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Open quantum systems (OQSs) cannot always be described with the Markov approximation, which
requires a large separation of system and environment time scales. An overview is given of some of
the most important techniques available to tackle the dynamics of an OQS beyond the Markov
approximation. Some of these techniques, such as master equations, Heisenberg equations, and
stochastic methods, are based on solving the reduced OQS dynamics, while others, such as path
integral Monte Carlo or chain mapping approaches, are based on solving the dynamics of the full
system. The physical interpretation and derivation of the various approaches are emphasized, how
they are connected is explored, and how different methods may be suitable for solving different
problems is examined.
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I. INTRODUCTION

In most realistic situations, a quantum system is con-
sidered as an open quantum system (OQS), coupled to an
environment that induces decoherence and dissipation.
The dynamics of an OQS can be described, in many cases,
with a Markov approximation, which assumes that the
environment recovers instantly from the interaction, leading
to a continuous flow of information from the system to the
environment.
However, our increasing capability to fabricate new

materials and to observe and control quantum systems at
different times, length scales, and energy ranges is con-
stantly revealing new scenarios where dissipation and
decoherence play a fundamental role. In many of these
scenarios, a large separation between system and environ-
ment time scales can no longer be assumed, leading to
non-Markovian behavior and eventually a backflow of infor-
mation from the environment into the system. It is therefore
crucial to develop an accurate but efficient description of the
system-environment interaction that goes beyond the Markov
approximation.
The main goal of the theory of OQSs is to avoid having to

integrate the full system, comprising both the OQS itself
and its environment, by describing the dynamics of the open
system in its reduced Hilbert space. As discussed in Sec. III,
the structure of the system-environment initial state is funda-
mental to determine the evolution for the reduced density
matrix of the OQS ρsðtÞ, defined by tracing out the environ-
ment degrees of freedom from the full system density matrix.
To compute such evolution, many different master equations
have been proposed. In particular, within the Markov approxi-
mation, master equations can often be arranged in the
well-known Lindblad form (Kossakowski, 1972; Gorini,
Kossakowski, and Sudarshan, 1976; Lindblad, 1976), which
preserves complete positivity of the OQS dynamics.
This equation is sometimes referred to as the Lindblad-
Kossakowski equation. However, as discussed in Sec. IV,
master equations beyond the Markov approximation have also
been derived by considering different approximations and
methods.
An alternative to master equations is to consider stochastic

Schrödinger equations (SSEs) (Zoller and Gardiner, 1997;
Diósi, Gisin, and Strunz, 1998; Gaspard and Nagaoka, 1999a;
Stockburger and Grabert, 2002; Alonso and de Vega, 2005;
Piilo et al., 2008), discussed in Sec. V. SSEs enable the

calculation of all the dynamical quantities of a non-Markovian
OQS by evolving a state vector within its reduced Hilbert
space. This state vector may depend on one or two noises
whose statistical properties encode the relevant environmental
information influencing the state vector dynamics. The
reduced density matrix or the multiple-time correlations of
the system observables can then be obtained as a Monte Carlo
average over an ensemble of projectors of such stochastic
trajectories. The closely related path integral and quantum
Monte Carlo methods conform a broad and active area of
research that we do not intend to cover exhaustively in this
review. The interested reader can go for instance to the reviews
by Gull et al. (2011) and Pollet (2012) that discuss quantum
Monte Carlo applications in the fields of ultracold gases and
quantum impurity models, respectively. Besides that, the path
integral representation is also the basis of different analytical
derivations and approximations that lead to Heisenberg,
stochastic, and master equations similar to the ones covered
in this review. Three of the most important approaches of this
type are discussed in Sec. VI, namely, the noninteracting blip
approximation, the stochastic Liouville–von Neumann equa-
tion, and the hierarchical equations of motion.
As discussed in Sec. VII, the Heisenberg representation,

standard for describing the evolution of quantum operators, can
also be extended to tackle OQS dynamics, as already shown by
Ackerhalt, Knight, and Eberly (1973), Wódkiewicz and Eberly
(1976), and Kimble, Dagenais, and Mandel (1977). It allows
one to introduce the well-known input-output formalism, first
derived by Yurke (1984), Gardiner and Collett (1985), and
Barchielli (1986, 1987) [see also Gardiner and Zoller (2000)]
under the Markov approximation. As discussed, the input-
output formalism was recently extended to non-Markovian
systems by Diósi (2012) in the context of stochastic
Schrödinger equations, and by Zhang et al. (2012) in the
context of non-Markovian cascaded networks. Furthermore,
when no approximation is considered, the multiple-time corre-
lations of OQS observables follow a hierarchical structure
when no approximation is considered: quantum mean values
depend on two-time correlations, and in general N time
correlations depend on N þ 1 correlations. To truncate such
a hierarchy, either a Markov, a semiclassical, or a weak-
coupling approximation has to be assumed. The Heisenberg
approach is particularly advantageous for many-body OQSs,
where the dimension d of the systems Hilbert space grows
exponentially with the number of particles. The reason is that it
allows for an effective reduction of the problem dimension, by
considering a semiclassical truncation of correlations involving
multiple-particle operators.
To describe OQSs, a second possibility is to integrate the

degrees of freedom of the total system. This is a difficult
task, due to the large number of degrees of freedom of the
environment. In this regard, a judicious selection of the
relevant states of the full system is of primary importance;
for instance, in the context of electron-phonon interaction,
this can be done by discarding states with low probability,
as in the density matrix approach (Zhang, Jeckelmann, and
White, 1998), or by considering as relevant only those states
generated during the evolution, as in the variational approach
(Bonča, Trugman, and Batistić, 1999; Vidmar, Bonča, and
Trugman, 2010) [see also Fehske, Schneider, and Weie (2008)
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for a review on exact diagonalization methods]. Another
alternative is to map the original problem of a system coupled
to a set of environment harmonic oscillators into a one-
dimensional structure, where the system is coupled to a chain
of transformed oscillators (Bulla, Costi, and Pruschke, 2008;
Prior et al., 2010). Either in the original star configuration or
in the chain form the system can be solved with numerical
renormalization group (NRG) (Bulla, Costi, and Pruschke,
2008), or with time-dependent density matrix renormalization
group (DMRG) or matrix product states techniques (White,
1992, 1998; Schollwöck, 2011). Some of these ideas are
briefly discussed in Sec. IX.
The first two sections, which discuss models and scales of

the problem (Sec. II) as well as the main concepts of the theory
of OQS (Sec. III), are meant to give an overview of the
subject. In contrast, Secs. IV, V, VI, and VII discuss different
methods for solving the dynamics of OQS that are to some
degree independent from each other and therefore can be read
independently. Also, while most of the derivations of master
equations, SSE, and Heisenberg equations rely on a pertur-
bative expansion, the path integral related derivations dis-
cussed in Sec. VI do not rely on such type of expansions and
therefore in principle they do not share this limitation. Finally,
Sec. VIII discusses some exactly solvable models.
Before ending the Introduction, we clarify our working use

of the wording non-Markovian. Here we refer as Markovian
those derivations that are based on assuming a vanishing
environment correlation time, i.e., a Markov approximation
(discussed in Secs. II.F and IV.B.1). Similarly, we denomi-
nate as non-Markovian those derivations that are not based on
using the Markov approximation and thus are in principle
able to capture the non-Markovian behavior that could
occur in some parameter regimes. Importantly, a different
question is whether the resulting dynamics is indeed
Markovian or non-Markovian according to the measures
described in Sec. III.B. In this regard, an equation can lead
to Markovian dynamics, even if it is not obtained through a
Markov approximation. An example of this is discussed in
Sec. IV.B.
In the reminder of this section, we discuss some of the most

relevant situations where a non-Markovian OQS theory that
goes beyond the Markov approximation becomes necessary.

A. Non-Markovian effects in different scenarios

Non-Markovian effects are present in many different
contexts, ranging from solid state physics to hybrid systems,
quantum biology, and quantum optics, as discussed further.

1. Solid state and quantum information: Superconducting flux
qubits and quantum control

Solid state physics is a broad arena where OQSs exhibiting
non-Markovian effects may appear (Weiss, 2008).
As derived by Feynman and Vernon (1963), when the

system is weakly coupled to its environment, the coupling can
be considered to be linear and the environment described by a
set of harmonic oscillators. In this context, one of the best-
known models is the one developed by Caldeira and Leggett
(1983a) and Weiss (2008), which describes a harmonic

oscillator linearly coupled through its displacement coordinate
q to a fluctuating dynamical reservoir, which may represent,
for instance, the phonons of a lattice. This model will be
analyzed in more detail in Sec. II.B.
A Brownian motion type of system exhibiting non-

Markovian effects may also arise in the dynamics of a
Bose-Einstein condensate (BEC) in a trap, which is coupled
to a final atomic state outside of the trap. The dynamics of the
occupation number of the BEC exhibits oscillations that can
be interpreted as a quantum interference effect and clearly
displays non-Markovian behavior and strong departures from
the golden rule that predicts exponential decay (Hope, 1997;
Hope et al., 2000; Breuer et al., 2001). This behavior can also
be found when a quantum dot is coupled to a superfluid
reservoir via laser transitions (Jaksch and Zoller, 2005; Recati
et al., 2005), when a quantum dot is coupled to a BEC in a
double-well potential (Sokolovski and Gurvitz, 2009), or
when atoms trapped in an optical lattice are coherently
coupled to an untrapped level, giving rise to a highly non-
Markovian dissipation (de Vega, Porras, and Ignacio Cirac,
2008; Navarrete-Benlloch et al., 2011).
A similar system, recently proposed and experimentally

realized by Reichel et al. (2001), Treutlein et al. (2007), and
Hunger et al. (2010), consists of a nanomechanical oscillator
interacting with a BEC in a double-well potential. The atoms
of the condensate are confined in a double well and can tunnel
from one side of the potential to another, depending on the
position of the oscillator. As shown by Brouard, Alonso, and
Sokolovski (2011) and Alonso, Brouard, and Sokolovski
(2014), if one considers the condensate as an environment
for the oscillator, highly non-Markovian effects appear that
can be observed in the nonexponential decay of the oscillator
coherences.
Quantum Brownian motion can also be observed in an

optomechanical resonator coupled to a heat bath. A recent
experiment by Groblacher et al. (2015) showed that the
spectral density of such an environment is highly non-
Ohmic and produces non-Markovian dynamics in the reso-
nator. The spectral density is characterized by monitoring the
mechanical motion of the resonator with a high degree of
sensitivity, which is achieved by weakly coupling the mechan-
ics to an optical cavity field whose phase response encodes the
mechanical motion (see Fig. 1).
A different system where a Markov approximation may not

be suitable is an OQS coupled to a fermionic oscillator
environment. An example of this is a noninteracting fermion
coupled to a fermionic bath, analyzed by Schön and Zaikin
(1990). A more complex situation is the one described by the
Anderson impurity model (Anderson, 1961). It describes
clusters of interacting electron impurities, coupled to a
continuous conduction band of noninteracting electrons.
The Anderson model is the basis for dynamical mean-field
theory (Metzner and Vollhardt, 1989; Georges and Kotliar,
1992; Georges et al., 1996), which is the most widely used
numerical method to describe strongly correlated systems in
higher than one dimensions (Maier et al., 2005; Kotliar et al.,
2006) and is popular also in quantum chemistry (Zgid and
Chan, 2011). This model can also be used to describe electron
transport in quantum dots interacting with electron leads. It
has been analyzed using different approaches within the
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theory of OQSs, including rate equations (Gurvitz and Prager,
1996), master and Fokker-Planck equations (Li et al., 2005;
Pedersen and Wacker, 2005; Harbola, Esposito, and
Mukamel, 2006; Timm, 2008; Ghosh, Sinha, and Ray,
2012; Büsser, de Vega, and Heidrich-Meisner, 2014), sto-
chastic Schrödinger equations (Zhao et al., 2012), or path
integrals (Tu and Zhang, 2008) [see also Brandes (2005) for a
review]. A similar situation is the one described by the
Hubbard-Holstein model (Holstein, 1959; Hubbard, 1964),
which describes the electron-phonon interaction. This model
can be conveniently described with the theory of OQSs, when
considering that the phonons are characterized by a narrow
energy band in comparison to the electronic band. This
justifies treating the electrons as an environment, which
evolve in a much faster time scale than the phonons.
In other condensed-matter systems the dynamics of a

quantum system can be dominated by its coupling with
surrounding defects, impurity spins, or nuclear spins that
effectively lead to a spin environment (Prokof’ev and Stamp,
1993, 2000; Stamp, 1994; Saykin, Mozyrsky, and Privman,
2002). The coupling of a system to a spin environment does
not scale with the number of environment particles as 1=

ffiffiffiffi
N

p
,

as occurs with oscillator environments, but rather is indepen-
dent of N. One of the most well-known examples of these
systems is the central spin problem (Prokof’ev and Stamp,
2000; Breuer and Petruccione, 2002; Breuer, Burgarth, and
Petruccione, 2004), where the OQS itself is considered a spin
particle. An example of the central spin model is an electron
in a quantum dot coupled due to a hyperfine interaction with
the surrounding nuclear spins (Khaetskii, Loss, and Glazman,
2002; Merkulov, Efros, and Rosen, 2002; Schliemann,
Khaetskii, and Loss, 2003; Coish and Loss, 2004; Kessler
et al., 2012; Schuetz et al., 2012). Another example is an
electron spin of a single nitrogen-vacancy center coupled to
the spin environment of substitutional nitrogen defects
known as P1 centers (Hanson et al., 2008). The central spin
model also appears in the context of quantum computation,
when analyzing the decoherence of a qubit, such as a super-
conducting qubit, produced by the coupling with other qubits.

Other important decoherence sources for each different
type of superconducting qubits (charge, flux, and phase) were
recently discussed by Xiang et al. (2013). An excellent review
on OQS in mesoscopic systems and devices can be found in
Rotter and Bird (2015).
The dynamics of an OQS can be represented as a quantum

channel mapping an initial state to a final state. This
representation facilitates the use of quantum information
theory to analyze these systems and to explore the effects
and possible advantages of non-Markovian dynamics in the
quantum channel capacity (Maniscalco, Olivares, and Paris,
2007; Bylicka, Chruściński, and Maniscalco, 2014), and in
preserving quantum memory (Lo Franco, 2015; Man, Xia,
and Lo Franco, 2015a, 2015b; Hinarejos et al., 2016) [see a
complete review of this subject by Caruso et al. (2014)]. In
addition, it was pointed out by Alicki et al. (2002) that fault-
tolerant quantum computation theory may not be applicable
when the environment of the quantum computer has a long
correlation time. Nevertheless, a threshold analysis for some
non-Markovian error models was performed by Terhal and
Burkard (2005). Similarly, the quantum optimal control
theory, which provides a framework for variationally calcu-
lating the optimal choice of shape and parameters of a
succession of pulses to control a quantum system, has been
extended to deal with systems that are additionally coupled to
a non-Markovian environment (Rebentrost, Serban et al.,
2009; Hwang and Goan, 2012). This is of great importance
when it comes to controlling decoherence during the oper-
ation of a set of gates performing quantum computational
tasks. An excellent review on the subject can be found by
Koch (2016).

2. Quantum biology and chemical physics

In photosynthetic complexes, the transport of energy
between pigments is affected by a phononic environment
produced by surrounding vibrating proteins (Blankenship
et al., 2011). Recent experiments showed the existence of
long-lasting interexciton coherences in several types of photo-
synthetic complexes even at physiological temperatures
(Engel et al., 2007; Collini et al., 2010; Panitchayangkoon
et al., 2010). Because of these relatively long-lasting coher-
ences, pigments involved in this energy transport should be
considered in principle as quantum systems (Plenio and
Huelga, 2008; Caruso et al., 2009; Rebentrost, Mohseni et al.,
2009; Mohseni et al., 2013) coupled to the surrounding
phononic environment. In addition, in a typical situation
the relaxation time of this environment can be comparable
to or even slower than the electronic energy transfer dynamics
within the pigment complex, meaning that a Markov approxi-
mation is therefore no longer accurate (Ishizaki and Fleming,
2009b; Chin, Huelga, and Plenio, 2010). The dynamics of
these systems has been studied beyond the Markov approxi-
mation, by considering the full system dynamics (see Sec. IX),
or by calculating the reduced density operator with a hierarchy
approach (see Sec. VI.C). See also Lambert et al. (2013) for an
excellent review on quantum biology.
Although not covered in this review, note that in the context

of molecular physics the problem of a quantum system
interacting with an environment has a long tradition and there

FIG. 1. (a) The experimental setup consists of a laser, which is
split into a signal beam, and a local oscillator (LO). The signal
beam acquires a phase from the motion of the mechanical
resonator, which is detected on two photodiodes after a
previous beating of the signal with a strong LO. (b) Scanning
electron microscope picture of the tested device. From
Groblacher et al., 2015.

Inés de Vega and Daniel Alonso: Dynamics of non-Markovian open quantum systems

Rev. Mod. Phys., Vol. 89, No. 1, January–March 2017 015001-4



has been an intense research in dealing with non-Markovian
effects. Early examples can be found for instance in Mukamel
(1979) and Bretón et al. (1984a, 1984b).

3. Quantum optics: Photonic band gap materials

Atomic emission is affected by the photonic density of
states (DOS) of the radiation field, a quantity that depends
critically on whether the field is in free space or within a
quantum cavity, waveguide, or nanostructured material like
photonic crystals (PC) or metamaterials. The importance of
the medium in the atomic emission was first pointed out by
Purcell (1946). According to this result, the spontaneous
emission rate of an atom in a quantum cavity is enhanced by a
factor of Q with respect to that of the vacuum if the atomic
transition is in resonance with the cavity. In the same way, if
atomic transitions are far from any cavity resonance, the
spontaneous emission process will be inhibited. The same
kind of inhibition of spontaneous emission occurs if atoms are
located in a waveguide and their transition frequency is below
the waveguide’s fundamental frequency (Kleppner, 1981;
Barut and Dowling, 1987).
Atoms or impurities coupled to the modified radiation field

within a photonic crystal also exhibit strong deviations from
their behavior in the vacuum. Photonic crystals, which were
first envisioned by John (1987) and Yablonovitch (1987), are
periodic optical nanostructures that strongly modify the
properties of the electromagnetic (EM) field, affecting the
photons in a similar way as ionic lattices affect the motion of
electrons in solids. The radiation field in this material presents
a gap or frequency range where the photonic DOS vanishes,
and no propagating photons are allowed. Atoms or impurities
coupled to such a modified radiation field exhibit strong non-
Markovian effects, like nonexponential decay, or the forma-
tion of a photon-atom bound state when the atomic frequency
is within the gap (John and Quang, 1994; Florescu and John,
2001). In addition, the superradiant emission of a collection
of atoms in PC is strongly modified with respect to such
emission in the vacuum (John and Quang, 1995). Non-
Markovian effects are also present in impurities coupled to
PC nanocavities exhibiting an ultrahigh quality factor (Tanaka
et al., 2007) or to waveguides. The non-Markovian character
of the emission of a ferromagnetic sphere in a static magnetic
field in a PC, which behaves like a single atomic emitter, was
recently experimentally observed in Hoeppe et al. (2012) (see
Fig. 2). Further, experimental progress in the control of
spontaneous emission by manipulating optical cavity modes
and quantum dots within photonic crystals has demonstrated
that the spontaneous emission from light emitters embedded in
photonic crystals is not only suppressed within the gap, but
also enhanced in the direction where optical modes exist
(Englund et al., 2005; Noda, Fujita, and Asano, 2007;
Thompson et al., 2013). Also, recent proposals (Goban et al.,
2013; Hung et al., 2013) explore the atom-atom interactions
that may be produced in these materials mediated by a strong
light-matter interaction.
The analysis of such phenomena requires the use of tools

that go well beyond the Markov approximation, in order to
capture the relevant aspects of the processes. Among these are
the weak-coupling Heisenberg equations in Sec. VII.B

(Florescu and John, 2001), or the SSE in Sec. V (de Vega,
Alonso, and Gaspard, 2005). In addition, the exact sponta-
neous emission of an atom within a photonic crystal was
studied by John and Quang (1994) and Bay, Lambropoulos,
and Mølmer (1997) following variants of the exact method in
Sec. VIII.A, i.e., within the single photon sector. This method
was extended by Nikolopoulos, Bay, and Lambropoulos
(1999) and Nikolopoulos and Lambropoulos (2000) for two
photons. Reviews of these and related results can be found
in Lambropoulos et al. (2000) and Woldeyohannes and
John (2003).

II. CHARACTERIZATION OF THE PROBLEM

At low energies, OQSs can often be described using a few
canonical models, where a simple central system (the OQS) is
linearly coupled to an environment which belongs to one of
two different universal classes: spin environments, composed
of a set of independent spins, or harmonic oscillator environ-
ments composed of a set of either fermionic or bosonic
independent harmonic oscillators. See also the discussion by
Prokof’ev and Stamp (2000).
In this review we focus mainly on OQSs coupled to a

harmonic oscillator environment. In general, a complex
environment can be mapped into an effective harmonic
environment following the linear response theory. This
approximation is often deemed to correctly capture qualitative
behavior in many relevant situations. Particularly, it describes
light-matter interaction at low energies (see Sec. II.D) and as
argued by Feynman and Vernon (1963) describes several
models in condensed-matter physics corresponding to a
central system weakly coupled to its environment (Walls
and Milburn, 1994). In general, it is understood to be valid
when aiming at extracting the dynamics of the open quantum
systems only and provided that the environment remains with
an approximately Gaussian behavior (Forsythe and Makri,
1999; Makri, 1999). We note also that many of the techniques
presented here can be (and in a few cases have been) extended
to deal with spin environments.
In the following section we present the most general

Hamiltonian describing a linear interaction between the
OQS and its environment. Following this, we introduce the

FIG. 2. (a) Side-view and (b) top-view photographs of the
photonic crystal (scale bar 10 nm). The emission dynamics of an
emitter were measured considering two different positions:
position 1 close to a dielectric rod (left, red dots), and position 2,
at a maximum distance from any dielectric rod (right, blue dots).
From Hoeppe et al., 2012.
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Caldeira-Leggett model, after which we show that the light-
matter interaction Hamiltonian leads to a similar model. In
addition, we provide a qualitative analysis of the character-
istics of the system-environment interaction, offering physical
insight into the time scales involved in the problem as well as
an overview of the different approximations and strategies
available to tackle it. In doing so, we introduce the concept of
non-Markovianity from a phenomenological point of view; a
more quantitative analysis of non-Markovianity is provided in
the next section and also reviewed by Breuer (2012), Rivas,
Huelga, and Plenio (2014), and Breuer et al. (2015).

A. General interaction Hamiltonian

The Hamiltonian of an OQS coupled to an environment can
always be written as the composition of two terms:

Htot ¼ H0 þHI; ð1Þ

where H0 ¼ HS þHB is the free Hamiltonian, consisting of a
sum of the system and the environment Hamiltonians, and HI
is the interaction Hamiltonian that describes the coupling
between the OQS and the environment. A general coupling
Hamiltonian HI can be written as a sum of many couplings
between a set of environment operators fBηg and system
operators fSηg (Gaspard and Nagaoka, 1999a),1

HI ¼
X2M
η¼1

BηSη; ð2Þ

with Bη ¼ B†
η, Sη ¼ S†η. The Hamiltonian (2) is in fact the

most general form of interaction Hamiltonian. Nevertheless,
our analysis is restricted to the case where the environment
operators Bη are linear combinations of the creation and
annihilation operators, which is why we refer to the interaction
Hamiltonian (2) as linear. In addition, any Hamiltonian of the
type HI ¼

P
M
η¼1ðX†

ηYη þ XηY
†
ηÞ, with Xη and Yη system

and environment operators, respectively, can be written as
Eq. (2) and vice versa. This is done by just considering that

any operator can be decomposed as Xη ¼ XðaÞ
η þ iXðbÞ

η , in

terms of the Hermitian operators XðaÞ
η ¼ ðX†

η þ XηÞ=2, and
XðbÞ
η ¼ iðXη − X†

ηÞ=2. Considering a similar decomposition

for Yη, we find that HI ¼
P

M
η¼1ðX†

ηYη þ XηY
†
ηÞ is equal to

Eq. (2) with Sη ¼ 2XðaÞ
η , and Bη ¼ 2YðaÞ

η for η ¼ 1;…; M, and

Sη ¼ 2XðbÞ
η−M and Bη ¼ 2YðbÞ

η−M for η ¼ M þ 1;…; 2M (Rivas
and Huelga, 2011). For instance, if we replace in Eq. (2),

S1 ¼ Lþ L†; S2 ¼ iðL − L†Þ; ð3Þ

with L as a linear operator of the OQS, and

B1 ¼
1

2

X
λ

gλðaλ þ a†λÞ; B2 ¼
i
2

X
λ

gλðaλ − a†λÞ; ð4Þ

we arrive at a form for the Hamiltonian in terms of the
operators L and L†,

Htot ¼ HS þHB þ
X
λ

gλðLa†λ þ L†aλÞ: ð5Þ

As seen in the following sections, for a harmonic environment,
HB is quadratic in the environment modes, which makes HS
and L crucial in determining whether the dynamics is exactly
solvable or not. For instance, if one assumes that the OQS is a
harmonic oscillator with annihilation operator b, and L ¼ b,
the full Hamiltonian (5) is quadratic and the system is exactly
solvable as a Brownian particle (see Sec. VIII.B). If HS is not
harmonic, containing, for instance, an interaction term of the
form ∼Un2, with n ¼ b†b, then the problem is in general no
longer exactly solvable, and the only way to tackle it is either
by assuming some approximations or by numerically solving
the whole system and environment dynamics (see Sec. IX).

B. Caldeira-Leggett model

We consider the general Hamiltonian of a system with 1
or a few degrees of freedom coupled to an environment of
harmonic oscillators as described by Caldeira and Leggett
(1983a, 1983b), Leggett et al. (1987), and Weiss (2008). The
system Hamiltonian is written as Eq. (1) with the full
Hamiltonian having the form2

HS ¼
p2

2M
þ VðqÞ; ð6Þ

where q and p are, respectively, the system position and
momentum coordinates of the particle (½q; p� ¼ i), andM is its
mass. The Hamiltonian of the environment is

HB ¼
X
λ

1

2

�
p2
λ

mλ
þmλω

2
λx

2
λ

�
; ð7Þ

where pλ and xλ are the momentum and position coordinate
operators of the λ harmonic oscillator. The interaction of
the system with each mode of the reservoir is inversely
proportional to the volume of the reservoir, so that for a
spatially large environment this coupling is small. Therefore,
it is a good approximation for macroscopic environments to
consider that the system-reservoir coupling is a linear function
of the environment coordinates, giving the interaction
Hamiltonian the form

HI ¼ −
X
λ

SλðqÞxλ þ ΔVðqÞ: ð8Þ

Here a counterterm has been added to renormalize the
potential VðqÞ. Indeed, in the presence of the interaction,

1Except for cases where a more precise notation is needed for
clarity, we denote the external product of system S and environment
operators B, S ⊗ B, simply as SB.

2In this review, except in the path integral method section, we
settle natural units with ℏ ¼ 1.
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the minima of the potential for a given q are displaced by a
certain quantity, in such a way that the effective potential
in Eq. (6) should be written as VeffðqÞ ¼ VðqÞ − Δ0VðqÞ.
The renormalization consists of choosing in Eq. (8)
ΔVðqÞ ¼ Δ0VðqÞ, so that the minima of the potential are
placed at zero. For the special case of a separable interaction
(Weiss, 2008),

SλðqÞ ¼ CλSðqÞ: ð9Þ

In the simplest case in which SðqÞ ¼ q, the total Hamiltonian
can be written as

Htot ¼ HS þ
1

2

X
λ

�
p2
λ

mλ
þmλω

2
λ

�
xλ −

qCλ

mλω
2
λ

�
2
�
; ð10Þ

where the renormalization factor is identified as

ΔVðqÞ ¼
X
λ

C2
λ

mλω
2
λ

q2: ð11Þ

Replacing Eq. (9) in (8), the interaction term of the
Hamiltonian (10), without the renormalization term, is a
simplified version of the general Hamiltonian (2)

HI ¼ BS; ð12Þ

with B ¼ −
P

λCλxλ and S ¼ SðqÞ. The Hamiltonian (10) has
been widely used to describe dissipation in OQSs and is
often referred to in the literature as the Caldeira-Leggett model
(Leggett et al., 1987; Weiss, 2008).

C. The spin-boson model

In many physical and chemical systems, the generalized
coordinate q is associated with an effective potential with two
separate minima placed at the same energy. Since only these
two states are available, the Hilbert space of the system is
reduced to a two-dimensional space. This situation, described
with the well-known spin-boson model, occurs, for instance,
in the motion of light particles in metals, in certain chemical
reactions involving electron transfer processes [see for in-
stance the review by Leggett et al. (1987)], or in a super-
conducting qubit, which can be coupled to propagating
photons within an open transmission line as described by
Peropadre et al. (2013). In addition, OQSs such as vibrating
molecules can be represented as an anharmonic oscillator,
having an energy spectrum which is no longer infinite and
evenly spaced as in the harmonic case. Then, provided that the
interaction strength producing the anharmonicity U is suffi-
ciently large, such a spectrum can be truncated at the lowest
few energy levels. If the truncation is at the first two levels,
then the resulting OQS is also a truncated two-level system.
These systems described above are often referred to as
truncated two-state systems (Leggett et al., 1987), as opposed
to intrinsic two-state systems, such as a nucleus of spin 1=2, or
a photon with two polarization states. The spin-boson model
can also be considered to describe dissipative energy transfer
in a pair of two-level systems (each of them representing a

molecule, for instance) within the one excitation sector
(Gilmore and McKenzie, 2005; Nazir, 2009).
The spin-boson Hamiltonian can be written as Eq. (1), with

H0 ¼
1

2
ω12σz −

1

2
Δ0σx þ

X
λ

ωλa
†
λaλ;

where σα (α ¼ x, y, z) are the standard Pauli matrices for a
two-level system, ω12 is the energy separation between the
two states, and Δ0 is the coupling energy, representing the
tunneling between them. Also, the interaction term has
the form (12), HI ¼ σz

P
λCλxλ, such that

Htot ¼
1

2
ω12σz −

1

2
Δ0σx þ

X
λ

ωλa
†
λaλ

þ
XN
λ¼1

gλðaλ þ a†λÞσz; ð13Þ

where we have explicitly written the environment operators in
terms of creation and annihilation operators,

xλ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2mλωλ

s
ðaλ þ a†λÞ; pλ ¼ −i

ffiffiffiffiffiffiffiffiffiffiffi
mλωλ

2

r
ðaλ − a†λÞ;

and the coupling parameter is

gλ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2mλωλ

s
Cλ.

Note that alternatively the spin-boson model can be
expressed as

Htot ¼
1

2
ω12σx −

1

2
Δ0σz þHB þ σx

X
λ

Cλxλ;

by simply performing a unitary rotation of the previous
Hamiltonian.
In general, the dynamics and ground state properties of the

spin-boson model are both extremely rich and have been a
continuous object of study during the past decades. Regarding
the dynamics, the main topic of this review, for a weak
coupling between the system and the environment, the
evolution of the system can be computed with the master
equation discussed in Sec. IV.B.2, the SSE covered in
Sec. V.B.1, and the Heisenberg approach explained in
Sec. VII.B. In addition, as discussed in Sec. IV.B.11, the
Hamiltonian (13) can be unitarily transformed with a polaron
transformation that allows using the perturbative methods of
Sec. IV.B.2 to derive a master equation that is valid also for
strong coupling. In addition, in close connection to this idea is
the noninteracting blip approximation discussed in Sec. VI,
which is also valid for strong coupling. These polaron based
approaches are particularly accurate when Δ0 is small with
respect to all other energy scales of the problem. In situations
where none of these methods are suitable, one may consider
alternatives such as the path integral or Monte Carlo
approaches briefly discussed in Sec. VI that include in
Sec. VI.C the hierarchy expansions (useful when the
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environment spectral function is a Lorentzian or a sum of
Lorentzians), or the chain mapping approaches discussed
in Sec. IX.

D. Light-matter interaction Hamiltonian

The light-matter interaction Hamiltonian, which describes
the radiation field and an electron wave field, is written as
(Walls and Milburn, 1994)

~Htot ¼
1

2m
½p − eAðrÞ�2 þ eVðrÞ þHB; ð14Þ

when discarding the spin of the electron. Here e and m are the
electronic charge and mass, respectively, p ¼ −i∇ is the
momentum of the electron,

AðrÞ ¼
X
λ

ffiffiffiffiffiffiffiffiffiffiffiffi
1

2ωλϵ0

s
½aλAλðrÞ þ a†λA

�
λðrÞ�

is the vector potential of the electromagnetic field, and
HB ¼ P

λωλa
†
λaλ is the Hamiltonian of the free radiation

field. Both quantities are written in terms of the field
annihilation (creation) operators aλ (a

†
λ). Also ϵ0 is the vacuum

permittivity, while λ denotes the polarization σ and the wave
vector k. In addition, AλðrÞ are the mode functions of the
electromagnetic field, which in free space may be expanded as
AkσðrÞ ¼ υ−1=2eik·rêkσ , with êkσ as the unit polarization
vector, and υ as the quantization volume.
We now consider the electric dipole approximation, which

replaces AkσðrÞ by its value in the position of the atomic
nucleus r0. Considering this, the Hamiltonian (14) can be
written as3

Htot ¼ Hel þHB þ
X
λ;j;l

gλ;j;lb
†
jblðaλ þ a†λÞ; ð15Þ

where Hel ¼
P

jEjb
†
jbj correspond to the electron field,

and we have considered fermionic annihilation (creation)
operators bj (b†j ). The last term in Eq. (15) corresponds to
the interaction between them HI with the coupling constants
defined as

gλ;j;l ¼ −i

ffiffiffiffiffiffiffiffiffiffiffiffi
1

2ωλϵ0

s
ωjlAk;σðr0Þ · djl; ð16Þ

such that gλ;j;l¼ g�λ;l;j. Here ϵ0 is the electric permittivity ωjl ¼
Ej − El ≡ ωj − ωl (ℏ ¼ 1), and djl ¼ e

R
d3rϕ�

jðrÞx̂ϕlðrÞ is

the atomic dipolar moment. We consider that p̂ ¼
ðim=ℏÞ½Hel; x̂�, and also the fact that fϕjg are eigenfunctions
of Hel with eigenvalues Ej. For a two-level atom coupled to
the radiation field, we locate the atom at the origin of
coordinates r0 ¼ 0, such that gλ;2;1 ¼ gλ;1;2, and therefore

HI ¼
X
λ

gλ;1;2ðaλ þ a†λÞ½b†1b2 þ b†2b1�; ð17Þ

which is of the form (2).

E. The rotating wave approximation for the interaction
Hamiltonian

The interaction Hamiltonian can often be simplified by
considering the rotating wave approximation (RWA), which
allows us to neglect processes that do not conserve energy, i.e.,
those that correspond to the simultaneous creation (annihila-
tion) of a quanta in both the open system and its environment.
Let us consider for instance the Hamiltonian (15), and
reexpress it in the interaction picture eiH0tHIe−iH0t. Then it
is found that the terms that conserve the energy, also known as
resonant terms, oscillate with frequencies ωλ − ωjl, whereas
those that do not conserve energy oscillate with frequencies
ωλ þ ωjl. Performing the RWA, which consists of neglecting
such energy nonconserving terms, is particularly suitable to
describe light-matter interaction with transitions at optical
frequencies (above 600 THz), since in this regime the resonant
terms oscillate so fast that they cancel out along the evolution.4

Thus, with the RWA the interaction Hamiltonian in Eq. (15) is
expressed as

HI ¼
X
γλ

gλ;γðLγa
†
λ þ aλL

†
γÞ; ð18Þ

where we defined the coupling operators as Lγ ¼ b†jbl, with
γ ≡ j; l and j > l. For a two-level atom with Eq. (17), we have
Lγ ¼ L ¼ σ− (similarly L†

γ ¼ L† ¼ σþ), where we expressed
the electron operators in terms of the spin ladder operators
σþ ¼ b†2b1 and σ− ¼ b†1b2. Also gλ ≡ gλ;2;1 ¼ gλ;1;2.
Note that the RWA is closely related to the secular

approximation discussed in Sec. IV.B.3. However, while in
the secular approximation the fast rotating terms are elimi-
nated after tracing out the environment degrees of freedom,
the RWA discussed here is introduced before the trace, i.e., at
the level of the Hamiltonian. As discussed by Fleming et al.
(2010) the RWA made before the trace is more problematic
than the secular approximation and may lead to incorrect
values for the environmentally induced shifts to system
frequencies [see also Eastham et al. (2015)]. Also, it is known
that the RWA tends to fail in the ultrastrong coupling regime,
since although the terms with phases 2ωjl rotate very fast, they
might still represent a significant contribution (Prior et al.,

3Here we neglected the term ∼q2A2
λðrÞ=2m, compared to

∼ep ·AλðrÞ=2m. To estimate their magnitude (Schulten, 2001),
one should consider that the magnitude of the vector potential is

‖Aλ‖ ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N λ=ωλυ

p
, with N λ the number of photons of frequency ωλ

in the field, and that for a hydrogen atom ‖p2=ð2mÞ‖ ∼ e2=a0, with
a0 the Born radius. In general, neglecting ∼q2A2

λðrÞ=2m is valid as
long as the photon density in the radiation field N λ=υ is small,
particularly for the resonant frequencies of the field ωλ ¼ ωjl.

4Indeed, considering the dominant frequency of the field as the
resonant frequency ωk0

¼ ωjl (such that k0 is the resonant wave
vector), the dominant rotating phase of the energy nonconserving
terms is ωk0

þ ωjl ¼ 2ωjl.
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2013). Such an ultrastrong coupling limit can be achieved in
superconducting circuits (Niemczyk et al., 2010), supercon-
ducting qubits in open transmission lines (Peropadre et al.,
2013), coupled-cavity polaritons (Gunter et al., 2009), or
plasmon polaritons in semiconductor quantum wells (Geiser
et al., 2012).
With respect to the connection with non-Markovianity,

according to Mäkelä and Möttönen (2013) the rapidly
oscillating terms are responsible for the majority of the
non-Markovianity in a two-level system interacting with a
bosonic environment at zero temperature. In this regard, in the
limit of weak coupling and considering the RWA, the non-
Markovianity appears to be relevant only at short times that
are smaller than or of the order of the environment correlation
time, a quantity that is further discussed in the next section.
However, without the RWA the fast rotating terms contribute
significantly to non-Markovianity during the whole evolution
and not only at short times. This and other effects that relate
the RWA with non-Markovianity were recently analyzed by
Wang, Zhang, and Liang (2008), and Zeng et al. (2012).
Note that a Hamiltonian of the form (18) can be obtained in

some cases without using the RWA, particularly when the
bosonic field is a massive particle field, and the particle
number is conserved. For many-body OQSs, the most general
linear interaction Hamiltonian under the RWA is

Hint ¼
X
λ;j;k

½gλðrjÞLja
†
λ þ g�λðrjÞaλL†

j �; ð19Þ

where now Lj represents the coupling operator of the particle j
with the environment. In the case of atoms coupled to the
radiation field, Lj ¼ σ−j and gλðrjÞ ¼ gλe−ik·rj , where k and rj
represent, respectively, the wave vector and the position of the
particle j.

F. Relevant scales of the problem

For environments described as a set of independent har-
monic oscillators, the interaction is characterized by a spectral
density,

JðωÞ ¼
X
λ

g2λδðω − ωλÞ; ð20Þ

where gλ are the coupling strengths defined previously. This
function fully characterizes the action of the environment on
the OQS dynamics. Such action can also be encoded in the
environmental correlation function. For most of the applica-
tions here, we are dealing with an environment that has an
infinite number of degrees of freedom and that, at least
initially, is in a thermal equilibrium state. Such thermal
reservoirs or baths are characterized by the universality of
their fluctuation-dissipation relation, and the existence of
detailed balance conditions and a Kubo-Martin-Schwinger
relation (Kubo, 1957; Martin and Schwinger, 1959). This
relation is further discussed in Sec. IV.B.2. For such thermal
environments, considering also that L ¼ L† (see also
Sec. IV.B.2), the correlation function can be written as

αTðtÞ ¼
Z

∞

0

dωJðωÞ
�
coth

�
ωβ

2

�
cos ðωtÞ − i sin ðωtÞ

�
;

ð21Þ

where β ¼ ðκBTÞ−1, with κB the Boltzmann constant and T
the environmental temperature. This function can also be
defined as

αTðtÞ ¼
1

π

Z
∞

0

dωJðωÞ cosh½ωðβ=2 − itÞ�
sinh ðβω=2Þ .

For T ¼ 0 the correlation function becomes a partial Fourier
transform of the function JðωÞ:

αðtÞ ¼
Z

∞

0

dωJðωÞe−iωt: ð22Þ

Note that in the limit of a large number of oscillators and the
frequency representation gλ → gðωÞ, so that Eq. (20) in the
case of a dispersion relation with a single branch may be
written in the continuum as

JðωÞ ¼ g2(hðωÞ)DDOSðωÞ; ð23Þ

where hðωÞ is the inverse of the dispersion relation [such
that hðωÞ ¼ k] andDDOSðωÞ ¼ j∂ωðkÞ=∂kj−1 is the density of
states of the field.
Thus, the behavior of the open system crucially depends on

the correlation function αðtÞ, which is determined by the shape
of JðωÞ. The correlation function is an essential ingredient in
every system dynamical equation, acting as the kernel of
integral terms over past times. Roughly speaking, the time
scale of its decaying defines the environmental correlation or
relaxation time τc, which corresponds to the time that the
environment takes to return to its initial (usually equilibrium)
state. If τc is much smaller than the evolution time of the
system TS, then a Markovian approximation shall be consid-
ered to derive the OQS evolution equations. Hence, one can
approximate Re½αðt − τÞ� ∼ Γδðt − τÞ, with Γ the decay rate,
which cancels out the dependency over the past in the system
evolution equations.
If the frequencies of the oscillators form a finite discrete

spectrum, the associated correlation function is periodic or
quasiperiodic for commensurate and incommensurate
frequencies, respectively. Then there is another time scale
associated with the presence of a finite recurrence time τR on
the correlation function. In general, the denser the spectrum,
the longer the recurrence time. When reaching the recurrence
time, the OQS suffers a revival in its dynamics, regaining at
least partially its lost energy and coherence.
Here we denote as environment the larger subsystem

with which the OQS is coupled having either a continuous
or a discrete spectrum, and as reservoir the environment
with a continuum or quasicontinuum spectrum. In general,
we deal with environments with a spectrum that is
sufficiently dense so as to assure that τc ≪ TS ≪ τR. In
accordance with Breuer and Petruccione (2002), the
expression bath is to be reserved for those reservoirs in
a thermal equilibrium state.
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1. Derivations of the spectral density

There are two different possibilities to determine the
spectral density JðωÞ, depending on the particular situation.
As noted previously, when the environment is a reservoir of
harmonic oscillators and the OQS can be described by a single
extended coordinate q, the spectral density can be determined
phenomenologically, particularly from the knowledge of the
coefficients of the classical equation of motion (Leggett et al.,
1987; Weiss, 2008). With complex environments such as
those found in photosynthetic complexes, the spectral density
may also have to be built based on experimental evidence. For
other systems, a microscopic knowledge of the interaction
may be available, in particular, of the coupling constants gλ
and the dispersion relation ωðkÞ. Therefore, these quantities
can be used to derive JðωÞ through the sum (20). In the
following we present an example of a microscopic and a
phenomenological derivation of JðωÞ.
In general, a microscopic derivation is possible for atoms

interacting with electromagnetic fields, since the coupling
constants are given by Eq. (16) for a dipolar coupling between
levels jji and jli. Let us now take Eq. (22) in its discrete
version,

αðtÞ ¼
X
λ

jgλj2e−iωλt: ð24Þ

In the continuum limit, we then have

X
λ

≡X
σ

X
k

→ 2
υ

ð2πÞ3
Z

2π

0

dϕ
Z

π

0

dθ sin θ
Z

∞

0

dkk2;

where the factor of 2 in the last expression comes from a sum
in the two polarization modes σ. Considering Eq. (16) for a
two-level system,

g�λgλ ¼
1

2ωλϵ0υ
ω2
12d

2
12 cos

2 θ; ð25Þ

where jêk;σ · d̂12j2 ¼ cos2 θ and θ is the angle between the
atomic dipole moment d̂12 and the electric field polarization
vector êkσ. Solving the angular integrals and considering the
dispersion of the electromagnetic field in the vacuum k ¼ ω=c,
the correlation function can be rewritten as the result of
an integral in frequencies as Eq. (22), with DDOSðωÞ ¼
υω2=ð2πÞ2c3 and the function g2ðωÞ ¼ ω2

12d
2
12=6υωϵ0. By

virtue of Eq. (23) these quantities allow us to recover the
environmental spectral density.
In many cases, the behavior of a system can be described by

considering a phenomenological modeling of the spectral
density at low frequencies. In this regard, one of the most well-
known models is the one by Leggett et al. (1987) [see also
Caldeira and Leggett (1983a) and Weiss (2008)],

JðωÞ ¼ ηsω
sω1−s

c e−ω=ωc ; ð26Þ

for all s > 0, where ηs has the dimensions of a viscosity
and describes the coupling strength of the system and the
environment (Weiss, 2008).

The spectral density (26) constitutes a very general model to
describe many different types of reservoir, depending on the
choice of the parameter s. The exponential factor in this
model, modulated by the frequency ωc, is generally added ad
hoc to provide a smooth regularization for the spectral density.
A hard cutoff can also be considered at the characteristic
frequency ωc, JðωÞ ¼ ηsω

sω1−s
c θðωc − ωÞ. The cutoff fre-

quency should be conveniently chosen in accordance with
other scales and parameters of the problem, and if it is
sufficiently large, the OQS dynamics does not depend on
ωc for a vast range of parameters. The environments with
0 < s < 1 are called sub-Ohmic, while those corresponding
to s ¼ 1 and s > 1 are known as Ohmic and super-Ohmic,
respectively.
The case of Ohmic dissipation is important for charged

interstitials in metals. Also, an Ohmic model with a Lorenz-
Drude regularization instead of an exponential one as in
Eq. (26) describes quantum dissipation in chemical and
biophysical systems (see Sec. VI.C). A sub-Ohmic spectral
density describes the dominant noise sources in solid state
devices at low temperatures, such as superconducting qubits
(Shnirman, Makhlin, and Schön, 2002), nanomechanical
oscillators (Seoanez, Guinea, and Neto, 2007), and quantum
dots (Tong and Vojta, 2006). It also appears in the context of
glass dynamics (Rosenberg, Nalbach, and Osheroff, 2003) or
quantum impurity systems (Si et al., 2001). In addition,
spectral densities with s ¼ 1=2 and s ¼ 3=2 describe the
radiation field in isotropic and anisotropic photonic crystals,
respectively (Florescu and John, 2001; de Vega, Alonso, and
Gaspard, 2005). Other nonintegral values of smay be relevant
for fractal environments. Also, a phonon environment in p
spatial dimensions corresponds to the case s ¼ p or
s ¼ pþ 2, depending on the symmetry properties of the field.
Interestingly, in the Ohmic and sub-Ohmic regimes the

ground state of the spin-boson model (13) displays a quantum
phase transition when tuning the coupling strength between
the system and the environment (Anders, Bulla, and Vojta,
2007; Florens, Venturelli, and Narayanan, 2010; Chin et al.,
2011) [see also the review by Hur (2008)]. In detail, the
magnetization parameter given by hσzi displays a transition
between a delocalized (with hσzi ¼ 0) and a localized (with
hσzi ≠ 0) phase. This phase transition was studied by Vojta,
Tong, and Bulla (2005) with a density matrix renormalization
group and Chin et al. (2011) with a variational model and a
chain mapping. Both approaches are further discussed in
Sec. IX.
The Ohmic dissipation is sometimes referred to as

Markovian, which refers to the fact that an Ohmic spectral
density leads to a constant friction kernel in the corresponding
Langevin equation. However, as discussed by Rivas et al.
(2010), an Ohmic dissipation may lead to non-Markovian
effects, when the coupling strength is higher than a certain
value.

2. The weak-coupling approximation

One of the most important approximations used to describe
the dynamics of an OQS is to consider that in the general
form (1), the magnitude of the coupling term HI (often
described with a parameter g) is much smaller than the
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magnitude of the relevant energy transitions of the system.5

The validity of such a weak-coupling limit (van Hove, 1954) is
also conditioned to the environment correlation time τc (see
Sec. IV.B.2). Indeed, as discussed by Rivas and Huelga
(2011), a necessary condition for the existence of a weak-
coupling limit is that the environment has to have a well-
defined correlation time. This means that it should have
infinite degrees of freedom, so that there are no recurrences
or periodicities in the environment correlation function. When
τc is not even defined (e.g., because the recurrence time is
smaller than the correlation time), the coupling between
system and environment has to be zero in order to justify
the use of a perturbative expansion. A sufficient condition for
the existence of a well-defined weak-coupling limit was
derived by Davies (1974, 1976) [see also Rivas and Huelga
(2011)]. It states that such a well-defined limit exists if there is
an ϵ > 0, such that

R∞
0 dtjαðtÞjð1þ tÞϵ < ∞, where as seen

later, αðtÞ is of the order of g2.

III. CONCEPTS OF THE THEORY OF OQS

In this section we analyze several concepts of OQSs that are
independent from the tools to describe their dynamics, treated
in Secs. IV, V, VI, and VII. We start discussing the relevance
of the system-environment initial state to determine the nature
and properties of the resulting OQS dynamics. Following this,
in Sec. III.B we introduce the different non-Markovianity
measures that have been proposed during the past few years.
In Sec. III.C we discuss the effect of having initial system-
environment correlations in the backflow of information
from the environment into the system and also explore the
relationship between the non-Markovianity and the system-
environment correlations that are built up during the evolu-
tion. Thereafter, we discuss the effects of temperature on the
non-Markovianity of a process. To end this part, we analyze in
Sec. III.F the influence of non-Markovianity to reach a
particular steady state.

A. Initially correlated and uncorrelated states between the
system and the environment

The structure of the system-environment initial state is
fundamental to determine the nature of the evolution for
the reduced density matrix of the OQS, defined as
ρsðtÞ ¼ TrBfρtotðtÞg, where ρtotðtÞ is the density operator of
the full system. In this regard, the initial state is often
considered an uncorrelated state of the form

ρtotð0Þ ¼ ρsð0Þ ⊗ ρB; ð27Þ

where ρB is the environment density operator having a spectral
decomposition ρB ¼ P

qλqjEqihEqj, in terms of its eigenvec-
tors jEqi, and with λq ≥ 0. The reduced density matrix at time

t, ρsðtÞ ¼ TrBfUðtÞρsð0Þ ⊗ ρBU†ðtÞg, with UðtÞ ¼ e−iHt,
can then be written in terms of a Kraus decomposition,

ρsðtÞ ¼
X
l

ElðtÞρsð0ÞE†
l ðtÞ ¼ ΛðtÞ½ρsð0Þ�; ð28Þ

where El ¼
ffiffiffiffiffi
λq

p hEq0 jUðtÞjEqi (l≡ fq; q0g) are Kraus oper-

ators fulfilling the property
P

lE
†
l El ¼ 1S. Equation (28)

shows that when the reduced density operator can be written
in terms of a Kraus decomposition, it can also be written in
terms of a map ΛðtÞ acting on its initial state ρsð0Þ. Such a
map, often called a universal dynamical map, can be shown to
preserve complete positivity (CP). Following the discussion
by Rivas and Huelga (2011), CP can be explained as follows.
Imagine that apart from the system S and the environment B,
there is another componentW that interacts neither with S nor
with B. The partial dynamics of the subsystem SW can be
written as

ρSWðtÞ ¼
X
l

ElðtÞ ⊗ UWðtÞρSWð0ÞE†
l ðtÞ ⊗ U†

WðtÞ

¼ ΛðtÞ ⊗ UWðtÞ½ρSWð0Þ� ð29Þ

with UWðtÞ½A� ¼ UWðtÞAU†
WðtÞ, where UWðtÞ is the unitary

evolution operator on W. Then we decompose

ΛðtÞ ⊗ UðtÞ ¼ ½ΛðtÞ ⊗ 1W �½1s ⊗ UWðtÞ�: ð30Þ

Here ΛðtÞ is a universal dynamical map, and so ΛðtÞ ⊗ UðtÞ is
a universal dynamical map too and is therefore positive
preserving. The quantity 1s ⊗ UWðtÞ is a unitary operator,
which means that ΛðtÞ ⊗ 1W should be positive preserving.
Linear maps ΛðtÞ fulfilling this property are CP maps.
When the system and the environment are initially corre-

lated, the situation is more complicated, and it is still an open
problem to understand the relationship between the structure
of the initial system-bath states and the nature of the resulting
dynamics, including whether or not the dynamics are CP. The
requirement of CP for dynamical maps was first questioned by
Pechukas (1994), who pointed out that initially correlated
states might not lead to CP dynamics. This idea was subject of
an intense debate with Alicki (1995), who argued that all
physically meaningful initial states lead to CP dynamics. To
show this, he considered the initially correlated state that is
experimentally obtained as a result of projective measure-
ments on an OQS in equilibrium with its environment,

ρtotð0Þ ¼
X
n

λnPn ⊗
TrSfρeqtotð0ÞPng
Trtotfρeqtotð0ÞPng

ð31Þ

with Pn ¼ jψnihψnj representing a projection on a system
orthogonal state jψni and ρeqtotð0Þ a thermal equilibrium state
for the full system, and probed that it leads to CP dynamics. In
general, initial states are expressed in terms of the so-called
assignment maps, which map a certain system state ρsð0Þ to a
(possibly correlated) state in the system-environment space
SB. As it is now known, depending on their structure,
assignment maps may preserve or not certain properties in
the reduced dynamics, such as linearity, consistency, or

5For instance, for a two-level system with energy transition
ℏωs ∼ 3 eV, the term that describes its coupling to the light field
is of the order of ‖qp ·Aλs =m‖ ∼ 10−3 eV, where λs is the wave-
length corresponding to ωs, and we considered as a basis the
dimensional analysis of Sec. II.D [see also Schulten (2001)].

Inés de Vega and Daniel Alonso: Dynamics of non-Markovian open quantum systems

Rev. Mod. Phys., Vol. 89, No. 1, January–March 2017 015001-11



complete positivity (Rodríguez-Rosario, Modi, and Aspuru-
Guzik, 2010; Modi, Rodríguez-Rosario, and Aspuru-Guzik,
2012). In this regard, it has been shown that assignment maps
producing certain entangled initial system-bath states may
indeed lead to non-CP dynamics (Jordan, Shaji, and
Sudarshan, 2004; Carteret, Terno, and Życzkowski, 2008).
In addition, it was proven by Rodriguez-Rosario et al. (2008)
that initial states with zero discord (Ollivier and Zurek, 2001;
Modi et al., 2012), such as Eq. (31), i.e., fulfilling the property
½ρsð0Þ ⊗ 1B; ρtotð0Þ� ¼ 0, lead to completely positive reduced
dynamics. Shabani and Lidar (2009) proposed that quantum
discord is not only sufficient, but also necessary for CP
dynamics. Later, Brodutch et al. (2013) and Buscemi (2014)
showed that complete positivity may also be fulfilled for some
particular states with nonvanishing quantum discord, i.e.,
including quantum correlations [see also Shabani and Lidar
(2016)]. A complete discussion on the subject can be found in
Dominy, Shabani, and Lidar (2013).

B. Non-Markovianity measures

Many non-Markovianity measures have been proposed,
each of them having different strengths, i.e., a different ability
to capture the non-Markovian nature of a process. Based on
this, and on their conceptual basis, these non-Markovianity
measures can be classified in different ways [see, for instance,
Hall et al. (2014) and Rivas, Huelga, and Plenio (2014)]. An
exhaustive discussion of the different non-Markovianity
measures is out of the scope of this review and can be found
in Rivas, Huelga, and Plenio (2014) and Breuer et al. (2015).
Nevertheless, in the following we give an account of the most
important proposals which to our knowledge have been
presented up to date and organize them in an approximately
chronological (rather than conceptual) order.
According to Wolf et al. (2008) a map is Markovian if it is a

trace-preserving CP map and satisfies the semigroup property,

Λðt1 þ t2Þ ¼ Λðt1ÞΛðt2Þ: ð32Þ

In that case, ΛðtÞ ¼ eLt, and it leads to a Markovian equation
in Lindblad form (48), also written as

dρsðtÞ
dt

¼ LρsðtÞ: ð33Þ

Here L is a Liouville operator or superoperator (since it acts on
the system densitymatrix flattened as a vector), which generates
a dynamical semigroup. The definition (33) leads to a comput-
able measure, which quantifies how Markovian a snapshot of a
quantum evolution is, thus revealing the nature of the inter-
mediate continuous time evolution. This approach is particularly
useful to understand experimental results where input-output
relations are measured via quantum process tomography.
A less restrictive definition was proposed by Rivas, Huelga,

and Plenio (2010) [see also Rivas, Huelga, and Plenio (2014)],
where a map is defined as Markovian when it is a trace-
preserving divisible map, so that6

Λðt1 þ t2; 0Þ ¼ Λðt1 þ t2; t2ÞΛðt2; 0Þ; ð34Þ

where Λðt1 þ t2; 0Þ is completely positive for any t1; t2 > 0.
Let us consider the maximally entangled state between
two copies of the OQS, the system (S) and the ancilla (A),
jΦi ¼ ð1= ffiffiffi

d
p ÞPd−1

n¼0 jniSjniA, where d is the dimension of
the OQS basis fjnig. Then a map is CP if and only if
½Λðtþ ϵ; tÞ ⊗ 1d�ðjΦihΦjÞ ≥ 0. Hence, since the map is trace
preserving, ‖½Λðtþ ϵ; tÞ ⊗ 1d�ðjΦihΦjÞ‖1 ¼ 1 if and only if it
is also CP, and higher than 1 otherwise. Here ‖ · ‖1 denotes the
trace norm and 1d denotes an identity map. With this idea at
hand, we can define a function

gðtÞ ¼ lim
ϵ→0þ

‖½Λðtþ ϵ; tÞ ⊗ 1d�ðjΦihΦjÞ‖1 − 1

ϵ
. ð35Þ

Then, a system is non-Markovian, i.e., indivisible, when
gðtÞ > 0 for certain interval t ∈ I, so that the total amount
of non-Markovianity can be quantified by the so-called RHP
(Rivas, Huelga, and Plenio, 2010, 2014; Breuer et al., 2015)
measure as

N ðΛÞ ≔
Z
I
gðtÞdt: ð36Þ

Divisibility is crucial for the derivation of the quantum
regression theorem, studied in Sec. IV.C, and for the deter-
mination of the properties of the steady state of the system, as
analyzed in the following section. As discussed by Rivas,
Huelga, and Plenio (2010) and Rivas and Huelga (2011) and
Sec. IV.B, any divisible, invertible, and differentiable com-
pletely positive map in the Hilbert space of a d-level
system leads to a master equation that is local in time, having
the form dρsðtÞ=dt ¼ LðtÞρsðtÞ, where LðtÞ is a Liouvillian
superoperator related to the generators as LðtÞ¼ _ΛðtÞΛðtÞ−1.
When a Markov process is homogeneous, i.e., with a time-
independent generator LðtÞ ¼ L as in Eq. (33), then its map is
such that Λðtþ τ; tÞ ¼ ΛðτÞ, and the divisibility and semi-
group properties are equivalent.
Similarly, Breuer, Laine, and Piilo (2009) developed an

alternative derivation which considers as non-Markovian
those systems in which there is a backflow of information
from the environment to the system during the dynamics. This
backflow of information is characterized by an increase in the
distinguishability of pairs of evolving quantum states. In
detail, a system is non-Markovian if there is a pair of initial
system states ρ1ð0Þ and ρ2ð0Þ, such that for certain times t > 0

their distinguishability increases,

σ(ρ1sð0Þ; ρ2sð0Þ; t) ¼
d
dt

D½ρ1sðtÞ; ρ2sðtÞ� > 0: ð37Þ

Here Dðρ1s ; ρ2sÞ ¼ ð1=2Þ‖ρ1sðtÞ − ρ2sðtÞ‖ is the distinguishabil-
ity of ρ1sð0Þ and ρ2sð0Þ, and ρjsðtÞ ¼ Λðt; 0Þρjsð0Þ. In this
criterion, the amount of non-Markovianity of a quantum
process can be quantified with the BLP measure (Breuer,
Laine, and Piilo, 2009; Rivas, Huelga, and Plenio, 2014;
Breuer et al., 2015)

6Here, and when necessary for clarity, we make explicit the initial
time dependence of the map.
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N ðΛÞ ≔ maxρ1;2ð0Þ

Z
σ>0

dtσ(ρ1sð0Þ; ρ2sð0Þ; t); ð38Þ

which reflects the maximum amount of information that can
flow back to the system for a given process. As proven by
Wismann et al. (2012), for all finite dimensional quantum
systems the evaluation of Eq. (38) can be optimized by
considering initial states ρ1sð0Þ and ρ2sð0Þ that are orthogonal
and lie at the boundary of the subset of physical states. An
analogous definition of the BLP measure based on the Bures
metric was studied by Vasile et al. (2011).
A relationship between the two non-Markovianity measures

RHP and BLP can be derived from the fact that all divisible
maps continuously reduce the distinguishability of quantum
states. Therefore, if a map is Markovian according to the RHP
measure, it is Markovian according to the BLP measure, while
the converse is in general not true (Haikka, Cresser, and
Maniscalco, 2011; Rivas and Huelga, 2011). Zeng et al.
(2011) performed a further comparison between these two
non-Markovianity measures, demonstrating that both are
equivalent to each other when they are applied to open
two-level systems coupled to environments via the Jaynes-
Cummings or dephasing models.
Recently, the transition from Markovian to non-Markovian

dynamics was experimentally observed by Liu et al. (2011)
(see Fig. 3). In this proposal, the OQS is the polarization
degree of freedom of photons, described with the horizontal
jHi and vertical jVi polarization states. The environment is
represented by the photonic frequency degree of freedom,
and it is prepared initially in a one-photon state jξi ¼R
dωfðωÞjωi, where the frequency distribution fðωÞ is

normalized as
R
dωjfðωÞj2 ¼ 1. Both degrees of freedom

are coupled with each other, and fðωÞ can be experimentally
controlled to produce different initial states for the environ-
ment jξi ¼ R

dωfðωÞjωi. In this way, initial states of the form
jψþ;−i ¼ ð1= ffiffiffi

2
p ÞðjHi þ jViÞ ⊗ jξi can be generated with

different jξi. The non-Markovianity of the process is then
quantified through the non-Markovianity measure (38).
Another interesting application of non-Markovianity

measures is by Žnidarič, Pineda, and García-Mata (2011)
which analyzes the non-Markovianity of a qubit strongly
coupled to an environment, considering the RHP and BLP
measures. To this end, everything but the coupling operator
is neglected in Htot, which is chosen such that the statistical
properties of its eigenvectors can be described by a random
unitary matrix. This is a very good approximation for
quantum chaotic systems (Haake, 2010). By analytically
computing the quantum channel acting on the qubit, it is
shown that a non-Markovian behavior always occurs in such
a strong coupling limit, independently of the environment
dimension.
Other non-Markovianity measures are based on the quan-

tum Fisher information flow (Lu, Wang, and Sun, 2010;
Zhong et al., 2013) and Bures distance (Liu, Lu, and Wang,
2013), a quantification of the deviation from divisibility in
terms of the negative values of transition maps (Rajagopal,
Usha Devi, and Rendell, 2010), or the nonmonotonicity of the
decay of the mutual correlations between the OQS and an
ancilla (Luo, Fu, and Song, 2012). Also, a non-Markovianity
measure was derived by Lorenzo, Plastina, and Paternostro
(2013) based on the idea that the volume of physical states
accessible to a system decreases monotonically for Markov
evolutions, while non-Markovian evolutions may present
some time intervals where it increases. In addition,
Chruściński and Maniscalco (2014) proposed a non-
Markovianity measure based on a formal analogy with the
entanglement theory, such that a Markov evolution corre-
sponds to a separable state, while a non-Markovian evolution
is characterized by the Schmidt number of an entangled state.
A non-Markovianity measure based on the concept of
temporal steering and its quantification similar to that of
the original spatial Einstein-Podolsky-Rosen steering was
developed (S.-L. Chen et al., 2015). Also, the canonical form
of time-local master equations (see Sec. IV.B) is the basis of
the non-Markovianity measure presented by Hall et al. (2014),
which also discussed the relative strength of this measure and
the previously proposed measures. More recently Liu et al.
(2015) quantified the non-Markovianity of a chromophore-
qubit pair in a super-Ohmic bath, using the distance between
an evolved state and the steady state.

C. System-environment correlations and non-Markovianity

It is apparent that during the decoherence process there is
an exchange of information between the system and the
environment. An initial flow of information from the
environment to the system was found by Laine et al.
(2010) to be linked to the presence of initial correlations
between the system and the environment. In this analysis,
they considered two initial states of the total system ρ1totð0Þ
and ρ2totð0Þ, concluding that an initial increase of the trace
distance of the reduced states implies that there are initial
correlations in ρ1totð0Þ or ρ2totð0Þ, or that the initial environ-
mental states are different. Such an increase in the trace
distance is found to be upper bounded as

FIG. 3. Changes in the trace distance and the concurrence of the
OQS as functions of the tilting angle θ. Such an angle determines
the structure of the frequency spectrum and, thus, the environ-
mental initial state jξi. The positive values in the left and right
(blue) regions give directly the non-Markovianity measure N ðΛÞ
of the process, while the negative values correspond to
N ðΛÞ ¼ 0, i.e., Markovian dynamics. From Liu et al., 2011.
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D(ρ1sðtÞ; ρ2sðtÞ) −D(ρ1sð0Þ; ρ2sð0Þ)
≤

X
j¼1;2

D(ρjtotð0Þ; ρjsð0Þ ⊗ ρjBð0Þ)þD(ρ1Bð0Þ; ρ2Bð0Þ);

ð39Þ

where ρjsðtÞ ¼ TrBfρjtotðtÞg (j ¼ 1, 2). A more complete
discussion can also be found in Breuer et al. (2015).
More recently, Mazzola et al. (2012) and Smirne et al.
(2013) linked the non-Markovianity with the occurrence of
system-environment correlations created during the inter-
action. The analysis is based on the consideration that the
total system-environment density matrix can always be
written as

ρtotðtÞ ¼ ρsðtÞ ⊗ ρBðtÞ þ χSBðtÞ; ð40Þ

where χSBðtÞ describes the correlation between the system
and the environment at time t. Then the difference between
density matrices of the total system at time t that have
departed from different initial states ρ1totð0Þ and ρ2totð0Þ can
be decomposed as

ρ1totðtÞ − ρ2totðtÞ ¼ ½ρ1sðtÞ − ρ2sðtÞ� ⊗ ρ1BðtÞ þ ρ2sðtÞ
⊗ ½ρ1BðtÞ − ρ2BðtÞ� þ ½χ1totðtÞ − χ2totðtÞ�;

ð41Þ

as a function of the system and environment operators
corresponding to the two initial conditions (denoted by
indices 1 and 2). Computing the difference of the trace
distance between ρ1tot and ρ2tot at times t and tþ t0,
ΔDðt0; t; ρ1;2tot Þ ¼ Dðtþ t0; ρ1;2tot Þ −Dðt; ρ1;2tot Þ, it is found
that a sufficient condition for non-Markovianity, i.e.,
ΔDðt0; t; ρ1;2tot Þ > 0, is that

Bðt0; t; ρ1;2tot Þ > Dðt; ρ1;2tot Þ þ Fðt0; t; ρ1;2tot Þ: ð42Þ

Here Bðt0; t; ρ1;2tot Þ keeps track of the effects of correlations
and differences in the environmental states [i.e., it is
originated by the last two terms in Eq. (41)] at times
tþ t0. Also, Fðt0; t; ρ1;2tot Þ expresses how the distinguishability
between reduced states would be at tþ t0 if the two total
states at time t were product states, and it is thus originated
by the first term on the right-hand side (rhs) of Eq. (41).
Hence, system-environment correlations, given by B in
Eq. (42), must exceed a threshold in order to produce an
increase in the distinguishability and thus lead to a non-
Markovian evolution.
A different question is whether the information exchanged

is of quantum or classical nature. In particular, there are
circumstances where the system decoheres without becoming
entangled with the environment at any time (Eisert and Plenio,
2002; Pernice and Strunz, 2011; Pernice, Helm, and Strunz,
2012). In such cases classical system-environment correla-
tions may account for the decoherence process. Naturally, the
former analysis refers to system-environment correlations
existing in the total density matrix, which is obtained as a
sum of the results of many different experimental runs starting

from the same initial configuration. Hence, even if it is found
that χSB ¼ 0, system-environment correlations could be (and
in fact are) present at each experimental run. In fact, system-
environment correlations are the basis of indirect measure-
ment techniques, in which, for instance, information about the
atomic state is obtained from scattered photons. As discussed
in Sec. V, indirect measures may be a basis for deriving
stochastic Schrödinger equations.

D. Environment-environment correlations and
non-Markovianity

As proposed by Laine et al. (2012), non-Markovian effects
can emerge in a composite open system (for instance a
bipartite open system with reduced state ρs), when each
OQS’s component interacts locally with a subsystem of a
composite environment. Then, provided that the subsystems
of the composite environment are initially correlated, non-
Markovianity can be observed in the reduced dynamics of the
composite OQS state ρs, while the local dynamics of the
reduced density operator of each member of the composite
open system (ρ1s ¼ Tr2fρsg and ρ2s ¼ Tr1fρsg) remains
Markovian. Such nonlocal memory effects have been shown
to be a resource for quantum information tasks, such as
quantum communication (Liu et al., 2013; Laine, Breuer, and
Piilo, 2014) and efficient superdense coding in the presence of
dephasing noise (Liu et al., 2015).
Environment-environment correlations can be either exper-

imentally prepared as in Liu et al. (2013) and Liu et al. (2015)
or emerge dynamically. As discussed by Chan et al. (2014), a
key aspect for the appearance of correlations among multiple
baths is the presence of non-Markovianity in the interaction
between the subsystems and their environments. In more
detail, only when such interaction is non-Markovian quantum
interference between the baths emerge, as opposed to the
Markovian limit where the action of the different baths is
additive. An OQS coupled to multiple reservoirs can be found
in different situations, as in cavity quantum electrodynamics
(Gea-Banacloche et al., 2005), optomechanical cavities
(Safavi-Naeini et al., 2014), traveling-wave photon-phonon
transduction in nanophotonic waveguides (Shin et al., 2015),
photoactive molecules coupled to a vibrating environment
such as photosynthetic complexes (Blankenship, 2002), or the
dynamical Casimir effect (Impens et al., 2014) just to name
a few.

E. Temperature and non-Markovianity

An insightful case study is to consider an initial uncorre-
lated state of the form (27) with the environment in a thermal
equilibrium,

ρeqB ¼ e−βHB

TrBfe−βHBg : ð43Þ

In general, it is well known that temperature enhances the
decay and therefore tends to decrease the relaxation time of
the system (Affleck, 1981; Weiss and Haeffner, 1983; Grabert,
Weiss, and Hanggi, 1984). A different question is how
temperature affects the non-Markovianity of the evolution.
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It is generally believed that non-Markovian effects are more
important at low temperatures (Weiss, 2008). In this regard,
for a two-level system in a spin bath, Zheng-Da, Yi-Xin, and
Ye-Qi (2014) showed that the non-Markovianity decreases
close to the critical point of the system, and that this decrease
is indeed higher at higher temperatures. In addition, Haikka,
Johnson, and Maniscalco (2013) analyzed a two-level system
subject to a dephasing bath with spectral density (26),
observing that there is a critical value of s for the onset of
non-Markovianity. This critical value is higher for high
temperatures. Also, Liu et al. (2015) concluded that the
non-Markovianity of a chromophore qubit in a super-
Ohmic bath and thus the backflow of information from the
environment is reduced when the temperature increases.
However, as shown recently by Vasile, Galve, and Zambrini

(2014) for a bosonic noninteracting system, all quantities—
environment size, temperature, proximity of a cutoff
frequency ωc in the spectra, spectral density shape (sub-
Ohmic, Ohmic, super-Ohmic), and strength of the coupling to
the system—are crucial factors in determining the non-
Markovianity of an evolution. Interestingly, Vasile, Galve,
and Zambrini (2014) determined that for certain parameter
values the non-Markovianity increases with the temperature.
Along the same line, H.-B. Chen et al. (2015) also showed that
non-Markovianity can increase with temperature and with the
coupling to the environment. In this proposal, both entangle-
ment and non-Markovianity measures are used to reveal
whether second-order weak-coupling non-Markovian master
equations (Sec. IV) underestimate or overestimate memory
effects. This is done by comparing the approximated equa-
tions to the numerically exact hierarchical equations of motion
(HEOM) discussed in Sec. VI.C. The entanglement measure
considered is detailed in Fig. 4.

F. Asymptotic and equilibrium states in Markovian
versus non-Markovian dynamics

In order to characterize an OQS in the long time limit,
several concepts come into play. In the long time limit the

OQS may relax to a steady state, characterized by a time-
independent density matrix limt→∞dρSðtÞ=dt ¼ 0. Moreover,
while relaxation describes the convergence of the reduced
density matrix of a system to a fixed but arbitrary state,
thermalization corresponds to a relaxation or stabilization of
the system to its thermal or Gibbs state,7

ρeqS ¼ e−βHS

ZSðβÞ
: ð44Þ

In the limit of vanishing coupling strength, a system coupled
to a thermal reservoir relaxes to such thermal state (van Hove,
1954; Davies, 1976; Laird, Budimir, and Skinner, 1991),

lim
g→0

lim
t→∞

ρsðtÞ ¼ ρeqS ; ð45Þ

irrespective of the initial state of the system, but only if certain
conditions are fulfilled (Romero-Rochin and Oppenheim,
1989; Geva, Rosenman, and Tannor, 2000). However, this
may not be the case in the strong coupling limit or for specific
spectral densities of the environment. A detailed discussion of
this is provided in Sec. IV.B.3.
In addition, as pointed out by Chruściński, Kossakowski,

and Pascazio (2010), there is a crucial difference between
the long time limit states resulting from aMarkovian evolution
(in the sense that is described by a divisible map) and a non-
Markovian one. In order to appreciate this difference, it is
necessary to recall the following definitions: first, for a
Markov evolution a steady state ρss is defined as

lim
t→∞

Λðt; 0Þρ0 ¼ ρss; ð46Þ

for any arbitrary state ρ0, where the solution of a general
Markovian master equation is written as ρsðtÞ ¼ Λðt; 0Þρ0;
second, because a Markov evolution possesses the divisibility
property Λðtþ t2; 0Þ ¼ Λðt; t2ÞΛðt; 0Þ, we find

lim
t2→∞

Λðtþ t2; 0Þρ0 ¼ ρss: ð47Þ

But also limt2→∞Λðt þ t2; 0Þρ0 ¼ Λðt; 0Þρss. Hence,
Λðt; 0Þρss ¼ ρss, i.e., for a Markovian evolution the steady
state ρss is always invariant, wherein a state ρ0 is said to be
invariant if ΛðtÞρ0 ¼ ρ0 for any t ≥ 0. Because non-
Markovian evolutions do not fulfil the semigroup property,
a non-Markovian evolution may lead to a steady state that is
not invariant. A non-Markovianity measure based on this
idea was proposed by Chruściński, Kossakowski, and
Pascazio (2010).
A related question is whether an OQS relaxes to steady state

(either thermal or not) which is independent of the initial
condition. For the case of a Markov semigroup map, as the
one corresponding to the Lindblad equation, the steady state
is unique as long as the semigroup is relaxing, in which case
the equation Lρss ¼ 0 admits only one solution. A semigroup

FIG. 4. Schematic illustration of the entanglement measure,
which is closely associated with the non-Markovianity measure
proposed by Rivas, Huelga, and Plenio (2010). A system and an
environment isolated copy of it, acting as an ancilla, is consid-
ered. Initially, they form a maximally entangled state. When the
system starts to be coupled with its environment (denoted by
the gray shadow) it will evolve and the system-ancilla entangle-
ment will be sensitive to the environment coupling. From
H.-B. Chen et al. (2015).

7In the context of isolated many-body systems, a generalization of
the Gibbs state was proposed (Rigol et al., 2007), which is also valid
for systems obeying conservation laws.
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is relaxing when the zero eigenvalue of the generator L is
nondegenerate, and the rest of the eigenvalues have a negative
real part. Otherwise, the final state of the system might depend
on the initial state.
The dependency of the steady state on the spectral density

structure was extensively studied for the case of the OQS
being a harmonic oscillator (see also Sec. VIII.B). In this case,
the system annihilation operator can be expressed as aðtÞ ¼
AðtÞað0Þ þP

λuλðtÞbλð0Þ (Louisell, 1990; Cai, Yang, and
Sun, 2014), and a nonvanishing asymptotic value of AðtÞ
(which is solved through an integro-differential equation that
depends on the spectral density) is clearly identified with a
nonthermal relaxation. In this regard, Zhang et al. (2012) and
Xiong et al. (2013) concluded that when the spectral density
has band gaps or a finite band [so that JðωÞ vanishes in a
certain region], localized modes exist in the environment that
give rise to dissipationless dynamics (and hence nonthermal
relaxation) in the OQS. Remarkably, nonthermal relaxation
also occurs for nongapped spectral densities, provided that the
coupling strength exceeds a certain threshold (Xiong et al.,
2013; Cai, Yang, and Sun, 2014). Moreover, such nonthermal
relaxation was also explored by Iles-Smith, Lambert, and
Nazir (2014) by considering a two-level system coupled to
an environment with a Drude spectral density (see also
Secs. VI.C and IX for details on how to deal exactly with
this case).
The long time limit of an evolution is often difficult to

obtain, either because of inherent limitations of the approx-
imations used or because of the difficulty of performing
numerical calculations at long times. Nevertheless, as shown
by Cerrillo and Cao (2014), the initial evolution of an OQS up
to τc already contains all the relevant information of the
multiple-time correlations of the OQS observables. This
information can be extracted to determine a set of non-
Markovian transfer tensors, which can be used to propagate
the system state to arbitrary long times.

1. Quantum correlations and entanglement in the steady state

The coupling of a multipartite open system with an
environment does not always produce decoherence and decay
of its quantum correlations. In fact, entanglement may be
preserved and even generated due to a combined action of
environment noise with either a driving source (Huelga and
Plenio, 2007; Li and Paraoanu, 2009; Galve, Pachón, and
Zueco, 2010), a nonequilibrium situation (Lambert, Aguado,
and Brandes, 2007; Cai, Popescu, and Briegel, 2010), or a
continuous monitoring of the decay dynamics (Plenio et al.,
1999), for instance.
Entanglement generation has also been analyzed in sit-

uations where the systems involved are coupled to common or
independent reservoirs (see discussion in Sec. VII.E regarding
the conditions for these two limits). In more detail, entangle-
ment may be generated by considering that the systems
involved are coupled to a common reservoir, Markovian in
the case of Benatti, Floreanini, and Piani (2003), and non-
Markovian in Braun (2002), where the dynamics of HS is
neglected. But even when considering the systems coupled to
independent Markovian reservoirs, a careful design of the
system-environment couplings can lead to an entangled state

as the unique stationary state of a dissipative process (Kraus
et al., 2008; Verstraete, Murg, and Cirac, 2008).
A different situation is analyzed by Huelga, Rivas, and

Plenio (2012) who considered two spins with nearest-neighbor
interactions and locally coupled to two damped harmonic
oscillators, showing that non-Markovianity is a resource to
support the formation of steady state entanglement in situations
where purely Markovian dynamics leads to separable steady
states. In a subsequent analysis of the many-body generaliza-
tion of this model, Cormick et al. (2013) showed that long time
limit entangled states can also be achieved in the Markov case,
and that the role of non-Markovianity is just to allow for a faster
convergence to such steady state.
Regarding the dynamics from an initially entangled state,

the entanglement between a pair of two-level systems has been
shown to vanish at short times compared to the usual
spontaneous lifetime (Yu and Eberly, 2004). However, if
the reservoirs are non-Markovian, the dynamics of a pair of
two-level systems in an initial Bell-like state (Bellomo, Lo
Franco, and Compagno, 2007), or Werner-like state (Bellomo,
Lo Franco, and Compagno, 2008), or the dynamics of two
oscillators (Paz and Roncaglia, 2008, 2009) may show the
presence of entanglement oscillations and revivals after a
finite period of time of its complete disappearance. Other
studies of continuous variable systems coupled to non-
Markovian environments have suggested its relevance in
the preservation of two-mode (Liu and Goan, 2007;
Maniscalco, Olivares, and Paris, 2007; Hörhammer and
Büttner, 2008; Cormick and Paz, 2010; Correa, Valido, and
Alonso, 2012; Estrada and Pachn, 2015) and three-mode
(Valido, Alonso, and Kohler, 2013; Valido, Correa, and
Alonso, 2013; Valido, Levi, and Mintert, 2014; Hsiang and
Hu, 2015; Valido, Ruiz, and Alonso, 2015) entanglement.
Revivals of quantum correlations may also occur when the
environment is classical (Zhou, Lang, and Joynt, 2010;
Bordone, Buscemi, and Benedetti, 2012; Lo Franco,
D’Arrigo et al., 2012; Lo Franco, Bellomo et al., 2012; Xu
et al., 2013) and thus it does not have a backaction into the
system.

IV. MASTER EQUATIONS

One of the most important approaches describing the
dynamics of an OQS is to compute the master equation
evolving the reduced density matrix of the system ρsðtÞ. Some
of the most relevant master equations available are discussed
in this section.

A. Brief historical review: Rate equations
and Markov master equations

The theory for describing the dynamics of an OQS is well
developed under the Markov hypothesis, assuming that the
relaxation time of the environment is much smaller than any
relevant time scale of the system. One of the first evolution
equations was derived by Einstein (1917) and describes the
atomic population dynamics of an atom emitting and absorb-
ing light in a thermal field. The generalization of this equation,
made by Pauli (1928) [see also Gardiner and Zoller (2000)],
reads as follows:
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dPnðtÞ
dt

¼
X
m>n

ðAn
m þ Bn

mDÞPmðtÞ þ
X
m<n

Bn
mDPmðtÞ

−
X
m<n

ðAm
n þ Bm

n DÞPnðtÞ −
X
m>n

Bm
n DPnðtÞ;

where PnðtÞ are the occupation probabilities of the energy
levels. The coefficients Am

n and Bm
n represent the transition

rates from the atomic state n to the atomic state m due to
spontaneous and stimulated emission, respectively. In this
equation, D≡DðωmnÞ is the energy density of the electro-
magnetic field at the emitting frequency ωmn ¼ Em − En,
where En is the energy of the level n. The energy density is
given by Plank’s radiation lawDðωmnÞ ¼ αω3

mn expð−ωmnβÞ.8
The positive terms represent the gain of probability from

transitions into the state n, and the negative terms represent the
loss of probability by transitions from the state n. The
transition rates between populations fAm

n ; Bm
n g are given by

the Fermi golden rule within the weak-coupling approxima-
tion (Cohen-Tannoudji, Diu, and Laloë, 1977). When the
Hamiltonian of the system is unknown, transition rates can be
calculated from experimental data or chosen by a phenom-
enological ansatz. The use of a quantum theory that only has
to deal with probabilities was justified by Pauli with the
repeated random phase assumption, which consists of assum-
ing that the phase relations between wave functions are always
(repeatedly) randomized, so that only the square of the wave
function (i.e., the probabilities) are relevant. Nevertheless, this
assumption is not valid whenever the quantum coherences
remain finite during the system evolution time scale.
In the second half of the last century, the density operator

ρðtÞ was introduced by Landau (1927), Lüders (1951), and
von Neumann (1955) [see also Cohen-Tannoudji, Diu, and
Laloë (1977), Landau and Lifschitz (1980), Diósi (1990),
Gardiner and Zoller (2000), and Breuer and Petruccione
(2002)]. Such an object is more convenient for describing
systems where the repeated random phase assumption cannot
be applied. A good example of such systems is lasers, which
as highly coherent fields cannot be described with the Pauli
equation (nor can systems interacting with them).
The best-known master equation, which is obtained under

the Born-Markov approximation, is the Lindblad equation
(Gorini, Kossakowski, and Sudarshan, 1976; Lindblad, 1976),
which corresponds to a dynamical semigroup as discussed in
Sec. III.B. For a Hamiltonian of the form (18) and considering
an OQS having a d-dimensional Hilbert space (see Sec. IV.B
for a derivation)

dρsðtÞ
dt

¼ −i½Hs; ρsðtÞ� þ
Xd2−1
k¼1

Δk½2CkρsðtÞC†
k

− fC†
kCk; ρsðtÞg�; ð48Þ

where Ck are system operators in the Lindblad form and Δk is
a constant and positive parameter. This master equation

represents one of the key elements of the theory of OQSs
and is particularly suited to quantum optics and quantum
thermodynamic scenarios. In the latter case it allows us to
address the thermodynamic processes taking place at a finite
time (Spohn and Lebowitz, 2007; Campisi, Talkner, and
Hänggi, 2009; Esposito, 2012; Correa et al., 2013;
Gelbwaser-Klimovsky, Alicki, and Kurizki, 2013; Kosloff,
2013; Strasberg et al., 2013; Szczygielski, Gelbwaser-
Klimovsky, and Alicki, 2013; Correa, Palao, Adesso, and
Alonso, 2014; Correa, Palao, Alonso, and Adesso, 2014;
Correa, Palao, and Alonso, 2015; Palao et al., 2016). The
intimate connection between quantum thermodynamics and
the theory of OQSs, and hence the thermodynamic consis-
tency of the latter beyond the weak-coupling condition
remains the subject of ongoing developments [see Esposito,
Harbola, and Mukamel (2009) for a review].
A critical analysis of the validity of the Markov approxi-

mation for a single oscillator and two interacting harmonic
oscillators coupled to a harmonic oscillator environment,
which is an exactly solvable problem (see Sec. VIII.B),
was performed by Rivas et al. (2010).

B. Non-Markovian master equations

Even without the Markov approximation, the dynamics of
the reduced density operator of an OQS obey a time-local
master equation, as long as its map, given by Eq. (28), is
invertible and differentiable. To show this, we compute the
time derivative of this equation to get

dρsðtÞ
dt

¼
X
l

�
dElðtÞ
dt

ρsð0ÞE†
l ðtÞ þ ElðtÞρsð0Þ

dE†
l ðtÞ
dt

�
:

ð49Þ

If the corresponding map ΛðtÞ is invertible, then we can
always reexpress ρsð0Þ ¼

P
mFmðtÞρsðtÞQmðtÞ, where Fm

and Qm are system operators. Conditions for invertibility of
a map have been discussed for instance by Maldonado-Mundo
et al. (2012), and consequences on the complete positivity of
the resulting equation are further discussed by Breuer et al.
(2015). Inserting this expression into Eq. (49), this equation
can be reformulated as

dρsðtÞ
dt

¼
X
k

AkðtÞρsðtÞB†
kðtÞ; ð50Þ

where the label k ¼ fη; l; mg, with η ¼ 1, 2, such
that A1;l;mðtÞ ¼ ½dElðtÞ=dt�FmðtÞ, A2;l;mðtÞ ¼ ElðtÞFmðtÞ,
B†
1;l;mðtÞ ¼ QmðtÞE†

l ðtÞ, and B†
2;l;mðtÞ ¼ QmðtÞdE†

l ðtÞ=dt.
Here we defined

Vt−t0X ¼ U†
0ðt; t0ÞXU0ðt; t0Þ; ð51Þ

for any system or environment operator X, and also
ρItot ¼ U0ðt; t0ÞρtotðtÞU†

0ðt; t0Þ with the free evolution oper-
ator U0ðt; t0Þ ¼ e−iH0ðt−t0Þ. Following the techniques devel-
oped by Gorini, Kossakowski, and Sudarshan (1976) for
deriving the Lindblad equation, and further discussed by

8Let us recall here that we have set ℏ ¼ 1, so that ωmn ¼
ðEm − EnÞ=ℏ≡ Em − En and DðωmnÞ ¼ αω3

mn expð−ℏωmnβÞ≡
DðωmnÞ ¼ αω3

mn expð−ωmnβÞ.
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Hall et al. (2014) for the non-Markovian case, we rewrite the
system operators AkðtÞ and BkðtÞ in terms of the complete
set of N ¼ d2 basis operators fGi; i ¼ 0;…; N − 1g, with
the properties G0 ¼ 1S=

ffiffiffi
d

p
, Gi ¼ G†

i , TrfGig ¼ δi0, and
TrfGiGjg ¼ δij. Note that for a two-level system these are
just the unit matrix 1S and the Pauli matrices σi with i ¼ x, y,
and z. Then the expansion takes the form

AkðtÞ ¼
X
i

aikðtÞGi;

BkðtÞ ¼
X
j

bjkðtÞGj; ð52Þ

with aikðtÞ ¼ TrfAkðtÞGig and bikðtÞ ¼ TrfBkðtÞGig. In
these terms, the general master equation (50) becomes
_ρsðtÞ ¼

P
N−1
ij¼0 cijGiρsðtÞGj, with cij ¼

P
kaikðtÞb�jkðtÞ being

the elements of an N × N matrix, which because of the
Hermiticity of ρsðtÞ shall be Hermitian too, such that cij ¼ cji.
Separating out the terms i ¼ 0 and j ¼ 0, the master

equation can formally be written as

dρsðtÞ
dt

¼ −i½ĤSðtÞ; ρsðtÞ� þ CρsðtÞ þ ρsðtÞC†

þ
XN−1

ij¼1

cijGiρsðtÞGj; ð53Þ

where we defined

C ¼ 1S
2d

c00 þ
X
i

ci0ffiffiffi
d

p Gi.

Trace preservation implies that Cþ C† ¼ −
P

N−1
ij¼1 cijGjGi.

Rewriting Eq. (53) in terms of combinations of C − C† and
Cþ C†, we find that

dρsðtÞ
dt

¼ −i½ĤSðtÞ; ρsðtÞ� þ
Xd2−1
ij¼1

dijðtÞ
�
GiρsðtÞGj

−
1

2
fGjGi; ρsðtÞg

�
; ð54Þ

where ĤSðtÞ ¼ ði=2ÞðC − C†Þ and dij ¼ cij for i; j > 0.
Then considering that the decoherence matrix dij is
Hermitian, it can be rewritten in its diagonal form
dijðtÞ ¼

P
kUikðtÞΔkðtÞU�

jk, where ΔkðtÞ and UjkðtÞ are,
respectively, its eigenvalues and unitary eigenvectors.
Defining the time-dependent operators

CkðtÞ ¼
XN−1

i¼1

UikðtÞGi; ð55Þ

we can rewrite Eq. (54) in the canonical form

dρsðtÞ
dt

¼ −i½ĤSðtÞ; ρsðtÞ� þ
Xd2−1
k¼1

ΔkðtÞ½2CkðtÞρsðtÞC†
kðtÞ

− fC†
kðtÞCkðtÞ; ρsðtÞg�; ð56Þ

which is the non-Markovian generalization of the Lindblad
equation (48). Note that Eq. (56) corresponds to the general
time-localmaster equation previously defined byBreuer (2004).
In Eq. (56), complete positivity can be ensured only when
ΔkðtÞ ≥ 0 throughout the whole evolution. If this condition is
not fulfilled, nothing can be assured, and CPmay or may not be
preserved depending on the case. Moreover, according to Hall
et al. (2014) and Breuer et al. (2015), a time-local master
equation is Markovian if and only if the canonical decoherence
rates are positive during thewhole evolution.Non-Markovianity
can then be defined as a sum of all intervals where the decaying
ratesΔkðtÞ are negative. This measure is shown to be equivalent
in strength to the one defined by Rivas, Huelga, and Plenio
(2010). Finally, in the Markov semigroup case originally
considered by Gorini, Kossakowski, and Sudarshan (1976),
the coefficients are time independentΔkðtÞ ¼ Δk, andCPcanbe
assured provided that they are all positive.
Equation (54), or its canonical version (56), formally

describes the evolution of the reduced density matrix of an
OQS. Its coefficients can only be computed exactly in the
specific systems discussed in Sec. VIII, namely, for a quantum
Brownian particle, in the dephasing case L ∼Hs, or when the
full problem can be solved within the one excitation sector.
Nevertheless, in a recent derivation Ferialdi (2016a) has
provided the most general form of a non-Markovian map
corresponding to a bilinear interaction Hamiltonian (2). Based
on this, Ferialdi (2016b) has shown that the coefficients of the
master equation for the spin-boson and Jaynes-Cummings
models (the last one consisting of several spins coupled to a
common bosonic field) come in terms of an infinite series of
mutually dependent terms.
In the following sections, we analyzed several approxima-

tions to tackle the dynamics of a general OQS. In this regard,
the first non-Markovian master equation was derived by
Redfield (1957, 1965) within the context of nuclear magnetic
resonance. A more accurate non-Markovian master equation,
which allows us to recapture the Redfield equation itself in a
limit, was later derived by considering a weak-coupling
approximation between the system and the environment.
This equation can be obtained by means of two different
methods,which are explained in the following sections: the first
is based on assumptions made on the evolution time scales and
on theBorn-Markov approximation, and the second is based on
an expansion in the coupling parameter between the system and
the environment. For both methods, a total Hamiltonian of the
form Htot ¼ H0 þ gHI is considered, where g is a small
parameter that, for simplicity, is absorbed here into HI , so
that terms proportional to Hn

I are at least of the order gn.

1. The Born-Markov approximation

The von Neumann equation for the density operator of the
total system in the interaction picture ρItotðtÞ reads as follows:

dρItotðtÞ
dt

¼ 1

i
½VtHI; ρItotðtÞ�; ð57Þ

where we considered the definition (51). To simplify the
notation, we set ρItotðtÞ ¼ ρðtÞ. We can integrate Eq. (57)
between t0 and t. After two iterations and a trace over the
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environmental degrees of freedom, this leads to the following
equation:

ΔρsðtÞ ¼
1

i

Z
t

t0

dτTrBf½VτHI;ρðt0Þ�g

þ
�
1

i

�
2

×
Z

t

t0

dτ
Z

τ

t0

dτ0TrBf½VτHI; ½Vτ0HI;ρðτ0Þ��g;

ð58Þ

where ρsðtÞ ¼ TrBfρðtÞg is the system reduced density
operator and

ΔρsðtÞ ¼ ρsðtÞ − ρsðt0Þ: ð59Þ

Equation (58) is exact, but some assumptions have to be made
in order to express it as a closed equation for ρsðtÞ. For an
initially uncorrelated state of Eq. (27), ρðt0Þ ¼ ρsðt0Þ ⊗ ρB,
and considering the case where

TrBfVt0HIρ
eq
B g ¼ 0; ð60Þ

so that the first term in Eq. (58) can be eliminated. Note that
this occurs for instance when the environment is initially in
thermal equilibrium ρB ¼ ρeqB given by Eq. (43).
After the change of variable T ¼ τ and s ¼ τ − τ0, Eq. (58)

becomes

ρsðtÞ ¼ ρsðt0Þ −
Z

t

t0

dT
Z

T−t0

0

ds

× TrBf½VTHI; ½VT−sHI; ρðT − sÞ��g: ð61Þ

The evolution equation for the reduced density operator can be
obtained by taking the derivative of Eq. (61) with respect to t,

dρsðtÞ
dt

¼ −
Z

t−t0

0

dτTrBf½VtHI; ½Vt−τHI; ρðt − τÞ��g; ð62Þ

with initial condition ρsðt0Þ. The density operator appearing
on the rhs of Eq. (62) has the general form (40). However, the
integral in Eq. (62) contains a kernel, the correlation function,
that decays with τc. In addition, the term χSBðtÞ, which
describes the correlations between the system and the envi-
ronment at time t, persists only during a time approximately
equal to τc. Hence, such correlations can be neglected with the
assumption that τc ≪ TS. This is the Born approximation,
which is valid only up to the order g2 in the perturbation
parameter (Cohen-Tannoudji, Dupont-Roc, and Grynberg,
1992; Breuer, Kappler, and Petruccione, 1999). In order to
transform the resulting equation into a time-local form, we
further replace ρsðt − τÞ ¼ ρsðtÞ within the integral term. This
approximation is valid provided that the system evolution time
TS is much slower than the correlation time of the environ-
ment, which settles the scale in which the integrand decays to
a certain value. This is sometimes known in the literature as
the first Markov approximation.
Choosing t0 ¼ 0, the evolution equation (62) then becomes

after a trivial change of variable t − τ → τ

dρsðtÞ
dt

¼ −
Z

t

0

dτTrBf½VtHI; ½VτHI; ρBðtÞ ⊗ ρsðtÞ��g; ð63Þ

where ρBðtÞ ¼ TrSfρðtÞg, and the initial condition is ρsð0Þ.
As discussed later, a further approximation consists of
assuming that the integral limits can be extended to ∞,
which is often known in the literature as the second
Markov approximation.

2. Perturbative approximation in the coupling constant

The equivalence between approximations on time scales
and the Born approximation and the weak-coupling
assumption can easily be seen by returning to Eq. (57) and
performing a perturbative integration of ρðtÞ. After tracing out
the environment’s degrees of freedom, we get an expression
similar to Eq. (61),

ρsðtÞ ¼ ρsðt0Þ −
Z

t

t0

dT
Z

T

t0

dτTrBf½VTHI; ½VτHI; ρðt0Þ��g;

ð64Þ

but now with ρðt0Þ instead of ρðτÞ inside the integral term.
Taking the derivative of Eq. (64) with respect to t, Eq. (63) is
again obtained, where it has been used that in the term of the
order g2 of Eq. (64), ρsðt0Þ can be replaced by ρsðtÞ, so that the
discarded terms are of a higher order than g2. In summary,
the assumptions over the time-scale hierarchy (τc ≪ TS) are
related to the weak-coupling limit (g ≪ 1).9 In order to obtain
Eq. (63), we considered an initial condition of the form (27),
with ρB fulfilling the property (60). More general initial
conditions are studied in Sec. IV.B.6.
A more specific form for the master equation can be

obtained by replacing in Eq. (63) the general HI given by
Eq. (2), so that VtHI ¼

P
ηVtfSηBηg ¼ P

ηVtSηVtBη, with
Vt specified in Eq. (51). In that way, we get

dρsðtÞ
dt

¼ −
X
γ;η

Z
t

0

dτCγηðt − τÞ½VtSγ; VτSηρsðtÞ�

−
X
γ;η

Z
t

0

dτC�
γηðt − τÞ½ρsðtÞVτSη; VtSγ�; ð65Þ

where we set t0 ¼ 0 and defined

CγηðτÞ ¼ TrBfVtBγVt−τBηρBg;
Cγηð−τÞ ¼ C�

γηðτÞ ¼ TrBfVt−τBηVtBγρBg;
ð66Þ

using the cyclic property of the trace and considering C� as the
complex conjugate of C.
For the choice (3) and (4) of coupling operators, and

considering that the environment is in a thermal state ρB ¼ ρeqB
given by Eq. (43), we find that the correlation functions in
Eq. (65) combine as α�ðtÞ ¼ 2½C11ðtÞ � iC21ðtÞ� (de Vega
et al., 2005), with

9Indeed, when g → 0, TS → ∞ and the condition τc ≪ TS is more
easily fulfilled.
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α−ðt − τÞ ¼
X
λ

g2λ ½nðωλÞ þ 1�e−iωλðt−τÞ ð67Þ

and

αþðt − τÞ ¼
X
λ

g2λnðωλÞeiωλðt−τÞ. ð68Þ

The function nðωλÞ ¼ ½expðωλβÞ ∓ 1�−1 is the average ther-
mal number of quanta in the mode ω corresponding to bosonic
(−) and fermionic (þ) reservoirs. In terms of these, Eq. (65)
can be expressed as (Yu et al., 1999)

dρsðtÞ
dt

¼
Z

t

0

dταþðt − τÞ½VτL†ρsðtÞ; VtL�

þ
Z

t

0

dτα−ðt − τÞ½VτLρsðtÞ; VtL†� þ H:c: ð69Þ

Note that for zero temperature nðωλÞ ¼ 0, so that
αþðt − τÞ ¼ 0 and α−ðt − τÞ becomes equal to Eq. (24),
and the master equation (69) is further simplified. Yet a
further simplification can be obtained when L ¼ L†, so that
the terms in Eq. (69) combine in such a way that the resulting
equation depends only on the correlation function αTðt − τÞ
defined in Eq. (21).
Although the former master equation is valid only up to g2,

its form already suggests the result of the thermofield approach
proposed by Bargmann (1961), Araki and Woods (1963), and
Takahashi and Umezawa (1996) [see Blasone, Jizba, and
Vitiello (2011) for a review], i.e., that a thermal environment
can be expressed as two different environments at zero
temperature. This can be formally described by introducing
an auxiliary environment with operators cλ and c†λ , so that the
total Hamiltonian can be rewritten as H ¼ Htot −

P
λωλc

†
λcλ,

with Htot given by Eq. (5), and considering as initial state
jΩ0i ∝ e−βHB=2jIi, with jIi ¼ P

njniajnic. This is the max-
imally entangled state between the real and the auxiliary
environments, defined in terms of their energy eigenstates
jnib, jnic, and it is such that the reduced state of each
environment (physical B and auxiliary C) is a thermal state
TrCfjΩ0ihΩ0jg ¼ TrBfjΩ0ihΩ0jg ¼ ρeqB . Then a thermal
Bogoliubov transformation is considered

a1λ ¼ e−iGbλeiG ¼ coshðθλÞbλ − sinhðθλÞc†λ ;
a2λ ¼ e−iGcλeiG ¼ coshðθλÞcλ − sinhðθλÞb†λ ;

ð70Þ

where G ¼ i
P

λθλðb†λc†λ − cλbλÞ, with θλ a function of the
temperature such that coshðθλÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ nðωλÞ

p
. The trans-

formed Hamiltonian has the form (Diósi, Gisin, and Strunz,
1998; Yu, 2004; de Vega and Bañuls, 2015)

~Htot ¼ HS þ
X
λ

ωλða†1λa1λ − a†2λa2λÞ þ
X
λ

g1λðL†a1λ þ a†1λLÞ

þ
X
λ

g2λðLa2λ þ a†2λL
†Þ; ð71Þ

where g1λ ¼ gλ coshðθkÞ and g2λ ¼ gλ sinhðθλÞ. The key point
is that the transformed initial state, known as the thermal

vacuum jΩi ¼ e−iGjΩ0i, is the vacuum for the transformed
modes a1λjΩi ¼ a2λjΩi ¼ 0. Hence, solving the dynamics of
the initial problem, given by the Hamiltonian (5) with an
initial condition ρtot0 ¼ ρS0 ⊗ ρB, is equivalent to solving the
dynamics with Eq. (71), but with an initial condition
ρtot0 ¼ ρS0 ⊗ jΩihΩj. Thus, the thermofield approach permits
one to treat a thermal state of the environment as a vacuum
state (i.e., the thermal vacuum) of two transformed environ-
ments, which therefore does not contain any initial excitation.
This enables the use of the SSEs derived for an environment in
the vacuum state to describe thermal environments (Diósi,
Gisin, and Strunz, 1998; Yu, 2004) and gives rise to a
potentially better scaling of the basis dimension needed for
exact numerical calculations such as matrix product states
(MPS) (de Vega and Bañuls, 2015).

3. Markov limit and secular approximation
of the weak-coupling master equation

When VtL evolves very slowly in time as compared to the
environment correlation time, the integration limits in Eq. (65)
[and also in Eq. (69)] can be extended to infinity, leading to a
Markovian master equation also referred to as the Redfield
master equation (Redfield, 1957, 1965). Nevertheless, in
general this equation does not generate a dynamical semi-
group and therefore does not guarantee CP (Davies, 1974;
Dümcke and Spohn, 1979).
To get this property, and thus obtain an equation in the

Lindblad form, the secular approximation has to be consid-
ered. Following the discussion in Breuer and Petruccione
(2002) [see also Rivas and Huelga (2011)], the interaction
Hamiltonian (2), written as an interaction picture, can be
expanded as

VtHI ¼
X
η;ω

e−iωtSηðωÞBηðtÞ; ð72Þ

where we considered the spectral decomposition of the system
operators SηðωÞ ¼

P
n;n0ϵn−ϵn0¼ωΠðϵnÞSηΠðϵn0 Þ, where ΠðϵnÞ

represents a projection onto the eigenspace belonging to the
eigenvalue ϵn of HS, which is assumed to have a discrete
spectrum. Also, Sþη ðωÞ ¼ Sηð−ωÞ. Previously considering a
change of variable t − τ → τ, Eq. (65) can be rewritten in
terms of these quantities as

dρsðtÞ
dt

¼
X
ηγ

X
ωω0

eiðω0−ωÞtΓγηðωÞ½SηðωÞρsSþγ ðω0Þ

− Sþγ ðω0ÞSηðωÞρs� þ H:c:; ð73Þ

where we defined ΓγηðωÞ ¼
R
∞
0 dτeiωτCγηðτÞ. If the spectrum

of the system Hamiltonian HS ¼
P

nεnjnihnj is nondegener-
ate, and the typical value for jω − ω0j−1 defines a time scale
that is much smaller than the dissipation time scale, the terms
in Eq. (73) with ω ≠ ω0 lead to a vanishing contribution in the
equation and can be discarded following the secular approxi-
mation. As discussed earlier, this approximation is similar to
the rotating wave approximation in quantum optics. The
resulting equation is in the Lindblad form, with corrected
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system Hamiltonian ĤS ¼ HS þ
P

ωΔγηðωÞS†ηSγ , and a
dissipative term Lρs ¼

P
ηγ

P
ω ~γγηðωÞ½SηðωÞρsSþγ ðωÞ −

ð1=2ÞfSþγ ðωÞSηðωÞ; ρsg�, with ΔγηðωÞ ¼ ImfΓγηðωÞg the
Lamb shift and ~γγηðωÞ ¼ RefΓγηðωÞg.
In addition, since ρB is a thermal equilibrium state, the

correlations (66) follow the Kubo-Martin-Schwinger condi-
tion and therefore can be written as CγηðtÞ ¼ Cηγð−t − iβÞ.
This emerges from the property nðωÞ þ 1 ¼ eβωnðωÞ and
leads to ~γγηð−ωÞ ¼

R
∞
−∞ dτe−iωτCγηðτÞ ¼ ~γηγðωÞe−βω. This,

together with the properties ρeqS SηðωÞ ¼ eβωSηðωÞρeqS and
ρeqS S

þ
η ðωÞ ¼ e−βωSþη ðωÞρeqS , can be used to prove that the

thermal state ρeqS given in Eq. (44) cancels the rhs of the
Markovian master equation (73) obtained after the secular
approximation and therefore is a steady state of this
equation [see for instance Breuer and Petruccione (2002)].
Note that as discussed in Sec. III.F the uniqueness of
such steady state, and thus its independence of the initial
state, depends on whether the corresponding map is relaxing
or not.
Equation (73), together with the secular approximation,

gives rise to a closed equation of motion for the populations
Pðn; tÞ ¼ hnjρsðtÞjni with a similar form as the rate equa-
tion (48), dPðn;tÞ=dt¼P

m½WðnjmÞPðm;tÞ−WðmjnÞPðn;tÞ�
(Breuer and Petruccione, 2002). This equation is now
governed by two types of rates WðnjmÞ ¼ P

γ;η ~γγηðϵm −
ϵnÞhmjSγjnihnjSηjmi and WðmjnÞ, defined similarly. From
the Kubo-Martin-Schwinger condition discussed previously,
the detailed balance condition follows WðmjnÞe−βϵn ¼
WðnjmÞe−βϵm , which leads to the conclusion that the equi-
librium populations PstðnÞ follow the Boltzmann distribu-
tion PstðnÞ ∼ e−βϵn .
This rough picture of spontaneous emission is equivalent to

the one that follows from the Fermi golden rule (Cohen-
Tannoudji, Dupont-Roc, and Grynberg, 1992; Scully, 2002;
Woldeyohannes and John, 2003). This rule determines that the
spontaneous emission rate corresponding to a process driving
the system from an initial state to a final state with an energy
difference ω is just given by Re½ΓγηðωÞ�.
As discussed, without the secular approximation, the

Redfield equation cannot in general be written in the
Lindblad form and thus does not preserve positivity. For
the case of a two-level system, the breaking of positivity is
related to having initial conditions near the border of the
space of physically admissible density matrices, i.e., when
det½ρsð0Þ� ≥ 0, but very close to 0.10 This issue occurs because
the non-Markovian effects that happen at the initial stage of
the evolution are not being taken into account when the
integral limits of Eq. (69) are extended to infinity. The
application of a slippage (i.e., a displacement) of initial

conditions, first suggested by Suárez, Silbey, and
Oppenheim (1992) for the case of a spin-boson model and
then extended by Gaspard and Nagaoka (1999b) for
general systems, appears to solve this problem, at least
within the domain of the weak-coupling approximation
(see Fig. 5).
In simple cases, a relationship can be established explicitly

between the correlation time τc, the weak-coupling parameter
g, and the maximum time tm up to which the evolution
calculated with the second-order weak-coupling approxima-
tion gives rise to a positive density matrix. This is calculated
by formally solving the evolution equation of the populations
up to second order, and calculating the maximum time tm up to
which they are still positive. For a two-level system withHS ¼
ω12σz coupled to the zero-temperature reservoir, this relation
can be simply written as 1=g2 ¼ 2

R tm
0 dl

R
l
0 dτℜ½α̂ðl − τÞ�,

with α̂ðt − sÞ ¼ e−iω12ðt−sÞαðt − sÞ. Considering a simple
exponentially decaying correlation αðtÞ ¼ expð−ΓtÞ, the lim-
iting condition is just tm ¼ 1=τcg2.

4. Coarse-graining approach to weak-coupling
master equations

An interesting alternative to derive a second-order master
equation is the coarse-graining approach discussed by Alicki
(1989), Schaller and Brandes (2008), and Benatti, Floreanini,
and Marzolino (2009). Indeed, the formal solution of Eq. (57)
can be written as ρðtþ τÞ ¼ Wðtþ τ; tÞρðtÞW†ðtþ τ; tÞ,
with Wðtþ τ; tÞ ¼ T expð−i R tþτ

t dt1Vt1HIÞ and T a time-
ordering operator. Following Schaller and Brandes (2008),
one can perform the second-order perturbative expansion of
Wðtþ τ; tÞ and replace the result back in the above definition
of ρðtþ τÞ. Then, truncating at second order and considering
the Born approximation, we find

FIG. 5. The space of the reduced matrices ρs for a two-level
system is divided into the set of admissible density matrices
for which detðρsÞ ≥ 0 so that all the eigenvalues of ρs define
non-negative probabilities, and the set of nonadmissible
density matrices for which detðρsÞ < 0. From Gaspard and
Nagaoka, 1999b.

10A density matrix should obey three properties: (i) Trfρg ¼ 1,
(ii) ρ ¼ ρ†, and (iii) hujρjui ≥ 0 for any state jui. From the
decomposition ρs ¼

P
nλnjϕnihϕnj in terms of eigenstates jϕni,

these can be rewritten as (i)
P

nλn ¼ 1, (ii) λn real, and (iii) λn ≥ 0,
which implies that detðρsÞ ¼

Q
nλn ≥ 0. For a two-level system, a

trace-preserving and Hermitian density matrix with det ρs ≥ 0 also
fulfills (iii), since both eigenvalues cannot be negative, and thus they
should both be positive.
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ρsðtþ τÞ ¼ ρsðtÞ −
1

2

X
γη

Z
tþτ

t
dt1

Z
tþτ

t
dt2

× Cγηðt2 − t1Þsignðt2 − t1Þ½Vt2SγVt1Sη; ρsðtÞ�

þ
X
γη

Z
tþτ

t
dt1

Z
tþτ

t
dt2Cγηðt2 − t1Þ

×

�
Vt1SηρsðtÞVt2Sγ −

1

2
fVt2SγVt1Sη; ρsðtÞg

�
≡ ρsðtÞ þ τLτ

cðtÞρsðtÞ; ð74Þ

where Lτ
cðtÞ represents the Liouville superoperator specified

earlier. Then, provided that τg2 is small with respect to
the time scale where ρsðtÞ varies, we can replace
½ρsðtþ τÞ − ρsðtÞ�=τ ≈ ∂tρsðtÞ. Therefore, Eq. (74) can be
rewritten as ∂tρsðtÞ ¼ Lτ

cðtÞρsðtÞ. As discussed in the pre-
vious references, the coefficients of this equation are positive
for any τ ≥ 0. Without the need to invoke the secular
approximation, the resulting equation has the Lindblad form
and thus preserves complete positivity. Also, the Lindblad
equation which is obtained after applying the secular approxi-
mation in Eq. (73) is automatically recovered in the limit
τ → ∞.

5. Weak-coupling master equations for time-dependent
system Hamiltonians

The characterization of OQSs additionally subject to a time-
dependent perturbation such that the system Hamiltonian is
time dependent is a long-standing topic (Davies and Spohn,
1978; Alicki, 1979). Indeed, a rigorous derivation of Eq. (69)
[and hence Eq. (65)], using either projection methods or a
perturbative expansion, leads one to conclude that it is also
valid for time-dependent HS (Breuer, 2004; Sarandy and
Lidar, 2005; Amin, Love, and Truncik, 2008; Amin, 2009; de
Vega, Bañuls, and Pérez, 2010). Back in the Schrödinger
picture, Eq. (69) can be written, for a time-dependent system
Hamiltonian HSðtÞ as

dρsðtÞ
dt

¼ −i½HSðtÞ; ρsðtÞ� þ
Z

t

0

dταþðt − τÞ½Vτ−tL†ρsðtÞ; L�

þ
Z

t

0

dτα−ðt − τÞ½Vτ−tLρsðtÞ; L†� þ H:c:

However, a practical use of this equation requires the ability
to rewrite it on a system basis. In detail, the master equation
depends on system operators with the form V−τL† ¼
U†
sð−τÞL†Usð−τÞ, with

UsðtÞ ¼ T e−i
R

t

0
HSðτÞdτ; ð75Þ

and T the usual time-ordering operator. Such evolution
operators should be expressed in terms of the time-dependent
eigenstates of the system jnðtÞi, corresponding to the set of
eigenvalues EnðtÞ that diagonalize instantaneously HSðtÞ.
A way to avoid this is to eliminate the explicit time

dependence of HSðtÞ. This can be done, for example, when
the system is subject to a time-dependent perturbation
that is periodic in time, such as an atom in a laser field,

and the latter is considered in the semiclassical limit. In this
limit, the free part of the Hamiltonian can be written as
H0 ¼ HB þHS þ ℏϵðσþe−iðωLtþϕTÞ þ σ−eiðωLtþϕT ÞÞ, where
ωL and ϵ ¼ d21E are the laser frequency and the Rabi
frequency, respectively, E is the laser electrical field magni-
tude, and the factor ϕT ¼ ϕL − π=2 groups all phase con-
tributions. Hence, a unitary can be considered to transform
the system into a rotating frame of reference with respect to
the laser, which effectively leads to a time-independent
Hamiltonian [see for instance Law and Eberly (1991),
Florescu and John (2001), and Scully (2002)]. Following
this, it is often convenient to diagonalize the system part of
such Hamiltonian, thus reexpressing it in the well-known
dressed basis.
Nevertheless, in general a time-independent form of the

Hamiltonian cannot be obtained via a unitary transformation,
and thus it is unavoidable to express Eq. (75) in terms of the
system instantaneous eigenstates. This can be done when the
system is subject to a general periodic time-dependent
perturbation HsðtÞ ¼ H0

s þHLðtÞ, with HLðtþ TÞ ¼ HLðtÞ
and T ¼ 2π=ωL, where ωL is the driving frequency. The
instantaneous basis is then the Floquet basis, obtained
from the Floquet eigenvalue problem ½HSðtÞ − id=dt�jnðtÞi ¼
ϵnjnðtÞi and obeying periodic boundary conditions in time
jnðtÞi ¼ jnðtþ TÞi (Breuer and Petruccione, 2002). In this
basis, we can rewrite Eq. (75) as

Upe
s ðt; t0Þ ¼

X
n

e−iϵnðt−t0ÞjnðtÞihnðt0Þj. ð76Þ

A second tractable situation is when the system undergoes
an exact adiabatic evolution, which allows us to express
Eq. (75) as (Mostafazadeh, 1997; Albash et al., 2012)

Uad
s ðt; t0Þ ¼

X
n

e−iμnðt;t0ÞjnðtÞihnðt0Þj; ð77Þ

where μnðt;t0Þ¼Δnðt;t0Þ−γnðt;t0Þ, withΔnðt;t0Þ¼
R
t
t0 dsEnðsÞ

and γnðt; t0Þ ¼ i
R
t
t0 dshnðsÞjd=dsjnðsÞi. Equation (77) is

valid as long as the adiabatic condition h ≪ Δ2tf is
fulfilled. Here t ¼ tf is the maximum evolution time and
Δ¼mint∈½0;tf �½E1ðtÞ−E0ðtÞ� is the minimum ground state
energy gap, with E0 and E1 as the ground and the first
excited eigenenergies of HSðtÞ, and h¼maxs∈½0;1�;n;m jhnðsÞ
j∂sHSðsÞjmðsÞij, with s¼t=tf as a dimensionless parameter.
The adiabatic condition provided earlier can be defined in
alternative ways [see for instance Mostafazadeh (1997)].
Let us now consider, for instance, a master equation of the

form (65), and reexpress it in terms of system operators in the
time-dependent basis for an adiabatic evolution. To this end,
following Albash et al. (2012), we need to adiabatically
approximate Vt−τSη ¼ U†

sðt − τ; 0ÞSηUsðt − τ; 0Þ. Then, we
first take into account that Usðt − τ; 0Þ ¼ Usðt − τ; tÞ
Usðt; 0Þ ¼ U†

sðt; t − τÞUsðt; 0Þ, and then consider two approx-
imations: first replace Usðt; 0Þ ≈ Uad

s ðt; 0Þ, and then replace
U†
sðt; t − τÞ ≈ eiτHSðtÞ, which is justified by the fact that this

term appears in an integral with a fast-decaying correlation
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function CγηðτÞ. With these considerations, we find that
Usðt − τ; 0Þ ≈ eiτHSðtÞUad

s ðt; 0Þ, such that, for instance, one
of the terms of Eq. (65) can be rewritten as

Z
t

0

dτCγηðτÞVt−τSηρsðtÞVtSγ

≈
X
nm

Γmn
α;ηðtÞe−iμmnðt;0ÞVtSn;m;ηΠnmð0ÞρsðtÞVtSγ;

where Γmn
α;ηðtÞ¼

R
t
0dτe

iτEmnðtÞCγηðτÞ, with EmnðtÞ¼
EmðtÞ−EnðtÞ, μmnðt; t0Þ ¼ μmðt; t0Þ − μnðt; t0Þ, ΠnmðtÞ ¼
jnðtÞihmðtÞj, and Sn;m;ηðtÞ ¼ hnðtÞjSηjmðtÞi. Performing a
similar adiabatic approximation to SγðtÞ, and expressing the
other terms of Eq. (65) in a similar way, we obtain an adiabatic
interaction picture master equation of the form

dρsðtÞ
dt

¼
X
nmpq

e−iðμqpðt;0Þ−μmnðt;0ÞÞ
X
γη

Γmn
γη ðtÞ

× VtSp;q;γVtSn;m;η½Πnmð0Þρs;Πpqð0Þ� þ H:c:

An excellent review on driven quantum systems, including
their dissipation, can be found in Grifoni and Hänggi (1998).
Many-body OQS master equation.—Following the same

procedure as in Sec. IV.B.2, it can be concluded that the
master equation for a many-body system with Hamiltonian
(19) is, up to second order in the perturbative parameter and
back in the Schrödinger picture,

dρsðtÞ
dt

¼ −i½HS; ρsðtÞ� þ
Z

t

0

dτ
X
lj

αþljðt − τÞ½Vτ−tL
†
jρsðtÞ; Ll�

þ
Z

t

0

dτ
X
lj

α−ljðt − τÞ½Vτ−tLjρsðtÞ; L†
l � þ H:c:; ð78Þ

where we defined

α−ljðtÞ ¼
X
λ

g�lλgjλ½nðωλÞ þ 1�e−iωλt;

αþljðtÞ ¼
X
λ

glλg�jλnðωλÞeiωλt:
ð79Þ

The previous master equation may also represent the evolution
of a multilevel OQS with j ¼ 1;…; n decaying channels, each
of them represented by a coupling operator Lj.
The master equations (69) or (78) can be written in the

canonical form (56), by just expanding all system coupling
operators Lj in terms of the complete set of basis operators Gi

as VtLj ¼
P

γaijðtÞGi. The key is that the time dependency is
absorbed into the expansion coefficients aij ¼ TrSfVtLjGig.

6. Weak-coupling master equations for alternative initial
conditions and initially correlated states

In previous sections we analyzed several derivations of
master equations for an initially uncorrelated state between the
system and the environment and considering that the envi-
ronment is at thermal equilibrium. However, as discussed in
Sec. III.A an experimentally realistic situation is that where

the initial state is obtained when the total system is in an
equilibrium state [for instance ρtotð0Þ ∼ e−βHtot ], and a set of
projective measurements on the system is performed, resulting
in a state to the form (31). This type of initial conditions was
discussed by Grabert, Schramm, and Ingold (1988) for the
case of a quantum Brownian particle, when considering the
state prepared by measuring a dynamical variable such as
the position of the particle q. More recently, Chaudhry and
Gong (2013) derived a weak-coupling master equation from
the initial state obtained after a single measure that projects the
system to the state jψ0i. In such a case, the initial state can be
written as

ρtotð0Þ ¼ jψ0ihψ0j ⊗
hψ0je−βHtot jψ0i

Z
;

where Z is a normalization factor, such that the total trace is
preserved. Such initial state may be simplified by considering
the Kubo identity, which states that for all operators A and C,
eγðAþCÞ ¼ eγAð1þ R γ

0 dλe
−λACeλðAþCÞÞ, where γ is a param-

eter. Using this expression, it is possible to expand e−βHtot in
different orders of the coupling constant g, by considering
γ ¼ β, A ¼ H0, and C ¼ HI . At first order, e−βHtot ≈
e−βH0ð1 − R β

0 dλeλH0HIe−λH0Þ, and therefore

ρtotð0Þ ¼ jψ0ihψ0j ⊗ ðρð0ÞB þ ρð1ÞB þ � � �Þ; ð80Þ

where ρð0ÞB ¼ hψ0je−βHS jψ0ie−βHB and ρð1ÞB ¼ −ge−βHBEðβÞ,
with

EðβÞ ¼
Z

β

0

dλeλHBBe−λHBhψ0je−βHSeλHSSe−λHS jψ0i:

Here the interaction Hamiltonian is considered of the form (2),
i.e., HI ¼ AB. Inserting Eq. (80) into the perturbative expan-
sion (64), and differentiating, we obtain

dρsðtÞ
dt

¼ i½ρsðtÞ; HS� − ifcorrðtÞ½ρsðtÞ; S�

þ
Z

s

0

dsf½Vt−sSρsðtÞ; S�Cðt − sÞ þ H:c:g;

here as usual VtS ¼ eiHStSe−iHSt and fcorrðtÞ ¼
TrBfρeqB EðβÞVtBg=Z0, with Z0 ¼ hψ0je−βHS jψ0i −
gTrBfρeqB EðβÞg. Also, the quantity Cðt − sÞ is defined accord-
ing to Eq. (66) as Cðt − sÞ ¼ TrBfρeqB VtBVsBg. The structure
of this master equation preserves the trace and the Hermiticity.
However, CP is not ensured.
In addition, as argued by Pechukas (1994), Meier and

Tannor (1999), Liu et al. (2011), and Smirne et al. (2011),
there are situations that are experimentally relevant where the
system and the environment are initially correlated. In this
regard, Meier and Tannor (1999) derived a master equation for
such correlated initial states, which is based on the Nakajima-
Zwanzig projection-operator approach, discussed in the next
section, up to second order in the system-bath interaction.
Chen and Goan (2016) also extended this analysis to inves-
tigate under which conditions the initial factorization
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approximation of the system-environment state is valid.
Another method for tackling this problem is the correlated
projection operator, also discussed in the next section. In
addition, the reduced hierarchical equations of motion of
Sec. VI.C have been extended to deal with correlated initial
conditions (Tanimura, 2014). A stochastic propagation similar
to those discussed in Sec. V can also be considered, based on
expressing the initial state in a Bargmann coherent state
representation for the environment (de Vega and Alonso,
2006). Based on this result, a master equation for general
initial conditions was derived by Halimeh and de Vega (2016).
Other initial conditions correspond to the OQS being

coupled to an environment that is initially in a squeezed
state. A master equation to describe such systems was derived
by Gardiner (1986) for the Markovian case. This was recently
extended to non-Markovian interactions by Ali, Chen, and
Goan (2010) to study bipartite entanglement dynamics in the
presence of dissipation.

7. Projection techniques

In the projection-operator techniques, a projection super-
operator P is defined such that Pρ captures the relevant part of
the total density matrix ρ ¼ ρtot in the interaction picture,
which offers an approximate description of the OQS dynam-
ics, while the irrelevant part Qρ is defined by the comple-
mentary superoperator Q ¼ 1 − P, with 1 denoting the unit
map. The projection superoperator should (i) be a linear map
ρ → Pρ which takes any operator of the total state spaceH to
an operator Pρ of H, (ii) have the properties

P2 ¼ P ¼ P†; Q2 ¼ Q ¼ Q†

QP ¼ PQ ¼ 0; P þQ ¼ 1;
ð81Þ

and (iii) be such that ρs ¼ TrBfρg ¼ TrBPρ.
In order to obtain a dynamical equation for PρðtÞ, there are

basically two different possibilities (Breuer, Burgarth, and
Petruccione, 2004). The first is to follow the Nakajima-
Zwanzig method (Nakajima, 1958; Zwanzig, 1960), which
leads to an equation for Pρ that contains a time integration
over the past history of the system. This equation reads as

d
dt

PρðtÞ ¼
Z

t

0

ds ~Kðt; sÞPρðsÞ þ gPLtotðtÞGðt; t0ÞQρðt0Þ

þ gPLtotðtÞPρðtÞ; ð82Þ

whereLtot is the Liouvillian corresponding to the von Neumann
equation for the total density operator ρðtÞ, dρðtÞ=dt ¼
−i½VtHI; ρðtÞ� ¼ LtotðtÞρðtÞ. Also, we defined the memory
kernel as

~Kðt; sÞ ¼ g2PLtotðtÞGðt; sÞQLtotðsÞ ð83Þ

and

Gðt; sÞ ¼ T← exp

�
g
Z

t

0

ds0QLtotðs0Þ
�
: ð84Þ

Here T← denotes the chronological time ordering, which orders
any product of superoperators such that the time arguments
increase from right to left. Also, this quantity satisfies
the evolution equation dGðt; sÞ=dt ¼ gQLtotðtÞGðt; sÞ, with
Gðs; sÞ ¼ 1. As noted by Breuer, Kappler, and Petruccione
(1999) and Breuer and Petruccione (2002), Eq. (82) is an
exact equation and therefore its resolution is as difficult as the
resolution of the original von Neumann equation. Nevertheless,
it provides a good starting point for considering different
simplifications and approximations.
For instance, for a factorizing initial condition

Pρðt0Þ ¼ ρðt0Þ, such that Qρðt0Þ ¼ 0, the second term of
(82) vanishes. Equation (82) can be further simplified by
assuming that, in general, any string containing an odd
number of Ltot between factors of P vanishes

PLtotðt1ÞLtotðt2Þ � � �Ltotðt2nþ1ÞP ¼ 0: ð85Þ

This means that the term PLtotðtÞP ¼ 0 and the last term of
Eq. (82) vanishes too. The resulting equation can be rewritten
as a time-local equation (Hall et al., 2014). In this regard,
considering that it describes an evolution process given by a
linear map ρsðtÞ ¼ ΛðtÞρsð0Þ, which is invertible, such that
ΛðtÞ−1ΛðtÞ ¼ 1, we find

dρsðtÞ
dt

¼
Z

t

0

ds ~Kðt; sÞρsðsÞ ¼ LðtÞρsðtÞ; ð86Þ

where we defined LðtÞ ¼ R
t
0 ds ~Kðt; sÞΛðsÞΛðtÞ−1.

Finally, the memory kernel ~Kðt; sÞ can be expanded in
terms of the weak-coupling parameter between system and
environment. For instance, up to second order in g, we can
simply consider that ~Kðt; sÞ ¼ g2PLtotðtÞQLtotðsÞ þOðg3Þ.
A second possibility for solving the dynamical equation of

PρðtÞ is the time-convolutionless projection-operator tech-
nique (TCL), which departs from Eq. (82) to derive an
equation that is local in time (Kubo, 1963; Royer, 1972;
Chaturvedi and Shibata, 1979) and has the general form
(Breuer and Petruccione, 2002; Breuer, Gemmer, and Michel,
2006)

d
dt

PρðtÞ ¼ KðtÞPρðtÞ þ J ðtÞQρðt0Þ: ð87Þ

Here we defined

KðtÞ ¼ gPLtotðtÞ½1 − ΣðtÞ�−1 ð88Þ

with ΣðtÞ ¼ g
R
t
0 dsGðt; sÞQLtotðsÞPGðt; sÞ. We also consid-

ered the backward propagator of the total system as

Gðt; sÞ ¼ T→e
−g
R

t

s
ds0Ltotðs0Þ; ð89Þ

with T→ as the antichronological time-ordering operator.
The operator ½1 − ΣðtÞ�−1 can be expressed as

½1 − ΣðtÞ�−1 ¼
X∞
n¼1

ΣðtÞn: ð90Þ
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Inserting Eq. (90) into (88), it is possible to rewrite this term as
a perturbative expansion in g:

KðtÞ ¼ g
X∞
n¼1

PLtotðtÞΣðtÞn ¼
X∞
n¼1

gnKnðtÞ: ð91Þ

Following the cumulant expansion approach by Kubo (1963),
Royer (1972), and van Kampen (1974a, 1974b) of the
equation for PρðtÞ, the nth order coefficient can be defined
as (Breuer and Petruccione, 2002; Breuer, Gemmer, and
Michel, 2006)

KnðtÞ ¼
Z

t

0

dt1

Z
t1

0

dt2 � � �
Z

tn−2

0

dtn−1

× hLtotðtÞLtotðt1ÞLtotðt2Þ � � �Ltotðtn−1Þioc: ð92Þ

Here hLtotðtÞLtotðt1ÞLtotðt2Þ � � �Ltotðtn−1Þioc ≡Pð−1Þq
PLtotðtÞ � � �LtotðtiÞPLtotðtjÞ � � �LtotðtkÞP � � �P are ordered
cumulants. These are built by inserting a number q of Ps
between one or more Ltot and then summing over all possible
q. The first Ltot should be evaluated at time t, and the others
may carry any permutation of time arguments, with the
restriction that these shall be chronologically ordered between
two successive Ps. Note that because of Eq. (85), the odd
moments n vanish.
The expansion (91) can always be assumed, provided that

the map is continuous and with a zero initial condition
Σðt0Þ ¼ 0. However, a practical use of such an expansion
requires that it is truncated at relatively low orders [see Breuer
and Petruccione (2002) for the explicit expression of the first
few terms of the expansion], which may be accurate only at
short times and within the weak-coupling regime. Also, after
truncation, complete positivity is no longer guaranteed.
Higher orders lead to increasingly complex equations and
to a solution that might be more exact at short times, but still
fails at long times (Breuer, Burgarth, and Petruccione, 2004).
In this regard, an optimal choice of the projection operator P is
of primary importance, such that the first few terms of the
expansion accurately reproduce the OQS dynamics. The
choice should therefore be motivated by the specific character-
istics of the problem. In the following, we discuss the two
standard approaches described in the literature to choose the
projection operator, namely, the standard approach and the
correlated projection-operator approach.
In the standard approach (Breuer and Petruccione, 2002),

the projection superoperator is chosen such that Pρ ¼
ρsðtÞ ⊗ ρB, where ρsðtÞ ¼ TrBfρðtÞg. This superoperator
satisfies the conditions (i)–(iii) and furthermore is suitable
for those problems in which system-environment correlations
are small both initially and during the evolution, so that they
can be treated as small perturbations of the reduced density
matrix. With this choice, the convoluted equation (82) with
factorized initial conditions leads to Eq. (63), but with ρsðsÞ
within the integral in the rhs term. In the convolutionless
technique, the second-order term of the expansion (91),K2ðtÞ,
leads to the time-local master equation (63). Both convoluted
and convolutionless equations are equivalent in this order,
since the reduced density matrix is already in a second-order
term, and hence we can replace ρsðsÞ ≈ ρsðtÞ þOðg2Þ.

However, the convoluted and the convolutionless equations
at the same order lead to completely different solutions that
may differ with each other in all orders of the coupling. A
comparison between these two perturbative schemes with
respect to the exact solution for a two-state system in an
environment with T ¼ 0 (discussed in Sec. VIII.A) can be
found in Vacchini and Breuer (2010).
An alternative to the standard approach is the correlated

projection superoperator technique formalized by Breuer,
Gemmer, and Michel (2006) and Breuer (2007), which
considers the relevant part of the dynamics as a correlated
system-environment state, rather than a tensor product state
ρsðtÞ ⊗ ρB. This second approach is naturally adapted to those
situations in which system and environment states are non-
negligibly correlated initially and/or during the dynamics. The
relevant part of the dynamics is expressed in terms of a
positively correlated projection superoperator P ¼ 1S ⊗ Λ,
where Λ maps operators inHB to operators inHB, and can be
represented in terms of environment operators Ai and Bi, such
that TrBfAjBig ¼ δij (Breuer, 2007). These operators should
fulfil certain properties so that Λ is a trace-preserving and
completely positive map. In this representation,

PρðtÞ ¼
X
i

TrBfAiρðtÞg ⊗ Bi: ð93Þ

An example of a projection superoperator is obtained with
the choice Ai ¼ Πi and Bi ¼ Πiρ0Πi=Zi, where i ¼ 1;…; n
(n being the total number of operators in the expansion), and
Zi ¼ TrBfΠiρ0g, and Πi are projection operators on HB such
that ΠiΠj ¼ δijΠi, and

P
iΠi ¼ 1B,

Pρ ¼
X
i

TrBfΠiρg ⊗
Πiρ0Πi

Zi
; ð94Þ

where ρ0 is any fixed environmental density matrix. The
reduced density matrix is described as a sum of a set of
unnormalized states ρiðtÞ,

ρsðtÞ ¼ TrBfPρðtÞg ¼
X
i

ρiðtÞ; ð95Þ

that should nevertheless be such that TrSρsðtÞ ¼ 1. The states
ρiðtÞ ¼ TrBfΠiρðtÞg belong to a subspace of the total spaceH
and reflect correlations between the system and the environ-
ment. Considering an initial condition of the form ρð0Þ ¼P

iρið0Þ ⊗ Bi and using the TCL technique, a system of
equations for each ρi is obtained, each with the general form

d
dt

ρi ¼ KiðtÞðρ1;…; ρnÞ; ð96Þ

where the time-dependent generators KiðtÞ can be approxi-
mated as time-independent ones Ki following a Markov
approximation. Note that while in the standard approach this
is linked to the Born approximation, implying zero system-
environment correlations at second order in the system-
environment coupling, this is not the case in the present
derivation. After this approximation, a generalized Lindblad
equation can be obtained (Budini, 2006; Breuer, 2007)
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d
dt

ρi ¼ −i½Hi; ρi� þ
X
jλ

�
Rij
λ ρjR

ij†
λ −

1

2
fRji†

λ Rji
λ ; ρig

�
; ð97Þ

which ensures complete positivity. HereHi and R
ij
λ are system

Hermitian operators.
This derivation formalizes (and generalizes) the previous

derivations by Esposito and Gaspard (2003) and Budini (2005,
2006) to derive master equations up to second order in
perturbation theory. The proposal by Esposito and Gaspard
(2003) is based on choosing the projectors in Eq. (94) as
projectors to environment subspaces corresponding to a given
energy, i.e., Πϵ. Following this choice, an evolution equation
was derived for the quantity ρϵðtÞ, based on a weak-coupling
expansion up to second order in the coupling parameter
between the system and the environment. Despite it is also
based on a weak-coupling expansion this approach was shown
to give more accurate results than the usual Born approxi-
mation, Pρ ¼ ρsðtÞ ⊗ ρB, when considering an environment
described by Gaussian random matrices. Here the projection
(94) is made into a large region of the total Hilbert space
corresponding to states where the environment has a given
energy and considers the fluctuations in the environment
energy states as a nonrelevant part of the density matrix, so
that they can be neglected. According to this derivation, the
reduced density matrix of the system is computed as a sum of
all possible environment states, considered as a quasicontin-
uum ρsðtÞ ¼

R
dϵρϵðtÞ.

The interesting aspect of the resulting equation is that it
takes into account the principle of conservation of the total
system energy. Following this principle, when the OQS gains
a quantum of energy, this should be lost in the environment
and vice versa. This is in contrast with the Lindblad equa-
tion (48), which is derived under the assumption that despite
the coupling with the system, the environment remains in the
same energy state. This contradiction with the energy con-
servation principle is acceptable provided that the environ-
ment is sufficiently large compared to the system. In that case,
it is possible to assume that the environment quantities do not
vary significantly on energy scales of the order of the system
energy. Hence, if the environment is initially in a micro-
canonical state of energy ϵ, it will remain in such an energy
state without being much affected by the energy exchange
with the system. Any situation beyond this case is more
accurately described with the equation proposed by Esposito
and Gaspard (2003).
The proposal by Budini (2006) considered a projection of

the form (94), with ρ0 being the stationary state of the bath,
and used the notation ΠR to refer to the projections to each
subspace (hence i≡ R). The projectors ΠR ¼ P

fϵRgjϵRihϵRj
decompose the Hilbert space of the environment into
different subreservoirs, each spanned by the base of eigen-
vectors jϵRi. Hence, this projection corresponds to splitting
the environment into a set of subreservoirs, such that the
interaction Hamiltonian can be written as a direct sum of
Hamiltonians HI ¼

P
R;R0HIRR0 , with HIRR0 ¼ ΠRHIΠR0 .

This choice gives rise, in the long time limit, to the same
general equation (97), which connects each ρR to the other
ρR0 (R0 ≠ R). A simpler situation was discussed previously
(Budini, 2005) by considering the case in which HIRR0 ¼ 0

for R ≠ R0. In this case, the interaction Hamiltonian can be
written as a direct sum of sub-Hamiltonians for each
subspace HI ¼ HI1 ⊕ HI2 � � � ⊕ HIR ⊕ HIRþ1

� � �, and each
ρRðtÞ follows a Lindblad type of evolution equation of the
form (48) induced by the coupling with the corresponding
subreservoir, and independently of other ρR0 (R0 ≠ R). Each
ρR evolves with a rate γRðtÞ, and the reduced density
operator of the system is obtained as

ρsðtÞ ¼ TrB½PρðtÞ� ¼
X
R

PRρRðtÞ; ð98Þ

where the weight is given as PR ¼ TrB½ρRB� ¼P
fϵRghϵRjρBjϵRi, and therefore

P
RPR ¼ 1. The fact that

each ρR follows a Markovian evolution does not mean that
ρs will also do so. Indeed, the evolution of ρs has the form
of a convoluted master equation as long as the weights PR
are different. In the effective approximation (Budini, 2005),
the equation can be written as

d
dt

PρðtÞ ¼ LSρs þ
Z

t

0

ds ~Kðt; sÞeðt−sÞLSLρðsÞ: ð99Þ

Here LS and L are the free evolution and Lindblad
superoperators, respectively, and ~Kðt; sÞ is a superoperator
that depends on the rates γR and the probabilities PR. Its
Laplace transform is given by kðpÞ ¼ fðpÞ=gðpÞ, in terms
of the Laplace transform of the waiting time distribution and
survival probabilities fðpÞ and gðpÞ, respectively, which in
this case take the form fðpÞ ¼ hγR=pþ γRi, and gðpÞ ¼
h1=ðpþ γRÞi, with h� � �i ¼ P

RPR � � � denoting an average
over all subenvironments. As described previously, the rates
γR are obtained by applying the Fermi golden rule to each
reservoir, which provides a connection between the waiting
time distribution and the spectral density of the environ-
ment. Thus, the choice of the different PR and γR depends
on the specific structure of the environment.
Similarly, Harbola, Esposito, and Mukamel (2006) derived

a master equation to analyze electron transport through
quantum dots and single molecules weakly coupled to two
metal leads. To this end, they define projection operators Pn
onto the Fock state, with n electrons in the quantum dots.
The total density matrix can then be expanded as Eq. (94), but
now with a sum that extends over all n states, and with
ρRðtÞ≡ ρnðtÞ being the many-body density matrix of the
quantum system with n electrons. Also, consistent with
the weak-coupling assumption, the leads are assumed to
remain in thermal equilibrium so that ρRB ¼ ρB. Under these
conditions, a set of equations for ρnðtÞ are obtained and found
to be coupled in a hierarchy to ρn−1 and ρnþ1. A similar
hierarchy of quantum master equations was originally derived
by Gurvitz and Prager (1996), which keeps track of the
number of electrons transferred from the source lead to the
collector lead.
The projection superoperator techniques have also been

applied to scenarios in which all the parts of the system have
similar sizes and characteristic dynamical times, so that there
is no clear distinction between system and environment.
In particular, the recently developed self-consistent Mori
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projector (c-MoP) technique (Degenfeld-Schonburg and
Hartmann, 2014), in which the Nakajima-Swanzig equations
for the reduced state of all parts of the system are solved in
parallel under different approximations, has been applied to
many-body scenarios (Degenfeld-Schonburg and Hartmann,
2014), as well as to few-body bosonic quantum-optical
problems (Degenfeld-Schonburg, Navarrete-Benlloch, and
Hartmann, 2015; Degenfeld-Schonburg et al., 2015). In the
latter case, further Gaussian approximations render this
approach a very efficient way of dealing with problems in
which one needs to check consistently whether non-
Markovian and backaction effects can be neglected between
the different parts of the bosonic system.
The TCL technique has been applied to many different

problems, ranging from spin relaxation (Chang and Skinner,
1993; Blanga and Despósito, 1996) to the spin-boson model
(Breuer, Kappler, and Petruccione, 2001), the spin star model
(Breuer, Burgarth, and Petruccione, 2004; Barnes, Cywiński,
and Das Sarma, 2012) for the standard case and (Fischer and
Breuer, 2007) for the correlated one, and to atomic lasers
(Breuer et al., 2001).

8. Master equations derived from dynamical maps and a
measurement approach

In order to ensure that complete positivity is preserved,
another possibility is to derive master equations from dynami-
cal maps that are known to preserve this property. A recent
derivation in this direction is the one by Vacchini (2013),
which defines a time-evolved state of the reduced density
matrix according to the following dynamical map:

ΛðtÞρs ¼ p0ðtÞF ðtÞρs þ
Z

t

0

dtn � � �
Z

t2

0

dt1pnðt; tn;…; t1Þ

× F ðt − tnÞE � � � EF ðt1Þρs: ð100Þ

Also, the quantities F ðtÞ and E are time-dependent and
time-independent completely positive maps. In addition,
pnðt; tn;…; t1Þ is the exclusive probability density for the
realization of n events up to time t, at given times t1;…; tn
with no events in between. This probability density relates to
the waiting time distribution fðtÞ as

pnðt; tn;…; t1Þ ¼ fðt − tnÞ � � � fðt2 − t1Þgðt1Þ; ð101Þ

where gðtÞ ¼ 1 −
R
t
0 dsfðsÞ is its associated survival

probability.
The evolution equation associated with the map ΛðtÞ can be

written as

dρsðtÞ
dt

¼
Z

t

0

dsKðt − sÞEρsðsÞ þ IðtÞρsð0Þ; ð102Þ

where the integral kernel is Kðt − sÞ ¼ d=dt½fðtÞF ðtÞ� þ
fð0ÞδðtÞ and the inhomogeneous term IðtÞ ¼ ðd=dtÞ×
½gðtÞF ðtÞ�.
If we now consider F ðtÞ ¼ etL, with L as a Lindblad

generator, then the following equation is obtained:

dρsðtÞ
dt

¼ LρsðtÞ þ
Z

t

0

dskðt − sÞeðt−sÞLðE − 1ÞρsðsÞ; ð103Þ

where the memory kernel kðtÞ is related to the waiting
time and survival probabilities through its Laplace transform
as in Eq. (99), or alternatively fðτÞ ¼ R

τ
0 dtkðτ − tÞgðtÞ.

With the choice L ¼ LS ¼ −i½HS; ρs� for the first term of
Eq. (103), and the Lindblad generator ϵ − 1 ¼ L for the
second term, the master equation (99) is regained. Considering
now that L ¼ 0 in Eq. (103), a quantum semi-Markov
equation is obtained,

dρsðtÞ
dt

¼
Z

t

0

dskðt − sÞðE − 1ÞρsðsÞ. ð104Þ

This type of equation was introduced by Breuer and Vacchini
(2008), and its non-Markovian character was further analyzed
by Vacchini et al. (2011). The interesting thing about the
quantum semi-Markov process is that the solution of the
corresponding equation has a relatively simple form

ρsðtÞ ¼ Λðt; 0Þρsð0Þ ¼
X∞
n¼0

pnðtÞEnρsð0Þ; ð105Þ

which represents the fact that the reduced density operator at
time t is the result of the repeated action of the map E, where
pnðtÞ ¼

R
t
0 dτfðt − τÞpn−1ðτÞ is the probability that at time t

there has been n of such projections, with a given waiting time
distribution fðtÞ. Finally, the case where we consider in
Eq. (103) that E ¼ 1 allows us to recover the Lindblad
equation.
Another master equation that preserves complete positivity

and at the same time includes environment memory effects is
the so-called post-Markovian master equation derived by
Shabani and Lidar (2005) from a measurement approach.

9. Collisional models

Collisional models give rise to a visual and intuitive way of
deriving master equations (Rau, 1963). In these models, it is
assumed that the environment is a collection of M harmonic
oscillators or ancillas organized in a chain. Then, it is assumed
that the system S interacts, or collides, at each time step with
each ancilla, such that at t1 there is a collision S ↔ 1, at t2
there is a collision S ↔ 2, and so on. It was shown by Scarani
et al. (2002), Ziman et al. (2002), and Ziman and Bužek
(2010) that when no initial correlation is assumed between the
ancillas and no correlations are created between them along
the process, a Lindblad master equation can be derived. More
recently, it was realized by Rybar et al. (2012) that introducing
correlations in the initial state of the ancillas allows one to
recover the dynamics of any indivisible and therefore non-
Markovian channel. An alternative to introducing a non-
Markovian evolution is to consider, as proposed by
Ciccarello and Giovannetti (2013) and Ciccarello, Palma,
and Giovannetti (2013), that between system-ancilla collisions
there are also ancilla-ancilla collisions (see Fig. 6). These are
assumed to occur at a rate Γc, which can be interpreted as the
memory of the environment, such that the probability that an
interancilla collision occurs at time τ is given by p ¼ e−Γcτ.
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While the system-ancilla collisions are defined by a map
which acts over an operator ρ as ρ → USi½ρ� ¼ USiρU

†
Si, with

USi ¼ e−iHSiτ corresponding to a unitary evolution at the
collision time τ, the ancilla-ancilla collisions are defined
as a nonunitary map that, with probability p, exchanges the
ancilla states,

ρ → Siþ1½ρ� ¼ ð1 − pÞρþ pSiþ1;iρSiþ1;i: ð106Þ

Here Siþ1;i is the swap operator defined as Siþ1;i ¼
jϕj ⊗ ϕkihϕk ⊗ ϕjj in terms of an arbitrary orthonormal
basis fϕjg of the ancillas that interchanges the states of the
ancillas j and jþ 1. The sequential repetition of this system-
ancilla, ancilla-ancilla collisional process gives rise in the
continuum limit to a master equation of the form

dρs
dt

¼
Z

t

0

dse−ΓsEðtÞ½_ρsðt − sÞ� þ e−Γt _EðtÞ½ρsð0Þ�: ð107Þ

This equation is rather similar (but not exactly equal) to
Eq. (102), and it also preserves complete positivity. Here EðtÞ
is a completely positive time-dependent map related to the
system-ancilla collisions. It corresponds to the continuous
analog of

Ej½ρs� ¼ TrBfUj
Sn½ρs ⊗ j0iBh0j�g; ð108Þ

where Uj
Sn½σ� ¼ e−iHSnjτσeiHSnjτ is the unitary evolution at the

collision time jτ between the system and the ancilla n. A more
recent work relating quantum memory effects to ancilla-
ancilla collisions can be found by Kretschmer, Luoma, and
Strunz (2016). In addition, a generalization of Eq. (107) that is
not restricted to the case in which the system-environment
coupling is mediated via the ancillary degrees of freedom, but
applies to a broader class of non-Markovian dynamics, was
recently derived by Lorenzo, Ciccarello, and Palma (2016).
Interestingly, this non-Markovian master equation is origi-
nated from a class of bipartite Lindblad master equations
when tracing out one of the two subsystems. The idea of
obtaining a non-Markovian equation by tracing a Markovian

one corresponding to a larger Hilbert space is at the heart of
the embedding methods presented in the following section.

10. Embedding methods

Embedding methods consist of adding fictitious modes to
the non-Markovian system in such a way as to make the
enlarged hypothetical system dynamics Markovian. This idea
was first proposed by Imamoglu (1994), Garraway and Knight
(1996), Bay, Lambropoulos, and Mølmer (1997), and
Garraway (1997). Garraway and Knight (1996) and
Garraway (1997) described the decay of an atom strongly
coupled to a reservoir by considering an enlarged system that
includes a set of pseudomodes. Such pseudomodes are related
to the poles of the spectral density of the environment and are
calculated by considering its analytical continuation in the
complex plane. The enlarged system obeys a Lindblad
equation, and the dynamics of the OQS can be recovered
by tracing out the pseudomodes. This method provides an
exact solution and is particularly convenient when there is
only one excitation in the total system, although generaliza-
tions to tackle the multiple-excitation case have also been
developed (Dalton, Barnett, and Garraway, 2001; Dalton and
Garraway, 2003).
Embedding methods have been more recently extended by

Breuer, Kappler, and Petruccione (1999) and Breuer (2004).
In the most recent work, Breuer proposed an enlarged system
with density operatorW, composed of the original system and
a three-level system with basis states jai; jbi; jci belonging to
a space C3. The key point of the method is to consider that the
enlarged density operatorW obeys a time-local equation of the
form (56). Here the coupling or jump operators Ck are chosen
such that the reduced density matrix of the original system
ρsðtÞ can be written as a certain set of coherences Wab of the
density matrix W of the extended system. As argued in
Sec. IV.B, this equation may not be completely positive,
but equations with this form can be derived from first
principles, for instance, by considering a projection-operator
method with an expansion up to second order in the coupling
parameter between the system and the environment.
Similarly, Budini (2013) derived a master equation by

considering that the system is combined with an ancilla, and
that both system and ancilla evolve according to the Lindblad
equation (48). In this derivation, the reduced density matrix of
the system is recovered by tracing out the ancilla’s degrees of
freedom from the total density operator W. Another important
difference with respect to the former scheme is that here the
Lindblad operators Ck are chosen in such a way that they lead
to an uncorrelated system-ancilla state. Thanks to this con-
dition, the system’s reduced density matrix evolves according to
an equation that is closed, without making any further approx-
imations. This ensures that such an equation preserves complete
positivity. However, the equation does not necessarily comply
with the form of any master equation obtained from a micro-
scopic derivation, as occurs in the previous derivation.
Finally, in the context of Anderson impurity models,

Arrigoni, Knap, and von der Linden (2013) and Dorda et al.
(2014) recently derived an approach that is based on repre-
senting the original problem (the impurity coupled to the
leads) as an equivalent one, consisting of the impurity coupled

FIG. 6. Schema showing the first steps of the collisional
model in the (a) Markovian case and in the (b) non-Markovian
case. In the second case, ancilla-ancilla collisions occur in
between system-ancilla collisions. From Ciccarello, Palma, and
Giovannetti, 2013.
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to an auxiliary discrete system, which in turn is coupled to a
Markovian reservoir. The parameters of the auxiliary system
are chosen by optimization as those that most faithfully
represent the original spectral density, written in terms of
the hybridization function.

11. Master equations derived from variational methods

As proposed by McCutcheon et al. (2011), it is possible to
derive a master equation for the spin-boson model (13) which
is valid in the strong coupling regime. The key ingredient of
such derivation is to consider a variational polaron trans-
formation for this Hamiltonian (Silbey and Harris, 1984;
Leggett et al., 1987), H ¼ eVHtote−V , with expð�VÞ¼
j0ih0jþj1ih1jQkDð�αλÞ, whereDð�αλÞ¼expð�αλða†λ−aλÞÞ
is a displacement operator, and αλ ¼ fλ=ωλ is assumed to be
real and dependent on certain parameters fλ to be determined
variationally. The transformed Hamiltonian can be written as
H ¼ H0 þHI , with

H0 ¼
1

2
ω12σz þ

X
λ

ωλa
†
λaλ

HI ¼
1

2
Δ0ðσþB− þ σ−BþÞ þ j1ih1jBz; ð109Þ

where we defined B� ¼ exp½�P
λgλðaλ − a†λÞ� and Bz ¼P

λðgλ − fλÞða†λ þ aλÞ. The variational parameters ffλg are
obtained by imposing that the free energy associated with the
transformed Hamiltonian is minimized. Then, as discussed by
McCutcheon et al. (2011), two limiting situations occur:
(a) when Δ0 ≪ ωλ, then fλ ¼ gλ and the variational polaron
transformation is identical to a simple polaron transformation;
and (b) when Δ0 ≫ ωλ, fk becomes very small and the
displacement produced by the transformation is almost neg-
ligible. A master equation can be obtained by considering the
perturbative methods discussed in Secs. IV.B.2 and IV.B.7, by
performing an expansion up to second order in the interaction
Hamiltonian of the transformed system (109), which is
therefore considered as a small perturbation. Naturally, if
the system is strongly coupled to the environment, the
resulting master equation will be a particularly convenient
approach in a situation close to case (a) discussed, i.e., when
the tunneling energy Δ0 is sufficiently small. A master
equation in the simple polaron limit fλ ¼ gλ was previously
obtained by Jang et al. (2008) and Nazir (2009) in the context
of coherent resonant energy transfer between two chromo-
phores. This problem can also be described with a spin-boson
model, by interpreting the states j0i and j1i as the state
corresponding to the excitation in the first and second
chromophores, respectively. In this context, the analysis
provided by Nazir (2009) allowed one to analyze the transition
between a regime where energy is coherently interchanged
between such states and a regime where energy is inter-
changed incoherently.
A closely related method based on the polaron trans-

formation was put forward by Díaz-Camacho, Porras, and
García-Ripoll (2015) to analyze the dynamics of a collection
of quantum emitters interacting with a one-dimensional EM
field, and without considering the RWA (see Sec. II.E for other

examples where the RWA is no longer valid). This method
extends upon the polaron variational ansatz originally derived
to study the ground state properties of the spin-boson model.
In more detail, it defines a dynamical variational ansatz (i.e.,
establishes a model structure for the system wave function),
by creating spin and photonic excitations over such polaron
transformed ground state. The method appears to be accurate
for relatively strong couplings as shown by direct comparison
with matrix product states.

C. Multiple-time correlation functions: The quantum
regression theorem

The Markovian approximation allows one to derive a
formula which permits the evaluation of two-time correlations
(and even N-time correlations) using the master equation for
the reduced density operator. This result, which was first
obtained by Lax (1963, 1967), is called quantum regression
theorem (QRT).11 Note that there is a classical hypothesis by
Onsager (1931a, 1931b) which leads to the same formula as
the QRT for two-time correlations [see Carmichael (2002)].
We follow here the derivation of the quantum regression

theorem by Gardiner and Zoller (2000). Analogous deriva-
tions may be found in the original paper by Lax and also in
several books on quantum optics; see, for instance, Cohen-
Tannoudji, Dupont-Roc, and Grynberg (1992), Carmichael
(2002), or Scully (2002).
Let us consider the two-time correlation function of

operators A1 ¼ A and A2 ¼ B (Gardiner and Zoller, 2000),

hAðt1ÞBðt2Þi ¼ TrSB½U†ðt2; 0ÞU†ðt1; t2ÞAUðt1; t2Þ
× Uðt2; 0ÞU†ðt2; 0ÞBUðt2; 0Þρð0Þ�; ð110Þ

where the unitary evolution operator from t2 to t1 ¼ t2 þ τ,
which is assumed to be in an interaction picture, is

Uðt1; t2Þ ¼ eiH0t1e−iHtotðt1−t2Þe−iH0t2 : ð111Þ

Considering the unitarity of the evolution operators
Uðt; 0ÞU†ðt; 0Þ ¼ 1 and the cyclic property of the trace, we
can write Eq. (110) as

hAðt1ÞBðt2Þi ¼ TrSfATrBfξðt1; t2Þgg; ð112Þ

where ξðt1; t2Þ ¼ Uðt1; t2ÞBρðt2ÞU†ðt1; t2Þ, and ρðt2Þ ¼
Uðt2; 0Þρð0ÞU†ðt2; 0Þ. Let us now consider the evolution
equation of ξðt1; t2Þ with respect to t1 and in an interaction
picture,

dξðt1; t2Þ
dt1

¼ 1

i
½Vt1HI; ξðt1; t2Þ�: ð113Þ

The form of Eq. (113) is identical to the von Neumann
equation for ρðt2Þ in the interaction picture (57). Hence, in
order to obtain a closed evolution equation for TrBfξðt1; t2Þg,
we follow the same procedure used in Sec. IV.B.2 for

11Although as noted by Carmichael (2002) it would be more
appropriate to use the word formula instead of theorem.
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obtaining the master equation up to second order in g
to get

dξðt1; t2Þ
dt1

¼ −i½Vt1HI; ξðt2; t2Þ�

−
Z

t1

t2

dτ½Vt1HI; ½Vt1−τHI; ξðt2; t2Þ��; ð114Þ

with ξðt2; t2Þ ¼ Bρðt2Þ. We now proceed to trace out the
environmental degrees of freedom, so that the final equation
for TrBfξðt1; t2Þg ¼ ξSðt1; t2Þ can be written in a similar way
as Eq. (62),

dξSðt1; tÞ
dt1

¼ −
Z

t1

t
dτTrBf½Vt1HI; ½Vt1−τHI; ξBðt; tÞ��g

× ξSðt; tÞ; ð115Þ
where we assumed an initially uncorrelated state
ξðt2; t2Þ ¼ ξBðt2; t2Þ ⊗ ξSðt2; t2Þ, which is equivalent to
assuming the Born approximation. Assuming that the
ξSðt1; t2Þ ¼ ξSðt2; t2Þ þOðgÞ, we can approximate the last
equation up to second order as

dξSðt1; t2Þ
dt1

¼ −
Z

t1

t2

dτTrBf½Vt1HI; ½Vt1−τHI;

ξBðt2; t2Þ��gξSðt1; t2Þ; ð116Þ
which is not equal to the master equation (63), because of the
limits of integration.
Only in the Markovian case does the former equation

become local in time and the evolution equation of ξSðt1; t2Þ
becomes equal to the Lindblad master equation (48), but with
the initial condition ξSðt2; t2Þ ¼ TrBfBρðt2Þg ¼ Bρsðt2Þ. In
other words, the evolution equation has the same form as an
ordinary master equation, but considering a modified initial
condition. This procedure can be repeated to show that, in
general, N-time correlation functions are computed by con-
sidering the (N − 1)-time correlations as the initial condition
and using the evolution equation of one-time correlations,
namely, the Markovian master equation. The last derivation
can be reexpressed in terms of the evolution superoperators
Λðt1; t2Þ, which define the following mapping of the operator
ξSðt1; t2Þ [see (Gardiner and Zoller (2000) and Breuer and
Petruccione (2002) for further details]:

ξSðt1; t2Þ ¼ Λðt1; t2ÞξSðt2; t2Þ: ð117Þ

The evolution equation of Λðt1; t2Þ has the same form as
the evolution of ξSðt1; t2Þ which, as derived, turns out to
be equal to the evolution for ρsðt1Þ, but with a different
initial condition. Because of its Lindbland form, the
evolution superoperators have the divisibility property
Λðt1; t2ÞΛðt2; t0Þ ¼ Λðt1; t0Þ, and, hence, the two-time corre-
lation (112) can be written as

hAðt1ÞBðt2Þi ¼ TrSfAΛðt1; t2ÞTrBfBρðt2Þgg: ð118Þ

The theory of stochastic Schrödinger equations, initially
elaborated to compute the expectation values of system

observables, has been studied by many groups (Gisin,
1993; Brun and Gisin, 1996) to calculate multiple-time
correlation functions (MTCFs) for the Markovian case.
Such stochastic methods agree with the results expected from
the QRT.

V. STOCHASTIC SCHRÖDINGER EQUATIONS

In this section, we analyze the SSEs that evolve the
system wave function jψ tðz�Þi, i.e., a vector that evolves in
the Hilbert space of the system following a stochastic
trajectory. As shown, the reduced density matrix can be
recovered as a sum of projectors of stochastic trajectories.
Depending on the method used in the derivation, there
are many different SSEs that recover the reduced density
matrix of the OQS; these are called unravelings of the
reduced density matrix (Carmichael, 1993b). A review of
quantum stochastic methods was given by Gardiner and
Zoller (2000).
An advantage of SSEs is that since the reduced density

matrix is the result of a positive definite sum of projectors, it
preserves positivity, a fundamental property discussed in
Sec. III.B. A second advantage is that their non-Markovian
version does not explicitly rely on a Born approximation that
neglects the second-order system-environment correlations at
all times, which allows using them to describe the evolution
from initially system-environment correlated states (see
Sec. V.B.1). Also, non-Markovian SSEs (for instance, those
derived with expansion methods) allow one to obtain not only
system dynamical quantities, but also environment ones.
Finally, the size of the wave function to be evolved grows
with the system basis dimension d and not with d2 as the
reduced density operator.

A. Markovian SSEs

Stochastic Schrödinger equations were introduced in the
context of dynamical reduction models (Pearle, 1976, 1989;
Ghirardi, Rimini, and Weber, 1986; Ghirardi, Pearle, and
Rimini, 1990; Bassi and Ghirardi, 2003). In these schemes
(particularly in the continuous localization models), a modi-
fied Schrödinger equation is generated which, besides the
standard Hamiltonian, contains stochastic terms acting at
every time step of the evolution, as well as nonunitary or
dissipative terms. These new terms induce a diffusion process
for the state vector which is responsible for its reduction to a
particular subspace in the system’s Hilbert space. Thus, as
noted by Bassi and Ghirardi (2003), the goal of dynamical
reduction models is to formally account for the wave-packet
reduction process by building a modified Schrödinger equa-
tion that describes the spontaneous suppression of the super-
positions observed in a macrosystem, while at the same time
still accounts for all the known properties of microscopic
quantum systems.
Following a different strategy, the continuously diffusive

nonlinear stochastic Schrödinger equation derived by Gisin
(1984) departs from the von Neumann–Lüders postulate (von
Neumann, 1955). The resulting stochastic trajectory of the
system is reduced due to a sequence of projective measure-
ments performed by an external apparatus. In addition, a
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real-valued noise Markovian SSE was presented by Ghirardi,
Pearle, and Rimini (1990), also from a dynamical reduction
model,

djψ ti
dt

¼ −iHSjψ ti þ Lξtjψ ti −
dtΓ
2

L†Ljψ ti; ð119Þ

where ξt is a real-valued Gaussian white noise. Equation (119)
is still linear, since it represents the evolution of a non-
normalized state. In order to write the density operator as a
mixture of pure state vectors, it has to be transformed into a
nonlinear equation for normalized states j ~ψ ti. This trans-
formation is formally made as

dj ~ψ ti
dt

¼ djψ ti
dt

1ffiffiffiffi
N

p þ jψ ti
d
dt

1ffiffiffiffi
N

p ;

where N ¼ hψ tjψ ti. Belavkin (1989, 1990) presented a new
SSE that was very similar to the former one but driven by a
complex white noise z�t ¼ ζt ¼ ξ1;t þ iξ2;t, where ξi;t with
i ¼ 1, 2 is a real-valued Gaussian white noise process,

djψ ti
dt

¼ −iHSjψ ti þ Lz�t jψ ti −
1

2
L†Ljψ ti. ð120Þ

Here the complex white noise has the following statistical
properties: M½ztz�τ � ¼ Γδðt − τÞ and M½ztzτ� ¼ M½zt� ¼ 0,
where Γ is the dissipative constant and M½� � �� denotes an
average over many realizations of zt. A nonlinear version of
this SSE was later derived by Gisin and Percival (1993),

dj ~ψ ti
dt

¼ −iHSj ~ψ ti þ ðL − hLitÞðz�t þ hL†itÞj ~ψ ti

−
Γ
2
ðL†L − hL†LiÞj ~ψ ti þOðg3Þ; ð121Þ

in Stratonovich form (Gardiner and Zoller, 2000). The mean
value appearing in Eq. (121) is hL†i ¼ h ~ψ tjL†j ~ψ ti.
Several models of Markovian SSE have been derived in the

framework of theories of continuous observation (Belavkin,
1989, 1990; Belavkin and Staszewski, 1992; van Kampen,
2006). In these models, contrary to those involving dynamical
reduction, a particular measuring device is chosen, which
determines the kind of trajectory or unraveling that will be
obtained.
Also, in order to minimize the perturbation caused to the

system by the measuring device, the measurement is per-
formed not directly on the system but on its environment.
Since they are entangled, a measurement of the environment
selects the particular state of the mixture compatible with the
measurement result. In that way, the quantity that is contin-
uously measured, which is not necessarily the environmental
state but a combination of its eigenvalues, is related to the
stochastic variable zt that drives the SSE. A sequence of
measurement results zt then corresponds to a single trajectory
of a Markovian SSE. In other words, the trajectory jψ tðz�Þi
represents the system state conditioned to the sequence of
measurements which have given the result zt.
The SSEs generated by dynamical reduction and con-

tinuous measurement models are of a quantum state

diffusion type, since the stochastic element acts on every
time step of the trajectory. Particularly, in the framework
of quantum optics Carmichael showed that the real noise
SSE (119) derived by Ghirardi, Pearle, and Rimini (1990)
corresponds to continuous homodyne detection (Carmichael,
2002). In addition, Wiseman and Milburn (1993) showed
that the complex noise linear SSE (120) corresponds to a
continuous heterodyne detection of the environment. The
bases chosen for homodyne and heterodyne detection
are the quadrature and the coherent basis, respectively. A
formal derivation of Eqs. (119) and (120), as well as their
correspondence to homodyne and heterodyne detection, was
performed by Gambetta and Wiseman (2002) from the
measurement theory. This is discussed in more detail in
Sec. V.B.4.
Apart from diffusive trajectories, which depend on a

continuous noise variable acting over the trajectory at each
time step, there are also quantum trajectories in which the
stochastic influence occurs in sudden jumps, interrupting a
deterministic nonunitary evolution. The quantum jumps
formalism was first developed by Zoller, Marte, and
Walls (1987) for Markovian systems, as a theory to
calculate density operators conditioned to a different number
of photon emissions. The density operator corresponding to

the emission of n photons ρðnÞS ðtÞ is related to the total
density operator by

ρðnÞS ðtÞ ¼ TrBfPnρðtÞg; ð122Þ

where Pn is the projection operator onto the state of the
quantized radiation field that contains n photons. A formu-
lation of quantum jumps as a stochastic equation was later
proposed by Zoller, Marte, and Walls (1987), Hegerfeldt
and Wilser (1991), Dalibard, Castin, and Mølmer (1992),
Gardiner, Parkins, and Zoller (1992), Carmichael (1993a),
Mølmer, Castin, and Dalibard (1993), and Gardiner and
Zoller (2000) [see Plenio and Knight (1998) for more
details]. In all these methods, a non-Hermitian term and
a white noise term are added to the Schrödinger equation.
Because of the non-Hermitian term, the trace of the reduced
density operator is no longer conserved, but is restored by
stochastically chosen quantum jumps.
For instance, in the algorithm by Dalibard, Castin, and

Mølmer (1992), the total wave function of an atom coupled to
its environment, computed at time tþ dt, is jΨðtþ dtÞi ¼
jΨð0Þðtþ dtÞi þ jΨð1Þðtþ dtÞi, where jΨð1Þi represents the
product state of the atom in the ground state jgi and a photon
in the field, and jΨð0Þi ¼ jψ ti ⊗ j0i represents the product of
a atomic state jψ ti and no photon in the field j0i. When a
photon is detected, the total state is projected into jΨð1Þi, and
when no photon is detected it remains in jΨð0Þðtþ dtÞi.
The probability of a spontaneous emission occurring
during dt is given by dp ¼ hΨð1ÞjΨð1Þi. The randomness in
the detection or nondetection of a photon is simulated by
numerical generation of a random number ϵ chosen from the
interval [0, 1]. Thus, when ϵ > dp, it is assumed that no
photons are detected, so that jΨðtþ dtÞi ¼ jΨð0Þðtþ dtÞi ¼
μð1 − idtHeffÞðjψ ti ⊗ j0iÞ, where μ ¼ ð1 − dpÞ−1=2 and Heff
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is a non-Hermitian Hamiltonian in HS. The norm of this state
is no longer 1, but is given by 1 − dp. As a consequence, the
quantity dp represents the loss of norm of the total state when
no photon is detected. When ϵ < dp, a photon is detected and
the total state is projected into the normalized state jΨð1Þi,
where it is assumed that there has been no time for the atom to
be reexcited after having emitted a photon. The reduced
density matrix is computed as a sum of the projectors
jψ tihψ tj corresponding to a large ensemble of stochastic
trajectories.
As shown by Carmichael (1993b), the jumplike Markov

SSE corresponds to direct photon detection, where the
experimental setup consists of a photon counter and the
environmental state is expressed in the number basis. An
extended review of the quantum jump approach in the
Markovian regime was given by Plenio and Knight (1998).

B. Non-Markovian SSEs

Among the first proposals to describe non-Markovian
effects with SSEs is that offered by Imamoglu (1994b),
who approximated memory effects in electron-phonon inter-
actions by embedding the system into a larger one that could
be described with a Markovian SSE. In addition, Kleinert and
Shabanov (1995) derived an exact non-Markovian quantum
Langevin equation to describe the evolution of the position
operator of a harmonic oscillator. However, the first extension
of a quantum state diffusion SSE to a non-Markovian
environment was proposed by Diósi and Strunz (1997) and
Diósi, Gisin, and Strunz (1998), and later complemented by
the works of Gaspard and Nagaoka (1999a), Cresser (2000),
Jack and Collett (2000), Strunz (2001), and Alonso and de
Vega (2005). An extension of the quantum jump approach to
non-Markovian interactions came a decade later with the
proposal of Piilo et al. (2009). In the following section we
discuss some of these equations, with an emphasis on the
different derivation techniques that exist in the literature.

1. Expansion method

In the last few decades, several methods have been derived
for obtaining diffusive non-Markovian SSEs, where the noise
acts continuously along the trajectory.
Some methods are based on expanding the total state vector

into the environmental basis. The coefficients of such an
expansion are in principle deterministic, but because the
environment has a large number of degrees of freedom, it
is often convenient to consider these coefficients as stochastic
and compute their evolution with a stochastic Schrödinger
equation. As shown, deriving an SSE with the expansion
method provides a way to understand the origin of the
stochasticity in the evolution of an OQS, as well as the
connection between the noise and environment states.
The wave function corresponding to the total Hamiltonian

(5) evolves from its initial value jΨ0i as jΨti ¼ UIjΨ0i, where
UIðt; 0Þ is the evolution operator in the interaction picture
given by

UIðt; 0Þ ¼ eiHBte−iHtott: ð123Þ

The expansion method consists of representing the state jΨti
in an environmental basis. Choosing the Bargmann coherent
state basis (Bargmann, 1961, 1962; Glauber, 1963), and an
initial state jΨ0i ¼ jψ0ij0i, the total system state at a time t
can be expressed as (Strunz, 2001)

jΨti ¼
Z

dμðziÞGðz�i 0jt0Þjψ0ijzii: ð124Þ

In Eq. (124) we used the Gaussian measure

dμðziÞ ¼
Y
λ

d2zi;λ
π

e−jzi;λj2 ; ð125Þ

and the notation jzii ¼ jzi;1ijzi;2i � � � jzi;λi � � � for the state of
the environment, given by a tensor product of the states of all
the λ environmental oscillators. The basis states for each
oscillator are jzi;λi ¼ expðzi;λa†i;λÞj0i. The system operator

Gðz�i 0jt0Þ ¼ hzijUIðt; 0Þj0i; ð126Þ

with UIðt; 0Þ given by Eq. (123), is the vacuum reduced
propagator that was interpreted by Strunz (2001) as a
stochastic propagator. In a sense, they correspond to the
Kraus operators in Eq. (28), considering the interaction
picture and a Bargmann coherent basis. Vacuum reduced
propagators give rise to a displacement of the wave function
from its initial value jψ0i to the value jψ tðz�i Þi ¼
Gðz�i 0jt0Þjψ0i at time t, provided that the environment
oscillators have evolved from the vacuum state j0i to the
state jzii. The reduced density matrix of the system can then
be recovered as

ρsðtÞ ¼
Z

dμðziÞjψ tðz�i Þihψ tðziÞj: ð127Þ

A generalized version of Eq. (126), Gðz�i ziþ1jtitiþ1Þ ¼
hzijUIðt; 0Þjziþ1i, corresponding to an arbitrary initial
state of the environment ziþ1 is useful to compute the
OQS dynamics from any arbitrary total initial state
ρð0Þ ¼ R

dμðz0Þ
R
dμðz00Þjz0ijψ0ðz�0Þihψ0ðz00Þjhz00j. Its evolu-

tion can be derived as ∂Gðz�i ziþ1jtitiþ1Þ=∂ti ¼
hzij∂UIðti; tiþ1Þ=∂tijziþ1i, where UIðti; tiþ1Þ satisfies the
Schrödinger equation in the partial interaction picture

∂UIðti; tiþ1Þ
∂ti ¼

�
−iHS − i

X
n

gλðL†aλe−iωλti

þ La†λe
iωλtiÞ

�
UIðti; tiþ1Þ: ð128Þ

Hence, the evolution equation for the reduced propagator is
(Alonso and de Vega, 2005)
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∂Gðz�i ziþ1jtitiþ1Þ
∂ti

¼
�
−iHS − iL

X
λ

gλeiωλti z�i;λ

�
Gðz�i ziþ1jtitiþ1Þ

− iL†
X
λ

gλe−iωλtihzijaλUIðti; tiþ1Þjziþ1i; ð129Þ

where we used the property hzja†λ ¼ hzjz�λ.
To proceed further it is convenient to deal with the matrix

element hzijaλUIðti; tiþ1Þjziþ1i that equals to hzijUIðti;tiþ1Þ
aλðti;tiþ1Þjziþ1i, with aλðti; tiþ1Þ ¼ U†

I ðti; tiþ1ÞaλUIðti; tiþ1Þ.
Integrating the Heisenberg equations of motion for aλðti; tiþ1Þ,
ðd=dtiÞaλðti; tiþ1Þ ¼ −igλe−iωλtiLðti; tiþ1Þ, it follows that

aλðti; tiþ1Þ ¼ aλðtiþ1; tiþ1Þ − igλ

Z
ti

tiþ1

dτLðτ; tiþ1Þeiωλτ;

ð130Þ

with Lðti; tiþ1Þ ¼ U†
I ðti; tiþ1ÞLUðti; tiþ1Þ.

Gathering the results, Eq. (129) becomes

∂Gðz�i ziþ1jtitiþ1Þ
∂ti ¼ð−iHSþLz�i;ti −L†ziþ1;tiÞGðz�i ziþ1jtitiþ1Þ

−L†
Z

ti

tiþ1

dταðti−τÞhzijUIðti;tiþ1Þ

×Lðτ;tiþ1Þjziþ1i; ð131Þ

where we defined the functions

zi;t ¼ i
X
λ

gλzi;λe−iωλt ð132Þ

and

αðt − τÞ ¼ M½zi;tz�i;τ� ¼
X
λ

jgλj2e−iωλðt−τÞ: ð133Þ

Note that the last term of Eq. (131) can also be written as

hzijUIðti; tiþ1ÞLðτ; tiþ1Þjziþ1i ¼
δGðz�i ziþ1jtitiþ1Þ

δz�i;τ
.

In the above equation we defined the average M½zi;tz�i;τ� ¼R
dμðziÞzi;tz�i;τ, with the Gaussian measure defined in

Eq. (125), which leads to the environmental correlation
function introduced in Sec. II.F, αðt − τÞ. Since the environ-
ment is usually very large, and the coherent state variables
zi;λ form a continuum, it is convenient to consider them
as a complex Gaussian white noise, with the properties
M½z�λzλ0 � ¼ δλ;λ0 and M½zλ� ¼ 0. In that case Eq. (132)
becomes a complex Gaussian noise with the properties

M½zi;t� ¼ 0;

M½zi;tz�i;τ� ¼ αðt − τÞ. ð134Þ
Hence, the only information needed about the environment is
its correlation function or equivalently its spectral density

JðωÞ. In other words, if αðtÞ is at our disposal, we can generate
a Gaussian distributed set of complex random numbers in
such a way that they have the required properties (134). Also,
such environmental function is indeed responsible for the
dependency of the evolution of the system over its past history,
as it is the kernel of an integral term from the initial time tiþ1

to the actual time ti. Note that once interpreting Eq. (132)
as a noise, Eq. (131) leads to a SSE for the wave function
jψ tðz�; z0Þi ¼ Gðz�z0jtt0Þjψ0i.
Similarly, for the case ziþ1 ¼ 0 the evolution equation of

the system state vector can be written as (Strunz, 2001)

djψ tðz�Þi
dt

¼ −iHSjψ tðz�Þi þ Lz�t jψ tðz�Þi

−L†
Z

t

0

dταðt − τÞ δ

δz�τ
jψ tðz�Þi: ð135Þ

The same equation was first derived by Diósi and Strunz
(1997) without using an expansion, but considering the
equation for state vectors depending on a Wiener stochastic
process that depends on a complex colored Gaussian noise.
An alternative derivation of the former equation was given by
Cresser (2000). An extension of the SSE (135) for fermionic
environments was recently derived by Zhao et al. (2012). Such
an extension can also be a useful tool for studying OQSs
coupled to a spin-chain environment, when this can be
transformed into an effective fermionic environment.
From Eq. (131) [similarly Eq. (135)], we could integrate

the reduced propagators with the initial conditions
Gðz�i ziþ1jtitiÞ ¼ expðz�i ziþ1Þ. However, the time dependency
of the operator appearing in the last term of Eq. (131)
Lðτ; tiþ1Þ ¼ U†

I ðτ; tiþ1ÞLUIðτ; tiþ1Þ is over the total
Hamiltonian operator, so that Eq. (131) is still not a closed
equation over the reduced Hilbert space of the system, but is
merely a particular representation of the Schrödinger equation
for the system and the environment. In general, it is not always
possible to exactly compute the last term and only in very
exceptional cases can this be done. Particularly, when
Lðτ; tiþ1Þ ∝ HSðτ; tiþ1Þ, then ½L;Htot� ¼ 0 and therefore
HSðτ; tiþ1Þ ¼ HS, so that hzijLðτ; tiÞUIðti; tiþ1Þjziþ1i ¼
HSGðtitiþ1jz�i ziþ1Þ. Also, as discussed in Sec. VIII.B,
Ferialdi and Bassi (2012) derived the exact analytical solution
of an SSE similar in form to Eq. (135) for the particular case
when the system is a harmonic oscillator and the environment
is in a thermal state.
In other situations, a perturbative expansion of Lðτ; 0Þ is

needed, which up to the second order leads to expressing

hzjUIðt; 0ÞLðτ; 0Þjz0i ¼
δGðz�z0jτ0Þ

δz�τ
≈ Vτ−tL.

Similarly, it can be considered as an ansatz that the
matrix element can be written as (Diósi, Gisin, and Strunz,
1998; Yu et al., 1999) hzijUIðti; tiþ1ÞLðτ; tiþ1Þjziþ1i ¼
Oðziþ1z�i ; t; τÞGðz�i ziþ1jtitiþ1Þ, where the operator O belongs
to the systems Hilbert space and shall be obtained for each
case. For ziþ1 ¼ 0, the above ansatz has been complemented
with the consistency condition (Diósi, Gisin, and Strunz,
1998),
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d
dt

δjψ tðz�Þi
δz�τ

¼ δ

δz�τ

djψ tðz�Þi
dt

; ð136Þ

to obtain Oðz�i ; t; τÞ systematically. Also, the ansatz and the
consistency condition have been used in the many-body case
to analyze the dynamics of energy transport in quantum
aggregates (Roden et al., 2009). In this context, the validity
of the SSE approach is confirmed by comparing its solution to
the one provided by the pseudomode approach discussed in
Sec. IV.B.10.
An alternative to the consistency condition was recently

proposed by Suess, Eisfeld, and Strunz (2014) and consists of
obtaining the evolution equation of δjψ tðz�Þi=δz�τ ¼ ψ1

t . For
the case of a correlation function of the form αðtÞ ¼ ge−Ωt,
this equation becomes simply

dψ1
t

dt
¼ ð−iH − Ωþ Lz�t Þψ0

t þ αð0ÞLψ0
t − L†ψ2

t ;

where ψk
t ¼ δkjψ tðz�Þi=δz�kτ . In general, for exponential

correlation functions the evolution equation for the kth func-
tional derivative of the system wave vector can be written as

dψk
t

dt
¼ ð−iH − kΩþ Lz�t Þψk−1

t þ αð0ÞLψk−1
t − L†ψkþ1

t ;

with ψ0
t¼0 ¼ jψ0i and ψk

t¼0 ¼ 0 for k > 0. To make practical
use of this hierarchy, one may truncate it at a certain order k,
by using a terminator ψkþ1

t ¼ ½αð0Þ=Ω�Lψk
t .

2. Nonlinear SSEs

As noted by Diósi, Gisin, and Strunz (1998), the linear
equation obtained with the previous methods has one major
drawback. During the evolution of the trajectories, the
solutions jψ tðz�Þi may lose their norm and therefore their
statistical relevance. This problem comes from not having
considered the fact that the interaction between the system and
the environment not only affects the system, but also the
environment itself.
To see this more clearly, a Husimi function (or Q function)

(Scully, 2002) of the environment is considered (Strunz,
2001),

Qtðz; z�Þ ¼
e−jzj2

π
hzjTrs½jΨtihΨtj�jzi; ð137Þ

where jzi denotes a coherent state of the environment in the
Bargmann basis. Since each of these states corresponds to a
certain value of the noise, the function Qtðz; z�Þ may be
interpreted as the probability distribution of the noise. The
substitution of jψ tðz�Þi ¼

R
dμðzÞjψ tðz�Þihψ tðzÞj ⊗ jzihzj

into Eq. (137) gives the following expression:

Qtðz; z�Þ ¼ hψ tðzÞjψ tðz�ÞiQ0ðz; z�Þ; ð138Þ

with Q0ðz; z�Þ as the initial Gaussian distribution of coherent
states Q0ðz; z�Þ ¼ e−jzj2=π. In terms of Eq. (138), the density
operator can be defined as a mixture of pure normalized states
weighted by Qtðz; z�Þ,

ρs ¼
Z

d2zQtðz; z�Þ
jψ tðz�Þihψ tðzÞj
hψ tðzÞjψ tðz�Þi

: ð139Þ

With Eq. (139) it is clearer to see that once the interaction is
switched on and the environmental oscillators start to move
away from the origin according to the distribution Qtðz; z�Þ,
the states jψ tðz�Þ=hψ tðzÞjψ tðz�Þi1=2, which according to
Q0ðz; z�Þ correspond to small z, will have a decreasing weight
in the sum (139).
The Husimi function shows a closed time evolution of

Liouville form for the set of oscillators zλ composing the
quantity zt, corresponding to the phase space flow (Diósi,
Gisin, and Strunz, 1998)

_z�λ ¼ igλe−iωλthL†it: ð140Þ

In terms of the trajectories zðtÞ that follow this flow, the
Husimi function Qtðz; z�Þ at time t can be expressed as

Qtðz; z�Þ ¼
Z

d2z0Q0ðz0; z�0Þδ2(z − zðtÞ); ð141Þ

where somewhat symbolically zðtÞ represents the set of
solutions of the different trajectories of the oscillators starting
from the set of initial values fz�λð0Þ ¼ z�λ;0g. In this way, we
can now replace Eq. (139) by an integral of wave functions
evaluated in the dynamical states z�ðtÞ≡ fz�λðtÞg as

ρt ¼
Z

d2z0Q0ðz0; z�0Þ
jψ t(z�ðtÞ)ihψ t(z�ðtÞ)j
hψ t(z�ðtÞ)jψ t(z�ðtÞ)i

¼
Z

d2z0
π

e−jz0j2
jψ t(z�ðtÞ)ihψ t(z�ðtÞ)j
hψ t(z�ðtÞ)jψ t(z�ðtÞ)i

: ð142Þ

Now to perform the integral (142) with a Monte Carlo
method, a new stochastic variable ~z�t is defined, which
corresponds to z�ðtÞ with a random selection of the initial
values for the environmental oscillators fz�λð0Þg. From the
flow equation (140), one obtains

~z�t ¼ z�t þ g
Z

dτα�ðt − τÞhL†iτ: ð143Þ

Here the variable z�t is the noise as it appears in the linear
stochastic Schrödinger equation, which corresponds to the
stationary statistics with distribution function Q0ðz; z�Þ. The
last term represents a dynamical shift or displacement of each
zt, which depends on the history of the interaction with the
system. The stochastic equation for the wave function
jψ(zðtÞ)i with a shifted noise in the driving term is (Diósi,
Gisin, and Strunz, 1998)

jψ t(z�ðtÞ)i
dt

¼ −iHSjψ t(z�ðtÞ)i þ gL~z�t jψ t(z�ðtÞ)i
− g2ðL† − hL†itÞŌ(t; z�ðtÞ)jψ t(z�ðtÞ)i; ð144Þ

with Ō ¼ R
t
0 dταðt − τÞO(t; τ; z�ðtÞ). By evolving Eq. (144)

we ensure that the wave functions jψ t(z�ðtÞ)i correspond to
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those realizations that contribute with a significant probability,
which is ensured by the shift term in Eq. (143). This is because
the equation depends on a noise (143) that dynamically
follows the motion of the center of the Gaussian distribution
in the environment state space. As shown by de Vega et al.
(2005), the probability function for the noise corresponding to
an environment at high temperature evolves quite significantly
in time, so that a nonlinear equation needs to be considered.
Conversely, for low temperatures the state distribution of the
environment (i.e., the noise distribution) remains quite close to
a Gaussian distribution centered at the origin during the
interaction, and the linear equations provide an accurate
description of the problem.

3. Projection method

Using the Feshbach projection-operator method, Gaspard
and Nagaoka (1999a) derived a non-Markovian SSE that is
identical to the one obtained with the expansion method up to
the second order in the perturbative parameter. The projection-
operator method is based on the same idea as the Nakajima-
Zwanzig method, but is applied to the Schrödinger equation
instead of the master equation. As in Sec. V.B.1, the evolution
equation of the total system wave function is considered. This
wave function is expressed in the coordinate representation
for both the system fxsg and the environment fxbg as
Ψtðxs; xbÞ ¼

P
nϕnðxs; tÞχnðxbÞ, where fϕnðxs; tÞg is the

set of coefficients of this linear expansion. The χnðxbÞ
functions depend only on the environmental degrees of
freedom, so that the dependency of the total wave function
over the system degrees of freedom is entirely encoded in the
coefficients ϕnðxs; tÞ of the linear decomposition.
The normalized version of these coefficients,

ϕ̂nðxs; tÞ ¼ ϕnðxs; tÞ=∥ϕnðxs; tÞ∥; ð145Þ

can be considered as a statistical set of wave functions of
the system. In terms of these, the reduced density matrix
can be written as ρs ¼

P
npnðtÞjϕ̂nihϕ̂nj, where ϕ̂nðxs; tÞ ¼

ϕnðxs; tÞ=∥ϕnðxs; tÞ∥ and pnðtÞ ¼
R
dxsjϕnðxs; tÞj2 ¼

∥ϕnðxs; tÞ∥2 is the probability for the environment to be
observed in a certain state χnðxbÞ. The statistical character of
ϕ̂nðxs; tÞ appears through its dependency on the environmen-
tal state (of index n). Then the probability of each system
wave function is given by the probability pnðtÞ of observing
the environment in the corresponding basis state χnðxbÞ. Thus,
the quantum system can no longer be described through a
single wave function, but through a collection of them, and the
dynamics of the system is conditioned on the dynamics of its
environment.
In order to obtain an evolution equation for these coef-

ficients, the Schrödinger equation of the total system is
decomposed in two equations, using the projectors P and
Q that act over the total Hilbert space, with properties (81),
and such that PΨðxs; xbÞ ¼ ϕlðxs; tÞχlðxbÞ andQΨðxs; xbÞ ¼P

nð≠lÞϕnðxs; tÞχnðxbÞ. The time dependency of PΨ is entirely
encoded in the coefficient ϕlðxs; tÞ. Its evolution in the total
interaction picture is

i
φlðtÞ
dt

¼ flðtÞ − ig2
Z

t

0

dτ
X
ηγ

VtSηhljVtBηVτBγjliVτSγ

× φlðτÞ þOðg3Þ: ð146Þ

Here an interaction Hamiltonian of the form (2) has been
considered, representing a sum of system Sη and environment
Bη Hermitian operators. In addition, an expansion up to the
second order in the weak-coupling parameter g has been
performed. Equation (146) has two different terms. The first
originates from the initial condition QΨð0Þ of all the coef-
ficients except PΨ and has the form

flðtÞ ¼ g
X
η

X
mð≠lÞ

VtSηhljVtBηjmiφmð0Þ − ig2
Z

t

0

dτ

×
X
ηγ

X
mð≠lÞ

VtSηhljVtBηVτBγjmiVτSγφmð0Þ þOðg3Þ

with the assumption that hljBηjli ¼ 0. This term will be
identified later with the stochastic forcing over the system
due to the environmental fluctuations. The second term
corresponds to the damping of the coefficient or wave function
PΨ (or φl) due to its coupling with the other coefficientsQΨ,
which is produced through the interaction with the environ-
ment. As it is an integral up to the actual time t, this term is
responsible for the non-Markovian character of the equation.
In order to use the former equation to derive a stochastic

Schrödinger equation, it is necessary to assume that the
coefficient φlðtÞ statistically represents each of the coefficients
φnðtÞ of the decomposition of the total wave function. In other
words, it is necessary to assume that all the coefficients evolve
in a similar way, so that φlðtÞ is a typical representative of the
rest of the statistical ensemble. This hypothesis, known as
statistical typicality, has been justified for classically chaotic
systems, but is not necessarily valid for every environmental
state basis χlðxbÞ chosen. However, it is reasonable to assume
that this hypothesis is fulfilled for most of the environmental
states, since it has its origins in the fact that the typical
eigenfunctions of high quantum numbers are statistically
irregular.
Thanks to statistical typicality, and following a conjecture

of Berry (1977), the quantum mean value of an environmental
operator C over a typical eigenstate χl is equivalent to the
quantum mean value over a representative state of the
microcanonical ensemble with the corresponding energy el.
In addition, since the environment is large, following
Srednicki (1994), it can also be supposed that such a mean
over the state of the microcanonical ensemble is essentially
equivalent to a mean over a typical state of the canonical
ensemble. As a consequence, a quantum average of an
environmental operator B over a typical environmental eigen-
state χl is approximately equal to a thermal mean,

hljBjli ≈ TrB

�
e−βHB

Zb
B

�
≡ TrBfρeqB Bg; ð147Þ

where Zb ¼ TrBfexpð−βHBÞg. The inverse temperature β
should be fixed for a given environmental eigenenergy el.
Also, the variation of such environmental energy due to the
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interaction with the system is assumed to be negligible, since
such variation is very small in comparison with its energy el.
Taking Eq. (147), the damping term (146) can be written in
terms of the environment correlation function

hljVtBηVτBγjli ≈ TrBfρeqB VtBηVτBγg≡ Cηγðt − τÞ;

a form which thanks to statistical typicality is independent of
the particular choice of the coefficient jli. Also, in order to
find the typical behavior of the forcing term, it is necessary to
assume that the initial state is a tensor product of the system ψ
and the mixed canonical state of the environment.
Assuming all these approximations over Eq. (146), the

following stochastic differential equation is obtained for a
typical coefficient φl:

i
φlðtÞ
dt

¼ g
X
η

ζηðtÞSηφlðtÞ − ig2
Z

t

0

dτ
X
ηγ

Cηγðt − τÞ

× VtSηVτSγφlðτÞ þ θðg3Þ: ð148Þ

Here we reexpressed the stochastic forcing as flðtÞ ≈
g
P

ηζηðtÞSηφlðtÞ, up to the second order in g, defining a term

ζηðtÞ≡
X
mð≠lÞ

hljVtBηjmie−βðem−elÞ=2eiðθm−θlÞ ð149Þ

which may be interpreted as the stochastic forcing that acts
on the system due to its interaction with the environment.
Indeed, when the environment is large enough, the quantity
defined in Eq. (149) is given by a sum of a large number of
oscillating complex terms that, following the central limit
theorem (Watson, 1952), gives rise to random variables of a
Gaussian type. In summary, the random variables appearing in
Eq. (149) can be taken as Gaussian noises characterized by a
zero mean value and a correlation function Cηγðt − τÞ, i.e.,
following properties similar to Eq. (134).
The following step is taken to obtain an evolution from a

general initial condition ρsð0Þ ¼
P

λjψkð0Þihψkð0Þj, defined
in terms of the system wave functions ψk and their proba-
bilities fpkg, so that

P
λpk ¼ 1. In such a case, we consider

the following statistical set of coefficients:

φlðtÞ ≈ jψkðxs; tÞi
ffiffiffiffiffiffiffiffiffiffi
e−βwl

Zb

s
eiθl ; ð150Þ

where l is the index appearing in Eq. (148), and k specifies the
member of the statistical mixture. Replacing Eq. (150) in
Eq. (148), and eliminating the factor that multiplies ψk on both
sides, the following equation is obtained up to the second
order in g:

i
djψkðtÞi

dt
¼−iHSjψ IkðtÞiþg

X
η

ζηðtÞSηjψkðtÞi

− ig2
Z

t

0

dτ
X
ηγ

Cηγðt−τÞSηVτ−tSγe−iHSðt−τÞjψkðτÞi;

ð151Þ

where ψkðxs; tÞ ¼ hxsjψkðtÞi. In Eq. (151), the Gaussian
noises ηβðtÞ satisfy

ζηðtÞ ¼ 0; ζηðtÞζγðτÞ ¼ 0;

ζ�ηðtÞηγðτÞ ¼ Cηγðt − τÞ ¼ C�
γηðτ − tÞ: ð152Þ

Inserting e−iHSðt−τÞjψkðτÞi ¼ jψkðtÞi þOðg2Þ into the last
term of Eq. (151), which is already of second order in g,
leads to a a time-local equation in jψki. This time-local
equation is equivalent to Eq. (135) when approximating
δjψ ti=δz�τ ≈ Vτ−tL and considering the equivalences in
Eq. (3).

4. Continuous measurement theory method and
measurement of a quantum evolution

Non-Markovian SSEs can also be derived based on con-
tinuous measurement theories. For instance, Jack, Collett,
and Walls (1999) and Jack and Collett (2000) presented a
formulation of non-Markovian quantum trajectories which
describes the real-time spectral detection of the light emitted
from a localized system. In this case, the non-Markovian
behavior is not intrinsic to the interaction of the system with
its environment, but arises from the uncertainty in the time of
emission of particles that are later detected. More recently,
Gambetta and Wiseman (2002) proposed a formal way to
obtain non-Markovian SSEs from a continuous measurement
scheme. They discussed all the mathematical ingredients to
describe a continuous measurement (Davies, 1976; Kraus,
1983; Wiseman, 1996). This includes a probability-operator-
measure element, or effect, ~Ffqλg ¼ jfqλgihfqλgj, where
jfqλgi is the environmental basis, and fqλg is the result of
the measurement. A set of measurement operators ~Mqλ is

also necessary, with the constraint ~Ffqλg ¼ ~M†
qλ
~Mqλ . For

example, we can decompose the measurement operators as
~Mqλ ¼ jfnλgihfqλgj, where the final state of the environment
after a measurement fnλg can be chosen as the vacuum, since
in most detection situations the measurement generally results
in annihilating the detected field. A noise operator ẐðtÞ is also
defined in such a way that ẐðtÞjfqλgi ¼ ẑtjfqλgi, where ẑt is
the noise function from which the conditioned state after a
measurement depends. With these definitions at hand, two
kinds of such conditioned system states can be obtained after
measurement. The first state jψqλðtÞi is such that (a) it depends
linearly on the premeasurement state jψ ti and (b) it depends
on an environmental state fqλg, which is distributed according
to a probability ΛðfqλgÞ that does not take into account the
effects of the interaction of the environment and remains
constant in time. In such terms, the linear state after the
measurement of fqλg is written as

jψqλðtÞi ¼
hfqλgjψ tiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΛðfqλgÞ

p : ð153Þ

Because it is not normalized, they argued that the linear
conditioned system state does not have a clear physical
interpretation, but is useful to derive the actual probability
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Pðfqλg; tÞ that the environmental states have, considering
their interaction with the system as

Pðfqλg; tÞ ¼ hψqλðtÞjψqλðtÞiΛðfqλgÞ. ð154Þ

Such probability is obtained through a Girsanov transforma-
tion of the variables fqλg (Gatarek and Gisin, 1991).
This actual probability allows for the derivation of a second

kind of conditioned state j ~ψqλðtÞi that (a) evolves in a
nonlinear way and (b) depends on an environmental state
fqλg that is sampled according to the actual distribution (154),

j ~ψqλðtÞi ¼
hfqλgjψ tiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pðfqλg; tÞ

p : ð155Þ

A linear SSE can be derived from Eq. (153) as

djψfqλgðtÞi
dt

¼ ∂jψfqλgðtÞi
∂t þ

X
λ

dqλ
dt

∂jψfqλgðtÞi
∂t ; ð156Þ

and provided that a Girsanov transformation can be made, a
nonlinear SSE results in

dj ~ψfqλgðtÞi
dt

¼ 1

jψfqλgðtÞj
djψfqλgðtÞi

dt

þ jψfqλgðtÞi ×
d
dt

1

jψfqλgðtÞj
; ð157Þ

where j ~ψfqλgðtÞi ¼ ½1=jψfqλgðtÞj �jψfqλgðtÞi and jψfqλgðtÞj ¼
hψfqλgðtÞjψfqλgðtÞi. Since it is normalized, the former state
represents, with a probability equal to 1, the conditioned state
of the system after a measurement of output fqλg has been
performed at time t in the environment. This statement is true
whether the interaction is Markovian or non-Markovian.
However, the linking of such a state with earlier states
obtained by evolving Eq. (157) is possible only in the first
type of interaction. Once a measurement of the environmental
state has been made at time t, a future measurement performed
at time tþ Δt is altered if Δt < τc. In other words, the
measurement at time tþ Δt is performed before the environ-
ment has recovered from the last measurement, since the
recovery time is of the order of τc. Considering that Δt → 0

for a continuous measurement, only in the Markovian case in
which the correlation time τc ¼ 0 do the sequences of
measurements that monitor a trajectory not affect each other.
Thus, according to Gambetta and Wiseman (2002) and
Wiseman and Gambetta (2008), there are no genuine non-
Markovian quantum trajectories: monitoring the field feeds
back into the system and this can change the average evolution
of its state. The result is that an average over such a monitored
trajectory would not reproduce on average the nonmeasure-
ment evolution that a non-Markovian SSE does. However,
Diósi (2008a, 2008b) concluded that the non-Markovian SSE
describes a time-continuous measurement that includes delay
and retrodiction (i.e., an account of the past).
As shown by Barchielli and Gregoratti (2012) [see also

Barchielli and Holevo (1995)], another way to include non-
Markovian effects, but which permits one to maintain at the

same time the continuous measurement interpretation, is to
start from the linear SSE and to generalize it by considering
the presence of stochastic coefficients. This allows us to
describe the non-Markovian evolution of a quantum system
continuously measured and controlled, thanks to a measure-
ment-based feedback, and in a mathematically consistent way.
In this context of measurement, a result by Galve, Zambrini,

and Maniscalco (2014) and Giorgi, Galve, and Zambrini
(2015) described how the non-Markovian character of an
evolution inhibits quantum Darwinism. Such quantum
Darwinism explains the emergence of a classical objective
reality by the fact that a system that dissipates spreads to its
environment multiple redundant copies of the same informa-
tion (Zurek, 2009). As a result, each small fraction of the
environment contains almost all information classically acces-
sible on the system, which can then be observed by multiple
observers without perturbing the system. The existence of an
information flowback produced by the non-Markovianity of
the system evolution (which also prevents the existence of
genuine trajectories) reduces such redundancy and hence the
emergence of an objective classical reality.

5. Embedding methods

Similar to the embedding methods described in
Sec. IV.B.10 for master equations, Breuer, Burgarth, and
Petruccione (2004) proposed a stochastic unraveling of states
living in an extended space. Just as in the master equation
case, such an extended state is given by a tensor product of the
original system state space H and C3. Then states jΦti in this
extended space have the general form

jΦti ¼ jφaðtÞijai þ jφbðtÞijbi þ jφcðtÞijci; ð158Þ

where jφki ∈ H (k ¼ a; b; c). Also the coherences can be
expressed as Wab ¼ M½jφaðtÞihφbðtÞj� in terms of wave
functions of the extended space jφki, which obey a
Markovian evolution and therefore have the physical inter-
pretation of continuous measurements. In this way, a reduced
density matrix that is equivalent to the one obtained with the
master equation (56) can be recovered by considering

ρsðtÞ ¼
M½jφaðtÞihφbðtÞj�
MhφbðtÞjφaðtÞi

: ð159Þ

Thus, an unraveling is constructed for non-Markovian dynam-
ics, which consists of two wave functions, each of which is
described by a particular Markovian SSE in the extended
Hilbert space. Note that similar to the stochastic Liouville–
von Neumann (SLN) method, which is presented in Sec. VI, a
reduced density matrix with non-Markovian evolution is
recovered with an average of two memoryless system wave
functions. However, contrary to SLN, the present method has
the limitation that it starts from the general form of the time-
convolutionless equation (56), which may not be valid for
strong couplings. Similar considerations were made by Budini
(2013), where a quantum jump unraveling is constructed to
describe the dynamics of the OQS and an ancilla.
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6. Quantum jumps

One of the main obstacles to unraveling a non-Markovian
master equation of the form (56) into a set of quantum jump
trajectories is the appearance of negative quantum jump
probabilities during the evolution. These occur precisely at
the times when the decay rates ΔkðtÞ become negative. This
problem was tackled by Piilo et al. (2008, 2009), who realized
that when the decay rates become negative, the direction of the
information flow between the system and the environment is
reversed. In this picture, at times when the rates are positive,
the system loses its information to the environment, and
quantum jumps have a similar effect and structure as for
Markovian dynamics. In turn, when rates become negative,
the system may regain some of the information it lost earlier,
which means that the seemingly lost superpositions in the
ensemble can be restored. Between jumps, the system under-
goes a deterministic evolution according to the Hamiltonian

H ¼ HS −
i
2

X
k

ΔkðtÞC†
kðtÞCkðtÞ: ð160Þ

It is in the jump dynamics where the non-Markovian
character introduces a difference between forward jumps that
take place in channels kþ when decay rates are positive and
backward jumps that take place in channels k− when decay
rates are negative. The forward jump process occurs when
ΔkðtÞ > 0 and is very much like the Markovian case,
corresponding to transitions

jψαi → jψα0 ðtþ δtÞi≡ CkðtÞ
∥C†

kðtÞjψαðtÞi∥
jψαðtÞi; ð161Þ

with probability

Pkþ
α ðtÞ ¼ ΔkðtÞδthψαðtÞjC†

kðtÞCkðtÞjψαðtÞi. ð162Þ

A backward jump occurs when ΔkðtÞ < 0 and produces the
transition

jψα0 ðtþ δtÞi ← jψαðtÞi≡ CkðtÞ
∥CkðtÞjψ 0

αðtÞi∥
jψ 0

αðtÞi ð163Þ

with probability

Pk−
α ðtÞ ¼ Nα0 ðtÞ

NαðtÞ
jΔkðtÞjδthψα0 ðtÞjC†

kðtÞCkðtÞjψα0 ðtÞi; ð164Þ

where Nα is the number of ensemble members in state jψαðtÞi
at time t. The reduced density operator of the system can be
constructed as ρsðtÞ ¼

P
αPαðtÞjψαðtÞihψαðtÞj, with PαðtÞ ¼

NαðtÞ=N and N as the ensemble size.
Note that the non-Markovian quantum jump method has

certain differences with respect to the Markovian quantum
jumps. While fully Markovian trajectories are uncorrelated
with each other, here one should in principle [although not in
practice, as discussed by Piilo et al. (2009)] simultaneously
propagate the ensemble of N trajectories. The reason is that
the quantity Nα0=Nα necessary to determine the negative jump
probability should be known, and this depends on the actual

number of trajectories NαðtÞ at a certain state jψαi. Hence, the
N trajectories should be propagated in a self-consistent way,
such that NαðtÞ vary at times when one of the trajectories
performs a quantum jump. As a result of this, the different
realizations of the process are correlated, since the quantity
Pk−
γ will change according to quantities that depend on the

ensemble.
As mentioned earlier, the master equation (56) with time-

dependent rates does not guarantee positivity of the density
matrix, particularly if the rates become negative at some times.
The non-Markovian quantum jumps detect when positivity is
about to be violated, based on the presence of a singularity in the
negative jump probability (164) (Breuer and Piilo, 2009). In
particular, when the number of source members entering in the
denominator of such a quantity becomes zero, and the rate is
negative at the same time, themaster equationviolates positivity.
This corresponds to the unphysical situation in which the
environment tries to undo an event that has not happened.
In order to further understand the method, let us consider a

three-level system with states fj0i; j1i; j2ig and energies
E0 < E1 < E2, as discussed by Piilo et al. (2009). We now
assume that there are only two decay channels γ ¼ 1, 2
corresponding to the coupling operators L1 ¼ j0ih1j and
L2 ¼ j1ih2j. To build the state vector ensemble, we start by
considering the normalized state jψ0i¼c0j0iþc1j1iþc2j2i.
The two states jψ1i ¼ j1i and jψ2i ¼ j0i can be reached from
jψ0i with a forward jump. If a further forward jump occurs,
the state jψ1i might jump to jψ2i. Hence the only states
explored in the forward process are fjψ0ðtÞi; jψ1i; jψ2ig,
which is then the reference ensemble of states. For negative
decay rates different channels open backward. If at time t,
Δ2ðtÞ < 0 for the channel L2, then the target state for jψ1i will
be jψ0ðtþ δtÞi and no other jumps are allowed. However, if at
time t what we find is that Δ1ðtÞ < 0, the target states for jψ2i
will be either jψ0ðtþ δtÞi or jψ1i. In this case, the target state
is not unique although there are different probabilities to be
reached from jψ2i.
Non-Markovian quantum jumps have been successfully

applied to study, for instance, exciton dynamics in photo-
chemistry by Rebentrost, Chakraborty, and Aspuru-Guzik
(2009) and Ai et al. (2014).

VI. PATH INTEGRAL METHODS

The path integral representation, first derived by Feynman
(1948) and Feynman and Vernon (1963), constitutes a very
convenient framework for performing numerical simulations
of quantum dynamics and equilibrium quantum statistical
mechanics, considering real and imaginary time evolution,
respectively (Weiss, 2008). Most of the applications are based
on using a coordinate representation of the OQS, which is
assumed to be coupled with one or a few degrees of freedom to
an environment as described by Caldeira and Leggett (1983a,
1983b) and Leggett et al. (1987) (see also Sec. II.B). In
addition, the path integral approach generally considers a
factorized initial condition between the environment and the
system, and the environment in thermal equilibrium. Under
these conditions, the path integral representation of the
reduced density matrix of the system reads as (Weiss, 2008)
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ρðxf; x0f; tÞ ¼
Z

dxidx0iJ ðxf; x0f; t; xi; x0i; tiÞρðxi; x0i; tiÞ;

where

J ðxf; x0f; t; xi; x0i; tiÞ ¼
Z

D½x1�D½x2�

× eði=ℏÞðSS½x1�−SS½x2�ÞF½x1; x2� ð165Þ

is the propagator of the reduced density matrix and x
represents the OQS’s degree of freedom. The propagator
presents a sum over all real-time paths x1 and x2 that run in
time from xi and x0i at an initial time ti to xf and x0f at a final
time tf. The influence functional F½x1; x2� couples these two
paths and can be written in terms of the difference and sum
paths y ¼ ðx1 − x2Þ and r ¼ ðx1 þ x2Þ=2 (Weiss, 2008):

F ½y; r� ¼ exp

�
−
1

ℏ

Z
t

0

duW½u; y; r�
�
; ð166Þ

where W½u;y;r�¼R u
0 dvyðuÞ½αRTðu−vÞyðvÞþ2iαITðu−vÞrðvÞ�þ

iμ
R
t
0duyðuÞrðuÞ. The functions αIT and αRT correspond,

respectively, to the imaginary and real parts of the environment
correlation function (21). Also μ ¼ 2=ℏ

R
∞
0 dωJðωÞ=ω corre-

sponds to the static susceptibility of the environment.
The influence functional (166) introduces long-range

nonlocal interaction among the system paths, so an explicit
evaluation of Eq. (165) is possible only numerically. Numerical
developments to evaluate the path integrals include the iterative
tensor propagator scheme (Makarov and Makri, 1994; Makri,
1995), originally introduced in terms of a quasiadiabatic
propagator (Makri, 1992) and hence often referred to as the
quasiadiabatic propagator path integral (QUAPI) algorithm, and
the path integralMonte Carlo schemes (PIMC) derived byEgger
and Mak (1994) and Mak and Egger (1996).
The QUAPI algorithm relies on a Trotter decomposition of

the evolution operator within a time slice Δt, which is based
on the partitioning of the full Hamiltonian into a so-called
adiabatic contribution HS, which can be treated exactly, and a
nonadiabatic reminder H −HS. As a result of such decom-
position, and considering also a discretization in the OQS
configuration space, a discretized version of the path integral
(165) is obtained, which includes the nonadiabatic correc-
tions through the influence functional. The discretization is
based on the choice of two parameters: a time-related
parameter K, which settles a memory time window τk ¼
ΔtK up to which the environment correlations are included
(such a window larger or of the order of the environment
correlation time τc), and a parameter M that settles the
number of OQS basis states. After the discretization, the
evolution of the reduced density operator is obtained through
a temporal iterative procedure. As discussed by Nalbach et al.
(2011), the summation over all possible paths within the
memory time window τk is exact (up to the error produced by
the Trotter decomposition of the evolution operator) and
deterministic. A further improvement in the implementation
of iterative algorithms is the filtered propagation functional

developed by Sim and Makri (1996) and Sim (2001), which
takes into consideration only path segments that contribute in
the path integral with significant weight. The QUAPI algo-
rithm was successfully applied to study quantum transport
between two particles (Nalbach, Eckel, and Thorwart, 2010),
and for such a model its performance has been compared to
that of a time-nonlocal perturbative master equation (see
Sec. IV.B.7) (Nalbach et al., 2011), and to a variational
master equation (discussed in Sec. IV.B.11) (McCutcheon
et al., 2011). In addition, the iterative path integral procedure
has been developed for calculating equilibrium two-time
correlation functions of quantum dissipative systems (Shao
and Makri, 2001, 2002). Other variants of iterative algorithms
were developed to compute real-time path integral expres-
sions for quantum transport problems out of equilibrium
(Weiss et al., 2008).
For more details of the iterative path integral algorithm, see

Makri (1995) and Makri and Makarov (1995) and the
discussion by Thorwart et al. (1998). Also, a discussion of
the most recent advances in the field including a Matlab
library to implement the iterative tensor propagator scheme
was given by Dattani (2013).
As described by Mühlbacher, Ankerhold, and Escher

(2004) and Mühlbacher and Ankerhold (2005), the PIMC
algorithm is also based on a discretization of the path integral
representation (165). However, as opposed to the QUAPI
algorithm, PIMC relies on performing a stochastic sampling
of the path integral, which is approximated by considering a
finite ensemble of randomly chosen paths. In addition, the
PIMC technique is usually focused on computing the diagonal
part of the reduced density matrix, but it has recently been
extended to simulate coherences as well (Kast and Ankerhold,
2013). In general, the PIMC is one of the most powerful
means of exploring the nonperturbative range including strong
coupling and high temperatures. Although the method was
introduced to analyze the dynamics of spin-boson systems
(Egger and Mak, 1994), it has also been used to analyze
dynamical quantities of larger systems, like single and
correlated charge transfer along molecular chains
(Mühlbacher, Ankerhold, and Escher, 2004; Mühlbacher
and Ankerhold, 2005), also including external driving fields
(Mühlbacher and Ankerhold, 2009). The PIMC method is
particularly efficient to describe quantum systems coupled to a
thermal reservoir with Ohmic spectral densities, but it has also
been extended to sub-Ohmic reservoirs, a situation where
entanglement between the system and the environment
becomes more important (Winter et al., 2009). Motivated
by the success of the PIMC algorithm, Mühlbacher and
Rabani (2008) combined such a technique with the diagram-
matic Monte Carlo approach (initially derived for the imagi-
nary time evolution), in order to analyze the dynamics of a
quantum dot coupled to two fermionic reservoirs and to a
bosonic bath representing a photon environment. These
diagrammatic Monte Carlo algorithms are the basis for the
so-called continuous time quantum Monte Carlo methods,
discussed in detail by Gull et al. (2011).
One of the drawbacks of Monte Carlo methods in general is

that the number of sample paths needed to achieve a sufficient
signal-to-noise ratio increases exponentially with the simu-
lated system time, which hinders their performance over long
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times. This dynamical sign problem has been shown to be
relieved if the sampling space is reduced by integrating out
exactly large parts of the configuration space (Egger and Mak,
1994; Mühlbacher and Ankerhold, 2005; Mühlbacher, Escher,
and Ankerhold, 2006). Also, Cohen et al. (2015) recently
presented a solution to the dynamical sign problem with a new
algorithm whose computational cost scales quadratically
rather than exponentially with the simulation time.
Based on the observation that for harmonic oscillator

environments the Feynman path integrals have a quadratic
functional form, Cao, Ungar, and Voth (1996) presented an
alternative method based on performing the environment
average by directly sampling paths of the discretized harmonic
modes and then propagating the system under the influence of
a quantum Gaussian force. While the influence functional
methods are based on a cutoff in the number of discretized
time slices, the method by Cao, Ungar, and Voth (1996)
introduced a cutoff in the number of discretized bath frequen-
cies, which makes it particularly amenable for environments
with narrow spectral densities.
As noted in the Introduction, the path integral representa-

tion is the basis of different analytical derivations and
approximations that do not rely on a weak-coupling
approximation between the system and the environment.
Three of these derivations, the noninteracting blip approxi-
mation, the stochastic Liouville–von Neumann equation, and
the hierarchical equations of motion, are discussed in the
following.

A. The noninteracting blip approximation

Within the two-level approximation leading to a
Hamiltonian of the form (13), the variables x1 and x2 can
take only two discrete values j�i ¼ � 1

2
q0, where q0 is the

center of the double well. Therefore Eq. (165) becomes an
integral over all possible pairs of paths, each of which jumps
between these two states. Alternatively, it can be considered
as a single path integral jumping between four states
A ¼ fþ;þg, B ¼ fþ;−g, C ¼ f−;þg, and D ¼ f−;−g,
corresponding to populations (diagonal states A and D)
and coherences (off-diagonal states B and C). Periods in
which the system is in a diagonal state are called sojourns, and
periods between diagonal states are called blips. Within this
picture, the noninteracting blip approximation (NIBA) is used
to calculate the probability of the system to be at a certain state
at time t, by assuming that the average time spent by the
system in a diagonal state is very large compared to the
average time spent in an off-diagonal state. This assumption
leads to certain prescriptions being considered for performing
the path integral (165) (Leggett et al., 1987; Weiss, 2008), in
particular, to compute the functional (166). These prescrip-
tions turn out to be valid at high temperatures (so that a strong
decoherence suppresses the off-diagonal terms), for the super-
Ohmic case, and for a situation in which the Fermi golden rule
applies, i.e., the Markovian case. With respect to the
Hamiltonian (13), the NIBA corresponds to an expansion
in terms of the tunneling matrix element Δ0, which can also be
performed with projection-operator techniques (Morillo,
Cukier, and Tij, 1991). The result of the NIBA approximation
is that the evolution of PðtÞ ¼ hσzi is given by

dPðtÞ
dt

¼ −
Z

t

−∞
dsfðt − sÞPðsÞ; ð167Þ

with fðsÞ ¼ Δ2
0 cos½Q1ðsÞ=πℏ�e−Q2ðsÞ=πℏ and

Q1ðsÞ ¼
Z

∞

0

sinðωsÞJðωÞdω=ω2;

Q2ðsÞ ¼
Z

∞

0

½1 − cosðωsÞ� cothðℏβω=2ÞJðωÞdω=ω2:

Dekker (1987) found a different way to obtain this
expression for the evolution of the OQS population by
performing a polaron transformation on the spin-boson
Hamiltonian (13). As discussed in Sec. IV.B.11, the polaron
transformation has the form U ¼ expð−iσzΩ=2Þ, with
Ω ¼ P

λðcλ=mλω
2
λÞpλ, and the transformed Hamiltonian

can be written as Eq. (109) with Bz ¼ 0, H0 ¼
− 1

2
Δ0ðσþe−iΩ þ σ−eiΩÞ þHB, so that the Heisenberg evolu-

tion of σz has the exact form

dσzðtÞ
dt

¼ −
1

2
Δ2

0

Z
t

−∞
ds½e−iΩðtÞeiΩðsÞσzðsÞ þ H:c:�:

Equation (167) is recaptured simply by considering that ΩðtÞ
evolves according to the free environment dynamics and then
assuming that the quantum average of the spin σzðsÞ and the
environmental exponential e−iΩðtÞ is decoupled.
Orth, Imambekov, and Le Hur (2010), Orth, Imambekov,

and Le Hur (2013), Henriet et al. (2014), and Henriet and Le
Hur (2016) developed an alternative method to perform a
stochastic unraveling of the influence functional similar to the
one proposed by Stockburger and Grabert (2002) discussed in
the following section, but which is made after rewriting the
influence functional in the blip-sojourn language. Based on
this, they obtained a stochastic equation for the density matrix
in the vector space of states A, B, C, and D.

B. Stochastic Liouville–von Neumann equation

Path integral formulations may also give rise to the SLN
equation, first proposed by Stockburger and Grabert (2002).
According to this formulation, the double time integral
appearing in Eq. (166) can be reduced to a single time integral
by introducing a Gaussian integral over two complex func-
tions ξðtÞ and νðtÞ, and redefining the functional in a Hubbard-
Stratonovich form

F½y; r� ¼
Z

D2½ξ�
Z

D2½ν�W½ξ; ξ�; ν; ν��

× exp

�
i
ℏ

Z
t

t0

dt0ξðt0Þyðt0Þ þ iνðt0Þrðt0Þ
�

× exp

�
−
iμ
ℏ

Z
t

t0

dt0yðt0Þrðt0Þ
�
; ð168Þ

where W½ξ; ξ�; ν; ν�� is a Gaussian functional. The two newly
defined complex functions can be considered Gaussian noises
with the following statistical properties:

Inés de Vega and Daniel Alonso: Dynamics of non-Markovian open quantum systems

Rev. Mod. Phys., Vol. 89, No. 1, January–March 2017 015001-40



Mξ;ν½ξðtÞξðt0Þ� ¼ αRðt − t0Þ;
Mξ;ν½ξðtÞνðt0Þ� ¼ −iαIðt − t0Þθðt − t0Þ;
Mξ;ν½νðtÞνðt0Þ� ¼ 0; ð169Þ

where Mξ;ν½� � �� ¼
R
D2½ξ� R D2½ν�W½ξ; ξ�; ν; ν�� � � � is the

Gaussian average over two noises ξ and ν. In this definition,
αRðtÞ and αIðtÞ correspond, respectively, to the real and
imaginary parts of the correlation function given by
Eq. (21). Having decoupled the two paths of (165), and
following a procedure similar to the one given by Feynman
and Vernon (1963), a stochastic differential equation can be
obtained for the reduced density operator, the stochastic
Liouville–von Neumann equation,

dPξ;ν

dt
¼ −

i
ℏ
½HS; Pξ;ν� þ

i
ℏ
ξðtÞ½q; Pξ;ν� þ

i
2
νðtÞfq; Pξ;νg;

ð170Þ

where we considered a system coupling operator q and
neglected a renormalization term. Equation (170), valid for
environments at thermal equilibrium, allows one to compute
different stochastic trajectories for the density matrix sample
Pξ;ν, such that the reduced density operator can be obtained as
ρsðtÞ ¼ Mξ;ν½Pξ;ν�. Equation (170) can be rewritten as two
stochastic equations for two different stochastic state vectors
jψ1

t i and jψ2
t i,

djψ1
t i

dt
¼ −iHSjψ1

t i þ iξðtÞqjψ1
t i þ i

1

2
νðtÞqjψ1

t i;
djψ2

t i
dt

¼ −iHSjψ2
t i þ iξ�ðtÞqjψ2

t i − i
1

2
νðtÞ�qjψ2

t i; ð171Þ

such that Pξ;ν ¼ jψ1
t ihψ2

t j. The drawback of this method is that
beyond the case of the OQS being a harmonic oscillator the
convergence of the stochastic average for relatively long times
is difficult. One of the problems is that even though ρsðtÞ is
normalized, the individual samples Pξ;ν do not stay normal-
ized, which slows down convergence. To overcome this,
Stockburger and Grabert (2002) and Stockburger (2004)
proposed an exact mapping of Eq. (170) to an equation that
preserves the trace of each resulting density matrix sample
P̂ξ;ν. This formulation, similar to a Girsanov transformation
that leads to the shifted noise of Eq. (143), results in a
transformed noise

ξ → ξ̂ ¼ ξ −
Z

t

0

duχðt − uÞr̂u; ð172Þ

where r̂u ¼ TrSfqP̂ξ;νg and χðuÞ ¼ −θðuÞαIðuÞ=2ℏ, with
θðuÞ as the Heaviside step function. Similarly as in
Eq. (143), this new noise improves the statistics, such that
the number of stochastic trajectories needed to obtain the
reduced density matrix is smaller. A subtle point about the
shift (172) is the fact that the quantity r̂u is itself defined in
terms of the normalized state, which can be a source of
numerical instability (Stockburger, 2004). As proposed by
Koch et al. (2008), this limitation can be overcome if one

considers that the term r̂u in the shift follows a reference path
given by the classical trajectory according to the classical
Langevin equations of motion.
We saw previously that SSEs generally require some

approximation or ansatz to handle the integral term in order
to obtain a closed equation, while the SLN stochastic
equations are exact. The differences between the SLN and
SSE unravelings are that the former depends on two correlated
noise variables and recaptures ρs as an average of two different
stochastic state vectors, while the latter depends on a single
noise variable and recaptures ρs with an average over a single
stochastic vector. The path integral approach underlines the
close connection between the path integral representation
and the stochastic description of OQS. As pointed out by
Strunz (1996) and Diósi and Strunz (1997), the density matrix
propagator (165) can also be expressed as

J ðxf; x0f; t; xi; x0i; tiÞ ¼ Mz½Gzðxf; t; xi; tiÞG�
zðxf; t; xi; tiÞ�;

where the stochastic propagator in the path integral repre-
sentation has the form

Gzðxf; t; xi; tiÞ ¼
Z

xf ;tf

xi;ti

D½xs� exp
�
i
ℏ
SS þ

Z
tf

ti

dsxszs

−
Z

tf

ti

ds
Z

s

ti

ds0xsα�ðs − s0Þxs0
�

ð173Þ

with the noise zt obeying the statistical properties (134).

C. Hierarchical equations of motion

A variant of path integrations in the real position space
consists of using a coherent state representation, characterized
by a variable ϕ and its conjugate ϕ0. This is the basis to
derive the HEOM for the reduced density operator, first
proposed by Tanimura and Kubo (1989) and Tanimura
(1990). In terms of coherent states, the path integral repre-
sentation of the reduced density matrix of the system reads
as ρsðtÞ ¼

R
dϕf

R
dϕ0

fρðϕf;ϕ0
f; tÞjϕfihϕ0

fj, with the coeffi-
cients given by

ρsðϕf;ϕ0
f; tÞ ¼

Z
D½QðτÞ�

Z
D½Q0ðτÞ�eði=ℏÞSSðQ;t;tiÞ

× FðQ;Q0; t; tiÞe−ði=ℏÞSSðQ0;t;tiÞ; ð174Þ

where ϕf and ϕ0
f are the final states of the system and QðtÞ

represents the set of coherent state variables fϕ�ðtÞ;ϕðtÞg.
Here the functional SS is an action of HS and

R
D½QðτÞ�

represents the functional integral of QðτÞ. In addition, we
defined the influence functional

FðQ;Q0; t; tiÞ ¼ exp

�
−i
ℏ

Z
t

ti

dτ0SxðQ;Q0; τ0ÞΠ
�
; ð175Þ

where we omitted the dependencies of the function Π, which
is defined as
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Π ¼ −
i
ℏ

Z
τ0

ti

dτ½αRðτ0 − τÞSxðQ;Q0; τÞ

− iαIðτ0 − τÞSoðQ;Q0; τÞ�;

in terms of the functionals SxðQ;Q0;τÞ¼S(QðτÞ)−S(Q0ðτÞ)
and SoðQ;Q0; τÞ ¼ S(QðτÞ)þ S(Q0ðτÞ), which represent dif-
ference and sum paths similar to those appearing in Eq. (166).
Here S(QðτÞ) corresponds to the coherent state representation
of the coupling operators appearing in Eq. (9).
For systems having Ohmic dissipation with a Lorentzian

cutoff (Drude dissipation), characterized by a spectral
density

JðωÞ ¼ ℏλγ2

2π

ω

ω2 þ γ2
;

where λ is the reorganization energy, which is proportional to
the system-environment coupling strength, the correlation
function (21) can be written as αðtÞ ¼ P∞

m¼0 cm expð−μmtÞ,
in terms of the Matsubara frequencies. These are defined as
μ0 ¼ γ and μm ¼ 2πm=ℏβ whenm ≥ 1, while the coefficients
are

c0 ¼
ℏγ2λ
2

½cotðβℏγ=2Þ − i�

and

cm≥0 ¼
γ2λ

β

μm
μ2m − γ2

.

For a high-temperature environment, βℏγ ≪ 1, this reduces to

αðtÞ ≈ λγ2

2

�
cot

�
ℏβγ
2

�
− i

�
expð−γtÞ.

In this case, it is possible to reexpress the element Π in the
functional (175) as

Π ¼ −
iλγ2

2

Z
τ0

ti

dτe−γðτ0−τÞ
�
cot

�
ℏβγ
2

�
SxðQ;Q0; τÞ

− iSoðQ;Q0; τÞ
�
: ð176Þ

Then in terms of this quantity we can define the following
elements:

ρnðϕf;ϕ0
f; tÞ ¼

Z
D½QðτÞ�Πneði=ℏÞSSðQ;t;tiÞ

× FðQ;Q0; t; tiÞe−ði=ℏÞSSðQ;t;tiÞ; ð177Þ

and the corresponding operators ρnðtÞ ¼
R
dϕf

R
dϕ0

fρn
ðϕf;ϕ0

f; tÞjϕfihϕ0
fj. The element n ¼ 0 corresponds to the

reduced density matrix (177). The time differentiation of these
operators leads to (Tanimura, 2006, 2015)

dρn
dt

¼ −
�
i
ℏ
HX

s − nγ

�
ρn −

i
ℏ
SXρnþ1 − i

n
ℏ
Θρn−1; ð178Þ

where ρ0 ¼ ρs, Θ ¼ ðℏλ=2Þ½cotðℏβγ=2ÞSX − iSo�, with Aoρ ¼
Aρþ ρA and AXρ ¼ Aρ − ρA.
Hierarchical expansions have the advantage that they allow

one to obtain the reduced density matrix of the OQS while
including all orders of the system-environment interactions.
The fact that the different levels of the hierarchy include all
orders in the coupling between the system and the environ-
ment renders the method particularly useful for strong system-
environment coupling. In addition, under certain conditions,
the hierarchy can be systematically truncated (Tanimura,
2006, 2015). This approach has been used, for instance, to
describe the quantum dynamics of chemical and biophysical
systems, in which other approaches based on the weak-
coupling approximation are not valid. An example of such
systems are light-harvesting complexes, where the N mole-
cules in the complex are affected by a local Drude spectral
density JjðωÞ ¼ ðℏλjγ2j=2πÞðω=ω2 þ γ2jÞ (Ishizaki and
Fleming, 2009b), at each molecular site j. The resulting
hierarchical structure describing the problem is more complex
than the previous one. In this case, each member of the
hierarchy ρn is now labeled by a set of non-negative integers
n ¼ ðn1; n2;…; nNÞ, each corresponding to a molecule j.
Then the evolution equation is given by

ρnðtÞ
dt

¼ −
�
i
ℏ
HX

s −XN
j¼1

njγj

�
ρnðtÞ −

i
ℏ

XN
j¼1

½SXj ρnþðtÞ

þ njΘjρn−ðtÞ�: ð179Þ

Here n�
j differs from n by changing the specified nj to nj þ 1,

i.e., n�
j ¼ ðn1; n2;…; nj � 1;…; nNÞ. We defined Θj simi-

larly to Θ0 but as a junction of λj, γj, Sxj , and S0j . In addition,
one can also consider the low-temperature case by defining a
hierarchy that depends on two indexes, one of which relates to
the level n of the hierarchy and the other which is settled by
the index m corresponding to each of the Matsubara frequen-
cies. Naturally, the number of Matsubara frequencies must be
truncated (Ishizaki and Tanimura, 2005; Xu et al., 2005; Han
et al., 2006). This situation was tackled by Ishizaki and
Tanimura (2005) for the case of a single molecule and by Li
et al. (2012) for more than one molecule comprising a light-
harvesting photosynthetic complex. Extending the dimension
of the hierarchy, the method is able to describe a number of
spectral densities leading to correlation functions that are
combinations of exponentials (Tanaka and Tanimura, 2009;
Ma et al., 2012; Tanimura, 2012).
A more recent proposal for low-temperature environments

consists of splitting the functional into a term FR that depends
on the real part of the correlation function and thus carries the
temperature dependency, and a term FI that depends on the
imaginary part of the correlation function αI . Then FR is
written as a function of a colored real noise ξðtÞ using the
Hubbard-Stratonovich transformation discussed in Sec. VI.B,
and FI is used as a basis for deriving HEOM. Considering a
Drude model for the spectral density, such that αIðtÞ ∼ e−γt,

Inés de Vega and Daniel Alonso: Dynamics of non-Markovian open quantum systems

Rev. Mod. Phys., Vol. 89, No. 1, January–March 2017 015001-42



the procedure results in a stochastic version of Eq. (178),
which depends on the real noise ξðtÞ (Moix and Cao, 2013).
Previous proposals in this direction were found by Zhou, Yan,
and Shao (2005) and Tanimura (2006).
This description can also be extended to deal with initially

correlated states between the system and the environment
and to obtain thermal equilibrium quantities of the system
(Tanimura, 2014). A similar hierarchical structure was
recently derived by de Vega (2015), by departing from the
SLN Eq. (170) of the previous section.

VII. HEISENBERG REPRESENTATION

Early developments in the application of the Heisenberg
representation to the OQS problem were made to describe the
spontaneous emission (Ackerhalt, Knight, and Eberly, 1973)
and strong-field resonance fluorescence (Kimble and Mandel,
1975) of a two-level atom. A non-Markovian extension of the
theory was proposed by Wódkiewicz and Eberly (1976) and
Wódkiewicz (1979) for the spontaneous emission and the
resonance fluorescence, respectively. As shown in the next
section, the difficulty of solving the Heisenberg equations for
OQS is that they comply with a hierarchical structure. Thus, the
evolution of one-time correlations (i.e., quantum mean values)
depends on two-time correlations. Furthermore, the evolution
equation of two-time correlations depends on three-time corre-
lations, while three-time correlations show a dependency on
fourth-order correlations. In summary, the evolution of non-
Markovian N-time correlations of system operators, when no
approximations are made, depends on the (N þ 1)-time corre-
lations. This hierarchy appears only in non-Markovian inter-
actions and vanisheswhen the environment correlation function
αðtÞ is Markovian, i.e., αðtÞ ≈ ΓδðtÞ.

A. Computing multiple-time correlation functions

To derive MTCFs with the Heisenberg equations, the idea is
to express dA1ðt1Þ � � �ANðtNÞ=dt1 in such a way that the
environmental operators aλð0Þ are placed on the right-hand
side of the terms, while the a†λð0Þ appear on the left-hand side.
Thus, when we compute the MTCFs as the quantum mean
value of A1ðt1Þ�� �ANðtNÞ, i.e., asCAðtjΨ0Þ¼hψ0jh0jA1ðt1Þ���
ANðtNÞj0ijψ0i, where we considered ρð0Þ ¼ jψ0ihψ0j ⊗
j0ih0j, those terms are zero, and only system operators
appear in the equations. Let us consider the Heisenberg
evolution equation for a system observable Aðt; 0Þ ¼
U†
I ðt; 0ÞAUIðt; 0Þ ¼ U†ðt; 0ÞAUðt; 0Þ, where UIðt; 0Þ is

defined in Eq. (123) and Uðt1; t2Þ ¼ expð−iHtotðt1 − t2ÞÞ,
with Htot the total Hamiltonian (5). Reexpressing Aðt; 0Þ ¼
AðtÞ for simplicity, we find

dAðt1Þ
dt1

¼ iU†ðt1; 0Þ½Htot; A�Uðt1; 0Þ

¼ −i½HSðt1Þ; Aðt1Þ� þ i
X
λ

gλfa†λðt1; 0Þ½Lðt1Þ; Aðt1Þ�

þ ½L†ðt1Þ; Aðt1Þ�aλðt1; 0Þg; ð180Þ

where L is a system coupling operator. We can replace
in Eq. (180) the formal solution of the evolution

equation of the environmental operators daλðt1; t2Þ=dt1 ¼
i½Htotðt1; t2Þ; aλðt1; t2Þ� ¼ −iωλaλðt1; t2Þ − igλLðt1; t2Þ,

aλðt1; t2Þ ¼ e−iωλðt1−t2Þaλðt2; t2Þ

− igλ

Z
t1

t2

dτe−iωλðt1−τÞLðτ; t2Þ; ð181Þ

for t2 ¼ 0. The single evolution equation (180) becomes as
follows:

dAðt1Þ
dt1

¼ i½HSðt1Þ; Aðt1Þ� − ν†ðt1Þ½Lðt1Þ; Aðt1Þ�

þ
Z

t1

0

dτα�ðt1 − τÞL†ðτÞ½Aðt1Þ; Lðt1Þ�

þ ½L†ðt1Þ; Aðt1Þ� × νðt1Þ

þ
Z

t1

0

dταðt1 − τÞ½L†ðt1Þ; Aðt1Þ�LðτÞ; ð182Þ

where we used the definition (133) of the environment
correlation function. In the last expression, we also defined
the environment operators ν†ðt1Þ ¼ −i

P
λgλa

†
λð0; 0Þeiωλt1 and

νðt1Þ ¼ i
P

λgλaλð0; 0Þe−iωλt1 . In a similar way, the evolution
equation of a two-time correlation can be written as

dAðt1ÞBðt2Þ
dt1

¼ i½HSðt1Þ;Aðt1Þ�Bðt2Þ−ν†ðt1Þ½Lðt1Þ;Aðt1Þ�Bðt2Þ

þ½L†ðt1Þ;Aðt1Þ�Bðt2Þνðt1Þ

−
Z

t1

0

dτα�ðt1−τÞL†ðτÞ½Lðt1Þ;Aðt1Þ�Bðt2Þ

þ
Z

t1

t2

dταðt1−τÞ½L†ðt1Þ;Aðt1Þ�LðτÞBðt2Þ

þ
Z

t2

0

dταðt1−τÞ½L†ðt1Þ;Aðt1Þ�Bðt2ÞLðτÞ:

ð183Þ

From Eq. (183), the evolution of the quantum mean value
hAðt1ÞBðt2Þi is again obtained by applying the total initial
state jψ0i on both sides of the former expression. The
generalization to an N-time correlation function was given
by Alonso and de Vega (2007).
Note that for the quantum Brownian particle described

further in Sec. VIII.B, the Heisenberg equations of the form
(180) for system observables may be reduced to the quantum
Langevin equation for the system position coordinate A ¼ q
(Yu and Sun, 1994; Sun and Yu, 1995). Building on these
results and formally calculating the solution of the Heisenberg
equations, Yang et al. (2013) obtained the reduced density
matrix for a bosonic and a fermionic open system and
analyzed the non-Markovianity of its dissipation.

B. Computing multiple-time correlation functions
with the weak-coupling expansion

The open hierarchy described previously can be truncated
by assuming a semiclassical approximation which decouples
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quantum mean values of products of operators at different
times. An alternative is based on assuming weak coupling
between the system and the environment. For instance, as
proposed by Wódkiewicz and Eberly (1976) [see also
Florescu and John (2001) for a more recent application],
the two-time operator product of Eq. (182) can be linearized
by rewriting it as an equal time product. This can be done by
considering a perturbative expansion of the left Liouville
operator of the system

LðtÞ ¼ e−iLðt−τÞLðτÞ ¼
X∞
n¼0

½−iðt − τÞ�n
n!

LnLðτÞ;

GnLðτÞ ¼ ½½…; ½LðτÞ; Htot�; Htot�;…; Htot�;
ð184Þ

where L is the Liouvillian associated with the total
Hamiltonian. In general, it is possible to rewrite L ¼
L0 þ Lint, where L0 and Lint are of order 0 and g, respectively,
in the perturbative parameter. Then keeping contributions in
the equations of motion up to order g2 corresponds to
replacing L ≈ L0. In general, a perturbative expansion
in the operators LðτÞ that appears in Eqs. (182) and (183)
leads to

L†ðτÞf½L; A�gðtiÞ ¼ U†
I ðti0ÞLðτ; tiÞ½L; A�UIðti0Þ

¼ fVτ−tiL
†½L; A�gðtiÞ þOðgÞ: ð185Þ

In a similar way, LðτÞBðtiþ1Þ ¼ U†
I ðtiþ10ÞLðτ; tiþ1Þ

BUIðtiþ10Þ ¼ fVτ−tiþ1
LBgðtiþ1Þ þOðgÞ. Hence, inserting

such terms into Eq. (182), we find that the evolution of
quantum mean values is given by a master equation of the
form (69), while the two-time correlation equation (183) can
be expressed as

d
dt1

hAðt1ÞBðt2Þi

¼ ihf½HS; A�gðt1ÞBðt2Þi

þ
Z

t1

0

dτα�ðt1 − τÞhfVτ−t1L
†½A; L�gðt1ÞBðt2Þi

þ
Z

t1

t2

dταðt1 − τÞhf½L†; A�Vτ−t1Lgðt1ÞBðt2Þi

þ
Z

t2

0

dταðt1 − τÞhf½L†; A�gðt1ÞfBVτ−t2Lgðt2Þi ð186Þ

up to second order in g. A general N-time correlation function
can also be derived (Alonso and de Vega, 2007).
The first three terms of Eq. (186) are analogous to the non-

Markovian evolution of the hAðt1Þi, so that when the last term
vanishes, i.e., provided that ½L†; A� ¼ 0 or ½B; Vτ−t2L� ¼ 0, the
QRT applies. This term is zero in the Markovian case, since
the corresponding correlation function αðt1 − τÞ ¼ Γδðt1 − τÞ
is zero in the domain of integration from 0 to t2. A similar
result was previously given by Swain (1981), where the
master equation approach is used to relate the calculation
of correlation functions to the calculation of single time
expectation values. The theory of non-Markovian MTCFs
was also recently analyzed by Fleming and Hu (2012).

There are particular conditions in which, even though the
interaction is non-Markovian, the QRT is valid in the
stationary regime. This was analyzed by Budini (2008)
for systems that can be described with a reduced density
operator (98), where ρR is obtained with a Lindblad type of
equation according to a certain rate γR. It was determined, in
particular, that whenever the evolution of ρR satisfies the
detailed balance condition (Carmichael and Walls, 1976),
then a QRT is valid in the asymptotic regime. This condition
is automatically not satisfied when ρRð∞Þ depends on γR.
The fact that the QRT is fulfilled in the stationary regime
means that

lim
t1→∞

hAðt1ÞBðt2Þi ¼ lim
t1→∞

hAðt1ÞBðt2Þi; ð187Þ

where hAðt1ÞBðt2Þi is computed by using the master equa-
tion with initial condition ρ̂0 ¼ Bðt2Þρ0.

C. Input-output formalism

The Heisenberg approach allows for the introduction of the
input-output formalism, first derived by Yurke (1984) and
Gardiner and Collett (1985) [see also Gardiner and Zoller
(2000)] using the Markov approximation. This formalism was
used in the context of cavity quantum electrodynamics (Yurke,
1984; Gardiner and Zoller, 2000; Koshino, 2008), for systems
driven by the output of another system (Gardiner, 1993), to
describe cascaded open systems (Carmichael, 1993b) or to
characterize quantum memories based on atomic ensembles
(Muschik et al., 2006, 2013), to name just a few examples.
Recently, it was also extended to describe few-photon trans-
port, considering a waveguide with a single atom (Fan,
Kocabaş, and Shen, 2010) and many spatially distributed
atoms (Caneva et al., 2015). Although it was initially derived
for bosonic fields, it has also been extended to fermion
fields (Gardiner, 2004). In general, it is particularly useful
in situations where it is relevant to keep track not only of the
dynamics of the OQS, but also of the environment operators.
This approach was recently extended to non-Markovian
systems by Diósi (2012) and Zhang et al. (2012) in the
context of stochastic Schrödinger equations and cascaded
networks, respectively.
The first step in the input-output formalism is to

reexpress the environment and coupling Hamiltonians in
the continuum limit HB ¼ R

∞
−∞ dωωaðωÞ†aðωÞ and HI ¼R

∞
−∞ dωGðωÞ½aðωÞ†Lþ L†aðωÞ�. Here the lower limit can
be extended to −∞ provided that the problem is translated into
a rotating frame with respect to the system resonant frequency
ωS, which is considered to be very large ωS → ∞ as is
justified in quantum optics (Gardiner and Collett, 1985).
Then considering the interaction picture with respect to the

environment, we can write H ¼ HS þ i½â†inðtÞL − L†âinðtÞ�,
where

âinðtÞ ¼ i
Z

∞

−∞
dωGðωÞaðωÞe−iωt ¼ i

Z
∞

−∞
dτκðt − τÞainðτÞ;

ð188Þ
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with âinðtÞ ¼ ð1= ffiffiffiffiffi
2π

p Þ R∞
−∞dωaðωÞe−iωt and κðtÞ ¼

ð1= ffiffiffiffiffi
2π

p Þ R∞
−∞dωGðωÞe−iωt. Also, these operators satisfy

½âinðtÞ;â†inðsÞ�¼γðt−sÞ, where γðt − τÞ ¼ R
∞
−∞ dsκ�ðt − sÞ×

κðτ − sÞ. Similar to Eq. (181), it is possible to write the
evolved environment operator as

âoutðtÞ ¼ âinðtÞ þ
Z

t1

0

dτκðt − τÞLðτÞ: ð189Þ

In terms of Eq. (189), the evolution of an arbitrary system
observable is written as (Zhang et al., 2012)

dAðtÞ
dt

¼ i½HSðtÞ; AðtÞ� þ â†inðtÞ½LðtÞ; AðtÞ�

þ
Z

t

0

dτγ�ðt − τÞL†ðτÞ½AðtÞ; LðtÞ� þ ½L†ðtÞ; AðtÞ�

× âinðtÞ þ
Z

t

0

dτγðt − τÞ½L†ðtÞ; AðtÞ�LðτÞ; ð190Þ

which is very similar to Eq. (182). Thus, the second-order
perturbative version of this equation can be derived similarly
as in Sec. VII.B. In addition, the traditional input-output
expressions are obtained by considering the Markov limit in
Eqs. (189) and (190). In this limit, GðωÞ ¼ ffiffiffi

γ
p

, and hence
αðt − τÞ ¼ ffiffiffi

γ
p

δðt − τÞ, so that Eq. (189) becomes simply
âoutðtÞ ¼ âinðtÞ þ i

ffiffiffi
γ

p
LðtÞ, which is the well-known expres-

sion in the Markovian input-output formalism.

D. Heisenberg equations in many-body problems

Let us consider, for instance, a system of M particles
interacting with a harmonic field through a Hamiltonian of the
form (19), with Lj ¼ σ−j a spin ladder operator corresponding
to the particle j, and gλðrjÞ ¼ gλeik·rj . Then the Heisenberg
equations for some of the main quantum mean values of the
system observables have the following form:

dhσ−i ðtÞi
dt

¼
X
j

Z
t

0

dταijðt − τÞhσ3i ðtÞσ−j ðτÞi;

dhσ3i ðtÞi
dt

¼ −4ℜ
�X

j

Z
t

0

dταijðt − τÞhσþi ðtÞσ−j ðτÞi
�
;

dhσþi ðtÞσ−j ðtÞi
dt

¼
X
l

Z
t

0

dτα�liðt − τÞhσþl ðτÞσ3i ðtÞσ−j ðtÞi

þ
Z

t

0

dταljðt − τÞhσþi ðtÞσ3jðtÞσ−l ðτÞi;

ð191Þ

with σ3i ¼ 2σþi σi − 1, and the two-particle correlation func-
tion given by αljðtÞ ¼

P
kg

2
ke

irlj·ðk−kLÞ−iΔkt, with rlj ¼ rl − rj
as the distance between the two particles.
Indeed, for many-body problems the Heisenberg equations

of system operators comply with a hierarchical structure in
two different ways: first, as explained, for non-Markovian
cases one-time correlations (i.e., quantum mean values) are
dependent on two-time correlations, which are in turn

dependent on three-time correlations, etc.; second, even in
the Markovian case, the quantum mean value of a single
operator hAjðtÞi corresponding to the particle j depends on the
quantum mean value of two-particle operators, i.e. operators
of the form hBjðtÞClðtÞi, where Bj and Cl are operators
corresponding to the particles j and l.
The first hierarchical structure can be removed by assum-

ing, for instance, a weak-coupling approximation up to the
second order in the system-environment coupling parameter.
The second hierarchical structure appears because of the
many-particle nature of the OQS. For systems with many
particles, the reduced density matrix often becomes too large
to be computed, and Heisenberg equations become particu-
larly convenient. The reason is that they allow for the use of a
truncation method (Andreev, Emel’Yanov, and Il’inskii, 1993;
Christ, Cirac, and Giedke, 2007) to express correlations of
three operators into correlations of two operators, enabling the
calculation of a smaller set of the most relevant system
quantities. As it is not based on any systematic perturbative
expansion, the accuracy of this truncationhas to be tested in each
case, for instance, by comparing it to the exact result obtained for
a smaller version of the particular system under study. We will
discuss this idea in the following section and also the application
of the mean field or Hartree approximation (Breuer and
Petruccione, 2002) to the Heisenberg equations which under
certain conditions allow one to describe the dynamics of a
system beyond the weak-coupling approximation.

E. Relevant scales involved in the dynamics of many-body OQSs:
Independent and collective limits

The Markovian approximation is very useful to obtain
information about the relevant time scales of the problem and
to derive simplified effective Hamiltonians. In addition, it
allows us to define two different limits relevant to discuss the
dynamics of many-body OQSs: the limit of independent
emitters, where particles evolve as if they were coupled to
independent reservoirs, and the collective limit where the
evolution of each particle is affected by the presence of the
other particles interacting with the same reservoir. To see this,
let us consider that the system evolution time scale TS ∼ 1=Γ0

is much smaller than τc, where Γ0 is the dissipative rate Γij for
ri − rj ¼ 0, and τc is given by the decaying of the correlation
function αijðτÞ for ri − rj ¼ 0. The dissipative rates are
defined as

Γij ¼
Z

∞

0

dταijðτÞ: ð192Þ

In this limit, the evolution equations (191) can be reduced to

dhσ3i i
dt

¼ −4ℜ
�X

j

Γjihσþi σ−j i
�

and

dhσþi σ−j i
dt

¼
X
l

Γ�
lihσþl σ3i σ−j i þ Γljhσþi σ3jσ−l i.
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Here all the operators are evaluated at time t. The quantities
Γij describe the dipolar interactions between the sites i and j,
and in physically realistic situations decay with the distance
rij ¼ ri − rj. A calculation of such coefficients for atoms
interacting with the radiation field in the vacuum was given by
Lehmberg (1970), where it was found that the rates can be
written as a sum of three components that decay with the
distance as jrijj−1, jrijj−2, and jrijj−3, respectively.
A physically intuitive form for the decay rates was obtained

by de Vega, Porras, and Ignacio Cirac (2008) and Navarrete-
Benlloch et al. (2011) for the case of atoms trapped by an
optical lattice of M sites and coupled to a field of nontrapped
atoms. In this system, the decay rates are given by
Γji−jj ∼ jξje−ji−jj=ξ=ji − jj, where ξ ¼ 1=jk0jd0 is a parameter
that quantifies the range of the interactions, with k0 as the
resonant wave vector of the field and d0 the interatomic
separation. Here, because the lattice is cubic, we use the
notation rj ¼ d0j, where j is the position of the lattice site
j ∈ Z3. The rate of emission in all directions, which is given
by RðtÞ ≈ −

P
jdhσ3ji=dt, depends crucially on the different

values of ξ. If particles evolve independently, RðtÞ decays
exponentially. This corresponds to the limit of independent
emitters, achieved when ξ ≪ 1. In this range, the rates
Γji−jj ∼ δij, and the correlation function is such that
αijðτÞ ¼ δijαðτÞ. Cooperative effects in the emission start to
occur when ξ > 1 leading to a RðtÞ that no longer decays
exponentially and, furthermore, presents positive slopes at
initial times. The limit where ξ ≫ 1 gives rise to an enhanced
emission rate characteristic of Dicke superrradiance
Γdiss ¼ MΓ0. This enhancement corresponds to a situation
where the correlation function is site independent, i.e.,
αijðτÞ ¼ αðτÞ, and the system can be properly described by
the effective interaction Hamiltonian

Heff ¼
X
λ

gλða†λJ− þ H.c.Þ: ð193Þ

Here J− ¼ P
iσ

−
i (Jþ ¼ P

iσ
þ
i ) is a collective atomic spin

operator, with properties ½J−; Jþ� ¼ 2Jz ¼ 2
P

jσ
j
z. In the

limit of an environment with a single mode, this
Hamiltonian corresponds to the well-known multimode
Dicke model, which for the single mode case was the first
system in which superradiance was described (Dicke, 1954).
Although the Hamiltonian (193) appears to be formally
equivalent to that of a single spin coupled to a harmonic
oscillator environment, its resolution is obviously more
involved, since the size of the reduced system Hilbert space
is not 22, but rather 22M, whereM is the number of atoms. For
this type of system, it is often convenient to consider the
Holstein-Primakoff approximation (Holstein and Primakoff,
1940) such that

Jz ¼ S − b†b ≈ S;

J− ¼
ffiffiffiffiffiffi
2S

p
bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

b†b
2S

r
≈ bþ

ffiffiffiffiffiffi
2S

p
;

and similarly for Jþ, where S is the quantum number of the
operator Ŝ2. Having transformed the original problem of M

two-level atoms to that of a single harmonic oscillator, the
system becomes exactly tractable even when the interaction
presents strong non-Markovian features as discussed in
Sec. VIII.B.
Although the arguments used to obtain the effective

Hamiltonian (193) are based on the Markov approximation,
the dynamics given by this Hamiltonian can be solved without
invoking such an approximation. In fact, for non-Markovian
couplings, the collective decay rate can vary significantly
with respect to the Markovian case. This was shown by Vats
and John (1998) by considering a collection of M two-level
atoms coupled to the radiation field within a photonic crystal
according to Eq. (193). In this work, the aforementioned
Holstein-Primakoff approximation was used, and it was found
that the collective decay rate scales as M2=3 instead of M, as
occurs for radiation in the vacuum.
In situations where the quantum fluctuations of system

observables are not significant, because, for instance, there is a
large number of particles M ≫ 1 within a space of dimension
D > 1, we may use the mean field or Hartree approximation
(Breuer and Petruccione, 2002). The original Eqs. (191) can
be written as yðtÞ ¼ P

jhσ−j ðtÞi=M and zðtÞ ¼ P
jhσ3jðtÞi=M

can be written as

dyðtÞ
dt

¼ M
Z

t

0

dταðt − τÞyðτÞzðtÞ;
dzðtÞ
dt

¼ −4Mℜ

�Z
t

0

dταðt − τÞy�ðτÞyðtÞ
�
: ð194Þ

As discussed by John and Quang (1995), the non-Markovian
structure of the equations, together with the limit of a large
number of atoms or particles, gives rise to a steady state where
yst ≠ 0, even though yð0Þ ¼ 0. An analysis of this phenome-
non, which is very similar to the spontaneous symmetry
breaking described in the semiclassical theory of the laser
(Breuer and Petruccione, 2002), beyond the semiclassical
approximation is still an open problem. It is hard to tackle with
current techniques, because it combines three different con-
ditions that are difficult to deal with even independently: a
large number of particles, a highly non-Markovian situation
(with long correlation times), and strong coupling (enlarged
by the collective effects of a large number of particles M).
An alternative to these derivations is to consider the

Heisenberg equations for both system and environment
operators and then perform a mean-field approximation.
Based on this idea is the cluster expansion method, introduced
by Gies et al. (2007) and later applied by del Valle and
Laussy (2011) to deal with the dynamics of quantum
dots embedded in microcavities. The Heisenberg equations
for system and environment operators hσþj ðtÞσjðtÞi and

ha†λðtÞaλðtÞi are found to depend on correlations of the form
hσþj ðtÞaλðtÞi, which in turn depend on higher-order correla-

tions such as hσþl ðtÞσjðtÞa†λðtÞaλðtÞi, and so on. Then, if the
system is additionally driven by some classical source
(e.g., an incoherent field) that destroys high-order quantum
fluctuations, such high-order correlations can be given as
hσþl ðtÞσjðtÞa†λðtÞaλðtÞi ≈ hσþl ðtÞσjðtÞiha†λðtÞaλðtÞi, and the
whole system of equations is truncated at lower orders.
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VIII. EXACT CASES

Throughout this review many different approaches have
been discussed, most of which give rise to approximated
equations or equations that are somehow limited numerically.
This section is dedicated to describing two different nontrivial
situations in which an exact solution is known. The first is
when the full dynamics can be described within one excitation
sector, because only one excitation is present in the initial
state, and the Hamiltonian of the total system conserves the
number of particles. The second case deals with what is
known as quantum Brownian motion (QBM), corresponding
to the situation in which the OQS is a harmonic oscillator
coupled to an environment of harmonic oscillators. Another
exactly solvable case that will not be dealt with here is when
L ∼HS, a case often referred to in the literature as the purely
dephasing noise (Breuer and Petruccione, 2002).

A. Calculations in the one excitation sector

Let us consider a single two-level quantum system coupled
to a bosonic environment with dispersion ωλ, according to the
Hamiltonian (5). The wave function of the total system has
the form jΨðtÞi ¼ C0j0; 0i þ AðtÞj1; f0gi þP

λBλðtÞj0; 1λi,
where j1; f0gi describes the excitation in the two-level system
and no excitations in the environment, and j0; 1λi represents
no excitations in the two-level systems and a single excitation
in the bosonic mode λ. The time-dependent Schrödinger
equation projected on the one-excitation sector of the
Hilbert space takes the form dAðtÞ=dt ¼ −

P
λgλBλðtÞe−iΔλt

and dBλðtÞ=dt ¼ gλAðtÞeiΔλt with Δλ ¼ ωλ − ωS.
Assuming that Bλð0Þ ¼ 0, and inserting the formal solution

of the latter equation into the former, we have

dAðtÞ
dt

¼ −
Z

t

0

dταðt − τÞAðτÞ; ð195Þ

where αðtÞ ¼ P
λg

2
λe

−iΔλt is the correlation function of the
environment. An analytical solution can be obtained using
the Laplace transform method AðtÞ ¼ L−1½AðsÞ� ¼ L−1KðsÞ,
where KðsÞ ¼ Að0Þ=½sþ αðsÞ�. According to the residue
theorem

R
ϵþi∞
ϵ−i∞ dsKðsÞest þ R

C KðsÞest ¼ 2πi
P

jRj, where
the sum of the two terms on the left-hand side represents a
closed contour integral around the poles of the kernel,
excluding its branch cuts, and Rj are the residues in such
poles. Therefore, the general solution of Eq. (195) is

AðtÞ ¼
Z

ϵþi∞

ϵ−i∞
dsKðsÞest ¼ 2πi

X
j

Rj −
Z
C
KðsÞest: ð196Þ

The last term of Eq. (196) vanishes for Markovian interactions
and gives rise to an initial nonexponential decaying in the non-
Markovian case. The first term gives rise to a contribution that
is proportional to exjt, where xj is a pole of KðsÞ. This pole is
in general a complex quantity with a nonzero real part and
therefore gives rise to a decaying of the amplitude AðtÞ at long
times. However, steady state solutions of the type As ¼ Aeiω0t,
where now A is an amplitude, may exist, and they correspond
to imaginary poles of KðsÞ.

From the former result, we can write the reduced density
operator as (Breuer and Petruccione, 2002; Vacchini and
Breuer, 2010)

ρsðtÞ ¼ ΛðtÞρsð0Þ ¼
�

PðtÞ C�
0AðtÞ

C0A�ðtÞ 1 − PðtÞ

�
ρsð0Þ;

where PðtÞ ¼ jAðtÞj2 and ΛðtÞ represent an exact dynamical
map. In terms of this map, a time-convolutionless generator
for an equation of the type (86) can be defined by means of

LðtÞ ¼ dΛðtÞ
dt

Λ−1ðtÞ; ð197Þ

as long as ΛðtÞ is always ≠ 0, i.e., as long as the map is
invertible. In terms of this generator, a master equation can be
written as

dρsðtÞ
dt

¼ −iΔðtÞ½σþσ; ρsðtÞ�
þ γ1ðtÞ½2σρsðtÞσþ − σþaρsðtÞ − ρsðtÞσþσ�; ð198Þ

where

ΔðtÞ ¼ −Im½ _uðtÞu−1ðtÞ�;
γ1ðtÞ ¼ −Re½ _uðtÞu−1ðtÞ�; ð199Þ

and uðtÞ satisfy the following equation:

du
dt

þ iω0uðtÞ þ
Z

t

0

dsαðt − sÞuðsÞ ¼ 0; ð200Þ

with initial condition uð0Þ ¼ 1. Equation (200) is well defined
only when the generator is well defined, which means that for
all times we should have ΛðtÞ ≠ 0. Hence, a condition for the
former master equation to make physical sense is that ΛðtÞ
shall not change from positive to negative values. The master
equation (198) has a form similar to that obtained within the
second order in perturbation theory (69).
As described by Bellomo, Lo Franco, and Compagno

(2007), the dynamics of N-independent bodies interacting
with their own reservoirs (i.e., in the limit of independent
emitters discussed in Sec. VII.E) can be expressed in terms of
the dynamics of a single body. As discussed in this section,
such single body dynamics is exactly known in the one
excitation sector.

B. The quantum Brownian motion model

The dynamics of a harmonic oscillator linearly coupled to a
thermal environment has been analyzed for many years
(Feynman and Vernon, 1963; Ullersma, 1966), and it has
also been known for some time that such a system exhibits
Brownian motion (Ford, Kac, and Mazur, 1965). Such
equivalence between a damped harmonic oscillator and
quantum Brownian was explained by Cohen-Tannoudji,
Dupont-Roc, and Grynberg (1992). Additionally, exact sol-
utions to the problem have been developed since the 1980s
with the works by Haake and Reibold (1985) and
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Riseborough, Hanggi, and Weiss (1985). The system can be
described with the Hamiltonian presented in Sec. II.B but
considering that the OQS is a harmonic oscillator with
Hamiltonian HS ¼ ωSa†a, which corresponds to choosing
VðqÞ ¼ ð1=2Þmω2

Sq
2, with q ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=2mωS

p ðaþ a†Þ and p ¼
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mωS=2

p ða† − aÞ being the space and the momentum
coordinates of the harmonic oscillator. A master equation
describing this QBM model was derived early on by Haake
and Reibold (1985) and Talkner (1986), and later by Hu, Paz,
and Zhang (1992) [see also Karrlein and Grabert (1997) which
recovers and discusses both results]. In more detail, while the
first derivation is based on Wigner functions, the one by Hu,
Paz, and Zhang (1992) is based on the Feynman-Vernon
influence functional theory derived for the QBM in Feynman
and Vernon (1963). Following a more recent derivation by An
and Zhang (2007), Tu and Zhang (2008), An, Feng, and
Zhang (2009), and Jin et al. (2010) this equation reads as

dρsðtÞ
dt

¼ −iΔðtÞ½a†a; ρsðtÞ� þ γ1ðtÞ½2aρsðtÞa† − a†aρsðtÞ
− ρsðtÞa†a� þ γ2ðtÞ½�aρsðtÞa† þ a†ρsðtÞa
− a†aρsðtÞ ∓ ρsðtÞaa†�;

where ΔðtÞ and γ1ðtÞ are given by Eq. (199), and

γ2ðtÞ ¼ _vðtÞ − 2vðtÞRe½ _uðtÞu−1ðtÞ�; ð201Þ

where uðtÞ follows Eq. (200), and vðtÞ is given by

vðtÞ ¼
Z

t

0

ds
Z

t

0

ds0uðt − sÞαþ�ðt − sÞu�ðt − s0Þ;

with initial condition uð0Þ ¼ 1, and αþðtÞ given by Eq. (68).
Here the � and ∓ in the master equation correspond,
respectively, to the reservoir being bosonic or fermionic.
As shown by Jin et al. (2010) and Lei and Zhang (2012),
the coefficients γiðtÞ can be determined exactly using non-
equilibrium Green’s functions, which include nonperturba-
tively all environment effects. This derivation was recently
extended to describe the evolution of the reduced density
matrix departing from an initially correlated state between the
system and the environment (Tan and Zhang, 2011). For zero
temperature γ2ðtÞ ¼ 0, and Eq. (201) is identical to (198). For
an open system consisting of N harmonic oscillators, the
above equation can be written as (Tu and Zhang, 2008; Zhang
et al., 2012)

dρsðtÞ
dt

¼ −i½ ~HSðtÞ; ρsðtÞ� þ
X
ij

fγ1ijðtÞ½2ajρsðtÞa†i − a†i ajρsðtÞ

− ρsðtÞa†i aj� þ γ2ijðtÞ½�ajρsðtÞa†i þ a†i ρsðtÞaj
− a†i ajρs ∓ ρsðtÞaja†i �g; ð202Þ

where ~HSðtÞ ¼
P

ijΔija
†
i aj, and we have defined the N × N

matrices

ΔðtÞ ¼ −Im½ _uðtÞu−1ðtÞ�;
γ1ðtÞ ¼ −Re½ _uðtÞu−1ðtÞ�;
γ2ðtÞ ¼ _vðt; tÞ − 2Re½ _uðtÞu−1ðtÞvðt; tÞ�; ð203Þ

where uðtÞ and vðtÞ are also N × N matrices with elements
uijðtÞ ¼ h½aiðtÞ; a†jð0Þ��i and vijðt; tÞ ¼ ha†jðtÞaiðtÞi, respec-
tively, which are related to the nonequilibrium Green’s
functions of the system in the Schwinger-Keldysh nonequili-
brium theory (Zhang et al., 2012; Schwinger, 1961). They
obey the equations

du
dt

þ iωSuðtÞ þ
Z

t

0

dsαðt − sÞuðsÞ ¼ 0;

dvðs; tÞ
ds

þ iωSvðs; tÞ þ
Z

t

0

ds0αðs − s0Þvðs0; tÞ

¼
Z

t

0

ds0αþ�ðs − s0Þu†ðs0Þ; ð204Þ

with conditions vð0Þ ¼ 1 and vð0; tÞ ¼ 0, with 0 ≤ s ≤ t, and
ω0 as a N × N diagonal matrix with the bare single-particle
energy levels of the system. The evolution of uðtÞ is very
similar in structure to the one in Eq. (195). Hence, it can be
solved with the Laplace transform method, giving rise to a
solution which has a similar structure to Eq. (196), with a first
term that corresponds to the exponential contribution of the
residues of the Laplace transform of αðt − sÞ, and a second
term corresponding to a nonexponential decaying originated
by the contour integral (Zhang et al., 2012).
There is also an exact stochastic Schrödinger equation to

describe quantum Brownian motion. Indeed, as recently shown
by Ferialdi and Bassi (2012) by computing the Green’s function
associated with Eq. (135), the functional derivative of the last
term of such an equation can be written exactly. Finally, the
QBM master equations discussed above correspond to an
interaction Hamiltonian of the form (12), i.e., containing a
single bilinear term. Based on the results by Diósi and Ferialdi
(2014), Ferialdi (2016a) has provided a generalization of the
QBM master equation valid for a more general interaction
Hamiltonian of the form (2) that includes several bilinear terms.

IX. SOLVING THE DYNAMICS OF THE FULL SYSTEM

Most of the approaches described are based on calculating
the reduced dynamics of the system under the assumption that
the environment evolves much faster than the OQS itself.
Hence, the environmental degrees of freedom are either traced
out, as in the master equation approach, or their action is
considered statistically through a Monte Carlo–like method,
as in the stochastic Schrödinger equations or in the path
integral methods. Naturally, a different approach to dealing
with OQSs is to integrate the dynamics of the total system.
This can be made following either standard or more elaborated
exact diagonalization methods (Fehske, Schneider, and Weie,
2008). In this regard, an important aspect to consider when
describing the full system dynamics is that in general, the
environment oscillators in the Hamiltonian (5) form a qua-
sicontinuum. Hence, the interaction and field parts of such a
Hamiltonian can also be written as

R
1
0 dkgðkÞ½aðkÞL†þ

aðkÞ†L� þ R
1
0 dkωðkÞaðkÞ†aðkÞ, where gðkÞ are the coupling
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strengths and aðkÞ [aðkÞ†] are harmonic oscillator operators
with commutation relations ½aðkÞ; aðk0Þ†� ¼ δðk − k0Þ. Here
the index k labels the modes which have also been rescaled
to the maximum momentum kmax as k ¼ k=kmax. In the
frequency representation, these terms can be rewritten asR
1
0 dωDDOSðωÞgðωÞ½aðωÞL† þ aðωÞ†L� þ R

1
0 dωDDOSðωÞωa

ðωÞ†aðωÞ, where we also introduced an effective upper
frequency ωmax and rescaled accordingly.
When the environment is initially in a Gaussian state, its

effect on the OQS dynamics is fully described by the spectral
density JðωÞ. As a consequence, a variety of Hamiltonians,
given by different pairs of gðkÞ and ωðkÞ that lead to the same
spectral density, give rise to the same OQS dynamics. This
provides us with the freedom of using an arbitrary dispersion
relation, which is chosen for simplicity as ωðkÞ ¼ ωck, with
ωc as an arbitrary coefficient is taken to be equal to 1. In this
case DDOSðωÞ ¼ 1, and the resulting Hamiltonian can be
rewritten as

H ¼ HS þ
Z

1

0

dωĝðωÞ½aðωÞL† þ aðωÞ†L�

þ
Z

1

0

dωωaðωÞ†aðωÞ; ð205Þ

with ĝðωÞ ¼ ffiffiffiffiffiffiffiffiffiffi
JðωÞp

. From now on we just write ĝðωÞ as gðωÞ
for simplicity. One possible approach to solving Eq. (205) is to
build a finite representation of the environment in terms of a
smaller set of states. This problem was tackled by Burkey
and Cantrell (1984) by choosing the relevant frequencies
such as those that optimally discretize the integral of the
spectral density according to a Gaussian quadrature method.
According to this, for a given measure JðωÞ, a set of
orthogonal polynomials πnðωÞ exists such thatZ

1

0

dωJðωÞπnðωÞπmðωÞ ¼ ρ2nδnm; ð206Þ

with n ¼ 0; 1;…, and ρ2n ¼ ∥πn∥2 ¼
R
1
0 dωπ

2
nðωÞ. Then any

integral with the weight JðωÞ can be given byR
1
0 dωfðωÞJðωÞ ≈

P
N
p¼1 WpfðωpÞ, where ωp are the N roots

of the orthogonal polynomial πNðωÞ and Wp are the corre-
sponding quadrature weights. One way to compute such roots
and weights is by taking into account the recurrence relations
(Golub and Welsch, 1969)

πnþ1ðωÞ ¼ ðω − αnÞπnðωÞ − βnπn−1ðωÞ; ð207Þ
where π−1ðωÞ ¼ 0 and π0ðωÞ¼1. Considering now the nor-
malized version of the polynomials pnðωÞ ¼ πnðωÞ=ρn, this
recurrence relation reads as

ffiffiffiffiffiffiffiffiffi
βnþ1

p
Pnþ1ðωÞ¼ðω−αnÞPnðωÞ−ffiffiffiffiffi

βn
p

Pn−1ðωÞ. The matrix representation of this relation can be
written in terms of a N × N symmetric tridiagonal matrix T,
where the diagonal elements are formed by αn and the off-
diagonal elements are formed by βn. The eigenvalues of such a
matrix are precisely the N roots corresponding to the most
representative oscillators in the environment ωp, and the
Gaussian weights are Wp ¼ ρ0q21;p, where q1;p is the pth
element of the first eigenvector of T, and ρ0 ¼

R∞
0 dωJðωÞ.

As a result of the Gaussian discretization, an optimized
discrete version of Eq. (205) is obtained, H ¼ HS þ

P
pωpa

†
pap þ

P
p

ffiffiffiffiffiffiffi
Wp

p ða†pLþ L†apÞ. The recurrence
coefficients (207), as well as the Gaussian quadrature param-
eters fωp;Wpg, can be obtained numerically with standard
algorithms and libraries (Gautschi, 2005). Similar proposals
are based on using sparse polynomials (Alvermann and
Fehske, 2009). An interesting variation of the latter idea
was that proposed by Kazansky (1997) and recently optimized
by Shenvi et al. (2008), which consists of performing
analytical continuation of the integral weighted by the spectral
density and then applying complex Gaussian quadrature to
generate complex eigenenergies and couplings fωp;

ffiffiffiffiffiffiffi
Wp

p g.
The resulting non-Hermitian Hamiltonian provides a suitable
representation of the continuum with an accuracy that never-
theless depends on the choice of the contour form in the
complex plane. Because of the complex nature of the system
eigenvalues, the OQS decays irreversibly without suffering
revivals, as occurs with previous discretization methods
leading to Hermitian Hamiltonians.
Related to the aforementioned problem of discretization are

the approaches used to map the original problem to that of a
system coupled to a one-dimensional chain, which allows for
the use of powerful numerical techniques to analyze the
system ground state and dynamics.
The NRG approach (Vojta, Tong, and Bulla, 2005; Anders,

Bulla, and Vojta, 2007; Bulla, Costi, and Pruschke, 2008), for
instance, was initially derived by Wilson (1975) to analyze the
problem of a quantum impurity coupled to a reservoir of
noninteracting electrons (the Kondo problem). This method is
based on first performing a coarse-grained approximation of
the continuous environment spectral density in energy space
(as described previously), which leads to a discrete environ-
ment that can be mapped onto a semi-infinite tight-binding
chain (Krishna-murthy, Wilkins, and Wilson, 1980) by using a
Lanczos tridiagonalization method. Hence, the initial
problem characterized by a Hamiltonian of the form (5)Htot ¼
HSþHBþ

P
λgλðLa†λ þL†aλÞ is mapped onto a tight-binding

linear chain

Htot ¼ HS þ gðb0L† þ Lb†0Þ
þ

X
n¼0;…;M

½Anb
†
nbn þ B1;nþ1ðb†nþ1bn þ b†nbnþ1Þ�;

ð208Þ
which depends on new transformed modes bn, and certain
coefficients An and Bn. An important aspect of the NRG
approach is that the coarse graining of the continuum is made
through a logarithmic discretization, such that the couplings in
the resulting chain decay exponentially, and hence the chain
can be truncated in a systematic way after performing an
iterative diagonalization (Bulla, Costi, and Pruschke, 2008).
Interestingly, the states obtained by iterative diagonalization
can be expressed as matrix product states (Weichselbaum
et al., 2009).
Another renormalization group approach is the surrogate

Hamiltonian method, which also consists of mapping the
real Hamiltonian (which has an infinite number of envi-
ronment degrees of freedom) into a simpler one that exactly
reproduces the dynamics for finite times. The idea is that
the evolution time induces a dynamical renormalization over
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the system-bath interaction, i.e., the system interacts pro-
gressively with the environmental degrees of freedom rather
than with all of them at once. The surrogate Hamiltonian
method was first introduced to study processes in surface
science (Baer and Kosloff, 1997; Koch et al., 2003; Asplund
and Klüner, 2011) and solutions (Koch, Klüner, and Kosloff,
2002; Gelman, Koch, and Kosloff, 2004). Interestingly, as
discussed by Gualdi and Koch (2013), the required size of
the surrogate system Hilbert space can be determined
a priori by considering a Lieb-Robinson bound argument.
An alternative proposal is the one by Prior et al. (2010)

and Chin, Huelga, and Plenio (2011) that considers the
orthogonal polynomials πnðωÞ in Eq. (206) to define a
unitary transformation of the environment into a new set of
oscillators an such that bω ¼ P

nUnðωÞan, where UnðωÞ ¼
gðωÞπnðωÞ. Thanks to the orthogonal property (206) and the
normalization of the polynomials, the transformation is
unitary

R
dωU�

nðωÞUmðωÞ ¼ δnm. The unitary transformed
Hamiltonian derived from Eq. (205) can be written as
Eq. (208), with An ¼ ωcαn and Bn ¼ ωc

ffiffiffiffiffi
βn

p
such that αn

and βn are precisely the coefficients of the recurrence relation
(207). Such coefficients depend effectively on the particular
set of monic polynomials that are orthogonal with respect to
the weight function according to Eq. (206). As shown in Fig. 7
for most spectral densities, αn and βn are relatively small and
highly dependent on n for the first few sites of the chain,
giving rise to an eventual backscattering of the excitation to
the system, while they become large and homogeneous for
higher values of n, leading for an irreversible loss of the
excitation.
Written as Eq. (208), the whole system constitutes a one-

dimensional structure with only nearest-neighbor interactions.
This Hamiltonian can be solved with powerful numerical
techniques such as matrix product states (White, 1992, 1998;
Vidal, 2003; Schollwöck, 2011). In addition, the system is
now directly coupled to the most relevant (transformed)
oscillator of the environment, and since the consecutive chain
oscillators become relevant only at increasingly longer times,
a systematic truncation is possible. However, both NRG and
DMRG approaches can also be used to solve the system’s
dynamics in its original star configuration (205). This con-
figuration was proven by Wolf, McCulloch, and Schollwöck
(2014) to be more convenient for tackling the Anderson
impurity model. Indeed, in contrast to what had been

commonly believed, the star configuration can become much
less entangled during the dynamics than the chain represen-
tation, which favors its numerical implementation.
Similar in spirit is the effective modes approach by Hughes,

Christ, and Burghardt (2009), also based on the construction
of a hierarchy of coupled effective environmental modes that
is terminated by coupling the final member of the hierarchy to
a Markovian bath. Closely related to this is the derivation by
Iles-Smith, Lambert, and Nazir (2014), where the OQS is
enlarged by including the first mode of the chain, such a mode
being in turn coupled to a new bath conformed by the
remainder oscillators. The enlarged system Hamiltonian is
thus ~HS ¼ HS þ gða0L† þ La†0Þ, and a perturbative master
equation can then be derived for its reduced density operator
ρ ~S. To test the accuracy of this approach, Iles-Smith, Lambert,
and Nazir (2014) considered a Drude model for the spectral
density of the original bath and compared the results of the
perturbative master equation for ρ ~S to those obtained by the
HEOM described in Sec. VI.C, obtaining an almost perfect fit
between both results. The idea of enlarging the system with
the first few oscillators of the chain was further discussed
by Woods et al. (2014), who derived the general expression of
the residual spectral density JmðωÞ describing the reminder
environment when an increasing number of chain oscillators
m are included in the system.
Recently, a multiple-chain-bath model was derived by Huh

et al. (2014) to transform the noninteracting star bath into a set
of weakly coupled multiple parallel chains. The transforma-
tion is based on a partitioning strategy of the bath modes that
leads to the multiple parallel chains in such a way that as the
number of chains is increased, the coupling strengths between
the OQS and the first (primary) mode of each chain are
reduced, and the length of each chain is shortened. Finally, a
general analysis on how different connectivities in a chain
(and more generally in a network) of environment oscillators
may give rise to different shapes of the corresponding spectral
density was given by Nokkala et al. (2015).

X. PERSPECTIVES

The theory of OQSs presents many challenges to be
further developed in the future, which we summarize in
the following.
Recent advances in experimental techniques and in the

fabrication of novel materials allow us to access regimes
where non-Markovian effects become crucial, leading to
new arenas for further exploration. Strongly correlated
systems, for instance, constitute a broad class of electronic
materials that display unusual and intriguing properties.
Their intrinsic interest, as well as their many applications,
has led to the development of powerful numerical tools to
analyze them, such as the DMRG, time-dependent DMRG,
or matrix product states (White, 1998; Cazalilla and
Marston, 2002; Schollwöck, 2005, 2011; Perez-Garcia et al.,
2007), and of advanced experimental techniques to mea-
sure, control, and observe their properties. Extending the
theory of OQS to describe the interaction of impurities with
such strongly correlated environments is an interesting
research topic.

FIG. 7. (a) When the system injects excitations into the
inhomogeneous part of the chain, some backscattering occurs,
reflecting the non-Markovian effects that mainly occur at initial
stages of the evolution. (b) At long times the excitations penetrate
into the homogeneous region and propagate away from the
system irreversibly. Adapted from Chin, Huelga, and Plenio,
2011.
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In addition, the possibility of using non-Markovianity as a
resource to build the desired quantum state may open new
avenues for further developing the concept of dissipative
quantum computation and state preparation proposed by Diehl
et al. (2008, 2010) and Verstraete, Murg, and Cirac (2008) and
experimentally realized by Subasi et al. (2012).
Another almost unexplored topic is to understand the role of

non-Markovianity in the relaxation and thermalization in few
or many-body quantum systems (see Fig. 8). Moreover, as
briefly discussed in Sec. III.D in some realistic scenarios the
open system is coupled to more than one environment. In this
regard, for small systems interacting with several thermal
baths it is possible to give a full characterization of their
dynamics as quantum thermal machines within the Markov
approximation (Kosloff, 2013). A thermal machine obtained
by alternatively coupling a confined ion to hot and cold
reservoirs has been experimentally realized by Ronagel et al.
(2016). However, the study of the quantum thermodynamics
when non-Markovian effects are present raises fundamental
questions that are still the subject of debate [for recent
progress see Bylicka et al. (2015)].
An interesting possibility is that of characterizing the

relatively unknown environment properties of quantum arti-
ficial devices such as nanoresonators or quantum circuits and
junctions, by measuring OQS dynamics. This idea was
developed in the pioneering experiment by Groblacher et al.
(2015) that monitors the motion of an optomechanical
resonator to determine the spectral density of its condensed-
matter heat bath. Furthermore, this type of analysis may be
useful to characterize the environment of certain biological
systems and molecular ensembles such as those found in
photosynthetic complexes. Indeed, the ability to understand
energy transport in the presence of a well-characterized
environment and beyond the Markov limit may lead to
important insight into the analysis of photosynthetic systems,
which may also pave the way to the design of artificial light-
harvesting devices (Schorles et al., 2011).
From a methodological point of view, deriving a comput-

able form for the coefficients of the formally exact master
equation (56) beyond the one excitation sector and the
Brownian particle case discussed in Sec. VIII.B is an
interesting research goal. Another challenging task is extend-
ing the hierarchical equations of motion of Sec. VI.C to
arbitrary spectral densities and beyond the low-temperature
regime. As discussed, some advances for tackling finite
temperatures have been made by increasing the dimension-
ality of the hierarchy as in Ishizaki and Tanimura (2005),

Xu et al. (2005), and Han et al. (2006) or by using a hybrid
method (Moix and Cao, 2013). In addition, a very interesting
research problem would be to import some of the numerical
advances and achievements in Monte Carlo methods [for
instance, the taming of the dynamical sign problem as reported
by Cohen et al. (2015)] to improve the sampling of stochastic
Schrödinger and SLN equations.
From a more fundamental perspective, a full mathematical

characterization of non-Markovian quantum dynamical maps
is still an open problem, although promising advances in this
direction have been recently made by Ferialdi (2016a, 2016b).
Similarly, it would be interesting to analyze whether there is a
connection between the non-Markovianity measures in
Sec. III.B and the computational complexity for solving the
OQS dynamics. In addition, despite the advances reviewed in
Sec. III.A, it is still a challenge to further understand the
relationship between the structure of the initial system-bath
states (which may include system-environment correlations)
and the nature of the resulting dynamics, which includes
addressing the question of whether or not such dynamics are
completely positive and can be described by a map.
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