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Random numbers are a fundamental resource in science and engineering with important applications
in simulation and cryptography. The inherent randomness at the core of quantum mechanics makes
quantum systems a perfect source of entropy. Quantum random number generation is one of the most
mature quantum technologies with many alternative generation methods. This review discusses the
different technologies in quantum random number generation from the early devices based on
radioactive decay to the multiple ways to use the quantum states of light to gather entropy from a
quantum origin. Randomness extraction and amplification and the notable possibility of generating
trusted random numbers even with untrusted hardware using device-independent generation protocols
are also discussed.
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I. MOTIVATION

Quantum mechanics offers interesting new protocols in the
intersection between computer science, telecommunications,
information theory, and physics. Results such as the protocols
for quantum key distribution (Bennett and Brassard, 1984;
Ekert, 1991) and efficient algorithms for problems that are
thought or known to be hard for classical computers (Ekert
and Jozsa, 1996; Childs and van Dam, 2010) show quantum
physics can have a profound impact on the way we think about
security, cryptography, and computation.
Despite the impressive experimental achievements of the

last decades, the current state of technology is still not
advanced enough for a full-scale universal quantum computer.
Quantum key distribution, on the other hand, has already
become an established technology and the first commercial
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systems have been demonstrated in practical scenarios (Peev
et al., 2009; Sasaki et al., 2011).
Another important well-established quantum technology is

quantum random number generation. Quantum random num-
ber generators (QRNGs) are devices that use quantum
mechanical effects to produce random numbers and have
applications that range from simulation to cryptography. They
are usually simpler than other quantum devices and are mature
enough to be applied. QRNGs using different quantum
phenomena have gone from the lab to the shelves with at
least eight existing commercial products (ID Quantique, 2014;
Micro Photon Devices, 2014; PicoQuant, 2014; QRB121,
2014; Quintessence Labs, 2014; Qutools, 2014; Wilber, 2014;
Hughes and Nordholt, 2016) and online servers that provide
quantum random numbers on demand (Walker, 1996;
University of Geneva, 2004; Stevanović et al., 2008; ANU,
2016; Humboldt-Universität, 2016b), as well as many patents
(Kim and Klass, 2001; Dultz et al., 2002; Dultz, Hildebrandt,
and Deutsche Telekom Ag, 2002; Klass, 2003, 2005;
Lutkenhaus, Cohen, and Lo, 2007; Trifonov, Vig, and
Magiq Technologies, Inc., 2007; Beausoleil, Munro, and
Spiller, 2008; Ribordy, Guinnard, and ID Quantique, 2009;
Vartsky et al., 2011; Sartor, Zimmermann, and Sony
Corporation, 2015). In the last few years there has also been
a large number of proposals, experiments, improvements, and
exciting theoretical results in randomness extraction and
randomness certification.
The aim of this review is to collect the most important

proposals for quantum random number generation and give an
introduction to the new advanced protocols that use quantum
physics to process, certify, or otherwise deal with random
strings. This paper complements previous surveys on the
topics of physical and quantum random number generation
(Stipčević, 2012; Stipčević and Koç, 2014; Ma et al., 2016)
with a focus on QRNGs based on quantum optics.
Section II gives a brief description of the most important

applications of randomness in science and computers. We
review the differences between algorithmic methods to pro-
duce random looking numbers and physical methods to
produce true random numbers and discuss when each method
is more appropriate. Because of their importance, we con-
centrate on applications to simulation and cryptography.
Section III describes the main functional elements of

quantum random number generators and their roles. In
Sec. IV we present some mathematical measures of random-
ness which are particularly useful to analyze the amount of
available random bits and the security of quantum random
number generators.
Section V discusses QRNGs based on radioactive decay,

which were the first proposed QRNGs and are still in use
today. Section VI introduces random number generators based
on electronic noise and analyses when they can be said to be
quantum.
Section VII discusses how optics has modernized QRNGs.

Most present-day QRNGs are based on quantum optics and
we review the multiple implementations that work with the
quantum states of light.
Section VIII covers alternative QRNGs based on nonoptical

quantum phenomena and Sec. IX is centered on those QRNGs
whose randomness is backed by quantum mechanics.

Section X gives a brief review on the available classical
randomness extraction methods and Sec. XI introduces the
quantum protocols for randomness expansion and amplifica-
tion that allow to produce good-quality random outputs from
weak randomness sources.
Section XII is an introduction to the statistical tests that

are usually employed to assess the quality of the final random
bit stream.
Finally, in Sec. XIII, we give an overview on the current

state of quantum random number generation and the chal-
lenges and opportunities for the next generation of quantum
devices in the field of randomness.

II. RANDOM NUMBERS AND THEIR APPLICATIONS

Random numbers are an essential resource in science,
technology, and many aspects of everyday life (Hayes,
2001). Randomness is required to different extents in appli-
cations such as cryptography, simulation, coordination in
computer networks or lotteries. Some applications require a
small amount of random numbers and still use manual and
mechanical methods to generate randomness, such as tossing a
coin, throwing a die, spinning a roulette wheel, or drawing a
ball from a lottery machine. Here we concern ourselves with
the generation of random numbers for computers.
Defining randomness is a deep philosophical problem and

we will not attempt to solve it here. In this section, we give
common operational definitions of randomness that fit the
different purposes the random numbers must fulfil. For
instance, in simulation, a method that generates numbers
simulating the statistics of the desired distribution can be
considered to be “random enough,” even if it produces a
predictable sequence.

A. Pseudorandom number generators and true random
number generators

In computing, it is important to distinguish between
algorithmically generated numbers that mimic the statistics
of random distributions and random numbers generated from
unpredictable physical events.
Generating random numbers directly from a computer

seems like a particularly attractive idea. Methods that produce
random numbers from a deterministic algorithm are called
pseudorandom number generators (PRNGs). While it is clear
that any algorithmically generated sequence cannot be truly
random, for many applications the appearance of randomness
is enough.1

PRNGs normally start from a small string of bits called
the seed that is used as the input of a procedure that outputs a
long sequence of bits following the statistics of the uniform
distribution. In principle, an RNG could produce numbers
obeying any random distribution, but the standard practice is

1The famous quote from von Neumann “Any one who considers
arithmetical methods of producing random numbers is, of course, in a
state of sin” is just a way to acknowledge this fact, but also to admit it
is an acceptable practice. In the same paper von Neumann (1951)
goes on to comment on some methods to produce pseudorandom
sequences.
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trying to provide a uniform distribution, from which we can
obtain the most commonly used distributions using well-
known transformations (Hörmann, Leydold, and Derflinger,
2004). Knuth (1997) gave an excellent survey on PRNGs and
how to transform uniform random numbers into other types of
random quantities in his second book of the series “The Art of
Computing Programming.”
A large number of PRNGs are based on number theory.

Linear congruential generators have been particularly popular
since Lehmer introduced them in 1951 (Lehmer, 1951). Linear
congruential generators produce random numbers from the
recursive formula

Xnþ1 ¼ ðaXn þ cÞ mod m; n ≥ 0; ð1Þ

where Xi is the ith digit in the sequence of random numbers,
m > 0 is the modulus, 0 ≤ a < m is called the multiplier, and
0 ≤ c < m the increment. The properties of the output depend
heavily on the correct choice of these parameters. A poor
choice can create an output sequence with a short period.
Its period is one of the most important properties of any

PRNG. The next number in a pseudorandom sequence is
determined from the internal state of a generator. For a finite
memory, the internal state will at some point be the same and
the output sequence will begin to repeat itself. PRNGs are
chosen to have large periods so that the repetition does not
appear during the intended operation time.
Apart from congruential linear generators, there is another

large family of PRNGs based on linear shift feedback registers
and their generalizations. The most notable generator in this
class is the Mersenne Twister (Matsumoto and Nishimura,
1998), which belongs to the family of twisted generalized
linear shift feedback registers. The Mersenne Twister has a
period which is a Mersenne prime of the form 2n − 1, for an
integer n. The most widely used pseudorandom number
generator is the MT19937, the standard implementation of
the Mersenne Twister with a period 219937 − 1. It is the default
generator in many programming languages and popular
scientific software.
L’Ecuyer (2012) gives a good review of these and other

alternative PRNGs based on different principles.
Pseudorandom numbers have certain advantages that make

them popular. They can be much faster than alternative
random number generation methods and their results are
reproducible. For instance, we can repeat the exact same
simulation if we know the seed. However, for many appli-
cations, unpredictability is an important requisite. Clearly, a
predictable lottery is not acceptable, even if all the resulting
numbers are uniformly distributed. Some pseudorandom
generators are designed to be unpredictable (see Sec. II.C),
but applications that need an output that cannot be guessed
usually turn to true random number generators (TRNGs), if
only to renew the seed of a PRNG.
True random number generators measure some unpredict-

able or, at least, difficult to predict physical process and use
the results to create a sequence of random numbers. They
either rely on unpredictable values that can be accessed from
the software inside the computer or create the sequence in a
special-purpose device that feeds it into the operating system.

The process of collecting unpredictable data is usually
called entropy gathering. Some of the standard entropy
sources the operating system can access include data from
the sound card, disk access times, the timing of interrupts, or
user interaction data, such as mouse motion or keystrokes, to
name a few. The way the Linux operating systems collect
entropy and convert it into random bits (Gutterman, Pinkas,
and Reinman, 2006) is an illustrative example of many of the
most usual methods. Some call these generators that use
nondeterministic events, nonphysical nondeterministic RNGs
(Killmann and Schindler, 2008) that stand in contrast to
physical TRNGs based in nondeterministic physical effects
in electronic circuits or in the result of some physical
experiment. There are physical TRNGs based on different
principles, such as chaotic systems (Stojanovski and Kocarev,
2001; Stojanovski, Pihl, and Kocarev, 2001), thermal noise in
electronic circuits (Murry, 1970; Petrie and Connelly, 2000),
free running oscillators (Kohlbrenner and Gaj, 2004), or
biometric parameters (Szczepanski et al., 2004) to name a
few examples.
Some vendors include integrated physical random

number generators in their processors. Intel has included
in its recent processors a digital RNG based on a metastable
latch that, due to thermal noise, suffers jumps in its state at
around a 3 GHz rate. This integrated RNG can be directly
accessed from a processor instruction, RdRand (Taylor and
Cox, 2011; Hamburg, Kocher, and Marson, 2012). Similarly,
the VIA Technologies Nehemiah processor core includes
an on-chip random number generator which is based on a
series of oscillators where thermal noise alters the jitter so
that the combination of the oscillators’ output is random
(Cryptography Research Inc., 2003). These integrated RNGs
include conditioning circuits that process the output to
remove biases.
With an integrated physical random number generator there

is always an available source of entropy, and we are not
limited to other sources of randomness that might not provide
fresh entropy in a reliable and steady fashion. For instance,
many servers are connected to a limited number of peripherals
and do not have access to many random events like mouse
motions. These servers can gather entropy only slowly and
under severe constraints.
An integrated physical generator is a convenient addition,

but it can also be complemented with the use of external
RNGs. This can be a good solution if we do not trust the
mechanism in the implementation, the vendor has not released
it, or we suspect the chip might have a back door either by
design or by sabotage (Becker et al., 2014).
Quantum random number generators are a particular case of

physical TRNGs in which the data are the result of a quantum
event. As opposed to other physical systems where uncer-
tainty is a result of an incomplete knowledge of the system,
true randomness is an essential part of quantum mechanics as
we know it.
At first sight, physical RNGs seem more desirable that

deterministic methods. However, there are inconveniences
that have impeded their wider adoption. Some of the problems
in physical RNGs are as follows:

(1) Limited generation rate: Physical RNG usually pro-
duce random numbers at a much smaller rate than
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software methods. In many cases, there is a funda-
mental limitation in the rate of change of the sampled
physical parameter. If the system is sampled at a high
rate, there is not enough time for the system to change
and the random numbers are not independent.

(2) It is difficult to give a convincing argument for the
randomness of the data. There can be reasonable
doubts about the randomness of the chosen physical
phenomenon. Many physical random number gener-
ators rely on our ignorance to describe a physical
process rather than in its intrinsic randomness.

(3) Adding an external device is usually inconvenient.
(4) Failures are difficult to detect. If a hardware random

number generator fails during operation, it can be
difficult to notice. Official recommendations suggest
introducing a startup test, a total failure test, and an
online test to check errors during operation (Schindler
and Killmann, 2003; Killmann and Schindler, 2011).

The advanced quantum random number generators that
have appeared with the impulse of quantum information
research try to solve some of these shortcomings of traditional
TRNGs. They offer a solution based on a trusted randomness
source and many from the different implementations achieve
fast generation rates, normally above the megabit per second,
as seen in the multiple optical implementations described in
Sec. VII. This faster rate allows new applications for TRNGs,
such as online casinos and Internet gambling, which require a
constant stream of random data and cannot use the slower
methods of traditional daily or weekly lotteries (ID Quantique,
2011; PokerStars, 2016).
An important distinction between pseudorandom number

generators and physical random number generators is the
focus on product or process randomness (Eagle, 2005; Calude,
2015). For pseudorandom number generators we can evaluate
only the output strings. We focus on the product of the
ultimately deterministic algorithm and try to determine
whether the string has all the properties of a random sequence.
In order to determine if we have product randomness our
options are limited to checking the output strings and
submitting them to certain statistical test (see Sec. XII).
In physical random number generators we concentrate on

process randomness. We look for a process that produces a
random output and seek to obtain true random numbers from
fundamentally random physical phenomena. Here random-
ness is usually taken as unpredictability.
While properly classical phenomena cannot be considered

truly random, in common use, the terms physical and true
random number generator are used interchangeably. Usually, it
is fine to use an unpredictable physical system as a randomness
source. However, there remains doubt whether the backing
physical process is truly random or, at least, presents serious
difficulties to be predicted, as it happens in a chaotic system, or
we simply have a poor model and a better one could destroy the
illusion of randomness. Quantum random number generators
excel in that aspect: they use very well-defined inherently
random processes as the source of their bits.
In the remainder of this section we consider how algo-

rithmic and physical random number generation methods are
employed in two of the most important families of applica-
tions for RNGs, simulation and cryptography. We go through

the particular requirements of randomness of each application
and discuss the RNGs that are currently used in each case
and the dangers of choosing a wrong randomness generation
method. We then discuss random number generation in
fundamental science experiments.

B. Random numbers in simulation

Random numbers play an essential role in many scientific
fields. They are fundamental ingredients in randomized
algorithms, which have a wide range of applications in
simulation, computing, number theory, and other branches
of science and engineering (Karp, 1991; Motwani and
Raghavan, 1996).
Simplified models of the reality are indispensable tools

when we want to predict the behavior of complex systems that
cannot be accurately described with a closed formula or when
the computational needs for a full numerical analysis are too
high. These models turn to random numbers to incorporate the
combined effect of all that is left out. Thus, random number
generation is needed in simulations in engineering, network,
manufacturing, business, and computer science problems
(Fishman, 1978; Bratley, Fox, and Schrage, 1987; Law and
Kelton, 2000). The usual hypothesis is that we can obtain
accurate results if we study enough cases chosen uniformly at
random. These results, while probabilistic, are usually repre-
sentative. We need, nevertheless, good random numbers. For
instance, in the social sciences it is crucial to have a sound
random sampling method to be confident that the study group
is a faithful proxy for the whole population that we want to
describe (Lohr, 2010).
A particularly important area is Monte Carlo and quasi

Monte Carlo methods (Metropolis and Ulam, 1949;
Niederreiter, 1978; Gentle, 2009) in which we can find the
solution to a complex problem by averaging many random
instances. These methods are effective in solving problems in
statistical physics and numerical integration, where they are
extensively used. If we sample the state space really at
random, the result is likely to be correct, but, due to the high
volume of data they require, these algorithms usually get their
random numbers from a PRNG. When correctly done, this is
enough. In simulation we only need a generator following the
right statistics. However, certain generators that seem reliable
under the usual tests (see Sec. XII) have undetected long range
correlations that can result in a wrong solution. This is a
general problem for congruential generators. Marsaglia (1968)
showed that, choosing the right coordinates, consecutive
random numbers from multiplicative congruential generators
cluster into clear patterns. There are ways to correct this bias
(Bauke and Mertens, 2007), but there exist many examples of
simulations using faulty PRNG that gave results that, when
compared to a known solution, were proved to be wrong,
while a different, better PRNG gave the correct answer. There
are numerous recorded cases of such failures for the Ising
model (Kalle and Wansleben, 1984; Hoogland, Compagner,
and Blöte, 1985; Parisi and Rapuano, 1985; Milchev, Binder,
and Heermann, 1986; Ferrenberg, Landau, and Wong, 1992;
Schmid and Wilding, 1996; Ossola and Sokal, 2004) and
related problems (Grassberger, 1993; Shchur, Heringa, and
Blöte, 1997; Ziff, 1998; Hongo, Maezono, and Miura, 2010).
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Choosing a bad seed during initialization can also result in a
correlated output (Matsumoto et al., 2007).
Because of these issues, there are some that have proposed

to test PRNGs with the practical problems they are going to
solve in addition to the standard statistical tests (Coddington,
1994; Vattulainen, Ala-Nissila, and Kankaala, 1994, 1995;
Coddington, 1996). For Monte Carlo methods it is also a
generally good idea contrasting the results of the same
algorithm with different PRNGs, which are unlikely to have
the same kind of bias.
True RNG are seldom used for simulation apart from

seeding the PRNG. They face several challenges. They are
slow when compared to the fastest PRNGs and their results are
not easy to reproduce. This is a problem during debugging and
replication. The only way to repeat the results of a TRNG is
storing the sequence, which can be extremely large for a
Monte Carlo run. They also need a fast method to interface
with the processor. Anyway, true random number generators
are adequate for simulation. While the generation rates of
present quantum RNGs are still a few orders of magnitude
below those of good-quality PRNGs, they are growing and
QRNGs have shown they can be used, at a speed disadvant-
age, in Monte Carlo simulation (du Preez et al., 2011).
Improvements in the generation speed could make them a
viable alternative in certain applications.

C. Random numbers in cryptography

Randomness is also a basic cryptographic primitive. Most
of modern cryptography follows Kerckhoffs’s principle
(Kerckhoffs, 1883) and assumes any cryptographic system
can fall into the hands of the adversary and that all the details
of the system are perfectly known. Cryptographic systems are
therefore open and all the security rests in the choice of a
secret key. That way if a channel is compromised, the users
just need to change that key. This has many advantages and is
generally considered good practice.
In that context, it is of the utmost importance to choose a

random key, which usually means choosing an n-bit string
uniformly at random from all the key space. Similarly, random
numbers with sometimes more relaxed randomness requisites
are needed in other cryptographic protocols (Gennaro, 2006).
Random numbers are required in nonces (numbers that must
be used only once), in initialization vectors, in sequence
numbers (Networking Working Group, 1996), in salt2 to avoid
dictionary attacks in hashed password lists and in digital

signatures, as well as in many interactive protocols
(Goldreich, 1999).
Quantum cryptography also needs a reliable randomness

source. Quantum key distribution is open to attacks if the
measurement bases and the states are not chosen in a truly
random way, as has been shown for the BB84 protocol (Bouda
et al., 2012; Li et al., 2015).
In cryptography it is not enough that the random numbers

are uniform. They must also be unpredictable and the
generator should limit the damage of any compromised
key. There are at least two new conditions for random
numbers to be used in cryptography:

(1) Unpredictability (forward security): an attacker that
knows the whole sequence cannot guess the next bit
with a probability better than one-half.

(2) Backward security: knowledge of a part of the se-
quence shall not permit an attacker to compute the
previous values of the generator with better accuracy
than guessing.

For practical purposes, both requisites of unpredictability
can be reduced to polynomial-time unpredictability: that no
algorithm can take a subsequence from the generator and guess
efficiently (in polynomial time) any previous or following
subsequences with better results than total random guessing.
This concept is based on Yao’s definition of indistinguishable
sources (Yao, 1982).
Most PRNGs are not up to the task of generating

cryptographically secure random numbers. For instance,
the internal state in the Mersenne Twister can be deduced from
a long enough output sequence (Matsumoto and Nishimura,
1998) and the output of a large class of general congruential
generators can be predicted without even knowing the
parameters in the generator (Krawczyk, 1990).
There are, however, established ways to use pseudorandom

number generators in cryptographic applications. Algorithmic
generators that fulfil the additional criteria are called
cryptographically secure pseudorandom number generators
(CSPRNGs). Two examples based on number theory are the
Blum andMicali (1984) and the Blum, Blum, and Shub (1986)
generators. We use the Blum-Blum-Shub generator as an
illustration. The output bits come from the recursive formula

Xiþ1 ¼ X2
i mod N ð2Þ

for N ¼ pq the product of two primes p and q congruent
to 3 mod 4. Xi is the ith number used as the internal state.
The algorithm has N and X0 as inputs and the ith output bit is
the parity of Xi (or, in some variations, a few least significant
bits). The initial state X0 should come from a TRNG. This
generator has some desirable properties as long as certain
common computational complexity assumptions hold. For
instance, even if an attacker learned the internal state Xi at
stage i, we keep unpredictability to the left (the preceding bits
of the binary string are not compromised). Guessing Xi−1 from
Xi is computationally hard unless the quadratic residuosity
problem can be solved in polynomial time. Later work showed
that breaking the Blum-Blum-Shub generator is equivalent to
factoring (Vazirani and Vazirani, 1985a). This is considered
computationally secure in many cryptographic protocols.
However, an attacker with a quantum computer that knows

2Passwords should not be stored directly as text to prevent further
damage if the password file is compromised. The common practice is
to store the cryptographic hash of the password string, which, ideally,
is a fixed-length bit string that looks random and from which it is
unfeasible to recover the original password. However, it is easy to
compile a list of the most common passwords and create a list of their
hashes. This is called a dictionary attack and it allows an adversary to
find the original password from the hashed password list by
comparison. One way to hamper this attack is to include a random
sequence, called salt, that is hashed together with the password. The
salt string is public, but different for every password in the list,
making dictionary attacks computationally costly (precomputed
universal tables are no longer a valid shortcut).
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N could use Shor’s algorithm for integer factorization to break
the security of the generator (Shor, 1997).
There are also variations of the Mersenne Twister intended

to make it secure for cryptographic use (Matsumoto et al.,
2005, 2008). Other approaches to CSPRNGs use crypto-
graphic protocols such as data encryption standard (DES)
or advanced encryption standard (AES) as blocks that trans-
form a string of bits using as their secret key a processed
seed from the computer’s entropy pool. An example is the
random number generation recommendation for banking in
the ANSI X9.17 key management standard (American
National Standards Institute, 1985).
There are different standards and recommendations for

the cryptographic use of random number generators in key
generation (National Institute of Standards and Technology,
2001; Barker and Roginsky, 2012) and in financial systems
(American National Standards Institute, 2006), with instruc-
tions on how to treat the sources of entropy for seeding
PRNGs (International Organization for Standardization, 2011;
Turan et al., 2016).
Cryptographical random number generators, as any critical

part in a cryptographic protocol, can be subject to different
cryptanalytic attacks (Kelsey et al., 1998). There are also some
quantum attacks that offer a moderate advantage with respect
to classical strategies (Guedes, de Assis, and Lula, 2013).
Certain generators are specifically designed for cryptogra-

phy and are built to avoid common attacks. An example is the
Fortuna pseudorandom number generator that uses multiple
sources of entropy to reseed as frequently as possible so that,
if the generator is compromised at some time, the previous
output remains unguessable (Ferguson, Schneier, and Kohno,
2010). This and similar cryptographic generators are config-
urable and allow one to replace the protocols inside their
constituent blocks.
The design of cryptographically secure RNGs is far from

trivial. There are multiple cases of faulty implementations of
RNGs that have led to serious vulnerabilities. One common
pitfall is the failure to properly seed the generator. Even if the
transformation on the seed is secure and cannot be inverted, if
there is not enough entropy an attacker can launch a brute force
attack and try all the possible seeds. The outputs can then be
compared to the output of the generator and the attacker can
predict which keys the user has generated. This has happened
many times since the early attacks on the secure sockets layer
(SSL) keys generated in the Netscape browser, which used
predictable sources like the time of the day or process numbers
to seed its generator (Goldberg and Wagner, 1996; Shepherd,
1996). Similarly, a bug in the OpenSSL library resulted in a
seed of limited entropy that used as its only randomness source
process identifiers, which have only 215 possible values
(Ahmad, 2008). The resulting possible keys could be generated
by brute force in a few hours. Poor initialization can also
weaken the random numbers in operating systems like
Windows 2000 (Dorrendorf, Gutterman, and Pinkas, 2009).
A few more examples of vulnerabilities due to initialization
problems or other bad quality random number generators
are weak Rivest-Shamir-Adleman (RSA) key generation
in network devices (Heninger et al., 2012; Lenstra et al.,
2012), repeated or guessable keys produced inside smart

cards (Nohl et al., 2008; Bernstein et al., 2013; Courtois et al.,
2013), and the predictable random sequences that are used for
cryptographic purposes in Android (Kim, Han, and Lee, 2013;
Michaelis, Meyer, and Schwenk, 2013).
In this respect, physical RNGs, including QRNGs, can

serve as way to seed CSPRNGs, preferably as an additional
source of entropy. There are still some important precautions.
Certain attacks specifically target TRNGs (Zheng and
Matsumoto, 1997; Soucarros et al., 2013) and they can be
sensitive to environmental variables (Soucarros et al., 2011).
There are already some proposals to test QRNG (Walenta
et al., 2015) under the online test of the BSI AIS 20=31
standard from the German Federal Office for Information
Security (Killmann and Schindler, 2011) to make sure they do
not fail during operation. As long as these aspects are taken
into account, the relatively high rate of QRNGs makes them
also a viable option to directly generate keys, probably after
some kind of postprocessing.
In fact quantum key distribution (QKD) (Bennett and

Brassard, 1984; Ekert, 1991; Gisin et al., 2002; Scarani et al.,
2009; Lo, Curty, and Tamaki, 2014) can be seen as nothing
more than a sophisticated distributed secure random number
generator that includes a physical method to generate entropy
and a randomness amplification algorithm that weeds out the
bits that could have been compromised (Owens, Hughes, and
Nordholt, 2008).
In that interpretation, many quantum hacking methods can

be considered as attacks to an RNG or to the randomness
generation block inside the QKD system (Stipčević, 2014). For
instance, in detector blinding attacks (Lydersen et al., 2010;
Gerhardt et al., 2011), an attacker can selectively disable the
detectors in the receiver and eliminate any randomness in the
measurement, determining the result. Similarly, time shift
attacks take advantage of different detection efficiencies with
time to make measurement in a chosen basis more or less likely
introducing a bias (Zhao et al., 2008) and attacks based on
imperfect beam splitters perform a similar feat by introducing
unbalances in the way the quantum states are directed to each
measurement configuration (H.-W. Li et al., 2011).
QKD protocols assume they have access to true randomness

and QRNGs are quite adequate for that purpose. We will see
they are faster than alternative TRNGs, produce random
numbers of good quality, and suppose small deviations from
the usual configuration of the equipment (they can be built
with the same technology and their cost is only a small
fraction of the total).

D. Random numbers in fundamental science

Finally, truly random numbers play a special role in
experiments that try to determine the nature of the world.
For philosophical reasons, in some proof of principle experi-
ments we need to remove any possible bias when choosing a
measurement or when making other decision. In this respect,
quantum random number generators stand in a privileged
position. Quantum mechanics is the only theory that, accord-
ing to our understanding, offers true randomness.
This is particularly important in many experiments on the

foundations of quantum mechanics, where many of the
thought experiments that helped to shape our understanding
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of the quantum theory have entered the lab and can be tested
experimentally (Shadbolt et al., 2014). Quantum random
numbers can also appear in any experiment where we want
to be sure there is no hidden bias or that our decisions are
independent from previous states of the system. Curiously,
one of the early quantum random number generators based
on radioactive decay, described in Sec. V, was designed as a
way to remove bias in parapsychology experiments (Schmidt,
1970a, 1970b). Later, QRNGs have become part in experi-
ments where randomness is a philosophical necessity.
Quantum random number generators are a good solution in

experiments that test the predictions of the quantum theory.
They can be built with equipment similar to that of the
experiment or even be integrated into the experimental setup.
While we must trust the inherent randomness of quantum
effects, they can be instrumental in exploring other aspects of
quantum mechanics like complementarity or nonlocality that
are not directly dependent on the randomness of quantum
measurement. Experimental tests of properties like the wave-
particle duality usually require one to take random decisions
in a short time and quantum random number generators can
fulfil that mission.
Experimental tests of Bell’s inequality (Brunner et al.,

2014) need a random choice of basis which can be done with
an external QRNG connected to a switch as in the experiments
of Weihs et al. (1998) and Scheidl et al. (2010) that used the
QRNG in Jennewein et al. (2000) or with a passive choice,
where the quantum randomness comes from separating the
paths of the photons in the experiment in a balanced beam
splitter (Tittel et al., 1999), which can be equivalent in the
right conditions (Gisin and Zbinden, 1999).
We also need true randomness for Wheeler’s delayed-

choice experiment in which a photon inside an interferometer
can behave like a wave or a particle depending on whether we
close the interferometer or not (Wheeler, 1978). If the choice
is delayed to after the photon is inside the interferometer, the
photon must be able to behave as both a wave and a particle3

as the complete setup had not been decided when the photon
entered it. From a fundamental point of view, it is crucial that
the decision is made after the photon enters the interferometer.
We need a fast and truly random number generator. The
experiment in Alley, Jakubowicz, and Wickes (1984) used a
single photon from a weak light source with a 50% probability
of firing a detector connected to a switch and the experiments
in Jacques et al. (2007, 2008) made this decision using a
QRNG based on the measurement of the amplified shot noise
of white light.
Other delayed-choice experiments are the ones based on

entanglement swapping (Yurke and Stoler, 1992; Zukowski
et al., 1993) following the proposal by Peres (2000) in which
whether two photons are entangled or not is decided after
they have been measured (Ma et al., 2012) and the quantum
erasure experiments that erase path information (X.-S. Ma
et al., 2013), in both cases using the QRNG of Jennewein
et al. (2000).

III. BLOCK DESCRIPTION

Physical random number generators can be divided into
separate blocks with well-defined subtasks. The two most
important blocks are the entropy source and the postprocessing
stage. The entropy source consists of a physical system with
some random physical quantity and the measurement equip-
ment that reads these random variables. In digital random
number generators we usually need to convert analog mea-
surements into bit strings with the help of analog-to-digital
converters. Measurement and quantization are noisy processes
and there will be some contamination in what is called the raw
bit string even if the measured quantity is truly random and free
from correlations. The postprocessing block takes the raw bits
and distills a shorter sequence without correlations.
The most important phase in postprocessing is randomness

extraction. Randomness extractors are functions that trans-
form the bits from the raw sequence into a uniform random
sequence at the output with most or all of the randomness
available in the input.
Figure 1 shows the block diagram of a typical physical

random number generator. The exact parts vary from device to
device. For instance, some physical random number gener-
ators are designed to produce raw sequences with negligible
bias and forgo the postprocessing phase. There is a delicate
balance in choosing an adequate postprocessing system. More
involved randomness extraction methods usually allow one to
minimize the amount of random bits that are thrown away,
but are slower. The overall bit rate depends on whether the
increased production of bits compensates or not for the slower
processing circuit or if it is justified to use a faster but more
complex hardware to remove biases from the raw bit
sequence.
In this review, we concentrate on the different quantum

systems that can work as an entropy source. Section V
describes measurements of radioactive decay. Section VII
explains the many possible sources of entropy available in
quantum optics. Section VIII discusses alternative quantum
systems that do not use light.
Section X gives a brief review on some classical post-

processing algorithms used to remove existing biases and
Sec. XI introduces different quantum protocols that can be
combined with imperfect randomness sources to obtain uni-
form output strings.

Physical system

Entropy source

Measurement

Raw bits

1 1 1 0 1 1 0 1 1 1 
1 0 1 0 0 0 0 1 0 1

Postprocessing
1 0 1 1 0 0

random sequence
Extracted

FIG. 1. Block diagram of a typical physical random number
generator. A measurement system registers an unpredictable
magnitude from a well-characterized physical system and con-
verts the results into a binary raw bit sequence, which can still
show some bias. The postprocessing stage extracts a smaller,
ideally bias-free, random sequence assuming some bound to the
amount of randomness of the raw sequence. The estimation
usually comes from a thorough analysis of the original random
physical system and the measurement errors.

3Indeed, the experiments show the photon can also behave as
different combinations in between, with different degrees of visibility
and distinguishability.
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Before describing the particular systems from which
quantum random number generators obtain randomness, in
Sec. IV we comment on the most common ways to measure
entropy and the contexts in which each entropy measure can
be applied. Some choose different criteria that will be
mentioned when we describe the corresponding quantum
random number generator.
In certain quantum random number generators, such as

device-independent generators (Sec. IX.B), the physical
measurement process and randomness estimation and extrac-
tion are intimately linked and we discuss them together.

IV. ENTROPY ESTIMATION

Entropy in its many forms offers a convenient way to
measure randomness. The different entropies give a math-
ematical measure for surprise (how unexpected a value is).
We express entropy in bits, in the information theory sense,
which is closely related to the concept of thermodynamic
entropy but takes it to a more natural formulation for
information processing and communications.
A simple interesting measure is the Shannon entropy

(Shannon, 1948). For a random variable X with a probability
distribution PX so that PXðxÞ is the probability of getting
the outcome x from a discrete set A (an alphabet) with N
possible values for x, the Shannon entropy of X, HðXÞ, is
defined as

HðXÞ ¼ −
X
x∈A

PXðxÞ log2 PXðxÞ: ð3Þ

The Shannon entropy gives the average number of bits of
information we can extract from a single outcome. For an
alphabet of cardinality N ¼ jAj and a uniform probability
distribution, all the results are equally likely and we need
log2 N bits to describe them. Imagine we place all the possible
outcomes in a table and assign a log2 N-bit string to each of
them. In a uniform random process all the outcomes are
equally “surprising” and we need to use all the bits. Less
surprising distributions where some results are more likely
than others would need, on average, less bits to be described.
Table I shows an example of bit representations for the results
of throwing a balanced and an unbalanced four-sided die (a
tetrahedron).
The Shannon entropy offers a rough estimation of random-

ness. Ideally, we want to generate an almost uniform dis-
tribution with a Shannon entropy as close to log2 N as
possible. A higher Shannon entropy means we have a
distribution closer to uniform and that we can extract more
random bits from the process, but there are other entropy
measures that can give us a more useful figure when deciding
how to use a randomness extractor to make the most efficient
use of the available randomness, as described in Sec. X.
An interesting generalization of the Shannon entropy is the

family of Rényi entropies (Rényi, 1961). The Rényi entropy of
order α is defined as

HαðXÞ ¼
1

1 − α
log2

X
x∈A

PXðxÞα: ð4Þ

The Shannon entropy corresponds to the Rényi entropy in the
limit α → 1. For any distribution, Rényi entropies obey the
inequality

HαðXÞ ≥ HβðXÞ ð5Þ

for α ≤ β. Entropies of a different orders appear in many
security proofs and randomness bounds (Cachin, 1997).
A particularly useful quantity is the min-entropy H∞ðXÞ,

which comes from taking the Rényi entropy when α → ∞.
Alternatively, it can be defined as

H∞ ¼ −log2½max
x∈A

PXðxÞ�; ð6Þ

where we take the logarithm of the probability of the most
likely outcome. The min-entropy gives a lower, worst-case
bound to all the Rényi entropies. 2−H∞ðXÞ corresponds to the
probability of guessing at the first attempt the outcome from
measuring a random variable Xwith a known distribution. The
optimal strategy is guessing the result is the most likely one.
In the example given in Table I, for the uniform distribution
the min-entropy is 2, but for the loaded die we have a value
− log2ð1=2Þ ¼ 1. If we guess an outcome of 1 we are right
half of the time.
In a distribution with min-entropy k, every possible outcome

x has a bounded probability PXðxÞ ≤ 2−k. Any probability
distribution of min-entropy k can be written as a convex
combination of distributions that are uniform for k bits. This
gives an important interpretation of min-entropy as the number
of uniform bits that can be extracted from a given distribution.
Intuitively, if no single string is too likely, for every random
outcome we can extract about k bits of “surprise,” but no more
(Chor and Goldreich, 1988; Zuckerman, 1990).
There are explicit constructions, like Trevisan’s extractor

(Trevisan, 2001) and derived functions (Shaltiel, 2004), that
can give almost k bits with a probability distribution as close

TABLE I. Entropy calculation example for a fair and a loaded four-
sided die. For each possible outcome of a throw (first column) there is
an associated probability shown in the second column. The third
column shows a possible way to assign a bit sequence to each
outcome. For a balanced die (upper table) we have 2 bits of entropy
HðXÞ ¼ −4ð1=4Þ log2ð1=4Þ ¼ 2. For a loaded die (lower table), we
have an entropy HðXÞ ¼ −ð1=2Þ log2ð1=2Þ − ð1=4Þ log2ð1=4Þ−
2ð1=8Þ log2ð1=8Þ ¼ 1.75. For the given encoding, we need an
average of 1ð1=2Þ þ 2ð1=4Þ þ 2 × 3ð1=8Þ ¼ 1.75 bits to describe
the result.

Fair die
x PðxÞ Sequence

1 1=4 00
2 1=4 01
3 1=4 10
4 1=4 11

Loaded die
x PðxÞ Sequence

1 1=2 0
2 1=4 10
3 1=8 110
4 1=8 111
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to uniform as desired, provided there are some ancillary
random bits of good quality. There are different kinds of
randomness extractors (see Sec. X) in which min-entropy or
derived quantities offer an upper bound on the number of
available random bits.
Rényi entropies, including Shannon entropy and min-

entropy, can be generalized to study joint distributions where
part of the system is in the power of a legitimate user A and
part of the system, which can be correlated to the first part, is
in the possession of an eavesdropper B. In random number
generation, the most useful quantity is conditional min-
entropy. In the most general case, we can include distributions
that come from quantum systems if we consider the density
matrix ρAB of a state in the joint Hilbert space HAB ¼ HA ⊗
HB with a subspace that is restricted to A,HA, and a subspace
only B can access, HB. The conditional min-entropy of ρAB
related to a reduced density state σB in HB is defined as

H∞ðAjBÞρ ¼ sup
σB

ð− log2 λÞ; ð7Þ

where λ is the smallest real number for which

λIA ⊗ σB − ρAB ð8Þ

is non-negative (Renner, 2005) when IA is the identity matrix
corresponding to HA and we maximize over the density
matrices σB with trace 1 describing the subsystem in HB.
Conditional min-entropy gives how much information about
the results of a measurement by A can be inferred from
measurements on B alone. For classical distributions,
2−H∞ðAjBÞρ gives the probability of guessing the outcomes
of A from our knowledge of B using the optimal strategy
(König, Renner, and Schaffner, 2009). If there is no side
information (the systems of A and B are uncorrelated), we
recover the definition and interpretation of the min-entropy
in Eq. (6).
When considering randomness extractors, it is also inter-

esting to speak of the smooth min-entropy

Hϵ
∞ðAjBÞρ ¼ sup

~ρ
H∞ðAjBÞ~ρ ð9Þ

with a supremum taken over all the non-negative
operators ~ρAB of trace 1 that are close to ρAB in the sense

that ‖~ρAB − ρAB‖ ≤ ϵ for the L1 norm ‖A‖ ¼ tr
ffiffiffiffiffiffiffiffiffi
A†A

p
(König

and Renner, 2011).
Instead of giving asymptotic parameters, such as traditional

entropies, smooth entropies give results valid for a single
sample of a distribution. In random number generators,
smooth min-entropy is useful as an estimator of the amount
of random bits we can extract from a randomness source that
might be correlated with an external attacker. Smooth min-
entropy gives a tight bound on the length of the bits that a
randomness extractor can produce from a given joint distri-
bution and still give an output as close to uniform as desired
and uncorrelated to any external system (Renner, 2005;
König, Renner, and Schaffner, 2009).
For a general unknown source, estimating the min-

entropy is far from trivial. The problem is intractable for

any reasonable sampling circuit with limited size (Lyngsø and
Pedersen, 2002; Watson, 2016). We can only determine min-
entropy from measurement inefficiently. If our randomness
source is stable and faraway bits are independent, this cost can
be paid just once during characterization. Normally, physical
random number generators use conservative, worst-case
bounds for the min-entropy based on a deep analysis of the
physical origin of the randomness and there are standardized
methods for online estimation (Turan et al., 2016). In that
respect, quantum random number generators offer a clear
advantage: their source of randomness is usually a well-
defined quantum phenomenon. Quantum theory gives very
accurate predictions. When compared to other random number
generators that gather noise from complex processes such as
atmospheric noise, quantum random number generators have
the virtue of a precise description of the randomness source
which can be used to derive limits to the available min-
entropy, even accounting for additional classical noise or the
presence of eavesdroppers.
Nevertheless, even for these well-characterized quantum

randomness sources, hidden correlations remain a challenge.
There might be memory effects or correlations between
consecutive runs of the quantum experiment that gives our
random numbers and we must take due care to ensure
independence and the lack of any experimental bias.

V. QUANTUM RANDOM NUMBER GENERATORS BASED
ON RADIOACTIVE DECAY

A. The first quantum random number generators

With the rise of computer simulation during the second half
of the 20th century, there was a growing need for electronic
random number generators (Hull and Dobell, 1962). At that
time, it was common to find tables of random numbers. The
most famous of such compilations is probably the book “A
million random digits with 100 000 normal deviates” from the
RAND Corporation (RAND Corporation, 1955). The num-
bers in the book were generated using an electronic roulette
wheel and were available in punched card format to allow easy
interfacing with computers. There also appeared many elec-
tronic random number generators designed to be connected to
computers or output devices like teleprinters (Sowey, 1972).
It was only natural for some researchers to turn to the

intrinsic source of randomness of quantum phenomena (Isida
and Ikeda, 1956; Manelis, 1961; Schmidt, 1970b; Vincent,
1970). Radioactive decay was a particularly accessible source
of true randomness. Geiger-Müller (GM) tubes were already
sensitive enough to capture and amplify α, β, and γ radiation
and reliable, well-characterized radioactive samples were
available. For simplicity, most radioactivity-based quantum
random number generators were based on the detection of β
radiation (emitted electrons).
In a GM detector a single particle produces an ionization

event that is amplified in a Townsend avalanche (Friedman,
1949). The result is a device that, when correctly configured,
produces a pulse for each detected particle. The probability of
any given atom to decay in a time interval ðt; tþ dtÞ is given
by an exponential random variable so that PðtÞdt ¼ λme−λmtdt
for a material with a decay constant λm. If the sample retains
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many of its original atoms (we are in times much smaller than
the half-life) and the sample-detector system undergoes
practically no change during our time interval (the position
of the sample is constant, the gas in the GM tube does not
become contaminated, etc.), the time between detected pulses
is also an exponential random variable. The times are
independent from previous results and the number of pulses
that arrive in a fixed time period follows a Poisson distribu-
tion. The exact rate depends on many factors, but it can be
determined experimentally and we can be satisfied that the
pulses arrive at independent times (Silverman et al., 1999).
The probability of findingm pulses in an observation period of
T seconds is

PmðTÞ ¼
ðλTÞm
m!

e−λT;

where λ gives the mean number of pulses we detect in 1 s for
our source and corresponds to the parameter of the exponen-
tial distribution.
The QRNGs we describe in this section are the forerunners

of the present day optical QRNGs we will see in Sec. VII that
use similar concepts and circuits, but replace the radioactive
source and the GM counter with photon sources and detectors.
The first QRNGs based on radioactive decay share many

common elements. Most use digital counters to convert the
pulses from the detector into random digits. A digital counter
increases its output value by 1 when it receives a pulse at its
input and can be reset to start the count from 0. Another key
element is timing with a digital clock. These QRNGs can be
best explained if we speak in terms of fast and slow clocks to
describe clocks with a frequency ν that is significantly greater
or smaller than the mean rate of detection. A fast clock, with
ν > λ, generates many pulses between Geiger counts and
when a slow clock, with ν < λ, produces a pulse, there has
been enough time to have registered many counts in the GM
detector.
With these elements, the randomness in the time of arrival

can be converted into random digits in a few different ways.
The generators of Isida and Ikeda (1956) and Vincent (1970)
use a counter driven by a fast clock that is read and then reset
to zero every time we get a count on the detector. The value of
the counter at the moment of the detection is used to produce
the random number. Figure 2 gives a graphical description
of the method. The distribution of values is not uniform and
some correction is necessary. If we are producing decimal
digits, we can take the least significant figure (Isida and Ikeda,
1956). The equivalent method for binary sequences is looking

at the parity of the value of the counter, checking if the
number of counted pulses is even or odd (Vincent, 1970).
This kind of correction draws from previous results for
true random number generators that face similar problems
(Thomson, 1959).
A second option is to use a slow clock to determine when to

read the counter. In the generator of Schmidt (1970b), the
pulses from the GM detector increase the value of a counter.
When the slow clock produces a new pulse, the value of the
counter is used as a random digit and the count starts again
from 0. The output corresponds to the number of particle
counts in each clock period. We restrict to a counter that
generates values from 0 toM − 1, a moduloM counter. When
M ¼ 2 we have a binary random number generator. The
distribution of the sampled digits is not uniform, but if we take
the modulo M addition of multiple outputs, we can obtain a
distribution with as small a bias as desired. This is called
“contraction” and was discussed in detail by Schmidt (1970b).
Figure 3 shows an example of this generation method.
Radioactive decay has also been used to generate white noise

for analog computers (Goodyear Aircraft Corporation, 1954;
Howe, 1961; Manelis, 1961). Random noise generation was
important, among others, in the analog calculations in airplane
design simulations. It also has applications as a test signal and,
generally, in communications and simulation problems where a
broadband signal is necessary (Gupta, 1975). In this case, the
pulses from the GM detector trigger a change of state in a
voltage signal. Whenever a particle is detected the signal goes
from high to low voltage or from low to high. The resulting
random signal is called random telegraph noise (Rice, 1944). In
this case we do not want a binary signal, but Gaussian noise.
Instead of sampling, the signal is directed to a low pass filter to
complete the noise generator.

B. Evolution

After the initial proposals, there have been different refine-
ments to the basic concept. QRNGs based on radioactive
decay are still popular. A good example is the web-based
random number server HotBits (Walker, 1996) that has been
working since 1996. In the HotBits generator, the random
times of arrival of the radiation to the Geiger counter give pairs
of intervals of random length. The time between two con-
secutive pulses is stored as t1 and compared to the time
between the next two pulses t2. The random bits come from
comparing the times. If t1 > t2 we output a 0 bit and if t1 < t2
we output a 1. The generator reverses the criterion for 0 and 1
for every time pair in order to compensate for small systematic
biases that might favor slightly unbalanced intervals. This

FIG. 3. Slow clock method: The Geiger detector is read at fixed
intervals, generating a random number that equals the number of
detections during the period.

FIG. 2. Fast clock method: A fast clock (down) is used to
increase a counter. Whenever a detection is made (up), the
counter is read and reset, generating one random number.
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provides a crude correction for small problems like, for
instance, the loss of radioactive material due to radioactive
disintegration that makes the second interval shorter on
average by a very short time. Figure 4 gives a graphical
description of the method.
Some modern proposals replace Geiger counters with

semiconductor detectors. Semiconductor devices such as
positive-intrinsic-negative photodiodes can also capture the
radiation from radioactive decay (Lutz, 2007; Knoll, 2010).
Semiconductor detectors are convenient, as they do not
require the same high voltage as Geiger tubes. The resulting
signal is weaker than that of GM counters, but there are low
noise amplifiers that can produce output pulses of a few volts
of amplitude. While they can have different sensitivities and
need calibration, for the generation of random numbers the
important property is not as much determining the actual rate
of the particles coming out of the source as it is registering
random events.
Using off-the-shelf semiconductor devices can simplify the

design of random number generators. One example of such
generators was given by Alkassar, Nicolay, and Rohe (2005)
with a variation of the time interval method. Instead of
comparing the time between pulses, the system reads a fast
clock every time a pulse arrives. If the clock is in a high state
(in the high voltage level of the clock cycle) at the moment of
arrival the generator outputs a 1. If it is low it outputs a 0. For a
good time resolution, the least significant bit of the digitized
time should be random and there is no need for postcorrection.
Two other proposals for QRNGs that use semiconductor

detectors with radioactive decay appear in Duggirala, Lal, and
Radhakrishnan (2010). The first proposal tries to address the
problem that in QRNG we have access to an exponential
random variable, the time of arrival, or a Poisson random
variable, the number of pulses in a fixed time interval. But, in
many occasions, RNGs are required to produce uniform
random numbers. An exponential random variable of param-
eter λ can be converted to a uniform random variable if we
compute

U ¼ e−λE; ð10Þ

where U is the uniform distribution and E is the exponential
distribution. The first proposal of Duggirala, Lal, and
Radhakrishnan (2010) addresses this with an RC circuit.
They use a semiconductor detector whose output pulses
trigger the fast discharge of a capacitor. The voltage at the
RC circuit when a pulse arrives is the output variable. This
approach has several limitations. It needs specialized

hardware to transform the voltage to the output and has
problems with noise. For that reason there is an alternative
proposal with an approach similar to Isida and Ikeda (1956)
and Vincent (1970), where a fast clock ν ≫ λ drives an N-bit
counter which is read when a pulse arrives. Here the clock is
supposed to be fast enough to guarantee the samples are
uniform in the 2N values.

C. Limitations

While QRNGs based on radioactive decay are a good way
to obtain high quality true random numbers, they have some
drawbacks that limit their practical use. An important barrier is
the low bit rate they can achieve, usually below a few hundred
kilobits per second.
The first problem is the need for a radioactive source. In

principle, all decay-based QRNGs could work on background
radiation. Unless it is isolated, a detector will count stray
cosmic rays, radiation from radium, thorium, or other radio-
active materials in the Earth’s crust or particles from radon on
air. However, natural activity rarely produces enough particles
to cause more that a few counts per second. This poses a
fundamental problem for the widespread use of radioactive
decay QRNGs. In order to achieve a fast rate, the QRNG
needs a highly radioactive source. The reviewed generators
used cobalt-60 (Isida and Ikeda, 1956), strontium-90
(Schmidt, 1970b), cesium-137 (Walker, 1996), americium-
241 (Alkassar, Nicolay, and Rohe, 2005), or nickel-63
(Duggirala, Lal, and Radhakrishnan, 2010). This is highly
inconvenient and requires improved safety measures. While α
sources like americium are easier to isolate and are common in
smoke alarms, the additional precautions prevent straightfor-
ward computer integration and this approach works well only
for dedicated isolated servers like HotBits (Walker, 1996).
A second limitation to the generated bit rate is the dead time

of the detectors. In Geiger counters the avalanche that amplifies
each count ionizes the gas inside the GM tube. The avalanche
stops when the positive ions surround the cathode inside the
tube. These ions prevent further avalanches until they have
returned to their normal state (Friedman, 1949). The dead time
is the minimum time for the GM tube to recover its full
detection capability and can go from tens of nanoseconds to a
few microseconds. This limits the count rate to the MHz range.
Semiconductor detectors also need to replenish the carriers after
each detection and have dead times in the microsecond range.
Dead time and other sources of nonuniformity need to be

corrected when generating random bits. Vincent (1971)
described some important cautions in a follow-up paper to
his original generator proposal. In general, the quality of the
generated bits will be good and, when there is some residual
bias, there exist simple postprocessing methods to recover a
random output.
A final problem specific to semiconductor detectors is the

damage they suffer from radiation. Geiger tubes also degrade
with time, but the effect of radiation on them has been
extensively studied, while semiconductors used specifically
for radiation detection are relatively new. As long as the
damage gives a progressive and slow reduction in efficiency,
the output would retain randomness, but more studies on the
long term behavior of these detectors are needed.

FIG. 4. Time difference method: This method compares the
time between two events in the Geiger detector. If ti < tiþ1 then
a bit with value of 1 is generated. Otherwise, the bit generated will
be zero.
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Despite these constraints, radioactive decay is a suitable
source of randomness for low speed applications. It can, for
instance, be used to provide entropy for the seed of pseudor-
andom number generators. For more demanding systems that
require high bit rates or when we want to avoid radioactive
sources, the recent optical QRNGs described in Sec. VII are
good substitutes.

VI. RANDOM NUMBER GENERATORS BASED ON NOISE

Noise in electronic circuits is one of the preferred sources
of entropy in classical physical random number generators.
Noise appears as an unwanted effect in electronic systems of
all kinds and it is readily available. A typical random number
generator using noise is shown in Fig. 5.
The noise source is represented as a resistor, but other

elements can take its place. A Zener diode operated in the
reverse breakdown region is another popular choice. In this
scheme, voltage fluctuations due to noise are amplified and
compared to a threshold to generate random bits. For a
threshold of 0 V, we can sample the amplified noise periodi-
cally and assign a 0 if we find a negative voltage and a 1 to a
positive voltage.
If, instead of sampling, we generate a pulse every time the

voltage from a white noise source crosses the threshold, the
output will be a series of pulses with times of arrival that
correspond to a Poisson distribution and we can use any of the
methods described in Sec. V to produce random sequences.
The electronic noise circuit replaces the Geiger counter in
an otherwise unchanged system. In fact, many proposals for
QRNG based on radioactive decay discuss both methods in
parallel (Vincent, 1970; Gude, 1985).
There are multiple examples of true random number

generators based on this electronic noise such as those in
Holman, Connelly, and Dowlatabadi (1997) and Petrie and
Connelly (2000) to name a few.
Noise in those systems comes fundamentally from two

sources, shot, or Schottky, noise (Schottky, 1918) and thermal,
or Johnson-Nyquist, noise (Johnson, 1928; Nyquist, 1928),
with flicker noise contributing sometimes at low frequencies.
Shot noise generates from quantum effects due to the
granularity of the current. Currents are formed by discrete
carriers and show quantum fluctuations. Thermal noise comes

from thermal agitation of the carriers and is produced by
statistical motion that depends on the temperature. In practice,
both noises tend to appear side by side and are difficult to
isolate. In many cases the frontier between shot and thermal
fluctuations is blurry (Landauer, 1993).
In this review, we will not discuss in detail random number

generators based on electronic noise. While electronic noise
coming from shot fluctuations can be rightfully said to be
quantum (Reznikov et al., 1998), it is usually not well
characterized and separated from thermal noise, it is subject
to many environmental fluctuations, and can show memory
effects (Stipčević, 2012). Somewhat arbitrarily, we choose to
concentrate on generators where the quantum effects are well
isolated and we have a higher degree of control. Unless there
is some interesting effect, we will not discuss true random
number generators where quantum noise is only an unquan-
tified part of the total available randomness.
There are a few interesting exceptions. Certain commercial

quantum random number generators use electronic noise in
semiconductors. For ComScire’s QRNG there is a detailed
estimation of the quantum entropy gathered from shot noise in
metal-oxide-semiconductor (MOS) transistors (Wilber, 2014).
Likewise, under the right conditions, Zener diodes can be
operated in a regime where quantum shot noise dominates
(Somlo, 1975; Stipčević, 2004).

VII. OPTICAL QUANTUM RANDOM NUMBER
GENERATORS

Most of the existing QRNGs are based on quantum optics.
The inherent randomness in many parameters of the quantum
states of light allows for a rich choice of implementations.
Light from lasers, light emitting diodes, or single-photon
sources is a convenient and affordable substitute for radio-
active material as a source of quantum randomness and there
are many available detectors. In this section, we study some of
the most common ways to harness quantum light to produce
random bits.
First, we give an overview of the concepts of quantum

optics that appear in the generators. Then, we propose a
classification of optical quantum random number generators
(OQRNGs) based on the generation mechanism. Table II
gives a summary of the covered optical generators with some
representative examples, the typical bit rates, and the limi-
tations of each kind of generator.

A. Quantum optics in random number generators

The optical field can be described at the quantum level in
terms of photons (Klauder and Sudarshan, 1968; Loudon,
2001). From the many possible families of quantum states,
Fock states and coherent states give the most relevant
description of the quantum states of light in random number
generators. Fock states, or number states, are described as
states jni that contain n photons sharing a mode (they have the
same frequency, polarization, temporal profile, and a common
path). Coherent states, which share many properties with
classical light, can be written as a superposition of number
states

AmplifierNoise source Comparator

FIG. 5. Conceptual representation of a typical noise-based
random number generator. The voltage coming from a source
of white noise is amplified and compared to a threshold in a
comparator to produce a digital signal with random transition
times. This signal can be sampled or processed later to give a
random bit sequence.
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jαi ¼ e−jαj2=2
X∞
n¼0

αnffiffiffiffiffi
n!

p jni; ð11Þ

where α is a complex number. The amplitude jαj2 corresponds
to the mean photon number of the state. Weak laser light is an
excellent approximation to a coherent state. We can also use
the coherent states from a laser to produce a proxy for single-
photon states by choosing a low enough intensity, as is usual,
for instance, in quantum key distribution with typical values of
α around 0.1.
In many applications we are interested only in producing

uncorrelated single photons. In that case, attenuated light from
a light emitting diode (LED) can be valid as long as we
generate photons with a separation larger than the coherence
time of the source.
There are many different technologies that can generate

single photons and detect them (Buller and Collins, 2010;
Eisaman et al., 2011). Photomultiplier tubes (PMTs), single-
photon avalanche photodiodes (SPADs) operating in the
Geiger mode or superconducting nanowire detectors are some
of the most popular detectors, but there is a growing number of
alternatives (Hadfield, 2009). For instance, there have been
important advances in silicon detectors (Ghioni et al., 2007)
that open the door to integration in electronic circuits and in
superconducting nanowire single-photon detectors that extend
the high-efficiency detection wavelengths to the near infrared
(Marsili et al., 2013).

Traditionally, while binary decisions between no photons
and one or more photons are relatively easy to take, single-
photon detectors have limited photon counting capabilities.
There are new improved detectors, but their cost is still high
and most applications use a binary approach to photon
detection. Another limitation to most single-photon detectors
is the time they need to recover after a detection, known as
dead time. We later see how these limitations affect our
quantum random number generators.

B. Branching path generators

OQRNGs take advantage of the random nature of quantum
measurement. In a large number of quantum random number
generators this measurement is taken over photons in a
superposition of two or more paths. For instance, if we define
a state j1i1j0i2 which represents one photon in the first of two
possible paths and a state j0i1j1i2 with the photon in the
second path, we can prepare a superposition

j1i1j0i2 þ j0i1j1i2ffiffiffi
2

p : ð12Þ

Measuring that state with a detector at the end of each
path will result in a click in just one of the detectors with
a probability one-half for each path. There are many
quantum optics experiments that generate similar states in
Mach-Zehnder interferometers and related optical setups.

TABLE II. Summary of the optical methods for quantum random number generation. The table gives the section where we describe the details
of each implementation, the principle of operation, a few representative examples, the order of magnitude of the typical bit rates of each
generator, and a list of the most important limitations.

Type (Sec.) Physical principle Representative examples Rate (order) Challenges

Branching path (VII.B) Path superposition +
measurement Jennewein et al. (2000) Mbps - Unbalanced detectors.

- Detector dead time.

Time of arrival (VII.C) Time of arrival statistics Stipčević and Rogina (2007), Wayne
et al. (2009), and Wahl et al. (2011) Mbps - Time precision.

- Detector dead time.

Photon counting
(VII.D) Photon number statistics Fürst et al. (2010) and Ren et al. (2011) Mbps

- Photon resolving
capability.

- Detector dead time.

Attenuated pulse
(VII.E)

Binary measurement of
coherent states Wei and Guo (2009a) Mbps - Source instability.

- Detector dead time.

Vacuum fluctuations
(VII.F) Shot-noise measurement

Gabriel et al. (2010), Shen, Tian, and
Zou (2010), and Symul, Assad, and

Lam (2011)
Mbps–Gbps

- Classical noise.

- Postprocessing.

Phase noise (VII.G) Laser phase noise Guo et al. (2010), Qi et al. (2010), and
Jofre et al. (2011) Gbps - Phase drift.

- Pulse repetition rate.

Amplified spontaneous
emission (ASE)
(VII.H)

Amplitude fluctuations in
ASE noise

Williams et al. (2010) and Argyris et al.
(2012) Gbps

- Sampling or digitization.

- Postprocessing.

Raman scattering
(VII.I)

Interaction with phonon
fluctuations

Bustard et al. (2011) and
Collins et al. (2015) kbps–Mbps

- Raman gain (stimulated).
- Detector dead time

(spontaneous).

Optical parametric
oscillators (OPOs)
(VII.J)

Bistability in optical
parametric oscillators

Marandi et al. (2011) and Marandi,
Leindecker, Vodopyanov,

and Byer (2012)
kbps

- Cavity decay time.
- Pump repetition rate.
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Figure 6 shows the archetypal QRNG that uses quantum
measurement with detectors in different positions as pro-
posed for the choice of basis in QKD4 (Rarity, Owens, and
Tapster, 1994). In this configuration, we have a balanced
beam splitter with equal transmissivity and reflectivity T ¼
R ¼ 1=2 so that classical light entering any of the two input
ports would be divided into two streams of the same optical
power, half going through and half reflecting. If we have a
single photon in one input and the vacuum in the second, we
cannot divide the power and we have the desired path
superposition. Conceptually, the simplest way to produce
random numbers from this path division is placing two
detectors D0 and D1, one for each output, and generate a bit
every time we detect a photon. Clicks in D0 would produce a
0 bit and clicks in D1 would produce a 1. Optical QRNGs
using spatial superpositions usually apply variations on this
basic scheme. In fact, in the original QKD application
(Rarity, Owens, and Tapster, 1994) the random number
generator was not fully implemented as a separate device
controlling the measurement basis in the receiver. Instead,
they used a passive implementation where the beam splitter
took the input state and sent it with equal probability to one
of two measurement setups, one for each possible basis. A
complete implementation with a beam splitter and two
photomultiplier tubes as detectors was first deployed as a
subsystem in the experimental implementation of a Bell test
(Weihs et al., 1998) and later developed as a standalone
device (Jennewein et al., 2000) with some modifications.
The most important difference is the way the random
sequence is created, with a random digital signal as an
intermediate step. In the modified model, detections in D1

take a digital signal to a high level and detections in D0 to a
low level. The result is a random signal with changes in a
time scale of the order of the inverse of the mean photon
detection rate. If we sample this signal with a clock with a
frequency sufficiently below the photon detection rate,

assigning a binary 0 when the state is low and 1 for a
high state, we obtain a constant stream of random bits. The
same procedure was tested with polarized photons in a
linear 45° state and a polarizing beam splitter with essen-
tially the same results. Wang, Longo, and Li (2006) took an
alternative on polarization to path conversion with a weak
laser source with linear polarization attenuated to the single-
photon level and a Fresnel prism that separates the positive
and negative circular polarization components and directs
them to two avalanche photodiodes. This kind of polariza-
tion generator can be modified to provide adjustable
probabilities for each bit value if we include an electroni-
cally controlled polarizer at the source, such as in the fiber-
based QRNG of Xu et al. (2015) or the decision making
system in Naruse et al. (2015), which adapts the probability
to previous results.
Other generators are implemented in optical fiber systems

where a weak light pulse is directed to a balanced fiber coupler
connected to two detectors. Two examples are the generators
in Soubusta, Haderka, and Hendrych (2001) and Soubusta
et al. (2003), which use a pulsed laser source that produces,
after a tunable attenuation circuit, a coherent state with an
amplitude greater than 1 that maximizes the random bit
generation rate.5

There are also implementations based on polarization inside
optical fiber, with sources that are either single-photon states
or polarization entangled states

jHi1jVi2 − jVi1jHi2ffiffiffi
2

p ð13Þ

that are a superposition of horizontally polarized photon states
jHi and vertically polarized photons jVi (Fiorentino and
Beausoleil, 2006; Fiorentino et al., 2006, 2007; Bronner et al.,
2009). The generators with entangled states produce the
photons in nonlinear crystals and use coincidence detectors.
One of the photons can be used as a herald or we can watch
for anticorrelated polarization measurements in the differ-
ent paths.
QRNGs with optical path branching can show a few

problems. All types of photodetectors have some kind of
dead time after a click. This can generate anticorrelation of
neighboring bits. A detection at some time makes it less likely
to find a photon immediately after due to the “blunted”
sensitivity of the detector before full recovery. Also, for real
detectors and beam splitters we find slightly different detec-
tion efficiencies and coupling ratios that can introduce some
bias. There are a few other concerns: afterpulsing can create
correlated bits, pulses with multiple photons can produce
simultaneous detections, and the presence of dark counts
means there will be occasional clicks when there are no
photons. In practice, these effects, particularly dead time, limit

FIG. 6. A weak light source sends a state with one photon to a
balanced beam splitter. The path the photon takes at the output is
random and there will be a detection with the same probability at
each detector. We consider that a click on detector D0 is recorded
as a 0 bit and a detection in D1 is a 1.

4In popular quantum key distribution protocols, like BB84
(Bennett and Brassard, 1984), E91 (Ekert, 1991), or SARG04
(Scarani et al., 2004), the receiver must choose its measurement
basis at random. We can imagine a switch connected to an RNG that
directs the incoming photons to one of two alternative measurement
setups depending on the result. In practice, the implementation might
be different.

5Ideally, we should choose the amplitude of the coherent state α so
as to maximize the probability of only one detector clicking due to
either one or more photons. For the coherent state at the input of the
beam splitter, this amplitude should be α ¼ ffiffiffiffiffiffiffiffiffiffiffi

2 ln 2
p

, but the final
configuration uses a higher level due to additional losses.
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the maximum generation rate to a few Mbps, which could be
improved with detectors with a smaller recovery time.
There are many ways to counteract these problems. For

instance, the generator in Jennewein et al. (2000) includes a
setup phase in which the tube voltage and the detection
threshold of the photodetectors can be adjusted to compensate
detection efficiency and path coupling differences. Another
popular method is applying an unbiasing algorithm that
distills a random sequence at the cost of losing some bits.
We discuss unbiasing in more detail in Sec. X.
If we convert path superpositions into time superpositions

we can use one detector instead of two, or more, detectors, and
avoid problems caused by having different detection efficien-
cies and dark count numbers. That is the approach in Stefanov
et al. (2000) where weak light from a timed pulsed laser
inside an optical fiber is coupled into two fibers of different
length connected to the same detector. The additional delay
in one path permits one to distinguish the route of the
photon. The whole attenuation is designed to make each
path equally likely.
The random bit generation rates can improve if the

generator measures more than two possible paths. Each
measurement then gives more than one random bit. W states
of the form

jWni ¼
j10 � � � 00i þ j01 � � � 00i þ � � � þ j00 � � � 01iffiffiffi

n
p ð14Þ

can be created by branching the photon path many times
and giving the desired statistics. This approach takes more
complex devices, but integrated optical circuits inside silicon
chips can offer an economical and scalable alternative.
Integrated circuits show less variability and the optical
couplers that replace the beam splitters show smaller devia-
tions from a perfectly balanced device. There have been
experimental demonstrations of integrated generators with
eight outputs that can produce 3 bits per each measurement,
with potential for straightforward extension to 16 outputs
(Gräfe et al., 2014).
Another important point is the choice of photon sources. In

many of the reviewed generators, the photons come from
LEDs. In order to guarantee independent photons, the rate is
limited to be much smaller than the coherence time, which is
usually not a problem as the limiting factor tends to be the
dead time of the detectors. A common alternative is using
weak laser light. However, it can be interesting to study other
photon sources. The effect of a beam splitter on the different
quantum states of light is well known (Fearn and Loudon,
1987; Ou, Hong, and Mandel, 1987; Prasad, Scully, and
Marthienssen, 1987) and the resulting counting statistics can
be used in a variety of generation schemes. There are results
that suggest that true single-photon sources, which show
photon antibunching, can increase the rate of random bits
when compared to coherent light from lasers. Brighter sources
have a faster photon rate and, in those conditions and once all
the effects are considered, single-photon sources offer the best
overall random bit rates (Oberreiter and Gerhardt, 2016).
Finally, there are QRNGs that give up beam splitters

altogether. These generators use the natural spatial uncertainty

in the generation process. For instance, the commercial
Quantis RNG has two integrated detectors placed in positions
where the spatial profile of a light source has an equal
amplitude (Ribordy, Guinnard, and ID Quantique, 2009).
A detector array allows a higher generation rate with more

than 1 bit per detection. In that case, there must be some
compensation for the nonuniform spatial profile of most
photon sources. An early incarnation of this concept was
the optical random number generator of Martino and Morris
(1991) that used photon counting detectors with levels around
the thousands of photons and needed involved calibration
procedures. More recent OQRNGs use detectors with single-
photon precision. One of such generators uses a microchannel
plate detector and a wedge and strip anode to assign two
coordinates to the place where a photon from an attenuated
LED reaches a photocathode (Qiurong et al., 2014). Then, the
random bit sequence is extracted from the position using
Huffman coding to compensate for nonuniformities.
Other implementations use an integrated array of SPADs,

combined with postprocessing (Burri and Stucki, 2013; Stucki
et al., 2013; Burri et al., 2014). Aweak light source produces
clicks in random positions of the array. We can assign a 1 to
the pixels that find a photon and a 0 to the pixels that do not
click. Even if the distribution of bits in the discrete 2D grid of
the detectors is not uniform, we can extract a random sequence
if we compare two neighboring pixels, which should have
almost the same probability of detecting a photon, and then
only accept results that are different for each pixel, giving one
of them as the output. Alternatively, we can use the whole
string from the array as the input of a randomness extraction
algorithm. In these generators, apart from the usual dead time,
afterpulsing and dark count concerns, we have to contemplate
the possibility of crosstalk between detectors. However, the
effects of crosstalk can be minimized with a proper design.

C. Time of arrival generators

There are also multiple ways to use the randomness in
photon detection times to generate random bits. The OQRNGs
in this and the following section are usually based on the same
principles as the QRNGs that detect radioactive decay we
discussed in Sec. V. In fact, one of the earliest proposals for
this kind of quantum random number generator was a random
pulser that tried to simulate the arrival of radioactive counts in
order to calibrate nuclear instruments (Takeuchi and Nagai,
1983). Some methods are essentially the same as their Geiger
counter predecessors but replace radioactive materials with
light sources, which can achieve much higher bit rates. Photon
production is faster and less problematic and the maximum bit
rate is now limited by the capabilities of the detectors instead
of the generation speed.
The basic QRNG using time has a weak source of photons,

a detector, and timing circuitry that registers either the precise
time of each detection or the number of clicks in a fixed period
of time. In short time periods with one or only a few photons
on average, the photons coming both from LED incoherent
light and from the coherent states from a laser arrive at the
detector following an exponentially distributed time λe−λt for
an average number of photons per second λ. The time between
two photodetections is the difference of two exponential
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random variables, which is also exponential. In that case, we
can compare the time differences between the arrival of
consecutive pulses and compare two time differences t1
and t2. We can assign a 1 if t2 > t1 and a 0 if t1 > t2. This
gives a uniform random bit.
In time of arrival generation, precise time tagging becomes

important. Measurement will always have a limited precision
and the effects of digitizing the time intervals can be
noticeable. Instead of having real times t1 and t2, we have
integers with the number of the counted clock periods n1
and n2. For instance, the possibility t1 ¼ t2, with a negligible
probability for an ideal continuous time measurement, must
be taken into account. Now we can find two consecutive
measures for which we read the same time n1 ¼ n2. In our
basic scheme that generates a 0 or a 1 depending on whether
the second interval is shorter than the first one or not, the
output is not defined and we must discard these results.
Considering the equality as a valid result would require a
different analysis of the probabilities of each outcome and
how we assign them to a binary bit.
Figure 7 shows two potential approaches to timing with

resettable and nonresettable clocks.
The fine details have been explained by Stipčević and

Rogina (2007), who provided the first optical quantum
random number generators that uses time detection. This
generator takes the photons from an LED arriving at a PMT
and compares the times of detection in a scheme similar to the
method that compares the time of arrival of two particles at a
Geiger counter shown in Fig. 4. As expected, a fast clock
with many ticks per click gives better results as we have a
higher resolution. A second conclusion is that using a reset-
table clock eliminates many biases coming from imprecise
time measurement.
A similar generator where the source of the photons,

an LED, and the detector, a SPAD, are integrated side by
side in the same chip was described by Khanmohammadi
et al. (2015).
The random time of arrival can also be used as a signal that

chooses a time bin from a clock, following the template of the

radioactive decay generators summarized in Fig. 2. The
generator of Dynes et al. (2008) uses a gated avalanche
photodiode detector and outputs a 1 if a photon is found in an
even clock cycle and a 0 if it is found in an odd cycle. The
scheme also adds a self-differentiating circuit to avoid biases
from the capacitive response of the detector. An interesting
variation on the even-odd generation method was given by
Ma, Xie, and Wu (2005), where a pulsed laser produces
attenuated states with a small probability of having one or
more photons in each time bin. The bins are grouped into pairs
and output 0 is assigned to an empty bin with no detection
followed by a detection and output 1 to a detection followed
by an empty bin. This is basically equivalent to using the
parity of the time bin where a photon is found, but discards
occasional consecutive counts and can be extended to different
ways of grouping the time bins (Yu et al., 2010).
There are many other proposals that try to generate random

bits from time measurements. In principle, each time differ-
ence ti is a real number and it would seem we can extract an
infinite amount of entropy from two pulses. However, time
precision limits how many usable bits we have. If our timing
information has p bits of precision, the time bin in which we
find a photon is a random variable with N ¼ 2p possible
values and we can compute the probability of a photon arrival
in each bin. We can then compute the relevant entropy
measure (Sec. IV) for our discrete probability distribution
to see how many bits of randomness are available.
Certain OQRNGs use digitized time differences with k bits

and distill the available entropy into a random bit string with a
mathematical function. Wayne et al. (2009) detected the
photons from a laser diode with an avalanche photodiode
and collected the least significant bits of the measured time
until they reached 432 bits, which were then whitened with
the SHA-256 algorithm (National Institute of Standards and
Technology, 2012). Similarly, Wahl et al. (2011, 2012) sent an
attenuated LED photon to a photomultiplier tube and proc-
essed the bits from the time of arrival with a resilient function
(Bose and Ray-Chaudhuri, 1960; Sunar, Martin, and Stinson,
2007) chosen to take the maximum advantage of the available
entropy while doing the processing with a function that can
be efficiently implemented in hardware. The generator of
Kravtsov et al. (2015) also tries to optimize extraction from
quantized time differences with hardware designed to work
with minimal computation that includes a lookup table that
implements Elias’s deterministic randomness extraction algo-
rithm [see Sec. X.A.1 and Elias (1972)].
All these processing algorithms try to convert most of the

randomness available in the exponential distribution into a
uniform bit sequence and require additional hardware and
processing effort.
There are also ways to generate photons with a more

uniform time of arrival. The counting statistics at a detector are
a function of the photon flux variation at the source (Klauder
and Sudarshan, 1968). For a laser diode with a nonuniform
current, we have an inhomogeneous Poisson process and the
waiting time at the detector can be adjusted. The generator in
Wayne and Kwiat (2010) has a circuit that reshapes the
exponential time of arrival distribution into an almost uniform
one. For a variable photon flux λðtÞ, the time of arrival is a
distribution

FIG. 7. Generation scheme where the arrival of the rising edge
of a detection pulse (up) starts a count of the rising edges of a
clock. The clock can be independent from the pulses (bottom) or
be reset with every incoming pulse (middle). In the example,
t2 > t1 and t4 > t3 and the output should be 11. Using a
resettable clock we find discrete times n1 ¼ 1, n2 ¼ 2, n3 ¼ 2,
and n4 ¼ 3 that produce the sequence 11 (n2 > n1 and n4 > n3),
while for a fixed clock we read n1 ¼ 1, n2 ¼ 2, n3 ¼ 3, and
n4 ¼ 2, and the output is 10.
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λðtÞe−
R

b

a
λðt0Þdt0 : ð15Þ

Ideally, we want a uniform distribution, which can be
approximated by driving a laser with a current that repeats
periodically a finite approximation to the function

1

T − t
; ð16Þ

where T is a reset parameter that determines when to restart
the pulse cycle at the source. The current goes back to the
initial value when T finishes or when a pulse is detected,
whichever happens first.
An alternative way to “flatten” the exponential distribution

is taking short time bins from an external time reference and
consider the time of arrival within those bins (Nie et al.,
2014). The time when the photon arrives with respect to the
origin of a particular bin is a random variable in a short,
almost flat, part of the exponential time distribution, which
gives a distribution closer to that of a uniform random
variable.
There are also mixed generators that use both time and

space uncertainty. For instance, the generator in Li et al.
(2013) uses detectors in two paths to start and stop a timer,
in a method similar to the intermediate signal generator in
Jennewein et al. (2000), and uses the resulting time to generate
random numbers. In order to have a uniform probability, the
scheme assigns a binary string to nonuniform ranges of time
measurements that have the same probability. The generator in
Thamrin et al. (2008) works with the same kind of inter-
mediate signal. It uses polarized photons combined with a fast
clock sampling method (Fig. 2). The value of a counter is
measured with the falling edge of a signal with its transitions
controlled by two spatially separated detectors, although there
seems to be no postprocessing to avoid correlation in the most
significant bits. The generator in Stipčević and Bowers (2015)
combines a branching path configuration at a beam splitter
with the time difference method. There is one random bit
associated with the detector that finds the photon and a bit
associated to the difference between times of arrival at the
detectors. The generator combines both bits to provide a
random stream without the biases of the two independent
generation methods.

D. Photon counting generators

Another large group of generators based on time effects
use the number of registered detections in a fixed time T.
For an exponential time random variable, the number of
photons that arrive in a fixed time T follows a Poisson
distribution. The probability of finding n photons in that
interval is

PðnÞ ¼ ðλTÞn
n!

e−λT: ð17Þ

For instance, the generator in Fürst et al. (2010) follows an
approach similar to the radioactive decay generator of Schmidt
(1970b) (see Fig. 3) and generates bits from the parity of the
total counts registered in a fixed period. The source of light is

an LED and, as in many other time-based QRNG, they turn to
PMTs for faster detection. Interestingly, the generator takes
advantage of the dead time of the detector. For the parity
method, the random variable that describes the true rate of
photocounts when the detector has a small dead time gives a
smaller final bias when compared to a pure Poisson process.
This approach of taking the least significant bit of the photon
count is also followed by Lopes Soares, Mendonça, and
Ramos (2014), where thermal and weak coherent state sources
are compared.
Certain generators use an approach similar to the time

difference comparisons of the previous section. If the first
measurement gives n1 photons and there are n2 photons in the
next time bin, we can generate a 1 when n1 > n2 and a 0 if
n1 < n2 (Ren et al., 2011).
With these methods we are generating just 1 bit for each

measurement. But, depending on λT, our measurements can
have a higher entropy. There are some ways to take a fuller
advantage of the data we already have.
Certain generators assign more than 1 bit per detection

depending on the counted photon number. The possible results
are grouped into sets with equal total probability, which
usually requires adjusting the mean photon level of the source
to make sure all the sets are really equally, or almost equally,
likely (Jian et al., 2011).
Depending on the exact photon rate λT in the observed

period T, the second, third, or further least significant bits of
the number of counted photons might also be uniform. This is
taken into account dynamically in the generator of Tisa et al.
(2015) which has an array of integrated complementary metal-
oxide-semiconductor (CMOS) SPAD detectors that receive
light from an LED to generate random numbers in parallel in a
32 × 32 detector matrix. This is the principle behind the
commercial generator of Micro Photon Devices (Micro
Photon Devices, 2014). In this approach it is important to
properly characterize the dead time, as the rate that registers at
the detector λdet is affected by dead time. The corrected rate

λdet ¼
λ

1þ λtdead=T
ð18Þ

helps to adjust the choice of how many bits from the counted
number of photons should be used.
There are also generators that use everyday devices. Certain

commercial cameras that are not designed for quantum
detection can, nevertheless, offer good enough precision for
quantum random number generation. There have been dem-
onstrations of random numbers generated on a mobile phone
(Sanguinetti et al., 2014) from the variations in the count
statistics of a state with around 410 photons. In that imple-
mentation, the results are taken to a randomness extractor to
eliminate correlations and noise effects. This approach is
related to the shot-noise generators of Sec. VII.F.
Other photon counting methods take bins of length T,

subdivide them into smaller bins where we are likely to have
zero or one photons, and then use more involved procedures to
convert the nonuniform Poisson statistics of the large bin into
a uniform random variable (F.-X. Wang et al., 2015; J.-M.
Wang et al., 2015; Yan et al., 2015).
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E. Attenuated pulse generators

Certain generators are based on a simplified version of the
previous methods with more relaxed requirements for the
detectors. Most current single-photon detectors have a limited
photon number resolving capability and have a binary
response of click (one or more photons are detected) or no
click (no photon has been found). Photon counting methods
usually rely on multiple clicks in a long time period that is
divided into a concatenation of smaller bins in the time
resolution of the detector. These methods assume a weak
source that produces zero or one photons in that bin and that
there is a small or ideally negligible probability of generating
two or more photons in that shorter time period.
We call an attenuated pulse generator to the OQRNG with a

weak source that has the same probability of generating a
photon or not. More precisely, we require the complete system
to give a detection probability of one-half. We can imagine a
superposition of the empty and single-photon states in the
same spatiotemporal mode (the path that goes to a certain
detector in a certain time) so that the quantum state of our
photon pulse is

j0i1 þ j1i1ffiffiffi
2

p : ð19Þ

We can associate a 0 to a no-detection event and a 1 to a click.
The occupied state does not need to have exactly one photon.
Any superposition

1ffiffiffi
2

p j0i1 þ
X∞
k¼1

αkjki1 ð20Þ

with

X∞
k¼1

jαkj2 ¼
1

2

is valid. Externally, we just take the 1’s from clicks and do not
care if they are triggered by one or more photons.
Coherent states provide such a superposition and are easy to

produce. For a coherent state of amplitude α the probability of
finding zero photons is

pðn ¼ 0Þ ¼ e−jαj2 ð21Þ

and the complementary probability of finding one or more
photons (and finding a click in the detector) is

pðn ≥ 1Þ ¼ 1 − e−jαj2 ; ð22Þ

as can be seen from Eq. (11). The simplest idea would be to
find the α for which pðn ¼ 0Þ ¼ pðn ≥ 1Þ, which happens for
α ¼ ffiffiffiffiffiffiffi

ln 2
p

. Equation (17) shows any Poissonian source with
λT ¼ ln 2 ≈ 0.693 also gives the desired detection probability.
In practice, the generator works with an effective mean

photon number at the detector ηλT, with an efficiency η that
depends on many factors such as detector efficiency or path
losses. The OQRNG can be adjusted by fine tuning of a

variable attenuator. This is the model of the generator in Wei
and Guo (2009a). Alternatively, the generator can act on the
light source. The OQRNG in Bisadi et al. (2015) and Bisadi,
Meneghetti et al. (2015) adjusts the current of an LED in order
to have the desired balance. The OQRNG of Stipčević and
Ursin (2015) also has an adjustable source to guarantee a 50%
probability of detection, this time inside an on-demand circuit
that produces the photon pulses after a trigger signal has
arrived.
Even after tuning, there can be residual bias and the system

can drift out of the tuned state during operation. The generator
in Wei and Guo (2009b) uses von Neumann extraction to
address the problem (see Sec. X). For two detections with
photon numbers n1 and n2, it outputs a 1 if n1 > 0 and n2 ¼ 0
(a click followed by an empty pulse) and a 0 if n1 ¼ 0 and
n2 > 1 (no click followed by a detection). The results
with two successive empty pulses or two successive clicks
are discarded. For a Poissonian source, both bit values
are equally likely with a probability Pðn > 0ÞPðn ¼ 0Þ ¼
e−ηλTð1 − e−ηλTÞ. The resulting bit rate is at least 4 times
slower, but free from bias. Greater biases result in smaller
rates, but the bits still present balanced probabilities.

F. Generators based on quantum vacuum fluctuations

Another group of quantum generators exploits the fluctua-
tions in the quantum vacuum state. The vacuum state can be
written as a superposition of amplitude quadrature states jxi

j0i ¼
Z

∞

−∞
ψðxÞjxidx; ð23Þ

where ψðxÞ is the ground-state wave function. The wave
function is a Gaussian around x ¼ 0 so that

jψðxÞj2 ¼ 1ffiffiffi
π

p e−x
2

: ð24Þ

Homodyne measurement (Collett, Loudon, and Gardiner,
1987) offers a simple way to measure the X quadrature. The
balanced homodyne detection scheme of Fig. 8 has an output
proportional to the quadrature amplitude of the vacuum field
and gives an amplified reading of the basic uncertainty in the
vacuum state.
The homodyne detector mixes the vacuum state with a

reference laser field from a local oscillator and subtracts the
current measurements of two amplitude detectors. The result-
ing signal can then be processed and digitized to produce the
random numbers. Depending on the digitizer that receives the
values from the optical detectors, the choice of the local
oscillator, the detectors’ bandwidth, noise factors, and other
problems, we might have a different amount of available
random bits. With an adequate treatment, the uncertainty in
the final measurement can be mostly attributed to the intrinsic
quantum fluctuations of the observed vacuum state and not to
the shot noise from the local oscillator or other noise sources
(Yuen and Chan, 1983). This random signal can be digitized
and sent to a comparator or an entropy extraction circuit to
produce random sequences (Trifonov, Vig, and Magiq
Technologies, Inc., 2007). The generator in Shen, Tian, and
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Zou (2010) implements this method by sampling the filtered
shot-noise signal periodically and taking the last bit of its
digitized amplitude.
We can also take the quadrature measurement, divide the

range of possible values of x into boxes from xi to xiþ1, and
then assign to each box different random bit values. The
continuous quadrature value x is in box i with a probability

Z
xiþ1

xi

jψðxÞj2dx: ð25Þ

The QRNG of Gabriel et al. (2010) implements this method.
It takes 5 bits per measurement (32 bins) and hashes the
resulting sequence to remove residual correlations.
QRNGs that measure the vacuum fluctuations can go

beyond the Mbps rates of single-photon detection methods
and reach rates in the Gbps range. They can use fast classical
detectors and we can optimize the speed of the electronic part
of the generator and concentrate on reducing the technical
noise, like the generator of Symul, Assad, and Lam (2011),
which discards the least significant bits as a fast method of
randomness extraction after noticing that the most significant
bits of the digitized homodyne measurement carry most of the
quantum noise.
The method can also be used with the squeezed vacuum

state. The generator of Zhu, He, and Zeng (2012) uses second
harmonic generation in a parametric oscillator with no input
signal to produce a squeezed vacuum state that presents a
larger uncertainty in the measured quadrature. In the squeezed
vacuum state, the Gaussian wave function

jψðxÞj2 ¼
ffiffiffi
s
π

r
e−sx

2 ð26Þ

is wider by a squeezing parameter 0 < s < 1. Homodyne
measurement produces a larger range of voltages and makes
conversion to digital strings easier. We can define more
voltage ranges and reduce the effects of classical noise.
With more squeezing (a smaller s) the entropy due to quantum
noise increases and the bit rate after randomness extraction

can be higher. The generation of squeezed vacuum states is
described in more detail in Sec. VII.J in relation to QRNGs
with optical parametric oscillators.

G. Generators based on the phase noise of lasers

The output of a laser has a random phase of quantum origin
that can be used to produce random bits. Inside the cavity of
a single-mode semiconductor laser, spontaneous emission
causes fluctuations in the output field (Henry, 1982). This
phase noise, also known as phase diffusion, comes from a
combination of different quantum effects.6 Direct phase
measurement is not technologically feasible for optical sig-
nals, but an unbalanced Mach-Zehnder interferometer (MZI)
(see Fig. 9) can translate phase differences into amplitude
variations.
In an unbalanced MZI one of the arms introduces a delay τ

with respect to the other arm. Assuming a constant or slowly
varying amplitude in each arm, the output has a constant mean
level and a variation proportional to cos½ϕðtÞ − ϕðtþ τÞ� for
a random phase difference ΔϕðtÞ ¼ ϕðtÞ − ϕðtþ τÞ. The
amplitude at the output ports of the interferometer can be
measured with high speed standard optical detectors.
If the introduced delay is far above the coherence time of

the laser,7 τ ≫ τcoh, the phase difference ΔϕðtÞ is a Gaussian
random variable of a mean that tends to 0 (Lax, 1967). If we
sample the amplitude of the detector with a time difference
between samples Δt ≫ τ þ τcoh, the resulting amplitudes are
independent (Guo et al., 2010; Qi et al., 2010). These
amplitudes are the random variable in many OQRNGs.
While the voltages at the detectors carry many classical
sources of noise, the quantum phase noise is known to be
inversely proportional to the laser output power (Henry, 1982)
and, if we operate the laser at a low intensity close the lasing
threshold, we can make the quantum uncertainty the domi-
nant noise.
The generators in Guo et al. (2010) and Qi et al. (2010) use

the basic configuration in Fig. 9 and sample at a fixed period
the voltage in one of the detectors. After processing, the
voltages Vk measured at times tk ¼ t0 þ kΔt are independent
Gaussian random variables.
To generate the random bits, the OQRNG of Guo et al.

(2010) takes the least significant bit of the voltage measure-
ment or the least significant bit from the difference Vkþ1 − Vk
between two results if we want to remove biases from the
digitization of the voltage amplitudes.
The generator in Qi et al. (2010) adds a phase compensation

system in the interferometer to avoid classical phase drift

FIG. 8. Homodyne measurement of the vacuum: A laser acting
as a local oscillator (LO) is mixed with the vacuum state in a
balanced beam splitter. The readings of two detectors at the
output of the beam splitter are subtracted and processed to give a
current output proportional to the X quadrature of the vacuum
field. The proportionality constant is a function of the reference
field in the local oscillator.

6There are many opposing views on the exact role of the vacuum
fluctuations and spontaneous emission in laser phase noise and
whether spontaneous emission is a direct manifestation of vacuum
fluctuations or not (Fain, 1982; Ginzburg, 1983; Gea-Banacloche,
Scully, and Zubairy, 1988; Scully and Stenholm, 1988; Henry and
Kazarinov, 1996). As far as quantum random number generators are
concerned, the exact nature of phase noise is not relevant as long as it
is a quantum effect that can produce an observable with a known
distribution.

7For semiconductor laser with a linewidth Δνlas we can determine
a coherence time τcoh ¼ 1=ðπΔνlasÞ (Henry, 1982).
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effects that might mask the quantum signal. Its random bits
come from comparing each measured voltage with a threshold
at the mean voltage value 0. For the Gaussian voltage signal of
interest, we can produce random bits if we choose an output 1
for Vk > 0 and a 0 for Vk < 0.
The voltage distribution is Gaussian and we cannot directly

use all the digitized bits, which are correlated. However, we
can feed them to a randomness extraction algorithm to generate
uncorrelated bits. This is the approach of the generators of
Liu, Zhu, and Guo (2010) and Xu et al. (2012) which use the
same optical delay circuit as the previous implementations
and the generator of Nie et al. (2015), which uses a modified
interferometer with advanced phase drift correction to achieve
rates of tens of Gbps. We can also use Faraday mirrors to
correct phase jitter (Zhu et al., 2011).
For all these generators, we can try to maximize the rate by

increasing either the sampling rate or the number of bits we
take. However, faster sampling means higher correlations and
digitizers have a limited precision. For any given system the
randomness rate can be optimized by acting on the sampling
rate (Zhou, Yuan, and Ma, 2015). Increasing the sampling rate
increases the generated random bit rate untilΔt ¼ τ. After that
point, the bits we read have a higher correlation. The addi-
tional samples produce a smaller number of uniform bits and
the overall speed decreases. We should choose a delay that
maximizes the final bit rate

Rs ¼ −
1

τ
log2

�
2Φ

�
λffiffiffi
τ

p
�
− 1

�
; ð27Þ

for a parameter λ that depends on the laser power, the length
of the measured voltage interval, and other constants of our
system. ΦðxÞ is the cumulative distribution function of the
standard Gaussian distribution.
An interesting alternative implementation of phase noise

quantum random number generators uses pulsed lasers to
avoid phase correlations in the optical field. In the generator
demonstrated in Jofre et al. (2011), a laser is driven by short
pulses that take it rapidly from below the threshold to lasing
levels. The time the laser is below the threshold, any previous
coherence is attenuated and amplified spontaneous emission
introduces a new random field. When the laser is suddenly
taken above threshold, it amplifies the cavity field to a
classical level. After the short amplification stage, the

resulting field has a known amplitude due to gain saturation,
but the phase is random.
The resulting output has a series of pulses with a random

phase. The phase is converted into amplitude with the usual
unbalancedMach-Zehnder interferometer, this time with a delay
τ that matches the repetition rate at the laser so that two
consecutive pulses interfere at the output beam splitter (Fig. 10).
The phase of each pulse ϕi is uniformly random in ½−π; πÞ

and so is the phase difference between neighboring pulses.
The interferometer converts the phase into an amplitude
variation that, after detection and filtering, provides energy
measurements that are almost uniformly distributed in a
restricted range.
The same configuration with a pulsed laser has been refined

later adding passive phase compensation to reduce classical
phase drift (Tang et al., 2013) and tuning the system to achieve
a faster rate up to 43 Gbps (Abellán et al., 2014).
Quantum noise inside semiconductor lasers also plays a

role in classical random number generators based on chaos.
Many random number generators have appeared that have
one or more semiconductor lasers with optical feedback. The
lasers produce a chaotic signal with pulses of a random
amplitude and time position (Uchida et al., 2008; Reidler
et al., 2009; Hirano et al., 2010; Kanter et al., 2010). Quantum
noise in the laser is the origin of a random variation in the
cavity that is then amplified in a chaotic process. While these
generators have some entropy due to quantum effects, most of
the unpredictability of the final sequence rests on chaotic
evolution, which is deterministic. In a sense, they work as
physical pseudorandom number generators that take a random
quantum seed and expand these small fluctuations at the
quantum level into a fast changing physical process to achieve
generation rates up to hundreds of Gbps.

H. Generators based on amplified spontaneous emission

Fiber communication systems owe their fast long range data
rates to optical amplification. There are different technologies
for optical amplification, such as erbium-doped fiber ampli-
fiers (EDFAs) and semiconductor optical amplifiers, both
popular alternatives in optical communication systems. These
optical amplifiers work on variations of the same principle: the

FIG. 9. If we divide the light coming from a laser in a beam
splitter and make it interfere with a delayed version of itself, the
quantum phase noise will produce a random amplitude at the
output. Choosing an adequate delay and sampling rate, we can
process these amplitudes to generate random numbers.

FIG. 10. Using a pulsed laser we can generate individual pulses
with a random phase due to quantum phase noise. If we introduce
a delay in one arm of an interferometer, we have the interference
of two pulses with independent phases and the output will have a
random amplitude.
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light is directed into a medium with population inversion so
that the photons in the signal stimulate the coherent emission
of new photons that increase the signal’s power. However,
any excited medium capable of stimulated emission also
shows spontaneous emission. That means there appear
spontaneously emitted photons inside the gain medium that
are amplified by stimulated emission just like the signal is.
The random quantum phenomenon of spontaneous emission
is thus amplified to a measurable signal with a random
amplitude.
This noise, known as ASE noise, is a major limitation

to optical gain in communication systems. Larger gains
introduce larger noise powers and there is a maximum
amplification that can be obtained without degrading the
signal-to-noise ratio. Amplified spontaneous emission, either
alone or in its beats with the signal or itself, is a strong source
of noise that dominates over thermal noise in the detector or
the optical shot noise. ASE noise is a first rate challenge in
optical communication systems, but can be turned into a
good source of entropy in quantum random number gen-
erators. Amplified spontaneous emission gives a readily
available strong signal with a quantum origin that can be
measured with existing optical equipment at fast rates.
Sampling random amplitudes of the ASE field in different
frequency bands gives statistically independent random
variables, even at high sampling rates. The rate of change
is usually much faster than the detection mechanism and the
speed of the detectors is the limiting factor to the rate in most
QRNGs that sample ASE noise. These devices can achieve
generation rates of Gbps.
The first proposed quantum random number generators

using amplified spontaneous emission work with commercial
equipment from optical fiber communications. The generator
of Williams et al. (2010) uses as a source of random light a
pumped erbium and ytterbium co-doped fiber with no input
that generates photons by spontaneous emission and amplifies
them on their way to a processing stage with a bandpass filter
and a second low noise amplifier. The filter limits the signal in
the detector to help it work correctly. The signal is then split
into its two polarization components, which are independent,
and sent to two square-law photodetectors. The resulting
voltage signal is mostly what is known as ASE-ASE beat
noise, a signal of a random amplitude, with some residual
noise from other sources. These voltages have a known
distribution that depends on the shape of the filter. The
difference of the voltages is a random variable of mean 0.
The random bits come from comparing the voltages after each
detector v1ðtÞ and v2ðtÞ, generating a 1 when v1ðtiÞ > v2ðtiÞ
at the sampling time ti and a 0 otherwise. The resulting
sequence still has some small correlation between bits. To
correct that, the generator outputs the exclusive OR of the raw
bit sequence with a delayed version of itself.
The generator in Martin et al. (2015) also uses a filtered

ASE source, a back-pumped erbium-doped fiber, but instead
of two detectors it works with direct detection in a single
avalanche photodiode. For the chosen filter, the spectral
bandwidth of the optical signal is larger than the detector
bandwidth by a factor of m. In that case, the intensity
distribution that gives the probability of finding n photons
for a source with an average of λ photons in the time of

detection (the inverse of the detection bandwidth) is (Wong
et al., 1998)

pBEðn; λ; mÞ ¼ ΓðnþmÞ
Γðnþ 1ÞΓðmÞ

�
1þ 1

λ

�
−n
ð1þ λÞ−m: ð28Þ

For high enough values of n andm, the distribution has a large
standard deviation and most of the uncertainty in the measured
voltage comes from the ASE noise and not from electrical
noise. We can generate random numbers comparing the results
to a threshold value that gives equal probabilities for values
below and above it (0 for values below the threshold, 1 for
values above). The necessary threshold can vary during
operation due to power changes in the source or a drift in
environmental conditions during the time of generation. The
resulting bias can be corrected with a randomness extractor.
Each measurement can give more than one random bit. The

quantum random number generator in Argyris et al. (2012)
also uses a single detector but extracts the random bits from a
statistical analysis of the random distribution of the detected
voltage. The device generates amplified spontaneous emission
in two different implementations, one with an erbium-doped
fiber amplifier and another with a semiconductor optical
amplifier. In both cases, the signal is directed to an optical
attenuator. The whole unfiltered noise signal reaches the
photodetector where the noise beats give a Gaussian voltage
distribution that is digitized. Discarding the few first most
significant bits gives a good-quality random signal.
Another group of QRNGs uses superluminescent LEDs as

the light source. Superluminescent light diodes are incoherent
semiconductor sources with internal optical gain that offer an
alternative broadband source of ASE. Their output shows a
flat spectrum in a wide frequency range. The noise in separate
parts of the spectrum is independent and can be used to
increase the random bit rate. The generator of X. Li et al.
(2011) can generate multiple bit streams using a wavelength
multiplexed configuration where the light from the super-
luminescent diode is divided into many channels with band-
pass filters for different frequency bands. Each channel ends in
a single detector whose output is compared to a threshold to
generate the random bits. Each output is then processed by
taking the XOR of the bit sequence with a delayed version of
itself. The experiment is for a two channel system, but the
method can be extended to multiple parallel streams.
The QRNG in Li et al. (2014) also uses a superluminescent

diode in a refined version of the comparison method in
Williams et al. (2010). The filtered ASE noise from the diode
is amplified in an EDFA and taken to a balanced detection
scheme where the optical output is split in two parts and sent
to two detectors, one of which receives a delayed signal. This
self-differencing takes part of the processing to the optical
signal and gives a more symmetric voltage distribution for
which it is easier to define a threshold at voltage 0.
As in other generators, we can also try and use all the

samples of the digitized voltage and then use postprocessing
with delayed versions of the signal to remove residual
correlations (Yamazaki and Uchida, 2013). In that case, the
final bit rate can be improved by oversampling. If we use a
sampling rate above the spectrum linewidth of the detected
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noise, which is limited by the detector, the resulting bits are
correlated, but adequate postprocessing can restore a good-
quality sequence (Liu et al., 2013).
A curious alternative is the RNG of Wei, Tang, and Guo

(2010) that uses the spontaneous emission from a regular light
emitting diode without amplification. With no amplifier, the
random directions of emission of an LED makes detection
difficult. In order to collect enough light, the light source and
the detector are placed in the focal points of an ellipsoidal
cavity so that the emitted light is collected into the photo-
diode’s sensitive area. The amplitude fluctuations due to the
randomness in the emission times come from many indepen-
dent events and tend to a Gaussian distribution. The voltage at
the detector is then sampled and the bits from the digitizer are
unbiased to give a random bit string at the output.

I. Generators based on Raman scattering

The interaction between photons and the quantum vibra-
tional states of certain materials is also a good source of
randomness. Some quantum RNG resort to Raman scattering
phenomena to obtain the entropy for random bit generation.
There are two important Raman scattering effects. The first

is spontaneous Raman scattering (SpRS). In SpRS a photon is
scattered when it interacts with a molecular lattice that absorbs
or creates a phonon to produce a new photon of a higher or
lower frequency. If the scattered photon has a larger wave-
length and the energy difference is converted into a phonon
we speak of a Stokes photon and when there is an energy gain
and an incoming photon and an existing phonon produce a
scattered photon of a smaller wavelength we speak of an anti-
Stokes photon. Anti-Stokes transitions usually produce a
smaller field, as they need an established phonon population
of the right excited levels of the medium, which in thermal
equilibrium is smaller than the population of the ground state
(Boyd, 2008).
Another Raman effect is stimulated Raman scattering

(SRS). In stimulated Raman scattering a photon of the
frequency ωS corresponding to the energy difference between
a pump photon and the matching phonon in a spontaneous
Raman scattering event stimulates the production of a new
photon of the same frequency ωS. This process can be used to
obtain optical amplification. If we have a strong optical pump
and a signal at the frequency ωS, the photons of the signal
stimulate the emission of new photons that join the signal
pulse consuming phonons and the photons from the pump.
This mechanism is used in many photonic devices for
amplification and wavelength conversion (Islam, 2002;
Jalali et al., 2006) as well as in multiple applications in
spectroscopy (Colthup, Daly, and Wiberley, 1990). While
SpRS is almost isotropic and happens at many frequencies,
the resulting field in stimulated Raman scattering is mostly
contained in a narrow spatial direction and consists primarily
of Stokes photons (Boyd, 2008).
Some of the QRNGs based on Raman scattering work on

principles similar to those of the amplified spontaneous
emission noise generators of Sec. VII.H, but, instead of
employing quantum spontaneous emission events that are
amplified through stimulated emission, they have a strong
pump with no input signal so that the spontaneous Raman

scattering photons that are produced at random from
quantum noise are amplified in a stimulated Raman scattering
process (Penzkofer, Laubereau, and Kaiser, 1979). The
process starts from spontaneous emission to the Stokes
field that comes from the fluctuations of the phonon field
(Raymer and Walmsley, 1990). The spontaneously generated
photons induce new Raman scattering processes and the
field is amplified to a macroscopic level in what is known as
spontaneously initiated stimulated Raman scattering
(SISRS). The quantum fluctuations at the initiating process
show at the output field as an uncertainty in the optical phase
(Kuo, Smithey, and Raymer, 1991; Smithey et al., 1991;
Belsley et al., 1993) and amplitude (photon number)
(Raymer, Rzaçzewski, and Mostowski, 1982; Walmsley
and Raymer, 1983).
The first proposal for random number generation with

stimulated Raman scattering (Bustard et al., 2011) is based on
measurement of the random phase in the field out of an
optically pumped diamond (Fig. 11). Diamonds are a good
material for Raman experiments due to their high Raman gain
and their transparency at a wide range of wavelengths. A
pulsed laser signal is focused into the diamond and produces a
Stokes field with a random phase that is uniformly random in
the ½0; 2πÞ range. An optical bandpass filter takes away the
pump, which is in a different frequency band than the Stokes
field. The random phases are converted into interference
patterns at a charge-coupled device (CCD) camera by com-
bining the Stokes field and a reference pulse in a beam splitter.
The beam splitter is tilted so that there appear intensity fringes
at the detector. The random phase is recovered by fitting the
interference pattern to a cosine model and then it is assigned
to a bin out of 64 possible phase ranges. The resulting 6 bits
are then taken to a bit extraction algorithm to remove any
remaining bias.
The random fluctuations in the amplitude of the field permit

a simpler detection scheme without phase to amplitude
conversion. Direct detection gives a straightforward amplitude
measurement. There is, however, a new problem. Power
fluctuations in the pump pulses can mask the quantum effect
we want to measure. The generator in Bustard et al. (2013)
monitors the pump power to solve this problem (see Fig. 12).
The basic setup is essentially the same as in the phase Raman

FIG. 11. Generation of random numbers based on Raman
scattering by measuring the phase in the field out of a pumped
diamond. In this method, the phase is measured using the
interference pattern of the scattered field and a reference. The
pattern comes from a tilted beam splitter.
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random number generator we have just covered. The pump
starts an SIRS process in a diamond and the Stokes field is
filtered from the pump background. Now we can directly use a
detector with the output field. During normal operation, the
amplitude fluctuations can reach up to multiple times the
mean energy. The exact amplitude distribution has no known
analytic expression and depends on the Raman gain, the
focusing geometry and the effects of phonon decay, among
others (Raymer et al., 1985). The output field has also small
contributions due to pump coupling to more than one spatial
mode and other masking effects. The amount of available
entropy can be estimated deconvolving the Stokes energy
distribution from the detection noise, as measured without a
signal. The results show only a small effect of electrical
detection in the total noise. In order to extract the entropy, the
measured intensity values are corrected with the power values
of the monitored reference and the compensated amplitude
measurements are binned into intensity ranges that are
assigned a bit string. As a last step, the sequence is applied
Toeplitz hashing to remove bias and classical noise.
In both cases we described, Raman interaction has a

potential for fast generation rates. The system dephases in
times of the order of a few picoseconds, resetting the vacuum
phonon state before the new random field is generated. The
pulses come with a period much longer than the dephasing
time for the phonons in the diamond. In these random number
generators, the rate limit comes from the repetition rate of the
laser. Stimulated Raman scattering requires large powers in
order to produce a strong output signal. In the free-space
configuration of the discussed generators the available lasers
limited the rate to the range of kbps. These rates can be
improved with faster lasers.
An alternative way to measure phase differences with a

higher rate was given by England et al. (2014), where Raman
interaction happens inside a highly nonlinear potassium
titanyl phosphate KTiOPO4 waveguide. Waveguides offer
tight confinement and the guided pump field has a stronger
interaction with the medium that allows us to use power levels
in the range of faster repetition lasers, such as the titanium:
sapphire oscillator with a repetition rate of 80 MHz of this
generator. The random numbers come from converting the
random phase into an amplitude variation in an interferometer
with a delayed arm, as in the schemes for quantum random
number generators based on phase noise discussed in
Sec. VII.G.
The quantum effects in SpRS can also serve as a random-

ness source in schemes without amplification at the cost of
adding single-photon detectors. By improving the detector, we

can have a continuous wave laser pump of relatively low
power. If we only observe the scattered photons with large
frequency shifts, this interaction is mostly between the input
photons and the vacuum noise phonon fluctuations instead of
interactions with the thermal phonon field. The quantum
randomness from phonon vacuum fluctuations is the principle
behind the QRNG of Collins et al. (2014,2015) where a strong
pump inside a highly nonlinear As2S3 fiber generates sponta-
neous Raman photons in different frequency bands. The pump
photons interact with phonons of different energies. The
scattered photons occupy the spectrum following a known
probability distribution with two separate regions. One part of
the spectrum is associated with thermal phonons and, in a time
T, it has an expected scattered photon detection rate (Kobliska
and Solin, 1973; Lin, Yaman, and Agrawal, 2007; Collins
et al., 2015)

Rðν; TÞ ¼ CηΔνPL½1þ nBEðν; TÞ�gðνÞ ð29Þ

that depends on different experimental parameters like the
Raman coupling efficiency C, the experimental loss factor η,
the measurement bandwidth Δν, the laser power P, or the
effective scattering length of the device L. Two particularly
interesting factors are the gain profile of the medium with
frequency gðνÞ, which includes both polarizations, and the
thermal phonon occupation number

nBEðν; TÞ ¼
1

ehν=ðkBTÞ − 1
ð30Þ

that gives the Bose-Einstein distribution of the population
of phonons with energy hν for a thermal energy kBT. This
distribution is close to the smaller detunings with respect to
the pump. The photon distribution in frequency is concen-
trated a few THz above the pump frequency.
The spectrum has a second peak at higher detunings due to

the quantum vacuum fluctuations of the phonon field. In the
discussed As2S3 fiber, the distribution peaks around 10.4 THz
above the pump (Collins et al., 2012). At room temperature,
the distributions of quantum and thermal origin are centered
around different parts of the spectrum. While both distribu-
tions are random, the thermal component shows the same
problems as the thermal noise generators discussed in Sec. VI
and we prefer the more stable random distribution from the
quantum part of the spectrum. There is still some contribution
from thermal scattering events, but this and other biases can be
corrected with postprocessing.
Once we have selected the most adequate frequencies, we

can use a coarse wavelength division multiplexer to measure
two slices of the spectrum with an equal probability of having
a spontaneously scattered photon. The multiplexer converts
the spectrum distribution into a spatial separation. The rest of
the scheme basically follows the model of the spatial sepa-
ration generators discussed in Sec. VII.B. In these experi-
ments, two detectors D0 and D1 measure the photons in the
paths of the two spectrum slices during a time T. The output
bit is a 0 if there is a click only inD0 and a 1 if only D1 clicks.
Two simultaneous detections and empty time bins are dis-
carded. The differences in the collection efficiencies of the
two detector channels and the nonflat shape of the Raman

FIG. 12. We can use the amplitude fluctuations in Raman
scattering as a randomness source. In order to correct for the
fluctuations of the pump, which do not have a quantum origin, we
must include an amplitude correction method.
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spectrum introduces biases in the sequence. In order to correct
the bias, there is a postprocessing stage that XORs the sequence
with a 16-bit delayed version of itself.
The experiment gave raw generation rates of 1 Mbps,

650 kbps after postprocessing. The ultimate limit for the
random bit generation rate depends on the decay time of the
Raman response function. Spontaneous Raman scattering
photons that are generated with a time separation less than
the Raman response time can have frequency correlations. The
photon generation rate can be controlled with the power of
the pump laser to avoid correlations. In the studied fiber, the
medium reacts in less than 100 fs (Asobe et al., 1995).
Generation rates up to 1 GHz would still show a small two
photon probability of the order of 5 × 10−3 in that response
interval.
In the experiment, the generation rate is limited by the

detectors. The detector limitations are the same as in the
generators based on single-photon detection discussed in
Secs. VII.B and VII.C. Most single-photon detectors are
limited to a MHz rate, but more advanced detector technol-
ogies can bring the rate closer to the Raman physical limit.
Additionally, the rates can be improved by dividing the
spectrum into more than two channels. Awavelength division
multiplexer can take the photons into multiple paths that allow
to extract more than 1 bit per measurement.

J. Generators based on optical parametric oscillators

Binary phase selection in degenerate optical parametric
oscillators offers a further way to amplify quantum random-
ness from the microscopic level to a macroscopic optical field.
In an OPO, the photons that appear from spontaneous para-
metric downconversion of the light from a pump start an
oscillation inside a cavity, even without any input at the
resonant lower frequencies (Louisell, Yariv, and Siegman,
1961; Harris, Oshman, and Byer, 1967). The zero-point
fluctuations alone can initiate the gain in the cavity. The
principle is similar to the amplification of quantum noise
inside a laser discussed in Sec. VII.G.
In spontaneous parametric downconversion, the nonlinear

response of a medium converts the photons from a pump at a
frequency ωp into two photons: a signal photon with fre-
quency ωs and an idler photon at ωi so that ωp ¼ ωs þ ωi.
This phenomenon has applications in entanglement genera-
tion and in parametric amplifiers. In a medium with type I
degenerate downconversion each photon from the pump
produces two photons with the same frequency and polari-
zation. Different pump photons give different polarizations,
but all the generated photons have the same frequency. In
these conditions, an optical parametric oscillator with no input
but the pump amplifies the uncertainty in the vacuum
fluctuations and the output is a squeezed vacuum state where
the uncertainty at the quantum level can be measured from a
macroscopic optical signal (Wu et al., 1986; Wu, Xiao, and
Kimble, 1987).
The cavity of an optical parametric oscillator has losses and

there is a gain threshold below which spontaneous parametric
downconversion cannot be amplified to the macroscopic level
(Yariv and Yeh, 2007). In a continuous wave type I degenerate
OPO, where both the signal and idler fields are

indistinguishable, the gain mechanism is phase dependent
and has a period of π for the signal phase (Nabors et al., 1990;
Marandi, Leindecker, Pervak et al., 2012). For an adequate
pumping power, there are only two stable oscillation states
where the gain is greater than the oscillator losses. These states
show a phase with respect to the pump around θs ¼ 0 in one
state and around θs ¼ π in the other.
The optical parametric oscillator quantum random number

generators of Marandi et al. (2011) and Marandi, Leindecker,
Vodopyanov, and Byer (2012) use as their randomness source
the phase of the macroscopic field inside the cavity, which is
inherited from the vacuum fluctuations. In this process,
classical noise effects are negligible and do not change the
phase state. In order to convert the phase variations into a
binary random number, we can take two independent cavities
of the same output power and make their output fields
interfere at a beam splitter (see Fig. 13). If both cavities have
a state around the same phase, there will be a constructive
interference and the signal will have close to double the
original power. If the phase states are around opposite values,
there is a destructive interference and the output power is
close to 0.
For the right cavity parameters, the phase distribution can

be quite narrow around the central values θs ¼ 0 and π, and
the output power of the interferometer has two distinguish-
able optical power values that can be told apart using a
threshold in the middle of the expected detector voltages
corresponding to a totally constructive interference and a
totally destructive one. The value of the comparison can be
used to generate random bits. A low voltage state (destruc-
tive interference) can be interpreted as a 0 and a high voltage
state (constructive interference) as 1.
The bit rate depends on the time it takes for the cavity to

generate a new random phase. Once a stable state is established
inside the cavity, it will feed itself. We need to restart the
oscillation to generate a new random value. In the generator of
Marandi et al. (2011) and Marandi, Leindecker, Vodopyanov,
and Byer (2012) the cavity is detuned by blocking and
unblocking the pump.
There is a minimum time before we have a fresh source of

randomness. We must first allow the field inside the cavity to
decay to the quantum noise level before a new oscillation

FIG. 13. Quantum random number generation with two optical
parametric oscillators. A pulsed laser creates an oscillation in
each OPO in one out of two possible stable states with a phase
centered around 0 or π with respect to the pump. The final stable
phase depends on the initial conditions of the quantum fluctua-
tions in the cavity and when the pulses from both OPOs interfere
we will have close to totally destructive or close to totally
constructive interference. The resulting amplitudes can be easily
distinguished and be assigned to the 0- and 1-bit values.
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builds up. Otherwise, when we establish the oscillation, the
residual field dominates over quantum fluctuations and the
new phase state is correlated to the previous phase value.
This is the limiting factor in the speed of OPO-based QRNGs.
The exact time for regeneration depends on the cavity and the
pump power. If we pump well above threshold, like in the
described generators, it can take from 10 to 20 times the 1=e
decay time of the cavity to go back to the quantum noise level
(Marandi, Leindecker, Vodopyanov, and Byer, 2012). The
intensity decay time can be estimated from the oscillator
parameters as

τoff ¼
T

2δE − 2δE
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Poff=Pth

p ð31Þ

for a cavity with an electric field fractional round-trip loss δE,
a cavity round-trip time T, and pump powers at the threshold
and “off” levels of Pth and Poff , respectively (Marandi,
Leindecker, Vodopyanov, and Byer, 2012).
In the described QRNGs the bit rate is on the order of tens

of kbps before serious correlation problems appear. Shorter
cavities can have lower buildup times and, when combined
with pumps at higher repetition rates, would allow rates in the
Gbps range (Lecomte et al., 2005).
There are also interesting variations of the method with

other parametric processes. This generation method is not
necessarily restricted to second-order nonlinear materials.
Instead, we could use χð3Þ effects in integrated optical para-
metric oscillators (Liu et al., 2010; Razzari et al., 2010).
Apart from optical parametric oscillators, there are other

bistable optical systems where quantum effects can produce
jumps between stable states. For instance, the quantum
random number generator in Sunada et al. (2011) uses a
semiconductor ring laser that is driven from a monostable to a
bistable state. The amplified spontaneous emission noise in
the counterpropagating laser modes that appears during
switching defines the final stable state from the two possible
options and gives a random macroscopic bit that has a
quantum origin.
Competition between optical modes is also the source of

randomness in the generator proposal of Shenoy, Srikanth,
and Sriniva (2013), in which spontaneously emitted photons
in two possible competing modes are amplified in a laser
setup so that there is a macroscopic winning mode that
amplifies the quantum uncertainty at the single-photon level.

VIII. NONOPTICAL QUANTUM RANDOM NUMBER
GENERATORS

While quantum light offers a simple source of quantum
randomness, there have also been proposals for quantum
random number generators based on other physical systems.
For historical reasons, we already discussed the quantum

random number generators based on the random behavior
of radioactive decay (Sec. V). They were the first quantum
random number generators well before the explosion of
quantum information theory and remain in use. While they
are based on the detection of particles, they are in many
aspects equivalent to the optical schemes based on photon
counting, time of arrival and position (in fact, in the case of γ

radiation we can say we have an optical system, just with
photons of a very high frequency).
A second family of nonoptical random number generators

with a quantum contribution is the group of electronic RNGs
covered in Sec. VI. In general, their source of randomness is
not so clearly defined as in the rest of the quantum random
number generators described, but noise generation with
Zener diodes when implemented properly can be taken to
an almost purely quantum regime (Stipčević, 2004), and
electronic shot noise is the source of randomness in certain
commercial quantum random number generators of ComScire
(Wilber, 2014).
In a reverse-biased Zener diode with a low breakdown

voltage, the dominant source for the current that appears is the
completely quantum tunnel effect (Pierret, 1996). The p-n
junction of the diode presents a potential energy barrier that is
thin enough to allow random quantum tunneling of some of
the electrons from the valence band of the p side to the
conduction band of the n side of the junction. This creates a
random reverse current that is the basis for many electronic
noise physical random number generators.
Similarly, the tunnel effect at the p-n junctions in MOS

transistors creates a leakage current formed by the electrons
that tunnel through the insulating layer under the gate. This
tunneling introduces a varying current that suffers from shot
noise due to the discrete nature of the electrons. These changes
can be converted into a variable jitter in ring oscillators and
processed to produce random numbers (Wilber, 2014). The
origin of the noise is similar to that of the optical random
number generators discussed in Sec. VII.F, but replacing
discrete elements of light (photons) with discrete elements of
current (electrons).
The shot noise in p-n junctions of different semiconductor

devices is a usual source of randomness in homemade
electronic random number generators. An example is the
random number generator based on reverse-biased p-n junc-
tions in transistors of Platt and Logue (2015).
Quantum tunneling is the basic principle behind these and

many additional nonoptical random number generators. Apart
from shot noise in p-n junctions, tunneling explains among
others cold emission of electrons from metallic surfaces or
alpha decay (Razavy, 2014). From that point of view, we can
say a QRNG based on radioactive alpha decay is also based
on tunneling. Similarly, the random number generator that
amplifies the electrons coming from nanosize emitters under
an electric field in Vartsky et al. (2011) is a QRNG based on
tunneling.
Other quantum random number generators measure the

state of atomic quantum systems, such as trapped ions.
QRNGs based on measurements on trapped ions, while slower
than their optical counterparts, have an interesting application
to device-independent quantum random number generation
(Pironio et al., 2010) and other certified generators that are
based on experimental tests of quantum mechanics (Um et al.,
2013). Trapped ion systems are more complex to implement
than most optical measurement setups, but they offer almost
perfect detection efficiencies, which is paramount in certifi-
cation. Because of the special interest of this generation
method, we give a more detailed description in Sec. IX.B.
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There are also more exotic proposals related to the
certification of the produced random bits, such as generating
random numbers with Majorana fermions (Deng and Duan,
2013). A Majorana fermion is a particle predicted by
Majorana (1937) for which there is convincing experimental
support (Nadj-Perge et al., 2014) and which would have
desirable properties against noise and imperfections in certain
implementations of quantum information protocols.
Another curious proposal is the QRNG of Katsoprinakis

et al. (2008) that measures the quantum fluctuations of the
collective spin of an alkali-metal vapor. Spin noise is a random
magnetic moment that appears when we have a collection of
atoms, even in the absence of an external magnetic field, and is
proportional to the number of involved atoms. Spin noise
allows one to probe the properties of the system efficiently
with experiments imitating magnetic resonance methods and
its measurement has applications among others to spectros-
copy in semiconductors (Katsoprinakis, Dellis, and Kominis,
2007; Hübner et al., 2014).
Spin noise is an Ornstein-Uhlenbeck stochastic process that

appears from the quantum uncertainty of the spin degrees of
freedom combined with measurement-induced noise coming
from atomic collisions. The spin state can be probed optically
due to optical selection rules that permit to map the varying
spin polarization onto the intensity of a probe light beam. With
a proper setup, the fluctuations in the optical power due to spin
noise dominate over the electronic noise and the photon shot
noise and the optical power gives a precise measurement of the
global magnetic field.
The QRNG in Katsoprinakis et al. (2008) measures the spin

noise by analyzing the polarization of a probe beam after
traversing an alkali-metal vapor under a magnetic field. Spin
noise produces a random change in the polarization that can be
monitored by measuring the amplitude in the horizontal and
vertical components of the light after a polarizing beam
splitter. Comparing the level in one branch to a threshold
that includes the presence of background noise, we can
generate a random binary sequence assigning a 0 or a 1
depending on whether we stay below the threshold or not.
The generation rate reaches the kbps range and is limited by

the relaxation time of the system. In this case, it is desirable
that the coherence of the system is short lived so that a new
random state can be created as fast as possible. Samples
generated below the relaxation time would be correlated.
Nevertheless, there are systems with lower relaxation times,
particularly solid state systems like GaAs structures, which
could allow dephasing rates on the order of 1 GHz (Oestreich
et al., 2005; Stich et al., 2007).

IX. RANDOM NUMBERS CERTIFIED BY QUANTUM
MECHANICS

Cryptographic random number generators face a problem
of trust. Users must ultimately trust the algorithm of a
pseudorandom number generator or the device that imple-
ments a true random number generation method. The alter-
native, which is devising a random number generation from
scratch, is highly undesirable. The cryptographic maxim
“Don’t roll your own crypto” sums up the collected experience
of the security community and warns against nontested

systems. Trusted algorithms and devices have resisted years
of cryptoanalysis and attempted attacks and public inspection
vouches for their robustness.
Unfortunately, this means that at some point users must

trust the device or the algorithm they are given. The question,
which might seem academic or for the paranoid minded, is not
trivial. The events in the last years have shown RNGs are a
tempting target for hidden attacks. For instance, the pseudo
random number generation algorithm DUAL_EC_DBRG, which
was proposed as a NIST standard (Barker and Kelsey, 2007),
allows back doors that permit an attacker to recover the whole
random sequence with minimal information (Shumow and
Ferguson, 2007; Checkoway et al., 2014; Hales, 2014;
Bernstein, Lange, and Niederhagen, 2016), which has had
practical consequences in the Juniper network attack
(Common Vulnerabilities and Exposures, 2015). At the
hardware level, there are demonstrations of how a rogue
manufacturer or any attacker with access to the device can
insert very hard to detect errors in real world RNGs by
introducing dopants in certain parts of the circuit (Becker
et al., 2014). This is an example of the more general threat of
hardware trojans, which are different kinds of malicious
modifications that are inserted at the hardware level
(Tehranipoor and Koushanfar, 2010).
For physical random number generators there is also the

possibility of spontaneous failure. If a component from the
device stops working or degrades, the quality of the output
bits might suffer. Subtle hardware failures can be hard to
notice, especially if the device still produces an output. For
that reason, security recommendations like the AIS 31
standard of the German Bundesamt für Sicherheit in der
Informationstechnik (Killmann and Schindler, 2011) or the
draft of NIST SP 800-90B (Turan et al., 2016) ask for some
kind of self-testing inside true random number generators. A
subsystem should monitor the state of the device at all times
(Bucci and Luzzi, 2005; Fischer, 2012).
In this section, we review three quantum-inspired ways of

working with untrusted devices. The first method is using
some properties associated to quantum phenomena to observe
the quality of the produced bits. The second section gathers
the proposals collectively known as device-independent
quantum random number generators, which are based on
the realization that there are quantum correlations that
guarantee certain statistical independence unless some trusted
physical principle, such as causality, is wrong. The third part
describes quantumness certification methods that are inspired
by device-independent generators, but use less stringent
experimental tests of different aspects of the quantum theory
and provide a limited certification under more relaxed security
assumptions.

A. Self-testing in quantum random number generators

Most quantum random number generators do not fully
characterize their source of randomness. For instance, while a
photon at a beam splitter (Fig. 6) should produce perfectly
random bits, there can be problems with detector efficiency,
unbalances in the splitting process, imperfections in the
source, and many unsuspected sources of correlation. For
that reason, there have appeared different methods to check
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the quality of the random numbers produced in physical
random number generators. This is not exclusive to quantum
random number generators. In classical physical random
number generators there are different ways to check the
output to detect failures, such as including hardware versions
of the NIST and Diehard randomness tests we describe in
Sec. XII (Santoro, Sentieys, and Roy, 2009a,2009b;
Hotoleanu et al., 2010; Vaskova et al., 2010,2011; Suresh,
Antonioli, and Burleson, 2013; Yang et al., 2015). Here we
discuss only the self-testing approaches that are directly
related to the quantum properties of the random number
generator.
There are also self-testing methods that can work with both

classical noise and quantum sources of entropy. The self-
testing circuit described by Saito et al. (2010) compares the
time of arrival of random pulses coming either from thermal
noise or from the detection of radioactive decay with a Geiger
counter (Sec. V) and tests the resulting distribution against the
expected Poisson time of arrival. Only the random numbers
passing the tests are put forward to the output, filtering out
obvious failures.
While there is still a risk from a malicious attacker that

modifies the output to produce predictable sequences that will
pass the tests, these self-checking systems can detect sponta-
neous failures and less sophisticated attacks and they are a
good addition to security. Tests can serve as a canary to detect
operation errors and alert that something is wrong.
Testing must be done with due care. Accurate entropy

estimation is a hard problem and a system that evaluates the
available entropy with a poor implementation can be vulner-
able to attacks (Dodis et al., 2013).
The first mention to self-testing in a quantum setting was

presented in the optical QRNG of Fiorentino et al. (2007)
that is designed to work either with a single photon in a
polarization superposition

jψi ¼ jHi þ jViffiffiffi
2

p ð32Þ

or with an entangled state

jψi ¼ jHi1jVi2 þ jVi1jHi2ffiffiffi
2

p : ð33Þ

The quantum random number generator works on the prin-
ciples of path branching discussed in Sec. VII.B.
The device includes a testing phase in which it performs full

tomography of the input state (James et al., 2001) from a set of
measurements in order to determine the 2 × 2 matrix that
describes the photonic two level system for a single photon
or the effective two-dimensional Hilbert space of interest in
the case of the photon pair. From the measurement results,
the generator estimates the minimum possible min-entropy
~H∞ðρ̂Þ for the joint state of the user and an eavesdropper ρ̂ for
the worst case over all the possible decompositions. Then the
raw bits are fed to a randomness extractor (Barak, Shaltiel, and
Tromer, 2003) that, for the estimated bound on the available
entropy, produces a shorter unbiased random string.

This method offers protection against an adversary that can
control the quantum state from which we obtain the entropy as
long as we can take repeated measurements on the same state.
In order to perform state tomography correctly, we need to
assume the measured state is preserved throughout the
process. This can be interesting when the attacker can only
alter the photon source or when there is a physical problem
with the generator. While this kind of self-testing offers a
limited protection against advanced attackers, it is an effective
way to detect accidental errors in the device.
Tomography offers a reasonable entropy estimation in

models where we assume honest errors in implementation
or failures during operation instead of a collection of compo-
nents from untrusted colluding manufactures. Such a model is
put forward in the self-testing QRNG of Lunghi et al. (2015),
where randomness from a quantum origin is separated from
technical noise using the dimension witness of Bowles,
Quintino, and Brunner (2014) defined as

W ¼
����pð1j0; 0Þ − pð1j1; 0Þ pð1j2; 0Þ − pð1j3; 0Þ
pð1j0; 1Þ − pð1j1; 1Þ pð1j2; 1Þ − pð1j3; 1Þ

����; ð34Þ

where pðbjx; yÞ gives the conditional probability of finding an
outcome b (from �1) for a state prepared in one out of four
x ¼ 0, 1, 2, 3 possibilities in a measurement setting y that can
be 0 or 1. In the discussed generator, the four states correspond
to the circular right and left polarizations or the diagonal and
antidiagonal polarizations of the second photon from an
entangled pair, which is measured in the diagonal or the
circular polarization basis. The first photon acts as a herald.
W gives an idea of “how quantum” is the combination of

preparation and measurement. Any W > 0 shows that some
measurements are incompatible and there is some quantum
randomness that allows to give a bound on the guessing
probability. The result can be used to decide the level of
compression in a randomness extractor. For smaller values of
W (a more classical behavior) the raw input bits produce a
smaller number of clean random bits. The experimental test of
this method in Lunghi et al. (2015) gave a final bit rate around
tens of bits per second and showed a correct response to
environmental changes, like the alignment problems resulting
from turning off the air conditioning in the laboratory.
A similar approach to self-testing with a Faraday-

Michelson quantum key distribution system (Mo et al.,
2005) was given by Song et al. (2015).
An alternative is to take advantage of the uncertainty

principle to ensure any adversary has a limited amount of
information. As in the previous methods, our goal is not only
to generate random bits, but to be sure they are private (no
external attacker can learn our sequence). For instance, if we
measure the polarization of the first photon in the entangled
state of Eq. (33) in the horizontal-vertical basis, we would get
perfectly random numbers, but an adversary that captures the
second half would know the exact sequence we obtain by
taking the same measurement. This can be acceptable in
applications like simulation, but in cryptography we need to
avoid any information leakage. The certification method in
Vallone et al. (2014) is designed to ensure privacy without full
tomography by switching between two mutually unbiased
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bases (Bandyopadhyay et al., 2002; Durt et al., 2010). Instead
of a full tomographic measurement, two bases are enough.
The conditional min-entropy with respect to an eavesdropper
(Sec. IV) gives a bound to the amount of randomness we can
safely extract from a measurement (König, Renner, and
Schaffner, 2009; De et al., 2012). The uncertainty principle
guarantees there is a limited correlation with the environment
for any possible input state (we can prove a bound on the
conditional min-entropy from our measurement results). This
implementation requires a small random seed to choose
between the bases. The original randomness in the seed is
expanded after the measurements into a reliable private bit
string. The seed needs to be uniform and cannot be taken from
the same weak randomness source as the rest of the bits (see
Sec. X for a more detailed description of randomness
extraction and the role of uniform seeds). The method was
demonstrated with entangled photon pairs generated from
parametric downconversion and measurement in the diagonal
and antidiagonal and the horizontal and vertical polariza-
tion bases.
We can also follow the methods of precision measurement

(Maddaloni, Bellini, and De Natale, 2013; Bloom et al., 2014)
and propose a complete model of the generator where all the
sources of uncertainty are rigorously characterized and all the
experimental imperfections are taken into account in the most
conservative way. The experimental standards followed in
precision measurement have been put to test in atomic clocks
with impressive results and can be adapted to quantum
random number generation. This characterization based on
metrology was followed by Mitchell, Abellán, and Amaya
(2015) to vouch for the randomness in a phase noise QRNG.
The chosen device, described by Abellán et al. (2014), is
based in the random phase in a laser, as explained in
Sec. VII.G. A physical model can give a strict bound for
the average min-entropy, which is used to choose a random-
ness extractor. The method works with theoretical consider-
ations alone, but also gives room to introduce constraints
based on auxiliary measurements or on the data that has been
generated. This kind of estimation was also done by Haw et al.
(2015) for the initial configuration of the QRNG based on the
measurement of vacuum fluctuations of Symul, Assad, and
Lam (2011) (see Sec. VII.F).

B. Device-independent quantum random number generators

A second approach to certifying random numbers is
ignoring the details inside the quantum random number
generator and judge the results based only on the output.
In particular, we want to prove that the output must be random
or otherwise some physical law must be broken. This is the
basic model behind device-independent quantum information
processing, which started in the context of quantum key
distribution with Mayers and Yao (1998) and Barrett, Hardy,
and Kent (2005) with multiple further developments
(Colbeck, 2006; Magniez et al., 2006; Acín et al., 2007;
Colbeck and Kent, 2011).
In the case of random number generation, it tries to address

the worst imaginable case where an adversary has generated
genuinely random numbers, for instance with a quantum
random number generator, and then has hidden them inside a

manipulated device. If we check the output of that device, the
sequence will pass all randomness tests and we trust the
results. This problem is difficult to avoid, but has a quantum
solution.
Device-independent quantum random number generators

solve the problem of trusting the device with schemes based
on Bell tests. The ideas of Bell violation stem from the
discussion of an apparent discordance of quantum theory and
relativity known as the Einstein-Podolsky-Rosen paradox
(Einstein, Podolsky, and Rosen, 1935). In an entangled state,
measurement of one of the particles immediately sets the state
of the other particle. This seems to contradict the no-signaling
principle that forbids faster than light communication. Bell
(1964) showed that the contradiction could be settled exper-
imentally. The statistics of measurement on spacelike sepa-
rated entangled particles would be different in a realistic local
world with no interaction faster than light and in a world
where the laws of quantum mechanics hold. Both alternatives
are incompatible. The experiment of Aspect, Grangier, and
Roger (1982) showed support for the quantum description.
There are, however, experimental loopholes that could still
allow a hidden variable theory that is local or realistic. A series
of ever more sophisticated experiments is closing alternative
explanations and confirms the predictions of quantum theory
(Giustina et al., 2015; Hensen et al., 2015; Shalm et al., 2015).
A detailed description of Bell inequalities and nonlocality can
be found in Brunner et al.(2014).
In the experimental QRNG of Pironio et al. (2010) the

chosen version of Bell’s inequalities is the Clauser-Horne-
Shimony-Holt formulation (Clauser et al., 1969), which is
particularly elegant, simple, and intuitive. We study the
correlations in measurements from two devices and define
two variables x and y, one for each device. The variables can
take two values, 0 and 1, that correspond to a choice between
two binary measurements. Both measurement devices are
identical. The measurement in the x configuration gives a
binary output a and the measurement defined by y gives an
outcome b. We are interested in the correlation function

I ¼
X
x;y

ð−1Þxy½Pða ¼ bjxyÞ − Pða ≠ bjxyÞ�; ð35Þ

where Pða ¼ bjxyÞ and Pða ≠ b∣xyÞ are the probabilities that
a ¼ b or a ≠ b when the settings are x and y. For a realistic
local theory we should always find I ≤ 2. Any value above 2
indicates nonlocality.
The function I can be experimentally approximated by

estimating the probabilities after taking a series of measure-
ments. As long as the systems are separated and do not
interact, if the laws of quantum mechanics hold and the inputs
xi and yi at any stage i are generated by independent random
processes, the estimation of I, ~I, gives after some work a lower
bound to the min-entropy of the outputs. The original
derivation of the bound on min-entropy in Pironio et al.
(2010) had a technical error, but in Fehr, Gelles, and Schaffner
(2013) and Pironio and Massar (2013) there are restored
correct proofs of the main results as well as demonstrations
of some additional properties of the protocol, such as its
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composability8 and its fitness to generate random bits for their
use in cryptography.
If the system admits a classical description ~I ≤ 2, the bound

is zero and the system could be deterministic. If the mea-
surements are done on states showing some entanglement the
produced random bits are guaranteed to have some random-
ness. The resulting bit sequence is not necessarily uniformly
random, but the bound in its min-entropy means it can be
converted into a random uniform string with an appropriate
randomness extractor (see Sec. X).
For quantum devices with spacelike separated parts with

access to independent random sources, there are no additional
constraints on the devices or the input states as long as ~I > 2.
The only additional requisite is that the chosen measurement
settings xi and yi at each stage of the protocol have some
randomness (are not perfectly predictable). In that respect, the
described generator is a randomness expansion scheme,
similar to what happens in Ekert’s proposal for quantum
key distribution (Ekert, 1991; Vazirani and Vidick, 2014).
Starting from a random seed, the protocol gives a longer
output random string whose randomness is certified by
quantum mechanics. The protocol in Pironio et al. (2010)
is quadratic: in order to produce n certified random bits it
consumes a previously existing random sequence of the order
of

ffiffiffi
n

p
bits. The protocol of Vazirani and Vidick (2012) creates

strings with n random bits certified to be secure against
quantum adversaries starting from a seed of a length of the
order of log32 n bits, offering an exponential expansion.
Physically, the QRNG in Pironio et al. (2010) was

implemented with trapped ion qubits (Olmschenk et al.,
2007) in order to close the detection loophole. Ion systems
result in slower generation when compared to optical imple-
mentations, but offer almost perfect detection efficiency.
Each atom first emits a photon with which it is entangled
and then interference between the photons entangles the ions.
This is a probabilistic heralded process. Experimental viola-
tion of Bell’s inequality is a delicate task and the generation
process was excruciatingly slow, giving only 42 certified
random bits with a 99% confidence level9 after around a
month of continuous running.
Later proposals relax some of the requisites to allow for

optical implementations and faster generation rates. Most
optical detectors have a low efficiency, but transition-edge-
sensor detectors (Lita, Miller, and Nam, 2008) have been
shown to offer a high enough efficiency to close the detection

loophole in some modified versions of Bell’s inequality
(Giustina et al., 2013) and have been used to generate certified
quantum random numbers at a rate of about one-half bit per
second (Christensen et al., 2013).
The QRNG of Cañas et al. (2014) takes an alternative

model that permits lower detection efficiencies with a semi-
device-independent approach (Pawłowski and Brunner,
2011), where we still do not trust the device but suppose
we work with a quantum system with a bounded dimension.
The experiment encodes the quantum data in the linear
transverse momentum of single photons using spatial light
modulators. While in the mentioned demonstration there are
only two paths available, including spatial light modulators
permits to control the spatial profile of single photons to
encode higher dimensional quantum states. This optical
system reaches bit rates of 0.28 certified bits per second.
Other optical implementations focus on optimizing

device-independent random bit generation in experiments
with entangled photon pairs. This is the approach in Máttar
et al. (2015) and Vivoli et al. (2015) and in the NIST
randomness beacon (National Institute of Standards and
Technology, 2011).
The ideas of device-independent quantum random number

generators can be extended to an even more general model
where quantum mechanics needs not to be true, following the
example of the device-independent quantum key distribution
protocols (Barrett, Hardy, and Kent, 2005; Barrett, Colbeck,
and Kent, 2012) that only require the no-signaling principle
to hold. The no-signaling principle forbids the transmission of
information faster than the speed of light. A faster than
light communication device would allow sending messages to
the past and produces a conflict with causality (Tolman,
1917), as exemplified by the grandfather paradox10 The
no-signaling principle is subtle. In entangled states, while
there is nonlocality and there are correlations that seem to
travel faster than the speed of light, it is in fact impossible to
use them to send information (Bussey, 1982; Dieks, 1982;
Jordan, 1983).
In the device-independent quantum random number gen-

erators of Pironio et al. (2010) and Vazirani and Vidick (2012)
the bounds are also given for the nonsignaling restriction. The
exact bound on the conditional min-entropy changes, but the
general results hold. In this new model, the protocols still
work as randomness amplification schemes that need a uni-
form random seed.
All the commented device-independent random number

generators, quantum and nonsignaling alike, are, in fact,
implementations of protocols that use the results from
physical experiments to expand randomness. They start from
a small random seed and produce a longer bit sequence
guaranteed to be random. We give a more detailed description
of this quantum randomness expansion in Sec. XI.

8In cryptography, proofs of security are limited to the particular
conditions of the protocol and might fail when the results are put
forward to a second cryptographic protocol. Putting together the
information leaked from the first and the second protocol can
compromise the data in a way neither protocol alone does. We
say a protocol is composable if we can prove its output can be safely
used as the input of another protocol, maybe under some restrictions.
A composable protocol can be used as a part of a larger system and is
still secure (Canetti, 2001; Barak et al., 2004).

9The statistical nature of the device-independent generation
process can certify only a violation of Bell’s inequality with a
certain confidence level. We can ask for more certainty by taking
more measurements (and thus reducing the generation speed).

10In the grandfather paradox, a time traveler, somewhat cruelly,
decides to prevent the journey by killing his grandfather (Nahin,
1999). While it is still open whether general relativity allows time
travel, we can consider causality a fundamental principle. Even if it is
not completely impossible, the no-signaling restriction is equivalent
to asking an attacker for the highly nontrivial feat of time travel.
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C. Other forms of quantum certification

Instead of testing locality with Bell inequalities, we can try
to design certified quantum random number generators based
on other experimental tests of the basic features of quantum
theory. The Kochen-Specker theorem shows that there are
states for which no noncontextual hidden variable model can
reproduce the predictions of quantum mechanics (Kochen
and Specker, 1967). Contextuality in quantum mechanics is
related to the existence of noncommutable observables where
the order of measurement is important and there is no
predefined model that can give the outcomes of two succes-
sive incompatible measurements. Contextuality implies non-
locality (Einstein, 1948).
Quantum random number generators based on tests of

contextuality are designed to make sure we are accessing
quantum randomness and not classical noise. In this model,
we still work with untrusted devices but in a less adversarial
setting. We assume the manufacturer of the random number
generator is not actively trying to fool us, but we admit the
device can be faulty or poorly designed. A test of contextuality
shows whether we are truly reading bits from a quantum
source or not. One of the advantages of quantum random
number generators is that we can clearly trace the origin of
our random bits to a defined quantum phenomenon. These
certified generators can help to detect the randomness due to
classical noise, imperfections or failures in the device and take
only the randomness from quantum origin. Contextuality tests
can work without spacelike separation of the devices. This is
both the merit and the disadvantage of the method. These tests
do not required complex nonlocal entangled states, but we
cannot count on causality to guarantee the bits must be
random. Unlike in device-independent protocols, a rogue
manufacturer can feed us pregenerated bits without being
detected.
The quantum random number generators of Deng et al.

(2013) and Um et al. (2013) produce certified random bits
based on contextuality tests through the violation of the
Klyachko-Can-Binicioglu-Shumovsky (KCBS) inequality
(Klyachko et al., 2008), which does not require entangled
states. The basic principle follows the model of Pironio et al.
(2010). Aviolation of the KCBS inequality guarantees a lower
bound in the entropy of the output string, which can then be
fed to a randomness extractor. The results serve as a certificate
of quantumness, with a minimum amount of randomness that
can be safely said to be of quantum origin.
The physical implementation can be optical (Deng et al.,

2013), with a qutrit11 encoded in a photon in a superposition
of three possible paths, or use a three-level trapped ion
(Um et al., 2013), which permits one to close the detection
efficiency loophole and avoids the problems of obtaining a
single photon on demand. In the ion system, the random bits
come from registering or not fluorescence during a measure-
ment that takes around 10 ms. In both cases, under the tested
experimental conditions, the devices could only provide a
net gain in randomness, i.e., generate more random bits

than they consumed, when using nonuniform measurement
settings.
Along the same lines, there are also theoretical proposals

for random number generators based on contextuality tests in
settings similar to the previous experiment (Abbott et al.,
2012) and with entangled states (Abbott, Calude, and Svozil,
2014) that highlight the relationship of randomness and
incomputability (Calude and Svozil, 2008).

X. POSTPROCESSING

Standard random number generators are designed to pro-
duce a random uniform string. The postprocessing stage takes
care of converting the raw bit sequence into a good-quality
output as close as possible to a uniform bit distribution.
Postprocessing can include tasks such as buffering to accu-
mulate samples before generating the output strings or health
tests that check the generator is working properly (Schindler
and Killmann, 2003). For instance, the commercial quantum
random number generator based on path branching Quantis
includes hardware to check for inconsistencies following the
AIS31 standard (ID Quantique, 2014).
Apart from these tasks, which vary from generator to

generator, the main purpose of postprocessing is randomness
extraction. Most physical RNGs include one form or another
of randomness extraction to correct for biases and correlations
that appear due to imperfections in the measurement and
generation devices even for good randomness sources with a
high entropy.
Some hardware random number generators mix different

randomness sources by taking the logical XOR of their bits or
feed the strings to a cryptographic hash function (Networking
Working Group, 2005). von Neumann proposed a simple
debiasing method in which, for every pair of generated bits,
we discard the results 00 and 11 and assign a 0 to 01 and a 1 to
10 (von Neumann, 1951). If we have a systematic bias this
method will remove it at the cost of throwing away at least
one-half of our bits and reducing our bit rate at least by one-
fourth (discarding more bits the more biased our original
sequence was). The basic method can be refined to improve its
efficiency (Elias, 1972; Peres, 1992).
A high entropy is not enough to guarantee the generated

random sequence is fit for any purpose. While there are
methods that can fix weak sources for their use in randomized
algorithms (Zuckerman, 1996), where randomness brings
efficiency, not all protocols can work with imperfect random-
ness. In particular, many cryptographic protocols for tasks like
bit commitment, encryption, zero knowledge or secret sharing
are not secure unless they use an almost uniform random
sequence (Dodis et al., 2004).
Before proceeding to describe randomness extraction in

more detail, it is important to define what is considered as an
“acceptably” uniform output. A useful concept is that of
distance between distributions. For two probability distribu-
tions X and Y defined in the same support (they can take the
same values in a finite alphabet A), we can define a statistical
distance

dðX; YÞ ¼ max
a∈A

jPXðaÞ − PYðaÞj: ð36Þ11The Kochen-Specker theorem works for any quantum system of
dimension d ≥ 3.
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This metric gives the maximum difference in the probability of
getting a particular result in the compared distributions. We
say two distributions X and Y are ϵ close if

dðX; YÞ ≤ ϵ: ð37Þ

In randomness extraction the goal is to produce an output
sequence which is as close to uniform as possible. That
usually means taking the n bits of the raw output and
transforming them into strings of m bits with a distribution
which is ϵ close toUm (a distribution uniform in f0; 1gm) for a
small ϵ that depends on our requisites.
Ideally, we want extractors that give as many output bits as

possible with the smallest use of additional resources like
computation time or additional randomness. In that respect,
the randomness measures we discussed in Sec. IV serve as a
design guide. In particular, the min-entropy of the distribution
of the raw sequence gives a limit on how many bits we can
extract. If we take n-bit strings from the raw sequence with a
distribution X of min-entropy H∞ðXÞ ¼ k, we can extract at
most k random bits that are close to uniform, irrespective
of the original length. A random process is called an
ðn; kÞ source if it produces n bits with a distribution X of
min-entropy H∞ðXÞ ≥ k.
In the following section we discuss different methods to

generate bit sequences as close to uniform as desired for
rates close to the min-entropy limit and the advantages and
limitations of different randomness extraction approaches.

A. Randomness extractors

Randomness extractors are functions that convert a weak
source of entropy into a uniform bit generator. They were
originally introduced in the study of randomized algorithms,
but have become a basic tool in many areas of theoretical
computer science. Randomness extractors and related con-
cepts like dispersers, condensers, and expander graphs have
multiple applications and appear in the fields of pseudoran-
dom number generators, error-correcting codes, samplers,
expander graphs, and hardness amplifiers, among others
(Vadhan, 2007).
In this section, we discuss only the few concepts about

extractors most relevant to QRNGs and refer the interested
reader to the extensive literature on the subject, ranging from
introductory tutorials (Shaltiel, 2011) to detailed surveys
(Nisan, 1996; Nisan and Ta-Shma, 1999; Shaltiel, 2004).
There are many available options for randomness extraction
and the final choice is usually influenced by the speed and
hardware requirements of each method. Here we just comment
on some particularly interesting extractors.
In order to have an efficient method and preserve as many

bits as necessary, we need to have a good estimation of our
available entropy and then choose an adequate randomness
extractor (X. Ma et al., 2013). Otherwise, the output of the
extraction function will not have the desired properties.
In the following, we assume we have a well-characterized

randomness source. The relevant entropy measures were
discussed in Sec. IV. The raw sequence is assumed to have
a known min-entropy or, in some cases, at least some known

properties such as independence between bits or that it comes
from a Markov process.
In the next sections, we also assume by default that we want

an ðn;m; k; ϵÞ extractor: a function that converts n bits of an
ðn; kÞ source into m output bits with a distribution that is
ϵ close to uniform, with m as close to k as possible.

1. Deterministic extractors

Deterministic extractors are functions

Ext∶ f0; 1gn → f0; 1gm ð38Þ
that take input strings of n bits f0; 1gn intom output bits. They
are particularly attractive as they are deterministic algorithms
that need only an input sequence to work. However, they have
some limitations that prevent their use with certain random-
ness sources.
As in all extractors, we can only produce an output close to

uniform if the input sequence already has enough intrinsic
entropy. If the input sequence is an ðn; kÞ source, a necessary
condition for the output sequence to be close to uniform is that
m ≤ k. Unfortunately, the necessary condition is not sufficient
and we can find only deterministic extractors for certain
limited input distributions.
An elementary argument shows the impossibility of general

deterministic extractors. Imagine a function from f0; 1gn to
f0; 1g. We can divide all possible inputs into one set of all the
input n-bit strings that give a 0, Ext−1ð0Þ, and another set that
is taken to 1, Ext−1ð1Þ, and at least one of them has a size 2n−1

or larger. An input that is a uniform distribution in the larger
set has at least min-entropy n − 1 but produces always the
same output showing there is no one-size-fits-all extractor
valid for any input distribution (Chor and Goldreich, 1988).
There are, however, valid extractors for input distributions

belonging to certain families of processes that describe
reasonable sources. Among others, there are practical deter-
ministic extractors for samplable distributions that can be
generated by an efficient sampling algorithm (Trevisan and
Vadhan, 2000), for bit-fixing sources where an adversary can
set as part of the bits (Gabizon, Raz, and Shaltiel, 2006; Kamp
and Zuckerman, 2007) and generalizations for affine sources
(Gabizon and Raz, 2005; Bourgain, 2007) or sources with an
output that is distributed uniformly over an unknown algebraic
variety (Dvir, 2012).
Variable length deterministic extractors form another group

of interesting deterministic extractors which deviate slightly
from the description of Eq. (38). They are exemplified in the
von Neumann algorithm: a deterministic method that works for
an unknown distribution and gives an output of a length that is
not known before the extraction. In the von Neumann random-
ness extractor described at the beginning of this section the only
requisite is that each input bit is independent from the previous
and following bits. Refined versions of von Neumann’s method
reduce the discarded entropy and give efficiencies close the
information theory limit given by the Shannon entropy of the
source (Elias, 1972; Peres, 1992). Further modifications give
algorithms that produce unbiased sequences on the more
general condition that the input sequence comes from a
Markov chain (Blum, 1986; Zhou and Bruck, 2012).
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The main appeal of the original method is its simplicity. It
requires minimal computing power, it can be implemented
with just basic hardware, and the distribution at the source
needs not be perfectly known. However, it has some important
limitations. If we have an external attacker that can alter the
bias from bit to bit, even slightly, the von Neumann extractor
no longer works. In fact, there is no deterministic algorithm
that can give a uniform output for a random variable X ¼
ðX1; X2;…; XnÞwith n bits if the bias of the input bits can vary
so that the probability of finding a 1 for the nth bit conditioned
on the measured string for the previous bit values s is

δ ≤ PXi
ð1jx1x2 � � � xn−1 ¼ sÞ ≤ 1 − δ ð39Þ

for 0 < δ ≤ 1=2. This is called a Santha-Vazirani source and
was described as a model for weak randomness sources by
Santha and Vazirani (1986) together with an impossibility
proof for a deterministic extractor.
Despite this limitation, there are deterministic algorithms

that permit one to use a weak Santha-Vazirani source to
simulate randomized algorithms (Vazirani and Vazirani,
1985b; Andreev et al., 1999). The requisites for randomiza-
tion are less stringent than for other applications, such as
cryptography, and weak sources that fail to produce nearly
uniform outputs are sometimes valid.
Even if we use a deterministic extractor, a single weak

source is not good enough for many cryptographic protocols.
While weak randomness can be used securely with signature
schemes, encryption and other related protocols need a high
quality key or they become vulnerable (McInnes and Pinkas,
1991; Dodis and Spencer, 2002; Dodis et al., 2004; Austrin
et al., 2014).
For applications where we need an output close to uniform,

Santha and Vazirani (1986) offered a simple solution: com-
bining the output of two independent Santha-Vazirani weak
sources we can produce output sequences that cannot be
distinguished by any polynomial-time algorithm from a uni-
form distribution. As long as we have access to a physical
method that produces some randomness, we can generate bit
strings that cannot be distinguished from a random string with
any efficient algorithm. This is just as good as true random-
ness for the vast majority of applications of randomness,
including cryptography.
Multiple source extractors follow this model and take the

output of two or more weak sources and process them to
generate a sequence that is close to uniform. There are many
methods that depend on the concrete input distributions, the
number of sources we have, and the desired properties of the
output sequence.
A simple extractor valid for two n-bit blocks from two

independent weak sources, both with min-entropy at least
n=2, is taking the GFð2Þ inner product of the n-bit blocks,
which reduces to computing the parity of the bitwise AND

of the two sequences (U. Vazirani, 1987; U. V. Vazirani, 1987;
Chor and Goldreich, 1988).
Other representative methods to combine different random-

ness sources can be found in Dodis et al. (2004), Bourgain
(2005), Raz (2005), Barak, Impagliazzo, and Wigderson
(2006), Shaltiel (2008), and Rao (2009).

The idea of combining sources is also behind the second
main group of randomness extractors, seeded extractors. We
consider them a special case of multiple source extractors with
one weak source and a perfectly uniform source that only
produces a small amount of bits.

2. Seeded extractors

As we have seen, for many raw bit distributions, we can
only achieve an output close to uniform with the help of
some additional randomness. In seeded extractors we have a
function

Ext∶ f0; 1gn × f0; 1gd → f0; 1gm ð40Þ

that takes as its input n bits from the raw sequence and a
uniform random seed of d bits to produce m output bits. We
assume d is much smaller that m. With the addition of the
seed, which plays a role similar to the seed in pseudorandom
number generators, we can guarantee that there exist extrac-
tors that produce an almost uniform output close to the
maximum possible length. We call a ðk; ϵÞ extractor to a
function that, for any input k source (a raw sequence of, at
least, min-entropy k), produces an output sequence that is ϵ
close to uniform. The seed acts as a catalyst that permits one to
find general methods that will always work.
Seeded randomness extractors were first defined by Nisan

and Zuckerman (1996) in the context of randomized algo-
rithms. Using the probabilistic method Radhakrishnan and
Ta-Shma (2000) and Alon and Spencer (2016) showed that
extractors always exist with an output that contains almost all
of the available hidden entropy in an input raw sequence
coming from any k source. For input blocks of n bits from a
k source, we can build extractors with an output of size
m ≈ kþ d that is ϵ close to uniform using only a seed of a
length d of the order of log2ðnÞ. There are different explicit
constructions for these seeded extractors, such as the ones in
Ta-Shma (1996) and Lu et al. (2003).
The need for a uniform seed seems a contradiction: we

require the resource we are trying to produce. However, the
requisites on the seed are less restrictive than it seems. In many
explicit extractors the seed has a length logarithmic in the size
of the input string. For a small enough d, we can even replace
the requisite of randomness by an exhaustive enumeration
of all the 2d possible sequences. In randomized algorithms,
enumeration followed by majority voting permits to simulate
a good uniform source (Goldreich and Wigderson, 2002).
However, this approach is clearly not valid for cryptography,
where we need unpredictability.
In quantum random number generators, seeded extractors

provide protection against external attackers. There are con-
structions for which there exist proofs of security against
quantum attackers of different power (Ben-Aroya and Ta-
Shma, 2012).
The first notable result is the Trevisan extractor (Trevisan,

2001), an explicit construction which has some nice properties
such as its resistance against quantum adversaries (De and
Vidick, 2010; Ta-Shma, 2011; De et al., 2012) and the way it
preserves the randomness of its seed (Mauerer, Portmann,
and Scholz, 2012). The Trevisan extractor is built on the
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Nisan-Widgerson pseudorandom number generator (Nisan
and Wigderson, 1994). It can be seen as a random function
whose truth table is given by the bits from the weak source.
The random function expands the d bits of a uniform random
seed, in both the PRNG and the extractor sense. Different
variations of the Trevisan extractor have been implemented for
their use with quantum random number generators and in
quantum key distribution (Mauerer, Portmann, and Scholz,
2012; X. Ma et al., 2013). Their main advantage is that the
size of the random uniform seed is only polylogarithmic in the
size of the input blocks. However, practical implementations
can slow down the bit generation process due to the involved
calculations required during the extraction.
A second general method of particular interest is two-

universal hashing. The leftover hash lemma (Impagliazzo,
Levin, and Luby, 1989; Håstad et al., 1999) shows that the
output of a two-universal hash function with an input with
high enough entropy is almost uniformly random. Two-
universal hash functions, such as the families introduced in
Carter and Wegman (1979) and Wegman and Carter (1981),
can extract the randomness in a weak source in a secure way in
the presence of an eavesdropper. If we have a good estimation
or a conservative bound on the correlation of our weak random
source with the eavesdropper, using the conditional entropies
described in Sec. IV, it is possible to use a generalization of the
leftover hash lemma with side information (Tomamichel et al.,
2011). In the most general case, the side information can also
be quantum. In a quantum random number generator with
technical noise, we can assume that all the randomness that
comes from imperfections or otherwise does not adjust to our
model of the quantum system that produces the raw bits is due
to an eavesdropper. In those conditions it is still possible to
design a seeded extractor that gives an almost uniform output
that is independent from external systems (König and Terhal,
2008; König and Renner, 2011). These methods are also
applied in privacy amplification in quantum key distribution
(Bennett, Brassard, and Robert, 1988; Bennett et al., 1995;
König, Maurer, and Renner, 2005; Renner and König, 2005).
Randomness extraction with two-universal or, more gen-

erally, l-universal hashing forces us to use a relatively long
seed, comparable to the size of the block n, but it can be
recycled. A randomly chosen public uniform seed can be
reused and permits a secure seeded extractor in the presence of
an imperfect randomness source under partial influence of an
attacker (Barak, Shaltiel, and Tromer, 2003; Skorski, 2015).
When compared to implementations of the Trevisan extrac-

tor, this method offers a fast extractor function that takes less
computational resources at the cost of a larger seed (X. Ma
et al., 2013). Some implementations, like hashing with
Toeplitz random binary matrices (Mansour, Nisan, and
Tiwari, 1990; Krawczyk, 1994), are particularly efficient.
We can define one such extractor where the seed is used as a
rectangular matrix that is multiplied to n-bit vectors from the
source to produce an output of almost independent bits
(Frauchiger, Renner, and Troyer, 2013). This approach is
used in some commercial devices which include the extraction
function as a precomputed random matrix that acts as the seed
and is distributed coded into the device (Troyer and Renner,
2012). While ensuring the seed is uniformly random to a high
degree is a painstaking task, it needs to be done only once.

Long unsophisticated methods, like repeatedly taking the XOR

of multiple independent generators, are acceptable.

XI. QUANTUM RANDOMNESS EXTRACTORS:
RANDOMNESS EXPANSION AND RANDOMNESS
AMPLIFICATION

Quantum mechanics does not only offer new sources of
entropy for random number generators, but also new protocols
related to randomness extraction. We will consider physical
randomness extractors which use untrusted ancillary systems
either to expand the random output of a uniform source or
to turn a weak randomness source into strong one (Chung,
Shi, and Wu, 2014).
There are two interesting families of protocols: quantum

randomness expansion and quantum randomness amplifica-
tion. In quantum randomness expansion, we start from small
random seed and, with the help of a quantum protocol, we
produce a longer bit sequence with strong guarantees of
randomness. In randomness amplification we take a weak
source, either classical or quantum, and use a quantum system
to amplify the randomness in the weak source and give an
arbitrarily close to uniform output.
Related to these ideas is also privacy amplification, where

we take a bit string which is partially known to an adversary
and produce a smaller sequence for which no external attacker
can have any statistically significant information. There are
known classical (Bennett, Brassard, and Robert, 1988;
Bennett et al., 1995) and quantum (Deutsch et al., 1996)
algorithms for this task, but we can also use methods related to
randomness extraction protocols that can guarantee the output
is uncorrelated to any causally preceding events and, there-
fore, must be private.
In this section, we give an overview of the main ideas

behind these concepts. One can also find a good review of all
the mathematics involved in Pivoluska et al. (2014).

A. Quantum randomness expansion

Quantum randomness expansion protocols follow the
model of seeded randomness extractors (see Sec. X.A.2):
assisted by a random seed, we process the bits from a weak
randomness source and give an output that is as close to
uniform as desired.
All the device-independent generators discussed in

Sec. IX.B are, indeed, implementations of some kind of
randomness expansion protocol working on the weak random-
ness produced in the nonlocality experiments of different Bell
tests. The quantum system serves both as a weak source of
randomness and as a way to guarantee the privacy of the
results. The random seed serves as a starting point to take the
randomness in the quantum devices into a uniform output.
Randomness expansion protocols can be concatenated

using a limited number of devices (Miller and Shi, 2014).
By repetition of simple protocols with a finite number of
quantum devices, we can increase the size of the output
arbitrarily to produce sequences certified against quantum
adversaries (Coudron and Yuen, 2014).
If we relax our requirements and trust part of the system, we

can also find semi-device-independent randomness expansion
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protocols. For instance, for unstrusted devices but a trusted
quantum state with a bounded dimension, the protocol in
Bouda et al. (2014) gives an expansion scheme that does not
require entanglement, which makes it easier to implement in
practice. If we consider an adversary that does not directly
control our device, but can characterize it better than us and
has a complete model of its inner workings, we can also
produce a private output string if we make full use of all the
data taken from a series of Bell tests instead of restricting to
the usual inequalities (Bancal, Sheridan, and Scarani, 2014).
A different kind of extractor without Bell tests is the source-

independent seeded extractor in Cao et al. (2016), which is
designed to work with imperfect quantum sources and
addresses many problems of optical quantum random number
generators such as losses, multiphoton pulses, or unbalanced
beam splitters.
Similarly, there are also quantum-to-classical randomness

extractors that give a procedure to measure a quantum state
from a source that can be correlated to an eavesdropper so
that we maximize the amount of random bits we get without
giving away information to the adversary (Berta, Fawzi, and
Wehner, 2014).
Finally, the concepts of randomness expansion can also be

formulated as a privacy amplification problem where we want
to extend the length of a private string while keeping it secret
under the usual assumptions of the device independence
scenario with untrusted equipment (Colbeck and Kent,
2011). The task is possible and efficient against quantum
attackers, but, unlike other protocols, there are severe limi-
tations if we consider attackers that are only restricted by
nonsignaling constraints (Arnon-Friedman and Ta-Shma,
2012). Anyway, while considering nonsignaling attackers
gives quite general security results, quantum mechanics seems
to be the nonlocal theory that best describes the physical world
and a quantum secure protocol can be safely considered
as valid.

B. Quantum randomness amplification

The need for a uniform seed in device-independent proto-
cols comes from two parts of the procedure. First, in Bell tests
we assume we have uniform random bits to choose the
measurement settings. Second, the generated bit sequence
is only guaranteed to have a lower bound on min-entropy, but
we need to use some seeded randomness extractor to obtain a
uniform output bit string.
Quantum randomness amplification protocols eliminate

these previous uniform randomness requisites and give a
way to use a weak source in combination with quantum
devices to produce uniform random bits. In Sec. X.A.1 we
have seen it is impossible to find a general deterministic
method to extract randomness from any limited min-entropy
source, even from restricted weak origins of entropy like
Santha-Vazirani sources. With the help of quantum mechan-
ics, we can solve this problem and find methods to extract
almost uniform randomness in those situations. From a certain
point of view, these protocols are not so much deterministic
randomness extractors as multiple source extractors where
we prove how to combine the randomness in the quantum
devices with the randomness of a weak source to produce a

good-quality output. While the exact details vary from
protocol to protocol, the quantum part is usually limited to
simple measurements on the different subsystems of an
entangled state. From an experimental point of view, the
hardest requisite to satisfy is making sure the quantum devices
are independent, which can be a problem in protocols that
require multiple devices.
A remarkable contribution to quantum randomness ampli-

fication is the randomness amplification protocol of Colbeck
and Renner (2012), which shows there are deterministic
protocols that can amplify the randomness in Santha-
Vazirani sources using ancillary physical systems. The result
rests only on nonlocality and is robust against attackers that
can go beyond quantum mechanics. This protocol needs a
large supply of imperfect randomness. One natural application
would be using quantum randomness amplification only to
provide the random seed for the quantum randomness
expansion protocols of the previous section and then use
the less involved quantum randomness expansion protocols to
generate the final random bit stream.
While the original protocol works only for small biases δ

in the definition of the source [see Eq. (39)], Gallego et al.
(2013) gave a quantum randomness amplification protocol
that is valid for arbitrarily weak sources of entropy. Further
protocols can take any input weak source with a bounded
nonzero min-entropy (Bouda et al., 2014; Chung, Shi, and
Wu, 2014; Plesch and Pivoluska, 2014) and give practical
ways to use Santha-Vazirani sources, requiring only a limited
number of independent devices (Brandão et al., 2016).
There are also interesting ramifications for fundamental

science experiments. Many of the concepts of quantum
randomness amplification can be traced back to the study
of randomness in Bell inequalities. These results are interest-
ing in themselves as they determine which random number
generators can be used in the foundational experiments on
nonlocality in Bell tests. In Bell experiments there is a “free
will” loophole: if the settings in the measurement are
correlated, the violation of a Bell inequality cannot be used
as a guarantee against an eavesdropper (Koh et al., 2012).
Fortunately, even in the usual experiments, there is a certain
tolerance for small correlations (Hall, 2010), but general min-
entropy sources are not valid for the selection of the settings in
Bell experiments (Thinh, Sheridan, and Scarani, 2013).

XII. RANDOMNESS TESTING

Once we generated a raw random sequence, we need to do
some quality checks to be sure the device is working correctly.
Unfortunately, there is no way to check a finite sequence is
truly random. Taken to its most absurd extreme, it is like
asking whether a 0 bit is fundamentally more random than a 1.
Apart from the uncomputable Kolmogorov complexity (Li
and Vitányi, 2008), there is no way to deduce that a random
string is really random, but there are methods to detect
suspicious sequences. While the bit string 1111111111 is
just as likely as 0100110111, if we have a generator that
consistently outputs more ones than zeros we have reason to
suspect it is not acting randomly.
The customary approach to randomness testing is using a

series of statistical tests. Knuth (1997) covered some of the
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most usual ones. The main suites available to perform these
statistical tests are the NIST (Rukhin et al., 2010), TestU01
(L’Ecuyer and Simard, 2007), and the DieHard and DieHarder
(Marsaglia, 1996; Brown, 2016) suites. There are also special-
purpose randomness testing batteries, like the one included
with the SPRNG software (Srinivasan, Mascagni, and
Ceperley, 2003), which is designed to check for problems
in parallel implementations of pseudorandom number
generators.
These suites include different tests. In the following list, we

present some of the most relevant tests to provide the kind of
hidden correlations that can appear.

(1) The frequency (monobit) test, which calculates the
proportion between ones and zeroes and how close
that proportion is to 1=2, and frequency tests within a
block, similar to the previous one, but testing for the
expected probabilities for the specified block sizes.

(2) The runs test, which checks if the number of runs12 in
a bit string corresponds to that in a random sequence
and if the oscillation between zeroes and ones is too
fast or too slow.

(3) The spectral test, which tries to detect periodic
features in the sequence that would indicate a
deviation from the assumption of randomness.

(4) Maurer’s universal statistical test (Maurer, 1992),
which detects whether or not the sequence can be
significantly compressed without loss of information.

(5) Autocorrelation tests which check the correlation of
the sequence with shifted versions of itself.

Most tests apply statistical analyses similar to the standard chi-
squared test. The result is a p value that indicates how likely it
is for a purely random number generator to produce the tested
sequence. Each test suite has different threshold values to
determine if a given p value is compatible with randomness
or not.
These tests, while useful to detect faulty generators,

cannot prove a generator produces truly random outputs.
Deterministic pseudorandom number generators like the
Mersenne Twister can pass the tests but are predictable.
Likewise, there can be false positives for correlations and
the tests should be run multiple times for each generator.
Statistically, even a perfect random number generator would
fail a test from time to time.
Testing is also vulnerable to an active attacker that feeds

us pregenerated random sequences that pass the tests. In
Sec. IX.B we described some quantum protocols to solve
this issue.
Apart from that, the tests are usually designed with

pseudorandom number generators in mind and do not include
physical models into account. Some correlations due to
implementation-related problems, like afterpulsing in photon
detectors, are not specifically checked.
All these problems notwithstanding, any good quantum

random number generator should be able to pass all the tests in
any given suite and using some form of randomness testing

during operation can help to detect sudden failures or faulty
components.

XIII. DISCUSSION

Quantum random number generation is probably the most
mature quantum technology. We have seen the multiple ways
we can harness the randomness in quantum mechanics to
produce random bit strings. Physical phenomena such as
radioactive decay, photon splitting, noise in Raman amplifi-
cation, laser phase noise, or amplified spontaneous emission
can serve as reliable entropy sources.
We have reached a point where optical quantum random

number generators routinely reach generation rates on the
order of megabits per second with promises of gigabit rates
and new generation methods are still being suggested every
year. While there is a race to announce the highest possible
generation rates, in many cases, the actual implementation is
limited by practical hurdles in the speed of the electronic
systems and the postprocessing methods.
Many proposals focus on the generation principle, on

making sure the quantum phenomenon of interest produces
fresh entropy at a fast rate, but do not deal with making full
use of the available bits and give random bit rates which are
only true as an extrapolation. In the research phase, it is
perfectly acceptable to leave all the processing details for later
and work on a limited collection of stored samples, but, at this
point of development, there is a need for better and faster
production of the final, usable random bits.
Commercial devices, by necessity, have these aspects

covered but they still offer bit rates with a gap around 2 orders
of magnitude with respect to the fastest possible laboratory
rates. In some applications, such as simulation, this is
important, as quantum random number generators have to
compete against fast pseudorandom number generators that
work essentially at the speed of the available processor.
Concerning the bit rate, there are two relevant issues. One is

the communication bottleneck. External devices will always
need a communication channel with the computer that uses the
random bits. The fastest USB protocols (USB 3.0 and 3.1) and
PCI Express components can reach communication rates on
the order of tens of Gbps that is enough for many generators.
Alternatively, many optical implementations can be adapted or
have been demonstrated to work in integrated silicon setups
that could be included as part of future processors.
Communication at those rates is challenging, but it is an

engineering problem that can be solved with current technology
with the right systems. A second more interesting limitation is
randomness extraction. In Sec. X we described different ways
to turn the raw bits coming from measurement and the first
simple conditioning into good-quality random bits. While some
quantum random number generators are claimed to directly
produce random enough raw sequences, in some applications
like cryptography, less than perfect uniformity can pose serious
problems. In general, quantum random number generators
should include a well-designed postprocessing phase.
Seeded extractors like Trevisan’s or two-universal hashing

have good security properties against quantum attackers. That
should be the standard that postprocessing methods should
aspire to. At the moment, postprocessing is relatively slow

12A run is defined as an uninterrupted sequence of identical bits
bounded by a bit of the opposite value before and after the same-bit
sequence.
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when compared to the potential generation rates of the fastest
optical generators. The most efficient implementations use
postprocessing based on two-universal hashing with binary
matrix multiplication. There is a large open area of research on
identifying and constructing new extractors that are resistant
against quantum attacks and can be fast enough to sustain
output bit rates on the order of Gbps.
Self-testing is another area for future improvement.

Physical random number generators can fail due to component
degradation or even external attacks. In Sec. IX we described
many possible approaches to quality control. In particular,
device-independent protocols offer reliable random numbers
even if we do not trust our hardware. Device-independent
randomness generation and quantum randomness expansion
and amplification are quite active areas of research and the
last years have seen many interesting results, including new
protocols based on nonlocality that can perform classically
impossible tasks, such as physically assisted deterministic
randomness extraction from weak sources.
Device-independent quantum random number generators

are still experimentally challenging and produce bits at slug-
gish rates. In Sec. IX we also commented on more relaxed
approaches to certification, but this is likely to be an active
area for the next years, both in technological development
research to make better device-independent QRNGs and in the
theoretical search for simpler paths to certification.
Currently, both pure and applied research have reached

an interesting point where there are new fundamental results
and, at the same time, there appear different quantum random
number generators in the market.
With this review, we hope we have introduced the interested

reader to the existing technologies and hinted at some future
directions.
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