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Differently from passive Brownian particles, active particles, also known as self-propelled Brownian
particles or microswimmers and nanoswimmers, are capable of taking up energy from their
environment and converting it into directed motion. Because of this constant flow of energy, their
behavior can be explained and understood only within the framework of nonequilibrium physics.
In the biological realm, many cells perform directed motion, for example, as a way to browse for
nutrients or to avoid toxins. Inspired by these motile microorganisms, researchers have been
developing artificial particles that feature similar swimming behaviors based on different mecha-
nisms. These man-made micromachines and nanomachines hold a great potential as autonomous
agents for health care, sustainability, and security applications. With a focus on the basic physical
features of the interactions of self-propelled Brownian particles with a crowded and complex
environment, this comprehensive review will provide a guided tour through its basic principles, the
development of artificial self-propelling microparticles and nanoparticles, and their application to the
study of nonequilibrium phenomena, as well as the open challenges that the field is currently facing.
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I. INTRODUCTION

Active matter systems are able to take energy from their
environment and drive themselves far from equilibrium
(Ramaswamy, 2010). Thanks to this property, they feature
a series of novel behaviors that are not attainable by matter at
thermal equilibrium, including, for example, swarming and
the emergence of other collective properties (Schweitzer,
2007). Their study provides great hope to uncover new
physics and, simultaneously, to lead to the development of
novel strategies for designing smart devices and materials.
In recent years, a significant and growing effort has been
devoted to advancing this field and to explore its applications
in a diverse set of disciplines such as statistical physics
(Ramaswamy, 2010), biology (Viswanathan et al., 2011),
robotics (Brambilla et al., 2013), social transport (Helbing,
2001), soft matter (Marchetti et al., 2013), and biomedicine
(Wang and Gao, 2012).

An important example of active matter is constituted by
natural and artificial objects capable of self-propulsion. Self-
propelled particles were originally studied to model the swarm
behavior of animals at the macroscale. Reynolds (1987)
introduced a “Boids model” to simulate the aggregate motion
of flocks of birds, herds of land animals, and schools of fish
within computer graphics applications. Vicsek et al. (1995)
then introduced his namesake model as a special case. In the
Vicsek model, a swarm is modeled by a collection of self-
propelling particles that move with a constant speed but tend
to align with the average direction of motion of the particles in
their local neighborhood (Czirók and Vicsek, 2000; Chaté,
Ginelli, Grégoire, Peruani, and Raynaud, 2008). Swarming
systems give rise to emergent behaviors, which occur at many
different scales; furthermore, some of these behaviors are
turning out to be robust and universal, e.g., they are inde-
pendent of the type of animals constituting the swarm (Buhl
et al., 2006). It has in fact become a challenge for theoretical
physics to find minimal statistical models that capture these
features (Toner, Tu, and Ramaswamy, 2005; Li, Lukeman, and
Edelstein-Keshet, 2008; Bertin, Droz, and Grégoire, 2009).
Self-propelled Brownian particles, in particular, have come

under the spotlight of the physical and biophysical research
communities. These active particles are biological or man-
made microscopic and nanoscopic objects that can propel
themselves by taking up energy from their environment and
converting it into directed motion (Ebbens and Howse, 2010).
On the one hand, self-propulsion is a common feature in
microorganisms (Lauga and Powers, 2009; Cates, 2012; Poon,
2013) and allows for a more efficient exploration of the
environment when looking for nutrients or running away from
toxic substances (Viswanathan et al., 2011). A paradigmatic
example is the swimming behavior of bacteria such as
Escherichia coli (Berg, 2004). On the other hand, tremendous
progress has recently been made toward the fabrication of
artificial microswimmers and nanoswimmers that can self-
propel based on different propulsion mechanisms. Some
characteristic examples of artificial self-propelled Brownian
particles are provided in Fig. 1 and Table I.
While the motion of passive Brownian particles is driven by

equilibrium thermal fluctuations due to random collisions
with the surrounding fluid molecules (Babič, Schmitt, and
Bechinger, 2005), self-propelled Brownian particles exhibit an
interplay between random fluctuations and active swimming
that drives them into a far-from-equilibrium state (Erdmann
et al., 2000; Schweitzer, 2007; Hänggi and Marchesoni, 2009;
Hauser and Schimansky-Geier, 2015). Thus, their behavior
can be explained and understood only within the framework of
nonequilibrium physics (Cates, 2012) for which they provide
ideal model systems.
From a more applied perspective, active particles provide

great hope to address some challenges that our society is
currently facing—in particular, personalized health care,
environmental sustainability, and security (Nelson,
Kaliakatsos, and Abbott, 2010; Wang and Gao, 2012; Patra
et al., 2013; Abdelmohsen et al., 2014; Gao and Wang, 2014;
Ebbens, 2016). These potential applications can be built
around the core functionalities of self-propelled Brownian
particles, i.e., transport, sensing, and manipulation. In fact,
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these micromachines and nanomachines hold the promise of
performing key tasks in an autonomous, targeted, and selec-
tive way. The possibility of designing, using, and controlling
microswimmers and nanoswimmers in realistic settings of
operation is tantalizing as a way to localize, pick up, and
deliver nanoscopic cargoes in several applications—from the
targeted delivery of drugs, biomarkers, or contrast agents in
health care applications (Nelson, Kaliakatsos, and Abbott,
2010; Wang and Gao, 2012; Patra et al., 2013; Abdelmohsen
et al., 2014) to the autonomous depollution of water and soils
contaminated because of bad waste management, climate
changes, or chemical terroristic attacks in sustainability and
security applications (Gao and Wang, 2014).
The field of active matter is now confronted with various

open challenges that will keep researchers busy for decades to
come. First, there is a need to understand how living and
inanimate active matter systems develop social and (possibly)
tunable collective behaviors that are not attainable by their
counterparts at thermal equilibrium. Then, there is a need to
understand the dynamics of active particles in real-life
environments (e.g., in living tissues and porous soils), where
randomness, patchiness, and crowding can either limit or
enhance how biological and artificial microswimmers perform
a given task, such as finding nutrients or delivering a nano-
scopic cargo. Finally, there is still a strong need to effectively
scale down to the nanoscale our current understanding of
active matter systems.
With this review, we provide a guided tour through the basic

principles of self-propulsion at the microscale and nanoscale,
the development of artificial self-propelling microparticles

and nanoparticles, and their application to the study of far-
from-equilibrium phenomena, as well as through the open
challenges that the field is now facing.

II. NONINTERACTING ACTIVE PARTICLES
IN HOMOGENOUS ENVIRONMENTS

Before proceeding to analyze the behavior of active
particles in crowded and complex environments, we set the
stage by considering the simpler (and more fundamental) case
of individual active particles in homogeneous environments,
i.e., without obstacles or other particles. We first introduce a
simple model of an active Brownian particle,1 which will
permit us to understand the main differences between passive
and active Brownian motion (Sec. II.A) and serve as a starting
point to discuss the basic mathematical models for active
motion (Sec. II.B). We then introduce the concepts of effective
diffusion coefficient and effective temperature for self-
propelled Brownian particles, as well as their limitations,
i.e., differences between systems at equilibrium at a higher
temperature and systems out of equilibrium (Sec. II.C). We
then briefly review biological microswimmers (Sec. II.D).
Finally, we conclude with an overview of experimental
achievements connected to the realization of artificial micro-
swimmers and nanoswimmers including a discussion of the
principal experimental approaches that have been proposed so
far to build active particles (Sec. II.E).

A. Brownian motion versus active Brownian motion

In order to start acquiring some basic understanding of the
differences between passive and active Brownian motion, a
good (and pedagogic) approach is to compare two-
dimensional trajectories of single spherical passive and active
particles of equal (hydrodynamic) radius R in a homogenous
environment, i.e., where no physical barriers or other particles
are present and where there is a homogeneous and constant
distribution of the energy source for the active particle.
The motion of a passive Brownian particle is purely

diffusive with translational diffusion coefficient

DT ¼ kBT
6πηR

; ð1Þ

where kB is the Boltzmann constant, T is the absolute
temperature, and η is the fluid viscosity. The particle also
undergoes rotational diffusion with a characteristic time scale
τR given by the inverse of the particle’s rotational diffusion
coefficient

FIG. 1. Self-propelled Brownian particles are biological or man-
made objects capable of taking up energy from their environment
and converting it into directed motion. They are microscopic and
nanoscopic in size and have propulsion speeds (typically) up to a
fraction of a millimeter per second. The letters correspond to the
artificial microswimmers in Table I. The insets show examples of
biological and artificial swimmers. For the artificial swimmers
four main recurrent geometries can be identified so far: Janus
rods, Janus spheres, chiral particles, and vesicles.

1The term “active Brownian particle” has mainly been used in the
literature to denote the specific, simplified model of active matter
described in this section, which consists of repulsive spherical
particles that are driven by a constant force whose direction rotates
by thermal diffusion. Here we use the term active Brownian particle
when we refer to this specific model and its straightforward
generalizations (see Sec. II.B.1), while we use the terms “active
particle” or “self-propelled particle” when we refer to more general
systems.
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TABLE I. Examples of experimentally realized artificial microswimmers and relative propulsion mechanisms. The letters in the first column
correspond to the examples plotted in Fig. 1.

Microswimmer Propulsion mechanism Medium Dimensions
Maximum
speed

a Polydimethylsiloxane platelets
coated with Pt (Ismagilov
et al., 2002)

Bubbles generated in a H2O2

aqueous solution by
asymmetric patterns of Pt

H2O2 aqueous meniscus 1 cm 2 cm s−1

b Rod-shaped particles consisting
of Au and Pt segments (Paxton
et al., 2004)

Catalysis of oxygen at the Pt end
of the rod

Near a boundary in H2O2

acqueous solution
2 μm (length),
370 nm (width)

10 μms−1

c Linear chains of DNA-linked
magnetic colloidal particles
attached to red blood cells
(Dreyfus et al., 2005)

External actuation of the flexible
artificial flagella by oscillating
magnetic fields

Aqueous solution 30 μm 6 μms−1

d Janus spherical particles with a
catalytic Pt patch (Howse
et al., 2007)

Self-diffusiophoresis catalyzed
by a chemical reaction on the
Pt surface

H2O2 aqueous solution 1.6 μm 3 μms−1

e DNA-linked anisotropic doublets
composed of paramagnetic
colloidal particles (Tierno
et al., 2008)

Rotation induced by a rotating
magnetic field

Near a boundary in
aqueous solution

3 μm 3.2 μms−1

f Chiral colloidal propellers
(Ghosh and Fischer, 2009)

External actuation by a magnetic
field

Aqueous solution 2 μm (length),
250 nm (width)

40 μms−1

g Janus particles half-coated with
Au (Jiang, Yoshinaga, and
Sano, 2010)

Self-thermophoresis due to local
heating at the Au cap

Aqueous solution 1 μm 10 μms−1

h Catalytic microjets (Sanchez
et al., 2011)

H2O2 catalysis on the internal
surface of the microjet

H2O2 aqueous solution 50 μm (length),
1 μm (width)

10 mms−1

i Water droplets containing
bromine (Thutupalli, Seemann,
and Herminghaus, 2011)

Marangoni flow induced by a
self-sustained bromination
gradient along the drop surface

Oil phase containing a
surfactant

80 μm 15 μms−1

j Janus particles with light-
absorbing patches (Volpe et al.,
2011; Buttinoni et al., 2012;
Kümmel et al., 2013)

Local demixing of a critical
mixture due to heating
associated with localized
absorption of light

Critical mixture (e.g.,
water-2,6-lutidine)

0.1–10 μm 10 μms−1

k Rod-shaped particles consisting
of Au and Pt (or Au and Ru)
segments (Wang et al., 2012)

Self-acoustophoresis in a
ultrasonic standing wave

Aqueous solution 1–3 μm (length),
300 nm (width)

200 μms−1

l Pt-loaded stomatocytes (Wilson,
Nolte, and van Hest, 2012)

Bubbles generated in a H2O2

aqueous solution by entrapped
Pt nanoparticles

H2O2 acqueous solution 0.5 μm 23 μms−1

m Colloidal rollers made of PMMA
beads (Bricard et al., 2013)

Spontaneous charge symmetry
breaking resulting in a net
electrostatic torque

Conducting fluid
(hexadecane solution)

5 μm 1 mms−1

n Polymeric spheres encapsulating
most of an antiferromagnetic
hematite cube (Palacci et al.,
2013)

Self-phoretic motion near a
boundary due to the
decomposition of H2O2 by the
hematite cube when
illuminated by ultraviolet light

Near a boundary in H2O2

acqueous solution
1.5 μm 15 μms−1

o Water droplets (Izri et al., 2014) Water solubilization by the
reverse micellar solution

Oil phase with surfactants
above the critical
micellar solution

60 μm 50 μms−1

p Janus microspheres with Mg
core, Au nanoparticles, and
TiO2 shell layer (J. Li et al.,
2014)

Bubble thrust generated from the
Mg-water reaction

Aqueous solution 20 μm 110 μms−1

q Hollow mesoporous silica Janus
particles (Ma, Hahn, and
Sanchez, 2015; Ma et al.,
2015)

Catalysis powered by Pt or by
three different enzymes
(catalase, urease, and glucose
oxidase)

Aqueous solution 50–500 nm 100 μms−1

r Janus particles half coated with
Cr (Nishiguchi and Sano,
2015)

ac electric field Aqueous solution 3 μm 60 μms−1

s Enzyme-loaded polymeric
vesicles (Joseph et al., 2016)

Glucose catalysis powered by
catalase and glucose oxidase

Aqueous solution 0.1 μm 80 μms−1
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DR ¼ τ−1R ¼ kBT
8πηR3

: ð2Þ

From the above formulas, it is clear that while the translational
diffusion of a particle scales with its linear dimension, its
rotational diffusion scales with its volume. For example, for a
particle with R ≈ 1 μm in water, DT ≈ 0.2 μm2 s−1 and DR ≈
0.17 rad2 s−1 (τR ≈ 6 s), while for a particle 10 times smaller
(R ≈ 100 nm), DT ≈ 2 μm2 s−1 is 1 order of magnitude larger
but DR ≈ 170 rad2 s−1 is 3 orders of magnitude larger
(τR ≈ 6 ms).
In a homogeneous environment, the translational and

rotational motions are independent from each other.
Therefore, the stochastic equations of motion for a passive
Brownian particle in a two-dimensional space are

_x ¼ ffiffiffiffiffiffiffiffiffi
2DT

p
ξx ; _y ¼ ffiffiffiffiffiffiffiffiffi

2DT
p

ξy ; _φ ¼ ffiffiffiffiffiffiffiffiffi
2DR

p
ξφ ; ð3Þ

where ½x; y� is the particle position, φ is its orientation
[Fig. 2(a)], and ξx, ξy, and ξφ represent independent white
noise stochastic processes with zero mean and correlation
δðtÞ. Interestingly, the equations for each degree of freedom
(i.e., x, y, and φ) are decoupled. Inertial effects are neglected
because microscopic particles are typically in a low-Reynolds-
number regime (Purcell, 1977). Some examples of the
corresponding trajectories are illustrated in Fig. 2(b).
For a self-propelled particle with velocity v instead, the

direction of motion is itself subject to rotational diffusion,
which leads to a coupling between rotation and translation.
The corresponding stochastic differential equations are

_x ¼ v cosφþ ffiffiffiffiffiffiffiffiffi
2DT

p
ξx ; _y ¼ v sinφþ ffiffiffiffiffiffiffiffiffi

2DT
p

ξy ;

_φ ¼ ffiffiffiffiffiffiffiffiffi
2DR

p
ξφ . ð4Þ

Some examples of trajectories for various v are shown in
Figs. 2(c)–2(e): as v increases, we obtain active trajectories
that are characterized by directed motion at short time scales;
however, over long time scales the orientation and direction of
motion of the particle are randomized by its rotational
diffusion (Howse et al., 2007).
To emphasize the difference between Brownian motion and

active Brownian motion, it is instructive to consider the
average particle trajectory given the initial position and
orientation fixed at time t ¼ 0, i.e., xð0Þ ¼ yð0Þ ¼ 0 and
φð0Þ ¼ 0. In the case of passive Brownian motion, this

average vanishes by symmetry, i.e., hxðtÞi ¼ hyðtÞi≡ 0,
where h� � �i represents the ensemble average. For an active
particle instead, the average is a straight line along the
x direction (determined by the prescribed initial orientation),

hxðtÞi ¼ v
DR

½1 − expð−DRtÞ� ¼ vτR

�
1 − exp

�
−

t
τR

��
; ð5Þ

while hyðtÞi≡ 0 because of symmetry. This implies that, on
average, an active Brownian particle will move along the
direction of its initial orientation for a finite persistence length

L ¼ v
DR

¼ vτR; ð6Þ

before its direction is randomized.
The relative importance of directed motion versus diffusion

for an active Brownian particle can be characterized by its
Péclet number

Pe ∝
vffiffiffiffiffiffiffiffiffiffiffiffiffi

DTDR
p ; ð7Þ

where the proportionality sign is used because the literature is
inconsistent about the value of the numerical prefactor. If Pe is
small, diffusion is important, while if Pe is large, directed
motion prevails.
The model for active Brownian motion described by

Eqs. (4) can be straightforwardly generalized to the case of
an active particle moving in three dimensions. In this case, the
particle position is described by three Cartesian coordinates,
i.e., ½x; y; z�, and its orientation by the polar and azimuthal
angles, i.e., ½ϑ;φ�, which perform a Brownian motion on the
unit sphere (Carlsson, Ekholm, and Elvingson, 2010).

B. Phenomenological models

In this section, we extend the simple model introduced in
Sec. II.A to describe the motion of more complex (and
realistic) active Brownian particles. First, we introduce models
that account for chiral active Brownian motion (Sec. II.B.1).
We then consider more general models of active Brownian
motion where reorientation occurs due to mechanisms other
than rotational diffusion (Sec. II.B.2) and where the active
particles are nonspherical (Sec. II.B.3). Finally, we discuss the
use of external forces and torques when modeling active

(a) (b) (c) (d) (e)

FIG. 2. Active Brownian particles in two dimensions. (a) An active Brownian particle in water (R ¼ 1 μm, η ¼ 0.001 Pa s) placed at
position ½x; y� is characterized by an orientation φ along which it propels itself with speed v while undergoing Brownian motion in both
position and orientation. The resulting trajectories are shown for different velocities (b) v ¼ 0 μms−1 (Brownian particle),
(c) v ¼ 1 μms−1, (d) v ¼ 2 μms−1, and (e) v ¼ 3 μms−1. With increasing values of v, the active particles move over longer
distances before their direction of motion is randomized; four different 10-s trajectories are shown for each value of velocity.
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Brownian motion (Sec. II.B.4) and we provide some consid-
erations about numerics (Sec. II.B.5).
Before proceeding further, we remark that in this section the

microscopic swimming mechanism is completely ignored; in
particular, hydrodynamic interactions are disregarded and
only the observable effects of net motion are considered.
While the models introduced here are phenomenological, they
are very effective in describing the motion of microswimmers
in homogenous environments. We cast this point in terms of
the difference between “microswimmers” and active particles.
Microswimmers are force-free and torque-free objects capable
of self-propulsion in a (typically) viscous environment and,
importantly, exhibit an explicit hydrodynamic coupling with
the embedding solvent via flow fields generated by the
swimming strokes they perform. Instead, active particles
represent a much simpler concept consisting of self-propelled
particles in an inert solvent, which provides only hydro-
dynamic friction and a stochastic momentum transfer. While
the observable behavior of the two is the same in a homog-
enous environment and in the absence of interactions between
particles, hydrodynamic interactions may play a major role in
the presence of obstacles or other microswimmers. The
simpler model of active particles delivers, however, good
results in terms of the particle’s behavior and is more intuitive.
In fact, the self-propulsion of an active Brownian particle is
implicitly modeled by using an effective force fixed in the
particle’s body frame. For this reason, in this review we
typically consider active particles, while we discuss hydro-
dynamic interactions in Sec. III [see also Golestanian,
Yeomans, and Uchida (2011), Marchetti et al. (2013), and
Elgeti, Winkler, and Gompper (2015) for extensive reviews on
the role of hydrodynamics in active matter systems]. We
provide a more detailed theoretical justification of why active
particles are a good model for microswimmers in Sec. II.B.4.

1. Chiral active Brownian motion

Swimming along a straight line, corresponding to the
linearly directed Brownian motion considered until now, is
the exception rather than the rule. In fact, ideal straight
swimming occurs only if the left-right symmetry relative to
the internal propulsion direction is not broken; even small
deviations from this symmetry destabilize any straight motion
and make it chiral. One can assign a chirality (or helicity) to
the path, the sign of which determines whether the motion is
clockwise (dextrogyre) or anticlockwise (levogyre). The result
is a motion along circular trajectories in two dimensions
(circle swimming) and along helical trajectories in three
dimensions (helical swimming).
The occurrence of microorganisms swimming in circles

was pointed out more than a century ago by Jennings (1901)
and, since then, has been observed in many different sit-
uations, in particular, close to a substrate for bacteria (Berg
and Turner, 1990; DiLuzio et al., 2005; Lauga et al., 2006;
Hill et al., 2007; Shenoy et al., 2007; Schmidt et al., 2008) and
spermatozoa (Woolley, 2003; Riedel, Kruse, and Howard,
2005; Friedrich and Jülicher, 2008). Likewise, helical swim-
ming in three dimensions has been observed for various
bacteria and sperm cells (Jennings, 1901; Brokaw, 1958,
1959; Crenshaw, 1996; Fenchel and Blackburn, 1999; Corkidi

et al., 2008; Jékely et al., 2008). Figures 3(a) and 3(b) show
examples of E. coli cells swimming in circular trajectories
near a glass surface and at a liquid-air interface, respectively.
Examples of nonliving but active particles moving in circles
are spherical camphors at an air-water interface (Nakata et al.,
1997) and chiral (L-shaped) colloidal swimmers on a substrate
(Kümmel et al., 2013). Finally, trajectories of deformable
active particles (Ohta and Ohkuma, 2009) and even of
completely blinded and ear-plugged pedestrians (Obata et al.,
2000) can possess significant circular characteristics.
The origin of chiral motion can be manifold. In particular, it

can be due to an anisotropy in the particle shape, which leads
to a translation-rotation coupling in the hydrodynamic sense
(Kraft et al., 2013) or an anisotropy in the propulsion
mechanism. Kümmel et al. (2013) experimentally studied
an example where both mechanisms are simultaneously
present [Figs. 3(c) and 3(d)]. Furthermore, even a cluster of
nonchiral swimmers, which stick together by direct forces
(Redner, Baskaran, and Hagan, 2013), by hydrodynamics, or
just by the activity itself (Buttinoni et al., 2013; Palacci et al.,
2013), will in general lead to situations of total nonvanishing
torque on the cluster center (Kaiser, Popowa, and Löwen,
2015), thus leading to circling clusters (Schwarz-Linek et al.,
2012). Finally, the particle rotation can be induced by external
fields; a standard example is a magnetic field perpendicular to
the plane of motion exerting a torque on the particles (Cēbers,

(a)

(c) (d)

(b)

FIG. 3. Biological and artificial chiral active Brownian motion.
(a) Phase-contrast video microscopy images showing E. coli cells
swimming in circular trajectories near a glass surface. Super-
position of 8-s video images. From Lauga et al., 2006. (b) Circular
trajectories are also observed for E. coli bacteria swimming over
liquid-air interfaces but the direction is reversed. From Di
Leonardo et al., 2011. Trajectories of (c) dextrogyre and (d) lev-
ogyre artificial microswimmers driven by self-diffusiophoresis: in
each plot, the red bullet corresponds to the initial particle position
and the two blue squares to its position after 1 and 2 minutes. The
insets show microscope images of two different swimmers with
the Au coating (not visible in the bright-field image) indicated by
an arrow. From Kümmel et al., 2013.
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2011). Even though the emergence of circular motion can be
often attributed to hydrodynamic effects, in this section we
focus on a phenomenological description and leave the proper
hydrodynamic description to Sec. III.C.
For a two-dimensional chiral active Brownian particle

[Fig. 4(a)], in addition to the random diffusion and the internal
self-propulsion modeled by Eqs. (4), the particle orientation φ
also rotates with angular velocity ω, where the sign of ω
determines the chirality of the motion. The resulting set of
equations describing this motion in two dimensions is (van
Teeffelen and Löwen, 2008; Mijalkov and Volpe, 2013; Volpe,
Gigan, and Volpe, 2014)

_x ¼ v cosφþ ffiffiffiffiffiffiffiffiffi
2DT

p
ξx ; _y ¼ v sinφþ ffiffiffiffiffiffiffiffiffi

2DT
p

ξy ;

_φ ¼ ωþ ffiffiffiffiffiffiffiffiffi
2DR

p
ξφ . ð8Þ

Some examples of trajectories are shown in Figs. 4(b)–4(d) for
particles of decreasing radius. As the particle size decreases,
the trajectories become less deterministic because the rota-
tional diffusion, responsible for the reorientation of the
particle direction, scales according to R−3 [Eq. (2)]. The
model given by Eqs. (8) can be straightforwardly extended to
the helicoidal motion of a three-dimensional chiral active
particle following an approach along the lines of the dis-
cussion at the end of Sec. II.A.
It is interesting to consider how the noise-averaged trajec-

tory given in Eq. (5) changes in the presence of chiral motion.
In this case, the noise-averaged trajectory has the shape of a
logarithmic spiral, i.e., a spira mirabilis (van Teeffelen and
Löwen, 2008), which in polar coordinates is written as

ρ ∝ exp f−DR½φ − φð0Þ�=ωg; ð9Þ

where ρ is the radial coordinate and φ is the azimuthal
coordinate. In three dimensions, the noise-averaged trajectory
is a concho spiral (Wittkowski and Löwen, 2012), which is
the generalization of the logarithmic spiral. Stochastic
helical swimming was recently investigated in Colonial
Choanoflagellates (Kirkegaard,Marron, andGoldstein, 2016).

2. Models for active particle reorientation

The simple models presented so far, and, in particular,
the one discussed in Sec. II.A, consider an active particlewhose
velocity is constant in modulus and whose orientation

undergoes free diffusion. This type of dynamics, which we
refer to as rotational diffusion dynamics [Fig. 5(a)], is often
encountered in the case of self-propelling Janus colloids
(Howse et al., 2007; Buttinoni et al., 2012; Palacci et al.,
2013). There are, however, other processes that generate active
Brownian motion; here we consider, in particular, the run-and-
tumble dynamics and theGaussian noise dynamics (Koumakis,
Maggi, and Di Leonardo, 2014). More general models include
velocity- and space-dependent friction (Taktikos, Zaburdaev,
and Stark, 2011; Romanczuk et al., 2012; Babel, ten Hagen,
and Löwen, 2014). It has also been recently speculated that
finite-time correlations in the orientational dynamics can affect
the swimmer’s diffusivity (Ghosh et al., 2015).
The run-and-tumble dynamics [Fig. 5(b)] were introduced

to describe the motion of E. coli bacteria (Berg and Turner,
1979; Schnitzer, Block, and Berg, 1990; Berg, 2004). They
consist of a random walk that alternates linear straight runs at
constant speed with Poisson-distributed reorientation events
called tumbles. Even though their microscopic (short-time)
dynamics are different, their long-time diffusion properties are
equivalent to those of the rotational diffusion dynamics
described in Sec. II.A (Tailleur and Cates, 2008; Cates and
Tailleur, 2013; Solon, Cates, and Tailleur, 2015).
In the Gaussian noise dynamics [Fig. 5(c)], the active

particle velocity (along each direction) fluctuates as an
Ornstein-Uhlenbeck process (Uhlenbeck and Ornstein,
1930). This is, for example, a good model for the motion
of colloidal particles in a bacterial bath, where multiple
interactions with the motile bacteria tend to gradually change
the direction and amplitude of the particle’s velocity, at least as
long as the concentration is not so high to give rise to
collective phenomena (Wu and Libchaber, 2000).
Finally, we also consider the interesting limit of the rota-

tional diffusion dynamics when the rotational diffusion is
zero, or similarly in the run-and-tumble dynamics when the
run time is infinite. In this case, the equations of motion of the
active particle contain no stochastic terms and the particle
keeps on moving ballistically along straight lines until it
interacts with some obstacles or other particles. Such a limit is
reached, e.g., for sufficiently large active colloids or for active
colloids moving through an extremely viscous fluid.

3. Nonspherical active particles

The models presented until now, in particular, Eqs. (4) and
(8), are valid for spherical active particles. However, while

(a) (b) (c) (d)

FIG. 4. Chiral active Brownian motion in two dimensions. (a) A two-dimensional chiral active Brownian particle has a deterministic
angular velocity ω that, if the particle’s speed v > 0, entails a rotation around an effective external axis. (b)–(d) Sample trajectories of
dextrogyre (red, dark gray) and levogyre (yellow, light gray) active chiral particles with v ¼ 30 μms−1, ω ¼ 10 rad s−1, and different
radii [R ¼ 1000, 500, and 250 nm for (b), (c), and (d), respectively]. As the particle size decreases, the trajectories become less
deterministic because the rotational diffusion, responsible for the reorientation of the particle direction, scales according to R−3 [Eq. (2)].
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most active particles considered in experiments and simula-
tions are spherically or axially symmetric, many bacteria and
motile microorganisms considerably deviate from such ideal
shapes and this strongly alters their swimming properties.
In order to understand how we can derive the equations of

motion for nonspherical active Brownian particles, it is useful
to rewrite in a vectorial form the model presented in Sec. II.A
for the simpler case of a spherical active particle:

γ _r ¼ Fêþ ξ; ð10Þ

where γ ¼ 6πηR denotes the particle’s Stokes friction coef-
ficient (for a sphere of radius R with sticky boundary
conditions at the particle surface), r is its position vector, F
is an effective force acting on the particle, ê is its orientation
unit vector, and ξ is a random vector with zero mean and
correlation 2kBTγIδðtÞ, where I is the identity matrix in the
appropriate number of dimensions. If the particle’s orientation
does not change, i.e., êðtÞ≡ êð0Þ (e.g., being fixed by an
external aligning magnetic field), the particle swims with a
self-propulsion speed v ¼ F=γ along its orientation ê and its
trajectory is trivially given by rðtÞ ¼ rð0Þ þ vtêð0Þ. If the
particle orientation can instead change, e.g., if ê is subject to
rotational diffusion, the particle will perform active Brownian
motion.
We can now generalize these simple considerations for a

spherical particle to more complex shapes as systematically
discussed by ten Hagen et al. (2015). When the particle has a
rigid anisotropic shape, the resulting equations of motion can
be written in compact form as

H · V ¼ Kþ χ ; ð11Þ

where H is the grand resistance matrix or hydrodynamic
friction tensor (see also Sec. III.A) (Happel and Brenner,
1991; Fernandes and de la Torre, 2002), V ¼ ½v;ω� is a
generalized velocity with v and ω the particle’s translational
and angular velocities, K ¼ ½F;T� is a generalized force with
F and T the effective force and torque acting on the particle,
and χ is a random vector with correlation 2kBTHδðtÞ.
Equation (11) is best understood in the body frame of the
moving particle where H, K, and V are constant, but it can
also be transformed to the laboratory frame (Wittkowski and
Löwen, 2012). In the deterministic limit (i.e., χ ¼ 0), the

particle trajectories are straight lines if ω ¼ 0, and circles in
two dimensions (or helices in three dimensions) if ω ≠ 0
(Friedrich and Jülicher, 2009; Wittkowski and Löwen, 2012).
In the opposite limit when K ¼ 0, we recover the case of a
free Brownian particle, which however features nontrivial
dynamical correlations (Fernandes and de la Torre, 2002;
Makino and Doi, 2004; Kraft et al., 2013; Cichocki, Ekiel-
Jezewska, and Wajnryb, 2015).

4. Modeling active motion with external forces and torques

Equation (10) describes the motion of a spherical active
particle using an effective “internal” force F ¼ γv fixed in the
particle’s body frame. F is identical to the force acting on a
hypothetical spring whose ends are bound to the micro-
swimmers and to the laboratory (Takatori, Yan, and Brady,
2014); hence, it can be directly measured, at least in principle.
While this force can be viewed as a special force field
Fðr; êÞ ¼ Fê experienced by the particle, it is clearly non-
conservative, i.e., it cannot be expressed as a spatial gradient
of a scalar potential. The advantage in modeling self-propul-
sion by an effective driving force is that this force can be
straightforwardly added to all other existing forces, e.g., body
forces from real external fields (like gravity or confinement),
forces stemming from the interaction with other particles, and
random forces mimicking the random collisions with the
solvent. This keeps the model simple, flexible, and trans-
parent. This approach has been followed by many recent
works; see, e.g., Chen and Leung (2006), Peruani, Deutsch,
and Bär (2006), Li, Lukeman, and Edelstein-Keshet (2008),
Mehandia and Prabhu (2008), Wensink and Löwen (2008),
van Teeffelen and Löwen (2008), Angelani, Costanzo, and Di
Leonardo (2011), ten Hagen, Wittkowski, and Löwen (2011),
Bialké, Speck, and Löwen (2012), Kaiser, Wensink, and
Löwen (2012), McCandlish, Baskaran, and Hagan (2012),
Wensink and Löwen (2012), Wittkowski and Löwen
(2012), Yang et al. (2012), Elgeti and Gompper (2013),
Kaiser et al. (2013), Mijalkov and Volpe (2013), Redner,
Hagan, and Baskaran (2013), Reichhardt and Olson-
Reichhardt (2013a), Costanzo et al. (2014), Fily, Henkes,
and Marchetti (2014), and Wang et al. (2014).
These simple considerations for a spherical active particle

can be generalized to more complex situations, such as to
Eqs. (11) for nonspherical active particles. In general, the
following considerations hold to decide whether a model

(a) (b) (c)

FIG. 5. Sample trajectories of active Brownian particles corresponding to different mechanisms generating active motion: (a) rotational
diffusion dynamics, (b) run-and-tumble dynamics, and (c) Gaussian noise dynamics. The dots correspond to the particle position
sampled every 5 s.
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based on effective forces and torques can be applied safely. On
the one hand, the effective forces and torques can be used if we
consider a single particle in an unbounded fluid whose
propulsion speed is a generic explicit function of time
(Babel, ten Hagen, and Löwen, 2014) or of the particle’s
position (Magiera and Brendel, 2015). On the other hand,
body forces and torques arising, e.g., from an external field or
from (nonhydrodynamic) particle interactions can simply be
added to the effective forces and torques, under the sole
assumption that the presence of the body forces and torques
should not affect the self-propulsion mechanism itself.
A classical counterexample to this assumption is bimetallic
nanorods driven by electrophoresis in an external electric field
(Paxton et al., 2004, 2006), as the external electric field
perturbs the transport of ions through the rod and the
screening around it and thus significantly affects its propa-
gation (Brown and Poon, 2014).
In order to avoid potential confusion, we remark that the use

of effective forces does not imply that the solvent flow field is
modeled correctly; contrarily, the flow field is not considered
at all. When the propagation is generated by a nonreciprocal
mechanical motion of different parts of the swimmer, any
internal motion should fulfill Newton’s third law such that the
total force acting on the swimmer is zero at any time. As we
see in more detail in Sec. III, this implies that the solvent
velocity field uðrÞ around a swimmer does not decay as a
force monopole [i.e., uðrÞ ∝ 1=r, as if the particle were
dragged by a constant external force field], but (much faster)
as a force dipole [i.e., uðrÞ ∝ 1=r2]. The notion of an effective
internal force, therefore, seems to contradict this general
statement that the motion of a swimmer is force free. The
solution of this apparent contradiction is that the modeling via
an effective internal force does not resolve the solvent velocity
field but is just a coarse-grained effective description for
swimming with a constant speed along the particle trajectory.
Therefore, the concept of effective forces and torques is of
limited utility when the solvent flow field, which is generated
by the self-propelled particles, has to be taken into account
explicitly. This applies, for example, to the far field of the
solvent flow that governs the dynamics of a particle pair [and
discriminates between pullers and pushers (Downton and
Stark, 2009)], to the hydrodynamic interaction between a
particle and an obstacle (Kreuter et al., 2013; Chilukuri,
Collins, and Underhill, 2014; Takagi et al., 2014; Sipos et al.,
2015), and to the complicated many-body hydrodynamic
interactions in a dense suspension of swimmers (Kapral,
2008; Alexander, Pooley, and Yeomans, 2009; Gompper et al.,
2009; Reigh, Winkler, and Gompper, 2012). Nonetheless,
there are various situations where hydrodynamic interactions
do not play a major role. This is the case for dry active matter
(Marchetti et al., 2013), for effects close to a substrate where
lubrication is dominating, and for highly crowded environ-
ments where the hydrodynamic interactions can cancel if no
global flow is built up (Wioland et al., 2013).

5. Numerical considerations

Numerically, the continuous-time solution to the set of
stochastic differential equations given by Eqs. (4), as well as
for the other equations presented in this section, can be

obtained by approximating it with a set of finite difference
equations (Ermak and McCammon, 1978; Volpe and Volpe,
2013; Volpe, Gigan, and Volpe, 2014). Even though in most
practical applications the simple first-order scheme works
best, care has to be taken to choose the time step small
enough; higher-order algorithms can also be employed to
obtain faster convergence of the solution (Honerkamp, 1993;
Kloeden and Pearson, 1999) and to deal correctly with
interactions with obstacles or other particles (Behringer and
Eichhorn, 2011; Behringer and Eichhorn, 2012).

C. Effective diffusion coefficient and effective temperature

As seen in Sec. II.A, when the speed v of an active particle
increases in a homogeneous environment (no crowding and no
physical barriers), its trajectories (Fig. 2) are typically domi-
nated by directed motion on short time scales and by an
enhanced random diffusion at long times, the latter due to
random changes in the swimming direction (Howse et al.,
2007). These qualitative considerations can be made more
precise by calculating the mean square displacement MSDðτÞ
of the motion for both passive and active particles at different
values of v, as shown in Fig. 6. The MSDðτÞ quantifies how a
particle moves away from its initial position and can be
calculated directly from a trajectory. For a passive Brownian
particle, the MSDðτÞ in two dimensions is

MSDðτÞ ¼ 4DTτ; ð12Þ

which is valid for times significantly longer than the momen-
tum relaxation time τm ¼ m=γ of the particle, where m is the
mass of the particle.2

For an active particle instead, the theoretical MSDðτÞ is
given by (Franke and Gruler, 1990; Howse et al., 2007;
Martens et al., 2012)3

MSDðτÞ ¼ ½4DT þ 2v2τR�τ þ 2v2τ2R½e−τ=τR − 1�: ð13Þ

2To be more precise, the theoretical MSDðτÞ for a passive
Brownian particle is given by the Ornstein-Uhlenbeck formula
(Uhlenbeck and Ornstein, 1930), which in two dimensions reads

MSDðτÞ ¼ 4DTτ þ
4kBT
m

τ2m½e−τ=τm − 1�:

At long time scales, the MSDðτÞ of a passive Brownian particle is
therefore linear in time with a slope controlled by the particle’s
diffusion coefficient DT. This occurs for τ ≫ τm, where τm for small
colloidal particles is of the order of microseconds. In a liquid
environment, furthermore, also the hydrodynamic memory of the
fluid, i.e., the mass of the fluid displaced together with the particle,
must be taken into account and can, in fact, significantly increase the
effective momentum relaxation time (Lukić et al., 2005; Franosch
et al., 2011; Pesce et al., 2014).

3Note that Eq. (13) is formally equal to the Ornstein-Uhlenbeck
formula for the MSD of a Brownian particle with inertia, which
describes the transition from the ballistic regime to the diffusive
regime, although at a much shorter time scale than for active particles
(Uhlenbeck and Ornstein, 1930).
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This expression for the MSD holds whenever the active speed
component is characterized by an exponential decay. This is
the case, in particular, for all models for active particle
reorientation we considered in Sec. II.B.2, i.e., rotational
diffusion, run-and-tumble dynamics, and Gaussian noise
dynamics. At very short time scales, i.e., τ ≪ τR, this
expression becomes MSDðτÞ ¼ 4DTτ and, thus, the motion
is diffusive with the typical Brownian short-time diffusion
coefficient DT. This diffusive short-time regime indeed can be
seen in experiments if the strength of self-propulsion is not
very large (Zheng et al., 2013). At slightly longer time scales,
i.e., τ ≈ τR, MSDðτÞ ¼ 4DTτ þ 2v2τ2 so that the motion is
superdiffusive. At much longer time scales, i.e., τ ≫ τR,
MSDðτÞ ¼ ½4DT þ 2v2τR�τ and, thus, the MSDðτÞ is propor-
tional to τ, since the rotational diffusion leads to a randomi-
zation of the direction of propulsion and the particle
undergoes a random walk whose step length is the product
of the propelling velocity v and the rotational diffusion time τR
[equal to the persistence length given by Eq. (6)]. This leads to
a substantial enhancement of the effective diffusion coefficient
over the value DT, which corresponds to Deff ¼ DT þ 1

2
v2τR.

One might be tempted to think that the stationary states of
active Brownian systems could resemble equilibrium states at
a higher effective temperature

Teff ¼
γDeff

kB
¼ T þ γv2τR

2kB
: ð14Þ

This simple picture of active particles as hot colloids may be
correct in some simple situations, such as dilute noninteract-
ing active particles that sediment in a uniform external force

field (Tailleur and Cates, 2009; Palacci et al., 2010; Maggi
et al., 2013). However, as soon as interactions become
important or external fields are inhomogeneous, one observes
phenomena like clustering in repulsive systems or rectification
effects (Koumakis, Maggi, and Di Leonardo, 2014; Volpe,
Gigan, and Volpe, 2014) that are not compatible with the
picture of a quasiequilibrium state at one effective temperature
(Argun et al., 2016).

D. Biological microswimmers

Various kinds of biological microswimmers exist in nature,
e.g., bacteria (Berg and Brown, 1972; Berg and Turner, 1990;
Berg, 2004), unicellular protozoa (Machemer, 1972; Blake
and Sleigh, 1974), and spermatozoa (Woolley, 2003; Riedel,
Kruse, and Howard, 2005). Typically, the planktonic swim-
ming motion of these microorganisms is generated by flagella
or cilia powered by molecular motors (Lauga and Goldstein,
2012; Poon, 2013; Alizadehrad et al., 2015; Elgeti, Winkler,
and Gompper, 2015). Alternative methods, such as crawling
or swarming, do not involve swimming in a fluid but they
rather require cells to move on a substrate or through a gel or
porous material.
While many properties of the motion of biological micro-

swimmers can be understood in terms of effective Langevin
equations, seen in Sec. II.B, several models have been
proposed to understand in more detail their microscopic
mechanisms. Lighthill (1952) introduced a model for squirm-
ers in a viscous fluid. The Lighthill model assumes that the
movement of a spherical particle, covered by a deformable
spherical envelope, is caused by an effective slip velocity
between the particle and the solvent. This model was corrected
to describe the metachronal wavelike beat of cilia densely
placed on the surface of a microorganism by a progressive
waving envelope (Blake, 1971). Finally, several approaches
have addressed the question of the swimming velocity and rate
of dissipation of motile microorganisms with different shapes.
Analytically tractable examples of these biological micro-
swimmers consist of point particles connected by active links
exerting periodic forcing (Najafi and Golestanian, 2004;
Felderhof, 2006), spherical particles that self-propel due to
shape modulation of their surface (Felderhof and Jones,
2014), assemblies of rigid spheres that interact through elastic
forces (Felderhof, 2014b), or one large sphere propelled by a
chain of three little spheres through hydrodynamic and elastic
interactions (Felderhof, 2014a). The latter configuration, in
particular, has been realized and studied using optically
trapped particles (Leoni et al., 2009).

E. Artificial microswimmers

Various methods have been developed to realize artificial
microswimmers that can reproduce the swimming behavior of
motile biological cells making use of diverse propulsion
mechanisms. As seen in Sec. I, these man-made self-
propelling particles in fact hold the great promise to change
the way in which we perform several tasks in, e.g., health care
and environmental applications (Nelson, Kaliakatsos, and
Abbott, 2010; Wang and Gao, 2012; Patra et al., 2013;
Abdelmohsen et al., 2014; Gao and Wang, 2014). See

FIG. 6. Mean square displacement (MSD) of active Brownian
particles and effective diffusion coefficients. Numerically calcu-
lated (symbols) and theoretical (lines) MSD for an active
Brownian particle with velocity v ¼ 0 μms−1 (circles), v ¼
1 μms−1 (triangles), v ¼ 2 μms−1 (squares), and v ¼ 3 μms−1

(diamonds). For a passive Brownian particle (v ¼ 0 μms−1,
circles) the motion is always diffusive [MSDðτÞ ∝ τ], while
for an active Brownian particle the motion is diffusive with
diffusion coefficient DT at very short time scales [MSDðτÞ ∝ τ
for τ ≪ τR], ballistic at intermediate time scales [MSDðτÞ ∝ τ2

for τ ≈ τR], and again diffusive but with an enhanced diffusion
coefficient at long time scales [MSDðτÞ ∝ τ for τ ≫ τR].
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Table I and Fig. 1 for examples of experimentally realized
active particles.
The basic idea behind the self-propulsion of microparticles

and nanoparticles is that breaking their symmetry leads to
propulsion through various phoretic mechanisms. Independent
of the specific propulsion mechanism, the absence of inertial
effects requires nonreciprocal driving patterns in Newtonian
liquids (Purcell, 1977). Indeed, the temporal motion of flagella
or beating cilia found in biological systems follows nonrecip-
rocal and periodic patterns (see also Sec. III.A). Accordingly,
this also needs to be taken into account in the design of
synthetic microswimmers.
The first demonstration of the concept of swimming

powered by asymmetrical chemical reactions can be traced
back to the seminal work by Whitesides and co-workers who
made millimeter-scale chemically powered surface swimmers
(Ismagilov et al., 2002), while the pioneering demonstration
of microswimming in bulk was done by Paxton et al. (2004),
who reported the propulsion of conducting nanorod devices.
Subsequently, in an attempt to realize a synthetic flagellum,
Dreyfus et al. (2005) fabricated a linear flexible chain of
colloidal magnetic particles linked by short DNA segments.
Such chains align and oscillate with an external rotating
magnetic field and closely resemble the beating pattern of
flagella; moreover, the strength of their swimming speed can
be controlled by the rotation frequency of the field.
In general, microswimmers can be powered by two main

categories of propulsion mechanisms (Ebbens and Howse,
2010): they can be powered by local conversion of energy
(e.g., catalytic processes) or they can be driven by external
(e.g., electric, magnetic, acoustic) fields. In this context, it is
now important to remark that a distinction exists between
internally driven active matter and particles that are brought
out of equilibrium by external fields: while microswimmers
powered by these two mechanisms feature a motion that can
be described with similar effective models (see, e.g., Secs. II.A
and II.B), they present quite different microscopic details in
their interaction with their environment (see, e.g., their
hydrodynamic properties discussed in Sec. III). In some cases,
a combination of both is possible, e.g., an external field may
be required to induce local energy conversion.
In this section, we first discuss the main physical principles

of the propulsion mechanisms based on local energy con-
version (Sec. II.E.1) and external fields (Sec. II.E.2). We then
introduce the main experimental methods that are used to
build a very successful class of artificial microswimmers, i.e.,
Janus particles (Sec. II.E.3).

1. Propulsion by local energy conversion

A versatile method to impose propulsion forces onto
colloidal particles is the use of phoretic transport due to the
generation of chemical, electrostatic, or thermal field gra-
dients. When such gradients are generated externally, passive
colloidal particles move of phoretic motion: for example,
when colloids are exposed to an electrolyte concentration
gradient, they migrate toward the higher salt regions (Ebel,
Anderson, and Prieve, 1988). Therefore, if a particle generates
its own local gradient, a self-phoretic motion can take place
(Golestanian, Liverpool, and Ajdari, 2007).

The self-generation of gradients by a particle requires some
type of asymmetry in its properties, e.g., its shape, material, or
chemical functionalization. Based on such considerations,
first Paxton et al. (2004) and then Fournier-Bidoz et al. (2005)
observed that gold-platinum (Au-Pt) and gold-nickel (Au-Ni)
microrods displayed considerably enhanced directed motion
in hydrogen peroxide (H2O2) solutions. An electrokinetic
model seems to be consistent with most experimental obser-
vations: the bimetallic microrod is considered as an electro-
chemical cell that supports an internal electrical current in
order to maintain a redox reaction at its two extremities, where
protons are created (Pt/Ni end) and consumed (Au end). Due
to the flux of protons along the rod, a fluid flow is generated
that moves the rod. We remark that other mechanisms have
also been suggested to explain the motion of these microrods,
including the formation of oxygen bubbles (Ismagilov et al.,
2002). This, however, would suggest the motion of Au-Pt
microrods to be in the direction of the Au end (i.e., opposite to
the site where the oxygen bubbles are created), which is in
disagreement with experimental observations.
Bubble formation in H2O2 aqueous solutions as the

dominant driving mechanism has been observed in tubular
structures of catalytic materials. The internal catalytic wall of
these microjets (consisting of Pt) decomposes H2O2 into H2O
and O2. The produced O2 accumulates inside the tube and
forms gas bubbles, which are ejected from one tube extremity,
thus causing the propulsion of the microjet in the opposite
direction (Solovev et al., 2009, 2010).
Biologically active swimmers have also been created by

functionalizing a conductive fiber with glucose oxidase and
bilirubin oxidase: in the presence of glucose, a redox reaction
takes place leading to a proton flux and thus to a bioelec-
trochemical self-propulsion (Mano and Heller, 2005).
In contrast to electrically conductive systems, which are

essential for the above driving mechanisms, propulsion can
also be achieved with dielectric particles (e.g., made of silica,
polystyrene, or melamine). The majority of such systems is
based on so-called Janus particles (named after the two-faced
Roman god), where dielectric colloids are partially coated
with thin layers of catalytic materials like Pt or palladium (Pd)
(Golestanian, Liverpool, and Ajdari, 2005). When such
particles are immersed in an aqueous solution enriched with
H2O2, they locally decompose it into H2O and O2, and thus
create a local concentration gradient that eventually leads to
self-diffusiophoresis. This concept, which was originally
pioneered by Howse et al. (2007), has been very successful
and has been used and modified by many other groups
worldwide. Instead of Pt or Pd, hematite has also been used
as a catalyst; this has the advantage of permitting one to
control the H2O2 decomposition using light: in fact the
hematite catalyzes the H2O2 decomposition only when illu-
minated with blue light (Palacci et al., 2013). The details of
the catalytic processes involved in the H2O2 decomposition
are quite complex and subject to current investigation. For
example, the propulsion strength and direction show a strong
dependence on added salt and ionic surfactants (Brown and
Poon, 2014).
When metal-coated Janus particles are illuminated with

strong laser light, temperature gradients along the particles can
also form due to the selective heating of the metallic cap. This
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leads to a strong self-thermophoretic motion that can be
controlled by the incident laser power, as it has been shown in
the case of Au-capped colloidal particles (Jiang et al., 2009;
Jiang, Yoshinaga, and Sano, 2010; Bregulla, Yang, and
Cichos, 2013). However, the need for high intensity gradients
can also lead to optical forces (Jones, Maragò, and Volpe,
2015), which can interfere with the self-diffusionphoresis
mechanisms.
In contrast to thermophoretic effects, which require suffi-

ciently strong light intensity, much smaller intensity is
required when Janus particles are immersed in binary liquid
mixtures with a lower critical point. When the bath temper-
ature is kept sufficiently close to the critical temperature, even
at small illumination intensities, light absorption at the cap
leads to local heating, which results in a local phase separation
and in a diffusiophoretic motion due to a concentration
gradient across the particle (Volpe et al., 2011; Buttinoni
et al., 2012). Because of the much smaller light intensities
(compared to the thermophoretic mechanisms described ear-
lier), optical forces are typically negligible. This propulsion
mechanism has recently been theoretically investigated by
Samin and van Roij (2015) and Würger (2015).
In addition to phoretic forces, Marangoni stresses can also

generate particle propulsion. Experimentally, this has been
demonstrated, e.g., in a system of water droplets (containing
bromine) suspended in an oil phase and stabilized by a
surfactant (Thutupalli, Seemann, and Herminghaus, 2011;
Schmitt and Stark, 2013). Because of the spontaneous reaction
of bromide with the surfactant (bromination), a self-sustained
bromination gradient along the drop surface is generated that
eventually leads to a Marangoni flow and thus propulsion.
A similar mechanism has also been found in pure water
droplets that are stabilized in an oil phase with surfactants
above the critical micellar concentration (Izri et al., 2014).
Capillary forces can also be exploited for self-propulsion
through local heating produced by light absorption. Using this
mechanism, asymmetric microgears, suspended at a liquid-air
interface, can spin at hundreds rpm under wide field illumi-
nation with incoherent light (Maggi, Saglimbeni et al., 2015).
Finally, we remark that there are other driving mechanisms

that do not rely on asymmetric particles, but where a
spontaneous symmetry breaking occurs. For example, the
reactive droplets studied by Thutupalli, Seemann, and
Herminghaus (2011) produce a spontaneous symmetry break-
ing of the chemical reaction, which then determines the
direction of the propulsion velocity. Izri et al. (2014) reported
the spontaneous motion in a system consisting of pure
water droplets in an oily surfactant medium. Bricard et al.
(2013, 2015) demonstrated that self-propulsion can emerge as
the result of a spontaneous symmetry breaking of the
electric charge distribution around a colloidal particle
immersed in a conducting fluid and in the presence of an
electrical field.

2. Propulsion by external fields

In addition to mechanisms based on local energy conver-
sion, a swimming motion can be achieved by the periodic
nonreciprocal geometrical deformation or reorientation of the
swimmer’s body, which can be achieved by applying some

(time-dependent) external fields that induce forces and
mechanical torques on the object. For example, the use of
a rotating magnetic field leads to the deformation of semi-
flexible rods (Dreyfus et al., 2005) and results in a movement
resembling that of biological flagella (e.g., in bacteria and
spermatozoa); a numerical study of this system was presented
by Gauger and Stark (2006). In the case of rigid but chiral
magnetic objects (propellers), a rotating magnetic field leads
to the rotation of the propeller and thus to a swimming
motion that can be fully controlled in three dimensions by
using triaxial Helmholtz coils (Ghosh and Fischer, 2009).
Alternatively, the application of vertical alternating magnetic
fields to a dispersion of magnetic microparticles at a liquid-air
interface leads to the formation of magnetic “snakes” due to
the coupling between the liquid’s surface deformation and the
collective response of the particles (Snezhko et al., 2009). An
elliptically polarized rotating magnetic field can generate the
dynamic assembly of microscopic colloidal rotors, which,
close to a confining plate, start moving because of the
cooperative flow generated by the spinning particles acting
as a hydrodynamic “conveyor belt” (Martinez-Pedrero et al.,
2015; Martinez-Pedrero and Tierno, 2015).
Forces can also be applied to microscopic objects by

excitation of ultrasound waves. Using the interaction of
suspended objects with acoustic waves, the levitation, pro-
pulsion, rotation, and alignment of metallic microrods have
been achieved (Wang et al., 2012): their directional motion is
due to a self-acoustophoretic mechanism, whose driving
strength depends sensitively on the shape asymmetry of the
microrods (e.g., the curvature at their end).
Finally, the application of alternating electric fields to Janus

particles has been predicted to lead to an unbalanced liquid
flow due to induced-charge electro-osmosis (Ramos et al.,
1998; Ajdari, 2000). Directed motion has indeed been
observed when Au-coated colloidal particles in NaCl solu-
tions are subject to uniform fields with frequencies in the
range from 100 Hz to 10 kHz (Gangwal et al., 2008).

3. Synthesis of Janus particles

Janus particles are special types of microparticles and
nanoparticles whose surfaces have two or more distinct
physical and/or chemical properties (Golestanian, Liverpool,
and Ajdari, 2007). The simplest realization is achieved by
dividing the particle into two distinct parts, each either made
of a different material or bearing different functional groups.
For example, a Janus particle may have one-half of its surface
covered by hydrophilic groups and the other half by hydro-
phobic groups. This gives the particle unique properties
related to its asymmetric structure and/or functionalization,
which can, in particular, be exploited to obtain self-
propulsion. A recent comprehensive review by Walther and
Müller (2013) covers all aspects from synthesis and self-
assembly to novel physical properties and applications of
Janus particles.
The synthesis of Janus nanoparticles requires the ability to

selectively create each side of a particle with different
chemical properties in a reliable, high-yield, and cost-effective
way. Currently, three major methods are used (Lattuada and
Hatton, 2011).
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Masking: The two main masking techniques that are
commonly employed to produce Janus particles are
evaporative deposition and suspension at the interface
between two fluid phases (Lattuada and Hatton, 2011).
In evaporative deposition (Love et al., 2002), homo-
geneous particles are placed on a surface (e.g., a cover
slip) in such a way that only one hemisphere is
exposed, typically forming a monolayer colloidal
crystal. They are subsequently placed in an evaporation
chamber, where they are covered on one side with
some materials, typically a metal (e.g., Al, Au, or Pt) or
carbon, and finally they are released in an aqueous
solution (e.g., by sonication). In the phase-separation
technique (Gu et al., 2005), the particles are placed at
the interface between two phases in a liquid environ-
ment; subsequently, one side is exposed to a chemical
that changes the particles’ properties, and finally the
Janus particles are released in a homogeneous solution.
This latter technique scales particularly well to the
nanoscale.

Self-assembly: This can be achieved by the use of block
copolymers or selective absorption (Lattuada and
Hatton, 2011). Block copolymers are made up of
blocks of different polymerized monomers (Erhardt
et al., 2001). Competitive absorption involves two
substrates that phase separate due to one or more
opposite physical or chemical properties. When these
substrates are mixed with colloidal particles (e.g., Au
nanoparticles), they maintain their separation and form
two phases with the particles in the middle (Vilain
et al., 2007).

Phase separation: This method involves the mixing of two
or more incompatible substances that then separate into
their own domains while still part of a single nano-
particle. This method can produce Janus nanoparticles
made of two inorganic or organic substances (Carbone
and Cozzoli, 2010; Lattuada and Hatton, 2011).

Nonspherical Janus particles with simple shapes, e.g., rods
and cylinders, can be produced with methods similar to
the ones discussed previously. For example, in the block-
copolymer method, the production of Janus spheres, cylin-
ders, sheets, and ribbons is possible by adjusting the molecular
weights of the blocks in the initial polymer and also the degree
of cross-linking. More complex shapes can be obtained using
microphotolithography, which has been used to produce the
L-shaped particles shown in Figs. 3(c) and 3(d) (Kümmel
et al., 2013), or glancing angle deposition, which has been
used to produce the chiral colloidal propellers shown in
Fig. 1(f) (Ghosh and Fischer, 2009).

III. HYDRODYNAMICS

As seen in Sec. II, active particles use a wide variety of
mechanisms to achieve self-propulsion in liquid environ-
ments. In fact, often they are microswimmers that are capable
of perturbing the surrounding fluid in a way that generates a
net displacement of their own body. The structure of the
dynamical laws governing fluid motion is therefore crucial to

understand propulsion of individual swimmers. Furthermore,
as an active particle moves in a fluid, a complex fluid flow
pattern travels along with it and can influence the motion of
nearby active or passive floating bodies. Moreover, whenever
this flow pattern is distorted from its bulk structure by the
presence of obstacles like confining walls, swimming speed,
and direction can change leading to phenomena like swim-
ming in circles or trapping by obstacles. The present section is
structured in four main parts discussing hydrodynamic
effects involved in generating propulsion in the bulk of a
fluid (Sec. III.A), particle-particle hydrodynamic interactions
(Sec. III.B), hydrodynamic couplings to confining walls
(Sec. III.C), and swimming in a non-Newtonian medium
(Sec. III.D).

A. Microhydrodynamics of self-propulsion

Swimming at the macroscopic scale heavily relies on the
inertia of the surrounding fluid. For example, one of the most
simple swimming mechanisms is that employed by scallops,
which swim by opening and closing their two valves, as
shown in Fig. 7. However, swimming strategies of this kind,
i.e., involving a reciprocal shape deformation, are doomed to
failure at microscopic scales (Purcell, 1977) (at least in purely
viscous liquids, as seen in Sec. III.D), where fluid flows obey
kinematic reversibility.
Slow flows of incompressible viscous fluids are governed

by Stokes equations

η∇2u −∇p ¼ 0; ∇ · u ¼ 0 ; ð15Þ

where η is the fluid viscosity, u is the velocity of the flow, and
∇p is the gradient of the pressure. A flow is slow enough for
Eqs. (15) to be valid when the typical speed v ≪ vc ¼ η=ρL,
where ρ is the fluid density and L is a characteristic length
scale. The value of the characteristic speed vc is on the order of
1 ms−1 for water when L ∼ 1 μm and grows as the system
size is reduced. The adimensional ratio between the two
speeds is the Reynolds number

Re ¼ v
vc

¼ ρLv
η

; ð16Þ

FIG. 7. The scallop theorem. Schematic drawing of a scallop
performing a reciprocal motion: by quickly closing its two shells,
the scallop ejects two fluid jets behind its hinge so that its body
recoils in the opposite direction; then, by slowly opening the
shells, the scallop comes back to its initial shape with little net
displacement. The scallop theorem states that such a reciprocal
motion cannot generate propulsion in a (viscous) fluid at a low-
Reynolds-number regime (Purcell, 1977). From Qiu et al., 2014.
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which is usually interpreted as the relative importance of
inertial forces in comparison with viscous forces. Generally,
Re ≪ 1 in all problems involving self-propulsion at the
microscale, where typical flow speeds rarely exceed
100 μms−1 (see Fig. 1 and Table I). Considering, for example,
an E. coli bacterium swimming in water, L ≈ 1 μm,
v ≈ 30 μms−1, η ¼ 0.001Pa s, and ρ ¼ 1000 kgm−3, so that
Re ≈ 3 × 10−5 ≪ 1.
A solid object that is dragged through the fluid by external

forces imposes a boundary condition to the flow field given by
the rigidity condition

u ¼ v þ ω × ρ; ð17Þ

where v and ω are the instantaneous translational and rota-
tional speeds of the object, and ρ is a generic point on the body
surface. The resulting flow and pressure fields can be obtained
by solving Stokes equations [Eqs. (15)] with the boundary
conditions [Eq. (17)]. By integrating the stress tensor σ ¼
ηð∇uþ∇uTÞ over the object’s boundary, one obtains the
following total force and torque acting on the body:

F ¼
I
S
σ · n̂dS ð18Þ

and

T ¼
I
S
ρ × σ · n̂dS; ð19Þ

where S is a surface enclosing the body, and n̂ is the unit
vector perpendicular to the surface. Note that, as seen later,
microswimmers are force-free and torque-free objects. From
the linearity of Stokes equation the integrations result in a
linear relationship

�
F

T

�
¼

�
A B

BT D

��
v

ω

�
; ð20Þ

where A, B, and D are tensors determined by the shape and
orientation of the object. In particular, A represents the
translational resistance tensor connecting the linear speed v
to the force F that is needed to move a body in a purely
translatory motion with speed v. Similarly,D connects angular
speed ω to the torque T in pure rotations, and B and BT

represent the coupling between rotational and translational
motion. For example, for a sphere of radius R, A ¼ 6πηRI,
D ¼ 8πηR3I, and B ¼ BT ¼ 0. In the most general case,
however, A and D are nonisotropic. Furthermore, for chiral
bodies, i.e., bodies that do not possess three mutually
orthogonal planes of symmetry, B and BT do not vanish.
Therefore, a rotating chiral body can be used as a propeller
generating a thrust force B · ω. The resistance tensor can be
calculated analytically only in very few simple cases (Kim and
Karrila, 2005). Approximation schemes with various degrees
of complexity exist for slender bodies (Lighthill, 1976).
Different schemes have been compared in the particular case
of a helical propeller by Rodenborn et al. (2013). Direct
experimental measurements of the resistance coefficients of a

real flagellar bundle is possible by using optical tweezers
(Chattopadhyay et al., 2006; Bianchi et al., 2015).
For example, swimming bacteria like E. coli use a helical

bundle of flagellar filaments as a propeller for the cell
body. The whole cell can be thought of as composed of
two rigid bodies that translate as a single rigid object but can
rotate with different speeds around a common axis. Assuming
that the only nonvanishing speed components are those lying
on the cell axis, we can write the following two scalar
resistance equations for the cell body and the flagellar
bundle:

Fb ¼ Abv ; Ff ¼ Afvþ Bfωf ; ð21Þ

where subscripts “b” and “f” refer, respectively, to cell
body or flagellar bundle. Since no external forces are applied
on the swimmer, Fb þ Ff ¼ 0 and the swimming speed is
obtained as

v ¼ Bfωf

Ab þ Af
: ð22Þ

Imposing the torque-free condition one can similarly obtain
the body rotation frequency.
The simplified picture of a microswimmer composed of two

counterrotating rigid units holds only for swimming procar-
yotes like bacteria whose flagella are passive filaments
connected to the cell body via a rotary motor (Berg, 2003).
More generally, the swimming problem can be formulated
starting from the common feature that active particles perturb
the flow field by imposing specific boundary conditions for
uðρÞ, where ρ is the position vector of a generic point on the
particle surface (Lauga and Powers, 2009). Self-propelling
particles use two main mechanisms for imposing boundary
conditions for the flow field over their surface:

(1) They can modify their shape and displace fluid at
contact with sticky boundary conditions (swimmers).

(2) They can produce a gradient in some thermodynamic
quantity resulting in a phoretic slip velocity that is
tangential to the particle surface (squirmers).

The first strategy is mainly adopted by biological active
particles that swim by waving or rotating flagella. The second
mechanism typically applies to artificial self-propelling par-
ticles, like Janus colloids, that use some form of energy stored
in the environment to maintain a stationary local gradient of,
e.g., concentration or temperature. In both cases the hydro-
dynamic swimming problem can be formulated in general as
follows:

(1) Solve Stokes equations with prescribed boundary
conditions for the flow field on the particle surface
[Eq. (17)], obtaining uðrÞ.

(2) Integrate the viscous stress over the particle surface to
get the total force and torque acting on the particle
[Eqs. (18) and (19)].

(3) Impose force-free (F ¼ 0) and torque-free (T ¼ 0)
conditions and solve for the rigid speeds v and ω.

The self-propulsion speed vðtÞ at a given time t is then a
function of the instantaneous values of the boundary speed
distribution uðρÞ evaluated at the same time t. While most
squirmers impose a stationary slip velocity on their boundary
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resulting in a constant v, all swimmers necessarily deform in a
cyclic (but not reciprocal) way resulting in a time-varying
propulsion speed that cycles with the period Tp of the shape
deformation. It can be shown that, since Stokes equations are
linear and do not have any explicit dependence on time, the

total net displacement after a cycle, i.e.,
R Tp

0 vðtÞdt, vanishes if
the shape deformation is reciprocal, i.e., if the cycle is closed
by retracing the same sequence of shapes in reverse order
(Lauga and Powers, 2009). Najafi and Golestanian (2004)
proposed a simple one-dimensional low-Reynolds-number
swimmer consisting of three spheres linked by rigid rods
whose lengths can change periodically but not reciprocally.
Recently, Bet et al. (2016) derived a generalized scallop
theorem that allows one to optimize the speed, power, and
efficiency of a swimmer by altering its geometry. As a
consequence of the scallop theorem a micron-sized scallop
cannot swim at low Reynolds number but only move back and
forth with no net displacement. Hydrodynamic reversibility,
however, breaks down in non-Newtonian fluids (see
Sec. III.D) allowing self-propulsion with reciprocal deforma-
tions (Qiu et al., 2014).

B. Particle-particle hydrodynamic interactions

Both forced colloids and active particles generate a flow
that obeys Stokes equations [Eqs. (15)] subject to the
appropriate boundary conditions for the flow field.
Although analytical solutions can be obtained only in some
very simple cases, the structure of the far-field flows can be
discussed on a general basis and, as seen in the following, can
be used to anticipate, at least qualitatively, the peculiar
interactions that active particles manifest between themselves
or with external obstacles and confining walls.
Since Stokes equations are linear, flow fields can be

conveniently expressed as the superposition of singular
solutions (Pozrikidis, 1992). The dominant singularity for
particles driven by external forces is the Stokes flow generated
by a point force, also known as the Stokeslet. For a point force
of magnitude F and direction ê the Stokeslet flow at a position
r ¼ rr̂ from the force origin is given by

usðrÞ ¼
F

8πηr
½ðê · r̂Þr̂þ ê�: ð23Þ

The corresponding field is presented in Fig. 8(a). The
magnitude of a Stokeslet decays as the inverse distance
from the force origin and describes with good approximation
hydrodynamic couplings between externally driven colloidal
particles (Meiners and Quake, 1999; Di Leonardo et al., 2007)
up to very short interparticle distances. Importantly, active
particles propelled by internal forces are instead force free so
that the leading term cannot be a Stokeslet.
The next singularity is the Stokes dipole, which can be

obtained from the Stokeslet by differentiation and represents
the far-field flow generated by two nearby and opposite point
forces. There is a close analogy with the multipolar expansion
of electric fields, although in the hydrodynamic case the field
sources are vector forces rather than scalar charges. Therefore,
while electric dipoles are represented by vectors, force dipoles
are instead tensors, which can be symmetric when the two
point forces are parallel to their separation direction, or
antisymmetric when they point in the opposite orthogonal
direction to their separation direction. However, since self-
propelled particles need to be torque free, the antisymmetric
part, that would correspond to a point torque, vanishes and the
far-field flow is usually dominated by a symmetric force
dipole where forces and separation direction are parallel with
the unit vector ê:

udðrÞ ¼
P

8πηr2
½3ðê · r̂Þ2 − 1�r̂; ð24Þ

where P is the magnitude of the force dipole having the
dimensions of force times length. In flagellated swimming
bacteria like E. coli the dipole arises from having most of the
drag on the cell body side and pushing the fluid along the
swimming direction while an opposite force is generated on
the fluid all along the rotating flagellar bundle. The resulting
flow pattern, shown in Fig. 8(b), is purely radial and pushes
fluid in the forward and backward directions, while a lateral
inward flow guarantees mass conservation. Swimmers of this

FIG. 8. Flow singularities. (a) Stokeslet corresponding to the far field of an active particle driven by an external force. (b), (c) Stokes
dipoles corresponding to active particles driven by an internal force corresponding to (b) pushers and (c) pullers, both moving
horizontally.
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kind are called pushers (P > 0) as opposed to pullers (P < 0)
like the algae Chamydomonas reinhardtii, where two waving
flagella propel a cell body that lags behind in the swimming
direction [Fig. 8(c)].4

Flows around swimming bacteria have been observed by
microparticle imaging velocimetry (Drescher et al., 2011).
The measured flow fields were well approximated by a dipole
of Stokeslet with magnitude F ¼ 0.4 pN separated by a
distance d ¼ 2 μm. The magnitude of the force is consistent
with the expected thrust force generated by the flagellar
bundle, which is connected to the swimming speed v by
F ≈ ηdv. The generated flow field is approximately vðd=rÞ2
representing a small perturbation over the free swimming
speed v of a nearby swimmer located at a distance r larger
than d. These perturbations could, however, manifest them-
selves as small couplings in the velocities of nearby swimming
cells that are advected by the flows generated by neighbors. It
was shown that, if one neglects correlations in the orientation
of nearby swimmers, velocity couplings arise from quadru-
polar terms, while the effect of dipolar flows cancels out on
average (Liao et al., 2007). Baskaran and Marchetti (2009),
starting with a minimal physical model of a stroke-averaged
swimmer in a fluid, derived a continuum description of a
suspension of active organisms that incorporates fluid-
mediated, long-range hydrodynamic interactions among the
swimmers.
Dipolar flow fields also have an associated vorticity

given by

ΩðrÞ ¼ ∇ × ud ¼
3P

4πηr3
ðê · r̂Þðê × r̂Þ: ð25Þ

Two nearby swimmers will therefore reorient each other
through advection by the vorticity field produced by the
neighbor. Since the vorticity field vanishes when either
ê · r̂ ¼ 0 or ê × r̂ ¼ 0, two possible equilibrium relative
orientations exist: the first one, where the swimming direction
is orthogonal to the separation distance, is only stable for
pushers [P > 0, Figs. 9(a) and 9(c)]. The second one, with ê
parallel to r, becomes stable for pullers [P < 0, Figs. 9(b) and
9(d)]. Interestingly, in both cases, the equilibrium relative
orientation gives rise to reciprocally attractive flows
[Eq. (24)]. The reorienting action exerted by nearby swimmers
contributes to the bending of swimming trajectories. There are
other mechanisms contributing to the reorientation of active
particles, such as Brownian rotational diffusion, tumbles in
flagellar locomotion, and cell-cell collisions through steric
forces. The first two mechanisms do not depend on density
and are always present even in diluted suspensions. In
concentrated samples, however, cell-cell scattering, through
either hydrodynamic interactions or direct contact, may
become the dominant reorientation mechanism. Often, at
those concentrations where hydrodynamic interactions
become relevant, average interparticle distances are so small

that higher-order singularities may become predominant (Liao
et al., 2007; Drescher et al., 2011).

C. Hydrodynamic coupling to walls

Active particles may behave very differently when
approaching a solid boundary. Although far-field hydrody-
namics is often capable of anticipating the correct behavior
(Spagnolie and Lauga, 2012), most reorientation dynamics
take place when the particle is in close contact with the
boundary. Near-field effects, steric interactions, and direct
flagellar contact dynamics (Kantsler et al., 2013) become
predominant in this regime giving rise to a broad range of
behaviors, from stable wall trapping [Fig. 31(b)] to wall
scattering (Fig. 10). Furthermore, active particles may exhibit
rheotaxis (i.e., movement in response to a flow) near walls
(Uspal et al., 2015a, 2015b).
Far-field predictions can be obtained considering the flow

generated by the image singularities that need to be collocated
inside a bounding wall in order to satisfy the no-slip boundary
condition at the wall surface (Spagnolie and Lauga, 2012). In
fact, the leading order effect of image singularities is quali-
tatively the same as that obtained by replacing the wall with a
specular image swimmer located on the opposite side of the
wall surface [see Figs. 9(c) and 9(d)]. Therefore, in a very
similar way as discussed for swimmer-swimmer interactions,
far-field reflected flows will align pushers in a direction
that is parallel to the wall surface and attract them to the

(a)

(c)

(b)

(d)

FIG. 9. Flow fields created by swimmers at low Reynolds
numbers. (a) Pushers have a positive force dipole (P > 0) and
induce an outgoing flow field directed along their swimming
direction (repulsion) and an incoming flow field from their sides
(attraction). In all panels, the solid red arrows represent the local
forcing from the swimmer on the surrounding fluid and the
dashed blue arrows represent the fluid flows around the swimmer.
(b) Pullers have a negative force dipole (P < 0), inducing an
incoming flow field along their swimming direction and an
outgoing flow field along their sides. (c) Two pushers on a
converging course reorient each other, tending toward a con-
figuration where they are parallel and swimming side by side (h is
the separation distance between the swimmers, and θ is the angle
between the swimmers direction and the direction normal to their
separation). (d) Two pullers on a diverging course reorient each
other, tending toward a configuration in which they are anti-
parallel and swimming away from each other. From Lauga and
Powers, 2009.

4It has been shown experimentally that the flow field around
Chamydomonas is not a simple dipole (Drescher et al., 2010; Guasto,
Johnson, and Gollub, 2010).
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wall [Fig. 11(a)]. The stable swimming direction for pullers is
parallel to the surface normal, leading again to an attractive
image flow [Fig. 11(b)].
Although far-field predictions may correctly describe how

active particles approach a wall, the actual collision dynamics
and the fate of the resulting trajectory will depend on detailed
near-field hydrodynamics and contact interactions. Swimming
bacteria like E. coli display a remarkable tendency to swim in
close contact with walls once they reach them (Frymier et al.,
1995). Hydrodynamic effects have been proposed to be at the
origin of this wall entrapment via two distinct mechanisms:
the first one is via far-field reflected flows (Berke et al., 2008;
Drescher et al., 2011) as discussed previously. The second
mechanism involves hydrodynamic torques that arise in

anisotropic bodies swimming in close contact with a wall
and leading to tilted swimming, i.e., with the cell swimming
direction pointing into the confining wall (Vigeant et al.,
2002; Spagnolie and Lauga, 2012). It has been suggested that
steric repulsion and rotational Brownian motion might be
already enough to reproduce the observed accumulation of
bacteria in the proximity of solid flat walls (Li and Tang, 2009;
Volpe, Gigan, and Volpe, 2014). However, recent experiments
have demonstrated that stable trapping is also observed around
cylindrical pillars ruling out steric effects as the sole origin for
wall entrapment in E. coli bacteria (Sipos et al., 2015). While
pusher swimmers like E. coli mostly interact with the wall
through the cell body that moves ahead of the flagella, puller
swimmers like C. reinhardtii, moving with beating flagella
ahead of the body, display more complex interaction dynamics
with confining walls (Kantsler et al., 2013; Contino et al.,
2015): near-field effects and direct ciliary contact lead to wall
scattering, rather than wall trapping, with the cells escaping
from the wall at a characteristic angle that does not depend on
the initial direction of approach to the wall. Direct flagellar
contact is also important in wall interactions for sperm cells
due to the large amplitude of flagellar waveforms (Kantsler
et al., 2013). In swimming bacteria like E. coli, the chiral
nature of the flagella, when combined with the presence of a
nearby wall, also results in a tendency to swim along clock-
wise circular trajectories above solid surfaces (Berg and
Turner, 1990; Frymier et al., 1995; Lauga et al., 2006).
Such a mechanism can be exploited to direct bacterial motions
in microchannels (DiLuzio et al., 2005), or to design micro-
fluidic devices that can sort bacteria according to their motility
or size (Hulme et al., 2008). When the boundary condition on
the wall changes from no slip on a solid wall to the almost
perfect slip on a liquid-air interface, the direction of circular
swimming is reversed (Di Leonardo et al., 2011).

D. Non-Newtonian media

Until now we have considered living microorganisms and
artificial particles swimming in Newtonian liquids at low
Reynolds numbers (Re ≪ 1). However, most biological flu-
ids, where also artificial microswimmers will be required to
operate in future envisaged biomedical applications, are

(a)

(b)

FIG. 11. Wall-induced rotation of microswimmers. A micro-
swimmer is located at a distance h from a solid surface and
oriented at an angle θ with respect to the direction parallel to the
surface: (a) pushers are reoriented hydrodynamically in the
direction parallel to the surface [equilibrium θ ¼ 0, see also
Fig. 9(c)]; (b) pullers are reoriented in the direction perpendicular
to the surface [equilibrium θ ¼ �π=2, see also Fig. 9(d)]. The
solid red arrows represent local forcing from the microswimmer
on the surrounding fluid, and the dashed blue arrows represent the
torque acting on the microswimmer. From Lauga and Powers,
2009.

(a)

(b)

FIG. 10. Scattering of microswimmers by a wall: (a) the surface scattering of Chlamydomonas reinhardtii is governed by ciliary
contact interactions (cilia manually marked in red). From Kantsler et al., 2013. (b) Time series of snapshots demonstrating the approach
to, contact with, and detachment from a wall of a self-propelled Janus particle. From Volpe et al., 2011.
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non-Newtonian (Lauga and Powers, 2009; Nelson and Peyer,
2014), e.g., blood, synovial, and cerebrospinal fluids, vitreous
humour, mucus, and saliva (Fung, 1981; Nelson and Peyer,
2014). Despite this, propulsion of microswimmers in non-
Newtonian fluids remains relatively unexplored.
Generally speaking, the physical properties of a fluid can be

described by its viscosity η, which represents the following
relationship between the shear stress τs and the local shear
velocity ∂u=∂y in a fluid along one direction x:

τs ¼ η
∂ux
∂y ; ð26Þ

where ux is the fluid velocity along the x direction and the
shear velocity is the gradient of the velocity along the
perpendicular direction y. In a Newtonian fluid, η is constant
so that the viscous stresses arising from its flow, at every point,
are linearly proportional to the local shear rates. Non-
Newtonian media, instead, are any fluids whose flow proper-
ties differ in any way from this case (i.e., where η changes):
the viscosity η can change in different ways, and different
types of non-Newtonian fluids can be defined, such as shear-
thinning and shear-thickening fluids where η decreases or
increases with the shear rate, as well as viscoelastic and
viscoplastic fluids. For example, most of the fluids in the
human body are viscoelastic (e.g., sputum, mucus, and
vitreous humor) (Fung, 1981) with many of them featuring
a shear-thinning behavior (e.g., saliva, blood, and synovial
fluid) (Nelson and Peyer, 2014; Qiu et al., 2014). In the study
of viscoelastic fluids, it is often useful to introduce the
Weissenberg number, which is a dimensionless number that
compares the viscous forces to the elastic forces; it is often
given as

Wi ¼ _γλ; ð27Þ

where _γ is the shear rate and λ is the stress relaxation time of
the fluid.
The behavior of non-Newtonian media is different from that

of simple Newtonian media, such as water, because of their
very different microscopic organization, which typically
includes the presence of molecules, microparticles, or other
complex macromolecular structures. The motion of swimmers
will, therefore, also be affected by the physical properties of
the fluid in which they are placed: early experiments, for
example, showed that E. coli and other types of bacteria can
swim more efficiently in high-viscosity gel-forming fluids
rather than in water (Schneider and Doetsch, 1974; Berg and
Turner, 1979). The explanation of these experiments is still a
matter of debate: the current standard model postulates the
presence of bacteria-sized pores that allow them relative easy
passage (Berg and Turner, 1979; Magariyama and Kudo,
2002). More recent studies suggest that the fast-rotating
bacterial flagellum gives rise to a lower local viscosity in
its vicinity (Martinez et al., 2014). In the low-Reynolds-
number regime, Newtonian fluids are characterized by instan-
taneous and time-reversible flows that are described by the
time-independent Stokes equations. As seen with the scallop
theorem, a consequence of this fact is that a swimmer will not
be able to move if it is just executing geometrically reciprocal

motion (i.e., a sequence of changes in its shapes that are
perfectly identical when time reversed) (Purcell, 1977):
locomotion at low Reynolds numbers therefore generally
requires nonreciprocal actuation of the swimmer that is
achieved in nature, e.g., by breaking time-reversal symmetry
with rotating helices (Turner, Ryu, and Berg, 2000) and with
cilia that show flexible oarlike beats (Brokaw, 1965).
However, theoretical and experimental work showed that
breaking time-reversal symmetry is no longer a requirement
in non-Newtonian fluids (Fu, Wolgemuth, and Powers, 2009;
Keim, Garcia, and Arratia, 2012; Montenegro-Johnson,
Smith, and Loghin, 2013; Qiu et al., 2014), where motion
by periodic body-shape changes is possible when backward
and forward strokes occur at different rates (Montenegro-
Johnson, Smith, and Loghin, 2013; Qiu et al., 2014). Since the
scallop theorem no longer holds in complex non-Newtonian
fluids, it is possible to design and build novel swimmers that
specifically operate in these complex fluids: for example, fluid
elasticity can be used to either enhance or retard propulsion in
non-Newtonian fluids (Lauga, 2007; Leshansky, 2009; Teran,
Fauci, and Shelley, 2010; Liu, Powers, and Breuer, 2011;
Espinosa-Garcia, Lauga, and Zenit, 2013; Schamel et al.,
2014). Qiu et al. (2014), in particular, reported a symmetric
“microscallop” [Fig. 12(a)], a single-hinge microswimmer
that can propel itself in a shear-thickening fluid by reciprocal

(a)

(b)

(c)

FIG. 12. Reciprocal swimming in a low-Reynolds-number non-
Newtonian medium. (a) A 3D model of a submillimeter-sized
“microscallop” capable of swimming in a low-Reynolds-number
non-Newtonian fluid. (b), (c) Displacement of the microscallop in
a shear-thickening and a shear-thinning fluid. (b) Forward net
displacement of the microscallop in a shear-thickening fluid and
asymmetric actuation (blue curve). The image is a time-lapse
composite picture of five frames at intervals of 50 s, with the net
displacement occurring along the x direction. (c) Corresponding
image of the microscallop in shear-thickening fluid with sym-
metric actuation (blue curve) and no discernible net displacement.
From Qiu et al., 2014.
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motion even at low Reynolds numbers when the activation is
asymemtric [Fig. 12(b)], but not when it is symmetric
[Fig. 12(c)].

IV. INTERACTING PARTICLES

We now move toward the study of interacting active
particles. This is both fundamentally interesting and important
in terms of potential applications because various classes of
active particles, such as bacteria and artificial microswimmers,
are more realistically found in crowded environments, where
they interact with both passive particles and other active
particles. We first give an overview of the kinds of interactions
that take place between colloidal particles, also introducing
swarming models (Sec. IV.A). We then proceed to review two
main aspects: we first discuss dense suspensions of active
Brownian particles, where interesting transitions, such as
clustering and self-jamming, can appear as a function of
particle density or activity (Sec. IV.B). We then discuss the
interactions between active and passive particles, where
tantalizing phenomena, such as phase-separation and active-
depletion forces, can emerge (Sec. IV.C).

A. Classification of particle interactions

As seen in Secs. II and III, the dynamical properties of
isolated active particles are rather well understood and can be
modeled in various ways, ranging from particle-based descrip-
tions, where active particles can be assumed to be point
particles, disks, ellipses, or otherwise-shaped objects that obey
an overdamped equation of motion, to full continuum-based
models, where hydrodynamic effects are explicitly taken into
account. In all these models, the motion of a single active
particle in a homogenous environment is ballistic at short
times and diffusive at long times. However, the presence of
other active particles in the surroundings leads to mutual
interactions, which not only change the single-particle dynam-
ics but also lead to the emergence of cooperative phenomena
such as dynamic clustering or phase separation.
Active particles are often subject to the same interaction

forces as particles at thermal equilibrium, but the final effects
on the particles’ dynamics can be strikingly different. We start
by summarizing the most important effective interactions
between passive colloids. First, colloidal stabilization can
be achieved sterically, which is modeled by an excluded-
volume interaction such that two colloids are treated as
impenetrable objects that cannot overlap in space. Steric
interactions are often numerically implemented in the follow-
ing way: when a displacement makes two particles overlap,
the particles are separated by moving each one-half the
overlap distance along their center-to-center axis. In the
numerical implementation of Brownian dynamics simula-
tions, the hard-core interaction is typically softened to avoid
discontinuities at overlap. Therefore soft repulsive inter-
actions, such as a steep Yukawa model or a truncated-and-
shifted Lennard-Jones potential, are frequently employed to
describe steric interactions. With the necessary adjustments,
these considerations can be extended to particles with more
complex shapes (Kirchhoff, Löwen, and Klein, 1996).
Second, charge-stabilized suspensions are described by the

traditional Derjaguin-Landau-Verwey-Overbeek (DLVO)
theory (Derjaguin, 1941; Verwey, 1947), which involves a
repulsive electrostatic part (often described by an effective
pairwise screened Coulomb interaction) and an attractive part
stemming from mutual van der Waals interactions. Other
kinds of interactions can also emerge such as hydrodynamic
interactions (discussed in Sec. III).
More complex models for the interactions can be

considered for nonspherical particles by adding torques,
bending effects, or rotations, which affect the direction of
the propulsion or motor force (Vicsek and Zafeiris, 2012).
Furthermore, multiple particles can be connected together by
springs or other potentials to create active polymers or active
membranes.

1. Aligning interactions, Vicsek model, and swarming

We now turn our attention to systems where there are
interactions capable of aligning the motion of active particles.
In practice, several types of interactions can lead to alignment.
For example, alignment can be the result of hydrodynamic
interactions between swimmers as seen in Sec. III.B and
Fig. 9, steric interactions between elongated particles and even
between self-propelled hard disks (Lam, Schindler, and
Dauchot, 2015), and hydrodynamics and electrostatic between
rolling colloids (Bricard et al., 2013).
Aligning interactions are particularly important in active

matter systems, as they can lead to collective motion and
swarming. One of the best-known and used collective motion
models is the Vicsek model (Vicsek et al., 1995; Czirók,
Stanley, and Vicsek, 1997). In its original version, the particles
move with a constant velocity and interact only through an
alignment term, whereby the direction of motion of particle n
is adjusted based on the average direction of motion of all
neighboring particles within a flocking radius. A generalized
version of the Vicsek model can be derived from the discrete-
time version of Eq. (4), which describes an active Brownian
particle in two dimensions, by modifying the equation for the
orientation of the particle, obtaining

xnðtþ ΔtÞ ¼ xnðtÞ þ vΔt cosφn þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DTΔt

p
ξx;n;

ynðtþ ΔtÞ ¼ ynðtÞ þ vΔt sinφn þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DTΔt

p
ξy;n;

φnðtþ ΔtÞ ¼ hφmðtÞi; ð28Þ

where the averaging is over all the particles within a flocking
radius. The Vicsek model exhibits a phase transition as a
function of increasing particle density from undirected motion
to a state where all the particles move in the same direction
and bands of particles appear (Grégoire and Chaté, 2004;
Chaté, Ginelli, Grégoire, and Raynaud, 2008; Ginelli and
Chaté, 2010; Ramaswamy, 2010; Solon, Chaté, and Tailleur,
2015). Furthermore, the Vicsek model can be modified to
include steric interactions between particles, which cause
crystallization at high densities, as well as interactions with
barriers or with a substrate (Drocco, Olson-Reichhardt, and
Reichhardt, 2012).
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B. Collective behaviors of active particles

In this section we consider dense suspensions of active
particles. First, we see how the presence of interacting active
particles can lead to the formation of clusters, also known as
“living crystals” (Sec. IV.B.1). Then, we see how the presence
of active matter can change the rheological properties of the
medium, inducing, in particular, active self-jamming
(Sec. IV.B.2) and active turbulence (Sec. IV.B.3).

1. Clustering and living crystals

A dilute suspension of passive colloidal particles does not
spontaneously form clusters unless there are strong attractive
interactions. This is nevertheless possible in suspensions of
active particles even in the presence of purely repulsive
interactions. This was first predicted theoretically (Tailleur
and Cates, 2008; Fily and Marchetti, 2012; Redner, Baskaran,
and Hagan, 2013) and was recently observed experimentally
(Buttinoni et al., 2013; Palacci et al., 2013).
A simple qualitative explanation of this phenomenon is

shown in Figs. 13(a)–13(d): when two active particles collide,
they block each other due to the persistence of their motion
[sequence of Figs. 13(a) to 13(b)]. Such a two-particle cluster

breaks when one of the two particles points away, which
happens on a time scale comparable to the particle reorienta-
tion time [e.g., the rotational diffusion time τR given by
Eq. (2)] [Fig. 13(c)]. Since the mean time between collisions is
controlled by the particle speed and density, depending on
these parameters another particle might collide before the two-
particle cluster has broken, forming a three-particle cluster
[Fig. 13(d)]. This leads to metastable clusters of a few particles
or, if the mean collision time falls below a certain value, to the
growth of ever larger clusters via the setting of a dynamical
instability.
These qualitative considerations have in fact been

confirmed by experiments where one observes the formation
of clusters at intermediate particle densities (Theurkauff et al.,
2012; Ginot et al., 2015) [see also the theoretical work
by Pohl and Stark (2014, 2015)]. Because of the steady
particle collisions, these clusters are subjected to strong
changes in size and shape with their average size increasing
with the particle activity. Similar dynamic clusters of finite
size were reported for hematite swimmers, as shown in
Figs. 13(e)–13(h) (Palacci et al., 2013): in these experiments,
the presence of attractive diffusiophoretic interactions could
be directly measured. Comparison of the experiments with
simulations suggested the presence of a diffusiophoretic
aggregation mechanism which was caused by the interaction
of the concentration profiles around each particle.
Experiments with active suspensions where diffusiopho-

retic interactions are negligible also show clustering and phase
separation into dense clusters and a dilute gas phase at higher
particle concentrations, as shown in Figs. 13(g)–13(k)
(Buttinoni et al., 2013). These experimental observations
were corroborated by numerical simulations of a minimal
model, where only pure (short-ranged) repulsive interactions
between the particles were considered and the behavior
rationalized in terms of the self-trapping of active particles
(Bialké, Löwen, and Speck, 2013).
The formation of active crystals was also observed as the

result of collective dynamics of fast swimming bacteria
(X. Chen et al., 2015; Petroff, Wu, and Libchaber, 2015).
Theoretical work has highlighted the connection between

clustering and phase separation. Tailleur and Cates (2008)
introduced the concept of motility-induced phase separation
[for a recent review, see Cates and Tailleur (2015)]. Assuming
a density dependent motility vðϕÞ, there is an instability
from a perturbed homogeneous suspension of swimmers
if the gradient of dvðϕÞ=dϕ is sufficiently negative such
that ½dvðϕÞ=dϕ�=vðϕÞ < −1=ϕ. Microscopic approaches
combined with an instability analysis start from the
Smoluchowski equation (Bialké, Löwen, and Speck, 2013).
For large length scales, clustering of active Brownian spheres
can be mapped onto phase separation of a passive system with
attractive interactions (Speck et al., 2014; Cates and Tailleur,
2015).
We finally remark that hydrodynamic near fields acting

between squirmers can play a crucial role in determining their
aggregation and collective motion (Zöttl and Stark, 2014).
Interestingly, in the presence of a harmonic trapping potential,
they can form a self-assembled fluid pump at large enough
Péclet numbers (Hennes, Wolff, and Stark, 2014).

(a)

(e) (f) (g) (h)

(k)( j)(i)

(b) (c) (d)

FIG. 13. Clustering and living crystals. Qualitative explanation
of the clustering process: (a) when two active particles collide
head on, (b) they block each other and form a two-particle cluster;
(c) the cluster breaks apart on the time scale of the rotational
diffusion; and (d) depending on the particle speed and density,
another particle might collide before the two-particle cluster has
broken apart and, thus, the cluster grows into a three-particle
cluster. (e)–(h) Clusters assembled from a homogeneous distri-
bution of active particles (solid area fraction ϕ ¼ 0.14). The false
colors show the time evolution of particles belonging to different
clusters. The clusters are not static but rearrange, exchange
particles, and merge. From Palacci et al., 2013. (i)–(k) Consecu-
tive snapshots of a cluster of active Janus particles. The small
dark gray (red) arrows indicate the projected orientations of the
caps. Particles along the rim mostly point inward. The particle
indicated by the large black arrow in (i) leaves the cluster (j) and
is replaced by another particle (k). From Buttinoni et al., 2013.
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2. Self-jamming and active microrheology

Jamming occurs when the density of a loose ensemble of
particles such as grains or bubbles becomes high enough that
the system can support a shear as if it were a solid. This
phenomenon has been intensely studied in the contexts of
granular matter, colloids, and emulsions (Van Hecke, 2010;
Berthier, Jacquin, and Zamponi, 2011; Coulais, Behringer,
and Dauchot, 2014). In certain cases jamming has been shown
to have properties consistent with a phase transition (Liu and
Nagel, 2010; Reichhardt and Olson-Reichhardt, 2014c). It is
thus interesting to ask whether active matter systems can
exhibit jamminglike features in the dense limit.
It might seem that increasing the activity would tend to

suppress jamming. However, as seen in Sec. IV.B.1, active
matter systems can form a self-clustering state in which the
particles inside a cluster are locally jammed. Henkes, Fily, and
Marchetti (2011) considered the active jamming of self-
propelled soft disks. They observed an aligned phase at
low densities and a transition to a jammed phase for higher
densities. Even within the jammed state, the activity induces
large correlated motions of the particles. Berthier and Kurchan
(2013) and Berthier (2014) analyzed the collective dynamics
of self-propelled particles in the high-density regime, where
passive particles undergo a kinetic arrest to an amorphous
glassy state, and found that the critical density for dynamic
arrest continuously shifts to higher densities with increasing
activity.
One method for exploring the onset of jamming in a

(passive or active) system is through microrheology. A probe
particle is driven through a medium of other particles, and
changes in the effective viscosity (or fluctuations of the probe
motion) can be used to quantify changes in the medium
(Squires and Brady, 2005; Candelier and Dauchot, 2009;
Olson-Reichhardt and Reichhardt, 2010): if the medium is
gaslike [Fig. 14(a)], the effective viscosity felt by the probe
will be well defined with relatively small fluctuations, while if
the particles in the medium are jammed [Fig. 14(b)], the
effective viscosity will fluctuate more strongly and eventually
acquire a dichotomic distribution (corresponding to motion

either in the gas or in the solid phase of the active particle
solution).
Foffano et al. (2012) numerically studied a colloid driven

through an active nematic bath, finding that the drag on the
colloid was non-Stokesian and not proportional to the radius
of the colloidal particle. They even observed instances of
negative drag in which the particle moves in a direction
opposite to an externally applied driving force.
Reichhardt and Olson-Reichhardt (2015) numerically stud-

ied a probe particle driven with a fixed external driving force
Fd through a bath of run-and-tumble disks whose run length is
fixed. At low densities (ϕ ≈ 0.2), the active particles are in a
liquid state [Fig. 14(a)], while as the density increases, there is
a transition to a phase-separated or clustered state [Fig. 14(b)
for ϕ ¼ 0.5]. Previous studies of an active probe particle near
a jamming transition also showed that the probe particle
exhibits avalanche behaviors, which were argued to provide
evidence that the jamming transition is a continuous phase
transition with critical properties (Mognetti et al., 2013;
Redner, Baskaran, and Hagan, 2013). In passive systems,
jamming is associated with a specific critical density ϕc, while
in active systems the clustered states self-organize into locally
jammed regions with local density ϕc, indicating that active
systems can exhibit critical fluctuations well below the bulk
jamming density of passive systems.
Even though the results available until now are only

numerical, it should be possible to translate these to experi-
ments. For example, it is in principle experimentally feasible
to study the drag on a driven probe particle placed in an active
bath of swimming bacteria or active colloids as the bath
conditions are varied.

3. Active turbulence

A particularly interesting manifestation of collective behav-
ior in microscopic active matter systems is the emergence of
turbulent motion with the continuous formation and decay of
whirls, jets, and vortices in dense solutions of active particles
(Mendelson et al., 1999; Dombrowski et al., 2004; Riedel,
Kruse, and Howard, 2005; Cisneros et al., 2007; Saintillan
and Shelley, 2007; Sokolov et al., 2007; Breier et al., 2014).
The observation of active turbulent patterns in a microscopic
active system can be traced back to the experimental work of
Mendelson et al. (1999), who observed the organization of
swimming cells of Bacillus subtilis into short-lived dynamic
patterns. The formation of these patterns seems to be ubiqui-
tous among active matter systems since similar active turbu-
lence has been reported in other active systems on widely
varying length and time scales, from suspensions of micro-
tubules, filaments, and molecular motors (Schaller et al.,
2010; Sanchez et al., 2012; Sumino et al., 2012) to topological
defects in nematic vesicles (Keber et al., 2014), vortices in
active nematics (Giomi, 2015), agitated granular matter
(Narayan, Ramaswamy, and Menon, 2007), and schools of
fish and flocks of birds (Vicsek and Zafeiris, 2012).
Normally turbulence is a consequence of inertia, which is

usually negligible at micrometric and smaller length scales;
hence, the active turbulence seen in the microscopic active
systems needs a different explanation, although, to date, a
unified description of the formation and structure of these

(a) (b)

FIG. 14. Self-jamming. (a) Particle locations for an active matter
system [dark gray (blue) particles] in a uniform liquid state at
density ϕ ≈ 0.2 with an externally driven probe particle [light
gray (red) particle]. The arrow indicates the direction of the probe
driving force Fd. (b) Phase-separated cluster state at ϕ ≈ 0.5,
consisting of a high-density phase with local crystal ordering
coexisting with a low-density liquid phase. From Reichhardt and
Olson-Reichhardt, 2015.
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patterns remains lacking (Ishikawa et al., 2011; Wensink
et al., 2012; Dunkel et al., 2013). The full characterization of
the active turbulent spectra needs first a clear justification of
power-law scaling over several decades and the corresponding
derivation of new classes of nonuniversal exponents; an
important step forward in this direction was recently done
by Bratanov, Jenko, and Frey (2015).

C. Mixtures of active and passive particles

In this section we consider the interaction between passive
and active particles. We start by considering the effect that
relatively few active particles can have on the properties of a
solution of passive particles (Sec. IV.C.1). We then consider
the case of a mixture with similar numbers of active and
passive particles, where one can observe phase separation and
turbulent behaviors (Sec. IV.C.2). Afterward, we consider the
limit where a few passive particles are immersed in a dense
suspension of active particles: we therefore introduce the
concept of active bath (Sec. IV.C.3), active-particle-powered
directed motion and gears (Sec. IV.C.4), and active depletion
and active-depletion forces (Sec. IV.C.5). Finally, we consider
the role of the shape and flexibility of the passive particles on
the effects of an active bath (Sec. IV.C.6). Interesting reviews
on some aspects of the topics covered in this section can be
found in Bialké, Speck, and Löwen (2015), Cates and Tailleur
(2015), and Elgeti, Winkler, and Gompper (2015).

1. Active doping

Doping of colloidal suspensions with a very small amount
of active particles can strongly influence their properties and
dynamics.
Ni, Cohen Stuart, and Dijkstra (2013) and Ni et al. (2014)

showed with numerical simulations that the crystallization of
hard-sphere glasses can be dramatically promoted by doping
the system with small amounts of active particles.
Kümmel et al. (2015) demonstrated with experiments and

numerical simulations that the structure and dynamics of a
suspension of passive particles is strongly altered by adding a
very small (<1%) number of active particles. Figure 15
illustrates the typical temporal changes in a colloidal suspen-
sion when doped with active particles; the active particles herd
the passive particles favoring the formation of metastable
clusters. Above a minimum passive particle concentration, it is

possible to observe the formation of isolated dynamic clusters
of passive colloids, which are surrounded by active particles.
At higher passive particle concentrations, such activity-
induced clusters start to merge and undergo further compres-
sion. When exceeding the threshold for spontaneous
crystallization, active particles are found to accumulate at
the interfacial regions between crystalline domains, where
they lead to surface melting.
Using numerical simulations, van der Meer, Filion, and

Dijkstra (2016) showed that active dopants can provide a route
to removing grain boundaries in polycrystals: since, as we
have seen, active dopants both generate and are attracted to
defects, such as vacancies and interstitials, they tend to cluster
at grain boundaries; thus, the active particles both broaden and
enhance the mobility of the grain boundaries, causing rapid
coarsening of the crystal domains. Finally, the remaining
defects can be made to recrystallize by turning off the activity
of the dopants, resulting in a large-scale single-domain crystal.

2. Phase separation and turbulent behavior

A few numerical studies looked into the behavior of dense
mixtures with approximately comparable numbers of both
active and passive particles. These investigations have
reported the emergence of interesting novel phenomena
including active-passive segregation between rodlike particles
(McCandlish, Baskaran, and Hagan, 2012), emergence of
flocking and turbulence (Hinz et al., 2014), and phase
separation (Yang et al., 2012; Das et al., 2014; Yang,
Manning, and Marchetti, 2014; Farage, Krinninger, and
Brader, 2015; Stenhammar et al., 2015; Takatori and
Brady, 2015; Tung et al., 2016).
Su, Wang, and I (2015) performed a numerical study of

self-propelled rods interacting with passive particles where the
passive particles also interact with each other via a Yukawa
repulsion that can be tuned from weak to strong. When the
coupling between the passive particles is weak, they feature a
turbulent behavior, while a strong coupling suppresses the
turbulent behavior and allows the formation of a nearly
triangular lattice.

3. Active baths

A passive particle is in an active bath when it is in an
environment where a wealth of active particles are present,
e.g., motile bacteria, as shown in Fig. 16(a) (Wu and

(a) (b) (c) (d)

FIG. 15. Doping of a passive particle solution with active particles. Experimental snapshots of the temporal evolution of a mixture of
passive (ϕp ¼ 0.40) and active (ϕa ≈ 0.01) particles at (a) 0, (b) 600, (c) 900, and (d) 1200 s for Péclet number Pe ≈ 20. The passive
particles belonging to clusters are represented as light gray (red) circles, while those not belonging to clusters are represented as open
circles. Active particles are shown as dark gray (blue) circles and their trajectories over 300 s prior to each snapshot are represented as
solid lines. From Kümmel et al., 2015.
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Libchaber, 2000). These particles will exert nonthermal forces
on the passive object so that it will experience nonthermal
fluctuations and will behave widely different from a passive
Brownian particle in a thermal bath. For example, a passive
colloidal particle in a dense bacterial bath behaves like an
active particle due to multiple interactions with the self-
propelled bacteria: the measured mean square displacements
indicate superdiffusion at short times and normal diffusion at
long times (Wu and Libchaber, 2000), as shown in Fig. 16(b).
However, the characteristic time at which this transition occurs
is not related to the rotational diffusion, but rather to the
density and activity of the bacteria acting as active particles.
The long-time diffusivity of passive tracers can be orders of
magnitude larger than their thermal counterparts (Wu and
Libchaber, 2000; Miño et al., 2011) and also displays
exponential tails in the distribution of displacements
(Leptos et al., 2009; Lin, Thiffeault, and Childress, 2011).
Active particles in the bath can contribute to the enhanced
diffusivity of passive tracers through both hydrodynamic
interactions (Grégoire, Chaté, and Tu, 2001; Thiffeault and
Childress, 2010; Lin, Thiffeault, and Childress, 2011; Pushkin
and Yeomans, 2013, 2014) and direct contact forces
(Grégoire, Chaté, and Tu, 2001; Valeriani et al., 2011).
The presence of an active bath can also significantly

influence the microscopic thermodynamics of a particle.
For example, Argun et al. (2016) considered the applicability
of Jarzynski equality in the presence of an active bath, finding
that it fails because of the presence of non-Boltzmann
statistics. This observation points toward a new direction in
the study of nonequilibrium statistical physics and stochastic
thermodynamics, where also the environment is far from
equilibrium.
Moving a step farther, it is also interesting to consider

the interactions that emerge between passive particles in an
active bath. Angelani et al. (2011) conducted simulations and
experiments of passive particles immersed in a bath of run-
and-tumble swimming bacteria. Figure 17(a) shows a

snapshot of the simulation where the bacteria are represented
as spherocylinders with white-colored “heads” indicating their
direction of swimming and the passive particles are modeled
as spheres. Figure 17(b) shows a corresponding experimental
snapshot. As the level of activity of the bacterial bath
increases, a short-range “attraction” emerges between passive
particles as evidenced by a pronounced peak in the radial
distribution function in Fig. 17(c). Figure 17(d) indicates
the radial distribution function obtained in experiment, in
good agreement with the simulation. The origin of this short-
range attraction is a nonequilibrium effect arising from
the persistent character of the fluctuating forces exerted by
bacteria.

4. Directed motion and gears

Differently from spherical particles, asymmetric passive
particles placed in an active bath can feature a directed motion.
For example, we consider the case of a V-shaped wedge, such
as the one shown in Fig. 18. If the wedge is surrounded by
passive particles [Fig. 18(a)], there is no directed motion,
because the pressure due to the passive particles is equal on all
sides of the object. However, in an active bath, the active
particles accumulate in the cusp of the wedge, producing its
net propulsion [Fig. 18(b)]. This simple model system has
been studied by various groups both numerically and exper-
imentally (Angelani and Di Leonardo, 2010; Mallory,
Valeriani, and Cacciuto, 2014; Wensink et al., 2014;
Smallenburg and Löwen, 2015). Angelani and Di Leonardo
(2010) employed asymmetric wedges to create bacteria-
powered shuttles. Kaiser et al. (2014) performed experiments
and simulations of a passive wedge placed in a bacterial bath
and found that the wedge can undergo directed motion.
Maximal efficiency occurs for an intermediate bacterial
density, so that a turbulent bath maximizes the speed of the
carrier. This can be qualitatively understood by considering
two limits: for high dilution, the pushing effect is small since
only few swimmers are contributing. For high density, the bath

(a) (b)

FIG. 16. Superdiffusion of passive particles in an active bath. (a) Experimental setup and fluorescence image of a solution with E. coli
mixed with 10-μm polystyrene spheres. (b) MSDmeasurements of polystyrene spheres with diameters 4.5 (squares) and 10 μm (circles)
at a particle concentration of ≈10−3μ−2 in an active bath. The solid lines with slopes α ¼ 2.0, 1.5, and 1.0 are guides to the eyes. The two
dashed lines correspond to the thermal diffusion of 4.5-μm and 10-μm particles. From Wu and Libchaber, 2000.
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is jammed, which leaves no mobility for the carrier; hence,
there must be an optimal density that maximizes the transport
efficiency in the intermediate turbulent state. As a function of
the wedge apex angle the carrier speed attains a maximum at

about 90° (Kaiser et al., 2014). Mallory, Valeriani, and
Cacciuto (2014) numerically studied a system of asymmetric
tracers (partial circles with varied curvature) placed in a bath
of self-propelled Janus particles and found that even low
densities of active particles can induce pronounced directed
motion of the tracers. U-shaped particles were found to be
optimal to obtain enhanced transport (Smallenburg and
Löwen, 2015). Typically, the tracer speed increases with
increasing persistence time of the individual self-propelled
particles.
Going beyond a simple wedge, it is also possible to

consider self-starting cogwheels that exhibit a spontaneous
rotation when in an active bath (Angelani, Di Leonardo, and
Ruocco, 2009; Di Leonardo et al., 2010; Sokolov et al., 2010).
These bacterial-driven micromotors work as active matter
ratchets, whose key operational feature is the trapping of the
self-propelled particles in the funnel tips, against which the
particles exert their motor force. Purely thermal particles will
not accumulate in the funnel tips but will instead diffuse
uniformly throughout the system. In the active matter case, the
particles exert sufficient force on the cogwheel to move it,
indicating that active matter can be used to perform work on
appropriately shaped objects. Angelani, Di Leonardo, and
Ruocco (2009) performed a numerical study where motile
bacteria were modeled as rod-shaped particles undergoing
run-and-tumble dynamics and large mobile objects in the
shape of asymmetric gears were placed in the bacterial bath.
Figures 19(a) and 19(b) illustrate the microscopic particle-
wall interactions responsible for the rotation of the gear: in
Fig. 19(a), a particle enters the frame from the left, runs along
the wall of the gear (outlined in gray), and is shunted back into
the bulk. In Fig. 19(b), instead, a particle entering from the
right is trapped at the corner of the gear and continues
swimming into the corner, generating a torque that drives
the rotation of the gear. Thus, the active particles collect in the
inner corners of the gear teeth and produce a net torque on it,
gradually rotating it in one direction as illustrated by the plot
of the angular velocity ω versus time in Fig. 19(c), and
producing a realization of a bacteria-powered motor. When a
symmetric gear is used instead, as shown in the inset of
Fig. 19(c), it does not rotate since the forces exerted on it by
the active bath are symmetric. Di Leonardo et al. (2010)

(a)

(c)

(d)

(b)

FIG. 17. Interactions mediated by an active bath. (a) Snapshot of
a simulation of passive (spherical) particles immersed in an active
bath. The active particles are motile bacteria (represented by
spherocylinders with white heads pointing in the direction of self-
propulsion). (b) Microscopy image from experiment. The bac-
teria are visible in the enlarged image in the inset. (c) Simulated
and (d) experimental radial distribution functions gðrÞ. Typical
two-bead configurations corresponding to the first two peaks are
also shown in the insets in (c). Distances are in units of particle
diameter 2R (bacteria width is about 0.25 in such a unit). The
dashed line is the gðrÞ obtained in simulations with a mixture of
bacteria interacting with only one of the particles, i.e., without
depletion. From Angelani et al., 2011.

(a) (b)

FIG. 18. Motion of a passive wedge in an active bath. (a) If the
wedge is surrounded by passive particles, there is no directed
motion, because the pressure due to the passive particles is equal
on all sides of the object. (b) However, in an active bath, the active
particles accumulate in the corner of the wedge, producing its net
propulsion.

Clemens Bechinger et al.: Active particles in complex and crowded …

Rev. Mod. Phys., Vol. 88, No. 4, October–December 2016 045006-24



confirmed these results experimentally as shown in Fig. 19(d),
showing that an asymmetric gear rotates. Sokolov et al. (2010)
also performed experiments on asymmetric gears placed in a
bath of swimming bacteria and emphasized that the collective
effect of many swimming bacteria can considerably enhance
the rotation rate. At high bacteria concentrations, however, the
motility of the bacteria decreases, causing a decrease in the
rotation rate of the gear. Rectification of asymmetric gears has
also been studied for the case where the active particles are
small robots (Li and Zhang, 2013) or Janus particles (Maggi
et al., 2016). In the latter case, it was shown that a perfectly
ordered micromotor can self-assemble when the edge lengths
of the microgear are properly chosen with respect to Janus
particle diameter.

5. Active depletion

Going beyond the directed motion (or rotation) that an
active bath can produce on a single passive object, it is also
interesting to consider what kind of interactions emerge
between multiple passive particles in the presence of an active
bath. We can talk about active depletion, as this case is the
natural generalization of the depletion forces arising in passive
baths (Asakura and Oosawa, 1954).
Ray, Reichhardt, and Olson Reichhardt (2014) studied one

of the simplest configurations, i.e., the case of two parallel

plates surrounded by a bath of run-and-tumble active particles.
As shown schematically in Fig. 20(a), the plates are separated
by a distance d and the net force acting on the plates can be
measured as d is varied. The active particles are not allowed to
interact with each other but only with the walls, corresponding
to a very low active particle density regime.5 Particles can
enter the region only between the plates by approaching from
the sides over a limited range of angles, which becomes more
limited as d decreases. In contrast, particles can reach the outer
edges of the plates from any angle. This generates an effective
active-depletion force that pushes the two plates together.
It is also possible to exploit this shadowing effect by
constructing very long walls with a very small aperture in
order to preferentially trap particles between the two plates,
resulting in a negative (i.e., repulsive) effective force. This
opens the possibility that objects with carefully chosen
geometries, when placed in an active bath, could experience
a crossover from attractive to repulsive forces as their spacing
d diminishes, producing a tunable mimic of an interatomic
potential.

(a) (b) (c)

(d)

FIG. 19. Bacteria-driven micromotors. (a), (b) Sketch of the collision of a single bacterium with the rotor boundary: (a) bacteria coming
from the left area with respect to the normal leave the gear, while (b) bacteria from the right get stuck at the corner exerting a torque on
the rotor. The arrows represent the forces exerted by the bacteria on the rotor. (c) Angular velocity ω of the micromotor as a function of
time: the black line refers to a single run; the red (lighter) line is the average over 100 independent runs. After a short transient regime
(due to the initial configuration of bacteria), a fluctuating velocity around a mean value ω0 ≈ 0.21 rad s−1 is observed. Inset: The same as
the main plot for a symmetrically shaped micromotor, which does not rotate (on average). From Angelani, Di Leonardo, and Ruocco,
2009. (d) A nanofabricated asymmetric gear (48 μm external diameter, 10 μm thickness) rotates clockwise at 1 rpm when immersed in
an active bath of motile E. coli cells, visible in the background. The gear is sedimented at a liquid-air interface to reduce friction. The
circle points to a black spot on the gear that is used for visual angle tracking. From Di Leonardo et al., 2010.

5Ray, Reichhardt, and Olson Reichhardt (2014) also considered
the effect of including particle-particle interactions in the dilute limit
and found that the attraction between the plates persists but is reduced
in magnitude.

Clemens Bechinger et al.: Active particles in complex and crowded …

Rev. Mod. Phys., Vol. 88, No. 4, October–December 2016 045006-25



Ni, Cohen Stuart, and Bolhuis (2015) studied a similar
geometry consisting of two plates and active particles mod-
eled as repulsively interacting colloidal particles whose
direction of motion undergoes a gradual rotational diffusion
rather than sudden run-and-tumble changes. For a density of
ϕ ¼ 0.4, well below the passive crystallization density of
ϕ ¼ 0.9, they found that the force between the plates has an
oscillatory nature, with a net repulsive force. This effect arises
due to the formation of a bridge between the two plates
composed of a densely packed, partially crystalline cluster of
active particles, while in the bulk no clusters are present, as
illustrated in Figs. 20(b)–20(e). As seen in Sec. IV.B.2, in
interacting active matter systems without walls or obstacles,
there is a transition from a liquid state to a phase-separated
cluster state when the particle density or activity level is high
enough. The walls act as nucleation sites for clusters of active
particles even for particle densities well below the clean
phase-separated regime. When the nucleated clusters grow
large enough, they form a bridge between the two walls and
the repulsive interactions between the particles in the cluster
produce a net repulsive force between them. When the spacing
d between the plates is large enough, the bridge can no longer
span the two plates and the net force between the plates is
strongly reduced. Oscillations of the force arise from the
crystalline ordering of the particles between the walls: due to
the finite radius of the particles, certain values of d are
commensurate with integer numbers of particle diameters and
at these spacings well-ordered crystals can form between the
plates, producing a stronger effective plate-plate repulsion. Ni,
Cohen Stuart, and Bolhuis (2015) also considered the dilute
limit and found an exponential attractive interaction between
the walls, similar to that obtained by Ray, Reichhardt, and
Olson Reichhardt (2014). The magnitude and range of the
force increase with increasing self-propulsion. Ni, Cohen
Stuart, and Bolhuis (2015) also observed that the attraction
arises due to a reduction of the particle density between
the walls.
Similar effects have also been considered for two spherical

objects immersed in an active bath (Das et al., 2014; Harder
et al., 2014). Here the concept of swim pressure has turned out
to be helpful (Takatori, Yan, and Brady, 2014; Smallenburg

and Löwen, 2015; Solon, Fily et al., 2015; Solon, Stenhammar
et al., 2015; Yan and Brady, 2015). Understanding the wall
curvature dependence of the swim pressure gives access to a
general theory of depletion in an active bath, so that the
anaytical Asakura-Oosawa model for a thermal noninteracting
bath can be appropriately generalized to the active case
(Smallenburg and Löwen, 2015). For example, Harder et al.

)2014 ), using numerical simulations, considered the inter-
actions between large objects immersed in an active bath, as
shown in Fig. 21(a), and found that the shape of the objects
plays an important role in determining the polarity of the force:
as shown in Fig. 21(b), there is an attractive force between two
interacting passive disks due to a depletion effect even when
the active motor force is null (i.e., Fa ¼ 0), while when the
disks are active (i.e., Fa ≠ 0), the force between them becomes
repulsive. In this case, the repulsion arises due to the
accumulation of active particles in the corner regions between
two closely spaced disks. The active particles generate a net
outward force that pushes the disks apart. When the disks are
inactive, the accumulation of active particles in the corners
does not occur. When the large passive particles are rod shaped
rather than disk shaped, there is an attractive force between the
rods that increases with increasing activity. The case of parallel
rods is then similar to the Casimir geometry in the dilute limit
where attractive forces arise.
We remark that the basic notion of active depletion is that

the presence of obstacles in an active bath causes guided
motion of the active particles along the surface of the
obstacles, leading to concentration gradients of the bath
particles. By contrast, for passive depletion, the obstacles
cause gradients by impeding the paths of the bath particles,
once the obstacles get close to each other. Ray, Reichhardt,
and Olson Reichhardt (2014) provided a clean demonstration
of depletion which is purely active, with no passive
component. In fact, the active particles have zero size and,
therefore, passive depletion must play no role, because zero-
size particles cannot be excluded by any obstacle.
There are also many other types of fluctuation-induced

force effects that occur in active matter systems and can
depend on the shape or flexibility of both the active and
passive particles. For example, Parra-Rojas and Soto (2014)

(a) (b) (c) (d) (e)

FIG. 20. Active-depletion interactions between two plates in an active bath. (a) A schematic of the system containing run-and-tumble
particles (spheres) with some particle trajectories indicated by lines and arrows. The run length is Rl. The two parallel walls (bars) of
length l are separated by a distance d. When a particle moves along a wall, it imparts a force against the wall. From Ray, Reichhardt, and
Olson Reichhardt, 2014. (b)–(e) Typical snapshots of systems for density distributions with a wall-to-wall distance d=R equal to (b) 2.1,
(c) 5, (d) 10, and (e) 20, where R is the radius of the active particles. If the particles are modeled as hard spheres, repulsive as well as
attractive active-depletion forces can emerge. From Ni, Cohen Stuart, and Bolhuis, 2015.
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argued that genuine Casimir effects6 can occur in micro-
swimmer suspensions since, due to the discreteness of the
particles in suspension, the fluctuations in the system depend
on the local particle density.
Adding active particles to an ensemble of passive particles

could lead to new routes of rapid self-assembly or tunable self-
assembly in which the structures could rapidly disassemble
when the activity is reduced. Additionally, many biological
systems may be exploiting active fluctuations to bring objects
together, such as within or around cells (Machta, Veatch, and
Sethna, 2012).

6. Flexible passive particles and polymers

The scaling behavior of polymers or chains under thermal
fluctuations has a rich history (de Gennes, 1979). Methods for

characterizing polymers include Flory scaling exponents in
which the extension S of a polymer goes as S ∝ Nν

m, where
Nm is the number of units along the chain (or the molecular
weight) and ν is the Flory exponent. Since polymers, chains,
and elongated structures are common in biological systems, it
is interesting to ask how polymers behave in the presence of
an active bath rather than a thermal bath.
Kaiser and Löwen (2014) performed two-dimensional

simulations of a flexible polymer chain in a bacterial bath
in a relatively diluted limit and found that for very long chains
the polymer extension follows a two-dimensional Flory
scaling. This occurs since the chains are considerably longer
than the bacterial running lengths, so the polymers sample the
bacterial bath fluctuations only at long time scales, at which
the bacteria effectively undergo regular diffusion. When the
chains are short, i.e., of the order of the bacterial running
length or smaller, the activity becomes important and the
chains are expanded or compressed by the bacterial bath.
Harder, Valeriani, and Cacciuto (2014) also performed

numerical studies of a chain in an active bath and confirmed
the results of de Gennes (1979) in the fully flexible limit. They
then added rigidity to the chains and observed a variety of new
types of behaviors, including a crumbling transition to a
metastable hairpin structure at intermediate activity levels.
This is illustrated in Fig. 22, which shows fluctuations
between a hairpin configuration and an elongated configura-
tion of the polymer. Protein folding has been a long-standing
problem and is generally understood to occur under thermal
fluctuation conditions; however, the results of Harder,

(a) (b) (c)

(d) (e) (f)

FIG. 22. Flexible chain in an active bath. (a)–(f) Sequence of
snapshots from simulations depicting a filament at various stages
of folding and unfolding. The propelling force acts along the axis
connecting the poles of the two hemispheres used to depict the
active particles in the light-to-dark gray (blue-to-red) direction.
For the sake of clarity, active particles away from the filament
have been rendered with a semitransparent filter. In (a), the
convention for the definition of the inner and outer regions of a
bent filament are explicitly shown. From Harder, Valeriani, and
Cacciuto, 2014.

(a)

(b)

FIG. 21. Emergence of repulsive active-depletion forces in active
baths. (a) Schematic representation of two colloidal disks in a bath
of active particles. The persistent forceFa acts along a defined axis,
which is shown by the arrow as well as the colors, where dark gray
(red) corresponds to the back of the particle and light gray (yellow)
to its front. (b) Effective rescaled forces hF=Fai experienced by
two colloidal disks as a function of their separation for different
values of depletant’s activity forRc ¼ 10Ra, whereRc is the radius
of the colloids andRa is the radius of the active particles (ϕ ¼ 0.1).
Rescaling is applied only as long as βFa2Ra ≠ 0. Positive values
correspond to a repulsion, which dominates any depletion-driven
interaction when the bath is active. The larger the active force and
the larger the colloid-to-depletant size ratio, the stronger the
repulsion. From Harder et al., 2014.

6When two plates are placed in some form of fluctuating
environment, confinement effects can produce an attractive force
between them that is known as the Casimir effect (Casimir, 1948;
Lamoreaux, 1997; Munday, Capasso, and Parsegian, 2009; Intravaia
et al., 2013). As a function of the spacing d between the plates,
Casimir forces typically obey a power law FC ∝ d−α, where α > 3.
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Valeriani, and Cacciuto (2014) indicate that folding configu-
rations may be facilitated by the presence of active fluctua-
tions. This suggests that active matter dynamics could play an
important role in certain biological functions such as the
folding of chains or membranes (Suzuki et al., 2015).
Therefore, this is an important direction for future study in
active matter systems (Isele-Holder, Elgeti, and Gompper,
2015; Mallory, Valeriani, and Cacciuto, 2015; Shin et al.,
2015).
Kaiser et al. (2015) numerically and analytically studied the

case of a single chain composed of active particles in the
absence of any bath, either thermal or active. They considered
a free chain, a chain confined by an external trap, and a chain
being dragged by one end, and observed Flory exponents of
ν ¼ 0.5, 0, and 1, respectively. Here the activity does not
change the Flory exponents but it does modify the prefactor of
the scaling law. When self-avoidance is added to the model,
the equilibrium Flory exponents still appear, but the chain
extension becomes nonmonotonic for increasing activity.

V. COMPLEX ENVIRONMENTS

So far we have considered only individual and collective
behaviors of active particles moving in homogeneous envi-
ronments without any physical boundaries. Another avenue of
research in active matter systems is the study of the interaction
of active particles with physical obstacles and boundaries. On
the one hand, such situations are relevant for biological
microswimmers moving in many natural habitats, from soil
and the guts to culture media such as agar (Berg, 2004). For
example, it is a tantalizing possibility that motile biological
systems might have evolved specific rules of motion that
facilitate navigation through similar complex environments.
On the other hand, understanding how to control the motion of
artificial active particles through their interaction with com-
plex environments could prove beneficial also for applica-
tions, e.g., inside lab-on-a-chip devices or living organisms
(Chin, Linder, and Sia, 2007).
This section will therefore focus on the role of boundaries

on the swimming properties of microswimmers and nano-
swimmers. We first consider how microswimmers interact
with a planar wall and explain the basic particle-obstacle
interaction mechanisms as well as their modeling (Sec. V.A).
We then consider active particles confined within a pore and
show how their behavior differs from that of passive particles
in similar confined environments (Sec. V.B). Next we consider
the effects that emerge when microswimmers interact with
various kinds of complex environments (Sec. V.C). Finally, we
discuss how microswimmers can be sorted exploiting micro-
patterned environments (Sec. V.D).

A. Interaction with a wall

There are various ways in which a microswimmer can
interact with an obstacle. The two most important are arguably
hydrodynamic and steric interactions, even though other (e.g.,
electrostatic, depletion) interactions can also occur. The basic
concepts have already been introduced in Sec. III for hydro-
dynamic effects, and in Sec. IV.A for other kinds of particle-
particle interactions.

The simplest situation in which an active particle interacts
with an object is arguably when it interacts with a planar
(vertical) wall; some examples (where hydrodynamic inter-
actions are important) are reproduced in Fig. 10. In this case,
there is a basic asymmetry between approaching and leaving
the wall: when approaching the boundary, the particle will
remain effectively stuck at the wall until its orientation points
away from it; when leaving, it will just swim away. This
asymmetry leads to a tendency for swimmers to accumulate
near confining boundaries, which is not observed for particles
at thermodynamic equilibrium. In fact, even if the wall is
purely repulsive, there is a large accumulation which would
require large attraction strengths for passive particles at
equilibrium. This effect has been observed for rods and
spheres in a linear channel (Wensink and Löwen, 2008;
Elgeti and Gompper, 2009; Volpe et al., 2011; Wysocki,
Elgeti, and Gompper, 2015) as well as for bacteria in circular
cavities (Vladescu et al., 2014). Chiral active particles,
however, have been shown to behave differently, as they
can slide along a planar wall using their effective driving
torque (van Teeffelen and Löwen, 2008; van Teeffelen,
Zimmermann, and Löwen, 2009).
Both steric and hydrodynamic interactions typically lead to

an alignment of the active particle such that its self-propulsion
is directed along the wall of the obstacle. Steric effects of
linear (Wensink and Löwen, 2008) and circle swimmers
(van Teeffelen and Löwen, 2008; van Teeffelen,
Zimmermann, and Löwen, 2009; Kümmel et al., 2013) with
a planar wall can be qualitatively understood using the
effective force description introduced in Sec. II.B. When a
self-propelled particle hits an obstacle such as a planar wall,
the propelling force can be decomposed into two components:
one tangential and one normal to the wall. The tangential
component leads to sliding along the wall while the normal
component is compensated by the steric wall-particle inter-
action. Numerically, this process can be modeled using
reflective boundaries, as shown in Fig. 23 (Volpe, Gigan,
and Volpe, 2014), even though more accurate higher-order
algorithms are also available (Behringer and Eichhorn, 2011,
2012). Importantly, Elgeti and Gompper (2013) showed that
these steric effects are sufficient to produce the accumulation
and alignment of particles with a wall, without the need for
hydrodynamic interactions.

(a) (b) (c)

FIG. 23. Numerical implementation of reflective boundary
conditions. At each time step, (a) the algorithm checks whether
a particle has moved inside an obstacle. If this is the case, (b) the
boundary of the obstacle is approximated by its tangent l at the
point p where the particle entered the obstacle and (c) the particle
position is reflected on this line. In (b), t̂ and n̂ represent the
tangential and normal unitary vectors to the surface at point p.
Note that the orientation of the particle is not flipped.
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Hydrodynamic interactions between the active particle and
the wall are also an important kind of interaction (although
frequently neglected). They give rise to stable wall entrapment
so that the motion of microswimmers is mainly along the hard
boundary of the obstacle even if, in qualitative difference to
steric interactions, the object boundary is convex. This has
been seen in experiments and appropriately described by
hydrodynamics in Takagi et al. (2014), Schaar, Zöttl, and
Stark (2015), and Sipos et al. (2015). Furthermore, a crucial
difference emerges between the cases of pushers and pullers
discussed in detail in Sec. III.C and in Fig. 11.

B. Active particles in a confined geometry

In the previous section, we have seen that active particles
tend to preferentially spend some time at walls because of the
asymmetry between the processes that take them toward and
away from boundaries. We now discuss the consequences of
this for active particles confined within a finite space such as a
pore. We first discuss how non-Boltzmann particle distribu-
tions emerge in confined pores, which is in fact a signature of
the difference between passive and active particles
(Sec. V.B.1). We then introduce the important (and largely
open to future investigation) topic of the derivation of an
equation of state for active matter systems (Sec. V.B.2).
Finally, we deal with the emergence of collective behaviors
in confined geometries (Sec. V.B.3).

1. Non-Boltzmann position distributions for active particles

We consider a microswimmer confined within a circular
pore, as shown in Fig. 24. Figure 24(a) shows four 10-s
trajectories of passive Brownian particles (v ¼ 0 μms−1):
they uniformly explore the configuration space within the

pore. Active particles, shown in Figs. 24(b) (v ¼ 5 μms−1)
and 24(c) (v ¼ 10 μms−1), tend to spend more time at the
pore boundaries. When a microswimmer encounters a boun-
dary, it keeps on pushing against it and diffusing along the
cavity perimeter until the rotational diffusion orients the
propulsion of the particle toward the interior of the pore.
The chance that the active particle encounters the pore
boundary in one of its straight runs increases as its velocity
[and thus its persistence length L given by Eq. (6)] increases.
These observations can be made more quantitative by using
the particle probability distribution. The histograms on the
bottom of Figs. 24(a)–24(c) show a section along a diameter
of the pore of the probability distribution of finding the
particle at the boundaries: it increases together with the
particle velocity. This accumulation has been seen in experi-
ments by Bricard et al. (2015).
The fact that active particles tend to accumulate at the

boundaries of a pore is a consequence of their out-of-
equilibrium nature. For a passive Brownian particle at
thermodynamic equilibrium with its environment, the prob-
ability distribution pðx; yÞ is connected to the external
potential Uðx; yÞ by the Boltzmann relation pðx; yÞ ∝
exp f−Uðx; yÞ=kBTg. In the case presented in Fig. 24, there
are no external forces acting on the particle and, therefore,
Uðx; yÞ and the corresponding Boltzmann distribution are
homogeneous, as shown in Fig. 24(a). However, the fact that
the distributions in Figs. 24(b) and 24(c) are not homo-
geneous, despite the homogeneous potential, is a clear
deviation from the Boltzmann distribution, i.e., from the
behavior of matter at thermodynamic equilibrium.
While the Boltzmann distribution holds for every equilib-

rium system, a generalized form for the stationary probability
distribution characterizing all types of active particles does not
exist. However, for some specific classes of active particles
analytic solutions can be found, and the traditional Boltzmann
equation can also be generalized to some active systems
(Schnitzer, 1993; Tailleur and Cates, 2008, 2009; Thüroff,
Weber, and Frey, 2013, 2014). The first case is that of
noninteracting run-and-tumble particles moving over a one-
dimensional, conservative force field fðxÞ ¼ −dUðxÞ=dx. It
can be shown that, in a close system with no fluxes, run-and-
tumble particles will distribute in space with probability
(Schnitzer, 1993; Tailleur and Cates, 2008)

pðxÞ ¼ pðx0Þ
Dðx0Þ
DðxÞ exp

�Z
x

x0

μfðsÞ
DðsÞ ds

�
; ð29Þ

where μ ¼ γ−1 is the particle’s mobility and

DðxÞ ¼ v2τ − μ2fðxÞ2τ ð30Þ

is an effective space-dependent diffusion coefficient that is
smaller when the magnitude of the external force fðxÞ is
larger. Taking the limit of a vanishing tumble rate τ
while keeping the free-space diffusion D0 ¼ v2τ finite, a
Boltzmann-type distribution is recovered with the effective
temperature Teff ¼ D0=μkB. In the simple case of a
harmonic potential well with stiffness k, i.e., UðxÞ ¼ kx2=2,

(a) (b) (c)

FIG. 24. Non-Boltzmann position distributions for active par-
ticles in a pore. (a)–(c) Simulated trajectories (10 s, solid lines) of
active Brownian particles (radius R ¼ 1 μm) moving within a
circular pore (radius 20 μm) with reflective boundaries at velocity
(a) v ¼ 0, (b) v ¼ 5, and (c) v ¼ 10 μms−1. The histograms on
the bottom show the probability distribution along a diameter of
the circular pore: while the probability is uniform across the
whole pore in the case of passive Brownian particles, the
probability increases toward the walls in the case of active
Brownian particles together with the particle velocity and the
associated persistence length L [Eq. (6)].
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run-and-tumble particles will be confined in a region jxj <
v=μk with a probability density (Tailleur and Cates, 2009)

pðxÞ ¼ pð0Þ
�
1 −

�
μkx
v

�
2
�
τ=2μk−1

; ð31Þ

which can be very different from the equilibrium Gaussian
shape and, in particular, becomes bimodal for τ > 1=ð2μkÞ
with particles accumulating at the edges of the allowed region.
These results are exact but valid only for one-dimensional and
noninteracting particle systems. For the more generic case of
interacting particles in any dimension d, a good approximation
can be found in the case of colored Gaussian noise. Calling
UðxÞ the potential energy function of an ensemble of N active
particles described by the Nd coordinate vector x, a flux-free
stationary probability distribution can be obtained within the
unified colored noise approach (Maggi, Marconi et al., 2015;
Marconi and Maggi, 2015) and it reads

pðxÞ ¼ 1

Q
exp

�
−
UðxÞ
D0

−
τj∇UðxÞj2

2D0

�
‖Iþ τ∇∇UðxÞ‖ ð32Þ

with Q a normalization factor, I the Nd-dimensional identity
matrix, and ‖ · ‖ representing the absolute value of the
determinant. Interestingly, within the same approximation,
an analytical expression for the velocity distribution can also
be found establishing an explicit link between the mean
square velocity and the system’s configuration (Marconi et al.,
2015). Again, in the limit of vanishing τ, the distribution
reduces to the Boltzmann form for an effective temperature
Teff ¼ D0=μkB. Contrary to run-and-tumble particles, the one-
dimensional case of an external harmonic potential always
presents a Gaussian shape although with an effective temper-
ature Teff ¼ ðD0=μkBÞð1þ 2μkτÞ−1 that depends on the
potential curvature. The coexistence of multiple effective
temperatures associated with different curvatures in a two-
dimensional external potential landscape has been observed by
Maggi et al. (2014).
Recent studies have generalized the results about the

dynamics, diffusivity, and density distributions of active
particles in circular confined geometries to geometries of
general shape (Sandoval and Dagdug, 2014; Fily, Baskaran,
and Hagan, 2015). Ezhilan, Alonso-Matilla, and Saintillan
(2015) examined the swim pressure in the regions between
two planar walls for run-and-tumble swimmers and found that
for large widths the pressure obeys the ideal gas law. At lower
widths, however, the pressure deviates from the ideal gas law
and decreases at the center since the particles spend more time
confined near the walls rather than moving in the bulk.

2. Active matter forces and equation of state

When considering active-depletion forces in Sec. IV.C.5, it
was shown that active particles can generate (attractive or
repulsive) forces between passive plates. This raises the
questions of whether such forces depend on the microscopic
nature of the interactions of the active particles with the plates
and, more generally, of whether an equation of state exists for
active particles.

At thermodynamic equilibrium, an ideal gas in a container
of volume V can be described by the standard ideal gas
equation of state P ¼ ρKBT, which relates the pressure P to
the temperature T and the number density of gas molecules ρ.
As the temperature increases, the pressure experienced by the
container walls increases, independent of the nature or shape
of the walls. To address the question of what happens to such a
relation when the thermal gas particles are replaced by self-
propelled active particles, Mallory et al. (2014) performed
numerical simulations to extract an equation of state for self-
propelled repulsively interacting disks in two- and three-
dimensional systems and found a nonmonotonic dependence
of the pressure on the temperature. By generalizing to active
dynamics the definition of pressure as the trace of the
microscopic stress tensor, Takatori, Yan, and Brady (2014)
and Yang, Manning, and Marchetti (2014) found that
mechanical pressure in active systems can be decomposed
as the sum of the usual stress component arising from
interparticle interactions and a swim pressure component
analogous to kinetic pressure in equilibrium systems. In
contrast to equilibrium kinetic pressure, however, where
particles speed is solely controlled by temperature, swim
pressure depends on the actual average speed of the particles
that is indirectly controlled by density and persistence length
(Solon, Stenhammar et al., 2015). In the special case where
particles are not subject to any external torque, either from
other particles or from container walls, an equation of state can
be derived (Solon, Stenhammar et al., 2015) connecting
pressure to bulk properties that is not sensitive to the details
of the particles’ interaction with the wall. It can also be shown
that such an equation of state does not exist in the general case
where particles are not torque free (Solon, Stenhammar
et al., 2015).
Experimentally, equations of state in colloidal systems can

be extracted from sedimentation profiles. Palacci et al. (2010)
performed experiments with dense sedimenting suspensions
of H2O2-activated Janus particles, which show a strong
change in the sedimentation profile compared to passive
systems: after H2O2 is added to the solution, the solid phase
remains but the gas phase spreads to much higher heights.
Ginot et al. (2015) performed sedimentation experiments and
simulations for active Janus particles and found that activity
strongly alters the standard thermodynamic equation of state;
however, it was possible to model these alterations using ideas
developed through equilibrium concepts. In the dilute case,
there is an activity-dependent effective temperature, while at
higher densities, an increase in the activity can be modeled as
an effective increased adhesion between equilibrium particles.

3. Collective behaviors in confined geometries

For microscopic matter that is not at thermodynamic
equilibrium, collective behaviors can also emerge in confined
geometries due to complex interplay with the surrounding
fluid. This can lead to the formation of complex patterns, such
as vortices (Hernandez-Ortiz, Stoltz, and Graham, 2005;
Yang, Manning, and Marchetti, 2014). These behaviors have
been experimentally observed for both swimming bacteria
(Wioland et al., 2013; Lushi, Wioland, and Goldstein, 2014)
and colloidal rollers (Bricard et al., 2015). Similar behaviors
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have also been reported for vibrated polar granular disks and
rods (Kudrolli et al., 2008; Deseigne et al., 2012).

C. Interaction with obstacles

The interaction of active particles with obstacles within
complex environments lends itself to be exploited in a wealth
of potential applications. In general, these may take advantage
of the fact that the motion of active particles is nonthermal in
order to use the features of the environment to perform
complex tasks such as the separation, trapping, or sorting
of active particles on the basis of their swimming properties.
In this section we explore these possibilities; in particular, we
consider how active particles can be gathered by wedges
(Sec. V.C.1), directed by ratcheted walls (Sec. V.C.2), fun-
neled along patterned channels (Sec. V.C.3), sorted in periodic
arrays of obstacles (Sec. V.C.4), and trapped within random
environments (Sec. V.C.5).

1. Capture and concentration of active particles

In many applications, it is important to catch groups of
autonomously navigating microbes and man-made micro-
swimmers in a controlled way. This can be achieved, for
example, by using some obstacles in the shape of wedges. The
condition for trapping is a pretty sharp cusp on the length scale
of the swimmer extension. For example, Kaiser, Wensink, and
Löwen (2012) considered active self-propelled rods interact-
ing with stationary wedges as a function of the wedge angle α,
finding three regimes of behavior, whose phase diagram is
shown in Fig. 25(a): for small angles, a partial trapping of the
active particles occurs [Fig. 25(b) for α ¼ 40°]; for inter-
mediate angles, complete trapping of the particles occurs
[Fig. 25(c) for α ¼ 116°]; and, for large angles, there is no
longer any trapping of the particles [Fig. 25(d) for α ¼ 140°].
We remark that the trapping by wedges is distinct from carrier
motion discussed in Fig. 18 because it is triggered and self-
amplified by the strong aligning excluded-volume forces
between the rods, while carrier motion already occurs for
an ideal gas of swimmers. In a subsequent work, Kaiser et al.
(2013) found enhanced trapping when the wedge is moved in
certain orientations (see Sec. IV.C.4). This trapping behavior

can be enhanced employing a system of multilayered asym-
metric barriers (Y.-F. Chen et al., 2015). The self-trapping
behavior of active rods was then confirmed in experiments on
artificial rodlike swimmers (Restrepo-Pérez et al., 2014) and
sperm cells (Guidobaldi et al., 2014).
Galajda et al. (2007) placed swimming bacteria in a

confined area containing an array of funnel shapes
[Figs. 26(a) and 26(b)] and observed that the bacteria con-
centrated in the portion of the container toward which the
funnel apertures pointed, indicating that the bacteria were
undergoing a ratchet motion [Figs. 26(c)–26(e)]. Wan et al.
(2008) performed simulations of a simplified model of the
system in which the bacteria are treated as run-and-tumble
particles that move along any wall they encounter. For small
run lengths, the system behaves thermally and no ratchet effect
occurs; however, for longer run lengths a ratchet effect
emerges and, just as in the experimental case, there is a
buildup of simulated bacteria on one side of the container. The
simulations also showed a buildup of active particle density in
the tips of the funnel barriers. Tailleur and Cates (2009)
studied run-and-tumble particles interacting with walls and
observed a buildup of particle density along the walls as well
as a ratchet effect in the presence of funnel-shaped walls. They
found that changing the interaction of the particles with the
wall, e.g., by introducing a reflection of the particles from the
wall, can destroy the ratchet effect. Galajda et al. (2008)
constructed a macroscale version of the ratchet system and
observed the same behavior as in the bacterial version,
indicating that detailed hydrodynamic interactions with the
walls are not solely responsible for the ratchet effect.

2. Ratchet effects and directed motion

Thermal Brownian particles moving over an asymmetric
substrate do not spontaneously drift in one direction (if the
spatial average of the force is zero). If, however, an external
periodic drive is added, or if the substrate is flashed on and off
to create nonequilibrium conditions, a net continuous drift of
particles known as a ratchet effect can arise (Reimann, 2002).
Numerous studies of ratchet effects have been performed

for a variety of active matter systems in the presence of

(a) (b) (c) (d)

FIG. 25. Capturing active particles with a wedge. (a) Phase diagram marking three different collective trapping states of self-propelled
rods at a wedge upon variation of the reduced rod packing fraction (ϕrod): no trapping at large apex angle α, complete trapping at
medium α, and partial trapping at small α. Phase boundaries are shown for two different values of the area fraction occupied by the
wedge (ϕwedge). The region of complete trapping is bounded by a triple point at larger rod concentration beyond which a smooth
transition from no trapping to partial trapping occurs. (b)–(d) Snapshots depicting the examples of the three stationary states. From
Kaiser, Wensink, and Löwen, 2012.
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asymmetric barriers, including swimming eukaryotes
(Kantsler et al., 2013), swimming sperm cells (Guidobaldi
et al., 2014), active particles moving in corrugated channels
(Ai et al., 2013; Pototsky, Hahn, and Stark, 2013; Koumakis,
Maggi, and Di Leonardo, 2014; Yariv and Schnitzer, 2014),
active polymers (Wan and Jho, 2013), active ellipsoids
(Ai and Wu, 2014), crawling cells (Mahmud, Campbell,
and Grzybowski, 2009), and systems containing a variety
of asymmetric objects with varied swimming strategies
(Berdakin et al., 2013; Ghosh et al., 2013; Ai, He, and
Zhong, 2014; Potiguar, Farias, and Ferreira, 2014).
Variations of the active ratchet effect include active drift

ratchets, in which an external continuous drive is applied to
the active particles as they pass through an array of asym-
metric obstacles (Volpe et al., 2011; Reichhardt and Olson-
Reichhardt, 2013a). There are also chiral ratchet effects that
arise for active particles that have an intrinsic swimming
asymmetry oriented in either the clockwise or counterclock-
wise direction (Mijalkov and Volpe, 2013; Reichhardt and
Olson-Reichhardt, 2013b). When such particles are placed in
an asymmetric substrate, particles with different chiralities
move in different directions, permitting the chiral species to be
separated. The next step along this research line is to
(experimentally) realize substrate geometries to sort chiral
active particles on the nanoscale, which could have numerous
applications in biological and medical sciences, as seen in
more detail in Sec. V.D.
It is also possible to obtain a reversed ratchet effect in

which the particles move in the forward ratchet direction for
one set of parameters but in the reverse direction for a
different set of parameters. Drocco, Olson-Reichhardt, and
Reichhardt (2012) demonstrated a reversible ratchet effect for
active flocking particles moving through an array of funnel
barriers. They simulated a variant of the Vicsek flocking
model in which the particles have an additional short-range
steric repulsion in order to give the flocks a finite size. In the
dilute or high-noise limit, the particles are disordered and
ratchet in the forward or normal direction through the funnels.
However, for densities or noise levels in the collective or
flocking regime, flocks become effectively jammed when
they attempt to pass through the funnel due to the incom-
pressibility of the flock, which behaves as a rigid solid. In

contrast, a flock approaching the funnel array from the hard
flow direction can split in two and lose a portion of its
members to the other side of the array, resulting in a net
reversed ratchet motion of the particles. Experimental studies
of crawling cells also showed that it is possible for one
species of cells to ratchet in one direction through an
asymmetric environment while another species of cells
ratchets in the opposite direction (Mahmud, Campbell, and
Grzybowski, 2009).
Koumakis et al. (2013) demonstrated that a ratchet effect

can also be induced on passive colloidal particles that jump
over asymmetric barriers when pushed by swimming bacteria.
As shown in Fig. 27, the escape rate over an asymmetric
barrier was found to be higher when the same barrier is
approached from the small slope side. By surrounding a target
region with asymmetric walls, colloidal particles can accu-
mulate over the target when the high slope sides of the barriers
point inside, or clear the target region when higher slopes
point outside. This effect can be interpreted in terms of a
nonuniform effective temperature (Koumakis, Maggi, and Di
Leonardo, 2014). Ghosh et al. (2013) performed numerical
simulations of active Janus particles in asymmetric funnel
geometries containing additional passive particles and found
that even a small number of active particles can induce a
directed motion of the passive particles.
The works described in this section indicate that active

ratchet effects can be employed in techniques aiming at the
separation, mixing, or directed flow of passive particles.

3. Motion rectification in a microchannel

The motion of active particles can be rectified by a
patterned microchannel [a recent topical review was given
by Ao et al. (2014)]. The inset of Fig. 28(c) shows an example
of such a microchannel decorated with a series of asymmetric
dents on both its walls. Differently from a group of passive
Brownian particles released at time t ¼ 0 s from position
x ¼ 0 μm which diffuse symmetrically around the initial
position [filled histograms in Figs. 28(a)–28(c)], a group of
active Brownian particles is funneled by the channel in
such a way that an average directed motion is imposed on
the particles, as can be seen in the open histograms in
Figs. 28(b) and 28(c). The rectification is the more

(a) (b) (c) (d) (e)

FIG. 26. Concentration of active particles. (a) Schematic drawing of the interaction of bacteria with a funnel opening: on the left side,
bacteria may (trace 1) or may not (trace 2) get through the gap, depending on the angle of attack. On the right, almost all bacteria
colliding with the wall are diverted away from the gap (traces 3 and 4). (b) Scanning electron micrograph of the device. (c) Uniform
distribution of bacteria in a structure with a funnel wall after injection and (d) steady-state distribution after 80 min. (e) Ratio of densities
in the right and left compartments vs time: the circles are experimental data, and the dashed line is a fit to the relative theory. From
Galajda et al., 2007.
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pronounced the higher the velocity of the active particle. This
and similar effects have been proposed to sort microswimmers
on the basis of their velocity or size (Hulme et al., 2008;
Mijalkov and Volpe, 2013), to trap microswimmers in moving
edges (Kaiser et al., 2013), to deliver microscopic cargoes to a
given location (Koumakis et al., 2013), to convey a strategic
advantage in trespassing channels against external biases
(Locatelli et al., 2015), and even to control pedestrian flows
(Oliveira et al., 2016).

4. Extended landscapes of obstacles

The motion and properties of active particles can also be
influenced by the presence of extended potential landscapes or
by the presence of obstacles in the environment.
Reichhardt and Olson-Reichhardt (2014b) performed a

numerical study of interacting run-and-tumble disks of radius
R moving under a drift force Fd through an assembly of
immobile disks that serve as a disordered landscape of
obstacles. This is similar to a system of ordinary charge-
stabilized colloidal particles driven with an electric field over
an obstacle array, where the transport can be characterized by
the average velocity hvdi of the particles in the direction of the
applied drift force. For the passive particles, when no

obstacles are present, hvdi increases linearly with the magni-
tude Fd of the drift force, i.e., hvdi ∝ Fd, indicating Ohmic
behavior where the damping arises from the Stokes flow.
When obstacles (or pinning) are present, there can be a finite
critical external driving (or depinning threshold) force Fc
required to set the particles in motion, so that hvdi ¼ 0 when
Fd < Fc. Once the particles are moving, hvdi may increase
linearly with Fd or it may follow a power law hvdi ∝ Fα

d.
When thermal fluctuations are also present, the true critical
depinning threshold is lost due to particle creep, and the
velocity follows the form hVdi ∝ v expð−Up=kBTÞ, where v is
the velocity of the particle in the obstacle-free limit and Up

is the effective trapping potential created by the disorder. Here
the velocity decreases with increasing Up or decreasing T, so
that increasing the magnitude of the thermal fluctuations
always produces a larger drift velocity. Similarly, increasing T
always leads to a larger diffusion of particles in the presence of
random disorder. If the fluctuations are active rather than
thermal, the velocity can behave very differently. Figure 29(a)
shows an image of a system where active particles are moving
through an assembly of obstacles. Some plots of hvdi versus
run length Rl for the same system are shown in Fig. 29(b).7 At
Rl ¼ 0, most of the particles become trapped and hvdi is low.
As Rl increases, the fluctuations assume a thermal character
and local clogs in the assembly break apart, allowing particles
to flow in the drift direction and increasing hvdi. When Rl is
further increased, however, the drift velocity begins to
decrease, as shown in Fig. 29(b) by the fact that hvdi reaches
its maximum value near Rl ¼ 1. The drop in velocity is
correlated with an onset of clustering (or phase-separation
effect) that occurs in active disk systems for long run lengths
or high activity. In the regime of low but finite activity, the
particles form a liquid state, so an individual particle is at most

(a) (b) (c)

FIG. 28. Rectification of active Brownian motion in an asym-
metric ratchetlike microchannel. The distribution of passive [dark
gray (red) histograms] and active [light gray (yellow) histograms]
Brownian particles (radius R ¼ 1 μm) released at time t ¼ 0 s
from position x ¼ 0 mm are plotted at times (a) t ¼ 100,
(b) t ¼ 500, and (c) t ¼ 1000 s. The higher the active particle
velocity, the farther the active particles travel along the channel.
Every histogram is calculated using 1000 particle trajectories. A
segment of the channel, whose dent is 10 μm long, is represented
by the gray structure in the inset of (c).

(a) (b)

(c) (d)

FIG. 27. Observation of particle concentration and depletion by
bacteria. Snapshots of particles and bacteria (a) at t ¼ 0 (the
initial state), where particles are randomly distributed, and (b) at
t ¼ 20 min, where particle distributions have been strongly
affected by bacterial transport over asymmetric barriers. The
colloidal particles that are not stuck on the surface are high-
lighted. Particle distributions averaged over a steady state (c) for
particles in the bacterial bath between t1 ¼ 15 and t2 ¼ 20 min
(Δt ¼ 5 min) and (d) for particles in an experiment without
bacteria, undergoing simple Brownian motion for Δt ¼ 10 min.
In the absence of bacteria, the colloidal particles remain trapped
within the structures’ compartments. From Koumakis et al., 2013.

7Because these plots show a crossing due to the nonmonotonicity
of the drift velocity for varied run lengths, they are more informative
than plotting the drift velocity versus force since those curves are
generally linear.
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temporarily trapped behind an obstacle before diffusing
around it. When the activity level increases and the system
enters the phase-separation regime, the formation of clusters
of particles makes it possible for an individual obstacle to trap
an entire cluster. Further work can be envisaged on this topic;
in particular, it would be interesting to determine how the
depinning transition is rounded by the particle’s activity as
well as to study the system’s behavior at finite but large
run times.
It is possible to create a random energy landscape for active

particles using speckle patterns which can be generated by an
optical field (Volpe et al., 2014; Volpe, Volpe, and Gigan,
2014; Pesce et al., 2015). Paoluzzi, Di Leonardo, and
Angelani (2014) performed molecular dynamics simulations
of swimming bacteria interacting with a speckle pattern. The
swimmers are modeled as dumbbell particles and interact
through short-range repulsive interactions. A crossover is
observed from nontrapping to trapping of the particles as the

speckle intensity is increased. Pinçe et al. (2016) demon-
strated that the presence of spatial disorder can alter the
long-term dynamics in a colloidal active matter system,
making it switch between gathering and dispersal of individ-
uals: at equilibrium, colloidal particles always gather at the
bottom of any attractive potential. However, under nonequili-
brium driving forces in a bacterial bath, the colloids disperse if
disorder is added to the potential; the depth of the local
roughness in the environment regulates the transition between
gathering and dispersal of individuals in the active matter
system, thus inspiring novel routes for controlling emerging
behaviors far from equilibrium.
Reichhardt and Olson-Reichhardt (2014a) considered an

active matter system composed of run-and-tumble repulsive
disks in the limit of an infinite run time. Using a periodic
system, they found that for a sufficiently large density of
active particles, most of the particles become trapped in a
single large clump and all dynamical fluctuations in the
system vanish. The large clump can still be translating, but
all trajectories of all particles are periodic. The transient time
required to reach such a state diverges as a power law at the
critical particle density, suggesting that this is an example of a
nonequilibrium phase transition from a strongly fluctuating
state to a dynamically frozen state. Such transitions are known
as absorbing phase transitions, and they have been studied
experimentally and numerically for actin motion, where the
system can transition from a fluctuating state to an ordered
spiral state containing almost no fluctuations (Reichhardt and
Olson-Reichhardt, 2011; Schaller et al., 2011). Reichhardt
and Olson-Reichhardt (2014a) added obstacles to the system
of infinitely running particles as illustrated in Fig. 30. These
obstacles act as nucleation sites for clusters, as shown in
Fig. 30(a). Inside a cluster, particles are swimming against
each other and are held in the cluster configuration by steric
repulsion. In Fig. 30(d) the particles are colored according to
the average y component of the active force, making it clear
that the upper half of the cluster is moving downward in
opposition to the lower half of the cluster which is moving
upward, resulting in a completely pinned cluster. When
obstacles are present, clusters can form even for very low

(a) (b) (c) (d)

FIG. 30. Cluster formation induced by obstacles. Snapshots of the positions of active disk and obstacles in a system with area fraction
ϕ ¼ 0.363 and number of obstacles Np ¼ 2. The arrows indicate the direction of the motor force for each disk. Dark particles with light
arrows have a net motion in the positive y (vertical) direction; light particles with dark arrows have a net motion in the negative y
direction. Red disks are immobile obstacles. (a) The initial fluctuating state contains small transient clusters. (b) After some time,
transient clusters are nucleated by the obstacles. (c) At a still later time, the transient cluster shown in (b) has broken apart. (d) Finally, the
dynamically frozen steady state appears where a faceted crystal forms around the obstacles. From Reichhardt and Olson-Reichhardt,
2014a.

(a) (b)

FIG. 29. Effect of a disordered landscape on the driving velocity
of active particles. (a) Positions of pinned disks [light gray (blue)
circles], active disks [dark gray (red) circles], and disk trajectories
over a period of time (lines) in a small section of a sample with
obstacle area fraction ϕp ¼ 0.0235, total area fraction ϕ ¼ 0.188,
and run length Rl ¼ 0.004. (b) The average drift velocity hvdi as a
function of Rl passes through a maximum for all the curves;
ϕp ¼ 0.055, 0.094, 0.1413, and 0.188, from top to bottom. From
Reichhardt and Olson-Reichhardt, 2014b.

Clemens Bechinger et al.: Active particles in complex and crowded …

Rev. Mod. Phys., Vol. 88, No. 4, October–December 2016 045006-34



active particle densities. Since the active disks are mono-
disperse in size, triangular ordering appears inside the
cluster, which can lead to faceted crystals, as shown in
Fig. 30(d). When the obstacle density is higher, the system
reaches the frozen state much more rapidly and the cluster
becomes increasingly disordered, as shown in Figs. 30(b)
and 30(c). In the absence of obstacles, the dynamically frozen
state forms for active disk densities ϕ > 0.5; however, as
the obstacle density ϕp increases, the density at which the
dynamically frozen state appears decreases. Kumar,
Ramaswamy, and Sood (2011) considered the large-deviation
function of a single polar active particle in a crowded
structured environment and Kumar et al. (2014) considered
the flocking of active polar objects in a crowded nonmotile
background, where the crowdedness is crucial to producing
the ordering.
In addition to swimming particles, there have been studies

of flocking particles interacting with obstacle arrays.
Chepizhko, Altmann, and Peruani (2013) considered a variant
of the Vicsek model for self-propelled particles interacting
with a heterogeneous environment of obstacles. When a
particle interacts with an obstacle, it turns its velocity vector
away from the obstacle once it comes within a certain distance
from it. There is a stochastic noise term added to the particle
alignment direction which affects not only its flocking
behavior but also its interaction with the obstacles. In the
absence of obstacles, the system reduces to the Vicsek model,
in which increasing the magnitude of the noise term results in
a transition from a coherent state in which all particles move in
the same direction to a disordered state in which the direction
of motion is randomized. When obstacles are present,
Chepizhko, Altmann, and Peruani (2013) found that the
system is disordered when the noise term is small.
However, as the noise term increases in magnitude, the system
transitions into a state with quasi-long-range order, while for
the highest values of noise the system is disordered again. This
result indicates that the addition of some noise can induce
ordering or coherent motion in an active matter system and
can be regarded as an example of producing order through
disorder. This effect arises since the noise tends to wash out
the effect of the quenched disorder array and to make the
particle density more homogeneous; however, when the noise
is large enough, the system becomes disordered again.

Another system that has been explored is chiral active
particles in random landscapes. Nourhani, Crespi, and
Lammert (2015) considered chiral self-propelling particles
moving on a periodic potential where they found that particles
of different chirality can be separated. They also observed a
variety of distinct subclasses of dynamic states in which the
particles form orbits that either have a translational propaga-
tion or are localized. Another feature of this system is that it is
possible to steer particles to arbitrary locations by changing
the strength of the substrate. Schirmacher et al. (2015)
considered a model of noninteracting particles undergoing
circular motion in a random landscape to model electrons in a
magnetic field moving through random disorder; however, the
same model can be used to represent circularly swimming
particles. When the swimming radius decreases, there is a
transition from a delocalized to a localized state.

5. Subdiffusion and trapping of microswimmers

Various emergent phenomena have been observed when
active particles interact with a disordered environment such as
subdiffusion and trapping.
Chepizhko and Peruani (2013) considered the diffusion and

trapping of active particles in the presence of obstacle arrays
using the same flocking model described by Chepizhko,
Altmann, and Peruani (2013) (see Sec. IV.C.4). As shown
in Fig. 31(a), they studied the system as a function of the
turning rate of the particles. They found that the motion is
diffusive when the turning rate is small; however, the diffusion
constant depends nonmonotonically on the particle density.
For high obstacle densities and large turning rates, the
obstacles induce particle trapping, producing subdiffusive
motion. By exploiting this effect, it could be possible to
perform a filtering of active particles using an obstacle array,
where a portion of the particles with specific properties would
become trapped in the array while other types of particles
could diffuse freely across it.
Quint and Gopinathan (2013) studied a swarming model in

the presence of static disorder. They observed that even a
small amount of disorder can suppress the ordering of the
swarm when only aligning interactions are included.
However, when additional repulsive forces between particles
are added, they found a transition from a collectively moving
state to a gaslike state at a finite amount of disorder. This

(a) (b)

FIG. 31. Trapping of active particles. (a) In a system where the particle orientation is affected by the presence of obstacles, spontaneous
particle trapping occurs for large values of the turning speed and of the obstacle density. Obstacles are indicated by gray (red) dots while
black arrows correspond to active particles. From Chepizhko and Peruani, 2013. (b) Sample trajectory of a self-propelled rod orbiting
around a passive sphere. The sphere has diameter 6 μm, the rod length is 2 μm, and its speed is on the order of 20 μms−1. From Takagi
et al., 2014.
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transition resembles a percolation transition; however, the
transition occurs at densities well below those at which
standard percolation would be expected to appear. Chepizhko
and Peruani (2015) also numerically considered swarming
particles in heterogeneous media.
Studies of active particles interacting with obstacles are

often performed in the limit where hydrodynamic effects can
be neglected. Takagi et al. (2014) experimentally studied
chemically propelled microrods interacting with large spheres
and found that the rods become trapped in circles around the
spheres as illustrated in Fig. 31(b). The behavior of the trapped
rods can be explained using a model that includes the
hydrodynamic interactions between the rod and the surface
of the sphere. Spagnolie et al. (2015) performed a numerical
and theoretical analysis of the capture of microswimmers
interacting with obstacles, showing that the time during which
the swimmers are trapped by the obstacles before escaping has
a distribution with a long tail. Similar hydrodynamic trapping
effects were observed in bacteria swimming near large convex
obstacles (Sipos et al., 2015).

D. Sorting of microswimmers

Sorting microswimmers based on their swimming proper-
ties (e.g., velocity, angular velocity, and chirality) is of
utmost importance for various branches of science and
engineering. Genetically engineered bacteria can be sorted
based on phenotypic variations of their motion (Berg, 2004).
Velocity-based spermatozoa selection can be employed to
enhance the success probability in artificial fertilization
techniques (Guzick et al., 2001). Considering the intrinsic
variability of microfabrication techniques, the efficiency of
artificial microswimmers for a specific task, e.g., drug-
delivery or bioremediation, can be increased by selecting
only those with the most appropriate swimming properties. In
this section we explore how complex environments can be
used to sort microswimmers based on their swimming style; in
particular, we consider static patterns (Sec. V.D.1) and chiral
sorting (Sec. V.D.2).

1. Static patterns

Two-dimensional periodic patterns can be used to
select active particles based on their swimming style.
Volpe et al. (2011) investigated the behavior of self-propelled
particles in the presence of a two-dimensional periodic pattern
where straight unlimited swims are possible along only certain
directions. The structure was made of a series of ellipsoidal
pillars arranged in a triangular lattice [lattice constant
Lc ¼ 35 μm, Fig. 32(a)]. Within such structure, long swim-
ming runs are possible along only two main directions: at
�60° and �90° with respect to the y axis. Otherwise the
motion is strongly hindered due to collisions with the
obstacles. The addition of a drift force Fd along the y direction
leads to strong differences in the particle trajectories depend-
ing on their swimming length.
The typical trajectory of a Brownian particle is shown in

Fig. 32(a). When compared to the effect of the drift force, the
effect of the diffusion is rather weak so that the particle
meanders almost deterministically through the structure in the
direction of Fd. For increasing swimming lengths L, however,
significant changes in the trajectories are observed. These
become particularly pronounced for L > Lc, where the
particles perform swimming runs of increasing length along
the diagonal channels [Figs. 32(c) and 32(d)]. For L ¼ 83 μm
the propulsion becomes so strong that the particles partially
move perpendicular to the drift force [Fig. 32(e)]; occasionally
even motion against the drift force can be observed.
The direction of the particle motion through the structure is

characterized by the direction (with respect to the y axis)
of the line connecting points of the trajectory separated by a
distance of 100 μm. The probability distributions of these
angles are shown by the light gray (red) polar histograms in
Figs. 32(f)–32(j). One observes that with increasing L the
propagation of particles along the direction of the applied drift
becomes less likely, while trajectories along �60°, i.e., along
the directions that permit long swimming events, become
more frequent. Differently from the deflection of Brownian
particles in a periodic potential (MacDonald, Spalding, and

(a) (b) (c) (d) (e) (k)

(f) (g) (h) (i) (j)

FIG. 32. Sorting of microswimmers in a periodic environment. (a)–(e) Typical trajectories of self-propelled particles moving through a
triangular lattice (lattice constant Lc ¼ 35 μm) of elliptical obstacles when a drift force Fd ¼ 0.12 pN is applied along the y direction.
The characteristic swimming length is (a) L ¼ 0 (Brownian particle, no propulsion), (b) 16, (c) 24, (d) 33, and (e) 83 μm. (f)–
(j) Corresponding histograms of the experimentally measured [light gray (red)] and simulated [dark gray (blue)] directions of the particle
trajectories as defined by two points in the trajectory separated by 100 μm. The experimental histograms were obtained considering
more than 100 trajectories in each case. (k) Measured probability that particles are deflected by more than 30° after a traveling length of
100 μm as a function of L for various imposed drift forces Fd ¼ 0.06� 0.02 (diamonds), 0.12� 0.05 (squares), and 0.28� 0.12 pN
(triangles). The solid lines are the results of numerical calculations. From Volpe et al., 2011.
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Dholakia, 2003; Huang et al., 2004; Reichhardt and Olson-
Reichhardt, 2004), this mechanism relies on the dynamical
properties of the microswimmers. These results were also
compared with numerical simulations [dark gray (blue) polar
histograms in Figs. 32(f)–32(j)], which show good agreement
with the experimental data.
With the additional possibility of varying the drift force,

these observations can be exploited to spatially separate self-
propelled particles with small differences in their individual
swimming behavior [Fig. 32(k)]. The sorting mechanism
discussed here can be directly applied to other self-propelled
objects; in these cases, drift forces can be created, e.g., by
electric fields or by a solvent flow through the device.

2. Chiral particle separation

Active particles can also be separated on the basis of their
chirality (Mijalkov and Volpe, 2013; Reichhardt and Olson-
Reichhardt, 2013b; Ai, He, and Zhong, 2015; Chen and Ai,
2015; Wu, Chen, and Ai, 2015). This is a particularly
interesting option because it may provide a better technique
to separate levogyre and dextrogyre chiral molecules by
chemically coupling them to chiral propellers, sorting the
resulting chiral microswimmers, and finally detaching the
propellers, as theoretically suggested by Mijalkov and Volpe
(2013). This is interesting because often only one specific
chirality is needed by the biochemical and pharmaceutical
industries (Ahuja, 2011), and separation can hardly be
achieved by mechanical means due to the extremely small
Reynolds numbers (Marcos, Powers, and Stocker, 2009).
Figure 33 shows a possible approach to sorting active particles
based on the sign of their motion chirality in the presence of
some chiral patterns in the environment (Mijalkov and Volpe,
2013), such as arrangements of tilted rectangles along circles
forming chiral flowers. Two chiral flowers with opposite
chiralities are enclosed in a 100-μm-side box where the
particles can move freely. At time t ¼ 0 s a racemic mixture
is placed inside each flower [Fig. 33(a)]. With time passing by,
most of the levogyre (dextrogyre) microswimmers escape the
right (left) chiral flower, while the ones with the opposite
chirality remain trapped. At t ¼ 1000 s most of the micro-
swimmers are stably trapped, as can be seen in Fig. 33(c).

Other approaches have also been proposed to separate
chiral microswimmers, e.g., periodically patterned channels
(Mijalkov and Volpe, 2013; Y. Li et al., 2014; Ai, He, and
Zhong, 2015; Ao et al., 2015) and rotary obstacles (Chen and
Ai, 2015).

VI. TOWARD THE NANOSCALE

Scaling down microswimmers to the nanoscale and,
therefore, implementing effective nanoswimmers is an open
technological and scientific challenge (Peplow, 2015). Being
successful in this task would be extremely beneficial: it would
in fact allow the scaling down of several technologies both
increasing their efficiency and decreasing their footprint. The
main problem on the way toward the nanoscale is that as the
size of an active particle decreases, its motion becomes more
random and less directed mainly because of an increase in the
particle’s rotational diffusion. In fact, by comparing Eqs. (1)
and (2), we can see that, whileDT scales according to R−1,DR

scales according to R−3, so that when we approach nanometric
sizes, τR becomes very short. For instance, for a nanoparticle
with hydrodynamic radius R ¼ 50 nm, τR ¼ 760 μs. Thus,
self-propulsion does not have enough time to alter the way in
which a nanoswimmer interacts with its environment; its main
effect is, instead, to enhance the particle’s diffusion, generat-
ing what has been refereed to as hot Brownian motion (Rings
et al., 2010).
Nevertheless, not everything is lost. In fact, different

solutions can be brought into play to outbalance the increased
rotational diffusion at nanometric swimmers’ sizes, e.g., by
exploiting the following:
Taxis: Taxis is the movement of a system in response to an

external stimulus such as light or the presence of a
chemical plume. For example, nanoswimmers can be
designed to respond to the gradient in an external (e.g.,
chemical, optical, acoustic) field that powers their
propulsion mechanism so that a long-term drift appears
in their motion as a response to the gradient. The
gradient can even counteract the rotational diffusion by
inducing alignment of the swimmers. Because of the
increased rotational motion at the nanoscale, however,

(a) (b) (c)

FIG. 33. Sorting of chiral microswimmers (R ¼ 1 μm, v ¼ 31 μms−1, and ω ¼ �3.14 rad s−1) with chiral flowers (rectangles). (a) At
t ¼ 0 s a racemic mixture of active particles is released inside two chiral flowers with opposite chiralities. (b), (c) As time progresses, the
levogyre [dark gray (red) squares] active particles are trapped in the left chiral flower, while the dextrogyre ones [light gray (yellow)
circles] are trapped in the right chiral flower.
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there exists a size limit of ≈600 nm below which tactic
strategies (e.g., swim-and-tumble motion) are no
longer efficient (Dusenbery, 1997).

Environmental properties: Nanoswimmers can be steered
through non-Newtonian media exploiting their inter-
action with the fine structure of the surrounding media.
For example, some screw propellers that have a
filament diameter of about 70 nm have been shown
to be capable of moving through high-viscosity sol-
utions with velocities comparable to those of larger
micropropellers, even though they are so small that
Brownian forces suppress their actuation in pure water:
when actuated in viscoelastic hyaluronan gels, these
nanopropellers appear to have a significant advantage
because they are of the same size range as the gel’s
mesh size (Schamel et al., 2014).

Swarming effects: Finally, collective effects in the inter-
action of several nanoswimmers can also lead to
controllable directed motion due to short-range cou-
pling of the motion of the individual entities (Saha,
Golestanian, and Ramaswamy, 2014).

VII. OUTLOOK AND FUTURE DIRECTIONS

Active particles have the potential to have far-reaching
impact on many fields of science and technology. From the
fundamental side, their study can shed light on the far-from-
equilibrium physics underlying the adaptive and collective
behavior of biological entities such as chemotactic bacteria
and eukaryotic cells. From the more applied side, they provide
options to perform tasks not easily achievable with other
available techniques, such as the targeted localization, pickup,
and delivery of microscopic and nanoscopic cargoes, e.g., in
health care, environmental sustainability, and security.
However, there are still several open challenges that need to

be tackled in order to achieve the full scientific and techno-
logical potential of microswimmers in real-life settings. In our
opinion, the main scientific and technological challenges are
the following:

(1) to understand more in depth and exploit their behavior
in complex and crowded environments,

(2) to learn how to engineer emergent behaviors,
(3) to identify biocompatible propulsion mechanisms and

energy supplies capable of lasting for the whole
particle life cycle, and

(4) to scale down their dimensions toward the nanoscale.
These challenges will necessarily take years or decades to be
met and will need to involve concerted effort from academy
and industry: in fact, although significant research progress has
been accomplished over the past decade, the applicability of
microswimmers to real-life problems is still in its infancy since
current proof-of-concept research efforts on microswimmers
and nanoswimmers need to be transformed into larger-scale
pilot studies, and eventually into field applications. In all the
future envisioned applications, in particular, understanding the
physical interaction of microswimmers and nanoswimmers
with their complex environment (e.g., tissues in living organ-
isms, microchannels in lab-on-a-chip devices, obstacles and
physical barriers in soils) represents an enabling step for the

design of autonomous micromachines and nanomachines that
can navigate efficiently in realistic conditions of operation.
Concretely, a series of so far unexplored (and potentially

extremely interesting) research directions can be identified—
going from the most straightforward to the most imaginative
as follows:
Addressing fundamental questions: Some fundamental

problems are still open and need to be addressed in
order for the field to be able to progress. These include,
in particular, to understand how self-propelled Janus
particles swim and interact, to explore under what
conditions can thermodynamic equilibrium concepts
be applied to detailed-balance-violating systems such
as active matter, and to make synthetic microswimmers
that will behave well at high densities avoiding
problems with the formation of gas bubbles and fuel
starvation.

Time-varying environments: Studying the behavior of
microswimmers in time-varying potentials and com-
plex environments is an interesting future direction of
both fundamental and applied research.

Colloidal molecules: Formation of colloidal molecules
between active particles (or passive particles in an
active bath) with matching shapes is an interesting
possibility. This has already been explored for the case
of passive colloidal particles, e.g., the depletion-driven
lock-and-key mechanism presented by Sacanna et al.
(2010) and the self-assembly of tunable nanostructures
using critical Casimir forces presented by Faber et al.
(2013). The concept of passive colloidal molecules
(Manoharan, Elsesser, and Pine, 2003; van Blaaderen,
2003; Kraft, Groenewold, and Kegel, 2009) was indeed
recently generalized to active colloidal molecules. The
latter comprise clusters of either diffusiophoretic par-
ticles (Soto and Golestanian, 2014, 2015) or tightly
bound (Babel, Löwen, and Menzel, 2015) or magneti-
cally attractive microswimmers (Kaiser, Popowa, and
Löwen, 2015). In this context some new directions
emerge from the possibility of using critical Casimir
forces to fine-tune the particle assembly (Hertlein et al.,
2008; Paladugu et al., 2016).

Hybrid systems: An interesting possibility is to use a
combination of microfabricated and biological ele-
ments to generate motion on the nanoscale. For
example, Gao et al. (2015) trapped smooth swimming
bacteria in micron-sized structures and used their
rotating flagella to generate a flow capable of trans-
porting materials along designed trajectories.

Emergent collective organization: Albeit recently some
studies have found interesting novel forms of aggre-
gation in crowded suspensions of microswimmers
(Buttinoni et al., 2013; Palacci et al., 2013), they still
considered only one kind of microswimmer at a time.
Nevertheless, we know from recent experiments in
robotics (Halloy et al., 2007; Rubenstein, Cornejo, and
Nagpal, 2014; Mijalkov et al., 2016; Volpe and Wehr,
2016) and biology (Gravish et al., 2015; Tennenbaum
et al., 2016) that complex and robust collective
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behaviors can arise also in the presence of very simple
constituent agents. The possibility of translating these
results from robotic swarms to microswimmers and
exploring how several different kinds of micro-
swimmers can synergistically interact to perform a
task is appealing.

Stochastic thermodynamics in active baths: Stochastic
thermodynamics is an emergent field of research
(Jarzynski, 2011; Seifert, 2012). Until now mostly
systems coupled to a thermal bath and, therefore,
satisfying Boltzmann statistics have been considered.
However, systems satisfying these conditions are
limited and, in particular, do not include many systems
that are intrinsically far from equilibrium such as living
matter, for which fluctuations are expected to be non-
Gaussian. For example, biomolecules within the cell
are coupled with an active bath due to the presence of
molecular motors within the cytoplasm, which leads to
striking and largely not yet understood phenomena
such as the emergence of anomalous diffusion (Barkai,
Garini, and Metzler, 2012). Also, protein folding might
be facilitated by the presence of active fluctuations
(Harder, Valeriani, and Cacciuto, 2014) and active
matter dynamics could play a central role in several
biological functions (Mallory, Valeriani, and Cacciuto,
2015; Shin et al., 2015; Suzuki et al., 2015). It is
therefore an open and compelling question to assess
whether and to what degree stochastic thermodynamics
can be applied to systems coupled to active baths
(Argun et al., 2016).

Nanoswimmers: Active matter systems have so far been
confined to microscopic (or larger) scales. However,
with advances in creating artificial swimmers it could
be possible to realize active matter systems on much
smaller scales. In these regimes, thermal effects will be
much more pronounced at room temperature and
could mask the effects of the activity as seen in
Sec. VI. However, experiments could be performed
at lower temperatures and a new field of low-temper-
ature active matter systems could be realized. At these
smaller scales new effects may arise such as
van der Waals forces, charging, or other fluctuation
forces, which can lead to new types of active matter
emergent behaviors. In terms of applications, activity
on the nanoscale can be useful for creating new
methods for self-assembly or pattern formation,
changing the nature of fluids on the nanoscale, or
serving as the first step to nanoscale probes and
machines for medical applications.

Active polymers: The interaction of passive or active
polymers with an active bath is a very interesting
field. Open questions include how reptation dynamics
might change when a chain is active rather than
thermal, whether active polymer chains could produce
unusual rheological properties, whether entanglement
would increase or decrease under different activity
levels, what would happen if the polymers were
breakable, and whether glassy or jamming behavior

can arise in dense active polymer mixtures. Extensions
of such studies could be applied to understanding
membranes, sheets, or flexible tubes in the presence of
active matter baths.

Underdamped active particles: In most active matter
systems the swimmers are considered to be moving
in an overdamped medium. An alternative area of
exploration is to consider cases of active systems where
the damping is significantly reduced so that inertial
effects can play an important role. One example might
be to make active Janus particles that move through a
dusty plasma (Morfill and Ivlev, 2009), air, or even a
vacuum. In this context, an important class of systems
is dusty plasma bilayers governed by effective nonre-
ciprocal wake forces (Ivlev et al., 2015), which under
appropriate conditions form self-propelled pairs
(Bartnick et al., 2015). Another example is self-
propelling microdiodes (Chang et al., 2007; Sharma
and Velev, 2015). Examples of questions that could be
asked are whether activity-induced clustering transi-
tions remain robust when inertial effects are present, or
whether clustering can happen in a vacuum where
dissipation occurs only at the particle-particle inter-
action level. When inertia is present, many nonlinear
systems can exhibit a range of collective dynamical
behaviors such as solitons, nonlinear waves, and shock
phenomena (Infeld and Rowlands, 2000). If the
medium is active, then new kinds of active soliton
behaviors could occur, as well as new classes of self-
propagating waves or shocklike phenomena.

Swimmers in nonviscous fluids: Another question to ask is
how artificial swimmers would behave in different
kinds of fluids. Such effects could include shear-
thickening or shear-thinning fluids. It is also possible
to explore anisotropic swimmers moving in a super-
fluid (Leggett, 1999), where new effects could arise
due to the frictionless nature of the flow, as well as the
generation of quantized vortex-antivortex couples
when the velocity of the active particles is above
the superfluid velocity (Bewley, Lathrop, and
Sreenivasan, 2006). Possible experiments could be
performed using swimmers in liquid helium (Bewley,
Lathrop, and Sreenivasan, 2006) or in superfluids
created in Bose-Einstein condensates (Madison et al.,
2000).

Nonlocal interactions to mimic quantum effects: There
have been a variety of efforts to create collective
classical systems that mimic quantum phenomena
(Couder and Fort, 2006; Bush, 2015). Another future
direction for active matter systems is to explore the
feasibility of making artificial swimmers that have
effective nonlocal interactions generated via coupling
or feedback responses, such as by using light fields or
arrays of swimming robots with transmitters. For the
correct choice of coupling rules, the active matter
assembly could mimic the behavior of quantum sys-
tems. In this way swarms of swimmers could coor-
dinate to form an effective wave-function-type object.
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On a more theoretical side it could be interesting to
consider how activity would affect tunneling, interfer-
ence, and entanglement.

Topological active matter systems on lattices: Recently
there has been growing interest in topological effects in
both quantum (Ran, Zhang, and Vishwanath, 2009;
Hasan and Kane, 2010) and classical systems (Kane
and Lubensky, 2014; Paulose, Chen, and Vitelli, 2015),
where the behavior at the edge of the system is
different from that in the bulk. Active particles moving
on various kinds of finite lattices offer a system in
which such topological effects could be investigated.
For example, the activity could be enhanced at or occur
only on the edges of the system. Additionally, in dense
active matter systems higher-order topological objects
such as dislocations could arise that could have
dynamical properties that are significantly different
from those of similar objects in purely thermal systems.
For active matter on substrates, certain constraints
could be imposed by the geometry of the substrate
lattice that would allow only certain topological modes
to propagate.

Active matter on active substrates: So far, active matter
systems have been studied in the absence of a substrate
or interacting with rigid substrates. However, in many
real-world systems, particularly biological systems, the
substrate is flexible rather than rigid, and in some cases
the substrate itself is active. Thus, another future
direction is understanding how active matter systems
couple to flexible environments where the activity
could in principle change the environment or cause
some form of self-organization to occur. If the substrate
itself is active, then some type of resonance could arise
when the time scales of the substrate and the active
matter match, and it is possible that biological active
matter systems could harness the activity of a coupled
system to enhance certain functions.
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