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Astrophysical black hole candidates are thought to be the Kerr black holes of general relativity, but
there is not yet direct observational evidence that the spacetime geometry around these objects is
described by the Kerr solution. The study of the properties of the electromagnetic radiation emitted by
gas or stars orbiting these objects can potentially test the Kerr black hole hypothesis. This paper
reviews the state of the art of this research field, describing the possible approaches to test the Kerr
metric with current and future observational facilities and discussing current constraints.
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I. INTRODUCTION

A. Motivations

Einstein’s theory of general relativity was proposed in 1915
(Einstein, 1916). The first experimental confirmation was
attained in 1919, from the measurement of light bending in the
vicinity of the surface of the Sun by Eddington (Dyson,
Eddington, and Davidson, 1920). Thanks to this observation,
the theory immediately became very popular. However,
systematic tests of general relativity started much later.
Experiments in the Solar System started in the 1960s. Tests
using the observations of binary pulsars began in the 1970s. In
the past 50 years, a large number of experiments confirmed the
predictions of general relativity in weak gravitational fields
(Will, 2014). The focus of current experiments has now
shifted to testing the theory in other regimes.
Tests of general relativity at large scales are mainly

motivated by cosmological observations. While the dark
matter problem is more likely due to some weakly interacting
massive particles beyond the standard model of particle
physics rather than a breakdown of Newton’s law of gravi-
tation (Bergström, 2000) [see, in particular, the bullet cluster
(Clowe, Gonzalez, and Markevitch, 2004)], the problem of
dark energy is completely open (Frieman, Turner, and Huterer,
2008). At the moment, the accelerating expansion rate of the
Universe may be explained by a small positive ad hoc
cosmological constant. However, it is possible that the actual
explanation is either a breakdown of general relativity at large
scales or the existence of some new field with peculiar
properties. In the past 20 years, testing general relativity at
cosmological scales has been a very active research field
(Daniel et al., 2010).
More recently, there has been increasing interest in testing

general relativity in strong gravitational fields, which is the
regime where the theory is more likely to encounter deviations*bambi@fudan.edu.cn
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from its predictions.1 One of the most fascinating predictions of
general relativity is the existence ofKerr black holes (BHs). The
so-called BH candidates are astrophysical compact objects that
can be naturally interpreted as theKerr BHs of general relativity
or they could be something else in the light of new physics.
A direct observational confirmation of the nature of these

objects could be seen as an important test of general relativity in
the strong gravity regime (Bambi, 2011a, 2013a). Deviations
from the Kerr metric may be expected from classical extensions
of general relativity (Capozziello and de Laurentis, 2011; Berti
et al., 2015) as well as from macroscopic quantum gravity
effects (Dvali and Gomez, 2013a, 2013b; Giddings, 2014).
Indeed, there are some arguments suggesting that the critical
scale at which classical predictionsmay break down is not at the
Planck one, as expected in a collision between two particles, but
at the gravitational radius of the system (Dvali and Gomez,
2013a, 2013b; Giddings, 2014).
There are two possible approaches to test BH candidates:

electromagnetic and gravitational wave observations. The aim
of this paper is to review current attempts with electromag-
netic radiation. Generally speaking, this goal is very chal-
lenging, because it is difficult to have a reliable and
sophisticated astrophysical model to test fundamental physics.
Note that such a research field is young and still a developing
one. While tests of general relativity in the Solar System and
with binary pulsars started about 60 years ago, studies to
directly test the nature of BH candidates are recent and
became a hot topic only in the past 10 years. As a not yet
fully mature research field, in order to make progress it is
common to employ some approaches lacking the necessary
scientific rigor and that are sometimes criticized.
The results of current electromagnetic observations can be

summarized as follows. BH candidates cannot be astrophysi-
cal bodies with a surface made of ordinary matter (Narayan
and McClintock, 2008; Broderick, Loeb, and Narayan, 2009),
nor can they be compact stars made of exotic noninteracting
particles (Bambi and Malafarina, 2013). Even if the con-
straints are currently weak, the quadrupole moment of these
objects seems to be in agreement at the level of 30% with that
which is expected for a Kerr BH (Valtonen et al., 2010). The
thermal spectrum of the accretion disk around the stellar-mass
BH candidates in GRS 1915þ 105 and Cygnus X-1 looks like
that expected for a very fast-rotating Kerr BH, and this can
constrain at least some kinds of deviations from the Kerr
geometry (Bambi, 2014a; Kong, Li, and Bambi, 2014).

Similar constraints can be obtained for supermassive BH
candidates under some reasonable assumptions about the
evolution of the spin parameter (Bambi, 2011b). These results
are reviewed in the next sections. However, there is much
work to do to test the nature of BH candidates, and new and
more powerful observational facilities are necessary if we
want to achieve this goal.
Gravitational wave tests have been reviewed by Yunes and

Siemens (2013). Gravitational wave constraints on alternative
theories of gravity can be obtained from the observed decay of
the orbital period in binary pulsars; see, e.g., Yunes and
Hughes (2010). The best system for gravitational wave tests
may be an extreme mass ratio inspiral, in which a stellar-mass
compact object slowly falls onto a supermassive BH candidate
(Ryan, 1995; Glampedakis and Babak, 2006; Barack and
Cutler, 2007). Accurate measurements of BH quasinormal
modes may also do the job (Berti, Cardoso, and Will, 2006;
Gossan, Veitch, and Sathyaprakash, 2012). The detection of
gravitational waves by LIGO in September 2015 has opened a
new window (Abbott et al., 2016a). Gravitational wave
detectors now promise precision tests of the strong gravity
regime in 5–10 years.
The content of the paper is as follows: an introduction

section devoted to briefly review the motivations to test the
Kerr metric, a discussion of some important properties of the
Kerr metric, and a discussion of basic astronomical observa-
tions of astrophysical BH candidates. In Sec. II, I discuss the
general approach to test the Kerr metric with electromagnetic
radiation, its limitations, and some important phenomena that
may show up in non-Kerr metrics. In Sec. III, I review the
possibility of testing the Kerr metric with x-ray observations.
This is currently the only available electromagnetic approach
to probe the strong gravity field close to these objects.
Section IV is reserved to discuss possible measurements of
SgrA�, the supermassive BH candidate at the center of our
Galaxy, which can be considered as a special case. In Sec. V, I
briefly introduce a few more approaches to test the Kerr
metric. Section VI discusses the differences between tests
with electromagnetic and gravitational wave observations.
Summary and conclusions are reported in Sec. VII.
Throughout the paper, I employ the convention of a metric

with signature ð−þþþÞ and units in which GN ¼ c ¼ 1,
unless stated otherwise. In these units, the size of a stellar-
mass BH is

M ¼ 14.77

�
M

10M⊙

�
km

¼ 49.23

�
M

10M⊙

�
μs: ð1Þ

In the case of supermassive BHs with mass M ¼ 106M⊙
(109M⊙), we have M ≈ 1.5 × 106 km (1.5 × 109 km) and
≈5 s (1.4 hr).

B. Kerr black holes

Technically, a BH in an asymptotically flat spacetime M is
defined as a set of events that do not belong to the causal past
of future null infinity J−ðIþÞ, i.e.,

1There is no single definition of “strong field” in general relativity.
Even binary pulsar tests are sometimes classified as tests in strong
gravitational fields. If we consider the strength of the Newtonian
potential (when the metric is close to Minkowski), binary pulsar
measurements test weak gravitational fields, because M=r ∼ 10−5,
where M is the mass of the system and r is the distance between the
pulsar and the companion. In this context, strong gravitational fields
haveM=r ∼ 0.1–1. A more coordinate-independent measure is given
by some curvature invariant, such as the Kretschmann scalar
RμνρσRμνρσ . However, this introduces a length scale. If we identify

the Planck length LPl ¼ G1=2
N ∼ 10−33 cm as the natural scale in

general relativity, no astronomical observation would probably ever
reach strong fields.
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B ¼ M − J−ðIþÞ ≠ ∅: ð2Þ

The event horizon is the boundary of the BH region; see, e.g.,
Misner, Thorne, and Wheeler (1973) and Wald (1984) or
Poisson (2004) for details. In other words, all future-directed
curves (either timelike or null) starting from the region B fail
to reach null infinity Iþ. A BH is thus an actual one-way
membrane: if something crosses the event horizon it can no
longer send any signal to the exterior region.
While the event horizon is a global property of an entire

spacetime, the apparent horizon is a local property and is
slicing dependent. The apparent horizon can be defined after
introducing the concept of a trapped surface. A trapped
surface is a two-dimensional surface S with the property in
which the expansion of ingoing and outgoing congruences
of null geodesics orthogonal to S is negative everywhere on
S. An apparent horizon is the two-dimensional intersection
of the three-dimensional boundary of the region of the
spacetime that contains a trapped surface with a spacelike
hypersurface. Physically speaking, outward-pointing light
rays behind an apparent horizon actually move inward and
therefore they cannot cross the apparent horizon. Under
certain assumptions, the existence of an apparent horizon
implies that the slice contains an event horizon; the converse
may not be true (Wald and Iyer, 1991). More details can be
found in Misner, Thorne, and Wheeler (1973) and Wald
(1984) or Poisson (2004).
Note that there are scenarios beyond classical general

relativity in which a collapsing object does not generate a
BH with a central spacetime singularity. For an observer in
the asymptotic flat region, the collapse may generate an
apparent horizon for a finite time; the latter may be
interpreted as an event horizon if the observational time
scale is shorter than the lifetime of the apparent horizon
(Frolov and Vilkovisky, 1981; Bambi, Malafarina, and
Modesto, 2014, 2016).
In general relativity, the simplest BH solution is the

Schwarzschild metric that describes an uncharged and
nonrotating BH in vacuum and has only one parameter,
the BH mass M. If the BH additionally has a nonvanishing
electric charge Q, we have the Reissner-Nordström solution.
If the BH has a nonvanishing spin angular momentum J, we
have the Kerr solution. The Kerr-Newman metric describes a
rotating BH with a nonvanishing electric charge.
The fact that BHs are described by a small number of

parameters (M, J, Q) is explained by the so-called “no-hair”
theorems,2 which were pioneered by Carter (1971) and
Robinson (1975) and the final version is still a work in
progress (Chruściel, Costa, and Heusler, 2012). The name no
hair indicates that BHs have no features (hairs), in the sense
that they are completely specified by a small number of
parameters. In the context of tests of general relativity and of

the Kerr metric, the “uniqueness” of the Kerr-Newman
solution is also relevant: under the same assumptions of
the no-hair theorems, there are only Kerr-Newman BHs.
“Hairy” BHs generically arise when gravity couples to non-

Abelian gauge fields (Volkov and Gal’tsov, 1989, 1999) or
when scalar fields nonminimally couple to gravity, e.g., a
dilation field in Einstein-dilaton-Gauss-Bonnet gravity
(Mignemi and Stewart, 1993). An important example of the
violation of the no-hair theorem was presented by Herdeiro
and Radu (2014), in which hairy BHs are possible by
combining rotation with a harmonic time dependence in the
scalar field. Another interesting example is Chern-Simons
dynamical gravity. In this framework, nonrotating BHs are
described by the Schwarzschild solution, but rotating BHs are
different from those of Kerr (Yunes and Pretorius, 2009).
A review on hairy BHs was given by Herdeiro and Radu
(2015). A review on a number of BHs in alternative theories of
gravity was given by Berti et al. (2015).
If BHs were merely theoretical solutions of the Einstein

equations, they would not be so interesting. They become
interesting because we have compelling observational evi-
dence of their existence in the Universe. BHs can be created
by the gravitational collapse of matter. The simplest exam-
ple for which there is an analytic solution is the collapse
of a spherically symmetric cloud of dust, the so-called
Oppenheimer-Snyder model (Oppenheimer and Snyder,
1939). This example shows how the final product of
collapse is a Schwarzschild BH with a central singularity.
Scenarios closer to reality require numerical calculations
(Baiotti et al., 2005; Baiotti and Rezzolla, 2006). For a
general review on gravitational collapse, see, e.g., Joshi and
Malafarina (2011). A BH can be created by the gravitational
collapse of a very heavy star, after the latter has exhausted
all its nuclear fuel and in the case the degenerate neutron
pressure cannot balance the gravitational force. The process
is so common that from stellar population arguments
we expect that today there are about 108–109 BHs in our
Galaxy formed from core collapse (Timmes, Woosley, and
Weaver, 1996).
It is worth stressing that the stationary Kerr solution of

general relativity should well be capable of describing the
spacetime around astrophysical BHs formed from gravita-
tional collapse. In general relativity, initial deviations from
the Kerr metric are quickly radiated away through the
emission of gravitational waves (Price, 1972). For macro-
scopic BHs, the equilibrium electric charge is completely
irrelevant in the spacetime geometry (Bambi, Dolgov, and
Petrov, 2009). The presence of an accretion disk is normally
negligible, because the disk is extended and has a low
density (Barausse, Cardoso, and Pani, 2014). Moreover, the
disk mass is many orders of magnitude smaller than that of
the BH, so its impact on the measurement of the metric
would be extremely small in any case (Bambi, Malafarina,
and Tsukamoto, 2014).

C. Basic properties of the Kerr metric

In Boyer-Lindquist coordinates, the line element of the Kerr
metric reads (Kerr, 1963; Chandrasekhar, 1985)

2Note that there are a number of assumptions concerning these
theorems. Specifically, the spacetime must be stationary, asymptoti-
cally flat, and have four dimensions; the only stress-energy tensor is
due to the electromagnetic field; and the exterior region must be
regular (no naked singularities) (Chruściel, Costa, and Heusler,
2012).
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ds2 ¼ −
�
1 −

2Mr
Σ

�
dt2 −

4Mar sin2 θ
Σ

dtdϕþ Σ
Δ
dr2

þ Σdθ2 þ
�
r2 þ a2 þ 2Ma2r sin2 θ

Σ

�
sin2 θdϕ2; ð3Þ

where a ¼ J=M, Σ ¼ r2 þ a2 cos2 θ, and Δ ¼ r2 − 2Mrþ
a2. The dimensionless spin parameter3 is a� ¼ a=M ¼ J=M2.
In the Kerr metric in Boyer-Lindquist coordinates, the event

horizon is defined by the larger root of grr ¼ 0 (Misner,
Thorne, and Wheeler, 1973; Poisson, 2004). The solution of
grr ¼ 0, which is equivalent to Δ ¼ 0, is

r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
: ð4Þ

rþ is the radius of the event horizon and ranges from 2M,
when a� ¼ 0, to M, when ja�j ¼ 1. r− is the radius of the
inner horizon that turns out to be a Cauchy horizon. Metric
perturbations are unstable for r < r− (Poisson and Israel,
1990; Droz, 1997). This means that the interior solution of the
Kerr metric breaks down for r < r−. Deviations from the Kerr
geometry should thus be expected already at r ≈ r−, which
coincides with rþ in the case of an extremal Kerr BH with
ja�j ¼ 1, and not just at a Planck length distance from the
central singularity. The exterior solution is regular (no
spacetime singularities and closed timelike curves) only for
ja�j ≤ 1. When ja�j > 1, there is no horizon and the spacetime
describes a naked singularity; see Sec. II.C.
The properties of the orbits around a BH are an important

tool to connect possible observational effects with the geom-
etry of the spacetime (Bardeen, Press, and Teukolsky, 1972).
Timelike circular orbits in the equatorial plane play a special
role, because accretion disk models usually assume that the
disk is in the equatorial plane and parallel to the BH spin (see
Sec. III.A for more details).
Circular orbits in the equatorial plane exist only for radii

larger than a critical radius, called the radius of the photon
orbit (Bardeen, Press, and Teukolsky, 1972)

rγ ¼ 2M

�
1þ cos

�
2

3
arccos

�
∓ a

M

���
; ð5Þ

where here and in what follows the upper sign refers to
corotating orbits (orbital angular momentum parallel to the
BH spin), while the lower sign is for counterrotating orbits
(orbital angular momentum antiparallel to the BH spin). No
circular orbits exist for r < rγ. Massive particles can be in the
photon orbit in the limit in which they have infinite energy.
The marginally bound circular orbit separates unbound

circular orbits (r < rmb) from bound circular orbits (r > rmb).
The specific energy of a test particle is E > 1 in unbound

orbits (the particle has the energy to escape to infinity) and
E < 1 in bound orbits. In the Kerr metric in Boyer-Lindquist
coordinates, the radius of the marginally bound circular orbit
is (Bardeen, Press, and Teukolsky, 1972)

rmb ¼ 2M ∓ aþ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MðM ∓ aÞ

p
: ð6Þ

Finally, we address the topic of stable orbits. The critical
radius separating unstable and stable circular orbits is the
radius of the marginally stable circular orbit rms, more often
called the radius of the innermost stable circular orbit (ISCO)
rISCO. In the Kerr metric in Boyer-Lindquist coordinates, we
have (Bardeen, Press, and Teukolsky, 1972)

rISCO ¼ ½3þ Z2 ∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3 − Z1Þð3þ Z1 þ 2Z2Þ

p
�M;

Z1 ¼ 1þ ð1 − a2�Þ1=3½ð1þ a�Þ1=3 þ ð1 − a�Þ1=3�;
Z2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a2� þ Z2

1

q
: ð7Þ

In the Kerr metric, equatorial circular orbits are always
vertically stable, while they are radially unstable for r < rISCO.
Figure 1 shows the radial coordinates of rþ, rγ , rmb, and rISCO

as functions of the BH spin parameter a�. For every radius, the
upper curve refers to the counterrotating orbits, and the lower
curve to the corotating orbits. More details on the properties of
the orbits in the Kerr metric can be found in Bardeen, Press, and
Teukolsky (1972). As briefly reviewed in Sec. II.B, in non-Kerr
backgrounds there may be substantial differences, which may
lead to specific observational signatures.

D. Black hole candidates

Astronomical observations have discovered a number of
“BH candidates” (Narayan, 2005). In this article, I adopt quite
a conservative attitude and use this term to indicate very
compact and massive objects, whose properties match those of
BHs in general relativity. A BH is currently the least exotic
hypothesis for most of these objects. However, many others

 0
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FIG. 1. Radial coordinates of the event horizon rþ, the photon
circular orbit rγ , the marginally bound circular orbit rmb, and the
ISCO rISCO in the Kerr metric as functions of the spin parameter
a�. For every radius, the upper curve refers to the counterrotating
orbits, and the lower curve to the corotating orbits.

3Throughout I use a� to indicate the dimensionless spin parameter
of the spacetime, namely, a� ¼ J=M2. In the Kerr metric and in the
non-Kerr metrics, a=M coincide with J=M2, but this is not univer-
sally true when we consider deviations from the Kerr solution. J=M2

is a physically measurable quantity. In the general case, a=M is a
parameter of a metric to be indirectly inferred and affecting more than
just the asymptotical mass-current dipole moment of the spacetime.
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adopt a less conservative perspective and call them BHs when
there is a dynamical measurement of their mass (without testing
the Kerr-ness of the metric or the possible existence of some
kind of horizon), bestowing the term BH candidate to those
objects for which there is no dynamical measurement of their
mass but share common features observed in sourceswith aBH.
BH candidates are grouped into two classes: stellar-mass and

supermassive BH candidates. There is probably a third class of
objects, intermediate-mass BH candidates (Coleman Miller
and Colbert, 2004), filling the mass gap between the stellar-
mass and the supermassive ones, but the measurement of these
objects is more difficult. They will not be considered in the
following discussion, because they are currently unsuitable
sources to test the Kerr metric with electromagnetic radiation.

1. Stellar-mass black hole candidates

In general relativity, the maximum mass for a compact star
made of neutrons, mesons, or quarks for plausible matter
equations of state is about 3M⊙ (Rhoades and Ruffini, 1974;
Kalogera and Baym, 1996; Lattimer, 2012).4 Within standard
physics, if an object is compact and exceeds 3M⊙ it can be
only a BH and is classified as a BH candidate. In this context,
a reliable mass measurement is thus crucial. BH candidates
with a mass ranging from 3M⊙ to about 100M⊙ can be called
stellar-mass BH candidates.
Almost all the currently known stellar-mass BH candidates

are in x-ray binaries. Their masses range from about 5M⊙ to
about 20M⊙ (Remillard and McClintock, 2006). We can infer
that they are compact from their short time scale variability.
Their mass can instead be measured by studying the orbital
motion of the companion star, typically with optical obser-
vations. These systems can be studied within the framework of
Newtonian mechanics, because the companion star is always
far from the BH candidate.5 The key quantity is the mass
function (Casares and Jonker, 2014)

fðMÞ ¼ K3
cT

2πGN
¼ M3 sin3 i

ðM þMcÞ2
; ð8Þ

where Kc ¼ vc sin i is the maximum line-of-sight Doppler
velocity of the companion star, vc is the velocity of the
companion star, i is the inclination angle of the orbital plane
with respect to the line of sight of the observer, T is the orbital
period, and M and Mc are the mass of the compact object and
the stellar companion, respectively. Here I reintroduced GN
because this formula is usually presented in this form. If we can
get an independent estimate of i and Mc and we can measure
Kc and T, it is possible to determine the mass of the compact
object M. Note that T and Kc, and therefore the measurement
of the mass function, can be obtained from light curves and
spectroscopy. Moreover, from the right-hand side in Eq. (8),
we can see that fðMÞ < M; that is, from the estimate of the

mass function we can directly infer a lower bound on the mass
of the dark object. When the mass M of a compact object
exceeds 3M⊙, the object is classified as a BH candidate.6

Today we have 24 “confirmed” BH candidates in x-ray
binaries, where the term confirmed is used to indicate that there
are dynamicalmeasurements of theirmasses and they exceed the
3M⊙ bound. Actually these masses are typically higher than
5M⊙, and in some cases the same mass function fðMÞ exceeds
5M⊙, which means the mass of the compact object is larger
than 5M⊙ independent of the estimate of the mass of the
companion starMc and the viewing angle of the orbit i [because
M > fðMÞ]. Figure 2 is a schematic diagram of 22 binarieswith
a dynamically confirmed BH candidate. In addition to the 24
confirmed BH candidates, we currently know another ∼40 BH
candidates in x-ray binaries that are without a dynamical
measurement of their masses. They are nevertheless classified
as BH candidates since they have features of BH candidates, but
it is possible that some of them are actually neutron stars.
The presently known stellar-mass BH candidates in binaries

are mainly in our Galaxy, and a minor number are in nearby

FIG. 2. Sketches of 22 binaries with a stellar-mass BH candidate
confirmed by dynamical measurements. For every system, the
BH accretion disk is on the left and the companion star is on the
right. The orientation of the disks indicates the inclination angles
i of the binaries. The distorted shapes of the stellar companions
are due to the gravitational fields of the BH candidates. The size
of the latter should be about 50 km, compared with the distance of
the Sun to Mercury of about 50 million km and the radius of the
Sun of 0.7 million km (top left corner). From Jerome Orosz.

4In alternative theories of gravity, this bound may somewhat
change (Doneva et al., 2013; Astashenok, Capozziello, and Odintsov,
2014).

5Systems in which the companion star is very close to the BH
candidate may not exist, because the strong gravitational field around
the compact object would disrupt an ordinary star.

6Massive stars exceeding the bound 3M⊙ are not compact objects
and they can be identified by optical observations.
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galaxies. Note that we expect a population of about 108–109

stellar-massBHs in ourGalaxy (Timmes,Woosley, andWeaver,
1996). Sowe presumably know only a very small fraction of the
stellar-mass BHs in our Galaxy and this is because the detection
of these objects is possible only under some special conditions
related to the properties of the binary system.A list of confirmed
and unconfirmed stellar-mass BH candidates in binaries with
their properties can be found in Özel et al. (2010).
X-ray binaries can be grouped into two classes: low-mass

x-ray binaries and high-mass x-ray binaries. Low-mass x-ray
binaries are systems in which the stellar companion is not more
than a few solarmasses (≲3M⊙) and themass transfer occurs by
Roche lobe overflow (Savonije, 1978). These systems are
typically “transient” x-ray sources because the mass transfer
is not continuous. For instance, a similar system may be bright
for some months and then be in a quiescent state for decades.
High-mass x-ray binaries are systems in which the stellar
companion is massive (≳10M⊙) and the mass transfer from
the companion star to the BH is due to thewind from the former.
These systems are “persistent” x-ray sources. Among the 24
confirmed BH candidates in x-ray binaries, six are persistent
sources (CygX-1, LMCX-1, LMCX-3,M33X-7, NGC300-1,
and IC 10 X-1) and the other 18 sources are transient.
In addition to BHs in binary systems with ordinary stars, we

expect also the existence of isolated BHs and BHs in binary
systems with neutron stars or other BHs. Attempts to identify
isolated BHs are based on microlensing techniques (Gould,
2000; Agol et al., 2002), but these observations are difficult
and there are currently only some weak candidates. BHs in
binary systems with neutron stars or other BHs can potentially
be discovered with gravitational waves in the next years. The
LIGO and Virgo Collaboration recently announced the detec-
tion of gravitational waves from a binary system in which two
BHs of about 30M⊙ merged into a BH of ∼60M⊙ (Abbott
et al., 2016a). The detection of another binary BH merger was
reported by Abbott et al. (2016b). Gravitational wave detec-
tors now promise to discover tens of stellar-mass BH
candidates in the next few years. For the time being, we do
not know any BH candidate in a binary in which the stellar
companion is a pulsar, but a similar system is not expected to
be too rare and there are efforts to find BH binaries with pulsar
companions with radio observations.

2. Supermassive black hole candidates

Supermassive BH candidates have a mass in the range M ∼
ð105–1010ÞM⊙ (Kormendy and Richstone, 1995). They are
harbored in the center of galaxies, and it is supposed that any
normal galaxy has a supermassive BH at its center, namely, any
galaxy that is not too small.7 Small galaxies usually do not have
a supermassive BH. Once again, these objects are classified as
BH candidates because, from the estimate of their mass and
volume, a BH is the least exotic hypothesis for most of these
objects. In general, their mass can be dynamically measured by
the motion of the orbiting gas. The estimate of the volume
follows from the time scale variability of these sources.

The strongest evidence for the existence of a supermassive
BH comes from the center of our Galaxy. Much work in this
direction was done by Genzel and his group (Genzel et al.,
1996, 1997; Schödel et al., 2002; Gillessen et al., 2009). From
the study of the Newtonian motion of individual stars, we can
infer that the mass of the compact object is about 4 × 106M⊙.
The upper bound on the size of the BH candidate comes from
the minimum distance approached by one of these stars, which
is less than 45 AU and corresponds to 600M for a 4 × 106M⊙
BH (Ghez et al., 2005). With such a large mass in a relatively
small volume, such an object cannot be a cluster of non-
luminous compact bodies such as neutron stars. This is
because the lifetime of the cluster due to evaporation and
physical collisions would be shorter than the age of this
system (Maoz, 1998). The most natural interpretation is that it
is a BH and, according to general relativity, the spacetime
geometry around an astrophysical BH should be well approxi-
mated by the Kerr metric.

3. Black hole horizon

The key feature that makes an object a BH is the existence
of an event horizon. Interestingly, there are some observations
that show that BH candidates have no “normal” surface but
instead have something that may indeed be an event horizon.
In particular:

(1) Most x-ray binaries are transient sources; therefore they
spend a long period in a quiescent state with a very low-
mass accretion rate and luminosity. This is true for x-ray
binaries containing either neutron stars or BH candi-
dates. However, it turns out that BH candidates can be
extremely underluminous in comparison to neutron
stars in the quiescent state. This should indeed be
expected, because the thermal energy locked in the
gas can be completely lost when the gas crosses the
horizon, while in the case of the neutron star the gas hits
the surface of the compact object and can subsequently
release energy (Narayan and McClintock, 2008). More
interestingly, during the quiescent period, neutron star
binaries show a thermal blackbodylike component in
thex-ray band,which is interpreted as the emission from
the neutron star surface. No similar component is found
in binaries with a BH candidate (McClintock, Narayan,
and Rybicki, 2004). The fact that there has been no
detection of any thermal component may be interpreted
as evidence of the absence of a normal surface and
therefore the existence of a horizon.

(2) In the case of SgrA�, the supermassive BH candidate
at the center of the Galaxy, millimeter and infrared
observations strongly constrain any possible thermal
blackbody component emitted from the surface of this
object (Broderick and Narayan, 2007; Broderick,
Loeb, and Narayan, 2009). Again, the nondetection
of a thermal component is consistent with the fact that
the object has no surface but instead possesses an
event horizon.

(3) In the case of a neutron star, the gas of accretion
accumulates on the neutron star surface and eventually
develops a thermonuclear instability. The result is a
thermonuclear explosion called a type I x-ray burst.

7Exceptions might be possible. For example, the galaxy A2261-
BCG has a very large mass but it might not have any supermassive
BH at its center (Postman et al., 2012).
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The phenomenon seems to be well understood and
theoretical models agree well with observations. These
x-ray bursts are observed from sources that are
supposed to be neutron stars, and they have never
been observed from BH candidates (Tournear et al.,
2003). This should indeed be the case if BH candidates
have an event horizon, because no gas can accumulate
on their surface (Narayan and Heyl, 2002; Yuan,
Narayan, and Rees, 2004).

Bearing in mind the definition of a BH (see Sec. I.B), it is
fundamentally impossible to test the existence of an event
horizon. These observations may instead suggest that BH
candidates have an apparent horizon; see also Abramowicz,
Kluźniak, and Lasota (2002) and Bambi (2013b) on this point.
In particular, there are theoretical frameworks in which a BH
never forms; instead, only an apparent horizon can be created
(Bambi, Malafarina, and Modesto, 2014, 2016; Frolov and
Vilkovisky, 1981). Another issue is that the nondetection of a
thermal component does not necessarily indicate the absence of
a surface. There are scenarios, such as those in Dvali and
Gomez (2013a, 2013b), in which a “classical” BH is actually a
Bose-Einstein condensate of gravitons. If this were the case,
one should not expect any blackbodylike component from the
BH surface.

II. TESTING THE KERR METRIC

A. Non-Kerr metrics

Tests of the Schwarzschild metric in the weak field limit are
commonly and conveniently discussed within the parame-
trized post-Newtonian (PPN) formalism; see, e.g., Will
(2014). We write the most general line element for a static
and spherically symmetric spacetime in terms of an expansion
in M=r, namely,

ds2 ¼ −
�
1 −

2M
r

þ β
2M2

r2
þ � � �

�
dt2

þ
�
1þ γ

2M
r

þ � � �
�
ðdx2 þ dy2 þ dz2Þ; ð9Þ

where β and γ are two coefficients that parametrize our
ignorance. In the isotropic coordinates of Eq. (9), the
Schwarzschild solution has β ¼ γ ¼ 1 (Eddington, 1922).8

In Solar System experiments, one assumes that β and γ
are free parameters to be determined by observations.
Current observational data provide the following constraints

(Bertotti, Iess, and Tortora, 2003; Williams, Turyshev, and
Boggs, 2004):

jβ − 1j < 2.3 × 10−4; jγ − 1j < 2.3 × 10−5; ð11Þ

confirming the validity of the Schwarzschild solution in the
weak field limit within the precision of current observations.
For the details on how the constraints in Eq. (11) are obtained,
see Bertotti, Iess, and Tortora (2003) and Williams, Turyshev,
and Boggs (2004).
We can attempt to use the same reasoning to test the Kerr

metric around BH candidates. We first consider a metric
more general than the Kerr solution. Deviations from Kerr
are parametrized by a number of “deformation parameters,”
which are unknown constants to be determined by obser-
vations. If the latter require vanishing deformation param-
eters, the Kerr BH hypothesis is satisfied. If observations
require that at least one deformation parameter is non-
vanishing, BH candidates may not be the Kerr BHs of
general relativity.
In the Kerr case, it is problematic to find a very general

solution counterpart of that in Eq. (9). The point is that we
want to test the strong gravitational field near BH candidates
and therefore we cannot use an expansion in M=r.
Moreover, the metric is now stationary and axisymmetric
rather than static and spherically symmetric. In the ideal
case, we want to have a sufficiently general metric that can
reduce to any non-Kerr BH in any (known and unknown)
alternative theory of gravity for a specific choice of the
values of its deformation parameters. At the moment, such a
suitable metric with a countable number of degrees of
freedom does not exist: nevertheless there are some pro-
posals in the literature.
A popular choice is the Johannsen-Psaltis (JP) metric

(Johannsen and Psaltis, 2011a). It is an ad hoc metric and
is not a solution of a specific alternative theory of gravity. In
Boyer-Lindquist coordinates, the line element reads

ds2 ¼ −
�
1−

2Mr
Σ

�
ð1þ hÞdt2 − 4Marsin2θ

Σ
ð1þ hÞdtdϕ

þ Σð1þ hÞ
Δþ ha2sin2θ

dr2 þ Σdθ2 þ
�
r2 þ a2 þ 2a2Mrsin2θ

Σ

þ a2ðΣþ 2MrÞsin2θ
Σ

h

�
sin2θdϕ2; ð12Þ

where h is

h ¼
Xþ∞

k¼0

�
ϵ2k þ ϵ2kþ1

Mr
Σ

��
M2

Σ

�
k

: ð13Þ

The metric has an infinite set of deformation parameters fϵkg
and it reduces to the Kerr solution when all the deformation
parameters vanish. However, ϵ0 must vanish in order to
recover the correct Newtonian limit, while ϵ1 and ϵ2 are
already strongly constrained by experiments in the Solar
System through Eq. (11) (Cardoso, Pani, and Rico, 2014).

8The PPN approach is traditionally formulated in isotropic
coordinates and the line element of the most general static and
spherically symmetric distribution of matter is given by Eq. (9).
When arranged in the more familiar Schwarzschild coordinates, the
line element becomes

ds2 ¼ −
�
1 −

2M
r

þ ðβ − γÞ 2M
2

r2
þ � � �

�
dt2

þ
�
1þ γ

2M
r

þ � � �
�
dr2 þ r2dθ2 þ r2 sin2 θdϕ2: ð10Þ
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The simplest nontrivial metric is thus that with ϵ3 free and with
all the other deformation parameters set to zero.9

Johannsen and Psaltis (2011a) introduced h as an arbitrary
function of r describing deviations from the Schwarzschild
solution. The rotating JP metric is obtained by applying the
Newman-Janis prescription (Newman et al., 1965; Newman
and Janis, 1965), and h becomes a function of both r and θ. If
we believe that deviations from the Kerr geometry must be
small, which is consistent with the fact that the known non-
Kerr BH solutions in alternative theories of gravity are close to
the Kerr one, h is always a small quantity. In this case, all the
deformation parameters fϵkg are small and it is possible to
consider only the unconstrained leading order term, neglecting
all the others. Alternatively, one may adopt a more phenom-
enological approach, on the basis that whatever is not
forbidden may be allowed, and consider the JP metric with
one or a few deformation parameters, which are not neces-
sarily small, and simply try to constrain that specific choice of
the metric. In the following sections, I adopt this more relaxed
point of view, and the deformation parameters will be allowed
to have any value permitted by observations without the
restrictions of being small quantities.
The weak field tests discussed in Secs. IV.B and V.A can

potentially constrain ϵ3, but can unlikely test higher order
terms. In particular, if we believe in the interpretation of
Valtonen et al. (2010), ϵ3 would already be constrained to a
small value. Strong field tests, particularly in those sources in
which the inner edge of the disk is very close to the compact
object, can instead constrain even high order deformation
parameters, because at the inner edge of the disk M=r can be
close to 1 and there is not much difference between lower and
higher order terms. In the case of strong field tests, with a
phenomenological metric like that in Eq. (12), it is common to
consider just one deformation parameter without the restric-
tion of being small.
An extension of the JP metric is the Cardoso-Pani-Rico

(CPR) parametrization (Cardoso, Pani, and Rico, 2014). The
line element is

ds2 ¼ −
�
1 −

2Mr
Σ

�
ð1þ htÞdt2 − 2asin2θ

×

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ htÞð1þ hrÞ

p
−
�
1 −

2Mr
Σ

�
ð1þ htÞ

�
dtdϕ

þ Σð1þ hrÞ
Δþ hra2sin2θ

dr2 þ Σdθ2 þ sin2θ

�
Σþ a2sin2θ

×

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ htÞð1þ hrÞ

p
−
�
1 −

2Mr
Σ

�
ð1þ htÞ

��
dϕ2;

ð14Þ

where

ht ¼
Xþ∞

k¼0

�
ϵt2k þ ϵt2kþ1

Mr
Σ

��
M2

Σ

�
k

; ð15Þ

hr ¼
Xþ∞

k¼0

�
ϵr2k þ ϵr2kþ1

Mr
Σ

��
M2

Σ

�
k

: ð16Þ

Now there are two infinite sets of deformation parameters
fϵtkg and fϵrkg. The JP metric is recovered when ϵtk ¼ ϵrk for all
k, and the Kerr metric when ϵtk ¼ ϵrk ¼ 0 for all k.
There are also other proposals in the literature. For instance,

the quasi-Kerr metric of Glampedakis and Babak (2006),
which is based on a multipole moment expansion, and the
mass-quadrupole moment of the object is

Q ¼ QKerr − ϵM3; ð17Þ

whereQKerr ¼ −J2=M is the mass quadrupole in the Kerr case
and ϵ is the deformation parameter. Another framework is that
of the bumpy BHs (Vigeland, 2010; Vigeland and Hughes,
2010).
An appealing parametrization, which has not been explored

very far, is represented by the family of regular BH metrics of
Johannsen (2013b, 2014), which is a generalization of the
family of metrics proposed by Vigeland, Yunes, and Stein
(2011). Here “regular” is to indicate that these spacetimes
have no naked singularities or closed timelike curves outside
of the event horizon and the equations of motion are separable
(as in the Kerr metric, but it is not true in general).
Recently, several others proposed new parametrizations to

test the Kerr metric. Rezzolla and Zhidenko (2014) and
Konoplya, Rezzolla, and Zhidenko (2016) suggested a para-
metrization that seems to fairly well reproduce some known
non-Kerr BH solutions in alternative theories of gravity with a
small number of deformation parameters. Lin, Tsukamoto
et al. (2015) introduced a parametrization suitable for the
calculations of the electromagnetic spectrum from thin accre-
tion disks. Ghasemi-Nodehi and Bambi (2016) discussed a
test metric in which the free parameters are all equal to 1 to
recover the Kerr metric and are different from 1 in the case of
deviations from it.
Tests of the Kerr metric may also employ the Manko-

Novikov metric (Manko and Novikov, 1992), which was not
originally proposed to test BH candidates and it is an exact
solution of the vacuum Einstein equations with arbitrary mass-
multipole moments.10 Here the no-hair theorem does not apply
because the exterior spacetime is not regular, namely, there are
closed timelike curves and naked singularities. There are also
some variations, such as the Manko–Mielke–Sanabria-
Gómez solution (Manko, Mielke, and Sanabria-Gómez,
2000), which can be extended to include fast-rotating objects
with J=M2 > 1 (Bambi, 2011e).
In this section we have discussed some model-independent

parametrizations. An alternative strategy is to consider a
9The JP metric is sometimes criticized because of its derivation. It

is obtained by applying the Newman-Janis prescription, although it is
not guaranteed that such an algorithm works outside general relativity
(Hansen and Yunes, 2013). Moreover, the transformation to eliminate
some off-diagonal terms is not correct; see Azreg-Aïnou (2011).

10A particular choice of the mass-multipole of order n fixes the
value of the current-multipole moment of the same order, which is
completely determined by the former for given mass-monopole and
current-dipole moments (Manko and Novikov, 1992).
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specific non-Kerr BH solution from a known alternative
theory of gravity rather than a general ansatz such as those
in Eqs. (12) and (14). Such an approach is clearly much less
general. We simply compare two background metrics: the
Kerr solution against the metric of the alternative theory of
gravity of interest. However, there is another issue. Usually we
know nonrotating solutions in alternative theories of gravity,
and in a small number of cases we know the rotating solution
in the slow-rotation approximation. Rotating non-Kerr BH
solutions in alternative theories of gravity are difficult to find.
The spin plays a crucial role in the properties of the radiation
emitted close to BH candidates and therefore, without the
rotating solution, it is not possible to test the Kerr metric,
because we are not able to distinguish the effects of the spin
from those due to possible deviations from the Kerr geometry.

B. Basic properties of non-Kerr metrics

General statements or properties that hold in the case of the
Kerr metric may not be true in other backgrounds. This may
lead to new phenomena with specific astrophysical implica-
tions and observational signatures.
The uniqueness of the Kerr solution in general relativity is

valid under some specific assumptions and it can be violated
in the presence of exotic fields (Herdeiro and Radu, 2015). An
alternative theory of gravity may potentially have several
kinds of BHs, which may be created by gravitational collapse
from different initial conditions. In a similar context, it is
possible that astrophysical BH candidates are not all of the
same type and therefore the possible confirmation that a
specific object is a Kerr BH does not necessarily imply that all
BH candidates are Kerr BHs.

1. Horizon

An event horizon is a null surface in spacetime. If we
introduce a scalar function f such that at the event horizon
f ¼ 0, the normal to the event horizon is nν ¼ ∂μf and is a
null vector. The condition for the surface f ¼ 0 to be null is
thus (Diener, 2003; Thornburg, 2007)

gμνð∂μfÞð∂νfÞ ¼ 0: ð18Þ
In general, one can find the event horizon by integrating null
geodesics backward in time; see Diener (2003) and Thornburg
(2007) for details. In the case of a stationary and axisymmetric
spacetime, the procedure can significantly simplify. In a
coordinate system adapted to the two Killing isometries
(stationarity and axisymmetry), and such that f is also
compatible with the Killing isometries, Eq. (18) reduces to

grrð∂rfÞ2 þ 2grθð∂rfÞð∂θfÞ þ gθθð∂θfÞ2 ¼ 0 ð19Þ
in spherical-like coordinates ðt; r; θ;ϕÞ. The surface must be
closed and nonsingular (namely, geodesically complete) in
order to be an event horizon and not just a null surface.
If we assume that there is a unique horizon radius for any

angle θ (Strahlkörper assumption), we can write f as
f ¼ r −HðθÞ, where HðθÞ is a function of θ only and the
event horizon is rH ¼ HðθÞ; see Diener (2003) and Thornburg
(2007) for details and the limitations of the Strahlkörper

assumption. The problem is thus reduced to finding the
solution of the differential equation

grr þ 2grθ
�
dH
dθ

�
þ gθθ

�
dH
dθ

�
2

¼ 0: ð20Þ

The event horizon equation grr ¼ 0 valid in the Kerr space-
time in Boyer-Lindquist coordinates holds only when the
surfaces r ¼ const, which must be closed, have a well-defined
causal structure, in the sense that the surfaces r ¼ const are
null, spacelike, or timelike (Johannsen, 2013a). Such a
condition clearly depends on the coordinate system, so the
event horizon equation grr ¼ 0 can be valid only with certain
coordinates.
A Killing horizon is a null hypersurface on which there is a

null Killing vector field. In a stationary and axisymmetric
spacetime and employing a coordinate system adapted to the
two Killing isometries, the Killing horizon is given by the
largest root of

gttgϕϕ − g2tϕ ¼ 0: ð21Þ
In general relativity, the Hawking rigidity theorem shows that
the event and theKilling horizons coincide (Hawking, 1972), so
Eqs. (20) and (21) provide the same result. In alternative theories
of gravity, this is not always guaranteed (Johannsen, 2013a).
In general relativity, the event horizon must have S2 ×R

topology, and even this property is regulated by certain
theorems (Hawking, 1972; Jacobson and Venkataramani,
1995). For instance, toroidal horizons can form, but they
can exist only for a short time, in agreement with these
theorems (Hughes et al., 1994). If we want to test the Kerr
metric and general relativity, we cannot exclude scenarios
with BHs with a topologically nontrivial event horizon
(Bambi and Modesto, 2011; Johannsen, 2013a).

2. Particle orbits

In a generic stationary and axisymmetric spacetime, there
are three constants of motion, namely, the mass m, the energy
E, and the axial component of the angular momentum Lz. The
Kerr solution is a Petrov type D spacetime and therefore there
is a fourth constant Q called the Carter constant (Carter,
1968).11 If the spacetime has a forth constant of motion, it is
always possible to choose a coordinate system in which the
equations of motion are separable. In the Kerr metric, this is
the case for the Boyer-Lindquist coordinates and the calcu-
lations of the photon trajectories from the observer to the
region around the BH can be reduced to the calculations of
some elliptic integrals, which is computationally more effi-
cient. In generic spacetimes with a Carter-like constant, these
calculations are already more complicated and, in the simplest
case, the elliptic integrals of the Kerr metric become hyper-
elliptic integrals (Enolski et al., 2011). If the spacetime has no
Carter-like constant, it is necessary to solve a system of
coupled second order differential equations.

11In the Schwarzschild limit (a� ¼ 0), the Carter constant reduces
toQ ¼ L2 − L2

z , where L is the total angular momentum. In the Kerr
metric, there is not a direct physical interpretation of Q.
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In accretion disk models and astrophysical measurements,
the ISCO radius plays an important role. For instance, in the
Novikov-Thorne model (Novikov and Thorne, 1973), which
is the standard setup for thin accretion disks, the inner edge of
the disk is at the ISCO radius and it is the crucial parameter to
measuring the spin or possible deviations from the Kerr
solution. In the Kerr metric, equatorial circular orbits are
always vertically stable, whereas they are only radially stable
for r > rISCO. In non-Kerr metrics, the picture is more
complicated. The ISCO may be either radially or vertically
marginally stable (Bambi and Barausse, 2011a, 2011b), and it
is also possible to have disconnected stable regions among
which equatorial orbits are unstable (Bambi and Lukes-
Gerakopoulos, 2013). Moreover, in the Kerr metric the usual
picture is that a particle12 of the accretion disk reaches the
ISCO and then quickly plunges onto the BH, without emitting
much radiation after leaving the ISCO. In non-Kerr metrics, it
is possible that the particle plunges to a region inside the
ISCO, but it cannot be immediately swallowed by the BH
(Bambi and Barausse, 2011b). On the contrary, there may be
an accumulation of gas between the ISCO and the compact
object, and the gas has to lose additional energy and angular
momentum before plunging to the central body. There are also
spacetimes in which there is no ISCO, namely, the orbits are
always stable. For instance, this is the case of some metrics
describing the spacetime around certain exotic noninteracting
matter (Kesden, Gair, and Kamionkowski, 2005; Bambi and
Malafarina, 2013; Macedo et al., 2013).
In the Kerr metric, the ISCO radius is located at the

minimum of the energy of equatorial circular orbits.13 At
larger radii, the specific energy monotonically increases to
approach 1 at infinity. From the ISCO radius to smaller radii,
the specific energy monotonically increases to diverge to
infinity at the photon orbit. At the radius of the marginally
bound circular orbit, which is located between the photon
radius and the ISCO radius, the specific energy of a test
particle is E ¼ 1. When the ISCO is marginally vertically
unstable, the energy of equatorial circular orbits may be a
monotonic function without minimum (the energy decreases
as the radial coordinate decreases). In this case, there is no
marginally bound circular orbit. Accretion disk structures
around similar BHs are qualitatively different (Li and
Bambi, 2013a).
Since astrophysical observations are often sensitive to the

position of the ISCO, it is useful to have an idea of the

correlation between the spin and the deformation parameter in
the determination of the ISCO radius. For instance, Johannsen
and Psaltis (2013) showed how iron lines in the JP metric with
different a� and ϵ3 but the same ISCO radius are very similar,
as well as orbital fundamental frequencies in the JP metric are
correlated to the position of the ISCO radius. The left panel of
Fig. 3 shows the contour levels for rISCO ¼ 2M, 3M, 4M, 5M,
and 6M on the plane spin parameter a� and JP deformation
parameter ϵ3. As already mentioned, throughout this article I
do not impose that the deformation parameter must be a small
quantity.
For very large and positive ϵ3, the ISCO is at a larger radius

because of the strong instability along the vertical direction.
The contour levels of the ISCO can give a simple idea of
which spacetimes may look similar in astrophysical observa-
tions. The right panel in Fig. 3 shows the Novikov-Thorne
radiative efficiency ηNT ¼ 1 − EISCO, where EISCO is the
specific energy of a test particle at the ISCO radius. The
contour levels are for ηNT ¼ 0.05, 0.10, 0.15, 0.20, 0.25, and
0.30. ηNT is indeed a more appropriate quantity than the ISCO
radius. First, ηNT is independent of the coordinate system (the
radial coordinate of the ISCO has no physical meaning) and it
can be directly measured. Second, it is indeed a better
estimator to figure out which spacetimes may look similar
in astrophysical observations (see the two panels in Fig. 3 and
compare the shape of their contour levels with, e.g., the shape
of the constraints in Figs. 6 and 7).
Finally, note that non-Kerr metrics often have some

pathological features for some choices of the deformation
parameters. Naked singularities, regions with closed timelike
curves, etc., are possible. Some caution has to be taken.
However, even pathological spacetimes can be used to test the
Kerr metric if we assume that the spacetime solution is valid
only outside of some interior region. For example, the interior
would be different because of matter source terms. In the case
of a compact object made of exotic matter, the vacuum
solution would hold up to the surface of the object, while
at smaller radii the metric would be described by an interior
solution. Pathological features like naked singularities may
also be removed by unknown quantum gravity effects (Gimon
and Hořava, 2009). A study of the pathologies in these
spacetimes was given by Johannsen (2013a).

C. Violation of the Kerr bound ja�j ≤ 1

A fundamental limit for a Kerr BH is the bound ja�j ≤ 1. As
seen from Eq. (4), for ja�j > 1 there is no horizon, and the
Kerr metric describes the spacetime of a naked singularity.
According to the cosmic censorship conjecture, naked singu-
larities cannot be created by gravitational collapse (Penrose,
1969), even if we know some counterexamples in which a
naked singularity exists for an infinitesimal time (Joshi and
Malafarina, 2011). The question is thus if BH candidates may
be objects with ja�j > 1.14

12It is worth pointing out that, in this discussion and in what
follows, “particle” is used to refer to a parcel of gas.

13This can be seen as follows. The specific energy of a test particle
in an equatorial circular orbit is given, for instance, in Eq. (2.12) of
Bardeen, Press, and Teukolsky (1972). Its derivative with respect to
the radial coordinate is

dE
dr

¼ r2 − 6Mrþ 8aM1=2r1=2 − 3a2

2r7=4ðr3=2 − 3Mr1=2 þ 2aM1=2Þ3=2 : ð22Þ

The minimum can be found from dE=dr ¼ 0, which is the same
equation as that for the orbital stability; see, e.g., Bardeen, Press, and
Teukolsky (1972) or Chandrasekhar (1985).

14We remind the reader that here, as well as in the remainder of the
article, a� ¼ J=M2 is the dimensionless spin parameter of the
compact object, not merely a parameter of the metric.
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First, an object with ja�j ∼ 1 is a fast-rotating body only in
the case where it is very compact. For instance, the spin
parameter of Earth is about 103 and there is no violation of any
principle because the vacuum solution holds up to that of the
Earth’s surface. The Earth’s radius is rEarth ≈ 6400 km, which
is much larger than its gravitational radius rg ¼ M ≈ 4.4 mm.
Second, the Kerr metric with ja�j > 1 is not a viable

astrophysical scenario. For instance, Giacomazzo, Rezzolla,
and Stergioulas (2011) found that in general relativity stellar
models with ja�j > 1 do not collapse without losing angular
momentum. If we consider an existing Kerr BH and we try to
overspin it up to ja�j > 1, we fail (Barausse, Cardoso, and
Khanna, 2010). The same negative result is found by con-
sidering the collision of two BHs at the speed of light in full
nonlinear general relativity (Sperhake et al., 2009). None of
these studies prove that it is impossible to create a Kerr
spacetime with ja�j > 1, but at least they suggest that naked
Kerr singularities may not be physical merely because they
may not be created in an astrophysical process. Assuming it is
somehow possible to create a similar object, Pani et al. (2010)
showed that the spacetime would be unstable independently of
the boundary conditions imposed at the excision radius r,
which means that possible unknown quantum gravity correc-
tions at the singularity cannot change these conclusions. Very
compact objects described by the Kerr solution with ja�j > 1
are thus unlikely astrophysical viable BH candidates.
Third, if the measurement of the spin parameter of a BH

candidate gave a value larger than 1 assuming the Kerr metric,
the measurement would be presumably wrong, but it would be
a clear indication of new physics. As previously discussed, the
Kerr metric with ja�j > 1 is not a viable astrophysical
scenario. The metric around the BH candidate should thus
be different from that of the Kerr metric. Since spin mea-
surements strongly depend on the exact background metric,
the measurement would be wrong and it is possible that the
actual value of the spin parameter is instead smaller than 1.
Last, note that ja�j ¼ 1 is a critical value only in the Kerr

metric. In the case of non-Kerr BHs, the critical bound is
typically different, and it may be either larger or smaller than
1, depending on the spacetime geometry. Moreover, there are

examples in which one can create a non-Kerr compact object
with ja�j > 1 (Bambi, 2011c, 2011e) or in which one can
overspin a BH up and “destroy”15 its horizon (Li and
Bambi, 2013b).

D. Important remarks

In order to test the Kerr metric with electromagnetic
radiation, we need to study the properties of the radiation
emitted by the gas in the accretion disk or by stars orbiting the
BH candidate. Assuming we are in a metric theory of gravity
(Will, 2014), namely, that test particles follow the geodesics of
the spacetime, the metric provides all the answers. The
spectrum of the BH candidate depends on the motion of
the gas in the accretion flow or of orbiting stars and by the
propagation of the photons from the point of emission to the
distant observer. We thus note the following:

(1) With this approach, we test the Kerr metric, just like
with the PPN formalism we can test the Schwarzschild
solution. We do not directly test the Einstein equa-
tions. For instance, we cannot distinguish a Kerr BH of
general relativity from a Kerr BH in an alternative
metric theory of gravity, because the motion of
particles and photons is the same. Actually the Kerr
metric is quite a common solution to many gravity
theories (Psaltis et al., 2008). However, the observa-
tion of a non-Kerr BH could rule out the Einstein
equations because, within general relativity, astro-
physical BHs should be well described by the Kerr
solution.

(2) If we want to directly test the Einstein equations, we
should use gravitational (rather than electromagnetic)
waves, because their emission is governed by the
Einstein equations (Barausse and Sotiriou, 2008).
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FIG. 3. Contour levels of the (left panel) ISCO radius rISCO and the (right panel) Novikov-Thorne radiative efficiency ηNT ¼ 1 − EISCO
in the JP metric with nonvanishing deformation parameter ϵ3. The black dotted lines separate spacetimes with a regular event horizon (on
the left of the line) from those with topologically nontrivial event horizons and naked singularities (on the right). See the text for more
details.

15An event horizon and a BH cannot be destroyed by definition.
Here we start from a stationary spacetime describing a BH and we
introduce some small particles to destroy the BH of the stationary
metric. The small particles thus completely change the causal
structure of the spacetime.
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(3) Even if we assume the Kerr metric, analyze the
data, and obtain a very good fit, it is not enough to
claim that the object is a Kerr BH. This is made clearer
in the next sections. There is typically a degeneracy
among the parameters of the model, and, in particular,
between the spin and possible deviations from the Kerr
background. For this reason we adopt a PPN-like
approach.

III. X-RAY OBSERVATIONS

The x-ray radiation in the spectrum of BH candidates is
thought to be generated in the vicinity of these objects. Some
features depend on the strong gravitational field near the BH
candidate and therefore, if properly understood, they may be
used to test the Kerr BH hypothesis.
There is some difference between stellar-mass and super-

massive BH candidates, because of the different masses and
environments. Generally speaking, BH candidates are
observed in different spectral states, which correspond to
different geometries and emission mechanisms of their
accretion flow (Belloni, 2010). In the case of stellar-mass
BH candidates, a source can change its spectral state on a
time scale of weeks or months. For supermassive BH
candidates, the time scales are too long and the source
can be observed only in its current spectral state. Note that
the spectral state classification is still a work in progress;
some spectral states and their physical interpretation are not
yet well understood, and others may use a different nomen-
clature. The key point in any measurement is to have the
correct astrophysical model.
Within the corona-disk model with lamppost geometry, the

setup is shown in Fig. 4 (Matt, Perola, and Piro, 1991;
Martocchia and Matt, 1996). The accretion disk is geomet-
rically thin and optically thick. It radiates like a blackbody
locally and as a multicolor blackbody when integrated
radially. The temperature of the disk depends on the BH

mass and the mass accretion rate [see, e.g., Bambi, Jiang, and
Steiner (2016)], and the disk’s thermal spectrum is in the x-ray
band only for stellar-mass BH candidates. The “corona” is a
hotter, usually optically thin, electron cloud which enshrouds
the central disk and acts as a source of x rays, due to inverse
Compton scattering of the thermal photons from the accretion
disk off the electrons in the corona. The corona is often
approximated as a point source located on the axis of the
accretion disk and just above the BH. This arrangement is
often referred to as a lamppost geometry. The lamppost
geometry requires a plasma of electrons very close to the
BH and such a setup may be realized in the case of the base of
a jet. However, other geometries are possible, and an example
is the family of “sandwich models” (Schnittman and Krolik,
2010). The direct radiation from the hot corona produces a
power-law component in the x-ray spectrum. The corona also
illuminates the disk, producing a reflected component and
some emission lines, the most prominent of which is usually
the iron Kα line.
X-ray techniques to test the Kerr metric are discussed in the

next sections: continuum-fitting (CF) method (Sec. III.A),
the iron Kα line with time-integrated (Sec. III.B) and time-
resolved data (Sec. III.C), quasiperiodic oscillations
(QPOs, Sec. III.D), and polarization measurements
(Sec. III.E).
Currently, the two leading techniques to probe the space-

time geometry around BH candidates with x-ray measure-
ments are the study of the thermal spectrum of thin disks
(continuum-fitting method) (Zhang, Cui, and Chen, 1997; Li
et al., 2005; McClintock, Narayan, and Steiner, 2014) and the
analysis of the iron Kα line (Fabian et al., 1989; Brenneman
and Reynolds, 2006; Reynolds, 2014). Both techniques have
been developed to measure the spin parameter of BH
candidates under the assumption of the Kerr background,
but they can be naturally extended to test the Kerr metric.
Current spin measurements of stellar-mass BH candidates
reported in the literature under the assumption of the Kerr
background are summarized in Table I. Iron line spin
measurements of supermassive BH candidates under the
assumption of the Kerr background are reported in Table II.
QPOs are seen as peaks in the x-ray power density spectra

of BH candidates and they may be used to measure the
properties of the metric around these objects. For the time
being, we do not know the exact mechanism responsible for
these oscillations, and therefore QPOs cannot yet be used to
test fundamental physics. Different models provide different
results. However, QPOs are a promising tool for the future,
because the value of their central frequency can be measured
with high precision.
The observation of the x-ray polarization of the thermal

spectrum of thin accretion disks is another potential technique
to test the Kerr metric. There are currently no space missions
with polarization detectors, but there are a few proposals that
may be operative within 10 years: the Chinese-European
mission eXTP (Zhang et al., 2016), the European project
XIPE (Soffitta et al., 2013), and the two NASAmissions IXPE
(Weisskopf et al., 2008) and PRAXYS.16

FIG. 4. Corona-disk model with lamppost geometry. The BH is
surrounded by a geometrically thin and optically thick accretion
disk. The accretion disk radiates like a blackbody locally and as a
multicolor blackbody when integrated radially. The hot electron
cloud called a corona acts as an x-ray source and is located just
above the BH. The power-law component represents the direct
radiation from the hot corona. The latter also illuminates the disk,
producing a reflection component and some emission lines, the
most prominent of which is usually the iron Kα line. From
Jiachen Jiang. 16http://asd.gsfc.nasa.gov/praxys/.
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A. Continuum-fitting method

The continuum-fitting method consists of the analysis of the
thermal spectrum of geometrically thin and optically thick
accretion disks (Zhang, Cui, and Chen, 1997; Li et al., 2005;
McClintock, Narayan, and Steiner, 2014). The standard
theoretical framework is the Novikov-Thorne model
(Novikov and Thorne, 1973; Page and Thorne, 1974). The
plane of the disk is assumed to be perpendicular to the BH
spin.17 The particles of the gas move on nearly geodesic
circular orbits, and the inner edge of the disk is at the ISCO
radius. The latter assumption plays a crucial role and it is
confirmed by some observations that show that the inner edge
of the disk does not change appreciably over several years
when the source is in the thermal state. The most compelling
evidence comes from LMC X-3. The analysis of many spectra
collected during eight x-ray missions and spanning 26 years
shows that the radius of the inner edge of the disk is quite
constant (Steiner et al., 2010). The most natural interpretation
is that the inner edge is associated with some intrinsic property

of the geometry of the spacetime, namely, the radius of the
ISCO, and it is not affected by variable phenomena like the
accretion process.
An accretion disk meets these conditions when the source is

in the so-called high-soft state. Here “high” refers to the
accretion luminosity, which must be higher than 5% of the
Eddington limit. “Soft” refers to the fact that the soft x-ray
component, corresponding to the thermal spectrum of the
disk, is the dominant one. This is true only for stellar-mass BH
candidates, because the temperature of the disk depends on the
BH mass and the mass accretion rate. As it turns out, the
thermal spectrum of a thin disk is in the x-ray range for stellar-
mass BH candidates and in the UV and optical bands for
supermassive BH candidates. In the latter case, extinction and
dust absorption limit the ability to make accurate measure-
ments. The continuum-fitting method is thus normally applied
to stellar-mass BH candidates.18 Thin disks are present when
the accretion luminosity is 5%–30% of the Eddington limit
(McClintock et al., 2006). For the validity of the method, see,
e.g., McClintock, Narayan, and Steiner (2014) and references
therein.
In the Kerr background, the thermal spectrum of a thin

disk depends only on five parameters: the BH mass M, the
mass accretion rate _M, the inclination angle of the disk with

TABLE I. Summary of the continuum-fitting and iron line measurements of the spin parameter of stellar-mass BH
candidates under the assumption of the Kerr background. See the references in the last column for more details.

BH binary a� (CF) a� (iron) References

GRS 1915-105 >0.98 0.98� 0.01 McClintock et al. (2006) and Miller et al. (2013)

Cyg X-1 >0.98 0.97þ0.014
−0.02 Gou et al. (2011, 2014) and Fabian et al. (2012)

LMC X-1 0.92� 0.06 0.97þ0.02
−0.25 Gou et al. (2009) and Steiner et al. (2012)

GX 339-4 <0.9 0.95þ0.03
−0.05 Kolehmainen and Done (2010) and García et al. (2015)

MAXI J1836-194 � � � 0.88� 0.03 Reis et al. (2012)

M33 X-7 0.84� 0.05 � � � Liu et al. (2008, 2010)

4U 1543-47 0.80� 0.10a � � � Shafee et al. (2006)

Swift J1753.5 � � � 0.76þ0.11
−0.15 Reis et al. (2009)

XTE J1650-500 � � � 0.84–0.98 Walton et al. (2012)

IC 10 X-1 ≳0.7 � � � (Steiner et al., 2016)

GRO J1655-40 0.70� 0.10a >0.9 Shafee et al. (2006) and Reis et al. (2009)

GS 1124-683 0.63þ0.16
−0.19 � � � (Chen et al., 2016)

XTE J1752-223 � � � 0.52� 0.11 Reis et al. (2011)

XTE J1652-453 � � � <0.5 Chiang et al. (2012)

XTE J1550-564 0.34� 0.28 0.55þ0.15
−0.22 Steiner et al. (2011)

LMC X-3 0.25� 0.15 � � � Steiner et al. (2014)

H1743-322 0.2� 0.3 � � � Steiner, McClintock, and Reid (2012)

A0620-00 0.12� 0.19 � � � Gou et al. (2010)

XMMU J004243.6 <− 0.2 � � � Middleton, Miller-Jones, and Fender (2014)
aThese sources were studied in an early work on the continuum-fitting method, within a more simple model, so

the published 1σ error estimates are doubled following McClintock, Narayan, and Steiner (2014).

17If the BH formed from the supernova explosion of a heavy star in
a binary, its spin would more likely already be aligned with the orbital
angular momentum vector of the system (at least in the case of a
symmetric explosion without strong shock and kick) (Fragos et al.,
2010). If this is not the case, the inner part of the accretion disk can
still be expected to be on the plane perpendicular to the BH spin as a
consequence of the Bardeen-Petterson effect (Bardeen and Petterson,
1975; Kumar and Pringle, 1985; Steiner and McClintock, 2012).

18The continuum-fitting method was applied to supermassive BH
candidates in some special cases by Czerny et al. (2011) and Done et
al. (2013).
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respect to the line of sight of the observer i, the distance d of
the source, and the spin parameter of the BH a�. The impact
of the model parameters on the shape of the spectrum is
shown in Fig. 5. If it is possible to have independent
measurements of M, i, and d, one can fit the thermal
component of the spectrum and determine the BH spin a�
and the mass accretion rate _M. Current spin measurements
with the continuum-fitting method are reported in Table I.
Some of these objects are not dynamically confirmed BH
candidates, so their mass is not estimated from the motion of
the companion star.
The technique can be naturally extended to non-Kerr

backgrounds. Preliminary studies considered some specific
non-Kerr objects and did not take into account all the
relativistic effects (Torres, 2002; Pun, Kovács, and Harko,
2008a, 2008b; Harko, Kovács, and Lobo, 2009a, 2009b, 2010;
Bambi and Barausse, 2011a). A ray-tracing code that includes
all the relativistic effects and can compute the thermal
spectrum of a thin disk in a generic stationary and axisym-
metric spacetime was presented by Bambi (2012a).

The impact of a possible nonvanishing deformation param-
eter on the thermal spectrum of a thin disk is shown in the
bottom right panel in Fig. 5. Even without a quantitative
analysis, it is clear that the effect of the spin and
the deformation parameter is very similar. The point is that
the cutoff of the spectrum is determined by the position of the
inner edge of the disk, which is assumed to be at the ISCO
radius, or, more precisely, by the radiative efficiency in the
Novikov-Thorne model (Kong, Li, and Bambi, 2014). The
radiative efficiency in the Novikov-Thorne model is

ηNT ¼ 1 − EISCO; ð23Þ

where EISCO is the specific energy of a test particle at the ISCO
radius. In the Kerr metric, ηNT ranges from 0.057 for a
nonrotating BH (a� ¼ 0) to about 0.42 for a maximally
rotating BH and a corotating disk (a� ¼ 1). In the case of
retrograde disks, ηNT decreases as the spin parameter increases
until about 0.038 for a� ¼ 1. In the Kerr metric, there is a one-
to-one correspondence between ηNT and a�, and therefore the

TABLE II. Summary of the iron line measurements of the spin parameter of supermassive BH candidates under the
assumption of the Kerr background. See the references in the last column and Brenneman (2013) for more details.

AGN a� (iron) LBol=LEdd References

IRAS 13224-3809 > 0.995 0.71 Walton et al. (2013)

Mrk 110 > 0.99 0.16� 0.04 Walton et al. (2013)

NGC 4051 > 0.99 0.03 Patrick et al. (2011a)

MCG-6-30-15 > 0.98 0.40� 0.13 Brenneman and Reynolds (2006) and Miniutti et al. (2007)

1H 0707-495 > 0.98 ∼1 Zoghbi et al. (2010), de La Calle Pérez et al. (2010),
and Walton et al. (2013)

NGC 3783 > 0.98 0.06� 0.01 Brenneman et al. (2011) and Patrick et al. (2011a)

RBS 1124 > 0.98 0.15 Walton et al. (2013)

NGC 1365 0.97þ0.01
−0.04 0.06þ0.06

−0.04 Risaliti et al. (2009, 2013) and Brenneman et al. (2013)

Swift J0501.9-3239 > 0.96 � � � Walton et al. (2013)

Ark 564 0.96þ0.01
−0.06 > 0.11 Walton et al. (2013)

3C 120 > 0.95 0.31� 0.20 Lohfink et al. (2013)

Ark 120 0.94� 0.01 0.04� 0.01 Nardini et al. (2011), Patrick et al. (2011b),
and Walton et al. (2013)

Ton S180 0.91þ0.02
−0.09 2.1þ3.2

−1.6 Walton et al. (2013)

1H 0419-577 > 0.88 1.3� 0.4 Walton et al. (2013)

Mrk 509 0.86þ0.02
−0.01 � � � Walton et al. (2013)

IRAS 00521-7054 > 0.84 � � � Tan et al. (2012)

3C 382 0.75þ0.07
−0.04 � � � Walton et al. (2013)

Mrk 335 0.70þ0.12
−0.01 0.25� 0.07 Patrick et al. (2011b) and Walton et al. (2013)

Mrk 79 0.7� 0.1 0.05� 0.01 Gallo et al. (2005, 2011)

Mrk 359 0.7þ0.3
−0.5 0.25 Walton et al. (2013)

NGC 7469 0.69� 0.09 � � � Patrick et al. (2011b)

Swift J2127.4+5654 0.6� 0.2 0.18� 0.03 Miniutti et al. (2009) and Patrick et al. (2011b)

Mrk 1018 0.6þ0.4
−0.7 0.01 Walton et al. (2013)

Mrk 841 > 0.56 0.44 Walton et al. (2013)

Fairall 9 0.52þ0.19
−0.15 0.05� 0.01 Schmoll et al. (2009), Patrick et al. (2011b),

Lohfink et al. (2012), and Walton et al. (2013)
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measurement of the former can provide an estimate of the BH
spin parameter. If we relax the Kerr BH hypothesis and we
allow for a nonvanishing deformation parameter, the same
value of the radiative efficiency can be obtained for different
combinations of the spin parameter and the deformation
parameter. The result is that there is a degeneracy and it is
impossible to measure both the spin and the deformation
parameter. In general, we can measure only a combination
of them.
Kong, Li, and Bambi (2014) reconsidered the spin mea-

surements with the continuum-fitting method reported in the
literature and under the assumption of the Kerr background.

We obtained the constraints on the spin parameter–deforma-
tion parameter plane within the JP background. Some exam-
ples are shown in Figs. 6 and 7. In the case of A0620-00, LMC
X-3, XTE J1550-564, and 4U 1543-47, there is a specific
measurement in the Kerr metric, and this can be translated into
an allowed region on the spin parameter–deformation param-
eter plane. These constraints are obtained with the following
method that can be justified a posteriori [more details can be
found in Kong, Li, and Bambi (2014)]. Instead of working on
some observational data, we adopt the theoretical spectrum of
a disk around a Kerr black hole with the parameter values
reported in the literature (M, i, and d inferred without the

-4

-2

 0

 2

-2 -1  0  1

lo
g 1

0 
N

E
ob

s

log10 Eobs

M = 3
M = 5

M = 10
M = 20
M = 40

-4

-2

 0

 2

-2 -1  0  1

lo
g 1

0 
N

E
ob

s

log10 Eobs

dM/dt = 0.5
dM/dt = 1
dM/dt = 2
dM/dt = 5

dM/dt = 10

-4

-2

 0

 2

-2 -1  0  1

lo
g 1

0 
N

E
ob

s

log10 Eobs

i = 5o

i = 25o

i = 45o

i = 65o

i = 85o

-4

-2

 0

 2

-2 -1  0  1

lo
g 1

0 
N

E
ob

s

log10 Eobs

d = 6
d = 8

d = 10
d = 14
d = 18

-4

-2

 0

 2

-2 -1  0  1

lo
g 1

0 
N

E
ob

s

log10 Eobs

a* = -0.999
a* = 0.0
a* = 0.7
a* = 0.9

a* = 0.999

-4

-2

 0

 2

-2 -1  0  1

lo
g 1

0 
N

E
ob

s

log10 Eobs

ε3 = -5
ε3 = -2
ε3 = 0
ε3 = 2
ε3 = 5

FIG. 5. Impact of the model parameters on the thermal spectrum of a thin disk: (top left panel) massM, (top right panel) mass accretion
rate _M, (central left panel) viewing angle i, (central right panel) distance d, (bottom left panel) spin parameter a�, and (bottom right
panel) JP deformation parameter ϵ3. When not shown, the values of the parameters are M ¼ 10M⊙, _M ¼ 2 × 1018 g s−1, d ¼ 10 kpc,
i ¼ 45°, a� ¼ 0.7, and ϵ3 ¼ 0. M is in units of M⊙, _M is in units of 1018 g s−1, d is in kpc, the flux density NEobs

is in photons
keV−1 cm−2 s−1, and the photon energy Eobs is in keV.
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assumption of the Kerr metric, and a� and _M obtained with the
continuum-fitting method and assuming the Kerr metric).
Such a spectrum is then compared with the theoretical spectra
computed in spacetimes in which a�, _M, and ϵ3 vary.

Employing a χ2 analysis, the solid red lines in Fig. 6 are
the best fits for a fixed ϵ3. The dashed blue lines are the
boundaries of the allowed regions at 1σ. However, in this way
we are assuming that these sources have vanishing ϵ3. For a
fixed ϵ3, the 1σ error on the spin is given by the dash-dotted
green lines, which should better approximate the actual 1σ
error if we analyzed the real data. This approach can be
justified a posteriori because the constraints provided by the
dash-dotted green lines and by the dashed blue lines are very
similar considering the spin uncertainty. There is a quaside-
generacy in the theoretical prediction of the spectra and
therefore a spin measurement inferred in the Kerr background
can be translated into an allowed region on the spin param-
eter–deformation parameter plane.
Figure 7 shows the constraints on ϵ3 from GRS 1915þ 105

and Cygnus X-1. In both cases, the Kerr measurement is
a� > 0.98, and therefore in the JP metric we have an allowed
region in which the spectra look more like a Kerr BH with
a� > 0.98 and an excluded region in which the spectra are
more like that of a Kerr BH with a� < 0.98. The difference
between the two allowed regions is due only to the different
inclination angle i ¼ 66° for GRS 1915þ 105 and i ¼ 27.1°
for Cygnus X-1. Note the similarity of the shapes of the
allowed regions in Figs. 6 and 7 with the contour levels of ηNT
in the right panel in Fig. 3.
If we have a BH candidate that looks like a very fast-

rotating Kerr BH, similar to that in Cygnus X-1 in the example
in Fig. 7, it is sometimes possible to constrain the deformation
parameter. Another example with a different background
metric was shown in Bambi (2014a). The reason is that, in
general, if one considers very large deviations from Kerr, in
both directions in the deformation parameter, the ISCO radius
increases and therefore the Novikov-Thorne radiative effi-
ciency decreases. The result is that very deformed objects
cannot mimic a fast-rotating Kerr BH. However, this is not a
general statement, and some deformations may be extremely
large. An example of the latter case is the CPR deformation
parameter ϵr3, which cannot be constrained with Cygnus X-1
(Bambi, 2014b); see Fig. 8.
In principle, one could find a source with a thermal

spectrum harder than that which is expected for a Kerr BH

a∗ a∗

a∗ a∗

FIG. 6. Continuum-fitting constraints on the JP parameter ϵ3
from A0620-00 (top left panel), LMC X-3 (top right panel), XTE
J1550-564 (bottom left panel), and 4U 1543-47 (bottom right
panel). The spacetimes along the solid red lines cannot be
distinguished and represent the central values of the measure-
ment. In every panel, the dash-dotted green lines are the
boundaries of the allowed region (1σ error) along the solid red
line inferred within the analysis from current x-ray measure-
ments. The dashed blue lines are the same boundaries inferred if
the best fit were exactly for ϵ3 ¼ 0. The dotted black curve on the
right of each panel separates spacetime with a regular exterior (on
the left of the curve) from those with naked singularities (on the
right of the curve). From Kong, Li, and Bambi, 2014.

a∗ a∗

FIG. 7. Continuum-fitting constraints on the JP parameter ϵ3
from GRS 1915þ 105 (left panel) and Cygnus X-1 (right panel).
The allowed regions are those inside the dashed blue lines. The
dotted black curve separates spacetimes with a regular exterior
(on the left of the curve) from those with naked singularities (on
the right of the curve). From Kong, Li, and Bambi, 2014.

a∗

FIG. 8. Continuum-fitting constraints on the CPR parameter ϵr3
from Cygnus X-1. The allowed region is between the two dashed
blue lines. From Bambi, 2014b.
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with a� ¼ 1. This would essentially correspond to a spacetime
in which the Novikov-Thorne radiative efficiency exceeds the
Kerr BH bound ηNT ¼ 0.42 and could be an indication of
deviations from the Kerr geometry. For the time being, there
are no observations of this kind and therefore all the data are
consistent with the Kerr metric.
The continuum-fitting method is probably the most robust

technique among those available today. Its assumptions have
been tested in a number of studies; for instance, the observed
temporal constancy of the accretion disk’s inner radius in the
thermal state supports the assumption that the inner edge is at
the ISCO (Steiner et al., 2010). However, the method also has
some weak points. It cannot be applied to the active galactic
nucleus (AGN), which represent the majority of the BH
candidates, because their disk temperature is in the UV and
optical bands. The measurements of M, i, and d from optical
observations are sometimes difficult and may be affected by
systematic effects. Corrections for nonblackbody effects are
usually taken into account by introducing the color factor,
which is obtained from disk atmosphere models and there is
not a unanimous consensus on their reliability (Davis et al.,
2005; Davis and Hubeny, 2006).
Assuming the systematics are under control, the thermal

spectrum of a thin disk has a very simple shape, and it cannot
provide much information on the spacetime geometry around
the BH candidate. If we assume the Kerr metric, we can
determine the spin parameter. If we have just one possible
nonvanishing deformation parameter, we meet a degeneracy
and, in general, we cannot constrain the spin and possible
deviations from the Kerr solution at the same time. If we have
a source that looks like a very fast-rotating Kerr BH, we can
constrain some deformation parameters (e.g., the JP deforma-
tion parameters ϵk), but other deviations from the Kerr
geometry cannot be constrained (e.g., the CPR deformation
parameters ϵrk). The reason is that the spectrum is simply a
multicolor blackbody spectrum without additional features.
Different parameters of the model have a quite similar impact
on the shape of the spectrum and therefore there is a strong
parameter degeneracy. The best that we can do is to combine
the continuum-fitting measurements with other observations
to break the parameter degeneracy.

B. Iron line spectroscopy

The illumination of a cold disk by a hot corona produces a
reflection component as well as some spectral lines by
fluorescence in the x-ray spectrum of the source. The most
prominent line is usually the iron Kα line, which is at 6.4 keV
in the case of neutral atoms and it shifts up to 6.97 keV for
H-like iron ions. This line is intrinsically narrow in frequency,
while the one observed in the x-ray spectrum of BH
candidates appears broadened and skewed. The interpretation
is that the line is strongly altered by relativistic effects, which
produce a very characteristic profile first studied by Fabian
et al. (1989). This interpretation is currently well supported by
reverberation measurements (Uttley et al., 2014). The iron line
is the strongest feature aside of the continuum (see Fig. 9), and
it can potentially provide quite detailed information on the
spacetime geometry close to the BH candidate. This technique
relies on fits of the whole reflected spectrum, but the spin

measurement (or possible tests of the Kerr metric) is mainly
determined by the iron line. For this reason the technique is
often called the iron line method.
The shape of the line is primarily determined by the

background metric, the geometry of the emitting region, the
disk emissivity, and the disk’s inclination angle with respect
to the line of sight of the distant observer. In the Kerr
background, the relativistic emission line profile emitted by
an accretion disk illuminated by an x-ray corona with
arbitrary geometry is typically parametrized by the BH spin
a�, the inner and the outer edges of the emission region rin
and rout, and the viewing angle i. The local spectrum Ie (the
power radiated per unit area of emitting surface per unit
solid angle per unit frequency) is determined by the
reflection processes and the geometry of the system.
Assuming axisymmetry, Ie depends on the photon energy,
the emission radius, and possibly on the emission angle (the
angle of propagation of the photon with respect to the
normal to the disk) if the emission is not isotropic. The local
spectrum may be modeled as a power law Ie ∝ r−q, where
the emissivity index q is a constant to be determined by the
fit. A more sophisticated choice is to assume an intensity
profile Ie ∝ r−q for r < rbreak and Ie ∝ r−3 for r > rbreak,
where q ¼ 3 corresponds to the Newtonian limit in the
lamppost geometry at large radii far from the x-ray source.
With this choice, we have two free parameters for the
emissivity profile, q and rbreak. If we assume a pointlike hot
corona located on the axis of the accretion disk and just
above the BH, it is possible to compute the emissivity index
q ¼ qðrÞ according to the height of the corona h (Dauser
et al., 2013). Galactic BH binaries have line-of-sight
velocities of just a few hundred km=s, which makes their
relative motion negligible in the spectrum. In the case of
AGN, the cosmological redshift of the source can instead be
important for some objects and it can be an additional
parameter of the model.
While the continuum-fitting method requires independent

measurements of the mass, the distance, and the viewing
angle of the source, the iron line analysis does not
require them. Mass and distance have no impact on the
line profile, as the physics is essentially independent of the
size of the system, while the viewing angle can be inferred

FIG. 9. Photon count (in black) and fit without the iron
line (in red) of MGC-6-30-15. From Brenneman and Reynolds,
2006.
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during the fitting procedure from the effect of the Doppler
blueshift.
As in the continuum-fitting method, the iron line meas-

urement assumes that the accretion disk can be described by
the Novikov-Thorne model and crucially depends on the inner
edge of the disk being located at the ISCO radius. The latter
point can be tricky for the iron line analysis, because there is
controversy over this assumption in hard states, where “hard”
refers to the fact that the hard power-law component is the
dominant feature in the spectrum. These states are those most
frequently employed in reflection modeling. Specifically, it is
argued whether the disk is in fact truncated at some radius
larger than the ISCO (Parker et al., 2015; Plant et al., 2015).
At present, the evidence indicates that if truncation is present,
it is likely to be mild (a factor of a few).
In the case of stellar-mass BH candidates, one usually

selects sources with high luminosity or sources in the hard-
intermediate state, in which there are indications that the inner
edge of the disk is closer to the compact object than in the hard
states at low luminosities (Plant et al., 2015). In the case of
supermassive BH candidates, this technique is more widely
used; see the third column in Table II. In part, this is because
we never have a precise estimate of the Eddington scaled
accretion luminosity, due to the large uncertainties in the
bolometric correction and mass estimates. This works both
ways so that it is hard to say whether we are in the thin disk

range or not. In part, it is because we cannot choose a different
spectral state due to the much longer time scales of super-
massive BHs than stellar-mass BHs.
If one were to fit data for a system in which the disk were

truncated, and make the usual assumption that the inner edge
was at the ISCO, the fit would then incorrectly under-
estimate the value of spin (relative to the resulting Kerr
prediction if it were truncated at the ISCO radius). The same
question is at play for using reflection to test the Kerr metric
with data from faint hard states. In the case of too high
accretion luminosities, the inner part of the disk may instead
be geometrically thick, and this would lead to overestimate
the BH spin (or, otherwise, get a wrong constraint on the
deformation parameter). Some very high values of the BH
spins reported in Table II are thus to be taken with caution
(Reynolds, 2014).
Moreover, this is not the end of the story. As shown by

Dauser et al. (2013) within the lamppost setup, a spin
measurement is possible only when the corona is close to
the BH candidate. In particular, the characteristic low energy
tail of the iron line used to measure the inner edge of the disk
can be produced only in the case of a compact corona close to
a fast-rotating BH candidate (Dauser et al., 2013). In the
absence of the low energy tail, we may have either an
extended corona far from the compact object or a slow-
rotating BH candidate.
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Bearing in mind these tricky points, the iron Kα line is used
to measure the BH spin under the assumption of the Kerr
background and it can potentially be used to test the Kerr
metric. For a review, see, e.g., Reynolds (2014). This
technique can be used for both stellar-mass and supermassive
BH candidates, because the iron line profile does not depend
on the massM. So it is currently the only available approach to
probe the metric around supermassive BH candidates with the
existing data. Current spin measurements of stellar-mass BH
candidates with the iron line and under the assumption of the
Kerr metric are reported in Table I. A summary of spin
measurements of supermassive BH candidates is shown in
Table II.19

The impact of the model parameters on the iron line profile is
shown in Fig. 10, where the emissivity profile has beenmodeled
with a simple power law Ie ∝ r−q, and q is constant. The iron
line profile has a more complicated structure than the thermal
spectrum of thin disks. However, as in the disk’s thermal
spectrum, the main effect of the spin parameter and possible
deviations from the Kerr geometry is often similar: both a� and
the deformation parameter change the ISCO radius. This in turn
affects the extension of the low energy tail of the line. There is
thus a parameter degeneracy, as shownby Johannsen andPsaltis
(2013). As in the case of the continuum-fitting method, the
technique can also be used to test theKerrmetric (Lu andTorres,
2003; Bambi, 2013c; Johannsen and Psaltis, 2013).
The iron line is potentially a more powerful tool than the

continuum-fitting method to test the Kerr metric, in the sense
that in the presence of high-quality data it is typically possible
to get independent estimates of the spin and the deformation
parameter, while with the continuum-fitting method high-
quality data may not be enough to break the parameter
degeneracy. Johannsen and Psaltis (2013) estimated the
required precision that observations with future x-ray missions
have to achieve in order to measure potential deviations from
the Kerr metric with the iron line. They found that a precision
of about 5% can constrain the absolute value of the JP
deformation parameter ϵ3 to be smaller than 1 if the source
is a Kerr BH with spin parameter a� > 0.5 and the viewing
angle is 30° or 60°. The constraining power increases for fast-
rotating Kerr BHs, because the inner edge of the disk is closer
to the compact object.
Jiang, Bambi, and Steiner (2015a, 2015b, 2016) presented a

study on the possibility of constraining the JP and CPR
deformation parameters. In the case of a bright AGN, a good
observation can have Nline ≈ 103 photons in the iron Kα line.
In the case of a bright stellar-mass BH candidate, Nline may be
up to 2 orders of magnitude higher, say Nline ≈ 105. However,
in stellar-mass BH candidates the low energy tail of the iron
line overlaps with the thermal component of the accretion
disk, the ionization is higher and less easily modeled, and
Compton broadening plays a non-negligible role. All these
effects make the brighter signal of stellar-mass BH lines more

difficult to model. Jiang, Bambi, and Steiner (2015a, 2015b,
2016) simulated iron lines in Kerr and non-Kerr backgrounds
to estimate plausible constraints on the JP and CPR deforma-
tion parameters to be obtained from observations. They
employed the standard analysis technique common through-
out x-ray astronomy: the simulated spectra include Poisson
noise and a forward-folded fit after rebinning20 to ensure that
the count distribution in each spectral channel is well
approximated by a Gaussian distribution, as required to use
the χ2 as goodness-of-fit test.
Figure 11 shows the Δχ2 contours with Nline ¼ 103 (top

panels) and Nline ¼ 104 (bottom panels) assuming as a
reference model a Kerr BH with spin parameter a� ¼ 0.95
and observed with a viewing angle i ¼ 70°. The spacetime
geometry is described by the CPR metric and we have five free
parameters, namely, the spin a�, the deformation parameter (ϵt3
or ϵr3), the viewing angle i, the ratio between the continuum
and the photon iron line flux, say K, and the photon index of
the continuum Γ. χ2 is thus minimized over i, K, and Γ. In the
left panels, ϵt3 is a free parameter and ϵr3 ¼ 0. In the right
panels, ϵt3 ¼ 0 and ϵr3 can vary. It is evident that ϵ

t
3 is relatively

easy to constrain, while ϵr3 is much more difficult. Even in the
case of a fast-rotating Kerr BH observed with a large
inclination angle, it is impossible to constrain ϵr3, in the sense
that large positive values of ϵr3 cannot be ruled out. The
difference in the constraints on ϵt3 and ϵr3 can be understood
noting that ϵt3 strongly affects the position of the ISCO. The
impact of ϵr3 on the ISCO is weaker (it enters only in gtϕ). ϵr3
mainly affects the propagation of the photons in the spacetime,
but the impact on the time-integrated iron line measurement is
weak. More details on the constraints on the CPR deformation
parameters from the iron line can be found in Jiang, Bambi,
and Steiner (2015b, 2016).

19In some cases, there exist a few independent measurements of
the spin of the same source in the literature. Measurements from
different groups are often consistent, but sometimes they are not; the
discrepancy is more likely due to systematic effects not fully under
control (see the references in the last column for the details).

20Forward-folded fitting is the term commonly used in x-ray
astronomy to generically indicate the fitting procedure. The actual
spectrum measured by an instrument (in units of counts per spectral
bin) can be written as

CðhÞ ¼ τ

Z
Rðh; EÞAðEÞsðEÞdE; ð24Þ

where h is the spectral channel, τ is the exposure time, Rðh; EÞ is the
redistribution matrix (essentially the response of the instrument),
AðEÞ is the effective area, and sðEÞ is the intrinsic spectrum of the
source. In general, the redistribution matrix cannot be inverted, and
therefore it is not possible to obtain the intrinsic spectrum sðEÞ.
Forward-folded fitting means that one assumes a theoretical model
for sðEÞ with a set of parameter values, convolves the model with the
instrument response, and its result (called the folded spectrum) is
compared with the observed spectrum through a goodness-of-fit
statistical test. The process is repeated by changing the parameter
values to find the best fit. For example, this approach is not necessary
at optical wavelengths, where the redistribution matrix can be
inverted, and therefore one can directly fit the theoretical model
with the observed intrinsic spectrum of the source. Rebinning means
that one groups data with a low count number to increase the number
of counts per bin. For more details, see, e.g., Arnaud, Smith, and
Siemiginowska (2011).
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As the photon count number increases, the constraints
become stronger. It is not clear what the best current
observations can provide and work on real data is in progress.
It is, however, important to note that current theoretical
models are quite simple. The emissivity profile, for instance,
is often modeled with two power-law indices and a breaking
radius, which is clearly an approximation. Even if we
presently had excellent data with a large number of photons
in the iron line, it would be presumably impossible to get
reliable constraints on the Kerr metric. More realistic model-
ing would be necessary to prevent systematic effects from
becoming dominant. In the end, any measurement is as good
as its theoretical model, and current iron line models are
phenomenological and oversimplify the astrophysical picture.

1. Comparison between continuum-fitting and iron line
measurements

In the case of stellar-mass BH candidates, there are some
objects in which the spin has been measured by both the
continuum-fitting and the iron line methods, and the estimate
is usually consistent; see Table I. Note, however, that this is
not enough to claim that these objects are Kerr BHs, because
both techniques are mainly sensitive to the position of the
inner edge of the disk and even in the presence of a non-Kerr

background they should provide a very similar estimate of the
spin parameter when it is assumed to be the Kerr metric
(Bambi, 2013f). The agreement between the two techniques
is, however, a good result to believe in the robustness of the
two measurements. The disagreement in the case of some
objects is surely due to systematic effects and cannot be solved
by postulating a non-Kerr metric. Only in the case of very
precise measurements, depending on the actual metric around
the compact object, can the difference between the continuum-
fitting and the iron line measurements be attributed to
deviations from the Kerr solution (Bambi, 2013f).

2. Exotic candidates

Note that the iron line can immediately rule out some exotic
BH alternatives, or at least constrain their properties. This is
possible because in some spacetimes the iron line profile
should have qualitatively different features that are not
observed in real data or, vice versa, their iron line cannot
mimic that observed in real data. This permits one to conclude
that these objects cannot be the BH candidates of the
Universe.
Exotic compact stars represent a large class of BH alter-

natives. One usually assumes that general relativity holds, but
the mass of the compact object can exceed the famous 3M⊙
limit of a neutron star thanks to special equations of state.
Boson stars also belong to this group of objects (Colpi,
Shapiro, and Wasserman, 1986; Jetzer, 1992) and they may
also have a mass of millions or billions M⊙, so that they may
be the supermassive BH candidates at the center of galaxies.
These spacetimes have typically no ISCO, namely, equatorial
circular orbits are always stable. One can set the inner edge of
the disk at some radius rin. Since the gravitational redshift of
the photons emitted in the inner part of the accretion disk is
never very strong, the iron line profile cannot have the
characteristic low energy tail of the iron line expected in
the case of very fast-rotating BHs and observed in the spectra
of several BH candidates (Bambi and Malafarina, 2013). In
the case of fast-rotating BHs, the radiation emitted from the
inner part of the accretion disk is strongly redshifted. This
produces an extended low energy tail in the iron line. In the
case of compact stars, the gravitational redshift is usually not
very strong even at very small radii. Examples of iron line
profiles from the accretion disk of exotic compact stars are
shown in the left panel in Fig. 12; see Bambi and Malafarina
(2013) for more details. This argument does not imply the
existence of a horizon, and consequently does not completely
rule out scenarios with exotic compact stars, but at least it
requires that the gravitational redshift close to BH candidates
is extremely strong. It is not far from that expected in the
vicinity of an apparent or event horizon, and this is not the
case in typical exotic star models.
Another example of strange candidates is represented by the

family of traversable wormholes discussed by Bambi (2013d).
Their iron line profiles are shown in the right panel in Fig. 12.
These objects have no event horizon, like the compact stars
mentioned previously. Nevertheless, their iron line profile has a
low energy tail. Here it is actually impossible not to have an
extended low energy tail and the iron line of nonrotating
wormholes looks like that from a fast-rotatingKerr BH (Bambi,
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FIG. 11. Δχ2 contours with (top panels) Nline ¼ 103 and
(bottom panels) Nline ¼ 104 from simulations of measurements
of iron line profiles. The background geometry is the CPR metric
with ϵt3 and ϵr3 as the only possible nonvanishing deformation
parameters. The reference model is a Kerr BH with spin
parameter a0� ¼ 0.95 and inclination angle i0 ¼ 70°. In the left
panels, we allow for a nonvanishing ϵt3 while we assume ϵr3 ¼ 0.
In the right panels, we illustrate the converse measurement,
namely, ϵt3 ¼ 0 while ϵr3 can vary. The ratio between the
continuum and the iron line photon flux as well as the photon
index of the continuum are also free parameters in the fit. The
labels along the contour levels refer to the value of Δχ2. See the
text for more details. From Jiang, Bambi, and Steiner, 2016.
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2013d). An interesting feature of these iron lines is the peak at
low energies. As in the exotic compact stars in Bambi and
Malafarina (2013), it is due to the photons emitted at very small
radii, which can more easily escape to infinity than in the case
of a BH spacetime. Can this feature be used as a smoking gun to
rule out these spacetimes? It depends on the quality of the x-ray
data and the specific metric (Zhou et al., 2016). In Fig. 12, the
iron line profile has been computed assuming an emissivity
Ie ∼ r−3, corresponding to the Newtonian limit at large radii in
the lamppost geometry. For such an emissivity profile, the iron
lines in the Kerr background have no similar peaks; see Fig. 10.
However, in a correct relativistic lamppost geometry one
should expect a much steeper emissivity function at smaller
radii and for a source close to the compact object, as a result of
strong light bending (Dauser et al., 2013). Observations seem
to require a high, or even very high, value of q at small radii
(Wilkins and Fabian, 2011, 2012).21 Figure 13 shows the iron
line in a Kerr spacetime with a� ¼ 0.95 and i ¼ 45°, where the
emissivity function is

Ie ∝
� ðrbreak=rÞq if r < rbreak;

ðrbreak=rÞ3 if r > rbreak;
ð25Þ

with rbreak ¼ 5M and q assumes different values. As shown in
Fig. 13, such an emissivity profile could reproduce a peak at
lower energies. The reason is that the emissivity is much higher
at small radii than the simple case r−3. Even if in theKerrmetric
it is more difficult to escape from small radii, a much higher
emissivity at small radii can balance the BH photon capture and
have an iron line that looks like that of a traversable wormhole
with lower emissivity at small radii. Eventually, only in the
presence of high-quality data is it possible to distinguish the
difference between the astrophysical model and the metric and
therefore between wormholes and BHs (Zhou et al., 2016).

C. Iron line reverberation

Within the corona-disk model with the lamppost geometry,
the activation of a new flaring region in the corona illuminates
the accretion disk and generates a time-dependent iron line
profile due to the different propagation time for different
photon paths (Reynolds et al., 1999). Reverberation refers to
the iron line signal as a function of time in response to a flash
of radiation from the corona. The resulting line spectrum as a
function of both time and across photon energy is called the
2D transfer function, which is related to fundamental proper-
ties of the BH candidate and the system geometry.
In the case of supermassive BH candidates, iron line

reverberation measurements are currently possible and re-
present the most convincing argument in support of the fact
the iron line originates from the inner part of the accretion
disk, and therefore that its shape is determined by relativistic
effects. For a review, see, e.g., Uttley et al. (2014). However,
with current x-ray facilities, because of the limited count rates
in the iron line, reverberation measurements are not more
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21However, this interpretation was criticized by Svoboda et al.
(2012).
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powerful than the standard time-integrated ones in probing the
spacetime around supermassive BH candidates. Future detec-
tors with larger effective areas should be able to better study
the temporal change in response to the activation of new flares
and reverberation measurements can probably become a more
powerful technique than time-integrated observations.
Iron line reverberation mapping in a non-Kerr background

was investigated by Jiang, Bambi, and Steiner (2015a, 2016).
Figure 14 shows the constraints on the CPR deformation
parameters ϵt3 and ϵr3 from simulations. These plots can be
directly compared with those in Fig. 11 for a time-integrated
iron line measurement. The reference model is the same,
namely, a Kerr BH with spin parameter a� ¼ 0.95 and a
viewing angle i ¼ 70°. The top panels refer to observations
with a photon number count in the iron line Nline ¼ 103, and
the bottom panels refer to the case Nline ¼ 104. In the left
panel, ϵt3 can vary and ϵ

r
3 ¼ 0 is frozen. In the right panels, we

have the opposite cases, so ϵt3 ¼ 0 and ϵr3 is free. The height of
the source, the ratio between the continuum and the iron line
photon flux, and the photon index of the continuum are also
left as fit parameters.
The case Nline ¼ 103 roughly corresponds to a good

observation of a bright AGN with the current x-ray facilities.
The reverberation measurement can constrain the background
metric better than the time-integrated observation. However, it
is still problematic to measure the CPR deformation parameter

ϵr3. Reverberation mapping becomes much more powerful
than the measurement of the time-integrated iron line when
Nline increases. This is perfectly understandable. With a low
photon number count, the large number of channels in the
reverberation approach dilutes the photon count per channel
and the intrinsic noise of the source frustrates the additional
time information in the measurement. In the simulations with
Nline ¼ 104, we find that the reverberation measurement can
constrain the CPR deformation parameter ϵr3. Interestingly, as
discussed by Jiang, Bambi, and Steiner (2016), this is true
even if the source is a slow-rotating Kerr BH observed from a
low inclination angle. This is probably possible because ϵr3
affects the photon propagation in the background metric.
Time-integrated observations are not very sensitive to it, while
the time information of the photon propagation allows one to
constrain ϵr3.
Time-resolved measurements may also be possible from the

observation of an x-ray AGN eclipse (Risaliti et al., 2011). In
principle, one could still exploit the variability of the source in
order to probe different regions of the spacetime at different
times and better separate the relativistic effects occurring near
the BH candidate. However, Cardenas-Avendano, Jiang, and
Bambi (2016a) showed that this is not the case and an eclipse
measurement does not have the advantage of a reverberation
one. The difference between the two approaches is related to
the capability of separating photons from different parts of the
disk. In the reverberation approach, photons emitted from
different regions are detected at different times. In the eclipse
scenario we have the opposite case, namely, one studies the
properties of the radiation from every region of the accretion
disk from the nondetection of the photons from that patch.

D. Quasiperiodic oscillations

QPOs are a common feature in the x-ray flux of stellar-mass
BH candidates. They appear as peaks in the x-ray power
density spectra of the source. They are thought to be a very
promising tool for the future to get precise information on the
spacetime geometry around BH candidates. However, there is
currently no consensus on which mechanism is responsible for
their production or even if it is a single mechanism or multiple
ones. Many scenarios have been proposed, and, in particular,
there are relativistic precession models (Stella and Vietri,
1999; Motta et al., 2014), diskoseismology models (Perez
et al., 1997), resonance models (Abramowicz and Kluźniak,
2001; Török et al., 2005), and p-mode oscillations of
accretion tori (Rezzolla et al., 2003). Other mechanisms
may also be possible. Interestingly, in most scenarios the
frequencies of the QPOs are directly related to the character-
istic orbital frequencies of a test particle (orbital or Keplerian
frequency νϕ, radial epicyclic frequency νr, and vertical
epicyclic frequency νθ), which are determined only by the
background metric and are thus independent of the compli-
cated astrophysical processes of the accretion. For this reason,
QPOs are a promising technique to probe the metric around
BH candidates. Moreover, the frequencies of QPOs can be
measured with high accuracy, and therefore they can poten-
tially provide more precise measurements than other tech-
niques like the continuum-fitting and the iron line methods.

FIG. 14. Compare to Fig. 11. Δχ2 contours with (top pan-
els) Nline ¼ 103 and (bottom panels) Nline ¼ 104 from the
analysis of the 2D transfer function. The reference model is a
Kerr BH with spin parameter a0� ¼ 0.95 and inclination angle
i0 ¼ 70°. In the left panels, we allow for a nonvanishing ϵt3 and
assume ϵr3 ¼ 0. In the right panels, we consider the converse case,
namely, ϵt3 ¼ 0 and ϵr3 can vary. The height of the source, the ratio
between the continuum and the iron line photon flux, and
the photon index of the continuum are also left as fit parameters.
The labels along the contour levels refer to the value of Δχ2. See
the text for more details. From Jiang, Bambi, and Steiner, 2016.
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Different models provide a different measurement of the
parameters of the background metric, which means that QPO
data cannot be used to test fundamental physics at this time.
However, there is already some work exploring the possibility
of using QPOs to test the Kerr metric (Stuchlík and Kotrlová,
2009; Johannsen and Psaltis, 2011b; Bambi, 2012e, 2015a;
Aliev, Daylan Esmer, and Talazan, 2013; Maselli et al., 2015).
Even if QPO data can potentially provide very accurate
measurements, there is a fundamental degeneracy among
the spin parameter and possible deviations from the Kerr
solution, so one can typically obtain only a narrow allowed
region on the spin parameter–deformation parameter plane.
Johannsen and Psaltis (2011b) discussed the constraining

power of the diskoseismology model and the 1∶2 resonance
model involving the Keplerian and the radial epicyclic
frequencies in the framework of the non-Kerr metric of
Glampedakis and Babak (2006). In the diskoseismology
scenario, the pair of high-frequency QPOs observed in the
x-ray flux of some BH binaries can be identified as the lowest
order gravity (g modes) and corrugation modes (c modes).
Within the Kerr metric, the measurements of the two frequen-
cies would provide the values of the BH mass and spin
because the lowest order modes would occur near the ISCO,
so the radius is fixed. When we want to test the Kerr metric
and have a nonvanishing deformation parameter, we need an
independent measurement of the mass, and we can get a value
for the spin and the deformation parameter. In the case of the
1∶2 resonance model, there is a degeneracy among the mass,
the spin, and possible deviations from Kerr. A possible
nonvanishing deformation parameter can be constrained only
in the presence of independent measurements of the mass and
the spin of the compact object.
In Bambi (2012e), a number of different resonance models

were considered to constrain the JP deformation parameter ϵ3.
Consistentlywith Johannsen andPsaltis (2011b), any resonance
model can measure just one number of the spacetime geometry.
The constraints of the resonance model for the BH candidates
GRO J1655-40, XTE J1550-564, and GRS 1915þ 105 were
combined by Bambi (2012e) with the dynamical measurement

of their mass and with their constraints from the continuum-
fitting method. Assuming the Kerr metric, no resonance model
provides a spin measurement consistent with the continuum-
fitting method for the three BH candidates at the same time. In
the case of a nonvanishing ϵ3, the 3∶1 resonance model
involving the two epicyclic frequencies can be consistent with
the continuum-fitting method estimates for the three objects.
In Bambi (2015a), the constraints on the JP deformation

parameter ϵ3 for the BH candidate in GRO J1655-40 were
studied assuming the relativistic precessionmodel ofMotta et al.
(2014). GRO J1655-40 is a special source because it is the only
object for which we have a detection of three simultaneous
QPOs. Assuming that the three QPOs are associated with
oscillations of the fluid flow at the same radial coordinate, in
theKerrmetric there are three unknownquantities (theBHmass,
the BH spin, and the radial coordinate of the fluid oscillation)
and it is possible to solve the system. In the case of a non-Kerr
metric with only one nonvanishing deformation parameter, we
need an independentmeasurement of theBHmass. In the case of
GRO J1655-40, there are two main measurements (Beer and
Podsiadlowski, 2002; Shafee et al., 2006), which are not
consistent each other. If we adopt the mass estimate of Beer
and Podsiadlowski (2002), the constraint on ϵ3 is consistentwith
the Kerr metric, but the estimate of the BH spin is not consistent
with that from the continuum-fitting method. If we choose the
mass estimate in Shafee et al. (2006), the measurements of the
continuum-fittingmethod and the QPOsmay be consistent for a
nonvanishing ϵ3.

E. X-ray polarization

The measurement of the polarization of the thermal
radiation of thin accretion disks may become a new technique
to study stellar-mass BH candidates. This kind of measure-
ment is not possible today, because there are no x-ray
polarimetric missions. However, it will hopefully be possible
in the near future, for instance with the missions eXTP, XIPE,
IXPE, and PRAXYS.
The thermal radiation of a thin accretion disk is initially

unpolarized, but it gets polarized at the level of a few percent

FIG. 15. (Left panel) Polarization degree and (right panel) polarization angle as a function of the photon energy for a Schwarzschild
BH (solid lines) and a Kerr BH with spin parameter a=M ¼ 0.9 (dashed lines) and viewing angles i ¼ 45°, 60°, and 75°. From Liu
et al., 2015.
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due to Thomson scattering of x-ray radiation off free electrons
in the disk’s atmosphere. Because of relativistic effects (light
bending and nontrivial parallel transport in curved spacetime)
more pronounced in the vicinity of the compact object, the
degree and the angle of polarization of photons generated in
the inner part of the accretion disk deviate from the Newtonian
predictions; see Fig. 15. Assuming the Kerr background, x-ray
spectropolarimetric observations of the thermal component
could provide a measurement of the BH spin and of the
inclination angle of the disk with respect to the line of sight of
the observer (Li, Narayan, and McClintock, 2009; Schnittman
and Krolik, 2009).
As in the previous techniques, even the polarization meas-

urement may be used to test the Kerr metric (Krawczynski,
2012; Liu et al., 2015). At present, there are only some
preliminary studies about its constraining capabilities. Liu
et al. (2015) found that a polarization measurement cannot test
the Kerr metric better than the continuum-fitting method, and it
is definitively worse than high-quality data of the iron line. The
problem is still the strong correlation between the estimate of
the spin and possible deviations from the Kerr solution.

IV. THE SPECIAL CASE OF SgrA�

As discussed, the main problem to test the Kerr metric
is the parameter degeneracy. The spectrum of a Kerr BH can
be usually reproduced quite well by non-Kerr objects with
different values of the model parameters. To break the
parameter degeneracy, it is usually helpful to have different
measurements of the same BH candidate. If these measure-
ments are sensitive to different relativistic effects, we may
combine the observations and constrain possible deviations
from the Kerr geometry.
SgrA�, the supermassive BH candidate at the center of the

Galaxy, may soon become quite an ideal object to test the Kerr
metric. While there are currently no observations suitable to
test this BH candidate, we expect a number of unprecedented
data with new facilities in the near future (Falcke and Markoff,
2013). The combination of these measurements is a very
promising approach to test the nature of SgrA�; see, e.g.,
Johannsen (2012) and Bambi (2015b). A recent review on
tests of the Kerr metric with SgrA� can be found in Johannsen
(2016). However, at present we do not know if SgrA� has all
the features to be an optimal source for testing the Kerr metric
(e.g., high spin parameter and large viewing angle).

A. Black hole shadow

The direct image of the accretion flow around a BH usually
shows a dark area over a bright background. Such a dark area
is commonly called the BH shadow (Falcke, Melia, and Agol,
2000), even if the name may be a little bit misleading. If the
BH is surrounded by an optically thin emitting medium, the
boundary of the shadow corresponds to the photon capture
sphere as seen by a distant observer. The ray-tracing calcu-
lations of the direct image of a Kerr BH surrounded by an
optically thin emitting medium are shown in Fig. 16; here the
spin parameter is a� ¼ 0.998 and the viewing angle is
i ¼ 45°. While the intensity map of the image depends on
the properties of the accretion structure and the emission

mechanisms, the boundary of the shadow is determined only
by the spacetime metric and the viewing angle of the observer.
An accurate measurement of the direct image of the accretion
flow around a BH candidate can thus test the spacetime
geometry around the compact object.
Submillimeter very long baseline interferometry (VLBI)

facilities should be able to resolve the shadow of SgrA� in
the next few years (Doeleman et al., 2008). While it is currently
not clear the effects of inevitable astrophysical complications
and the level of accuracy that can be reached in themeasurement
of the boundary of the image of the photon capture sphere in the
observer’s sky, there has been much work to explore the
possibility of testing the Kerr metric with the detection of a
shadow and to calculate the shadows of non-Kerr BHs (Bambi
and Freese, 2009; Schee and Stuchlík, 2009; Amarilla, Eiroa,
and Giribet, 2010; Bambi and Yoshida, 2010; Johannsen and
Psaltis, 2010;Amarilla andEiroa, 2012, 2013;Bambi,Caravelli,
and Modesto, 2012; Abdujabbarov et al., 2013; Atamurotov,
Abdujabbarov, and Ahmedov, 2013a, 2013b; Bambi, 2013e; ;
Wei and Liu, 2013; Li and Bambi, 2014a; Tsukamoto, Li, and
Bambi, 2014; Ghasemi-Nodehi, Li, and Bambi, 2015).
In order to infer the spin and the deformation para-

meters from a possible precise detection of the shadow of a
BH, it is necessary to have a formalism to describe the
boundary of the shadow.22 A simple approach was proposed
by Ghasemi-Nodehi, Li, and Bambi (2015) and illustrated in
Fig. 17 [a more sophisticated method was presented by
Abdujabbarov, Rezzolla, and Ahmedov (2015)]. First, we
find the “center” C of the shadow. Its Cartesian coordinates on
the image plane of the observer are

FIG. 16. Ray-tracing calculations of the direct image of a Kerr BH
surrounded by an optically thin emitting medium. The dark area is
theBHshadowand its boundary corresponds to the apparent photon
capture sphere. From Falcke, Melia, and Agol, 2000.

22In what follows, we consider the boundary of the image of the
photon capture sphere in the observer’s sky, which has a well-defined
border. If one fires a photon inside such a boundary, the photon is
captured by the BH; if the photon is fired outside, it can then escape to
infinity. In order to use such a description to analyze real data, itwouldbe
necessary to define a precise link between the boundary of the dark area
in the direct image (real or simulated) of the accretion flow and the
boundary of the image of the photon capture sphere in the observer’s sky.
The intensitymapof the image depends on the properties of the accretion
flow and the observational facilities (in particular, on the wavelength of
the observation), and there are no such data available today.
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XC ¼
R
ρðX; YÞXdXdYR
ρðX; YÞdXdY ; YC ¼

R
ρðX; YÞYdXdYR
ρðX; YÞdXdY ; ð26Þ

where ρðX; YÞ ¼ 1 inside the boundary of the shadow (which
is a closed curve) and ρðX; YÞ ¼ 0 outside. Assuming a

reflection-symmetric spacetime, the shadow is symmetric
with respect to the X axis and we can define Rð0Þ as the
shorter segment between C and the shadow boundary along
the X axis. Defining the angle ϕ as shown in Fig. 17, RðϕÞ is
the distance between the point C and the boundary at the angle
ϕ. The function RðϕÞ=Rð0Þ completely characterizes the
shape of the BH shadow. Here we consider RðϕÞ=Rð0Þ
instead of RðϕÞ because the latter cannot be measured with
good precision, as it would require an accurate measurement
of the distance and the mass of the BH, which is not available
at the moment. Even the exact positions of the shadow on the
image plane of the observer cannot be used to test the Kerr
metric, because it is difficult to precisely identify the center
X ¼ Y ¼ 0 of the source.
Figure 18 shows some examples of shadows of CPR BHs

and the associated RðϕÞ=Rð0Þ function. In the top panels,
the spin parameter is a� ¼ 0.5, while in the bottom panels it
is a� ¼ 0.9. The inclination angle is always i ¼ 85°, which
is high and can thus maximize the relativistic effects. In the
left panels, ϵt3 changes and ϵr3 ¼ 0 is frozen. In the right
panels, we have the opposite case and ϵt3 ¼ 0 and ϵr3 can
vary. It is evident that ϵt3 mainly affects the size of the
shadow, which increases (decreases) if ϵt3 decreases
(increases). ϵr3 alters the shape of the shadow on the side

FIG. 17. The function RðϕÞ is defined as the distance between
the center C and the boundary of the shadow at the angle ϕ as
shown in this picture. See the text for more details. From
Ghasemi-Nodehi, Li, and Bambi, 2015.

FIG. 18. BH shadows and R functions for CPR BHs with different values of the spin parameter a�, the deformation parameters ϵt3 and
ϵr3, and the inclination angle i. From Ghasemi-Nodehi, Li, and Bambi, 2015.
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of corotating orbits, while there are no appreciable effects in
the other parts of the boundary of the shadow. The peculiar
boundary appearing for ϵr3 ¼ 2 and 5 in the bottom right
panel is due to the nontrivial horizons of these BHs (Bambi
and Modesto, 2011).
Note that VLBI observations do not directly image the

accretion flow, and therefore they cannot directly measure the
shape of the boundary of the shadow discussed in this section.
They instead sample the Fourier space conjugate to the sky
image at a finite number of points. The boundary of the
shadow can be obtained after image reconstruction. However,
as mentioned, it is not clear whether a precise determination of
the boundary of the shadow at the level necessary to test the
Kerr metric is eventually possible, because systematic effects
may prevent it.
The Event Horizon Telescope (EHT)23 is a project involv-

ing mm and sub-mm observatories equipped with VLBI
instrumentation to get high resolution images of the accretion
flow around supermassive BH candidates at 230 and 345 GHz
(Fish et al., 2013). One of the main goals of this experiment is
the observation of the shadow of SgrA�. The existing mm-
VLBI observations have been done with only three stations
(in Hawaii, California, and Arizona). Employing a radiatively
inefficient accretion flow model, Broderick et al. (2014)
explored the capability of present observations to constrain
possible deviations from the Kerr geometry. They used the
quasi-Kerr metric of Glampedakis and Babak (2006). In their
simulations, we cannot see the exact shape of the apparent
photon capture sphere because at the wavelengths accessible

to mm VLBI it is partially obscured by the optically thick
structure on the approaching side of the accretion flow. The
result of this analysis is shown in Fig. 19.

B. Accurate measurements in the weak field

The nature of SgrA� can be potentially investigated even
with accurate measurements of the spacetime metric at
relatively large radii. In this case, the gravitational field is
weak M=r ≪ 1, and we can adopt an approach similar to the
PPN formalism of Solar System experiments. If a spacetime is
stationary, axisymmetric, asymptotically flat, Ricci flat out-
side the source, and analytic about the point at infinity, its
metric in the region outside the source can be expanded in
terms of mass momentsMl and current moments Sl (Geroch,
1970; Hansen, 1974).24 In the case of reflection symmetry, the
oddM moments and the even S moments are identically zero,
so that the leading order terms are the massM0 ¼ M, the spin
angular momentum S1 ¼ J, and the mass-quadrupole moment
M2 ¼ Q. In the case of a Kerr BH, the metric is completely
determined by M and J, and all the moments Ml and Sl are
locked to the mass and the spin by

Ml þ iSl ¼ M

�
i
J
M

�
l
; ð27Þ

where i is the unit imaginary number. In particular, the mass-
quadrupole term is Q ¼ −J2=M.
This approach has the advantage that it is quite general and

relies on the small number of assumptions. Even the require-
ment of the Ricci-flat spacetime may approximatively hold in
many cases. Here the spin measurement is really a spin
measurement, and it should not be correlated to possible
deviations from the Kerr solution in the near horizon region
because the latter corresponds to higher order corrections.
Such a measurement could be combined with a measurement
in the strong gravity regime, which is usually a constraint on
the spin and possible deviations from the Kerr geometry. In
some favorable cases, it could be possible to also determine
the mass-quadrupole moment Q. This could permit us to test
the Kerr metric at the quadrupole term, because in the case of a
Kerr BH one must recover Q ¼ −J2=M. Higher order terms
can unlikely be tested, but clean measurements of J and Q

FIG. 19. Posterior probability density of spin and deformation
parameters, marginalized over all other quantities, from the
existing EHT data. The solid, dashed, and dotted white lines
correspond, respectively, to the 1σ, 2σ, and 3σ boundaries. The
dashed gray lines correspond (from top to bottom) to spacetimes
with rISCO=M ¼ 6, 5, and 4. The grayed region in the lower right
corresponds to a metric with rISCO=M < 4 and it is neglected
because the calculations may be affected by some pathological
properties of this non-Kerr metric. Here ϵ is the deformation
parameter of the non-Kerr metric of Glampedakis and Babak
(2006). From Broderick et al., 2014.

23http://www.eventhorizontelescope.org/.

24The expansion in multipole moments is also possible when the
spacetime is not axisymmetric, but in this case the mass and the
current moments of order l are tensors. If the spacetime is
axisymmetric, there are some simplifications, and the mass and
the current moments of any order l are completely determined by
two scalars, namely, Ml and Sl. In the case of tests of the Kerr
metric in the weak field, it is common to assume that the spacetime
is axisymmetric, because it sounds like a physically plausible
hypothesis and simplifies the problem. Also note that some
assumptions may not hold in some relevant cases. For instance,
BH solutions in alternative theories of gravity may not be Ricci flat,
and an example is the case of BHs in Einstein-dilaton-Gauss-Bonnet
gravity. The analyticity assumption may also not hold, as in the case
of the presence of a massive scalar field with a Yukawa-type
solution.
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would instantly be very helpful if combined with observations
in the strong gravity field.

1. Radio pulsars

It is thought that a population of radio pulsars is orbiting
SgrA� with a short orbital period and there is already an
intense work to detect these objects (Lorimer and Kramer,
2005). For instance, Chennamangalam and Lorimer (2014)
argued that there may be ∼200 pulsars in the inner parsec
region (orbital period ≲104 yrs). Accurate timing observa-
tions of a radio pulsar orbiting SgrA� in a very close orbit
(≲1 yr) would allow a precise measurement of the mass, the
spin, and—in exceptional cases—even of the mass-quadru-
pole moment of the supermassive BH candidate at the center
of our Galaxy if the system is sufficiently free of external
perturbations (Liu et al., 2012).
Because of the high electron density in the ionized gas at

the center of the Galaxy, this kind of observation must be
made at much higher frequencies than those normally used for
pulsar timing, which further challenges these measurements.
A more serious problem is the possible presence of a
population of stars or BHs orbiting very close to SgrA�.
The presence of these bodies may strongly affect, or even
prevent, a clean measurement of the spin and the quadrupole
moment of SgrA� with the radio pulsar. At the moment it is
impossible to make predictions about the potentialities of
future observations because we do not know the actual
situation near SgrA�.
Assuming a population of 103 objects with a mass M ¼

M⊙ isotropically distributed within 1 mpc around SgrA�, Liu
et al. (2012) estimated the necessary orbital period of the
pulsar to get a measurement of the mass, the spin, and the
quadrupole moment of SgrA�. Figure 20 shows the time scales
of secular orbital precession for a pulsar orbiting SgrA� as a
function of its orbital period: the contributions are from the
mass monopole M (pericenter advance), the spin S (frame
dragging), the quadrupole moment Q, and stellar perturbation
P. The orbital eccentricity is assumed to be 0.5. The

precession time scale of the pericenter advance is already
lower than that of stellar perturbation for a 10 year orbital
period, which means that the observation of a radio pulsar
with an orbital period less than 10 years can already be used to
estimate the BH mass M. The measurement of the spin
requires an orbital period less than 0.5 years to have the
contribution from frame dragging significantly above that
from stellar perturbation. The measurement of the quadrupole
momentQ requires an orbital period less than 0.1 years. These
estimates have to be taken as a general guide and the actual
situation may be different. For instance, a population of 10M⊙
BHs in this region may completely spoil the measurement of
the parameters of the metric around SgrA�, as well as a
significant anisotropy in the distribution of these bodies may
challenge it.
Assuming a not too optimistic situation, in which we can

observe a radio pulsar in an orbit of several months, timing
observations could measure the mass and the spin of SgrA�.
Since the pulsar is in the weak field of SgrA�, this would be a
clean measurement of the spin parameter a�, namely, inde-
pendent of the higher order multipole moments of the
spacetime. First, such a measurement should satisfy the
Kerr bound ja�j ≤ 1, because otherwise SgrA� could not be
a Kerr BH. Second, the spin measurement could be combined
with other observations of the strong field (shadow, hot spot,
etc.) in which there is typically a strong correlation between
the estimate of the spin and possible deviations from the Kerr
solution to break such a degeneracy. In this manner we could
test the Kerr metric.

2. Normal stars

Even normal stars in compact orbits can be used to probe
the weak gravitational field of SgrA� and measure its spin
parameter and, possibly, its mass-quadrupole moment. The
idea was proposed by Will (2008) and further explored by
Angélil, Saha, and Merritt (2010) and Merritt et al. (2010).
If SgrA� is rotating fast, the observation of at least two stars

with an orbital period of 0.1 years or less and in orbits with a
high eccentricity, say ∼0.9, may provide a measurement of the
mass, the spin, and the mass-quadrupole moment of SgrA�

and thus test the Kerr nature of this object at the level of the
quadrupole term. Today we know stars with an orbital period
as short as 10 years. These objects are still too far from SgrA�

and currently no relativistic effects in their orbit are observed
(but they should be observed in the near future). However,
observational facilities like GRAVITY (Eisenhauer et al.,
2008), with the capability of accurate astrometric measure-
ments at the level of 10 μas close to SgrA�, may observe stars
with a sufficiently short orbital period to test the Kerr metric.
Will (2008) proposed to test the Kerr metric by measuring

the precession of the orbital plane of these stars. The advance
of the pericenter of these stars is dominated by the mass term
of the supermassive object, while the contribution of the spin
and the quadrupole moment would be subdominant and
difficult to estimate. On the contrary, in the weak field limit,
the precession of the orbital plane is determined only by the
spin (through the frame dragging) and the mass-quadrupole
moment; see Will (2008) for the details. Here the dominant
contribution comes from the spin, but in the case of
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FIG. 20. Precession time scale from the mass (M), the spin (S),
the quadrupole moment (Q), and stellar perturbation (P) for a
pulsar orbiting SgrA� as a function of orbital period Pb, assuming
an orbital eccentricity of 0.5 and 103 objects, all with mass
M ¼ M⊙, within 1 mpc around SgrA�. From Liu et al., 2012.
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sufficiently compact orbits it is also possible to infer the mass-
quadrupole moment Q. As in the pulsar case, a measurement
of the spin could already be useful in combination with other
measurements probing the strong gravity field. In the case a
quadrupole moment measurement is also available, one can
check a posteriori whether it satisfies the Kerr relation
Q ¼ −J2=M.
Recently, Zhang, Lu, and Yu (2015) showed that measure-

ments of the spin of SgrA� are possible even with stars with
orbital configurations similar to those already known, as in the
case of long-term high precision observations.

C. Hot spots

SgrA� exhibits powerful flares in the x-ray, near-infrared,
and submillimeter bands (Genzel et al., 2003; Dodds-Eden
et al., 2010; Trap et al., 2011). During a flare, the flux
increases up to a factor of 10. There are a few flares per day.
Every flare lasts 1–3 hours and has a quasiperiodic sub-
structure with a time scale of about 20 minutes; see Fig. 21.
These flares may be associated with blobs of plasma orbiting
near the ISCO of the supermassive BH candidate (Hamaus
et al., 2009), even if current observations cannot exclude other
explanations (Markoff et al., 2001; Tagger and Melia, 2006;
Yusef-Zadeh et al., 2006). Temporary clumps of matter should
indeed be common in the region near the ISCO radius (De
Villiers, Hawley, and Krolik, 2003) and, if so, they may be
studied by the GRAVITY instrument for the ESO Very Large
Telescope Interferometer (VLTI) (Eisenhauer et al., 2008).
The radiation emitted by a blob of plasma orbiting the

strong gravity region of a BH candidate is significantly
affected by the metric of the spacetime and can potentially
be used to test the Kerr metric (Li, Kong, and Bambi, 2014).
Figure 22 shows the spectrogram, namely, the spectrum as a
function of time, of a monochromatic blob of plasma orbiting
the ISCO of a Schwarzschild BH and observed at a viewing
angle of i ¼ 60°. An accurate measurement of the spectro-
gram of a similar blob of plasma would surely be an ideal tool

to test the metric around SgrA�. However, in the reality the
situation is much more complicated. The astrophysical model
(shape and size of the blob of plasma, spectrum of the blob of
plasma in its rest frame, etc.) is usually much more important
than the small features associated with the relativistic effects
characterizing the background metric (Li, Kong, and
Bambi, 2014).
At the moment, it is not clear if tests of the Kerr metric are

possible with this approach. In some spacetimes, the photon
capture radius can be significantly different from that of Kerr
BHs, and in this case it is possible to identify specific signatures
of these metrics (Li and Bambi, 2014b; Liu, Li, and Bambi,
2015). In general, it seems more likely that relativistic effects
cannot really be identified and eventually the radiation from a
blob of plasma can provide only an estimate of the orbital
frequency. Since the observed period of the quasiperiodic
substructure of the flares of SgrA� ranges from 13 to about
30 minutes, the orbital radius of these hot spots should change
and be at a radius larger than the ISCO. For a 4 × 106 M⊙ Kerr
BH, the ISCO period ranges from about 30minutes (a� ¼ 0) to
4 minutes (a� ¼ 1 and corotating orbit). The shortest period
evermeasured is 13� 2minutes, and it may be an upper bound
for the ISCO period. In the Kerr metric, such a measurement
translates into the spin estimate a� ≥ 0.70� 0.11 (Trippe
et al., 2007).
In the case of a metric with a nonvanishing deformation

parameter, there is a degeneracy between the estimate of the
spin and possible deviations from the Kerr solution. An
example of the possible constraints is shown in Fig. 23.
Such a degeneracy may be broken with another measurement,
for instance, a precise estimate of the spin parameter by the
observation of a radio pulsar. The latter would be independent
of the deformation parameter ϵ3 because the pulsar would
probe the weak field limit, where the metric can be expanded
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FIG. 22. Spectrogram of a hot spot orbiting a Schwarzschild BH
at the ISCO radius from an inclination angle i ¼ 60°. The vertical
axis is the ratio between the photon energy measured by a distant
observer and the photon energy at the emission point. The color
scale indicates the energy flux (in arbitrary units). We see two
tracks because one is the spectrogram of the primary image, the
other one is for the secondary image. The points labeled 1–5 refer
to another figure in the original paper and can be ignored here.
From Li, Kong, and Bambi, 2014.

FIG. 21. Light curve of a near-infrared flare of SgrA� with the
characteristic quasiperiodic substructure with a time scale of about
20 minutes. The arrows at the bottom indicate the peaks of the
substructure. From Genzel et al., 2003 and Gillessen et al., 2010.
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in M=r. The leading order term in ϵ3 is subdominant with
respect to the leading order term in a� ¼ J=M2 and the pulsar
data may not be able to measure ϵ3.

D. Spectrum of the accretion structure

Today the two most popular and widely used techniques to
probe the metric around BH candidates are the continuum-
fitting and the iron line methods. Both approaches require
geometrically thin and optically thick accretion disks and
employ the Novikov-Thorne model. However, any accretion
structure determined by the metric of the spacetime can
potentially be used to test BH candidates.
The accretion structure around SgrA� seems to be a

radiatively inefficient advection dominated accretion flow
(Narayan, Yi, and Mahadevan, 1995). There are a few
different analytic models, with several variants, in the liter-
ature (Yuan and Narayan, 2014). In principle, one could use a
model to fit the data and infer the free parameters of the model,
including those related to the geometry of the spacetime. An
explorative work in this direction was presented by Lin, Li
et al. (2015), which employs the ion torus model of Straub
et al. (2012) and Vincent et al. (2015).
This approach currently faces a few problems. First, we do

not know the correct model, and different models presumably
provide different results. Second, even simple analytical
models have several free parameters that should be inferred
by fitting the spectrum. The Novikov-Thorne model for thin
disks follows from basic rules such as the conservation of
mass, energy, and angular momentum; the model is already
quite constrained with a reasonable number of free parame-
ters. The accretion structures necessary to describe the flow

around SgrA� are more complicated and unconstrained. The
advantage is that the spectrum of the accretion structure
around SgrA� seems to have many features and this may
break the degeneracy among the parameters of the model. For
the moment, there is no accurate measurement of the full
spectrum, and therefore it is impossible to constrain the
model. However, this is presumably possible in the future.

V. OTHER APPROACHES

A. Tests in weak fields

SgrA� is not the only BH candidate for which we may get
accurate measurements at relatively large radii. However, in
the case of other BH candidates we may not be so fortunate as
to have independent measurements in the strong gravity field.
In order to test the Kerr metric with these objects, we need to
have measurements good enough to determine M, J, and Q.
One can then check a posteriori whether Q ¼ −J2=M, as
expected in the case of a Kerr BH.
The ideal candidate for this kind of test is a pulsar binary in

which the companion is a stellar-mass BH candidate (Wex and
Kopeikin, 1999). A similar system is not known at the
moment, but it should not be too rare and there is no reason
to believe that it cannot be found in the future. It is also
possible that the signal of a binary pulsar with a BH
companion is already in the available radio data, but the data
have not yet been analyzed. The identification of a new pulsar
is a very time-consuming process. After the measurement of
the period of the pulsar, it is just an issue of time and accurate
measurements of the system can be obtained thanks to the fact
that a pulsar is like a precise clock.
Even if the uncertainty is large in comparison with what

could be possible with a pulsar binary, the measurement of the
mass-quadrupole moment of a BH candidate has been done by
Valtonen et al. (2010) and it could be relatively improved in
the future (Valtonen et al., 2011). The object is the super-
massive BH candidate in the quasar OJ287. Optical obser-
vations show a quasiperiodic light curve characterized by two
time scales, one of ∼12 and another of ∼60 years. The
interpretation is that the system is a binary BH, with the
secondary BH orbiting the more massive primary one with an
orbital period of ∼12 and a periastron precession of ∼60 years
(Lehto and Valtonen, 1996). The observed major outbursts
occurring every ∼12 years are thought to be due to the
secondary BH that crosses the accretion disk of the primary.
Within this interpretation, Valtonen et al. (2010) employed a
2.5 PN (post-Newtonian) accurate orbital dynamics to fit
current observational data. Since the mass-quadrupole
moment interaction term enters at the 2 PN order, it is possible
to constrain the mass-quadrupole moment of the primary BH.
Writing the quadrupole moment as Q ¼ −qðJ2=MÞ, where
q ¼ 1 for a Kerr BH, current observational data provide the
measurement (Valtonen et al., 2010)

q ¼ 1� 0.3; ð28Þ

namely, the mass-quadrupole moment is tested at the level of
30%. In the next few years, this test could be improved at the
level of 10% (Valtonen et al., 2011).

FIG. 23. Assuming that the hot spot is at the ISCO radius, the
measurement of its light curve can select only the spacetimes with
the same orbital frequency. In this plot, the reference model
employs a Kerr BH with spin parameter a� ¼ 0.4. The allowed
regions are those between the two dotted blue lines (Δχ2 < 1)
and the two dashed red lines (Δχ2 < 10). The possible meas-
urement of the spin through a binary pulsar would provide the
constraint given by the shaded yellow area, and the combination
of the two observations could potentially break the degeneracy
between a� and ϵ3. See the text for more details. From Li, Kong,
and Bambi, 2014.
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B. Black hole jets

Jets and outflows are quite a common feature of accreting
compact objects. In the case of stellar-mass BH candidates, we
observe two kinds of jets (Fender, Belloni, and Gallo, 2004).
Steady jets are observed when the source is in the hard state.
Transient jets typically appear when the source switches from
the hard to the soft state.
The actual mechanism responsible for the formation of

these jets is currently unknown. One of the most popular
scenarios is the Blandford-Znajek mechanism (Blandford and
Znajek, 1977), in which magnetic fields threading the BH
event horizon are twisted and can extract the rotational energy
of spinning BHs producing an electromagnetic jet. Numerical
simulations show that the process can be very efficient and
strongly depends on the BH spin (McKinney, 2005;
Tchekhovskoy, Narayan, and McKinney, 2010, 2011). The
Blandford-Znajek mechanism is usually considered for the
formation of steady jets. Other mechanisms do not involve
the BH spin but still require magnetic fields to collimate the jets.
Observations of a possible correlation between estimates of

jet power and BH spin measurements are controversial.
Fender, Gallo, and Russell (2010) claimed that there is no
evidence of a correlation between the jet power and the spin
measurements of BH binaries reported in the literature with
the continuum-fitting and the iron line methods; see also
Russell, Gallo, and Fender (2013) for more details. Narayan
and McClintock (2012) proposed that the Blandford-Znajek
mechanism may be responsible for the formation of transient
jets and showed that there is a correlation between jet power
and the most recent spin measurements with the continuum-
fitting method. The left panel in Fig. 24 shows the data used
by Fender, Gallo, and Russell (2010) for steady jets and
continuum-fitting spin measurements. The right panel shows
the data reported by Narayan and McClintock (2012).
The discrepancy between Fender, Gallo, and Russell (2010)

and Narayan andMcClintock (2012) can be easily understood.
The two groups used different spin measurements and a
different method to estimate the jet power. Moreover, as shown
in Fig. 24, we have only a few measurements with large error

bars. In the future, with a larger number of measurements of the
jet power and more precise spin estimates, it will be possible to
test the existence of a correlation between jet power and BH
spin; see Steiner, McClintock, and Narayan (2013).
If the actual mechanism responsible for the formation of

steady or transient jets is the Blandford-Znajek one, the
measurement of the jet power could be used to estimate the
BH spin if we assume the Kerr metric (Steiner, McClintock,
and Narayan, 2013) or to test the Kerr metric otherwise
(Bambi, 2012b, 2012c; Pei et al., 2016). The key point is that
the estimate of the jet power is (typically) quite independent of
the nature of BH candidates, while the measurement of the
spin depends on the background metric. If the Blandford-
Znajek mechanism is responsible for the formation of tran-
sient jets, as suggested by Narayan and McClintock (2012),
we can constrain possible deviations from the Kerr solution. If
BH candidates were not Kerr BHs, the spin measurements
would be different and we would lose the correlation between
BH spin and jet power; see Bambi (2012b). On the contrary, if
the Blandford-Znajek mechanism is responsible for the for-
mation of steady jets, the absence of a correlation between BH
spin and jet power found by Fender, Gallo, and Russell (2010)
can be explained with the fact that the estimate of the BH spin
is wrong, because it was obtained assuming the Kerr metric.
As shown by Bambi (2012c), if the continuum-fitting spin
measurements are reanalyzed in a non-Kerr background it is
possible to find a correlation between BH spin and jet power.
At present these are just speculations based on a small number
of data with large uncertainty, but they may provide some
interesting results in the future.

C. Evolution of the spin parameter

As seen, there is a strong connection between the spin and
possible deviations from the Kerr solution. In particular, most
observations are sensitive to both parameters and their
measurement is usually correlated. In actuality, the connection
between the spin and the deformation parameters is even
stronger. For instance, the Kerr metric with ja�j > 1 can
unlikely have astrophysical implications: as discussed in
Sec. II.C, it is not clear if a similar object can be created
by a physical mechanism and, even if it could be created, the
spacetime would be very unstable and would quickly evolve to
something else. The same considerations may hold for non-
Kerr BHs and other exotic compact objects. Depending on the
specific spacetime metric and gravity theory, there may be a
critical value of the spin parameter above which the scenario
cannot be relevant in astrophysics; even in the case its gravity
theory is right. Such a critical value may be either higher or
lower than 1, because ja�j ¼ 1 does not correspond to any
special property outside of the Kerr metric.
Neglecting possible instabilities, whichwould depend on the

unknown gravity theory, one may get a rough estimate of the
maximum BH spin as follows. Considering the astrophysical
processes that can spin up and down a BH, the most efficient
mechanism to create very fast-rotating bodies seems to be a
prolonged accretion from a thin disk (Berti and Volonteri,
2008). In theNovikov-Thornemodel, the inner edge of the disk
is at the ISCO radius. The gas’s particles reach the ISCO and
then immediately plunge onto the compact object with specific
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FIG. 24. Left panel: Data reported by Fender, Gallo, and Russell
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the power of steady jets and BH spin measurements of the
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and McClintock (2012) to claim the evidence for a correlation
between the power of transient jets and BH spin measurements of
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energy EISCO and specific angular momentum LISCO, namely,
with their value at the ISCO radius. The mass M and the spin
angular momentum J of the compact object change, respec-
tively, by

δM ¼ EISCOδm; ð29Þ

δJ ¼ LISCOδm; ð30Þ

where δm is the gas rest mass. The evolution of the spin
parameter turns out to be governed by the following equation
(Bardeen, 1970):

da�
d lnM

¼ 1

M
LISCO

EISCO
− 2a�; ð31Þ

where the small effect of the radiation emitted by the disk and
captured by the object is neglected. Prolonged disk accretion is
a very efficient mechanism to spin the compact object up till an
equilibrium spin parameter aeq� , which is reached when the
right-hand side of Eq. (31) becomes zero. If, for some reason,
the spin is a� > aeq� , the accretion process spins the compact
object down.
In the case of the Kerr metric, it is possible to integrate

Eq. (31) and find an analytic expression for the spin parameter
a� as a function of the BH mass M (Bardeen, 1970)

a� ¼
( ffiffi

2
3

q
M0

M

h
4 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
18

M2
0

M2 − 2

q i
if M ≤

ffiffiffi
6

p
M0;

1 if M >
ffiffiffi
6

p
M0;

ð32Þ

assuming an initially nonrotating BH with mass M0. In
Eq. (32), the equilibrium spin parameter is aeq� ¼ 1, which
is reached after the BH has increased its mass by a factor offfiffiffi
6

p
≈ 2.4 (Bardeen, 1970). If we include the effect of the

radiation emitted by the disk and captured by the BH, we
obtain the Thorne bound aeq� ≈ 0.998 (Thorne, 1974), because
radiation with angular momentum opposite to the BH spin has
a larger capture cross section.

One can repeat the calculations in a non-Kerr metric and
find the corresponding equilibrium spin parameter aeq� , which
may be either larger or smaller than 1 (Bambi, 2011c, 2011e).
In the case of the JP metric with nonvanishing ϵ3, the curve of
aeq� is the solid black line shown in Fig. 25. If the object is on
the left of the curve, an accretion disk spins it up to reach the
equilibrium spin parameter. If the object is on the right of the
curve, the accretion process spins the body down. As we can
see from Fig. 25, aeq� > 1 for ϵ3 < 0 and aeq� < 1when ϵ3 > 0.
Accretion from thick disks might be a little bit more efficient,
but the difference would be small (Li and Bambi, 2013a).
In the case of the supermassive BH candidates in galactic

nuclei, the initial value of their spin parameter is irrelevant, as
these objects have increased their mass by several orders of
magnitude and their spin parameter has evolved accordingly.
Prolonged disk accretion is the most efficient mechanism to
get a high spin and therefore we can conclude that these
objects currently cannot have a spin parameter larger than aeq�
(Bambi, 2011b). At the same time, it is possible to provide a
lower bound on their radiative efficiency, either as a mean
radiative efficiency from the Soltan argument (Elvis, Risaliti,
and Zamorani, 2002; Wang et al., 2006) or for specific sources
(Davis and Laor, 2011). The radiative efficiency of these
objects seems to be high, or even very high, but the exact
estimate is more controversial. Figure 25 shows the contour
levels of the Novikov-Thorne radiative efficiency ηNT ¼ 0.15
(solid red curves), 0.20 (dashed green curves), and 0.25
(dotted blue curves). The observed high radiative efficiency
constrains the spacetime geometry around supermassive
BH candidates (Bambi, 2011d, 2012d). Assuming the
conservative bound ηNT > 0.15 and imposing that a� < aeq� ,
from Fig. 25 we see that supermassive BH candidates are
constrained to be in the region bounded on the left by the solid
red curves of ηNT ¼ 0.15, and on the right by the solid black
lines of the equilibrium spin parameter. Moreover, it is
possible to estimate an upper bound for the spin parameter
of supermassive BH candidates, at the level of ja�j≲ 1.2 (1.1,
1.05) if one assumes the constraint ηNT ≳ 0.15 (respectively
0.20, 0.25), and this seems to be only very weakly dependent
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FIG. 25. JP BHs with deformation parameter ϵ3. The solid black line corresponds to the equilibrium spin parameter aeq� for a thin disk,
as inferred from Eq. (31). The solid red, dashed green, and dotted blue curves are, respectively, the contour levels of the Novikov-Thorne
radiative efficiency ηNT ¼ 0.15, 0.20, and 0.25. Supermassive BH candidates in galactic nuclei must be on the left of the solid black line
and observations show that their radiative efficiency can be high or even very high. The allowed region is thus on the left of the solid
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higher spin. See the text for more details. From Bambi, 2011b.
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on the exact non-Kerr metric adopted for the calculations
(Bambi, 2011b).
In the case of stellar-mass BH candidates, it is commonly

thought that the spin of the compact object is natal (King and
Kolb, 1999); however, see also Fragos andMcClintock (2015).
The point is that stellar-mass BH candidates have a mass
around 10M⊙. If the companion is a fewM⊙, the BH candidate
cannot significantly change its mass and spin angular momen-
tum even if it swallows the whole star. If the companion is
heavy, its lifetime is very short, and it is impossible to transfer
the necessary amount of material to spin the BH candidate up
even in the case of accretion at the Eddington rate. In the end, a
BH candidate cannot get more than a few M⊙ from the
companion star, and for a 10M⊙ object this is arguably not
enough to appreciably change its spin parameter for sufficiently
large values of spin (King and Kolb, 1999).
Moreover, while there are still uncertainties in the angular

momentum transport mechanisms of the progenitors of stellar-
mass BHs, it is widely accepted that the gravitational collapse
of a massive star with solar metallicity cannot create fast-
rotating remnants (Woosley and Bloom, 2006; Yoon, Langer,
and Norman, 2006). However, this is not what we observe.
Assuming the Kerr metric, we see BHs with spin close to 1;
see Table I. For instance, the BH candidate in GRS 1915þ
105 has a� > 0.98 andM ¼ ð12.4� 2.0ÞM⊙, while the stellar
companion’s mass is M ¼ ð0.52� 0.41ÞM⊙. In the case of
high-mass x-ray binaries, the BH candidate in Cygnus X-1 has
a� > 0.98 and M ¼ ð14.8� 1.0ÞM⊙, while the stellar wind

from the companion is not an efficient mechanism to trans-
fer mass.
A speculative possibility to explain this puzzle is to admit

that BH candidates are not the Kerr BHs of general relativity
(Bambi, 2015c). The top panels in Fig. 26 show the evolution
of the spin parameter (left panel) and the Novikov-Thorne
radiative efficiency (right panel) of a Kerr BH as a function of
the accreted mass for a few different BH initial masses. At the
beginning, the BH is assumed to be nonrotating. We can see
that a Kerr BH withM ∼ 12M⊙ and a� > 0.98 (corresponding
to a radiative efficiency ηNT > 0.234, which is the actual
quantity measured with the continuum-fitting method) had to
swallow about 6M⊙. The bottom panels are as the top ones for
a JP metric with ϵ3 ¼ ka2� and k ¼ 10. In this case, the object
needs to get a smaller mass from the companion, about 2M⊙,
to acquire a radiative efficiency to explain the Kerr measure-
ment of its spin. More detailed calculations confirm that such
an exotic scenario could explain this puzzle (Bambi, 2015c). If
it were possible to estimate the mass transfer to pass from a
BH with low radiative efficiency to a BH with high radiative
efficiency, it could be possible to test the Kerr metric.

VI. COMPARISON BETWEEN TESTS WITH
ELECTROMAGNETIC AND GRAVITATIONAL WAVE
OBSERVATIONS

The announcement by the LIGO and Virgo Collaboration of
the first direct detection of gravitational waves has opened a
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new window for testing gravity in the strong field regime
(Abbott et al., 2016a). Gravitational wave experiments now
promise to be able to perform precise tests within 5–10 years.
It is natural to wonder how such a breakthrough can affect the
attempts to test BH candidates with electromagnetic radiation
discussed in this review paper.
Note that in general it is not straightforward to compare the

capabilities of the gravitational wave and the electromagnetic
approaches to test BH candidates. As already pointed out in
Sec. II.D, they measure different things. Electromagnetic tests
are sensitive to the motion of particles (massive particles in the
accretion disk and photons propagating from the emission
point in the disk to the detection point in the flat faraway
region). Gravitational wave tests are sensitive to the field
equations of the gravity theory, and eventually one can study
the evolution of perturbations on the background metric.
In some alternative theories of gravity, BHs are still

described by the Kerr metric, but the emission of gravitational
waves is typically different (Barausse and Sotiriou, 2008): in
such a case, only the gravitational wave approach can test the
model. The contrary is also possible. The existence of non-
minimal interaction terms between the electromagnetic and
the gravitational fields or, more in general, the presence of
new fields leading to a violation of the weak equivalence
principle may affect the motion of photons and particles
without altering the emission of gravitational waves. In similar
frameworks, only the electromagnetic approach can detect
deviations from standard predictions.
Bearing in mind these fundamental differences between the

gravitational wave and the electromagnetic approaches, some
preliminary studies have already investigated the constraints
that can be inferred by the LIGO data of GW150914 and
compared with the constraining power of some electromag-
netic techniques.
Yunes, Yagi, and Pretorius (2016) considered a number of

alternative theories of gravity and showed that the data of
GW150914 can already strongly constrain some models. This
depends on the specific gravity theory under consideration,
because in some models the gravitational wave signal is very
different from that expected in general relativity, while in other
frameworks it is not.
Cardoso, Franzin, and Pani (2016) pointed out that the

ringdown signal from a binary coalescence, as in the case of
GW150914, cannot be seen as conclusive proof for the
formation of an event horizon after the merger. They showed
that universal ringdown waveforms indicate only the presence
of light rings, which can be possessed even by very compact
objects without horizon.
Konoplya and Zhidenko (2016) tried to test the Kerr metric,

independently of the gravity theory, from the signal of
GW150914. In the coalescence of a binary, we can distinguish
three stages: the post-Newtonian inspiral, the merger, and the
ringdown. The post-Newtonian inspiral may be the same in
many alternative theories of gravity if the metric deviates from
the Kerr solution only in the near horizon region (this is not
universally true and depends on the specific theory of gravity).
The merger is a very short and complicated stage. The
ringdown phase may be the most suitable to test strong
gravity. As a further simplification, Konoplya and
Zhidenko (2016) studied the quasinormal frequencies of a

scalar field in the deformed background. In general relativity
and in other theories of gravity, these frequencies are not much
different from those of the gravitational waves derived from
the field equations. However, this is not always true and there
are also examples of gravity theories in which the scalar field
quasinormal frequencies can be quite different from those of
the gravitational waves. The analysis of Konoplya and
Zhidenko (2016) showed that it is difficult to constrain
deviations from the Kerr solution from GW150914 because
the measurement of the spin and the deformation parameter
are correlated. This remains true even in the presence of the
detection of additional modes.25

Bambi and Nampalliwar (2016) and Cardenas-Avendano,
Jiang, and Bambi (2016b) studied the constraining power of,
respectively, iron lines and QPOs for the metric discussed in
Konoplya and Zhidenko (2016) in order to compare the
electromagnetic and the gravitational wave approaches. The
conclusions of these preliminary studies can be summarized as
follows. In the presence of high-quality data and the correct
astrophysical model, the iron line method can provide strong
constraints on the spin and the deformation parameter. The
technique may thus be able to compete, or to be comple-
mentary to, the gravitational wave approach. The necessary
high-quality data may be already available in the case of BH
binaries. The systematics is currently the main concern about
this approach and there is not a common consensus if
eventually one can really get reliable and accurate measure-
ments of the background metric. QPOs can provide very
precise measurements, but they are not able to break the
degeneracy between the spin and possible deviations from the
Kerr metric. The parameter degeneracy cannot be broken even
imagining some very accurate frequency measurements in the
future.

VII. SUMMARY AND CONCLUSIONS

Astrophysical BH candidates can be naturally interpreted as
the Kerr BHs of general relativity. However, a direct obser-
vational evidence that the spacetime geometry around these
objects is really described by the Kerr solution is still lacking
and, at the same time, a number of theoretical models suggest
the possibility of new physics and macroscopic deviations
from the Kerr background. In this paper, I have reviewed
current attempts to test the Kerr metric with electromagnetic
radiation. The spectrum of the accretion disk, but even of stars
orbiting close to a supermassive BH candidate, has features
that can be used to study the metric around these compact
objects and thus test the Kerr BH hypothesis.

A. Current constraints

Today, we do not have strong constraints on the actual
nature of BH candidates and on the spacetime geometry
around them. However, current observations are consistent

25The data of GW150914 are consistent with a single damped
sinusoid, which can be naturally interpreted as either the l ¼ m ¼ 2

mode or the l ¼ 2, m ¼ −2 mode since the event was a binary BH
merger.

Cosimo Bambi: Testing black hole candidates with …

Rev. Mod. Phys., Vol. 89, No. 2, April–June 2017 025001-33



with the Kerr BH hypothesis and can rule out some alternative
scenarios. In particular:

(1) A number of observations are consistent with the fact
that BH candidates have an event horizon (Narayan
and Heyl, 2002; Tournear et al., 2003; McClintock,
Narayan, and Rybicki, 2004; Narayan and McClin-
tock, 2008; Broderick, Loeb, and Narayan, 2009).
There is no direct proof, because such a proof is by the
definition of event horizon impossible, but many (not
all) alternative scenarios in which these objects would
not be BHs can be ruled out.

(2) Many compact objects made of exotic weakly inter-
acting matter can be ruled out because their spacetime
cannot reproduce the characteristic low energy tail of
the iron line profile expected in the x-ray spectrum of
very fast-rotating BHs (Bambi and Malafarina, 2013).
The gravitational field around these exotic objects is
never very strong (and indeed they have no horizon),
so photons cannot be strongly redshifted as is instead
expected when near BHs. Current data show that
sources with iron line profiles with a long low energy
tail are common and therefore it is possible to rule out
a number of exotic compact objects.

(3) The mass-quadrupole moment of the supermassive
BH candidate in the quasar OJ287 has been measured
and it is consistent with the Kerr prediction at the level
of 30% (Valtonen et al., 2010). This bound is weak,
because BHs of different types and from different
gravity theories are usually quite similar. However, if
we consider a compact object like a neutron star, the
value of its mass-quadrupole moment is a few times
that of a Kerr BH with the same mass and spin.

(4) The data of the thermal spectrum of the accretion disks
of the stellar-mass BH candidates in GRS 1915þ 105
and in Cygnus X-1 exclude the possibility of large
deviations from the Kerr solution (Bambi, 2014a;
Kong, Li, and Bambi, 2014). These observations
cannot constrain any kind of deformation, but they
can safely rule out some deformations with a strong
impact on the position of the ISCO radius.

(5) Even in the case of supermassive BH candidates we
can exclude some large deviations with a strong
impact on the ISCO radius. Very deformed objects
cannot have a high radiative efficiency. At the same
time, one can constrain the maximum value of their
spin parameter from considerations on the spin evo-
lution. The combination of these two arguments
is a limited allowed region on the spin parameter–
deformation parameter plane: eventually, very large
deviations from the Kerr solution are not permitted
(Bambi, 2011b).

B. Prospectives for the future

Current constraints mainly rule out the possibility that BH
candidates are certain compact objects made of exotic matter
and far from forming a horizon. Indeed, the gravitational
redshift experienced by photons emitted close to the surface of
these objects is surely very strong (points 1 and 2 in the
previous section). Rotation does not make these objects as

oblate as one should expect, for instance, in the case of a
neutron star, and this is consistent with the fact that these
objects are BHs (points 3–5). However, these constraints are
typically unable to distinguish BHs from different theories of
gravity. It is definitively challenging to reach accurate and
stringent constraints on the metric around these objects,
because it is necessary to have a very good astrophysical
model. The current situation of present techniques and future
prospectives can be summarized as follows:

(1) The continuum-fitting method is probably the best
technique available today to test BH candidates, but it
can be used only for the stellar-mass ones. Its weak
points are that mass, distance, and inclination angle of
the source must be obtained from independent mea-
surements (with current methods, the uncertainties are
usually large and systematic effects are possible), and
that corrections to the blackbody spectrum depend on
certain atmosphere models. With more precise mea-
surements of BH masses, distances, and viewing angle
in the future, it is possible to obtain stronger con-
straints on the spin (if we assume the Kerr metric) or
on the spin and possible deviations from the Kerr
solution. However, the spectrum is typically degener-
ate with respect to the spin and the deformation
parameters, so it is impossible to test the Kerr
spacetime without independent measurements of the
metric. This seems to be an intrinsic limitation of this
method.

(2) The analysis of the iron Kα line is potentially quite a
powerful tool to test the Kerr metric. It can be used for
both stellar-mass and supermassive objects. The main
problem is the astrophysical model and the systematic
effects. Currently there is no unanimous consensus on
the possibility of using this technique to get accurate
and reliable measurements of the metric around BH
candidates. Some assumptions are still to be proven,
such as the fact that the inner edge of the disk is at the
ISCO radius in the hard state. The intensity profiles
currently used are based on phenomenological mod-
els. Even the lamppost geometry is one among other
configurations. In the case of supermassive BH can-
didates and with current x-ray facilities, there is an
additional limitation due to the low photon number
count in the iron line. In the presence of the correct
theoretical model and high-quality data, the iron Kα
line may become a leading technique to test general
relativity.

(3) Since tests of the Kerr metric have to face the problem
of a strong degeneracy among the spin and possible
deviations from the Kerr background, the combination
of measurements sensitive to different relativistic
effects seems to be the key point to break the
parameter degeneracy and test the Kerr BH hypoth-
esis. From this point of view, SgrA� may be one of the
best sources to test the Kerr nature of BH candidates.
A number of new observations may be available in the
near future and the combination of these measure-
ments could test the nature of SgrA�.

(4) QPOs, pulsars, jet power, etc., are potential tools for
the future. Today we cannot use these techniques,
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either because the physical mechanism is not well
understood or because there are no current measure-
ments, or the measurements are not yet good enough.
Some of these techniques may eventually work and be
useful to test the Kerr metric. Other approaches may
remain just as an idea.
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