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This article reviews the theory of electron-phonon interactions in solids from the point of view of
ab initio calculations. While the electron-phonon interaction has been studied for almost a century,
predictive nonempirical calculations have become feasible only during the past two decades. Today it
is possible to calculate from first principles many materials properties related to the electron-phonon
interaction, including the critical temperature of conventional superconductors, the carrier mobility in
semiconductors, the temperature dependence of optical spectra in direct and indirect-gap semi-
conductors, the relaxation rates of photoexcited carriers, the electron mass renormalization in angle-
resolved photoelectron spectra, and the nonadiabatic corrections to phonon dispersion relations. In
this article a review of the theoretical and computational framework underlying modern electron-
phonon calculations from first principles as well as landmark investigations of the electron-phonon
interaction in real materials is given. The first part of the article summarizes the elementary theory of
electron-phonon interactions and their calculations based on density-functional theory. The second
part discusses a general field-theoretic formulation of the electron-phonon problem and establishes
the connection with practical first-principles calculations. The third part reviews a number of recent
investigations of electron-phonon interactions in the areas of vibrational spectroscopy, photoelectron
spectroscopy, optical spectroscopy, transport, and superconductivity.
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I. INTRODUCTION

The interaction between fermions and bosons is one of the
cornerstones of many-particle physics. It is therefore not
surprising that, despite being one of the most thoroughly
studied chapters of solid state physics, the interaction between
electrons and phonons in solids continues to attract unrelent-
ing attention.
Electron-phonon interactions (EPIs) are ubiquitous in con-

densed matter and materials physics. For example, they
underpin the temperature dependence of the electrical resis-
tivity in metals and the carrier mobility in semiconductors,
they give rise to conventional superconductivity, and they
contribute to optical absorption in indirect-gap semiconduc-
tors. In addition, EPIs enable the thermalization of hot
carriers, determine the temperature dependence of electron
energy bands in solids, and distort band structures and phonon
dispersion relations of metals, leading to characteristic kinks
and Kohn anomalies in photoemission and Raman and
neutron spectra. EPIs also play a role in the areas of
spintronics and quantum information, for example, by cou-
pling lattice and spin degrees of freedom in electromagnons,
or by modulating the lifetimes of electron spins in color
centers.
Given the fundamental and practical importance of

electron-phonon interactions, it is perhaps surprising that
the majority of theoretical studies in this area still rely on
semiempirical model Hamiltonians, especially in times when
ab initio calculations have become pervasive in every area
of condensed matter and materials physics. The reason for
this lag can be found in the complexity of electron-phonon
calculations: while density-functional theory (DFT) calcula-
tions of total energies and structural properties were already
well established in the early 1980s (Martin, 2004), systematic
ab initio calculations of EPIs had to wait for the development
of density-functional perturbation theory (DFPT) for lattice
dynamics between the late 1980s and the mid 1990s (Baroni,
Giannozzi, and Testa, 1987; Gonze, Allan, and Teter, 1992;
Savrasov, 1992).
Despite this delayed start, the past two decades have

witnessed tremendous progress in this area, and new exciting
applications are becoming accessible as first-principles tech-
niques for studying EPIs catch up with more established
DFT methods. These advances are driving the evolution from
qualitative and descriptive theories of electron-phonon effects
in model solids to quantitative and predictive theories of real
materials. As the methodology for calculating EPIs from first

principles is rapidly reaching maturity, it appears that the
time is ripe for reviewing this vast, complex, and fascinating
landscape.
One of the most authoritative reviews on the theory of EPIs

is the classic book by Grimvall (1981). This monumental
work represents an unmissable reference for the specialist.
However, as this book predates the rise of ab initio computa-
tional methods based on DFT, it inevitably misses the most
recent developments in this area. The present article con-
stitutes an attempt at filling this gap by reflecting on what DFT
calculations can contribute to the study of electron-phonon
physics. In addition, this article is also an opportunity to
establish a unified conceptual and mathematical framework in
this incredibly diverse landscape, shed light on the key
approximations, and identify some of the challenges and
opportunities ahead.
As emphasized by the title “Electron-phonon interactions

from first principles,” the aim of this article is to review the
ab initio theory of EPIs and to survey modern advances in
ab initio calculations of EPIs. The reader interested in the
fundamentals of electron-phonon physics or in theoretical
developments relating to model Hamiltonians is referred to
the outstanding monographs by Ziman (1960), Grimvall
(1981), Schrieffer (1983), Mahan (1993), and Alexandrov
and Devreese (2010).
Among significant recent advances that are covered in this

review we mention the zero-point renormalization and the
temperature dependence of electronic band structures, the
calculation of phonon-assisted optical absorption spectra,
the electron mass renormalization and the kinks in angle-
resolved photoemission spectra, the thermalization of hot
carriers in semiconductors, the calculation of phonon-limited
mobility, the development of efficient computational tech-
niques for calculating EPIs, and efforts to improve the
predictive power of EPI calculations by going beyond
standard density-functional theory.
The review is organized as follows: Sec. II provides an

historical perspective on the development of theories of the
EPI, from early semiempirical approaches to modern first-
principles calculations. In Sec. III we examine the various
components of DFT calculations of EPIs in solids and set
the formalism which will be used throughout this article.
Section IV provides a synthesis of the most advanced field-
theoretic approaches employed to study EPIs, and Sec. V
makes the link between the most general formalism and DFT
calculations for real materials. In this section the reader will
find a number of expressions which are useful for practical
implementations. Section VI reviews advanced computational
techniques for performing calculations of EPIs efficiently and
accurately, such as Wannier interpolation and Fermi-surface
harmonics. Here we also discuss recent progress in the study
of electron-phonon couplings in polar semiconductors. In
Sec. VII we discuss recent calculations of phonons beyond the
adiabatic Born-Oppenheimer approximation. Section VIII
reviews calculations of EPIs in the context of photoelectron
spectroscopy. Section IX focuses on the optical properties of
semiconductors and insulators, in particular, the temperature
dependence of the band structure and phonon-assisted optical
processes. In Sec. X we review calculations on the effects of
EPIs on carrier dynamics and transport, including carrier
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thermalization rates and mobilities. Section XI discusses EPI
calculations in the area of phonon-mediated superconductiv-
ity. Attempts at improving the accuracy and predictive power
of ab initio EPI calculations by using more sophisticated
electronic structure methods are discussed in Sec. XII. Finally
in Sec. XIII we highlight the most pressing challenges in the
study of EPIs from first principles, and we present our
conclusions. The Appendixes give some notational remarks
and more technical discussions.

II. HISTORICAL DEVELOPMENT

The notion of “electron-phonon interactions” is as old as
the quantum theory of solids. In fact, in the very same work
where Bloch (1929) discussed the formal solutions of the
Schrödinger equation in periodic potentials, Sec. V begins
with the all-telling title: “The interaction of the electrons and
the elastic waves of the lattice.” In this work the first quantum
theory of the temperature-dependent electrical resistivity of
metals was developed. It took only a few years for Bloch’s
“elastic waves” to be replaced by the brand-name “phonon”
by Frenkel (1932), thus establishing a tradition that continues
unaltered almost a century later (Walker and Slack, 1970).
In order to discuss the early approaches to the electron-

phonon problem, it is useful to state right from the start the
standard form of the Hamiltonian describing a coupled
electron-phonon system:

Ĥ ¼
X
nk

εnkĉ
†
nkĉnk þ

X
qν

ℏωqνðâ†qνâqν þ 1=2Þ

þ N−1=2
p

X
k;q
mnν

gmnνðk;qÞĉ†mkþqĉnkðâqν þ â†−qνÞ

þ
"
N−1

p

X
k;q;q0
mnνν0

gDWmnνν0 ðk;q;q0Þĉ†mkþqþq0 ĉnk

× ðâqν þ â†−qνÞðâq0ν0 þ â†−q0ν0 Þ
#
: ð1Þ

In this equation the first line describes the separate electron
and phonon subsystems using the usual second-quantized
formalism, while the second line specifies the mutual coupling
between electrons and phonons to first order in the atomic
displacements (Mahan, 1993). Here εnk is the single-particle
eigenvalue of an electron with crystal momentum k in the
band n, ωqν is the frequency of a lattice vibration with crystal

momentum q in the branch ν, and ĉ†nk and ĉnk (â†qν and âqν)
are the associated fermionic (bosonic) creation and destruction
operators. Np is the number of unit cells in the Born–von
Kármán (BvK) supercell (see Appendix A). The third and
fourth lines of Eq. (1) describe the electron-phonon coupling
Hamiltonian to second order in the atomic displacements.
This contribution is rarely found in the early literature (hence
the square brackets), but it plays an important role in the
theory of temperature-dependent band structures (Sec. V.B.1).
The matrix elements gmnνðk;qÞ and gDWmnνν0 ðk;q;q0Þ measure
the strength of the coupling between the electron and the
phonon subsystems and have physical dimensions of an

energy. Here the superscript “DW” stands for Debye-Waller
and relates to the Debye-Waller self-energy discussed in
Sec. V.B.2. Complete details as well as a derivation of
Eq. (1) are provided in Sec. III.
The formal simplicity of Eq. (1) conceals some important

difficulties that one faces when attempting to use this equation
for predictive calculations. For example, the electronic
Hamiltonian relies on the assumption that the system under
consideration can be described in terms of well-defined
quasiparticle excitations. Similarly, the phonon term is mean-
ingful only within the harmonic and the adiabatic approx-
imations. More importantly, Eq. (1) does not provide us with
any prescription for determining the numerical parameters
εnk, ωqν, gmnνðk;qÞ, and gDWmnνν0 ðk; q;q0Þ.
In a sense, the history of the study of electron-phonon

interactions is really the history of how to calculate the
parameters entering Eq. (1) using procedures that can be at
once rigorous, reliable, and practical. As will become clear in
Sec. IV, despite great progress in this area, some conceptual
difficulties still remain.

A. Early approaches to the electron-phonon interaction

1. Metals

A clear account of the theory of EPIs until the late 1950s is
given by Ziman (1960). In the following we highlight only
those aspects that are relevant to the subsequent discussion in
this article.
Early studies of electron-phonon interactions in solids were

motivated by the quest for a quantum theory of the electrical
resistivity in metals (Hoddeson and Baym, 1980). The
common denominator of most early approaches is that
the electronic excitations in Eq. (1) were described using
the free electron gas model εnk ¼ ℏ2k2=2me − εF, with me
being the electron mass and εF the Fermi energy; the lattice
vibrations were described as acoustic waves using the Debye
model ωqν ¼ vsjqj, where vs is the speed of sound in the solid.
Both approximations were reasonable given that the systems
of interest included almost exclusively elemental metals and
primarily monovalent alkali and noble metals (Mott and
Jones, 1936). While these approximations were fairly
straightforward, it was considerably more challenging to
determine the EPI matrix elements gmnνðk;qÞ using realistic
approximations.
The very first expression of the electron-phonon matrix

element was derived by Bloch (1929); using contemporary
notation it can be written as

gmnνðk;qÞ ¼ −i
�

ℏ
2NpMκωqν

�
1=2

q · eκνðqÞV0: ð2Þ

Here Mκ is the mass of the κth nucleus, and eκνðqÞ is the
polarization of the acoustic wave corresponding to the wave
vector q and mode ν. The term V0 represents a unit-cell
average of the “effective” potential experienced by the
electrons in the crystal. Equation (2) was meant to describe
the scattering from an initial electronic state with wave vector
k to a final state with wave vector kþ q, via an acoustic
phonon of wave vector q and frequency ωqν. The formula was
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developed for free electron metals and neglects so-called
“umklapp” (folding) processes, i.e., scattering events whereby
k goes into kþ qþG with G being a reciprocal lattice
vector. A derivation of Eq. (2) is provided in Sec. III.B.5. In
order to determine V0 Bloch (1929) argued that the crystal
may be described as a continuous deformable medium.
Starting from this assumption he reached the conclusion
that the average potential can be approximated as V0 ¼
ℏ2=ð16mea20Þ (a0 is the Bohr radius). Even though Bloch’s
matrix element is no longer in use, this model provides helpful
insight into the nature of EPIs in monovalent metals. For
example the so-called “polarization factor” in Eq. (2),
q · eκνðqÞ, shows that (in the absence of umklapp processes)
only longitudinal sound waves scatter electrons.
Nordheim (1931) proposed a refinement of Bloch’s model

whereby the average potential V0 in Eq. (2) is replaced by the
Fourier component VκðqÞ of the ionic Coulomb potential (see
Sec. III.B.5). The key assumption underlying this model is
that the effective potential experienced by the electrons is
simply the sum of the individual bare ionic potentials of each
nucleus. When a nucleus is displaced from its equilibrium
position, the corresponding potential also shifts rigidly. This is
the so-called “rigid-ion” approximation.
The main difficulty that arises with the rigid-ion model is

that the Fourier transform of the Coulomb potential diverges
as q−2 for q ¼ jqj → 0; this leads to unrealistically strong
EPIs. In order to circumvent this difficulty Mott and Jones
(1936) proposed to truncate the ionic potential at the boundary
of the Wigner-Seitz unit cell of the crystal. This choice
represents the first attempt at including the electronic screen-
ing of the nuclear potential in a rudimentary form. In practice
Mott and Jones (1936) calculated the Fourier transform of
VκðrÞ by restricting the integration over a Wigner-Seitz cell;
the resulting potential is no longer singular at long wave-
lengths. A detailed discussion of this model can be found in
Ziman (1960).
Despite some initial successes in the study of the electrical

conductivity of metals, the descriptive power of these early
models was undermined by the complete neglect of the
electronic response to the ionic displacements. The first
attempt at describing the effect of the electronic screening
was made by Bardeen (1937). In his model the average
potential V0 in Eq. (2) is replaced by

V0 → VκðqÞ=ϵðqÞ; ð3Þ

where ϵðqÞ is the Lindhard function (Mahan, 1993):

ϵðqÞ ¼ 1þ ðkTF=qÞ2Fðq=2kFÞ: ð4Þ

Here kTF and kF are the Thomas-Fermi screening wave
vector and the Fermi wave vector, respectively, and FðxÞ ¼
1=2þ ð4xÞ−1ð1 − x2Þ log j1þ xj=j1 − xj. A derivation of
Bardeen’s model is provided in Sec. III.B.5. Since ϵðqÞ →
ðkTF=qÞ2 for q → 0, the singularity of the electron-nuclei
potential is removed in Bardeen’s matrix element. The work of
Bardeen (1937) can be considered as a precursor of modern
ab initio approaches, insofar as the calculation of the matrix
element was carried out using a self-consistent field method

within the linearized Hartree theory. This strategy is similar in
spirit to modern DFPT calculations.
The key qualitative difference between the approach of

Bardeen (1937) and modern techniques lies in the neglect of
exchange and correlation effects in the screening. A possible
route to overcome this limitation was proposed by Bardeen
and Pines (1955). In this work they considered the role of a
screened exchange interaction in the electron-phonon problem
(see Appendix B of their work); however, the mathematical
complexity of the formalism prevented further progress in this
direction. Similar efforts were undertaken by Hone (1960),
and a more detailed account of the early approximations to
exchange and correlation can be found in Grimvall (1981).
The most interesting aspect of the work by Bardeen and

Pines (1955), as well as previous work along the same lines by
Nakajima (1954), is that for the first time the electron-phonon
problem was addressed using a field-theoretic approach.
One interesting feature in the theory of Bardeen and Pines

is that their field-theoretic formulation naturally leads to a
retarded electron-phonon vertex: the effective potential expe-
rienced by electrons upon the displacement of nuclei depends
on how fast this displacement takes place. In this approach
the effective potential V0 in Eq. (2) is replaced by the
dynamically screened potential:

V0 → VκðqÞ=ϵðq;ωqνÞ: ð5Þ

Here ϵðq;ωÞ is the frequency-dependent Lindhard function
(Mahan, 1993), and the effect of electronic screening is
evaluated at the phonon frequency ω ¼ ωqν. Somewhat
surprisingly, this development was not followed up in the
literature on ab initio calculations of EPIs.

2. Semiconductors

While the investigation of electron-phonon effects was
initially restricted to monovalent metals, the formal develop-
ments were soon extended to the case of more complex
systems such as semiconductors. Carriers in semiconductors
are typically confined within a narrow energy range near the
band extrema; consequently it is expected that the dominant
electron-phonon scattering mechanisms will involve long-
wavelength phonons (q → 0). This concept was formalized
by Bardeen and Shockley (1950) and Shockley and Bardeen
(1950), laying the foundations of the “deformation-potential”
method.
In the deformation-potential approach it is assumed that the

atomic displacements can be described by long-wavelength
acoustic waves, and these can be related in turn to the elastic
strain of the crystal. Using concepts from the effective mass
theory, Bardeen and Shockley showed that in this approxi-
mation the potential V0 in Eq. (2) can be replaced by

V0 → E1;nk ¼ Ω∂εnk=∂Ω; ð6Þ

where Ω represents the volume of the unit cell, and the
electron eigenvalues correspond to the valence or conduction
band extrema. The derivation of this result can be found in
Appendix B of Bardeen and Shockley (1950). The deforma-
tion potentials E1 were obtained empirically; for example,
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Bardeen and Shockley determined these values for the band
extrema of silicon by fitting mobility data. More complex
scenarios such as anisotropic constant-energy surfaces in
semiconductors were subsequently addressed by considering
the effects of shear deformations (Dumke, 1956). While the
concept of deformation potentials has become a classic in
semiconductor physics, this method relies on a semiempirical
approach and lacks predictive power.

3. Ionic crystals

A class of materials that played an important role in the
development of the theory of EPIs is that of ionic crystals. The
qualitative difference between ionic solids and the systems
discussed in Secs. II.A.1 and II.A.2 is that the atomic
displacements can generate long-ranged electric fields; these
fields provide a new scattering channel for electrons and holes.
The theory of polar electron-phonon coupling started with

the investigation of the electron mean free path in ionic
crystals in search for a theoretical model of dielectric break-
down in insulators (Fröhlich, 1937; Fröhlich and Mott, 1939).
The central idea of these models is that in insulators the
density of free carriers is very low; therefore it is sensible to
consider a single electron interacting with the polarization
field of the ionic lattice.
The Fröhlich model is similar in spirit to the contemporary

work of Bardeen (1937) for metals. The main difference is that
Fröhlich considered the screening arising from the dielectric
polarization of an insulating crystal, while Bardeen considered
the screening arising from the response of the Fermi sea.
Fröhlich, Pelzer, and Zienau (1950) showed that in the case

of isotropic ionic crystals the effective potential V0 appearing
in Eq. (2) must be replaced by

V0 → −
�
e2Mκω

2
qν

ϵ0Ω

�
1

ϵ∞
−

1

ϵ0

��
1=2 1

jqj2 : ð7Þ

In this expression e is the electron charge, ϵ0 is the dielectric
permittivity of a vacuum, and ϵ0 and ϵ∞ are the static and the
high-frequency relative permittivities, respectively. This result
is derived in Sec. VI.A.3. Using Eqs. (2) and (7) we see that
when ϵ0 > ϵ∞ the matrix element gmnνðk;qÞ diverges as jqj−1
at long wavelengths. This singular behavior can lead to very
strong EPIs and provides the physical basis for the phenome-
non of electron self-trapping in polarons (Pekar, 1946; Emin,
2013). The initial studies in this area were rapidly followed
by more refined approaches based on field-theoretic methods
(Lee, Low, and Pines, 1953). A comprehensive discussion of
the various models can be found in the original review article
by Fröhlich (1954).

B. The pseudopotential method

The approximations underpinning the models discussed in
Sec. II.A become inadequate when one tries to study EPIs for
elements across the periodic table. This and other limitations
stimulated the development of the pseudopotential method,
starting in the late 1950s with the work of Phillips and
Kleinman (1959). The theory of pseudopotentials is too vast to
be summarized in a few lines, and the reader is referred to

Chapter 11 of Martin (2004) for a thorough discussion.
Here we highlight only the aspects that are relevant to the
calculation of EPIs.
The genesis of the pseudopotential method is linked with

the question of how the valence electrons of metals could be
described using the electron gas model, even though the
orthogonality to the core states imposes rapid fluctuations of
the valence wave functions near the atomic cores. In order to
address this question, it is useful to go through the key steps
of the orthogonalized plane wave method (OPW) (Herring,
1940). In this method one considers plane waves jkþGi for
the wave vector kþG and projects out the component
belonging to the Hilbert subspace spanned by core electrons.
This is done by defining jkþGiOPW ¼ jkþGi −P

c jϕcihϕcjkþGi, where jϕci represents the core states
of all atoms in the system. The functions jkþGiOPW are by
construction orthogonal to core states, and therefore they
can be used to expand the valence electron wave
functions jψnki using only a few basis elements: jψnki ¼P

GckðGÞjkþGiOPW. In the language of pseudopotential
theory jψnki is referred to as the “all-electron” wave function,
while the function j ~ψnki ¼

P
GckðGÞjkþGi is referred to as

the “pseudo” wave function. The all-electron and the pseudo
wave functions are simply related as follows:

jψnki ¼ T̂ j ~ψnki; with T̂ ¼ 1 −
X
c

jϕcihϕcj: ð8Þ

Here we used a modern notation borrowed from the projector-
augmented wave (PAW) method of Blöchl (1994). By con-
struction, the pseudo wave function j ~ψnki does not exhibit
rapid fluctuations near the atomic cores. The projector
operator T̂ is now used to rewrite the single-particle
Schrödinger equation for the all-electron wave function
[e.g., the Kohn-Sham (KS) equations] in terms of the pseudo
wave functions. Using Ĥjψnki ¼ εnkjψnki and Eq. (8) we
have

T̂ †Ĥ T̂ j ~ψnki ¼ εnkT̂
†T̂ j ~ψnki; ð9Þ

which is a generalized eigenvalue problem. By replacing
the definition of T̂ given earlier one finds (Phillips and
Kleinman, 1959)

ðĤ þ V̂repÞj ~ψnki ¼ εnkj ~ψnki; ð10Þ

with V̂rep ¼ P
cðεnk − εcÞjϕcihϕcj and εc the eigenvalue of a

core electron. Clearly the additional potential V̂rep is strongly
repulsive and is localized near the atomic cores. Cohen
and Heine (1961) showed that this extra potential largely
cancels the attractive potential of the nuclei. This is the
reason why valence electrons in metals behave almost like
free electrons.
The practical consequence of these developments is that

it is possible to define smooth effective “pseudopotentials” for
systematic band structure calculations, whose form factors
include only a few Fourier components (Phillips, 1958; Heine
and Abarenkov, 1964; Animalu and Heine, 1965; Cohen and
Bergstresser, 1966).
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The use of pseudopotentials in electron-phonon calcula-
tions started with the works of Sham (1961) and Sham and
Ziman (1963). Sham (1961) showed that if the pseudopoten-
tial can be described by a local function, then the electron-
phonon matrix element gmnνðk;qÞ can be calculated by
replacing the all-electron potentials and wave functions by
the corresponding pseudopotentials and pseudo wave func-
tions. In this approach the pseudopotentials move around
rigidly with the ionic cores; therefore we are dealing effec-
tively with an improved version of the rigid-ion approximation
discussed in Sec. II.A.
The pseudopotential method was employed by Shuey

(1965) in order to calculate the electron-phonon matrix
elements in germanium. Shortly afterward many calculations
of electron-phonon interactions based on the pseudopotential
method appeared in the literature, including work on the
resistivity of metals (Carbotte and Dynes, 1967; Dynes and
Carbotte, 1968; Hayman and Carbotte, 1971; Kaveh and
Wiser, 1972), the electron mass enhancement in metals
(Ashcroft and Wilkins, 1965; Grimvall, 1969; Allen and
Cohen, 1970, 1972; Allen, 1972a), the superconducting
transition temperatures within the McMillan formalism
(Allen et al., 1968; Allen and Cohen, 1969), the mobility
of semiconductors (Ralph, 1970), and the temperature
dependence of semiconductor band structures (Allen and
Cardona, 1981, 1983). These calculations were mostly based
on phonon dispersion relations extracted from neutron scat-
tering data, and the results were in reasonable agreement
with experiment. It seems fair to say that the pseudopotential
method enabled the evolution from qualitative to quantitative
calculations of electron-phonon interactions.
Before proceeding we note that, although Eqs. (8) and (9)

were introduced starting from the method of orthogonalized
plane waves, there exists considerable freedom in the choice
of the operator T̂ . In practice T̂ can be chosen so as to make
~ψnk as smooth as possible, while retaining information on the
all-electron wave functions near the ionic cores. This was
achieved by the PAW method of Blöchl (1994). Broadly
speaking it is also possible to reinterpret the historical
development of the pseudopotential method as the evolution
of the projector T̂ . In fact Blöchl showed how the most
popular pseudopotential methods (Hamann, Schlüter, and
Chiang, 1979; Bachelet, Hamann, and Schlüter, 1982;
Vanderbilt, 1990; Troullier and Martins, 1991) can be derived
from the PAW method under specific approximations.

C. Ab initio self-consistent field calculations

Predictive calculations of EPIs became possible with the
development of ab initio DFT techniques. The key advantage
of DFT methods is the possibility of calculating electron band
structures, phonon dispersion relations, and electron-phonon
matrix elements entirely from first principles. Historically,
DFT started with the works of Hohenberg and Kohn (1964)
and Kohn and Sham (1965). However, its widespread use
had to wait for the development of accurate parametrizations
of the exchange and correlation energy of the electron gas
(Hedin and Lundqvist, 1971; von Barth and Hedin, 1972;
Gunnarsson, Lundqvist, and Wilkins, 1974; Ceperley and

Alder, 1980; Perdew and Zunger, 1981). An introduction to
DFT techniques can be found in the books by Parr and
Yang (1994) (advanced), Martin (2004) (intermediate), and
Giustino (2014) (elementary).
The first calculation of electron-phonon interactions using

DFT was carried out by Dacorogna, Cohen, and Lam (1985)
using a “frozen-phonon” approach (see Sec. III.B.3). In this
work they computed electron bands, phonon dispersions, and
electron-phonon matrix elements of Al entirely from first
principles. Quoting from the original manuscript: “This
calculation is ab initio since only information about the
Al atom, i.e., the atomic number and atomic mass, is used
as input.” Dacorogna et al. calculated the so-called electron-
phonon coupling strength λqν for several phonon branches ν
and momenta q throughout the Brillouin zone, as well as
the phonon linewidths arising from the EPI (see Secs. VII
and XI.A). The average coupling strength was found to be in
good agreement with that extracted from the superconducting
transition temperature. In the approach of Chang et al. (1985),
Dacorogna, Chang, and Cohen (1985), Dacorogna, Cohen,
and Lam (1985), and Lam, Dacorogna, and Cohen (1986) the
electron-phonon matrix element was calculated using

gmnνðk;qÞ ¼ humkþqjΔqνvKSjunkiuc; ð11Þ

with unk and umkþq being the Bloch-periodic components
of the Kohn-Sham electron wave functions, ΔqνvKS is the
phonon-induced variation of the self-consistent potential
experienced by the electrons, and the integral extending over
one unit cell. Equation (11) is discussed in Sec. III.B.2. The
scattering potential ΔqνvKS was calculated by explicitly taking
into account the rearrangement of the electronic charge
following a small displacement of the nuclei. The inclusion
of the self-consistent response of the electrons constitutes a
considerable step forward beyond the rigid-ion approximation
of Sec. II.B.
The next and most recent step in the evolution of electron-

phonon calculations came with the development of DFPT for
lattice dynamics (Baroni, Giannozzi, and Testa, 1987; Gonze,
Allan, and Teter, 1992; Savrasov, 1992). In contrast to frozen-
phonon calculations, which may require large supercells,
DFPT enables the calculations of vibrational frequencies
and eigenmodes at arbitrary wave vectors in the Brillouin
zone. This innovation was critical in the context of electron-
phonon physics, since the calculation of many physical
quantities requires the evaluation of nontrivial integrals over
the Brillouin zone. The first calculations of EPIs using DPFT
were reported by Savrasov, Savrasov, and Andersen (1994),
Liu and Quong (1996), Mauri et al. (1996), and Bauer et al.
(1998). They calculated the electrical resistivity, thermal
conductivity, mass enhancement, and superconducting critical
temperature of a number of elemental metals (e.g., Al, Au, Cu,
Mo, Nb, Pb, Pd, Ta, V, and Te), and reported good agreement
with experiment.
By the late 1990s most of the basic ingredients required for

the ab initio calculation of EPIs were available. Subsequent
studies focused on using these techniques for calculating a
variety of material properties and on improving the efficiency
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and accuracy of the methodology. The most recent advances
are reviewed in Secs. VI–XII.

III. ELECTRON-PHONON INTERACTION IN
DENSITY-FUNCTIONAL THEORY

In this section we review the basic formalism underlying the
calculation of EPIs using DFT, and we establish the link with
the Hamiltonian in Eq. (1). We start by introducing the
standard formalism for lattice vibrations and the electron-
phonon coupling Hamiltonian. Then we briefly summarize
established methods of DFPT for calculating electron-phonon
matrix elements. For the time being we describe electrons and
phonons as separate subsystems; a rigorous theoretical frame-
work for addressing the coupled electron-phonon system will
be discussed in Sec. IV.

A. Lattice vibrations in crystals

The formalism for studying lattice dynamics in crystals is
covered in many excellent textbooks such as Born and Huang
(1954), Ziman (1960), Kittel (1963, 1976), and Ashcroft and
Mermin (1976). Here we introduce the notation and summa-
rize those aspects which will be useful for subsequent
discussions in this section and in Secs. IV and V.
We consider M nuclei or ions in the unit cell. The position

vector and Cartesian coordinates of the nucleus κ in the
primitive unit cell are denoted by τκ and τκα, respectively. We
describe the infinitely extended solid using BvK boundary
conditions. In this approach, periodic boundary conditions are
applied to a large supercell which contains Np unit cells,
identified by the direct lattice vectors Rp, with p ¼ 1;…; Np.
The position of the nucleus κ belonging to the unit cell p is
indicated by τκp ¼ Rp þ τκ. The Bloch wave vectors q are
taken to define a uniform grid of Np points in one unit cell of
the reciprocal lattice, and the vectors of the reciprocal lattice
are indicated by G. In Appendix A we provide additional
details on the notation, and we state the Fourier transforms
between the direct and reciprocal lattices.
Using standard DFT techniques it is possible to calculate

the total potential energy of electrons and nuclei in the BvK
supercell. This quantity is denoted as UðfτκpgÞ, where the
braces are a short-hand notation for the coordinates of all the
ions. The total potential energy refers to electrons in their
ground state, with the nuclei being represented as classical
particles clamped at the coordinates τκp. Every DFT software
package available today provides the quantity U as a standard
output.
In order to study lattice vibrations, one begins by making

the harmonic approximation. Accordingly, the total potential
energy is expanded to second order in the displacements
Δτκαp of the ions in the BvK supercell away from their
equilibrium positions τ0κp:

U ¼ U0 þ
1

2

X
καp

κ0α0p0

∂2U
∂τκαp∂τκ0α0p0

ΔτκαpΔτκ0α0p0 ; ð12Þ

where U0 denotes the total energy calculated for the ions in
their equilibrium positions, and the derivatives are evaluated

for the equilibrium structure. The second derivatives of the
total energy with respect to the nuclear coordinates define the
matrix of “interatomic force constants”:

Cκαp;κ0α0p0 ¼ ∂2U=∂τκαp∂τκ0α0p0 : ð13Þ

The Fourier transform of the interatomic force constants yields
the “dynamical matrix” (Maradudin and Vosko, 1968):

Ddm
κα;κ0α0 ðqÞ ¼ ðMκMκ0 Þ−1=2

X
p

Cκα0;κ0α0p expðiq ·RpÞ; ð14Þ

where Mκ is the mass of the κth ion. The superscript “dm” is
there to distinguish this quantity from the many-body phonon
propagators Dð12Þ and Dκαp;κ0α0p0 that will be introduced in
Sec. IV.B. The dynamical matrix is Hermitian and therefore
admits real eigenvalues, which we denote as ω2

qν:

X
κ0α0

Ddm
κα;κ0α0 ðqÞeκ0α0;νðqÞ ¼ ω2

qνeκα;νðqÞ: ð15Þ

In classical mechanics, each ωqν corresponds to the vibra-
tional frequency of an independent harmonic oscillator. The
Hermiticity of the dynamical matrix allows us to choose the
eigenvectors eκα;νðqÞ to be orthonormal for each q:

X
ν

e�κ0α0;νðqÞeκα;νðqÞ ¼ δκκ0δαα0 ; ð16Þ

X
κα

e�κα;νðqÞeκα;ν0 ðqÞ ¼ δνν0 : ð17Þ

Here the index ν runs from 1 to 3M. The column vectors
eκα;νðqÞ for a given ν are called the “normal modes of
vibration” or the “polarization” of the vibration wave. The
following relations can be derived from Eq. (14):

ω2
−qν ¼ ω2

qν; eκα;νð−qÞ ¼ e�κα;νðqÞ: ð18Þ

These relations between normal modes carry a degree of
arbitrariness in the choice of phases; here we have chosen
to follow the same phase convention as Maradudin and
Vosko (1968).
Using Eqs. (12) and (13) the Hamiltonian for nuclei

considered as quantum particles can be written as

Ĥp ¼
1

2

X
καp

κ0α0p0

Cκαp;κ0α0p0ΔτκαpΔτκ0α0p0 −
X
καp

ℏ2

2Mκ

∂2

∂τ2καp ; ð19Þ

where the ground-state energy U0 has been omitted and the
last term is the kinetic energy operator. The Hamiltonian in
Eq. (19) corresponds to the energy of an entire BvK supercell.
Equation (19) relies on two approximations: (i) the harmonic
approximation, which coincides with the truncation of
Eq. (12) to second order in the displacements; and (ii) the
Born-Oppenheimer adiabatic approximation. This latter
approximation is made when one calculates the interatomic
force constants with the electrons in their ground state.
The scope and validity of the adiabatic approximation are
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discussed in detail in Sec. V.A.1. We note incidentally that,
strictly speaking, the Born-Oppenheimer approximation does
not need to be invoked were one to use the generalization of
DFT to multicomponent systems introduced by Kreibich and
Gross (2001) and Kreibich, van Leeuwen, and Gross (2008).
For practical purposes it is convenient to rewrite Eq. (19) by

introducing the quanta of lattice vibrations. This is accom-
plished by defining the standard creation (â†qν) and destruction
(âqν) operators for each phonon of energy ℏωqν and polari-
zation eκα;νðqÞ. This operation is not entirely trivial and is
described in detail in Appendix B. The formal definition of
the ladder operators is given in Eqs. (B13) and (B14).
These operators obey the commutation relations ½âqν; â†q0ν0 � ¼
δνν0δqq0 and ½âqν; âq0ν0 � ¼ ½â†qν; â†q0ν0 � ¼ 0, where δ is the
Kronecker symbol. From these relations we know that the
quanta of the harmonic oscillations in crystals obey Bose-
Einstein statistics. Appendix B shows that the atomic displace-
ments can be expressed in terms of the ladder operators as
follows:

Δτκαp ¼
�

M0

NpMκ

�
1=2X

qν

eiq·Rpeκα;νðqÞlqνðâqν þ â†−qνÞ;

ð20Þ

where lqν is the “zero-point” displacement amplitude:

lqν ¼ ½ℏ=ð2M0ωqνÞ�1=2: ð21Þ

Here M0 is an arbitrary reference mass which is introduced
to ensure that lqν has the dimensions of a length and is similar
in magnitude to Δτκαp. Typically M0 is chosen to be the
proton mass.
Using Eqs. (13)–(21) the nuclear Hamiltonian can be

written in terms of 3MNp independent harmonic oscillators
as follows:

Ĥp ¼
X
qν

ℏωqνðâ†qνâqν þ 1=2Þ; ð22Þ

where the sum is over all wave vectors. The ground-state
wave function of this Hamiltonian is a product of Gaussians,
and all other states can be generated by acting on the ground
state with the operators â†qν. In the case of jqj ¼ 0 there are
three normal modes for which ωqν ¼ 0. For these modes,
which correspond to global translations of the crystal, the
zero-point displacement lqν is not defined. Throughout this
article it is assumed that these modes are skipped in summa-
tions containing zero-point amplitudes. A detailed derivation
of Eq. (22) and a discussion of the eigenstates of Ĥp are
provided in Appendix B.

B. Electron-phonon coupling Hamiltonian

Having outlined the standard formalism for addressing
lattice vibrations in crystals, we now proceed to make the
connection between DFT calculations and the remaining
terms of Eq. (1). The electronic band structure εnk and

electron-phonon matrix elements gmnνðk; qÞ are almost invar-
iably calculated by using the KS Hamiltonian (Hohenberg and
Kohn, 1964; Kohn and Sham, 1965). A justification for these
choices is provided in Sec. V; for now we limit ourselves to
outline the key elements of practical calculations.

1. Kohn-Sham Hamiltonian

Let us denote the KS eigenfunctions by ψnkðrÞ and use k
to indicate both the wave vector and the spin. We restrict
ourselves to systems with collinear spins. The KS eigenfunc-
tions satisfy the equation ĤKSψnkðrÞ ¼ εnkψnkðrÞ, with the
Hamiltonian given by

ĤKS ¼ −
ℏ2

2me
∇2 þ VKSðr; fτκαpgÞ: ð23Þ

Here the potential VKS is the sum of the nuclear (or ionic)
contribution Ven, the Hartree electronic screening VH, and the
exchange and correlation potential Vxc (Martin, 2004):

VKS ¼ Ven þ VH þ Vxc: ð24Þ

The potentials appearing in Eq. (24) are defined as follows.
The electron-nuclei potential energy is given by

Venðr; fτκαpgÞ ¼
X
κp;T

Vκðr − τκp − TÞ; ð25Þ

where VκðrÞ is the interaction between an electron and the
nucleus κ located at the center of the reference frame, and T
denotes a lattice vector of the BvK supercell. In the case of all-
electron DFT calculations, VκðrÞ is the Coulomb interaction:

VκðrÞ ¼ −
e2

4πϵ0

Zκ

jrj ; ð26Þ

where Zκ is the atomic number of the nucleus κ. In the case
of pseudopotential implementations Vκ is a function that goes
as in Eq. (26) at large jrj, but remains finite at jrj ¼ 0.
Furthermore the nuclear charge is replaced by the ionic
charge, which is the difference between the nuclear charge
and the number of core electrons described by the pseudo-
potential. In all modern pseudopotential implementations
VκðrÞ is nonlocal due to the separation of the angular
momentum channels (Martin, 2004). However, since this
nonlocality is short ranged and is inconsequential in the
following discussion, it will be ignored here in order to
maintain a light notation. The Hartree term is obtained from
the electron density nðr0; fτκαpgÞ:

VHðr; fτκαpgÞ ¼
e2

4πϵ0

X
T

Z
sc

nðr0; fτκαpgÞ
jr − r0 − Tj dr

0; ð27Þ

where the integral extends over the supercell. The exchange
and correlation potential is the functional derivative of the
exchange and correlation energy with respect to the electron
density (Kohn and Sham, 1965):
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Vxcðr; fτκαpgÞ ¼ δExc½n�=δnjnðr;fτκαpgÞ: ð28Þ

The eigenfunctions ψnk of ĤKS can be expressed in the
following Bloch form:

ψnkðrÞ ¼ N−1=2
p unkðrÞeik·r; ð29Þ

with unk a lattice-periodic function. The wave function ψnk is
taken to be normalized to one in the supercell, while the
periodic part unkðrÞ is normalized to one in the crystal unit
cell. The electron density is nðrÞ ¼ P

vkjψvkðrÞj2, where v
indicates occupied states. In order to determine ψnk and εnk
the Kohn-Sham equations are solved self-consistently. This
requires one to start from a reasonable guess for the electron
density (for example, a superposition of atomic electron
densities), calculate the potentials in Eq. (24), and determine
the solutions of the KS Hamiltonian in Eq. (23). The electron
density is recalculated using these solutions, and the cycle is
repeated until convergence.
In order to establish the link with Eq. (1), we can regard the

KS Hamiltonian as an effective one-body operator and make
the transition to a second quantized formalism by using the
standard prescription (Merzbacher, 1998):

Ĥe ¼
X

nk;n0k0
hψnkjĤKSjψn0k0 iĉ†nkĉn0k0 ¼

X
nk

εnkĉ
†
nkĉnk: ð30Þ

This expression is useful for performing formal manipu-
lations in the study of coupled electron-phonon systems.
However, Eq. (30) implicitly introduces the drastic approxi-
mation that the electronic system can be described in terms
of sharp quasiparticle excitations. A field-theoretic approach
that does not rely on any such approximation is discussed
in Sec. IV.

2. Electron-phonon coupling Hamiltonian to first and second
order in the atomic displacements

Within the DFT Kohn-Sham formalism, the coupling
Hamiltonian appearing in the second line of Eq. (1) is obtained
by expanding the Kohn-Sham effective potential in terms of
the nuclear displacements Δτκp from their equilibrium posi-
tions τ0κp. The potential to first order in the displacements is

VKSðfτκpgÞ ¼ VKSðfτ0κpgÞ þ
X
καp

∂VKS

∂τκαp Δτκαp: ð31Þ

This expression can be rewritten into normal mode coordi-
nates using Eq. (20):

VKS ¼ VKSðfτ0κpgÞ þ N−1=2
p

X
qν

ΔqνVKSðâqν þ â†−qνÞ; ð32Þ

having defined

ΔqνVKS ¼ eiq·rΔqνvKS; ð33Þ

ΔqνvKS ¼ lqν
X
κα

ðM0=MκÞ1=2eκα;νðqÞ∂κα;qvKS; ð34Þ

∂κα;qvKS ¼
X
p

e−iq·ðr−RpÞ∂VKS

∂τκα
����
r−Rp

: ð35Þ

From the last expression we see that ∂κα;qvKS and ΔqνvKS are
lattice-periodic functions. The transition to second quantiza-
tion is performed as in Eq. (30) (Merzbacher, 1998):

Ĥep ¼
X

nk;n0k0
hψnkjVKSðfτκpgÞ − VKSðfτ0κpgÞjψn0k0 iĉ†nkĉn0k0 ;

ð36Þ

where the bra and ket indicate an integral over the
supercell. After using Eqs. (29), (32)–(35), and (A1)
we have

Ĥep ¼ N−1=2
p

X
k;q
mnν

gmnνðk;qÞĉ†mkþqĉnkðâqν þ â†−qνÞ; ð37Þ

where the electron-phonon matrix element is given by

gmnνðk;qÞ ¼ humkþqjΔqνvKSjunkiuc: ð38Þ

Here the subscript “uc” indicates that the integral is carried out
within one unit cell of the crystal. The coupling Hamiltonian
in Eq. (37) yields the energy of an entire supercell. In the case
of the three translational modes at jqj ¼ 0 we set the matrix
elements gmnνðk;qÞ to zero, as a consequence of the acoustic
sum rule (see discussion in Sec. IX.A.1).
Taken together, Eqs. (22), (30), and (37) constitute the

starting point of most first-principles calculations of electron-
phonon interactions. It remains to be seen how one calculates
the electron-phonon matrix elements gmnνðk;qÞ; the most
common procedures are described in Sec. III.B.3.
Before proceeding, we briefly discuss the second-order

coupling Hamiltonian which appears in the third and fourth
lines of Eq. (1). The rationale for incorporating this extra term
is that the expansion of the Kohn-Sham potential to first order
in the atomic displacements, Eq. (31), is somewhat incon-
sistent with the choice of expanding the total potential energy
in Eq. (12) to second order in the atomic displacements. This
aspect was discussed by Allen and Heine (1976) and Allen
(1978). In order to obtain an electron-phonon coupling
Hamiltonian including terms of second order in the displace-
ments, we must include the second derivatives of the Kohn-
Sham potential in Eq. (31) and follow the same steps which

led to Eq. (37). By calling the extra term Ĥð2Þ
ep we have

Ĥð2Þ
ep ¼ N−1

p

X
k;q;q0
mnνν0

gDWmnνν0 ðk;q;q0Þĉ†mkþqþq0 ĉnk

× ðâqν þ â†−qνÞðâq0ν0 þ â†−q0ν0 Þ; ð39Þ

where

gDWmnνν0 ðk;q; q0Þ ¼ 1
2
humkþqþq0 jΔqνΔq0ν0vKSjunkiuc: ð40Þ

The variations Δqν are the same as in Eqs. (33)–(35).
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The second-order coupling Hamiltonian in Eq. (39) is
considerably more involved than its first-order counterpart.
The increased complexity partly explains why in the literature
this term has largely been ignored. So far the Hamiltonian

Ĥð2Þ
ep has been described using only an approximation based

on first-order perturbation theory (Allen and Heine, 1976).
In this special case, the only terms in Eq. (39) that can
modify the electron excitation spectrum are those with
q0 ¼ −q. The corresponding energy shift is Δεnk ¼
N−1

p
P

qνg
DW
nnννðk;q;−qÞð2nqν þ 1Þ, with nqν the number of

phonons in each mode. We come back to this point in
Sec. IX.A.1.

3. Calculation of electron-phonon matrix elements using
density-functional perturbation theory

In this section we review how the scattering potential
ΔqνvKS appearing in Eq. (38) is calculated in first-principles
approaches. The most intuitive approach is to evaluate the
derivatives appearing in Eq. (35) by using finite atomic
displacements in a supercell:

∂VKS

∂τκαp
����
τ0κp

≃ ½VKSðr; τ0καp þ bÞ − VKSðr; τ0καpÞ�=b: ð41Þ

In this expression b is a small displacement of the order of
the zero-point amplitude (∼0.1 Å), and the atom κ in the unit
cell p is displaced along the direction α. The first calculations
of electron-phonon interactions within DFT employed a
variant of this “supercell approach” whereby all atoms are
displaced according to a chosen vibrational eigenmode
(Chang et al., 1985; Dacorogna, Chang, and Cohen, 1985;
Dacorogna, Cohen, and Lam, 1985; Lam, Dacorogna, and
Cohen, 1986). This strategy is usually referred to as the
frozen-phonon method.
One disadvantage of the frozen-phonon method is that the

supercell may become impractically large when evaluating
matrix elements corresponding to long-wavelength phonons.
This difficulty can be circumvented by using DFPT (Baroni,
Giannozzi, and Testa, 1987; Gonze, Allan, and Teter, 1992;
Savrasov, 1992). The main strength of DFPT is that the
scattering potential ΔqνvKS in Eq. (38) is obtained by
performing calculations within a single unit cell. Since the
computational workload of standard (not linear-scaling)
DFT calculations scales as the cube of the number of
electrons, the saving afforded by DFPT over the frozen-
phonon method is proportional to N2

p, and typically corre-
sponds to a factor > 103.
In the DFPT approach of Baroni et al. (2001) one calculates

the lattice-periodic scattering potential ∂κα;qvKS defined by
Eq. (35). By differentiating Eq. (24) via Eq. (35) this potential
is written as

∂κα;qvKS ¼ ∂κα;qven þ ∂κα;qvH þ ∂κα;qvxc: ð42Þ

The variation of the ionic potential is obtained from Eqs. (25)
and (35). The result is conveniently expressed in reciprocal
space

∂κα;qvenðGÞ ¼ −iðqþGÞαVκðqþGÞe−iðqþGÞ·τκ ; ð43Þ

where the convention for the Fourier transform is
fðGÞ ¼ Ω−1 R

uc dre
−iG·rfðrÞ, and Ω is the volume of the unit

cell. In order to keep the presentation as general as possible we
avoid explicitly indicating the nonlocality of Vκ which arises
in pseudopotential implementations. The adaptation of this
equation and the following ones to the case of nonlocal
pseudopotentials, ultrasoft pseudopotentials, and the projec-
tor-augmented wave method can be found in Giannozzi et al.
(1991), Dal Corso, Pasquarello, and Baldereschi (1997), and
Audouze et al. (2006), respectively. The variation of the
Hartree and exchange-correlation contributions to the Kohn-
Sham potential is obtained from the self-consistent charge
density response to the perturbation in Eq. (43). After a few
manipulations using Eqs. (27) and (35) one obtains

∂κα;qvHðGÞ ¼ ΩvCðqþGÞ∂κα;qnðGÞ; ð44Þ

where vCðqÞ ¼ Ω−1 R dre−iq·re2=4πϵ0jrj is the Fourier
transform of the Coulomb potential. For the exchange and
correlation potential we use Eq. (28) and the Taylor expansion
of a functional to find

∂κα;qvxcðGÞ ¼ Ω
X
G0

fxcðqþG;qþG0Þ∂κα;qnðG0Þ; ð45Þ

where fxc indicates the standard exchange and correlation
kernel, which is the second-order functional derivative of
the exchange and correlation energy Exc with respect to the
electron density (Hohenberg and Kohn, 1964)

fxcðr; r0Þ ¼ δ2Exc½n�
δnðrÞδnðr0Þ

����
nðr;fτ0κpgÞ

: ð46Þ

In the case of the local density approximation (LDA) to DFT,
the exchange and correlation kernel reduces to a local function
(Parr and Yang, 1994), and Eq. (45) is more conveniently
evaluated in real space. Today DFPT calculations can be
performed using one of several exchange and correlation
kernels. The effect of the kernel on the calculation of lattice-
dynamical properties of solids has been analyzed in several
works; see, for example, Dal Corso (2013) and He et al.
(2014). The formal structure of the DFPT equations discussed
in this section remains unchanged if we replace the DFT
kernel in Eq. (46) by more sophisticated versions. For
example, both DFPT calculations based on Hubbard-corrected
DFT (Floris et al., 2011) and DFPT coupled with dynamical
mean-field theory (Savrasov and Kotliar, 2003) have been
demonstrated.
It should be noted that in Eqs. (45) and (46) we are

implicitly assuming a spin-unpolarized system. The adapta-
tion of these equations as well as the other DFPT equations to
the most general case of noncollinear spin systems can be
found in Dal Corso (2007, 2008) and Verstraete et al. (2008).
From Eqs. (44) and (45) we see that the evaluation of

gmnνðk;qÞ goes through the calculation of the variation of the
electron density induced by the perturbation ∂κα;qvKSðrÞeiq·r.
Within DFPT such a variation is obtained by evaluating the
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change of the Kohn-Sham wave functions to first order in
perturbation theory. After inspection of the perturbed
Hamiltonian it becomes evident that the wave function change
must be of the form ∂unk;qeiq·r, with ∂unk;q a lattice-periodic
function. Using this observation the first-order variation of
the Kohn-Sham equations can be written as a Sternheimer
equation (Sternheimer, 1954)

ðĤKS
kþq − εvkÞ∂uvk;q ¼ −∂κα;qvKSuvk; ð47Þ

where ĤKS
kþq ¼ e−iðkþqÞ·rĤKSeiðkþqÞ·r. In this equation the

index v indicates an occupied state. For jqj ¼ 0 one needs
also to consider a shift of the energy eigenvalues which
introduces an additional term huvkj∂κα;0vjuvkiucuvk on the
right-hand side of Eq. (47). In practice this term is canceled by
the use of the projectors described in Eq. (48), unless one is
dealing with metallic systems. This aspect is discussed in
detail by de Gironcoli (1995) and Baroni et al. (2001). The
principal advantage of Eq. (47) over standard perturbation
theory is that it does not involve unoccupied electronic states.
A practical problem arises when attempting to solve

Eq. (47): the linear system on the left-hand side is ill
conditioned owing to small eigenvalues corresponding to
εvk ≃ εv0kþq; furthermore, in the case of accidental degener-
acies εvk ¼ εv0kþq, the system becomes singular. In order to
make the system nonsingular, Giannozzi et al. (1991) noted
that the variation of the electron density involves only the
component of ∂uvk;q belonging to the unoccupied manifold
of Kohn-Sham states. As a consequence, what is really needed
is only ∂ ~uvk;q ¼ ð1 − P̂occ

kþqÞ∂uvk;q, where P̂occ
kþq ¼P

vjuvkþqihuvkþqj is the projector over the occupied states
with wave vector kþ q. The equation for this “trimmed”
wave function variation is simply obtained by projecting both
sides of Eq. (47) onto ð1 − P̂occ

kþqÞ and noting that P̂occ
kþq and

ĤKS
kþq do commute

ðĤKS
kþq − εvkÞ∂ ~uvk;q ¼ −ð1 − P̂occ

kþqÞ∂κα;qvKSuvk: ð48Þ

At this point it is possible to remove all small or null
eigenvalues of the operator on the left-hand side by adding
a term αP̂occ

kþq to the Hamiltonian. This term has no effect on

the wave function variation, since P̂occ
kþq∂ ~uvk;q ¼ 0 by con-

struction. The operator is made nonsingular by choosing the
parameter α larger than the valence bandwidth (Baroni et al.,
2001). From the wave function variation obtained by solving
Eq. (48), it is now possible to construct the following density
response associated with the wave vector q:

∂nκα;qðrÞ ¼ 2N−1
p

X
vk

u�vk∂ ~uvk;q: ð49Þ

For simplicity a spin-degenerate system has been assumed
(a factor of 2 is implicitly included in the sum over k), and
time-reversal symmetry has been used in order to make the
expression more compact (yielding the factor of 2 on the right-
hand side).
In practical DFPT calculations, Eq. (48) is solved using an

iterative procedure which is similar to standard DFT total

energy calculations. One sets the starting perturbation
∂κα;qvKS to be equal to the electron-nuclei potential in
Eq. (43). By solving Eq. (48) for each occupied state v
and each wave vector k using standard linear algebra
techniques, one obtains the induced density in Eq. (49).
The new density is now used to construct the variations of
the Hartree and exchange-correlation potentials in Eqs. (44)
and (45). These induced potentials are added to the electron-
nuclei potential, yielding a “screened” perturbation ∂κα;qvKS

in Eq. (48). The cycle is repeated until the change of ∂nκα;q
between two successive cycles is smaller than a set tolerance.
It can be shown that the screened perturbation ∂κα;qvKS

described in this section is also the key ingredient required for
calculating the interatomic force constants in Eq. (13) (Baroni
et al., 2001). As a practical consequence, every software
implementation that supports DFPT calculations already
contains all the information necessary for evaluating the
electron-phonon matrix elements gmnνðk;qÞ.
All the quantities introduced in this section can equivalently

be calculated using an alternative, variational formulation
of density-functional perturbation theory (Gonze, Allan, and
Teter, 1992; Gonze, 1995a, 1997; Gonze and Lee, 1997).
A thorough discussion of the connection between the
Sternheimer approach and the variational approach to
DFPT is provided by Gonze (1995b).
The second-order matrix elements gDWmn;νν0 ðk;q; q0Þ given

by Eq. (40) involve the second derivative of the Kohn-
Sham potential with respect to the nuclear displacements.
The evaluation of these quantities requires the solution of
second-order Sternheimer equations for the second variations
of the Kohn-Sham wave functions. The general structure of
second-order Sternheimer equations can be found in Sec. IV.H
of Gonze (1995b). Since these calculations are rather
involved, most practical implementations employ an approxi-
mation whereby the Debye-Waller matrix elements are
expressed in terms of products of the standard matrix elements
gmnνðk;qÞ. Such an alternative formulation was developed by
Allen and Heine (1976) and Allen and Cardona (1981) and is
discussed in Sec. IX.A.1. All recent ab initio calculations of
electron-phonon interactions based on DFPT employed this
latter approach.1

4. The dielectric approach

Besides the DFPT method described in the previous
section, it is also possible to calculate the screened perturba-
tion ∂κα;qvKS using the so-called “dielectric approach” (Pick,
Cohen, and Martin, 1970; Quong and Klein, 1992). This latter
approach did not find as widespread an application as those of
Baroni, Giannozzi, and Testa (1987), Gonze, Allan, and Teter
(1992), and Savrasov (1992), but it is useful to establish a link
between DFT calculations of electron-phonon matrix ele-
ments and the field-theoretic formulation discussed in Sec. IV.

1See, for example, Marini (2008), Giustino, Louie, and Cohen
(2010), Gonze, Boulanger, and Côté (2011), Cannuccia and Marini
(2013), Antonius et al. (2014), Kawai et al. (2014), Poncé, Antonius,
Boulanger et al. (2014), Poncé, Antonius, Gillet et al. (2014), and
Poncé et al. (2015).
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For consistency with Sec. III.B.3, we derive the key
expressions of the dielectric approach starting from DFPT.
To this aim we expand the variation of the wave function
∂ ~uvk;q using the complete set of states unkþq (with n referring
to both occupied and empty Kohn-Sham states). Then we
replace this expansion inside Eq. (48), project onto an
arbitrary conduction state, and insert the result into
Eq. (49). After taking into account time-reversal symmetry,
these steps lead to the following result:

∂κα;qnðrÞ ¼
Z
uc
dr0χ0qðr; r0Þ∂κα;qvKSðr0Þ; ð50Þ

having defined

χ0qðr; r0Þ ¼ N−1
p

X
mnk

fnk − fmkþq

εnk − εmkþq

× u�nkðrÞumkþqðrÞu�mkþqðr0Þunkðr0Þ: ð51Þ

In this expression fnk and fmkþq are the occupations of each
state, and the indices run over all bands. A factor of 2 for the
spin degeneracy is implicitly included in the sum over k. The
quantity χ0q in Eq. (51) is the lattice-periodic component for
the wave vector q of the “independent-electron polarizability”
(Adler, 1962; Wiser, 1963; Pick, Cohen, and Martin, 1970;
Quong and Klein, 1992).
For ease of notation we write Eq. (50) in symbolic form as

∂n ¼ χ0∂vKS. Using the same symbolic notation it is also
possible to formally rewrite Eqs. (42), (44), and (45) as
follows:

∂vKS ¼ ∂ven þ ðvC þ fxcÞχ0∂vKS; ð52Þ

from which one obtains

∂vKS ¼ ðϵHxcÞ−1∂ven; ð53Þ

having defined the dielectric matrix

ϵHxc ¼ 1 − ðvC þ fxcÞχ0: ð54Þ

The superscript “Hxc” refers to the Hartree and exchange and
correlation components of the screening. In the language of
many-body perturbation theory ϵHxc is referred to as the “test
electron” dielectric matrix, hinting at the fact that the electron
density redistribution in response to a perturbation arises both
from classical electrostatics (the Hartree term vCχ0) and from
quantum effects (the exchange and correlation terms fxcχ0). If
we neglect the kernel fxc in this expression, then we obtain the
“test charge” dielectric matrix, which is most commonly
known as the dielectric matrix in the random-phase approxi-
mation (RPA) (Pines and Bohm, 1952)

ϵH ¼ 1 − vCχ0: ð55Þ

The symbolic expressions outlined here remain almost
unchanged when using a reciprocal space representation.
As an example, Eq. (55) becomes simply

ϵHGG0 ðqÞ ¼ δGG0 − Ω2
X
G00

χ0G00G0 ðqÞvCðqþGÞδGG00 : ð56Þ

Taken together Eqs. (38) and (53) show that the calculation of
electron-phonon matrix elements using DFPT is equivalent
to screening the bare electron-nucleus interaction using ϵHxc.
In this case we say that the screening is described at the
“RPAþ xc” level of approximation.
At this point it is worth pointing out that so far we

considered only the screening of static perturbations: in fact
∂ven was implicitly taken to be frequency independent.
Physically this choice corresponds to describing phonons
as quasistatic perturbations, so that at each set of instantaneous
atomic positions during a vibration cycle, the electrons
have enough time to readjust and reach their ground state.
This is a statement of the adiabatic approximation (Born and
Oppenheimer, 1927). The importance of retardation effects in
the electron-phonon problem was already recognized in the
early work of Bardeen and Pines (1955), but the first ab initio
calculations of these effects appeared much later [see Lazzeri
and Mauri (2006)]. The formal framework required to
incorporate retardation in the study of EPIs is presented
in Sec. IV.

5. Connection with early formulations

For completeness, we illustrate the link between electron-
phonon matrix elements obtained within DFPT (Sec. III.B.3)
and the early approaches of Bloch (1929) and Bardeen (1937)
(Sec. II.A).
The Bloch matrix element can be derived as follows. We

assume that the scattering potential is unscreened and corre-
sponds to the bare pseudopotentials Vκ in Eq. (43), that there
is only one atom at the origin of the unit cell, and the
Kohn-Sham wave functions can be described by free electrons
unkðrÞ ¼ Ω−1=2 expðiGn · rÞ. In the last expression, the sub-
script in Gn is used in order to stress the one-to-one
correspondence between the reciprocal lattice vectors and
the energy bands of the free electron gas in the reduced-zone
scheme. Using these approximations in Eqs. (21), (34), (38),
and (43), we find

gmnνðk;qÞ ¼ −i½ℏ=ð2NpMκωqνÞ�1=2VκðqþGm −GnÞ
× ðqþGm −GnÞ · eκ;νðqÞ: ð57Þ

By further neglecting umklapp processes (Gm ≠ Gn) the
previous result becomes (Grimvall, 1981, Sec. 3.4)

gmnνðk;qÞ ¼ −i½ℏ=ð2NpMκωqνÞ�1=2q · eκ;νðqÞVκðqÞ: ð58Þ

The expression obtained by Bloch (1929) and reproduced
in Eq. (2) is simply obtained by replacing VκðqÞ with the
effective potential V0.
The Bardeen matrix element is more elaborate and can be

derived as follows. We describe the screening of the bare ionic
potential within the RPA approximation and determine the
dielectric matrix by replacing the Kohn-Sham wave functions
by free electrons. Using unkðrÞ ¼ Ω−1=2 expðiGn · rÞ and
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εnk ¼ ℏ2ðkþGnÞ2=2me − εF in Eq. (51), the polarizability
reduces to

χ0GG0 ðqÞ ¼ −
mekF
π2ℏ2Ω

FðjqþGj=2kFÞδGG0 ; ð59Þ

where F is the function defined below Eq. (4). The derivation
of this result requires making the transition from the first
Brillouin zone to the extended-zone scheme. If we use
Eq. (59) inside Eq. (56), neglect the exchange and correlation
kernel and use the Fourier transform of the Coulomb potential,
we find

ϵGG0 ðqÞ ¼ δGG0 ½1þ ðk2TF=jqþGj2ÞFðjqþGj=2kFÞ�; ð60Þ

where the Thomas-Fermi screening length is given by
kTF ¼ ½4me2kF=ð4πε0πℏ2Þ�1=2. Equation (60) is the well-
known Lindhard dielectric matrix, and the diagonal matrix
elements are the same as in Eq. (4) [see Mahan (1993) and
Giuliani and Vignale (2005) for in-depth discussions of the
Lindhard function]. By following the same steps that led to
Eq. (58), replacing the bare ionic potential by its screened
counterpart, and using Eq. (53) with ϵ instead of ϵHxc, we
obtain

gmnνðk;qÞ ¼ −i½ℏ=ð2NpMκωqνÞ�1=2q · eκ;νðqÞVκðqÞ=ϵðqÞ:
ð61Þ

Here we considered only one atom at the center of the
unit cell, and we neglected umklapp processes. This is
essentially the result derived by Bardeen (1937) and repro-
duced in Eq. (3).

IV. FIELD-THEORETIC APPROACH TO THE
ELECTRON-PHONON INTERACTION

In Sec. III we discussed how the material parameters
entering the electron-phonon Hamiltonian in Eq. (1), namely,
εnk, ωqν, and gmnνðk; qÞ can be calculated from first principles
using DFT and DFPT. Today the formalism and techniques
described in Sec. III constitute de facto the standard tool in
quantitative studies of electron-phonon interactions in solids
(see Secs. VII–XII).
However, note that the DFT approach to EPIs does not rest

on strong theoretical foundations. For one, the evaluation of
the EPI matrix elements via Eq. (38) relies on the assumption
that the interaction between electrons and nuclei is governed
by the effective Kohn-Sham potential. Therefore we can
expect the matrix elements to be sensitive to the exchange
and correlation functional (see Sec. XII). Furthermore, the
very definition of phonons starting from Eq. (12) relies on
the Born-Oppenheimer approximation, and one might ask
whether this choice is accurate enough in metals and narrow-
gap semiconductors (see Sec. VII). Finally, if one were to go
beyond the Born-Oppenheimer approximation, then it would
seem sensible to also incorporate retardation effects in the
calculation of the EPI matrix elements.
On top of these practical points, and at a more fundamental

level, we expect that the electron-phonon interaction will

modify both the electronic structure and the lattice dynamics
of a solid, and these modifications will in turn affect the
coupling between electrons and phonons. It is therefore clear
that a complete theory of interacting electrons and phonons
must be self-consistent. In order to address these issues it is
necessary to formulate the electron-phonon problem using a
rigorous and general theory of interacting electrons and
phonons in solids.
The most systematic and elegant approach is based on

quantum field theory (Schwinger, 1951) and is tightly con-
nected to the development of the GW method (Hedin, 1965).
The first attempts in this direction were from Nakajima
(1954), Bardeen and Pines (1955), Migdal (1958), and
Engelsberg and Schrieffer (1963). However, from the point
of view of the present article, these works are of limited
usefulness since they were mostly developed around the
homogeneous electron gas.
A completely general formulation of the problem, which

seamlessly applies to metals, semiconductors, and insulators,
was first provided by Baym (1961) and subsequently by
Hedin and Lundqvist (1969). The formalism developed in
these articles constitutes today the most complete theory of
the electron-phonon problem. In fact, many aspects of this
formalism are yet to be explored within the context of ab initio
calculations. After these seminal works several others con-
tributed to clarifying various aspects of the many-body theory
of the coupled electron-phonon system, including Sjölander
and Johnson (1965), Keating (1968), Gillis (1970), Maksimov
(1976), and Vogl (1976), and more recently van Leeuwen
(2004) and Marini, Poncé, and Gonze (2015). In particular,
van Leeuwen focused on the issues of translational and
rotational invariance of the resulting theory, while Marini
et al. analyzed the connection between many-body perturba-
tion theory approaches and DFT calculations.
Since the mathematical notation of the original articles is

obsolete and rather difficult to follow, in Secs. IV.A–IV.D we
cover the theory in some detail using contemporary notation.
The following derivations can be found across the works of
Kato, Kobayashi, and Namiki (1960), Baym (1961), Hedin
and Lundqvist (1969), and Maksimov (1976). Here we
provide a synthesis of these contributions using a unified
notation, and we fill the gaps wherever it is necessary. The
presentation requires some familiarity with field operators
[see, for example, Merzbacher (1998) for a succinct
introduction].

A. Operators and distinguishability

The starting point for studying EPIs using a field-theoretic
approach is to define the Fock space and the field operators for
electrons and nuclei. In the case of electrons the choice is
unambiguous, since any many-body state can be represented
as a linear combination of Slater determinants constructed
using a basis of single-particle wave functions. In the case of
nuclei the situation is slightly more ambiguous: in principle
we might proceed in a very general way by choosing to focus
on the nuclei as our quantum particles, as opposed to their
displacements from equilibrium. In practice this choice leads
to a dead end for two reasons. First, the quantum statistics of
nuclei would be dependent on their spin, and therefore we
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would end up with an unwieldy mix of fermions and bosons
depending on the solid. Second, the notion of indistinguish-
able particles, which is central to second quantization, does
not apply to nuclei in solids (at least in thermodynamic
equilibrium and far from a solid-liquid phase transition). In
fact, in many cases we can directly label the nuclei, for
example, by means of experimental probes such as scanning
tunneling microscopy and electron diffraction. In order to
avoid these issues, it is best to study the electron-phonon
problem by considering (i) indistinguishable electrons, for
which it is convenient to use second-quantized operators;
(ii) distinguishable nuclei, for which it is best to use first
quantization in the displacements; and (iii) indistinguishable
phonons, resulting from the quantization of the nuclear
displacements. In this latter case the distinction between first
and second quantization is irrelevant. These aspects are briefly
mentioned by Baym (1961) and Maksimov (1976).
With these choices, the dynamical variables of the problem

are the electronic field operators ψ̂ (discussed later) and the
nuclear displacements from equilibrium Δτ̂ (discussed in
Sec. IV.C). In this theory the equilibrium coordinates of the
nuclei are regarded as external parameters and are to be
obtained, for example, from crystallography or DFT calcu-
lations. Throughout this section, we limit ourselves to con-
sider equilibrium Green’s functions at zero temperature. As a
result, all expectation values will be evaluated for the electron-
nuclei ground state j0i. The extension of the main results to
finite temperature is presented in Sec. V. We do not specify
how to obtain the ground state, since the following discussion
is independent of the precise shape of this state. In order to
derive expressions that are useful for first-principles calcu-
lations, at the very end the ground state will be approximated
using standard DFTwave functions and phonons (see Sec. V).
The electronic field creation and destruction operators are

denoted by ψ̂†ðxÞ and ψ̂ðxÞ, where the variable x indicates
both the position r and the spin label σ. These operators
obey the anticommutation relations (Merzbacher, 1998)
fψ̂ðxÞ; ψ̂ðx0Þg ¼ fψ̂†ðxÞ; ψ̂†ðx0Þg ¼ 0 and fψ̂ðxÞ; ψ̂†ðx0Þg ¼
δðx − x0Þ. The most general nonrelativistic Hamiltonian for a
system of coupled electrons and nuclei can be written as

Ĥ ¼ T̂e þ T̂n þ Ûee þ Ûnn þ Ûen; ð62Þ

where each term is introduced hereafter. The electron kinetic
energy is

T̂e ¼ −
ℏ2

2me

Z
dxψ̂†ðxÞ∇2ψ̂ðxÞ; ð63Þ

with me the electron mass, and the integrals
R
dx denoting the

sum over spin and the integration over space
P

σ

R
dr. The

electron-electron interaction is

Ûee ¼
1

2

Z
dr

Z
dr0n̂eðrÞ½n̂eðr0Þ − δðr − r0Þ�vðr; r0Þ; ð64Þ

where the electron particle density operator is given by
n̂eðrÞ ¼

P
σ ψ̂

†ðxÞψ̂ðxÞ, and vðr; r0Þ ¼ e2=ð4πε0jr − r0jÞ is
the Coulomb interaction between two particles of charge e.

In Eqs. (63) and (64) the integrals are over the entire crystal.
This corresponds to considering a supercell of infinite size
(therefore the lattice vectors T of the supercell drop out) and a
dense sampling of wave vectors q in the Brillouin zone. This
choice is useful in order to maintain the formalism as light
as possible. Accordingly, all sums over q are replaced using
N−1

p
P

q → Ω−1
BZ

R
dq, where the integral is over the Brillouin

zone of volume ΩBZ. Similarly the closure relations in
Eq. (A1) are replaced by

R
dq expðiq ·RpÞ ¼ ΩBZδp0 andP

p expðiq ·RpÞ ¼ ΩBZδðqÞ. The nuclear kinetic energy
operator is the same as the last term in Eq. (19). Using the
same notation as in Sec. III the nucleus-nucleus interaction
energy is

Ûnn ¼
1

2

X
κ0p0≠κp

ZκZκ0vðτ0κp þ Δτ̂κp; τ0κ0p0 þ Δτ̂κ0p0 Þ: ð65Þ

Here τ0κp denotes the classical equilibrium position of each
nucleus, and the displacement operators Δτ̂κp will later be
expressed in terms of the ladder operators from Appendix B.
The electron-nucleus interaction energy is

Ûen ¼
Z

dr
Z

dr0n̂eðrÞn̂nðr0Þvðr; r0Þ; ð66Þ

where the nuclear charge density operator is given by

n̂nðrÞ ¼ −
X
κp

Zκδðr − τ0κp − Δτ̂κpÞ: ð67Þ

Here the density operators are expressed in units of the
electron charge, so that the expectation value of the total
charge density is −eh0jn̂ðrÞj0i with n̂ðrÞ ¼ n̂eðrÞ þ n̂nðrÞ.
We underline the asymmetry between Eqs. (64) and (65):

in the case of electrons one considers the electrostatic
energy of a continuous distribution of charge, and the
unphysical self-interaction is removed by the Dirac delta.
Whereas in the case of nuclei, the particles are distinguish-
able and therefore one has to take into account all pairwise
interactions individually.

B. Electron Green’s function

1. Equation of motion and self-energy

In this section we focus on the electrons. By combining
Eqs. (62)–(66) and using the anticommutation relations for the
field operators one finds the following standard expression:

Ĥ ¼ T̂n þ Ûnn þ
Z

dxψ̂†ðxÞ
�
−

ℏ2

2me
∇2 þ V̂nðrÞ

�
ψ̂ðxÞ

þ 1

2

Z
dxdx0vðr; r0Þψ̂†ðxÞψ̂†ðx0Þψ̂ðx0Þψ̂ðxÞ; ð68Þ

where the nuclear potential V̂n is given by

V̂nðrÞ ¼
Z

dr0vðr; r0Þn̂nðr0Þ: ð69Þ
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In order to study the excitation spectrum of the many-body
Hamiltonian Ĥ at equilibrium we need to determine the time-
ordered one-electron Green’s function (Kato, Kobayashi, and
Namiki, 1960; Fetter andWalecka, 2003). At zero temperature
this function is defined as

Gðxt;x0t0Þ ¼ −
i
ℏ
h0jT̂ψðxtÞψ†ðx0t0Þj0i; ð70Þ

where T̂ is Wick’s time-ordering operator for fermions and
ensures that the times of the subsequent operators increase
toward the left. The formal definition of the Wick operator is
T̂ψðxtÞψ†ðx0t0Þ ¼ θðt − t0ÞψðxtÞψ†ðx0t0Þ − θðt0 − tÞψ†ðx0t0Þ
ψðxtÞ, where θ is the Heaviside function. Based on this
definition we see that for t > t0 the Green’s function in
Eq. (70) corresponds to the scalar product between the initial
state ψ†ðx0t0Þj0i and the final state ψ†ðxtÞj0i. This product is
precisely the probability amplitude for finding an electron in
the position x at the time t, after having introduced an electron
in x0 at an earlier time t0. In the case t < t0 the situation is
reversed and the Green’s function describes the propagation of
a hole created in the system at the time t.
In order to determine Gðxt;x0t0Þ we need to establish an

equation of motion for the field operators. This can be done by
describing the time dependence of the operators within the
Heisenberg picture:

ψ̂ðxtÞ ¼ eitĤ=ℏψ̂ðxÞe−itĤ=ℏ; ð71Þ

where Ĥ was defined in Eq. (68). From this definition it
follows immediately that

iℏ
∂
∂t ψ̂ðxtÞ ¼ ½ψ̂ðxtÞ; Ĥ�: ð72Þ

By combining Eqs. (68) and (72) and using the anticommu-
tation relations for the field operators one obtains

iℏ
∂
∂t ψ̂ðxtÞ ¼

�
−

ℏ2

2me
∇2 þ

Z
dr0vðr; r0Þn̂ðr0tÞ

�
ψ̂ðxtÞ;

ð73Þ

where the time dependence in n̂ðr0tÞ is to be understood in the
Heisenberg sense, as in Eq. (71). This equation of motion
allows us to write the corresponding equation for the electron
Green’s function in Eq. (70):

�
iℏ

∂
∂tþ

ℏ2

2me
∇2 − φðrtÞ

�
Gðxt;x0t0Þ

¼ δðxt; x0t0Þ − i
ℏ

Z
dr00dt00vðrt; r00t00Þ

× hT̂ n̂ðr00t00ÞψðxtÞψ†ðx0t0Þi: ð74Þ

Here vðrt; r00t00Þ ¼ vðr; r00Þδðt − t00Þ, the bra and ket h� � �i are a
short-hand notation for h0j � � � j0i, and the additional term φ is
discussed later. In order to obtain Eq. (74) we used once again
the anticommutation relations, and we noted that the deriva-
tive of the Heaviside function is a Dirac delta.

The new term φðrtÞ which appeared in Eq. (74) is a
scalar electric potential which couples to both electronic
and nuclear charges. This potential has been introduced in
order to perturb the system via the additional Hamiltonian
Ĥ1ðtÞ ¼

R
drn̂ðrtÞφðrtÞ. The physical idea behind this choice

is to use φðrtÞ in order to induce forced oscillations in the
system. When the system resonates with the perturbation
we know that the resonant frequency must correspond to a
free oscillation, i.e., a many-body eigenmode. From a formal
point of view, the potential φðrtÞ is introduced in order to
exploit Schwinger’s functional derivative technique (Kato,
Kobayashi, and Namiki, 1960, Appendix II) and is set to zero
at the end of the derivation.
One complication arising from the introduction of φðrtÞ in

Eq. (74) is that the time evolution in Eq. (71) is no longer
valid, since the perturbed Hamiltonian now depends on
the time variable. The way around this complication is to
switch from the Heisenberg picture to the interaction
picture. This change amounts to replacing the exponentials
in Eq. (71) by the time-ordered Dyson series ÛðtÞ ¼
T̂ exp ½−iℏ−1 R t

0 Ĥðt0Þdt0� (Fetter and Walecka, 2003). Since
this would lead to an overlong derivation, we prefer to leave
this aspect aside and refer the interested reader to
Aryasetiawan and Gunnarsson (1998) for a more compre-
hensive discussion.
In order to write Eq. (74) in a manageable form, we use the

identity (Kato, Kobayashi, and Namiki, 1960)

δhT̂ âðt1Þb̂ðt2Þi
δφðr00t00Þ ¼ −

i
ℏ
hT̂½n̂ðr00t00Þ − hn̂ðr00t00Þi�âðt1Þb̂ðt2Þi:

ð75Þ

In this and the following expressions δ=δφðr00t00Þ denotes
the functional derivative with respect to φðr00t00Þ and should
not be confused with the Dirac delta functions δðxt;x0t0Þ.
Equation (75) is proven by Kato, Kobayashi, and Namiki
(1960), Appendix II, and by Hedin and Lundqvist (1969),
Appendix B.a. After identifying â and b̂ with ψ̂ðxtÞ and
ψ̂†ðx0t0Þ, respectively, Eq. (74) becomes

�
iℏ

∂
∂tþ

ℏ2

2me
∇2 − V totðrtÞ − iℏ

Z
dr00dt00vðrtþ η; r00t00Þ

×
δ

δφðr00t00Þ
�
Gðxt;x0t0Þ ¼ δðxt;x0t0Þ; ð76Þ

where η is a positive infinitesimal arising from the time
ordering, and VtotðrtÞ is the total potential acting on the
electronic and nuclear charges, averaged over the many-body
quantum state j0i

V totðrtÞ ¼
Z

dr0vðr; r0Þhn̂ðr0tÞi þ φðrtÞ: ð77Þ

Equation (76) was first derived by Kato, Kobayashi, and
Namiki (1960). In order to avoid a proliferation of variables, it
is common practice to replace the letters by integer numbers,
using the convention ðxtÞ or ðrtÞ → 1, ðx0t0Þ or ðr0t0Þ → 2,
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ðrtþ ηÞ → 1þ, and so on. Using this convention the last two
equations become

�
iℏ

∂
∂t1 þ

ℏ2

2me
∇2ð1Þ − V totð1Þ−iℏ

Z
d3vð1þ3Þ δ

δφð3Þ
�
Gð12Þ

¼ δð12Þ ð78Þ

and

V totð1Þ ¼
Z

d2vð12Þhn̂ð2Þi þ φð1Þ: ð79Þ

In these expressions the spin labels are implied for the Green’s
function and for the Dirac delta.
At this point, a set of self-consistent equations for coupled

electrons and phonons can be generated by eliminating the
functional derivative in Eq. (78). For this purpose one first
relates the total screened electrostatic potential V tot to the
external potential φ by introducing the inverse dielectric
matrix ϵ−1 as a functional derivative:

ϵ−1ð12Þ ¼ δV totð1Þ=δφð2Þ: ð80Þ

The function ϵ−1ð12Þ is the many-body counterpart of the
dielectric matrix discussed in Sec. III.B.4. The form given by
Eq. (80) is the most general field-theoretic formulation for a
system of interacting electrons and nuclei.
The next step is to rewrite δG=δφ inside Eq. (78) in terms

of the inverse Green’s function G−1. By using the fact that
δ
R
d2Gð12ÞG−1ð23Þ ¼ 0 and the rule for the functional

derivative of a product (Kadanoff and Baym, 1962) one
obtains

δGð12Þ
δφð3Þ ¼ −

Z
dð45ÞGð14Þ δG

−1ð45Þ
δφð3Þ Gð52Þ: ð81Þ

In order to eliminate any explicit reference to φ we can
express the functional derivative on the right-hand side
using the chain rule for functional differentiation (Kadanoff
and Baym, 1962):

δG−1ð45Þ
δφð3Þ ¼

Z
d6

δG−1ð45Þ
δV totð6Þ

δV totð6Þ
δφð3Þ : ð82Þ

It is customary to call “vertex” the three-point quantity
defined by

Γð123Þ ¼ −δG−1ð12Þ=δV totð3Þ: ð83Þ

By combining Eqs. (78) and (80)–(83) one finds

�
iℏ

∂
∂t1 þ

ℏ2

2me
∇2ð1Þ − V totð1Þ

�
Gð12Þ

−
Z

d3Σð13ÞGð32Þ ¼ δð12Þ; ð84Þ

having introduced the following so-called “electron self-
energy” Σ:

Σð12Þ ¼ iℏ
Z

dð34ÞGð13ÞΓð324ÞWð41þÞ; ð85Þ

which in turn contains the “screened Coulomb interaction”
W defined as

Wð12Þ ¼
Z

d3ϵ−1ð13Þvð32Þ ¼
Z

dð3Þvð13Þϵ−1ð23Þ: ð86Þ

The last equality can be obtained by observing that
δhn̂ð1Þi=δφð2Þ ¼ δhn̂ð2Þi=δφð1Þ after Eq. (75); therefore
Wð12Þ ¼ Wð21Þ.
Now, by inverting Eq. (84) and using Eq. (83), we can

express the vertex Γ in terms of Σ and G:

Γð123Þ ¼ δð12Þδð13Þ

þ
Z

dð4567Þ δΣð12Þ
δGð45ÞGð46ÞGð75ÞΓð673Þ: ð87Þ

The derivation of this result is rather lengthy: it requires the
use of the chain rule, in symbols δ=δV tot ¼ ðδG=δV totÞδ=δG,
as well as Eq. (81) with Σ and V tot instead of G and φ,
respectively.
Equations (84)–(87) form a nonlinear system of equations

for the electron Green’s function G, the electron self-energy Σ,
the total screened Coulomb interaction W, and the vertex Γ.
In order to close the loop it remains to specify the relation
between W and the other quantities. The next section is
devoted to this aspect.

2. The screened Coulomb interaction

The following equation for the screened Coulomb inter-
action can be found by combining Eqs. (79), (80), and (86):

Wð12Þ ¼ vð12Þ þ
Z

dð34Þvð13Þ δhn̂ð3Þi
δV totð4Þ

Wð42Þ: ð88Þ

By defining the “polarization propagator” as

Pð12Þ ¼ δhn̂ð1Þi
δV totð2Þ

; ð89Þ

the previous expression takes the usual form (Hedin, 1965)

Wð12Þ ¼ vð12Þ þ
Z

dð34Þvð13ÞPð34ÞWð42Þ: ð90Þ

This result can be combined with Eq. (86) in order to express
the dielectric matrix in terms of the polarization:

ϵð12Þ ¼ δð12Þ −
Z

dð3Þvð13ÞPð32Þ: ð91Þ

We now consider the special case whereby the nuclei are
regarded as classical point charges clamped to their equilib-
rium positions. In this situation, the variation of the charge
density δhn̂i in Eq. (89) corresponds to the redistribution of
the electronic charge in response to the perturbation δV tot. In
order to describe this special case it is convenient to introduce
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a new polarization propagator Pe associated with the elec-
tronic response only:

Peð12Þ ¼
δhn̂eð1Þi
δV totð2Þ

¼ −iℏ
X
σ1

Z
dð34ÞGð13ÞGð41þÞΓð342Þ:

ð92Þ

The last equality in this expression is obtained by using
Eq. (81) with Vtot instead of φ, together with Eq. (83), and by
considering that the electron density is related to the Green’s
function via

hn̂eð1Þi ¼ −iℏ
X
σ1

Gð11þÞ: ð93Þ

In conjunction with Pe it is natural to define the Coulomb
interaction screened by the electronic polarization only:

Weð12Þ ¼ vð12Þ þ
Z

dð34Þvð13ÞPeð34ÞWeð42Þ; ð94Þ

as well as the associated dielectric matrix, in analogy with
Eq. (91):

ϵeð12Þ ¼ δð12Þ −
Z

d3vð13ÞPeð32Þ: ð95Þ

Taken together, Eqs. (84)–(87) with W replaced by We
constitute the well-known Hedin’s equations for a system
of interacting electrons when the nuclei are clamped to their
equilibrium positions (Hedin, 1965).
In order to go back to the most general case whereby the

nuclei are not clamped to their equilibrium positions, one has
to describe the readjustment of both electronic and nuclear
charges. To this aim we combine Eqs. (80), (86), (88), (92),
(94), and (95). The result is

Wð12Þ ¼ Weð12Þ þ
Z

dð34ÞWeð13Þ
δhn̂nð3Þi
δφð4Þ vð42Þ: ð96Þ

An explicit expression for δhn̂ni=δφ can be obtained using
the following reasoning. We go into the details since this is a
delicate passage. Equation (75) provides a recipe for evalu-
ating the variation of any operator with respect to a potential
φðrtÞ which couples to the total charge density operator n̂ðrtÞ
via Ĥ1ðtÞ ¼

R
drn̂ðrtÞφðrtÞ. Therefore we can replace â b̂ in

Eq. (75) by n̂n to obtain

δhn̂nð1Þi
δφð2Þ ¼ −

i
ℏ
hT̂½n̂ð2Þ − hn̂ð2Þi�½n̂nð1Þ − hn̂nð1Þi�i: ð97Þ

In addition, if we introduce a second perturbation Ĥ2ðtÞ ¼R
drn̂nðrtÞJðrtÞ, which couples only to the nuclear charges,

we can repeat the same reasoning as in Eq. (97) after replacing
φ by J and n̂ by n̂n:

δhn̂ð1Þi
δJð2Þ ¼ −

i
ℏ
hT̂½n̂nð2Þ − hn̂nð2Þi�½n̂ð1Þ − hn̂ð1Þi�i: ð98Þ

The comparison between Eqs. (97) and (98) yields

δhn̂nð1Þi
δφð2Þ ¼ δhn̂ð2Þi

δJð1Þ : ð99Þ

This can be restated by using the chain rule δhn̂ei=δJ ¼
δhn̂ei=δV tot × δV tot=δhni × δhni=δJ:

δhn̂ð1Þi
δJð2Þ ¼

Z
d3ϵ−1e ð13Þ δhn̂nð3Þi

δJð2Þ : ð100Þ

The variation δhn̂ni=δJ on the right-hand side can be
expressed as in Eq. (98):

δhn̂nð1Þi
δJð2Þ ¼ −

i
ℏ
hT̂½n̂nð2Þ − hn̂nð2Þi�n̂nð1Þi; ð101Þ

and since hn̂n − hn̂nii ¼ 0 this can also be rewritten as

δhn̂nð1Þi=δJð2Þ ¼ Dð21Þ; ð102Þ

having defined

Dð12Þ ¼ −
i
ℏ
hT̂½n̂nð1Þ − hn̂nð1Þi�½n̂nð2Þ − hn̂nð2Þi�i: ð103Þ

This quantity is called the “density-density correlation func-
tion” for the nuclei. Finally, we combine Eqs. (96), (99),
(100), and (103) to obtain

Wð12Þ ¼ Weð12Þ þWphð12Þ; ð104Þ

where Wph is the nuclear contribution to the screened
Coulomb interaction and is given by

Wphð12Þ ¼
Z

dð34ÞWeð13ÞDð34ÞWeð24Þ: ð105Þ

This important result was first derived by Hedin and
Lundqvist (1969).

3. Nuclear contribution to the screened Coulomb interaction

In view of the forthcoming discussion, it is useful to derive
a more explicit expression for the screened interaction Wph

in Eq. (105). Here we follow Baym (1961) and Maksimov
(1976). The Taylor expansion of the Dirac delta to second
order in the displacement u reads

δðr − uÞ ¼ δðrÞ − u ·∇δðrÞ þ 1
2
u ·∇∇δðrÞ · u; ð106Þ

where u ·∇∇ · u is a short-hand notation for the second-order
derivative

P
αα0 uαuα0∇α∇α0 . Equation (106) derives from the

Fourier representation of the Dirac delta. Using Eq. (106)
inside Eq. (67) we deduce
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n̂nðrÞ ¼ n0nðrÞ þ
X
κp

ZκΔτ̂κp ·∇δðr − τ0κpÞ

−
1

2

X
κp

ZκΔτ̂κp · ∇∇δðr − τ0κpÞ · Δτ̂κp; ð107Þ

where n0nðrÞ is the density of nuclear point charges at the
classical equilibrium positions τ0κp. After taking into account
the time evolution in the Heisenberg picture as in Eq. (71), we
can replace this expansion inside Eq. (103) to obtain

Dð12Þ ¼
X
καp

κ0α0p0

Zκ∇1;αδðr1 − τ0κpÞDκαp;κ0α0p0 ðt1t2Þ

× Zκ0∇2;α0δðr2 − τ0κ0p0 Þ: ð108Þ

On the right-hand side we introduced the “displacement-
displacement correlation function”:

Dκαp;κ0α0p0 ðtt0Þ ¼ −
i
ℏ
hT̂Δτ̂καpðtÞΔτ̂κ0α0p0 ðt0Þi: ð109Þ

If we insert the last two equations into Eq. (105) we find

Wphð12Þ ¼
X
καp

κ0α0p0

Z
dð34Þϵ−1e ð13Þ∇3;αVκðr3 − τ0κpÞ

×Dκαp;κ0α0p0 ðt3t4Þϵ−1e ð24Þ∇4;α0Vκ0 ðr4 − τ0κ0p0 Þ:
ð110Þ

In this expression Vκ is the bare Coulomb potential of a
nucleus or its ionic pseudopotential.
At this point in the derivation, Hedin and Lundqvist

introduced the approximation in which the electronic dielec-
tric matrix in Eq. (110) can be replaced by its static
counterpart. This choice implies the Born-Oppenheimer
adiabatic approximation. In view of keeping the formalism
as general as possible, we prefer to retain retardation effects,
following the earlier works by Bardeen and Pines (1955)
and Baym (1961). We come back to this aspect in Secs. V.A.3
and V.B.2.
We stress the fact that the sole approximation used until this

point is to truncate the density operator for the nuclei to the
second order in the atomic displacements. This is the standard
harmonic approximation. Apart from this approximation,
which is useful to express Wph in a tractable form, no other
assumptions are made. Gillis (1970) proposed a generalization
of the results by Baym (1961) which does not use the
harmonic approximation. However, the resulting formalism
is exceedingly complex and has not been followed up.

C. Phonon Green’s function

In order to complete the set of self-consistent many-body
equations for the coupled electron-phonon system, it remains
to specify a prescription for calculating the displacement-
displacement correlation function Dκαp;κ0α0p0 ðtt0Þ. This func-
tion is seldom referred to as the “phonon Green’s function,”
even though strictly speaking this name should be reserved for
the quantity −ði=ℏÞhT̂âqνðtÞâ†q0ν0 ðt0Þi discussed in Sec. V.A.1.

In the following we describe the procedure originally devised
by Baym (1961), and subsequently analyzed by Keating
(1968), Hedin and Lundqvist (1969), Gillis (1970), and
Maksimov (1976).
The starting point is the equation of motion for the

displacement operators Δτ̂καpðtÞ. In analogy with Eq. (72)
we have iℏ∂=∂tΔτ̂κpðtÞ ¼ ½Δτ̂κpðtÞ; Ĥ�. Since we are con-
sidering the harmonic approximation and we expect the nuclei
to oscillate around their equilibrium positions, it is convenient
to aim for an expression resembling Newton’s equation. This
can be done by taking the time derivative of the equation of
motion

Mκ
∂2

∂t2 Δτ̂κp ¼ −
Mκ

ℏ2
½½Δτ̂κp; Ĥ�; Ĥ�: ð111Þ

After evaluating the commutators using Eqs. (62)–(66) and
performing the derivatives with respect to the nuclear dis-
placements by means of Eq. (106), we obtain (the steps are
laborious but straightforward)

Mκ
∂2

∂t2Δτ̂κpðtÞ ¼ Zκ

Z
drdr0n̂ðκpÞðrtÞvðr; r0Þ

× f−∇0δðr0 − τ0κpÞ
þ∇0½∇0δðr0 − τ0κpÞ · Δτ̂κpðtÞ�g: ð112Þ

Here n̂ðκpÞðrÞ is the total charge density of electrons and
nuclei, after removing the contribution of the nucleus κ in the
unit cell p. In the second line ∇0 indicates that the derivatives
are taken with respect to the variable r0. At this point, we can
use the functional derivative technique as in Sec. IV.B in order
to determine an expression involving the displacement-
displacement correlation function from Eq. (109). Here,
instead of using JðrÞ as in Sec. IV.B.2 for the nuclear density,
it is convenient to work with the individual displacements and
introduce a third perturbation Ĥ3ðtÞ ¼

P
κpFκpðtÞ · Δτ̂κpðtÞ.

The extra terms FκpðtÞ have the meaning of external forces
acting on the nuclei. Using this perturbation, it is possible to
write the displacement-displacement correlation function in a
manner similar to Eq. (101)

δhΔτ̂καpðtÞi
δFκ0α0p0 ðt0Þ ¼ Dκαp;κ0α0p0 ðtt0Þ: ð113Þ

This result was derived by Baym (1961) using a finite-
temperature formalism. As in the case of the electron
Green’s function in Sec. IV.B, it can be obtained only by
working in the interaction picture and by taking into account
the explicit time dependence of the Hamiltonian Ĥ þ Ĥ3ðtÞ.
Also in the present case, we omit these details for
conciseness.
If we take the expectation value of Eq. (112) in the ground

state, after having added the new force term −FκpðtÞ, and
carry out the functional derivative with respect to Fκ0p0 ðt0Þ, we
obtain
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Mκ
∂2

∂t2 Dκαp;κ0α0p0 ðtt0Þ

¼ −δκαp;κ0α0p0δðtt0Þ þ Zκ

Z
drdr0

×

�
−
δhn̂ðκpÞðrtÞi
δFκ0α0p0 ðt0Þ vðr; r0Þ∇0

αδðr0 − τ0κpÞ

þ hn̂ðκpÞðrtÞivðr; r0Þ∇0
α∇0

γδðr0 − τ0κpÞDκγp;κ0α0p0 ðtt0Þ
�
;

ð114Þ

where the sum over the Cartesian directions γ is implied. The
derivation of this result is rather cumbersome and involves the
following considerations: (i) the Dirac deltas in the first line
come from the force terms −Fκp added to the Hamiltonian;
(ii) within the harmonic approximation the expectation value
hn̂ðκpÞΔτ̂κpi can be replaced by hn̂ðκpÞihΔτ̂κpi (Baym, 1961);
and (iii) the expectation value hΔτ̂κpi can be set to zero,
because at the end of the derivation one sets jFκpj ¼ 0, hence
the expectation values of the displacements vanish. We note
that Hedin and Lundqvist (1969) omitted the last line of
Eq. (114) in their derivation, but this term was correctly
included by Baym (1961) and Maksimov (1976).
The remaining functional derivative in Eq. (114) can be

expressed in terms of the nuclear charge density using the
same strategy which led to Eq. (100). The result is

δhn̂ðκpÞðrtÞi
δFκ0α0p0 ðt0Þ ¼

Z
dr00dt00ϵ−1e ðrt; r00t00Þ δhn̂nðr

00t00Þi
δFκ0α0p0 ðt0Þ

−
X
γ

ZκDκγp;κ0α0p0 ðtt0Þ∇γδðr − τ0κpÞ: ð115Þ

By inserting this result inside Eq. (114) and using the expansion
in Eq. (107), we finally obtain the equation of motion for the
displacement-displacement correlation function:

Mκ
∂2

∂t2 Dκαp;κ0α0p0 ðtt0Þ

¼ −δκαp;κ0α0p0δðtt0Þ −
X
κ00α00p00

Z
dt00Πκαp;κ00α00p00 ðtt00Þ

×Dκ00α00p00;κ0α0p0 ðt00t0Þ: ð116Þ
The quantity Πκpα;κ0p0α0 ðtt0Þ in this expression is called the
“phonon self-energy” and is given by

Πκαp;κ0α0p0 ðtt0Þ

¼
Z

drdr0½Zκ∇αδðr − τ0κpÞWeðrt; r0t0ÞZκ0∇0
α0δðr0 − τ0κ0p0 Þ

þ δκp;κ0p0δðtt0Þ∇αhn̂ðrÞivðr; r0ÞZκ0∇0
α0δðr0 − τ0κ0p0 Þ�: ð117Þ

The derivation of Eq. (117) is nontrivial and is not found
consistently in the literature. It requires converting the deriv-
atives with respect to the position variables r, r0 into derivatives
with respect to the nuclear coordinates; integrating by parts in
order to rearrange the derivatives with respect to r and r0;
invoking the harmonic approximation; and considering that,
after setting the forces FkpðtÞ ¼ 0 and the field φðrtÞ ¼ 0 at the

end, the expectation value hn̂ðrtÞi does not depend on time. The
term in the third line of Eq. (117) is what Baym (1961) called
the “static force,” since it arises from the forces experienced by
the nuclei in their equilibrium configuration.
In order to simplify Eq. (117) it is convenient to move from

the time to the frequency domain. We use the following
convention for the Fourier transform of a function fðtÞ:
fðωÞ ¼ R∞

−∞ dtfðtÞeiωt. Since we are considering equilibrium
properties in the absence of time-dependent external poten-
tials, the time variables enter in these quantities only as
differences (Abrikosov, Gor’kov, and Dzyaloshinski, 1975);
for example, Weðrt; r0t0Þ ¼ Weðr; r0; t − t0Þ. As a conse-
quence, Eq. (116) is rewritten as

X
κ00α00p00

½Mκω
2δκαp;κ00α00p00 − Πκαp;κ00α00p00 ðωÞ�

×Dκ00α00p00;κ0α0p0 ðωÞ ¼ δκαp;κ0α0p0 ; ð118Þ

whereas the phonon self-energy in the frequency domain at
equilibrium reads

Πκαp;κ0α0p0 ðωÞ ¼
Z

drdr0½Zκ∇αδðr − τ0κpÞWeðr; r0;ωÞ

þ δκp;κ0p0∇αhn̂ðrÞivðr; r0Þ�Zκ0∇0
α0δðr0 − τ0κ0p0 Þ:

ð119Þ
The second line in this expression is conveniently rewritten by
making use of the acoustic sum rule. This sum rule is well
known in the theory of lattice dynamics of crystals (Born and
Huang, 1954) and can be generalized to the case of many-
body Green’s function approaches as follows (Hedin and
Lundqvist, 1969):

X
κ0p0

Πκαp;κ0α0p0 ðω ¼ 0Þ ¼ 0 for any α; α0: ð120Þ

This relation was first derived by Baym (1961) by imposing
the condition that the nuclei in the crystal must remain near
their equilibrium positions due to fictitious restoring forces.
Physically this condition corresponds to considering a crystal
which is held fixed in the laboratory reference frame. In this
approach, the crystal cannot translate or rotate as a whole.
Similar relations were derived by Sjölander and Johnson
(1965) and Gillis (1970).
If we combine Eqs. (119) and (120), perform integrations

by parts, and carry out the integrations in r and r0 we obtain

Πκαp;κ0α0p0 ðωÞ ¼
X
κ00p00

ZκZκ00
∂2

∂rα∂r0α0
����
r¼τ0κp;r0¼τ0

κ00p00

½δκ0p0;κ00p00Weðr; r0;ωÞ − δκp;κ0p0Weðr; r0; 0Þ�;
ð121Þ

which fulfills the sum rule in Eq. (120).
Equations (118) and (121) completely define the nuclear

dynamics in the harmonic approximation. After obtaining the
displacement-displacement correlation functionDκαp;κ0α0p0 ðtt0Þ
by solving this set of equations, it is possible to construct
the expectation value of the nuclear density using Eqs. (107)
and (109)

Feliciano Giustino: Electron-phonon interactions from first …

Rev. Mod. Phys., Vol. 89, No. 1, January–March 2017 015003-19



hn̂nðrtÞi ¼ n0nðrÞ −
iℏ
2

X
κp;αα0

Zκ
∂2δðr − τ0κpÞ
∂rα∂rα0 Dκαp;κα0pðtþtÞ:

ð122Þ
We emphasize that, according to Eq. (121), the coupling of the
nuclear displacements to the electrons is completely defined
by the electronic dielectric matrix through We. Similarly, the
nuclei affect the electronic structure via the dielectric matrix
which enters Wph in Eq. (110) and via the nuclear density
inside V tot in Eq. (79). From these considerations it should be
clear that the electronic dielectric matrix ϵeðr; r0;ωÞ plays an
absolutely central role in the field-theoretic approach to the
electron-phonon problem.

D. Hedin-Baym equations

Apart from making use of the harmonic approximation, the
set of equations given by Eqs. (79), (84), (85), (87), (92), (93),
(94), (95), (110), (118), (121), and (122) describe the coupled
electron-phonon system entirely from first principles. This set
of equations can be regarded as the most sophisticated
description of interacting electrons and phonons available
today. Since the self-consistent equations for the electrons
were originally derived by Hedin (1965), and those for the
nuclei were derived first by Baym (1961), we refer to the
complete set as the Hedin-Baym equations. Given the impor-
tance of these relations, we summarized them schematically
in Table I. The standard Hedin’s equations for interacting
electrons in the potential of clamped nuclei (Hedin, 1965) are
immediately recovered from the Hedin-Baym equations by
setting to zero the displacement-displacement correlation
function of the nuclei Dκpα;κ0p0α0 ¼ 0.
Table I provides a closed set of self-consistent equations

whose solution yields the Green’s functions of a fully
interacting electron-phonon system, within the harmonic
approximation. We stress that these relations are

fundamentally different from diagrammatic approaches. In
fact, here the coupled electron-phonon system is not addressed
using Feynman-Dyson perturbation theory as was done, for
example, by Keating (1968). Instead, in Table I, electrons and
phonons are described nonperturbatively by means of a
coupled set of nonlinear equations for the exact propagators.
In particular, we emphasize that this approach does not require
the Born-Oppenheimer adiabatic approximation, and there-
fore it encompasses insulators, intrinsic as well as doped
semiconductors, metals, and superconductors.
Almost every property related to electron-phonon inter-

actions in solids that can be calculated today from first
principles can be derived from these equations. Examples
to be discussed in Secs. V–X include the renormalization of
the Fermi velocity, the band gap renormalization in semi-
conductors and insulators, the nonadiabatic corrections to
vibrational frequencies, the Frölich interaction, and the life-
times of electrons and phonons. The generalization of these
results to the case of finite temperature should also be able
to describe phonon-mediated superconductivity, although this
phenomenon is best addressed by directly studying the
propagation of Cooper pairs (see Sec. XI).
Baym’s theory can in principle be extended to go beyond

the harmonic approximation (Gillis, 1970). However, the
mathematical complexity of the resulting formalism is for-
midable, due to the appearance of many additional terms
which are neglected in the harmonic approximation.

V. FROM A MANY-BODY FORMALISM TO PRACTICAL
CALCULATIONS

The Hedin-Baym equations summarized in Table I define a
rigorous formalism for studying interacting electrons and
phonons in metals, semiconductors, and insulators entirely
from first principles. However, a direct numerical solution of
these equations for real materials is currently out of reach,
and approximations are needed for practical calculations.

TABLE I. Self-consistent Hedin-Baym equations for the coupled electron-phonon system in the harmonic approximation.

Eq. Description Expression

(93) Electronic charge density hn̂eð1Þi ¼ −iℏ
P

σ1
Gð11þÞ

(122) Nuclear charge density hn̂nðrtÞi ¼ n0nðrÞ − ðiℏ=2ÞPκp;αα0Zκ∂2δðr − τ0κpÞ=∂rα∂rα0Dκαp;κα0pðtþtÞ
(79) Total electrostatic potential V totð1Þ ¼

R
d2vð12Þ½hn̂eð2Þi þ hn̂nð2Þi�

(84) Equation of motion, electrons ½iℏ∂=∂t1 þ ðℏ2=2meÞ∇2ð1Þ − V totð1Þ�Gð12Þ −
R
d3Σð13ÞGð32Þ ¼ δð12Þ

(118) Equation of motion, nuclei
P

κ00α00p00 ½Mκω
2δκαp;κ00α00p00 − Πκαp;κ00α00p00 ðωÞ�Dκ00α00p00 ;κ0α0p0 ðωÞ ¼ δκαp;κ0α0p0

(85) Electron self-energy Σð12Þ ¼ iℏ
R
dð34ÞGð13ÞΓð324Þ½Weð41þÞ þWphð41þÞ�

(94) Screened Coulomb, electrons Weð12Þ ¼ vð12Þ þ R
dð34Þvð13ÞPeð34ÞWeð42Þ

(92) Electronic polarization Peð12Þ ¼ −iℏ
P

σ1

R
dð34ÞGð13ÞGð41þÞΓð342Þ

(95) Electronic dielectric matrix ϵeð12Þ ¼ δð12Þ − R
dð3Þvð13ÞPeð32Þ

(87) Vertex Γð123Þ ¼ δð12Þδð13Þ þ R
dð4567Þ½δΣð12Þ=δGð45Þ�Gð46ÞGð75ÞΓð673Þ

(110) Screened Coulomb, nuclei Wphð12Þ ¼
P

καp;κ0α0p0
R
dð34Þϵ−1e ð13Þ∇3;αVκðr3 − τ0κpÞ

×Dκαp;κ0α0p0 ðt3t4Þϵ−1e ð24Þ∇4;α0Vκ0 ðr4 − τ0κ0p0 Þ
(121) Phonon self-energy Πκαp;κ0α0p0 ðωÞ ¼ P

κ00p00ZκZκ00 ð∂2=∂rα∂r0α0 Þ
×½δκ0p0;κ00p00Weðr; r0;ωÞ − δκp;κ0p0Weðr; r0; 0Þ�r¼τ0κp;r0¼τ0

κ00p00
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The following sections establish the connection between the
Hedin-Baym equations and standard expressions which are
currently in use in ab initio calculations of electron-phonon
interactions.

A. Effects of the electron-phonon interaction on phonons

1. Phonons in the Born-Oppenheimer adiabatic approximation

The vibrational eigenmodes of the nuclei can be identified
with the resonances of the displacement-displacement corre-
lation function Dκpα;κ0p0α0 ðtt0Þ in the frequency domain. If we
denote by M the diagonal matrix having the nuclear masses
Mκ along its diagonal, then the formal solution of Eq. (118)
can be written as

DðωÞ ¼ ½Mω2 − ΠðωÞ�−1; ð123Þ

where D is the matrix with elements Dκpα;κ0p0α0 . The resonant
frequencies of the system correspond to the solutions of the
nonlinear equations

ΩνðωÞ − ω ¼ 0; with ν ¼ 1;…; 3M; ð124Þ

where Ω2
νðωÞ is an eigenvalue of M−1=2ΠðωÞM−1=2, para-

metric in the variable ω.
As expected, the study of lattice vibrations within a

field-theoretic framework resembles the standard eigenvalue
problem reviewed in Sec. III.A. In particular, the matrix
ΠðωÞ represents the many-body counterpart of the matrix of
interatomic force constants Cκαp;κ0α0p0 introduced in Eq. (13).
However, despite its formal simplicity, Eq. (124) conceals the
full wealth of information associated with the many-body
electronic screening ϵeðr; r0;ωÞ via Eq. (121). In fact, the
phonon self-energy is generally complex and frequency
dependent. Therefore we can expect to find roots of
Eq. (124) outside of the real frequency axis, as well as
multiple roots for the same “eigenmode.”
The link between Eq. (124) and phonon calculations by

means of DFT is established by noting that DFT relies on the
Born-Oppenheimer adiabatic approximation. In the adiabatic
approximation the nuclei are considered immobile during
characteristic electronic time scales. Formally, this approxi-
mation is introduced by setting ω ¼ 0 in Eq. (121) (Keating,
1968). In practice, this assumption corresponds to stating that
ϵeðr; r0;ωÞ can be replaced by ϵeðr; r0; 0Þ in the frequency
range of the vibrational excitations. Obviously this is not
always the case, and important exceptions are discussed in
Sec. V.A.2.
In order to see more clearly the connection with the

formalism discussed in Sec. III.A, we partition the phonon
self-energy into “adiabatic” and “nonadiabatic” contributions:

ΠðωÞ ¼ ΠA þ ΠNAðωÞ; ð125Þ

with ΠA ¼ Πðω ¼ 0Þ. As we will see, the adiabatic term ΠA

will be taken to describe “noninteracting” phonons, and the
nonadiabatic self-energy ΠNA will be used to describe the
effects of electron-phonon interactions.

In the early literature it is common to find a different
partitioning, whereby the noninteracting system is defined by
the bare interatomic force constants, corresponding to nuclei
in the absence of electrons (Grimvall, 1981). This alternative
choice is not useful in modern calculations, because the
resulting noninteracting phonon dispersions are very different
from the fully interacting dispersions. The present choice
of using instead adiabatic phonons as the noninteracting
system is more convenient in the context of modern ab initio
techniques, since calculations of adiabatic phonon spectra are
routinely performed within DFPT.
In the remainder of this section we concentrate on the

adiabatic term, and we defer the discussion of the nonadiabatic
self-energy to Sec. V.A.2. Using Eq. (121), we can rewrite the
adiabatic self-energy as follows:

ΠA
καp;κ0α0p0 ¼

X
κ00p00

ðδκ0p0;κ00p00 − δκp;κ0p0 Þ

×

�Z
dr

∂hn̂eðrÞi
∂τκ00α0p00

∂VenðrÞ
∂τκαp þ ∂2Unn

∂τκαp∂τκ00α0p00

�
:

ð126Þ

In this expression Unn is the nucleus-nucleus interaction
energy from Eq. (65), Ven is the electron-nuclei interaction
from Eq. (25), and all the derivatives are taken at the
equilibrium coordinates. The derivation of Eq. (126) requires
the use of the identity

∂hn̂eðrÞi
∂τ0καp ¼ −Zκ

Z
dr0½ϵ−1e ðr; r0; 0Þ − δðr; r0Þ�∇0

αδðr0 − τ0κpÞ:

ð127Þ

This identity follows from the same reasoning leading to
Eq. (100), after considering an external potential which
modifies the position of the nucleus κ in the cell p.
Equation (126) can be recast in a familiar form by exploiting
the acoustic sum rule in Eq. (120). Indeed after a few tedious
but straightforward manipulations we obtain

ΠA
καp;κ0α0p0 ¼

Z
dr

∂hn̂eðrÞi
∂τκ0α0p0

∂VenðrÞ
∂τκαp þ

Z
drhn̂eðrÞi

∂2VenðrÞ
∂τκαp∂τκ0α0p0

þ ∂2Unn

∂τκαp∂τκ0α0p0
: ð128Þ

In this form, one can see that the adiabatic self-energy gives
precisely the interatomic force constants that we would
obtain using the Born-Oppenheimer approximation and the
Hellman-Feynman theorem; compare Eq. (128), for example,
with Eq. (10) of Baroni et al. (2001).
The difference between ΠA

καp;κ0α0p0 in Eq. (128) and
Cκαp;κ0α0p0 in Eq. (13) is that, in the former case, the electron
density response to atomic displacements is governed by the
exact many-body dielectric matrix ϵeðr; r0; 0Þ and electron
density hn̂eðrÞi, as shown by Eqs. (127) and (128). As a result,
ΠA

καp;κ0α0p0 corresponds to force constants and electron density
dressed by all many-body interactions of the system (both
electron-electron and electron-phonon interactions). In
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contrast, when the force constants in Eq. (13) are calculated
using DFT, the electron density response to an atomic
displacement is evaluated using the RPAþ xc screening, that
is, ϵHxcðr; r0Þ from Sec. III.B.4, and the ground-state electron
density is calculated at clamped nuclei.
The use of the adiabatic approximation in the study of

phonons carries the important advantage that the many-body
force constants ΠA form a real and symmetric matrix. This
can be seen by rewriting Eq. (121) for ω ¼ 0, and using
Weðr; r0;ωÞ ¼ Weðr0; r;−ωÞ which follows from the property
Wð12Þ ¼ Wð21Þ (see Sec. IV.B). Since ΠA is real and
symmetric, all its eigenvalues are guaranteed to be real. In
this approximation, the excitations of the lattice correspond to
sharp resonances in the displacement-displacement correla-
tion function DðωÞ, and it is meaningful to talk about phonons
as long-lived excitations of the system. In fact these excita-
tions are infinitely long lived in the harmonic approximation.
In practical calculations, the many-body ΠA is invariably
replaced by the DFT interatomic force constants, and in this
case the agreement of the calculated phonon frequencies with
experiment is excellent in most cases. Illustrative examples
can be found among others in Yin and Cohen (1982),
Giannozzi et al. (1991), Dal Corso et al. (1993), Lee,
Ghosez, and Gonze (1994), Kresse, Furthmüller, and
Hafner (1995), Bungaro, Rapcewicz, and Bernholc (2000),
Dal Corso and de Gironcoli (2000), Karki et al. (2000), Baroni
et al. (2001), Díaz-Sánchez, Romero, and Gonze (2007), and
Dal Corso (2013).
The most obvious criticism to the adiabatic approximation

is that, in the case of metals, the assumption ϵeðr; r0;ωÞ≃
ϵeðr; r0; 0Þ is inadequate. This can intuitively be understood by
recalling that the dielectric function of the homogeneous
electron gas diverges when ω;q → 0 (Mahan, 1993). In
practical calculations, this divergence is connected with
vanishing denominators in Eq. (51) for q → 0. An approxi-
mate, yet successful strategy for overcoming this problem is to
replace the occupation numbers in Eq. (51) by smoothing
functions such as the Fermi-Dirac distribution and to describe
the singular terms analytically (de Gironcoli, 1995). Most
first-principles calculations of phonon dispersion relations
in metals have been carried out using this strategy.
Improvements to this strategy are discussed in Sec. V.A.2.
The adiabatic approximation leads naturally to the defi-

nition of an adiabatic propagator DAðωÞ, which can be
obtained from Eq. (123) after replacing the phonon self-
energy by its static limit

DAðωÞ ¼ ½Mω2 − ΠA�−1: ð129Þ

Now, if we identify ΠA
καp;κ0α0p0 with the interatomic force

constant Cκαp;κ0α0p0 in Eq. (13), we can obtain an explicit
expression for the adiabatic phonon propagator in terms of the
eigenmodes eκα;νðqÞ and eigenfrequencies ωqν introduced in
Sec. III.A. To this end we invert Eq. (129) using Eqs. (14)–(17)
and recall that the dynamical matrix is Hermitian and obeys
Ddm;�

κα;κ0α0 ðqÞ ¼ Ddm
κα;κ0α0 ð−qÞ (Maradudin and Vosko, 1968).

After tedious but straightforward steps we find

DA
καp;κ0α0p0 ðωÞ¼

X
ν

Z
dq
ΩBZ

S�qν;καpSqν;κ0α0p0
2ωqν

ω2−ω2
qν
; ð130Þ

with the definition

Sqν;καp ¼ eiq·Rpð2MκωqνÞ−1=2eκα;νðqÞ: ð131Þ

This result suggests that, as expected, the propagator should
take a simple form in the eigenmodes representation. In
fact, by using the inverse transform of Eq. (131) we have
DA

qν;q0ν0 ðωÞ ¼ ΩBZδðq − q0ÞDA
qνν0 ðωÞ, with

DA
qνν0 ðωÞ ¼ 2ωqν=ðω2 − ω2

qνÞδνν0 : ð132Þ

This result can alternatively be obtained starting from the ladder
operators of Appendix B. In fact, after using Eqs. (20), (109),
and (131) we find

DA
qνν0 ðtt0Þ ¼ −ihT̂½â†qνðtÞâqνðt0Þ þ â−qνðtÞâ†−qνðt0Þ�iδνν0 :

ð133Þ

An explicit evaluation of the right-hand side using the
Heisenberg time evolution generated by the phonon
Hamiltonian in Eq. (22) yields precisely Eq. (132), with the
added advantage that it is easier to keep track of the time
ordering. The result is

DA
qννðωÞ ¼

1

ω − ωqν þ iη
−

1

ωþ ωqν − iη
; ð134Þ

with η a positive real infinitesimal. This alternative approach
is very common in textbooks; see, for example, Schrieffer
(1983) and Schäfer and Wegener (2002). However, it does not
carry general validity in a field-theoretic framework since it
rests on the adiabatic approximation.

2. Phonons beyond the adiabatic approximation

In order to go beyond the adiabatic approximation, it is
necessary to determine the complete propagator DðωÞ in
Eq. (123). Formally this can be done by combining Eqs. (123)
and (125) to obtain the following Dyson-like equation:

DðωÞ ¼ DAðωÞ þ DAðωÞΠNAðωÞDðωÞ: ð135Þ

In this form it is apparent that the nonadiabatic phonon
self-energy ΠNAðωÞ “dresses” the noninteracting phonons
obtained within the adiabatic approximation, as shown sche-
matically in Fig. 1(a). It is convenient to rewrite the Dyson
equation in such a way as to show more clearly the poles of the
propagator. Using Eqs. (131) and (132) we find

D−1
qνν0 ðωÞ ¼

1

2ωqν
½δνν0 ðω2 − ω2

qνÞ − 2ωqνΠNA
qνν0 ðωÞ�; ð136Þ

where ΠNA
qνν0 and D−1

qνν0 are obtained using the transform of
Eq. (131) and its inverse, respectively.
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From Eq. (136) we see that the nonadiabatic self-energy
ΠNA modifies the adiabatic phonon spectrum in four distinct
ways: (i) the real part of the diagonal elements ΠNA

qνν shifts
the adiabatic frequencies; (ii) the imaginary part introduces
spectral broadening; (iii) the off-diagonal elements of ΠNA

qνν0

introduce a coupling between the adiabatic vibrational
eigenmodes; and (iv) the frequency dependence of ΠNA

qννðωÞ
might lead to multiple poles for the same mode ν, thereby
introducing new structures in the phonon spectrum.
Today it is relatively common to calculate phonon line-

widths arising from electron-phonon interactions (Allen,
1972b; Bauer et al., 1998). Recently it has also become
possible to study the frequency renormalization due to non-
adiabatic effects (Saitta et al., 2008; Calandra, Profeta, and
Mauri, 2010).
The possibility of observing new features in vibrational

spectra arising from the EPI has not been studied from first
principles, but the underlying phenomenology should be
similar to that of plasmon satellites in photoelectron spectra
(see Sec. V.B.6). Generally speaking we expect satellites
whenever ϵeðr; r0;ωÞ exhibits dynamical structure close to
vibrational frequencies. This can happen, for example, in the
case of degenerate polar semiconductors, when phonon and
plasmon energies are in resonance. In these cases, phonons
and plasmons can combine into “coupled plasmon-phonon
modes” (Richter, 1984), which are the electronic analog of
photon polaritons (Yu and Cardona, 2010). This phenomenon
was predicted theoretically (Varga, 1965) and subsequently
confirmed by Raman measurements on GaAs (Mooradian and
Wright, 1966). We speculate that it should be possible to
obtain coupled plasmon-phonon modes from the frequency
dependence of the phonon self-energy in Eq. (136); it would
be interesting to perform first-principles calculations in order
to shed light on these aspects.
In practical calculations the nonadiabatic corrections to the

adiabatic phonon spectrum are evaluated from Eq. (136) using
first-order perturbation theory, by retaining only the diagonal
elements of ΠNA. If we denote the complex zeros of D−1

qννðωÞ
by ~Ωqν ¼ Ωqν − iγqν, in the case of nondegenerate eigenm-
odes Eq. (136) gives

~Ω2
qν ¼ ω2

qν þ 2ωqνΠNA
qννð ~ΩqνÞ; ð137Þ

therefore

γqν ¼ −
ωqν

Ωqν
ImΠNA

qννðΩqν − iγqνÞ; ð138Þ

Ω2
qν ¼ ω2

qν þ γ2qν þ 2ωqνReΠNA
qννðΩqν − iγqνÞ: ð139Þ

Apart from the small γ2qν term in Eq. (139), these expressions
are identical to those provided by Allen (1972b) and Grimvall
(1981). Since nonadiabatic corrections are usually small as
compared to the adiabatic phonon frequencies, Eqs. (138) and
(139) are often simplified further by using the additional
approximations jΩqν − ωqνj ≪ ωqν and jγqνj ≪ ωqν, leading
to γqν ≃ −ImΠNA

qννðωqνÞ and Ωqν ≃ ωqν þ ReΠNA
qννðωqνÞ. In

these forms it becomes evident that the real part of the

self-energy shifts the adiabatic phonon frequencies, and the
imaginary part is responsible for the spectral broadening of the
resonances. Using these expressions in Eq. (136) and going
back to the time domain, it is seen that, as a result of the EPI,
phonons acquire a finite lifetime given by τphqν ¼ ð2γqνÞ−1.

3. Expressions for the phonon self-energy used in ab initio
calculations

In the literature on electron-phonon interactions, the pho-
non self-energy Π is almost invariably expressed in terms of
an electron-phonon vertex g and the electron Green’s function
G as Π ¼ jgj2GG in symbolic notation; see, for example,
Grimvall (1981). While this has become common practice also
in ab initio calculations, the origin of this choice is not entirely
transparent. One could derive this expression directly from
Eq. (1), using standard Green’s function techniques. However,
this procedure does not answer the key question of how to
calculate the electron-phonon matrix elements g.
A closer inspection of the theory reveals that this is a rather

nontrivial point. In fact, on the one hand, a straightforward
expansion of the second-quantized Hamiltonian of Eq. (68) in
terms of the nuclear coordinates leads to “bare” electron-
phonon matrix elements gb, which contain the bare Coulomb
interaction between electrons and nuclei. On the other hand, if
we go back to Sec. III.B.2, we see that the electron-phonon
matrix elements in DFT are dressed by the self-consistent
response of the electrons. The difference between the bare and
the dressed vertex is not only quantitative, but also qualitative:
for example, in metals the bare vertex is long ranged, while the
screened vertex is short ranged.
The relation between bare and dressed electron-phonon

vertices and the derivation of explicit expressions for the
phonon self-energy have been discussed by many; see, for
example, Scalapino (1969) and Rickayzen (1980). In short,
the argument is that the lowest-order Feynman diagram
starting and ending with a phonon line must contain precisely
two bare electron-phonon vertices, as shown in Fig. 1(b).
By construction this diagram corresponds to having
Π ¼ jgbj2GG. In order to make the transition from the bare
vertex to the dressed vertex it is necessary to collect together
all the proper electronic polarization diagrams around the
vertex. However, these steps have been carried out only for the
homogeneous electron gas (Scalapino, 1969; Rickayzen,
1980). In the following we show how the dressed electron-
phonon vertex emerges from a nonperturbative analysis based
on the Hedin-Baym equations.
The nonadiabatic phonon self-energy ΠNA introduced in

Sec. V.A.2 can be written explicitly by combining Eqs. (119)
and (125):

ΠNA
καp;κ0α0p0 ðωÞ¼

Z
drdr0Zκ∇αδðr−τ0κpÞ

× ½Weðr;r0;ωÞ−Weðr;r0;0Þ�Zκ0∇0
α0δðr0−τ0κ0p0 Þ:

ð140Þ

Using the Dyson equation for the screened Coulomb inter-
action, it can be seen that this expression does indeed contain
electron-phonon matrix elements. In fact, by inserting Eq. (94)

Feliciano Giustino: Electron-phonon interactions from first …

Rev. Mod. Phys., Vol. 89, No. 1, January–March 2017 015003-23



into Eq. (140) we find terms like vPeWe, and the electron-
phonon matrix elements will arise from taking the gradients of
v and We. By working in the eigenmodes representation via
Eq. (131), after lengthy manipulations this procedure yields

ℏΠNA
qν;q0ν0 ðωÞ ¼

Z
drdr0gbqνðrÞPeðr; r0;ωÞgccq0ν0 ðr0;ωÞ

−
Z

drdr0gbqνðrÞPeðr; r0; 0Þg�q0ν0 ðr0; 0Þ;

ð141Þ

where we introduced electron-phonon “coupling functions” as
follows. The bare coupling gb is defined as

gbqνðrÞ ¼ ΔqνVenðrÞ; ð142Þ

where Ven is the potential of the nuclei from Eq. (25); in
practical calculations this quantity is replaced by the usual
ionic pseudopotentials. The meaning of the variation Δqν is
the same as in Eqs. (33)–(35). The dressed couplings g and gcc
are defined as (Hedin and Lundqvist, 1969)

gqνðr;ωÞ ¼
Z

dr0ϵ−1e ðr; r0;ωÞgbqνðr0Þ; ð143Þ

gccqνðr;ωÞ ¼
Z

dr0ϵ−1e ðr; r0;ωÞgb;�qν ðr0Þ: ð144Þ

Since the dielectric matrix is real at ω ¼ 0, we have the simple
relation gccqνðr; 0Þ ¼ g�qνðr; 0Þ. In order to derive Eq. (141) it is
best to carry out the algebra in the time domain. We emphasize
that the result expressed by Eq. (141) is nonperturbative and
relies solely on the harmonic approximation.
Equation (141) is in agreement with the standard result for

the homogeneous electron gas (Scalapino, 1969). The same
expression was also obtained by Keating (1968) using a
detailed diagrammatic analysis. Keating’s diagrammatic rep-
resentation of the self-energy is shown in Fig. 1(c) and can be
obtained from Eq. (141) by noting that, in symbolic notation,
Pe ¼ GGΓ from Eq. (92); therefore Π ¼ gbGGΓg. For com-
pleteness we also show in Fig. 1(d) a diagrammatic repre-
sentation of the dressed electron-phonon coupling function
g as given by Eq. (144). This representation is obtained by
observing that g ¼ ϵ−1gb, ϵ ¼ 1 − vP, and P ¼ GGΓ; there-
fore g ¼ gb þ vGGΓg.
In view of practical first-principles calculations it is useful

to have a simplified expression for the nonadiabatic phonon
self-energy in Eq. (141). To this aim we make the following
approximations:

(i) The vertex function in Eq. (92) is set to Γð123Þ ¼
δð12Þδð13Þ. This is the same approximation at the
center of the GW method (Hedin, 1965; Hybertsen
and Louie, 1986; Onida, Reining, and Rubio, 2002).

(ii) The fully interacting electron Green’s function G is
replaced by its noninteracting counterpart, using
the Kohn-Sham eigenstates and eigenvalues evalu-
ated with the nuclei held in their equilibrium
positions.

(iii) The fully interacting dielectric matrix in Eq. (144) is
replaced by the RPAþ xc response obtained from a
DFT calculation, as discussed in Sec. III.B.2.

(iv) The frequency dependence of the screened electron-
phonon coupling defined in Eq. (144) is neglected:
gccqνðr;ωÞ≃ gccqνðr; 0Þ ¼ g�qνðr; 0Þ. This approxima-
tion is ubiquitous in the literature but it is never
mentioned explicitly.

(v) For notational simplicity, we consider a spin-
degenerate system with time-reversal symmetry; this
simplification is easily removed.

Using these assumptions we can rewrite the component of
Eq. (141) for q ¼ q0 as

FIG. 1. Diagrammatic representation of the phonon Green’s
function and self-energy. (a) Dyson equation for the phonon
propagator, Eq. (135). The thick wavy line represents the fully
interacting, nonadiabatic propagator; the thin wavy line is the
adiabatic propagator; the disk is the nonadiabatic self-energy.
(b) Lowest-order diagrammatic expansion of the phonon self-
energy in terms of the bare electron-phonon vertices and the
RPA electronic polarization. The small dots are the bare electron-
phonon coupling functions, and the thin lines are the non-
interacting (for example, Kohn-Sham) electron Green’s
functions. This diagram is the simplest possible term which
begins and ends with a phonon line. (c) Nonperturbative repre-
sentation of the phonon self-energy in terms of the bare coupling,
the dressed coupling (large gray disk), the fully interacting
electron Green’s functions (thick lines), and the vertex Γ from
Eq. (83). This diagram was proposed by Keating (1968) and
describes the first line of Eq. (141). (d) Schematic representation
of the relation between the dressed electron-phonon coupling g
and the bare coupling gb, from Eq. (144). Vogl (1976) reports a
similar diagram, although with the bare coupling function on the
far right; the difference stems from the present choice of using
the irreducible polarization P ¼ GGΓ instead of the reducible
polarization employed by Vogl.

Feliciano Giustino: Electron-phonon interactions from first …

Rev. Mod. Phys., Vol. 89, No. 1, January–March 2017 015003-24



ℏΠNA
qνν0 ðωÞ ¼ 2

X
mn

Z
dk
ΩBZ

gbmnνðk;qÞg�mnν0 ðk;qÞ

×

�
fmkþq − fnk

εmkþq − εnk − ℏðωþ iηÞ −
fmkþq − fnk
εmkþq − εnk

�
:

ð145Þ

We note that the components of the phonon self-energy for
q ≠ q0 vanish due to the periodicity of the crystalline lattice.
In Eq. (145) the sums run over all the Kohn-Sham states, with
occupations fnk, and η is a real positive infinitesimal. In this
case we indicate explicitly the factor of 2 arising from the spin
degeneracy. The matrix element gmnνðk; qÞ is the same as in
Eq. (38), and it is precisely the quantity calculated by most
linear-response codes. The matrix element gbmnνðk;qÞ is
obtained from gmnνðk;qÞ by replacing the variation of the
Kohn-Sham potential by the corresponding variation of the
ionic (pseudo)potentials. The field-theoretic phonon self-
energy given by Eq. (145) is in agreement with the expression
derived by Calandra, Profeta, and Mauri (2010) starting from
time-dependent density-functional perturbation theory.
The presence of both the bare electron-phonon matrix

element and the screened matrix element in Eq. (145) has
not been fully appreciated in the literature, and most ab initio
calculations employ an approximate self-energy whereby gb is
replaced by g. The replacement of the bare matrix elements by
their screened counterparts in the phonon self-energy goes a
long way back and can be found already in the seminal work
by Allen (1972b). As a result many investigators (including
myself) calculated phonon lifetimes using the following
expression (Grimvall, 1981):

1

τphqν
¼ 2π

ℏ
2
X
mn

Z
dk
ΩBZ

jgmnνðk;qÞj2ðfnk − fmkþqÞ

× δðεmkþq − εnk − ℏωqνÞ: ð146Þ

This is obtained from Eq. (145) by taking the imaginary part
and by making the replacement gb → g. While Eq. (146) can
be derived from the Fermi golden rule in an independent-
particle approximation [see Albers et al. (1976), Appendix B],
the choice of the electron-phonon matrix elements is some-
what arbitrary. In future calculations of the phonon self-energy
it will be important to assess the significance of using the
correct vertex structure, that is, replacing jgmnνðk;qÞj2 by
gbmnνðk;qÞg�mnνðk;qÞ in Eq. (146).
In general, the effects of the nonadiabatic self-energy on

the phonon spectrum are expected to be significant only in
the case of metals and small-gap semiconductors. In fact, by
combining Eqs. (138), (139), and (145) it is seen that ΠNA

can be large only when occupied and empty single-particle
states are separated by an energy of the order of the
characteristic phonon energy. In such a case, we can expect
a shift of the adiabatic phonon frequencies and a concomi-
tant broadening of the lines. A clear illustration of these
effects was provided by Maksimov and Shulga (1996), who
analyzed a simplified model of a metal with linear bands
near the Fermi level.

Calculations of phonon linewidths based on Eq. (146) have
been reported by several2 and have become commonplace
in first-principles studies of electron-phonon physics. On the
other hand, calculations of the nonadiabatic phonon frequen-
cies using Eq. (145) have been reported only by Lazzeri and
Mauri (2006), Caudal et al. (2007), Piscanec et al. (2007),
Saitta et al. (2008), and Calandra, Profeta, and Mauri (2010),
using the approximation that the bare vertex gb can be
replaced by the screened vertex g. Examples of such calcu-
lations are reviewed in Sec. VII.
Equation (145) suggests several avenues worth exploring in

the future: first, the use of the bare vertex should not pose a
challenge in practical calculations, since this quantity is
already being calculated in linear-response DFT codes.
Testing the impact of the bare vertex on phonon linewidths
and frequency renormalizations will be important. Second,
Eq. (145) contains off-diagonal couplings, which are usually
ignored. It will be interesting to check the effect of using the
complete matrix self-energy. Third, the dynamical structure of
the self-energy may contain interesting information such as,
for example, spectral satellites and coupled phonon-plasmon
modes. Last, the move from Eq. (141) to Eq. (145) involves
the approximation that the frequency dependence of the
electron-phonon matrix elements can be neglected. The
validity of this approximation is uncertain, and there are no
reference ab initio calculations on this. However, we note that
frequency-dependent electron-phonon matrix elements have
been employed systematically in theoretical models of doped
semiconductors (Mahan, 1993, Sec. 6.3).
Before closing this section we note that the formalism

discussed here is based on zero-temperature Green’s func-
tions. In order to extend the present results to finite temper-
ature it is necessary to repeat all derivations using the
Matsubara representation and then perform the analytic
continuation of the self-energy to the real frequency axis.
Detailed derivations can be found in Baym (1961) and Gillis
(1970) and will not be repeated here. Fortunately it turns out
that Eq. (145) can be extended to finite temperature by simply
replacing the occupation factors fnk and fmkþq by the
corresponding Fermi-Dirac distributions.3

B. Effects of the electron-phonon interaction on electrons

1. Electron self-energy: Fan-Migdal and Debye-Waller terms

In Sec. V.Awe discussed the link between the Hedin-Baym
equations summarized in Table I and ab initio calculations of
phonons. We first identified a Hermitian eigenvalue problem
for the vibrational frequencies via the adiabatic approxima-
tion, and then we improved upon this description by means of

2See, for example, Butler, Pinski, and Allen (1979), Bauer et al.
(1998), Shukla et al. (2003), Lazzeri et al. (2006), Giustino, Cohen,
and Louie (2007), Park, Giustino, Cohen, and Louie (2008), and Heid
et al. (2010).

3Throughout this article, when fnk and nqν have the meaning
of Fermi-Dirac and Bose-Einstein distributions, respectively, they
are defined as follows: fnk ¼ f½ðεnk − εFÞ=kBT� with fðxÞ ¼
1=ðex þ 1Þ, where εF is the Fermi energy; nqν ¼ nðℏωqν=kBTÞ with
nðxÞ ¼ 1=ðex − 1Þ.
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a nonadiabatic self-energy. In this section, we adopt a similar
strategy in order to discuss electronic excitation energies: first
we identify an approximation to the Hedin-Baym equations
which does not include any electron-phonon interactions, and
then we introduce an electron self-energy to incorporate such
interactions.
The single most common approximation in first-principles

electronic structure calculations is to describe nuclei as
classical particles clamped in their equilibrium positions.
Within this approximation the expectation value of the nuclear
charge density operator in Eq. (67), hn̂nðrÞi, is replaced by the
first term in Eq. (107), n0nðrÞ. From Eq. (122) we see that this
approximation formally corresponds to setting to zero the
displacement-displacement correlation function of the nuclei.
This observation suggests that, in order to unambiguously
single out electron-phonon interactions in the Hedin-Baym
equations, we need to define a noninteracting problem by
setting Dκαp;κ0α0p0 ¼ 0 and identify the electron-phonon inter-
action with the remainder. In the following, we write an
equation of motion for the electrons analogous to Eq. (84),
except with the nuclei clamped in their equilibrium positions;
then we use a Dyson-like equation to recover the fully
interacting electron Green’s function.
The equation of motion for the electron Green’s function at

clamped nuclei, which we denote as Gcn, reads

�
iℏ

∂
∂t1 þ

ℏ2

2me
∇2ð1Þ − Vcn

totð1Þ
�
Gcnð12Þ

−
Z

d3Σcn
e ð13ÞGcnð32Þ ¼ δð12Þ: ð147Þ

Here the potential Vcn
tot differs from its counterpart V tot of

Eq. (79) in that the total density of electrons and nuclei hn̂i is
replaced by the density calculated at clamped nuclei hn̂cni:

Vcn
totð1Þ ¼

Z
d2vð1; 2Þhn̂cnð2Þi; ð148Þ

where

hn̂cnð1Þi ¼ −iℏ
X
σ1

Gcnð11þÞ þ n0nðr1Þ: ð149Þ

The term Σcn
e in Eq. (147) represents the electronic part of

Hedin’s self-energy in Eq. (85), evaluated at clamped nuclei:

Σcn
e ð12Þ ¼ iℏ

Z
dð34ÞGcnð13ÞΓcnð324ÞWcn

e ð41þÞ: ð150Þ

In this expression, the vertex Γcn and the screened Coulomb
interaction Wcn

e are both evaluated via the Hedin-Baym
equations at clamped nuclei. Equations (147)–(150) lead
directly to the well-known Hedin’s equations (Hedin,
1965). Hedin’s equations and the associated GW method at
clamped nuclei are addressed in a number of excellent reviews
(Hedin and Lundqvist, 1969; Hybertsen and Louie, 1986;
Aryasetiawan and Gunnarsson, 1998; Onida, Reining, and
Rubio, 2002); hence they will not be discussed here.

In order to recover the complete Hedin-Baym equation
of motion, Eq. (84), starting from Eqs. (147)–(150), it is
sufficient to introduce the Dyson equation

Gð12Þ ¼ Gcnð12Þ þ
Z

dð34ÞGcnð13ÞΣepð34ÞGð42Þ; ð151Þ

together with the electron self-energy Σep arising from
electron-phonon interactions

Σep ¼ ΣFM þ ΣDW þ ΣdGW; ð152Þ

where

ΣFMð12Þ ¼ iℏ
Z

dð34ÞGð13ÞΓð324ÞWphð41þÞ; ð153Þ

ΣDWð12Þ ¼
Z

d3vð13Þ½hn̂ð3Þi − hn̂cnð3Þi�δð12Þ; ð154Þ

ΣdGWð12Þ ¼ Σeð12Þ − Σcn
e ð12Þ: ð155Þ

We emphasize that Eqs. (147)–(155) are just an alternative
formulation of the Hedin-Baym equations in Table I. The
advantage of this formulation is that it better reflects
standard practice, whereby the DFT equations and the GW
quasiparticle corrections are evaluated at clamped nuclei.
Equations (147)–(155) are formally exact within the harmonic
approximation.
A schematic representation of the Dyson equation for the

electron Green’s function and the decomposition of the
electron self-energy are given in Fig. 2. The self-energy
contribution ΣFM in Eq. (153) is a dynamic correction to
the electronic excitation energies and is analogous to the GW
self-energy at clamped nuclei. Indeed, in the same way as the
correlation part of the standard GW self-energy describes the
effect of the dynamic electronic polarization upon the addition
of electrons or holes to the system, the termGWph in Eq. (153)
describes the effect of the dynamic polarization of the lattice.
In the semiconductor community, the self-energy obtained

from Eq. (153) by setting Γð123Þ ¼ δð13Þδð23Þ is commonly
referred to as the Fan self-energy (Fan, 1951; Allen and
Heine, 1976; Allen and Cardona, 1981; Cardona, 2001). In the
metal and superconductor communities, the same term is
traditionally referred to as the self-energy in the Migdal
approximation (Migdal, 1958; Engelsberg and Schrieffer,
1963; Scalapino, 1969; Schrieffer, 1983). By extension we
refer to the self-energy ΣFM in Eq. (153) as the “Fan-Migdal”
(FM) self-energy.
The static term ΣDW in Eq. (154) corresponds to the

difference between the self-consistent potential V tot calculated
for the fully interacting system and the same potential
evaluated with the nuclei clamped in their equilibrium
positions Vcn

tot. Intuitively this term corresponds to a time-
independent correction to the “crystal potential” that arises
from the fuzziness of the nuclear charge density around the
equilibrium nuclear positions. This term is similar to the one
appearing in the study of the temperature dependence of x-ray
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diffraction and neutron diffraction spectra (Mermin, 1966;
Ashcroft and Mermin, 1976) and is commonly referred to as
the Debye-Waller term (Antončík, 1955; Walter et al., 1970;
Cardona and Thewalt, 2005). Hedin and Lundqvist (1969) did
not include this term in their classic work; however, this
contribution was discussed by Allen and Heine (1976) [see
also Allen (1978)].
The last term Eq. (152), ΣdGW, is the correction to the

standard Hedin self-energy arising from the fact that the fully
interacting electron Green’s function and density are slightly
different from those evaluated at clamped nuclei, owing to the
electron-phonon interaction. The magnitude of this term

corresponds to a fraction of theGWΓ quasiparticle corrections
at clamped nuclei. Since ΣdGW has never been investigated so
far, we will not discuss this term further.

2. Expressions for the electron self-energy used in ab initio
calculations

A complete self-consistent solution of Eqs. (147)–(155)
from first principles is not possible at present, and one has to
replace the various entries of Eq. (152) by the best approx-
imations available. In practice, one resorts either to DFT or
to GW calculations; recent progress is reviewed in Secs. VIII
and IX.
Using Eqs. (110), (130), (131), and (144) we can rewrite the

Fan-Migdal self-energy as follows:

ΣFMð12Þ ¼ i
X
νν0

Z
dω
2π

dq
ΩBZ

dð34Þe−iωðt4−tþ1 Þ

× Gð13ÞΓð324Þgccqνðr4;ωÞ
×Dqνν0 ðωÞgqν0 ðr1;ωÞ: ð156Þ

This shows that the Fan-Migdal self-energy is, in symbolic
notation, of the type Σ ¼ g2DGΓ; a graphical representation
of this term is given in Fig. 2(c). In order to make Eq. (156)
amenable to ab initio calculations, it is common to make the
following approximations, which are similar to those intro-
duced earlier for the phonon self-energy:

(i) The vertex Γð123Þ is set to δð13Þδð23Þ.
(ii) The fully interacting electron Green’s function is

replaced by the Kohn-Sham Green’s function evalu-
ated at clamped nuclei.

(iii) The fully interacting phonon propagator Dqνν0 ðωÞ
is replaced by the adiabatic propagator DA

qνν0 ðωÞ
from Eq. (134).

(iv) The screened electron-phonon vertex is evaluated
using the RPAþ xc electronic screening from a
DFT calculation.

(v) The frequency dependence of the electron-phonon
coupling is neglected, gqνðr;ωÞ≃ gqνðr; 0Þ.

After using these approximations in Eq. (156), we obtain
the following result for the k ¼ k0 matrix elements of the
Fan-Migdal self-energy in the basis of Kohn-Sham states:

ΣFM
nn0kðωÞ ¼

1

ℏ

X
mν

Z
dq
ΩBZ

g�mnνðk;qÞgmn0νðk;qÞ

×

�
1 − fmkþq

ω − εmkþq=ℏ − ωqν þ iη

þ fmkþq

ω − εmkþq=ℏþ ωqν − iη

�
: ð157Þ

Here fmkþq ¼ 1 for occupied Kohn-Sham states and 0
otherwise, and the matrix element gmnνðk;qÞ is obtained
from Eq. (38). As for the phonon self-energy in Eq. (145),
in this case the components of the electron self-energy for
k ≠ k0 also vanish due to the periodicity of the lattice. The
result in Eq. (157) is obtained by closing the contour of the
frequency integration in the upper complex plane, owing to

FIG. 2. Diagrammatic representation of the electron Green’s
function and electron-phonon self-energy. (a) Dyson equation for
the electron Green’s function, Eq. (151). The thick straight line
represents the fully dressed electron propagator, the thin straight
line is the propagator calculated at clamped nuclei, and the disk
is the electron-phonon self-energy. (b) Decomposition of the
electron-phonon self-energy into Fan-Migdal self-energy,
Eq. (153), Debye-Waller contribution, Eq. (154), and the re-
mainder given by Eq. (155). (c) Fan-Migdal electron-phonon self-
energy expressed in terms of the dressed electron-phonon
coupling function (dark gray disk as in Fig. 1), the fully
interacting electron Green’s functions (thick straight line), the
fully interacting phonon propagator (thick wavy line), and the
vertex Γ from Eq. (83). (d) Debye-Waller contribution resulting
from the fully interacting phonon propagator (thick wavy line)
and the matrix element in Eq. (40) (hatched disk). (e) Correction
to Hedin’s GW self-energy arising from the modification of the
electronic structure induced by the electron-phonon interaction.
We is the screened Coulomb interaction of Eq. (94) (bold dashed
double line). Wcn

e is the screened Coulomb interaction evaluated
at clamped nuclei (thin dashed double line). Γcn is the vertex of
Eq. (83), but evaluated at clamped nuclei.
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the tþ1 in the exponential of Eq. (156). The infinitesimals
inside the electron and phonon propagators, which reflect
the time ordering, are crucial to obtain the correct result
(Schrieffer, 1983). The spin label is omitted in Eq. (157)
since this contribution to the self-energy is diagonal in the
spin indices.
This result is valid only at zero temperature. The extension

to finite temperature requires going through the Matsubara
representation and then continuing the self-energy from the
imaginary axis to the real axis. The procedure is described in
many textbooks; see, for example, Sec. 3.5 of Mahan (1993).
The result is that at finite temperature the square brackets of
Eq. (157) are to be modified as follows:

�
1 − fmkþq

� � � þ iη
þ fmkþq

� � � − iη

�

→

�
1 − fmkþq þ nqν

� � � þ iη
þ fmkþq þ nqν

� � � þ iη

�
; ð158Þ

where fmkþq and nqν are now Fermi-Dirac and Bose-Einstein
distribution functions, respectively (see footnote 3). The
change of sign in the imaginary infinitesimal on the second
fraction has to dowith the fact that in the Matsubara formalism
the analytic continuation from the imaginary frequency axis to
the real axis through the upper complex plane leads to the so-
called retarded self-energy, that is, a self-energy with all poles
below the real axis (Abrikosov, Gor’kov, and Dzyaloshinski,
1975; Mahan, 1993).
The Debye-Waller term in Eq. (154) can also be written in a

form which is convenient for practical calculations by expand-
ing the total density operator n̂ð3Þ to second order in the
atomic displacements. Using Eqs. (79) and (109) we find

ΣDWð12Þ ¼ δð12Þ iℏ
2

X
καp

κ0α0p0

∂2V totð1Þ
∂τ0καp∂τ0κ0α0p0

Dκαp;κ0α0p0 ðtþ1 ; t1Þ:

ð159Þ

In order to arrive at this result, it is necessary to make the
additional approximation that the electronic field operators
and the operators for the nuclear displacements are uncorre-
lated, that is hn̂Δτ̂καpi ¼ hn̂ihΔτ̂καpi, and similarly for the
second power of the displacements. This requirement was
noted by Gillis (1970) and is trivially satisfied if we describe
phonons within the adiabatic approximation of Sec. V.A.1.
Equation (159) motivates the diagrammatic representation of
the Debye-Waller self-energy shown in Fig. 2(d), whereby the
phonon line begins and ends at the same time point. Note that
Eq. (159) involves the variation of the screened potential V tot;
this result, which we derived here starting from Schwinger’s
functional derivative technique, is also obtained when starting
from a perturbative diagrammatic analysis (Marini, Poncé,
and Gonze, 2015). The Debye-Waller self-energy can be
simplified further if we make use of the following approx-
imations, in the same spirit as for the Fan-Migdal self-energy:
(vi) The fully interacting phonon propagator is replaced

by the adiabatic propagatorDA
qνν0 ðωÞ from Eq. (134).

(vii) The total many-body potential V tot of Eq. (79) is
replaced by the Kohn-Sham potential VKSðrÞ evalu-
ated at clamped nuclei. Strictly speaking, the
Kohn-Sham effective potential also includes contri-
butions from exchange and correlation, which in the
Hedin-Baym equations are all contained in the
electron self-energy. However, the present discus-
sion is unchanged if we add any local and frequency-
independent potential to V tot in Eq. (84), while
removing the same potential from the self-energy
(Keating, 1968).

Using these simplifications together with Eqs. (130) and
(131), we can write the ΣDW in the basis of Kohn-Sham
eigenstates as follows:

ΣDW
nn0k ¼

X
ν

Z
dq
ΩBZ

gDWnn0ννðk;q;−qÞ; ð160Þ

where the Debye-Waller matrix element gDW is obtained from
Eq. (40), and the presence of only the diagonal terms ν ¼ ν0 is
a result of the Kronecker delta in Eq. (132). In going from
Eq. (159) to Eq. (160) the frequency integration is performed
by using Eq. (134), after closing the contour in the lower half
plane. The resulting expression is diagonal in the spin indices.
The expression for the Debye-Waller term in Eq. (160) is

valid only at zero temperature. In this case the extension to
finite temperature is immediate since the self-energy does
not involve the electron Green’s function; hence we need to
evaluate only the canonical average of Eq. (133) at equal
times. The result is that Eq. (160) is simply to be modified as
follows:

gDWnn0ννðk;q;−qÞ → gDWnn0ννðk;q;−qÞð2nqν þ 1Þ; ð161Þ

with nqν the Bose-Einstein occupations (see footnote 3).
The Debye-Waller contribution to the electron self-energy

is almost invariably ignored in the literature on metals and
superconductors, but it is well known in the theory of
temperature-dependent band structures of semiconductors
(Allen and Heine, 1976; Allen and Cardona, 1981; Marini,
2008; Giustino, Louie, and Cohen, 2010; Faber et al., 2011).
Neglecting ΣDW in metals is partly justified by the fact that
this term is frequency independent; therefore it is expected to
be a slowly varying function over each Fermi-surface sheet.
A detailed first-principles analysis of this aspect is currently
lacking.

3. Temperature dependence of electronic band structures

Once the electron self-energy has been determined as in
Sec. V.B.2, it is possible to study the modification of the
electronic structure induced by the EPI. To this aim it is
convenient to rewrite Eq. (151) in the basis of Kohn-Sham
eigenstates as follows:

G−1
nn0kðωÞ ¼ Gcn;−1

nn0k ðωÞ − Σep
nn0kðωÞ: ð162Þ

Assuming that the electronic structure problem at clamped
nuclei has been solved using DFTor DFTþ GW calculations,

Feliciano Giustino: Electron-phonon interactions from first …

Rev. Mod. Phys., Vol. 89, No. 1, January–March 2017 015003-28



the Green’s function Gcn can be written in terms of simple
poles at the Kohn-Sham or quasiparticle eigenvalues
εnk (Hedin and Lundqvist, 1969). In this case Eq. (162)
reduces to

G−1
nn0kðωÞ ¼ ðℏω − ~εnkÞδnn0 − Σep

nn0kðωÞ; ð163Þ

where ~εnk ¼ εnk � iℏη with the upper and lower signs
corresponding to occupied and unoccupied states, respec-
tively. The spin indices are omitted since these self-energy
contributions do not mix states with opposite spin.
In order to gain insight into the effects of the electron-

phonon interaction, we start from the approximation that Σep

leads only to a small shift of the quasiparticle poles, from
the noninteracting energies εnk to the renormalized energies
~Enk ¼ Enk þ iΓnk. In this approximation, the fully interacting
Green’s function is expressed as a sum of simple poles, given
by the zeros of Eq. (163):

Enk ¼ εnk þ ReΣep
nnkð ~Enk=ℏÞ; ð164Þ

Γnk ¼ ImΣep
nnkð ~Enk=ℏÞ: ð165Þ

As in the case of vibrational frequencies in Eq. (137), we are
considering for simplicity nondegenerate electronic states and
making the assumption that the off-diagonal elements of the
self-energy Σep

nn0k with n ≠ n0 can be neglected. In more
general situations the right-hand side of Eq. (163) needs to
be diagonalized, or alternatively the off-diagonal terms Σep

nn0k
need to be treated perturbatively. The energies Enk obtained
from Eq. (164) yield the band structure renormalized by the
EPIs, to be discussed later. The imaginary part Γnk in
Eq. (165) is connected with the quasiparticle lifetimes and
is discussed in Sec. V.B.4.
Equation (164) is to be solved self-consistently for Enk and

Γnk. When Eq. (164) is used in combination with the standard
approximations to the Fan-Migdal and Debye-Waller self-
energies given by Eqs. (157) and (160), the result that one
obtains is equivalent to describing electron-phonon couplings
to second order in the Brillouin-Wigner perturbation theory
(Mahan, 1993). Similarly one recovers the more basic
Rayleigh-Schrödinger perturbation theory by making the
replacements Enk → εnk and Γnk → 0 in Eq. (164).
By combining Eqs. (157) and (158), (160) and (161), and

(164), we obtain the temperature-dependent “band structure
renormalization” arising from the EPI:

Enk ¼ εnk þ
X
ν

Z
dq
ΩBZ

X
m

jgmnνðk; qÞj2

× Re

�
1 − fmkþq þ nqν

Enk − εmkþq − ℏωqν þ iΓnk

þ fmkþq þ nqν
Enk − εmkþq þ ℏωqν þ iΓnk

�

þ
X
ν

Z
dq
ΩBZ

gDWnnννðk; q;−qÞð2nqν þ 1Þ: ð166Þ

For practical calculations it is important to bear in mind that
this result rests on the approximations (i)–(vii) introduced
previously, as well as the harmonic approximation.
The theory of temperature-dependent band structures

developed by Allen and Heine (1976) makes two additional
approximations in addition to Eq. (166): the Brillouin-Wigner
perturbation theory is replaced by the Rayleigh-Schrödinger
perturbation theory, and the phonon energies in the denom-
inators are neglected. Using these additional approximations
Eq. (166) becomes

Enk ¼ εnk þ
X
ν

Z
dq
ΩBZ

�X
m

jgmnνðk;qÞj2
εnk − εmkþq

þ gDWnnννðk;q;−qÞ
�
ð2nqν þ 1Þ; ð167Þ

which is referred to as the “adiabatic Allen-Heine formula.”
By setting T ¼ 0 the Bose-Einstein factors nqν vanish and we
have the so-called “zero-point renormalization” of the energy
bands ΔEZP

nk ¼ EnkðT ¼ 0Þ − εnk. This is the modification of
the electronic energies evaluated at clamped nuclei, which
arises from the zero-point fluctuations of the atoms around
their equilibrium sites.
An expression that is essentially identical to Eq. (167) can

also be obtained directly from Eq. (1) using second-order
Raleigh-Schrödinger perturbation theory in Fock space, fol-
lowing the same lines as in Kittel (1963). A detailed derivation
of the formalism starting from Eq. (1) was given by
Chakraborty and Allen (1978).
Historically, the Allen-Heine theory (Allen and Heine,

1976) was developed by starting from a straightforward
perturbation theory expansion of the electron energies in
terms of the atomic displacements within the adiabatic
approximation, followed by a canonical average of the
displacements using Bose-Einstein statistics. It is reassuring
that, after making a few well-defined approximations, a field-
theoretic method leads to the same result.
Equation (167) was employed in many semiempirical

calculations.4 More recently, this expression was used in
the context of first-principles DFT calculations by Marini
(2008) and Giustino, Louie, and Cohen (2010). DFT calcu-
lations of band structure renormalization based on Eqs. (166)
or (167) are becoming increasingly popular, and the latest
developments are reviewed in Sec. IX.A.1.
The nature of the band structure renormalization by

electron-phonon interactions can be understood at a qualita-
tive level by considering a drastically simplified model,
consisting of a semiconductor with parabolic and nondegen-
erate valence and conduction bands, with the band extrema
coupled to all other states by a dispersionless phonon mode of
frequency ω0. If the Debye-Waller matrix elements are much

4See, for example, Allen and Cardona (1981, 1983), Lauten-
schlager, Allen, and Cardona (1985), Gopalan, Lautenschlager, and
Cardona (1987), Zollner, Cardona, and Gopalan (1992), and Olguín,
Cardona, and Cantarero (2002). Detailed reviews of early calcula-
tions and comparison to experiments can be found in Cardona (2001,
2005) and Cardona and Thewalt (2005).
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smaller than the Fan-Migdal matrix elements, then the
dominant contributions to Eq. (167) arise from denominators
such as εnk − εnkþq ≃�ℏ2jqj2=2m�

n, where the upper and
lower signs are for the valence and conduction bands,
respectively, and m�

n are the effective masses. As a result
the temperature dependence of the band gap takes the form

EgðTÞ ¼ Ecn
g − jΔEZP

g j½1þ 2nðℏω0=kBTÞ�; ð168Þ

where Ecn
g is the gap at clamped nuclei and jΔEZP

g j is the zero-
point correction. The negative sign in Eq. (168) arises from
the curvatures of the valence and conduction bands. In this
example the band gap decreases with temperature: this is a
well-known effect in semiconductor physics and is often
referred to as the “Varshni effect” (Varshni, 1967). The first
measurements of such effects were performed by Becker and
Fan (1949) and stimulated the development of the first theory
of temperature-dependent band gaps (Fan, 1951). A schematic
illustration of this qualitative model is provided in Fig. 3(a).
The redshift of the gap as a function of temperature is seen in
many, albeit not all, semiconductors. For example, copper
halides (Göbel et al., 1998) and lead halide perovskites
(D’Innocenzo et al., 2014) exhibit an “inverse Varshni” effect,
that is, a blueshift of the gap with temperature; in addition,
some chalcopyrites exhibit a nonmonotonic temperature
dependence of the band gap (Bhosale et al., 2012). We also
point out that the qualitative model shown in Fig. 3(a) does not
take into account the subtle temperature dependence of the

band gap renormalization at very low temperature. These
effects were recently investigated by Allen and Nery (2017).

4. Carrier lifetimes

While the real part of the poles in Eq. (164) describes the
energy level renormalization induced by the electron-phonon
coupling, the imaginary part Γnk in Eq. (165) carries infor-
mation on the spectral broadening, discussed in Sec. V.B.5,
and on quasiparticle lifetimes, which we discuss next.
After transforming Gnn0kðωÞ from Eq. (163) into the time

domain it is seen that, for an electron or hole added to the
system at time t in the state jnki, the probability amplitude to
persist in the same state decreases as exp½Γnkðt0 − tÞ=ℏ�.
Using Eqs. (157) and (165) it can be seen that Γnk < 0 for
an electron added to the system and Γnk > 0 for a hole.
Therefore the average time spent by the particle in the state
jnki is τnk ¼ ℏ=ð2jΓnkjÞ.
A popular expression for the electron and hole lifetimes is

obtained by making the replacement ~Enk → εnk in Eq. (157)
and by taking the absolute value of the imaginary part. We find

1

τnk
¼ 2π

ℏ

X
mν

Z
dq
ΩBZ

jgnmνðk;qÞj2

× jð1 − fmkþqÞδðεnk − ℏωqν − εmkþqÞ
− fmkþqδðεnk þ ℏωqν − εmkþqÞj: ð169Þ

A more accurate expression is discussed after Eq. (174). The
extension of this result to finite temperature is obtained by
taking the absolute value of the imaginary part of Eq. (158):

1

τnk
¼ 2π

ℏ

X
mν

Z
dq
ΩBZ

jgnmνðk;qÞj2

× ½ð1 − fmkþq þ nqνÞδðεnk − ℏωqν − εmkþqÞ
þ ðfmkþq þ nqνÞδðεnk þ ℏωqν − εmkþqÞ�: ð170Þ

We emphasize that the change of sign in the third line results
from the analytic continuation to the retarded self-energy.
Equation (170) coincides with the expression that one would
obtain by using the standard Fermi golden rule (Grimvall,
1981). The intuitive interpretation of this result is that the
quasiparticle lifetime is reduced by processes of phonon
emission and absorption, corresponding to the second and
third lines of Eq. (170), respectively. We note that in deriving
Eq. (170) we did not consider the Debye-Waller self-energy.
This is because the diagonal matrix elements of ΣDW are
purely real; hence they do not contribute to the quasiparticle
widths (Lautenschlager, Allen, and Cardona, 1986). Ab initio
calculations of carrier lifetimes using Eq. (170) were first
reported by Eiguren et al. (2002) and Eiguren, de Gironcoli
et al. (2003). These applications and more recent develop-
ments are reviewed in Sec. X.A.
If we evaluate Eq. (170) for the same simplified model

introduced for the temperature renormalization, and we
neglect the phonon energy in the Dirac delta functions, we
obtain ΓnkðTÞ ¼ ΓZP

nk½1þ 2nðℏω0=kBTÞ�, where ΓZP
nk is the

linewidth at T ¼ 0. The dependence of the linewidth and
the corresponding lifetime on temperature for this model are

FIG. 3. Temperature-dependent band gap and lifetimes in an
idealized semiconductor or insulator. (a) Temperature depend-
ence of the band gap according to Eq. (168) (thick solid blue
line). The straight thin black line is the asymptotic expansion at
high temperature; this line intercepts the vertical axis at the band
gap calculated with clamped nuclei Ecn

g . The difference between
the latter value and the band gap at T ¼ 0 including the EPI gives
the zero-point renormalization ΔEZP

g . (b) Temperature depend-
ence of the electron linewidth (solid blue line) and lifetimes
(dashed red line) using the same model as in (a). The zero-point
broadening is ΓZP

nk. This simplified trend is valid only when the
electron energy is at least one phonon energy away from a band
extremum, so that both phonon emission and phonon absorption
processes are allowed. The parameters of the model are Ecn

g ¼
1 eV, ΔEZP

g ¼ 100 meV, ℏω0 ¼ 100 meV, and ΓZP
nk ¼ 50 meV.

These values are representative of common semiconductors.

Feliciano Giustino: Electron-phonon interactions from first …

Rev. Mod. Phys., Vol. 89, No. 1, January–March 2017 015003-30



shown in Fig. 3(b). This trend is typical in semiconductors
(Lautenschlager, Garriga, Logothetidis, and Cardona, 1987;
Lautenschlager, Garriga, Vina, and Cardona, 1987).

5. Kinks and satellites

In many cases of interest, the use of the Brillouin-Wigner
perturbation theory as given by Eqs. (164) and (165) is not
sufficient to provide an adequate description of EPIs, and it
becomes necessary to go back to the complete Dyson
equation (163). Generally speaking a direct solution of the
Dyson equation is important in all those cases where the
electronic energy scales are comparable to phonon energies,
namely, in metals (including superconductors), narrow-gap
semiconductors, and doped semiconductors. In order to study
these systems, it is convenient to introduce an auxiliary
function called the “spectral density function” or simply
spectral function.
In its simplest version the spectral function is defined as

(Abrikosov, Gor’kov, and Dzyaloshinski, 1975; Mahan, 1993)

Aðk;ωÞ ¼ −
1

π

X
n

ImGret
nnkðωÞ; ð171Þ

where the superscript “ret” stands for “retarded” and simply
indicates that all poles of the Green’s function Gnn0kðωÞ in the
upper complex plane must be replaced by their complex
conjugate. The spectral function is positive definite and carries
the meaning of a many-body momentum-resolved density of
states (Abrikosov, Gor’kov, and Dzyaloshinski, 1975). This is
precisely the function that is probed by angle-resolved photo-
electron spectroscopy experiments (ARPES) (Damascelli,
Hussain, and Shen, 2003). Using Eq. (163) the spectral
function can be rewritten as

Aðk;ωÞ ¼
X
n

−ð1=πÞImΣep
nnkðωÞ

½ℏω − εnk − ReΣep
nnkðωÞ�2 þ ½ImΣep

nnkðωÞ�2
:

ð172Þ

In order to obtain the correct spectral function, it is important
to use the retarded self-energy. This is done by using Eq. (158)
for the Fan-Migdal term, while the static Debye-Waller term
remains unchanged.
It is often convenient to approximate the spectral function

as a sum of quasiparticle peaks. To this aim, one performs a
linear expansion of Eq. (172) around each quasiparticle
energy Enk to obtain

Aðk;ωÞ ¼
X
n

Znk
−ð1=πÞZnkImΣep

nnkðEnk=ℏÞ
½ℏω − Enk�2 þ ½ZnkImΣep

nnkðEnk=ℏÞ�2
:

ð173Þ

This is a sum of Lorentzians with strength Znk and width
ZnkImΣep

nnkðEnk=ℏÞ. Here the “quasiparticle strength” is
defined as the homonymous quantity appearing in GW
calculations (Hedin and Lundqvist, 1969):

Znk ¼ ½1 − ℏ−1∂ReΣep
nnkðωÞ=∂ωjω¼Enk=ℏ�−1: ð174Þ

The result expressed by Eq. (173) shows that, in a rigorous
field-theoretic approach, the quasiparticle broadening and
lifetime given by Eqs. (169) and (170) should be renormalized
by Znk and Z−1

nk, respectively, and should be evaluated using
the quasiparticle energy Enk instead of εnk. This result can
also be derived from Eq. (165) by performing a Taylor
expansion of the self-energy along the imaginary axis and
using the Cauchy-Riemann conditions.
In order to illustrate the typical features of the spectral

function, we consider a model system characterized by one
parabolic conduction band. The occupied electronic states
couple to all states within an energy cutoff via a dispersionless
phonon mode and a constant electron-phonon matrix element.
A simplified version of this model was discussed by
Engelsberg and Schrieffer (1963) by considering a constant
density of electronic states. By evaluating the spectral function
in Eq. (172) using the Fan-Migdal self-energy and neglecting
the Debye-Waller term, we obtain the results shown in Fig. 4
for two sets of parameters.
In Fig. 4(a) the Fermi energy is much larger than the

characteristic phonon energy. This case is representative of a
metallic system with electron bands nearly linear around the
Fermi level. Here the electron-phonon interaction leads to (i) a
reduction of the band velocity in proximity of the Fermi level,
and (ii) a broadening of the spectral function beyond the
phonon energy ℏω0. A detailed analysis of these features for a
slightly simpler model system, including a discussion of the
analytic properties of the Green’s function, can be found in the
work by Engelsberg and Schrieffer.

FIG. 4. Two-dimensional maps of the electron spectral function
Aðk;ωÞ for electrons coupled to a dispersionless phonon of
frequency ω0. The noninteracting bands are given by
εðkÞ ¼ −εF þ ℏ2jkj2=2m�, and the Fermi level coincides with
the top of the energy window. The matrix element is jgj2 ¼
ℏω0=NF when the electron energies differ by less than the cutoff
εmax and zero otherwise (NF is the density of states at the Fermi
level). (a) Spectral function for the case εF ¼ 10ℏω0 (white on
blue, black), noninteracting band structure (solid line, yellow,
light gray), and fully interacting band structure within the
Brillouin-Wigner perturbation theory (solid line, red, dark gray).
(b) Spectral function for the case εF ¼ 2ℏω0. The model
parameters are m� ¼ 0.1me, ℏω0 ¼ 100 meV, η ¼ 20 meV,
and εc ¼ 5 eV. For clarity the calculated spectral functions are
cut off at the value 3 eV−1 and normalized. The self-energy is
shifted by a constant so as to have Σepð0Þ ¼ 0. This correction
guarantees the fulfillment of Luttinger’s theorem about the
volume enclosed by the Fermi surface (Luttinger, 1960).

Feliciano Giustino: Electron-phonon interactions from first …

Rev. Mod. Phys., Vol. 89, No. 1, January–March 2017 015003-31



The solid line (red, dark gray) in Fig. 4(a) shows the
renormalized band structure obtained from the Brillouin-
Wigner perturbation theory, Eq. (164). We see that these
solutions track the maxima of the spectral function Aðk;ωÞ.
The renormalized bands exhibit a characteristic S shape near
the Fermi level, corresponding to multiple solutions of
Eq. (164) for the same wave vector k. Starting from the late
1990s such S-shaped energy-momentum dispersion curves
have been observed in a number of ARPES experiments and
have become known in the literature as the “photoemission
kink” (Valla, Fedorov, Johnson, and Hulbert, 1999). First-
principles calculations of kinks were first reported by Eiguren,
de Gironcoli et al. (2003) and Giustino, Cohen, and Louie
(2008) and are reviewed in Sec. VIII.
In Fig. 4(b) the Fermi energy is comparable to the

characteristic phonon energy. This case is representative of
a degenerately doped semiconductor close to a conduction
band minimum. Here the electron-phonon interaction leads to
two distinct spectral features: (i) a parabolic band with a
heavier mass, which is well described by the Brillouin-Wigner
solutions (solid line, red, dark gray), and (ii) a polaron satellite
that is visible farther down. In this example, it is clear that
Eq. (164) is unable to describe the satellite and that the
spectral function carries qualitatively new information about
the system. Polaron satellites resembling Fig. 4(b) have
been observed in ARPES experiments on doped oxides
(Moser et al., 2013; Chen et al., 2015; Cancellieri et al.,
2016; Wang et al., 2016) and were recently calculated from
first principles (Verdi, Caruso, and Giustino, 2017).

6. Model Hamiltonians, polarons, and the cumulant expansion

At the end of this section it is worth mentioning comple-
mentary non-first-principles approaches for studying the
effects of EPIs on the electronic properties of solids. Model
EPI Hamiltonians can be derived from Eq. (1) by choosing
a priori explicit expressions for the electron band energies, the
vibrational frequencies, and the coupling matrix elements.
Examples of model Hamiltonians are those of Fröhlich
(1954), Holstein (1959), and Su, Schrieffer, and Heeger
(1979), the Hubbard-Holstein model (Berger, Valášek, and
von der Linden, 1995), the Peierls-Hubbard model (Campbell,
DeGrand, and Mazumdar, 1984), the t-J Holstein model
(Rösch and Gunnarsson, 2004), and the Su-Schrieffer-
Heeger-Holstein model (Perroni et al., 2004). These models
involve the tight-binding approximation, the Einstein phonon
spectrum, and electron-phonon couplings to first order in the
atomic displacements. Using these model Hamiltonians it is
possible to go beyond the approximations introduced in
Sec. V.B.2 and obtain nonperturbative solutions by means
of canonical Lang-Firsov transformations, path-integral meth-
ods, exact diagonalization, and variational or quantum
Monte Carlo techniques (Alexandrov, 2008; Alexandrov
and Devreese, 2010). These models have been used exten-
sively to explore many aspects of polaron physics, for
example, the ground-state energy of polarons (weak or strong
coupling), their spatial extent (large or small polarons), and
transport properties (bandlike or hoppinglike).
Given the considerable body of literature on model EPI

Hamiltonians, it is natural to ask whether one could bring

ab initio calculations of EPIs to a similar level of sophisti-
cation. The main limitation of current first-principles
approaches is that, given the complexity of the calculations,
the electron self-energies are evaluated using the bare propa-
gators, as in Eq. (157). As a consequence, higher-order
interaction diagrams beyond the Migdal approximation
(Migdal, 1958) are omitted altogether.
A promising avenue for going beyond the Migdal approxi-

mation consists of introducing higher-order diagrams via the
“cumulant expansion” approach (Hedin and Lundqvist, 1969;
Langreth, 1970; Aryasetiawan, Hedin, and Karlsson, 1996). In
the cumulant expansion method, instead of calculating the
electron Green’s function via a Dyson equation, one evaluates
the time evolution of the Green’s function by formulating
the problem in the interaction picture, in symbols GnnkðtÞ ¼
ði=ℏÞ exp½−iðεnk=ℏÞtþ CnnkðtÞ� (Aryasetiawan, Hedin, and
Karlsson, 1996). The distinctive advantage of this approach is
that the cumulant CnnkðtÞ can be obtained from a low-order
self-energy, for example, the Fan-Migdal self-energy in
Eq. (157), and the exponential “resummation” automatically
generates higher-order diagrams (Mahan, 1993). Detailed
discussions of the cumulant expansion formalism are given
by Zhou et al. (2015) and Gumhalter et al. (2016).
The cumulant method provides an interesting point of

contact between ab initio and model Hamiltonian approaches.
In fact, the cumulant expansion is closely related to the
“momentum average approximation” introduced by Berciu
(2006) for studying the Green’s function of the Holstein
polaron.
The cumulant expansion has proven successful in ab initio

calculations of electron-electron interactions, in particular,
valence band satellites in semiconductors (Kheifets et al.,
2003; Guzzo et al., 2011, 2012, 2014; Lischner, Vigil-Fowler,
and Louie, 2013; Kas, Rehr, and Reining, 2014; Caruso and
Giustino, 2015; Caruso, Lambert, and Giustino, 2015). In the
context of EPIs, the ab initio cumulant expansion method
was applied to elemental metals by Story et al. (2014), and to
the ARPES spectra of n-doped TiO2 by Verdi, Caruso, and
Giustino (2017). In the latter work the cumulant method
correctly reproduced the polaron satellites observed in the
experiments of Moser et al. (2013).
The study of polarons using ab initio many-body tech-

niques is yet to begin. However, a first calculation of the
spectral function of Fröhlich polarons and an approximate
polaron wave function were recently reported by Verdi,
Caruso, and Giustino (2017).

VI. EFFICIENT CALCULATIONS OF MATRIX ELEMENTS
AND THEIR INTEGRALS

The study of EPIs from first principles requires evaluating
Brillouin-zone integrals of functions that exhibit strong
fluctuations. This requirement can be appreciated by inspect-
ing Eqs. (145) and (157): there the denominators become large
whenever the difference between two electronic eigenvalues
approaches a phonon energy. As a result, while in DFT total
energy calculations the Brillouin zone is typically discretized
using meshes of the order of 10 × 10 × 10 points, the
numerical convergence of EPI calculations requires much
finer grids, sometimes with as many as 106 wave vectors
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(Giustino, Cohen, and Louie, 2007; Poncé et al., 2015).
Determining vibrational frequencies ωqν and perturbations
ΔqνvKSðrÞ for such a large number of wave vectors is a
prohibitive task, since every calculation is roughly as expen-
sive as one total energy minimization.
These difficulties stimulated the development of specialized

numerical techniques for making calculations of EPIs afford-
able. In the following sections two such techniques are
reviewed: electron-phonon Wannier interpolation and
Fermi-surface harmonics.

A. Wannier interpolation

1. Maximally localized Wannier functions

In addition to the standard description of electrons in solids
in terms of Bloch waves, as in Eq. (29), it is possible to adopt
an alternative point of view whereby electrons are described
as linear combinations of localized orbitals called “Wannier
functions” (Wannier, 1937). The most general relation
between Wannier functions and Bloch waves can be written
as follows. One considers electron bands εnk with eigenfunc-
tions ψnk, where the index n is restricted to a set of bands that
are separated from all other bands by finite energy gaps above
and below. These bands are referred to as “composite energy
bands” (Marzari and Vanderbilt, 1997). Wannier functions are
defined as

wmpðrÞ ¼ N−1
p

X
nk

eik·ðr−RpÞUnmkunkðrÞ; ð175Þ

where Unmk is a unitary matrix in the indices m and n. From
this definition and Eq. (A1) it follows that Wannier functions
are normalized in the supercell hwmpjwm0p0 isc ¼ δmp;m0p0 .
Furthermore, since unk is lattice periodic, Wannier functions
have the property wmpðrÞ ¼ wm0ðr −RpÞ. The inverse trans-
formation of Eq. (175) is obtained by using the unitary
character of Unmk together with Eq. (A1):

unkðrÞ ¼
X
mp

e−ik·ðr−RpÞU†
mnkwmpðrÞ: ð176Þ

The unitary matrix Unmk is completely arbitrary, and therefore
there exists considerable freedom in the construction of
Wannier functions. For example, by requiring that Unm;−k ¼
U�

nmk one can make Wannier functions real valued. Marzari
and Vanderbilt exploited this degree of freedom to construct
Wannier functions that are maximally localized.
A comprehensive and up-to-date review of the theory

and applications of maximally localized Wannier functions
(MLWFs) is given by Marzari et al. (2012). Here we recall
only that, in order to minimize the spatial extent of a function
in a periodic solid, one needs to use a modified definition of
the position operator, since the standard position operator is
unbounded in an infinite crystal. This procedure is now well
established and it is linked to the development of the modern
theory of dielectric polarization (King-Smith and Vanderbilt,
1993; Resta, 1994). Nowadays it is possible to determine
MLWFs routinely (Mostofi et al., 2008). The original algo-
rithm of Marzari and Vanderbilt (1997) was also extended to

deal with situations where a composite set of bands cannot be
identified. This happens notably in metals for electronic states
near the Fermi energy. For these cases, Souza, Marzari, and
Vanderbilt (2001) developed a band “disentanglement” pro-
cedure, which extracts a subset of composite bands out of a
larger set of states.
For the purposes of this article, the most important property

of MLWFs is that they are exponentially localized in insula-
tors in the sense that jwm0ðrÞj ∼ jrj−α expð−hjrjÞ for large jrj,
with α; h > 0 real parameters. This property was demon-
strated in one spatial dimension by Kohn (1959a) and He and
Vanderbilt (2001), and in two and three dimensions by
Brouder et al. (2007), under the condition that the system
exhibits time-reversal symmetry. In the case of metallic
systems, no exponential localization is expected. However,
the Wannier functions obtained in metals using the disen-
tanglement procedure of Souza, Marzari, and Vanderbilt
(2001) are typically highly localized.
MLWFs are usually comparable in size to atomic orbitals,

and this makes them ideally suited for the Slater-Koster
interpolation of band structures as shown by Souza,
Marzari, and Vanderbilt (2001). This concept was successfully
employed in a number of applications requiring accurate
calculations of band velocities, effective masses, density of
states, Brillouin-zone integrals, and transport coefficients
(Wang et al., 2006, 2007; Yates et al., 2007; Pizzi et al., 2014).

2. Interpolation of electron-phonon matrix elements

Wannier functions were introduced in the study of EPIs by
Giustino, Cohen, and Louie (2007) and Giustino et al. (2007).
The starting point is the following definition of the electron-
phonon matrix element in the Wannier representation5:

gmnκαðRp;Rp0 Þ ¼ hwm0ðrÞj
∂VKS

∂τκα ðr −Rp0 Þjwn0ðr −RpÞisc;

ð177Þ

where the subscript “sc” indicates that the integral is over the
BvK supercell. The relation between these quantities and the
standard EPI matrix elements gmnνðk;qÞ is found by replacing
Eq. (176) inside Eq. (38) and using Eqs. (34) and (35)
(Giustino, Cohen, and Louie, 2007):

gmnνðk;qÞ ¼
X
pp0

eiðk·Rpþq·Rp0 Þ

×
X
m0n0κα

Umm0kþqgm0n0καðRp;Rp0 ÞU†
n0nkuκα;qν;

ð178Þ

where uκα;qν ¼ ðℏ=2MκωqνÞ1=2eκα;νðqÞ and eκα;νðqÞ are the
vibrational eigenmodes of Eq. (15). The inverse relation is

5We note that gmnκαðRp;Rp0 Þ has dimensions of energy by length,
at variance with Eq. (38). For consistency here we use a definition
that differs from that given in Giustino, Cohen, and Louie (2007) by a
factor Np; this factor is inconsequential.

Feliciano Giustino: Electron-phonon interactions from first …

Rev. Mod. Phys., Vol. 89, No. 1, January–March 2017 015003-33



gmnκαðRp;Rp0 Þ ¼ 1

NpNp0

X
k;q

e−iðk·Rpþq·Rp0 Þ

×
X
m0n0ν

u−1κα;qνU
†
mm0kþqgm0n0νðk;qÞUn0nk;

ð179Þ

with u−1κα;qν ¼ ðℏ=2MκωqνÞ−1=2e�κα;νðqÞ. The last two equations
define a generalized Fourier transform of the electron-phonon
matrix elements between reciprocal space and real space.
In Eq. (179) we have Np and Np0 to indicate that the BvK
supercells for electronic band structures and phonon disper-
sions may not coincide.
If the quantity gmnκαðRp;Rp0 Þ decays rapidly as a function

of jRpj and jRp0 j, then only a small number of matrix
elements in the Wannier representation will be sufficient to
generate gmnνðk;qÞ anywhere in the Brillouin zone by means
of Eq. (178). The dependence of the matrix elements on Rp

and Rp0 can be analyzed by considering the following bound:

jgmnκαðRp;Rp0 Þj ≤
Z
sc
drjw�

m0ðrÞwn0ðr −RpÞj

×
Z
sc
drj∂VKS=∂τκαðr −Rp0 Þj.

The first term guarantees that the matrix element decays in the
variable Rp at least as fast as MLWFs. As a result the worst
case scenario corresponds to the choice Rp ¼ 0. In this case,
the matrix element jgmnκαð0;Rp0 Þj decays with the variable
Rp0 at the same rate as the screened electric dipole potential
generated by the atomic displacement Δτκα. In nonpolar
semiconductors and insulators, owing to the analytical proper-
ties of the dielectric matrix (Pick, Cohen, and Martin, 1970),
this potential decays at least as fast as a quadrupole, that is,
jRp0 j−3. As a result, all matrix elements in reciprocal space are
finite for q → 0 (Vogl, 1976) and hence amenable to inter-
polation. In the case of metals the asymptotic trend of
∂VKS=∂τκα is dictated by Fermi-surface nesting, leading to
Friedel oscillations that decay as jRp0 j−4 (Fetter and Walecka,
2003). These oscillations are connected to the Kohn anomalies
in the phonon dispersion relations (Kohn, 1959b). In practical
calculations, Friedel oscillations are usually not an issue since
they are suppressed by the numerical smearing of the Fermi-
Dirac occupations, and a Yukawa-type exponential decay is
recovered. The case of polar materials is more subtle and is
discussed in Sec. VI.A.3. Figure 5 illustrates the spatial decay
of jgmnκαðRp;Rp0 Þj as a function of Rp and Rp0 for the
prototypical case of diamond.
The interpolation strategy is entirely analogous to standard

techniques for generating phonon dispersion relations using
the interatomic force constants (Gonze and Lee, 1997): one
first determines matrix elements in the Bloch representation
using DFPT on a coarse grid in the Brillouin zone, as in
Sec. III.B.3. Then MLWFs are determined using the proce-
dures of Marzari and Vanderbilt (1997) and Souza, Marzari,
and Vanderbilt (2001). This yields the rotation matrices Umnk
to be used in Eq. (179). The Fourier transform to real space is
performed via Eq. (179). At this point, one assumes that

matrix elements outside of the Wigner-Seitz supercell defined
by the coarse Brillouin-zone grid can be neglected and uses
Eq. (178) in order to obtain the matrix elements gmnνðk;qÞ on
very fine grids. The last step requires the knowledge of the
rotation matrices Umnk also on the fine grids; these matrices
are obtained from the Wannier interpolation of the band
structures as described by Souza, Marzari, and Vanderbilt
(2001). The operation is computationally inexpensive and
enables the calculation of millions of electron-phonon matrix
elements. The procedure can now be applied routinely
(Noffsinger et al., 2010; Poncé et al., 2016). Figure 6 shows
the matrix elements obtained using this method as compared
to explicit DFPT calculations.
Wannier interpolation of electron-phonon matrix elements

was successfully employed in a number of applications,
ranging from metal and superconductors to semiconductors
and nanoscale systems.6

3. Electron-phonon matrix elements in polar materials

In the case of polar materials, that is, systems exhibiting
nonzero Born effective charges (Pick, Cohen, and Martin,

FIG. 5. Spatial decay of the electron-phonon matrix elements of
diamond in the Wannier representation: (a) max jgmnκαðRp; 0Þj vs
jRpj, and (b) max jgmnκαð0;Rp0 Þj vs jRp0 j. The maximum values
are taken over all subscript indices, and the data are normalized
to the largest value. The insets show the same quantities in
logarithmic scale. The calculations were performed using the
local density approximation to DFT. From Giustino, Cohen, and
Louie, 2007.

6See, for example, Park et al. (2007, 2014), Giustino, Cohen, and
Louie (2008), Park,Giustino,McChesney et al. (2008),Noffsinger et al.
(2009, 2010, 2012), Calandra, Profeta, and Mauri (2010), Giustino,
Louie, and Cohen (2010), Vukmirović, Bruder, and Stojanović (2012),
Margine and Giustino (2013, 2014), Bernardi et al. (2014, 2015),
Sjakste et al. (2015), and Verdi and Giustino (2015).
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1970), the interpolation scheme discussed in Sec. VI.A.2
breaks down. In fact, in these systems the dominant contri-
bution to the potential ∂VKS=∂τκα in Eq. (177) is a dipole,
which decays as jRp0 j−2. As a consequence some of the matrix
elements in reciprocal space diverge as jqj−1 for q → 0 and
cannot be interpolated straightforwardly from a coarse grid to
a fine grid. Physically this singularity corresponds to the
“Fröhlich electron-phonon coupling” (Fröhlich, 1954).
The adaptation of the Wannier interpolation method to the

case of polar materials was recently given by Sjakste et al.
(2015) and Verdi and Giustino (2015). In both works the basic
idea is to separate the matrix elements into a short-range
contribution gSmnνðk;qÞ, which is amenable to standard
Wannier interpolation, and a long-range contribution
gLmnνðk;qÞ, which is singular and is dealt with analytically.
The strategy is analogous to that in use for calculating the
splitting between longitudinal-optical (LO) and transverse-
optical (TO) phonons in polar materials (Gonze and Lee,
1997). The starting point is to define the long-range component
of the matrix elements by considering the potential generated by
the Born charges of all the atoms, when displaced according to a
given vibrational eigenmode. The derivation relies on standard
electrostatics and can be found in (Verdi and Giustino, 2015)

gLmnνðk;qÞ ¼ i
4π

Ω
e2

4πε0

X
κ

�
ℏ

2NpMκωqν

�
1=2

×
X
G≠−q

ðqþGÞ · Z�
κ · eκνðqÞ

ðqþGÞ · ϵ∞ · ðqþGÞ
× hψmkþqjeiðqþGÞ·ðr−τκÞjψnkisc: ð180Þ

In this expression Z�
κ and ϵ∞ denote the Born effective charge

tensors and the electronic permittivity tensor (that is, the
permittivity evaluated at clamped nuclei). Equation (180) is
the generalization of Fröhlich’s model to the case of anisotropic
crystalline lattices and multiple phonon modes (Fröhlich, 1954).
The result can be derived alternatively using the analytical

properties of the dielectric matrix (Pick, Cohen, and Martin,
1970) as discussed by Vogl (1976).
In order to perform Wannier interpolation, one subtracts

Eq. (180) from the matrix elements computed on a coarse
grid, interpolates the remaining short-range part, and then
adds back Eq. (180) on the fine grid. This process requires
the interpolation of the bra and ket h� � �isc in the second
line of Eq. (180). Verdi and Giustino showed that, for small
qþG, this bra and ket can be interpolated via
hψmkþqjeiðqþGÞ·rjψnkisc ¼ ½UkþqU

†
k�mn, where the rotation

matrices Umnk are obtained as usual from the procedure of
Marzari and Vanderbilt (1997) and Souza, Marzari, and
Vanderbilt (2001).7 Figure 7 shows an example of Wannier
interpolation for the prototypical polar semiconductor TiO2:
it is seen that the singularity is correctly captured by the
modified interpolation method.
At the end of this section, we mention that other inter-

polation schemes are equally possible (Eiguren and
Ambrosch-Draxl, 2008b; Prendergast and Louie, 2009;
Agapito et al., 2013; Gunst et al., 2016). For example,
Eiguren and Ambrosch-Draxl (2008b) proposed to interpolate
only the local component of ΔVKS

qν , while explicitly calculat-
ing the nonlocal part of the perturbation as well as the
Kohn-Sham wave functions in the Bloch representation.
Furthermore, Eq. (178) remains unchanged if MLWFs are
replaced by a basis of localized atomic orbitals, and all
concepts discussed in this section remain valid. An

FIG. 7. Wannier interpolation of electron-phonon matrix ele-
ments for anatase TiO2. The initial state jnki is set to the bottom
of the conduction band at Γ, the final state jmkþ qi spans the
bottom of the conduction band along high-symmetry lines, and
the phonon is the highest LO mode. The dots correspond to
explicit DFPT calculations. The red dashed line is the short-range
component of the matrix elements gS . The solid blue curve
represents the matrix elements gS þ gL, as obtained from the
modified Wannier interpolation of Sec. VI.A.3. The interpolation
was performed starting from a coarse 4 × 4 × 4 unshifted grid.
From Verdi and Giustino, 2015.

FIG. 6. Comparison between Wannier-interpolated electron-
phonon matrix elements and explicit DFPT calculations for
diamond. The interpolated matrix elements were calculated
starting from a coarse 43 Brillouin-zone grid (dotted line, black),
a 63 grid (dashed line, blue), and a 83 grid (solid line, red). The
dots indicate explicit DFPT calculations. In this example jnki is
set to the valence band top at Γ; jmkþ qi spans Λ3, Δ5, and Σ2

bands, and the phonon is set to the highest optical branch. From
Giustino, Cohen, and Louie, 2007.

7Equation (4) of Verdi and Giustino (2015) is missing a factor
e−iðqþGÞ·τκ ; this factor needs to be retained in order to correctly
describe the acoustic modes near q ¼ 0. In practical calculations the
G-vector sum in Eq. (180) is restricted to small jqþGj via the cutoff
function e−ajqþGj2 . The results are independent of the choice of the
cutoff parameter a.
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interpolation scheme using local orbitals was recently dem-
onstrated by Gunst et al. (2016).

B. Fermi-surface harmonics

In the study of metallic systems, one is often interested in
describing EPIs only for electronic states in the vicinity of the
Fermi surface. In these cases, besides theWannier interpolation
discussed in Secs. VI.A.2–VI.A.3, it is possible to perform
efficient calculations using “Fermi-surface harmonics” (FSHs)
introduced by Allen (1976) and recently revisited by Eiguren
and Gurtubay (2014).
The basic idea underlying FSHs is to replace expensive

three-dimensional Brillouin-zone integrals by inexpensive
one-dimensional integrals in the energy variable. To this
aim, Allen (1976) proposed to expand functions of the band
index n and wave vector k, say Ank, in products of pairs of
functions, one depending on the energy ALðεÞ and one
depending on the wave vector ΦLðkÞ:

Ank ¼
X
L

ALðεnkÞΦLðkÞ: ð181Þ

In this expression, the Fermi-surface harmonics ΦLðkÞ (to be
defined) are constructed so as to obey the following ortho-
gonality condition:

N−1
p

X
nk

δðεnk − εÞΦLðkÞΦL0 ðkÞ ¼ NðεÞδLL0 ; ð182Þ

where NðεÞ ¼ N−1
p

P
nk δðεnk − εÞ is the density of states.

Using Eqs. (181) and (182) one finds

ALðεÞ ¼ NðεÞ−1N−1
p

X
nk

δðεnk − εÞΦLðkÞAnk: ð183Þ

Allen showed that in the FSHs representation a linear system
of the kind Ank ¼ N−1

p
P

n0k0Mnk;n0k0Bn0k0 transforms into
ALðεÞ ¼

P
L0
R
dε0Nðε0ÞMLL0 ðε; ε0ÞBL0 ðε0Þ. Linear systems

of this kind are common in the solution of the Boltzmann
transport equation (Sec. X) and the Eliashberg equations for
the superconducting gap (Sec. XI.B). If one could perform the
expansion using only a few harmonics, then the transforma-
tion would be advantageous, since the integrals over the
wave vectors would have been absorbed in the expansion
coefficients.
In the original proposal by Allen, the harmonics ΦLðkÞ

were defined as polynomials in the band velocities; however,
the completeness of the basis set was not established. Recently
Eiguren and Gurtubay (2014) proposed to construct these
functions as eigenstates of a modified Helmholtz equation

jvkj∇2
kΦLðkÞ ¼ ωLΦLðkÞ; ð184Þ

where vk ¼ ℏ−1∇kεnk is the band velocity for states at the
Fermi surface, and ωL is the eigenvalue for the harmonic ΦL.
The new definition in Eq. (184) maintains the properties of the
original FSHs and carries the added advantage that the basis
set is complete. In this case the subscript L in ΦLðkÞ labels the

eigenstates of the Helmholtz equation. Eiguren and Gurtubay
demonstrated the construction of “Helmholtz FSHs” for
prototypical metals such as Cu, Li, and MgB2.
Recent examples of the application of Fermi-surface

harmonics to first-principles calculations of EPIs include
work on the photoemission kink of YBa2Cu3O7 (Heid
et al., 2008) and on the Seebeck coefficient of Li (Xu and
Verstraete, 2014).

VII. NONADIABATIC VIBRATIONAL FREQUENCIES AND
LINEWIDTHS

As discussed in Secs. V.A.2 and V.A.3, the electron-phonon
interaction can lead to a renormalization of the adiabatic
vibrational frequencies and to a broadening of the spectral
lines.
The first ab initio investigations of the effects of the

nonadiabatic renormalization of phonon frequencies were
reported by Lazzeri and Mauri (2006) and Pisana et al.
(2007). In these works they concentrated on the E2g phonon
of graphene, which is found at the wave number ω=2πc ¼
1585 cm−1 at room temperature (c is the speed of light). This
phonon corresponds to an in-plane C-C stretching vibration
with q ¼ 0 and has been studied extensively via Raman
spectroscopy. In the graphene literature this mode is referred
to as the “Raman G band.” Figure 8 shows a comparison
between calculated and measured E2g phonon frequencies, as
a function of doping, from Pisana et al. (2007). The calcu-
lations were performed (i) within the adiabatic approximation
and (ii) by including the nonadiabatic frequency renormaliza-
tion using Eq. (145).8 From Fig. 8 we see that the adiabatic
theory is unable to reproduce the experimental data. On the
contrary, the calculations including nonadiabatic effects nicely
follow the measured Raman shift. This is a clear example of
the limits of the adiabatic Born-Oppenheimer approximation
and a demonstration of the importance of the phonon self-
energy in Eq. (145).
The fact that the adiabatic approximation is inadequate for

the E2g phonon of doped graphene should have been expected
from the discussion in Sec. V.A.3. In fact, graphene is a zero-
gap semiconductor; therefore electrons residing in the
vicinity of the Dirac points can make “virtual” transitions
with jqj ¼ 0 and energies comparable to that of the E2g mode.
As a result, the condition underlying the adiabatic approxi-
mation jεmkþq − εnkj ≫ ℏωqν does not hold in this case.
The importance of nonadiabatic effects was also confirmed

in the case of metallic single-walled carbon nanotubes (Caudal
et al., 2007; Piscanec et al., 2007). In these works, they
studied the phonon dispersion relations in the vicinity of
jqj ¼ 0 and found that the difference between adiabatic and
nonadiabatic dispersions is concentrated around the zone
center. This finding is consistent with earlier models of
nonadiabatic effects. In fact, Maksimov and Shulga (1996)
showed that, for metals with linear electron bands crossing the

8In the works reviewed in this section they used Eq. (145) with the
bare matrix elements gbmnνðk;qÞ replaced by the screened matrix
elements gmnνðk;qÞ. All calculations were performed within DFT,
using either the LDA or gradient-corrected DFT functionals.
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Fermi level, ΠNA is significant only for wave vectors
jqj ∼ ω=vF, where ω is the phonon energy and vF is the
Fermi velocity. This result can be derived from Eq. (145).
In the previous examples, the nonadiabatic renormalization

of the vibrational frequencies is measurable but very small,
typically of the order of 1% of the corresponding adiabatic
frequencies. Saitta et al. (2008) considered the question as to
whether one could find materials exhibiting large nonadiabatic
renormalizations and considered several graphite intercalation
compounds, namely, LiC6, LiC12, KC8, KC24, RbC8, CaC6,
SrC6, and BaC6, as well as other metallic systems such as
MgB2, Mg, and Ti. In order to calculate the nonadiabatic
renormalization at a reduced computational cost, the real part
of the phonon self-energy was approximated as follows:
ℏReΠNA

q¼0;νν ≃ NFhjgnnνðk;q ¼ 0Þj2iBZ, where h� � �iBZ stands
for the average taken over the wave vectors k in the Brillouin
zone, and NF is the density of states at the Fermi level. This
expression can be derived from Eq. (145) by replacing the
bare matrix elements by their screened counterparts, and by
neglecting the “interband” contributions m ≠ n in the sum.
Figure 9 shows a comparison between vibrational frequencies
from experiment and those calculated with or without includ-
ing the nonadiabatic self-energy. It is clear that the non-
adiabatic frequencies are in much better agreement with
experiment than the corresponding adiabatic calculations.
Furthermore, in these compounds the renormalization can
reach values as large as ∼300 cm−1. In contrast to this, the
renormalization in Mg and Ti was found to be of only a few
wave numbers in cm−1.

The case of MgB2 proved more puzzling: here the calcu-
lated nonadiabatic frequency is 761 cm−1, while experiments
reported 600 cm−1. In order to explain this discrepancy, Saitta
et al. reasoned that a more accurate calculation would require
taking into account the relaxation time of the electrons, as
pointed out by Maksimov and Shulga (1996). This would act
so as to partly wash out nonadiabatic effects. In the field-
theoretic language of Sec. V, this observation corresponds to
stating that when one approximates the dressed electron
propagator G in Fig. 2(c) using the noninteracting Kohn-
Sham Green’s function, one should include at the very least
the effects of finite electron lifetimes (due to electron-electron,
electron-impurity, and electron-phonon scattering), for exam-
ple, via the imaginary part of Eq. (157).
The calculations discussed so far in this section addressed

the nonadiabatic renormalization of zone-center phonons. The
generalization to calculations of complete phonon dispersions
was made by Calandra, Profeta, and Mauri (2010). In their
work, Calandra et al. employed Wannier interpolation (see
Sec. VI) in order to calculate the nonadiabatic phonon self-
energy of Eq. (145) throughout the Brillouin zone. Figure 10
shows a comparison between the standard DFPT phonon
dispersion relations of CaC6 and the dispersions obtained after
incorporating the nonadiabatic self-energy. It is seen that also
in this case nonadiabatic effects are most pronounced at small
q and can be as large as 7% of the adiabatic frequency.
In their work Calandra et al. approximated the bare matrix

element gbmnνðk; qÞ appearing in Eq. (145) by the screened
matrix element gmnνðk;qÞ. This replacement was justified by
reasoning that the error is of second order in the induced
electron density, hence it should be negligible.
The broadening of vibrational spectra arising from the

electron-phonon interaction is almost invariably calculated
from first principles using Eq. (146). Since the integration
of the Dirac delta is computationally costly, it is common to
rewrite that equation by neglecting the phonon energy in the
delta function and by taking the low-temperature limit, as
proposed by Allen (1972b):

FIG. 8. Frequency of the Raman G band of graphene vs carrier
concentration. The black filled disks are from Raman measure-
ments of gated graphene on a silicon substrate at 295 K. The thick
horizontal dashed line (red) shows the variation of the E2g mode
frequency with doping, within the adiabatic approximation. The
solid blue line shows the variation of the frequency calculated by
including nonadiabatic frequency renormalization. From Pisana
et al., 2007.

FIG. 9. Comparison between measured (ωexp) and calculated
(ωth) vibrational frequencies of the E2g mode of graphite
intercalation compounds. Open symbols are adiabatic DFPT
calculations, and filled symbols are calculations including the
nonadiabatic corrections. The line corresponds to ωth ¼ ωexp.
From Saitta et al., 2008.
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γqν
πωqν

≃ 2
X
mn

Z
dk
ΩBZ

jgmnνðk; qÞj2δðεnk − εFÞδðεmkþq − εFÞ;

ð185Þ

where εF is the Fermi energy. Oddly enough, this is a sort of
adiabatic approximation to the nonadiabatic theory. The main
advantage is that Eq. (185) is positive definite, hence easier to
converge numerically as compared to the complete expression
in Eq. (146). The disadvantages are that the temperature
dependence is lost, and that one cannot resolve fine features
on the scale of a phonon energy. There exists a vast literature
on first-principles calculations of phonon linewidths using
Eq. (185), mostly in connection with electron-phonon super-
conductors.9 Equation (185) is now implemented in several
large software projects (Giannozzi et al., 2009; Gonze et al.,
2009), and it is used routinely.
Phonon linewidths range from very small values such as

∼1 meV in Nb (Bauer et al., 1998) to large values such as
∼30 meV in MgB2 (Shukla et al., 2003). The agreement
between calculations and neutron scattering or Raman mea-
surements is usually reasonable.
Calculations of phonon linewidths using the more accurate

expression in Eq. (146) are computationally more demanding
and have been reported less extensively in the literature.10

So far we considered the effect of EPIs on the
frequencies and lifetimes of vibrational excitations in
solids. Another important phenomenon which modifies
frequencies and lifetimes is anharmonicity. Anharmonic
effects result from third- and higher-order terms in the
Taylor expansion of the total potential energy U in the
atomic displacements (Sec. III.A). These effects can be
interpreted as additional interactions that couple the
oscillators of the harmonic lattice; for example, third-
order anharmonic effects reduce phonon lifetimes via
energy upconversion or downconversion processes involv-
ing three phonons.
Anharmonic effects can be described using a many-

body field-theoretic formalism (Cowley, 1963), in com-
plete analogy with the theory of EPIs discussed in Sec. IV.
Calculation of anharmonic effects from first principles
goes through the evaluation of third- and fourth-order
derivatives of the total potential energy U in the adiabatic
approximation. Third-order coefficients are routinely com-
puted using DFPT (Debernardi, Baroni, and Molinari,
1995; Deinzer, Birner, and Strauch, 2003; Lazzeri,
Calandra, and Mauri, 2003; Bonini et al., 2007; Broido
et al., 2007). In those cases where the harmonic approxi-
mation fails completely, “self-consistent phonon” tech-
niques can be employed (Hooton, 1955; Koehler, 1966).
Recent implementations and calculations can be found in
Errea, Rousseau, and Bergara (2011), Hellman, Abrikosov,
and Simak (2011), Hellman et al. (2013), Monserrat,
Drummond, and Needs (2013), and Errea, Calandra,
and Mauri (2014).

VIII. ELECTRON-PHONON INTERACTIONS IN
PHOTOELECTRON SPECTROSCOPY

In Sec. V.B.5 we have seen how the electron-phonon
interaction in metals can lead to band structure “kinks”
near the Fermi energy. This is illustrated by the model
calculation in Fig. 4(a). The experimental investigation of
these features started in the late 1990s, following the
development of high-resolution ARPES. Since in ARPES
only the component of the photoelectron momentum
parallel to the sample surface is conserved (Damascelli,
Hussain, and Shen, 2003), complete energy versus wave
vector dispersion relations can be measured directly only
for 2D or quasi-2D materials. Accordingly, the first
observations of kinks were reported for the surface states
of elemental metals11 and for the CuO2 planes of copper
oxide superconductors.12 Ab initio calculations of ARPES
kinks can be performed by using the diagonal part of the
Fan-Migdal self-energy (the Debye-Waller self-energy will
be discussed at the end of this section). To this aim, it is
common to rewrite Eqs. (157) and (158) at finite temper-
ature using a spectral representation:

FIG. 10. Phonon dispersion relations of CaC6 calculated using
Wannier interpolation. The dashed lines (black) and the solid
lines (red) represent the standard adiabatic calculation and the
nonadiabatic phonon dispersions, respectively. From Calandra,
Profeta, and Mauri, 2010.

9See, for example, early frozen-phonon calculations (Dacorogna,
Cohen, and Lam, 1985; Chang and Cohen, 1986; Lam, Dacorogna,
and Cohen, 1986) and more recent DFPT calculations (Savrasov,
Savrasov, and Andersen, 1994; Bauer et al., 1998; Shukla et al.,
2003; Heid et al., 2010). Earlier calculations not based on DFTwere
reviewed by Grimvall (1981).

10See, for example, Lazzeri et al. (2006), Bonini et al. (2007),
Giustino, Cohen, and Louie (2007), and Park, Giustino, Cohen, and
Louie (2008).

11See, for example, Hengsberger et al. (1999) and Valla, Fedorov,
Johnson, and Hulbert (1999).

12See, for example, Valla et al. (1999), Johnson et al. (2001), and
Lanzara et al. (2001).
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ΣFM
nnkðω; TÞ ¼

Z þ∞

−∞
dε

Z
∞

0

dε0α2Fnkðε; ε0Þ

×

�
1 − fðε=kBTÞ þ nðε0=kBTÞ

ℏω − ε − ε0 þ iℏη

þ fðε=kBTÞ þ nðε0=kBTÞ
ℏω − εþ ε0 þ iℏη

�
: ð186Þ

Here the function α2F is the so-called “Eliashberg func-
tion” and is defined as

α2Fnkðε; ε0Þ ¼
X
mν

Z
dq
ΩBZ

jgnmνðk; qÞj2

× δðε − εmkþqÞδðε0 − ℏωqνÞ: ð187Þ

This quantity is positive, temperature independent, and
contains all the materials-specific parameters. Physically it
is proportional to the scattering rate of an electron in the
state jnki into any electronic state at the energy ε, by
emitting or absorbing any one phonon of energy ε0. One
complication related to the Eliashberg function is that in
the literature many variants of Eq. (187) can be found,
each stemming from specific approximations; some of
these expressions are summarized by Grimvall (1981).
The first ab initio calculations of the phonon-induced

electron self-energies and photoemission kinks were reported
by Eiguren, de Gironcoli et al. (2003) for the surface state of
the Be(0001) surface. Since the evaluation of Eqs. (186)
and (187) is computationally demanding, Eiguren et al.
employed simplified expressions which involve the
following three approximations: (i) the Eliashberg function
is replaced by its isotropic average α2Fnðε; ε0Þ ¼R
dkδðεnk − εÞ × α2Fnkðε; ε0Þ=

R
dkδðεnk − εÞ; (ii) phonon

energies are neglected next to electron energies (as in the
adiabatic approximation), and (iii) particle-hole symmetry is
assumed. Using these approximations the imaginary part of
the Fan-Migdal self-energy becomes

jImΣFM
n ðω; TÞj ¼ π

Z
∞

0

dε0α2Fnðℏω; ε0Þf1þ 2nðε0=kBTÞ

þ f½ðℏωþ ε0Þ=kBT� − f½ðℏω − ε0Þ=kBT�g;
ð188Þ

where the average of the self-energy is defined as for the
Eliashberg function. The real part of the self-energy can be
found starting from the same approximations and is given by
Grimvall (1981).
Figure 11 shows the self-energy of the surface state at the

Be(0001) surface calculated by Eiguren, de Gironcoli et al.
(2003) using Eq. (188). The imaginary part resembles a step
function, with an onset around the energy threshold for
phonon emission by a hole (40–80 meV in this case). At a
qualitative level, this trend can be rationalized by replacing
the Eliashberg function in Eq. (188) by a Dirac delta at a
characteristic phonon energy ℏωph. In this case, the hole self-
energy becomes proportional to f½ðℏωþ ℏωphÞ=kBT�. At
T ¼ 0 this is precisely a step function with onset at −ℏωph.
The real part of the self-energy vanishes for jωj ≫ ωmax, with

ωmax the largest phonon frequency. This can be seen in
Fig. 11(b) and is a consequence of the approximation of
particle-hole symmetry. Eiguren et al. also determined the
renormalization of the surface state band structure arising
from electron-phonon interactions, using Eq. (164); this is
shown in the inset of Fig. 11(a). Overall the calculations of
Eiguren, de Gironcoli et al. (2003) showed good agreement
with photoelectron spectroscopy experiments, in both the
shape and magnitude of the self-energy (LaShell, Jensen, and
Balasubramanian, 2000).
In addition to these calculations, several studies of the

electron-phonon self-energy at metal surfaces were reported,
namely, for the Cu(111) and Ag(111) surfaces (Eiguren et al.,
2002), the Al(100), Ag(111), Cu(111), and Au(111) surfaces
(Eiguren, Hellsing et al., 2003), and the W(110) surface
(Eiguren and Ambrosch-Draxl, 2008a). Building on these
studies, Eiguren, Ambrosch-Draxl, and Echenique (2009)
performed a detailed analysis of the self-consistent solutions
of the complex Dyson equation for the quasiparticle energies,
Eqs. (164) and (165), and illustrated the key concepts in the
cases of the W(110) surface and for the phonon-mediated
superconductor MgB2.
Equation (188) or closely related approximations were also

employed in the study of electron and hole lifetimes in bulk
Be (Sklyadneva et al., 2005), Pb (Sklyadneva et al., 2006),

FIG. 11. Calculated Fan-Migdal self-energy of the surface state
at the Be(0001) surface. (a) Imaginary part of the self-energy,
obtained from Eq. (188). The dashed (black) line is the self-
energy evaluated using the DFT-LDA bands; the solid lines
(color, gray scale) correspond to the self-energy calculated by
taking into account the renormalization of the DFT band structure
by the electron-phonon interaction. (b) Real part of the self-
energy, using the same color, gray scale code as in (a). The inset
in (a) compares the renormalized band structure (color) with the
“bare” DFT band (black dashed line). The inset of (b) shows the
renormalization of the band velocity induced by the electron-
phonon interaction. From Eiguren, de Gironcoli et al., 2003.
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and Mg (Leonardo et al., 2007); the photoemission kink in
YBa2Cu3O7 (Heid et al., 2008); and the spectral function of
Ca-intercalated graphite (Sanna et al., 2012).
In the case of complex systems the validity of the

approximations (i)–(iii) leading to Eq. (188) is not warranted,
and a direct calculation of the Fan-Migdal self-energy using
Eqs. (186) and (187) is necessary. Calculations of the
complete self-energy were reported by Park et al. (2007)
for graphene, by Giustino, Cohen, and Louie (2008) for the
high-temperature superconductor La1−xSrxCu2O4, and by
Margine, Lambert, and Giustino (2016) for Ca-intercalated
bilayer graphene. Figure 12 shows the calculated self-energy
and spectral function of graphene calculated by Park et al.
(2007, 2009). The structure of the self-energy is similar to that
shown in Fig. 11, with one important exception: ΣFM

nnkðωÞ does
not vanish a few phonon energies away from the Fermi level,
but tends instead toward a linear asymptote. Calandra and
Mauri (2007) performed a combined ab initio and analytical
study of the effects of the electron-phonon interaction on the
electron bands of graphene and obtained very similar results.
A linear asymptote in the real part of the self-energy is a
general feature of systems which do not exhibit particle-hole
symmetry. For another example see the work on copper oxides
by Giustino, Cohen, and Louie (2008).
Using the Fan-Migdal self-energy, it is possible to calculate

the renormalization of the band velocity induced by the
electron-phonon interaction. Let us denote by vnk ¼
ℏ−1∇kεnk the DFT band velocity and Vnk ¼ ℏ−1∇kEnk
the band velocity after including electron-phonon interactions.
Using Eq. (164) with Γnk ¼ 0 we find that these two
quantities are simply related by Vnk ¼ Znkvnk ¼ vnk=
ð1þ λnkÞ, where Znk is the quasiparticle strength of
Eq. (174), and λnk is the “mass enhancement parameter” or
“electron-phonon coupling strength” (Grimvall, 1981):

λnk ¼ Z−1
nk − 1 ¼ −ℏ−1∂ReΣnnkðωÞ=∂ωjω¼Enk=ℏ: ð189Þ

In the study of EPIs in metals, the coupling strength λnk is of
significant interest since it is related to the superconducting
transition temperature of phonon-mediated superconductors
(see Secs. VIII.A and XI).
The velocity renormalization in graphene calculated using

Eq. (189) is shown in Figs. 12(c) and 12(d), while a
calculation of the complete spectral function Aðk;ωÞ is shown
in Fig. 12(e). Here the characteristic photoemission kink is
visible between 150 and 200 meV but it is not very
pronounced, since in this case λnk ∼ 0.1 (Park et al., 2009).
These results are in good agreement with measured photo-
electron spectra (Bostwick et al., 2007; Zhou et al., 2007).
Incidentally, we remark that in the analysis of ARPES data

it is common to extract the coupling strength λnk directly from
the ratio of the band velocities above and below the electron-
phonon kink. However, this procedure is subject to a signifi-
cant uncertainty, since the bare velocity is not known and must
be approximated by fitting the fully interacting dispersions
using ad hocmodels. For example, in the vicinity of van Hove
singularities this procedure leads to a significant overestima-
tion of the electron-phonon coupling strength λnk (Park,
Giustino, McChesney et al., 2008; Bianchi et al., 2010).

In addition to photoemission kinks, recent ARPES mea-
surements revealed the existence of polaron satellites in doped
oxides, namely, TiO2 (Moser et al., 2013) and SrTiO3 (Chen
et al., 2015; Cancellieri et al., 2016; Wang et al., 2016). The
phenomenology is similar to what was discussed in relation to
Fig. 4(b). The first theoretical studies along this direction were
reported by Story et al. (2014), who applied the cumulant
expansion approach to the case of the electron-phonon self-
energy; by Antonius et al. (2015), who identified satellites in
the spectral functions of LiF and MgO; and by Verdi, Caruso,
and Giustino (2017), who calculated the ARPES spectra of
n-doped TiO2.

FIG. 12. (a), (b) Calculated real part of the Fan-Migdal self-
energy in pristine and n-doped graphene, respectively (solid
black lines). The doping level is 4 × 1013 cm−2. The dashed lines
correspond to a simplified analytical model where particle-hole
symmetry is assumed. (c), (d) Electron band velocity renormal-
ization resulting from the self-energies in (a) and (b). All
calculations in (a)–(d) were performed using DFT-LDA. From
Park et al., 2007. (e) Calculated spectral function of n-doped
graphene for one of the branches of the Dirac cone. ωph indicates
the characteristic phonon energy leading to the photoemission
kink, and ED denotes the energy of the Dirac point.
The calculations include GW quasiparticle corrections. From
Park et al., 2009.
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At the end of this section, it is worth returning to the subject
of the Debye-Waller self-energy. So far we only discussed
the Fan-Migdal self-energy, starting from Eq. (186), and we
ignored the Debye-Waller self-energy appearing in Eq. (152).
This omission reflects the fact that, in the literature on
electron-phonon interactions in metals, the DW term has
always been disregarded. In order to rationalize this approxi-
mation, we rewrite the DW self-energy as follows, by
combining Eqs. (160) and (40):

ΣDW
nnk ¼ hunkjVDWjunkiuc; ð190Þ

with VDWðrÞ ¼ Ω−1
BZ

P
ν

R
dqðnqν þ 1=2ÞΔqνΔ−qνvKSðrÞ.

The subscript “uc” indicates that the integral is over one unit
cell. From Eq. (190) we see that VDW acts like a static local
potential; indeed the first calculations including DW effects
were performed by directly modifying the ionic pseudopo-
tentials (Antončík, 1955; Walter et al., 1970). From Eq. (190)
we also see that the only variation in the DW self-energy
comes from the Bloch amplitudes unk. Let us consider the
limiting situation of the homogeneous electron gas. In this
case junkðrÞj2 ¼ 1=Ω (Sec. III.B.5); therefore ΣDW

nnk is a
constant, independent of k. This behavior should be con-
trasted with the Fan-Migdal self-energy, which exhibits
significant structure near the Fermi energy as can be seen
in Fig. 4.
In more realistic situations, such as doped semiconductors,

k · p perturbation theory (Kittel, 1963) can be used to show
that ΣDW

nnk varies smoothly as a function of k within the same
band. In contrast to this scenario, ΣDW

nnk exhibits large varia-
tions across different bands. This carries important conse-
quences for the calculation of temperature-dependent band
gaps (Sec. IX.A.1).

A. Electron mass enhancement in metals

We now come back to the mass enhancement parameter λnk
introduced in Eq. (189), since this quantity played a central
role in the development of the theory of EPIs in metals.
The notion of mass enhancement becomes clear when we

consider a parabolic band as in the model calculations of
Fig. 4. Near the Fermi surface the noninteracting dispersions
are given by εnk ¼ ℏkF · ℏðk − kFÞ=m�, where kF is a wave
vector on the Fermi surface, and the electron velocity is
vnk ¼ ℏkF=m�. After taking into account the EPI, the electron
velocity is renormalized to Vnk ¼ vnk=ð1þ λnkÞ. Since the
magnitude of the Fermi momentum is unchanged (see the
caption of Fig. 4), this renormalization can be interpreted
as an effective increase of the band mass from m� to
mep ¼ m�ð1þ λnkÞ. This reasoning holds for metals with
parabolic bands and for doped semiconductors near band
extrema and does not take into account the Debye-Waller self-
energy.
The electron mass enhancement is reflected in the increase

of the heat capacity of metals at low temperature. In fact,
below the Debye temperature the electronic contribution to the
heat capacity dominates over the lattice contribution (Kittel,
1976). Since the heat capacity is proportional to the density of
states at the Fermi level, and the density of states is inversely

proportional to the band velocity, it follows that the heat
capacity is directly proportional to the electron mass. This
property can be used as a means to determine the strength of
the electron-phonon coupling in simple metals from specific
heat measurements (Grimvall, 1975).
The general theory of the effects of electron-phonon

interactions on the heat capacity and other thermodynamic
functions was developed by Eliashberg (1963), Prange and
Kadanoff (1964), and Grimvall (1969). A field-theoretic
analysis of the effect of EPIs on thermodynamic functions
was developed by Eliashberg (1963) starting from the iden-
tities of Luttinger and Ward (1960) in the zero-temperature
limit. Eliashberg’s analysis was subsequently extended to all
temperatures by Grimvall (1969). Here we quote only
Grimvall’s result relating the electronic entropy to the Fan-
Migdal self-energy of Sec. V.B.1:

Se ¼
NFkBℏ3

ðkBTÞ2
Z

∞

0

ω½ω − ℏ−1ReΣFM
nnkðω; TÞ�

cosh2ðℏω=2kBTÞ
dω: ð191Þ

In order to derive this relation, Grimvall started by expressing
the thermodynamic potential of the coupled electron-phonon
system in terms of the electron and phonon propagators and
self-energies and identified the electronic contribution by
neglecting terms of the order of ðme=M0Þ1=2 as well as
electron-electron interactions (Grimvall, 1969, Appendix).
Below the Debye temperature, an explicit expression for

the entropy in Eq. (191) can be obtained by noting that the
function cosh−2ðℏω=2kBTÞ is nonvanishing only for ℏω≲
2kBT. In this range Eq. (189) yields ΣFM

nnkðω; TÞ≃ −λnkℏω,
and therefore the integration in Eq. (191) can be carried out
explicitly. As a result, the low-temperature heat capacity can
be written as

Ce ¼ T
∂Se
∂T ¼ 2

3
π2kB2NFð1þ λnkÞT: ð192Þ

If we ignore the EPI by setting λnk ¼ 0, this expression
reduces to the standard textbook result for the free electron gas
(Kittel, 1976). At high temperature Eq. (192) is no longer
valid, and one has to evaluate the integral in Eq. (191) using
the complete frequency-dependent FM self-energy. The main
result of this procedure is that at high temperature the
electronic heat capacity is no longer renormalized by EPIs.
A detailed discussion of this aspect is provided by Grimvall
(1969, 1981).
Early examples of DFT calculations of mass enhancement

parameters and comparisons with specific heat measurements
in simple metals can be found in Dacorogna, Cohen, and Lam
(1985), Savrasov, Savrasov, and Andersen (1994), and Liu
and Quong (1996).

IX. ELECTRON-PHONON EFFECTS IN THE OPTICAL
PROPERTIES OF SEMICONDUCTORS

A. Temperature dependence of band gaps and band structures

1. Perturbative calculations based on the Allen-Heine theory

In Sec. V.B.3 we discussed how the electron-phonon
interaction induces a “renormalization” of the electronic
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energy levels and thereby gives rise to “temperature-
dependent band structures.” These effects have been studied
in detail using the Fan-Midgal and the Debye-Waller self-
energies, either via the Raleigh-Schrödinger approximation to
Eq. (166) or via its adiabatic counterpart given by Eq. (167).
Equation (167) was first employed in a number of calcu-

lations based on empirical pseudopotentials (see footnote 4),
following the seminal work of Allen and Heine (1976). Allen
and Cardona (1981) offered a clear introduction to the basic
theory, a discussion of the computational methodology, as
well as an historical perspective on earlier calculations.
The evaluation of the Debye-Waller contribution to the self-

energy requires the calculation of the second-order variations
of the Kohn-Sham potential with respect to the ionic displace-
ments, Eq. (40). From a computational standpoint, this is
challenging because one would have to use second-order
DFPT, as discussed at the end of Sec. III.B.3. In order to avoid
this complication, it is common practice to recast all second-
order derivatives as products of first-order derivatives. This
strategy was introduced by Allen and Heine in the case of
monatomic crystals and extended to polyatomic unit cells by
Allen and Cardona. The key observation behind this approach
is that one can impose translational invariance of the theory to
second order in the nuclear displacements. Specifically, the
variation of the Kohn-Sham eigenvalues ensuing an arbitrary
displacement of the nuclei should not change if all nuclei
are further displaced by the same amount. Using time-
independent perturbation theory, this condition yields the
following two sum rules:

X
κp

hψnkj∂καpVKSjψnkisc ¼ 0; ð193Þ

X
κ0p0

hψnkj∂2
καp;κ0α0p0VKSjψnkisc ¼ −2Re

X
κ0p0

X0

mq

×
hψnkj∂καpVKSjψmkþqischψmkþqj∂κ0α0p0VKSjψnkisc

εnk − εmkþq
:

ð194Þ

Here ∂καpVKS is a short-hand notation for ∂VKS=∂τκαp and
similarly for the second derivative; the primed summation
indicates that eigenstates ψmkþq such that εnk ¼ εmkþq are
skipped. The first sum rule is equivalent to stating that the
electron-phonon matrix elements gmnνðk; qÞ associated with
the three translational modes at jqj ¼ 0 must vanish; this is an
alternative formulation of the “acoustic sum rule.” The second
sum rule, Eq. (194), suggests to express the matrix elements of
the second derivatives of the potential in terms of first-order
derivatives. However, Eq. (194) cannot be used as it stands,
since it involves a sum of matrix elements on the left-hand
side. In order to proceed, Allen and Heine employed the
rigid-ion approximation, whereby VKS is written as a sum of
atom-centered contributions (see Sec. II.A.1). Under this
approximation all the terms κp ≠ κ0p0 on the left-hand side
of Eq. (194) are neglected, and an explicit expression for
hψnkj∂2

καp;καpVKSjψnkisc is obtained.

In view of practical DFT implementations, Giustino, Louie,
and Cohen (2010) used the sum rule in Eq. (194) in order to
rewrite the Debye-Waller self-energy as follows:

ΣDW
nnk ¼ −

X0

νm

Z
dq
ΩBZ

g2;DWmnν ðk;qÞ
εnk − εmk

ð2nqν þ 1Þ: ð195Þ

Here gDWmnνðk; qÞ is an effective matrix element, and it is
obtained from the standard DFPT matrix elements by means
of inexpensive matrix multiplications:

g2;DWmnν ðk; qÞ ¼
X
κα
κ0α0

tνκα;κ0α0 ðqÞ
2ωqν

h�mn;καðkÞhmn;κ0α0 ðkÞ; ð196Þ

tνκα;κ0α0 ðqÞ ¼
eκανðqÞe�κα0νðqÞ

Mκ
þ eκ0ανðqÞe�κ0α0νðqÞ

Mκ0
; ð197Þ

hmn;καðkÞ ¼
X
ν

ðMκω0νÞ1=2eκανð0Þgmnνðk; 0Þ: ð198Þ

In the case of the three translational modes at jqj ¼ 0, these
definitions are replaced by gDWmnνðk;qÞ ¼ 0; see the discussion
in Sec. XIII. The derivation of Eqs. (195)–(198) requires using
Eqs. (20), (33)–(35), and (38), as well as taking the canonical
average over the adiabatic nuclear quantum states.
Equation (195) involves a summation over unoccupied

Kohn-Sham states and so does the Fan-Migdal self-energy in
Eq. (167). The numerical convergence of these sums is
challenging, since one needs to evaluate a very large number
of unoccupied electronic states. To address this issue, Gonze,
Boulanger, and Côté (2011) developed a procedure whereby
only a subset of unoccupied states is required, along the lines
of the DFPT equations of Sec. III.B.3.
The first ab initio calculations using the formalism of Allen

and Heine were reported by Marini (2008), who investigated
the temperature dependence of the optical absorption spec-
trum of silicon and boron nitride. In this work Marini included
excitonic effects by combining the Bethe-Salpeter formalism
(Onida, Reining, and Rubio, 2002) with the Allen-Heine
theory and obtained good agreement with experiments by
calculating the direct absorption peaks using DFT-LDA
phonons and matrix elements (indirect optical absorption is
discussed in Sec. IX.B).
The second application of the Allen-Heine theory using

DFT and LDA was reported by Giustino, Louie, and Cohen
(2010) for the case of diamond. They investigated the temper-
ature dependence of the direct band gap of diamond and
found that the Fan-Migdal and the Debye-Waller self-energies
are of comparable magnitude. The calculations captured
the characteristic Varshni effect (Fig. 3) and were able to
reproduce the measured redshift of the band gap in the
temperature range 80–800 K. These calculations were based
on the adiabatic version of the Allen-Heine theory and
employed Eqs. (196)–(198) for the Debye-Waller self-energy.
The calculations by Giustino et al. confirmed the large
(> 0.5 eV) zero-point renormalization of the direct gap of
diamond predicted by Zollner, Cardona, and Gopalan (1992)
using the empirical pseudopotential method.
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The unusually large zero-point correction to the electronic
structure of diamond stimulated further work on this system:
Cannuccia and Marini (2011, 2012) calculated the gap
renormalization in diamond by employing both the adiabatic
version of the Allen-Heine theory and the nonadiabatic
Green’s function approach, as described in Sec. V.B.5.
Their calculations confirmed the large zero-point renormal-
ization and showed that the adiabatic theory underestimates
the effect to some extent. Cannuccia and Marini (2012, 2013)
also analyzed the quasiparticle renormalization and the
spectral function.
Antonius et al. (2014) revisited the electron-phonon inter-

action in diamond by assessing the reliability of the rigid-ion
approximation and the importance of many-body GW quasi-
particle corrections to the DFT-LDA band structure. The main
findings were that the rigid-ion approximation introduces a
very small error in diamond, of the order of ∼10 meV, while
GW quasiparticle corrections can increase the electron-
phonon renormalization of the band gap by as much as
∼200 meV. The temperature dependence of the band gap
of diamond calculated by Antonius et al. is shown in Fig. 13.
Further work on diamond was reported by Poncé,

Antonius, Gillet et al. (2014), who compared ab initio
calculations based on the Allen-Heine theory with explicit
frozen-phonon calculations (Sec. IX.A.2). The corrections to
the rigid-ion approximation were found to be smaller than
4 meV in all cases considered. Poncé, Antonius, Boulanger
et al. (2014) and Poncé, Antonius, Gillet et al. (2014) also
reported a detailed assessment of the accuracy of the various
levels of approximation in the calculation of the zero-point
renormalization of energy levels, as well as a thorough
comparison between the results of different first-principles
implementations.
The electron-phonon renormalization of band structures

was also investigated in a number of other systems. For
example, Kawai et al. (2014) studied zinc-blende GaN by
combining the Allen-Heine theory with the Bethe-Salpeter
approach. Poncé et al. (2015) investigated silicon, diamond,
BN, α-AlN, and β-AlN using both the adiabatic version of the

Allen-Heine theory and the nonadiabatic Green’s function
method of Eqs. (157) and (158). Friedrich et al. (2015)
investigated the zero-point renormalization in LiNbO3 using
the adiabatic Allen-Heine theory. Villegas, Rocha, and Marini
(2016) studied the anomalous temperature dependence of the
band gap of black phosphorous. Antonius et al. (2015)
investigated diamond, BN, LiF, and MgO, focusing on the
dynamical aspects and the spectral function (see Sec. VIII).
Antonius et al. (2015) and Poncé et al. (2015) were the first to
report complete band structures at finite temperature.
Poncé et al. (2015) paid special attention to the numerical

convergence of the self-energy integrals with respect to the
limit η → 0 of the broadening parameter. They noted that in
the case of polar crystals the adiabatic correction to the
electron energies of band extrema, as given by Eq. (167),
diverges in the limit of dense Brillouin-zone sampling. This
behavior stems from the polar singularity in the electron-
phonon matrix elements, Eq. (180). In fact, near band extrema
the bands are approximately parabolic, and the integrand in
the adiabatic Fan-Migdal self-energy goes as q−4 for q → 0,
while the volume element goes only as dq ¼ 4πq2dq. This
problem can be avoided by first performing the integration
over q in principal value, without neglecting phonon frequen-
cies, and then taking the limit ωqν → 0 so as to recover the
adiabatic approximation (Fan, 1951, Sec. IV). In this way the
adiabatic approximation can still be employed without incur-
ring into a singularity in the calculations. A practical strategy
to correctly perform the principal value integration in first-
principles calculations was recently proposed by Nery and
Allen (2016); they treated the singularity via an explicitly
analytic integration near q ¼ 0. The complications arising in
polar materials can also be avoided at once by directly using
the more accurate expression in Eq. (166) based on Brillouin-
Wigner perturbation theory, or even better by calculating the
spectral functions as in Kawai et al. (2014) and Antonius et al.
(2015). In particular, Eq. (166) clearly shows that in more
accurate approaches the infinitesimal η should be replaced by
the finite physical linewidth Γnk.
Although temperature-dependent band structures of polar

materials were recently reported (Kawai et al., 2014; Antonius
et al., 2015; Poncé et al., 2015), the specific role of the
Fröhlich coupling discussed in Sec. VI.A.3 has received little
attention so far. The only ab initio investigations which
specifically addressed the role of polar couplings in this
context are from Botti and Marques (2013) and Nery and
Allen (2016). In order to understand the strategy of Botti
and Marques, we consider the Hedin-Baym equations in
Sec. IV.B.1. Botti and Marques proposed that, instead of
splitting the screened Coulomb interaction W into electronic
and nuclear contributions as in Eq. (104), one could try to
directly calculate the screened Coulomb interactionW includ-
ing the lattice screening, as in Eqs. (85) and (86). In order to
make the calculations tractable, Botti and Marques evaluated
the total dielectric matrices using a simplified model based on
the Lyddane-Sachs-Teller relations. The resulting formalism
combines GW calculations and experimentally measured
LO-TO splittings. The zero-point renormalization of the band
gaps calculated by Botti and Marques for LiF, LiCl, NaCl,
and MgO were all > 1 eV. This is an interesting result and

FIG. 13. Temperature dependence of the direct band gap of
diamond calculated using the Allen-Heine theory. The upper
curve shows the results obtained within DFPT at the LDA level.
The lower curve was obtained via GW calculations in the frozen-
phonon approach. Triangles are experimental data. The zero-
point renormalization calculated by including GW quasiparticle
corrections is 628 meV. From Antonius et al., 2014.
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deserves further investigation. We note incidentally that the
Allen-Heine theory and that of Botti and Marques can both be
derived from the Hedin-Baym equations. Therefore the
approach of Botti and Marques should effectively correspond
to calculating the Fan-Migdal self-energy by retaining only
the long-range part of the polar electron-phonon matrix
elements, i.e., Eq. (180). In the case of the work by Nery
and Allen (2016), they reported a Fröhlich contribution to the
zero-point renormalization of the band gap of GaN of 45 meV
to be compared with the total renormalization arising from all
modes of 150 meV.

2. Nonperturbative adiabatic calculations

An alternative approach to the calculation of temperature-
dependent band structures consists of avoiding perturbation
theory and electron-phonon matrix elements altogether and
replacing the entire methodology discussed in Sec. IX.A.1 by
straightforward finite-difference calculations. To see how this
alternative strategy works we perform a Taylor expansion of
the Kohn-Sham eigenvalues εnk to second order in the atomic
displacements Δτκαp and then average the result on a nuclear
wave function identified by the quantum numbers fnqνg.
After using Eq. (20) one obtains

hεnkifnqνg ¼ εnk þ
X
ν

Z
dq
ΩBZ

ðnqν þ 1=2Þ ∂εnk∂nqν ; ð199Þ

where we used the formal definition ∂=∂nqν ¼ ΔqνΔ−qν, and
the variations Δqν are the same as in Eqs. (33)–(35). The
nuclear wave functions are obtained from the ground state in
Eq. (B10) by applying the ladder operators, as discussed in
Appendix B. Equation (199) can be generalized to finite
temperature by considering a canonical average over all
possible nuclear states. The result maintains the same form
as in Eq. (199), except that we now have the Bose-Einstein
occupations nqνðTÞ (see footnote 3). Equation (199) is precisely
the conceptual starting point of the Allen-Heine theory of
temperature-dependent band structures and appeared for the
first time in Allen and Cardona (1981). If the variations
ΔqνΔ−qνεnk are calculated in second-order perturbation theory,
one obtains precisely the formalism of Allen and Heine.
It was proposed that the coefficients ∂εnk=∂nqν could

alternatively be obtained from the derivatives of the vibra-
tional frequencies with respect to the electronic occupations
ℏ∂ωqν=∂fnk (Allen and Hui, 1980; King-Smith et al., 1989;
Poncé, Antonius, Gillet et al., 2014). A formal derivation of
the link between these alternative approaches can be found
in Allen and Hui (1980), Appendix; they refer to this as
Brooks’ theorem. Incidentally, the first ab initio calculation
of temperature-dependent band gaps relied on this approach
(King-Smith et al., 1989).
Most commonly, the coefficients ∂εnk=∂nqν in Eq. (199)

are evaluated using frozen-phonon supercell calculations, via
the second derivative of the eigenvalue εnk with respect to
collective atomic displacements along the vibrational eigenm-
odes eκανðqÞ. This approach was employed by Capaz et al.
(2005) to study the temperature dependence of the band
gaps in carbon nanotubes (within a tight-binding model),

and by Han and Bester (2013) to obtain the zero-point
renormalization and temperature dependence of the gaps
of silicon and diamond quantum dots. Recent examples
include works on diamond, silicon, SiC (Monserrat and
Needs, 2014), as well as CsSnI3 (Patrick, Jacobsen, and
Thygesen, 2015).
Frozen-phonon supercell calculations based on Eq. (199)

carry the advantage that the rigid-ion approximation, which is
necessary to obtain Eqs. (195)–(198), is no longer required.
Therefore this approach is more accurate in principle. In
practice, however, the calculations are challenging as they
require large supercells, and the derivatives must be evaluated
for every vibrational mode of the supercell. Several computa-
tional strategies were developed to tackle this challenge.
Patrick and Giustino (2013) proposed to perform the averages
leading to Eq. (199) via importance-sampling Monte Carlo
integration. Monserrat (2016b) described a constrained
Monte Carlo scheme which improves the variance of the
Monte Carlo estimator. Recently Zacharias and Giustino
(2016) showed that it is possible to perform these calculations
more efficiently by replacing the stochastic sampling by a
suitable choice of an “optimum” configuration; the result
becomes exact in the thermodynamic limit of large supercells.
In order to reduce the computational cost associated with the
use of large supercells, Lloyd-Williams and Monserrat (2015)
introduced nondiagonal supercells, which allow one to access
phonon wave vectors belonging to a uniform grid ofNp points

using supercells containing only N1=3
p unit cells.

The merit of these nonperturbative approaches is that they
explicitly treat the nuclear wave functions and enable exploring
effects which go beyond the Allen-Heine theory. For example,
Monserrat, Drummond, and Needs (2013), Monserrat et al.
(2014), Engel, Monserrat, and Needs (2015), and Monserrat,
Engel, and Needs (2015) were able to investigate effects
beyond the harmonic approximations in several systems,
such as LiH, LiD, high-pressure He, molecular crystals of
CH4, NH3, H2O, HF, as well as ice. In all these cases they
found large zero-point effects on the band gaps.
Finally, we mention that the calculation of electronic proper-

ties at finite temperature via the Allen-Heine theory and its
variants is closely related to what one would obtain using path-
integral molecular dynamics simulations (Della Sala et al.,
2004; Ramírez, Herrero, and Hernández, 2006; Ramírez et al.,
2008), or even classical molecular dynamics simulations at high
enough temperatures (Franceschetti, 2007).

B. Phonon-assisted optical absorption

In addition to modifying the electron energy levels in
solids, the electron-phonon interaction plays an important
role in the optical properties of semiconductors and insulators,
as it is responsible for phonon-assisted optical transitions.
Phonon-assisted processes could be analyzed by considering
the many-body electronic screening function ϵeð12Þ in
Eq. (95), by using the electron Green’s function G dressed
by the electron-phonon self-energy Σep as in Eq. (151). Since
this requires a lengthy detour, here we simply reproduce the
standard result of second-order time-dependent perturbation
theory (Bassani and Parravicini, 1975; Ridley, 1993):
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αðωÞ¼ πe2

ϵ0cΩ
1

ωnrðωÞ
Z

dkdq
Ω2

BZ

X
mnν

X
s¼�1

ðfnk−fmkþqÞ

×

����e ·
X
p

�
vnpðkÞgpmνðk;qÞ
εpk− εnk−ℏω

þgnpνðk;qÞvpmðkþqÞ
εpkþq− εnkþ sℏωqν

�����
2

× ðnqνþ1=2þ s=2Þδðεmkþq− εnk−ℏωþ sℏωqνÞ:
ð200Þ

In this expression αðωÞ is the absorption coefficient for visible
light, e is the photon polarization, vmn are the matrix elements
of the electron velocity operator, and nrðωÞ is the real part of
the refractive index. The two denominators in the second line
correspond to indirect processes whereby a photon is absorbed
and a phonon is absorbed or emitted (left), and processes
whereby a phonon is absorbed or emitted, and subsequently a
photon is absorbed (right). Equation (200) relies on the
electric dipole approximation and is therefore valid for photon
energies up to a few electron volts. The theory leading to
Eq. (200) was originally developed by Hall, Bardeen, and
Blatt (1954).
The first ab initio calculation employing Eq. (200) was

reported by Noffsinger et al. (2012) for the prototypical case
of silicon. They employed DFT for computing phonons and
electron-phonon matrix elements and the GW method for the
quasiparticle band structures. The sampling of the Brillouin
zone was achieved by means of the interpolation strategy
described in Sec. VI. Figure 14 shows that the calculations by
Noffsinger et al. are in very good agreement with experiment
throughout the energy range of indirect absorption.
Further work along similar lines was reported by Kioupakis

et al. (2010), who calculated the indirect optical absorption by
free carriers in GaN, and Peelaers, Kioupakis, and Van de
Walle (2015), who studied the indirect absorption by free
carriers in the transparent conducting oxide SnO2. Recently,
the ab initio theory of phonon-assisted absorption was also

extended to the case of indirect Auger recombination by
Kioupakis et al. (2015).
One limitation of the theory by Hall et al. is that the indirect

absorption onset is independent of temperature. This is seen
by noting that the Dirac delta functions in Eq. (200) contain
the band structure energies at clamped nuclei. The generali-
zation to incorporate temperature-dependent band structures
as discussed in Sec. IX.A.1 is nontrivial. Patrick and Giustino
(2014) and Zacharias and Giustino (2016) showed that the
electron-phonon renormalization of the band structure modi-
fies the energies of real transitions but leaves unchanged the
energies of virtual transitions. In other words the Allen-Heine
renormalization should be incorporated only in the Dirac delta
functions and in the first denominator in Eq. (200). In order to
avoid these complications, Zacharias, Patrick, and Giustino
(2015) developed an alternative approach which relies on the
semiclassical approximation of Williams (1951) and Lax
(1952). In this approximation, the initial states in the optical
transitions are described quantum mechanically, and the final
states are replaced by a quasiclassical continuum. In the
formulation of Zacharias et al. the imaginary part of the
temperature-dependent dielectric function takes the following
form:

ϵ2ðω;TÞ ¼
1

Z

X
fnqνg

e−Efnqνg=kBThϵ2ðωÞifnqνg; ð201Þ

where ϵ2ðωÞ denotes the imaginary part of the dielectric
function at clamped nuclei, and the expectation values have
the same meaning as in Eq. (199). Efnqνg is the energy of the
quantum nuclear state specified by the quantum number fnqνg
and Z is the canonical partition function. Zacharias et al.
demonstrated that this approach provides an adiabatic
approximation to Eq. (200) and seamlessly includes the
temperature dependence of the electronic structure within
the Allen-Heine theory. Using techniques similar to those of
Sec. IX.A.2, they calculated the indirect optical absorption
line shape of silicon at various temperatures and obtained
very good agreement with experiment. These results were
recently extended to the temperature-dependent optical
spectra of diamond and gallium arsenide by Zacharias and
Giustino (2016).

X. CARRIER DYNAMICS AND TRANSPORT

A. Electron linewidths and lifetimes

In Sec. V.B.4 we have seen how the Fan-Migdal self-energy
can be used in order to evaluate the quasiparticle lifetimes (or
equivalently linewidths) resulting from the electron-phonon
interaction. The first ab initio calculations of this kind were
reported by Eiguren et al. (2002) and Eiguren, de Gironcoli
et al. (2003) in the study of the decay of metal surface
states, and by Sklyadneva et al. (2005, 2006) and Leonardo
et al. (2007) in the study of electron lifetimes of elemental
metals. Some of these calculations and the underlying
approximations were reviewed in Sec. VIII. Calculations of
quasiparticle linewidths were also employed to study the
temperature-dependent broadening of the optical spectra in

FIG. 14. Phonon-assisted optical absorption in silicon: com-
parison between first-principles calculations (solid lines, orange)
and experiment (circles, blue). The calculations were performed
using the theory of Hall, Bardeen, and Blatt (1954), as given by
Eq. (200). Spectra calculated at different temperatures were
shifted horizontally so as to match the experimental onsets.
From Noffsinger et al., 2012.
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semiconductors. For example, Giustino, Louie, and Cohen
(2010) and Poncé et al. (2015) investigated the broadening of
the direct absorption edge of diamond and silicon, respec-
tively. In both cases good agreement with experiment was
obtained. More recently, the same approach was employed to
study the broadening of photoluminescence peaks in lead-
iodide perovskites (Wright et al., 2016). In this case, it was
found that the standard Fermi golden rule expression,
Eq. (170), significantly overestimates the experimental data.
The agreement with experiment is restored by taking into
account the quasiparticle renormalization Znk; see the dis-
cussion following Eq. (174).
While these works were primarily concerned with the broad-

ening of the spectral lines in photoemission or optical experi-
ments, Eq. (170) can also be used to study carrier lifetimes in
time-resolved experiments. The first ab initio study in this
direction was reported by Sjakste, Vast, and Tyuterev (2007),
who investigated the thermalization of hot electrons in GaAs
and the exciton lifetimes in GaP. In the case of GaAs, Sjakste
et al. found thermalization rates in quantitative agreement with
time-resolved luminescence and transient optical absorption
measurements. Work along similar lines was also reported for
the intervalley scattering times in Ge (Tyuterev et al., 2011).
Recently, the thermalization rates of hot electrons in GaAs
were revisited by Bernardi et al. (2015). They employed
Eq. (170) and the Wannier interpolation technique described
in Sec. VI in order to finely sample the electron-phonon
scattering processes near the bottom of the conduction band;
see Fig. 15. Based on these calculations they were able to
interpret transient absorption measurements in terms of the
carrier lifetimes within each valley. Another interesting appli-
cation of Eq. (170) was reported by Bernardi et al. (2014), who
investigated the rate of hot carrier thermalization in silicon,
within the context of photovoltaics applications.
Recently Sangalli and Marini (2015a, 2015b) employed the

lifetimes calculated using Eq. (170) in order to study carrier
dynamics in silicon in real time. Strictly speaking, these
developments lie outside of the scope of equilibrium Green’s
functions discussed in Sec. IV and require concepts based
on nonequilibrium Green’s functions (Kadanoff and Baym,
1962). However, the basic ingredients of the electron-phonon
calculations remain unchanged.

In all calculations discussed in this section, the electron-
phonon matrix elements were obtained within DFT. However,
in order to accurately describe electron-phonon scattering near
band extrema Bernardi et al. (2014, 2015) and Wright et al.
(2016) employed GW quasiparticle band structures. This is
important in order to obtain accurate band effective masses,
which affect the carrier lifetimes via the density of states.

B. Phonon-limited mobility

The carrier lifetimes τnk of Eq. (170) are also useful in the
calculation of electrical mobility, conductivity, and resistivity,
within the context of the semiclassical model of electron
dynamics in solids (Ashcroft and Mermin, 1976). In the
semiclassical model, one describes the electronic response to
an external perturbation by taking the fermionic occupations
fnk to represent the probability density function in the phase
space defined by the unperturbed band structure. The prob-
abilities fnk are then determined using a standard Boltzmann
equation. A comprehensive discussion of these methods can
be found in the classic book of Ziman (1960).
Here we touch only upon the key result which is needed

in ab initio calculations of electrical conductivity. In the
semiclassical model, the electrical current is calculated as
J ¼ −2eΩ−1

BZ

P
n

R
dkvnkfnk. In the absence of external fields

and thermal gradients, the occupations fnk reduce to the
standard Fermi-Dirac occupations at equilibrium f0nk, and the
current vanishes identically. Upon introducing an electric field
E, the electrons respond by adjusting their occupations. In this
model it is assumed that the variation fnk − f0nk is so small
that the electronic density is essentially the same as in the
unperturbed system. The modified occupations can be calcu-
lated using the linearized Boltzmann transport equation
(Ziman, 1960)

∂f0nk
∂εnk vnk · ð−eÞE ¼ −

X
ν

Z
dq
ΩBZ

Γmnνðk; qÞ

× ½ðfnk − f0nkÞ − ðfmkþq − f0mkþqÞ�;
ð202Þ

where the kernel Γmnνðk;qÞ is defined as

Γmnνðk;qÞ ¼
X
s¼�1

2π

ℏ
jgmnνðk;qÞj2f0nkð1 − f0mkþqÞ

× ðnqν þ 1=2 − s=2Þδðεnk þ sℏωqν − εmkþqÞ:
ð203Þ

The left-hand side of Eq. (202) represents the collisionless
term of the Boltzmann equation, that is, the change in
occupations due to the particle drift under the electric field.
The right-hand side represents the change of occupations
resulting from electrons scattered in or out of the state jnki by
phonon emission or absorption. The rates in Eq. (203) are
simply derived from Fermi’s golden rule (Grimvall, 1981). By
solving Eq. (202) self-consistently for all fnk it is possible to
calculate the current and from there the conductivity. The
connection with the carrier lifetimes τnk of Eq. (170) is

FIG. 15. Electron relaxation times in GaAs resulting from
electron-phonon scattering. (a) Calculated relaxation times as a
function of electron energy with respect to the conduction band
bottom. The color code (gray shades) of the data points identifies
the valley where each electronic state belongs. (b) Schematic
representation of the conduction band valleys in GaAs. From
Bernardi et al., 2015.
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obtained within the so-called “energy relaxation time approxi-
mation.” In this approximation the incoming electrons are
neglected in Eq. (202); that is, the last term ðfmkþq − f0mkþqÞ
in the second line is ignored. As a result the entire right-hand
side of the equation simplifies to −ðfnk − f0nkÞ=τnk.
The direct solution of Eq. (202) is computationally chal-

lenging, and fully ab initio calculations were reported only
recently by Li (2015) for Si, MoS2, and Al, and by Fiorentini
and Bonini (2016) for n-doped Si. Figure 16 shows that the
mobility of n-type silicon calculated by Li is in good agree-
ment with experiment. The theory overestimates the measured
values to some extent, and this might have to do with the
limitations of the DFT matrix elements (see Sec. XII). In
addition to the carrier mobility, Fiorentini and Bonini
employed the ab initio Boltzmann formalism to calculate
thermoelectric properties, such as the Lorenz number and the
Seebeck coefficient.
The first ab initio calculation of mobility was reported by

Restrepo, Varga, and Pantelides (2009) for the case of silicon,
within the energy relaxation time approximation. Other recent
calculations using various approximations to Eq. (202)
focused on silicon (Wang et al., 2011; Liao et al., 2015),
graphene (Borysenko et al., 2010; Park et al., 2014; Restrepo
et al., 2014; Sohier et al., 2014; Gunst et al., 2016; Kim, Park,
and Marzari, 2016), MoS2 (Kaasbjerg, Thygesen, and
Jacobsen, 2012; Li et al., 2013; Restrepo et al., 2014;
Gunst et al., 2016), silicene (Li et al., 2013; Gunst et al.,
2016), and SrTiO3 and KTiO3 (Himmetoglu et al., 2014;
Himmetoglu and Janotti, 2016).
Ab initio calculations of the resistivity of metals are less

challenging than for semiconductors and started appearing
already from the work of Bauer et al. (1998). Most calcu-
lations on metals are based on Ziman’s resistivity formula; see
Grimvall (1981). An interesting recent example can be found
in the work by Xu and Verstraete (2014) on the transport
coefficients of lithium. We also highlight related work on
phonon-limited transport in organic crystals (Hannewald and
Bobbert, 2004a, 2004b; Ortmann, Bechstedt, and Hannewald,
2009; Vukmirović, Bruder, and Stojanović, 2012).

XI. PHONON-MEDIATED SUPERCONDUCTORS

The last application of ab initio calculations of EPIs that we
consider here is the study of phonon-mediated superconduc-
tivity (Schrieffer, 1983). This research field is so vast that any
attempt at covering it in a few pages would not do justice to
the subject. For this reason, it was decided to limit the
discussion to those novel theoretical and methodological
developments which are aiming at fully predictive calcula-
tions, namely, the “anisotropic Migdal-Eliashberg theory”
(Sec. XI.B) and the “density-functional theory for super-
conductors” (Sec. XI.C). For completeness, in Sec. XI.A we
also summarized the most popular equations employed in the
study of phonon-mediated superconductors. All calculations
described in this section were performed at the DFT level.

A. McMillan–Allen-Dynes formula

Most ab initio calculations on phonon-mediated super-
conductors rely on a semiempirical expression for the critical
temperature, first introduced by McMillan (1968) and then
refined by Allen and Dynes (1975):

kBTc ¼
ℏωlog

1.2
exp

�
−

1.04ð1þ λÞ
λ − μ�ð1þ 0.62λÞ

�
: ð204Þ

Here Tc is the superconducting critical temperature, ωlog is a
logarithmic average of the phonon frequencies (Allen and
Dynes, 1975), λ is the electron-phonon “coupling strength,”
and μ� is a parameter describing the Coulomb repulsion. The
functional form of Eq. (204) was derived by McMillan by
determining an approximate solution of the Eliashberg gap
equations (see Sec. XI.B). λ and ωlog are calculated from the
isotropic version of the Eliashberg function in Eq. (187) as
follows (McMillan, 1968; Allen and Dynes, 1975; Grimvall,
1981; Allen and Mitrovic, 1982):

α2FðωÞ ¼ 1

NF

Z
dkdq
Ω2

BZ

X
mnν

jgmnνðk;qÞj2δðεnk − εFÞ

× δðεmkþq − εFÞδðℏω − ℏωqνÞ; ð205Þ
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∞
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ωlog ¼ exp
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Z
∞

0

dω
α2FðωÞ

ω
logω

�
; ð207Þ

where NF is the density of states at the Fermi level and the
matrix elements gmnνðk; qÞ are the same as in Eq. (38). The
remaining parameter μ� (Morel and Anderson, 1962) is
obtained as 1=μ� ¼ 1=μþ logðωp=ωphÞ, where ℏωp is the
characteristic plasma energy of the system, ℏωph the largest
phonon energy, and μ is the average electron-electron
Coulomb repulsion across the Fermi surface. More specifi-
cally, μ ¼ NF⟪Vnk;n0k0⟫FS, where ⟪ � � �⟫FS denotes a double
average over the Fermi surface, and Vnk;n0k0 ¼ hk0n0;
−k0n0jWjkn;−kni, withW the screened Coulomb interaction
of Sec. IV.B.2 (Lee, Chang, and Cohen, 1995; Lee and
Chang, 1996).

FIG. 16. Temperature-dependent mobility of n-type silicon.
The solid line (red) indicates the mobility calculated using the
linearized Boltzmann transport equation, Eq. (202), and the
dashed line (blue) corresponds to the energy relaxation time
approximation. The triangles and diamonds are experimental data
points. From Li, 2015.
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The coupling strength λ is related to the mass enhancement
parameter λnk discussed in Sec. VIII.A. The main difference
between λ and λnk is that the former represents an average over
the Fermi surface, while the latter refers to the Fermi velocity
renormalization of a specific electron band. While these
quantities are related, they do not coincide and hence cannot
be used interchangeably.
Equations (204)–(207) involve a number of approxima-

tions. For example, it is assumed that the superconductor
is isotropic and exhibits a single superconducting gap.
Furthermore, almost invariably the effective Coulomb poten-
tial μ� is treated as an adjustable parameter on the grounds
that it should be in the range μ� ¼ 0.1–0.2. This procedure
introduces a large uncertainty in the determination of Tc,
especially at moderate coupling strengths.

B. Anisotropic Migdal-Eliashberg theory

A first-principles approach to the calculation of the super-
conducting critical temperature is provided by the anisotropic
Migdal-Eliashberg theory (Migdal, 1958; Eliashberg, 1960).
This is a field-theoretic approach to the superconducting
pairing, formulated in the language of finite-temperature
Green’s functions. At variance with the Hedin-Baym equa-
tions of Table I, the Migdal-Eliashberg theory is best devel-
oped within the Nambu-Gor’kov formalism (Gor’kov, 1958;
Nambu, 1960), which enables describing the propagation of
electron quasiparticles and of superconducting Cooper pairs
on the same footing (Scalapino, 1969; Schrieffer, 1983). A
comprehensive presentation of the Migdal-Eliashberg theory
is provided by Allen and Mitrovic (1982). Their article served
as the starting point of current first-principles implementations
of the theory.
In the Migdal-Eliashberg theory, one solves the following

two coupled equations:

ZnkðiωjÞ ¼ 1þ πkBT
NF

X
n0k0j0

ωj0=ωjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ2ω2

j0 þ Δ2
n0k0 ðiωj0 Þ

q

× λnk;n0k0 ðiωj − iωj0 Þδðεn0k0 − εFÞ; ð208Þ

ZnkðiωjÞΔnkðiωjÞ ¼
πkBT
NF

X
n0k0j0

Δn0k0 ðiωj0 Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ2ω2

j0 þ Δ2
n0k0 ðiωj0 Þ

q

× ½λnk;n0k0 ðiωj − iωj0 Þ − NFVnk;n0k0 �
× δðεn0k0 − εFÞ; ð209Þ

where
P

k0 stands for Ω−1
BZ

R
dk0. In these equations, T is

the absolute temperature, and ZnkðiωjÞ is the quasiparticle
renormalization function and is analogous to Znk in Eq. (189).
ΔnkðiωjÞ is the superconducting gap function. The functions
ZnkðiωjÞ and ΔnkðiωjÞ are determined along the imaginary
frequency axis at the fermion Matsubara frequencies iωj ¼
ið2jþ 1ÞπkBT=ℏ with j an integer. The anisotropic and
frequency-dependent generalization of Eq. (206) to be used
in the Migdal-Eliashberg equations is

λnk;n0k0 ðiωÞ ¼ NF

ℏ

X
ν

2ωqν

ω2
qν þ ω2

jgnn0νðk;qÞj2; ð210Þ

with q ¼ k0 − k. Equations (208) and (209) are to be solved
self-consistently for each temperature T. The superconducting
critical temperature is then obtained as the highest temperature
for which a nontrivial solution is obtained, that is, a solution
with ΔnkðiωjÞ ≠ 0. From the superconducting gap along the
imaginary axis it is then possible to obtain the gap at real
frequencies by analytic continuation (Marsiglio, Schossmann,
and Carbotte, 1988), and from there one can compute various
thermodynamic functions.
The first ab initio implementation of the anisotropic

Migdal-Eliashberg theory was reported by Choi et al.
(2002a, 2002b) and Choi, Cohen, and Louie (2003) in a
study of the superconducting properties of MgB2. They
succeeded in explaining the anomalous heat capacity of
MgB2 in terms of two distinct superconducting gaps and
obtained a Tc in good agreement with experiment. These
calculations were later extended to MgB2 under pressure
(Choi, Louie, and Cohen, 2009a) and other hypothetical
borides (Choi, Louie, and Cohen, 2009b). Margine and
Giustino (2013) demonstrated an implementation of the
Migdal-Eliashberg theory based on the Wannier interpolation
scheme of Sec. VI and reported applications to Pb and MgB2.
The superconducting gap and superconducting density of
states of MgB2 calculated by Margine and Giustino are shown
in Fig. 17. In all these calculations, the Coulomb repulsion

FIG. 17. (a) Energy distribution of the superconducting gap
function of MgB2 as a function of temperature, calculated using
the anisotropic Migdal-Eliashberg theory. The gap vanishes at the
critical temperature (in this calculation Tc ¼ 50 K). Two distinct
superconducting gaps can be seen at each temperature. (b) Den-
sity of electronic states in the superconducting state of MgB2 at
various temperatures calculated within the Migdal-Eliashberg
theory. From Margine and Giustino, 2013.
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was described empirically via μ�, and this partly accounts for
the slight discrepancy between the calculated Tc of 50 K and
the experimental Tc of 39 K (Nagamatsu et al., 2001).
Additional calculations based on the anisotropic Migdal-
Eliashberg theory included a study of doped graphene
(Margine and Giustino, 2014), as well as investigations of
Li-decorated monolayer graphene (Zheng and Margine, 2016)
and Ca-intercalated bilayer graphene (Margine, Lambert, and
Giustino, 2016). In this latter work they incorporated
Coulomb interactions from first principles, after calculating
μ� via the screened Coulomb interaction in the random-phase
approximation. The calculated Tc ¼ 7–8 K was in reasonable
agreement with the experimental value of 4 K (Ichinokura
et al., 2016). The Migdal-Eliashberg theory was also extended
to describe the superconducting state as a function of applied
magnetic field. A complete ab initio implementation was
successfully demonstrated with an application to MgB2

(Aperis, Maldonado, and Oppeneer, 2015). Recently Sano
et al. (2016) performed ab initio Migdal-Eliashberg calcu-
lations including retardation effects on high-pressure sulfur
hydrides, obtaining good agreement with experiment.
Interestingly in this work they also checked the effect of
the zero-point renormalization of the electron bands within the
Allen-Heine theory and found that it accounts for a change in
Tc of up to 20 K.

C. Density-functional theory for superconductors

Another promising ab initio approach to the calculation
of the superconducting critical temperature is the density-
functional theory for superconductors (Lüders et al., 2005;
Marques et al., 2005). The starting point of this approach is a
generalization of the Hohenberg-Kohn theorem (Hohenberg
and Kohn, 1964) to a system described by three densities:
the electron density in the normal state, the density of
superconducting pairs, and the nuclear density. Based on this
premise, Luders et al.mapped the fully interacting system into
an equivalent Kohn-Sham system (Kohn and Sham, 1965) of
noninteracting nuclei and noninteracting, yet superconduct-
ing, electrons. The resulting Kohn-Sham equations for the
electrons take the form of Bogoliubov–de Gennes equations
(Bogoliubov, 1958), whereby electrons are paired by an
effective gap function Δðr; r0Þ.
In its simplest formulation, the density-functional theory

for superconductors determines the expectation value
of the pairing field over Kohn-Sham eigenstates Δnk ¼
hunkðrÞjΔðr; r0Þjunkðr0Þi, using the following gap equation:

Δnk ¼ −ZnkΔnk −
X
n0k0

Knk;n0k0Δn0k0

2En0k0
tanh

�
En0k0

2kBT

�
; ð211Þ

where E2
nk ¼ ε2nk þ jΔnkj2. In this expression, the kernel K

contains information about the phonon-mediated pairing
interaction and the Coulomb repulsion between electrons
K ¼ Kep þKee, and Z contains information about the elec-
tron-phonon interaction. More specifically, Kep and Z are
evaluated starting from the electron-phonon matrix elements
gmnνðk;qÞ and the DFT electron band structure and phonon
dispersions, as in the Migdal-Eliashberg theory. Kee is

approximated using the screened Coulomb interaction
Vnk;n0k0 introduced below Eq. (207). Complete expressions
for Z and K can be found in Marques et al. (2005).
Equation (211) is reminiscent of the gap equation in the

Bardeen-Cooper-Schrieffer (BCS) theory (Schrieffer, 1983),
with the difference that the ab initio kernel K replaces the
model interaction of the BCS theory, and the function Z
introduces quasiparticle renormalization as in the Migdal-
Eliashberg theory; see Eq. (208). At variance with the Migdal-
Eliashberg theory, the gap function in the density-functional
theory for superconductors does not carry an explicit fre-
quency dependence. Nevertheless, retardation effects are fully
included through the dependence of the kernels Z and K on
the electron bands and the phonon dispersions. An important
advantage of this theory is that the Coulomb potential μ� is not
required, since the electron-electron repulsion is seamlessly
taken into account by means of the kernel Kee.
The density-functional theory for superconductors was

successfully employed to study the superconducting proper-
ties of MgB2 (Floris et al., 2005), Li, K, and Al under pressure
(Profeta et al., 2006; Sanna et al., 2006), Pb (Floris et al.,
2007), Ca-intercalated graphite (Sanna et al., 2007), high-
pressure hydrogen (Cudazzo et al., 2008, 2010), CaBeSi
(Bersier et al., 2009), layered nitrides (Akashi et al., 2012),
alkali-doped fullerides (Akashi and Arita, 2013b), compressed
sulfur hydrides (Akashi et al., 2015), and intercalated layered
carbides, silicides, and germanides (Flores-Livas and Sanna,
2015).
An interesting recent development of the theory was the

determination of the superconducting order parameter in real
space χðr; r0Þ ¼ hψ̂↑ðrÞψ̂↓ðr0Þi (Linscheid, Sanna, Floris, and
Gross, 2015). In the density-functional theory for super-
conductors, the order parameter is obtained from the super-
conducting gap using χnk¼ðΔnk=2jEnkjÞ tanh ½Enk=ð2kBTÞ�.
Figure 18 shows the order parameter calculated by Linscheid
et al. for both MgB2 and hole-doped graphane (Savini, Ferrari,
and Giustino, 2010). The plots show Friedel-like oscillations
of the superconducting density as a function of the relative
coordinates between two paired electrons.

FIG. 18. Superconducting order parameter χðr; r0Þ in real space,
calculated for (a) MgB2 and (b) hole-doped graphane. The plots
show a top view (top) and a side view (bottom) of the hexagonal
layers in each case. The variable s ¼ r − r0 is the relative
coordinate in the order parameter, while the center-of-mass
coordinate is placed in the middle of a B-B bond or a C-C
bond. From Linscheid, Sanna, Floris, and Gross, 2015.
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Further developments of the superconducting density-
functional theory include the study of nonphononic pairing
mechanisms, such as plasmon-assisted superconductivity
(Akashi and Arita, 2013a), and the extension to magnetic
systems (Linscheid, Sanna, Essenberger, and Gross, 2015;
Linscheid, Sanna, and Gross, 2015).

XII. ELECTRON-PHONON INTERACTIONS BEYOND THE
LOCAL DENSITY APPROXIMATION TO DFT

The calculations of electron-phonon interactions reviewed
in Secs. VII–XI have in common the fact that most inves-
tigations used the local density approximation to DFT or a
generalized gradient approximation (GGA) such as the PBE
functional (Perdew, Burke, and Ernzerhof, 1996). Although
the LDA and the GGA represent the workhorse of electron-
phonon calculations from first principles, there is growing
evidence that these choices can lead to an underestimation of
the electron-phonon coupling strength. At a conceptual level
we understand this point by rewriting the electron-phonon
matrix element after combining Eqs. (38), (142), and (143):

gmnνðk;qÞ ¼ humkþqj
Z

dr0ϵ−1e ðr; r0;ωÞΔqνvenðr0Þjunkiuc:

ð212Þ

In DFT the many-body dielectric matrix ϵe appearing in this
expression is replaced by the RPAþ xc screening ϵHxc from
Eq. (54). Given the DFT band gap problem, we expect ϵHxc to
overestimate the screening, thereby leading to matrix elements
gmnνðk;qÞ which are underestimated to some extent.
Several groups investigated this point on quantitative

grounds. Zhang, Louie, and Cohen (2007) studied the elec-
tron-phonon coupling in a model copper oxide superconduc-
tor CaCuO2. By calculating the vibrational frequencies of the
half-breathing Cu-O stretching mode, they established that
the local spin-density approximation (LSDA) yields phonons
which are too soft (65.3 meV) as compared to experiment
(80.1 meV). In contrast, the introduction of Hubbard correc-
tions in a LSDAþ U scheme restored agreement with experi-
ment (80.9 meV). Since the electron-phonon matrix elements
are connected to the phonon frequencies via the phonon self-
energy, Eq. (145), a corresponding underestimation of the
matrix elements can be expected. These results were sup-
ported by the work of Floris et al. (2011), who developed
DFPT within LSDAþ U and applied their formalism to the
phonon dispersions of antiferromagnetic MnO and NiO. They
found that the DFT underestimates measured LO energies by
as much as 15 meV in MnO, while the use of LSDAþ U leads
to good agreement with experiment. Related work was
reported by Hong et al. (2012), who investigated the multi-
ferroic perovskites CaMnO3, SrMnO3, BaMnO3, LaCrO3,
LaFeO3, and the double perovskite La2CrFeO6. They calcu-
lated the variation of the vibrational frequencies between
the ferromagnetic and antiferromagnetic phases of these
compounds as a function of the Hubbard U parameter and
compared DFTþ U calculations with hybrid-functional
calculations.

Lazzeri et al. (2008) investigated the effect of quasiparticle
GW corrections on the electron-phonon coupling of graphene
and graphite, for the A1

0 phonon at K and the E2g phonon
at Γ. They evaluated the intraband electron-phonon matrix
elements using a frozen-phonon approach, noting that
gnnνðk;q ¼ 0Þ precisely represents the shift of the Kohn-
Sham energy εnk upon displacing the atoms according to the
νth phonon eigenmode at q ¼ 0. Lazzeri et al. found that the
matrix elements increase by almost 40% from DFT to GW.
The GW values led to slopes in the phonon dispersions near K
in very good agreement with inelastic x-ray scattering data
(Grüneis et al., 2009b). Similar results, albeit less dramatic,
were obtained by Grüneis et al. (2009a) for the potassium-
intercalated graphite KC8.
Laflamme Janssen et al. (2010) studied the electron-phonon

coupling in the C60 molecule as a model for superconducting
alkali-doped fullerides. They employed the PBE0 hybrid
functional (Perdew, Ernzerhof, and Burke, 1996) with a
fraction of exact exchange α ¼ 30% and obtained an enhance-
ment of the total coupling strength λ of 42% as compared to
PBE. This work was followed up by Faber et al. (2011), who
used the GW approximation and obtained a similar enhance-
ment of 48%. We also point out an earlier work by Saito
(2002) based on the B3LYP functional, reporting similar
results.
Yin, Kutepov, and Kotliar (2013) investigated the effects

of using the GW approximation and the HSE hybrid func-
tional (Heyd, Scuseria, and Ernzerhof, 2003) on the electron-
phonon coupling in the superconducting bismuthates
Ba1−xKxBiO3 and chloronitrides β-ZrNCl, as well as
MgB2. In the case of Ba1−xKxBiO3 they obtained a threefold
increase in the coupling strength λ from PBE to HSE. This
enhancement brought the critical temperature calculated using
Eq. (204) to 31 K, very close to the experimental value of
32 K. Similarly, in the case of β-ZrNCl, Yin et al. obtained a
50% increase of λ, bringing the calculated critical temperature
of 18 K close to the experimental value of 16 K. Instead, in
the case of MgB2, they noticed only a slight increase of the
electron-phonon coupling as compared to the standard LDA.
Another application of hybrid functionals to the study of

EPIs was reported by Komelj and Krakauer (2015). They
investigated the sensitivity of the superconducting critical
temperature of the H3S phase of sulfur hydride to the
exchange and correlation functionals. They found that the
PBE0 functional enhances the critical temperature by up to
25% as compared to PBE, bringing Tc from 201–217 K to
253–270 K (the spread in values is related to the choice of the
parameter μ�).
Mandal, Cohen, and Haule (2014) reported work on the

superconductor FeSe based on dynamical mean-field theory
(DMFT). In this case DMFT yielded a threefold enhancement
of the coupling strength for selected modes.
As mentioned in Sec. IX.A.1, Antonius et al. (2014)

performed GW calculations of the electron-phonon coupling
in diamond using a frozen-phonon approach. They found that
quasiparticle corrections lead to a uniform enhancement of the
electron-phonon matrix elements. The net effect is an increase
of the zero-point renormalization of the band gap by 40% as
compared to standard LDA calculations. Monserrat (2016a)
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confirmed this result and found a GW correction of compa-
rable magnitude in the case of silicon. However, Monserrat
also found that the GW corrections to the zero-point band gap
renormalization of LiF, MgO, and TiO2 are very small (∼5%
of the PBE value); therefore at present it is not possible to
draw general conclusions.
Finally, we mention that Faber et al. (2015) examined

possible strategies for systematically incorporating GW cor-
rections in electron-phonon calculations. By using diamond,
graphene, and C60 as test cases, they showed that a “constant
screening” approximation is able to reproduce complete GW
results with an error below 10% at reduced computational
cost. This approximation amounts to evaluating the variation
of the Green’s function G in a frozen-phonon calculation,
while retaining the screened Coulomb interaction W of the
unperturbed ground state.
All these recent developments point to the need of moving

beyond local exchange and correlation functionals in the study
of electron-phonon interactions from first principles. In the
future, it will be important to devise accurate computational
methods for calculating not only the intraband electron-
phonon matrix elements (as in the frozen-phonon method)
but also matrix elements between all states and for scattering
across the entire Brillouin zone.
For completeness we emphasize that the underestimation

of the EPI matrix elements by semilocal DFT functionals
does not propagate in the same way into different materials
properties. This is readily understood by examining two
fundamental quantities, the Allen-Heine renormalization of
electron bands, Eq. (167), and the adiabatic phonon frequen-
cies, as obtained from Eqs. (126) and (127). In the former case
the electronic screening enters as ϵ−2∞ ; in the latter case the

screening contributes through a term which scales with ϵ−1=2∞ .
As a result, in the hypothetical case of a semiconductor for
which DFT underestimated the electronic permittivity by
20%, we would have an error of ∼40% in the energy
renormalization, and of ∼10% in the phonon frequencies.
This example is an oversimplification of the problem, but it
shows that different properties relating to the EPI could be
affected to a very different degree by the inherent limitations
of DFT functionals.

XIII. CONCLUSIONS

The study of electron-phonon interactions has a long and
distinguished history, but it is only during the past two
decades that quantitative and predictive calculations have
become possible. First-principles calculations of electron-
phonon couplings are finding an unprecedented variety of
applications in many areas of condensed matter and materials
physics, from spectroscopy to transport, from metals to
semiconductors and superconductors. In this article we dis-
cussed the standard DFT formalism for performing calcula-
tions of electron-phonon interactions, showed how most
equations can be derived from a field-theoretic framework
using a few well-defined approximations, and reviewed recent
applications of the theory to many materials of current interest.
As calculation methods improve relentlessly and quantita-

tive comparisons between theory and experiment become

increasingly refined, new and more complex questions arise.
Much is still left to do, both in the fundamental theory of
electron-phonon interactions and in the development of more
accurate and more efficient computational methods.
For one, we are still using theories where the coupling

matrix elements are calculated using the adiabatic local
density approximation to DFT. The need for moving beyond
standard DFT and beyond the adiabatic approximation can
hardly be overemphasized. Progress is being made on the
incorporation of nonlocal corrections into electron-phonon
matrix elements, for example, using hybrid functionals or
GW techniques, but very little is known about retardation
effects. It is expected that such effects may be important in the
study of heavily doped oxides and semiconductors, in both
their normal and superconducting states (Mahan, 1993,
Sec. 6.3.A), but ab initio investigations are currently missing.
This is truly uncharted territory and a systematic effort in this
direction is warranted.
In this article we emphasized that it is possible to formulate

a compact, unified theory of electron-phonon interactions
starting from a fully ab initio field-theoretic approach. The
only assumption which is absolutely crucial to the theory is
the harmonic approximation. Abandoning the harmonic
approximation leads to the appearance of several new terms
in the equations, and the resulting formalism becomes con-
siderably more complex than in Table I. Despite these
difficulties, given the importance of anharmonic effects in
many systems of current interest, extending the theory to the
case of anharmonic phonons and multiphonon interactions
constitutes a pressing challenge. Ab initio investigations of
anharmonic effects on the temperature dependence of band
gaps have recently been reported (Monserrat, Drummond, and
Needs, 2013; Antonius et al., 2015). Since these studies rely
on nonperturbative adiabatic calculations in supercells, it is
highly desirable to establish a clear formal connection of these
methods with the rigorous field-theoretic approach of Sec. IV.
Along the same line, it is important to clarify the relation
between many-body approaches, adiabatic supercells calcu-
lations, and more traditional classical or path-integral molecu-
lar dynamics simulations.
The study of electron-phonon interactions has long been

dominated by Fröhlich-like Hamiltonians, whereby the
electron-phonon coupling is retained only to linear order in
the atomic displacements. This is the case for all the model
Hamiltonians mentioned in Sec. V.B.6. It is now clear that
quadratic couplings, leading to the Debye-Waller contribu-
tions in the optical spectra of semiconductors, are by no means
negligible and should be investigated more systematically. For
example, in the current literature it is invariably assumed that
Debye-Waller contributions are negligible in metals near the
Fermi surface; while this is probably the case for the simplest
elemental metals, what happens in the case of multiple Fermi-
surface sheets is far from clear and should be tested by direct
calculations.
The identification of the correct matrix elements to be

calculated is not always a trivial task as discussed for the case
of the nonadiabatic phonon self-energy. In the future it will be
important to pay attention to these aspects, especially in view
of detailed comparison with experiment. For now, the issue of
whether the phonon self-energy arising from EPIs should be
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calculated using bare or screened EPI matrix elements
(Sec. VII) is to be considered an open question and calls
for further investigation.
The theory and applications reviewed in this article focused

on nonmagnetic systems. The rationale for this choice is that a
complete many-body theory of electron-phonon interactions
for magnetic systems is not available yet. Recent investiga-
tions of spin-phonon couplings were conducted by assuming
that the spin and the vibrational degrees of freedom can be
decoupled, as in the Born-Oppenheimer approximation.
Under this assumption it is possible to investigate how the
spin configuration responds to a frozen phonon or, alterna-
tively, how the vibrational frequencies depend on the spin
configuration [see, for example, Chan et al. (2007), Łażewski
et al. (2010), Lee and Rabe (2011), and Cao, Giustino, and
Radaelli (2015)]. In all these cases it is desirable to employ a
more rigorous many-body theory of spin-phonon interactions.
The Hedin-Baym equations discussed in Sec. IV maintain
their validity in the case of spin-polarized systems, provided
collinear spins are assumed. In more general situations, where
it is important to consider noncollinear spins, external mag-
netic perturbations, or spin-dependent interactions such as
spin-orbit and Rashba-Dresselhaus couplings, it becomes
necessary to generalize the equations in Table I. Although
such a generalization has not been reported yet, the work of
Aryasetiawan and Biermann (2008) constitutes a promising
starting point. In that work the Schwinger functional deriva-
tive technique (see Sec. IV.B.1) was used to extend Hedin’s
equations at clamped nuclei to systems containing spin-
dependent interactions. Generalizing Aryasetiawan and
Biermann’s work to incorporate nuclear vibrations will be
important for the study of electron-phonon interactions in
many systems of current interest, from multifunctional mate-
rials to topological quantum matter.
At this time it is not possible to predict how this fast-

moving field will evolve over the years to come. However, the
impressive progress made during the past decade gives us
confidence that this interesting research area will continue to
thrive and will keep surprising us with fascinating challenges
and exciting new opportunities.
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APPENDIX A: BORN–VON KÁRMÁN BOUNDARY
CONDITIONS

In this Appendix we provide more details on the notation
related to the Born–von Kármán boundary conditions used
throughout this article. The crystalline unit cell is defined by
the primitive lattice vectors ai with i ¼ 1, 2, 3, and the pth unit
cell is identified by the vector Rp ¼ P

i niai, with ni integers
between 0 and Ni − 1. The BvK supercell contains Np ¼
N1 × N2 × N3 unit cells. The primitive vectors of the recip-
rocal lattice are denoted by bj and fulfill the duality condition
ai · bj ¼ 2πδij. We consider Bloch wave vectors q belonging
to a uniform grid in one unit cell of the reciprocal lattice
q ¼ P

jðmj=NjÞbj, with mj being integers between 0 and
Nj − 1. This grid contains the same number of q vectors as the
number of unit cells in the BvK supercell. From these
definitions the standard sum rules follow:

X
q

expðiq ·RpÞ ¼ Npδp0;

X
p

expðiq ·RpÞ ¼ Npδq0: ðA1Þ

If G is a reciprocal lattice vector, the replacement of any of
the q vectors by qþG in these expressions and in all
expressions presented in this article is inconsequential, since
expðiG ·RpÞ ¼ 1. Similarly, any replacement of Rp by
Rp þ T, where T is a lattice vector of the BvK supercell is
inconsequential. Owing to these properties we are at liberty to
replace the q grid with a Wigner-Seitz grid, i.e., the first
Brillouin zone, and the supercell with a Wigner-Seitz super-
cell. These choices are useful for practical calculations in
order to exploit the symmetry operations of the crystal and to
truncate the interatomic force constants, given by Eq. (13),
outside a Wigner-Seitz supercell.

APPENDIX B: LADDER OPERATORS IN EXTENDED
SYSTEMS

In this Appendix we describe the construction of the
phonon ladder operators âqν=â

†
qν and derive the phonon

Hamiltonian given by Eq. (22). We show how the definition
of the ladder operators depends on the behavior of the wave
vector q under inversion.
The normal modes introduced in Eq. (15) can be used to

define a linear coordinate transformation of the ionic displace-
ments as follows:
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zqν ¼ N−1=2
p

X
καp

e−iq·RpðMκ=M0Þ1=2e�κα;νðqÞΔτκαp: ðB1Þ

Here zqν is referred to as a “complex normal coordinate”
(Brüesch, 1982). The exponential and the masses in Eq. (B1)
are chosen so as to obtain Eq. (22) starting from Eq. (12).
Since there are 3MNp degrees of freedom, and since the
complex normal coordinates correspond to 2 × 3MNp real
variables, this coordinate transformation carries some redun-
dancy. Indeed by combining Eqs. (18) and (B1) it is seen that

z−qν ¼ z�qν: ðB2Þ

The inverse relation of Eq. (B1) is

Δτκαp ¼ N−1=2
p ðM0=MκÞ1=2

X
qν

eiq·Rpeκα;νðqÞzqν: ðB3Þ

The right-hand side is real valued after Eqs. (18) and (B2). In
preparation for the transition to a quantum description of
lattice vibrations, it is useful to identify 3MNp independent
normal coordinates. This can be done by partitioning the grid
of q vectors into three sets. We callA the set of vectors which
are invariant under inversion, that is, −qþG ¼ q for some
reciprocal lattice vector G (including jGj ¼ 0). The center of
the Brillouin zone and the centers of its faces belong to this
set. The remaining vectors can be separated further into B
and C, in such a way that all the vectors in C are obtained
from those in B by inversion (modulo a reciprocal lattice
vector). After defining zqν ¼ xqν þ iyqν, Eq. (B3) can be
rewritten as

Δτκαp ¼ N−1=2
p ðM0=MκÞ1=2

� X
q∈A;ν

eκα;νðqÞxqν

þ2Re
X
q∈B;ν

eiq·Rpeκα;νðqÞðxqν þ iyqνÞ
�
: ðB4Þ

The q vectors of the set C have been grouped together with
those in B by taking the real part in the second line. It can be
verified that in this expression there are exactly 3MNp real
coordinates; therefore we can choose the xqν for q in A and
the pairs xqν, yqν for q in B as the independent variables.
These variables are referred to as “real normal coordinates”
(Brüesch, 1982).
Using Eqs. (12)–(18), (A1), and (B4) the nuclear

Hamiltonian can be written in terms of 3MNp independent
harmonic oscillators in the real normal coordinates:

Ĥp ¼
1

2

X
q∈B;ν

ℏωqνð−∂2=∂ ~x2qν − ∂2=∂ ~y2qν þ ~x2qν þ ~y2qνÞ

þ 1

2

X
q∈A;ν

ℏωqνð−∂2=∂ ~x2qν þ ~x2qνÞ; ðB5Þ

where for ease of notation we performed the scaling

~xqν ¼ xqν=2lqν for q inA; ðB6Þ

~xqν ¼ xqν=lqν; ~yqν ¼ yqν=lqν for q inB; ðB7Þ

with lqν the zero-point displacement amplitude of Eq. (21). In
the case of jqj ¼ 0 there are three normal modes for which
ωqν ¼ 0, and the corresponding potential terms ~x2qν must be
removed from Eq. (B5).
The eigenstates of Eq. (B5) are found by introducing the

real ladder operators for each normal coordinate (Cohen-
Tannoudji, Diu, and Laloe, 1977):

âqν;x ¼ ð~xqν þ ∂=∂ ~xqνÞ=
ffiffiffi
2

p
; ðB8Þ

and similarly for âqν;y. With these definitions Eq. (B5)
becomes

Ĥp ¼
X
q∈B;ν

ℏωqνðâ†qν;xâqν;x þ â†qν;yâqν;y þ 1Þ

þ
X
q∈A;ν

ℏωqνðâ†qν;xâqν;x þ 1=2Þ: ðB9Þ

The eigenstates of this Hamiltonian are products of simple
harmonic oscillators (Merzbacher, 1998), and the ground
state is

χ0ðfτκpgÞ ¼ Ae−1=2ð
P

q∈A;ν
~x2qνþ

P
q∈B;ν

~x2qνþ~y2qνÞ; ðB10Þ

with A a normalization constant. The relations between the
positions τκp and the normal coordinates ~xqν, ~yqν are given by
Eqs. (B1), (B6), (B7), and (21).
The eigenstates of Ĥp can be generated by applying â†qν;x

and â†qν;y to the ground state χ0. However this approach is not
entirely satisfactory, since we cannot assign separate quantum
numbers to modes with wave vectors q or −q. In order to
avoid this inconvenience we observe that, for each normal
mode, the first line of Eq. (B5) defines an effective isotropic
two-dimensional harmonic oscillator. The degenerate eigen-
states of this oscillator can be combined to form eigenstates of
the angular momentum. This leads to right and left circular
quanta with the same energy and definite angular momentum
(Cohen-Tannoudji, Diu, and Laloe, 1977). This analogy
motivates the consideration of the following linear combina-
tions, for q in B:

âþqν ¼ ðâqν;x þ iâqν;yÞ=
ffiffiffi
2

p
; ðB11Þ

â−qν ¼ ðâqν;x − iâqν;yÞ=
ffiffiffi
2

p
: ðB12Þ

Since both âqν;x and âqν;y lower the energy of an eigenstate
by the same quantum of energy ℏωqν, the resulting states are
degenerate and their linear combinations are also eigenstates
for the same eigenvalue. As a consequence we can generate all
the eigenstates of the Hamiltonian Ĥp by acting on the ground

state χ0 with the creation operators âþ;†
qν and â−;†qν . In this

reasoning the wave vectors q belong to B; if we now consider
Eqs. (B2), (B11), and (B12), we see that formally we also have
â−qν ¼ âþ−qν. Therefore it is natural to associate â−qν to phonons
propagating along the direction −q.
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These observations suggest replacing the real ladder oper-
ators of Eq. (B8) by the complex ladder operators âþqν and â−−qν
for q in B and C, respectively. In the case of q inAwe keep the
real operators âqν;x. These definitions can be turned into the
following compact expressions:

âqν ¼ âqν;x for q inA; ðB13Þ

âqν ¼ ðâqν;x þ iâqν;yÞ=
ffiffiffi
2

p
for q inB; C: ðB14Þ

Using these operators the nuclear Hamiltonian of Eq. (B5)
takes the well-known form given by Eq. (22). Any eigenstate
of Ĥp can now be generated as

Q
qνðnqν!Þ−1=2ðâ†qνÞnqνχ0. In

this form we see that it is possible to independently assign a
number of phonons nqν to each wave vector q and each mode
ν. Using Eqs. (B6)–(B8), (B13), and (B14) we also have the
basic identity

zqν ¼ lqνðâqν þ â†−qνÞ: ðB15Þ

By combining this last expression with Eq. (B3) we
obtain Eq. (20).
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