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Device concepts in semiconductor spintronics make long spin lifetimes desirable, and the require-
ments put on spin control by proposals for quantum information processing are even more
demanding. Unfortunately, due to spin-orbit coupling electron spins in semiconductors are
generically subject to rather fast decoherence. In two-dimensional quantum wells made of zinc-
blende semiconductors, however, the spin-orbit interaction can be engineered to produce persistent
spin structures with extraordinarily long spin lifetimes even in the presence of disorder and
imperfections. Experimental and theoretical developments on this subject for both n-doped and p-
doped structures are reviewed and possible device applications are discussed.
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I. INTRODUCTION

The field of semiconductor spintronics emerged around the
turn of the millennium and comprises a broad variety of effort
toward utilizing the spin degree of freedom of electrons,
instead, or combined with, their charge for information
processing, or, even more ambitiously, for quantum informa-
tion processing (Zutic, Fabian, and Das Sarma, 2004; Fabian
et al., 2007; Wu, Jiang, and Weng, 2010). Most activities in
this area rely on the relativistic effect of spin-orbit coupling
described by the Dirac equation and its nonrelativistic
expansion in powers of the inverse speed of light c. The
well-known spin-orbit coupling term arises here in second
order,

Hso ¼
ℏ

4m0c2
~σ ·

�
∇V ×

~p
m0

�
; ð1Þ

where the Pauli matrices ~σ describe the electron’s spin,m0 and
~p are its bare mass and momentum, respectively, and V is the
potential acting on the particle. Moreover, the free Dirac
equation V ¼ 0 has two dispersion branches with positive and
negative energy εð~pÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0c
4 þ c2p2

p
separated by a gap

of 2m0c2 ≈ 1 MeV, and the nonrelativistic expansion of the
Dirac equation can be viewed as a method of systematically
including the effects of the negative-energy solutions on the
states of positive energy starting from their nonrelativistic
limit. Importantly, the large energy gap 2m0c2 appears in the
denominator of the right-hand side of Eq. (1) and thus
suppresses spin-orbit coupling for weakly bound electrons.
Turning to semiconductors, the band structure of zinc-

blende III-V systems exhibits many formal similarities to the
situation of free relativistic electrons (as sketched in Fig. 1),
while the relevant energy scales are grossly different

FIG. 1. Left: Dispersion relation of free electrons showing a gap
of about 1 MeV between solutions of positive and negative
energy. Right: Schematic band structure of III-V zinc-blende
semiconductors with a band gap of typically 1 eV. The p-type
valence band consists of the heavy and light hole branches and
the split-off band.
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(Yu and Cardona, 2010). For not too large doping, only the
band structure around the Γ point matters consisting of a
parabolic s-type conduction band and a p-type valence band
with dispersion branches for heavy and light holes and the
split-off band. However, the fundamental gap between the
conduction and the valence band is of the order of 1 eV or
smaller. This heuristic argument makes plausible that spin-
orbit coupling is a significant effect in III-V semiconductors
and actually lies at the very heart of spintronics research.
A paradigmatic example of a semiconductor spintronics

device is the spin field-effect transistor (Datta and Das, 1990)
schematically depicted in Fig. 2. In this device proposal, an
electron enters a semiconductor region where its spin is
rotated via externally manipulable spin-orbit interaction in
a controlled way such that the carrier is then transmitted into
or, depending on the spin state, reflected from a spin-polarized
detector electrode. A shortcoming of this concept is that
impurities and other imperfections act as scatterers which
change the momentum of the electron (i.e., an orbital degree
of freedom) and therefore, again via spin-orbit coupling, easily
also randomize the spin, a process known as the Dyakonov-
Perel mechanism of spin dephasing (Dyakonov and Perel,
1972). A way to circumvent this effect is to engineer the total
spin-orbit field acting on the electron spin in such a way that
additional symmetries and related conserved quantities arise
which lead to persistent spin structures. This concept has
developed many theoretical ramifications and manifested
itself in various transport and spectroscopic experiments.
These theoretical possibilities and experimental achievements
are reviewed in this Colloquium.
This Colloquium is organized as follows: Sec. II deals

with persistent spin structures in n-doped III-V zinc-blende
semiconductor quantum wells and is the main body of this
review. In Sec. II.A we introduce the contributions to spin-
orbit coupling for quantum wells grown along the high-
symmetry directions of the crystal. Section II.B provides a
self-contained discussion of the theoretical foundation of
conserved spin quantities in [001] quantum wells, but also
treats the other high-symmetry growth directions. The
semiclassical description of spin densities via diffusion
equations and their relation to the persistent spin helix
are covered in Sec. II.C. In Sec. II.D we report on the
plethora of experiments investigating these predictions along
with pertaining further theoretical work. Theoretical results

regarding signatures of the persistent spin helix arising from
many-body physics are summarized in Sec. II.E. Section II.F
is devoted to n-doped systems of other geometries including
quantum wells of different growth directions and curved
structures. In Sec. II.G we summarize developments regard-
ing spin-field-effect transistors and persistent spin textures.
Section III contains a discussion of similar persistent spin
structures predicted to occur in materials other than n-doped
zinc-blende semiconductors. We close with an outlook
in Sec. IV.

II. n-DOPED QUANTUM WELLS

A. Spin-orbit coupling and growth direction

We now summarize important features of the effective
description of spin-orbit interaction in zinc-blende III-V
semiconductors such as GaAs, InAs, etc., focusing on two-
dimensional quantum wells (Winkler, 2003; Fabian et al.,
2007; Korn, 2010; Yu and Cardona, 2010). As already
mentioned, due to the lower carrier densities in such systems
compared to, e.g., metals, we can concentrate on the vicinity
of the Γ point, i.e., on wave vectors being small compared to
the inverse lattice spacing.
Moreover, we concentrate here on quantum wells grown

into the high-symmetry directions [001], [110], and [111]
which have been the focus of theoretical and experimental
studies so far. However, very recent work by Kammermeier,
Wenk, and Schliemann (2016) extended the concepts to be
discussed below to more general growth directions.
An important contribution to the effective band structure of

three-dimensional bulk systems is the Dresselhaus term given
by (Dresselhaus, 1955)

Hbulk
D ¼ γ½σxkxðk2y − k2zÞ þ σykyðk2z − k2xÞ þ σzkzðk2x − k2yÞ�

ð2Þ

with the electron’s (Bloch) wave vector ~k and a material
parameter γ. This contribution is symmetry allowed, γ ≠ 0,
due to bulk-inversion asymmetry, i.e., the fact that the zinc-
blende lattice lacks an inversion center.
In sufficiently narrow quantum wells a simplification

occurs as one can, at low enough temperatures, approximate
the wave vector components along the growth direction by
their average within the lowest subband. For a symmetric
well grown along the crystallographic [001] direction

we have hkzi ¼ 0, and introducing polar coordinates ~k ¼
kðcosφ; sinφÞ for the in-plane components it follows
(Dyakonov and Kachorovskii, 1986; Iordanskii, Lyanda-
Geller, and Pikus, 1994)

H001
D ¼ βkðσy sinφ − σx cosφÞ

− β3k½σx cosð3φÞ þ σy sinð3φÞ� ð3Þ

with β ¼ β1 − β3 and

β1 ¼ γhk2zi; β3 ¼ γ
k2

4
: ð4Þ

FIG. 2. Schematic of a spin field-effect transistor: An electron is
emitted from a spin-polarized source and enters a semiconductor
region with spin-orbit coupling being externally controllable via a
perpendicular gate voltage. In the above example the spin-orbit
interaction reverses the electron’s spin during its path, and since
the drain electrode is polarized opposite to the source, the
conductance of the device is high.
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Here as before the x and y directions coincide with [100] and
[010], respectively. The higher angular harmonics in the
second line of Eq. (3) are cubic in k. Neglecting these terms
leads to

H001
D ¼ βðkyσy − kxσxÞ ð5Þ

which contains a contribution strictly linear in the wave vector
(∝ β1) and a cubic term (∝ β3). The latter is usually a small
correction: To give a practical example, for a rectangular well of
width L ¼ 10 nm we have hk2zi ¼ ðπ=LÞ2 ≈ 0.1 nm−2.
Assuming nowa comparatively large density ofn ¼ k2f=ð2πÞ ¼
5 × 1011 cm−2 with a Fermi wave vector of kf ¼ 0.17 nm−1

(neglecting spin splitting) one finds k2f=4 ¼ 0.007 nm−2, i.e.,
β3ðkfÞ=β1 ¼ 0.07. However, there are reports where the
quadratic contribution β3 to the Dresselhaus coefficient β
was found to be essential in order to accurately describe
experimental data (Walser et al., 2012; Dettwiler et al.,
2014). For simplicity we refer to the Hamiltonian (5) as the
linear Dresselhaus term although it contains cubic corrections.
Quantum wells with other growth directions can be sim-

ilarly described by appropriately rotating the wave vector and
spin in Eq. (2). We restrict the discussion here to the other
high-symmetry directions of the cubic lattice (Dyakonov and
Kachorovskii, 1986; Eppenga and Schuurmans, 1988). For the
[110] direction one finds

H110
D ¼ β

2
kyσz þ

3β3
2

kσz sinð3φÞ; ð6Þ

where the x and y directions are along ½001� and ½110�,
respectively. The coefficient β in the first term is again given
by Eqs. (4) as β ¼ β1 − β3 and summarizes the k-linear
contribution and the correction provided by the first-harmonic
part of the cubic contributions, whereas the second term
contains the third-harmonic part. Remarkably, both terms
couple only to the spin projection in the z (or [110]) direction.
The Dresselhaus term for the [111] direction reads

H111
D ¼ 2βffiffiffi

3
p ðkyσx − kxσyÞ þ

4β3ffiffiffi
6

p kσz sinð3φÞ ð7Þ

with the x and y directions pointing along ½112� and ½110�.
Here the same comments apply as to Eqs. (3) and (6): The first
term describes the k-linear part with cubic correction while the
second term contains the higher angular-harmonic part of the
cubic contributions. Neglecting the third angular-harmonic
contributions in Eqs. (6) and (7) leads again to linear
Dresselhaus terms incorporating cubic corrections in their
parameter β.
The second important ingredient to the effective spin-orbit

coupling in quantum wells is known as the Rashba term and is
due to structure-inversion asymmetry, i.e., it occurs for
confining potentials failing to be invariant under spatial
inversion along the growth direction (Rashba, 1960;
Bychkov and Rashba, 1984). This contribution is described by

HR ¼ αðkxσy − kyσxÞ; ð8Þ
where the Rashba coefficient α is essentially proportional to
the potential gradient across the quantum well and can

therefore be varied experimentally. This contribution to
spin-orbit interaction is the essential ingredient of the proposal
for a spin field-effect transistor due to Datta and Das (1990)
already mentioned in Sec. I. The linear Rashba term (8) is
independent of the growth direction and invariant under
rotations in the x-y plane of the quantum well.
Remarkably, the Hamiltonian (8) has the same functional
form as the k-linear Dresselhaus term in Eq. (7) for the [111]
growth direction.
Although Rashba coupling was first investigated in semi-

conductors (Rashba, 1960; Bychkov and Rashba, 1984), it is
nowadays discussed and studied in a much wider variety of
structures lacking inversion symmetry; for a recent overview
see Manchon et al. (2015). A further source of spin-orbit
coupling in two-dimensional structures is asymmetric inter-
faces (Fabian et al., 2007); such contributions will not be
considered in the following.
We note that the Rashba term (8) can somewhat naively be

obtained from the general expression (1) by inserting a linear
potential along the z axis. This approach, however, leads to
values for α being several orders smaller than those inferred
from experiments, and a realistic description has to take into
account the influence of other bands in addition to the
conduction band (Darnhofer and Rössler, 1993; de Andrada
e Silva, La Rocca, and Bassani, 1997; Winkler, 2003; Fabian
et al., 2007; Wu, Jiang, and Weng, 2010). This procedure is
effectively similar to the Foldy-Wouthuysen transformation
used in relativistic quantum mechanics to reduce the full Dirac
equation for four-component spinors to an effective descrip-
tion of the “conduction band” comprised of solutions of
positive energy (Bjorken and Drell, 1965). Here the pertur-
bative treatment of the negative-energy states (“valence
band”) leads to the spin-orbit coupling term (1), apart from
other relativistic corrections.

B. Persistent spin helix: Basic theory

Let us first consider quantumwells grown in the [001] direc-
tion. As a result of a large body of experimental as well as
theoretical work (Fabian et al., 2007; Wu, Jiang, and Weng,
2010), both the parameters β and α lie in the ballpark of about
1.0 � � � 100 meVÅ for typical materials and growth geom-
etries. In particular, the Rashba parameter can be tuned to be
equal in magnitude to the Dresselhaus coefficient α ¼ �β. As
we see shortly, this situation gives rise to a prime example of a
persistent spin texture in a semiconductor nanostructure.
Let us consider a Hamiltonian consisting of the usual

quadratic kinetic energy characterized by a band mass m, the
Rashba term (8), and the linear Dresselhaus term (5),

H ¼ ℏ2k2

2m
þHR þH001

D ; ð9Þ

leading to the two dispersion branches

ε�ð~kÞ ¼
ℏ2k2

2m
� k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ β2 þ 2αβ sinð2φÞ

q
; ð10Þ

which are illustrated in Fig. 3 for different typical parameters.
As seen from the figure and Eq. (10), the dispersion is clearly
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anisotropic for α ≠ 0 ≠ β. Remarkably, this anisotropy in the
dispersion relation does not lead to an anisotropy of the linear
electrical bulk conductivity (Trushin and Schliemann, 2007a;
Chalaev and Loss, 2008, 2009), despite an earlier statement in
the literature (Schliemann and Loss, 2003).
The case α ¼ �β shown in the lower right panel of Fig. 3 is

particular (Schliemann, Egues, and Loss, 2003): Here the
Hamiltonian (9) can be formulated as

H ¼ ℏ2

2m
½k2 þ 2ð~k · ~QÞΣ� ð11Þ

with

Σ ¼ ∓ σx þ σyffiffiffi
2

p ; ~Q ¼
ffiffiffi
2

p
mα

ℏ2
ð1;�1Þ; ð12Þ

such that the spin operator Σ is a conserved quantity,

½H;Σ� ¼ 0: ð13Þ

The energy dispersions

ε�ð~kÞ ¼
ℏ2

2m
½k2 � 2ð~k · ~QÞ� ð14Þ

form circles whose centers are displaced from the Γ point by

∓ ~Q. Differently from Eq. (10) the double sign here refers to
the spin eigenvalues determined by Σχ� ¼ �χ�, where the
eigenspinors read for α ¼ þβ:

χ� ¼ 1ffiffiffi
2

p
�

1

∓ e−iπ=4

�
; ð15Þ

and for α ¼ −β the lower spin component acquires an addi-
tional factor of (−i). In particular, the spin state is independent
of the wave vector, i.e., spin and orbital degrees of freedom are
disentangled, and the Kramers degeneracy enforced by time
reversal symmetry is manifested as

εþð~k − ~QÞ ¼ ε−ð~kþ ~QÞ: ð16Þ

The conservation of the spin component Σ expressed in
Eq. (13) remains intact if a spin-independent single-particle
potential or spin-independent interaction among the electrons
is added to the Hamiltonian. In such a case the single-particle

wave vector ~k will in general not be conserved any more and

is to be replaced by a proper momentum operator ~k ↦ −i∇.
For example, adding an arbitrary scalar potential Vð~rÞ to the
Hamiltonian (11) and inserting the ansatz

ψ�ð~rÞ ¼ e−i ~Q⋅~rΣχ�ϕð~rÞ ¼ e∓i ~Q⋅~rχ�ϕð~rÞ ð17Þ

into Hψ� ¼ εψ� leads to the spin-independent Schrödinger
equation

�
−
ℏ2

2m
∇2 þ Vð~rÞ

�
ϕð~rÞ ¼

�
εþ 2mα2

ℏ2

�
ϕð~rÞ; ð18Þ

where the energy is shifted by ℏ2Q2=ð2mÞ ¼ 2mα2=ℏ2. An
analogous many-particle Schrödinger equation is obtained
when adding to Eq. (11) an arbitrary spin-independent
interaction among particles; here the spin component Σ of
each electron is separately conserved.
Moreover, comparing the spin state of a general wave

function composed of the states (17) at given energy,

ψð~rÞ ¼ νþψþð~rÞ þ ν−ψ−ð~rÞ
¼ ðνþe−i ~Q⋅~rΣχþ þ ν−e−i

~Q⋅~rΣχ−Þϕð~rÞ ð19Þ

at two arbitrary locations, say ~r ¼ 0 and ~r ¼ ~a, we see that the
spin state of ψð~aÞ emerges from ψð0Þ by applying the operator
expð−i ~Q ⋅ ~aΣÞ. This is a controlled rotation being indepen-
dent of any further detail of the system encoded in the single-
particle potential or the interaction. As the rotation operator is
also independent of energy, this observation also holds for
arbitrary linear combinations of states of different energy.
Thus, under these very general circumstances, the electron
spin undergoes a controlled rotation as a function of position,
a phenomenon later called the persistent spin helix (Bernevig,
Orenstein, and Zhang, 2006).

The angle of the controlled rotation is 2 ~Q ⋅ ~a and naturally
depends on the distance ~a, while the rotation axis in spin space
is defined by the conserved operator Σ and given by
ð∓ 1; 1; 0Þ, depending on α ¼ �β. As a consequence, the
spin component in this direction is constant as a function of
both position and time leading to an infinite spin lifetime as
measured by the expectation value of Σ. The latter feature is of

FIG. 3. Fermi contours for an electron system with band mass
m ¼ 0.067m0 (corresponding to GaAs), a typical Fermi energy of
εf ¼ 10 meV, and a Dresselhaus parameter of β ¼ 10 meVnm.
With a growing Rashba parameter the energy dispersion becomes
increasingly anisotropic. For the case α ¼ β (bottom right) the
spin directions being independent of wave vector are indicated.
Adapted from Schliemann and Loss, 2003.
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course just a general property of any conserved operator
within an equilibrium state.
Prior to the work by Schliemann, Egues, and Loss (2003),

others also reported peculiarities of the system (9) at α ¼ β
although not relating their observations to the existence of a
new conserved quantity. Kiselev and Kim (2000b) studied an
effective spin model of the type (9) where the momentum

~p ¼ m_~r is a classical quantity (also neglecting the difference
between canonical and kinetic momenta due to spin-orbit
coupling) whose time dependence is generated by a Markov
chain modeling independent elastic scattering events. Here
for general Rashba and Dresselhaus parameters, the spin
is rapidly randomized via the Dyakonov-Perel spin
relaxation mechanism (Dyakonov and Perel, 1972). For α ¼
�β the time ordering T in the time evolution operator
UðtÞ ¼ T exp½−i R t

0 dt
0H(pðt0Þ)=ℏ� becomes trivial such that

it takes, up to a global phase factor, the form of the global
spin rotation operator (Schliemann, Egues, and Loss, 2003),

UðtÞ ¼ exp ð−i ~Q ⋅ ~aðtÞΣÞ ð20Þ

with ~aðtÞ ¼ ~rðtÞ − rð0Þ. In particular, Kiselev and Kim
(2000b) observed a diverging spin lifetime for expectation
values of Σ; a similar conclusion was reached by Cartoixa,
Ting, and Chang (2003), slightly subsequent to the work by
Schliemann, Egues, and Loss (2003). The suppressed relax-
ation of appropriate spin components was also found earlier
by Averkiev and Golub (1999).
In another theoretical investigation Pikus and Pikus (1995)

concluded that contributions of Rashba and Dresselhaus spin-
orbit coupling to the electrical conductivity cancel each other
at α ¼ β (albeit both terms were predicted there to contribute
additively to spin relaxation, in contrast to the results
demonstrated earlier). Tarasenko and Averkiev (2002) studied
the combined influence of Rashba and Dresselhaus contribu-
tions to the beating patterns of Shubnikov–de Haas oscilla-
tions and predicted an effective cancellation of the terms at
α ¼ β. Finally, the very fact that Rashba and Dresselhaus spin-
orbit coupling can nontrivially interfere rather than simply add
up was already observed theoretically by Knap et al. (1996)
within investigations of weak localization phenomena.
Writing the Hamiltonian (11) in the form

H ¼ 1

2m
ð~pþ ℏ ~QΣÞ2 − ℏ2 ~Q2

2m
ð21Þ

suggests to interpret the operator expð−i ~Q ⋅ ~rΣÞ occurring in
Eqs. (17) and (19) as a gauge transformation and ~p as a gauge-
dependent canonical momentum (Chen and Chang, 2008;
Tokatly and Sherman, 2010). Moreover, since the Hermitian
2 × 2 matrix Σ generates SU(2) transformations, the question
arises whether the Hamiltonian (21) admits further sym-
metries furnishing a full representation of the Lie algebra
su(2). Following Bernevig, Orenstein, and Zhang (2006) this
can be achieved by writing the Hamiltonian in second-
quantized form,

H ¼
X
~kη

ℏ2

2m
ðk2 þ 2η ~Q ⋅ ~kÞcþ~kηc~kη ð22Þ

along with

T3 ¼ Σ
2
¼

X
~kη

η

2
cþ~kηc~kη; ð23Þ

where cþ~kη (c~kη) creates (annihilates) an electron with wave

vector ~k and spin state χη, η ¼ �. Defining now

Tþ
~Q
¼

X
~k

cþð~k− ~QÞþcð~kþ ~QÞ− ð24Þ

and its adjoint T−
~Q
¼ ðTþ

~Q
Þþ one easily verifies that the latter

two operators together with T3 fulfill the su(2) commutation
relations,

½Tþ
~Q
; T−

~Q
� ¼ 2T3; ½T3; T�

~Q
� ¼ �T�

~Q
ð25Þ

and commute, just as T3, with the Hamiltonian,

½H; T�
~Q
� ¼ 0: ð26Þ

Moreover, since T�
~Q
also commutes with any Fourier compo-

nent of the density ρ~q ¼
P

~kηc
þ
~kη
cð~kþ~qÞη,

½ρ~q; T�
~Q
� ¼ 0; ð27Þ

Eq. (26) remains also valid if arbitrary spin-independent
potentials or interactions are added to the Hamiltonian. We
note that the su(2) commutation relation (25) as well as the

property (27) holds for any vector ~Q. The vanishing of the
commutator (26), however, depends on the specific form given
in Eq. (12) and the fact that the spin-independent part of the
kinetic Hamiltonian (11) is quadratic in thewave vector leading
to the degeneracy (16). For instance, if a term quartic in the
momentum were present (still consistent with time reversal
symmetry), Eq. (26)would not hold, and also a formulation (21)
as the style of a gauge theory would not be possible.

Applying an in-plane magnetic field perpendicular to ~Q
(i.e., in the direction defined by Σ) changes the Hamiltonian as

H0 ¼
X
~kη

�
ℏ2

2m
k2 þ η

�
ℏ2

m
~Q ⋅ ~kþ Δ

2

��
cþ~kηc~kη ð28Þ

withΔ being the Zeeman gap. This alteration breaks the SU(2)
symmetry down to U(1) as the Hamiltonian of course still

commutes with Σ but not with T�
~Q0 for any choice of ~Q0 since

½H0;T�
~Q0 � ¼

X
~k

�
2ℏ2

m
~k ⋅ ð ~Q− ~Q0ÞþΔ

�
cþð~k− ~QÞþcð~kþ ~QÞ−: ð29Þ

The operators T�
~Q
are defined with respect to the explicit

spinors (15). In terms of the usual spin density ~S~q ¼
ð1=2ÞP~k

P
μν c

þ
~kμ
~σμνcð~kþ~qÞν definedwith respect to the original
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spin coordinates underlying the Hamiltonian (9) they can be
expressed as

T�
~Q
¼ Sz�2 ~Q

� i
~Q

j ~Qj
· ~S�2 ~Q; ð30Þ

i.e., they describe the spin components perpendicular to the
quantization axis defined by Σ ¼ 2T3. Defining the Hermitian
combinations T1 ¼ ðTþ þ T−Þ=2, T2 ¼ ðTþ − T−Þ=ð2iÞ, we
obtain an su(2)-valued vector ~T of observables commutingwith

the Hamiltonian. Thus, the expectation value h~Ti within any
pure state is constant in time. Regarding mixed states, a
sufficient condition for a constant expectation value is to
demand that the density operator is only a function of the
Hamiltonian itself, ρ ¼ ρðHÞ, as typical for equilibrium sit-
uations. However, such a density matrix is also invariant under

arbitrary spin rotations generated by ~T such that, as usual for

rotationally invariant magnetic systems, h~Ti vanishes. In other
words, a finite expectation value h~Ti is the consequence of a
nonequilibrium state or the result of spontaneous symmetry
breaking. The latter should of course not be expected in a two-
dimensional system.
For quantum wells with growth direction [110] the

Dresselhaus term (6) commutes with σz. Thus, the analog
of the Hamiltonian (9) allows for a conserved spin quantity if
the Rashba spin-orbit coupling is absent. In this case the
Hamiltonian can again, neglecting the cubic third-harmonic
contribution to the Dresselhaus coupling, be formulated as in
Eq. (11) with

Σ ¼ σz; ~Q ¼ mβ

2ℏ2
ð0; 1Þ: ð31Þ

With these replacements, analogous properties as obtained for
[001] quantum wells at α ¼ �β follow. In particular, an SU(2)
symmetry as described in Eqs. (22)–(27) also occurs here
which is in the present case broken down to U(1) by applying
a magnetic field along the growth direction [cf. Eqs. (28)
and (29)].
Finally, for quantum wells grown into the [111] direction

the linear part of the Dresselhaus coupling (7) and the Rashba
term (8) have the identical functional form. Here a conserved
quantity can be realized only if these two contributions exactly
cancel each other (Cartoixa, Ting, and Chang, 2005a, 2005b;
Vurgaftman and Meyer, 2005).

Moreover, in a very recent work Kammermeier, Wenk, and
Schliemann (2016) extended the previous considerations to
more general growth directions. Specifically it was demon-
strated that a conserved spin operator exists for appropriately
tuned Rashba coupling, if and only if two Miller indices of the
growth direction agree in modulus. Fully analogously to the
cases discussed earlier, these conserved spin components are
extended to an su(2) algebra of operators commuting with the
Hamiltonian.

C. Spin diffusion equations

Let us concentrate again on [001] quantum wells. As seen
before, for balanced contributions to spin-orbit coupling α ¼
�β an electron spin undergoes a perfectly controlled rotation
provided the locations of injection and detection of the
electron are sufficiently defined, for instance in terms of
quantum point contacts (Schliemann, Egues, and Loss, 2003).
This, however, is a rather special situation in experiments. In
order to treat more general scenarios it is useful to study the
expectation value of the local spin density,

~sð~r; tÞ ¼
�X

a

ℏ
2
~σaδ(~r − ~raðtÞ)

�
; ð32Þ

where a labels the electrons, and the average h⋅i is to be taken
over the given (in general nonequilibrium) state in the
presence of disorder potentials and/or interactions among
the charge carriers. Moreover, we also include the cubic third-
harmonic correction to the Dresselhaus term (3) proportional
to β3. Effective semiclassical diffusion equations for ~sð~r; tÞ
can be derived via quantum kinetic equations rooted in the
Keldysh formalism (Mishchenko, Shytov, and Halperin,
2004). Working in Fourier space at small frequencies and
wave vectors, and evaluating the arising parameters within the
zero-temperature ground state, one obtains in the regime of
weak spin-orbit coupling (Bernevig, Orenstein, and Zhang,
2006; Stanescu and Galitski, 2007; Liu and Sinova, 2012;
Salis et al., 2014)

ð−iωþDq2 þDsoÞ

0
B@

s1ð~q;ωÞ
s2ð~q;ωÞ
s3ð~q;ωÞ

1
CA ¼ 0 ð33Þ

with

Dso ¼ 2k2fτ

0
BBBBB@

h
ðαþ βÞ2 þ β23

i
=ℏ2 0 iðαþ βÞq1=m

0
h
ðα − βÞ2 þ β23

i
=ℏ2 iðα − βÞq2=m

−iðαþ βÞq1=m −iðα − βÞq2=m 2ðα2 þ β2 þ β23Þ=ℏ2

1
CCCCCA
: ð34Þ

In Eq. (33) we used a rotated coordinate system in the plane
of the quantum well s1;2 ¼ ð�sx þ syÞ= ffiffiffi

2
p

, s3 ¼ sz, and
likewise for the wave vector ~q, such that the new axes are
along [110] and ½110�. D ¼ v2fτ=2 is the usual diffusion

constant given in terms of the momentum relaxation time τ
and the Fermi velocity vf ¼ ℏkf=m for an effective Fermi
wave vector kf (again neglecting spin splitting). Equa-
tion (33) is valid in the regime of weak spin-orbit
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interaction ðα; β; β3Þkfτ=ℏ ≪ 1. Diffusion equations sim-
ilar to Eqs. (33) and (34) have, for various types of spin-
orbit coupling and ingredients to the many-body physics,
also been derived using different theoretical techniques
(Kalevich, Korenev, and Merkulov, 1994; Burkov, Núñez,
and MacDonald, 2004; Raimondi et al., 2006; Schwab
et al., 2006; Kleinert and Bryksin, 2007, 2009; Bernevig
and Hu, 2008; Wenk and Kettemann, 2010; Yang,
Orenstein, and Lee, 2010; Lüffe, Kailasvuori, and Nunner,
2011; Lüffe, Danon, and Nunner, 2013).
All the effects of spin-orbit interaction in the diffusion

equation (33) are encoded in the matrix (34). As expected, this
equation also reflects the symmetry properties arising for
balanced Rashba and Dresselhaus coupling as analyzed in
Sec. II.B: At, say, α ¼ β the equation for s2 decouples from
the remaining system and reads in real space

ð∂t −D∇2 þ 1=T1Þs2ð~r; tÞ ð35Þ

with 1=T1 ¼ 2k2fτðβ3=ℏÞ2 and the general solution

s2ð~r; tÞ ¼ e−t=T1

ð2πÞ2
Z

d2qe−Dq2ts2ð~q; t ¼ 0Þei~q⋅~r: ð36Þ

Equation (36) describes the diffusion of an initial spin
polarization, accompanied by its decay on the time scale
T1 which, as suggested by the notation, is aptly referred to as a
decoherence time. Without the cubic third-harmonic correc-
tion to the Dresselhaus term β3 ¼ 0, no decay occurs, and all
the dynamics is due to the diffusive motion of electrons with
fixed spin governed by the particle (or charge) diffusion
constant D. We note that the spin density can be changed by
either moving the particles or altering their spin. Because of
the latter mechanism, the spin density does, differently from
the charge density, fulfill a continuity equation with additional
source terms (Erlingsson, Schliemann, and Loss, 2005). The
infinite spin relaxation time occurring at α ¼ �β and β3 ∝
1=T1 ¼ 0 was confirmed by several on the basis of
Monte Carlo simulations treating the orbital carrier dynamics
classically (Kiselev and Kim, 2000b; Ohno and Yoh, 2007,
2008; Liu et al., 2010); for an analytical approach see also
Lyubinskiy and Kachorovskii (2006) and Wenk and
Kettemann (2011).
The two other solutions to Eq. (33) are for α ¼ β and β3 ¼

0 characterized by the frequencies

iω�ð~qÞ ¼ Dq2 � 8k2fτ½ðα=ℏÞ2 þ ðαq1=mÞ2�: ð37Þ

Now for ~q being twice the “shift vector” � ~Q as occurring in

Eqs. (12) and (16), i.e., q1 ¼ �2j ~Qj, q2 ¼ 0, we have ω− ¼ 0
(Bernevig, Orenstein, and Zhang, 2006). This static solution
describes the persistent spin helix and reads in real space

�
s1ð~rÞ
s3ð~rÞ

�
¼ A

�
cos ð2 ~Q ~rþϕÞ
− sin ð2 ~Q ~rþϕÞ

�
ð38Þ

with two real constants A and ϕ. Naturally, the angular

argument 2 ~Q ⋅ ~r of the spin rotation around the ½110� direction

occurring here is the same as (for ~r ¼ ~a) in the effective
evolution operator (20): The spatial dependence of the spin
density (38) precisely mimics the rotation of the spin of an

electron moving along the direction of ~Q. Figure 4 shows a
sketch of the helical spin structure described by Eq. (38).

D. [001] Quantum wells: Experiments and simulations

We now review experimental work investigating the high-
symmetry situation α ¼ �β in [001] quantum wells, along
with numerical simulations and pertinent theoretical
approaches.

1. Optical techniques

The stability of periodic spin structures in GaAs quantum
wells close to the regime α ≈ β was experimentally studied by
Koralek et al. (2009) using the technique of transient spin-
grating spectroscopy. Here a periodic spin pattern with defined
wave vector ~q is created via optical orientation by two
noncollinear laser beams, and its time evolution is then
monitored by diffraction of a time-delayed probe pulse.
The initial spin density structure is a superposition of two
helices with the same ~q∥½110� but different senses of rotation,
only one of which matches the one encoded in the static
solution (38). Accordingly, Koralek et al. (2009) observed that
the initial spin polarization decays, to about equal weights, on
two very distinct time scales as shown in Fig. 5: A short-lived
part where the lifetime shows a maximum at q ¼ 0 and slowly
decreases with growing wave number, and a fraction with
clearly enhanced lifetime attaining a pronounced maximum at
q ≈ 106 m−1. The latter should be interpreted as a persistent
spin helix (38) with q ¼ 2Q ¼ 4mα=ℏ2 corresponding to a
Rashba parameter of α ≈ 3 meVÅ. The fact that these
measurements indeed explore the regime α ≈ β was further
established by varying the Rashba and Dresselhaus parameter
(see lower panels of Fig. 5): The first was achieved by
studying samples with altered relative concentration of the
remote dopants on both sides of the quantum well at fixed total
density of dopants, while in the latter case samples of different
well width were compared.
In a related experimental study Yang et al. (2012) inves-

tigated, also using transient spin-grating spectroscopy, the
drift dynamics of spin helices in the presence of an electric
field directed in the plane of a symmetric quantum well with a

FIG. 4. Schematic of the persistent spin helix occurring in a
[001] quantum well for spin-orbit coupling tuned to α ¼ β

according to Eq. (38). The shift vector ~Q defines the pitch of
the helix and points along the lateral direction. The spin density
component in the longitudinal direction vanishes, s̄2 ¼ 0.
Adapted from Fabian, 2009.
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vanishing Rashba but finite Dresselhaus parameter. These spin
helices have of course per se a finite lifetime.
The formation of a persistent spin helix was directly

observed by Walser et al. (2012) using spatially and tempo-
rally resolved Kerr microscopy. They monitored the time
evolution of a local spin polarization along the growth (or z)
direction produced by a focused pump laser. The upper panels
of Fig. 6 show the spreading of this initial wave packet by
diffusion: The z component of the spin density evolves, due to
the combined Rashba and Dresselhaus spin-orbit coupling
near α ¼ þβ, into an oscillatory pattern along the [110] direc-
tion, consistent with numerical simulations by Liu et al.
(2006, 2009). As expected, the spin density pattern is constant
in the orthogonal ½110� direction. Similar to the measurements
by Koralek et al. (2009), the detection technique is sensitive
only to the z component of the spin density. Applying an
external magnetic field in the ½110� direction coupling to the
conserved spin component Σ rotates the in-plane component
of the helix into the growth direction and enables its detection
(lower panels of Fig. 6). We note that, as seen in Eqs. (22) and
(29), introducing such an external field breaks the SU(2)
symmetry at α ¼ β. Thus, the work by Walser et al. (2012) is
an experimental demonstration that the stability of the
persistent spin helix does not depend on the full SU(2)
symmetry but the existence of the single conserved spin
component Σ suffices.

The investigations by Walser et al. (2012) were performed
in a [001]-grown GaAs quantum well with the Rashba
parameter fixed by asymmetric doping. Ishihara, Ohno, and
Ohno (2014a) conducted a similar imaging study on a sample
where the Rashba parameter was varied by a gate voltage
close to α ¼ −β. In a companion study they used Kerr
imaging to map out the spin dynamics in quantum wires
lithographically defined in the quantum well along the [110]
and ½110� directions (Ishihara, Ohno, and Ohno, 2014b). In
accordance with Eqs. (11) and (12) (again for α ¼ −β), the
spin-orbit coupling was found to be strongly suppressed in the

former case (where ~k⊥ ~Q), while in the latter case a spin helix
was formed. Similar results on spin dephasing time scales for
quantum wires in GaAs wells close to α ¼ −β were reported
by Denega et al. (2010).
Salis et al. (2014) combined the experimental techniques of

Walser et al. (2012) with theoretical simulations to study the
formation of a spin helix, again following a local optical spin
excitation, under imperfect conditions. Specifically, they
considered a finite imbalance jαj − β ≠ 0, a substantial
third-harmonic cubic correction to the Dresselhaus term,
and lateral confinement within the quantum well. The exper-
imental results obtained again for GaAs samples were found
to agree well with the theoretical modeling. Only a short while
later the same collaboration (Altmann et al., 2014) inves-
tigated, in a similar experimental setup, the spin helix lifetime

FIG. 5. Upper left panel: Decay curves of spin gratings obtained
by Koralek et al. (2009) for different wave numbers q of the
initially modulated spin density. The data show decay on two
distinct time scales. Upper right panel: Lifetimes of the spin
helices with enhanced (τE) and reduced (τR) stability. The former
one corresponds to the spin density configuration (38) with a
maximum lifetime at q ¼ 2Q. Lower panels: Lifetime of the spin
helix configuration as a function of the wave number for different
doping asymmetry (varying the Rashba coupling, left) and well
width (varying the Dresselhaus term, right). Adapted from
Koralek et al., 2009.

FIG. 6. Kerr rotation data obtained by Walser et al. (2012). The
detection method is sensitive to the out-of-plane component sz of
the spin density. Upper panels: Time evolution of the persistent
spin helix from an initial local spin polarization along the growth
direction (left) generated by a pump laser. Here the x and y
directions point along ½11̄0� and [110], respectively, and the
detection method is sensitive only to the out-of-plane component
szð~r; tÞ of the spin density shown. Lower panels: Time evolution
of the spin density in zero magnetic field (left) and in an in-plane
field of B ¼ −1 T along ½11̄0� rotating the in-plane spin compo-
nents into the growth direction. Adapted fromWalser et al., 2012.
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near α ¼ β in quantum wires etched along the direction

½110�∥ ~Q in quantum wells originating from the same wafer
as used before (Walser et al., 2012). By fitting their data to a
spin diffusion model (Salis et al., 2014) (cf. Sec. II.C) they
concluded that the observed enhanced stability of the helix is
mainly due to the geometrical confinement while the intrinsic
lifetime is rather unaffected and still determined essentially by
the cubic third-harmonic contribution to the Dresselhaus term.
Schönhuber et al. (2014) investigated via inelastic light

scattering intrasubband spin excitations in a GaAs quantum
well close to α ¼ β produced again from the same wafer as
used byWalser et al. (2012). For momentum transfer along the
~Q∥½110� direction a substantial spin splitting is found, while
this quantity is clearly suppressed in the opposite direction, in
accordance with Eqs. (11) and (12) and the findings by
Ishihara, Ohno, and Ohno (2014b) (working at α ¼ −β). The
spin-orbit parameters extracted from the measurements are
consistent with the results by Walser et al. (2012).
Most recently, two studies extended the work of Yang et al.

(2012) mentioned previously on spin helix drift in quantum
wells now close to α ¼ �β. Kunihashi et al. (2016) inves-
tigated drift spin transport via Kerr imaging in a four terminal
geometry of Ohmic contacts covered by a semitransparent Au
gate electrode. The latter varied the Rashba coupling while
voltages applied to the contacts created drift transport of
optically injected spin-polarized electrons. Wells of two
widths (L ¼ 15 and 25 nm) were studied with the wider
one being close to α ¼ −β, and a clearly enhanced spatial
coherence of the drifting spin pattern was observed here. They
also demonstrated the modulation of the electron transport
path upon applying time-dependent drift voltages. Altmann
et al. (2016) used samples of the same structure as Walser
et al. (2012) to perform a Kerr imaging study concentrating on
the situation where the diffusive current of the optically
injected spin density is compensated by the drift current.
Here a spin precession is found with a frequency proportional
to the drift velocity. Using an appropriate model for the carrier
distribution function (being anisotropic as a function of wave
vector) they explained this effect with properties of the cubic
Dresselhaus term.

2. Transport measurements

Kohda et al. (2012) investigated the quantum corrections to
the magnetoconductance in InGaAs quantum wells with spin-
orbit coupling close to α ¼ β. The spin-orbit interaction
combined with scattering on imperfections generically ran-
domizes the spin leading to weak antilocalization signaled by
a negative magnetoconductance (Knap et al., 1996; Schäpers
et al., 2006; Wirthmann et al., 2006; Kettemann, 2007). For
Rashba and linear Dresselhaus spin-orbit interactions at
α ¼ �β, however, spins are left unaltered along closed
trajectories which should give rise to weak localization,
i.e., a positive magnetoconductance. Kohda et al. (2012)
applied the magnetic field perpendicular to the quantum well
and used a gate voltage across it to vary the Rashba parameter
α. As shown in Fig. 7, in a comparatively narrow well of width
L ¼ 4 nm they found a transition from weak antilocalization
to weak localization and back when driving the gate voltage
through an appropriate critical value. In a sample with a larger

well width of L ¼ 7 nm and therefore smaller Dresselhaus
parameter β no such behavior was observed, i.e., in the latter
system β and the range of α seem to be too different to match
each other. The experimental results are corroborated by
numerical simulations which conclude that the weak locali-
zation signal persists even if the cubic third-harmonic term in
Eq. (3) is included, but its location in parameter space is
shifted away from α ¼ β.
The fact that the L ¼ 4 nm sample actually has spin-orbit

coupling parameters close to α ¼ β was also established by
Kohda et al. (2012) in an independent experiment using the
spin-galvanic effect. This phenomenon amounts to an electric
current in response to an in-plane spin polarization, and its
directional dependence is highly sensitive to the ratio α=β
(Ganichev et al., 2004; Trushin and Schliemann, 2007a;
Ganichev and Golub, 2014), which was indeed found to be
close to unity.
Dettwiler et al. (2014) extended the investigations by

Kohda et al. (2012) using GaAs quantum wells varying in
width from L ¼ 8 to 13 nm. Employing a combination of top
and back gates the Rashba parameter α and the carrier density
n could be tuned independently. The point α ¼ β was again
determined by monitoring the transition from weak antiloc-
alization to weak localization and back. To obtain a consistent
data analysis it was necessary to take into account the cubic
correction (being proportional to n) to the Dresselhaus
parameter β. As a result, Dettwiler et al. (2014) demonstrated
control over spin-orbit coupling parameters and carrier density
while preserving the condition α ¼ β. At quite high densities
such as n ¼ 9 × 1011 cm−2 no transition between weak
antilocalization and localization was found which should be
ascribed to the third-harmonic correction to the Dresselhaus
term that also increases with density.
Magnetoconductance studies in quantum wires in the

directions [100], [110], and ½110� of an [001] InGaAs quantum
well were performed by Sasaki et al. (2014) building upon
theoretical work by Scheid et al. (2008). To reduce fluctuation
effects they used arrays of wires which were arranged in
the same sample thus enabling simultaneous measurements.

FIG. 7. Measured magnetoconductance for different gate volt-
ages in two quantum wells differing in width. In the narrower
well (left) a transition from weak antilocalization to weak
localization and back occurs. From Kohda et al., 2012.
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The Rashba coupling was varied by a top gate, and the
magnetic field lay in the plane of the well leading in
combination with the spin-orbit coupling to a strong
anisotropy of the magnetoconductance, which additionally
depends on the direction of the wire. In a one-dimensional
quantum wire spin randomization due to momentum scatter-
ing (Dyakonov-Perel mechanism) is quenched since the
effective wave-vector-dependent field provided by the spin-
orbit interaction is unidirectional. This phenomenon is dis-
cussed in more detail in Sec. II.F.4. An in-plane magnetic field
noncollinear with the spin-orbit field changes this situation
and leads to spin randomization favoring weak antilocaliza-
tion. Thus, in accordance with the numerical simulation done
by the authors, the weak localization signal in the conductance
is maximal if the applied field is collinear with the field
provided by the spin-orbit coupling. With the direction of the
wave vector defined by the quantum wire, the latter obser-
vation provides a means to determine the ratio α=β. In
particular, for α=β ¼ 1 no anisotropy of the magnetoconduc-
tance is observed for transport in the ½110� direction since here
we have ~k⊥ ~Q [cf. Eqs. (11) and (12)]. If the applied magnetic
field is substantially noncollinear with the spin-orbit field, it
randomizes the spin and suppresses weak localization.
Assuming that this process is most efficient if both fields
are of the same magnitude (as indicated by the numerics),
Sasaki et al. (2014) also give reasonable separate estimates for
α and β. For a further proposal to determine the relative
strength of the Rashba and Dresselhaus coupling utilizing the
high-symmetry point jα=βj ¼ 1, see Li and Chang (2010).
Most recently, Yoshizumi et al. (2016) demonstrated gate-

controlled switching between α ¼ �β in an InAlAs quantum
well. The occurrence of each persistent spin helix (differing by
sense of rotation) was again detected by similar magneto-
conductance measurements.

3. Stability of the spin helix: Limiting factors

Several theoretical studies have identified the cubic
Dresselhaus term as the main decay mechanism of the
persistent spin helix (Lusakowski, Wrobel, and Dietl, 2003;
Cheng and Wu, 2006; Cheng, Wu, and da Cunha Lima, 2007;
Kettemann, 2007; Shen and Wu, 2009; Lüffe, Kailasvuori,
and Nunner, 2011; Wenk and Kettemann, 2011; Liu and
Sinova, 2012; Kurosawa et al., 2015) in accordance with
experiments already mentioned (Koralek et al., 2009; Salis
et al., 2014).
Specifically, the spin-grating experiments by Koralek et al.

(2009) found the spin lifetime τh of the symmetry-protected
spin helix to be of the order of a few hundred picoseconds,
depending significantly on temperature. The ratio of τh and
the time scale of ordinary (spin) diffusion can be expressed as
η ≔ 4DQ2τh. This quantity is constant η ≈ 100 below 50 K,
while it decreases for higher temperature with a power law
showing an exponent slightly larger than 2. The subsequent
theoretical analysis by Liu and Sinova (2012) concluded that
this temperature dependence cannot be quantitatively
described by a low-order treatment of the spin-orbit inter-
action which is essentially restricted to the Dyakonov-Perel
regime and leads to the diffusion equations (33) and (34)
(given here at zero temperature). This finding is in qualitative

agreement with the experimental study by Studer et al. (2009)
on InGaAs quantum wells using time-resolved Faraday
rotation. Instead the Elliot-Yafet relaxation mechanism should
also be taken into account which yields expressions somewhat
more involved than Eqs. (33) and (34).
Theoretical investigations by Lüffe, Kailasvuori, and

Nunner (2011) and Lüffe, Danon, and Nunner (2013) led
to the prediction that the spin helix lifetime can be enhanced
by Coulomb repulsion (treated there within the Hartree-Fock
approximation). A study of Rashba and Dresselhaus coupling
and its interplay with Coulomb interaction described by the
GW approximation was presented by Nechaev, Echenique,
and Chulkov (2010).
A further possible source of decoherence of the spin helix is

spatial inhomogeneities of the effective Rashba coupling (Liu
et al., 2006; Glazov, Sherman, and Dugaev, 2010; Bindel
et al., 2016).

E. Many-body signatures of the persistent spin helix

We now summarize the role of persistent spin textures in
connection with the many-body physics of interacting systems.
If not mentioned otherwise, we consider electrons in [001]
quantum wells subjected to Coulomb repulsion and spin-orbit
coupling of the Rashba and the linear Dresselhaus type.
Badalyan et al. (2009, 2010) evaluated the dielectric

function of the two-dimensional electron gas within the
random phase approximation (Lindhard formula). For α ¼
�β one obtains the dielectric response of the system without
spin-orbit coupling, while for general parameters a beating of
the static Friedel oscillations is observed. In a subsequent
work the charge density relaxation propagator, i.e., the slope
of the imaginary part of the polarization function, and its
analyticity properties were studied (Badalyan et al., 2013).
The optical conductivity was calculated by Maytorena,

Lopez-Bastidas, and Mireles (2006) and compared with the
frequency dependence of the spin Hall conductivity [which
vanishes in the static limit (Schliemann, 2006)]. They predicted
a richphenomenology arising from the interplay of the two spin-
orbit coupling terms. In a subsequent work the analysis was
extended to the optical (i.e., spatially homogeneous) spin
susceptibility (Lopez-Bastidas, Maytorena, and Mireles,
2007). The optical conductivity for quantum wells with
Rashba and Dresselhaus coupling was reconsidered by Li,
Marsiglio, and Carbotte (2013). As a signature of the persistent
spin helix, all interband transitions vanish at α ¼ �β. If the
cubic Dresselhaus contribution is taken into account, these
transitions are rendered finite but still suppressed.
Capps, Marinescu, and Manolescu (2015) studied the finite-

temperature equilibrium state of an interacting electron gas at
α ¼ �β within the Hartree-Fock approximation and concluded
the absence of any helical spin structures: a finding consistent
with the fact that, as discussed in Sec. II.B, finite expectation
values of the operators (23) and (24) occur only in nonequili-
brium states or as the result of spontaneous symmetry breaking.
Most recently, they extended their analysis to the spin Seebeck
effect (Capps, Marinescu, and Manolescu, 2016).
The Ruderman-Kittel-Kasuya-Yoshida interaction between

magnetic moments in the presence of spin-independent
disorder was investigated by Chesi and Loss (2010). Here

John Schliemann: Colloquium: Persistent spin textures in …

Rev. Mod. Phys., Vol. 89, No. 1, January–March 2017 011001-10



the disorder-averaged susceptibility shows a twisted exchange
interaction decaying exponentially with distance. Iglesias and
Maytorena (2010) investigated the dynamical spin polariza-
tion, i.e., the linear response of the spin magnetization to a
homogeneous in-plane electric field. They considered Rashba
and Dresselhaus spin-orbit coupling in quantum wells with
growth directions [001], [110], and [111].
When the electrons are confined to a quantum wire (and

their interaction is neglected) the spin-orbit coupling in
general leads to anticrossings of the single-particle subband
dispersions except for the case α ¼ �β where, due to the
additional conserved quantity, crossings occur (Schliemann,
Egues, and Loss, 2003). Using a Luttinger liquid description,
Meng, Klinovaja, and Loss (2014) studied the renormalization
of such (anti)crossings in the presence of Coulomb repulsion.
This effect is especially significant near the high-symmetry
point α ¼ �β, where the anticrossing gap vanishes with an
interaction-dependent power law in the spin-orbit parameters.

F. Other growth directions and geometries

We now review, among other items, experimental studies
dedicated to persistent spin structures in quantum wells of the
other high-symmetry growth directions [110] and [111]. A
very recent prediction of analogous phenomena in systems of
more general growth direction was already mentioned
(Kammermeier, Wenk, and Schliemann, 2016). For a sum-
mary of experimental work on spin-orbit coupling in such
systems (not specifically addressing spin helices) see
Ganichev and Golub (2014).

1. [110] quantum wells

As seen in Sec. II.B, for quantum wells grown in the [110]
direction a conserved spin component along with an SU(2)
symmetry involving an appropriate wave vector transfer
occurs in the absence of Rashba coupling. Relying on optical
techniques several groups reported on clearly enhanced spin
dephasing times compared to those observed in quantum wells
of other growth directions (Ohno et al., 1999; Couto et al.,
2007; Schreiber et al., 2007a, 2007b; Bel’kov et al., 2008;
Müller et al., 2008; Völkl et al., 2011, 2014). Moreover, spin
dephasing is found to be strongly anisotropic depending on
whether the spin polarization lies in the plane of the quantum
well or along the growth direction where the longest lifetimes
occur (Döhrmann et al., 2004; Griesbeck et al., 2012). These
observations are of course in agreement with the structure of
the Dresselhaus spin-orbit coupling, and the remaining spin
decay can be attributed to residual Rashba coupling
(Tarasenko, 2009; Glazov, Semina, and Sherman, 2010;
Poshakinskiy and Tarasenko, 2013) and/or hole-mediated
processes (Völkl et al., 2011).
Experiments directed explicitly toward helical spin struc-

tures were performed by Chen et al. (2014) who studied
[110]-grown GaAs quantum wells using time-resolved Kerr
microscopy. To generate a finite net spin-orbit field averaged
over the the Fermi contour, the Fermi disk was shifted from its
equilibrium position by applying a dc current of up to 200 μA.
The direction of the current defines the direction of the
effective wave vector to be inserted into the Dresselhaus

Hamiltonian (6). Additionally a magnetic field of the order of
a few hundred millitesla (mT) was applied. By comparing data
obtained for different directions of the magnetic field, they
were able to extract the energy contribution due to spin-orbit
interaction. For a current along the ½110� (or y) direction this
quantity is proportional to the current strength, while for the
orthogonal [001] (or x) direction it is more or less constant, in
accordance with the form of the Dresselhaus term (6).
Similar to the studies by Walser et al. (2012) on [001]

quantum wells, Chen et al. (2014) also mapped out the
formation of a helical spin structure following a local injection
of spin density polarized along the growth direction. As this
direction coincides with the direction of the spin-orbit field, an
additional small magnetic field was necessary to generate
nontrivial dynamics. Figure 8 shows the time-resolved data
which is well reproduced by Monte Carlo simulations.

2. [111] quantum wells

According to Eqs. (7) and (8), the linear Dresselhaus
coupling in quantum wells grown in the [111] direction
can exactly cancel the Rashba term for α ¼ 2β=

ffiffiffi
3

p
. Thus

spin-orbit interaction is present only in higher corrections, the
leading one being a third-harmonic contribution in Eq. (7).
This situation in GaAs quantum wells was investigated by
Balocchi et al. (2011) using time-resolved photoluminescence
spectroscopy. For an appropriate Rashba coupling tuned by a
gate voltage, they observed clearly enhanced spin lifetimes
exceeding 30 ns for all spin directions. Spin polarizations
perpendicular to the growth direction were generated by a
transverse magnetic field of the order of a few hundred mT. In
a subsequent work, Ye et al. (2012) found, for structures used
by Balocchi et al. (2011), the sign of the gate voltage depends
on whether the underlying GaAs [111] substrate is terminated
by a ½111�A (Ga-rich) or a ½111�B (As-rich) surface.
Independent confirmation for these findings was provided

by Biermann et al. (2012) and Hernandez-Minguez et al.

FIG. 8. Upper panels (a) Time- and spatially resolved Kerr
rotation data by Chen et al. (2014). The dynamics of an initial
spin polarization along the [110] growth direction is followed
along the ½11̄0� and [001] directions. To generate nontrivial
dynamics a magnetic field Bext of various strength is applied
along ½11̄0�. Lower panels (b) Corresponding Monte Carlo
simulation results. From Chen et al., 2014.
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(2012) who performed photoluminescence measurements on
GaAs [111] quantum wells of somewhat larger width; for a
summary, see also Hernandez-Minguez et al. (2014). Wang
et al. (2013) recorded both the spin lifetime τs and the
momentum relaxation time τ in GaAs [111] quantum wells
and deduced an enhanced spin diffusion length ls ¼

ffiffiffiffiffiffiffiffi
Dτs

p
,

D ¼ v2fτ=2, at an appropriate gate voltage. Moreover,
Balocchi et al. (2013) combined optical experiments and
theoretical simulations to investigate the influence of the cubic
third-harmonic contribution to the Dresselhaus coupling close
to the cancellation of the linear part with the Rashba term.
They concluded that effective control over spin relaxation
even at room temperature should be possible in sufficiently
narrow [111] wells where the linear Dresselhaus term
dominates.

3. Curved systems

Another situation where, for appropriately tuned spin-orbit
interaction, nontrivial conserved spin quantities occur is real-
ized by evenly curved cylindrical two-dimensional electron
systems. The geometry of such samples is sketched in Fig. 9(a);
for the practical fabrication of such structures see, e.g., Schmidt
and Eberl (2001) and Mendach et al. (2004, 2006).
Including Rashba spin-orbit coupling, the Hamiltonian can

be formulated as (Trushin and Schliemann, 2007b)

H ¼ ℏ2k2z
2m

þ ℏ2q2φ
2mR2

þ α

�
kzσφ −

qφ
R

σz
�
; ð39Þ

where kz is the wave vector component along the (z) axis of
the cylinder of radius R, and qφ ¼ −i∂=∂φ generates real-
space rotations around the axis. σφ ¼ −σx sinφþ σy cosφ is
the projection of the Pauli matrices on the azimuthal direction
such that ½σφ; σz�=ð2iÞ ¼ σx cosφþ σy sinφ ≕ σr. For a gen-
eral Rashba parameter α the Hamiltonian (39) leads to
anisotropic dispersions shown in Fig. 9(b), which differ from
the case of a flat system described by the Hamiltonian (8) and
depicted in Fig. 9(c).
One easily finds the commutator

½H; σφ� ¼
�

ℏ2

2mR2
þ α

R

�
ðqφσr þ σrqφÞ; ð40Þ

which vanishes if the Rashba parameter fulfills

α ¼ −
ℏ2

2mR
; ð41Þ

a result that remains valid if arbitrary spin-independent
potentials or interactions are added to the Hamiltonian (39).
Moreover, in full analogy to flat quantum wells with appro-
priately tuned Rashba and Dresselhaus parameters, the con-
servation of Σ ¼ σφ leads to circular dispersion relations
displaced by a shift vector [cf. Fig. 9(d)]. Thus, analogous to
Eqs. (23) and (24), we have a complete su(2) algebra of
operators commuting with the Hamiltonian (Trushin and
Schliemann, 2007b). Finally, the corresponding persistent
spin structure can also be described via appropriate spin
diffusion equations (Kleinert and Bryksin, 2009).
Independently of the condition (41) the Hamiltonian (39)

always commutes with the total angular momentum
j ¼ qφ þ σz=2, and electrons in superpositions with the same
j but opposite spin orientation show interesting periodic spin
patterns along the cylindrical axis (Bringer and
Schäpers, 2011).
As a somewhat related geometry, Nowak and Szafran

(2009) studied circular quantum rings embedded in [001]
quantum wells with Rashba and Dresselhaus spin-orbit
couplings. Here the latter leads, except for the high-symmetry
case α ¼ �β, to elliptical deformations of the confined
electron density.

4. Lateral confinement, magnetic fields, and finite well width

Duckheim, Maslov, and Loss (2009) performed a theoreti-
cal study of the dynamical spin Hall effect (Duckheim and
Loss, 2007) in a two-dimensional electron gas confined to a
channel of finite width. Specifically, the spin accumulation at
the channel boundary in response to an ac electric field along
the channel direction was investigated. This effect is found to
typically decay on the length scale set by the spin-orbit
coupling. However, considering additionally a dc in-plane
magnetic field at balanced spin-orbit coupling α ¼ �β they
were able to identify conditions under which such spatially
oscillating spin profiles can extend over the entire channel,
thus forming a driven spin helix.
Badalyan and Fabian (2010) studied the interplay between

Rashba and Dresselhaus spin-orbit couplings at α ¼ �β with
a magnetic field in the growth direction of the quantum well,

FIG. 9. (a) Sketch of a curved two-dimensional electron system
with Rashba spin-orbit coupling induced by asymmetric radial
confinement. (b) General case: Spin-orbit interaction leads to
anisotropic Fermi contours (kt ¼ qφ, spin direction given by
arrows). (c) Isotropic Fermi contours of a flat system with Rashba
coupling [cf. Eq. (8)]. (d) Fermi contours of the curved system
with Rashba coupling tuned according to Eq. (41): Two circles
displaced by a shift vector. From Trushin and Schliemann, 2007b.
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and a hard-wall boundary oriented in either the direction of ~Q
[cf. Eq. (12)] or perpendicular to it. In the former case a spin
helix along the boundary arises. The key observation here is
that the transformation (17) still yields a spin-independent
Schrödinger equation (18) even if an arbitrary vector potential
~Að~rÞ is coupled to the momentum ~p ¼ −iℏ∇ ↦ ~pþ e~A,

leading to a magnetic field ~Bð~rÞ ¼ ∇ × ~Að~rÞ whose direct
Zeeman coupling to the spin is neglected [as done by
Badalyan and Fabian (2010)] such that Σ remains a conserved
quantity.
Introducing further lateral confinement in a given quan-

tum well constrains the electron motion to take place mainly
in the direction along the boundary. An extreme case of
such a situation is a (quasi-)one-dimensional quantum wire
with only the lowest subband being occupied. However,
even in broader channels the longitudinal component of the
wave vector clearly dominates the dynamics. This constraint
fixes the projection of the spin operator acting predomi-
nantly on the electron via spin-orbit interaction. As a result,
the Dyakonov-Perel spin relaxation mechanism can be
expected to be strongly suppressed by such lateral confine-
ment. This effect is rather independent of particular tuning
of spin-orbit coupling parameters, but as it clearly leads to
enhanced spin lifetimes we also summarize the pertaining
developments here; for further discussion, see also
Holleitner (2011).
Following several quantitative theoretical predictions

(Bournel et al., 1998; Kiselev and Kim, 2000a; Mal’shukov
and Chao, 2000; Pareek and Bruno, 2002), this suppression of
spin relaxation in narrow channels was experimentally veri-
fied by Holleitner et al. (2006, 2007) combining time-resolved
Faraday rotation measurements with evaluations of
Shubnikov–de Haas oscillations. Their work was qualitatively
confirmed by Kwon et al. (2007) also relying on the
Shubnikov–de Haas effect. At about the same time, the
crossover from two- to one-dimensional spin relaxation
behavior was also found by Schäpers et al. (2006) and
Wirthmann et al. (2006) via weak antilocalization studies.
Regarding the influence of a magnetic field in two-

dimensional bulk systems at α ¼ �β, Wilde and Grundler
(2013) predicted the disappearance of additional beatings in
de Haas–van Alphen oscillations, an effect similar to the
suppression of Zitterbewegung (Schliemann, Loss, and
Westervelt, 2006; Biswas and Ghosh, 2012; Nita et al., 2012).
Kunihashi, Kohda, and Nitta (2009) performed magneto-

conductance measurements in narrow InGaAs wires with
Rashba and Dresselhaus spin-orbit couplings tuned close to
α ¼ �β. Here essentially weak localization is found since the
spin relaxation length systematically exceeds the inelastic
scattering length due to the combined effect of spatial
dimension and the conserved spin quantity. In a subsequent
study they investigated a semiclassical model for spin relax-
ation in systems with a focus on α ¼ �β, also proposing a
method to quantitatively estimate the spin-orbit parameters
(Kunihashi, Kohda, and Nitta, 2012). The most recent
experimental work includes an investigation by Altmann et al.
(2014) on quantum wires close to α ¼ β (cf. Sec. II.D.1) and a
Kerr rotation study of channels with dominating Dresselhaus
coupling (Altmann et al., 2015).

Also working close to the one-dimensional limit, Krstajic,
Rezasoltani, and Vasilopoulos (2010) performed a theoretical
study of the conductance of quantum wires in [001] wells with
spatially varying Rashba and Dresselhaus couplings around
α ¼ β taking into account subband mixing. Further theoretical
investigations considered spin-helical structures in quantum
wires of finite length in the presence of Rashba coupling
(Slipko and Pershin, 2011; Slipko, Savran, and Pershin, 2011;
Slipko, Hayeva, and Pershin, 2013).
Fu and Egues (2015) theoretically studied the spin-orbit

interaction in [001] quantum wells that were broad enough
such that, for typical densities, the two lowest subbands i ¼ 1,
2 are occupied in the ground state (Bernardes et al., 2007).
Treating interaction effects within the Hartree approximation
and solving the resulting coupled Schrödinger-Poisson sys-
tem, they obtained separate coefficients α1, α2 and β1, β2 for
the Rashba and Dresselhaus couplings for each subband.
Points of enhanced symmetry such as α1 ¼ β1 are discussed in
more detail. Working upon these findings Fu et al. (2016)
concluded that the coupling parameters can be tuned to be of
equal modulus in each subband but with a different relative
sign α1 ¼ β1, α2 ¼ −β2. This situation gives rise to a super-
position of two persistent spin helices with orthogonal wave
vectors leading to a persistent skyrmion lattice. Moreover,
Wang, Li, and Fu (2015) discussed the possibility of a
persistent spin helix in coupled double and triple GaAs
quantum wells.
Nakhmedov and Alekperov (2012) considered electrons

subjected to Rashba and Dresselhaus couplings near α ¼ β
and an in-plane magnetic field in quantum wells of finite
thickness where the specific form of the transverse potential
was taken into account. Moreover, Nazmitdinov, Pichugin,
and Valín-Rodríguez (2009) investigated quantum wires with
Rashba and Dresselhaus couplings of arbitrary strength where
an in-plane magnetic field gives rise to a conserved spin
operator for electrons with appropriate longitudinal
momentum.

G. Spin field-effect transistors and related concepts

We now summarize recent developments regarding spin
field-effect transistors relation to persistent spin structures. For
a more comprehensive review on spin-transistor devices, see
Sugahara and Nitta (2010). We mainly concentrate on [001]
quantum wells.
In the classic proposal of a spin field-effect transistor due to

Datta and Das (1990) already sketched in Fig. 2, an electron is
emitted from a spin-polarized electrode into a semiconductor
region where its spin is rotated via electrically tunable Rashba
coupling. Depending on the rotation angle and the spin
polarization of the detecting electrode, the electron passes
through the device with a high or low probability, defining the
“on” and “off” states of the transistor. Problems with this
concept include the spin injection into the active semicon-
ductor region (Schmidt et al., 2000) and the randomization of
spins due to scattering on imperfections as already discussed
in Sec. II.B (Dyakonov and Perel, 1972). Indeed, so far these
obstacles limit the signal efficiency in practical implementa-
tions to a rather low level (Koo et al., 2009).
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A means to tackle the issue of spin decay in [001] grown
structures is to balance the Dresselhaus and Rashba couplings
in one of the operational states of the transistor (Cartoixa,
Ting, and Chang, 2003; Schliemann, Egues, and Loss, 2003).
For example, the on state can be defined by α ¼ �β such that
the electron spin is symmetry protected, whereas in the off
state jαj ≠ β and spin randomization sets in. To fully exploit
the spin conservation in the on state, it is useful to precisely
define the locations of spin injection and detection by means
of quantum point contacts (Schliemann, Egues, and Loss,
2003; Chuang et al., 2015). Kunihashi et al. (2012) discussed
a device operating between the states α ¼ þβ and α ¼ −β
(Schliemann, Egues, and Loss, 2003); for a recent exper-
imental realization of such a scenario, see Yoshizumi et al.
(2016). A variant of these concepts for [110] structures was
put forward by Hall et al. (2003), where in one of the device
states additional Rashba coupling leads to spin decoherence.
Further theoretical proposals involving spatially inhomo-
geneous Rashba coupling include work by Liu, Chan, and
Wang (2012) and Alomar, Serra, and Sanchez (2015).
In a proposal by Betthausen et al. (2012) electron spins are

modulated adiabatically in the on state of the device (and
therefore protected against decay), while in the off state
diabatic Landau-Zener transitions induced by a spatially
rotating magnetic field set in leading to spin decoherence.
The feasibility of this device is demonstrated experimentally
using a (Cd,Mn)Te diluted semiconductor quantum well
(Betthausen et al., 2012); for related theoretical work, see
also Saarikoski, Dollinger, and Richter (2012) and Wojcik and
Adamowski (2016).
Wunderlich et al. (2010) combined the spin field-effect

transistor concept with the spin Hall effect in an n-doped
GaAs quantum well. Spins are injected optically, and the
conductance of the device is switched via a top gate. The spin
polarization of the resulting current is detected via a trans-
versal voltage resulting from the (inverse) spin Hall effect.

III. p-DOPED STRUCTURES, TOPOLOGICAL
INSULATORS, AND OTHER SYSTEMS

As sketched in Fig. 1, the structure of the p-type valence
band of III-V zinc-blende semiconductors is much richer
compared to the s-type conduction band (Winkler, 2003;
Fabian et al., 2007; Korn, 2010; Wu, Jiang, and Weng, 2010;
Yu and Cardona, 2010). A realistic band structure model
consists here of the classic Luttinger Hamiltonian parametriz-
ing the different masses for heavy and light holes (Luttinger,
1956) and an additional spin-orbit coupling contribution
arising from structure- and bulk-inversion asymmetry
(Winkler, 2003). The latter terms are analogous to the
Rashba and Dresselhaus couplings for conduction band
electrons. In particular, as pointed out only quite recently,
in two-dimensional quantum wells pronounced Dresselhaus
contributions, being linear in the in-plane momentum, can
arise from the heavy and light hole mixing induced by
boundary conditions at the nanostructure interfaces (Luo et al.,
2010; Durnev, Glazov, and Ivchenko, 2014). Taking into
account these findings, Wenk, Kammermeier, and Schliemann
(2016) identified conditions for strained p-doped [001] wells
under which conserved spin quantities occur for holes being

close to the Fermi contour. The latter is for realistic parameters
well approximated by a circle. The circumstance that spin
conservation here only applies to charge carriers with wave
numbers close to kf is similar to the result by Nazmitdinov,
Pichugin, and Valín-Rodríguez (2009) who found conserved
spin operators in n-doped quantum wires arising for appro-
priate wave vectors only. Wenk, Kammermeier, and
Schliemann (2016) considered strained quantum wells with
ground states being both of heavy and light hole types; more
special results apply to unstrained systems. Similar conserved
spin quantities in strained quantum wells were also found by
Dollinger et al. (2014) and Sacksteder and Bernevig (2014)
using band structure models where the linear Dresselhaus term
plays a less dominant role. The spin conservation here is again
restricted to a vicinity of the Fermi contour, but the necessary
conditions on band structure parameters are difficult to meet in
realistic materials.
Absor et al. (2015) performed ab initio calculations for

wurtzite ZnO surfaces of appropriate orientation and predicted
an effective spin splitting similar to Dresselhaus coupling
in n-doped [110] quantum wells of zinc-blende materials
[cf. Eq. (6)], which should analogously give rise to a persistent
spin helix.
The possibility to realize persistent spin textures in mono-

layers of group-III metal monochalcogenides was discussed
by Li and Appelbaum (2015).
Sacksteder et al. (2012) investigated spin conduction in

surface states of three-dimensional topological insulators with
anisotropic dispersion. The authors predicted coherent spin
transport if (i) the effective Hamiltonian is tuned to conserve
an appropriate spin component (such that its Dirac cone is
infinitely stretched), or (ii) the Fermi energy is aligned with a
local extremum of the anisotropic two-dimensional
dispersion.
Liu, Jain, and Liu (2014) studied the proximity effect in

layered structures of triplet superconductors and [001] semi-
conductor quantum wells with Rashba and Dresselhaus spin-
orbit couplings. They concluded that the vector of triplet pair
expectation values should form a long-ranged helix in the
semiconductor material for α ¼ �β. Related Josephson effects
and possible experimental setups are also discussed.
Yet another fascinating perspective is the possibility to

realize persistent helical spin structures in systems of ultracold
fermionic atoms as discussed by Tokatly and Sherman (2013).

IV. CONCLUSIONS AND OUTLOOK

We reviewed the gamut of developments related to the
persistent spin helix that have emerged from the theoretical
predictions by Schliemann, Egues, and Loss (2003) and
Bernevig, Orenstein, and Zhang (2006). The topic is still a
hot one as one can see from the list of references, a substantial
amount of which date from the last two years. In particular,
new experimental studies continue to appear.
Our discussion includes n-doped III-V zinc-blende quan-

tum wells of growth directions [001], [110], and [111]. The
first one has received the most attention so far, in both
experimental and theoretical works. Right from the beginning
the investigations about conserved spin operators and sup-
pressed decoherence were closely tied to proposals for
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improving the device concept of spin field-effect transistors.
Among the most promising experimental developments in this
regard are the very recent studies on drift transport of spin
helices as discussed in Sec. II.D.1. It is needless to say that
these achievements have the chance to contribute to spin-
based information processing in semiconductor structures.
Systems with growth directions [110] and [111] have also

been subject to thorough experimental studies, while the
predicted many-body effects of persistent spin textures
(mainly in [001] quantum wells) are still awaiting their
experimental investigation.
A most recent theoretical result was obtained by

Kammermeier, Wenk, and Schliemann (2016) stating that a
persistent spin helix is achievable in quantum wells of more
general growth direction if and only if two of its Miller indices
have the same modulus. Specifically, the resulting SU(2)
symmetry is characterized by a conserved spin component

Σ ¼ ~e · ~σ and a shift vector ~Q, which is always perpendicular

to the direction of the spin-orbit field ~e⊥ ~Q. The latter feature
is strongly reminiscent of the spin-momentum locking found
in the edge modes of topological insulators (Hasan and Kane,
2010; Qi and Zhang, 2011) but occurs here in the bulk of the
system. These findings have the potential to stimulate a flurry
of further fascinating experiments.
Other recent developments include the study of two-

dimensional p-doped systems, which are well known for
their clearly richer band structure.
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