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Heisenberg’s uncertainty principle forms a fundamental element of quantum mechanics. Uncertainty
relations in terms of entropies were initially proposed to deal with conceptual shortcomings in the
original formulation of the uncertainty principle and, hence, play an important role in quantum
foundations. More recently, entropic uncertainty relations have emerged as the central ingredient in
the security analysis of almost all quantum cryptographic protocols, such as quantum key distribution
and two-party quantum cryptography. This review surveys entropic uncertainty relations that capture
Heisenberg’s idea that the results of incompatible measurements are impossible to predict, covering
both finite- and infinite-dimensional measurements. These ideas are then extended to incorporate
quantum correlations between the observed object and its environment, allowing for a variety of
recent, more general formulations of the uncertainty principle. Finally, various applications are
discussed, ranging from entanglement witnessing to wave-particle duality to quantum cryptography.
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34 L. INTRODUCTION
34 . - .
35 Quantum mechanics has revolutionized our understanding
36 of the world. Relative to classical mechanics, the most
36 dramatic change in our understanding is that the quantum
36  world (our world) is inherently unpredictable.
36 By far the most famous statement of unpredictability is
37 Heisenberg’s uncertainty principle (Heisenberg, 1927), which
37 we treat here as a statement about preparation uncertainty.
37 Roughly speaking, it states that it is impossible to prepare a
37 quantum particle for which both position and momentum are
sharply defined. Operationally, consider a source that con-
38 sistently prepares copies of a quantum particle in the same
38 way, as shown in Fig. 1. For each copy, suppose we randomly
39 measure either its position or its momentum (but we never
39 attempt to measure both quantities for the same particlel).
39 We record the outcomes and sort them into two sequences
associated with the two different measurements. The uncer-
2(9) tainty principle states that it is impossible to predict both
A1 the outcome of the position and the momentum measure-
41 ments: at least one of the two sequences of outcomes will be
41 unpredictable. More precisely, the better such a preparation
42
43 'Section LA notes other uncertainty principles that involve
43 consecutive or joint measurements.
015002-2



Coles et al.: Entropic uncertainty relations and their ...

000000 —-<;~ @)

o o]

v measure
@
source Q

o
@)

measure l

P
FIG. 1. Physical scenario relevant to preparation uncertainty

relations. Each incoming particle is measured using either
measurement P or measurement (Q, where the choice of the
measurement is random. An uncertainty relation says we cannot
predict the outcomes of both P and Q. If we can predict the
outcome of P well, then we are necessarily uncertain about the
outcome of measurement Q, and vice versa.

procedure allows one to predict the outcome of the position
measurement, the more uncertain the outcome of the momen-
tum measurement will be, and vice versa.

An elegant aspect of quantum mechanics is that it allows
for simple quantitative statements of this idea, i.e., constraints
on the predictability of observable pairs like position and
momentum. These quantitative statements are known as
uncertainty relations. It is worth noting that Heisenberg’s
original argument, while conceptually enlightening, was
heuristic. The first, rigorously proven uncertainty relation
for position Q and momentum P is due to Kennard (1927). It
establishes that [see also the work of Weyl (1928)]

o(Q)o(P) 2. (1)

where ¢(Q) and o(P) denote the standard deviations of the
position and momentum, respectively, and 7 is the reduced
Planck constant.

We now know that Heisenberg’s principle applies much
more generally, not only to position and momentum. Other
examples of pairs of observables obeying an uncertainty
relation include the phase and excitation number of a
harmonic oscillator, the angle and the orbital angular momen-
tum of a particle, and orthogonal components of spin angular
momentum. In fact, for arbitrary observables> X and Z,
Robertson (1929) showed that

o(X)o(Z) 2 5l (wl[X. Z]lw)l. (2)

where [+, ] denotes the commutator. Note a distinct difference
between Eqs. (1) and (2): the right-hand side of the former is a
constant whereas that of the latter can be state dependent, an
issue that we discuss more in Sec. II.

These relations have a beauty to them and also give
conceptual insight. Equation (1) identifies 7 as a fundamental
limit to our knowledge. More generally Eq. (2) identifies the
commutator as the relevant quantity for determining how large
the knowledge trade-off is for two observables. One could
argue that a reasonable goal in our studies of uncertainty in

*More precisely, Robertson’s relation refers to observables with
bounded spectrum.
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quantum mechanics should be to find simple, conceptually
insightful statements like these.

If this problem was only of fundamental importance, it
would be a well-motivated one. Yet in recent years there is
new motivation to study the uncertainty principle. The rise of
quantum information theory has led to new applications of
quantum uncertainty, for example, in quantum cryptography.
In particular quantum key distribution is already commercially
marketed and its security crucially relies on Heisenberg’s
uncertainty principle. (We discuss various applications in
Sec. VI.) There is a clear need for uncertainty relations that
are directly applicable to these technologies.

In Egs. (1) and (2), uncertainty has been quantified using
the standard deviation of the measurement results. This is,
however, not the only way to express the uncertainty principle.
It is instructive to consider what preparation uncertainty
means in the most general setting. Suppose we prepared a
state p on which we can perform two (or more) possible
measurements labeled by 6. Let us use x to label the outcomes
of such measurement. We can then identify a list of (condi-
tional) probabilities

S, ={p(xl0),} 0, (3)

where p(x|6),, denotes the probability of obtaining measurement
outcome x when performing the measurement 6 on the state p.
Quantum mechanics predicts restrictions on the set S, of allowed
conditional probability distributions that are valid for all or a
large class of states p. Needless to say, there are many ways to
formulate such restrictions on the set of allowed distributions.

In particular, information theory offers a very versatile,
abstract framework that allows us to formalize notions like
uncertainty and unpredictability. This theory is the basis of
modern communication technologies and cryptography and
has been successfully generalized to include quantum effects.
The preferred mathematical quantity to express uncertainty in
information theory is entropy. Entropies are functionals on
random variables and quantum states that aim to quantify their
inherent uncertainty. Among a myriad of such measures, we
mainly restrict our attention to the Boltzmann-Gibbs-Shannon
entropy (Boltzmann, 1872; Gibbs, 1876; Shannon, 1948) and
its quantum generalization, the von Neumann entropy (von
Neumann, 1932). Because of their importance in quantum
cryptography, we also consider Rényi entropic measures
(Rényi, 1961) such as the min-entropy. Entropy is a natural
measure of uncertainty, perhaps even more natural than the
standard deviation, as we argue in Sec. II.

Can the uncertainty principle be formulated in terms of
entropy? This question was first brought up by Everett (1957)
and answered in the affirmative by Hirschman (1957) who
considered the position and momentum observables, formulat-
ing the first entropic uncertainty relation. This was later
improved by Beckner (1975) and Bialynicki-Birula and
Mycielski (1975), who obtained’

*More precisely, the right-hand side of Eq. (4) should be
log(enh/lylp), where Iy, and Ip are length and momentum scales,
respectively, chosen to make the argument of the logarithm dimen-
sionless. Throughout this review, all logarithms are base 2.
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h(Q) + h(P) > log(exh), 4)

where & is the differential entropy [defined in Eq. (7)].
Biatynicki-Birula and Mycielski (1975) also showed that
Eq. (4) is stronger than, and hence implies, Kennard’s
relation (1).

The extension of the entropic uncertainty relation to observ-
ables with finite spectmm4 was given by Deutsch (1983), and
later improved by Maassen and Uffink (1988) following a
conjecture by Kraus (1987). The result of Maassen and Uffink
(1988) is arguably the most well-known entropic uncertainty
relation. It states that

HOX) + H(Z) 2 log.-. 5

where H is Shannon’s entropy (see Sec. III.A for definition),
and ¢ denotes the maximum overlap between any two eigen-
vectors of the X and Z observables. Just as Eq. (2) established the
commutator as an important parameter in determining the
uncertainty trade-off for standard deviation, Eq. (5) established
the maximum overlap ¢ as a central parameter in entropic
uncertainty.

While these articles represent the early history of entropic
uncertainty relations, there has recently been an explosion of
work on this topic. One of the most important recent advances
concerns a generalization of the uncertainty paradigm that
allows the measured system to be correlated to its environment
in a nonclassical way. Entanglement between the measured
system and the environment can be exploited to reduce the
uncertainty of an observer (with access to the environment)
below the usual bounds.

To explain this extension, let us introduce a modern
formulation of the uncertainty principle as a so-called guess-
ing game, which makes such extensions of the uncertainty
principle natural and highlights their relevance for quantum
cryptography. As outlined in Fig. 2, we imagine that an
observer Bob can prepare an arbitrary state p, which he will
send to a referee Alice. Alice then randomly chooses to
perform one of two (or more) possible measurements, where
we use O to denote her choice of measurement. She records
the outcome K. Finally, she tells Bob the choice of her
measurement, i.e., she sends him ®. Bob’s task is to guess
Alice’s measurement outcome K (given ©).

The uncertainty principle tells us that if Alice makes two
incompatible measurements, then Bob cannot guess Alice’s
outcome with certainty for both measurements. This corre-
sponds precisely to the notion of preparation uncertainty. It is
indeed intuitive why such uncertainty relations form an
important ingredient in proving the security of quantum
cryptographic protocols, as we explore in detail in Sec. VL
In the cryptographic setting p, will be sent by an adversary
trying to break a quantum cryptographic protocol. If Alice’s
measurements are incompatible, there is no way for the
adversary to know the outcomes of both possible measure-
ments with certainty—no matter what state he prepares.

“The relation applies to nondegenerate observables on a finite-
dimensional Hilbert space (see Sec. II1.B).
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FIG. 2. Diagram showing a guessing game with players Alice
and Bob. First, Bob prepares A in state p, and sends it to Alice.
Second, Alice measures either X or Z with equal probability and
stores the measurement choice in the bit ®. Third, Alice stores the
measurement outcome in bit K and reveals the measurement
choice ® to Bob. Bob’s task is to guess K (given ©). Entropic
uncertainty relations like the Maassen-Uffink relation (5) can be
understood as fundamental constraints on the optimal guessing
probability.

The formulation of uncertainty relations as guessing games
also makes it clear that there is an important twist to such
games: What if Bob prepares a bipartite state p,p and sends
only the A part to Alice? That is, what if Bob’s system is
correlated with Alice’s? Or, adopting the modern perspective
of information, what if Bob has a nontrivial amount of side
information about Alice’s system? Traditional uncertainty
relations implicitly assume that Bob has only classical side
information. For example, he may possess a classical descrip-
tion of the state p, or other details about the preparation.
However, modern uncertainty relations—for example those
derived by Berta et al. (2010) improving on work by
Christandl and Winter (2005) and Renes and Boileau
(2009)—allow Bob to have quantum rather than classical
information about the state. As was already observed by
Einstein, Podolsky, and Rosen (1935), Bob’s uncertainty
can vanish in this case (in the sense that he can correctly
guess Alice’s measurement outcome K in the game
described above).

We devote Sec. IV to such modern uncertainty relations. It
is these relations that will be of central importance in quantum
cryptography, where the adversary may have gathered quan-
tum and not just classical information during the course of the
protocol that may reduce his uncertainty.

A. Scope of this review

Two survey articles partially discuss the topic of entropic
uncertainty relations. Biatynicki-Birula and Rudnicki
(2011) take a physics perspective and cover continuous
variable entropic uncertainty relations and some discretized
measurements. In contrast, Wehner and Winter (2010) take
an information-theoretic perspective and discuss entropic
uncertainty relations for discrete (finite) variables with an
emphasis on relations that involve more than two
measurements.

These reviews predate many recent advances in the field.
For example, neither review covers entropic uncertainty
relations that take into account quantum correlations with
the environment of the measured system. Moreover,
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applications of entropic uncertainty relations are only margin-
ally discussed in both of these reviews. Here we discuss both
physical and information-based applications. We therefore
aim to give a comprehensive treatment of all of these topics in
one reference, with the hope of benefiting some of the quickly
emerging technologies that exploit quantum information.
There is an additional aspect of the uncertainty principle
known as measurement uncertainty; see, e.g., Ozawa (2003),
Hall (2004), Busch, Heinonen, and Lahti (2007), and Busch,
Lahti, and Werner (2014a). This includes (1) joint measur-
ability, the concept that there exist pairs of observables that
cannot be measured simultaneously, and (2) measurement
disturbance, the concept that there exist pairs of observables
for which measuring one causes a disturbance of the other.
Measurement uncertainty is a debated topic of current
research. We focus our review article on the concept of
preparation uncertainty, although we briefly mention entropic
approaches to measurement uncertainty in Sec. VIL.C.

II. RELATION TO STANDARD DEVIATION APPROACH

Traditional formulations of the uncertainty principle, for
example, the ones due to Kennard and Robertson, measure
uncertainty in terms of the standard deviation. In this section
we argue why we think entropic formulations are preferable.
For further discussion we refer to Uffink (1990).

A. Position and momentum uncertainty relations

For the case of position and momentum observables, the
strength of the entropic formulation can be seen from the fact
that the entropic uncertainty relation in Eq. (4) is stronger and
in fact implies the standard deviation relation (1). Following
Biatynicki-Birula and Mycielski (1975), we formally show
that

h(Q) + h(P) > log(er) = o(Q)o(P) 21 (6)
for all states, where here and henceforth in this article we work
in units such that 72 = 1. Let us consider a random variable Q
governed by a probability density I'(g), and the differential
entropy

=

hQ) = - / * I(g) log T (q)dg. )

In the following we assume that this quantity is finite.
Gaussian probability distributions,

=\2
1 exp( (4 qz) ) (8)
276(Q)? 26(Q)
where g denotes the mean, are special in the following sense:
for a fixed standard deviation ¢(Q), distributions of the form
of Eq. (8) maximize the entropy in Eq. (7). It is a simple
exercise to show this using variational calculus with Lagrange
multipliers.

It is furthermore straightforward to insert Eq. (8) into (7) to
calculate the entropy of a Gaussian distribution

[(q) =
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h(Q) = log \/2mec(Q)* (Gaussian). 9)

Since Gaussians maximize the entropy, the following inequal-

ity holds:
h(Q) <logy/2mes(Q)* (in general). (10)

Now consider an arbitrary quantum state for a particle’s
translational degree of freedom, which gives rise to random
variables P and Q for the position and momentum, respec-
tively. Let us insert the resulting relations into Eq. (4) to find

log[27ec(Q)o(P)] = log \/2mec(Q)? + log \/ 2mec(P)?
(11

)
> h(Q) + h(P) (12)
> log(en). (13)

By comparing the left- and right-hand sides of Eq. (11) and
noting that the logarithm is a monotonic function, we see that
Eq. (11) implies (1), and hence so does (4).

It is worth noting that Eq. (10) is a strict inequality if the
distribution is non-Gaussian, and hence Eq. (4) is strictly
stronger than (1) if the quantum state is non-Gaussian. While
quantum mechanics textbooks often present Eq. (1) as the
fundamental statement of the uncertainty principle, it is clear
that Eq. (4) is stronger and yet not much more complicated.
Furthermore, as discussed in Sec. IV the entropic formulation
is more robust, allowing the relation to be easily generalized to
situations involving correlations with the environment.

B. Finite spectrum uncertainty relations

As noted in Sec. I, both the standard deviation and the
entropy have been applied to formulate uncertainty relations
for observables with a finite spectrum. However, it is largely
unclear how the most popular formulations, Robertson’s (2)
and Maassen-Uffink’s (5), are related. It remains an interesting
open question whether there exists a formulation that unifies
these two formulations. However, there is an important
difference between Eqs. (2) and (5) in that the former has
a bound that depends on the state, while the latter depends
only on the two observables.

Example 1. Consider Eq. (2) for the case of a spin-1/2
particle, where X = |0)(1] 4 |1)(0| and Z = |0){0| — [1)(1],
corresponding to the x and z axes of the Bloch sphere. Then the
commutator is proportional to the Y Pauli operator and the
right-hand side of Eq. (2) reduces to (1/2)[(Y)|. Hence, Eq. (2)
gives a trivial bound for all states that lie in the x-z plane of the
Bloch sphere. For the eigenstates of X and Z, this bound is tight
since one of the two uncertainty terms is zero, and hence the
trivial bound is a (perhaps undesirable) consequence of the fact
that the left-hand side involves a product (rather than a sum) of
uncertainties. However, for any other states in the x-z plane,
neither uncertainty is zero. This implies that Eq. (2) is not tight
for these states.
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This example illustrates a weakness of Robertson’s relation
for finite-dimensional systems—it gives trivial bounds for
certain states, even when the left-hand side is nonzero.
Schrédinger (1930) slightly strengthened Robertson’s bound
by adding an additional state-dependent term that helps to get
rid of the artificial trivial bound discussed in example 1.
Likewise, Maccone and Pati (2014) recently proved a state-
dependent bound on the sum (not the product) of the two
variances, and this bound also removes the trivial behavior of
Robertson’s bound. Furthermore, one still may be able to
obtain a nonvanishing state-independent bound using standard
deviation uncertainty measures in the finite-dimensional case.
For example, Busch, Lahti, and Werner (2014b) considered
the qubit case and obtained a state-independent bound on the
sum of the variances.

The state-dependent nature of Robertson’s bound was
noted by Deutsch (1983) and used as motivation for entropic
uncertainty relations, which do not suffer from this weakness.
However, this discussion suggests that this issue might be
avoided while still using standard deviation as the uncertainty
measure. On the other hand, there are more important issues
that we now discuss.

C. Advantages of entropic formulation

From a practical perspective, a crucial advantage of entropic
uncertainty relations are their applications throughout quan-
tum cryptography. However, let us now mention several
other reasons why we think that the entropic formulation
of the uncertainty principle is advantageous over the standard
deviation formulation.

1. Counterintuitive behavior of standard deviation

While the standard deviation is, of course, a good measure
of deviation from the mean, its interpretation as a measure of
uncertainty has been questioned. It has been pointed out, for
example, by Bialynicki-Birula and Rudnicki (2011), that the
standard deviation behaves somewhat strangely for some
simple examples.

Example 2. Consider a spin-1 particle with equal proba-
bility Pr(s.) = 1/3 to have each of the three possible values of
Z angular momentum s, € {—1,0, 1}. The standard deviation
of the Z angular momentum is 6(Z) = /2/3. Now suppose
we gain information about the spin such that we now know
that it definitely does not have the value s, = 0. The new
probability distribution is Pr(1) = Pr(—1) = 1/2, Pr(0) = 0.
We might expect the uncertainty to decrease, since we have
gained information about the spin, but in fact the standard
deviation increases, the new value being ¢(Z) = 1.

We remark that the different behavior of standard deviation
and entropy for spin angular momentum was recently high-
lighted by Dammeier, Schwonnek, and Werner (2015), in the
context of states that saturate the relevant uncertainty relation.

Biatynicki-Birula and Rudnicki (2011) noted an example
for a particle’s spatial position that is analogous to example 2.

Example 3. Consider a long box of length L, centered at
0 = 0, with two small boxes of length a attached to the two
ends of the long box, as depicted in Fig. 3. Suppose we know
that a classical particle is confined to the two small end boxes,

Rev. Mod. Phys., Vol. 89, No. 1, January—March 2017

I
0=0

FIG. 3. Tllustration for example 3, where a particle is initially
confined to the two small boxes at the end and excluded from the
long middle box. Then the particle is allowed to go free into the
middle box.

i.e., with equal probability it is one of the two small boxes. The
standard deviation of the position is ¢(Q) ~ L/2, assuming that
L > a. Now suppose the barriers that separate the end boxes
from the middle box are removed, and the particle is allowed to
move freely between all three boxes. Intuitively one might
expect that the uncertainty of the particle’s position is now
larger, since we now know nothing about where the particle is
inside the three boxes. However, the new standard deviation is

actually smaller: ¢(Q) ~ L/v/12.

Entropies, on the other hand, do not have this counterin-
tuitive behavior, due to properties discussed later. Finally, let
us note a somewhat obvious issue that, in some cases, a
quantitative label (and hence the standard deviation) does not
make sense, as illustrated in the following example.

Example 4. Consider a neutrino’s flavor, which is often
modeled as a three-outcome observable with outcomes “elec-
tron,” “muon,” or “tau.” As this is a nonquantitative observable,
the standard deviation does not make sense in this context.
Nevertheless, it is of interest to quantify the uncertainty about
the neutrino flavor, i.e., how difficult it is to guess the flavor,
which is naturally captured by the notion of entropy.

2. Intuitive entropic properties

Deutsch (1983) emphasized that the standard deviation can
change under a simple relabeling of the outcomes. For example,
if one were to assign quantitative labels to the outcomes in
example 4 and then relabel them, the standard deviation would
change. In contrast, the entropy is invariant under relabeling of
outcomes, because it naturally captures the amount of infor-
mation about a measurement outcome.

Furthermore, there is a nice monotonic property of entropy
in the following sense. Suppose one does a random relabeling
of the outcomes. One can think of this as a relabeling plus
added noise, which naturally tends to spread the probability
distribution out over the outcomes. Intuitively, a relabeling
with the injection of randomness should never decrease
the uncertainty. This property, nondecreasing under random
relabeling, was highlighted by Friedland, Gheorghiu, and
Gour (2013) as a desirable property of an uncertainty measure.
Indeed, entropy satisfies this property. On the other hand, the
physical process in example 3 can be modeled mathematically
as a random relabeling. Hence, we see the contrast in behavior
between entropy and standard deviation.

Monotonicity under random relabeling is actually a special
case of an even more powerful property. Think of the random
relabeling as due to the fact that the observer is denied access
to an auxiliary register that stores the information about which
relabeling occurred. If the observer had access to the register,
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then their uncertainty would remain the same, but without
access their uncertainty could potentially increase, but never
decrease. More generally, this idea (that losing access to an
auxiliary system cannot reduce one’s uncertainty) is a desir-
able and powerful property of uncertainty measures known
as the data-processing inequality. It is arguably a defining
property of entropy measures, or more precisely, conditional
entropy measures as discussed in Sec. IV.B. Furthermore this
property is central in proving entropic uncertainty relations
(Coles et al., 2012).

3. Framework for correlated quantum systems

Entropy provides a robust mathematical framework that
can be generalized to deal with correlated quantum systems.
For example, the entropy framework allows us to discuss
the uncertainty of an observable from the perspective of an
observer who has access to part of the environment of the
system or to quantify quantum correlations like entanglement
between two quantum systems. This requires measures of
conditional uncertainty, namely, conditional entropies. We
highlight the utility of this framework in Sec. IV. A similar
framework for standard deviation has not been developed.

4. Operational meaning and information applications

Perhaps the most compelling reason to consider entropy as
the uncertainty measure of choice is that it has operational
significance for various information-processing tasks. The
standard deviation, in contrast, does not play a significant role
in information theory. This is because entropy abstracts from
the physical representation of information, as one can see from
the following example.

Example 5. Consider the two probability distributions in
Fig. 4. They have the same standard deviation but different
entropy. The distribution in Fig. 4(a) has 1 bit of entropy since
only two events are possible and occur with equal probability.
If we want to record data from this random experiment this
will require exactly 1 bit of storage per run. On the other hand,
the distribution in Fig. 4(b) has approximately 3 bits of
entropy and the recorded data cannot be compressed to less
than 3 bits per run. Clearly, entropy has operational meaning
in this context while standard deviation fails to distinguish
these random experiments.

Entropies have operational meaning for tasks such as
randomness extraction (extracting perfect randomness from
a partially random source) and data compression (sending
minimal information to someone to help them guess the output
of a partially random source). It is precisely these operational

(a) low entropy distribution (b) high entropy distribution

FIG. 4. Two probability distributions with the same standard
deviation but different entropy, as explained in example 5.
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meanings that make entropic uncertainty relations useful for
proving the security of quantum key distribution and other
cryptographic tasks. We discuss such applications in Sec. VI.

The operational significance of entropy allows one to frame
entropic uncertainty relations in terms of guessing games (see
Secs. IILF and IV.D.1). These are simple yet insightful tasks
where one party is trying to guess the outcome of another
party’s measurements (see the description in Fig. 2). Such
games make it clear that the uncertainty principle is not just
abstract mathematics; rather it is relevant to physical tasks that
can be performed in a laboratory.

III. UNCERTAINTY WITHOUT A MEMORY SYSTEM

Historically, entropic uncertainty relations were first studied
for position and momentum observables. However, to keep the
discussion mathematically simple we begin here by introduc-
ing entropic uncertainty relations for finite-dimensional quan-
tum systems, and we defer the discussion of infinite
dimensions to Sec. V. It is worth noting that many physical
systems of interest are finite dimensional, such as photon
polarization, neutrino flavor, and spin angular momentum.

In this section, we consider uncertainty relations for a single
system A. That is, there is no memory system. We emphasize
that all uncertainty relations with a memory system can also be
applied to the situation without.

A. Entropy measures

Let us consider a discrete random variable X distributed
according to the probability distribution Py. We assume that X
takes values in a finite set X. For example, this set could be
binary values {0, 1} or spin states {1,]}. In general, we
associate the random variable X with the outcome of a
particular measurement. This random variable can take values
X =x, where x is a specific instance of a measurement
outcome that can be obtained with probability Py(X = x).
However, entropies depend only on the probability law Py and
not on the specific labels of the elements in the set X. Thus,
we will in the following just assume this set to be of the form
[d] :=={1,2,3,...,d}, where d = |X| stands for the cardinality
of the set X.

1. Surprisal and Shannon entropy

Following Shannon (1948), we first define the surprisal of
the event X = x distributed according to Py as —log Px(x),
often also referred to as information content. As its name
suggests, the information content of X = x gets larger when
the event X = x is less likely, i.e., when Py(x) is smaller. In
particular, deterministic events have no information content at
all, which is indeed intuitive since we learn nothing by
observing an event that we are assured will happen with
certainty. In contrast, the information content of very unlikely
events can get arbitrarily large. Based on this intuition, the
Shannon entropy is defined as

ZPX log (x) (14)
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and quantifies the average information content of X. It is
therefore a measure of the uncertainty of the outcome of the
random experiment described by X. The Shannon entropy is
by far the best-known measure of uncertainty, and it is the one
most commonly used to express uncertainty relations.

2. Rényi entropies

However, for some applications it is important to consider
other measures of uncertainty that give more weight to events
with high or low information content, respectively. For this
purpose we employ a generalization of the Shannon entropy to
a family of entropies introduced by Rényi (1961). The family
includes several important special cases which we discuss
individually. These entropies have found many applications in
cryptography and information theory (see Sec. VI) and have
convenient mathematical properties.5

The Rényi entropy of order « is defined as

1
l—a

Ho(X) = ——log Y Py(x)e, (15)

for @ € (0,1)U(1, ), and as the corresponding limit for
a€{0,1,0}. For a=1 the limit yields the Shannon
entropyf’ and the Rényi entropies are thus a proper generali-
zation of the Shannon entropy.

The Rényi entropies are monotonically decreasing as a
function of a. Entropies with a > 1 give more weight to
events with high surprisal. The collision entropy H ), = H> is
given by

Hcoll(X) = —lOg pcoll(X)’
where pcoll(x) = ZPX(x)2 (16)

is the collision probability, i.e., the probability that two
independent instances of X are equal. The min-entropy
H .., = H,, is of special significance in many applications.
It characterizes the optimal probability of correctly guessing
the value of X in the following sense:

Hmin(X) = —log pguess(X)’
where pgyess(X) == maxPy(x). (17)

Clearly, the optimal guessing strategy is to bet on the most
likely value of X, and the winning probability is then given by
the maximum in Eq. (17). The min-entropy can also be seen as
the minimum surprisal of X.

The Rényi entropies with @ < 1 give more weight to events
with small surprisal. Noteworthy examples are the max-
entropy H, == H;,, and

° Another family of entropies that are often encountered are the
Tsallis entropies (Tsallis, 1988). They have not found an operational
interpretation in cryptography or information theory. Thus, we defer
the discussion of Tsallis entropies until Sec. VIL.A.

It is a simple exercise to apply L’Hopital’s rule to Eq. (15) in the
limit @ — 1.
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Hy(X) = log [{x: Py(x) > 0}, (18)
where the latter is simply the logarithm of the support of Py.

3. Examples and properties

For all the Rényi entropies, H,(X) = 0 if and only if the
distribution is perfectly peaked, i.e., Px(x) =1 for some
particular value x. On the other hand, the distribution Py (x) =
|X|~! is uniform if and only if the entropy takes its maximal
value H,(X) = log |X].

The Rényi entropies can take on very different values
depending on the parameter @ as the following example,
visualized in Fig. 5, shows.

Example 6. Consider a distribution of the form

: for x =1,
Pyl) = o (19

so that we have

Hmin<X) =log2,

whereas  H(X) =log2 +3log(|X|-1)  (20)
is arbitrarily large as |X| > 2 increases. This is of particular
relevance in cryptographic applications where H ;,(X), and
not H(X), characterizes how difficult it is to guess a secret X.
As we will see later, H,,;, (X) precisely determines the number
of random bits that can be obtained from X.

Consider two probability distributions Py and Qy and
define d = max{|X|, |Y|}. Now let us reorder the probabilities

in Py into a vector Pf( such that Pf((l) > Pf((Z) > >
P,l((d), padding with zeros if necessary. Analogously arrange

the probabilities in Qy into a vector Q,i,. We say Py majorizes
Qy and write Py > Qy if

Zvjpi((x)zzy:Qi(x), forallyel[d.  (21)

Intuitively, the fact that Py majorizes Qy means that Py is
less spread out than Qy. For example, the distribution

entropy, in bits

L L L I L

0.5 1.0
«

T R SR ETIT]

15 20 40 o

FIG. 5. Rényi entropies of X with probability distribution as in
example 6 with |X| = 65 compared to a uniform random variable
U on 4 bits.
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{1,0,...,0} majorizes every other distribution, while the
uniform distribution {|X|~!, ..., |X|~'} is majorized by every
other distribution.

One of the most fundamental properties of the Rényi
entropies is that they are Schur concave (Marshall, Olkin,
and Arnold, 2011), meaning that they satisfy

H,(X) <H,Y) if Px> Oy. (22)
This has an important consequence. Let ¥ = f(X) for some
(deterministic) function f. In other words, Y is obtained by
processing X using the function f. The random variable Y is
then governed by the push forward Qy of Py, that is

> Py(x). (23)

X f(x)=y

Oy(y) =

Clearly Py<Qy and thus we have H,(X) > H,(Y). This
corroborates our intuition that the input of a function is at least
as uncertain as its output. If Z is just a reordering of X, or more
generally if f is injective, then the two entropies are equal.

Finally we note that if two random variables X and Y are
independent, we have

Hy(XY) = Ho(X) + Hy(Y). (24)
This property is called additivity.

B. Preliminaries

1. Physical setup

The physical setup used throughout the remainder of this
section is as follows. We consider a quantum system A that is
measured in either one of two (or more) bases. The initial state
of the system A is represented by a density operator p, or more
formally a positive semidefinite operator with unit trace
acting on a finite-dimensional Hilbert space A. The measure-
ments for now are given by two orthonormal bases of A. An
orthonormal basis is a set of unit vectors in A that are mutually
orthogonal and span the space A. The two bases are denoted
by sets of rank-1 projectors,

X={X)0¢]), and Z={|Z5/(Z]}.. (25)
We use projectors to keep the notation consistent as we later
consider more general measurements. This induces two
random variables X and Z corresponding to the measurement
outcomes that result from measuring in the bases X and Z,
respectively. These are governed by the following probability
laws, given by the Born rule. We have

Py(x) = OCT1paX7) and P, (2) = (Z|pa|Z5),  (26)
respectively. We also note that |X| = |Z| = d, which is the
dimension of the Hilbert space A.

2. Mutually unbiased bases

Before delving into uncertainty relations, let us consider
pairs of observables such that perfect knowledge about

Rev. Mod. Phys., Vol. 89, No. 1, January—March 2017

observable X implies complete ignorance about observable
Z. We say that such observables are unbiased or mutually
unbiased. For any finite-dimensional space there exist pairs of
orthonormal bases that satisfy this property. More precisely,
two orthonormal bases X and Z are mutually unbiased bases
(MUBs) if

1
X*| 72 2:_’
Xz =

Y ox,z. (27)
In addition, a set of n orthonormal bases {X;} is said to be a
set of n MUBSs if each basis X; is mutually unbiased to every
other basis X, with k # j, in the set.

Example 7. For a qubit the eigenvectors of the Pauli
operators,

ox = |0)(1] +[1){0], (28)
oy = —i0)(1] +i[1){0], (29)
oz = |0)(0] = [1){1], (30)

form a set of three MUBs.

In Appendix A we discuss constructions for sets of MUBs
in higher dimensional spaces. We also point to Durt et al.
(2010) for a review on this topic.

C. Measuring in two orthonormal bases

1. Shannon entropy

Based on the pioneering work by Deutsch (1983) and
following a conjecture of Kraus (1987), Maassen and Uffink
(1988) formulated entropic uncertainty relations for measure-
ments of two complementary observables. Their best-known
relation uses the Shannon entropy to quantify uncertainty. It
states that, for any state py,

H(X) + H(Z) > lOg% O (31)

where the measure of incompatibility is a function of the
maximum overlap of the two measurements, namely,

¢ =maxc,,, where c,, = [(X*[Z%)]%. (32)

Note that gyy is state independent, i.e., independent of the
initial state p,. This is in contrast to Robertson’s bound
in Eq. (2).

The bound gy is nontrivial as long as X and Z do not have
any vectors in common. In this case, Eq. (31) shows that for
any input density matrix there is some uncertainty in at least
one of the two random variables X and Z quantified by the
Shannon entropies H(X) and H(Z), respectively. In general
we have

<c<1 andhence 0<gyy <logd. (33)
For the extreme case that X and Z are MUBs, as defined

in Eq. (27), the overlap matrix [c,.] is flat: ¢,, = 1/d for all
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x and z, and the lower bound on the uncertainty then becomes
maximal

H(X)+ H(Z) > logd. (34)

Note that this is a necessary and sufficient condition, ¢ = 1/d
if and only if the two bases are MUBs. Hence, MUBs uniquely
give the strongest uncertainty bound here.

For general observables X and Z the overlap matrix is not
necessarily flat and the asymmetry of the matrix elements c,,
is quantified in Eq. (32) by taking the maximum over all x, z.
In order to see why the maximum entry provides some (fairly
coarse) measure of the flatness of the whole matrix, note that if
the maximum entry of the overlap matrix is 1/d, then all
entries in the matrix must be 1/d. Alternative measures of
incompatibility are discussed in Secs. III.C.5 and III.C.6.

2. Rényi entropies

Maassen and Uffink (1988) also showed that Eq. (31) holds
more generally in terms of Rényi entropies. For any «a, f >
1/2 with 1/a+ 1/ =2, we have

Ha(X) + H,;(Z) 2 gmu- (35)

It is easily checked that Eq. (31) in terms of the Shannon
entropy is recovered fora = f = 1. Fora — oo with f — 1/2
we get another interesting special case of Eq. (35) in terms of
the min- and max-entropy

Hmin(X) + Hmax(z) 2 qmu- (36)

Since the min-entropy characterizes the probability of cor-
rectly guessing the outcome X, it is this type of relation that
becomes most useful for applications in quantum cryptogra-
phy and quantum information theory (see Sec. VI).

3. Maassen-Uffink proof

The original proof of Eq. (35) by Maassen and Uffink
makes use of the Riesz-Thorin interpolation theorem [see,
e.g., Bergh and Lofstrom (1976)]. Recently an alternative
proof was formulated by Coles ef al. (2011, 2012) using the
monotonicity of the relative entropy under quantum channels.
The latter approach is illustrated in Appendix B, where we
prove the special case of the Shannon entropy relation (31).
The proof is simple and straightforward. Hence, we highly
recommend the interested reader to study Appendix B. The
Rényi entropy relation (35) follows from a more general line
of argument given in Appendix C.3.

4. Tightness and extensions

Given the simple and appealing form of the Maassen-Uffink
relations (35) a natural question to ask is how tight these
relations are. It is easily seen that if X and Z are MUBs,
then they are tight for any of the states p, = |X*)(X*| or
pa = |Z%)(Z%|. Thus, there cannot exist a better state-
independent bound if X and Z are MUBs. However, for
general orthonormal bases X and Z Egs. (35) are not
necessarily tight. This issue is addressed in the following
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sections, where we also note that Eq. (31) can be tightened for
mixed states p, with a state-dependent bound.

Going beyond orthonormal bases, these relations can be
extended to more general measurements, as discussed in
Sec. III.D. Finally, another interesting extension considers
more than two observables (which in some cases leads to
tighter bounds for two observables), as discussed in Sec. I1I.G.

5. Tighter bounds for qubits

Various attempts have been made to strengthen the Maassen-
Uffink bound, particularly in the Shannon entropy form (31).
Let us begin by first discussing improvements upon (31) in the
qubit case and then move on to arbitrary dimensions.

For qubits the situation is fairly simple since the overlap
matrix [c,.] depends only on a single parameter, which we
take as the maximum overlap ¢ = max, ,c,,. Hence, the goal
is to find the largest function of c that still lower bounds the
entropic sum. Significant progress along these lines was made
by Sanchez-Ruiz (1998), who noted that the Maassen-Uffink
bound ¢y could be replaced by the stronger bound

14+ +v2c—-1
gsr = hyin - )

Here hy,(p) == —plogp — (1 - p)log(l — p) denotes the
binary entropy.

Later work by Ghirardi, Marinatto, and Romano (2003)
attempted to find the optimal bound. They simplified the
problem to a single-parameter optimization as

. 1+ cos@ 1+ cos(a—0
e (L1920) (L =0

(37)

(38)

where a := 2 arccos y/c. While it is straightforward to perform
this optimization, Ghirardi, Marinatto, and Romano (2003)
noted that an analytical solution could be found only for
¢ 2 0.7. They showed that this analytical bound is given by

96 = 2hyin (D), c2 0.7, (39)

where

b= (HZ\/E) (40)

Figure 6 shows a plot of g, gsr, and gyy- In addition, this
plot also shows the bound g, obtained from a majorization
technique discussed in Sec. IILI

For pairs of Rényi entropies H, and Hy in Eq. (35), Zozor,
Bosyk, and Portesi (2013) and Abdelkhalek et al. (2015)
completely characterized the amount of uncertainty in the
qubit case.

6. Tighter bounds in arbitrary dimension

Extending the qubit result from Eq. (38), de Vicente and
Sanchez-Ruiz (2008) found an analytical bound in the large
overlap (i.e., large c) regime
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FIG. 6. Various literature bounds on entropic uncertainty for
qubit orthonormal bases as a function of the maximum overlap c.
The region above g, contains pairs (c, ¢) that can be achieved
by quantum mechanics.

qdavsr = 2hyin(b) for ¢ 2 0.7, (41)
which is stronger than the MU bound over this range, and they
also obtained a numerical improvement over MU for the
range 1/2 < ¢ <0.7.

However, the situation for d > 2 is more complicated than
the qubit case. For d > 2 the overlap matrix [c,,] depends on
more parameters than simply the maximum overlap c. Recent
work has focused on exploiting these other overlaps to improve
upon the MU bound. For example, Coles and Piani (2014b)
derived a simple improvement on gy that captures the role of
the second-largest entry of [c,.], denoted ¢,, with the bound

1 1 c
qep =log—+ - (1 = /c)log—. (42)
c 2 Cy
Consider the following qutrit example where gcp > gpu-
Example 8. Let d = 3 and consider the two orthonormal
bases X and Z related by the unitary transformation

1/v3 1/V3  1/V3
U= | 1/V2 0 -1/v2 |. (43)
1/V6 —/2/3 1/v6

We have gyy = log(3/2) ~ 0.58 while gcp ~ 0.64.
Recently, a bound similar in spirit to gcp was obtained by
Rudnicki, Puchata, and Zyczkowski (2014) of the form

1
drez = log - — log <b2 L2 - bz)). (44)
C C

Note that grpy > gyu. However, there is no clear relation
between gcp and grpz-

For arbitrary pairs of entropies H, and Hj;, Abdelkhalek
et al. (2015) gave conditions on the minimizing state of
Eq. (35). In particular, the minimizing state is pure and real.
For measurements in the standard and Fourier basis, further
conditions are obtained.
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7. Tighter bounds for mixed states

Notice that Eq. (31) can be quite loose for mixed states. For
example, if p, = 1/d, then the left-hand side of Eq. (31) is
2logd, whereas the right-hand side is at most logd. This
looseness can be addressed by introducing a state-dependent
bound that gets larger as p, becomes more mixed. The
mixedness of p, can be quantified by the von Neumann
entropy H(p,), which we also denote by H(A),, defined by

1
H(py) = —tr[palog ps] = Z;Lj logz, (45)
7 j

where an eigenvalue decomposition of the state is given by
pa =D iAjle;) (il Note that 0 < H(p,) <logd, where
H(p,) = 0 for pure states and H(p,) = log d for maximally
mixed states. In the literature, the von Neumann entropy is
sometimes also denoted using S(A) = H(A). However, here
we follow the more common convention in quantum infor-
mation theory. We note that the entropy never decreases when
applying a projective measurement X = {|X*)(X*|}, to p,,
that is,

Hipy) SH(X)p with Py(x) = (XpuX).  (46)
Equation (31) was strengthened for mixed states by Berta
et al. (2010) with the bound

H(X) + H(Z) 2 gmu + H(pa)- (47)

A proof of Eq. (47) is given in Appendix B; see also Frank and
Lieb (2012) for a direct matrix analysis proof. When X and Z
are MUBs, this bound is tight for any state p, that is diagonal
in either the X or Z basis.

D. Arbitrary measurements

Many interesting measurements are not of the orthonormal
basis form. For example, coarse-grained (degenerate) projec-
tive measurements are relevant to probing macroscopic
systems. Also, there are other measurements that are informa-
tionally complete in the sense that their statistics allow one to
reconstruct the density operator.

The most general description of measurements in quantum
mechanics is that of positive operator-valued measures
(POVMs). A POVM on a system A is a set of positive
semidefinite operators {X*} that sum to the identity
> . X*=1,. The number of POVM elements in the set
can be much larger or much smaller than the Hilbert space
dimension of the system. Physically, a POVM can be
implemented as a projective measurement on an enlarged
Hilbert space, e.g., as a joint measurement on the system of
interest with an ancilla system.

For two POVMs X = {X'}, and Z = {Z*}_, the general
Born rule now induces the distributions

Px(x) =tr[paX*] and Py(z) =tr[psZ?].  (48)
Krishna and Parthasarathy (2002) proposed an incompatibility
measure for POVMs using the operator norm. Namely, they
considered
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¢ =maxc,, with ¢, = |[[VX*VZ]?, (49)
X,Z

where || -|| denotes the operator norm (i.e., the maximal
singular value). Using this measure they generalized Eq. (31)
to the case of POVMs. That is, we still have

H(X) + H(Z) > log % (50)

but now using the generalized version of ¢ in Eq. (49). More
recently, Tomamichel (2012) noted that an alternative gener-
alization to POVMs is obtained by replacing ¢ with

e s > Xz } (51)
Z X

and it was conjectured that ¢’ always provides a stronger
bound than c.

Indeed this conjecture was proved by Coles and Piani
(2014b):

Hence, ¢’ < ¢, implying that log(1/¢’) provides a stronger
bound on entropic uncertainty than log(1/c¢).
Example 9. Consider two POVMs given by

LI (53)

For these POVMs we find ¢ = 1/4, but ¢/ = 3/16 is strictly
smaller.

Interestingly, a general POVM can have a nontrivial
uncertainty relation on its own. That is, for some POVM
X, there may not exist any state p, that has H(X) = 0.
Krishna and Parthasarathy (2002) noted this and derived the
single POVM uncertainty relation

¢ = min {max
X

, max
Z

ZZZX)CZZ

Z

< maxc,,. (52)
Z

X =27 = H0)(0]. [1){1

)

H(X) > —log max||X*||. (54)

In fact the proof is straightforward: simply apply Eq. (50) to
the case where Z = {1} is the trivial POVM. Equation (54)
can be further strengthened by applying this approach to ¢’ in
Eq. (51), instead of c.

E. State-dependent measures of incompatibility

In most uncertainty relations we have encountered so far,
the measure of incompatibility, for example, the overlap c, is
a function of the measurements employed but is independent
of the quantum state prior to measurement. The sole
exception is the strengthened Maassen-Uffink relation in
Eq. (47), where the lower bound is the sum of an ordinary,
state-independent measure of incompatibility and the
entropy of p,. In the following, we review some uncertainty
relations that use measures of incompatibility that are state
dependent.

Tomamichel and Hinggi (2013) showed that the Maassen-
Uftfink relation (31) also holds when the overlap c is replaced
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by an effective overlap, denoted c*. Informally, c¢* is given by
the average overlap of the two measurements on different
subspaces of the Hilbert space, averaged over the probability
of finding the state in the subspace. See Tomamichel and
Hinggi (2013) for a formal definition of c¢*. Here we discuss a
simple example showing that state-dependent uncertainty
relations can be significantly tighter.

Example 10. Let us apply one out of two projective
measurements, either in the orthonormal basis’

{10). 1), {I+).1-),

on a state p which has the property that L is measured with
probability at most e. The Maassen-Uffink relation (31)
gives a trivial bound as the overlap of the two bases is ¢ = 1
due to the vector | L) that appears in both bases. Still, our
intuitive understanding is that the uncertainty about the
measurement outcome is high as long as & is small. The
effective overlap (Tomamichel and Hénggi, 2013) captures
this intuition:

1)} or

L} (55)

cr=(l-el+e (56)

This formula can be interpreted as follows: with probability
1 — & we are in the subspace spanned by |0) and |1), where
the overlap is 1/2, and with probability ¢ we measure L and
have full overlap.

An alternative approach to state-dependent uncertainty
relations was introduced by Coles and Piani (2014b). They
showed that the factor gy = log(1/¢) in the Maassen-Uffink
relation (31) can be replaced by the state-dependent factor

q(pa) = max{qx(pa). qz(pa)} (57)
where
arlpn) = Y Pxlog——.  (s8)

and g, (p,) is defined analogously to gy (p, ), but with x and z
interchanged. Here Py (x) and c,, are given by Egs. (26) and
(32), respectively. Note that this strengthens the Maassen-
Uffink bound ¢(p,) > gy since averaging log(1/max.c,,)
over all x is larger than minimizing it over all x. In many cases
q(pa) is significantly stronger than gyy.

Recently, Kaniewski, Tomamichel, and Wehner (2014)
derived entropic uncertainty relations in terms of the effective
anticommutator of arbitrary binary POVMs X = {X’, X'}
and Z = {Z°, Z'}. Namely, the quantity

" = tr[p[Ox. 07].] = fr[p(0x 07 + 070x)].
with Oy =X’-X' and 0,=27°-27' (59)

binary observables corresponding to the POVMs X and Z,
respectively. In Eq. (59), we use the notation [-, -] to denote
the anticommutator. We note that ¢* € [—1, 1]. This results, for

"The diagonal states are |+) = (|0} £ [1))/v/2.
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example, in the following uncertainty relation for the
Shannon entropy:

H(X) + H(Z) > (%'”) . (60)

See Kaniewski, Tomamichel, and Wehner (2014) for
similar uncertainty relations in terms of Rényi entropies
as well as extensions to more than two measurements.
Finally, for measurements acting on qubits, we find that
|e*] =2¢ —1, and Eq. (60) hence reduces to the Sanchez-
Ruiz bound (37).

F. Relation to guessing games

Let us now explain in detail how some of the previous
relations can be interpreted in terms of a guessing game. We
elaborate on the brief discussion of guessing games in Sec. I;
see Fig. 2 for an illustration of the game.

The game is as follows. Suppose that Bob prepares system
A in state p,. He then sends A to Alice, who randomly
performs either the X or Z measurement. The measurement
outcome is a bit denoted as K, and Bob’s task is to guess K,
given that he received the basis choice denoted by © €
{6x. 607} from Alice.

We can rewrite the Maassen-Uffink relation (31) in the
following way such that the connection to the above guessing
game becomes transparent. Denote the standard basis on A as
{|k)}¢_,, and let Uy and Uy, respectively, be unitaries that
map this basis to the X and Z bases, i.e.,

X¥) = Ux|k) and [Z¥) = Uglk). (61)

Then, we have
JIH(K|® = 6x) + H(K|® = 67)] > 3qmu,  (62)

with the conditional probability distribution

Pxjo—o, (k) = (k|ULpUx|k) for k€ {l.....d}  (63)

and similarly for ;. Alternatively we can also write this as
H(K|®) > 1gyy with © € {6x.67}, (64)
in terms of the conditional Shannon entropy
H(K|®):= H(K®) — H(®) (65)
—H(K|® = 0x) + H(K|O = 05)]  (66)
of the bipartite distribution

Pyo(k.0)) = Xk|UlpU k) with k€ {1,....d},

je{x.z}. (67)

That is, each measurement labeled 9,» is chosen with equal
probability 1/2 and we condition the entropy on this choice.
Notice that the form in Eq. (64) is connected to the guessing
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game in Fig. 2. Regardless of the state p, that Bob prepares,
the uncertainty relation (64) implies that he will not be able to
perfectly guess K if gyy > 0. In this sense, the Maassen-
Uffink relation is a fundamental constraint on one’s ability to
win a guessing game.

Actually, in the context of guessing games, the min-entropy
is more operationally relevant than the Shannon entropy. For
example, a diligent reading of Deutsch (1983) reveals

pguess(X) : pguess(z) < bz’ (68)

for orthonormal bases X and Z, where b is defined in
Eq. (40). This relation gives an upper bound on the product
of the guessing probabilities (or, equivalently, a lower bound
on the sum of the min-entropies) associated with X and Z.
However, to make a more explicit connection to the guessing
game previously described, one wants an upper bound on
the sum (or average) of the guessing probabilities, namely,
the quantity

pguess(K|®) = %[pguess(Kle) = QX) + pguess(K‘G) = QZ)]

(69)

Indeed, the quantity (69) has an upper bound given by
(Schaftner, 2007)

Pouess(K|©) < b (70)

or equivalently

1
Hyin(K©) 2 log . (71)

Example 11. For the Pauli qubit measurements {ox, o7}
the min-entropy uncertainty relation (71) becomes

2V2
142

H i (K[©) 2 log (72)

We emphasize that p,,..(K|®) is precisely the probability
for winning the game described in Fig. 2. Hence, the entropic
uncertainty relation (71) gives the fundamental limit on
winning the game. Finally, we remark that Eq. (71) is stronger
than Deutsch’s relation (68), due to the following argument.
For the min-entropy, conditioning on the measurement choice
is defined as

Hoin(K1) = —log( $ 0 HealKi0-0) >

j=12

# Hmin(K®) — Hyip (®) (ll’l general), (73)
in contrast to the Shannon entropy in Eq. (65). However, in
analogy to Eq. (66), we have

/12
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due to the concavity of the logarithm. For a general discussion
of conditional entropies see Sec. IV.B.

G. Multiple measurements

So far we have considered only entropic uncertainty
relations quantifying the complementarity of two measure-
ments. However, there is no fundamental reason for restricting
to this setup, and in the following we discuss the more general
case of L measurements. We mostly focus on special sets of
measurements that generate strong uncertainty relations. This
is of particular interest for various applications in quantum
cryptography (see Sec. VI.C).

The notation introduced for guessing games in Sec. IIL.F is
particularly useful in the multiple measurements setting. In
this notation, for larger sets of measurements we are interested
in finding lower bounds of the form

H(K|®) > f(©.p4) >0 with ©€{6,.....0,}. (75)

where, similarly to Eq. (67),

1,
Pxo(k.0)) =:Z<k\U}pUj|k> with ke {1,....d},

je{l...L}. (76)

Again the left-hand side of Eq. (75) might alternatively be
written as

~

(K|® = 0,) (77)

H(K|©®) = Z

j=1

where the conditional probability distribution Pgjg—g, is
defined analogously to (63).

1. Bounds implied by two measurements

It is important to realize that the Maassen-Uffink relation
(31) already implies bounds for larger sets of measurements.
This is easily seen by just applying Eq. (31) to all possible
pairs of measurements and adding the corresponding lower
bounds.

Example 12. For the qubit Pauli measurements we find by
an iterative application of the tightened Maassen-Uffink
bound (47) for the measurement pairs {ox, oy}, {ox,07},
and {0y, 07} that

(K|®) % % (pA) Wlth @ (S {Jx,()'y,az}. (78)

The goal of this section is to find uncertainty relations that
are stronger than any bounds that can be derived directly from
relations for two measurements.

2. Complete sets of MUBs

Promising candidates for deriving strong uncertainty rela-
tions are complete sets of MUBs, i.e., sets of d + 1 MUBs
(which we know to exist only in certain dimensions, see
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Appendix A for elaboration). Consider the qubit case in the
following example.
Example 13. For the qubit Pauli measurements, we have
from Sanchez-Ruiz (1995, 1998) that
(K|®) % with © € {Gx,ﬂy,ﬁz} (79)

Moreover, from Coles et al. (2011) we can add an entropy
dependent term on the right-hand side,

(Kl@) % %H(pA) with © e {Ux,Gy,Uz}. (80)

Note that Eq. (80) is never a worse bound than Eq. (78)
which just followed from the tightened Maassen-Uffink
relation for two measurements (47). Moreover, Eq. (79)
becomes an equality for any eigenstate of the Pauli measure-
ments, while Eq. (80) becomes an equality for any state p, that
is diagonal in the eigenbasis of one of the Pauli measurements.

More generally, for a full set of d + 1 MUBs in dimension
d, Larsen (1990), Ivanovic (1992), and Sanchez-Ruiz (1993)
showed that

H(K|®) > log(d+1) -1 with
Oc{0....00) (81)

This is a strong bound since the entropic term on the left-hand
side can become at most log d for any number and choice of
measurements. Equation (81) can be derived from an uncer-
tainty equality for the collision entropy H_,. Namely, for any
quantum state p, on a d-dimensional system and a full set of
d+1 MUBs, we have (Ivanovic, 1992; Brukner and
Zeilinger, 1999; Ballester and Wehner, 2007)

Hen(K|) = log(d + 1) = log (2-wlo1) + 1)
with © € {6,.....0,,1}. (82)

where for the collision entropy the conditioning on the
measurement choice is defined as

Hon(K(©) =—log( 22— cott(K|©=0)) )

= Hcou(K@’) — He(®)  (in general).  (83)
See Sec. IV.B for a general discussion on conditional entropies.
Moreover, the quantum collision entropy is a measure for how
mixed the state p, is and defined as

Hcoll (pA) = lOg tr[P/za]- (84)

We emphasize that since Eq. (82) is an equality it is tight for
every state. By the concavity of the logarithm we also have, in
analogy to the Shannon entropy (77),

+
coll K|® S Z coll K|® 9) (85)
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Example 14. For the qubit Pauli measurements,
Eq. (82) yields Ho (K|©) = log 3 — log (2~Heon4) 4+ 1) with
0O € {ox,0y,07}.

The uncertainty relation (81) for the Shannon entropy
follows from Eq. (82) by at first only considering pure states,
i.e., states with H . (p4) = 0, and using the fact that the Rényi
entropies are monotonically decreasing as a function of the
parameter « (note that the collision entropy corresponds to
a = 2 and the Shannon entropy to @ = 1). For mixed states p4
we can extend this in a second step by taking the eigende-
composition and making use of the concavity of the Shannon
entropy. For later purposes we note that it is technically often
accessible to work with the collision entropy H.;; (even when
ultimately interested in uncertainty relations in terms of other
entropies).

The uncertainty relation (81) was improved for d even to
(Sénchez-Ruiz, 1995)

o> 1 [e(2) + (401 )1 (451)]

with © e {01, ey 9d+1}' (86)

Note that this relation generalizes the qubit result in Eq. (79) to
arbitrary dimensions.

Furthermore, the uncertainty relations for a full set of L =
d 4+ 1 MUBs can also be expressed in terms of the extrema of
Wigner functions (Wootters and Sussman, 2007; Mandayam,
Wehner, and Balachandran, 2010).

3. General sets of MUBs

At first glance, one might think that measuring in mutually
unbiased bases always results in a large amount of uncertainty.
Somewhat surprisingly, this is not the case. In fact, Ballester
and Wehner (2007) showed that for d = p? with p prime and
I € N, there existup to L = p’ + 1 many MUBs together with
a state p, for which

H(K|O) = 1"%1 with @€ {0,....0,}. (87)
That is, we observe no more uncertainty than if we had just
considered two incompatible measurements. While a certain
amount of mutual unbiasedness is therefore a necessary
condition for strong uncertainty relations, it is in general
not sufficient.

For smaller sets of L < d + 1 MUBs we immediately get a
weak bound from an iterative application of the Maassen-
Uffink relation (31) for MUBs,

log d
H(K|®)Z% with ©€{0,.....0,}. (88)

It turns out that the bound (88) cannot be improved much in
general, as the following example shows.

Example 15. In d = 3, Wehner and Winter (2010) showed
that there exists a set of L = 3 MUBs together with a state p,
such that H(K|®) = 1 for ® € {6, 0,,605}. This allows only a
relatively weak uncertainty relation. Wu, Yu, and Molmer
(2009) showed that
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H(K|©) > % ~0.89 with ©®€{60,,6,,0;}. (89)
This is slightly stronger than the lower bound from Eq. (88):

log3
H(K\@)z%zo.w with © € {0,.6,.6;}.  (90)

Generally this allows only relatively weak uncertainty
relations if L < d + 1. Wu, Yu, and Molmer (2009) showed
that

d-2Heloa) 1 _ 1
L-d
with © € {6, ...

Hcoll(K|®) 2 _IOg
O} (91)

This implies, in particular, the Shannon entropy relation
(Azarchs, 2004),

d+L -1

H(K|®) > —log L4

with ® € {0,,....,0;.}, (92)
see also Wehner and Winter (2010) for an elementary proof.
For comparison, with L = d = 3, Eq. (92) yields

H(K|®) > log~ 085 with © € {6,,6,,65}, (93)

which is between Eqgs. (88) and (89). Additional evidence
that general sets of less than d + 1 MUBs in dimension d only
generate weak uncertainty relations has been given by
DiVincenzo et al. (2004), Ballester and Wehner (2007),
and Ambainis (2010). Many of the findings also extend to
the setting of approximate mutually unbiased bases (Hayden
et al., 2004).

In terms of the min-entropy, Mandayam, Wehner, and
Balachandran (2010) showed that for measurements in L
possible MUBs the following two bounds hold:

igLZlein(Iﬂ@ = 0) 2 —log B <1 +d\}L1ﬂ 4

%XL:Hmm(K@ =0) > ~log E (1 +L—\/_gl)} (95)

0=1

Each of these is better in certain regimes, and the latter can
indeed be tight. They also study uncertainty relations for
certain classes of MUBs that exhibit special symmetry
properties. It remains an interesting topic to study uncertainty
relations for MUBs and in Sec. II1.G.8 we present some
related results of Kalev and Gour (2014).

4. Measurements in random bases

Another candidate for strong uncertainty relations is sets of
measurements that are chosen at random.® Extending on the
previous results of Hayden ef al. (2004), Fawzi, Hayden, and

8By “at random” we mean according to the Haar measure on the
unitary group; see, e.g., Hayden er al. (2004) for more details.
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Sen (2011) show that in dimension d there exist any number of
L > 2 measurements and a universal constant C (independent
of d and L) such that

H(K|®) > logd - <1 - % Clog(L)) —g(L)
with ® € {0,,....,0, }. (96)

with the correction term g(L) = O(log[L/log(L)]). Note
that for any set of L measurements there exists a state such that

H(K|®)§10gd-(l—%) with @ € {0,.....0,}. (97)

Hence, Eq. (96) is already reasonably strong. However, very
recently Eq. (96) was improved by proving a conjecture stated
by Wehner and Winter (2010). Namely, Adamczak et al.
(2016) showed that in dimension d there exist any number of
L > 2 measurements and a universal constant D (independent
of d and L) such that

H(K|®) > logd - (1 —%> -D
with © € {0;.....0,}. (98)

‘We emphasize that this matches the upper bound (97) up to the
constant D.

The downside with Egs. (96) and (98), however, is that the
measurements are not explicit. This is an issue for applica-
tions. In particular, it is computationally inefficient to sample
from the Haar measure. Fawzi, Hayden, and Sen (2011)
showed that the measurements in their Eq. (96) can be made
explicit and efficient if the number L of measurements is small
enough. More precisely, for n qubits (with n sufficiently large)
and ¢ > 0, there exists a constant C and a set of

L< (n/g)Clog(l/s) (99)

measurements generated by unitaries computable by quantum
circuits of size O(polylogn) such that

H(K|®) > n-(1-2¢)—

hbin(g) with © € {91,...,9L},

(100)

where hy,;, denotes the binary entropy. Equation (100) will be
the basis for the information locking schemes presented in
Sec. VI.LH.3.

5. Product measurements on multiple qubits

For applications in cryptography we usually need uncer-
tainty relations for measurements that can be implemented
locally, so-called product measurements. For example, for an
n-qubit state we are interested in uncertainty relations for the
set of 2" different measurements given by measuring
each qubit independently in one of the two Pauli bases oy
or oz. These are often called BB84 measurements due to
the work of Bennett and Brassard (1984). Using the
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Maassen-Uffink bound (31) for two measurements iteratively
we immediately find
H(K"\@")Zn% with ©" € {0;,...,0m}. (101)

This relation is already tight since there exist states that
achieve equality.

For cryptographic applications, the relevant measure is
often not the Shannon entropy but the min-entropy. The one
qubit relation (72) is easily extended to n qubits as

1 1
H i (K"|©") > —n - log (2 + m) ~n-0.22

with ©" € {60,.....00}. (102)

Again there exist states that achieve equality. More generally
Ng, Berta, and Wehner (2012) found for n qubit BB84
measurements and the Rényi entropy of order « € (1, 2],

a—log (1+21)
a—1
with ©" € {0,,....0},

H,(K"|©") 2
(103)

where the conditioning is given as (see Appendix cy

10g< Zzl a)/aH ,(K|®= H)) (104)

H,(K[©) =

Similarly, it can be shown for the set of 3" different
measurements given by measuring each qubit independently
in one of the three Pauli bases oy, oy, or o, that

H(K"|®") >n % with @" € {6,...,03}. (105)
Following Bruf3 (1998) these measurements are often called
six-state measurements. The uncertainty relation (105) is
the extension of Eq. (79) from 1 to n qubits. More general
relations in terms of Rényi entropies were again derived by
Ng, Berta, and Wehner (2012).

Approximate extensions of all these relations when the
measurements are not exactly given by the Pauli measure-
ments {ox,0y,07} have been discussed by Kaniewski,
Tomamichel, and Wehner (2014). Some extensions of the n
qubit relations previously discussed will be crucial for
applications in two-party cryptography (Sec. VI.C).

6. General sets of measurements

Liu, Mu, and Fan (2015) gave entropic uncertainty relations
for general sets of measurements. Their bounds are qualita-
tively different than just combining Eq. (31) iteratively and
sometimes become strictly stronger in dimension d > 2. For
simplicity we state only the case of L = 3 measurements (in
any dimension d > 2),

We emphasize that unlike in the unconditional case H,(K|©) #
H.,i1(K|®) and hence Eq. (83) is different from Eq. (104) for a = 2.
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1.1 2
H(K|®) > ~log—+=H
(K| )_30gm+3 (Pa)

with @ € {v(), v® v}, (106)
and the multiple overlap constant
m = max (Z max [e(vf, v3)] - (27, 1}2)), (107)
J

and {|v})}, {|v})}, and {|v})} are the eigenvectors of V(!
V@ and VO, respectively.

Example 16. For a qubit and the full set of three MUBs
given by the Pauli measurements this gives

H(K|®) 2%+%H(pA) with © € {GX76V’GZ}' (108)

This bound is, however, weaker than Eqs. (78) and (80). On
the other hand, of course the whole point of the bound (106) is
that in contrast to Egs. (78) and (80) it can be applied to any set
of L = 3 measurements (in arbitrary dimension).

See Liu, Mu, and Fan (2015) for a fully worked out
example where their bound can become stronger than any
bounds implied by two measurement relations.

7. Anticommuting measurements

As already noted in Sec. III.D, many interesting measure-
ments are not of the orthonormal basis form, but are more
generally described by POVMs. One class of such measure-
ments that generate maximally strong uncertainty relations are
sets of anticommuting POVMs with only two possible
measurement outcomes. In more detail, we consider a set
{X1,.... X} of binary POVMs X; = {X9, X} that generate
binary observables

0.

J = X? - X} with [0], Ok]+ = 26jk7 (109)

where, as in Eq. (59), [-, -], denotes the anticommutator.'° The

goal is then to find lower bounds on entropies of the form
H(K|®) with

1
PKg(k, Xj) = Ztr[Xi‘pA] Wlth k (S {0, 1},

je{l,...,L}. (110)
For simplicity we discuss only the case of n qubit states
for which we have sets of up to 2n+ 1 many binary
anticommuting POVMs."" Wehner and Winter (2008) then
showed that

°An example of such anticommuting sets in the case of L = 3 is
provided by the qubit Pauli operators {ox, oy, 07}

"This is obtained by the unique Hermitian representation
of the Clifford algebra via the Jordan-Wigner transformation
(Dietz, 2006).
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1
H(K|®)21—z with k€ {0, 1} (111)
for any subset ® < {X{, ..., Xy, } of size L. These relations
are tight and reduce for the L = 3 qubit Pauli measurements
{ox, 0y, 07} to the bound (79). Similarly Wehner and Winter

(2008) also found for the collision entropy

1 1
7 > He(K|© = X)) > 1 —log (1 + Z)’ (112)
X;€0

and the min-entropy

1 1
— Y Hpn(K|®=X;)>1-1log <1+>. (113)

These relations are again tight. Note, however, that the
average over the basis choice is outside of the logarithm,
whereas for the collision and the min-entropy the average is
more naturally inside of the logarithm as, e.g., in Egs. (82)
and (102).

Example 17. Forthe L = 3 qubit case Eq. (112) reduces to

1

3 > He(K|® =0;) > log3 -1, (114)
j=XY.Z

which, as seen by Eq. (85), is generally weaker than the

corresponding bound implied by (82),

Hcoll(K|®) = 10g3 -1

with O € {ox,0y,07}. (115)

Finally, see Ver Steeg and Wehner (2009) for the connection
of the uncertainty relations described in this section to Bell
inequalities.

8. Mutually unbiased measurements

In Sec. III.G.2 we discussed how full sets of d + 1 MUBs
give rise to strong uncertainty relations; see, e.g., Eq. (81).
However, for general dimension d we do not know if a full set
of d+1 MUBs always exists (see Appendix A for a
discussion). Kalev and Gour (2014) offered the following
generalization of MUBs to measurements that are not
necessarily given by a basis. Two POVMs X = {X*}¢_,
and Z = {Z*}¢_| on a d-dimensional quantum system are
mutually unbiased measurements (MUMs) if, for some
ke (1/d,1],

1
ep)=1 e[z =1 ulX'Z)= Yz (116)
/ -k
tr[ XX =80 -k + (1 —5”/)ﬂ Vo, x,  (117)

and similarly for z,z. In addition, a set of POVMs
{X4,....X,} is called a set of MUMs if each POVM X; is
mutually unbiased to each other POVM X, with k # j, in
the set.
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A straightforward example is again MUBs for which

x = 1."% The crucial observation of Kalev and Gour (2014)
is that in any dimension d a full set of d + 1 MUMSs exists (see
their paper for the explicit construction). Moreover, every full
set of d + 1 MUMs gives rise to a strong uncertainty relation,
H(K|®) >log(d + 1) —log (1 +«) (118)

with ® € {Xj, ..., X441}, where the notation is as introduced
in Eq. (110). This is in full analogy with Eq. (81) for a full set
of d+ 1 MUBs. Tighter and state-dependent versions of

Eq. (118) as well as extensions to Rényi entropies can be
found in Chen and Fei (2015) and Rastegin (2015b).

H. Fine-grained uncertainty relations

So far we have expressed uncertainty in terms of the von
Neumann entropy and the Rényi entropies of the probability
distribution induced by the measurement. Recall, however,
that any restriction on the set of allowed probability distri-
butions over measurement outcomes can be understood as
an uncertainty relation, and hence there are many ways of
formulating such restrictions. Thus, while generally the Rényi
entropies determine the underlying probability distribution of
the measurement outcomes uniquely,13 it is interesting to ask
whether we can formulate more refined versions of uncer-
tainty relations.

Suppose we perform L measurements labeled ® on a
preparation p,, where each measurement has N outcomes.
Fine-grained uncertainty relations (Oppenheim and Wehner,
2010) consist of a set of N' equations which state that for all
states we have

L
> Pe(®=0)Py(X =x5|0 =0) <Ly,
6=1

for all combinations of measurement outcomes xi,..., Xy
that are possible for the L different measurements. Here
Pg(® =0) is the probability of choosing a measurement
labeled ® =0 and 0 < ¢, <1

Note that whenever ¢,  , <1, then we observe some
amount of uncertainty, since it implies that we cannot
simultaneously have Py(X = x4|® = 6) =1 for all 8. We
remark that fine-grained uncertainty relations naturally give a
lower bound on the min-entropy since

L
2 —Hpin(X|©) _ Z Pg(® = O)maxPy(X = xy|® = 0) (120)
0=1 o

"The trivial example for which each POVM element is the
maximally mixed state 1/d is excluded because this would corre-
spond to k = 1/d.

PTo see this, note that the cumulant generating function of the
random variable Z = —log Px(X) can be expressed in terms of the
Rényi entropy of X, namely, g,(s) = H;,,(X). The cumulants of Z
and hence the distributions of Z and X are thus fully determined by
the Rényi entropy in a neighborhood around @ = 1.
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<-log max {, .. (121)
L

Xpyeoxp

However, fine-grained uncertainty relations are strictly more
informative and are also closely connected to Bell nonlocality
(Oppenheim and Wehner, 2010). While not the topic of this
survey, a number of extensions of these fine-grained uncer-
tainty relations are known (Dey, Pramanik, and Majumdar,
2013; Ren and Fan, 2014; Rastegin, 2015a).

1. Majorization approach to entropic uncertainty

Another way to capture uncertainty relations that relate
directly to entropic ones is given by the majorization
approach. Instead of sums of probabilities, we look here at
products. The idea to derive entropic uncertainty relations via
a majorization relation was pioneered by Partovi (2011) and
later extended and clarified independently by Friedland,
Gheorghiu, and Gour (2013) and Puchata, Rudnicki, and
Zyczkowski (2013). We recall the distributions Py and P,
resulting from the measurements X and Z, respectively, of
the state p, as in Eq. (48). We denote by P)L( and P% the
corresponding reordered vectors such that the probabilities are
ordered from largest to smallest.

1. Majorization approach

The main objective of this section is to find a vector that
majorizes the tensor product of the two probability vectors Pi
and P%. Namely, we are looking for a probability distribution

v={v(1),v(2),....v(]X||Z|)} such that'*

PL x Ph<v holds for all peS(H).  (122)

Such a relation gives a bound on how spread out the product

distribution P)i( X P% must be. A simple and instructive
example of a probability distribution v satisfying Eq. (122)
can be constructed as follows. Consider the largest probability
in the product distribution in Eq. (122), given by

1= Py(1) PH(1) = puess(X)  puess(2). (123)
We know that p; is always bounded away from 1 if the two
measurements are incompatible, since it cannot be that both
measurements have a deterministic outcome. For example,
recall that we have Eq. (68) from Deutsch (1983), which gives
P1 :pguess(X)'pguess(Z) sz =, (124)
where b was defined in Eq. (40). As such, it is immediately
clear that the vector v!' = {v;,1—-v,,0,...,0} satisfies
Eq. (122) and in fact constitutes a simple but nontrivial
uncertainty relation.
Going beyond this observation, the works of Friedland,
Gheorghiu, and Gour (2013) and Puchata, Rudnicki, and
Zyczkowski (2013) both present an explicit method to

construct a sequence of vectors {uk}‘kﬂl_l of the form

"“Recall the definition of majorization in Sec. III.A.3.
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v ={v,v,—vp, ..., 1 —1,0,...,0}, (125)
with K</~ that satisfy Eq. (122) and lead to tighter and
tighter uncertainty relations. The expressions for v, are given
in terms of an optimization problem and become gradually
more difficult as k increases. See these papers for details on
the construction.

2. From majorization to entropy

Entropic uncertainty relations for Rényi entropy follow
directly from the majorization relation due to the fact that the
Rényi entropy is Schur concave and additive. This implies that

P x Ph<v = H,(X) + H,(Z) > H (V). (126)
where V is a random variable distributed according to the law
v. These uncertainty relations have a different flavor than the
Maassen-Uffink relations in Eq. (35) since they provide a
bound on the sum of the Rényi entropy of the same parameter.
As a particular special case for @ = oo, we get back Deutsch’s
uncertainty relation (Deutsch, 1983),

H(X) + H(Z) 2 Huin(X) + Huyin(2) (127)

> —2logb =: gp, (128)
where the first inequality follows by the monotonicity of the
Rényi entropy in the parameter a. However, an immediate
improvement on this relation can be obtained by applying
Eq. (126) directly for @ = 1, which yields

H(X) + H(Z) > hyn(b?) =t Gy (129)

See Fig. 6 for a comparison of this to other bounds.

3. Measurements in random bases

An interesting special case for which a majorization-based
approach gives tighter bounds is for measurements in two
bases X and Z related by a random unitary. Intuitively, we
would expect such bases to be complementary. More pre-
cisely, for any measurement in a fixed basis X and Z related
by a unitary drawn from the Haar measure on the unitary
group, Adamczak et al. (2016) showed that for the Masseen-
Uffink bound (31) we have with probability going to 1 for
d — oo,

H(X)+ H(Z) > logd — loglogd. (130)
However, they also show that a majorization-based approach
yields the tighter estimate
H(X)+ H(Z) > logd — Cy, (131)
where C; > 0 is some constant. This is close to optimal
since we have that with probability going to 1 for d — o
(Adamczak et al., 2016),

logd — Coy > H(X) + H(Z). (132)
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for some constant C > 0. It is an open question to determine
the exact asymptotic behavior, i.e., the constant C € (Cy, C;)
that gives a lower and an upper bound.

4. Extensions

The majorization approach has also been extended to
cover general POVMs and more than two measurements
(Friedland, Gheorghiu, and Gour, 2013; Rastegin and
Zyczkowski, 2016). Moreover, Rudnicki, Puchata, and
Zyczkowski (2014) discussed a related method, based on
finding a vector that majorizes the ordered distribution
(PxUP,)¥, where PyUP, is simply the concatenation of
the two probability vectors. This yields a further improve-
ment on Eq. (129). Finally, an extension to uncertainty
measures that are not necessarily Schur concave but only
monotonic under doubly stochastic matrices was presented
by Narasimhachar, Poostindouz, and Gour (2016).

IV. UNCERTAINTY GIVEN A MEMORY SYSTEM

The uncertainty relations presented thus far are limited in
the following sense: they do not allow the observer to have
access to side information. Side information, also known as
memory, might help the observer to better predict the out-
comes of the X and Z measurements. It is therefore a
fundamental question to ask: does the uncertainty principle
still hold when the observer has access to a memory system? If
so, what form does it take?

The uncertainty principle in the presence of memory is
important for cryptographic applications and witnessing
entanglement (Sec. VI). For example, in quantum key dis-
tribution, an eavesdropper may gather some information, store
it in her memory, and then later use that memory to try to
guess the secret key. It is crucial to understand whether the
eavesdropper’s memory allows her to break a protocol’s
security, or whether security is maintained. This is where
general uncertainty relations that allow for memory are
needed.

Furthermore, such uncertainty relations are also important
for basic physics. For example, the quantum-to-classical
transition is an area of physics where one tries to understand
why and how quantum interference effects disappear on the
macroscopic scale. This is often attributed to decoherence,
where information about the system of interest S flows out to
an environment E (Zurek, 2003). In decoherence, it is
important to quantify the trade-off between the flow of
one kind of information, say Z, to the environment versus
the preservation of another kind of information, say X,
within the system S. Here one associates X with the “phase”
information that is responsible for quantum interference.
Hence, one can see how this ties back into the quantum-to-
classical transition, since loss of X information would
destroy the quantum interference pattern. In this discussion,
system E plays the role of the memory, and hence uncer-
tainty relations that allow for memory are essentially
uncertainty relations that allow the system to interact with
an environment. We discuss this more in Sec. VLF, in the
context of interferometry experiments.
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A. Classical versus quantum memory

With this motivation in mind, we now consider two
different types of memories. First we discuss the notion of
a classical memory, i.e., a system B that has no more than
classical correlations with the system A that is to be measured.

Example 18. Consider a spin-1/2 particle A and a (macro-
scopic) coin B as depicted in Fig. 7(a). Suppose that we flip
the coin to determine whether or not we prepare A in the spin-
up state |0) or the spin-down state |1). Denoting the basis
Z ={|0),|1)} we see that B is perfectly correlated to this
basis. That is, before the measurement of A the joint state is

pap =5(10)(0ly ® p + [1)(1]s ® pi).  (133)
where tr[p%pL] = 0. Hence, if the observer has access to B
then he can perfectly predict the outcome of the Z measure-
ment on A. On the other hand, if we keep B hidden from the
observer, then he can only guess the outcome of the Z
measurement on A with probability 1/2.

We conclude from example 18 that indeed having access to
B reduces the uncertainty about Z. However, notice that a
classical memory B provides no help to the observer if he
tries to guess the outcome of a measurement on A that is
complementary to Z. Consider now a more general memory,
one that can have any kind of correlations with system A
allowed by quantum mechanics. This is called a quantum
memory or quantum side information (and includes
classical memory as a special case). We remark that quantum
memories are becoming an experimental reality [see, e.g.,
Julsgaard er al. (2004)].

Example 19. Consider two spin-1/2 particles A and B that
are maximally entangled, say in the state

_ L

W) ap \/E(‘OO>AB + 1) ag)- (134)

This is depicted in Fig. 7(b). As with the classical memory in
example 18, giving the observer access to B allows him to
perfectly predict the outcome of a Z measurement on A (by
just measuring the Z observable on B). But in contrast to the

N

(a) Ilustration showing an electron spin whose Z
component is correlated to a classical coin.

(b) Tllustration showing an electron spin whose Z and X
components are respectively correlated to the Z and X
components of another electron spin, i.e., a quantum memory.

FIG. 7. Comparison of classical and quantum memory.
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case with classical memory, B can also be used to predict the
outcome of a complementary measurement X = {|+), |-)},
with |+) = (]0) & [1))/+/2 on A. This follows by rewriting
the maximally entangled state (134) as

1

W) an \/5(| ++)ap + 1= =)ap) (135)

which implies that the observer can simply measure the X
basis on B to guess X on A.

The idea described in example 19 dates back to the famous
EPR paper (Einstein, Podolsky, and Rosen, 1935) and raises
the question of whether we can still find nontrivial bounds on
the uncertainty of complementary measurements when con-
ditioning on quantum memory. In the rest of Sec. IV we
analyze this interplay between uncertainty and quantum
correlations quantitatively and present entropic uncertainty
relations that allow the observer to have access to (quantum)
memory. For that we first introduce measures of conditional
entropy.

B. Background: Conditional entropies

1. Classical-quantum states

Our main goal here is to describe the entropy of a measured
(and thus classical) random variable from the perspective of
an observer who possesses a quantum memory. For this
purpose, consider a classical register correlated with a
quantum memory, modeled by a joint classical-quantum state

pxs = Y Px(x)[x)(xlx ® p- (136)

Here py is the quantum state of the memory system B
conditioned on the event X = x. Formally, quantum states
or density operators are positive semidefinite operators with
unit trace acting on the Hilbert space B. In order to represent
the joint system XB in the density operator formalism we also
introduced an auxiliary Hilbert space X with fixed orthonor-
mal basis {|x)y},-

2. Classical-quantum entropies

The interpretation of the min-entropy from Eq. (17) in terms
of the optimal guessing probability gives a natural means to
generalize the min-entropy to the setting with quantum
memory. Clearly, an observer with access to the quantum
memory B can measure out B to improve his guess. The
optimal guessing probability for such an observer is then
given by the optimization problem

Pguess(X|B) = Igl{ix zx: Px (x)ur[Xgpg], (137)

where Xjp is a POVM on B. Consequently, the conditional
min-entropy is defined as (Renner, 2005; Konig, Renner, and
Schaffner, 2009)

Hmin(X|B) = _logpguess(XlB)' (138)
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This is our first measure of conditional entropy. It quantifies
the uncertainty of the classical register X from the perspective
of an observer with access to the quantum memory (or side
information) B. The more difficult it is to guess the value of X,
the smaller is the guessing probability and the higher is the
conditional min-entropy.

The collision entropy from Eq. (16) can likewise be inter-
preted in terms of a guessing probability. Consider the following
generalization of the collision entropy to the case where the
observer has a quantum memory B (Buhrman et al., 2008):

Heon(X|B) = —log piess (X |B). (139)
Here the pretty good guessing probability is given by
Phies(X[B) =Y Px(x)u[lp3], (140)
X

where IT}, = Py (x)p,}l/ 2p’l§pl§l/ ?. The IT}, are POVM elements
corresponding to the so-called pretty good measurement. The
name is due to the fact that this measurement is close to optimal,
in the sense that (Hausladen and Wootters, 1994)
péuess(X|B) Spgﬁeﬁs(‘)qB) Spguess(X‘B)' (14])
Thatis, if the optimal guessing probability is close to 1, then so is
the pretty good guessing probability. Hence, H.;(X|B) quan-
tifies how well Bob can guess X given that he performs the pretty
good measurement on B. In particular this also implies that
Hmin(X|B) SHCOH(X‘B) SzI_Imm()qB) (142)
Finally, consider the Shannon entropy H(X), whose quan-
tum counterpart H(p) is the von Neumann entropy as defined
in Eq. (45). The von Neumann entropy of X conditioned on a
quantum memory B is defined as

H(X|B) = H(pxg) — H(ps), (143)

where pyp is given by Eq. (136), and

pp = trx[pxp] = ZPX(X)P}(;- (144)

Although H(X|B) does not have a direct interpretation as a
guessing probability, it does have an operational meaning in
information theory. For example, if Alice samples from the
distribution Py and Bob possesses system B, then H(X|B) is
the minimal information that Alice must send to Bob in order
for Bob to determine the value of X. [More precisely, H(X|B)
is the minimal rate in bits per copy that Alice must send to Bob
in the asymptotic limit of many copies of the state pyp
(Devetak and Winter, 2003).]

3. Quantum entropies

The classical-quantum conditional entropy is merely a
special case of the quantum conditional entropy. It is useful
to introduce the latter here, since the quantum conditional
entropy will play an important role in the following.
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In the simplest case, the von Neumann conditional entropy
of an arbitrary bipartite state p,5 with pg = tr,(p,p) takes the
form

H(A|B) = H(psp) — H(pp). (145)
We remark that, in general, fully quantum conditional entropy
can be negative.'5 This is a signature of entanglement. In fact,
the quantity —H(A|B), commonly known as coherent infor-
mation, provides a lower bound on the distillable entangle-
ment (Devetak and Winter, 2005). We discuss this connection
further around Eq. (330).

The fully quantum min-entropy also has a connection to
entanglement. Namely, it can be written as

Hyin(A[B) = —log[d, - F(A|B)], (146)

where

F(A[B) = S%iﬁ,F((z ® E)(pag)s |Pan) (Pan])  (147)

with the fidelity

Fio) = (o] 7))

from (Uhlmann, 1985). Here |¢44/) is a maximally entangled
state of dimension |A|, and the maximization over all
quantum channels £ that map B to A’. One can think of
F(A|B) as the recoverable entanglement fidelity. In that
sense, —H ;,(A|B) quantifies how close the state is to a
maximally entangled state.

The fully quantum collision entropy can also be related to a
recoverable entanglement fidelity in close analogy to the
earlier discussion for the classical-quantum case. Namely, we
have (Berta, Coles, and Wehner, 2014)

Hen(AlB) = —logldy - FP(A[B)],  (148)

where

FP2(A[B) :== F((Z ® &) (pas).

ban)(Panl).  (149)

Here £P¢ is the pretty good recovery map, whose action on an
operator O is given by
£7%(0) = (try[(1® p5 2 0p5 *)pws))".  (150)

where (-)7 denotes the transpose map, and p,p = pap, With
system A’ being isomorphic to system A In analogy to

">This should not concern us further here; a consistent interpre-
tation of negative entropies is possible in the context of quantum
information processing (Horodecki, Oppenheim, and Winter, 2006)
and also in thermodynamics (del Rio et al., 2011).

"°One can verify that £P¢ is a valid quantum operation because it
is a completely positive and trace-preserving map (assuming pp is
full rank).
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Eq. (141), the pretty good recovery map is close to optimal
(Barnum and Knill, 2002),

F%(A|B) < FP2(A|B) < F(A|B). (151)
As in the classical case, these conditional entropies emerge as

special cases of Rényi entropies (Miiller-Lennert et al., 2013).
We discuss this connection in Appendix C.

4. Properties of conditional entropy

Section III.A.3 discussed properties of entropies, which
are special cases of conditional entropies with trivial con-
ditioning systems. Here we mostly discuss properties of the
conditional von Neumann entropy H(A|B) and note only that
similar properties also hold for other conditional entropies
such as H,(A|B) and H(A|B) (or more generally Rényi
entropies).

First, the conditional entropy reduces to the unconditional
entropy for product states. That is, for bipartite states of the
form pap = ps ® pp, we have H(A|B) = H(A). Second, note
that the entropy of a classical-quantum state is non-negative,

H(X|B) >0 for X a classical register. (152)
In contrast, as noted previously, the fully quantum entropy
H(A|B) can be negative.

A fundamental property is the so-called data-processing
inequality. It says that the uncertainty of A conditioned on
some system B never goes down if one processes system B,
i.e., acts on B with a quantum channel £: B — B’. That is
(Lieb and Ruskai, 1973),

H(A|B) < H(A|B'). (153)
This includes the case where system B = B, B, is bipartite and
the processing corresponds to discarding a subsystem, say B,.
In this case the data-processing inequality takes the form
H(A|B) < H(A|B,). This inequality is intuitive in the sense
that having access to more information can never increase the
uncertainty.

Another useful property of conditional entropies is related
to the monogamy of entanglement. This corresponds to the
idea that the more A is entangled with B the less A is entangled
with a purifying system C. Suppose that C is a system that
purifies pap, i.e., papc = |w){w|. Then, we have

H(A|B) = —H(A|C). (154)
Typically one associates entanglement with a negative condi-
tional entropy, and indeed as discussed previously the coher-
ent information (the negative of the conditional entropy) lower
bounds the distillable entanglement. In this sense, the relation
in Eq. (154) captures the intuition of monogamy of entangle-
ment. It implies that if p,z has a negative conditional entropy,
then p, - must have a positive conditional entropy. So there is
a trade-off between the entanglement present in p,p and
n pac.

The relation in Eq. (154) is called the duality relation, as it
relates an entropy to its dual entropy. As we have seen the
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von Neumann entropy is dual to itself but in general the
duality relation involves two different entropies. For example,
the min-entropy is dual to the max-entropy,

Hmax(A|B) = _Hmin(A|C>' (155)
We take Eq. (155) as the definition of the max-entropy,
although an explicit expression in terms of the marginal p,p
can be derived (Konig, Renner, and Schaffner, 2009). More

generally, the duality relation for the Rényi entropy family is
given in Appendix C.2.

C. Classical memory uncertainty relations

We now have all the measures at hand to discuss uncertainty
relations that allow for a memory system. Naturally, we begin
with the simplest case of a classical memory. It turns out that
uncertainty relations that allow for classical memory are often
easy to derive from the uncertainty relations without memory,
particularly for the Shannon entropy (Hall, 1995). Consider
the conditional Shannon entropy, which can be written as

H(X|Y) = H(XY) = H(Y) = Y Py(H(X|Y = y). (156)

Now consider some generic Shannon entropy uncertainty
relation for measurements X" and quantum states p,:

D H(X,) > q where Py (x) = (X}|p4[%})

n

and ¢ > O state independent. (157)
The goal is to extend this to quantum-classical states p,y,
where the classical memory Y holds some information about
the preparation of the quantum marginal

pay = > _Py(y)ps ® [»)0ly (158)

y

with distributions Py y(x,y) = Py(y)(X;|p}|X:). However,
assuming that the uncertainty relation (157) holds for all
quantum states, it holds, in particular, for each conditional
state p’, associated with ¥ =y in the classical memory Y.
Averaging over y gives

ZPy(y)ZH(XnIY =y) 2 ZPy(y)q =q. (159)

Hence, we find by Eq. (156) that

Y HX,)2q=)Y HX,|Y)2q.  (160)

n

That is, any Shannon entropy uncertainty relation of the form
(157) implies a corresponding uncertainty relation in terms of
the conditional Shannon entropy of the form (160). Note that
the conditional version (160) even provides a stronger bound,
since by the data-processing inequality (153) conditioning on
side information can only reduce uncertainty.
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Example 20. Consider a bipartite state p,p, where Alice
will measure system A in one of two bases X or Z and Bob
will measure system B in the basis Y. Then, the Maassen-
Uffink relation (31) implies

H(X|Y) + H(Z|Y) = quu. (161)
for the distribution
Pxy(x,y) = (X* @ Y¥[p,p[X* @ YY), (162)

and analogously Pzy(z,y).

It is worth noting that the classical memory Y can be
considered multipartite, say, of the form Y =Y Y, ---Y,
(Cerf et al., 2002; Renes and Boileau, 2009). Since by the
data-processing inequality (153) discarding subsystems of Y
can never reduce the uncertainty, Eq. (160) implies that

ZH(Xn) >2q= ZH(anyn) 2q. (163)

n

Example 21. Consider a tripartite state p4pc, where Alice
will measure system A in one of two bases X or Z, Bob will
measure system B in the basis Yp, and the third party Charlie
will measure system C in the basis Y. Then, the Maassen-
Uffink relation (31) implies

H(X|Yp) + H(Z|Y¢) 2 qmu- (164)
This relation is reminiscent of the scenario in quantum key
distribution. Namely, if Alice and Bob verify that H(X|Y ) is
close to zero, then Eq. (164) implies that Charlie is fairly
ignorant about Z. That is, H(Z|Y ) is roughly gy or larger.
We emphasize, however, that Eq. (164) cannot be used to
prove security against general quantum memory eavesdrop-
ping attacks (see Sec. VL.B).

D. Bipartite quantum memory uncertainty relations

1. Guessing game with quantum memory

Let us now make explicit what the guessing game (see
Sec. IILLF) looks like when we allow quantum memory.
Specifically, the rules of the game now allow Bob to keep
a quantum memory system in order to help him guess Alice’s
measurement outcome. This is illustrated in Fig. 8.

(1) Bob prepares a bipartite quantum system AB in a state
pap- He sends system A to Alice while he keeps
system B.

(2) Alice performs one of two possible measurements X
or Z on A and stores the outcome in the classical
register K. She communicates her choice to Bob.

(3) Bob’s task is to guess K.

Note that in this game, Bob can make an educated guess based
on his quantum memory B.

Example 22. Let the A system be one qubit and Alice’s
two measurements given by ox and 6. Then Bob can win the
game with probability 1 by preparing the maximally entangled
state and using the strategy from example 19.
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FIG. 8. The guessing game in the presence of a quantum
memory system. First, Bob prepares AB in state p,p and then
sends system A to Alice. Second, Alice performs either the X or
Z measurement on A and then announces the measurement
choice © to Bob. Bob’s task is to correctly guess K. The question
is thus: how uncertain is Bob about Alice’s measurement out-
come K, given that he has access to B and ©?

This example illustrates the power of a quantum memory,
and, in particular, of one that is entangled with the system
being measured. At first sight, this might seem to violate the
usual notion of the uncertainty principle. However, it does not.
What it illustrates is that the usual formulations of the
uncertainty principle, such as the Robertson relation (2) or
the Maassen-Uffink relation (31), are not about conditional
uncertainty. Equations (2) and (31) are perfectly valid but
limited in this sense.

2. Measuring in two orthonormal bases

Let us first discuss how the Maassen-Uffink relation (31)
can be extended to the setup when the observer has a quantum
memory. Note that examples 19 and 22 illustrate that the
bound in the uncertainty relation must become trivial in the
case where Bob’s memory is maximally entangled to Alice’s
system. On the other hand, we know that the bound must be
nontrivial when Bob has no memory, since this corresponds to
the situation covered by Eq. (31). Likewise if Bob has a
memory that is only classically correlated to Alice’s system,
then we already saw in Eq. (161) that the Maassen-Uffink
relation can be extended. Therefore, it becomes clear that we
need a state-dependent extension: a bound that becomes
weaker as Bob’s memory is more entangled with Alice’s
system. Indeed, Berta er al. (2010) proved the following
uncertainty relation. For any bipartite state p,p and any
orthonormal bases X and Z,

H(X|B) + H(Z|B) > quu + H(A|B).  (165)
with gy as in Eq. (31). Here the conditional entropy H(X|B)
is evaluated on the classical-quantum state

pxp = Y| (xly ® (X] ® 1g)pan(X*) ® Tp), (166)

and similarly for H(Z|B). The classical-quantum conditional
entropies H(X|B) and H(Z|B) quantify Bob’s uncertainty
about X and Z, respectively, given that Bob has access to the
quantum memory B.

The quantity H(A|B) on the right-hand side of Eq. (165)
makes the bound state dependent. We already mentioned
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around Eq. (145) that —H(A|B) is a quantifier of the
entanglement present in p,p. For maximally entangled states
we have —H(A|B) = logd,, whereas for all separable (i.e.,
nonentangled) states we have H(A|B) > 0.
Example 23. Let us explore in more detail how the bound
(165) behaves for some illustrative cases.
(1) For maximally entangled states we get
gmu + H(A[B) = gy —logd, <0, (167)
and hence the bound becomes trivial. This is as
expected from the guessing game example discussed
in Sec. IV.D.1.
(2) For the case when Bob has no memory (i.e., B is
trivial), Eq. (165) reduces to (47),
H(X) + H(Z) > gy + H(ps).  (168)
This is the strengthened Maassen-Uffink relation for
mixed states.
(3) If Bisnotentangled with A (i.e., the state is separable),
then H(A|B) > 0. Hence, we obtain
H(X|B) + H(ZIB) 2 gy.  (169)
This last example illustrates that Eq. (165) has applications
for entanglement witnessing. More precisely, note that by the
data-processing inequality (153), Eq. (165) also implies
H(X|Yp) + H(Z|Wg) 2 guu + H(A|B),  (170)
with Yp and Wy measurements on B. Now violating the gy,
lower bound in Eq. (169) implies that the state p,z must have
been entangled. We discuss this in detail in Sec. VI.D.

Using the following extension of the notation from
Sec. IIL.F to quantum memory:

pren =33 3 (ks ® Li)le

=Xz
® (<k|U,‘ ® 1p)pap(Ujlk) ® 15),  (171)

we can rewrite Eq. (165) as
H(K|B®) 2 j[quy + H(A|B)]. (172)

This is the extension of Eq. (64) to quantum memory. Writing
the relation in this way also makes a connection to the
guessing game discussed in Sec. IV.D.1; see Fig. 8. We point
to Sec. IV.D.7 for a partial extension of Eq. (172) in terms of
the more operational min-entropy.

Let us take a step back and look at the history that led up to
the uncertainty relation (165). Arguably the first work on
uncertainty relations with quantum memory was by Christandl
and Winter (2005). Their formulation was restricted to bases
that are related by the Fourier matrix but their work captures
similar intuition as Eq. (165). The main difference, however, is
that their relations are formulated for quantum channels rather
than for quantum states. We discuss quantum channel uncer-
tainty relations in Sec. IV.G.
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Renes and Boileau (2009) gave the first quantum memory
uncertainty relation in terms of the quantum state perspective.
However, instead of bipartite states p,p, they considered
tripartite states pABC.” We discuss entropic uncertainty
relations for tripartite states in Sec. IV.E. Moreover, there is
a close connection between tripartite and bipartite uncertainty
relations. In fact, as discussed in Sec. IV.E, Renes and Boileau
(2009) conjectured a tripartite uncertainty relation that is
equivalent to Eq. (165). Section IV.E also discusses the proof
of quantum memory uncertainty relations such as Eq. (165)
and notes that the tripartite formulation of (165) naturally
generalizes to the Rényi entropy family.

3. Arbitrary measurements

Here we discuss some generalizations of Eq. (165) for
arbitrary measurements. Recall from Sec. IIL.D that the
Maassen-Uffink relation generalizes to POVMs with the
overlap ¢ given by Eq. (49). In contrast, Eq. (165) holds
with ¢ as in (49) if one of the POVMs has rank-one elements
(Coles et al., 2011), but it does not hold for general POVMs.
This can be remedied in two ways. The approach by Frank and
Lieb (2013a) leads to a relation of the form (165) using a
weaker complementarity factor. We have

H(X|B) + H(Z|B) > 105% +H(A|B),  (173)

where

¢ = max tr[X*Z%].
X,z

(174)

Note that ¢” > ¢ in general and that ¢” reduces to ¢ for
measurements in bases. However, one may argue that the form
(173) and (174) is not the most natural one if we consider
general projective measurements or POVMs. This is best
explained by means of an example (Furrer et al., 2014).

Example 24. Consider a quantum system A comprised of
two qubits A; and A,, where A, is maximally entangled with a
second qubit B, and A, is in a fully mixed state in product with
Ay and B. We employ rank-two projective measurements X,
and Z,, which measure A; in two MUBs and leave A, intact.
Analogously, we employ Xy, and Z,, which measure A, in
two MUBs and leave A, intact. Evaluating the terms of
interest for the measurement pairs {Xy . Z, } and {X,,,Z,,}
yields ¢ =1/2 and ¢” =1 in both cases. Moreover, we
find that

H(A|B)=H(A||B)+ H(A)) =-1+1=0. (175)

Hence, the right-hand side of the Frank and Lieb relation (173)
vanishes for both measurement pairs. Indeed, if the maximally
entangled system A; is measured, we find that

"More precisely, Renes and Boileau (2009) established a bipartite
uncertainty relation—a special case of Eq. (165) where the X and Z
bases are related by the Fourier matrix. But they focused their
discussion primarily on the tripartite formulation.
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H(X|B) + H(Y|B) =0, (176)
and the bound in Eq. (173) becomes an equality for the
measurement pair {X, ,Z, }. On the other hand, if A, is
measured instead, we find that

H(X|B) + H(Y|B) = 2. (177)

and the bound is far from tight for the measurement
pair {Xy,,Z,, }.

Examining this example, it is clear that the expected
uncertainty strongly depends on which of the two systems
is measured. More generally, it depends on how much
entanglement is consumed in the measurement process.
However, this information is not taken into account by the
overlaps ¢ or ¢”, nor by the entanglement of the initial state as
measured by H(A|B). Example 24 suggests that Eq. (165) can
be generalized by considering the difference in entanglement
of the state before and after measurement. In fact, Tomamichel
(2012) showed the bipartite uncertainty relation

1
H(X|B) + H(Z|B) > log  + H(A|B)

—min{H(A'|XB),H(A'|ZB)}, (178)
with ¢’ given by Eq. (51). The entropy H(A'|XB) is evaluated

for the postmeasurement state
PxA'B = Z|x> (xly ®
X

and similarly for H(A'|ZB). (We use A’ = A to denote the
system A after measurement to avoid confusion.) Notably the
term H(A'|XB) vanishes for a measurement given by a basis
since in this case the state of A’ is pure conditioned on X.

Example 24 (continued). It is straightforward to see that
if Ay (A,) is measured, the average entanglement left in the
postmeasurement state measured by the von Neumann
entropy is given by H(A,|B) [H(A,|B)]. Hence, Eq. (178)
turns into

(X4 ® Tp)pas(Xi ® Tp),  (179)

H(X|B) + H(Y|B) > log% + [H(A|B) — H(A'|B)],  (180)

where A’ corresponds to A, (A;). This inequality is tight for
both measurements.

4. Multiple measurements

The basic goal here is to lift some of the relations in
Sec. III.G to quantum memory. A general approach for
deriving such relations has been provided by Dupuis,
Fawzi, and Wehner (2015). As in the unconditional case
(cf. Sec. III.G.1), relations for two measurements already
imply bounds for larger sets of measurements. For example,
supposing A is a qubit and considering the Pauli measure-
ments on A, we find by the simple iterative application of the
bound (165) for the measurement pairs {ox, oy}, {ox,07},
and {oy,0,} that
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H(K|B®) > 5+ ;H(A|B), (181)
with ® € {ox, 6y, 07 }. Here we use the following extension

of the notation from Sec. III.G to quantum memory:

pron=3 3 3 Wk ® Llo

k=12 j=XYZ

® (<k|U; ® 1p)pap(Ujlk) ® 1g).  (182)

Note that alternatively the left-hand side of Eq. (181) might
also be written as

H(K|BO) = Y{H(K|BO = o) + H(K|BO = ov)
+ H(K[B® = 07)]. (183)
where
. T
PKB|O=0y = Z k) (k| ® ((k|Uy @ 1p)pap(Uxlk) @ 1p),
=12

(184)

and similarly for oy, 6. The goal in the following sections
is to find uncertainty relations that are stronger than any
bounds that can be directly derived from relations for two
measurements.

5. Complex projective two-designs

Berta, Coles, and Wehner (2014) showed that the uncer-
tainty equality (82) in terms of the collision entropy for a full
set of MUBSs also holds with quantum memory. That is, for
any bipartite state p,p with a full set of d + 1 MUBs on the
d-dimensional A system,

Heon (K|BO) = log(d + 1) — log (2 (A8 1. 1), (185)
with ©® € {6, ...,0,,,}, Here, as in Eq. (171), we use the
notation

d d+l
PKoB = ZZ (klx ® 1) le

k: j=1

® (kU ® 13)pap(U,lk) ® 1).  (186)

Example 25. For the qubit Pauli measurements Eq. (185)

yields
H1(K|B®) = log 3 — log (2~ Hean(41B) 4 1)
with © € {Ux,o'v,o'z}. (187)

Since the collision entropy has an interpretation in terms of
the pretty good guessing probability (139),

Hq(X|B) = —10g piiess(X|B). (188)

and the pretty good recovery map (148),
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Heo(A|B) = —logld, - FPE(A|B)], (189)

the uncertainty equality (185) can be understood as an
entanglement-assisted game of guessing complementary meas-
urement outcomes (as described in Sec. IV.D.1). Namely, we
can rewrite Eq. (185) as

d- FP(A|B) + 1

(190)

This gives a one-to-one relation between uncertainty (certainty)
as measured by pgﬁess(l{ |B®) and the absence (presence) of
entanglement as measured by FP¢(A|B). In contrast, quantum
memory assisted uncertainty relations for two measurements,
e.g.,asin Eq. (172), provide us only with a connection between
uncertainty and entanglement in one direction. Namely, they
state that low uncertainty implies the presence of entanglement
(cf. Sec. VLD).

The uncertainty equality (185) is derived by extending the
proof from Ballester and Wehner (2007) who made use of the
fact that a full set of mutually unbiased bases generates a
complex projective two-design (Klappenecker and Rotteler,
2005). From this, it is also immediately apparent that an
equality such as Eq. (185) holds for other complex projective
two-designs as well. This includes, in particular, so-called
symmetric informationally complete positive operator-valued
measures: SIC-POVMs.'® More precisely, any SIC-POVM

1 &
{aw o} (191)
k=1
gives rise to the uncertainty equality
Ho(K|BO) = log[d(d + 1)] — log (27HenAIB) 1), (192)

with ® € {0y, ...,0,.}. Other examples that generate com-
plex projective two designs are unitary two—designs.19 This
includes, in particular, the Clifford group for n qubit systems.

Berta, Fawzi, and Wehner (2014) also showed that
Eq. (185) for a full set of d + 1 MUBs generates the following
relation in terms of the von Neumann entropy:

H(K|B®) > log(d + 1) — 1 + min{0, H(A[B)},  (193)

with ® € {0, ...,6,,, }. This corresponds to the generaliza-
tion of Eq. (81) to quantum memory. Note that the entropy
dependent term on the right-hand side makes a contribution
only if the conditional entropy H(A|B) is negative. This is
consistent with Eq. (81).

For smaller sets of L < d+ 1 MUBs, Berta, Coles, and
Wehner (2014) extended Eq. (91) to quantum memory,

'%See Renes er al. (2004) for a detailed discussion of SIC-POVMs.
See Dankert et al. (2009) for a detailed discussion of unitary
two-designs.
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FIG.9. Ford =5 and a various number of MUBs n < d + 1 =
6 the lower bounds (lb) are plotted on the entropic uncertainty
H.1(K|®) from Eq. (194) as a function of H,;(A|B). Moreover,
for n <6 we have only the trivial upper bound (ub) on
H.,i(K|B®), whereas for n =6 the lower and upper bounds
coincide as in Eq. (185).

—log 42 L=l for H . (A|B) 2 0,
Hcoll(K|B®) 2 I d+(L—1)2"Heon(AIB) f
—log——— 7 [lor Hcoll(A|B) <0,

(194)

with ® € {0y, ...,0; }. Moreover, for all d and L there exist
states that achieve equality. Note that for L =d + 1 the
distinction of cases in Eq. (194) collapses and furthermore
becomes an upper bound as shown in Eq. (185). In Fig. 9 we
illustrate this by means of an example for d = 5 (with L < 6).

6. Measurements in random bases

In the unconditional case we found that measurements in
random bases lead to strong uncertainty relations as, e.g., in
Eq. (98). Hence, we might expect that we can generalize this
to quantum memory,

H(K|B®)>0 < logd - (1 - %) ) + min{0, H(A|B)}, (195)

with ® € {0, ...,0; } chosen at random. Unfortunately, the
previous works (Fawzi, Hayden, and Sen, 2011; Adamczak
et al., 2016) make use of measure concentration and e-nets
arguments that seem to fail for quantum memory. It is,
however, possible to use some of the techniques from
Berta, Coles, and Wehner (2014) based on operator
Chernoff bounds to derive relations of the form (195). The
downside is that we get only strong uncertainty relations for a
large number L of measurements,

L > O(dlog(d)). (196)

We conclude that it is an open problem to show the existence
of small(er) sets of L > 2 measurements that generate strong
uncertainty relations that hold with quantum memory.
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7. Product measurements on multiple qubits

Let us now consider uncertainty relations for multiple-qubit
systems, which have applications in quantum cryptography.
For historical reasons we start with the n qubit six-state
measurements and discuss only the BB84 measurements
afterward (see Sec. III.G.5 for definitions of these measure-
ments). For the six-state measurements, Berta (2013) showed
that for any bipartite state p4»z with the A” system given by n
qubits,

Hea(K"|BO") > n-log3 + 1 —log (27 Hen@"B) 4 1),
(197)

with ©" € {0, ...,05:}. This extends Eq. (187) from 1 to n
qubits. The bound (197) also implies a similar relation in
terms of the von Neumann entropy (Berta, Fawzi, and Wehner,
2014), extending Eq. (105) to

H(K"|B@®") > n -log3 + min{0, H(A"|B),}, (198)
with ©" € {0, ...,03:}. Moreover, Dupuis, Fawzi, and
Wehner (2015) improved Eq. (197) to the conceptually
different bound

H_ ., (A"|B
Han (K150 > - (P2} 1 109

where

X if x >log3/2,
f'(x)log3 if 0 < x <log3/2,

with f(x) = hpip(x) +xlog3 —1 and hy, denotes the
binary entropy. Using the equivalence between the collision
entropy and the min-entropy from Eq. (142) this readily
implies a relation as Eq. (199), but with both the collision
entropy terms H,,; replaced with min-entropy terms H;,.
Importantly, this variant remains nontrivial for all values of
Hin(A"|B). Also, Dupuis, Fawzi, and Wehner (2015) estab-
lished a meta theorem that can be used to derive uncertainty
relations also for other kinds of measurements.

For the n qubit BB84 measurements Dupuis, Fawzi, and
Wehner (2015) found

Vos(x) = { (200)

H.,(A"|B
Heq(K"|BO") > n - yppss (%) -1, (201)

with ®" € {0, ..., 0, }, where

YBsa(X) = 1

{x ifx>1
2’

L (202)
g'(x) ifo<x<

with g(x) = hy;,(x) +x — 1. Again using the equivalence
between the collision entropy and the min-entropy from
Eq. (142), we get a relation as Eq. (201) but with both the
collision entropy terms H., replaced with min-entropy
terms H,;,. We note that this is also nontrivial for one qubit
(n=1) and only the two measurements O € {ox,07}.
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Equation (201) and its min-entropy analog can be understood
in terms of the bipartite guessing game with quantum memory
as mentioned in Sec. IV.D.1.

8. General sets of measurements

Section III.G.6 discussed the work of Liu, Mu, and Fan
(2015) for unipartite systems without memory. Here we note
that they also gave bipartite uncertainty relations with quan-
tum memory. Again for simplicity we state the case only of
L = 3 observables (in any dimension d > 2). We find as the
direct extension of Eq. (106),

1 1 2
H(K|B®) > glog%+—H(A|B),

: (203)

with @ € {V(1), v(? V)], where the multiple overlap con-
stant m is defined as in Eq. (107). As in the unconditional
case, this has to be compared with the bounds implied by two
measurement relations as in Eq. (181). See Liu, Mu, and Fan
(2015) for a fully worked out example where Eq. (203) can
become stronger than any bounds implied by two measure-
ment relations.

E. Tripartite quantum memory uncertainty relations

1. Tripartite uncertainty relation

The physical scenario corresponding to tripartite uncer-
tainty relations is shown in Fig. 10. Suppose there is a source
that outputs the systems ABC in state p,pc. Systems A, B,
and C are, respectively, sent to Alice, Bob, and Charlie.
Then Alice performs either the X or Z measurement. If she

PABC

FIG. 10. Diagram of the tripartite quantum memory setup. First,
a source prepares ABC in state p,pc, and sends A to Alice, B to
Bob, and C to Charlie. Second, Alice measures either X or Z on A
and asks how uncertain is Bob about her X outcome, given B, and
how uncertain is Charlie about her Z outcome, given C? As
shown in Eq. (206) there is a trade-off that is quantified by the
complementarity of the measurements X and Z. W interpret this
scenario as a guessing game, also called a monogamy game. In
this game, Bob and Charlie play against Alice. They prepare ppc
where they send A to Alice, Bob keeps B, and Charlie keeps C.
Alice then randomly chooses a measurement obtaining the
measurement outcome K. Afterward, she sends her choice of
basis to Bob and Charlie. They win the game if and only if both
output K. This game measures the same kind of uncertainty as
Eq. (206), explicitly exploiting the monogamy of entanglement:
if Bob produces K = X correctly in case Alice measured X, then
this is a certificate that Charlie cannot produce a good guess of
K = Z in case Alice measured Z.
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measures X, then Bob’s goal is to minimize his uncertainty
about X. If she measures Z, then Charlie’s goal is to minimize
his uncertainty about Z. Renes and Boileau (2009) considered
exactly this scenario but restricted to the case where the X and
Z bases are related by the Fourier matrix F,

IX*) = F|Z*) with F= Z |zZ WZZ |, (204)

where @ = ¢?*/?, Notice that this makes X and Z mutually
unbiased, although in general not all pairs of MUBs are related
by the Fourier matrix. They quantified Bob’s and Charlie’s
uncertainties in terms of the conditional entropies H(X|B)
and H(Z|C), respectively, and proved that any tripartite state
papc satisfies

H(X|B) + H(Z|C) > logd. (205)
Here d is the dimension of the A system and the classical-
quantum states pyp and pyzc are defined similarly as in
Eq. (166). Renes and Boileau (2009) also conjectured that
this relation generalizes to arbitrary measurements given by
bases,

H(X|B) + H(Z|C) 2 qyu. (206)
with gy as in Eq. (31). Intuitively, what Eq. (205) says is that
the more Bob knows about Z, the less Charlie knows about X,
and vice versa. This is a signature of the well-known trade-off
monogamy of entanglement, which roughly says that the more
Bob is entangled with Alice, the less he is with Charlie.”
The trade-off described by Egs. (205) and (206) can be viewed
as a fine-grained notion of this monogamy. Namely, the
monogamy appears at the level of measurement pairs (X, Z).

Also note that Eq. (206) implies both the Maassen-Uffink
relation (31) and its classical memory extension (164), due to
the data-processing inequality (153). That is,

H(X|B) < H(X|Y) < H(X), (207)
for any measurement Y on B. As seen in Sec. IV.E.3 the

quantum memory extension (2006) is strictly stronger than the
classical memory extension (164).

2. Proof of quantum memory uncertainty relations

The quantum memory uncertainty relation (206) was first
proved by Berta ez al. (2010). Although they explicitly stated
their relation in the bipartite form (165), they noted that two
relations are equivalent.

The equivalence between the bipartite and tripartite rela-
tions can be seen as follows. To obtain the bipartite relation
(165) from the tripartite relation (206), apply the latter to a
purification |y),gc Oof psp. Now for tripartite pure states
we have

See Horodecki et al. (2009) for an in-depth review about
entanglement.
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H(Z|C) = H(Z|B) — H(A|B), (208)
and inserting this into Eq. (206) gives Eq. (165). Conversely
we first prove Eq. (206) for tripartite pure states |y),gc by
inserting Eq. (208) into Eq. (165). Then note that the proof
for mixed states p,pc follows by applying Eq. (206) to a
purification |y),zcp Of papc, and making use of the data-
processing inequality (153),
H(Z|CD) < H(Z|C). (209)
The original proof of Eq. (206) was based on so-called
smooth entropies.21 The proof was subsequently simplified by
Coles et al. (2011) and Tomamichel and Renner (2011),
which culminated in the concise proof given by Coles et al.
(2012). The latter proof distills the main ideas of the previous
proofs: the use of duality relations for entropies as in Eq. (154)
and the data-processing inequality as in Eq. (153). More
generally, the proof technique applies to a whole family of
entropies satisfying a few axioms (including the Rényi
entropies). We present the proof in Appendix C.3. Finally,
we note that a direct matrix analysis proof was given by Frank
and Lieb (2013a).

3. Quantum memory tightens the bound

Here we argue that the tripartite uncertainty relation in
terms of quantum memory (206) is tighter than the corre-
sponding relation in terms of classical memory (164). We
explain that there exist states p,pc for which Eq. (206) is an
equality but Eq. (164) is loose, even if one optimizes over all
choices of measurements on B and C.

Let us introduce some notation. Consider a bipartite state
pap and let X4 and Yy be measurements on systems A and B,
respectively. Now, how small can we make the uncertainty X,
given that we can optimize over all choices of Yz? That is,
consider the quantity

a(Xa,pag) =

B

This is to be compared to the classical-quantum conditional
entropy
B(Xa.pag) =

H(X,4|B). (211)

Because of the data-processing inequality (153), we have that

a(Xa, pag) 2 P(Xa,Pag), (212)

and naively one might guess that Eq. (212) is satisfied with
equality in general. However, this is false (Hiai and Petz,
1991; DiVincenzo et al., 2004). In general there is a nonzero
gap a — f > 0. There are many examples to illustrate this; in
fact one can argue that most states p,p exhibit a gap between a
and B (Dupuis et al., 2013). This phenomenon is called
locking, discussed in Sec. VL.LH.3. It is closely related to a
measure of quantum correlations known as quantum discord

21See Tomamichel (2016) for an introduction to smooth entropies.
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(Ollivier and Zurek, 2001; Modi et al., 2012). Nonzero
discord is associated with the potential to have a gap between
a and B. We discuss discord in more detail in Sec. VI.H.2. For
now note that discord is defined as

D(A|B) := minH(A|Y ;) = H(A|B), (213)

where the optimization is over all POVMs Y on B.

Example 26. Let X, = {|0)(0],|1)(1|} and consider the
bipartite quantum state

pap =35(10)(0] @ [0)(O] + [1)(1] ® [+)(+]).  (214)
For this state, the gap between a and S is precisely given by
the discord
D(A|B) = a(Xa,pas) — B(Xa. pas)- (215)
It is known that D(A|B) =0 if and only if system B is
classical, i.e., if p,p is a quantum-classical state. But the state
pap in Eq. (214) is not quantum classical. Hence, D(A|B) > 0
and we have a > f.

Now we give an example state for which the quantum
memory relation (206) is an equality but the measured relation
(164) is loose.

Example 27. Consider the tripartite pure state [y) g0 =
(|000) + [11+))/+/2, with Z being the standard basis and X
being the {|+),|—)} basis. We have

H(Z|C) = 1 - H(p¢) ~ 0.4, (216)

H(X|B) = H(pc) = 0.6. (217)
Hence, this state satisfies the quantum memory relation (205)
with equality,

H(X|B) + H(Z|C) = 1. (218)
However, the classical memory relation (164) is not satisfied

with equality. This follows from example 26, noting that p ¢
is the same state as in Eq. (214).

4. Tripartite guessing game

Tripartite uncertainty relations can be understood in the
language of guessing games as outlined in Fig. 10. Tomamichel
et al. (2013) showed that there is a fundamental trade-
off between Bob’s guessing probability pgy.s(K|BO) and
Charlie’s guessing probability pgyess(K|CO),

pguess(K|B®) + pguess(K|C®) <2b, (219)
with the overlap b as in Eq. (40). Alternatively, one can rewrite

this in terms of the min-entropy using the concavity of the
logarithm,

Note that Eq. (220) is an extension of Eq. (71) to the tripartite
scenario. This relation again shows a trade-off between
Bob’s and Charlie’s winning probabilities, which are closely
connected to the idea of monogamy of entanglement
(cf. Sec. IV.EE.1).

5. Extension to Rényi entropies

The Maassen-Uffink relation for Rényi entropies (35)
naturally generalizes to a tripartite uncertainty relation with
quantum memory. It is expressed in terms of the conditional
Rényi entropies, whose definition and properties are discussed
in Appendix C. For these entropies, the following relation
holds (Coles et al., 2012)**:

1 1
HA(X|B) + H)(ZIC) 2 gy for _+5=2. (221)
a

Notably, the tripartite uncertainty relation (206) is the special
case where a = f# = 1. Another interesting special case is
a = oo and f = 1/2, which, respectively, correspond to the
min- and max-entropies introduced in Eqgs. (138) and (155).
The resulting relation,

Hmin(XlB) + Hmax(Z|C) 2 qmu> (222)
was first proved by Tomamichel and Renner (2011) and is
fundamental to quantum key distribution (see Sec. VL.B).

6. Arbitrary measurements

All of the tripartite uncertainty relations can be generalized
to arbitrary POVMs X and Z. Coles et al. (2011) and
Tomamichel and Renner (2011) independently noted that
Eq. (206) holds for POVMs with the overlap ¢ given by
Eq. (49). This was strengthened by Tomamichel (2012) to the
overlap ¢’ given by Eq. (51). Further strengthening was given
by Coles and Piani (2014b). However, their bound is implicit,
involving an optimization of a single real-valued parameter
over a bounded interval. Namely, they showed a lower bound

qep2 3= 10X Ain (A(P)) (223)
where A, [-] denotes the minimum eigenvalue and
A(p) = p3(X.2) + (1= p)A(Z,X),  (224)
8(X.2) =) a(X.Z) - X*, (225)
a (X, Z) = —log||> ZX7%||. (226)
z

2The relation follows from the work (Coles et al., 2012) in
conjunction with properties of the conditional Rényi entropy pre-
sented by Miiller-Lennert e al. (2013). It is thus first mentioned in
the later work (Miiller-Lennert er al., 2013). Notably, Coles et al.
(2012) proved a tripartite uncertainty relation for a different definition

1 f th ditional Rényi entr T ichel Ibeck, and R
Hmin(K|B®) + H, (K|C®) >2 logz. (220) 2009e;.con itional Rényi entropy (Tomamichel, Colbeck, and Renner,
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Using the fact that §(X, Z) > min,a,(X, Z) - 1, it is straight-
forward to show that gcp, > log(1/c’).

F. Mutual information approach

While entropy quantifies the lack of information, it is both
intuitive and useful to also consider measures that quantify
the presence of information or correlation. Consider the
mutual information I(X:Y), which quantifies the correlation
between random variables X and Y and is given by

I(X:Y) = H(X) + H(Y) — H(XY) (227)

=H(X)-HX|Y). (228)
It quantifies the information gained—or equivalently, the
reduction of ignorance—about X when given access to Y. It
is worth noting that the mutual information is particularly
well suited for applications in information theory. For
example, the capacity of a channel can be expressed in
terms of its mutual information (Shannon, 1948), that is, in
terms of the correlations between a receiver and a sender.
Hence, we also discuss the application of “information
exclusion relations” (uncertainty relations expressed via
the mutual information) to information transmission over
channels.

1. Information exclusion principle

Hall (1995, 1997) pioneered an alternative formulation of
the uncertainty principle based on the mutual information,
which he called the information exclusion principle.
Information exclusion relations are closely related to entropic
uncertainty relations that allow for memory. The idea is that
one is interested in the trade-off between a memory system Y
being correlated to X versus being correlated to Z (with X and
Z being two measurements on some quantum system A).

2. Classical memory

We show now how information exclusion relations follow
directly from entropic uncertainty relations (Hall, 1995).
Consider a generic uncertainty relation involving Shannon
entropy terms of the form Y| H(X,,), > g as in Eq. (157).
Recall the discussion in Sec. IV.C which showed that the
uncertainty relation Y N H(X,|Y) > g as in Eq. (160)
immediately follows, where Y is some classical memory.
Now with the definition of the mutual information (227) we
can rewrite this as

EN:H(Xn)_I(Xn:Y) 24.

n=1

(229)

We have H(X,,) < logd for each n with d the dimension of the
quantum system A that is measured. Combining this with
Eq. (229) gives

For example, if we take the Maassen-Uffink relation (31) as
the starting point, we end up with
I(XZY)-I—I(ZZY)SIOg(C{ZC) =:ry. (231)
The information exclusion relation in Eq. (231) was presented
by Hall (1995). Note that we have logd < ry < 2logd, with
ry reaching the extreme points, respectively, for ¢ = 1/d and
¢ = 1. Equation (231) has an intuitive interpretation: any
classical memory cannot be highly correlated to two com-
plementary measurement outcomes of a quantum system. In
the fully complementary case, the bound becomes ry = log d,
implying that if the classical memory is perfectly correlated to

X, I[(X:Y) = logd, then it must be completely uncorrelated to
Z,1(Z:Y) =0.

3. Stronger bounds

Note that Eq. (231) uses the same overlap ¢ as appearing in
the Maassen-Uffink uncertainty relation (31). However,
Grudka et al. (2013) realized that this often leads to a fairly
weak bound. They noted that the complementarity of the
mutual information should depend not only on the maximum
element ¢ of overlap matrix [c,.] [see Eq. (32) for its
definition], but also on other elements of this matrix. They
conjectured a stronger information exclusion relation of the
form I(X:Y)+I(Z:Y) < rg with

rg = log, (d- Z sz),

d largest

(232)

with the sum over the largest d terms of the matrix [c,.]. This
conjecture was proved by Coles and Piani (2014b), where the
bound was further strengthened to

I(X:Y)+1(Z:Y) < rep. (233)
with
rep == min{r(X, 2),r(Z,X)}, (234a)
r(X, Z) = log (dz max sz> , (234b)
r(Z,X) = log (dz max sz)- (234c)

One can easily verify that rep < rg < ry.

Example 28. The unitary in Eq. (43) from example 8
provides a simple example where all three bounds are differ-
ent, namely, ry = log6, rg = log5, and rcp = log(9/2).

Note that the behavior of the bounds ry and rcp are
qualitatively different in that they become trivial under
different conditions. The former is trivial if at least one
row or column of [c,.] is trivial (i.e., composed of all zeros

N except for one element being 1), whereas the latter is trivial
Z I(X,:Y)<Nlogd—gq. (230)  only if all rows and columns [c,,] are trivial. Hence, the latter
n=1 gives a nontrivial bound for a much larger range of scenarios.
Rev. Mod. Phys., Vol. 89, No. 1, January—March 2017 015002-30
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4. Quantum memory

It is natural to ask whether system Y can be generalized to a
quantum memory B. Coles and Piani (2014b) showed that
Eq. (233) indeed extends to
Here the quantum mutual information of a bipartite quantum
state p,p is defined as

I(A:B) = H(py) + H(pp) — H(pap) (236)

— Hip,) - H(AIB). (237)
and evaluated on the classical-quantum state pyp as in
Eq. (166). Note that if we specialize to the case where B =
Y is classical, then H(A|Y) >0 and hence Eq. (235) also
implies (233).

Example 29. Consider a maximally entangled state p,p
for which both I(X:B) and I(Z:B) become equal to logd.
Hence, the upper bound rcp must be weakened in such a way
that it becomes trivial, and indeed the term —H(A|B)
accomplishes this. Namely, we have —H(A|B) = logd for
the maximally entangled state.

In general, a negative value of H(A|B) implies that p, has
distillable entanglement (Devetak and Winter, 2005), and this
results in a bound in Eq. (235) that is larger than rcp. In the
other extreme, when H(A|B) is positive, which intuitively
means that the correlations between Alice and Bob are weak,
Eq. (235) strengthens the bound in (233).

5. A conjecture

Following the resolved conjectures by Kraus (1987), Renes
and Boileau (2009), and Grudka et al. (2013), we point to a
recent open conjecture by Schneeloch, Broadbent, and Howell
(2014). They ask if for any bipartite quantum state p,p,

?
I(X,:Xp) +1(Zy:Z5)<I(A:B), (238)
where X, and Z, are the registers associated with measuring
two MUBs X, and Z, on system A, and likewise for Xz and
Z g on system B. Equation (238) says that the quantum mutual
information is lower bounded by the sum of the classical
mutual informations in two mutually unbiased bases. We note
that a stronger conjecture, in which X and Zp are replaced by
the quantum memory B, is violated in general.

G. Quantum channel formulation

1. Bipartite formulation

Christandl and Winter (2005) considered the question of
how well information can be transmitted over a quantum
channel. A quantum channel is the general form for quantum
dynamics (Davies, 1976) (more general than unitary evolu-
tion). Mathematically a quantum channel £ is a completely
positive trace-preserving map and can be represented in its
Kraus form,
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E() =) K;()K}. where Y KiK;=1. (239)

J J
Christandl and Winter (2005) addressed the topic of sending
classical information over a quantum channel, or more
specifically, sending two complementary types of classical
information over a quantum channel. They considered a
scenario where Alice chooses a state, with probability 1/d,
from a set of d orthonormal states, which we label as
Z = {|Z%)(Z*|}. She then sends the state over the channel
& to Bob, and Bob tries to distinguish which state she sent.
Likewise Alice and Bob may play the same game but with the
X = {|X*)(X*|} states instead, where the X and Z states are
related by the Fourier matrix F, given by Eq. (204). Bob’s
distinguishability for the Z states can be quantified by the so-
called Holevo quantity (Holevo, 1973),

)

- 3 SHIE(Z)ZE)]

w62 = (S 81z

(240)

Likewise, y (€, X) is a measure of Bob’s distinguishability for
the X states. Christand]l and Winter (2005) proved that

1
2(EX)+x(E.2) <logd + I (25) (241)

where the coherent information /., (p, £) is a measure of the
quality of a quantum channel £ introduced by Schumacher
and Nielsen (1996). For the maximally mixed input state 1/d
it is given by

1
tow(3:€) = HIEC/ ] - HIT © €)@}, (242
where |®) = Zj(l/\/g)|j>|j> is a maximally entangled state.
Coles et al. (2011) noted that Eq. (241) holds for arbitrary
MUBSs, and that it naturally generalizes to arbitrary ortho-

normal bases X and Z with the right-hand side of Eq. (241)
replaced by

1
log (d*c) + I on <— , 5) .

y (243)

Later this bound was improved by Coles and Piani (2014b) to

1
rCP+Icoh<E’g>~

While Eq. (241) may look similar to some uncertainty
relations discussed in this section, especially Eq. (235), it
is important to note the conceptual difference. The relations
discussed previously were from a static perspective, whereas
Eq. (240) refers to a dynamic perspective involving a sender
and a receiver. Intuitively, what Eq. (241) says is that if Alice
can transmit both the Z states and the X states well to Bob,

(244)
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then £ is a noiseless quantum channel, i.e., it is close to a
perfect channel (as quantified by the coherent information).

2. Static-dynamic isomorphism

With that said, there is a close, mathematical relationship
between the static and dynamic perspectives. In fact, there is
an isomorphism, known as the Choi-Jamiotkowski isomor-
phism (Jamiotkowski, 1972; Choi, 1975) that relates the two
perspectives [see, e.g., Zyczkowski and Bengtsson (2004)].
Every quantum channel £ corresponds to a bipartite mixed
state defined by

pag = (T ® E)(|2)(P

), (245)

where |®) = Zj(l/\/a)|j>|j> is maximally entangled [see
Fig. 11(a)]. Note that p,p has the property that p, =
trg(pap) = 1/d4 is maximally mixed. Likewise, every bipar-
tite mixed state p, 5 with marginal p, = 1/d, corresponds to a
quantum channel whose action on some operator O is defined
as

£(0) = dytrs[(07 ® 1)pag). (246)
where the transpose denoted by (-)7 is taken in the standard
basis. One can easily verify that the condition that p, = 1/d,
is connected to the fact that £ is trace preserving.

This isomorphism can be exploited to derive uncertainty
relations for quantum channels as corollaries from uncertainty
relations for states, and vice versa. This point was emphasized
by Coles et al. (2011). For example, if one has an uncertainty
relation for bipartite states p, g, such as Eq. (165), then one can
apply this relation to the state in Eq. (245) in order to obtain an
uncertainty relation for channels.

Specifically, note that if Alice measures observable Z on
system A in Fig. 11(a) and obtains outcome |Z%)(Z%|, then the
state corresponding to the transpose |Z%)(Z|T will be sent
through the channel €. In other words,

1
_ ZZ ZZ

"= [(1Z)(Z7] @ 1)|@)(2[].  (247)

This implies that the Holevo quantity y (€, ZT) can be thought
of as a classical-quantum mutual information as

(a) — A AA—
Lo} / = — PAB
|P)aa w . B
(b) — A A 5
|P) 4 ar = ,
A N B, =I¥asc
— \%
C
>_

FIG. 11. How to convert the dynamical evolution of a system
into (a) a bipartite mixed state or (b) a tripartite pure state.
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x(&,7")=1(Z:B) = logd — H(Z|B), (248)

where 7T = {|77)(Z*
for the state

T}, and the right-hand side is evaluated

pzs = Y |20l @ ual(1Z7)(Z7| @ 15)pas]  (249)

) (250)

=Y Sl ® £(z) 2

Using Eq. (248), one can verify that the channel uncertainty
relation (241) is a corollary of the bipartite state uncertainty
relation, either (165) or (235).

3. Tripartite formulation

One can formulate uncertainty relations for a dynamic
tripartite scenario where Alice sends the Z states over
quantum channel £ to Bob or the X states over the comple-
mentary quantum channel F to Charlie. The relationship
between a channel and its complementary channel can be
seen via the Stinespring dilation (Stinespring, 1955), in which
one writes the channel in terms of an isometry V that maps
A — BC, namely,

£(0) = trc[VOVT, (251)

F(0) = trz[VOVT]. (252)
Analogous to Eq. (245), we consider the tripartite pure state
defined by

W) agc = (1 @ V)[®).

This mapping is depicted in Fig. 11(b). The tripartite uncer-
tainty relations presented in Sec. IV.E can then be applied to
the state |w),pc in Eq. (253) in order to derive uncertainty
relations for complementary quantum channels. For example,
Coles et al. (2011) read Eq. (206) in this way to obtain

(253)

2(EX) + x(F,Z) <log (d*c), (254)
for two orthonormal bases X and Z. This relation implies that
if Alice can send the Z states well to Charlie over the channel
F, then Bob cannot distinguish very well the outputs of the
channel £ associated with Alice sending a complementary set
of states X.

V. POSITION-MOMENTUM UNCERTAINTY RELATIONS

As discussed in Sec. I, the first precise statement of the
uncertainty principle was formulated for position and momen-
tum measurements. Namely, Kennard (1927) showed that for
all states (with 2 =1)

o(Q) - o(P) 2 . (255)
where ¢(Q) denotes the standard deviation of the probability
density I'p(¢) when measuring the position Q, and similarly
for o(P) when measuring the momentum P.
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To(g) = [v(9)?

I

q

FIG. 12. Gaussian wave packet in position space with I'y(g) as
in Eq. (256), as well as the finite resolution discretization from
Eq. (260) in intervals of size §.

Example 30. Consider Gaussian wave packets (see
Fig. 12) with position probability density”

1 1
r =— -¢* — ). 256
0(q) 5 exp< q 202> (256)
and corresponding momentum probability density
2 2
Tp(p) =\ = exp(=p?-20%).  (257)
/3

It is then straightforward to check that these achieve equality
in Eq. (255) and hence minimize the uncertainty in terms of
the product of the two standard deviations.

In contrast to Kennard’s formulation (255), the relations
developed in Secs. III and IV are phrased in terms of entropy
measures and apply to finite-dimensional systems (whereas
position and momentum measurements can be modeled only
on infinite-dimensional spaces). In this section we review
entropic uncertainty relations with and without a memory
system for position and momentum measurements.”* We
discussed applications to continuous variable quantum cryp-
tography later in Sec. VI.B.S5.

A. Entropy for infinite-dimensional systems

On a technical level, the position operator Q and the
momentum operator P with the canonical commutation
relation

[P, Q] =il (258)
can be represented only as unbounded operators on infinite-
dimensional spaces. Hence, we need to extend our setup from
finite-dimensional Hilbert spaces to separable Hilbert spaces
A with dim(A) = c0. However, quantum states can still be
represented as linear, positive semidefinite operators. Hence,
we just keep the notation the same as for finite-dimensional

“In Sec. V, we use I' instead of P for probability distributions
since the momentum operator is already denoted by P.

24Entropic uncertainty relations for completely general quantum
systems described by von Neumann algebras and measurements
described by measure spaces are also studied in the literature (Frank
and Lieb, 2013a; Furrer et al., 2014).
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spaces without going into any mathematical details. We start
with describing how to define entropy for infinite-dimensional
systems.

1. Shannon entropy for discrete distributions

Imagine a finite resolution detector that measures the
position Q by indicating in which interval

Ty = (ké,(k+1)8] (ke Z) (259)

of size 6 > 0 the value ¢ falls. This defines a discrete

probability distribution I'p, with infinitely many elements.

If the initial state is described by a pure state wave function

lw(q)) g, we get {Tg, (k) }ez With

T, (k) = K o lw(q)*dg. (260)

8

We then define the Shannon entropy of 'y, in the usual way as

H(Qs) =~ 3 To,(k)log T, (k).

k=—00

(261)

Despite the fact that there are now infinitely many terms in the
sum, H(Qs) keeps many of the properties of its finite-
dimensional analog. In particular, H(Qs) >0 and the
Shannon entropy can still be thought of as an information
measure.

2. Shannon entropy for continuous distributions

The differential Shannon entropy is defined in the limit of
infinitely small interval size 6 — 0,

H(Q) = lm[H(Qy) + log (262)
= }SI_I)% (— kio [y, (k) log I‘st(k)) (263)

The term H(Qj) scales with the interval § — 0 and hence the
normalization in Eq. (262). This makes the differential
Shannon entropy an entropy density. There is also a closed
formula for the differential Shannon entropy [at least when
I'p(q) is continuous],

hQ) = - / dqTo(q)logTo(q).  (264)

where I"y(¢g) denotes the probability density when measuring
the position Q. For the momentum probability density T'»(p)
we define the discrete and differential Shannon entropy in the
same way. Since probability densities can be larger than 1, not
all of the properties of discrete Shannon entropy carry over.
For example the differential Shannon entropy can be negative.

Example 31. For Gaussian wave packets as in Egs. (256)
and (257) we have
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1 1
h(Q) = ~log (2mec®) and h(P) =-log—o. (265)
2 2 %267
By inspection we find that #(Q) < 0 for ¢ sufficiently small
and h(P) < 0 for o sufficiently large.
Nevertheless the uncertainty principle can still be expressed

in terms of differential Shannon entropies.

B. Differential relations

Extending the work of Everett (1957) and Hirschman
(1957), Biatynicki-Birula and Mycielski (1975) and inde-
pendently Beckner (1975) showed for position and momen-
tum measurements Q and P, respectively, that

h(P) + h(Q) > log(en). (266)
We emphasized that Eq. (266) holds even though either one of
the two differential Shannon entropies on the left-hand side
can become negative. As in Kennard’s relation (255) Gaussian
wave packets again minimize the uncertainty and lead to
equality in Eq. (266). This shows that the relation is tight. It is
shown in Sec. II the entropic relation (266) also implies
Kennard’s relation (255) and is therefore stronger.

Recently alternative bounds were shown by Frank and Lieb
(2012), Hall and Wiseman (2012), and Rumin (2012). In
particular, extending the work of Beckner (1975), Hall (1999),
and Rumin (2011), Frank and Lieb (2012) showed that

h(Q) + h(P) 2 log(27) + H(p,), (267)

where

H(py) = —trlpy log py] (268)
denotes the von Neumann entropy of the infinite-dimensional
input state before any measurement was performed. We note
that in contrast to the differential Shannon entropy, the von
Neumann entropy is always non-negative since there is no
regularization in its definition (even for infinite-dimensional
systems). In Eq. (267) the state-independent bound log(27z) <
log(er) is worse than in Eq. (266), but interestingly Eq. (267)
becomes an equality for a thermal state in the infinite
temperature limit (Hall, 1999; Frank and Lieb, 2012).
Hence, Eq. (267) is also tight if we insist on having the
von Neumann entropy H(p,) on the right-hand side.

C. Finite-spacing relations

It was argued in the literature that ideal position and
momentum measurements can effectively never be performed
because every detector has a finite accuracy. We can then
ask in what other than a purely mathematical sense do
Eqgs. (266) and (267) express the uncertainty principle?25
Certainly a more operational way to express uncertainty is
in terms of the discrete Shannon entropy as defined in

SThis criticism also applies to Kennard’s relation (255) and a
finite-spacing version thereof was derived by Rudnicki, Walborn, and
Toscano (2012).
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— Eq. (269)
\ --- Eq. (270)

H(Qs)+ H(Ps)

bin area, 649,

FIG. 13. Comparison of the lower bounds in Egs. (269) and
(270) on the uncertainty generated by the finite-spacing position
and momentum measurements Qs, Py as in Eq. (260). Note that
the latter bound becomes negative and hence trivial for larger

spacings 6,0, % 8.5.

Eq. (261). A series of works (Partovi, 1983; Biatynicki-
Birula, 1984; Rojas Gonzdlez, Vaccaro, and Barnett, 1995;
Rudnicki, 2011; Rudnicki, Walborn, and Toscano, 2012)
established that for measurements with finite spacing §, for
the position and finite spacing J,, for the momentum we have

H(Q5) + H(Ps)

5,5,\2
> log(27) — log {545,,681)(1,%) ] (269)

where S(()”(-, -) denotes the zeroth radial prolate spheroidal

wave function of the first kind (Slepian and Pollak, 1961).
This way of expressing the uncertainty principle has the
advantage that the discrete Shannon entropy is always non-
negative and has a clear information-theoretic interpretation.
As seen later, it is the discrete formulation of the uncertainty
principle that becomes relevant for applications in continuous
variable quantum cryptography (see Secs. V.E and VIL.B.5).
Interestingly Eq. (269) is not tight for general § > O since
we also know that (Biatynicki-Birula, 1984)
H(Qs,) + H(Ps,) 2 log(ex) —log (6,6,).  (270)
which becomes tighter for 6 — 0 (see Fig. 13). Rudnicki
(2015) employed a majorization-based approach along the
lines of Sec. IIL.I to improve on Eqs. (269) and (270) for large
spacing. However, this does not yield a closed formula and we
refer to Rudnicki (2011, 2015) for a discussion of tightness
and a more detailed comparison. We further comment on this
issue in Sec. V.D after extending Eqs. (266) and (269) to a
quantum memory system.

D. Uncertainty given a memory system

For finite-dimensional systems we can write the conditional
von Neumann entropy of bipartite quantum states p,p as
H(A|B) = H(AB) — H(B). However, for infinite-dimensional
systems this is in general not a sensible notion of conditional
entropy. This is because for some states both terms H(AB) and
H(B) can become infinite even though the entropy of A is
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finite and hence the conditional entropy should also remain
finite.

Example 32. Consider a bipartite system with A one qubit
and B composed of infinitely many qubits indexed by k € N.
Let [y),p, be maximally entangled between A and the kth
qubit on B, and let |¢pF) 5 /g, be some pure states on B (except
B,) such that (¢*|¢¥) = 6. Now, for a probability distri-
bution p; o 1/k(log k)? for k > 2 (Wehrl, 1978), the bipartite
quantum state

PAB = Zpk|ll/> <V/|ABA, ® |¢k><¢k‘3/3k (271)
k

has

H(AB) = and H(B) = . (272)

However, any sensible definition of conditional entropy for
this state p,p should give H(A|B) = —1.%°

Observe that the conditional entropy of finite-dimensional
classical-quantum states pyp as in Eq. (136) can be rewritten
in terms of the relative entropy (Umegaki, 1962),

D(p|lo) = tlp(log p — log o). (273)

as

H(X|B) = =) _DIPx(x)pllps]. (274)

Furrer et al. (2014) pointed out that Eq. (274) can be lifted to

[s)

H(Q;|B) = — Z D(p’|lps);

k=—00

(275)

where plg‘s denotes the (subnormalized) marginal state on B
when the position Q is measured in 7y, i.e., Py, (k) := tr[ph?]
is the probability to measure in Z;s.

1. Tripartite quantum memory uncertainty relations

With Eq. (275) as the definition for classical-quantum
entropy Furrer et al. (2014) found

5,8,\2
H(Qs,|B) +H(P;,|C) >1og(27) — log {545,, sV (1,“’) } .

4

where the second equality holds under a particular finiteness
assumption (Furrer er al., 2014). With Eq. (276) we then
immediately find the extension of Eq. (266) to quantum
memories,

h(Q|B) + h(P|C) > log(2x). (279)

Example 33. For the EPR state on AB (or likewise AC) in
the limit of perfect correlations Eq. (279) becomes an equality.
For finite squeezing strength r = arccosh(v)/2 the EPR state
is a Gaussian state with covariance matrix

rae) =+ 4" /v =17, (280)
A 2 V 1/2 - 122 Vﬂz

with

(L) ez (] °) em
= an = .
>~ \o 1 27 o -1

See Weedbrook et al. (2012) for more details about Gaussian
quantum information theory. The left-hand side of Eq. (279)
for this state generated by I'yz(v) is then calculated to be
(Furrer et al., 2014)

h(Q|B) + h(P) = log(exv) — #mg (” + 1)

2
+1/—110 v—1
AU YA

which converges to log(2z) for v — oo. In Fig. 14 we
plot Eq. (282) as a function of the squeezing strength
Larccosh(v):

(1) For r =0 the system B is uncorrelated and we
have the lower bound h(Q)+ h(P) > log(ex) as
in Eq. (266).

(2) For r > 0 we have to take the quantum memory B into
account and only the lower bound 2(Q|B) + h(P) >
log(27) from Eq. (279) holds.

(3) Forr — oo we get maximal correlations and the bound
(279) becomes an equality.

We note that in typical experiments for applications (see
Sec. VL.B.5) a squeezing strength of r~ 1.5 is achievable
(Eberle, Hindchen, and Schnabel, 2013). For this the lower

(282)

r =

(276) bound (279) is already very tight.
This is the extension of Eq. (269) to quantum memories and 3.1
likewise not tight. By taking the limit § — 0 we find the T 30f
differential quantum conditional entropy f Yo r = ; arccosh(v)
h(Q|B) = lim[H(Q,|B) + log 8 (277) S 2
6—0 =
27F
— q 0.5 1.0 1.5
- /qu(pB”pB>’ (278) squeezing strength, r
FIG. 14. The uncertainty i(Q|B) + h(P) of the EPR state from
See Kuznetsova (2011) for an extended discussion. example 33 in terms of the squeezing strength r.
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The state-independent bound in Eq. (279) is log(2x),
whereas it is log(ex) for the case without quantum memory
in Eq. (266). Hence, in contrast to the finite-dimensional
case, a quantum memory reduces the state-independent
uncertainty limit. This is because for the approximate EPR
state there exists a gap between the accessible classical
correlation and the classical-quantum correlation. That is,
even when minimized over all measurements Qp on B, we

have h(Q|Q5) — h(Q|B) ~ log(e/2).

2. Bipartite quantum memory uncertainty relations

Similarly as for finite-dimensional systems it is possible to
formulate uncertainty relations with quantum memory in a
bipartite form. For continuous position and momentum
measurements Frank and Lieb (2013a) showed that

h(Q|B) + h(P|B) > log(2x) + H(A|B),,. (283)
This is the extension of Eq. (267) to a quantum memory
system. However, we note that Eq. (283) only holds if all the
terms appearing in H(A|B) = H(ZAB) — H(B) are finite
(which is in general too restrictive). 7

3. Mutual information approach

A conceptually different approach was taken by Hall
(1995), where the uncertainty relative to a memory system
is quantified in terms of mutual information instead of
conditional entropy (see Sec. IV.F for a general discussion).
Similarly as for the conditional entropy in Eq. (275), mutual
information for classical-quantum states is most generally
defined in terms of the relative entropy in Eq. (273),

0

1(Q5:B) = Y [D(p’llos) + H(B),w).

k=—00

(284)

In contrast to entropy, however, the mutual information stays
finite when taking the limit 6 — 0,
I(Q:B) = %in&I(Qg:B). (285)
Hence, no regularization in terms of the interval size ¢ is taken.
For classical memories M it was shown that (Hall, 1995)
1(Q:M)+ I(P:M) <1+1logae(Q) +logo(P). (286)
It is an open question to find a generalization that also holds

for quantum memories. This would be in analogy to what is
known for finite-dimensional systems (see Sec. [V.F.4).

E. Extension to min- and max-entropies

As for finite-dimensional systems, entropic uncertainty rela-
tions like Egs. (266) and (269) cannot be shown only for the
Shannon entropy, but also more generally for pairs of Rényi

"This restriction is connected with the question about a sensible
notion of conditional entropy for fully quantum states (Kuznetsova,
2011).
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entropies (Biatynicki-Birula, 2006, 2007; Rudnicki, Walborn,
and Toscano, 2012; Rastegin, 2015c¢). Here we focus on a special
case that is important for applications in continuous variable
quantum cryptography (see Sec. VL.B.5). We study relations in
terms of the Rényi entropy of order oo and its dual quantity the
Rényi entropy of order 1/2. These are exactly the min- and max-
entropies, respectively.

1. Finite-spacing relations

Following the finite resolution detector picture as in
Egs. (259) and (260), the conditional min-entropy is
defined as

Hmin(Q5|B) = _logpguess(Qé‘B)' (287)

Here we have the optimal guessing probability as in Eq. (137),

Peuess(X|B) = s)tlp{ > Ty, (k)r[Xkp}°]: X3 POVMon B }

B =

(288)

In analogy to the finite-dimensional case, the min-entropy
quantifies the uncertainty of the classical register Qs from
the perspective of an observer with access to the quantum
memory B. The conditional max-entropy is given by

Hmax(Q6|B) = 10g Fdec(Q5|B)9 (289)

where we have the optimal decoupling fidelity

Fuull8) =sup{ ( 3

k=—00

2
F(pg5,03)> :op state on B}.
(290)

The decoupling fidelity is a measure of how much informa-
tion the quantum memory B contains about the classical
register Q5.28 For these definitions Furrer ef al. (2014) showed

Hmin(Q5|B) =+ Hmax(P5|C)

5,6,\2
> log(2x) — log {%51) . Sél) (1,%) } (291)

as well as the same relation with Qs and Pj interchanged. We
note that the special case with trivial quantum memories B, C
was already shown by Rudnicki, Walborn, and Toscano
(2012). Furrer et al. (2014) showed that Eq. (291) is tight
for any spacing 6 > 0 even in the absence of any correlations
(i.e., there exist states for which the relation becomes an
equality). Note that this is in contrast to the situation for the
Shannon entropy, where neither Egs. (269), (270), nor (276)
are tight.

*For finite-dimensional systems Eq. (289) is equivalent to the
max-entropy as defined in Eq. (155); see Konig, Renner, and
Schaffner (2009) and Furrer et al. (2014).
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2. Differential relations

For the differential version we take the limit § — 0,

hmin(Q|B) = }Si_)mO[Hmin(Qﬁ‘B) + 10g 5]’ (292)

and similarly for /. (Q|B).” We then find the uncertainty
relation (Furrer et al., 2014)

Finin(Q|B) + hey (PIC) 2 Tog(2m)  (293)
as well as the same relation with Q and P interchanged.
Biatynicki-Birula (2006) showed that Eq. (293) becomes an
equality for pure Gaussian states as in Eqgs. (256) and (257).
Note that this implies, in particular, that the unconditional
special case

Jiin( Q) + e (P) > log(27) (294)
is tight. Hence, the optimal state-independent constant is

log(2x) for the min- and max-entropies, whereas the optimal
constant for the Shannon entropy in Eq. (266) is log(ex).

F. Other infinite-dimensional measurements

As a multidimensional extension of Eq. (266), Huang
(2011) showed that for any measurements of the form

A=) "a0;+aP;,  B=Y bQ;+bP:. (295)
i=1 i=1

with a;, a, b;, b; € R we have that

h(A) + h(B) > log(ex) + log|[A. B]|. (296)
Huang (2011) also showed that for any measurement pair A, B
as in Eq. (295) there exist states for which Eq. (296) becomes
an equality.

Moreover, the techniques for deriving position-momentum
uncertainty relations can also be applied to other comple-
mentary observable pairs that are modeled on infinite-
dimensional Hilbert spaces. For example, for a particle on
a circle we have the position angle ¢ and the conjugate angular
momentum observable L,. Consider a measurement device
that tells either in which of

M :=2r/5, bins of size o, (297)
the particle is in or the exact value of the angular momentum
L.. We get a discrete probability distribution P, for the
angle defined similarly as in Eq. (260), as well as a discrete
probability distribution P;_over the L_ eigenstates. Improving
on the earlier work of Partovi (1983), Biatynicki-Birula (1984)
showed that

*Under some finiteness assumptions we have Ay (Q|B) =

2logsup { [ dq\/F(p}.o5):0p state on B} as well as hy,;, (Q|B) =
—logsup{ [ dgp}(X}):q — X} POVM on B}.
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H(ps) + H(L,) >logM. (298)

By inspection Eq. (298) becomes an equality for any eigenstate
of the L, observable. The relation was also extended to two
angles ¢ and @ and the corresponding pair of observables L,
and L? (Biatynicki-Birula and Madajczyk, 1985).

Another observable pair is the number N and the phase ®
for the harmonic oscillator. Hall (1993) showed that

H(N) + h(®) > log 2x, (299)

where Py(n) represents the probability distribution in the

number basis {|n)}, and the probability density in the phase
basis is

(e ) I*

Po(@) =S with e = 3 ey (300)

the Susskind-Glogower phase kets (which are not normal-
ized).*® This can also be seen as a special case of the results
in Bialynicki-Birula and Mycielski (1975). Equation (299)
becomes an equality for number states. Furthermore, Hall
(1994) also extended (299) to noisy harmonic oscillators
degraded by Gaussian noise.

Finally, time-energy entropic uncertainty relations for
systems with discrete energy spectra were discussed by
Hall (2008).

VI. APPLICATIONS
A. Quantum randomness

Randomness is a crucial resource for many everyday
information-processing tasks, ranging from online gambling
to scientific simulations and cryptography. Randomness is a
scarce resource since computers are designed to perform
deterministic operations. Even more importantly classical
physics is deterministic, meaning that every outcome of an
experiment can in principle be predicted by an observer
who has full knowledge of the initial state of the physical
system and the operations that are performed on it. The study
of pseudorandomness tries to circumvent this problem
(Vadhan, 2012).

Quantum mechanics with its inherent nondeterminism
allows us to consider a stronger notion of randomness,
namely, randomness that is information-theoretically secure.
Formally, we want to generate a random variable L that is
uniformly distributed over all bit strings {0, 1}¢ of a given
length #. Moreover, we want this random variable to be
independent of any side information an observer might have,
including information about the process that is used to
calculate L and any random seeds that are used to prepare
L. A classical-quantum product state

%Because of the nonorthogonality of the phase kets |e#) there is
no observable corresponding to the phase distribution Pg(¢). This,
however, will not concern us further since Pg(¢) is well defined.
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i3

1 N\
”LE:?Z‘1><Z|L ® 7 (301)
i=1

describes ¢ bits of uniform randomness that is independent of
its environment or side information E. Often, the best we can
hope for is to approximate such a state. Namely, we say that
pzr describes a state where L is 6 close to uniform on ¢ bits
and independent of E if

<5, (302)

tr

L&
PLE—?Z|Z><1|L ® PE
i=1

where || - ||, denotes the trace norm. This bound implies that L
cannot be distinguished from a uniform and independent
random variable with probability more than § (1 + 5). This
viewpoint is at the core of universally composable security
frameworks (Canetti, 2001; Unruh, 2010), which ensure that a
secret key satisfying this property can safely be employed in
any cryptographic protocol requiring a secret key.

Entropic uncertainty relations can help us since they
certify that the random variables resulting from a quantum
measurement are uncertain and thus contain randomness.
However, in order to extract approximately uniform and
independent randomness we need an additional step, which
we describe next.

1. The operational significance of conditional min-entropy

The importance of the min-entropy in cryptography is
partly due to the following lemma, called the leftover hashing
lemma (Mclnnes, 1987; Impagliazzo, Levin, and Luby, 1989;
Impagliazzo and Zuckerman, 1989). Informally, it states that
there exists a family of functions {f},, where f,: X — [27],
called hash functions, such that the random variable
L = f¢(X), which results by applying the function fg with
S a seed chosen uniformly at random, is close to uniform and
independent of S if the initial min-entropy is sufficiently large.

More formally, Renner (2005) and Renner and Konig
(2005) showed the following result for the quantum case.
There exists a family {f, }, of hash functions such that for any
classical-quantum state

PXE = ZPX(X)|X> (xx ® o (303)

with H;,(X|E) > k, the classical-quantum-classical state
pLEs after applying fg, namely,

pras = S CHLO (0l, ©5 8 1)

(304)
describes a state where L is ¢ close to uniform on ¢ bits and
independent of E and § with § = 2(1/2)(¢=K),

The special case where the environment E is trivial was
discussed extensively in the computer science literature
(Vadhan, 2012). Since hashing is a classical process, one
might expect that the physical nature of the side information is
irrelevant and that a classical treatment is sufficient. However,
this is not true in general. For example, the output of certain
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extractors may be partially known if side information about
their input is stored in a quantum memory, while the same
output is almost uniform conditioned on any classical side
information.”'

A generalization of this result is possible by considering a
variation of the min-entropy, which is called e-smooth min-
entropy, and denoted H?, (X|E), for a small £ > 0. This is
defined by maximizing the min-entropy over states that are in
a ball of radius & around the state p.32

The generalized leftover hashing lemma (Renner, 2005;
Tomamichel et al., 2011) asserts that there exists a family
{fs} such that for any state pyp with H:. (X|E) > k, we find
that L = f¢(X) is € + & close to uniform and independent of E
and S, with § as defined previously.

The latter result is tight in the following sense. If L = fs(X)
is € close to uniform and independent from E and S for any
family of functions {f,},, then we must have H®, (X|E) > ¢
with ¢ = 1/2e.

Because of this tightness result we are justified to say that
the smooth min-entropy characterizes (at least approximately)
how much uniform randomness can be extracted from a
random source X that is correlated with its environment E.

2. Certifying quantum randomness

Note that we can certify randomness, if we can somehow
conclude that H,;, (X|E) is large. In principle, all entropic
uncertainty relations that involve a quantum memory are
suitable for this task, whenever we can verify the terms lower
bounding the entropy. Tripartite uncertainty relations are
especially suitable to this task, and the security of quantum
key distribution below rests on our ability to make such
estimates. For example, Vallone et al. (2014) specialized the
uncertainty relation for min- and max-entropies in Eq. (222) to
assert that

Hiia(X|E), 2 log d — Hyp (2). (305)
where X and Z are mutually unbiased measurements on a d-
dimensional Hilbert space. Here E is the environment of the
measured system and the max-entropy Hy.(Z) = H,/»(Z)
can be estimated using statistical tests, resulting in confidence
about H;,(X|E). As discussed, the leftover hashing lemma
now allows one to extract uniform randomness from X.

Miller and Shi (2014) derived a lower bound on an entropy
difference instead of a conditional entropy. Assume that X and
Z are complementary binary measurements on a qubit. Then
the following relation holds:

H,(XB)—H,(B) > g(a,5) forae(1,2], (306)
where 0 is determined by the equality
tr[(Z°]pap|Z°)?] = btr[pf]. (307)

?'See Gavinsky er al. (2009) for a concrete example and Konig
and Renner (2011) for a more general discussion of this topic.

See Tomamichel, Colbeck, and Renner (2010) for a precise
definition of smooth min-entropy.
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and ¢ is a function satisfying lim,_;q(a,5) = 1 —2h(5).
They then proceeded to use this result to bound the
smooth min-entropy and apply the generalized leftover hash-
ing lemma.

B. Quantum key distribution

The goal of a key distribution scheme is for two honest
parties to agree on a shared key by communicating over a
public channel in such a way that the key is secret from
any potential adversary eavesdropping on the channel.
Traditionally the two honest parties trying to share a key
are called Alice and Bob and the eavesdropper is called Eve.
By a simple symmetry argument it is evident that key
distribution is impossible if only classical information is
considered: Since Eve will hear all communication from
Alice to Bob, at any point in the protocol she will have at
least as much information about Alice’s key as Bob—in
particular, if Bob knows Alice’s key then so does Eve.

Quantum key distribution (QKD) was first proposed by
Bennett and Brassard (1984) and Ekert (1991) to get out of
this impasse.33 Since quantum information cannot be copied
or cloned (Wootters and Zurek, 1982), the symmetry argument
no longer applies when Alice and Bob are allowed to
communicate over a quantum channel. Roughly speaking,
the main idea is that whenever the eavesdropper interacts with
the channel (for example, by performing a measurement on a
particle), she will necessarily introduce noise in the quantum
communication between Alice and Bob, which they can then
detect and subsequently abort the protocol.

1. A simple protocol

We focus on a truncated version of Ekert’s protocol (Ekert,
1991), which proceeds as follows.

Preparation: Alice and Bob share a maximally entangled
two-qubit state using the public channel. Eve can coherently
interact with the channel.

Measurement: They randomly agree (using the public
channel) on either the basis Z = {]0)(0|,|1){(1]} or
X = {|+)(+],|-)(~|}, and measure their respective qubits
in this basis. (These two steps are repeated many times.)

Parameter estimation: Alice announces her measurement
results on a random subset of these rounds. If their measure-
ment results agree on most rounds, they conclude that their
correlations contain some secrecy and proceed to correct their
errors and extract a secret key (we will not discuss this further
here). If not, they abort the protocol.

2. Security criterion for QKD

To show security of QKD we thus need to show that the
following two statements are mutually exclusive: (a) Alice’s
and Bob’s measurement results agree in most rounds, and
(b) Eve has a lot of information about Alice’s or Bob’s
measurement outcomes.

Security of quantum key distribution against general attacks
was first formally established by Mayers (1996, 2001) as well
as Biham et al. (2000, 2006) and Shor and Preskill (2000). In

3See Scarani et al. (2009) for a recent review.
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all these security arguments, the complementarity or uncer-
tainty principle is invoked in some form to argue that if Alice
and Bob have large agreement on the qubits measured in one
basis, then necessarily Eve’s information about the bits
measured in the complementary basis must be low.

In Sec. VI.B.3 we attempted to present the security argu-
ment in a concise and intuitive way, and for this purpose we
adopt a notion of security—certifying that the raw key has
high Shannon entropy—that has proven to be insufficient in
practice. However, our ultimate goal is to extract a secret key
and not to have a bit string with high Shannon entropy. This
ultimately requires the use of different entropies and a
postprocessing step in the protocol to distill a secret key. A
discussion of these issues follows in Sec. VI.B.4.

Entropic uncertainty relations were first used in this context
by Cerf et al. (2002) and Grosshans and Cerf (2004). In
particular, Koashi (2006) established security by leveraging
the Maassen-Uffink relation (31). However, entropic uncer-
tainty relations with quantum memory provide a more direct
avenue to formalize security arguments for QKD, as we see in
the following.

3. Proof of security via an entropic uncertainty relation

(a) Single round. We broadly follow here an argument
outlined by Berta er al. (2010). First note that during the
preparation step the eavesdropper might interfere and we will
thus not know if Alice and Bob will indeed share a maximally
entangled state after the preparation step is complete.
However, without loss of generality we may assume that
Alice (A), Bob (B), and Eve (E) share an arbitrary state p,pg
after the preparation step, where A and B are qubits and E is
any quantum system held by Eve [see Fig. 15(a)].

Let ® be a binary register in a fully mixed state that
determines if the qubits are to be measured in the basis X or Z
and let Y denote the output of Alice’s measurement. Then we
can write H(Y|B®)= (1/2)H(X|B)+ (1/2)H(Z|B) and
similarly H(Y|E®) = (1/2)H(X|E) + (1/2)H(Z|E). Thus,
the tripartite entropic uncertainty principle with quantum
memory (206) can be cast into the form

H(Y|E®) + H(Y|BO®) > gyu = 1, (308)
where we have that ¢,y = 1 for the measurements X and Z.
The entropies are evaluated for the state pyggg after the
measurement on Alice’s qubit is performed.

Next we perform Bob’s measurement, which yields an
estimate ¥ of Y. The data-processing inequality (C6) implies
that H(Y|BO®) < H(Y|Y), and thus we conclude that
H(Y|E®) > 1 — H(Y|Y). This ensures that Eve’s uncertainty,
in terms of von Neumann entropy, of Alice’s measurement
outcome is large as long as the conditional entropy H(Y|¥) is
small [see Fig. 15(b)]. This is a quantitative expression of the
security criterion.”

Example 34. If Alice and Bob’s measurement outcomes
agree with high probability, let us say with probability 1 — 6,

*Note that in practice we need a stronger statement, namely, a
bound on the min-entropy. This is discussed in Sec. VI.B.4.
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(b) Measurement phase: Alice and Bob measure their
quantum system in the basis indicated by © to recover Y
and Y, respectively. Eve stores © and keeps her quantum
memory intact. The uncertainty relation is applied to the
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FIG. 15. Preparation and measurement phase of the QKD
protocol described in Sec. VI.B.1.

then H(Y|Y) evaluates to Ay, (8) = 8log(1/6) + (1 — &) log
[1/(1 —&)]. Hence, we find that
H(Y|E®) 2 1 = hyin(6), (309)

which is positive as long as ¢ is strictly less than 50%.

(b) Multiple rounds. The protocol extends over multiple
rounds and we can repeat the argument for each round
individually and then attempt to add up the resulting entropies,
but it is much more convenient to use a stronger uncertainty
relation that describes the situation for multiple rounds directly.

For this purpose, let us model the situation after Alice and
Bob have exchanged n qubits but before they measure them.
This is a hypothetical situation since in the actual protocol
Alice and Bob measure their qubits after every round.
However, we can always imagine that Alice and Bob delay
their measurement since Eve’s strategy cannot depend on
the timing of their measurement. After the exchange Alice
and Bob each hold n qubits in systems A" = AA,---A,
and B" = BB, - -- B,, respectively. This is described by an
arbitrary state pyngnp, where E is any quantum system
held by the eavesdropper. Again, we model the random
measurement choice using a register, a bit string ®" =
(0,0,,....0,) of length n in a fully mixed state, where
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©; determines the choice of measurement on the systems
indexed by i. Analogously, we store the measurement out-
comes on Alice’s system in a bit string Y" = (¥4, Y,,....Y,)
and on Bob’s system in a bit string = (f/l, f/z, f/,,).

The crucial observation is that the tripartite uncertainty
principle in Eq. (206) implies that

H(X\X,Z3Xy X1 Z,|E) + H(Z, 2, X324+ 2,1 X, |B) 2 11,
(310)

where we made sure that all n systems are measured in the
opposite basis in the two terms, and used that log(1/¢") = n.
A similar averaging argument for the one round case and the
data-processing inequality (C6) then reveal the bounds

H(Y"|E®") + H(Y"|¥") > H(Y"|E®") + H(Y"|B"@") > n.
(311)

Hence, Eve’s uncertainty (in terms of von Neumann entropy)
of the measurement outcome Y” increases linearly in the
number of rounds. Notably, this is true without assuming
anything about the attack. In particular, the state p .y after
preparation but before the uncertainty principle is applied does
not need to have any particular structure and is assumed to be
arbitrary.

4. Finite size effects and min-entropy

So far we have argued that security of QKD is ensured if
Eve’s uncertainty of the key expressed in terms of the von
Neumann entropy is large. This might be a reasonable ad hoc
criterion, but more operationally what we want to say is that a
key is secure if it can be safely used in any other protocol, for
example, one-time pad encryption that requires a secret key.
This leads to the notion of composable security, first studied
by Renner (2005) in the context of QKD. It turns out that in
order to achieve composable security for a key of finite length,
it is not sufficient to consider Eve’s uncertainty in terms of the
von Neumann entropy. Instead, it is necessary to ensure that
the smooth min-entropy of the measurement results is large
(Renner and Konig, 2005), so that we can extract a secret key,
i.e., uniform randomness that is independent of the eaves-
dropper’s memory. (Recall the discussion of randomness
in Sec. VI.A.) Thus, instead of the inequality (310) involving
von Neumann entropies, we want to apply a generalization
of the Maassen-Uffink uncertainty relation with quantum
memory (221). This leads to the following relation
(Tomamichel and Renner, 2011):

Hé‘

bin(Y'[E@") + Hio (Y"[T7) 2 n, (312)

where H{. and Hg,, denote the smooth min- and max-
entropies, variations of the min- and max-entropies (that we
will not discuss further here). Hence, in order to ensure
security it is sufficient to estimate the smooth max-entropy
HE, (Y"|¥™). This can be done by a suitable parameter
estimation procedure as shown by Tomamichel et al. (2012).
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5. Continuous variable QKD

Quantum information processing with continuous variables
(Weedbrook et al., 2012) offers an interesting and practical
alternative to finite-dimensional systems. Here we discuss a
particular variation of the above QKD protocol, where Alice
and Bob measure the quadrature components of an electro-
magnetic field and then extract a secret key from the
correlations contained in the resulting continuous variables.

If Alice and Bob share a squeezed Gaussian state, Furrer
et al. (2012) showed that the security of such protocols can be
shown rigorously using entropic uncertainty relations, includ-
ing finite size effects. For this purpose, it is convenient to
employ a smoothed extension of Eq. (291) as first shown by
Furrer, Aberg, and Renner (2011). This yields

anin(Yn|E®n) + Hﬁlax(Yn|?n)

2 5\ 2
> nlog [5—72[-S81)(1,Z> }

where Y, is the outcome of the quadrature measurement in the
basis (position or momentum) specified by ®; discretized with
bin size 6. See Gehring et al. (2015) for an implementation.

(313)

C. Two-party cryptography

In this section we discuss applications of entropic uncer-
tainty relations to cryptographic tasks between two mutually
distrustful parties (traditionally called Alice and Bob).
This setup is in contrast to quantum key distribution
where Alice and Bob do trust each other and only a third
party is eavesdropping. Typical tasks for two-party cryptog-
raphy are bit commitment, oblivious transfer, or secure
identification.

It turns out, however, that even using quantum communi-
cation it is possible only to obtain security if we make some
assumptions about the adversary (Lo, 1997; Lo and Chau,
1997; Mayers, 1997). What makes this problem harder is that
unlike in QKD where Alice and Bob trust each other to check
on any eavesdropping activity, here every party has to fend for
himself. Nevertheless, since tasks such as secure identification
are of great practical importance, one is willing to make such
assumptions in practice.

Classically, such assumptions are typically computational
assumptions. We assume a particular problem such as factor-
ing is difficult to solve, and in addition that the adversary has
limited computational resources, in particular, not enough to
solve the difficult problem. On the other hand, it is also
possible to obtain security based on physical assumptions,
where we first consider assuming that the adversary’s memory
resources are limited. Even a limit on classical memory can
lead to security (Maurer, 1992; Cachin and Maurer, 1997).
However, classical memory is typically cheap and plentiful.
More significantly, however, Dziembowski and Maurer
(2004) showed that any classical protocol in which the honest
players need to store n bits to execute the protocol can be
broken by an adversary who is able to store more than O(n?)
bits. Motivated by this unsatisfactory gap it is an evident
question to ask if quantum communication can be of any
help. The situation is rather different if we allow quantum
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FIG. 16. The noisy-storage model: Wehner, Schaftner, and
Terhal (2008) and Ko6nig, Wehner, and Wullschleger (2012)
assumed that during waiting times Az in the protocol, the
adversary can keep only quantum information in an imperfect
and limited storage device described by a quantum channel F.
This is the only restriction and the adversary is otherwise
arbitrarily powerful. In particular, he can first store all incoming
qubits and has a quantum computer to encode them into an
arbitrary quantum error-correcting code to protect them against
the noise of the channel F. He can also keep an unlimited amount
of classical memory and perform any operation instantaneously.

communication. We can have quantum protocols that require
no quantum memory to be executed, but that are secure as
long as the adversary’s quantum memory is not larger than
n — O(log? n) qubits (Dupuis, Fawzi, and Wehner, 2015),
where n is the number of qubits sent during the protocol. This
is essentially optimal, since any protocol that allows the
adversary to store n qubits is known to be insecure (Lo, 1997;
Lo and Chau, 1997; Mayers, 1997). The assumption of a
memory limitation is known as the bounded (Damgaard ef al.,
2008), or more generally, noisy-storage model (Wehner,
Schaffner, and Terhal, 2008), as illustrated in Fig. 16.

Security proofs in this model are intimately connected to
entropic uncertainty relations. Additionally, the uncertainty
relations of Dupuis, Fawzi, and Wehner (2015) together with
the work of Konig, Wehner, and Wullschleger (2012) dem-
onstrated that any physical assumption that limits the adver-
sary’s entanglement leads to security.

1. Weak string erasure

The relation between cryptographic security and entropic
uncertainty relations can easily be understood by looking at a
simple cryptographic building block known as weak string
erasure (WSE) (Konig, Wehner, and Wullschleger, 2012).
Weak string erasure is universal for two-party secure compu-
tation in the sense that any other protocol can be obtained by
repeated executions of weak string erasure, followed by
additional quantum or classical communication (Kilian,
1988). Importantly, the storage assumption needs to hold
only during some time Az during the execution of weak string
erasure.

Weak string erasure generates the following outputs if both
Alice and Bob are honest: Alice obtains an n-bit string K", and
Bob obtains a random subset / < [n], and the bits K; € K" as
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indexed by the subset /. In addition, the following demands
are made for security. If Bob is honest, then Alice does not
know anything about /. In turn, if Alice is honest, then Bob
should not know too much about K" (except for K;). More
precisely, Bob should not be able to guess K" too well, that is
with Eq. (138),

Hin(K"|B) = A - n for some 4 € [0, 1], (314)
where B denotes all of Bob’s knowledge. See Konig, Wehner,
and Wullschleger (2012) for a more detailed definition. A
simple protocol for implementing weak string erasure is as
follows.

(1) Alice prepares a random n-bit string K", encodes each
bit K; in one of the BB84 bases ©® € {ox,07} at
random, and sends these n qubits to Bob.

(2) Bob measures the n qubits in randomly chosen
bases ®' € {ox,02}.

(3) After the waiting time At¢, Alice sends the classical
n-bit string ®”" to Bob and outputs K”.

(4) Bob computes I = {i:0; = 0;} and outputs [ and K.
Note that if both parties are honest, then the protocol is correct
in the sense that Alice outputs K" and Bob / with K; € K".
Moreover, when Alice is dishonest, it is intuitively obvious
that she is unable to gain any information about the index set /
(even with an arbitrary quantum memory), since she never
receives any information from Bob during the protocol. A
precise argument has been given by Konig, Wehner, and
Waullschleger (2012). On the other hand, note that a dishonest
Bob with a quantum memory can easily cheat by just keeping
the n qubits he gets from Alice and wait until he receives the
n-bit string ©" from Alice as well. Namely, he can then
measure the n qubits in the same basis ®" as Alice and get the
full n-bit string K" [that is, H,;,(K"|BO") = 0]. However, if
Bob has only a limited quantum memory, then he could not
keep a perfect copy of the n qubits he gets from Alice.

The security analysis is linked immediately to a guessing
game whenever we consider a purified version of the protocol
in which Alice does not prepare BB84 states herself, but
instead makes EPR pairs |y) 5 = (|00),5 + |11)45)/V/2 and
sends B to Bob, while measuring A in a randomly chosen
BB&84 basis. In the analysis, one can indeed give even more
power to Bob by letting him prepare a state p, 5 in each round
of the protocol and Alice measures A in a randomly chosen
BB84 basis. Alice then sends him the basis choice. Recall that
H,pin(K"|BO") = —10g poyess(K"|BO"), that is, the min-
entropy security guarantee that WSE demands are precisely
related to Bob’s ability to win the guessing game (Ballester,
Wehner, and Winter, 2008). The storage assumption translates
into one particular example of how the entanglement in p,p
is limited, putting a limit on H ;,(A|B) of the states that Bob
can prepare.

2. Bounded-storage model

To illustrate further how a bound on entropic uncertainty
leads to security, let us first consider a special case of the
noisy-storage model, also known as the bounded-storage
model. Here the channel F :I?q in Fig. 16 is just the
identity on ¢ qubits. This bounded-storage model was
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introduced and first studied by Damgaard er al. (2007,
2008) and Schaffner (2007).

While more refined bounds are known (Dupuis, Fawzi, and
Wehner, 2015), let us first explain how entropic uncertainty
relations for a classical memory system can be used to obtain
weak security statements in this setting. To this end, we
differentiate Bob’s knowledge into B = QM®", where Q
denotes the ¢ qubits of quantum memory, M denotes
(unbounded) classical information, and ®” is the n-bit basis
information string Alice sent to Bob. Since the conditional
min-entropy obeys a chain rule (Renner, 2005), we can
separate the quantum memory as

Hmin(Kn|B) :Hmin(Kn|QM®n) (315)

> Hyin(K"[MO") — g. (316)
Analyzing H;,(K"|M®") is then directly determined by
Bob’s ability to win the guessing game, in which he has only
classical information M. Using the min-entropy uncertainty
relation (102) for the n qubit BB84 measurements (with an
extension to classical side information M as sketched in
Sec. IV.C), we get

1 1
H (K" MO") > —n-log | =+ ——= ). 317
A )
Hence, we find a nontrivial lower bound
Hain (K"|B) > 0 (318)

aslongas ¢ < n - 0.22. This security analysis can be refined and
improving on the work of Damgaard et al. (2007), Ng, Berta, and
Wehner (2012) made use of the following stronger smooth min-
entropy uncertainty relation which is based on Eq. (103):

Hy (K" |MO")
> sup (1 [1+ log (1 + 2%)] ! log 2) (319)
>n- - s — ——log— ).
s€(0.1] \S sno - g

One can use this uncertainty relation together with the more
refined analysis of Konig, Wehner, and Wullschleger (2012)
instead of Eq. (316), to obtain perfect security (4 — 1) against
quantum memory of size

(320)

[NSREN]

q=<

for n - oo. Ultimately, Dupuis, Fawzi, and Wehner (2015)
showed by deriving strong entropic uncertainty relations that the
protocol from Sec. VI.C.1 implements a WSE scheme against ¢
qubits of quantum memory for

/1_1 q 1
) Y BB84 n 7l

where the function ygpg4(+) is as in Eq. (202). Asymptotically
(n — o0), this provides perfect security (1 — 1)againstquantum
memories of size

(321)
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(322)

This is basically optimal, since no protocol can be secure if
q = n. Finally, we mention that alternatively we could also use a
six-state encoding {oy, oy, } for the weak string erasure
protocol described in Sec. VL.C.1. See Mandayam and Wehner
(2011), Ng, Berta, and Wehner (2012), and Dupuis, Fawzi, and
Wehner (2015) for a security analysis.

3. Noisy-storage model

Let us now consider the general case of arbitrary storage
devices F in Fig. 16 (Wehner, Schaffner, and Terhal, 2008).
This model is motivated by the fact that counting qubits is
generally a significant overestimate of the storage capabilities
of a quantum memory, and indeed, for example, for continu-
ous variable systems there is no dimension bound to which to
apply the bounded-storage analysis. The first general security
analysis was given by Konig, Wehner, and Wullschleger
(2012), which was then refined significantly by Berta et al.
(2013) and Berta, Fawzi, and Wehner (2014), leading to the
asymptotically tight security analysis by Dupuis, Fawzi, and
Wehner (2015). Here one cannot just use the chain rule to
separate the quantum memory as in Egs. (315) and (316).
Such a separation is possible only when relating the security to
the classical capacity of the storage channel F (Konig,
Wehner, and Wullschleger, 2012). Instead, we have to apply
a min-entropy uncertainty relation with quantum memory to
directly lower bound

Hmin(Kn|B) = Hmin(K”‘QM@”)' (323)
We use a variant of Eq. (201) for the n qubit BB84
measurements to bound (Dupuis, Fawzi, and Wehner, 2015)

H (K'|QM@") > n - 73384(

1-tog ()
—_— —_— Og —2 R
€

where the function ygggs() is as in Eq. (202). In order to get
an idea how to lower bound the right-hand side of Eq. (324)
under a noisy quantum memory Q assumption, recall that
H.i,(A"|OM) is a measure of entanglement between A”
and B = QM. In particular, one can relate this amount of
entanglement to Bob’s ability to store the n EPR pairs that
Alice sends in the purified version of the protocol, that is, the
quantum capacity of the storage channel F. If F cannot
preserve said entanglement, then H,;,(K"|QM®") in
Eq. (324) will be lower bounded nontrivially leading to a
secure WSE scheme for some trade-off between the security
parameter A from Eq. (314), the number n of qubits sent, and
the noisiness of the quantum memory Q. See Dupuis, Fawzi,
and Wehner (2015) for details.

Again we could also use a six-state encoding {ox, oy, 07}
for the weak string erasure protocol described in Sec. VI.C.1.
See Berta, Fawzi, and Wehner (2014) and Dupuis, Fawzi, and
Wehner (2015) for a security analysis.

Hmin(An|QM)>

n

(324)
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4. Uncertainty in other protocols

Many other quantum cryptographic protocols were ana-
lyzed via entropic uncertainty relations (Broadbent and
Schaffner, 2016). The entropic relation for channels (241)
was used by Buhrman et al. (2008) to obtain cheat sensitivity
for a quantum string commitment protocol. The same relations
as relevant for the noisy-storage model have also been used to
prove security in the isolated qubit model (Liu, 2014, 2015).
In this model, the adversary is given a quantum memory of
potentially long-lived qubits, but they are isolated in the sense
that he is unable to perform coherent operations on many
qubits simultaneously. In particular, the uncertainty relation of
Damgaard et al. (2007) was used by Liu (2014) to obtain
security. It is possible to use Eq. (103) from Ng, Berta, and
Wehner (2012) to obtain improved security parameters.
Furthermore, tripartite (Tomamichel et al., 2013) uncertainty
relations have been used to ensure the security of position-
based cryptography. Finally, in relativistic cryptography,
security of two-party protocols is possible under the assump-
tions that each player is split into several noncommunicating
agents. Tripartite uncertainty relations have been used to
establish security in this setting (Kaniewski et al., 2013).

D. Entanglement witnessing

Entanglement is a central resource in quantum information
processing. Hence, methods for detecting entanglement are
crucial for quantum information technologies. Entanglement
witnessing refers to the process of verifying that a source is
producing entangled particles. Entangled states are defined as
those states that are nonseparable, i.e., they cannot be written
as a convex combination of product states. A common theme
in entanglement witnessing is to prove a mathematical identity
that all separable states must satisfy; let us refer to such an
identity as an entanglement witness. Experimentally demon-
strating that one’s source violates this identity will then
guarantee that the source produces entangled particles.

Entanglement witnessing is a well-developed field [see,
e.g., the review articles by Giihne and Té6th (2009) and
Horodecki et al. (2009)], and there are many types of
entanglement witnesses. Here we focus mostly on entangle-
ment witnesses that follow from entropic uncertainty relations.

In what follows, we restrict the discussion to bipartite
entanglement. We note that entanglement witnessing typically
occurs in the distant-laboratories paradigm, where two parties
(Alice and Bob) can each perform local measurements on their
respective systems, but neither party can perform a global
measurement on the bipartite system.

For introductory purposes, let us mention a simple, well-
known bipartite entanglement witness for two qubits.
Although it is nonentropic, it is based on complementary
observables, and so it can be directly compared to the entropic
witnesses discussed below. Namely, consider the operator

Exz = Ex + Ey, (325)

where

Ey =)+ ® [){=[+ )= ® [H){+].  (326)
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FIG. 17. Entanglement witnessing for a bipartite two-qubit

state using mutually unbiased observables. Suppose Alice and
Bob observe Pr[X, =Xz =0]=Pr[X,=Xz=1]=(1—ex)/2 and
Pr[X, =0,X3 =1] =Pr[X, = 1,Xp = 0] = ex/2, and analo-
gously for Z and e;. The region below the curve indicates
the region for which one can guarantee entanglement for the
respective witnesses.

Ez =10)(0] @ [1)(1] + [1){1] ® [0){0].  (327)
Note that Ey and E, are “error operators” in that they project
onto the subspaces where Alice’s and Bob’s measurement
outcomes are different. For a maximally entangled state of the
form |y) = (|00) + [11))/+/2, there is no probability for error
in either basis, so we have (y|Eyz|w) = 0. On the other hand,
for any separable state p, 3, we have that [see, e.g., Namiki and
Tokunaga (2012)]

tlpapExz] 2 5. (328)

Hence, if (Ey) + (E;) < 1/2, where (O) = tr[Op 3], then
pap 1s entangled. This witness is depicted as the solid line
in Fig. 17.

1. Shannon entropic witness

Some early work on entanglement witnessing using
entropic uncertainty relations was done by Giovannetti
(2004) and Giihne and Lewenstein (2004), and further
improvements were later made by Huang (2010). The follow-
ing discussion focuses primarily on more recent develop-
ments, e.g., where entanglement witnessing is based on the
bipartite uncertainty relation with quantum memory in
Eq. (165). Berta ef al. (2010) discussed how this can be used
for entanglement witnessing, and the approach was imple-
mented by Li et al. (2011) and Prevedel et al. (2011).
Specifically, from Eq. (165), one finds that all separable
states satisfy

H(X4|Xp) + H(Z4|Zp) 2 qmv. (329)
where the gy parameter refers to Alice’s observables, and
Bob’s observables X and Zp are arbitrary. One can see this
by noting that H(A|B) >0 for any separable state, and
furthermore that measuring Bob’s system in some basis Xy
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cannot reduce his uncertainty about Alice’s measurement,
i.e., H(X4|Xp) > H(X4|B).

One can use Eq. (329) for entanglement witnessing, using a
protocol where Alice and Bob have many copies of p,p
and they both measure on each copy either their X or Z
observable. The quantities H(X4|Xp) and H(Z4|Zp) can
then be calculated from their joint probability distributions
Pr(X, =x4,Xg =xp) and Pr(Z, = z4,Zp = z3), and if
Eq. (329) is violated, then p,p must be entangled.

Figure 17 depicts this entanglement witness (long-dashed
curve) for the case of qubits and mutually unbiased bases. A
comparison of this curve to the black line shows that Eq. (328)
detects more entangled states than Eq. (329). However, the
“quality” of entanglement that Eq. (329) detects is higher. This
is because Eq. (329) holds for all nondistillable states, i.e.,
states from which Alice and Bob cannot distill any EPR
(maximally entangled) states using local operations and
classical communication [see, e.g., Horodecki et al. (2009)
for a discussion of local operations and classical communi-
cation]. In this sense, Eq. (329) detects distillable entangle-
ment whereas Eq. (328) detects all forms of entanglement.

One can make this quantitative using a result by Devetak
and Winter (2005) that the coherent information (i.e., minus
the conditional entropy) lower bounds the distillable entan-
glement Ep, i.e., the optimal asymptotic rate for distilling EPR
states using local operation and classical communication:

Ep > —H(A|B). (330)
Combining this with Eq. (165) gives
Ep > quu — H(Xa|Xp) — H(Z4|Zp). (331)

This reveals an advantage of the entropic uncertainty approach
to entanglement witnessing. Namely, that it can give quanti-
tative lower bounds, in contrast to witnesses like that in
Eq. (328) that answer only a “yes or no” question.

Another advantage of the entropic uncertainty approach is
that it requires no structure on Bob’s side. While Eq. (328)
requires both Alice’s and Bob’s measurements to be mutually
unbiased, the entropic uncertainty approach allows for arbi-
trary measurements on Bob’s system.

2. Other entropic witnesses

Bipartite quantum memory uncertainty relations generally
lead to entanglement witnesses. For example, Berta, Coles,
and Wehner (2014) discussed how the uncertainty relation in
Eq. (185) allows for entanglement witnessing using a set of n
MUBs on Alice’s system (more precisely, a subset of size n of
MUBSs chosen from a set of dy + 1 MUBs, where d, is a
prime power and 2 < n < d, + 1). Consider such a set {X;}
of n MUBs on Alice’s system, and consider a set of n arbitrary
POVMs {Y;} on Bob’s system. Berta, Coles, and Wehner
(2014) showed that all separable states must satisfy

n

Zz—Hz(X,,-\Y_,-) <14+
j=1 4

n—1

(332)
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Figure 17 compares this entanglement witness (short-dashed
curve) to the previously discussed ones, in the qubit case with
n = 2. Note that Eq. (332) detects more entangled states than
Eq. (329), but not as much as Eq. (328).

Similar to the Shannon entropy case in Eq. (331), the
uncertainty relation (185) actually allows one to give a
quantitative lower bound on an entanglementlike measure.
Namely, Eq. (185) allows one to lower bound —H ;;(A|B).

3. Continuous variable witnesses

The method of witnessing entanglement through entropic
uncertainty relations was also extended to continuous variable
systems by Walborn ez al. (2009), and further studied by
Saboia, Toscano, and Walborn (2011) and Huang (2013).

E. Steering inequalities

First highlighted by Schrodinger (1935), steering is a
phenomenon for bipartite quantum systems that is related
to entanglement (although not precisely the same). As in the
previous section, we consider the distant-laboratories para-
digm involving two parties, Alice and Bob, where Alice (Bob)
has access to system A (B). Steering corresponds to one
party’s (say Alice’s) measurement choice giving rise to
different ensembles of states on the other party’s (Bob’s)
system. Not all quantum states exhibit steering, e.g., separable
states are nonsteerable. At the other extreme, all states that
violate a Bell inequality are steerable. While Bell inequalities
are derived for states that admit a local hidden variable model,
Wiseman, Jones, and Doherty (2007) formalized the notion of
steerability as those states p, 5 that do not admit a local hidden
state (LHS) model. An LHS model is a model where, say,
system B has a local quantum state that is classically
correlated to arbitrary observables on system A. This formali-
zation has led researchers to derive steering inequalities
(Cavalcanti et al., 2009), in analogy to Bell inequalities.

Walborn et al. (2011) and Schneeloch ef al. (2013) showed
how entropic uncertainty relations can be used to derive
steering inequalities. The idea is that if B has a local hidden
state, then its measurement probabilities must obey a single
system uncertainty relation, even if they are conditioned on
the measurement outcomes on A. More precisely, an LHS
model implies that the joint probability distribution for
discrete observables X, on A and Xz on B has the form

ZPA )P

XA’XB XA|A:A)PQ(XB|A:/‘L)

(333)

Here A is the hidden variable that determines Bob’s local
state, A is a particular value that this variable may take, and
the subscript Q on Py(Xp|A = 1) emphasizes that the
probability distribution arises from a single quantum state.
Next we have

= P(A=A)H(Xg|A = 2).

A

(336)

where the notation H(Xp|X4A = 1) should be read as the
entropy of Xp conditioned on X, and conditioned on the
event that A = 1. Hence, for two observables X and Zz on
B, and some other observables X, and Z, on A, we have
H(Xp|Xa) + H(Zp|Z4)

> STP(A = 2)[H(X,|A = 2) + H(ZylA = )]
A

Combining this with, say, Maassen-Uffink’s uncertainty

(337)

relation (31) gives the following steering inequality
(Schneeloch et al., 2013):
H(Xp|Xy) + H(Zp|Zs) 2 qmu. (338)

where gy refers to Bob’s observables. Any state p,p that
admits an LHS model must satisfy Eq. (338). Hence, an
experimental violation of Eq. (338) would constitute a
demonstration of steering. Similar steering inequalities
can be derived for continuous variables (Walborn et al.,
2011).

F. Wave-particle duality

Wave-particle duality is the fundamental concept that a
single quantum system can exhibit either wave behavior or
particle behavior: one cannot design an interferometer that can
simultaneously show both behaviors. This idea was qualita-
tively discussed by Feynman and was subsequently put on
quantitative grounds by Wootters and Zurek (1979), Jaeger,
Shimony, and Vaidman (1995), Englert (1996), and Englert
and Bergou (2000), and others, who proved inequalities
known as wave-particle duality relations (WPDRs). Many
such relations consider the Mach-Zehnder interferometer for
single photons, shown in Fig. 18. In this case, particle
behavior is associated with knowing the path that the photon
travels through the interferometer. Wave behavior, on the
other hand, is associated with seeing oscillations in the
probability to detect the photon in a given output mode as
one varies the relative phase ¢ between the two interferometer
arms. Denoting the which-path observable as Z = {|0)(0
|1)(1|}, particle behavior can be quantified by the path
predictability P = 2pgyes(Z) — 1 [which is related to the
probability pgess(Z) of guessing the path correctly]. The
wave behavior is quantified by the fringe visibility

max min
= % with  pg'™ == maxp,,
Pt Po ¢
Py = minpo, (339)

H(Xp|X,) > H(X3|X,A) (334)  where py is the probability for the photon to be detected by Dy
(see Fig. 18). Wootters and Zurek (1979) proved that
= P(A=V)H(Xg|X,A=2 335
P = DHOXIXaA =) (335) . 40)
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FIG. 18. Mach-Zehnder interferometer for single photons. A
photon impinges on a beam splitter, after which we label the two
possible paths by the Z basis states |0),|1). The photon may
interact with some environment E inside the interferometer. Then
a phase ¢ is applied to the lower path, and the two paths are
recombined on a second beam splitter. Finally the photon is
detected at either D or D.

which implies ¥V =0 when P =1 (full particle behavior
means no wave behavior) and vice versa.

More generally, suppose the photon interacts with some
environment system E inside the interferometer. Measuring
E might reveal, e.g., some information about which path
the photon took, so it is natural to consider the path
distinguishability

D= 2pguess(Z|E) -1 (341)

Jaeger, Shimony, and Vaidman (1995) and Englert (1996)
proved a stronger version of Eq. (340), namely,
D>+ V2 < 1. (342)

WPDRs such as Egs. (340) and (342) have often been
thought to be conceptually different from uncertainty rela-
tions, although this has been debated. For example, Diirr
and Rempe (2000) and Busch and Shilladay (2006) found
connections between certain WPDRs and Robertson’s uncer-
tainty relation involving the standard deviation. More recently,
Coles, Kaniewski, and Wehner (2014) showed that Eqgs. (340),
(342), and some other WPDRs are actually entropic uncer-
tainty relations in disguise. In particular, they correspond to
the uncertainty relation for the min- and max-entropies in

Eq. (222), applied to complementary qubit observables.
Namely, Eq. (340) is equivalent to the uncertainty relation,

Hmin(Z) + vgg}?YHmax(W) = 17

(343)

where the minycyy corresponds to minimizing over all
observables in the x-y plane of the Bloch sphere. Likewise
Eq. (342) is equivalent to the uncertainty relation

. i ; > 1.
Hynin (Z|E) + min Hinp (W) 2 1 (344)

This unifies the wave-particle duality principle with the
entropic uncertainty principle, showing that the former is a
special case of the latter.

Naturally, other entropies could be used in place of the min-
and max-entropies, and although one might not obtain a
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precise equivalence to the WPDRs, the conceptual meaning
may be similar. Bosyk ef al. (2013) took this approach using
uncertainty relations involving Rényi entropies. Vaccaro
(2011) employed the Shannon entropy to formulate a
WPDR in terms of the mutual information. Moreover, they
added the conceptual insight that wave and particle behavior
are related to symmetry and asymmetry, respectively. Finally,
Englert et al. (2008) considered entropic measures of wave
and particle behavior for interferometers with more than
two paths.

G. Quantum metrology

Quantum metrology deals with the physical limits on the
accuracy of measurements (Giovannetti, Lloyd, and Maccone,
2011). The uncertainty principle plays an important role in
establishing such physical limits. Typically in quantum
metrology one is interested in estimating an optical phase,
e.g., the phase shift in an interferometer (as in Fig. 18). Hence,
uncertainty relations involving the phase have applications
here. Recall that we briefly discussed an entropic uncertainty
relation for the number and phase in Sec. V.F, specifically in
Eq. (299). While quantum metrology is a broad field [see, e.g.,
Giovannetti, Lloyd, and Maccone (2011) for a review], we
mention here a few works that exploit entropic uncertainty
relations.

The Heisenberg limit is a well-known limit in quantum
metrology stating that the uncertainty in the phase estimation
scales as 1/(N). Here (N) is the mean photon number of the
light that is used to probe the phase. Hall ez al. (2012) noted
that the Heisenberg limit is heuristic and put it on rigorous
footing by proving the following bound:

5b > k/(N+1), (345)

where 69 is the root-mean-square deviation of the phase
estimate & from the actual phase ®, and k := \/27/¢%. To
prove Eq. (345), Hall et al. (2012) defined the random variable
© := & — ® and applied the entropic uncertainty relation in
Eq. (299), giving

H(N) + h(®) > log 2. (346)

Then they combined Eq. (346) with some identities that relate
h(©) to 6& and H(N) to (N + 1).

Hall and Wiseman (2012) considered a more general
scenario where one may have some prior information about
the phase, and they likewise used the entropic uncertainty
relation in Eq. (299) to obtain a rigorous statement of the
Heisenberg limit.

H. Other applications in quantum information theory

Recent efforts to understand the classical-quantum boun-
dary, in the context of both physics and information process-
ing, have led to quantitative measures of “quantumness” like
coherence and discord, which are discussed in Secs. VI.H.1
and VL.H.2, respectively. We further discuss information
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locking in Sec. VI.LH.3 and touch on quantum coding in
Sec. VL.H.4.

1. Coherence

Baumgratz, Cramer, and Plenio (2014) introduced a frame-
work for quantifying coherence, which is a measure that does
not increase under incoherent operations. There are a variety
of coherence measures, but one, in particular, has an opera-
tional meaning in terms of the number of distillable maximally
coherent states (Winter and Yang, 2016),

B(Z.p) = D(mzzzxzzmzwzw), (347)

the relative entropy of coherence. Note that the coherence is a
function of the state p as well as an orthonormal basis
Z = {|Z5){(Z*|}-

The following connection between coherence and entropic
uncertainty was established by Coles er al. (2011, 2012b). Let
ps be any state for system S and let Z be a projective
measurement on S. Then, we have

®(Z,ps) = H(Z|E), (348)
where E is a purifying system for pg. This states that the
relative entropy of coherence for a projective measurement is
equivalent to the uncertainty of that measurement given the
purifying system, or in other words, given access to the
environment E. The right-hand side of Eq. (348) quantifies
uncertainty in the presence of quantum memory, and uncer-
tainty relations for such measures have been discussed in
Sec. IV. Hence, one can reinterpret such uncertainty relations
as, e.g., in Eq. (165), as lower bounds on the coherence of pg
for different measurements. This idea was discussed by
Korzekwa et al. (2014), although they focused more on the
perspective of Luo (2005) of separating total uncertainty into
“classical” and “quantum” parts. In particular, for a rank-one
projective measurement Z = {|Z%)(Z?|} and a quantum state
p, they defined the classical uncertainty as the entropy of the
state C(Z,p) := H(p), and the quantum uncertainty as the
relative entropy of coherence,

0(Z.p) = D(p||2|zz><qu|zz><zw). (349)

It is straightforward to show that overall uncertainty is the sum
of the classical and quantum parts

H(Z) = Q(Z.p) + C(Z.p). (350)
Korzekwa et al. (2014) derived several uncertainty relations
for the quantum uncertainty Q(Z,p). However, using
Eq. (348), one can reinterpret their relations as entropic
uncertainty relations in the presence of quantum memory.

In particular, their uncertainty relations follow directly from
combining Eq. (165) with Eq. (348).
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2. Discord
Ollivier and Zurek (2001) quantified quantum correlations
by discord,
D(BJA) :==I(A:B) — J(BJA), (351)
which is the difference between the quantum mutual infor-
mation /(A:B) and the classical correlations,

J(BJA) = m}?xI(X:B), (352)

where the optimization is over all POVMs X acting on
system A. In Sec. IV.E, example 26, we discussed how
discord quantifies the gap between conditioning on classical
versus quantum memory. Another connection to discord is the
following. In an effort to strengthen the uncertainty relation
with quantum memory in Eq. (165), Pati et al. (2012)
introduced an additional term that depends on the discord
of the state p,p. Namely, they proved the inequality

H(X|B) + H(Z|B) > qmu + H(A|B)

+ max{0, D(B|A) —J(B|A)}.  (353)
Clearly this strengthens the bound in Eq. (165) for states pp
whose discord exceeds their classical correlations D(B|A) >
J(B|A). Indeed, Pati et al. (2012) showed that this is true for
Werner states, for which Eq. (353) becomes an equality.

In turn, this result was used by Hu and Fan (2013b) to
obtain a strong upper bound on discord. That is, the uncer-
tainty relation (353) allows one to bound the discord by

D(B|A) < 1[I(A:B) + 7], (354)

where

6r = H(X|B) + H(Z|B) — qmu — H(A[B).  (355)
Here 67 is the gap between the left- and right-hand sides in the
uncertainty relation (165).

Further connections between quantum correlations and
entropic uncertainty relations have been elucidated in the
context of non-Markovian dynamics (Karpat, Piilo, and
Maniscalco, 2015), entanglement creation (Coles, 2012a),
teleportation (Hu and Fan, 2012), and monogamy (Hu and
Fan, 2013a).

3. Locking of classical correlations

One operational way of understanding entropic uncertainty
relations is in terms of information locking (DiVincenzo et al.,
2004). In the following we present a cryptographic view on
information locking as discussed by Fawzi, Hayden, and
Sen (2011).

A locking scheme is a protocol that encodes a classical
message into a quantum state using a classical key of size
smaller than the message. The goal is that without knowing
the key the message is locked in the quantum state such that
any possible measurement reveals only a negligible amount of
information about the message. Furthermore, knowing the key
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it is possible to unlock and completely recover the message.
The connection of information locking to entropic uncertainty
is best presented by means of a simple example based on
the Maassen-Uffink bound for the n qubit BB84 measure-
ments (101),

H(K"©") >n-}. (356)

with @" € {6, ...,0,}. In order to encode a uniformly
random n-bit string X we choose at random an n qubit
BB8&4 basis 6; (the key) and encode the message in this
basis. Based on Eq. (356), DiVincenzo et al. (2004)
showed that for any measurement on this quantum state
the mutual information (accessible information) between
the outcome of that measurement and the original classical
message X is at most n/2. That is, n/2 bits are locked in
the quantum state and are not accessible without knowing
the basis choice (the key). This is remarkable because any
nontrivial purely classical encryption of an n-bit string
message requires a key of size at least n. Of course, this
then raises the question about the optimal trade-off between
the number of lockable bits and the key size. For that
purpose Fawzi, Hayden, and Sen (2011) made use of the
uncertainty relation (100),

H(K|®) 2 n - (1 —2¢) — hyu(e),
with @ = {6,,...,0; }. Based on this they showed that a
key size of L = O(log(n/¢)) allows for locking an n-bit
string up to a mutual information smaller than & > 0. State-
of-the-art results use stronger definitions for information
locking in terms of the trace norm instead of the mutual
information and are based on so-called metric uncertainty
relations (Fawzi, Hayden, and Sen, 2011; Dupuis et al.,
2013).* Finally, we mention that Guha er al. (2014)
initiated the study of the information locking capacity of
quantum channels, which is also intimately related to
uncertainty.

(357)

4. Quantum Shannon theory

The original partial results and conjectures for entropic
uncertainty relations with quantum memory by Christandl and
Winter (2005) and Renes and Boileau (2008, 2009) were
inspired by applications in quantum Shannon theory. More
recently, entropic uncertainty relations and, in particular,
their equality conditions have been used to analyze the
performance of quantum polar codes (Renes and Wilde,
2014; Renes et al., 2015).

VII. MISCELLANEOUS TOPICS
A. Tsallis and other entropy functions
From a mathematical perspective it is insightful to consider

uncertainty relations for various generalizations of the

Pwe emphasized that the security definitions for information
locking are not composable [see, e.g., Renner (2005) for a
discussion].
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Shannon entropy. While the Rényi entropies were discussed
previously, the Tsallis entropies are another family of interest.
The Tsallis entropy of order « is defined as

= (32) ()

for a € (0,1)U(1, ), and as the corresponding limit for
a € {0,1,00}. Similar to the Rényi entropies, the a =1
Tsallis entropy corresponds to the Shannon entropy. Note
that for x~1 we have logx=~loge-(x—1), so when
> . Px(x)*=~ 1 the Tsallis entropy approximates the Rényi
entropy.

Rastegin studied uncertainty relations in terms of the Tsallis
entropy. For example, Rastegin (2013a) proved the following
uncertainty relation for Tsallis entropies for a set of three
MUBs {X,Y, Z} on a qubit. For a € (0, 1] and for integers
a > 2, we have

(358)

H (X) + Hg(Y) + Hg(Z) > 2loge - fo(2).  (359)

where

Fulx) = (la_f]l_ )

This generalizes the result in Eq. (79), which is recovered
by taking the limit a — 1, noting that lim,_f,(x) =
log x/ loge.

A more general scenario was considered by Rastegin
(2013b), where system A has dimension d, and the measure-
ments under consideration form a set of n MUBs, {X;}. For

€ (0,2], Rastegin (2013b) showed that

(360)

T(x nd
—ZH >210g€ fa<m

). (361)
This result is quite general in that it holds for any n and d.
Furthermore, in the case of n=d-+1 and a — 1, one
recovers the result presented in Eq. (81). Rastegin (2013b)
also tightened Eq. (361) for mixed states:

nd

Other entropy families are also discussed in the literature. For
example, Zozor, Bosyk, and Portesi (2014) considered a broad
class of entropies defined as

H )X —’I<Z¢(Px )

Here 7: R - R and ¢: [0;1] » R are generic continuous
functions such that either ¢ is strictly concave and 7 is strictly
increasing, or ¢ is strictly convex and 7 is strictly decreasing.
Additionally, they imposed ¢(0) = 0 and 5(¢(1)) = 0. This
family includes as special cases both the Rényi and Tsallis
families and hence also the Shannon entropy. In addition to

(363)
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giving an overview of the literature on entropic uncertainty
relations, Zozor, Bosyk, and Portesi (2014) derived a new
uncertainty relation for the Hy, 4 entropies. For any two
POVMs X and Z, and for any two pairs of functionals (17, ¢;)
and (1, ¢,), their relation takes the form

H iy, ) (X) + Hp,0)(Z) 2 By, ) () (1), (364)

where the right-hand side is a function of the triplet

’

t:={cx, ¢z, ¢}, cx = max||X*||, ¢z = max||Z*
X 4

(365)

and c is defined in Eq. (49). See Zozor, Bosyk, and Portesi
(2014) for the explicit form of B, 4,1.(4,.4,) (1) In general, this
bound can be computed, since it involves only a one-
parameter optimization over a bounded interval. Note that
the functionals associated with the two terms in Eq. (364) may
be different. This gives a very general result allowing one to
consider Rényi entropy uncertainty relations that go beyond
the usual conjugacy curve, defined by 1/a+ 1/ = 2.

B. Certainty relations

Instead of lower bounding sums of entropies for different
observables, one can also ask whether there exist nontrivial
upper bounds on such sums. These bounds are called certainty
relations. Of course, one would not expect to find nontrivial
upper bounds for, say, the maximally mixed state p, = 1/d.
However, one might, e.g., restrict to pure states |y),.

For some sets of observables, even restricting to pure
states is not enough to get a certainty relation. For example,
consider the Pauli oy and 6, observables for one qubit. One
cannot find a certainty relation for these two observables
because there exist states, namely, the eigenstates of oy, that
are unbiased with respect to the eigenbases of oy and oy,
and hence lead to maximum uncertainty in these two
bases H(X) + H(Z) = 2.

Recently Korzekwa, Jennings, and Rudolph (2014) proved
a general result that nontrivial certainty relations are not
possible for two arbitrary orthonormal bases X and Z in any
finite dimension d. This follows from the fact that one can
always find a pure state |y), that is unbiased with respect to
both X and Z.

However, a nontrivial certainty relation does exist, e.g., for
a d+ 1 set of MUBSs. This is connected to the fact that there
are no states that are unbiased to all bases in a d + 1 set of
MUBs. Consider the result of Sanchez-Ruiz (1993), which
deals with three MUBs (X, Y, and Z) on a qubit system in a
pure state:

H(X)+H(Y)+ H(Z) < %log 6— \/7?_’1og(2 +V3).  (366)

The right-hand side of Eq. (366) is %2.23. Comparing this to
the lower bound of 2, from Eq. (79), one sees that the
allowable range for H(X)+ H(Y) + H(Z) is quite small.
Sanchez-Ruiz (1993) noted that Eq. (366) is in fact the optimal
certainty relation for these observables. More generally,
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considering a d 41 set of MUBs {X;}, Sinchez-Ruiz
(1993) showed that

Zn:H(Xj) < nlog(n+ /n)
=

1
= ln+ (1=2)Vallog2 + Vi), (367)
where n = d + 1. Note that Eq. (366) is a special case of
Eq. (367) corresponding to d = 2.

Rastegin obtained some generalizations of Eq. (366) to the

Rényi and Tsallis entropy families. In the Rényi case Rastegin
(2014) found, for all a € (0, 1],

Ho(X) + Ho(Y) + Ho(Z) < 3R, (368)
where
R, = ﬁmg K#) + (#) ] (369)

Likewise Rastegin (2013a) found a similar sort of bound for
the Tsallis entropies, but with log(x) in Eq. (369) replaced
by x — 1.

While these certainty relations are for MUBs, recently
Puchata et al. (2015) studied a more general situation with sets
of n > 2 orthonormal bases in dimension d. Their certainty
relations are upper bounds on the sum of Shannon entropies,
similar to Eq. (367), but are not restricted to MUBs. Certainty
relations for unitary k designs with k = 2, 4 in terms of the
mutual information were also covered by Matthews, Wehner,
and Winter (2009).

Finally, it is worth reminding the reader that for the
collision entropy one can obtain an equality, as in Eq. (82).
An equation of this sort is both an uncertainty and a certainty
relation. Stated another way, an equation implies that the
strongest uncertainty relation coincides with the strongest
certainty relation, leaving no gap between the two bounds.
Equations such as (82) can, in turn, be used to derive certainty
relations for other entropies, such as the min-entropy, due to
the fact that H;, < H5.

The generalization of Eq. (82) to bipartite states p,p was
given in Eq. (185). Equation (185) is a certainty relation in the
presence of quantum memory. It relates the amount of
uncertainty to the amount of entanglement, as quantified by
the conditional entropy H,(A|B). Similar to the unipartite
case, Eq. (185) can be used to derive certainty relations
(in the presence of quantum memory) for other entropies, such
as the min-entropy, as discussed by Berta, Coles, and
Wehner (2014).

Studying bipartite certainty relations in the presence of
quantum memory is largely an open problem. For example,
one could ask whether Eq. (366) or (367) can be appropriately
generalized to the quantum memory case.

C. Measurement uncertainty

This review has focused on preparation uncertainty rela-
tions. Two other aspects of the uncertainty principle are (1) the
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joint measurability of observable pairs and (2) the disturbance
of one observable caused by the measurement of another
observable. Joint measurability and measurement disturbance
are two aspects of measurement uncertainty, which deals with
fundamental restrictions on one’s ability to measure things.
For a detailed discussion of measurement uncertainty, see
Ozawa (2003), Hall (2004), Busch, Heinonen, and Lahti
(2007), and Busch, Lahti, and Werner (2014a). It is important,
though, that we briefly mention measurement uncertainty
here because the topic has seen significant debate recently
(Busch, Lahti, and Werner, 2013, 2014a, 2014b). Rather
than delve into the conceptual issues of measurement
uncertainty, we simply give a few recent works that have
taken an entropic approach, in particular, to measurement
disturbance.

1. State-independent measurement-disturbance relations

One approach to measurement uncertainty is to ask how
well can a measurement device perform on particular idealized
sets of input states, e.g., the basis states associated with two
complementary observables X and Z? This is often called a
state-independent approach, although it could also be called a
calibration approach, since one is calibrating a device’s
performance based on idealized input states. For example,
this approach was discussed by Busch, Lahti, and Werner
(2013) for the position and momentum observables. However,
the quantities in their relation were not entropic so we will not
discuss it further.

More recently the calibration approach was taken by
Buscemi et al. (2014) using entropic quantities. Consider a
measurement apparatus represented by a quantum channel
M acting on system A, and two counterfactual preparation
schemes which will be fed into this apparatus, as shown in
Fig. 19. In one scheme, A is prepared in a basis state of X,
say |X*'), where the index x is chosen with uniformly
random probability. The output of M consists of a classical
system M as well as a “disturbed” version of the original
quantum system A’. The classical output M represents an
attempted measurement of the X observable, and it provides
a guess for the index x. The measurement noise is then
quantified by N(M, X) := H(X|M), where X is the random
variable associated with the X observable on the input
system, i.e., associated with the index x. In the other
scheme, Fig. 19(b), A is prepared in a basis state of Z,

(a) A
A
X —x - M
SN
(b) A

v

_A> M R Z
1Z7) o

FIG. 19. Two scenarios considered by Buscemi et al. (2014),
which capture (a) the noise of an attempted X measurement, and
(b) the disturbance of the Z observable.

v
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say |Z¢), again with uniform probability. Now the question
is can one recover a good guess of z from the outputs of
M? If not, then the interpretation is that the attempted
measurement of X “disturbs” the Z observable. To quantify
this, Buscemi et al. (2014) defined the disturbance of Z by
D(M, Z) := mingH(Z|Z). Here Z is the random variable
associated with the observable Z on the input system, and
R is a recovery map, i.e., a quantum channel that maps A’M
to a classical system Z that provides a guess for z. Their
measurement-disturbance relation states that

N(M.X) + D(M, Z) = gm. (370)
with gy as in Eq. (31). This shows a trade-off between the
ability to measure the X states versus the ability to leave the
Z states undisturbed.

Figure 19 is a dynamic scenario, similar to the scenario in
Sec. IV.G. Hence, to derive Eq. (370), Buscemi et al. (2014)
started with a “static” uncertainty relation (namely, the
Maassen-Uffink relation) and then applied the static-dynamic
isomorphism from Sec. IV.G.2. In particular, they employed
the property in Eq. (247).

2. State-dependent measurement-disturbance relations

Now let us consider a sequential measurement scenario
where system A is prepared in an arbitrary state p, and fed into
the measurement apparatus.

For simplicity, consider the sequential measurement of
orthonormal bases, X followed by Z, where the first meas-
urement is a von Neumann measurement, i.e., it projects the
system onto an X-basis state. One can apply Maassen-Uffink’s
uncertainty relation to each outcome of the X measurement,
i.e., to each state |X*), giving

H(Z) 5y = HX) oy + H(Z) 5y 2 qmu- - (371)
Multiplying this by the probability p* = (X¥|p4|X*) for
outcome x, and summing over x gives

H(Z|X) 2 quu. (372)
where H(Z|X) denotes the uncertainty for a future Z meas-
urement given the outcome of the previous X measurement.
Equation (372) was discussed in detail by Baek, Farrow, and
Son (2014), and was also briefly mentioned by Coles and
Piani (2014a). Note that Eq. (372) holds for any fixed input
state p,, and it is a state-dependent relation.

While Eq. (372) assumes the X measurement is an ideal von
Neumann measurement, it is interesting to ask what happens if
the first measurement is nonideal, i.e., a noisy measurement.
There are various ways to address this. One approach, given
by Coles and Furrer (2015), quantified the imperfection of the
X measurement by the predictive error,

E(pAvX7g) = Hmax(X|MX)' (373)
That is, the max-entropy of a future (perfect) X measurement

given the register My that stores the outcome of the
previous (imperfect) measurement of X. Here £, which maps
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A — AMy, is the channel that performs this imperfect X
measurement. One is interested in the disturbance of the Z
observables caused by the imperfect X measurement. Coles
and Furrer (2015) quantified the disturbance of Z using the
Rényi relative entropies for a € [1/2, o],
Du(pa. Z.€) = D, (P]|P5). (374)
Here P, is the initial probability distribution for the Z
measurement and P% is the final probability distribution for
Z, i.e., after the imperfect X measurement. With these
definitions, they found the measurement-disturbance relation
Dy(pa. Z.€) + E(pa. X, &) + Ho(Z)p 2 qmu-  (375)
On the one hand, this gives a trade-off between measuring X
well and causing large Z disturbance. On the other hand, the
trade-off gets weaker as more initial uncertainty is contained
in Py, as quantified by the term H,(Z)p. So there is an
interplay between initial uncertainty, measurement error, and
disturbance.

VIII. PERSPECTIVES

We have discussed modern formulations of Heisenberg’s
uncertainty principle where uncertainty is quantified by
entropy. Such formulations are directly relevant to quantum
information-processing tasks as discussed in Sec. VI.

Technological applications such as QKD (Sec. VI.B) provide
the driving force for obtaining more refined entropic uncer-
tainty relations. For example, to prove security of QKD
protocols involving more than two measurements, new entropic
uncertainty relations are needed—namely, ones that allow for
quantum memory and for multiple measurements. This is an
important frontier that requires more research. Device-inde-
pendent randomness, i.e., certifying randomness obtained from
untrusted devices (Sec. VI.A.2) is another emerging application
for which entropic uncertainty relations appear to be useful but
more research is needed to find uncertainty relations that are
specifically tailored to this application.

Aside from their technological applications, we believe that
entropic uncertainty relations have a beauty to them. They
give insight into the structure of quantum theory, and for that
reason alone they are worth pursuing. For example, Sec. IV.E.5
noted a simple conjecture—that the sum of the mutual
informations for two MUBs lower bounds the quantum
mutual information.

New tools are being developed to prove entropic uncertainty
relations. For example, the majorization approach (Sec. IILI) is
promising. The relation between the majorization approach and
the relative entropy approach (see Appendix B) remains to be
clarified, and a unified framework would be insightful. For
uncertainty relations with memory, Dupuis, Fawzi, and Wehner
(2015) established a meta theorem to derive uncertainty
relations. Yet, it is known that the resulting relations are not
tight in all regimes, calling for further improvements.

One of the most exciting things about entropic uncertainty
relations is that they give insight into basic physics. For
example, Sec. VLF discussed how entropic uncertainty
relations allow one to unify the uncertainty principle with
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the wave-particle duality principle. A natural framework for
quantifying wave-particle duality will likely come from
applying entropic uncertainty relations to interferometers.
Likewise, a hot topic in quantum foundations is measurement
uncertainty. Section VIL.C noted that entropic uncertainty
relations may play an important role in obtaining conceptually
clear formulations of measurement uncertainty. In that respect,
very recently the notion of preparation uncertainty was
combined with measurement reversibility (Berta, Wehner,
and Wilde, 2016) and the corresponding entropic uncertainty
relations were successfully tested on the IBM quantum
experience (IBM, 2016).

Furthermore, entropic uncertainty relations will continue to
help researchers characterize the boundary between separable
versus entangled states (Sec. VI.D), as well as steerable versus
nonsteerable states (Sec. VLE).

Entropic uncertainty relations may play a role in the study
of phase transitions in condensed matter physics (Romera and
Calixto, 2015). Entropic uncertainty relations are also studied
in the context of special and general relativity (Feng et al.,
2013; Jia, Tian, and Jing, 2015). Given that quantum infor-
mation is playing an increasing role in cosmology (Hayden
and Preskill, 2007), it would not be surprising to see future
work on entropic uncertainty relations in the context of black
hole physics.
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APPENDIX A: MUTUALLY UNBIASED BASES

Section I1I.B defined MUBs and sets of n MUBs. The study
of MUBs is closely related to the study of entropic uncertainty.
Strong entropic uncertainty relations have been derived
generically for sets of MUBs (particularly for d + 1 sets of
MUBSs). Hence, constructing a new set of MUBs immediately
yields a new entropic uncertainty relation. On the other hand,
there is the interesting open question whether a set of n MUBs
{X;} yields the strongest bound b in a generic uncertainty
relation of the form
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(A1)

A review of MUBSs has been given by Durt ez al. (2010). Here
we discuss the connection of MUBs to Hadamard matrices, as
well as the existence and construction of MUBs.

1. Connection to Hadamard matrices

Any two orthonormal bases are related by a unitary, and in
the case of MUBs, that unitary is called a Hadamard matrix H.
The general form of such matrices is

(A2)

where the phase factors ¢ ;; must be appropriately chosen so
that H is unitary. Notice that each matrix element has a
magnitude of 1/v/d, which is the defining property of
Hadamard unitaries. The best known Hadamard is the
Fourier matrix, defined in Eq. (204),

F= Z flj (A3)

2ri/d

withw = e , which relates the generalized Pauli operators

oz = 3wl ST+ Dl (Ad)

For d =2 these are just the usual Pauli matrices from
example 7.

It should be clear that the problem of finding MUBs is
equivalent to the problem of finding Hadamard matrices. We
note that Hadamard matrices can be categorized into equiv-
alence classes, based on whether there exists a diagonal
unitary or permutation that maps one Hadamard to another.
A detailed catalog of Hadamard matrices can be found online
(Bruzda, Tadej, and Zyczkowski, 2015).

Ox :F62F+ =

2. Existence

That there exist MUB pairs in any finite dimension follows
from the fact that we can write down the Fourier matrix in
Eq. (A3) for any d. In fact, for any d there exists a set of three
MUBs, e.g., formed from the eigenvectors of oy, o7, and
ox0z. It is also known that a set of MUBs can at most be of
size d+ 1 (Bandyopadhyay, Roychowdhury, and Vatan,
2002). Such d + 1 sets are called complete sets of MUBs.
Complete sets play a role in tomography since they are
informationally complete, and they have the useful property
of forming a complex projective two-design (Klappenecker
and Rotteler, 2005). Complete sets of MUBs are known
to exist in prime power dimensions, i.e., d = p™, where p
is a prime and m is a positive integer (Bandyopadhyay,
Roychowdhury, and Vatan, 2002). However, even for the
smallest number that is not a prime power, namely 6, the
existence problem remains unsolved.
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3. Simple constructions

When d is a prime, a simple construction (Wootters and
Fields, 1989; Bandyopadhyay, Roychowdhury, and Vatan,
2002) of a complete set of MUBs is to consider the
eigenvectors of the d + 1 products of the form

{67,0x,0x07,0x0%, ...,050% ' }. (A5)
More generally for d = p™, a construction is known
where each basis B; comes from the common eigenvectors
of a corresponding set C; of commuting matrices
(Bandyopadhyay, Roychowdhury, and Vatan, 2002). The
elements of C; are a subset of size |C;| =d—1 of the
d>—1 Pauli products olo’ (excluding the identity).
The subset is chosen such that all the elements of C;
commute and C; (| C; = {1} for i # j.

APPENDIX B: PROOF OF MAASSEN-UFFINK’S
RELATION

Here we give a proof of Maassen-Uffink’s uncertainty
relation for the Shannon entropy (31). Our proof closely
follows the ideas of Coles ef al. (2012) and makes use of the
data-processing inequality for the relative entropy (Lieb and
Ruskai, 1973; Lindblad, 1975; Uhlmann, 1977). In fact, we
will prove the slightly stronger relation stated in Eq. (47):

H(X) + H(Z) 2 log - + H(py) (B1)

Proof. For the proof of Eq. (B1) we consider the classical
state py = X4_x(p4) generated by applying the measurement
map

Xaox () = Y IXXE] - X)X,

X

(B2)

where the auxiliary Hilbert space X allows us to represent the
classical random variable X in the quantum formalism.

It is easy to verify that the Shannon entropy of the
distribution Py is equal to the von Neumann entropy of the
state py. From this we get

H(X) = —trlpx log px| = —tr[X(p4) log X (p,)]

= —tr[py log X(p,)].

(B3)
(B4)

where the last equality is straightforward to check by writing
out the trace and the measurement map X',_x. By phrasing
the right-hand side of Eq. (B3) in terms of relative entropy
D(p|lo) = tr]p(log p — log 6)], we arrive at

H(X) = D(pl X(pa)) + H(pa)- (B5)
We then apply the measurement map
Zaz() Z|Z -|z7)(z* (B6)

to both arguments of the relative entropy, and find by the data-
processing inequality for the relative entropy that
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D(pallX(pa)) = D(Z(pa)l| 20X (pa)) (B7)
= D(pzl| 22X (p4)). (B8)

where p; = Z4_,7(p4)- By writing out both measurement maps
we find the classical state

- Sz i
and the right-hand side of Eq. (B7) becomes

D(pz||ZoX(ps)) = =H(pz) = Y _(Z%|pa|Z)

xtog (010612 POl ) )

(B10)

ZoX(py) (X*palX*),  (BY)

Now the logarithm is a monotonic function and hence we find
ICARCSTH O ESTIERERY

4| Z7 1og<max|<xx |Z7) ZZ X[, |xx>>
(B11)

— log max|(X"'|Z¥) . (B12)
X,Z

By combining Egs. (B3)—~(B12) and noting that H(Z) equals the
von Neumann entropy of p,, we arrive at the claim (B1). =

APPENDIX C: RENYI ENTROPIES FOR JOINT
QUANTUM SYSTEMS

Here we define general conditional Rényi entropies. This
allows us to exhibit their intuitive properties in a general setting
without having to discuss various special cases individually. We
exhibit these properties to show a generalization of the Maassen-
Uffink relation to the tripartite quantum memory setting.

1. Definitions

For any bipartite quantum state p,p and a € [J, ], we
define the quantum conditional Rényi entropy as
H,(A|B) := —minD,(ps5| 14 ® o). (C1)
op

where op is a quantum state on B. Here D, is the Rényi
divergence of order a (Miiller-Lennert et al., 2013; Wilde,
Winter, and Yang, 2014), namely,36

*This quantum generalization is not unique—in fact other gener-

alizations based on Petz’s notion of Rényi divergence (Ohya and Petz,
1993) have also been explored, for example, by Tomamichel, Berta, and
Hayashi (2014). However, for this review it is convenient to stick with
the proposed definition in Egs. (C1) and (C2) as it entails the most
important special cases encountered here and in the literature.
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1
Da(pHG) = - log tr[(d(l_a)/zapg(l—a)/za)a]

for a €

%,1>U(l,oo) (C2)

and as the corresponding limit for @ € {1, o0}. These diver-
gences are measures of distinguishability between quantum
states and some of their properties are discussed in
Appendix C.2. Note the following special cases that we
previously encountered. First, the conditional min- and
max-entropies are simply recovered as H;,, = H, and
H o = Hyp. The conditional von Neumann entropy is
recovered as H = H;. Finally, the conditional collision
entropy can be expressed as

Heoi(A|B) = =D (pag| 14 ® pp). (C3)

Note that H,(A|B) < H.,(A|B) since the former involves a
minimization over marginal states o5. The two expressions are
not equal in general and we want to mostly work with
H.(A|B) because it has the operational interpretation as
in Egs. (139) and (148).

2. Entropic properties

We present the properties for the whole family of Rényi
divergences and entropies, but recall that the properties also
apply to the relative entropy and the von Neumann entropy
as special cases. Most properties of the conditional Rényi
entropy can be derived from properties of the underlying
Rényi divergence.

a. Positivity and monotonicity

First we remark that D,(p||c) is guaranteed to be non-
negative when the arguments p and o are normalized, and
D,(p|le) = 0 when p = 0. Also, a = D,(p||o) is monoton-
ically increasing in a. Thus, for any f > a, we have

0 < Dy(pllo) < Dylp|o). (C4)
and

logd, > H,(A|B) > Hyg(A|B) > —logmin{d,.,dg}.  (C5)
This means that the conditional Rényi entropies, in particular,
also the conditional von Neumann entropy, can be negative.
However, this can happen only in the presence of quantum
entanglement and the conditional entropies are thus always
positive when one of the two systems is classical. The
maximum logd, is achieved for a state of the form
Pag = la/dy ® pg. On the other hand, the minimum
—logd, is achieved for the maximally entangled pure state

' These divergences were investigated in a series of recent works
(Beigi, 2013; Frank and Lieb, 2013b; Miiller-Lennert et al., 2013;
Wilde, Winter, and Yang, 2014; Mosonyi and Ogawa, 2015) and
proofs of the properties discussed here can be found in these
references.
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Whas = %;—Z> ® 1)y

b. Data-processing inequalities

Any quantum channel is described by a completely positive
and trace-preserving (CPTP) map. The Rényi divergences
satisfy a data-processing inequality. Namely, for all @ > 1/2
and any CPTP map &, we find the following relation (Frank
and Lieb, 2013b):

D,(E(p)l|€(0)) < Daulpllo). (Co)
This is an expression of the intuitive property that it is easier
to distinguish between the inputs rather than the outputs of
any quantum channel. In fact, this property holds more
generally for any completely positive trace nonincreasing
map & which satisfies tr[€(p)] = 1. This has two important
implications for conditional entropies. First, consider an
arbitrary CPTP map &p_p acting on the side information
that takes pyp t0 T4 =Z4 ® Ep_p(pap). Then we have
H,(A|B) < H,(A|B’). This tells us that any physically
allowed information processing of the side information B
may only increase the uncertainty we have about A.

Example 35. An often encountered special case of the
data-processing inequality is that H,(A|BC) < H,(A|B) for
any tripartite state p,pc. This expresses the fact that throwing
away part of the side information can only increase the
uncertainty about A.

The second application concerns rank-one projective mea-
surements on the A system. More precisely, we consider any
rank-one projective measurement X 4_ y that takes p,p to

Pxp = Xasx ® Lp(pap) (C7)

= Z(|XX><XX|A ® Tp)pap(|X)(X*|, ® 15).  (C8)

Then we find that H,(A|B) < H,(X|B), which reveals that
measuring out system A completely can only increase the
uncertainty we have about it.*®

c. Duality and additivity

We see that the following property is essential for deriving
uncertainty relations with quantum side information. For any
tripartite state p,pc, the conditional Rényi entropies satisfy
the following duality relation. For a, 8 € [1/2, o] such that
1/a+ 1/p =2, we have (Beigi, 2013; Miiller-Lennert et al.,
2013)

H,(A|B) + Hy(A|C) >0, (C9)
with equality if p,pc is pure.

This is a quantitative manifestation of the monogamy of
quantum correlations. For example, if system A is highly

*The inequality holds more generally for all CPTP mapson £,_ 4
that satisfy E,_4/(14) = T4 (unital maps).
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entangled with system B we find that the conditional von
Neumann entropy H(A|B) is negative. However, the duality
relation (C9) now shows that for any third system C correlated
with A and B, it holds that H(A|C) > —H(A|B); that is, the
uncertainty of A from an observer with access to C is
necessarily large in this case.

The Rényi entropies are additive. Namely, given a
product state of the form pagcp = pac ® ppp, they satisfy
H,(AB|CD) = H,(A|C) + Ha(B(LD). This is in fact a con-
sequence of the duality relation.

3. Axiomatic proof of uncertainty relation with quantum
memory

Here we give a concise proof of the generalized Maassen-
Uffink relation (221),

H,(X|B), + Hy(Z|C) > qyu. (C10)
where 1/a + 1/ = 2. Note that the proof applies to a general
class of entropic quantities that satisfy certain properties, but
we specialize it here to conditional Rényi entropies.

Let us consider measurements X = {X} } and Z = {Z3} in
two orthonormal bases such that X} and Zj are rank-one
projectors. The proof for POVMs follows essentially the same
steps, as detailed by Coles et al. (2012) [based on ideas of
Coles et al. (2011) and Tomamichel and Renner (2011)].

Proof of (CI0). First let us define the isometry V :=
>-.1z)7 ® Z; associated with the Z measurement on system
A, and the state pzapc == VpapcV'. We find the following
sequence of inequalities:

H,(Z|C) > —H,(Z|AB) i)
= rgi;lDa(ﬁZAB”]]Z ® 04p) (C12)
> I(I;IAI;IDa <PAB||XZ:ZZUABZ/Z;> (C13)

> minD, (ool I0GHZPX; ® wZiow] ). (€14
X,Z

where we used pxp = >, X} papXj. To establish Eq. (C11),
we applied the duality relation (C9) to the state pzapc.
Equation (C12) is simply the definition of the conditional
entropy as in Eq. (C1). To find (C13), we apply the data-
processing inequality for the partial isometry V' as a trace

nonincreasing map, and note that V'(1, ® 645)V =
> .Zio4pZ;. Next Eq. (C14) follows by applying the

$Recall that by definition (C1), we have

H,(AB|CD) = _r}g_il?Da(pABCDH“AB ® ocp)
2 _{gliorll)Da(pABCD”“AB ® oc ® op)
= H,(A|C)+ H,(B|D).

The reverse inequality then follows due to the duality relation.
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data-processing inequality for the measurement CPTP
map X(-) =D X' X"
Next we observe that

ZKXE‘Z@FXX ® try[Z}05]

X2

S CZXX ®trA[Zf46AB] = CHA ® opg,

X2

(C15)

where we recall that ¢ = max,.|(X3|Z5)]* as defined in
Eq. (32). Moreover, we need that for any ¢’ and positive A
such that o6 <16, we have D,(p|lo)> D,(p|lc’)+

log(1/4).* Continuing from Eq. (C14), we thus find that

Hy(Z|C) > H;IignDa(ﬁXB“]]X ®og) +quu  (C16)

= —H,(X|B) + qmu. (C17)
where (C17) again follows by the definition of the conditional
entropy. L]

“For a proof of this property, see Miiller-Lennert et al. (2013),
Prop. 4.
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