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The newly emerging field of wave front shaping in complex media has recently seen enormous
progress. The driving force behind these advances has been the experimental accessibility of the
information stored in the scattering matrix of a disordered medium, which can nowadays routinely
be exploited to focus light as well as to image or to transmit information even across highly turbid
scattering samples. An overview of these new techniques, their experimental implementations, and
the underlying theoretical concepts following from mesoscopic scattering theory is provided. In
particular, the intimate connections between quantum transport phenomena and the scattering of light
fields in disordered media, which can both be described by the same theoretical concepts, are
highlighted. Particular emphasis is put on how these topics relate to application-oriented research
fields such as optical imaging, sensing, and communication.
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I. INTRODUCTION

Recent years have witnessed enormous conceptual and
experimental progress in the ability to manipulate light fields
both spatially and temporally. On the experimental side these
advances have largely been enabled by the availability of
highly tunable digital arrays, also known as spatial light
modulators (Savage, 2009), which are meanwhile being used
to create arbitrarily complex light fields. In this sense the
current state of the art in the field of optical wave front shaping
is reminiscent of the situation in related areas such as acoustics
and seismology, which were similarly promoted by antenna or
transducer arrays that can retrieve information from a complex
environment. The availability of such versatile tools now also
in optics opens up the way to address a topic where conven-
tional optical techniques are hard to apply, like the control of
light propagation in turbid media such as in amorphous or
disordered materials, biological tissues, complex photonic
structures, plasmonic systems, multimode fibers, etc. Starting
points for these activities were a number of proof-of-principle
experiments that recently demonstrated that a disordered
material can be used to focus light (Vellekoop and Mosk,
2007; van Putten et al., 2011) and that its transmission matrix
can be measured in detail (S. M. Popoff et al., 2010; Popoff,
Aubry et al., 2011) to reconstruct the transmission of images
across highly scattering samples (S. Popoff et al., 2010).
Beyond spatial control, explicitly time-dependent measure-
ments were able to show that a wave scattered in a disorder
region can not only be focused in space but also in time
(Aulbach et al., 2011; Katz et al., 2011; McCabe et al., 2011;
Mounaix et al., 2016). Following the pioneering concepts
introduced by Freund (1990a), further work successfully
demonstrated that the information stored in the scattering
matrix of a disordered system can be used for turning a
disordered sample into a perfect mirror (Katz, Small, and
Silberberg, 2012) or into a high resolution spectral filter or
spectrometer (Small et al., 2012; Redding et al., 2013). This
insight can be expected to have impact on a very broad
range of fields such as biology and medicine (Cox, 2012),
where imaging through disorder is a major challenge; nano-
photonics (Kawata, Ohtsu, and Irie, 2002), where the chal-
lenge is to address and control quantum systems in a
disordered environment (Sapienza et al., 2011); quantum
information (Ott, Mortensen, and Lodahl, 2010; Defienne
et al., 2016; Wolterink et al., 2016), where entangled states
could be guided and transformed, as well as communication
technology (Tse and Viswanath, 2005), where the principal
goal is to secure that information sent through a complex
environment ends up at a desired receiver.
A sound theoretical basis required to describe these

phenomena is given in terms of scattering theory. In the
specific context of disorder scattering it is mostly the work in
mesoscopic physics (Sebbah, 2001; Imry, 2002; Stöckmann,
2006; Akkermans and Montambaux, 2007), quantum trans-
port (Datta, 1997; Ferry and Goodnick, 1997; Mello and
Kumar, 2004), and random matrix theory (Beenakker, 1997;
Alhassid, 2000; Mitchell, Richter, and Weidenmüller, 2010)
that has been the principal driving force behind theoretical
progress. This is because electron scattering through disor-
dered or chaotic systems has been and continues to be one of

the paradigms in the mesoscopic physics community. In spite
of the progress made, many of the results obtained for the
situation on the mesoscopic scale do, however, remain
unknown to the newly emerging scientific communities
working on wave front shaping in complex media. The reason
why many insights penetrated only weakly outside the
community of mesoscopic physics is probably due to the
vastness of the field, which makes it difficult to overlook, and
due to a specific scientific jargon which scientists working
outside this community are typically not familiar with.
The intended goal of our review article is to bridge this

knowledge gap. Our strategy is to demonstrate how theoretical
insight from mesoscopic scattering theory has direct relevance
for the recent wave control experiments and vice versa. We
start in Sec. II with a brief review of mesoscopic transport
theory in which basic concepts like the scattering matrix and
its statistical properties following from random matrix theory
or related approaches are introduced. We discuss here the
concept of transmission eigenchannels as well as their con-
nection to electronic shot noise, which provides indirect
access to the distribution of transmission eigenvalues in
measurements of electronic current. Particular emphasis is
put on the concept of time delay in scattering and its relation to
the density of states as well as to coherent wave absorption
and to the quantum-to-classical crossover. With such a solid
theoretical basis being established, we move on in Sec. III to
review a number of mesoscopic transport effects that have
meanwhile been observed in optical experiments without the
help of any wave front shaping tools. As shown, quite a
number of theoretical concepts first studied in a mesoscopic
context could be successfully transferred and, indeed,
observed with light fields in complex media. Examples
highlighted here are those related to the quantization of
the conductance and its universal fluctuations, weak locali-
zation, the memory effect etc. While these observations
are very encouraging for the applicability of the theoretical
tools introduced in Sec. II, much more can be done in these
experiments with the tools of wave front shaping. These tools
are reviewed in Sec. IV and we discuss how they can be used
for measuring and modulating the light transmitted through
the paradigmatic case of a thin disordered slab. Such an
“opaque lens” can be used for focusing, imaging, and for
controlling the polarization and the temporal shape of the
transmitted light. In Sec. V we review how the predictions
from mesoscopic transport theory can be fully brought to
bear using the wave front shaping tools introduced earlier.
First, we focus on effects that were already realized in
corresponding experiments such as those related to open
and closed transmission channels, the memory effect, etc. In
the next step we provide a collection of many interesting
predictions that still await an implementation in the labo-
ratory. This outlook also serves the purpose of indicating
future directions of research and demonstrating how much
“uncharted territory” is yet to be developed in this increas-
ingly active field of research. Our review is completed with a
summary in Sec. VI.
We intentionally restricted the scope of this review to the

interface between mesoscopic scattering theory and the recent
advances in wave front shaping. With this focus we hope to
provide some added value to both of the corresponding
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communities that we are trying to better connect with our
article. At this point we emphasize that excellent reviews and
books are already available for each of these two separate
fields: Regarding mesoscopic scattering, interested readers
may find a wealth of information on specific topics such as
the random matrix theory (RMT) (Beenakker, 1997; Guhr,
Müller-Groeling, and Weidenmüller, 1998; Akemann, Baik,
and Francesco, 2011), or the maximum entropy approach
(Mello and Kumar, 2004), as well as the many interesting
connections between electronic transport and light scattering
(Lagendijk and van Tiggelen, 1996; Dragoman and
Dragoman, 2004; Akkermans and Montambaux, 2007).
Also for wave front shaping the first short reviews have
recently become available (Mosk et al., 2012; Shi, Davy, and
Genack, 2015; Vellekoop, 2015; Vos, Lagendijk, and Mosk,
2015). The niche we intend to fill with this contribution is to
highlight the underappreciated connection between the two
topical areas and its potential for future research.

II. SCATTERING THEORY FOR COMPLEX MEDIA

The scattering of waves through disordered or otherwise
complex media is a problem that can be approached from
many different angles. In particular, a whole hierarchy of
different methods have been developed that provide insight
into different levels of accuracy, typically anticorrelated with
the complexity of a specific method. For the purpose of this
review, we are mostly interested in those approaches, which
retain the wave nature of the scattering process, such as
to incorporate effects due to interference. A full solution of
the corresponding wave equation is, however, very costly
numerically and often does not provide much insight into the
general features underlying a whole class of related prob-
lems. To overcome such limitations, much work has been
invested into “mesoscopic scattering theory,” which we
provide a short review of. This term refers to a set of
theoretical tools that were largely developed in the context of
mesoscopic electron transport, in which the phase coherence
of electrons, the finite number of modes through which they
can scatter, as well as the correlations between these modes
play a significant role.
Whatever the formalism chosen to describe wave propa-

gation in disordered media, there are a few common
parameters to quantify the scattering properties of the
medium. The most important one is probably the transport
mean free path, usually referred to as ltr or l⋆ in the
literature (we use the notation l⋆ in this review). This length
scale measures after which distance the propagation direc-
tion of an incoming photon is randomized and thus governs
the macroscopic transport properties of the medium. At a
more microscopic level, the scattering mean free path l (or
ls in the literature) measures the average distance traveled
between two scattering events and thus quantifies the
scattering strength of the medium. The link between l⋆
and l is through the anisotropy of scattering l⋆ ¼ l=ð1 − gÞ
quantified by the anisotropy factor g ¼ hcos θi, i.e., the
average of the cosine of the scattering angle θ. An important
case is the one of isotropic scattering, for which hcos θi ¼ 0,
g ¼ 0, and l⋆ ¼ l.

A. Basic formalism

1. Wave equations

A good starting point for setting up the formalism for
mesoscopic scattering is the observation that electromagnetic
waves in a dielectric medium behave similarly to electrons in a
potential (see also the corresponding references listed in the
last paragraph of the Introduction). Since this analogy will
also be the bridge across which many of the results from
mesoscopic transport theory can be carried over to the domain
of optics, we start here by elucidating this connection.
Consider first the Schrödinger equation for the evolution of

a particle of mass m in a potential VðrÞ,
�
p2

2m
þ VðrÞ

�
ψðr; tÞ ¼ iℏ∂tψðr; tÞ: ð1Þ

For stationary states with a well-defined real energy
E ¼ ℏω and a corresponding time evolution expð−iωtÞ the
Schrödinger equation reduces to the following form without a
time derivative:

�
Δ −

2m
ℏ2

½VðrÞ − E�
�
ψEðrÞ ¼ 0; ð2Þ

where we used the standard definition for the momentum
operator p ¼ −iℏ∇. For appropriate boundary conditions the
differential operator in Eq. (2) will be Hermitian such that
the eigenstates ψmðrÞ (labeled by their mode index m) satisfy
the conventional orthogonality relations

Z
drψmðrÞ�ψnðrÞ ¼ δmn ð3Þ

and form a complete basis of states.
To find equivalent relations also for light scattering,

consider first the wave equation for the electric field
Eðr; tÞ in a source-free, linear, and frequency-independent
dielectric medium with dielectric function εðrÞ, which is
directly derived from Maxwell’s equations (Jackson, 1998),

−∇ ×∇ × Eðr; tÞ ¼ εðrÞ
c2

∂2
tEðr; tÞ: ð4Þ

To make the analogy to the Schrödinger equation, we
first restrict ourselves to monochromatic states, which, in
perfect analogy to the stationary states of the Schrödinger
equation, feature a harmonic time dependence Eðr; tÞ ¼
EωðrÞ expð−iωtÞ. Unless explicitly stated otherwise, we work
with this complex notation in the following with the under-
standing that the real (physical) electric field is extracted as the
real part of this complex quantity Re½Eðr; tÞ�. As it turns out,
even for appropriate boundary conditions, the curl operator
above is not a Hermitian operator when the dielectric function
εðrÞ is spatially varying and when the conventional inner
product is used (Viviescas and Hackenbroich, 2003). We thus
rewrite the electric field through the vector-valued function
ϕωðrÞ ¼

ffiffiffiffiffiffiffiffi
εðrÞp

EωðrÞ, such that Eq. (4) can be rewritten with
the Hermitian differential operator L,
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LϕωðrÞ≡ 1ffiffiffiffiffiffiffiffi
εðrÞp ∇ ×

�
∇ ×

ϕωðrÞffiffiffiffiffiffiffiffi
εðrÞp

�
¼ ω2

c2
ϕωðrÞ: ð5Þ

With appropriate boundary conditions, the eigenstates ϕmðrÞ
are then orthogonal to each other and provide a complete basis
of states. As a consequence, the electric field satisfies the
following orthogonality relation:

Z
drϕmðrÞϕnðrÞ ¼

Z
dr εðrÞEmðrÞEnðrÞ ¼ δmn: ð6Þ

To make the analogy to the stationary Schrödinger equation
even more apparent, we simplify the curl operator with the
vector identity ∇ × ð∇ ×AÞ ¼ ∇ð∇ ·AÞ − ΔA, such that we
arrive at what is termed the vectorial Helmholtz equation,

�
Δ −

ω2

c2
½1 − εðrÞ� þ ω2

c2

�
EωðrÞ ¼ 0: ð7Þ

We emphasize at this point, however, that Eq. (7) holds only
under the assumption that ∇ ·E ¼ 0 as for source-free media
which are linear, homogeneous, and isotropic [in the linear
regime gain and loss in the medium may be included through a
complex dielectric εðrÞ]. For inhomogeneous media, where
the dielectric permittivity is position dependent, the wave
equation (4) as well as the Helmholtz equation (7) does
not hold. One may just consider the approximation of a
locally homogeneous medium for which the variation of εðrÞ
is slow as compared to the wavelength λ (Lifante, 2003).
Alternatively, when the medium consists of piecewise homo-
geneous constituents, one may use the Helmholtz equation for
each subpart, but different field components get mixed at the
boundaries between them. We also mention here that it may
computationally be more efficient to consider the magnetic
field rather than the electric field in a nonmagnetic medium
(Joannopoulos et al., 2008).
Even the vector Helmholtz equation itself is difficult to

solve for most cases and closed solutions exist only in very
special limits. In practice, one therefore often reduces the
Helmholtz equation to a scalar form, in which the scalar
quantity ψωðrÞ stands for one of the three components of
the electric or magnetic field. Implicit in this strategy is the
assumption that the coupling of different vectorial compo-
nents does not contain important physics—a point which in
many publications remains open [see, e.g., a corresponding
analysis in Bittner et al. (2009)]. Certainly, the description
of light as a scalar field may lead to quite different results
than those based on a full solution of the Maxwell equations
(Lagendijk and van Tiggelen, 1996; Skipetrov and Sokolov,
2014), such that a careful analysis for each individual case at
hand must be recommended.
In all cases where the scalar Helmholtz equation provides a

good approximation of the real physics (Kragl, 1992),

�
Δ −

ω2

c2
½1 − εðrÞ� þ ω2

c2

�
ψωðrÞ ¼ 0; ð8Þ

all the quantities in this scalar equation for light fields can be
directly compared to those of the Schrödinger equation for

electrons, Eq. (2). For the case of the dielectric constant
of vacuum εðrÞ ¼ 1, or, equivalently, for the case of
vanishing potential VðrÞ in the Schrödinger case, we can
see immediately that the resulting two equations, Eqs. (2)
and (8), are the same if we identify the “light energy” as
Elight ¼ ðℏωÞ2=ð2mc2Þ (Lagendijk and van Tiggelen, 1996).
For the case of free space propagation, both equations
also have the same fundamental plane wave solutions
ψEðrÞ ¼ ψωðrÞ ¼ ψk;ω expðik⋅r − iωtÞ, characterized by a
single frequency ω and a single wave vector k, where
jkj ¼ k ¼ ω

ffiffiffiffiffiffiffi
εμ0

p ¼ nk0 with n the refractive index and
k0 ¼ ω=c. In the case of a spatially nonuniform dielectric
function εðrÞ or potential landscape VðrÞ, the scalar
Helmholtz and the Schrödinger equation can still be mapped
onto each other for any given frequency ω, when we identify
the relation for the “light potential” V lightðrÞ ¼ Elight½1 − εðrÞ�
and keep in mind that the Helmholtz equation is valid for
locally homogeneous media only (Lifante, 2003).
The equivalence between the fundamental equations, which

describe electronic and light scattering, is essential for many
of the effects discussed in this review and for their occurrence
in both of the different research fields. Note, however, that this
analogy also has well-defined limits, as, e.g., when attempting
to describe the microscopic details of the scattering field in a
disordered medium, which goes beyond the capacity of the
Helmholtz equation and requires a full treatment based on
Maxwell’s equations. As seen later, for many other quantities,
in particular, for those related to the statistical properties of
scattering amplitudes, many common aspects in electron and
light scattering can be identified.
Fundamental differences between the scattering of electrons

and light do, however, remain: These become apparent, e.g.,
when going away from the stationary picture at a given
scattering energy E or frequency ω. Because of the difference
between the linear dispersion relation for light (ω ¼ kc, or,
equivalently, E ∝ p) and the quadratic dispersion for matter
(E ∝ p2), the temporal dynamics in scattering will be very
different for these two cases. Consider here the free motion of
a wave packet in one dimension which satisfies Eq. (4) with
the linear dispersion relation ω ¼ kc=n. In free space, where
n ¼ 1, both the group velocity vg ¼ ∂ω=∂k ¼ c and the phase
velocity vϕ ¼ ω=k ¼ c are independent of ω or k such that
wave packets of light preserve their shape in vacuum. In
contrast, for electronic matter waves the corresponding
velocities vg ¼ ℏk=m and vϕ ¼ ℏk=ð2mÞ depend on k, such
that different frequency components of the wave packet travel
with different speeds, leading to wave packet spreading even
in vacuum. Furthermore, since the relation εðrÞ > 1 implies
that the light potential can never exceed the light energy
V light < Elight, a dielectric medium can never form a tunneling
barrier for light in the same way as an electrostatic potential
can for electrons. Also any effects related to the vectorial
character of the electric field (such as the polarization of light)
have no simple analogy to the electronic case. When consid-
ering stationary scattering problems in which the polarization
does not play an important role, the analogy between electron
and light scattering can, however, be used extensively. At
points where this analogy breaks down, this is mentioned
explicitly.
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2. Continuity equation and flux

The scattering of electrons and the scattering of light in a
lossless, static, and linear dielectric medium have in common
that a conservation relation applies,

∂tWðr; tÞ þ ∇ · Jðr; tÞ ¼ 0: ð9Þ
This so-called “continuity equation” states that any
temporal change of the density W must be compensated by
a corresponding flux J. For the electronic case these two
quantities are given by the probability density Wðr; tÞ ¼
jψðr; tÞj2 and by the probability current density Jðr; tÞ ¼
Re½ψðr; tÞ�pψðr; tÞ�=m, respectively. The corresponding
quantities for light are the electromagnetic energy density
uðr; tÞ and the Poynting vector Sðr; tÞ, which fulfill the
relation in Eq. (9), now termed as the “Poynting theorem,”
when the following replacements are made: Wðr; tÞ →
uðr; tÞ ¼ 1

2
½εEðr; tÞ2 þ μ−1Bðr; tÞ2� and Jðr; tÞ → Sðr; tÞ ¼

Eðr; tÞ × Bðr; tÞ=μ (for which definitions we used real-valued
fields E, B) (Griffiths, 1999). Note that these quantities are of
particular importance in experiments, since what detectors
typically measure is the integrated flux, counted in terms of
the number of electrons or of photons that hit the detector
surface (van Tiggelen and Kogan, 1994; Lagendijk and van
Tiggelen, 1996).

3. Green’s function

A central issue that we address in this review is the question
of how the radiation emitted by a set of given sources is
scattered to a set of receivers. For this purpose it is convenient
to resort to the concept of the Green’s function (Morse and
Feshbach, 1953). We start here again with Maxwell’s equa-
tions for a nonmagnetic medium described by a dielectric
function εωðrÞ ¼ εrω þ εsωðrÞ that is embedded in an infinite
homogeneous reference medium εrω. In the presence of
external current sources JωðrÞ we end up with an inhomo-
geneous vector Helmholtz equation of the following form
(Tsang, Kong, and Ding, 2004):

−∇ × ∇ × EωðrÞ þ
�
ω

c

�
2

εωðrÞEωðrÞ ¼ iμ0ωJωðrÞ; ð10Þ

with ω=c ¼ k0 the vacuum wave number. When simpli-
fying the notation in the following way −∇ × ∇× → D,
k20ε

r
ωðrÞ → er, k20ε

s
ωðrÞ → es, Eq. (10) is written as

ðDþ er þ esÞE ¼ iμ0ωJω. The desired Green’s function G
(which is actually a dyadic tensor) satisfies the corresponding
equation ðDþ er þ esÞG ¼ δðr − r0Þ1, where we used
Gðr; r0;ωÞ → G, and 1 is the unit tensor. With the help of
the tensorial Green’s function, we may relate vectorial current
sources with vectorial electric fields through a convolution,

EωðrÞ ¼ iμ0ω
Z

dr0Gðr; r0;ωÞJωðr0Þ: ð11Þ

In the case that no current sources are present in a medium, the
inhomogeneity in Eq. (10) vanishes. An electric field can still
be present, however, when an incident field is considered.
Such a scattering problem can be treated by setting up
equivalent relations for the incident field E0 that satisfies

ðDþ erÞE0 ¼ 0 in the homogeneous and source-free refer-
ence system. With the corresponding Green’s function G0

satisfying ðDþ erÞG0 ¼ δðr − r0Þ1 one finds the so-called
Dyson equation G ¼ G0 −G0esG and E ¼ ð1 −GesÞE0

(Martin, Girard, and Dereux, 1995). One thus has a gener-
alized field propagatorK ¼ 1 −Ges at hand that connects the
incident field with the full field distribution (including the
scattered part) again through a convolution,

EωðrÞ ¼
Z

dr0Kðr; r0;ωÞE0
ωðr0Þ: ð12Þ

Note that both Eqs. (11) and (12) are valid independently of
the form of the current sources or of the incident field. The
central piece of information necessary to solve these equations
is the system response encapsulated in the Green’s tensor G.
To obtain this quantity, one may proceed through direct
inversion of the Dyson equation [G0 is known analytically
(Morse and Feshbach, 1953)], or through iteration [corre-
sponding iteration schemes have been put forward both for
electromagnetic wave propagation (Martin, Girard, and
Dereux, 1995) and for mesoscopic electron scattering
(Datta, 1997; Ferry and Goodnick, 1997; Rotter et al., 2000)].
In the general case of a nonuniform medium, which may

also change the polarization of the electric field, the tensorial
character of the Green’s function is essential. The reduction to
a scalar Green’s function is allowed, however, when consid-
ering the emission and detection in well-defined polarization
directions only (Papas, 2011).

4. Scattering matrix

A primary goal in scattering theory is to connect the
incoming flux that is impinging on the system of interest
to the outgoing flux scattered away from this system. A
convenient tool for carrying out the corresponding book-
keeping is the scattering matrix which connects all the
incoming and outgoing flux “channels” to be defined in
detail later. The scattering matrix, in turn, is intimately related
to the Green’s function since the latter connects all points in
space with each other.
To illustrate this in detail, we introduce as a model system a

two-dimensional slab geometry of uniform height D with a
disordered dielectric medium of length L in the middle and
lossless semi-infinite waveguides of the same height attached
on the left and right (see Fig. 1). This model system will serve

FIG. 1. Illustration of the scattering system considered in the
text: A rectangular disordered region of length L fills the middle
part of an infinite wave of height D. Here the flux injected from
the left through transverse waveguide modes can be transmitted
(to the right) or reflected (to the left).
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as a convenient tool to many of the features which we want
to explain below for scattering through waveguides, fibers,
and disordered media in general. To simplify matters, we
assume that we can use the scalar Helmholtz equation [see
Eq. (8)], as for a transverse magnetic polarized electromag-
netic field mode in a three-dimensional medium which is
invariant in the z direction. The relevant scalar field
component which we thus describe is the z component of
the electric field Ez, assuming hard-wall (Dirichlet) boun-
dary conditions at the upper and lower boundaries of the
scattering domain.
In the asympotic regions (far away from the disordered

part), the field in the left (α ¼ l) and right (α ¼ r) wave guide
will naturally be decomposed into different waveguide modes
χnðyÞ ¼

ffiffiffiffiffiffiffiffiffi
2=D

p
sinðnπy=DÞ, as determined by the boundary

conditions in the transverse direction,

ψωðxÞ ¼
XN
n¼1

cþα;nχnðyÞ
eik

x
nxffiffiffiffiffi
kxn

p þ c−α;nχnðyÞ
e−ik

x
nxffiffiffiffiffi
kxn

p : ð13Þ

For fully defining the scattering state in the asymptotic region
we summed over all N ¼ ⌊ωD=cπ⌋ flux-carrying modes for
which the propagation constant kxn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2=c2 − ðnπ=DÞ2

p
is

real (evanescent modes with an imaginary propagation con-
stant have died out asymptotically). The complex expansion
coefficients c�n correspond to right-moving (þ) and left-
moving waves (−), respectively. The terms in the denomi-
nators ∼

ffiffiffiffiffi
kxn

p
are required to make sure that all the basis states

on which we expand the field have the same flux in the
longitudinal direction J∥ (see definitions in Sec. II.A.2). Based
on this representation of the field in the asymptotic region, we
can define the scattering matrix as the complex matrix which
connects the incoming expansion coefficients with the out-
going coefficients,

cout ¼ Scin with cin ≡
�
cþl
c−r

�
; cout ≡

�
c−l
cþr

�
:

ð14Þ

The 2N × 2N complex coefficients in the scattering matrix
can be subdivided into four block matrices,

S ¼
�
r t0

t r0

�
; ð15Þ

where the quadratic blocks on the diagonal contain the
reflection amplitudes for incoming modes from the left
(rmn) and from the right (r0mn), respectively. The off-diagonal
blocks contain the transmission amplitudes for scattering from
left to right (tmn) and from right to left (t0mn), respectively. Note
that in the case in which the number of modes is different on
the left (N) and right side (M), the reflection matrices r; r0

remain quadratic (of size N × N and M ×M, respectively),
whereas the transmission matrices t; t0 are then just rectan-
gular (of sizeM × N and N ×M, respectively). In this general
case the total transmission Tn and reflection Rn associated
with a given incoming mode n on the left read as Tn ¼P

M
m¼1 jtmnj2 and Rn ¼

P
N
m¼1 jrmnj2 (equivalent relations also

hold for the quantities T 0
n; R0

n; T 0; R0 with incoming modes
from the right). We choose here the convention to label the
incoming (outgoing) mode with the second (first) subindex in
the matrices such as to coincide with the convention of matrix
multiplication, i.e., cout ¼ Scin is cout;m ¼ P

nSmncin;n.
In electronic scattering the modes cannot be addressed

individually, such that the relevant quantity in this context
is the total transmission T ¼ P

N
n¼1 Tn, corresponding to the

transmission through all equally populated incoming modes
from the left (similarly the total reflection R ¼ P

N
n¼1 Rn).

Neglecting the smearing effect of a finite temperature and
counting each of the spin polarizations separately, this total
transmission T can be directly related to the electronic
conductance

G ¼ ð2e2=hÞT ¼ ð2e2=hÞ
X
m;n

jtmnj2; ð16Þ

a quantity which is directly measurable in the experiment.
The connection between the conductance and the transmission
was first derived by Economou and Soukoulis (1981) and
Fisher and Lee (1981) and is commonly known as the
“Landauer formula” (Landauer, 1957). Its generalization to
multiterminal systems (Büttiker, 1986) is referred to as the
“Landauer-Büttiker formalism.”
Since in a scattering process without gain and loss the

combined value of the transmission and reflection for each
mode must be 1, we can write Tn þ Rn ¼ 1 and T 0

n þ R0
n ¼ 1

or, more generally, T þ R ¼ N and T 0 þ R0 ¼ M. These
relations, together with the flux normalization of modes in
Eq. (13), demonstrate the conservation of flux in systems
without sources or sinks. In other words, the incoming flux in
a scattering process

P
njcin;nj2 ¼ jcinj2 must be equal to the

outgoing flux
P

njcout;nj2 ¼ jcoutj2, such that

c†outcout ¼ c†incin → c†inðS†S − 1Þcin ¼ 0; ð17Þ

in which the relation can be fulfilled only if the scattering
matrix is unitary S†S ¼ 1. Inserting the block-matrix form of
the scattering matrix, Eq. (15), into this unitarity condition, we
arrive at the corresponding relations which the transmission
and reflection matrices have to satisfy:

t†tþ r†r ¼ t0†t0 þ r0†r0 ¼ 1;

r†t0 þ t†r0 ¼ t0†rþ r0†t ¼ 0;
ð18Þ

as well as

tt† þ r0r0† ¼ t0t0† þ rr† ¼ 1;

rt† þ t0r0† ¼ tr† þ r0t0† ¼ 0;
ð19Þ

following from the alternative formulation of the unitarity
condition SS† ¼ 1.
The above Hermitian matrices t†t; r†r; tt†; rr† and their

primed counterparts play an important role in the theoretical
description of multimode scattering problems. This is
because they can be used to conveniently express several
of the scattering quantities of interest. Consider the total
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transmission T and reflection R for all incoming modes from
the left, which can also be written as T ¼ Trðt†tÞ ¼ P

nτn and
R ¼ Trðr†rÞ ¼ P

nρn, where τn and ρn are the real eigenval-
ues of t†t and r†r, respectively. Also the transmission Tn or
reflection Rn of a given mode n on the left can be expressed as
Tn ¼ ðt†tÞnn, Rn ¼ ðr†rÞnn. Note that the transmission of a
lead mode Tn is different from that of a “transmission
eigenchannel” τn, and only their sum is the same T ¼P

nTn ¼
P

nτn as required by the invariance of the trace.
From the requirement that t†tþ r†r ¼ 1 we can further
deduce that the quadratic matrices t†t and r†r are simulta-
neously diagonalizable and that their eigenvalues are related
as τn ¼ 1 − ρn.
To better understand the relation between the matrices t†t

and tt† we can write the non-Hermitian and not necessarily
quadratic transmission matrix t in its singular value decom-
position t ¼ UΣV†, where the unitary matrices U (of size
M ×M) and V (of size N × N) contain, as their columns, the
left and right singular vectors of t, respectively. The matrix
Σ in the center contains the real and non-negative singular
values σi on its diagonal. These quantities are now elegantly
connected to the quadratic and Hermitian matrices t†t and tt†:
The left singular vectors of t (contained in U) are the
orthogonal eigenvectors of tt† and the right singular vectors
of t (contained in V) are the orthogonal eigenvectors of t†t.
The nonzero singular values σi of t (contained in Σ) are the
square roots of the nonzero eigenvalues of t†t and tt†, i.e.,
σi ¼ ffiffiffiffi

τi
p

(if these two matrices are different in size M ≠ N,
the larger matrix has at least jM − Nj zero eigenvalues). With
the help of these identities, we can write t†t ¼ VΣ2V† ¼
VτV† and tt† ¼ UΣ2U† ¼ UτU†, where the diagonal matrix
τ contains the transmission eigenvalues from above on its
diagonal τ ¼ diagðτ1;…; τMÞ. From these identities we can
conclude that t†t and tt† share the same eigenvalues (except
for jM − Nj zero eigenvalues) and due to the identities
Eqs. (18) and (19) these eigenvalues are also the same as
those of the matrices t0†t0, t0t0†, 1 − r†r, 1 − rr†, and
1 − r0†r0, 1 − r0r0†.
Additional, so-called reciprocity relations (also called

Onsager relations) can be obtained for the scattering matrix
(Jalas et al., 2013). In terms of the transmission and reflection
matrix elements, reciprocity translates into an identity
between the amplitude for scattering from mode m to another
mode n and the amplitude for the reverse process (i.e., from
mode n to mode m): rnm ¼ rmn, r0nm ¼ r0mn, and tnm ¼ t0mn,
corresponding to a transposition-symmetric scattering matrix
S ¼ ST. Similar reciprocity relations can also be derived for
generalized transmission and reflection coefficients (Nieto-
Vesperinas and Wolf, 1986). Generally speaking, these rela-
tions tell us that if one can scatter from a mode m to another
mode n then the reverse process also happens with the same
amplitude. One may be tempted to associate this property with
time-reversal symmetry, which is, however, misleading. Time-
reversal symmetry implies reciprocity, but not the other way
around. The best example to illustrate this fact is a medium
with absorption, for which time-reversal symmetry is obvi-
ously broken but the reciprocity relations may still hold (van
Tiggelen and Maynard, 1997). Breaking the reciprocity of a

medium typically requires a time-dependent dielectric func-
tion, nonlinear effects, or a magnetic field (Jalas et al., 2013).
Our choice to evaluate the scattering matrix S in the lead-

mode basis χn is arbitrary and other basis sets can be more
useful for addressing particular problems. A natural basis, in
which the scattering matrix is diagonal is, of course, its
eigenbasis,

S ¼ Ω diagðeiϕ1 ;…; eiϕ2N ÞΩ†: ð20Þ
Being a unitary matrix, the eigenvalues of S lie on the unit
circle in the complex plane and can be parametrized, using
the so-called scattering phase shifts ϕn. The transformation to
the eigenbasis is mediated by the unitary matrix Ω which
contains the eigenvectors of S. In the presence of time-reversal
symmetry where the scattering matrices are transposition
symmetric, Ω can be chosen real and is then an orthogonal
matrix ΩTΩ ¼ 1.
This parametrization of the scattering matrix has the

disadvantage that the modes on the left and right of the
sample are strongly mixed as eigenvectors of S typically
feature components from all modes, irrespective of their
asymptotic behavior. An alternative parametrization which
disentangles the modes on the left and right sides was
proposed by Mello, Pereyra, and Kumar (1988) and Martin
and Landauer (1992). This so-called “polar decomposition” is
based on the singular value decomposition of the scattering
matrix blocks and reads as follows:

S ¼
�
V 0
0 U

��
−

ffiffiffiffiffiffiffiffiffiffi
1 − τ

p ffiffiffi
τ

p
ffiffiffi
τ

p ffiffiffiffiffiffiffiffiffiffi
1 − τ

p
��

V0 0
0 U0

�
: ð21Þ

In the general case the primed matrices satisfy U0 ¼ U†,
V0 ¼ V†, and in the presence of time-reversal symmetry one
has U0 ¼ UT, V0 ¼ VT. The transformation from the lead
modes to the transmission eigenchannels of t†t and tt† has the
advantage that the scattering amplitudes on either side of the
medium stay well separated but their interrelation becomes
maximally transparent.
The scattering matrix S which relates the flux amplitudes of

incoming to outgoing modes at a fixed scattering frequency ω
shares a very close relationship (Fisher-Lee relation) with the
corresponding retarded Green’s function Gþ at the same value
of ω (Fisher and Lee, 1981) [see Datta (1997) and Ferry and
Goodnick (1997) for a review]. This close connection is well
exemplified by considering the scattering matrix elements
corresponding to incoming modes from the left,

tnmðωÞ ¼ −i
ffiffiffiffiffiffiffiffiffiffi
kxmkxn

p Z
D

0

dyl

×
Z

D

0

dyr χmðylÞGþðyl; yr;ωÞχnðyrÞ; ð22Þ

rnmðωÞ ¼ δnm − i
ffiffiffiffiffiffiffiffiffiffi
kxmkxn

p Z
D

0

dy0l

×
Z

D

0

dyl χmðy0lÞGþðy0l; yl;ωÞχnðylÞ; ð23Þ

where the appearing integrals are evaluated along a transverse
section in the left (yl) and the right (yr) leads. The
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corresponding relations for incoming modes from the right
lead is fully equivalent. The flux normalization factors

ffiffiffiffiffi
kxn

p
,

which are necessary to convert field amplitudes into flux
amplitudes, correspond to the direction cosines in the Fresnel-
Kirchhoff diffraction theory (Born and Wolf, 1999).
Based on this, it is interesting to take note of the difference

in the information content between the Green’s function and
the scattering matrix: Whereas the Green’s function along the
considered sections contains an infinite set of propagation
amplitudes from any point on the transverse section to any
other point, the scattering matrix relates only the finite and
discrete set of flux-carrying modes to one another. The
reduced information content in the scattering matrix is due
to the neglect of evanescent modes which carry no flux and
thus also do not contribute to transport. Note, however, that
evanescent modes play a crucial role in the near field of the
scattering region where they need to be taken into account if
the field distribution close to the scattering region is of
interest. Correspondingly, extended definitions of the scatter-
ing matrix as well as of their unitarity and reciprocity relations
that also include evanescent modes have been put forward by
Carminati et al. (2000).
Since Eqs. (22) and (23) provide a relation between the

scattering matrix S and the scalar Green’s function
Gþðr; r0;ωÞ and the latter is, in turn, related to the
Helmholtz operator L defined in Eq. (5), there should also
exist a direct link between S and L. To uncover this relation
one first subdivides space into an interior (scattering) region
Q, where εðrÞmay vary in space, and an exterior (asymptotic)
region P with a constant εðrÞ, where the scattering matrix S
is evaluated. Following the so-called Feshbach projection
operator technique (Feshbach, 1958, 1962) [see Zaitsev and
Deych (2010) for a review], such a subdivision is carried out
with corresponding projection operators,

Q ¼
Z
r∈Q

jrihrj; P ¼
Z
r∈P

jrihrj; ð24Þ

which project onto the corresponding regions and satisfy
½P;Q� ¼ 0, P þQ ¼ 1. With these operators, we can write
Eq. (5) in the equivalent form as

�
LQQ LQP

LPQ LPP

��
μω
νω

�
¼ ω2

c2

�
μω
νω

�
; ð25Þ

where the Hermitian diagonal matrix blocks LQQ ¼ L†
QQ,

LPP ¼ L†
PP are the projections of L into the scattering

and asymptotic regions, respectively, and the non-Hermitian
off-diagonal blocks L†

QP ¼ LPQ are the coupling operators
between these two regions. The reduced Hermitian operators
are now used to define eigenvalue problems in the spaces Q
and P,

LQQ μm ¼ ω2
m

c2
μm and LPP νn;ω ¼ ω2

c2
νn;ω: ð26Þ

Because of the confinement of states μm inQ the corresponding
eigenvalues ωm are discrete, whereas the eigenvalues ω in
the unconfined asymptotic regions are continuous (n is just
a channel index in this case). In both regions P, Q the

eigenfunctions form a complete set and can thus be used to
expand modes of arbitrary complexity in the respective sub-
spaces. The interface betweenP andQ can be chosen anywhere
in the asymptotic region and also the boundary conditions onQ
are arbitrary but should be such that the operator LQQ is
Hermitian (with Dirichlet or Neumann boundary conditions
being the standard choices). If needed, the boundary between
P and Q can also be placed in the direct vicinity of the
scattering region, in which case the coupling to evanescent
modes needs to be properly taken into account (Viviescas and
Hackenbroich, 2003).
To make the connection with the scattering matrix S we

place the boundary between P and Q outside the sections
where the scattering matrix is being evaluated in Eq. (23). It
can be shown in this case (Mahaux and Weidenmüller, 1969)
[see Datta (1997), Guhr, Müller-Groeling, and Weidenmüller
(1998), and Rotter (2009) for a review] that the retarded
Green’s function Gþðr; r0;ωÞ appearing in Eq. (23) with
r; r0 ∈ Q can then again be written as a resolvent
GQQ ¼ ½ω2 −Leff �−1, with the help of an effective non-
Hermitian operator Leff ¼ LQQ þ ΣðωÞ. The so-called self-
energy ΣðωÞ can be written as

ΣðωÞ ¼ LQPðωÞ
1

ω2 −LPPðωÞ þ iε
LPQðωÞ; ð27Þ

with ε being here an infinitesimal positive number. Through
this self-energy the Green’s function G0

QQ ¼ ½ω2 −LQQ�−1 of
the closed region Q (the superscript 0 denotes the absence
of coupling to P) turns into the Green’s function of the
corresponding open system GQQ ¼ ½ω2 −LQQ þ ΣðωÞ�−1
(where the coupling to P is included). Because of its
restriction to the interface between P and Q the self-energy
is nothing else than a non-Hermitian boundary condition
which parametrically depends on the real scattering frequency
ω in the outside domain P. This boundary condition is known
under the name of Kapur-Peierls or constant-flux boundary
condition (Kapur and Peierls, 1938; Türeci, Stone, and
Collier, 2006) with the latter terminology being motivated
by the fact that the outgoing flux in P is conserved
(corresponding to a real value of ω). In the context of
quantum scattering, the operator Leff is also known as the
“effective” or non-Hermitian Hamiltonian. Being non-
Hermitian, the operator Leff has complex eigenvalues, corre-
sponding to eigenstates which decay through the system
boundaries and thus have only a finite lifetime.
To establish the link between Leff and the scattering

matrix S we need to express the operators in the basis vectors
of the regions P and Q, respectively. For the closed system
operator LQQ the matrix elements are Hλm ¼ hμλjLQQjμmi ¼
ω2
mδλm and for the self-energy we get ΣλmðωÞ ¼

−2ΔλmðωÞ − 2iπðWW†ÞλmðωÞ, where the real matrix ele-
ments Δλm contain frequency shifts and the Hermitian matrix
WW† contains damping terms resulting from the coupling
between the bounded region Q with the continuum region P,
i.e., WλmðωÞ ¼ hμλjLQP jνmðωÞi

ffiffiffiffiffiffi
kxm

p
. These matrix elements

that can be calculated analytically for simple systems
(Viviescas and Hackenbroich, 2003) or numerically for
complex geometries (Stöckmann et al., 2002; Sadreev and
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Rotter, 2003) allow us to write the effective operator
Leff ¼ LQQ − 2Δ − 2iπWW† and with it the scattering
matrix in mode representation (Mahaux and Weidenmüller,
1969)

SmnðωÞ ¼ δmn − 2i

�
W†ðωÞ 1

ω2 −LeffðωÞ
WðωÞ

�
mn
; ð28Þ

which represents the desired relation between the scattering
matrix and the differential operator L introduced at the
beginning of this section; see Eq. (5).
An interesting correspondence that can be established based

on Eq. (28) is that between the poles of the Green’s function
GQQ and the resonances in the transmission and reflection
amplitudes in the scattering matrix SðωÞ. The complex
frequency values ω at which these poles are located are
implicitly defined through the eigenvalues ΩkðωÞ of LeffðωÞ,
which have to satisfy ω2 − Ω2

kðωÞ ¼ 0. To find the solutions of
this equation one can iteratively track the values of ω from the
real axis to the desired fixed point for each specific eigenvalue
Ωk. The complex resonance values found in this way play an
important role for scattering problems, as their real parts
specify the positions of scattering resonances and their
imaginary parts fix the corresponding resonance widths,
which, in turn, are inversely proportional to the decay time
of a resonant state in this open system. Because of their finite
lifetime the resonances are also often referred to as quasi-
bound states or quasimodes of the system and starting from
the original work by Gamow (1928) many theoretical studies
are based on these states (Moiseyev, 2011). In contrast to the
constant-flux states, the quasibound states do, however, have
the problem that they diverge to infinity outside of the system
boundaries, which requires much care when using them to
expand a field in this set of states (Ching et al., 1998). On the
other hand, quasibound states do not feature a parametric
dependence on the frequency outside the system (as the
constant-flux states do), since for the quasibound states both
of the involved frequencies are equal: ωk ¼ Ωk.

5. Random matrix theory

A convenient tool to understand the statistical rather than
the system-specific properties of scattering processes in
disordered media is RMT. The basic assumption underlying
RMT is that the statistical properties of a sufficiently chaotic
or disordered system are the same as those of a suitably chosen
ensemble of random matrices. This idea, which was originally
introduced by Wigner to model the distribution of energy
spacings in nuclei (Wigner, 1955a), has meanwhile found a
broad range of applications, not only in nuclear physics
(Weidenmüller and Mitchell, 2009; Mitchell, Richter, and
Weidenmüller, 2010), but also in mesoscopic physics
(Beenakker, 1997) and increasingly so in disordered photonics
(Beenakker, 2011). The broad applicability of RMT
(Stöckmann, 2006) is strongly linked to the so-called
Bohigas-Giannoni-Schmitt (BGS) conjecture (Bohigas,
Giannoni, and Schmit, 1984) according to which RMT
describes well the spectral statistics of any “quantum” or
“wave” system (governed by a wave equation) whose
“classical” counterpart (governed by a corresponding

Hamiltonian equation of motion) is chaotic. Classically, such
chaotic systems are characterized by having more degrees of
freedom than constants of motion. Quantum mechanically this
translates into having more degrees of freedom than good
quantum numbers. Finding a proof for the BGS conjecture has
turned out to be very difficult [proofs in certain limits have
meanwhile been proposed (Müller et al., 2004)]. Extensive
theoretical and experimental work (Beenakker, 1997) has,
however, shown that the BGS conjecture is well satisfied in
many different physical scenarios not only for mesoscopic
quantum systems and the corresponding matter waves, but for
many other types of waves as well (such as optical, acoustic,
and microwaves) (Gräf et al., 1992; Ellegaard et al., 1995;
Guhr, Müller-Groeling, and Weidenmüller, 1998; Stöckmann,
2006; Dietz and Richter, 2015). Furthermore, based on the
analogies (see Sec. II.A.1) between quantum systems
(described by a Schrödinger equation) and optical scattering
systems (described by a Helmholtz equation) many of the
results that have been explored in the field of mesoscopic
physics can now be carried over to the domain of optical
scattering. Before demonstrating this explicitly by means of
concrete examples (see Sec. III), we first review the basic
theoretical concepts of RMT.
Our starting point for applying RMT to the systems con-

sidered in this review is the approach by Wigner and Dyson
(Wigner, 1955a), which consists of replacing the matrix
representation of the differential operator LQQ in Eqs. (25)
and (26) for a specific closed systemQ by a random matrixH.
The latter contains as each of its elements Hmn a randomly
generated number from an ensemble with the Gaussian dis-
tribution PðHmnÞ ¼ ðw ffiffiffiffiffi

2π
p Þ−1 exp½−H2

mn=ð2w2Þ� and zero
average hHmni ¼ 0 (the value of w determines the mean level
spacing of the corresponding eigenvalues). Since the matrix
elementsHmn can, in general, be complex, wemay choose both
the real and imaginary parts from this Gaussian ensemble
independently. The only additional constraint that is imposed
on thematrix elementsHmn is that they are those of aHermitian
matrix H† ¼ H, i.e., H�

mn ¼ Hnm. For a time-reversal-
symmetric system, the matrix elements are real and symmetric,
i.e., Hmn ¼ Hnm ∈ R. Having replaced the differential oper-
ator LQQ by a random matrix H, all system-specific informa-
tion about Q is lost and only statements on the statistical
properties of a whole class of systems can be made that can
be associated with the same Gaussian ensemble of matrices
(Porter, 1965) [see Mehta (2004) for a review]. For the
Hermitian matrices with complex, Gaussian-distributed ele-
ments this ensemble is called the Gaussian unitary ensemble
(GUE). The term unitary refers here to the unitary matrices
containing the eigenvectors of these Hermitian matrices.
Similarly, the symmetric matrices with real, Gaussian-
distributed elements are referred to as the Gaussian orthogonal
ensemble (GOE),where orthogonal refers to the corresponding
orthogonal eigenvector matrix. It can now be shown that each
of these matrix ensembles has a specific distribution of
eigenvalues. In particular, when we take Gaussian random
matrices of very large size (N → ∞) and compute the set of
eigenvalues Eα, their distribution will be universal in the
average over many matrix realizations. The corresponding
distribution function for the eigenvalues
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PðfEngÞ ≈ const ×
YN
m<n

jEn − Emjβ
YN
n

exp½−E2
n=ð2w2Þ�

ð29Þ

is known as the Wigner-Dyson distribution, following the
original work by Wigner (1957, 1967) and Dyson (1962a).
The parameter β here is assigned the value β ¼ 1 for GOE and
β ¼ 2 for GUE. An interesting result contained in this
distribution is the repulsion of nearby levels, i.e., PðδÞ → 0
for δ → 0. More specifically, when considering the normal-
ized spacing between nearest eigenvalues δ ¼ ðEαþ1 − EαÞ=Δ
with the mean level spacing Δ ¼ hEαþ1 − Eαi then one finds
that the level repulsion scales likePðδ ≪ 1Þ ∝ δβ. Comparing
this result with experimental data both for time-reversal
invariant systems with β ¼ 1 [see Fig. 2(a)] and for systems
without time-reversal symmetry and β ¼ 2 [see Fig. 2(b)]
shows good agreement. Note that the results shown in Fig. 2
stem from very different physical systems, like an atomic
nucleus in Fig. 2(a) and a microwave billiard with an attached
isolator in Fig. 2(b).
To investigate how these results for bounded systems

carry over to the case of unbounded scattering systems,
we follow the so-called “Heidelberg approach” (Mahaux
and Weidenmüller, 1969) [see Guhr, Müller-Groeling, and
Weidenmüller (1998) for a review]. Here the random
Hamiltonian matrix H describing the bounded region (Q)
is coupled to the unbounded outside domain (P) by way of the
frequency-dependent coupling matrices Wλ;mðωÞ introduced
in Sec. II.A.4. Using Eq. (28) then yields the corresponding
scattering matrix for transmission and reflection through the
region described by the Hamiltonian H. Note that in this
approach no approximation is introduced by the subdivision
of space into P andQ. When one is interested in the statistical
properties of the scattering matrix, a less rigorous calculation
is usually sufficient. A common approximation is to neglect
the frequency dependence of the coupling matrix elements

Wλ;mðωÞ, which are then drawn from an ensemble of random
numbers, just like the matrix elements of H.
In this approach, which has found interesting applications

in nuclear scattering (Verbaarschot, Weidenmüller, and
Zirnbauer, 1985; Iida, Weidenmüller, and Zuk, 1990a,
1990b), the only frequency dependence in the scattering
matrix comes from the ω2 term in Eq. (28). This explicit
frequency dependence is essential as it can be used to study
frequency correlations in the scattering matrix elements (Guhr,
Müller-Groeling, and Weidenmüller, 1998). Consider here,
in particular, that the bound eigenstates of the Hamiltonian H
are coupled by the matrix elementsWλ;mðωÞ to the waveguide
modes, which turns these states into quasibound resonances
(as discussed at the end of Sec. II.A.4). Depending on whether
the coupling strength [as determined by the matrix elements
Wλ;mðωÞ] is smaller or larger than the mean level spacing of
the Hamiltonian eigenstates (as determined by the variance of
the matrix elements Hmn) these resonances will be isolated
(weak coupling) or overlapping (strong coupling), resulting in
very different frequency correlations in the scattering matrix
elements [see also Brouwer (1995) for more details on the
situation with nonideal waveguide coupling].
A different strategy to set up a random matrix theory for

coherent scattering, also known as the “Mexico approach,”
starts not with the Hamiltonian H, but with the scattering
matrix S as the fundamental quantity (Friedman and Mello,
1985a, 1985b; Mello, Pereyra, and Seligman, 1985;
Baranger and Mello, 1994; Jalabert, Pichard, and
Beenakker, 1994). In this approach (Alhassid, 2000), which
was developed independently of the Heidelberg approach,
one replaces the scattering matrix elements by random
complex numbers. In analogy to the random Hamiltonian
matrix elements, which had to be chosen such as to respect
the Hermiticity of the Hamiltonian, the random scattering
matrix elements have to respect the unitarity of the scattering
matrix. In the case of time-reversal symmetry, the scattering
matrix additionally has to be symmetric (see discussion in
Sec. II.A.4). The corresponding matrix ensembles are
referred to as Dyson’s circular ensemble (Dyson, 1962b)
with the parameter β ¼ 1 assigned to unitary symmetric and
β ¼ 2 for general unitary matrices. Assuming such a dis-
tribution leads to very specific correlations in the scattering
phase shifts in Eq. (20),

PðfϕngÞ ∝
Y
n<m

j expðiϕnÞ − expðiϕmÞjβ; ð30Þ

which were found by Blümel and Smilansky (1990) to
describe the phase shifts in chaotic scattering very well.
To link the circular ensemble to experimentally more
accessible quantities like the statistics of transmission and
reflection, the corresponding distribution of the transmission
eigenvalues τn of the matrices t†t and tt† needs to be
evaluated (Baranger and Mello, 1994; Jalabert, Pichard, and
Beenakker, 1994). The corresponding joint probability
density of transmission eigenvalues is given as follows:

PðfτngÞ ∝
Y
n<m

jτn − τmjβ ×
Y
p

τ−1þβ=2
p : ð31Þ

FIG. 2. (a) Comparison of the nearest neighbor level spacing
distribution PðδÞ in a set of nuclear scattering resonances
(histogram) with the corresponding RMT prediction from the
Gaussian orthogonal ensemble (GOE) for time-reversal invariant
systems. The very good agreement found confirms that the
statistical property of nuclei can be approached through RMT.
For comparison the prediction from a Poisson distribution is also
shown, corresponding to uncorrelated levels. Adapted from
Bohigas, Haq, and Pandey, 1983. (b) Level spacing distribution
in a quasi-two-dimensional microwave billiard with an isolator
attached. Here the data are well described by the Gaussian unitary
ensemble (GUE). The solid line is adapted to account for missing
levels and the inset shows the quadratic increase of the level
repulsion for small values as characteristic for GUE. Adapted
from Stoffregen et al., 1995.
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The product between neighboring transmission eigenvalues
leads to a level repulsion similar to the repulsion of energy
eigenvalues of the random Hamiltonian H. Note, however,
that Eq. (31) also applies for the case of just a few scattering
channels N down to the single-channel case where N ¼ 1.
This result already contains very interesting physics.

Consider the limiting case of the distribution for a very large
number of scattering channels (N → ∞), broken down to the
one-point probability density of transmission eigenvalues
PðτÞ. The latter is given as the mean value of the microscopic
density ρðτÞ ¼ P

N
n δðτ − τnÞ with respect to the ensemble

average according to the probability distribution

PðτÞ≡ hρðτÞi ¼
Z

1

0

dτ1 � � �
Z

1

0

dτNPðfτngÞρðτÞ; ð32Þ

resulting in the following bimodal distribution for the limit
N ≫ 1 illustrated in Fig. 3(a) (Baranger and Mello, 1994;
Jalabert, Pichard, and Beenakker, 1994),

PðτÞ ¼ 1

π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τð1 − τÞp : ð33Þ

Results for small N or for an asymmetric number of channels
on the left and right are provided by Savin and Sommers
(2006). Note that in the case of broken time-reversal symmetry
(β ¼ 2) for which Eq. (33) was derived, the distribution PðτÞ
is symmetric around τ ¼ 1=2. For the time-reversal symmetric
case (β ¼ 1), however, the second product in Eq. (31) induces
an asymmetry into this distribution which leads to the
following results for the average transmission (Baranger
and Mello, 1994; Jalabert, Pichard, and Beenakker, 1994):

hTi ¼ N
2
þ
�
1

4
−

1

2β

�
þOð1=NÞ: ð34Þ

The reduction in transmission for β ¼ 1 is called the weak-
localization correction, which in a semiclassical picture can
be partially associated with the presence of time-reversed
path pairs that enhance the reflection R (hence the name
“localization”). The term “weak” refers here to the fact that the
correction is of the order of Oð1Þ, which is much smaller than
the leading term OðNÞ. Experimental demonstrations of this
effect are discussed in Sec. III.C.
The first product in Eq. (31) involving pairs of transmission

eigenvalues suppresses the likelihood of neighboring trans-
mission eigenvalues approaching each other very closely.
This eigenvalue repulsion leads also to a spacing distribution
between nearest neighbor transmission eigenvalues which
scales like Pðδ ≪ 1Þ ∝ sβ, where the normalized spacing is
given by δ ¼ ðτmþ1 − τmÞ=Δ, with Δ ¼ hτmþ1 − τmi. Note the
similarity here with the spacing distribution obtained earlier
for the eigenvalues of a random Hamiltonian; see Eq. (29).
Because of this “spectral rigidity” the transmission eigenval-
ues fluctuate only between the limits imposed by their
neighboring values, which is much less than for uncorrelated
transmission eigenvalues described by a Poisson distribution
Pðδ ≪ 1Þ ∝ expð−δ=ΔÞ. This suppression of fluctuations is
so strong that the variance of the fluctuations in the total

transmission [as defined below Eq. (15)] approaches a
universal, but β-specfic value (Lee and Stone, 1985), which
is of the order of Oð1Þ and thus independent of N,

varT ¼ 1

8β
: ð35Þ

This prediction for universal conductance fluctuations in a
chaotic cavity was obtained with the Heidelberg approach
for the Hamiltonian by Verbaarschot, Weidenmüller, and
Zirnbauer (1985) and Iida, Weidenmüller, and Zuk (1990a,
1990b) and with the Mexico approach for the scattering matrix
by Baranger and Mello (1994) and Jalabert, Pichard, and
Beenakker (1994). An extended discussion of universal
conductance fluctuations can be found in Sec. III.B.
Another highly nontrivial aspect of coherent chaotic scat-

tering is contained in the shape of the distribution function of
transmission eigenvalues [see Fig. 3(a)]: Contrary to what one
would naively expect, the transmission eigenvalues τn are not
uniformly distributed between the limiting values 0 and 1;
instead, Eq. (33) predicts that the τn are peaked near 0 and 1,
corresponding to transmission channels that are almost closed
(near τ ≈ 0) and others that are almost open (near τ ≈ 1)—a
phenomenon also known as “maximal fluctuation theorem”
(Pendry, MacKinnon, and Pretre, 1990). These open and
closed transmission eigenchannels (see Fig. 3) which were
first discovered by Dorokhov (1984) will play an important
role for many of the effects discussed in this review. To
understand the origins of the bimodal distribution consider the
repulsion of transmission eigenvalues inherent in Eq. (31).
The closer a given transmission eigenvalue is to 0 (to 1), the
more it is repelled by its higher (lower) neighbors (simply
because there are more of them). Together with the restriction
to the inverval τ ∈ ½0; 1�, this leads to the clustering near the
limiting values 0 and 1. It is also instructive to compare the
RMT distribution for PðτÞ with the distribution which one
would get for the scattering of classical particles rather than of
waves. Since particles (like billiard balls) that enter a scatter-
ing region connected to a left and right port can be either fully
reflected or fully transmitted, but nothing in between, the
corresponding classical distribution function has two delta
peaks PclðτÞ ¼ αδðτÞ þ ð1 − αÞδð1 − τÞ, with α ¼ 1=2 when
assuming the probability for transmission and for reflection to
be equal. We can thus conclude that the RMT distribution for
the transmission eigenvalues is peaked at exactly those values
of transmission which are classically allowed. In turn, only a

(a) (b)

FIG. 3. Distribution of transmission eigenvalues τ for the cases of
(a) chaotic scattering and (b) diffusive scattering. The correspond-
ing analytical expressions for these functions (following from
randommatrix theory) are given in Eqs. (33) and (40), respectively.
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comparatively small fraction of transmission eigenchannels
features transmission in the classically forbidden region
around τ ≈ 0.5. This analogy between the scattering of waves
and particles is all the more remarkable as the open and closed
transmission eigenchannels in the RMT distribution are an
interference effect, in contrast to the classical case where
evidently no interference occurs.
When comparing the predictions of RMTwith the results of

a real experiment or a simulation for a specific scattering
geometry it is important to keep in mind that such a
comparison can only be meaningful on a statistical level.
This is because RMT does not contain any information about
nonuniversal, i.e., system-specific details. Also, it is important
to ask which requirements a system needs to fulfill such that
its statistical properties can meaningfully be compared with
RMT. For the case considered previously, where the scattering
matrix was replaced by a random unitary matrix with the same
number of channels on the left and right, we can think of a
scattering system that is connected to an incoming and an
outgoing port of equal size. Following the BGS conjecture, the
scattering region in between the ports should be classically
chaotic. In addition, the nonuniversal scattering contributions
should be as weak as possible which is equivalent to the
requirement that all incoming channels should get more or
less equally randomized before exiting again from the
scattering region.
Figure 4 shows a few scattering setups (for electrons) that

fulfill these requirements to a satisfactory degree. The special
shape of these systems already suggests that typical scatterers
from the real world are, however, generally not described by
RMT (the world would, indeed, be a dull place if this were
the case). We also show in Fig. 5 that mesoscopic transport
experiments usually suffer from several imperfections
(decoherence processes, finite temperature, etc.) which
severely spoil the agreement between the measurement data
and an RMT prediction (even for well-engineered electron
billiards as shown in Fig. 4). Figure 5 also shows that a decent

agreement can be found when the influence of these real world
effects is taken into account in the corresponding RMTmodel.
As it turns out, the optical scattering through a disordered
medium (as discussed later) is not well described by such
simple models. The amendments to RMT that are necessary in
these cases are, however, different from the ones employed for
electron transport through quantum dots as in Fig. 5.

6. Dorokhov-Mello-Pereira-Kumar (DMPK) equation

The starting point for this section is the insight that a
disordered system is inherently more complex than a chaotic
quantum dot and its RMT description. This is because a
disordered medium does more than just randomize all incom-
ing waves in equal measure and let them escape again
symmetrically on either side. In particular, depending on
how long the incoming waves remain inside the medium, the
degree of disorder scattering that they will suffer from will be
very different. Also transmission and reflection will of course
depend on the thickness of this medium as compared to the
transport mean free path l⋆. To cope with this situation
the simple RMT models from Sec. II.A.5 were extended by
concatenating many random scattering matrices from the
appropriate RMT ensemble in series. This approach was first
used by Iida, Weidenmüller, and Zuk (1990a, 1990b),
Weidenmüller (1990), and Altland (1991) to describe elec-
tronic scattering through a disordered wire and corresponds to

FIG. 4. Different experimental realizations of chaotic quantum
dots. In all four cases these electronic billiards are fabricated
based on a semiconductor heterostructure with high mobility.
The current between the source and drain enters and exits through
slits (quantum point contacts), which are small compared to the
overall dimension of the chaotic scattering region in between.
Adapted from (a) Marcus et al., 1992, (b) Chang et al., 1994,
(c) Oberholzer, Sukhorukov, and Schönenberger, 2002, and
(d) Marcus et al., 1997.

FIG. 5. Experimental results on the distribution of the con-
ductance PðgÞ in electrostatically defined quantum dots (see
schematic on the top). Both the input and the output point
contacts feature only a single open transverse mode such that
these distributions are equivalent to the distribution of trans-
mission eigenvalues in the single-channel limit. The corre-
sponding theoretical predictions from RMT (dashed lines) do
not reproduce the experimental data (connected symbols). Only
when effects due to finite temperature (T) and dephasing
(through the dephasing rate γϕ) are taken into account (see
solid lines) is good agreement found. The situation both with
and without time-reversal symmetry are considered with the
latter case being realized through the application of a finite
magnetic field (B) applied perpendicular to the scattering area.
From Huibers et al., 1998.
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the description of a system consisting of a series of chaotic
cavities; see Fig. 6(a). Whereas this ansatz allows one to
conveniently extend RMT to more complicated scenarios, the
approach also has several limitations, in particular, as the
different transport regimes in a wire (ballistic, diffusive,
localized) and their respective crossovers are hard to treat
with it [see Dembowski et al. (1999) for a microwave
experiment on coupled cavities].
To properly describe all of these regimes Dorokhov, Mello,

Pereira, and Kumar had already proposed a model (Dorokhov,
1982; Mello, Pereyra, and Kumar, 1988) which subdivides the
scattering region into a series of weakly scattering segments
rather than using the fully randomized matrices from RMT;
see Fig. 6(b). Choosing each segment of length Δz shorter
than the transport mean free pathΔz ≪ l⋆, but longer than the
wavelength Δz ≫ λ has the advantage that adding a new
segment can be described as a perturbative correction.
Assuming, in addition, that in each segment all incoming
channels are scattered by the disorder into all of the available
channels isotropically (i.e., with equal weight), one can derive
a Fokker-Planck equation for the “Brownian motion” of the
transmission eigenvalues τn (with constant diffusion coeffi-
cient). The corresponding evolution equation for the distri-
bution of transmission eigenvalues τn as a function of the wire
length L is known as the DMPK equation,

∂
∂sPðfxng; sÞ ¼

1

2γ

XN
m¼1

∂
∂xm

� ∂P
∂xm þ βP

∂
∂xm ΩðfxngÞ

�
;

ð36Þ

where we substituted the transmission eigenvalues τn by
new variables xn according to τn ¼ 1= cosh2 xn and used
s ¼ L=l⋆, γ ¼ βN þ 2 − β as well as

ΩðfxngÞ ¼ −
X
m<n

ln j sinh2 xn − sinh2 xmj

−
1

β

X
m

ln j sinh 2xmj: ð37Þ

The variables x used for simplifying the equations can be
interpreted such that L=xm is the channel-specific “localiza-
tion length” for the transmission channel m in the disordered
region (we see later what localization is).
Note that in real disordered wires the isotropy assumption,

which corresponds to an ergodicity assumption in the

transverse direction, is in general not well fulfilled for short
lengths L. This is because any specific disorder profile
typically features a nonuniform differential scattering cross
section that leads to preferential coupling between specific
mode pairs. Since the length scale for transverse diffusion is
not taken into account in the DMPK equation, its validity is
restricted to “quasi-one-dimensional” (quasi-1D) wire geom-
etries which are much longer than their transverse width
L ≫ W. For very long systems (with L ≫ l⋆) the solutions to
the DMPK equation have equivalent statistics such as those of
the concatenated random scattering matrix model. In a similar
spirit, one can also set up an alternative model where not the
scattering matrix but the Hamiltonian is the central quantity
of interest. As demonstrated by Efetov and Larkin (1983) such
an approach can be mapped onto a so-called supersymmetric
nonlinear σ model, which was shown to be equivalent to the
DMPK equation (Brouwer and Frahm, 1996) in the “thick
wire limit”with many scattering channels N. Since all of these
models were extensively discussed already in several reviews
and books (Beenakker, 1997; Brouwer, 1997; Janssen, 2001),
we will not review them again here. Rather, we present in the
following a summary of the main results of the DMPK model
that will be useful for later sections. For this purpose we rely
on the exact solutions of the DMPK equation. As the case of
broken time-reversal symmetry (β ¼ 2) is much easier to treat,
we discuss it first and then point out corrections for the case
when time-reversal symmetry is restored (β ¼ 1).
Focusing on the case of a thick wire with many transverse

channels (N ≫ 1) the DMPK equation makes specific pre-
dictions for three characteristic regimes as follows:
(i) In the ballistic regime the scattering is very weak, such

that the system length is smaller than the mean free path
L≲ l. In this limit the waves can be thought of as traveling
ballistically on straight lines, rather than being multiply
scattered by the disorder. Correspondingly, the transmission
eigenvalues are all very close to 1 and no reflection occurs. In
optics the ballistic regime is important since most imaging
techniques work only in the ballistic limit. Correspondingly,
in systems through which x rays propagate ballistically and
visible light does not (a situation commonly encountered in
biomedical imaging) the former type of radiation is better
suited for imaging purposes.
(ii) In the diffusive regime, where the system length is in

between the mean free path and the localization length
l⋆ ≲ L≲ ξ (with ξ ≈ βNl⋆ in quasi-1D systems), the trans-
mitted waves have already undergone many scattering events.
This translates into a randomization of the transmission
eigenvalues τn, which is quantified by solving the DMPK
equation starting with a “ballistic initial condition” τn ¼ 1 for
all n imposed at s ¼ L=l⋆ ¼ 0 up to length L at which
s ¼ L=l⋆ ≫ 1. The solution for the joint probability density
of transmission eigenvalues reads as follows (Beenakker and
Rajaei, 1994):

Pðfxng; sÞ ∝
Y
i<j

½ðsinh2 xj − sinh2 xiÞðx2j − x2i Þ�

×
Y
i

½expð−x2i N=sÞðxi sinh 2xiÞ1=2�: ð38Þ

FIG. 6. (a) Stacking chaotic quantum dots behind each other
leads to an effective wire geometry with statistics that can be well
described by a corresponding random matrix approach. (b) In the
more refined DMPK approach weakly scattering segments are
recursively added to the wire geometry.
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Distilling out of this result the one-point probability density
of transmission eigenvalues (by integration) one finds that in
the regime of very long systems s ≫ 1 the leading term of
order OðNÞ (which is independent of β) features a uniform
distribution of the transformed transmission eigenvalues xn,

Pðx; sÞ≡ hρðxÞis ¼
N
s
Θðs − xÞ: ð39Þ

Note that the only length dependence that remains here is the
upper cutoff of this uniform distribution introduced by the
Heaviside theta function Θ. This cutoff sets the transmission
of all modes to zero for which x ≳ L=l⋆ and it keeps the
normalization at

R
∞
0 Pðx; sÞdx ¼ N. If we translate this

result back to the transmission eigenvalues τn we find that
out of the N transmission channels about Nl⋆=L have
a finite transmission with τ > 4 expð−2L=l⋆Þ, which again
follow a bimodal but asymmetric distribution [see Fig. 3(b)]
(Dorokhov, 1984; Imry, 1986; Pendry, MacKinnon, and
Roberts, 1992),

PðτÞ ¼ Nl⋆
2L

1

τ
ffiffiffiffiffiffiffiffiffiffi
1 − τ

p : ð40Þ

The remaining Nð1 − l⋆=LÞ channels are closed (i.e., τ ≈ 0

for them). The normalization is such that
R
1
τ0
PðτÞdτ ¼ N

with the lower integration limit τ0 ¼ 4 expð−2L=l⋆Þ. In
practice the closed transmission eigenvalues are smeared
over several eigenvalue spacings; since, however, they
contribute only weakly to transport this cutoff is usually
not specified in more detail. Most importantly, we thus
obtained the result that even in transmission through a highly
scattering quasi-1D system open transmission channels with
τ ≈ 1 exist, which are chiefly responsible for the transmission
(i.e., conductance). For the typical situation encountered in
optics it is important to know that these open transmission
channels are also present in the case of a disordered slab (see
Sec. IV.A), which, contrary to the assumptions in the DMPK
model, is much shorter than its transverse width L ≪ W
(Goetschy and Stone, 2013).
The results obtained for β ¼ 2 are subject to corrections of

next to leading order Oð1Þ for the time-reversal symmetric
case of β ¼ 1. These corrections were measured in the
experiment (Mailly and Sanquer, 1992) and also appear in
the average transmission and the variance of the fluctuations
of the transmission as induced by changing the disorder
configuration or an external parameter (like the scattering
wave number k),

hTi ¼ Nl
L

þ β − 2

3β
þOð1=NÞ;

varT ¼ 2

15β
þOð1=NÞ. ð41Þ

Note the interesting analogy of the leading order term in
transmission ∝ 1=L to the Ohmic behavior of a classical wire
whose resistance (∝ 1=T) scales linearly with the length L.
Given the fact that we used a wave picture of transport rather
than a classical trajectory picture (as in the Drude model),
this analogy is far from obvious, in particular, in view of the

bimodal distribution of transmission eigenvalues. Another
interesting observation based on Eq. (41) is that the
application of a mechanism that breaks time-reversal sym-
metry (like a magnetic field for electrons) leads to a slight
increase of the average transmission (weak localization) and
to a twofold decrease of the transmission fluctuations varT.
The latter are apparently also universal in the case of
diffusive scattering, with an N-independent value for the
leading order term varT ¼ 2=ð15βÞ. Note that these results
exactly agree with those from an independent calculation
using a diagrammatic perturbation theory (Anderson,
Abrahams, and Ramakrishnan, 1979; Gorkov, Larkin, and
Khmelnitskii, 1979; Altshuler, 1985; Lee and Stone, 1985).
Extensive reviews of the diagrammatric framework can be
found in Dragoman and Dragoman (2004), Montambaux
(2006), and Akkermans and Montambaux (2007).
Diagrammatic techniques have the downside that they do
not provide access to the full distribution of transmission
eigenvalues, which is why we review them only briefly in
Sec. III.B.
(iii) In the localized regime we are in the situation where the

system length is larger than the so-called localization length
L≳ ξ, which in quasi-1D systems is connected to the mean
free path l⋆ by ξ ≈ βNl⋆. The effect of localization, originally
proposed by Anderson (1958), exponentially suppresses
transmission due to multiple interference and is thus entirely
due to the wave nature of the scattered flux (the effect is
nonexistent in a trajectory picture as for classical particles).
As reviewed by Lagendijk, Tiggelen, and Wiersma (2009) and
Abrahams (2010), several experiments have meanwhile suc-
cessfully demonstrated localization of different kinds of waves
(as for sound, microwaves, light, and cold atomic gases).
Solving the DMPK equation in the localized limit (s ≫ N)
(Dorokhov, 1982, 983; Pichard, 1991) yields a joint proba-
bility density of the transmission eigenvalues which factorizes
into a product of Gaussian distributions,

Pðfxng; sÞ ¼
�
πs
N

�
−N=2 YN

n¼1

exp ½−ðN=sÞðxn − x̄nÞ2� ð42Þ

centered around the regularly spaced mean values
x̄n ¼ ðs=NÞð2n − 1Þ=2. Since, in the limit s ≫ N, the width
of the Gaussians is much smaller than the spacing to the
nearest neighbors, the transmission eigenvalues 1 ≪ x1 ≪
x2 ≪ � � � ≪ xN “crystallize” on a regular lattice with a lattice
spacing of δx ¼ N=Ll (for N ≫ 1) (Muttalib, 1990; Pichard
et al., 1990; Stone et al., 1991; Frahm, 1995). It is interesting
to compare this crystal-like behavior in the localized regime
with the liquidlike behavior found for the diffusive regime,
where xn are uniformly distributed; see Eq. (39). In the
transition region between these two regimes the distribution
function is also intermediate between a constant function with
a cutoff and a series of Gaussians as expected for a partially
melted solid (see also experimental data in Fig. 13).
If we translate this result for xn to the conventional

transmission eigenvalues τn ¼ 1= cosh2 xn, we can use the
fact that xn ≫ 1 to simplify τn ≈ 4 expð−2xnÞ. The trans-
mission eigenvalues thus have a log-normal distribution. Since
for the total transmission T the first transmission eigenvalue τ1
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then dominates over all others, we also find that the total
transmission T ≈ 4 expð−2x1Þ takes on a log-normal distri-
bution with the following mean value and variance:

hTi ¼ −s=N þOð1Þ; varhTi ¼ −2hlnTi ¼ 4Lξ: ð43Þ

These results were calculated for the case of broken time-
reversal symmetry β ¼ 2. The connection between the mean
and the variance of the conductance, however, stays valid for
other values of β (Pichard, 1991; Beenakker, 1994). Note how,
based on this relationship, the variance of the transmission
increases as the transmission itself is reduced, a result which
contrasts the constant value of the transmission fluctuations in
the diffusive case. To arrive at this result one uses the fact that
the crystallization of transmission eigenvalues in the localized
regime reduces the multichannel scattering problem effec-
tively to a one-channel problem.
This single-channel regime of transport occurring in

the deeply localized limit is also instructive for relating the
transmission eigenchannels with the internal modes in the
system—a connection that is already inherent in the definition
of the scattering matrix, see discussion after Eq. (28). The
internal “quasibound states” or “resonances” are responsible
for mediating the transmission from one side of the medium to
the other. In most circumstances, as in the diffusive scattering
regime, these modes will have a resonance width δν which
exceeds their mean level spacing Δν, resulting in a ratio
(called the Thouless number) (Edwards and Thouless, 1972;
Thouless, 1977) δ≡ δν=Δν > 1 for which many modes are
strongly overlapping such that they are extractable from the
transmission data only through special techniques (Persson
et al., 2000; Kuhl et al., 2008). The opposite limit of well-
resolved modes and with it the regime of Anderson locali-
zation itself is characterized by δ<1 (Thouless criterion).
Thouless (1977) and Abrahams et al. (1979) showed that in
the localized limit the transmission T through the system [or,
equivalently, the dimensionless conductance g ¼ Gh=ð2e2Þ]
and the Thouless number become the same g ¼ δ (whereby
the spectral and the transport properties become intimately
connected). The Thouless number also turns out to govern
all statistical properties of Anderson localization (Abrahams
et al., 1979).
As successfully demonstrated in an experimental micro-

wave study, the good resolution of modes in the localized limit
(δ < 1) allows one to decompose a speckle pattern of radiation
transmitted through a disordered sampled into a sum of only a
few individual mode patterns (Wang and Genack, 2011). Not
only do a very few localized modes dominate transmission in
the localized regime, but also just a few transmission channels
are open. As was demonstrated explicitly, these modes and
channels are not merely strongly correlated (Choi, Park, and
Choi, 2012), but, in fact, directly linked with each other
(Peña et al., 2014): In the deeply localized regime the single
dominant transmission eigenchannel is given either by a single
localized mode or by a so-called “necklace state,” which is a
highly transmitting superposition of overlapping localized
modes (Pendry, 1987). Another curious observation in this
deeply localized limit is that due to the dominance of a single
transmission eigenchannel, the entire scattering system can be
mapped onto a strictly one-dimensional system with the same

statistical properties, provided that its localization length is
properly renormalized (Peña et al., 2014). Such a mapping can
also be carried out for media with multiple open transmission
channels that can then be mapped onto a sum of several one-
dimensional systems, not only in terms of the transmission
statistics, but also in terms of the density of states in the
medium and the corresponding time delay (Davy, Shi, Park
et al., 2015; Davy, Shi, Wang et al., 2015).

B. Open transmission eigenchannels and shot noise

One of the most spectacular predictions of RMT and of the
DMPK equation is the existence of “open transmission
eigenchannels” which were first discovered by Dorokhov
(1984) (see the corresponding distribution of transmission
eigenvalues in Fig. 3). Because of the absence of wave front
shaping tools for coherent electron scattering, directly probing
these channels with electrons is, however, possible only for
simple geometries like quantum point contacts. As noted first
by Imry (1986), the open transmission eigenchannels do,
however, leave very conspicuous statistical signatures on
the transport properties of electrons. In particular, as explained
in the following, the presence of open transmission
eigenchannels is detectable in the electronic shot noise (not
to be confused with photonic shot noise or conductance
fluctuations).
The term “shot noise” was originally introduced by Walter

Schottky who was measuring the temporal fluctuations of the
electric current in a vacuum tube (Schottky, 1918). As he first
pointed out, these time-dependent fluctuations around the
mean current value are due to the granularity of the electronic
charge. In other words, since electrons come in discrete charge
packets (i.e., the elementary charge) they do not produce a
fluidlike flow of current but rather a random succession of
discrete charge impact events. Comparing this situation to the
(acoustic) noise produced by the small metal pellets from a
“shot gun” when impinging on a solid surface, Schottky
predicted shot noise to be a convenient tool to measure the
value of the electron charge. Specifically, he proposed a
relationship between the so-called shot-noise spectral density
SðωÞ ¼ hδIðωÞ2i=δω based on the frequency-dependent cur-
rent fluctuations around the mean current value δIðωÞ ¼
IðωÞ − hIðωÞi and the mean current SðωÞ ¼ 2ehIðωÞi.
(Note that the factor of 2 comes from the contribution of
positive and negative frequencies and that the formula holds
only in the limit where contributions from thermal or 1=f noise
can be disregarded.) Since both SðωÞ and hIðωÞi can be
measured in an experiment, one should be able to determine
the elementary charge e according to Schottky, who assumed
electrons to be completely uncorrelated (Poisson distributed)
to derive this relation. Because of the residual correlations
among electrons (even in a vacuum tube), Schottky’s pre-
diction, however, failed to reach the accuracy of the seminal
Millikan experiment using oil droplets (Blanter and Büttiker,
2000; Beenakker and Schönenberger, 2003).
Contrary to the expectation from the famous Franck-Hertz

experiment, the shot noise produced in Schottky’s vacuum
tube can be understood completely classically (Schönenberger
et al., 2001). In the mescoscopic limit, however, where
electrons behave as quantum matter waves (as in ultrathin
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wires at a few milli-Kelvin) the correlations that lead to
deviations from the Schottky formula become dominant.
These deviations are typically quantified in terms of the so-
called “Fano factor” F ¼ S=SP, which is the ratio of the noise
spectral density S for a given system (with correlations), as
compared to the uncorrelated value of Schottky for Poissonian
statistics SP ¼ 2ehIi. In the mesoscopic limit these quantities
can be conveniently evaluated using the Landauer-Büttiker
framework (see Sec. II.A.4) to estimate both the current
(Büttiker, 1988) hIi ¼ ð2e2=hÞVP

N
n¼1 τn and the noise spec-

tral density (Khlus, 1987; Lesovik, 1989; Büttiker, 1990)

S ¼ 2eð2e2=hÞV
XN
n¼1

τnð1 − τnÞ. ð44Þ

Note that the latter prediction relates the magnitude of
the time-dependent current fluctuations (S) with the time-
independent transmission eigenvalues τn. An intuitive inter-
pretation for this expression can be given as follows
(Beenakker and Schönenberger, 2003): Since according to
the Pauli principle, at zero temperature (as considered here) all
levels up to the Fermi energy EF are filled with electrons and
above EF all levels are empty, all thermal fluctuations are
suppressed. The quantum shot noise thus comes from the
electrons in a given transmission eigenchannel, attempting to
transmit from source to drain with transmission probability τn.
Since the electron in channel n can either pass or not pass,
one gets binomial statistics as in a sequence of statistically
independent yes or no experiments, each of which has a
probability of τn to give “yes” as an answer. Correspondingly,
the fluctuations in the transmitted current will be proportional
to τnð1 − τnÞ for channel n; since, furthermore, all channels
are statistically independent, the total fluctuations will be
proportional to

P
N
n¼1 τnð1 − τnÞ, just as predicted in Eq. (44)

for the noise spectral density. Note that in contrast to classical
electronic shot noise which is due to the randomness asso-
ciated with the emission of electrons, for quantum electronic
shot noise the randomness in emission is completely sup-
pressed by the Pauli principle. Instead, the noise here is due to
the intrinsic indeterminism inherent in any quantum trans-
mission problem to which only a transmission “probability”
can be assigned. Because of the different statistics (Bose-
Einstein versus Fermi-Dirac) the shot noise will also be
different when replacing electrons with photons—even when
considering systems with the same scattering matrix. Loosely
speaking, photons are more “noisy” due to bunching, whereas
electrons are more “quiet” due to antibunching. As a conse-
quence, the results cannot be directly mapped from the
electronic to the photonic case, where primarily amplification
and absorption, rather than scattering, shift the Fano factor
away from its Poissonian value (Beenakker and Patra, 1999).
More recent work, however, has also found that mesoscopic
fluctuations influence the photocount statistics of coherent
light scattered in a random medium (Balog et al., 2006).
To make contact with the open and closed transmission

eigenchannels, consider that the noise spectral density S for
electrons is a very sensitive measure of the distribution of
transmission eigenvalues PðτÞ studied in Secs. II.A.5 and
II.A.6. To understand this point, consider that, for many

scattering channels, N ≫ 1, the expression for S can be con-
veniently rewritten as S ¼ 2eð2e2=hÞV R

1
0 PðτÞτð1 − τÞdτ,

from which we conclude that the distribution function PðτÞ
enters the spectral densityS through its first and secondmoments
[i.e.,

R
1
0 PðτÞτndτ with n ¼ 1, 2]. With the first moment just

being the average transmission, the shot-noise power thus addi-
tionally provides access to the secondmoment ofPðτÞ, a quantity
which is strongly influenced by the presence of open and closed
channels. In particular, if we replace PðτÞ with the bimodal
distributions obtained from RMTand from the DMPK equation,
one finds specific values for the Fano factor.
Consider first the case where we assumed the scattering

matrix to be distributed according to Dyson’s circular ensem-
ble with PðτÞ ¼ 1=π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τð1 − τÞp

[see Eq. (33)]. In this case the
shot-noise Fano factor can be calculated by hand to take on the
universal value F ¼ 1=4 (Baranger and Mello, 1994; Jalabert,
Pichard, and Beenakker, 1994), corresponding to a shot-noise
spectral density S which is reduced to one-fourth of the
Poissonian value SP of Schottky (1918). When taking, instead,
the transmission eigenvalue distribution which we found
for the wire in the diffusive regime PðτÞ ∝ 1=τ

ffiffiffiffiffiffiffiffiffiffi
1 − τ

p
[see

Eq. (40)] one finds the shot noise to be suppressed to one-third
with a corresponding Fano factor of F ¼ 1=3 (Beenakker and
Büttiker, 1992; Nagaev, 1992), which is entirely independent
of the mean free path l⋆ and of the system length L. In the
transition from the diffusive to the ballistic limit (where all
eigenchannels open up) the Fano factor vanishes, F → 0

(de Jong and Beenakker, 1992), and in the transition to the
localized limit (where all eigenchannels get closed) the
Fano factor approaches 1, F → 1 (Frahm, 1995). Note that
in both of the nontrivial limits where the Fano factor takes
on fractional values, low-temperature experiments with
coherent electrons (Steinbach, Martinis, and Devoret, 1996;
Oberholzer, Sukhorukov, and Schönenberger, 2002) have
meanwhile confirmed the theoretical predictions (see
Fig. 7), thereby providing a convincing proof for the existence
of open transmission channels in transport through chaotic
and disordered media, respectively. As we will see, going
beyond this statistical evidence by accessing transmission

FIG. 7. Shot-noise power (a) in a metallic diffusive wire and
(b) in a chaotic quantum cavity. The linear rise of the exper-
imentally obtained noise power with increasing current has a
slope that follows the theoretical predictions for the universal
Fano factors F ¼ 1=3 and 1=4, respectively. For small
currents the noise deviates from the linear increase due to finite
temperature effects. Adapted from (a) Henny et al., 1999, and
(b) Oberholzer, Sukhorukov, and Schönenberger, 2002.
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eigenchannels in optics directly will become possible only
through the techniques of wave front shaping; see Sec. IV.
The universal values for the Fano factor rely on the

assumption that waves entering in a scattering region get
perfectly randomized before exiting this region. In fact, this
assumption is the starting point for RMT and in weaker form,
also enters the DMPK equation through the approximation of
transverse isotropy. There are of course many ways in which a
specific scattering system can fail to fulfill these assumptions:
First, a scattering region might neither be fully chaotic nor
disordered (Agam, Aleiner, and Larkin, 2000; Oberholzer,
Sukhorukov, and Schönenberger, 2002; Aigner, Rotter, and
Burgdörfer, 2005), or its disorder might feature spatial
correlations which lead to very specific transmission statistics
(Izrailev and Makarov, 2005). Also any effects like absorption
(Brouwer, 1998; Méndez-Sánchez et al., 2003) and dephasing
(Baranger and Mello, 1995; Brouwer and Beenakker, 1995;
Huibers et al., 1998) have a significant influence (see Fig. 5).
Consider also that the way in which one couples to a
disordered region (as by barriers or point contacts) can lead
to the situation that part of the incoming flux is immediately
backreflected, rather than being randomized. Such nonuni-
versal contributions to the transport statistics can, however, be
suitably described with tools like the Poisson kernel (Brouwer,
1995). Alternatively, one might also be confronted with
systems like thin disordered interfaces which, on the one
hand, scatter incoming waves strongly but which are shorter
than the wavelength, on the other hand, such that they fall
outside of the predictions for ballistic, diffusive, or localized
samples; see Schep and Bauer (1997) for a successful treat-
ment of such cases.
A particularly interesting challenge to conventional theories

arises for the case when the randomization in a given
scattering system affects only a subpart of the scattered flux.
This situation occurs when “direct” scattering processes are
able to penetrate the random medium in a time that is below
the time scale necessary for randomization to set in (Gopar
and Mello, 1998; Agam, Aleiner, and Larkin, 2000). For
conventional strongly scattering media the fraction of such
“ballistic” scattering states decreases exponentially with the
system size. In imaging, this strong suppression of “ballistic
light” in turbid media is in fact one of the key challenges for
techniques based on light in the visible part of the spectrum,
which is scattered significantly, e.g., in biological tissue
(Ntziachristos, 2010). Also in the field of quantum shot noise
a whole body of work exists in which the influence of such
nonuniversal contributions has been investigated in detail
(Agam, Aleiner, and Larkin, 2000; Nazmitdinov et al., 2002;
Oberholzer, Sukhorukov, and Schönenberger, 2002;
Silvestrov, Goorden, and Beenakker, 2003; Jacquod and
Sukhorukov, 2004; Aigner, Rotter, and Burgdörfer, 2005;
Schomerus and Jacquod, 2005; Sukhorukov and Bulashenko,
2005; Marconcini et al., 2006; Rotter, Aigner, and Burgdörfer,
2007). Generally speaking, one finds that ballistic scattering
contributions reduce the Fano factor below the universal
values. This is because the fully closed or fully open trans-
mission eigenchannels (with τ ¼ 0, 1) associated with ballistic
scattering are “noiseless” in terms of their contribution to shot
noise (Silvestrov, Goorden, and Beenakker, 2003). We see in
the next section and in Sec. V.C.2 that such ballistic noiseless

states in electronic quantum transport correspond to geometric
optics states in light scattering, i.e., light rays to which the
eikonal approximation applies and which have a well-defined
time delay (Rotter, Ambichl, and Libisch, 2011).

C. Time delay

When speaking of dynamical aspects of scattering prob-
lems, well-defined time scales are required to provide an
estimate for the duration of a scattering process. Whereas
many different definitions of such time scales are available in
the literature, the most rigorously defined and most commonly
used ones are the time delay (also called delay time or group
delay) and the dwell time, which quantities measure the
duration of a scattering process and the time spent inside a
designated region, respectively. As can be expected, these two
time scales turn out to be quantitiatively similar for many
practical purposes, but also the subtle differences between
them provide instructive insights.
The foundations for work on time delay were laid by

Eugene Wigner and his student Leonard Eisenbud who
studied the single-channel scattering phase shifts in resonant
quantum scattering (Eisenbud, 1948; Wigner, 1955b). Their
fundamental insight was that the time delay τϕðEÞ an incident
wave accumulates during a resonant scattering event (in one
specific channel) as compared to nonresonant free propagation
can be estimated by taking the energy derivative of the
scattering phase shift ϕðEÞ (see Fig. 8). The corresponding
Wigner (or Wigner-Eisenbud) phase delay time is then given
as τϕðEÞ ¼ ℏ∂ϕðEÞ=∂E ¼ ∂ϕðωÞ=∂ω, where E is the scat-
tering energy of a quantum particle and ω its angular
frequency. Since the energy derivative at a sharp scattering
resonance can be very large, the corresponding time delay will
also, correspondingly, take on very large positive values at
such resonant energy values. Note, however, that the value of
the time delay can, in principle, also be negative as, e.g., for
the case of scattering through a repulsive potential. In this
case one talks of a “time advance,” the value of which is
limited by causality constraints.

FIG. 8. The Wigner-Smith time delay is calculated as the
derivative of the scattering phase accumulated due to the presence
of a scattering potential, here given as VðxÞ. The solid (blue)
and the dashed (red) lines schematically display the scattering
wave function in the presence and absence of this potential,
respectively (two different scattering energies are shown and
reflections by the potential are ignored). From Pazourek, Nagele,
and Burgdörfer, 2015.
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Subsequent work (Jauch, Sinha, and Misra, 1972; Martin,
1976; Ilić et al., 2009) showed that the definition of the time
delay can be reformulated as follows:

τϕðEÞ ¼
1

σscatv

Z
d3r½jψEðrÞj2 − 1�: ð45Þ

This integral contains the single-channel scattering states
ψEðrÞ and extends over all of space. σscat is the scattering
cross section and v is the velocity of the incident flux.
Multiplied together, σscatv is equal to the incident flux
on the scatterer Jin (see Sec. II.A.2). Neglecting a self-
interference term outside the scattering region Ξ [which
usually averages out (Smith, 1960; Winful, 2003)], the time
delay τϕ thus measures an excess in the dwell time

τd ¼
1

Jin

Z
Ξ
d3rjψEðrÞj2 ð46Þ

inside the scattering region Ξ as compared to propagation in
free space. Both the scattering states ψEðrÞ and the incoming
flux associated with them are normalized here such that the
integral

R
Ξ d

3rjψEðrÞj2 ¼ 1 when the scattering region Ξ is
replaced by free space (for which case the excess dwell time
is zero).
To understand intuitively why Eq. (46) represents a dwell

time, consider that the integral which appears there measures
the intensity stored inside the scattering region Ξ. To obtain
the time that this intensity stays inside the scattering region,
one has to divide it by the outgoing flux Jout, which for a
stationary scattering state like ψEðrÞ is equal to the incoming
flux Jin (the absence of gain and loss in the medium is
assumed here). The identity in Eq. (46) thus corresponds to
what one would expect from a simple classical picture. To
emphasize this analogy we mention that the dwell time of
water molecules in a bath tub can also be estimated equiv-
alently based on the knowledge of the water volume contained
in the tub and the incoming water flux (provided that the latter
is equal to the outgoing flux).
These expressions were originally derived for the scattering

of matter waves as described by the Schrödinger equation.
Using the analogy with the Helmholtz equation (see
Sec. II.A.1) these results can now be carried over to light
scattering. Note, however, that in this case the electromagnetic
energy density uðr;ωÞ defined in Sec. II.A.2 enters the
definition of the dwell time τd, which gives rise to additional
terms related to a potential energy density stored in the
dielectric medium. This contribution is particularly large
when the dielectric constant of the medium is much larger
than the vacuum value. Details on these terms as well as on
their relation to the energy dependence of the optical potential
V light introduced in Sec. II.A.1 have been provided by
Lagendijk and van Tiggelen (1996); see Sec. 3.2.3 there.
The reason why the concept of time delay has been so

successful and widely used in a variety of different contexts is
because it allows one to extract temporal information out of
spectrally resolved scattering quantities like the scattering
phase shift. A second major asset of the time-delay concept is
its close relation to other physically relevant quantities of

which the stored intensity inside a scattering region is just one.
Another one is the absorption time τa, which measures the
exponential decay of the light intensity in an absorbing
medium (Lagendijk and van Tiggelen, 1996). Specifically,
if we consider a light ray in a uniformly absorbing medium of
constant refractive index n ¼ nr þ ini then the corresponding
wave amplitude along the ray path can be written as
ψωðx; tÞ ¼ A expðiknx − iωtÞ, with A being an overall ampli-
tude and x the spatial coordinate along the ray trajectory. The
incoming wave intensity jψ inj2 ¼ jAj2 will have decreased
exponentially due to absorption jψoutj2 ¼ jAj2 expð−2nikLÞ
when leaving the medium. The trajectory length L inside the
medium is now easily related to a corresponding time
τ ¼ Lnr=c, which is now both the dwell time inside the
medium (due to its relation with L) and the absorption time
(due to its relation with the decreased intensity jψoutj2). The
simple physical reasoning behind this correspondence is that a
wave suffers more from absorption the longer it stays inside
an absorbing medium. In the limit of small absorption, where
nikL ≪ 1, this time can be estimated as follows (Lagendijk
and van Tiggelen, 1996):

τ ¼ lim
ni→0

nð1 − jψoutj2=jψ inj2Þ
2niω

: ð47Þ

Note that in this relation the ratio of outgoing to incoming
wave intensity emerges, which is known as the albedo of a
scatterer a ¼ hjψoutj2i=hjψ inj2i. For the visible part of the light
spectrum the albedo (measured in reflection) ranges from
values below 10% for very dark substances (like coal) to
almost 90% for very bright substances (like snow). According
to this simple derivation, such albedo measurements provide
accurate information about the time light stays inside a given
medium (Feshbach, 1962; Tiggelen, Tip, and Lagendijk,
1993). Note that for very inhomogeneously absorbing media
the dwell time and the absorption time may also be quite
different from each other as the absorption time then depends
significantly on whether regions of high absorption are visited
by a scattering wave or not.
In a seminal paper Smith (1960) showed that the time-delay

concepts can be straightforwardly extended to multiple
channels. In particular, for flux-conserving systems without
loss or gain a corresponding multichannel time-delay matrix
Q can be defined based on the unitary scattering matrix S in
the following way:

Q ¼ −iℏS† ∂ S
∂E : ð48Þ

This Wigner-Smith (or Eisenbud-Wigner-Smith) time-delay
matrix Q generalizes the concept of the “phase delay time”
from above to multiple channels. However, care must be taken
with respect to the definition of the asymptotic states that are
related by the scattering matrix: Depending on whether the
asymptotic states incorporate the free space propagation
between the incoming and outgoing asymptotic regions, the
Wigner-Smith matrix measures the times associated either
with the phase delays or with the phases themselves. The
matrix Q has the same number of 2N × 2N complex elements
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as the scattering matrix itself (see Sec. II.A.4) and it is
Hermitian by construction. Its real eigenvalues qn are referred
to as the “proper delay times” which, when assuming an RMT
distribution for the matrix elements of S, can be shown to
follow very specific distribution functions in the chaotic
(Brouwer, Frahm, and Beenakker, 1997) and the diffusive
limit (Ossipov, Kottos, and Geisel, 2003) [see also Méndez-
Bermúdez and Kottos (2005) and Kottos (2005) for a review].
The Wigner-Smith time-delay matrix, in turn, shares a deep

connection to the density of states (DOS) ρðωÞ of an open
scattering system. Specifically, for a finite open medium the
DOS can be defined as the sum over all quasibound states or
resonances evaluated at the frequency ω (Breit and Wigner,
1936),

ρðωÞ ¼ 1

π

X
m

Γm=2
ðΓm=2Þ2 þ ðω − ωmÞ2

; ð49Þ

where each of the Lorentzian mode profiles in this sum is
spectrally normalized. Following the work of Gamow
(1928) the resonance energies ωm and their widths Γm are
the real and imaginary parts of complex resonance eigenvalues
at which the scattering matrix SðωÞ has its poles (see
Sec. II.A.4). Based on this connection Krein, Birman,
Lyuboshitz, and Schwinger (Schwinger, 1951; Krein, 1962;
Lyuboshitz, 1977; Birman and Yafaev, 1992) showed that the
DOS is directly expressible through the scattering matrix
ρðωÞ ¼ ½−ic=ð2πÞ�TrS†∂S=∂ω, and thus through the trace of
the Wigner-Smith time-delay matrix ρðωÞ ¼ ½c=ð2πÞ�TrQ, a
connection which has meanwhile been verified also numeri-
cally (Yamilov and Cao, 2003) and experimentally (Davy, Shi,
Wang et al., 2015). From this relation we conclude that the
DOS is directly proportional to the sum of the time delays
associated with all the 2N channels described by the scattering
matrix (Wigner, 1955b; Smith, 1960). Since, in addition, the
local DOS ρðr;ωÞ [where the DOS ρðωÞ ¼ R

dr3ρðr;ωÞ] is
also connected to the imaginary part of the Green’s function
ρðω; rÞ ¼ −2ωIm½Gðr; r0;ωÞ�=π [assuming a scalar field, see
Wijnands et al. (1997), Chap. 4], these relations also uncover a
direct connection between the time delay and the Green’s
function [see also the Krein-Friedel-Lloyd formula as dis-
cussed by Faulkner (1977)].
The close connection between the time delay and the DOS

also has a very fundamental insight in store that can be
obtained through a result derived by Hermann Weyl (Weyl,
1911; Arendt and Schleich, 2009). This so-called “Weyl law”
states that the average DOS in a finite domain asymptotically
(for increasing eigenfrequencies) follows a universal function
(in frequency) that just depends on the volume and the surface
area of the system, but not on the specific geometric details
of the scattering potential. Through the equivalence between
the DOS and the time delay, the latter is thus also determined
by the volume and the surface of the scattering domain—a
universal result that holds independently of whether the
underlying medium leads to ballistic, diffusive scattering or
even Anderson localization (Pierrat et al., 2014). One inter-
esting consequence of this result is that, through the con-
nection between the time delay and the dwell time [see
Eqs. (45) and (46)], this “universal” time delay can also be

directly linked to the energy stored in the medium for unit
incident flux in each of the scattering channels.
To explicitly show this we, however, first need to generalize

the definition of the dwell time in Eq. (46) from a single to
multiple scattering channels—in a way similar to what was
done earlier for the time delay. For the corresponding
definition of a “dwell-time operator” to be meaningful, we
demand that the expectation value of this operator, for a given
multichannel incoming state, yields the corresponding dwell
time τd of this state. Since, according to Eq. (46), the dwell
time involves the integral of the corresponding scattering state
over the scattering volume, the definition of the dwell-time
operator needs to incorporate the knowledge on the scattering
states. Following Sec. II.A.3 we know that any scattering state
can be connected to its incoming waves by way of the Green’s
function G, with the result that the dwell-time operator Qd is
given as follows (Sokolov and Zelevinsky, 1997; Ambichl,
2012):

Qd ¼ ℏ2W†ðGÞ†GW; ð50Þ

where W is the energy-dependent coupling matrix from the
scattering to the exterior region introduced in Eq. (28). We
emphasize here that the expression forQd involves knowledge
of the Green’s functions on all points inside the scattering
medium such that an evaluation of Qd based on Eq. (50) is
very complex (i.e., numerically costly and experimentally
close to impossible). Alternatively, one can connect this
dwell-time matrix with the definition of the Wigner-Smith
time-delay matrix (which involves only the knowledge of the
scattering matrix): When restricting the action of the energy
(frequency) derivative of the scattering matrix in Eq. (48) to
only the explicit energy dependence in Eq. (28) and neglecting
the energy dependence of the coupling matrix W, the time-
delay and the dwell-time operators for unitary scattering
systems are the same (Sokolov and Zelevinsky, 1997). In
this sense, the time delay and the dwell time differ only by the
“self-interference” term which involves also the evanescent
modes in the near field of the scatterer (Ambichl, 2012).
In a similar way, the connection between the dwell time τd

and the absorption time τa for the single-channel case suggests
that such a relation might also exist on the more formal
operator level. Following this idea, Savin and Sommers (2003)
showed that for any uniformly absorbing medium [niðrÞ is
uniform in space] with arbitrary spatial complexity [nrðrÞ
varying in space] the following relation holds between the
scattering matrix S and the dwell-time operator Qd:

1 − S†S ¼ ΓaQd; ð51Þ

where the parameter Γa is a phenomenological absorption rate
and both S andQd are evaluated in the presence of absorption.
Equation (51) suggests that in a uniformly absorbing medium
the time-delay operator is nothing else than the operator which
measures the unitarity deficit or the “subunitarity” of the
scattering matrix. Since, in addition, the scattering matrix
connects the incoming with the outgoing states in a scattering
problem, which, in turn are related to each other through the
albedo a, Eq. (51) is in fact nothing else than the multichannel
generalization of Eq. (47).
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As the last point in this section, we mention that the
concepts on time delay may also be used to work out
appropriately defined velocities. This is particularly relevant
for the case of resonant wave scattering in a disordered
medium, for which the conventionally used group and phase
velocities fail to satisfy the causality relations required from
special relativity (Lagendijk and van Tiggelen, 1996). Aviable
alternative here is the transport or energy velocity vE, which
determines the speed of energy transport (Brillouin, 1960) and
is thus strictly causal also near the resonances of scatterers
in the medium. Characteristic differences between vE for
light and electrons were discussed by Lagendijk and van
Tiggelen (1996).

III. MESOSCOPIC EFFECTS IN OPTICAL SYSTEMS:
THEORETICAL AND EXPERIMENTAL ANALOGIES

The theoretical framework presented in Sec. II has been
and continues to be applied to a whole host of different
questions arising in the context of mesoscopic scattering.
Many experiments, in particular, for coherent electronic
transport through mesoscopic conductors, such as quantum
point contacts, “quantum billiards,” nanowires, etc., have
meanwhile been carried out in which many of the predictions
could be studied in detail. Our emphasis here is on
predictions from mesoscopic scattering theory, which could
be realized both in electronic transport and in optical
experiments that are here compared with each other. We
review the first generation of such experiments, where also in
the optical context “mesoscopic physics” effects have been
revealed without resorting to wave front shaping techniques.
Note that when we mention mesoscopic effects in optics, we
do not refer to the signatures of the quantum (optical) nature
of the electromagnetic field; rather, we refer here to sig-
natures of light scattering that are intrinsically related to the
finite mode number of a medium as well as to correlations
between these modes.

A. Conductance quantization

One of the foundational experiments in mesoscopic trans-
port was the demonstration of conductance quantization. By
varying the opening width of a so-called quantum point
contact (through electronic gates on top of a heterojunction)
the conductance was observed to change in quantized steps
of height 2e2=h; see Fig. 9(a) (van Wees et al., 1988; Houten
and Beenakker, 1996). The origin of this effect is the
quantization of the transverse momentum in the quantum
point contact; in other words, the electrons get transmitted
through individual transverse modes, which are labeled with
a discrete quantum number m or n (see Sec. II.A.4 where we
introduced this concept already). Since each of these modes
has a specific threshold that depends on the width of the
quantum point contact, the conductance increases in a
stepwise fashion whenever such a threshold is crossed.
The experiment by van Wees et al. was thus crucial to lend
credibility to the Landauer formula [see Eq. (16)] that
describes the conductance G as a problem of coherent
transmission T through multiple modes. As this description
is, however, solely due to the wave nature of electrons, one

should observe it also with other types of waves, including
electromagnetic radiation. This idea was picked up by
Montie et al. (1991), where a corresponding experiment
was realized with light waves that were sent through a slit
of tunable width; see Fig. 9(b). To mimic the way in which
electrons impinge on the quantum point contact, the optical
experiment featured a diffuse light source to distribute the
incoming flux equally over all available transverse modes.
With this type of illumination the light intensity transmitted
through the slit was observed to follow the same steplike
pattern as the electrons do in the mesoscopic analog; see
Fig. 9(b).
Surprisingly, this optical experiment, which is much easier

to carry out than its preceding electronics counterpart, was
performed only after the corresponding physics was first
understood in a mesoscopic context. This point underlines the
main message of this review and indicates that a strategy along
these lines may have many more interesting insights and
surprises in store. Note here, in particular, that in optics the
transmission through and the reflection from a scattering
object are typically accessible in a mode-resolved way, which
is not the case for electrons. This is also the case when
studying the scattering through an extended disordered region
where both the incoming and outgoing modes are quantized.
To probe the total optical transmission T ¼ P

mTm ¼P
mnTnm as inherent in electronic conductance, one can

use a diffuser [as in Fig. 9(b)] to ensure a nearly isotropic
spatial illumination that excites all modes equally. In contrast,
an illumination through a collimated laser beam with a
well-defined incoming angle would probe the transmission
through a suitable defined incoming mode Tm ¼ P

nTnm. The
information on the transmission Tnm ¼ jtnmj2 through the
outcoupling modes n is contained in the speckle pattern
appearing behind the scattering region, which contains the
spatially resolved transmission pattern.

FIG. 9. (a) Conductance quantization in coherent electron
transport through a quantum point contact (see upper inset and
similar point contacts at the openings of the quantum billiards in
Fig. 4). The conductance shows steps at integer values of the
conductance quantum 2e2=h. Adapted from van Wees et al.,
1988. (b) Power of light transmitted through a slit with variable
width (see upper inset). Similar steps as in (a) occur here when
the slit width corresponds to integer multiples of λ=2 with λ the
light wavelength. Before propagating through the slit the light
is sent through a diffuser realized (i) with a piece of paper
and (ii) with an array of parallel glass fibers. Adapted from
Montie et al., 1991.
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B. Conductance fluctuations

Experiments that were crucial for uncovering the nontrivial
correlations in these different types of coherent transmission
amplitudes were those reporting on conductance fluctuations
in small metallic wires and rings (Umbach et al., 1984;
Washburn et al., 1985; Webb et al., 1985). These fluctuations
observed in low-temperature measurements as a function of an
applied magnetic field [see Fig. 10(b)] were actually unex-
pected. Their origin was first believed to be finite size effects
of the conductor; it was, however, soon revealed (Lee and
Stone, 1985) that these fluctuations are due to the multiple
disorder scattering and the corresponding multipath interfer-
ence, which sensitively depends on the system parameters
(such as the disorder configuration, the Fermi energy, the
magnetic field, etc.). In this sense the conductance fluctuations
are like a fingerprint of the medium, which is highly complex
but fully reproducible when measuring the conductance again
a second time. An intriguing aspect of these conductance
fluctuations is that their variance has a universal value of the
order of e2=h (at zero temperature), which is independent of
the degree of disorder (in the diffusive regime) and the sample
size, hence the name “universal conductance fluctuations”
(UCFs). As demonstrated in Secs. II.A.5 and II.A.6, this
surprising result and the exact value of the universal fluctua-
tions can be understood based on the spectral rigidity of the
transmission eigenvalues. Alternatively, one can also obtain

very instructive insight into this phenomenon based on so-
called diagrammatic techniques (Lee and Stone, 1985; Feng
et al., 1988; Berkovits and Feng, 1994) [see also Dragoman
and Dragoman (2004), Montambaux (2006), and Akkermans
and Montambaux (2007) for reviews of these techniques].
Conceptually, the universal value of the electronic con-

ductance fluctuations is a clear signature of the quantum
coherence in the scattering process. We should thus expect to
observe similar effects also with coherent disorder scattering
of light. Since the optical speckle patterns contain sizable
fluctuations as well, one may be tempted to think that UCFs
are just a different aspect of speckle fluctuations. As it
turns out, this is, however, not the case. To understand this
in more detail consider the relation for the variance of
the fluctuations, which for the transmission of light is
given by σ ¼ hT2i − hTi2. Writing T ¼ P

mnTmn and
δTmn ¼ Tmn − hTmni, we obtain σ ¼ P

mnm0n0Cmnm0n0 , where
Cmnm0n0 ¼ hδTmnδTm0n0 i. For evaluating this expression for
coherent scattering processes, a classical diffusion equation is
clearly insufficient; instead, one can employ a perturbative
approach in the limit of weak but multiple scattering, where
the perturbation parameter is 1=kl⋆ ≪ 1 with l⋆ ≪ L (l⋆ is
the transport mean free path as discussed in Sec. II and L is
the medium thickness). In the corresponding expansion
(Feng et al., 1988) the contributions to the correlation function

Cmnm0n0 ¼ Cð1Þ
mnm0n0 þ Cð2Þ

mnm0n0 þ Cð3Þ
mnm0n0 þ � � � can be distin-

guished based on their different contributing scattering dia-
grams [see Fig. 10(a)] (only the first three terms in this
expansion are considered in the following).
The first term Cð1Þ

mnm0n0 is always present (also in the absence
of phase coherence) and of order zero in the expansion
parameter 1=kl⋆ ≪ 1. It corresponds to contributions from
scattering paths that do not intersect while transmitting
through the medium; see Fig. 10(a), left panel. In the absence
of such intersections, correlations between modes are also
largely absent (the only correlations remaining in rather thin
media give rise to the so-called memory effect discussed in

Secs. III.D and V.A). In Cð1Þ
mnm0n0 the most dominant contri-

butions to the transmission arise when the difference between
both the incoming and outgoing transverse momenta is zero
Δqn ¼ qn − qn0 ¼ Δqm ¼ qm − qm0 ¼ 0. (Note that we
implicitly used here the fact that our modes m, n have a
well-defined transverse momentum qn.) As a result one finds
that the fluctuations in the speckle pattern are of the order of
the average hδT2

mni ¼ hTmni2. This fact, also known as the
Rayleigh law, is directly reflected in the granularity of a
speckle pattern which features strong fluctuations between
dark and bright spots. Why do these large fluctuations not
translate to correspondingly large fluctuations of the total
transmission and conductance? The answer is that the corre-

lation term Cð1Þ
mnm0n0 has contributions only for specific mode

combinations and thus, although being formally of the largest
scale, their relative contribution to fluctuations diminishes
with the number of modes considered. Overall, Cð1Þ correla-
tions yield only a subdominant contribution to the total
transmission fluctuations.
This is where the additional correlation functions Cð2Þ

mnm0n0

and Cð3Þ
mnm0n0 come into play; see Fig. 10(a), middle and right

(a)

(b) (c)

FIG. 10. (a) Schematic of the different scattering paths in a
disordered medium and their correlations due to crossings.
Nonintersecting paths (Cð1Þ) as in the left panel give rise to
short-range speckle fluctuations. Those paths with a single
crossing (Cð2Þ) as in the middle panel are already correlated
with each other. The universal conductance are, however, induced
by paths with two crossing (Cð3Þ) as in the right panel. Adapted
from Scheffold and Maret, 1998. (b) Fluctuations of the elec-
tronic conductance G with respect to its mean value hGi,
measured in a 310 nm long and 25 nm wide gold wire at
10 mK as a function of a perpendicular magnetic field B. The
variance of the conductance ΔG ≈ 0.09e2=h corresponds well to
the theoretical prediction ð1=15Þe2=h given in Eq. (41). Adapted
from Washburn and Webb, 1986. (c) Universal conductance
fluctuations of light Cð3ÞðtÞ, measured dynamically in a turbid
colloidal suspension. The experimental data are compared with a
theoretical prediction using a dimensionless conductance of
g ¼ 89 and a sample thickness of L ¼ 13.1 μm. Adapted from
Scheffold and Maret, 1998.
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panels, respectively. In the diagrammatic expansion those
two contributions come from scattering paths with one
and two quantum crossings in the transmission process.
Corresponding to the reduced likelihood for such crossings
to occur, the scale of these contributions is reduced. In the
sum for the total correlation, this reduction is, however,
compensated by a less restrictive angular selection in terms of

the differences Δqn, Δqm: Whereas the Cð1Þ
mnm0n0 term features

only short-range correlations, the Cð2Þ
mnm0n0 and Cð3Þ

mnm0n0 terms
feature long- and infinite-range correlations, respectively. It
turns out, however, that not the long-range angular correla-

tions inherent in Cð2Þ
mnm0n0 , but only the infinite-range corre-

lations in Cð3Þ
mnm0n0 yield the desired universal contribution to

UCFs σ ¼ P
mnm0n0Cmnm0n0 ≈

P
mnm0n0C

ð3Þ
mnm0n0 ≈ 1.

Optical experiments can go much farther than simply
remeasuring the universal value of UCFs found already earlier
in mesoscopic transport. Scheffold and Maret (1998) recorded
the time-dependent correlation functions Cð2ÞðtÞ and Cð3ÞðtÞ in
transmission through a small pinhole filled with a turbid
colloidal suspension. The temporal fluctuations of the trans-
mitted light were due to the Brownian motion of scattering
particles. By finding quantitative agreement with the theo-
retical predictions based on the diagrammatic terms, it thus
became possible to not only establish UCFs in light scattering,
but also to verify their microscopic origins; see also the
corresponding experiments with microwaves (Shi and
Genack, 2012a; Gehler et al., 2016). As discussed by
Berkovits and Feng (1994) the concepts on the correlation
functions can be conveniently extended to also describe
correlations in frequency as well as in the angle or in the
spatial position of the emission from the disordered medium.
Note also the possibility offered in optics to probe other
quantities, such as the Cð0Þ correlations (Shapiro, 1999; Cazé,
Pierrat, and Carminati, 2010) that arise when the source is
embedded inside the scattering medium, a setup that could be
used for imaging purposes (Skipetrov and Maynard, 2000;
Carminati et al., 2015).

C. Weak localization

Another fundamental phenomenon for which the angular
correlations play an important role and which also relies on
specific quantum crossings of scattering paths is the so-called
weak-localization effect (Abrahams et al., 1979; Bergmann,
1983; Khmel’nitskii, 1984; Akkermans and Maynard, 1985;
Wolf and Maret, 1985) [see Bergmann in Dragoman and
Dragoman (2004), Montambaux (2006), Akkermans and
Montambaux, (2007), and Abrahams (2010) for reviews].
The term “weak” refers to the overall weakness of this effect
as compared to the “strong” (Anderson) localization for which
weak localization is a precursor. Our starting point here
is the observation from mesoscopic transport theory (see
Secs. II.A.5 and II.A.6) that the transmission through a chaotic
scattering system or a disordered wire is reduced by a small
amount (again of the order of e2=h) as compared to the value
expected from a classical (i.e., incoherent) estimate. This
suggests already that interference effects which are based on

the coherence of the scattering process are at the heart of this
phenomenon.
To properly capture this effect, we employ a similar

diagrammatic picture as in the previous section in which
the total transmission T ¼ jPαsαj2 can be written as a sum
over all paths α with a corresponding complex amplitude sα
(the phase of which is given by the classical action). This
expression not only contains the incoherent summation over
all individual probabilities

P
αjsαj2 for scattering paths to go

from one side of the disordered medium to the other (as
inherent in the classical Drude formula), but also features
interference terms

P
α≠βsαs

�
β (corresponding to products of

scattering amplitudes for different paths). One might argue
that these interference terms average out to zero, since their
random phases will lead to constructive and destructive
interference with equal measure. Upon close inspection, this
argument turns out to be incorrect, however; this is because
certain path pairs have the same or very similar phase due to
reciprocity (see Sec. II.A.4) and may thus lead to a certain bias
away from the classical result, as seen in the following.
Consider here, in particular, those paths that emanate from a
source (outside of the medium) and return to it after scattering
in the disordered medium [see Fig. 11(a)]. Since these loops
can be traversed in two possible directions, we end up with
two paths in the loop which have exactly the same phase as
well as amplitude and thus always interfere constructively
jsα þ sαj2 ¼ 4jsαj2, independently of the disorder configura-
tion. Since this contribution of such time-reversed path pairs to
the reflection is larger as compared to the classical result,
where jsαj2 þ jsαj2 ¼ 2jsαj2, they enhance the portion of the
waves that are “coherently backscattered” to the source by a
factor of 2 and thus increase the reflection R. In order to
conserve the unitarity of the entire scattering process this
increased reflection must be compensated by a corresponding
decrease of the transmitted waves—in perfect correspondence
with our earlier observation (see Secs. II.A.5 and II.A.6).
The transmitted scattering paths that are responsible for
this reduction can be shown to be self-crossing paths which
feature loops in their scattering patterns which can be
traversed in both a clockwise and a counterclockwise direction
(Akkermans and Montambaux, 2007).
Although it turns out that the coherent backscattering

contribution (resulting from time-reversed path pairs) explains
the weak-localization effect only partially (Hastings, Stone,
and Baranger, 1994), a controlled breaking of reciprocity will
eventually destroy weak localization entirely and restore the
classical (i.e., incoherent) transport result. For electronic
scattering problems this can easily be done by applying an
external magnetic field perpendicular to the scattering region.
As shown in Fig. 11(b) the resistivity of an array of chaotic
scatterers is, indeed, reduced when the magnetic field is
applied (note that the reduction is independent on the sign of
the field, due to the Onsager relations, see Sec. II.A.4).
For light waves, implementing a reciprocity-breaking

mechanism is not so straightforward (adding absorption to
the medium is not sufficient as it breaks only time-reversal
symmetry, but not reciprocity). A viable alternative is pro-
vided here by the access to the spatial degrees of freedom of
light. Specifically, to measure the weak localization of light its
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dependence on the angle of the light backscattered from the
medium has been used as a key signature [see the angle θ in
Fig. 11(a) and its influence on the backscattered intensity in
Fig. 11(c)]. Since only those paths that return directly to the
source find a partner with the same phase, the enhanced
reflection is concentrated in a very narrow backreflection cone
which is rather difficult to measure. Employing a Fraunhofer
diffraction analysis, Akkermans, Wolf, and Maynard (1986)
showed that the phase difference between two time-reversed
reflected scattering paths is given as ðki þ kfÞðr − r0Þ, where
ki and kf are the initial and final wave numbers, respectively,
that impinge on the disordered medium at the first scatterer
position r and leave it again at the last encountered scatterer
position r0 [see Fig. 11(a)]. When the backscattering is perfect,
ki ¼ −kf, we obtain the enhancement by a factor of exactly 2
(as previously found). This number can be reduced slightly
when recurrent scattering events occur in the strong scattering
limit (Wiersma et al., 1995). This maximum, however,
degrades when the angle θ between ki and kf satisfies
jθ − πj > λ=jr − r0j, where λ is the wavelength. For the
shortest possible loop involving just two scattering events,
the typical value of jr − r0j is given by the mean free path l⋆,
resulting in a typical angular width of the backscattering
cone θ ≈ λ=l⋆. Larger excursions of light paths in the medium
with increased differences jr − r0j are responsible for the peak
of the cone, which was predicted to take on an approximately
triangular shape (Akkermans, Wolf, and Maynard, 1986). In
the presence of absorption this shape gets rounded as
dissipative mechanisms affect primarily longer paths [see
Fig. 11(c)].
Sophisticated optical experiments could meanwhile mea-

sure the details of this cone line shape, from which not
only the value of l⋆ but essentially the entire path length
distributions in the scattering medium can be extracted
(Akkermans, Wolf, and Maynard, 1986) [compare also with
similar studies for electronic scattering (Chang et al., 1994)].
Note that in the optical regime the weak-localization effect
also depends on the polarization of light as pointed out both
theoretically (Akkermans, Wolf, and Maynard, 1986) and

experimentally (Albada and Lagendijk, 1985; Dragoman and
Dragoman, 2004). Recent experiments have even been able
to go a step further in that they could actively suppress the
coherent backscattering of light by exposing the medium to an
ultrafast pump pulse (Muskens et al., 2012), which opens up
interesting opportunities for actively controlling mesoscopic
interference phenomena.

D. Memory effect

In Sec. III.B on the universal conductance fluctuations we
already analyzed the different correlations that exist between
modes involved in the scattering process across a disordered
medium. Using diagrammatic scattering techniques, it was
discovered in the same context that the correlation function

Cð1Þ
mnm0n0 points to the existence of correlations between

incoming modes that have a similar transverse momentum,
i.e., for which Δq < 1=L (Feng et al., 1988). The inverse
proportionality with respect to the thickness of the medium L
means that the angular range over which such correlations
exist becomes smaller for increasing medium thickness—a
result that is notably independent of the value of the transport
mean free path l⋆, and on the exact realization of disorder.
Quite interestingly, this so-called “memory effect” was dis-
covered based on mesoscopic transport theory, although in
mesoscopic electron transport an experimental study of
this effect is not possible, since no angular resolution is
available in electron scattering. It was realized very quickly,
however, that the memory effect can be directly mapped
to optical scattering setups where a laser beam with well-
defined transverse momentum is sent onto a disordered
medium (Freund, Rosenbluh, and Feng, 1988). We also see
in Sec. V.A how this phenomenon has developed into a
useful and practical effect with consequences for imaging
through or inside a disordered medium (with and without
wave front shaping).
Within the angular range discussed, a small angular rotation

in the input beam then leads to a rotation of the output speckle
pattern by the same angle (see Fig. 12), and correspondingly

(a) (b) (c)

FIG. 11. (a) Electron or light paths associated with the weak-localization effect. Because of disorder scattering, the reflected wave
vector k̂f is rotated by an angle θ with respect to the incoming wave vector k̂i. From Akkermans, Wolf, and Maynard, 1986.
(b) Resistance of an array of stadium-shaped quantum dots as a function of a perpendicular magnetic field. Different solid curves show
experimental data at different temperatures (from top to bottom: T ¼ 50 mK, T ¼ 200 mK, T ¼ 400 mK, T ¼ 800 mK, T ¼ 1.6 K,
T ¼ 2.4 K, and T ¼ 4.2 K). The dash-dotted lines are Lorentzian fits. Adapted from Chang et al., 1994. (c) Angular dependence of the
light intensity backreflected from a disordered medium. Different curves show experimental results for samples with different degrees of
absorption, as measured by the absorption mean free path la. From top to bottom: la ¼ ∞, la ¼ 810 μm, and la ¼ 190 μm. The
intensity is normalized with respect to the value at 1°, measured in the nonabsorbing sample (la ¼ ∞). The dots are predictions from
diffusion theory. Adapted from Wolf et al., 1988.

Stefan Rotter and Sylvain Gigan: Light fields in complex media …

Rev. Mod. Phys., Vol. 89, No. 1, January–March 2017 015005-23



to a shift at a distance from the medium. For larger angles, the
transmitted speckle pattern will rapidly become totally uncor-
related with the original (unshifted) speckle image. This
behavior can be intuitively understood by considering that
shifting the angle of incident light corresponds to a linear
phase shift between the Huygens spots at which the incoming
beam hits the disordered medium [see Fig. 12(b)]. In the
diffusive regime, each of these spots will produce a cone of
scattering pathways which reach the back side of the medium
as a circular speckle halo, the diameter of which is about 2L,
where L is the medium thickness. To successfully transfer the
phase ramp from the input beam onto these output speckle
patterns, the speckle disks at the back side of the medium may
not acquire a phase that is larger than about π from one disk to
its nearest nonoverlapping neighbor [see Fig. 12(c)]. Using
simple trigonometry, this condition, which is intuitively
necessary to prevent phase mixing, can be translated to the
requirement Δq < 1=L found already earlier using diagram-
matic techniques (Feng et al., 1988). Practically, this restric-
tion limits the thickness of the disordered optical medium to a
few tens of micrometers in order to have a measurable effect.
The first experiments (Freund, Rosenbluh, and Feng, 1988) on
the optical memory effect were performed soon after the
theoretical proposal (Feng et al., 1988), in which the predicted

shift of the speckle pattern could be unambiguously identified
[see Fig. 12(a)].
When measuring correlations in reflection from a disor-

dered medium Cmnm0n0 ¼ hδRmnδRm0n0 i rather than in trans-
mission, one ends up in the interesting situation that both the
memory effect and the weak-localization corrections come
into play. It turns out that, to first order, the angular width of
the coherent backscattering cone and the memory effect angle
are the same in reflection. This is because both effects rely on
the diffuse spot size, i.e., the width of both peaks is now
related to the mean free path Δq < 1=l⋆, which may be quite
different from the memory effect angle in transmission that is
related to the thickness of the disordered sample Δq < 1=L.
The interplay between both effects was studied by Berkovits
and Kaveh (1990), again through the different contributions

Cð1Þ
mnm0n0 ; C

ð2Þ
mnm0n0 ; C

ð3Þ
mnm0n0 . It turns out that due to reciprocity

these correlation functions get additional peaks as compared
to the corresponding expressions for transmission. Consider

the first contribution without quantum crossings Cð1Þ
mnm0n0 ,

which, in reflection, not only has a single peak at Δq ¼ 0

(corresponding to qn ¼ qn0 and qm ¼ qm0 ), but also a second
one at Δq ¼ qn þ qm (corresponding to qm ¼ −qn0 and
qn ¼ −qm0 ) which is due to the time-reversed contributions.
Similar arguments can also be made for the next contribution

Cð2Þ
mnm0n0 [see Berkovits and Kaveh, (1990) for details and

Dragoman and Dragoman (2004) for a review]. Corrections
to these results may be necessary due to internal surface
reflections, as pointed out by Freund and Berkovits (1990).
Recent acoustical measurements use the memory effect in
reflection to obtain information on the path distribution in a
random medium close to the transition to Anderson locali-
zation, finding a strong recurrence of scattering paths at the
point where they enter the medium (Aubry et al., 2014).

E. Distribution of transmission eigenvalues

As seen in the theoretical calculations presented in Sec. II,
many interesting transport effects have their origin in the
statistical distribution of the so-called “transmission eigen-
values” τn, which are the eigenvalues of the Hermitian matrix
t†t (or the squared singular values of t itself). In principle, the
weak-localization correction to the conductance and the UCFs
can be expressed through the distribution of the τn and their
correlations, respectively. Mesoscopic experiments, however,
went much further in also addressing the interesting conse-
quences of the bimodal distribution of the transmission
eigenvalues PðτÞ, which we derived earlier both for chaotic
cavities [see Eq. (33)] and for diffusively scattering wave-
guides [see Eq. (40)]. Since the first moment of this distri-
bution hτi ¼ R

1
0 dτPðτÞτ corresponding to the average

transmission per incoming channel is basically unaffected
by the bimodal shape of PðτÞ, measurements of the electronic
conductance alone (which is just proportional to hτi) do not
reveal any signatures of the bimodality. This is different
for other experimental observables, which depend on the
higher moments of this distribution hτni ¼ R

1
0 dτPðτÞτn as,

e.g., the quantum shot-noise power of electrons which probes
the second moment hτ2i in addition to the first (see Sec. II.B

FIG. 12. (a) Speckle pattern as recorded behind a thin disor-
dered medium for different incident angles (0, 10, and 20 mdeg
from left to right). The arrows below the three panels point to a
specific pattern (arc above a bright spot) that serves as a
convenient visual reference for seeing the rightward move of
the speckle pattern with increasing tilt of the input laser. Adapted
from Freund, Rosenbluh, and Feng, 1988. (b), (c) Schematic
illustrations to explain this memory effect: (b) A plane wave,
represented here by three focal spots with the same phase,
impinges on a disordered slab of thickness L and creates a
speckle pattern in transmission. The distance of 2L between the
input spots is the minimal one for which the output speckles do
not yet significantly overlap. (c) When tilting the incoming laser a
phase gradient is imposed on the incoming wave. Provided that
the tilt is smaller than a critical angle θ ≲ λ=ð4LÞ, this gradient is
faithfully mapped onto the transmitted wave, resulting eventually
in a shift of the speckle image recorded at a screen in the far field
as in (a).
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for more details). The corresponding mesoscopic transport
measurements with cavities and nanowires (Steinbach,
Martinis, and Devoret, 1996) [see Blanter and Büttiker
(2000) for a review] could not only observe the shot-noise
suppression below the Poissonian value, corresponding to
different predictions for the values of the Fano factor F
(see Fig. 7); in fact, even the deviations from such universal
behavior could be measured in detail (Oberholzer,
Sukhorukov, and Schönenberger, 2002) and understood
(Agam, Aleiner, and Larkin, 2000; Jacquod and
Sukhorukov, 2004; Aigner, Rotter, and Burgdörfer, 2005;
Sukhorukov and Bulashenko, 2005; Marconcini et al., 2006;
Rotter, Aigner, and Burgdörfer, 2007).
Whereas a fair amount of convincing evidence for the

bimodal law has thus been put forward, no direct measurement
of the transmission eigenvalues or of their distribution could
be achieved in the mesoscopic context. For electromagnetic
waves such measurements are also challenging, as the knowl-
edge of the complete transmission matrix t is required to have
access to its eigenvalues and eigenvectors, which determine
the corresponding transmission channels. In particular in
optics, where the number of such channels is large (as being
proportional to the sample cross section and to the inverse
squared of the wavelength N ∝ A=λ2), measuring the entire
transmission matrix of a disordered sample is currently still
out of reach (S. M. Popoff et al., 2010; Yu et al., 2013). This
condition is, however, much more relaxed for waves with a
longer wavelength, as for microwaves or also for acoustic
waves. First microwave measurements (Shi and Genack,
2012b) on the full transmission matrix through metallic tubes,
filled with randomly placed and strongly scattering aluminum
spheres, already confirmed many of the predictions discussed
in the theory Sec. II: In the diffusive regime, theory predicts
that the largest transmission eigenvalue τ1 is close to unity and
thus corresponds to an open channel. In the localized regime,
in turn, this largest transmission eigenvalue dominates the
total transmission T ¼ P

nτn, such that τ1 ≫ τn>1. The cross-
over between these two regimes involving a “crystallization of
transmission eigenvalues” (see Sec. II.A.6) with an equidistant
spacing between the “crystal sites” (ln τn) was, indeed,
observed in a microwave experiment (see Fig. 13).
In spite of this good theory–experiment correspondence,

the elusive bimodality of the transmission eigenvalue distri-
bution could so far not be verified with microwaves. An
alternative strategy was recently put forward based on the
propagation of elastic Lamb waves in a two-dimensional
macroscopic metal stripe into which holes were drilled to
emulate disorder (Gérardin et al., 2014). Although the
scattering matrix recorded here with laser interferometry
was also not fully unitary, the bimodality of PðτÞ could be
verified with this setup. An advantage of this experimental
setup is that it not only allows one to measure all transmission
and reflection amplitudes, but, in fact, also the scattering
wave functions inside the disordered medium in analogy to
similar scanning techniques used for electrons (Topinka et al.,
2001), microwaves (Höhmann et al., 2010), and optical fields
(Fallert et al., 2009).
In Sec. V we discuss the optical experiments dedicated to

unraveling or exploiting open and closed channels.

IV. OPTICAL WAVE FRONT SHAPING
IN COMPLEX MEDIA

Progress in semiconductor and electronic engineering has
led to the emergence of a now vast range of techniques and
devices to actively manipulate light, in particular, spatial light
modulators (SLMs). SLMs are mostly based either on liquid
crystal technology (Lueder, 2010) or on microelectromechan-
ical systems (MEMS) (Hornbeck, 2001; Gehner et al., 2006;
Gad-el Hak, 2010; Cornelissen, Bifano, and Bierden, 2012);
see Fig. 14. They are nowadays offering control of up to a few
million of spatial degrees of freedom (pixels) of light in phase
or amplitude (van Putten, Vellekoop, and Mosk, 2008; Conkey,
Caravaca-Aguirre, and Piestun, 2012; Goorden, Bertolotti, and
Mosk, 2014) and are meanwhile widely used in imaging and
microscopy (Maurer et al., 2011). The advent of digital image
sensors [mainly charge-coupled device (CCD) and comple-
mentary metal oxide semiconductor (CMOS)] also allows one
to detect a correspondingly large number of degrees of freedom
in intensity or in amplitude with the help of digital holography
(Leith, Upatnieks, and Haines, 1965; Yamaguchi and Zhang,
1997; Cuche, Marquet, and Depeursinge, 2000). In the last
50 years, deformable mirror technology (Babcock, 1953) and
adaptive optics concepts have revolutionized imaging through
the atmosphere (Lee and Harp, 1969) and thereby also Earth-
based astronomy (Roddier, 1999). In Secs. IV.A and IV.B, we
show how these methods and concepts have been applied
successfully to complex media. The starting point will be the
paradigmatic case of the so-called “opaque lens” concept
(Cartwright, 2007), which has a large range of applications,
in particular, in imaging. We detail a few more specific systems
of particular interest in Sec. IV.C.

A. The thin disordered slab: An opaque lens

In Sec. II, we treated the important case of a disordered wire
and introduced in this context the concepts of ballistic wave

FIG. 13. Experimental results on the distribution of individual
transmission eigenvalues τn (labeled with different colors) in
microwave scattering through a strongly disordered quasi-1D
geometry. As predicted theoretically, Anderson localization leads
to a “crystallization” of transmission eigenvalues, corresponding
to an equidistant spacing (on a logarithmic scale) between
neighboring peaks of the corresponding distribution functions
Pðln τnÞ. The top curve in black shows the distribution of the
overall transmission Pðln τÞ, where τ ¼ P

nτn. From Shi and
Genack, 2012b.
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scattering, transport mean free path, modes, the scattering
matrix, etc. These concepts from the mesoscopic formalism
will now bemapped to the optical domain. However, there is no
exact optical equivalent of the disordered wire. In particular,
the impenetrable and lossless boundaries of a wire cannot be
easily reproduced in optics. Multimode optical fibers could be
considered a strictly bounded complex system with a limited
number of modes (and is described in Sec. IV.C.1), but they
behave very differently from the disordered wire since there
is no significant bulk disorder (scattering mostly comes from
the boundaries), and almost no backscattering. Rather than a
multimode fiber, the paradigmatic system in optics is the slab
geometry: a disordered slab of finite thickness L and infinite
lateral extension,with a transport mean free pathl⋆ that is short
enough to push the system into the multiple scattering regime
l⋆ ≪ L. From now on we refer to this system as the opaque
lens (Cartwright, 2007).
A common experimental realization of the opaque lens is

typically a layer of dielectric scatterers of micrometer or
submicrometer size, randomly packed, deposited on a trans-
parent holder, such as a glass slide. To ensure sufficient
scattering, the layer should be thick enough (a fewmicrometers
to a few tens of micrometers), producing a white and opaque
appearance, provided that the material is nonabsorptive (see

Fig. 15). This realization has the specific advantage of being
easy to fabricate and extremely stable. Wave front shaping
techniques are by nature relatively slow, making the stability of
a particular realization of disorder an essential requirement. Of
course, this simple system can be mapped to several practical
situations and materials. Snow, biological tissues, white paper,
egg shell, and bones are just a few examples of thin or thick
materials that can be understood with the same formalism.
An important difference between these systems and electronic
mesoscopic systems is the very large number of modes
supported: Since objects in optics are usually macroscopic,
often in the millimeter scale or larger, the number of optical
modes, which scales as A=λ2 (with A the transverse area and λ
the wavelength), can easily be in the 106 range or higher. Most
of the results also extend to dynamical systems (such as milk,
fog, clouds, etc.) although the geometry and the fast dynamics
make them challenging for wave front shaping.
To describe an opaque lens more formally, we now consider

a three-dimensional slab of finite thickness L that features
complex inhomogeneities of the refractive index, such as to be
fully disordered. Such a case is realized for a slab composed of
a random packing of particles of high refractive index of
different sizes, in a matrix of low refractive index (as, e.g., in
air). These inhomogeneities scatter light in a very complex
way, but as seen in Sec. II, this does not prevent us from
describing such a system with the formalism of the scattering
or transmission matrix, as long as the system is linear
(see Fig. 15).
We consider the case when the light that is transmitted

through the sample has been multiply scattered (i.e., l⋆ ≪ L)
and absorption can be neglected (although absorption or gain
do not necessarily break the linearity assumption). We also
need to make sure that the scattering strength is not too strong
(kl⋆ ≫ 1) to avoid effects related to strong localization. In
essence, we suppose that light is subject to a purely diffusive
process when going through the slab. While we described in
Sec. III the fact that different mesoscopic effects can be
present in such a situation, these effects are typically elusive.
Especially in the case of only partial control and detection, we
can often consider to first order that no mesoscopic correla-
tions are present.
In this limit, we can assume that any coherent monochro-

matic wave front incident on one side of the slab will be
multiply scattered such as to produce a fully developed
speckle on the other side (Goodman, 1976). Two speckle
patterns corresponding to two different illuminations will be

FIG. 14. Widely used types of digital spatial light modulators
(SLMs). (Top) MEMS-based binary amplitude modulators from
Texas Instruments. Adapted from Rabinovitz, 2011. (Middle)
MEMS-based phase-only SLM, available with isolated pixels or a
deformable membrane. Adapted from Bifano, 2011. (Bottom)
Liquid crystal based phase-only SLM. Left: Courtesy of Holoeye
Photonics AG. Right: Working principle in phase-only mode.
Courtesy of Monika Ritsch-Marte.

FIG. 15. The opaque lens in optics: a thin disordered slab of
scattering material. (Left) Schematic model. Adapted from
Yaqoob et al., 2008. (Center) Scanning electron microscope
(SEM) side view. (Right) Photograph of a ZnO opaque lens.
Middle and right panels adapted from Vellekoop, 2008.
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completely uncorrelated provided the inputs are sufficiently
uncorrelated. Still, each speckle is the deterministic result of
the multiple scattering process and is specific to the medium
and to the chosen input wave front. Because of the high
complexity of the multiple scattering propagation, it is in
practice impossible to calculate a priori the speckle pattern.
However, as discussed in Sec. III.B, speckle patterns have
some well-defined statistical properties. While complete
books are devoted to these phenomena (Goodman, 2007),
we recall here only some fundamental aspects for polarized,
monochromatic, and spatially coherent incident light:
(i) Because of the multiple scattering process, the incident
polarization is mixed during the propagation. After the
medium, the light has a well-defined but unpredictable
polarization state at any point: The vectorial field distribution
is the sum of intensities of two uncorrelated fully developed
speckles for two orthogonal polarization states (e.g., vertical
and horizontal polarization). (ii) For a given polarization, the
distribution of intensities follows the Rayleigh law (for each
polarization). (iii) The characteristic grain size depends on the
geometry of the system, corresponds to diffraction-limited
spots, and is related to the spatial correlation Cð1Þ (defined in
Sec. III.B).

1. Transmission matrix in the spatial domain

In this section, we consider the transmission matrix of a
disordered slab, i.e., of an opaque lens. This transmission
matrix is labeled as ~t and links the fields of the N input to the
M output pixels of the SLM and the detector, respectively.
We have seen in Eq. (14) that the transmission matrix t

connects the incoming field modes from the left to the
outgoing field modes on the right, written as cþr ¼ tcþl .
The difference between the experimentally measured ~t and
the full transmission matrix t of the disordered medium is
that ~t also comprises the propagation of the field from the
SLM to the medium and from the medium to the detector. In
addition ~t contains only a small part of the full transmission
matrix t, usually decomposed in pixels, which do not
constitute a complete basis. Since additionally the pixels, in
both modulation and detection, are typically illuminated at
close to normal and constant incidence, we can usually neglect
in practice the problem of flux normalization discussed in
Sec. II.A.4. For simplicity, we note these outgoing (incoming)
modes as ~Eout ( ~Ein), in which notation the field on the mth
output pixel is ~Eout

m ¼ P
n~tmn

~Ein
n , or equivalently ~Eout ¼ ~t ~Ein.

We explain in Sec. IV.A.3 how to retrieve ~t.
In the same way as the singular values σi of t and the

corresponding transmission eigenvalues τi ¼ σ2i give access to
the physics of wave propagation through the disordered wire
(see Sec. II), we now work with the singular values and
singular vectors of the transmission matrix ~t for the opaque
lens, first in the monochromatic picture, and then including
the temporal and spectral aspects.
In the limit defined previously, where one has access only to

a small number of well-separated modes of the open system,
i.e., where each input mode n gives rise to an independent
speckle uncorrelated with the others, the singular values of the
transmission matrix ~t are expected to follow the so-called

Marčenko-Pastur law (Marčenko and Pastur, 1967) that
describes the singular value distribution (SVD) of rectangular
random matrices without correlations. In essence, this law
states that, for a N ×M random matrix (M ≥ N) of uncorre-
lated identically distributed elements, the distribution of
singular values ~σ (normalized to the average transmission)
depends only on the ratio γ ¼ M=N ≥ 1 and converges to

Pγð ~σÞ ≈
γ

2π ~σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~σ2 − ~σ2minÞð ~σ2 − ~σ2maxÞ

q
∀ ~σ ∈ ½ ~σmin; ~σmax�

≈ 0 otherwise; ð52Þ

where ~σmin¼1−
ffiffiffiffiffiffiffi
γ−1

p
and ~σmax¼1þ

ffiffiffiffiffiffiffi
γ−1

p
. Correspondingly,

the normalized SVD is bounded in the domain
½1 − γ−1; 1þ γ−1�. We supposed having more input than
output channels, M ≥ N, but the SVD remains the same if
we reverse the role of N and M. The interesting case of the
square matrix N ¼ M gives rise to a circular distribu-
tion of the singular values in the interval [0, 2] and is usually
referred to as the “quarter-circle law.” Still, for N, M finite,
Eq. (52) is an approximation and the eigenvalue density outside
the indicted interval is exponentially small, but not zero.
This result is routinely used in telecommunications to

assess the bit rate and the error rate of data transmission
(Chizhik et al., 2003). The Marčenko-Pastur distribution was
also measured experimentally through a multiply scattering
medium in acoustics (Sprik et al., 2008; Aubry and Derode,
2009). In Sec. IV.A.4, we show how the transmission matrix ~t
can be measured and the same distribution can be exper-
imentally recovered from it also in optics (Popoff, Lerosey
et al., 2011) (see Fig. 16). The question that immediately
arises at this point is how this result relates to the bimodal

FIG. 16. Normalized distribution of singular values ~σ of trans-
mission matrices of opaque lenses as a function of the ratio γ
between the number of output to input modesM=N. (Values of ~σ
are normalized to the average transmission and can thus be
larger than 1.) Dashed blue lines: experimental data; red lines:
independent identically distributed random matrices. The dis-
crepancy can be attributed to residual correlations in the mea-
sured matrices. For the value γ ¼ 1 one obtains the so-called
“quarter-circle law.” Adapted from Popoff, Lerosey et al., 2011.
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distribution of transmission eigenvalues derived in Sec. II.
The crucial point to observe here is that in the experimental
conditions we considered, we access only a small fraction of
the modes. Under these conditions, the bimodal distribution
reduces to the Marčenko-Pastur law when decreasing the
number of input and output channels considered, whereby
correlations get increasingly lost (Goetschy and Stone, 2013).
To approach the regime where mesoscopic correlations start
playing a role, particular care has to be taken to control and
measure a large fraction of the modes, also for large solid
angles (e.g., by using high numerical aperture optics), and for
both polarizations. This particular topic is covered in Sec. V.B.
For the time being, in most practical cases we can consider
the disordered slab as a “perfect” mixer for light, obeying
Marčenko-Pastur’s law.
So far we have not discussed what happens in reflection

from the disordered slab. In principle, the reflection matrix can
also be defined in the same way as for transmission. However,
reflected light comprises not only multiply scattered light,
but also singly scattered components, as well as all compo-
nents in between. The reflection will therefore not be as
perfectly “mixed” as the transmission, in particular, in terms of
the polarization of light that is conserved for single scattering
and can be partially conserved for few scattering events
(MacKintosh et al., 1989). Weak-localization effects such
as the coherent backscattering cone described in Sec. III are
also present, although their signature has not been observed
directly in the optical reflection matrix [see Aubry and Derode
(2009) and Aubry et al. (2014) for realizations in acoustics].
Still, most of the results and experiments described later
translate almost perfectly from transmission to reflection. We
see in Sec. IV.C.2 how these deviations from perfect mixing
can be retrieved and exploited for imaging.

2. Temporal and spectral aspects

In the temporal domain, light enters a disordered slab of
thickness L, diffusely propagates in it, and exits on either side,
or is absorbed. Knowing the diffusion parameters for light,
such as the diffusivity D ¼ vEl⋆=3 (here l⋆ is the transport
mean free path and vE is the energy velocity defined in
Sec. II.C), it is possible to recover the so-called Thouless
time τD of the medium (Thouless, 1977). The parameter τD
corresponds to the average time that a photon, already in the
medium, takes to reach the medium boundaries and is related
to the Thouless number defined in Sec. II.A.6. The time τD
scales with L2=π2D and corresponds to a spectral bandwidth
ΔωD ¼ 1=τD. While this time intrinsically describes the
photon lifetime in the medium, it is not exactly the relevant
quantity for transmission and reflection, where a photon first
needs to enter the medium before exiting on either side. For
the thin but multiply scattering slab geometry, where l⋆ ≪ L,
the reflection time τR is typically much shorter than the
transmission time and the Thouless time τD, since a photon
typically explores only a small volume of depth l⋆ before
exiting on the same side; as such, τR is of the order of l⋆=vE.
Meanwhile, the transmission time τT will be on average
slightly longer than τD since the photon must first enter the
medium before exiting (Landauer and Büttiker, 1987;
Vellekoop, Lodahl, and Lagendijk, 2005), but the distribution

of transmission times will have an exponential tail of exponent
−t=τD. A rigorous way to define and assess these scattering
times is through the concepts of time delay and dwell time,
discussed in Sec. II.C. For practical purposes it is often
convenient to use Monte Carlo simulations (Patterson,
Chance, and Wilson, 1989) or to measure the times exper-
imentally (Vellekoop, Lodahl, and Lagendijk, 2005; Curry
et al., 2011; McCabe et al., 2011) (see Fig. 17 for a
spatiotemporal speckle and its spatial and temporal aver-
ages). To these transmission and reflection times spectral
bandwidths ΔωT and ΔωR are associated, which will in turn
correspond to a spectral correlation of the respective trans-
mission and reflection matrices of the slab.

3. Accessing the monochromatic transmission matrix
of an opaque lens

The monochromatic transmission matrix of a complex
medium can indeed be measured (S. M. Popoff et al.,
2010). In essence, it is possible to send a set of input spatial
modes, to record for each of these modes the transmitted
amplitude, and to determine directly from these input-output
measurements the transmission matrix elements ~tmn linking
the input mode pixels of the SLM to the output pixels on a
CCD camera.
In an initial implementation (see Fig. 18), the input

spatial modes were generated using a liquid crystal SLM,
and the output amplitudes were obtained using phase-shifting
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FIG. 17. Representation of a spatiotemporal speckle resulting
from the propagation of a focused ultrashort pulse through a
thin ZnO sample. The speckle is measured along one spatial
dimension and as a function of time. One observes a complex
spatiospectral structure Iðy; tÞ with speckle statistics that are
apparent when looking at a temporal or a spatial section for a
given time or position, i.e., Iðy0; tÞ and Iðy; t0Þ. When looking at
a projection (integration) along the temporal or spatial coordinate,
i.e., IðyÞ or IðtÞ, one retrieves, respectively, the diffuse halo,
and the average temporal broadening of the pulse. Adapted from
McCabe et al., 2011.
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holography (Yamaguchi and Zhang, 1997), i.e., by recording
several images on the CCD, resulting from the interference of
the output wave to be measured with a reference wave with
different phase shifts. Later on, several variants were used to
either modulate or detect the amplitude of the field and recover
the transmission matrix. Y. Choi et al. (2011) illuminated
the medium with a plane wave, with an angle of illumination
that was varied using a galvanometer-mounted tilting mirror
(Choi et al., 2007). While this method allows one to directly
measure every input angle, thanks to the movable mirrors,
it does not permit one to directly generate a given arbitrary
wave front. On the detection side, in order to record the
amplitude hologram of the output speckle in a single image
rather than in a sequence, off-axis holography was imple-
mented (Kim et al., 2012; Akbulut et al., 2016). Using a set
of polarization beam splitters and polarization optics, it is also
possible to control or to detect both polarizations at the same
time, thus accessing a polarization-resolved transmission
matrix (Tripathi et al., 2012). Finally, using phase-retrieval
algorithms, it is even possible to infer the phase and amplitude
of the field from intensity measurements, without the need of
the reference (Drémeau et al., 2015). Once the transmission
matrix has been measured, one can use it to either study the
medium by looking at the modes (see Fig. 16 and the
discussion in Sec. V.B) or control the light transmitted through
the medium, as seen in Sec. IV.B.

4. Accessing the temporally or spectrally resolved
transmission matrix

In the monochromatic approach, one characterizes the
behavior of the medium at a specific wavelength, at the
expense of ignoring the richness of the spectral and temporal
behavior of light in the medium. This additional information
can, in turn, be extremely useful when trying to either control
spectrally or temporally the transmitted light. It also provides
additional insights into the modes of the medium.

Two approaches were introduced in order to explore this
additional dimension. The first one is based on accessing a
spectrally resolved transmission matrix, which amounts to
measuring a monochromatic transmission matrix at many
frequencies. In this way the spectral behavior of the medium
can be fully determined, provided the measurement is done
with a spectral resolution comparable to, or better than the
spectral correlation of the medium. This was achieved by
using a tunable continuous-wave laser and measuring
several monochromatic transmission matrices for a set of
closely spaced wavelengths (Andreoli et al., 2015; Mounaix
et al., 2016).
Another possibility, complementary to the first one, con-

sists of measuring a time-resolved matrix, which can be
conveniently achieved when using broadband light via low-
coherence interferometry. Since the interference between the
transmitted light and the reference beam only takes place
when their path length difference lies within the (short)
coherence length of the source, it means that the recorded
interferogram contains information only about a given fraction
of the light, which had a time of flight defined by the path
delay of the reference beam. By varying the length of the
reference arm, it is therefore possible to achieve a time-
resolved measurement. This technique was implemented in
reflection (Choi et al., 2013; Kang et al., 2015), as well as in
transmission (Mounaix, Defienne, and Gigan, 2016).

B. Light manipulation through the opaque lens

Digital tools have provided a way to change the configu-
ration of the light incident on an opaque lens in a controlled
way. We will see that, even prior to the measurement of the
transmission matrix of a complex medium, wave front shaping
tools have allowed some light control through the opaque lens.
Here we take a didactic rather than an historic approach to
introduce the different techniques and concepts that have been
applied to this problem.

1. Time reversal, analog, and digital phase conjugation
through the opaque lens

The concepts of phase conjugation and time reversal tell us
that, thanks to the reversibility and reciprocity of the wave
equation, an initial input wave can be recovered when the
wave resulting from the scattering of the incident wave by the
slab is phase conjugated and sent back through the medium. In
practice, such a procedure requires perfect phase conjugation,
and thus a collection of all the scattered light on both sides of
the slab. In real experiments with the slab geometry, however,
we generally have access only to one side of the medium and
to a limited fraction of the incident light as well as of the
scattered light. As was shown both in optics and in acoustics,
in the case of multiply scattering materials (and also in the
case of chaotic cavities) even limited phase conjugation or
incomplete time reversal can partially reconstruct the initial
wave (Derode, Roux, and Fink, 1995; Draeger and Fink,
1997; Calvo and Pastawski, 2010). In essence, the different
modes that are phase conjugated contribute in a constructive
way to reinject energy into the initial mode. If the initial mode
originates from a particular position, the wave will refocus to

FIG. 18. Setup of the first measurement of the transmission
matrix. The laser is expanded and reflected off an SLM. Part of
the SLM is unmodulated and serves as a reference for the
interferometric measurement of the output field. The phase-
modulated beam is focused on the multiple scattering sample and
the output intensity speckle pattern is imaged by a CCD camera.
Additional elements: lens (L), polarizer (P), and diaphragm (D).
Adapted from S. M. Popoff et al., 2010.
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this position, with an efficiency that depends on the fraction of
the energy that is phase conjugated.
Optical phase conjugation (OPC) was first performed by

recording a hologram on a photographic plate (Leith and
Upatnieks, 1966). However, based on the emergence of
nonlinear optics in the 1960s and 1970s, it was suggested
by Yariv (1976) that this holographic optical phase conjuga-
tion could be performed in real time, using various nonlinear
processes. An implementation of this concept was first
realized via four-wave mixing (Bloom and Bjorklund,
1977; Yariv and Pepper, 1977; Yariv, 1978), and via stimu-
lated Brillouin scattering (Králiková et al., 1997), in liquid
crystals (Karaguleff and Clark, 1990), or using three wave
mixing (Voronin et al., 1979; Ivakhnik et al., 1980). For a
review on OPC, see Fisher (2012).
For complex media investigations, OPC suffers, however,

from several shortcomings that are mainly due to the limi-
tations of the physical effects giving rise to the phase
conjugate of an optical wave. Nonlinear wave mixing
(Gower and Proch, 1994) is usually complex to implement,
as it requires nonlinear crystals, specific wavelengths, and
often intense laser sources. Nonetheless, phase conjugation
has been employed since its early days to refocus through
a complex medium (Yariv, Fekete, and Pepper, 1979).
Photorefractive crystals are another alternative for OPC,
which, albeit being slow, was successfully used to refocus
through thick biological tissues (Yaqoob et al., 2008).
Recently, new photorefractive materials have provided very
high conjugation speeds comparable to fast SLMs (Farahi
et al., 2012; Y. Liu et al., 2015). Gain media (such as laser
crystals) also typically provide very fast OPC but work only
for a narrow spectral range. They allow for amplification of
the phase-conjugated wave (Feinberg and Hellwarth, 1980)
and have been used for imaging in turbid media (Jayet,
Huignard, and Ramaz, 2013). Three wave mixing is fast and
broadband, but is only effective over a very small angular
range, yet was used for imaging through turbid media
(Devaux, Guiot, and Lantz, 1998). Despite all its constraints,
OPC has the advantage that it can conjugate a very large
number of modes simultaneously over the surface of the OPC
material (Xu, Liu, and Wang, 2011), typically 1 or 2 orders
of magnitude larger than what is currently achievable by
digital means. OPC therefore remains a very competitive
technique, especially for biomedical applications.
Thanks to the emergence of digital SLMs, it is now possible

to envision a digital counterpart of optical phase conjugation
(DOPC). Provided one can measure the complex amplitude of
a field, an SLM can in principle generate its phase conjugate.
First experimental demonstrations of this concept were
performed to cophase several beams through a fiber bundle
(Paurisse et al., 2009), then applied to a thin scattering slab
(Cui and Yang, 2010) and later to multimode fibers (Lhermite
et al., 2010; Papadopoulos et al., 2012). In all cases, an input
beam is incident on the medium and the transmitted light is
recorded on a camera that has to be matched pixel to pixel to a
spatial light modulator situated in a conjugated plane by
means of a beamsplitter (see Fig. 19). One then needs to
recover the field on the camera and display the corresponding
pattern on the SLM so that a laser beam reflected off this SLM
carries the phase-conjugated wave front. In its simplest

implementation, off-axis digital holography provides the
necessary tool for both operations: A reference plane wave
interferes at an angle with the unknown input wave, producing
an interferogram on the camera that contains the phase and
amplitude information of the unknown input field. It can
be shown that the same tilted reference plane wave diffracting
off the same interferogram now displayed on the SLM will
generate the phase conjugate of the unknown wave field, thus
producing a refocusing on the source.
Although it cannot match conventional OPC in terms of

number of modes, DOPC has several advantages compared to
its analog counterpart, in particular, to conjugate a speckle
field. Specifically, since the complex wave fronts are actually
recorded in a memory, it is possible to record the output for
different waves and then replay them at a later time in any
order, which is not possible in analog phase conjugation,
where the hologram engraved in a crystal is transient by
nature. Even more interestingly, it is possible to modify the
interferogram before displaying it on the SLM, or combine
several holograms together, which also brings an additional
flexibility compared to its analog counterpart, a feature that
will become particularly important as seen in later examples
related to imaging. Still, rather cumbersome alignments are
required (Cui and Yang, 2010), although simplified imple-
mentations were proposed (Hillman et al., 2013). A promising
direction to simplify DOPC is to design a unique monolithic
device that would play the role of the detector and the
modulator simultaneously (Laforest et al., 2012).

FIG. 19. Principle of digital optical phase conjugation (DOPC):
(a) in a recording step, the interference pattern between a
reference wave and the signal to be phase conjugated is recorded
on a CCD, phase shifting their relative phase difference with an
electro-optic (EO) modulator. In a digital playback step (b), the
recorded pattern is displayed on the SLM, and the same reference
beam, diffracting on the SLM, generates the phase-conjugate
beam: (c) the DOPC measured phase profile, and (d) the
measured signal at the OPC output before the opaque lens,
showing a strong focus in the center, on the original signal mode.
Adapted from Cui and Yang, 2010.
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2. Focusing and iterative optimization

The seminal experiment by the group of Allard Mosk in
Twente published in 2007 (Vellekoop and Mosk, 2007)
expanded this concept of OPC to a new level by removing
the need for a source. In essence, instead of recording a wave
front from a source and then reemitting its phase conjugate,
thus achieving refocusing, they proposed an iterative opti-
mization technique to find the optimal wave front at the input
of a disordered slab that would maximize the intensity at a
given position at the other side of the slab. In this experiment,
each pixel controlled on the SLM is assumed to generate
an independent speckle on the far side of the disordered slab
on a camera. The resulting speckle on the camera therefore
corresponds to the coherent sum of all the speckle contribu-
tions from all input pixels, which by itself is also a fully
developed intensity speckle pattern, since each speckle grain
at the output is the result of a sum of different contributions
with uncorrelated phases. In the formalism of the transmission
matrix, it means that the field on pixel m is given by
Em ¼ P

N
n¼1 Antmneiϕn , where An is the field incident on input

pixel n, ϕn is the phase delay (or advance) imposed by the
SLM at the pixel, and tmn is the transmission matrix of the
complex medium between the pixels of the SLM and those of
the CCD. By optimizing the phase ϕn at each input pixel (i.e.,
by modifying the spatial wave front) to maximize the intensity
on a given output position, it is possible to converge to a
constructive interference at this target position. A simple
qualitative way to understand this process is to remember that
the intensity distribution of a speckle is the consequence of the
fact that each speckle grain is a sum of phasors (complex
amplitudes) with uncorrelated and evenly distributed phases.
When optimizing the phase of N input pixels, the situation
where the N contributions add with uncorrelated phases is
changed to a situation where N contributions all add in phase.
This corresponds to an increase of the final amplitude of the
order of

ffiffiffiffi
N

p
and accordingly to an increase of the final

intensity that scales with N (Vellekoop and Mosk, 2007),
where N is the number of pixels controlled. In the first
realization (Vellekoop and Mosk, 2007), a focus more than
2000 more intense than the average of the unoptimized
speckle background was observed (see Fig. 20).
This important result deserves extensive comments. First,

the methodology assumes full independence between the
different speckles generated by each pixel, i.e., no correlations
must be present, which is one of the main assumptions for
the opaque lens. This makes the optimization process very
simple, since there is a unique optimum (up to a global phase)
that any algorithm can find. Only when noise or decorrelation
comes into play will different algorithms perform differently
(Vellekoop and Mosk, 2008a). We detail in Sec. V.B what
happens when correlations are present and how the results are
modified. Second, it is interesting to link this approach with
phase conjugation. Indeed, it can be shown that the final wave
front is very close to the phase-conjugate solution or, more
precisely, to the phase conjugate of the field emitted by a
source placed at the target position, with the important
advantage, however, that no source is required. An important
difference with respect to OPC is that the SLM is phase only,
so while the spatial phase corresponds to the phase-conjugate

solution, the amplitude cannot be controlled and depends on
the illumination: it is constant for a plane wave incident on the
SLM. Still, the wave produces a focus, corresponding to the
earlier insight in acoustics that the phase is the most important
parameter when the aim is to put a maximum energy at a given
point: In terms of signal-to-noise ratio, it was even shown that
the focusing efficiency is nearly equivalent to the one expected
for perfect phase conjugation (Derode, Tourin, and Fink,
1999, 2001a, 2001b). Additionally, with the assumption of
independence of the input modes and of uncorrelated elements
of the transmission matrix, the background speckle is not
statistically modified when the wave front is optimized, nor is
the energy of the total transmission. We study deviations from
this behavior in more detail in Sec.V.B.
Another important feature of the focusing effect is the

spatial size of the focus. The output speckle field has a
well-defined grain size which corresponds to its Cð1Þ spatial
intensity correlation (see Sec. III.B). The optimization pro-
cedure can locally create a constructive interference, and the
spatial extent of this focus is given by the correlation distance,
i.e., of the size of a speckle grain. This has two important
consequences that have led to the concept of the “opaque lens”
(Vellekoop, Lagendijk, and Mosk, 2010): (i) The optimized
focus is perfect, in the sense that it is diffraction limited,
without aberrations, and it sits on a speckle background that
can be orders of magnitude lower in intensity. (ii) The size of

FIG. 20. Principle of wave front optimization through a com-
plex medium: A plane wave (a) incident on an opaque multiply
scattering layer of white paint gives rises to a speckle field on the
far side (c). After optimization of the wave front, an optimally
shaped wave (b) gives rise to a speckle field that has a strong
focus at a chosen position (d). (e) A wave front can also be
focused on several positions at the same time. (f) Typical phase
mask on the SLM after optimization, showing the apparent
randomness and high complexity of the obtained solution.
Adapted from Vellekoop and Mosk, 2007.
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the focus is given only by the Cð1Þ correlation of the medium
in this plane, which is independent of the entire optical system
located in front of the slab and its possible imperfections.
Hence one can overcome the diffraction limit imposed by the
limited angular apertures and the imperfections of the optical
system. It is interesting to note that the same concept was
previously proposed in adaptive optics to maximize a focus
intensity by dithering the phase of multiple elements (Bridges
et al., 1974), albeit with only a few degrees of control. In
contrast to this last work, the optimization through a multiply
scattering medium requires a very large number of degrees of
freedom to be effective, but takes advantage of the statistical
properties of the speckle to have a well-defined focusing
efficiency and focus size. We also refer the interested reader to
a review on optimization methods (Vellekoop, 2015).
All the previously described techniques can be used to

focus light to a single speckle grain. Digital phase conjugation
and optimization techniques readily provide the wave front
that focuses light to one or multiple targets, with the difference
that optimization provides a phase-only approximation of the
exact phase-conjugated field. In the case in which the trans-
mission matrix is recorded, the corresponding wave front can
also be directly computed and displayed using an SLM. As
described by S. M. Popoff et al. (2010), the input field ~Ein that
approximates the desired target ~Etarget can be deduced from
the matrix as

~Ein ¼ ~t† ~Etarget; ð53Þ

where ~Etarget is set to 1 at the desired focus (or focii) position,
and 0 elsewhere. To understand this, let us go back to the
fundamental relation ~Eout ¼ ~t ~Ein, which would suggest that
to get a desired output field, one needs to invert the trans-
mission matrix. Inversion is, however, rather unstable; an
inversion is also suboptimal for focusing since it would try to
match the output as closely as possible, including minimizing
the field outside of the focus. Taking instead the Hermitian
conjugate of ~t as in Eq. (53) amounts to a time reversal (or
phase conjugation) of the transmitted field (Prada and Fink,
1994). Since, however, the reflected field and the unmeasured
modes are not part of the time reversal (for a unitary ~t
inversion and Hermitian conjugation would be equivalent),
this reconstruction is not perfect, but turns out to be stable to
measurement noise. Depending on the modulation scheme, a
phase-only approximation (S. M. Popoff et al., 2010) or a
more exact phase and amplitude input (Kim et al., 2012) can
be generated. All theses techniques basically provide the same
phase-conjugated field as a solution and share a comparable
efficiency (i.e., proportional to the number of controlled input
pixels). For imaging purposes also more advanced operators
can be useful, as discussed in Sec. IV.B.3.
Several general remarks can be made at this point: Phase-

only and full modulation both provide comparable focusing
efficiencies, up to a factor of 2 in intensity. Phase-only
modulation does not diminish the overall speckle intensity
and is optimal for delivering the maximal amount of energy to
a given point (Vellekoop and Mosk, 2007). Amplitude-only
modulation has also been shown to permit focusing (Akbulut
et al., 2011; Drémeau et al., 2015), by essentially turning off a

fraction of the input pixels to leave only pixels that contribute
constructively at the focus, thus simultaneously reducing the
background. Joint phase and amplitude modulation provides a
compromise between signal-to-noise ratio and focusing effi-
ciency, by diminishing the contribution of pixels that con-
tribute little to the focus, but significantly to the background.
A general comparative discussion of the focusing efficiency in
the context of acoustics can be found in Tanter, Thomas, and
Fink (2000) and is fully applicable in optics. In transmission,
an additional control of the polarization state does not change
the overall performance, except by doubling the number of
modes effectively controlled.
Extensive studies in acoustics and in the radio-frequency

domain are dedicated to the minimum attainable size of the
focus (Lerosey et al., 2007). As already recalled, far away
from the scattering region the focus is limited by the speckle
grain size (i.e., by the Cð1Þ correlation function), and as such
it can surpass the diffraction limit of conventional optics
(Vellekoop, Lagendijk, and Mosk, 2010; Y. Choi et al., 2011)
and can get very close to the limit of λ=ð2nÞ allowed by
diffraction. For instance, van Putten et al. (2011) showed that
the focus could be made smaller than 100 nm for a mono-
chromatic laser at 561 nm and a refractive index of n ¼ 3.41.
The possibility to modify the size of the focus by optimizing
on a subpart of the momentum space forming the speckle
(using a spatial mask) was proposed and realized by Di
Battista, Zacharakis, and Leonetti (2015): By exploiting a
fraction of the speckle with a smaller Cð1Þ correlation, a focus
notably smaller than the average speckle grain was demon-
strated, albeit at the cost of a much lower efficiency. This was
extended to arbitrary point spread functions with a trans-
mission matrix approach in Boniface (2017). However, to
break the diffraction limit and generate a focus smaller than
λ=ð2nÞ, it is necessary to have access to evanescent waves
(Carminati et al., 2007; Lerosey et al., 2007; Pierrat et al.,
2013), such as just above the surface or inside the medium
itself. Another approach is to use an active sink, as proposed
by Carminati et al. (2000) and realized experimentally in
acoustics (de Rosny and Fink, 2002). The possibility of using
a passive sink in optics was also suggested by Noh, Popoff,
and Cao (2013). Different ways of focusing inside the medium
have been considered. One of them proceeds with a source
for digital phase conjugation (Hsieh, Pu, Grange, and Psaltis,
2010), and another one works with a probe for iterative
optimization (Vellekoop et al., 2008). In both cases, an
unambiguous proof that the focus is sub-Rayleigh is difficult
to obtain. In contrast, focusing at the surface of the scattering
medium can be achieved using a scanning near field optical
technique (Park et al., 2013). Note that when using resonant
systems, such as structured metallic layers that exhibit
plasmon resonances, a subwavelength focus was also dem-
onstrated (Gjonaj et al., 2011).
The ideal signal-to-background ratio η in focusing is easy to

calculate and depends essentially on the number of modes
controlled, e.g., for phase-only optimization it was calculated
to be η ¼ ðπ=4ÞðN − 1Þ þ 1 (Vellekoop and Mosk, 2007).
However, the effective enhancement depends on the exper-
imental conditions as well as on the algorithm used and on the
number of iterations steps for the optimization. It was also
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shown that most methods are affected by the signal-to-noise
ratio of the detection and are ultimately limited by shot-noise
fluctuations (Yilmaz, Vos, and Mosk, 2013). Another limiting
factor is the stability of the medium, which is affected by small
changes over time that decrease the efficiency of the process.
In practice, most reported enhancement factors range between
20% and 80% with respect to the ideal case. Genetic
algorithms have been shown to be particularly efficient in
low signal-to-noise situations (Conkey et al., 2012).
Focusing to multiple points or to areas larger than a speckle

grain is possible with all the techniques described. The total
energy deposited with phase conjugation depends only on the
number of degrees of control. As a consequence, the energy
distributed over one or many targets is the same, but the
signal-to-noise ratio is reduced by the number of modes that
one seeks to control (Tanter, Thomas, and Fink, 2000). This
insight was evident already from the first optimization experi-
ment (Vellekoop and Mosk, 2007), where focusing to five
spots was realized [see Fig. 20(e)], and in S. M. Popoff et al.
(2010), where focusing on three spots yielded a threefold
reduction in the focus to background intensity ratio.
Interestingly, if the transmission matrix of a medium is known,
it is possible not only to perform digital phase conjugation by
using the conjugate transpose operator as in Eq. (53), but also
to go beyond the theoretical limits of phase conjugation, or to
optimize a different metric by using a more advanced operator,
such as inversion for instance (S. Popoff et al., 2010) (see the
next section).

3. Imaging

Focusing or refocusing a wave behind a scattering medium
is indeed an important milestone also for imaging. In
particular, the ability to scan a focus is at the basis of many
imaging techniques (e.g., multiphoton microscopy), since
focusing at different points allows one in principle to form
an image, e.g., by fluorescence measurement as described by
Vellekoop and Aegerter (2010b). We see in Sec. V.A that in
some occurrences the so-called memory effect allows one to
scan an optimized focus over a narrow angular range, without
the need to run an optimization algorithm for every point or to
measure a transmission matrix.
Directly recovering a spatial distribution of intensity or

phase from an object (i.e., direct imaging) from its transmitted
speckle pattern is more challenging. The phase-conjugation
operation is by nature limited in the signal-to-noise ratio when
trying to form a complex shape (as determined by the ratio of
input to output degrees of freedom). Optical phase conjuga-
tion, such as in Yaqoob et al. (2008), benefits from a very large
optical etendue: Phase conjugation is effective for a very large
number of speckle grains within the nonlinear crystal, thus
allowing one to reform a complicated image. In a similar way
and in perfect analogy to Eq. (53), the transmission matrix
allows one to reconstruct an object field ~Eobj from the output
field ~Eout through the phase-conjugation operation,

~Eobj ¼ ~t† ~Eout: ð54Þ
First reconstructions were limited to very simple objects

(one or two pixels turned on), using a square transmission
matrix (S. M. Popoff et al., 2010). Later, a more complex

object (a resolution target) of N ¼ 20.000 pixels could be
retrieved by Y. Choi et al. (2011), by exploiting a transmission
matrix measured over a very large number M of output pixels
(the full camera). An additional advantage of the transmission
matrix is that it is not restricted to phase conjugation. Other
operators than phase conjugation were successfully imple-
mented by S. Popoff et al. (2010), to demonstrate image
recovery using, e.g., the so-called Tikhonov regularization
(Tikhonov, 1963). This regularized inversion operation has a
much better performance than phase conjugation and is robust
to experimental noise.

4. Deterministic mixing

Another feature that can be exploited is the strong and
optimal mixing produced by the opaque lens, linked to the fact
that its transmission singular values follow the Marčenko-
Pastur distribution. Specifically, the complex mixing of light
by a multiply scattering material, that is too complex to be
copied or mimicked, has been considered for cryptography
and security (Pappu et al., 2002). Important implications for
the information capacity of such a medium have also been
discussed for communication (Skipetrov, 2003). In the context
of wave front shaping, this natural optimal mixedness can be
exploited in numerous ways and has probably many more
potential applications. Among the emerging ideas that directly
exploit this deterministic and efficient mixing, one can cite the
generation of quantum-secure classical keys (Goorden et al.,
2014) relying on the one-to-one association between an
optimized wave front and a medium for few-photon states.
Another interesting application is compressive imaging that
can provide the reconstruction of a sparse object with only a
few measurements, provided each local measurement carries
global information about the object (Candes and Tao, 2006;
Donoho, 2006), which is the case for a detector behind a
disordered medium, as demonstrated by Liutkus et al. (2014).

5. Polarization control

When considering the vectorial nature of light, a question
that naturally arises is that of polarization control. We have
seen earlier that, at each elastic scattering event, the polari-
zation of the scattered wave is modified in a deterministic way.
In a classical picture, during a scattering event from incident
wave vector k to a scattered wave vector k0, the input and
output polarization vectors n and n0 are related by n0 ∝
n − ðk0⋅nÞk0 (MacKintosh et al., 1989). For this reason,
forward and backward scattering events tend to maintain
polarization, while large angle scattering tends to modify
polarization more strongly. In the opaque lens case, all
transmitted light has been scattered a sufficient number of
times to ensure a fully mixed polarization. As a consequence,
the speckle resulting from the propagation through the
opaque lens also has a complex polarization state at any
point, which is in general elliptic. In essence, it is the sum of
two orthogonally polarized speckles, uncorrelated to each
other. This feature was proposed as a way to exploit the
opaque lens for polarimetric measurements (Kohlgraf-Owens
and Dogariu, 2008, 2010).
It is important to point out that the polarization behavior of

the opaque lens, which is universal in transmission, is clearly
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system dependent in reflection. First, a single scattering
contribution is always present. Just as for a reflection off a
mirror at normal incidence, it has the same polarization as
the input in the backreflection direction for a linear input
polarization, and a reversed helicity for an elliptical input
polarization. Second, the reflected light also has contributions
from multiply scattered light with few scattering events that
retain partial polarization memory. This second contribution
strongly depends on the scattering properties of the medium
(MacKintosh et al., 1989). When working in reflection, it is
possible to eliminate the single scattering contribution and a
fraction of the light that endured few scattering events by
selecting a specific polarization of the reflected light [e.g.,
the orthogonal polarization for linearly polarized (LP) input
light], a trick used for measuring the coherent backscattering
cone (van Albada, de Boer, and Lagendijk, 1990).
In the context of wave front shaping, early experiments

(Vellekoop and Mosk, 2007; S. M. Popoff et al., 2010) were
realized by placing a polarizer between the opaque lens and
the detector, so as to obtain on the camera an intensity pattern
corresponding to a single scalar speckle rather than the sum of
two uncorrelated speckles (Goodman, 1976). Only later was it
demonstrated experimentally that this additional degree of
freedom can be turned to an advantage and allows one to
generate an arbitrary polarization state at the focus (Guan
et al., 2012; Tripathi et al., 2012) (see Fig. 21). Since the total
speckle is the sum of two orthogonally polarized speckles,
one can generate any polarization state (linear, circular, or
elliptic) at will. The final quality of the polarization state
follows the usual signal-to-noise restrictions common to all
phase-conjugation techniques discussed previously.

6. Temporal and spectral control

While all focusing and imaging experiments through the
opaque lens discussed so far have considered a specific

wavelength only, i.e., a monochromatic light source in
conjunction with the spatial degrees of freedom of the
medium at this wavelength, we have seen that the behavior
of the opaque lens is strongly wavelength dependent—a
feature that has been exploited for a long time to retrieve
diffusion properties of the medium (Vellekoop, Lodahl, and
Lagendijk, 2005; Curry et al., 2011). Correspondingly, in the
context of focusing, it was shown that if a phase pattern
generates a focus for a given wavelength, then the focus will
be resilient to a small wavelength variation. The correspond-
ing bandwidth is exactly the frequency bandwidth of the
medium (van Beijnum et al., 2011), a property that was
exploited to use the medium as a spectral filter (Small et al.,
2012). Performing optimization with polychromatic light is
possible and has been shown to result in a narrowing of the
spectrum (Paudel et al., 2013). When measuring a multi-
spectral transmission matrix (Andreoli et al., 2015), it is also
possible to focus several spectral components at a single or
multiple positions (see Fig. 22).
In the acoustic time-reversal community, it was realized

from the early days on that spatial and temporal degrees of
freedom of a complex medium could be coupled (Fink, 1997).
In particular, it was understood that time reversing the signal
received at a given location would allow spatiotemporal
focusing on the source at a specific time. Also, thanks to
the reciprocity of the propagation, reemitting at the source the
time-reversed signal from the detector would yield spatio-
temporal focusing on the detector. Nonetheless, when per-
forming such a single-channel time-reversal experiment in an
open system, the observed spatiotemporal focusing is truly a
temporal focusing only: When integrating the energy at the
source position over time a significant energy increase is not
observed. To truly enhance the total energy at the source
position requires either multiple detectors to be time reversed
simultaneously or a closed system such as a chaotic cavity
(Draeger and Fink, 1997).
An analog of such a single-channel time reversal in optics

was performed by McCabe et al. (2011). A short pulse from a
femtosecond laser was sent through a layer of paint and the
complex spatiotemporal speckle figure was recorded on the
far side using an imaging spectrometer (see Figs. 17 and 23).
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FIG. 21. Illustration of the full control of the output polarization
state. Since the output polarized speckle is composed of two
uncorrelated speckle patterns of orthogonal polarizations (left
column), it is possible to focus independently on one or the other
polarization (second and third columns). Combining the two
wave fronts that focus at the same position for either polarization
state, one can generate at this point a focus with arbitrary
polarization (here circular, last column). Adapted from Guan
et al., 2012.

FIG. 22. Spatiospectral control of broadband light. Using the
information gathered from the multispectral transmission matrix
of an opaque lens, it is possible to (a) spectrally focus different
spectral components of a broadband pulse at arbitrary positions.
(b)–(d) Scanning in continuous mode the same laser demonstrates
that each focus corresponds to a different wavelength. In this way
the opaque lens is turned into a generalized grating with a spectral
resolution given by its spectral correlation bandwidth. Adapted
from Andreoli et al., 2015.
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Note that due to the difficulty of measuring and controlling an
optical signal directly in the time domain, both the temporal
measurement and the temporal emission were performed in
the spectral domain: The temporal speckle was measured
using spatially and spectrally resolved Fourier-transform
interferometry (SSI) (Tanabe et al., 2002), and the pulse
was time shaped using a spectral shaper (Monmayrant, Weber,
and Chatel, 2010). In this experiment, the time-reversed signal
(measured via SSI) was sent from the source (the pulse shaper
at the output of the femtosecond laser) to the detector. At the
output position, it was shown that the pulse was compressed
temporally close to the initial pulse duration, thanks to the
reciprocity of the wave equation. Still, integrated over the
pulse duration, the total intensity at the target spot was not
increased. Just like spatial focusing can be seen as an
extension of adaptive optics to multiply scattering material,
this work can be seen as an extension of temporal precom-
pensation of dispersion of an ultrashort pulse (Delagnes et al.,
2007) to the opaque lens.
While temporal control provides temporal focusing, and

spatial control spatial focusing, spatial and temporal degrees
of freedom are coupled in a complex medium. We now
describe this spatiotemporal coupling and related experiments
exploiting this effect in the opaque lens, i.e., a diffusive slab in
the multiply scattering regime. As shown by McCabe et al.
(2011), a spatiotemporal speckle along a line, as measured
behind an opaque lens by SSI, has a scalar field distribution
Eðx;ωÞ, characterized by a short-range spatial correlation
function hEðx;ωÞEðx0;ωÞi that has a well-defined width
that is given by the speckle grain size and by a spectral
correlation function hEðx;ωÞEðx;ω0Þi, whose width is
directly related to the traversal time of the medium τT
(defined in Sec. IV.A.2). These spectral correlation functions
can be retrieved from the wavelength correlation within the
transmission matrix ~tðωÞ. In the time domain, a given input
time t correspondingly couples to all times t0 > t within a
few τT, and that coupling strongly depends on the input and

output positions. This in turn means that there can be
spatiotemporal couplings within this range.
This behavior can also be understood within the mode

formalism: The existence of a well-defined traversal time and
of this spatiotemporal coupling can be linked to the fact that in
the diffusive regime the mean spacing between the modes is
much smaller that their average linewidth, as characterized by
the Thouless number δ defined in Sec. II.A.6. If one sends an
optical pulse of duration shorter than the average transmission
time of the medium τT , its spectrum is therefore broadband
compared to the average distance between the modes. As a
consequence, it couples to many different transmission modes,
at different frequencies, that recombine in a complex way after
the medium, thus producing a complex spatiotemporal pattern
(Wang and Genack, 2011). This behavior is modified in the
localization regime, where modes are spectrally isolated and
where a short pulse might couple to only one of a few
transmission channels (Peña et al., 2014).
A consequence of the spatiotemporal coupling is that

spatial shaping can generate a temporal focus at a given
position, by setting a constructive temporal interference at a
given time between different frequency components, as
pointed out by Lemoult et al. (2009). This was exploited in
two seminal works in optics, where spatial-only phase control
over a broadband pulse was shown to be able to induce
temporal focusing as well as time-integrated spatial focusing.
Both approaches were based on a 2D-SLM optimization
algorithm, but using different signals as a feedback.
Aulbach et al. (2011) performed the optimization on the
intensity at a given position and time using a heterodyne
pulsed detection, while Katz et al. (2011) used a two-photon
absorption signal at a given position. As this signal depends
on the square of the intensity, it is proportional not only to the
total energy integrated in time, but also to the average pulse
duration. Both approaches are summarized in Fig. 23. As an
alternative to optimization techniques, a matricial approach
can also be taken. Measuring the multispectral transmission
matrix (Andreoli et al., 2015), it is possible to demonstrate
arbitrary pulse shaping, provided the spectral phase can be
addressed. This was demonstrated by Mounaix et al. (2016),
where not only pulse recompression was shown, but also more
advanced temporal functions were realized such as two pulses
with a controllable delay.
Another possible approach for temporal control that was

investigated is a time-resolved matrix measurement (Choi
et al., 2013; Kang et al., 2015). These approaches have been
performed in reflection geometry, mainly to achieve depth
sectioning and light delivery at a certain depth, in analogy
with optical coherence tomography, using ballistic light.
However, they also allow for temporal focusing at the
detection plane and are an alternative to spectral or nonlinear
measurements.

C. Other complex scattering systems

1. Multimode optical fibers

An interesting system has recently emerged as a complex
medium in optics: multimode optical fibers. Depending on the
diameter of the core and the wavelength, one or many

FIG. 23. Schemes for temporal focusing via spatial-only shap-
ing. (a) Spatial shaping and optimization on the intensity at a
given time delay. From Aulbach et al., 2011. (b) Spatial shaping
and optimization of a nonlinear signal. From Katz et al., 2011.
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transverse modes can be supported. If only one tranverse
mode propagates within the core, then the fiber is called a
single-mode fiber (SMF). When many cores are implemented
in a single fiber, one talks of a multicore fiber (MCF). If the
diameter of the core is increased, then the fiber can support a
few modes and is called a few-mode fiber (FMF), while for
many modes it is called a multimode fiber (MMF). The
available number of modes scales with the diameter D of the
core and with the numerical aperture (NA) as ðD × NA=λÞ2,
resulting in up to thousands of modes. FMFs and MMFs are
increasingly considered in the context of high bitrate fiber
communications for space-division multiplexing, which
means using several transverse modes as independent trans-
mission channels (Berdagué and Facq, 1982) [see Richardson,
Fini, and Nelson (2013) for a review]. Spatial degrees of
freedom thus come as extra degrees of freedom for informa-
tion transmission, complementary to wavelength and polari-
zation, to carry more than one channel of information on a
single optical fiber. While multicore fibers (i.e., fiber bundles)
have long been used as independent spatial modes (despite
some cross coupling), using a single core FMF or MMF
remains a challenge because of the complex nature of
the modes.
An ideal MMF should support well-defined modes, where

the LP mode family is generally used (Snyder and Love,
1983) to describe eigenmodes of the fiber. However, due to
fabrication imperfections and bendings, the ideal LP modes
are not in general the eigenmodes of the system: The
eigenmodes of a large-core MMF tend to be different from
the ideal case. Nonetheless, it is possible to generate the so-
called “principal modes” (PMs) of an MMF (Fan and Kahn,
2005; Shemirani et al., 2009), which are unaffected by modal
dispersion to first order of frequency variation. Their design
principle bears strong similarities with the eigenstates of the
Wigner-Smith time-delay matrix described in Sec. II.C (a
detailed comparison between principal modes and so-called
“particlelike states” is provided in Sec. V.C). Only in the case
of an ideal straight fiber where all modes have different
group velocities do the principal modes coincide with the LP
fiber modes. In practice, the exact phase delay is very
sensitive to experimental conditions, and each mode has
its own group delay, which means that a short (broadband)
pulse will be stretched. Interestingly, the distribution of delay
times follows a semicircle law as shown based on a suitable
random matrix model (Ho and Kahn, 2011). Even for bent or
long fibers, principal modes tend to remain well isolated
from each other. Measurements are challenging (Milione,
Nolan, and Alfano, 2015), but have meanwhile been reported
(Carpenter, Eggleton, and Schröder, 2014b, 2015; Xiong
et al., 2016) (see Fig. 24). Without these techniques, a
monochromatic input is typically injected into more than one
principal mode and will give rise at the output to a complex
superposition of these modes, i.e., a speckle pattern.
Many of the concepts developed to take advantage of

opaque lenses for imaging and spatial and temporal control
can therefore be translated to MMFs. The first set of experi-
ments in this context is related to MCFs and FMFs that were
studied in terms of their potential as high power fiber lasers
and fiber amplifiers. For this class of problems, the difficulty

is to exploit several transverse modes to achieve higher
intensity. Unfortunately, due to the dispersion between the
modes, the output laser mode is typically very multimode
spatially, which is detrimental when high spatial quality is
required. In the context of multicore fiber arrays, maintaining
or retrieving a common phase between the different output
modes is necessary in order to maintain a high transverse
spatial quality (i.e., a beam quality factor close to unity).
Corresponding cophasing methods, similar to phase conju-
gation, can be either passive (Lhermite et al., 2007) or active
using piezoelectric fiber stretchers (Yu et al., 2006) or
spatial light modulators (Bellanger et al., 2008; Lhermite
et al., 2010).
Following the progress made in scattering media, this kind

of monochromatic phase conjugation was extended to imag-
ing. In particular, it was realized that, just as in a scattering
medium, wave front shaping could allow the formation of a
sharp focus on the far side of a fiber, be it by optimization
(Čižmár and Dholakia, 2011; Di Leonardo and Bianchi, 2011)
or digital phase conjugation (Čižmár and Dholakia, 2012;
Papadopoulos et al., 2012; Caravaca-Aguirre et al., 2013;
Morales-Delgado et al., 2015) or even by way of measuring
the transmission matrix of the fiber (Bianchi and Di Leonardo,
2012; Y. Choi et al., 2012). Thanks to the ability to focus to
single or multiple points, or reconstruct an image, a wide
variety of imaging modalities were proposed and realized, in
particular, fluorescence microscopy (Čižmár and Dholakia,
2012; Papadopoulos, Farahi et al., 2013) and photoacoustic

FIG. 24. Measurement of a 110 × 110 transmission matrix of a
multimode fiber in the LP modes basis. (Top) Experimental
setup: two SLMs on each side to control two polarizations are
recombined on a polarizing beam splitter (PBS), allowing the
near-perfect detection and injection of a well-defined mode at the
input and output of the fiber to measure the corresponding
coefficient on the matrix. (Bottom left) Amplitudes of the
transmission matrix in the LP modes basis. (Bottom right)
Singular value decomposition, showing the mode-dependent
losses. In the considered weak mode-coupling limit, the trans-
mission matrix is relatively block diagonal as subfamilies of LP
modes are preferentially coupled. Adapted from Carpenter,
Eggleton, and Schröder, 2014b.
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microscopy (Papadopoulos, Simandoux et al., 2013). In all
these endoscopic applications images are retrieved in depth,
with a diffraction-limited resolution given by the numerical
aperture of the fiber. Beyond imaging, the possibility to create
one or several foci at the tip of an MMF was also shown to
allow optical trapping of dielectric particles (Bianchi and Di
Leonardo, 2012).
Of course, the exact mode mixing in the fiber strongly

depends on its specific configuration. The stability of the fiber
can be extremely good when left untouched, but movements,
temperature drifts, etc., may degrade the stability of the
focusing considerably. Overall, this sensitivity scales with
the numerical aperture of the fiber, its length, and its diameter.
For example, the resilience of the transmission matrix to
bending of the fiber was investigated by Y. Choi et al. (2012),
who showed that it remained exploitable when moving the tip
of the fiber by 1 cm, for a 1 m long, 200 μm diameter fiber of
numerical aperture 0.48. Different methods were proposed to
compensate for fiber movements, e.g., fast optimization to a
point (Caravaca-Aguirre et al., 2013). Another approach relies
on storing a set of phase-conjugate patterns for different fiber
positions and determining the fiber position at any time using
a so-called “virtual holographic beacon” (Farahi et al., 2013)
and correlating the emission from this beacon with the set of
measurements to recover the fiber position and use it for
imaging. A more recent approach relies on predicting the TM
by evaluating the effect of propagation and bending on the
phase retardation of each principal mode (Plöschner, Tyc, and
Čižmár, 2015).
In practice, many of the results of the opaque lens on

imaging and focusing apply to MMFs as well, but they also
have several unique features that arise from their particular
propagation properties. In the weak coupling limit the
correlations in the spatial pattern on the far side of the fiber
strongly depend on the injection mode, because the major
contributions in the transmission matrix are centered around
the diagonal (see Fig. 24). The distribution of the input mode
in k space (i.e., the angular range) matters: In particular,
injecting a plane wave at low incidence will preferentially
populate the low order fiber modes, while a strongly focused
wave will result in a decomposition over higher order modes
that will partially survive propagation (at least for short
distance) and result at the output in variable speckle grain
sizes. Symmetries are also important: A focused beam will
produce qualitatively very different speckle patterns depend-
ing on the input position.
Moreover, since the number of modes is well defined and

the numerical aperture is limited, the TM can be completely
measured, as by Y. Choi et al. (2012), Carpenter, Eggleton,
and Schröder (2015), and Xiong et al. (2016). In addition,
since most of the light is transmitted in the forward direction,
most singular values of the transmission value are of modulus
close to unity (although, in practice, absorption and imperfect
injection degrades the flatness of the distribution) (see Fig. 24,
bottom right). This means that, in contrast to scattering
systems, imaging is much more robust to noise and image
reconstruction can be straightforwardly achieved using phase
conjugation (Y. Choi et al., 2012; Čižmár and Dholakia,
2012). Polarization mixing is present during propagation in
MMFs (Shemirani et al., 2009) and can be compensated via

phase-conjugated techniques (McMichael, Yeh, and
Beckwith, 1987). In the endoscopic works with digital wave
front control, a control of both polarizations has been achieved
(Čižmár and Dholakia, 2011). Finally, in contrast to the
opaque lens, the number of modes in an MMF is limited;
therefore it is possible to near-perfectly control the ouput
pattern with an SLM [with 95% fidelity reported by Loterie
et al. (2015)]. A consequence for focusing is that the
fraction of light intensity that can be brought to the focus
can be close to unity, thereby strongly diminishing the
background speckle. This in turn means that the speckle
grains are not completely independent as in the opaque lens,
but are correlated, due to energy conservation and the fact that
one can achieve almost complete modal control. (We see how
speckle correlations affect the opaque lens in Sec. V.)
As discussed, the temporal or spectral behavior of MMFs is

highly complex and of immediate relevance for telecommu-
nications. Similar to opaque lenses, spatiotemporal coupling
is present and can in principle be exploited. For instance,
temporal focusing of an ultrashort pulse by DOPC was
demonstrated (Morales-Delgado et al., 2015). An interesting
application also proposed is to use an MMF as a high
resolution spectrometer (Redding and Cao, 2012; Redding,
Popoff, and Cao, 2013). In essence, a fixed spatial input
(a SMF) serves to inject a well-defined spatial mode that
generates on the far side a complex speckle that depends on
the wavelength, with a sensitivity proportional to the fiber
length. The system must first be calibrated with a tunable
monochromatic source. In the second step, a complex spec-
trum is injected and it produces on the distal side a super-
position of many different speckle patterns that add
incoherently, i.e., in intensity rather than in amplitude. The
spectrum responsible for this pattern can finally be retrieved
by inversion. As shown in Fig. 25 the resolution can be
extreme for long fibers (they demonstrate 8 pm resolution for
a 20 m fiber of 105 μm core, with 0.22 NA).

FIG. 25. Multimode fiber based spectrometer. (Top) Experi-
mental setup. (Bottom) Example of laser line determination with
8 pm accuracy. Two laser lines separated by 8 pm can be resolved
through the reconstruction from the speckle pattern. Adapted
from Redding, Popoff, and Cao, 2013.
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2. Biological tissues

A complex system of much interest for imaging and wave
front shaping is biological tissue. While optical imaging in
biological tissues is a vast field, in particular, with an endless
variety of coherent or incoherent imaging techniques able to
retrieve ballistic information from the multiple scattering
background and depth resolution (Ntziachristos, 2010;
Wang and Hu, 2012; Wang and Wu, 2012; Yu et al.,
2015), a commonly accepted order of magnitude for the
scattering mean free path l of tissues is of the order of 100 μm
in the visible range. But due to the high forward anisotropy of
the scattering, the transport mean free path l⋆ is usually of the
order of a millimeter. Obviously, there is a strong variability
from tissue to tissue, and a vast amount of literature exists on
measurements of scattering properties of tissues (Cheong,
Prahl, and Welch, 1990).
While most of the concepts developed in the framework of a

multiple scattering slab can be adapted to biological tissues,
such as focusing or imaging with wave front shaping, there are
some specific questions to be addressed when dealing with
imaging in biological tissues. The first one is the problem of
decorrelation that is inherent to soft media: The distribution of
the refractive index changes relatively rapidly with time,
similar to what is encountered in atmospheric adaptive optics.
Measuring the transmission matrix or running an optimization
algorithm must thus be performed on a time scale comparable
with the decorrelation of the medium, typically of the order of
a millisecond for in vivo tissues. Another important aspect is
that tissues are typically very thick (a few centimeters) and the
distal side of it might not be accessible. At a more fundamental
level, one usually wants to image or focus inside rather than
through a scattering medium. For this reason, the concept of a
thin slab is not directly relevant: although it is reasonable to
consider that the medium up to depth D at which one wants to
image is an opaque slab of thickness D to be traversed, this is,
in fact, only partially true. Consider here that light can also
propagate deeper than D before diffusing back to the plane at
depth D that is of interest.
Workarounds for this problem of accessing the region of

interest have meanwhile been developed. One of them is to
try to get access to the local light intensity deep inside the
tissue using a complementary technique such as acoustics.
Particularly promising progress has been made in acousto-
optics (Xu, Liu, and Wang, 2011; Si, Fiolka, and Cui, 2012;
Wang et al., 2012) and in photoacoustics (Kong et al., 2011;
Chaigne, Gateau et al., 2014; Chaigne, Katz et al., 2014) [for a
review see Bossy and Gigan (2016)]. In all these techniques,
the resolution is governed by the acoustic wavelength,
which is typically much larger than the optical wavelength.
Nonetheless, it is possible to overcome the acoustic resolution
and get closer to optical speckle scale resolution, either by
careful spatial coding (Judkewitz et al., 2013) or by exploiting
nonlinearities (Conkey et al., 2015; Lai et al., 2015). Another
option is to rely on reflection measurements only. For
instance, optimizing the wave front to maximize the total
nonlinear reflected signal can force light to focus at depth
(Tang, Germain, and Cui, 2012; Katz, Small, Guan, and
Silberberg, 2014). It is also possible to measure the reflection
matrix (Choi et al., 2013) and exploit its statistical properties

for imaging. Another possible idea is to use differential
measurements to focus on a moving target (Zhou et al.,
2014). Most of these techniques have been detailed in a recent
review (Horstmeyer, Ruan, and Yang, 2015).

V. MESOSCOPIC PHYSICS AND WAVE FRONT SHAPING

Wave front shaping techniques have led to remarkable
progress for imaging in or through complex media. We see in
this section how these techniques can be used to unravel and
exploit mesoscopic effects. We explain in Sec. V.A how the
memory effect has emerged as a powerful tool for imaging and
describe in Sec. V.B recent optical experiments and theoretical
works, where first evidence of the existence of open and
closed channels was discussed. In Sec. V.C we describe the
properties of time-delay eigenstates in different contexts, and
in Sec. V.D new avenues for wave front shaping in media with
gain and loss are discussed.

A. Memory effect

As seen in Sec. III, the information on the incident wave
front is not lost when traversing a multiply scattering medium.
A special role in this context plays the memory effect, where
spatial variations of the incident wave front are partially
mapped onto easily predictable changes in the transmitted
speckle. In transmission, we saw in Sec. III.D that the
thickness of the medium L determines the typical transverse
spatial features that are conserved, which implies that this
effect is independent of the strength of the scattering or of the
exact scattering properties of the medium.
While the mechanism behind the memory effect is very

general, we saw that a particularly important case is the one of
a linear phase ramp on the input wave front (see Fig. 12). This
angular rotation is transferred to the far side of the medium,
provided that the transverse wave vector q of the phase ramp is
changed only slightly,Δq < 1=L, corresponding to a variation
of the angle of rotation below the so-called memory effect
angle θ < λ=ð2πLÞ. More precisely, the transmitted speckle
decorrelates over a characteristic angle determined by the
memory effect. The shape of the angular correlation function
was predicted by Feng et al. (1988) to be sinh, but the first
experimental realization (Freund, Rosenbluh, and Feng, 1988)
showed that this function is closer to an exponential decrease.
The phase shift of the speckle pattern corresponds to a rotation
by the same angle as the incident one, when the field
propagates away from the sample. Far away from the sample
(as on a distant screen) the speckle field will thus be translated.
As shown by Freund, Rosenbluh, and Feng (1988), the
memory effect is also present in reflection, but the corre-
sponding angle is not given by the thickness then but by the
transport mean free path l⋆, which measures the extent of the
diffuse spot in reflection (as discussed in Sec. III.C).
A fundamental insight is that based on the memory effect

not only linear phase ramps, but actually any arbitrary
modification of the input wave front can be transferred
through the medium (with a cutoff spatial frequency deter-
mined by the medium thickness L). A quadratic phase can
generate a longitudinal shift of the resulting speckle far away
from the sample. In a visionary paper as early as 1990
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(Freund, 1990a), Isaac Freund realized that this means that an
opaque layer could be used for several functions, such as a
lens, a grating, a mirror, or imaging. Unfortunately, the
possibilities of shaping the speckle to a focus were not yet
available at that time, and the proposal relied on image
correlations between the speckle of interest and a reference
speckle.

1. Imaging using the memory effect

While most early work considered a plane wave input, the
memory effect is also effective for an arbitrary initial input
wave front. In particular, it also works when the wave front has
been shaped to obtain a speckle that contains a bright focus. If
the medium is thin and if the focus has been achieved at a
distance, it means that the focus can be translated. This
approach is particularly interesting for imaging since, using a
single focus and raster scanning it around, it is possible to
recover an image, for instance, of a fluorescent object, as
first demonstrated by Vellekoop and Aegerter (2010b) (see
Fig. 26). In such a setup, it does not matter how the focus was
initially obtained, as, e.g., by optimization of the intensity on a
CCD camera (Vellekoop and Aegerter, 2010b; van Putten
et al., 2011). When using the transmission matrix method, one
naturally has the ability to focus at any measurement position.
If the memory effect is present, it can be retrieved from
correlations between lines of the transmission matrix corre-
sponding to neighboring positions, as demonstrated by
Popoff, Lerosey et al. (2011) and Chaigne, Katz et al.
(2014). Still, the ability to move a focus by adding an angular
tilt is interesting, particularly because it means fast scanners
can be used to rapidly raster scan a focus, possibly orders of
magnitude faster than a pixellated SLM.

It is also possible to use the memory effect without having
access to the focus region as demonstrated by phase con-
jugating the second harmonic signal generated by an
implanted probe (Hsieh et al., 2010), using the photoacoustic
effect to remotely monitor the light intensity (Chaigne, Katz
et al., 2014), or after optimizing a nonlinear signal to a focus
(Tang, Germain, and Cui, 2012; Katz, Small, Guan, and
Silberberg, 2014). Also, by adding not only a linear phase
shift but also a quadratic phase ramp, the technique can be
extended to the third dimension for both scanning and
imaging (Ghielmetti and Aegerter, 2012, 2014; Yang
et al., 2012).
Once a wave front was shaped by an SLM to focus at a

given position, it means that a source placed at this position
would be transformed by the same SLM into a plane wave and
therefore can be conjugated to a focal spot by a subsequent
imaging system. Based on this concept, it was then realized by
Katz, Small, and Silberberg (2012) that scanning the focus is
not the only way to recover an image. As discussed by Freund
(1990a), the memory effect features an isoplanetic angle over
which the speckle remains correlated. In other words, the
correction of the wave front compensates the scattering
medium for a small angle and for a small range of frequency,
irrespective of the illumination. Katz, Small, and Silberberg
(2012) generated a point source speckle after a scattering
medium, after which an SLM is placed and the wave front is
optimized to form a focus on a CCD camera, therefore
performing the analog of a focusing experiment, except that
the SLM is placed after the medium rather than before. The
SLM is conjugated with the output plane of the scattering
medium in order to maximize the memory angle range. If the
point source is displaced, so is the focus image on the camera,
provided the displacement is smaller than the one allowed by
the memory effect. The point source is then replaced by an
extended source (an object), and an image is directly obtained
on the camera. Crucially, the correction even works if the
object is illuminated by spatially and temporally incoherent
light, but since the correction of the wave front is valid only
within a given angle around the focus and for a given spectral
bandwidth related to the spectral correlation of the medium
around the calibration frequency, only this fraction of the light
is well conjugated.
Finally, several works reverted to the original idea of

Freund (1990a) of using the memory effect without shaping
or focusing to image behind a turbid layer. All these
approaches exploit the fact that a speckle, despite being a
very complex pattern, has a well-defined peaked autocorre-
lation function. Bertolotti et al. (2012) illuminated a fluores-
cent object placed at a distance behind a scattering layer by a
speckle that is translated (by scanning the illumination angle),
and its fluorescence is collected as a function of the shift of
the speckle, thus forming an image (see Fig. 27). While the
resulting image is very complicated and specklelike, its
autocorrelation is actually the product of the autocorrelation
of the object and of the autocorrelation of the speckle, with
the latter having a diffraction-limited peaked function.
Therefore, one has access to the autocorrelation of the object
with a resolution given by the speckle grain size. Using a
reconstruction technique known as phase retrieval (Fienup,
1982), the image of the object can be retrieved from its

FIG. 26. Principle of imaging using wave front shaping and the
memory effect. (a) A thin scattering layer blocks a fluorescent
structure from sight; all incident light is scattered. (b) By use of
interferometric focusing (e.g., phase conjugation or wave front
shaping), scattered light is made to focus through the layer.
(c) Imaging: the focus follows rotations of the incident beam over
a short angular range. (d) Simplified schematic of the exper-
imental setup for 2D imaging. A laser beam is raster scanned, and
its wave front is shaped with a spatial light modulator (SLM).
Dotted lines are conjugate planes. Adapted from Vellekoop and
Aegerter, 2010b.
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autocorrelation function. Yang, Pu, and Psaltis (2014) used the
same technique to recover the image of blood cells behind a
scattering layer of tissues. Katz, Heidmann, Fink, and Gigan
(2014) studied another case, where a semitransparent object,
illuminated by spatially incoherent light, could be retrieved
from the autocorrelation of the speckle it produced behind a
scattering layer. In all these approaches, no calibration is
required, since the exact scattering properties of the scattering
layer are not important. However, in most of this work, a
scattering layer rather than a scattering volume was used to
ensure light transmission and a very pronounced memory
effect.

2. Beyond the conventional memory effect

While the memory effect is mostly considered in trans-
mission, it is also present in reflection (Freund, Rosenbluh,
and Feng, 1988) and can be exploited. As mentioned in
Sec. III.D the limiting memory effect angle in reflection
depends on the transport mean free path l�, which determines
the size of the diffusive halo for focused incident light. For a
sufficiently strongly scattering material such as a paint layer,
where the mean free path can be on the order of a micrometer,
the angular range of the memory effect can be of several
degrees. The relatively large fields of view resulting from this
estimate have been exploited, for instance, by Katz, Small, and
Silberberg (2012) and by Katz, Small, Guan, and Silberberg

(2014) to image “around corners.” The memory effect was
also studied in the context of time reversal (Freund and
Rosenbluh, 1991) and polarization (Freund, 1990b).
An important point in the quest toward exploiting the

memory effect for biological imaging (see also Sec. IV.C.2)
is to assess whether some memory effect can be present
inside a biological tissue. For some biological systems the
scattering occurs mainly on a thin layer at the surface, and
the rest of the sample is mostly transparent. This is the case
for the drosophilia puppa at its early development stages,
where the fly embryo is covered in a thin (8 μm) but very
scattering layer of cells (Vellekoop and Aegerter, 2010a).
Inside a volumic scattering medium, which is the case of
interest for deep biomedical imaging, one would expect from
mesoscopic theory that the memory effect is not present,
since in the derivation it is supposed to be the only
observable at a distance from the scattering layer.
However, some works indicate that this view is conservative.
Indeed, tissues typically have a scattering mean free path l
of 50–100 μm (Cheong, Prahl, and Welch, 1990) and, more
importantly, they scatter mostly forward with g parameters
(the average of the cosine of the mean scattering angle) often
larger than 0.9. This means that, at small depth (millimeters),
there are still forward scattered photons, and the diffuse halo
is narrower than the one given by a fully diffusive model.
Experimentally, in some instances, a thin scatterer (onion
layer, chicken breast slice, or fixed brain slice) could be used
for imaging within its memory effect range, which was
characterized to be larger than predicted by a diffusive
model (Katz, Small, Guan, and Silberberg, 2014; Schott
et al., 2015), a strong indication that the memory effect
should be present inside a medium. Tang, Germain, and Cui
(2012) were able to focus at a depth inside brain tissues
(800 μm) and scanned over a few micrometers. In forward
scattering media such as biological tissues, a translational
memory effect was identified: A lateral shift of the input
wave front resulted in a lateral shift of the focus (Judkewitz
et al., 2015), an effect valid inside the medium rather than at
a distance.
Analogs of the angular memory effect were also demon-

strated in MMFs. Here the memory effect is not transverse,
but longitudinal. This comes from the fact that a plane wave
with a given k vector that is injected is mixed angularly but
not radially, provided the fiber is not too long or twisted,
producing at the output a narrow cone of speckle with the
same transverse angle of incidence. The width of this output
cone corresponds to an azimuthal correlation of the speckle.
This means that any radial curvature to the initial wave front
can be transferred to the output. Čižmár and Dholakia (2012)
brought light to a focus by wave front shaping at the distal
end of an MMF. Using those azimuthal correlations, the
focus was shifted axially, but also elongated to produce a
Bessel beam (McGloin and Dholakia, 2005), a doughnut-
shaped focus for stimulated emission depletion (Willig et al.,
2007) and more generally for engineering the point spread
function. There is also a rotational memory effect, coming
from the fact that a MMF conserves some rotational
symmetry, which can be used to rotate a focus around its
center of symmetry (Amitonova, Mosk, and Pinkse, 2015;
Rosen et al., 2015).

FIG. 27. (a) Schematic of the apparatus for noninvasive imaging
through strongly scattering layers. A monochromatic laser beam
illuminates an opaque layer of thickness L at an angle θ. A
fluorescent object is hidden a distance of 6 mm behind the
layer. The fluorescent light is detected from the front of the
scattering layer by a camera. (b) Integrated fluorescent intensity
on the camera, as a function of the incident angle θ ¼ ðθx; θyÞ.
(c) Autocorrelation of the intensity, averaged over nine scans
taken at different values of the starting incidence angle θ0 to
average over the different realizations of the speckle. From the
autocorrelation, the original image (here the letter π) can be
retrieved by phase retrieval. Adapted from Bertolotti et al., 2012.

Stefan Rotter and Sylvain Gigan: Light fields in complex media …

Rev. Mod. Phys., Vol. 89, No. 1, January–March 2017 015005-40



B. Bimodal distribution of eigenchannels

We saw in the previous section how the TM of a disordered
slab, a multimode fiber, or any linear optical system can be
measured. However, it is important to stress the difference
between the TM ~t as measured in experiments and the full TM
t as described in Secs. II and III. The experimental TM ~t takes
as input the different modes that can be generated and detected
by modulating the input beam, i.e., typically pixels on an SLM
and on a camera, respectively. In the opaque lens, the number
of controlled modes is typically much smaller than the number
of available input modes of the medium. In addition, the
number of detected modes is much smaller than those being
populated at the output of the slab. One of the most striking
features of mesoscopic transport, the bimodal distribution of
eigenchannels (see Fig. 3), is however elusive when measur-
ing only a subpart of the full TM of the system. In all the
different works on the subject, the ratio of modes that are
controlled, detected, or illuminated is always the limiting
parameter. There is no consensus on notation or even on the
definition of this ratio that is defined and labeled differently in
every paper, and that depends on the specific situation. In this
section, we chose to leave the different definitions (and
notations) as they were in the literature and point out when
they differ.

1. Accessing the bimodal distribution

Since a complete channel control for accessing open and
close channels is currently not available, it is helpful to resort
to simulations, as in W. Choi et al. (2011), where the full
monochromatic transmission matrix of a disordered slab is
numerically evaluated. The numerical data are in good agree-
ment with RMT (Nazarov, 1994), and the resulting modes
when injecting open and closed channels are evaluated. A
striking result is shown in Fig. 28, where the intensity
distribution inside the medium and the scattered fields are
computed for plane wave input as well as when injecting the
optimal wave front for exciting an open or closed channel. One
can see a dramatic difference in the intensity distribution along
the longitudinal direction when comparing these different
cases. When injecting a plane wave, which excites all available
transmission channels very broadly, the averaged intensity
diminishes linearly with depth, as predicted by Ohm’s law.
When the wave front corresponds to injecting a closed channel,
the decay is much faster and exponential, while when injecting
an open channel the intensity first increases with depth until the
center of the slab, and only diminishes thereafter. As a result,
the intensity is almost symmetric with a maximum in the center
of the slab, as necessary in order to transmit a significant
amount of energy through the medium. Analytical expressions
for these distribution functions were proposed by Davy, Shi,
Park et al. (2015).
Note that this description considers a simplified system,

which serves as a good starting point to understand the
difficulty to measure this distribution and inject the corre-
sponding modes in practice: It is assumed that all modes are
accessible (from both sides of the slab, including also the
polarization degrees of freedom), and that the system is two
dimensional only (as in Sec. II for the waveguide geometry).

First experiments which could satisfy these demanding
requirements were reported in acoustics (Gérardin et al.,
2014) and in optics (Sarma et al., 2016). In both setups the
dramatic change in the internal energy distribution (see
Fig. 28) could, indeed, be observed. In most experiments,
however, these conditions are difficult to meet in practice.
An analytical model and numerical simulations in the

waveguide geometry (Goetschy and Stone, 2013) were
dedicated to what happens to the distribution of measured
transmission eigenvalues in the case of partial channel access
(considering both control and detection), and how it affects
the maximal transmission Tmax that can be achieved by wave
front shaping when injecting the maximally open channel
that can be measured. For this purpose the control parameter
m ¼ M=N was introduced, where M is the number of
channels controlled and N is the total number of channels.
The most striking result is that even a small degree of
imperfect control (m≲ 1) abruptly suppresses the mode of
unit transmission, and the measured distribution rapidly
deviates from the bimodal one, with the disappearance of
the peaked distribution around unity (see Fig. 29). An increase

FIG. 28. Simulation of scalar field distributions of transmission
eigenchannels inside a 2D disordered slab with 299 channels. The
medium of height 130 μm and thickness 16 μm is shown in the
middle of each of the three top panels (a)–(c). Field distributions
(a) of a plane wave whose incident angle is 11.5°, (b) of an open
transmission eigenchannel (transmission of 0.955), and (c) of a
closed transmission eigenchannel (close to zero transmission).
The incident field is subtracted on the left-hand side of the
medium. Color bar: amplitude normalized to the input wave.
Scale bar: 10 μm. (d) Averaged intensity along the x direction as a
function of the depth in the z direction for the same three different
input wave fronts, plus the wave front corresponding to a
focusing optimization as in Vellekoop and Mosk (2008b). The
disordered medium fills the space between 0 and 16 μm in depth.
The intensity is normalized to that of a normally incident plane
wave. Adapted from W. Choi et al., 2011.
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of the transmission relative to the mean transmission (i.e.,
Tmax ≫ T̄) can nonetheless be achieved with partial control,
until the distribution converges to the Marčenko-Pastur dis-
tribution [as in Eq. (52) and Fig. 16]. Interestingly, the
crossover to uncorrelated Gaussian matrices occurs when
the number of modes controlled is lower than the total
transmission T. Similar results are derived in reflection, where
the perfect reflection expected when injecting closed modes is
suppressed with imperfect control and detection. In particular,
detection or control of a single polarization immediately
results in loss of half of the modes. The result by Goetschy
and Stone (2013) was extended by Popoff et al. (2014) to
include not only the waveguide geometry, but also the slab
geometry with partial illumination. In particular, the effective
control parameterm is extended for the case of an illumination
zone D smaller than the thickness L of the slab. Because of
the fact that the area of the diffusive halo on the far side is
larger than the injection area, the number of modes at the
output is automatically larger than the number of input modes,
which results in a diminution of the maximal transmission
achievable.

2. Unraveling and exploiting open and closed channels

Despite these difficulties in accessing the full bimodal
nature of the transmission eigenchannels of a disordered slab,
several experiments have managed to reveal some features of
bimodality by means of wave front shaping.
Historically, the first experimental result was reported by

Vellekoop and Mosk (2008b), where an optimization through
a slab was performed in the limit where a noticeable fraction
of the modes is controlled (up to approximately 30% at the
input). Experimentally, this was achieved in two ways: first by
designing a relatively thin multiply scattering sample (down to
5.7 μm) to minimize the number of modes to be controlled;
second by controlling and detecting both polarizations using
polarization separators and using high numerical aperture

objectives to access high angles of incidence. The result when
performing the same point optimization as in Vellekoop and
Mosk (2007) was a spectacular deviation from the opaque lens
predictions (see Fig. 30). While optimizing a single speckle
spot, an increase of the overall transmitted intensity was
observed, not only in the focus, but also in the surrounding
speckle, which meant that strong spatial correlations must be
present in the speckle, due to the fact that only a few modes
contribute to the transmitted speckle. The increased trans-
mission was compared with RMT predictions and could be
well interpreted as a redistribution of the input energy from
closed to open channels.
They further derived that perfect optimization to a single

point should, on average, increase the total transmission to the
universal value of 2=3. This value of 2=3 is directly linked to
the electronic quantum shot noise for the case of a bimodal
distribution of transmission eigenvalues (Beenakker, 2011),
which we have found to be characterized by a sub-Poissonian
shot-noise Fano factor F ¼ tr½tt†ð1 − tt†Þ�=tr½tt†� ¼ 1=3 in
the diffusive limit (see Sec. II.B). Indeed, when aiming to
maximize the intensity to a given position, Eq. (53) tells us
that this can be achieved through phase conjugation Ein ¼
t†Etarget (we neglect here for the moment that in the experi-
ment only ~t, i.e., the partial transmission matrix restricted to

FIG. 29. Transmission eigenvalue density of a disordered slab
placed in a waveguide with N ¼ 485 channels (length
L ¼ 150=k, width W ¼ 900=k), for different fractions of con-
trolled channelsm ¼ M=N. Numerical results (dots) are obtained
from solving the wave equation for 120 realizations of the slab
for fixed disorder strength. The solid lines are the theoretical
prediction based on free probability theory. The inset shows the
maximal transmission enhancement possible for a given m.
Adapted from Goetschy and Stone, 2013.

(a) (c)

(b)

FIG. 30. Coupling to open channels by wave front optimization
to a focus spot. (Top) Schematic of the experiment: two SLMs
are used to control both polarization directions, high numerical
aperture objectives ensure maximal coverage of incident angles,
and both polarizations are detected on two CCD cameras on the
far side. (Bottom) Intensity of the transmitted speckle figures
at the output plane (a) before and (b) after optimization of the
wave front. (c) Intensity summed over the y direction to average
the speckle: dashed curve for unoptimized and solid curve for
optimized wave fronts. The total transmission is increased by
35%. Adapted from Vellekoop and Mosk, 2008b.

Stefan Rotter and Sylvain Gigan: Light fields in complex media …

Rev. Mod. Phys., Vol. 89, No. 1, January–March 2017 015005-42



the measured and controlled modes is available). The output
field, in turn, is given as Eout ¼ tt†Etarget, and the total
intensity is Iout ¼ jEoutj2. When averaging over realizations or
over target positions, one can show that the average trans-
mission is T̄ ¼ Iout=Iin ¼ trðtt†tt†Þ=trðtt†Þ. Since this rela-
tion is directly related to the shot-noise Fano factor by
T̄ ¼ 1 − F, we simply get the result T̄ ¼ 2=3. This result
was numerically confirmed by W. Choi et al. (2011), where it
was further noted that this result is connected to the fact that
the contribution of each eigenchannel n to the optimized wave
front was, on average, proportional to its eigenvalue jτnj2, a
well-known property of the time-reversal operator tt† (Tanter,
Thomas, and Fink, 2000). This theoretical result was later
verified experimentally by Kim et al. (2013). Of course,
imperfect control of the wave front leads to a reduced
transmission compared to the ideal case. Vellekoop and
Mosk (2008b) introduced a parameter γ that represents the
overlap between the injected mode and the perfect optimized
mode, with the difference coming from imperfect channel
control, phase-only operation, and noise in the optimization
process. The expected total transmission is Tc ¼ jγ2jT̄, and
excellent agreement in different experimental conditions
is found.
In contrast to the opaque lens case, optimization and

imaging through a medium gives quite different results if
the number of open channels becomes lower than the number
of degrees of freedom that one has access to. As shown by
Vellekoop and Mosk (2008b), when optimizing a single point,
the background increases, which means that the signal-to-
background ratio is lower than expected from the opaque lens
analysis. This effect was discussed by Davy, Shi, and Genack
(2012) in the context of microwaves but the result remains
valid for optics. In essence, the signal to background in a
point optimization experiment is bounded by the number of
transmitting modes and can be down to 1 (no optimization)
in the single open channel regime (Peña et al., 2014). Of
course, in this limiting case, the intensity at the focus has
been indeed increased, but since there is only a single mode
that dominates the transmission, the background has also
increased correspondingly.
Several works have also reported on measuring a TM and

subsequently injecting the mode with the largest transmission.
Kim et al. (2012) explored the limiting case of a very sparse
measurement: A square transmission matrix was measured
over a single polarization and a very limited angular view
(covering a numerical aperture of NA≃ 0.32). In this con-
figuration, the quarter-circle law, which corresponds to the
Marčenko-Pastur distribution for a square random matrix, is
expected [see Eq. (52)]. While this distribution had already
been measured in optics by S. M. Popoff et al. (2010), they
showed that when sending the input vector corresponding to
the highest transmission mode given by the measured trans-
mission matrix, they recovered a higher transmission by a
factor of 3.99 relative to the mean transmission within the
detection angle, in good agreement with the fact that the
distribution of eigenvalues is bounded to twice the mean
amplitude transmission in the case of a square random matrix
(corresponding to a factor of 4 in intensity). Kim et al. (2014)
reported on the promising use of a binary amplitude modulator

to measure the TM and to inject eigenchannels. They showed
that such a binary modulator is able to match the calculated
mode for single-mode injection with 40% fidelity and dem-
onstrated a twofold increase of transmission over the mean
transmission in the detection angle of their apparatus.
Measurements of very large TMs in strongly scattering media
to approach the bimodal distribution have been reported by
Yu et al. (2013) and Akbulut et al. (2016). In both studies,
deviations from the Marčenko-Pastur distribution were
observed and could be qualitatively modeled, but due to
limited control the direct observation and injection of open
channels in optics has so far not yet been reported [see
Gérardin et al. (2014) for a first realization of open channels
in acoustics].
Another possibility of high practical interest is to measure

the reflection matrix. When sending the mode with the lowest
reflection, a high transmission should be obtained. This idea
was experimentally implemented by Kim et al. (2015) where a
threefold increase in transmission is reported when injecting
the mode with the smallest eigenvalue in reflection.
An alternative to single-point optimization was reported

experimentally by Popoff et al. (2014); see Fig. 31 for a
corresponding illustration. Instead of measuring a single
position and observing an increase of the transmission, here
the total transmitted intensity was optimized directly. In order
to detect all modes at the output and not to be limited by
collection optics, a large-area photodetector is directly placed
on the backside of the sample, thus collecting all modes with

FIG. 31. Experimental setup and results for total transmission
optimization. (a) Schematic of the experiment for the control of
total transmission. The two polarizations of the laser are
modulated by two different areas of a phase-only SLM, with
1740 macropixels controlled. The scattering sample is placed at
the focal plane of the objective. Three photodetectors PD1, PD2,
and PD3 measure, respectively, the intensities of transmitted,
incident, and reflected light, and the optimization is performed on
the total transmission T, measured as the intensity on detector
PD1 normalized by the incident intensity measured on detector
PD2. (b) Measured T=hTi (left panel) and R=hRi (right panel) vs
the step number of optimization for enhancement (increasing
blue curve) and reduction (decreasing red curve) of the total
transmission. The sample is a 20 m thick ZnO layer, and
the average transmission is hTi ∼ 5%. The dotted line represents
the reflection estimated from the transmission using
R=hRi¼ð1−TÞ=ð1−hTiÞ. Adapted from Popoff et al., 2014.
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the same efficiency. This is in contrast to previous results
where a limited collection angle was inherent to all imple-
mentations, and therefore only partial transmission enhance-
ments were reported, from which changes in total
transmission could only be inferred. When optimizing the
wave front to maximize or minimize the total transmitted
intensity, an approximately 3.6-fold enhancement or a 3.1-fold
reduction in transmission relative to the average could be
found, respectively. To confirm that this effect was, indeed, a
mesoscopic effect, the reflection was also monitored and its
increase or decrease was found to be anticorrelated with a
corresponding change in transmission. Yet other approaches
have been proposed, e.g., optimization algorithms to maxi-
mize transmission by analyzing only the backscattered light
(Jin et al., 2013, 2014), or a photocurrent (Liew et al., 2016).
As shown both experimentally and theoretically (Hsu et al.,
2017) long-range-correlation effects as discussed in Sec. III.A
and by Scheffold et al. (1997) and García-Martín et al. (2002)
increase the dynamic range of light delivery into regions
containing multiple speckles.

C. Time-delay eigenstates

In this section we discuss the interesting properties of the
eigenstates of the time-delay operator or matrix Q ¼
−iS†ð∂SÞ=∂ω defined in Sec. II.C; see Eq. (48). Thanks to
the techniques of wave front shaping discussed in Sec. IV, it is
now within reach not only to measure the time-delay matrix of
a system, but also to excite an eigenvector at the input, thus
generating a time-delay eigenstate. We first describe these
states in all their generality, then discuss their applications
in two specific cases relevant for optics: principal states and
particlelike states (see Secs. V.C.1 and V.C.2). The eigenstates
qi of Q are defined as Qqi ¼ qiqi, and they are associated
with a well-defined scattering time delay qi (also called proper
delay time), which measures the time accumulated between
entering and exiting the scattering region. When the scattering
matrix S of a problem is unitary, the associated time-delay
operator Q is Hermitian, such that the proper delay times are
real and the time-delay eigenstates qi form a complete and
orthogonal set at the input to the scattering region.
The question we address is, which practical consequences

can be associated with these definitions and how such states
can be determined and generated experimentally. Generally
speaking, a wave that enters a disordered slab will have
components that exit the slab rather quickly, while other
components will stay inside the slab for longer (as discussed
in Sec. IV.A.2). This is different when injecting a state defined
by the time-delay coefficient vector qi into the slab (e.g.,
through an SLM), since this state is characterized by just a
single and well-defined time, i.e., its associated proper delay
time qi. This feature leads to advantageous properties related
to the fact that a well-defined time delay can be linked to a
suppression of frequency dispersion and to a strong collima-
tion of ballistic scattering states.

1. Principal modes in a fiber

Consider a MMF which transmits light almost perfectly,
i.e., it has very little reflection and absorption. In this case the

transmission matrix t associated with this fiber is close to
unitary such that all the transmission eigenvalues τn are near
unity. Correspondingly, the associated transmission eigen-
channels studied in Sec. II.B will not be in any way special,
since the massive degeneracy in the linear subspace associated
with τ ≈ 1 will mix all these channels indiscriminately. The
question thus arises whether this degeneracy can be lifted by a
clever choice for a different basis that has advantageous
properties, e.g., for the transfer of information through the
fiber. One might think that such a suitable basis is given by
the fiber modes themselves, as determined by the boundary
conditions in the fiber cross section. In particular, since the
different transverse mode profiles also result in mode-specific
longitudinal velocities it is tempting to think that the fiber
modes are the suitable modes for avoiding dispersion in the
fiber. It turns out, however, that this is generally not the case
and that such a dispersion-free basis is rather given through
the eigenbasis of the time-delay operator (Poole and Wagner,
1986; Fan and Kahn, 2005).
Specifically, consider an input coefficient vector v, which is

transmitted by the fiber to an output vector u ¼ tv, where we
assume the vectors and the matrix to be given in the mode
basis (polarization degrees of freedom will be neglected). If
we now demand that the transverse profile at the fiber output
should be dispersion free this means that the output vector u
should not change, when changing the input frequency ω
slightly while keeping the input vector v the same (Fan and
Kahn, 2005). To be more specific, we demand that the
orientation of the output vector u stays invariant (which is
equivalent to demanding that the output field distribution
stays unchanged up to a prefactor). Decomposing u into an
amplitude and the corresponding unit vector which contains
this orientation u ¼ uû, we obtain the following:

du
dω

¼ du
dω

ûþ u
dû
dω

¼ du
dω

u−1tv þ u
dû
dω

≡ dt
dω

v: ð55Þ

Requiring that û is dispersion free, dû=dω≡ 0, and multi-
plying from the left with −it−1, we end up with the following:

−it−1
dt
dω

v ¼ −iu−1
du
dω

v; ð56Þ

which tells us that those input states v that are transmitted
without transverse dispersion (to first order) are eigenstates of
the matrix ~Q ¼ −it−1dt=dω. For unitary transmission matri-
ces, for which t−1 ¼ t†, this expression for ~Q is perfectly
equivalent to the expression for the Wigner-Smith time-delay
operator Q that we had found before; see Eq. (48). For
nonunitary transmission matrices as for fibers with finite
reflection or loss, one can further modify the right-hand side
of Eq. (56) [using u ¼ juj expðiϕÞ] to find the following for
the corresponding eigenvalue of this new operator:

q ¼ −i
d ln jtvj
dω

þ d argðtvÞ
dω

: ð57Þ

The first term on the right-hand side of Eq. (57) is a measure
for the losses due to reflection or outcoupling that depends
only on the norm of the output; the second term is the
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derivative of the scattering phase at the output, i.e., the
time delay.
Because of their superior properties, the modes associated

with the eigenvectors of ~Q have been termed principal modes
(Fan and Kahn, 2005). Note in this context, that for a perfectly
straight fiber without mode coupling, the PMs and the fiber
modes become the same (in the absence of degeneracies). In
this sense, the advantages of the PMs assert themselves fully
in the presence of a finite crosstalk between the ideal fiber
modes (Ho and Kahn, 2014). First observations of PMs in
MMFs were reported by Carpenter, Eggleton, and Schroder
(2014a, 2015) and Xiong et al. (2016). In Fig. 32(a) we
show data from a measurement on fibers with a weak mode
coupling, which demonstrates the increased stability of PMs
as compared to conventional LP fiber modes. Whereas PMs
already feature by design a frequency stability to first order,
the weak coupling of modes enhances their stability further. In
the regime of strong mode coupling the frequency stability of
PMs is reduced, but still far superior compared to arbitrary
input configurations [see Fig. 32(b)]. The same can be
expected for a disordered slab geometry, for which PMs
can also be constructed, but for which case no experiments
have been reported so far. We see in the following that another
class of time-delay eigenstates can also be found in ballistic or
quasiballistic scattering structures with a frequency robustness
that goes beyond the first-order stability.

2. Particlelike scattering states

Consider the simple case of a resonator geometry,
which, for reasons of simplicity, is assumed to be just two
dimensional. The scalar waves, which are injected through a
waveguide on the left, can be reflected through the same

waveguide or transmitted through a second waveguide
attached on the right (see Fig. 33). One can now try to steer
waves through the resonator such that they will follow the path
of a classical trajectory throughout the entire scattering
process rather than being diffractively scattered. To select
the “geometric optics” states from the full set of scattering
states that “wave optics” will produce in this setup, we further
assume that only the scattering matrix S of the system is
available (but no information on its interior scattering land-
scape). The presence of such ballistic scattering states leads
to nonuniversal contributions to the distribution of trans-
mission eigenvalues PðτÞ at the values τ ≈ 0 and τ ≈ 1,
corresponding to fully closed and open transmission chan-
nels, respectively. As discussed in Sec. II.B, it was exactly
such system-specific contributions which were responsible
for the suppression of electronic shot noise below the
universal limit (Agam, Aleiner, and Larkin, 2000; Jacquod
and Sukhorukov, 2004; Aigner, Rotter, and Burgdörfer,
2005; Sukhorukov and Bulashenko, 2005), which itself
was already reduced below the Poissonian limit by
Schottky (1918) (Beenakker and Schönenberger, 2003).
In analogy to the situation found for the MMF in

Sec. V.C.1, all the fully transmitted (reflected) waves are
completely mixed in the degenerate subspace corresponding
to τ ≈ 1 (τ ≈ 0). Correspondingly, exciting transmission or
reflection eigenchannels will not yield states that follow
individual classical bouncing patterns in the system, but
several of them simultaneously; see Fig. 33(a). To unmix
these contributions one can now make use of the Wigner-
Smith time-delay operator Q ¼ −iS†∂S=∂ω introduced in
Sec. II.C; this is because its eigenvalues, i.e., the proper delay
times allow one to sort all the different ballistic scattering

FIG. 32. Experimental data on principal modes (PMs) in fibers
with (a) weak and (b) strong mode mixing. In both figures the
main panel shows the spectral correlation of the output field
pattern measured relative to the center frequency for a PM as
compared to a Laguerre-Gaussian (LG) mode in (a) and as
compared to a random superposition of LP modes in (b). In both
cases the PM features a considerably increased stability of the
field configuration at the fiber output. This output is shown in
the color images: (a) Top: PM, bottom: LG mode. Horizontal (H)
and veritcal (V) polarization directions are shown separately.
(b) Top left: PM, top right: random input. Images recorded at
Δω ¼ −157, 0, and 157 GHz (from left to right). The dashed
green line in (b) shows the calculated correlation function based
on the experimentally obtained fiber transmission matrix, which
is in excellent agreement with the experimentally determined
correlation function (red). (a) Adapted from Carpenter, Eggleton,
and Schröder, 2015. (b) Adapted from Xiong et al., 2016.

FIG. 33. (a) Wave intensity of a transmission eigenchannel with
transmission close to unity in scattering through a resonator with
two waveguides attached on the left and right (the flux is
incoming from the left). Whereas transmission eigenchannels
typically lead to highly complex interference patterns inside the
resonator (as in wave optics), the particlelike states shown in
(b)–(d) follow a classical bouncing pattern throughout the entire
scattering process (as in geometric optics). (b) Transmitted
particlelike state in a clean rectangular resonator. (c), (d) Reflected
particlelike states in a geometry of the same dimensions as in (a),
(b), from which, however, a quarter-circular piece was removed in
(c) and a smooth and weak disorder potential was added in
(d) (see bottom part of this panel). Adapted from Rotter, Ambichl,
and Libisch, 2011.
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contributions by way of their different time delays (Rotter,
Ambichl, and Libisch, 2011). Specifically, one determines
those eigenstates q of Q that have incoming components only
in the left waveguide, i.e., q ¼ ðql; 0ÞT. Writing the time-
delay operator with its four sub-blocks [in correspondence to
the subdivision of the scattering matrix itself, see Eq. (15)],
one finally obtains the following eigenvalue problem:

�
Q11 Q12

Q21 Q22

��
ql

0

�
¼

�
Q11ql

Q21ql

�
¼ q

�
ql

0

�
: ð58Þ

From the last equality the following two conditions can be

deduced: (i) Q11ql ¼ qql and (ii) Q21ql ¼ ~0. Since Q11 is a
Hermitian matrix (Q12 andQ21 are not), condition (i) yields an
orthogonal and complete set of eigenstates in the incoming
waveguide. Out of this set of states, those which, according to
condition (ii), lie in the null space (kernel) of Q21 are the
desired time-delay eigenstates with a well-defined input port.
One can show (Rotter, Ambichl, and Libisch, 2011) that both
conditions can be fulfilled only by waves which are either
fully transmitted or reflected; in other words these states are
simultaneously eigenstates of Q and of t†t with deterministic
transmission eigenvalues τ close to 0 or 1. Practically, the
degree to which condition (ii) is fulfilled can be evaluated
by a measure χ ¼ ‖Q21ql‖ which should be the closer to 0
the better condition (ii) is fulfilled. This measure can thus be
conveniently used for assessing how well a given state will be
able to follow a classical bouncing pattern. Typically those
states with a small value of χ are also those with a small
time-delay eigenvalue q, in agreement with the expectation
that only states which stay inside the scattering region for a
time shorter than the Ehrenfest time q < τE will be able to
behave particlelike (Agam, Aleiner, and Larkin, 2000). In
Figs. 33(b)–33(d) three examples of states are shown that
feature very small values of χ for different resonator geom-
etries. It can be seen how these states tend to follow a (short)
ray from geometric optics that avoids any diffractive scattering
throughout its propagation (as at the sharp corners of the input
and output facets). The first experimental demonstration of
particlelike scattering states and corresponding wave packets
was reported based on acoustic wave scattering in a metal
plate studied by laser interferometry (Gérardin et al., 2016).
When comparing these particlelike states to the PMs from

Sec. V.C.1, the following comments can be made: PMs can
be constructed for arbitrary scattering media (including
strongly disordered samples) and their frequency stability
to first order will be assured in all of these systems by
construction. Particlelike states, on the other hand, can be
found only in systems where waves can propagate along
sufficiently stable ballistic scattering pathways. Because of
their collimation on these pathways, particlelike states feature,
in turn, a much higher frequency stability than principle
modes (in a similar way as geometric optics states are
frequency independent by default). Both sets of states have
advantageous properties for communication purposes, like the
dispersion-free transmission as well as the high directionality
of the particlelike states that seems well suited for steering a
signal to a well-defined target. In Sec. V.D.1 we also see that

the time-delay eigenstates optimally avoid or enhance the
effect of dissipation in a medium.

D. Wave front shaping in media with gain or loss

In this section we discuss the application of wave front
shaping techniques in systems with gain or loss, with a focus
on disordered media.

1. Absorbing media

Consider the case of an absorbing disordered medium,
which, for simplicity, we assume to be uniformly absorbing
(i.e., the absorption rate is independent of the spatial position
in the medium). For this situation we know from our analysis
in Sec. II.C that the absorption is directly proportional to the
time spent inside the absorbing medium. Since, in turn, the
time associated with a stationary scattering state can be
measured through the dwell-time operator Qd, minimal or
maximal absorption of waves in a medium can be achieved
by injecting those eigenvectors of Qd, which are associated
with the smallest or largest eigenvalue, respectively. (We recall
here the result from Sec. II.C that in the limit of vanishing
absorption the dwell-time operator Qd and the time-delay
operator Q coincide up to mostly negligible self-interference
terms.) The procedure to obtain the states with minimal
absorption is thus equivalent to the approach presented in
Sec. V.C.2 for the generation of particlelike scattering states,
which are associated with the smallest values of the time
delay. The states with maximal absorption were explicitly
studied by Chong and Stone (2011), where it was shown how
in a weakly scattering medium a suitably chosen input wave
front can increase the degree of absorption from a few percent
to more than 99%. Such a coherent enhancement of absorption
(CEA) can, in principle, be realized at any frequency for
which the input wave is shaped appropriately.
An interesting point to observe here is that in the theoretical

approach put forward by Chong and Stone (2011) these
maximally absorbed states were not identified through the
help of the dwell-time operator, but rather as those states
which are minimally reflected from an absorbing disordered
medium. In the considered single-port systems, where the
reflection matrix is equivalent to the scattering matrix, we
know, however, from Eq. (51) that the dwell-time operator is
equivalent to the unitary deficit of the scattering matrix such
that these two different concepts to evaluate maximum
absorption perfectly coincide. Chong and Stone (2011)
extended the analysis to the case of a spatially localized
absorber buried behind a layer of lossless scattering
medium—a situation that was also studied experimentally
by Vellekoop et al. (2008) in an attempt to focus light on a
small fluorescent nanoscopic bead inside a disordered
medium to increase the fluorescence. In this case the degree
of optimal absorption was found to be more strongly bounded
as compared to the case where the entire medium is absorbing.
Further work also shows how the long-range spectral corre-
lations inherent in the transmission and reflection matrices can
help to achieve enhanced absorption in a broadband frequency
range (Hsu et al., 2015). The first experimental realization
of a variant of CEA was reported by Liew et al. (2016).
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In another numerical study the effect of absorption was
investigated in scattering systems with more than one port,
like a 2D disordered waveguide connected to two perfect leads
on the left and right (Liew, Popoff et al., 2014). In such
systems both the maximally transmitted and the minimally
reflected channels were studied. For weak absorption these
two types of channels were found to be dominated by diffusive
transport and to be equivalent (as following from the con-
nection between the transmission and reflection matrices in
unitary systems, see Sec. II.A.4). For increasing absorption,
however, the behavior of these two different channels decou-
ples, as the reflection can then be minimized not only by
increased transmission, but also by enhanced absorption: at a
given absorption strength, the maximum transmission channel
was found to display a sharp transition to a quasiballistic
transport regime. This transition does not occur for theminimal
reflection channel, which gets increasingly dominated by the
absorption when the absorption strength is increased. An
interesting aspect that was also found in this context is that
the shape of the transmission and reflection eigenvalue dis-
tributions in disordered and dissipative media depends on the
confinement geometry (Yamilov et al., 2016)—a fact that may
be used for controlling this distribution at will.
Whereas the concepts relating to CEA can be implemented

at any input frequency, Chong et al. (2010) showed that at
well-defined frequencies and at a carefully chosen amount of
dissipation, certain incoming channels of light can be fully
absorbed. Such a coherent perfect absorber (CPA) of light
corresponds to the multimode generalization of a critically
coupled oscillator, with the difference that at least two input
beams are required, which have to have the correct amplitude
and phase to interfere appropriately. As a result, the relative
phase between the input beams can be used to sensitively tune
the degree of absorption as was done in the first CPA
experiment (Wan et al., 2011). From a conceptual point of
view a CPA is a time-reversed laser, in the sense that a gain
medium at its first lasing threshold will emit coherent
radiation at a well-defined frequency and with a well-defined
phase relationship, e.g., between beams emitted on either side
of the laser. The time-reversed process corresponds to an
absorbing medium which perfectly absorbs the coherent
illumination which impinges on it. If one considers a simple
1D edge-emitting laser that emits to the left and right, the
coherently absorbed light field of the corresponding CPA
features two beams (incoming from the left and right), which
share a specific phase relationship to each other. At the points
where this phase relationship is satisfied, maximal absorption
occurs. It is interesting that, prior to these theoretical
and experimental developments, a seminal experiment in
the field of plasmonics showed extraordinary absorption
for a gold grating under specific incident illumination
(Hutley and Maystre, 1976), which was explained using a
similar reasoning.
The concept of a CPA can also be extended to other systems

(Noh et al., 2012; Zanotto et al., 2014), to 2D or 3D as well as
to disordered media. In the latter case the CPA would be the
time reverse of a random laser, corresponding to an absorbing
random medium, which absorbs incoming waves that have
exactly the same complex wave front as the emission profile of
the random laser. To generate such a complex wave pattern

one would of course have to resort to wave front shaping
techniques using SLMs or equivalent tools.
Generally speaking, the theoretical concept behind CPAs

builds on the analytical properties of the scattering matrix
SðωÞ (see Sec. II.A.4). In the absence of loss or gain, this
matrix is unitary and features poles (zeros) at complex
frequencies with negative (positive) imaginary parts located
in the complex plane as mirror-symmetric pairs with respect to
the real axis. When adding gain to the system the poles and
zeros move upwards in the complex plane until the point
where the first pole reaches the real axis and lasing sets in.
Alternatively, when adding loss to the system, the poles and
zeros move downwards until the first zero hits the real axis, at
which point coherent perfect absorption can be realized (Chong
et al., 2010). Adding even more loss drags additional zeros
across the real axis, creating a CPA at each new intersection.
Subsequent work also demonstrated how a laser and a CPA
can be combined in a single device (Longhi, 2010; Chong,
Ge, and Stone, 2011). Such a laser absorber (or CPA laser) can
be realized based on the concept of PT -symmetric optical
systems (Bender and Boettcher, 1998; El-Ganainy et al., 2007;
Makris et al., 2008; Rüter et al., 2010) in which gain and loss
are carefully balanced and poles and zeros of the scattering
matrix can be brought to meet on the real axis. Realizing such
concepts in the optical experiments is challenging as the
CPA-lasing points at the pole-zero crossing are affected by
the noise due to amplified spontaneous emission. The first
realization of a CPA with a PT -phase transition has been
reported with a pair of coupled resonators coupled to a
microwave transmission line (Sun et al., 2014), followed by
the first successful demonstration of lasing and antilasing in
the same PT -symmetric device (Wong et al., 2016).

2. Amplifying media

In the previous section we discussed how waves that are
injected into a certain disordered medium with absorption can
be shaped such as to be maximally or minimally absorbed.
Such an approach can, of course, also be considered with an
amplifying medium, where one is naturally concerned with
maximal or minimal amplification. Work in this direction has
dealt with the nontrivial transient dynamics in photonic
waveguide structures composed of a combination of materials
with both loss and gain. Contrary to conventional expectation,
specific initial conditions for the incoming wave can lead to
power amplification by several orders of magnitude even if the
waveguide is, on average, lossy (Makris, Ge, and Türeci,
2014). Systems with gain and loss have also been proposed
for the realization of a special family of waves that have
the curious property of featuring a constant intensity in
the presence of a nonhomogeneous scattering landscape
(Makris et al., 2015)—a feature that cannot be realized with
Hermitian scattering potentials. Extending this concept allows
one to achieve perfect transmission even through strongly
scattering disorder (Makris et al., 2016). A realization of these
curious wave solutions requires a careful shaping of the
incoming wave front and of the medium’s gain-loss profile.
As a medium with a sufficient amount of gain can emit

coherent radiation on its own when crossing the laser thresh-
old, work on amplifying media has also always had a strong
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focus on engineering the gain for a desired lasing action. In
principle, optimizing the gain profile for a medium is a well-
studied problem. Consider here the case of a distributed
feedback laser in which a so-called “gain grating,” consisting
of a periodic arrangement of purely amplifying components,
can efficiently pump lasing modes with the same periodicity
as the grating (Carroll, Whiteaway, and Plumb, 1998).
Whereas these concepts for quasi-1D laser structures (like
ridge or ring lasers) have meanwhile reached the level of
industrial applications, more advanced concepts on lasers with
a quasi-2D (planar) geometry have been explored recently.
Here the main focus was on reducing the laser threshold of
specific modes by increasing the spatial overlap between these
selected modes and an externally applied pump profile.
Practical implementations of this concept include, e.g., electri-
cally pumped devices for which the electrodes were patterned
appropriately (Fukushima et al., 2002; Kneissl et al., 2004;
Shinohara et al., 2010). All of these implementations require,
however, prior knowledge of the spatial pattern of the
selected mode.
With the availability of wave front shaping tools, the

pump profile as exerted on an optically pumped laser can,
however, be tuned in a manner which is flexible enough to
select a given mode based on a simple feedback loop. This
feedback can be set up between the pump profile (as
determined by the pixel configuration in an SLM) and the
light spectrum of the laser pumped with this profile.
Combining the feedback with an optimization algorithm
has been suggested as a means to make the multimode
emission spectrum of a random laser single moded
(Bachelard et al., 2012). In an experimental realization,
realized shortly after the theoretical proposal (Bachelard
et al., 2014) a mode-specific pump selection and a corre-
sponding single-mode operation could be successfully dem-
onstrated for the challenging case of a weakly scattering
random laser (see Fig. 34). For such a system no a priori
knowledge of the lasing mode is available and finding the
appropriate pump grating is thus only possible through
optimization. As in this case the laser modes are also
strongly overlapping both spectrally and spatially, the pump
profiles obtained as a result of the optimization process do
not just follow the intensity of the laser modes, but instead
display a highly complex pattern only remotely related to the
mode profiles. The connection between the pump profiles
and the modes they select was elucidated in subsequent
theoretical work (Bachelard, 2014; Cerjan et al., 2016)
based on a non-Hermitian perturbation theory analysis.
Alternatively, a mode-selection approach was proposed
based on insights from gain saturation of interacting laser
modes (Ge, 2015).
A remarkable feature of the feedback-based pump opti-

mization is its flexibility in terms of the optimization goals
that it can be employed for. Specifically, it has been proposed
that not only the multimode spectrum of a random laser can be
“tamed” with it, but also its highly irregular emission profile;
see Fig. 34(a) (right panel) (Hisch et al., 2013). A corre-
sponding pump-shaping strategy for tuning the emission
profile of a laser has meanwhile been successfully imple-
mented for microcavity lasers (Liew, Redding et al., 2014) [for
random lasers a collimated output beam was achieved with

other means (Schönhuber et al., 2016)]. A next step could be
to use the spatial control of the applied pump to enhance the
power efficiency of lasers (Ge, Malik, and Türeci, 2014).

VI. CONCLUSIONS AND OUTLOOK

Wave front shaping techniques will become faster, more
accurate, and will involve an increasing number of controlled
pixels. Loosely speaking, this development can be connected
to the exponential increase in efficiency of computer hardware
(known as Moore’s law). With this projection in mind, one can
foresee that experiments using light modulation technology
will soon be able to do much more than they can already do
today. In this last section a few ideas are provided on where
the further technological developments could take us or on
what we believe could be promising research topics in the next
few years.

(a)

(b)

FIG. 34. (a) (Left) Schematic to control the emission spectrum
of a random laser consisting of a quasi-one-dimensional sequence
of different dielectric layers. Tuning the incident pump beam
through the spatial light modulator allows here to change how
many lasing modes are active and at which frequencies they emit.
(Right) A corresponding setup proposed to control the direction-
ality of the emission. (b) The spectral control of a random laser
[left panel in (a)] was realized in an experiment using optofluidic
random lasers, where the laser emitted in two modes for uniform
pumping (see dotted lines in lower panels). By shaping the pump
profile as shown in the top panel, single-mode emission through
either one of these two modes was achieved (see solid lines in
lower panels). (a) (Left panel) Adapted from Bachelard et al.,
2012. (a) (Right panel) Adapted from Hisch et al., 2013.
(b) Adapted from Bachelard et al., 2014.
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A. Wave front shaping for unraveling mesoscopic phenomena

Whereas our review highlighted quite a few mesoscopic
effects that were brought to light with wave front shaping
tools, we believe that many more fundamental phenomena can
still be explored with this new technology. Prominent exam-
ples could be an unambiguous proof for Anderson localization
in a three-dimensional medium (Lagendijk, Tiggelen, and
Wiersma, 2009; Maret et al., 2013; Scheffold and Wiersma,
2013; Segev, Silberberg, and Christodoulides, 2013; Sperling
et al., 2013; Skipetrov and Sokolov, 2014) or the direct
experimental demonstration of the bimodal distribution of
transmission eigenvalues in optical scattering through a
disordered medium [for which several indications have
already been put forward (Vellekoop and Mosk, 2008b;
Goetschy and Stone, 2013; Popoff et al., 2014)]. In this
context it would also be of great interest to directly inject the
fully open transmission eigenchannels and to observe their
superior transmission characteristics, in a similar way to
what was done in acoustics (Gérardin et al., 2014).
Likewise, one could try to directly observe the propagation
of time-delay eigenstates [such as principal modes (Fan and
Kahn, 2005) or particlelike states (Rotter, Ambichl, and
Libisch, 2011)] through a weakly or strongly disordered
optical medium, similar to what was recently achieved in
optical fibers (Carpenter, Eggleton, and Schröder, 2015;
Xiong et al., 2016) and in acoustic waveguides (Gérardin
et al., 2016). An experimental demonstration that also still
remains to be done is that of a multichannel coherent perfect
absorber (Chong et al., 2010), which could go as far as to
demonstrate the time-reverse process of random lasing. Also
other exotic effects, like “rogue waves” (Solli et al., 2007; C.
Liu et al., 2015) or “branched flow” (Topinka et al., 2001;
Metzger, Fleischmann, and Geisel, 2010), that have also been
studied in the context of ocean acoustics, could now be
enhanced and tuned in various ways through wave front
shaping. Optical scattering of course also brings in many
new aspects as compared to its electronic counterpart, in
particular, through nonlinearities (Wellens and Grémaud,
2008; Bortolozzo, Residori, and Sebbah, 2011) and the break-
ing of reciprocity (Muskens et al., 2012; Peng et al., 2014),
which have not yet been fully explored with wave front
shaping tools.

B. New systems

We saw that mesoscopic physics theory and experiments
have mostly been focused on a handful of canonical systems
in electronics: the disordered wire, the quantum billiard, the
quantum point contact, etc. In the optical domain, a large
fraction of the theoretical and experimental work was focused
on scattering in three-dimensional bulk disorder and restricted
to a few geometries as well. Here we comment on the
opportunities of new optical systems to be studied with the
mesoscopic physics concepts already developed.
Two systems were discussed extensively already in Secs. IV

and V: biological tissues and multimode fibers. We tried to
highlight their specific features in terms of scattering and in
which way these can be appropriately described by adapting
the existing mescoscopic physics concepts. We also tried to

highlight how these system-specific aspects could lead to new
opportunities, e.g., for imaging (see here the discussion on the
memory effect in Secs. II and V). Plasmonic systems are also
an interesting playground to study the effect of disorder and
wave front shaping, in particular, due to the capability of the
metal to localize light well below the diffraction limit. This
includes not only metallic hole arrays with disorder (Gjonaj
et al., 2011, 2013; Seo et al., 2014), but also metal-dielectric
fractal structures (Bondareff, Gigan, and Grésillon, 2015;
Gaio et al., 2015).
New optical systems are meanwhile emerging due to the

exciting possibility in photonics to tailor the propagation
medium, e.g., to vary the amount of order and disorder, or to
change the dimensionality of the problem. Light transport
has been studied in 1D stacks (Bertolotti et al., 2005), 1D
waveguides (Topolancik, Vollmer, and Ilic, 2007; Sapienza
et al., 2010), and 2D disordered structures (Riboli et al., 2011;
García et al., 2012). A whole community works on photonic
crystals, trying to obtain perfectly regular structures, but the
very small amount of residual disorder has been known to
strongly affect transport within these structures. Careful engi-
neering of the amount of disorder can, in turn, allow one to
control the transport properties of the system (Topolancik,
Vollmer, and Ilic, 2007; García et al., 2013). In 3D, self-
organization allows the fabrication of near-perfect 3D photonic
crystals (Galisteo-Lopez et al., 2011), for which the amount of
disorder and its effect on the transport properties of light can
again be controlled. Another potential revolution was initiated
by the possibility of engraving on a medium a completely
designed refractive index distribution via direct laser writing
(Kawata et al., 2001; Deubel et al., 2004), which meanwhile
allows one to create new kinds of disorder, such as hyperuni-
form structures (Florescu, Torquato, and Steinhardt, 2009;
Haberko, Muller, and Scheffold, 2013; Muller et al., 2014;
Froufe-Pérez et al., 2016). Finally, we also mention optically
reconfigurable structures where a refractive index distribution
is engraved from an intensity pattern, such as photorefractive
crystals (Schwartz et al., 2007; Levi et al., 2011), an optical
valve (Bortolozzo, Residori, and Sebbah, 2011), or integrated
silicon-on-insulator multimode interference devices (Bruck
et al., 2015, 2016). These structures are promising platforms
on which not only the wave front but also the disorder can be
controlled using a spatial light modulator.

C. Applications of mesoscopic concepts in optics

A field where wave front shaping concepts have already had
a large impact is the field of optical imaging in turbid tissues
(see also Sec. IV). Several proof-of-concept experiments have
shown that the conventional paradigm of ballistic imaging
could be extended to the deep multiple scattering regime (see
Sec. IV.C.2). While the multiscale nature and variability of
these media makes them difficult to model, they are also a
challenge for wave front shaping due to a potentially very
short decorrelation time, inhomogeneous absorption, and due
to the fact that one typically has access to one side of them
only. In this respect, the exploitation of the memory effect (see
Sec. V.A) has already overcome this limitation, by providing
an order of magnitude increase in speed for scanning a point
(Tang, Germain, and Cui, 2012) or even for single shot
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imaging (Katz, Small, Guan, and Silberberg, 2014). Other
mesoscopic concepts, such as coherent perfect absorption
or the generation of time-delay eigenstates (see Secs. V.C
and V.D), could be exploited in the future for further improve-
ment of imaging or light delivery, e.g., to avoid or to address
regions in a tissue that are absorbing or where movements
induce decorrelations. Because of the enormous complexity
involved, calculating the transmission matrix of a medium
from the characterization of its three-dimensional shape, or
worse, recovering the shape of a medium from its transmission
matrix, currently remains out of reach for disordered systems.
Only in very simple cases can such demanding tasks be
achieved, such as in short straight multimode fibers
(Plöschner, Tyc, and Čižmár, 2015).
The perspective of better controlling the transmission

through a medium has tremendous potential in communication
technology, not only in optics but also in the radio-frequency
domain, where increased transmission and bandwidth could
be realized as well as more secure and well-isolated channels
(Kaina et al., 2014). In this context, the direct access to open
channels or time-delay eigenstates would be particularly
useful (see Sec. V).
Wave front shaping has also moved MMFs into the focus

of attention, both for imaging and for telecommunication
purposes. Imaging through an MMF is meanwhile a direct
competitor to the bulkier fiber bundles (Gigan, 2012). In fiber
communications, where the spatial degrees of freedom in
MMFs are the last ones remaining to be exploited for a higher
data rate (Richardson, Fini, and Nelson, 2013), wave front
shaping has already opened the possibility to physically
decouple the transmission modes, rather than unmixing the
transmitted information a posteriori using multiple-input
multiple-output technology.
Another domain of application is nanophotonics and

quantum optics, where complex systems have increasingly
been considered as a platform for light matter interaction. In
the first step, a modification of the emission properties of
isolated single emitters has been discussed and was connected
to the local density of states (Birowosuto et al., 2010;
Krachmalnicoff et al., 2010; Sapienza et al., 2010, 2011),
which in turn can be linked to the modal structure of the
medium as described by mesoscopic theory. More recently,
the concepts of quantum networks have been studied, where
multiple emitters are distributed and connected for quantum
computing or simulations (Vedral, Barenco, and Ekert, 1996;
Plenio and Huelga, 2008) as well as to understand quantum
phenomena in biology such as photosynthesis (Hildner et al.,
2013). In a disordered system, the connections between
emitters can again be understood through the underlying
modal structure and the associated Green’s function of the
medium (Cazé, Pierrat, and Carminati, 2013). If mesoscopic
theory can help to understand and better design such a
network, wave front shaping can also be a particularly useful
tool to interrogate such a system for computation or simu-
lation. Even a linearly disordered system can be interesting in
the context of quantum random walks of single or multiple
photons (Ott, Mortensen, and Lodahl, 2010; Defienne et al.,
2014, 2016; Goorden et al., 2014; Huisman et al., 2014;
Wolterink et al., 2016). Mesoscopic effects such as Anderson
localization have been studied with nonclassical states in

waveguide arrays (Schreiber et al., 2011; Crespi et al.,
2013) and it would be interesting to study these effects in
genuine disordered systems. Again, wave front shaping could
serve here as an indispensable ingredient tomake these systems
useful for applications.
Finally, we mention the following proofs of concept that

have already been given for new devices, be it for compact
spectrometers (Redding et al., 2013), ultrafast switches
(Strudley et al., 2014), tunable random lasers (Hisch et al.,
2013; Bachelard et al., 2014), or light harvesting (Vynck
et al., 2012; Riboli et al., 2014). We expect this list to be
significantly extended in the near future.
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