
Colloquium: Strongly interacting photons
in one-dimensional continuum

Dibyendu Roy

Max Planck Institute for the Physics of Complex Systems,
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Photon-photon scattering in vacuum is extremely weak. However, strong effective interactions
between single photons can be realized by employing strong light-matter coupling. These interactions
are a fundamental building block for quantum optics, bringing many-body physics to the photonic
world and providing important resources for quantum photonic devices and for optical metrology.
This Colloquium reviews the physics of strongly interacting photons in one-dimensional systems with
no optical confinement along the propagation direction. It focuses on two recently demonstrated
experimental realizations: superconducting qubits coupled to open transmission lines and interacting
Rydberg atoms in a cold gas. Advancements in the theoretical understanding of these systems are
presented in complementary formalisms and compared to experimental results. The experimental
achievements are summarized alongside a description of the quantum optical effects and quantum
devices emerging from them.
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I. INTRODUCTION

Photons, the carriers of the electromagnetic force, are
elementary particles with no charge and zero rest mass.
Photon-photon scattering in vacuum is extremely weak
(Karplus and Neuman, 1951; Schwinger, 1951; Iacopini
and Zavattini, 1979) and has, in fact, never been experimen-
tally observed at optical or lower frequencies (Zavattini et al.,
2012). This makes photons excellent long-distance carriers of
classical and quantum information. However, this seclusion of
photons poses substantial challenges for efficiently employing
them for information processing. In classical communication
networks, optical signals are often converted to electrical
signals, which can then be manipulated using solid-state
devices. However, existing conversion methods are inefficient
at the few-photon level and are ill suited for quantum
information processing. This has motivated scientists in a
number of fields, such as nonlinear quantum optics and cavity
quantum electrodynamics, to study effective photon-photon
interactions (Gibbs, 1985) with the ultimate goal of strong and
controllable coupling between single photons. Interactions
at the single-photon level are essential for a wide variety of
quantum optical applications. For instance, they form the
basis for all-optical quantum gates (Imamoḡlu et al., 1997)
and ḡenable metrology beyond the standard quantum limit
(Napolitano et al., 2011). They are also important from the*Present address.
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fundamental physics viewpoint, endowing photonic systems
with matterlike properties and realizing strong correlations
and quantummany-body behavior in light (Chang et al., 2008;
Carusotto and Ciuti, 2013).
Cavity quantum electrodynamics (QED) is a paradigmatic

discipline (Miller et al., 2005; Walther et al., 2006; Haroche
and Raimond, 2013) exhibiting effective photon-photon
interactions in the quantum regime (Birnbaum et al., 2005;
Schuster et al., 2008). In cavity QED, atoms are placed inside
a high-finesse electromagnetic resonator, in which the radi-
ation spectrum is discrete. Bouncing between the resonator
mirrors, a single photon effectively interacts with the atoms
many times, significantly enhancing the atom-photon cou-
pling. This in turn can generate strong correlations between
the photons. Cavity QED experiments with free atoms have
been carried out with alkali metals in optical cavities
(Thompson, Rempe, and Kimble, 1992; Mabuchi and
Doherty, 2002; Birnbaum et al., 2005; Dayan et al., 2008;
Schuster et al., 2008) and with Rydberg atoms in microwave
cavities (Nogues et al., 1999; Raimond, Brune, and Haroche,
2001; Guerlin et al., 2007; Deleglise et al., 2008). Cavity
QED experiments have also been conducted on a variety of
solid-state systems, including quantum dots (QDs) in photonic
crystals (Yoshie et al., 2004; Badolato et al., 2005; Englund
et al., 2007; Hennessy et al., 2007; Fushman et al., 2008;
Carter et al., 2013) and superconducting microwave circuits.
In the latter, known as circuit QED (Blais et al., 2004;
Chiorescu et al., 2004; Wallraff et al., 2004; Girvin,
Devoret, and Schoelkopf, 2009), superconducting qubits act-
ing as artificial atoms are coupled to microwave photons in
Fabry-Pérot cavities made of coplanar waveguides as shown
in Fig. 1(a). Both the fields of cavity and circuit QED have
been very successful, providing both significant fundamental
results and important advances in quantum information
science. Nevertheless, the cavities used to enhance the
coupling in these systems also present several disadvantages,
for instance, the narrow bandwidth of the emitted photons and
the problem of stochastic release of photons by the cavity
(Hoi et al., 2012). A related challenge is the coupling of
photons into and out of the cavities with high efficiency, as is
required to link large numbers of nodes in quantum networks
(Aoki et al., 2009).
Because of these limitations, much recent work has focused

on cavity-free systems. The coupling strength in these system
can be quantified by the extinction of a propagating photon by
a single emitter (1 − T), where T is the transmission coef-
ficient. Although the nomenclature is still settling, a reason-
able definition of strong coupling in these open systems is that

1 − T > 50%, which implies that the emission rate from the
atom into the desired mode is larger than the decoherence rate
associated with all other processes, including emission into
other modes. van Enk and Kimble (2001) and Zumofen et al.
(2008) showed theoretically that a single atom can fully block
(1 − T ¼ 100%) photons in open space, if their spatial and
temporal modes match the atomic radiation pattern, while a
tightly focused beam is limited to 1 − T < 85%. In both cases,
photons are transversely focused to an area A comparable with
the scattering cross section of the atom σa, and their electric
field becomes large enough to excite the atom with near unity
probability. The highest extinction by a single emitter exper-
imentally achieved in three-dimensional (3D) open space is
1 − T ¼ 30% (Maser et al., 2016).
A major barrier to higher extinction in open space is the

spatial-mode mismatch between the incident and scattered
waves. This problem was recently solved in two comple-
mentary ways, leading to strong coupling and photon-photon
interactions in cavity-free one-dimensional (1D) systems.
(i) Superconducting qubits in open transmission lines,

which are related to circuit QED systems, as illustrated in
Fig. 1(b). These systems enhance the coupling in two ways,
both inherited from circuit QED. Most importantly, super-
conductors can confine the microwave fields to deeply
subwavelength sizes in the transverse dimensions. This
produces a mode volume, in units of cubic wavelengths, that
is orders of magnitude smaller than that of 3D cavities or free
fields. In addition, transition dipoles of superconducting
qubits are much larger than those of real atoms. These effects
together allow for the observation of strong coupling
(Astafiev, Zagoskin et al., 2010), extinctions of 1 − T >
99% (Hoi et al., 2011), and strong photon-photon correlations
(Hoi et al., 2012).
(ii) Rydberg atoms excited by focused optical beams in a

dense atomic gas. In these systems, strong coupling is
achieved by greatly enhancing the size of the effective
scatterer, thereby achieving mode matching to collimated
light beams. The dipolar interaction between Rydberg atoms
prevents the excitation of more than one Rydberg atom inside
the volume of a so-called blockade sphere. With only zero or
one excitation, each blockade sphere thus acts as a “supera-
tom” (Vuletic, 2006). The weak coupling of photons to
each individual atom can sum up in a dense gas to a strong
effective coupling with the superatoms, leading to extinction
of 1 − T ≥ 95% (Baur et al., 2014). As long as the blockade
sphere is wider than the beam waist, as illustrated in Fig. 1(c),
the evolution is limited to the longitudinal 1D continuum.
Photon-photon interactions were observed in this system, with
photons either blocking (Peyronel et al., 2012) or spatially
attracting (Firstenberg et al., 2013) each other.
These cavity-free systems feature intrinsically nonequili-

brium, quantum many-body dynamics. The input field is
driven by either a laser or microwave generator, imposing a
nonequilibrium boundary condition on the propagating pho-
tons in 1D. Therefore, the study of photon-photon correlation
mediated by local light-matter coupling in 1D calls for
advanced quantum field theories in the strongly interacting
and nonequilibrium regimes. Traditionally, photon transport
in this type of system is studied by employing a master
equation that assumes a weak coherent state as input and

FIG. 1. (a) A superconducting qubit (marked with an arrow)
embedded in a one-dimensional transmission line waveguide.
A cavity is formed by two capacitive gaps in the middle
conductor. (b) Without the cavity. (c) Probe light focused through
a dense atomic cloud, exciting a single Rydberg atom within the
blockade sphere (dashed line).
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usually involves approximations such as linearization of
operator equations (see Sec. II.B for details) and the
Markovian approximation (Agarwal, 2013). Here we review
the recent progress in developing new analytical and numerical
techniques to study collective scattering of multiple photons
from two-, three-, or multilevel emitters in a 1D continuum.
This Colloquium presents an overview of this research,

emphasizing the systems discussed. Other 1D systems with
artificial atoms, which are outside the scope of this paper,
include QDs coupled to surface plasmons of a metallic
nanowire (Akimov et al., 2007; Akselrod et al., 2014;
Versteegh et al., 2014) or to line defects in photonic crystals
(Laucht et al., 2012; Arcari et al., 2014; Javadi et al., 2015;
Lodahl, Mahmoodian, and Stobbe, 2015), and QDs or nano-
crystals coupled to semiconductor or diamond nanowires
(Babinec et al., 2010; Claudon et al., 2010; Reithmaier
et al., 2015). In addition, strong coupling to single emitters
in 1D can also be achieved in an ion trap (Meir et al., 2014),
with cold atoms trapped inside (Bajcsy et al., 2009) or
near (Vetsch et al., 2010) an optical fiber, or with single
molecules doped in an organic crystal inside a glass capillary
(Faez et al., 2014).
In Sec. II, we summarize the theoretical approaches and

experimental results for systems with single emitters, along
with a systematic description of various phenomena and their
application to quantum information processing. Theories and
experiments with multiple emitters are presented in Sec. III in
the strong-coupling regime, and in Sec. IV in the weak-
coupling regime in systems of interacting Rydberg atoms.
We conclude with a short discussion on current research
challenges in Sec. V.

II. SINGLE EMITTER

A model configuration of a two-level emitter (2LE) side
coupled to photons in a waveguide is shown in Fig. 2(a). This
is a common model for superconducting qubits coupled to a
transmission line (Wallraff et al., 2004; Astafiev, Zagoskin
et al., 2010; Hoi et al., 2012) and for QDs coupled to surface
plasmons (Akimov et al., 2007). The model in Fig. 2(b) has
the 2LE directly coupled to the photons in the waveguide. This
model is popular for atomic cavity QED experiments
(Birnbaum et al., 2005) and is also often used in experiments
with line-defect photonic crystals (Faraon et al., 2007; Park
et al., 2008). The transmission and reflection of photons in the
side-coupled configuration can be mapped to those in the
directly coupled configuration (Shen and Fan, 2009).
Our model system also connects to a number of problems

important in condensed-matter physics, for instance, the
general problem of a quantum tunnel in open (dissipative)
systems (Caldeira and Leggett, 1983; Costi and Zarand, 1999)

and specifically the spin-boson problem (Leggett et al., 1987),
which has seen renewed importance in describing
decoherence in various implementations of quantum bits. In
the systems of interest in this Colloquium, the photons in the
1D continuum play the role of the bosonic bath in the
condensed-matter models. There are also exact analogies to
various other nonequilibrium quantum impurity models,
including the nonequilibrium Kondo model (Meir,
Wingreen, and Lee, 1991; Cronenwett, Oosterkamp, and
Kouwenhoven, 1998; Goldhaber-Gordon et al., 1998;
Mehta and Andrei, 2006; Dhar, Sen, and Roy, 2008;
Nishino, Imamura, and Hatano, 2011). We note, however,
that in the condensed-matter context the models are most often
concerned with the dynamics of the spin or impurity. In the
present work, we are most often concerned with the dynamics
of the bath itself, that is, the photons in the 1D continuum. In
addition, the bosonic fields considered in most condensed-
matter models are actually collective excitations of matter,
such as phonons. In that sense, experiments related to these
models are not generally concerned with light-matter
coupling.
A general Hamiltonian of a 2LE side coupled to photons in

a 1D continuum is given by ~H ¼ ~H0 þ ~H1, where

~H0 ¼
Z

dkℏωka
†
kak þ ℏð ~ωe − iγÞjeihej; ð1Þ

~H1 ¼
Z

dkℏVkða†kjgihej þ jeihgjakÞ: ð2Þ

The first term in Eq. (1) represents the propagating photon
fields of frequency ωk and wave vector k. The 2LE is
described by the second term in Eq. (1), with transition
frequency ~ωe between states jgi and jei. The iγ term accounts
for spontaneous emission into photon modes outside of the 1D
continuum, which dominates in atomic systems (Shen and
Fan, 2009). In Secs. II.B and II.E, we discuss how to treat pure
dephasing, which dominates in superconducting systems. The
interaction of the propagating photons with the 2LE is
governed by ~H1, which is written in the rotating-wave
approximation. This is valid for typical light-matter coupling
strengths available in recent experiments. Here ak ða†kÞ is the
photon annihilation (creation) operator, and the coupling
strength of a photon of wave vector k with the emitter is Vk.
The energy-momentum dispersion (ωk vs k) of photons in

various 1D waveguides is generally nonlinear and depends on
the properties of the waveguide. However, it is convenient to
assume linear dispersion to describe the first two theoretical
approaches discussed here. We can linearize the dispersion
near some arbitrary frequency ω0 with the corresponding
wave vector �k0 as shown in Fig. 3. The approximate
linearized dispersion of ωk around k0 (right-moving photons)
and −k0 (left-moving photons) reads

Z
k≃k0

ωka
†
kak ≃

Z
k≃k0

½ω0 þ vgðk − k0Þ�a†R;kaR;k;
Z
k≃−k0

ωka
†
kak ≃

Z
k≃−k0

½ω0 − vgðkþ k0Þ�a†L;kaL;k;
ð3Þ

VRVL
in

out

2LE
in

out

(b)

in
out

V
in

out

2LE
(a)

FIG. 2. Two configurations of emitter-photon coupling in an
open waveguide: (a) side coupled and (b) direct coupled.
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where a†R;k (a
†
L;k) creates a right- (left-) moving photon and vg

is the group velocity of photons at ω0. Thus we divide the
propagating photons into two oppositely moving modes
(channels). Next we extend the limits of the integration over
k to ð−∞;∞Þ for the left- and right-moving photons, as we are
interested only in photons with a narrow bandwidth in the
vicinity of ω0, and we make a change of variables k ∓ k0 → k
for the right- and left-moving photons.
The total excitation operatorNE¼

R
dk½a†R;kaR;kþa†L;kaL;k�þ

jeihej commutes with the linearized Hamiltonian ~H.
Subtracting the term ℏω0NE from the linearized ~H gives the
final Hamiltonian H ¼ ~H − ℏω0NE ¼ H0 þH1, where

H0

ℏ
¼

Z
∞

−∞
dkvgkða†R;kaR;k − a†L;kaL;kÞ

þ ðωe − iγÞjeihej;
H1

ℏ
¼

Z
∞

−∞
dk½Vkða†R;k þ a†L;kÞjgihej þ H:c:�;

ð4Þ

with ωe ¼ ~ωe − ω0.
Several interrelated theoretical techniques have been

employed in recent years for investigating correlated photon
dynamics in a 1D continuum. We can divide them into five
different groups: (a) multiparticle scattering theory in a
continuum (Shen and Fan, 2007a, 2007b; Yudson and
Reineker, 2008; Roy, 2010a; Zheng, Gauthier, and
Baranger, 2010), (b) the input-output formalism of quantum
optics (Fan, Kocabaş, and Shen, 2010; Koshino and
Nakamura, 2012; Peropadre et al., 2013), (c) an approach
based on the Lippmann-Schwinger equation (Roy, 2011a;
Zheng and Baranger, 2013), (d) a method based on the
Lehmann-Symanzik-Zimmermann reduction for the multi-
photon scattering process (Shi and Sun, 2009), and (e) the
time-dependent, wave-packet evolution approach (Longo,
Schmitteckert, and Busch, 2010). Scattering theory is a
well-known framework to study scattering of waves and
particles within the Schrödinger picture of quantum mechan-
ics, and it has been extensively applied in different branches
of physics. The input-output formalism was mainly developed
for understanding light-matter interaction, and it is based on
the Heisenberg picture. In what follows, we carefully discuss
these two techniques and the connection between them. We

briefly mention the applications of the other approaches
later on.

A. Scattering theory

In scattering theory, the scattering matrix S expresses how
an incoming state of monochromatic, free photons evolves via
a local interaction with atoms into a superposition of outgoing
monochromatic photons. The S matrix for scattering of an
N-photon state is defined by (Newton, 1982; Taylor, 2006)

SðNÞ
p;k ¼ hpjSjki; ð5Þ

where jki and jpi are incoming and outgoing photonic states,
respectively. Here the vectors k and p denote the incoming
and outgoing momenta of the N photons. These incoming
and outgoing states are considered to be free states in the
interaction picture, and they exist long before (t0 → −∞) and
long after (t1 → ∞) the scattering occurs. The operator

S ¼ lim
t0→−∞
t1→∞

UIðt1; t0Þ

is given by the time-evolution operator UI in the interaction
picture UIðt1; t0Þ ¼ eiH0t1=ℏe−iHðt1−t0Þ=ℏe−iH0t0=ℏ, and the
S matrix can be redefined as

hpjSjki ¼ hp−jkþi: ð6Þ

The scattering eigenstates jkþi and jp−i evolve in the
interaction picture from a free-photon state in either the
distant past or the distant future:

jkþi ¼ UIð0; t0Þjki ¼ eiHt0=ℏe−iH0t0=ℏjki ¼ Ωþjki;
jp−i ¼ UIð0; t1Þjpi ¼ eiHt1=ℏe−iH0t1=ℏjpi ¼ Ω−jpi;

where we drop the limits of t0, t1 for compactness and imply
t0 → −∞ and t1 → ∞ in all forthcoming similar expressions.
It is also possible to introduce input and output operators
a†im;inðkmÞ and a†om;outðpmÞ, respectively, which create the
incoming and outgoing scattering eigenstates such that

SðNÞ
p;k ¼ hpjSjki ¼ hp−jkþi

¼ hφjao1;outðp1Þ � � � aoN;outðpNÞa†i1;inðk1Þ � � � a
†
iN ;in

ðkNÞjφi;
ð7Þ

where jφi is the vacuum state, and

aim;inðkmÞ ¼ Ωþaim;kmΩ
†
þ; ð8Þ

aom;outðkmÞ ¼ Ω−aom;kmΩ
†
−; ð9Þ

with the commutation relations

½aim;inðkmÞ; a†in;inðknÞ� ¼ δðkm − knÞδim;in ;
½aom;outðpmÞ; a†on;outðpnÞ� ¼ δðpm − pnÞδom;on :

0k0k−

ωk

ω0

k

FIG. 3. Linearization of the dispersion relation of the waveguide
mode. The full dispersion relation ωk is shown by the dashed
curve. The linearized relations are denoted by the two solid lines
around the wave vectors �k0, corresponding to a frequency ω0.
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The indices im, om can take on the values L, R for
m ¼ 1; 2;…; N, depending on whether the mth incoming
or outgoing photon is left moving or right moving. The
connection of these input and output operators to those in the
input-output formalism will become clear in the next section.
Shen and Fan (2007a, 2007b) recently developed a method

inspired by the nonperturbative Bethe-ansatz calculation to
derive exact scattering eigenstates jkþi of a few photons. The
incoming and outgoing photon states can be obtained from the
scattering eigenstate jkþi. The dynamics of two photons in
this system are very different from those of a single photon, as
they become correlated via the collective scattering from the
2LE (Rupasov and Yudson, 1984a, 1984b; Deutsch, Chiao,
and Garrison, 1992; Cheng and Kurizki, 1995). The approach
we present treats the atom-photon dynamics in real space,
which is particularly convenient for discussing steady-state
photon transport from one space-time point to another.
We start with an ansatz for the full scattering eigenstate

jkþi ofH for a particular unscattered state jki ofH0. The total
number of photons N is conserved during the scattering
process when using the rotating-wave approximation. To
calculate different amplitudes of the scattering eigenstate,
we employ the time-independent Schrödinger equation
Hjkþi ¼ ℏvgðk1 þ k2 þ � � � þ kNÞjkþi with boundary con-
ditions that determine the propagation direction of the incident
photons. We now write down an effective representation of H
in real space, where the evolution of the incident photons is
more conveniently described. To this end, we take the photon
operators in momentum space to be the Fourier transforms of
real-space operators, for example,

aR;k ¼
1ffiffiffiffiffi
2π

p
Z

∞

−∞
dxaRðxÞe−ikx;

where aRðxÞ annihilates a right-moving photon at position x
(Shen and Fan, 2009). Thus, we find an effective real-space
Hamiltonian for a 2LE coupled to 1D continuum with linear
dispersion,

Heff

ℏ
¼ −i

Z
dxvg

�
a†RðxÞ

∂
∂x aRðxÞ − a†LðxÞ

∂
∂x aLðxÞ

�

þ ðωe − iγÞjeihej þ V½ða†Rð0Þ þ a†Lð0ÞÞjgihej þ H:c:�:
ð10Þ

We assumed here that the coupling Vk ≡ V=
ffiffiffiffiffi
2π

p
is indepen-

dent of the wave vector k (the Markov approximation).
The Hamiltonian Heff is non-Hermitian in the presence of
the dissipation term γ. In the following, we calculate jkþi
using the Hermitian Heff without γ, and subsequently replace
ωe by ωe − iγ in the final results (Rephaeli and Fan, 2013).
The incident photons can be injected in the right-moving

and/or left-moving channels. The nonequilibrium dynamics
can be probed in experiments by measuring the transmission
and reflection of photons at the opposite sides of the wave-
guide. For a side-coupled 2LE, the transmission coefficient
is calculated from the number of photons remaining in the
incident channel (or channels) after scattering, and the
reflection coefficient is determined by counting photons in

the opposite channel (or channels) after scattering. For
example, the transmission and reflection coefficients for N
right-moving incident photons are, respectively,

T ¼ hkþja†RðxÞaRðxÞjkþi
hkja†RðxÞaRðxÞjki

;

R ¼ hkþja†Lðx0ÞaLðx0Þjkþi
hkja†Rðx0ÞaRðx0Þjki

;

where the denominators are a measure of the incident
photon flux and are independent of x, x0. Here we choose
x > 0 and x0 < 0. Both T and R provide information only
about average photon transport in the waveguide. Assessing
other statistics of the scattered photons, such as fluctuations
in the photon number, requires calculating higher-order
correlation functions.
We now calculate the single-photon and two-photon scat-

tering eigenstates for the Hamiltonian Heff following Roy
(2010a) and Zheng, Gauthier, and Baranger (2010).
Single-photon dynamics: The state of an incident photon in

the right-moving channel is jki ¼ R
dxeikxa†RðxÞjφi=

ffiffiffiffiffi
2π

p
,

where jφi represents the photon vacuum with the 2LE in
the ground state. Considering different scattering processes,
we write an ansatz for the scattering eigenstate,

jkþi ¼
Z

dx½gRðxÞa†RðxÞ þ gLðxÞa†LðxÞ þ δðxÞekjeihgj�jφi;

where gRðxÞ and gLðxÞ are amplitudes for right-moving and
left-moving photons, respectively, and ek is the excitation
amplitude for the 2LE. Using the Schrödinger equation
Heff jkþi ¼ ℏvgkjkþi, we obtain three coupled linear equa-
tions for these three unknown amplitudes

vg

�
−i

∂
∂x − k

�
gRðxÞ þ VekδðxÞ ¼ 0;

vg

�
i
∂
∂x − k

�
gLðxÞ þ VekδðxÞ ¼ 0;

ðωe − iγ − vgkÞek þ V½gRð0Þ þ gLð0Þ� ¼ 0:

ð11Þ

Their solutions with the boundary conditions gRðx < 0Þ ¼
eikx=

ffiffiffiffiffi
2π

p
, gLðx>0Þ¼0 and the continuity relation gR=Lð0Þ ¼

½gR=Lð0þÞ þ gR=Lð0−Þ�=2 are

gRðxÞ≡ gkðxÞ ¼
eikxffiffiffiffiffi
2π

p ½θð−xÞ þ tkθðxÞ�;

gLðxÞ ¼
e−ikxffiffiffiffiffi
2π

p rkθð−xÞ;

ek ¼
1ffiffiffiffiffi
2π

p V
vgk − ωe þ iðγ þ ΓÞ ;

ð12Þ

where θðxÞ is the step function. Here Γ ¼ V2=vg, and we
identify 2Γ as the energy relaxation rate of the emitter into the
output channels. The transmission amplitude tk and reflection
amplitude rk are given by
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tk ¼
vgk − ωe þ iγ

vgk − ωe þ iðγ þ ΓÞ ; rk ¼ tk − 1; ð13Þ

yielding the normalized one-photon reflection and transmis-
sion coefficients

RðkÞ ¼ jrkj2 ¼
Γ2

ðvgk − ωeÞ2 þ ðγ þ ΓÞ2 ; ð14Þ

TðkÞ ¼ jtkj2 ¼
ðvgk − ωeÞ2 þ γ2

ðvgk − ωeÞ2 þ ðγ þ ΓÞ2 : ð15Þ

In the absence of loss (γ ¼ 0), RðkÞ þ TðkÞ ¼ 1, and the one-
photon reflection exhibits a Breit-Wigner-like (Lorentzian)
line shape around the resonance vgk ¼ ωe, as shown in Fig. 4.
An incident, resonant photon is totally reflected by the emitter.
Thus, a lossless side-coupled emitter behaves as a perfect
mirror for propagating photons in a 1D continuum (Shen and
Fan, 2005a, 2005b).
Several features of these one-photon line shapes, including

both the real and imaginary parts of tk and rk, were observed
in the optical regime in various cavity QED setups (Birnbaum
et al., 2005). For example, a 40% reflection of weak coherent
light was obtained with microtoroidal cavities interacting with
single cesium atoms (Dayan et al., 2008; Aoki et al., 2009), as
depicted in Figs. 5(a) and 5(b). The observation of photon
antibunching [Fig. 5(d)] in the reflected signal demonstrated
that it was dominated by single photons. The coupling to and
from the cavity was implemented with a tapered optical fiber
in the so-called overcoupled regime and thus dominated the
internal system losses (Aoki et al., 2009). The one-photon line
shapes were also demonstrated with a photonic crystal nano-
cavity coupled to a semiconductor QD (Englund et al., 2007;
Fushman et al., 2008). In a 1D continuum, strong scattering
of single photons by a single emitter was first observed for
microwave photons in superconducting circuits by Astafiev,
Zagoskin et al. (2010). Similar scattering line shapes were
later observed for microwave and optical photons in various
1D settings (Abdumalikov et al., 2010; Hoi et al., 2011;
Goban et al., 2014). This strong scattering of single photons
has been exploited to construct various all-optical quantum
devices, such as a one-photon quantum switch (Zhou et al.,
2008), quantum memory, and quantum gates (Koshino,
Ishizaka, and Nakamura, 2010; Ciccarello et al., 2012;

Zheng, Gauthier, and Baranger, 2013; Rosenblum, Borne,
and Dayan, 2015).
Two-photon dynamics: The dynamics of two photons

strongly coupled to a single emitter in 1D is interesting
and nontrivial. A 2LE is saturated by a single resonant photon,
and a second photon in the waveguide cannot be absorbed by
the excited emitter. Rephaeli and Fan (2012) showed that the
outcome of the interaction depends on the spectral bandwidth
of the second photon’s wave packet. If the extent of the wave
packet is much longer than the spontaneous emission lifetime
ðΓþ γÞ−1 of the emitter, the excited emitter first decays to the
ground state and then completely reflects the second photon.
In the opposite limit of an extremely short wave packet,
the emitter-photon interaction is inhibited, and the second
photon is fully transmitted. In both limits, the first and second
photons interact independently with the emitter and thus
remain uncorrelated. However, for the intermediate regime,
the second photon stimulates the relaxation of the emitter
to the ground state. The two photons then leave the emitter
simultaneously, becoming correlated. This stimulated
emission in a 1D continuum is special, as the emission
enhancement cannot be entirely attributed to photon indis-
tinguishability, but largely results from the photon correlation
generated by the emitter (Rephaeli and Fan, 2012).
We construct a two-photon scattering eigenstate in 1D that

covers all of the limits. First we write the incident state for two
photons with wave vectors k ¼ ðk1; k2Þ in the right-moving
channels

jki ¼
Z

dx1dx2ϕkðx1; x2Þ
1ffiffiffi
2

p a†Rðx1Þa†Rðx2Þjφi; ð16Þ
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FIG. 4. The reflection coefficient (solid line) and transmission
coefficient (dashed line) of a single photon propagating in a 1D
continuum with a side-coupled lossless two-level emitter.

FIG. 5. Reflection of single photons from a coherent-state input
by one atom near a microtoroidal cavity. (a) Transmission T 0ðtÞ
and (b) reflection R0ðtÞ of the probe field after averaging over
atom transit events with a selection criterion that the sum of the
counts over a time interval of 4 μs is equal to or greater than a
threshold count Cth shown in the legend of (a). (c), (d) The

second-order (intensity) correlation functions gð2ÞT;RðτÞ for the

transmitted and reflected fields. The dip in gð2ÞR ðτÞ around
τ ¼ 0 indicates anticorrelation in the detection of photons, which
is a signature of antibunching and indicates that the field is
dominated by single photons. Solid lines are a theoretical
calculation described in Aoki et al. (2009). Adapted from Aoki
et al., 2009.
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where ϕkðx1; x2Þ ¼ ðeik1x1þik2x2 þ eik1x2þik2x1Þ=ð2 ffiffiffi
2

p
πÞ. Our

ansatz for the two-photon scattering eigenstate is

jkþi ¼
Z

dx1dx2

�
gRRðx1; x2Þ

1ffiffiffi
2

p a†Rðx1Þa†Rðx2Þ

þ eRðx1Þδðx2Þa†Rðx1Þjeihgj
þ gRLðx1; x2Þa†Rðx1Þa†Lðx2Þ
þ eLðx2Þδðx1Þa†Lðx2Þjeihgj

þ gLLðx1; x2Þ
1ffiffiffi
2

p a†Lðx1Þa†Lðx2Þ
�
jφi; ð17Þ

where gRRðx1; x2Þ, gRLðx1; x2Þ, and gLLðx1; x2Þ are two-
photon amplitudes, and eRðx1Þ and eLðx2Þ are amplitudes
of right- and left-moving photons with the 2LE in the
excited state. These five unknown amplitudes can be found
by solving five coupled linear differential equations, obtained
from the two-photon stationary Schrödinger equation
Heff jkþi ¼ ℏvgðk1 þ k2Þjkþi. One can solve the differential
equations with boundary conditions gRRðx1; x2 < 0Þ ¼
ϕkðx1; x2Þ, gLLðx1; x2 > 0Þ ¼ 0, and gRLðx1 < 0; x2 > 0Þ ¼
0 for the unscattered state in Eq. (16), and continuity
relations for the amplitudes, e.g., gRRð0; xÞ ¼ gRRðx; 0Þ ¼
½gRRð0þ; xÞ þ gRRð0−; xÞ�=2. For example, the amplitudes
of the right-moving photons in terms of gkðxÞ and ek in
Eqs. (12) are

gRRðx1; x2Þ ¼
1ffiffiffi
2

p
�
gk1ðx1Þgk2ðx2Þ þ 2

Γ
vg

ek1ek2e
iðk1þk2Þxc

× eiðk1þk2−2ωe=vgÞx=2e−ðγþΓÞx=vgθðxÞθðx2Þ
�

þ ðx1 ↔ x2Þ; ð18Þ

eRðx1Þ ¼ ½gk1ðx1Þek2 þ gk2ðx1Þek1 �

þ 2i
V
vg

ek1ek2e
iðvgk1þvgk2−ωeþiγþiΓÞx1=vgθðx1Þ; ð19Þ

where xc ¼ ðx1 þ x2Þ=2 and x ¼ x1 − x2. We observe that the
second terms in gRRðx1; x2Þ and eRðx1Þ decay to zero with
increasing jx1 − x2j and jx1j, respectively. These terms are
regarded as two-photon bound states.
Recently, the existence of two-particle bound states in the

presence of a localized interaction was discussed in the
contexts of both photon (Shen and Fan, 2007b; Liao and
Law, 2010) and electron transport (Dhar, Sen, and Roy, 2008;
Nishino, Imamura, and Hatano, 2011). Because the interaction
is spatially confined, energy and momentum can be
exchanged and redistributed between the photons (with the
constraint of fixed total energy), enabling the development
of photon-photon correlations. The correlation strength
depends on Γ. Experimental evidence for the two-photon
bound state appears in second-order correlation measurements
and the transmission and reflection coefficients of the scat-
tered fields (Hoi et al., 2012; Firstenberg et al., 2013), which
we discuss later.
It is interesting to study the asymptotic behavior (away from

the emitter) of the two-photon scattering eigenstate

jkaþi ¼
Z

dx1dx2½rtðx1; x2Þa†Rðx1Þa†Lðx2Þ

þ r2ðx1; x2Þffiffiffi
2

p a†Lðx1Þa†Lðx2Þ

þ t2ðx1; x2Þffiffiffi
2

p a†Rðx1Þa†Rðx2Þ�jφi;

where t2ðx1; x2Þ, r2ðx1; x2Þ, and rtðx1; x2Þ are two-photon
amplitudes where, respectively, both photons are transmitted,
both are reflected, and one is transmitted and the other
reflected. When two degenerate incident photons are resonant
with the lossless emitter (vgk1 ¼ vgk2 ¼ ωe and γ ¼ 0), we
find (Shen and Fan, 2007a)

t2ðx1; x2Þ ¼ −
1ffiffiffi
2

p
π
e2iωexc=vge−Γjxj=vg ; ð20Þ

r2ðx1; x2Þ ¼
1ffiffiffi
2

p
π
e−2iωexc=vgð1 − e−Γjxj=vgÞ; ð21Þ

rtðx1; x2Þ ¼ −
1

π
eiωex=vge−2Γjxcj=vg . ð22Þ

Two important following points to notice from these expres-
sions are (1) the outgoing state is not a product state, and
(2) the transmitted photons are bunched, whereas the reflected
photons are antibunched. Here the separation x between the
two scattered photons is equivalent to a time delay between
them. When plotted versus x in Fig. 6, jt2ðx1; x2Þj2 shows a
cusp, and jr2ðx1; x2Þj2 shows a dip at x ¼ 0. For a side-
coupled 2LE, since r2ðx1; x2Þ arises entirely from emission
without any contribution from the incident photons, the
antibunching in r2ðx1; x2Þ confirms that a single emitter
cannot simultaneously emit two photons. On the other hand,
the behavior of t2ðx1; x2Þ and rtðx1; x2Þ involves interference
between the incident and emitted photons. The behaviors
of r2ðx1; x2Þ and t2ðx1; x2Þ in Fig. 6 agree qualitatively
with the experimentally measured two-photon correlations
gð2ÞðτÞ of reflected and transmitted photons, shown in
Figs. 5(c) and 5(d) and 12 for optical and microwave photons.
An exact multiphoton scattering state for 2LEs (Zheng,

Gauthier, and Baranger, 2010) and multilevel emitters (Zheng,
Gauthier, and Baranger, 2012; Roy and Bondyopadhaya,
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FIG. 6. Correlations between scattered photons in the lossless
resonant case. The calculated two-photon scattering coefficients
jt2j2 and jr2j2 are plotted vs the scaled separation Γðx1 − x2Þ=vg.
(a) Bunching of transmitted photons indicated by the peak in jt2j2
at x1 ¼ x2. (b) Antibunching of reflected photons indicated by
jr2j2 ¼ 0 at x1 ¼ x2.
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2014) has been derived, extending the scattering theory.
Multiphoton bound states appear in these multiphoton scatter-
ing states. The “brute force” technique we used for construct-
ing the scattering eigenstates becomes much more laborious
with increasing photon number N, as the possible scattering
configurations rapidly increase. An efficient method to
describe the evolution of an arbitrary initial state of the
present system was developed by Yudson and Reineker
(2008) using the algebraic Bethe ansatz. This elegant method
avoids both the difficulty of following numerous configura-
tions and the subtle problems of normalization and complete-
ness of states. However, with increasing photon number it
becomes very difficult to extract useful information from these
exact multiphoton scattering states, whether calculated using
the algebraic Bethe ansatz or scattering theory.
Coherent-state input: Coherent states are an important class

of multiphoton states, describing the output of both an
ideal laser and a microwave generator. They are thus com-
monly used as an input in experiments. Zheng, Gauthier, and
Baranger (2010) formulated the scattering of a weak coherent-
state wave packet by a 2LE using the S matrix in scattering

theory. The incident wave packet is jαi ¼ ea
†
α−n̄=2jφi, where

n̄ ¼ R
dkjαðkÞj2 is the mean photon number, which is kept

small n̄ ≤ 1 to observe few-photon behavior. For a coherent-
state wave packet, the photon statistics are Poissonian,
implying that the variance of the photon number is also n̄.
Here a†α ¼

R
dkαðkÞa†R;k for an incident wave packet from the

left. We employ a Gaussian wave packet (Zheng, Gauthier,
and Baranger, 2010)

αðkÞ ¼
ffiffiffī
n

p

ð2πΔ2
kÞ1=4

exp

�
−
ðk − k0Þ2

4Δ2
k

�
;

with width Δk and mean momentum k0. The scattered state
can be expressed as jψout

α i ¼ P
NS

ðNÞjαi, where SðNÞ is the
S-matrix operator of N incident photons, whose elements
can be calculated using scattering theory. For example, Sð0Þ ¼
jφihφj and

Sð1Þ ¼
Z

dktka
†
R;kjφihφjaR;k þ

Z
dkrka

†
L;kjφihφjaR;k;

where tk and rk are the one-photon transmission and reflection
amplitudes of Eq. (13). Following this prescription, we find
the transmission of a weak coherent-state input

Tðk0;ΔkÞ ¼
hψout

α ja†RðxÞaRðxÞjψout
α i

hαja†RðxÞaRðxÞjαi

¼
R
dk1dk2αðk1Þαðk2Þtk1 t�k2eiðk1−k2ÞxR

dk1dk2αðk1Þαðk2Þeiðk1−k2Þx
; ð23Þ

where x > 0, and we have kept only the leading order
contribution coming from single-photon scattering. For a
long, monochromatic pulse (Δk ≪ Γþ γ), the coefficient
Tðk0;ΔkÞ reduces to the single-photon transmission coeffi-
cient Tðk0Þ in Eq. (15).
In experiments, the statistics of scattered photons is

predominately determined by measuring second-order

correlations of the scattered fields. For the transmitted beam,
it is defined as

gð2Þðx1; x2Þ ¼
hψout

α ja†Rðx1Þa†Rðx2ÞaRðx2ÞaRðx1Þjψout
α iQ

2
i¼1hψout

α ja†RðxiÞaRðxiÞjψout
α i :

By neglecting the contributions from N ≥ 3 photons in jψout
α i

for n̄ ≤ 1, Zheng, Gauthier, and Baranger (2010) found

gð2Þðx2 − x1Þ

¼ j R dk1dk2αðk1Þαðk2Þðtk1 tk2 − rk1rk2e
−ðΓþγÞjxj=vgÞj2

j R dk1dk2αðk1Þαðk2Þtk1 tk2 j2
:

ð24Þ

Here again the distance separation can be converted to time
separation via τ ¼ ðx2 − x1Þ=vg, which is what is typically
measured in experiments. The first and second terms in the
numerator of Eq. (24) are related, respectively, to the non-
interacting and the bound-state parts of the two-photon wave
function. Without the bound-state contribution (i.e., no effec-
tive photon-photon interaction), gð2Þðx2 − x1Þ ¼ 1. In the
presence of the bound state, gð2Þðx2 − x1Þ can show bunching
and antibunching of the transmitted photons at different values
of the coupling rate Γ, as shown in Fig. 7. Note that the
observability of these effects also depends on having the
appropriate value of Γ=γ. For very strong coupling Γ=γ ≫ 1,
gð2Þðx2 − x1Þ of the transmitted photons always shows bunch-
ing [Fig. 7(c)] and was observed by Hoi et al. (2012). For very
weak coupling Γ=γ ≪ 1, gð2Þðx2 − x1Þ is nearly featureless,
exhibiting only a small antibunching dip [Fig. 7(a)]. In the
intermediate regime Γ=γ ≈ 1, the antibunching is more pro-
nounced [Fig. 7(b)].

B. Input-output formalism

The input-output formalism is a celebrated technique for
analyzing the effect of light-matter interactions on the quan-
tum statistics of light fields (Gardiner and Collett, 1985; Walls
and Milburn, 2008). Based on the Heisenberg picture, it
allows one to study the time evolution of the field operators,
with the ability to account for various input field states, for
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FIG. 7. Second-order correlation function of the transmitted
field at various emitter-photon coupling strengths for a coherent-
state input with n̄ ≤ 1. The couplings are (left) Γ=γ ¼ 0.2,
(middle) Γ=γ¼1.6, and (right) Γ=γ¼3. Here vgk0 ¼ ωe ¼ 10γ
and Δk=γ ¼ 1. Note the different vertical scales. The second-
order correlation shows antibunching and bunching at different
coupling strengths.
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example, coherent states, Fock states, or squeezed states.
Fan, Kocabaş, and Shen (2010) recently adopted this formal-
ism to investigate the few-photon scattering by emitters in a
1D continuum, relating it to the scattering theory of correlated
photons.
Equations of motion: Essentially, given a Hamiltonian H,

one uses the Heisenberg picture to derive a set of nonlinear
differential equations for the time evolution of the input and
output fields bm;inðtÞ, bm;outðtÞ of left-moving (m ¼ L=þ) and
right-moving (m ¼ R=−) photons,

bm;inðtÞ ¼
1ffiffiffiffiffi
2π

p
Z

dkam;kðt0Þeimvgkðt−t0Þ; ð25Þ

bm;outðtÞ ¼
1ffiffiffiffiffi
2π

p
Z

dkam;kðt1Þeimvgkðt−t1Þ; ð26Þ

where am;kðt0Þ ¼ eiHt0=ℏam;ke−iHt0=ℏ and am;kðt1Þ ¼
eiHt1=ℏam;ke−iHt1=ℏ are Heisenberg operators in the limits
t0 → −∞, t1 → ∞. For clarity, we use b, b† for operators
in the input-output formalism and a, a† for operators in
scattering theory. The input-output operators are directly
related to the operators that create and destroy incoming
and outgoing scattering eigenstates in scattering theory [see
Eqs. (8) and (9)]. For example,

bR;inðtÞ ¼
1ffiffiffiffiffi
2π

p
Z

dkeiHt0=ℏaR;ke−iHt0=ℏe−ivgkðt−t0Þ

¼ 1ffiffiffiffiffi
2π

p
Z

dkeiHt0=ℏe−iH0t0=ℏaR;keiH0t0=ℏe−iHt0=ℏe−ivgkt

¼ 1ffiffiffiffiffi
2π

p
Z

dkaR;inðkÞe−ivgkt; ð27Þ

where in the second line we replaced aR;keivgkt0 with
e−iH0t0=ℏaR;keiH0t0=ℏ by employing ½H0; aR;k� ¼ −ℏvgkaR;k.
Thus, am;in=outðkÞ gives the spectral representation of
bm;in=outðtÞ. Using relations similar to Eq. (27), we can rewrite
the S-matrix elements in Eq. (7) as

SðNÞ
p;k ¼ hpjSjki

¼ hφjao1;outðp1Þ � � � aoN;outðpNÞa†i1;inðk1Þ � � � a
†
iN ;in

ðkNÞjφi
¼ FT 2Nhφjbo1;outðt1Þ � � � boN;outðtNÞb†i1;inðt10Þ � � �
× b†iN ;inðt0NÞjφi; ð28Þ

where we use a global Fourier transform FT ð2NÞ ¼
ð2πÞ−N R Q

N
j¼1 dtjdt

0
je

ivgðijkjt0j−ojpjtjÞ with ij;oj¼−ðRÞ;þðLÞ
to relate the S matrix in linearized momentum (or frequency)
and time. We now show how the S-matrix elements are found
within the input-output formalism.
To simplify the presentation, we slightly rewrite the emitter

part in the Hamiltonian H using Pauli matrices. We write the
full Hamiltonian for a single 2LE side coupled to a 1D
continuum as

Hio

ℏ
¼

Z
∞

−∞
dkvgkða†R;kaR;k − a†L;kaL;kÞ þ

1

2
ωeσz

þ Vffiffiffiffiffi
2π

p
Z

∞

−∞
dk½ða†R;k þ a†L;kÞσ− þ σþðaR;k þ aL;kÞ�;

ð29Þ

where σ� are raising and lowering operators for the 2LE and
σz ¼ 2σþσ− − 1. Here ωe is again the transition energy of
the 2LE, and we dropped the inelastic loss term iγ. We again
assume that the coupling V to the linearized modes is
independent of the wave vector k.
One can write Heisenberg equations of motion for the

operators in Eq. (29) and define input-output operators for
the fields, as illustrated in detail for a chiral model in the
Appendix. One then gets

bR;outðtÞ ¼ bR;inðtÞ − i
V
vg

σ−ðtÞ;

bL;outðtÞ ¼ bL;inðtÞ − i
V
vg

σ−ðtÞ;

dσ−
dt

¼ −ðiωe þ ΓÞσ− þ iVσz½bR;inðtÞ þ bL;inðtÞ�; ð30Þ

again denoting Γ ¼ V2=vg. We now have all the required tools
to study the scattering of photons in this system.
Scattering properties: The one-photon scattering properties

are encoded in the one-photon S matrix. For a single, right-
moving input photon, the transmission amplitude is given by
the following element of the S matrix:

hφjaR;outðpÞa†R;inðkÞjφi ¼
1ffiffiffiffiffi
2π

p
Z

dthφjbR;outðtÞjkþieivgpt;

ð31Þ

where we use a†R;inðkÞjφi ¼ jkþi [see Eq. (7)] and write
aR;outðpÞ in terms of bR;outðtÞ. We therefore need to calculate
hφjbR;outðtÞjkþi to find the one-photon transmission ampli-
tude. It can be obtained by sandwiching Eqs. (30) between hφj
and jkþi,

hφjbR=L;outðtÞjkþi ¼ hφjbR=L;inðtÞjkþi − i
V
vg

hφjσ−ðtÞjkþi;

ð32Þ

d
dt

hφjσ−jkþi ¼ −ðiωe þ ΓÞhφjσ−jkþi
þ iVhφjσz½bR;inðtÞ þ bL;inðtÞ�jkþi: ð33Þ

One can easily find some parts of these expressions,

hφjbR;inðtÞjkþi ¼ hφjbR;inðtÞa†R;inðkÞjφi ¼
e−ivgktffiffiffiffiffi

2π
p ;

hφjbL;inðtÞjkþi ¼ hφjbL;inðtÞa†R;inðkÞjφi ¼ 0;

hφjσzbR;inðtÞjkþi ¼ −hφjbR;inðtÞjkþi;

ð34Þ
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where σzjφi ¼ −jφi, as jφi is the photon vacuum state with
the 2LE also in its ground state. Plugging the results of
Eqs. (34) into Eq. (33), we obtain a first-order inhomogeneous
differential equation with the solution

hφjσ−jkþi ¼
e−ivgktffiffiffiffiffi

2π
p V

vgk − ωe þ iΓ
; ð35Þ

hφjbR;outðtÞjkþi ¼
~tke−ivgktffiffiffiffiffi

2π
p : ð36Þ

Here ~tk ¼ tkðγ ¼ 0Þ is the one-photon transmission amplitude
ignoring decoherence and photon loss. Finally, inserting
Eq. (36) into Eq. (31), we arrive at

hφjaR;outðpÞa†R;inðkÞjφi ¼ ~tkδðk − pÞ: ð37Þ

Similarly, we can derive the one-photon reflection
amplitude ~rk ¼ ~tk − 1 from the S-matrix element
hφjaL;outðpÞa†R;inðkÞjφi ¼ ~rkδðkþ pÞ. We thus see that the
one-photon scattering amplitudes obtained here are the same
as those we found using scattering theory.
We note that the same result can also be arrived at by

directly approximating σz ¼ −1 in Eqs. (30), thus linearizing
the operator equations. Such an approximation is commonly
used in many quantum optics calculations in the weak-
excitation limit by considering the 2LE to be mostly in its
ground state. Physically, the weak-excitation limit is valid
for one-photon scattering when the one-photon wave packet
has a much longer duration than the lifetime of the 2LE.
However, the weak-excitation limit is not always valid, even
for a one-photon pulse (Rephaeli, Shen, and Fan, 2010).
Similar derivations of the elements of the S matrix are

carried out for multiphoton Fock states (Fan, Kocabaş, and
Shen, 2010; Rephaeli, Kocabaş, and Fan, 2011; Xu, Rephaeli,
and Fan, 2013) as well as for coherent-state inputs (Koshino
and Nakamura, 2012; Peropadre et al., 2013). Input-output
theory can also be easily extended using the master equation
formalism to include decoherence processes such as pure
dephasing, which dominates in superconducting systems
(Koshino and Nakamura, 2012; Peropadre et al., 2013).
Finally, the input-output formalism was recently extended
to investigate scattering of multiple photons by multiple
interacting and noninteracting emitters in a 1D continuum
(Caneva et al., 2015; Xu and Fan, 2015). We discuss these in
the next section.

C. Other theoretical techniques

Until now we have discussed scattering of photons in a 1D
continuum with a linearized dispersion relation and the
Markov approximation. However, there are examples where
the linearization is a poor approximation, and the nonlinearity
gives rise to important physical behavior (Zhou et al., 2008;
Longo, Schmitteckert, and Busch, 2010; Roy, 2011a). One
such case is of coupled resonator arrays, exhibiting a
tight-binding dispersion relation that is strongly nonlinear.
These structures were realized in photonic crystals (Notomi,

Kuramochi, and Tanabe, 2008) and proposed in supercon-
ducting systems (Zhou et al., 2008).
For a sinusoidal tight-binding dispersion, the Hamiltonian

in Eqs. (1) and (2) can be rewritten as

HTB

ℏ
¼ −J

X∞
x¼−∞

ða†xaxþ1 þ a†xþ1axÞ þ ðωe − iγÞb†b

þ V0ða†0bþ b†a0Þ þ
U
2
b†bðb†b − 1Þ; ð38Þ

where a†x creates a photon at site x, and J is the hopping rate
between nearest neighbor sites. Here the 2LE is replaced by
an additional bosonic site, side coupled at x ¼ 0 (Longo,
Schmitteckert, and Busch, 2010; Roy, 2011a). The photon
creation operator at the additional site is b†. The states of 0 and
1 photons correspond, respectively, to the ground and the
excited states of the 2LE in Eq. (1), whereas the forbidden
“multiphoton” occupancy of the 2LE is avoided by introduc-
ing the interaction term Ub†bðb†b − 1Þ=2 and taking the
limit U → ∞.
Scattering eigenstates for one and two photons can be

derived exactly for the Hamiltonian in Eq. (38) using the
Lippmann-Schwinger equation. Roy (2011a) compared one-
photon and two-photon transmission for linear and (nonlinear)
tight-binding dispersion relations and pointed out the effect
of band edges on the two-photon transmission. Here again the
two-photon scattering eigenstates exhibit bound states
due to inelastic exchange of photons. A unique feature of
this approach is the ability to exactly calculate two-photon
scattering states for multiple emitters separated by arbitrary
distances (Zheng and Baranger, 2013), similarly to the
calculation of multiple quantum impurities (Roy, 2010b).
Furthermore, one can numerically study two-photon scatter-
ing by multilevel emitters.
Longo, Schmitteckert, and Busch (2010) investigated the

scattering of few-photon states in 1D lattice models using
numerical time-dependent wave-packet evolution. This frame-
work allows one to analyze both the dynamics of multiphoton
wave packets that interact with the emitter and the dynamics
of the emitter itself. Employing the approach of the density
matrix renormalization group (DMRG), they extended their
study for three-photon and four-photon transport. They
demonstrated that a single-particle photon-atom bound state
with an energy outside the band can be excited via multi-
particle scattering processes, which leads to radiation trapping
at the emitter. Another study worth noting is based on the
Lehmann-Symanzik-Zimmermann reduction, a method to
calculate S-matrix elements from the time-ordered correlation
functions. This approach was employed by Shi and Sun
(2009) to investigate multiphoton S matrices in various
complex quantum networks of propagating photons coupled
to emitters.

D. Three-level emitter: A single-photon router

A single-photon router can route one photon from an input
port to either of two output ports, while conserving the
superposition of input photonic states. It thus finds important
applications in optical quantum networks. Building on the
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work of Abdumalikov et al. (2010), Hoi et al. (2011)
demonstrated that a driven three-level emitter (3LE) strongly
coupled to a 1D continuum can act as an efficient single-
photon router (Chang et al., 2007; Neumeier, Leib, and
Hartmann, 2013; Shomroni et al., 2014). As we shall see,
the presence or absence of a classical control field in this
system determines a specific output port for the probe photon.
We consider a 3LE with either the Λ or ladder-type

structures in Fig. 8, with the probe light tuned to the
jgi− jei transition. A classical light field drives the jei− jsi
transition with a Rabi frequency Ωc and frequency detuning
Δc. The Hamiltonian describing the system

HR

ℏ
¼ Heff

ℏ
þ ðωe þ Δc − iγsÞjsihsj þ

Ωc

2
ðjsihej þ jeihsjÞ;

ð39Þ

extends the Hamiltonian Heff of the 2LE in Eq. (10). Losses
from the state jsi are accounted for by the imaginary term
−iγs. With natural atoms, jgi and jsi can be two different
Zeeman states, and the transitions jgi − jei and jei − jsi
couple to different optical polarizations based on selec-
tion rules.
Witthaut and Sørensen (2010) and Roy (2011b) studied the

transmission and reflection line shapes for the Λ-type system.
The one-photon transmission and reflection amplitudes are
given, respectively, by t0k¼ χ=ðχþ iΓÞ and r0k ¼ −iΓ=ðχ þ iΓÞ
[see, e.g., Roy and Bondyopadhaya (2014) for a derivation],
where again Γ ¼ V2=vg and

χ ¼ Δþ iγ −
Ω2

c

4ðδþ iγsÞ
: ð40Þ

Here Δ ¼ vgk − ωe is the detuning of the incident probe
photon from the jgi − jei transition, and δ ¼ Δ − Δc is the
Raman detuning. We plot in Fig. 9 the transmission coefficient
T 0ðkÞ ¼ jt0kj2 for different values of the parameters. In the
absence of the control field, the probe photon is reflected due
to the jgi − jei transition [Fig. 9(a)], whereas in the presence
of a control, when Ω2

c ≳ Γγs, a transmission window appears
at the Raman resonance Δ ¼ Δc (δ ¼ 0) [Figs. 9(b)–9(d)].
Two parameter regimes are of interest. In the first regime,

predominantly characterizing atomic Λ systems, the jsi state
is metastable and much longer lived than the jei state, that is
γs ≪ γ, Γ. This yields a narrow transmission window within
the broader reflection or absorption line, an effect known as
electromagnetically induced transparency (EIT) (Harris, Field,
and Imamoğlu, 1990; Boller, Imamoğlu, and Harris, 1991;
Fleischhauer, Imamoglu, and Marangos, 2005). Intuitively,

EIT results from a destructive interference between two
allowed transitions, leading to cancellation of the population
of jei and to the formation of a “dark state.” With increasing
strength of the control field, the width of the transparency
window increases, as shown in Fig. 9(c).
In the second regime, generally characterizing supercon-

ducting ladder systems, jsi is shorter lived than jei due to
population relaxation, as the jsi − jei transition also couples
strongly to the transmission line. Therefore γs ≳ γ, Γ, and
narrow EIT lines cannot be obtained. Rather, stronger control
fields Ωc ≫ Γ are needed to drive the jsi − jei transition and
open a transparency window (Anisimov, Dowling, and
Sanders, 2011), an effect known as the Autler-Townes split-
ting (ATS). The width of the transmission window due to ATS
is Ωc, as shown in Fig. 9(d). In both regimes, a sufficiently
strong control field allows the probe photons to pass the
emitter without being reflected. Thus, the presence or absence
of a control field determines the route of the probe photon.
The recent experiments by Abdumalikov et al. (2010) and

Hoi et al. (2011) used a ladder-type superconducting qubit
and observed transparency windows due to ATS, as shown in
Figs. 10(a) and 10(b). By tuning the control field, Hoi et al.
(2011) demonstrated the routing of a single-photon probe.
Since both relaxation and dephasing are important in super-
conducting systems, a generalized model was introduced
by Abdumalikov et al. (2010) to describe the experiments,
replacing the effective non-Hermitian Hamiltonian (39) with
a Markovian master equation for the density matrix. The
transmission spectra calculated by Abdumalikov et al. (2010)
are shown in Figs. 10(c) and 10(d) and are similar to our t0k
(with their loss terms γ21 and γ31 corresponding roughly to our
γ þ Γ and γs, respectively).
Recently, more complicated superconducting systems have

been used to make effective Λ systems. Inomata et al. (2014)
realized an effective “impedance-matched” Λ-type emitter
using dressed states of a driven superconducting qubit-
resonator system. Novikov et al. (2016) demonstrated EIT
in a superconducting circuit using the Jaynes-Cummings
dressed states of a strongly coupled qubit-cavity system as
an effective Λ system.
Photon-photon correlations have also been calculated for

3LE systems (Li, Huang, and Law, 2015). To do this, one
needs to derive the multiphoton scattering states for the
system. Roy (2011b) derived the two-photon scattering state
of the probe field for a 3LE weakly driven by a control field.
An exact two-photon scattering state for an arbitrary strength

(a) (b)

FIG. 8. (a) Λ-type and (b) ladder-type three-level emitters.
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FIG. 9. (a) Prefect reflection, (b), (c) electromagnetically in-
duced transparency at the Raman resonance Δ ¼ Δc for weak
control field, and (d) Autler-Townes splitting for stronger control
fields. The splitting between the Autler-Townes doublet is Ωc.
The parameters areΔc=Γ ¼ −1=2, γ=Γ ¼ 1=4, and γs=Γ ¼ 1=40.
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of Ωc was calculated by Zheng, Gauthier, and Baranger
(2012) and Roy and Bondyopadhaya (2014). Roy and
Bondyopadhaya (2014) showed that the second-order corre-
lation of the transmitted photons near the Raman resonance
changes from bunching to antibunching to constant, as the
strength of the control field is ramped up from zero to a higher
value where the ATS appears.

E. Superconducting circuits

While proposed in a variety of experimental systems, the
strong coupling of propagating light to matter was first
demonstrated in a circuit QED setting, with superconducting
qubits playing the role of artificial atoms (Astafiev, Zagoskin
et al., 2010). The major advantage of these types of systems in
achieving strong coupling is that the electromagnetic fields
can be tightly confined into quasi-1D superconducting wave-
guides (vg ∼ c=3). In a typical implementation, the lateral
dimensions are of the order of 10 μm while the corresponding
wavelength is of the order of 10 mm. (In the direction of
propagation, the light is unconfined.) The mode volume is
then ∼10−6λ3, compared to ∼1λ3 for optical systems, implying
strongly enhanced electric field strengths. It is, furthermore,
straightforward to fabricate superconducting qubits with
dipole moments in this range (Wallraff et al., 2004), meaning
that efficient mode matching can be easily accomplished.
These were the key insights leading to the rapid growth of
experimental work in this field.
These systems work in the microwave regime. In this

frequency range (∼5 GHz), where the photon energy ℏω is
well below the superconducting gap energy ΔSC,

superconductors have very little loss, which protects the
coherence of the circuits. In aluminum for instance,
ΔSC=h ≈ 50 GHz. At optical frequencies (ℏω ≫ ΔSC), metals
are not superconductors and are very lossy. Therefore, metallic
waveguides are not useful in confining optical light at these
size scales. The trade-off is that these microwave systems must
be operated at very low temperatures, typically below 50 mK,
in order for the background thermal (blackbody) field to be
sufficiently suppressed.
The first demonstration of the strong scattering of propa-

gating microwave light by a single artificial atom was
achieved by Astafiev, Zagoskin et al. (2010) from the NEC
Corporation group (see Fig. 11). They observed a strong
extinction of the transmitted light corresponding to
1 − T ¼ 94%. This was the first time that the hallmark result
of 1 − T > 50% was achieved for a single scatterer in any
type of system, clearly separating the coherent and incoherent
scattering regimes. They also derived reflection (r) and
transmission (t) amplitudes of an incident coherent state using
input-output theory and the master equation approach to treat
decoherence:

r ¼ r0
1þ iΔ=Γ2

1þ ðΔ=Γ2Þ2 þ Ω2=Γ1Γ2

; t ¼ 1 − r; ð41Þ

with r0 the maximal reflection amplitude and Ω the Rabi
frequency of the incident probe. The rate Γ2 ¼ Γ1=2þ Γφ,
where Γ1 is the energy relaxation rate and Γφ is the pure
dephasing rate. Note that there is a sign difference in the
definition of reflection amplitude in Eq. (12) and Astafiev,
Zagoskin et al. (2010). For superconducting systems, the rate
of emission into spurious modes is negligible, implying
Γ1 ¼ 2Γ. For weak driving (Ω ≪ Γ1, Γ2), Eq. (41) agrees
with Eq. (13) if we further identify Γφ ¼ γ. We note again that
this is a typical distinction between atomic and superconduct-
ing systems, that is, in the superconducting systems we
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FIG. 10. One-photon transmission amplitudes t vs the probe
detuning δωp ≡ Δ for a superconducting three-level qubit
coupled to a microwave waveguide. (a), (b) The experimentally
measured real and imaginary parts of the transmission amplitudes
for various control field amplitudes Ωc, specified in (b).
The curves show typical dispersion for the Autler-Townes
splitting. ReðtÞ near δωp ¼ 0 approaches unity with increasing
Ωc. (c), (d) Corresponding theoretical curves. Adapted from
Abdumalikov et al., 2010.

FIG. 11. Spectroscopy of an artificial atom coupled to an open
1D transmission line. The color map shows the power trans-
mission T ¼ jtj2 vs flux bias δΦ and incident microwave
frequency ω. When the incident radiation is on resonance with
the emitter, a dip in T reveals a dark line. Inset: jtj2 at δΦ ¼ 0 as a
function of the probe detuning δω≡ Δ from the resonance
frequency ωe=2π ¼ 10.204 GHz. The maximal power extinction
of 1 − T ¼ 94% takes place on resonance (δω ¼ 0). Adapted
from Astafiev, Zagoskin et al., 2010.
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consider here emission into spurious modes is negligible while
pure dephasing is significant.
The NEC group demonstrated a number of prototypical

atomic physics effects using their artificial atom including
resonance fluorescence of the Mollow triplet (Astafiev,
Zagoskin et al., 2010; Astafiev, Abdumalikov et al., 2010)
and induced transparency due to the Autler-Townes splitting
(Abdumalikov et al., 2010) as discussed before. These results
demonstrated that the quality of coherence in superconducting
qubits had become sufficiently high for them to genuinely be
considered “artificial atoms.” NEC’s work was reproduced by
the Chalmers group, who improved the scattering efficiency
by more than an order of magnitude by increasing the
coupling strength, achieving 1 − T ¼ 99.4% (Hoi et al.,
2011; Hoi, Wilson et al., 2013).
Importantly, the simple measurement of the coherent

scattering properties at single-photon probe powers can be
fully explained by a classical model of scattering from a
harmonic oscillator, i.e., an LC circuit. Essentially, as long as
the probe only weakly excites the atom from the ground state,
it does not obtain information about the presence of higher
levels and cannot distinguish between a two-level and a
multilevel system. To rule out that the observed signal is
purely classical, we must look beyond the linear response of
the system. The experiments mentioned which involve
stronger probes and nonlinear response, such as the resonance
fluorescence experiment, are not simply explained by a
classical model of the emitter. Still, they tell us very little
about the state of the scattered electromagnetic field.
As shown theoretically, the light scattered by a single

emitter should be distinctly nonclassical, which can be
characterized by higher-order correlation measurements.
The Chalmers group measured the second-order correlation
function gð2ÞðτÞ of the scattered field and showed that it was
significantly less than 1 (Hoi et al., 2012). The essential idea is
that the emitter can scatter only one photon at a time, so it
reflects only the one-photon component of the input coherent
state, while transmitting the higher photon number compo-
nents. The reflected state is then a superposition of only the
vacuum and the one-photon state, which exhibits photon
antibunching as shown in Fig. 12. The antibunching behavior
reveals the quantum nature of the scattered field (Kimble,
Dagenais, and Mandel, 1977; Paul, 1982).
These circuits have also been explored in terms of possible

applications for quantum communication networks. One
broad architecture of a network imagines quantum nodes,
which perform basic processing tasks, connected by long-
distance channels carrying quantum information (Kimble,
2008). By far, the leading candidates for implementing
quantum channels involve optical or telecom photons propa-
gating in fibers or free space. A number of physical systems
are being actively investigated for implementing quantum
nodes (Sherson et al., 2006; DiCarlo et al., 2009; De Greve
et al., 2012; Gao et al., 2012; Ritter et al., 2012) with
superconducting circuits in open environment being one of the
promising candidates.
Using the architecture described previously, the Chalmers

group has already demonstrated a number of prototype
elements for quantum nodes. In the first experiment, as

mentioned, they demonstrated a router that exploited the
ATS to direct a microwave input at the single-photon level
between two ports (Hoi et al., 2011). The on-off ratio of the
router was 99% with a switching time of a few nanoseconds.
The ability to produce nonclassical light, which is a required
resource for a quantum network, by scattering classical light
from a purely passive device as described earlier (Hoi et al.,
2012) also has potential technological applications. This can
be considered as a “quantum-state filter” that accepts a desired
portion of the input state (the one-photon component) and
rejects the rest (the higher photon numbers). We compare this
to a conventional frequency filter that accepts a desired set of
frequencies while rejecting others. More advanced quantum-
state filters, containing multiple qubits, could be an economi-
cal way to produce nonclassical light for quantum networks.
In a separate experiment, the Chalmers group demonstrated

that the single qubit worked as a highly effective cross-Kerr
medium (Hoi, Kockum et al., 2013). The cross-Kerr effect is
essentially an effective interaction between light at two
different frequencies mediated by a nonlinear medium
(Shen, 1984). The basic effect is that the presence of one
beam induces a phase shift in the other beam that is propor-
tional to intensity. The cross-Kerr effect was studied
extensively in the past as a possible route to quantum
nondemolition measurements (QND) of single photons
(Munro et al., 2005) and photonic gates (Milburn, 1989;
Turchette et al., 1995). However, the strength of the cross-Kerr
effect is generally too weak in bulk nonlinear crystal for any of
these applications to be realizable. In the Chalmers experi-
ment, by contrast, the bulk nonlinear medium is replaced by a

(a) (b)

(d)(c)

FIG. 12. Second-order correlation function gð2Þ vs the time
separation τ between the photons for a thermal state, a coherent
state, and the scattered states generated by the artificial two-level
emitter. (a) gð2ÞðτÞ of a thermal state and a coherent state.
(b) gð2ÞðτÞ of the resonant transmitted microwaves for four
different incident powers. (c) gð2ÞðτÞ of a resonant reflected field
for two different incident powers. gð2Þð0Þ does not reach zero
because of well-understood experimental imperfections, includ-
ing the bandwidth of the measurement system. (d) gð2ÞðτÞ of a
resonant reflected field for different measurement bandwidths
(BW), illustrating how decreasing bandwidth decreases the depth
of the dip. The solid curves in (a)–(d) are theory curves. Adapted
from Hoi et al., 2012.
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single three-level (artificial) atom, and the two input fields are
tuned to the jgi − jei and the jei − jsi transition frequencies.
The experiment was performed with coherent states, demon-
strating an average cross-Kerr phase shift of 20° per photon,
surpassing the previous state of the art of 0.01° per photon for
propagating light (Matsuda et al., 2009; Perrella et al., 2013;
Venkataraman, Saha, and Gaeta, 2013). In parallel, a phase
shift of 45° was demonstrated with Rydberg atoms, as
discussed in Sec. IV.
This work on the cross-Kerr effect has stimulated a great

deal of theoretical work analyzing the prospects of this system
to be used for the QND detection of photons. Interestingly,
a first work concluded that QND detection could not be
achieved with a single atom, due to atomic saturation effects
(Fan et al., 2013). Because a bulk nonlinear crystal can largely
be considered as an incoherent ensemble of such atoms, this
work strongly suggest that QND detection is not possible in a
bulk system, which was an important general result. However,
subsequent work showed that careful arrangements of multi-
ple atoms, sequentially interacting with the propagating
photon, can achieve QND detection of a single propagating
photon (Fan et al., 2014; Sathyamoorthy et al., 2014).
The Chalmers group has also looked at a system with one

atom in front of a “mirror” (Hoi et al., 2015). In this case, the
mirrorlike boundary condition is created by simply terminat-
ing the transmission line with a short circuit to ground at one
end. The effective separation is modulated around the value of
λ=2. Interference between the input field, the field scattered by
the atom, and the field reflected by the mirror creates a
standing wave pattern. When the separation is exactly λ=2, the
atom sits at a node of the field, and it is effectively hidden from
the probe. This can be thought of as an interaction between the
atom and its image in the mirror, much in the same way
that the two real emitters interact in the Zürich experiment
(van Loo et al., 2013) described later. Interestingly, it was
shown that the atom not only hides from the classical probe
field, but also from vacuum fluctuations, with a suppression of
the free-space relaxation rate by a factor of 50 being observed.
In contrast to the Purcell effect, where a cavity can be used to
suppress the relaxation rate, the suppression achieved through
this novel form of vacuum engineering occurs even though the
atom is coupled to a continuum of propagating states.
While superconducting circuits interacting with microwave

photons show great promise for implementing quantum
nodes, the implementation of long-distance quantum channels
using optical photons is very far advanced, with records
distances of >100 for free-space and in-fiber transmissions
(Ursin et al., 2007; Korzh et al., 2015). This state of affairs has
motivated considerable work in recent years toward the
development of a quantum interface between microwave
and optical photons. The fundamental difficulty is the several
orders of magnitude that separate the energy scales of these
two classes of photons. A number of research groups have
attempted to bridge this gap in a wide variety of physical
systems. One common approach is to use ensembles of dopant
atoms in a host crystal, taking advantage of the fact that
specific transition can be excited through both microwave and
optical Raman transitions. Ensembles are used to enhance the
coupling to single photons. A number of different systems are
being studied including nitrogen-vacancy centers in diamond

(Amsüss et al., 2011; Kubo et al., 2011; Julsgaard et al., 2013;
Grezes et al., 2014; Putz et al., 2014) and rare-earth ions,
especially erbium (Bushev et al., 2011; Staudt et al., 2012;
Afzelius et al., 2013; Probst et al., 2013). An entirely different
approach that has shown promise is to use optomechanical
systems, where mechanical vibrations (phonons) in nano-
mechanical or micromechanical systems act as an interme-
diary between the microwave and optical photons (Lin et al.,
2010; Bochmann et al., 2013; Andrews et al., 2014). Finally,
collective magnon excitations in macroscopic ferrimagnetic
crystals are also being studied as a potential medium for an
interface (Tabuchi et al., 2014). The shear range of physical
systems being studied as a potential implementation of a
quantum interface speaks to the compelling nature of the
problem.

III. MULTIPLE EMITTERS IN THE STRONG-COUPLING
REGIME

Investigating the interaction of propagating photons with
multiple emitters in 1D continuum, as illustrated in Fig. 13,
is of fundamental and practical importance. For example,
photon-mediated interaction between distant emitters, as
recently demonstrated in 1D (Lalumière et al., 2013; van
Loo et al., 2013), can be used to generate long-range
entanglement between the emitters (Gonzalez-Tudela et al.,
2011; Zheng and Baranger, 2013; Greenberg and Shtygashev,
2015). More generally, we can imagine systems with multiple
emitters being used in increasingly more advanced quantum
communication nodes. Moreover, strong coupling of multiple
emitters with propagating photons confined below the dif-
fraction limit has potential practical applications for detection
and subwavelength imaging of atoms, ions, molecules, QDs,
or color centers in a host crystal (Smolyaninov et al., 2005;
Kühn et al., 2006; Chen et al., 2010; Bushev et al., 2011;
Rezus et al., 2012; Roy, 2013b). Finally, systems of multiple
emitters may realize photonic simulators for the quantum
many-body dynamics of electrons in condensed matter.
Examples of analyzed phenomena in such simulators include
a Luttinger liquid of photons (Angelakis et al., 2011),
quantum phase transitions of light (Greentree et al., 2006;
Hartmann, Brandao, and Plenio, 2006), optical Josephson
interferometry (Gerace et al., 2009), and the Tonks-Girardeau
gas of photons (Chang et al., 2008).
The potential of multiemitter systems has motivated a

number of theoretical studies in recent years. While most
have been within the standard Markovian approximation

FIG. 13. Photon-mediated interaction between distant emitters
in superconducting circuits. Transmon qubits (length ≈ 300 μm)
acting as emitters are coupled to an open 1D transmission line.
Adapted from Lalumière et al., 2013.
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(Yudson and Reineker, 2008; Dzsotjan, Sørensen, and
Fleischhauer, 2010; Chang et al., 2012; Roy, 2013a;
Caneva et al., 2015), others have looked for distinctly non-
Markovian effects (Zheng and Baranger, 2013; Laakso and
Pletyukhov, 2014).

A. Photon-mediated interaction between distant emitters

The interaction of an isolated emitter with the vacuum
fluctuations of the electromagnetic field leads to the sponta-
neous emission of real photons and to a renormalization of
its transition frequency (Lamb shift) via the emission and
absorption of virtual photons. A second emitter in the system
can absorb both types of these photons, giving rise to an
effective interaction between the two emitters (Goldstein and
Meystre, 1997). In a 3D space, the strength of such interaction
falls off rapidly with the separation between the emitters
because of the large mode volume of the photons and the
resulting mode mismatch with the emitters (DeVoe and
Brewer, 1996; Eschner et al., 2001). As seen for single
emitters, these limitations are mitigated by confining the
system to 1D.
Recently, the Zürich group observed clear signatures of

photon-mediated interaction between two superconducting
transmon qubits (van Loo et al., 2013). The physical sepa-
ration between the emitters was large enough that there was no
direct coupling between them. While the actual separation
d ¼ 18.6 mm was fixed in the experiment, the normalized
separation d=λ, measured in transition wavelengths, was
changed by tuning the transition frequency of the emitter.
The normalized separation could be tuned between d=λ ¼ 1
and d=λ ¼ 3=4.
For d=λ ¼ 1, the two emitters are driven with the same

amplitude and phase by any resonant field in the transmission
line. This led to the observation of a superradiant bright
state and a subradiant dark state. For d=λ ∼ 3=4, one emitter is
at a node of the propagating field when the other is at an
antinode, suppressing these superradiant effects. However, an
exchange interaction mediated by virtual photons is maxi-
mized. The anticrossing in the two qubit spectrum caused by
this exchange interaction was observed in the resonance
fluorescence spectrum of the driven two-emitter system, as
shown in Fig. 14. Lalumière et al. (2013) described the two-
emitter system of the Zürich group using a Markovian master
equation along with input-output theory (Lehmberg, 1970),
obtaining good agreement with the experimental results.
We note that the coherent exchange mediated by

photons can generate a high degree of long-distance entan-
glement between the emitters (Dzsotjan, Sørensen, and
Fleischhauer, 2010; Gonzalez-Tudela et al., 2011; Fang,
Zheng, and Baranger, 2014; Fang and Baranger, 2015;
Hensen et al., 2015) which is an important ingredient for
quantum information science.

B. Small ensemble of adjacent emitters

Several studies have been carried out on small ensembles
of adjacent emitters with no intrinsic interaction. (We consider
intrinsic interactions in Sec. IV.) Rephaeli, Kocabaş, and
Fan (2011) calculated two-photon scattering from a pair of

adjacent 2LEs, predicting that the fluorescence of the emitters
is completely quenched for a proper choice of input (Zhou and
Swain, 1996). Roy (2013b) compared one-photon and two-
photon scattering from two 2LEs versus a single V-type 3LE,
showing that the two cases can be distinguished by the
statistics of the scattered field. Zapasskii et al. (2013)
successfully demonstrated this in optical spin-noise spectros-
copy experiments.

C. Directional photon propagation

Strong transverse confinement of guided photons leads to
large intensity gradients on the wavelength scale. In this
nonparaxial regime, spin (polarization) and orbital angular
momentum of light are coupled, an effect known as spin-orbit
coupling. In particular, the spin state varies within the trans-
verse plane and along the propagation direction in the wave-
guide. Interestingly, the local spin of this strongly confined
light can be orthogonal to the propagation direction.
Utilizing the spin-orbit coupling, several experimental

groups (Petersen, Volz, and Rauschenbeutel, 2014; Le
Feber, Rotenberg, and Kuipers, 2015) have recently demon-
strated nonreciprocal scattering of light from dipolar scatterers
(QDs, gold nanoparticles, alkali atoms) coupled to wave-
guides (photonic crystals, nanofibers). The propagation direc-
tion of scattered light in such systems depends on the spin
direction of the incident light. Control of the directionality
of the scattering process with over 90% efficiency has been
achieved in such nanophotonic waveguide interfaces. Mitsch
et al. (2014) further showed directional spontaneous emission
of photons from emitters into a nanophotonic waveguide.
Bliokh, Smirnova, and Nori (2015) argued that the transverse
spin in evanescent waves and the spin-controlled directional
excitation of surface or waveguide modes is analogous to the
quantum spin Hall effect.
Directional propagation due to collective scattering, distinct

from these effects, was theoretically studied by Roy (2010a,
2013a) in spatially asymmetric atom-waveguide interfaces.
Two different structures were investigated using scattering
theory: a 2LE directly coupled to two waveguides with
different coupling strengths, and a chain of closely spaced
2LEs with varying transition frequencies (Fratini et al., 2014)
along the chain. While the one-photon transmission is
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FIG. 14. (a), (b) Photon-mediated exchange interaction between
two distant superconducting qubits in an open transmission line.
Power spectral density (PSD) of the resonance fluorescence of
two qubits in resonance at d ∼ 3λ=4, driven at the indicated Rabi
rates ΩR. PSD falls with decreasing ΩR. At drive rates much
lower than the relaxation rate ΩR=2π ≤ 5 MHz, the observed
double-peak structure reveals the effective exchange interaction
between the two qubits. Adapted from van Loo et al., 2013.
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reciprocal in these systems, the two-photon or multiphoton
transmission is nonreciprocal due to the broken spatial
symmetry. These systems can thus act as optical diodes or
isolators (Jalas et al., 2013) for few-photon states.

IV. MULTIPLE INTERACTING EMITTERS IN THE
WEAK-COUPLING REGIME: RYDBERG POLARITONS

Up until this point, we explicitly considered only the
interaction between photons arising from their coupling to
the same emitter. In these configurations, efficient interaction
requires the strong-coupling condition Γ=γ ≫ 1, where the
coupling Γ of the emitter to the confined probe channel is
faster than all other relaxation rates γ, including spontaneous
emission to the vacuum environment. In the alternative
approach we now discuss, the interaction between photons
is obtained without mode confinement in the opposite regime
of weak coupling Γ=γ ≪ 1, by utilizing many atoms, which in
turn are intrinsically interacting.
In free space, the cumulative effect of N atoms is

often characterized by the resonant optical depth OD ¼
2NΓ=ðγ þ ΓÞ ¼ Nσa=A (Caneva et al., 2015). The atomic
cross section σa is at most ∼λ2 and typically much smaller
than the focused beam area A, hence high OD are obtained
only for large N. Taking tk from Eq. (13), we recover a well-
known expression for the total transmission amplitude

tNk ¼ exp

�
−
OD
2

iγ
Δþ iγ

�

at Γ=γ ≪ 1, where Δ is the detuning of the light from
resonance. However, contrary to the strong-coupling case,
here most of the nontransmitted light is lost rather than
reflected. The ratio between the single-atom reflection coef-
ficient jrkj2 from Eq. (13) and the loss 1 − jrkj2 − jtkj2 is
Γ=ð2γÞ ≪ 1. Furthermore, as seen, strong coupling is required
for obtaining significant photon-photon correlation
(cf. Fig. 7). Indeed while high OD is useful for observing
and utilizing single-photon effects, two more ingredients,
namely, the cooperative behavior of the atoms and suppression
of loss, are required for strong photon-photon interactions in
the weak-coupling regime.
Rydberg atoms provide such cooperativity via the dipole

blockade mechanism (Lukin et al., 2001). When exciting two
or more atoms to Rydberg states—electronic states with a
large principal quantum number n (typically n ¼ 40 to 100)—
the dipolar interaction between them shifts their Rydberg
levels and consequently their excitation frequency (Reinhard
et al., 2007). Below a certain distance between the atoms,
known as the blockade radius rB (typically ≤ 10 μm), the
frequency shift is larger than the excitation linewidth (typi-
cally 1–10 MHz for cold atoms), blocking the excitation of
more than one atom. Such large rB are achieved at the
van der Waals regime, where the frequency shift depends
on the extremely large dipoles (∼104 D) to the power of 4.
The blockade effect itself can be used for various quantum
information processes with atoms (Müller et al., 2009;
Saffman, Walker, and Mølmer, 2010).

The consequence of the dipole blockade for propagating
photons is quite intuitively understood. A single photon,
exciting a single Rydberg atom, can block the excitation
of all NB ≫ 1 atoms in the surrounding virtual sphere of
radius rB. If the optical depth of the blockade sphere
ODB ¼ NBσa=A is large, it allows a single photon to
significantly alter the optical response for other photons.
The final ingredient required for effective photon-photon

interactions in the weak-coupling limit is the suppression of
loss, which can be accomplished using EIT as proposed
by Friedler et al. (2005). A ladder-type configuration as in
Fig. 8(b) is used, with a probe photon exciting the ground-
state atom to an intermediate state, which is coupled to the
Rydberg state by a strong control field with Rabi frequency
Ωc. The probe is transmitted due to EIT within a narrow
spectral window. By shifting this window, the dipole blockade
disables the EIT for more than one probe photon in the
blockade sphere. A strong dependence on the rate of incoming
probe photons can be observed by monitoring the average
transmission (Pritchard, Weatherill, and Adams, 2013). The
optical nonlinear behavior and the emergence of nonclassical
correlations during propagation were theoretically investi-
gated within the mean-field approximation by Pritchard et al.
(2010), Petrosyan, Otterbach, and Fleischhauer (2011),
Sevinçli et al. (2011), and others.
The transmitted probe experiences strong dispersion

and thus reduced group velocity vEIT ≪ c, where c is the
speed of light in vacuum. It is therefore instructive to view
each propagating photon as a slow light-matter polariton
(Fleischhauer and Lukin, 2000). Typically these polaritons
have a negligible photonic component, of order vEIT=c,
guaranteeing the excitation of a Rydberg atom per each
propagating photon at any given time. The strong dipolar
forces between two Rydberg atoms thus effectively mediate
interaction between the two propagating photons.

A. Two-photon dynamics

Gorshkov et al. (2011) provided a quantum description for
two photons, which we now follow. A probe photon in the
form of a polariton blocks EIT for the second probe photon,
which experiences the response

tNB
k ¼ exp

�
−
ODB

2

iγ
Δþ iγ

�

of bare two-level atoms. The nature of the photon-photon
interaction is thus controlled by the detuning of the probe Δ
from the intermediate atomic state. On-resonance excitation
(Δ ¼ 0) leads to scattering of the second photon, inducing an
effective dissipative interaction between the photons. The
second photon is scattered inside the blockade sphere with a
probability 1 − e−ODB. In contrast, for off-resonance excitation
(jΔj ≫ γ), the second photon experiences much less scattering
but acquires a nonzero phase ϕ ¼ −ðγ=ΔÞODB=2. This leads
to a conditional phase shift ϕ for two or more photons,
inducing a dispersive interaction between the photons. We see
that for both on and off resonant processes ODB is the key
parameter determining the strength of the effective interaction.
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Nonlinear optical response with Rydberg polaritons was
demonstrated originally with ODB ≪ 1 by Pritchard et al.
(2010). The limit of quantum nonlinearity was afterward
reached with ODB ≈ 10 by Peyronel et al. (2012) in a
system illustrated in Fig. 15(a). The long axis of an
elongated cloud of ultracold atoms was L ≈ 100 μm,
and so naively could fit 10 blockade spheres of radius
rB ≈ 10 μm, each containing NB ≈ 1000 atoms. To render
an effective 1D system, the light was focused to a diameter
larger than the wavelength but smaller than rB. In this way,
paraxial diffraction did not substantially alter the transverse
extent of the photon wave function along its propagation,
and, at the same time, two polaritons propagating side by
side blocked each other.
Quantum tomography can be used to completely character-

ize the outgoing two-photon state as a function of the time
separation τ between the photons (Firstenberg et al., 2013).
In particular, it yields the second-order correlation function
gð2ÞðτÞ and the conditional phase shift ϕðτÞ relative to the
noninteracting case.
The dissipative interaction at Δ ¼ 0 was observed by

Peyronel et al. (2012) at an average level of less than one
photon in the medium. The probability that two photons exit
the medium simultaneously was suppressed by the blockade
mechanism, resulting in photon antibunching gð2Þð0Þ < 1, as
seen in Fig. 15(b). The dispersive interaction at Δ ≠ 0 was
demonstrated by Firstenberg et al. (2013). In addition to a
large conditional phase shift ϕð0Þ ¼ 45° [Fig. 15(c)], photon
bunching gð2Þð0Þ > 0 was observed [Fig. 15(b)].
The bunching in the dispersive regime can be attributed to

an effective attractive force between the photons, intuitively
arising from an increase in the group velocity inside the
blockade volume. To better describe the two-photon dynam-
ics, one defines an effective two-photon wave function inside
a medium of length L as a function of the coordinates x1 and
x2 of the two photons

ψðx1; x2Þ ¼
hφjaðx1Þaðx2ÞjΨi

hφjaðx1ÞjΨihφjaðx2ÞjΨi
: ð42Þ

Here jΨi is the full wave function of the system and aðxÞ
annihilates a photon at position x. We assume a stationary
scenario with a constant incoming coherent state. Because of
symmetry, it is useful to work with the relative r ¼ x2 − x1
and mean R ¼ ðx1 þ x2Þ=2 coordinates. From the definition
(42), classical light in the absence of photon-photon inter-
actions is described by ψðr; RÞ ¼ 1; complete photon block-
ade corresponds to ψð0; LÞ ¼ 0, which is measured in
experiments using jψð0; LÞj2 ¼ gð2Þð0Þ; and a pure condi-
tional phase ϕ corresponds to ψð0; LÞ ¼ eiϕ.
Firstenberg et al. (2013) showed for Ωc ≪ Δ that ψðr; RÞ

approximately follows a Schrödinger-like equation with R
playing the role of time,

i
∂ψ
∂R ¼ 4laΔ

γ

∂2ψ

∂r2 þ γ

laΔ
UðrÞψ : ð43Þ

Here la ¼ L=OD ¼ 2rB=ODB is the attenuation length.
Assuming a repulsive van der Waals interaction, the
effective potential can be approximated by the step function
Uðjrj ≤ rBÞ ¼ 1. The effective photon mass of this
Schrödinger-like evolution originates from the quadratic
component (∝ k2) of the dispersion of individual polaritons.
This component causes the change in group velocity when the
Rydberg level shifts.
Equation (43) approximately describes a potential well. Both

the mass and the potential terms flip signs for Δ → −Δ, so the
effective force remains attractive. The two-photon bound
state of the finite-well potential, shown in Fig. 15(d), governs
the evolution of an incoming wave function ψðr; 0Þ ¼ 1. In
Fig. 15(d), in order to compare the measured gð2ÞðτÞ to the
calculated ψðr; LÞ, the time τ has been converted to distance r
using the group velocity vEIT ¼ laΩ2

c=ð2γÞ. In experiments,

FIG. 15. (a) Schematics of a typical Rydberg-polaritons setup: a cloud of ultracold alkali atoms is held between two confocal lenses.
The outgoing probe photons are measured using single-photon detectors. (b) Normalized second-order correlation gð2Þ of the outgoing
probe vs the time separation τ between the photons, showing the transition from antibunching in the dissipative regime (Δ ¼ 0) to
bunching in the dispersive regime (Δ ¼ 4.6γ). The group delay in the medium was 0.25 μs. Points are experimental data, lines are
numerical simulations. (c) Conditional phase shift obtained from a tomographic reconstruction of the outgoing two-photon wave
function. (d) Signature of the two-photon bound state: The interaction potential UðrÞ is approximated by a well of width 2rB (bottom,
dash-dotted line). The resulting bound state, observed in the shape of the measured gð2Þ (top, circles, where time is converted to distance
via x2 − x1 ¼ τvEIT), conforms to that calculated using Eq. (43) (top, solid line). The initial state ψðr; 0Þ ¼ 1 (bottom, dashed line)
is a superposition of the bound state (bottom, thick line) and the manifold of scattering states (bottom, thin line). Adapted from Peyronel
et al., 2012, and Firstenberg et al., 2013.
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Ω2
c ≪ cγ=la and thus vEIT ≪ c, as assumed throughout this

section.
Following this initial model, Bienias et al. (2014) used

scattering theory to study the 1D scattering properties for two
photons for a wide range of the system parameters. By
calculating the effective 1D scattering length, they predicted
the existence of scattering resonances analogous to Feshbach
resonances in cold atoms, where the interaction turns from
attractive to repulsive. For the experimental parameter regime
described earlier, Bienias et al. (2014) generalized Eq. (43) to
account for nonstationary (but slowly varying) probe input,
essentially replacing the term ∂=∂R by ∂=∂Rþ ∂=ðvEIT∂tÞ.
Lately, two more treatments for the system have been

introduced. Caneva et al. (2015) modeled the atomic ensemble
by a chain of 3LEs along a 1D waveguide, generalizing the
input-output formalism presented in the previous sections.
With this effective description, they recovered the mean
ensemble behavior (e.g., the optical depth and vEIT) and
provided a recipe for calculating the high-order correlations of
the outgoing photons. In parallel, Moos et al. (2015) wrote
down an exact many-body model for the system, including
the loss (scattering out of the system) and the paraxial
propagation of the probe light, and provided the conditions
under which the model is reduced to an effective many-body
system of slow-light polaritons in 1D. They verified the model
in the two-photon case by comparing it to exact numerical
simulations.

B. Many photons

Recently, two groups demonstrated storage of Rydberg
polaritons for implementing a single-photon switch or tran-
sistor (Baur et al., 2014; Gorniaczyk et al., 2014; Tiarks et al.,
2014). In these experiments, a “gate” Rydberg polariton is
first converted into a stationary excitation (a spin wave) of one
Rydberg atom by turning off the control field. Subsequent
“signal” polaritons, coupled to a different Rydberg state,
are blockaded by the stored polariton. The number of
signal photons gated by the stored excitation determines
the “gain” of the transistor, recently reaching 100
(Gorniaczyk et al., 2016).
So far, the many-body behavior of Rydberg polaritons has

been limited to theoretical studies. Zeuthen et al. (2016)
described the many-body evolution in the dissipative regime,
where the system can act to transform a classical input
to a regular train of single photons. Bienias et al. (2014)
formulated a low-energy many-body Hamiltonian in the
dispersive regime based on their derivation of the 1D scatter-
ing length. Otterbach et al. (2013) introduced an approximate
Hamiltonian and used Luttinger liquid theory to predict the
Wigner crystallization of Rydberg polaritons. To this end, they
assumed an initial transient (preparation) phase where co-
located polaritons are scattered out of the system, such that the
photon-photon interaction is dominated by the tail of the
repulsive van der Waals interaction. Moos et al. (2015)
followed up on these arguments to derive their aforementioned
effective many-body model and used numerical calculations
(with the DMRG method) to compare with the Luttinger
liquid result.

C. Limitations and prospects

In a long medium (L > 2rB), a copropagating pair of
interacting photons traverses several blockade radii. The
accumulated effect of the interaction can be calculated from
Eq. (43) or from its generalization to the dissipative regime.
Such calculations take into account the distortion (dispersion
and absorption) of the photon wave packet due to the finite
bandwidth of the EIT transmission window, manifested in
Eq. (43) by the mass term. The results depend on both OD
and ODB, with dissipative interaction (Δ ¼ 0) yielding a
blockade probability 1 − OD−1=2e−ODB (Peyronel et al., 2012)
and dispersive interaction (Δ ≫ γ) yielding a conditional
phase shift ϕ ∝

ffiffiffiffiffiffiffi
OD

p
× ODB (Firstenberg et al., 2013).

Nevertheless, while OD strengthen the overall effect as
implied by these expressions, it is now widely accepted
that ODB ≫ 1 alone is the key condition for high fidelity
of quantum information operations. Under this condition,
the optimized arrangement is a medium completely residing
within one blockade volume (L ≤ 2rB) and thus
OD ¼ ODB ≫ 1. Intuitively in the copropagating case, this
arrangement guarantees that the wave packets of both photons
are fully contained within the interaction range (rB), so
that the fidelity is not reduced by partial entanglement of
different parts of the wave packets. In the case of the
aforementioned photonic switch, the gating probability of a
“signal” polariton by a stored gate polariton equals 1 − e−ODB

and the decoherence of the gate during the operation scales as
e−ODB (Li and Lesanovsky, 2015; Murray, Gorshkov, and
Pohl, 2016); the overall infidelity of the switch is thus
governed by the inefficiency of storage and retrieval of the
gate, scaling unfavorably as 1=ODB ¼ 1=OD (Gorshkov
et al., 2007). For realizing strongly correlated many-body
states of copropagating photons, such as the photon train or
the Wigner crystal, the requirements on ODB become even
more stringent (Otterbach et al., 2013; Zeuthen et al., 2016).
So far, experiments have reached OD ¼ ODB ¼ 13 (Tresp

et al., 2016). When using a single Rydberg level, Baur et al.
(2014) and Gaj et al. (2014) predicted a limit ODB ≲ 20 due to
the formation of Rydberg molecules at high atomic densities.
A particularly promising approach to circumvent this limit is
by tuning so-called Förster resonances between two different
Rydberg levels (Tiarks et al., 2014; Gorniaczyk et al., 2016).
Another approach is the introduction of an optical cavity with
a finesse F around the atomic ensemble, where the condition
ODB ≫ 1 is replaced by FODB ≫ 1 (Das et al., 2016). Such
enhancement of the coupling was first demonstrated by Parigi
et al. (2012), and recently long-lived cavity-Rydberg polar-
itons were realized (Ningyuan et al., 2016).

V. CONCLUSIONS AND PERSPECTIVES

Advances in both quantum optics and classical nonlinear
optics were fueled by developments in laser, material, and
electronic technologies, but apart from occasional intersec-
tions these two fields remained almost separated for half a
century. Research was mostly limited to the study of either
high-intensity fields with macroscopic or mesoscopic materi-
als or low-intensity fields with individual atoms. It is the
recent development in realizing and understanding effective
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strong photon-photon interactions at low light intensities in
various systems that triggered the new field of “quantum
nonlinear optics” (Chang, Vuletić, and Lukin, 2014).
There has been significant progress in theoretically describ-

ing nonlinear, out-of-equilibrium dynamics of scattered pho-
tons from individual emitters in a 1D continuum. A large set of
all-optical quantum devices and logic, such as single-photon
routers and switches, few-photon optical diodes, and condi-
tional phase gates, has been proposed using individual two- or
multilevel emitters in 1D. Some of these could find potential
applications in future optical quantum circuits. However,
our current understanding of light-matter interactions in the
mesoscopic regime, with an ensemble of intrinsically inter-
acting or noninteracting emitters, and the ensuing strongly
correlated dynamics, is still at its infancy. This mesoscopic
quantum regime was addressed earlier in theoretical studies of
quantum solitons in optical fibers (Drummond et al., 1993).
Hydrodynamic as well as microscopic descriptions were
developed to investigate strong light-matter interaction in this
regime. However, the intrinsic nonequilibrium nature of the
current experimental systems calls for more careful inves-
tigation to obtain a fully quantum mechanical theory in the
mesoscopic regime. Numerical methods, especially time-
dependent DMRG, may play an important role.
The dynamics of strongly confined propagating photons

interacting with multiple emitters is similar to the nonequili-
brium dynamics of many-body condensed-matter systems, but
still shows some important differences. One significant feature
of photonic systems is the controllability over their param-
eters, including the strength of the interactions and dissipation.
This makes the photonic systems suitable candidates for
performing quantum simulation of condensed-matter phe-
nomena. Nevertheless, it is also of fundamental interest to
investigate quantum nonlinear dynamics in the regime where
the number of particles (i.e., photons) is not conserved. This is
a unique feature of photonic systems compared to natural
closed material systems. In particular, it is interesting to
explore the role of loss and dissipation in the quantum-to-
classical transition of mesoscopic many-body systems. The
interplay of spin-orbit interactions and the collective scattering
of light has not been studied so far, and it is an important
direction for future studies. In the presence of disorder, these
nonlinear systems have the potential to exhibit many-body
localization of photons, which has been very little explored
theoretically or experimentally.
In a few short years, the experimental efforts with scattering

of microwave photons from superconducting artificial atoms
and with Rydberg polaritons in cold atomic ensembles have
produced multiple interesting and important results. So far,
the majority of the results with superconducting systems have
involved only a single artificial atom. However, these systems
are well suited for scaling up to more atoms. The standard
nanofabrication techniques employed in making the devices
studied here can easily produce devices of many atoms with
well-controlled spacing, coupling, detunings, etc. The range
of possible experiments is diverse, ranging from exploring
fundamental physics of mesoscopic atom-photon systems to
more sophisticated devices for quantum nodes. In addition to
increasing the system size, superconducting circuits have
room to increase the atom-photon coupling strengths into

new regimes that have not been explored experimental in
any system. In fact, ultrastrong coupling, where Γ ∼ ωe,
was recently demonstrated experimentally (Peropadre et al.,
2013; Sanchez-Burillo et al., 2014; Forn-Díaz et al., 2017).
The ultrastrong-coupling regime promises many new
surprises.
At the same time, we saw that strong photon-photon

interactions are also enabled in the weak-coupling regime
by the action of atomic cooperativity in an ensemble. Rydberg
atoms, in particular, exhibit such cooperativity via the block-
ade mechanism. The dipolar interaction between the Rydberg
atoms conceptually transforms the blockade sphere to a two-
level superatom, replacing the 2LE of the strong-coupling
regime. In both regimes, the photon-photon interaction is
governed by the two-photon bound states and changes its
nature depending on the frequency detuning. However,
while a strongly coupled 2LE preserves the photon number
in the channel, the resonant response of the superatom is
predominantly lossy (while the superatom is transparent due
to EIT for a single photon on resonance, it scatters the
subsequent photons, which is exactly the opposite of a
2LE). Consequently, the reflection associated with a strongly
coupled 2LE is negligible in the superatom case. The large
extent of the superatom relatively to the optical wavelength
also contributes to the diminishing of reflection.
Some directions are being studied in both the 2LE and

the Rydberg systems, such as nonlinear transmission at the
few-photon level, switching and photonic transistors, condi-
tional phase gates, production of bunched or antibunched
light, and deterministic entanglement of initially independent
photons. The distinct features of the Rydberg systems make
them suitable to pursue a variety of rich two-body phenom-
ena, such as a finite-size photonic molecule and exotic many-
body behavior, particularly photon crystallization. With the
increasing understanding of the capabilities and the limi-
tations of the experimental systems, further developments
are soon to be implemented in the preparation of the atomic
medium, the atomic excitation schemes, and the optical
mode confinement. We expect the field to continue evolving
alongside the single-emitter systems and predict that many
of the existing ideas, and certainly more to come, will be
realized in the near future.
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APPENDIX: DERIVATION OF THE INPUT-OUTPUT
FORMALISM

The effective Hamiltonian of a two-level emitter coupled
to a chiral (right-moving) photon mode in 1D continuum is
given by

Hc
io=ℏ ¼

Z
∞

−∞
dkvgka

†
R;kaR;k þ

1

2
ωeσz

þ Vffiffiffiffiffi
2π

p
Z

∞

−∞
dk½a†R;kσ− þ σþaR;k�: ðA1Þ

The Heisenberg equations of motion for the operators are

daR;k
dt

¼ −ivgkaR;k −
iVffiffiffiffiffi
2π

p σ−; ðA2Þ

dσ−
dt

¼ −iωeσ− þ iVffiffiffiffiffi
2π

p
Z

dkσzaR;k; ðA3Þ

dσz
dt

¼ 2iVffiffiffiffiffi
2π

p
Z

dkða†R;kσ− − σþaR;kÞ: ðA4Þ

Equation (A2) is formally solved by multiplying it by eivgkt

and integrating from an initial time t0 < t to get

aR;kðtÞ ¼ aR;kðt0Þe−ivgkðt−t0Þ −
iVffiffiffiffiffi
2π

p
Z

t

t0

dt0σ−ðt0Þeivgkðt0−tÞ:

ðA5Þ
Next we integrate Eq. (A5) with respect to k and introduce a
field operator

ΦðtÞ ¼ bR;inðtÞ − i
V
2vg

σ−ðtÞ; ðA6Þ

where ΦðtÞ ¼ ð1= ffiffiffiffiffi
2π

p Þ R dkaR;kðtÞ, and an input operator
(Fan, Kocabaş, and Shen, 2010)

bR;inðtÞ ¼
1ffiffiffiffiffi
2π

p
Z

dkaR;kðt0Þe−ivgkðt−t0Þ: ðA7Þ

Plugging Eq. (A6) into Eqs. (A3) and (A4), we get

dσ−
dt

¼ iVσzbR;inðtÞ −
Γ
2
σ− − iωeσ−; ðA8Þ

dNe

dt
¼ −iV½σþbR;inðtÞ − b†R;inðtÞσ−� − ΓNe; ðA9Þ

where Γ ¼ V2=vg and Ne ¼ ðσz þ 1Þ=2. Similarly by inte-
grating Eq. (A2) up to a final time t1 > t, we find

ΦðtÞ ¼ bR;outðtÞ þ i
V
2vg

σ−ðtÞ: ðA10Þ

Finally we can write from Eqs. (A6) and (A10)

bR;outðtÞ ¼ bR;inðtÞ − i
V
vg

σ−ðtÞ: ðA11Þ
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