evolution of the viscosity, and therefore the
mixing mechanisms are not exactly the same from the
beginning of the mixing to its end. The streamlines of
Fig. 47 show distinctly different patterns for heating and
cooling and both are different from the B ¼ 0 case [Fig. 44
(right)]. This difference is salient for the heating process, for
which the viscosity is low in a thin fluid layer around the walls
and higher elsewhere; thus, there is slippage between the fluid
and the wall (i.e., the momentum diffusion is weak), and the
fluid is not well driven. On the other hand, the lack of the fluid
driving force of the moving walls is balanced by the ease of
moving the less-viscous fluid at the static walls. The mixing
mechanism of a temperature-dependent fluid is quite complex,
with several superimposed effects, even for a Newtonian fluid.
Also, flow morphologies evolve in time, and as a remarkable
consequence, the strange eigenmodes existing in the non-
temperature-dependent case (Fig. 48) are absent in the B ¼ 5
case because there are no recurrent patterns in the temper-
ature field.

An important feature of thermal mixing in comparison with
the mixing of a scalar substance is that the scalar source is
located at the wall boundary. Thus the mode of heating (or
cooling) of the boundary directly influences the characteristics
of the mixing and heat transfer which are also significantly
affected by the rheological behavior of the fluid through the
shear rate dependence on viscosity. The thermal strange
eigenmodes are always present for a non-Newtonian fluid
(with a shear-thinning or shear-thickening behavior) but they
disappear when the viscosity is temperature dependent
because of the spatial modification of the flow field over time.

B. Microfluidics

In recent years, the transfer of lithographic techniques to the
microfluidics industry has led to a renascence of the chaotic
advection paradigm for the mixing of fluids at the lowest
Reynolds numbers. Although microfluidic mixing is a key
process in a host of miniaturized analysis systems, with useful
applications for chemical reactions, crystallization, polymeri-
zation and organic synthesis, biological screening, polymerase
chain reaction amplification, and a great many other fields, it
continues to pose challenges owing to constraints associated
with operating in an unfavorable laminar-flow regime char-
acterized by a combination of low Reynolds numbers and high
Péclet numbers. A wide variety of micromixing approaches
have been explored, most of which can be broadly classified
as either active (involving input of external energy) or passive
(harnessing the inherent hydrodynamic structure of specific
flow fields to mix fluids in the absence of external forces).
Here we review some of the most promising approaches.

1. Passive mixing

Passive designs are often desirable in applications involving
sensitive species (e.g., biological samples) because they do not
impose strong mechanical, electrical, or thermal agitation. The
microchannel structures associated with these mixing ele-
ments range from relatively simple topological features on one
or more channel walls (ridges, grooves, or other protrusions
that can, for example, be constructed by means of multiple soft
lithography, alignment, and bonding steps) to intricate 3D
flow networks. Ultimately, it would be desirable to achieve
gentle passive micromixing in the shortest possible down-
stream distance by using simplified microchannel geometries
(ideally, planar 2D smooth-walled) that can be easily con-
structed, ideally, in a single lithography step.
One of the best-known examples, the staggered-herringbone

micromixer (SHM) shown in Fig. 49(a) (Stroock et al., 2002),
subjects the fluid to a repeated sequence of rotational and
extensional local flow that, as result, produces a chaotic flow.
The internal structures endow SHMs with high mixing
efficiency, allowing a short mixing length (∼1–1.5 cm) at
high Péclet number (Pe ∼ 104). A series of improved grooved
patterned micromixers has been proposed since then. More
convoluted devices use a more faithful realization of the
Baker’s map by a “split-and-recombine” strategy where
the streams to be mixed are divided or split into multiple
channels and redirected along trajectories that allow them
to be reassembled subsequently as alternating lamellae

FIG. 48. Two-rod mixer: Snapshots at different periodic times
show the evolution of the T� field toward a strange eigenmode
(top row), and snapshots rescaled between T�

min and T
�
max (bottom

row). From Le Guer and El Omari, 2012.
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(Kim et al., 2005; Xia et al., 2005). Another interesting
strategy for passive devices is the use of finite Re effects to
force the fluid through an efficient chaotic transformation:
examples include the use of Dean vortices in curved channels
depicted in Fig. 49(b) (Sudarsan and Ugaz, 2006a, 2006b),
or the incorporation of elastic passive elements in the micro-
channel to transform a simple steady laminar flow into a
forced oscillatory flow through hydroelastic instabilities
(Xia et al., 2012).

2. Active mixing

In contrast to the passive types, active micromixers can
keep their functions under tighter control in most cases.
External perturbation sources, such as pressure, thermal,
electrokinetic, magnetic, and acoustic disturbances, can be
designed to induce chaotic advection. For instance, externally
imposed oscillatory flows driven across a main channel
can stretch and fold fluid in the primary flow into itself,
significantly enhancing mixing. This secondary oscillatory
flow can be generated by means of controlled pressure, as in
Fig. 50(a) (Glasgow and Aubry, 2003; Okkels and Tabeling,
2004; Tabeling et al., 2004; Bottausci et al., 2007), via low
frequency switching of transverse electro-osmotic flows
generated on integrated microelectrodes (Oddy, Santiago,
and Mikkelsen, 2001; Song et al., 2010), through ultrafast
ion depletion and enrichment by polyelectrolytic gel electro-
des (Chun, Kim, and Chung, 2008), or by trapping and
exciting acoustic streaming of air bubbles with external

piezotransducers, as illustrated in Fig. 50(b) (Liu et al.,
2002; Ahmed et al., 2009; Wang, Huang, and Yang, 2011).

3. Mixing in microdroplets

Droplet-based microfluidic systems, sometimes referred to
as “digital microfluidics,” use two immiscible fluids such as
water and oil to produce highly monodisperse emulsions in
microchannels with a small size variation. By varying the
viscosity of the two phases, the relative flow rates, or the
channel dimension, it is possible to tune the dimensions of
the microdroplets produced. Such microdroplets can be used
to encapsulate, for instance, a number of chemical reagents
that need to be mixed quickly for a chemical reaction to take
place. This compartmentalization is ideally suited to a large
number of applications, including the synthesis of biomole-
cules, drug delivery, and diagnostic testing (Teh et al., 2008).
The discrete nature of microdroplets and the feasibility of
individual control of their distinct volumes of fluids contrasts
with the continuum nature of other systems and emphasizes
their use as a versatile high-throughput platform.
Interaction between the droplet surface and the channel

walls can be used to generate recirculating flows within the
droplet (Song et al., 2003; Tice et al., 2003). The introduction
of turns and bends in the channel induces an asymmetric flow
pattern within the drop that can be used to periodically perturb
the steady flow and, hence, induce mixing by chaotic
advection. The best-known device based on this principle is
the “planar serpentine micromixer” (PSM) shown in Fig. 51(a)

FIG. 49. Passive micromixers: (a) The staggered-herringbone micromixer (SHM) has become a paradigm for passive mixing.
A periodic sequence of microgrooves imparts a passive perturbation to the primary channel flow to elicit chaotic advection and, as a
consequence, rapid mixing. (b) More recent strategies include the use of finite Re number effects in curved channels (e.g., a combination
of Dean and expansion vortices). (a) From Stroock et al., 2002. (b) From Sudarsan and Ugaz, 2006b.
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(Song et al., 2003; Bringer et al., 2004; Tice, Lyon, and
Ismagilov, 2004) in which the extent of mixing can be
controlled by altering the number and distribution of turns in
the microchannel. Conversely, the microdroplet surface can be
perturbed by external forcing. Examples include the generation
of surface-tension gradients, for instance, generated by heating
from a laser beam (Grigoriev, Schatz, and Sharma, 2006), or the
fine-tuning of surface electrowetting induced by microelectr-
odes (Paik, Pamula, and Fair, 2003; Paik et al., 2003) illustrated
in Figs. 51(b) and 51(c), respectively.
These classifications are by no means an exhaustive inven-

tory of the available techniques, as the field is rapidly evolving
and new configurations and implementations for effective
mixing in microchannels based on the chaotic advection
paradigm emerge every day. For further reading on this topic
see recent compendia of the field; see, e.g., Squires and Quake
(2005), Tabeling and Chen (2005), Lin and Basuray (2011), and
Nguyen (2011) and references therein. The ubiquity of the
phenomenon in its diverse forms emphasizes the relevance of
the physics of mixing for the bulk of the miniaturization
industry and, more particularly, for lab-on-a-chip applications.

C. Biology

1. Ciliary and flagellar chaotic advection

Flagella and cilia are microscopic organelles, flexible
ropelike driven structures that form part of a single cell, that

act as ubiquitous biological stirrers. These organelles are one
of the most highly conserved structures in biology (Gibbons,
1981; Gardiner, 2005; Marshall and Nonaka, 2006) and, as
such, they have a wide range of biological fluid-mechanical
functions: from propulsion in flagellated and ciliated micro-
organisms (Taylor, 1951; Lighthill, 1976; Brennen and Winet,
1977; Drescher et al., 2010) and the sperm and ovum in
reproduction (Fauci and Dillon, 2006; Gaffney et al., 2011) to
feeding and filter feeding in sessile organisms (Blake and
Sleigh, 1974) and mollusks (Blake and Fulford, 1995), and as
a physical guide for diverse developmental processes
(Cartwright, Piro, and Tuval, 2009; Freund et al., 2012).
The flow induced by the beating of cilia and flagella, which

falls in the regime of very low Reynolds numbers, has been
modeled by means of fundamental singularity for Stokes flow:
as single point forces (Stokeslets) or torques (rotlets) (Blake
and Otto, 1996; Cartwright, Piro, and Tuval, 2004;
Niedermayer, Eckhardt, and Lenz, 2008) or as a line distri-
bution of these singular solutions (Smith et al., 2012) with, as
expected from Stokes flows, boundaries playing a major role
on the extent, topology, and magnitude of the fluid flow
(Blake, 1971; Blake and Sleigh, 1974; Montenegro-Johnson
et al., 2012). However, the role of cilia and flagella in
biological fluid mixing has been much less studied.
The sessile ciliated protozoan Vorticella, which lives in

freshwater ponds, has attracted considerable interest. The flow
generated by the continual beating of its oral cilia [Fig. 52(a)]

FIG. 50. Active micromixers: (a) Externally driven pressure actuators significantly enhance mixing by imposing secondary oscillatory
flows in an easily controllable fashion. In this example, efficient mixing is achieved within a single secondary channel width. (b) Active
devices are nowadays developing new ways to decouple from bulky and complex connections to the outer world. In this example, an air
bubble is trapped within the microchannel and external piezotransducers are used to excite remotely acoustic streaming. (a) From
Bottausci et al., 2007. (b) From Ahmed et al., 2009.

Hassan Aref et al.: Frontiers of chaotic advection

Rev. Mod. Phys., Vol. 89, No. 2, April–June 2017 025007-47



is well captured by a Stokeslet near a flat rigid no-slip
boundary, with the force acting normal to the boundary
and, hence, generating a toroidal eddy (Blake and Otto,
1996; Nagai et al., 2009; Pepper et al., 2010). Reports on
the sudden changes in the length of the stalk linking the cell
and the substrate to which it is anchored led to a series of
studies on mixing by a “blinking Stokeslet” (Blake, 2001;
Orme, Otto, and Blake, 2001a, 2001b; Otto, Yannacopoulos,
and Blake, 2001), a model inspired on the now classical
“blinking vortex” model (Aref, 1984; Aref and Balachandar,
1986; Meleshko and Aref, 1996) but in which the height of the
point force above the no-slip boundary changes periodically.
Furthermore, Vorticella’s bell changes its orientation errati-
cally (Pepper et al., 2013) which can be modeled with time-
dependent variations in the direction of the applied point

force. Both mechanisms might enhance the feeding process of
Vorticella by allowing nearby nutrients to be driven through
filtering cilia on the cell surface. More recently Vorticella has
even inspired a biomimetic solution for mixing in microfluidic
chips (Nagai et al., 2014).
Other ciliated organisms (e.g., Opalina, Paramecium, and

Volvox) and ciliated tissues (e.g., epithelia, corals) show a
remarkable coordination of nearby beating cilia, including
complete synchrony (Goldstein, Polin, and Tuval, 2009, 2011)
and metachronal waves (i.e., large-scale modulations of the
beating phase) (Gueron et al., 1997; Lenz and Ryskin, 2006;
Brumley et al., 2012, 2015; Elgeti and Gompper, 2013). The
unsteady flow generated by their coordinated beating leads to
stretching and folding and, over time, to mixing of the
adjacent fluid (Solari et al., 2006; Ding et al., 2014;

FIG. 51. Droplet-based micromixers: Highly monodisperse emulsions have been shown recently to be easily controllable in
microchannels, opening the door for an era of versatile high-throughput use of microfluidic platforms. (a) The planar serpentine
micromixer (PSM) is one of the best-known devices that shows efficient mixing of individual microdroplets. Mixing is achieved by the
introduction of turns and bends in the channel, which induces a periodic asymmetric flow perturbation within the drop. Active
perturbations to individual droplets can also be achieved by external means, for instance (b) by imposing surface-tension gradients
through heating by a laser beam, or (c) by the fine-tuning of surface electrowetting induced by microelectrodes embedded in the
microchannels. (a) From Song et al., 2003. (b) From Grigoriev, Schatz, and Sharma, 2006. (c) From Paik, Pamula, and Fair, 2003.

FIG. 52. Ciliary and flagellar chaotic advection: (a) The fluid flow around Vorticella. Experimental data showing a cell in the center
overlaid with the fluid velocity field. The Vorticella body is outlined. (b) Cilia-driven vortical flows between two polyps on the surface
of a small branch of P. damicornis. (c) The flow map of cerebrospinal fluid shows that it is highly organized and has cilia modules,
separatrices, and whirls. Scale bar, 1 mm. Color coding and shading shows the local flow orientation. (a) From Nagai et al., 2009.
(b) From Shapiro et al., 2014. (c) From Faubel et al., 2016.
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Shapiro et al., 2014) [Fig. 52(b)]. This mechanism has
also been implemented in biomimetic solutions for lab-on-
a-chip mixing using actuated artificial cilialike protrusions
(den Toonder et al., 2008; Kongthon et al., 2011; Chen
et al., 2013).
Cilia are also known to play amajor role in the processes that

shape biological vertebrate development (Cartwright, Piro, and
Tuval, 2009; Freund et al., 2012). For instance, they are
involved in the development of the ear system of fish, a process
known as otolith seeding (Colantonio et al., 2009; Wu et al.,
2011); they keep the cerebrospinal fluid flowing through the
ventricular system of our brains [Fig. 52(c)] (Guirao et al.,
2010; Faubel et al., 2016); and they are fundamental for
defining our vertebrate body plan by breaking the left-right
symmetry of the early embryo (Nonaka et al., 2002;
Cartwright, Piro, and Tuval, 2004; Cartwright et al., 2007;
Supatto, Fraser, andVermot, 2008;Montenegro-Johnson et al.,
2012; Smith et al., 2012). In all these cases, not only fluid
transport but also mixing by cilia appears to be of possible
importance. A few observations of flow patterns with widely
divergent flow for initially nearby particles exist, although no
detailed analysis has yet taken place to assess the relevance of
fluid mixing in each case.

2. Biological activity in chaotic oceanic flows

The growth of marine organisms is closely related to ocean
currents. Since hydrodynamic flows constitute an important
physical factor for productivity in the ocean, the interplay
between the physical environment and biological growth is an
increasing field of research (Mann and Lazier, 1991; Denman
and Gargett, 1995; Károlyi et al., 1999; Peters and Marrasé,
2000; Tél et al., 2005). In particular, the growth of plankton,
which is the basis of the food web in the ocean, is influenced by
currents. Plankton species and their nutrients are only passively
transported, while higher organisms (nekton) have the ability to
swim actively and are therefore more independent of the flow.
Starting with the work of Abraham (1998) and Bees, Mezić,
and McGlade (1998), who first applied the concept of chaotic
advection to the study of plankton patterns in the ocean, various
others have contributed to this subject (López, Hernández-
García et al., 2001; López, Neufeld et al., 2001; Martin et al.,
2002; Martin, 2003; Sandulescu et al., 2007).
One of the major requirements for the growth of plankton

species is the availability of nutrients, which depends crucially
on the hydrodynamic flow patterns in the oceans. Of particular
interest in the context of plankton growth are mesoscale flow
patterns such as fronts, jets, and vortices, which have a strong
impact on plankton patterns. Although the full velocity field in
the ocean is 3D, giving rise to horizontal and vertical transport
of nutrients and plankton, a 2D field is often a rather good
approximation for the study of plankton patterns. On the one
hand, the vertical velocity component is frequently much
smaller than the horizontal ones; on the other hand, since
phytoplankton (being the plants of the ocean) need sunlight for
photosynthesis, their abundance is confined to the upper layer
of the ocean. These features make the investigation of phyto-
plankton blooms, i.e., the emergence of high phytoplankton
abundances, an ideal application field for chaotic advection.
Although ocean circulation models are far more realistic, the

study of simple flows leading to typical chaotic advection
problems has revealed much insight into the biological-physical
interactions. This is due to the much higher spatial resolution of
the flow structures which can be achieved by simple, mostly
analytically given flows compared to ocean flows. In particular,
the emerging fine structure of filamentary plankton patterns is
responsible for certain phenomena that cannot be explained by
coarse-grained oceanic flows. Concepts of chaotic advection
have led to fundamental contributions to the understanding of
the mechanisms of plankton-bloom formation as well as of the
coexistence of plankton species.
To investigate the impact of mesoscale hydrodynamic

structures on plankton growth, a variety of different kinematic
models for the flow have been considered. Taking into account
the arguments mentioned, 2D horizontal flow patterns have
been studied in which the velocity field can be described by a
stream function. Three paradigmatic models exhibiting certain
important features of an oceanic flow have been used to
elucidate the interplay between plankton dynamics and hydro-
dynamic flows: (i) the blinking vortex flow (Neufeld et al.,
2002), (ii) the flow in the wake of an obstacle (Jung, Tél, and
Ziemniak, 1993; Sandulescu et al., 2006), and (iii) a jet flow
(López, Neufeld et al., 2001). All of these flows are periodi-
cally forced, which leads to chaotic advection of passive
tracers. Each of them focuses on particular properties of a real
flow. While (i) introduces a temporarily changing mixing
region, (ii) mimics the dynamics of a von Kármán vortex street
in the wake of an island located in an ocean current, while
(iii) is a simple description of a meandering jet. Besides these
idealized flow fields, 2D turbulence models are used in more
realistic settings (Martin et al., 2002). These velocity fields are
coupled to simplified nonlinear plankton growth models that
often consist of two or three interacting species, e.g., nutrients,
phytoplankton, and zooplankton. In some cases plankton
blooms are modeled with excitable dynamics (Neufeld et al.,
2002). The combination of these simplified plankton models
and the above-mentioned kinematic flows in the correspond-
ing reaction-diffusion-advection equations are the basis of the
study of chaotic advection in plankton growth.
Using these approaches it has been shown that the redis-

tribution of nutrients and plankton by horizontal stirring can
enhance the growth of plankton (Abraham, 1998; López,
Neufeld et al., 2001; Hernández-García, López, and Neufeld,
2002, 2003; Martin, 2003) and even cause (Károlyi et al.,
2000) and sustain (Hernández-García and López, 2004) a
plankton bloom. Moreover, mesoscale hydrodynamic vortices
can serve as incubators of plankton blooms by keeping the
plankton in the interior of the vortex without much exchange
with its exterior (Martin, 2003; Sandulescu et al., 2007). In
general the time scale of the hydrodynamic processes is much
faster than the time scale of biological growth. However, the
confinement of plankton within the vortex leads to a much
larger residence time of the planktonic organisms in a certain
area, so that growth processes can take place; see Fig. 53.
An even simpler approach for growth processes has been

studied by considering autocatalytic reactions (Metcalfe and
Ottino, 1994; Toroczkai et al., 1998; Károlyi et al., 1999; Tél
et al., 2000). Planktonic organisms are considered as point
tracers that are advected by the flow and that undergo a
reaction Aþ B → 2B. Using this modeling technique it has
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been shown that the biological activity is enhanced since the
fractal filaments formed by chaotic advection lead to an
increase in the reaction surface and, hence, of the reaction
rate. The fractal skeleton of the reaction is characterized by its
capacity dimension D0 which in turn is an essential parameter
that can be used to estimate the scaling properties of the
reaction rate (Tél et al., 2004). On the other hand, the
enhancement of autocatalysis due to chaotic advection has
been proposed as an explanation for deracemization during the
chiral crystallization of achiral molecules (Metcalfe and
Ottino, 1994). In this case, an agent-based model constructed
to describe the breakdown and subsequent reproduction of
growing crystals submitted to shear stresses is immersed in a
chaotic flow. As a result an unbalanced population of crystals
with both chiralities is obtained (Cartwright et al., 2004).
When the agents are endowed also with a dynamics mimick-
ing the Oswald ripening phenomenon, one of the chiralities
ends up being completely annihilated (Cartwright, Piro, and
Tuval, 2007).
The filamentary structures that develop in chaotic advection

are not only advantageous for the growth of species but lead
also to an increased separation of different species competing
for the same nutrients (Bracco, Provenzale, and Scheuring,
2000; Károlyi et al., 2000; Scheuring et al., 2003; Bastine and
Feudel, 2010). As a consequence, competition is diminished,
so that more species feeding upon the same resources can
coexist. Weaker species with smaller abundance obtain more
access to resources along the fractal filaments and are able to
survive and compete with stronger competitors. This effect
is even stronger when the inertia of the organisms is taken
into account (Benczik et al., 2006). In this way, chaotic
advection can be considered as a possible mechanism to solve
the paradox of plankton (Hutchinson, 1961), an intriguing
problem in theoretical ecology.

IX. PERSPECTIVES

For efficient mixing to be achieved, the velocity field must
stir together different portions of the fluid to within a scale that
is small enough for diffusion to take over and homogenize the
concentrations of the advected quantities. One traditional way

to do this has been through fully developed turbulence, where
the coexisting eddies of many different scales do the job of
generating the large concentration gradients at small scales
which molecular diffusion smoothes out. The other approach,
which we review in this work, is to generate these small-scale
structures through the repeated processes of stretching and
folding that characterize deterministic chaos. Unlike turbulent
advection, chaotic advection does not involve an energy
cascade, and it works even in flows that are too viscous or
too small scale to have large Reynolds numbers, or are
effectively 2D. This generality provokes questions, conjec-
tures, remarks, and reflections from a wide range of applica-
tions and theory. In this section we raise some of the current
challenges and opportunities in chaotic advection.
We do so under the assumption that an engineer faced with

a mixing problem, whether from a traditional industry such as
textiles, food, or chemicals, or a more technologically sophis-
ticated field such as microscience or nanoscience, is already
well aware of the potential advantages that chaotic advection
can bring. The notion of mixing using chaotic dynamics is by
now common place. What then are the timely and relevant
questions to ask the engineer, and which aspects of theory and
practice can now be developed to answer questions posed by
the engineer in return? Such questions may include the
difficulty of optimizing a mixing process, both in general
and in particular circumstances; the effect of specific physical
features of the flow, such as fluid inertia, boundaries and
walls, and rheological behaviors; and how to describe,
analyze, and quantify chaotic advection in the most appro-
priate way. Answers to such questions require a synthesis
between rigorous mathematics, experimental pragmatism,
physical understanding, and engineering intuition.

A. How to choose the best stirring protocol
for a given mixing problem

To maximize the performance of a mixing device there are
typically many parameters, several of which are particular to
that device. Some features are common to a range of generic
devices, however, and as such suggest general schemes for
optimization.
For example, blinking flows and channel mixers have a

natural temporal or spatial periodicity to which classical
dynamical-systems theory can be applied. Less well under-
stood is the influence of aperiodicity in stirring protocols
(Liu, Muzzio, and Peskin, 1994). Between the two extremes of
a periodic stirring protocol and a random one, one can
introduce a small perturbation in a periodic sequence in order
to study the effect of the degree of aperiodicity. The periodic
length of a sequence in the stirring protocol is also a parameter
to test. It has been shown that the choice of a globally
aperiodic sequence is not appropriate for an efficient stirring
protocol (Gibout, Le Guer, and Schall, 2006). Moreover, in
the case of fixed-time switching between horizontal and
vertical shears on a periodic domain, the best mixing (in
the sense of Kolmogorov-Sinai entropy) has been rigorously
shown to be achieved by the simplest periodic protocol
(D’Alessandro, Dahleh, and Mezić, 1999). This was later
used to prove optimality of mixing protocols by Boyland,
Aref, and Stremler (2000).

FIG. 53. Plankton bloom: Snapshot of the simulated phyto-
plankton concentration in the wake of an island (at left) with low
inflow concentrations from the surrounding ocean (inflow from
the left). Concentrations of phytoplankton from low to high are
denoted by colors and shades.
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The geometrical details of a mixer can also be considered
parameters for optimization. For example, is the angle
between superimposed crossing streamlines taken at two
different times, and their distribution over the fluid domains,
a good criterion for the optimization of mixing? One attempt
to investigate this can be found in Sturman and Wiggins
(2009). Does good mixing always require a fairly uniform
distribution of stretching rates within the flow? How does the
movement of a mixer wall or its radius of curvature affect the
amplitude of the modulation, and in turn the mixing quality
and efficiency? What is the relation between stretching fields
and curvature fields, or the differences between cases of
bounded and unbounded flows for the same stirring protocols?
What is the influence of the phase shift between the wave-
forms applied to different rotating or moving walls? How does
the response of the scalar field orientation to a modification
of the stirring protocol impact the quality of mixing? Many of
these questions do not yet have full answers; see also
Balasuriya (2005a, 2005b, 2010) and Cortelezzi, Adrover,
and Giona (2008).
In applications, achieving a sufficiently good mixing

performance for the least energy input may be the chief
motivation (Alvarez-Hernández et al., 2002). Of the many
existing mixing indicators and diagnostics discussed earlier,
those which take into account the energy communicated
to the fluid, or the energy saved, may be the most practical.
Mathew et al. (2007) coupled the two for the first time, using
the mix-norm metric supplemented by an energy measure.
Lin, Thiffeault, and Doering (2011) advocated the use of an
H−1 norm, but H−1=2 seems to have better physical motiva-
tion, as it incorporates the idea of equal distributions in equal
volumes for the perfect mixture. As always, the distinction
between unsteady 2D flows and 3D steady flows is likely to be

challenging, as is that between active and passive modes of
generation of the advective flow.
As the question of how to pick a stirring protocol only has a

definitive theoretical answer in a specific model system,
various computational approaches have been developed to
approximate an answer in applications. For diffusive scalar
transport the work of Lester et al. (2008, 2010), Lester and
Metcalfe (2009), Lester, Rudman, and Metcalfe (2009), and
Lester, Metcalfe, and Rudman (2014) has produced a fast
method to calculate the most slowly decaying (or the first few)
eigenmodes when the stirring flow consists of one or a few
basic flows (and symmetries of these base flows) that are
governed by a set of control parameters. The general method
(Lester et al., 2008) incorporates any symmetry, e.g., rotation,
reflection, scaling, or superposition. However, it still remains
up to the flow designer to determine the decomposition of
fundamental flows and symmetries.
For example, the RAM flow discussed in Sec. VIII.A has

one fundamental flow, from which all flows in the device are
obtained by rotation, and in the simplest case two control
parameters τ, the time any one flow operates, and Θ, the fixed
rotation angle of the flow. Figure 54 is a contour plot of the
asymptotic decay rate Reðλ0Þ calculated at 1.2 × 105 points
over the τ–Θ plane for Pe ¼ 103 and homogeneous Dirichlet
boundary conditions; λ0 is scaled by the diffusion rate (the
most slowly decaying eigenvalue of the diffusion operator in
the disk). This figure maps transport enhancement relative to
diffusion alone and shows what can be termed a complete
parametric solution for scalar transport, in that the optimum
stirring protocol—for the goal of thermal homogenization—
can be read directly from the graph to the precision of the
computation. Lester et al. (2008) reported that for symmetry-
derived stirring protocols it is possible to obtain the complete
parametric solution about 6000 times faster. The relative
performance improves as Pe increases, but the absolute time
to obtain the complete solution also increases.
The structure of the scalar transport solution is worth

commenting on. At low values of τ the enhancement dis-
tribution is fractal with many localized maxima, which can be
discerned only with highly resolved solutions on the control
parameter space. The spiky regions originate from rational
values of Θ=π at τ ¼ 0 and grow in width with increasing τ.
Inside each region the scalar spatial distribution is locked into
a symmetric pattern whose azimuthal wave number m is a
rational multiple of the forcing wave number k ¼ 2π=Θ; these
regions are symmetry-locked “tongues” similar to frequency-
locked Arnol’d tongues (Glazier and Libchaber, 1988). This
type of behavior was first observed in the context of the
micromixer design by Mathew et al. (2004) using the mix
norm as the measure of goodness of mixing. As τ becomes
Oð1Þ the spreading tongues interact to produce an order-
disorder transition, where the symmetric spatial patterns
change into asymmetric patterns. At large values of τ > 103

the enhancement ratio everywhere takes on the same value as
that on the Θ ¼ 0 line, i.e., no enhancement. For low Pe, such
as Pe ¼ 103 as in Fig. 54, the maximum transport enhance-
ment occurs in the 1=3 resonance tongue at low values of τ.
This seems counterintuitive because the no-diffusion mixing
optimum (Metcalfe et al., 2006; Speetjens, Metcalfe, and

FIG. 54. Map of the asymptotic decay rate Reðλ0Þ scaled by the
diffusion rate for Dirichlet boundary conditions Δ ¼ π=4 and
Pe ¼ 103 for a periodically reoriented flow with τ the time
between reorientation scaled by the flow circulation time and Θ
the reorientation angle. Note the logarithmic scaling of the τ axis
and λ0 contours. a–i are specific modes discussed by Lester,
Rudman, and Metcalfe (2009). From Lester, Rudman, and
Metcalfe, 2009.
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Rudman, 2006) occurs at ðΘ; τÞ ≈ ðπ=5; 15Þ, and at low τ
chaotic advection is, at best, weak. As Pe increases the
maximum transport enhancement increases, and its location
moves toward the fluid mixing optimum.

B. Effect of fluid inertia

In most chaotic advection studies, a Stokes flow regime is
envisaged with low Reynolds numbers and a quasi-steady-
state approximation of low Strouhal number, Sr. This implies
that viscous forces dominate the flow dynamics and leads the
Navier-Stokes equations to be linear. The linearity of the
problem gives rise to reversibility of the flow and a passive
blob of tracer will return to its original place if the effect of
diffusion is weak or not amplified by chaotic advection.
Indeed, for chaotic advection flows, the trajectories can be so
complex in space and time that a particle will lose the memory
of its initial starting position if we reverse the flow, due to the
accumulation of diffusion responsible for tiny jumps from
streamline to streamline, trapping events, or Lévy flights in
hyperbolic regions (Solomon, Weeks, and Swinney, 1994;
Solomon, Lee, and Fogleman, 2001). If fluid inertia is
included (i.e., when Re is increased but the flow is still
laminar), the nonlinearity of the Navier-Stokes equations
introduces a new source of transient dynamics that leads to
the breakdown of invariant manifolds (see Sec. IV.C and the
example of 3D unsteady flow in mergera cylinder) and
strongly impacts on the transport properties of the flow.
How exactly the increase in Re changes mixing properties
is an open problem at the intersection between Eulerian and
Lagrangian analyses. There has been relatively little work on
chaotic advection that considers the effect of fluid inertia
(Dutta and Chevray, 1995; Mezić, 2001b, 2002; Horner et al.,
2002; Balasuriya, Mezić, and Jones, 2003; Speetjens, Clercx,
and van Heijst, 2006a, 2006b; Wang et al., 2009; Pouransari,
Speetjens, and Clercx, 2010). Mezić and collaborators
focused on possible nonmonotonic mixing created by
inertial effects and specifically on the possibility of a decrease
of mixing because of these. Follow-up experimental and
numerical studies confirm these predictions (Lackey and
Sotiropoulos, 2006; Pratt et al., 2014). We emphasize that
inertia is not the only mechanism to induce chaos. It is also
possible to obtain chaos from a breaking of time reversibility
by the time derivative in the time-dependent Stokes equation
(Eckhardt and Hascoët, 2005), or simply by minor imperfec-
tions in an experimental setup (Wu et al., 2014).
Inertial effects are also beginning to be used in microfluidic

systems (Di Carlo, 2009) where chaotic advection is now
commonly employed (see Sec. VIII.B). Horner et al. (2002)
introduced time dependence through transient acceleration
and deceleration of a flat wall driving the flow in a cavity and,
despite the fact that the streamline portrait changes very little
during the transition, they observed a significant transport
enhancement with the increase of the control parameter ReSr.
In general, fluid inertia also introduces supplementary sec-
ondary flows that bring new fixed parabolic or hyperbolic
points from which stable and unstable manifolds can emanate,
thereby improving the stirring process. At the same time,
inertial forces influence chaotic advection by causing a

distortion of the streamlines as well as making them time
dependent (Wang et al., 2009).
The effect of inertia is crucial for mixing in chaotic flows

through a sequence of alternating curved ducts (Jones,
Thomas, and Aref, 1989; Castelain et al., 2001) for which
it is necessary to have a large enough Dean number (Dean,
1928) to produce a minimum transverse displacement of a
passive scalar along a helical trajectory, otherwise the stirring
will be ineffective. Such an arrangement of curved ducts is
able to generate very complex flows with the presence of
regular, partially, or fully chaotic regions; they are used as
mixers or reactors (Boesinger, Le Guer, and Mory, 2005). For
a particular geometry, the coexistence of nonmixed islands
and chaotic zones in the cross section with the presence of the
solid wall boundary highly depends on the flow rate and is a
source of multimodality of the finite-time particle distributions
along the pipe mixer, while a sole ergodic region in the
transverse cross section (globally chaotic flow) gives rise to a
narrow distribution of residence times (Mezić, Wiggins, and
Betz, 1999).
Fluid inertia is also important in oscillating flows. Hydon

(1994) showed, for a pulsed flow in a curved pipe, that
particles on certain trajectories are transported by resonant
interaction between the secondary orbital motion and the
longitudinal oscillation, inducing ballistic transport. For some
trajectories trapped behind cantori, particles are transported
intermittently by resonance; this mechanism leads to anoma-
lous diffusion (Young and Jones, 1991). An important
physiological example is blood flow around a stenosis zone
(Schelin et al., 2009; Maiti et al., 2013), for which chaotic
advection is triggered by a combination of pulsating flow
driven by the heart and constriction of the blood-vessel walls.
In the domain of geophysical flows, Pratt et al. (2014)

recently revisited the problem of chaotic advection within a
3D steady flow in a closed cylinder with a rotating bottom.
They showed a nonmonotonic variation of the stirring rate
with the Reynolds number (more exactly with the Ekman
number Ek, which is directly proportional to the inverse of the
Reynolds number for a fixed Rossby number). The bulk
stirring rate, estimated from the tracer concentration variance,
has a maximum at intermediate Ek−1=2 and a complex
dependency of the Lagrangian structures is noted, with thin
or thick resonant layers sandwiched between KAM barriers;
cf. Mezić (2001b).
The issue of fluid inertia also arises when addressing the

question of periodicity of the flow which does not necessarily
match the geometrical periodicity of the wall boundaries
chosen for the generation of chaotic advection (Blancher,
Le Guer, and El Omari, 2015). This has a direct implication
for the appropriate choice of the periodic velocity field in
order to map the flow as in the context of dynamical systems.
When we consider nonpassive scalar transport (i.e., dif-

fusive or nonbuoyant scalars) such as finite-mass and finite-
size particles, the transient effects due to particle inertia and
fluid inertia are intimately linked owing to the presence of new
forces. Indeed, a nonpassive particle responds to intrinsic
hydrodynamic forces, to externally imposed forces, or to
internally generated forces (Metcalfe et al., 2012). The
hydrodynamic forces include drag force, lift force, added
mass force, buoyancy force, Boussinesq-Basset history force
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(Babiano et al., 2000), and also Brownian motion that
produces molecular diffusion (Cartwright et al., 2010). The
external forces are produced by an external force field (i.e., an
electric or magnetic field) and the internal forces refer
essentially to motile organisms or active particles. The
dynamics of a finite-size particle in a chaotic flow is thus
nontrivial and can lead to very different and rich behaviors
because the particle’s trajectory can diverge from the trajec-
tory of the fluid parcel, since a slip velocity exists between the
particle and the surrounding fluid whose velocity can even-
tually fluctuate in a random manner. The fact that the finite-
size particle dynamics is dissipative furthermore complicates
the story by allowing the existence of attractors in the phase
space (Cartwright et al., 2010). Figure 55 shows trajectories of
several finite Stokes number particles localizing onto an
attracting KAM tube in a 3D laminar flow. Predictions of
what level of inertia will cause spontaneous localization of
finite inertia particles have been quantified in recent experi-
ments (Wang et al., 2014; Wang, Stewart, and Metcalfe,
2016). A direct consequence is that invariant curves no longer
exist for the case of inertial finite-size particles.

C. How to control mixing?

The first question to address is why would we enhance
mixing and for what? Very often the answer is to increase its
quality (i.e., to obtain a complete homogenization) and its rate
(i.e., the speed to achieve the uniform state). For many
engineering applications, however, the problem is far from
being so simple and the objectives of the mixing problem
could be completely different depending on the application
field (reactor and polymer engineering, heat exchangers,
processes with particles or powders, combustion, etc.). Heat
and mass transfer, reactions, multiphase flows, and various
coupling mechanisms occur in these systems at a wide range
of space and time scales. The geometry is also of primary
importance: microfluidics or macrofluidics, closed or open

flow, static or moving boundaries, etc. If the goal is carefully
chosen for the mixing problem under consideration with all its
constraints, the choice of the control parameter(s) can be
envisaged. But immediately two other questions arise: what is
the optimal manner to reach the goal function and which is the
appropriate measure to adopt for the optimization of mixing?
This question of generating effectivemixing involves solving

an optimal control problem. Pioneering work was done by
D’Alessandro, Dahleh, and Mezić (1999) in this domain. They
used mathematical tools from control and ergodic theory of
dynamical systems to rigorously derive themixing protocol that
maximizes entropy among all the possible periodic sequences
composed of two shear flows orthogonal to each other (i.e., the
eggbeater flow). Other studies followed in the same spirit
(Vikhansky, 2002; Vainchtein and Mezić, 2004; Stremler and
Cola, 2006; Mathew et al., 2007; Liu, 2008; Gubanov and
Cortelezzi, 2010; Lin, Thiffeault, and Doering, 2011; Gubanov
and Cortelezzi, 2012; Lunasin et al., 2012). Aamo, Krstić, and
Bewley (2003) addressed the problem of enhancing mixing by
means of active boundary feedback control in 2D channel flow.
Very efficient mixing was obtained by designing feedback
control strategies for the stabilization of the parabolic equilib-
rium flow, then applying this feedbackwith the sign of the input
reversed. Foures, Caulfield, and Schmid (2014) examined
different norms for mixing efficiency and showed the impact
of the mix-norm theory in higher-Reynolds-number flows.
Despite the fact that many theoretical ingredients are in

place to address the problem of optimizing mixing, most of the
studies to date concern idealized model flows. Recently
Balasuriya (2010) developed a theoretical tool for the deter-
mination of an optimal forcing frequency for a time-periodic
mixing strategy in order to increase mixing across a fluid
interface between two fluids in a microfluidic device. In
engineering processes, the aforementioned strong coupling
between different physical phenomena renders the theoretical
design of an efficient mixing strategy very challenging. As an
example, we can cite the interesting problem of optimization
of the formation of an emulsion, a dispersion of droplets in a
viscous fluid, in a laminar flow (Caubet et al., 2011) by
controlling the droplet size distribution, which influences
important properties of the emulsion for cosmetic or food
applications such as rheology, texture, shelf life (stability),
appearance, or taste. For such an application we have contra-
dictory targets: on the one hand, we need to achieve an
efficient mixing in order to avoid KAM regions that could trap
large droplets, which implies imposing a modulation of the
wall velocity of the stirring device. On the other hand, a
continuous movement of the rotating elements is needed in
order to achieve a continuous stretching of large droplets to
promote their transformation into elongated threads and their
rupture by the Rayleigh instability. Indeed, a decrease of the
wall velocity will cause the relaxation of the stretched threads
toward their initial spherical shape. Thus, in this case, a
particular stirring strategy with the consideration of two
contradictory objectives needs to be found. Another example
of a complex mixing problem is the optimization of chaotic
advection in the case of pulsatile switching flows in porous
media, with applications to soil remediation or enhanced
oil recovery (Trefry et al., 2012; Lester, Metcalfe, and
Trefry, 2013).

FIG. 55. Long exposure photograph of several finite Stokes
number particles moving in the laminar flow of a stirred tank. All
particles start in a chaotic flow region but are eventually attracted
into a KAM tube where they execute helical trajectories. From
Wang, Stewart, and Metcalfe, 2016.
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D. Dynamics of the wall

Since almost all flows of interest have solid boundaries, it is
obviously important to establish what effects walls have on the
dynamics of mixing. This topic has been surprisingly explored
very little, and although there are some important results
described later, much remains to be done.
Walls have a dramatic effect on the rate of mixing because

the no-slip boundary condition ensures that all points on
(stationary) walls are parabolic fixed points. This manifold of
nonisolated degenerate fixed points makes the resulting
advective dynamical system nonhyperbolic. But this non-
hyperbolicity is different from that arising from the presence
of KAM islands, because the fractal hierarchy of cantori and
inner islands is absent near walls.
In closed flows (Sec. III), the presence of walls slows down

mixing, as should be expected from the parabolic fixed points
on the wall: as reported by Gouillart et al. (2007), the variance
of the concentration distribution of a passively advected scalar
field decays in time following an algebraic law, as opposed to
the exponential decay observed in the absence of boundaries.
This is caused by the slow dynamics of the portions of the
fluid in the vicinity of the walls. Interestingly, if the walls
of a container are rotated as part of the mixing protocol, it
was demonstrated experimentally (Gouillart, Thiffeault, and
Dauchot, 2010) that the exponential decay of correlations is
recovered. This is achieved because rotation of the walls
creates a dynamical barrier surrounding a central chaotic
region, isolating it from the wall. This shows that moving
boundaries can result in very different mixing dynamics, and
there is currently no general theory capable of predicting
mixing dynamics in the presence of multiple moving boun-
daries. In the classic system of fluid in a closed container
(fixed walls) being mixed by moving rods (moving bounda-
ries), in some circumstances one can prove that the advective
dynamics has a strictly positive topological entropy and is
therefore chaotic (Thiffeault et al., 2008). Despite that, the
variance of an advected scalar still decays exponentially
because of the walls. This highlights the fact that there is
no general understanding of the connection between dynami-
cal invariance of the advective system and the mixing
dynamics of an advected scalar with finite diffusion.
For open flows in a fluid transported from the inlet to the

outlet of a pipe mixing device, it is interesting to relate the
form of the distribution of the residence times associated with
elementary fluid particles to the chaotic behavior of the flow.
It is known that a globally chaotic flow tightens the distri-
bution of residence times, but how the existence of parabolic
points along the wall boundaries and the fluid behavior at the
vicinity of these hyperbolic points influence the shape of the
distribution of residence time has not been studied. This will
be particularly interesting for reactive problems in chemical
engineering.
If a scalar is being input into the fluid by a continuous

source, the variance will not decay to zero in time and can be
expected to reach a steady state or a periodic state, depending
on the dynamics of the source and the flow. This will almost
always be the case for open flows, for example, a chemical
reactor. It can also be the case in closed flows, for example, if
we expect Ohmic heating of the fluid in its volume, the

heating or cooling of the fluid is done through the wall
boundaries, and thus temperature acts as a continuous scalar
source. In these cases, the asymptotic scalar distribution after
the transient depends not only on the chaotic dynamics of the
flow, but also on details of the sources. This is again poorly
understood at the moment, and it is clearly important in
practical applications of chaotic mixing.
Finally, chaos can be directly generated by the walls in

more complex duct networks that contain branchings and
mergings of ducts, e.g., in pore networks. Many of the branch
and merge locations will have hyperbolic node points in the
skin friction field. If the branch and merge are symmetric, the
unstable and stable manifolds emanating from the branching
and merging hyperbolic points, respectively, will join
smoothly. However, if the branch and merge pair are twisted,
then the hyperbolic manifolds must intersect transversely,
generating chaotic fluid trajectories. Lester, Metcalfe, and
Trefry (2013) developed this argument and used it to prove
that chaos is inherent to porous media flows, where topo-
logical considerations guarantee an abundance of hyperbolic
points. It turns out that chaos, through walls, has considerable
influence on the macroscopic transport properties of natural
and engineered porous media (Lester, Metcalfe, and Trefry,
2014). The dispersion of a scalar in an isotropic porous
medium with a characteristic length over which neighboring
fluid-element paths decorrelate is directly proportional to this
length and to the interstitial fluid speed (Phillips, 1991). Such
a relation is responsible for the observed fast chemical
transport, typically orders of magnitude larger than expected
from molecular diffusion, in applications ranging from
buoyancy-driven flows in soil (Kalejaiye and Cardoso,
2005) to fluid motion over wavy precipitates in hydrothermal
vents (Yang et al., 2016). There is definitely more to be
understood about chaotic advection in porous media.

E. Strange eigenmodes

Strange eigenmodes, first discussed by Pierrehumbert
(1994), characterize the mixing dynamics of advected fields
in flows and have been observed experimentally in both closed
and open flows. Because of the non-self-adjoint nature of the
advection-diffusion operator, completeness of the eigenfunc-
tions is not guaranteed. Rigorous results on the existence and
completeness have been obtained by Liu and Haller (2004).
Although strange eigenmodes have been observed experimen-
tally in open flows, a corresponding rigorous result for open
flows is missing. More generally, very little is known about
strange eigenmodes in open flows. For example, questions
about how the eigenmodes are related to the fractal structure of
the chaotic saddle and its stable and unstable manifolds are
still open.

F. 3D unsteady flows

Great progress has been made on Lagrangian transport
phenomena in 3D unsteady flows since the first pioneering
studies from the mid-1980s (Dombre et al., 1986; Feingold,
Kadanoff, and Piro, 1987, 1988b). However, many challenges
remain. First, 3D spaces admit far greater topological com-
plexity of coherent structures compared to their counterparts
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in 2D (Alexandroff, 1961). Second, the 3D equations of
motion lack the well-defined Hamiltonian structure of 2D
configurations. [3D steady systems under certain conditions
admit representation as 2D nonautonomous Hamiltonian
systems (Bajer, 1994; Mezić, 1994; see Sec. VI]. The latter,
in particular, continues to be a major obstacle to advances in
3D Lagrangian transport phenomena.
Development of a comprehensive mathematical framework

thus is imperative for a systematic description and analysis of
3D Lagrangian transport. Theoretical developments primarily
expand on the classical Hamiltonian concept of action-angle
variables by (local) representation of coherent structures as
invariant surfaces and curves defined by constants of motion,
denoted “actions” in Hamiltonian terminology (Feingold,
Kadanoff, and Piro, 1987, 1988b; MacKay, 1994; Mezić and
Wiggins, 1994; Cartwright, Feingold, and Piro, 1996; Mezić,
2001a). A promising recent concept with Hamiltonian founda-
tions devised specifically for mixing applications is found in the
linked twist map (Sturman, Ottino, and Wiggins, 2006; Meier,
Lueptow, and Ottino, 2007; Sturman et al., 2008).
Establishment of a Hamiltonian-like formalism for 3D

Lagrangian transport, in particular response scenarios to per-
turbations and routes to chaos, is nonetheless in its infancy. The
most important generalization of classical Hamiltonian
mechanics to 3D systems is the 3D counterpart to the KAM
theorem, describing the fate of invariant tori under weak
perturbations (Cheng and Sun, 1990a; Mezić and Wiggins,
1994; Broer, Huitema, and Sevryuk, 1996; Vaidya and Mezić,
2012). However, similar universal response scenarios for
coherent structures of different topology, most notably the
important case of invariant spheroids, remain outstanding.
Moreover, the scope must be widened to the effect of strong
perturbations on the flow topology. Generically, isolated
periodic points and periodic lines will emerge. However, the
routes toward such states are largely unknown terrain, although
bifurcations similar to those studied by Mullowney, Julien, and
Meiss (2005, 2008) are likely to play a pivotal role. Further
reconciliation with concepts from mathematical physics
(Arnol’d, 1978; Mezić and Wiggins, 1994; Arnol’d and
Khesin, 1998; Haller and Mezić, 1998; Bennet, 2006) and
magnetohydrodynamics (Moffatt et al., 1992; Biskamp, 1993;
Moffatt, 2000) is essential in strengthening the current
framework.
Theoretical developments largely concentrate on kinematic

properties of divergence-free vector fields and volume-
preserving maps and thus in essence account only for the
role of continuity in the dynamics. However, the impact of
momentum conservation as a facilitator or inhibitor of certain
kinematic events in realistic fluid flows must be an integral
part of scientific studies. A fundamental question is whether
universal dynamic conditions, reminiscent of the Beltrami
condition for 3D steady Euler flows, exist for 3D chaos and/or
(degrees of) integrability in flows with significant viscous
effects. A step toward this is presented in Mezić (2002).
Essentially 3D phenomena similar to those exemplified by

the 3D cylinder flow in Sec. IV have been observed in a wide
range of 3D unsteady systems. This includes generic 3D
volume-preserving maps with nontoroidal invariant surfaces
(Gómez and Meiss, 2002; Mullowney, Julien, and Meiss, 2005,
2008), the 3D sphere-driven flow ofMoharana et al. (2013), the

3D lid-driven cube of Anderson et al. (1999, 2006), and 3D
granular flows inside a spherical tumbler (Meier, Lueptow, and
Ottino, 2007; Sturman et al., 2008). The emergence of similar
dynamics in this great diversity of systems reflects the
universality of many of the observed phenomena.
Efforts to date overwhelmingly concern theoretical and

computational investigations. Experimental studies remain
scarce yet are essential to conclusively establish the physical
validity, relevance, and robustness of predicted phenomena.
Moreover, experiments enable exposition and exploration of
phenomena that are beyond present models and may thus
contribute to progress in the field at a far deeper level than
validation and verification alone. Available techniques include
laser-induced fluorescence for visualization of coherent struc-
tures (Fountain, Khakhar, and Ottino, 1998; Fountain et al.,
2000; Alvarez et al., 2002; Mezić and Sotiropoulos, 2002;
Sotiropoulos, Webster, and Lackey, 2002) and 3D particle-
tracking velocimetry (3DPTV) for measurement of 3D
Lagrangian fluid trajectories and 3D velocity fields enabling
direct (quantitative) measurements on coherent structures
(Luethi, Tsinober, and Kinzelbach, 2005). Experimental studies
have demonstrated the capabilities of 3DPTV for such analyses
(Speetjens, Clercx, and van Heijst, 2004; Otto, Riegler, and
Voth, 2008; Dore et al., 2009; Cheng and Diez, 2011; Znaien
et al., 2012; Jilisen, Bloemen, and Speetjens, 2013).
A formidable challenge in 3D transport studies is the

visualization and isolation of coherent structures in numerical
and experimental data. Poincaré sectioning is the method of
choice for time-periodic flows yet has the drawback that results
depend critically on the initial tracer positions. The ergodic-
partition method following Mezić (1994, 2013) and Budišić,
Mohr, and Mezić (2012), reviewed in Sec. VII.F, in essence
generalizes this concept and, in principle, enables visualization
of all relevant topological features with one generic ansatz.
Further promising alternatives exist in the Lagrangian tech-
niques by Haller (2001a) and Branicki and Wiggins (2009)
developed specifically for 3D unsteady systems.

G. Synthesis

Why is this subject attractive? First, it is rather interdisci-
plinary. There are typically at least three areas that are involved:
(a) fluid mechanics, (b) dynamical-systems theory, and (c) the
application area, which may be from other parts of physics or
from engineering, biology, chemistry, etc. Such interdiscipli-
nary problems are typically challenging and thus scientifically
exciting. Second, analysis, experiment, and numerics are all
possible and productive. Third, the fundamentals are quite close
to applications. Fourth, mixing via chaotic fluid motion is a
case where chaos is “good.” Usually chaos is associated with
something “bad”: undesirable vibrations in machinery, loss of
particles in accelerators, difficulty in control problems, yet
another type of noise, etc. But in fluid mixing, chaos is good.
We want as much of it as we can possibly get. In fact, we go to
great lengths to eliminate or design away any vestiges of
regularity. Fifth, the concepts are applicable over a substantial
range of length scales (∼10−6 to 105 m), comparable to the ten-
decade range of length scales found in turbulent flows in
industrial applications and geophysical flows. Sixth, there are
still a number of interesting open problems. Finally, note that
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the data from experiments in this field are often aesthetically
pleasing, as may be seen from the figures in this paper, which
adds an extra attraction to chaotic advection.
The community of researchers working on the fundamen-

tals and applications of chaotic advection has made great
strides since the 1980s when the field was thus named. Its
impact has been felt in many fields of science and engineering
and the area of applications has grown enormously. Yet, the
theory is still incomplete and presents great challenges.
Moreover, in spite of the hundreds of references cited covering
a broad range of areas we are aware that important areas of
interest to many possible readers are not covered in this
review, such as those on non-Newtonian flows, transport in
granular media, chemical reactions in chaotic flows, etc.
The key to advancing in this field is developing a thorough

understanding of laminar transport mechanisms in realistic
fluid systems as used in industry, including non-Newtonian
fluids, chemical reactions, aggregation processes; their rig-
orous experimental validation; further development of trans-
port formalisms on the basis of principles from mathematical
physics; their translation and integration into analysis and
design strategies; and further development of numerical and
experimental methods for transport studies. As we write, new
frontiers are being explored. The physics of mixing is the
subject to enter. So say researchers at the famed Lorentz
Center.
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