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Although localized surface plasmons in metal nanoparticles can be modeled by Maxwells equations,
the difficulty in solving them forces many researchers to use numerical methods. Such methods give
accurate results but rarely provide much insight into the complex behaviors of the surface plasmons,
nor do they provide a means to choose a configuration of metal nanoparticles to achieve a desired
optical response. This Colloquium presents a simple algebraic approach for modeling localized
surface plasmons, their excitation by light, and their interactions with one another. Although the
method is not numerically accurate it yields useful insight into plasmon behavior and provides a basis
for the design of complex plasmonic devices. The approach relies on a description of the surface
plasmons in terms of a set of eigenmodes. However, the functional form of these modes is not usually
required and the entire problem is reduced to a simple algebra involving the plasmon amplitudes,
resonance terms, and their mutual coupling. The algebraic method is derived from an electrostatic
formalism, appropriate for near-field interactions at optical frequencies, which is then used to
demonstrate a variety of optical effects associated with localized surface plasmons, such as plasmon
hybridization, induced transparency, Fano resonances, optical phase detection, and all-optical
modulation, among others.
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I. INTRODUCTION

Localized surface plasmons (LSPs) are oscillations of the
conduction electrons excited by light on the surfaces of metal
nanoparticles (Raether, 1977, 1988; Kreibig and Vollmer,
1995; Barnes, Dereux, and Ebbesen, 2003; Zayats,
Smolyaninov, and Maradudin, 2005; Ozbay, 2006; Maier,
2007; Odom and Schatz, 2011). There has been great interest
in LSPs among scientists and engineers, due in part to their
properties such as confining light to nanoscale volumes
(Bozhevolnyi et al., 2006), enabling light energy and spectral
content to be manipulated (Kim et al., 1999; Li, Butun, and
Aydin, 2014), preserving phase coherence (Fakonas et al.,
2014), and quantum coherence (Chang et al., 2006). By
placing metal nanoparticles in closed proximity the LSPs
couple through their evanescent electric fields, which alters
their resonance properties enabling unusual optical effects,
such as plasmon “induced” transparency (Zhang et al., 2008;
Liu et al., 2009; Hokari, Kanamori, and Hane, 2014), sup-
pressed light scattering (dark modes), and Fano resonances
(Fano, 1961; Mirin, Bao, and Nordlander, 2009; Luk’yanchuk
et al., 2010; Miroshnichenko, Flach, and Kivshar, 2010),
among others. These properties depend on the geometry
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and composition of the metal nanoparticles, their dielectric
environment, and also on their mutual interactions. The
problem is to understand how the complex interplay
between these parameters modifies the optical properties of
the nanoparticles and how one can design a configuration
of coupled metal nanoparticles to achieve a desired optical
effect.
There are many methods that can be used to model the

interaction of light with LSPs, ranging from simple coupled
oscillator models (Zhang et al., 2008; Liu et al., 2009; Taubert
et al., 2012; Lovera et al., 2013) to full analytical and
numerical solutions to Maxwell’s equations including (but
not limited to) the finite-difference time-domain (FDTD)
method (Taflove et al., 2000), a rigorous coupled wave
analysis (Moharam et al., 1995; Lalanne and Morris, 1996;
Lalanne and Jurek, 1998; Weiss et al., 2009), the discrete
dipole approximation (Draine and Flatau, 2003; Yurkin and
Hoekstra, 2007), and the boundary element method (García de
Abajo and Howie, 2002; Hohenester and Krenn, 2005).
However, in our view none of these methods provide a simple
means for understanding how the physical parameters affect a
given optical response of an ensemble of metal nanostructures.
The aim of this Colloquium is twofold. First we present a

physical description of coupled LSPs, based on an expansion
in terms of eigenmodes (or fundamental resonances), that
enables the rational design of complex plasmonic structures
without the need for time and resource consuming numerical
calculations. Second, we use this algebraic model to describe
some of the important experimental observations that arise
from localized surface plasmon resonance phenomena. The
model is constructed using approximate forms of Maxwell
equations that neglect retardation and higher-order electric-
magnetic coupling, and consequently cannot accurately pre-
dict quantitatively measured experimental properties such as
resonance frequencies and linewidths. The strength of the
approach is the algebraic relationships between the physical
parameters that predict experimentally observable optical
effects, which provides insight into LSPs and their interactions
and guides us to the underlying physics.
The outline of this Colloquium is as follows. In Sec. II we

develop the theory of LSPs based on an “electrostatic”
approximation that leads to a physical description of reso-
nances in terms of eigenmodes. The expansion coefficients, or
LSP excitation amplitudes, become the key element in the
algebraic model and we use these amplitudes to present some
of the properties of LSPs in single metal nanostructures. The
model is then supplemented with an equation describing the
coupling between LSPs mediated by their electric near fields.
In Sec. III we apply this algebraic model to important
experimental observations that arise from localized surface
plasmon resonance phenomena.

II. A THEORY OF LOCALIZED SURFACE PLASMON
RESONANCES

Localized surface plasmons excited by light on metal
nanoparticle surfaces are observed experimentally by strong
scattering at a particular frequency—the resonance frequency
of the LSP. Such resonances have been known for a long time.
In spherical metal nanoparticles (Mie, 1908) these are known

as Fröhlich resonances (Bohren and Huffman, 1983) and are
the fundamental electric dipole resonances of spheres.
So how do the resonances come about and how can we

model them mathematically? What happens when two or
more metal particles are close to one another and their
resonating electric fields overlap?
The surface plasmons are well described by classical

electromagnetism embodied in Maxwell’s equations. One
of the simplest cases is a semi-infinite metal-dielectric inter-
face (Raether, 1977, 1988). If we consider an electromagnetic
wave at the interface and seek a solution involving outwardly
propagating waves only, we find a wave traveling along the
interface with a wave number α ¼ k½ϵmϵb=ðϵm þ ϵbÞ�1=2,
where ϵm and ϵb are the respective electric permittivities of
the metal and the dielectric, and k ¼ ω=c is the free-space
wave number. At visible and infrared frequencies, the real part
of the electric permittivity of a metal is negative Reϵm < 0 and
large jϵmj ≫ ϵb which means that α is complex and larger than
the free-space wave vector (jαj > k). Such a wave cannot
radiate into free space and is therefore trapped at the metal
surface. This wave is a surface plasmon polariton—a wave of
surface charge propagating over the metal surface (Raether,
1977; Maier, 2007) coupled with its electromagnetic field in
the adjacent dielectric medium. The electric field is strong at
the surface but decays exponentially with distance into the
metal and into the adjacent dielectric medium. This decaying
field is known as an evanescent wave.
The surface plasmon wave reflects from discontinuities,

such as a dielectric ridge or a defect in the metal surface
(Zayats, Smolyaninov, and Maradudin, 2005). If the film
contains multiple boundaries, a surface plasmon standing
wave can arise at certain frequencies where the multiple
reflections overlap in phase (Schouten et al., 2005; Pacifici,
Lezec, and Atwater, 2007). If we now think of surface
plasmon waves propagating over the surface of a metal
particle, the waves travel around the surface, overlap, and
interfere. When the path length is an integer number of surface
plasmon wavelengths, constructive interference occurs and a
standing wave is formed. This condition occurs only at
specific frequencies of the incident light: these standing
waves are the localized surface plasmon resonances.
Although Maxwell’s equations can describe the LSPs, the

analytical solutions for arbitrarily shaped metal nanoparticles
are unavailable in closed form and the equations require
numerical evaluation (Mäkitalo, Kauranen, and Suuriniemi,
2014). Solutions describing the resonances arise from com-
plicated eigenvalue problems, where the eigenvalues depend
in a nonlinear fashion on the frequency. One of the problems
relates to the interaction between the time-varying electric and
magnetic fields. The surface plasmons are excited by the
incident electric fields that oscillate in time producing oscil-
lating magnetic fields. The oscillating magnetic fields react
back on the charges, inducing displacement currents
(Faraday’s law) opposing the electron motion, and modifying
the resonant frequencies. In effect, the electromagnetic waves
emitted from one region on the nanoparticle propagate
through space, suffer a phase delay, and then interact with
another nanoparticle region.
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The problem is greatly simplified when the metal particles
are much smaller than the wavelength of light. Under this
condition the magnetic fields from the oscillating surface
charges are small. Magnetic effects scale with the wave
number k and the displacement electric fields reacting back
on the surface charges scale as k2. For very small metal
particles we find that the electric effects decouple from the
magnetic effects and the problem takes a mathematical form
identical to that in electrostatics. Another way to see this is to
write down the electric field radiated from an oscillating
dipole p in direction r̂ (Jackson, 1975):

E ¼ eikr

4πϵ0r3
fðkrÞ2ðr̂ × pÞ × r̂ − ikr½3r̂ðr̂ · pÞ − p�g

þ eikr

4πϵ0r3
½3r̂ðr̂ · pÞ − p�: ð1Þ

For distances such that kr ≪ 1 the last term in Eq. (1)
contributes the most to the electric field. This is the radiation
near field, which has exactly the same form as the electrostatic
result: that is, “the fields in the near zone are dominantly
electric in nature” (Jackson, 1975). This near field dominates
the interaction between closely spaced metal structures, which
leads us to consider an approximate description of LSPs and
their interactions based on an electrostatic method.

A. The electrostatic eigenvalue problem

The electrostatic theory describing the LSPs in nanopar-
ticles with dimensions much smaller than the wavelength of
light has its origin in potential theory, which describes systems
of charges and dipoles and the potentials they produce
(Kellog, 1929). The method was used to model the energy
loss of electrons to surface plasmons when passing by a metal
particle (Ouyang and Isaacson, 1989). As we show, the
solution is found from an eigenvalue problem describing
the self-consistent charge distributions or standing waves on
the surface of a metal particle. The eigenvalues determine the
resonances and the method can be considered a form of
spectral theory. Such theories were investigated by Bergman
(1978, 1979a, 1979b, 1979c, 1982), Kantor and Bergman
(1982), and Bergman and Stroud (1992) who used them to
model the electromagnetic properties of mixtures of metal
particles and dielectrics.
The electrostatic result can be derived from an order

expansion of Maxwell’s equations (Mayergoyz, Fredkin,
and Zhang, 2005) that identifies the relative importance of
the different electromagnetic fields in the electrostatic prob-
lem. In essence, the zeroth order term is the interaction
between the electric fields and the dielectrics, which results
in the electrostatic formulation. The first-order term gives the
magnetic field created by the oscillating charge distributions.
This, in itself, does not affect the electrostatic result and means
that we can use the electrostatic equations to predict the
magnetic fields associated with LSPs, with effects such as
enhanced chirality of electromagnetic fields (Davis and
Hendry, 2013). The second-order term represents the electric
induction created by the time-varying first-order magnetic
field, which interacts back on the surface charges. It is the
neglect of this and higher terms that limits the electrostatic

method. These higher-order terms are small when the dimen-
sion d of the plasmonic system obeys ϵbðkdÞ2 ≪ 1, where ϵb
is the permittivity of the background medium.
The origin of the surface plasmon mode is a self-sustained

surface charge oscillation: an electric charge on the surface of
the metal produces an electric field that interacts with other
charges on the metal surface [Figs. 1(a) and 1(b)]. The electric
field from a charge at some point r0 extends through the
background medium of electric permittivity ϵb surrounding
the metal and then penetrates the metal surface at another
point r inducing a surface charge σ. The amount of surface
charge induced at r is found from the discontinuity of the
electric field through the metal surface ðEb − EmÞ · n̂ ¼ σ=ϵ0
that depends on the direction of the surface normal n̂. It is
straightforward to show that a surface charge distribution σ
produces an electric field Eb · n̂ ¼ σ=2ϵ0 on the space outside
it and Em · n̂ ¼ −σ=2ϵ0 on the inside of the surface.
However, all charges on the metal surface contribute to this

surface charge, and likewise this charge produces an electric
field that also interacts with all points on the metal surface.
The problem is to find the distribution of surface charges in a
self-consistent manner. We first write Coulomb’s law for the
electric field from the electric charge qðr0Þ ¼ σðr0ÞdS0 arising
from each patch of surface with area dS0:

EðrÞ ¼ 1

4πϵ0

I
σðr0Þ ðr − r0Þ

jr − r0j3 dS
0; ð2Þ

where, in principle, r can be any point in space. However,
when r locates a point on the surface, the total electric field
arises from Eq. (2) plus the charge at r given by the boundary
condition on the normal component (Kellog, 1929). Thus the
normal components of the fields at the surface in the metal and
the dielectric are given by

Em;bðrÞ · n̂ ¼∓ σðrÞ
2ϵ0

þ 1

4πϵ0

I
σðr0Þ n̂ · ðr − r0Þ

jr − r0j3 dS0: ð3Þ

FIG. 1. The surface charges and surface dipoles that give rise to
localized surface plasmon resonances. (a) The charge at each
point r induced by the electric fields from all the other charges at
r0 distributed over the surface of a nanoparticle, (b) the LSP can
be described by a distribution of surface charges σ, (c) or by a
double layer of charge that is modeled by a distribution of surface
dipoles τ.
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Since the normal component of the electric displacement
vector D ¼ ϵE is continuous across a boundary, we can
relate the fields at either side of the metal surface
ϵmEm · n̂ ¼ ϵbEb · n̂. Placing the electric fields from
Eq. (3) into this boundary condition leads to the following
condition required for self-consistency (Ouyang and Isaacson,
1989; Mayergoyz, Fredkin, and Zhang, 2005):

σðrÞ ¼ γ

2π

I
σðr0Þ n̂ · ðr − r0Þ

jr − r0j3 dS0; ð4Þ

where the electric permittivities of the metal ϵmðωÞ and of the
surrounding, or background, medium ϵb are related to the
eigenvalue γ by

γ½ϵmðωÞ þ ϵb� ¼ ϵmðωÞ − ϵb: ð5Þ

The equation for the induced surface charge has the form of an
integral eigenvalue problem ðL − λLÞσ ¼ 0, where L is the
integral operator, λL ¼ 2π=γ is its eigenvalue, and σ is the
eigenfunction. For simplicity we refer to γ as the eigenvalue of
the solution, although strictly speaking the eigenvalue prob-
lem yields λL. The eigenvalue is found by solving the
eigenvalue problem (4) where the solution gives real functions
σðrÞ and real eigenvalues γ ≥ 1 (Mayergoyz, Fredkin, and
Zhang, 2005). Given the background permittivity ϵb one can
then use Eq. (5) to deduce the permittivity ϵm required to fulfill
self-consistency. For metals, the electric permittivity at optical
frequencies is complex, since the imaginary part characterizes
losses, in which case Eq. (5) can determine only the real part
Reϵm. Note that Eq. (4) can be deduced from the exact
solution of Maxwell’s equations in the low frequency limit
(Mäkitalo, Kauranen, and Suuriniemi, 2014). As mentioned,
the equation also results from a series expansion of the
electromagnetic fields where the backreaction of the magnetic
field on the induced surface charges is neglected, which is
valid when ϵdðkdÞ2 ≪ 1with d the characteristic dimension of
the structure (Mayergoyz, Fredkin, and Zhang, 2005). This
condition results in the last term in Eq. (1) dominating, which
is the electrostatic or near-field term.
Once the eigenvalue γ has been found and a background

medium specified, Eq. (5) requires the electric permittivity ϵ to
satisfy ϵðωÞ ¼ ϵbð1þ γÞ=ð1 − γÞ. With usual dielectrics
ϵb > 0, and given that γ ≥ 1, then Eq. (5) is satisfied only
for materials with ϵðωÞ < 0. This is mainly the case for
metals, semimetals, and some semiconductors. The electro-
static problem (4) is real and gives only the real part of the
metal permittivity. Furthermore, the electric permittivity of a
metal is negative and changes with frequency. The frequency
ωR at which the real part of the metal permittivity satisfies the
eigenvalue condition is the frequency at which the surface
charges oscillate: this is, in fact, the LSP resonance. Since
these resonances arise as a consequence of an electrostatic or
near-field condition, these are sometimes referred to as
electrostatic resonances. Figure 2 shows the real and imagi-
nary parts of the relative electric permittivities of gold and
silver (Weaver and Frederikse, 2006) and the wavelengths at
which the fundamental dipole resonance of the example
nanoparticle will resonate in air, based on the real part of

the permittivity. Because the electrostatic method neglects the
action of the magnetic field on the induced surface charge, the
estimate of the resonance frequency of the fundamental mode
is accurate to around 10% and blueshifted relative to the actual
frequency. The estimate becomes worse as the dimension d of
the structure increases such that the condition ϵbðkdÞ2 ≪ 1 is
no longer satisfied (Davis, Vernon, and Gómez, 2009b).
Interestingly, the estimates of the resonances of higher-order
modes lose accuracy more slowly, suggesting that d should
really characterize the size of the half wavelengths of the
modes (Davis, Vernon, and Gómez, 2009b).
As with all eigenvalue problems we obtain a series of

eigenvalues and an associated set of eigenfunctions. We label
these to distinguish them from one another. We associate the
kth eigenfunction σknðrÞ with the kth eigenvalue γkn of particle
n. Examples of the eigenfunctions of a “flattened cylinder” are
shown in Fig. 2 which were found by numerically solving
Eq. (4) using the method of Mayergoyz, Fredkin, and Zhang
(2005) [see also the freely available boundary element method
Matlab toolbox by Hohenester and Trugler (2012) in its
electrostatic limit]. Analytical solutions are also possible
for special nanoparticle geometries such as a sphere, for
which we show in Appendix A the eigenmodes and eigen-
values obtained by solving Eq. (4).
The eigenfunctions of Eq. (4) are the standing waves on the

surface of the particle, not unlike the standing waves one
might find on the surface of a vibrating membrane. These
surface charge distributions have a complicated multipolar
nature, meaning the distributions can be expanded in terms of
dipoles, quadrupoles, hexapoles, and so on (Wei et al., 2010).
Since electric charges accumulate at boundaries, the funda-
mental mode of any structure has a half wavelength standing
wave with positive charge on one boundary and negative
charge on the opposite boundary. This charge distribution has
a strong dipole moment, such as the first mode shown in

FIG. 2. The first six eigenmodes of an example particle, which
is a flattened cylinder with rounded ends with dimensions in the
ratio Lz∶Dy∶Dx ¼ 2.6∶1.5∶1.0. The gray level (color) represents
the surface dipole distribution and the numbers are the eigen-
values. Also shown are the real and imaginary parts of the relative
electric permittivities of gold and silver. For the fundamental
dipole mode γ11 ¼ 1.42 placed in air ϵb ¼ 1 the resonance occurs
where the metal permittivity Reϵ ¼ ϵbð1þ γÞ=ð1 − γÞ ¼ −5.76
at wavelengths 554 nm for gold and 426 nm for silver as shown.
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Fig. 2. This is common to most nanostructures and we exploit
this property in Sec. III. Each standing wave is associated with
an eigenvalue which is a real valued number greater than 1
(Mayergoyz, Fredkin, and Zhang, 2005). Strictly speaking,
the surface charges oscillate in time so we should multiply the
eigenfunctions by e−iωt.
The problem as outlined in Eq. (4) is scale independent.

Changing the dimensions of length such as r → βr leaves the
equation unchanged since all powers of β cancel. Thus we find
that the eigenfunctions depend only on the geometry of the
nanoparticle, and, in particular, on its aspect ratio, but not on
its actual size. This is a consequence of the electrostatic or
near-field approximation used in this theory. Another impor-
tant feature of Eq. (4) is that it places no restrictions on the
continuity of the surface—that is the surface may consist of
several pieces. In this respect the eigenvalue problem can be
applied to two or more particles of arbitrary shape and it will
give the LSP resonances of the combination (Gómez, Vernon,
and Davis, 2010). We use this fact in Sec. II.E to derive
an expression describing the interaction between LSPs on
multiple particles.
Surface charges are one way to describe an electrostatic

problem but we can also use surface dipole distributions. In
this model the boundary condition comes from a change in
the electric potential across the surface, which is then related
to the surface dipole moment ϕb − ϕm ¼ τ=ϵ0 (Jackson,
1975). In effect, an electric charge on the surface has a
companion opposite charge just below the surface, creating a
surface dipole moment τn̂, also known as a double layer
(Kellog, 1929), aligned parallel to the surface normal n̂
[Fig. 1(c)]. It is straightforward to determine the electric
potentials across the double layer resulting in expressions
similar to Eq. (3). Then we find that the surface dipole
moment also obeys an eigenvalue problem (Mayergoyz,
Fredkin, and Zhang, 2005)

τðrÞ ¼ γ

2π

I
τðr0Þ n̂

0 · ðr0 − rÞ
jr0 − rj3 dS0: ð6Þ

This is the “dual” problem associated with the surface charge
eigenvalue equation.
Both Eqs. (4) and (6) are equivalent and lead to the same

eigenvalue. The usefulness of Eq. (6) lies in the property that
the surface charge and surface dipole eigenfunctions form a
biorthogonal set

H
τjmðrÞσknðrÞdS ¼ δmnδ

jk (Mayergoyz,
Fredkin, and Zhang, 2005). The integral is zero unless the
eigenfunctions are associated with the same particle and the
same eigenvalue. We use superscripts on the delta function to
remind us these refer to the eigenmodes (not to be confused
with the notation used in relativity to refer to covariant and
contravariant vectors). This is similar to the orthonormal set of
functions ψn used in quantum mechanics as derived from the
Schrödinger equation. The difference is that the quantum
wave equation is Hermitian so that its adjoint is equal to the
complex conjugate resulting in complex eigenfunctions that
are orthonormal ð1=VÞ R ψ�

nðrÞψmðrÞdV ¼ δnm. Here the
electrostatic eigenfunctions are real and do not have this
property, which requires the use of an auxiliary equation
resulting in a biorthogonal pair σkn and τjm. In the language of

linear algebra, these two functions form a left and a right
eigenvector pair.

B. LSP excitation amplitudes

In the previous section we described the LSPs in terms of
the natural resonant modes of a nanoparticle that has a
negative electric permittivity. The natural resonances are
described mathematically by surface charge eigenfunctions,
surface dipole eigenfunctions, and their eigenvalues. The
question arises as to which of these modes, if any, are excited
when an electromagnetic wave is incident on the particle and
how strong are the excitations?
This problem was addressed in the context of nanoparticle

excitation by pulsed laser sources (Mayergoyz, Zhang,
and Miano, 2007). The electric field E0ðrÞ expð−iωtÞ of
the incident light excites an oscillating surface charge
σðr;ωÞ expð−iωtÞ that varies with position over the nano-
particle surface. This surface charge can be represented by a
linear combination of the eigenmodes of the particle
σðr;ωÞ ¼ P

ka
k
nðωÞσknðrÞ. The expansion coefficient aknðωÞ

represents the strength of the excitation of the kth LSP
mode: the excitation amplitude. By applying the boundary
condition in which the normal components of the electric
displacement across the metal surface are continuous, then
ϵmðωÞðE0 þ EmÞ · n̂ ¼ ϵbðE0 þ EbÞ · n̂. Across the boundary
at a position r, the normal component of the electric field has a
discontinuity given in Eq. (3). Substituting for Em and Eb,
expanding the surface charge in terms of eigenfunctions,
multiplying by τjmðrÞ, integrating over the surface, and using
the biorthogonality condition, leads to an equation for the
excitation amplitude

ajmðωÞ ¼ fjmðωÞ
I

τjmðr0Þn̂0 ·E0ðr0ÞdS0

≈ fjmðωÞpj
m ·E0; ð7Þ

where

fjmðωÞ ¼ 2γjmϵb½ϵmðωÞ − ϵb�
ϵbðγjm þ 1Þ þ ϵmðωÞðγjm − 1Þ : ð8Þ

We introduced a factor fjmðωÞ, which is the polarizability per
unit volume. As we show this factor plays a key role in
determining the LSP resonance and includes information on
the amplitudes and the phases.
At the subwavelength scale where the electrostatic limit

applies, the incident electric field is approximately constant
over the nanoparticle surface. Under this condition E0 can be
taken out of the integral leading to ajmðωÞ ≈ fjmðωÞpj

m · E0 as
given in Eq. (7), where pj

m ¼ H
τjmðr0Þn̂0dS0 represents the

average dipole moment associated with the eigenfunction τkm.
This dipole moment is proportional to the actual dipole
moment of the LSP mode k in the nanoparticle, differing
only by a scale factor. Indeed, the true dipole moment is just
pmðωÞ ¼

P
ka

k
mðωÞpk

m. In what follows we refer to pk
m as

the eigenfunction dipole moment to distinguish it from the
true dipole moment pm. Note that we can also write the
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eigenfunction dipole moment in terms of the surface charge
pj
m ¼ H

σjmðr0Þr0dS0 which is identical to the eigenfunction
dipole moment derived from τkn if the eigenfunctions are
properly normalized (Davis, Gómez, and Vernon, 2010b).
The excitation amplitude ajmðωÞ represents the strength

of the LSP mode j excited on nanoparticle m by the incident
light field at frequency ω. The frequency dependence is
contained within the factor fjmðωÞ. This factor becomes very
large when the real part of the denominator is zero,
Re½ϵbðγjm þ 1Þ þ ϵðωÞðγjm − 1Þ� ¼ 0, which is the same rela-
tionship of Eq. (5) we found previously linking the eigenvalue
to the electric permittivities of the nanoparticle and the
surrounding medium. As an example, the eigenvalue for
the fundamental resonance of a sphere is γ ¼ 3 (see
Appendix A). When placed in Eq. (8) the resonance factor
is f1s ¼ 3ϵbðϵm − ϵbÞ=ðϵm þ 2ϵbÞ which we identify as the
optical polarizability of a small metal particle (Bohren and
Huffman, 1983) with the Frölich resonance condition
ϵm þ 2ϵb ¼ 0. The excitation amplitude is a complex quantity
because it contains, through fjm, information about the phase
of the LSP oscillation relative to the phase of the driving field
E0, which in turn is complex because the metal permittivity
ϵðωÞ is complex. For frequencies away from resonance we
expect fjm to become small, reducing the strength of the LSP.
The complex dependence of fjmðωÞ can be made explicit

using an approximate expression for the metal permittivity
based on a Drude model (Kittel, 1956; Ashcroft and Mermin,
1976). In this model the electric permittivity has the form
ϵmðωÞ ≈ 1 − ω2

P=ωðωþ iΓÞ, where ωP is the bulk plasma
frequency of the metal and Γ is a loss term. Using this
expression in Eq. (8), expanding the result about the resonance
frequency ωR and assuming the loss Γ is small, then the
frequency-dependent factor can be approximated by

fjmðωÞ ≈ −
�

2γjmϵ2bω
j
m
3

ðγjm − 1Þ2ω2
P

�
1

ðω − ωj
m þ iΓj

m=2Þ

¼ −Aj
m

ω − ωj
m þ iΓj

m=2
; ð9Þ

where ωj
m is the resonance frequency of mode j of particle k,

Γj
m is the full width at half maximum (FWHM) of the

resonance, and Aj
m is a positive scale factor that depends

on the resonant mode and the permittivity of the background
medium (Appendix B has a detailed derivation of this
approximate form).
Equation (9) is important because it shows how the LSP

resonance changes with frequency and it enables us to model
in a simple way the phase variations of the resonance relative
to the incident electric field. The equation is approximate and
is valid only close to the LSP resonance. This equation, along
with Eq. (7), is the key algebraic expression that we use to
model LSP resonances in single metal nanoparticles. As we
show later, the properties of LSPs in ensembles of metal
nanoparticles can be obtained from the mathematical form of
Eqs. (7) and (9) without needing to know the actual values of
the resonance frequency, the FWHM, the scale factor, or even
the eigenvalues or eigenfunctions. This is analogous to

problems in quantum mechanics (based on Dirac’s bra-ket
notation hψ j and jψi) in which many properties of quantum
systems can be determined using the linear algebra of the
operators, the wave functions, and their orthogonality proper-
ties without requiring actual details of the spatial dependence
or their functional form (Cohen-Tannoudji, Diu, and
Laloe, 1977).

C. Optical theorem, energy conservation, and radiation

The optical theorem is an expression of energy conser-
vation. It equates the electromagnetic energy scattered from a
particle in the forward direction to the energy absorbed by it
(Jackson, 1975). It is instructive to demonstrate how the
approximations in the electrostatic method cause it to fail,
which provides insight into the radiation mechanism and why
the resonances lead to energy storage. In what follows we use
expressions given by Jackson (1975) converted to SI units. We
assume an electromagnetic plane wave in vacuum with an
electric fieldEðr; tÞ ¼ E0 expðik · r − iωtÞ andmagnetic field
Hðr; tÞ ¼ ϵ0cðk̂ × E0Þ expðik · r − iωtÞ, where ϵ0 is the per-
mittivity of free space. The complex Poynting vector for time
harmonic fields is S ¼ ðE ×H�Þ=2. The real part of S is the
radiated energy, whereas the imaginary part represents the
reactive or stored energy and its alternating flow.

1. Absorption

The rate at which work is done per unit volume for
time-averaged quantities is given by the real part of _u ¼
ReðJ� ·EÞ=2 in terms of the induced current density
J expð−iωtÞ and the electric field that drives it. The current
density at position r0 on the surface of plasmonic structurem is
given by the time rate of change of the total dipole
moment ∂pmðr0;tÞ=∂t¼−iω

P
ka

k
mτ

k
mðr0Þn̂0expð−iωtÞ, where

pmðr0; tÞ ¼
P

ka
k
mτ

k
mðr0Þn̂0 expð−iωtÞ is written as a sum over

the modes k. The power absorbed per unit volume is then

_um ¼ −ðω=2ÞIm
X
k

ak�m

I
τkmðr0Þn̂0 ·Eðr0ÞdS0; ð10Þ

which is integrated over the particle surface. We take the
imaginary part since ReðiZÞ ¼ −ImðZÞ for any complex
function Z. As before we assume that Eðr0Þ ≈ E0 is approx-
imately constant over the surface and replace the integral with
the eigenvalue dipole moment. Furthermore we have akm ≈
fkmpk

m · E0 so that

_um ≈ −ðω=2Þ
X
k

Imfk�m jpk
m · E0j2: ð11Þ

The Poynting vector gives us the incident intensity I ¼
ϵ0cjE0j2=2 in terms of the electric field E0. For a single
resonance mode with a dipole moment aligned to the incident
field, the absorption cross section Cabs is the ratio of the
absorbed power per unit volume per incident intensity

Cabs ¼ _um=I ¼ kðpk
mÞ2Im

�
2γðϵ0 − ϵ�mÞ

ϵ0ðγ þ 1Þ þ ϵ�mðγ − 1Þ
�
: ð12Þ
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For a sphere of radius R it has been shown that ðpk
mÞ2 ¼

4πR3=3 is equal to the volume (Davis, Gómez, and Vernon,
2010b) and that γ ¼ 3. Then

Cabs ¼ k4πR3Im

�
ϵ0 − ϵ�m
2ϵ0 þ ϵ�m

�
; ð13Þ

which is the usual expression for the absorption cross section
of a small sphere (Bohren and Huffman, 1983). Note that
Eq. (12) represents the absorption of the fundamental LSP
mode for particles of any shape, characterized by γ. In the
theory of light scattering from particles, nonspherical shapes
are usually approximated by ellipsoids for which the absorp-
tion cross section is given in terms of a shape factor L,
commonly referred to as the depolarization factor. Comparing
Eq. (12) to the expression for scattering from an ellipsoid, we
can relate the depolarization factor to the eigenvalue γ, with
the result L ¼ ðγ − 1Þ=2γ (Vernon et al., 2010). Equation (12)
is more general since there is no assumption about the shape
other than it is much smaller than the wavelength of light.

2. Radiation

The power radiated from the LSP is obtained from the real
part of the Poynting vector. In the electrostatic approximation,
the electric field is given by Eq. (2) with the surface charge on
nanostructure m expanded in surface charge eigenfunctions
σmðr0Þ ¼

P
ka

k
mσ

k
mðr0Þ. The magnetic field is obtained from

the Biot-Savart law that involves the current density in the
metal arising from the oscillating dipole moment
−iω

P
ka

k
mτ

k
mðr0Þn̂0 as before,

HðrÞ ¼ −iω
4π

X
k

akm

I
τkmðr0Þ

n̂0 × ðr − r0Þ
jr − r0j3 dS0: ð14Þ

For simplicity we consider a single dominant mode and keep
only one term in the sum over the eigenfunctions. Then the
Poynting vector is

S ¼ iω
16π2

jakmj2sðrÞ; ð15Þ

with

sðrÞ ¼
I I

σkmðr0Þτkmðr00Þ
ðr − r0Þ × n̂00 × ðr − r00Þ

jr − r0j3jr − r00j3 dS0dS00:

ð16Þ

Since sðrÞ and jakmj2 are real, the Poynting vector is purely
imaginary and the radiated power, given by the real part of S,
is zero. Thus in the electrostatic theory there is no radiation.
The purely imaginary Poynting vector represents the stored
energy associated with the plasmon, which is not surprising
since we neglected the induction of an electric field by the
magnetic field. The magnetic field oscillates 90° out of phase
with the electric field and therefore can never generate a wave
propagating in free space. Including second- and higher-order
terms leads to a phase shift in the magnetic field with a small
in-phase component (Mayergoyz, Fredkin, and Zhang, 2005).

It is this component that is responsible for radiation. Thus to
first order in the fields, the plasmon captures the optical
energy and loses it only by absorption. The optical theorem is
not obeyed. Since the electrostatic method does not include
the electromotive force of the magnetic field, the method is
unable to predict the properties of structures that exploit
magnetic induction, such as split-ring resonators (Lezec,
Dionne, and Atwater, 2007).
Light radiated from these structures can be included as a

separate effect. Since dipole radiation dominates over higher-
order multipoles, we can write the radiated power in terms of
the LSP dipole moments pm ¼ P

ka
k
mðωÞpk

m. The time-
averaged power per solid angle radiated in the far field
direction n̂ can be written in the form (Jackson, 1975)

dP
dΩ

¼ ck4

32π2ϵb
ðn̂ × pÞ · ðn̂ × p�Þ; ð17Þ

where c is the speed of light, ϵb is the relative permittivity of
the dielectric occupying the space, and p� is the complex
conjugate of the dipole moment.
For a particle with a single LSP mode it is clear that the

radiated power is proportional to jamj2. The scattering cross
section of a particle Csca ¼ ðk4=6πÞjp=E0j2 is also propor-
tional to the modulus square of the dipole moment (Bohren
and Huffman, 1983) leading to a similar dependence on jamj2
of the excitation amplitude. This provides a convenient way to
estimate the relative strength of the light reradiated by
the LSPs.

3. Radiation damping

The electromagnetic energy radiated by an oscillating
surface charge density (with an associated dipole moment
p) is one mechanism by which a resonance is damped,
increasing the spectral linewidth, and decreasing the quality
factor. The effect of the radiated electromagnetic field on
the LSP can be modeled by a “self-field”(Meystre and
Sargent, 1998) Erad ¼ ðik3=6πϵbÞp that perturbs the oscil-
lation (k ¼ ω=c). This field can be included in the following
expression for the excitation amplitude of Eq. (7) (Davis,
Vernon, and Gómez, 2009a):

ajmðωÞ ¼ fjmðωÞpj
m ·

�
E0 þ i

k3

6πϵb
p

�

¼ fjmðωÞpj
m ·

�
E0 þ i

k3

6πϵb

X
n

anmðωÞpn
m

�
; ð18Þ

which leads to

ajmðωÞ ¼
�
δjn − i

fjmðωÞk3
6πϵb

X
n
pj
m · pn

m

�−1
fjmðωÞpj

m ·E0:

ð19Þ

As an example, Eq. (19) for a particle with a single resonant
mode can be written as
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ajmðωÞ ≈ −Aj
mp

j
m ·E0

ω − ωj
m þ i½Γj

m=2þ Aj
mk3ðpj

mÞ2=6πϵb�
; ð20Þ

where Eq. (9) has been used for fjmðωÞ [cf. Carminati et al.
(2006)]. This equation explicitly shows how the LSP reso-
nance width, given by the imaginary part of the denominator,
increases with increasing radiation (dipole moment).
The excitation amplitude of the jth resonance, as men-

tioned, is large for modes with a strong dipolar character.
However, these modes also have associated strong radiation
and therefore lead to large radiation damping (Sönnichsen
et al., 2002) according to the denominator of Eq. (20) which
thus limit the near-field strength of the LSP (Wokaun, Gordon,
and Liao, 1982).

D. Properties of isolated metal nanostructures

The electrostatic approximation described predicts some
useful properties of LSP resonances.
(i) For very small nanoparticles where the incident electric

field is constant over the nanoparticle surface, we observe that
LSP modes with a zero dipole moment pk

m ¼ 0 are not excited
[Eq. (7)]. Two examples are the second and fourth modes in
Fig. 2 with γ21 ¼ 2.42 and γ41 ¼ 2.62, which are predominantly
quadrupolar in nature with very small dipole moments. In
practice there is always a small variation of the electric field
over the nanoparticle surface enabling these modes to be
excited. However, the excitations are generally very weak and
not usually observed unless the nanoparticles are large. Thus,
we note that only LSP modes with nonzero dipole moments
are usually excited (Yang et al., 2010).
(ii) The phase ϕ of the LSP relative to the phase of the

incident light depends on frequency according to tanϕ ¼
−Γk

m=2ðω − ωk
mÞ which is obtained from the ratio of the

imaginary to the real parts of Eq. (9). Well below resonance
the phase is approximately zero ϕ ≈ 0, it passes through 90°
on resonance ϕ ¼ π=2, and approaches 180° above resonance
ϕ → π. This is the characteristic behavior of a driven oscillator
ubiquitous in physics. As shown in Sec. III, the coupling
between LSPs leads to coupled oscillators and frequency
splitting, another property that is found in many different
fields of physics.
(iii) The LSP mode is not excited if the incident electric

field is perpendicular to the LSP dipole moment whereby
pj
m ·E0 ¼ 0. Therefore the excitation of a given LSP mode

depends on the polarization of the incident light. In addition,
the electric field of the light radiated from the LSP is polarized
with a direction related to the orientation of the dipole
moment, as in the far field term of Eq. (1). Using a vector
identity it is possible to write ðr̂ × pÞ × r̂ ¼ p − ðr̂ · pÞr̂.
In a direction normal to the LSP dipole moment, the radiated
field is Erad ∝ pj

mðpj
m ·E0Þ which can have a polarization

different from the incident field E0. This is a useful pro-
perty of metal nanoparticles with nondegenerate LSP
modes that can be used to manipulate the polarization
direction of a light wave (Ming et al., 2009; Kosako,
Kadoya, and Hofmann, 2010).
It is worth noting that symmetric nanoparticles, such

as cylinders and spheres, have multiple degenerate LSP

modes with orthogonal dipole moments. A cylinder has
two orthogonal modes across its diameter whereas a sphere
has three (details on this last example are given in
Appendix A). For such structures we must include all the
degenerate modes in the interaction, so that the radiated
field is Erad ∝

P
jp

j
mðpj

m ·E0Þ. For example, a sphere with

all three LSP dipole moments pj
m ¼ p1

mx̂j having identical
magnitudes but different orientations given by the orthogonal
unit vectors x̂j, the field radiated by the LSPs Erad ∝
ðp1

mÞ2
P

3
j¼1 x̂

jðx̂j ·E0Þ ¼ ðp1
mÞ2E0 has a polarization parallel

to the incident field, so that no polarization conversion arises.

1. An example with multiple LSP resonances

Structures that have multiple LSP modes with nonzero
dipole moments can show interesting optical properties that
depend on the polarization of the incident light. As an
example, we apply the algebraic model to a single metal
structure that has multiple degenerate or near degenerate
modes and show how the structure behaves with circularly
polarized light (Eftekhari and Davis, 2012). Consider the
“Y”-shaped structure in Fig. 3 that has two strong dipole
modes with resonances that differ in frequency by Δω12 and
dipole moments rotated from one another by θ12. The
circularly polarized light E ¼ E0ðx̂� iŷÞ is incident normal
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FIG. 3. An example of nonorthogonal LSP modes interacting
with the handedness of circularly polarized light. (a) The
numerical grid of 1296 triangles used to simulate the LSP modes
(b) and (c). The structure is 3 units thick, each section is 3.5 units
wide and 11.5 units long. The side section extends at 45°, (b) the
fundamental dipole mode of the structure in (a) with γ ¼ 1.12 and
a dipole moment shown by the arrow, (c) the second dipole mode
γ ¼ 1.21, (d) a comparison of the theory prediction sin 2θ for the
extinction difference between left and right circularly polarized
light as a function of angle θ12 compared with experimental data
on a set of plasmonic systems with two nonorthogonal modes and
with a finite-difference time-domain (FDTD) simulation, and (e)
as per (d) but as a function of the resonance difference between
the two modes. Adapted from Eftekhari and Davis, 2012.
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to the surface in the x-y plane. The � sign determines the
handedness of the polarization. The radiated power Eq. (17)
scattered normal to the plane depends on ðn̂×pmÞ·ðn̂×p�

mÞ¼
pm ·p�

m since the polarization is perpendicular to n̂. Assuming
only two dominant modes with pm ¼ P

ka
k
mpk

m and pk
m ¼

pk
mðcos θkmx̂þ sin θkmŷÞ then

pm · p�
m ¼ ja1mj2p1

m
2 þ ja2mj2p2

m
2

þ 2Re½a1ma2�m �p1
mp2

m cos θ12: ð21Þ

We can write a1m ¼ f1mp1
m ·E ¼ jf1mjp1

mE0 expðiϕ1
m � iθ1mÞ,

where f1m ¼ jf1mj expðiϕ1
mÞ is a magnitude and a phase and

likewise for a2m. Then from Eq. (21) we have

pm · p�
m ¼ jf1mj2p1

m
4E2

0 þ ja2mj2p2
m
4E2

0

þ 2jf1mjjf2mjðp1
mp2

mÞ2E2
0cos

2θ12 cosϕ12

∓ jf1mjjf2mjðp1
mp2

mÞ2E2
0 sin 2θ12 sinϕ12; ð22Þ

where ϕ12 ¼ ϕ1
m − ϕ2

m is the difference in the phases of the
LSP oscillations.
The key factor is the product sin 2θ12 sinϕ12 on the last line

of Eq. (22). The scattered power, proportional to pm · p�
m, will

be sensitive to the handedness∓ of the circular polarization if
the dipole moments of the two resonances are neither parallel
nor perpendicular, so that sin 2θ12 ≠ 0 and optimally when
θ12 ¼ 45°. In addition there must be a phase difference
between the two resonances ϕ12 ≠ 0 which means the two
modes cannot be degenerate (must have different resonance
frequencies). If both conditions are satisfied the last term in
Eq. (22) is not zero. If we repeat the derivation but use the
approximation for fkm in Eq. (9) in terms of resonance
frequencies, we can show that the difference in the extinction
between left and right circularly polarized light varies with
the resonance difference ω1

m − ω2
m ¼ Δω12 according to

x=ðx2 þ 1Þ2 with x ¼ Δω12=Γ. This has a maximum at x ¼
1=

ffiffiffi
3

p
or jΔω12j ¼ Γ=

ffiffiffi
3

p
(Eftekhari and Davis, 2012).

Figures 3(d) and 3(e) show the results of experiments
(Eftekhari and Davis, 2012) on a set of two-mode LSP
systems and compares them with data from a FDTD numerical
simulation and the results of the model. The model shows
remarkable agreement with both simulations and experiment.
This example demonstrates the value of a simple algebraic
model in that we can deduce two nonobvious conditions
relating circularly polarized light and its interaction to the
properties of a metal structure exhibiting two LSP modes. The
model works well because it provides a good representation of
the LSP line shape and phase close to the resonance and it
includes the vector interaction of the polarization of the
incident light with the dipole moments of the LSP modes.

E. Coupled LSPs

One useful property of LSPs is that they enable the
manipulation of the phase and polarization of optical fields
(Liu et al., 2005; Ebbesen, Genet, and Bozhevolnyi, 2008;
Dregely et al., 2011; Langguth et al., 2015). This can be
achieved by placing two or more metal nanoparticles in close
proximity such that the evanescent electric fields from the

LSPs induce electric charges, and hence new LSPs, on
neighboring particles (Halas et al., 2011; Gallinet et al.,
2013; Langguth et al., 2015). Traditionally, these coupling
problems are difficult to solve and are usually analyzed
numerically (Brandl, Mirin, and Nordlander, 2006).
However, we show that the electrostatic eigenmode method
leads to very simple expressions for many of the nanoparticle
configurations of interest.
In the theory previously outlined, the strength of a particular

LSP resonance in an isolated nanoparticle is determined by the
excitation amplitude akm. If there are multiple nanoparticles,
then the excitation amplitudes change. The electric field at the
position of nanoparticle m arises from two sources: the
incident field E0 and the electric fields from the LSPs on
all the other nanoparticles

P
nEn. These extra fields must be

included in Eq. (7) for the excitation amplitude yielding a new
amplitude ~akmðωÞ given by

~akmðωÞ ¼ fkmðωÞ
I

τkmðrmÞn̂m ·

�
E0 þ

X
n

EnðrmÞ
�
dSm;

ð23Þ

where the integral is over nanoparticle m. The electric field
EnðrmÞ at particlem arising from particle n can be found from
Coulomb’s law. The total surface charge associated with
particle n is σn ¼

P
j ~a

j
nσ

j
n so that

EnðrmÞ ¼
1

4πϵb

X
j

~ajnðωÞ
I

σjnðrnÞ
n̂m:ðrm − rnÞ
jrm − rnj3

dSn: ð24Þ

Combining Eq. (24) with Eq. (23) and noting that the first term
in Eq. (23) is just the excitation amplitude akm of nanoparticle
m when it is isolated, we have

~akmðωÞ ¼ akmðωÞ þ fkmðωÞ
X
n;j

~ajnG
kj
mn; ð25Þ

where

Gkj
mn ¼ 1

4πϵb

I I
τkmðrmÞ

n̂m:ðrm − rnÞ
jrm − rnj3

σjnðrnÞdSndSm ð26Þ

is the Coulomb coupling from nanoparticle n to nanoparticle
m. We define this coupling such that Gkj

mm ¼ 0. Equation (25)
can be rearranged

X
n;j

½δmnδ
kj − fkmðωÞGkj

mn� ~ajnðωÞ ¼ akmðωÞ ð27Þ

as a matrix equation, which can be written in terms of an
inverse

~ajnðωÞ ¼
X
m;k

½δmnδ
kj − fjnðωÞGjk

nm�−1akmðωÞ: ð28Þ

This equation is extremely useful for describing the inter-
action between metal nanoparticles supporting LSP resonan-
ces. It relates the excitation ~ajnðωÞ of the nanoparticle when it
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is a member of an ensemble to the excitations akmðωÞ of each
of the isolated nanoparticles. We know the functional form of
the single particle excitations—they are given by Eqs. (7) and
(9). By inverting the matrix in Eq. (28) we can determine what
the excitations look like when the particles are coupled
together.
The geometric coupling coefficient Gjk

nm represents the
interaction of the evanescent electric fields of the LSPs.
Unless we need to calculate exact numerical values, it is
not usually necessary to determine its magnitude in order to
understand how metal nanoparticles behave when coupled
together. However, it is useful to know whether or not this
factor is positive, negative, or zero. A simplified expression is
obtained by imagining two particles n and m separated by a
distance dnm sufficiently large that the integrals over the
nanoparticle surfaces in Eq. (26) leave rn − rm almost con-
stant. We can write rn − rm ¼ sn − sm þ dnm, where sn is a
small vector pointing from the center of nanoparticle n to a
point on its surface, and likewise for sm. Then the factor
jrn−rmj−3≈d−3nm½1−3ðsn−smÞ·d̂nm=dnm� can be expanded
in a Taylor series and only the lowest order terms retained.
When this expression is placed in Eq. (26) and all the
multipole terms higher than dipole-dipole terms are ignored,
we find that

Gkj
mn ≈

1

4πϵbd3nm
½3ðpk

m · d̂nmÞðpj
n · d̂nmÞ − pk

m · pj
n�: ð29Þ

We recognize this expression as the interaction between two
dipoles separated by a distance dnm, where d̂nm is the unit
vector from particle m to particle n. This shows that the
coupling Gkj

mn between two LSP modes is zero if the two
modes have orthogonal dipole moments pk

m · pj
n ¼ 0 and if

either of the modes is perpendicular to the direction of the line
joining the two particles, pk

m · d̂nm ¼ 0 or pj
n · d̂nm ¼ 0.

Equation (29) is very approximate in that it treats the
interacting structures as point dipoles, which is never the
case with interacting near fields. As such one would not
use it to calculate the magnitude of the LSP coupling.
However, it is useful in deciding whether or not two particles
with LSPs will interact and whether or not that interaction
is positive Gkj

mn > 0 or negative Gkj
mn < 0. Note that this

coupling is symmetric under interchange of the nanoparticles:
Gkj

mn ¼ Gjk
nm. More generally we find that the coupling

between particle pairs as described by Eq. (26) is symmetric
unless the surface charge on one particle is concentrated at a
point and the separation between particles is very small
(Davis, Vernon, and Gómez, 2009a).

III. ANALYZING INTERACTIONS BETWEEN
COUPLED LSPs

In this section we apply this theory to understand the
interaction among ensembles of metal nanoparticles support-
ing localized surface plasmon resonances. There are four key
equations that we use as follows:

(i) Eq. (7) for the LSP excitation of a single nano-
particle,

(ii) the approximate equation (9) for the resonance
factor,

(iii) the matrix equation (28) linking the coupled ex-
citations ~ajn to the uncoupled excitations akm, and

(iv) the dipole approximation (29) to estimate the sign of
the coupling.

These equations reduce the coupling problem to relatively
simple algebra. The resulting expressions can be analyzed to
understand the effects of coupling and the functional forms of
the LSP excitations can be graphed to understand the
frequency dependence.
In all cases shown later, we assume each isolated nano-

particle has a single LSP resonance that dominates at the
frequency of the incident light so that we need only consider
one LSP mode on each particle. In this case we can drop
the mode index, so that terms such as G11

nm → Gnm and the
equations are easier to follow. Also it is useful to write the
denominator in Eq. (9) in short hand δ ~ωn ¼ ω − ωn þ iΓn=2
which saves us from writing out resonances and the FWHM
until the end. In this shorthand notation, resonances occur
when the real part Reδ ~ωn ¼ 0 is zero. In solving coupling
problems it is useful to have algebra manipulation software
that can invert the matrix (28) algebraically. In our case we use
the software DERIVE which is freely available.

A. Two particle coupling, dark modes, and Fano resonances

The simplest coupling problem is between two metal
particles (Nordlander et al., 2004). To emphasize that the
theory is not restricted to regular shapes, such as rods, disks,
or spheres, we show in Fig. 4(a) the lowest order resonances of
two random-shaped metal nanostructures. Although the fun-
damental LSP modes may have a complicated multipole
charge distribution, for very small structures the incident light
couples predominantly to the dipole moments as discussed in
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FIG. 4. An example of two coupled metal particles of arbitrary
shape showing the formation of new resonant modes. (a) The first
LSP modes of the two shapes and their eigenvalues, (b) a sketch
used to calculate the side-by-side coupling, and (c) the “dark”
mode as determined numerically. The arrows show the dipole
moments; (d) the “bright” mode as determined numerically, (e) a
sketch for end-to-end coupling, (f) the “dark” mode, and (g) the
“bright” mode. The signs show the relative surface charges on
each of the modes.

T. J. Davis and D. E. Gómez: Colloquium: An algebraic model of localized …

Rev. Mod. Phys., Vol. 89, No. 1, January–March 2017 011003-10



Sec. II. This fact allows us to write the interaction in terms of
the dipole eigenfunctions.
To solve the coupling problem we number each nano-

structure (in this case 1 and 2), sketch the dipole moments of
the fundamental LSP modes (usually parallel to the major
axis) as shown in Fig. 4(b), and write down the coupling
between them. From Eq. (29) we note that the coupling G12 ¼
G21 < 0 is negative so we write G12 ¼ G21 ¼ −G, where G is
a positive quantity. Then, we apply Eq. (28) to form the
interaction matrix

�
~a1
~a2

�
¼

�
1 −f1G12

−f2G21 1

�−1� a1
a2

�

¼ 1

Δ

�
1 f1G12

f2G21 1

��
a1
a2

�
: ð30Þ

The matrix inverse is easily found and has a determinant
Δ ¼ 1 − f1f2G2, where we make the substitution G12 ¼
G21 ¼ −G. The total dipole moment is given by
p ¼ ~a1p1 þ ~a2p2, where p1 and p2 are the eigenfunction
dipole moments of the LSP modes.
For illustration purposes we assume the LSP dipole

moments are the same p1 ¼ p2 ¼ pLSP, that the loss terms
are the same Γ1 ¼ Γ2 ¼ Γ, but the resonance frequencies
differ by an amount 2δ so that ω1 ¼ ωav − δ and
ω2 ¼ ωav þ δ, where ωav is the average of the two resonance
frequencies. Using the shorthand notation δ ~ω ¼ ω − ωav þ
iΓ=2 then from Eq. (9) we can write f1 ¼ −A=ðδ ~ωþ δÞ,
f2 ¼ −A=ðδ ~ω − δÞ. With Eq. (7) we have the uncoupled
amplitudes a1 ¼ −ApLSP ·E0=ðδ ~ωþ δÞ and a2 ¼ −ApLSP ·
E0=ðδ ~ω − δÞ and from the matrix equation (30) we can show
that the amplitudes of the LSPs on each nanostructure are
given by

~a1 ¼
−AðpLSP · E0Þðδ ~ω − δþ AGÞ

ðδ ~ω − gÞðδ ~ωþ gÞ ;

~a2 ¼
−AðpLSP · E0Þðδ ~ωþ δþ AGÞ

ðδ ~ω − gÞðδ ~ωþ gÞ ; ð31Þ

where g ¼ ðδ2 þ A2G2Þ1=2. The total dipole moment of the
coupled pair is then

p ¼ −2ApLSPðpLSP ·E0Þðδ ~ωþ AGÞ
ðδ ~ω − gÞðδ ~ωþ gÞ : ð32Þ

These equations show a number of important features found in
coupled plasmonic systems. The easiest way to demonstrate
these is to ignore the loss terms and set Γ ¼ 0. Later we will
include this again to plot the resonance spectra.
As an observation, note that the coupled amplitudes ~a

become large when the determinantΔ of the matrix in Eq. (30)
becomes small. The condition that the real part of Δ ¼ 0 is
zero generally determines the resonances of the coupled
system. Moreover, the condition ReΔ ¼ 0 can be expressed
as a polynomial in frequency. The order of the polynomial
determines the number of solutions, which then determines
the number of resonances. For example, the determinant Δ ¼
1 − f1f2G2 from Eq. (30) has at most two solutions, so there

are at most two resonances. In practice, as we show, it is
possible for one or more of the zeros to cancel corresponding
terms in the numerator. Such resonances are then virtual in that
they cannot be excited and can be associated with dark modes.

1. Plasmon hybridization

We take the simple situation of two nanostructures with the
same resonance frequencies whereby δ ¼ 0. If we look at the
denominator in Eq. (31) or (32), we see that it becomes zero
when Reδ ~ω ¼ �jAGj or ω ¼ ωR � jAGj. In this case the
single resonance ωR splits into two resonances, with a splitting
that depends on the strength of the coupling G. Such
frequency splitting is a common feature of coupled oscillators.
In plasmonics literature, the formation of the new resonant

modes, as in Figs. 4(c) and 4(d), and the associated frequency
splitting is often referred to as hybridization (Prodan et al.,
2003; Nordlander et al., 2004; Prodan and Nordlander, 2004),
in analogy with the description of the nature of chemical
bonds in terms of the superpositions of atomic orbitals. In both
cases, the hybridization leads to an antisymmetric mode
[Fig. 4(c)] and a symmetric mode [Fig. 4(d)]. The antisym-
metric mode has opposite charges on the two metal structures
facing each other, which is a lower energy configuration. The
symmetric mode has the same charges facing one another
creating a higher energy configuration. However, we note
when δ ¼ 0, one of the resonance terms in the denominator of
Eq. (32) cancels with a similar term in the numerator. When
G > 0 the term responsible for the low frequency resonance
cancels, ðδ ~ωþ AGÞ=ðδ ~ωþ jAGjÞ ¼ 1. In this case the low
frequency resonance, or antisymmetric mode, has a zero net
dipole moment and will not radiate light. This is a dark mode
that we examine in more detail later. The remaining bright
mode has an energy that varies depending on the coupling.
When G < 0, the high frequency resonance term cancels
ðδ ~ωþ AGÞ=ðδ ~ω − jAGjÞ ¼ 1 leaving only the low frequency
resonance, which is still a bright mode.
The sign of the coupling can change based on the relative

orientations of the nanostructures. If we had allowed the
orientations of the nanostructures in Fig. 4 to vary, so that
pn ¼ pLSPðcos θnx̂þ sin θnŷÞ, then the coupling determined
from Eq. (29) takes the form G ¼ −G12 ∝ −3 cos θ1 cos θ2þ
cosðθ2 − θ1Þ, where d̂12 ¼ x̂ and θ1 is the angle nanostructure
1 takes with the x axis and likewise for θ2 (Davis, Gómez, and
Vernon, 2010c). In this situation the strength and sign of the
coupling changes with the orientation of the nanostructures so
that the energies, or resonance frequencies, of the hybrid
modes change with orientation. For example, with θ1 ¼ θ2 ¼
π=2 as shown in Fig. 4(b), it is the high frequency resonance
that is the bright mode [Fig. 4(d)]. In this case the LSP
resonance has a higher energy because the resonant mode has
charges of the same sign opposite one another. With
θ1 ¼ θ2 ¼ 0 so that the nanostructures are aligned end to
end [Fig. 4(e)], G < 0 and it is the low frequency resonance
that is the bright mode [Fig. 4(g)] and the nanostructures have
opposite charges facing one another, thus reducing the overall
energy of the mode. The shifts in the plasmon resonances with
coupling have been observed experimentally, with redshifts
observed for end-to-end coupling (Haynes and Van Duyne,
2001; Rechberger et al., 2003; Su et al., 2003; Thaxton and
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Mirkin, 2005; Jain, Eustis, and El-Sayed, 2006; Funston et al.,
2009) and blueshifts for side-by-side coupling (Rechberger
et al., 2003; Jain, Eustis, and El-Sayed, 2006; Funston et al.,
2009) consistent with our previous analysis.

2. Bright and dark modes

Suppose the coupling is strong so that δ ≪ AG which
implies that g ≈ AG. At the low frequency resonance δ ~ω ¼
−g ≈ −AG then the numerator of the LSP resonance ~a1 in
Eq. (31) is δ ~ω − δþ AG ≈ −δ, whereas the numerator for
particle 2 is δ ~ωþ δþ AG ≈ δ which has the opposite sign to
~a1. In effect, the direction of the dipole moment on one of the
particles is opposite to the way we have drawn it for this LSP
mode. This describes a resonance mode in which the LSPs on
the two nanostructures have dipole moments pointing in
opposite directions and therefore are oscillating 180° out of
phase [Fig. 4(c)]. On the other hand, at the higher frequency
resonance δ ~ω ¼ g ≈ AG then both amplitudes have the same
sign. For this resonance the LSPs oscillate in phase. This
behavior agrees with the numerical simulation shown in
Figs. 4(c) and 4(d). When we look at the total dipole moment
we see that when δ ~ω ¼ −g ≈ −AG the dipole moment Eq. (32)
is zero so there is no radiation from the oscillating LSPs (when
we include losses such that Γ ≠ 0 there is a small residual
dipole moment). This is a “dark mode” and is a consequence of
the two LSPs oscillating out of phase. Provided δ ≠ 0 the
incident light can excite this mode but there is little radiation
from it and therefore little scattering and radiative damping.

3. Fano resonances

The total dipole moment of the coupled LSP system has a
term in the numerator that is linearly dependent on the
frequency, and its real part goes to zero at some frequency.
This particular mathematical form is characteristic of a Fano
resonance (Fano, 1961; Mirin, Bao, and Nordlander, 2009;
Luk’yanchuk et al., 2010; Miroshnichenko, Flach, and
Kivshar, 2010). The Fano resonance arises from the interfer-
ence between an incident wave and a wave scattered from a
resonant object (Lovera et al., 2013). There are three con-
ditions for the phase at which a resonant object oscillates,
depending on the frequency of the applied driving force: (1) It
oscillates in phase with the driving force when driven well
below its resonance frequency, (2) it oscillates 90° out of
phase when resonantly driven, and (3) it oscillates 180° out of
phase when driven well above resonance. If the resonance
oscillation of the object is responsible for reemitting (or
scattering) a wave, then the interference of the incident wave
with the scattered one can alternate between destructive and
constructive, resulting in a characteristic asymmetric reso-
nance spectrum. This asymmetric Fano profile has the form
I ¼ AFðEω þ qÞ2=ðE2

ω þ 1Þ, where q is a “shape factor” and
Eω represents a frequency-dependent normalized energy term.
The line shape is asymmetric around a minimum, which
occurs at a frequency Eω ¼ −q arising from the interference
between two components of the system.
The intensity of the scattered radiation from the coupled

nanorods is proportional to jpj2, which according to Eq. (32)
has the approximate form of a Fano resonance (around the
lower frequency resonance). Figure 5 shows a plot of the

intensity, where the almost-dark mode demonstrates an
asymmetric profile that can be fitted by the Fano equation.
The Fano profile in this case arises from the interference of the
radiation from two nanorods with different resonance frequen-
cies, leading to constructive or destructive interference
depending on the applied frequency.
A more general description of Fano resonances in plasmonic

nanostructures andmetamaterials was presented byGallinet and
Martin (2011). In their approach, which is based on the
formalism of Feshbach, Bhatia, and Temkin, the formal sol-
utions to the full Maxwell equations are decomposed, or
projected, into those which satisfy a radiation condition (bright
modes) and thosewhich do not (dark modes). The interaction of
these two leads to the Fano line shape. Contrary to our approach,
this treatment includes effects of radiative and nonradiative
damping ab initio on the observed asymmetric line shapes.

B. Coupling in three nanorod structures

The LSP coupling between three nanorods provides an
extraordinarily rich variety of optical behaviors. We begin by

FIG. 5. A Fano resonance associated with two coupled metal
particles. The intensity is calculated as a function of detuning
δω ¼ ω − ωR from the center resonance based on jpj2 from
Eq. (32) with j2Ap1ðp1 ·E0Þj ¼ 1, AG ¼ 2, Γ ¼ 1, and δ ¼ 2.
The inset shows the dark mode and the dashed curve is the Fano
expression with the scaled energy term Eω ¼ 2ðδω=Γþ 2.87Þ,
q ¼ −3.5, and an amplitude scaling factor AF ¼ 0.01 [see the
discussion of Miroshnichenko, Flach, and Kivshar (2010) around
their Eq. (1)].

1 2

3

G -G

FIG. 6. A three-particle plasmonic structure, sometimes referred
to as a “dolmen” structure, that mimics the Wheatstone bridge in
electronics (Davis, Vernon, and Gómez, 2009a). The arrows
represent the dipole moments of the fundamental LSP modes and
G is the coupling coefficient.
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analyzing a simple structure that demonstrates properties,
such as induced transparency, phase sensitivity, all-optical
modulation and switching, and then discuss a radially sym-
metric structure with radial dark modes.
We consider a set of three nanorods forming a “dolmenlike”

structure shown in Fig. 6.We assume the two parallel nanorods
are sufficiently far apart so that the interaction between them is
dominated by their coupling to nanorod 3.We also assume that
all three nanorods are identical and therefore have the same
LSP resonance frequency ωR, loss terms Γ, and eigenfunction
dipole moments jp1j ¼ jp2j ¼ jp3j, where we assume one
dominant LSP mode on each and drop the mode superscript.
Under these conditions, Eq. (28) describing the excitation
amplitudes for these coupled nanorods is given by
0
B@

~a1
~a2
~a3

1
CA ¼

0
B@

1 0 −fG
0 1 fG

−fG fG 1

1
CA

−10
B@

a1
a2
a3

1
CA

¼ 1

Δ

0
B@

1 − f2G2 −f2G2 fG

−f2G2 1 − f2G2 −fG
fG −fG 1

1
CA
0
B@

a1
a2
a3

1
CA; ð33Þ

whereG > 0 represents the coupling between the particles and
Δ ¼ 1 − 2f2G2 is the matrix determinant. Having inverted the
matrix we obtain in just a few lines of algebra the fundamental
equations that describe the interactions among these three
nanorods and an incident field, as we now proceed to illustrate.

1. Plasmon-induced transparency

For this example the incident light is polarized parallel to
nanorod 3 so that a1 ¼ a2 ¼ 0 [this also mimics the exper-
imental conditions of Liu et al. (2009)]. With Eq. (33), it is
straightforward to show that ~a1 ¼ fG ~a3 and ~a2 ¼ −fG ~a3;
that is, these two rods oscillate out of phase with each other
resembling a collective quadrupole (dark) mode (Liu et al.,
2009). Since ~a1 þ ~a2 ¼ 0, the total dipole moment in the
polarization along these two rods vanishes, and this reduces
radiative damping, as in Eq. (20).
The light scattered from nanoparticle 3 is described by the

excitation amplitude ~a3, which according to Eq. (33) is given
by ~a3 ¼ a3=ð1 − 2f2G2Þ. Using the shorthand notation
δ ~ω ¼ ω − ωR þ iΓ=2, we write a3 ¼ −Ap3 · E0=δ ~ω and
f ¼ −A=δ ~ω which leads to

~a3 ¼
−Aðp3 ·E0Þδ ~ω

ðδ ~ω −
ffiffiffi
2

p
AGÞðδ ~ωþ ffiffiffi

2
p

AGÞ : ð34Þ

We immediately see that the coupling of nanorod 3 to the two
parallel nanorods leads to a resonance splitting that depends on
the coupling strength G. The two new resonances occur at
frequencies ω� for which the denominator of Eq. (34) is zero,
that is when ðδ ~ωÞ2 − 2ðAGÞ2 ¼ 0. For weak coupling, G ≈ 0

there is only one resonance that occurs at ωR (the resonance
frequency of the individual particle). As the coupling increases,
the resonancesω� move apart (Fig. 7), and the magnitude of the
excitation amplitude ~a3 decreases significantly at zero detuning
(i.e., when the real part of δ ~ω ¼ 0). This strong drop in the
excitation amplitude leads to a dramatically reduced scattering of

the light at the frequency of the isolated nanoparticle (ωR),which
is experimentally observable as an increase in the transparencyof
an array of such structures (Liu et al., 2009; Hokari, Kanamori,
and Hane, 2014). This effect has been termed plasmon-induced
“transparency” (Zhang et al., 2008) and is related to the splitting
of the resonances due to coupling. If we had included the
radiation damping in Fig. 7, then the width of the transparency
region would be narrower than shown, due to the reduced
damping associated with the quadrupole.

2. Plasmonic Wheatstone bridge

Suppose instead we excite the structure in Fig. 6 with light
polarized parallel to the two nanorods (1 and 2) and
perpendicular to the third. However, we place a polarizer at
the output that accepts only light radiated from nanorod 3. In
this case a1 ≠ 0 and a2 ≠ 0 but a3 ¼ 0 and according to
Eq. (33), the output ~a3 ¼ fGða1 − a2Þ=ð1 − 2f2G2Þ now
depends on the difference of the LSP excitations on the
two parallel nanorods. Let the light be incident at some angle
so there is a phase difference between the excitations on
nanorods 1 and 2. That is, let a1 ¼ −Ap3 ·E0 expðiϕ=2Þ=δ ~ω
and a2 ¼ −Ap3 ·E0 expð−iϕ=2Þ=δ ~ω, then the LSP excited in
nanorod 3 is given by

~a3 ¼
2i sinðϕ=2ÞA2Gðp3 ·E0Þ

ðδ ~ω −
ffiffiffi
2

p
AGÞðδ ~ωþ ffiffiffi

2
p

AGÞ : ð35Þ

The structure produces anLSP in the third rodwith an amplitude
that depends on thephase differenceϕ of the light incident on the
two parallel rods. The configuration leads to the interference
between the two surface plasmons on the parallel rods and, in
effect, performs a mathematical difference operation on them.
This configuration is analogous to theWheatstone bridge circuit
in electronics (Davis, Vernon, and Gómez, 2009) that generates
a signal between its two arms when they are imbalanced.
Nanorod 3 plays the role of the volt meter that reads out the
difference signal. Such structures can be extremely small and
can probe an optical phase within a fraction of a wavelength
(Eftekhari, Gómez, and Davis, 2014), as shown in Fig. 8. The

FIG. 7. The spectrum of a three-particle configuration that
demonstrates the formation of induced transparency at zero
detuning δω ¼ ω − ωR as the coupling strength G increases.
The spectra are based on j ~a3j2 calculated from Eq. (34) with
Γ ¼ 1, A ¼ 1, and p3 ·E0 ¼ 0.5.
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intensity of the scattered light is proportional to j ~a3j2, which
varies with phase as sin2ðϕ=2Þ ≈ ϕ2=4. This variation is
quadratic in phase for small phase differences, in agreement
with the experimental results.

3. All-optical modulation

In the last section we used an analogy between metal
particles coupled by evanescent fields and an electric circuit
operating at optical frequencies. This concept has been
applied for some time to plasmonic structures, since the
LSP resonance can be modeled by a combination of an
inductor, capacitor, and a resistor (Engheta, Salandrino, and
Alù, 2005; Engheta, 2007; Davis, Vernon, and Gómez, 2009;
Sun et al., 2012; Liu et al., 2013; Abasahl, Santschi, and
Martin, 2014). Electrical circuits made from these components
are linear, which means the circuit can be driven in reverse:
that is, the outputs can be driven by a signal and an inverse
response observed at the inputs. Since the plasmonic circuit in
the previous example produces an output depending on the

phase at the inputs, it should be possible to drive the output
with an intensity that modulates the phase at the inputs. In this
final example using the same three-nanostructure configura-
tion, we show that indeed this is possible by analyzing what
happens when light is incident on all three nanorods.
It is convenient to explicitly show the phases of all

quantities. We express the resonance factor as a magnitude
fω and a phase ϕw such that fðωÞ ¼ fωeiϕω . Light is incident
at some angle on two identical rods 1 and 2 lying in the x-y
plane at z ¼ 0 [Fig. 9(a)]. The light is polarized parallel to
their long axes so that it does not excite rod 3 (see Fig. 6). In
this configuration we assume there is a polarizer on the output
that passes light scattered only from rods 1 and 2. With kI
the incident wave vector, there is a phase difference between
the LSP excitations related to the vector separation d. The
phase difference is e∓ikI ·d=2. Likewise, light radiated from
these rods in the same direction kI has the opposite phase
difference e�ikI ·d=2. Since the rods are identical, we can write

700 750 800 850
Wavelength (nm)

In
te

ns
ity

 (
ar

b.
 u

ni
ts

)

0

1

2

3

4

5

6

Phase (degrees)
0 20 40-20-40

In
te

ns
ity

 (
ar

b.
 u

ni
ts

)

0

2

4

6

8

10

12

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 8. Results of experiments on a single plasmonicWheatstone
bridge circuit. (a) A schematic diagram of the configuration of
nanorods, including four alignment rods used to ensure correct
alignment of polarizers; (b) a microscope image showing light
scattered from the circuit and the four alignment nanorods; (c) the
scattering intensity obtained with the substrate correctly aligned
and with normal incident light (zero phase difference); (d) with
light incident at θ ¼ 30° the circuit appears as a bright spot at the
center of the image; (e) scattering spectrum from the plasmonic
circuit; and (f) the intensity as a function of phase difference
between the two inputs (dots are experimental data, the solid curve
is theory). Also shown is the null response of the circuit (square
points) where the phase change is between the parallel rods and rod
3. The dashed line is the expected response in the null orientation.
Adapted from Eftekhari, Gómez, and Davis, 2014.
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FIG. 9. A plasmonic all-optical modulator. A metamaterial can
be created with arrayed plasmonic Wheatstone-bridge circuits
(based on the diagram of Fig. 6) where a signal S and a control C
beam are orthogonally polarized. (a) Diagram showing the phase
difference of LSP excitation on rods 1 and 2 on a substrate arising
from a light beam incident at an angle; (b) images of the
transmission through arrays of plasmonic circuits for different
ratios C=S and phases ϕc, showing the modulation effect; (c),
(d) experimental measurements of the modulation determined for
changes in phase (c) ϕc ¼ 0° → 180° (d) ϕc ¼ −90° → 90°; and
(e), (f) the corresponding theoretical modulation based on
Eq. (39). Adapted from Davis, Gómez, and Eftekhari, 2014.
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a1 ¼ fωSe−ikI ·d=2þiϕω and a2 ¼ fωSeikI ·d=2þiϕω , where S is
proportional to the amplitude of the incident light.
There is also a second light beam incident that is polarized

so that it induces only LSPs in rod 3. We impose a phase ϕc on
this beam relative to the light incident on rods 1 and 2. Then
a3 ¼ fωCeiϕcþiϕω where C is proportional to the amplitude of
the light. As a further approximation, we assume the coupling
G is small enough that we can neglect terms G2 and those of
higher order. Then the amplitudes of the LSPs in rods 1 and 2
are obtained from the coupling matrix (33)

~a1 ≈ fωeiϕωðSe−ikI ·d=2 þ GCfωeiϕcþiϕωÞ;
~a2 ≈ fωeiϕωðSeikI ·d=2 − GCfωeiϕcþiϕωÞ. ð36Þ

Taking account of the fact that the two rods are separated by
a small distance, then the scattered wave amplitude in
direction kI is

~aT ¼ ~a1eikI ·d=2 þ ~a2e−ikI ·d=2

≈ 2fωeiϕω ½Sþ iGCfωeiϕcþiϕω sinðkI · d=2Þ�; ð37Þ
where any scattering from rod 3 is filtered out by a polarizer.
The intensity of the scattered wave is related to I ¼ j ~aTj2
which is

I ¼ 4f2ω½S2 − 2fωGCS sinðkI · d=2Þ sinðϕc þ ϕωÞ
þ f2ωG2C2sin2ðkI · d=2Þ�: ð38Þ

This equation shows the intensity I of the beam scattered by
an array of such structures modulated by the amplitude C and
phase ϕc of a beam of light incident on rod 3, even though this
beam is filtered out by the polarizer and does not reach the
detector. The modulation arises due to interference between
the LSPs created in the coupled structure by the two
light beams.
The optical modulation strength M can be defined as the

difference of the intensity of the transmitted light when
the phase is shifted from ϕc to ϕc þ 180°, divided by the
intensity 4f2ωS2 of the beam scattered directly by rods 1 and 2.
This gives

M ¼ 4fωGðC=SÞ sinðkI · d=2Þ sinðϕc þ ϕωÞ: ð39Þ
In Fig. 9(b) we show an experimental demonstration of this

all-optical modulation with a metamaterial created from an
array of plasmonic Wheatstone-bridge circuits of Fig. 6
(Davis, Gómez, and Eftekhari, 2014). The transmission
through the metamaterial changes when either the amplitude
or phase of the “control” beam exciting nanorod 3 is varied.
The experimentally measured modulations as functions of
wavelength and control beam parameters are compared in
Figs. 9(c)–9(f) with calculations based on Eq. (39). The
resonance factor is given by fω ¼ A=ðδω2 þ Γ2=4Þ and
tanϕω ¼ −Γ=2δω. The resonance frequency and width used
in the calculation was obtained from the experimental data and
the unknown scale factors 4AG were found by matching the
modulation in Fig. 9(f) to the experimental value at C=S ¼ 1.2
and λ ¼ 715 nm. No other scaling was applied. Despite the
complexity of this configuration and experiment, Eq. (39)
shows remarkable agreement with experiment, which

highlights the predictive power of this simple coupling theory,
despite the approximations that have been used in deriving it.
All-optical modulation in this structure originates by

interfering the polarized incident beam with another beam
having orthogonal polarization, in such a way that the second
beam is unable to propagate through the metamaterial effec-
tively. In one sense, the beam incident on nanorod 3 excites
LSPs on nanorods 1 and 2 that oscillate 180° out of phase with
each other and therefore the beams scattered from these rods
cancel out. However, the beam coupling from rod 3 interferes
with the incident light scattered from rods 1 and 2 leading to a
decrease in intensity. This can be thought of as a subwave-
length interferometer. By making a diffraction grating based
on these structures it is possible to create an all-optical switch,
or a diffraction grating with an optically controlled blaze
(Davis, Gómez, and Eftekhari, 2014).

4. Radially symmetric structures and dark modes

Here we consider another three nanorod structure, one that
exhibits radially symmetric dark modes, that we analyze using
the theory developed in Sec. II (Gómez et al., 2013).
To describe the interaction of light with the structure shown

in Fig. 10, we use Eq. (28) to find the excitation amplitudes
under the assumption that all the particles are identical and
equidistant. The matrix equation is (Gómez et al., 2013)

0
B@

~a1
~a2
~a3

1
CA ¼

0
B@

1 −fG −fG
−fG 1 −fG
−fG −fG 1

1
CA

−10
B@

a1
a2
a3

1
CA

¼ 1

Δ

0
B@

1 − f2G2 f2G2 þ fG f2G2 þ fG

f2G2 þ fG 1 − f2G2 f2G2 þ fG

f2G2 þ fG f2G2 þ fG 1 − f2G2

1
CA

×

0
B@

a1
a2
a3

1
CA; ð40Þ
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FIG. 10. Radially symmetric trimer exhibiting a radial dark
mode. Experimentally measured spectra for unpolarized and
radially polarized light incident on a gold single trimer, shown
in the scanning electron micrograph (SEM) on the left. Adapted
from Gómez et al., 2013.
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where the determinant Δ ¼ 1 − 2ðfGÞ3 − 3ðfGÞ2 is of the
order of 3 in f, which implies that the structure has three
collective resonances.
To proceed further, we write the incident electric fieldE0 as

a superposition of a linearly polarized component with
amplitude El and a radially polarized one with amplitude
Er: E0 ¼ Elðcosψ x̂þ sinψ ŷÞ þ Err̂, where r̂ is a unit vector
pointing radially outward from the origin of coordinates and ψ
is the angle that the linearly polarized component subtends
with respect to the horizontal. This is an approximate way to
describe a field with radial symmetry. Accurate descriptions
are more complicated as shown in the literature (Mojarad and
Agio, 2009; Sancho-Parramon and Bosch, 2012). However,
this simplistic approach allows us to extract physically
relevant information that closely reproduces the experimental
observations.
For the case of incident radial polarization (El ¼ 0),

straightforward (but lengthy) algebraic manipulation of
Eq. (40) yields equal excitation amplitudes for all three
nanorods, given by

~a ¼ AErp
δ ~ω − 2AG

; ð41Þ

which predicts the excitation of a radially symmetric mode
with net zero dipole moment and a resonance frequency given
by the real part of ωd ¼ ωR þ 2AG.
For the case of linearly polarized light (Er ¼ 0) incident

with a polarization angle ψ as shown in Fig. 10, the excitation
amplitudes are given by

~a1 ¼ −
AElp

AGþ δ ~ω
cosψ ;

~a2 ¼
AElp

AGþ δ ~ω

1

2
ð

ffiffiffi
3

p
sinψ þ cosψÞ;

~a2 ¼
AElp

AGþ δ ~ω

1

2
ðcosψ −

ffiffiffi
3

p
sinψÞ; ð42Þ

and therefore the total dipole moment p ¼ P
n ~an ~pn is

pl ¼ −
3AElp2

2ðAGþ δ ~ωÞ ðcosψ x̂þ sinψ ŷÞ: ð43Þ

This equation represents a bright plasmon mode, with a
doubly degenerate resonance frequency ωb ¼ ωR − AG red-
shifted from the plasmon resonance of the individual
nanorods.
The line shape of the scattering spectrum of this D3h-

symmetric trimer is proportional to jpj2, which according to
Eq. (43) results in a single scattering band centered at the
resonance frequency of the doubly degenerate bright modes.
According to Eq. (41), the dark mode can be excited by a
radially polarized beam of light (i.e., it can absorb), but by
virtue of not having a net dipole moment, the absence of
radiative damping leads to a narrower line shape when
compared to the bright mode [compare with Eq. (19)].
These predictions were experimentally confirmed by
Gómez et al. (2013) and summarized in Fig. 10 demonstrating
here the predicting power of the analytic theory of Sec. II.

C. Coupling in 3D structures

We have shown the applicability of the theory developed in
Sec. II to LSP coupling between two particles and among three
particles. We now turn our attention to a special case consisting
of the three-dimensional arrangement ofFig. 11, called the three-
dimensional plasmonic ruler, a concept first introduced by Liu
et al. (2011). This structure contains two vertically displaced
metal nanorod dimers (aligned side to side) and a fifth nanorod,
placed centrally at a right angle with respect to the dimers.
The symmetry of the three-dimensional plasmon ruler allows

for significant simplifications of Eq. (28). For instance, the LSP
coupling in each nanorod pair can be described with a single
coupling constant,which for brevitywedenote asCnm ≡ fnGnm
(wheren andm are particle indices). These pairs are notmutually
coupled (by virtue of their long vertical separation distance),
implying there are two 2 × 2 blocks describing LSP coupling for
each pair and two 2 × 2 off-diagonal blocks containing only
zeros. Coupling between the central rod and the lower pair of
nanorods is approximately equal but opposite, Ca1 ¼ −Ca2.
Similar considerations for the remaining interactions involving
the central rod lead to the following form for Eq. (28):

0
BBBBBB@

~aa
~a1
~a2
~a3
~a4

1
CCCCCCA

¼

0
BBBBBB@

1 −Ca1 Ca1 −Ca3 Ca3

−Ca1 1 −C12 0 0

C1a −C12 1 0 0

−C3a 0 0 1 −C34

C3a 0 0 −C34 1

1
CCCCCCA

−1

×

0
BBBBBB@

aa
a1
a2
a3
a4

1
CCCCCCA
: ð44Þ
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FIG. 11. Three-dimensional plasmonic ruler. (a) A sketch of the
ruler: the upper and lower quadrupoles are created by LSP dipole
modes excited in opposite directions in each pair of rods due to
coupling from the central rod, and (b) experimental data from Liu
et al. (2011) and the analytical model fitted to the data for
different lateral translations S of the central rod. Adapted from
Davis et al., 2012.
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The determinant of the matrix, required for the matrix
inverse, is given by

Δ ¼ 2G2
al

ω − ωql þ iΓ=2
þ 2G2

au

ω − ωqu þ iΓ=2
− ðω − ωa þ iΓ=2Þ;

ð45Þ

where ωql ¼ ωl þ Gl is the quadrupole resonance associated
with the coupling Gl between the lower pair of nanorods, and
likewise ωqu ¼ ωu þ Gu is the quadrupole resonance for the
upper pair. The transmission spectrum is proportional to
Imax − A2

a=jΔj2 so that the maxima and minima in the
determinant Δ control the respective minima and maxima
in the transmission spectrum. As shown in Fig. 11(b) this
expression fits the experimental data very well. A further
analysis of the determinant yields an approximate expression
for the resonance frequencies that enables identification of the
key factors that control each feature in the scattering spectrum
(Davis et al., 2012).

IV. CONCLUDING REMARKS

As we have shown, a simple algebra based on the
electrostatic eigenmode theory is capable of providing useful
physical insights into the optical properties of ensembles of
metal particles exhibiting localized surface plasmon resonan-
ces. It can, furthermore, be used to describe the interaction of
metal nanoparticles with single molecules (Davis, Gómez, and
Vernon, 2010a, 2010b; Gómez et al., 2012) and chiral media
(Davis and Gómez, 2014). The algebra is derived from the
electrodynamics of piecewise continuous dielectric media and
consequently does not account for nonlocal and quantum
mechanical effects that have been argued to take place at
interparticle separation distances of less than 1 nm (Savage
et al., 2012; Zhu et al., 2016).
Nevertheless, the method appears to encompass most of the

important physics associated with interacting metal particles
and is capable of predicting the important features and
behaviors of LSP spectra. Moreover, if experimental values
are used for the linewidths and resonance frequencies, the
electrostatic algebraic method gives quite accurate predictions
of the optical effects of LSP coupling in nanoparticle
ensembles.
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APPENDIX A: THE EIGENMODES AND EIGENVALUES
OF EQ. (4) FOR A SPHERE

We illustrate the application of Eq. (4) for the analytical
description of a metallic nanosphere in terms of eigenmodes
and its interaction with an external electric field. Some of the

results found in this section have also been applied for
describing the interaction of molecules with metal nano-
particles (Davis, Gómez, and Vernon, 2010b).
The starting point is to expand the surface charge density

using the spherical harmonics as a basis set (Jackson, 1975):

σðrÞ ¼
X
k;n

σk;nðRÞYk;nðΩÞ; ðA1Þ

where Ω ¼ θ, ϕ denotes the solid angle in the sphere which is
considered to have a radius R. σk;nðRÞ ¼ Ak;nRk þ
Bk;nR−ðkþ1Þ is the radial part with coefficients as yet
undetermined and the second index in the summation
n ¼ −k;−jk − 1j;…; 0;…; k − 1; k.
Equation (4) can also be expressed as

σðrÞ ¼ −
γ

2π

I
σðr0Þn̂ · ∇

1

jr − r0j dS
0; ðA2Þ

and the term 1=jr − r0j can be expanded using spherical
harmonics using the well-known expression (Jackson, 1975):

1

jr − r0j ¼ 4π
X
l;m

1

2lþ 1

r <l

r >lþ1
Y�
l;mðΩ0ÞYl;mðΩÞ: ðA3Þ

Substituting this and Eq. (A1) into Eq. (A2):

σðrÞ ¼ −
γ

2π

X
k;n

X
l;m

4π

2lþ 1

Z
2π

0

dϕ0

×
Z

π

0

dθ0 sinðθ0ÞY�
l;mðΩ0ÞYl;mðΩÞYk;nðΩ0Þ

× R2σk;nðRÞn̂ · ∇
r <l

r >lþ1

¼ γ

2π

X
k;n

X
l;m

4π

2lþ 1
δk;lδn;mR2σk;nðRÞ

1

2R2

¼ γ

2kþ 1

X
k;n

σk;nðRÞYk;nðΩÞ; ðA4Þ

which according to Eq. (A1) imply that the eigenvalues γ are
thus

γ ¼ 2kþ 1: ðA5Þ
A requirement of charge neutrality for the surface charge

distribution reads
I

σðrÞdS ¼ 0 ¼
X
l;m

Z
2π

0

dϕ
Z

π

0

dθ sinðθÞR2σl;mðRÞYl;mðΩÞ

¼
X
l;m

Z
2π

0

dϕ
Z

π

0

dθ sinðθÞYl;mðΩÞY0;0ðΩÞ

× R2σl;mðRÞ
ffiffiffiffiffi
4π

p

¼
X
l;m

δl;0δm;0R2σl;mðRÞ
ffiffiffiffiffi
4π

p
; ðA6Þ

a condition satisfied only if σ0;0ðRÞ ¼ 0, i.e., the expansion of
Eq. (A1) is made only for k > 0. Therefore, for a spherical
object, the eigenmodes of Eq. (4) are σk;nðRÞYk;nðΩÞ with
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eigenvalues 2kþ 1 (each being 2kþ 1 degenerate) where the
index k ¼ 1; 2;….
The solutions to Eq. (6) can also be found by following

the same procedure. However, as stated in Sec. II,
the solutions to Eqs. (4) and (6) form a biorthogonal set,
for which

H
τimðrÞσjnðrÞdS ¼ δmnδ

ij, requiring that the func-
tional form of τimðrÞ is τimðrÞ ¼ τimðRÞY�

mlðΩÞ (with
l ¼ −m;−jm − 1j;…; 0;…; m − 1; m):

δmnδ
ij ¼

I
τimðrÞσjnðrÞdS

¼
Z

2π

0

dϕ
Z

π

0

dθ sinðθÞR2τimðRÞσjnðRÞY�
mlðΩÞYnkðΩÞ

¼ R2τimðRÞσjnðRÞδmnδlk; ðA7Þ

which imply thus δij ¼ R2τimðRÞσjmðRÞ.
We now proceed to analyze the interaction of a metal

sphere with a uniform incident electric field, polarized
along the ẑ axis. Because of this interaction, the sphere
will support an LSP described by a superposition of
eigenmodes σð~rÞ ¼ P

mamðωÞσmðrÞ, where the excitation
amplitude amðωÞ of the mth eigenmode is given by Eq. (7)
of Sec. II:

amðωÞ ¼ fmðωÞ
I

τmðrÞn̂ ·E0ðrÞdS

¼ fmðωÞ
I

τmðrÞE0 cosðθÞdS

¼
Xm
l¼−m

fmðωÞE0

ffiffiffiffiffi
4π

3

r Z
2π

0

dϕ
Z

π

0

dθ sinðθÞ

× R2τmðRÞY�
mlðΩÞY1;0ðΩÞ

¼ fmðωÞE0

ffiffiffiffiffi
4π

3

r
R2τmðRÞδm1δl0 ðA8Þ

meaning that under this illumination, the surface charge
distribution describing the sphere’s LSP is

σðrÞ ¼
X
m

fmðωÞE0

ffiffiffiffiffi
4π

3

r
R2τmðRÞσmðRÞYmlðΩÞδm1δl0

¼ fm¼1ðωÞE0

ffiffiffiffiffi
4π

3

r
Y10ðΩÞ

¼ 3ϵbðϵmðωÞ − ϵbÞ
2ϵb þ ϵmðωÞ

E0

ffiffiffiffiffi
4π

3

r
Y10ðΩÞ; ðA9Þ

which is the result found by directly solving the Laplace
equation in spherical coordinates (Böttcher et al., 1978).
The dipole moment p associated with this charge distri-

bution is found by performing the surface integral
H
σðrÞrdS,

recognizing that r ¼ r½sinðθÞ cosðϕÞx̂þ sinðθÞ sinðϕÞŷþ
cosðθÞẑ�:

p ¼ am¼1ðωÞ
I

σm¼1ðRÞY10ðΩÞrdS

¼ am¼1ðωÞ
Z

2π

0

dϕ
Z

π

0

dθ sinðθÞY10ðΩÞY10ðΩÞ

× R3σm¼1ðRÞ
ffiffiffiffiffi
4π

3

r
ẑ

¼ am¼1ðωÞR3σm¼1ðRÞ
ffiffiffiffiffi
4π

3

r
ẑ ðA10Þ

and substitution of the expression for the excitation amplitude,
bearing in mind the biorthogonality condition:

p ¼ 4πR3

3
fm¼1ðωÞE0½R2τ1ðRÞσ1ðRÞ�ẑ

¼ 3ϵb½ϵmðωÞ − ϵb�
2ϵb þ ϵmðωÞ

4πR3

3
E0ẑ; ðA11Þ

which is also in agreement with well-known results (Böttcher
et al., 1978) but, more importantly, it permits for a physical
interpretation of the factor fmðωÞ: the polarizability per unit
volume of the mth eigenmode.

APPENDIX B: DRUDE MODEL AND THE
ELECTROSTATIC APPROXIMATION

According to the Drude model, the permittivity of a metal
can be given by

ϵðωÞ ¼ ϵD∞ −
ω2
P

ωðωþ iΓmÞ
: ðB1Þ

In order to get a closed analytical form of the factor f of
Eq. (9), we consider the case when the frequency is close to a
localized surface plasmon resonance ω ¼ ωm þ δ and fur-
thermore assume that ðδ=ωmÞ2 ≪ 1:

ϵðωÞ ¼ ϵD∞ −
ω2
P

ðωm þ δÞðωm þ δþ iΓmÞ

≈ ϵD∞ −
ω2
P

ω2
mð1þ 2δ=ωm þ iΓm=ωmÞ

: ðB2Þ

A Taylor expansion of the term in brackets in the denom-
inator results in

ϵðωÞ ≈ ϵD∞ −
ω2
P

ω2
mð1þ 2δ=ωm þ iΓm=ωmÞ

≈ ϵD∞ −
ω2
P

ω2
m

�
1 −

2δ

ωm
−
iΓm

ωm

�

≈ ϵD∞ −
ω2
P

ω2
m
þ 2ω2

P

ω3
m
ðω − ωm þ iΓm=2Þ; ðB3Þ

where we have kept only the first-order terms
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With this result we now consider f:

fjmðωÞ ≈ −
2ϵ2bðγjmÞ2
ðγjm − 1Þ2

ðωj
mÞ3
ω2
P

1

ω − ωj
m þ iΓj

m=2

¼ −
Aj
m

ω − ωj
m þ iΓj

m=2
; ðB4Þ

where Eq. (B2) has been used.
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