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Conventional nonlinear spectroscopy uses classical light to detect matter properties through the
variation of its response with frequencies or time delays. Quantum light opens up new avenues for
spectroscopy by utilizing parameters of the quantum state of light as novel control knobs and through
the variation of photon statistics by coupling to matter. An intuitive diagrammatic approach is
presented for calculating ultrafast spectroscopy signals induced by quantum light, focusing on
applications involving entangled photons with nonclassical bandwidth properties—known as
“time-energy entanglement.”Nonlinear optical signals induced by quantized light fields are expressed
using time-ordered multipoint correlation functions of superoperators in the joint field plus matter
phase space. These are distinct from Glauber’s photon counting formalism which uses normally
ordered products of ordinary operators in the field space. One notable advantage for spectroscopy
applications is that entangled-photon pairs are not subjected to the classical Fourier limitations on the
joint temporal and spectral resolution. After a brief survey of properties of entangled-photon pairs
relevant to their spectroscopic applications, different optical signals, and photon counting setups are
discussed and illustrated for simple multilevel model systems.
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I. INTRODUCTION

Nonlinear optics is most commonly and successfully
formulated using a semiclassical approach whereby the matter
degrees of freedom are treated quantum mechanically, but the
radiation field is classical (Scully and Zubairy, 1997; Boyd,
2003). Spectroscopic signals are then obtained by computing
the polarization induced in the medium and expanding it

perturbatively in the impinging field(s) (Mukamel, 1995;
Hamm and Zanni, 2011). This level of theory is well justified
in many applications, owing to the typically large intensities
required to generate a nonlinear response from the optical
medium, which can be reached only with lasers. Incidentally,
it was shortly after Maiman’s development of the ruby laser
that the first nonlinear optical effect was observed (Franken
et al., 1961).
Recent advances in quantum optics extend nonlinear

signals down to the few-photon level where the quantum
nature of the field is manifested and must be taken into
account: The enhanced light-matter coupling in cavities
(Raimond, Brune, and Haroche, 2001; Walther et al., 2006;
Schwartz et al., 2011), the enhancement of the medium’s
nonlinearity by additional driving fields (Peyronel et al., 2012;
Chen et al., 2013), large dipoles in highly excited Rydberg
states (Gorniaczyk et al., 2014; He et al., 2014), molecular
design (Loo et al., 2012; Castet et al., 2013), or strong
focusing (Pototschnig et al., 2011; Rezus et al., 2012; Faez
et al., 2014) all provide possible means to observe and control
nonlinear optical processes on a fundamental quantum level.
Besides possible technological applications such as all-optical
transistors (Shomroni et al., 2014) or photonic quantum
information processing (Franson, 1989; Braunstein and
Kimble, 2000; Jennewein et al., 2000; Knill, Laflamme,
and Milburn, 2001; O’Brien et al., 2003; U’Ren, Banaszek,
and Walmsley, 2003; Kok et al., 2007), these also show great
promise as novel spectroscopic tools. Parameters of the
photon field wave function can serve as control knobs that
supplement classical parameters such as frequencies and time
delays. This review surveys these emerging applications and
introduces a systematic diagrammatic perturbative approach
to their theoretical description.
One of the striking features of quantum light is photon

entanglement. This occurs between two beams of light [field
amplitudes (Van Enk, 2005)] when the quantum state of each
field cannot be described in the individual parameter space of
that field. Different degrees of freedom of light can become
entangled. The most common types of entanglement are
their spin (Dolde et al., 2013), polarization (Shih and Alley,
1988), position and momentum (Howell et al., 2004), time
and energy (Tittel et al., 1999). Entangled-photon pairs
constitute an invaluable tool in fundamental tests of quantum
mechanics—most famously in the violation of Bell’s inequal-
ities (Aspect, Grangier, and Roger, 1981, 1982; Aspect,
Dalibard, and Roger, 1982) or in Hong, Ou, and Mandel’s
photon correlation experiments (Hong, Ou, andMandel, 1987;
Ou and Mandel, 1988; Shih and Alley, 1988). Besides, their
nonclassical bandwidth properties have long been recognized
as a potential resource in various “quantum-enhanced”
applications, where the quantum correlations shared between
the photon pairs may offer an advantage. For example,
when one photon from an entangled pair is sent through a
dispersive medium, the leading-order dispersion is compen-
sated in photon coincidence measurements—an effect called
dispersion cancellation (Franson, 1992; Steinberg, Kwiat, and
Chiao, 1992a, 1992b; Larchuk, Teich, and Saleh, 1995;
Abouraddy et al., 2002; Minaeva et al., 2009). In the field
of quantum-enhanced measurements, entanglement may be
employed to enhance the precision of the measurement beyond
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the Heisenberg limit (Giovannetti, Lloyd, and Maccone, 2004,
2006; Mitchell, Lundeen, and Steinberg, 2004). Similarly, the
spatial resolution may be enhanced in quantum imaging
applications (Pittman et al., 1995; Bennink et al., 2004),
quantum-optical coherence tomography (Abouraddy et al.,
2002; Nasr et al., 2003; Esposito, 2016), as well as in quantum
lithographic applications (Boto et al., 2000; D’Angelo,
Chekhova, and Shih, 2001).
It is now recognized that many of these applications may

also be created in purely classical settings: some two-photon
interference effects originally believed to be a hallmark of
quantum entanglement can be simulated by postselecting the
signal (Kaltenbaek et al., 2008; Kaltenbaek, Lavoie, and
Resch, 2009). This had enabled quantum-optical coherence
tomography studies with classical light (Lavoie, Kaltenbaek,
and Resch, 2009). Similarly, quantum imaging can be carried
out with thermal light (Valencia et al., 2005), albeit with
reduced signal-to-noise ratio. When proposing applications of
quantum light, it is thus imperative to carefully distinguish
genuine entanglement from classical correlation effects. The
approach developed here offers a unified treatment of both
types of correlations.
A clear signature of the quantum nature of light is different

scaling of optical signals with light intensities: Classical
heterodyne χð3Þ signals such as two-photon absorption scale
quadratically with the intensity and therefore require a high
intensity to be visible against lower-order linear-scaling
processes. With entangled photons, such signals scale linearly
(Friberg, Hong, and Mandel, 1985; Javanainen and Gould,
1990; Georgiades et al., 1995; Dayan et al., 2004, 2005). This
allows one to carry out microscopy (Teich and Saleh, 1998)
and lithography (Boto et al., 2000) applications at much lower
photon fluxes. The different intensity scaling with entangled
photons was first demonstrated in atomic systems by
Georgiades et al. (1995) and later by Dayan et al. (2004,
2005), as well as in organic molecules (Lee and Goodson,
2006). An entangled two-photon absorption (TPA) experi-
ment performed in a porphyrin dendrimer is shown in
Fig. 1(a). The linear scaling can be rationalized as follows:
entangled photons come in pairs, as they are generated
simultaneously. At low light intensity, the different photon
pairs are temporally well separated, and the two-photon
absorption process involves two entangled photons of the
same pair. The process thus behaves as a linear spectroscopy
with respect to the pair. At higher intensities, it becomes
statistically more plausible for the two photons to come from
different pairs, which are not entangled, and the classical
quadratic scaling is recovered [Fig. 1(a)] stemming from the
Poisson distribution of photon pairs.
The presence of strong time-and-frequency correlations of

entangled photons is a second important feature, which we
will utilize extensively in the course of this review. Figure 1(b)
shows the two-photon absorption signal of entangled photons
in rubidium vapor (Dayan et al., 2004). In the left panel, a
delay stage is placed into one of the two photon beams,
creating a narrow resonance as if the TPA resonance was
created by a 23 fs pulse. However, as the frequency of the
pump pulse which creates the photons is varied in the right
panel, the resonance is also spectrally narrow, as if it was

created by a ns pulse. This simultaneous time-and-frequency
resolution along non-Fourier conjugate axes is a hallmark of
the time-energy entanglement, and its exploitation as a
spectroscopic tool offers novel control knobs to manipulate
the excited-state distribution and thereby enhance or suppress
selected features in nonlinear spectroscopic signals.
In a different line of research, the seminal photon coinci-

dence counting experiments were turned into a spectroscopic
tool by placing a sample into the beam line of one of the two
entangled photons and recording the change of the coinci-
dence count rate (Yabushita and Kobayashi, 2004; Kalachev
et al., 2007, 2008; Kalashnikov et al., 2014; Li et al., 2015).
We examine related schemes for utilizing entanglement in
nonlinear spectroscopy.
This review is structured as follows: In Sec. I.A, we briefly

give the background and introduce the superoperator formal-
ism used to describe spectroscopy with quantum light. In
Sec. I.B we describe the diagram construction. In Sec. II we
discuss properties of entangled photons and present their
impact on excited-state distributions upon their absorption in a
complex quantum system. In Sec. III we provide general
superoperator expressions for nonlinear optical signals and
review available setups. Finally, Sec. IV presents a general
classification of nonlinear optical processes induced by
quantum light, clarifying under which conditions its quantum
nature may play a role.

FIG. 1. (a) Linear entangled TPA rate and quadratic nonlinear
randomTPA rate in a porphyrin dendrimer at different entanglement
times. The inset shows the dominant effect of the entangled TPA at
low input flux of correlated photons. FromLee andGoodson, 2006.
(b) Two-photon absorption 5S1=2 → 4D5=2;3=2 in atomic rubidium
vs the time delay between the two photons (left panel) and vs the
pump frequency (right panel). From Dayan et al., 2004.
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A. Liouville space superoperator notation

The calculation of nonlinear optical signals becomes most
transparent and simple by working in Liouville space
(Mukamel, 1995; Mukamel and Nagata, 2011), i.e., the space
of bounded operators on the combined matter-field Hilbert
space. It offers a convenient compact bookkeeping device for
matter-light interactions where signals are described as time-
ordered products of superoperators.
Here we introduce the basic superoperator notation. With

each operator A acting on the Hilbert space, we associate two
superoperators (Chernyak, Wang, andMukamel, 1995; Harbola
and Mukamel, 2008; Roslyak and Mukamel, 2009b, 2010)

ALX ≡ AX; ð1Þ
which represents the action from the left on another operator X,
and

ARX ≡ XA; ð2Þ
representing the action from the right. We further introduce
their linear combinations, the commutator superoperator

A− ≡ AL − AR; ð3Þ
and the anticommutator

Aþ ≡ 1
2
ðAL þ ARÞ: ð4Þ

This notation allows one to derive compact expressions for
spectroscopic signals. At the end of the calculation, after the
time ordering is taken care of, we can switch back to ordinary
Hilbert space operators.
The total Hamiltonian of the field-matter system is given by

Htot ¼ H0 þHfield þHint: ð5Þ

H0 describes the matter, and the radiation field Hamiltonian is
given by

Hfield ¼ ℏ
X
s

ωsa
†
sðωsÞasðωsÞ: ð6Þ

Here we introduced the creation (annihilation) operators for
mode s which satisfy bosonic commutation relations
½as; a†s0 � ¼ δs;s0 and ½as; as0 � ¼ ½a†s ; a†s0 � ¼ 0. In some applica-
tions, we replace the discrete sum over modes by a continuous
integral

P
s → ½V=ð2πÞ3� R dωs

~DðωsÞ with ~DðωsÞ being the
density of states that we assume to be flat within the relevant
bandwidths ~DðωsÞ≃ ~D.
We assume a dipole light-matter interaction Hamiltonian,

Hint ¼ ϵ
X
ν

Vν; ð7Þ

where Vν ¼ Vν þ V†
ν is the dipole operator of molecule νwith

the summation running over all the molecules contained in the
sample. V (V†) is the excitation lowering (raising) part of the
dipole. ϵ ¼ Eþ E† denotes the electric field operator and
E (E†) are its positive (negative) frequency components which
can be written in the interaction picture with respect to the
field Hamiltonian (Loudon, 2000) as

EðtÞ ¼
Z

dω
2π

e−iωtaðωÞ ð8Þ

which is written in the slowly varying envelope approxima-
tion. Hereafter unless specified otherwise, E denotes the sum
of all relevant field modes. Note that the field normalization is
absorbed in the dipole matrix element in Eq. (7).
In the following applications, we neglect rapidly oscillating

terms, by employing the dipole Hamiltonian in the rotating
wave approximation (RWA),

Hint;RWA ¼ EV† þ E†V: ð9Þ

B. Diagram construction

We adopt the diagram representation of nonlinear spectro-
scopic signals as summarized, for instance, by Mukamel and
Rahav (2010). It bears close similarity to analogous methods
in quantum electrodynamics (Cohen-Tannoudji et al., 1992).
We employ two types of diagrams for calculating the expect-
ation value of an operator AðtÞ, which are based on either
the density matrix or the wave function. For details, see
Appendix A. First we evaluate it by propagating the density
matrix ρðtÞ,

hAðtÞiDM ≡ trfAðtÞϱðtÞg. ð10Þ

Equation (10) can be best analyzed in Liouville space (3):
We write the time evolution of the joint matter plus field
density matrix using a time-ordered exponential which can be
expanded as a Dyson series,

ϱðtÞ ¼ T exp

�
−
i
ℏ

Z
t

t0

dτHint;−ðτÞ
�
ϱðt0Þ; ð11Þ

where Hint− is a superoperator (3) that corresponds to the
interaction Hamiltonian (7) written in the interaction picture
with respect to H0 plus Hfield. The time-ordering operator T
orders the following products of superoperators so that their
time arguments increase from right to left. For example when
acting on two arbitrary superoperators AðtÞ and BðtÞ,

T Aðt1ÞBðt2Þ≡ θðt1 − t2ÞAðt1ÞBðt2Þ
þ θðt2 − t1ÞBðt2ÞAðt1Þ: ð12Þ

The perturbative expansion of Eq. (11) to nth order in Hint
generates a number of pathways—successions of excitations
and deexcitations on both the bra or the ket part of the density
matrix. These pathways are depicted by double-sided ladder
diagrams, which represent convolutions of fully time-ordered
superoperator nonequilibrium Green’s functions (SNGF) of
the form (Roslyak and Mukamel, 2010)Z

∞

0

dt1 � � �
Z

∞

0

dtnV
ðnÞ
νn���ν1ðt − tn…; t − tn � � � − t1Þ

× EðnÞ
νn���ν1ðt − tn…; t − tn � � � − t1Þ: ð13Þ

The field SNGF in Eq. (13)

Dorfman, Schlawin, and Mukamel: Nonlinear optical signals and spectroscopy …

Rev. Mod. Phys., Vol. 88, No. 4, October–December 2016 045008-4



EðnÞ
νn���ν1ðt − tn…; t − tn � � � − t1Þ
¼ hT Eνnðt − tnÞ � � �Eν1ðt − tn � � � − t1Þi ð14Þ

is evaluated with respect to the initial quantum state of the
light. The indices are νj ¼ L, R or νj ¼ þ;−. When replacing
the field operators by classical amplitudes, we recover the
standard semiclassical formalism of quantum optics
(Mukamel, 1995). Similarly, we may also convert the field
operators into classical random variables to describe spectro-
scopic signals with stochastic light (Asaka et al., 1984; Beach
and Hartmann, 1984; Morita and Yajima, 1984; Turner
et al., 2013).
The material SNGFs in Eq. (13) are similarly defined:

V ðnÞ
νn���ν1ðt − tn…; t − tn � � � − t1Þ

¼ hVð†Þ
νn GðtnÞ � � �Gðt1ÞVð†Þ

ν1 i; ð15Þ
where

GðtÞ ¼ −
i
ℏ
θðtÞ exp

�
−
i
ℏ
H0t

�
ð16Þ

denotes the propagator of the free evolution of the matter
system, and νj ¼ L, R. Similarly SNGF may be obtained by
replacing V† by V and E by E†. This representation further
allows for reduced descriptions of open systems where bath
degrees of freedom are eliminated.
As an example, the set of fourth-order pathways for the

population of state f in a three-level scheme shown in
Fig. 2(a) are given in Fig. 2(b). We shall repeatedly refer
to these pathways in the course of this review. This ladder
diagram representation is most suitable for impulsive experi-
ments involving sequences of short, temporally well-separated
pulses, as is done from nuclear magnetic resonance (NMR) to
the x-ray regimes (Mukamel, 1995; Hamm and Zanni, 2011).
In such multidimensional experiments, the time variables
used to represent the delays between successive pulses

(Abramavicius et al., 2009) t1; t2; t3;… serve as the primary
control parameters. Spectra are displayed versus the Fourier
conjugates ~Ω1; ~Ω2; ~Ω3;… of these time variables.
As indicated in Fig. 2(b), each interaction with a field also

imprints its phase ϕ onto the signal. Filtering the possible
phase combinations �ϕ1 � ϕ2 � ϕ3 � ϕ4 of the signal,
known as phase cycling, allows for the selective investigation
of specific material properties (Keusters, Tan, and Warren,
1999; Scheurer and Mukamel, 2001; Tian et al., 2003; Tan,
2008; Abramavicius et al., 2009; Zhang, Wells, Hyland, and
Tan, 2012; Zhang, Wells, and Tan, 2012; Krčmář, Gelin, and
Domcke, 2013). Acousto-optical modulation discussed in
Raymer et al. (2013) offers the possibility to achieve this
selectivity even at the single-photon level. Phase-cycling
techniques have been successfully demonstrated as control
tools for the selection of fixed-phase components of optical
signals generated by multiwave mixing (Keusters, Tan, and
Warren, 1999; Tian et al., 2003; Tan, 2008; Zhang, Wells,
Hyland, and Tan, 2012; Zhang, Wells, and Tan, 2012). Phase
cycling can be easily implemented by varying the relative
interpulse phases using a pulse shaper, which is cycled over 2π
radians in a number of equally spaced steps (Keusters, Tan, and
Warren, 1999; Tian et al., 2003).
Rather than propagating the density matrix Eq. (10), we can

alternatively follow the evolution of the wave function by

hAðtÞiWF ≡ hψðtÞjAðtÞjψðtÞi; ð17Þ
with

jψðtÞi ¼ T exp

�
−
i
ℏ

Z
t

t0

dτH0
intðτÞ

�
jψðt0Þi: ð18Þ

Keeping track of the wave function results in different path-
ways which can be represented by loop diagrams. Rather than
propagating of both the bra and the ket, we can then place the
entire burden of the time evolution on the ket and write

hAðtÞi ¼ hψðt0Þj ~ψðtÞi; ð19Þ

(a) (b) (c)

FIG. 2. (a) The three-level scheme which we consider in most of the review consists of a unique ground state jgi, and single excited
state manifold jei and doubly excited manifold jfi. The vertical arrows indicate dipole-allowed transitions. (b) The single loop diagram
representing the evolution of the wave function. On the left-hand side, the vertical line represents the ket and on the right-hand side it
corresponds to the bra. The wave function in this closed time path loop diagram propagates forward in a loop from the bottom branch of
the diagram along the ket branch to the top of the diagram. It then evolves backward in time from the top to the bottom of the right branch
(bra). This forward and backward propagation is similar to the Keldysh contour diagram rules (Keldysh, 1965). Horizontal arrows
represent field-matter interactions. (c) The corresponding three ladder diagrams for the evolution of the density matrix. Here the density
matrix evolves forward in time upward from the bottom to the top of the diagram. In order to achieve a doubly excited-state population
starting from the ground state the density matrix has to undergo four interactions represented by the absorption of two photons
represented by four inwardly directed arrows. The three diagrams represent different time orderings of ket vs bra interactions. Together
with their mirror reflected diagrams (interchanging left and right sides of the diagram) the total six diagrams are lumped together in the
single loop diagram (b).

Dorfman, Schlawin, and Mukamel: Nonlinear optical signals and spectroscopy …

Rev. Mod. Phys., Vol. 88, No. 4, October–December 2016 045008-5



where

j ~ψðtÞi ¼ T −1 exp

�
i
ℏ

Z
t

t0

dτH0
intðτÞ

�
AðtÞ

× T exp

�
−
i
ℏ

Z
t

t0

dτH0
intðτÞ

�
jψðt0Þi; ð20Þ

and T −1 denotes the anti-time-ordering operator (time
increases from left to right). Here the ket first evolves forward
and then backward in time, eventually returning to the initial
time (Schwinger, 1961; Keldysh, 1965). Back propagation of
the ket is equivalent to forward propagation of the bra. The
resulting terms are represented by loop diagrams as is
commonly done in many-body theory (Rammer, 2007;
Mukamel, 2008; Rahav and Mukamel, 2010; Hansen and
Pullerits, 2012).
As can be seen from Fig. 2, this representation yields a more

compact description (fewer pathways) of the signals than the
density matrix, since the relative time ordering of ket and bra
interactions is not maintained. In this example, the f-state
population is given by a single loop diagram, which can be
separated into the sum of the six ladder diagrams (the three
shown plus their complex conjugates obtained by interchang-
ing all left and right interactions). It is harder to visualize short
pulse fully time ordered experiments in this representation,
and due to the backward time propagation the elimination of
bath degrees of freedom in an open system is not possible.
Nevertheless, this representation proves most useful and
compact for frequency-domain techniques involving long
pulses where time ordering is not maintained anyhow
(Rahav and Mukamel, 2010) and for many-body simulations
that are usually carried out in Hilbert space (Dalibard, Castin,
and Mølmer, 1992).
The double-sided (ladder) and the loop diagrams constitute

two bookkeeping devices for field-matter interactions. The
loop diagrams suggest several wave-function-based simula-
tion strategies for signals (Dorfman, Fingerhut, and Mukamel,
2013a). The first is based on the numerical propagation of the
wave function, which includes all relevant electronic and
nuclear (including bath) degrees of freedom explicitly. A
second protocol uses a sum-over-states (SOS) expansion of
the signals. In the third, semiclassical approach a small
subsystem is treated quantum mechanically and is coupled
to a classical bath, which causes a time-dependent modulation
of the system Hamiltonian. The third approach for a wave
function is equivalent to the stochastic Liouville equation for
the density matrix (Tanimura, 2006), which is based on the
ladder diagram book keeping.

II. STATES OF QUANTUM LIGHT

In this section, we first discuss classical light which is the
basis for the semiclassical approximation of nonlinear spec-
troscopy. We then briefly describe the main concepts from
Glauber’s photon counting theory for a single mode of
the electromagnetic field. Finally, we discuss in detail the
multimode entangled states of light, which will be repeatedly
used in this review.

A. Classical versus quantum light

Clearly, our world is governed by quantum mechanics, and
so on a fundamental level light is always quantum. Yet, in
many situations a classical description of the light field may
be sufficient (Scully and Zubairy, 1997; Boyd, 2003). For
pedagogical reasons, before we describe properties of quan-
tum light, we first discuss in some detail how the classical
description of the field emerges from quantum mechanics,
and, more importantly, under which circumstances this
approximation may break down.
The coherent state of the field, i.e., the eigenstate of the

photon annihilation operator at frequency ω, is generally
considered as “classical.” In this state the annihilation oper-
ator, and hence the electric field operator, has a nonvanishing
expectation value haðωÞi ≠ 0. In general, we can write a
multimode coherent state as

jϕcohðtÞi ¼
Z

dωeαωðtÞa†ðωÞ−α�ωðtÞaðωÞj0i; ð21Þ

where the mode amplitudes α are given by

αωðtÞ ¼ αωe−iωt: ð22Þ

In a normally ordered correlation function (all a† are to the left
of all a), we may then simply replace the field operators in the
correlation functions by classical amplitudes (Mandel and
Wolf, 1995),

EνðtÞ →
Z

dωανωe�iωt: ð23Þ

However, a coherent state is not yet sufficient for the field
to be classical: As seen in Eq. (13), the light field enters into
spectroscopic signals through its multipoint correlation func-

tion EðnÞ
νn���ν1ðt − tn…; t − tn � � � − t1Þ. These correlation func-

tions can always be rewritten as the sum of a normally ordered
term labeled h∶ � � � ∶i and lower-order normal correlation
functions multiplied with commutator terms

EðnÞ
νn���ν1ðt − tn…; t − tn � � � − t1Þ
¼ h∶Eνnðt − tnÞ � � �Eν1ðt − tn � � � − t1Þ∶i

þ ½Eνnðt − tnÞ; Eνn−1ðt − tn − tn−1Þ�
× EðnÞ

νn−2���ν1ðt − tn − tn−1 − tn−2…; t − tn � � � − t1Þ þ � � � .
ð24Þ

For the semiclassical limit to hold, we must be able to neglect
all the terms containing field commutators. This is typically
the case when the intensity of the coherent state, i.e., its mean
photon number is very large.
More generally, probability distributions of coherent states

are classical (Mandel and Wolf, 1995): States, whose density
matrix has a diagonal Glauber-Sudarshan P representation,
are considered classical. This includes classical stochastic
fields, which show nonfactorizing field correlation functions
(for instance, for Gaussian statistics with hEi ¼ 0 and

Dorfman, Schlawin, and Mukamel: Nonlinear optical signals and spectroscopy …

Rev. Mod. Phys., Vol. 88, No. 4, October–December 2016 045008-6



hE†Ei ≠ 0). Such classical correlations can also be employed
in spectroscopy (Turner et al., 2013), but are not the focus of
this review.
According to this strict criterion, any other quantum state is

considered nonclassical. However, that does not mean that
such state will also show nonclassical features, and the
elucidation of genuine quantum effects in a given experiment
is often very involved; see, e.g., the discussion around
dispersion cancellation with entangled photons (Franson,
1992; Steinberg, Kwiat, and Chiao, 1992b), or quantum
imaging (Bennink et al., 2004; Valencia et al., 2005).
The interest in quantum light for spectroscopy is twofold:

As stated by Walmsley (2015), “the critical features of
quantum light […] are exceptionally low noise and strong
correlations.” In the following section, we first discuss the
noise properties of quantum light, i.e., quantum correlations
within a single electromagnetic mode. The rest of the section
is devoted to strong time-frequency correlations, i.e., quantum
correlations between different modes, which are the main
focus of this review.

B. Single mode quantum states

In confined geometries, the density of states of the
electromagnetic field can be altered dramatically. In a cavity,
the mode spacing may be large so that we can describe the
field by a single radiation mode with well-defined frequency
ω0, which may be strongly coupled to dipoles inside the
cavity. In this section, we study this case, where we can write
the cavity field Hamiltonian simply as

Hcav ¼ ℏω0a†a; ð25Þ

where a (a†) describes the photon annihilation (creation)
operator of the cavity mode. We introduce the dimensionless
cavity field quadratures

x ¼ 1ffiffiffi
2

p ðaþ a†Þ; ð26Þ

p ¼ 1ffiffiffi
2

p
i
ða − a†Þ; ð27Þ

which represent the real and imaginary parts of the electric
field, respectively. A whole family of quadratures xðθÞ and
pðθÞ may be obtained by rotating the field operators
as a → ae−iθ.
Quantum mechanics dictates the Heisenberg uncertainty

hΔx2ihΔp2i ≥ 1
4

ð28Þ

for any quantum state.
Coherent states are minimal uncertainty states, in which the

lower bound in Eq. (28) applies

hΔx2i ¼ hΔp2i ¼ 1
2
: ð29Þ

This coincides with the quantum fluctuations of the vacuum
state. Any quantum state that features fluctuations in one of its
quadratures below this fundamental limit 1=2 is therefore said

to be squeezed. Note that due to the Heisenberg uncertainty
(28) the conjugate quadrature must show larger fluctuations.
The simplest example thereof is the squeezed vacuum state

jξi ¼ eð1=2Þξa2−ð1=2Þξ�a†2 j0i; ð30Þ

where

hΔx2i ¼ 1
2
e−2jξj; ð31Þ

hΔp2i ¼ 1
2
e2jξj: ð32Þ

Thus, a squeezed vacuum state is also a minimum uncer-
tainty state.
These fluctuations show up in nonlinear signals, as dis-

cussed in Sec. III.A. In the remainder of this section, we focus
on multimode analogs of such squeezed states and show how
new correlations arise due to the multimode structure of the
field. This is known as time-energy entanglement.

C. Photon entanglement in multimode states

Before presenting some specific models for quantum
light, we first discuss time-energy entanglement in a more
general setting. An exhaustive discussion of continuous
variable entanglement theory can be found in a number of
reviews (Kok et al., 2007; Lvovsky and Raymer, 2009). Here
we briefly introduce some important properties of entangled-
photon pairs. These will later be used to distinguish genuine
entanglement from other broad bandwidth properties, which
could also be encountered with classical light sources.
We are concerned with pairs of distinguishable photons

that are described by separate Hilbert spaces Hð1Þ
field and Hð2Þ

field.
They may be distinguished, e.g., by their polarization, their
frequencies, or their wave vectors and propagation direction.
A two-photon state may be generally expanded as

jψi ¼
Z

dωa

Z
dωb

~Φðωa;ωbÞa†1ðωaÞa†2ðωbÞj0i1j0i2; ð33Þ

where ~Φðωa;ωbÞ is the two-photon amplitude.
To analyze the properties of this state, it is convenient to

map it onto a discrete basis. This can be achieved by the
singular value decomposition of the two-photon amplitude
(Law, Walmsley, and Eberly, 2000; Law and Eberly, 2004;
McKinstrie and Karlsson, 2013; McKinstrie, Ott, and
Karlsson, 2013)

~Φðωa;ωbÞ ¼
X∞
k¼1

~rkψ�
kðωaÞϕ�

kðωbÞ; ð34Þ

where fψkg and fϕkg form orthonormal bases, known as the
Schmidt modes, and ~rk are the mode weights. These are
obtained by solving the eigenvalue equationsZ

dω0κ1ðω;ω0Þψkðω0Þ≡ ~r2kψkðωÞ; ð35Þ

with
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κ1ðω;ω0Þ ¼
Z

dω00 ~Φ�ðω;ω00Þ ~Φðω0;ω00Þ; ð36Þ

and Z
dω0κ2ðω;ω0Þϕkðω0Þ≡ ~r2kϕkðωÞ; ð37Þ

with

κ2ðω;ω0Þ ¼
Z

dω00 ~Φ�ðω00;ωÞ ~Φðω00;ω0Þ: ð38Þ

We can then recast Eq. (33) using Eq. (34)

jψi¼
X∞
k¼1

~rk

Z
dωa

Z
dωbψ

�
kðωaÞϕ�

kðωbÞa†1ðωaÞa†2ðωbÞj0i1j0i2:

ð39Þ

The Schmidt decomposition (34) may be used to quantify
the degree of entanglement between photon pairs. Rewriting
the singular values as ~rk ¼

ffiffiffiffi
B

p
λk, where B denotes the

amplification factor of the signal and λk the normalized set
of singular values of the normalized two-photon state, withP

kλ
2
k ¼ 1. A useful measure of entanglement is provided by

the entanglement entropy (Law, Walmsley, and Eberly, 2000)

EðψÞ ¼ −
X
k

λ2k lnðλ2kÞ: ð40Þ

In quantum information applications, EðψÞ represents the
effective dimensionality available to store information in
the state.
We call the state (33) separable if the two-photon amplitude

factorizes into the product of single-photon amplitudes
~Φðωa;ωbÞ ¼ ~Φð1ÞðωaÞ ~Φð2ÞðωbÞ. This implies that λk≠1 ¼ 0,
so that the entanglement entropy is E ¼ 0. In this situation, no
correlations exist between the two photons: Measuring the
frequency of photon 1 will not alter the wave function of the
other photon. Otherwise, the state is entangled. We then have
λi < 1, and correspondingly E > 0; measuring the frequency
of photon 1 now reduces photon 2 to a mixed state described
by the density matrix,

ϱ2 ∼
X
k

jψkðωð0Þ
a Þj2

×
Z

dωb

Z
dω0

bϕ
�
kðωbÞϕkðω0

bÞa†2ðωbÞj0ih0ja2ðω0
bÞ;

ð41Þ

and the measurement outcome ωð0Þ
a thus influences the

quantum state of photon 2.

D. Entangled photons generation by parametric downconversion

Entangled-photon pairs are routinely created, manipulated,
and detected in a variety of experimental scenarios. These
include decay of the doubly excited states in semiconductors
(Edamatsu et al., 2004; Stevenson et al., 2007), four-wave

mixing in optical fibers (Garay-Palmett et al., 2007, 2008) or
cold atomic gases (Balić et al., 2005; Cho et al., 2014). Here
we focus on the oldest and most established method for their
production—parametric downconversion (PDC) in birefrin-
gent crystals (Wu et al., 1986; Kwiat et al., 1995).
We shall introduce the basic Hamiltonian which governs the

PDC generation process and discuss the output fields it
creates. These will then be applied to calculate spectroscopic
signals. We restrict our attention to squeezed vacuum,
where the field modes are initially in the vacuum state and
become populated only through the PDC process [see also
Eqs. (251)–(255)].
In the PDC setup, a photon from a strong pump pulse is

converted into an entangled-photon pair by the interaction
with the optical nonlinearity in the crystal (as discussed in
detail in Sec. IV). A birefringent crystal features two ordinary
optical axes (o), and an extraordinary optical axis (e) in which
the group velocity of optical light is different. The PDC
process can be triggered in different geometries: One distin-
guishes type-I (e → oo) and type-II (o → eo) downconver-
sion (Shih, 2003), and more recently type 0 (Abolghasem
et al., 2010; Lerch et al., 2013). The two photons show strong
time-and-frequency correlations stemming from the conser-
vation of energy and momentum: Since they are created
simultaneously, the two photons are strongly correlated in
their arrival time at the sample or detector, such that each
individual photon wave packet has a very broad bandwidth. At
the same time, the sum of the two photon frequencies has to
match the energy of the annihilated pump photon, which may
be more sharply defined than the individual photons (the
pump photon bandwidth is typically below 100 MHz in the
visible regime).
The created photon pairs are entangled in their frequency,

position, and momentum degree of freedom (Walborn et al.,
2010). The setup may be exploited to control the central
frequencies of the involved fields (Grice andWalmsley, 1997).
For simplicity, we consider a collinear geometry of all fields.
This simplifies the notation, while retaining the time-
frequency correlations, which are most relevant in spectroscopic
applications. After passing through the nonlinear crystal, the
state of the light field is given by (Christ et al., 2011, 2013)

jψouti ¼ exp

�
−
i
ℏ
HPDC

�
j0i1j0i2 ≡UPDCj0i1j0i2: ð42Þ

Equation (42) neglects four-, six-, etc., photon processes in
which only the total energy is conserved. In PDC, this approxi-
mation is shown to work well beyond the single-photon regime
[see Fig. 4 in Christ et al. (2013), where only minor deviations
occur at a mean photon number larger than 1]. The propagator
UPDC depends on the effective Hamiltonian

HPDC ¼
Z

dωa

Z
dωbΦðωa;ωbÞa†1ðωaÞa†2ðωbÞ þ H:c:;

ð43Þ

which creates or annihilates pairs of photons, whose joint
bandwidth properties are determined by the two-photon
amplitude
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Φðωa;ωbÞ ¼ αApðωa þ ωbÞsinc
�
Δkðωa;ωbÞL

2

�
eiΔkL=2:

ð44Þ

Here Ap is the normalized pump pulse envelope and
sincðΔkL=2Þ with sincx ¼ sin x=x denotes the phase-
matching function, which originates from wave vector
mismatch inside the nonlinear crystal Δkðωa;ωbÞ ¼
kpðωa þ ωbÞ − k1ðωaÞ − k2ðωbÞ. kiðωÞ denotes the wave vec-
tor of either the pump or beams 1 or 2 at frequency ω. The
prefactor α which is proportional to the pump amplitude
determines the strength of the PDC process (and hence the
mean photon number). Hence, in contrast to ~Φ in the enangled
state (33), the two-photon amplitude Φ is not normalized, but
increases with the pump intensity.
Typically, the wave vector mismatch Δkðωa;ωbÞ depends

very weakly on the frequencies ωa and ωb. It is then possible
to expand it around the central frequencies ω1 and ω2 of the
two downconverted beams. For type-I downconversion, the
group velocities dk1=dω1 and dk2=dω2 are identical [unless
the PDC process is triggered in a strongly nondegenerate
regime (Kalachev et al., 2008)], and the expansion around the
central frequencies yields (Joobeur, Saleh, and Teich, 1994;
Wasilewski et al., 2006)

Δkðωa;ωbÞL=2 ¼
�
dkp
dωp

−
dk
dω

�
L=2ðωa þ ωb − ωpÞ

þ 1

2

d2kp
dω2

p
L=2ðωa þ ωb − ωpÞ2

−
1

2

d2k
dω2

L=2½ðωa − ω1Þ2 þ ðωb − ω2Þ2�.
ð45Þ

The first two terms of Eq. (45) create correlations between
the two photon frequencies, while the third determines the
bandwidth of the individual photons.
In type-II downconversion, the group velocities of the two

beams differ, and the wave vector mismatch may be approxi-
mated to linear order in frequency (Rubin et al., 1994; Keller
and Rubin, 1997)

Δkðωa;ωbÞL=2 ¼ ðωa − ω1ÞT1=2þ ðωb − ω2ÞT2=2; ð46Þ
where the two time scales T1 ¼ Lðdkp=dωp − dk1=dω1Þ and
T2 ¼Lðdkp=dωp−dk2=dω2Þ denote the maximal time delays
the two photon wave packets can acquire with respect to the
pump pulse during their propagation through the crystal.
Without loss of generality, we assume T2>T1. In the following
applications we consider type-II phase matching (46). The
corresponding wave functions may be controlled to maintain
frequency correlations, as elaborated on in Sec. II.G.
Wewill focus on theweak downconversion regime, in which

the output light fields are given by entangled-photon pairs,

jψ twini ≈ −
i
ℏ
HPDCj0i1j0i2: ð47Þ

Equation (47) takes the form of the entangled two-photon
state, Eq. (33), discussed earlier, where ~Φ denotes the

normalized two-photon amplitude. We review the quantum
correlations of the created fields upon excitation by a cw
pump, which simplifies the discussion, or finite-bandwith
pump pulses. The two cases require different theoretical tools.

E. Narrow-band pump

One important class of time-frequency entangled-photon
pairs is created by pumping the nonlinear crystal with a
narrow bandwidth laser, where the pump spectral envelope in
Eq. (44) is given as

Apðωa þ ωbÞ≃ δðωa þ ωb − ωpÞ: ð48Þ

Using Eqs. (46) and (48), the phase mismatch in Eq. (44) can
be expressed as (Peřina, Saleh, and Teich, 1998)

sinc

�
Δkðωa;ωbÞL

2

�
eiΔkL=2

¼ sinc

�
ðω1 − ωaÞT=2

�
eiðω1−ωaÞT=2; ð49Þ

where T ≡ T2 − T1 is the entanglement time, which repre-
sents the maximal time delay between the arrival of the two
entangled photons. For a cw pump laser, the first photon
arrives at a completely random time, but the second photon
necessarily arrives within the entanglement time. This prop-
erty has been exploited in several proposals to probe ultrafast
material processes using a cw photon pair source (Roslyak and
Mukamel, 2009a; Raymer et al., 2013).
Entangled photons affect optical signals via their multipoint

correlation functions (Roslyak, Marx, and Mukamel, 2009b;
Mukamel and Nagata, 2011). The relevant field quantity inmost
applications discussed later, describing the interaction of pairs of
photons with a sample, is the four-point correlation function.
Using Eqs. (48) and (49), for the entangled state (47) this
correlation function can be factorized as

hE†ðω0
aÞE†ðω0

bÞEðωbÞEðωaÞi
¼ hψ twinjE†ðω0

aÞE†ðω0
bÞj0ih0jEðωbÞEðωaÞjψ twini. ð50Þ

Here

h0jEðωbÞEðωaÞjψ twini ¼ N δðωa þ ωb − ωpÞ
× fsinc½ðω1 − ωaÞT=2�eiðω1−ωaÞT=2

þ sinc½ðω1 − ωbÞT=2�eiðω1−ωbÞT=2g
ð51Þ

is known as the two-photon wave function (Rubin et al., 1994).
Upon switching to the time domain, we obtainZ
dωa

Z
dωbe−iðωat1þωbt2Þh0jEðωbÞEðωaÞjψ twini

¼ N 0e−iðω1t1þω2t2Þrect
�
t2 − t1
T

�

þN 0e−iðω2t1þω1t2Þrect
�
t1 − t2
T

�
; ð52Þ
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where rectðxÞ ¼ 1 for 0 ≤ x ≤ 1 and zero otherwise, and N ,
N 0 denote the normalization of the two-photon wave function.
The physical significance of the entanglement time is now
clear: it sets an upper bound for the arrival of the second
photon, given the arrival of the first one. Note that Eq. (52) is
symmetric with respect to t1 and t2 because each interaction
occurs with the entire field E ¼ E1 þ E2. In a situation where
h0jE2ðt2ÞE1ðt1Þjψ twini is measured, the two-photon wave
function is not symmetric.

F. Broadband pump

We next consider entangled light created by a pump pulse
with a normalized Gaussian envelope,

Apðωa þ ωbÞ ¼
1ffiffiffiffiffiffiffiffiffiffi
2πσ2p

q exp

�
−
ðωa þ ωb − ωpÞ2

2σ2p

�
: ð53Þ

This is a realistic model in many experimental scenarios.
The analysis of Eq. (42) becomes most transparent by

switching to a basis obtained by the Schmidt decomposition
(34) of the two-photon wave function. The mode weights rk
are positive and form a monotonically decreasing series, such
that in practical applications the sum in Eq. (34) may be
terminated after a finite number of modes. (For a cw pump,
an infinite number of Schmidt modes is required to represent
the delta function.) In Appendix B, we present approximate
analytic expressions for the eigenfunctions fψkg and fϕkg.
The following analysis is restricted to a PDC regime in which
six- (and higher) photon processes may be neglected. Such
corrections can affect the bandwidth properties at very high
photon numbers (Christ et al., 2013). The linear to quadratic
intensity crossover of signals is further discussed in Sec. II.J.3.
We next introduce the Schmidt mode operators

Ak ¼
Z

dωaψkðωaÞa1ðωaÞ ð54Þ

and

Bk ¼
Z

dωbϕkðωbÞa2ðωbÞ; ð55Þ

which inherit the bosonic commutation relations from the
orthonormality of the eigenfunctions fψkg and fϕkg. The
transformation operator UPDC now reads (Christ et al., 2011,
2013)

UPDC ¼ exp

�X
k

rkA†B†
k − H:c:

�
: ð56Þ

The output state jψouti is thus a multimode squeezed state with
squeezing parameters rk,

jψouti ¼
Y∞
k¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
coshðrkÞ

p X∞
nk¼0

ðtanhðrkÞÞnk jnki1jnki2; ð57Þ

in which fluctuations of the collective quadrature of the two
states Yk ¼ ðA†

k þ B†
k − Ak − BkÞ=ð2iÞ may be squeezed

below the coherent state value (hY2
ki ¼ 1=2),

hY2
ki ¼ 1

2
e−2rk : ð58Þ

The mean photon number in each of the two fields is given by

n̄ ¼
�X

k

A†
kAk

�
¼

�X
k

B†
kBk

�
¼

X
k

sinh2ðrkÞ: ð59Þ

We are mostly concerned with the time-frequency correlations
in the weak downconversion regime, i.e., n̄ ≤ 1, when the
output state is dominated by temporally well-separated pairs
of time-frequency entangled photons.
The multipoint correlation functions of state (57), which are

the relevant quantities in nonlinear spectroscopy, may be most
conveniently evaluated by switching to the Heisenberg pic-
ture, in which the Schmidt mode operators become (Christ
et al., 2011, 2013)

Aout
k ¼ coshðrkÞAin

k þ sinhðrkÞB†in
k ; ð60Þ

Bout
k ¼ coshðrkÞBin

k þ sinhðrkÞA†in
k : ð61Þ

The four-point correlation function then reads (Schlawin and
Mukamel, 2013)

hE†ðω0
aÞE†ðω0

bÞEðωbÞEðωaÞi
¼ ½h�12ðω0

a;ω0
bÞ þ h�21ðω0

a;ω0
bÞ�½h12ðωa;ωbÞ þ h21ðωa;ωbÞ�

þ ½g1ðωa;ω0
aÞ þ g2ðωa;ω0

aÞ�½g1ðωb;ω0
bÞ þ g2ðωb;ω0

bÞ�
þ ½g1ðωa;ω0

bÞ þ g2ðωa;ω0
bÞ�½g1ðωb;ω0

aÞ þ g2ðωb;ω0
aÞ�;
ð62Þ

with

h12ðωa;ωbÞ ¼
X
k

coshðrkÞ sinhðrkÞψkðωaÞϕkðωbÞ; ð63Þ

g1ðω;ω0Þ ¼
X
k

sinh2ðrkÞψkðωÞψ�
k0 ðω0Þ; ð64Þ

and

g2ðω;ω0Þ ¼
X
k

sinh2ðrkÞϕkðωÞϕ�
k0 ðω0Þ: ð65Þ

The first line in Eq. (62) shows the same structure as Eq. (50),
in that the two absorption events at frequencies ωa and ωb
(and at ω0

a and ω0
b) are correlated. Indeed, in the weak pump

regime, when rk ≪ 1, Eq. (63) reduces to the two-photon
wave function of the pulsed entangled pairs, and
sinhðrkÞ coshðrkÞ≃ rk (Schlawin and Mukamel, 2013),

h12ðωa;ωbÞ ⇒rk≪1

X
k

rkψkðωaÞϕkðωbÞ

¼ Φ�ðωa;ωbÞ ¼ h0jE2ðωbÞE1ðωaÞjψ twini: ð66Þ
h12 denotes the two-photon contribution to the correlation
function, which should be distinguished from the autocorre-
lation contributions g1 and g2.
The ratio of the inverse entanglement time T−1 and the

pump bandwidth σp determines the frequency correlations in
Eq. (63): As shown in Fig. 3(a), for σp ≪ T−1

2 we recover the
cw regime with strong frequency anticorrelations. In the
opposite regime, when σp ≫ T−1

2 [Fig. 3(c)], the two photons
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show positive frequency correlations, and in between there is a
regime shown in Fig. 3(b), in which the photonic wave
function factorizes, and no frequency correlations exist.
The field correlation function as depicted in Fig. 3 can be
measured experimentally (Kim and Grice, 2005).
In spectroscopic applications, two-photon events involving

uncorrelated photons from different pairs become statistically
more likely at higher pump intensities. These events are
described by the functions g1 and g2, which at low intensities
scale as∼r2k, so that Eq. (63) with h12∼rk dominates the signal.
As the pump intensity is increased, events involving photons
from different pairs must be taken into account as well.

The various contributions to the correlation function behave
differently with increasing photon number: They depend
nonlinearly on the mode weights rk which in turn depend
linearly on the pump amplitude. Thus, with increasing pump
amplitude (and photon number) the few largest eigenvalues
get enhanced nonlinearly compared to the smaller values, and
fewer Schmidt modes contribute to Eqs. (63) and (64). This is
shown in Fig. 4 where the two correlation functions are plotted
for different mean photon numbers n̄ ¼ 0.1;…; 100. As the
number of participating Schmidt modes is decreased, the
frequency correlations encoded in h12 are weakened, and h12
broadens. Conversely, the bandwidth of the beams g1 is
reduced with increasing n̄.

G. Shaping of entangled photons

The ability to manipulate the amplitude and phase of
ultrashort pulses allows one to coherently control matter
information in chemical reactions and other dynamical proc-
esses (Wollenhaupt, Assion, and Baumert, 2007). Pulse
shaping can drive a quantum system from an initial state to
a desired final state by exploiting constructive quantum-
mechanical interferences that build up the state amplitude,
while eliminating undesirable final states through destructive
interferences (Silberberg, 2009). The most common exper-
imental pulse shaping technique is based on spatial dispersion
and often involves a back-to-back optical grating spectrometer
which contains two gratings [see the top part of Fig. 5(a)].
The first disperses the spectral components of the pulse in
space, and the second packs them back together, following a
pixelated spatial light modulator (SLM) which applies a
specific transfer function (amplitude, phase, or polarization
mask), thereby modifying the amplitudes, phases, or polari-
zation states of the various spectral components. Originally
developed for strong laser beams, these pulse shaping tech-
niques have now been extended all the way to the single-
photon regime (Bellini et al., 2003; Pe’er et al., 2005;
Carrasco et al., 2006; Zäh, Halder, and Feurer, 2008;
Defienne et al., 2016) allowing one to control the amplitude
and phase modulation of entangled-photon pairs, thereby
providing additional spectroscopic knobs.
An example of a pulse shaping setup is shown in Fig. 5(a).

A symmetric phase profile in the SLM yields a single

FIG. 3. Absolute value of the two-photon correlation function (63) of entangled-photon pairs with (a) strong frequency anticorrelations
σp ¼ 0.6=T2 [entanglement entropy (40) E ¼ 1.9], (b) very weak correlations (E ¼ 0.018), σp ¼ 3.5=T2, and (c) strong positive
frequency correlations σp ¼ 50=T2 (E ¼ 1.7).

(a)

(b)

FIG. 4. (a) The two-photon correlation function h12ðω;ωÞ,
Eq. (63), plotted vs the frequency ω in units of T2, and for
mean photon numbers (with increasing, dashed) n̄ ∼ 0.1, 1, 10,
and 100. (b) The same for the autocorrelation function
g1ðω;ωÞ, Eq. (64).
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unshaped Gaussian pulse [Fig. 5(b)]. The phase step results in
a shaped pulse that mimics two pulses with ∼400 fs delay
[Fig. 5(c)]. By employing more complex functions in the
SLM, one may produce a replica of multiple well-separated
pulses or more complex shapes. This may also be achieved
using, e.g., the Franson interferometer with variable phases
and delays in both arms as proposed by Raymer et al. (2013)
(see Sec. III.B.4). Beam splitters in the two arms can create
four pulses, out of a single entangled-photon pair.

H. Polarization entanglement

So far we have ignored the photon polarization degrees of
freedom. In type-II PDC the two photons are created with
orthogonal polarizations. Using a suitable setup, this allows
for the preparation of Bell states of the form (Pan et al., 2012)

jBelli ¼ 1ffiffiffi
2

p ðjHi1jVi2 � jVi1jHi2Þ; ð67Þ

where ðjHi; jViÞ denote the horizontal (vertical) polariza-
tion, respectively. The fidelity for this state preparation is
maximal, when the two-photon wave packets factorize.

Similarly, type-I PDC allows for the creation of states of
the form ðjHHi � jVViÞ= ffiffiffi

2
p

(Pan et al., 2012).
The polarization degrees of freedom offer additional

control knobs which may be used to suppress or enhance
the signal from (anti)parallel or orthogonal dipoles in a sample
system—in a quantum-mechanical extension of polarized
photon echo techniques (Voronine, Abramavicius, and
Mukamel, 2006, 2007).

I. Matter correlations in noninteracting two-level atoms
induced by quantum light

The entangled-photon correlation functions may be used to
prepare desired distributions of excited states in matter. In an
insightful article (Muthukrishnan, Agarwal, and Scully, 2004),
which triggered followup work (Akiba, Akamatsu, and
Kozuma, 2006; Das and Agarwal, 2008), it was argued that
using time-ordered entangled-photon pairs, two-body two-
photon resonances, where two noninteracting particles are
excited simultaneously, can be observed in two-photon
absorption. The surprising consequence is that the nonlinear
response is cooperative (nonadditive) and does not scale as the
number of atoms N. It was argued that such a cooperative
response is not possible with classical or coherent light fields.
Arguments were made that the cooperative response is
induced in two-photon absorption by the manipulation of
the interference among pathways. One possible consequence
of the interference in the nonlinear response is that the
fluorescence from one atom can be enhanced by the presence
of a second atom, even if they do not interact. If true, this
effect could be an interesting demonstration of this prediction
and has some subtle implications on quantum nonlocality and
the Einstein-Podolsky-Rosen (EPR) paradox. In this section,
we calculate this two-photon process with quantum light and
show that quantum locality is never violated.

1. Collective resonances induced by entangled light

We now use the superoperator formalism to investigate how
the two-atom excitation cross section depends on the proper-
ties of the photon wave function.
Consider two noninteracting two-level atoms A and B

coupled to the radiation field [see Fig. 6(a)]. We assume that
the entire field-matter density matrix is initially in a factor-
izable form:

ρðt0Þ ¼ ρA;0 ⊗ ρB;0 ⊗ ρph;0; ð68Þ
where the ρA;0 (ρB;0) corresponds to the density matrix of atom
A (B) and ρph;0 is the density matrix of the field. The time-
dependent density matrix is given by Eq. (11), which in the
present case reads (Richter and Mukamel, 2011)

ρðtÞ ¼ T exp

�
−
i
ℏ

Z
t

t0

HA
int−ðτÞdτ −

i
ℏ

Z
t

t0

HB
int−ðτÞdτ

�
ρðt0Þ:

ð69Þ
If the radiation fields were classical then the matter density
matrix would factorize so that atoms A and B remain
uncorrelated at all times:

FIG. 5. (a) Experimental layout of the entangled-photon shaper:
A computer-controlled spatial light modulator (SLM) is used to
manipulate the spectral phase of the entangled photons. The
photon pairs are detected in the inverse process of the PDC—
sum-frequency generation (SFG). The SFG photons are sub-
sequently counted in a single-photon counting module. In order
to demonstrate two-photon interference oscillations, a Mach-
Zehnder interferometer is placed between the last prism and the
SFG crystal. (b) The SFG counts (circles) and the calculated
second-order correlation function (line) of the unperturbed wave
function as a function of the signal-idler delay. (c) The same for
the shaped wave function. From Pe’er et al., 2005.
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ρðtÞ ¼ ρAðtÞ ⊗ ρBðtÞ; ð70Þ
with

ρAðtÞ ¼ T exp

�
−
i
ℏ

Z
t

t0

HA
int−ðτÞdτ

�
ρA;0; ð71Þ

ρBðtÞ ¼ T exp

�
−
i
ℏ

Z
t

t0

HA
int−ðτÞdτ

�
ρB;0: ð72Þ

This result remains valid for quantum fields as long as all
relevant normally ordered field modes are in a coherent state,
and cooperative spontaneous emission is neglected so that
all field modes behave classically (Glauber, 1963; Marx,
Harbola, and Mukamel, 2008). However, Eq. (70) does not
hold for a general quantum state of light. We define the
reduced matter density matrix in the joint space w ¼ trphðρÞ.
Upon expanding Eq. (69) order by order in the field operators
and tracing over the field modes, we obtain for the reduced
matter density matrix

wðtÞ¼
X
ν

Z
t

t0

dτ1 � � �
Z

t

t0

dτnν

Z
t

t0

dτ01 � � �
Z

t

t0

dτ0mν

×ρνAðτ1;…;τnνÞρνBðτ01;…;τ0mν
ÞFνðτ1;…;τnν ;τ

0
1;…;τ0mν

Þ;
ð73Þ

where ν is summed over all possible pathways. Pathway ν has
nν ~VA interactions and mν

~VB interactions. ρνA (ρνB) are time-
ordered products of system A (system B) operators and
Fνðτ1;…; τnν ; τ

0
1;…; τ0mν

Þ are time-ordered field correlation
functions. In each order of this perturbative calculation, all the
correlation functions are factorized between the three spaces.
The factorization (70) no longer holds, and atoms A and B

may become correlated or even entangled. Equation (73) will
be used in the following. Note that pathways with nν ¼ 0 or
mν ¼ 0 are single-body pathways, where all interactions occur
solely with system A or with B. Our interest is in the two-body
pathways, where both nν and mν contribute to the collective
response.

2. Excited-state populations generated by nonclassical light

So far we have not discussed the overall excitation
probability by entangled light sources compared to classical
light with a similar photon flux. This is relevant to a recent
demonstration of molecular internal conversion (Oka, 2012)
and two-photon absorption with the assistance of plasmonics
(Oka, 2015). This is an important practical point, if quantum
spectroscopy is to be carried out at very low photon fluxes,
in the presence of additional noise sources. We now discuss
the correlations on the excitation probability induced by the
interaction with nonclassical light for the model of two
noninteracting two-level systems.
The doubly excited-state population is given, to leading-

order perturbation theory in the interaction Hamiltonian (9),
by the loop diagram in Fig. 2(a) which for the present model
may be written as a modulus square of the corresponding
transition amplitude

pabðtÞ ¼
X
ψ 0

jTab;ψ 0 ðtÞj2; ð74Þ

with the transition amplitude between initial state jψi and final
state jψ 0i,

Tab;ψ 0 ðtÞ ¼
Z

t

t0

dt1

Z
t

t0

dt2μAμBe−iϵat1−iϵbt2hψ jEðt2ÞEðt1Þjψ 0i:

ð75Þ
In the following, we consider only a specific final state and
will drop the subscript ψ 0.

3. Classical versus entangled light

We first evaluate Eq. (74) for a classical field composed of
two modes α and β, which is switched on at t ¼ t0:

~EðtÞ ¼ θðt − t0ÞðEαeiωαt þ EβeiωβtÞ þ c:c: ð76Þ

TðcÞ
ab ðtÞ is then given by (Muthukrishnan, Agarwal, and Scully,

2004)

TðcÞ
ab ðtÞ ¼ TðcÞ

a ðtÞTðcÞ
b ðtÞ; ð77Þ

where

TðcÞ
m ðtÞ ¼

X
μ¼α;β

iAμmðtÞ
ϵm − ωμ − iγ

; m ¼ a; b; ð78Þ

Aνm ¼ μmEνðeiðων−ϵmÞt0−γt0 − eiðων−ϵmÞt−γtÞ and γ → 0. A
straightforward calculation of Eq. (75) shows several terms,
each containing single-particle resonances ϵa;b − ωα;β as well
as a collective resonance ϵa þ ϵb − ðωα þ ωβÞ. The collective
resonance disappears when these terms are combined due to
destructive interference and the final result factorizes as a

(a)

(b)

FIG. 6. (a) Scheme of two noninteracting two-level atoms A and
B and corresponding many-body state diagram where ground
state g corresponds to both atoms in the ground state, a—atom A
is excited and B is in the ground state, b—atom B is in the excited
state and atom A is in the ground state, and ab—both atoms are in
the excited state. The arrows directed upward represent two-
photon excitations. (b) Relevant set of diagrams corresponding to
atom A being in the excited state to ∼jμAj2jμBj2 in field-matter
interactions. α and β run over a and b to account for all possible
permutations in the excitation pathways.
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product of two amplitudes that contain only single-particle
resonances ϵj ¼ ωμ, j ¼ a, b and μ ¼ α, β and no two-photon
resonances ϵa þ ϵb ¼ ωα þ ωβ (Richter and Mukamel, 2011).
We first describe the properties of the entangled source.

Consider a field made of entangled-photon pairs of a cascade
state jψ enti depicted in Fig. 7 (Muthukrishnan, Agarwal, and
Scully, 2004). This state can be prepared when an atom is
promoted to the doubly excited state which then decays
spontaneously back to the ground state by emitting a cascade
of two photons and described by the wave function

jψenti ¼
X
p;q

ϕp;qj1p; 1qi;

ϕp;q ¼
gpαgqβeiðpþqÞ·rR

ðωp þ ωq − ωα − ωβ þ iγαÞðωq − ωβ þ iγβÞ
: ð79Þ

Here γα is the lifetime of the upper level of the three-level
cascade and γβ is the lifetime of the intermediate state. p and q
are the wave vectors of different modes in the vacuum state
and gpα and gqβ are coupling constants. ωα is the transition
frequency from the highest to the intermediate state and ωβ is
the transition frequency from the intermediate state to the
ground state. Note that the photon with momentum p comes
first and interacts with the upper transition, whereas the
photon with q comes later and interacts with the lower β
transition. The two-photon frequency ωp þ ωq is narrowly
distributed around ωα þ ωβ with a width γα, the lifetime of the
upper level, whereas the single-photon frequencies ωp, ωq are
distributed around ωβ ðωαÞwith a width of γβ ðγαÞ, the lifetime
of the intermediate (highest) level. Maximum entanglement
occurs for γβ ≫ γα.
Using Eq. (79), and assuming that atoms A and B have the

same distance from the cascade source, so that tR is the time
retardation (with tR ¼ jrRj=c) we obtain (Zheng et al., 2013)

Tent
ab ðtÞ¼

X
m≠n¼a;b

Amα;nβðtÞ
ðϵm−ωα− iγαÞðϵn−ωβ− iγβÞ

þ
X
m¼a;b

ATPAðtÞ
ðϵaþ ϵb−ωα−ωβ− iγα− iγβÞðϵm−ωβ− iγβÞ

;

ð80Þ

where

Anν;mμðtÞ ¼ μAμBAðeiωnνðt−tRÞ−γνðt−tRÞ − e−iϵmtR−iϵntRÞ; ð81Þ

ATPAðtÞ¼ μAμBAðe−iϵatR−iϵbtR −e−iðϵaþϵbÞtþiðωα−ωβ−γα−γβÞðt−tRÞÞ:
ð82Þ

The first term in Eq. (80) contains single-particle reso-
nances, where the two systems are separately excited. The
second term represents collective two-photon resonances
ϵa þ ϵb − ωα − ωβ. The two can be distinguished only for
nonidentical atoms ϵa ≠ ϵb.
Under the two-photon–two-atom resonance condition

ωa þ ωb ¼ ωα þ ωβ for γαt ≫ 1, γβt ≫ 1 the probability
Pent
ab ðtÞ reads

pent
ab ¼ p0

γβ
γαΔ2

; ð83Þ

where Δ ¼ ϵb − ωβ is a single atom detuning and
p0 ¼ jμAj2jμBj2ϵaϵb=ℏ2ϵ20c

2S2.
Note that the classical amplitude (77) scales quadratically

with the field amplitude Aνm, whereas the entangled amplitude
(80) scales linearly (Fig. 1). This reflects the fact that at low
intensity entangled two-photon absorption can be viewed as a
linear absorption of the entangled pair as discussed earlier. A
more detailed analysis of the scaling is presented in Sec. II.J.3.
Comparing Eqs. (77) and (80), we see that two-photon

resonances require the lack of time ordering between the two
photons. To explain this, we calculate the marginal probability

PðταÞ ¼ 2γαθðταÞe−2γατα ; ð84Þ

and the conditional probability

PðτβjταÞ ¼ 2γβθðτβ − ταÞe−2γβðτβ−ταÞ ð85Þ

for the two-photon absorption process displayed in Fig. 7
(Muthukrishnan, Agarwal, and Scully, 2004). These proba-
bilities have the following meaning: the absorption of α is
turned on at τα ¼ 0 and decays slowly at the rate γα, while the
absorption of β turns on at τβ ¼ τα and decays rapidly at the
rate γβ. Thus, the two photons arrive in strict time ordering, α
followed by β, with the time interval between the absorption
events vanishing when γβ ≫ γα, i.e., in the limit of large
frequency entanglement. Another related effect, which is
discussed later in this section andwhich eliminates one-particle
observables, is based on the lack of time ordering of the
absorption of the two systems, while this interference effect
originally described by Muthukrishnan, Agarwal, and Scully
(2004) is based on a lack of time ordering of the two photons.
Only the single-body single-photon resonances remain.
We now turn to the spectroscopy carried out using the

model of entangled light given by Eq. (79). We first focus on
the excited-state population of atom A, which is given by

paðtÞ≡ tr½jaihajρðtÞ� ¼ pa0ðtÞ þ pabðtÞ; ð86Þ

where the two terms differ by the final state of atom B: pa0 and
pab represent B events where B ends up in the ground and

FIG. 7. The temporal profiles of two photons emitted by a
cascade source illustrate time-frequency entanglement: the red
curve represents the marginal probability PðταÞ Eq. (85), and the
blue curve corresponds to the conditional probability PðτβjταÞ
Eq. (84). The intrinsic time ordering of the photons, α first,
followed by β, suppresses the excitation pathway where β is
absorbed first, followed by α, inducing joint two-atom excitation.
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excited state, respectively. We calculate only the ∼μ2Aμ2B
contributions to pa, which are relevant to collective effects
and are represented by the diagrams depicted in Fig. 6(b).
Diagram i contains three interactions with ket—and one with
bra—and represents pa0, whereas diagram ii corresponds to
pab. The exact formulas read off from these diagrams are
presented in Richter and Mukamel (2011). Unlike the pabðtÞ
which contains only normally ordered field operators [see
Eq. (74)], pa0ðtÞ contains also non-normally ordered contri-
butions. These can be recast as a normally ordered correlation
plus a term that includes a field commutator:

hE†ðt2ÞEðt3ÞE†ðt4ÞEðt1Þi ¼ hE†ðt2ÞE†ðt4ÞEðt3ÞEðt1Þi
þ hE†ðt2Þ½Eðt3Þ; E†ðt4Þ�Eðt1Þi:

ð87Þ
The second term includes a field commutator which is a
c number. For certain types of states of the field, the
commutator remains dependent upon the state of the field
and this term has to be evaluated exactly [for instance, in the
case of a coherent state this effect is responsible for the revival
of damped Rabi oscillations discussed later (Rempe, Walther,
and Klein, 1987)]. For other types of states of the field (e.g.,
the Fock state), the commutator becomes independent of the
external field and therefore represents spontaneous emission.
The spontaneous emission pathways introduce a coupling
between the two systems, since a photon emitted by system B
can be absorbed by system A. This coupling has both real
(dipole-dipole) and imaginary (superradiance) parts. These
couplings will result in collective signals which involve
several atoms.
In the case of a classical field, one can neglect the

spontaneous contributions and include only the stimulated
ones which results in pa0ðtÞ ¼ −pabðtÞ. The overall excited-
state population of state paðtÞ is unaffected by the collective
resonances. We thus do not expect to observe any enhanced
fluorescence from A; the two-photon absorption signal fac-
torized into a product of individual excitation probabilities for
atoms A and B and shows no collective resonances.

4. Collective two-body resonances generated by illumination
with entangled light

The change in the photon number caused by the two-body
part Δnph depends on the following probabilities: the exci-
tation probability of pab, which means that two photons are
absorbed (counts twice), and the excitation probabilities of
only system A pa and of only system B pb (we assume that
both photons have the same frequency and are resonant with
the two-photon absorption):

Δnph ¼ −2pabðtÞ − pa0ðtÞ − pb0ðtÞ: ð88Þ
In the stimulated emission and TPA pathway absorption,
pabðtÞ and pa0ðtÞ cancel as well, and pabðtÞ and pb0ðtÞ cancel
so that Eq. (88) vanishes. Since the field-matter interaction
Hamiltonian connects the photon number with the excitation
probability, the photon number itself is a single-particle
observable like the population of state jai or state jbi, and
therefore vanishes. However, collective resonances in pabðtÞ

can be revealed in two-photon counting (Hanbury-Brown-
Twiss measurements) (Brown, 1956; Richter and Mukamel,
2011). For the entangled-photon state, Eq. (79), the change in
the photon-photon correlation Δ0nph is attributed to any
buildup of probability that either atom A, or atom B or both
atoms are excited, which will cause a reduction of the photon-
photon correlation:

Δ0nph ¼ −pabðtÞ − pa0ðtÞ − pb0ðtÞ: ð89Þ
Since pabðtÞ enters twice [unlike Eq. (88)] the stimulated
contributions can cancel only with one of the two other
contributions pa0ðtÞ or pb0ðtÞ, and we finally have

Δ0nph ¼ pabðtÞ: ð90Þ
The interference mechanism, which caused the cancellation in
the stimulated signal and the photon number, does not lead to
a full cancellation, and two-photon absorption involving both
systems may be observed.
Two-photon two-atom signals with nonentangled quantum

states. We now discuss whether entangled light is essential for
the creation of collective resonances. This is the subject of
current debate. Zheng et al. (2013) presented a detailed
analysis of the cross section created by entangled pulses
and compared it with “correlated-separable” states in which
the entanglement is replaced by classical frequency correla-
tions. They concluded that it is the frequency anticorrelations
[see Fig. 4(a)], and not the entanglement per se, which is
responsible for the enhancement of the cross section. The
effect of enhanced two-photon absorption probability was
later shown to come from the entangled matter or field
evolution that occurs with any type of quantum light (not
necessarily entangled) (Zheng et al., 2013) which is consistent
with earlier demonstrations of Georgiades, Polzik, and Kimble
(1997). Starting with an entangled pure quantum state having
a density matrix ρ0 ¼ jψentihψ entj of matrix elements ρkk0qq0 ¼
h1k; 1qjρ0j1k01q0 i one can construct other states that have the
same mean energy and the same single-photon spectrum, and
hence that would give the same transition probabilities for a
single-photon resonance. We now examine a special case of
the states that originates from entangled state (79) that will
allow a quantitative evaluation of the role of correlations. It is
the diagonal part of ρ0 defined as

ρ1 ¼
X
k;q

ρkkqqj1k; 1qih1k; 1qj: ð91Þ

Equation (91) does not yield any temporal field coherence and
is time independent. It is in fact a correlated-separable state
(Duan et al., 2000), in which the quantum correlations are
replaced by a purely classical frequency distribution. It gives
rise, however, to correlations between its two parties. Using
the entangled state (79), Eq. (91) reads

ρ1 ¼
�
2c
L

�
2X
k;q

γβ
ðω2

qβ þ γ2βÞ
γα

½ðωqβ þ ωkαÞ2 þ γ2α�
× j1k; 1qih1k; 1qj: ð92Þ

The state (92) corresponds to an atomic cascade for which
the starting time is random, thereby averaging to zero all the
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off-diagonal time-dependent terms in the density matrix. It
results in the following transition probability:

p1ðtÞ≃ p0

γαγβ
δ2 þ γ2α

�
1

ðω1 − ωβÞ2
þ 1

ðω2 − ωβÞ2
�

t2

ðL=cÞ2 :

ð93Þ
At exact two-photon two-atom resonance, we have
p1 ≃ p0γβγ

−1
α c2t2=ðΔLÞ2. Note that p1 depends on time, as

can be expected in a situation where the detecting atoms,
which have an infinite lifetime, are subjected to a stationary
quantum state, and therefore to cw light. In order to compare
p1 to the corresponding probability (83) for pulsed entangled
light, we need to set the interaction time at t ¼ L=c and be at
exact resonance

p1 ≃ p0

γβ
γαΔ2

≃ pent
ab : ð94Þ

We thus found that a correlated-separable state like ρ1 can
induce a two-photon two-atom transition similar to the
entangled cascade state. Note that even though ρ1 is not
entangled, it has quantum properties, being a mixture of
single-photon Fock states which are highly nonclassical.
In summary, the two-photon absorption probability of

noninteracting atoms can be enhanced compared to classical
light by using certain types of quantum light. These do not
require entanglement, rather it is necessary to have spectral
anticorrelations which can be achieved in, e.g., correlated-
separable states. This is a consequence of the stationary
system of two noninteracting atoms.
In the following section we consider a more complex

material system that is subjected to various relaxation chan-
nels, e.g., transport between excited states. We show that
entanglement may then be used to achieve both high spectral
and high temporal correlations which is not possible by
classical correlated light.

J. Quantum light induced correlations between two-level
particles with dipole-dipole coupling

1. Model system

The standard calculation of the nonlinear response to
classical light assumes that the matter is made up of N
noninteracting active particles (atoms or molecules), such that
the matter Hamiltonian may be written as the sum over the
individual particles [see Eq. (7)]

H0 ¼
X
ν

Hν: ð95Þ

The individual nonlinear susceptibilities or response functions
of these atoms then add up to give the total response. The
nonlinear response then becomes a single-body problem and
no cooperative resonances are expected. It is not obvious how
to rationalize the ∼N scaling for noninteracting atoms had we
chosen to perform the calculation in the many-body space.
Massive cancellations of most ∼NðN − 1Þ scaling light-matter
pathways recover in the end the final ∼N signal scaling
(Spano and Mukamel, 1989).

When the atoms are coupled, the calculation must be
carried out in their direct-product many-body space whose
size grows exponentially with N (∼nN dimensions for n-
level atoms). The interatomic coupling is induced by the
exchange of virtual photons leading to dipole-dipole and
cooperative spontaneous emission, or superradiance (Das,
Agarwal, and Scully, 2008; Salam, 2010). In molecular
aggregates, the dipole interaction between its constituents
creates inherent entanglement on the level of the quasipar-
ticles (Mukamel, 2010). This shifts the doubly excited-state
energies and redistributes the dipole moments. The individ-
ual Hamiltonians Hν are (Abramavicius et al., 2009)

Hν ¼ ℏ
X
i

εmB
†
mνBmν þ ℏ

X
m≠n

JmnB
†
mνBnν

þ ℏ
X
m

Δm

2
B†
mνB

†
mνBmνBmν; ð96Þ

where Bm (B†
m) describes an excitation annihilation (crea-

tion) operators for chromophore m. These excitations are
hard-core bosons with Pauli commutation rules (Lee, Huang,
and Yang, 1957):

½Bm; B
†
n� ¼ δmnð1 − 2B†

nBnÞ: ð97Þ

To describe two level sites, which cannot be doubly excited
according to the Pauli exclusion we set Δm → ∞. In
condensed matter physics and molecular aggregates
the many particle delocalized states are called excitons.
The model Hamiltonian (96) can represent, e.g., Rydberg
atoms in optical lattice or Frenkel excitons in molecular
aggregates. To describe four-wave-mixing processes, we
have truncated the Hamiltonian Hν in Eq. (96) at
the doubly excited level, such that the diagonalization
reads

Hν ¼ ℏωgνjgνihgνj þ ℏ
X
e

ωeνjeνiheνj þ ℏ
X
f

ωfνjfνihfνj;

ð98Þ

where g indexes the ground state, e the singly, and f the
doubly excited states, which are the central concern. We
consider processes in which the signals factorize into ones
stemming from individual particles, as well as collective
signals from two or more particles. We illustrate basic
properties of the interaction of entangled photons with
complex quantum systems using the simple multilevel model
depicted in Fig. 8, which has two excited states e1 and e2,
and two doubly excited states f1 and f2. The higher-energy
excited state e2 decays to e1 within a few tens of femto-
seconds. We focus on the doubly excited states created by
the absorption of pairs of photons.
Similarly to the noninteracting case (75), the population in

the final state f at time t is given by the loop diagram in
Fig. 2, which can be written as the modulus square of a
transition amplitude. Tracing out the matter degrees of
freedom, the amplitude can be written as a nonlinear field
operator,
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Tfgðt;ΓÞ ¼ −
1

ℏ2

Z
t

t0

dτ2

Z
τ2

t0

dτ1Eðτ2ÞEðτ1Þ

× hfðtÞjV†ðτ2ÞV†ðτ1Þijgðt0Þi; ð99Þ

which may be evaluated for arbitrary field input states. Using
Eq. (52), we obtain

TðentÞ
fg ðt;ΓÞ ¼ 1

ℏ2T

μgeμefN
ω1 þ ω2 − ωf þ iγf

e−iðω1þω2Þt

×

�
eiðω1−ωeþiγeÞT − 1

ω1 − ωe þ iγe
þ eiðω2−ωeþiγeÞT − 1

ω2 − ωe þ iγe

�
;

ð100Þ

where we used N ¼ N 00Ap which is linear in the classical
pump amplitude. For comparison, the classical probability
governed by excitation by two classical fields with ampli-
tudes A1 and A2 is given by

TðcÞ
fg ðt;ΓÞ ¼

1

ℏ2

μgeμefA1A2e−iðω1þω2Þt

½ω1 − ωeg þ iγeg�½ω2 − ωfe þ iγfe�
þ ðω1 ↔ ω2Þ; ð101Þ

which is quadratic in the field amplitudes, unlike Eq. (100).
The second term denotes the same quantity, but with the
beam frequencies ω1 and ω2 interchanged. We shall discuss
the intensity scaling later.
Equation (100) reflects the entangled-photon structure

described earlier: The pump frequency ωp ¼ ω1 þ ω2 is
sharply defined such that the ωf resonance is broadened only
by the state’s lifetime broadening and pure dephasing rate γf.
The strong time correlations in the arrival time create a
resonance of the form ½expðiωTÞ − 1�=ω, which for very
short entanglement times is independent of the frequency
½expðiωTÞ − 1�=ω≃ T þOðT2Þ. This implies that the inter-
mediate e states effectively interact with broadband light,
whereas the f states interact with cw light. Put differently,
due to their large bandwidth, the entangled photons can induce
all possible excitation pathways through the e manifold
leading to a specific selected f state (Schlawin et al.,
2012). Tuning the pump frequency ωp allows one to select

the excitation of specific wave packets: Fig. 9 depicts the
density matrices for doubly excited states induced by the
absorption of entangled-photon pairs with different pump
frequencies. This behavior remains the same for pulsed
excitation in the strong frequency anticorrelations regime
(Schlawin, 2016).

2. Control of energy transfer

When the material system is coupled to an environment
which causes relaxation among levels, the distributions of
excited-state populations may no longer be described by the
wave function and transition amplitudes, and the density
matrix must be used instead. As shown in Fig. 2, the loop
diagram, which represents the transition amplitudes needs to
be broken up into three fully time-ordered ladder diagrams
(and their complex conjugates). These are given in the time
domain (Schlawin et al., 2013),

pf;ðIÞðt;ΓÞ ¼
�
−
i
ℏ

�
4
Z

t

−∞
dτ4

Z
τ4

−∞
dτ3

Z
τ3

−∞
dτ2

Z
τ2

−∞
dτ1

× hVRðτ4ÞVRðτ3ÞV†
Lðτ2ÞV†

Lðτ1Þi
× hE†ðτ3ÞE†ðτ4ÞEðτ2ÞEðτ1Þi; ð102Þ

pf;ðIIÞðt;ΓÞ ¼
�
−
i
ℏ

�
4
Z

t

−∞
dτ4

Z
τ4

−∞
dτ3

Z
τ3

−∞
dτ2

Z
τ2

−∞
dτ1

× hVRðτ4ÞV†
Lðτ3ÞVRðτ2ÞV†

Lðτ1Þi
× hE†ðτ2ÞE†ðτ4ÞEðτ2ÞEðτ1Þi; ð103Þ

FIG. 8. Level scheme of the multilevel model employed in this
review: two singly excited states e1 and e2 with energies 11 000
and 11 500 cm−1 are coupled to doubly excited states f1 and f2,
as indicated. Furthermore, e2 decays to e1 within 1=k≃ 30 fs.

FIG. 9. (a) The density matrix for doubly excited states
ϱff0 ðtÞ ¼ T�

f0gðtÞTfgðtÞ, Eq. (100), prepared by the absorption

of entangled photons with pump frequency ωp ¼ 22× 160 cm−1.
(b) The same, with ωp ¼ 24 × 200 cm−1. From Schlawin
et al., 2012.
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pf;ðIIIÞðt;ΓÞ ¼
�
−
i
ℏ

�
4
Z

t

−∞
dτ4

Z
τ4

−∞
dτ3

Z
τ3

−∞
dτ2

Z
τ2

−∞
dτ1

× hV†
Lðτ4ÞVRðτ3ÞVRðτ2ÞV†

Lðτ1Þi
× hE†ðτ2ÞE†ðτ3ÞEðτ4ÞEðτ1Þi. ð104Þ

Here Γ collectively denotes the set of control parameters of the
light field. The matter correlation functions in Eqs. (102)–
(104) are given by Liouville space superoperator correlation
functions, which translate for the integration variables in
Eqs. (102)–(104) to the Hilbert space correlation functions

hVRðτ4ÞVRðτ3ÞV†
Lðτ2ÞV†

Lðτ1Þi
¼ hVðτ3ÞVðτ4ÞV†ðτ2ÞV†ðτ1Þi; ð105Þ

hVRðτ4ÞV†
Lðτ3ÞVRðτ2ÞV†

Lðτ1Þi
¼ hVðτ2ÞVðτ4ÞV†ðτ3ÞV†ðτ1Þi; ð106Þ

hV†
Lðτ4ÞVRðτ3ÞVRðτ2ÞV†

Lðτ1Þi
¼ hVðτ2ÞVðτ3ÞV†ðτ4ÞV†ðτ1Þi: ð107Þ

The entangled-photon field correlation functions are given by
the Fourier transform of Eq. (62).
We first restrict our attention to the weak downconversion

regime n̄ ≪ 1 in which the autocorrelation functions g1;2,
Eqs. (64) and (65), may be neglected. The essential properties
of entangled-photon absorption may be illustrated by using
the simple model system introduced in Sec. II.J.1 where the
correlation functions (102)–(104) can be written as the sum-
over-states expressions given in Appendix C. To excite state
f2 faithfully, one needs to select it spectrally, and the
intermediate decay process e2 → e1 needs to be blocked
(see Fig. 8). This can be achieved with entangled photons.
Figure 10 shows how the relative population in each final state
versus the pump frequency ωp. At each frequency the total
population is normalized to unity, i.e., pf1 þ pf2 ¼ 1. By
choosing a spectrally narrow pump bandwidth σp ¼
100 cm−1 in combination with a short entanglement time
T ¼ 10 fs, almost 90% of the total f population can be

deposited in the state f2 at ωp ¼ 22 500 cm−1 (and ∼95% in
f1 at ωp ¼ 21 800 cm−1).
Such degree of state selectivity may not be achieved with

classical laser pulses: For comparison, the f-manifold pop-
ulations created by classical laser pulses with bandwidths
σ ¼ 100 cm−1 (same spectral selectivity) and with σ ¼
1000 cm−1 (same time resolution in the manifold of singly
excited states) are shown as well in Fig. 10. In the former
case, the intermediate relaxation process limits the maximal
yield in f2 to ∼35% (with ca. 65% population in f1 at
ωp ¼ 22 500 cm−1); in the latter case, the lower spectral
resolution limits the achievable degree of control over the
f populations.
For very short entanglement times, transport between

various excited states in the e manifold may be neglected,
and the f populations may as well be calculated using
transition amplitudes, thus greatly reducing the computational
cost (Schlawin, 2016). By varying the entanglement time it
becomes possible to probe subsets of transport pathways via
the selection of specific f states in the detected optical signal.
The above properties may also be observed in more

complex systems such as molecular aggregates (Schlawin
et al., 2013), where the number of excited states is much
higher, but the described physics is essentially the same:
Ultrafast relaxation processes limit the classically achievable
degree of selectivity due to the trade-off between spectral and
time resolution for each absorption process. With entangled
photons, this trade-off limits only the overall two-photon
process, but not each individual transition. This may be
understood in the following way: in the absorption of
entangled photons, the light-matter system becomes entangled
in the interval between the two absorption events, but it
remains separable at all times for classical pulses so that the
energy-time uncertainty applies only to the entire system.
Finally it is worth noting an additional advantage of using

entangled photons for two-photon excitation in molecules
pointed out by Raymer et al. (2013). In many aggregates, the
doubly excited state undergoes rapid nonradiative decay to the
singly excited states. This may occur on the same time scale
of the excited-state transport (Van Amerongen, Valkunas, and
Van Grondelle, 2000). For weakly anharmonic aggregates
where the transition frequencies f → e and e → g are close, it
is hard to discriminate between the two-photon-excited and
single-photon-excited fluorescence. Entangled light can help
isolate the doubly excited-state population by monitoring the
transmitted single-photon pathways with a high-quantum-
efficiency detector that can partially rule out one-photon
absorption.

3. Scaling of two-photon absorption with pump intensity

Equation (101) shows that the TPA probability jTfgj2 scales
quadratically with pump intensity A2

1A
2
2 for classical light

but Eq. (100) shows linear scaling A2
p for weak entangled

light. As the pump pulse intensity is increased, the two-photon
state (33) does not represent the output state (57), and the
autocorrelation contributions g1;2 to Eq. (62) must be taken
into account. To understand how this affects the excited-
state distributions, we first simulate in Fig. 11 the relative

FIG. 10. Variation of the double-excited-state populations
pfðtÞ, Eqs. (102)–(104), with the pump frequency ωp after
excitation by entangled photons with strong frequency anticor-
relations (solid, red), by laser pulses matching the pump
bandwidth σp (dashed, blue), and laser pulses matching the
photon bandwidths ∼1=T (dot-dashed, green). The total f pop-
ulation is normalized to unity at each frequency, i.e.,P

fpfðtÞ ¼ 1.
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contribution of the two-photon term h12 in Eq. (62) to the
population in f2, when the pump frequency is set at resonance
ωp ¼ 22 500 cm−1 and its variation with the mean photon
number (59). Clearly, in the weakly entangled case this
contribution drops rapidly, and already at n̄ ¼ 0.5 the auto-
correlation contribution (i.e., excitations by uncorrelated
photons from different downconversion events) dominates
the signal. In contrast, in the strongly entangled case the
contribution drops much more slowly, and—as can be seen in
the inset—still accounts for roughly one-third of the total
absorption events even at very high photon number n̄≃ 100.
As described by Dayan et al. (2005), this may be attributed to
the strong time correlations in the former case: For T ¼ 10 fs,
one can fit 10 times as many photon pairs into a time period
compared to T ¼ 100 fs, before different pairs start to overlap
temporally. In addition, the strong frequency correlations
discussed in the previous section imply that, on resonance
with the final state f2, the coherent contribution is enhanced
even further.
The situation becomes more striking in Fig. 11(b) when the

intermediate state e is shifted away from the entangled-photon
frequencies, where we set it to ωe2 ¼ 18 500 cm−1, and only
the two-photon transition g → f2 is resonant. In the weakly
entangled case (solid line), little has changed, and parity
between the two-photon and the autocorrelation contribution
is reached again for n̄ ∼ 2. In the strongly entangled regime,
however, the coherent contribution remains close to unity and
dominates the signal even at n̄≃ 500, as seen in the inset.
The strong frequency correlations of entangled-photon

pairs lead to the enhancement of the two-photon contribution
h12 compared to the autocorrelation contributions g1;2—even
for very high photon fluxes. Consequently, the nonclassical

excited-state distributions created by entangled photons can
still dominate the optical signal even when the mean photon
number in each beam greatly exceeds unity (Schlawin, 2016).
The linear to a quadratic crossover of the two-photon
absorption rate with the pump intensity [Fig. 1(a)], which
is traditionally regarded as a transition from a quantum to a
classical regime (Lee and Goodson, 2006), is not necessarily
a good indicator for this transition, as pointed out by
Georgiades, Polzik, and Kimble (1997). The time-frequency
correlations of entangled pairs may be harnessed at much
higher photon fluxes as long as the coherent contribution h12
dominates the incoherent contributions g1;2.

III. NONLINEAR OPTICAL SIGNALS OBTAINED WITH
ENTANGLED LIGHT

We now revisit the excited-state populations created in
matter following the absorption of entangled-photon pairs in
Sec. II and present optical signals associated with these
distributions. We first derive compact superoperator expres-
sions for arbitrary field observables, which naturally encompass
standard expressions based on a semiclassical treatment of the
field (Mukamel, 1995).
Using Eq. (11), the expectation value of an arbitrary field

operator AðtÞ is given by

Sðt;ΓÞ ¼ hAþðtÞifinal ð108Þ

¼
�
T AþðtÞ exp

�
−
i
ℏ

Z
t

t0

dτHint;−ðτÞ
��

ð109Þ

¼ S0 −
i
ℏ

Z
t

t0

dτ

�
T AþðtÞHint;−ðτÞ

× exp

�
−
i
ℏ

Z
τ

t0

dτ0Hint;−ðτ0Þ
��

: ð110Þ

Here the first term describes the expectation value in the
absence of any interaction with the sample, which we set to
zero. The second term describes the influence of the sample on
the expectation value. It may be represented more compactly,
when the interaction Hamiltonian is not written in the RWA
approximation (Schlawin, 2016)

Sðt;ΓÞ ¼ −
i
ℏ

Z
t

t0

dτh½AðtÞ; ϵðτÞ�þVþðτÞifinal; ð111Þ

where we recall ϵðtÞ¼EðtÞþE†ðtÞ and VðtÞ ¼ VðtÞ þ V†ðtÞ.
Equation (111) may be used to calculate arbitrary optical

signals induced by entangled photons, as demonstrated in the
following.

A. Stationary nonlinear signals

We consider the situation described in Sec. II.B, where only
a single quantum mode of the light is relevant. This is most
prominently the case in the strong coupling regime of cavity
quantum electrodynamics (Walther et al., 2006), or when one
is interested in steady state solutions, where only a single (or
few) frequency(ies) of the field is (are) relevant.
The intricate connection between nonlinear optical signals

and photon counting was first made explicit by Mollow

(a)

(b)

FIG. 11. (a) Relative contribution of the coherent two-photon
contribution h12, Eq. (63), to the full time-integrated population
of f2 plotted vs the mean photon number n̄, Eq. (59). The dashed
line shows strong entanglement with entanglement time
T ¼ 10 fs, and the solid line shows weaker entanglement with
T ¼ 100 fs. (b) The same for an intermediate state moved to
ωe2 ¼ 18 500 cm−1.
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(1968), who connected the two-photon absorption rate of
stationary fields with their Gð2Þ function1

w2 ¼ 2jgðω0Þj2
Z

∞

−∞
dte2iωft−γf jtjGð2Þð−t;−t; t; tÞ; ð112Þ

where Gð2Þðt01; t02; t1; t2Þ ¼ hE†ðt01ÞE†ðt02ÞEðt2ÞEðt1Þi and
gðω0Þ ∼ μegμeg=ðω0 − ωe þ iγeÞ is the coupling element
evaluated at the central frequency ω0 of the stationary light
field. The transition rate loosely corresponds to the time-
integrated, squared two-photon transition amplitude (99)
we derived earlier. If the lifetime broadening of the final
state γf is much smaller than the field bandwidth Δω,
γf ≪ Δω, one may even neglect the time integration and
replace Gð2Þð−t;−t; t; tÞ ∼ Gð2Þð0; 0; 0; 0Þ.
This implies, as pointed out by Gea-Banacloche (1989),

that strongly bunched light can excite two-photon transitions
more efficiently than classical light with identical mean
photon number. It further implies that the two-photon
absorption rate scales linearly in the low gain regime, even
though the single mode squeezed state does not show time-
energy entanglement in the sense of Sec. II.C. An exper-
imental verification thereof is reported by Georgiades et al.
(1995) and Georgiades, Polzik, and Kimble (1997).
A more recent proposal (López Carreño et al., 2015)

aims at employing nonclassical fluctuations contained in
the fluorescence of a strongly driven two-level atom: As is
well known, the driven two-level atom’s fluorescence
develops side peaks—known as the Mollow triplet (Scully
and Zubairy, 1997). By driving polaritons—strongly coupled
light-matter states in a cavity—with this light, it should allow
for precise measurements of weak interactions between polar-
itons even in strongly dissipative environments.

B. Fluorescence detection of nonlinear signals

The fluorescence signal is given by the (possibly time-
integrated) intensity AðtÞ ¼ E†ðtÞEðtÞ, when the detected field
mode is initially in the vacuum. It is obtained by expanding
Eq. (111) to second order in the interaction Hamiltonian with
the vacuum field (Mukamel, 1995),

SFluor ¼
1

ℏ2
hVLðtÞV†

RðtÞifinal: ð113Þ

We first investigate the time-integrated f → e fluorescence
signal (113), following excitation by either entangled photons
or classical pulses. Using Eqs. (113) and (102)–(104), we may
readily evaluate the signal as

STPIFðΓÞ ¼
Z

dt
X
e;f

jμefj2pfðt;ΓÞ: ð114Þ

In a different scenario, the two-excitation state may rapidly
decay nonradiatively, e.g., via internal conversion, and the e-g
fluorescence is detected,

~STPIFðΓÞ ∝
Z

dtpfðt;ΓÞ: ð115Þ

Fluorescence signals are proportional to excited-state popu-
lations. Therefore, they are closely related to the excited-state
distributions discussed in Secs. II.I–II.J.3. This is not neces-
sarily the case for absorption measurements as shown in
Sec. III.D.

1. Two-photon absorption versus two-photon-induced
fluorescence (TPIF)

Before reviewing fluorescence signals induced by
entangled photons, we comment on some ambiguity in the
nomenclature of nonlinear signals such as fluorescence that
depend on the doubly excited-state population pf. Since this
population is created by the absorption of two photons, the
signal is often termed as two-photon absorption. However, it
does not pertain to a χð3Þ-absorption measurement, discussed
in Sec. III.D. We refer to signals measuring pf as two-photon-
induced fluorescence and to two-photon resonances in χð3Þ as
two-photon absorption.
In Sec. III.C.1, we further show that for off-resonant

intermediate state(s) e—as is the case in most experimental
studies to date (Dayan et al., 2004, 2005; Lee and Goodson,
2006; Harpham et al., 2009; Guzman et al., 2010; Upton
et al., 2013)—the two signals carry the same information.

2. Two-photon-induced transparency and entangled-photon
virtual-state spectroscopy

Entangled virtual-state spectroscopy, proposed by Saleh
et al. (1998), suggests a means to detect far off-resonant
intermediate states in the excitation of f states by employing
entanglement-induced two-photon transparency (Fei et al.,
1997): The transition amplitude (100) of entangled photons
created by a cw source oscillates as a function of the
entanglement time T. For infinite excited-state lifetimes
(γe ¼ 0), the excitation of f is even completely suppressed
whenever ðω1−ωeÞT¼n×2π∀n∈N—the medium becomes
transparent.
Saleh et al. had proposed to turn this counterintuitive

effect into a spectroscopic tool by sending one of the two
photons through a variable delay stage τ, which simply
amounts to evaluating the two-photon wave function (52)
h0jEðτ2 þ τÞEðτ1Þjψ twini. For degenerate downconversion the
transition amplitude (100) then reads

Tfgðτ; t;ΓÞ ¼
N 0Ap

ℏ2T

X
e

μgeμef
ωp − ωf þ iγf

e−iωpte−iωpτ=2

Δe þ iγe

× ½eiðΔeþiγeÞðT−τÞ þ eiðΔeþiγeÞðTþτÞ − 2�; ð116Þ
where we introduced the detuning Δe ¼ ωp=2 − ωe. The
Fourier transform of the TPIF signal ∝ jTfgðτÞj2 with respect
to τ reveals different groups of resonances shown in Fig. 12 for
the TPIF signal in hydrogen: Group A denotes resonances of
differences between intermediate states Δe − Δe0 , group B of
detunings Δe, and group C of the sum of detunings Δe þ Δe0 .
Such signals were simulated in a molecular system (Kojima
andNguyen, 2004), and similar resonances can be identified in
absorption TPA measurements as discussed in Sec. III.C.1.1We change the notation to match the rest of this review.
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However, it turns out that the effect depends crucially on the
tails of the spectral distribution in Eq. (49) (de J Leon-Montiel
et al., 2013). The sinc function in the two-photon wave
function (51) has a long Lorentzian tail ∼1=ω, which covers
extremely far off-resonant intermediate states. When the sinc
is replaced by Gaussian tails, the resonances vanish. The effect
is thus caused by the long spectral tails and is not intrinsically
connected to entanglement.

3. Fluorescence from multilevel systems

The TPIF signal, Eq. (114), directly reflects the doubly
excited-state population distributions created by the absorp-
tion of entangled-photon pairs. This may be seen in simu-
lations of the TPIF signal from Frenkel excitons in molecular
aggregates (Schlawin et al., 2012). In Fig. 13(a), we present
the TPIF signal resulting from the decay of the f-state
distributions in Fig. 10. Clearly, the signal peaks whenever
a two-excitation state is on resonance with the pump fre-
quency ωp. The signal from the two f states has approx-
imately the same strength. In contrast, the TPIF signal created
by classical pulses shown in Fig. 13(b) has a strong resonance
only when the light is on resonance with the state f1, whereas
f2 can be observed only as a weak shoulder of the main
resonance. As discussed in Sec. II.I, the fast decay of the
intermediate state e2 limits the excitation of f2 with classical
light, and therefore the state can hardly be observed, even
though it has the same dipole strength as f1.
These nonclassical bandwidth features of entangled-photon

pairs may be further exploited to control vibronic states as
reported by Oka (2011a, 2011b). They were also investigated
in semiconductor quantum wells. There the absorption of
excited states competes with the absorption into a continuum
of excited electronic states of free electrons and holes. By
interpolating between negative and positive frequency corre-
lations (see Fig. 3), it was shown by Salazar et al. (2012) how
the absorption of the excited states may be either enhanced or
suppressed as shown in Fig. 14.

4. Multidimensional signals

In Fig. 2, we explained how each light-matter interaction
event also imprints the light phase ϕ onto the matter response.

We now exploit this fact to create multidimensional spectro-
scopic signals. Phase cycling provides a means to postselect
signals with a certain phase signature as shown in the next
section. Using additional delay stages, as in the entangled-
photon virtual-state spectroscopy discussed previously in
Sec. III.B.2, these signals can be spread to create multidi-
mensional frequency correlation maps, which carry informa-
tion about couplings between different resonances or
relaxation mechanisms (Ginsberg, Cheng, and Fleming,
2009). Phase cycling is essential for partially noncollinear
or collinear geometry 2D spectroscopic experiments
(Keusters, Tan, and Warren, 1999; Scheurer and Mukamel,

FIG. 12. Entangled virtual-state spectroscopy: the TPIF signal
vs the Fourier transform of an additional time delay between the
two photons (see text) in hydrogen. From Saleh et al., 1998.

(a)

(b)

FIG. 13. (a) TPIF action spectrum STPIFðΓÞ, Eq. (114), induced
by entangled-photon pairs with the same parameters as in Fig. 10.
The fluorescence created by the state f1 is shown separately as a
dashed line, and the signal from f2 as a dot-dashed line. (b) TPIF
action spectrum induced by laser pulses with bandwidth
σ0 ¼ 100 cm−1.

FIG. 14. Two-photon absorption (TPIF in our notation, see
Sec. III.B.1) in a semiconductor quantum well: excited-state
resonances within a continuum of delocalized states may be
enhanced with frequency anticorrelations (black) or suppressed
with positive frequency correlations (red). FromSalazar et al., 2012.
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2001; Tian et al., 2003; Tan, 2008; Yan and Tan, 2009;
Zhang, Wells, Hyland, and Tan, 2012; Krčmář, Gelin, and
Domcke, 2013). In the phase-cycling protocol, the desired
2D signals are retrieved by the weighted summation of data
collected using different interpulse phases ϕ21, which are
cycled over 2π radians in a number of equally spaced steps.
In the pump-probe configuration, Myers et al. (2008)
showed that other than the pure absorptive signal, the
rephasing and nonrephasing contributions may also be
retrieved. This phase difference detection can be defined
as a two-step phase-cycling scheme. For the phase difference
detection, the Ogilvie group collected signals with interpulse
phases of ϕ21 ¼ 0, π, π=2, and 3π=2. The same signal can be
obtained with chopping, but this is only half as intense
compared to the phase difference method. In the context of
this review, Myers et al. (2008) used the technique similar to
a four-step phase-cycling scheme, where four sets of data
need to be collected and linearly combined.
Raymer et al. (2013) exploited the formal similarity

between the TPIF and a photon coincidence signal to propose
the setup shown in Fig. 15(a). Here the successive absorption
events promoting the molecule into the f state are modulated
by phase cycling and delay stages in both photon beams,
creating interference effects between absorption events in
which the photon takes the short path through the interfer-
ometer and those in which it takes the long path. The Fourier
transform creates two-dimensional signals which are shown in
Fig. 15(b). In contrast to the classical signal shown in the
upper panel, the proposed scheme shows resonances only at
the cross peak between the two electronic states. This could
provide a useful tool to study conformations of aggregates. We
next discuss this strategy in more detail.

5. Loop (LOP) versus ladder (LAP) delay scanning protocols
for multidimensional fluorescence detected signals

Since the loop and the ladder diagrams involve different
time variables they suggest different multidimensional sig-
nals obtained by scanning the corresponding time delays.
We consider the TPIF signal created by a train of four
pulses centered at times T1, T2, T3, and T4 with phases ϕ1,
ϕ2, ϕ3, and ϕ4 (Tekavec, Lott, and Marcus, 2007; Pestov,
Lozovoy, and Dantus, 2009). We first analyze signals
obtained by the LOP and LAP delay scanning protocols
with classical light. The two protocols highlight different
resonances and processes. First we demonstrate what type of
information can be extracted from each protocol for
excited electronic states in a model molecular aggregate.
We then show some benefits of LOP protocols for entangled
light.
For the model system shown in Fig. 2(a) the signal (114) is

given by the single loop diagram in Fig. 2(b). a, b, c, and d
denote the pulse sequence ordered along the loop (but not in
real time); a represents “first” on the loop, etc. Chronologically
ordered pulses in real time will be denoted 1, 2, 3, and 4 which
are permutations of a, b, c, and d. One can scan various
delays Tα − Tβ, α; β ¼ 1;…; 4 and control the phases
�ϕ1 � ϕ2 � ϕ3 � ϕ4. In standard multidimensional tech-
niques the time variables represent the pulses as they interact
with the sample in chronological order (Mukamel, 1995).
These are conveniently given by the ladder delays ti shown in
Fig. 16(c). The LAP maintains complete time ordering of all
four pulses. The arrival time of the various pulses in chrono-
logical order is T1 < T2 < T3 < T4. The ladder delays are
defined as t1 ¼ T2 − T1, t2 ¼ T3 − T2, and t3 ¼ T4 − T3. One
can then use phase cycling to select the rephasing and

FIG. 15. (a) Experimental setup for the LOP protocol: By sending each beam through a Franson interferometer, the photon excitation
may occur via either a delayed or an “early” photon. (b) Top panel: Two-dimensional fluorescence spectrum induced by classical light.
Bottom panel: The same spectrum induced by entangled photons. From Raymer et al., 2013.
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nonrephasing diagrams shown in Fig. 16(c) and read off the
signal in a sum-over-states expansion

SðLAPÞkII
ðt1; t2; t3Þ ¼ IE�

1E
�
2E3E4

X
e;e0;f

μge0μe0fμ
�
feμ

�
eg

× Gefðt3ÞGee0 ðt2ÞGegðt1Þ; ð117Þ

SðLAPÞkIII
ðt1; t2; t3Þ ¼ IE�

1E
�
2E3E4

X
e;e0;f

μge0μe0fμ
�
feμ

�
eg

× Gefðt3ÞGee0 ðt2ÞGge0 ðt1Þ: ð118Þ

The LAP signals (117) and (118) factorize into a product of
several Green’s functions with uncoupled time arguments. This
implies that the corresponding frequency-domain signal will
also factorize into a product of individual Green’s functions,
each depending on a single frequency argument ~Ωj, j ¼ 1, 2, 3
which yields

SðLAPÞkII
ð ~Ω1; t2 ¼ 0; ~Ω3Þ

¼ R
X
e;e0;f

μge0μe0fμ
�
feμ

�
egE�

1E
�
2E3E4

½Ω3 − ωef þ iγef�½Ω1 − ωeg þ iγeg�
; ð119Þ

SðLAPÞkIII
ð ~Ω1; t2 ¼ 0; ~Ω3Þ

¼ R
X
e;e0;f

μge0μe0fμ
�
feμ

�
egE�

1E
�
2E3E4

½Ω3 − ωfe þ iγfe�½Ω1 − ωe0g þ iγe0g�
: ð120Þ

This factorization holds, only in the absence of additional
correlating mechanisms of the frequency variables caused by,
e.g., dephasing (bath) or the state of light.
In the LOP the time ordering of pulses is maintained only

on each branch of the loop but not between branches. To
realize the LOP experimentally the indices 1 to 4 are assigned
as follows: first by phase cycling we select a signal with phase
ϕ1 þ ϕ2 − ϕ3 − ϕ4. The two pulses with positive phase
detection are thus denoted 1, 2 and with negative phase 3,
4. In the 1, 2 pair pulse 1 comes first. In the 3, 4 pair pulse 4
comes first. The time variables in Fig. 16(b) are s1 ¼ T2 − T1,
s2 ¼ T3 − T2, and s3 ¼ T3 − T4. With this choice s1 and s3
are positive whereas s2 can be either positive or negative. This
completely defines the LOP experimentally.
When the electronic system is coupled to a bath, it cannot

be described by a wave function in the reduced space where
the bath is eliminated. As described in Sec. II.J.2, the loop
diagram must then be broken into several ladder diagrams
shown in Fig. 2(b) which represent the density matrix. The full
set of diagrams and corresponding signal expressions are
given by Dorfman and Mukamel (2014b). In Fig. 16(c) we

(a)

(c)

(b)

FIG. 16. (a) Pulse sequence for LOP (top panel) and LAP (bottom panel) scanning protocols. (b) Loop diagram for the TPA process
with indicated loop delays for the nonspecified phase cycling that depends on chronological time ordering between pulses 1 and 4.
(c) Ladder diagrams for the TPA signal with selected phase-cycling components corresponding to the double-quantum-coherence term
kI: −ϕd − ϕc þ ϕb þ ϕa, rephasing kII: −ϕ4 þ ϕ2 þ ϕ1 − ϕ3, and nonrephasing kIII: −ϕ4 þ ϕ2 − ϕ3 þ ϕ1. Both loop sj and ladder tj
delays, j ¼ 1, 2, and 3 are indicated. The transformation between two is different for each diagram. The time translation invariance
implies ω1 þ ω2 − ω3 − ω4 ¼ 0.
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present simplified expressions for the rephasing kII and
nonrephasing kIII signals in the limit of well-separated pulses:

SðLOPÞkII
ðs1; s2; s3Þ ¼ IE�

1E
�
2E3E4

X
e;e0;f

μge0μe0fμ
�
feμ

�
eg

× Gefðs2ÞGee0 ðs3ÞGegðs1 − s2 − s3Þ;
ð121Þ

SðLOPÞkIII
ðs1; s2; s3Þ ¼ IE�

1E
�
2E3E4

X
e;e0;f

μge0μe0fμ
�
feμ

�
eg

× Gefðs2ÞGee0 ðs1 − s2ÞGge0 ðs2 þ s3 − s1Þ;
ð122Þ

where I denotes the imaginary part and GαβðtÞ ¼
ð−i=ℏÞθðtÞe−½iωαβþγαβ �t is the Liouville space Green’s function
[see Eq. (16)]. Note that the loop delays sj, j ¼ 1, 2, and 3 are
coupled and enter in the Green’s function Geg in Eq. (121).
Because of the Heaviside θ function in this Green’s function,
the delays sj are not independent but rather couple the
dynamics of the system during these delay times, which
eventually result in cross resonances in multidimensional
spectra. To see the effect on the mixing of the frequency
variables that yield these cross peaks we take a Fourier
transform of Eqs. (121) and (122) with respect to loop delay
variables s1 and s3 keeping s2 ¼ 0 and obtain the resonant
component of the signal analogous to the frequency-domain
LAP signals (119) and (120)

SðLOPÞkII
ðΩ1; s2 ¼ 0;Ω3Þ

¼ R
X
e;e0;f

μge0μe0fμ
�
feμ

�
egE�

1E
�
2E3E4

½Ω1 þ Ω3 − ωee0 þ iγee0 �½Ω1 − ωeg þ iγeg�
;

ð123Þ
SðLOPÞkIII

ðΩ1; s2 ¼ 0;Ω3Þ

¼ R
X
e;e0;f

μge0μe0fμ
�
feμ

�
egE�

1E
�
2E3E4

½Ω1 þ Ω3 þ ωee0 þ iγee0 �½Ω3 − ωe0g þ iγe0g�
;

ð124Þ
whereR denotes the real part. Equations (123) and (124) yield
cross peaks Ω1 þ Ω3 ¼ ωee0 . The time correlations therefore
result in the frequency mixing of arguments.
Figure 17 compares the LOP and LAP signals for the

model dimer parameters of Raymer et al. (2013) under two-
photon excitation by classical light. The LOP spectra for
rephasing kII¼−k1þk2þk3, nonrephasing kIII¼þk1þk2

−k3, and their sums are shown in Figs. 17(a)–17(c),
respectively. The corresponding LAP spectra are shown in
Figs. 17(d)–17(f). We see that the scanning protocol makes a
significant difference as seen by the two columns. The LOP
resonances are narrow and clearly resolve the e1 and e2 states
whereas the corresponding LAP signals are broad and
featureless. This is a consequence of the display variables
chosen in each protocol. LOP variables are coupled in a very
specific fashion that allows one to extract the intraband
dephasing rate γee0 in the ðΩ1;Ω3Þ plot with higher precision
compared to the LAP case. Of course, one can extract
similar information using LAP if displayed using ð ~Ω1; ~Ω2Þ

or ð ~Ω2; ~Ω3Þ which is discussed later in the context of
entangled light. This difference in two protocols was origi-
nally attributed to entanglement by Raymer et al. (2013).
However, as can be seen from Fig. 17 (Dorfman and
Mukamel, 2014b) the difference was unrelated to entangle-
ment and was due to entangled signals being calculated using
LOP and classical signals—using LAP.
Entangled versus classical light: So far we presented the

LOP and the LAP delay scanning protocols for classical light.
We now turn to the LOP protocol with entangled light.
Similarly to Eqs. (121) and (122) we calculate the signals
for the cw-pump model (51) discussed earlier and obtain

SðjÞLOPðs1;s2;s3Þ¼ I
Z

∞

−∞

dωa

2π

dωb

2π

dωd

2π

×Rjðωa;ωb;ωdÞDðjÞ
LOPðs1;s2;s3;ωa;ωb;ωdÞ

× hE†ðωdÞE†ðωaþωb−ωdÞEðωbÞEðωaÞi;
ð125Þ

where j ¼ kII, kIII, and the display function for both rephas-
ing and nonrephasing contributions reads

DðjÞ
LOPðs1; s2; s3;ωa;ωb;ωdÞ
¼ θðs1Þθjð�s2Þθðs3Þ × e−iωas1þiωds3−iðωaþωbÞs2 ; ð126Þ

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 17. Left column: SLOPðΩ1; τ2 ¼ 0;Ω3Þ for the molecular
dimer model of Raymer et al. (2013) calculated using classical
light for (a) rephasing kII Eq. (123); (b) nonrephasing kIII
Eq. (124); and (c) the sum of the two kII þ kIII. Right column:
The same for SLAPð ~Ω1; t2 ¼ 0; ~Ω3Þ Eqs. (119) and (120). Note
that for the sums of rephasing and nonrephasing components for
the LAP signal we flipped the rephasing component to obtain
absorptive peaks as is typically done in the standard treatment of
photon echo signals. The difference between the two columns
stems from the display protocol and is unrelated to entanglement.
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and matter responses are

RkII
ðωa;ωb;ωdÞ ¼

X
e;e0;f

μage0μ
b
e0fμ

c�
feμ

d�
eg

× Gefð−ωbÞGee0 ðωa − ωdÞGegðωaÞ;
RkIII

ðωa;ωb;ωdÞ ¼
X
e;e0;f

μage0μ
b
e0fμ

c�
feμ

d�
eg

× Gefð−ωbÞGee0 ðωa − ωdÞGge0 ð−ωdÞ:
ð127Þ

Similarly we obtain for LAP signals Eqs. (117) and (118)

SðjÞLAPðt1; t2; t3Þ ¼ I
Z

∞

−∞

dωa

2π

dωb

2π

dωd

2π

× Rjðωa;ωb;ωdÞDðjÞ
LAPðt1; t2; t3;ωa;ωb;ωdÞ

× hE†ðωdÞE†ðωa þ ωb − ωdÞEðωbÞEðωaÞi;
ð128Þ

where the display function for the rephasing signal is

DðkIIÞ
LAPðt1; t2; t3;ωa;ωb;ωdÞ
¼ θðt1Þθðt2Þθðt3Þ × eiωbt3−iωat1þiðωd−ωaÞt2 ; ð129Þ

and for the nonrephasing signal

DðkIIIÞ
LAP ðt1; t2; t3;ωa;ωb;ωdÞ
¼ θðt1Þθðt2Þθðt3Þeiωbt3þiωdt1þiðωd−ωaÞt2 : ð130Þ

The complete set of signals along with frequency-domain
signals for entangled light can be found in Sec. 2 of Dorfman
and Mukamel (2014b).
The Fourier transform of the signal (125) was simulated

using the LOP protocol and compared with the standard
fully time-ordered LAP protocol given by Eq. (128) for a
model trimer with parameters discussed in Sec. 5 of Dorfman
and Mukamel (2014b). Figure 18 shows the simulated
SLOPðΩ1; τ2 ¼ 0;Ω3Þ for a trimer using classical light (top
row) and entangled light (bottom row). Figure 18(a) shows
classical light which gives a diagonal cross peak e ¼ e0 and
one pair of weak side peaks parallel to the main diagonal at
ðe; e0Þ ¼ ðe2; e3Þ. The remaining two pairs of side peaks at
ðe; e0Þ ¼ ðe1; e2Þ and ðe; e0Þ ¼ ðe1; e3Þ are too weak to be
seen. Figure 18(d) depicts the signal obtained using entangled
photons where we observe two additional strong side cross-
peak pairs with ðe; e0Þ ¼ ðe1; e3Þ and ðe; e0Þ ¼ ðe1; e2Þ. The
weak peak at ðe; e0Þ ¼ ðe2; e3Þ is significantly enhanced
as well.
As shown in Fig. 17 the LAP signal displayed vs ð ~Ω1; ~Ω3Þ

does not effectively reveal intraband dephasing. This can,
however, be done by the LAP signal displayed vs ð ~Ω2; ~Ω3Þ.
Figure 18(c) reveals several ~Ω3 ¼ ωfe peaks that overlap in
~Ω3 axes due to large dephasing γfe. With entangled light, the
LAP protocol yields some enhancement in several peaks
around �0.01 eV but overall the LOP yields a much cleaner
result. The pathways for the density matrix (LAP) and the
wave function (LOP) are different and may result in different
types of resonances.

C. Heterodyne-detected nonlinear signals

In Sec. III.B we have considered fluorescence (homodyne)
detection. Homodyne and heterodyne are two complementary
detection schemes for nonlinear optical signals. For classical
fields, if the sample radiation is detected for different modes
than the incident radiation, the signal is proportional to jEj2.
This is known as homodyne detection whereby the intensity is
the square modulus of the emitted field itself. If the emitted
field coincides with a frequency of the incident radiation
Ein, then the signal intensity is proportional to jEþ Einj2.
Consequently, the detected intensity contains a mixed inter-
ference term, i.e., E�Ein þ c:c: This is defined as the hetero-
dyne signal, since the emitted field is mixed with another field.
In terms of quantized fields, the signal is denoted homodyne if
detected at a field mode that is initially vacant and heterodyne
when detected at a field mode that is already occupied. Note
that the nomenclature which is commonly used in nonlinear
multidimensional spectroscopy is different from the definition
used in quantum optics and optical engineering where
homodyne and heterodyne refer to mixing with a field with
the same or different frequency of the signal. In this review,
we use the spectroscopy terminology (Potma and Mukamel,
2013). Fluorescence detection is often more sensitive than
heterodyne detection as the latter is limited by the pulse
duration so there are fewer constraints on the laser system. In
addition the low intensity requirements for biological samples
limit the range of heterodyne detection setups. This was
demonstrated by Fu et al. (2007), Tekavec, Lott, and Marcus
(2007), and Ye, Fu, and Warren (2009) even in single-
molecule spectroscopy (Brinks et al., 2010). Historically,
Ramsey fringes constitute the first example of incoherent
detection (Ramsey, 1950; Cohen-Tannoudji and Guéry-
Odelin, 2011; Schlawin et al., 2013). Information similar to
coherent spectroscopy can be extracted from the parametric
dependence on various pulse sequences applied prior to the
incoherent detection (Rahav and Mukamel, 2010; Mukamel

(a)

(b)

(c)

(d)

FIG. 18. Left column: LOP signal SkIIþkIII
ðΩ1; τ2 ¼ 0;Ω3Þ for a

molecular trimer with classical light Eqs. (123) and (124) (a),
entangled light (125) with Te ¼ 100 fs (b). Right column: LAP
signal SkII

ð ~Ω1; t2 ¼ 0; ~Ω3Þ using classical light Eq. (119) (c),
entangled light with Te ¼ 100 fs, Eq. (128) (d). Intraband
dephasing γee0 ¼ 1 meV. All other parameters are given in Sec. 5
of Dorfman and Mukamel (2014b).
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and Richter, 2011). Possible incoherent detection modes
include fluorescence (Elf, Li, and Xie, 2007; Barkai, 2008),
photoaccoustic (Patel and Tam, 1981), atomic force micro-
scope (AFM) (Mamin et al., 2005; Poggio et al., 2009;
Rajapaksa, Uenal, and Wickramasinghe, 2010; Rajapaksa and
Wickramasinghe, 2011), or photocurrent detection (Cheng
and Xie, 2012; Nardin et al., 2013).

1. Heterodyne intensity measurements: Raman versus
TPA pathways

With AðtÞ ¼ E†ðtÞEðtÞ, Eq. (111) yields the rate of change
of the transmitted photon number,

S1ðt;ΓÞ ¼
2

ℏ
ℑhE†

þðtÞVþðtÞifinal: ð131Þ

The semiclassical signal may be obtained from Eq. (131)
by simply replacing the field operator E†ðtÞ by a classical
field amplitude A�ðtÞ. Similarly, by spectrally dispersing the
time-integrated intensity, which amounts to measuring
AðωÞ ¼ E†ðωÞEðωÞ, we obtain

Sðω;ΓÞ ¼ 2

ℏ
ℑhE†ðωÞVðωÞifinal: ð132Þ

The third-order contribution of the time-integrated absorp-
tion signal (131) is given by the four loop diagrams in Fig. 19,

S1;ðIÞðΓÞ ¼ −
1

ℏ
ℑ

��
−
i
ℏ

�
3
Z

∞

−∞
dt

Z
t

−∞
dτ2

Z
τ2

−∞
dτ1

Z
t

−∞
dτ01

× hVðτ01ÞVðtÞV†ðτ2ÞV†ðτ1Þi

× hE†ðτ01ÞE†ðtÞEðτ2ÞEðτ1Þi
�
; ð133Þ

S1;ðIIÞðΓÞ ¼
1

ℏ
ℑ

��
−
i
ℏ

�
3
Z

∞

−∞
dt

Z
t

−∞
dτ3

Z
τ3

−∞
dτ2

Z
τ2

−∞
dτ1

× hVðtÞVðτ3ÞV†ðτ2ÞV†ðτ1Þi

× hE†ðtÞE†ðτ3ÞEðτ2ÞEðτ1Þi
�
; ð134Þ

S1;ðIIIÞðΓÞ ¼
1

ℏ
ℑ

��
−
i
ℏ

�
3
Z

∞

−∞
dt

Z
t

−∞
dτ1

Z
t

−∞
dτ02

Z
τ0
2

−∞
dτ01

× hVðτ01ÞV†ðτ02ÞVðtÞV†ðτ1Þi

× hE†ðτ01ÞEðτ02ÞE†ðtÞEðτ1Þi
�
; ð135Þ

S1;ðIVÞðΓÞ ¼
1
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ℑ

��
−
i
ℏ

�
3
Z

∞

−∞
dt

Z
t

−∞
dτ3

Z
τ3

−∞
dτ2

Z
τ2

−∞
dτ1

× hVðtÞV†ðτ3ÞVðτ2ÞV†ðτ1Þi

× hE†ðtÞEðτ3ÞE†ðτ2ÞEðτ1Þi
�
: ð136Þ

An identical expansion of Eq. (132) yields the frequency-
resolved third-order signal (its sum-over-state expansion is
shown in Appendix D)

S1;ðIÞðω;ΓÞ ¼ −
1

ℏ
ℑ

��
−
i
ℏ

�
3
Z

∞

−∞
dt
Z

t

−∞
dτ2

Z
τ2

−∞
dτ1

Z
t

−∞
dτ01

× eiωthVðτ01ÞVðtÞV†ðτ2ÞV†ðτ1Þi

× hE†ðτ01ÞE†ðωÞEðτ2ÞEðτ1Þi
�
; ð137Þ

S1;ðIIÞðω;ΓÞ ¼
1
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ℏ
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3
Z

∞

−∞
dt
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t

−∞
dτ3
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−∞
dτ2
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τ2

−∞
dτ1

× eiωthVðtÞVðτ3ÞV†ðτ2ÞV†ðτ1Þi

× hE†ðωÞE†ðτ3ÞEðτ2ÞEðτ1Þi
�
; ð138Þ

S1;ðIIIÞðω;ΓÞ ¼
1

ℏ
ℑ

��
−
i
ℏ

�
3
Z

∞

−∞
dt

Z
t

−∞
dτ1

Z
t

−∞
dτ02

Z
τ0
2

−∞
dτ01

× eiωthVðτ01ÞV†ðτ02ÞVðtÞV†ðτ1Þi

× hE†ðτ01ÞEðτ02ÞE†ðωÞEðτ1Þi
�
; ð139Þ

S1;ðIVÞðω;ΓÞ ¼
1
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ℑ
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−
i
ℏ

�
3
Z

∞

−∞
dt

Z
t

−∞
dτ3

Z
τ3

−∞
dτ2

Z
τ2

−∞
dτ1

× eiωthVðtÞV†ðτ3ÞVðτ2ÞV†ðτ1Þi

× hE†ðωÞEðτ3ÞE†ðτ2ÞEðτ1Þi
�
: ð140Þ

It is instructive to relate the four diagrams corresponding to
Eqs. (D1)–(D4) to the transition amplitudes between the initial
and final matter states to gain some intuition for this signal.
This is possible only for the total photon counting signalR
dωSðω;ΓÞ=ð2πÞ, which represents the full energy exchanged

between the light field and the matter system.
FIG. 19. Diagrams representing the third-order contributions to
Eq. (131).
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We now define the transition amplitude operators

Tð1Þ
e0gðωÞ ¼

μe0g
ℏ

EðωÞ; ð141Þ

Tð2Þ
fg ðωsumÞ ¼

1

ℏ2

X
e

Z
dωa

2π

μgeμefEðωsum − ωaÞEðωaÞ
ωa − ωe þ iγe

;

ð142Þ

Tð2Þ
g0gðωÞ ¼

1

ℏ2

X
e

Z
dωa

2π

μgeμeg0E†ðωa − ωÞEðωaÞ
ωa − ωe þ iγe

; ð143Þ

Tð3Þ
e0gðωÞ¼

1

ℏ3

X
e;f

Z
dωa

2π

Z
dωx

2π

μge
ωa−ωeþ iγe

μefμfe0

ωx−ωfþ iγf

×E†ðωx−ωÞEðωx−ωaÞEðωaÞ; ð144Þ

T 0ð3Þ
e0gðωÞ¼

1

ℏ3

X
e;g0

Z
dωa

2π

Z
dω−

2π

μge
ωa−ωeþ iγe

μeg0μg0e0

ω− −ωg0 þ iγg

×Eðω−ω−ÞE†ðωa−ω−ÞEðωaÞ. ð145Þ
Assuming a unitary time evolution, we can replace the
dephasing rates in Eqs. (D1)–(D4) by infinitesimal imaginary
factors γ → ϵ. This allows us to use the identity 1=ðωþ iϵÞ ¼
PP1=ωþ iπδðωÞ and carry out the remaining frequency
integrals. We arrive atZ

dω
2π

S1;ðIÞðω;ΓÞ ¼
X
f

hTð2Þ†
fg ðωfÞTð2Þ

fg ðωfÞi; ð146Þ
Z

dω
2π

S1;ðIIÞðω;ΓÞ ¼
X
e

hTð1Þ†
eg ðωeÞTð3Þ

eg ðωeÞi; ð147Þ
Z

dω
2π

S1;ðIIIÞðω;ΓÞ ¼
X
g0
hTð2Þ†

g0g ðωg0 ÞTð2Þ
g0gðωg0 Þi; ð148Þ

Z
dω
2π

S1;ðIVÞðω;ΓÞ ¼
X
e

hTð1Þ†
eg ðωeÞT 0ð3Þ

eg ðωeÞi: ð149Þ

Details of the sum-over-state expansion are presented in
Appendix D. These results clarify the statement we made at
the end of Sec. III.B.1: The χð3Þ-absorption signal com-
prises matter transitions from the ground to the f state, just
like the TPIF signal, but it also contains transitions to e and
g states. The absorption and the TPIF signals contain the
same information, only when transitions between the e and
g states can be neglected, as is the case when e is off
resonant.

2. Heterodyne-detected four-wave mixing and the
double-quantum-coherence technique

Time-domain two-dimensional (2D) spectroscopic tech-
niques (Mukamel, 2000) provide a versatile tool for exploring
the properties of molecular systems, such as photosynthetic

aggregates (Engel et al., 2007; Abramavicius, Voronine, and
Mukamel, 2008) and coupled (hybrid) nanostructures to
semiconductor quantum wells (Zhang et al., 2007; Pasenow
et al., 2008; Yang et al., 2008; Vogel et al., 2009). These
techniques use sequences of coherent pulses that are shorter
than the dephasing times of the system.
Earlier we presented different delay scanning protocols

(LOP and LAP) for multidimensional spectroscopy with
entangled photons. These protocols can be experimentally
realized using entangled-photon pulse shaping, using collinear
geometry and precise control of the phase, via the phase
cycling. These protocols allow one to extract interband and
intraband dephasing with high resolution by exciting doubly
excited-state distributions. We now present a different multi-
dimensional time-domain signal that involves higher electronic
states manifold, but does not require excited populations. This
is known as double-quantum coherence (DQC) (Mukamel,
Oszwaldowski, and Yang, 2007; Yang and Mukamel, 2008;
Kim, Mukamel, and Scholes, 2009; Palmieri, Abramavicius,
and Mukamel, 2009), which monitors the coherence between
ground and doubly excited states jfihgj rather than the
population jfihfj. This technique reveals the energies of single
and doubly excited-state energies as well as the correlations
between single and doubly excited states.We show how pulsed
entangled photons affect the two-photon resonances. Some
bandwidth limitations of classical beams are removed and
selectivity of quantum pathways is possible.

a. The DQC signal

In the following we use the LAP delay scanning protocol
which monitors the density matrix. A pulse shaper creates a
sequence of fourwell-separated chronologically ordered pulses
described by field operatorEjðtÞ ¼

R ðdω=2πÞEjðωÞe−iωðt−TjÞ,
j ¼ 1, 2, 3, and 4. The control parameters are their central
times T1 < T2 < T3 < T4 and phases ϕ1, ϕ2, ϕ3, and ϕ4 [see
Fig. 20(a)]. The DQC signal selects those contributions with
the phase signatureϕ1 þ ϕ2 − ϕ3 − ϕ4. The signal is defined as
the change in the time-integrated transmitted intensity in
component ϕ4, which is given by

S ¼ 2

ℏ

Z
dthE†

4ðtÞVðtÞi. ð150Þ

We thus have a configuration similar to an impulsive
experiment with four short well-separated classical fields.
Introducing the LAP delays t3 ¼ T4 − T3, t2 ¼ T3 − T2,
and t1 ¼ T2 − T1. We can calculate Eq. (150) by expanding
perturbatively in the dipole field-matter interaction
Hamiltonian (7). The two contributions to the signal are
represented by the ladder diagrams shown in Fig. 20(b). The
corresponding signal (150) can be read off these diagrams and

is given by SðLAPÞDQC ðΓÞ ¼ SðLAPÞDQCi ðΓÞ þ SðLAPÞDQCiiðΓÞ, where

SðLAPÞDQCi ðΓÞ ¼
1

ℏ3
Re

Z
∞

−∞
dt

Z
∞

0

ds1

Z
∞

0

ds2

Z
∞

0

ds3hΨjE†
3ðt − s3ÞE†

4ðtÞE2ðt − s3 − s2ÞE1ðt − s3 − s2 − s1ÞjΨi

×
X
ee0f

Ve0fVge0V�
efV

�
gee

−iξfe0 s3−iξfgs2−iξegs1 ; ð151Þ
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SðLAPÞDQCiiðΓÞ ¼ −
1

ℏ3
Re

Z
∞

−∞
dt

Z
∞

0

ds1

Z
∞

0

ds2

Z
∞

0

ds3hΨjE†
4ðtÞE†

3ðt − s3ÞE2ðt − s3 − s2ÞE1ðt − s3 − s2 − s1ÞjΨi

×
X
ee0f

Ve0fVge0V�
efV

�
gee

−iξegs3−iξfgs2−iξe0gs1 . ð152Þ

We introduced the complex frequency variables ξij ¼
ωij þ iγij, where ωij ¼ εi − εj are the transition frequen-
cies and γij are the dephasing rates. The signal may be
depicted by its variation with various parameters of the field

wave function denoted collectively as Γ. Various choices of
Γ lead to different types of 2D signals. These are specified
in Eqs. (162) and (163).

b. The field correlation function for entangled-photon pairs

We consider the pulsed entangled-photon pairs described in
Sec. II.F. We use the wave function introduced by Keller and
Rubin (1997), where the two-photon wave function Φðki; kjÞ
takes the form

Φðki; kjÞ ¼ gûf½ωðkjÞ − ωðkiÞ�=2ge−i½ωðkiÞþωðkjÞ�τ̂ij

× e−i½ωðkjÞ�τijAP(ωðkiÞ þ ωðkjÞ − ΩP); ð153Þ

ûðωÞ ¼ eωTij=2sincðωTij=2Þ; ð154Þ

where APð� � �Þ is the pulse envelope and Ωp is the central
frequency of the pump pulse used to generate the pairs.
The correlation function of the entangled fields reads

(Keller and Rubin, 1997)

h0jE1ðs1 − T1ÞE2ðs2 − T2ÞjΨi

¼ V0e−Ωp=2ðs1þs2−t1Þrectðs2 − s1 − t1ÞAp

�
s1 þ s2 − t1

2

�
;

ð155Þ

rectðtÞ ¼
	

1
T 0 < t < T;
0 otherwise;

ApðtÞ ¼ exp½−t2=ð2σ2Þ�;
ð156Þ

which describes the pulsed counterpart of the cw-correlation
function (52) we had described earlier, where the step function
rectðtÞ is replaced by the finite pulse amplitude Ap.

c. Simulated 2D signals

Next we present a simulated DQC signal for a model trimer
system with parameters given by Richter and Mukamel
(2010). By inserting Eq. (155) into Eqs. (151) and (152)
and carrying out all integrations, assuming that γ ≪ σ, we
arrive at the final expression for the two contributions to the
signal:

SðLAPeÞDQCi ðΓÞ¼ 1

ℏ3
Re

X
ee0f

Ve0fVge0V�
efV

�
gejV0j2jApðωfg−ΩpÞj2

×e−iξegt1e−iξfe0 t3e−iξfgt2
ðeiðωfg=2−ξegÞT −1Þe−iξfgT=2

iðωfg=2−ξegÞT

×
ðeiðωfg=2−ξfe0 ÞT −1Þe−iξfgT=2

iðωfg=2−ξfe0 ÞT
; ð157Þ
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FIG. 20. (a) 2D signal SðLAPÞDQC ð ~Ω1; ~Ω3Þ Eq. (162) (absolute
value), showing correlation plots with different pump bandwidths
σ as indicated. The bottom panel is multiplied by 6. (b) Same as

(a) but for the 2D signal SðLAPÞDQC ð ~Ω1; ~Ω2Þ Eq. (163). Parameters for
simulations are given by Richter and Mukamel (2010).
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SðLAPeÞDQCii ðΓÞ ¼
1

ℏ3
Re

X
ee0f

Vge0Ve0fV�
efV

�
gejV0j2jApðωfg − ΩpÞj2

× e−iξegt1e−iξe0gt3e−iξfgt2

×
ðeiðωfg=2−ξegÞT − 1Þe−iξfgT=2

iðωfg=2 − ξegÞT

×
ðeiðωfg=2−ξe0gÞT − 1Þe−iξfgT=2

iðωfg=2 − ξe0gÞT
; ð158Þ

jApðωÞj2 ¼ expð−σ2ω2Þ. ð159Þ
The control parameters Γ now include the delay times
ðt1; t2; t3Þ and the entanglement time T.
For comparison, we present the same signal obtained

with four impulsive classical pulses with envelopes Ejð·Þ,
j ¼ 1;…; 4, E2ð·Þ, E3ð·Þ, and E4ð·Þ and carrier frequency Ω0

p

(Abramavicius et al., 2009):

SðLAPcÞDQCi ¼ 1

ℏ3
Re

X
ee0f

Ve0fVge0V�
efV

�
ge

× E�
4ðωfe0 − Ω0

pÞE�
3ðωe0g −Ω0

pÞ
× E2ðωfe − Ω0

pÞE1ðωeg − Ω0
pÞ

× e−iξegτ12e−iξfe0 τ34e−iξfgτd ; ð160Þ

SðLAPcÞDQCii ¼ 1

ℏ3
Re

X
ee0f

Vge0Ve0fV�
efV

�
ge

× E�
4ðωe0g − Ω0

pÞE�
3ðωfe0 −Ω0

pÞ
× E2ðωfe − Ω0

pÞE1ðωeg − Ω0
pÞ

× e−iξegτ12e−iξe0gτ34e−iξfgτd . ð161Þ
With the help of Eqs. (157) and (158), we can compare the
entangled-photon and classical DQC signals. We first note that
Eq. (157) is linear in the intensity of the generating pump
pulse, in contrast with the intensity square scaling of the
classical case Eq. (160). In the classical case the signal is
limited by the bandwidths of the four pulses [cf. Eqs. (160)
and (161)], which control the four transitions (ωeg, ωfe, ωe0g,
and ωfe0 ) in the two-photon transitions inside the pulse
bandwidth (Abramavicius et al., 2009). In Eq. (157) envelope
bandwidth limitations are imposed only through the band-
width of entangled-photon pair Apð·Þ and the limitation is
imposed only on the two-photon transition ωfg, leading to a
much broader bandwidth for the ωeg and ωfe transitions, if the
ωfg transition is within the generating pump pulse bandwidth.
This effect is illustrated in Fig. 20(a) for the following 2D

signal:

SðLAPÞDQC ð ~Ω1; ~Ω3Þ ¼
Z

∞

0

dt1

Z
∞

0

dt3Sðt1; t3Þeit1 ~Ω1þit3 ~Ω3 ; ð162Þ

ωeg resonances are seen along ~Ω1 and ωeg and ωfe on axis ~Ω3.
As the bandwidth is reduced, we get contributions only from
the doubly excited-state resonant to the generating pump
pulse. This results in four identical patterns along the Ω1 axis.
All peaks are connected to the same doubly excited states.
More precisely we get four contributions along the ~Ω1 axis

connected to the transitions ωf3e1 , ωf3e2 overlapping with
ωe3g, ωe2g overlapping with ωf3e3 and ωe1g. The remaining
transitions are not affected by the reduced pump bandwidth.
Here the narrow bandwidth of the pump can be used to select
contributions in the spectra connected to a specific doubly
excited state. In Fig. 20(b) we display a different signal:

SðLAPÞDQC ð ~Ω1; ~Ω2Þ ¼
Z

∞

0

dt1

Z
∞

0

dt2Sðt1; t2Þeit1 ~Ω1þit2 ~Ω2 ; ð163Þ

ωeg resonances are now seen along ~Ω1 and ωfg in ~Ω2. This is
similar to Fig. 20(a) except that here we see the singly excited-
state contributions ωe1g, ωe2g, and ωe3g to the selected doubly
excited state f3 along a single row.
Bandwidth limitations on the singly excited-state transi-

tions ωeg and ωfe are imposed only indirectly by the factors
in Eqs. (157) and (158) which depend on the entanglement
time T. These become largest for ωfg ¼ 2ωfe.
The factors in Eq. (157) and (158) which depend on the

entanglement time T contain an interference term of the form
eiðω−γÞT − 1, where ω is a material frequency (see Secs. II.J
and III.B.2). If we now vary the entanglement time, some
resonances will interfere destructively for values of the
entanglement time which match the period of ω. One can
therefore use the entanglement times to control selected
resonances. This holds only as long as the entanglement
times are not much longer than the dephasing time, since in
this case the signal will be weak. The frequencies ω can be in
the contributing diagrams ωfg=2 − ωeg or ωfg=2 − ωfe (which
differs from the first frequency only by a sign) for a different
combination of the states e, e0, and f. By varying T, we expect
an oscillation of the magnitudes of resonances with different
frequencies. The details of manipulation of the entanglement
time as a control parameter have been studied by Richter and
Mukamel (2010) and Schlawin et al. (2013).
In an earlier study we used two pulsed entangled-photon

pairs (Richter and Mukamel, 2010) (k1, k2) and (k3, k4). With
the pulse shaping described in Sec. II.G, a single shaped
entangled-photon pair is sufficient to realize any time-domain
four-wave-mixing signal.

D. Multiple photon counting detection

A different class of multidimensional signals is possible by
detecting sequences of individual photons emitted by an
optically driven system. With proper gating, each photon j
can be characterized by frequency ωj and time tj. By detecting
N photons we thus obtain a 2N-dimensional signal para-
metrized by ω1; t1; ...;ωN; tN. Unlike coherent multidimen-
sional heterodyne signals which are parametrized by delays of
the incoming fields, these incoherent signals are parametrized
by the emitted photons. The photon time tj and frequency ωj

are not independent and can be detected only to within a
Fourier uncertainty ΔωjΔtj > 1. This poses a fundamental
limitation on the joint temporal and spectral resolution. We
derive these signals and connect them to multipoint 2N dipole
correlation functions of matter. The Fourier uncertainty is
naturally built in by a proper description of photon gating and
need not be imposed in an ad hocmatter as is commonly done.
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A semiclassical photon counting formalism was
first derived by Mandel (1958, 1959). The full quantum-
mechanical description of the field and photon detection was
developed by Glauber (2007). The theory of the electromag-
netic field measurement through photoionization and the
resulting photoelectron counting was developed by Kelley
and Kleiner (1964). The experimental application to normal
and time-ordered intensity correlation measurements was
given in the seminal work of Kimble, Dagenais, and
Mandel (1977). According to these treatments free-field
operators, in general, do not commute with source-quantity
operators. This is the origin of the fact that the normal and
time ordering of the measured field correlations, according to
the Kelley-Kleiner theory (Kelley and Kleiner, 1964), are
transformed into normal and time-ordered source quantities
occurring inside the integral representations of the filtered
source-field operators. This constitutes the backreaction of the
detector on the field state (Cohen-Tannoudji et al., 1992). An
ideal photon detector is a device that measures the radiation
field intensity at a single point in space. The detector size
should be much smaller than spatial variations of the field. The
response of an ideal time-domain photon detector is indepen-
dent of the frequency of the radiation.
The resolution of simultaneous frequency and time-domain

measurements is limited by the Fourier uncertaintyΔωΔt > 1.
A naive calculation of signals without proper time-and-
frequency gating can work for slowly varying spectrally broad
optical fields where the above inequality is satisfied but
otherwise it may yield unphysical and even negative signals
(Eberly andWodkiewicz, 1977).Mukamel, Ciordas-Ciurdariu,
and Khidekel (1996) calculated the mixed time-frequency
representation for the coherent optical measurements with
interferometric or autocorrelation detection in terms of a mixed
material response functions and a Wigner distribution for the
incoming pulses, the detected field, and the gating device.
Multidimensional gated fluorescence signals for single-
molecule spectroscopy were calculated by Mukamel and
Richter (2011).
The standard Glauber theory of photon counting and

correlation measurements (Mollow, 1972; Scully and
Zubairy, 1997; Glauber, 2007) was formulated solely in the
radiation field space (matter is not considered explicitly).
Signals are related to the multipoint normally ordered
field correlation function, convoluted with time-and-frequency
gating spectrograms of the corresponding detectors. This
approach assumes that the detected field is given. Thus, it
does not address the matter information and the way this field
has been generated. Temporally and spectrally resolved mea-
surements can reveal important matter information. Single-
photon spectroscopy of single molecules (Fleury et al., 2000;
Lettow et al., 2010; Rezus et al., 2012) calls for an adequate
microscopic foundation where joint matter and field informa-
tion could be retrieved by a proper description of the detection
process.
A microscopic diagrammatic approach may be used for

calculating time-and-frequency-gated photon counting mea-
surements (Dorfman and Mukamel, 2012a). The observed
signal can be represented by a convolution of the bare signal
and a detector spectrogram that contains the time-and-
frequency gate functions. The bare signal is given by the

product of two transition amplitude superoperators (Mukamel
and Rahav, 2010) (one for bra and one for ket of the matter
plus field joint density matrix), each creating a coherence in
the field between states with zero and one photon. By
combining the transition amplitude superoperators from
both branches of the loop diagram we obtain the photon
occupation number that can be detected. The detection
process is described in the joint field and matter space by a
sum over pathways each involving a pair of quantum modes
with different time orderings. The signal is recast using time-
ordered superoperator products of matter and field. In contrast
to the Glauber theory that uses normally ordered ordinary field
operators, the microscopic approach of Dorfman and
Mukamel (2012a) is based on time-ordered superoperators.
Ideal frequency-domain detection requires only a single mode
(Mukamel and Richter, 2011). However, maintaining any time
resolution requires a superposition of several field modes that
contain the pathway information. This information is not
directly accessible in the standard detection theory that
operates in the field space alone (Glauber, 2007).

1. Photon correlation measurements using gated photon
number operators

A time-and-frequency-gated Nth order photon correlation
measurement performed at N detectors characterized by
central time tj and central frequency ωj, j ¼ 1;…; N is
defined as

gðNÞðt1;ω1;Γ1;…; tN ;ωN;ΓNÞ

¼ hT n̂t1;ω1
� � � n̂tN ;ωN

iT
hT n̂t1;ω1

iT � � � hT n̂tN ;ωN
iT

; ð164Þ

where h� � �iT ¼ Tr½� � � ρTðtÞ� and ρTðtÞ represents the total
density matrix of the entire system in joint field plus matter
space and contains information about the system evolution
prior to the detection (e.g., the photon generation process,
etc.). Γj, j ¼ 1;…; N represents other parameters of the

detectors such as bandwidth (σjT and σjω are the time gate
and frequency gate bandwidths, respectively). The time-and-
frequency-gated photon number superoperator is given by

n̂t;ω ¼
Z

dt0
Z

dτDðt;ω; t0; τÞn̂ðt0; τÞ: ð165Þ

Here Dðt;ω; t0; τÞ is a detector time-domain spectrogram (the
ordinary function, not an operator) which takes into account
the detector’s parameters and is given by

Dðt;ω; t0; τÞ ¼
Z

dω00

2π
e−iω

00τjFfðω00;ωÞj2F�
t ðt0 þ τ; tÞFtðt0; tÞ;

ð166Þ
where Ft and Ff are time and frequency gating functions that
are characterized by central time t and frequency ω and
detection bandwidths σT and σω, respectively. Note that in
Eq. (166) the time gate is applied first, followed by the
frequency gate. A similar expression can be written when the
order in gating is reversed. n̂ðt; t0Þ is a bare photon number
superoperator defined in terms of the bare field operators as
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n̂ðt0; τÞ ¼
X
s;s0

Ê†
sRðt0 þ τÞÊs0Lðt0Þρðt0Þ: ð167Þ

Details are found in Appendix E.

2. Photoncounting connected tomatterdipole correlation functions

To connect the photon coincidence counting (PCC) signals
to matter properties one needs to expand the density operator
in Eq. (167) in perturbative series over field-matter inter-
actions. We first calculate the time-and-frequency-resolved
emission spectra

nt;ω ¼
Z

dt0
Z

dτDðt;ω; t0; τÞnðt0; τÞ; ð168Þ

where the bare photon number nðt0; τÞ≡ hT n̂ðt0; τÞiT is an
expectation value of the bare photon number operator with
respect to the total density matrix. The leading contribution is
coming from the second order in field-matter interactions with
vacuum modes [see Fig. 21(b)]

nðt0; τÞ ¼ 1

ℏ2

Z
t0

−∞
dt1

Z
t0þτ

−∞
dt2hV†ðt2ÞVðt1Þi

×
X
s;s0

hÊs0 ðt2ÞÊ†
s0 ðt0 þ τÞÊsðt0ÞÊ†

sðt1Þiv; ð169Þ

where we had utilized superoperator time ordering and
h� � �i ¼ Tr½� � � ρðtÞ�, where ρðtÞ is the density operator that
excludes vacuum modes and h� � �iv ¼ Tr½� � � ρvðtÞ� with
ρvðtÞ ¼ j0ih0j is the density matrix of the vacuum modes.
Using the bosonic commutation relations introduced in
Sec. I.A [see Eq. (6)] and moving to the continuous density
of states, one can obtain

nðt0; τÞ ¼ D2ðωÞhV†ðt0 þ τÞVðt0Þi; ð170Þ
where DðωÞ ¼ ð1=2πÞ ~DðωÞ is a combined density of states
evaluated at the central frequency of the detector ω for smooth
enough distribution of modes. The detected signal (165) is
given by

Sð1Þðt;ωÞ≡ nt;ω ¼
Z

dt0
Z

dτDðt;ω; t0; τÞD2ðωÞ

× hV†ðt0 þ τÞVðt0Þi: ð171Þ

One can similarly calculate the second-order bare correla-
tion function

hT n̂t1;ω1
n̂t2;ω2

iT ¼
Z

dt01

Z
dτ1Dð1Þðt1ω1; t01; τ1Þ

×
Z

dt02

Z
dτ2Dð2Þðt2;ω2; t02; τ2Þ

× hT n̂ðt01; τ1Þn̂ðt02; τ20ÞiT: ð172Þ
The bare PCC rate hT n̂ðt01; τ1Þn̂ðt02; τ20ÞiT can be read off
the diagram shown in Fig. 21(c). The leading contribution
requires a fourth-order expansion in field-matter interactions

hT n̂ðt01; τ1Þn̂ðt02; τ20ÞiT
¼ 1

ℏ4

Z
t0
1

−∞
dt1

Z
t0
1
þτ1

−∞
dt3

×
Z

t0
2

−∞
dt2

Z
t0
2
þτ2

−∞
dt4hV†ðt4ÞV†ðt3ÞVðt1ÞVðt2Þi

×
X
s;s0

X
r;r0

hEr0 ðt4ÞEs0 ðt3ÞE†
r0 ðt02 þ τ2ÞE†

s0 ðt01 þ τ1Þ

× Esðt01ÞErðt02ÞE†
sðt1ÞE†

rðt2Þiv: ð173Þ
After tracing over the vacuum modes we obtain

hT n̂ðt01; τ1Þn̂ðt02; τ20ÞiT
¼ D2ðω1ÞD2ðω2ÞhV†ðt02 þ τ2ÞV†ðt01 þ τ1ÞVðt01ÞVðt02Þi:

ð174Þ
The gated coincidence signal (172) is finally given by

Sð2Þðt1;ω1; t2;ω2Þ
≡ hT n̂t1;ω1

n̂t2;ω2
iT

¼ D2ðω1ÞD2ðω2Þ
Z

dt01

Z
dτ1Dð1Þðt1ω1; t01; τ1Þ

×
Z

dt02

Z
dτ2Dð2Þðt2;ω2; t02; τ2Þ

× hV†ðt02 þ τ2ÞV†ðt01 þ τ1ÞVðt01ÞVðt02Þi: ð175Þ

(a) (b) (c) 

FIG. 21. (a) Schematic of time-and-frequency-resolved photon coincidence measurement. (b) Loop diagram for the bare signal
Eq. (E15) in a gated measurement. (c) Loop diagram for correlated two photon measurement Eq. (E26). Dashed lines represent the
dynamics of the system driven by the field modes. τi and τs can be either positive or negative.
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Therefore, the fundamental material quantity that yields the
emission spectra (171) is a two-point dipole correlation
function given by Eq. (170), and for the coincidence gð2Þ meas-
urement (175) it is the four-point dipole correlation function in
Eq. (174). Sum-over-state expansions of these expressions are
given in Appendix E.

3. Connection to the physical spectrum

Eberly and Wodkiewicz (1977) had pointed out that
detector gating with a finite bandwidth must be added to
describe the real detector. Recently del Valle et al. (2012) and
González-Tudela, del Valle, and Laussy (2015) used a two-
level model detector with a single parameter Γ that character-
izes both time-and-frequency detection. This was denoted the
physical spectrum (178) which can be recovered from our
model by removing the time gate Ft ¼ 1 and using a
Lorentzian frequency gate

Ffðω;ω0Þ ¼ i
ω0 þ ωþ iΓ=2

: ð176Þ

Using the physical spectrum, the time-and-frequency-resolved
photon coincidence signal is given by

gð2ÞΓ1Γ2
ðω1;ω2; τÞ

¼ limt→∞
hÂ†

ω1;Γ1
ðtÞÂ†

ω2;Γ2
ðtþ τÞAω2;Γ2

ðtþ τÞÂω1;Γ1
ðtÞi

hÂ†
ω1;Γ1

ðtÞÂω1;Γ1
ðtÞihÂ†

ω2;Γ2
ðtþ τÞÂω2;Γ2

ðtþ τÞi ;

ð177Þ

where

Âω;ΓðtÞ ¼
Z

t

−∞
dt1eðiω−Γ=2Þðt−t1ÞÊðt1Þ ð178Þ

is the gated field. This model provides a simple benchmark for
finite-band detection, which has several limitations. First, the
time-and-frequency gating parameters are not independent,
unlike the actual experimental setup, where frequency filters
and avalanche photodiodes are two independent devices.
Second, this method does not address the generation and
photon bandwidth coming from the emitter, as the analysis is
performed solely in the field space. Finally, the multiphoton
correlation function presented by González-Tudela, del Valle,
and Laussy (2015) is stationary. For instance, the four-point
bare correlation function

ABðω1;ω2; t1; t2Þ ¼ hE†
ω1
ðt1ÞE†

ω2
ðt2ÞEω2

ðt2ÞEω1
ðt1Þi ð179Þ

depends on four times and four frequencies. After gating
suggested by del Valle et al. (2012) and González-Tudela, del
Valle, and Laussy (2015) the correlation function (179) is
recast using CBðω1;ω2; t2 − t1Þ, which depends only on the
time difference t2 − t1, which is an approximation for sta-
tionary fields. This model also works if t ≫ Γ−1, which means
that Γ cannot approach zero (a perfect reflection in the Fabry-
Pérot cavity). It also works when Γτ0 ≪ 1, where τ0 is the
scale of change in the field envelope. For comparison, the
PCC (164) for N ¼ 2 reads

gð2Þðt1;ω1;Γ1; t2;ω2;Γ2Þ
hT n̂t1;ω1

n̂t2;ω2
i

hT n̂t1;ω1
ihT n̂t2;ω2

i ; ð180Þ

which depends on two time t1, t2 and two frequency ω1, ω2

arguments. The presented theory which gives rise to Eq. (180)
has several merits compared to the physical spectrum (del
Valle et al., 2012; González-Tudela, del Valle, and Laussy,
2015). First, independent control of time-and-frequency gates
(with guaranteed Fourier uncertainty for the time-and-
frequency resolution) along with the fact that the bare photon
number operator depends on two time variables n̂ðt; τÞ allows
one to capture any dynamical process down to the very short
scale dynamics in ultrafast spectroscopy applications. Second,
the gating (165) provides a unique tool that can capture
nonequlibrium and nonstationary states of matter which can
be controlled by gating bandwidths. In this case a series of
frequency ω1, ω2 correlation plots (using the central frequen-
cies of the spectral gates as variables) for different time delays
t1 − t2 yields a 2D spectroscopy tool capable of measuring
ultrafast dynamics. Third, the superoperator algebra allows
one to connect the gated field correlation function

AGðω̄1; ω̄2; t̄1; t̄2Þ ¼ hEðtfÞ†
ω̄1

ðt̄1ÞEðtfÞ†
ω̄2

ðt̄2ÞEðtfÞ
ω̄2

ðt̄2ÞEðtfÞ
ω̄1

ðt̄1Þi
ð181Þ

with the bare correlation function (179), with time-and-
frequency gates (arbitrary, not necessarily Lorentzian) as well
as a material response that precedes the emission and detection
of photons. The superoperator expressions require time order-
ing and can be generalized to correlation functions of field
operators that are not normally ordered. Superoperators
provide an effective bookkeeping tool for field-matter inter-
actions prior to the spontaneous emission of photons. We shall
apply it to the detection of photon correlations as shown in
Sec. IV.I, PCC can be recast in terms of matter correlation
functions by expanding the total density matrix operator in a
perturbation series and tracing the vacuum modes. This way
photon counting measurements can be related to the matter
response functions which are the standard building blocks of
nonlinear spectroscopy.

E. Interferometric detection of photon coincidence signals

The simultaneous detection of entangled photon pairs has
long been employed for imaging applications (Strekalov et al.,
1995; Pittman et al., 1995). The transverse spatial entangle-
ment of photon pairs allows one to detect to resolve the image
of a sample by the detection of an entangled partner that never
interacted with it. This approach is denoted ghost imaging,
and could enable atomic resolution with optical photons that
are entangled with x-ray photons (Li et al., 2015). Photon
coincidence signals also known as biphoton signals (Scarcelli
et al., 2003; Yabushita and Kobayashi, 2004; Kalachev et al.,
2007; Slattery et al., 2013) became recently available as a tool
for nonlinear spectroscopy. In a typical setup, a pair of
entangled photons denoted Es and Er generated by PDC
are separated on a beam splitter [see Fig. 22(a)]. One photon
Es is transmitted through the molecular sample and then
detected in coincidence with Er. In order to use it as a
spectroscopic tool, a frequency filter can be placed in front of
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one of the detectors which measures the spectrum. This type
of signal shows a number of interesting features: First,
coincidence detection improves the signal-to-noise ratio
(Kalashnikov et al., 2014). Second, the two detectors may
operate in very different spectral regions and at different spatial
locations (Kalachev et al., 2007). For example, to measure the
spectroscopic properties of a sample in the vacuum ultraviolet
(VUV) range, it is not necessary to set and control a spectrometer
in a vacuum chamber. Instead, using a VUV and a visible
entangled-photon pair only the latter should be resolved by a
spectrometer. Similarly a visible photon detection can replace an

infrared detection with improved signal-to-noise ratio. The
power of the light source must often be very low to prevent
possible damage of a sample, but an infrared photodetector is
usually noisy. Photon coincidence measurements involve the
lowest intensities of light, single photons, and can overcome
the noise.
In the following, we present photon coincidence versions of

three signals: linear absorption, pump-probe, and femtosecond
stimulated Raman signals (FSRS).

1. Coincidence detection of linear absorption

Linear absorption is the most elementary spectroscopic
measurement. Photon coincidence detection can improve the
signal-to-noise ratio. We now present the simplest intuitive
phenomenological approach. In Secs. II and III we present
more rigorous microscopic derivations for pump-probe and
Raman signals.
In the case of the linear signal, the joint detection of two

entangled photons provides linear absorption information
provided one of the photons is transmitted through a molecu-
lar sample. If the coincidence gate window accepts counts for
a time T, then the joint detection counting rate Rc of detectors
r and s is

Rc ∝
Z

T

0

dt1

Z
T

0

dt2jh0ja†sðt1Þa†rðt2Þjψij2; ð182Þ

where ψ is a two-photon entangled state (33). The gating
window T is typically much larger than the reciprocal
bandwidth of the light or the expected dispersive broadening

Rc ∝
Z

dω1

Z
dω2jh0jasðω1Þarðω2Þjψij2: ð183Þ

Denote the spectral transfer functions of the sample and
monochromator HSðωÞ and HMðωÞ, respectively. In this case,

asðω1Þ ¼
1ffiffiffi
2

p ~asðω1ÞHSðω1Þ ð184Þ

and

arðω2Þ ¼
iffiffiffi
2

p ~arðω2ÞHMðω2Þ ð185Þ

provided that the signal and idler photons are separated by a
50=50 beam splitter. For narrow-band classical pump, the two-
photon amplitude reads

Φðω1;ω2Þ ¼ F

�
ω1 − ω2

2

�
δðω1 þ ω2 − 2ω0Þ.

The corresponding coincidence counting rate is then given by

Rc ∝
Z

dΩjHSðω0 þ ΩÞHMðω0 − ΩÞFðΩÞj2: ð186Þ

Now assume that HMðωÞ is much narrower than HSðωÞ and
~Φðω1;ω2Þ, so that we can set HMðωÞ ¼ δðω − ωMÞ, and the
frequency ωM does not exceed the frequency range in which
function FðωÞ is essentially nonzero. Dividing the coinci-
dence counting rate with a sample Rc;sample by one without the
sample Rc, we obtain the absorption spectrum

FIG. 22. Linear absorption experiment of Kalachev et al. (2007)
with coincidence detection. (a) The entangled-photon pairs in
beams Es and Er are split on a beam splitter. Es is employed as
a probe transmitted through the sample, while Er is detected in
coincidence.The absorption spectrum of the Er3þ ion in a yttrium
aluminum garnet (YAG) crystal around 650 nm obtained by single-
photon counting (blue filled squares, left Y axis) and coincidence
counting (red open squares, right Y axis) at various values of signal-
to-noise ratios in the channel with the sample: (b) 1=2 and (c) 1=30.

Dorfman, Schlawin, and Mukamel: Nonlinear optical signals and spectroscopy …

Rev. Mod. Phys., Vol. 88, No. 4, October–December 2016 045008-33



SILAðωMÞ ¼
Rc;sample

Rc
∝ jHSð2ω0 − ωMÞj2; ð187Þ

where the subscript ILA marks the interferometric nature of
the photon coincidence detection combined with the linear
absorption measurement. Thus, the joint detection counting
rate reproduces the spectral function of the sample, provided
that the linewidth of the pumping field as well as the
bandwidth of the monochromator is narrow enough for
resolving the absorption spectrum features.
Kalachev et al. (2007) used the coincidence signals to

measure the spectroscopic properties of the YAG : Er3þ

crystal in order to demonstrate the advantage of the coinci-
dence detection in the presence of an enhanced background
noise. Figures 22(b) and 22(c) show the central part of the
absorption spectrum measured in two ways: using the coinci-
dence counting as described previously and using the single-
photon counting, when the sample was placed above the
monochromator in the idler channel. The signal-to-noise ratio
in the channel was changed from 1=2 to 1=30. It is evident
from these experimental data that the standard classical
method which suffers from a high noise level does not allow
one to obtain any spectroscopic information, but in contrast
the coincidence counting measurement does not undergo the
reduction in resolution and is robust to noise. This scheme was
later extended to plasmonic nanostructures (Kalashnikov et al.,
2014).

2. Coincidence detection of pump-probe signals

Consider the setup depicted in Fig. 23(a). Unlike the linear
absorption, here the probe photon is sent through the sample,
which has previously been excited by a classical ultrafast laser
pulse and then detected.
The interferometric pump-probe (IPP) signal with photon

coincidence detection is dispersed spectrally by placing
spectral filters in front of both detectors, and our signal is
given by the change to this two-photon counting rate that is
governed by a four-point correlation function of the field
(Mosley et al., 2008; Cho et al., 2014)

hE†
rðωrÞE†

sðωÞEsðωÞErðωrÞi: ð188Þ

Here ω=ωr denotes the detected frequency of the respective
spectral filter, and the brackets h� � �i represent the expectation
value with respect to the transmitted fields. To obtain the
desired pump-probe signal in a three-level system, we used a
third-order perturbation theory (Schlawin, Dorfman, and
Mukamel, 2016). The first two interactions are with the
classical pump pulse, which is taken to be impulsive
EaðtÞ ¼ EaδðtÞ, and the third is with the probe centered
at t ¼ t0. Assuming Es to be far off resonant from the
e − g transition, we obtain only the single diagram shown in
Fig. 23(c), which reads

SIPPðω;ωr;t0Þ¼−
2

ℏ
ℑ

�
−
i
ℏ

�
3

jEaj2
Z

∞

0

dteiωðt−t0Þ

×
Z

t

0

dτFðt−τ;τÞhE†
rðωrÞE†

sðωÞEsðτÞErðωrÞi:

ð189Þ

We defined the matter correlation function,

Fðt − τ; τÞ ¼ hjμgej2jμefj2Gfeðt − τÞGeeðτÞienv; ð190Þ

where μge and μef denote the dipole moments which connect
the ground state with the singly excited-state manifold, as well
as the single with the doubly excited-state manifold, respec-
tively. h� � �ienv denotes the average with respect to environ-
mental degrees of freedom, obtained from tracing out the bath.
Here we employ a stochastic Liouville equation (Tanimura,
2006) which represents the TSJ model: A ground state g is
dipole coupled to an electronic excited state e, which is
connected to two spin states ↑ and ↓ undergoing relaxation
(Šanda and Mukamel, 2006). We additionally consider a
doubly excited state f, which is dipole coupled to both
je;↑i and je;↓i [see Fig. 23(b)]. The electronic states are
damped by a dephasing rate γ. We assume the low-temperature
limit, where only the decay from ↑ to ↓ is allowed (Dorfman,
Fingerhut, and Mukamel, 2013b). The decay is entirely
incoherent, such that the description may be restricted to the
two spin populations j↑ih↑j ¼ ð1; 0ÞT and j↓ih↓j ¼ ð0; 1ÞT .
The field correlation function (190) is then given by

FIG. 23. (a) The IPP setup: the entangled-photon pair in beams Es and Er are split on a beam splitter. A classical, actinic, ultrafast pulse
Ea excites the sample, and Es is employed as a probe in a pump-probe measurement, while Er is detected in coincidence. (b) The level
scheme for the two-state jump (TSJ) model considered in this work. The g − e transition is far off resonant from the spectral range of the
entangled-photon wave packet, which couples only to the e − f transition. (c) Diagram representing the pump-probe measurement.
From Schlawin, Dorfman, and Mukamel, 2016.
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Fðt2; t1Þ ¼ jμgej2jμefj2e−γðt1þ2t2Þ

×

�
e−iωþt2 þ 2iδ

kþ 2iδ
e−kt1 ½e−ðkþiω−Þt2 − e−iωþt2 �

�
;

ð191Þ
where δ is the energy difference between the two spin states,
and ω� ¼ ωfe � δ. Note that, since we monitor the f − e
transition, the detected frequency will increase in time from
ω− to ωþ.
We shall use these results to first simulate the classical

pump-probe signal and then the two-photon counting signal
with entangled photons. For the pump-probe technique we use
a classical Gaussian probe pulse

EprðωÞ ¼
1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp ½−ðω − ω0Þ2=2σ2�: ð192Þ

We chose the following system parameters: ωfe ¼ 11 000,
δ ¼ 200, k ¼ 120, and γ ¼ 100 cm−1.
The peak frequency ω0 is fixed at the transition frequency

ωfe, and we vary the probe bandwidth. Figure 23(a) shows the
signal for σ ¼ 1000 cm−1. The two peaks at ωfe � δ corre-
spond to the detected frequency, when the system is either in
the upper state (at ωfe − δ) or in the lower state (ωfe þ δ).
Because of the spectrally dispersed detection of the signal, the
resonance widths are given by the linewidth γ and not the
much broader probe pulse bandwidth σ. For very short time
delays t0, both resonances increase, until the probe pulse has
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FIG. 24. (a) TPC signals with σp ¼ 2000 cm−1 and T ¼ 90 fs, ωr ¼ 10 400 cm−1 (blue, dashed) and 11 400 cm−1 (red, dot-dashed) as
well as the classical pump-probe signal (black, solid) with σ ¼ 1000 cm−1 are plotted vs the dispersed frequency ω with a time delay set
to t0 ¼ 3 fs. (b) Same for t0 ¼ 30, (c) 60, and (d) 90 fs. (e)–(h) Same as (a)–(d), but with classical bandwidth σ ¼ 100 cm−1. The
classical signal is normalized, such that its maximum value at t0 ¼ 0 is equal to 1. Similarly, the TPC signals are normalized to the
maximum value of the signal with ωr ¼ 11 400 cm−1 at t0 ¼ 0. From Schlawin, Dorfman, and Mukamel, 2016.
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fully passed through the sample. Then the resonance at
10 800 cm−1, i.e., the state je;↑i, starts to decay rapidly,
while the 11 200 cm−1 resonance peaks at longer delay times
due to its initial population by the upper state. For longer
delays, both resonances decay due to the additional dephasing.
The two-photon counting signal with entangled photons

offers novel control parameters: The dispersed frequency ω of
beam 1, the pump frequency ωp, and its bandwidth σp loosely
correspond to the classical control parameters, i.e., the central
frequency ω0 and bandwidth σ. In addition, we may vary the
entanglement time T and the detected frequency of the
reference beam ωr.
Figure 24 depicts the signal (189) obtained with entangled

photons with T ¼ 90 fs for different time delays t0. For
comparison, we show the classical pump probe with bandwidth
σ ¼ 1000 cm−1 in the left columnandwith100 cm−1 in the right
column. The two-photon coincidence (TPC) signals are normal-
ized with respect to the maximum value of the signal at t0 ¼ 3 fs
and ωr ¼ 11 400 cm−1. The classical signal is normalized to its
peak value at zero time delay, and the TPC signals to the signal
withωr ¼ 11 400 cm−1 at zerodelay.Asbecomes apparent from
the figure, a broadband classical probe pulse (left column) cannot
excite specific states, such that the two resonancesmerge into one
band. A narrow-band probe (right column), on the other hand,
cannot resolve the fast relaxation at all and shows only the
unperturbed resonance at ωfe. Interferometric signals, however,
can target the relaxation dynamics of individual states.

3. Coincidence detection of femtosecond stimulated
Raman signals

So far we have demonstrated how coincidence detection can
enhance linear absorption and pump-probe signals. We now
demonstrate the power of this interferometric detection for

stimulated Raman signals commonly used to probe molecular
vibrations. Applications include probing time-resolved photo-
physical and photochemical processes (Kukura, McCamant,
and Mathies, 2007; Schreier et al., 2007; Adamczyk et al.,
2009; Kuramochi, Takeuchi, and Tahara, 2012), chemically
specific biomedical imaging (Cheng et al., 2002), and remote
sensing (Pestov et al., 2008; Arora et al., 2012). Considerable
effort has been devoted to increasing the sensitivity and
eliminating off-resonant background, thus improving the
signal-to-noise ratio and enabling the detection of small
samples and even single molecules. Pulse shaping (Oron et al.,
2002; Pestov et al., 2007) and the combination of broadband
and narrow-band pulses (FSRS) (Dietze and Mathies, 2016)
have been employed. Herewe present an interferometric FSRS
(IFSRS) technique that combines quantum entangled light with
interferometric detection (Scarcelli et al., 2003; Yabushita and
Kobayashi, 2004;Kalachev et al., 2007; Slattery et al., 2013) in
order to enhance the resolution and selectivity ofRaman signals
(Dorfman, Schlawin, and Mukamel, 2014). The measurement
uses a pair of entangled photons, one (signal) photon interacts
with the molecule and acts as the broadband probe, while the
other (idler) provides a reference for the coincidence meas-
urement. By counting photons, IFSRS can separately measure
the gain and loss contributions to the Raman signal (Harbola,
Umapathy, and Mukamel, 2013) which is not possible with
classical FSRS signals that report only their sum (i.e., the net
gain or loss).We had previously shown how the entangled twin
photon state may be used to manipulate two-photon absorption
(ω1 þ ω2)-type resonances in aggregates (Saleh et al., 1998;
Lee and Goodson, 2006; Schlawin et al., 2013; Dorfman
and Mukamel, 2014b) but these ideas do not apply to Raman
ω1 − ω2 resonances.
In FSRS, an actinic resonant pulse Ea first creates a vibra-

tional superposition state in an electronically excited state [see

FIG. 25. Top row: (a) FSRS level scheme for the tunneling model, (b) pulse configuration, and (c) loop diagrams (for diagram rules see
Appendix A). (d), (e) The same as (b) and (c) but for IFSRS. The pairs of indices (0,1), etc., indicate the number of photons registered by
detectors s and r in each photon counting signal ðNs; NrÞ
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Figs. 25(a) and 25(b)]. After a variable delay τ, the frequency-
resolved transmission of a broadband (femtosecond) probe Es
in the presence of a narrow-band (picosecond) pump Ep shows
excited-state vibrational resonances generated by an off-
resonant stimulated Raman process. The FSRS signal is given
by (Dorfman, Fingerhut, and Mukamel, 2013a)

SFSRSðω; τÞ

¼ 2

ℏ
I
Z

∞

−∞
dteiωðt−τÞhT E�

sðωÞEpðtÞαðtÞe−i=ℏ
R

H0
−ðτÞdτi;

ð193Þ
where α is the electronic polarizability, I denotes the imagi-
nary part, and Es ¼ hEsi is the expectation value of the probe
field operator with respect to the classical state of light
(hereafter E denotes classical fields and E stands for quantum
fields). H0

− is the Hamiltonian superoperator in the interaction
picture which, for off-resonance Raman processes, can be
written as

H0ðtÞ ¼ αE†
sðtÞEpðtÞ þ E�

aðtÞV þ H:c:; ð194Þ

where V is the dipole moment and α is the off-resonant
polarizability. Formally, this is a six-wave-mixing process.
Expanding the signal (193) to sixth order in the fields∼E2

sE2
pE2

a

we obtain the classical FSRS signal

SðiÞFSRSðω; τÞ ¼
2

ℏ
I
Z

∞

−∞
dt

Z
t

−∞
dτ1

Z
t

−∞
dt0

Z
t0

−∞
dτ2

× eiωðt−τÞEpðtÞE�
pðt0ÞE�

aðτ2ÞEaðτ1ÞE�
sðωÞEsðt0Þ

× Fiðt0 − τ2; t − t0; t − τ1Þ; ð195Þ

SðiiÞFSRSðω; τÞ ¼
2

ℏ
I
Z

∞

−∞
dt

Z
t

−∞
dτ2

Z
t

−∞
dt0

Z
t0

−∞
dτ1

× eiωðt−τÞEpðtÞE�
pðt0ÞEaðτ1ÞE�

aðτ2ÞE�
sðωÞEsðt0Þ

× Fiiðt − τ2; t − t0; t0 − τ1Þ: ð196Þ
The two terms correspond to the two diagrams in Fig. 25(c). All
relevant information is contained in the two four-point corre-
lation functions

Fiðt1; t2; t3Þ ¼ hVG†ðt1ÞαG†ðt2ÞαGðt3ÞV†i; ð197Þ

Fiiðt1; t2; t3Þ ¼ hVG†ðt1ÞαGðt2ÞαGðt3ÞV†i; ð198Þ

where the retarded Green’s function GðtÞ ¼ ð−i=ℏÞθðtÞe−iHt

represents forward time evolution with the free-molecule
Hamiltonian H [diagrams ð1; 1Þa, ð1; 1Þb] and G† represents
backward evolution. Fi involves one forward and two back-
ward evolution periods and Fii contains two forward followed
by one backward propagation.Fi andFii differ by the final state
of matter (at the top of each diagram). In Fi (Fii) it is different
(the same) as the state immediately after the actinic pulse.

a. Photon correlation measurements

In IFSRS, the probe pulse Es belongs to a pair of entangled
beams generated in degenerate type-II PDC. The polarizing
beam splitter (BS) in Fig. 25(d) then separates the orthogo-
nally polarized photons. The horizontally polarized beam Es
propagates in the s arm of the interferometer and interacts with
the molecule. The vertically polarized beam Er propagates
freely in the r arm and serves as a reference. IFSRS has the
following control knobs: the time-and-frequency parameters
of the single-photon detectors, the frequency of the narrow-
band classical pump pulseωp, and the time delayT between the
actinic pulse Ea and the probe Es.
As discussed in Sec. III.D.1, the joint time-and-frequency-

gated detection rate of Ns photons (Ns ¼ 0, 1, 2) in detector s
and a single photon in r when both detectors have narrow
spectral gating are given by

SðNs;1Þ
IFSRSðω̄s1 ;…; ω̄sNs

; ω̄r;ΓiÞ

¼
�
T E†

rðω̄rÞErðω̄rÞ
YNs

j¼1

E†
sðω̄sjÞEsðω̄sjÞe−

i
ℏ

R
∞
−∞

H0
−ðτÞdτ

�
;

ð199Þ
where Γi stands for the incoming light beam parameters. In the
standard Glauber approach (Glauber, 2007), the correlation
function is calculated in the field space using normally ordered
field operators. The present expressions, in contrast, are given
in the joint field and matter degrees of freedom, and the
bookkeeping of the fields is instead solely based on the time
ordering of superoperators. Normal ordering is never used.
Expansion of Eq. (199) in the number of the field-matter

interactions depicted by loop diagrams in Fig. 25(e) yields for
Ns ¼ 0—Raman loss (no photon in the molecular arm)

Sð0;1ÞIFSRSðω̄r;τÞ¼ I
1

ℏ

Z
∞

−∞
dt
Z

∞

−∞
dt0

Z
t

−∞
dτ1

Z
t0

−∞
dτ2Epðt0ÞE�

pðtÞEaðτ1ÞE�
aðτ2ÞhT E†

sðt0Þ ~E†
rðω̄rÞ ~Erðω̄rÞEsðtÞiFiðt0− τ2; t− t0; t− τ1Þ:

ð200Þ
To make sure that there is no photon at detector s we integrated over its entire bandwidth, thus eliminating the dependence on
detector parameters.
For the Raman gain Ns ¼ 2 signal (i.e., two photons in the s arm, and one photon in the r arm), when both s and r detectors

have narrow frequency gates, we get

Sð2;1ÞIFSRSðω̄s1 ; ω̄s2 ; ω̄r; τÞ ¼ I
1

ℏ

Z
∞

−∞
dt̄s1e

iω̄s1
ðt̄s1−τÞ

Z
t̄s1

−∞
dt

Z
t

−∞
dt0

Z
t

−∞
dτ1

Z
t0

−∞
dτ2EpðtÞE�

pðt0ÞEaðτ1ÞE�
aðτ2Þ

× hT Esðt0Þ ~E†
sðω̄s1Þ ~E†

sðω̄s2Þ ~E†
rðω̄rÞ ~Erðω̄rÞ ~Esðω̄s2Þ ~Esðt̄s1ÞE†

sðtÞiFiðt0 − τ2; t − t0; t − τ1Þ: ð201Þ

Finally, the Ns ¼ 1 signal (single photon in each arm) is given by
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Sð1;1ÞaIFSRSðω̄s; ω̄r; τÞ ¼ −I
1

ℏ

Z
∞

−∞
dt0seiω̄sðt0s−τÞ

Z
t0s

−∞
dt

Z
t

−∞
dt0

Z
t0

−∞
dτ1

Z
t0s

−∞
dτ2EpðtÞE�

pðt0ÞEaðτ1ÞE�
aðτ2Þ

× hT ~E†
sðω̄sÞ ~E†

rðω̄rÞ ~Erðω̄rÞ ~Esðt0sÞE†
sðtÞEsðt0ÞiFiiðt − τ2; t − t0; t0 − τ1Þ;

ð202Þ
Sð1;1ÞbIFSRSðω̄s; ω̄r; τÞ ¼ −I

1

ℏ

Z
∞

−∞
dt0seiω̄sðt0s−τÞ

Z
t0s

−∞
dt

Z
t

−∞
dt0

Z
t0

−∞
dτ1

Z
t0s

−∞
dτ2Epðt0ÞE�

pðtÞEaðτ1ÞE�
aðτ2Þ

× hT ~E†
sðω̄sÞ ~E†

rðω̄rÞ ~Erðω̄rÞ ~Esðt0sÞEsðtÞE†
sðt0ÞiFiiðt − τ2; t − t0; t0 − τ1Þ: ð203Þ

b. Photon counting detection window for the molecular response

The input two-photon state has a single photon in each of
the s mode and single photon in the r mode and is described
by [compare to Eq. (33)]

jψi ¼ j0i þ
Z

∞

−∞
dωs

Z
∞

−∞
dωrΦðωs;ωrÞa†ωsa

†
ωr j0i; ð204Þ

where a†ωs (a†ωr ) is the creation operator of a horizontally
(vertically) polarized photon and the two-photon amplitude is
given by

Φðωs;ωrÞ ¼
X2
i≠j¼1

sincðωs0Ti=2þ ωr0Tj=2Þ

× Apðωs þ ωrÞeiωs0Ti=2þiωr0Tj=2; ð205Þ

where ωk0¼ωk−ω0, k¼s, r, ApðωÞ¼A0=½ω−ω0þiσ0� is the
classical pumpTj ¼ ð1=vp − 1=vjÞL, with j ¼ 1, 2, is the time
delay between the jth entangled and the classical pump beam
after propagation through the PDC crystal. T ¼ T2 − T1 is the
entanglement time. In ApðωÞ, the sum frequency ωs þ ωr is

(a) (c) 

(b) (d) 

FIG. 26. (a) Time-frequency Wigner spectrogram for classical light, (b) the same as (a) but for an entangled twin state given by
Eq. (205). The insets depict a 2D projection. (c) A window function for FSRS E�

sðωÞEsðωþ iγaÞ (black), and IFSRS Φ�ðω; ω̄rÞ×
Φðωþ iγa; ω̄rÞ different values of T1. (d) Spectrum of the eigenvalues λn in the Schmidt decomposition (34) for entangled state with
amplitude (205). Parameters for the simulations are listed in Dorfman, Schlawin, and Mukamel (2014).
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centered around 2ω0 with bandwidth σ0. For a broadband
classical pump, the frequency difference ωs−ω0 becomes
narrow with bandwidth T−1

j , j¼1, 2. The output state of light
inmode smay contain a varying number of photons, depending
on the order of the field-matter interaction.
As discussed in Sec. II.C, the twin photon state Eq. (204) is

not necessarily entangled. This depends on the two-photon
amplitude. Using the Schmidt decomposition (34), we obtain
the two-photon amplitude Eq. (205). The rich spectrum of
eigenvalues shown in Fig. 26(d) shows that the state is highly
entangled with up to 20 modes making significant contribu-
tions. As shown in Eq. (208), this entanglement is reflected in
the violation of the Fourier uncertainty ΔωΔt ≥ 1 in two-
photon transitions.
We next discuss how entanglement affects the Raman

resonances. Both FSRS and IFSRS signals are governed by
a four-point matter correlation function (two polarizabilities
αac and two dipole moments Vag) as depicted by the loop
diagrams shown in Figs. 25(c) and 25(e), respectively.
Depending on the number of photons detected, this four-
point matter correlation function is convoluted with different
field correlation functions. For Ns ¼ 0 and Nr ¼ 1 Eq. (200)
is given by the four-point correlation function for a quantum
field [red arrows in Fig. 25(e)]. For a twin photon state, we
recall from Eq. (50) that the field correlation function can be
factorized as

hψ jE†
sðωaÞE†

rðωbÞErðωcÞEsðωdÞjψi ¼ Φ�ðωa;ωbÞΦðωc;ωdÞ:
ð206Þ

The Ns ¼ 2 signal is given by an eight-point field correlation
function [see Eq. (201)], and for Ns ¼ 1 it is governed by a
six-point field correlation function as shown in Eqs. (202)
and (203). The detailed derivation and explicit closed form
expressions for multipoint correlation functions of the field are
presented by Dorfman, Schlawin, and Mukamel (2014). All
three IFSRS signals withNs ¼ 0, 1, 2 eventually scale linearly
with the classical pump intensity SIFSRS ∝ jA0j2, similar to
classical FSRS even though a different number of fields
contribute to the detection.
We now compare different field spectrograms which

represent the temporal and spectral windows created by the
fields. Figure 26(a) depicts the Wigner time-frequency
spectrogram for the classical probe field Es:

Wsðω; tÞ ¼
Z

∞

−∞

dΔ
2π

E�
sðωÞEsðωþ ΔÞe−iΔt: ð207Þ

The Fourier uncertainty ΔωΔt ≥ 1 limits the frequency
resolution for a given time resolution. The corresponding
Wigner two-photon spectrogram for the entangled twin
photon state

Wqðω; t; ω̄rÞ ¼
Z

∞

−∞

dΔ
2π

Φ�ðω; ω̄rÞΦðωþ Δ; ω̄rÞe−iΔt ð208Þ

is depicted in Fig. 26(b). For the same temporal resolution of
the FSRS, the spectral resolution of IFSRS can be signifi-
cantly improved since the time-and-frequency variables for
entangled light are not Fourier conjugate variables (Schlawin
et al., 2013). The high spectral resolution in the entangled case

is governed by T−1
j , j ¼ 1, 2 which is narrower than the

broadband probe pulse such that ΔωΔt≃ 0.3. Figure 26(c)

demonstrates that entangled window function RðNs;1Þ
q for

Ns ¼ 1, 2 [see Eqs. (212) and (213)] that enters the IFSRS
signal (210) yields a much higher spectral resolution than the
classical Rc shown in Eq. (215).
The molecular information required for all three possible

measurement outcomes (Ns ¼ 0, 1, 2) is given by two
correlation functions Fi and Fii [see Figs. 25(c) and
25(e) and Eqs. (197) and (198)], which are then convoluted
with a different detection window for FSRS and IFSRS.
The correlation functions Fi and Fii may not be separately

detected by FSRS. However, in IFSRS the loss Sð0;1ÞIFSRS and the

gain Sð2;1ÞIFSRS Raman signals probe Fi (the final state c may be
different from initial state a) whereas the coincidence count-

ing signal Sð1;1ÞIFSRS depends on Fii (initial and final states are
identical). Interferometric signals can thus separately measure
the two matter correlation functions.

c. IFSRS for a vibrational mode in a tunneling system

To demonstrate the effect of entanglement in interferomet-
ric measurements, we show the calculated signals for the
three-level model system depicted in Fig. 25(a). Once excited
by the actinic pulse, the initial state with vibrational frequency
ωþ ¼ ωac þ δ can tunnel through a barrier at a rate k and
assume a different vibrational frequency ω− ¼ ωac − δ
(Dorfman, Fingerhut, and Mukamel, 2013b). The probability
to remain in the initial state with ωþ decreases exponentially
PþðtÞ ¼ e−kt, whereas for ω− it grows as P−ðtÞ ¼ 1 − e−kt.
This model corresponds to Kubo’s two-state jump model in
the low-temperature limit (Kubo, 1963; Dorfman, Fingerhut,
and Mukamel, 2013b) which we discussed in Sec. III.E.2. The
absorption line shape is given by

SlðωÞ ¼ −I
4

ℏ2
jEðωÞj2 jμacj2

kþ 2iδ

×

�
kþ iδ

ω − ω− þ iγa
þ iδ
ω − ωþ þ iðγa þ kÞ

�
: ð209Þ

This shows two peaks with combined width governed by
dephasing γa and tunneling rates k. The corresponding IFSRS

signal SðNs;1Þ
IFSRS with Ns ¼ 0, 1, 2 is given by

SðNs;1Þ
IFSRSðω̄s; ω̄r;ωp; τÞ
¼ I

μ

ℏ4
jEpj2jEaj2

X
a;c

α2acjμagj2

× e−2γaτ
�
RðNs;1Þ
q ðω̄s; ω̄r; 2γa; ν̄ων − iγaÞ −

2iδe−kτ

kþ 2iδ

× ½RðNs;1Þ
q ðω̄s; ω̄r; 2γa þ k; ν̄ων − iγaÞ

− RðNs;1Þ
q (ω̄s; ω̄r; 2γa þ k; ν̄ων̄ − iðγa þ kÞ)�

�
; ð210Þ

where ν ¼ − for Ns ¼ 0, 2 and ν ¼ þ for Ns ¼ 1, μ ¼ − for
Ns ¼ 1, 2, and μ ¼ þ for Ns ¼ 0. The Raman response

RðNs;1Þ
q which depends on the window created by the quantum

field for different photon numbers Ns is given by
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Rð0;1Þ
q ðω̄s; ω̄r; γ;ΩÞ ¼

Z
∞

−∞

dω
2π

Φ�ðω; ω̄rÞΦðωþ iγ; ω̄rÞ
ω − ωp − Ω

;

ð211Þ

Rð1;1Þ
q ðω̄s; ω̄r; γ;ΩÞ ¼

Φ�ðω̄s; ω̄rÞΦðωp þ Ω − iγ; ω̄rÞ
ω̄s − ωp − Ω

;

ð212Þ

Rð2;1Þ
q ðω̄s; ω̄r; γ;ΩÞ ¼

Φ�ðω̄s; ω̄rÞΦðω̄s þ iγ; ω̄rÞ
ω̄s − ωp − Ω

: ð213Þ

For comparison, we give the classical FSRS signal (193)

SðcÞFSRSðω; τÞ ¼ −I
2

ℏ4
jEpj2jEaj2

X
a;c

α2acjμagj2e−2γaτ

×

�
Rcðω; 2γa;ω− − iγaÞ

−
2iδe−kτ

kþ 2iδ
½Rcðω; 2γa þ k;ω− − iγaÞ

− Rc(ω; 2γa þ k;ωþ − iðγa þ kÞ)�

− ðω� ↔ −ω∓Þ
�
; ð214Þ

where

Rcðω; γ;ΩÞ ¼
E�
sðωÞEsðωþ iγÞ
ω − ωp − Ω

ð215Þ

is the Raman response gated by the classical field.

Figures 27(a)–27(h) compare the classical FSRS signal

[Eq. (214)] with the IFSRS signals Sð1;1ÞIFSRS and Sð2;1ÞIFSRS
[Eq. (210)]. For slow modulation and long dephasing time
k, γa ≪ δ the absorption spectrum [Fig. 27(a)] has two well-
resolved peaks at ω�. The classical FSRS shown in Fig. 27(b)
has one dominant resonance at ωþ which decays with the
increase of delay T, whereas the ω− peak slowly builds up
and dominates at longer T. This signal contains both blue-
shifted and redshifted Raman resonances relative to the
narrow-band pump frequency ω−ωp ¼�ω�. If the modula-
tion and dephasing rates are comparable to the level splitting
k; γa ∼ δ, then the ω� resonances in the absorption [Fig. 27(e)]
and the classical FSRS [Fig. 27(f)] broaden and become less
resolved.
We next compare this with the IFSRS signal. For small

modulation and long dephasing, Sð1;1ÞIFSRS is similar to the
classical FSRS [see Fig. 27(c)]. However, both temporal
and spectral resolutions remain high, even when the
modulation is fast and the dephasing width is large as

seen in Fig. 27(g). The same applies to the Sð2;1ÞIFSRS signal
depicted for slow[ Fig. 27(d)] and fast [Fig. 27(h)]
tunneling.
Apart from the different detection windows, there is

another important distinction between IFSRS [Eq. (210)]
and the classical FSRS (214) signals. In the latter, both the
gain and loss contributions contain redshifted and blue-
shifted features relative to the narrow pump. The FSRS
signal can contain both Stokes and anti-Stokes components.
FSRS can distinguish only between red and blue

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

(h) 

FIG. 27. (a) Absorption for a time evolving vibrational mode i vs ω − ωp for slow tunneling rate k ¼ 18 cm−1 and narrow dephasing
γa ¼ 9 cm−1, (b) same as (a) but for fast tunneling rate k ¼ 53 cm−1 and broad dephasing γa ¼ 43 cm−1. (c), (d) The same as (a), (b) but

for the classical FSRS signal. (e), (f) The same as (a), (b) but for Sð1;1ÞIFSRS. (g), (h) The same as (a), (b) but for Sð2;1ÞIFSRS vs ω̄s − ωp. Parameters
for the simulations are listed in Dorfman, Schlawin, and Mukamel (2014).
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contributions. In contrast, the interferometric signal can

separately measure the gain Sð2;1ÞIFSRS and the loss contributions

Sð0;1ÞIFSRS.

d. The role of entanglement

We now show that the achieved enhanced resolution of
Raman resonances may not be achieved by classically shaped
light and that entanglement is essential. To this end, we
calculate the IFSRS signals (210) for the correlated-separable
state of the field (Zheng et al., 2013) described by the density
matrix

ρcor ¼
Z

∞

−∞
dωsdωrjΦðωs;ωrÞj2j1ωs

; 1ωr
ih1ωs

; 1ωr
j: ð216Þ

This is a diagonal part of the density matrix corresponding
to state Eq. (204) with amplitude Eq. (205), which can be
generated by the disentanglement of the twin state. This
state yields the same single-photon spectrum and shows
strong frequency correlations similar to the entangled case
and is typically used as a benchmark to quantify entangle-
ment in quantum information processing (Law, Walmsley,
and Eberly, 2000). We further compare this with signals
from the fully separable uncorrelated Fock state given by
Eq. (204) with

Φuncorðωs;ωrÞ ¼ ΦsðωsÞΦrðωrÞ; ð217Þ

where ΦkðωkÞ ¼ Φ0=½ωk − ω0 þ iσ0�, k ¼ s, r with param-
eters matching the classical probe pulse used in FSRS.

Figures 28(a)–28(d) illustrate Sð1;1ÞIFSRS for these two states
of light. The separable correlated state shown in Fig. 26(a)
has high spectral and no temporal resolution, as expected
from a cw time-averaged state in which the photons arrive at
any time (Zheng et al., 2013). The separable uncorrelated
state [see Fig. 26(c)] yields slightly better resolution than in
the classical FSRS signal in Fig. 27(f). Similar results can

be obtained for the Sð2;1ÞIFSRS [see Figs. 28(b) and 28(d),
respectively).

IV. ENTANGLED LIGHT GENERATION VIA NONLINEAR
LIGHT-MATTER INTERACTIONS AND NONCLASSICAL
RESPONSE FUNCTIONS

The generation process of quantum light is usually
described by an effective Hamiltonian in the field space.
The material quantities that assist the light conversion are
typically set to be constant parameters governed by nonlinear
semiclassical susceptibilities.
Superoperator nonequilibrium Green’s functions are

useful for calculating nonlinear optical processes involving
any combination of classical and quantum-optical modes.
Closed correlation-function expressions based on super-
operator time ordering may be derived for the combined
effects of causal (response) and noncausal (spontaneous

FIG. 28. Left column: Sð1;1ÞIFSRS signal vs ω̄s − ωp for (a) entangled
state (205), (b) correlated, and (c) uncorrelated separable states.

(d)–(f) The same as (a)–(c) but for the Sð2;1ÞIFSRS signal. Parameters
for the simulations are listed in Dorfman, Schlawin, and Muka-
mel (2014).

TABLE I. SNGFs of three wave-mixing techniques: heterodyne-detected SFG and DFGwith all classical (c) modes; incoherent TPIF with two
classical and one quantum (q) mode and corresponding coherent homodyne-detected SFG; incoherent TPEF with one classical and two
quantum modes and type-I PDC; type-II PDC SNGF with one classical and four quantum modes.

Three wave processes
Heterodyne Homodyne

Incoherent Coherent

Technique SFG DFG TPIF TPEF SFG PDC

Modes c/c/c c/c/c c/c/q c/q/q c/c/q c/q/q

ω3 ω1 þ ω2 ω1 − ω2 � � � � � � ≈ω1 þ ω2 ≈ω1 − ω2

SNGFs χð2Þþ−− χð2Þþ−− ðχð5Þþþ−−−− ðχð5Þþþ−−−− þ 2χð5Þþþþ−−− jχð2Þþ−−j2 jχð2Þþ−− þ χð2Þþþ−j2
χð5Þþþ−−−−Þ=2 þχð5Þþþþþ−−Þ=4

Expression Eq. (235) Eq. (233) Eq. (240) Eq. (251) Eq. (235) Type-I Eq. (253),
Type-II Eqs. (256), (258)
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fluctuations) correlation functions (Roslyak and
Mukamel, 2009b).
Next we survey several wave-mixing schemes for gen-

erating quantum light by using a combination of classical and
quantum modes of the radiation field. Homodyne-detected
sum-frequency generation (SFG) (Shen, 1989) and differ-
ence-frequency generation (DFG) (Dick and Hochstrasser,
1983; Mukamel, 1995) involve two classical and one
quantum mode. PDC (Louisell, Yariv, and Siegman, 1961;
Hong and Mandel, 1985; Klyshko, 1988; Mandel and Wolf,
1995) involves one classical and two quantum modes and is
one of the primary sources of entangled-photon pairs (Gerry
and Knight, 2005; U’Ren et al., 2006; Edamatsu, 2007). All
of these are coherent measurements and scale as NðN − 1Þ
for N active molecules of the signals (Marx, Harbola, and
Mukamel, 2008).
We further consider incoherent ∼N-scaling signals. These

include heterodyne-detected SFG and DFG, which involve
three classical modes and two types of two-photon fluores-
cence (Denk, Strickler, and Webb, 1990): two-photon-induced
fluorescence with one classical and two quantum modes
(Callis, 1993; Rehms and Callis, 1993; Xu and Webb,
1996) and two-photon-emitted fluorescence (TPEF) with
two classical and one quantum mode. The list of the different
measurement is summarized in Table I.
Finally we present a more detailed microscopic theory of

entangled light generation in two schemes, which describe
light-matter interactions that involve a quantum field. The first
is based on type-I PDC in a cascade three-level scheme, and in
the second scheme an entangled-photon pair is generated by
two remote molecules assisted by an ideal 50∶50 beam
splitter.

A. Superoperator description of n-wave mixing

So far we mostly used the L and R superoperator repre-
sentation for describing signals. Here we consider various
nonlinear signals which involve two-photon resonances
(Roslyak and Mukamel, 2009b) (see Fig. 29) and describe
them using � representation. For coherent optical states, all
field SNGFs in the L, R representation are identical E0

L ¼ E0
R

(the superoperator index makes no difference since all
operations commute). In the � representation the “minus”
field indices are not allowed, since E0

− ¼ 0. The general m
wave-mixing signals are given by 2m products of material and
corresponding optical field SNGFs of mth order:

SðmÞ
α ¼ ℑ

imδmþ1;α

πm!ℏmþ1

X
νm

� � �
X
ν1

Z∞
−∞

dtmþ1dtm � � � dt1

Θðtmþ1ÞV ðmÞ
νmþ1νm���ν1ðtmþ1; tm;…; t1Þ

× EðmÞ
νmþ1 ν̄m���ν̄1ðtmþ1; tm;…; t1Þ; ð218Þ

where tmþ1; tm;…; t1 are the light-matter interaction times.
The factor Θðtmþ1Þ ¼

Q
m
i¼1 θðtmþ1 − tiÞ ensures that the

tmþ1 is the last light-matter interaction. The indices ν̄j are
the conjugates to νj and defined as follows: the conjugate
of þ is − and vice versa. Equation (218) implies that the

excitations in the material are caused by fluctuations in the
optical field and vice versa. Equation (218) also holds in the L,
R representation. Here we have νmþ1¼L and νj ∈ fL; Rg,
j ¼ m;…; 1, ν̄j. In the L, R representation the conjugate of
“left” is “left” and the conjugate of “right” is “right”: L̄ ¼ L,

R̄ ¼ R. The material SNGF V ðmÞ
LL � � �L|fflfflffl{zfflfflffl}

n

R � � �R|fflfflffl{zfflfflffl}
m−n

represents a

Liouville space pathway with nþ 1 interactions from the left
(i.e., with the ket) and m − n interactions from the right (i.e.,
with the bra).
The field SNGF in Eq. (218) is defined in Eq. (14), and the

material SNGF is defined by Eq. (15). The latter in the form of

V ðmÞ
þ− � � �−|fflfflffl{zfflfflffl}

m

gives a causal ordinary response function of mth

order. The material SNGF of the form V ðmÞ
þþ � � � þ|fflfflffl{zfflfflffl}

m

represents

the mth moment of molecular fluctuations. The material

SNGF of the form V ðmÞ
þþ � � � þ|fflfflffl{zfflfflffl}

n

− � � �−|fflfflffl{zfflfflffl}
m−n

indicates changes in

the nth moment of molecular fluctuations up by m − n
perturbations. We next recast the material SNGF (15) in
the frequency domain by performing a multiple Fourier
transform:

χðmÞ
νmþ1νm���ν1ð−ωmþ1;ωm;…;ω1Þ

¼
Z

∞

−∞
dtmþ1 � � �dt1Θðtmþ1Þeiðωmtmþ���þω1t1Þ

×δð−ωmþ1þωmþ�� �þω1ÞV ðmÞ
νmþ1νm���ν1ðtmþ1; tm;…; t1Þ.

ð219Þ

The SNGF χðmÞ
þ− � � �−|fflfflffl{zfflfflffl}

m

ð−ωmþ1;ωm;…;ω1Þ (with one þ and

the rest − indices) is the mth order nonlinear susceptibility or
causal response function. The rest of the SNGFs in the
frequency domain can be interpreted similarly to their time-
domain counterparts (15).

B. Connection to nonlinear fluctuation-dissipation relations

Spontaneous fluctuations and response functions are
uniquely related in the linear regime (Hashitsume et al.,
1991) by the fluctuation-dissipation theorem, but not when
they are nonlinear. Some nonlinear fluctuation-dissipation
relations have been proposed for specific models under
limited conditions (Bochkov and Kuzovlev, 1981; Bertini

k1 

k2 

-k3 k1 

-k2 

-k3 k1 

k2 

-k3 k1 

-k2 

-k3 

SFG DFG TPIF TPEF, PDC 

FIG. 29. Three-wave process involuting classical (solid line)
and quantum (dashed line) modes. Black lines represent incom-
ing fields, and red lines correspond to generated light.
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et al., 2001; Lippiello et al., 2008) but there is no universal
relation of this type (Kryvohuz and Mukamel, 2012).
Quantum spectroscopy signals may be described by the

Glauber-Sudarshan P representation which expresses the field
densitymatrix as an integral over coherent state densitymatrices
jβihβj weighted by a quasiprobability distribution PðβÞ:

ρ̂ ¼
Z

d2βPðβÞjβihβj: ð220Þ

It was suggested (Kira et al., 2011; Almand-Hunter et al.,
2014; Mootz et al., 2014) that, since the response of a material
system to a field initially prepared in a coherent state jβi is
given by the classical response function CRF, the quantum
response RQM may be recast as an average of the classical
response Rjβi with respect to this quasiprobability

RQM ¼
Z

d2βPðβÞRjβi: ð221Þ

By transforming to the response of a nonclassical state given
by PðβÞ, in which the fluctuations along one quadrature are
squeezed below the classical limit, this form of data
processing can uncover otherwise hidden features in the
signal. For instance, Almand-Hunter et al. (2014) revealed
the “dropleton,” a new kind of quasiparticle excitation in
semiconductors.
While this analysis has proven successful, it misses the

multimode nature of the entangled states, which lies at the
heart of time-energy entanglement presented here. Based on
our analysis of the entangled light state (33), it can be shown
that optical signals induced by such entangled states cannot be
reduced to a simple sum over the signal of each quantum
mode: The quantum correlations depicted in Fig. 3 require a
multimode model. For instance, the transition amplitude (99)
may be written as a sum over the Schmidt modes,

TfgðtÞ ∼
X
k

Z
dωa

Z
dωbRtðωa;ωbÞψkðωaÞϕkðωbÞ;

ð222Þ
where Rt denotes the material response. Hence, the TPIF
signal ∼jTfgj2 cannot be reduced to the signal of the indivdual
Schmidt modes jTfgj2 ∼

P
k;k0 � � � ≠

P
k � � �, and the above

transformation fails to capture such a signal.
The Glauber-Sudarshan quasiprobability (Kira et al., 2011;

Almand-Hunter et al., 2014; Mootz et al., 2014) suggests that
classical light can be identified with coherent states. This is
not necessarily the case. For instance, the effect of the revival
of Rabi oscillations demonstrated by Rempe, Walther, and
Klein (1987) which is observed when a coherent state is
treated quantum mechanically clearly shows that a coherent
state is generally a quantum state of light. Therefore, Eq. (220)
merely represents a transformation between two different
basis sets for the quantum state. Of course, in the nonlinear
response case, if the operators are normally ordered as in
Eq. (74) the signal generated by a coherent state is equivalent
to the classical case. In Rempe’s example, the nonclassical
contributions arise due to commutator terms in Eq. (87) and
the higher the order in perturbative expansion, the larger the

contribution of the commutator terms. Therefore, in the strong
field limit one can observe the revival of Rabi oscillations.
We now use the superoperator formalism to show more

broadly why the quantum response is different from the
classical one so that Eq. (221) is violated. In Liouville space,
the time-dependent density matrix is given by Eq. (69). We
now make use of the superoperator algebraic relation (Marx,
Harbola, and Mukamel, 2008):

Hint− ¼ EþV− þ E−Vþ: ð223Þ
Let us first assume that the electric field operators commute
and set E− ¼ 0. We then calculate the expectation value of a
system A operator OA:

tr½OAρðtÞ� ¼ tr

�
OAT exp

�
−
i
ℏ

Z
t

t0

Eþðt0ÞVA
−ðt0Þdt0

�

× exp

�
−
i
ℏ

Z
t

t0

Eþðt0ÞVB
−ðt0Þdt0

�
ρA;0ρB;0ρph;0

�
:

ð224Þ
Since the trace of a commutator vanishes, and since there are
only VB

− operators for system B, all correlation functions of the
form hVB

−VB
− � � �VB

−i ¼ 0. The nonlinear response function is
thus additive. The time evolution of two coupled quantum
systems and the field is generally given by a sum over
Feynman paths in their joint phase space. Order by order
in the coupling, dynamical observables can be factorized
into products of correlation functions defined in the individual
spaces of the subsystems. These correlation functions re-
present both causal response and noncausal spontaneous
fluctuations (Cohen and Mukamel, 2003; Roslyak and
Mukamel, 2010).
The linear response contains several possible combinations

of field superoperators hV�V�i. hV−V−i represents a com-
mutator and thus vanishes since its trace is zero. Therefore
hVþVþi (two anticommutators) and hVþV−i (commutator
followed by anticommutator) are the only two quantities
that contribute to the linear response. These two quantities
are related by the universal fluctuation-dissipation relation
(Hashitsume et al., 1991),

Cþþ ¼ 1
2
cothðβℏω=2ÞCþ−ðωÞ: ð225Þ

Here

Cþ−ðωÞ ¼
Z

dτhVþðτÞV−ð0Þieiωτ ð226Þ

is the response function, whereas

CþþðωÞ ¼
Z

dτhVþðτÞVþð0Þieiωτ ð227Þ

denotes spontaneous fluctuations.
The classical response function Cþ−ðωÞ thus carries all

relevant information about linear radiation-matter coupling,
including the quantum response. In the nonlinear regime
the CRF is a specific causal combination of matter correlation
functions given by one þ and several − operators, e.g.,
hVþV−V−V−i for the third-order response. However, the
quantum response may also depend on the other
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combinations. To nth order in the external field the CRF
hVþðωnþ1ÞV−ðωnÞ � � �V−ðω2ÞV−ðω1Þi is one member of a
larger family of 2n quantities hVþðωnþ1ÞV�ðωnÞ � � �
V�ðω2ÞV�ðω1Þi representing various combinations of spon-
taneous fluctuations (represented by Vþ) and impulsive
excitations (represented by V−). For example, an “all þ”
quantity such as hVþVþVþVþi represents purely spontaneous
fluctuations. The CRF does not carry enough information to
reproduce all 2n possible quantities which are accessible by
quantum spectroscopy. The reason why the CRF and the
quantum response function (QRF) are not simply related in is
the lack of a fluctuation-dissipation relation in the nonlinear
regime (Bochkov and Kuzovlev, 1981; Bertini et al., 2001;
Lippiello et al., 2008; Kryvohuz and Mukamel, 2012).
The field commutator E− corresponds to vacuum modes of

the field which may induce coupling between noninteracting
parts of the system. One example where such an effect arising
from E− is combined with the appearance of collective
resonances, which occur for Eþ, was recently investigated
for harmonic systems (Glenn et al., 2015). The response of
classical or quantum harmonic oscillators coupled linearly to a
classical field is strictly linear; all nonlinear response func-
tions vanish identically. However quantum modes of the
radiation field that mediate interactions between the harmonic
oscillator resulted in nonlinear susceptibilities. A third-order
nonlinear transmission of the optical field yields collective
resonances that involve pairs of oscillators and are missed
by the conventional quantum master equation treatment
(Dorfman and Mukamel, 2013).

C. Heterodyne-detected sum and difference-frequency
generation with classical light

We first compare two experiments which involve three
classical modes. The third mode is singled out by the
heterodyne detection which measures its time-averaged pho-
ton flux (photons per unit time). Both techniques represent

second-order nonlinear signals Sð2Þ3 . The initial state of the
field is given by a direct product of coherent states
jψðt ¼ −∞Þi ¼ jβi1jβi2jβi3, where jβiα are eigenfunctions
of the mode α annihilation operator aαjβiα ¼ βαjβiα.
Coherent states are the most classical states of quantum light;
hence we refer to them as classical optical fields
(Glauber, 2007).
Only one type of optical SNGF contributes to the classical

third-order signal:

Eð2Þ
þþþðt3; t2; t1Þ ¼ E0ðt3ÞE0ðt2ÞE0ðt1Þ;

where E0ðtÞ ¼ hE0
LðtÞi ¼ hE0

RðtÞi ¼ βα
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πℏωα=Ω

p
is the

classical field amplitude.
The conjugate material SNGFs become

V ð2Þ
þ−−ðt3; t2; t1Þ ¼ V ð2Þ

LLLðt3; t2; t1Þ þ V ð2Þ
LRLðt3; t2; t1Þ; ð228Þ

where we assumed that initially the material system is in the

ground state, which implies that V ð2Þ
LRRðt3; t2; t1Þ≡ 0.

We assume the same three-level system used earlier. The L,
R representation plus RWA allows the material SNGFs (228)

to be represented by the loop diagrams shown in Figs. 30(c)
and 31(c). The rules for constructing these partially time-
ordered diagrams are summarized in Appendix A (Roslyak,
Marx, and Mukamel, 2009a). The signal is given by the causal

χð2Þþ−−ð−ω3;�ω2;�ω1Þ response function. This result is not
new and can be obtained by using various combinations of a
classical field from the outset. To calculate Eq. (228) we have
to specify the phase-matching conditions (frequencies and
wave vectors of the optical modes). This is done later.

D. Difference-frequency generation

In DFG the first mode k1 promotes the system from its
ground state jgi into state jfi. The second mode k2 induces
stimulated emission from jfi to an intermediate jei, and the
third mode k3 stimulates the emission from jei to jgi, as
sketched in Fig. 31(b). The signal is measured in the phase-
matching direction k3 ¼ k1 − k2 [see Fig. 30(a)].
The corresponding loop diagrams are shown in Fig. 30(c).

The optical field SNGF yields

Eð2Þ
þþþðt3; t2; t1Þ ¼ E�

3ðtÞE�
2ðt2ÞE1ðt1Þ. ð229Þ

The material SNGFs are

V ð2Þ
þ−−ðt3; t2; t1Þ
¼ hT V3

LðtÞV2;†
L ðt2ÞV1;†

L ðt1Þ þ hT V3
LðtÞV2;†

R ðt2ÞV1;†
L ðt1Þi.

ð230Þ

The DFG signal in the frequency domain can be written as

SDFGð−ω3;ω2;ω1Þ

¼ 1

πℏ
ℑδðω1 − ω2 − ω3Þχð2Þþ−−ð−ω3;−ω2;ω1ÞE�

3E
�
2E1.

ð231Þ

(c)(b)(a)

FIG. 30. Heterodyne-detected DFG: (a) phase-matching con-
dition k3 ¼ k1 − k2, (b) molecular level scheme, and (c) loop
diagrams.

(c)(b)(a)

FIG. 31. Heterodyne-detected SFG: (a) phase-matching con-
dition k3 ¼ k1 þ k2, (b) level scheme, and (c) loop diagrams.
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Utilizing the rules given in Appendix A and the diagrams
shown in Fig. 30(c) we obtain

χð2Þþ−−(−ðω1 − ω2Þ;−ω2;ω1)

¼ 1

2!ℏ2
ðhgjV3Gðωg þ ω1 − ω2ÞV2Gðωg þ ω1ÞV†

1jgi
− hgjV2G†ðωg þ ω1 − ω2ÞV3Gðωg þ ω1ÞV†

1jgiÞ:
ð232Þ

A SOS expansion then yields

χð2Þþ−−(−ðω1 − ω2Þ;−ω2;ω1)

¼ 1

2!ℏ2

μxgfμ
x
feμ

x
eg

ðω1 − ωgf þ iℏγgfÞðω1 − ω2 − ωeg þ iℏγegÞ

−
1

2!ℏ2

μxgfμ
x
feμ

x
eg

ðω1 − ωgf þ iℏγgfÞðω2 − ωeg − iℏγegÞ
. ð233Þ

Equation (233) indicates that the signal induced by classical
optical fields is given by the second-order CRF.

E. Sum-frequency generation

In SFG the first two modes promote the molecule from its
ground state jgi through intermediate state jei into the state
jfi. The third mode induces stimulated emission from jfi to
the ground state jgi as sketched in Fig. 31(b). The signal is
generated in the direction k3 ¼ k1 þ k2 [see Fig. 31(a)].
The heterodyne-detected SFG signal can be obtained in an

analogous manner to the DFG by utilizing the diagrams shown
in Fig. 31(c):

SSFGðω1;ω2Þ

¼ 1

πℏ
ℑδðω1þω2−ω3Þχð2Þþ−−ð−ω3;ω2;ω1ÞE�

3E2E1; ð234Þ

where the CRF is given by

χð2Þþ−−(−ðω1 þ ω2Þ;ω2;ω1)

¼ 1

2!ℏ2
hgjV3Gðωg þ ω1 þ ω2ÞV†

2Gðωg þ ω1ÞV†
1jgi

¼ 1

2!ℏ2

μxgeμ
x
feμ

x
eg

ðω1 − ωeg þ iℏγegÞðω1 þ ω2 − ωgf þ iℏγgfÞ
.

ð235Þ

In the coming sections Eqs. (233) and (235) will be
compared with other techniques involving various combina-
tions of quantum and classical optical fields. These include
homodyne-detected SFG, DFG, and PDC where one or more
optical modes are spontaneously generated, and must be
treated quantum mechanically.

F. Two-photon-induced fluorescence versus
homodyne-detected SFG

We now turn to techniques involving two classical and
one quantum mode where the initial state of the optical

field is jψðt ¼ −∞Þi ¼ jβ1i1jβ2i2j0i3. The modes interact
with the three-level material system [Fig. 32(b)]. We assume
that ωeg ≠ ωef. This allows one to focus on the resonant
SNGFs and reduce the number of diagrams.
The two classical modes k1 and k2 promote the molecule

from its ground state jgi into the intermediate state jei and to
the final state jfi. The system then spontaneously decays back
into one of the ground state manifold jg0i emitting a photon
into the third mode k3 which is initially in the vacuum state
[see Fig. 32(b)]. The phase-matching condition k1 − k1 þ
k2 − k2 þ k3 − k3 ¼ 0 is automatically satisfied for any k3.
Therefore the spontaneous photons are emitted into a cone
[see Fig. 32(a)].
We calculate the photon flux in the k3 mode, since the

process involves three different modes and six light-matter
interactions. The signal (218) must by expanded to fifth

order in Hint. The fifth-order signal Sð5ÞCCQ (CCQ implies two
classical and one quantum mode) may be written as a sum of
25 terms each given by a product of molecule and field six-
point SNGFs. Only the corresponding diagrams are shown in
Fig. 32(c). These satisfy the following conditions:

(1) The creation operator of the quantum mode a†3 must
be accompanied by the corresponding annihilation
operator a3.

(2) The quantum modes deexcite the molecule, which
implies that the annihilation operators must act on the
bra and the creation operators act on the ket.

(3) The coherent optical fields are tuned off resonance
with respect to the ωfg0 transition. Hence, the signal is
not masked by stimulated emission.

To address the collective properties of threewavemixing, we
consider a collection ofN noninteracting molecules positioned
at ri so that V ¼ P

iViδðr − riÞ. The optical field can interact
with different systems at different times. Figure 32(c) shows
processes involving three different molecules and six light-
matter interactions. These modes can interact with either the
same system [incoherent process, Fig. 32(C1)] or two different

(a)

(c)

(b)

FIG. 32. Three-wave process with two classical and one
quantum mode: (a) phase-matching condition, (b) molecular
level scheme, and (c) loop for the incoherent TPIF (C1) and
coherent homodyne SFG (C2).
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systems [coherent process, Fig. 32(C2)] (Marx, Harbola, and
Mukamel, 2008).

1. Two-photon-induced fluorescence

This is an incoherent three-wave process. Using the identityP
N
i¼1 exp iðk1 − k1 þ k2 − k2 þ k3 − k3Þðr − riÞ ¼ N the

optical field SNGF yields

Eð5Þ
LRþþþþðt6; t5;…; t1Þ

¼ NE1ðt1ÞE�
1ðt2ÞE2ðt3ÞE�

2ðt4Þ
2πℏω3

Ω
exp ½iω3ðt6 − t5Þ�.

ð236Þ
The relevant material SNGF is

V ð5Þ
LRþþþþðt6; t5;…; t1Þ
¼ hT V3

Lðt6ÞV3;†
R ðt5ÞV2

−ðt4ÞV2;†
− ðt3ÞV1

−ðt2ÞV1;†
− ðt1Þi. ð237Þ

Utilizing Eqs. (236) and (237) the frequency-domain signal
can be written as

STPIFðω1;ω2Þ ¼
N
πℏ

X
k3

jE1j2jE2j2
2πℏω3

Ω

× ℑχð5ÞLR−−−−ð−ω3;ω3;−ω2;ω2;−ω1;ω1Þ.
ð238Þ

Note that Eq. (238) is given in the mixed ðL=R;þ=−Þ
representation. It can be recast into the þ;− representation

using χð5ÞLR−−−− ¼ ðχð5Þþ−−−−− þ χð5Þþþ−−−−Þ=2. The second term
(two “plus” four “minus” indices) arises since one of the
modes is nonclassical. The frequency-domain material SNGF
can be calculated from the diagram of Fig. 32 (C1):

χð5ÞLR−−−−ð−ω3;ω3;−ω2;ω2;−ω1;ω1Þ

¼ 1

5!ℏ5
hgjV1G†ðωg þ ω1ÞV2G†ðωg þ ω1 þ ω2Þ

× V†
3G

†ðωg þ ω1 þ ω2 − ω3ÞV3

×Gðωg þ ω1 þ ω2ÞV†
2Gðωg þ ω1ÞV†

1jgi. ð239Þ

Expanding Eq. (239) in molecular states gives

χð5ÞLR−−−−(−ðω1þω2Þ;ω2;ω1)

¼
X
gg0

jμxg0fμxfeμxegj2

×
1

5!ℏ5

1

½ðω1−ωegÞ2þγ2eg�½ω1þω2−ωfgþ iγfg�

×
1

½ω1þω2−ωfg0 − iγfg0 �½ω1þω2−ω3−ωgg0 − iγgg0 �
.

ð240Þ

Provided the energy splitting within the ground state manifold
is small comparing to the optical transitions the signal can be
recast in the following form:

STPIFðω1;ω2Þ

¼ 2Nω3

5!ℏ5Ω
jE1j2jE2j2jTfgðω1;ω2Þj2δðω1 þ ω2 − ω3 − ωgg0 Þ;

ð241Þ
where

Tfgðω1;ω2Þ ¼
μgfμfeμeg

ðω1 − ωeg þ iγegÞðω1 þ ω2 − ωfg þ iγfgÞ
is the transition amplitude. This is similar to the Kramers-
Heisenberg form of ordinary (single-photon) fluorescence
(Marx, Harbola, and Mukamel, 2008). As in single-photon
fluorescence, for a correct description of the TPIF the ground
state must not be degenerate. Otherwise, γgg ¼ 0 (the degen-
erate ground state of the system has an infinite lifetime) and
the signal vanishes.
The SNGF in Eq. (239) is commonly called the fluores-

cence quantum efficiency (Xu and Webb, 1996) or the two-
photon tensor (Callis, 1993). Our result is identical to that of
Callis, apart from the δðω1 þ ω2 − ω3 − ωgg0 Þ factor.
When the two classical coherent modes are degenerate

(ω1 ¼ ω2) the signal given by Eq. (241) describes nonreso-
nant hyper-Raman scattering (ωgg0 ≠ 0) also known as inco-
herent second harmonic inelastic scattering (Callis, 1993;
Andrews and Allcock, 2002). When ω1 ¼ ω2 and ωgg0 → 0

(but not equal to) Eq. (241) describes nonresonant hyper-
Rayleigh scattering also known as incoherent second har-
monic elastic scattering. Off-resonant hyperscattering is a
major complicating factor for TPIF microscopy (Xu, Shear,
and Webb, 1997).

2. Homodyne-detected SFG

Here the optical field SNGF is given by Eq. (236), but
instead of a factor N it contains the factor

XN
i¼1

XN−1

j≠i
eiΔk⋅ðr−riÞe−iΔk⋅ðr−rjÞ ≈ NðN − 1Þ; ð242Þ

whereΔk≈k1þk2−k3. The approximate sign reflects phase
uncertainty given by the reciprocal of the molecular collection
length which effectively narrows the optical cone. For largeN,
the coherent part ∝ NðN − 1Þ dominates over the incoherent
∝ N response. For a small sample size, the exact calculation of
the optical field part of the SNGF is rather lengthy, but it can be
performed in the same fashion as done by Hong and Mandel
(1985) for the probability of photon detection.
To calculate the matter SNGF, we must work in the joint

space of two molecules ji1;2 ¼ ji1ji2 interacting with the same
field mode. The matter SNGF of the joint system can be
factorized into a product of each molecule SNGFs:

V ð5Þ
LRþþþþðt6; t5;…; t1Þ
¼ hT V3þðtÞV3;†

þ ðt5ÞV2
−ðt4ÞV2;†

− ðt3ÞV1
−ðt2ÞV1;†

− ðt1Þi1;2
¼ hT V3þðtÞV2;†

− ðt3ÞV1;†
− ðt1Þi1hT V3;†

þ ðt5ÞV2
−ðt4ÞV1

−ðt2Þi2;
ð243Þ

where we used the fact that the last interaction must be a plus.
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Since the two molecules are identical, the following identity
holds:

hT V3;†
þ ðt5ÞV2

−ðt4ÞV1
−ðt2Þi

¼ ½hT V3þðtþ ΔtÞV2;†
− ðt3 þ ΔtÞV1;†

− ðt1 þ ΔtÞi��; ð244Þ
where vgΔt is the optical path length connecting molecules
situated at ri and rj. Using this identity and Eq. (243) the
matter SNGF in the frequency domain can be factorized
into the square of an ordinary (causal) response function
(one þ and several −):

ℑχð5Þþþ−−−−ð−ω3;ω3;−ω2;ω2;−ω1;ω1Þ
¼ jχð2Þþ−−(−ðω1 þ ω2Þ;ω2;ω1)j2.

The unique factorization of the coherent matter SNGFs
can also be obtained in the L, R representation using the
diagrammatic technique as shown in Fig. 32(C2). The
classical modes have to excite the molecules and the quantum
mode has to deexcite them. Hence, the interactions with the
first molecule ket (L) are accompanied by the conjugate
interactions with the second molecule bra (R). We obtain that
the ordinary, causal response function is given by Eq. (235)

as χð2Þþ−−(−ðω1 þ ω2Þ;ω2;ω1) ¼ χð2ÞLLL(−ðω1 þ ω2Þ;ω2;ω1).

The homodyne-detected SFG signal is finally given by

SSFG ¼ NðN − 1ÞjE1j2jE2j2
2ðω1 þ ω2Þ

Ω
× jχð2Þþ−−(−ðω1 þ ω2Þ;ω2;ω1)j2. ð245Þ

Both homodyne and heterodyne SFG are given by the same

causal response function χð2Þþ−−. The main difference is that the
latter satisfies perfect phase matching, while for the former
this condition is only approximate. For sufficiently large
samples the two techniques are identical.
To conclude, we present the total signal for the three-wave

process involving CCQwhich includes both an incoherent and
a coherent component:

Sð5ÞCCQðω2;ω1Þ

¼ jE1j2jE2j2
2ω3

Ω
× ½Nℑχð5Þþþ−−−−ð−ω3;ω3;−ω2;ω2;−ω1;ω1Þ
þ NðN − 1Þjχð2Þþ−−(−ðω1 þ ω2Þ;ω2;ω1)j2�. ð246Þ

G. Two-photon-emitted fluorescence versus type-I parametric
downconversion

1. TPEF

We now turn to three wave processes involving one
classical and two quantum modes. We start with the incoher-
ent response of N identical molecules initially in their
ground state. The initial state of the optical field is
jψðt ¼ −∞Þi ¼ jβ1i1j0i2j0i3. The classical field k1 pumps
the molecule from its ground state jgi into the excited state
jfi. The system then spontaneously emits two photons into

modes k2 and k3 [see Fig. 33(b)] which are initially in the
vacuum state. Such an incoherent process which involves one
classical and two quantum modes will be denoted as TPEF. To
our knowledge there is neither theoretical nor experimental
work concerning this process.
This process is not phase sensitive since the phase-matching

condition k1 − k1 þ k2 − k2 þ k3 − k3 ¼ 0 is automatically
satisfied for any k3. Therefore spontaneously generated
modes are emitted into two spatial cones [see Fig. 33(a)].
For a single molecule the cones are collinear, as in type-I PDC.
Because of this similarity we chose beam polarizations as is
usually done for PDC of this type: the spontaneously
generated photons have the same polarization along the x
axis and orthogonal to that of the classical mode polarized
along the y axis.
The time-averaged photon flux in the k3 mode is our TPEF

signal. We again make use of the loop diagrams to identify the
relevant SNGF contributing to the signal. Using the initial
state of the field the diagrams must satisfy the following
conditions:

(1) The creation operators of spontaneously generated
modes a†3, a

†
2 acting on the ket must be accompanied

by the corresponding annihilation operators a3, a2
acting on the bra.

(2) The first mode ω1ðk1Þ is off resonant with both ωeg
and ωfe transitions to avoid stimulated emission
contributions.

Figure 33(C1) satisfies these conditions. The nonresonant
diagrams have been omitted. Using this diagram the optical
field SNGF yields

Eð5Þ
LLRRþþðt6; t5;…; t1Þ

¼ NE1ðt1ÞE�
1ðt2Þ

2πℏω3

Ω
2πℏω2

Ω
× exp ½iω3ðt6 − t5Þ� exp ½iω3ðt4 − t3Þ�. ð247Þ

The matter SNGF assumes the following form:

(a) (b)

(c)

FIG. 33. Three wave processes involuting two quantum and one
classical mode: (a) phase-matching condition, (b) molecular level
scheme, and (c) loop diagrams for the incoherent TPEF (C1) and
coherent type-I PDC (C2).
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V ð5Þ
LLRR−−ðt6; t5;…; t1Þ
¼ hT V3

LðtÞV3;†
R ðt5ÞV2;†

R ðt4ÞV2
Lðt3ÞV1

−ðt2ÞV1;†
− ðt1Þi. ð248Þ

Using Eqs. (247) and (248) the incoherent part of the
frequency-domain signal is given by

STPEFðω1Þ ¼
N
πℏ

jE1j2
2πℏðω2Þ

Ω
2πℏω3

Ω
× ℑχð5ÞLLRR−−ð−ω3;ω3;ω2;−ω2;−ω1;ω1Þ.

ð249Þ
The corresponding SNGF can be calculated from the diagram
in Fig. 33(C1):

χð5ÞLLRR−−ð−ω3;ω3;ω2;−ω2;−ω1;ω1Þ

¼ 1

5!ℏ5
hgjV†

1G
†ðωg þ ω1ÞV†

2G
†ðωg þ ω1 − ω2Þ

× V3G†ðωg þ ω1 − ω2 − ω3ÞV3

× Gðωg þ ω1 − ω2ÞV2Gðωg þ ω1ÞV†
1jgi. ð250Þ

Expansion in the molecular eigenstates brings the response
function into the following Kramers-Heisenberg form:

χð5ÞLLRR−−ð−ω3;ω3;ω2;−ω2;−ω1;ω1Þ

¼ 1

5!ℏ5

X
gg0

jμxg0eμxefμyfgj2δðω1−ω2−ω3Þ

×
1

ðω1−ωfgÞ2þ γ2fg

���� 1

ω1−ω2−ωegþ iγeg

����2. ð251Þ

Note that unlike TPIF, the TPEF signal depends on the SNGF

other than the causal response function χð5Þþ−−−−−.

2. Type-I PDC

We now turn to the coherent response of a collection of
identical molecules which interact with one classical pumping
mode and two spontaneously generated quantum modes [see
Figs. 33(a) and 33(b)]. This is known as type-I PDC, which is
widely used for producing entangled-photon pairs. Hereafter
we assume perfect phase matchingΔk ¼ k1 − k2 − k3 which
is the case for a sufficiently large sample (Gerry and
Knight, 2005).
The initial conditions for PDC are the same as for TPEF

and most PDC experiments and are well described by the

causal response function χð2Þþ−−. Therefore one would expect
a connection between TPEF and PDC, similar to that of
TPIF and homodyne-detected SFG. However, as we are
about to demonstrate, for a complete description of the PDC

process the causal second-order response function is not
enough.
To establish the corrections to the second-order CRF caused

by the quantum origin of the spontaneous modes. We again
resort to the close-time-path loops (CTPL) diagrams [see
Fig. 33(C2)]. For the coherent response the optical field SNGF
is given by Eq. (247) with the factor N replaced by NðN − 1Þ.
The material SNGF (248) can be factorized as

V ð5Þ
LLRR−−ðt6; t5;…; t1Þ
¼ hT V3

Lðt6ÞV2
Lðt3ÞV1;†

L ðt1ÞihT V3;†
R ðt5ÞV2;†

R ðt4ÞV1
Rðt2Þi.

ð252Þ

Note that this factorization is unique as hT V3
LðtÞV2;†

R ðt4Þ ×
V1;†
L ðt1Þi ¼ 0 due to the material initially being in its ground

state. The coherent PDC signal in the frequency domain can
then be written as

SPDCðω1Þ

¼ NðN − 1Þ
4πℏ

jE1j2
2πℏω2

Ω
2πℏðω1 − ω2Þ

Ω
× jχð2ÞLL−(−ðω1 − ω2Þ;ω2;ω1)j2. ð253Þ

Here the generalized response function expanded in the
eigenstates has the form

χð2ÞLL−(−ðω1 − ω2Þ;ω2;ω1)

¼ 1

2!ℏ2

μygfμ
x
feμ

x
eg

ðω1 − ωgf þ iℏγgfÞðω1 − ω2 − ωeg þ iℏγegÞ
.

This mixed representation can be recast in þ;− and L, R
representations:

χð2ÞLL− ¼ χð2ÞLLL ¼ 1
2
ðχð2Þþ−− þ χð2Þþþ−Þ. ð254Þ

Comparing the CRF for heterodyne-detected DFG (233)
and the SNGFs for type-I PDC (254) we see that the latter is

described not only by causal response function χð2Þþ−− but also

by the second moment of material fluctuations χð2Þþþ−. On the
other hand, in the L, R representation it singles out one

Liouville pathway χð2ÞLLL, while the classical optical fields drive
the material system along all possible pathways.
Interesting effects arise in type-I PDC if the detection

process is included explicitly. These effects are discussed in
Sec. IV.I.
In summary we give the signal for the three-wave process

involving one classical and two quantum fields (CQQ). This
contains both an incoherent and a coherent component:

Sð5ÞCQQðω2;ω1Þ ¼
1

πℏ
jE1j2

2πℏω2

Ω
2πℏω3

Ω
Nℑ

h
χð5Þþþ−−−−ð−ω3;ω3;−ω2;ω2;−ω1;ω1Þ

þ χð5Þþþþ−−−ð−ω3;ω3;−ω2;ω2;−ω1;ω1Þ þ χð5Þþþþþ−−ð−ω3;ω3;−ω2;ω2;−ω1;ω1Þ
i

þ NðN − 1Þjχð2Þþ−−( − ðω1 − ω2Þ;ω2;ω1)þ χð2Þþþ−( − ðω1 − ω2Þ;ω2;ω1)j2. ð255Þ
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H. Type-II PDC and polarization entanglement

In type-II parametric downconversion, the two spontane-
ously generated signals have orthogonal polarizations.
Because of birefringence, the generated photons are emitted
along two noncollinear spatial cones known as ordinary and
extraordinary beams [see Fig. 34(a)]. Polarization-entangled
light (Gerry and Knight, 2005) is generated at the intersections
of the cones. An x polarization filter and a detector are placed
at one of the cones intersections. The detector cannot tell from
which beam a photon is obtained. To describe the process we
need five optical modes: one classical j1ijyi and four quantum
modes fj2ijxi; j2ijyi; j3ijxi; j3ijyig.
A polarization-entangled signal is described by CTPL

diagrams shown in Fig. 34(c). The type-II PDC signal consist

of two parts Sð5ÞPDCII ¼ Sð5Þ3x þ Sð5Þ2x . The signal S
ð5Þ
3x assumes the

form of Eq. (253), with the material pathway depicted in
Fig. 34(C1):

χð2ÞLL−(−ðω1 − ω2Þ;−ω2;ω1)

¼ 1

2

�
χð2Þþ−−(−ðω1 − ω2Þ;−ω2;ω1)

þ χð2Þþþ−(−ðω1 − ω2Þ;ω2;−ω1)

�

¼ 1

2!ℏ2

C
ðω1 − ωgf þ iℏγgfÞðω1 − ω2 − ωeg þ iℏγegÞ

;

ð256Þ
where the coefficient C is given by

C2 ¼ jμygfj2ðjμxfej2jμxegj2 þ 2μxfeμ
x
egμ

y
feμ

y
eg

þ μxfeμ
x
egμ

x
feμ

y
eg þ μyfeμ

y
egμ

y
feμ

x
egÞ. ð257Þ

The signal Sð5Þ3x is described by the diagram in Fig. 34(C2):

χð2ÞLL−(−ω2;−ðω1 − ω2Þ;ω1)

¼ 1

2

�
χð2Þþ−−(−ω2;−ðω1 − ω2Þ;ω1)

þ χð2Þþþ−(−ω2;−ðω1 − ω2Þ;ω1)

�

¼ 1

2!ℏ2

C
ðω1 − ωgf þ iℏγgfÞðω2 − ωeg þ iℏγegÞ

. ð258Þ

The net type-II PDC signal is

SPDCIIðω1Þ

¼ NðN − 1Þ
4πℏ

jE1j2
2πℏω2

Ω
2πℏðω1 − ω2Þ

Ω
× jχð2ÞLL−(−ðω1 − ω2Þ;−ω2;ω1)j2

þ jχð2ÞLL−(−ω2;−ðω1 − ω2Þ;ω1)j2: ð259Þ

I. Time-and-frequency-resolved type-I PDC

Previously we had surveyed various wave-mixing signals
using a simple model without addressing the detection process

in detail. In the following we include the photon counting
detection described in Sec. III.D and demonstrate how the
actual generation process in type-I PDC relates to nonlinear
response and how different it is compared to semiclassical
theory.
The standard calculation of nonlinear wave mixing assumes

that all relevant field frequencies are off resonant with matter.
It is then possible to adiabatically eliminate all matter degrees
of freedom and describe the process by an effective
Hamiltonian for the field that contains a nonlinear cubic
coupling of three radiation modes (Mandel and Wolf, 1995).
For SFG this reads

Heff ¼ −
Z

drχð2ÞE†
3ðω1 − ω2ÞE†

2ðω2ÞE1ðω1Þ ð260Þ

and for DFG and PDC

Heff ¼ −
Z

drχð2ÞE†
3ðω1 þ ω2ÞE2ðω2ÞE1ðω1Þ. ð261Þ

All matter information is embedded into a coefficient that is
proportional to χð2Þ (Gerry and Knight, 2005) which is defined
by the semiclassical theory of radiation-matter coupling.
Langevin quantum noise is added to represent vacuum
fluctuations caused by other field modes (Scully and
Zubairy, 1997; Glauber, 2007; Avenhaus et al., 2008) and
account for photon statistics.
The microscopic theory of type-I PDC presented next holds

if the cascade of two photons in a three-level system is
generated in both on and off resonance. The resonant case is
especially important for potential spectroscopic applications
(Mukamel, 1995), where unique information about entangled
matter (Lettow et al., 2010) can be revealed. Other examples
are molecular aggregates and photosynthetic complexes or
biological imaging (Saleh et al., 1998). Second, it properly
takes into account the quantum nature of the generated modes
through a generalized susceptibility that has a very different
behavior near resonance than the semiclassical χð2Þ. χð2Þ is
derived for two classical fields and a single quantum field.
While this is true for the reverse process (sum-frequency
generation) it does not apply for PDC, which couples a
single classical and two quantum modes. Third, macroscopic

(a) (b)

(c)

FIG. 34. Type-II PDC: (a) phase matching, (b) molecular level
scheme, and (c) CTPL diagrams for the signal from k3 (C1) and
k2 (C2) modes polarized along the x direction.
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propagation effects are not required for the basic generation of
the signal. Fourth, gated detection (Dorfman and Mukamel,
2012a) yields the finite temporal and spectral resolution of the
coincident photons limited by a Wigner spectrogram. For
either time- or frequency-resolved measurement of the gen-
erated field, the signal can be expressed as a modulus square
of the transition amplitude that depends on three field modes.
This is not the case for photon counting. Shwartz et al. (2012)
recently reported PDC in diamond, where a 18 keV pump
field generates two x-ray photons. Dorfman and Mukamel
(2012b) reproduced experimental data in the entire frequency
range without adding Langevin noise.
The nature of entangled light can be revealed by photon

correlationmeasurements that are governed by energy, momen-
tum, and/or angular momentum conservation. In PDC, a non-
linear medium is pumped by the electromagnetic field of
frequency ωp and some of the pump photons are converted
into pairs of signal and idler photonswith frequenciesωs andωi,
respectively [see Fig. 35(a)] satisfying ωp ¼ ωs þ ωi.
For a more detailed description of the wave-mixing process

in PDC we recast an effective semiclassical Hamiltonian in
Eq. (261) as follows:

HintðtÞ¼ iℏ
X
j

Z
dωs

2π

dωi

2π

dωp

2π
χð2Þþ−−ðωs;ωi;ωpÞ

× âðsÞ†âðiÞ†βðpÞeiΔk⋅ðr−rjÞe−iðωp−ωs−ωiÞt� þH:c:; ð262Þ

where â†ðsÞ and âðiÞ† are creation operators for signal and idler
modes, βðpÞ is the expectation value of the classical pump

field, Δk ¼ kp − ks − ki, j runs over molecules, and χð2Þþ−−

[normally denoted as χð2Þð−ωs;−ωi;ωpÞ] is the second-order
nonlinear susceptibility

χð2Þþ−−ðωs ¼ ωp − ωi;ωi;ωpÞ

¼
�
i
ℏ

�
2
Z

∞

0

Z
∞

0

dt2dt1

× eiωiðt2þt1Þþiωpt1h½½Vðt2 þ t1Þ; Vðt1Þ�; Vð0Þ�i þ ði ↔ pÞ:
ð263Þ

The þ − − indices in Eq. (263) signify two commutators
followed by an anticommutator. The bottom line of the
semiclassical approach is that PDC is represented by a
three-point matter-field interaction via the second-order sus-

ceptibility χð2Þþ−− that couples the signal, idler, and pump
modes. However, it was realized that other field modes are
needed to yield the correct photon statistics. Electromagnetic
field fluctuations are then added as quantum noise (Langevin
forces) (Scully and Zubairy, 1997).
Next we summarize a microscopic calculation of the PCC

rate in type-I PDC (Roslyak, Marx, and Mukamel, 2009a). We
show that PDC is governed by a quantity that resembles but is
different from Eq. (263). In contrast with the semiclassical

(a) (b)

(c)

(d) (e)

(f) (g)

(h) (i)

(j) (k)

FIG. 35. (a) Schematic of the PDC experiment and (b) the three-level model system used in our simulations. (c) One out of four loop
diagrams [the remaining three diagrams are presented by Dorfman and Mukamel (2012b)] for the PCC rate of signal and idler photons
generated in type-I PDC [Eq. (265)]. The left and right diagrams represent a pair of molecules. Blue (red) arrows represent field-matter
interaction with the sample (detectors). There are four possible permutations (s=i and s0=i0) which leads to four terms when Eq. (267) is

substituted into Eq. (266). (d) Absolute value of semiclassical susceptibility jχð2Þþ−−(−ðωp − ωiÞ;−ωi;ωp)j (arb. units) Eq. (268), and
(e) the susceptibility jχð2ÞLL−(−ðωp − ωiÞ;−ωi;ωp)j Eq. (267) vs pump ωp and idler frequency ωi. We used the standard potassium titanyl

phosphate (KTP) crystal parameters outlined in the text. (f) Real and (h) imaginary parts and (j) absolute value of χð2Þþ−− (red lines) and χ
ð2Þ
LL−

(blue lines) for off-resonant pump ωp − ωgf ¼ 10γgf . (g), (i), and (k) The same as (f), (h), and (j) but for resonant pump ωp ≃ ωgf .
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approach, PDC emerges as a six-mode two-molecule rather
than a three-mode matter-field interaction process and is
represented by convolution of two quantum susceptibilities

χð2ÞLL−ðωs;ωi;ωpÞ and χð2Þ�LL−ðω0
s;ω0

i;ω
0
pÞ that represent a pair of

molecules in the sample interacting with many vacuum modes
of the signal (s, s0) and the idler (i, i0). Field fluctuations
are included self-consistently at the microscopic level.
Furthermore, the relevant nonlinear susceptibility is different

from the semiclassical one χð2Þþ−− and is given by

χð2ÞLL−ðωs ¼ ωp − ωi;ωi;ωpÞ

¼
�
i
ℏ

�Z
∞

0

Z
∞

0

dt2dt1

× eiωiðt2þt1Þþiωpt1h½Vðt2 þ t1ÞVðt1Þ; Vð0Þ�i þ ði ↔ sÞ:
ð264Þ

Equation (264) has a single commutator and is symmetric
to a permutation of ωi and ωs ¼ ωp − ωi as it should.
Equation (263) has two commutators and lacks this symmetry.

1. The bare PCC rate

The measured PCC rate of signal and idler photons starts
with the definition (175). The basis for the bare signal in
Eq. (174) is given by the time-ordered product of Green’s
functions of superoperators in the interaction picture
(Dorfman and Mukamel, 2012b)

hT E†ðiÞ
R ðt0iÞE†ðsÞ

R ðt0s þ τsÞEðs0Þ
L ðt0sÞEði0Þ

L ðt0i − τiÞ
× e−ði=ℏÞ

R
∞
−∞

H0
−ðτÞdτρð−∞Þi; ð265Þ

which represents four spectral modes arriving at the detectors,
where modes s, s0, i, and i0 are defined by their frequencies ωs,
ω0
i, ωi ¼ ωp − ωs, and ω0

s ¼ ω0
p − ω0

i.
In type-I PDC the sample is composed of N identical

molecules initially in their ground state. They interact with
one classical pump mode and emit two spontaneously
generated quantum modes with the same polarization into
two collinear cones. The initial state of the optical field is
given by j0isj0iijβip. A classical pump field promotes the
molecule from its ground state jgi to the doubly excited state
jfi [see Fig. 35(b)].
Because of the quantum nature of the signal and idler

fields, the interaction of each of these fields with matter must
be at least second order to yield a nonvanishing signal. The
leading contribution to Eq. (265) comes from the four
diagrams, one of which is shown in Fig. 35(c) [for rules
see Appendix A (Roslyak, Marx, and Mukamel, 2009a)].
The coherent part of the signal represented by the
interaction of two spontaneously generated quantum and
one classical modes is proportional to the number of pairs
of sites in the sample ∼NðN − 1Þ, which dominates the
other, incoherent, ∼N response for large N. Details of
the calculation of the correlation function (265) are presented
by Dorfman and Mukamel (2012b). We obtain for the

“bare” frequency-domain PCC rate RðBÞ
c ðωs;ω0

i;ωp;ω0
pÞ≡R

dt0sdt0ihT n̂sðt0s;ω0
sÞn̂iðt0i;ω0

iÞiTe−iðωsþω0
i−ω

0
pÞt0sþðωsþω0

i−ωpÞt0i ,

RðBÞ
c ðωs;ω0

i;ωp;ω0
pÞ

¼ NðN − 1Þ
�
2πℏ
V

�
4

× E�ðpÞðωpÞEðpÞðω0
pÞDðωsÞDðωp − ωsÞDðω0

iÞDðω0
p − ω0

iÞ
× χð2ÞLL−½−ðω0

p − ω0
iÞ;−ω0

i;ω
0
p�χð2Þ�LL−½−ωs;−ðωp − ωsÞ;ωp�;

ð266Þ
where EðpÞðωÞ≡ EðpÞðωÞβðpÞ is a classical field amplitude,
EðpÞðωÞ is the pump pulse envelope, and DðωÞ ¼ ω ~DðωÞ,
with ~DðωÞ ¼ Vω2=π2c3 the density of radiation modes. For

our level scheme [Fig. 35(b)] the nonlinear susceptibility χð2ÞLL−
[see Eq. (264)] is given by

χð2ÞLL−½−ðω0
p − ω0

iÞ;−ω0
i;ω

0
p�

¼ 1

2ℏ

μ�gfμfeμeg
ω0
p − ωgf þ iγgf

×
1

ðω0
p − ω0

i − ωeg þ iγegÞ
þ ðω0

i ↔ ω0
p − ω0

iÞ: ð267Þ

Equation (266) represents a six-mode ðωp;ωi;ωs;ω0
p;

ω0
i;ω

0
sÞ field-matter correlation function factorized into two

generalized susceptibilities each representing the interaction
of two quantum and one classical mode with a different
molecule. Because of two constraints ωp ¼ ωs þ ωi, ω0

p ¼
ω0
s þ ω0

i which originate from time translation invariance on
each of the two molecules that generate the nonlinear
response, Eq. (266) depends only on four field modes.
Each molecule creates a coherence in the field between states
with zero and one photon. By combining the susceptibilities
from a pair of molecules we obtain a photon occupation
number that can be detected. Thus, the detection process must
be described in the joint space of the two molecules and
involves the interference of four quantum pathways (two with
bra and two with ket) with different time orderings. Note that
this pathway information is not explicit in the Langevin
approach.
For comparison, if all three fields (signal, idler, and pump)

are classical, the number of material-field interactions is
reduced to three—one for each field. Then the leading
contribution to the field correlation function yields the semi-

classical nonlinear susceptibility χð2Þþ−−:

χð2Þþ−−½−ðω0
p − ω0

iÞ;−ω0
i;ω

0
p�

¼ 1

2ℏ2
hgjT VLGðω0

p − ω0
iÞVLGðω0

pÞV†
Ljgi

þ 1

ℏ2
hgjT VLG†ðω0

iÞVLGðω0
pÞV†

Ljgi

¼ 1

ℏ2

μ�gfμfeμeg
ωp − ωgf þ iγgf

�
1

ωp − ω0
i − ωeg þ iγeg

þ 1

ω0
i − ωeg − iγeg

�
þ ðω0

i ↔ ωp − ω0
iÞ; ð268Þ

where GðωÞ ¼ 1=ðω −H0−=ℏþ iγÞ is the retarded Liouville

Green’s function and γ is lifetime broadening. χð2ÞLL− possesses
a permutation symmetry with respect to s ↔ i (both have L
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index). In contrast the semiclassical calculation via χð2Þþþ− is
nonsymmetric with respect to s ↔ i (oneþ and one − index),
which results in a PCC rate that depends upon whether the
signal or idler detector clicks first (Shwartz et al., 2012).

2. Simulations of typical PDC signals

Figures 35(d)–35(k) compare both susceptibilities calcu-
lated for a typical KTP crystal represented by a degenerate
three-level system with parameters from Wu et al. (1986) and
D’auria et al. (2008). Figures 35(f), 35(h), and 35(j) show that
far from resonances (ωi ≠ ωeg, ωp ≠ ωgf) the semiclassical
and quantum susceptibilities coincide and depend weakly on
the frequencies ωp and ωi. This is the regime covered by the
semiclassical theory, where the susceptibility is assumed to be
a constant. Similar agreement between classical and quantum
susceptibilities can be observed if the pump is resonant with
two-photon transition ωp ≃ ωgf but the idler is off resonance
ωi ≠ ωeg [Figs. 35(g), 35(h), and 35(k)]. However, close to
resonance [Figs. 35(d) and 35(e)] the two susceptibilities are

very different. The semiclassical susceptibility χð2Þþ−− vanishes

at resonance, where the quantum susceptibility χð2ÞLL− reaches
its maximum.
To put the present ideas into a more practical perspective we

show in Fig. 36 the PCC rate for a monochromatic pump ωp

and mean signal detector frequency ω̄s. The quantum theory
yields one strong resonant peak at ω̄s ¼ ωp − ωeg and two
weak peaks at ωp ¼ ωgf and ω̄s ¼ ωeg if the idler detector is
resonant with the intermediate state jei: ω̄i ¼ ωeg [Fig. 36(a)].
However, if we tune the idler detector to a different frequency,
for instance ωeg − ω̄i ¼ 2 GHz, there is an additional peak at
ω̄s ¼ ωp − ω̄i [Fig. 36(b)]. Similarly, when the pump consists
of two monochromatic beams ωp ≠ ω0

p [Figs. 36(c) and
36(d)] the number of peaks are doubled compare to a single
monochromatic pump. Clearly, one can reproduce the exact
same peaks for ω0

p as for ωp.

3. Spectral diffusion

Spectral diffusion (SD) which results from the stochastic
modulation of frequencies can manifest itself either as discrete
random jumps of the emission frequency (Siyushev et al.,
2009; Santori et al., 2010; Walden-Newman, Sarpkaya, and
Strauf, 2012) or as a broadening of a hole burned in the
spectrum by a narrow-band pulse (Xie and Trautman, 1998;
Wagie and Geissinger, 2012). We focus on the latter case
assuming that the electronic states of molecule α ¼ a, b are
coupled to a harmonic bath described by the Hamiltonian
Ĥα

B ¼ P
kℏωkðâ†αk âαk þ 1=2Þ [see Fig. 38(b)]. The bath per-

turbs the energy of state ν. This is represented by the
Hamiltonian

Ĥα
ν ¼ ℏ−1hναjĤjναi ¼ ϵνα þ q̂να þ Ĥα

B; ð269Þ
where q̂ν is a collective bath coordinate

q̂να ¼ ℏ−1hναjĤSBjναi ¼
X
k

dνανα;kðâ†k þ âkÞ; ð270Þ

dmn;k represents bath-induced fluctuations of the transition
energies (m ¼ n) and the intermolecular coupling (m ≠ n).
We define the line-shape function

gαðtÞ≡ gναν0αðtÞ

¼
Z

dω
2π

C00
ναν

0
α
ðωÞ

ω2

×

�
coth

�
βℏω
2

�
ð1 − cosωtÞ þ i sinωt − iωt

�
;

ð271Þ
where the bath spectral density is given by

C00
ναν

0
α
ðωÞ ¼ 1

2

Z
∞

0

dteiωth½q̂ναðtÞ; q̂ν0αð0Þ�i; ð272Þ

β ¼ kBT with kB being the Boltzmann constant and T is the
ambient temperature. We use the overdamped Brownian
oscillator model for the spectral density, assuming a single
nuclear coordinate (να ¼ ν0α)

C00
ναναðωÞ ¼ 2λα

ωΛα

ω2 þ Λ2
α
; ð273Þ

where Λα is the fluctuation relaxation rate and λα is the
system-bath coupling strength. The corresponding line-shape
function then depends on two parameters: the reorganization
energy λα denoting the strength of the coupling to the bath and
the fluctuation relaxation rate Λα ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2λαkBT=ℏ

p
. In the high-

temperature limit kBT ≫ ℏΛα we have

gαðtÞ ¼
�
Δ2

α

Λ2
α
− i

λα
Λα

�
ðe−Λαt þ Λαt − 1Þ: ð274Þ

For a given magnitude of fluctuations Δα, α ¼ a, b the
FWHM of the absorption linewidth reads (Mukamel, 1995)

Γα ¼
2.355þ 1.76ðΛα=ΔαÞ

1þ 0.85ðΛα=ΔαÞ þ 0.88ðΛα=ΔαÞ2
Δα: ð275Þ

FIG. 36. Left column: Two-dimensional PCC rate (log scale in
arb. units) calculated using quantum theory Eq. (175) assuming a
single monochromatic pump with frequency ωp. (a) Idler detector
resonant with intermediate level ω̄i ¼ ωeg ¼ 282 THz, while
(b) ωeg − ω̄i ¼ 2 GHz. Right column: The same as the left but
for a pump made out of two monochromatic beams with
frequencies ωp − ω0

p ¼ 2 × 10−6ωp.
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The absorption and emission line-shape functions for a pair
of molecules obtained in the slow nuclear dynamics limit
Λα ≪ Δα are given by (Mukamel, 1995)

σAðωÞ ¼
X
α¼a;b

ð2πΔαÞ−1=2e−ðω−ω0
α−λαÞ2=2Δ2

α ; ð276Þ

σFðωÞ ¼
X
α¼a;b

ð2πΔαÞ−1=2e−ðω−ω0
αþλαÞ2=2Δ2

α ; ð277Þ

where 2λα is the Stokes shift and Δα ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2λαkBT=ℏ

p
is a

linewidth parameter. Together with the relaxation rate Λα [see
Eq. (274)] these parameters completely describe the SD model
and govern the evolution of the emission linewidth between
the initial time given by Eq. (276) [see Fig. 37(a)] and the long
time given by Eq. (277) [see Fig. 37(b)].
The corresponding four-point matter correlation function

may be obtained by the second-order cumulant expansion
(Mukamel, 1995)

Fαðt1; t2; t3; t4Þ ¼ jμαj4e−iωαðt1−t2þt3−t4ÞeΦαðt1;t2;t3;t4Þ; ð278Þ
where ωα ≡ ωeα − ωgα is the absorption frequency and
Φαðt1; t2; t3; t4Þ is the four-point line-shape function
Φαðt1; t2; t3; t4Þ ¼ −gαðt1 − t2Þ − gαðt3 − t4Þ þ gαðt1 − t3Þ−
gαðt2 − t3Þ þ gαðt2 − t4Þ − gαðt1 − t4Þ.
We focus on the SD in the “hole burning” limit (HBL)

which holds under two conditions: First, the dephasing is
much faster than the fluctuation time scale, i.e., t0k ≪ Λ−1

α ,
k ¼ 1, 2, 3, 4. Second, if excitation pulse duration σ−1p and the

inverse spectral ðσjωÞ−1, and temporal ðσjTÞ−1, j ¼ r, s gate
bandwidths are much shorter than the fluctuation time scales,
one may neglect the dynamics during the delay between
population evolution and its detection. This parameter regime
is relevant to crystals which store information in the form of
reversible notches that are created in their optical absorption
spectra at specific frequencies. Long storage times (Longdell
et al., 2005), high efficiencies (Hedges et al., 2010), and many
photon qubits in each crystal (Shahriar et al., 2002) can be
achieved in this limit. The HBL limit is natural for long-term
quantum memories where entanglement is achieved with
telecom photons, proving the possibility of quantum internet
(Clausen et al., 2011; Saglamyurek et al., 2011).
Time-and-frequency-resolved fluorescence is the simplest

way to observe SD. The molecular transition frequency is
coupled linearly to an overdamped Brownian oscillator that
represents the bath [see Fig. 38(b)]. This fluorescence signal
given by Eq. (284) is depicted as a series of the snapshot
spectra at different times for molecule a in Fig. 37(c). It shows
a time-dependent frequency redshift ~ωaðtÞ and time-
dependent spectral broadening given by ~σa0ðtÞ. Initially
~ωað0Þ ¼ ω0

a þ λa, whereas at long times ~ωað∞Þ ¼ ω0
a − λa,

where 2λα is the Stokes shift. The same for molecule b is
shown in Fig. 37(d). Because of the different reorganization
energies λa, λb and relaxation rates Λa, Λb the Stokes shift
dynamics and dispersion are different. Even when the
absorption frequencies are the same ωa ¼ ωb, the fluores-
cence can show a different profile due to SD. This affects
the distinguishability of the emitted photons as demon-
strated later.
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FIG. 37. Top row: (a) Absorption (276) and (b) fluorescence (277) line shapes vs displaced frequency Δω̄ ¼ ω − 1
2
ðωa þ ωbÞ.

Frequency dispersed time-resolved fluorescence (284) displayed as a snapshot spectra for molecule (c) (a) and (d) (b). Bottom row:
(e) PCC for different transition energies of molecules excited at ωp ¼ ω0

b þ λb, (f) PCC for different values of the SD time scale Λa and
Λb and fixed linewidth Γa, Γb according to Eq. (275), PCC for different frequency gate bandwidths at (g) fixed time gate bandwidth
σT ¼ 100 MHz and for (h) different time gate bandwidths at fixed frequency gate bandwidth σω ¼ 100 MHz. Molecules have distinct
SD time scales Λa ¼ 15 MHz, Λb ¼ 1 MHz, and ω0

b − ω0
a ¼ 1 MHz.
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J. Generation and entanglement control of photons produced
by two independent molecules by time-and-frequency-gated
photon coincidence counting

As discussed in Sec. II, entangled photons can be produced
by a large variety of χð2Þ processes. Alternatively, photons can
be entangled by simultaneous excitation of two remote mol-
ecules and mixing the spontaneously emitted photons on the
beam splitter. This entangled-photon generation scheme is
suitable, e.g., for spectroscopic studies of single molecules by
single photons discussed next. The manipulation of single-
photon interference by appropriate time-and-frequency gating
discussed next is presented in detail in Dorfman and Mukamel
(2014a). The generated entangled-photon pair can be used in
logical operations based on optical measurements that utilize
interference between indistinguishable photons.
We examine photon interference in the setup shown in

Fig. 38(a). A pair of photons is generated by two remote two-
level molecules a and b with ground gα and excited state eα,
α ¼ a, b. These photons then enter a beam splitter and are
subsequently registered by time-and-frequency-gated detec-
tors s and r. There are three possible outcomes: two photons
registered in detector s, two photons registered in r, or
coincidence where one photon is detected in each. The ratios
of these outcomes reflect the photon Bose statistics and
depend on their degree of indistinguishability. If the two
photons incident on the beam splitter are indistinguishable,
the PCC signal vanishes. This causes the Hong-Ou-Mandel
(HOM) dip when varying the position of the beam splitter
which causes delay T between the two photons. The normal-
ized PCC rate varies between 1 for completely distinguishable

photons (large T) and 0 when they are totally indistinguishable
(T ¼ 0). For classical fields and 50∶50 beam splitter the PCC
rate may not be lower than 1=2. We denote the photons as
indistinguishable (distinguishable) if the PCC rate is smaller
(larger) than 1=2.
PCC is typically measured by time-resolved detection

(Gerry and Knight, 2005; Glauber, 2007). Originally per-
formed with entangled photons generated by PDC (Hong, Ou,
and Mandel, 1987) the shape of the dip versus delay is usually
related to the two-photon state envelope which is governed by
an effective PDC Hamiltonian (Dorfman and Mukamel,
2012b). Bath effects can become important for remote
emitters, and have been introduced phenomenologically
(Lettow et al., 2010). We present a microscopic description
of PCC with bath fluctuations by formulating the signal in the
joint field-matter space measured by simultaneous time-and-
frequency-resolved detection. This complex measurement can
be achieved using a high-speed photodiode which converts a
fast optical signal into a fast electric current, fast oscilloscopes
to observe the waveform, wide bandwidth spectrum analyzers,
and other elements. Short pulse characterization using a
time-frequency map such as frequency-resolved optical gating
(FROG) (Trebino, 2000) and spectral phase interferometry for
direct-field reconstruction (SPIDER) (Dorrer et al., 1999) are
well established tools for ultrafast metrology (Wollenhaupt,
Assion, and Baumert, 2007; Walmsley and Dorrer, 2009).
Extending these techniques to a single-photon time-and-
frequency-resolved detection is challenging and may be
achieved if combined with on-chip tunable detectors
(Gustavsson et al., 2007) or upconversion processes (Gu
et al., 2010; Ma et al., 2011).

FIG. 38. Time-and-frequency-resolved measurement of PCC with spectral diffusion. (a) Schematic of the PCC experiment with two
indistinguishable source molecules, and (b) the two-level model of the molecule with SD used in our simulations. (c) Loop diagrams for
the PCC rate of emitted photons from two molecules (for diagram rules see Appendix A). The left and right branches of each diagram
represent interactions with ket and bra of the density matrix, respectively. Field-matter interactions with the pump pulses p1 and p2

(blue), spontaneously emitted s, s0, r, and r0 photons (red) and detectors (brown).
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1. PCC of single photons generated by two remote emitters

The time-and-frequency-gated PCC signal is described by
the two pairs of loop diagrams shown in Fig. 38(c). Each loop
represents one molecule (a or b) which undergoes four field-
matter interactions and each detector interacts twice with the
field. Figure 38(c) shows that after interacting with the pump
(with its ket) at time t2 molecule a evolves in the coherence
ρeaga during time interval t02. The second interaction of the
pump with the bra then brings the molecule into a population
state ρeaea which evolves during interval t1 until the first
interaction with spontaneous emission mode occurs with the
ket. The molecule then evolves into the coherence ρgaea during
t01 until the second bra interaction of spontaneous mode.
During population and coherence periods, the characteristic
time scale of the dynamics is governed by population
relaxation and dephasing, respectively.
The relevant single-particle information for molecule α is

given by the four-point dipole correlation function
Fαðt1; t2; t3; t4Þ ¼ hVgeðt1ÞV†

egðt2ÞVgeðt3ÞV†
egðt4Þiα, where V

and V† are the lowering and raising dipole transition oper-
ators, respectively. Diagrams i, ii (two upper diagrams), and
iii and iv (bottom diagrams) in Fig. 38(c) represent non-
interfering terms given by a product of two independent
fluorescence contributions of the individual molecules.
Diagrams ii represent an interference in the joint space of
the two molecules and involve the interference of eight
quantum pathways (four with the bra and four with the
ket) with different time orderings. Each molecule creates a
coherence in the field between states with zero and one photon
j0ih1j and j1ih0j. By combining the contributions from a pair
of molecules we obtain a photon population j1ih1j that can be
detected (Dorfman and Mukamel, 2012a, 2012b). For a pair of
identical molecules, the beam splitter destroys the pathway
information making the molecules indistinguishable and
giving rise to quantum interference.
The PCC signal (175) (Dorfman and Mukamel, 2014a) has

been calculated for the output fields E3 and E4 (i ¼ 3, s ¼ 4)
of the beam splitter [see Fig. 38(a)]. The fields in the output
3,4 and input 1,2 ports of the 50∶50 beam splitter are
related by

E3ðtÞ ¼
E1ðtÞ − iE2ðtþ TÞffiffiffi

2
p ; E4ðtÞ ¼

E2ðtÞ − iE1ðt − TÞffiffiffi
2

p ;

ð279Þ
where�cT is a small difference of path length in the two arms.
Taking into account that Eq. (175) should be modified to
include the beam splitter position and absorb it into the gating
spectrograms, the time-and-frequency-resolved PCC in this
case is given by

R34
c ðΓr;Γs;TÞ

¼ 1

ð2πÞ2
Z

∞

−∞
d2Γ0

rd2Γ0
s

× ½WðrÞ
D ðΓr;Γ0

r; 0ÞWðsÞ
D ðΓs;Γ0

s; 0ÞRðiÞ
B ðΓ0

r;Γ0
sÞ

þWðrÞ
D ðΓr;Γ0

r;−TÞWðsÞ
D ðΓs;Γ0

s; TÞRðiiÞ
B ðΓ0

r;Γ0
sÞ�

þ ðs ↔ r; T ↔ −TÞ: ð280Þ

Here Γ0
j ¼ ft0j;ω0

jg represents the set of parameters of the
matter plus field incident on the detector j ¼ r, s.
Equation (280) is given by the spectral and temporal overlaps

of the Wigner spectrograms of detectors WðsÞ
D , WðrÞ

D and bare

signal pathways RðiÞ
B and RðiiÞ

B given by

RðiÞ
B ðt0s;ω0

s; t0r;ω0
rÞ ¼

X
u;u0

X
v;v0

Z
∞

−∞
dτsdτre−iω

0
sτs−iω0

rτr

× hT Ê†
u0Rðt0s þ τs; rbÞ

× Ê†
v0Rðt0r þ τr; raÞÊvLðt0r; raÞ

× ÊuLðt0s; rbÞe−i=ℏ
R

∞
−∞

Ĥ−
0ðTÞdTi; ð281Þ

RðiiÞ
B ðt0s;ω0

s; t0r;ω0
rÞ ¼ −

X
u;u0

X
v;v0

Z
∞

−∞
dτsdτre−iω

0
sτs−iω0

rτr

× hT Ê†
u0Rðt0s þ τs; rbÞ

× Ê†
v0Rðt0r þ τr; raÞÊuLðt0s; raÞ

× ÊvLðt0r; rbÞe−ði=ℏÞ
R

∞
−∞

Ĥ−
0ðTÞdTi:

ð282Þ
Equations (281) and (282) contain all relevant field-matter
interactions. The modified expressions for the gating spectro-
grams that include delay T are given by Dorfman and
Mukamel (2014a).

2. Time-and-frequency-gated PCC

Under SD and HBL conditions the PCC signal (175) is
given by

R34
c ðΓr;Γs;TÞ
¼ R0Cr

aðΓrÞCs
bðΓsÞ

×

�
1 −

IraðΓr; t̄s;−TÞIsbðt̄r;Γs; TÞ
Cr
aðΓrÞCs

bðΓsÞ

× cos½UðΓr;Γs;TÞ�e− ~Γðt̄s−t̄rÞ
�

þ ða ↔ b; T ↔ −TÞ; ð283Þ
where expressions in the last line represent permutation of the
molecules a and b and Γj ¼ ft̄j; ω̄jg represents a set of gating
parameters for the detector j ¼ r, s. CαðΓ ¼ ft;ωgÞ is the
time-and-frequency-resolved fluorescence of molecule α ¼ a,
b corresponding to diagram i in Fig. 38(c):

Cj
αðt;ωÞ ¼ Cj

α0ðtÞe−ðωp−ω0
α−λaÞ2=2~σ2pα½ω− ~ωαðtÞ�2=2~σj2α ðtÞ; ð284Þ

where ω0
α ¼ ωα − λα is the mean absorption and fluorescence

frequency. IjαðΓ1; t2; τÞ and Ijαðt1;Γ2; τÞ with t1 < t2 is the
interference contribution α ¼ a, b, j ¼ r, s corresponding to
diagram ii in Fig. 38(c)

IjαðΓ1; t2; τÞ ¼ Ijα0ðt1; t2Þe−ω
2
ab=4σ

j2
T −ð1=4Þσjταðt1;t2Þ2τ2

×e−½ωp−ω
j
pαðt1;t2Þ�2=2σj2pαðt1;t2Þe−½ω1−ω

j
αðt1;t2Þ�2=2σj2α ðt1;t2Þ; ð285Þ

UðΓr;Γs;τÞ¼ωaðt̄s−t̄rÞþωr
τaðt̄r;t̄s;ω̄rÞτþðλa=ΛaÞf2½Faðt̄rÞ−

Faðt̄sÞ�þFaðt̄s−t̄rÞg−ða↔b;r↔sÞ, ~ΓðtÞ¼P
α¼a;bðΔ2

α=Λ2
αÞ×

FαðtÞ with FαðtÞ ¼ e−Λαt þ Λαt − 1, α ¼ a, b and all the
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remaining parameters are listed in Dorfman and Mukamel
(2014a). The contribution of Eq. (284) is represented by an
amplitude square coming from each molecule in the presence
of fluctuations. The interference term (285) generally cannot
be recast as a product of two amplitudes (Mukamel and Rahav,
2010). Equations (283)–(285) are simulated below using the
typical parameters of the two-photon interference experiments
(Santori et al., 2002; Coolen et al., 2008; Lettow et al., 2010;
Patel et al., 2010; Trebbia, Tamarat, and Lounis, 2010; Ates
et al., 2012; Bernien et al., 2012; Sanaka et al., 2012;
Sipahigil et al., 2012; Wolters et al., 2013).

3. Signatures of gating and spectral diffusion in the HOM dip

Photon indistinguishability depends on the molecular
transition frequencies. Figure 37(e) shows that for fixed
time-and-frequency gate bandwidths σjω and σjT , j ¼ r, s
the photons are distinguishabe as long as the transition energy
offset ω0

b − ω0
a is larger than the gate bandwidth and are

indistinguishable otherwise. The SD time scale is a key
parameter affecting the degree of indistinguishability. Using
Eq. (275) we fixed the absorption linewidth Γα and varied Λα

and Δα. The PCC signal (283) depicted in Fig. 37(f) shows
that, if the molecules have nearly degenerate transition energy
offset for slower fluctuations, the photons are indistinguish-
able. Increasing the SD rate of one of the molecules increases
the photon distinguishability when both time-and-frequency
gates are broader than the difference in transition frequencies.
We further illustrate the effect of frequency-and-time gating

on spectral diffusion. Figure 37(g) shows that if two molecules
have different SD time scales and the frequency gate band-
width is narrow the photons are rendered distinguishable and
the HOM dip is 0.6. By increasing the σω the photons become
indistinguishable and the HOM dip is 0.48 for σω ¼ 120 MHz
and 0.35 for σω ¼ 200 MHz. In all three cases we kept the
time gate fixed. Alternatively we changed the time gate
bandwidth while keeping the frequency gate fixed.
Figure 37(h) shows that initially indistinguishable photons
at σT ¼ 80 MHz with the HOM dip 0.675 become indistin-
guishable at σT ¼ 110 MHz with the HOM dip 0.45 and at
σT ¼ 150 MHz with the HOM dip 0.275. Thus, if the
presence of the bath erodes the HOM dip the manipulation
of the detection gating allows one to preserve the quantum
interference.

V. SUMMARY AND OUTLOOK

The term quantum spectroscopy broadly refers to spectros-
copy techniques that make use of the quantum nature of light.
Photon counting studies obviously belong to this category.
Studies that detect the signal field such as heterodyne
detection or fluorescence are obtained by expanding the
signals in powers of the field operators. These depend on
multipoint correlation functions of the incoming fields.
Spectroscopy is classical if all fields are in a coherent state
and the observable is given by normally ordered products of
field amplitudes. The appearance of field correlation functions
rather than products field amplitudes may arise from stochas-
tic classical fields (Asaka et al., 1984; Beach and Hartmann,
1984; Morita and Yajima, 1984; Turner et al., 2013) or may

reflect genuine quantum field effects. These should be
sorted out.
Another important aspect of quantum spectroscopy, which

we had touched on only briefly in Sec. IV.B, concerns
the nonclassical fluctuations of quantum light and their
exploitation as spectroscopic tools (Benatti, Floreanini, and
Marzolino, 2010; Giovannetti, Lloyd, and Maccone, 2011).
These may also lead to novel features in nonlinear optical
signals (López Carreño et al., 2015).
We now briefly survey the main features of quantum

spectroscopy. First, the unusual time and frequency windows
for homodyne, heterodyne, and fluorescence detection arising
due to the quantum nature of the light generation resulting in
the enhanced resolution of the signals not accessible by
classical light. Second, photon counting and interferometric
detection schemes constitute a class of multidimensional
signals that are based on detection and manipulation of single
photons and are parametrized by the emitted photons rather
than by the incoming fields. Third, the quantum nature of light
manifests in collective effects in many-body systems by
projecting entanglement of the field to matter. This allows
one to prepare and control higher excited states in molecular
aggregates, access dark multiparticle states, etc. Fourth, due to
the lack of nonlinear fluctuation-dissipation relations, quan-
tum light can manifest new combinations of field and
corresponding matter correlation functions not governed by
semiclassical response functions such as in parametric down-
conversion, sum- or difference-frequency generation, two-
photon-induced fluorescence, etc. Finally, pulse shaping
techniques that have been recently scaled down to single-
photon level provide an additional tool for multidimensional
measurements using delay scanning protocols not available
for classical laser experiments.
The potential merits of quantum spectroscopy may be

traced back to the strong time-frequency correlations inherent
to quantum light and the backaction of the interaction events
onto the quantum field’s state. Combination of the two effects
leads to the excitation of distinct wave packets, which can be
designed to enhance or suppress selected features of the
resulting optical signals.
We have described nonlinear optical signals in terms of

convolutions of multitime correlation functions of the field
and the matter. This approach naturally connects to the
established framework of quantum optics, where field corre-
lation functions are analyzed (Glauber, 1963) with nonlinear
laser spectroscopy, which investigates the information content
of matter correlation functions. As such, it provides a flexible
platform to explore quantum light interaction with complex
systems well beyond spectroscopic applications. This could
include coherent control with quantum light (Schlawin and
Buchleitner, 2015; Wu et al., 2015), or the manipulation of
ultracold atoms with light (Mekhov and Ritsch, 2012).
Entangled quantum states with higher photon numbers
(Shalm et al., 2013) promise access to the χð5Þ susceptibility
and its additional information content. The combination of
quantum light with strong coupling to intense fields in optical
cavities (Hutchison et al., 2012; Schwartz et al., 2013; Herrera
et al., 2014) may result in new coherent control techniques of
chemical reactions.
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APPENDIX A: DIAGRAM CONSTRUCTION

In leading (fourth-)order perturbation theory, the population
of a two-excitation state f is given by

pfðt;ΓÞ ¼
�
−
i
ℏ

�
4
Z

t

t0

dτ4

Z
τ4

t0

dτ3

Z
τ3

t0

dτ2

Z
τ2

t0

dτ1

× hPfðtÞHint;−ðτ4ÞHint;−ðτ3Þ
×Hint;−ðτ2ÞHint;−ðτ1Þϱðt0Þi; ðA1Þ

where PfðtÞ ¼ jfðtÞihfðtÞj is the projector onto the final state,
the interaction Hamiltonian Hint is as given in Eq. (7), and Γ
denotes the set of control parameters in the light field.

Equation (A1) contains 44 ¼ 256 terms, of which only very
few contribute to the signal. These contributions can be
conveniently found using a diagrammatic representation. Its
basic building blocks are shown in Fig. 39: The evolution of
both the bra and the ket sides of the density matrix in Eq. (10)
[hψ j and jψi in Eq. (17)] are represented by vertical blue lines,
and sample excitations (deexcitations) are represented by
arrows pointing toward (away from) the density matrix.

1. Loop diagrams

The following rules are used to construct the field and
matter correlation function from the diagrams (see Fig. 40)
(Marx, Harbola, and Mukamel, 2008):

(1) Time runs along the loop clockwise from bottom left
to bottom right.

(2) The left branch of the loop represents the ket, and the
right represents the bra.

(3) Each interaction with a field mode is represented by an
arrow line on either the right (R operators) or the left
(L operators).

(4) The field is marked by dressing the lines with arrows,
where an arrow pointing to the right (left) represents
the field annihilation (creation) operator EαðtÞ [E†

αðtÞ].
(5) Within the RWA, each interaction with the field

annihilates the photon EαðtÞ and is accompanied by
applying the operator V†

αðtÞ, which leads to excitation
of the state represented by the ket and deexcitation of
the state represented by the bra, respectively. Arrows
pointing inward (i.e., pointing to the right on the ket
and to the left on the bra) consequently cause
absorption of a photon by exciting the system, whereas
arrows pointing outward (i.e., pointing to the left on
the bra and to the right on the ket) represent deexci-
tation of the system by photon emission.

(6) The observation time t is fixed and is always the last.
As a convention, it is chosen to occur from the left.
This can always be achieved by a reflection of all
interactions through the center line between the ket
and the bra, which corresponds to taking the complex
conjugate of the original correlation function.

(7) The loop translates into an alternating product of
interactions (arrows) and periods of free evolutions
(vertical solid lines) along the loop.

FIG. 39. Diagram construction in a quantum electrodynamics
(QED) formulation: The vertical blue lines indicate the evolution
of the matter density matrix. An arrow pointing toward (away
from) it corresponds to a matter excitation V†ðτÞ [deexcitation
VðτÞ], which is accompanied by a photon annihilation EðτÞ
[creation E†ðτÞ]. In the Liouville space formulation, interactions
on the left side represent left superoperators (1), and interactions
on the right side represent right superoperators (2).

FIG. 40. Loop diagram construction in a QED formulation: Using the diagram rules given in the text, the diagram translates into the
Heisenberg picture expression (top) or the Schrödinger picture expression (bottom). The corresponding field correlation functions are
reordered as in the loop diagram.
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(8) Since the loop time goes clockwise along the loop,
periods of free evolution on the left branch amount
to propagating forward in real time with the
propagator given by the retarded Green’s function
G, whereas evolution on the right branch corre-
sponds to backward propagation (advanced Green’s
function G†).

(9) The frequency arguments of the various propagators
are cumulative, i.e., they are given by the sum of all
“earlier” interactions along the loop. Additionally, the
ground state frequency is added to all arguments of the
propagators.

(10) The Fourier transform of the time-domain propagators
adds an additional factor of ið−iÞ for each retarded
(advanced) propagator.

(11) The overall sign of the SNGF is given by ð−1ÞNR,
where NR stands for the number of R superoperators.

2. Ladder diagrams

The same rules may be applied to evaluate ladder diagrams,
with the exception of rule 1, which reads (see Fig. 41)

(1) Time runs from bottom to top.

APPENDIX B: ANALYTICAL EXPRESSIONS FOR THE
SCHMIDT DECOMPOSITION

Here we point out how the Schmidt decomposition (34)
may be carried out analytically. To this end, we approximate
the phase-matching function by a Gaussian,

sinc

�
Δkðωa;ωbÞL

2

�
≈ exp

	
−γ

�
Δkðωa;ωbÞL

�
2
�
; ðB1Þ

where the factor γ ¼ 0.048 22 is chosen, such that the
Gaussian reproduces the central peak of the sinc function.
In combination with the Gaussian pump envelope (53), this
enables us to use the relation for the decomposition of a
bipartite Gaussian (Grice, U’Ren, and Walmsley, 2001;
U’Ren, Banaszek, and Walmsley, 2003)

−
iα

ℏ
ffiffiffiffiffiffiffiffiffiffi
2πσ2p

q exp ½−ax2 − 2bxy − cy2�

¼
X∞
n¼0

rnHnðk1xÞH�
nðk2yÞ; ðB2Þ

where we defined the Hermite functions Hn. Here we
have a ¼ 1=ð2σ2pÞ þ γT2

1, b ¼ 1=ð2σ2pÞ þ γT1T2, and c ¼
1=ð2σ2pÞ þ γT2

2. The Hermite functions are then given by

HnðkixÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kffiffiffi
π

p
2nn!

s
eið3π=8Þ−ðkixÞ2hnðkixÞ; ðB3Þ

with the Hermite polynomials hn, and we further defined the
parameters

μ ¼ −
ffiffiffiffiffi
ac

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ac − b2

p

b
; ðB4Þ

and

rn ¼
α

ℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ μ2

4acσ2p

s
μn; ðB5Þ

k1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2að1 − μ2Þ
1þ μ2

s
; ðB6Þ

k2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cð1 − μ2Þ
1þ μ2

s
: ðB7Þ

APPENDIX C: GREEN’S FUNCTIONS OF MATTER

In the case of the model system described in Sec. II.J.1, the
superoperator correlation functions in Eqs. (102)–(104) may
be rewritten as sum-over-state expressions,

pf;ðIÞðt;ΓÞ ¼
�
−
i
ℏ

�
4
Z

∞

0

dt4

Z
∞

0

dt3

Z
∞

0

dt2

Z
∞

0

dt1

×
X
e;e0

Gffðt4Þμe0fGfe0 ðt3Þμge0Gfgðt2ÞμefGegðt1Þμge

× hE†ðt − t4 − t3ÞE†ðt − t4ÞEðt − t4 − t3 − t2Þ
× Eðt − t4 − t3 − t2 − t1Þi; ðC1Þ

FIG. 41. Ladder diagram construction in a QED formulation: Using the diagram rules given in the text, the diagram translates into the
Heisenberg picture expression (top) or the Schrödinger picture expression (bottom). The corresponding field correlation functions are
reordered as in the loop diagram.
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pf;ðIIÞðt;ΓÞ ¼
�
−
i
ℏ

�
4
Z

∞

0

dt4

Z
∞

0

dt3

Z
∞

0

dt2

Z
∞

0

dt1

×
X
e;e0;e00

Gffðt4Þμe00fGfe00 ðt3Þμe00fGee0;e00e00 ðt2Þμge0Gegðt1Þμge

× hE†ðt − t4 − t3ÞE†ðt − t4ÞEðt − t4 − t3 − t2ÞEðt − t4 − t3 − t2 − t1Þi;
ðC2Þ

pf;ðIIIÞðt;ΓÞ ¼
�
−
i
ℏ

�
4
Z

∞

0

dt4

Z
∞

0

dt3

Z
∞

0

dt2

Z
∞

0

dt1

×
X
e;e0;e00

Gffðt4Þμe00fGe00fðt3Þμe00fGee0;e00e000 ðt2Þμge0Gegðt1Þμge

× hE†ðt − t4 − t3ÞE†ðt − t4ÞEðt − t4 − t3 − t2ÞEðt − t4 − t3 − t2 − t1Þi:
ðC3Þ

Here we have changed to the time delay variables t1;…; t4. The various propagators are given by

GegðtÞ ¼ ΘðtÞe−iðωeg−iγegÞt; ðC4Þ
GfeðtÞ ¼ ΘðtÞe−iðωfe−iγfeÞt; ðC5Þ
GfgðtÞ ¼ ΘðtÞe−iðωfg−iγfgÞt; ðC6Þ

and the single-excitation propagator

Gee0;e00e000 ðtÞ ¼ ΘðtÞ
	
ð1 − δee0 Þδee00δe0e000e−iðωee0−iγee0 Þt þ δee0δe00e000 exp ½Kt�ee00

�
; ðC7Þ

with the transport matrix

K ¼ 2π

T0

�−1=20 1

1=20 −1

�
; ðC8Þ

which transfers the single excited-state populations to the equilibrium state (with pe1 ¼ 5% and pe2 ¼ 95%) with the rate 2π=T0.

In the frequency domain, the sum-over-state expressions read

pf;ðIÞðt;ΓÞ ¼
�
−
i
ℏ

�
4
Z

dωa

2π

Z
dωb

2π

Z
dω0

a

2π

Z
dω0

b

2π
hE†ðω0

aÞE†ðω0
bÞEðωbÞEðωaÞieiðω0

aþω0
b−ωb−ωaÞt

×
X
e;e0

Gffðωa þ ωb − ω0
a − ω0

bÞμe0fGfe0 ðωa þ ωb − ω0
aÞμge0Gfgðωa þ ωbÞμefGegðωaÞμge; ðC9Þ
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−
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ℏ
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Z

dωa

2π
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dωb

2π
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dω0

a

2π

Z
dω0

b

2π
hE†ðω0

aÞE†ðω0
bÞEðωbÞEðωaÞieiðω0

aþω0
b−ωb−ωaÞt

×
X
e;e0;e00

Gffðωa þ ωb − ω0
a − ω0

bÞμe00fGfe00 ðωa þ ωb − ω0
aÞμe00fGee0;e00e00 ðωa − ω0

aÞμge0GegðωaÞμge; ðC10Þ

pf;ðIIIÞðt;ΓÞ ¼
�
−
i
ℏ

�
4
Z

dωa

2π

Z
dωb

2π

Z
dω0

a

2π

Z
dω0

b

2π
hE†ðω0

aÞE†ðω0
bÞEðωbÞEðωaÞieiðω0

aþω0
b−ωb−ωaÞt

×
X
e;e0;e00

Gffðωa þ ωb − ω0
a − ω0

bÞμe00fGe00fðωa − ω0
a − ω0

bÞμe00fGee0;e00e000 ðωa − ω0
aÞμge0GegðωaÞμge: ðC11Þ

APPENDIX D: INTENSITY MEASUREMENTS: TPA VERSUS RAMAN

Expanding the frequency domain signal (137)–(140) (Roslyak and Mukamel, 2009a) in eigenstates we obtain

S1;ðIÞðω;ΓÞ ¼
2

ℏ4
ℑ
Z

dωa

2π

Z
dωsum

2π
hE†ðωsum − ωÞE†ðωÞEðωsum − ωaÞEðωaÞi

×
X
e;e0;f

μge
ωa − ωe þ iγe

μef
ωsum − ωf þ iγf

μfe0

ωsum − ω − ωe0 − iγe0
μe0g; ðD1Þ
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S1;ðIIÞðω;ΓÞ ¼
2

ℏ4
ℑ
Z

dωa

2π

Z
dωsum

2π
hE†ðωÞE†ðωsum − ωÞEðωsum − ωaÞEðωaÞi

×
X
e;e0;f

μge
ωa − ωe þ iγe

μef
ωsum − ωf þ iγf

μfe0

ω − ωe0 þ iγe0
μe0g; ðD2Þ

S1;ðIIIÞðω;ΓÞ ¼
2

ℏ4
ℑ
Z

dωa

2π

Z
dωb

2π
hE†ðωa þ ωb − ωÞEðωbÞE†ðωÞEðωaÞi

×
X
e;e0;g0

μge
ωa − ωe þ iγe

μeg0
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μg0e0

ωa þ ωb − ω − ωe0 − iγe
μe0g;

ðD3Þ
S1;ðIVÞðω;ΓÞ ¼

2

ℏ4
ℑ
Z

dωa

2π

Z
dωb

2π
hE†ðωÞEðωbÞE†ðωa þ ωb − ωÞEðωaÞi

×
X
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μge
ωa − ωe þ iγe

μeg0

ω − ωb − ωg0 þ iγg

μg0e0

ω − ωe0 þ iγe
μe0g: ðD4Þ

Using the definitions of transition operators (141)–(145) we
recast the signal as

Z
dω
2π

S1;ðIÞðω;ΓÞ¼ℑ
Z

dωsum

π

X
f

hTð2Þ†
fg ðωsumÞTð2Þ

fg ðωsumÞi
ωsum−ωfþ iγf

;

ðD5Þ

Z
dω
2π

S1;ðIIÞðω;ΓÞ ¼ ℑ
Z

dω
π

X
e

hTð1Þ†
eg ðωÞTð3Þ

eg ðωÞi
ω − ωe þ iγe

;

ðD6Þ
Z

dω
2π

S1;ðIIIÞðω;ΓÞ ¼ ℑ
Z

dω−

π

X
g0

hTð2Þ†
g0g ðω−ÞTð2Þ

g0gðω−Þi
ω− − ωg0 − iγg

;

ðD7Þ
Z

dω
2π

S1;ðIVÞðω;ΓÞ¼ℑ
Z

dω
π

X
e

hTð1Þ†
eg ðωÞT 0ð3Þ

eg ðωÞi
ω−ωeþ iγe

: ðD8Þ

APPENDIX E: TIME-AND-FREQUENCY GATING

1. Simultaneous time-and-frequency gating

To a good approximation we can represent an ideal detector
by a two-level atom that is initially in the ground state b and is
promoted to the excited state a by the absorption of a photon
[see Fig. 21(a)]. The detection of a photon brings the field
from its initial state ψ i to a final state ψf. The probability
amplitude for photon absorption at time t can be calculated in
first-order perturbation theory, which yields (Glauber, 2007)

hψfjEðtÞjψ ii · hajdjbi; ðE1Þ

where d is the dipole moment of the atom andEðtÞ ¼ E†ðtÞ þ
EðtÞ is the electric field operator (we omit the spatial
dependence). Clearly, only the annihilation part of the electric

field contributes to the photon absorption process. The
transition probability to find the field in state ψf at time t
is given by the modulus square of the transition amplitudeX
ψf

jhψfjEðtÞjψ iij2 ¼ hψ ijE†ðtÞ
X
ψf

jψfihψfjEðtÞjψ ii

¼ hψ ijE†ðtÞEðtÞjψ ii: ðE2Þ

Since the initial state of the field ψ i is rarely known with
certainty, we must trace over all possible initial states as
determined by a density operator ρ. Thus, the output of the
idealized detector is more generally given by tr½ρE†ðtÞEðtÞ�.
Simultaneous time-and-frequency-resolved measurement

must involve a frequency (spectral) gate combined with a
time gate—a shutter that opens up for a very short interval of
time. The combined detector with input located at rG is
represented by a time gate Ft centered at t̄ followed by a
frequency gate Ff centered at ω̄ (Stolz, 1994). First the time
gate transforms the electric field EðrG; tÞ ¼

P
sÊsðrG; tÞ with

ÊsðrG; tÞ ¼ EðrG;ωsÞe−iωst as follows:

EðtÞðt̄; rG; tÞ ¼ Ftðt; t̄ÞEðrG; tÞ: ðE3Þ

Then the frequency gate is applied EðtfÞðt̄; ω̄; rG;ωÞ ¼
Ffðω; ω̄ÞEðtÞðt̄; rG;ωÞ to obtain the time-and-frequency-gated
field. We assume that the time gate is applied first. Therefore,
the combined detected field at the position rD can be written as

EðtfÞðt̄; ω̄; rD; tÞ ¼
Z

∞

−∞
dt0Ffðt − t0; ω̄ÞFtðt0; t̄ÞEðrG; t0Þ;

ðE4Þ

where EðtÞ is the electric field operator (8) in the Heisenberg
picture. Similarly, one can apply the frequency gate first and
obtain the frequency-and-time-gated field EðftÞ,

EðftÞðt̄; ω̄; rD; tÞ ¼
Z

∞

−∞
dt0Ftðt; t̄ÞFfðt − t0; ω̄ÞEðrG; t0Þ:

ðE5Þ
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The following discussion is based on Eq. (E4). Equation (E5)
can be handled similarly.
For Gaussian gates

Ftðt0; tÞ ¼ e−ð1=2Þσ2Tðt0−tÞ2 ; Ffðω0;ωÞ ¼ e−ðω0−ωÞ2=4σ2ω ;

ðE6Þ

the detector time domain and Wigner spectrograms are given
by

Dðt;ω; t0; τÞ ¼ σωffiffiffiffiffi
2π

p e−ð1=2Þσ2T ðt0−tÞ2−ð1=2Þ ~σ2ωτ2−½σ2T ðt0−tÞþiω�τ;

ðE7Þ

WDðt;ω; t0;ω0Þ ¼ NDe−ð1=2Þ ~σ
2
T ðt0−tÞ2−ðω0−ωÞ2=2~σ2ω−iAðω0−ωÞðt0−tÞ;

ðE8Þ

where

~σ2ω ¼ σ2T þ σ2ω; ~σ2T ¼ σ2T þ 1

σ−2ω þ σ−2T
;

ND ¼ 1

σT ½σ2ω þ σ2T �1=2
; A ¼ σ2T

σ2T þ σ2ω
: ðE9Þ

Note that σT and σω can be controlled independently, but the
actual time and frequency resolution is controlled by ~σT and
~σω, respectively, which always satisfy Fourier uncertainty
~σω= ~σT > 1. For Lorentzian gates

Ftðt0; tÞ ¼ θðt − t0Þe−σT ðt−t0Þ; Ffðω0;ωÞ ¼ i
ω0 − ωþ iσω

;

ðE10Þ

the detector time domain and Wigner spectrograms are
given by

Dðt;ω; t0; τÞ ¼ i
2σω

θðτÞθðt0 − tÞe−ðiωþσωþσTÞτ−2σTðt0−tÞ;

ðE11Þ

WDðt;ω; t0;ω0Þ ¼ −
1

2σω
θðt − t0Þ e−2σTðt0−tÞ

ω0 − ωþ iðσT þ σωÞ
:

ðE12Þ

The gated signal is given by

nt̄;ω̄ ¼
Z

∞

−∞
dt
X
s;s0

hÊðtfÞ†
sR ðt̄; ω̄; rD; tÞÊðtfÞ

s0L ðt̄; ω̄; rD; tÞi; ðE13Þ

where the angular brackets denote h� � �i≡ Tr½ρðtÞ � � ��. The
density operator ρðtÞ is defined in the joint field-matter space
of the entire system. Note that Eq. (E13) represents the
observable signal, which is always positive since it can be
recast as a modulus square of an amplitude [Eq. (E2)]. For
clarity we hereafter omit the position dependence in the fields
assuming that propagation between rG and rD is included in
the spectral gate function.

2. The bare signal

The bare signal assumes infinite spectral and temporal
resolution. It is unphysical but carries all necessary informa-
tion for calculating the photon counting measurement. It is
given by the closed path time-loop diagram shown in Fig. 21
(Harbola and Mukamel, 2008). We assume an arbitrary field-
matter evolution starting from the matter ground state g that
promotes the system up to some excited state. The system then
emits a photon with frequency ωs that leaves the matter in the
state e. This photon is later absorbed by the detector.
In the absence of dissipation (unitary evolution) the matter

correlation function can be further factorized into a product of
two amplitudes that correspond to the unitary evolution of the
bra and ket. This transition amplitude can be recast in Hilbert
space without using superoperators and is given by

TegðtÞ ¼ −
i
ℏ

X
s

2πℏωs

Ω

Z
t

−∞
dt01e

−iωsðt−t01Þ−iωegt

× heðtÞjVðt01ÞT exp

�
−
i
ℏ

Z
t0
1

−∞
H0ðTÞdT

�
jgi. ðE14Þ

This gives for the bare Wigner spectrogram

nðt0;ω0Þ ¼
X
e

Z
∞

0

dτe−iω
0τ

× Tegðt0 − τ=2ÞT�
egðt0 þ τ=2Þ: ðE15Þ

3. Spectrogram-overlap representation for detected signal

In the standard theory (Stolz, 1994), the detected signal is
given by a convolution of the spectrograms of the detector and
bare signal. The detector spectrogram is an ordinary function
of the gating parameters whereas the bare signal is related to
the field prior to detection. We now show that when the
process is described in the joint matter plus field space the
signal can be brought to the same form, except that now
the bare signal is given by a correlation function of matter that
further includes a sum over the detected modes. We denote
this as the spectrogram-overlap (SO) representation of the
signal. Alternatively one can introduce a spectrogram-
superoperator-overlap representation where field modes that
interact with the detector are included in the detector spectro-
gram, which becomes a superoperator in the field space. Details
of this representation are presented by Dorfman and Mukamel
(2012a). Next we present the signals in the time domain, which
can be directly read off the diagram [Fig. 21(b)]. We then recast
them using Wigner spectrograms, which simultaneously depict
temporal and spectral profiles of the signal. We now define the
detector Wigner spectrogram

WDðt̄; ω̄; t0;ω0Þ

¼
Z

∞

−∞
dτ

Z
∞

−∞

dω
2π

eiðω0−ωÞτ

× jFfðω; ω̄Þj2F�
t ðt0 þ τ=2; t̄ÞFtðt0 − τ=2; t̄Þ; ðE16Þ

if the spectral gate applied first, using Eq. (E5). The detector
spectrogram is alternatively given by
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WDðt̄; ω̄; t0;ωÞ

¼
Z

∞

−∞
dτeiω

0τ
Z

∞

−∞
dt

× jFtðt; t̄Þj2F�
fðt − t0 − τ=2; ω̄ÞFfðt − t0 þ τ=2; ω̄Þ:

ðE17Þ

Combining Eqs. (E4)–(E16) we find that the gated signal is
given by the temporal overlap of the bare signal and detector
Wigner spectrogram

nt̄;ω̄ ¼
Z

∞

−∞
dt0

dω0

2π
WDðt̄; ω̄; t0;ω0Þnðt0;ω0Þ: ðE18Þ

Equation (165) can be alternatively recast in terms of
Wigner spectrograms

n̂t;ω ¼
Z

dt0
Z

dω0

2π
WDðt;ω; t0;ω0Þn̂ðt0;ω0Þ; ðE19Þ

where WDðt;ω; t0;ω0Þ is a detector Wigner spectrogram given
by

WDðt;ω; t0;ω0Þ ¼
Z

dτDðt;ω; t0; τÞeiω0τ ðE20Þ

and the Wigner spectrogram for the bare photon number
operator is given by

n̂ðt0;ω0Þ ¼
Z

dτe−iω
0τn̂ðt0; τÞ: ðE21Þ

This is the conventional form (Stolz, 1994) introduced
originally for the field space alone. Equation (E15) explicitly
contains the multiple pairs of radiation modes s and s0 that
can be revealed only in the joint field plus matter space.
Eventually this takes into account all the field-matter inter-
actions that lead to the emission of the detected field modes.
All parameters of Ff and Ft can be freely varied. The
spectrogram will always satisfy the Fourier uncertainty
ΔtΔω > 1.
Together with the gated spectrogram (E16) the bare signal

(E15) represents the time-and-frequency-resolved-gated sig-
nal. Note that in the presence of a bath, the signal (E15) is no
longer given by a product of two amplitudes. T̂egðtÞ is then an
operator in the space of the bath degrees of freedom.
Therefore, one has to replace the product of amplitudes in
Eq. (E15) by hT̂egðt0 − τ=2ÞT̂�

egðt0 þ τ=2Þi, where h� � �i cor-
responds to averaging over the bath degrees of freedom. The
convolution of two operators T̂eg reveals the multiple path-
ways between these initial and final states of matter that allow
one to observe them through the simultaneous time and
frequency resolution.
We now consider two limiting cases. In the absence of a

frequency gate, then Ffðω; ω̄Þ ¼ 1 we get WDðω̄; t̄; t; τÞ ¼
δðτÞF�

t ðtþ τ=2; t̄ÞFtðt − τ=2; t̄Þ. For the narrow time gate
jFtðt; t̄Þj2 ¼ δðt − t̄Þ we then obtain the time-resolved
measurement

nt̄ ¼
X
e

jTegðt̄Þj2: ðE22Þ

In the opposite limit, where there is no time gate,
i.e., Ftðt; t̄Þ ¼ 1, and the frequency gate is very narrow,
such that Ffðt; ω̄Þ ¼ ð ffiffiffi

γ
p

=πÞe−iω̄t−γtθðtÞ at γ → 0, then
WDðω̄; t̄; t; τÞ ¼ e−iω̄τ. In this case we obtain the frequency-
resolved measurement

nω̄ ¼
X
e

jTegðω̄Þj2; ðE23Þ

where TegðωÞ ¼
R
∞
−∞ dteiωtTegðtÞ. Equations (E22) and (E23)

indicate that if the measurement is either purely time or purely
frequency resolved, the signal can be expressed in terms of the
modulus square of a transition amplitude. Interference can
then occur only within Teg in Hilbert space but not between
the two amplitudes. Simultaneous time and frequency gating
also involves interference between the two amplitudes; the
pathway is in the joint ket plus bra density matrix space. In the
presence of a bath, the signal can be written as a correlation
function in the space of bath coordinates hT̂�

egðt̄ÞT̂egðt̄Þi for
Eq. (E22) and hT̂�

egðω̄ÞT̂egðω̄Þi for Eq. (E23).

4. Multiple detections

The present formalism is modular and may be easily
extended to any number of detection events. To that end it
is more convenient to use the time domain, rather than Wigner
representation. For coincidence counting of two photons
measured by a first detector with parameters ω̄i; t̄i followed
by a second detector characterized by ω̄s; t̄s the time-and-
frequency-resolved measurement in SO representation is
given by

Sðt̄s; ω̄s; t̄i; ω̄iÞ

¼
Z

∞

−∞
dt0sdτs

Z
∞

−∞
dt0idτi

×DðsÞðt̄s; ω̄s; t0s; τsÞDðiÞðt̄i; ω̄i; t0i; τ
0
iÞBðt0s; τs; t0i; τ0iÞ;

ðE24Þ

where the detector spectrogram for mode ν ¼ i, s reads

Dðt̄ν; ω̄ν; t0ν; τνÞ

¼
Z

∞

−∞

dων

2π
e−iωντν

× jFfðων; ω̄νÞj2F�
t ðt0ν þ τν=2; t̄νÞFtðt0ν − τν=2; t̄νÞ:

ðE25Þ

The bare signal is given by the loop diagram in Fig. 21(c)
which reads

Bðt0s; τs; t0i; τiÞ
¼ −

X
e

Tegðt0s − τs=2; t0i − τi=2ÞT�
egðt0s þ τs=2; t0i þ τi=2Þ:

ðE26Þ
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The transition amplitude for the ket reads

Tegðts; tiÞ ¼
�
−
i
ℏ

�
2
Z

ts

−∞
dt01

Z
ti

−∞
dt02e

−iωegts

× ⟪eðtsÞgjV̂Lðt01ÞV̂Lðt02Þ

× T exp

�
−
i
ℏ

Z
max½t0

1
;t0
2
�

−∞
ĤL

0ðTÞdT
�
jgg⟫;

ðE27Þ

and for the bra

T�
egðts; tiÞ ¼

�
i
ℏ

�
2
Z

ts

−∞
dt1

Z
ti

−∞
dt2eiωegts

× ⟪ggjV̂†
Rðt1ÞV̂†

Rðt2Þ

× T exp

�
i
ℏ

Z
max½t1;t2�

−∞
ĤR

0ðTÞdT
�
jeðtsÞg⟫:

ðE28Þ
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