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This is an introductory review of the physics of quantum spin liquid states. Quantum magnetism is
a rapidly evolving field, and recent developments reveal that the ground states and low-energy
physics of frustrated spin systems may develop many exotic behaviors once we leave the regime of
semiclassical approaches. The purpose of this article is to introduce these developments. The
article begins by explaining how semiclassical approaches fail once quantum mechanics become
important and then describe the alternative approaches for addressing the problem. Mainly spin-
1=2 systems are discussed, and most of the time is spent in this article on one particular set of
plausible spin liquid states in which spins are represented by fermions. These states are spin-singlet
states and may be viewed as an extension of Fermi liquid states to Mott insulators, and they are
usually classified in the category of so-called SUð2Þ, Uð1Þ, or Z2 spin liquid states. A review is
given of the basic theory regarding these states and the extensions of these states to include the
effect of spin-orbit coupling and to higher spin (S > 1=2) systems. Two other important approaches
with strong influences on the understanding of spin liquid states are also introduced: (i) matrix
product states and projected entangled pair states and (ii) the Kitaev honeycomb model.
Experimental progress concerning spin liquid states in realistic materials, including anisotropic
triangular-lattice systems [κ-ðETÞ2Cu2ðCNÞ3 and EtMe3Sb½PdðdmitÞ2�2], kagome-lattice system
[ZnCu3ðOHÞ6Cl2], and hyperkagome lattice system (Na4Ir3O8), is reviewed and compared against
the corresponding theories.
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I. INTRODUCTION

Quantum spin liquid (QSL) states in dimensions of d > 1
have been a long-sought goal in condensed matter physics.
The general idea is that when acting on spin systems, quantum
mechanics may lead to exotic ground states and low-energy
behaviors that cannot be captured by traditional semiclassical
approaches. The difficulty in implementing this idea is that we
have no natural place to start once we have left the comfort
zone of semiclassical approaches, at least in dimensions larger
than 1. Except for a few exactly solvable models, we must rely
heavily on numerical or variational approaches to “guess” the
correct ground-state wave functions and on a combination of
sophisticated numerical and analytical techniques to under-
stand the corresponding low-energy excitations.
Several excellent reviews are available on QSLs (P. A. Lee,

2008; Balents, 2010) and frustrated magnetism (Diep, 2004;
Lacroix, Mendels, and Mila, 2011). This article complements
those mentioned by providing a pedagogical introduction to
this subject and reviews the current status of the field. We
explain, at an introductory level, why sophisticated
approaches are needed to study QSL states, how these
approaches are implemented in practice, and what new
physics may be expected to appear. The experimental side
of the story and the drawbacks or pitfalls of the theoretical
approaches are also discussed. We concentrate mainly on
spin-1=2 systems and study in detail one particular set of
plausible spin liquid states that are usually termed resonating
valence-bond (RVB) states. The spins are treated as fermions
in these states, which may be viewed as an extension of Fermi
liquid states to Mott insulators. They are usually classified in
the category of SUð2Þ, Uð1Þ, or Z2 spin liquid states. Because
of the intrinsic limitations of the fermionic RVB approach,
many other approaches to spin liquid states have been
developed by others. These approaches often lead to other
exotic possibilities not covered by the simple fermionic
approach. Two of these approaches are introduced in this
article for completeness: (i) matrix product states (MPSs) and
projected entangled pair states (PEPSs) and (ii) the Kitaev
honeycomb model.
The article is organized as follows. In Sec. II, we introduce

the semiclassical approach to simple quantum antiferromag-
nets, and we explain the importance of the spin Berry phase
and how one can include it in a semiclassical description
to obtain the correct theory. In particular, we show how it
leads to the celebrated Haldane conjecture. The existence
of end excitations as a natural consequence of the
low-energy effective theory of these systems is discussed.
One-dimensional quantum spin systems are of great interest at
present because they provide some of the simplest realizations
of symmetry-protected topological (SPT) phases in strongly
correlated systems.

The limitations of the semiclassical approach when applied
to systems with frustrated interactions are discussed in
Sec. III, where we introduce the alternative idea of construct-
ing variational wave functions directly. We introduce
Anderson’s famous idea of the RVB wave function for
spin-1=2 systems and discuss how this can be implemented
in practice. The difficulty of incorporating the SUð2Þ spin
algebra in the usual many-body perturbation theory is noted,
and the trick of representing spins by particles (fermions or
bosons) with constraints to avoid this difficulty is introduced.
The nontrivial SUð2Þ gauge structure in the fermion repre-
sentation of RVB states and the resulting rich structure of the
low-energy effective field theories for these spin states
[SUð2Þ, Uð1Þ, and Z2 spin liquids] are discussed. An
interesting linkage of the Uð1Þ spin liquid state to the
(metallic) Fermi liquid state through a Mott metal-insulator
transition is introduced.
The difficulty of finding controllable approaches for study-

ing spin liquid states has led to an extension of the RVB
approach and a search for alternative approaches. Some of
these approaches are briefly reviewed in Sec. IV, including
(i) the extension of the RVB approach to include the effect of
spin-orbit coupling and to higher spin (S > 1=2) systems,
(ii) the concepts of matrix product states and projected
entangled pair states, and (iii) the Kitaev honeycomb model.
The main message of this section is that a larger variety of
exotic spin states become possible when we leave the
paradigm of spin-1=2 systems with rotational symmetry.
The Uð1Þ and Z2 spin liquid states belong to a very small
subset of the plausible exotic states once we leave the
paradigm of semiclassical approaches.
Section V is devoted to a survey of experimental research

on spin liquid states. Special attention is paid to the Uð1Þ spin
liquid state, on which most experimental efforts have been
focused. The best studied examples are a family of organic
compounds denoted by κ-ðETÞ2Cu2ðCNÞ3 (ET) (Shimizu
et al., 2003) and PdðdmitÞ2ðEtMe3SbÞ (dmit salts) (Itou
et al., 2008). Both materials are Mott insulators near the
metal-insulator transition and become superconducting (ET)
or metallic (dmit) under modest pressure. Despite the large
magnetic exchange J ≈ 250 K observed in these systems,
there is no experimental indication of long-range magnetic
ordering down to a temperature of ∼30 mK. A linear
temperature dependence of the specific heat and a Pauli-like
spin susceptibility have been found in both materials at low
temperature, suggesting that the low-energy excitations
are spin-1=2 fermions with a Fermi surface (Yamashita
et al., 2008; Watanabe et al., 2012). This Fermi-liquid-like
behavior is further supported by their Wilson ratios, which are
close to 1. In addition to ET and dmit salts, the kagome
compound ZnCu3ðOHÞ6Cl2 (Helton et al., 2007) and the
three-dimensional hyperkagome material Na4Ir3O8 (Okamoto
et al., 2007) are also considered to be candidates for QSLs
with gapless excitations. Experimental surveys on these QSL
candidate materials are presented in this article, including their
thermodynamics, thermal transport, and various spin spectra.
We also briefly introduce the discoveries of a few new
materials and discuss the existing discrepancies between
experiments and theories. The paper is summarized in Sec. VI.
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II. FROM SEMICLASSICAL TO NONLINEAR-σ MODEL
APPROACHES FOR QUANTUM ANTIFERROMAGNETS

Here we consider simple Heisenberg antiferromagnets on
bipartite lattices (with sublattices A and B) with the
Hamiltonian

H ¼ J
X
hi;ji

Si · Sj; ð1Þ

where J > 0 and hi; ji describe a pair of nearest neighbor sites
in the bipartite lattice. In a bipartite lattice, any two nearest
neighbor sites always belong to different sublattices. S is a
quantum spin with magnitude S ¼ n=2, where n ¼ positive
integer. Examples of bipartite lattices include 1D spin chains,
2D square or honeycomb lattices, and 3D cubic lattices.

A. Two-spin problem

The semiclassical approach begins with the assumption
that the quantum spins are “close” to classical spins, and
it is helpful to start by first analyzing the corresponding
classical spin problem. For simplicity, we start by consider-
ing only two classical spins coupled by the Heisenberg
interaction

H ¼ JSA · SB ðJ > 0Þ:

The classical spins obey Euler’s equation of motion:

∂SAðBÞ
∂t ¼ JSBðAÞ × SAðBÞ: ð2Þ

This equation can be solved most easily by introducing the
magnetization and staggered magnetism vectors MðNÞ ¼
SA þ ð−ÞSB, where it is easy to show from Eq. (2) that

∂M
∂t ¼ 0;

∂N
∂t ¼ JM × N; ð3Þ

indicating that classically the staggered magnetization vector
N rotates around the (constant) total magnetization vector M.
Let SAðBÞ ¼ SAðBÞr̂AðBÞ, where SAðBÞ are the magnitudes of the
spins SAðBÞ and r̂AðBÞ are unit vectors indicating the directions
of SAðBÞ; then, the classical ground state has r̂A ¼ −r̂B with
M ¼ 0, i.e., the two spins are antiferromagnetically aligned.
Note that the equation of motion given in Eq. (3) implies that
∂ðN2Þ=∂t ¼ 0, i.e., the magnitude of N remains unchanged
during its motion. Therefore, if we write N ¼ Nn̂, where N is
the magnitude of N and n̂ is the unit vector denoting its
direction, we find that only n̂ changes under the equation of
motion given in Eq. (3).
The effects of quantum mechanics can be seen most easily

by observing that the equation of motion given in Eq. (3)
describes the dynamics of a free rotor (a rigid rod with one end
fixed such that the rod can rotate freely around the fixed end).
A free rotor can be represented by a vector r ¼ r0r̂, where
r0 ¼ const is the length of the rod and r̂ is the unit radial
vector describing the orientation of the rod. The rod has an
angular momentum of

L ¼ r × p ¼ r0r̂ × p; ð4Þ

where p ¼ mr0 _̂r is the momentum and m is the mass. Using
Eq. (4), we obtain

r̂ ×L ¼ −r0p ¼ −mr20 _̂r: ð5aÞ

We also have

_L ¼ 0 ð5bÞ

(the conservation of angular momentum). Comparing Eqs. (3)
and (5), we find that the equation of motion for two spins is
equivalent to the equation of motion for a free rotor if we
identify L → M, r̂ → n̂, and J ¼ I−1, where I ¼ mr20 is the
moment of inertia of the rotor.
The quantum Hamiltonian of the free rotor is

Hrotor ¼
1

2I
L2;

and its solution is well known. The eigenstates are the
spherical harmonics Ylmðθ;ϕÞ (where θ and ϕ specify the
direction of the unit vector r̂) with eigenvalues

L2 ¼ lðlþ 1Þℏ2; Lz ¼ mℏ;

and corresponding energies El ¼ lðlþ 1Þℏ2=2I, where l and
m are integers such that l ≥ 0 and l ≥ jmj. In particular,
LðMÞ ¼ 0 for the ground state of the quantum rotor, but the
direction of the vector rðNÞ is completely uncertain
[Y00ðθ;ϕÞ ¼ 1=

ffiffiffiffiffi
4π

p
] as a result of quantum fluctuations,

indicating a breakdown of the classical solution, in which n is
fixed in the ground state. (Alternatively, one can gain this
understanding from the Heisenberg uncertainty principle
hδr̂ihδLi > ℏ. With L ¼ 0 in the ground state, δL≡ 0 and
δr̂ → ∞, the direction of the vector r̂ becomes completely
uncertain.)
A moment of thought indicates that our mapping of the spin

problem to the rotor problem cannot be totally correct. What
happens if SA is an integer spin and SB is a half-odd-integer
spin? Elementary quantum mechanics tells us that the ground
state should carry half-odd-integer angular momentum. The
possibility of such a scenario is missing in our rotor mapping,
in which the spin magnitudes SAðBÞ do not appear.

B. Berry’s phase

The missing piece in our mapping of the two-spin problem
to the rotor model is the Berry’s phase (Berry, 1984), which is
carried by spins but is absent in rotors. The correct spin-
quantization rule is recovered only after this piece of physics
is properly added into the rotor problem. First, let us review
the Berry’s phase carried by a single spin.
We recall that for a spin tracing out a closed path C on the

surface of the unit sphere, the spin wave function acquires a
Berry’s phase γðCÞ ¼ SΩðCÞ, where S is the spin magnitude
and ΩðCÞ is the surface area under the closed path C on the
unit sphere (see Fig. 1). SΩðCÞ can be represented more
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conveniently by imagining the spin trajectory as the trajectory
of a particle carrying a unit charge moving on the surface of
the unit sphere. In this case, the Berry’s phase is simply the
phase acquired by the charged particle if a magnetic monopole
of strength S [i.e., BðrÞ ¼ ðS=r2Þr̂] is placed at the center of
the sphere. The Berry’s phase acquired is the magnetic flux
enclosed by the closed path C.
Let SAMðrÞ be the vector potential associated with the

monopole, i.e., ∇ ×AM ¼ r̂=r2; then, in the “chargeþ
gauge field” representation, the effect of the Berry’s phase
can be described by a vector-potential term in the action:

SB ¼ ℏSΩðCÞ ¼ ℏS
Z

dtAMðr̂Þ · _̂r: ð6Þ

This is an example of a Wess-Zumino term for quantum
particles. Amore rigorous derivation of theWess-Zumino action
is given in the Appendix, where the action for a single spin in a
magnetic field is derived via a path integral approach.
We now revisit the two-spin problem. With the Berry’s

phases included, the Lagrangian of the corresponding rotor
problem becomes

L ¼ 1

2J
ðn̂ × _̂nÞ2 þ ℏSAAMðr̂AÞ · _̂rA þ ℏSBAMðr̂BÞ · _̂rB; ð7Þ

whereN ¼ Nn̂ ¼ SA − SB. To simplify the problem, we adopt
the semiclassical approximation r̂A ¼ −r̂B in the Berry’s
phase terms, which is a reasonable approximation for states
close to the classical ground state. With this approximation,
we obtain

L →
1

2J
ðn̂ × _̂nÞ2 þ ℏΔSAMðn̂Þ · _̂n; ð8Þ

where n̂ ¼ r̂A and ΔS ¼ SA − SB. The Hamiltonian of the
system is

HM ¼ J
2
½Π − ℏΔSAMðn̂Þ�2; ð9Þ

where Π ¼ _̂n=J is the canonical momentum of the rotor.
HM is the Hamiltonian of a charged particle moving on

the surface of a unit sphere with a magnetic monopole of
strength jΔSj located at the center of the sphere. The
eigenstates of the Hamiltonian are well known and are called
the monopole spherical harmonics (Wu and Yang, 1976).

The most interesting feature of the monopole spherical
harmonics is that they allow half-odd-integer angular momen-
tum states (which occur when jΔSj is a half odd integer). The
ground state carries an angular momentum of L ¼ jΔSj and is
ð2jΔSj þ 1Þ-fold degenerate, corresponding to the degeneracy
of a quantum spin of magnitude jΔSj in agreement with the
exact result for the two-spin problem.

C. Nonlinear-σ model

The two-spin problem tells us that there are two important
elements that we must keep track of when a classical spin
problem is replaced with the corresponding quantum spin
problem: (a) quantum fluctuations, originating from the (non)
commutation relation between the canonical coordinates (N)
and momenta (M), and (b) Berry’s phase, which dictates
the quantization of the spins. In the following, we generalize
the rotor approach to the many-spin systems described by the
antiferromagnetic (AFM) Heisenberg model, keeping in mind
these two elements.
Following Haldane (1983a, 1983b), we consider here

Heisenberg antiferromagnets on a bipartite lattice described
by the Hamiltonian given in Eq. (1). As in the two-spin
problem, we introduce the magnetization vectors MðxiÞ and
the staggered magnetization vectors NðxiÞ such that

SA
i ¼ MðxiÞ þ NðxiÞ;

SB
i ¼ MðxiÞ − NðxiÞ; ð10Þ

where SAðBÞ denote spins on the AðBÞ sublattices of the
bipartite lattice. We assume that the ground state of the
quantum system is “classical like” with nearly antiparallel
spins on two nearest neighboring sites such that MðxiÞ ≪
NðxiÞ, where both MðxÞ and NðxÞ are very slowly varying
functions in space. (We show that this assumption can be
justified in the following section.) The classical equation of
motion for the spin at lattice site i is

∂SAðBÞ
i

∂t ¼ J

� X
j¼NNðiÞ

SBðAÞ
j

�
× SAðBÞ

i ; ð11Þ

where j ¼ NNðiÞ means that j represents the nearest neighbor
sites of i.
Using Eq. (10), after some straightforward algebra and

taking the continuum limit, we obtain

∂NðxÞ
∂t ∼ JzMðxÞ × NðxÞ;

∂MðxÞ
∂t ∼ −

Ja2

2
½∇2NðxÞ� ×NðxÞ; ð12Þ

where a is the lattice spacing and z ¼ 2d is the coordination
number. We assumed a square (cubic)-type lattice and adopted
the slowly varying approximation

Mðxiþ1Þ þMðxi−1Þ ∼ 2MðxiÞ;
Nðxiþ1Þ þ Nðxi−1Þ ∼ 2NðxiÞ þ a2∂2

xNðxiÞ;

C

 (  )r̂  t

FIG. 1. Berry’s phase with a magnetic monopole.

Yi Zhou, Kazushi Kanoda, and Tai-Kai Ng: Quantum spin liquid states

Rev. Mod. Phys., Vol. 89, No. 2, April–June 2017 025003-4



etc. in deriving the result. We also assumed MðxÞ to be small
and neglected all nonlinear terms inMðxÞ in deriving Eq. (12).
To proceed further, we consider the situation in which all

spins have the same magnitude S. Then it is easy to see from
Eq. (10) that NðxÞ2 þMðxÞ2 ¼ S2 and NðxÞ ·MðxÞ ¼ 0.
Assuming thatM ¼ jMðxÞj ≪ N ¼ jNðxÞj ∼ S, we find from
Eq. (12) that M ∼ ω=zJ and ω ∼

ffiffiffi
z

p
JaSjkj, where ω and k

are the frequency and wave vector, respectively, of the
fluctuations in N. In particular, M ≪ N when ak ≪

ffiffiffi
z

p
,

i.e., when NðxÞ is slowly varying in space.
In the following, we adopt the approximation N ∼ S and

write NðxÞ ¼ Sn̂ðxÞ, where n̂2 ¼ 1. Eliminating MðxÞ from
Eq. (12), we obtain

∂2n̂ðx; tÞ
∂t2 ¼ zðSJaÞ2

2
∇2n̂ðx; tÞ; ð13aÞ

corresponding to the following classical action for the vector
field n̂:

Sσ ¼
1

2

Z
dt
Z

ddx

�
1

J

�∂n̂
∂t
�

2

−
zJðSaÞ2

2
ð∇n̂Þ2

�
; ð13bÞ

with the constraint n̂2 ¼ 1. Sσ is the nonlinear-σ model
(NLσM) for the unit vector field n̂ðxÞ.
Comparing Eqs. (8) and (13b), we see that the NLσM can

be viewed as a continuum model describing coupled rotors
n̂ðxÞ. The first term in the action gives the kinetic energy for
the rotors, which we discussed in detail for the two-spin
model. The second term represents the coupling between
nearest neighboring rotors in the lattice spin model. We note
that the term for the coupling between rotors has a magnitude
of ∼S2 and dominates over the kinetic energy in the limit of
large S.
A more systematic derivation of the NLσM starting from

Eq. (10) can be achieved by writing

Si ¼ ηiSn̂ðxiÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

����MðxiÞ
S

����2
s

þMðxiÞ;

where ηi ¼ eiπx and we still have NðxÞ ·MðxÞ ¼ 0.
Assuming that MðxÞ is small, we can integrate out MðxÞ
in a power series expansion of MðxÞ in the path integral. The
NLσM for n̂ðxÞ is thus obtained to the leading (Gaussian)
order (Auerbach, 1994).

1. Topological term

We next consider the Berry’s phase contribution to the
action. Following the Appendix, the total Berry’s phase
contribution is

ST ¼
X
i

SBðr̂iÞ ∼ ℏS
X
i

ð−1ÞiΩðn̂iÞ; ð14Þ

where SΩðr̂iÞ ¼ S
R
dtAMðr̂iÞ · _̂ri is the Berry’s phase for a

single spin and ð−1Þi ¼ 1 ð−1Þ for sites on even (odd)
sublattices. In the last step, we assumed that the spins are
almost antiparallel. In the continuum limit, we obtain

ST ∼
ℏS
2d

Z
ddx

� ∂
∂1
x
� � � ∂∂d

x

�
Ω(n̂ðxÞ): ð15Þ

ST is sensitive to the boundary conditions (see the following
discussion), and we assume closed (periodic) boundary
conditions in the following. The case of open boundary
conditions is discussed later. For periodic boundary condi-
tions, it is easy to see that ST is zero unless the integrand has a
nontrivial topological structure.
To evaluate ∂xΩ, we recall that Ωðn̂Þ measures the area on

the surface of the sphere bounded by the trajectory n̂ðtÞ. Thus,
the variation δΩðn̂Þ due to a small variation in the trajectory δn̂
is simply

δΩðn̂Þ ¼
Z

dtδn̂ · ðn̂ × ∂tn̂Þ

and

ST ¼ ℏS
2d

Z
ddx

Z
dt

�� ∂
∂1
x
� � � ∂∂d

x

�
n̂

�
· ðn̂ × ∂tn̂Þ: ð16Þ

The total effective action describing the quantum antiferro-
magnet is S ¼ Sσ þ ST .
The topological term is nonzero in one dimension and is

usually written in the form

ST
ℏ

¼ θ

8π

X
μ;ν¼0;1

Z
d2xεμνn̂ · ð∂μn̂ × ∂νn̂Þ; ð17aÞ

where x0 ¼ t, x1 ¼ x, θ ¼ 2πS, and εμν is the rank-2 Levi-
Cività antisymmetric tensor (Haldane, 1985; Affleck, 1986).
The Pontryagin index

Q ¼ 1

8π

X
μ;ν¼0;1

Z
d2xεμνn̂ · ð∂μn̂ × ∂νn̂Þ ¼ integer ð17bÞ

measures how many times the 2½¼ 1ðspaceÞ þ 1ðtimeÞ�-
dimensional spin configuration n̂ has wrapped around the
unit sphere. In two dimensions,

ST →
ℏθ
2

Z
dy

∂QðyÞ
∂y ¼ 0;

where QðyÞ is the Pontryagin index that arises from summing
over all spin configurations in the yth column of the two-
dimensional lattice. The sum is zero for smooth spin con-
figurations because Q is an integer and thus cannot “change
smoothly” (Dombre and Read, 1988; Fradkin and Stone,
1988; Haldane, 1988b; Wen and Zee, 1988). For the same
reason, ST vanishes for any number of dimensions greater
than 1. However, one should be cautioned that this conclusion
is valid only when we restrict ourselves to smooth spin
configurations n̂ðx; tÞ when computing ST . The Berry’s phase
may have a nonzero contribution if we also allow singular spin
configurations in the theory. This is the case in ð2þ 1ÞD,
where monopolelike spin configurations are allowed in 3D
space (Haldane, 1988b; Read and Sachdev, 1990).
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D. Quantum spin chains and the Haldane conjecture

We now study the predictions of the effective action for
quantum spin chains. In one dimension, the quantum spin
chains are described by the path integralZ

D½n̂ðx; tÞ�eði=ℏÞ½Sσðn̂ÞþST ðn̂Þ�:

We first consider the topological term. We note that ST ¼
2ℏπSQ and eði=ℏÞST ¼ ð−1Þ2SQ (Q ¼ integer). In particular,
eði=ℏÞST ≡ 1 for integer spin chains, and the Berry’s phase has
no effect on the effective action. However, eði=ℏÞST ¼ �1 for
half-odd-integer spin chains, depending on whether Q is even
or odd. There is no further distinction between spin chains
with different spin values S in ST . This result leads to the first
part of the Haldane conjecture, namely, that fundamental
differences exist between integer and half-odd-integer spin
chains (Haldane, 1988b). To proceed further, we first consider
integer spin chains, where eði=ℏÞST ≡ 1 and the system is
described by the “pure” NLσM Sσ .

1. Integer spin chains

We start by asking the following question: what are the
plausible ground states described by Sσ? For this purpose, it is
more convenient to consider a lattice version of Sσ:

Sσ →
1

2

Z
dt
X
i

�
1

J

�∂n̂i
∂t
�

2

þ JS2n̂i · n̂iþ1

�
; ð18Þ

with the corresponding Hamiltonian

Hσ ¼
J
2

X
i

½ðLiÞ2 − S2n̂i · n̂iþ1�; ð19Þ

where Li is the angular momentum operator for the ith rotor.
The Hamiltonian contains two competing terms, and we
expect that it may describe two plausible phases, a strong
coupling phase, in which the kinetic energy (first) term
dominates, and a weak coupling phase, in which the potential
energy (second) term dominates. A natural control parameter
for this analysis is the spin magnitude S, which dictates the
magnitude of the potential energy. In the first case (small S), in
which the potential energy term is small, we expect that the
ground state can be viewed, to a first approximation, as a
product of local spin singlets, i.e., L ¼ 0 states,

jGi ¼ j0i1j0i2 � � � j0iN;

where j0ii represents the L ¼ 0 state for the rotor on site i.
The lowest-energy excitations areL ¼ 1 states separated from
the ground state by an excitation gap ∼ℏ2J. This picture is
believed to be correct as long as the magnitude of the potential
energy term is much smaller than the excitation energy for the
L ¼ 1 state. In the second case, in which the potential energy
term dominates (large S), we expect that the ground state is a
magnetically ordered (Néel state) with n̂i ¼ n̂0 at all sites i,
where the excitations are Goldstone modes of the ordered state
(spin waves).

It turns out that this naive expectation is valid only in
dimensions of d > 1. In one dimension, the magnetically
ordered state is not stable because of quantum fluctuations
associated with the Goldstone mode (Mermin-Wigner-
Hohenberg theorem), and the ground state is always quantum
disordered (Mermin and Wagner, 1966; Hohenberg, 1967),
i.e., a spin liquid state. This result can be shown more
rigorously through a renormalization group (RG) analysis
of the NLσM. We do not go through this analysis in detail;
instead, we simply assume that this is the case and examine its
consequences. Readers interested in the RG analysis can
consult, for example, Polyakov (1975), Brézin and Zinn-
Justin (1976), and Polyakov (1987).
Physically, this result means that after some renormaliza-

tion, the ground state of integer spin chains can always be
viewed as a product state of local spin singlets, irrespective of
the spin magnitude S. The lowest-energy excitations are
gapped spin-triplet (L ¼ 1) excitations. This is the Haldane
conjecture for integer spin chains.

2. Half-odd-integer spin chains

The RG analysis cannot be straightforwardly applied to
half-odd-integer spin chains because of the appearance of the
topological term ST . To understand why, let us again take the
RG to the strong coupling limit and examine what happens in
this case.
To zeroth order, the Hamiltonian of the system consists only

of the kinetic energy term. However, the rotors are moving
under the influence of effective monopole potentials origi-
nating from ST . In particular, all half-odd-integer spin chains
have the same ST with an effective magnetic monopole
strength of 1=2, corresponding to that of a spin-1=2 chain.
In this case, the ground state of a single rotor has an angular
momentum of L ¼ 1=2 and is twofold degenerate [see the
discussion after Eq. (9)]. The total degeneracy of the ground
state is 2N , where N is the number of lattice sites. This
enormous degeneracy implies that the coupling between
rotors cannot be neglected when we consider the rotor
Hamiltonian given in Eq. (19), and the strong coupling
expansion simply tells us that the system behaves like a
coupled-spin-1=2 chain (Shankar and Read, 1990).
Fortunately, the antiferromagnetic spin-1=2 chain can be

solved using the exact Bethe Ansatz technique (Giamarchi,
2003). The exact Bethe Ansatz solution tells us that the
antiferromagnetic spin-1=2 Heisenberg chain is critical,
namely, the ground state has no long-range magnetic order
but has a gapless excitation spectrum. Unlike integer spin
chains, where the lowest-energy excitations carry spin S ¼ 1,
the elementary excitation of this system has spin S ¼ 1=2.
Combining this with the continuum theory leads to the
Haldane conjecture for half-odd-integer spin chains, namely,
that they are all critical with elementary S ¼ 1=2 excitations.

3. Open spin chains and end states

The Haldane conjecture has been checked numerically for
quantum spin chains with different spin magnitudes and has
been found to be correct in all cases that have been studied
thus far. One may wonder whether the difference in spin
magnitudes may manifest at all in some low-energy properties
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of quantum spin chains. The answer is yes, when we consider
open spin chains.
Recall that we have always assumed periodic boundary

conditions in deriving ST . In fact, a periodic boundary
condition is needed to define the Pontryagin index for the
topological term ST . For an open chain of length L, ST is
replaced by (Haldane, 1983a; Affleck, 1990; Ng, 1994)

SðoÞT ¼ ℏ
2

Z
L

0

ddx
∂SB(n̂ðxÞ)

∂x
¼ 2πℏSQþ ℏS

2
½Ω(n̂ðLÞ) −Ω(n̂ð0Þ)�; ð20Þ

where 2πSQ ¼ θQ is the usual topological θ term that we
obtain when Ω(n̂ð0Þ) ¼ Ω(n̂ðLÞ), i.e., when we consider
periodic boundary conditions. An open chain differs from a
closed chain in the existence of an additional boundary
Berry’s phase term with an effective spin magnitude of S=2.
We now examine the effect of this additional Berry’s phase

term. First, we consider integer spin chains. Following the
previous discussion, we expect the spin chain to be described
by the strong coupling limit of the effective Hamiltonian given
in Eq. (19), except that the rotors at the two ends of the spin
chain are subjected to monopole potentials of strength S=2,
resulting in effective free spins of magnitude S=2 located at
the ends of the spin chain. The two spins are coupled by a term
Jeff ∼ JS2e−L=ξ when the coupling between rotors is consid-
ered, where ξ ∼ E−1

g is the correlation length and Eg is the spin
gap. These end states can also be understood based on a wave
function proposed by Affleck, Kennedy, Lieb, and Tasaki (the
AKLT state) for S ¼ 1 spin chains (Affleck et al., 1987) (see
Sec. IV) and have been observed experimentally in S ¼ 1 spin
chain materials (Glarum et al., 1991). In modern terminology,
the end states of integer spin chains are a manifestation of SPT
order (Gu and Wen, 2009; Chen et al., 2012; Pollmann et al.,
2012), which manifests itself as a boundary action that is
protected by rotational [SO(3)] symmetry.1

For half-odd-integer spin chains, the analysis is a bit more

complicated. We start by rewriting Eq. (20) for SðoÞT as follows
(Ng, 1994):

SðoÞT ¼ ℏ
2

�
4π

1

2
Qþ S½Ω(n̂ðLÞ) −Ω(n̂ð0Þ)�

�

¼ ℏ
2

�
4π

1

2
Qþ 1

2
½Ω(n̂ðLÞ) −Ω(n̂ð0Þ)�

þ
�
S −

1

2

�
½Ω(n̂ðLÞ) − Ω(n̂ð0Þ)�

�
; ð21Þ

where we replaced S with 1=2 in the usual topological
(Pontryagin index) term and divided the boundary Berry’s
phase term into two parts; the first part, when combined with
the Pontryagin index term, is the total Berry’s phase con-
tribution for an open S ¼ 1=2 spin chain, and the second part
is the additional contribution when S > 1=2. Performing the

strong coupling expansion as before, we find that the system
behaves as an open spin-1=2 chain coupled to two end spins
with a magnitude of 1=2þ ð1=2ÞðS − 1=2Þ. The problem of
impurity end spins coupled to a spin-1=2 chain has been
analyzed using the bosonization technique, through which it
was found that after the screening induced by the spin-1=2
chain (essentially a Kondo effect), a free spin with a
magnitude of ð1=2ÞðS − 1=2Þ is left at each end of the spin
chain (Eggert and Affleck, 1992). Note that the existence of
end states in half-odd-integer spin chains is rather nontrivial
because the bulk spin excitations are gapless. As a result, the
end spins at the two ends of a half-odd-integer spin chain are
coupled by a term Jeff ∼ JS2=L lnL, where L is the length of
the spin chain. The excitation energy of the end state is
logarithmically lower than the energy of the bulk spin
excitations, which have an energy of ∼J=L (Ng, 1994).
These predictions for open chains and end states based on
the NLσM plus topological θ term analysis have been verified
numerically by means of density matrix renormalization
group (DMRG) calculations (Qin, Ng, and Su, 1995).

E. Higher dimensions and frustrated quantum antiferromagnets

The NLσM approach to quantum antiferromagnets has been
extended to higher dimensions and to frustrated quantum
antiferromagnets. For simple antiferromagnets, ST vanishes in
dimensions of d > 1, and we need only consider the NLσM,
i.e., Sσ . As discussed, Sσ describes two plausible phases, the
weak coupling phase, in which the ground state is antiferro-
magnetically ordered, and the strong coupling phase, in which
the ground state is gapped. The weak coupling phase is
favored for large spin magnitudes S. Various numerical and
analytical studies have consistently demonstrated that the
ground state is always Néel ordered for simple quantum
antiferromagnets on a 2d square lattice, even for the smallest
possible spin value of S ¼ 1=2 (Manousakis, 1991). For this
reason, physicists have turned to frustrated spin models to
look for exotic spin liquid states.
The NLσM approach has generated interesting results

when applied to weakly frustrated spin models, where the
main effect of frustration is to reduce the effective coupling
strength between rotors (for example, J1 − J2 models, in
which a next-nearest neighbor antiferromagnetic coupling is
added to the Heisenberg model on a square lattice). In this
case, it has been shown that spin-Peierls order can be obtained
when discontinuous monopolelike spin configurations are
included in the calculation of ST (Read and Sachdev,
1990). However, the method becomes questionable when
applied to strongly frustrated spin systems, in which effective
rotors become difficult to define locally, for example, the
antiferromagnetic Heisenberg model on a kagome lattice.
Generally speaking, a continuum theory is reliable only if

the short-distance physics is captured correctly by the under-
lying classical or mean-field theory. A continuum theory
becomes unreliable if the short-distance physics it assumes is
not correct. This seems to be the case for the NLσM approach
when applied to strongly frustrated spin systems. In the
following sections, we consider alternative methods of treat-
ing quantum spin systems, keeping in mind the physics that
we have previously discussed.

1For S ¼ 1 chains, the S ¼ 1=2 end states are protected by a
weaker Z2 × Z2 symmetry (Chen, Gu, and Wen, 2011a, 2011b).
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III. RVB STATES

The semiclassical approach, which is based on fluctuations
around a presumed classical (Néel) order, is difficult to apply
in frustrated lattice models. The difficulties arise from two
main sources. First, different degenerate or quasidegenerate
classical ground states may exist in a frustrated spin system. It
is difficult to include these quasidegenerate classical ground
states in the NLσM description. Second, the effect of Berry’s
phases becomes intractable because of the complicated
(classical) spin trajectory.
The term geometric frustration (or frustration for short) was

introduced by Gerard Toulouse in the context of frustrated
magnetic systems (Toulouse, 1977; Vannimenus and Toulouse,
1977). Indeed, frustrated magnetic systems had long been
studied prior to that time. Early work included a study
conducted Wannier (1950) on the classical Ising model on a
triangular lattice with antiferromagnetically coupled nearest
neighbor spins, which serves as the simplest example of
geometric frustration (Diep, 2004). Because of the AFM
coupling, two nearest neighboring spins A and B tend to be
antiparallel (see Fig. 2). Then, a third spinC that is a neighbor of
bothA andB is frustrated because its two possible orientations,
up and down, both have the same energy. The classical ground
state has a high level of degeneracy. As a result, we cannot
choose a classical spin order as the starting point for con-
structing the NLσM for the quantum S ¼ 1=2 XXZ model

H ¼ Jz
X
hi;ji

SðzÞi SðzÞj þ J⊥
X
hi;ji

ðSðxÞi SðxÞj þ SðyÞi SðyÞj Þ

with Jz ≫ J⊥ because there exist infinite spin configurations
with the same classical energy. We note that the spin-spin
correlation has been found to decay following a power law at
zero temperature in the exact solution for the classical Ising
model (Stephenson, 1970).
In this case, an alternative approach is a variational wave

function, in which we essentially must guess the ground-state
wave function based on experience or physical intuition. An
important idea related to this approach is the RVB concept for
spin-1=2 systems suggested by Anderson. The term RVB was
first coined by Pauling (1949) in the context of metallic
materials. Anderson (1973) revived interest in this concept
when he constructed a nondegenerate quantum ground state
for an S ¼ 1=2 AFM system on a triangular lattice. A valence

bond is a spin-singlet state constructed from two S ¼ 1=2
spins at sites i and j, given by

ði; jÞ ¼ 1ffiffiffi
2

p ðj↑i↓ji − j↓i↑jiÞ; ð22Þ

and an RVB state is a tensor product of valence-bond states,
whose wave function is given by

jΨRVBi ¼
X

i1j1���injn
aði1j1���injnÞjði1; j1Þ � � � ðin; jnÞi; ð23Þ

where ði1; j1Þ � � � ðin; jnÞ are dimer configurations covering the
entire lattice (see Fig. 3). Thewave function is summed over all
possible ways in which the lattice can be divided into pairs of
lattice sites (i.e., dimers). The quantities aði1j1���injnÞ are varia-
tional parameters determined by minimizing the ground-state
energy of a given Hamiltonian. For a quantum disordered
antiferromagnet, it was proposed that the valence-bond pairs in
the RVB construction are dominated by short-range pairs,
resulting in liquidlike states with no long-range spin order. The
corresponding spin correlation function hSi ⋅ Sji in the RVB
state may be short in range, with a finite correlation length
[usually called short-range RVB (sRVB)], or may decay with
distance following a power law (algebraic spin liquid states).
The state is called a valence-bond solid (VBS) state if a single
dimer configuration dominates in the ground state. An alge-
braic spin liquid state is usually invariant under all symmetry
operations allowed by the lattice, whereas a VBS state usually
breaks the translational or rotational lattice symmetry.
The wave function given in Eq. (23), which is parametrized

by aði1j1���injnÞ, has too many variational degrees of freedom
even after the translational and rotational symmetries of the
wave function are considered and must be simplified for
practical purposes. A solution was proposed by Baskaran,
Zou, and Anderson (1987), who noted that the Bardeen-
Cooper-Schrieffer (BCS) states for superconductors are direct
product states of spin-singlet Cooper pairs and suggested that
good RVB wave functions can be constructed from BCS wave
functions via a Gutzwiller projection, denoted by PG:

jΨRVBi ¼ PGjΨBCSi; jΨBCSi ¼
Y
k

ðuk þ vkc
†
k↑c

†
−k↓Þj0i;

ð24Þ

?

A B

C

FIG. 2. Geometric frustration. The spin C is frustrated because
either the up or down orientation will give rise to the same energy
in the AFM Ising limit.

FIG. 3. A spin-singlet dimer configuration covering a lattice. An
RVB state is a superposition of such configurations.
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where c†k↑ and c†−k↑ are electron creation operators and the
numerical coefficients uk and vk are determined from a trial
BCS mean-field Hamiltonian HBCS through the Bogoliubov–
de Gennes equations, i.e., the RVB wave function is fixed by
the parameters determining HBCS. The number of electrons at
each lattice site may take a value of 0, 1, or 2 in the original
BCS wave functions. The Gutzwiller projection PG removes
all wave function components with doubly occupied sites
from the BCS state and freezes the charge degrees of freedom.
A half-filled Mott insulator state is obtained if the total
number of electrons is equal to the number of lattice sites.
We note that the technique of Gutzwiller projection is
currently being widely applied to other mean-field wave
functions jΨMFi to study Mott insulating states in
diverse physical systems. Interesting and energetically favor-
able wave functions are often obtained when jΨMFi is chosen
properly.
In addition to representing spins by electrons or fermions,

one may also use Schwinger bosons to represent spins to
construct RVB wave functions [see also the discussion after
Eq. (27)]. It is easy to recognize that, in general, almost any
mean-field wave function jΨMFi can be employed to construct
a corresponding spin state as follows:

jΨSpini ¼ PGjΨMFi; ð25Þ

where jΨMFi is the ground state of a trial mean-field
Hamiltonian Htrialðc; c†; a1;…; aNÞ, where c†iσ ðciσÞ can re-
present either fermions or bosons and a1;…; aN are varia-
tional parameters determined by minimizing the energy of the
parent spin Hamiltonian.2 The invention of Gutzwiller pro-
jection techniques enables us to construct a large variety of
variational spin wave functions, of which the best is the one
with the lowest energy.
The most important difference between the fermion and

boson constructions is that they lead to very different sign
structures in the spin wave function jΨRVBi. In a bosonic wave
function, when two spins (note that only spin degrees of
freedom remain after Gutzwiller projection) at different sites
are interchanged, the wave function does not change, whereas
the wave function does change sign when two spins are
interchanged in a fermionic wave function. These different
sign structures represent very different quantum entanglement
structures in the corresponding RVB wave functions. A
famous example is Marshall’s sign rule (Marshall, 1955)
for the AFM Heisenberg model on a bipartite lattice, where
the Heisenberg exchange exists only between bonds linking
sites in different sublattices. Marshall’s theorem tells us

that the ground state for such an AFM system is a spin-
singlet state with positive-definite coefficients in the Ising
basis fð−1ÞNA↓ jσ1 � � � σNig, where NA↓ is the number of down
spins in sublattice A and N is the number of lattice sites. Using
this result, Liang, Doucot, and Anderson (1988) proposed the
use of the following trial ground-state RVB wave function for
spin-1=2 Heisenberg antiferromagnets on a square lattice:

jΨLDAi ¼
X

iα∈A;jβ∈B
hði1 − j1Þ � � � hðin − jnÞ

× ð−1ÞNA↓ jði1; j1Þ � � � ðin; jnÞi; ð26Þ

where hðrÞ represents a positive-definite function of the bond
length r. This particular wave function can be conveniently
represented as a Gutzwiller-projected wave function in the
Schwinger boson representation, whereas the representation
of the same wave function in terms of fermions is far from
straightforward (Read and Chakraborty, 1989). However, it
has been shown that the projected BCS wave function given in
Eq. (24) will satisfy Marshall’s sign rule provided that the
spatial Fourier transformation of uk and vk (¼ uij and vij)
connects only sites in different sublattices in a bipartite lattice
(Yunoki and Sorella, 2006; Li and Yang, 2007).
It was noted by Ma (1988) that the sum of states

jði1; j1Þ � � � ðin; jnÞi, with iα ∈ A and jβ ∈ B, forms an over-
complete set for spin-singlet states in a bipartite lattice.
Because h is a positive function, it can be interpreted as a
weight factor in a Monte Carlo (MC) simulation based on loop
gas statistics. Such a calculation has been performed for large
lattices by Liang, Doucot, and Anderson (1988), and a very
accurate ground-state wave function for the AFM Heisenberg
model on a square lattice was obtained. The wave function can
give rise to either long-range or short-range spin correlations
depending on the choice of hðrÞ.
Once a proper RVB ground-state wave function has been

constructed, the next natural question is what are the low-
energy dynamics, or the elementary excitations on top of the
ground states? A natural candidate for excitation is to break a
spin-singlet pair in the ground state to form a spin-triplet
excited state with two unpaired spins. For a long-range
magnetically ordered state, it was found that the two unpaired
spins will bind together closely in space and that the resulting
elementary excitations will be localized spin-triplet excita-
tions with well-defined energy and momentum. This is
nothing but a spin wave or magnon excitation, as guaranteed
by the Goldstone theorem. By contrast, for a QSL state with
short-range spin correlation, it was proposed that the two
unpaired spins may interact only weakly with each other and
can be regarded as independent spin-1=2 elementary excita-
tions called spinons (see Fig. 4). The existence of S ¼ 1=2
spinon excitations is one of the most important predictions in
QSLs and is crucial to the experimental verification of QSLs.
The process through which a spin-1 magnon turns into two
independent spin-1=2 spinons is an example of fractionali-
zation. Whether fractionalization of spin excitations actually
occurs in a particular spin system is a highly nontrivial
question. A systematic way to examine whether fractionali-
zation may occur in a spin model was first proposed by Wen
(1989, 1991) based on the concept of confinement or

2For historical reasons, the fermion representation is also called
the slave-boson representation, and the Schwinger boson represen-
tation is also called the slave-fermion representation. In the context of
doped Mott insulators, one can decompose the electron annihilation
operator as ciσ ¼ h†i fiσ , where fiσ carries a charge-neutral spin and

h†i is the (spinless) hole creation operator. If the spinon operator fiσ is
fermionic, then the charge carrier (h†i ) is a “slave boson,” whereas if
the spinon operator is bosonic, then the charge carrier is a “slave
fermion.”
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deconfinement in lattice gauge theory.3 This approach is
explained in the following section, where the gauge theory
for QSLs is introduced.

A. RVB theory and gauge theory

This section presents a brief survey of how RVB theory is
implemented in practice, especially how low-energy effective
field theories for QSL states are constructed, which is crucial
for characterizing QSLs. We discuss a few common examples
of QSLs and define the SUð2Þ,Uð1Þ, and Z2 spin liquid states.
The nature of the Uð1Þ QSL state is then further illuminated
by relating it to a Fermi liquid state through a Mott metal-
insulator transition. We shall see that analytical approaches
have strong limitations and should be complemented by
numerical approaches in practice.
One complication associated with the RVB construction is

that there exist, in general, different mean-field states jΨMFi
that correspond to the same RVB spin wave function after
Gutzwiller projection. This redundancy originates from the
enlarged Hilbert space in the boson and fermion representa-
tion for spins and is called gauge redundancy or gauge
symmetry. Gutzwiller projection removes this redundancy,
resulting in a unique state in spin Hilbert space. To see how
this occurs, we consider the fermion representation of S ¼
1=2 spin operators (Abrikosov, 1965; Baskaran, Zou, and
Anderson, 1987; Baskaran and Anderson, 1988):

~Si ¼
1

2

X
αβ

f†iα~σαβfiβ; ð27aÞ

where α; β ¼ ↑;↓ are spin indices, f†iα ðfiαÞ is the fermion
creation (annihilation) operator, and ~σ ¼ ðσ1; σ2; σ3Þ repre-
sents the Pauli matrices. It is easy to confirm that the three

components of ~Si satisfy the SUð2Þ Lie algebra relation
½Sλi ; Sμj � ¼ iϵλμνSνi δij, where λ, μ, ν ¼ 1, 2, 3, and ϵλμν is the
antisymmetric tensor. Hence, Eq. (27a) is a representation of
SUð2Þ spins. However, the local Hilbert space for two
fermions contains four Fock states fj0i; f†↑j0i ¼ j↑i; f†↓j0i ¼
j↓i; f†↑f†↓j0i ¼ j↑↓ig; this is larger than the physical spin
Hilbert space for spin 1=2 ¼ fj↑i; j↓ig, and we need to
impose the single-occupancy constraintX

α

f†iαfiα ¼ 1 ð27bÞ

to remove the unphysical states to obtain a proper spin
representation. This is what the Gutzwiller projection does.
The construction presented in Eq. (27) is equally applicable
for bosons (the Schwinger boson representation) because
the SUð2Þ Lie algebra is independent of the statistics of the
represented particles. In the following, we focus on the
fermion representation approach because it has been found
to be a more fruitful approach for constructing QSLs. Readers
who are interested in the Schwinger boson approach can refer
to Arovas and Auerbach (1988) for details.
There are multiple choices of ffiαg available to represent

spin operators even once the single-occupancy constraint is
satisfied and the statistics of the particles have been chosen.
For example, a new set of ffiαg can be obtained through an
Uð1Þ gauge transformation:

fiα → f0iα ¼ eiθðiÞfiα:

It is easy to verify that ff0iαg forms another representation of
spin operators by replacing fiα with f0iα in Eq. (27), inde-
pendent of whether the f’s are fermions or bosons. This
multiplicity is called gauge redundancy or gauge symmetry in
the literature. We call it gauge redundancy here because
symmetry usually refers to situations in which there are
multiple physically distinct states with the same properties,
e.g., there is a degeneracy in energy. However, the gauge
degree of freedom we discuss here is not a “real” symmetry
among different physical states. Here two gauge-equivalent
states are the same state in the spin Hilbert space. They just
“look” different when they are represented by particles that
live in an enlarged Hilbert space. There is no way to
distinguish them physically (Wen, 2002).
The gauge redundancy in the fermion representation of S ¼

1=2 spins extends beyond Uð1Þ. There exists an additional
SUð2Þ gauge structure because of the particle-hole symmetry in
the fermion representation, which is absent in the Schwinger
boson representation. An elegant way of showing this SUð2Þ
gauge structure was suggested by Affleck, Zou et al. (1988),
who introduced the following 2 × 2 matrix operator:

Ψ ¼
 
f↑ f†↓

f↓ −f†↑

!
: ð28Þ

It is straightforward to show that the spin operator can be
reexpressed in terms of Ψ as

FIG. 4. A spinon excitation on top of an RVB ground state.

3This criterion for fractionalization works only in dimensions
d > 1. In one dimension, gauge fields are always confining, while
spinons appear in energy spectrum as the gapless spin-1=2 excita-
tions of the quantum antiferromagnet Heisenberg model (Mudry and
Fradkin, 1994a, 1994b).
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~Si ¼ trðΨ†
i ~σΨiÞ: ð29Þ

The single-occupancy condition given in Eq. (27b) also leads to
the identities

fi↑fi↓ ¼ f†i↑f
†
i↓ ¼ 0: ð30aÞ

Together with Eq. (30a), Eq. (27b) can be rewritten in the
following compact vector form:

trðΨi~σΨ
†
i Þ ¼ 0: ð30bÞ

We now consider the following SUð2Þ gauge transforma-
tion of Ψ:

Ψi → Ψ0
i ¼ ΨiWi; Wi ∈ SUð2Þ: ð31Þ

The spin operator ~Si in Eq. (29) remains invariant under this
transformation because WiW

†
i ¼ 1. The single-occupancy

constraint given in Eq. (30b) is also invariant because
Wi~σW

†
i represents a rotation of vector ~σ but all components

of trðΨi~σΨ
†
i Þ are zero, i.e., Ψi → Ψ0

i ¼ ΨiWi is also a valid
representation for S ¼ 1=2 spins.
We show now how RVB theory is implemented in an

analytical fermionic approach. For concreteness, we consider
an AFM Heisenberg model on a lattice:

H ¼ J
X
hiji

~Si · ~Sj; ð32Þ

where hiji denotes a nearest neighbor bond and J > 0. The

spin exchange ~Si · ~Sj can be written in terms of fermionic
(spinon) operators:

~Si · ~Sj ¼
1

4

X
αβ

ð2f†iαfiβf†jβfjα − f†iαfiαf
†
jβfjβÞ; ð33Þ

where we used the relation ~σαβ · ~σα0β0 ¼ 2δαβ0δα0β − δαβδα0β0 .
The constraint given in Eq. (27b) or (30b) can be imposed by
inserting delta functions into the imaginary-time path integral.
The corresponding partition function is

Z ¼
Z

D½f; f̄� exp½−Sðf; f̄Þ�
Y
i

δ

�X
α

f̄iαfiα − 1

�

× δ

�X
αβ

ϵαβfiαfiβ

�
δ

�X
αβ

ϵαβf̄iαf̄iβ

�
; ð34Þ

where the action Sðf; f̄Þ is given by

Sðf; f̄Þ ¼
Z

β

0

dτ

�X
iα

f̄iα∂τfiα −H

�
: ð35Þ

The delta functions can be represented by the integration over
real auxiliary fields al0ðiÞ on all sites i, l ¼ 1, 2, 3. Using the
relation δðxÞ ¼ R ðdk=2πÞeikx, we obtain

Z ¼
Z

D½f; f̄; a� exp½−Sðf; f̄; aÞ�; ð36Þ

with

Sðf; f̄; aÞ ¼ Sðf; f̄Þ − i

�X
i

a30

�X
α

f̄iαfiα − 1

�

þ
�
ða10 þ ia20Þ

X
αβ

ϵαβfiαfiβ þ H:c:

�	
: ð37Þ

It is generally believed (but has not been proven) that the
partition function Z will remain invariant under a Wick
rotation of the fields al0 in the path integral, namely, we
can replace ial0 with al0. Then, the action becomes

Sðf; f̄; aÞ ¼ Sðf; f̄Þ −
�X

i

a30

�X
α

f̄iαfiα − 1

�

þ
�
ða10 þ ia20Þ

X
αβ

ϵαβfiαfiβ þ H:c:

�	
: ð38Þ

The action given in Eq. (38) serves as the starting point
for theoretical analysis. The path integral is difficult to solve,
and approximate methods are generally needed. We start with
a mean-field theory in which we assume that the path integral
is dominated by saddle points characterized by equal-time
expectation values of the operators

P
αf

†
iαfiα,

P
αβϵαβfiαfiβ,

and al0ðiÞ:

χij ¼
X
α

hf†iαfjαi; Δij ¼
X
αβ

ϵαβhfiαfjβi; al0 ¼hal0ðiÞi;

ð39Þ

where ϵαβ is the totally antisymmetric tensor (ϵ↑↓ ¼ 1), l ¼ 1,
2, 3. It is easy to verify that χij and Δij satisfy the relations
χij ¼ χ�ji and Δij ¼ Δji. Note that any time-dependent fluc-
tuations in Δij; χij and al0ðiÞ are ignored in mean-field theory.
With these approximations, we arrive at the following mean-
field Hamiltonian:

HMF ¼
X
hiji

−
3

8
J

��
χji
X
α

f†iαfjα þ Δij

X
αβ

ϵαβf
†
iαf

†
jβ þ H:c

�

− jχijj2 − jΔijj2
�

þ
X
i

�
a30

�X
α

f†iαfiα − 1

�

þ
�
ða10 þ ia20Þ

X
αβ

ϵαβfiαfiβ þ H:c:

�	
; ð40Þ

where χij, Δij, and al0 are determined by minimizing the
ground-state energy with the exact constraint condition (27b)
replaced with the average constraintX

α

hf†iαfiαi ¼ 1: ð41Þ

The spin exchange term ~Si · ~Sj in Eq. (33) can be evaluated
within the mean-field assumption using the Wick theorem.
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Maintaining spin rotation invariance in the calculation, we
obtain

h~Si · ~Sji ¼ −3
8
ðχ�ijχij þ Δ�

ijΔijÞ ð42Þ

in mean-field theory.
Physically, the mean-field theory is equivalent to assuming

that the ground state of the spin system is given by a mean-
field wave function jΨMFi without Gutzwiller projection. The
spin exchange energy (42) evaluated in this way is usually not
a good estimate of the energy of the real spin wave function. In
practice, this mean-field theory provides an effective way to
obtain a BCS Hamiltonian to construct a Gutzwiller-projected
wave function. Whether the spin wave function obtained
through Gutzwiller projection is a good wave function for the
spin Hamiltonian can be tested only by evaluating the energy
of the wave function numerically (see Sec. III.D).
In the following section, we assume that the Gutzwiller-

projected wave function PGjΨMFi is a sufficiently good
starting point to locate the true ground state of the spin
Hamiltonian. In this case, we expect that the ground and
low-energy states constructed from HMF are adiabatically
connected to the corresponding Gutzwiller-projected wave
functions and that we may construct an effective low-energy
Hamiltonian or Lagrangian of the spin system from fluctua-
tions around HMF through the usual path integral technique.
The fluctuations in Δij; χij and al0ðiÞ describe spin-singlet
excitations and are usually called gauge fluctuations. Before
discussing gauge fluctuations, we first discuss the effect of
gauge redundancy on the mean-field states.
To illustrate, we consider two mean-field QSL states with

different structures of the mean-field parameters fχij;Δij;
al0ðiÞg. We place the states on a simple square lattice. The first
state is the uniform RVB state with

χij ¼ 0;

Δij ¼
�Δ; NNbonds;

0; others;

al0 ¼ 0 ðl ¼ 1; 2; 3Þ: ð43aÞ

The second example considered is the zero-flux state given by

χij ¼
�
χ; NNbonds;

0; others;

Δij ¼ 0;

al0 ¼ 0 ðl ¼ 1; 2; 3Þ: ð43bÞ

Δ and χ are real numbers. We show that irrespective of their
very different appearances, these two mean-field Ansätze
actually give rise to the same spin state after Gutzwiller
projection. The two states are gauge equivalent because they
can be transformed into each other through a proper gauge
transformation.
The Hamiltonian given in Eq. (40) retains a local SUð2Þ

structure, which originates from the gauge redundancy in
the fermion representation of spin. This local SUð2Þ symmetry

becomes explicit if we introduce a doublet field
ψ ¼ ðf↑; f†↓ÞT and a 2 × 2 matrix

uij ¼
�

χij Δ�
ji

Δij −χji

�
:

The mean-field Hamiltonian (40) can be written in a compact
manner as

HMF ¼
X
hiji

3

8
J

�
1

2
Trðu†ijuijÞ − ðψ†

i uijψ j þ H:c:Þ
�

þ
X
i;l

al0ψ
†
i τ

lψ i; ð44Þ

where the τl, l ¼ 1, 2, 3, are the Pauli matrices. From Eq. (44)
we can see that the HamiltonianHMF is invariant under a local
SUð2Þ transformation Wi:

ψ i → Wiψ i; uij → WiuijW
†
j : ð45Þ

This SUð2Þ gauge transformation is the same as that in
Eq. (31), where Ψ ¼ ðψ ; iσ2ψ†ÞT .
Because of this SUð2Þ gauge structure, if we regard the

Ansatz ðuij; al0τlÞ as labeling a physical spin wave function

jΨðuij;al0τlÞ
spin i ¼ PGjΨðuij;al0τlÞ

MF i, then such a label is not a one-to-
one label. Two Ansätze related by an SUð2Þ gauge trans-
formation, ðuij; al0τlÞ and ðu0ij; a0l0τlÞ ¼ (WðuijÞ;Wðal0τlÞ),
label the same physical spin wave function:

jΨspinðfαigÞi ¼ PGjΨ(WðuijÞ;Wðal
0
τlÞ)

MF i ¼ PGjΨðuij;al0τlÞ
MF i; ð46Þ

where WðuijÞ ¼ WiuijW
†
j and W(al0ðiÞτl) ¼ Wial0ðiÞτlW†

i ,
Wi ∈ SUð2Þ. The uniform RVB state and the zero-flux state
discussed denote the same physical spin state because they are
related by a gauge transformation,

Wi ¼ exp

�
i
π

4
τ2
�
:

More generally, the existence of gauge redundancy implies
that the low-energy fluctuations in spin systems have a similar
redundancy. To measure gauge fluctuations, we introduce the
loop variables

PðCiÞ ¼ uijujk � � � uli;

where i; j; k;…; l denote a loop of lattice sites that passes
through site i. PðCiÞ measures gauge fluxes and has the
general form

PðCiÞ ¼ AðCiÞτ0 þ BðCiÞ · ~τ;

where τ0 is the identity matrix and ~τ ¼ fτ1; τ2; τ3g represents
the Pauli matrices, AðCiÞ and BðCiÞ measure the Uð1Þ and
SUð2Þ components, respectively, of the gauge flux. For a
translationally invariant mean-field state, we can find a gauge
with BðCiÞ ¼ n̂BðCiÞ, where AðCiÞ and BðCiÞ are
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proportional to the area of the loop. Under a gauge trans-
formation,

PðCiÞ → WiPðCiÞW†
i ;

and the “direction” of n̂ changes. The presence of gauge
redundancy means that we may perform gauge transforma-
tions to change the “local” directions of n̂, but the physical
spin state remains unchanged.
For a given mean-field state, it is useful to distinguish

between two kinds of gauge transformations: those that
change the mean-field Ansatz fuij; al0ðiÞg and those that do
not. The latter constitute a subgroup of the original SUð2Þ
symmetry called an invariant gauge group (IGG) (Wen, 2002):

IGG≡ fWijWiuijW
†
j ¼ uij;Wi ∈ SUð2Þg: ð47Þ

It can be shown rather generally that for a stable QSL state,
physical gapless gauge excitations exist only for those
fluctuations belonging to the IGG of the corresponding
mean-field Ansatz. Therefore, it is important to understand
the structure of the IGGs in spin liquid states. Within the
fermionic SUð2Þ formalism, there are only three plausible
kinds of IGG: SUð2Þ,Uð1Þ, and Z2. We call the corresponding
spin liquids SUð2Þ, Uð1Þ, and Z2 spin liquids. SUð2Þ spin
liquids have BðCiÞ ¼ 0 with IGG ¼ SUð2Þ. They are rather
unstable because of the existence of a large amount of gapless
SUð2Þ gauge field fluctuations. Uð1Þ spin liquids have BðCiÞ
pointing in only one direction for all loops Ci. The con-
densation of fluxes in one direction provides an Anderson-
Higgs mechanism for SUð2Þ fluxes in directions
perpendicular to BðCÞ and turns the IGG into Uð1Þ. The
low-energy fluctuations are Uð1Þ gauge field fluctuations. Z2

spin liquids have BðCiÞ pointing in different directions for
different loops that pass through the same site i. The gauge
fluctuations are all gapped because the Anderson-Higgs
mechanism now applies to fluxes in all directions. A few
examples of mean-field Ansätze for these three types of spin
liquid states are presented in the following sections.

B. Uð1Þ gauge fluctuations

We briefly discuss the Uð1Þ gauge theory in regard to two
examples of spin liquids that are believed to exist in nature
(see Sec. V). The first example is the zero-flux state given in
Eq. (43b), for which Δij ¼ al0 ¼ 0 and χij ¼ χ in the mean-
field Ansatz.
It is easy to see that BðCiÞ≡ 0 and that the IGG of such a

QSL is SUð2Þ, i.e., the zero-flux state describes a SUð2Þ spin
liquid. The low-energy fluctuations are SUð2Þ gauge fluctua-
tions. Here we do not consider the full SUð2Þ gauge fluctua-
tions; we consider only the phase fluctuations of χij, i.e., Uð1Þ
gauge fluctuations. The consideration of only Uð1Þ gauge
fluctuations for the zero-flux state can be justified in a slave-
rotor theory for the Hubbard model (Lee and Lee, 2005) or in
a phenomenological Landau Fermi-liquid-type approach for
spin liquid states near the metal-insulator transition (see
Sec. III.B.1).

Upon writing χij ¼ χeiaij , where aij denotes phase fluctua-
tions, it is straightforward to see that

PðCiÞ ∝ exp ½iΦðCiÞτ3�;

whereΦðCiÞ ¼ ðaij þ ajk þ � � � þ aliÞ is the totalUð1Þ gauge
flux enclosed by the loop, i.e., the phase fluctuations of χij
represent one component of the SUð2Þ gauge fluctuations.
The effective Lagrangian describing these low-energy

phase fluctuations is

Lð0Þ ¼
X
iα

f̄iαð∂τ − a0Þfiα þ
3

8

X
hiji

�
Jχeiaji

X
α

f̄iαfjα þH:c:

�
;

ð48Þ

and the corresponding Lagrangian in the continuum limit is

Lð0Þ ¼
Z

d~r
X
α

f̄αð~rÞð∂τ − a0Þfαð~rÞ

þ 1

2m� f̄αð~rÞð−i▿þ ~aÞ2fαð~rÞ; ð49Þ

where m� is the effective mass for the spinon energy
dispersion determined by Jχ and the vector field ~að~rÞ is
given by the lattice gauge field aij through

aij ¼ ð~ri − ~rjÞ · ~a
�
~ri þ ~rj

2

�
: ð50Þ

Thus, the low-energy effective field theory describes non-
relativistic spin-1=2 fermions (spinons) coupled to the Uð1Þ
gauge field (a0ð~rÞ; ~að~rÞ) in the continuum limit.
The other spin liquid state we introduce here is the π-flux

state (Affleck and Marston, 1988; Kotliar, 1988) on a square
lattice given by Δij ¼ al0 ¼ 0 and

χi;iþμ̂ ¼
�
χ; μ ¼ x;

iχð−1Þix ; μ ¼ y:
ð51Þ

It is easy to see that PðCiÞ ∝ exp ðiπτ3Þ per square plaquette in
the mean-field Ansatz, i.e., the π-flux state has IGG ¼ Uð1Þ
and is a Uð1Þ spin liquid.
The zero-flux and π-flux states are physically distinct states

because of their different IGGs. Their mean-field spinon
dispersions are also qualitatively different. The zero-flux state

has a mean-field dispersion of E0ð~kÞ ¼ −Jχðcos kx þ cos kyÞ,
whereas the π-flux state has Eπð~kÞ ¼ �Jχ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 kx þ cos2 ky

q
with a reduced Brillouin zone. The continuum theory
describes nonrelativistic fermions with a large Fermi surface
in the zero-flux state and describes Dirac fermions with four
Fermi points [k ¼ ð�π=2;�π=2Þ] in the π-flux state (Affleck
and Marston, 1988). The effective continuum theory for the
π-flux state has the form

LðπÞ ¼
X
μσ

½ψ̄þσð∂μ− iaμÞτμψþσþ ψ̄−σð∂μ− iaμÞτμψ−σ�; ð52Þ
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where μ ¼ 0, 1, 2. The two-component Dirac spinor fields
ψ�σ describe two inequivalent Dirac nodes in the spinon
spectrum (Affleck and Marston, 1988). The two effective low-
energy Lagrangians Lð0Þ and LðπÞ describe two different types
of spin liquid states that are believed to exist in nature. We
discuss these states again in Sec. V.
The continuum action L serves as the starting point for

studying the stability and low-energy properties of spin liquid
states. Integrating out the fermion fields (at each momentum
shell) gives rise to a Maxwellian potential energy term in the
gauge field:

1

2g2ðΛÞ ð▿ × ~aÞ2;

where gðΛÞ is a running gauge coupling constant in the sense
of renormalization group theory, which depends on the energy
or momentum scale Λ. If gðΛÞ → 0 in the low-energy and
long-wavelength limit of Λ → 0, then the gauge fluctuations
become increasingly weak. The corresponding interaction
between two fermions becomes too weak to bind them
together, and the elementary excitations in the spin system
are spin-1=2 fermionic excitations called spinons. This phe-
nomenon is called deconfinement, and the ground state is a
filled Fermi sea of spinons. By contrast, if gðΛÞ → ∞ as
Λ → 0, then two spinons will always be confined together to
form a magnon. This phenomenon is called confinement. In
this case, the mean-field QSL ground state breaks down into a
spin-ordered state because of the strong gauge fluctuations,
and magnon excitations are recovered in this ordered state.
It is not exactly clear which kinds of mean-field QSL states

are stable against gauge fluctuation. It is generally believed
that Z2 QSL states are stable because Z2 (Ising) gauge theories
are deconfining (Fradkin and Shenker, 1979), whereas SUð2Þ
QSL states are unstable because of the presence of large gauge
fluctuations. The case of Uð1Þ QSL states is more nontrivial.
The SUð2Þ gauge group and the corresponding gauge fields
are compact in spin liquid states. To reflect the compactness of
the Uð1Þ gauge group, one must replace the electromagnetic
field tensor F2

μν with 2ð1 − cosFμνÞ. This periodic version of
Uð1Þ gauge theory is called compact Uð1Þ gauge theory.
A pure compact Uð1Þ gauge theory always gives rise to
confinement in two dimensions (Polyakov, 1975, 1977),
but whether deconfinement is possible in the presence of a
matter field is an open question. Herbut et al. (2003)
argued that the theory is always confining in the presence
of a Fermi surface or nodal fermions (Herbut and Seradjeh,
2003). Their conclusion depends on an approximate effective
action for the gauge field obtained by integrating out the
fermions to the lowest order. However, this approximation is
questionable for gapless fermions. Indeed, Hermele et al.
(2004) proved that when the spin index is generalized to N
flavors, deconfinement arises in the case of 2N two-
component Dirac fermions coupled to complex Uð1Þ gauge
fields for sufficiently large N, thus providing a counter
example to confinement. Further renormalization group
analysis for compact quantum electrodynamics in ð2þ 1ÞD
shows that deconfinement occurs when N > Nc ¼
36=π3 ≃ 1.161, where N is the number of fermion replicas.

This implies that a Uð1Þ spin liquid is stable at the physical
value of N ¼ 2 (Nogueira and Kleinert, 2005). Moreover, by
mapping the spinon Fermi surface in ð2þ 1ÞD to an infinite
set of (1þ 1)-dimensional chiral fermions, S.-S. Lee (2008)
argued that an instanton has an infinite scaling dimension for
any N > 0. Therefore, the QSL phase is stable against
instantons, and the noncompact Uð1Þ gauge theory is a good
low-energy description.
We note that mechanisms other than confinement arising

from gauge fluctuations may also lead to the instability of
Uð1Þ QSLs, such as Amperean pairing (Lee, Lee, and Senthil,
2007) and spin-triplet pairing (Galitski and Kim, 2007)
between spinons.
A nontrivial prediction of the Uð1Þ gauge theory for spin

liquids is that it leads to charge excitations with a soft gap
(Ng and Lee, 2007), which can be detected by means of their
ac conductivities σðωÞ. It has been predicted that σðωÞ ∼ ωα in
these spin liquid states, with α ∼ 3.33 in a nonrelativistic spin
liquid and α ¼ 2 in a Dirac fermion spin liquid (Potter,
Senthil, and Lee, 2013). It is expected that this soft gap
and the related charge fluctuations will manifest themselves
most clearly when the system is near the metal-insulator
transition (see Sec. III.B.1).
Because charge fluctuations will manifest themselves near

the metal-insulator transition, spin liquids in “weak” Mott
insulators become an interesting topic (Senthil, 2008;
Podolsky et al., 2009; Grover et al., 2010) for investigation.
To study the effect of charge fluctuations near the metal-
insulator transition, Lee and Lee (2005) began with the
Hubbard model and developed a Uð1Þ gauge theory with
the help of the slave-rotor representation (Florens and
Georges, 2004). A number of physical phenomena, including
transport properties (Nave and Lee, 2007) and the Kondo
effect (Ribeiro and Lee, 2011), have been studied using this
framework. Charge fluctuations correspond to higher-order
spin ring-exchange terms in terms of the spin Hamiltonian
(Misguich et al., 1998; Yang et al., 2010).

1. Mott transition: Relation between Fermi and spin liquids

Zhou and Ng (2013) proposed a different way to understand
Uð1Þ spin liquids near the Mott transition. They proposed that
spin liquids near the Mott transition can be regarded as “Fermi
liquids” with a constraint imposed on the current operator. For
isotropic systems, they observed that the charge current
carried by quasiparticles,

J ¼ m
m�

�
1þ Fs

1

d

�
Jð0Þ; ð53aÞ

is renormalized by the Landau parameter Fs
1 in Fermi liquid

theory, but the thermal current,

JQ ¼ m
m� JQ

ð0Þ; ð53bÞ

is not, where Jð0Þ and JQð0Þ are the charge and thermal
currents, respectively, carried by the corresponding noninter-
acting fermions and d is the number of dimensions of the
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system. For systems with Galilean invariance, the charge
current carried by quasiparticles is not renormalized, and
m�=m ¼ 1þ Fs

1=d (Baym and Pethick, 2004). However, this
is not valid in general for electrons in crystals, where Galilean
invariance is lost. In this case, m�=m ≠ 1þ Fs

1=d, and the
charge current carried by quasiparticles is renormalized
through quasiparticle interaction. In the special case in which
1þ Fs

1=d → 0 while m�=m remains finite, J → 0, suggesting
that the fermionic system is in a special state wherein spin-1=2
quasiparticles do not carry charge due to interaction but still
carry entropy. This is exactly what one expects for spinons in
QSL states.
Baym and Pethick noted that the limit of 1þ Fs

1=d → 0 is a
singular point in Fermi liquid theory and that higher-order
q- and ω-dependent terms should be included in the Landau
interaction to ensure that finite results are obtained when
calculating physical response functions. Expanding at small q
and ω, they obtained

1þ Fs
1ðq;ωÞ=d
Nð0Þ ∼ α − βω2 þ γtq2t þ γlq2l ; ð54Þ

where qt ∼∇× and ql ∼∇ are associated with the transverse
(curl) and longitudinal (gradient) parts, respectively, of the
small-~q expansion. In a QSL state, α ¼ 0. They found that to
ensure that the system is in an incompressible (insulator) state,
it is necessary to have γl ¼ 0.
To show that this phenomenology actually describes

fermionic spin liquids with Uð1Þ gauge fluctuations, Zhou
and Ng (2013) considered a Landau Fermi liquid with
interaction parameters of Fs

0ðqÞ and Fs
1ðqÞ only. The long-

wavelength and low-energy dynamics of the Fermi liquid are
described by the following effective Lagrangian:

Leff ¼
X
k;σ

�
c†kσ

�
i
∂
∂t − ξk

�
ckσ −H0ðc†; cÞ

�
; ð55Þ

where c†kσ ðckσÞ is the spin-σ fermion creation (annihilation)
operator with momentum k and

H0ðc†;cÞ¼ 1

2Nð0Þ
X
q

�
Fs
1ðqÞ
v2F

jðqÞ ·jð−qÞþFs
0ðqÞnðqÞnð−qÞ

�

ð56Þ

describes the current-current and density-density interactions
between quasiparticles (Larkin, 1964; Leggett, 1965), where
q ¼ ðq;ωÞ and vF ¼ ℏkF=m� is the Fermi velocity.
The current and density interactions can be decoupled by

introducing fictitious gauge potentials a and φ (Hubbard-
Stratonovich transformation) as follows:

H0ðc†; cÞ→
X
q

�
j · aþ nφ−

1

2

�
n
m�

d
Fs
1ðqÞ

a2 þ Nð0Þ
Fs
0ðqÞ

φ2

��
;

ð57Þ

where n is the fermion density. The equality dðn=m�Þ ¼
Nð0Þv2F was used in formulating Eq. (57).

The Lagrangian presented in Eqs. (55) and (57) can be
rewritten in the standard form of Uð1Þ gauge theory by noting
that in this representation, the fermion current is given by

j ¼ −i
2m�

X
σ

½ψ†
σ∇ψσ − ð∇ψ†

σÞψσ � −
n
m� a;

where ψσðrÞ ¼
R
e−ik·rckσ is the Fourier transform of ckσ . The

Lagrangian can be written as

L ¼
X
σ

Z
ddr

�
ψ†
σ

�
i
∂
∂t − φ

�
ψσ −Hðψ†

σ ;ψσÞ
�
þ Lðφ; aÞ;

ð58aÞ

where

Hðψ†
σ;ψσÞ ¼

1

2m� jð∇ − iaÞψσ j2 ð58bÞ

and

Lðφ; aÞ ¼ 1

2

Z
ddr

�
n
m�

�
1þ d

Fs
1

�
a2 þ Nð0Þ

Fs
0

φ2

�
: ð58cÞ

Using Eq. (54), they found that in the small-q limit, the
transverse part of Lðφ; aÞ in the spin liquid state is given by

Ltðφ; aÞ ¼ −
n

2m�

Z
ddr

�
β

�∂a
∂t
�

2

− γtð∇ × aÞ2
�
: ð59Þ

The Lagrangian as expressed in Eq. (58) together with Eq. (59)
is the standard Lagrangian used to describe QSLs with Uð1Þ
gauge fluctuations. The analysis can be rather straightfor-
wardly generalized to a Uð1Þ spin liquid with Dirac fermion
dispersion. The appearance of a soft charge gap in Uð1Þ spin
liquids can be understood from the phenomenological form of
Fs
1ðq;ωÞ as expressed in Eq. (54), which suggests that the

quasiparticles carry vanishing charges only in the limit of
q;ω → 0. The appearance of a nonvanishing β in Eq. (54) leads
to an ac conductivity σðωÞwith a power-law form. This picture
is very different from theories of spin liquid states that start
from simple spin models in which charge fluctuations are
absent at all energy scales and suggests that charge fluctuations
are important in regions near the Mott transition. We note that
charge fluctuations can be (partially) incorporated into the spin
models through ring-exchange terms.
The close relationship between Fermi liquids and spin

liquid states suggests an alternative picture of the Mott metal-
insulator transition with respect to that put forward by
Brinkman and Rice (1970), who proposed that a metal-
insulator (Mott) transition is characterized by a diverging
effective mass m�=m → ∞ and an inverse compressibility
κ → 0 at the Mott transition point, with a correspondingly
vanishing quasiparticle renormalization weight Z ∼m=
m� → 0. The diverging effective mass and vanishing quasi-
particle weight imply that the Fermi liquid state is destroyed at
the Mott transition and that the Mott insulator state is distinct
from the Fermi liquid state on the metal side.
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The phenomenology described here suggests an alter-
native picture in which the Fermi surface is not destroyed,
but the Landau quasiparticles are converted into spinons
ð1þ Fs

1=d → 0Þ at the Mott transition. In particular, the
effective mass m�=m may not diverge at the metal-insulator
transition, although Z → 0. A schematic phase diagram for the
Mott (metal-QSL) transition is presented in Fig. 5 for a generic
Hubbard-type Hamiltonian with a hopping integral t and an
on-site Coulomb repulsionU. The system is driven into a Mott
insulator state at zero temperature at U ¼ Uc, where
1þ Fs

1ðU > UcÞ=d ¼ 0. This picture suggests that a Uð1Þ
spin liquid state is likely to exist in an insulator close to the
Mott transition.
The point 1þ Fs

1=d ¼ 0 is a critical point in Fermi liquid
theory called the Pomeranchuk point. The Fermi surface is
unstable with respect to deformation when 1þ Fs

1=d < 0. The
criticality of this point implies that the QSLs obtained in this
way are marginally stable because of large critical fluctua-
tions. A similar conclusion can be drawn from Uð1Þ gauge
theory by analyzing the Uð1Þ gauge fluctuations. As a result,
QSLs with large Fermi surfaces are, in general, susceptible to
the formation of other, more stable QSLs at lower temper-
atures, such as Z2 QSLs or VBS states that gap out part of or
the entire Fermi surface. This is indicated schematically in the
phase diagram shown in Fig. 5(b), where the system is driven

into a gapped QSL at low temperatures of T < TcðUÞ on the
insulating side. The nature of the low-temperature QSLs
depends on the microscopic details of the system and cannot
be determined based on the above phenomenological
considerations.

C. Z2 spin liquid states

An example of a Z2 spin liquid state was first constructed by
Wen (1991) for a J1 − J2 Heisenberg model on a square
lattice, where J1 and J2 are the nearest neighbor and next-
nearest neighbor Heisenberg interactions, respectively. Wen
considered the mean-field Ansatz

ui;iþμ̂ ¼
�
χ 0

0 −χ

�
; ð60aÞ

where μ̂ ¼ x̂; ŷ, and

ui;i�x̂þŷ ¼ ui;i∓x̂−ŷ ¼
�

0 Δ0 � iΔ1

Δ0 ∓ iΔ1 0

�
; ð60bÞ

where χ, Δ0, and Δ1 are nonzero real numbers; a2;30 ¼ 0, and
a10 ≠ 0. It is easy to check PðCÞ for two loops: C1 ¼ i →
iþ x̂ → iþ x̂þ ŷ → i and C2 ¼ i → iþ ŷ → iþ ŷ − x̂ → i.
We obtain

PðC1Þ ¼ χ2ðΔ0τ
1 þ Δ1τ

2Þ ð61aÞ

and

PðC2Þ ¼ −χ2ðΔ0τ
1 − Δ1τ

2Þ; ð61bÞ

which demonstrates that BðC1Þ ≠ BðC2Þ and that the spin
liquid state described is a Z2 spin liquid state. The mean-field
ground state describes a half-filled spinon band with a band

dispersion given by E�ðkÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε1ð~kÞ2 þ ε2ð~kÞ2 þ ε3ð~kÞ2

q
,

where

ε1ð~kÞ ¼ 2J1χðcosðkxÞ þ cosðkyÞÞ;
ε2ð~kÞ ¼ 2J2Δ0½cosðkx þ kyÞ þ cosðkx − kyÞ� þ a10;

ε3ð~kÞ ¼ 2J2Δ1½cosðkx þ kyÞ − cosðkx − kyÞ�:

Note that the spinon spectrum is fully gapped.
Many other examples of Z2 spin liquid states have been

constructed in the literature. For instance, a nodal gapped Z2

spin liquid state was proposed by Balents, Fisher, and Nayak
(1998) and Senthil and Fisher (2000). The corresponding
mean-field Ansatz includes nearest neighbor and next-nearest
neighbor hopping as well as d-wave pairing on nearest
neighbor bonds on the square lattice:

ui;iþx̂ ¼
�
χ1 Δ
Δ −χ1

�
; ð62aÞ

tU /
0

1

Z

*m

m

0/1 1 dF s

metal

QSLQSL

insulator

(a)

tU /
0

0/)(1 1 dUF s

gapped phase

)(UTc

QSL with a spinon FS

T

critical region

Femi liquid

(b)

0T

FIG. 5. (a) Schematic zero-temperature phase diagram for the
Mott transition.U is the strength of the Hubbard interaction, and t
is the hopping integral. The electron quasiparticle weight and the
quasiparticle charge current ∼1þ Fs

1=d vanish at the critical
point, whereas the effective mass remains finite. (b) Schematic
phase diagram showing finite-temperature crossovers and pos-
sible instability toward gapped phases at lower temperatures.
There exists a (finite-temperature) critical region around Uc
where the phenomenology is not applicable. From Zhou and
Ng, 2013.
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ui;iþŷ ¼
�

χ1 −Δ
−Δ −χ1

�
; ð62bÞ

and

ui;i�x̂�ŷ ¼
�
χ2 0

0 −χ2

�
; ð62cÞ

where χ1, χ2, and Δ are nonzero real numbers; a1;20 ¼ 0, and
a30 ≠ 0. The spinon dispersion is given by E�ðkÞ ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εð~kÞ2 þ Δð~kÞ2

q
, where

εð~kÞ ¼ 2J1χ1½cosðkxÞ þ cosðkyÞ� þ 2J2χ2½cosðkx þ kyÞ
þ cosðkx − kyÞ� þ a30;

Δð~kÞ ¼ 2J1Δ½cosðkxÞ − cosðkyÞ� þ a30;

and is found to be gapless at four ~k points with a linear
dispersion. Thus, this spin liquid is a Z2 nodal spin liquid. We
reiterate that Z2 spin liquid states are expected to be the most
stable because the SUð2Þ gauge fields are gapped and the
fermionic spins are interacting only through short-range
interactions.
It was observed by Wen (1991) that in addition to spinons,

a soliton-type excitation exists in a Z2 spin liquid.
This excitation is nothing but a π flux in the Z2 gauge field,
called a “Z2 vortex.” This Z2 vortex can be described by a new
mean-field Ansatz,

~uij ¼ uijΘij;

where Θij ¼ �1 generates a π flux on a lattice. One possible
choice of Θij is illustrated in Fig. 6, where Θij ¼ −1 on the
bonds cut by the dashed line and Θij ¼ 1 on the other bonds.
An interesting consequence of such a Z2 vortex is that the
statistics of a spinon can be changed from bosonic to fermionic
and vice versa if it is bound to a vortex. Therefore, Z2 spin
liquids may contain charge-neutral spin-1=2 spinons with both
bosonic and fermionic statistics (Ng, 1999). The dynamics of
Z2 vortices can give rise to interesting physical consequences
(Ng, 1999; Qi, Xu, and Sachdev, 2009).
It is worth noting that the J1 − J2 model on a square lattice

has been well studied. The lowest-energy Z2 spin liquid state
is a nodal spin liquid with four Dirac points (Capriotti et al.,
2001; Hu et al., 2013), labeled as Z2Azz13 in the projected
group symmetry classification scheme (Wen, 2002), which we
discuss in Sec. III.E. This nodal Z2 spin liquid is energetically
competitive with calculations performed using the DMRG
(Jiang, Yao, and Balents, 2012; Gong et al., 2014) and PEPS
(Wang et al., 2013) approaches.
Relation to superconductivity: RVB theory was developed

not only for QSLs but also for high-Tc superconductivity
(Anderson, 1987). It is generally believed that Z2 spin liquid
states may become superconductors upon doping (Lee,
Nagaosa, and Wen, 2006). The superconducting state inherits

novel properties from its QSL parent, and new phenomena
may also emerge. For instance, it was proposed that doping a
kagome system can give rise to an exotic superconductor with
an hc=4e-quantized flux (as opposed to the usual hc=2e
quantization) (Ko, Lee, and Wen, 2009).

D. Numerical realization of Gutzwiller projection:
Variational Monte Carlo method and some results

The theories of QSL states rely heavily on the reliability of
Gutzwiller-projected wave functions. In this section, we
discuss how Gutzwiller projection is performed numerically
in practice and how the physical observables can be evaluated
using a Monte Carlo method for a given projected wave
function jΨRVBi ¼ PGjΨMFi.
Two types of mean-field Ansatz are frequently used in

constructing QSL states. The first one contains only (fer-
mionic) spinon hopping terms χ, and the mean-field ground
state is a half-filled Fermi sea. The second one includes both
hopping terms and pairing terms Δ, and the mean-field
ground state is a BCS-type state with a fermion energy gap.
These two types of wave functions describe Uð1Þ and Z2

spin liquid states, respectively, with the proper choice of
hopping and pairing parameters. For a given spin
Hamiltonian, we can determine these hopping and pairing
parameters by optimizing the ground-state energy. Therefore,
this approach is called the variational Monte Carlo (VMC)
method.
For a projected Fermi sea state, the mean-field ground-state

wave function on a lattice with N sites can be constructed by
filling the N lowest states in the mean-field band:

jΨFSi ¼
Y
σ

YN=2

k¼1

ψ†
kσ j0i;

where σ ¼ ↑;↓ is the spin index and the states are sorted in
order of ascending energy E1 ≤ � � � ≤ EN=2 < EF. ψ

†
kσ creates

an eigenstate in the mean-field band and can be expressed as

ψ†
kσ ¼

X
i

akðiÞc†iσ ;

FIG. 6. A Z2 vortex created by flipping the signs of the uij on
the bonds cut by the dashed line (indicated by thick lines).
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where each value of i denotes a site and c†iσ is a local fermion
creation operator. The eigenstate wave function akðiÞ does not
depend on the spin index σ for spin-singlet states because of
the spin rotational symmetry. More explicitly,

jΨFSi ¼
Y
σ

YN=2

i¼1

�XN
j¼1

aiðjÞc†jσ
�
j0i; ð63Þ

and the Gutzwiller-projected wave function can be written in
terms of the product of three factors:

PGjΨFSi¼
X
fσig

sgnfi1;…;iN=2;j1;…;jN=2gdet ½Aði1;…;iN=2Þ�

×det ½Aðj1;…;jN=2Þ�jσ1;…;σNi; ð64Þ

where jσ1;…; σNi is a state in the Ising basis with N=2 up
spins located at sites i1;…; iN=2 and N=2 down spins located
at sites j1;…; jN=2; sgnfi1;…; iN=2; j1;…; jN=2g is the sign of
the permutation P ¼ fi1;…; iN=2; j1;…; jN=2g, and
Aði1;…; iN=2Þ is an N=2 × N=2 matrix given by

Aði1;…; iN=2Þ ¼

0
BB@

a1ði1Þ � � � a1ðiN=2Þ

� � � . .
. � � �

aN=2ði1Þ � � � aN=2ðiN=2Þ

1
CCA: ð65Þ

A BCS-type mean-field ground state with spin-singlet
pairing can be written as

jΨBCSi ¼ eð1=2Þ
P

i;j
Wijðc†i↑c†j↓−c†i↓c†j↑Þj0i; ð66Þ

where i and j are site indices and Wij ¼ Wji for fermionic
spin-singlet pairing. For a system with lattice translational
symmetry, Wij can be written explicitly as

Wij ¼ −
X
k

vk
uk

e−ik·ðRi−RjÞ;

where uk and vk are given in the BCS form. In the more
general situation in which lattice translational symmetry is
lost, the Wij’s are determined from the Bogoliubov–de
Gennes equations. Gutzwiller projection retains only states
with a number of electrons equal to the number of lattice
sites and removes all terms with more than one electron per
site, i.e.,

jΨRVBi ¼ PG

�X
i<j

Wijc
†
i↑c

†
j↓

�
N=2

j0i: ð67Þ

In the spin representation, the projected BCS state can be
written as

PGjΨBCSi ¼
X
fσig

sgnði1;…; iN=2; j1;…; jN=2Þ

× det½wði1;…; iN=2; j1;…; jN=2Þ�
× jσ1;…; σNi; ð68Þ

where jσ1;…; σNi is a state in the Ising basis with N=2
up spins located at sites i1;…; iN=2 and N=2 down spins
located at sites j1;…; jN=2 and wði1;…; iN=2; j1;…; jN=2Þ is
an N=2 × N=2 matrix given by

wði1;…; iN=2; j1;…; jN=2Þ ¼

0
BB@

Wi1j1 � � � Wi1jN=2

� � � . .
. � � �

WiN=2j1 � � � WiN=2jN=2

1
CCA:

ð69Þ

A key observation regarding these two projected wave
functions, Eqs. (64) and (68), is that both of them can be
written as a determinant or as a product of two determinants.
This allows us to numerically evaluate a projected wave
function. For a large system, the number of degrees of
freedom increases exponentially with the system size. In this
case, the Monte Carlo method is applied to evaluate the
energy, magnetization, and spin correlation for these projected
wave functions (Horsch and Kaplan, 1983; Gros, 1989). Next
we briefly describe how the MC method works. Readers who
are interested in the details can see Gros (1989).
The expectation value of an operator Θ in a system with the

spin wave function jΨi can be written as

hΘi ¼ hΨjΘjΨi
hΨjΨi ¼

X
α;β

hαjΘjβi hΨjαihβjΨihΨjΨi ; ð70Þ

where the spin configurations jαi and jβi are states in the Ising
basis with N=2 up spins and N=2 down spins. This sort of
expectation value is recognized to be amenable to a MC
evaluation (Horsch and Kaplan, 1983). The expectation value
expression given in Eq. (70) can be rewritten as

hΘi ¼
X
α

�X
β

hαjΘjβihβjΨi
hαjΨi

� jhαjΨij2
hΨjΨi ¼

X
α

fðαÞρðαÞ;

ð71Þ

with

fðαÞ ¼
X
β

hαjΘjβihβjΨi
hαjΨi ; ρðαÞ ¼ jhαjΨij2

hΨjΨi :

It follows that

ρðαÞ ≥ 0;
X
α

ρðαÞ ¼ 1:

Note that for a “local operator” Θ (e.g., Θ ¼ ~Si · ~Sj) and a
given spin configuration jαi, only a limited number of
“neighbor” configurations jβi give rise to a nonvanishing
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hαjΘjβi. As noted by Horsch and Kaplan (1983), the compu-
tation time for the ratio hβjΨi=hαjΨi is of OðN2Þ. Therefore,
hΘi can be evaluated by means of a random walk through spin
configuration space with weight ρðαÞ. As in the standard MC
method, the probability Tðα → α0Þ of transitioning from one
configuration α to another configuration α0 can be chosen as
follows:

Tðα → α0Þ ¼
�
1; ρðα0Þ ≥ ρðαÞ;
ρðα0Þ=ρðαÞ; ρðα0Þ < ρðαÞ:

The new configuration α0 is accepted with probability
Tðα → α0Þ.
Because hαjΨi is either a determinant or a product of two

determinants, the computation time for hαjΨi is of OðN3Þ.
The computational resource consumption for the MC weight
factor Tðα → α0Þ is not too high, and consequently, this MC
method is feasible for Gutzwiller projection. Moreover, the
computation time of the ratio Tðα → α0Þ can be reduced to
OðN2Þ if the corresponding matrix Aðα0Þ or wðα0Þ in Eq. (65)
or (69) differs from AðαÞ or wðαÞ by only one row or column.
This can be achieved by properly choosing the spin update
procedure, e.g., the interchange of two opposite spins. This
algorithm was first introduced by Ceperley, Chester, and
Kalos (1977) for the MC evaluation of a fermionic trial wave
function.
As a variational method, the VMC method not only yields

an upper bound on the ground-state energy for a spin
Hamiltonian but also provides detailed information on the
trial ground state. This information is useful for understand-
ing the nature of the ground-state wave function. In the
remainder of this section, we discuss some numerical results
regarding Gutzwiller-projected wave functions on one- and
two-dimensional frustrated lattices.

1. One-dimensional lattice

One-dimensional systems usually serve as benchmarks for
comparison because exact solutions are often available. It
turns out that PGjΨFSi, which is gauge equivalent to
PGjΨBCSi in one dimension, is an excellent trial wave function
for the ground state of the one-dimensional Heisenberg model.
The energy for PGjΨFSi is higher than that of the exact ground
state by only 0.2% (Gebhard and Vollhardt, 1987; Gros, Joynt,
and Rice, 1987; Yokoyama and Shiba, 1987). The spin-spin
correlation decays following a power law at large distances,

h~Si · ~Siþri ∼ ð−1Þr=jrj, consistent with the results obtained
through bosonization (Luther and Peschel, 1975). Indeed, it
was shown that this Gutzwiller-projected wave function is the
exact ground state of the Haldane-Shastry model (Haldane,
1988a; Shastry, 1988),

HH-S ¼
J
2

XN
i¼1

XN−1

r¼1

1

sin2ðπr=NÞ
~Si · ~Siþr;

which describes an AFM Heisenberg chain with long-range
coupling (a periodic version of 1=r2 exchange).
Excited states with Sz ¼ m ¼ ðN↑ − N↓Þ=2 can also be

constructed, where N↑ and N↓ are the numbers of up and

down spins, respectively, in the wave function. The lowest-
energy state in the subspace with Sz ¼ m is given by

PGjΨmi ¼ PG

Y
jkj≤kF↑

ψ†
k↑

Y
jkj≤kF↓

ψ†
k↑j0i; ð72Þ

where kFσ ¼ πðNσ − 1Þ=N ¼ πðNσ − 1Þ=ðN↑ þ N↓Þ. With
the help of this trial wave function, the spin susceptibility
χ can be calculated (Gros, Joynt, and Rice, 1987). It was found
that χ is close to the value obtained from the exact solution
(Griffiths, 1964). The numerical results are summarized in
Table I.

2. Triangular lattice

Historically, the AFM spin-1=2 Heisenberg Hamiltonian on
a triangular lattice was the first model to be proposed for the
microscopic realization of a spin liquid ground state (Fazekas
and Anderson, 1974). However, the minimum-energy con-
figuration for the classical Heisenberg model on a triangular
lattice is well known to be the 120° Néel state. There has been
a long-standing debate regarding whether the frustration
together with quantum fluctuations could destroy the long-
range 120° Néel order, leading to a spin liquid state. Many trial
wave functions have been proposed as the ground state of the
nearest neighbor Heisenberg model on a triangular lattice,
including a chiral spin liquid state (Kalmeyer and Laughlin,
1987) and 120°-Néel-order states with quantum mechanical
corrections (Huse and Elser, 1988; Sindzingre, Lecheminant,
and Lhuillier, 1994). Capriotti, Trumper, and Sorella (1999)
utilized the Green’s function Monte Carlo method with the
stochastic reconfiguration technique to obtain the state of the
model with the lowest energy (to our knowledge, the ground-
state energy per site is 0.5458� 0.0001), which exhibits 120°
long-range Néel order. More recently, the three-sublattice 120°
Néel order was further confirmed by DMRG (White and
Chernyshev, 2007).
It thus seemed that for a triangular lattice, the possibility of

a spin liquid state had been ruled out. However, the story
continues. It was found that a four-spin ring exchange
stabilizes the projected Fermi sea state against a long-range
AFM state (Motrunich, 2005). Because multispin ring
exchange reflects the charge fluctuations in the vicinity of
the Mott transition, this result provides theoretical support for
the search for spin liquid states in a Mott insulating state close
to the metal-insulator transition.
The model Hamiltonian that contains both nearest neighbor

Heisenberg exchange and four-spin ring exchange is

TABLE I. Comparison of ground-state energy and spin suscep-
tibility in one dimension. The first row shows the results for the
projected Fermi sea. The second row shows the results for the exact
ground state of the Heisenberg model. From Gros, 1989.

h~Si · ~Siþ1i χ

Gutzwiller −0.442 118 (Gebhard
and Vollhardt, 1987)

0.058� 0.008 (Gros, Joynt,
and Rice, 1987)

Exact −0.443 147 (Lieb
and Wu, 1968)

0.0506 (Griffiths, 1964)
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ð73Þ

where P12 ¼ 2~S1 · ~S2 þ 1=2 interchanges the two spins at
sites 1 and 2 and the four-spin exchange operators satisfy the
following relations: P†

1234 ¼ P4321 and P1234 þ P4321 ¼
P12P34 þ P14P23 − P13P24 þ P13 þ P24 − 1.
By comparing the trial energies of the AFM-ordered states

proposed by Huse and Elser (1988) with those of various
fermionic spin liquid states, Motrunich (2005) found that the
ring-exchange term favors a spin liquid ground state over the
AFM-ordered state. The results are summarized in Fig. 7. For
small ring exchange, i.e., Jring=J ≲ 0.14, the ordered states are
of lower energy. However, for Jring=J ≳ 0.14, spin liquid states
are energetically favored. For larger values of Jring=J≳
0.3�0.35, the optimal spin liquid state is the projected
Fermi sea state. In the intermediate regime, optimized wave
functions with extended anisotropic s-wave, dx2−y2 , and
dx2−y2 þ idxy spinon pairings have similar energies.
Recently, a novel Z2 spin liquid state on a triangular lattice

was proposed, where the paired fermionic spinons preserve all
symmetries of the system and the system has a gapless
excitation spectrum with quadratic bands that touch at
q ¼ 0. It was shown through the VMC method that this Z2

spin liquid state has a highly competitive energy when Jring=J
is realistically large (Mishmash et al., 2013).

3. Kagome lattice

Unlike the case of a triangular lattice, the classical
Heisenberg model on a kagome lattice has an infinite number
of degenerate ground states that are connected to one another by
continuous local distortions of the spin configuration (Villain
et al., 1980). This property holds on any lattice with corner-
sharing units, such as checkerboard, kagome, and pyrochlore
lattices (Moessner and Chalker, 1998). For instance, on a
kagome lattice formed by corner-sharing triangles, the nearest
neighbor Heisenberg Hamiltonian can be written as the sum of

the squares of the total spins ~S△ ¼ ~S1 þ ~S2 þ ~S3 of individual
triangles that share only one vertex:

H ¼ J
X
△

ð~S△Þ2:

Classical ground states are obtained whenever ~S△ ¼ 0. This
triangle rule fixes the relative orientations of the three classical

spins of a triangle at 120° from each other in a plane, but it does
not fix the relative orientation of the plane of one triad with
respect to the planes of the triads on neighboring triangles.
These degrees of freedom lead to a continuous local degeneracy
of the ground states. Note that this degeneracy exists even if we
restrict ourselves to coplanar spin states. Two of the simplest
examples (Sachidev, 1992) are the three sublattice planar states
shown in Fig. 8 for the q ¼ 0 and

ffiffiffiffiffiffi
3×

p ffiffiffi
3

p
ordered states.

The large classical ground-state degeneracy must be lifted
by quantum fluctuations. The nature of the ground state for the
quantum model is highly speculative because of the enormous
degeneracy in the classical model. Many arguments have been
presented in the literature regarding what kind of ground state
is favored, and this issue is still under debate (Diep, 2004).
In the following, we discuss the Uð1Þ QSL state, which is one
of the promising candidates for the ground state of a spin-1=2
Heisenberg antiferromagnet on a kagome lattice.
Inspired by neutron-scattering experiments on herbertsmi-

thite, ZnCu3ðOHÞ6Cl2, Ran et al. (2007) constructed a series
of variational wave functions of Uð1Þ spin liquids on a
kagome lattice. The corresponding mean-field Ansatz involves
only fermionic spinon hopping on nearest neighbor bonds:

HMF ¼ J
X
hijiσ

ðχijf†jσfiσ þ H:c:Þ;

where the complex field χij lives on the links between two
neighboring sites. For a kagome lattice, the mean-field states
are characterized by the Uð1Þ gauge fluxes through the
triangles and hexagons. Large-N expansion suggests several

AF

14 ~  0  . JJ ring /

Quantum spin liquid

Projected Fermi sea???

FIG. 7. Variational phase diagram for the Hamiltonian presented
in Eq. (73). From Motrunich, 2005.
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on a kagome lattice. A, B, and C specify three coplanar spin
orientations with intersection angles of 120°.
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candidate mean-field states (Marston and Zeng, 1991;
Hastings, 2000): (i) VBS states, which break translation
symmetry; (ii) a spin liquid state (SL-½π=2; 0�) with a flux
of þπ=2 through each triangle on the kagome lattice and zero
flux through the hexagons, which is a chiral spin liquid state
that breaks time-reversal symmetry; (iii) a spin liquid state
(SL-½�π=2; 0�) with staggered π=2 fluxes through the trian-
gles (þπ=2 through up triangles and −π=2 through down
triangles) and zero flux through the hexagons; (iv) a spin
liquid state (SL-½π=2; π�) with a flux of þπ=2 flux through
each triangle and a flux of π through each hexagon; (v) a
uniform RVB spin liquid state (SL-[0, 0]) with zero flux
through both triangles and hexagons, which has a spinon
Fermi surface; and (vi) a Uð1Þ-Dirac spin liquid state
(SL-½0; π�) with zero flux through the triangles and a flux
of π through each hexagon, which has four flavors of two-
component Dirac fermions.
By performing VMC calculations on 8 × 8 × 3 and 12 ×

12 × 3 lattices, Ran et al. (2007) found that the Uð1Þ-Dirac
spin liquid state (SL-½0; π�) has the lowest energy among states
(i)–(vi) listed after Gutzwiller projection, with a ground-state
energy of −0.429J per site. Note that there is no tunable
parameter in this Uð1Þ-Dirac spin liquid state. This energy is
remarkably favorable because the value is very close to the
exact diagonalization result when extrapolated to the thermo-
dynamic limit. A comparison among the ground-state energies
determined using this VMC method and other numerical
methods is presented in Table II. They also found that the
Uð1Þ-Dirac spin liquid state is stable against VBS ordering
and chiral spin liquid states with fluxes of θ through the
triangles and π − 2θ through the hexagons. The spin corre-
lation functions exhibit algebraic decay with distance because
of the Dirac nodes in the spinon spectrum.
We note that exact diagonalization (Leung and Elser, 1993;

Lecheminant et al., 1997; Mila, 1998; Waldtmann et al., 1998)
and DMRG calculations (Jiang, Weng, and Sheng, 2008; Yan,
Huse, and White, 2011; Depenbrock, McCulloch, and
Schollwöck, 2012; Jiang, Wang, and Balents, 2012) strongly
indicate the existence of a spin gap and seem to rule out the
Uð1Þ-Dirac spin liquid scenario. However, this disagreement
may be a finite-size effect. The applicability of exact diag-
onalization is limited to very small lattices of up to 36 sites,
and the maximum cylinder circumference used in the DMRG
approach is only 17 lattice spacings. Recently, through the
combination of the Lanczos algorithm for projected fermionic
wave functions with the Green’s function Monte Carlo
technique, Iqbal, Becca, Sorella, and Poilblanc (Iqbal et al.,

2013; Iqbal, Poilblanc, and Becca, 2014) found that the
gapless Uð1Þ-Dirac spin liquid is competitive with gapped
Z2 spin liquids. By performing a finite-size extrapolation of
the ground-state energy, they obtained an energy per site of
E=J ¼ −0.4365ð2Þ, which is within three error bars of the
estimates obtained using the DMRG method. In summary, the
Uð1Þ-Dirac spin liquid state has proven to be a good candidate
for describing a critical phase on a kagome lattice.

E. Classification of spin liquid states: Quantum orders
and projective symmetry groups

The use of Gutzwiller-projected wave functions can be
made more systematic by using a powerful approach based on
classifying spin liquid states according to their symmetry
properties. For classical systems, it was observed by Landau
that symmetry is a universal property shared by all macro-
scopic states within the same phase, irrespective of micro-
scopic details. Consequently, the symmetry (or broken
symmetry) associated with classical order parameters serves
as a powerful tool for characterizing different classical phases.
This approach can be generalized to quantum spin systems
described by Gutzwiller-projected wave functions, with addi-
tional constraints.
For spin liquid states described by Gutzwiller-projected

wave functions, one might expect that the quantum phases
could be classified according to the symmetry properties of the
mean-field Ansatz ðuij; al0τlÞ. However, the usual classical
symmetry group (SG) is insufficient for classifying these
states for two reasons: (i) Because of the gauge redundancy,
different mean-field descriptions exist for the same QSL state.
For instance, the uniform RVB state and the zero-flux state
correspond to the same spin state, and the d-wave RVB state
on a square lattice is also the π-flux state. (ii) QSL states may
have inherent (phase) structures contained in the mean-field
Ansatz ðuij; al0τlÞ that cannot be fully distinguished based on
the SG constructed for classical systems. To address this issue,
Wen (2002) proposed a new mathematical object called a
projective symmetry group (PSG), which generalizes
Landau’s approach and has now become an important tool
in studying QSLs and the quantum phase transitions between
different QSL states.
Wen proposed that the symmetry of the mean-field Ansatz

ðuij; al0τlÞ is a universal property and serves as a kind of
“quantum number” that can be used to characterize quantum
orders in QSLs. The macroscopic properties of the Ansatz are
characterized by its PSG. An element of a PSG is a combined
operation consisting of a symmetry transformationU followed
by a local gauge transformation GUðiÞ. The PSG of a given
mean-field Ansatz consists of all combined operations that
leave the Ansatz unchanged, i.e.,

PSG≡ fGUjGUUðuijÞ ¼ uij; GUðiÞ ∈ SUð2Þg; ð74Þ

where UðuijÞ ¼ ~uij ≡ uUðiÞ;UðjÞ,GUUðuijÞ≡ GUðiÞ ~uijG†
UðjÞ,

U generates the symmetry transformation (SG), and GU is the
associated gauge transformation. From this definition, it is
easy to see that

TABLE II. Comparison of the ground-state energies (in units of J)
determined using different methods for the nearest neighbor
Heisenberg model on a kagome lattice. In the VMC method, the
Uð1Þ-Dirac spin liquid state (SL-½0; π�) is used.
Method Energy per site

Exact diagonalization −0.43 (Waldtmann et al., 1998)
Coupled cluster

method
−0.4252 (Farnell, Bishop,
and Gernoth, 2001)

Spin-wave variational
method

−0.419 (Arrachea, Capriotti,
and Sorella, 2004)

VMC method −0.429 (Ran et al., 2007)

Yi Zhou, Kazushi Kanoda, and Tai-Kai Ng: Quantum spin liquid states

Rev. Mod. Phys., Vol. 89, No. 2, April–June 2017 025003-21



SG≡ PSG
IGG

:

The PSGs of two mean-field Ansätze related by
a gauge transformation W are also related. From
WGUUðuijÞ ¼ WðuijÞ, where WðuijÞ≡WiuijW

†
j , we obtain

WGUUW−1WðuijÞ ¼ WðuijÞ. Therefore, if GUU belongs to
the PSG of the mean-field Ansatz uij, then WGUUW−1

belongs to the PSG of the gauge-transformed Ansatz
WðuijÞ. We see that the gauge transformation GU associated
with the transformation U changes in the following way under
an SUð2Þ gauge transformation W:

GUðiÞ → WðiÞGUðiÞW(UðiÞ)†: ð75Þ

Wen proposed that mean-field Ansätze with different PSGs
belong to different classes of QSL states, just as classical
states with different SGs belong to different classical phases.
As examples, we consider the PSGs of the zero-flux state

given in Eq. (43b) and the π-flux state given in Eq. (51) on a
square lattice. For illustration, let us consider the PSG
associated with translational symmetry. First, we consider
the zero-flux state. The mean-field Ansatz given in Eq. (43b) is
invariant under the translation transformations Txði → iþ x̂Þ
and Tyði → iþ ŷÞ and the gauge transformation GðθÞ ¼ eiθτ

3

.
The elements of the PSG have the form GUU; GU ¼ �GðθÞ
and U ¼ ðTxÞnðTyÞm, where n and m are arbitrary integers.
The π-flux state is different. The mean-field Ansatz given in
Eq. (51) breaks translational symmetry in the x direction
because of the odd number of lattice sites. Thus, we naively
expect that the PSG should consist of elements GUU with
GU ¼ �GðθÞ and U ¼ ðTxÞ2nðTyÞm. However, this is incor-
rect because the two mean-field Ansätze,

χi;iþμ̂ ¼
�
χ; μ ¼ x;

iχð−1Þix ; μ ¼ y;

and

χi;iþμ̂ ¼
�
χ; μ ¼ x;

iχð−1Þixþ1; μ ¼ y;

are actually related by a gauge transformation Wi ¼ ð−1Þiyτ0
and correspond to the same physical spin state. As a result, the
transformations GU0U0 with GU0 ¼ �GðθÞð−1Þiyτ0 and U0 ¼
ðTxÞ2nþ1ðTyÞm are also elements of the PSG for the π-flux
state. The zero-flux state and the π-flux state have different
PSGs and therefore belong to different classes of Uð1Þ QSL
states.
More generally, other lattice symmetry operations (reflec-

tions and rotations), such as the parity transformations
Pxy(ðix; iyÞ → ðiy; ixÞ) and Pxȳ(ðix; iyÞ → ð−iy;−ixÞ) on a
square lattice, the spin rotation transformation and the
time-reversal transformation, are also considered when con-
structing PSGs, in addition to translations. The spin rotational
symmetry of spin liquid states requires the mean-field Ansatz
to take the form

uij ¼ iρijWij; ρij ¼ real number; Wij ∈ SUð2Þ:
ð76Þ

We end with a brief discussion of an issue related to
techniques for the classification of PSGs. For any two given
symmetry transformations, their corresponding PSG elements
must satisfy certain algebraic relations determined by the
symmetry transformations. Solving these equations allows us
to construct a PSG of a type called an algebraic PSG. The
name algebraic PSG is introduced to distinguish such PSGs
from the invariant PSGs defined earlier. Any invariant PSG is
an algebraic PSG; however, an algebraic PSG is not neces-
sarily an invariant PSG unless there exists an Ansatz such that
the algebraic PSG is the total symmetry group of that Ansatz.
To provide an example, we again consider translations. The

two translation elements Tx and Ty satisfy the following
relation:

TxTyT−1
x T−1

y ¼ 1: ð77Þ

From the definition of a PSG, we find that the two PSG
elements GxTx and GyTy must satisfy the algebraic relation

GxTxGyTyðGxTxÞ−1ðGyTyÞ−1
¼ GxTxGyTyT−1

x G−1
x T−1

y G−1
y

¼ GxðiÞGyði − x̂ÞG−1
x ði − ŷÞG−1

y ðiÞ ∈ G; ð78Þ

where we denote the IGG by G. Each solution (GxTx; GyTy) of
Eq. (78) is an algebraic PSG for Tx and Ty. By adding other
symmetry transformations, we can find and classify all
algebraic PSGs associated with a given symmetry group.
Because an invariant PSG is always an algebraic PSG, we can
check whether an algebraic PSG is an invariant PSG by
constructing an explicit Ansatz uij. If an algebraic PSG
supports an Ansatz uij with no additional symmetries, then
it is an invariant PSG. Through this method, we can classify
symmetric spin liquids in terms of PSGs.
Wen (2002) utilized PSGs to classify QSL states with spin

rotational symmetry, time-reversal symmetry, and all lattice
symmetries on a square lattice. Later, the PSG classification
approach for symmetric QSLs was applied to triangular (Zhou
and Wen, 2002), star (Choy and Kim, 2009), and kagome (Lu,
Ran, and Lee, 2011) lattices. The PSG classification scheme
can also be generalized to bosonic QSL states (Wang and
Vishwanath, 2006; Wang, 2010b) and to QSL states that break
spin rotational symmetry and/or time-reversal symmetry (Kou
and Wen, 2009; Bieri, Lhuillier, and Messio, 2016).

IV. BEYOND RVB APPROACHES

There are many reasons to go beyond the simple RVB
approach for S ¼ 1=2 spin systems, for example, the discov-
ery of a plausible spin liquid state in a spin-S ¼ 1 system
(Zhou et al., 2011) and the rise in interest in Mott insulators in
systems with strong spin-orbit coupling where rotational
symmetry is broken and the ground state cannot be a pure
spin singlet (Jackeli and Khaliullin, 2009). What is the nature
of the spin liquid states in these systems? More importantly,
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we are interested in the possibility of exotic spin liquid states
beyond the RVB description, where the elementary excitations
may possess exotic properties beyond the simple spinon
picture.
We introduce some of these developments in this section.

We start by introducing the generalization of the RVB
approach to spin systems with strong spin-orbit coupling
and to S > 1=2 spin systems in Secs. IV.A and IV.B, followed
by the introduction of matrix product states and projected
entangled pair states in Sec. IV.C, which are completely
different ways of constructing spin wave functions compared
with the RVB approach. We end this section with an
introduction to the Kitaev honeycomb model, which repre-
sents yet another different approach to constructing spin wave
functions in a system with strong spin-orbit coupling with
exotic properties beyond the simple spinon picture.

A. RVB and its generalization to spin systems with strong
spin-orbit coupling

Strong spin-orbit coupling may cause interesting exper-
imental consequences that are absent in systems with spin
rotational symmetry. An example suggested by Zhou et al.
(2008) is presented here, in which strong spin-orbit coupling
in Ir atoms is used to explain the anomalous behavior of the
Wilson ratio observed in Na4Ir3O8, which was experimentally
proposed (Okamoto et al., 2007) as the first candidate for a 3D
QSL on a hyperkagome lattice with fermionic spinons.
Although the Curie-Weiss constant is estimated to be as

large as θW ∼ 650 K in Na4Ir3O8, indicating strong AFM
coupling, there is no observed thermodynamic and magnetic
anomaly indicative of long-range spin ordering down to 2 K.
The specific heat ratio γ ¼ CV=T shows a rather sharp peak at
a temperature of Tc ∼ 20 K, indicating the existence of a
phase transition or crossover at Tc. By contrast, the spin
susceptibility χðTÞ is nearly independent of temperature for all
temperatures T ≪ θW . Using the experimental values of the
spin susceptibility χ and the specific heat ratio γ at the specific
heat peak at ∼20 K, for T > Tc, the Wilson ratio RW ¼
π2k2Bχ=3μ

2
Bγ of the material is 0.88, which is very close to that

of a Fermi gas where RW is unity. Therefore, for a wide range
of temperatures Tc < T < θW , the system seems to behave as
a Fermi liquid of spinons. Below Tc, the specific heat
decreases to zero as CV ∼ T2, suggesting a line nodal gap
in the low-lying quasiparticle spectrum. However, this picture
needs to be reconciled with the observation that the spin
susceptibility χ remains almost constant, resulting in an
anomalously large Wilson ratio of RW ≫ 1 at temperatures
of T < Tc.
The spins in Na4Ir3O8 originate from the low-spin 5d5 Ir4þ

ions, which form a 3D network in the form of a corner-sharing
hyperkagome lattice. Chen and Balents (2008) suggested that
because of the large atomic number, the spin-orbit coupling in
Ir atoms is expected to be strong. In the following section, we
explain the anomalous Wilson ratio based on a modified RVB
spin liquid picture in which both spin-singlet and spin-triplet
pairings exist in the spin-pairing wave function.
Based on the experimental observations discussed earlier,

Zhou et al. (2008) proposed that a simple spinon hopping
Hamiltonian H0 determines the physics of the spin liquid state

at T > Tc, where there exists a finite spinon Fermi surface,
and that a spinon pairing gap characterized by Hpair opens up
at T < Tc. The power-law behavior CV ∝ T2 that is observed
at low temperatures of T < Tc indicates that the gap has line
nodes on the Fermi surfaces. To determine the pairing
symmetry, Zhou et al. noted that a group theoretical analysis
indicates that a spin-triplet pairing state on a cubic lattice can
create only full or point nodal gaps (Sigrist and Ueda, 1991),
which seems to imply singlet pairing. However, because of the
broken inversion symmetry on a hyperkagome lattice (Hahn,
1996), the spin-singlet and spin-triplet pairing states are, in
general, mixed together in the presence of spin-orbit coupling
(Gor’kov and Rashba, 2001; Frigeri et al., 2004).4

In terms of the d vector, the gap function ΔαβðkÞ
(α; β ¼ ↑;↓) has the general matrix form (Leggett, 1975),

ΔðkÞ ¼ i½d0ðkÞσ0 þ dðkÞ · σ�σy; ð79Þ

and the spinon pairing must be a singlet or a singlet-with-
triplet admixture because of spin-orbit coupling in order to
have line nodes (Zhou et al., 2008).
We now consider the spin susceptibility of such mixed

states. Zhou et al. showed that if both singlet and triplet
pairings are present and the spin-orbit scattering is much
weaker than the pairing gapΔ, then the k-dependent electronic
contribution to the spin susceptibility is given by

χiiðkÞ
χNðkÞ

¼ 1 −
d0d�0 þ d�i di
d0d�0 þ d · d� þ

d0d�0 þ d�i di
d0d�0 þ d · d� Yðk;TÞ;

where i ¼ x, y, z; χN is the normal state contribution at Δ ¼ 0,
and Yðk; TÞ is the k-dependent Yosida function (Leggett,
1975). Under the assumption that the d vector is pinned by the
lattice, for a polycrystalline sample, one must average over all
spatial directions, resulting in

χs
χN

¼ 2

3
−
2

3

jd0j2
jd0j2 þ jdj2 þ

�
1

3
þ 2

3

jd0j2
jd0j2 þ jdj2

�
YðTÞ; ð80Þ

where YðTÞ is the (spatially averaged) Yosida function, which
vanishes at zero temperature; χs is the spin susceptibility
below Tc, and χN is the Pauli spin susceptibility in the normal
state. Therefore, χs=χN reduces to

2

3
−
2

3

jd0j2
jd0j2 þ jdj2

at zero temperature. If the spin-triplet pairing dominates, then
χs=χN → 2=3, whereas if the spin-singlet pairing dominates,

4In general, for a many-spin system in which spin rotational
symmetry is broken, the spin-S ¼ 0 state(s) will mix with spin-S ≥ 1

states even in the presence of spatial inversion symmetry. The only
exception is the two-spin system, in which inversion symmetry
provides a good quantum number that separates the spin-singlet state
from the spin-triplet states. Because the RVB approach begins from
mean-field spin wave functions that are superpositions of two-spin
pairing states, broken inversion symmetry is needed for the con-
struction of mixed spin-singlet and spin-triplet states.
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then χs=χN → 0. However, neither of these cases is observed
in experiments; instead, χ changes only negligibly below Tc
(Okamoto et al., 2007). This suggests that strong spin-orbit
coupling is needed to explain the absence of a marked change
in χ below Tc ∼ 20 K.
It is well known that in conventional BCS singlet super-

conductors, the Knight shift, which is proportional to the Pauli
paramagnetic susceptibility, changes very little below Tc for
heavy elements such as Sn and Hg (Androes and Knight,
1959). It is understood that this is caused by the destruction of
spin conservation due to the spin-orbit coupling. A clear
explanation was presented by Anderson (1959) using the
notion of time-reversed pairing states. We first consider the
imaginary part of the spin response function χ00ðq;ωÞ. If
the total spin is conserved, then the dynamics are diffusive and
χ00ðq;ωÞ will have a central peak in ω space with a width of
Dq2, which goes to zero as q → 0. Superconductivity gaps out
all low-frequency excitations, thus removing this central peak.
By the Kramers-Kronig relation, the real part χ0ðq ¼ 0;
ω ¼ 0Þ vanishes in the superconducting ground state. In
the presence of spin-orbit coupling, the total spin is not
conserved but rather decays with a lifetime τs. In this case,
χ00ðq ¼ 0;ωÞ has a central peak with a width of 1=τs. The
superconducting gap (formed by a pair of time-reversal states)
Δ cuts a hole in χ00ðωÞ for ω < Δ but leaves the ω ≫ Δ region
intact, consistent with the physical expectation that the high-
frequency region should be unaffected by pairing. By the
Kramers-Kronig relation, χ0 will be reduced, but if the spin-
orbit coupling is sufficiently strong that

1

τs
≫ Δ; ð81Þ

then the reduction will be small, i.e.,

χs
χN

¼ 1 −OðΔτsÞ:

Equation (81) is the strong spin-orbit coupling condition that
is required to have very little change in the spin susceptibility
below Tc. We emphasize that the criterion for discriminating
strong from weak spin-orbit coupling that is given by Eq. (81)
is completely different from the usual criterion, which
compares the spin-orbit energy λ with the splitting of the
t2g levels E3 (Chen and Balents, 2008). Another way to
explain the large Wilson ratio observed in Na4Ir3O8 was
provided by Chen and Kim (2013), in which strong spin-orbit
coupling is still essential.
From a theoretical perspective, the PSG classification

scheme has been applied to classify the spin liquid states
on a kagome lattice with the Dzyaloshinskii-Moriya (DM)
interaction (Dodds, Bhattacharjee, and Kim, 2013). More
recently, to test the validity of the RVB approach in con-
structing wave functions for spin systems with strong spin-
orbit coupling, Sze, Zhou, and Ng (2016) applied the
Gutzwiller-projected wave function of fermion pairing states
to study the S ¼ 1=2 anisotropic Heisenberg (XXZ) chain

H ¼ Jz
X
i

Szi S
z
iþ1 þ J⊥

X
i

ðSxi Sxiþ1 þ Syi S
y
iþ1Þ; ð82Þ

where J⊥; Jz > 0. This model can be mapped to the isotropic
(XXX) Heisenberg model with the DM interaction,

X
i

D · ðSi × Siþ1Þ;

in one dimension with open boundary conditions through the
transformation

U ¼ exp

�
−i
X
n

nθ
2
Szn

�

with cos θ ¼ Jz=J⊥ and D ¼ J⊥ sin θ, where U†HXXZU ¼
HJþDM, with HJ denoting the isotropic Heisenberg model
with interaction J.
Trial mean-field wave functions with the general pairing

ΔðkÞ ¼ i½d0ðkÞσ0 þ dðkÞ · σ�σy

are being considered for the construction of the corresponding
Gutzwiller-projected wave functions. The trial ground-state
wave functions have the best energy when the d vector has the
form d0 ¼ 0 and dðkÞ ¼ dzẑ ¼ iΔ sin k for Jz > J⊥ (Ising
regime), whereas the preferred form is d0 ¼ 0 and dðkÞ ¼
dyŷ ¼ Δ sin k for Jz < J⊥ (planar regime). The overlap
between the trial ground-state wave function and the exact
ground-state wave function obtained through exact diagonal-
ization is better than 95% in all cases that have been
considered. Notably, the pairing state with dðkÞ ¼ dyŷ ¼
Δ sin k does not conserve Stotz and is not considered in the
classification scheme used by Dodds, Bhattacharjee, and Kim
(2013).

B. RVB approach to S > 1=2 systems

Historically, the search for spin liquid states has been
focused on spin-1=2 systems because such systems have
the strongest quantum mechanical fluctuation effects (see
Sec. II) when the unfrustrated Heisenberg model is consid-
ered. The situation is different when we consider spin systems
with frustrated interactions (Chandra and Doucot, 1988). In
this case, it is not obvious whether a spin liquid state is more
likely to exist in systems of lower spin. In fact, it was recently
found that gapless spin liquid states may exist in a two-
dimensional spin-1 compound Ba3NiSb2O9 under high pres-
sure (Cheng et al., 2011). In this section, we examine how we
can construct spin liquid states for S > 1=2 systems by
generalizing the RVB approach developed for S ¼ 1=2
systems. Note that there are multiple possible methods of
generalization. For example, Greiter and Thomale (2009)
constructed a chiral spin liquid state using a fractional
quantum Hall wave function, whereas Xu et al. (2012)
constructed a spin liquid state for an S ¼ 1 system by
representing a spin of 1 as the sum of two S ¼ 1=2 spins.
Liu, Zhou, and Ng (2010a, 2010b) developed an alternative
approach in which a spin S is represented by 2Sþ 1 fermions.
In the following section, we consider this last approach, and
we demonstrate the existence of fundamental differences
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between half-odd-integer spin and integer spin systems in this
approach.
We begin with the fermion representation of general spins.

To generalize the fermion representation of S ¼ 1=2 spins to
an arbitrary spin S, Liu, Zhou, and Ng (2010a, 2010b)
introduced 2Sþ 1 species of fermionic operators cm that
satisfy anticommutation relations,

fcm; c†ng ¼ δmn; ð83Þ

where m; n ¼ S; S − 1;…;−S. The spin operator can be
expressed in terms of these operators as follows:

Ŝ ¼ C†IC;

where C ¼ ðcS; cS−1;…; c−SÞT and Ia (a ¼ x, y, z) is
a ð2Sþ 1Þ × ð2Sþ 1Þ matrix whose matrix elements are
given by

Iamn ¼ hS;mjSajS; ni:

It is straightforward to show that the resulting spin operator Ŝ
satisfies the SUð2Þ angular momentum algebra. Under a
rotational operation, C is a spin-S “spinor” transforming as
Cm → DS

mnCn and Ŝ is a vector transforming as Sa → RabSb;
hereDS is the (2Sþ 1)-dimensional irreducible representation
of the SUð2Þ group generated by I, and R is the adjoint
representation.
As in the S ¼ 1=2 case, a constraint that there must be only

one fermion per site is needed to project the fermionic system
into the proper Hilbert space representing spins, i.e.,

ðN̂i − NfÞjphyi ¼ 0; ð84Þ

where i is the site index and Nf ¼ 1 (the particle picture, one
fermion per site). Alternatively, it is straightforward to show
that the constraint Nf ¼ 2S (the hole picture, one hole per site)
equivalently represents a spin. The Nf ¼ 1 representation can
be mapped to the Nf ¼ 2S representation via a particle-hole
transformation. For S ¼ 1=2, the particle picture and the hole
picture are identical, reflecting an intrinsic particle-
hole symmetry of the underlying Hilbert space, which is
absent for S ≥ 1.
Following Affleck, Zou, Hsu, and Anderson (1988),

Liu, Zhou, and Ng (2010a) introduced another spinor
C̄ ¼ (c†−S;−c

†
−Sþ1; c

†
−Sþ2;…; ð−1Þ2Sc†S)T , whose components

can be written as C̄m ¼ ð−1ÞS−mc†−m, where the index m
runs from S to −S as for C. Upon combining C and C̄ into a
ð2Sþ 1Þ × 2 matrix ψ ¼ ðC; C̄Þ, it is straightforward to see
that the spin operators can be reexpressed as

Ŝ ¼ 1
2
Trðψ†IψÞ ð85Þ

and that the constraint can be expressed as

Trðψσzψ†Þ ¼ 2Sþ 1 − 2Nf ¼ �ð2S − 1Þ; ð86Þ

where the þ sign implies Nf ¼ 1 and the − sign
implies Nf ¼ 2S.

We now examine the internal symmetry group associated
with the redundancy in the fermion representation. The
internal symmetry group is different for integer and half-
odd-integer spins; it is Uð1Þ⊗̄Z2 ¼ feiσzθ; σxeiσzθ ¼
e−iσzθσx; θ ∈ Rg for the former and SUð2Þ for the latter.
The reason for this difference can be qualitatively understood
as follows: Note that C and C̄ are not independent. The
operators in the internal symmetry group “mix” the two
fermion operators in the same row of C and C̄, i.e., cS and
c†−S. For integer spins, c0 and ð−1ÞSc†0 will be “mixed.” For
fc0; c†0g ¼ 1 to remain invariant, there are only two possible
methods of “mixing”: one is a Uð1Þ transformation, and the
other is interchanging the two operators. These operations
form the Uð1Þ⊗̄Z2 group. For half-odd-integer spins, the pair
(c0; ð−1ÞSc†0) does not exist, and the symmetry group is the
maximum SUð2Þ group. Thus, the difference between integer
and half-odd-integer spins is a fundamental property of the
fermion representation.
Now let us see how the constraint expressed in Eq. (86)

transforms under the symmetry groups. For S ¼ 1=2, the
constraint given in Eq. (86) is invariant under the trans-
formation ψ → ψW because the right-hand side vanishes (as a
result of the particle-hole symmetry of the Hilbert space). For
integer spins, if W ¼ eiσzθ, then WσzW† ¼ σz, and Eq. (86) is
invariant. If W ¼ σxeiσzθ, then WσzW† ¼ −σz, meaning that
the “particle” picture [þ sign in Eq. (86)] and the “hole”
picture [− sign in Eq. (86)] are transformed into each other.
For a half-odd-integer spin with S ≥ 3=2, W ∈ SUð2Þ is a

rotation, and we may extend the constraint into a vector form
in a manner similar to the S ¼ 1=2 case, such that Eq. (86)
becomes

Trðψ ~σψ†Þ ¼ (0; 0;�ð2S − 1Þ)T: ð87Þ

Under the group transformation ψ → ψW,

Trðψ ~σψ†Þ → ðR−1Þ(0; 0;�ð2S − 1Þ)T; ð88Þ

where WσaW† ¼ Rabσ
b, a; b ¼ x, y, z, i.e., R is a 3 × 3

matrix representing a 3D rotation. The transformed constraint
represents a new Hilbert subspace, which is still a (2N þ 1)-
dimensional irreducible representation of the spin-SUð2Þ
algebra. Any measurable physical quantity, such as the spin
S, remains unchanged in this new Hilbert space. Therefore, for
half-odd-integer spins (S ≥ 3=2), there exist infinitely many
ways of imposing the constraint that gives rise to a Hilbert
subspace representing a spin. However, for integer spins, there
exist only two possible constraint representations.
The fermion representation can be used to construct mean-

field Hamiltonians for spin models with arbitrary spins after
the spin-spin interaction is written down in terms of fermion
operators. For the spin-1=2 case, the Heisenberg interaction
can be written as (see Sec. III)

Ŝi · Ŝj ¼−1
8
Tr∶ðψ†

iψ jψ
†
jψ iÞ∶¼−1

4
∶ðχ†ijχijþΔ†

ijΔijÞ∶; ð89Þ

where
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χij ¼ C†
i Cj; Δij ¼ C̄†

i Cj: ð90Þ

The definitions of χij and Δij in this form can be extended to
arbitrary spins. The only difference is that for an integer spin,
χji ¼ χ†ij and Δji ¼ −Δij, whereas for a half-odd-integer spin,

χji ¼ χ†ij and Δji ¼ Δij. The parity of the pairing term Δij

differs for integer and half-odd-integer spins (Liu, Zhou, and
Ng, 2010a). For S ¼ 1, it can be shown, after some straight-
forward algebra, that the Hamiltonian can be written as (Liu,
Zhou, and Ng, 2010a)

Ŝi · Ŝj ¼ −1
2
Tr∶ðψ†

i ψ jψ
†
jψ iÞ∶ ¼ −∶ðχ†ijχij þ Δ†

ijΔijÞ∶: ð91Þ

However, for S > 1, we cannot write the spin-spin inter-
action Ŝi · Ŝj in terms of χij and Δij alone. In the case of
S ¼ 3=2, triplet hopping and pairing terms must be introduced
to represent the Heisenberg interaction. Generally speaking,
quintet and higher multipolar hopping and pairing operators
are needed to represent the Heisenberg Hamiltonian when S
becomes larger (Liu, Zhou, and Ng, 2010a). In the following,
we restrict ourselves to S ¼ 1 systems.
In this case, the mean-field Hamiltonians are BCS-type

Hamiltonians, as in the case of S ¼ 1=2 spins. The physical
spin wave function can be obtained by applying Gutzwiller
projection to the mean-field ground state. There are two major
differences between S ¼ 1 and S ¼ 1=2 spin systems:
(1) Because of the different internal symmetry group
[Uð1Þ⊗̄Z2], S ¼ 1 spin liquid states are of either the Uð1Þ
or Z2 type. There are no SUð2Þ spin liquid states for integer
spin systems in the fermionic construction. Therefore, we
expect that in general spin liquid states for integer spin
systems, if they exist, are more stable against gauge fluctua-
tions. (2) The difference in parity of the pairing terms leads to
interesting possibilities for obtaining topological spin liquid
states in S ¼ 1 systems that are not easy to realize in S ¼ 1=2
systems (Liu, Zhou, and Ng, 2010b; Bieri et al., 2012). This
difference leads to the existence of a Haldane phase in the
bilinear-biquadratic Heisenberg spin chain in the fermionic
description (Liu et al., 2012).
Finally, we note the existence of a fundamental difference in

the excitation spectrum of an S ¼ 1 spin system compared
with that of an S ¼ 1=2 system, under the assumption that the
ground states are spin singlets. For an integer spin system, we
can form spin-singlet states in a lattice with either an even or
an odd number of lattice sitesN, as long asN > 1, whereas for
a half-odd-integer spin system, spin-singlet states can be
formed only in a lattice with an even number of sites. In
the RVB approach, angular momentum L ¼ 1 excitations of
the system are formed by Gutzwiller projecting the excited
states in BCS theory, i.e., by breaking a pair of spin singlets in
the BCS ground state. The resulting excited state consists of
two excited spinons, which are S ¼ 1=2 objects for spin-1=2
systems but are S ¼ 1 objects for spin-1 systems. In an S ¼ 1

spin liquid, these two S ¼ 1 spinons together form an L ¼ 1

excitation.
There is, however, another method of forming an L ¼ 1

excitation in a spin-1 spin liquid. Beginning from a lattice
system with N sites, we may form an L ¼ 1 excitation by

rearranging the spins such that the system is a product of spin-
singlet ground states for N − 1 of the sites plus a single spin-1
spinon. This excitation is a nonperturbative, topological
excitation that cannot be achieved by simply Gutzwiller
projecting a BCS excited state in the RVB construction. It
was demonstrated by Liu, Zhou, and Ng (2014) that the
construction of these two kinds of excitations gives rise to the
so-called one-magnon and two-magnon excitation spectra
in the Haldane phase of the S ¼ 1 bilinear-biquadratic
Heisenberg model. Similar construction approaches are not
possible for S ¼ 1=2 systems.

C. Matrix product state and projected entangled pair state

In this section, we discuss two approaches to spin liquid
states that have completely different starting points from those
of the RVB, or Gutzwiller-projected mean-field theory,
approach we discussed in Sec. III. We begin with MPSs
and PEPSs, which represent another popular class of varia-
tional wave functions that are currently being applied to spin
systems. Translationally invariant MPSs in spin chains were
first constructed and studied by Fannes, Nachtergaele, and
Werner (1992) as an extension of the AKLT state (Affleck
et al., 1987); in this context, they called them finitely
correlated states. The term MPS was coined by Klümper,
Schadschneider, and Zittartz (1993), who extended the AKLT
state in a different way. Later, Östlund and Rommer (1995)
realized that the state resulting from DMRG (White, 1992) can
be written as an MPS. This approach is very successful for
one-dimensional systems and can be generalized to systems of
two (or more) dimensions.
First, let us consider the quantum wave function of a one-

dimensional spin system that is translationally invariant with a
local Hamiltonian H. The wave function can be generally
expressed as

jΨi ¼
X

s1;s2;…;SN

ϕðs1; s2;…; sNÞjs1; s2;…; sNi; ð92Þ

where js1; s2;…; sNi represents a spin configuration with
spins si on sites i ¼ 1; 2;…; N and ϕðs1; s2;…; sNÞ is the
amplitude of the spin configuration in the quantum state jΨi.
Because of the spin-spin interaction, spin configurations at far
away sites are generally correlated, and we cannot write
ϕðs1; s2;…; sNÞ ¼ ϕ0ðs1Þϕ0ðs2Þ � � �ϕ0ðsNÞ in general. The
MPS approach is a powerful method of constructing wave
functions with nonlocal quantum correlations. The trick is to
extend the direct product wave function ϕðs1; s2;…; sNÞ ¼
ϕ0ðs1Þϕ0ðs2Þ � � �ϕ0ðsNÞ to matrix products.
More explicitly, we associate a matrix As with each spin

state s; then the wave function amplitude ϕðs1; s2;…; sNÞ can
be written as

ϕðs1; s2;…; sNÞ ¼ TrfAs1 ½1�As2 ½2� � � �AsN ½N�g; ð93Þ

where the trace is used to impose the periodic boundary
condition. As an example, we consider an S ¼ 1=2 two-spin
system and choose A↑ ¼ σz and A↓ ¼ σx, where the σ’s are
Pauli matrices. It is easy to see that in this case ϕð↑;↑Þ ¼
ϕð↓;↓Þ ≠ 0 and ϕð↑;↓Þ ¼ ϕð↓;↑Þ ¼ 0. A different choice of
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A↑ ¼ σþ and A↓ ¼ σ− yields ϕð↑;↓Þ ¼ ϕð↓;↑Þ ≠ 0 and
ϕð↑;↑Þ ¼ ϕð↓;↓Þ ¼ 0. The correlation between the different
spin states on the two sites is determined by the matrix As that
is chosen to link the sites. Extending the construction to more
than two sites, one sees that the choice of the matrices Aσ

determines the quantum entanglement structure of the wave
function.
When the MPSs are treated as variational wave functions,

one may determine the number of variational parameters in the
wave functions by means of a simple counting argument. The
number of parameters P appearing in an MPS wave function
in the form of Eq. (93) depends on the size of the matrix A and
the number of available states S per site. In general, P ∼ S ×
M2 for an M ×M matrix as long as P < SN , where N is the
number of sites in the system. Thus, MPS wave functions are
generally variational wave functions with a large number of
built-in variational parameters. As the dimension M → ∞,
MPSs can represent any quantum state of the many-body
Hilbert space with arbitrary accuracy. In practice, the low-
energy states of gapped local Hamiltonians in one dimension
can be efficiently represented by MPSs with a finite value of
M (Verstraete and Cirac, 2006; Hastings, 2007). The DMRG
method (White, 1992) and its generalizations (Schollwöck,
2005) can be viewed as systematic approaches for construct-
ing MPS variational wave functions as the size of the system
gradually increases.
The MPS construction can be extended in several ways.

First, it can be extended to higher dimensions by replacing the
matrices A (¼ rank-2 tensors) with higher-rank tensors T.
These wave functions are presently known as PEPSs
(Verstraete and Cirac, 2004a, 2004b). Second, the local
correlation or entanglement between a pair of sites in a
PEPS can be generalized to a cluster (or simplex), resulting
in states called projected entangled simplex states (PESSs)
(Xie et al., 2014). A representative example of a PESS is the
simplex solid state proposed by Arovas (2008).

1. Valence-bond solids and MPSs in one dimension

The physics of an MPS or PEPS wave function is encoded
in the tensors linking neighboring spin states. In general, these
link tensors can be optimally constructed using the DMRG
approach or tensor-based renormalization methods (Cirac and
Verstraete, 2009). In this section, we discuss a simple example
of tensors that represents a particular class of spin states called
VBS states. To begin, we introduce a well-known example of
a valence-bond solid state—the Affleck-Kennedy-Lieb-Tasaki
state (Affleck et al., 1987).
The AKLT state is an example of a VBS state in which only

one spin-singlet configuration is allowed in the wave function
given in Eq. (23). It is a one-dimensional VBS state con-
structed for a S ¼ 1 spin chain, represented pictorially in
Fig. 9, where each gray bond represents a spin singlet formed
by two S ¼ 1=2 spins, i.e., Eq. (22). Each lattice site
is connected to two other sites by two valence bonds and
is occupied by two S ¼ 1=2 spins. The AKLTwave function is
formed by projecting the spin-1=2 ⊗ 1=2 ¼ 1 ⨁ 0 quartet
states into the spin-S ¼ 1 triplet states. This is represented
graphically in Fig. 9 by the circles, which represent projection
operators tying together two S ¼ 1=2 spins, projecting out the

spin S ¼ 0 or singlet state and preserving only the spin S ¼ 1

or triplet states.
For every adjacent pair of S ¼ 1 spins, two of the four

constituent S ¼ 1=2 spins are projected into a state with a total
spin of zero by the valence bond. Therefore, the pair of S ¼ 1

spins is forbidden from existing in a combined spin S ¼ 2

state. This condition can be realized by considering a
Hamiltonian that is a sum of projectors Pi;iþ1 that projects
the pairs of S ¼ 1 spins from the 1 ⊗ 1 ¼ 2 ⨁ 1 ⨁ 0 space
into the spin S ¼ 2 subspace,

HAKLT ¼
X
i

Pi;iþ1: ð94aÞ

Because the projection operators Pi;iþ1 are positive semi-
definite, the ground state satisfies HAKLTjΨGi ¼ 0 and is
simply the AKLT state. The projection operator Pi;iþ1 can be
written in terms of spin-1 operators as follows (Affleck et al.,
1987):

Pi;iþ1 ¼ 1
3
þ 1

2
ðSi · Siþ1Þ þ 1

6
ðSi · Siþ1Þ2: ð94bÞ

The AKLT state is important because it is an explicit spin
wave function that realizes the Haldane phase for integer spins
(see Sec. II). In particular, it is easy to see from Fig. 9 that an
unpaired S ¼ 1=2 spin will be left at each end of the spin
chain, which is a realization of the end state discussed in
Sec. II for S ¼ 1 Heisenberg spin chains. In the following, we
show how the AKLT state can be written as an MPS state.
The AKLT state can be constructed in two steps. First, we

split each site i in the spin-1 chain into two sites iL and iR,
thereby forming a spin-1=2 chain with 2N sites, as in Fig. 9
(where N is the number of sites in the parent spin-1 chain) and
construct a dimerized chain in which the spins at sites iR and
iþ 1L (i ¼ 1; 2;…; N) are joined by a valence bond [see
Eq. (22)]. The singlet bond between sites iR and iþ 1L can be
written as

ði; iþ 1Þ ¼
X

σiR ;σiþ1L

RσiR ;σiþ1L
jσiRijσiþ1L

i; ð95Þ

where σ ¼ ↑;↓ and the Rσσ0 are the components of a 2 × 2

matrix:

R ¼
 

0 1ffiffi
2

p

− 1ffiffi
2

p 0

!
: ð96Þ

In this representation, the wave function of the dimerized spin-
1=2 chain can be written as

singlet spin S =1 projector

Li Ri Li 1+ Ri 1+

FIG. 9. A valence-bond solid construction of the AKLT state.
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jΨi ¼
X

σ1R ;…;σNL

Rσ1R σ2L
� � �RσN−1R σNL

jσ1R ;…; σNL
i: ð97Þ

Note that this state is a direct product state of S ¼ 1=2 RVB
singlet pairs with the two end spins (σ1L and σNR

) unspecified.
Next we project the two S ¼ 1=2 spins at sites iL and iR to

the spin-1 states j1; mi (m ¼ 0;�1) with

j1; 1i ¼ j↑↑i; j1; 0i ¼ 1ffiffiffi
2

p ðj↑↓i þ j↓↑iÞ;

j1;−1i ¼ j↓↓i: ð98Þ

This projection can be expressed in terms of three matrices
M0;�1, where

j1; mi ¼
X
σ;σ0

Mm
σσ0 jσijσ0i ð99Þ

with

M1 ¼
�
1 0

0 0

�
; ð100aÞ

M−1 ¼
�
0 0

0 1

�
; ð100bÞ

and

M0 ¼
� 0 1ffiffi

2
p

1ffiffi
2

p 0

�
: ð100cÞ

Thus, the AKLT state can be written as

jΨAKLTi ¼
X

s1;s2;…;sN

ϕAKLTðs1;…; sNÞjs1; s2;…; sNi; ð101Þ

where si ¼ 0;�1 and

ϕAKLTðs1;…; sNÞ
¼

X
σ1R ;…;σNL

½Ms1
σ1L σ1R

Rσ1R σ2L
×Ms2

σ2Lσ2R
� � �RσN−1RσNL

�

¼ ½As1As2 � � �AsN �σ1L σNR
: ð102aÞ

Here As ¼ MsR, and σ1L ; σNR
¼ ↑;↓ correspond to four

degenerate ground states on an open chain. Imposing the
periodic boundary condition gives rise to a nondegenerate
ground state with

ϕAKLTðs1;…; sNÞ ¼ Tr½As1As2 � � �AsN �: ð102bÞ

2. PEPSs in higher dimensions and beyond

The AKLT construction can be extended to construct other
types of VBS states and states in higher dimensions.
Straightforward examples include S ¼ 2 VBS states on a
square lattice and S ¼ 3=2 VBS states on a honeycomb lattice

(Affleck, Kennedy et al., 1988). These states can be written as
PEPSs in their respective lattices.
For instance, on a square lattice with a coordination number

of 4, a generic PEPS wave function can be written in terms of
rank 4 tensors as follows:

jΨi ¼
X
½sij�

ϕð½sij�Þj½sij�i; ð103aÞ

where i; j ¼ 1;…; N for an N × N system, ½sij� ¼
ðs11;…; s1N; s21;…; s2N;…; sN1;…; sNNÞ denotes a spin con-
figuration, and

ϕð½sij�Þ ¼ Tr½Ts11 � � �Ts1NTs21 � � �TsNN �; ð103bÞ

where the Ts’s are rank 4 tensors with components T
sij
lrud,

where sij is the physical spin index; l, r, u, and d represent
links connected to the tensors at the left, right, up, and down
neighboring sites ði − 1; jÞ, ðiþ 1; jÞ, ði; j − 1Þ, and
ði; jþ 1Þ, respectively; and “Tr” means tensor contraction.
The above mathematical expression of tensor contraction is
usually represented by diagrams such as those shown in
Fig. 10 for a square lattice, where connected lines represent
the contraction of tensors with the same index and open lines
represent the physical spin states sij ¼ −S;…; S.
As an example, a spin S ¼ 2 AKLT state on a square lattice

can be written in PEPS form as shown in Fig. 11. The tensors
Ts can be obtained using the VBS construction with the
tensors R and Ms, as in one dimension. The tensor R is still
defined by Eq. (96). The tensors Ms, s ¼ 0;�1;�2, project a
state consisting of four S ¼ 1=2 spins in the auxiliary Hilbert
space 1

2
⊗ 1

2
⊗ 1

2
⊗ 1

2
¼ 2 ⨁ 1 ⨁ 0 into the physical S ¼ 2

spin space, whose components are given by

ijs

l TT r

u

d

FIG. 10. Graphical representation of a PEPS in terms of
contracted tensors (tensor network). Each box denotes a tensor
T with components T

sij
lrud at site ij, where l, u, r, and d are tensor

indices related to left, right, up, and down bonds, respectively,
linking to their neighbors; the open lines represent the physical
spin states sij, and the connected lines represent the contraction of
the tensors.
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Ms
σlσrσuσd ¼ hsjσlσrσuσdi; ð104Þ

where σl; σr; σu; σd ¼ ↑;↓. The tensor T is given by

Ts
σlσrσuσd ¼

X
σl0 ;σu0

Ms
σl0 σrσu0 σdRσlσl0Rσuσu0 : ð105Þ

The tensor product state constructed from the above Ts’s give
rise to the S ¼ 2 AKLT state on a square lattice.
The VBS construction can be further extended by “frac-

tionalizing” the spins in more exotic ways (for example, using
the Majorana fermion representation of spins). In this way, we
can write the toric code model (Kitaev, 2003) in the PEPS
form as well as the Kitaev honeycomb model (Kitaev, 2006)
(with a residual fermionic degree of freedom at each site; see
Sec. IV.D). The relation between RVB states and PEPSs has
also been exploited to show that some RVB states can be
written as PEPSs (Verstraete et al., 2006; Schuch et al., 2012;
Poilblanc and Schuch, 2013; Wang et al., 2013). However, the
general relation between RVB states and PEPSs remains
unclear.
The PEPS construction provides a way to describe entan-

glement among local spins based on the construction of local
pairs, and its application to geometrically frustrated lattices is
limited. To overcome this limitation, researchers have
extended the pair construction procedure to consider entan-
glement between more than two sites, say, a cluster or a
simplex, to construct projected states. These projected
entangled simplex states form the basis for more elaborate
numerical approaches (Xie et al., 2014). Combined with
numerical techniques (tensor-based renormalization), these
tensor-network methods now provide an alternative means of
constructing variational wave functions. Interested readers can
refer to Verstraete, Murg, and Cirac (2008), Cirac and
Verstraete (2009), and Orus (2014) for details.

D. Kitaev honeycomb model and related issues

It was previously believed that spin rotational symmetry is
essential for a QSL state that supports fractional spinon
excitations. If the spin rotational symmetry is broken, the
system tends to approach an ordered state. Kitaev (2006)
provided a counterexample to this belief through an unusual,
exactly solvable model in two dimensions with strong spin-
orbit coupling, which destroys the spin rotational symmetry,
but in which deconfined spinons nevertheless exist on top of
the QSL ground states. This famous model is now called the
Kitaev honeycomb model. In this section, we briefly review
the Kitaev honeycomb model to see how exotic ground states
and low-energy excitations emerge from this model with
broken rotational symmetry. The possibility of the realization
of Kitaev-like models in realistic materials is also discussed.
Kitaev considered a spin-1=2model on a honeycomb lattice

with spin-orbit coupling (Kitaev, 2006). He divided all nearest
neighbor bonds in the honeycomb lattice into three types,
called x links, y links, and z links as shown in Fig. 12. The
Hamiltonian is given as follows:

H ¼ −Jx
X
x link

Kij − Jy
X
y link

Kij − Jz
X
z link

Kij; ð106Þ

where Kij is defined as

Kij ¼

8>><
>>:

σxi σ
x
j ; if ði; jÞ is a x link;

σyi σ
y
j ; if ði; jÞ is a y link;

σziσ
z
j; if ði; jÞ is a z link:

ð107Þ

Note the strong anisotropy in the spin-spin couplings Kij.
We first consider the following loop operators Wp defined

for a hexagonal loop:

Wp ≡ σx1σ
y
2σ

z
3σ

x
4σ

y
5σ

z
6 ¼ K12K23K34K45K56K61; ð108Þ

where p is used to label the lattice plaquettes (hexagons), as
shown in Fig. 13. It is easy to verify that ½Wp;Kij� ¼ 0;
therefore, ½H;Wp� ¼ 0. Hence, the Wp’s serve as good
quantum numbers for the Hamiltonian given in Eq. (106),

T
l

r

u

d

R M

FIG. 11. The VBS construction of an S ¼ 2 AKLT state on a
square lattice and the corresponding tensors.

z

yx

z z z

z z z z z
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x y y 

y y y y

y y y y

y y y

z

x

x

x x

x x x x 

FIG. 12. Kitaev honeycomb model. x, y, and z denote three
types of links in the honeycomb lattice.
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and the total Hilbert space for spins can be divided into a direct
product of sectors that are eigenspaces of fWpg. However, the
eigenvalue problem cannot be completely solved by determin-
ing the eigenspaces of fWpg. Each Wp has only two
eigenvalues, wp ¼ �1. Each plaquette contains six sites,
and each site is shared by three plaquettes. Therefore, the
number of plaquettes is given by m ¼ N=2, where N is the
number of sites. It follows that the dimension of each
eigenspace of fWpg is 2N=2m ¼ 2N=2, i.e., splitting the
Hilbert space into eigenspaces of fWpg cannot solve the
eigenvalue problem completely.
Kitaev realized that to solve the model Hamiltonian given in

Eq. (106), spins can be written in terms of four Majorana
fermions, because a Majorana fermion can be viewed as the
real or imaginary part of a complex fermion. To illustrate this
approach, we rewrite the complex fermions f↑ and f↓ in
Eq. (27) in terms of four Majorana fermions c1, c2, c3, and c4:

f↑ ¼ 1
2
ðc1 þ ic2Þ; f†↑ ¼ 1

2
ðc1 − ic2Þ;

f↓ ¼ 1
2
ðc3 þ ic4Þ; f†↓ ¼ 1

2
ðc3 − ic4Þ; ð109aÞ

where the operators cα (α ¼ 1, 2, 3, 4) are Hermitian and
satisfy

cαcβ þ cβcα ¼ 2δαβ: ð109bÞ

Thus, the three spin components read σx ¼ ði=2Þ×
ðc1c4 − c2c3Þ, σy ¼ ði=2Þðc3c1 − c2c4Þ, and σz ¼ ði=2Þ×
ðc1c2 − c3c4Þ. The single-occupancy condition f†↑f↑ þ
f†↓f↓ ¼ 1 (and f†↑f

†
↓ ¼ f↑f↓ ¼ 0) becomes

c1c2 þ c3c4 ¼ c1c3 þ c2c4 ¼ c1c4 þ c3c2 ¼ 0; ð110Þ

which can be simplified to the single equation c1c2c3c4 ¼ 1.
Using these constraints, the spin operators can be written as
σx ¼ ic1c4, σy ¼ −ic2c4, and σz ¼ −ic3c4. Rewriting
bx ¼ c1, by ¼ −c2, bz ¼ −c3, and c ¼ c4, we arrive at the
Kitaev representation

σx ¼ ibxc; σy ¼ ibyc; σz ¼ ibzc; ð111Þ

with the constraint

D≡ bxbybzc ¼ 1: ð112Þ

The Majorana representation without constraints is redundant
and enlarges the physical spin Hilbert space. Note thatD2 ¼ 1

and that D has two eigenvalues, D ¼ �1, thereby splitting
the local Hilbert space into two sectors. The physical spin
Hilbert space corresponds to the sector with all Dj ¼ 1.
Therefore, the physical spin wave function jΨspini can be
obtained from the Majorana fermion wave function jΨMajoranai
through the projection

jΨspini ¼
Y
j

1þDj

2
jΨMajoranai; ð113Þ

which retains the Dj ≡ 1 sector and removes all other sectors
in the enlarged Hilbert space. Note that

1þDj

2
¼ nj↑ þ nj↓ − 2nj↑nj↓

and that Eq. (113) is nothing but the Gutzwiller projection. In
addition, note that Dj serves as a Z2 gauge transformation in
the enlarged Hilbert space (DjbαjDj ¼ −bαj , DjcjDj ¼ −cj)
and commutes with the spin operators (½Dj; σαj � ¼ 0,
α ¼ x, y, z) and thus with the Hamiltonian. As a result, the
Gutzwiller projection is “trivial” in the sense that

Y
j

1þDj

2
jΨMajoranai

is an eigenstate of H in the projected Hilbert space as long as
jΨMajoranai is an eigenstate of H in the “unprojected” Hilbert
space and

Y
j

1þDj

2
jΨMajoranai ≠ 0.

In the Majorana fermion representation, Kij in Eq. (107)
becomes

Kij ¼ −iðibαi bαj Þcicj; ð114Þ

where α ¼ x, y, z depends on the type of link ðijÞ. The
operator ibαi b

α
j is Hermitian, and we denote it by ûij ¼ ibαi b

α
j .

Thus, we write

H ¼ i
4

X
hj;ki

Âjkcjck; ð115aÞ

with

Âjk ¼ 2JαðjkÞûjk; ûjk ¼ ibαj b
α
k; ð115bÞ

where hj; ki denotes nearest neighbor links on the honeycomb
lattice and, by definition, ûjk ¼ −ûkj and Âjk ¼ −Âkj. The
Hamiltonian structure in this Majorana fermion representation
is shown schematically in Fig. 14. Note that ½H; ûjk� ¼ 0 and
½ûjk; ûj0k0 � ¼ 0. The enlarged Hilbert space of Majorana
fermions can be decomposed into common eigenspaces of

z
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fûjkg indexed by the corresponding eigenvalues ujk ¼ �1.
Thus, the Hamiltonian in the invariant subspace indexed by
u ¼ fujkg becomes

Hu ¼
i
4

X
hj;ki

Ajkcjck; Ajk ¼ 2JαðjkÞujk; ð116Þ

where we replaced Âjk and ûjk with their eigenvalues.
Note that ujk → −ujk upon the Z2 gauge transformation
ujk → DjujkDj, and it is more convenient to classify the
eigenstates of H in terms of the gauge-invariant loop operator
Wðj0;…; jnÞ ¼ Kjnjn−1 � � �Kj1j0 , which can be written as

Wðj0;…; jnÞ ¼
�Yn

s¼1

−iûjsjs−1

�
cnc0: ð117Þ

The closed-loop operator Wp [see Eq. (108)] is gauge
invariant under the Z2 transformation because cn ¼ c0, and
the gauge-invariant quantities w ¼ fwpg can be used instead
of u ¼ fujkg to parametrize the eigenstates, i.e.,

Hw ¼ i
4

X
hj;ki

Ajkcjck: ð118Þ

For a given set of Aij fixed by fwpg, the quadratic Hamiltonian
as expressed in Eqs. (116) and (118) can be diagonalized into
the following canonical form:

Hcanonical ¼
i
2

X
m

ϵmc0mc00m ¼
X
m

ϵm

�
f†mfm −

1

2

�
; ð119Þ

where ϵm ≥ 0, c0m and c00m are normal Majorana modes, and
f†m ¼ ð1=2Þðc0m − ic00mÞ and fm ¼ ð1=2Þðc0m þ ic00mÞ are the
corresponding complex fermion operators. The ground state
of the Majorana system has an energy of

E ¼ −
1

2

X
m

ϵm: ð120Þ

We now discuss the system of Majorana fermions on the
honeycomb lattice. First, we note that the global ground-state
energy does not depend on the signs of the exchange constants

Jx, Jy, and Jz. For instance, if Jz is replaced with −Jz, we can
compensate for this sign change by changing the signs of the
variables ujk for all z links using the gauge operator Dj,
leaving the values of Ajk and wp unchanged. Therefore, as far
as solving for the ground-state energy and the excitation
spectrum is concerned, the signs of the exchange constants J
do not matter. However, such a sign change does affect other
measurable physical quantities.
Second, it was proven by Lieb (1994) and numerically

investigated by Kitaev himself that the ground state of the
Majorana system is achieved when the system is in the vortex-
free configuration, namely, wp ¼ 1 for all plaquettes p. In this
vortex-free configuration, one can solve for the (fermionic)
energy spectrum of the Hamiltonian by directly Fourier
transforming Eq. (118) to obtain

ϵq ¼ �jJxeiq·a þ Jyeiq·b þ Jzj; ð121Þ

where a ¼ ð1=2; ffiffiffi
3

p
=2) and b ¼ ð−1=2; ffiffiffi

3
p

=2) are two basis
vectors in the xy coordinates. The fermionic spectrum may or
may not be gapped, depending on whether a solution to the
equation ϵq ¼ 0 exists. ϵq ¼ 0 has a solution if and only if
jJxj, jJyj, and jJzj satisfy the triangle inequalities:

jJxj ≤ jJyj þ jJzj; jJyj ≤ jJzj þ jJxj; jJzj ≤ jJxj þ jJyj:
ð122Þ

As a result, two phases exist in the system of Majorana
fermions on the honeycomb lattice, with the phase diagram
shown in Fig. 15. The first phase, called the A phase, is gapped
and contains three subphases (Ax, Ay, and Az) in the phase
diagram. The second, called the B phase, is gapless. In the A
phase, for example, in the Az subphase, the Hamiltonian
expressed in Eq. (106) can be mapped to the Kitaev toric code
model in the limit jJxj; jJyj ≪ jJzj, and the phase hosts
Abelian anyonic excitations. The B phase acquires an energy
gap in the presence of a magnetic field. Interestingly, it hosts
stable non-Abelian anyons when the energy gap is opened up
by a magnetic field. The B phase is an attractive state in the
context of topological quantum computation. Interested read-
ers can refer to the recent review article by Nayak et al. (2008)
for details.

spins

Majorana fermions

jc

z
jb

kc

z
kb

jku

FIG. 14. Graphic representation of the four-Majorana-fermion
decomposition of the Hamiltonian expressed in Eq. (106).
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FIG. 15. Phase diagram of the Kitaev honeycomb model. The
triangle is the section of the positive octant (Jx; Jy; Jz ≥ 0) that
lies in the plane Jx þ Jy þ Jz ¼ 1. The A phase contains three
gapped subphases. The B phase is gapless.
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In addition to the elegant Majorana decomposition method
pioneered by Kitaev, other insightful approaches to the Kitaev
honeycomb model also exist. For instance, Feng, Zhang, and
Xiang (2007) and Chen and Nussinov (2008) found that the
original Kitaev honeycomb model can be exactly solved with
the help of the Jordan-Wigner transformation. This approach
provides a topological characterization of the quantum phase
transition from the A phase to the B phase. A nonlocal string
order parameter can be defined in one of these two phases
(Feng, Zhang, and Xiang, 2007; Chen and Nussinov, 2008). In
the appropriate dual representations, these string order param-
eters become local order parameters after some singular
transformation, and a description of the phase transition in
terms of Landau’s theory of continuous phase transitions
becomes applicable (Feng, Zhang, and Xiang, 2007). The
Jordan-Wigner transformation also enables a fermionization
of the Kitaev honeycomb model, allowing it to be mapped to a
p-wave-type BCS pairing problem. The spin wave function
can be obtained from the fermion model, and the anyonic
character of the vortex excitations in the gapped phase also has
an explicit fermionic construction (Chen and Nussinov, 2008).
The Kitaev honeycomb model can also be understood

within the framework of fermionic RVB theory. Both confine-
ment-deconfinement transitions from spin liquids to AFM or
stripy AFor FM phases and topological quantum phase
transitions between gapped and gapless spin liquid phases
can be described within the framework of Z2 gauge theory
(Baskaran, Mandal, and Shankar, 2007; Mandal et al., 2011;
Mandal, Shankar, and Baskaran, 2012).
Exact diagonalization has been applied to study the Kitaev

honeycomb model on small lattices (Chen, Wang, and Das
Sarma, 2010). Perturbative expansion methods have been
developed to study the gapped phases of the Kitaev honey-
comb model and its generalization (Dusuel et al., 2008;
Schmidt, Dusuel, and Vidal, 2008; Vidal, Schmidt, and
Dusuel, 2008). Several papers (Lee, Zhang, and Xiang,
2007; Yu, 2008; Yu and Wang, 2008; Kells, Slingerland,
and Vala, 2009) have noted the existence of an analogy
between the Z2 vortices in the Kitaev honeycomb model and
the vortices in pþ ip superconductors.
Enormous efforts have been devoted to searching for

exactly solvable generalizations of the Kitaev honeycomb
model. It has been proposed that the exact solvability will not
be spoiled when the fermion gap is opened for the non-
Abelian phase (Lee, Zhang, and Xiang, 2007; Yu and Wang,
2008). Generalizations to other lattice models and even to
three dimensions have also been developed (Yang, Zhou, and
Sun, 2007; Yao and Kivelson, 2007; Baskaran, Santhosh, and
Shankar, 2009; Nussinov and Ortiz, 2009; Ryu, 2009; Wu,
Arovas, and Hung, 2009; Yao, Zhang, and Kivelson, 2009;
Tikhonov and Feigel’man, 2010; Lai and Motrunich, 2011;
Yao and Lee, 2011). Nontrivial emergent particles, such as
chiral fermions (Yao and Kivelson, 2007), have been con-
structed in these exactly solvable lattice models. These
developments have significantly advanced our understanding
of emergent phenomena based on solvable models in dimen-
sions greater than 1.
The exotic properties of the Kitaev honeycomb model have

motivated researchers to search for realizations of this model
in realistic materials. It has been demonstrated by Jackeli and

Khaliullin (2009) and Chaloupka, Jackeli, and Khaliullin
(2010) that a generalization of the Kitaev honeycomb model
may indeed arise in layered honeycomb lattice materials in the
presence of strong spin-orbit coupling. They showed that in
certain iridate magnetic insulators (A2IrO3, A ¼ Li, Na), the
effective low-energy Hamiltonian for the effective Jeff ¼ 1=2
iridium moments is given by a linear combination of the
AFM Heisenberg model (HH) and the Kitaev honeycomb
model (HK),

H ¼ ð1 − αÞHH þ 2αHK; ð123Þ

where α, expressed in terms of the microscopic parameters,
determines the relative strength of the Heisenberg and Kitaev
interactions. Interestingly, the Kitaev honeycomb model can
also be realized as the exact low-energy effective Hamiltonian
of a spin-1=2 model with spin rotational and time-reversal
symmetries (Wang, 2010a). The Heisenberg-Kitaev model
(123) exhibits a rich phase diagram. Readers who are
interested in these developments can refer to, for example,
Chaloupka, Jackeli, and Khaliullin (2010), Jiang et al. (2011),
Kimchi and You (2011), Reuther, Thomale, and Trebst (2011),
Price and Perkins (2012), Schaffer, Bhattacharjee, and Kim
(2012), Singh et al. (2012), Yu et al. (2013), Kimchi
and Vishwanath (2014), and Lee et al. (2014) for details.
A comprehensive review on this topic was also given by
Nussinov and van den Brink (2013).

V. QSL STATES IN REAL MATERIALS

Experimental studies of interacting spins in geometrically
frustrated lattices aim at identifying nontrivial and exotic
ground states. Among these ground states, spin liquid states
have been sought ever since the proposal of the RVB state
(Anderson, 1973). This issue has been intensively debated in
the context of the spin states behind the high-Tc super-
conductivity of cuprates. However, before this century, there
was no direct observation of spin liquid states. The situation
changed in 2003, when an organic Mott insulator with a
quasitriangular lattice was found to exhibit no magnetic
ordering even at tens of mK, 4 orders of magnitude lower
than the energy scale of the exchange interactions (Shimizu
et al., 2003). The low-temperature state is most likely a form
of the sought-after spin liquids. Since then, what can be called
spin liquids have been successively reported for quasitrian-
gular, kagome, and hyperkagome lattices. In this section, we
review the experimental studies mainly with respect to the
magnetic and thermodynamic properties of the materials for
which sound experimental data have been accumulated in
discussing the presence of spin liquids.

A. Anisotropic triangular-lattice systems: κ-ðETÞ2Cu2ðCNÞ3
and EtMe3Sb½PdðdmitÞ2�2
Both are half-filled band systems with anisotropic triangular

lattices, which are isosceles for κ-ðETÞ2Cu2ðCNÞ3 and three
different laterals for EtMe3Sb½PdðdmitÞ2�2 (Kanoda, 2006;
Kanoda and Kato, 2011; Kato, 2014). At ambient pressure,
they are Mott insulators; however, the spins are not ordered at
low temperatures on the order of tens of mK. A noticeable
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feature of both systems is that they undergo Mott transitions at
moderate pressures 0.4 GPa for κ-ðETÞ2Cu2ðCNÞ3 (Komatsu
et al., 1996; Kurosaki et al., 2005; Furukawa et al., 2015a) and
0.5 GPa for EtMe3Sb½PdðdmitÞ2�2 (Kato et al., 2007). (Note
that these pressure values indicate pressures applied at room
temperature and are reduced by approximately 0.2 GPa at low
temperatures.) The temperature-pressure phase diagram of
κ-ðETÞ2Cu2ðCNÞ3 is depicted in Fig. 16. A spin liquid phase
resides in proximity to the Mott transition; this feature appears
to be a key to the stability of spin liquids and can be closely
linked to the metal-insulator transition (Senthil, 2008; Zhou
and Ng, 2013). According to the numerical studies of the
anisotropic triangular-lattice Hubbard model, the ground states
near to theMott transition are controversial (Morita,Watanabe,
and Imada, 2002; Kyung and Tremblay, 2006; Watanabe et al.,
2008; Tocchio et al., 2013; Laubach et al., 2015), implying that
spin liquid andmagnetic phases are competing very closely and
can be easily imbalanced by a small perturbation.

1. κ-ðETÞ2Cu2ðCNÞ3
κ-ðETÞ2Cu2ðCNÞ3 is a layered compound, where κ-ðETÞ2X

has a variety of anions X and ET is bis(ethylenedithio)
tetrathiafulvalene (Komatsu et al., 1996). κ-ðETÞ2X is com-
posed of the ET layers with 1=2 hole per ET and the layers of
monovalent anions X−, which have no contribution to the
electronic conduction or magnetism. In the ET layer, strong
ET dimers are formed ðETÞ2, each of which accommodates a
hole in an antibonding orbital of the highest occupied
molecular orbital of the ET. As the antibonding band is half
filled and the Coulomb repulsive energy is comparable to the
band width, the family of κ-ðETÞ2X is a good model system to
study Mott physics (Kino and Fukuyama, 1995; Kanoda,
1997a, 1997b; Shimizu et al., 2006; Powell and McKenzie,
2011). The estimates of the transfer integrals between the
adjacent antibonding orbitals on the isosceles triangular
lattices t and t0 are around 50 meV, depending on the method
of calculation, e.g., either the molecular-orbital- (MO-) based

tight-binding calculation (Mori et al., 1984; Komatsu et al.,
1996; Mori, Mori, and Tanaka, 1999) or the first principles
calculation (Kandpal et al., 2009; Nakamura et al., 2009;
Koretsune and Hotta, 2014). Nevertheless, one can see that the
values have clear systematic variation in terms of anion X, as
shown in Fig. 17, where the values of t and t0 are calculated via
the latter method: the t0=t value of κ-ðETÞ2Cu½NðCNÞ2�Cl is
0.75 (the MO-based calculations) and 0.44–0.52 (first prin-
ciples calculations), while that of κ-ðETÞ2Cu2ðCNÞ3 is 1.06
and 0.80–0.99, respectively, suggestive of high geometrical
frustration.
The temperature dependence of the spin susceptibility χ of

κ-ðETÞ2Cu2ðCNÞ3 differs from that of the less frustrated
compound κ-ðETÞ2Cu½NðCNÞ2�Cl, as seen in Fig. 18
(Shimizu et al., 2003). An abrupt upturn at 27 K in the latter
is a manifestation of the antiferromagnetic transition, with a
slight spin canting of approximately 0.3° (Miyagawa et al.,
1995). However, κ-ðETÞ2Cu2ðCNÞ3 has no anomaly in χðTÞ.
Its overall behavior features a broad peak, which is reconci-
led by the triangular-lattice Heisenberg model with an exchange
interaction of J ∼ 250 K. In contrast to κ-ðETÞ2Cu½NðCNÞ2�Cl,
the magnetic susceptibility of κ-ðETÞ2Cu2ðCNÞ3 may be
described by the Heisenberg model because it is situated farther
from the Mott boundary, while κ-ðETÞ2Cu½NðCNÞ2�Cl under-
goes aMott transition at a low pressure (25MPa) as it is about to
enter ametallic state (Lefebvre et al., 2000;Kagawa,Miyagawa,
and Kanoda, 2005). There is no indication of magnetic ordering
in the susceptibility of κ-ðETÞ2Cu2ðCNÞ3, at least down to 2 K,
the lowest temperature measured. Furthermore, no Curie-like
upturn can be identified; the concentration of Cu2þ impurity
spins detected by electron spin resonance is estimated to be less
than 0.01% for κ-ðETÞ2Cu2ðCNÞ3 (Shimizu et al., 2006).
The detailed spin states can be examined by performing

nuclear magnetic resonance (NMR) measurements, which
probe the static and dynamical hyperfine fields at the nuclear
sites. Figure 19 shows the single-crystal 1H NMR spectra for
the two compounds (Shimizu et al., 2003). A clear line splitting

FIG. 16. Temperature-pressure phase diagram of the spin liquid
compound with a quasitriangular lattice κ-ðETÞ2Cu2ðCNÞ3,
which undergoes a Mott transition at moderate pressure. From
Kurosaki et al., 2005.
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FIG. 17. (a) In-plane structure of the ET layer in κ-ðETÞ2X.
It is modeled to (b) an anisotropic triangular lattice. (c) First
principles calculations of transfer integrals in κ-ðETÞ2X for X ¼
Cu½NðCNÞ2�Cl, CuðNCSÞ2, and Cu2ðCNÞ3; squares (Nakamura
et al., 2009), circles (Kandpal et al., 2009), and triangles
(Koretsune and Hotta, 2014).
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in κ-ðETÞ2Cu½NðCNÞ2�Cl at 27 K is evidence for commensu-
rate antiferromagnetic ordering, with the moment estimated to
be 0.45μB per ET dimer in separate 13C NMR studies
(Miyagawa, Kanoda, and Kawamoto, 2004). However, the
spectra for κ-ðETÞ2Cu2ðCNÞ3 show neither a distinct broad-
ening nor splitting down to 32 mK, which is 4 orders of
magnitude lower than the J value of 250 K. This indicates the
absence of long-range magnetic ordering. The absence of
ordering is also corroborated by zero-field μSR experiments
(Pratt et al., 2011). The nuclear spin-lattice relaxation rate
1=T1, which probes the spin dynamics, behaves similarly at the
1H and 13C sites. Figure 20 shows 1=T1 at the 13C sites, which
decreases monotonically with a square-root temperature
dependence down to 10 K and exhibits a diplike anomaly at
approximately 6 K (Shimizu et al., 2006). Below 6 K, 1=T1

levels off down to 1 K or lower, followed by a steep decrease
approximated by T3=2 at even lower temperatures. The two
anomalies at 6 and 1.0 K are obvious. However, they are not so
sharp as to be considered as phase transitions. Because of the
large hyperfine coupling of the 13C sites located in the central
part of ET, an electronic inhomogeneity gradually developing
on cooling is captured by spectral broadening, which is
enhanced at approximately 6 K and saturates below 1 K
(Kawamoto et al., 2006; Shimizu et al., 2006). The detailed
NMR (Shimizu et al., 2006) and μSR (Pratt et al., 2011)
measurements point to the field-induced emergence of stag-
geredlike moments, which is distinct from the conventional
magnetic order. A separate μSR study (Nakajima et al., 2012)
suggests a phase separation. The degree of inhomogeneity in
the 13C relaxation curve, which is characterized by the
deviation of the exponent in the stretched-exponential fitting
of the relaxation curve (see the inset of Fig. 20), increases below

FIG. 18. Magnetic susceptibility of polycrystalline
κ-ðETÞ2Cu2ðCNÞ3 and κ-ðETÞ2Cu½NðCNÞ2�Cl. The core diamag-
netic susceptibility has already been subtracted. The solid and
dotted lines represent the results of the series expansions of the
triangular-lattice Heisenberg models using [6=6] and [7=7] Padé
approximations with J ¼ 250 K. The susceptibility of
κ-ðETÞ2Cu2ðCNÞ3 below 30 K is expanded in the inset. From
Shimizu et al., 2003.

FIG. 19. 1H NMR spectra for single crystals of
κ-ðETÞ2Cu2ðCNÞ3 and κ-ðETÞ2Cu½NðCNÞ2�Cl. From Shimizu
et al., 2003.

FIG. 20. 13Cnuclear spin-lattice relaxation rate for a single crystal
of κ-ðETÞ2Cu2ðCNÞ3. The open triangles and circles represent the
relaxation rates of two separated lines coming from two non-
equivalent carbon sites in an ET. At low temperatures below 5 K,
the two lines merge and are not distinguished. The inset shows the
exponent in the stretched-exponential fitting to the relaxation
curves of the whole spectra, whose relaxation rates are plotted
using closed diamonds. From Shimizu et al., 2006.
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5–6 K (Shimizu et al., 2006). The 1H relaxation curve also
starts to bend at themuch lower temperatures, e.g., below0.4K,
and fits to a roughly equally weighed sum of two exponential
functions, the 1=T1’s of which are proportional to T and T2.
No appreciable field dependence of the 13C relaxation rate is
observed between 2 and 8 T. There is no experimental
indication of a finite excitation gap in any of the magnetic
measurements.
Thermodynamic investigations were conducted bymeans of

the specific heat and thermal conductivity measurements.
Figure 21 shows the specific heat for κ-ðETÞ2Cu2ðCNÞ3 and
several Mott insulators with antiferromagnetic spin ordering
(Yamashita et al., 2008). For all of the antiferromagnetic
materials, the electronic specific heat coefficient γ is vanishing
as expected for insulators. For the κ-ðETÞ2Cu2ðCNÞ3 spin
liquid system, however, the extrapolation of theC=T vs T2 line
to absolute zero yields γ ¼ 12–15 mJ=K2 mol. The linearity
holds down to 0.3 K, below which a nuclear Schottky
contribution overwhelms the electronic contribution to C.
The finite value despite the Mott insulating state is a marked
feature of spin liquids and suggests fermionic excitations in the
spin degrees of freedom. Interestingly, the low-temperature
susceptibility and the γ value give theWilson ratio on the order
of unity. A spinon Fermi sea is an intriguing model for this
phenomenon (Motrunich, 2005). However, neither the Uð1Þ
spin liquid, where C follows T2=3 scaling, nor the Z2 spin
liquid, where C is gapped, reconciles the observed features in
their original forms. Randomness may be an optional param-
eter tomodify the temperature dependence. Another interesting
feature is the field insensitivity up to 8 T, which appears
incompatible with theUð1Þ spin liquid states with Dirac cones.
Thermal transport measurements result in somewhat con-

troversial consequences (Yamashita et al., 2009). The thermal

conductivity divided by the temperature tends to vanish with
decreasing temperature, as shown in Fig. 22. The gap, if one is
present, is estimated to be 0.43 K, which is quite small
compared with the exchange energy of 250 K. The extremely
small gap may indicate a gapped Z2 spin liquid located near a
quantum critical point. The discrepancy between the thermal
transport and NMR and specific heat data remains an open
issue. It may be attributed to the Anderson localization of
spinons.
The 6-K anomaly in the NMR spectrum and relaxation rate

also manifests itself in the specific heat (Yamashita et al.,
2008) and thermal conductivity (Yamashita et al., 2009) as a
hump and a shoulder, respectively, indicating that the anomaly
is thermodynamic, as well as magnetic. However, the thermal
expansion coefficient shows a cusp (Manna et al., 2010) and
the ultrasonic velocity shows a diplike minimum, signifying
lattice softening at approximately 6 K (Poirier et al., 2014). In
view of these results, this anomaly is likely associated with
spin-lattice coupling. Instabilities of the spinon Fermi surfaces
(Lee and Lee, 2005; Galitski and Kim, 2007; Grover et al.,
2010; Zhou and Lee, 2011) are among the possible origins of
the anomaly.
Although the spin liquid is insulating, anomalous charge

dynamics are suggested for the low-energy optical and
dielectric responses. The optical gap for κ-ðETÞ2Cu2ðCNÞ3
is much smaller than that for κ-ðETÞ2Cu½NðCNÞ2�Cl, although
the former system is situated farther from the Mott transition
than the latter (Kézsmárki et al., 2006). It is proposed that
gapless spinons are responsible for low-energy optical absorp-
tion inside the Mott gap (Ng and Lee, 2007). The dielectric
(Abdel-Jawad et al., 2010), microwave (Poirier et al., 2012),
and terahertz (Itoh et al., 2013) responses are enhanced at low
temperatures. The possible charge-imbalance excitations
within the dimer are theoretically proposed (Hotta, 2010;
Naka and Ishihara, 2010; Dayal et al., 2011). Relaxorlike

FIG. 21. Low-temperature specific heat Cp of
κ-ðETÞ2Cu2ðCNÞ3 for several magnetic fields up to 8 T in
Cp=T vs T2 plots. Those of antiferromagnetic insulators
κ-ðETÞ2Cu½NðCNÞ2�Cl, deuterated κ-ðETÞ2Cu½NðCNÞ2�Br, and
β-ðETÞ2ICl2 are also plotted for comparison. From Yamashita et
al., 2008.

FIG. 22. Low-temperature thermal conductivity κ of
κ-ðETÞ2Cu2ðCNÞ3 (samples A and B) in κ=T vs T2 plots. Sample
A was investigated at 10 T applied perpendicular to the basal
plane, as well as at 0 T. From Yamashita et al., 2009.
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dielectric, transport, and optical properties are discussed in
terms of coupling with disordered anion layers (Pinterić et al.,
2014; Dressel et al., 2016).

2. EtMe3Sb½PdðdmitÞ2�2
This compound is a member of the A½PdðdmitÞ2�2 family of

materials, which contains a variety of monovalent cations such
as Aþ ¼ EtxMe4−xZþ (Et ¼ C2H5, Me ¼ CH3, Z ¼ N, P, As,
Sb, and x ¼ 0, 1, 2), where dmit is a 1,3-dithiole-2-thione-4,5-
dithiolate (Kato, 2014) and A½PdðdmitÞ2�2 is a layered system
composed of conducting PdðdmitÞ2 layers and insulating A
layers. In the conducting layers, PdðdmitÞ2 is strongly
dimerized as in κ-ðETÞ2X, whereas the ½PdðdmitÞ2�2 dimer
accepts an electron from cation Aþ instead of the hole in ETþ

2 .
A prominent feature of the A½PdðdmitÞ2�2 family is that the
transfer integrals of the three laterals in the triangular lattice
can be finely tuned via chemical substitution of Aþ ¼
EtxMe4−xZþ (Kato, 2014). Their first principles calculations
are shown in Fig. 23 (Tsumuraya et al., 2013) The spin liquid
material EtMe3Sb½PdðdmitÞ2�2 is in a region where the three
transfer integrals are equalized. As expected, the materials
situated outside of this region have antiferromagnetic ground
states. The alloying of the boundary materials offers the
chance to study possible critical regions between spin liquids
and ordered states (Kato, 2014). There is a charge-ordered
material near the spin liquid, suggesting that the charge cannot
always be assumed to be separate degrees of freedom from the
spin physics.
Next we review the properties of EtMe3Sb½PdðdmitÞ2�2 and

other related materials.
The magnetic susceptibility of EtMe3Sb½PdðdmitÞ2�2 shows

a broad peak at approximately 50 K and points to a finite value
in the low-temperature limit without any anomaly down to
2 K, as shown in Fig. 24 (Kanoda and Kato, 2011; Kato,

2014), which is reminiscent of κ-ðETÞ2Cu2ðCNÞ3. The fitting
of the triangular-lattice Heisenberg model to the data yields an
exchange interaction of 220 to 280 K, which is nearly the
same as for κ-ðETÞ2Cu2ðCNÞ3. Also shown are the suscep-
tibilities of antiferromagnetic and charge-ordered insulators,
which exhibit small kink signaling of magnetic ordering and a
sudden decrease indicative of a spin gapful state, respectively,
despite their similar behaviors at high temperatures (Tamura
and Kato, 2002). This indicates that the diversity in the ground
states is an outcome of low-energy physics, while the same
diversity is not distinguished at high-energy scales.
The 13C NMR captures no signature of magnetic ordering

down to 20 mK, although a slight broadening equivalent to the
broadening for κ-ðETÞ2Cu2ðCNÞ3 is observed at low temper-
atures (Itou et al., 2010). The temperature dependence of the
13C nuclear spin-lattice relaxation rate is shown in Fig. 25
(Itou et al., 2010). It exhibits a nonmonotonic temperature
dependence. At low temperatures below 1 K, it follows a T2

dependence, suggesting no finite gap. However, the power of 2
implies a complicated nodal gap, which is not consistent with
the finite susceptibility value and the thermodynamic mea-
surements described later. Furthermore, 1=T1 forms a shoulder
or a kink at approximately 1 K and becomes moderate in
temperature dependence above 1 K. The kink temperature
increases for higher magnetic fields or frequencies. The
relaxation curve becomes a nonsingle exponential curve below
10K but reverses below 1K, indicating that the inhomogeneity
increases below 10 K (Itou et al., 2010, 2011). The reversal
at 1 K can be an indication of either a recovery in the
homogeneity below 1 K or the microscopic nature of the
inhomogeneity, which is subject to spin-diffusion averaging of

(a)

(b)

FIG. 23. First principles calculations of (a) bandwidth W and
(b) transfer integrals in A½PdðdmitÞ2�2 for various cations A. The
PdðdmitÞ2 layers aremodeled to triangular lattices characterized by
transfer integrals tB, tS, and tr. t3 is the interlayer transfer integral.
AF, QSL, and CO stand for antiferromagnet, quantum spin liquid,
and charge-ordered insulator. From Tsumuraya et al., 2013.

FIG. 24. Magnetic susceptibility of an antiferromagnet
Me4Sb½PdðdmitÞ2�2, a spin liquid EtMe3Sb½PdðdmitÞ2�2, and a
charge-ordered insulator Et2Me2Sb½PdðdmitÞ2�2. The core diamag-
netic susceptibility has already been subtracted. From Kato, 2014.
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the heterogeneous relaxation time that is longer at lower
temperatures. The 1-K relaxation-rate anomaly in
Et2Me2Sb½PdðdmitÞ2�2 may be compared to the broad anomaly
around nearly the same temperature for κ-ðETÞ2Cu2ðCNÞ3.
However, they appear different with respect to field (or
frequency) dependence and spatial scale of inhomogeneity.
The thermodynamic measurements are indicative of fer-

mionic low-energy excitations. Figure 26 shows the temper-
ature dependence of the specific heat (Yamashita et al., 2011).

The linearity of C=T vs T2 in EtMe3Sb½PdðdmitÞ2�2
is extrapolated to a zero kelvin to give a finite value of γ,
whereas other Mott insulators appear to have vanishing γ, as
expected for conventional insulators. There is no field depend-
ence in C=T in EtMe3Sb½PdðdmitÞ2�2 up to 8 T, as in
κ-ðETÞ2Cu2ðCNÞ3. The thermal conductivity results are con-
sistent with the specific heat results, as seen in Fig. 27, where
the low-temperature κ=T value for EtMe3Sb½PdðdmitÞ2�2 is as
high as 0.2 WK−2 m in the zero-kelvin limit, implying the
presence of gapless thermal transporters with fermionic sta-
tistics (Yamashita et al., 2010). The mean free path for thermal
transport is estimated to be of the order of 1 μm. κ is enhanced
by the application of a magnetic field above a threshold value,
suggesting that the gapped excitations coexist with the gapless
excitations (Yamashita et al., 2010).

B. Kagome-lattice system: ZnCu3ðOHÞ6Cl2
The kagome lattice is constructed by using corner-sharing

triangles in contrast to the edge sharing in the triangular
lattices, as shown in Fig. 8. Thus, the spin states in the kagome
lattice have larger degeneracy than those in the triangular
lattices, leading to high potential for hosting a spin liquid.
Actually, the theoretical perspective of seeking a spin liquid is
more promising for the kagome-lattice Heisenberg model than
for the triangular lattice (Sachidev, 1992; Lecheminant et al.,
1997; Mila, 1998; Misguich and Lhuillier, 2004). Among
several candidates for the kagome spin systems, we select a
spin-1=2 system ZnCu3ðOHÞ6Cl2, which is known as her-
bertsmithite, whose magnetism has been extensively inves-
tigated. This is a member of a family of materials with variable
compositions, i.e., ZnxCu4−xðOHÞ6Cl2 (0 < x < 1). As an
end material, Cu4ðOHÞ6Cl2 has a distorted pyrochlore lattice
of S ¼ 1=2 Cu2þ spins, whereas the other end material

FIG. 25. 13C nuclear spin-lattice relaxation rate 1=T1 of
EtMe3Sb½PdðdmitÞ2�2. The inset shows the 1=T1T vs T plots.
The circles indicate the values determined from the stretched-
exponential fitting to the relaxation curves and the squares denote
the values determined from the initial decay slopes of the
relaxation curves. From Itou et al., 2010.

FIG. 26. Low-temperature specific heat Cp of EtMe3Sb ×
½PdðdmitÞ2�2 for several magnetic fields up to 10 T in Cp=T
vs T2 plots. The data of other insulating systems, i.e.,
Et2Me2As½PdðdmitÞ2�2, EtMe3As½PdðdmitÞ2�2, and EtMe3P ×
½PdðdmitÞ2�2, are also plotted for comparison. A large upturn
below 1 K is probably attributable to the rotational tunneling of
Me groups. The low-temperature data are expanded in the inset.
From Yamashita et al., 2011.

FIG. 27. Low-temperature thermal conductivity κ of EtMe3Sb ×
½PdðdmitÞ2�2 (dmit-131) in κ=T vs T2 and κ=T vs T (inset) plots.
The data of other insulators, i.e., Et2Me2Sb½PdðdmitÞ2�2 (dmit-
221, nonmagnetic) and κ-ðETÞ2Cu2ðCNÞ3, are also plotted for
comparison. From Yamashita et al., 2010.

Yi Zhou, Kazushi Kanoda, and Tai-Kai Ng: Quantum spin liquid states

Rev. Mod. Phys., Vol. 89, No. 2, April–June 2017 025003-37



ZnCu3ðOHÞ6Cl2 has a two-dimensional (a − b plane) perfect
kagome lattice of Cu2þ spins separated by different crystallo-
graphic sites occupied by Zn2þ (Shores et al., 2005). The
structural symmetry changes across x ¼ 0.33, above which
Cu2þ partially occupies the Zn sites in addition to the kagome
lattice. There is an argument for the mixture of Zn in the
kagome sites in ZnCu3ðOHÞ6Cl2. Magnetic susceptibility
(Bert et al., 2007) and specific heat (de Vries et al., 2008)
suggest that approximately 6% of the kagome sites are
replaced by nonmagnetic Zn. The same amount of Cu is
assumed to invade the nominal Zn sites. Thus, significant
effort has been made to extract the intrinsic properties of the
kagome lattice from the experimental data.
Experimental evidence for the absence of magnetic order-

ing in ZnCu3ðOHÞ6Cl2 can be obtained from μSR experiments
(Mendels et al., 2007). The relaxation profile shows no
internal field down to 50 mK. The experiments for a wide
range of x found that the absence of an internal field was
persistent in a certain range below x ¼ 1 (see Fig. 28)
(Mendels et al., 2007). The magnetic susceptibility exhibits
a Curie-Weiss behavior at high temperatures above 100 K, as
shown in Fig. 29 (Helton et al., 2007). The Weiss temperature
is ∼300 K, which implies an antiferromagnetic exchange
interaction of J ¼ 17 meV. The dc and ac magnetic suscep-
tibilities indicate no magnetic ordering down to 0.1 and
0.05 K, respectively, which is 4 orders of magnitude lower
than J (Helton et al., 2007). The susceptibility increases
progressively at lower temperatures. Two mechanisms are
possible. First, impurities from Cu/Zn intersite mixing can
give a Curie-like upturn. Second, Dzyaloshinsky-Moriya
interactions may be present between the adjacent sites with
broken inversion symmetry, as in the kagome lattice (Rigol
and Singh, 2007). The high-field magnetization measurements
suggest that the former is mainly responsible for the increasing
susceptibility (Bert et al., 2007).
NMR, which probes magnetism in a site-selective manner,

was informative particularly for this material because the
analysis of spectra allows one to distinguish the intrinsic
magnetism from the extrinsic one. The NMR spectra at 35Cl

and 17O sites are broad (Imai et al., 2008; Olariu et al., 2008),
reflecting the inhomogeneous local fields, supposedly due to
the Zu/Cu mixture. However, the smallest shift value in the
broad 35Cl spectrum follows a Curie-Weiss law down to 25 K,
followed by a decrease at lower temperatures (Imai et al.,
2008). This is considered to indicate intrinsic magnetism for
the kagome lattice (Imai et al., 2008). The 17O probes the
kagome sites more preferentially than the nominal Zn sites
due to larger hyperfine coupling with the kagome sites (Olariu
et al., 2008). The 17O NMR spectra were decomposed into
two components. One is from the 17O sites coordinated by two
Cu2þ ions, while the other is from the 17O sites coordinated by
a Cu2þ and a Zu2þ in the kagome plane. The relative fraction
of the two components was consistent with a 6% Zn
admixture. The NMR shifts of the respective components,
as shown in Fig. 30, are considered to be local susceptibilities

FIG. 28. Temperature variation of the spin-frozen fraction deter-
mined by muon spin rotation experiments for ZnxCu4−xðOHÞ6Cl2.
The inset shows thex dependenceof the spin-frozen fraction at a low
temperature. From Mendels et al., 2007.

FIG. 29. Temperature dependence of the inverse magnetic
susceptibility χ−1 of ZnCu3ðOHÞ6Cl2. The line denotes a Cu-
rie-Weiss fit. Inset: ac susceptibility (at 654 Hz) at low temper-
atures. From Helton et al., 2007.

FIG. 30. 17O NMR shift of two lines (M and D) decomposed
from the observed spectra for a powder of ZnCu3ðOHÞ6Cl2.
The M and D lines are considered to come from the oxygen
sites depicted in the inset. The solid (red) curve represents
the trace of one-half of the value of the M line. The sketch in
the lower left corner illustrates the environment of a Zn
substituted on the Cu kagome plane, and thick lines represent
Cu-Cu dimers. From Olariu et al., 2008.

Yi Zhou, Kazushi Kanoda, and Tai-Kai Ng: Quantum spin liquid states

Rev. Mod. Phys., Vol. 89, No. 2, April–June 2017 025003-38



at Cu sites with and without Zn2þ at the neighboring sites
(Olariu et al., 2008). Both decrease below 50 K and saturate to
finites values, indicating the gapless nature of the spin
excitations. The low-temperature decrease in the shift at the
Cu site with a Zn neighbor is in contrast to the enhancement
commonly observed in the neighborhood of nonmagnetic
impurities (Olariu et al., 2008). This behavior also suggests
that the Curie-like upturn in the bulk susceptibility at low
temperatures is not from the kagome plane. For the NMR
relaxation rate, all of the O, Cl, and Cu nuclear spins exhibit
power laws against temperature down to 0.47 K for O and 2 K
or lower for Cl and Cu, indicating a gapless spin liquid (see
Fig. 31) (Imai et al., 2008; Olariu et al., 2008). Although the
power somewhat depends on the nuclear site, the relaxation
profile is overall nuclear site insensitive, which is filtered by
the nuclear site-specific form factor determined by its location
relative to the kagome lattice, suggesting nondispersive spin
dynamics. Otherwise, the temperature profile of the relaxation
rate would be site dependent (Olariu et al., 2008). This feature
is potentially relevant to the spinon excitation with the
continuum. More recently, NMR experiments performed at
low temperatures have revealed an anomaly in the relaxation
rate at a temperature depending on the applied field, which
may signify field-induced spin freezing (Jeong et al., 2011).
Recently, a 17O NMR experiment performed with a single
crystal found different features from those observed so far in
the powder samples (Fu et al., 2015). According to the
analysis of NMR spectra, there is no significant contamination
of Zn in the Cu sites within the kagome plane, and the Knight
shift shows appreciable temperature and field dependences,
suggesting a spin gap of the order of 10 K, as shown in
Fig. 32, in contradiction with the consequences of the earlier
NMR and neutron experiments.
The low-temperature specific heat was investigated under

external magnetic fields (Helton et al., 2007; de Vries et al.,
2008). As shown in Fig. 33(a) (Helton et al., 2007), there is an
enormous field dependence. The temperature dependence at a
zero field is approximated by a power law Tα with α unity or
smaller [see Fig. 33(b)]. The broad peak present even at a zero
field is shifted to higher temperatures under higher fields.
Assuming that the field-dependent peak is a Schottky

contribution associated with a field-induced gap, the data
for different fields were analyzed in detail to reveal the
intrinsic specific heat of the kagome lattice (de Vries et al.,
2008). The deduced Schottky component is consistent with
Zeeman splitting of the 6% Cu impurities in the Zn sites at
higher fields, and the intrinsic C=T follows a power law Tα

with α ¼ 1.3 as the best estimate, suggesting gapless excita-
tions (Helton et al., 2007; de Vries et al., 2008; Shaginyan,
Msezane, and Popov, 2011).
Neutron-scattering experiments, which are capable of

profiling spin excitations with respect to momentum and
energy transfers, are available for herbertsmithite. One of the
key issues of elementary excitations in spin liquids is the
possible fractionalization of S ¼ 1 spin excitations into S ¼
1=2 spinons, which could manifest themselves as a continuum
in the spin excitation spectrum, i.e., dynamic structure factor
SðQ;ωÞ, where Q and ω are momentum transfer and energy
transfer divided by ℏ, respectively. Such a continuum is
observed in a highly anisotropic triangular-lattice system
Cs2CuCl4 (J0=J ∼ 3 and J0 ∼ 0.34 meV in Fig. 17), although
it undergoes a magnetic transition into a spin-spiral order at

FIG. 31. 17O, 63Cu, and 35Cl nuclear spin-lattice relaxation rates
1=T1 for a powder of ZnCu3ðOHÞ6Cl2. The inset shows 17O 1=T1

vs 1=T plots. From Olariu et al., 2008.

FIG. 32. (a) Temperature dependence of 17O Knight shift and
(b) the field dependence of the spin gap deduced from the Knight
shift for a single-crystal ZnCu3ðOHÞ6Cl2. From Fu et al., 2015.
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0.62 K (Coldea et al., 2001; Coldea, Tennant, and Tylczynski,
2003). Several features signifying the continuum are found
via neutron experiments of herbertsmithite, which were first
performed for polycrystalline or powder samples. The

inelastic scattering experiments exhibit no excitation gap at
least down to 0.1 meV, which corresponds to ∼J=170, and
insensitivity of the scattering strength toQ, indicating gapless
and local natures of spin fluctuations (Helton et al., 2007).
Furthermore, the scattering intensity is only weakly dependent
on ω up to 25 meV and temperature up to 120 K and shifts
toward lower Q as temperature is increased (de Vries et al.,
2009). Some of the results are displayed in Fig. 34. All these
features are suggestive of a continuum in spin excitations and
the persistence of the short-range nature of spin correlations
even at low temperatures. Recent experiments on a large
single crystal have succeeded in capturing the continuum
nature, as seen in the dark (green) area in Fig. 35. The
momentum profile of the excitation intensity (dynamic struc-
ture factor) SðQ;ωÞ is approximately reproduced by the
simulated structure factor of uncorrelated dimer singlets,
which indicates the short-ranged spin correlations at least
down to 1.6 K (Han et al., 2012). The short-range nature that
persists even at low temperatures, as suggested by the powder
experiments as well, is generally in favor of a gapped state,
whereas there is no indication of a spin gap down to 0.25 meV
at any Q values in the excitation spectra (Han et al., 2012). It
is puzzling that the spin dynamic correlation exhibits short-
range RVB nature while the spectrum is gapless. One
possibility is that the herbertsmithite is in a Z2 spin liquid
in close proximity to a critical point to the Uð1Þ Dirac liquid,
as indicated by some recent numerical works (Li, 2016),
although the true ground state of the isotropic Heisenberg
model on a kagome lattice is still under debate (Iqbal,
Poilblanc, and Becca, 2016).

C. Hyperkagome-lattice system: Na4Ir3O8

The hyperkagome lattice is a three-dimensional network of
corner-sharing triangular lattices. In Na4Ir3O8, the Ir4þ ion
with 5d5 electrons likely takes on a low-spin state. These ions
locate on the corners, forming a S ¼ 1=2 hyperkagome lattice
(Okamoto et al., 2007). The resistivity of the ceramic sample
is 10 Ω cm at room temperature. The samples are semi-
conducting, with a charge transport gap of 500 K, implying
the proximity of this system to the Mott transition, which is

FIG. 33. (a) Specific heat C of ZnCu3ðOHÞ6Cl2 in various
applied fields. The inset shows C over a wider temperature range
in applied fields of 0 T (squares) and 14 T (stars). (b) C in a zero
field at low temperatures. The lines represent power-law fits.
From Helton et al., 2007.
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FIG. 34. (a) Instantaneous magnetic correlations at 4 and 10 K
for a time scale corresponding to approximately 6.5 meV. The
solid lines are a guide to the eye. (b) The Q dependence in the
dynamic correlations with the energy integration interval indi-
cated in the legend. The dotted lines in (a) and (b) are the structure
factors for dimerlike AF correlations. The dashed line, a single-
ion contribution corresponding to the 6% antisite spins in this
system, is added. (c) The energy and temperature dependence at
Q ¼ 1.3 Å−1. D7, IN4, and MARI in the legends stand for the
types of spectrometers used. From de Vries et al., 2009.

FIG. 35. Contour plot of dynamical structure factor, Smag
(Q, ω), integrated over 1 ≤ ℏω ≤ 9 meV for a single crystal
ZnCu3ðOHÞ6Cl2 at 1.6 K. The intense scattering is extended in a
green-colored region, without peaking at any specific points.
From Han et al., 2012.
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different from the kagome materials previously reviewed
(Okamoto et al., 2007). A connection between the spin liquid
and the metal-insulator transition, similar to the case of
κ-ðETÞ2Cu2ðCNÞ3, is shown (Podolsky et al., 2009). A
distinct feature of Na4Ir3O8 among spin liquid candidates
is its large spin-orbit coupling, which introduces additional
interest to the physics of spin liquids (Chen and Balents, 2008;
Zhou et al., 2008). Several theoretical studies propose that
Na4Ir3O8 is a 3D QSL with fermionic spinons (Lawler et al.,
2008; Zhou et al., 2008).
Figure 36(a) shows the magnetic susceptibility of Na4Ir3O8,

which weakly increases with decreasing temperature, as char-
acterized by the Curie-Weiss temperature of−650 K (Okamoto
et al., 2007). This implies an antiferromagnetic interaction of
hundreds of kelvin. There is no clear indication of magnetic
ordering at least down to 2 K, whereas a small anomaly
reminiscent of spin glass observed in the magnetization history
against the field-temperature variation is attributed to a small
fraction of the total spins (Okamoto et al., 2007).

The electronic (magnetic) contribution to the specific heat
of Na4Ir3O8, as shown in Fig. 36(b), has a broad peak at 20 K.
However, no anomaly signifying magnetic ordering is appar-
ent (Okamoto et al., 2007). The magnetic entropy estimated
by integrating the C=T in Fig. 36(b) reaches 70%–80% of
R ln 2 (¼ 5.7 J=molK) at 100 K, a much lower temperature
than the Weiss temperature of ∼600 K, which features
frustrated magnetism. The C=T is characterized by a curious
T2 dependence at the lowest temperatures. The γ term, when
present, appears on the order of 1 mJ=K2 mol Ir. Recent
experiments extended down to 500 mK have found that Cm=T
is well approximated by a form of γ þ βT2.4 with γ ¼
2.5 mJ=K2 mol Ir (Singh et al., 2013). As seen in the inset
of Fig. 36(b), the applied field has no influence on the specific
heat, at least up to 12 T.
The temperature dependence of thermal conductivity is

shown in Fig. 37 (Singh et al., 2013). At low temperatures
down to 75 mK, κ=T is linear in T2. The κ=T value
extrapolated to T ¼ 0 is 6.3 × 10−2 mW=K2 m, which is a
vanishingly small value, compared with the value of
EtMe3Sb½PdðdmitÞ2�2, 0.2 W=K2 m in Fig. 27. The suppres-
sion of the κ=T value by the extrinsic grain-boundary effect is
not ruled out (Singh et al., 2013). The feature that γ is
diminished and κ=T is vanishing at low temperatures, while
both are sizable at high temperatures of the order of kelvin,
appears to be in accordance with a theoretical picture of
spinon Fermi surfaces that undergo a pairing instability at low
temperatures (Zhou et al., 2008). In this context, the magnetic
susceptibility, remaining large even at low temperatures, can
be due to the large spin-orbit interactions of Ir (Zhou
et al., 2008).
The substitution of nonmagnetic Ti4þ ions at Ir sites will

give rise to a Curie-like tail in the spin susceptibility curve
(Okamoto et al., 2007), similar to Zn substitution for Cu in
high-Tc cuprates, indicating an RVB spin background. The
scaling analysis of magnetic Gruneisen parameters is sugges-
tive of the proximity of Na4Ir3O8 to a zero-field quantum
critical point (Singh et al., 2013).

(a)

(b)

(c)

FIG. 36. (a) Temperature dependence of the inverse magnetic
susceptibility χ−1 of polycrystalline Na4Ir3O8 under 1 T. The
inset shows magnetic susceptibility χ in various fields up to 5 T;
for clarity, the curves are shifted by 3 × 10−4, 2 × 10−4, and 1 ×
10−4 emu=mol Ir for 0.01, 0.1, and 1 T data, respectively.
(b) Magnetic specific heat Cm divided by temperature T of
polycrystalline Na4Ir3O8. To estimate Cm, data for Na4Sn3O8 is
used as a reference of the lattice contribution. The inset shows
Cm=T vs T in various fields up to 12 T. (c) Magnetic entropy.
From Okamoto et al., 2007.

FIG. 37. Thermal conductivity κ of Na4Ir3O8 in κ=T vs T2 plots
for magnetic fields of 0 and 5 T. The inset shows the low-
temperature part of the data. From Singh et al., 2013.
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Recent μSR (Dally et al., 2014) and NMR experiments
(Shockley et al., 2015) have found some indications that are
not in accordance with these claims. Both probes detected
the emergence of local fields signifying the freezing of
moments at low temperatures, as shown in Fig. 38. The
muons are revealed to sense an inhomogeneous local field of
electronic origin that appears at 6 K, where the irreversibility
in magnetization occurs and levels off to 70 G on average,
which may correspond to 0.5μB on Ir. It is suggested,
however, that the spin correlation is short ranged (of the
order of 1 unit cell) and quasistatic in that the slow dynamics
captured by the relaxation rate persist down to 20 mK. The
quasistatic nature is also seen in the S ¼ 1 triangular-lattice
system NiGa2S4 (Nakatsuji et al., 2005; MacLaughlin et al.,
2008). 17O and 23Na NMR lines show broadening, which is
roughly scaled to the μSR results at low temperatures, as
seen in Fig. 38; the moment is estimated at 0.27μB on Ir. The
NMR line profile also suggests inhomogeneous spin freez-
ing and slow dynamics persisting down to low temperatures
although the temperature dependences of the relaxation rates
on the muon and 23Na differ. Noticeably, the 23Na relaxation
rate exhibits a peak indicative of the critical slowing down at
approximately 7.5 K despite no anomaly in specific heat.
The nature and origin of these anomalous properties are not
clear at present; however, it is likely that disorder plays a
vital role in this system, which can host configurationally
degenerate phases with fluctuating order (Dally et al., 2014).
Considering that muon, 17O, and 23Na captured the behavior
of the majority of spins in the sample, the disorder effect, if
any, is such that it is not restricted to finite areas but
extended over the system, being reminiscent of the quantum
Griffiths effect given the inhomogeneity and slow dynamics.

D. Experimental summary

Because of intensive experimental studies, unconventional
thermodynamic and magnetic properties that evoke spin
liquids have been found in several materials with anisotropic
triangular lattices, kagome lattices, and hyperkagome lattices
as seen. These materials exhibit no indications of conventional
magnetic ordering. Their magnetic and thermodynamic prop-
erties are summarized in Table III. It appears that the gapless
nature is a property that a class of frustrated lattices con-
structed with triangles possesses, although the thermal con-
ductivity of κ-ðETÞ2Cu2ðCNÞ3 suggested a small excitation
gap 3 orders of magnitude smaller than J. Recent NMR work
on herbertsmithite insists on gapped spin excitations, and
anomalous quasistatic spin freezing has recently been revealed
by μSR and NMR studies of the hyperkagome system. This
feature and the successful observation of fractionalized
excitations in a kagome lattice (Han et al., 2012) tempt
one to think about spinons as promising elementary excita-
tions in spin liquids. How to detect the spinon Fermi surfaces,
if they exist, is a focus—smoking-gun experiments are
awaited.
As seen in Table III, several experimental characteristics are

seemingly inconsistent within given materials; understanding
the apparently contradicting data in a consistent way requires
clarification of the nature of the spin states. One of the key
issues may be the randomness present in real materials. In
particular, it has long been recognized that the effect of
inevitable Zn/Cu admixtures in herbertsmithite has to be
separated from the intrinsic magnetism. More recently, the
issue of inhomogeneous quasistatic spin correlation with slow
dynamics in the hyperkagome-lattice system has emerged as a
consequence of disorder. Theoretically, it was proposed that as
randomness is intensified, the 120-degree Néel order in the
triangular-lattice Heisenberg model is changed to a sort of
random singlets but not spin glass state. It is intriguing that
randomness appears to enhance the quantum nature because
the singlet is a purely quantum state (Watanabe et al., 2014;
Shimokawa, Watanabe, and Kawamura, 2015). In the case of
kagome lattices, it was theoretically suggested that disorder
could lead to a valence-bond glass state (Singh, 2010) or a
gapless spin liquid state (Kawamura, Watanabe, and
Shimokawa, 2014; Shimokawa, Watanabe, and Kawamura,
2015). Furthermore, a recent NMR experiment on an organic
Mott insulator, i.e., κ-ðETÞ2Cu½NðCNÞ2�Cl, found that the
antiferromagnetic ordering in the pristine crystal, when
irradiated by x rays, disappears. Spin freezing, spin gap,
and critical slowing down are not observed, but gapless spin
excitations emerge, suggesting a novel role of disorder that
brings forth a QSL from a classical ordered state (Furukawa
et al., 2015b). Whether the randomness is fatal or vital to the
physics of a QSL is a nontrivial issue to be resolved.
The development of new materials, although not addressed

in this review, is under way. Among them is a new type of
hydrogen-bonded κ-H3ðCat-EDT-TTFÞ2 with a triangular
lattice of one-dimensional anisotropy (Isono et al., 2013)
and κ-ðETÞ2Ag2ðCNÞ3, an analog of κ-ðETÞ2Cu2ðCNÞ3
(Saito, 2014). Another compound with a hyperkagome lattice
structure, i.e., PbCuTe2O6, with Curie-Weiss temperature
θ ¼ −22 K is also proposed to be a spin liquid candidate
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FIG. 38. The line width (FWHM) of Gaussian-broadened 17O
and 23Na NMR spectra and the mean value of the distributed local
fields detected based on μSR (Dally et al., 2014). For the NMR
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23Na spectra at 78.937 MHz for 7 T (empty circles) and
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Yi Zhou, Kazushi Kanoda, and Tai-Kai Ng: Quantum spin liquid states

Rev. Mod. Phys., Vol. 89, No. 2, April–June 2017 025003-42



(Koteswararao et al., 2014; Khuntia et al., 2016). The
entanglement of additional degrees of freedom with quantum
spins may be another direction for future studies; e.g.,
Ba3CuSb2O9 is proposed to host a spin-orbital coupled liquid
state (Zhou et al., 2011; Nakatsuji et al., 2012).
It should be emphasized that the identification of QSL

experimentally is an important and challenging task. As a
“featureless” Mott insulator, there exists no simple magnetic
order for identifying QSL states, and so far there exists only
indirect experimental evidence for mobile fermionic spinons
in some candidate compounds as previously discussed.

To remedy this situation, theorists have proposed new
experiments to identify QSLs through identifying nontrivial
properties of spinons and gauge fields. For example, power-
law ac conductivity inside the Mott gap has been noted (Ng
and Lee, 2007). A giant-magnetoresistance-like experiment
was proposed to measure mobile spinons through oscillatory
coupling between two ferromagnets via a QSL spacer
(Norman and Micklitz, 2009). The thermal Hall effect in
insulating quantum magnets was proposed as a probe for the
thermal transport of spinons, where different responses were
used to distinguish between magnon and spinon transports

TABLE III. Spin liquid materials summary.

Material
Triangular,

κ-ðETÞ2Cu2ðCNÞ3
Triangular

M½PdðdmitÞ2�2
Kagome

ZnCu3ðOHÞ6Cl2
Hyperkagome,

Na4Ir3O8

Susceptibility A broad peak at 60 K,
finite at 2 K, J ¼ 250 K
(Shimizu et al., 2003)

A broad peak at 50 K,
finite at 2 K,
J ¼ 220–280 K
(Kato, 2014)

Curie-Weiss at high T
ΘW ¼ −300 K, J ¼ 230 K,
upturn at low T due to
impurity sites
(Bert et al., 2007;
Helton et al., 2007)

Curie-Weiss
ΘW ¼ −650 K
(de Vries et al., 2009;
Han et al., 2012)

Specific heat Gapless, γ¼15mJ=K2mol,
field independent
(Yamashita et al., 2008)

Gapless,
γ ¼ 20 mJ=K2 mol,
field independent
(Yamashita et al., 2011)

Gapless, C ∼ Tα, α ¼ 1.3
at high fields
(de Vries et al., 2008)

Gapless, C ∼ T2

(de Vries et al., 2009),
C ∼ γT þ βT2.4,
γ ¼ 2 mJ=K2 mol
(Han et al., 2012),
field independent
(Okamoto et al., 2007;
Singh et al., 2013)

Thermal
conductivity

Gapped, Δ ¼ 0.46 K
(Yamashita et al., 2009)

Gapless, finite κ=T
(Yamashita et al., 2010)

Vanishingly small κ=T
(Singh et al., 2013)

NMR shift Not precisely resolved
(Shimizu et al., 2006)

Not precisely resolved
(Itou et al., 2010)

High-T, broad peak
at at 50–60 K for 17O
(Olariu et al., 2008;
Fu et al., 2015), at
25–50 K for 35Cl
(Imai et al., 2008),
low-T gapless: finite value
(Olariu et al., 2008)
gapped: Δ ∼ 10 K
(Fu et al., 2015)

17O shift—scales to χbulk
in 100–300 K but
levels off below 80 K
(Shockley et al., 2015),
17O, 23Na inhomogeneous
line broadening at low T
(Shockley et al., 2015)

NMR 1=T1 Inhomogeneous 1=T1,
power law,
1H 1=T1; ∼T= ∼ T2 at
T < 0.3 K
(two components)
(Shimizu et al., 2003),
13C 1=T1; ∼1=T1.5

at T < 0.2 K
(stretched exponential)
(Shimizu et al., 2006)

Inhomogeneous 1=T1,
power law,
13C 1=T2 at < 0.5 K
(stretched exponential)
(Itou et al., 2010)

1=T1 ∼ Tα, α ∼ 0.73
for 17O (Olariu et al.,
2008), α ∼ 0.5 for
63O (Imai et al., 2008),
field-induced spin freezing
(Jeong et al., 2011)

23Na 1=T1, a peak
formation typical
of critical slowing
down at 7.5 K
(Shockley et al.,
2015)

μSR No internal field at 0 T
(Pratt et al., 2011;
Nakajima et al., 2012)

No internal field at 0 T
(Mendels et al., 2007)

Emergence of distributed
local fields below 6 K,
quasistatic short-ranged
spin freezing with
slow dynamics
(Dally et al., 2014)

Neutron Powders ∼gapless
(< 0.1 meV)
(Helton et al., 2007;
de Vries et al., 2009),
single crystal ∼gapless
(< 0.25 meV)
(Han et al., 2012), continuum
in dynamic structure factor
(Helton et al., 2007;
de Vries et al., 2009;
Han et al., 2012)
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(Katsura, Nagaosa, and Lee, 2010). Raman scattering was
proposed as a signature to probe theUð1ÞQSL state (Ko et al.,
2010). It was also proposed that the spinon lifetime and mass
as well as gauge fluctuations can be measured through a sound
attenuation experiment (Zhou and Lee, 2011), and neutron
scattering can be used to detect scalar spin chirality fluctua-
tions in the kagome system (Lee and Nagaosa, 2013). Low-
energy electron spectral functions were evaluated for future
angle-resolved photoemission spectroscopy (ARPES) experi-
ments (Tang, Fisher, and Lee, 2013) and it was proposed that
spin current flow through a metal-QSL-metal junction can be
used to distinguish different QSLs (Chen et al., 2013). More
recently, it was suggested that there exists a long-life surface
plasmon mode propagating along the interface between a
linear medium and a QSL with a spinon Fermi surface at
frequencies above the charge gap, which can be detected by
the widely used Kretschmann-Raether three-layer configura-
tion (Ma and Ng, 2015).
However, there exists important discrepancies between

existing experiments and theories in some of the previously
experiments.
(1) Specific heat: Using the one-loop calculation supple-

mented by the scaling analysis (Lee and Nagaosa, 1992;
Polchinski, 1994), it was found that the strong coupling
between the Uð1Þ gauge field and the spinon Fermi surface
leads to the T2=3 correction to the temperature dependence of
specific heat in Uð1Þ gauge theory. This predicted T2=3

behavior has never been observed in experiments. Instead,
linear, Fermi-liquid-like specific heat is found to exist in a wide
range of temperatures in both organic materials κ-ET and dmit.
Some theories exist that try to explain this missing singular

T2=3 specific heat. For instance, Z4 and Z2 spin liquid states
with a spinon Fermi surface were proposed (Barkeshli, Yao,
and Kivelson, 2013) as well as Z2 spin liquid states with
quadratic touched spinon bands (Mishmash et al., 2013).
However, all these proposals require fine-tuned parameters.
A more natural way of explaining existing experiments is still
missing.
(2) Thermal Hall effect: Katsura, Nagaosa, and Lee (2010)

theoretically investigated the thermal Hall effect induced by an
external magnetic field in a Uð1Þ spin liquid with a spinon
Fermi surface and predicted measurable electronic contribu-
tions. Their predicted sizable thermal Hall effect has never
been observed in an experiment on dmit compounds
(Yamashita et al., 2010). This contradiction between experi-
ment and theory remains unsolved, although an explanation
that depends on fine-tuned parameters was proposed
(Mishmash et al., 2013).
(3) Power-law ac conductivity: A power-law ac conduc-

tivity inside the Mott gap was proposed by Ng and Lee (2007).
Indeed, power-law behavior σðωÞ ∼ ωα has been observed in
both κ-ET (Elsässer et al., 2012) and herbertsmithite (Pilon
et al., 2013). However, the power α observed in both
compounds is smaller than the predicted value, indicating
that there exist more in-gap electronic excitations than those
predicted in the Uð1Þ gauge theory.
Thus, despite all the theoretical efforts, the understanding

and finding of realistic “smoking-gun” evidence for QSLs
remains the greatest challenge in the study of QSLs.

VI. SUMMARY

In this review, we provided a pedagogical introduction to
the subject of QSLs and reviewed the current status of the
field. We first discussed the semiclassical approach to simple
quantum antiferromagnets. We explained how it leads to the
Haldane conjecture in one dimension and why it fails for
frustrated spin models. We then focused on spin-1=2 systems
with spin rotational symmetry and introduced the RVB
concept and the slave-particle plus Gutzwiller-projected wave
function approaches. We explained the technical difficulties
associated with these approaches and why slave-particle
approaches naturally led to gauge theories for spin liquid
states. The natures of SUð2Þ, Uð1Þ, and Z2 spin liquid states
were explained, and the extensions of the approach to systems
with spin-orbit coupling and S > 1=2 systems were intro-
duced. We explained that because of the intrinsic limitations
of the analytical slave-particle approach, many alternative
approaches to spin liquid states were developed, both num-
erically and analytically. These approaches comple-
mented each other and often led to exotic possibilities not
covered by the simple fermionic slave-particle approach. The
experimental side of the story was also introduced with a
review on the properties of several candidate spin liquid
materials, including anisotropic triangular-lattice systems
[κ-ðETÞ2Cu2ðCNÞ3 and EtMe3Sb½PdðdmitÞ2�2], kagome-
lattice systems [ZnCu3ðOHÞ6Cl2], and hyperkagome lattice
systems (Na4Ir3O8). We noted several outstanding difficulties
with attempts to explain experimental results using existing
theories. These difficulties indicated that the field of QSLs is
still wide open and immature and that important physics may
still be missing in our present understanding of QSLs.
While keeping the discussion at an introductory level, we

were not able to cover many important developments in the
study of spin liquid states, and many technical details were
neglected, both theoretically and experimentally. For example,
the important techniques of renormalization groups and
conformal field theory were not addressed. We also did not
discuss in detail the many developments related to MPSs and/
or PEPSs and the corresponding numerical DMRG technique,
the understanding of spin systems with broken rotational
symmetry following the discovery of the Kitaev state, and the
spin liquid physics of S > 1=2 systems. The role of topology
in spin liquid states was not touched upon except as it is
relevant to examples of spin liquid states. These are rapidly
evolving areas in which new discoveries are expected.
In the following, we outline a few other topics that are

neglected but have either played important historical roles in
the development of the field of QSLs or shed light on future
research:
Quantum dimer models: Quantum dimer models (QDMs)

are a class of models defined in the Hilbert space of nearest
neighbor valence-bond (or dimer) coverings over a lattice
instead of the spin Hilbert space (Rokhsar and Kivelson,
1988). QDMs can be obtained in certain large-N limits of
SUðNÞ or SpðNÞ antiferromagnets (Read and Sachdev, 1989)
and provide a simplified description of RVB states. This
simplification allows researchers to proceed further in ana-
lytical treatments because of the close relations that arise with
classical dimer problems, Ising models, and Z2 gauge theory
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(Fisher, 1961; Kasteleyn, 1961, 1963; Moessner, Sondhi, and
Fradkin, 2001; Misguich, Serban, and Pasquier, 2002;
Moessner and Sondhi, 2003). However, by construction,
QMDs focus on the dynamics in the spin-singlet subspace
and ignore spin-triplet excitations. Therefore, they are not
directly relevant to spin systems in which the magnetic
excitations are gapless.
An advantage of QDMs is that some QDMs are exactly

solvable (Misguich, Serban, and Pasquier, 2002; Yao and
Kivelson, 2012). Thus, many issues related to QSLs that are
difficult to address, such as spinon deconfinement, Z2

vortices, and topological order, can be addressed explicitly
in QDMs. Interestingly, some spin-1=2 Hamiltonians give rise
to sRVB ground states defined in the dimer Hilbert space
when the relationship between the spin and dimer configu-
rations is properly chosen (Fujimoto, 2005; Seidel, 2009;
Cano and Fendley, 2010). Readers who are interested in
further details on QDMs can refer to Diep (2004), Chapter. 5.5
and Lacroix, Mendels, and Mila (2011), Chapter 17.
Chiral spin liquids: QSL states that break the parity (P) and

time-reversal (T) symmetries while conserving the spin rota-
tional symmetry were proposed by Kalmeyer and Laughlin
(1987, 1989). These states are called chiral spin liquids.
Kalmeyer and Laughlin suggested that some frustrated

Heisenberg antiferromagnets in 2D can be described by
bosonic fractional quantum Hall wave functions. Soon after-
ward, Wen, Wilczek, and Zee (1989) introduced a generic
method of describing chiral spin liquids. They suggested that
chiral spin states can be characterized in terms of the spin

chiralityE123 ¼ ~S1 · ð~S2 × ~S3Þ, defined for three different spins
~S1, ~S2, and ~S3. The expectation value of the spin chirality in
fermionic RVB theory is given by hE123i ¼ 1

2
Imhχ12χ23χ31i,

where χij are the short-range order parameters defined
in Eq. (39).
Exactly solvable Hamiltonians hosting both gapful chiral

spin liquid states (Laughlin, 1989; Schroeter et al., 2007; Yao
and Kivelson, 2007; Thomale et al., 2009) and gapless chiral
spin liquids (Chua, Yao, and Fiete, 2011) have been found.
There is also numerical evidence for chiral spin liquids on
some 2D frustrated lattices (Sorella et al., 2003; Bauer et al.,
2013; Nielsen, Sierra, and Cirac, 2013; Gong, Zhu, and
Sheng, 2014; He and Chen, 2014; He, Sheng, and Chen,
2014; Gong et al., 2015; Zhu, Gong, and Sheng, 2015). It was
suggested that the statistics of spinons in these chiral spin
liquid states can be non-Abelian; see, e.g., Yao and Kivelson
(2007) and Greiter and Thomale (2009).
Characterizing spin liquid states numerically: Because of

rapid advancements in the power of numerical approaches to
spin models, the characterization of spin liquid states for
specific spin models from numerical data has become a
rapidly evolving field. In addition to the MPS and/or PEPS
approach and the corresponding numerical DMRG technique,
Tang and Sandvik (2013) developed a quantum Monte Carlo
method of characterizing spinon size and confinement length
in quantum spin systems, which allows the spinon confine-
ment-deconfinement issue to be studied numerically. Another
important achievement is the use of entanglement entropy to
characterize QSL states. Interested readers can consult Grover,
Zhang, and Vishwanath (2013) for a brief review.

To conclude, the field of QSLs is still wide open, both
theoretically and experimentally. The major difficulty in
understanding QSLs is that they are intrinsically strongly
correlated systems, for which no perturbative approach is
available. Theorists have been using all of the available tools
as well as inventing new theoretical tools to understand QSLs
with the hope that novel emerging phenomena not covered by
perturbative approaches can be uncovered. Thus far, there
have been a few successes, and new experimental discoveries
and theoretical ideas are rapidly emerging. However, a basic
mathematical framework that can be used to understand QSLs
systematically is still lacking. We expect that more new
physics will be discovered in QSLs, posing a challenge to
both theorists and experimentalists to construct a basic
framework for the understanding of QSLs.
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APPENDIX: PATH INTEGRAL FOR A SINGLE SPIN

We consider the path integral for a single spin S in a
magnetic field B (H ¼ S · B) in the coherent state represen-
tation. Spin coherent states are defined as

Ŝjni ¼ Snjni;

where Ŝ is the spin operator. The path integral can be derived
by using the identity operator

I ¼
�
2Sþ 1

4π

�Z
d3nδðn2 − 1Þjnihnj ¼

Z
Dnjnihnj

ðA1aÞ

and the corresponding inner product
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hn1jn2i ¼ eiSΦðn1;n2;n0Þ
�
1þ n1 · n2

2

�
S
; ðA1bÞ

where n0 is a fixed unit vector and is usually chosen to be
n0 ¼ ẑ, Φðn1;n2;n0Þ is the area of the spherical triangle with
vertices n1, n2, and n0, and SΦ is the Berry’s phase acquired
by a particle traveling through a loop formed by the edges of
the spherical triangle.
The partition function Z ¼ e−βH can be written as a path

integral using the standard procedure:

Z ¼ lim
Nt→∞;δt→0

ðe−δtHÞNt

¼ lim
Nt→∞;δt→0

�
ΠNt

j¼1

Z
Dnj

�
ðΠNt

j¼1hnjje−iδtHjnjþ1iÞ; ðA2Þ

with the periodic boundary condition jnð0Þi ¼ jnðβÞi.
In the limit δt → 0, we may approximate

hnjje−iδtHjnjþ1i
∼ hnjjnjþ1i − δthnjjHjnjþ1i

∼ hnjjnjþ1i
�
1 − δt

hnjjHjnjþ1i
hnjjnjþ1i

�

∼ eiSΦðnj;njþ1;n0Þ
�
1þ nj · njþ1

2

�
S
ð1 − δtSB · ntÞ; ðA3Þ

which is valid to first order in δt. In deriving the last equality
in Eq. (A3), we made use of the result hnjŜ ¼ hnjn.
Furthermore, we note that

�
1þnj ·njþ1

2

�
S
∼eS ln½1þðδt=2ÞnðtÞ·∂tnðtÞ�t¼tj ∼eSδt∂t½nðtÞ�2 ¼eð0Þ

ðA4Þ

to leading order in δt. Therefore,

hnjje−iδtHjnjþ1i ∼ eiSΦðnj;njþ1;n0Þ−δtSB·nt ðA5Þ

and

Z ∼
Z

DnðtÞeiSΩ(nðtÞ)−S
R

β

0
dtB·nðtÞ; ðA6Þ

where

Z
DnðtÞ ¼ lim

Nt→∞;δt→0

�
ΠNt

j¼1

Z
Dnj

�

and

Ω(nðtÞ) ¼
X
j

Φðnj;njþ1;n0Þ

is the total area on the surface of the unit sphere covered by the
(closed) path swept out by the spin nðtÞ from t ¼ 0 to t ¼ β.

The classical action of the system in real time is given by

Scl ¼ SΩ(nðtÞ) − S
Z

T

0

dtB · nðtÞ; ðA7aÞ

and the classical equation of motion δScl=δ0nðtÞ ¼ 0 leads to
the Euler equation of motion

n × ½ðn × ∂tnÞ − B� ¼ 0; ðA7bÞ

where we used the result that a small variation δn leads to a
change in ΩðC½n�Þ that is given by

δΩ(nðtÞ) ¼
Z

β

0

dtδnðtÞ · ½nðtÞ × ∂tnðtÞ�:
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