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Heisenberg’s uncertainty principle forms a fundamental element of quantum mechanics. Uncertainty
relations in terms of entropies were initially proposed to deal with conceptual shortcomings in the
original formulation of the uncertainty principle and, hence, play an important role in quantum
foundations. More recently, entropic uncertainty relations have emerged as the central ingredient in
the security analysis of almost all quantum cryptographic protocols, such as quantum key distribution
and two-party quantum cryptography. This review surveys entropic uncertainty relations that capture
Heisenberg’s idea that the results of incompatible measurements are impossible to predict, covering
both finite- and infinite-dimensional measurements. These ideas are then extended to incorporate
quantum correlations between the observed object and its environment, allowing for a variety of
recent, more general formulations of the uncertainty principle. Finally, various applications are
discussed, ranging from entanglement witnessing to wave-particle duality to quantum cryptography.
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I. INTRODUCTION

Quantum mechanics has revolutionized our understanding
of the world. Relative to classical mechanics, the most
dramatic change in our understanding is that the quantum
world (our world) is inherently unpredictable.
By far the most famous statement of unpredictability is

Heisenberg’s uncertainty principle (Heisenberg, 1927), which
we treat here as a statement about preparation uncertainty.
Roughly speaking, it states that it is impossible to prepare a
quantum particle for which both position and momentum are
sharply defined. Operationally, consider a source that con-
sistently prepares copies of a quantum particle in the same
way, as shown in Fig. 1. For each copy, suppose we randomly
measure either its position or its momentum (but we never
attempt to measure both quantities for the same particle1).
We record the outcomes and sort them into two sequences
associated with the two different measurements. The uncer-
tainty principle states that it is impossible to predict both
the outcome of the position and the momentum measure-
ments: at least one of the two sequences of outcomes will be
unpredictable. More precisely, the better such a preparation

1Section I.A notes other uncertainty principles that involve
consecutive or joint measurements.
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procedure allows one to predict the outcome of the position
measurement, the more uncertain the outcome of the momen-
tum measurement will be, and vice versa.
An elegant aspect of quantum mechanics is that it allows

for simple quantitative statements of this idea, i.e., constraints
on the predictability of observable pairs like position and
momentum. These quantitative statements are known as
uncertainty relations. It is worth noting that Heisenberg’s
original argument, while conceptually enlightening, was
heuristic. The first, rigorously proven uncertainty relation
for position Q and momentum P is due to Kennard (1927). It
establishes that [see also the work of Weyl (1928)]

σðQÞσðPÞ ≥ ℏ
2
; ð1Þ

where σðQÞ and σðPÞ denote the standard deviations of the
position and momentum, respectively, and ℏ is the reduced
Planck constant.
We now know that Heisenberg’s principle applies much

more generally, not only to position and momentum. Other
examples of pairs of observables obeying an uncertainty
relation include the phase and excitation number of a
harmonic oscillator, the angle and the orbital angular momen-
tum of a particle, and orthogonal components of spin angular
momentum. In fact, for arbitrary observables2 X and Z,
Robertson (1929) showed that

σðXÞσðZÞ ≥ 1
2
jhψ j½X; Z�jψij; ð2Þ

where ½·; ·� denotes the commutator. Note a distinct difference
between Eqs. (1) and (2): the right-hand side of the former is a
constant whereas that of the latter can be state dependent, an
issue that we discuss more in Sec. II.
These relations have a beauty to them and also give

conceptual insight. Equation (1) identifies ℏ as a fundamental
limit to our knowledge. More generally Eq. (2) identifies the
commutator as the relevant quantity for determining how large
the knowledge trade-off is for two observables. One could
argue that a reasonable goal in our studies of uncertainty in

quantum mechanics should be to find simple, conceptually
insightful statements like these.
If this problem was only of fundamental importance, it

would be a well-motivated one. Yet in recent years there is
new motivation to study the uncertainty principle. The rise of
quantum information theory has led to new applications of
quantum uncertainty, for example, in quantum cryptography.
In particular quantum key distribution is already commercially
marketed and its security crucially relies on Heisenberg’s
uncertainty principle. (We discuss various applications in
Sec. VI.) There is a clear need for uncertainty relations that
are directly applicable to these technologies.
In Eqs. (1) and (2), uncertainty has been quantified using

the standard deviation of the measurement results. This is,
however, not the only way to express the uncertainty principle.
It is instructive to consider what preparation uncertainty
means in the most general setting. Suppose we prepared a
state ρ on which we can perform two (or more) possible
measurements labeled by θ. Let us use x to label the outcomes
of such measurement. We can then identify a list of (condi-
tional) probabilities

Sρ ¼ fpðxjθÞρgx;θ; ð3Þ

wherepðxjθÞρ denotes the probability of obtainingmeasurement
outcome x when performing the measurement θ on the state ρ.
Quantummechanics predicts restrictions on the setSρ of allowed
conditional probability distributions that are valid for all or a
large class of states ρ. Needless to say, there are many ways to
formulate such restrictions on the set of allowed distributions.
In particular, information theory offers a very versatile,

abstract framework that allows us to formalize notions like
uncertainty and unpredictability. This theory is the basis of
modern communication technologies and cryptography and
has been successfully generalized to include quantum effects.
The preferred mathematical quantity to express uncertainty in
information theory is entropy. Entropies are functionals on
random variables and quantum states that aim to quantify their
inherent uncertainty. Among a myriad of such measures, we
mainly restrict our attention to the Boltzmann-Gibbs-Shannon
entropy (Boltzmann, 1872; Gibbs, 1876; Shannon, 1948) and
its quantum generalization, the von Neumann entropy (von
Neumann, 1932). Because of their importance in quantum
cryptography, we also consider Rényi entropic measures
(Rényi, 1961) such as the min-entropy. Entropy is a natural
measure of uncertainty, perhaps even more natural than the
standard deviation, as we argue in Sec. II.
Can the uncertainty principle be formulated in terms of

entropy? This question was first brought up by Everett (1957)
and answered in the affirmative by Hirschman (1957) who
considered the position and momentum observables, formulat-
ing the first entropic uncertainty relation. This was later
improved by Beckner (1975) and Białynicki-Birula and
Mycielski (1975), who obtained3

FIG. 1. Physical scenario relevant to preparation uncertainty
relations. Each incoming particle is measured using either
measurement P or measurement Q, where the choice of the
measurement is random. An uncertainty relation says we cannot
predict the outcomes of both P and Q. If we can predict the
outcome of P well, then we are necessarily uncertain about the
outcome of measurement Q, and vice versa.

2More precisely, Robertson’s relation refers to observables with
bounded spectrum.

3More precisely, the right-hand side of Eq. (4) should be
logðeπℏ=lQlPÞ, where lQ and lP are length and momentum scales,
respectively, chosen to make the argument of the logarithm dimen-
sionless. Throughout this review, all logarithms are base 2.
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hðQÞ þ hðPÞ ≥ logðeπℏÞ; ð4Þ

where h is the differential entropy [defined in Eq. (7)].
Białynicki-Birula and Mycielski (1975) also showed that
Eq. (4) is stronger than, and hence implies, Kennard’s
relation (1).
The extension of the entropic uncertainty relation to observ-

ables with finite spectrum4 was given by Deutsch (1983), and
later improved by Maassen and Uffink (1988) following a
conjecture by Kraus (1987). The result of Maassen and Uffink
(1988) is arguably the most well-known entropic uncertainty
relation. It states that

HðXÞ þHðZÞ ≥ log
1

c
; ð5Þ

where H is Shannon’s entropy (see Sec. III.A for definition),
and c denotes the maximum overlap between any two eigen-
vectors of theX andZ observables. Just asEq. (2) established the
commutator as an important parameter in determining the
uncertainty trade-off for standard deviation, Eq. (5) established
the maximum overlap c as a central parameter in entropic
uncertainty.
While these articles represent the early history of entropic

uncertainty relations, there has recently been an explosion of
work on this topic. One of the most important recent advances
concerns a generalization of the uncertainty paradigm that
allows the measured system to be correlated to its environment
in a nonclassical way. Entanglement between the measured
system and the environment can be exploited to reduce the
uncertainty of an observer (with access to the environment)
below the usual bounds.
To explain this extension, let us introduce a modern

formulation of the uncertainty principle as a so-called guess-
ing game, which makes such extensions of the uncertainty
principle natural and highlights their relevance for quantum
cryptography. As outlined in Fig. 2, we imagine that an
observer Bob can prepare an arbitrary state ρA which he will
send to a referee Alice. Alice then randomly chooses to
perform one of two (or more) possible measurements, where
we use Θ to denote her choice of measurement. She records
the outcome K. Finally, she tells Bob the choice of her
measurement, i.e., she sends him Θ. Bob’s task is to guess
Alice’s measurement outcome K (given Θ).
The uncertainty principle tells us that if Alice makes two

incompatible measurements, then Bob cannot guess Alice’s
outcome with certainty for both measurements. This corre-
sponds precisely to the notion of preparation uncertainty. It is
indeed intuitive why such uncertainty relations form an
important ingredient in proving the security of quantum
cryptographic protocols, as we explore in detail in Sec. VI.
In the cryptographic setting ρA will be sent by an adversary
trying to break a quantum cryptographic protocol. If Alice’s
measurements are incompatible, there is no way for the
adversary to know the outcomes of both possible measure-
ments with certainty—no matter what state he prepares.

The formulation of uncertainty relations as guessing games
also makes it clear that there is an important twist to such
games: What if Bob prepares a bipartite state ρAB and sends
only the A part to Alice? That is, what if Bob’s system is
correlated with Alice’s? Or, adopting the modern perspective
of information, what if Bob has a nontrivial amount of side
information about Alice’s system? Traditional uncertainty
relations implicitly assume that Bob has only classical side
information. For example, he may possess a classical descrip-
tion of the state ρA or other details about the preparation.
However, modern uncertainty relations—for example those
derived by Berta et al. (2010) improving on work by
Christandl and Winter (2005) and Renes and Boileau
(2009)—allow Bob to have quantum rather than classical
information about the state. As was already observed by
Einstein, Podolsky, and Rosen (1935), Bob’s uncertainty
can vanish in this case (in the sense that he can correctly
guess Alice’s measurement outcome K in the game
described above).
We devote Sec. IV to such modern uncertainty relations. It

is these relations that will be of central importance in quantum
cryptography, where the adversary may have gathered quan-
tum and not just classical information during the course of the
protocol that may reduce his uncertainty.

A. Scope of this review

Two survey articles partially discuss the topic of entropic
uncertainty relations. Białynicki-Birula and Rudnicki
(2011) take a physics perspective and cover continuous
variable entropic uncertainty relations and some discretized
measurements. In contrast, Wehner and Winter (2010) take
an information-theoretic perspective and discuss entropic
uncertainty relations for discrete (finite) variables with an
emphasis on relations that involve more than two
measurements.
These reviews predate many recent advances in the field.

For example, neither review covers entropic uncertainty
relations that take into account quantum correlations with
the environment of the measured system. Moreover,

FIG. 2. Diagram showing a guessing game with players Alice
and Bob. First, Bob prepares A in state ρA and sends it to Alice.
Second, Alice measures either X or Z with equal probability and
stores the measurement choice in the bitΘ. Third, Alice stores the
measurement outcome in bit K and reveals the measurement
choice Θ to Bob. Bob’s task is to guess K (given Θ). Entropic
uncertainty relations like the Maassen-Uffink relation (5) can be
understood as fundamental constraints on the optimal guessing
probability.

4The relation applies to nondegenerate observables on a finite-
dimensional Hilbert space (see Sec. III.B).
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applications of entropic uncertainty relations are only margin-
ally discussed in both of these reviews. Here we discuss both
physical and information-based applications. We therefore
aim to give a comprehensive treatment of all of these topics in
one reference, with the hope of benefiting some of the quickly
emerging technologies that exploit quantum information.
There is an additional aspect of the uncertainty principle

known as measurement uncertainty; see, e.g., Ozawa (2003),
Hall (2004), Busch, Heinonen, and Lahti (2007), and Busch,
Lahti, and Werner (2014a). This includes (1) joint measur-
ability, the concept that there exist pairs of observables that
cannot be measured simultaneously, and (2) measurement
disturbance, the concept that there exist pairs of observables
for which measuring one causes a disturbance of the other.
Measurement uncertainty is a debated topic of current
research. We focus our review article on the concept of
preparation uncertainty, although we briefly mention entropic
approaches to measurement uncertainty in Sec. VII.C.

II. RELATION TO STANDARD DEVIATION APPROACH

Traditional formulations of the uncertainty principle, for
example, the ones due to Kennard and Robertson, measure
uncertainty in terms of the standard deviation. In this section
we argue why we think entropic formulations are preferable.
For further discussion we refer to Uffink (1990).

A. Position and momentum uncertainty relations

For the case of position and momentum observables, the
strength of the entropic formulation can be seen from the fact
that the entropic uncertainty relation in Eq. (4) is stronger and
in fact implies the standard deviation relation (1). Following
Białynicki-Birula and Mycielski (1975), we formally show
that

hðQÞ þ hðPÞ ≥ logðeπÞ ⇒ σðQÞσðPÞ ≥ 1
2

ð6Þ

for all states, where here and henceforth in this article we work
in units such that ℏ ¼ 1. Let us consider a random variable Q
governed by a probability density ΓðqÞ, and the differential
entropy

hðQÞ ¼ −
Z

∞

−∞
ΓðqÞ logΓðqÞdq: ð7Þ

In the following we assume that this quantity is finite.
Gaussian probability distributions,

ΓðqÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσðQÞ2

p exp

�
−ðq − q̄Þ2
2σðQÞ2

�
; ð8Þ

where q̄ denotes the mean, are special in the following sense:
for a fixed standard deviation σðQÞ, distributions of the form
of Eq. (8) maximize the entropy in Eq. (7). It is a simple
exercise to show this using variational calculus with Lagrange
multipliers.
It is furthermore straightforward to insert Eq. (8) into (7) to

calculate the entropy of a Gaussian distribution

hðQÞ ¼ log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πeσðQÞ2

q
ðGaussianÞ: ð9Þ

Since Gaussians maximize the entropy, the following inequal-
ity holds:

hðQÞ ≤ log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πeσðQÞ2

q
ðin generalÞ: ð10Þ

Now consider an arbitrary quantum state for a particle’s
translational degree of freedom, which gives rise to random
variables P and Q for the position and momentum, respec-
tively. Let us insert the resulting relations into Eq. (4) to find

log½2πeσðQÞσðPÞ� ¼ log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πeσðQÞ2

q
þ log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πeσðPÞ2

q
ð11Þ

≥ hðQÞ þ hðPÞ ð12Þ

≥ logðeπÞ: ð13Þ

By comparing the left- and right-hand sides of Eq. (11) and
noting that the logarithm is a monotonic function, we see that
Eq. (11) implies (1), and hence so does (4).
It is worth noting that Eq. (10) is a strict inequality if the

distribution is non-Gaussian, and hence Eq. (4) is strictly
stronger than (1) if the quantum state is non-Gaussian. While
quantum mechanics textbooks often present Eq. (1) as the
fundamental statement of the uncertainty principle, it is clear
that Eq. (4) is stronger and yet not much more complicated.
Furthermore, as discussed in Sec. IV the entropic formulation
is more robust, allowing the relation to be easily generalized to
situations involving correlations with the environment.

B. Finite spectrum uncertainty relations

As noted in Sec. I, both the standard deviation and the
entropy have been applied to formulate uncertainty relations
for observables with a finite spectrum. However, it is largely
unclear how the most popular formulations, Robertson’s (2)
and Maassen-Uffink’s (5), are related. It remains an interesting
open question whether there exists a formulation that unifies
these two formulations. However, there is an important
difference between Eqs. (2) and (5) in that the former has
a bound that depends on the state, while the latter depends
only on the two observables.
Example 1. Consider Eq. (2) for the case of a spin-1=2

particle, where X ¼ j0ih1j þ j1ih0j and Z ¼ j0ih0j − j1ih1j,
corresponding to the x and z axes of the Bloch sphere. Then the
commutator is proportional to the Y Pauli operator and the
right-hand side of Eq. (2) reduces to ð1=2ÞjhYij. Hence, Eq. (2)
gives a trivial bound for all states that lie in the x-z plane of the
Bloch sphere. For the eigenstates of X and Z, this bound is tight
since one of the two uncertainty terms is zero, and hence the
trivial bound is a (perhaps undesirable) consequence of the fact
that the left-hand side involves a product (rather than a sum) of
uncertainties. However, for any other states in the x-z plane,
neither uncertainty is zero. This implies that Eq. (2) is not tight
for these states.
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This example illustrates a weakness of Robertson’s relation
for finite-dimensional systems—it gives trivial bounds for
certain states, even when the left-hand side is nonzero.
Schrödinger (1930) slightly strengthened Robertson’s bound
by adding an additional state-dependent term that helps to get
rid of the artificial trivial bound discussed in example 1.
Likewise, Maccone and Pati (2014) recently proved a state-
dependent bound on the sum (not the product) of the two
variances, and this bound also removes the trivial behavior of
Robertson’s bound. Furthermore, one still may be able to
obtain a nonvanishing state-independent bound using standard
deviation uncertainty measures in the finite-dimensional case.
For example, Busch, Lahti, and Werner (2014b) considered
the qubit case and obtained a state-independent bound on the
sum of the variances.
The state-dependent nature of Robertson’s bound was

noted by Deutsch (1983) and used as motivation for entropic
uncertainty relations, which do not suffer from this weakness.
However, this discussion suggests that this issue might be
avoided while still using standard deviation as the uncertainty
measure. On the other hand, there are more important issues
that we now discuss.

C. Advantages of entropic formulation

From a practical perspective, a crucial advantage of entropic
uncertainty relations are their applications throughout quan-
tum cryptography. However, let us now mention several
other reasons why we think that the entropic formulation
of the uncertainty principle is advantageous over the standard
deviation formulation.

1. Counterintuitive behavior of standard deviation

While the standard deviation is, of course, a good measure
of deviation from the mean, its interpretation as a measure of
uncertainty has been questioned. It has been pointed out, for
example, by Białynicki-Birula and Rudnicki (2011), that the
standard deviation behaves somewhat strangely for some
simple examples.
Example 2. Consider a spin-1 particle with equal proba-

bility PrðszÞ ¼ 1=3 to have each of the three possible values of
Z angular momentum sz ∈ f−1; 0; 1g. The standard deviation
of the Z angular momentum is σðZÞ ¼ ffiffiffiffiffiffiffiffi

2=3
p

. Now suppose
we gain information about the spin such that we now know
that it definitely does not have the value sz ¼ 0. The new
probability distribution is Prð1Þ ¼ Prð−1Þ ¼ 1=2, Prð0Þ ¼ 0.
We might expect the uncertainty to decrease, since we have
gained information about the spin, but in fact the standard
deviation increases, the new value being σðZÞ ¼ 1.
We remark that the different behavior of standard deviation

and entropy for spin angular momentum was recently high-
lighted by Dammeier, Schwonnek, and Werner (2015), in the
context of states that saturate the relevant uncertainty relation.
Białynicki-Birula and Rudnicki (2011) noted an example

for a particle’s spatial position that is analogous to example 2.
Example 3. Consider a long box of length L, centered at

Q ¼ 0, with two small boxes of length a attached to the two
ends of the long box, as depicted in Fig. 3. Suppose we know
that a classical particle is confined to the two small end boxes,

i.e., with equal probability it is one of the two small boxes. The
standard deviation of the position is σðQÞ ≈ L=2, assuming that
L ≫ a. Now suppose the barriers that separate the end boxes
from the middle box are removed, and the particle is allowed to
move freely between all three boxes. Intuitively one might
expect that the uncertainty of the particle’s position is now
larger, since we now know nothing about where the particle is
inside the three boxes. However, the new standard deviation is
actually smaller: σðQÞ ≈ L=

ffiffiffiffiffi
12

p
.

Entropies, on the other hand, do not have this counterin-
tuitive behavior, due to properties discussed later. Finally, let
us note a somewhat obvious issue that, in some cases, a
quantitative label (and hence the standard deviation) does not
make sense, as illustrated in the following example.
Example 4. Consider a neutrino’s flavor, which is often

modeled as a three-outcome observable with outcomes “elec-
tron,” “muon,” or “tau.” As this is a nonquantitative observable,
the standard deviation does not make sense in this context.
Nevertheless, it is of interest to quantify the uncertainty about
the neutrino flavor, i.e., how difficult it is to guess the flavor,
which is naturally captured by the notion of entropy.

2. Intuitive entropic properties

Deutsch (1983) emphasized that the standard deviation can
change under a simple relabeling of the outcomes. For example,
if one were to assign quantitative labels to the outcomes in
example 4 and then relabel them, the standard deviation would
change. In contrast, the entropy is invariant under relabeling of
outcomes, because it naturally captures the amount of infor-
mation about a measurement outcome.
Furthermore, there is a nice monotonic property of entropy

in the following sense. Suppose one does a random relabeling
of the outcomes. One can think of this as a relabeling plus
added noise, which naturally tends to spread the probability
distribution out over the outcomes. Intuitively, a relabeling
with the injection of randomness should never decrease
the uncertainty. This property, nondecreasing under random
relabeling, was highlighted by Friedland, Gheorghiu, and
Gour (2013) as a desirable property of an uncertainty measure.
Indeed, entropy satisfies this property. On the other hand, the
physical process in example 3 can be modeled mathematically
as a random relabeling. Hence, we see the contrast in behavior
between entropy and standard deviation.
Monotonicity under random relabeling is actually a special

case of an even more powerful property. Think of the random
relabeling as due to the fact that the observer is denied access
to an auxiliary register that stores the information about which
relabeling occurred. If the observer had access to the register,

FIG. 3. Illustration for example 3, where a particle is initially
confined to the two small boxes at the end and excluded from the
long middle box. Then the particle is allowed to go free into the
middle box.
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then their uncertainty would remain the same, but without
access their uncertainty could potentially increase, but never
decrease. More generally, this idea (that losing access to an
auxiliary system cannot reduce one’s uncertainty) is a desir-
able and powerful property of uncertainty measures known
as the data-processing inequality. It is arguably a defining
property of entropy measures, or more precisely, conditional
entropy measures as discussed in Sec. IV.B. Furthermore this
property is central in proving entropic uncertainty relations
(Coles et al., 2012).

3. Framework for correlated quantum systems

Entropy provides a robust mathematical framework that
can be generalized to deal with correlated quantum systems.
For example, the entropy framework allows us to discuss
the uncertainty of an observable from the perspective of an
observer who has access to part of the environment of the
system or to quantify quantum correlations like entanglement
between two quantum systems. This requires measures of
conditional uncertainty, namely, conditional entropies. We
highlight the utility of this framework in Sec. IV. A similar
framework for standard deviation has not been developed.

4. Operational meaning and information applications

Perhaps the most compelling reason to consider entropy as
the uncertainty measure of choice is that it has operational
significance for various information-processing tasks. The
standard deviation, in contrast, does not play a significant role
in information theory. This is because entropy abstracts from
the physical representation of information, as one can see from
the following example.
Example 5. Consider the two probability distributions in

Fig. 4. They have the same standard deviation but different
entropy. The distribution in Fig. 4(a) has 1 bit of entropy since
only two events are possible and occur with equal probability.
If we want to record data from this random experiment this
will require exactly 1 bit of storage per run. On the other hand,
the distribution in Fig. 4(b) has approximately 3 bits of
entropy and the recorded data cannot be compressed to less
than 3 bits per run. Clearly, entropy has operational meaning
in this context while standard deviation fails to distinguish
these random experiments.
Entropies have operational meaning for tasks such as

randomness extraction (extracting perfect randomness from
a partially random source) and data compression (sending
minimal information to someone to help them guess the output
of a partially random source). It is precisely these operational

meanings that make entropic uncertainty relations useful for
proving the security of quantum key distribution and other
cryptographic tasks. We discuss such applications in Sec. VI.
The operational significance of entropy allows one to frame

entropic uncertainty relations in terms of guessing games (see
Secs. III.F and IV.D.1). These are simple yet insightful tasks
where one party is trying to guess the outcome of another
party’s measurements (see the description in Fig. 2). Such
games make it clear that the uncertainty principle is not just
abstract mathematics; rather it is relevant to physical tasks that
can be performed in a laboratory.

III. UNCERTAINTY WITHOUT A MEMORY SYSTEM

Historically, entropic uncertainty relations were first studied
for position and momentum observables. However, to keep the
discussion mathematically simple we begin here by introduc-
ing entropic uncertainty relations for finite-dimensional quan-
tum systems, and we defer the discussion of infinite
dimensions to Sec. V. It is worth noting that many physical
systems of interest are finite dimensional, such as photon
polarization, neutrino flavor, and spin angular momentum.
In this section, we consider uncertainty relations for a single

system A. That is, there is no memory system. We emphasize
that all uncertainty relations with a memory system can also be
applied to the situation without.

A. Entropy measures

Let us consider a discrete random variable X distributed
according to the probability distribution PX. We assume that X
takes values in a finite set X . For example, this set could be
binary values f0; 1g or spin states f↑;↓g. In general, we
associate the random variable X with the outcome of a
particular measurement. This random variable can take values
X ¼ x, where x is a specific instance of a measurement
outcome that can be obtained with probability PXðX ¼ xÞ.
However, entropies depend only on the probability lawPX and
not on the specific labels of the elements in the set X . Thus,
we will in the following just assume this set to be of the form
½d� ≔ f1; 2; 3;…; dg, where d ¼ jXj stands for the cardinality
of the set X .

1. Surprisal and Shannon entropy

Following Shannon (1948), we first define the surprisal of
the event X ¼ x distributed according to PX as − logPXðxÞ,
often also referred to as information content. As its name
suggests, the information content of X ¼ x gets larger when
the event X ¼ x is less likely, i.e., when PXðxÞ is smaller. In
particular, deterministic events have no information content at
all, which is indeed intuitive since we learn nothing by
observing an event that we are assured will happen with
certainty. In contrast, the information content of very unlikely
events can get arbitrarily large. Based on this intuition, the
Shannon entropy is defined as

HðXÞ ≔
X
x

PXðxÞ log
1

PXðxÞ
ð14Þ

(a) (b)

FIG. 4. Two probability distributions with the same standard
deviation but different entropy, as explained in example 5.
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and quantifies the average information content of X. It is
therefore a measure of the uncertainty of the outcome of the
random experiment described by X. The Shannon entropy is
by far the best-known measure of uncertainty, and it is the one
most commonly used to express uncertainty relations.

2. Rényi entropies

However, for some applications it is important to consider
other measures of uncertainty that give more weight to events
with high or low information content, respectively. For this
purpose we employ a generalization of the Shannon entropy to
a family of entropies introduced by Rényi (1961). The family
includes several important special cases which we discuss
individually. These entropies have found many applications in
cryptography and information theory (see Sec. VI) and have
convenient mathematical properties.5

The Rényi entropy of order α is defined as

HαðXÞ ≔
1

1 − α
log

X
x

PXðxÞα; ð15Þ

for α ∈ ð0; 1Þ∪ð1;∞Þ, and as the corresponding limit for
α ∈ f0; 1;∞g. For α ¼ 1 the limit yields the Shannon
entropy,6 and the Rényi entropies are thus a proper generali-
zation of the Shannon entropy.
The Rényi entropies are monotonically decreasing as a

function of α. Entropies with α > 1 give more weight to
events with high surprisal. The collision entropyHcoll ≔ H2 is
given by

HcollðXÞ ¼ − logpcollðXÞ;
where pcollðXÞ ≔

X
x

PXðxÞ2 ð16Þ

is the collision probability, i.e., the probability that two
independent instances of X are equal. The min-entropy
Hmin ≔ H∞ is of special significance in many applications.
It characterizes the optimal probability of correctly guessing
the value of X in the following sense:

HminðXÞ ¼ − logpguessðXÞ;
where pguessðXÞ ≔ max

x
PXðxÞ: ð17Þ

Clearly, the optimal guessing strategy is to bet on the most
likely value of X, and the winning probability is then given by
the maximum in Eq. (17). The min-entropy can also be seen as
the minimum surprisal of X.
The Rényi entropies with α < 1 give more weight to events

with small surprisal. Noteworthy examples are the max-
entropy Hmax ≔ H1=2 and

H0ðXÞ ¼ log jfx∶PXðxÞ > 0gj; ð18Þ

where the latter is simply the logarithm of the support of PX.

3. Examples and properties

For all the Rényi entropies, HαðXÞ ¼ 0 if and only if the
distribution is perfectly peaked, i.e., PXðxÞ ¼ 1 for some
particular value x. On the other hand, the distribution PXðxÞ ¼
jXj−1 is uniform if and only if the entropy takes its maximal
value HαðXÞ ¼ log jXj.
The Rényi entropies can take on very different values

depending on the parameter α as the following example,
visualized in Fig. 5, shows.
Example 6. Consider a distribution of the form

PXðxÞ ¼
(

1
2

for x ¼ 1;
1

2ðjXj−1Þ else;
ð19Þ

so that we have

HminðXÞ ¼ log 2;

whereas HðXÞ ¼ log 2þ 1
2
logðjXj − 1Þ ð20Þ

is arbitrarily large as jXj ≥ 2 increases. This is of particular
relevance in cryptographic applications where HminðXÞ, and
not HðXÞ, characterizes how difficult it is to guess a secret X.
As we will see later,HminðXÞ precisely determines the number
of random bits that can be obtained from X.
Consider two probability distributions PX and QY and

define d ¼ maxfjXj; jYjg. Now let us reorder the probabilities

in PX into a vector P↓
X such that P↓

Xð1Þ ≥ P↓
Xð2Þ ≥ � � � ≥

P↓
XðdÞ, padding with zeros if necessary. Analogously arrange

the probabilities in QY into a vector Q↓
Y. We say PX majorizes

QY and write PX ≻ QY if

Xy
x¼1

P↓
XðxÞ ≥

Xy
x¼1

Q↓
YðxÞ; for all y ∈ ½d�: ð21Þ

Intuitively, the fact that PX majorizes QY means that PX is
less spread out than QY . For example, the distribution

FIG. 5. Rényi entropies of X with probability distribution as in
example 6 with jXj ¼ 65 compared to a uniform random variable
U on 4 bits.

5Another family of entropies that are often encountered are the
Tsallis entropies (Tsallis, 1988). They have not found an operational
interpretation in cryptography or information theory. Thus, we defer
the discussion of Tsallis entropies until Sec. VII.A.

6It is a simple exercise to apply L’Hôpital’s rule to Eq. (15) in the
limit α → 1.
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f1; 0;…; 0g majorizes every other distribution, while the
uniform distribution fjXj−1;…; jXj−1g is majorized by every
other distribution.
One of the most fundamental properties of the Rényi

entropies is that they are Schur concave (Marshall, Olkin,
and Arnold, 2011), meaning that they satisfy

HαðXÞ ≤ HαðYÞ if PX ≻ QY: ð22Þ

This has an important consequence. Let Y ¼ fðXÞ for some
(deterministic) function f. In other words, Y is obtained by
processing X using the function f. The random variable Y is
then governed by the push forward QY of PX, that is

QYðyÞ ¼
X

x∶fðxÞ¼y

PXðxÞ: ð23Þ

Clearly PX≺QY and thus we have HαðXÞ ≥ HαðYÞ. This
corroborates our intuition that the input of a function is at least
as uncertain as its output. If Z is just a reordering of X, or more
generally if f is injective, then the two entropies are equal.
Finally we note that if two random variables X and Y are

independent, we have

HαðXYÞ ¼ HαðXÞ þHαðYÞ: ð24Þ

This property is called additivity.

B. Preliminaries

1. Physical setup

The physical setup used throughout the remainder of this
section is as follows. We consider a quantum system A that is
measured in either one of two (or more) bases. The initial state
of the system A is represented by a density operator ρA or more
formally a positive semidefinite operator with unit trace
acting on a finite-dimensional Hilbert space A. The measure-
ments for now are given by two orthonormal bases of A. An
orthonormal basis is a set of unit vectors in A that are mutually
orthogonal and span the space A. The two bases are denoted
by sets of rank-1 projectors,

X ¼ fjXxihXxjgx and Z ¼ fjZzihZzjgz: ð25Þ

We use projectors to keep the notation consistent as we later
consider more general measurements. This induces two
random variables X and Z corresponding to the measurement
outcomes that result from measuring in the bases X and Z,
respectively. These are governed by the following probability
laws, given by the Born rule. We have

PXðxÞ ¼ hXxjρAjXxi and PZðzÞ ¼ hZzjρAjZzi; ð26Þ

respectively. We also note that jXj ¼ jZj ¼ d, which is the
dimension of the Hilbert space A.

2. Mutually unbiased bases

Before delving into uncertainty relations, let us consider
pairs of observables such that perfect knowledge about

observable X implies complete ignorance about observable
Z. We say that such observables are unbiased or mutually
unbiased. For any finite-dimensional space there exist pairs of
orthonormal bases that satisfy this property. More precisely,
two orthonormal bases X and Z are mutually unbiased bases
(MUBs) if

jhXxjZzij2 ¼ 1

d
; ∀ x; z: ð27Þ

In addition, a set of n orthonormal bases fXjg is said to be a
set of n MUBs if each basis Xj is mutually unbiased to every
other basis Xk, with k ≠ j, in the set.
Example 7. For a qubit the eigenvectors of the Pauli

operators,

σX ≔ j0ih1j þ j1ih0j; ð28Þ

σY ≔ −ij0ih1j þ ij1ih0j; ð29Þ

σZ ≔ j0ih0j − j1ih1j; ð30Þ

form a set of three MUBs.
In Appendix A we discuss constructions for sets of MUBs

in higher dimensional spaces. We also point to Durt et al.
(2010) for a review on this topic.

C. Measuring in two orthonormal bases

1. Shannon entropy

Based on the pioneering work by Deutsch (1983) and
following a conjecture of Kraus (1987), Maassen and Uffink
(1988) formulated entropic uncertainty relations for measure-
ments of two complementary observables. Their best-known
relation uses the Shannon entropy to quantify uncertainty. It
states that, for any state ρA,

HðXÞ þHðZÞ ≥ log
1

c
≕ qMU; ð31Þ

where the measure of incompatibility is a function of the
maximum overlap of the two measurements, namely,

c ¼ max
x;z

cxz; where cxz ¼ jhXxjZzij2: ð32Þ

Note that qMU is state independent, i.e., independent of the
initial state ρA. This is in contrast to Robertson’s bound
in Eq. (2).
The bound qMU is nontrivial as long asX and Z do not have

any vectors in common. In this case, Eq. (31) shows that for
any input density matrix there is some uncertainty in at least
one of the two random variables X and Z quantified by the
Shannon entropies HðXÞ and HðZÞ, respectively. In general
we have

1

d
≤ c ≤ 1 and hence 0 ≤ qMU ≤ log d: ð33Þ

For the extreme case that X and Z are MUBs, as defined
in Eq. (27), the overlap matrix ½cxz� is flat: cxz ¼ 1=d for all
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x and z, and the lower bound on the uncertainty then becomes
maximal

HðXÞ þHðZÞ ≥ log d: ð34Þ

Note that this is a necessary and sufficient condition, c ¼ 1=d
if and only if the two bases are MUBs. Hence, MUBs uniquely
give the strongest uncertainty bound here.
For general observables X and Z the overlap matrix is not

necessarily flat and the asymmetry of the matrix elements cxz
is quantified in Eq. (32) by taking the maximum over all x, z.
In order to see why the maximum entry provides some (fairly
coarse) measure of the flatness of the whole matrix, note that if
the maximum entry of the overlap matrix is 1=d, then all
entries in the matrix must be 1=d. Alternative measures of
incompatibility are discussed in Secs. III.C.5 and III.C.6.

2. Rényi entropies

Maassen and Uffink (1988) also showed that Eq. (31) holds
more generally in terms of Rényi entropies. For any α, β ≥
1=2 with 1=αþ 1=β ¼ 2, we have

HαðXÞ þHβðZÞ ≥ qMU: ð35Þ

It is easily checked that Eq. (31) in terms of the Shannon
entropy is recovered for α ¼ β ¼ 1. For α → ∞ with β → 1=2
we get another interesting special case of Eq. (35) in terms of
the min- and max-entropy

HminðXÞ þHmaxðZÞ ≥ qMU: ð36Þ

Since the min-entropy characterizes the probability of cor-
rectly guessing the outcome X, it is this type of relation that
becomes most useful for applications in quantum cryptogra-
phy and quantum information theory (see Sec. VI).

3. Maassen-Uffink proof

The original proof of Eq. (35) by Maassen and Uffink
makes use of the Riesz-Thorin interpolation theorem [see,
e.g., Bergh and Löfström (1976)]. Recently an alternative
proof was formulated by Coles et al. (2011, 2012) using the
monotonicity of the relative entropy under quantum channels.
The latter approach is illustrated in Appendix B, where we
prove the special case of the Shannon entropy relation (31).
The proof is simple and straightforward. Hence, we highly
recommend the interested reader to study Appendix B. The
Rényi entropy relation (35) follows from a more general line
of argument given in Appendix C.3.

4. Tightness and extensions

Given the simple and appealing form of the Maassen-Uffink
relations (35) a natural question to ask is how tight these
relations are. It is easily seen that if X and Z are MUBs,
then they are tight for any of the states ρA ¼ jXxihXxj or
ρA ¼ jZzihZzj. Thus, there cannot exist a better state-
independent bound if X and Z are MUBs. However, for
general orthonormal bases X and Z Eqs. (35) are not
necessarily tight. This issue is addressed in the following

sections, where we also note that Eq. (31) can be tightened for
mixed states ρA with a state-dependent bound.
Going beyond orthonormal bases, these relations can be

extended to more general measurements, as discussed in
Sec. III.D. Finally, another interesting extension considers
more than two observables (which in some cases leads to
tighter bounds for two observables), as discussed in Sec. III.G.

5. Tighter bounds for qubits

Various attempts have been made to strengthen the Maassen-
Uffink bound, particularly in the Shannon entropy form (31).
Let us begin by first discussing improvements upon (31) in the
qubit case and then move on to arbitrary dimensions.
For qubits the situation is fairly simple since the overlap

matrix ½cxz� depends only on a single parameter, which we
take as the maximum overlap c ¼ maxx;zcxz. Hence, the goal
is to find the largest function of c that still lower bounds the
entropic sum. Significant progress along these lines was made
by Sánchez-Ruiz (1998), who noted that the Maassen-Uffink
bound qMU could be replaced by the stronger bound

qSR ≔ hbin

�
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

2c − 1
p

2

�
: ð37Þ

Here hbinðpÞ ≔ −p logp − ð1 − pÞ logð1 − pÞ denotes the
binary entropy.
Later work by Ghirardi, Marinatto, and Romano (2003)

attempted to find the optimal bound. They simplified the
problem to a single-parameter optimization as

qopt ≔ min
θ

�
hbin

�
1þ cos θ

2

�
þ hbin

�
1þ cosðα − θÞ

2

��
;

ð38Þ

where α ≔ 2 arccos
ffiffiffi
c

p
. While it is straightforward to perform

this optimization, Ghirardi, Marinatto, and Romano (2003)
noted that an analytical solution could be found only for
c≳ 0.7. They showed that this analytical bound is given by

qG ≔ 2hbinðbÞ; c≳ 0.7; ð39Þ

where

b ≔
�
1þ ffiffiffi

c
p
2

�
: ð40Þ

Figure 6 shows a plot of qopt, qSR, and qMU. In addition, this
plot also shows the bound qmaj obtained from a majorization
technique discussed in Sec. III.I.
For pairs of Rényi entropies Hα and Hβ in Eq. (35), Zozor,

Bosyk, and Portesi (2013) and Abdelkhalek et al. (2015)
completely characterized the amount of uncertainty in the
qubit case.

6. Tighter bounds in arbitrary dimension

Extending the qubit result from Eq. (38), de Vicente and
Sánchez-Ruiz (2008) found an analytical bound in the large
overlap (i.e., large c) regime
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qdVSR ≔ 2hbinðbÞ for c ≳ 0.7; ð41Þ

which is stronger than the MU bound over this range, and they
also obtained a numerical improvement over MU for the
range 1=2 ≤ c ≲ 0.7.
However, the situation for d > 2 is more complicated than

the qubit case. For d > 2 the overlap matrix ½cxz� depends on
more parameters than simply the maximum overlap c. Recent
work has focused on exploiting these other overlaps to improve
upon the MU bound. For example, Coles and Piani (2014b)
derived a simple improvement on qMU that captures the role of
the second-largest entry of ½cxz�, denoted c2, with the bound

qCP ≔ log
1

c
þ 1

2
ð1 − ffiffiffi

c
p Þ log c

c2
: ð42Þ

Consider the following qutrit example where qCP > qMU.
Example 8. Let d ¼ 3 and consider the two orthonormal

bases X and Z related by the unitary transformation

U ¼

0
BB@

1=
ffiffiffi
3

p
1=

ffiffiffi
3

p
1=

ffiffiffi
3

p

1=
ffiffiffi
2

p
0 −1=

ffiffiffi
2

p

1=
ffiffiffi
6

p
−

ffiffiffiffiffiffiffiffi
2=3

p
1=

ffiffiffi
6

p

1
CCA: ð43Þ

We have qMU ¼ logð3=2Þ ≈ 0.58 while qCP ≈ 0.64.
Recently, a bound similar in spirit to qCP was obtained by

Rudnicki, Puchała, and Życzkowski (2014) of the form

qRPZ ≔ log
1

c
− log

�
b2 þ c2

c
ð1 − b2Þ

�
: ð44Þ

Note that qRPZ ≥ qMU. However, there is no clear relation
between qCP and qRPZ.
For arbitrary pairs of entropies Hα and Hβ, Abdelkhalek

et al. (2015) gave conditions on the minimizing state of
Eq. (35). In particular, the minimizing state is pure and real.
For measurements in the standard and Fourier basis, further
conditions are obtained.

7. Tighter bounds for mixed states

Notice that Eq. (31) can be quite loose for mixed states. For
example, if ρA ¼ 1=d, then the left-hand side of Eq. (31) is
2 log d, whereas the right-hand side is at most log d. This
looseness can be addressed by introducing a state-dependent
bound that gets larger as ρA becomes more mixed. The
mixedness of ρA can be quantified by the von Neumann
entropy HðρAÞ, which we also denote by HðAÞρ, defined by

HðρAÞ ≔ −tr½ρA log ρA� ¼
X
j

λj log
1

λj
; ð45Þ

where an eigenvalue decomposition of the state is given by
ρA ¼ P

jλjjϕjihϕjjA. Note that 0 ≤ HðρAÞ ≤ log d, where
HðρAÞ ¼ 0 for pure states and HðρAÞ ¼ log d for maximally
mixed states. In the literature, the von Neumann entropy is
sometimes also denoted using SðAÞ ¼ HðAÞ. However, here
we follow the more common convention in quantum infor-
mation theory. We note that the entropy never decreases when
applying a projective measurement X ¼ fjXxihXxjgx to ρA,
that is,

HðρAÞ ≤ HðXÞP with PXðxÞ ¼ hXxjρAjXxi: ð46Þ
Equation (31) was strengthened for mixed states by Berta
et al. (2010) with the bound

HðXÞ þHðZÞ ≥ qMU þHðρAÞ: ð47Þ

A proof of Eq. (47) is given in Appendix B; see also Frank and
Lieb (2012) for a direct matrix analysis proof. When X and Z
are MUBs, this bound is tight for any state ρA that is diagonal
in either the X or Z basis.

D. Arbitrary measurements

Many interesting measurements are not of the orthonormal
basis form. For example, coarse-grained (degenerate) projec-
tive measurements are relevant to probing macroscopic
systems. Also, there are other measurements that are informa-
tionally complete in the sense that their statistics allow one to
reconstruct the density operator.
The most general description of measurements in quantum

mechanics is that of positive operator-valued measures
(POVMs). A POVM on a system A is a set of positive
semidefinite operators fXxg that sum to the identityP

xX
x ¼ 1A. The number of POVM elements in the set

can be much larger or much smaller than the Hilbert space
dimension of the system. Physically, a POVM can be
implemented as a projective measurement on an enlarged
Hilbert space, e.g., as a joint measurement on the system of
interest with an ancilla system.
For two POVMs X ¼ fXxgx and Z ¼ fZzgz, the general

Born rule now induces the distributions

PXðxÞ ¼ tr½ρAXx� and PZðzÞ ¼ tr½ρAZz�: ð48Þ

Krishna and Parthasarathy (2002) proposed an incompatibility
measure for POVMs using the operator norm. Namely, they
considered

FIG. 6. Various literature bounds on entropic uncertainty for
qubit orthonormal bases as a function of the maximum overlap c.
The region above qopt contains pairs ðc; qÞ that can be achieved
by quantum mechanics.
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c ¼ max
x;z

cxz with cxz ¼ k
ffiffiffiffiffiffi
Xx

p ffiffiffiffiffiffi
Zz

p
k2; ð49Þ

where k · k denotes the operator norm (i.e., the maximal
singular value). Using this measure they generalized Eq. (31)
to the case of POVMs. That is, we still have

HðXÞ þHðZÞ ≥ log
1

c
; ð50Þ

but now using the generalized version of c in Eq. (49). More
recently, Tomamichel (2012) noted that an alternative gener-
alization to POVMs is obtained by replacing c with

c0 ≔ min

�
max
x

����X
z

ZzXxZz

����;max
z

����X
x

XxZzXx

����
	
; ð51Þ

and it was conjectured that c0 always provides a stronger
bound than c.
Indeed this conjecture was proved by Coles and Piani

(2014b): ����X
z

ZzXxZz

���� ≤ max
z

cxz: ð52Þ

Hence, c0 ≤ c, implying that logð1=c0Þ provides a stronger
bound on entropic uncertainty than logð1=cÞ.
Example 9. Consider two POVMs given by

X ¼ Z ¼ 1
2
fj0ih0j; j1ih1j; jþihþj; j−ih−jg: ð53Þ

For these POVMs we find c ¼ 1=4, but c0 ¼ 3=16 is strictly
smaller.
Interestingly, a general POVM can have a nontrivial

uncertainty relation on its own. That is, for some POVM
X, there may not exist any state ρA that has HðXÞ ¼ 0.
Krishna and Parthasarathy (2002) noted this and derived the
single POVM uncertainty relation

HðXÞ ≥ − logmax
x

kXxk: ð54Þ

In fact the proof is straightforward: simply apply Eq. (50) to
the case where Z ¼ f1g is the trivial POVM. Equation (54)
can be further strengthened by applying this approach to c0 in
Eq. (51), instead of c.

E. State-dependent measures of incompatibility

In most uncertainty relations we have encountered so far,
the measure of incompatibility, for example, the overlap c, is
a function of the measurements employed but is independent
of the quantum state prior to measurement. The sole
exception is the strengthened Maassen-Uffink relation in
Eq. (47), where the lower bound is the sum of an ordinary,
state-independent measure of incompatibility and the
entropy of ρA. In the following, we review some uncertainty
relations that use measures of incompatibility that are state
dependent.
Tomamichel and Hänggi (2013) showed that the Maassen-

Uffink relation (31) also holds when the overlap c is replaced

by an effective overlap, denoted c�. Informally, c� is given by
the average overlap of the two measurements on different
subspaces of the Hilbert space, averaged over the probability
of finding the state in the subspace. See Tomamichel and
Hänggi (2013) for a formal definition of c�. Here we discuss a
simple example showing that state-dependent uncertainty
relations can be significantly tighter.
Example 10. Let us apply one out of two projective

measurements, either in the orthonormal basis7

fj0i; j1i; j⊥ig or fjþi; j−i; j⊥ig; ð55Þ

on a state ρ which has the property that ⊥ is measured with
probability at most ε. The Maassen-Uffink relation (31)
gives a trivial bound as the overlap of the two bases is c ¼ 1

due to the vector j⊥i that appears in both bases. Still, our
intuitive understanding is that the uncertainty about the
measurement outcome is high as long as ε is small. The
effective overlap (Tomamichel and Hänggi, 2013) captures
this intuition:

c� ¼ ð1 − εÞ1
2
þ ε: ð56Þ

This formula can be interpreted as follows: with probability
1 − ε we are in the subspace spanned by j0i and j1i, where
the overlap is 1=2, and with probability ε we measure ⊥ and
have full overlap.
An alternative approach to state-dependent uncertainty

relations was introduced by Coles and Piani (2014b). They
showed that the factor qMU ¼ logð1=cÞ in the Maassen-Uffink
relation (31) can be replaced by the state-dependent factor

qðρAÞ ≔ maxfqXðρAÞ; qZðρAÞg; ð57Þ

where

qXðρAÞ ≔
X
x

PXðxÞ log
1

maxzcxz
; ð58Þ

and qZðρAÞ is defined analogously to qXðρAÞ, but with x and z
interchanged. Here PXðxÞ and cxz are given by Eqs. (26) and
(32), respectively. Note that this strengthens the Maassen-
Uffink bound qðρAÞ ≥ qMU since averaging logð1=maxzcxzÞ
over all x is larger than minimizing it over all x. In many cases
qðρAÞ is significantly stronger than qMU.
Recently, Kaniewski, Tomamichel, and Wehner (2014)

derived entropic uncertainty relations in terms of the effective
anticommutator of arbitrary binary POVMs X ¼ fX0;X1g
and Z ¼ fZ0;Z1g. Namely, the quantity

ε� ¼ 1
2
tr½ρ½OX; OZ�þ� ¼ 1

2
tr½ρðOXOZ þOZOXÞ�;

with OX ¼ X0 −X1 and OZ ¼ Z0 − Z1 ð59Þ

binary observables corresponding to the POVMs X and Z,
respectively. In Eq. (59), we use the notation ½·; ·�þ to denote
the anticommutator. We note that ε� ∈ ½−1; 1�. This results, for

7The diagonal states are j�i ¼ ðj0i � j1iÞ= ffiffiffi
2

p
.
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example, in the following uncertainty relation for the
Shannon entropy:

HðXÞ þHðZÞ ≥ hbin

�
1þ ffiffiffiffiffiffiffijε�jp

2

�
: ð60Þ

See Kaniewski, Tomamichel, and Wehner (2014) for
similar uncertainty relations in terms of Rényi entropies
as well as extensions to more than two measurements.
Finally, for measurements acting on qubits, we find that
jε�j ¼ 2c − 1, and Eq. (60) hence reduces to the Sanchez-
Ruiz bound (37).

F. Relation to guessing games

Let us now explain in detail how some of the previous
relations can be interpreted in terms of a guessing game. We
elaborate on the brief discussion of guessing games in Sec. I;
see Fig. 2 for an illustration of the game.
The game is as follows. Suppose that Bob prepares system

A in state ρA. He then sends A to Alice, who randomly
performs either the X or Z measurement. The measurement
outcome is a bit denoted as K, and Bob’s task is to guess K,
given that he received the basis choice denoted by Θ ∈
fθX; θZg from Alice.
We can rewrite the Maassen-Uffink relation (31) in the

following way such that the connection to the above guessing
game becomes transparent. Denote the standard basis on A as
fjkigdk¼1, and let UX and UZ, respectively, be unitaries that
map this basis to the X and Z bases, i.e.,

jXki ¼ UXjki and jZki ¼ UZjki: ð61Þ

Then, we have

1
2
½HðKjΘ ¼ θXÞ þHðKjΘ ¼ θZÞ� ≥ 1

2
qMU; ð62Þ

with the conditional probability distribution

PKjΘ¼θXðkÞ ≔ hkjU†
XρUXjki for k ∈ f1;…; dg ð63Þ

and similarly for θZ. Alternatively we can also write this as

HðKjΘÞ ≥ 1
2
qMU with Θ ∈ fθX; θZg; ð64Þ

in terms of the conditional Shannon entropy

HðKjΘÞ ≔ HðKΘÞ −HðΘÞ ð65Þ

¼ 1
2
½HðKjΘ ¼ θXÞ þHðKjΘ ¼ θXÞ� ð66Þ

of the bipartite distribution

PKΘðk; θjÞ ≔ 1
2
hkjU†

jρUjjki with k ∈ f1;…; dg;
j ∈ fX;Zg: ð67Þ

That is, each measurement labeled θj is chosen with equal
probability 1=2 and we condition the entropy on this choice.
Notice that the form in Eq. (64) is connected to the guessing

game in Fig. 2. Regardless of the state ρA that Bob prepares,
the uncertainty relation (64) implies that he will not be able to
perfectly guess K if qMU > 0. In this sense, the Maassen-
Uffink relation is a fundamental constraint on one’s ability to
win a guessing game.
Actually, in the context of guessing games, the min-entropy

is more operationally relevant than the Shannon entropy. For
example, a diligent reading of Deutsch (1983) reveals

pguessðXÞ · pguessðZÞ ≤ b2; ð68Þ

for orthonormal bases X and Z, where b is defined in
Eq. (40). This relation gives an upper bound on the product
of the guessing probabilities (or, equivalently, a lower bound
on the sum of the min-entropies) associated with X and Z.
However, to make a more explicit connection to the guessing
game previously described, one wants an upper bound on
the sum (or average) of the guessing probabilities, namely,
the quantity

pguessðKjΘÞ ¼ 1
2
½pguessðKjΘ ¼ θXÞ þ pguessðKjΘ ¼ θZÞ�:

ð69Þ

Indeed, the quantity (69) has an upper bound given by
(Schaffner, 2007)

pguessðKjΘÞ ≤ b ð70Þ

or equivalently

HminðKjΘÞ ≥ log
1

b
: ð71Þ

Example 11. For the Pauli qubit measurements fσX; σZg
the min-entropy uncertainty relation (71) becomes

HminðKjΘÞ ≥ log
2

ffiffiffi
2

p

1þ ffiffiffi
2

p : ð72Þ

We emphasize that pguessðKjΘÞ is precisely the probability
for winning the game described in Fig. 2. Hence, the entropic
uncertainty relation (71) gives the fundamental limit on
winning the game. Finally, we remark that Eq. (71) is stronger
than Deutsch’s relation (68), due to the following argument.
For the min-entropy, conditioning on the measurement choice
is defined as

HminðKjΘÞ ≔ − log

�
1

2

X
j¼1;2

2−HminðKjΘ¼θjÞ
�

≠ HminðKΘÞ −HminðΘÞ ðin generalÞ; ð73Þ

in contrast to the Shannon entropy in Eq. (65). However, in
analogy to Eq. (66), we have

HminðKjΘÞ ≤
1

2

X
j¼1;2

HminðKjΘ ¼ θjÞ ð74Þ
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due to the concavity of the logarithm. For a general discussion
of conditional entropies see Sec. IV.B.

G. Multiple measurements

So far we have considered only entropic uncertainty
relations quantifying the complementarity of two measure-
ments. However, there is no fundamental reason for restricting
to this setup, and in the following we discuss the more general
case of L measurements. We mostly focus on special sets of
measurements that generate strong uncertainty relations. This
is of particular interest for various applications in quantum
cryptography (see Sec. VI.C).
The notation introduced for guessing games in Sec. III.F is

particularly useful in the multiple measurements setting. In
this notation, for larger sets of measurements we are interested
in finding lower bounds of the form

HðKjΘÞ ≥ fðΘ; ρAÞ > 0 with Θ ∈ fθ1;…; θLg; ð75Þ

where, similarly to Eq. (67),

PKΘðk; θjÞ ≔
1

L
hkjU†

jρUjjki with k ∈ f1;…; dg;
j ∈ f1;…; Lg: ð76Þ

Again the left-hand side of Eq. (75) might alternatively be
written as

HðKjΘÞ ¼ 1

L

XL
j¼1

HðKjΘ ¼ θjÞ; ð77Þ

where the conditional probability distribution PKjΘ¼θj is
defined analogously to (63).

1. Bounds implied by two measurements

It is important to realize that the Maassen-Uffink relation
(31) already implies bounds for larger sets of measurements.
This is easily seen by just applying Eq. (31) to all possible
pairs of measurements and adding the corresponding lower
bounds.
Example 12. For the qubit Pauli measurements we find by

an iterative application of the tightened Maassen-Uffink
bound (47) for the measurement pairs fσX; σYg, fσX; σZg,
and fσY ; σZg that

HðKjΘÞ ≥ 1
2
þ 1

2
HðρAÞ with Θ ∈ fσX; σY ; σZg: ð78Þ

The goal of this section is to find uncertainty relations that
are stronger than any bounds that can be derived directly from
relations for two measurements.

2. Complete sets of MUBs

Promising candidates for deriving strong uncertainty rela-
tions are complete sets of MUBs, i.e., sets of dþ 1 MUBs
(which we know to exist only in certain dimensions, see

Appendix A for elaboration). Consider the qubit case in the
following example.
Example 13. For the qubit Pauli measurements, we have

from Sánchez-Ruiz (1995, 1998) that

HðKjΘÞ ≥ 2
3

with Θ ∈ fσX; σY ; σZg: ð79Þ

Moreover, from Coles et al. (2011) we can add an entropy
dependent term on the right-hand side,

HðKjΘÞ ≥ 2
3
þ 1

3
HðρAÞ with Θ ∈ fσX; σY ; σZg: ð80Þ

Note that Eq. (80) is never a worse bound than Eq. (78)
which just followed from the tightened Maassen-Uffink
relation for two measurements (47). Moreover, Eq. (79)
becomes an equality for any eigenstate of the Pauli measure-
ments, while Eq. (80) becomes an equality for any state ρA that
is diagonal in the eigenbasis of one of the Pauli measurements.
More generally, for a full set of dþ 1 MUBs in dimension

d, Larsen (1990), Ivanovic (1992), and Sánchez-Ruiz (1993)
showed that

HðKjΘÞ ≥ logðdþ 1Þ − 1 with

Θ ∈ fθ1;…; θdþ1g: ð81Þ

This is a strong bound since the entropic term on the left-hand
side can become at most log d for any number and choice of
measurements. Equation (81) can be derived from an uncer-
tainty equality for the collision entropy Hcoll. Namely, for any
quantum state ρA on a d-dimensional system and a full set of
dþ 1 MUBs, we have (Ivanovic, 1992; Brukner and
Zeilinger, 1999; Ballester and Wehner, 2007)

HcollðKjΘÞ ¼ logðdþ 1Þ − log ð2−HcollðρAÞ þ 1Þ
with Θ ∈ fθ1;…; θdþ1g; ð82Þ

where for the collision entropy the conditioning on the
measurement choice is defined as

HcollðKjΘÞ ≔ − log

�
1

L

XL
j¼1

2−HcollðKjΘ¼θjÞ
�

≠ HcollðKΘÞ −HcollðΘÞ ðin generalÞ: ð83Þ

See Sec. IV.B for a general discussion on conditional entropies.
Moreover, the quantum collision entropy is a measure for how
mixed the state ρA is and defined as

HcollðρAÞ ≔ − log tr½ρ2A�: ð84Þ

We emphasize that since Eq. (82) is an equality it is tight for
every state. By the concavity of the logarithm we also have, in
analogy to the Shannon entropy (77),

HcollðKjΘÞ ≤
1

dþ 1

Xdþ1

j¼1

HcollðKjΘ ¼ θjÞ: ð85Þ
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Example 14. For the qubit Pauli measurements,
Eq. (82) yields HcollðKjΘÞ ¼ log 3 − log ð2−HcollðρAÞ þ 1Þ with
Θ ∈ fσX; σY ; σZg.
The uncertainty relation (81) for the Shannon entropy

follows from Eq. (82) by at first only considering pure states,
i.e., states withHcollðρAÞ ¼ 0, and using the fact that the Rényi
entropies are monotonically decreasing as a function of the
parameter α (note that the collision entropy corresponds to
α ¼ 2 and the Shannon entropy to α ¼ 1). For mixed states ρA
we can extend this in a second step by taking the eigende-
composition and making use of the concavity of the Shannon
entropy. For later purposes we note that it is technically often
accessible to work with the collision entropy Hcoll (even when
ultimately interested in uncertainty relations in terms of other
entropies).
The uncertainty relation (81) was improved for d even to

(Sánchez-Ruiz, 1995)

HðKjΘÞ ≥ 1

dþ 1

�
d
2
log

�
d
2

�
þ
�
d
2
þ 1

�
log

�
d
2
þ 1

��
with Θ ∈ fθ1;…; θdþ1g. ð86Þ

Note that this relation generalizes the qubit result in Eq. (79) to
arbitrary dimensions.
Furthermore, the uncertainty relations for a full set of L ¼

dþ 1 MUBs can also be expressed in terms of the extrema of
Wigner functions (Wootters and Sussman, 2007; Mandayam,
Wehner, and Balachandran, 2010).

3. General sets of MUBs

At first glance, one might think that measuring in mutually
unbiased bases always results in a large amount of uncertainty.
Somewhat surprisingly, this is not the case. In fact, Ballester
and Wehner (2007) showed that for d ¼ p2l with p prime and
l ∈ N, there exist up to L ¼ pl þ 1manyMUBs together with
a state ρA for which

HðKjΘÞ ¼ log d
2

with Θ ∈ fθ1;…; θLg: ð87Þ

That is, we observe no more uncertainty than if we had just
considered two incompatible measurements. While a certain
amount of mutual unbiasedness is therefore a necessary
condition for strong uncertainty relations, it is in general
not sufficient.
For smaller sets of L < dþ 1 MUBs we immediately get a

weak bound from an iterative application of the Maassen-
Uffink relation (31) for MUBs,

HðKjΘÞ ≥ log d
2

with Θ ∈ fθ1;…; θLg: ð88Þ

It turns out that the bound (88) cannot be improved much in
general, as the following example shows.
Example 15. In d ¼ 3, Wehner and Winter (2010) showed

that there exists a set of L ¼ 3 MUBs together with a state ρA
such thatHðKjΘÞ ¼ 1 forΘ ∈ fθ1; θ2; θ3g. This allows only a
relatively weak uncertainty relation. Wu, Yu, and Molmer
(2009) showed that

HðKjΘÞ ≥ 8
9
≈ 0.89 with Θ ∈ fθ1; θ2; θ3g: ð89Þ

This is slightly stronger than the lower bound from Eq. (88):

HðKjΘÞ ≥ log 3
2

≈ 0.79 with Θ ∈ fθ1; θ2; θ3g: ð90Þ

Generally this allows only relatively weak uncertainty
relations if L < dþ 1. Wu, Yu, and Molmer (2009) showed
that

HcollðKjΘÞ ≥ − log
d · 2−HcollðρAÞ þ L − 1

L · d
with Θ ∈ fθ1;…; θLg: ð91Þ

This implies, in particular, the Shannon entropy relation
(Azarchs, 2004),

HðKjΘÞ ≥ − log
dþ L − 1

L · d
with Θ ∈ fθ1;…; θLg; ð92Þ

see also Wehner and Winter (2010) for an elementary proof.
For comparison, with L ¼ d ¼ 3, Eq. (92) yields

HðKjΘÞ ≥ log 9
5
≈ 0.85 with Θ ∈ fθ1; θ2; θ3g; ð93Þ

which is between Eqs. (88) and (89). Additional evidence
that general sets of less than dþ 1MUBs in dimension d only
generate weak uncertainty relations has been given by
DiVincenzo et al. (2004), Ballester and Wehner (2007),
and Ambainis (2010). Many of the findings also extend to
the setting of approximate mutually unbiased bases (Hayden
et al., 2004).
In terms of the min-entropy, Mandayam, Wehner, and

Balachandran (2010) showed that for measurements in L
possible MUBs the following two bounds hold:

1

L

XL
θ¼1

HminðKjΘ ¼ θÞ ≥ − log

�
1

d

�
1þ d − 1ffiffiffiffi

L
p

��
; ð94Þ

1

L

XL
θ¼1

HminðKjΘ ¼ θÞ ≥ − log

�
1

L

�
1þ L − 1ffiffiffi

d
p

��
: ð95Þ

Each of these is better in certain regimes, and the latter can
indeed be tight. They also study uncertainty relations for
certain classes of MUBs that exhibit special symmetry
properties. It remains an interesting topic to study uncertainty
relations for MUBs and in Sec. III.G.8 we present some
related results of Kalev and Gour (2014).

4. Measurements in random bases

Another candidate for strong uncertainty relations is sets of
measurements that are chosen at random.8 Extending on the
previous results of Hayden et al. (2004), Fawzi, Hayden, and

8By “at random” we mean according to the Haar measure on the
unitary group; see, e.g., Hayden et al. (2004) for more details.
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Sen (2011) show that in dimension d there exist any number of
L > 2 measurements and a universal constant C (independent
of d and L) such that

HðKjΘÞ ≥ log d ·

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

L
· C logðLÞ

r �
− gðLÞ

with Θ ∈ fθ1;…; θLg; ð96Þ

with the correction term gðLÞ ¼ O(log ½L= logðLÞ�). Note
that for any set of Lmeasurements there exists a state such that

HðKjΘÞ ≤ log d ·

�
1 −

1

L

�
with Θ ∈ fθ1;…; θLg: ð97Þ

Hence, Eq. (96) is already reasonably strong. However, very
recently Eq. (96) was improved by proving a conjecture stated
by Wehner and Winter (2010). Namely, Adamczak et al.
(2016) showed that in dimension d there exist any number of
L > 2 measurements and a universal constant D (independent
of d and L) such that

HðKjΘÞ ≥ log d ·

�
1 −

1

L

�
−D

with Θ ∈ fθ1;…; θLg: ð98Þ

We emphasize that this matches the upper bound (97) up to the
constant D.
The downside with Eqs. (96) and (98), however, is that the

measurements are not explicit. This is an issue for applica-
tions. In particular, it is computationally inefficient to sample
from the Haar measure. Fawzi, Hayden, and Sen (2011)
showed that the measurements in their Eq. (96) can be made
explicit and efficient if the number L of measurements is small
enough. More precisely, for n qubits (with n sufficiently large)
and ε > 0, there exists a constant C and a set of

L ≤ ðn=εÞC logð1=εÞ ð99Þ

measurements generated by unitaries computable by quantum
circuits of size OðpolylognÞ such that

HðKjΘÞ ≥ n · ð1 − 2εÞ − hbinðεÞ with Θ ∈ fθ1;…; θLg;
ð100Þ

where hbin denotes the binary entropy. Equation (100) will be
the basis for the information locking schemes presented in
Sec. VI.H.3.

5. Product measurements on multiple qubits

For applications in cryptography we usually need uncer-
tainty relations for measurements that can be implemented
locally, so-called product measurements. For example, for an
n-qubit state we are interested in uncertainty relations for the
set of 2n different measurements given by measuring
each qubit independently in one of the two Pauli bases σX
or σZ. These are often called BB84 measurements due to
the work of Bennett and Brassard (1984). Using the

Maassen-Uffink bound (31) for two measurements iteratively
we immediately find

HðKnjΘnÞ ≥ n · 1
2

with Θn ∈ fθ1;…; θ2ng: ð101Þ

This relation is already tight since there exist states that
achieve equality.
For cryptographic applications, the relevant measure is

often not the Shannon entropy but the min-entropy. The one
qubit relation (72) is easily extended to n qubits as

HminðKnjΘnÞ ≥ −n · log

�
1

2
þ 1

2
ffiffiffi
2

p
�
≈ n · 0.22

with Θn ∈ fθ1;…; θ2ng: ð102Þ

Again there exist states that achieve equality. More generally
Ng, Berta, and Wehner (2012) found for n qubit BB84
measurements and the Rényi entropy of order α ∈ ð1; 2�,

HαðKnjΘnÞ ≥ n ·
α − log ð1þ 2α−1Þ

α − 1

with Θn ∈ fθ1;…; θ2ng; ð103Þ

where the conditioning is given as (see Appendix C)9

HαðKjΘÞ ¼
α

1 − α
log

�
1

L

XL
j¼1

2ð1−αÞ=αHαðKjΘ¼θjÞ
�
: ð104Þ

Similarly, it can be shown for the set of 3n different
measurements given by measuring each qubit independently
in one of the three Pauli bases σX, σY , or σZ that

HðKnjΘnÞ ≥ n · 2
3

with Θn ∈ fθ1;…; θ3ng. ð105Þ

Following Bruß (1998) these measurements are often called
six-state measurements. The uncertainty relation (105) is
the extension of Eq. (79) from 1 to n qubits. More general
relations in terms of Rényi entropies were again derived by
Ng, Berta, and Wehner (2012).
Approximate extensions of all these relations when the

measurements are not exactly given by the Pauli measure-
ments fσX; σY ; σZg have been discussed by Kaniewski,
Tomamichel, and Wehner (2014). Some extensions of the n
qubit relations previously discussed will be crucial for
applications in two-party cryptography (Sec. VI.C).

6. General sets of measurements

Liu, Mu, and Fan (2015) gave entropic uncertainty relations
for general sets of measurements. Their bounds are qualita-
tively different than just combining Eq. (31) iteratively and
sometimes become strictly stronger in dimension d > 2. For
simplicity we state only the case of L ¼ 3 measurements (in
any dimension d ≥ 2),

9We emphasize that unlike in the unconditional case H2ðKjΘÞ ≠
HcollðKjΘÞ and hence Eq. (83) is different from Eq. (104) for α ¼ 2.

Coles et al.: Entropic uncertainty relations and their …

Rev. Mod. Phys., Vol. 89, No. 1, January–March 2017 015002-16



HðKjΘÞ ≥ 1

3
log

1

m
þ 2

3
HðρAÞ

with Θ ∈ fVð1Þ; Vð2Þ; Vð3Þg; ð106Þ

and the multiple overlap constant

m ≔ max
k

�X
j

max
i

½cðv1i ; v2jÞ� · cðv2j ; v3kÞ
�
; ð107Þ

and fjv1i ig, fjv2jig, and fjv3kig are the eigenvectors of Vð1Þ,
Vð2Þ, and Vð3Þ, respectively.
Example 16. For a qubit and the full set of three MUBs

given by the Pauli measurements this gives

HðKjΘÞ ≥ 1
3
þ 2

3
HðρAÞ with Θ ∈ fσX; σY ; σZg: ð108Þ

This bound is, however, weaker than Eqs. (78) and (80). On
the other hand, of course the whole point of the bound (106) is
that in contrast to Eqs. (78) and (80) it can be applied to any set
of L ¼ 3 measurements (in arbitrary dimension).
See Liu, Mu, and Fan (2015) for a fully worked out

example where their bound can become stronger than any
bounds implied by two measurement relations.

7. Anticommuting measurements

As already noted in Sec. III.D, many interesting measure-
ments are not of the orthonormal basis form, but are more
generally described by POVMs. One class of such measure-
ments that generate maximally strong uncertainty relations are
sets of anticommuting POVMs with only two possible
measurement outcomes. In more detail, we consider a set
fX1;…;XLg of binary POVMs Xj ¼ fX0

j ;X
1
jg that generate

binary observables

Oj ≔ X0
j −X1

j with ½Oj;Ok�þ ¼ 2δjk; ð109Þ

where, as in Eq. (59), ½·; ·�þ denotes the anticommutator.10 The
goal is then to find lower bounds on entropies of the form
HðKjΘÞ with

PKΘðk;XjÞ ≔
1

L
tr½Xk

jρA� with k ∈ f0; 1g;
j ∈ f1;…; Lg: ð110Þ

For simplicity we discuss only the case of n qubit states
for which we have sets of up to 2nþ 1 many binary
anticommuting POVMs.11 Wehner and Winter (2008) then
showed that

HðKjΘÞ ≥ 1 −
1

L
with k ∈ f0; 1g ð111Þ

for any subset Θ ⊆ fX1;…;X2nþ1g of size L. These relations
are tight and reduce for the L ¼ 3 qubit Pauli measurements
fσX; σY ; σZg to the bound (79). Similarly Wehner and Winter
(2008) also found for the collision entropy

1

L

X
Xj∈Θ

HcollðKjΘ ¼ XjÞ ≥ 1 − log

�
1þ 1

L

�
; ð112Þ

and the min-entropy

1

L

X
Xj∈Θ

HminðKjΘ ¼ XjÞ ≥ 1 − log

�
1þ 1ffiffiffiffi

L
p

�
: ð113Þ

These relations are again tight. Note, however, that the
average over the basis choice is outside of the logarithm,
whereas for the collision and the min-entropy the average is
more naturally inside of the logarithm as, e.g., in Eqs. (82)
and (102).
Example 17. For the L ¼ 3 qubit case Eq. (112) reduces to

1

3

X
j¼X;Y;Z

HcollðKjΘ ¼ σjÞ ≥ log 3 − 1; ð114Þ

which, as seen by Eq. (85), is generally weaker than the
corresponding bound implied by (82),

HcollðKjΘÞ ≥ log 3 − 1 with Θ ∈ fσX; σY ; σZg: ð115Þ

Finally, see Ver Steeg andWehner (2009) for the connection
of the uncertainty relations described in this section to Bell
inequalities.

8. Mutually unbiased measurements

In Sec. III.G.2 we discussed how full sets of dþ 1 MUBs
give rise to strong uncertainty relations; see, e.g., Eq. (81).
However, for general dimension d we do not know if a full set
of dþ 1 MUBs always exists (see Appendix A for a
discussion). Kalev and Gour (2014) offered the following
generalization of MUBs to measurements that are not
necessarily given by a basis. Two POVMs X ¼ fXxgdx¼1

and Z ¼ fZzgdz¼1 on a d-dimensional quantum system are
mutually unbiased measurements (MUMs) if, for some
κ ∈ ð1=d; 1�,

tr½Xx�¼1; tr½Zz�¼1; tr½XxZz�¼ 1

d
∀ x;z; ð116Þ

tr½XxXx0 � ¼ δxx0 · κ þ ð1 − δxx0 Þ
1 − κ

d − 1
∀ x; x0; ð117Þ

and similarly for z; z0. In addition, a set of POVMs
fX1;…;Xng is called a set of MUMs if each POVM Xj is
mutually unbiased to each other POVM Xk, with k ≠ j, in
the set.

10An example of such anticommuting sets in the case of L ¼ 3 is
provided by the qubit Pauli operators fσX; σY ; σZg.

11This is obtained by the unique Hermitian representation
of the Clifford algebra via the Jordan-Wigner transformation
(Dietz, 2006).
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A straightforward example is again MUBs for which
κ ¼ 1.12 The crucial observation of Kalev and Gour (2014)
is that in any dimension d a full set of dþ 1MUMs exists (see
their paper for the explicit construction). Moreover, every full
set of dþ 1 MUMs gives rise to a strong uncertainty relation,

HðKjΘÞ ≥ logðdþ 1Þ − log ð1þ κÞ ð118Þ

with Θ ∈ fX1;…;Xdþ1g, where the notation is as introduced
in Eq. (110). This is in full analogy with Eq. (81) for a full set
of dþ 1 MUBs. Tighter and state-dependent versions of
Eq. (118) as well as extensions to Rényi entropies can be
found in Chen and Fei (2015) and Rastegin (2015b).

H. Fine-grained uncertainty relations

So far we have expressed uncertainty in terms of the von
Neumann entropy and the Rényi entropies of the probability
distribution induced by the measurement. Recall, however,
that any restriction on the set of allowed probability distri-
butions over measurement outcomes can be understood as
an uncertainty relation, and hence there are many ways of
formulating such restrictions. Thus, while generally the Rényi
entropies determine the underlying probability distribution of
the measurement outcomes uniquely,13 it is interesting to ask
whether we can formulate more refined versions of uncer-
tainty relations.
Suppose we perform L measurements labeled Θ on a

preparation ρA, where each measurement has N outcomes.
Fine-grained uncertainty relations (Oppenheim and Wehner,
2010) consist of a set of NL equations which state that for all
states we have

XL
θ¼1

PΘðΘ ¼ θÞPXðX ¼ xθjΘ ¼ θÞ ≤ ζx1;…;xL ; ð119Þ

for all combinations of measurement outcomes x1;…; xL
that are possible for the L different measurements. Here
PΘðΘ ¼ θÞ is the probability of choosing a measurement
labeled Θ ¼ θ and 0 ≤ ζx1;…;xL ≤ 1.
Note that whenever ζx1;…;xL < 1, then we observe some

amount of uncertainty, since it implies that we cannot
simultaneously have PXðX ¼ xθjΘ ¼ θÞ ¼ 1 for all θ. We
remark that fine-grained uncertainty relations naturally give a
lower bound on the min-entropy since

2−HminðXjΘÞ ¼
XL
θ¼1

PΘðΘ ¼ θÞmax
xθ

PXðX ¼ xθjΘ ¼ θÞ ð120Þ

≤ − log max
x1;…;xL

ζx1;…;xL : ð121Þ

However, fine-grained uncertainty relations are strictly more
informative and are also closely connected to Bell nonlocality
(Oppenheim and Wehner, 2010). While not the topic of this
survey, a number of extensions of these fine-grained uncer-
tainty relations are known (Dey, Pramanik, and Majumdar,
2013; Ren and Fan, 2014; Rastegin, 2015a).

I. Majorization approach to entropic uncertainty

Another way to capture uncertainty relations that relate
directly to entropic ones is given by the majorization
approach. Instead of sums of probabilities, we look here at
products. The idea to derive entropic uncertainty relations via
a majorization relation was pioneered by Partovi (2011) and
later extended and clarified independently by Friedland,
Gheorghiu, and Gour (2013) and Puchała, Rudnicki, and
Życzkowski (2013). We recall the distributions PX and PZ
resulting from the measurements X and Z, respectively, of
the state ρA as in Eq. (48). We denote by P↓

X and P↓
Z the

corresponding reordered vectors such that the probabilities are
ordered from largest to smallest.

1. Majorization approach

The main objective of this section is to find a vector that
majorizes the tensor product of the two probability vectors P↓

X

and P↓
Z. Namely, we are looking for a probability distribution

ν ¼ fνð1Þ; νð2Þ;…; νðjXjjZjÞg such that14

P↓
X × P↓

Z≺ν holds for all ρ ∈ SðHÞ: ð122Þ

Such a relation gives a bound on how spread out the product
distribution P↓

X × P↓
Z must be. A simple and instructive

example of a probability distribution ν satisfying Eq. (122)
can be constructed as follows. Consider the largest probability
in the product distribution in Eq. (122), given by

p1 ≔ P↓
Xð1Þ · P↓

Zð1Þ ¼ pguessðXÞ · pguessðZÞ: ð123Þ

We know that p1 is always bounded away from 1 if the two
measurements are incompatible, since it cannot be that both
measurements have a deterministic outcome. For example,
recall that we have Eq. (68) from Deutsch (1983), which gives

p1 ¼ pguessðXÞ · pguessðZÞ ≤ b2 ≕ ν1; ð124Þ

where b was defined in Eq. (40). As such, it is immediately
clear that the vector ν1 ¼ fν1; 1 − ν1; 0;…; 0g satisfies
Eq. (122) and in fact constitutes a simple but nontrivial
uncertainty relation.
Going beyond this observation, the works of Friedland,

Gheorghiu, and Gour (2013) and Puchała, Rudnicki, and
Życzkowski (2013) both present an explicit method to

construct a sequence of vectors fνkgjXj−1k¼1 of the form

12The trivial example for which each POVM element is the
maximally mixed state 1=d is excluded because this would corre-
spond to κ ¼ 1=d.

13To see this, note that the cumulant generating function of the
random variable Z ¼ − logPXðXÞ can be expressed in terms of the
Rényi entropy of X, namely, gZðsÞ ¼ H1þsðXÞ. The cumulants of Z
and hence the distributions of Z and X are thus fully determined by
the Rényi entropy in a neighborhood around α ¼ 1. 14Recall the definition of majorization in Sec. III.A.3.

Coles et al.: Entropic uncertainty relations and their …

Rev. Mod. Phys., Vol. 89, No. 1, January–March 2017 015002-18



νk ¼ fν1; ν2 − ν1;…; 1 − νk−1; 0;…; 0g; ð125Þ

with νk≺νk−1 that satisfy Eq. (122) and lead to tighter and
tighter uncertainty relations. The expressions for νk are given
in terms of an optimization problem and become gradually
more difficult as k increases. See these papers for details on
the construction.

2. From majorization to entropy

Entropic uncertainty relations for Rényi entropy follow
directly from the majorization relation due to the fact that the
Rényi entropy is Schur concave and additive. This implies that

P↓
X × P↓

Z≺ν ⇒ HαðXÞ þHαðZÞ ≥ HαðVÞ; ð126Þ

where V is a random variable distributed according to the law
ν. These uncertainty relations have a different flavor than the
Maassen-Uffink relations in Eq. (35) since they provide a
bound on the sum of the Rényi entropy of the same parameter.
As a particular special case for α ¼ ∞, we get back Deutsch’s
uncertainty relation (Deutsch, 1983),

HðXÞ þHðZÞ ≥ HminðXÞ þHminðZÞ ð127Þ

≥ −2 log b ≕ qD; ð128Þ

where the first inequality follows by the monotonicity of the
Rényi entropy in the parameter α. However, an immediate
improvement on this relation can be obtained by applying
Eq. (126) directly for α ¼ 1, which yields

HðXÞ þHðZÞ ≥ hbinðb2Þ ≕ qmaj: ð129Þ

See Fig. 6 for a comparison of this to other bounds.

3. Measurements in random bases

An interesting special case for which a majorization-based
approach gives tighter bounds is for measurements in two
bases X and Z related by a random unitary. Intuitively, we
would expect such bases to be complementary. More pre-
cisely, for any measurement in a fixed basis X and Z related
by a unitary drawn from the Haar measure on the unitary
group, Adamczak et al. (2016) showed that for the Masseen-
Uffink bound (31) we have with probability going to 1 for
d → ∞,

HðXÞ þHðZÞ ≥ log d − log log d: ð130Þ

However, they also show that a majorization-based approach
yields the tighter estimate

HðXÞ þHðZÞ ≥ log d − C1; ð131Þ

where C1 > 0 is some constant. This is close to optimal
since we have that with probability going to 1 for d → ∞
(Adamczak et al., 2016),

log d − C0 ≥ HðXÞ þHðZÞ; ð132Þ

for some constant C0 > 0. It is an open question to determine
the exact asymptotic behavior, i.e., the constant C ∈ ðC0; C1Þ
that gives a lower and an upper bound.

4. Extensions

The majorization approach has also been extended to
cover general POVMs and more than two measurements
(Friedland, Gheorghiu, and Gour, 2013; Rastegin and
Życzkowski, 2016). Moreover, Rudnicki, Puchała, and
Życzkowski (2014) discussed a related method, based on
finding a vector that majorizes the ordered distribution
ðPX∪PZÞ↓, where PX∪PZ is simply the concatenation of
the two probability vectors. This yields a further improve-
ment on Eq. (129). Finally, an extension to uncertainty
measures that are not necessarily Schur concave but only
monotonic under doubly stochastic matrices was presented
by Narasimhachar, Poostindouz, and Gour (2016).

IV. UNCERTAINTY GIVEN A MEMORY SYSTEM

The uncertainty relations presented thus far are limited in
the following sense: they do not allow the observer to have
access to side information. Side information, also known as
memory, might help the observer to better predict the out-
comes of the X and Z measurements. It is therefore a
fundamental question to ask: does the uncertainty principle
still hold when the observer has access to a memory system? If
so, what form does it take?
The uncertainty principle in the presence of memory is

important for cryptographic applications and witnessing
entanglement (Sec. VI). For example, in quantum key dis-
tribution, an eavesdropper may gather some information, store
it in her memory, and then later use that memory to try to
guess the secret key. It is crucial to understand whether the
eavesdropper’s memory allows her to break a protocol’s
security, or whether security is maintained. This is where
general uncertainty relations that allow for memory are
needed.
Furthermore, such uncertainty relations are also important

for basic physics. For example, the quantum-to-classical
transition is an area of physics where one tries to understand
why and how quantum interference effects disappear on the
macroscopic scale. This is often attributed to decoherence,
where information about the system of interest S flows out to
an environment E (Zurek, 2003). In decoherence, it is
important to quantify the trade-off between the flow of
one kind of information, say Z, to the environment versus
the preservation of another kind of information, say X,
within the system S. Here one associates X with the “phase”
information that is responsible for quantum interference.
Hence, one can see how this ties back into the quantum-to-
classical transition, since loss of X information would
destroy the quantum interference pattern. In this discussion,
system E plays the role of the memory, and hence uncer-
tainty relations that allow for memory are essentially
uncertainty relations that allow the system to interact with
an environment. We discuss this more in Sec. VI.F, in the
context of interferometry experiments.
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A. Classical versus quantum memory

With this motivation in mind, we now consider two
different types of memories. First we discuss the notion of
a classical memory, i.e., a system B that has no more than
classical correlations with the system A that is to be measured.
Example 18. Consider a spin-1=2 particle A and a (macro-

scopic) coin B as depicted in Fig. 7(a). Suppose that we flip
the coin to determine whether or not we prepare A in the spin-
up state j0i or the spin-down state j1i. Denoting the basis
Z ¼ fj0i; j1ig we see that B is perfectly correlated to this
basis. That is, before the measurement of A the joint state is

ρAB ¼ 1
2
ðj0ih0jA ⊗ ρ0B þ j1ih1jA ⊗ ρ1BÞ; ð133Þ

where tr½ρ0Bρ1B� ¼ 0. Hence, if the observer has access to B
then he can perfectly predict the outcome of the Z measure-
ment on A. On the other hand, if we keep B hidden from the
observer, then he can only guess the outcome of the Z
measurement on A with probability 1=2.
We conclude from example 18 that indeed having access to

B reduces the uncertainty about Z. However, notice that a
classical memory B provides no help to the observer if he
tries to guess the outcome of a measurement on A that is
complementary to Z. Consider now a more general memory,
one that can have any kind of correlations with system A
allowed by quantum mechanics. This is called a quantum
memory or quantum side information (and includes
classical memory as a special case). We remark that quantum
memories are becoming an experimental reality [see, e.g.,
Julsgaard et al. (2004)].
Example 19. Consider two spin-1=2 particles A and B that

are maximally entangled, say in the state

jψiAB ¼ 1ffiffiffi
2

p ðj00iAB þ j11iABÞ: ð134Þ

This is depicted in Fig. 7(b). As with the classical memory in
example 18, giving the observer access to B allows him to
perfectly predict the outcome of a Z measurement on A (by
just measuring the Z observable on B). But in contrast to the

case with classical memory, B can also be used to predict the
outcome of a complementary measurement X ¼ fjþi; j−ig,
with j�i ¼ ðj0i � j1iÞ= ffiffiffi

2
p

on A. This follows by rewriting
the maximally entangled state (134) as

jψiAB ¼ 1ffiffiffi
2

p ðj þ þiAB þ j − −iABÞ; ð135Þ

which implies that the observer can simply measure the X
basis on B to guess X on A.
The idea described in example 19 dates back to the famous

EPR paper (Einstein, Podolsky, and Rosen, 1935) and raises
the question of whether we can still find nontrivial bounds on
the uncertainty of complementary measurements when con-
ditioning on quantum memory. In the rest of Sec. IV we
analyze this interplay between uncertainty and quantum
correlations quantitatively and present entropic uncertainty
relations that allow the observer to have access to (quantum)
memory. For that we first introduce measures of conditional
entropy.

B. Background: Conditional entropies

1. Classical-quantum states

Our main goal here is to describe the entropy of a measured
(and thus classical) random variable from the perspective of
an observer who possesses a quantum memory. For this
purpose, consider a classical register correlated with a
quantum memory, modeled by a joint classical-quantum state

ρXB ¼
X
x

PXðxÞjxihxjX ⊗ ρxB: ð136Þ

Here ρxB is the quantum state of the memory system B
conditioned on the event X ¼ x. Formally, quantum states
or density operators are positive semidefinite operators with
unit trace acting on the Hilbert space B. In order to represent
the joint system XB in the density operator formalism we also
introduced an auxiliary Hilbert space X with fixed orthonor-
mal basis fjxiXgx.

2. Classical-quantum entropies

The interpretation of the min-entropy from Eq. (17) in terms
of the optimal guessing probability gives a natural means to
generalize the min-entropy to the setting with quantum
memory. Clearly, an observer with access to the quantum
memory B can measure out B to improve his guess. The
optimal guessing probability for such an observer is then
given by the optimization problem

pguessðXjBÞ ≔ max
XB

X
x

PXðxÞtr½Xx
Bρ

x
B�; ð137Þ

where XB is a POVM on B. Consequently, the conditional
min-entropy is defined as (Renner, 2005; König, Renner, and
Schaffner, 2009)

HminðXjBÞ ≔ − logpguessðXjBÞ: ð138Þ

(a)

(b)

FIG. 7. Comparison of classical and quantum memory.
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This is our first measure of conditional entropy. It quantifies
the uncertainty of the classical register X from the perspective
of an observer with access to the quantum memory (or side
information) B. The more difficult it is to guess the value of X,
the smaller is the guessing probability and the higher is the
conditional min-entropy.
The collision entropy from Eq. (16) can likewise be inter-

preted in terms of a guessing probability. Consider the following
generalization of the collision entropy to the case where the
observer has a quantum memory B (Buhrman et al., 2008):

HcollðXjBÞ ≔ − logppg
guessðXjBÞ: ð139Þ

Here the pretty good guessing probability is given by

ppg
guessðXjBÞ ≔

X
x

PXðxÞtr½Πx
Bρ

x
B�; ð140Þ

where Πx
B ¼ PXðxÞρ−1=2B ρxBρ

−1=2
B . The Πx

B are POVM elements
corresponding to the so-called pretty good measurement. The
name is due to the fact that this measurement is close to optimal,
in the sense that (Hausladen and Wootters, 1994)

p2
guessðXjBÞ ≤ ppg

guessðXjBÞ ≤ pguessðXjBÞ: ð141Þ

That is, if the optimal guessing probability is close to 1, then so is
the pretty good guessing probability. Hence, HcollðXjBÞ quan-
tifies howwell Bob can guessX given that he performs the pretty
good measurement on B. In particular this also implies that

HminðXjBÞ ≤ HcollðXjBÞ ≤ 2HminðXjBÞ: ð142Þ

Finally, consider the Shannon entropy HðXÞ, whose quan-
tum counterpart HðρÞ is the von Neumann entropy as defined
in Eq. (45). The von Neumann entropy of X conditioned on a
quantum memory B is defined as

HðXjBÞ ≔ HðρXBÞ −HðρBÞ; ð143Þ

where ρXB is given by Eq. (136), and

ρB ¼ trX½ρXB� ¼
X
x

PXðxÞρxB: ð144Þ

Although HðXjBÞ does not have a direct interpretation as a
guessing probability, it does have an operational meaning in
information theory. For example, if Alice samples from the
distribution PX and Bob possesses system B, then HðXjBÞ is
the minimal information that Alice must send to Bob in order
for Bob to determine the value of X. [More precisely, HðXjBÞ
is the minimal rate in bits per copy that Alice must send to Bob
in the asymptotic limit of many copies of the state ρXB
(Devetak and Winter, 2003).]

3. Quantum entropies

The classical-quantum conditional entropy is merely a
special case of the quantum conditional entropy. It is useful
to introduce the latter here, since the quantum conditional
entropy will play an important role in the following.

In the simplest case, the von Neumann conditional entropy
of an arbitrary bipartite state ρAB with ρB ¼ trAðρABÞ takes the
form

HðAjBÞ ≔ HðρABÞ −HðρBÞ: ð145Þ

We remark that, in general, fully quantum conditional entropy
can be negative.15 This is a signature of entanglement. In fact,
the quantity −HðAjBÞ, commonly known as coherent infor-
mation, provides a lower bound on the distillable entangle-
ment (Devetak and Winter, 2005). We discuss this connection
further around Eq. (330).
The fully quantum min-entropy also has a connection to

entanglement. Namely, it can be written as

HminðAjBÞ ≔ − log½dA · FðAjBÞ�; ð146Þ

where

FðAjBÞ ≔ max
E∶B→A0

F(ðI ⊗ EÞðρABÞ; jϕAA0 ihϕAA0 j) ð147Þ

with the fidelity

Fðρ; σÞ ≔


tr
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ
p

σ
ffiffiffi
ρ

pq i�
2

from (Uhlmann, 1985). Here jϕAA0 i is a maximally entangled
state of dimension jAj, and the maximization over all
quantum channels E that map B to A0. One can think of
FðAjBÞ as the recoverable entanglement fidelity. In that
sense, −HminðAjBÞ quantifies how close the state is to a
maximally entangled state.
The fully quantum collision entropy can also be related to a

recoverable entanglement fidelity in close analogy to the
earlier discussion for the classical-quantum case. Namely, we
have (Berta, Coles, and Wehner, 2014)

HcollðAjBÞ ≔ − log½dA · FpgðAjBÞ�; ð148Þ

where

FpgðAjBÞ ≔ F(ðI ⊗ EpgÞðρABÞ; jϕAA0 ihϕAA0 j): ð149Þ

Here Epg is the pretty good recovery map, whose action on an
operator O is given by

EpgðOÞ ¼ (trB½ð1 ⊗ ρ−1=2B Oρ−1=2B ÞρA0B�)T; ð150Þ

where ð·ÞT denotes the transpose map, and ρA0B ¼ ρAB, with
system A0 being isomorphic to system A.16 In analogy to

15This should not concern us further here; a consistent interpre-
tation of negative entropies is possible in the context of quantum
information processing (Horodecki, Oppenheim, and Winter, 2006)
and also in thermodynamics (del Rio et al., 2011).

16One can verify that Epg is a valid quantum operation because it
is a completely positive and trace-preserving map (assuming ρB is
full rank).
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Eq. (141), the pretty good recovery map is close to optimal
(Barnum and Knill, 2002),

F2ðAjBÞ ≤ FpgðAjBÞ ≤ FðAjBÞ: ð151Þ

As in the classical case, these conditional entropies emerge as
special cases of Rényi entropies (Müller-Lennert et al., 2013).
We discuss this connection in Appendix C.

4. Properties of conditional entropy

Section III.A.3 discussed properties of entropies, which
are special cases of conditional entropies with trivial con-
ditioning systems. Here we mostly discuss properties of the
conditional von Neumann entropy HðAjBÞ and note only that
similar properties also hold for other conditional entropies
such as HminðAjBÞ and HcollðAjBÞ (or more generally Rényi
entropies).
First, the conditional entropy reduces to the unconditional

entropy for product states. That is, for bipartite states of the
form ρAB ¼ ρA ⊗ ρB, we haveHðAjBÞ ¼ HðAÞ. Second, note
that the entropy of a classical-quantum state is non-negative,

HðXjBÞ ≥ 0 for X a classical register: ð152Þ

In contrast, as noted previously, the fully quantum entropy
HðAjBÞ can be negative.
A fundamental property is the so-called data-processing

inequality. It says that the uncertainty of A conditioned on
some system B never goes down if one processes system B,
i.e., acts on B with a quantum channel E∶ B → B0. That is
(Lieb and Ruskai, 1973),

HðAjBÞ ≤ HðAjB0Þ: ð153Þ

This includes the case where system B ¼ B1B2 is bipartite and
the processing corresponds to discarding a subsystem, say B2.
In this case the data-processing inequality takes the form
HðAjBÞ ≤ HðAjB1Þ. This inequality is intuitive in the sense
that having access to more information can never increase the
uncertainty.
Another useful property of conditional entropies is related

to the monogamy of entanglement. This corresponds to the
idea that the more A is entangled with B the less A is entangled
with a purifying system C. Suppose that C is a system that
purifies ρAB, i.e., ρABC ¼ jψihψ j. Then, we have

HðAjBÞ ¼ −HðAjCÞ: ð154Þ

Typically one associates entanglement with a negative condi-
tional entropy, and indeed as discussed previously the coher-
ent information (the negative of the conditional entropy) lower
bounds the distillable entanglement. In this sense, the relation
in Eq. (154) captures the intuition of monogamy of entangle-
ment. It implies that if ρAB has a negative conditional entropy,
then ρAC must have a positive conditional entropy. So there is
a trade-off between the entanglement present in ρAB and
in ρAC.
The relation in Eq. (154) is called the duality relation, as it

relates an entropy to its dual entropy. As we have seen the

von Neumann entropy is dual to itself but in general the
duality relation involves two different entropies. For example,
the min-entropy is dual to the max-entropy,

HmaxðAjBÞ ≔ −HminðAjCÞ: ð155Þ

We take Eq. (155) as the definition of the max-entropy,
although an explicit expression in terms of the marginal ρAB
can be derived (König, Renner, and Schaffner, 2009). More
generally, the duality relation for the Rényi entropy family is
given in Appendix C.2.

C. Classical memory uncertainty relations

We now have all the measures at hand to discuss uncertainty
relations that allow for a memory system. Naturally, we begin
with the simplest case of a classical memory. It turns out that
uncertainty relations that allow for classical memory are often
easy to derive from the uncertainty relations without memory,
particularly for the Shannon entropy (Hall, 1995). Consider
the conditional Shannon entropy, which can be written as

HðXjYÞ ¼ HðXYÞ −HðYÞ ¼
X
y

PYðyÞHðXjY ¼ yÞ: ð156Þ

Now consider some generic Shannon entropy uncertainty
relation for measurements Xn and quantum states ρA:X

n

HðXnÞ ≥ q where PXn
ðxÞ ¼ hXx

njρAjXx
ni

and q > 0 state independent: ð157Þ

The goal is to extend this to quantum-classical states ρAY ,
where the classical memory Y holds some information about
the preparation of the quantum marginal

ρAY ¼
X
y

PYðyÞρyA ⊗ jyihyjY ð158Þ

with distributions PXnYðx; yÞ ¼ PYðyÞhXx
njρyAjXx

ni. However,
assuming that the uncertainty relation (157) holds for all
quantum states, it holds, in particular, for each conditional
state ρyA associated with Y ¼ y in the classical memory Y.
Averaging over y gives

X
y

PYðyÞ
X
n

HðXnjY ¼ yÞ ≥
X
y

PYðyÞq ¼ q: ð159Þ

Hence, we find by Eq. (156) that

X
n

HðXnÞ ≥ q ⇒
X
n

HðXnjYÞ ≥ q: ð160Þ

That is, any Shannon entropy uncertainty relation of the form
(157) implies a corresponding uncertainty relation in terms of
the conditional Shannon entropy of the form (160). Note that
the conditional version (160) even provides a stronger bound,
since by the data-processing inequality (153) conditioning on
side information can only reduce uncertainty.
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Example 20. Consider a bipartite state ρAB, where Alice
will measure system A in one of two bases X or Z and Bob
will measure system B in the basis Y . Then, the Maassen-
Uffink relation (31) implies

HðXjYÞ þHðZjYÞ ≥ qMU; ð161Þ

for the distribution

PXYðx; yÞ ¼ hXx ⊗ Y yjρABjXx ⊗ Y yi; ð162Þ

and analogously PZYðz; yÞ.
It is worth noting that the classical memory Y can be

considered multipartite, say, of the form Y ¼ Y1Y2 � � � Yn
(Cerf et al., 2002; Renes and Boileau, 2009). Since by the
data-processing inequality (153) discarding subsystems of Y
can never reduce the uncertainty, Eq. (160) implies that

X
n

HðXnÞ ≥ q ⇒
X
n

HðXnjYnÞ ≥ q: ð163Þ

Example 21. Consider a tripartite state ρABC, where Alice
will measure system A in one of two bases X or Z, Bob will
measure system B in the basis YB, and the third party Charlie
will measure system C in the basis YC. Then, the Maassen-
Uffink relation (31) implies

HðXjYBÞ þHðZjYCÞ ≥ qMU: ð164Þ

This relation is reminiscent of the scenario in quantum key
distribution. Namely, if Alice and Bob verify that HðXjYBÞ is
close to zero, then Eq. (164) implies that Charlie is fairly
ignorant about Z. That is, HðZjYCÞ is roughly qMU or larger.
We emphasize, however, that Eq. (164) cannot be used to
prove security against general quantum memory eavesdrop-
ping attacks (see Sec. VI.B).

D. Bipartite quantum memory uncertainty relations

1. Guessing game with quantum memory

Let us now make explicit what the guessing game (see
Sec. III.F) looks like when we allow quantum memory.
Specifically, the rules of the game now allow Bob to keep
a quantum memory system in order to help him guess Alice’s
measurement outcome. This is illustrated in Fig. 8.

(1) Bob prepares a bipartite quantum system AB in a state
ρAB. He sends system A to Alice while he keeps
system B.

(2) Alice performs one of two possible measurements X
or Z on A and stores the outcome in the classical
register K. She communicates her choice to Bob.

(3) Bob’s task is to guess K.
Note that in this game, Bob can make an educated guess based
on his quantum memory B.
Example 22. Let the A system be one qubit and Alice’s

two measurements given by σX and σZ. Then Bob can win the
game with probability 1 by preparing the maximally entangled
state and using the strategy from example 19.

This example illustrates the power of a quantum memory,
and, in particular, of one that is entangled with the system
being measured. At first sight, this might seem to violate the
usual notion of the uncertainty principle. However, it does not.
What it illustrates is that the usual formulations of the
uncertainty principle, such as the Robertson relation (2) or
the Maassen-Uffink relation (31), are not about conditional
uncertainty. Equations (2) and (31) are perfectly valid but
limited in this sense.

2. Measuring in two orthonormal bases

Let us first discuss how the Maassen-Uffink relation (31)
can be extended to the setup when the observer has a quantum
memory. Note that examples 19 and 22 illustrate that the
bound in the uncertainty relation must become trivial in the
case where Bob’s memory is maximally entangled to Alice’s
system. On the other hand, we know that the bound must be
nontrivial when Bob has no memory, since this corresponds to
the situation covered by Eq. (31). Likewise if Bob has a
memory that is only classically correlated to Alice’s system,
then we already saw in Eq. (161) that the Maassen-Uffink
relation can be extended. Therefore, it becomes clear that we
need a state-dependent extension: a bound that becomes
weaker as Bob’s memory is more entangled with Alice’s
system. Indeed, Berta et al. (2010) proved the following
uncertainty relation. For any bipartite state ρAB and any
orthonormal bases X and Z,

HðXjBÞ þHðZjBÞ ≥ qMU þHðAjBÞ; ð165Þ

with qMU as in Eq. (31). Here the conditional entropy HðXjBÞ
is evaluated on the classical-quantum state

ρXB ¼
X
x

jxihxjX ⊗ ðhXxj ⊗ 1BÞρABðjXxi ⊗ 1BÞ; ð166Þ

and similarly for HðZjBÞ. The classical-quantum conditional
entropies HðXjBÞ and HðZjBÞ quantify Bob’s uncertainty
about X and Z, respectively, given that Bob has access to the
quantum memory B.
The quantity HðAjBÞ on the right-hand side of Eq. (165)

makes the bound state dependent. We already mentioned

FIG. 8. The guessing game in the presence of a quantum
memory system. First, Bob prepares AB in state ρAB and then
sends system A to Alice. Second, Alice performs either the X or
Z measurement on A and then announces the measurement
choice Θ to Bob. Bob’s task is to correctly guess K. The question
is thus: how uncertain is Bob about Alice’s measurement out-
come K, given that he has access to B and Θ?
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around Eq. (145) that −HðAjBÞ is a quantifier of the
entanglement present in ρAB. For maximally entangled states
we have −HðAjBÞ ¼ log dA, whereas for all separable (i.e.,
nonentangled) states we have HðAjBÞ ≥ 0.
Example 23. Let us explore in more detail how the bound

(165) behaves for some illustrative cases.
(1) For maximally entangled states we get

qMU þHðAjBÞ ¼ qMU − log dA ≤ 0; ð167Þ

and hence the bound becomes trivial. This is as
expected from the guessing game example discussed
in Sec. IV.D.1.

(2) For the case when Bob has no memory (i.e., B is
trivial), Eq. (165) reduces to (47),

HðXÞ þHðZÞ ≥ qMU þHðρAÞ: ð168Þ

This is the strengthened Maassen-Uffink relation for
mixed states.

(3) If B is not entangled with A (i.e., the state is separable),
then HðAjBÞ ≥ 0. Hence, we obtain

HðXjBÞ þHðZjBÞ ≥ qMU: ð169Þ

This last example illustrates that Eq. (165) has applications
for entanglement witnessing. More precisely, note that by the
data-processing inequality (153), Eq. (165) also implies

HðXjYBÞ þHðZjWBÞ ≥ qMU þHðAjBÞ; ð170Þ

with YB and WB measurements on B. Now violating the qMU
lower bound in Eq. (169) implies that the state ρAB must have
been entangled. We discuss this in detail in Sec. VI.D.
Using the following extension of the notation from

Sec. III.F to quantum memory:

ρKΘB ≔
1

2

X
k

X
j¼X;Z

jkihkjK ⊗ jjihjjΘ

⊗ ðhkjU†
j ⊗ 1BÞρABðUjjki ⊗ 1BÞ; ð171Þ

we can rewrite Eq. (165) as

HðKjBΘÞ ≥ 1
2
½qMU þHðAjBÞ�: ð172Þ

This is the extension of Eq. (64) to quantum memory. Writing
the relation in this way also makes a connection to the
guessing game discussed in Sec. IV.D.1; see Fig. 8. We point
to Sec. IV.D.7 for a partial extension of Eq. (172) in terms of
the more operational min-entropy.
Let us take a step back and look at the history that led up to

the uncertainty relation (165). Arguably the first work on
uncertainty relations with quantum memory was by Christandl
and Winter (2005). Their formulation was restricted to bases
that are related by the Fourier matrix but their work captures
similar intuition as Eq. (165). The main difference, however, is
that their relations are formulated for quantum channels rather
than for quantum states. We discuss quantum channel uncer-
tainty relations in Sec. IV.G.

Renes and Boileau (2009) gave the first quantum memory
uncertainty relation in terms of the quantum state perspective.
However, instead of bipartite states ρAB, they considered
tripartite states ρABC.

17 We discuss entropic uncertainty
relations for tripartite states in Sec. IV.E. Moreover, there is
a close connection between tripartite and bipartite uncertainty
relations. In fact, as discussed in Sec. IV.E, Renes and Boileau
(2009) conjectured a tripartite uncertainty relation that is
equivalent to Eq. (165). Section IV.E also discusses the proof
of quantum memory uncertainty relations such as Eq. (165)
and notes that the tripartite formulation of (165) naturally
generalizes to the Rényi entropy family.

3. Arbitrary measurements

Here we discuss some generalizations of Eq. (165) for
arbitrary measurements. Recall from Sec. III.D that the
Maassen-Uffink relation generalizes to POVMs with the
overlap c given by Eq. (49). In contrast, Eq. (165) holds
with c as in (49) if one of the POVMs has rank-one elements
(Coles et al., 2011), but it does not hold for general POVMs.
This can be remedied in two ways. The approach by Frank and
Lieb (2013a) leads to a relation of the form (165) using a
weaker complementarity factor. We have

HðXjBÞ þHðZjBÞ ≥ log
1

c00
þHðAjBÞ; ð173Þ

where

c00 ¼ max
x;z

tr½XxZz�: ð174Þ

Note that c00 ≥ c in general and that c00 reduces to c for
measurements in bases. However, one may argue that the form
(173) and (174) is not the most natural one if we consider
general projective measurements or POVMs. This is best
explained by means of an example (Furrer et al., 2014).
Example 24. Consider a quantum system A comprised of

two qubits A1 and A2, where A1 is maximally entangled with a
second qubit B, and A2 is in a fully mixed state in product with
A1 and B. We employ rank-two projective measurements XA1

and ZA1
which measure A1 in two MUBs and leave A2 intact.

Analogously, we employ XA2
and ZA2

which measure A2 in
two MUBs and leave A1 intact. Evaluating the terms of
interest for the measurement pairs fXA1

;ZA1
g and fXA2

;ZA2
g

yields c ¼ 1=2 and c00 ¼ 1 in both cases. Moreover, we
find that

HðAjBÞ ¼ HðA1jBÞ þHðA2Þ ¼ −1þ 1 ¼ 0: ð175Þ

Hence, the right-hand side of the Frank and Lieb relation (173)
vanishes for both measurement pairs. Indeed, if the maximally
entangled system A1 is measured, we find that

17More precisely, Renes and Boileau (2009) established a bipartite
uncertainty relation—a special case of Eq. (165) where the X and Z
bases are related by the Fourier matrix. But they focused their
discussion primarily on the tripartite formulation.

Coles et al.: Entropic uncertainty relations and their …

Rev. Mod. Phys., Vol. 89, No. 1, January–March 2017 015002-24



HðXjBÞ þHðYjBÞ ¼ 0; ð176Þ

and the bound in Eq. (173) becomes an equality for the
measurement pair fXA1

;ZA1
g. On the other hand, if A2 is

measured instead, we find that

HðXjBÞ þHðYjBÞ ¼ 2; ð177Þ

and the bound is far from tight for the measurement
pair fXA2

;ZA2
g.

Examining this example, it is clear that the expected
uncertainty strongly depends on which of the two systems
is measured. More generally, it depends on how much
entanglement is consumed in the measurement process.
However, this information is not taken into account by the
overlaps c or c00, nor by the entanglement of the initial state as
measured by HðAjBÞ. Example 24 suggests that Eq. (165) can
be generalized by considering the difference in entanglement
of the state before and after measurement. In fact, Tomamichel
(2012) showed the bipartite uncertainty relation

HðXjBÞ þHðZjBÞ ≥ log
1

c0
þHðAjBÞ

−minfHðA0jXBÞ; HðA0jZBÞg; ð178Þ

with c0 given by Eq. (51). The entropy HðA0jXBÞ is evaluated
for the postmeasurement state

ρXA0B ¼
X
x

jxihxjX ⊗ ðXx
A ⊗ 1BÞρABðXx

A ⊗ 1BÞ; ð179Þ

and similarly for HðA0jZBÞ. (We use A0 ¼ A to denote the
system A after measurement to avoid confusion.) Notably the
term HðA0jXBÞ vanishes for a measurement given by a basis
since in this case the state of A0 is pure conditioned on X.
Example 24 (continued). It is straightforward to see that

if A1 (A2) is measured, the average entanglement left in the
postmeasurement state measured by the von Neumann
entropy is given by HðA2jBÞ [HðA1jBÞ]. Hence, Eq. (178)
turns into

HðXjBÞ þHðYjBÞ ≥ log
1

c
þ ½HðAjBÞ −HðA0jBÞ�; ð180Þ

where A0 corresponds to A2 (A1). This inequality is tight for
both measurements.

4. Multiple measurements

The basic goal here is to lift some of the relations in
Sec. III.G to quantum memory. A general approach for
deriving such relations has been provided by Dupuis,
Fawzi, and Wehner (2015). As in the unconditional case
(cf. Sec. III.G.1), relations for two measurements already
imply bounds for larger sets of measurements. For example,
supposing A is a qubit and considering the Pauli measure-
ments on A, we find by the simple iterative application of the
bound (165) for the measurement pairs fσX; σYg, fσX; σZg,
and fσY ; σZg that

HðKjBΘÞ ≥ 1
2
þ 1

2
HðAjBÞ; ð181Þ

with Θ ∈ fσX; σY ; σZg. Here we use the following extension
of the notation from Sec. III.G to quantum memory:

ρKΘB ≔
1

3

X
k¼1;2

X
j¼X;Y;Z

jkihkjK ⊗ jjihjjΘ

⊗ ðhkjU†
j ⊗ 1BÞρABðUjjki ⊗ 1BÞ: ð182Þ

Note that alternatively the left-hand side of Eq. (181) might
also be written as

HðKjBΘÞ ¼ 1
3
½HðKjBΘ ¼ σXÞ þHðKjBΘ ¼ σY Þ
þHðKjBΘ ¼ σZÞ�; ð183Þ

where

ρKBjΘ¼σX ≔
X
k¼1;2

jkihkjK ⊗ ðhkjU†
X ⊗ 1BÞρABðUXjki ⊗ 1BÞ;

ð184Þ

and similarly for σY , σZ. The goal in the following sections
is to find uncertainty relations that are stronger than any
bounds that can be directly derived from relations for two
measurements.

5. Complex projective two-designs

Berta, Coles, and Wehner (2014) showed that the uncer-
tainty equality (82) in terms of the collision entropy for a full
set of MUBs also holds with quantum memory. That is, for
any bipartite state ρAB with a full set of dþ 1 MUBs on the
d-dimensional A system,

HcollðKjBΘÞ ¼ logðdþ 1Þ − log ð2−HcollðAjBÞ þ 1Þ; ð185Þ

with Θ ∈ fθ1;…; θdþ1g, Here, as in Eq. (171), we use the
notation

ρKΘB ≔
1

dþ 1

Xd
k¼1

Xdþ1

j¼1

jkihkjK ⊗ jjihjjΘ

⊗ ðhkjU†
j ⊗ 1BÞρABðUjjki ⊗ 1BÞ: ð186Þ

Example 25. For the qubit Pauli measurements Eq. (185)
yields

HcollðKjBΘÞ ¼ log 3 − log ð2−HcollðAjBÞ þ 1Þ
with Θ ∈ fσX; σY ; σZg: ð187Þ

Since the collision entropy has an interpretation in terms of
the pretty good guessing probability (139),

HcollðXjBÞ ¼ − logppg
guessðXjBÞ; ð188Þ

and the pretty good recovery map (148),
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HcollðAjBÞ ¼ − log½dA · FpgðAjBÞ�; ð189Þ

the uncertainty equality (185) can be understood as an
entanglement-assisted game of guessing complementarymeas-
urement outcomes (as described in Sec. IV.D.1). Namely, we
can rewrite Eq. (185) as

ppg
guessðKjBΘÞ ¼ d · FpgðAjBÞ þ 1

dþ 1
: ð190Þ

This gives a one-to-one relation between uncertainty (certainty)
as measured by ppg

guessðKjBΘÞ and the absence (presence) of
entanglement as measured by FpgðAjBÞ. In contrast, quantum
memory assisted uncertainty relations for two measurements,
e.g., as in Eq. (172), provide us only with a connection between
uncertainty and entanglement in one direction. Namely, they
state that low uncertainty implies the presence of entanglement
(cf. Sec. VI.D).
The uncertainty equality (185) is derived by extending the

proof from Ballester and Wehner (2007) who made use of the
fact that a full set of mutually unbiased bases generates a
complex projective two-design (Klappenecker and Rotteler,
2005). From this, it is also immediately apparent that an
equality such as Eq. (185) holds for other complex projective
two-designs as well. This includes, in particular, so-called
symmetric informationally complete positive operator-valued
measures: SIC-POVMs.18 More precisely, any SIC-POVM

�
1

d
jψkihψkj

	
d2

k¼1

ð191Þ

gives rise to the uncertainty equality

HcollðKjBΘÞ ¼ log½dðdþ 1Þ� − log ð2−HcollðAjBÞ þ 1Þ; ð192Þ

with Θ ∈ fθ1;…; θdþ1g. Other examples that generate com-
plex projective two designs are unitary two-designs.19 This
includes, in particular, the Clifford group for n qubit systems.
Berta, Fawzi, and Wehner (2014) also showed that

Eq. (185) for a full set of dþ 1MUBs generates the following
relation in terms of the von Neumann entropy:

HðKjBΘÞ ≥ logðdþ 1Þ − 1þminf0; HðAjBÞg; ð193Þ

with Θ ∈ fθ1;…; θdþ1g. This corresponds to the generaliza-
tion of Eq. (81) to quantum memory. Note that the entropy
dependent term on the right-hand side makes a contribution
only if the conditional entropy HðAjBÞ is negative. This is
consistent with Eq. (81).
For smaller sets of L < dþ 1 MUBs, Berta, Coles, and

Wehner (2014) extended Eq. (91) to quantum memory,

HcollðKjBΘÞ ≥
8<
:

− log d·2−HcollðAjBÞþL−1
L·d for HcollðAjBÞ ≥ 0;

− log dþðL−1Þ2−HcollðAjBÞ
L·d for HcollðAjBÞ < 0;

ð194Þ

with Θ ∈ fθ1;…; θLg. Moreover, for all d and L there exist
states that achieve equality. Note that for L ¼ dþ 1 the
distinction of cases in Eq. (194) collapses and furthermore
becomes an upper bound as shown in Eq. (185). In Fig. 9 we
illustrate this by means of an example for d ¼ 5 (with L ≤ 6).

6. Measurements in random bases

In the unconditional case we found that measurements in
random bases lead to strong uncertainty relations as, e.g., in
Eq. (98). Hence, we might expect that we can generalize this
to quantum memory,

HðKjBΘÞ≥?O( log d ·

�
1 −

1

L

�
)þminf0; HðAjBÞg; ð195Þ

with Θ ∈ fθ1;…; θLg chosen at random. Unfortunately, the
previous works (Fawzi, Hayden, and Sen, 2011; Adamczak
et al., 2016) make use of measure concentration and ε-nets
arguments that seem to fail for quantum memory. It is,
however, possible to use some of the techniques from
Berta, Coles, and Wehner (2014) based on operator
Chernoff bounds to derive relations of the form (195). The
downside is that we get only strong uncertainty relations for a
large number L of measurements,

L ≥ O(d logðdÞ): ð196Þ

We conclude that it is an open problem to show the existence
of small(er) sets of L > 2 measurements that generate strong
uncertainty relations that hold with quantum memory.

FIG. 9. For d ¼ 5 and a various number of MUBs n ≤ dþ 1 ¼
6 the lower bounds (lb) are plotted on the entropic uncertainty
HcollðKjΘÞ from Eq. (194) as a function ofHcollðAjBÞ. Moreover,
for n < 6 we have only the trivial upper bound (ub) on
HcollðKjBΘÞ, whereas for n ¼ 6 the lower and upper bounds
coincide as in Eq. (185).

18See Renes et al. (2004) for a detailed discussion of SIC-POVMs.
19See Dankert et al. (2009) for a detailed discussion of unitary

two-designs.
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7. Product measurements on multiple qubits

Let us now consider uncertainty relations for multiple-qubit
systems, which have applications in quantum cryptography.
For historical reasons we start with the n qubit six-state
measurements and discuss only the BB84 measurements
afterward (see Sec. III.G.5 for definitions of these measure-
ments). For the six-state measurements, Berta (2013) showed
that for any bipartite state ρAnB with the An system given by n
qubits,

HcollðKnjBΘnÞ ≥ n · log 3
2
þ 1 − log ð2−HcollðAnjBÞ þ 1Þ;

ð197Þ

with Θn ∈ fθ1;…; θ3ng. This extends Eq. (187) from 1 to n
qubits. The bound (197) also implies a similar relation in
terms of the von Neumann entropy (Berta, Fawzi, andWehner,
2014), extending Eq. (105) to

HðKnjBΘnÞ ≥ n · log 3
2
þminf0; HðAnjBÞρg; ð198Þ

with Θn ∈ fθ1;…; θ3ng. Moreover, Dupuis, Fawzi, and
Wehner (2015) improved Eq. (197) to the conceptually
different bound

HcollðKnjBΘnÞ ≥ n · γ6s

�
HcollðAnjBÞ

n

�
− 1; ð199Þ

where

γ6sðxÞ ≔
�
x if x ≥ log 3=2;

f−1ðxÞ log 3 if 0 < x < log 3=2;
ð200Þ

with fðxÞ ¼ hbinðxÞ þ x log 3 − 1 and hbin denotes the
binary entropy. Using the equivalence between the collision
entropy and the min-entropy from Eq. (142) this readily
implies a relation as Eq. (199), but with both the collision
entropy terms Hcoll replaced with min-entropy terms Hmin.
Importantly, this variant remains nontrivial for all values of
HminðAnjBÞ. Also, Dupuis, Fawzi, and Wehner (2015) estab-
lished a meta theorem that can be used to derive uncertainty
relations also for other kinds of measurements.
For the n qubit BB84 measurements Dupuis, Fawzi, and

Wehner (2015) found

HcollðKnjBΘnÞ ≥ n · γBB84

�
HcollðAnjBÞ

n

�
− 1; ð201Þ

with Θn ∈ fθ1;…; θ2ng, where

γBB84ðxÞ ≔
�
x if x ≥ 1

2
;

g−1ðxÞ if 0 < x < 1
2
;

ð202Þ

with gðxÞ ¼ hbinðxÞ þ x − 1. Again using the equivalence
between the collision entropy and the min-entropy from
Eq. (142), we get a relation as Eq. (201) but with both the
collision entropy terms Hcoll replaced with min-entropy
terms Hmin. We note that this is also nontrivial for one qubit
(n ¼ 1) and only the two measurements Θ ∈ fσX; σZg.

Equation (201) and its min-entropy analog can be understood
in terms of the bipartite guessing game with quantum memory
as mentioned in Sec. IV.D.1.

8. General sets of measurements

Section III.G.6 discussed the work of Liu, Mu, and Fan
(2015) for unipartite systems without memory. Here we note
that they also gave bipartite uncertainty relations with quan-
tum memory. Again for simplicity we state the case only of
L ¼ 3 observables (in any dimension d ≥ 2). We find as the
direct extension of Eq. (106),

HðKjBΘÞ ≥ 1

3
log

1

m
þ 2

3
HðAjBÞ; ð203Þ

with Θ ∈ fVð1Þ; Vð2Þ; Vð3Þg, where the multiple overlap con-
stant m is defined as in Eq. (107). As in the unconditional
case, this has to be compared with the bounds implied by two
measurement relations as in Eq. (181). See Liu, Mu, and Fan
(2015) for a fully worked out example where Eq. (203) can
become stronger than any bounds implied by two measure-
ment relations.

E. Tripartite quantum memory uncertainty relations

1. Tripartite uncertainty relation

The physical scenario corresponding to tripartite uncer-
tainty relations is shown in Fig. 10. Suppose there is a source
that outputs the systems ABC in state ρABC. Systems A, B,
and C are, respectively, sent to Alice, Bob, and Charlie.
Then Alice performs either the X or Z measurement. If she

FIG. 10. Diagram of the tripartite quantum memory setup. First,
a source prepares ABC in state ρABC, and sends A to Alice, B to
Bob, andC to Charlie. Second, Alice measures eitherX orZ on A
and asks how uncertain is Bob about her X outcome, given B, and
how uncertain is Charlie about her Z outcome, given C? As
shown in Eq. (206) there is a trade-off that is quantified by the
complementarity of the measurements X and Z. W interpret this
scenario as a guessing game, also called a monogamy game. In
this game, Bob and Charlie play against Alice. They prepare ρABC
where they send A to Alice, Bob keeps B, and Charlie keeps C.
Alice then randomly chooses a measurement obtaining the
measurement outcome K. Afterward, she sends her choice of
basis to Bob and Charlie. They win the game if and only if both
output K. This game measures the same kind of uncertainty as
Eq. (206), explicitly exploiting the monogamy of entanglement:
if Bob produces K ¼ X correctly in case Alice measured X, then
this is a certificate that Charlie cannot produce a good guess of
K ¼ Z in case Alice measured Z.
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measures X, then Bob’s goal is to minimize his uncertainty
about X. If she measures Z, then Charlie’s goal is to minimize
his uncertainty about Z. Renes and Boileau (2009) considered
exactly this scenario but restricted to the case where the X and
Z bases are related by the Fourier matrix F,

jXxi ¼ FjZxi with F ¼
X
z;z0

ω−zz0ffiffiffi
d

p jZzihZz0 j; ð204Þ

where ω ¼ e2πi=d. Notice that this makes X and Z mutually
unbiased, although in general not all pairs of MUBs are related
by the Fourier matrix. They quantified Bob’s and Charlie’s
uncertainties in terms of the conditional entropies HðXjBÞ
and HðZjCÞ, respectively, and proved that any tripartite state
ρABC satisfies

HðXjBÞ þHðZjCÞ ≥ log d: ð205Þ

Here d is the dimension of the A system and the classical-
quantum states ρXB and ρZC are defined similarly as in
Eq. (166). Renes and Boileau (2009) also conjectured that
this relation generalizes to arbitrary measurements given by
bases,

HðXjBÞ þHðZjCÞ ≥ qMU; ð206Þ

with qMU as in Eq. (31). Intuitively, what Eq. (205) says is that
the more Bob knows about Z, the less Charlie knows about X,
and vice versa. This is a signature of the well-known trade-off
monogamy of entanglement, which roughly says that the more
Bob is entangled with Alice, the less he is with Charlie.20

The trade-off described by Eqs. (205) and (206) can be viewed
as a fine-grained notion of this monogamy. Namely, the
monogamy appears at the level of measurement pairs ðX;ZÞ.
Also note that Eq. (206) implies both the Maassen-Uffink

relation (31) and its classical memory extension (164), due to
the data-processing inequality (153). That is,

HðXjBÞ ≤ HðXjYÞ ≤ HðXÞ; ð207Þ

for any measurement Y on B. As seen in Sec. IV.E.3 the
quantum memory extension (206) is strictly stronger than the
classical memory extension (164).

2. Proof of quantum memory uncertainty relations

The quantum memory uncertainty relation (206) was first
proved by Berta et al. (2010). Although they explicitly stated
their relation in the bipartite form (165), they noted that two
relations are equivalent.
The equivalence between the bipartite and tripartite rela-

tions can be seen as follows. To obtain the bipartite relation
(165) from the tripartite relation (206), apply the latter to a
purification jψiABC of ρAB. Now for tripartite pure states
we have

HðZjCÞ ¼ HðZjBÞ −HðAjBÞ; ð208Þ

and inserting this into Eq. (206) gives Eq. (165). Conversely
we first prove Eq. (206) for tripartite pure states jψiABC by
inserting Eq. (208) into Eq. (165). Then note that the proof
for mixed states ρABC follows by applying Eq. (206) to a
purification jψiABCD of ρABC, and making use of the data-
processing inequality (153),

HðZjCDÞ ≤ HðZjCÞ: ð209Þ

The original proof of Eq. (206) was based on so-called
smooth entropies.21 The proof was subsequently simplified by
Coles et al. (2011) and Tomamichel and Renner (2011),
which culminated in the concise proof given by Coles et al.
(2012). The latter proof distills the main ideas of the previous
proofs: the use of duality relations for entropies as in Eq. (154)
and the data-processing inequality as in Eq. (153). More
generally, the proof technique applies to a whole family of
entropies satisfying a few axioms (including the Rényi
entropies). We present the proof in Appendix C.3. Finally,
we note that a direct matrix analysis proof was given by Frank
and Lieb (2013a).

3. Quantum memory tightens the bound

Here we argue that the tripartite uncertainty relation in
terms of quantum memory (206) is tighter than the corre-
sponding relation in terms of classical memory (164). We
explain that there exist states ρABC for which Eq. (206) is an
equality but Eq. (164) is loose, even if one optimizes over all
choices of measurements on B and C.
Let us introduce some notation. Consider a bipartite state

ρAB and let XA and YB be measurements on systems A and B,
respectively. Now, how small can we make the uncertainty XA
given that we can optimize over all choices of YB? That is,
consider the quantity

αðXA; ρABÞ ≔ min
YB

HðXAjYBÞ: ð210Þ

This is to be compared to the classical-quantum conditional
entropy

βðXA; ρABÞ ≔ HðXAjBÞ: ð211Þ

Because of the data-processing inequality (153), we have that

αðXA; ρABÞ ≥ βðXA; ρABÞ; ð212Þ

and naively one might guess that Eq. (212) is satisfied with
equality in general. However, this is false (Hiai and Petz,
1991; DiVincenzo et al., 2004). In general there is a nonzero
gap α − β > 0. There are many examples to illustrate this; in
fact one can argue that most states ρAB exhibit a gap between α
and β (Dupuis et al., 2013). This phenomenon is called
locking, discussed in Sec. VI.H.3. It is closely related to a
measure of quantum correlations known as quantum discord

20See Horodecki et al. (2009) for an in-depth review about
entanglement. 21See Tomamichel (2016) for an introduction to smooth entropies.
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(Ollivier and Zurek, 2001; Modi et al., 2012). Nonzero
discord is associated with the potential to have a gap between
α and β. We discuss discord in more detail in Sec. VI.H.2. For
now note that discord is defined as

DðAjBÞ ≔ min
YB

HðAjYBÞ −HðAjBÞ; ð213Þ

where the optimization is over all POVMs YB on B.
Example 26. Let XA ¼ fj0ih0j; j1ih1jg and consider the

bipartite quantum state

ρAB ¼ 1
2
ðj0ih0j ⊗ j0ih0j þ j1ih1j ⊗ jþihþjÞ: ð214Þ

For this state, the gap between α and β is precisely given by
the discord

DðAjBÞ ¼ αðXA; ρABÞ − βðXA; ρABÞ: ð215Þ

It is known that DðAjBÞ ¼ 0 if and only if system B is
classical, i.e., if ρAB is a quantum-classical state. But the state
ρAB in Eq. (214) is not quantum classical. Hence, DðAjBÞ > 0

and we have α > β.
Now we give an example state for which the quantum

memory relation (206) is an equality but the measured relation
(164) is loose.
Example 27. Consider the tripartite pure state jψiABC ¼

ðj000i þ j11þiÞ= ffiffiffi
2

p
, with Z being the standard basis and X

being the fjþi; j−ig basis. We have

HðZjCÞ ¼ 1 −HðρCÞ ≈ 0.4; ð216Þ

HðXjBÞ ¼ HðρCÞ ≈ 0.6: ð217Þ

Hence, this state satisfies the quantum memory relation (205)
with equality,

HðXjBÞ þHðZjCÞ ¼ 1: ð218Þ

However, the classical memory relation (164) is not satisfied
with equality. This follows from example 26, noting that ρAC
is the same state as in Eq. (214).

4. Tripartite guessing game

Tripartite uncertainty relations can be understood in the
language of guessing games as outlined in Fig. 10. Tomamichel
et al. (2013) showed that there is a fundamental trade-
off between Bob’s guessing probability pguessðKjBΘÞ and
Charlie’s guessing probability pguessðKjCΘÞ,

pguessðKjBΘÞ þ pguessðKjCΘÞ ≤ 2b; ð219Þ

with the overlap b as in Eq. (40). Alternatively, one can rewrite
this in terms of the min-entropy using the concavity of the
logarithm,

HminðKjBΘÞ þHminðKjCΘÞ ≥ 2 log
1

b
: ð220Þ

Note that Eq. (220) is an extension of Eq. (71) to the tripartite
scenario. This relation again shows a trade-off between
Bob’s and Charlie’s winning probabilities, which are closely
connected to the idea of monogamy of entanglement
(cf. Sec. IV.E.1).

5. Extension to Rényi entropies

The Maassen-Uffink relation for Rényi entropies (35)
naturally generalizes to a tripartite uncertainty relation with
quantum memory. It is expressed in terms of the conditional
Rényi entropies, whose definition and properties are discussed
in Appendix C. For these entropies, the following relation
holds (Coles et al., 2012)22:

HαðXjBÞ þHβðZjCÞ ≥ qMU for
1

α
þ 1

β
¼ 2: ð221Þ

Notably, the tripartite uncertainty relation (206) is the special
case where α ¼ β ¼ 1. Another interesting special case is
α ¼ ∞ and β ¼ 1=2, which, respectively, correspond to the
min- and max-entropies introduced in Eqs. (138) and (155).
The resulting relation,

HminðXjBÞ þHmaxðZjCÞ ≥ qMU; ð222Þ

was first proved by Tomamichel and Renner (2011) and is
fundamental to quantum key distribution (see Sec. VI.B).

6. Arbitrary measurements

All of the tripartite uncertainty relations can be generalized
to arbitrary POVMs X and Z. Coles et al. (2011) and
Tomamichel and Renner (2011) independently noted that
Eq. (206) holds for POVMs with the overlap c given by
Eq. (49). This was strengthened by Tomamichel (2012) to the
overlap c0 given by Eq. (51). Further strengthening was given
by Coles and Piani (2014b). However, their bound is implicit,
involving an optimization of a single real-valued parameter
over a bounded interval. Namely, they showed a lower bound

qCP2 ≔ max
0≤p≤1

λmin(ΔðpÞ); ð223Þ

where λmin½·� denotes the minimum eigenvalue and

ΔðpÞ ≔ pδðX;ZÞ þ ð1 − pÞδðZ;XÞ; ð224Þ

δðX;ZÞ ≔
X
x

axðX;ZÞ ·Xx; ð225Þ

axðX;ZÞ ≔ − log

����X
z

ZzXxZz

����: ð226Þ

22The relation follows from the work (Coles et al., 2012) in
conjunction with properties of the conditional Rényi entropy pre-
sented by Müller-Lennert et al. (2013). It is thus first mentioned in
the later work (Müller-Lennert et al., 2013). Notably, Coles et al.
(2012) proved a tripartite uncertainty relation for a different definition
of the conditional Rényi entropy (Tomamichel, Colbeck, and Renner,
2009).
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Using the fact that δðX;ZÞ ≥ minxaxðX;ZÞ · 1, it is straight-
forward to show that qCP2 ≥ logð1=c0Þ.

F. Mutual information approach

While entropy quantifies the lack of information, it is both
intuitive and useful to also consider measures that quantify
the presence of information or correlation. Consider the
mutual information IðX∶YÞ, which quantifies the correlation
between random variables X and Y and is given by

IðX∶YÞ ≔ HðXÞ þHðYÞ −HðXYÞ ð227Þ

¼ HðXÞ −HðXjYÞ: ð228Þ

It quantifies the information gained—or equivalently, the
reduction of ignorance—about X when given access to Y. It
is worth noting that the mutual information is particularly
well suited for applications in information theory. For
example, the capacity of a channel can be expressed in
terms of its mutual information (Shannon, 1948), that is, in
terms of the correlations between a receiver and a sender.
Hence, we also discuss the application of “information
exclusion relations” (uncertainty relations expressed via
the mutual information) to information transmission over
channels.

1. Information exclusion principle

Hall (1995, 1997) pioneered an alternative formulation of
the uncertainty principle based on the mutual information,
which he called the information exclusion principle.
Information exclusion relations are closely related to entropic
uncertainty relations that allow for memory. The idea is that
one is interested in the trade-off between a memory system Y
being correlated toX versus being correlated to Z (withX and
Z being two measurements on some quantum system A).

2. Classical memory

We show now how information exclusion relations follow
directly from entropic uncertainty relations (Hall, 1995).
Consider a generic uncertainty relation involving Shannon
entropy terms of the form

P
N
n¼1 HðXnÞρ ≥ q as in Eq. (157).

Recall the discussion in Sec. IV.C which showed that the
uncertainty relation

P
N
n¼1 HðXnjYÞ ≥ q as in Eq. (160)

immediately follows, where Y is some classical memory.
Now with the definition of the mutual information (227) we
can rewrite this as

XN
n¼1

HðXnÞ − IðXn∶YÞ ≥ q: ð229Þ

We haveHðXnÞ ≤ log d for each nwith d the dimension of the
quantum system A that is measured. Combining this with
Eq. (229) gives

XN
n¼1

IðXn∶YÞ ≤ N log d − q: ð230Þ

For example, if we take the Maassen-Uffink relation (31) as
the starting point, we end up with

IðX∶YÞ þ IðZ∶YÞ ≤ logðd2cÞ ≕ rH. ð231Þ

The information exclusion relation in Eq. (231) was presented
by Hall (1995). Note that we have log d ≤ rH ≤ 2 log d, with
rH reaching the extreme points, respectively, for c ¼ 1=d and
c ¼ 1. Equation (231) has an intuitive interpretation: any
classical memory cannot be highly correlated to two com-
plementary measurement outcomes of a quantum system. In
the fully complementary case, the bound becomes rH ¼ log d,
implying that if the classical memory is perfectly correlated to
X, IðX∶YÞ ¼ log d, then it must be completely uncorrelated to
Z, IðZ∶YÞ ¼ 0.

3. Stronger bounds

Note that Eq. (231) uses the same overlap c as appearing in
the Maassen-Uffink uncertainty relation (31). However,
Grudka et al. (2013) realized that this often leads to a fairly
weak bound. They noted that the complementarity of the
mutual information should depend not only on the maximum
element c of overlap matrix ½cxz� [see Eq. (32) for its
definition], but also on other elements of this matrix. They
conjectured a stronger information exclusion relation of the
form IðX∶YÞ þ IðZ∶YÞ ≤ rG with

rG ¼ log2

�
d ·

X
d largest

cxz

�
; ð232Þ

with the sum over the largest d terms of the matrix ½cxz�. This
conjecture was proved by Coles and Piani (2014b), where the
bound was further strengthened to

IðX∶YÞ þ IðZ∶YÞ ≤ rCP; ð233Þ

with

rCP ≔ minfrðX;ZÞ; rðZ;XÞg; ð234aÞ

rðX;ZÞ ≔ log

�
d
X
x

max
z

cxz

�
; ð234bÞ

rðZ;XÞ ≔ log

�
d
X
z

max
x

cxz

�
: ð234cÞ

One can easily verify that rCP ≤ rG ≤ rH.
Example 28. The unitary in Eq. (43) from example 8

provides a simple example where all three bounds are differ-
ent, namely, rH ¼ log 6, rG ¼ log 5, and rCP ¼ logð9=2Þ.
Note that the behavior of the bounds rH and rCP are

qualitatively different in that they become trivial under
different conditions. The former is trivial if at least one
row or column of ½cxz� is trivial (i.e., composed of all zeros
except for one element being 1), whereas the latter is trivial
only if all rows and columns ½cxz� are trivial. Hence, the latter
gives a nontrivial bound for a much larger range of scenarios.
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4. Quantum memory

It is natural to ask whether system Y can be generalized to a
quantum memory B. Coles and Piani (2014b) showed that
Eq. (233) indeed extends to

IðX∶BÞ þ IðZ∶BÞ ≤ rCP −HðAjBÞ: ð235Þ

Here the quantum mutual information of a bipartite quantum
state ρAB is defined as

IðA∶BÞ ≔ HðρAÞ þHðρBÞ −HðρABÞ ð236Þ

¼ HðρAÞ −HðAjBÞ; ð237Þ

and evaluated on the classical-quantum state ρXB as in
Eq. (166). Note that if we specialize to the case where B ¼
Y is classical, then HðAjYÞ ≥ 0 and hence Eq. (235) also
implies (233).
Example 29. Consider a maximally entangled state ρAB

for which both IðX∶BÞ and IðZ∶BÞ become equal to log d.
Hence, the upper bound rCP must be weakened in such a way
that it becomes trivial, and indeed the term −HðAjBÞ
accomplishes this. Namely, we have −HðAjBÞ ¼ log d for
the maximally entangled state.
In general, a negative value of HðAjBÞ implies that ρAB has

distillable entanglement (Devetak and Winter, 2005), and this
results in a bound in Eq. (235) that is larger than rCP. In the
other extreme, when HðAjBÞ is positive, which intuitively
means that the correlations between Alice and Bob are weak,
Eq. (235) strengthens the bound in (233).

5. A conjecture

Following the resolved conjectures by Kraus (1987), Renes
and Boileau (2009), and Grudka et al. (2013), we point to a
recent open conjecture by Schneeloch, Broadbent, and Howell
(2014). They ask if for any bipartite quantum state ρAB,

IðXA∶XBÞ þ IðZA∶ZBÞ≤
?
IðA∶BÞ; ð238Þ

where XA and ZA are the registers associated with measuring
two MUBs XA and ZA on system A, and likewise for XB and
ZB on system B. Equation (238) says that the quantum mutual
information is lower bounded by the sum of the classical
mutual informations in two mutually unbiased bases. We note
that a stronger conjecture, in which XB and ZB are replaced by
the quantum memory B, is violated in general.

G. Quantum channel formulation

1. Bipartite formulation

Christandl and Winter (2005) considered the question of
how well information can be transmitted over a quantum
channel. A quantum channel is the general form for quantum
dynamics (Davies, 1976) (more general than unitary evolu-
tion). Mathematically a quantum channel E is a completely
positive trace-preserving map and can be represented in its
Kraus form,

Eð·Þ ¼
X
j

Kjð·ÞK†
j ; where

X
j

K†
jKj ¼ 1: ð239Þ

Christandl and Winter (2005) addressed the topic of sending
classical information over a quantum channel, or more
specifically, sending two complementary types of classical
information over a quantum channel. They considered a
scenario where Alice chooses a state, with probability 1=d,
from a set of d orthonormal states, which we label as
Z ¼ fjZzihZzjg. She then sends the state over the channel
E to Bob, and Bob tries to distinguish which state she sent.
Likewise Alice and Bob may play the same game but with the
X ¼ fjXxihXxjg states instead, where the X and Z states are
related by the Fourier matrix F, given by Eq. (204). Bob’s
distinguishability for the Z states can be quantified by the so-
called Holevo quantity (Holevo, 1973),

χðE;ZÞ ¼ H

�X
z

1

d
EðjZzihZzjÞ

�

−
X
z

1

d
H½EðjZzihZzjÞ�: ð240Þ

Likewise, χðE;XÞ is a measure of Bob’s distinguishability for
the X states. Christandl and Winter (2005) proved that

χðE;XÞ þ χðE;ZÞ ≤ log dþ Icoh

�
1
d
; E

�
; ð241Þ

where the coherent information Icohðρ; EÞ is a measure of the
quality of a quantum channel E introduced by Schumacher
and Nielsen (1996). For the maximally mixed input state 1=d
it is given by

Icoh

�
1
d
; E

�
¼ H½Eð1=dÞ� −H½ðI ⊗ EÞðjΦihΦjÞ�; ð242Þ

where jΦi ¼ P
jð1=

ffiffiffi
d

p Þjjijji is a maximally entangled state.
Coles et al. (2011) noted that Eq. (241) holds for arbitrary
MUBs, and that it naturally generalizes to arbitrary ortho-
normal bases X and Z with the right-hand side of Eq. (241)
replaced by

log ðd2cÞ þ Icoh

�
1
d
; E

�
: ð243Þ

Later this bound was improved by Coles and Piani (2014b) to

rCP þ Icoh

�
1
d
; E

�
: ð244Þ

While Eq. (241) may look similar to some uncertainty
relations discussed in this section, especially Eq. (235), it
is important to note the conceptual difference. The relations
discussed previously were from a static perspective, whereas
Eq. (240) refers to a dynamic perspective involving a sender
and a receiver. Intuitively, what Eq. (241) says is that if Alice
can transmit both the Z states and the X states well to Bob,
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then E is a noiseless quantum channel, i.e., it is close to a
perfect channel (as quantified by the coherent information).

2. Static-dynamic isomorphism

With that said, there is a close, mathematical relationship
between the static and dynamic perspectives. In fact, there is
an isomorphism, known as the Choi-Jamiołkowski isomor-
phism (Jamiołkowski, 1972; Choi, 1975) that relates the two
perspectives [see, e.g., Życzkowski and Bengtsson (2004)].
Every quantum channel E corresponds to a bipartite mixed
state defined by

ρAB ¼ ðI ⊗ EÞðjΦihΦjÞ; ð245Þ

where jΦi ¼ P
jð1=

ffiffiffi
d

p Þjjijji is maximally entangled [see
Fig. 11(a)]. Note that ρAB has the property that ρA ¼
trBðρABÞ ¼ 1=dA is maximally mixed. Likewise, every bipar-
tite mixed state ρAB with marginal ρA ¼ 1=dA corresponds to a
quantum channel whose action on some operator O is defined
as

EðOÞ ¼ dAtrA½ðOT ⊗ 1ÞρAB�; ð246Þ

where the transpose denoted by ð·ÞT is taken in the standard
basis. One can easily verify that the condition that ρA ¼ 1=dA
is connected to the fact that E is trace preserving.
This isomorphism can be exploited to derive uncertainty

relations for quantum channels as corollaries from uncertainty
relations for states, and vice versa. This point was emphasized
by Coles et al. (2011). For example, if one has an uncertainty
relation for bipartite states ρAB, such as Eq. (165), then one can
apply this relation to the state in Eq. (245) in order to obtain an
uncertainty relation for channels.
Specifically, note that if Alice measures observable Z on

system A in Fig. 11(a) and obtains outcome jZzihZzj, then the
state corresponding to the transpose jZzihZzjT will be sent
through the channel E. In other words,

1

d
jZzihZzjT ¼ trA½ðjZzihZzj ⊗ 1ÞjΦihΦj�: ð247Þ

This implies that the Holevo quantity χðE;ZTÞ can be thought
of as a classical-quantum mutual information as

χðE;ZTÞ ¼ IðZ∶BÞ ¼ log d −HðZjBÞ; ð248Þ

where ZT ¼ fjZzihZzjTg, and the right-hand side is evaluated
for the state

ρZB ¼
X
z

jzihzj ⊗ trA½ðjZzihZzj ⊗ 1BÞρAB� ð249Þ

¼
X
z

1

d
jzihzj ⊗ EðjZzihZzjTÞ: ð250Þ

Using Eq. (248), one can verify that the channel uncertainty
relation (241) is a corollary of the bipartite state uncertainty
relation, either (165) or (235).

3. Tripartite formulation

One can formulate uncertainty relations for a dynamic
tripartite scenario where Alice sends the Z states over
quantum channel E to Bob or the X states over the comple-
mentary quantum channel F to Charlie. The relationship
between a channel and its complementary channel can be
seen via the Stinespring dilation (Stinespring, 1955), in which
one writes the channel in terms of an isometry V that maps
A → BC, namely,

EðOÞ ¼ trC½VOV†�; ð251Þ

F ðOÞ ¼ trB½VOV†�: ð252Þ

Analogous to Eq. (245), we consider the tripartite pure state
defined by

jψiABC ¼ ð1 ⊗ VÞjΦi: ð253Þ
This mapping is depicted in Fig. 11(b). The tripartite uncer-
tainty relations presented in Sec. IV.E can then be applied to
the state jψiABC in Eq. (253) in order to derive uncertainty
relations for complementary quantum channels. For example,
Coles et al. (2011) read Eq. (206) in this way to obtain

χðE;XÞ þ χðF ;ZÞ ≤ log ðd2cÞ; ð254Þ

for two orthonormal bases X and Z. This relation implies that
if Alice can send the Z states well to Charlie over the channel
F , then Bob cannot distinguish very well the outputs of the
channel E associated with Alice sending a complementary set
of states X.

V. POSITION-MOMENTUM UNCERTAINTY RELATIONS

As discussed in Sec. I, the first precise statement of the
uncertainty principle was formulated for position and momen-
tum measurements. Namely, Kennard (1927) showed that for
all states (with ℏ ¼ 1)

σðQÞ · σðPÞ ≥ 1
2
; ð255Þ

where σðQÞ denotes the standard deviation of the probability
density ΓQðqÞ when measuring the position Q, and similarly
for σðPÞ when measuring the momentum P.

(a)

(b)

FIG. 11. How to convert the dynamical evolution of a system
into (a) a bipartite mixed state or (b) a tripartite pure state.
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Example 30. Consider Gaussian wave packets (see
Fig. 12) with position probability density23

ΓQðqÞ ¼
1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p · exp

�
−q2 ·

1

2σ2

�
; ð256Þ

and corresponding momentum probability density

ΓPðpÞ ¼
ffiffiffiffiffiffiffi
2σ2

π

r
· exp ð−p2 · 2σ2Þ: ð257Þ

It is then straightforward to check that these achieve equality
in Eq. (255) and hence minimize the uncertainty in terms of
the product of the two standard deviations.
In contrast to Kennard’s formulation (255), the relations

developed in Secs. III and IV are phrased in terms of entropy
measures and apply to finite-dimensional systems (whereas
position and momentum measurements can be modeled only
on infinite-dimensional spaces). In this section we review
entropic uncertainty relations with and without a memory
system for position and momentum measurements.24 We
discussed applications to continuous variable quantum cryp-
tography later in Sec. VI.B.5.

A. Entropy for infinite-dimensional systems

On a technical level, the position operator Q and the
momentum operator P with the canonical commutation
relation

½P;Q� ¼ i1 ð258Þ

can be represented only as unbounded operators on infinite-
dimensional spaces. Hence, we need to extend our setup from
finite-dimensional Hilbert spaces to separable Hilbert spaces
A with dimðAÞ ¼ ∞. However, quantum states can still be
represented as linear, positive semidefinite operators. Hence,
we just keep the notation the same as for finite-dimensional

spaces without going into any mathematical details. We start
with describing how to define entropy for infinite-dimensional
systems.

1. Shannon entropy for discrete distributions

Imagine a finite resolution detector that measures the
position Q by indicating in which interval

Ik;δ ≔ ðkδ; ðkþ 1Þδ� ðk ∈ ZÞ ð259Þ

of size δ > 0 the value q falls. This defines a discrete
probability distribution ΓQδ

with infinitely many elements.
If the initial state is described by a pure state wave function
jψðqÞiQ, we get fΓQδ

ðkÞgk∈Z with

ΓQδ
ðkÞ ¼

Z ðkþ1Þδ

kδ
jψðqÞj2dq: ð260Þ

We then define the Shannon entropy of ΓQδ
in the usual way as

HðQδÞ ≔ −
X∞
k¼−∞

ΓQδ
ðkÞ logΓQδ

ðkÞ: ð261Þ

Despite the fact that there are now infinitely many terms in the
sum, HðQδÞ keeps many of the properties of its finite-
dimensional analog. In particular, HðQδÞ ≥ 0 and the
Shannon entropy can still be thought of as an information
measure.

2. Shannon entropy for continuous distributions

The differential Shannon entropy is defined in the limit of
infinitely small interval size δ → 0,

hðQÞ ≔ lim
δ→0

½HðQδÞ þ log δ� ð262Þ

¼ lim
δ→0

�
−

X∞
k¼−∞

ΓQδ
ðkÞ logΓQδ

ðkÞ
δ

�
: ð263Þ

The term HðQδÞ scales with the interval δ → 0 and hence the
normalization in Eq. (262). This makes the differential
Shannon entropy an entropy density. There is also a closed
formula for the differential Shannon entropy [at least when
ΓQðqÞ is continuous],

hðQÞ ¼ −
Z

dqΓQðqÞ logΓQðqÞ; ð264Þ

where ΓQðqÞ denotes the probability density when measuring
the position Q. For the momentum probability density ΓPðpÞ
we define the discrete and differential Shannon entropy in the
same way. Since probability densities can be larger than 1, not
all of the properties of discrete Shannon entropy carry over.
For example the differential Shannon entropy can be negative.
Example 31. For Gaussian wave packets as in Eqs. (256)

and (257) we have

FIG. 12. Gaussian wave packet in position space with ΓQðqÞ as
in Eq. (256), as well as the finite resolution discretization from
Eq. (260) in intervals of size δ.

23In Sec. V, we use Γ instead of P for probability distributions
since the momentum operator is already denoted by P.

24Entropic uncertainty relations for completely general quantum
systems described by von Neumann algebras and measurements
described by measure spaces are also studied in the literature (Frank
and Lieb, 2013a; Furrer et al., 2014).
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hðQÞ ¼ 1

2
log ð2πeσ2Þ and hðPÞ ¼ 1

2
log

πe
2σ2

: ð265Þ

By inspection we find that hðQÞ < 0 for σ sufficiently small
and hðPÞ < 0 for σ sufficiently large.
Nevertheless the uncertainty principle can still be expressed

in terms of differential Shannon entropies.

B. Differential relations

Extending the work of Everett (1957) and Hirschman
(1957), Białynicki-Birula and Mycielski (1975) and inde-
pendently Beckner (1975) showed for position and momen-
tum measurements Q and P, respectively, that

hðPÞ þ hðQÞ ≥ logðeπÞ: ð266Þ

We emphasized that Eq. (266) holds even though either one of
the two differential Shannon entropies on the left-hand side
can become negative. As in Kennard’s relation (255) Gaussian
wave packets again minimize the uncertainty and lead to
equality in Eq. (266). This shows that the relation is tight. It is
shown in Sec. II the entropic relation (266) also implies
Kennard’s relation (255) and is therefore stronger.
Recently alternative bounds were shown by Frank and Lieb

(2012), Hall and Wiseman (2012), and Rumin (2012). In
particular, extending the work of Beckner (1975), Hall (1999),
and Rumin (2011), Frank and Lieb (2012) showed that

hðQÞ þ hðPÞ ≥ logð2πÞ þHðρAÞ; ð267Þ

where

HðρAÞ ≔ −tr½ρA log ρA� ð268Þ

denotes the von Neumann entropy of the infinite-dimensional
input state before any measurement was performed. We note
that in contrast to the differential Shannon entropy, the von
Neumann entropy is always non-negative since there is no
regularization in its definition (even for infinite-dimensional
systems). In Eq. (267) the state-independent bound logð2πÞ ≤
logðeπÞ is worse than in Eq. (266), but interestingly Eq. (267)
becomes an equality for a thermal state in the infinite
temperature limit (Hall, 1999; Frank and Lieb, 2012).
Hence, Eq. (267) is also tight if we insist on having the
von Neumann entropy HðρAÞ on the right-hand side.

C. Finite-spacing relations

It was argued in the literature that ideal position and
momentum measurements can effectively never be performed
because every detector has a finite accuracy. We can then
ask in what other than a purely mathematical sense do
Eqs. (266) and (267) express the uncertainty principle?25

Certainly a more operational way to express uncertainty is
in terms of the discrete Shannon entropy as defined in

Eq. (261). A series of works (Partovi, 1983; Białynicki-
Birula, 1984; Rojas González, Vaccaro, and Barnett, 1995;
Rudnicki, 2011; Rudnicki, Walborn, and Toscano, 2012)
established that for measurements with finite spacing δq for
the position and finite spacing δp for the momentum we have

HðQδÞ þHðPδÞ

≥ logð2πÞ − log

�
δqδp · S

ð1Þ
0

�
1;
δqδp
4

�
2
�
; ð269Þ

where Sð1Þ0 ð·; ·Þ denotes the zeroth radial prolate spheroidal
wave function of the first kind (Slepian and Pollak, 1961).
This way of expressing the uncertainty principle has the
advantage that the discrete Shannon entropy is always non-
negative and has a clear information-theoretic interpretation.
As seen later, it is the discrete formulation of the uncertainty
principle that becomes relevant for applications in continuous
variable quantum cryptography (see Secs. V.E and VI.B.5).
Interestingly Eq. (269) is not tight for general δ > 0 since

we also know that (Białynicki-Birula, 1984)

HðQδqÞ þHðPδpÞ ≥ logðeπÞ − log ðδqδpÞ; ð270Þ

which becomes tighter for δ → 0 (see Fig. 13). Rudnicki
(2015) employed a majorization-based approach along the
lines of Sec. III.I to improve on Eqs. (269) and (270) for large
spacing. However, this does not yield a closed formula and we
refer to Rudnicki (2011, 2015) for a discussion of tightness
and a more detailed comparison. We further comment on this
issue in Sec. V.D after extending Eqs. (266) and (269) to a
quantum memory system.

D. Uncertainty given a memory system

For finite-dimensional systems we can write the conditional
von Neumann entropy of bipartite quantum states ρAB as
HðAjBÞ ¼ HðABÞ −HðBÞ. However, for infinite-dimensional
systems this is in general not a sensible notion of conditional
entropy. This is because for some states both termsHðABÞ and
HðBÞ can become infinite even though the entropy of A is

2 4 6 8 10

1

2

3

4

FIG. 13. Comparison of the lower bounds in Eqs. (269) and
(270) on the uncertainty generated by the finite-spacing position
and momentum measurements Qδ, Pδ as in Eq. (260). Note that
the latter bound becomes negative and hence trivial for larger
spacings δqδp ≳ 8.5.

25This criticism also applies to Kennard’s relation (255) and a
finite-spacing version thereof was derived by Rudnicki, Walborn, and
Toscano (2012).
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finite and hence the conditional entropy should also remain
finite.
Example 32. Consider a bipartite system with A one qubit

and B composed of infinitely many qubits indexed by k ∈ N.
Let jψiABk

be maximally entangled between A and the kth
qubit on B, and let jϕkiB=Bk

be some pure states on B (except

Bk) such that hϕkjϕk0 i ¼ δkk0 . Now, for a probability distri-
bution pk ∝ 1=kðlog kÞ2 for k > 2 (Wehrl, 1978), the bipartite
quantum state

ρAB ¼
X
k

pkjψihψ jABk
⊗ jϕkihϕkjB=Bk

ð271Þ

has

HðABÞ ¼ ∞ and HðBÞ ¼ ∞: ð272Þ

However, any sensible definition of conditional entropy for
this state ρAB should give HðAjBÞ ¼ −1.26

Observe that the conditional entropy of finite-dimensional
classical-quantum states ρXB as in Eq. (136) can be rewritten
in terms of the relative entropy (Umegaki, 1962),

DðρkσÞ ≔ tr½ρðlog ρ − log σÞ�; ð273Þ

as

HðXjBÞ ¼ −
X
x

D½PXðxÞρxBkρB�: ð274Þ

Furrer et al. (2014) pointed out that Eq. (274) can be lifted to

HðQδjBÞ ≔ −
X∞
k¼−∞

Dðρk;δB kρBÞ; ð275Þ

where ρk;δB denotes the (subnormalized) marginal state on B
when the positionQ is measured in Ik;δ, i.e., PQδ

ðkÞ ≔ tr½ρk;δB �
is the probability to measure in Ik;δ.

1. Tripartite quantum memory uncertainty relations

With Eq. (275) as the definition for classical-quantum
entropy Furrer et al. (2014) found

HðQδqjBÞþHðPδpjCÞ≥ logð2πÞ− log

�
δqδp ·S

ð1Þ
0

�
1;
δqδp
4

�
2
�
:

ð276Þ

This is the extension of Eq. (269) to quantum memories and
likewise not tight. By taking the limit δ → 0 we find the
differential quantum conditional entropy

hðQjBÞ ≔ lim
δ→0

½HðQδjBÞ þ log δ� ð277Þ

¼
Z

dqDðρqBkρBÞ; ð278Þ

where the second equality holds under a particular finiteness
assumption (Furrer et al., 2014). With Eq. (276) we then
immediately find the extension of Eq. (266) to quantum
memories,

hðQjBÞ þ hðPjCÞ ≥ logð2πÞ: ð279Þ

Example 33. For the EPR state on AB (or likewise AC) in
the limit of perfect correlations Eq. (279) becomes an equality.
For finite squeezing strength r ¼ arccoshðνÞ=2 the EPR state
is a Gaussian state with covariance matrix

ΓABðνÞ ¼
1

2

�
ν12

ffiffiffiffiffiffiffiffiffiffiffiffi
ν2 − 1

p
Z2ffiffiffiffiffiffiffiffiffiffiffiffi

ν2 − 1
p

Z2 ν12

�
ð280Þ

with

12 ¼
�
1 0

0 1

�
and Z2 ¼

�
1 0

0 −1

�
: ð281Þ

See Weedbrook et al. (2012) for more details about Gaussian
quantum information theory. The left-hand side of Eq. (279)
for this state generated by ΓABðνÞ is then calculated to be
(Furrer et al., 2014)

hðQjBÞ þ hðPÞ ¼ logðeπνÞ − νþ 1

2
log

�
νþ 1

2

�

þ ν − 1

2
log

�
ν − 1

2

�
; ð282Þ

which converges to logð2πÞ for ν → ∞. In Fig. 14 we
plot Eq. (282) as a function of the squeezing strength
r ¼ 1

2
arccoshðνÞ:

(1) For r ¼ 0 the system B is uncorrelated and we
have the lower bound hðQÞ þ hðPÞ ≥ logðeπÞ as
in Eq. (266).

(2) For r > 0 we have to take the quantum memory B into
account and only the lower bound hðQjBÞ þ hðPÞ ≥
logð2πÞ from Eq. (279) holds.

(3) For r → ∞we get maximal correlations and the bound
(279) becomes an equality.

We note that in typical experiments for applications (see
Sec. VI.B.5) a squeezing strength of r ≈ 1.5 is achievable
(Eberle, Händchen, and Schnabel, 2013). For this the lower
bound (279) is already very tight.

FIG. 14. The uncertainty hðQjBÞ þ hðPÞ of the EPR state from
example 33 in terms of the squeezing strength r.26See Kuznetsova (2011) for an extended discussion.
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The state-independent bound in Eq. (279) is logð2πÞ,
whereas it is logðeπÞ for the case without quantum memory
in Eq. (266). Hence, in contrast to the finite-dimensional
case, a quantum memory reduces the state-independent
uncertainty limit. This is because for the approximate EPR
state there exists a gap between the accessible classical
correlation and the classical-quantum correlation. That is,
even when minimized over all measurements QB on B, we
have hðQjQBÞ − hðQjBÞ ≈ logðe=2Þ.

2. Bipartite quantum memory uncertainty relations

Similarly as for finite-dimensional systems it is possible to
formulate uncertainty relations with quantum memory in a
bipartite form. For continuous position and momentum
measurements Frank and Lieb (2013a) showed that

hðQjBÞ þ hðPjBÞ ≥ logð2πÞ þHðAjBÞρ: ð283Þ

This is the extension of Eq. (267) to a quantum memory
system. However, we note that Eq. (283) only holds if all the
terms appearing in HðAjBÞ ¼ HðABÞ −HðBÞ are finite
(which is in general too restrictive).27

3. Mutual information approach

A conceptually different approach was taken by Hall
(1995), where the uncertainty relative to a memory system
is quantified in terms of mutual information instead of
conditional entropy (see Sec. IV.F for a general discussion).
Similarly as for the conditional entropy in Eq. (275), mutual
information for classical-quantum states is most generally
defined in terms of the relative entropy in Eq. (273),

IðQδ∶BÞ ≔
X∞
k¼−∞

½Dðρk;δB kρBÞ þHðBÞρk;δ �: ð284Þ

In contrast to entropy, however, the mutual information stays
finite when taking the limit δ → 0,

IðQ∶BÞ ≔ lim
δ→0

IðQδ∶BÞ: ð285Þ

Hence, no regularization in terms of the interval size δ is taken.
For classical memories M it was shown that (Hall, 1995)

IðQ∶MÞ þ IðP∶MÞ ≤ 1þ log σðQÞ þ log σðPÞ: ð286Þ

It is an open question to find a generalization that also holds
for quantum memories. This would be in analogy to what is
known for finite-dimensional systems (see Sec. IV.F.4).

E. Extension to min- and max-entropies

As for finite-dimensional systems, entropic uncertainty rela-
tions like Eqs. (266) and (269) cannot be shown only for the
Shannon entropy, but also more generally for pairs of Rényi

entropies (Białynicki-Birula, 2006, 2007; Rudnicki, Walborn,
andToscano, 2012;Rastegin, 2015c).Herewe focus on a special
case that is important for applications in continuous variable
quantum cryptography (see Sec. VI.B.5). We study relations in
terms of the Rényi entropy of order∞ and its dual quantity the
Rényi entropy of order 1=2. These are exactly themin- andmax-
entropies, respectively.

1. Finite-spacing relations

Following the finite resolution detector picture as in
Eqs. (259) and (260), the conditional min-entropy is
defined as

HminðQδjBÞ ≔ − logpguessðQδjBÞ: ð287Þ

Here we have the optimal guessing probability as in Eq. (137),

pguessðXjBÞ≔ sup
XB

� X∞
k¼−∞

ΓQδ
ðkÞtr½Xk

Bρ
k;δ
B �∶XB POVMonB

	
:

ð288Þ

In analogy to the finite-dimensional case, the min-entropy
quantifies the uncertainty of the classical register Qδ from
the perspective of an observer with access to the quantum
memory B. The conditional max-entropy is given by

HmaxðQδjBÞ ≔ logFdecðQδjBÞ; ð289Þ

where we have the optimal decoupling fidelity

FdecðQδjBÞ ≔ sup

�� X∞
k¼−∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fðρk;δB ; σBÞ

q �
2

∶σB state on B

	
:

ð290Þ

The decoupling fidelity is a measure of how much informa-
tion the quantum memory B contains about the classical
registerQδ.

28 For these definitions Furrer et al. (2014) showed

HminðQδjBÞ þHmaxðPδjCÞ

≥ logð2πÞ − log

�
δqδp · S

ð1Þ
0

�
1;
δqδp
4

�
2
�
; ð291Þ

as well as the same relation with Qδ and Pδ interchanged. We
note that the special case with trivial quantum memories B, C
was already shown by Rudnicki, Walborn, and Toscano
(2012). Furrer et al. (2014) showed that Eq. (291) is tight
for any spacing δ > 0 even in the absence of any correlations
(i.e., there exist states for which the relation becomes an
equality). Note that this is in contrast to the situation for the
Shannon entropy, where neither Eqs. (269), (270), nor (276)
are tight.

27This restriction is connected with the question about a sensible
notion of conditional entropy for fully quantum states (Kuznetsova,
2011).

28For finite-dimensional systems Eq. (289) is equivalent to the
max-entropy as defined in Eq. (155); see König, Renner, and
Schaffner (2009) and Furrer et al. (2014).

Coles et al.: Entropic uncertainty relations and their …

Rev. Mod. Phys., Vol. 89, No. 1, January–March 2017 015002-36



2. Differential relations

For the differential version we take the limit δ → 0,

hminðQjBÞ ≔ lim
δ→0

½HminðQδjBÞ þ log δ�; ð292Þ

and similarly for hmaxðQjBÞ.29 We then find the uncertainty
relation (Furrer et al., 2014)

hminðQjBÞ þ hmaxðPjCÞ ≥ logð2πÞ ð293Þ

as well as the same relation with Q and P interchanged.
Białynicki-Birula (2006) showed that Eq. (293) becomes an
equality for pure Gaussian states as in Eqs. (256) and (257).
Note that this implies, in particular, that the unconditional
special case

hminðQÞ þ hmaxðPÞ ≥ logð2πÞ ð294Þ

is tight. Hence, the optimal state-independent constant is
logð2πÞ for the min- and max-entropies, whereas the optimal
constant for the Shannon entropy in Eq. (266) is logðeπÞ.

F. Other infinite-dimensional measurements

As a multidimensional extension of Eq. (266), Huang
(2011) showed that for any measurements of the form

A ¼
Xn
i¼1

aiQi þ a0iPi; B ¼
Xn
i¼1

biQi þ b0iPi; ð295Þ

with ai; a0i; bi; b
0
i ∈ R we have that

hðAÞ þ hðBÞ ≥ logðeπÞ þ log j½A; B�j: ð296Þ

Huang (2011) also showed that for any measurement pair A, B
as in Eq. (295) there exist states for which Eq. (296) becomes
an equality.
Moreover, the techniques for deriving position-momentum

uncertainty relations can also be applied to other comple-
mentary observable pairs that are modeled on infinite-
dimensional Hilbert spaces. For example, for a particle on
a circle we have the position angle φ and the conjugate angular
momentum observable Lz. Consider a measurement device
that tells either in which of

M ≔ 2π=δφ bins of size δφ ð297Þ

the particle is in or the exact value of the angular momentum
Lz. We get a discrete probability distribution Pφδ

for the
angle defined similarly as in Eq. (260), as well as a discrete
probability distribution PLz

over the Lz eigenstates. Improving
on the earlier work of Partovi (1983), Białynicki-Birula (1984)
showed that

HðφδÞ þHðLzÞ ≥ logM: ð298Þ

By inspection Eq. (298) becomes an equality for any eigenstate
of the Lz observable. The relation was also extended to two
angles φ and θ and the corresponding pair of observables Lz

and L2 (Białynicki-Birula and Madajczyk, 1985).
Another observable pair is the number N and the phase Φ

for the harmonic oscillator. Hall (1993) showed that

HðNÞ þ hðΦÞ ≥ log 2π; ð299Þ

where PNðnÞ represents the probability distribution in the
number basis fjnig, and the probability density in the phase
basis is

PΦðϕÞ ≔
jheiϕjψij2

2π
with jeiϕi ≔

X
n

einϕjni ð300Þ

the Susskind-Glogower phase kets (which are not normal-
ized).30 This can also be seen as a special case of the results
in Białynicki-Birula and Mycielski (1975). Equation (299)
becomes an equality for number states. Furthermore, Hall
(1994) also extended (299) to noisy harmonic oscillators
degraded by Gaussian noise.
Finally, time-energy entropic uncertainty relations for

systems with discrete energy spectra were discussed by
Hall (2008).

VI. APPLICATIONS

A. Quantum randomness

Randomness is a crucial resource for many everyday
information-processing tasks, ranging from online gambling
to scientific simulations and cryptography. Randomness is a
scarce resource since computers are designed to perform
deterministic operations. Even more importantly classical
physics is deterministic, meaning that every outcome of an
experiment can in principle be predicted by an observer
who has full knowledge of the initial state of the physical
system and the operations that are performed on it. The study
of pseudorandomness tries to circumvent this problem
(Vadhan, 2012).
Quantum mechanics with its inherent nondeterminism

allows us to consider a stronger notion of randomness,
namely, randomness that is information-theoretically secure.
Formally, we want to generate a random variable L that is
uniformly distributed over all bit strings f0; 1gl of a given
length l. Moreover, we want this random variable to be
independent of any side information an observer might have,
including information about the process that is used to
calculate L and any random seeds that are used to prepare
L. A classical-quantum product state

29Under some finiteness assumptions we have hmaxðQjBÞ ¼
2 log sup fR dq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FðρqB; σBÞ

p
∶σB state on Bg as well as hminðQjBÞ ¼

− log sup fR dqρqBðXq
BÞ∶q ↦ Xq

B POVM on Bg.

30Because of the nonorthogonality of the phase kets jeiϕi there is
no observable corresponding to the phase distribution PΦðϕÞ. This,
however, will not concern us further since PΦðϕÞ is well defined.
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πLE ¼ 1

2l

X2l
i¼1

jiihijL ⊗ πE ð301Þ

describes l bits of uniform randomness that is independent of
its environment or side information E. Often, the best we can
hope for is to approximate such a state. Namely, we say that
ρZE describes a state where L is δ close to uniform on l bits
and independent of E if

����ρLE −
1

2l

X2l
i¼1

jiihijL ⊗ ρE

����
tr
≤ δ; ð302Þ

where k · ktr denotes the trace norm. This bound implies that L
cannot be distinguished from a uniform and independent
random variable with probability more than 1

2
ð1þ δÞ. This

viewpoint is at the core of universally composable security
frameworks (Canetti, 2001; Unruh, 2010), which ensure that a
secret key satisfying this property can safely be employed in
any cryptographic protocol requiring a secret key.
Entropic uncertainty relations can help us since they

certify that the random variables resulting from a quantum
measurement are uncertain and thus contain randomness.
However, in order to extract approximately uniform and
independent randomness we need an additional step, which
we describe next.

1. The operational significance of conditional min-entropy

The importance of the min-entropy in cryptography is
partly due to the following lemma, called the leftover hashing
lemma (Mclnnes, 1987; Impagliazzo, Levin, and Luby, 1989;
Impagliazzo and Zuckerman, 1989). Informally, it states that
there exists a family of functions ffsgs, where fs∶ X → ½2l�,
called hash functions, such that the random variable
L ¼ fSðXÞ, which results by applying the function fS with
S a seed chosen uniformly at random, is close to uniform and
independent of S if the initial min-entropy is sufficiently large.
More formally, Renner (2005) and Renner and König

(2005) showed the following result for the quantum case.
There exists a family ffsgs of hash functions such that for any
classical-quantum state

ρXE ¼
X
x

PXðxÞjxihxjX ⊗ ρxE ð303Þ

with HminðXjEÞ ≥ k, the classical-quantum-classical state
ρLES after applying fS, namely,

ρLES ¼
X
s;x

PXðxÞ
jSj jfsðxÞihfsðxÞjL ⊗ ρxE ⊗ jsihsjS ð304Þ

describes a state where L is δ close to uniform on l bits and
independent of E and S with δ ¼ 2ð1=2Þðl−kÞ.
The special case where the environment E is trivial was

discussed extensively in the computer science literature
(Vadhan, 2012). Since hashing is a classical process, one
might expect that the physical nature of the side information is
irrelevant and that a classical treatment is sufficient. However,
this is not true in general. For example, the output of certain

extractors may be partially known if side information about
their input is stored in a quantum memory, while the same
output is almost uniform conditioned on any classical side
information.31

A generalization of this result is possible by considering a
variation of the min-entropy, which is called ε-smooth min-
entropy, and denoted Hε

minðXjEÞ, for a small ε > 0. This is
defined by maximizing the min-entropy over states that are in
a ball of radius ε around the state ρ.32

The generalized leftover hashing lemma (Renner, 2005;
Tomamichel et al., 2011) asserts that there exists a family
ffsgs such that for any state ρXE with Hε

minðXjEÞ ≥ k, we find
that L ¼ fSðXÞ is εþ δ close to uniform and independent of E
and S, with δ as defined previously.
The latter result is tight in the following sense. If L ¼ fSðXÞ

is ε close to uniform and independent from E and S for any
family of functions ffsgs, then we must have Hε0

minðXjEÞ ≥ l
with ε0 ¼ ffiffiffiffiffi

2ε
p

.
Because of this tightness result we are justified to say that

the smooth min-entropy characterizes (at least approximately)
how much uniform randomness can be extracted from a
random source X that is correlated with its environment E.

2. Certifying quantum randomness

Note that we can certify randomness, if we can somehow
conclude that HminðXjEÞ is large. In principle, all entropic
uncertainty relations that involve a quantum memory are
suitable for this task, whenever we can verify the terms lower
bounding the entropy. Tripartite uncertainty relations are
especially suitable to this task, and the security of quantum
key distribution below rests on our ability to make such
estimates. For example, Vallone et al. (2014) specialized the
uncertainty relation for min- and max-entropies in Eq. (222) to
assert that

HminðXjEÞρ ≥ log d −HmaxðZÞ; ð305Þ

where X and Z are mutually unbiased measurements on a d-
dimensional Hilbert space. Here E is the environment of the
measured system and the max-entropy HmaxðZÞ ¼ H1=2ðZÞ
can be estimated using statistical tests, resulting in confidence
about HminðXjEÞ. As discussed, the leftover hashing lemma
now allows one to extract uniform randomness from X.
Miller and Shi (2014) derived a lower bound on an entropy

difference instead of a conditional entropy. Assume thatX and
Z are complementary binary measurements on a qubit. Then
the following relation holds:

HαðXBÞ −HαðBÞ ≥ qðα; δÞ for α ∈ ð1; 2�; ð306Þ

where δ is determined by the equality

tr½hZ0jρABjZ0iα� ¼ δtr½ραB�; ð307Þ

31See Gavinsky et al. (2009) for a concrete example and König
and Renner (2011) for a more general discussion of this topic.

32See Tomamichel, Colbeck, and Renner (2010) for a precise
definition of smooth min-entropy.
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and q is a function satisfying limα→1qðα; δÞ ¼ 1 − 2hðδÞ.
They then proceeded to use this result to bound the
smooth min-entropy and apply the generalized leftover hash-
ing lemma.

B. Quantum key distribution

The goal of a key distribution scheme is for two honest
parties to agree on a shared key by communicating over a
public channel in such a way that the key is secret from
any potential adversary eavesdropping on the channel.
Traditionally the two honest parties trying to share a key
are called Alice and Bob and the eavesdropper is called Eve.
By a simple symmetry argument it is evident that key
distribution is impossible if only classical information is
considered: Since Eve will hear all communication from
Alice to Bob, at any point in the protocol she will have at
least as much information about Alice’s key as Bob—in
particular, if Bob knows Alice’s key then so does Eve.
Quantum key distribution (QKD) was first proposed by

Bennett and Brassard (1984) and Ekert (1991) to get out of
this impasse.33 Since quantum information cannot be copied
or cloned (Wootters and Zurek, 1982), the symmetry argument
no longer applies when Alice and Bob are allowed to
communicate over a quantum channel. Roughly speaking,
the main idea is that whenever the eavesdropper interacts with
the channel (for example, by performing a measurement on a
particle), she will necessarily introduce noise in the quantum
communication between Alice and Bob, which they can then
detect and subsequently abort the protocol.

1. A simple protocol

We focus on a truncated version of Ekert’s protocol (Ekert,
1991), which proceeds as follows.
Preparation: Alice and Bob share a maximally entangled

two-qubit state using the public channel. Eve can coherently
interact with the channel.
Measurement: They randomly agree (using the public

channel) on either the basis Z ¼ fj0ih0j; j1ih1jg or
X ¼ fjþihþj; j−ih−jg, and measure their respective qubits
in this basis. (These two steps are repeated many times.)
Parameter estimation: Alice announces her measurement

results on a random subset of these rounds. If their measure-
ment results agree on most rounds, they conclude that their
correlations contain some secrecy and proceed to correct their
errors and extract a secret key (we will not discuss this further
here). If not, they abort the protocol.

2. Security criterion for QKD

To show security of QKD we thus need to show that the
following two statements are mutually exclusive: (a) Alice’s
and Bob’s measurement results agree in most rounds, and
(b) Eve has a lot of information about Alice’s or Bob’s
measurement outcomes.
Security of quantum key distribution against general attacks

was first formally established by Mayers (1996, 2001) as well
as Biham et al. (2000, 2006) and Shor and Preskill (2000). In

all these security arguments, the complementarity or uncer-
tainty principle is invoked in some form to argue that if Alice
and Bob have large agreement on the qubits measured in one
basis, then necessarily Eve’s information about the bits
measured in the complementary basis must be low.
In Sec. VI.B.3 we attempted to present the security argu-

ment in a concise and intuitive way, and for this purpose we
adopt a notion of security—certifying that the raw key has
high Shannon entropy—that has proven to be insufficient in
practice. However, our ultimate goal is to extract a secret key
and not to have a bit string with high Shannon entropy. This
ultimately requires the use of different entropies and a
postprocessing step in the protocol to distill a secret key. A
discussion of these issues follows in Sec. VI.B.4.
Entropic uncertainty relations were first used in this context

by Cerf et al. (2002) and Grosshans and Cerf (2004). In
particular, Koashi (2006) established security by leveraging
the Maassen-Uffink relation (31). However, entropic uncer-
tainty relations with quantum memory provide a more direct
avenue to formalize security arguments for QKD, as we see in
the following.

3. Proof of security via an entropic uncertainty relation

(a) Single round. We broadly follow here an argument
outlined by Berta et al. (2010). First note that during the
preparation step the eavesdropper might interfere and we will
thus not know if Alice and Bob will indeed share a maximally
entangled state after the preparation step is complete.
However, without loss of generality we may assume that
Alice (A), Bob (B), and Eve (E) share an arbitrary state ρABE
after the preparation step, where A and B are qubits and E is
any quantum system held by Eve [see Fig. 15(a)].
Let Θ be a binary register in a fully mixed state that

determines if the qubits are to be measured in the basis X or Z
and let Y denote the output of Alice’s measurement. Then we
can write HðYjBΘÞ ¼ ð1=2ÞHðXjBÞ þ ð1=2ÞHðZjBÞ and
similarly HðYjEΘÞ ¼ ð1=2ÞHðXjEÞ þ ð1=2ÞHðZjEÞ. Thus,
the tripartite entropic uncertainty principle with quantum
memory (206) can be cast into the form

HðYjEΘÞ þHðYjBΘÞ ≥ qMU ¼ 1; ð308Þ

where we have that qMU ¼ 1 for the measurements X and Z.
The entropies are evaluated for the state ρYΘBE after the
measurement on Alice’s qubit is performed.
Next we perform Bob’s measurement, which yields an

estimate Ŷ of Y. The data-processing inequality (C6) implies
that HðYjBΘÞ ≤ HðYjŶÞ, and thus we conclude that
HðYjEΘÞ ≥ 1 −HðYjŶÞ. This ensures that Eve’s uncertainty,
in terms of von Neumann entropy, of Alice’s measurement
outcome is large as long as the conditional entropy HðYjŶÞ is
small [see Fig. 15(b)]. This is a quantitative expression of the
security criterion.34

Example 34. If Alice and Bob’s measurement outcomes
agree with high probability, let us say with probability 1 − δ,

33See Scarani et al. (2009) for a recent review.

34Note that in practice we need a stronger statement, namely, a
bound on the min-entropy. This is discussed in Sec. VI.B.4.
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then HðYjŶÞ evaluates to hbinðδÞ ¼ δ logð1=δÞ þ ð1 − δÞ log
½1=ð1 − δÞ�. Hence, we find that

HðYjEΘÞ ≥ 1 − hbinðδÞ; ð309Þ

which is positive as long as δ is strictly less than 50%.
(b) Multiple rounds. The protocol extends over multiple

rounds and we can repeat the argument for each round
individually and then attempt to add up the resulting entropies,
but it is much more convenient to use a stronger uncertainty
relation that describes the situation for multiple rounds directly.
For this purpose, let us model the situation after Alice and

Bob have exchanged n qubits but before they measure them.
This is a hypothetical situation since in the actual protocol
Alice and Bob measure their qubits after every round.
However, we can always imagine that Alice and Bob delay
their measurement since Eve’s strategy cannot depend on
the timing of their measurement. After the exchange Alice
and Bob each hold n qubits in systems An ¼ A1A2 � � �An
and Bn ¼ B1B2 � � �Bn, respectively. This is described by an
arbitrary state ρAnBnE, where E is any quantum system
held by the eavesdropper. Again, we model the random
measurement choice using a register, a bit string Θn ¼
ðΘ1;Θ2;…;ΘnÞ of length n in a fully mixed state, where

Θi determines the choice of measurement on the systems
indexed by i. Analogously, we store the measurement out-
comes on Alice’s system in a bit string Yn ¼ ðY1; Y2;…; YnÞ
and on Bob’s system in a bit string Ŷn ¼ ðŶ1; Ŷ2;…; ŶnÞ.
The crucial observation is that the tripartite uncertainty

principle in Eq. (206) implies that

HðX1X2Z3X4 � � �Xn−1ZnjEÞþHðZ1Z2X3Z4 � � �Zn−1XnjBÞ≥n;

ð310Þ

where we made sure that all n systems are measured in the
opposite basis in the two terms, and used that logð1=cnÞ ¼ n.
A similar averaging argument for the one round case and the
data-processing inequality (C6) then reveal the bounds

HðYnjEΘnÞ þHðYnjŶnÞ ≥ HðYnjEΘnÞ þHðYnjBnΘnÞ ≥ n:

ð311Þ

Hence, Eve’s uncertainty (in terms of von Neumann entropy)
of the measurement outcome Yn increases linearly in the
number of rounds. Notably, this is true without assuming
anything about the attack. In particular, the state ρAnBnE after
preparation but before the uncertainty principle is applied does
not need to have any particular structure and is assumed to be
arbitrary.

4. Finite size effects and min-entropy

So far we have argued that security of QKD is ensured if
Eve’s uncertainty of the key expressed in terms of the von
Neumann entropy is large. This might be a reasonable ad hoc
criterion, but more operationally what we want to say is that a
key is secure if it can be safely used in any other protocol, for
example, one-time pad encryption that requires a secret key.
This leads to the notion of composable security, first studied
by Renner (2005) in the context of QKD. It turns out that in
order to achieve composable security for a key of finite length,
it is not sufficient to consider Eve’s uncertainty in terms of the
von Neumann entropy. Instead, it is necessary to ensure that
the smooth min-entropy of the measurement results is large
(Renner and König, 2005), so that we can extract a secret key,
i.e., uniform randomness that is independent of the eaves-
dropper’s memory. (Recall the discussion of randomness
in Sec. VI.A.) Thus, instead of the inequality (310) involving
von Neumann entropies, we want to apply a generalization
of the Maassen-Uffink uncertainty relation with quantum
memory (221). This leads to the following relation
(Tomamichel and Renner, 2011):

Hε
minðYnjEΘnÞ þHε

maxðYnjŶnÞ ≥ n; ð312Þ

where Hε
min and Hε

max denote the smooth min- and max-
entropies, variations of the min- and max-entropies (that we
will not discuss further here). Hence, in order to ensure
security it is sufficient to estimate the smooth max-entropy
Hε

maxðYnjŶnÞ. This can be done by a suitable parameter
estimation procedure as shown by Tomamichel et al. (2012).

(a)

(b)

FIG. 15. Preparation and measurement phase of the QKD
protocol described in Sec. VI.B.1.
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5. Continuous variable QKD

Quantum information processing with continuous variables
(Weedbrook et al., 2012) offers an interesting and practical
alternative to finite-dimensional systems. Here we discuss a
particular variation of the above QKD protocol, where Alice
and Bob measure the quadrature components of an electro-
magnetic field and then extract a secret key from the
correlations contained in the resulting continuous variables.
If Alice and Bob share a squeezed Gaussian state, Furrer

et al. (2012) showed that the security of such protocols can be
shown rigorously using entropic uncertainty relations, includ-
ing finite size effects. For this purpose, it is convenient to
employ a smoothed extension of Eq. (291) as first shown by
Furrer, Aberg, and Renner (2011). This yields

Hε
minðYnjEΘnÞ þHε

maxðYnjŶnÞ

≥ n log

�
2π

δ2
· Sð1Þ0

�
1;
δ2

4

�−2�
; ð313Þ

where Yi is the outcome of the quadrature measurement in the
basis (position or momentum) specified byΘi discretized with
bin size δ. See Gehring et al. (2015) for an implementation.

C. Two-party cryptography

In this section we discuss applications of entropic uncer-
tainty relations to cryptographic tasks between two mutually
distrustful parties (traditionally called Alice and Bob).
This setup is in contrast to quantum key distribution
where Alice and Bob do trust each other and only a third
party is eavesdropping. Typical tasks for two-party cryptog-
raphy are bit commitment, oblivious transfer, or secure
identification.
It turns out, however, that even using quantum communi-

cation it is possible only to obtain security if we make some
assumptions about the adversary (Lo, 1997; Lo and Chau,
1997; Mayers, 1997). What makes this problem harder is that
unlike in QKD where Alice and Bob trust each other to check
on any eavesdropping activity, here every party has to fend for
himself. Nevertheless, since tasks such as secure identification
are of great practical importance, one is willing to make such
assumptions in practice.
Classically, such assumptions are typically computational

assumptions. We assume a particular problem such as factor-
ing is difficult to solve, and in addition that the adversary has
limited computational resources, in particular, not enough to
solve the difficult problem. On the other hand, it is also
possible to obtain security based on physical assumptions,
where we first consider assuming that the adversary’s memory
resources are limited. Even a limit on classical memory can
lead to security (Maurer, 1992; Cachin and Maurer, 1997).
However, classical memory is typically cheap and plentiful.
More significantly, however, Dziembowski and Maurer
(2004) showed that any classical protocol in which the honest
players need to store n bits to execute the protocol can be
broken by an adversary who is able to store more than Oðn2Þ
bits. Motivated by this unsatisfactory gap it is an evident
question to ask if quantum communication can be of any
help. The situation is rather different if we allow quantum

communication. We can have quantum protocols that require
no quantum memory to be executed, but that are secure as
long as the adversary’s quantum memory is not larger than
n −Oðlog2 nÞ qubits (Dupuis, Fawzi, and Wehner, 2015),
where n is the number of qubits sent during the protocol. This
is essentially optimal, since any protocol that allows the
adversary to store n qubits is known to be insecure (Lo, 1997;
Lo and Chau, 1997; Mayers, 1997). The assumption of a
memory limitation is known as the bounded (Damgaard et al.,
2008), or more generally, noisy-storage model (Wehner,
Schaffner, and Terhal, 2008), as illustrated in Fig. 16.
Security proofs in this model are intimately connected to

entropic uncertainty relations. Additionally, the uncertainty
relations of Dupuis, Fawzi, and Wehner (2015) together with
the work of König, Wehner, and Wullschleger (2012) dem-
onstrated that any physical assumption that limits the adver-
sary’s entanglement leads to security.

1. Weak string erasure

The relation between cryptographic security and entropic
uncertainty relations can easily be understood by looking at a
simple cryptographic building block known as weak string
erasure (WSE) (König, Wehner, and Wullschleger, 2012).
Weak string erasure is universal for two-party secure compu-
tation in the sense that any other protocol can be obtained by
repeated executions of weak string erasure, followed by
additional quantum or classical communication (Kilian,
1988). Importantly, the storage assumption needs to hold
only during some time Δt during the execution of weak string
erasure.
Weak string erasure generates the following outputs if both

Alice and Bob are honest: Alice obtains an n-bit stringKn, and
Bob obtains a random subset I ⊆ ½n�, and the bits KI ⊆ Kn as

FIG. 16. The noisy-storage model: Wehner, Schaffner, and
Terhal (2008) and König, Wehner, and Wullschleger (2012)
assumed that during waiting times Δt in the protocol, the
adversary can keep only quantum information in an imperfect
and limited storage device described by a quantum channel F .
This is the only restriction and the adversary is otherwise
arbitrarily powerful. In particular, he can first store all incoming
qubits and has a quantum computer to encode them into an
arbitrary quantum error-correcting code to protect them against
the noise of the channelF . He can also keep an unlimited amount
of classical memory and perform any operation instantaneously.
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indexed by the subset I. In addition, the following demands
are made for security. If Bob is honest, then Alice does not
know anything about I. In turn, if Alice is honest, then Bob
should not know too much about Kn (except for KI). More
precisely, Bob should not be able to guess Kn too well, that is
with Eq. (138),

HminðKnjBÞ ≥ λ · n for some λ ∈ ½0; 1�; ð314Þ

where B denotes all of Bob’s knowledge. See König, Wehner,
and Wullschleger (2012) for a more detailed definition. A
simple protocol for implementing weak string erasure is as
follows.

(1) Alice prepares a random n-bit string Kn, encodes each
bit Ki in one of the BB84 bases Θ ∈ fσX; σZg at
random, and sends these n qubits to Bob.

(2) Bob measures the n qubits in randomly chosen
bases Θ0 ∈ fσX; σZg.

(3) After the waiting time Δt, Alice sends the classical
n-bit string Θn to Bob and outputs Kn.

(4) Bob computes I ¼ fi∶θi ¼ θ0ig and outputs I and KI .
Note that if both parties are honest, then the protocol is correct
in the sense that Alice outputs Kn and Bob I with KI ⊆ Kn.
Moreover, when Alice is dishonest, it is intuitively obvious
that she is unable to gain any information about the index set I
(even with an arbitrary quantum memory), since she never
receives any information from Bob during the protocol. A
precise argument has been given by König, Wehner, and
Wullschleger (2012). On the other hand, note that a dishonest
Bob with a quantum memory can easily cheat by just keeping
the n qubits he gets from Alice and wait until he receives the
n-bit string Θn from Alice as well. Namely, he can then
measure the n qubits in the same basis Θn as Alice and get the
full n-bit string Kn [that is, HminðKnjBΘnÞ ¼ 0]. However, if
Bob has only a limited quantum memory, then he could not
keep a perfect copy of the n qubits he gets from Alice.
The security analysis is linked immediately to a guessing

game whenever we consider a purified version of the protocol
in which Alice does not prepare BB84 states herself, but
instead makes EPR pairs jψiAB ¼ ðj00iAB þ j11iABÞ=

ffiffiffi
2

p
and

sends B to Bob, while measuring A in a randomly chosen
BB84 basis. In the analysis, one can indeed give even more
power to Bob by letting him prepare a state ρAB in each round
of the protocol and Alice measures A in a randomly chosen
BB84 basis. Alice then sends him the basis choice. Recall that
HminðKnjBΘnÞ ¼ − logpguessðKnjBΘnÞ, that is, the min-
entropy security guarantee that WSE demands are precisely
related to Bob’s ability to win the guessing game (Ballester,
Wehner, and Winter, 2008). The storage assumption translates
into one particular example of how the entanglement in ρAB
is limited, putting a limit on HminðAjBÞ of the states that Bob
can prepare.

2. Bounded-storage model

To illustrate further how a bound on entropic uncertainty
leads to security, let us first consider a special case of the
noisy-storage model, also known as the bounded-storage
model. Here the channel F ¼ I⊗q

2 in Fig. 16 is just the
identity on q qubits. This bounded-storage model was

introduced and first studied by Damgaard et al. (2007,
2008) and Schaffner (2007).
While more refined bounds are known (Dupuis, Fawzi, and

Wehner, 2015), let us first explain how entropic uncertainty
relations for a classical memory system can be used to obtain
weak security statements in this setting. To this end, we
differentiate Bob’s knowledge into B ¼ QMΘn, where Q
denotes the q qubits of quantum memory, M denotes
(unbounded) classical information, and Θn is the n-bit basis
information string Alice sent to Bob. Since the conditional
min-entropy obeys a chain rule (Renner, 2005), we can
separate the quantum memory as

HminðKnjBÞ ¼ HminðKnjQMΘnÞ ð315Þ

≥ HminðKnjMΘnÞ − q: ð316Þ

Analyzing HminðKnjMΘnÞ is then directly determined by
Bob’s ability to win the guessing game, in which he has only
classical information M. Using the min-entropy uncertainty
relation (102) for the n qubit BB84 measurements (with an
extension to classical side information M as sketched in
Sec. IV.C), we get

HminðKnjMΘnÞ ≥ −n · log

�
1

2
þ 1

2
ffiffiffi
2

p
�
: ð317Þ

Hence, we find a nontrivial lower bound

HminðKnjBÞ > 0 ð318Þ

as long as q≲ n · 0.22. This security analysis can be refined and
improving on theworkofDamgaard et al. (2007),Ng,Berta, and
Wehner (2012) made use of the following stronger smooth min-
entropy uncertainty relation which is based on Eq. (103):

Hε
minðKnjMΘnÞ

≥ n · sup
s∈ð0;1�

�
1

s
½1þ s − log ð1þ 2sÞ� − 1

sn
log

2

ε2

�
: ð319Þ

One can use this uncertainty relation together with the more
refined analysis of König, Wehner, and Wullschleger (2012)
instead of Eq. (316), to obtain perfect security (λ → 1) against
quantum memory of size

q ≤
n
2

ð320Þ

for n → ∞. Ultimately, Dupuis, Fawzi, and Wehner (2015)
showed by deriving strong entropic uncertainty relations that the
protocol from Sec. VI.C.1 implements a WSE scheme against q
qubits of quantum memory for

λ ¼ 1

2

�
γBB84

�
−
q
n

�
−
1

n

�
; ð321Þ

where the function γBB84ð·Þ is as in Eq. (202). Asymptotically
(n → ∞), this providesperfect security (λ → 1) against quantum
memories of size
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q ≤ n −Oðlog2 nÞ: ð322Þ

This is basically optimal, since no protocol can be secure if
q ¼ n. Finally, wemention that alternativelywe could also use a
six-state encoding fσX; σY ; σZg for the weak string erasure
protocol described in Sec. VI.C.1. See Mandayam and Wehner
(2011), Ng, Berta, and Wehner (2012), and Dupuis, Fawzi, and
Wehner (2015) for a security analysis.

3. Noisy-storage model

Let us now consider the general case of arbitrary storage
devices F in Fig. 16 (Wehner, Schaffner, and Terhal, 2008).
This model is motivated by the fact that counting qubits is
generally a significant overestimate of the storage capabilities
of a quantum memory, and indeed, for example, for continu-
ous variable systems there is no dimension bound to which to
apply the bounded-storage analysis. The first general security
analysis was given by König, Wehner, and Wullschleger
(2012), which was then refined significantly by Berta et al.
(2013) and Berta, Fawzi, and Wehner (2014), leading to the
asymptotically tight security analysis by Dupuis, Fawzi, and
Wehner (2015). Here one cannot just use the chain rule to
separate the quantum memory as in Eqs. (315) and (316).
Such a separation is possible only when relating the security to
the classical capacity of the storage channel F (König,
Wehner, and Wullschleger, 2012). Instead, we have to apply
a min-entropy uncertainty relation with quantum memory to
directly lower bound

HminðKnjBÞ ¼ HminðKnjQMΘnÞ: ð323Þ

We use a variant of Eq. (201) for the n qubit BB84
measurements to bound (Dupuis, Fawzi, and Wehner, 2015)

Hε
minðKnjQMΘnÞ ≥ n · γBB84

�
HminðAnjQMÞ

n

�

− 1 − log

�
2

ε2

�
; ð324Þ

where the function γBB84ð·Þ is as in Eq. (202). In order to get
an idea how to lower bound the right-hand side of Eq. (324)
under a noisy quantum memory Q assumption, recall that
HminðAnjQMÞ is a measure of entanglement between An

and B ¼ QM. In particular, one can relate this amount of
entanglement to Bob’s ability to store the n EPR pairs that
Alice sends in the purified version of the protocol, that is, the
quantum capacity of the storage channel F . If F cannot
preserve said entanglement, then HminðKnjQMΘnÞ in
Eq. (324) will be lower bounded nontrivially leading to a
secure WSE scheme for some trade-off between the security
parameter λ from Eq. (314), the number n of qubits sent, and
the noisiness of the quantum memory Q. See Dupuis, Fawzi,
and Wehner (2015) for details.
Again we could also use a six-state encoding fσX; σY ; σZg

for the weak string erasure protocol described in Sec. VI.C.1.
See Berta, Fawzi, and Wehner (2014) and Dupuis, Fawzi, and
Wehner (2015) for a security analysis.

4. Uncertainty in other protocols

Many other quantum cryptographic protocols were ana-
lyzed via entropic uncertainty relations (Broadbent and
Schaffner, 2016). The entropic relation for channels (241)
was used by Buhrman et al. (2008) to obtain cheat sensitivity
for a quantum string commitment protocol. The same relations
as relevant for the noisy-storage model have also been used to
prove security in the isolated qubit model (Liu, 2014, 2015).
In this model, the adversary is given a quantum memory of
potentially long-lived qubits, but they are isolated in the sense
that he is unable to perform coherent operations on many
qubits simultaneously. In particular, the uncertainty relation of
Damgaard et al. (2007) was used by Liu (2014) to obtain
security. It is possible to use Eq. (103) from Ng, Berta, and
Wehner (2012) to obtain improved security parameters.
Furthermore, tripartite (Tomamichel et al., 2013) uncertainty
relations have been used to ensure the security of position-
based cryptography. Finally, in relativistic cryptography,
security of two-party protocols is possible under the assump-
tions that each player is split into several noncommunicating
agents. Tripartite uncertainty relations have been used to
establish security in this setting (Kaniewski et al., 2013).

D. Entanglement witnessing

Entanglement is a central resource in quantum information
processing. Hence, methods for detecting entanglement are
crucial for quantum information technologies. Entanglement
witnessing refers to the process of verifying that a source is
producing entangled particles. Entangled states are defined as
those states that are nonseparable, i.e., they cannot be written
as a convex combination of product states. A common theme
in entanglement witnessing is to prove a mathematical identity
that all separable states must satisfy; let us refer to such an
identity as an entanglement witness. Experimentally demon-
strating that one’s source violates this identity will then
guarantee that the source produces entangled particles.
Entanglement witnessing is a well-developed field [see,

e.g., the review articles by Gühne and Tóth (2009) and
Horodecki et al. (2009)], and there are many types of
entanglement witnesses. Here we focus mostly on entangle-
ment witnesses that follow from entropic uncertainty relations.
In what follows, we restrict the discussion to bipartite

entanglement. We note that entanglement witnessing typically
occurs in the distant-laboratories paradigm, where two parties
(Alice and Bob) can each perform local measurements on their
respective systems, but neither party can perform a global
measurement on the bipartite system.
For introductory purposes, let us mention a simple, well-

known bipartite entanglement witness for two qubits.
Although it is nonentropic, it is based on complementary
observables, and so it can be directly compared to the entropic
witnesses discussed below. Namely, consider the operator

EXZ ≔ EX þ EZ; ð325Þ

where

EX ≔ jþihþj ⊗ j−ih−j þ j−ih−j ⊗ jþihþj; ð326Þ
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EZ ≔ j0ih0j ⊗ j1ih1j þ j1ih1j ⊗ j0ih0j: ð327Þ

Note that EX and EZ are “error operators” in that they project
onto the subspaces where Alice’s and Bob’s measurement
outcomes are different. For a maximally entangled state of the
form jψi ¼ ðj00i þ j11iÞ= ffiffiffi

2
p

, there is no probability for error
in either basis, so we have hψ jEXZjψi ¼ 0. On the other hand,
for any separable state ρAB, we have that [see, e.g., Namiki and
Tokunaga (2012)]

tr½ρABEXZ� ≥ 1
2
: ð328Þ

Hence, if hEXi þ hEZi < 1=2, where hOi ≔ tr½OρAB�, then
ρAB is entangled. This witness is depicted as the solid line
in Fig. 17.

1. Shannon entropic witness

Some early work on entanglement witnessing using
entropic uncertainty relations was done by Giovannetti
(2004) and Gühne and Lewenstein (2004), and further
improvements were later made by Huang (2010). The follow-
ing discussion focuses primarily on more recent develop-
ments, e.g., where entanglement witnessing is based on the
bipartite uncertainty relation with quantum memory in
Eq. (165). Berta et al. (2010) discussed how this can be used
for entanglement witnessing, and the approach was imple-
mented by Li et al. (2011) and Prevedel et al. (2011).
Specifically, from Eq. (165), one finds that all separable
states satisfy

HðXAjXBÞ þHðZAjZBÞ ≥ qMU; ð329Þ

where the qMU parameter refers to Alice’s observables, and
Bob’s observables XB and ZB are arbitrary. One can see this
by noting that HðAjBÞ ≥ 0 for any separable state, and
furthermore that measuring Bob’s system in some basis XB

cannot reduce his uncertainty about Alice’s measurement,
i.e., HðXAjXBÞ ≥ HðXAjBÞ.
One can use Eq. (329) for entanglement witnessing, using a

protocol where Alice and Bob have many copies of ρAB
and they both measure on each copy either their X or Z
observable. The quantities HðXAjXBÞ and HðZAjZBÞ can
then be calculated from their joint probability distributions
PrðXA ¼ xA; XB ¼ xBÞ and PrðZA ¼ zA; ZB ¼ zBÞ, and if
Eq. (329) is violated, then ρAB must be entangled.
Figure 17 depicts this entanglement witness (long-dashed

curve) for the case of qubits and mutually unbiased bases. A
comparison of this curve to the black line shows that Eq. (328)
detects more entangled states than Eq. (329). However, the
“quality” of entanglement that Eq. (329) detects is higher. This
is because Eq. (329) holds for all nondistillable states, i.e.,
states from which Alice and Bob cannot distill any EPR
(maximally entangled) states using local operations and
classical communication [see, e.g., Horodecki et al. (2009)
for a discussion of local operations and classical communi-
cation]. In this sense, Eq. (329) detects distillable entangle-
ment whereas Eq. (328) detects all forms of entanglement.
One can make this quantitative using a result by Devetak

and Winter (2005) that the coherent information (i.e., minus
the conditional entropy) lower bounds the distillable entan-
glement ED, i.e., the optimal asymptotic rate for distilling EPR
states using local operation and classical communication:

ED ≥ −HðAjBÞ: ð330Þ

Combining this with Eq. (165) gives

ED ≥ qMU −HðXAjXBÞ −HðZAjZBÞ: ð331Þ

This reveals an advantage of the entropic uncertainty approach
to entanglement witnessing. Namely, that it can give quanti-
tative lower bounds, in contrast to witnesses like that in
Eq. (328) that answer only a “yes or no” question.
Another advantage of the entropic uncertainty approach is

that it requires no structure on Bob’s side. While Eq. (328)
requires both Alice’s and Bob’s measurements to be mutually
unbiased, the entropic uncertainty approach allows for arbi-
trary measurements on Bob’s system.

2. Other entropic witnesses

Bipartite quantum memory uncertainty relations generally
lead to entanglement witnesses. For example, Berta, Coles,
and Wehner (2014) discussed how the uncertainty relation in
Eq. (185) allows for entanglement witnessing using a set of n
MUBs on Alice’s system (more precisely, a subset of size n of
MUBs chosen from a set of dA þ 1 MUBs, where dA is a
prime power and 2 ≤ n ≤ dA þ 1). Consider such a set fXjg
of nMUBs on Alice’s system, and consider a set of n arbitrary
POVMs fY jg on Bob’s system. Berta, Coles, and Wehner
(2014) showed that all separable states must satisfy

Xn
j¼1

2−H2ðXjjYjÞ ≤ 1þ n − 1

dA
: ð332Þ

FIG. 17. Entanglement witnessing for a bipartite two-qubit
state using mutually unbiased observables. Suppose Alice and
Bob observe Pr½XA¼XB¼0�¼Pr½XA¼XB¼1�¼ð1−eXÞ=2 and
Pr½XA ¼ 0; XB ¼ 1� ¼ Pr½XA ¼ 1; XB ¼ 0� ¼ eX=2, and analo-
gously for Z and eZ. The region below the curve indicates
the region for which one can guarantee entanglement for the
respective witnesses.
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Figure 17 compares this entanglement witness (short-dashed
curve) to the previously discussed ones, in the qubit case with
n ¼ 2. Note that Eq. (332) detects more entangled states than
Eq. (329), but not as much as Eq. (328).
Similar to the Shannon entropy case in Eq. (331), the

uncertainty relation (185) actually allows one to give a
quantitative lower bound on an entanglementlike measure.
Namely, Eq. (185) allows one to lower bound −HcollðAjBÞ.

3. Continuous variable witnesses

The method of witnessing entanglement through entropic
uncertainty relations was also extended to continuous variable
systems by Walborn et al. (2009), and further studied by
Saboia, Toscano, and Walborn (2011) and Huang (2013).

E. Steering inequalities

First highlighted by Schrödinger (1935), steering is a
phenomenon for bipartite quantum systems that is related
to entanglement (although not precisely the same). As in the
previous section, we consider the distant-laboratories para-
digm involving two parties, Alice and Bob, where Alice (Bob)
has access to system A (B). Steering corresponds to one
party’s (say Alice’s) measurement choice giving rise to
different ensembles of states on the other party’s (Bob’s)
system. Not all quantum states exhibit steering, e.g., separable
states are nonsteerable. At the other extreme, all states that
violate a Bell inequality are steerable. While Bell inequalities
are derived for states that admit a local hidden variable model,
Wiseman, Jones, and Doherty (2007) formalized the notion of
steerability as those states ρAB that do not admit a local hidden
state (LHS) model. An LHS model is a model where, say,
system B has a local quantum state that is classically
correlated to arbitrary observables on system A. This formali-
zation has led researchers to derive steering inequalities
(Cavalcanti et al., 2009), in analogy to Bell inequalities.
Walborn et al. (2011) and Schneeloch et al. (2013) showed

how entropic uncertainty relations can be used to derive
steering inequalities. The idea is that if B has a local hidden
state, then its measurement probabilities must obey a single
system uncertainty relation, even if they are conditioned on
the measurement outcomes on A. More precisely, an LHS
model implies that the joint probability distribution for
discrete observables XA on A and XB on B has the form

PðXA;XBÞ ¼
X
λ

PðΛ ¼ λÞPðXAjΛ ¼ λÞPQðXBjΛ ¼ λÞ:

ð333Þ

Here Λ is the hidden variable that determines Bob’s local
state, λ is a particular value that this variable may take, and
the subscript Q on PQðXBjΛ ¼ λÞ emphasizes that the
probability distribution arises from a single quantum state.
Next we have

HðXBjXAÞ ≥ HðXBjXAΛÞ ð334Þ

¼
X
λ

PðΛ ¼ λÞHðXBjXAΛ ¼ λÞ ð335Þ

¼
X
λ

PðΛ ¼ λÞHðXBjΛ ¼ λÞ; ð336Þ

where the notation HðXBjXAΛ ¼ λÞ should be read as the
entropy of XB conditioned on XA and conditioned on the
event that Λ ¼ λ. Hence, for two observables XB and ZB on
B, and some other observables XA and ZA on A, we have

HðXBjXAÞ þHðZBjZAÞ
≥
X
λ

PðΛ ¼ λÞ½HðXBjΛ ¼ λÞ þHðZBjΛ ¼ λÞ�. ð337Þ

Combining this with, say, Maassen-Uffink’s uncertainty
relation (31) gives the following steering inequality
(Schneeloch et al., 2013):

HðXBjXAÞ þHðZBjZAÞ ≥ qMU; ð338Þ

where qMU refers to Bob’s observables. Any state ρAB that
admits an LHS model must satisfy Eq. (338). Hence, an
experimental violation of Eq. (338) would constitute a
demonstration of steering. Similar steering inequalities
can be derived for continuous variables (Walborn et al.,
2011).

F. Wave-particle duality

Wave-particle duality is the fundamental concept that a
single quantum system can exhibit either wave behavior or
particle behavior: one cannot design an interferometer that can
simultaneously show both behaviors. This idea was qualita-
tively discussed by Feynman and was subsequently put on
quantitative grounds by Wootters and Zurek (1979), Jaeger,
Shimony, and Vaidman (1995), Englert (1996), and Englert
and Bergou (2000), and others, who proved inequalities
known as wave-particle duality relations (WPDRs). Many
such relations consider the Mach-Zehnder interferometer for
single photons, shown in Fig. 18. In this case, particle
behavior is associated with knowing the path that the photon
travels through the interferometer. Wave behavior, on the
other hand, is associated with seeing oscillations in the
probability to detect the photon in a given output mode as
one varies the relative phase ϕ between the two interferometer
arms. Denoting the which-path observable as Z ¼ fj0ih0j;
j1ih1jg, particle behavior can be quantified by the path
predictability P ¼ 2pguessðZÞ − 1 [which is related to the
probability pguessðZÞ of guessing the path correctly]. The
wave behavior is quantified by the fringe visibility

V ¼ pmax
0 − pmin

0

pmax
0 þ pmin

0

with pmax
0 ≔ max

ϕ
p0;

pmin
0 ≔ min

ϕ
p0; ð339Þ

where p0 is the probability for the photon to be detected byD0

(see Fig. 18). Wootters and Zurek (1979) proved that

P2 þ V2 ≤ 1; ð340Þ
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which implies V ¼ 0 when P ¼ 1 (full particle behavior
means no wave behavior) and vice versa.
More generally, suppose the photon interacts with some

environment system E inside the interferometer. Measuring
E might reveal, e.g., some information about which path
the photon took, so it is natural to consider the path
distinguishability

D ¼ 2pguessðZjEÞ − 1: ð341Þ

Jaeger, Shimony, and Vaidman (1995) and Englert (1996)
proved a stronger version of Eq. (340), namely,

D2 þ V2 ≤ 1: ð342Þ

WPDRs such as Eqs. (340) and (342) have often been
thought to be conceptually different from uncertainty rela-
tions, although this has been debated. For example, Dürr
and Rempe (2000) and Busch and Shilladay (2006) found
connections between certain WPDRs and Robertson’s uncer-
tainty relation involving the standard deviation. More recently,
Coles, Kaniewski, and Wehner (2014) showed that Eqs. (340),
(342), and some other WPDRs are actually entropic uncer-
tainty relations in disguise. In particular, they correspond to
the uncertainty relation for the min- and max-entropies in
Eq. (222), applied to complementary qubit observables.
Namely, Eq. (340) is equivalent to the uncertainty relation,

HminðZÞ þ min
W∈XY

HmaxðWÞ ≥ 1; ð343Þ

where the minW∈XY corresponds to minimizing over all
observables in the x-y plane of the Bloch sphere. Likewise
Eq. (342) is equivalent to the uncertainty relation

HminðZjEÞ þ min
W∈XY

HmaxðWÞ ≥ 1: ð344Þ

This unifies the wave-particle duality principle with the
entropic uncertainty principle, showing that the former is a
special case of the latter.
Naturally, other entropies could be used in place of the min-

and max-entropies, and although one might not obtain a

precise equivalence to the WPDRs, the conceptual meaning
may be similar. Bosyk et al. (2013) took this approach using
uncertainty relations involving Rényi entropies. Vaccaro
(2011) employed the Shannon entropy to formulate a
WPDR in terms of the mutual information. Moreover, they
added the conceptual insight that wave and particle behavior
are related to symmetry and asymmetry, respectively. Finally,
Englert et al. (2008) considered entropic measures of wave
and particle behavior for interferometers with more than
two paths.

G. Quantum metrology

Quantum metrology deals with the physical limits on the
accuracy of measurements (Giovannetti, Lloyd, and Maccone,
2011). The uncertainty principle plays an important role in
establishing such physical limits. Typically in quantum
metrology one is interested in estimating an optical phase,
e.g., the phase shift in an interferometer (as in Fig. 18). Hence,
uncertainty relations involving the phase have applications
here. Recall that we briefly discussed an entropic uncertainty
relation for the number and phase in Sec. V.F, specifically in
Eq. (299). While quantum metrology is a broad field [see, e.g.,
Giovannetti, Lloyd, and Maccone (2011) for a review], we
mention here a few works that exploit entropic uncertainty
relations.
The Heisenberg limit is a well-known limit in quantum

metrology stating that the uncertainty in the phase estimation
scales as 1=hNi. Here hNi is the mean photon number of the
light that is used to probe the phase. Hall et al. (2012) noted
that the Heisenberg limit is heuristic and put it on rigorous
footing by proving the following bound:

δΦ̂ ≥ k=hN þ 1i; ð345Þ

where δΦ̂ is the root-mean-square deviation of the phase

estimate Φ̂ from the actual phase Φ, and k ≔
ffiffiffiffiffiffiffiffiffiffiffiffi
2π=e2

p
. To

prove Eq. (345), Hall et al. (2012) defined the random variable
Θ ≔ Φ̂ − Φ and applied the entropic uncertainty relation in
Eq. (299), giving

HðNÞ þ hðΘÞ ≥ log 2π: ð346Þ

Then they combined Eq. (346) with some identities that relate
hðΘÞ to δΦ̂ and HðNÞ to hN þ 1i.
Hall and Wiseman (2012) considered a more general

scenario where one may have some prior information about
the phase, and they likewise used the entropic uncertainty
relation in Eq. (299) to obtain a rigorous statement of the
Heisenberg limit.

H. Other applications in quantum information theory

Recent efforts to understand the classical-quantum boun-
dary, in the context of both physics and information process-
ing, have led to quantitative measures of “quantumness” like
coherence and discord, which are discussed in Secs. VI.H.1
and VI.H.2, respectively. We further discuss information

FIG. 18. Mach-Zehnder interferometer for single photons. A
photon impinges on a beam splitter, after which we label the two
possible paths by the Z basis states j0i; j1i. The photon may
interact with some environment E inside the interferometer. Then
a phase ϕ is applied to the lower path, and the two paths are
recombined on a second beam splitter. Finally the photon is
detected at either D0 or D1.
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locking in Sec. VI.H.3 and touch on quantum coding in
Sec. VI.H.4.

1. Coherence

Baumgratz, Cramer, and Plenio (2014) introduced a frame-
work for quantifying coherence, which is a measure that does
not increase under incoherent operations. There are a variety
of coherence measures, but one, in particular, has an opera-
tional meaning in terms of the number of distillable maximally
coherent states (Winter and Yang, 2016),

ΦðZ; ρÞ ≔ D

�
ρk
X
z

jZzihZzjρjZzihZzj
�
; ð347Þ

the relative entropy of coherence. Note that the coherence is a
function of the state ρ as well as an orthonormal basis
Z ¼ fjZzihZzjg.
The following connection between coherence and entropic

uncertainty was established by Coles et al. (2011, 2012b). Let
ρS be any state for system S and let Z be a projective
measurement on S. Then, we have

ΦðZ; ρSÞ ¼ HðZjEÞ; ð348Þ

where E is a purifying system for ρS. This states that the
relative entropy of coherence for a projective measurement is
equivalent to the uncertainty of that measurement given the
purifying system, or in other words, given access to the
environment E. The right-hand side of Eq. (348) quantifies
uncertainty in the presence of quantum memory, and uncer-
tainty relations for such measures have been discussed in
Sec. IV. Hence, one can reinterpret such uncertainty relations
as, e.g., in Eq. (165), as lower bounds on the coherence of ρS
for different measurements. This idea was discussed by
Korzekwa et al. (2014), although they focused more on the
perspective of Luo (2005) of separating total uncertainty into
“classical” and “quantum” parts. In particular, for a rank-one
projective measurement Z ¼ fjZzihZzjg and a quantum state
ρ, they defined the classical uncertainty as the entropy of the
state CðZ; ρÞ ≔ HðρÞ, and the quantum uncertainty as the
relative entropy of coherence,

QðZ; ρÞ ≔ D

�
ρk

X
z

jZzihZzjρjZzihZzj
�
: ð349Þ

It is straightforward to show that overall uncertainty is the sum
of the classical and quantum parts

HðZÞ ¼ QðZ; ρÞ þ CðZ; ρÞ: ð350Þ

Korzekwa et al. (2014) derived several uncertainty relations
for the quantum uncertainty QðZ; ρÞ. However, using
Eq. (348), one can reinterpret their relations as entropic
uncertainty relations in the presence of quantum memory.
In particular, their uncertainty relations follow directly from
combining Eq. (165) with Eq. (348).

2. Discord

Ollivier and Zurek (2001) quantified quantum correlations
by discord,

DðBjAÞ ≔ IðA∶BÞ − JðBjAÞ; ð351Þ

which is the difference between the quantum mutual infor-
mation IðA∶BÞ and the classical correlations,

JðBjAÞ ≔ max
X

IðX∶BÞ; ð352Þ

where the optimization is over all POVMs X acting on
system A. In Sec. IV.E, example 26, we discussed how
discord quantifies the gap between conditioning on classical
versus quantum memory. Another connection to discord is the
following. In an effort to strengthen the uncertainty relation
with quantum memory in Eq. (165), Pati et al. (2012)
introduced an additional term that depends on the discord
of the state ρAB. Namely, they proved the inequality

HðXjBÞ þHðZjBÞ ≥ qMU þHðAjBÞ
þmaxf0; DðBjAÞ − JðBjAÞg: ð353Þ

Clearly this strengthens the bound in Eq. (165) for states ρAB
whose discord exceeds their classical correlations DðBjAÞ >
JðBjAÞ. Indeed, Pati et al. (2012) showed that this is true for
Werner states, for which Eq. (353) becomes an equality.
In turn, this result was used by Hu and Fan (2013b) to

obtain a strong upper bound on discord. That is, the uncer-
tainty relation (353) allows one to bound the discord by

DðBjAÞ ≤ 1
2
½IðA∶BÞ þ δT �; ð354Þ

where

δT ≔ HðXjBÞ þHðZjBÞ − qMU −HðAjBÞ: ð355Þ

Here δT is the gap between the left- and right-hand sides in the
uncertainty relation (165).
Further connections between quantum correlations and

entropic uncertainty relations have been elucidated in the
context of non-Markovian dynamics (Karpat, Piilo, and
Maniscalco, 2015), entanglement creation (Coles, 2012a),
teleportation (Hu and Fan, 2012), and monogamy (Hu and
Fan, 2013a).

3. Locking of classical correlations

One operational way of understanding entropic uncertainty
relations is in terms of information locking (DiVincenzo et al.,
2004). In the following we present a cryptographic view on
information locking as discussed by Fawzi, Hayden, and
Sen (2011).
A locking scheme is a protocol that encodes a classical

message into a quantum state using a classical key of size
smaller than the message. The goal is that without knowing
the key the message is locked in the quantum state such that
any possible measurement reveals only a negligible amount of
information about the message. Furthermore, knowing the key
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it is possible to unlock and completely recover the message.
The connection of information locking to entropic uncertainty
is best presented by means of a simple example based on
the Maassen-Uffink bound for the n qubit BB84 measure-
ments (101),

HðKnjΘnÞ ≥ n · 1
2
; ð356Þ

with Θn ∈ fθ1;…; θ2ng. In order to encode a uniformly
random n-bit string X we choose at random an n qubit
BB84 basis θi (the key) and encode the message in this
basis. Based on Eq. (356), DiVincenzo et al. (2004)
showed that for any measurement on this quantum state
the mutual information (accessible information) between
the outcome of that measurement and the original classical
message X is at most n=2. That is, n=2 bits are locked in
the quantum state and are not accessible without knowing
the basis choice (the key). This is remarkable because any
nontrivial purely classical encryption of an n-bit string
message requires a key of size at least n. Of course, this
then raises the question about the optimal trade-off between
the number of lockable bits and the key size. For that
purpose Fawzi, Hayden, and Sen (2011) made use of the
uncertainty relation (100),

HðKjΘÞ ≥ n · ð1 − 2εÞ − hbinðεÞ; ð357Þ

with Θ ¼ fθ1;…; θLg. Based on this they showed that a
key size of L ¼ O( logðn=εÞ) allows for locking an n-bit
string up to a mutual information smaller than ε > 0. State-
of-the-art results use stronger definitions for information
locking in terms of the trace norm instead of the mutual
information and are based on so-called metric uncertainty
relations (Fawzi, Hayden, and Sen, 2011; Dupuis et al.,
2013).35 Finally, we mention that Guha et al. (2014)
initiated the study of the information locking capacity of
quantum channels, which is also intimately related to
uncertainty.

4. Quantum Shannon theory

The original partial results and conjectures for entropic
uncertainty relations with quantum memory by Christandl and
Winter (2005) and Renes and Boileau (2008, 2009) were
inspired by applications in quantum Shannon theory. More
recently, entropic uncertainty relations and, in particular,
their equality conditions have been used to analyze the
performance of quantum polar codes (Renes and Wilde,
2014; Renes et al., 2015).

VII. MISCELLANEOUS TOPICS

A. Tsallis and other entropy functions

From a mathematical perspective it is insightful to consider
uncertainty relations for various generalizations of the

Shannon entropy. While the Rényi entropies were discussed
previously, the Tsallis entropies are another family of interest.
The Tsallis entropy of order α is defined as

HT
α ðXÞ ≔

�
log e
1 − α

��X
x

PXðxÞα − 1

�
ð358Þ

for α ∈ ð0; 1Þ∪ð1;∞Þ, and as the corresponding limit for
α ∈ f0; 1;∞g. Similar to the Rényi entropies, the α ¼ 1

Tsallis entropy corresponds to the Shannon entropy. Note
that for x ≈ 1 we have log x ≈ log e · ðx − 1Þ, so whenP

xPXðxÞα ≈ 1 the Tsallis entropy approximates the Rényi
entropy.
Rastegin studied uncertainty relations in terms of the Tsallis

entropy. For example, Rastegin (2013a) proved the following
uncertainty relation for Tsallis entropies for a set of three
MUBs fX;Y ;Zg on a qubit. For α ∈ ð0; 1� and for integers
α ≥ 2, we have

HT
α ðXÞ þHT

αðYÞ þHT
αðZÞ ≥ 2 log e · fαð2Þ; ð359Þ

where

fαðxÞ ≔
�
1 − x1−α

α − 1

�
: ð360Þ

This generalizes the result in Eq. (79), which is recovered
by taking the limit α → 1, noting that limα→1fαðxÞ ¼
log x= log e.
A more general scenario was considered by Rastegin

(2013b), where system A has dimension d, and the measure-
ments under consideration form a set of n MUBs, fXjg. For
α ∈ ð0; 2�, Rastegin (2013b) showed that

1

n

Xn
j¼1

HT
αðXjÞ ≥ 2 log e · fα

�
nd

nþ d − 1

�
: ð361Þ

This result is quite general in that it holds for any n and d.
Furthermore, in the case of n ¼ dþ 1 and α → 1, one
recovers the result presented in Eq. (81). Rastegin (2013b)
also tightened Eq. (361) for mixed states:

1

n

Xn
j¼1

HT
α ðXjÞ ≥ 2 log e · fα

�
nd

nþ dtrðρ2Þ − 1

�
: ð362Þ

Other entropy families are also discussed in the literature. For
example, Zozor, Bosyk, and Portesi (2014) considered a broad
class of entropies defined as

Hðη;ϕÞðXÞ ≔ η

�X
x

ϕ(PXðxÞ)
�
: ð363Þ

Here η∶ R → R and ϕ∶ ½0; 1� → R are generic continuous
functions such that either ϕ is strictly concave and η is strictly
increasing, or ϕ is strictly convex and η is strictly decreasing.
Additionally, they imposed ϕð0Þ ¼ 0 and η(ϕð1Þ) ¼ 0. This
family includes as special cases both the Rényi and Tsallis
families and hence also the Shannon entropy. In addition to

35We emphasized that the security definitions for information
locking are not composable [see, e.g., Renner (2005) for a
discussion].
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giving an overview of the literature on entropic uncertainty
relations, Zozor, Bosyk, and Portesi (2014) derived a new
uncertainty relation for the Hðη;ϕÞ entropies. For any two
POVMsX and Z, and for any two pairs of functionals ðη1;ϕ1Þ
and ðη2;ϕ2Þ, their relation takes the form

Hðη1;ϕ1ÞðXÞ þHðη2;ϕ2ÞðZÞ ≥ Bðη1;ϕ1Þ;ðη2;ϕ2ÞðtÞ; ð364Þ

where the right-hand side is a function of the triplet

t ≔ fcX; cZ; cg; cX ≔ max
x

kXxk; cZ ≔ max
z

kZzk;
ð365Þ

and c is defined in Eq. (49). See Zozor, Bosyk, and Portesi
(2014) for the explicit form of Bðη1;ϕ1Þ;ðη2;ϕ2ÞðtÞ. In general, this
bound can be computed, since it involves only a one-
parameter optimization over a bounded interval. Note that
the functionals associated with the two terms in Eq. (364) may
be different. This gives a very general result allowing one to
consider Rényi entropy uncertainty relations that go beyond
the usual conjugacy curve, defined by 1=αþ 1=β ¼ 2.

B. Certainty relations

Instead of lower bounding sums of entropies for different
observables, one can also ask whether there exist nontrivial
upper bounds on such sums. These bounds are called certainty
relations. Of course, one would not expect to find nontrivial
upper bounds for, say, the maximally mixed state ρA ¼ 1=d.
However, one might, e.g., restrict to pure states jψiA.
For some sets of observables, even restricting to pure

states is not enough to get a certainty relation. For example,
consider the Pauli σX and σZ observables for one qubit. One
cannot find a certainty relation for these two observables
because there exist states, namely, the eigenstates of σY , that
are unbiased with respect to the eigenbases of σX and σZ,
and hence lead to maximum uncertainty in these two
bases HðXÞ þHðZÞ ¼ 2.
Recently Korzekwa, Jennings, and Rudolph (2014) proved

a general result that nontrivial certainty relations are not
possible for two arbitrary orthonormal bases X and Z in any
finite dimension d. This follows from the fact that one can
always find a pure state jψiA that is unbiased with respect to
both X and Z.
However, a nontrivial certainty relation does exist, e.g., for

a dþ 1 set of MUBs. This is connected to the fact that there
are no states that are unbiased to all bases in a dþ 1 set of
MUBs. Consider the result of Sánchez-Ruiz (1993), which
deals with three MUBs (X, Y , and Z) on a qubit system in a
pure state:

HðXÞ þHðYÞ þHðZÞ ≤ 3

2
log 6 −

ffiffiffi
3

p

2
logð2þ

ffiffiffi
3

p
Þ: ð366Þ

The right-hand side of Eq. (366) is ≈2.23. Comparing this to
the lower bound of 2, from Eq. (79), one sees that the
allowable range for HðXÞ þHðYÞ þHðZÞ is quite small.
Sánchez-Ruiz (1993) noted that Eq. (366) is in fact the optimal
certainty relation for these observables. More generally,

considering a dþ 1 set of MUBs fXjg, Sánchez-Ruiz
(1993) showed that

Xn
j¼1

HðXjÞ ≤ n logðnþ ffiffiffi
n

p Þ

−
1

d
½nþ ðn − 2Þ ffiffiffi

n
p � logð2þ ffiffiffi

n
p Þ; ð367Þ

where n ¼ dþ 1. Note that Eq. (366) is a special case of
Eq. (367) corresponding to d ¼ 2.
Rastegin obtained some generalizations of Eq. (366) to the

Rényi and Tsallis entropy families. In the Rényi case Rastegin
(2014) found, for all α ∈ ð0; 1�,

HαðXÞ þHαðYÞ þHαðZÞ ≤ 3Rα; ð368Þ

where

Rα ≔
1

1 − α
log

��
1þ 1=

ffiffiffi
3

p

2

�α

þ
�
1 − 1=

ffiffiffi
3

p

2

�α�
: ð369Þ

Likewise Rastegin (2013a) found a similar sort of bound for
the Tsallis entropies, but with logðxÞ in Eq. (369) replaced
by x − 1.
While these certainty relations are for MUBs, recently

Puchała et al. (2015) studied a more general situation with sets
of n > 2 orthonormal bases in dimension d. Their certainty
relations are upper bounds on the sum of Shannon entropies,
similar to Eq. (367), but are not restricted to MUBs. Certainty
relations for unitary k designs with k ¼ 2, 4 in terms of the
mutual information were also covered by Matthews, Wehner,
and Winter (2009).
Finally, it is worth reminding the reader that for the

collision entropy one can obtain an equality, as in Eq. (82).
An equation of this sort is both an uncertainty and a certainty
relation. Stated another way, an equation implies that the
strongest uncertainty relation coincides with the strongest
certainty relation, leaving no gap between the two bounds.
Equations such as (82) can, in turn, be used to derive certainty
relations for other entropies, such as the min-entropy, due to
the fact that Hmin ≤ H2.
The generalization of Eq. (82) to bipartite states ρAB was

given in Eq. (185). Equation (185) is a certainty relation in the
presence of quantum memory. It relates the amount of
uncertainty to the amount of entanglement, as quantified by
the conditional entropy H2ðAjBÞ. Similar to the unipartite
case, Eq. (185) can be used to derive certainty relations
(in the presence of quantum memory) for other entropies, such
as the min-entropy, as discussed by Berta, Coles, and
Wehner (2014).
Studying bipartite certainty relations in the presence of

quantum memory is largely an open problem. For example,
one could ask whether Eq. (366) or (367) can be appropriately
generalized to the quantum memory case.

C. Measurement uncertainty

This review has focused on preparation uncertainty rela-
tions. Two other aspects of the uncertainty principle are (1) the
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joint measurability of observable pairs and (2) the disturbance
of one observable caused by the measurement of another
observable. Joint measurability and measurement disturbance
are two aspects of measurement uncertainty, which deals with
fundamental restrictions on one’s ability to measure things.
For a detailed discussion of measurement uncertainty, see
Ozawa (2003), Hall (2004), Busch, Heinonen, and Lahti
(2007), and Busch, Lahti, and Werner (2014a). It is important,
though, that we briefly mention measurement uncertainty
here because the topic has seen significant debate recently
(Busch, Lahti, and Werner, 2013, 2014a, 2014b). Rather
than delve into the conceptual issues of measurement
uncertainty, we simply give a few recent works that have
taken an entropic approach, in particular, to measurement
disturbance.

1. State-independent measurement-disturbance relations

One approach to measurement uncertainty is to ask how
well can a measurement device perform on particular idealized
sets of input states, e.g., the basis states associated with two
complementary observables X and Z? This is often called a
state-independent approach, although it could also be called a
calibration approach, since one is calibrating a device’s
performance based on idealized input states. For example,
this approach was discussed by Busch, Lahti, and Werner
(2013) for the position and momentum observables. However,
the quantities in their relation were not entropic so we will not
discuss it further.
More recently the calibration approach was taken by

Buscemi et al. (2014) using entropic quantities. Consider a
measurement apparatus represented by a quantum channel
M acting on system A, and two counterfactual preparation
schemes which will be fed into this apparatus, as shown in
Fig. 19. In one scheme, A is prepared in a basis state of X,
say jXxi, where the index x is chosen with uniformly
random probability. The output of M consists of a classical
system M as well as a “disturbed” version of the original
quantum system A0. The classical output M represents an
attempted measurement of the X observable, and it provides
a guess for the index x. The measurement noise is then
quantified by NðM;XÞ ≔ HðXjMÞ, where X is the random
variable associated with the X observable on the input
system, i.e., associated with the index x. In the other
scheme, Fig. 19(b), A is prepared in a basis state of Z,

say jZzi, again with uniform probability. Now the question
is can one recover a good guess of z from the outputs of
M? If not, then the interpretation is that the attempted
measurement of X “disturbs” the Z observable. To quantify
this, Buscemi et al. (2014) defined the disturbance of Z by
DðM;ZÞ ≔ minRHðZjẐÞ. Here Z is the random variable
associated with the observable Z on the input system, and
R is a recovery map, i.e., a quantum channel that maps A0M
to a classical system Ẑ that provides a guess for z. Their
measurement-disturbance relation states that

NðM;XÞ þ DðM;ZÞ ≥ qMU; ð370Þ

with qMU as in Eq. (31). This shows a trade-off between the
ability to measure the X states versus the ability to leave the
Z states undisturbed.
Figure 19 is a dynamic scenario, similar to the scenario in

Sec. IV.G. Hence, to derive Eq. (370), Buscemi et al. (2014)
started with a “static” uncertainty relation (namely, the
Maassen-Uffink relation) and then applied the static-dynamic
isomorphism from Sec. IV.G.2. In particular, they employed
the property in Eq. (247).

2. State-dependent measurement-disturbance relations

Now let us consider a sequential measurement scenario
where system A is prepared in an arbitrary state ρA and fed into
the measurement apparatus.
For simplicity, consider the sequential measurement of

orthonormal bases, X followed by Z, where the first meas-
urement is a von Neumann measurement, i.e., it projects the
system onto anX-basis state. One can apply Maassen-Uffink’s
uncertainty relation to each outcome of the X measurement,
i.e., to each state jXxi, giving

HðZÞjXxi ¼ HðXÞjXxi þHðZÞjXxi ≥ qMU: ð371Þ

Multiplying this by the probability px ¼ hXxjρAjXxi for
outcome x, and summing over x gives

HðZjXÞ ≥ qMU; ð372Þ

where HðZjXÞ denotes the uncertainty for a future Z meas-
urement given the outcome of the previous X measurement.
Equation (372) was discussed in detail by Baek, Farrow, and
Son (2014), and was also briefly mentioned by Coles and
Piani (2014a). Note that Eq. (372) holds for any fixed input
state ρA, and it is a state-dependent relation.
While Eq. (372) assumes theXmeasurement is an ideal von

Neumann measurement, it is interesting to ask what happens if
the first measurement is nonideal, i.e., a noisy measurement.
There are various ways to address this. One approach, given
by Coles and Furrer (2015), quantified the imperfection of the
X measurement by the predictive error,

EðρA;X; EÞ ≔ HmaxðXjMXÞ: ð373Þ

That is, the max-entropy of a future (perfect) X measurement
given the register MX that stores the outcome of the
previous (imperfect) measurement of X. Here E, which maps

(a)

(b)

FIG. 19. Two scenarios considered by Buscemi et al. (2014),
which capture (a) the noise of an attempted X measurement, and
(b) the disturbance of the Z observable.
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A → AMX, is the channel that performs this imperfect X
measurement. One is interested in the disturbance of the Z
observables caused by the imperfect X measurement. Coles
and Furrer (2015) quantified the disturbance of Z using the
Rényi relative entropies for α ∈ ½1=2;∞�,

DαðρA;Z; EÞ ≔ DαðPZkPE
ZÞ: ð374Þ

Here PZ is the initial probability distribution for the Z
measurement and PE

Z is the final probability distribution for
Z, i.e., after the imperfect X measurement. With these
definitions, they found the measurement-disturbance relation

DαðρA;Z; EÞ þ EðρA;X; EÞ þHαðZÞP ≥ qMU: ð375Þ

On the one hand, this gives a trade-off between measuring X
well and causing large Z disturbance. On the other hand, the
trade-off gets weaker as more initial uncertainty is contained
in PZ, as quantified by the term HαðZÞP. So there is an
interplay between initial uncertainty, measurement error, and
disturbance.

VIII. PERSPECTIVES

We have discussed modern formulations of Heisenberg’s
uncertainty principle where uncertainty is quantified by
entropy. Such formulations are directly relevant to quantum
information-processing tasks as discussed in Sec. VI.
Technological applications such as QKD (Sec. VI.B) provide

the driving force for obtaining more refined entropic uncer-
tainty relations. For example, to prove security of QKD
protocols involving more than two measurements, new entropic
uncertainty relations are needed—namely, ones that allow for
quantum memory and for multiple measurements. This is an
important frontier that requires more research. Device-inde-
pendent randomness, i.e., certifying randomness obtained from
untrusted devices (Sec. VI.A.2) is another emerging application
for which entropic uncertainty relations appear to be useful but
more research is needed to find uncertainty relations that are
specifically tailored to this application.
Aside from their technological applications, we believe that

entropic uncertainty relations have a beauty to them. They
give insight into the structure of quantum theory, and for that
reason alone they are worth pursuing. For example, Sec. IV.F.5
noted a simple conjecture—that the sum of the mutual
informations for two MUBs lower bounds the quantum
mutual information.
New tools are being developed to prove entropic uncertainty

relations. For example, the majorization approach (Sec. III.I) is
promising. The relation between the majorization approach and
the relative entropy approach (see Appendix B) remains to be
clarified, and a unified framework would be insightful. For
uncertainty relations with memory, Dupuis, Fawzi, and Wehner
(2015) established a meta theorem to derive uncertainty
relations. Yet, it is known that the resulting relations are not
tight in all regimes, calling for further improvements.
One of the most exciting things about entropic uncertainty

relations is that they give insight into basic physics. For
example, Sec. VI.F discussed how entropic uncertainty
relations allow one to unify the uncertainty principle with

the wave-particle duality principle. A natural framework for
quantifying wave-particle duality will likely come from
applying entropic uncertainty relations to interferometers.
Likewise, a hot topic in quantum foundations is measurement
uncertainty. Section VII.C noted that entropic uncertainty
relations may play an important role in obtaining conceptually
clear formulations of measurement uncertainty. In that respect,
very recently the notion of preparation uncertainty was
combined with measurement reversibility (Berta, Wehner,
and Wilde, 2016) and the corresponding entropic uncertainty
relations were successfully tested on the IBM quantum
experience (IBM, 2016).
Furthermore, entropic uncertainty relations will continue to

help researchers characterize the boundary between separable
versus entangled states (Sec. VI.D), as well as steerable versus
nonsteerable states (Sec. VI.E).
Entropic uncertainty relations may play a role in the study

of phase transitions in condensed matter physics (Romera and
Calixto, 2015). Entropic uncertainty relations are also studied
in the context of special and general relativity (Feng et al.,
2013; Jia, Tian, and Jing, 2015). Given that quantum infor-
mation is playing an increasing role in cosmology (Hayden
and Preskill, 2007), it would not be surprising to see future
work on entropic uncertainty relations in the context of black
hole physics.
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APPENDIX A: MUTUALLY UNBIASED BASES

Section III.B defined MUBs and sets of nMUBs. The study
of MUBs is closely related to the study of entropic uncertainty.
Strong entropic uncertainty relations have been derived
generically for sets of MUBs (particularly for dþ 1 sets of
MUBs). Hence, constructing a new set of MUBs immediately
yields a new entropic uncertainty relation. On the other hand,
there is the interesting open question whether a set of nMUBs
fXjg yields the strongest bound b in a generic uncertainty
relation of the form
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Xn
j¼1

HðXjÞ ≥ b: ðA1Þ

A review of MUBs has been given by Durt et al. (2010). Here
we discuss the connection of MUBs to Hadamard matrices, as
well as the existence and construction of MUBs.

1. Connection to Hadamard matrices

Any two orthonormal bases are related by a unitary, and in
the case of MUBs, that unitary is called a Hadamard matrixH.
The general form of such matrices is

H ¼
X
j;k

eiϕjkffiffiffi
d

p jjihkj; ðA2Þ

where the phase factors ϕjk must be appropriately chosen so
that H is unitary. Notice that each matrix element has a
magnitude of 1=

ffiffiffi
d

p
, which is the defining property of

Hadamard unitaries. The best known Hadamard is the
Fourier matrix, defined in Eq. (204),

F ¼
X
j;k

ω−jkffiffiffi
d

p jjihkj; ðA3Þ

with ω ¼ e2πi=d, which relates the generalized Pauli operators

σZ ¼
X
j

ωjjjihjj; σX ¼ FσZF† ¼
X
j

jjþ 1ihjj: ðA4Þ

For d ¼ 2 these are just the usual Pauli matrices from
example 7.
It should be clear that the problem of finding MUBs is

equivalent to the problem of finding Hadamard matrices. We
note that Hadamard matrices can be categorized into equiv-
alence classes, based on whether there exists a diagonal
unitary or permutation that maps one Hadamard to another.
A detailed catalog of Hadamard matrices can be found online
(Bruzda, Tadej, and Życzkowski, 2015).

2. Existence

That there exist MUB pairs in any finite dimension follows
from the fact that we can write down the Fourier matrix in
Eq. (A3) for any d. In fact, for any d there exists a set of three
MUBs, e.g., formed from the eigenvectors of σX, σZ, and
σXσZ. It is also known that a set of MUBs can at most be of
size dþ 1 (Bandyopadhyay, Roychowdhury, and Vatan,
2002). Such dþ 1 sets are called complete sets of MUBs.
Complete sets play a role in tomography since they are
informationally complete, and they have the useful property
of forming a complex projective two-design (Klappenecker
and Rotteler, 2005). Complete sets of MUBs are known
to exist in prime power dimensions, i.e., d ¼ pm, where p
is a prime and m is a positive integer (Bandyopadhyay,
Roychowdhury, and Vatan, 2002). However, even for the
smallest number that is not a prime power, namely 6, the
existence problem remains unsolved.

3. Simple constructions

When d is a prime, a simple construction (Wootters and
Fields, 1989; Bandyopadhyay, Roychowdhury, and Vatan,
2002) of a complete set of MUBs is to consider the
eigenvectors of the dþ 1 products of the form

fσZ; σX; σXσZ; σXσ2Z;…; σXσd−1Z g: ðA5Þ

More generally for d ¼ pm, a construction is known
where each basis Bi comes from the common eigenvectors
of a corresponding set Ci of commuting matrices
(Bandyopadhyay, Roychowdhury, and Vatan, 2002). The
elements of Ci are a subset of size jCij ¼ d − 1 of the
d2 − 1 Pauli products σjXσ

k
Z (excluding the identity).

The subset is chosen such that all the elements of Ci
commute and Ci ⋂ Cj ¼ f1g for i ≠ j.

APPENDIX B: PROOF OF MAASSEN-UFFINK’S
RELATION

Here we give a proof of Maassen-Uffink’s uncertainty
relation for the Shannon entropy (31). Our proof closely
follows the ideas of Coles et al. (2012) and makes use of the
data-processing inequality for the relative entropy (Lieb and
Ruskai, 1973; Lindblad, 1975; Uhlmann, 1977). In fact, we
will prove the slightly stronger relation stated in Eq. (47):

HðXÞ þHðZÞ ≥ log
1

c
þHðρAÞ: ðB1Þ

Proof. For the proof of Eq. (B1) we consider the classical
state ρX ¼ XA→XðρAÞ generated by applying the measurement
map

XA→Xð·Þ ¼
X
x

jXxihXxj · jXxihXxj; ðB2Þ

where the auxiliary Hilbert space X allows us to represent the
classical random variable X in the quantum formalism.
It is easy to verify that the Shannon entropy of the

distribution PX is equal to the von Neumann entropy of the
state ρX. From this we get

HðXÞ ¼ −tr½ρX log ρX� ¼ −tr½XðρAÞ logXðρAÞ� ðB3Þ

¼ −tr½ρA logXðρAÞ�; ðB4Þ

where the last equality is straightforward to check by writing
out the trace and the measurement map XA→X. By phrasing
the right-hand side of Eq. (B3) in terms of relative entropy
DðρkσÞ ¼ tr½ρðlog ρ − log σÞ�, we arrive at

HðXÞ ¼ DðρAkXðρAÞÞ þHðρAÞ: ðB5Þ
We then apply the measurement map

ZA→Zð·Þ ¼
X
z

jZzihZzj · jZzihZzj ðB6Þ

to both arguments of the relative entropy, and find by the data-
processing inequality for the relative entropy that
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D(ρAkXðρAÞ) ≥ D(ZðρAÞkZ∘XðρAÞ) ðB7Þ

¼ D(ρZkZ∘XðρAÞ); ðB8Þ

where ρZ ¼ ZA→ZðρAÞ. Bywriting out bothmeasurementmaps
we find the classical state

Z∘XðρAÞ ¼
X
z

jZzihZzj ·
X
x

jhXxjZzij2hXxjρAjXxi; ðB9Þ

and the right-hand side of Eq. (B7) becomes

D(ρZkZ∘XðρAÞ) ¼ −HðρZÞ −
X
z

hZzjρAjZzi

× log

�X
x

jhXxjZzij2hXxjρAjXxi
�
:

ðB10Þ
Now the logarithm is a monotonic function and hence we find

−
X
z

hZzjρAjZzi log
�X

x

jhXxjZzij2hXxjρAjXxi
�

≥ −
X
z

hZzjρAjZzi log
�
max
x0;z0

jhXx0 jZz0 ij2
X
x

hXxjρAjXxi
�

ðB11Þ

¼ − logmax
x0;z0

jhXx0 jZz0 ij2: ðB12Þ

By combining Eqs. (B3)–(B12) and noting thatHðZÞ equals the
von Neumann entropy of ρZ, we arrive at the claim (B1). ▪

APPENDIX C: RÉNYI ENTROPIES FOR JOINT
QUANTUM SYSTEMS

Here we define general conditional Rényi entropies. This
allows us to exhibit their intuitive properties in a general setting
without having to discuss various special cases individually. We
exhibit these properties to show a generalization of theMaassen-
Uffink relation to the tripartite quantum memory setting.

1. Definitions

For any bipartite quantum state ρAB and α ∈ ½1
2
;∞�, we

define the quantum conditional Rényi entropy as

HαðAjBÞ ≔ −min
σB

DαðρABk1A ⊗ σBÞ; ðC1Þ

where σB is a quantum state on B. Here Dα is the Rényi
divergence of order α (Müller-Lennert et al., 2013; Wilde,
Winter, and Yang, 2014), namely,36

DαðρkσÞ ≔
1

α − 1
log tr½ðσð1−αÞ=2αρσð1−αÞ=2αÞα�

for α ∈
�
1

2
; 1

�
∪ð1;∞Þ ðC2Þ

and as the corresponding limit for α ∈ f1;∞g. These diver-
gences are measures of distinguishability between quantum
states and some of their properties are discussed in
Appendix C.2. Note the following special cases that we
previously encountered. First, the conditional min- and
max-entropies are simply recovered as Hmin ≡H∞ and
Hmax ≡H1=2. The conditional von Neumann entropy is
recovered as H ≡H1. Finally, the conditional collision
entropy can be expressed as

HcollðAjBÞ ¼ −D2ðρABk1A ⊗ ρBÞ: ðC3Þ

Note that H2ðAjBÞ ≤ HcollðAjBÞ since the former involves a
minimization over marginal states σB. The two expressions are
not equal in general and we want to mostly work with
HcollðAjBÞ because it has the operational interpretation as
in Eqs. (139) and (148).

2. Entropic properties

We present the properties for the whole family of Rényi
divergences and entropies, but recall that the properties also
apply to the relative entropy and the von Neumann entropy
as special cases. Most properties of the conditional Rényi
entropy can be derived from properties of the underlying
Rényi divergence.37

a. Positivity and monotonicity

First we remark that DαðρkσÞ is guaranteed to be non-
negative when the arguments ρ and σ are normalized, and
DαðρkσÞ ¼ 0 when ρ ¼ σ. Also, α ↦ DαðρkσÞ is monoton-
ically increasing in α. Thus, for any β ≥ α, we have

0 ≤ DαðρkσÞ ≤ DβðρkσÞ; ðC4Þ

and

log dA ≥ HαðAjBÞ ≥ HβðAjBÞ ≥ − logminfdA; dBg: ðC5Þ

This means that the conditional Rényi entropies, in particular,
also the conditional von Neumann entropy, can be negative.
However, this can happen only in the presence of quantum
entanglement and the conditional entropies are thus always
positive when one of the two systems is classical. The
maximum log dA is achieved for a state of the form
ρAB ¼ 1A=dA ⊗ ρB. On the other hand, the minimum
− log dA is achieved for the maximally entangled pure state

36This quantum generalization is not unique—in fact other gener-
alizations based on Petz’s notion of Rényi divergence (Ohya and Petz,
1993) have also been explored, for example, byTomamichel, Berta, and
Hayashi (2014). However, for this review it is convenient to stick with
the proposed definition in Eqs. (C1) and (C2) as it entails the most
important special cases encountered here and in the literature.

37These divergences were investigated in a series of recent works
(Beigi, 2013; Frank and Lieb, 2013b; Müller-Lennert et al., 2013;
Wilde, Winter, and Yang, 2014; Mosonyi and Ogawa, 2015) and
proofs of the properties discussed here can be found in these
references.

Coles et al.: Entropic uncertainty relations and their …

Rev. Mod. Phys., Vol. 89, No. 1, January–March 2017 015002-53



jψiAB ¼ 1ffiffiffiffiffi
dA

p
X
x

jxiA ⊗ jxiB.

b. Data-processing inequalities

Any quantum channel is described by a completely positive
and trace-preserving (CPTP) map. The Rényi divergences
satisfy a data-processing inequality. Namely, for all α ≥ 1=2
and any CPTP map E, we find the following relation (Frank
and Lieb, 2013b):

Dα(EðρÞkEðσÞ) ≤ DαðρkσÞ: ðC6Þ

This is an expression of the intuitive property that it is easier
to distinguish between the inputs rather than the outputs of
any quantum channel. In fact, this property holds more
generally for any completely positive trace nonincreasing
map E which satisfies tr½EðρÞ� ¼ 1. This has two important
implications for conditional entropies. First, consider an
arbitrary CPTP map EB→B0 acting on the side information
that takes ρAB to τAB0 ¼ IA ⊗ EB→B0 ðρABÞ. Then we have
HαðAjBÞ ≤ HαðAjB0Þ. This tells us that any physically
allowed information processing of the side information B
may only increase the uncertainty we have about A.
Example 35. An often encountered special case of the

data-processing inequality is that HαðAjBCÞ ≤ HαðAjBÞ for
any tripartite state ρABC. This expresses the fact that throwing
away part of the side information can only increase the
uncertainty about A.
The second application concerns rank-one projective mea-

surements on the A system. More precisely, we consider any
rank-one projective measurement XA→X that takes ρAB to

ρXB ¼ XA→X ⊗ IBðρABÞ ðC7Þ

¼
X
x

ðjXxihXxjA ⊗ 1BÞρABðjXxihXxjA ⊗ 1BÞ: ðC8Þ

Then we find that HαðAjBÞ ≤ HαðXjBÞ, which reveals that
measuring out system A completely can only increase the
uncertainty we have about it.38

c. Duality and additivity

We see that the following property is essential for deriving
uncertainty relations with quantum side information. For any
tripartite state ρABC, the conditional Rényi entropies satisfy
the following duality relation. For α; β ∈ ½1=2;∞� such that
1=αþ 1=β ¼ 2, we have (Beigi, 2013; Müller-Lennert et al.,
2013)

HαðAjBÞ þHβðAjCÞ ≥ 0; ðC9Þ

with equality if ρABC is pure.
This is a quantitative manifestation of the monogamy of

quantum correlations. For example, if system A is highly

entangled with system B we find that the conditional von
Neumann entropy HðAjBÞ is negative. However, the duality
relation (C9) now shows that for any third system C correlated
with A and B, it holds that HðAjCÞ ≥ −HðAjBÞ; that is, the
uncertainty of A from an observer with access to C is
necessarily large in this case.
The Rényi entropies are additive. Namely, given a

product state of the form ρABCD ¼ ρAC ⊗ ρBD, they satisfy
HαðABjCDÞ ¼ HαðAjCÞ þHαðBjDÞ. This is in fact a con-
sequence of the duality relation.39

3. Axiomatic proof of uncertainty relation with quantum
memory

Here we give a concise proof of the generalized Maassen-
Uffink relation (221),

HαðXjBÞρ þHβðZjCÞ ≥ qMU; ðC10Þ

where 1=αþ 1=β ¼ 2. Note that the proof applies to a general
class of entropic quantities that satisfy certain properties, but
we specialize it here to conditional Rényi entropies.
Let us consider measurementsX ¼ fXx

Ag andZ ¼ fZz
Ag in

two orthonormal bases such that Xx
A and Zz

A are rank-one
projectors. The proof for POVMs follows essentially the same
steps, as detailed by Coles et al. (2012) [based on ideas of
Coles et al. (2011) and Tomamichel and Renner (2011)].
Proof of (C10). First let us define the isometry V ≔P
zjziZ ⊗ Zz

A associated with the Z measurement on system
A, and the state ~ρZABC ≔ VρABCV†. We find the following
sequence of inequalities:

HβðZjCÞ ≥ −HαðZjABÞ ðC11Þ

¼ min
σAB

Dαð~ρZABk1Z ⊗ σABÞ ðC12Þ

≥ min
σAB

Dα

�
ρABk

X
z

Zz
AσABZ

z
A

�
ðC13Þ

≥ min
σAB

Dα

�
ρ̄XBk

X
x;z

jhXx
AjZz

Aij2Xx
A ⊗ trA½Zz

AσAB�
�
; ðC14Þ

where we used ρ̄XB ≔
P

kX
x
AρABX

x
A. To establish Eq. (C11),

we applied the duality relation (C9) to the state ~ρZABC.
Equation (C12) is simply the definition of the conditional
entropy as in Eq. (C1). To find (C13), we apply the data-
processing inequality for the partial isometry V† as a trace
nonincreasing map, and note that V†ð1Z ⊗ σABÞV ¼P

zZ
z
AσABZ

z
A. Next Eq. (C14) follows by applying the

38The inequality holds more generally for all CPTP maps on EA→A0

that satisfy EA→A0 ð1AÞ ¼ 1A0 (unital maps).

39Recall that by definition (C1), we have

HαðABjCDÞ ¼ −min
σCD

DαðρABCDk1AB ⊗ σCDÞ

≥ −min
σC;σD

DαðρABCDk1AB ⊗ σC ⊗ σDÞ

¼ HαðAjCÞ þHαðBjDÞ:

The reverse inequality then follows due to the duality relation.

Coles et al.: Entropic uncertainty relations and their …

Rev. Mod. Phys., Vol. 89, No. 1, January–March 2017 015002-54



data-processing inequality for the measurement CPTP
map Xð·Þ ¼ P

xX
x ·Xx.

Next we observe thatX
x;z

jhXx
AjZz

Aij2Xx
A ⊗ trA½Zz

AσAB�

≤ c
X
x;z

Xx
A ⊗ trA½Zz

AσAB� ¼ c1A ⊗ σB; ðC15Þ

where we recall that c ¼ maxx;zjhXx
AjZz

Aij2 as defined in
Eq. (32). Moreover, we need that for any σ0 and positive λ
such that σ ≤ λσ0, we have DαðρkσÞ ≥ Dαðρkσ0Þþ
logð1=λÞ.40 Continuing from Eq. (C14), we thus find that

HβðZjCÞ ≥ min
σB

Dαðρ̄XBk1X ⊗ σBÞ þ qMU ðC16Þ

¼ −HαðXjBÞ þ qMU; ðC17Þ
where (C17) again follows by the definition of the conditional
entropy. ▪
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