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Time-periodic forcing in the form of coherent radiation is a standard tool for the coherent
manipulation of small quantum systems like single atoms. In the last years, periodic driving has
more and more also been considered as a means for the coherent control of many-body systems. In
particular, experiments with ultracold quantum gases in optical lattices subjected to periodic driving
in the lower kilohertz regime have attracted much attention. Milestones include the observation
of dynamic localization, the dynamic control of the quantum phase transition between a bosonic
superfluid and a Mott insulator, as well as the dynamic creation of strong artificial magnetic fields and
topological band structures. This Colloquium reviews these recent experiments and their theoretical
description. Moreover, fundamental properties of periodically driven many-body systems are
discussed within the framework of Floquet theory, including heating, relaxation dynamics, anomalous
topological edge states, and the response to slow parameter variations.
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I. INTRODUCTION

While time-periodic forcing in the form of coherent
radiation is a standard tool for the coherent manipulation of
small quantum systems like single atoms, traditionally it plays
much less of a role in the context of many-body systems.

However, recent experiments with ultracold atomic quantum
gases in optical lattices demonstrate that periodic forcing can
also be a powerful tool for the coherent manipulation ofmany-
body states and their dynamics. These experiments include the
control of ballistic expansion of Bose-Einstein condensates
via periodic driving (Lignier et al., 2007), coherent resonant
ac-induced tunneling (Ivanov et al., 2008; Sias et al., 2008;
Alberti et al., 2009; Haller et al., 2010), the dynamic control
of the quantum phase transition between a bosonic Mott
insulator and a superfluid (Zenesini et al., 2009), the imple-
mentation of kinetic frustration (Struck et al., 2011), the
creation of artificial magnetic fields (Aidelsburger et al., 2011,
2013; Struck et al., 2012, 2013; Miyake et al., 2013; Atala
et al., 2014; Kennedy et al., 2015; Tai et al., 2016), the
realization of topological band structures (Jotzu et al., 2014;
Aidelsburger et al., 2015), coherent band coupling (Gemelke
et al., 2005; Bakr et al., 2011; Parker, Ha, and Chin, 2013; Ha
et al., 2015), and the coherent control of interaction blockade
by means of resonant forcing (Bakr et al., 2011; Chen et al.,
2011; Ma et al., 2011). It is the fact that ultracold quantum
gases are extremely clean, very well isolated from their
environment, and highly controllable in a time-dependent
fashion that allowed for these recent advances.
On a theoretical level, the idea of controlling lattice systems

by means of strong periodic forcing (beyond the regime of
linear response) dates back to the work of Dunlap and Kenkre
(1986). They investigated the spreading of a localized particle
in a tight-binding chain under the influence of a sinusoidal
force Fω cosðωtÞ. The forcing was found to slow down the
linear spreading of the wave function by a factor of
J 0ðdFω=ℏωÞ, with lattice constant d and J m denoting the
Bessel function of the first kind of order m. The possibility to
tune this factor to zero and thus completely suppress the
dispersion of the wave packet was termed dynamic localiza-
tion. The effect was much later observed with a Bose-Einstein*eckardt@pks.mpg.de
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condensate in a shaken optical lattice (Lignier et al., 2007;
Eckardt et al., 2009; Creffield et al., 2010) and in arrays of
optical waveguides, where one spatial direction plays the role
of time (Lenz et al., 2003; Longhi et al., 2006; Iyer et al.,
2007; Dreisow et al., 2008; Szameit et al., 2009, 2010). It can
be understood in terms of an effective modification of the
bandwidth (or the tunneling matrix element) by the same
factor (Holthaus, 1992). Whereas this modification is exact in
the infinite translational-invariant chain, for large frequencies
it still holds approximately if the translational symmetry is
broken.1 This effect was used in a series of proposals for
the ac control of quantum mechanical localization by effec-
tively squeezing the tunneling parameter relative to the
strength of an isolated defect (Hone and Holthaus, 1993),
on-site disorder (Holthaus, Ristow, and Hone, 1995), or a
quasiperiodic perturbation (Drese and Holthaus, 1997a). The
last reference is also the first proposal for the application of
such a coherent control scheme to a system of ultracold atoms
in a driven optical lattice. More recently, it was argued that
for large driving frequencies the effective modification of the
tunneling remains approximately valid in the presence of
interactions, so that it should be possible to also control the
interaction-driven localization transition from a bosonic
superfluid to a Mott-insulating state (Eckardt, Weiss, and
Holthaus, 2005), an effect later observed experimentally
(Zenesini et al., 2009).
An important concept for the coherent control of time-

periodically driven quantum systems, also called Floquet
systems, is the Floquet Hamiltonian ĤF

t0 . It is defined to
reproduce the time evolution generated by the Hamiltonian
ĤðtÞ ¼ Ĥðtþ TÞ over one driving cycle T,2

Ûðt0 þ T; t0Þ≡ exp

�
−
i
ℏ
TĤF

t0

�
: ð1Þ

Here Ûðt2; t1Þ denotes the time-evolution operator from time
t1 to time t2. Thus, when looking at the time evolution in a
stroboscopic fashion in steps of the driving period T, the
system effectively behaves as if it was described by the time-
independent Hamiltonian ĤF

t0 . The effect of dynamic locali-
zation has to be understood in this sense.
The simple equation (1) suggests a general strategy for the

controlled manipulation of quantum systems. By tailoring the
Hamiltonian ĤðtÞ of a system and its periodic time depend-
ence the physics of a Floquet Hamiltonian ĤF

t0 with desired

properties can be realized. This concept of Floquet engineer-
ing becomes of practical relevance, provided the following
three conditions are fulfilled:

(i) The system allows for the implementation of a
suitable time-periodic driving scheme.

(ii) The system is well isolated from its environment
such that dissipative processes happen on a time
scale much longer than the driving period T.

(iii) The Floquet Hamiltonian can be computed theoreti-
cally, at least within a suitable approximation valid
on the experimentally relevant time scale, and takes
a simple form that allows for a clear interpretation.

The first two requirements make ultracold atomic quantum
gases, which are well isolated from their environment and
provide a great freedom for time-dependent parameter control,
an optimal platform for Floquet engineering.
Based on this strategy it is also possible to endow a system

with qualitatively new properties. A prime example is the
creation of artificial gauge fields (magnetic fields or spin-orbit
coupling), which among others (Dalibard et al., 2011; Galitski
and Spielman, 2013; Goldman et al., 2014) can be accom-
plished using Floquet engineering. For that purpose charge-
neutral atoms in an optical lattice are driven in such a way that
they behave effectively as if they had a charge coupling to a
magnetic field or to their spin. Such a proposal for the
realization of an artificial magnetic field was first made by
Sørensen, Demler, and Lukin (2005), based on a sequence of
overlapping pulses during each cycle where external poten-
tials and the amplitudes of the tunneling matrix elements in
both directions are switched on in an alternating fashion.
Later, simpler schemes, relying solely on the modulation of
on-site potentials, were realized experimentally. This includes
the effective creation of a topologically nontrivial band
structure by means of circular forcing (Oka and Aoki,
2009), known as a Floquet-topological insulator [see also
the related work by Kitagawa et al. (2010) and Lindner,
Refael, and Galitzki (2011)]. Originally proposed for electrons
in irradiated graphene, it was realized with fermionic atoms in
a circularly shaken honeycomblike lattice (Jotzu et al., 2014)
[as well as in an optical waveguide experiment (Rechtsman
et al., 2013)]. Lattice shaking was also employed to create
kinetic frustration and staggered magnetic fields in a triangular
optical lattice (Eckardt et al., 2010; Struck et al., 2011, 2012,
2013). Finally, the effective creation of magnetic fields can be
achieved in a square lattice where tunneling against strong
potential offsets is resonantly induced by driving the system
with a moving secondary lattice (Bermudez, Schätz, and
Porras, 2011; Kolovsky, 2011), as has been demonstrated
experimentally with bosonic atoms (Aidelsburger et al., 2011,
2013, 2015; Miyake et al., 2013; Atala et al., 2014;
Kennedy et al., 2015; Tai et al., 2016).
Despite these experimental results, which prove the great

success of Floquet engineering in atomic quantum gases, it
would be misleading to state that the stroboscopic time
evolution of periodically driven quantum systems simply
corresponds to that of some effective autonomous (i.e.,
nondriven) system. Even though we can define a Floquet
Hamiltonian ĤF

t0 , its properties are generally quite different
from those of the time-independent Hamiltonians used to

1In this high-frequency limit the phenomenon is equivalent to
the effective modification of the Landé factor of an off-resonantly
driven atomic spin (Haroche et al., 1970) and the effect of coherent
destruction of tunneling (Grossmann et al., 1991) in a driven two-
level system (Shirley, 1965; Gomez Llorente and Plata, 1992;
Grossmann and Hänggi, 1992; Grifoni and Hänggi, 1998) observed
in an atom-beam experiment (Kierig et al., 2008).

2The Floquet Hamiltonian, as defined here, is a special case of an
effective Hamiltonian ĤF introduced in Eq. (4) [see Eq. (11) and the
paragraph containing it]. It is also called “effective Hamiltonian.”.
Moreover, the term Floquet Hamiltonian is sometimes used to denote
the operator Q̂ðtÞ ¼ ĤðtÞ − iℏdt [Eq. (75)] acting in the space of
time-periodic states, which is called “quasienergy operator” here.
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describe autonomous many-body systems. These differences
result from the absence of energy conservation in the driven
systems, which is reflected in the fact that the Floquet
Hamiltonian is not defined uniquely by Eq. (1), since the
logarithm is multivalued. Namely, its eigenvalues, the qua-
sienergies, are determined modulo the energy quantum ℏω
only; the quasienergy spectrum can be represented on a circle.
Thus, when switching on a time-periodic perturbation, eigen-
states of the unperturbed time-independent Hamiltonian with
energies separated by some integer multiple of ℏω appear to
be degenerate and can, therefore, hybridize. As a conse-
quence, the eigenstates of ĤF

t0 can be coherent superpositions
of unperturbed states of rather different energy. Such resonant
coupling plays two different roles. On the one hand, it is
sometimes exploited to induce coherent tunneling against
static potential offsets of integer multiples of ℏω and plays a
major role for engineering desired system properties. On the
other hand, it also causes heating. For the purpose of Floquet
engineering such heating has to be suppressed on the
experimentally relevant time scale by a suitable choice of
parameters. Further fundamental differences between the
(stroboscopic) dynamics of periodically driven quantum
systems and that of autonomous systems include, for example,
the possible emergence of anomalous topological edge states
or heating in response to too slow parameter variations
(see Sec. IV).
This Colloquium reviews the status of Floquet engineering

in systems of ultracold atomic quantum gases in periodically
driven optical lattices. For this purpose, we first briefly
summarize a few general properties of time-periodically
driven quantum systems in Sec. II. In Sec. III we describe
recent experiments and explain them in terms of a common
language and using simple intuitive approximations. This
section also addresses readers who are not interested in the
formalism of Floquet theory. This formalism, the Floquet
picture, is then introduced in Sec. IVand employed to describe
various effects beyond the simple approximations used in
Sec. III. Here we discuss issues such as those mentioned in the
previously: heating, the asymptotic behavior in the long-time
limit, anomalous topological edge states, and the effective
adiabatic dynamics required for state preparation. We close
with a conclusion and outlook in Sec. V.
The material and references covered in this Colloquium are

selected as follows. We try to give a rather complete overview
of the recent experiments, where periodic forcing was used to
coherently control atomic quantum gases in optical lattices
(not including experiments where modulation was employed
for spectroscopic purposes). This includes the corresponding
theoretical proposals and analyses. The theory of periodically
driven many-body quantum systems recently became a very
active field. We do not attempt to give an exhaustive overview
of this rapidly growing field, but mention some pioneering
contributions relevant for future quantum-gas experiments.
This selection of covered works reflects our interests and is
constrained by the format of a Colloquium. It unavoidably
misses contributions that would have been worth being
covered as well. Further information and references about
the Floquet theory of periodically driven quantum systems can
be found in recent review articles, covering the control of

tunneling (Grifoni and Hänggi, 1998), multiphoton processes
in atoms and molecules (Chu and Telnov, 2004), ac-driven
transport in nanostructured devices (Platero and Aguado,
2004; Kohler, Lehmann, and Hänggi, 2005), high-frequency
approximations (Goldman and Dalibard, 2014; Bukov,
D’Alessio, and Polkovnikov, 2015), and band-structure engi-
neering (Holthaus, 2016).

II. SOME GENERAL PROPERTIES OF FLOQUET
SYSTEMS

Let us consider quantum systems described by a time-
periodic Hamiltonian

ĤðtÞ ¼ Ĥðtþ TÞ ¼
X∞

m¼−∞
eimωtĤm; ð2Þ

with Fourier components

Ĥm ≡ 1

T

Z
T

0

dte−imωtĤðtÞ ¼ Ĥ†
−m.

The time-evolution operator Ûðt; t0Þ describes solutions
jψðtÞi ¼ Ûðt; t0Þjψðt0Þi of the time-dependent Schrödinger
equation

iℏdtjψðtÞi ¼ ĤðtÞjψðtÞi: ð3Þ

At least formally, one can now construct a time-periodic
unitary operator UFðtÞ ¼ ÛFðtþ TÞ, such that the time
evolution of the transformed state jψFðtÞi ¼ Û†

FðtÞjψðtÞi is
governed by a time-independent Hamiltonian3

ĤF ¼ Û†
FðtÞĤðtÞÛFðtÞ − iℏÛ†

FðtÞ _̂UFðtÞ: ð4Þ

In terms of these operators, the time-evolution operator takes
the form (Shirley, 1965)

Ûðt; t0Þ≡ ÛFðtÞ exp
�
−
i
ℏ
ðt − t0ÞĤF

�
Û†

Fðt0Þ: ð5Þ

It illustrates that the evolution of a Floquet system results
from the interplay of two ingredients. On the one hand, the
micromotion operator ÛFðtÞ describes a time-periodic com-
ponent of the dynamics, the micromotion. It can be expressed
as ÛFðtÞ ¼ e−iK̂ðtÞ in terms of a Hermitian time-periodic kick
operator K̂ðtÞ describing the effect of an abrupt switching
on of the forcing (Goldman and Dalibard, 2014). On the
other hand, the time-independent effective Hamiltonian ĤF
describes a linear phase evolution, which determines the time
evolution in a similar way as a time-independent Hamiltonian
determines the time evolution of an autonomous system.

3Such a transformation might not exist in the limit of an infinite-
dimensional states space (Gesztesy and Mitter, 1981). However, here
we are dealing with systems of finite spatial extent on finite time
scales, on which states above some high-energy cutoff will not
matter.
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The eigenvalue problem of the effective Hamiltonian

ĤFj ~uni ¼ εnj ~uni ð6Þ

gives rise to generalized stationary states jψnðtÞi of the time-
dependent Schrödinger equation, called Floquet states. They
are of the form (Autler and Townes, 1955; Shirley, 1965;
Zel’dovich, 1967)

jψnðtÞi ¼ e−itεn=ℏjunðtÞi; junðtÞi ¼ junðtþ TÞi: ð7Þ

Here the periodic time dependence of the Floquet mode
junðtÞi ¼ ÛFðtÞj ~uni represents the micromotion and the
quasienergy εn determines the linear phase evolution. The
Floquet states are eigenstates of the time-evolution operator
over one driving period,

jψnðtþ TÞi ¼ Ûðtþ T; tÞjψnðtÞi ¼ e−i=Tεn=ℏjψnðtÞi: ð8Þ

For every time t, they form a complete and orthogonal basis. If
the system is prepared in a Floquet state, its time evolution is
periodic, determined by the Floquet mode junðtÞi, and in this
sense quasistationary. If the system is prepared in a coherent
superposition of several Floquet states,

jψðtÞi ¼
X
n

cne−itεn=ℏjunðtÞi;

cn ¼ eit0εn=ℏhunðt0Þjψðt0Þi; ð9Þ

deviations from a periodic evolution are governed by the
quasienergies εn.
There is not a unique time-periodic micromotion operator

ÛFðtÞ leading to a unique time-independent effective
Hamiltonian ĤF. Starting from one solution ÛFðtÞ, another
one Û0

FðtÞ can be constructed by applying certain operations.
The Floquet states jψnðtÞi, being eigenstates of the time-
evolution operator, will not be altered by such operations. The
simplest possibility is to multiply the micromotion operator
with an arbitrary time-independent unitary operator Û from
the right, Û0

FðtÞ ¼ ÛFðtÞÛ, so that Ĥ0
F ¼ Û†ĤFÛ. For

example, by choosing Û0
FðtÞ ¼ ÛFðtÞÛ†

Fðt0Þ≡ ÛFðt; t0Þ a
new micromotion operator is obtained that becomes equal to
the identity once during each driving period, Û0

Fðt0Þ ¼
ÛFðt0; t0Þ ¼ 1. This allows for writing the time-evolution
operator as

Ûðt; t0Þ≡ ÛFðt; t0Þ exp
�
−
i
ℏ
ðt − t0ÞĤF

t0

�
; ð10Þ

with the Floquet Hamiltonian

ĤF
t0 ¼ ÛFðt0ÞĤFÛ

†
Fðt0Þ ð11Þ

and two-point micromotion operator

ÛFðt; t0Þ ¼ ÛFðtÞÛ†
Fðt0Þ: ð12Þ

In particular, for t ¼ t0 þ T Eq. (10) reduces to Eq. (1). The
Floquet Hamiltonian is a special choice of the effective
Hamiltonian, which directly generates the stroboscopic time

evolution in steps of the driving period T. ĤF
t0 depends

parametrically on the initial time t0 and thus also on the
driving phase. However, according to Eq. (11) this depend-
ence is rooted in a unitary transformation, so that the spectrum
of the Floquet Hamiltonian is independent of t0 and the
driving phase.
Another possibility to construct a newmicromotion operator

and the effective Hamiltonian is given by ÛF
0ðtÞ ¼

ÛFðtÞ expðimωtj ~unih ~unjÞ with integer m, which implies
ĤF

0 ¼ ĤF þmℏωj ~unih ~unj. This operation changes the qua-
sienergy εn and its Floquetmode to new solutions labeled bym:

εnm ¼ εn þmℏω; junmðtÞi ¼ eimωtjunðtÞi; ð13Þ

such that the corresponding Floquet state is not altered,

jψnðtÞi ¼ e−itεn=ℏjunðtÞi ¼ e−itεnm=ℏjunmðtÞi: ð14Þ

Equation (13) shows that quasienergies are defined up to
integer multiples of ℏω only, in agreement with the earlier
observation that Eq. (1) does not determine the Floquet
Hamiltonian uniquely. This property reflects the possibility
of resonant coupling. The freedom to choosem individually for
each Floquet state n can be used to choose all quasienergies to
lie in the same interval of width ℏω. Such an interval is often
called the Brillouin zone, in loose analogy to Bloch’s theory
of spatially periodic systems. In the latter quasimomenta are
defined modulo reciprocal lattice vectors only. They can be
chosen to lie in one elementary cell of the reciprocal lattice such

as the first Brillouin zone. In case the Floquet mode junðtÞi≡P
m0 juðm0Þ

n ie−im0ωt is dominated by a specific harmonic m0 ¼
m0 with respect to a given frame of reference, εnm0

constitutes
a meaningful choice for the quasienergy, which, in the limit
of a time-independent Hamiltonian, reproduces the energy
spectrum.
A prerequisite to Floquet engineering is a theoretical

method to compute the effective Hamiltonian and the micro-
motion operator, at least within a suitable approximation. For
ℏω large compared to the matrix elements of the Hamiltonian,
a systematic approximation to the effective Hamiltonian and
the micromotion operator is given by a high-frequency
expansion (Grozdanov and Raković, 1988; Rahav, Gilary,
and Fishman, 2003; Goldman and Dalibard, 2014; Eckardt
and Anisimovas, 2015; Goldman et al., 2015; Itin and
Katsnelson, 2015; Mikami et al., 2016)

ĤF ≈
Xμcut
μ¼1

ĤðμÞ
F ; ÛFðtÞ ≈ exp

�Xμcut
μ¼1

ĜðμÞðtÞ
�
: ð15Þ

Here ĤðμÞ†
F ¼ ĤðμÞ

F and ½ĜðμÞðtÞ�† ¼ −ĜðμÞðtÞ. The leading
terms are given by
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Ĥð1Þ
F ¼ Ĥ0; Ĥð2Þ

F ¼
X
m≠0

ĤmĤ−m

mℏω
;

Ĥð3Þ
F ¼

X
m≠0

�½Ĥ−m; ½Ĥ0; Ĥm��
2ðmℏωÞ2

þ
X

m0≠0;m

½Ĥ−m0 ; ½Ĥm0−m; Ĥm��
3mm0ðℏωÞ2

�
; ð16Þ

and

Ĝð1ÞðtÞ ¼ −
X
m≠0

eimωtĤm

mℏω
;

Ĝð2ÞðtÞ ¼
X
m≠0

�
eimωt½Ĥ0; Ĥm�

ðmℏωÞ2

þ
X

m0≠0;m

eiðm−m0Þωt½Ĥ−m0 ; Ĥm�
2mðm −m0ÞðℏωÞ2

�
: ð17Þ

A similar high-frequency expansion for the Floquet
Hamiltonian ĤF

t0 and the two-point micromotion operator
ÛFðt; t0Þ is known as the Floquet-Magnus expansion (Maricq,
1982; Milfeld and Wyatt, 1983; Casas, Oteo, and Ros, 2001;
Blanes et al., 2009; Verdeny, Mielke, and Mintert, 2013;
Bukov, D’Alessio, and Polkovnikov, 2015)

ĤF
t0 ≈

Xμcut
μ¼1

ĤFðμÞ
t0 ; ÛFðt; t0Þ ≈ exp

�Xμcut
μ¼1

F̂ðμÞðt; t0Þ
�
: ð18Þ

One can construct the leading terms from the expansion (15)
using Eqs. (11) and (12). For the Floquet Hamiltonian they
read

ĤFð1Þ
t0 ¼ Ĥð1Þ

F ¼ Ĥ0;

ĤFð2Þ
t0 ¼ Ĥð2Þ

F − ½Ĥð1Þ
F ; Gð1Þðt0Þ�

¼
X
m≠0

ĤmĤ−m þ eimωt0 ½H0; Hm�
mℏω

: ð19Þ

Here the second term of ĤFð2Þ
t0 results from the expansion of

the unitary operator ÛFðtÞ≃ 1þ Ĝð1ÞðtÞ þ � � �. This expan-
sion conserves unitarity only up to the considered order μcut,
e.g., in first order one finds ½1þ Ĝð1ÞðtÞ�†½1þ Ĝð1ÞðtÞ� ¼
1 − ½Ĝð1ÞðtÞ�2. As a consequence, the approximate quasie-
nergy spectrum obtained from the Floquet Hamiltonian in
μcutth order acquires a spurious dependence on the initial time
t0 and, thus, also on the driving phase. When expanding the
spectrum in powers of the inverse driving frequency, the t0
dependence appears in terms of powers > μcut, which cannot
be expected to be correctly captured within the given order of
the approximation. While these terms are small in the regime
where the approximation is justified, they might describe
spurious symmetry breaking (Eckardt and Anisimovas, 2015).
The Floquet-Magnus expansion is guaranteed to converge,

if the period-averaged operator norm of the Hamiltonian ĤðtÞ
is smaller than ξFℏω, where ξF is a constant of the order of 1

(Casas, Oteo, and Ros, 2001). For periodically driven many-
body systems, possessing excited states also at macroscopi-
cally large energies, this condition cannot be expected to be
fulfilled (unless the state space is effectively reduced by
symmetry or localization). However, even in this case the
high-frequency expansion might still provide a suitable
approximation provided ℏω is large compared to the typical
intensive energy scales of the system, at least up to a certain
time span th beyond which the system heats up (Maricq, 1982;
Abanin, De Roeck, and Huveneers, 2016; Kuwahara, Mori,
and Saito, 2016; Mori, Kuwahara, and Saito, 2016). Abanin,
De Roeck, and Huveneers (2016) and Kuwahara, Mori, and
Saito (2016) showed that for spin systems with local inter-
actions (i.e., for systems with local energy bound) the time
scale th increases exponentially with the driving frequency.
For these systems, Kuwahara, Mori, and Saito (2016) showed
that for time spans smaller than th the Floquet-Magnus
expansion is (at least) an asymptotic series that provides a
good approximation for the time-evolution operator, whose
error rapidly decreases with μcut before it increases again
beyond an optimal order μoptcut. While these results do not apply
to optical-lattice systems, which do not have a local energy
bound, they still indicate that the high-frequency approxima-
tion can provide an accurate description of a driven many-
body system as long as the duration of the experiment is short
compared to some heating time th. This issue is discussed in
more detail in Sec. IV.
The approximate effective Hamiltonian, as given by a

certain low order μcut of the high-frequency approximation
(15), defines a simple model Hamiltonian. In contrast, the full
effective Hamiltonian of a driven system of many interacting
particles is typically a highly complex (rather awkward)
object, which cannot be explicitly written down. Very often
the starting point of Floquet engineering is, therefore, to
realize the physics of an autonomous model described by a
target Hamiltonian Ĥtarget directly corresponding to the high-
frequency approximation in some low order (μcut ¼ 1 or 2),

Ĥtarget ¼
Pμcut

μ¼1 Ĥ
ðμÞ
F . From this perspective, the dynamics of

the driven quantum system provides an approximation to
the physics of the desired model Hamiltonian Ĥtarget, rather
than the other way around. The quantum-gas experiments
described in Sec. III can be interpreted from this point of view.

III. QUANTUM-GAS EXPERIMENTS AND THEIR BASIC
DESCRIPTION

This section gives an overview over recent experiments
with quantum gases of ultracold neutral atoms in periodically
driven optical lattices. We do not discuss experiments where
periodic driving has been employed for spectroscopic pur-
poses, but rather describe those aiming for the coherent
manipulation of the system’s state and its dynamics. The
observed effects are explained in terms of a common language
and using intuitive approximations.

A. Neutral atoms in optical lattices

Ultracold quantum gases (Bloch, Dalibard, and Zwerger,
2008; Lewenstein, Sanpera, and Ahufinger, 2012) consist of
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neutral atoms held in optical or magneto-optical traps inside a
vacuum cell and cooled down to quantum degeneracy by
means of laser cooling and evaporative cooling. They are very
well isolated from their environment. Dissipative processes,
such as the formation of molecules via three-body collisions,
spontaneous emission as a result of the optical trap, or
collisions with background particles, are often negligible.
Atom numbers of up to several millions can be reached.
The possibility to create light-shift potentials proportional

to the laser intensity allows for the creation of quasi-defect-
free lattice potentials from standing light waves, called optical
lattices. For example, a one-dimensional lattice created by two
counterpropagating laser beams with wave vectors kL and−kL
takes the form of a cosine lattice VLðrÞ ¼ V0 sin2ðkL · rÞ,
where the lattice depth V0 is proportional to the laser intensity.
Besides the lattice depth V0, a second energy scale is the recoil
energy ER ¼ ℏ2k2L=2m, with kL ¼ jkLj and atomic mass m. It
corresponds to the kinetic energy required to localize a particle
on the length of a lattice constant d ¼ π=kL. Recoil energies
are of the order of several (h×) kilohertz, roughly correspond-
ing to (kB×) microkelvin or several picoelectron volts. The
lattice depth can take values of up to hundreds of recoil
energies. The rather large time scales corresponding to these
low energy scales allow for accurate time-dependent manipu-
lation and time-resolved imaging. By combining standing
waves in different directions or by creating more complex
interference patterns one can create various two- and three-
dimensional lattice structures. Moreover, effectively one- or
two-dimensional systems can be realized by strong transversal
confinement.
For deep lattices, V0 ≫ ER, the system is well described by

a Hubbard model with one localized Wannier state at each
lattice minimum. The single-particle terms of the Hamiltonian
take the form

Ĥtun ¼ −
X
hl0li

Jâ†l0 âl; Ĥpot ¼
X
l

vln̂l; ð20Þ

where â†l, âl, and n̂l ¼ â†lâl denote the creation, annihila-
tion, and number operator for a particle, boson or fermion,
in the Wannier state at lattice site l. The kinetics is captured
by Ĥtun and to good approximation exhausted by tunneling
processes between neighboring sites l and l0; here hl0li
denotes a directed pair of neighboring sites l0 and l. The
nearest-neighbor tunneling parameter J sensitively depends
on the lattice depth and can, depending on the lattice structure,
also acquire a directional dependence, J → Jl0l. For a deep
cosine lattice J=ER≃4π−1=2ðV0=ERÞ3=4expð−2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
V0=Er

p Þ
(Zwerger, 2003). The potential term Ĥpot captures the influ-
ence of an external potential such as the trap or a superlattice
potential.
The interactions among low-temperature alkaline atoms, as

they were used in the experiments to be reviewed here, are
short ranged and captured by on-site terms. For spinless
bosons the interaction term reads

Ĥint ¼
U
2

X
l

n̂lðn̂l − 1Þ: ð21Þ

For deep lattices the Hubbard parameter U approaches U ≃ffiffiffiffiffiffiffiffi
2=π

p
ℏ2as=mā30 ¼ 2ER

ffiffiffiffiffiffiffiffi
2=π

p
kLas=ðkLā0Þ3 with s-wave

scattering length as and the mean harmonic-oscillators length
ā0 in the lattice minimum. For the cosine lattice the harmonic-
oscillator length depends weakly on the lattice depth as
a0kL ¼ ðV0=ERÞ−1=4 and for Rb-87 atoms kLas ≈ 0.041 at
2π=kL ¼ 850 nm. Spinless (i.e., spin-polarized) fermions do
not interact due to Pauli exclusion. In order to have inter-
actions among fermionic atoms, one has to consider spinful
atoms or elements with long-ranged dipolar interactions.
The Hubbard model is justified for sufficiently deep lattices

(V0=ER ≳ 5) and has been tested to provide a quantitative
description of optical-lattice systems (Trotzky et al., 2010).
Excited states belonging to higher Bloch bands not included
in the Hubbard model are separated by a large energy gap EG
of several ER. The gap EG, which is roughly given by
EG ≈ ER minðV0=2ER; 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0=ER

p
− 1Þ, can be 2 orders of

magnitude larger than J and U. Thus, even if the driving
frequency is required to be large compared to J and U, it can
still be small compared to the band gap. This suggests that a
description of the periodically driven systems in terms of the
low-energy subspace described by the Hubbard model is
possible. A more detailed discussion of this issue is given in
Sec. IV.C.

B. Dynamic localization

The first experiment where the coherent dynamics of an
ultracold quantum gas was controlled by means of periodic
forcing was conducted in Arimondo’s group in Pisa. The
ballistic spreading of a localized Bose-Einstein condensate
in the lowest band of a one-dimensional optical lattice was
slowed down, and even suppressed completely, by the
application of a sinusoidal force (Lignier et al., 2007;
Eckardt et al., 2009; Creffield et al., 2010). This is the effect
of dynamic localization (Dunlap and Kenkre, 1986).
The experimentalists created a one-dimensional optical

lattice in the tight-binding regime along the x direction,
together with a tubelike harmonic confinement in the radial
directions y and z. Initially a Bose-Einstein condensate of
87Rb atoms was loaded into the lowest Bloch band of the
lattice, localized in the center of the tube by an additional
trapping potential. When this additional trap was switched off,
the condensate started to expand in the tube. During this
expansion a sinusoidal force was applied, created as an inertial
force by shaking the lattice back and forth. The shaken lattice
is described by the potential VDLðr; tÞ ¼ VL(r − ξðtÞ) with
ξðtÞ ¼ ξðtþ TÞ ¼ ξðtÞ ¼ ξ0 cosðωtÞex, which transforms to
VLðrÞ − r · FðtÞ in the reference frame comoving with the
lattice, where

FðtÞ ¼ −m̈ξðtÞ ¼ Fω cosðωtÞ ð22Þ

with Fω ¼ mω2ξ0ex ≡ Fωex (Drese and Holthaus, 1997b;
Madison et al., 1998). After a certain time of expansion in the
driven lattice, the atom density was measured by absorption
imaging either in situ or, in order to reveal the momentum
distribution, after an additional time of flight with all poten-
tials switched off.
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For a broad range of parameters, the momentum distribu-
tion revealed sharp peaks, indicating that the condensate
retained its coherence as in the case of a ballistic expansion
and that the shaking did not cause significant heating.
Moreover, by comparing the in situ extent of the atom cloud
with that found for ballistic expansion in the nondriven lattice
(Fig. 1), the driven system was found to be well described by
the effective tunneling parameter predicted by (Dunlap and
Kenkre, 1986),

Jeff ¼ JJ 0

�
K
ℏω

�
; ð23Þ

where K ¼ dFω is the amplitude of the potential modulation
between neighboring lattice sites.
Let us explain this result. In the lattice frame of reference

the system can be described by the tight-binding Hamiltonian

ĤðtÞ ¼ −
X
hl0li

Jâ†l0 âl þ
X
l

�
½vl þ wlðtÞ�n̂l þ

U
2
n̂lðn̂l − 1Þ

�
;

ð24Þ

where l labels the minima rl ¼ ðxl; 0; 0Þ of the one-
dimensional lattice and where

wlðtÞ ¼ −rl · FðtÞ ¼ −
xl
d
K cosðωtÞ; vl ¼ vtrl ð25Þ

captures the periodic force as well as a weak harmonic trap in
the lattice direction vtrl , respectively. In the expansion experi-
ment vtrl was small enough to have no significant influence on
the measured expansion dynamics.

One can now perform a gauge transformation,

jψ 0ðtÞi ¼ Û†ðtÞjψðtÞi; ð26Þ

Ĥ0ðtÞ ¼ Û†ðtÞĤðtÞÛðtÞ − iℏÛ†ðtÞ½dtÛðtÞ�; ð27Þ

defined by the time-periodic unitary operator

ÛðtÞ ¼ exp

�
i
X
l

χlðtÞn̂l
�

ð28Þ

with

χlðtÞ ¼ −
Z

t

t0

dt0
wlðt0Þ
ℏ

− χ0l: ð29Þ

The time-independent gauge constant χ0l is chosen such thatR
T
0 dtχlðtÞ ¼ 0. Writing

χlðtÞ≡ rl · aðtÞ ð30Þ

reveals that the unitary operator ÛðtÞ describes a global shift
in quasimomentum by

aðtÞ ¼ −
m
ℏ
_ξðtÞ ¼ 1

d
K
ℏω

sinðωtÞex: ð31Þ

By employing Û†ðtÞâlÛðtÞ ¼ eiχlðtÞâl and noting that the
time derivative of the unitary transformation cancels with the
driving term, the gauge-transformed Hamiltonian can be
brought to the form

Ĥ0ðtÞ ¼ −
X
hl0li

Jeiθl0lðtÞâ†l0 âl þ
X
l

�
vln̂l þ

U
2
n̂lðn̂l − 1Þ

�
:

ð32Þ
The time-dependent Peierls phases

θl0lðtÞ ¼ χlðtÞ − χl0 ðtÞ ¼ −ðrl0 − rlÞ · aðtÞ ð33Þ
play the role of a discrete vector potential that now, instead of
the discrete scalar potential wlðtÞ, describes the force FðtÞ.
For vl ¼ 0, the gauge transform restores the discrete

translational symmetry of the lattice. The time-dependent
tunneling term of Ĥ0ðtÞ is, thus, diagonal in quasimomentum
representation,

Ĥ0
tunðtÞ ¼

X
k

εðkþ aðtÞÞn̂k: ð34Þ

Here n̂k denotes the number operator for particles in the Bloch
state with quasimomentum wave number k, characterized by
hljki ∝ expðirl · kÞ, and εðkÞ ¼ −2J cosðdkxÞ is the single-
particle dispersion relation of the undriven tight-binding
lattice. Equation (34) explicitly shows that the transformation
(28) describes a shift in momentum by aðtÞ.4 Under the

FIG. 1. Effective tunneling matrix element jJeff j=J vs
K0 ¼ K=ℏω. Extracted from the expansion dynamics of a
condensate of about 5 × 104 87Rb atoms in a shaken optical
lattice of ER≈2πℏ3.16 kHz (squares: V0=ER¼6, ω=2π¼1 kHz,
circles: V0=ER ¼ 6, ω=2π ¼ 0.5 kHz, triangles: V0=ER ¼ 4,
ω=2π ¼ 1 kHz, dashed line: theoretical prediction). Inset:
Jeff=J for K=ℏω ¼ 2 and V0=ER ¼ 9 vs ℏω=J indicates a
breakdown of high-frequency prediction (dashed line) for
ℏω=J < 2. From Lignier et al., 2007.

4The transformation can be viewed as an analog of the Kramers-
Henneberger transformation (Henneberger, 1968), with the roles of
momentum and position interchanged.
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influence of Ĥ0
tunðtÞ the quasimomentum occupation numbers

of the state do not change in time. During each driving period
a particle in state jki just picks up an integrated dynamical
phase proportional to the time-averaged energy

εeffðkÞ ¼
1

T

Z
T

0

dtεðkþ aðtÞÞ ¼ −2Jeff cosðdkxÞ; ð35Þ

with the effective tunneling matrix element Jeff as given by
Eq. (23).5 Thus, apart from an oscillatory dynamics at the
driving frequency the system behaves as if it was described
by the effective dispersion relation εeffðkÞ with a reduced
bandwidth of 4Jeff . This argument is valid also for low driving
frequencies, unless interactions or translational-symmetry
breaking cause scattering between quasimomentum states.
In the more interesting situation with interactions and

translational-symmetry breaking, the effective modification
of tunneling is still valid approximately in the high-frequency
regime. Namely, if ℏω is large compared to the characteristic
energy scales J, U, and jvl0 − vlj on neighboring sites l0 and
l, which determine the rates at which the system’s state jψ 0ðtÞi
changes in time, we can average over the rapid oscillation
of the Peierls phases. The tight-binding Hamiltonian can be
approximated by its cycle average

Ĥ0ðtÞ ≈ 1

T

Z
T

0

dtĤ0ðtÞ≡ Ĥeff : ð36Þ

One finds

Ĥeff ¼ −
X
hl0li

Jeffl0lâ
†
l0 âl þ

X
l

�
vln̂l þ

U
2
n̂lðn̂l − 1Þ

�
; ð37Þ

with the modified tunneling matrix element

Jeffl0l ¼ J
T

Z
T

0

dtei½χlðtÞ−χl0 ðtÞ�; ð38Þ

resulting in Jeffl0l ¼ Jeff , where Jeff is given by Eq. (23).6 This
rotating-wave-type approximation is in principle valid not
only for the case of weak interactions of the expansion
experiment, but also in the regime where U is comparable
or larger than J (Eckardt, Weiss, and Holthaus, 2005).
The result of the rotating-wave approximation can be related

to Floquet theory. The time-independent Hamiltonian Ĥeff that
was argued to effectively describe the time evolution con-
stitutes an approximation to the effective Hamiltonian ĤF and
the unitary operator (28) approximates the micromotion
operator ÛFðtÞ:

ĤF ≈ Ĥeff ; ÛFðtÞ ≈ ÛðtÞ: ð39Þ

This corresponds to the leading order of the high-frequency
approximation (15) applied to Ĥ0ðtÞ,

Ĥeff ¼ Ĥ0ð1Þ
F : ð40Þ

As discussed in Sec. IV this approximation is expected to
be valid on a certain time scale, before heating sets in. This
time scale can, however, be rather long and comparable to the
duration of the experiment (typically a few hundred millisec-
onds). In the experiment by Lignier et al. (2007), the
condensate coherence was found to decay during the expan-
sion on a dephasing time of about 200 ms for the nondriven
system with V0=ER ≈ 9. For the strongly driven system with
K=ℏω ¼ 2.2 comparable dephasing times were achieved
when the driving frequency was increased to an opti-
mal value.
A significant modification of tunneling requires strong

driving with the driving strength K of the order of ℏω. For
such strong forcing it would not have been justified to
approximate the original Hamiltonian ĤðtÞ [Eq. (24)] by its
time average, since the amplitude of the driving term K
changes the state at a rate comparable to the driving frequency.
However, by integrating out the driving term via a gauge
transformation before applying the rotating-wave approxima-
tion, the case of strong driving can also be treated (Eckardt
et al., 2010; Goldman et al., 2015). In this way a non-
perturbative treatment of the forcing has been achieved. This
is visible in the fact that through the Bessel-function-type
dependence the effective tunneling matrix element Jeff con-
tains arbitrarily large powers of the driving amplitude K.
In contrast, when performing the high-frequency expansion
starting from ĤðtÞ in μth order the largest power encountered
is Kμ. Thus, integrating out the driving term via the gauge
transformation (28) before employing the high-frequency
expansion corresponds to a partial resummation of the
series (15).
Lignier et al. (2007) also observed deviations from the

tight-binding description (24) in the form of a small amount of
transfer to the first excited band of the lattice (less than 10%
for K=ℏω < 3). Moreover, for negative effective tunneling
matrix elements Jeff < 0, the measured momentum distribu-
tion revealed that the atoms recondensed into the minimum
kx ¼ π=d of the inverted dispersion relation εeffðkÞ. A
plausible explanation of this process, during which the
(effective) kinetic energy is lowered, is that the excess energy
is absorbed by excitations in the rather weakly confined
transversal directions.
The fact that the periodic force has been created as an

inertial force via lattice shaking has a convenient implication
concerning the measurement of the quasimomentum distri-
bution. In the lattice frame of reference the quasimomentum
distribution oscillates as −aðtÞ in response to the inertial force.
This oscillation is removed, when transforming back to the
laboratory frame of reference, where the quasimomentum
distribution is measured. Time-of-flight pictures, thus, directly
reveal the quasiomentum distribution of Ĥeff (multiplied,
however, by an oscillating envelope given by the Fourier
transform of the Wannier function).

5In order to compute the time average, the identity
exp½ia sinðbÞ� ¼ P∞

μ¼−∞ J μðaÞ expðiμbÞ was employed.
6For nonsinusoidal square-wave forcing the modification of

tunneling is given by a sinc function (Zhu, Zhao, and Niu, 1999),
as observed also experimentally (Eckardt et al., 2009). Other forms of
nonsinusoidal forcing are discussed by Klumpp et al. (2007).
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C. “Photon-assisted” coherent tunneling

The starting point of a second type of experiment is the
Wannier-Stark configuration, namely, a one-dimensional lat-
tice system in combination with a homogeneous static force
F0 ¼ F0ex. If the potential difference between neighboring
sites Δ ¼ F0d is large compared to the bandwidth (while still
being small with respect to the band gap), tunneling processes
between neighboring lattice sites are strongly suppressed. In
this regime the localized single-particle Wannier-Stark eigen-
states are approximately identical to the Wannier states at the
lattice sites l, and Bloch oscillations are reduced to a rapid
shivering motion of angular frequency Δ=ℏ and negligible
amplitude ∼J=Δ. An initially localized Bose condensate does
not spread in time. However, coherent tunneling can be
induced by applying a time-periodic force Fω cosðωtÞ, pro-
vided the resonance condition

Δ ¼ νℏωþ δ ð41Þ
with integer ν and small detuning δ is met. This phenomenon
is known as photon-assisted, ac-induced, or laser-assisted
tunneling. For such a situation the energy separation Δ
between neighboring sites is bridged by ν energy quanta
ℏω (tunneling corresponds to an allowed ν-photon transition)
and particles can tunnel with an effective tunneling matrix
element −Jeff , as if there was no potential tilt (Zak, 1993). If
the resonance condition is not met exactly such that a finite
detuning δ remains, this detuning plays the role of a residual
static force δF ¼ ðδ=dÞex (Eckardt and Holthaus, 2007).
A basic theoretical description of photon-assisted tunneling

in a sinusoidally forced tilted lattice can be obtained in a
similar way as for the phenomenon of dynamic localization.
Subjecting a one-dimensional lattice system to the force

FðtÞ ¼ −F0 þ Fω cosðωtÞ; ð42Þ

with F0 ¼ F0ex and Fω ¼ Fωex, it is described by the Bose-
Hubbard Hamiltonian (24). However, now the driving poten-
tial is defined as

wlðtÞ ¼
xl
d
½−K cosðωtÞ þ νℏω�; ð43Þ

where K ¼ Fωd as before, and

vl ¼ vtrl þ
xl
d
δ ð44Þ

describes an additional weak static potential. Here we
included the larger share νℏω of the static potential tilt (41)
to the driving term wlðtÞ, whereas the small detuning δ was
included into vl.
Now wlðtÞ contains all terms of the Hamiltonian, whose

characteristic energy scale is not small compared to the
driving frequency. Moreover the wlðtÞ term is defined such
that it can be integrated out by a time-periodic gauge trans-
formation, described by the unitary operators (28) and (29)
with wlðtÞ as defined by Eq. (43). This gauge transformation
leads to a Hamiltonian of the form (32). It corresponds to a
global shift in quasimomentum by

aðtÞ ¼
�
1

d
K
ℏω

sinðωtÞ − 1

d
νωtþ a0

�
ex; ð45Þ

where the constant a0 depends on both the initial time t0 and
the gauge constant χ0l in Eq. (29). The linear dependence on
time makes the definition of χ0l as the time average of the
integral in Eq. (29) meaningless. Instead the freedom to
choose χ0l can be used either to incorporate into a0 the
actual momentum shift induced when both Fω and F0 are
switched on according to a particular experimental protocol
(Creffield and Sols, 2011) or to achieve a0 ¼ 0 for conven-
ience, as done in the following. The quasimomentum shift
(45) is time periodic, in the sense that quasimomentum wave
numbers kx are defined modulo 2π=d only. The integer ν
corresponds to the number of times the system is translated in
quasimomentum through the first Brillouin zone.
We are now again in the position to approximate Ĥ0ðtÞ ¼

Ĥ0ðtþ TÞ by its time average, as long as J, U, and jvl0 − vlj
on neighboring sites l0 and l (i.e., also jδj) are small
compared to ℏω. We arrive at the approximate effective
Hamiltonian (37), but with vl given by Eq. (44) and with
the effective tunneling matrix element reading (Zak, 1993;
Eckardt and Holthaus, 2007)

Jeff ¼ JJ ν

�
K
ℏω

�
: ð46Þ

For small arguments the Bessel function behaves as

J νðxÞ≃ 1

jνj!
�
sgnðνÞ x

2

�jνj
; ð47Þ

so that for ν ≠ 0 the effective tunneling matrix element vanishes
for K=ℏω ¼ 0. This reflects the fact that for a strong potential
tilt νℏω ≫ J tunneling is suppressed. However, switching on a
finite driving strength K=ℏω the effective tunneling matrix
element acquires finite values such that coherent photon-
assisted tunneling is induced by the periodic force.
The fact that the localized Wannier-Stark eigenstates of the

tight-binding model described by Ĥeff with a finite tilt δ are
known explicitly in the absence of trapping potentials and
interactions allows for an analytical description of the dynam-
ics of an initially localized wave packet in the shaken tilted
lattice (Thommen, Garreau, and Zehnlé, 2002, 2004a, 2004b)
[see also Kolovsky and Korsch (2010), Creffield and Sols
(2011), and Kudo and Monteiro (2011)].
Photon-assisted tunneling described by the effective tun-

neling matrix element (46) with ν ¼ 1 and 2 has been
observed in Arimondo’s group in Pisa (Sias et al., 2008)
from the coherent expansion of a Bose condensate of Rb-87
atoms in a one-dimensional lattice, where both the static and
the sinusoidal forces were created by lattice acceleration.7

At the same time a similar experiment was conducted in
Tino’s group in Florence with Sr-88 atoms in an optical cosine
lattice, where the static force was given by gravitation and the

7A seeming discrepancy between the measured data with the
prediction (46) was later resolved by taking into account the initial
extent of the condensate when extracting the effective tunneling
matrix element (Creffield et al., 2010).

André Eckardt: Colloquium: Atomic quantum gases in …

Rev. Mod. Phys., Vol. 89, No. 1, January–March 2017 011004-9



periodic force was realized via lattice shaking (Ivanov et al.,
2008). The experimentalists observed ballistic spreading for
resonant forcing with ℏω ¼ nΔ and n ¼ 1, 2, 3, and 4. They
attribute the resonances to tunneling processes between lattice
sites at distance nd. Since for the used lattice depth of
V0=ER ¼ 20 the matrix elements for next-nearest-neighbor
tunneling are negligible, this interpretation suggests that
atoms were loaded into excited Bloch bands of the lattice,
where also longer-ranged tunneling matrix elements matter.
An alternative mechanism explaining such resonances is
based on nth-order nearest-neighbor tunneling processes via
virtual intermediate nonresonant states.
In a later experiment by the same group the atoms were

loaded into the lowest band of a tilted lattice and the impact
of the small effective lattice tilt δ ¼ Δ − ℏω was explored,
as it appears in the effective Hamiltonian (37) through vl
[Eq. (44)]. The experimentalists observed a large-amplitude
breathing dynamics of the initially localized atom cloud at the
small effective Bloch frequency δ=ð2πℏÞ (Alberti et al., 2009).
For the lowest effective Bloch frequency of approximately
0.26 Hz a breathing amplitude of about 1 mm was observed.
The driven system retained coherence over macroscopic times
and distances. Since the atom cloud was hot, with the
momentum distribution smeared out over the whole first
Brillouin zone, no center-of-mass Bloch oscillations were
observed. However, the thermal nature of the initial state did
not destroy the coherent breathing dynamics.
In an experiment by Nägerl’s group in Innsbruck center-of

mass oscillations at the effective Bloch frequency δ=ð2πℏÞ
were also observed (Haller et al., 2010). In this experiment
with bosonic Cs-133 atoms in a one-dimensional optical
lattice the static tilt was given by gravitation and the sinusoidal
force was realized using an oscillating magnetic-field
gradient. Since the atom cloud possessed a peaked quasimo-
mentum distribution, it also acquired a large-amplitude center-
of-mass oscillation [super Bloch oscillations (Kolovsky and
Korsch, 2010)], described by the group velocity of the
effective Hamiltonian at the oscillating quasimomentum
peak. The amplitude of the oscillations was found to be
determined by Jeff as given by Eq. (46) with ν ¼ 1. Their
phase, as determined by the quasimomentum shift acquired
while the forcing is switched on, was controlled by the time
when during the driving period the forcing was abruptly
switched on.
Another possibility to resonantly induce effective

coherent tunneling in a strongly tilted lattice is a sinusoidal
modulation of the lattice depth, which is captured by a
modulation of the tunneling matrix element in the tight-
binding Hamiltonian (24),

J → JðtÞ ¼
X∞
μ¼−∞

JðμÞeiμωt ≃ J þ ΔJ cosðωtÞ; ð48Þ

with Jð−μÞ ¼ JðμÞ�. Additionally, there is also a weak periodic
modulation of the interaction parameter U → UðtÞ≃ U−
ΔU cosðωtÞ. The Wannier-Stark tilt is captured by

wl ¼ xl
d
νℏω; vl ¼ vtrl þ

xl
d
δ: ð49Þ

Integrating out the strong potential tilt included in wl by a
gauge transformation [Eqs. (28) and (29)], one arrives at a
Hamiltonian Ĥ0ðtÞ of the form (32), with J and U replaced
by JðtÞ and UðtÞ and Peierls phases (33) determined by the
quasimomentum shift

aðtÞ ¼
�
−
1

d
νωtþ a0

�
ex: ð50Þ

Once again, one can approximate Ĥ0ðtÞ by its time average,
giving the effective Hamiltonian (37), where vl is given by
Eq. (49) and where for the choice of gauge a0 ¼ 0 the
effective tunneling matrix element reads

Jeff ¼ Jð−νl0lÞ ≃ δν;0J þ
δν;1 þ δν;−1

2
ΔJ; ð51Þ

with integer νl0l ≡ ðwl0 − wlÞ=ℏω for tunneling from l to l0.
Thus, as long as higher harmonics are negligible in the
modulated tunneling matrix element JðtÞ, the forcing allows
for single-photon processes bridging energy differences
of �ℏω.
Such photon-assisted tunneling via a modulation of the

lattice depth was observed in Florence (Alberti et al., 2010),
where inter alia the selectivity to single-photon processes
was also used in order to selectively induce and observe
tunneling processes between next-nearest and next-next-
nearest lattice sites. Subsequently, the scheme was employed
for a precision measurement of the gravitational acceleration
(Poli et al., 2011).
This effect was combined with strong interactions both with

spinless bosons in a tilted lattice by Greiner’s group at Harvard
(Ma et al., 2011) and with spin-1=2 bosons in a tilted double
well by Bloch’s group in Munich (Chen et al., 2011). In these
experiments the on-site interactionUwas large compared to the
tunneling parameter J and comparable to the lattice tilt Δ, so
that the resonance condition (41) has to be modified to also
include the change of interaction energy associated with a
tunneling process. In this way the effective tunneling matrix
element becomes occupation dependent. In Greiner’s lab,
this effect was employed to measure the Hubbard energy U
as well as occupation-number-dependent corrections to it, as
they arise from perturbative admixtures of excited Bloch
bands. Moreover, it was used to control (a finite-size precursor
of) a phase transition in the effective spin model that the same
group had realized already in an earlier experiment with
spinless bosons in a tilted lattice (Simon et al., 2011). In the
Bloch experiment second-order tunneling via nonresonant
intermediate states was also observed at the resonance con-
dition ℏω ¼ 2Δ (Eckardt et al., 2005) and the modulation was
used to control superexchange processes [see also Mentink,
Balzer, and Eckstein (2015) and Bukov, Kolodrubetz, and
Polkovnikov (2016)].
We note that photon-assisted tunneling was recently also

observed in a lattice of optical waveguides (Mukherjee et al.,
2015). Experiments that use photon-assisted tunneling induced
by a moving-secondary lattice for the purpose of engineering
artificial magnetic fields are reviewed in Sec. III.F.1.
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D. Dynamic control of the bosonic superfluid-to-Mott-insulator
transition

When deriving the approximate effective Hamiltonian (37),
in the previous sections it was assumed that the driving
frequency is large compared to tunneling and interaction
parameters. But it was not required that the interactions are
weak compared to the kinetic energy. Therefore, it is possible
to control a lattice system also in the strong coupling regime
by means of periodic forcing. This was exploited in an
experiment in Pisa (Zenesini et al., 2009), where the transition
between a bosonic superfluid and a Mott-insulator state was
induced by means of lattice shaking. This experiment fol-
lowed a proposal by Eckardt, Weiss, and Holthaus (2005) [see
also Eckardt and Holthaus (2007)].
The bosonic Hubbard model possesses two different

ground-state phases, a gapless compressible superfluid phase,
with the particles being delocalized, and a gapped incom-
pressible Mott-insulator phase, where an integer number of
particles is localized at every lattice site by strong repulsive
interactions (Fisher et al., 1989). In a trapped optical-lattice
system extended Mott-insulator regions form when the ratio
between the Hubbard interaction and the tunneling parameter
U=J exceeds a critical value (Jaksch et al., 1998), which for
the three-dimensional cubic lattice at unit filling is given
by ðU=JÞc ≈ 29.3 (Capogrosso-Sansone, Prokof’ev, and
Svistunov, 2007; Teichmann et al., 2009). This transition
was observed the first time in a seminal experiment with
spinless bosons in a cubic optical lattice by Greiner et al.
(2002) in Munich, where the ratio U=J was increased by
ramping up the lattice depth V0. As a signature of the
transition the experimentalists observed the disappearance
of sharp peaks in the momentum distribution, as they
characterize the superfluid phase, as well as their reappear-
ance, when the lattice depth was ramped down again.
In the Pisa experiment lattice shaking was employed to

lower the effective tunneling parameter (23) with respect to
the interaction strength U, which is not altered by the lattice
shaking. In order to modify the tunneling matrix element in
all three directions of a cubic lattice, the forcing was applied
along the diagonal direction. When the shaking amplitude
was smoothly ramped up, the sharp momentum peaks
characterizing the superfluid ground state disappeared once
U=Jeff became sufficiently large. The peaks reappeared,
when the forcing was ramped down again (see Fig. 2).
The interpretation of this experiment is that the system
approximately followed a many-body Floquet state that, in
response to the variation of the driving amplitude, underwent
a transition from a superfluid to a Mott insulator and back.
This experiment demonstrates, on the one hand, that time-
periodic forcing is a suitable tool also for the manipulation of
strongly interacting many-body systems and their interaction-
driven physics. On the other hand, it also is an example of
adiabatic state preparation in a time-periodically driven
system. Such “adiabatic” processes in driven many-body
systems are discussed in more detail in Sec. IV, where
we point out that they actually correspond to a complex
mixture of adiabatic and diabatic processes in an extended
Hilbert space.

E. Kinetic frustration

Controlling the spreading of a Bose condensate, Bloch
oscillations, or even the superfluid-to-Mott-insulator transi-
tion, all these experimentally observed effects discussed show
that periodic forcing is a suitable tool for controlling many-
body systems of ultracold atoms in optical lattices. These
effects have, however, been achieved also without periodic
forcing, e.g., by varying the depth of the optical lattice,
leading to an exponential suppression of the tunneling matrix
element, or by tuning a Wannier-Stark tilt. But periodic
forcing can also be used to engineer systems with qualitatively
new properties. One possibility is to effectively modify not
only the amplitude, but also the sign or, more generally, the
phase of tunneling matrix elements.
In the one-dimensional driven tight-binding chain, with

effective dispersion relation εeffðkxÞ ¼ −2Jeff cosðdkxÞ, a sign
change of the effective tunneling matrix element Jeff does not
lead to qualitatively new physics. The resulting inversion of the
dispersion relation can be compensated by a shift in quasimo-
mentum by Δk ¼ π=d, which corresponds to a gauge trans-
formation and also leaves the interactions unchanged. This
argument generalizes to other bipartite lattice geometries (such
as square, hexagonal, or cubic), where a sign change of the
tunneling matrix element can be compensated by redefining the
sign of the Wannier orbital on every other lattice site. However,
for a nonbipartite lattice (such as the triangular or the Kagomé
lattice), the inversion of the tunneling matrix element does not
simply correspond to a gauge transformation, but leads to a
geometrically frustrated tunneling kinetics:A negative tunneling
parameter Jeff < 0, corresponding to a positive tunnelingmatrix
element−Jeff > 0, favors thewave function to change sign from
one lattice site to the other. Thus, given three sites arranged in a
triangular plaquette, it is not possible anymore to minimize the
kinetic energy at each of the three tunneling bonds at the same
time. Especially in combination with strong interactions, such
kinetic frustration can give rise to intriguing behavior.
A sign inversion of the effective tunneling parameter can

be achieved via periodic forcing (Eckardt et al., 2010). A
two-dimensional lattice that is shaken along a circular orbit
experiences the inertial force

FIG. 2. Dynamically induced superfluid-to-Mott-insulator tran-
sition in a shaken cubic optical lattice. Two-dimensional projec-
tion of the momentum distribution obtained from time-of-flight
absorption imaging at three different times during the exper-
imental protocol: before ramping up the driving strength
K0 ¼ K=ℏω, after K0 has been ramped up linearly (middle),
and after K0 has been ramped down again (right). The loss and
reappearance of sharp peaks indicates that the system approx-
imately followed a many-body Floquet state undergoing a
quantum phase transition from a superfluid to a Mott insulator
and back. From Zenesini et al., 2009.
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FðtÞ ¼ Fω½cosðωtÞex þ sinðωtÞey�: ð52Þ

In the high-frequency regime its dynamics can be described by
the approximate effective Hamiltonian (37) with the isotropic
tunneling parameter given by Eq. (23), where K ¼ dFω with
lattice constant d. The effective tunneling parameter becomes
negative at K=ℏω ≈ 2.4 and assumes a minimal value of
Jeff ≈ −0.4J at K=ℏω ≈ 3.8. On the single-particle level, after
an inversion of the tunneling matrix elements, the dispersion
relation of the triangular lattice εeffðkÞ possesses two inequi-
valent minima k ¼ �q. For a Bloch wave function ψl ¼
M−1=2 expðiφlÞ with φl ¼ k · rl on the lattice, where M
denotes the total number of lattice sites, the effective kinetic
energy is given by

εeffðkÞ ¼ −
Jeff
M

X
hl0li

cosðφl0 − φlÞ ¼ −Jeff
X
d

cosðd · kÞ;

ð53Þ

where the second sum runs over the six vectors d that connect
each lattice site with its nearest neighbors. The phases φl play
the role of coupled classical rotors. For antiferromagnetic
coupling Jeff < 0, this energy becomes minimal for the two
spiral phase patterns denoted “spiral 1” in Fig. 3(b), charac-
terized by k ¼ �q with q ¼ ðqx; 0; 0Þ and qx ¼ 4π=ð3dÞ.
Considering many weakly repulsive, spinless bosons, the

ground state of the effective Hamiltonian corresponds to a
Bose condensate in one of the two minima of the effective
dispersion relation [states involving both quasimomenta q
and −q, either in a coherent supersposition or by forming a
fragmented condensate, are disfavored by repulsive inter-
actions (Eckardt et al., 2010)]. This form of spontaneous time-
reversal symmetry breaking has been observed in a system of
weakly interacting spinless bosons in a triangular lattice of
one-dimensional tubes in Sengstock’s group in Hamburg
(Struck et al., 2011); see Fig. 3(c).
Extending the scheme to elliptical forcing causes an

anisotropic modification of tunneling, since the amplitude
of the forcing K acquires a directional dependence. In a
triangular lattice this allows for creating the pattern of
tunneling matrix elements depicted in Fig. 3(a). The parameter
space spanned by Jeff and J0eff was explored in the Hamburg
experiment. Figure 3(b) shows the measured momentum
distributions, which feature peaks at the expected positions
corresponding to the sketched phase patterns. The degree of
kinetic frustration is basically controlled by Jeff=jJ0eff j. For
Jeff ¼ 0, the remaining J0eff bonds form a bipartite rhombic
lattice, which does not feature frustration and favors a
staggered Néel-type order of the phases φl [denoted rhombic
in Fig. 3(b)] for antiferromagnetic coupling J0eff < 0.
Switching on a finite antiferromagnetic Jeff ¼ −γjJ0eff j < 0

leads to frustration for either sign of J0eff and causes sponta-
neous time-reversal symmetry breaking when γ > γc. The
corresponding phase patterns are denoted by “spiral 1” and
“spiral 2” for J0eff < 0 and J0eff > 0, respectively. The critical
parameter is roughly given by γc ≈ 0.5, where the single-
particle dispersion relation develops two minima, although

interaction-induced quantum fluctuations are expected to shift
it to slightly larger values (Eckardt et al., 2010).
The idea of achieving kinetic frustration via lattice shaking

is of interest mainly for bosons. For fermions, an inversion of
tunneling matrix elements results already from a particle-hole
transformation, so that kinetic frustration will naturally appear
when the Fermi energy becomes sufficiently large. Apart from
the triangular lattice, the scheme can also be used to induce
kinetic frustration in other nonbipartite lattice geometries. For

FIG. 3. (a) Anisotropic triangular lattice with effective tunneling
parameters Jeff and J0eff . (b) Momentum distribution averaged
over many measurements (shots) and corresponding pattern of
the condensate phase (indicated by the direction of the arrow) for
different Jeff and J0eff (dashed and solid lines indicate positive and
negative tunneling parameters). (c) Spontaneous time-reversal
symmetry breaking for Jeff ¼ J0eff < 0. Each of the two spatial
configurations of the condensate phase shown in A breaks time-
reversal symmetry. In absorption images the two are distin-
guished by the position of the measured peaks, indicated by
dotted or solid circles in B. The contrast between both configu-
rations χ varies from shot to shot (C) giving a bimodal
distribution (D), so that typically only one of the two configu-
rations appears spontaneously. (b), (c) From Struck et al., 2011.
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an optical Kagomé lattice, as recently realized experimentally
(Jo et al., 2012), the impact of kinetic frustration is even more
drastic. After inverting the sign of the tunneling parameters the
lowest of the three bands will be completely flat, so that even
weak interactions will have a major impact on the ground state
(Huber and Altman, 2010). Also one-dimensional chains,
such as the sawtooth (Huber and Altman, 2010) or zigzag
(Greschner, Santos, and Vekua, 2013) lattice, can acquire
kinetic frustration in response to lattice shaking as well as
nonbipartite three-dimensional lattice geometries, such as
pyrochlore. Kinetic frustration enhances the role of inter-
actions not only in the extreme case of lattice geometries
acquiring a flat lowest band. In the triangular lattice the critical
interaction strength for the formation of a Mott insulator will
be reduced (Eckardt et al., 2010) and it can even become zero
in the zigzag chain (Greschner, Santos, and Vekua, 2013).
Note that the system can form a chiral Mott insulator, with
spontaneously broken time-reversal symmetry breaking
appearing in the particle-hole fluctuations (Greschner,
Santos, and Vekua, 2013; Zaletel et al., 2014).
It is also an interesting perspective to explore the interplay of

kinetic frustration with very strong interactions. In the limit of
hard-core bosons the effectiveHamiltonian (37) can bemapped
to a quantum spin-1=2 XY model (Eckardt et al., 2010)

Ĥeff ¼ −Jeff
X
hl0li

Ŝþl0 Ŝ−l ¼ −Jeff
X
hl0li

ðŜxl0 Ŝxl þ Ŝyl0 Ŝ
y
lÞ: ð54Þ

Here the Ŝl denote standard spin operators acting on the
pseudospin degree of freedom spanned by the two states “there
is a boson” (↑) and “there is no boson” (↓). In the experiment
mentioned, reaching this regime requires a further confinement
perpendicular to the lattice, making the system effectively
two dimensional. For nonbipartite lattices and Jeff < 0 the
Hamiltonian (54) describes frustrated quantum antiferromag-
netism. The ground-state (and low-temperature) regime of such
frustrated quantummagnets can give rise to intriguing physics,
like the formation of topological or critical spin liquids.
However, the theoretical prediction of the nature of the ground
state is typically a hard problem (Moessner and Ramirez, 2006;
Sachdev, 2008; Balents, 2010). Possibly, future experiments
simulating the Hamiltonian (54) in shaken optical lattices of
various geometries could provide useful information concern-
ing this issue. Here a promising feature is that the model (54) is
based on easy-to-cool motional bosonic degrees of freedom,
with the coupling on the order of the tunneling matrix element
Jeff ∼ J. Without a lattice, bosonic systems have been cooled
down to entropies per particle as low as 0.001kB (Olf et al.,
2015). This contrasts with optical-lattice spin systems based
on a Mott insulator of spin-1=2 fermions, with small super-
exchange coupling ∼J2=U ≪ J between neighboring spins.
For spin-1=2 fermions entropies per particle of about 0.6kB in
the Mott-insulating state (Greif et al., 2013; Hart et al., 2015;
Boll et al., 2016) and 0.04kB in a system without lattice (Ku
et al., 2012) have been achieved. Moreover, close analogies
between ground and low-energy states of frustrated XY and
Heisenberg antiferromangets might permit one to also shed
light on the physics of the latter (Läuchli andMoessner, 2015).

F. Artificial magnetic fields: High-frequency schemes

Inverting the sign of the tunneling matrix elements can be
viewed as a special case of a more general scheme where the
effective matrix element for tunneling from l to l0 acquires a
phase,

Jeffl0l ¼ jJeffl0ljeiθ
eff
l0l : ð55Þ

Such effective Peierls phases θeffl0l play the role of a vector
potential. The tight-binding representation of a vector poten-
tial AðrÞ is, according to the Peierls substitution, given by

θl0l ¼ 1

ℏ

Z
rl0

rl

dr · AðrÞ; ð56Þ

where we absorbed the charge in the definition of A so that it
carries the dimension of amomentum andwhere the integration
is taken along a straight line. In the last years, such effective
Peierls phases have been realized by means of periodic forcing
in several experiments (Aidelsburger et al., 2011; Aidelsburger
et al., 2013, 2015; Struck et al., 2012, 2013; Miyake et al.,
2013; Atala et al., 2014; Kennedy et al., 2015; Tai et al., 2016).
Of particular interest is the situationwhere the Peierls phases

describe a finite effective magnetic flux Φeff
P through a lattice

plaquette P. It is defined as the dimensionless Aharonov-
Bohm-like phase Φeff

P ¼ P
Pθ

eff
l0l obtained by summing over

the Peierls phases picked up when tunneling once around
the plaquette in positive direction, as depicted in Fig. 4(a).

FIG. 4. (a) The dimensionless magnetic flux Φ piercing a lattice
plaquette equals the sum of the Peierls phases θl0l picked up
when moving around it in positive direction once. (b) Moving-
secondary-lattice scheme for creating a homogeneous flux
configuration. (c) Asymmetric lattice shaking (left) gives rise
to complex effective tunneling matrix elements (right), plotted vs
K ¼ F0dT1=T (in units of ℏω) for T1=T2 ¼ 2.1. (b) From
Aidelsburger et al., 2013. (c) From Struck et al., 2012.
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The plaquette flux is defined modulo the dimensionless
magnetic flux quantum of 2π only. It is gauge invariant and
plays the role of the magnetic field (flux density) in continuous
systems. The creation of effective plaquette fluxes by means of
periodic forcing turned out to be a powerful method for the
creation of artificial (or synthetic) magnetic fields for charge-
neutral particles in optical lattices [other schemes rely on laser
dressing of internal atomic degrees of freedom (Dalibard et al.,
2011; Goldman et al., 2014)]. In this way extremely strong
fields of the order of the maximum possible flux of π can be
achieved. To put this in perspective, for an electron a flux of π
through the hexagonal plaquette of graphene with area Ahex ≈
5.2 Å2 corresponds to the enormous magnetic-field strength
B ¼ πℏ=eAhex ≈ 3.9 × 104 T, which is more than 2 orders of
magnitude larger than the real magnetic fields that can be
achieved in the laboratory.
The experiments to be discussed in the following are based

on tailoring on-site potentials of the form

wlðtÞ ¼ wdr
l ðtÞ þ νlℏω; ð57Þ

appearing in the Hamiltonian (24), with time-periodic poten-
tial modulation wdr

l ðtÞ ¼ wdr
l ðtþ TÞ of zero average,R

T
0 dtwdr

l ðtÞ ¼ 0, and possibly also a static part with integers
νl. In the high-frequency regime, a system that is driven like
that will again be described by an effective Hamiltonian of the
form (37), with the tunneling matrix elements Jeffl0l given by
Eq. (38) depending on wlðtÞ as specified by Eq. (29).
Before reviewing specific schemes and experiments, let us

identify necessary conditions for the creation of artificial
gauge fields (Hauke et al., 2012); a general discussion of
symmetries of the effective Hamiltonian is furthermore
given by Kitagawa et al. (2010). For that purpose, we
choose the gauge constant χ0l in Eq. (29) such that
χlðtÞ ¼ χdrl − νlωt − γl, with χdrl ðtÞ having zero average,R
T
0 dtχdrl ðtÞ ¼ 0, and with yet undetermined constants γl
representing the gauge freedom. The imaginary part of the
effective tunneling parameter Jeffl0l is given by

Il0l ¼ −
J
T

Z
T

0

dt sinðχdrl0lðtÞ − νl0lωtþ γl − γl0 Þ; ð58Þ

where χdrl0l ¼ χdrl0 − χdrl and νl0l ¼ ν0l − νl. If one can find
gauge constants γl such that all Il0l vanish, one cannot create
plaquette fluxes Φeff

P ≠ 0; π that break time-reversal symmetry
(where the special case Φeff

P ¼ π corresponds to the situation
of kinetic frustration discussed in Sec. III.E).
Let us first discuss the case where the static potential offsets

vanish νl0l ¼ 0. One can identify two temporal symmetries of
the relative potential modulations wdr

l0l ≡ wdr
l0 − wdr

l that imply
Il0l ¼ 0 for the choice γl ¼ γ0l ¼ 0. These are the local
reflection symmetry

wdrðτl0l þ tÞ ¼ wdrðτl0l − tÞ ∀ hl0li ð59Þ

with respect to times τl0l defined individually on each local
bond ðl0lÞ, and the shift symmetry

wdr
l0lðtÞ ¼ −wdr

l0lðt − T=2Þ ∀ hl0li: ð60Þ

Either of these symmetries implies that the effective
Hamiltonian preserves time-reversal symmetry. Note that
precisely these symmetries are also known to prevent
ratchet-type transport (Flach, Yevtushenko, and Zolotaryuk,
2000; Denisov et al., 2007).8 A sinusoidal potential modu-
lation obeys both symmetries.
If in addition to the potential modulations finite potential

offsets νl0l ≠ 0 are also created, so that the driving has to
induce photon-assisted tunneling, these symmetries are not
enough to enforce time-reversal symmetry Il0l ¼ 0. Instead
this can be achieved by choosing γl ¼ −νlωτ, if the global
reflection symmetry

wdrðτ þ tÞ ¼ wdrðτ − tÞ ∀ hl0li ð61Þ

is fulfilled with respect to a globally defined time τ.
Involving photon-assisted tunneling against nonzero poten-

tial offsets νl0lℏω poses less constraints on the driving
potential wdr

l ðtÞ for the creation of artificial gauge fields,
since only the global reflection symmetry (61) has to be
broken. As a consequence, already sinusoidal forcing

wdr
l ðtÞ ¼ K sinðωt − φlÞ ð62Þ

can produce plaquette fluxes Φeff
P ≠ 0; π, provided the driving

phase φl varies from site to site. This was proposed theo-
retically (Bermudez, Schätz, and Porras, 2011; Kolovsky,
2011) and demonstrated in a series of experiments by the
groups of Bloch in Munich (Aidelsburger et al., 2011, 2013,
2015; Atala et al., 2014), Ketterle at MIT (Miyake et al., 2013;
Kennedy et al., 2015), and Greiner at Harvard (Tai et al.,
2016). For γl ¼ 0, one finds

Jeffl0l ¼ JJ νl0l

�
Kl0l

ℏω

�
eiνl0lφl0l ; ð63Þ

with amplitude Kl0l ¼ 2K sinððφl0 − φlÞ=2Þ and phase
φl0l ¼ ðφ0

l þ φlÞ=2 of the relative potential modula-
tion wdr

l0lðtÞ.

1. Moving-secondary-lattice scheme

Experimentally a site-dependent driving phase φl was
achieved by combining two slightly detuned laser waves
∝ expðik1;2 · r − ω1;2tÞ, which create a shallow secondary
lattice of depth 2K that moves with respect to the deep host
lattice.9 This moving-secondary lattice causes sinusoidal
potential modulations wdr

l ðtÞ of frequency ω ¼ ω1 − ω2

and spatially dependent driving phase φl ¼ q · rl with
q ¼ k1 − k2. A configuration of particular interest is shown
in Fig. 4(b). For a square lattice q ¼ ðqx; qyÞ is combined with

8Such directed transport was also studied experimentally with
atomic quantum gases in driven optical lattices in Weitz’s group in
Bonn (Salger et al., 2009, 2013).

9This configuration resembles the one employed in an earlier
proposal for the creation of artificial magnetic fields by Jaksch and
Zoller (2003), which is based on Raman transitions between internal
atomic states.
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a strong static potential gradient in one of the lattice directions,
νl ¼ xl=d (Aidelsburger et al., 2013; Miyake et al., 2013).
According to Eq. (63), the resulting effective parameters for
tunneling in x and y directions read

Jeffx ¼JxJ 1

�
Kx

ℏω

�
eiq·ðrl0þrlÞ=2; Jeffy ¼JyJ 0

�
Ky

ℏω

�
; ð64Þ

where Ki ¼ 2K sinðdiqi=2Þ, with i ¼ x, y. Here di and Ji
denote the lattice spacing and the tunneling parameter in both
spatial directions, respectively.
The y-dependent part qyy of the Peierls phase for photon-

assisted tunneling in the x direction gives rise to an effective
flux of

Φeff ¼ dqy; ð65Þ
piercing every lattice plaquette. The effective Hamiltonian
describes particles on a square lattice subjected to a homo-
geneous magnetic field and corresponds to the paradigmatic
Harper Hamiltonian (Harper, 1955). It is famous for the fractal
structure of its single-particle spectrum plotted versus
α ¼ Φeff=2π, the Hofstadter butterfly (Hofstadter, 1976). It
results from the possibility that the area dxdy=α of the
magnetic unit cell can become an incommensurate multiple
of the area dxdy of the square-lattice unit cell.
If the potential gradient results from a Zeeman field, the

sign of the magnetic flux will depend on the spin state of the
atoms (Aidelsburger et al., 2013; Kennedy et al., 2013;
Miyake et al., 2013). If the potential gradient is replaced
by an optical superlattice, so that νl ¼ ½1þ ð−1Þxl=d�=2 gives
rise to staggered potential offsets νl0lℏω, and a staggered
pattern of fluxes �jΦeff j (Aidelsburger et al., 2011). In order
to realize the Harper Hamiltonian for the superlattice con-
figuration, the flux can be rectified by combining two moving-
secondary lattices such that driving phases φl0l are obtained
that compensate the staggered potential offsets (Aidelsburger
et al., 2015).
Experimentalists have investigated the ground state of a

weakly interacting Bose gas in effective lattice models created
using the moving-secondary-lattice scheme. Their observa-
tions reflect the fact that finite plaquette fluxes introduce
frustration into the tunneling kinetics. This frustration results
from the fact that the phase winding of the wave function
around the plaquette has to be an integer multiple of 2π,
while the optimal phase differences at the tunneling bonds,
which are given by θeffl0l, sum up to Φeff . The frustration
becomes maximum for the maximum phase mismatch
Φeff mod 2π ¼ π. For a fixed flux the degree of frustration
can be controlled by the relative strength of different tunneling
parameters, since it becomes energetically less costly to
accommodate a greater share of the phase mismatch at weaker
tunneling links. In the experiment by Aidelsburger et al.
(2011) the bosonic ground state for a staggered flux configu-
ration with Φeff ¼ �π=2 was explored. The unit cell contains
two sites, giving rise to two bands. If the ratio γ ¼ jJeffx j=jJeffy j
becomes larger than the critical values of γc ¼

ffiffiffi
2

p
, the central

minimum of the lowest band splits continuously into two
minima that separate in the ky direction. That is, while for
γ ≤ γc the wave function does not adapt its momentum to the

plaquette flux, for larger γ a twofold degenerate spiral phase
pattern around the lattice plaquettes becomes more favorable.
This resembles the case of the frustrated triangular lattice
reviewed in the previous section. However, different from the
triangular lattice, a homogeneous density distribution, as it is
favored by the repulsive interactions, is achieved by a coherent
superposition of both ground states (Möller and Cooper,
2010), which was observed in the experiment.
Reducing the geometry to one-dimensional ladders with

constant plaquette flux π=2 by suppressing tunneling at every
other link in the x direction for the model of Fig. 4(b), the
transition at γ ¼ γc finds an appealing interpretation as an
analog of the Meissner effect in superconductors (Orignac and
Giamarchi, 2001). For γ < γc, corresponding to the phase of
low magnetic fields, the wave function is stiff, so that the
Peierls phases cause a circular Meissner current around the
whole ladder. In turn, when γ > γc, the wave function adapts
to the field, corresponding to the formation of vortices. This
effect was observed by Atala et al. (2014).
Recently, the bosonic superfluid ground state, or more

precisely a low-entropy state close to it, was prepared using
the tilted-lattice configuration giving rise to a plaquette of π [as
depicted in Fig. 4(b), but withΦeff ¼ π] (Kennedy et al., 2015).
Even in the presence of a rather deep lattice (of more than ten
recoil energies) in the perpendicular z direction, which leads to
a significant increase of interactions and which can be used to
reduce the dynamics to two dimensions, rather large coherence
times were observed. This is a promising step toward the
preparation of strongly correlated fractional-quantum-Hall-
type states in optical lattices with artificial magnetic fields.
Dynamical signatures of artificial magnetic fields have also

been probed experimentally. Conceptually maybe the most
straightforward signature is the observation of the cyclotron-
type dynamics of a single particle on an isolated plaquette of
the square lattice (Aidelsburger et al., 2011, 2013). Also the
correlated dynamics of two interacting bosons in a ladder has
been observed (Tai et al., 2016).
An intriguing effect is, moreover, the observation of a

quantized Hall velocity with thermal bosons in a square lattice
with homogenous flux (Aidelsburger et al., 2015). For a
quarter of a flux quantum per plaquette the elementary lattice
cell is enlarged to the area Am ¼ 4d2 of four plaquettes pierced
by one flux quantum and the Hubbard model describes four
Bloch bands. The lowest band has favorable properties. It is
rather flat, i.e., it is separated by a large energy gap of about
7 times its bandwidth, and characterized by a Chern number
C0 ¼ 1. For the bth band of a two-dimensional lattice this
topological index is defined as

Cb ¼
1

2π

Z
BZ

dkxdkyΩbðkÞ; ð66Þ

where the integral is taken over the reduced first Brillouin
zone of area ð2πÞ2=Am corresponding to the enlarged lattice
cell Am. Moroever, ΩbðkÞ denotes the Berry curvature with
respect to quasimomentum k. It is given by ΩbðkÞ ¼ ez·
ΩbðkÞ with ΩbðkÞ ¼ ∇k × AbðkÞ and the Berry connection
AbðkÞ ¼ ihubðkÞj∇kjubðkÞi. Here jubðkÞi is the spatially
periodic part of the Bloch state with quasimomentum k of
band b. The Chern number is quantized and can take integer
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values only. This is a consequence of the fact that it
corresponds to ð2πÞ−1 times the Berry phase associated with
a closed surface in quasimomentum space, namely, the torus
given by the first Brillouin zone. In the presence of a
homogeneous force F the velocity associated with a Bloch
state is given by (Xiao, Chang, and Niu, 2010)

vbðkÞ ¼
1

ℏ
½∇kεbðkÞ − F ×ΩbðkÞ�: ð67Þ

The “anomalous” second term describes a Hall drift (Karplus
and Luttinger, 1954). For a homogeneously filled band, the
mean velocity of the particles is given by

v̄ðkÞ ¼ Am

ð2πÞ2
Z
BZ

dkxdkyvbðkÞ ¼ −Am
Cb

h
ez × F; ð68Þ

where we used Eq. (67) and the fact that the first term on the
left-hand side of Eq. (67) averages to zero. The velocity is
proportional to the Chern number Cb and, therefore, quan-
tized. For a fermionic band insulator, with the B lowest bands
filled completely, this result implies a quantized Hall con-
ductivity σh ¼ C=h with C ¼ P

b≤BCb (Thouless et al.,
1982).10 For C ≠ 0 this is the integer quantum Hall effect
and the system is a topological insulator called Chern insulator
(Hasan and Kane, 2010; Qi and Zhang, 2011). However, in the
experiment by Aidelsburger et al. (2015), the flatness of the
lowest band is exploited in order to create a thermal state,
where weakly interacting bosons occupy (to good approxi-
mation) the lowest band in a uniform fashion, but no excited
bands. Extracting the Hall displacement of the cloud in
response to a force F the Chern number C0 was measured
to be 0.99(5) in excellent agreement with theory. Here an
effective force Fx ¼ δ=d results from a slight detuning δ
between the driving frequency and the potential offset
between neighboring sites to be overcome by photon-assisted
tunneling [Eq. (41)]. The breakdown of the Hall response was
also observed at a topological transition to a lattice structure
with C0 ¼ 0 induced by a superlattice potential.

2. Asymmetric-lattice-shaking scheme

A different scheme for the creation of artificial magnetic
fields does not require potentials offsets with finite νl0l and
can be realized by means of lattice shaking (Hauke et al.,
2012; Struck et al., 2012, 2013). It is based on breaking both
the local reflection symmetry (59) and the shift symmetry (60)
by employing nonsinusoidal driving functions wdr

l ðtÞ. The fact
that the optical-lattice physics happens at rather low energy
scales, so that the driving frequencies ω=2π required for the
high-frequency approximations (37) and (38) are in the lower
kilohertz regime, allows for the implementation of practically
arbitrary shaking functions. In the first experiment, a one-
dimensional lattice was subjected to the inertial force depicted
in Fig. 4(c), which led to the complex tunneling parameter
Jeff ¼ jJeff jeiθeff shown in the same figure. While in a one-
dimensional chain no magnetic field is created by a finite
Peierls phase, its impact, a shift of the effective dispersion

relation εeffðkxÞ by θeff=d, can still be observed. When θeff
(representing the x component of a homogeneous, but time-
dependent vector potential) is rapidly ramped up this creates a
significant conservative force. The acceleration caused by this
force is reflected in the finite group velocity (slope) that the
shifted dispersion relation acquires at the initial condensate
momentum kx ¼ 0. This initiates an oscillatory dynamics in
the trap. When θeff is slowly switched on the trapped
condensate follows the minimum of the dispersion relation.
This gives rise to a peak shift by kshift ¼ θeff=d in the
measured momentum distribution (see the discussion in the
last paragraph of Sec. III.B), from which the Peierls phase θeff
was inferred [data points in Fig. 4(c)].
Asymmetric lattice shaking can be employed to realize

effective magnetic fluxes through such lattice plaqettes that do
not feature pairwise parallel edges (whose contribution to the
flux would mutually cancel). This was used in an experiment
by Struck et al. (2013) to create a staggered flux configuration
in a triangular lattice (of one-dimensional tubes), with fluxes

Φeff
△

¼ Φeff and Φeff
▽

¼ −Φeff ð69Þ

for the two types of plaquette orientations. Unless Φeff ¼ 0 or
π, these fluxes break time-reversal symmetry in the approxi-
mate effective Hamiltonian (37). But they do not break the
translational symmetry of the lattice so that the tight-binding
model still gives rise to a single band. This is different
compared to the square lattice with homogeneous flux
[Fig. 4(b)] realized using the moving-secondary-lattice
scheme, where an enlarged magnetic unit cell leads to the
formation of several bands. Another difference between both
schemes concerns the limit of small driving amplitudesK=ℏω:
for the moving-secondary-lattice-assisted tunneling against a
finite offset νl0lℏω the amplitude of the tunneling matrix
element vanishes and the Peierls phase remains constant [as
for Jeffx in Eq. (64)], whereas for the asymmetric driving
scheme with νl0l ¼ 0 the amplitude remains finite and the
Peierls phase continuously approaches zero [as shown in
Fig. 4(c)].
The possibility of the asymmetric driving scheme to

continuously tune Peierls phases and plaquette fluxes in situ
was employed in the triangular lattice experiment in order to
tune the system away from the π-flux configuration resulting
from the sign change of the tunneling parameter discussed in
Sec. III.E. Realizing

Φeff ¼ π þ δ; ð70Þ

a small δ favors one of the two symmetry broken ground states
of the weakly interacting Bose gas [Fig. 3(c)], so that δ
controls a first-order phase transition at δc ¼ 0. As a signature
of the discontinuous nature of the transition the disfavored
state remains metastable in the vicinity of the transition
(potentially causing hysteresis). This was inferred from the
observation that the distribution shown in Fig. 3(c) becomes
asymmetric for finite δ, but remains bimodal up to jδj ≈ 0.1π
(Struck et al., 2013). It has, moreover, been observed that
the time-reversal symmetry breaking and the metastable
state vanish for large temperatures. The interesting question10σh ¼ Ce2=h for charged particles with elementary charge e.
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whether time-reversal symmetry breaking disappears together
with Bose condensation or in a separate transition at a higher
temperature could not be resolved.

3. Further possibilities

Apart from the moving-secondary-lattice scheme and the
asymmetric-lattice-shaking scheme, there are also proposals
for the dynamic creation of artificial magnetic fluxes that are
based on a joint modulation of both on-site energies and
tunneling parameters (Sørensen, Demler, and Lukin, 2005;
Lim, Smith, and Hemmerich, 2008). Moreover, extensions of
the moving-secondary-lattice and the asymmetric-shaking
schemes have been proposed for the creation of Haldane-
type hexagonal-lattice Chern insulators, non-Abelian gauge
fields (spin-orbit coupling), and topological (spin-Hall)
insulators, as well as Weyl semimetals (Bermudez, Schatz,
and Porras, 2012; Struck et al., 2012; Kennedy et al., 2013;
Baur, Schleier-Smith, and Cooper, 2014; Dubček et al., 2015).
Another approach for Floquet engineering of artificial mag-
netic fields or spin-orbit coupling is to construct driving
protocols given by a sequence of pulses during which different
external fields are present (Goldman and Dalibard, 2014).
This includes proposals for the creation of artificial magnetic
fields (Sørensen, Demler, and Lukin, 2005; Creffield and Sols,
2014; Creffield et al., 2016) and of spin-orbit coupling in
continuous (nonlattice) systems of ultracold atoms (using a
sequence of magnetic-field pulses) (Anderson, Spielman, and
Juzeliūnas, 2013; Xu, You, and Ueda, 2013). The realization
of topological band structures using pulsed tunneling matrix
elements in lattice systems (Kitagawa et al., 2011; Rudner
et al., 2013), which require lower driving frequencies, will be
discussed in Sec. III.H on Floquet topological insulators and
in Sec. IV.D on anomalous topological edge states. Finally, we
mention two proposals for the dynamic creation of artificial
gauge fields not relying on standard optical lattices. The first
one suggests to use periodically modulated spin-dependent
optical potentials in order to effectively engineer lattices with
subwavelength spacing featuring bands with nonzero Chern
numbers (Nascimbene et al., 2015). The second one is based
on the coherent resonant coupling of the eigenstates of a
strong harmonic confinement, playing the role of lattice sites
in a “synthetic dimension” (Price, Ozawa, and Goldman,
2017), in analogy to earlier work where internal atomic states
were used for this purpose (Boada et al., 2012; Celi et al.,
2014; Mancini et al., 2015; Stuhl et al., 2015; Price, Ozawa,
and Goldman, 2017).
It is an interesting perspective to combine the two schemes

discussed in this section with strong interactions. The flat
topological band of the π=2 Harper model realized by
Aidelsburger et al. (2015) together with the promising
creation of low-entropy states in such a system (Kennedy
et al., 2015) makes this system a candidate for the stabilization
of topologically ordered fractional-quantum-Hall-type states
(fractional Chern insulators) (Bergholtz and Liu, 2013;
Parameswaran, Roy, and Sondhi, 2013). Moreover, in the
hard-core boson limit, the time-reversal symmetry breaking,
as induced by asymmetrically shaking the triangular lattice,
introduces Dzyaloshinskii-Moriya interactions D · ðŜl0 × ŜlÞ
to the effective spin model (54), extending the tool box for

quantum engineering of spin Hamiltonians. Namely, for
hard-core bosons the tunneling term −ðJeff â†l0 âl þ H:c:Þ with
complex −Jeff ¼ Rþ iI corresponds to

2RðŜxl0 Ŝxl þ Ŝyl0 Ŝ
y
lÞ þ 2Iez · ðŜl0 × ŜlÞ ð71Þ

in the language of spin-1=2 operators.

G. Coherent resonant band coupling

Periodic driving cannot only bridge large energy offsets
between neighboring sites, but it can also induce coherent
resonant coupling to excited Bloch bands. This possibility was
explored experimentally in Chu’s group in Stanford (Gemelke
et al., 2005), in Greiner’s group at Harvard (Bakr et al., 2011),
and in Chin’s group in Chicago (Parker, Ha, and Chin, 2013;
Ha et al., 2015).
In the Stanford and Chicago experiments, conducted with

weakly interacting bosons, the lowest two bands of a cosine
lattice were coupled by means of lattice shaking with the
driving frequency ℏω bridging the gap between both bands.
Assuming that the coupling to even higher-lying bands is off
resonant and negligible, in this way an effective hybridized
band structure is created (Holthaus, 2016). The coupling
between both bands happens predominantly on site.
Introducing the label α ¼ 0; 1;… for the Bloch bands and
their Wannier orbitals with respect to one lattice direction x, an
inertial force (22) oriented in this direction gives rise to
oscillating coupling matrix elements Kηα0α cosðωtÞâ†α0lâαl.
Here the dimensionless dipole matrix element ηα0α vanishes
for Wannier states of the same parity, i.e., when α0 − α is even.
Analogously to the case of photon-assisted tunneling (51)
via a modulation of the tunneling matrix element (48), one
finds an effective description where the α ¼ 1 Wannier states
have the shifted energy ϵ1 − ℏω and couple to the α ¼ 0 states
via the effective matrix element Kη10=2. The band-coupled
system can be viewed as a ladder, with the Wannier states of
each band forming one leg [Fig. 5(a)]. The tunneling param-
eters differ in sign, J1 < 0 < J0 (so that the ladder is
frustrated by plaquette fluxes of π) and in magnitude, jJ1j >
jJ0j (Sträter and Eckardt, 2015).
In the experiment by Gemelke et al. (2005), the states

jkx ¼ 0; α ¼ 0i and jkx ¼ π=d; α ¼ 1iwere tuned to resonance
and a coherent oscillating population transfer between both of
them, attributed to scattering,was observed after the forcingwas
switched on. In the Chicago experiments, tuning ϵ1 − ℏω < 0 a

(a) (b)

FIG. 5. (a) By resonantly coupling the two lowest bands of a
cosine lattice a frustrated ladder is created with plaquette fluxes of
π. (b) Hexagonal lattice. The effective Hamiltonian of the driven
system including next-nearest-neighbor tunneling with Peierls
phase θ (along the dashed lines).
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hybridized band with two inequivalent minima kx ¼ �q was
created. Similar to the case of the kinetically frustrated triangular
lattice, repulsive interactions favor Bose condensation in one of
the two minima, but not in both. As in a ferromagnet, the
experimentalists observed the formation of spatial domains with
þq or−q correlations (Parker,Ha, andChin, 2013). The domain
size was controlled by how fast the driving was switched on,
with large domains obtained for slow ramps. In a subsequent
experiment Bragg spectroscopy was used to measure the
dispersion relation of the elementary Bogoliubov excitations
of the systemcondensed into oneof theminima (Ha et al., 2015).
It is phononlike near the condensate momentum and can feature
a local minimum at the second minimum of the effective
dispersion relation of the noninteracting gas (Struck et al.,
2013). This structure reminds one of a roton minimum resulting
from long-ranged interactions.
The Harvard experiment (Bakr et al., 2011) was performed

in a rather deep lattice, where interactions are strong and band
coupling can be understood on the level of a single site. By
employing a modulation of the lattice depth in one direction,
the lowest-band Wannier orbital was coupled to states of the
same parity in this direction (Lacki and Zakrzewski, 2013).11

The resonance frequency for coupling to the second excited
state (α ¼ 2) was found to crucially depend on the on-site
occupation of both states as a consequence of strong
orbital-dependent interactions. This allows one to engineer
number-selective adiabatic passages, where a single particle is
transferred to the excited band. In particular, by slowly
ramping down the driving frequency, a sequence of such
processes subsequently transfers all but a single particle to the
excited band, irrespective of the initial occupation. In this way
an algorithmic cooling procedure was implemented: A state
with an arbitrary number of atoms ≥ 1 in the lowest Wannier
orbital on every site is eventually transformed into a state with
one atom in the lowest Wannier orbital per site. Entropy was
transferred to an excited band, from where it can be removed
by selectively taking away the excited atoms.

H. Floquet-topological insulators

All the experiments discussed here so far rely on high-
frequency forcing, whereℏω is large compared to the tunneling
matrix elements. This is different for a class of recent proposals
for the Floquet engineering of lattice systems with topologi-
cally nontrivial band structures (Oka andAoki, 2009;Kitagawa
et al., 2010; Lindner, Refael, and Galitzki, 2011; Cayssol et al.,
2013). These schemes, known as Floquet-topological insula-
tors, rely on driving frequencies that are only moderately larger
than the tunnelingmatrix elements. The prototype of a Floquet-
topological insulator was originally proposed for graphene
irradiated with circularly polarized light (Oka andAoki, 2009).
It is based on the observation that a hexagonal tight-binding

lattice subjected to a circular force (52) possesses an effective
band structure with a gap separating two bands with opposite
Chern numbers �1. Recently, this Floquet-topological band
structurewas realized and probed in two different experimental
platforms. In the first experiment with photons in a hexagonal
array of optical waveguides, the chiral transport of localized
particles at the boundary of the system was observed in situ
(Rechtsman et al., 2013). This is a signature of the chiral edge
states related to Chern bands via the bulk-boundary corre-
spondence (Hasan and Kane, 2010; Qi and Zhang, 2011). The
second experiment was conducted by Jotzu et al. (2014) in
Esslinger’s group in Zurich with ultracold fermionic atoms in a
shaken hexagonal-like brick-wall lattice. Here a finite Hall
conductivity of the bulk system was measured.
A hexagonal lattice with isotropic nearest-neighbor tunnel-

ing [Fig. 5(b), solid lines] subjected to circular forcing (52)
is described by the Hamiltonian (32) with time-dependent
Peierls phases θl0lðtÞ ¼ K sinðωt − φl0lÞ. Here K ¼ Fd and
the driving phase φl0l is directly determined by the spatial
direction of tunneling. In the high-frequency limit ℏω ≫ J,
Ĥ0ðtÞ can be approximated by its time average giving rise to
effective tunneling matrix elements (23) between nearest
neighbors. However, if the frequency is lowered, the sec-

ond-order term Ĥð2Þ
F in the high-frequency expansion (15)

also becomes relevant. Its contribution to the effective
Hamiltonian ĤF results from processes where a particle
tunnels twice during one driving period. Using Eq. (16)
with Ĥm ¼ −

P
hl0liJJ mðK=ℏωÞe−imφl0l â†l0 âl, in second

order one finds the kinetics described by the approximate
effective Hamiltonian (Kitagawa et al., 2011)

ĤF ≈ Ĥ0ð1Þ
F þ Ĥ0ð2Þ

F

¼ −Jð1Þeff

X
hl0li

â†l0 âl − Jð2Þeff

X
⟪l0l⟫

e−iσl0lθâ†l0 âl: ð72Þ

Here Jð1Þeff ¼ JJ 0ðK=ℏωÞ, Jð2Þeff ≃
ffiffiffi
3

p ½JJ 1ðK=ℏωÞ�2=ℏω
(neglecting terms with m ≥ 2), θ ¼ π=2 and next-nearest-
neighbor pairs ⟪l0l⟫ with σl0l ¼ 1ð−1Þ for tunneling in the
anticlockwise (clockwise) direction around a hexagonal pla-
quette.12 This model is the paradigmatic Haldane model, the
prototype of a topological Chern insulator (Haldane, 1988).
For finite next-nearest-neighbor tunneling matrix elements the
band structure acquires a gap separating two bands of opposite
Chern number �1. By introducing an energy difference ΔAB
between both sublattices A and B [Fig. 5(b)], the Chern

numbers vanish when at jΔABj ¼ ΔðcÞ
AB the band gap closes.

jΔðcÞ
ABj is maximum, ≈2.6jJð2Þeff j, for θ ¼ �π=2 and vanishes

for θ ¼ 0; π.

11Resonant transitions into orbital states of opposite parity can also
occur in the presence of interactions, namely, when two particles
jointly scatter into the excited state (Sowiński, 2012) or in the form
of density-induced orbital-changing tunneling processes, as they
have recently been shown to give rise to exotic model systems (Dutta,
Przysiezna, and Zakrezewski, 2015; Przysiezna, Dutta, and
Zakrzewski, 2015; Biedroń, Dutta, and Zakrzewski, 2016).

12Within the second-order Floquet-Magnus expansion of the
Floquet Hamiltonian (18) the amplitude of the next-nearest-neighbor
tunneling matrix elements depends on the direction of tunneling, so
that the single-particle band structure breaks the discrete rotational
symmetry of the hexagonal lattice. This is an artifact of the Floquet-
Magnus expansion, related to the fact that it is sensitive to the driving
phase, which for circular forcing possesses a directional dependence
(Eckardt and Anisimovas, 2015). It illustrates the discussion follow-
ing Eq. (19).
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In the Zurich experiment a distorted optical hexagonal
lattice (a brick-wall lattice) with a tunable offset ΔAB is
filled with spin-polarized (i.e., noninteracting) fermions
and an elliptical force FðtÞ ¼ F½cosðωtÞex þ cosðωt − φÞey�
is applied via lattice shaking (Jotzu et al., 2014) [see also
Zheng and Zhai (2014)]. The system is described by an
anisotropic effective model, whose phase diagram resembles
that of the Haldane model with φ playing a role similar to θ.
This phase diagram is mapped out by measuring the Hall
response of the system.

I. Floquet engineering of interactions

In most of the experiments described previously, periodic
forcing was employed to effectively modify the single-particle
Hamiltonian of the system, describing tunneling between
neighboring lattice sites or the coupling between different
Bloch bands. In contrast, the on-site interactions among the
particles were not altered significantly by the driving.
Exceptions are given by the experiments of Greiner’s group
discussed previously. Here interactions were strong enough to
shift the resonance condition for photon-assisted processes,
tunneling (Chen et al., 2011; Ma et al., 2011) or band
coupling (Bakr et al., 2011), so that they became occupa-
tion-number selective (effectively realizing an extended
Hubbard model) (Dutta et al., 2015). In this way tunneling
or band coupling is not described by single-particle terms in
the effective Hamiltonian anymore, which are quadratic in the
annihilation and creation operators and must be viewed as a
form of interactions.
It is an interesting prospect to combine such a technique

with driving schemes for the creation of artificial gauge fields
as discussed in Sec. III.F (Bermudez and Porras, 2015;
Cardarelli, Greschner, and Santos, 2016; Sträter, Srivastava,
and Eckardt, 2016). For that purpose one has to consider a
lattice system, where the strong energy offsets that have to be
overcome by resonant photon-assisted tunneling are deter-
mined not only by static external potentials, but also by the
strong interactions among the particles. Choosing the reso-
nance condition U ¼ νℏωþ δU, with jδUj ≪ ℏω between
the Hubbard parameter for on-site interactions and the
driving frequency, tunneling from site l to site l0 corresponds
to a potential energy change of an integer number νl0l
of quanta ℏω. Considering spinless bosons, from Eq. (21)
one obtains νl0l ¼ νl0 − νl þ νðnl0 − nl þ 1Þ, with site
occupations nl and nl0 before the tunneling event, where
we have also considered static on-site energies νlℏω
[Eq. (57)]. For ℏω ≫ J, tunneling is suppressed for
νl0l ≠ 0, unless it is reestablished via photon-assisted tunnel-
ing, giving rise to number-dependent effective tunneling
parameters Jeffl0lðnl0 ; nlÞ. The system is then described by
an approximate effective Hamiltonian that, in rotating-wave
approximation, takes the form

Ĥeff ¼ −
X
hl0li

â†l0 âlJeffl0lðn̂l0 ; n̂lÞ þ
Ueff

2

X
l

n̂lðn̂l − 1Þ: ð73Þ

The effective Hubbard parameter is given by the nonresonant
part of the interactions Ueff ¼ δU ¼ U − νℏω, which is not
integrated out when transforming to the rotating frame and

whose magnitude and sign can be controlled by the driving
frequency (this is true also for fermionic systems).
Bermudez and Porras (2015) proposed such schemes,

where the photon-assisted tunneling is induced by a moving
secondary lattice as described in Sec. III.F.1. They lead to
effective tunneling matrix elements described by Eq. (63),
with νl0l replaced by an operator involving the occupation
numbers of the particles. In this way they show, among other
things, how to engineer models where the magnetic field felt
by one atomic species depends dynamically on the state of
another species. Moreover, Sträter, Srivastava, and Eckardt
(2016) described how to realize the physics of one-
dimensional lattice anyons by inducing photon-assisted tun-
neling via asymmetric lattice shaking (see Sec. III.F.2). They
used a mapping of the anyons to bosons with number-
dependent tunneling parameters Jlþ1;l ¼ jJjeiθn̂lþ1 and
Jl−1;l ¼ jJje−iθn̂l , which had been exploited already in a
previous proposal based on Raman-assisted tunneling
(Keilmann et al., 2011). Finally, Cardarelli, Greschner, and
Santos (2016) proposed a scheme based on the fact that
photon-assisted tunneling induced by a sinusoidal modulation
of the tunneling matrix element (as they can be induced by a
modulation of the lattice depth) gives rise to single-photon
transitions only. This can be seen from that fact that Eq. (51)
describes nonzero effective tunneling matrix elements for
jνj ≤ 1 only. Thus, by superimposing sinusoidal modulations
at different frequencies, one can individually address tunnel-
ing processes corresponding to different number-dependent
energy offsets, with the amplitude and the phase of the
effective tunneling matrix elements directly corresponding
to the amplitude and the phase of the modulation.
An alternative approach for achieving number-dependent

tunneling matrix elements consists of a modulation of the
interaction strength (Gong, Morales-Molina, and Hänggi,
2009), as it can be achieved in a system of ultracold atoms
by employing a magnetic Feshbach resonance, giving rise to a
time-dependent Hubbard parameter UðtÞ ¼ U0 þ UdrðtÞ with
Udrðtþ TÞ ¼ UdrðtÞ and

R
T
0 dtUdrðtÞ ¼ 0. In this way the

energy of multiply occupied lattice sites is modulated in time,
so that for spinless bosons tunneling from l to l0 is connected
to an energy change ofUðtÞ½n0l − ðnl − 1Þ�. Thus, forU0 ≪ J
and sinusoidal forcing UdrðtÞ ¼ U1 cosðωtÞ, the effective
tunneling matrix elements Jeffl0lðnl0 ; nlÞ are number dependent
and given by Eq. (23) with K replaced by Kl0l ¼
U1½n0l − ðnl − 1Þ�. Signatures of this effect, which were first
described theoretically by Gong, Morales-Molina, and Hänggi
(2009), were recently observed experimentally in Nägerl’s
group (Meinert et al., 2016) by measuring the number of
multiply occupied sites after a quench. It is moreover
proposed to use this principle to engineer exotic many-body
states of matter (Rapp, Deng, and Santos, 2012; Greschner
et al., 2014; Liberto et al., 2014; Dutta et al., 2016) and to
realize disordered tunneling matrix elements by modulating
the interactions with randomly distributed localized atoms of a
second species (Kosior et al., 2015).
Another driving-induced modification of the interactions

is described by higher-order corrections of the effective
Hamiltonian in the high-frequency approximation (16). If
the Hubbard interactions are time independent, so that they
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contribute to the Fourier component Ĥ0 of the Hamiltonian
only, the leading correction involving the interactions appears

in the third-order term Ĥð3Þ
F .13 It reads (Eckardt and

Anisimovas, 2015)

Ĥðint;3Þ
F ¼

X
m≠0

½Ĥ−m; ½Ĥint; Ĥm��
2ðmℏωÞ2 ; ð74Þ

where Ĥm denote the Fourier components of the single-particle

Hamiltonian, so that Ĥðint;3Þ
F ∝ UJ2=ðℏωÞ2. When U ≫ J, this

term canmatter in Floquet-topological systems (see Sec. III.H),
where the frequency is moderately large only, such that
effective next-nearest-neighbor tunneling matrix elements

Jð2Þeff ∝ J2=ℏω [Eq. (72)] play a crucial role. For the model
of Sec. III.H, the Ĥm are specified before Eq. (72). The effect of

Ĥðint;3Þ
F is to “smear out” the interactions. It creates effective

nearest-neighbor interactions ðVeff=2Þ
P

hl0lin̂l0 n̂l (at the cost
of lowering the on-site interactions to U − zVeff=2 with
coordination number z) and also gives rise to density-assisted
and two-particle tunneling (Eckardt and Anisimovas, 2015).
Numerical studies based on the exact diagonalization
(Anisimovas et al., 2015; Račiūnas et al., 2016) suggest that
this smearing out tends to have a negative impact on the
possible stabilization of fractional-Chern-insulator states in
Floquet-topological band structures recently proposed by
Grushin, Gómez-León, and Neupert (2014).

IV. THE FLOQUET PICTURE

So far we argued that a simple high-frequency approxima-
tion provides a suitable description of a variety of recent
experiments, where ultracold atoms in optical lattices were
controlled by means of periodic driving. In this section we will
discuss the limitations of this approximation and effects
beyond it. This requires a treatment in terms of the extended
Floquet Hilbert space of time-periodic states.

A. Extended Floquet-Hilbert space

By plugging the Floquet state given by Eq. (14) into the
Schrödinger equation (3), one obtains ½ĤðtÞ−iℏdt�junmðtÞi¼
εnmjunmðtÞi. As pointed out by Sambe (1973), this equation
can be interpreted as the eigenvalue problem of the Hermitian
quasienergy operator

Q̂ðtÞ ¼ ĤðtÞ − iℏdt; ð75Þ
acting in an extended Hilbert space F ¼ H ⊗ T . This
Floquet space is the product space of the physical state space
H and the space of time-periodic functions (with period T) T .

In F the scalar product combines the scalar product of H
with time averaging and reads

⟪ujv⟫ ¼ 1

T

Z
T

0

dthuðtÞjvðtÞi: ð76Þ

We use a double ket ju⟫ for elements of F ; the corresponding
state at time t in H is denoted as juðtÞi. Vice versa, a state
jvðtÞi ¼ jvðtþ TÞi, including its full periodic time depend-
ence, is written as jv⟫ when considered as an element of F .
Likewise, an operator acting in F is indicated by an overbar to
distinguish it from operators acting inH, which are marked by
a caret. For example, Q̄ denotes the quasienergy operator. Its
eigenvalue problem is now written as

Q̄junm⟫ ¼ εnmjunm⟫: ð77Þ
In Floquet space junm⟫ and junm0⟫, defined by Eq. (13),
constitute independent orthogonal solutions if m0 ≠ m, so that
the quasienergy spectrum is periodic with period ℏω. Despite
this redundancy, working in F has the advantage that one can
use both methods and intuition developed for autonomous
systems.
From a complete basis of orthogonal states jαi ofH, we can

construct a complete basis of orthogonal states jαm⟫ of F ,
given by jαmðtÞi ¼ jαieimωt with integer m. In terms of these
basis states the quasienergy operator possesses matrix elements

⟪α0m0jQ̄jαm⟫ ¼ hα0jĤm0−mjαi þ δm0mδα0αmℏω: ð78Þ
The matrix possesses a transparent block structure with respect
tom. The diagonal blocks are determined by the time-averaged
Hamiltonian Ĥ0 and shifted with respect to each other by
integer multiples of ℏω in quasienergy. This structure resembles
that of a quantum system coupled to a photonlike mode in the
classical limit of large photon numbers. In this picture m plays
the role of a relative photon number. The quasienergy eigen-
value problem (77) is, thus, closely related to the dressed-atom
picture (Cohen-Tannoudji, Dupont-Roc, and Grynberg, 1998)
for a quantum system driven by coherent radiation (Eckardt and
Holthaus, 2008b). Therefore, m is often called the photon
number and the matrix elements of Ĥm are said to describe m-
photon processes. A unitary operator ŪF that block diago-
nalizes Q̄ with respect to the photon index m in F corresponds
directly with the time-periodic unitary micromotion operator
ÛFðtÞ in H, as it appears in Eqs. (4) and (5). It produces
diagonal blocks given by the effective Hamiltonian (4),

⟪α0m0jŪ†
FQ̄ŪFjαm⟫ ¼ δm0mðhα0jĤFjαi þ δα0αmℏωÞ: ð79Þ

B. High-frequency approximation

If ℏω is large compared to both the spectral width Ĥ0 and
the matrix elements of the Ĥm≠0, states of different subspaces
m are energetically well separated and coupled only weakly to
each other. It is, therefore, a reasonable approximation to
neglect the off-diagonal blocks of the quasienergy operator
(78) and to approximate the effective Hamiltonian ĤF by the
time-averaged Hamiltonian Ĥ0. Corrections, resulting from
the perturbative admixture of states with m0 ≠ m to those of
the subspace m, can be obtained systematically by means

13Within the Floquet-Magnus expansion of the Floquet Hamil-
tonian (18) an interaction correction ∝ JU=ℏω appears already in the
second-order term (Verdeny, Mielke, and Mintert, 2013; Bukov,

D’Alessio, and Polkovnikov, 2015) [ĤFð2Þ
t0 in Eq. (19) contains Ĥint

through Ĥ0]. However, this correction results from the expansion of
the unitary micromotion operator and thus does not alter the spectrum
on the order of JU=ℏω [see discussion after Eq. (19)].
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of degenerate perturbation theory. The high-frequency
expansion (15) is equivalent to such a perturbative approach
for the block diagonalization of the quasienergy operator,
where the “photonic” part δα0αδm0mmℏω of the matrix (78)
constitutes the unperturbed problem and the Hamiltonian (its
Fourier components Ĥm) the perturbation (Eckardt and
Anisimovas, 2015).
The perturbative approach underlying the high-frequency

expansion (15) can be expected to converge only as long as the
quasienergy levels originating from different unperturbed sub-
spaces m remain energetically well separated. This rough
statement is similar to the rigorous convergence criterion for
the Floquet-Magnus expansion given by Casas, Oteo, and Ros
(2001) (see the discussion at the end of Sec. II). In a large
system of many particles reasonable driving frequencies ℏω
will always be smaller than the spectral width of the full time-
averaged Hamiltonian Ĥ0, so that the high-frequency expansion
cannot be expected to converge (unless the state space of the
system is effectively divided into small subspaces due to
symmetry or localization). Nevertheless, even in this case
the high-frequency approximation (37) can still provide a
suitable description of a driven many-body system on a finite
time scale, provided ℏω is large compared to typical intensive
energy scales, such as the tunneling parameter J or the Hubbard
interaction U for a driven Hubbard model (Eckardt, Weiss, and
Holthaus, 2005). This is not surprising given the fact that in
Sec. III we were able to explain a variety of experimental
observations in terms of the high-frequency approximation. On
longer times, deviations from the high-frequency approxima-
tion will, however, eventually make themselves felt as heating.

C. Heating and long-time limit

In order to illustrate the breakdown of the high-frequency
approximation, let us discuss a specific example (Eckardt
and Holthaus, 2008a). Figure 6 shows the exact quasienergy
spectrum of a small Bose-Hubbard chain subjected to a
sinusoidal force of frequency ℏω=J ¼ 20, plotted versus
the interaction strength U=J. For U=J ≫ 1, the spectrum of
Ĥ0 consists of bands whose energies increase linearly with U.
These bands lie above the horizontal ground-state level,
corresponding to a Mott-insulator-like state with one particle
localized at every lattice site. They contain states characterized
by delocalized particle-hole excitations. The spectrum of Ĥ0

can clearly be identified in Fig. 6, as well as copies of it,
shifted by −ℏω, −2ℏω, etc. When states belonging to different
copies (photon numbers m) become degenerate, this leads to
the formation of avoided level crossings, the size of which
reflects the coupling strength. Near U ¼ ℏω ¼ 20J and
U ¼ 2ℏω ¼ 40J, the ground state participates in a large
avoided-crossing-like feature (involving many bands), asso-
ciated with the resonant creation of a particle-hole pair of
energy U. The size of this feature is determined by the
coupling matrix element J associated with the creation of a
particle-hole pair. For U < ℏω, a smaller avoided crossing is
visible in Fig. 6(b) near U ¼ 2ℏω=3 ≈ 13J. It can be attrib-
uted to the creation of two coupled particle-hole excitations of
energy 3U in a two-photon process. The size of the avoided
crossing, which reflects the coupling matrix element, is of the

order of ∼J2=ℏω. Whereas the numerator of this factor results
from the fact that two tunneling processes are required to
create two particle-hole pairs, the denominator indicates that
the transition occurs via nonresonant intermediate states
(having a single-particle-hole pair) that are separated by a
large energy ∼ℏω (Eckardt and Anisimovas, 2015). For even
smaller values of U, the m ¼ 0 ground state will cross even
higher-lying bands of the m < 0 copies, which contain states
with three and more particle-hole excitations. The correspond-
ing coupling matrix elements are ∼Jjþ1=ðℏωÞj with j ≥ 2 and
the resulting avoided crossings are hardly visible in Fig. 6.
Generally, the larger ℏω compared to both U and J, the more
complex are the collective excitations at energies ℏω and the
smaller are the respective coupling matrix elements.
The formation of an avoided crossing, where the Floquet

states of different subspaces m and m0 hybridize, cannot be
captured by a perturbation theory describing the system in
terms of eigenstates labeled by the quantum number m.
Their presence indicates that the high-frequency expansion
(15), which can be obtained from such a perturbative approach
(Eckardt and Anisimovas, 2015), does not converge.
However, we have seen that when both J and U are
sufficiently small with respect to ℏω, the coupling between
degenerate states originating from different subspaces m will
be very small. Therefore, deviations from the high-frequency
approximation will make themselves felt on a large time scale
th only. These deviations can be viewed as heating. In the
driven Bose-Hubbard model with strong interactions U ≫ J
discussed previously they correspond to the creation of

FIG. 6. (a) Quasienergy spectrum of a small Bose-Hubbard
chain (five particles on five sites), subjected to a sinusoidal force
of frequency ℏω=J ¼ 20 and amplitude K=ℏω ¼ 2. (b) Zoom
into (a). From Eckardt and Holthaus, 2008a.
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particle-hole excitations (Eckardt and Holthaus, 2008a;
Eckardt and Anisimovas, 2015), for weakly interacting
systems they correspond to energy-non-conserving two-
particle scattering (Choudhury and Mueller, 2014, 2015;
Bilitewski and Cooper, 2015a, 2015b; Genske and Rosch,
2015). For a numerical study of such heating see Poletti and
Kollath (2011).
As long as the duration of an experiment is short compared

to the heating time th, it can be described by the high-
frequency approximation (15). For lattice systems with a
bound local state space, e.g., fermionic Hubbard or spin
models, it was shown recently that th increases exponentially
with the driving frequency (Abanin, De Roeck, and
Huveneers, 2015; Kuwahara, Mori, and Saito, 2016; Mori,
Kuwahara, and Saito, 2016) and that the Floquet-Magnus
expansion (18) provides at least an asymptotic expansion
for the Floquet Hamiltonian with an optimal order μcut of
truncation (Kuwahara, Mori, and Saito, 2016).
The spectrum shown in Fig. 6 has been obtained for a small

system of five particles on five lattice sites only. Approaching
the thermodynamic limit, where the system size and the
particle number are taken to infinity at fixed density, the bands
of the spectrum Ĥ0 will approach a continuum and new bands
will be created at high energies. The quasienergy spectrum of
the system, hosting an exponentially large number of quasie-
nergy levels in each Brillouin zone (interval of width ℏω),
will approach a highly structured continuum. In this limit, the
full effective Hamiltonian will be a complex object, whose
eigenstates, the Floquet modes, are superpositions of states
having very different energies. This scenario explains why a
description in terms of the simple expressions provided by the
high-frequency approximation (15) is a suitable approach for
Floquet engineering, despite the fact that such a description is
valid for times t ≪ th only.
The existence of a heating time th implies that, when a

periodically driven system is subjected to a quench, i.e., a
sudden change of a parameter like the driving amplitude, the
subsequent relaxation dynamics can consist of two stages.
After the quench, the system can first relax on a time scale tr
to an equilibriumlike state with respect to the effective
Hamiltonian in high-frequency approximation (15), before
the intrinsic heating due to the periodic forcing sets in on the
time scale th. Obviously this scenario requires tr ≪ th. Such a
behavior, first discussed by Maricq (1982), can be interpreted
as a form of prethermalization. It was investigated theoreti-
cally in several recent papers (Abanin, De Roeck, and Ho,
2015; Abanin et al., 2015; Abanin, De Roeck, and Huveneers,
2015; Bukov et al., 2015; Canovi, Kollar, and Eckstein, 2016;
Kuwahara, Mori, and Saito, 2016; Mori, Kuwahara, and Saito,
2016). An interesting effect is the realization of a (prethermal)
negative-temperature state corresponding to sign-inverted
interactions for fermionic atoms after a sudden inversion of
the effective tunneling matrix element (23) (Tsuji et al., 2011).
Another intriguing question concerns the relaxation of

periodically driven quantum systems on time scales much
longer than the heating time. From Eq. (9) we can infer that
for a pure state jψðtÞi the time evolution of the expectation
value OðtÞ ¼ hψðtÞjÔjψðtÞi of an observable Ô can be
written as

OðtÞ ¼
X
n0;n

c�n0cne
ði=ℏÞðεn0−εnÞthun0 ðtÞjÔjunðtÞi: ð80Þ

Russomanno, Silva, and Santoro (2012) argued that a relax-
ation to a steady state will correspond to the dephasing of the
off-diagonal terms with n0 ≠ n, so that asymptotically in the
long-time limit, after a relaxation has occurred, the expect-
ation values are described by

OðtÞ≃X
n

jcnj2hunðtÞjÔjunðtÞi; ð81Þ

corresponding to the diagonal ensemble (Dziarmaga, 2010;
Polkovnikov et al., 2011) with respect to the Floquet
states. This implies that OðtÞ becomes time periodic,
Oðtþ TÞ ¼ OðtÞ; the system synchronizes with the driving.
Moreover, Lazarides, Das, and Moessner (2014b) showed that
for noninteracting (or other integrable) systems the asymptotic
expectation values can be obtained using the principle of
entropy maximization, under the constraint that the mean
occupations hn̂li (or generally the integrals of motion)
of the single-particle Floquet states i retain their initial
values. The asymptotic state is, thus, captured by a periodic
generalized Gibbs ensemble, so that for typical observ-
ables OðtÞ≃ trfρðtÞÔg with time-periodic density matrix
ρ̂ðtÞ ∝ ÛFðtÞ expð−

P
iλin̂iÞÛ†

FðtÞ. The number of parameters
λi required to control the integrals of motion hn̂ii grows only
linearly with the system size. It is much smaller than the
number of coefficients cn appearing in Eq. (81), which grows
exponentially with the system size (since n labels the many-
body Floquet states, in this case Fock states of the single-
particle Floquet states, n ¼ fnig). The arguments presented
here in the context of Floquet systems are very similar to those
employed for the relaxation of isolated autonomous systems
(Dziarmaga, 2010; Polkovnikov et al., 2011).
An interesting exception of the behavior described pre-

viously is periodically driven model systems that in the
thermodynamic limit relax to an asymptotic state, named a
discrete time crystal, with OðtÞ ≠ Oðtþ TÞ, but OðtÞ ¼
Oðtþ kTÞ with integer k (Else, Bauer, and Nayak, 2016;
Khemani et al., 2016; von Keyserlingk, Khemani, and Sondhi,
2016; von Keyserlingk and Sondhi, 2016; Yao et al., 2017).
This behavior is associated with a spontaneous breaking of the
discrete time translational symmetry, since the time required
to reach a periodic state with OðtÞ ¼ Oðtþ TÞ grows expo-
nentially with the system size. The spontaneous breaking
of continuous time translational symmetry, as suggested by
Wilczek (2012), was recently ruled out by Watanabe and
Oshikawa (2015). Discrete time crystals have recently been
realized in two different experimental platforms, with spin
impurities in a diamond (Choi et al., 2017) and with trapped
ions (Zhang et al., 2017).
For nonintegrable Floquet systems, it is believed that the

system approaches a state described by an infinite-temperature
ensemble (D’Alessio and Rigol, 2014; Lazarides, Das, and
Moessner, 2014a). In the sense of eigenstate thermalization, for
typical observables almost all many-body Floquet modes
junðtÞi appearing in Eq. (81) are conjectured to give rise to
the same infinite-temperature expectation values for typical
observables hunðtÞjÔjunðtÞi≃O independent of n. Roughly
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speaking, due to the lack of energy conservation, the many-
body Floquet states are formed by the hybridization of many
eigenstates of Ĥ0 at all available energy scales so that their
properties can be computed statistically. However, possible
exceptions to such ergodic behavior are expected to occur in
disordered many-body localized systems, for which the size of
the state space is effectively reduced via the segmentation into
local subspaces (Lazarides, Das, and Moessner, 2015; Ponte
et al., 2015; Abanin, De Roeck, and Huveneers, 2016;).
Experimentally, the transition between ergodic and nonergodic
behavior in an interacting quasidisordered driven system was
investigated in a one-dimensional system of spin-1=2 fermions
(K-40 atoms) in an optical lattice in Bloch’s group in Munich
(Bordia et al., 2017). In this experiment, localization is induced
by a quasiperiodic spatial potential modulation, whose time-
dependent amplitude Δþ A cosðωtÞ is also used to implement
the periodic driving. The system is initially prepared in a
nonequilibrium state, with the atoms occupying only sites
labeled by an even index l, before its dynamics is observed
over 50 tunneling times. A saturation of the occupation
imbalance between even and odd sites at a finite value is taken
as an indication for nonergodic behavior, whereas its complete
decay is associated with an ergodic dynamics. For large driving
frequencies, nonergodic behavior is found above a critical
disorder strengthΔc, which corresponds to that of the undriven
system (Schreiber et al., 2015), i.e., to that of the time-averaged
Hamiltonian. Lowering the driving frequency, the critical
disorder strength increases. Note that disorder-induced locali-
zation (ergodicity breaking) is also a crucial ingredient for the
stabilization of discrete time crystals (considering generic
nonintegrable systems).
We have mentioned that the heating time th is expected to

increase exponentially with the driving frequency for systems
with a bound local state space. In experiments with ultracold
atoms in driven optical lattices, this condition is never fulfilled
due to the presence of excited orbital states spanning higher-
lying Bloch bands (which are not included in the low-energy
tight-binding description in terms of a Hubbard model). While
an effective description in terms of low-energy degrees of
freedom is natural in nondriven systems, the truncation of high-
energy states is a delicate issue in periodically driven systems
already on the single-particle level (Hone, Ketzmerick, and
Kohn, 1997). In a periodically driven optical lattice the driving
frequency is typically chosen such that ℏω lies well below the
band gap Egap that separates excited orbital states from the
tight-binding state space spanned by one low-energy Wannier
state in each lattice minimum. However, interband excitations
can still occur via n-photon processes (Fig. 7, left). The
tendency is that the smaller n, the larger will be the coupling
matrix element for such interband-heating processes. Thus, by
increasing the driving frequency, the heating rate associated
with the resonant creation of collective intraband excitations
(Fig. 7, right), as we discussed them using the example
presented in Fig. 6, might decrease. However, at the same
time the heating rate due to interband excitations tends to
increase with the driving frequency. Floquet engineering with
ultracold atomic quantum gases in optical lattice, therefore,
requires that there is a window of intermediate frequencies
for which neither intraband nor interband heating is relevant on

the time scale of the experiment. Interband transitions can
occur as a consequence of single-particle processes (Drese and
Holthaus, 1997b; Holthaus, 2016) or two-particle scattering
(Choudhury and Mueller, 2014, 2015). For strong driving,
multiphoton interband excitations with n as large as 9 have
recently been observed experimentally and explained in
terms of single-particle transitions (Weinberg et al., 2015).
Arguments based on perturbation theory suggest that the rate
for such heating processes is suppressed exponentially with
n ≈ Egap=ℏω, provided the driving amplitude remains below a
threshold value (Sträter and Eckardt, 2016).

D. Anomalous topological edge states

The ℏω-periodic structure of the quasienergy spectrum of
periodically driven quantum systems reflects the interplay
between the dynamics occurring within a driving period
(associated with energy scales larger than ℏω) with that
happening on longer time scales (associated with energy scales
smaller than ℏω). The possibility that heating occurs on a long
time scale due to the resonant coupling of energetically far
distant states, discussed in the previous section, is one example
of such an interplay. Another, more subtle effect related to this
interplay is the existence of anomalous topological edge states
in periodically driven systems (Kitagawa et al., 2010, 2012;
Jiang et al., 2011; Rudner et al., 2013). Without making an
attempt to give a complete overview of the numerous recent
works on this subject, we briefly discuss the phenomenon in the
context of noninteracting spinless particles in a two-dimen-
sional lattice, following Rudner et al. (2013).
Consider a periodically driven two-dimensional tight-

binding lattice with B sublattice states. For periodic boundary
conditions the quasienergy spectrum will possess B Floquet-
Bloch bands that are separated by gaps. When the translational
symmetry is broken by open boundary conditions, the system
can feature chiral edge states that reflect the topological nature
of the bulk band structure. Spatially these states are localized
at the boundary (in the direction perpendicular to it), but
delocalized in the direction parallel to it. They transport
particles in one direction along the boundary only (defined
by their chirality). Figures 8(a)–8(c) show quasienergy spectra
for a driven two-dimensional lattice of finite extent with two
sublattice states for different parameters. The spectra are

FIG. 7. In periodically driven optical lattices, heating occurs due
to the resonant creation of high-energy excitations, either inter-
band excitations (left) or collective intraband excitations (right,
illustrated using the example of a large bosonic site occupation).
The time scales for these processes should be large compared to
the duration of the experiment.
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plotted versus the quasimomentum k∥ parallel to two opposite
edges (Rudner et al., 2013). The bulk bands have a finite
width according to their dispersion in the perpendicular
direction. Sometimes neighboring bulk bands are connected
by lines traversing a band. These lines form one-dimensional
bands corresponding to chiral edge states. They come in pairs
of opposite slope (indicating opposite velocity) corresponding
to the two opposite edges.
As in autonomous systems, the presence or absence of

chiral edge states is connected to the topological properties of
the bulk (bulk-boundary correspondence) (Hasan and Kane,
2010; Qi and Zhang, 2011). The difference between the
number of edge bands entering a bulk band b from below and
that exiting it above is dictated by the Chern number Cb of
that band [Eq. (66)], which is a bulk property. However, there
is one important difference that distinguishes periodically
driven from autonomous systems. As a consequence of the
ℏω-periodic structure of the quasienergy spectrum, edge
bands can exit the uppermost bulk band in the quasienergy
interval ½−ℏω=2; ℏω=2� above and enter the lowermost bulk
band from below [Figs. 8(b) and 8(c)] (Kitagawa et al., 2010;
Jiang et al., 2011). This possibility implies that the system
can feature chiral edge states even if all bulk bands have
Chern number zero, as in Fig. 8(c). With that it also implies
that the presence or absence of chiral edge states is not
determined by the Chern numbers alone. This is illustrated by
the fact that in both Figs. 8(a) and 8(c) the bands have identical
Chern numbers, despite the respective absence and presence of
edgemodes. In contrast, in an autonomous system the number of
edge states in the gap above a certain bulk band b is given byP

β≤bCβ, since no edge bands can enter the lowest band
from below.

Rudner et al. (2013) identified a winding number Wε from
the bulk properties of the system that determines the number
of edge modes traversing the band gap containing the
quasienergy ε, nedge ¼ Wε. The difference Wε0 −Wε corre-
sponds to the sum of the Chern numbers of the bands lying
between the gaps at ε0 and ε. The winding numbers associated
with all bulk gaps give a complete topological description of a
driven two-dimensional lattice. These topological invariants
do not depend only on the time-evolution operator over one
driving period Ûðt0 þ T; t0Þ or ÛðT; 0Þ for definiteness. They
also depend on the time evolution during each period as it is
captured by the function ÛðtÞ ¼ Ûðt; 0Þ; that is, they depend
on the micromotion. The winding number is defined as

Wε ¼
1

8π2

Z
dtdkxdkytrðÛ†

ε∂tÛε½Û†
ε∂kx Ûε; Û

†
ε∂kyÛε�Þ; ð82Þ

where Ûεðk; tÞ is a unitary operator with Ûεðk; TÞ ¼ 1. It has
to be obtained by continuously deforming the single-particle
time-evolution operator ÛðtÞ ¼ Ûðk; tÞ (in the sector with
quasimomentum k) in a way that the gap at ε is smoothly
shifted to ℏω=2 without being closed on the way. A concrete
construction of a suitable operator Ûεðk; tÞ for general Ûðk; tÞ
is given by Rudner et al. (2013).
The dependence of the winding number on the micromotion

has an interesting consequence for the bulk-boundary corre-
spondence in Floquet systems: The quasienergy spectrum and
the Floquet states (including the edge states) can be obtained
from the time-evolution operator over one driving cycle ÛðTÞ
by using Eq. (8). However, the operator ÛðTÞ computed for a
translational-invariant system, which represents the bulk
properties, does not completely determine the properties of
the edge states appearing at the boundary of a finite system.
The edge states depend also on the micromotion of the
bulk inherent in the time dependence of the evolution
operator ÛðtÞ.
Rudner et al. (2013) illustrated this effect using the specific

model shown in Fig. 9(a). For fine-tuned parameters the
dynamics during each driving cycle is simply that depicted in
Fig. 9(b): In the bulk, a site-local particle moves around a
closed circle and returns to its initial state. So while the
micromotion in the bulk is nontrivial, the Floquet Hamiltonian
ĤF

0 , which describes and generates the stroboscopic dynamics
in steps of the driving period T, vanishes in the bulk. At the
edge of the system, the motion around the closed loop is not
possible so that a particle is transported counterclockwise
along the boundary during each driving period, corresponding
to the formation of a band of chiral edge states. Clearly, this
edge dynamics results from the interplay of the bulk micro-
motion with the boundary of the system. The quasienergy
spectrum is plotted in Fig. 9(c); while the trivial bulk
dynamics over one driving period is reflected in a flat bulk
dispersion, chiral edge bands with constant slope (represent-
ing the velocity of two lattice constants per driving period)
wrap around the Brillouin zone.
The model system of Fig. 9(a) (without driving stage 5,

though) and the emergence of chiral edge states was
investigated recently in experiments with photonic wave-
guides (Mukherjee et al., 2016; Maczewesky et al., 2017).

FIG. 8. (a)–(c) Floquet spectra of periodically driven square lattice
defined in Fig. 9(a) for the parameters specified in (d). (d) Phase
diagram vs tunneling parameter J and sublattice offset δAB (in units
of ℏω=2). Phases are characterized by the winding numbersWε for
the bulk gaps at quasienergy ε; the Chern number of the upper
(lower) band is given by C (−C). From Rudner et al., 2013.
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An implementation of a similar model defined on a hexagonal
lattice (Kitagawa et al., 2011) with ultracold atoms and the
observation of chiral edge states at interfaces between spatial
domains with different topological properties were proposed
by Reichl and Mueller (2014). Anomalous chiral edge states
have, moreover, been observed in photonic networks (Hu
et al., 2015; Gao et al., 2016). In the circularly forced
hexagonal lattice (Oka and Aoki, 2009; Kitagawa et al.,
2011; Jotzu et al., 2014), discussed in Sec. III.H, anomalous
edge states appear for driving frequencies that are low enough
to resonantly couple the two low-energy Bloch bands
described by the Hubbard model (Kundu, Fertig, and
Seradjeh, 2014; Usaj et al., 2014; Quelle, Goerbig, and
Smith, 2016), i.e., when the high-frequency approximation
(15) breaks down. This is not surprising, since the effective
Hamiltonian obtained within the high-frequency approxima-
tion (15) cannot describe effects related to the ℏω-periodic
structure of the quasienergy spectrum, such as the anomalous
topological edge states discussed in this section.

E. Two-time formalism

The concept of Floquet theory can be extended to also
capture situations where the Hamiltonian is not perfectly
periodic in time, e.g., when a parameter such as the driving
strength is varied (Pfeifer and Levine, 1983; Breuer and
Holthaus, 1989b; Peskin and Moiseyev, 1993). For an
arbitrary time-dependent Hamiltonian ĤðtÞ, one can always
define a time-periodic Hamiltonian ĤτðtÞ ¼ Ĥτðtþ TÞ, with
parametric dependence on a second time τ such that ĤðtÞ ¼
ĤtðtÞ. For example, for ĤðtÞ ¼ Ĥ0 þ pðtÞ cosðωtÞV̂, with
slowly varying amplitude pðtÞ, we can set ĤτðtÞ ¼
Ĥ0 þ pðτÞ cosðωtÞV̂. This choice is not unique, but for a

“natural” description of the problem, the dependence on τ
should be weak, slow, or limited to a finite interval in time. A
suitable description of problems where the driving frequency
itself varies in time can be obtained by a scaling trans-
formation with respect to time (Drese and Holthaus, 1999).
The quasienergy operator related to ĤτðtÞ is given by

Q̂τðtÞ ¼ ĤτðtÞ − iℏdt: ð83Þ

Now a Schrödinger-type equation of motion

iℏdτjΨτ⟫ ¼ Q̄τjΨτ⟫ ð84Þ

for states in the extended Floquet Hilbert space can be
postulated, where Q̄τ generates the evolution with respect
to the time τ. A straightforward calculation shows that

jψðtÞi ¼ jΨτðtÞijτ¼t ð85Þ

is a solution of the (actual) time-dependent Schrödinger
equation (3) of the Hamiltonian ĤðtÞ, where jΨτðtÞi is the
H-space representation of jΨτ⟫ (Breuer and Holthaus,
1989b). This means that one can integrate Eq. (84) in F in
order to compute the time evolution of the system as it is
described by the time-dependent Schrödinger equation (3).
The initial condition has to obey jΨt0ðt0Þi ¼ jψðt0Þi, as
can be achieved by setting jψ t0⟫ ¼ P

αhψðt0Þjαijα0⟫. The
two-time formalism provides a Floquet-space description of
the time evolution generated by arbitrary time-dependent
Hamiltonians ĤðtÞ. Therefore, it constitutes a Floquet picture
(Breuer and Holthaus, 1989a). Working in the Floquet picture
is useful when the Hamiltonian is approximately time
periodic.
When a periodically driven system with discrete non-

degenerate quasienergy levels is subjected to a smooth non-
periodic parameter variation, to be captured by the time τ, one
can compute corrections to a perfectly adiabatic dynamics
using adiabatic perturbation theory in Floquet space (Drese
and Holthaus, 1999) [see also Weinberg et al. (2016) for a
related approach]. Computing the Floquet states in two steps
by first block diagonalizing the quasienergy operator
[Eq. (79)] and then diagonalizing the effective Hamiltonian
ĤF, one can separate nonadiabatic transitions between sub-
spaces of different photon number m (defined after the
rotation by ŪF) from those within these subspaces. The
former type of transitions results from the τ dependence of
the τ-instantaneous micromotion operator ŪFτ, whereas the
latter one results from the τ dependence of the τ-instantaneous
effective Hamiltonian ĤFτ. Plugging jΨτ⟫ ¼ ŪFτjΨFτ⟫ into
Eq. (84), the evolution of the rotated state jΨFτ⟫ is generated
by the quasienergy operator Q̄Fτ¼Ū†

FτQ̄τŪFτ−iℏŪ
†
FτdτŪFτ.

While the first term of Q̄Fτ is block diagonal by construction,
the second term generally does not conserve the photon
number and describes the first type of nonadiabatic transitions.
One way of taking into account this effect is to define a
modified unitary operator Ū�

Fτ, so that the gauge-transformed
quasienergy operator is block diagonal,

FIG. 9. (a) Simple model system on a square lattice with two
sublattice states (open and filled circles). Each driving period is
divided into five stages of duration T=5. During each stage either
tunneling matrix elements J are present on the highlighted bonds
or an energy offset δAB between both sublattices. (b) Dynamics of
an initially site-localized particle during one driving cycle for
fine-tuned parameters J ¼ ð5=4Þℏω and δAB ¼ 0 in the bulk
(blue) and at the edges (green, red). (c) Quasienergy spectrum for
parameters of (b). The bulk levels (thick line, blue) are dis-
persionless, whereas the levels for the chiral edge modes (thin
lines, red, green) wrap around the Brillouin zone with constant
slope. From Rudner et al., 2013.
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⟪α0m0jðŪ�†
FτQ̄τŪ�

Fτ − iℏŪ�†
FτdτŪ

�
FτÞjαm⟫

¼ δm0mðhα0jĤ�
Fτjαi þ δα0αmℏωÞ ð86Þ

with superadiabatic effective Hamiltonian Ĥ�
Fτ. Thus, the

time-dependent effective Hamiltonian Ĥ�
FðtÞ ¼ Ĥ�

Fτjτ¼t
describes the time evolution of the system within the (stan-
dard) state space H, in a reference frame rotated by Û�

FðtÞ ¼
Û�

FτðtÞjτ¼t [with Û�
FτðtÞ representing Ū�

Fτ in H]. Novičenko,
Anisimovas, and Juzeliūnas (2017) have derived a systematic
expansion for both Ĥ�

Fτ and Û�
Fτ in the high-frequency limit,

generalizing Eqs. (15)–(17). The leading terms are given by

Ĥ�ð1Þ
F ¼ Ĥð1Þ

F ; Ĥ�ð2Þ
F ¼ Ĥð2Þ

F ;

Ĥ�ð3Þ
F ¼ Ĥð3Þ

F þ
X
m≠0

−iℏ½Ĥ−m;
_̂Hm�

2ðmℏωÞ2 ð87Þ

and

Ĝ�ð1Þ ¼ Ĝð1Þ; Ĝ�ð2Þ ¼ Ĝð2Þ þ
X
m≠0

−iℏ _̂Hmeimωt

ðmℏωÞ2 ; ð88Þ

where the Fourier components Ĥm are now time depen-
dent, ĤmðtÞ ¼ Ĥτmjτ¼t ¼ ð1=TÞ R T

0 dt0e−imωt0Ĥtðt0Þ.

F. Adiabatic state preparation

A direct consequence of the evolution equation (84) is that
one can apply the adiabatic principle to Floquet states and
their quasienergies (Breuer and Holthaus, 1989b). In particu-
lar, the transition probabilities associated with parameter
variations through isolated avoided crossings of two quasie-
nergy levels are captured by the Landau-Zener theory. While
for a slow (rapid) parameter variation the crossing is passed
adiabatically (diabatically), a superposition of both states is
created for intermediate rates.
An important protocol of Floquet engineering is the

preparation of the ground state of the approximate effective
Hamiltonian to be realized by Floquet engineering via a
smooth parameter variation starting from the ground state of
the undriven system. On the level of a description in terms of
the high-frequency approximation (15), say in leading order
ĤF ≈ Ĥ0, the ideal dynamics should be adiabatic. However,
as discussed in Sec. IV.C using the example of Fig. 6, the
ground state of Ĥ0 will undergo avoided level crossings with
excited states of energy mℏω. In the high-frequency regime
these avoided crossings are small. For the high-frequency
approximation to be valid, they should be passed diabati-
cally, reflecting once more that the high-frequency approxi-
mation is valid on finite times only. Thus, the ideal
preparation should be based on an effectively adiabatic
dynamics, defined as a mixture of adiabatic dynamics with
respect to the high-frequency approximation and diabatic
dynamics with respect to resonant coupling neglected in
this approximation (Eckardt and Holthaus, 2008a). For the
Floquet engineering of interesting phases of matter, the
effectively adiabatic dynamics shall guide the system
through a second-order phase transition. Such a scenario

was recently studied in a spin chain, where a Kibble-Zurek-
like scaling for the creation of excitations was observed
numerically at a transition induced by resonant coupling
(Russomanno and Dalla Torre, 2016).

V. CONCLUSION AND OUTLOOK

We have seen that periodic forcing can be a powerful tool for
the engineeringmany-body systems of ultracold atoms in optical
lattices with tailor-made properties.While a basic description of
such Floquet engineering can often be given in terms of simple
(high-frequency single-band) approximations, the justification
of these approximations is a more subtle issue. Future research
will, therefore, not only be concerned with novel control
schemes, but also with the stability of Floquet systems toward
heating. Efficient strategies for suppressing heating will also be
crucial for another ambitious goal, the preparation of strongly
correlated states of matter, such as topologically ordered frac-
tional-quantum-Hall-type states. Also the further investigation
of phenomena without analog in autonomous systems, such as
anomalous topological edge states or discrete time crystals, is a
fascinating field for ongoing and future research.
Another interesting perspective (going beyond the domain

of ultracold quantum gases) is the engineering of many-body
quantum states of open Floquet systems. When a periodically
driven quantum system is coupled weakly to a thermal
reservoir, it will eventually reach a quasistationary (i.e.,
time-periodic) nonequilibrium steady state. The nonequilibrium
nature results from the fact that the transitions induced by the
coupling to the bath do not obey detailed balance. Namely, a
transition n → n0 between two Floquet states with quasiener-
gies εn and εn0 can be accomplished by changing the bath
energy by ΔEB ¼ εn − εn0 þmℏω, where the integer m can
take different values. Thus, a particular transition can,
for example, occur either by lowering or by raising the
bath energy. This becomes apparent in Fermi-golden-rule-type
expressions obtained for weak system-bath coupling (Blümel
et al., 1991; Kohler et al., 1997; Hone, Ketzmerick, and Kohn,
2009; Langemeyer and Holthaus, 2014). The resulting asymp-
totic nonequilibrium steady states can have unconventional
properties [see, e.g., Breuer, Huber, and Petruccione, (2000),
Tsuji, Oka, and Aoki (2009), Ketzmerick and Wustmann
(2010), Vorberg et al. (2013, 2015), Foa Torres et al.
(2014), Dehghani, Oka, and Mitra (2015), Goldstein, Aron,
and Chamon (2015), Iadecola, Neupert, and Chamon (2015),
Seetharam et al. (2015), Shirai, Mori, and Miyashita (2015),
and Shirai et al. (2016)]. A powerful tool for the treatment of
open driven systems is the Floquet variant of dynamical mean-
field theory [see Aoki et al. (2014), and references therein].
Unlike thermal states, nonequilibrium steady states are not just
determined by a few thermodynamic variables such as temper-
ature and chemical potential, but depend on the very details of
the environment. This makes a theoretical treatment challeng-
ing, but opens the door for robust dissipative quantum engineer-
ing of driven many-body systems and their properties.
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