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The basic concepts and recent developments in the time-dependent density-functional theory
(TDDFT) for describing nuclear dynamics at low energy are presented. The symmetry breaking is
inherent in nuclear energy density functionals, which provides a practical description of important
correlations at the ground state. Properties of elementary modes of excitation are strongly influenced
by the symmetry breaking and can be studied with TDDFT. In particular, a number of recent
developments in the linear response calculation have demonstrated their usefulness in the
description of collective modes of excitation in nuclei. Unrestricted real-time calculations have
also become available in recent years, with new developments for quantitative description of nuclear
collision phenomena. There are, however, limitations in the real-time approach; for instance, it
cannot describe the many-body quantum tunneling. Thus, the quantum fluctuations associated
with slow collective motions are explicitly treated assuming that time evolution of densities is
determined by a few collective coordinates and momenta. The concept of collective submanifold is
introduced in the phase space associated with the TDDFT and used to quantize the collective
dynamics. Selected applications are presented to demonstrate the usefulness and quality of the new
approaches. Finally, conceptual differences between nuclear and electronic TDDFT are discussed,
with some recent applications to studies of electron dynamics in the linear response and under a
strong laser field.
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I. INTRODUCTION

A. Scope of the present review

In the study of strongly correlated many-particle systems, a
fundamental challenge is to find basic properties of a variety
of elementary modes of excitation and to identify the degrees
of freedom that are suitable for describing the collective
phenomena. The collective motion in such complex systems,
with an ample supply of experimental data and theoretical
study, may often lead to deeper insight into the basic concepts
of quantum many-body physics.
Among a variety of many-particle systems in the

Universe, the nucleus provides a unique opportunity to
investigate fundamental aspects of the quantum many-body
problems. The nucleus is a self-bound system with finite
number of fermionic particles, called nucleons, which have
the isospin degrees of freedom (t ¼ 1=2), in addition to the
intrinsic spin (s ¼ 1=2). The strong interplay between the
collective and single-particle degrees of freedom plays
important roles in nuclei, which produce a rich variety
of unique phenomena. A prominent example of the con-
sequence of this coupling is given by the manifestation of
nuclear deformation and rotational spectra. It is also closely
related to the damping and particle decay of the collective
motion, the particle transfer in the heavy-ion collision, and
the dissipation process in the nuclear fission. In fact, the
coupling between the single-particle motion and collective
motion is a key issue in nuclear structure. It is the basic idea
behind the unified model of nuclei (Bohr and Mottelson,
1969, 1975), in which the collective motion is described by
a shape change of the average one-body nuclear potential.
It is easy to see that the basic concept of the unified model
is similar to that of the mean-field theory. We therefore
expect that the mean-field theory may provide a micro-
scopic description of those phenomena, although it is
limited to the one-body dynamics.
The self-consistent mean-field models for nuclei are cur-

rently a leading theory for describing properties of heavy
nuclei (Bender, Heenen, and Reinhard, 2003; Lunney,
Pearson, and Thibault, 2003). They self-consistently deter-
mine the nuclear one-body mean-field potential, starting from
effective energy density functionals (EDFs). They are capable
of describing almost all nuclei, including infinite nuclear
matter, with a single universal EDF. The concept is very
similar to the density-functional theory (DFT) in electronic
systems, utilized in atomic, molecular, and solid state physics.
A major conceptual difference is that, for the isolated finite
nucleus, all the currently available nuclear DFT models are
designed to reproduce the intrinsic ground state. The self-
consistent solution produces a density distribution which
spontaneously violates symmetries of the system, such as
translational, rotational, and gauge symmetries. This feature
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has advantages and disadvantages. The spontaneous breaking
of symmetries (SSB) provides us with an intuitive explanation
of a variety of nuclear phenomena. A typical example is the
observed rotational spectra as a consequence of the intrinsic
density deformation. On the other hand, when the symmetries
are restored in finite nuclei, an additional correlation energy is
generated. A question arises then, concerning whether all the
correlation energy should be included in the EDF or not. We
do not think this issue is completely settled yet. [Nevertheless,
there are also attempts to justify the use of symmetry-violating
(wave-packet) densities in a rigorous sense, which we present
in Sec. II.] Perhaps, because of this unsettled problem, it is
common to use terminologies of the mean-field theory, such as
the time-dependent Hartree-Fock (TDHF) equations, instead
of the time-dependent Kohn-Sham (TDKS) equations. In this
article, we mainly use the DFT terminologies, since the naive
mean-field theory is not applicable to nuclear systems, due to
a strong two-body correlation (Sec. VI.A). Moreover, the
mean-field calculation with a density-independent (state-
independent) interaction cannot account for the nuclear
saturation properties (Sec. I.B).
An extension of the DFT to the time-dependent DFT

(TDDFT) provides a feasible description of many-body
dynamics, which contains information on excited states in
addition to the ground state. The TDDFT and its Kohn-Sham
(KS) scheme are formally justified by the one-to-one corre-
spondence between the time-dependent density and time-
dependent external potential, assuming the v representability
(Runge and Gross, 1984). The TDDFT has vast applications
to quantum phenomena in many-body systems. In nuclear
physics applications, there exist extensive studies in the
simulation of the heavy-ion collision dynamics, especially of
nuclear fusion and deep inelastic scattering (Negele, 1982).
Ultimately, the nuclear TDDFT aims at describing nuclear
excitations with different characters, such as vibration,
rotation, and clustering, nuclear reactions of many kinds,
such as fusion and fission, particle transfer, fragmentation,
and even collective excitations in the crust and the interior of
neutron stars.
One of the most extensively studied areas of the nuclear

TDDFT is small-amplitude vibrations or linear response to
external perturbations. This is a perturbative regime of the
TDDFT, but it provides a powerful method to explore a
variety of modes of excitation in nuclei. Many kinds of
approaches to the linear response calculations have been
developed and are presented in Sec. III. In addition to the
conventional matrix formalism, we present some recent
developments, such as the finite amplitude method and
the Green’s function method for the quasiparticle formalism
with finite pair densities.
It is of significant interest and challenge to go beyond the

perturbative regime. Nuclei show numerous phenomena
related to the large-amplitude collective motion. In particular,
nuclear reactions involving collective and noncollective
dynamics of many nucleons are extensively studied using
the real-time calculations in the past. In Sec. IV, we show
some recent developments and applications. Recent review
articles on the real-time approaches in normal (Simenel, 2012)
and superfluid systems (Bulgac, 2013) may be supplementary
to the present review. It is also of great interest to study the

strong quantum nature of large-amplitude collective motion,
such as spontaneous fission, shape transition, shape coexist-
ence, anharmonic vibrations, and so on. For these phenomena,
the real-time simulation of the TDDFT is not directly
applicable to the problems. In most cases, we need requan-
tization of the TDDFT dynamics. The requantizations of the
TDHF and the imaginary-time TDHF for classically forbidden
dynamics were previously discussed in another review paper
in great detail (Negele, 1982). Unfortunately, the method has
not been applied to realistic problems, due to a number of
difficulties, such as finding suitable periodic orbits to quantize
(Baranger, Strayer, and Wu, 2003). We present, in Sec. V, an
alternative theory to identify an optimal collective submani-
fold in the TDDFT phase space. Consequently, with a small
number of canonical variables, it is much more practical to
quantize the collective dynamics.
Since the DFT and TDDFT are commonly adopted in many

domains of quantum many-body systems, current problems
and new ideas in other fields are of significant interest. Similar
to nuclear physics, there are linear response TDDFT calcu-
lations and TDDFT for large-amplitude motion as an initial-
value problem. However, it should be noted that there are
conceptual and qualitative differences of EDFs between
nuclear and electronic (TD)DFT. These issues are discussed
in Sec. VI.
We tried to make the present review somewhat pedagogical

and tractable for nonpractitioners and to explain essential
elements of the theories. For more details, interested readers
are referred to the literature.

B. Saturation and the mean-field picture

The saturation is a fundamental property of the nuclear
system that is analogous to the liquid. The volume and total
binding energy of observed nuclei in nature are approximately
proportional to the mass number A. Extrapolating the
observed property to the infinite nuclear matter with neglect
of the Coulomb interaction, the nuclear matter should have an
equilibrium state with ρ0 ≈ 0.17 fm−3 and B=A ≈ 16 MeV at
zero pressure and zero temperature. The empirical mass
formula of Bethe and Weizsäcker (Weizsäcker, 1935; Bethe
and Bacher, 1936), which is based on this liquid drop picture
of nuclei, accounts well for the bulk part of the nuclear
binding.
In contrast, there is much evidence pointing to the fact that

the mean-free path of nucleons is larger than the size of the
nucleus. The great success of the nuclear shell model (Mayer
and Jensen, 1955), in which nucleons are assumed to move
independently inside an average one-body potential, gives one
of them. The scattering experiments with incident neutrons
and protons provide more quantified information on the mean-
free path. In fact, the mean-free path depends on the nucleon’s
energy and becomes larger for lower energy (Bohr and
Mottelson, 1969). Therefore, it is natural to assume that the
nucleus can be primarily approximated by the independent-
particle model with an average one-body potential. For the
symmetric nuclear matter, this approximation leads to the
degenerate Fermi gas of the same number of protons and
neutrons (Z ¼ N ¼ A=2). The observed saturation density of
ρ0 ≈ 0.17 fm−3 gives the Fermi momentum kF ≈ 1.36 fm−1,
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which corresponds to the Fermi energy (the maximum kinetic
energy) TF ¼ k2F=2m ≈ 40 MeV.
The justification of the independent-particle motion

encourages us to investigate the mean-field models of nuclei.
However, the naive mean-field models cannot properly
describe the nuclear saturation property. Here the “naive”
mean-field models mean those using any kind of state-
independent two-body interactions. This has been known
for many years (Bohr and Mottelson, 1969). Since it contains
useful insight and relations to the nuclear DFT, let us explain
the essential point. It is easy to consider the uniform nuclear
matter with a constant attractive “mean-field” potential
V < 0. The constancy of B=A means that it is equal to the
separation energy of nucleons S. In the Fermi-gas model, it is
estimated as

S ≈ B=A ≈ −ðTF þ VÞ: ð1Þ

Since the binding energy is B=A ≈ 16 MeV, the potential
V is about −56 MeV. Note that the relatively small
separation energy is the consequence of the significant
cancellation between the kinetic and the potential energies.
This indicates that the nucleus has a strong quantum
nature. In the mean-field theory, the total (binding) energy
is given by

−B ¼
XA
i¼1

�
Ti þ

V
2

�
¼ A

�
3

5
TF þ V

2

�
; ð2Þ

where we assume that the average potential results from a
two-body interaction. The two kinds of expressions for
B=A, Eqs. (1) and (2), lead to TF ≈ −5V=4 ≈ 70 MeV,
which is different from the previously estimated value
(∼40 MeV). Moreover, the negative separation energy
(TFþV>0) contradicts the fact that the nucleus is bound.
The presence of a three-body interaction may change this
argument. However, solving the present contradiction
requires an unrealistically strong three-body repulsive effect
whose magnitude is comparable to that of the attractive two-
body interaction.
To reconcile the independent-particle motion with the

saturation property of the nucleus, the nuclear average
potential must be state dependent. Allowing the potential
Vi to depend on the state i, the potential V should be replaced
by that for the highest occupied orbital VF in Eq. (1), and by
its average value hVi on the right-hand side of Eq. (2). Then
we obtain the following relation:

VF ≈ hVi þ TF=5þ B=A: ð3Þ

The potential VF is shallower than its average value hVi.
Weisskopf (1957) suggested the momentum-dependent
potential V, which can be expressed in terms of an effective
mass m�:

Vi ¼ U0 þ U1

k2i
k2F

: ð4Þ

In fact, the nonlocal mean-field potential can be expressed
by the momentum dependence (Ring and Schuck, 1980).

Equation (4) leads to the effective mass m�=m ¼
ð1þ U1=TFÞ−1. Using Eqs. (1), (3), and (4), we obtain
the effective mass given by

m�

m
¼
�
3

2
þ 5

2

B
A

1

TF

�
−1

≈ 0.4: ð5Þ

Quantitatively, this value disagrees with the experimental
data. Although the empirical values of the effective mass
vary according to the energy of nucleons 0.7≲m�=m≲ 1,
they are almost twice larger than the value of Eq. (5).
Furthermore, the total energy, Eq. (2), is written as

−B ¼ 1

2

XA
i¼1

ðTi þ ϵiÞ; ð6Þ

where ϵi are single-particle energies. Within the constraint
of Eq. (6), it is impossible to reproduce both the total
binding energy and the single-particle spectra observed in
experiments. As far as we use a normal two-body inter-
action, these discrepancies should be present in the mean-
field calculation with any interaction, because Eqs. (5) and
(6) are valid in general for a saturated self-bound system.
Therefore, the naive mean-field models have a fundamental
difficulty to describe the nuclear saturation.
The DFT provides a practical solution to this problem, in

which we start from an EDF E½ρ� instead of the interaction.
The KS field is calculated as h½ρ� ¼ ∂E=∂ρ, which may
contain the nontrivial density dependence different from that
of the mean-field theory starting from the interaction. In
nuclear physics, this additional density dependence was
introduced by the density-dependent effective interaction;
thus, it was called the “density-dependent Hartree-Fock”
method (Negele, 1970). In this terminology, the variation
of the total energy with respect to the density contains a
rearrangement potential ∂Veff ½ρ�=∂ρ, which comes from the
density dependence of the effective force Veff ½ρ�. These terms
are crucial to obtain the saturation and to provide a consistent
independent-particle description of nuclei.

C. Symmetry breaking and restoration by the
Anderson-Nambu-Goldstone (ANG) modes

One of the prominent features in the nuclear EDF
approaches is the appearance of the SSB. For the system of
a small number of particles, such as nuclei, the SSB is hidden.
The experimental measurements probe the states which
preserve the symmetries of the original Hamiltonian. In
nuclear physics, the state with a broken symmetry is often
called the “intrinsic” state. Nevertheless, we observe a number
of nuclear phenomena associated with effects of the SSB, both
in the ground-state properties and in excitation spectra. In
nuclear physics, this was realized in the 1950s, soon after the
experimental identification of the characteristic patterns of
rotational spectra. Figure 1 is from a seminal review paper on
the Coulomb excitation (Alder et al., 1956). The nuclear
potential energy function clearly indicates the nuclear defor-
mation as the phase transition involving the SSB. The SSB in
small finite-size systems has been an important concept in
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nuclear physics and chemistry for many years and has become
so in fields of quantum dots and ultracold atoms (Yannouleas
and Landman, 2007).
The symmetry restoration is a quantum fluctuation

effect. When the spontaneous breaking of the continuous
symmetry occurs, the ANG modes emerge to restore the
broken symmetry (Anderson, 1958, 1963; Nambu, 1960;
Goldstone, 1961). This symmetry restoration process is
extremely slow for macroscopic objects, thus, the SSB is
realized in a rigorous sense. In other words, the quantum
fluctuation associated with the ANG mode is negligibly small
in those cases. If the deformed nucleus with extremely heavy
mass (A → ∞) existed, the moment of inertia J should be
macroscopically large. Then the excitation spectra of this
heavy rotor would be nearly degenerate with the ground state,
EI ¼ IðI þ 1Þ=2J for the state with the total angular momen-
tum I, leading to a stable deformed wave packet. In reality, the
restoration of the rotational symmetry even in heaviest nuclei
takes place much faster than the shortest time resolution we
can achieve with the present experimental technologies. In this
sense, the SSB in nuclei is hidden. Nevertheless, the nucleonic
motion is strongly influenced by the SSB, since the time scale
of the symmetry restoration τSSB is much longer than the
periodic time of single-particle motion in the nucleus of radius
R, τF ¼ R=vF ∼ 10−22 s. This is schematically illustrated in
Fig. 2. We believe that it is important to distinguish these two
types of correlations in nuclei, those of relatively short time
scales τ ∼ τF (“fast” motion), and of long time scales τ ∼ τSSB
(“slow” motion).
The nuclear superfluidity can be exactly understood in an

analogous way as the SSB leading to the deformation in the
gauge space (Brink and Broglia, 2005). The condensate of the
nucleonic Cooper pairs is expressed as an intrinsic deforma-
tion in the magnitude of the pair field. The pair field creates
and annihilates the pairs of nucleons giving rise to the
quasiparticles that are superpositions of particles and holes,
expressed by the Bogoliubov transformation. The ANGmode,
called pair rotation, corresponds to the addition and removal
of the nucleon pairs from the pair condensate. In this case, the
“angular momentum” in the gauge space corresponds to the
particle number, and the “moment of inertia” is defined by
the second derivative of the ground-state energy with respect

to the particle number J pair ¼ ðd2EN=dN2Þ−1; see also
Sec. III.B.
Since the broken symmetry is restored by the quantum

fluctuation, its time scale τSSB can be estimated by the
uncertainty principle. The time is proportional to the moment
of inertia J as τSSB ∼ J =ℏ, which amounts to 10−20–10−19 s
for typical deformed nuclei in the rare-earth and actinide
regions. Thus, the symmetry restoration is a slow motion,
compared to the nucleonic Fermi motion. Here it is important
to distinguish this time scale of the “quantum” fluctuation
from that of the “classical” rotation ω−1

rot ≈ J =I. The latter
could be comparable to τF at a very high spin (large I);
however, the concept of the deformation (symmetry breaking)
still holds. For the pair rotation, using an observed value of the
moment of inertia in Sn isotopes (Brink and Broglia, 2005),
τSSB for the symmetry breaking in the gauge space can be
given by τSSB ¼ 10−21–10−20 s.
These concepts of SSB are invoked in the nuclear DFT and

TDDFT. The symmetry restoration can be treated either by the
projection method or by the (time-dependent) large-amplitude
collective motion of the ANG modes (Ring and Schuck,
1980). In the present review, we mainly discuss the latter
treatment with the time-dependent description.

II. BASIC FORMALISM: DFT AND TDDFT

The DFT describes a many-particle system exactly in terms
of its local one-body density ρð~rÞ alone. The DFT is based on
the original theorem of Hohenberg and Kohn (1964) (HK)
which was proven for the ground state of the many-particle
system. Every observable can be written, in principle, as a
functional of density.
In nuclear physics, as discussed in Sec. I.C, many kinds of

SSB take place without an external potential. In fact, the
minimization of the nuclear EDF for finite nuclei always
produces a localized density profile, which spontaneously
violates the translational symmetry. Furthermore, it often
violates the rotational symmetry in the real space and gauge
space. The SSB enables us to introduce an intrinsic (wave-
packet) state. A possible justification of the DFT for the
intrinsic state is presented in Sec. II.B.
For finite many-fermion systems, the shell effects associ-

ated with the quantum nature of the Fermi motion play a major

FIG. 1. Potential energy curves as functions of deformation
parameter β. a corresponds to spherical nuclei, b and c correspond
to transitional nuclei, and d to well-deformed nuclei. From
Alder et al., 1956.

FIG. 2. Deformed nuclei in different time scales: (a) shorter than
the symmetry-restoring time τSSB, and (b) larger than τSSB.
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role in determining the ground state. The KS scheme (Kohn
and Sham, 1965) gives a practical treatment of the shell effects
in the density functional. This is presented in Sec. II.C
The DFT is designed for calculating the ground-state

properties. For excited-state properties and reactions, the
TDDFT is a powerful and useful tool. The basic theorem
for the TDDFT was developed as an exact theorem (Runge
and Gross, 1984), similar to the HK theorem in the static case.
This is reviewed in Sec. II.D.
Both the DFT and TDDFT have been extended to the

superconductors, introducing an external pair-removal and
pair-addition potential (Oliveira, Gross, and Kohn, 1988;
Wacker, Kümmel, and Gross, 1994). These extensions are
relevant to nuclear physics as well, to account for various
properties of heavy open-shell nuclei. In this article, we call
them “superconducting nuclei” or “nuclear superfluidity.”
Properties of the (time-dependent) Bogoliubov–de Gennes
equations will be presented in Secs. II.A and II.D.

A. Nuclear EDF models

Before presenting the theorem of DFT, we recapitulate
basic equations of nuclear EDF models and their properties
(Ring and Schuck, 1980; Blaizot and Ripka, 1986; Bender,
Heenen, and Reinhard, 2003).

1. Basic equations

To simplify the discussion, we assume that the EDF F½ρ�,
which represents the total energy of the nucleus, is a func-
tional of local density ρð~rÞ without the spin-orbit coupling.
The KS equations read with the spin index σ ¼ ð↑;↓Þ,

�
−

1

2m
∇2 þ vsð~rÞ

�
φið~rσÞ ¼ ϵiφið~rσÞ: ð7Þ

Hereafter, we use the unit ℏ ¼ 1. We decompose F½ρ� into two
parts, F½ρ� ¼ Ts½ρ� þ Ec½ρ�, where

Ts½ρ� ¼
XN
i¼1

hφij
�
−

1

2m
∇2

�
jφii

and the rest Ec½ρ�. The KS potential is defined by
vsð~rÞ ¼ δEc=δρð~rÞ. The density is given by summing up
the KS orbitals,

ρð~rÞ ¼
X
σ

XN
i¼1

jφið~rσÞj2: ð8Þ

When we take into account the nuclear superfluidity, we
adopt an EDF which is a functional of ρ and ðκ; κ�Þ, including
the pair tensor κð~r; ~r0Þ whose definition (20) requires a
symmetry-broken wave-packet state in Sec. II.B. If the
EDF depends only on their diagonal parts [pair density
κð~rÞ] F½ρ; κ� ¼ Ts½ρ; κ� þ Ec½ρ; κ�, Eq. (7) should be extended
to the Bogoliubov–de Gennes–KS (BdGKS) equations:

X
σ0

� ðhsð~rÞ − μÞδσσ0 Δsð~rÞγσσ0
−Δ�

sð~rÞγσσ0 −ðhsð~rÞ − μÞ�δσσ0

��
Uið~rσ0Þ
Við~rσ0Þ

�

¼ Ei

�
Uið~rσÞ
Við~rσÞ

�
; ð9Þ

where hsð~rÞ≡ −∇2=ð2mÞ þ vsð~rÞ, γ↑↓ ¼ −γ↓↑ ¼ 1, and
γ↑↑ ¼ γ↓↓ ¼ 0. The chemical potential μ is introduced to
control the total particle number. The potentials vsð~rÞ and
Δsð~rÞ are, respectively, defined by

vsð~rÞ ¼
δEc

δρð~rÞ ; Δsð~rÞ ¼
δEc

δκ�ð~rÞ : ð10Þ

The normal and pair densities are given by ρð~rÞ ¼P
σ

P
i jVið~rσÞj2 and κð~rÞ ¼PiV

�
i ð~r↑ÞUið~r↓Þ, where the

summation with respect to i is taken over all the states with
positive quasiparticle energies Ei > 0. The same convention is
assumed in this article.
In nuclear physics, Eqs. (7) and (9) are often called Hartree-

Fock (HF) and Hartree-Fock-Bogoliubov (HFB) equations,
respectively.1 Accordingly, the quasiparticle vacuum jϕ0i is
introduced and called the HFB ground state, where the
Bogoliubov transformation,

ψ̂ð~rσÞ ¼
X
i

fUið~rσÞai þ V�
i ð~rσÞa†i g; ð11Þ

defines the quasiparticle annihilation and creation operators
ðai; a†i Þ with the vacuum condition

aijϕ0i ¼ 0: ð12Þ

These mean-field terminologies are due to the practical
usage of the effective density-dependent interaction. The
EDF is provided by the expectation value of the effective
Hamiltonian at jϕ0i, F½ρ; κ� ¼ hϕ0jĤ − μN̂jϕ0i. The variation
δ(F½ρ; κ� − μ

R
ρð~rÞd~r) ¼ 0 leads to Eqs. (7) and (9).

2. Properties of BdGKS equations and useful notations

Solutions of the BdGKS (HFB) equation (9) are paired in
the following sense: For each quasiparticle eigenstate Ψ0

i with
a positive eigenvalue Ei, there exists a partner eigenstate ~Ψ0

i
with the negative energy −Ei,

Ψ0
i ¼

�
Ui

Vi

�
; ~Ψ0

i ¼
�
V�
i

U�
i

�
:

Introducing the collective notation of the quasiparticles
with positive (negative) energies at the ground state Ψ0 ¼
ðΨ0

1;Ψ
0
2;…Þ [ ~Ψ0 ¼ ð ~Ψ0

1; ~Ψ
0
2;…Þ], the orthonormal and com-

pleteness relations are equivalent to the unitarity condition
WW† ¼ W†W ¼ 1 of the matrix

1The time-dependent equations are also called TDHF (TDHFB) in
nuclear physics, instead of TDKS (TDBdGKS).
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W ≡ ðΨ0 ~Ψ0 Þ ¼
�
U1 U2 � � � V�

1 V�
2 � � �

V1 V2 � � � U�
1 U�

2 � � �

�
:

The generalized density matrix R0 is defined as

R0 ¼
�

ρ κ

−κ� 1 − ρ�

�
¼ 1 −Ψ0Ψ0† ¼ ~Ψ0 ~Ψ0†; ð13Þ

which is Hermitian and idempotent [ðR0Þ2 ¼ R0]. The ortho-
normal property immediately gives

R0Ψ0
i ¼ 0; R0 ~Ψ0

i ¼ ~Ψ0
i : ð14Þ

The BdGKS equations can be rewritten in terms of R as

½Hs½R0�; R0� ¼ 0; ð15Þ

whereHs½R0� is the BdGKS (or HFB) Hamiltonian on the left-
hand side of Eq. (9).
Any unitary transformation among the quasiparticles a0i ¼P
Uijaj keeps R0 (ρ, κ) invariant. The quasiparticles defined

by Eq. (9) give one choice of the gauge (“quasiparticle
representation”). Another common choice is called “canonical
representation,” in which the density matrix ρ is diagonal.
Note that Eqs. (13), (14), and (15) are all independent of the
choice of the gauge.
In Sec. II.A.1, we used the coordinate-space representation

ð~r; σÞ and assumed that the density functional Ec½ρ; κ� depends
only on the diagonal densities [ρð~rÞ; κð~rÞ] without spin
dependence. It can be easily generalized to other representa-
tion ðα; β;…Þ and to functionals of density matrices in
general: Hermitian ραβ and antisymmetric καβ. The potentials
are given by

vsðαβÞ ¼
δEc

δρβα

����
R0

; ΔsðαβÞ ¼ −
δEc

δκ�βα

����
R0

:

Then the BdGKS Hamiltonian can be written as

Hs½R0�ðα0β0Þ ¼ δF
δRβ0α0

����
R0

; ð16Þ

where F½R� ¼ Ts½R� þ Ec½R�. Here we introduce the primed
indices, which are double the dimension. Let the dimen-
sion of the single-particle space be d, then the unprimed
index runs over α ¼ 1;…; d, while the primed one
α0 ¼ 1;…; 2d.
It is not necessary, but often useful to introduce the

generalized Slater determinant (quasiparticle vacuum) jϕ0i,
defined by aijϕ0i ¼ 0. Then we denote R0 as

R0
α0β0 ¼ hϕ0j

 
ψ̂†
βψ̂α ψ̂βψ̂α

ψ̂†
βψ̂

†
α ψ̂βψ̂

†
α

!
jϕ0i:

A one-body operator Ô can be written in the form

Ô ¼
X
αβ

�
fαβψ̂

†
αψ̂β þ

1

2
fgαβψ̂†

αψ̂
†
β þ g0αβψ̂αψ̂βg

�

¼ constþ 1

2
ð ψ̂† ψ̂ Þ

�
f g

g0 −fT

��
ψ̂

ψ̂†

�
; ð17Þ

where g and g0 are antisymmetric. If Ô is Hermitian, we have
fT ¼ f� and g� ¼ −g0 (g† ¼ g0).
The Bogoliubov transformation (11) is written with the

unitary matrix W as

�
a

a†

�
¼ W†

�
ψ̂

ψ̂†

�
;

�
ψ̂

ψ̂†

�
¼ W

�
a

a†

�
:

This transforms Eq. (17) into

Ô ¼
X
ij

�
OðþþÞ

ij a†i aj þ
1

2
fOðþ−Þ

ij a†i a
†
j þOð−þÞ

ij aiajg
�

¼ 1

2
ð a† a Þ

�
OðþþÞ Oðþ−Þ

Oð−þÞ Oð−−Þ

��
a

a†

�
; ð18Þ

where Oð−−Þ ¼ −OðþþÞT and the constant shift is ignored.
The matrices appearing in Eqs. (17) and (18) are essentially
identical, but in different representation. We symbolically
denote this as O. The superscript indices þ and − indicate

the positive- and negative-energy states; OðþþÞ
ij ≡Ψ0†

i OΨ0
j ,

Oðþ−Þ
ij ≡Ψ0†

i O ~Ψ0
j , O

ð−þÞ
ij ≡ ~Ψ0†

i OΨ0
j , and Oð−−Þ

ij ≡ ~Ψ0†
i O ~Ψ0

j .

The matrix elements Oðþ−Þ
ij and Oð−þÞ

ij correspond to the two-
quasiparticle creation and annihilation parts, respectively,
which are occasionally denoted asO20

ij andO02
ji in the literature

(Ring and Schuck, 1980; Avogadro and Nakatsukasa, 2011).
The block elements of the density are also written as

R ¼
�
RðþþÞ Rðþ−Þ

Rð−þÞ Rð−−Þ

�
.

For the ground-state density R0, we have RðþþÞ ¼ Rðþ−Þ ¼
Rð−þÞ ¼ 0 and Rð−−Þ ¼ 1. The expectation value of Ô is given
by hϕ0jÔjϕ0i ¼ ð1=2Þtr½OR0�. These matrix notations are
frequently used in Sec. III.

B. DFT theorem for a wave-packet state

The DFT is based on the HK theorem which guarantees a
one-to-one mapping between a one-body density ρð~rÞ for the
ground state and an external potential v0ð~rÞ. According to the
recent progress (Barnea, 2007; Engel, 2007; Giraud, 2008;
Messud, Bender, and Suraud, 2009), the theorem is extended
to functionals of the localized intrinsic density of self-bound

systems. Thus, it is a functional of density ρð~r − ~RÞ, where ~R
is the center of mass. In contrast to the center-of-mass motion,
a strict definition of the intrinsic state is not trivial for the
rotational motion of a deformed nucleus. In this section,
we show a possible justification of the functional of the
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wave-packet density produced by the SSB in finite systems.
The arguments presented here were given by Giraud,
Jennings, and Barrett (2008). The argument is exact for the
SSB in the translational symmetry, while it is approximate for
the SSB in the rotational symmetry.

1. Principles

A useful fact is that the SSB of the continuous symmetries
produces ANG modes which are decoupled from the other
degrees of freedom. It is exactly true in the case of transla-
tional symmetry. Consequently, there appear the collective
variables associated with the ANG modes, which are
symbolically denoted as ðq; pÞ. Here p are conserved and
q are cyclic variables. The decoupling allows us to define the
collective subspace ΣANG in the whole Hilbert space of many-
particle systems. ΣANG is the space spanned by the collective
wave functions fχðqÞg. The subspace orthogonal to ΣANG,
which is denoted as Σintr, describes the intrinsic motion.
In the ideal case of the SSB in the translational symmetry,

the center-of-mass variables ðq; pÞ ¼ ð~R; ~PÞ and the intrinsic
variables ðξ; πÞ are exactly decoupled. The state jΦi is

rigorously given by a product wave function of ϕðξÞ and χð~RÞ,

jΦi ¼ jϕi ⊗ jχi; Ĥ ¼ Ĥintrðξ; πÞ þ
~P2

2M
;

where M is the total mass. In this case, the intrinsic subspace
Σintr is defined by the space spanned by fϕðξÞg. The intrinsic
ground state is obtained by the minimization of the intrinsic
energy hϕjĤintrjϕi in the subspace Σintr. The choice of the

center-of-mass motion χð~RÞ is arbitrary for the determination

of ϕðξÞ. Thus, we can adopt a localized form of χð~RÞ, such as

a Gaussian form χð~RÞ ∝ exp½−ð~R − ~R0Þ2=2b2�. This leads to
the wave-packet state jΦi. Using the operator P̂which projects

χðqÞ onto the ~P ¼ 0 state, the ground-state energy can be
obtained by the variation after the projection:

E0 ≡min

�hΦjĤ P̂ jΦi
hΦjP̂jΦi

�
Σintr

; ð19Þ

where the variation is performed only in Σintr with a

fixed χð~RÞ.
In general, the wave-packet state is constructed in an

analogous way. Choosing a localized form of χðqÞ, e.g.,
χðqÞ ∝ exp½−ðq − q0Þ2=2b2�, the variation after projection is
performed in a restricted space Σintr. The projection operator P̂
makes the state an eigenstate of the collective momentum
(symmetry operator) p; pP̂jΦi ¼ p0P̂jΦi. Then, Eq. (19)
produces the ground-state energy with p ¼ p0. In nuclear
physics interests, in addition to the total momentum, p may
stand for either the total angular momentum J or the neutron
(proton) number N (Z). The wave-packet density profile is
simply given by

ρð~rÞ≡X
σ

hΦjψ̂†ð~rσÞψ̂ð~rσÞjΦi

that depends on the choice of χðqÞ. In this article, we omit the
isospin index τ ¼ ðn; pÞ for simplicity. Since we adopt a
localized χðqÞwhich violates the symmetry, the density ρð~rÞ is
also localized, or “deformed.”
In order to find the (wave-packet) density functional, we

use the constrained search (Levy, 1979). The minimization in
Eq. (19) is divided into two steps: the first one considers only
states that produce a given wave-packet density ρð~rÞ and the
next takes the variation with respect to the density,

E0 ¼ min
ρ

(
min
Φ→ρ

�hΦjĤ P̂ jΦi
hΦjP̂jΦi

�
Σintr

)
:

This leads to the universal density functional

F½ρ�≡min
Φ→ρ

�hΦjĤ P̂ jΦi
hΦjP̂jΦi

�
Σintr

:

Thus, the energy of the ground state with p ¼ p0 may be
obtained by the minimization E0 ¼ minF½ρ�.
The SSB of the gauge symmetry in nuclear superfluidity is

caused by the pairing correlations among nucleons. Thus, in
practice, it is convenient to introduce the pair tensors for the
wave-packet state as

κð~rσ; ~r0σ0Þ≡ hΦjψ̂ð~r0σ0Þψ̂ð~rσÞjΦi: ð20Þ

In other words, it is easier to construct the density functional
F½ρ; κ; κ�� than F½ρ�, which takes into account essential
aspects of the pairing correlations. Hereafter, we denote
F½ρ; κ�, omitting κ� for simplicity. Following the idea of the
constrained search, it is easy to define the functional of
ρ and κ,

F½ρ; κ�≡ min
Φ→ðρ;κÞ

�hΦjĤ P̂ jΦi
hΦjP̂jΦi

�
Σintr

: ð21Þ

Instead of adopting the full pair tensors of Eq. (20), one can
restrict them to their “diagonal” parts κð~rÞ≡ κð~r↑; ~r↓Þ ¼
−κð~r↓; ~r↑Þ in the functional. The inclusion of other forms of
densities, in addition to ρ and κ, can also be achieved exactly
in the same manner.
Let us make a few remarks here. First, in general, ρð~rÞ and

κð~rÞ are not the exact densities in the laboratory frame
(Schmid and Reinhard, 1991). Thus, F½ρ; κ� is the functional
of “localized” wave-packet densities ρð~rÞ and κð~rÞ. Second,
when ΣANG describes the center-of-mass motion, the decou-
pling is exact, and in principle, E0 ¼ minF½ρ� gives the exact
ground-state energy. On the other hand, when the decoupling
is approximate, such as the SSB in the rotational symmetry,
E0 ¼ minF½ρ; κ� provides an approximate ground-state
energy with the deformed densities. In the strict sense, an
“infinite” system has an exact deformed ground state with an
arbitrary fixed orientation χðqÞ ∼ δðq − q0Þ. This limit is not
realized in finite nuclei. Nevertheless, we expect that the
approximation becomes better for heavier nuclei. Third, in the
approximate decoupling, the subspace Σintr should be chosen
to be optimal for a certain eigenvalue of p0. Therefore, F½ρ; κ�
may depend on p0.
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2. Practices

We have discussed the principles of the DFT for the wave-
packet state. The universal density functional F½ρ; κ� can be a
functional of “local” densities ρð~rÞ and κð~rÞ in principle.
However, even if the existence is guaranteed, it is another
issue in practice whether we can construct the accurate density
functional in terms of ρð~rÞ and κð~rÞ only.
For a proper account of the shell effects, the inclusion of

the kinetic density is the only practical solution at present
(Sec. II.C). Furthermore, for the shell structure in finite nuclei
with correct magic numbers, it is indispensable to take into
account the spin-orbit splitting (Mayer and Jensen, 1955).
Currently, we need to adopt the spin-current densities for this
purpose. In the end, the currently available EDFs for realistic
applications contain several kinds of densities. The Skyrme
and point-coupling covariant EDFs consist of local densities,
while the Gogny and covariant (relativistic) EDFs contain
nonlocal ones. Actual forms of the EDFs can be found in
Bender, Heenen, and Reinhard (2003).
In Sec. II.B.1, we presented an argument in which the

approximate decoupling for the rotational degrees of freedom
justifies the use of the EDF of deformed densities. It is reliable
for describing the correlations at τ ∼ τF in Fig. 2(a). These
include the shell effects and the saturation properties.
Conversely, the existing EDFs have difficulties in simulta-
neously reproducing binding energies of spherical and
deformed nuclei. This may be due to a missing correlation
associated with the quantum rotation of deformed intrinsic
shapes shown in Fig. 2(b). In Sec. III.H, we show that the giant
resonances (fast collective motion) are well reproduced in the
linear response calculations, while the low-energy vibrations
(slow collective motion) are not as good as those. In our
opinion, correlations associated with large-amplitude shape
fluctuations at low energy, which are in a time scale τ ≫ τF,
are missing in the available EDF. In practice, these correla-
tions should be treated in addition to the conventional DFT
and TDDFT calculations (Bender, Bertsch, and Heenen,
2006). We address this issue later in Sec. V.
The nonuniversality, p0 dependence of F½ρ; κ�, is treated by

enlarging the space Σintr to include all the p0 states and adding
an additional condition to the constrained search of Eq. (21),
for the average value of p0 (J and N) of the wave packet. This
also limits the strictness of the nuclear DFT.

C. Kohn-Sham scheme

For many-fermion systems, the Fermi motion plays an
important role in various quantum phenomena, such as the
shell effects. This is a main source of difficulty in the local
density approximation (LDA) (Ring and Schuck, 1980). At
present, a scheme given by Kohn and Sham (1965) provides
an only practical solution for this problem. Eventually, this
leads to the self-consistent equations similar to those in the
mean-field approximation.

1. Normal systems

Now we derive the KS equation (7) according to the
argument by Kohn and Sham. Let us assume that the EDF
is a functional of ρð~rÞ only, F½ρ�. We introduce a reference

system which is a “virtual” noninteracting system with an
external potential vsð~rÞ. The ground state of the reference
system is given as a Slater determinant constructed by
the solution of Eq. (7). Alternatively, it is obtained by
the minimization of the total energy of the reference system
Es½ρ� ¼ Ts½ρ� þ

R
vsð~rÞρð~rÞd~r. Since Es½ρ� is a functional

of density, the minimization can be performed in terms
of density variation with the particle-number constraint
δ(Es½ρ� − μ

R
ρð~rÞd~r) ¼ 0. This leads to

μ ¼ δTs½ρ�
δρð~rÞ þ vsð~rÞ: ð22Þ

The state determined by Eq. (22) should be identical to that
of Eq. (7).
The success of the KS scheme comes from a simple idea to

decompose the kinetic energy in the physical interacting
system into two parts: Ts½ρ� and the rest. The former is a
major origin of the shell effects, and the latter is treated as a
part of “correlation energy” Ec½ρ�. Ec½ρ� corresponds to the
“exchange-correlation energy” Exc½ρ� in electronic DFT.
The EDF is given by the sum F½ρ� ¼ Ts½ρ� þ Ec½ρ�. Then
the variation δ(F½ρ� − μ

R
ρð~rÞd~r) ¼ 0 leads to Eq. (22),

where the potential vsð~rÞ is defined by

vsð~rÞ≡ δEc½ρ�
δρð~rÞ :

Therefore, the solution of Eq. (7) provides the ground-state
density of F½ρ�. The only practical difference between the
reference system and the interacting system is that, since vsð~rÞ
is a functional of density in the latter, Eqs. (7) and (8) with vs
must be self-consistently solved. The success of the KS
scheme is attributed to the goodness of the LDA for Ec½ρ�.

2. Superconducting systems

Next, with the density functional of Eq. (21), we introduce a
noninteracting reference system under an external pair poten-
tial Δsð~rÞ in addition to vsð~rÞ. The Hamiltonian with a
constraint on the particle number

Ĥs − μN̂ ¼
Z

½Δ�
sð~rÞψ̂ð~r↓Þψ̂ð~r↑Þ þ H:c:�d~r

þ
X
σ¼↑;↓

Z
ψ̂†ð~rσÞ

�
−
∇2

2m
þ vsð~rÞ − μ

�
ψ̂ð~rσÞd~r

can be diagonalized by the Bogoliubov transformation (11), in
which ðUi; ViÞ are the solutions of Eq. (9). Alternatively,
Eq. (9) can be derived by minimizing

Fs½ρ; κ� − μNav ¼ Ts½ρ; κ� þ
Z

fvsð~rÞ − μgρð~rÞd~r

þ
Z

fΔ�
sð~rÞκð~rÞ þ Δsð~rÞκ�ð~rÞgd~r;

where

Nakatsukasa et al.: Time-dependent density-functional description …

Rev. Mod. Phys., Vol. 88, No. 4, October–December 2016 045004-9



Ts½ρ; κ� ¼
X
σ

X
i

Z
Við~rσÞ

−∇2

2m
V�
i ð~rσÞd~r.

The same minimization can be done with respect to ðρ; κ; κ�Þ,

μ ¼ δTs

δρð~rÞ þ vsð~rÞ; 0 ¼ δTs

δκ�ð~rÞ þ Δsð~rÞ: ð23Þ

Equations (9) and (23) should provide the identical state.
According to the Kohn-Sham idea, we express the energy

density functional of the interacting system in the form
F½ρ; κ�≡ Ts½ρ; κ� þ Ec½ρ; κ�. Then the variation δ(F½ρ; κ� −
μ
R
ρð~rÞd~r) ¼ 0 leads to Eq. (23), but the potentials vsð~rÞ and

Δsð~rÞ are given by Eq. (10). Equation (9) with potentials (10)
constitute the BdGKS scheme (Oliveira, Gross, and
Kohn, 1988).

D. Time-dependent density-functional theory

1. Foundation: Runge-Gross theorem

The basic theorem of the TDDFT tells us that, starting from
a common initial state jΦ0i at t ¼ t0, there is one-to-one
correspondence between a pair of time-dependent densities
(ρð~r; tÞ; κð~r; tÞ) and a pair of time-dependent external poten-
tials (vð~r; tÞ;Δð~r; tÞ) (Runge and Gross, 1984; Wacker,
Kümmel, and Gross, 1994). Here we recapitulate the proof.
The external potential is required to be expandable in a Taylor
series about the initial time t0,

vð~r; tÞ ¼
X∞
k¼0

1

k!
vkð~rÞðt − t0Þk; ð24Þ

Δð~r; tÞ ¼
X∞
k¼0

1

k!
Δkð~rÞðt − t0Þk: ð25Þ

If two potentials ðv; v0Þ differ merely by a time-dependent
function cðtÞ ¼ vð~r; tÞ − v0ð~r; tÞ, they should be regarded as
identical potentials. For the different potentials, there should

exist some non-negative integer n such that ~∇wnð~rÞ ≠ 0,
where wnð~rÞ≡ vnð~rÞ − v0nð~rÞ. Similarly, the pair potentials
are different if Dnð~r; tÞ ≠ 0 at a certain n, where Dnð~r; tÞ≡
Δnð~r; tÞ − Δ0

nð~r; tÞ.
Let us first assume that two different external potentials

vð~r; tÞ and v0ð~r; tÞ produce current densities ~jð~r; tÞ and
~j0ð~r; tÞ, respectively. The pair potential is assumed to be
equal, Δð~r;tÞ¼Δ0ð~r;tÞ. In the following, we assume the
Heisenberg picture, and the quantities associated with the
potentials v0ð~r; tÞ are denoted with primes, while those with
vð~r; tÞ are without primes. The equation of motion for the

current ~jð~r; tÞ≡ hΦ0j~̂jð~r; tÞjΦ0i is written as

i
∂
∂t ~jð~r; tÞ ¼ hΦ0j½~̂jð~r; tÞ; ĤðtÞ�jΦ0i: ð26Þ

We have the same equation for ~j0ð~r; tÞ, with ĤðtÞ replaced by
Ĥ0ðtÞ. Since the field operators at t ¼ t0 are identical to each
other, ψð~rσ; t0Þ ¼ ψ 0ð~rσ; t0Þ, they lead to

i
∂
∂tf~jð~r; tÞ− ~j0ð~r; tÞg

����
t¼t0

¼ hΦ0j½~̂jð~r; t0Þ; Ĥðt0Þ− Ĥ0ðt0Þ�jΦ0i

¼ −
i
m
ρð~r; t0Þ ~∇w0ð~rÞ:

If ~∇w0ð~rÞ ≠ 0, it is easy to see that ~jð~r; tÞ and ~j0ð~r; tÞ are

different at t > t0. In case that ~∇w0ð~rÞ ¼ 0 and ~∇w1ð~rÞ ≠ 0,
we need to further calculate derivatives of Eq. (26) with
respect to t,

�
i
∂
∂t
�

2
~jð~r; tÞ

����
t¼t0

¼ hΦ0j½~̂jð~r; tÞ; i∂̄ Ĥ =∂̄t�t¼t0 jΦ0i

þ hΦ0j½½~̂jð~r; t0Þ; Ĥðt0Þ�; Ĥðt0Þ�jΦ0i;
ð27Þ

where ∂̄=∂̄t indicates the time derivative of the potentials
only, not of the field operators. The second term of Eq. (27)

vanishes for the difference ∂2=∂t2f~jð~r; tÞ − ~j0ð~r; tÞgjt¼t0 ,

because Ĥ0ðt0Þ ¼ Ĥðt0Þ þ const. Thus,

∂2

∂t2 f~jð~r; t0Þ −
~j0ð~r; tÞgj

t¼t0
¼ −

1

m
ρð~r; t0Þ ~∇w1ð~rÞ ≠ 0:

Again, we conclude that ~jð~r; tÞ ≠ ~j0ð~r; tÞ at t > t0. In general,

if ~∇wkð~rÞ ¼ 0 for k < n and ~∇wnð~rÞ ≠ 0, we repeat the same
argument to reach

∂nþ1

∂tnþ1
f~jð~r; tÞ − ~j0ð~r; tÞgt¼t0

¼ −ihΦ0j½~̂jð~r; t0Þ; ∂̄nfĤðtÞ − Ĥ0ðtÞg=∂̄tnjt¼t0 �jΦ0i

¼ −
1

m
ρð~r; t0Þ ~∇wnð~rÞ ≠ 0:

Therefore, there exists a mapping from the expandable

potential vð~r; tÞ and the current density ~jð~r; tÞ. The continuity
equation relates the current density ~jð~r; tÞ with the density
ρð~r; tÞ. Therefore, we conclude that the densities ρð~r; tÞ and
ρ0ð~r; tÞ are different at t > t0.
Next let us assume the different pair potentials Δð~r; tÞ and

Δ0ð~r; tÞ. The same argument leads to

∂nþ1

∂tnþ1
fκð~r; tÞ − κ0ð~r; tÞg

����
t¼t0

¼ fð~rÞDnð~rÞ ≠ 0;

where fð~rÞ ¼ ifρð~r; t0Þ − δ3ð0Þg. The appearance of the delta
function δ3ð0Þ is a consequence of the local nature of the pair
potential Δð ~r; tÞ. Anyway, fð~rÞ is nonzero, and the pair
densities κð~r; tÞ and κ0ð~r; tÞ become different immediately
after t ¼ t0. This completes the proof of the one-to-one
correspondence between the potentials (vð~r; tÞ;Δð~r; tÞ) and
the densities (ρð~r; tÞ; κð~r; tÞ). As is obvious in the proof here,
the one-to-one correspondence also holds when the density

ρð~r; tÞ is replaced by the current density ~jð~r; tÞ.
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2. TDKS scheme: van Leeuwen theorem

In practice, the KS scheme is indispensable for quantum
systems. According to the basic theorem in Sec. II.D.1 there is
a one-to-one correspondence between given time-dependent
densities and external potentials for any system. Let us
introduce a virtual reference system of noninteracting par-
ticles by choosing the potentials vsð~r; tÞ and Δsð~r; tÞ in such a
way that it exactly produces the densities ρð~r; tÞ and κð~r; tÞ of
a real interacting system. This results in the time-dependent
BdGKS (TDBdGKS) equations:

i
∂
∂t
�
Uið~rσ; tÞ
Við~rσ; tÞ

�
¼
X
σ0

�
hsð~r; tÞδσσ0 Δsð~r; tÞγσσ0
−Δ�

sð~r; tÞγσσ0 −h�sð~r; tÞδσσ0

�

×

�
Uið~rσ0; tÞ
Við~rσ0; tÞ

�
: ð28Þ

Here hsð~r; tÞ≡ −∇2=ð2mÞ þ vsð~r; tÞ. With Δs ¼ 0, they
reduce to the TDKS equations (i ¼ 1;…; N)

i
∂
∂tφið~r; tÞ ¼ hsð~r; tÞφið~r; tÞ: ð29Þ

The next obvious question is the following: Do such
potentials in noninteracting systems exist to reproduce the
densities in real systems? This question was answered
affirmatively by van Leeuwen (1999) as follows. For sim-
plicity, let us consider the TDKS equations without pairing.
Hereafter, quantities associated with the reference system are
denoted with a subscript s. First, calculating the right-hand

side of Eq. (26) gives i∂~jð~r; tÞ=∂t ¼ −ρð~r; tÞ ~∇vð~r; tÞ −
~fð~r; tÞ. Here ~fð~r; tÞ is given by the momentum-stress tensor
and the interaction parts, but these details are not important in
the proof. Taking the divergence of this equation and using the
continuity equation, we find

∂2ρ

∂t2 ¼ ~∇ · ½ρð~r; tÞ ~∇vð~r; tÞ� þ qð~r; tÞ; ð30Þ

where qð~r; tÞ ¼ ~∇ · ~fð~r; tÞ. Assuming the density is identical
in two systems all the time, the difference of Eq. (30) between
the two leads to

~∇ · ½ρð~r; tÞ ~∇wð~r; tÞ� ¼ ζð~r; tÞ; ð31Þ

where w ¼ v − vs and ζ ¼ qs − q. This equation plays a key
role in the proof. Now the question is whether we can uniquely
determine wð~r; tÞ if ρð~r; tÞ is given.
Necessary conditions for the initial state jΦsi of the

reference system are only two: (i) The two initial states
jΦ0i and jΦsi yield the same density ρð~r; t0Þ ¼ ρsð~r; t0Þ.
(ii) Their time derivatives are identical, _ρð~r; t0Þ ¼ _ρsð~r; t0Þ.
With jΦsi satisfying these initial conditions, we determine the
solution w of Eq. (31). We should first notice that Eq. (31)
does not contain time derivatives, which means that t can be
regarded as a parameter. Furthermore, Eq. (31) is of the Sturm-
Liouville type; thus it has a unique solution with the boundary
condition wð~r; tÞ ¼ 0 at infinity. It is now obvious that we can

uniquely determine wð~r; t0Þ at t ¼ t0 because ζð~r; t0Þ is
calculable with the initial states jΦ0i and jΦsi. This means
in the Taylor-series expansion, Eq. (24), w0ð~rÞ ¼ v0ð~rÞ −
vs0ð~rÞ is solved. Taking the time derivative of Eq. (31) at
t ¼ t0, we can determine wnð~rÞ for higher-order terms in a
recursive manner (n ¼ 1; 2;…). This procedure completely
determines vsð~r; tÞ.

3. TDBdGKS equation and its properties

The key quantity in TDDFT is the time-dependent
potentials (vsð~r; tÞ;Δsð~r; tÞ). So far, we simply adopt the
adiabatic approximation: We take the BdGKS potentials
in Eq. (9) from static DFT and use it in the TDBdGKS
equation (28), by replacing ground-state densities with the
time-dependent ones:

vsðtÞ ¼ vs½ρ0�jρ0→ρðtÞ; vs½ρ�≡ δEc=δρ ð32Þ

and the same prescription is applied toΔs. This obviously lacks
the memory effect.
Properties of the static BdGKS equations shown in

Sec. II.A.2 also hold for the time-dependent case, except
for BdGKS equation (15) which should be replaced by

i
∂
∂t RðtÞ ¼ ½Hs½R�ðtÞ; RðtÞ�: ð33Þ

Here Hs½R� is given by Eq. (16) with R0 → RðtÞ in the
adiabatic approximation. We use the same notations as those
in Sec. II.A.2 with the introduction of the time dependence,
such as Ψ0 → ΨðtÞ, R0 → RðtÞ, etc.
With respect to a time-dependent unitary transformation

ΨðtÞ → ΨðtÞUðtÞ, RðtÞ and Eq. (33) are invariant, while
Eq. (28) is not. Including this gauge freedom, the TDBdGKS
equation (28) should be generalized to

i
∂
∂tΨðtÞ ¼ Hs½R�ðtÞΨðtÞ −ΨðtÞΞðtÞ; ð34Þ

with a HermitianmatrixΞ ¼ iðdU=dtÞU† ¼ −iUdU†=dt. The
choice of ΞðtÞ is arbitrary and does not affect the physical
contents of the calculation. The TDBdGKS equation (28)
corresponds to a special gauge ΞðtÞ ¼ 0.
In case that the pair density and potential are absent,

κðtÞ ¼ ΔðtÞ ¼ 0, Eq. (33) reduces to

i
∂
∂t ρðtÞ ¼ ½hs½ρ�ðtÞ; ρðtÞ�: ð35Þ

This is equivalent to the TDKS equations,

i
∂
∂tφðtÞ ¼ hs½ρ�ðtÞφðtÞ − φðtÞξðtÞ; ρðtÞ ¼ φðtÞφ†ðtÞ;

where φðtÞ is a collective notation of the nonvanishing vectors
V�
i ðtÞ, φðtÞ ¼ (V�

1ðtÞ; V�
2ðtÞ;…; V�

NðtÞ) that are upper com-
ponents of ~ΨðtÞ. The quantity ξðtÞ is an arbitrary N × N
Hermitian matrix. A choice of ξðtÞ ¼ 0 leads to Eq. (29).
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4. Local gauge invariance

The practical success of the TDBdGKS equations relies on
the availability of a good correlation functional Ec½ρ; κ�. Many
applications so far employ the functional of the static
potentials (10) with time-dependent densities (adiabatic
approximation). Although the memory effect is missing, this
simple choice guarantees exact properties of the functional,
such as the harmonic potential theorem (HPT) (Dobson, 1994;
Vignale, 1995). In nuclear physics applications, it is also
customary to adopt a functional in the same form as the static
one. Since a local density form (Skyrme type) of the nuclear
correlation energy contains the kinetic and spin-current
densities, to guarantee the Galilean symmetry it should
include the time-odd densities, such as spin, current, and
spin-tensor densities (Engel et al., 1975). In fact, the nuclear
EDFs usually respect an even stronger symmetry, the local
gauge invariance, which is satisfied for systems with local
interactions. The HPT and the Galilean invariance can be
regarded as its special cases. The local gauge transformation
modifies the one-body density matrix as ρð~r; ~r0Þ →
exp½ifχð~rÞ − χð~r0Þg�ρð~r; ~r0Þ. The local density ρð~rÞ ¼
ρð~r; ~rÞ is apparently invariant; however, the kinetic and
spin-current densities are not, because the transformation

creates a flow with a velocity field ~vð~r; tÞ ¼ ~∇χð~r; tÞ=m.
These densities appear with characteristic combinations with
the time-odd densities to satisfy the local gauge invariance
(Dobaczewski and Dudek, 1995). Note that the local gauge
invariance is guaranteed if the nonlocal effect is small, but it is
not required by the principles. It has been utilized to restrict
the functional form of nuclear EDFs (Carlsson, Dobaczewski,
and Kortelainen, 2008).
The local Uð1Þ gauge transformation ψ̂ð~rσ; tÞ →

eiχð~r;tÞψ̂ð~rσ; tÞ with a real function χð~r; tÞ changes the phase
of U and V components with opposite signs [see Eq. (11)].
Thus, the transformation reads

Ψ̄ðtÞ ¼
�
eiχ 0

0 e−iχ

�
ΨðtÞ ¼ expfiχðtÞN gΨðtÞ; ð36Þ

with

N ≡
�
1 0

0 −1
�
.

Under this transformation, the generalized density and the
Hamiltonian should be transformed as

�
R̄ðtÞ
H̄sðtÞ

�
¼ eiχðtÞN

�
RðtÞ
HsðtÞ

�
e−iχðtÞN : ð37Þ

The transformation (37) keeps the density ρð~r; tÞ invariant, but
multiplies κð~r; tÞ by a local phase e2iχð~r;tÞ. The transformation
of the kinetic term can be obtained by shifting the momentum
~p to ~p −m~vð~r; tÞ. The local gauge invariance of the density
functionals guarantees that Hs½R�ð~r; ~p; tÞ → H̄s½R̄�ð~r; ~p; tÞ ¼
Hs½R̄�ð~r; ~p −m~v; tÞ, in which the replacement of ~p → ~p −m~v
is performed only for the kinetic energy term j~pj2=ð2mÞ →
j~p −m~vð~r; tÞj2=ð2mÞ. The transformed TDBdGKS equations

for R̄ and Ψ̄ðtÞ are identical to Eqs. (33) and (34), but the
Hamiltonian is replaced by H̄s½R̄�ðtÞ − ∂χ=∂t ·N . For in-
stance, Eq. (33) now reads

i
∂
∂t R̄ðtÞ ¼

�
H̄s½R̄�ðtÞ −

∂χ
∂t N ; R̄ðtÞ

�
: ð38Þ

This is the TDBdGKS equation in a frame of a gauge function
χð~r; tÞ. Under the presence of the local gauge invariance in the
EDF, the functional form of H̄s is the same as Hs except that
the momentum ~p is replaced by ~p −m~v in the kinetic term.

E. Equations for decoupled collective motion

In this section, we derive an equation for the decoupled
collective motion. In order to elucidate the idea, let us start
with the translational motion. In this case, the decoupling is
exact. The boosted ground state with the center of mass at
~Rc.m.ðtÞ ¼ ~vt has the density ρðtÞ ¼ ρð~Rc.m.Þ, which depends

on time through ~Rc.m.ðtÞ ¼ ~vt. The total momentum ~Pc.m. ¼
Nm~v is a constant of motion. The TDKS equation (35) can be
written as

i~v ·
∂

∂ ~Rc.m.

ρð~Rc.m.Þ ¼ ½hs½ρð~Rc.m.Þ�; ρð~Rc.m.Þ�:

Using the expression ρðtÞ ¼ e−i~Rc.m.ðtÞ·~pρ̄ei~Rc.m.ðtÞ·~p, where ρ̄ is
time independent, it leads to

½hs½ρðtÞ� − ~v · ~p; ρðtÞ� ¼ 0; ð39Þ

which looks like a stationary equation. In fact, since ~Rc.m. ¼
~vt depends on time, ρð~Rc.m.Þ is moving in time. We call
Eq. (39) a “moving-frame” equation in the following. It
should be noted that the EDFs with the Galilean symmetry
are essential to reproduce the correct total mass Nm, which
also influences properties of other collective motions.

1. Collective motion in general

Now let us generalize the idea and assume that there are a
pair of canonical variables (qðtÞ; pðtÞ) corresponding to a
collective motion, which determine the time dependence of
the generalized density R(qðtÞ; pðtÞ). This means that the
motion described by (qðtÞ; pðtÞ) is decoupled from the other
intrinsic degrees of freedom. In the TDBdGKS equation (33),
the time derivative is now written in terms of the collective
variables as _q∂=∂qþ _p∂=∂p. This leads to the moving-frame
equation

½Hs½R� − _qP
∘ ðq; pÞ þ _pQ

∘ ðq; pÞ; Rðq; pÞ� ¼ 0; ð40Þ

where P
∘ ðq; pÞ and Q

∘ ðq; pÞ are generators of the collective
variables and are defined by

i
∂
∂qRðq; pÞ ¼ ½P∘ ðq; pÞ; Rðq; pÞ�; ð41Þ

−i
∂
∂pRðq; pÞ ¼ ½Q∘ ðq; pÞ; Rðq; pÞ�: ð42Þ
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Note that _q and _p are not constant, in general. In Sec. V, we
develop this idea and derive equations of motion for a
collective motion decoupled from other intrinsic degrees of
freedom.
Equation (40) looks like a stationary equation with con-

straints Q
∘ ðq; pÞ and P

∘ ðq; pÞ. However, it is important to note
that the density Rðq; pÞ in Eq. (40) still varies in time because
the variables ðq; pÞ depend on time. Because of this time

dependence, the “cranking terms” − _qP
∘ þ _pQ

∘
in Eq. (40) are

not just the constraint terms in static equations, but they play a
role beyond that.
To explain this point, we return again to the translational

motion. Equation (39) looks identical to the static equation
with a constraint operator ~p. However, the cranking term
induces the linear momentum Tr½ρ~p� ¼ Nm~v, and the density
is never static. During the time evolution t → tþ δt, the center

of mass moves as ~Rc.m. → ~Rc.m. þ ~vδt. Accordingly, the

density also evolves, ρ → ρþ δρ, ~Rc.m. → ~Rc.m. þ δ~R. This
density variation is described by Eq. (39),

½hs − ~v · ~p; δρ� þ
�
δhs
δρ

δρ; ρ

�
¼ 0; ð43Þ

in the first order in δρ. This is nothing but the random-phase
approximation (RPA) for the translational motion. If Eq. (39)
is a constrained stationary equation, it does not lead to the
RPA equation.
If we define the particle (unoccupied) and hole (occupied)

orbitals for hs½ρ� − ~v · ~p, the particle-particle and hole-hole
components ~ppp0 and ~phh0 contribute to the determination of
δρ in Eq. (43). In contrast, for the constrained mean-field
equation (Ring and Schuck, 1980), the particle-particle and
hole-hole matrix elements of the constrained operator are
irrelevant. We think it is worth emphasizing that the cranking
terms in Eqs. (39) and (40) are different from constraint terms
in the static equation (Nakatsukasa, Walet, and Dang, 1999;
Hinohara et al., 2007; Nakatsukasa, 2012). The issue is
addressed in Sec. V.

2. ANG modes and quasistationary solutions

The ANG modes provide examples of decoupled collective
motion to which Eq. (40) is applicable. In these cases, one of
the variables becomes cyclic (constant), and the generators do
not depend on the variables ðq; pÞ. They are given by known
one-body operators globally defined.
Translational motion: In this case, the generators

(Q
∘ ðq; pÞ; P∘ ðq; pÞ) correspond to the center-of-mass coor-

dinate and the total momentum, with _q ¼ ~v and _p ¼ 0.
Thus, we naturally derive Eq. (39) from Eq. (40). The
Galilean invariance guarantees that the translational motion
with a constant velocity does not influence the intrinsic
state. In fact, the local gauge transformation with χð~rÞ ¼
−m~v · ~r removes the cranking term −~v · ~p. Then using the
ground-state solution ρ0, which satisfies the static equation
½hs½ρ0�; ρ0� ¼ 0 (~v ¼ 0), we can construct a solution of

Eq. (39), ρð~Rc.m.Þ ¼ eim~v·~rρ0ð~Rc.m.Þe−im~v·~r.

Rotational motion: A spatially rotating system with a
constant angular velocity ~ω can be described by a solution

of Eq. (40) with _q ¼ _~θ ¼ ~ω, _p ¼ _~I ¼ 0. The generator

P
∘ ðq; pÞ corresponds to the angular-momentum operator ~j.
Although we do not know the conjugate angle operator,
it disappears because of the angular-momentum conserva-

tion
_~I ¼ 0. Then it ends up as the cranking model (Inglis,

1954, 1956):

½hs½ρ� − ~ω · ~j; ρ� ¼ 0; ð44Þ

where the density ρð~θÞ is a function of the angle ~θðtÞ ¼ ~ωt.
Since there is no Galilean symmetry in the rotational
motion, it is impossible to remove the cranking term by
a gauge transformation. In this case, the decoupling is only
approximate. In fact, the rotational motion influences the
intrinsic state in nontrivial ways, such as the centrifugal
stretching and the Coriolis coupling effects.
Pair rotation: In the superconducting phase with κðtÞ ≠ 0,

in which the global gauge symmetry is broken, one may find
another rotating solution in the gauge space with a constant

angular velocity μ. The generator Q
∘ ðq; pÞ corresponds to

the particle-number operator2 with qðtÞ ¼ N0 ( _q ¼ 0), and
pðtÞ ¼ μt. Equation (40) leads to

½Hs½R� − μN ; R� ¼ 0; ð45Þ

where RðθÞ is a function of θðtÞ ¼ μt. In terms of the time-
dependent formalism, the appearance of the chemical poten-
tial μ in the stationary BdGKS equation (9) comes from the
rotation in the gauge space.
When we study intrinsic excitations perpendicular to the

ANG modes, we should extend the density Rðq; pÞ either by
introducing the second set of variables (q0ðtÞ; p0ðtÞ) or by
allowing additional time dependence Rðq; p; tÞ. The former
method is adopted in Sec. V. The latter method changes the
right-hand side of Eq. (40) to i∂R=∂t. For the case of the pair
rotation, this leads to

i
∂
∂t Rðθ; tÞ ¼ ½Hs½R� − μN ; Rðθ; tÞ�; ð46Þ

where μ is a function of the particle number N0.

F. Recent development in nuclear EDF

Finding the best density functionals is always a big
challenge in the DFT, not only in nuclear systems but also
in electronic systems. Since we do not know the exact
interaction among nucleons, even for the uniform matter at
low-density and high-density limits, the exact functional is
not available. Thus, strategies in nuclear DFT is somewhat
different from those in electronic systems (Sec. VI). Recent
developments involve the extension of the functional form
and the new optimization to fit reliable calculations and

2Here we assume that q (p) is the time-even (time-odd) variable.
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experimental data. The optimization has been performed
mainly for static properties, including fission isomers and
barrier heights. Here we present some efforts to improve
the EDF, after those shown in Bender, Heenen, and
Reinhard (2003).
The systematic optimization of the Skyrme EDF was

performed to construct the functionals of UNEDF0-2
(Kortelainen et al., 2010, 2012, 2014), which produce the
root-mean-square deviation from the experimental binding
energies of 1.5–2 MeV. These studies also show a clear
deviation pattern common to all the EDFs. This indicates a
necessity of novel functional forms for further improvements.
The idea based on the density-matrix expansion (Negele and
Vautherin, 1972; Negele, 1982) is under development to create
new functionals (Carlsson, Dobaczewski, and Kortelainen,
2008; Carlsson and Dobaczewski, 2010; Stoitsov et al., 2010).
Other forms of EDF without the derivative terms have
also been developed and produce similar accuracy (Baldo,
Schuck, and Viñas, 2008; Baldo et al., 2013). Although
some phenomenological corrections significantly improve
the reproduction of the binding energy (Goriely, Chamel,
and Pearson, 2013), those corrections are not applicable to
TDDFT calculations.
The Gogny EDF was also improved by fitting nuclear

structure and neutron matter properties, leading to D1N
(Chappert, Girod, and Hilaire, 2008) and D1M (Goriely et al.,
2009). A new type of the Gogny EDF was recently proposed,
which extends the density-dependent term to the one with
finite range (Chappert et al., 2015). Another type of EDF
based on the Yukawa-type potential was also proposed
(Nakada, 2013; Nakada and Inakura, 2015).
The modern covariant EDFs adopt either nonlinear meson

coupling or density-dependent coupling constants. In addi-
tion, there are two types of the covariant EDF: the finite-
range meson field and the point-coupling models. Each EDF
type had recent extensions of the functional form, such as
the inclusion of the δ meson (Roca-Maza et al., 2011), the
cross-coupling terms (Fattoyev et al., 2010), the exchange
terms (Long et al., 2007), and a new version of the point-
coupling models (Nikšić, Vretenar, and Ring, 2008; Zhao
et al., 2010).
The pairing EDF responsible for the pair potential Δ is

another issue. The pairing energy in the Gogny EDF is
calculated with the same interaction. In contrast, most of
the Skyrme and covariant EDFs independently treat the
pairing EDF. Different forms of the pairing EDF were
recently proposed (Yu and Bulgac, 2003; Margueron,
Sagawa, and Hagino, 2008; Tian, Ma, and Ring, 2009;
Yamagami, Shimizu, and Nakatsukasa, 2009; Yamagami
et al., 2012).
Currently, it is difficult to judge which type of nuclear

EDF is the best. Their accuracy for the mass prediction is
rather similar to each other among the Skyrme, the Gogny,
and the covariant EDFs. Since we know none of them is
perfect, the error analysis on the model is important (Erler
et al., 2012; Dobaczewski, Nazarewicz, and Reinhard, 2014).
Furthermore, in contrast to the optimization of EDFs with
respect to stationary properties, the one with respect to
dynamical properties has not been performed in a systematic
manner (Bender et al., 2002). To our knowledge, possibilities

beyond the adiabatic approximation (Sec. VI.B) have never
been examined in nuclear physics.

III. LINEAR DENSITY RESPONSE

The linear density response of interacting systems can be
rigorously formulated, in principle, on the basis of the
TDDFT. The formulation is basically identical to the one
known as the quasiparticle-random-phase approximation
(QRPA) in nuclear physics (Ring and Schuck, 1980;
Blaizot and Ripka, 1986).
Since the pair rotation inevitably takes place with a finite μ,

the density RðtÞ ¼ R(θðtÞ) is not stationary even for the
ground state. In order to avoid complications in deriving the
QRPA linear response equations, we should start either with
Eq. (46) or with Eq. (38) of a gauge function χðtÞ ¼ θðtÞ ¼ μt,
in which the time dependence through θðtÞ is hidden. The
following external potential, multiplied by a parameter η, is
added to Hs½R�:

ηVðtÞ≡ η

�
vextðtÞ ΔextðtÞ
−Δ�

extðtÞ −v�extðtÞ

�
:

See Sec. II.A.2 for the corresponding operator form. It is
convenient to introduce a small parameter η to elucidate
the linearization. The time-dependent density and the
Hamiltonian are linearized with respect to η as RðtÞ ¼ R0 þ
ηδRðtÞ þOðη2Þ and HsðtÞ ¼ Hs½R0� þ ηδHðtÞ þOðη2Þ. The
Fourier transform of Eq. (46) leads to

ωδRðωÞ ¼ ½Hs½R0� − μN ; δRðωÞ� þ ½VðωÞ þ δHðωÞ; R0�;
ð47Þ

in the linear order. This equation plays a central role in this
section.

A. Linear response equations and matrix representation
in the quasiparticle basis

In order to evaluate Eq. (47), it is customary to adopt
the quasiparticle eigenstates at the ground state in Eq. (9).
Those with positive (negative) energies, Ψ0

i [ ~Ψ0
i ] satisfy

ðHs−μN ÞΨ0
i ¼EiΨ0

i [ðHs − μN Þ ~Ψ0
i ¼ −Ei

~Ψ0
i ]. We may

write the time-dependent quasiparticle states as ΨiðtÞ ¼
e−iEit½Ψ0

i þ ηδΨiðtÞ�. Since the generalized density RðtÞ is
written in terms of the quasiparticle states ΨðtÞ as in Eq. (13),
the fluctuating part δRðtÞ in the linear order is given by

δRðtÞ ¼ −
X
i

fδΨiðtÞΨ0†
i þΨ0

i δΨ
†
i ðtÞg

¼ −δΨðtÞΨ0† −Ψ0δΨ†ðtÞ ¼ δ ~ΨðtÞ ~Ψ0† þ ~Ψ0δ ~Ψ†ðtÞ.
ð48Þ

Using the notation in Sec. II.A.2, we calculate the matrix
elements of Eq. (47) between these quasiparticle states.
From the orthonormal relations, it is easy to see δRðþþÞ¼
δRð−−Þ¼0. Then only the matrix elements of ðþ−Þ and ð−þÞ

Nakatsukasa et al.: Time-dependent density-functional description …

Rev. Mod. Phys., Vol. 88, No. 4, October–December 2016 045004-14



types are relevant for Eq. (47). Since these matrix are
antisymmetric, the ðþ−Þ and ð−þÞ matrix elements of
Eq. (47) read, for i < j,

ðEi þ Ej − ωÞδRðþ−Þ
ij ðωÞ þ δHðþ−Þ

ij ðωÞ ¼ −Vðþ−Þ
ij ðωÞ;

ðEi þ Ej þ ωÞδRð−þÞ
ij ðωÞ þ δHð−þÞ

ij ðωÞ ¼ −Vð−þÞ
ij ðωÞ: ð49Þ

The residual fields δHðωÞ are induced by the density fluc-
tuation δRðωÞ, as δHðωÞ ¼ ∂Hs=∂RjR¼R0

· δRðωÞ. Expanding
their matrix elements as

δHðþ−Þ
ij ðωÞ ¼

X
k<l

wij;klδR
ðþ−Þ
kl ðωÞ þ

X
k<l

w0
ij;klδR

ð−þÞ
kl ðωÞ;

ð50Þ
we obtain the QRPA linear response equations in the matrix
form:

��
A B

B� A�

�
− ω

�
1 0

0 −1

���
δRðþ−Þ

δRð−þÞ

�
¼ −

�
Vðþ−Þ

Vð−þÞ

�
;

ð51Þ

where Aij;kl≡ðEiþEjÞδikδjlþwij;kl and Bij;kl≡w0
ij;kl. R

† ¼R

and ðHsÞð�∓Þ
ij ¼ δE=δRð∓�Þ

ji provide that wij;kl are Hermitian
and w0

ij;kl are symmetric.
When the external potential V is identical to a one-body

operator F, the strength function is given by

Sðω;FÞ≡X
n>0

jhnjFj0ij2δðω − EnÞ ¼ −
1

π
ImRðωþ iη;FÞ;

ð52Þ
where η is a positive infinitesimal and

Rðω;FÞ ¼
X
i<j

fFðþ−Þ�
ij δRðþ−Þ

ij ðωÞ þ Fð−þÞ�
ji δRð−þÞ

ij ðωÞg

¼ 1

2
Tr½FδRðωÞ�: ð53Þ

B. Normal modes and eigenenergies

The QRPA normal modes are defined by the eigenvalue
problem setting V ¼ 0 for Eq. (51). We denote the nth
eigenvalue and eigenstate by Ωn and a column vector Zn of
the dimension 2D, respectively, where D is the number of
independent two-quasiparticle pairs ðijÞ (i < j). It is easy to
show that there is a conjugate-partner eigenstate ~Zn with the
eigenenergy −Ωn,

Zn ≡
�
Xn

Yn

�
; ~Zn ≡ IZ�

n ¼
�
Y�
n

X�
n

�
;

where

I ¼
�

0 1

1 0

�
.

The QRPA eigenvalue equations are

NHZn ¼ ΩnZn; NH ~Zn ¼ −Ωn
~Zn; ð54Þ

with the 2D × 2D Hermitian matrices

H≡
�

A B

B� A�

�
; N ≡

�
1 0

0 −1

�
: ð55Þ

The eigenvectors are normalized asZ†
nNZm¼− ~Z†

nN ~Zm¼δnm.
Let us define the following 2D × 2D matrices:

Z ≡ ðZ; ~ZÞ ¼
�
X Y�

Y X�

�
; Ω≡

�ΩD 0

0 ΩD

�
; ð56Þ

where ΩD is the D ×D diagonal matrix containing the
eigenvalues Ωn. Then Eq. (54) can be written as

NHZ ¼ ZΩN : ð57Þ

Using the Hermiticity of H and Eq. (57), one can prove
½Z†NZ;ΩN � ¼ 0, which indicates that ΩN and Z†NZ are
both diagonal. Therefore, the normalization condition is
written as Z†NZ ¼ N , which we call “N orthonormaliza-
tion.” The matrixN plays a role of the norm matrix. Since this
also means NZN ¼ ðZ†Þ−1, it leads to the completeness
relation ZNZ† ¼ N (Ring and Schuck, 1980). The QRPA
matrix H can be written as

H ¼ N
X
n

ðZnΩnZ
†
n þ ~ZnΩn

~Z†
nÞN ¼ NZΩZ†N : ð58Þ

From this, it is easy to find Z†HZ ¼ Ω.
For a given one-body Hermitian operator F̂, we define a

vector Fv by their ðþ−Þ-type matrix elements, Fðþ−Þ
ij with

i < j, and its RPA conjugate partner ~Fv ¼ IF�
v,

Fv ¼
�
Fðþ−Þ

0

�
; ~Fv ¼

�
0

Fðþ−Þ�

�
:

The transition amplitude of F between the ground and the nth
excited state is given by

hnjF̂j0i ¼
X
i<j

fFðþ−Þ
ij XnðijÞ þ Fðþ−Þ�

ij YnðijÞg

¼ Z†
nðFv þ ~FvÞ ¼ ðFv þ ~FvÞTZ�

n: ð59Þ

In most of the numerical applications, the QRPA eigenvalue
problem is solved by constructing the QRPA matrices in
the quasiparticle- or canonical-basis representations. We may
transform the non-Hermitian eigenvalue problem of Eq. (54)
to a Hermitian one (Ring and Schuck, 1980). For spherical
nuclei, the matrix is block diagonal with respect to the angular
momentum and the parity of two-quasiparticle states ½ij�JπM .
Thus, the numerical cost is moderate in this case and many
calculations were performed; see review papers by Bender,
Heenen, and Reinhard (2003) and Vretenar et al. (2005). In
recent years, the QRPA calculations with modern EDFs have
become available for deformed nuclei (Péru and Goutte, 2008;
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Yoshida and Van Giai, 2008; Arteaga, Khan, and Ring, 2009;
Losa et al., 2010; Terasaki and Engel, 2010). The truncation of
the two-quasiparticle space ðijÞ is usually adopted with
respect to either the energy Ei þ Ej or the occupation of
the canonical states ðρi; ρjÞ. The calculation of the residual
kernels wij;kl and w0

ij;kl is very demanding, because they have
four quasiparticle indices.
If the residual kernel is written in a separable form with a

Hermitian one-body operator F̂,

wij;kl ¼ κFðþ−Þ
ij Fð−þÞ

lk ; w0
ij;kl ¼ κFðþ−Þ

ij Fðþ−Þ
lk ;

the computational cost may be significantly reduced because
the QRPA eigenvalue problem can be cast into a dispersion
equation (Ring and Schuck, 1980). For a given set of operators
fFðnÞg, the coupling constants κðmnÞ are derived from the
Skyrme EDFs (Nesterenko, Kvasil, and Reinhard, 2002). This
separable RPA calculation has been performed for deformed
nuclei to give a reasonable description of giant resonances
(Nesterenko et al., 2006).
When the continuous symmetry is broken in the ground

state, there is another “ground state” degenerate in energy
whose density R0 þ δR is infinitesimally deviated from R0.
Since bothR0 andR0 þ δR satisfy the stationary equation (45),
one can immediately derive Eq. (47) with ω ¼ V ¼ 0.
Therefore, the ANG modes appear as the zero-mode solution
with ΩANG ¼ 0. In this case, it is useful to rewrite Eq. (54) in
the momentum-coordinate representation (Ring and Schuck,
1980). For the ANG mode (translation, rotation, or pair
rotation), the momentum (P; J, or N) corresponds to a known
operator (Sec. II.E.2). Then it ends up as the famous equation
by Thouless and Valatin (1962), which determines the inertial
mass and the coordinate of the ANG mode.3 A modern
technique to solve the Thouless-Valatin equation and numeri-
cal examples is presented by Hinohara (2015).

C. Finite amplitude method

Instead of explicitly calculating the residual kernels with
four quasiparticle indices wij;kl and w0

ij;kl, it is possible to
compute them in an implicit manner. A possible approach is
the finite amplitude method (Nakatsukasa, Inakura, and
Yabana, 2007). The essential idea comes from the fact that
the linear response equation (49), which is identical to
Eq. (51), contains only the “one-body” quantities with two
quasiparticle indices. The residual fields δHðþ−ÞðωÞ and

δHð−þÞðωÞ can be uniquely determined for given δRð�∓Þ
ij .

The linear expansion in Eq. (50) is achieved by a numerical
finite difference method, and δH on the left-hand side is
obtained without calculating wij;kl and w0

ij;kl.

1. Basic idea

The Fourier component δRðωÞ can be written in terms of
their matrix elements as

δRðωÞ ¼
X
i;j

fΨ0
i δR

ðþ−Þ
ij ðωÞ ~Ψ0†

j þ ~Ψ0
i δR

ð−þÞ
ij ðωÞΨ0†

j g: ð60Þ

Here the summation with respect to i and j is taken over
all the positive-energy quasiparticles. Comparing Eqs. (48)

and (60), we find δΨiðωÞ¼−
P

j
~Ψ0
jδR

ð−þÞ
ji and δΨ†

i ðωÞ¼
−
P

jδR
ðþ−Þ
ij

~Ψ0†
j . Using quasiparticle states slightly modified

from Ψ0
i ,

ΨiðωÞ ¼ Ψ0
i þ ηδΨiðωÞ ¼ Ψ0

i − η
X
j>0

~Ψ0
jδR

ð−þÞ
ji ðωÞ;

Ψ0
i
†ðωÞ ¼ Ψ0†

i þ ηδΨ†
i ðωÞ ¼ Ψ0†

i − η
X
j>0

δRðþ−Þ
ij ðωÞ ~Ψ0†

j ;

the density RηðωÞ≡ R0 þ ηδRðωÞ can be written as

RηðωÞ ¼ 1 −
X
i

ΨiðωÞΨ0
i
†ðωÞ þOðη2Þ:

Note that, since the Fourier component δRðωÞ is no longer
Hermitian, ΨiðωÞ and Ψ0

i
†ðωÞ are not Hermitian conjugate to

each other. The induced fields are now calculable in the
following way:

δHðþ−Þ
ij ðωÞ ¼ Ψ0†

i
1

η
fHs½RηðωÞ� −Hs½R0�g ~Ψ0

j ;

δHð−þÞ
ij ðωÞ ¼ ~Ψ0†

i
1

η
fHs½RηðωÞ� −Hs½R0�gΨ0

j :
ð61Þ

Rigorously speaking, the limit of η → 0 should be taken.
However, in practice, we may use a small but finite value of η.
Using Eq. (61) with a small value of η, the calculation of the
induced residual fields δHð�∓Þ can be achieved by the
calculation of matrix elements of the BdGKS Hamiltonian
Hs½R�. This is a much easier task than the calculation of the
residual kernels wij;kl and w0

ij;kl. Note that Hs½Rη� should be
constructed self-consistently with the quasiparticles Ψi and
Ψ0

i
†, namely, ðU;VÞ with a small mixture of δRð−þÞ and

ðU�; V�Þ with a small mixture of δRðþ−Þ. In order to obtain the
solution δRð�∓Þ, we solve Eq. (49) iteratively, starting from
initial values for ðδRðþ−Þ; δRð−þÞÞ.

2. Strength functions

For the calculation of the strength functions, one can solve
the linear response equation with a given frequency ω by
choosing the external potential V identical to the operator F.
Then, according to Eqs. (52) and (53), the strength function
Sðω;FÞ with respect to F is obtained. To obtain an energy
profile of Sðω;FÞ, we need to repeat the calculation with
different values of ω.
There is another approach based on the iterative construc-

tion of the subspace in which the diagonalization is performed
(Olsen, Jensen, and Jørgensen, 1988; Tretiak et al., 2009). The
Krylov subspace generated by a pivot vector with respect to
the one-body operator F preserves the energy-weighted sum
rule (EWSR) values. Therefore, it is suitable for calculating a
gross energy profile of the strength function by a small
number of iterations. Some more details of these iterative
methods are discussed in Sec. III.D. Applications of the finite

3Note that there have been some other attempts to explain the finite
value of the moment of inertia as an analog of the Higgs mechanism
with the SSB (Fujikawa and Ui, 1986).
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amplitude method to the calculation of the strength functions
have been performed for the Skyrme EDFs (Inakura,
Nakatsukasa, and Yabana, 2009a, 2011, 2013; Nakatsukasa
et al., 2011; Stoitsov et al., 2011; Inakura et al., 2014;
Mustonen et al., 2014; Nakatsukasa, 2014; Pei et al., 2014)
and the covariant EDFs (Liang et al., 2013, 2014; Nikšić et al.,
2013). The finite amplitude method is also applied to the
calculation of the sum rules, which suggests approximate
validity of the Thouless theorem for nuclear EDFs (Hinohara
et al., 2015).

3. Normal-mode eigenstates

It is often our interest to obtain theQRPAeigenmodes. These
eigenmodes are, in principle, obtained if the matrix H in
Eq. (57) is explicitly constructed. The finite amplitude method
can also be used for this purpose to facilitate the calculation of
the residual kernels (Avogadro and Nakatsukasa, 2013).

Suppose we set δRðþ−Þ
kl ¼ 1 for a specific pair ðklÞ and the

rest all zero. Then the calculation of δHðþ−Þ
ij using Eq. (61)

provides wij;kl. On the other hand, setting δRð−þÞ
kl ¼ 1 and the

rest zero, the calculation of δHðþ−Þ
ij producesw0

ij;kl. This can be
easily understood from Eq. (50). In this way, the QRPA matrix
can be calculated without a complicated coding process. The
usefulness of the method is demonstrated for the Skyrme
(Avogadro and Nakatsukasa, 2013) and the covariant EDFs
(Liang et al., 2013).
When the matrix dimension becomes too large to directly

handle, there are other approaches. For instance, the solution
of the linear response equations (51) with complex frequen-
cies combined with the contour integral serves for this purpose
(Hinohara, Kortelainen, and Nazarewicz, 2013). This is based
on the idea that the contour integral around the nth eigene-
nergy provides

ð2πiÞ−1
Z
Cn

δRðþ−Þ
ij ðωÞdω ¼ XnðijÞhnjFj0i;

ð2πiÞ−1
Z
Cn

δRð−þÞ
ij ðωÞdω ¼ YnðijÞhnjFj0i

for an external potential V ¼ F. The contour must be chosen
to enclose a single pole. This has been tested also for the
charge-changing modes (Mustonen et al., 2014).
The truncation of the space by an iterative procedure is

another possible option; see Sec. III.D for more details.

D. Iterative methods for solutions

In the finite amplitude method, the numerical solution of the
linear response equation is obtained by using an iterative
algorithm. This significantly saves computational resources,
especially the necessary memory size, because all we need to
calculate are one-body quantities, not two-body ones.

1. Solution for fixed energy

A possible iterative procedure for the solution of Eq. (49) is

given as follows: For a given external potential Vð�∓Þ
ij , we

assume a certain initial value for δRð�∓Þ
ij for which the residual

induced fields δHð�∓Þ
ij are calculated according to Eq. (61).

Hs½Rη� can be calculated with the quasiparticle states Ψ0
i and

Ψ0
i
0† replaced by ΨiðωÞ and Ψ†

i ðωÞ, respectively. Then, the
left-hand side of Eq. (49), which is identical to that of Eq. (51),
is computed. If these equations are not satisfied, we update the

densities δRð�∓Þ
ij according to an adopted iterative algorithm

and repeat the calculation until the convergence. When the
frequency ω is complex, one should adopt an iterative
algorithm that can be applied to a linear algebraic equation
with a non-Hermitian matrix.

2. Diagonalization in Krylov subspace

There are recent developments based on the iterative
diagonalization of the Krylov space techniques. This is
especially useful for calculations of the strength function,
because it conserves the EWSR value of odd moments.
Basically, they resort to the transformation of the matrix with
dimension 2D into the one in the Krylov subspace with
dimension 2d ≪ 2D.
Using Eq. (58), we have

ðNHÞL ¼ ZðΩN ÞL−1ΩZ†N ¼ ZΩLN L−1Z†N : ð62Þ

Using the expression of transition amplitudes of Eq. (59), the
EWSR value of order L is given by

mL ≡X
n

ΩL
n jhnjFj0ij2 ¼

1

2
ðFv þ ~FvÞ†ZΩLZ†ðFv þ ~FvÞ:

For odd L, using Eq. (62), this can be written as

mL ¼ 1
2
ðFv þ ~FvÞ†ðNHÞLN ðFv þ ~FvÞ: ð63Þ

Therefore, starting from a pivot vector Fv and its conjugate
~Fv, the Krylov subspace of dimension 2d > L,

fFv; ~Fv; ðNHÞFv; ðNHÞ ~Fv;…; ðNHÞd−1Fv; ðNHÞd−1 ~Fvg
ð64Þ

can span the intermediate space in Eq. (63). In Appendix A,
we show that the reduction from the 2D into the 2d RPA
subspace (64) conserves the sum rules mL with odd L and
L < 2d (Johnson, Bertsch, and Hazelton, 1999).
To construct the subspace (64), one can adopt the Lanczos

iteration algorithm. The Lanczos iteration produces an ortho-
normal basis set for the Krylov subspace, which makes a
and b matrices tridiagonal. This works nicely for the case of a
schematic separable interaction (Johnson, Bertsch, and
Hazelton, 1999). However, since numerical errors are accu-
mulated during the iterations, other algorithms, such as the
non-Hermitian Arnoldi iteration, have been adopted for
realistic Skyrme energy functionals (Toivanen et al., 2010).
Even for low-lying eigenstates, the method successfully works
(Carlsson, Toivanen, and Pastore, 2012). The conjugate
gradient algorithm may be another possible solver, which
was used for low-lying RPA solutions in the coordinate-space
representation (Imagawa and Hashimoto, 2003; Inakura et al.,
2005, 2006).
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E. Green’s function method

It becomes increasingly important to study unbound and
weakly bound nuclei in physics of rare isotopes near the
drip lines. There have been a number of developments for
treatment of the resonance and continuum, including the
continuum shell model (Okołowicz, Płoszajczak, and Rotter,
2003), the Gamow shell model (Id Betan et al., 2002; Michel
et al., 2002), the Gamow HFB method (Michel, Matsuyanagi,
and Stoitsov, 2008), the complex scaling method (Aoyama
et al., 2006), and the R-matrix theory (Descouvemont and
Baye, 2010). In the linear response calculation based on the
TDDFT, the one-body continuum (and a part of the two-body
continuum) can be taken into account by the use of Green’s
function. In this section, we recapitulate the general formalism
for superconducting cases (“continuum QRPA”).

1. Response function

The QRPA linear response equation (51) can be rewritten as

½Π−1
0 ðωÞ −W�

�
δRðþ−ÞðωÞ
δRð−þÞðωÞ

�
¼
�
Vðþ−ÞðωÞ
Vð−þÞðωÞ

�
; ð65Þ

with

Π−1
0 ðωÞ≡

�
ω − A0 0

0 −ω − A0

�
; W ≡

�
w w0

w0� w�

�
;

where ðA0Þij;kl ¼ ðEi þ EjÞδikδjl in the quasiparticle repre-
sentation. Equation (65) is inverted by the QRPA response
function ΠðωÞ as δRðωÞ ¼ ΠðωÞVðωÞ, where

ΠðωÞ ¼ ½Π−1
0 ðωÞ −W�−1 ¼ ½1 − Π0ðωÞW�−1Π0ðωÞ: ð66Þ

Here Π0ðωÞ can be schematically written as

Π0ðωÞ ¼
X
i

fG0ðω − EiÞ ~Ψ0
i
~Ψ0†
i þ ~Ψ0

i
~Ψ0†
i G0ð−ω − EiÞg;

ð67Þ

using the Green’s function G0ðEÞ. Its derivation is given in
Appendix B. The precise forms of Eq. (67) are given by
Eqs. (B4) and (B5).
The strength function with respect to the operator F is

obtained according to Eqs. (52) and (53). For ω ≥ 0,

Sðω;FÞ ¼ −
1

2π
Im½F†Πðωþ iηÞF�:

From Eq. (B1), one can see that, without the residual
interaction W ¼ 0, this leads to the unperturbed strength

function ð1=2ÞPijjVðþ−Þ
ij j2δðω − Ei − EjÞ.

Since the response function has four indices, in general,
their calculation and inverse operation in Eq. (66) are very
difficult tasks. It becomes practical when we need only their
diagonal elements. The functional of local densities, such as
the Skyrme functionals with local potentials, provides an
example in which the coordinate-space representation f~rg
allows us the diagonal representation. The presence of the

spin-orbit and finite-range exchange terms makes its appli-
cation more difficult.

2. Boundary condition

One of the motivations of the Green’s function formalism is
the exact treatment of the continuum. This can be done by
imposing the proper boundary condition in the Green’s
functions in Eq. (67). The density response in the time domain
can be given by

δRðtÞ ¼
Z

Πðt − t0ÞVðt0Þdt0:

Here Πðt − t0Þ should be zero for t < t0; ΠðtÞ ¼ θðtÞΠðtÞ.
This causality condition is achieved by adding a positive
infinitesimal to ω in its Fourier component ΠðωÞ. Thus, the
replacement of ω → ωþ iη leads to the retarded (outgoing)
boundary condition for G0ðω − EiÞ and the advanced (incom-
ing) boundary condition for G0ð−ω − EiÞ in the expression of
Π0. For ω > Ei, the outgoing asymptotic behavior is impor-
tant for the former Green’s function, which describes escaping
of a particle or a Cooper pair. This provides an exact treatment
of the continuum in the linear density response.
For superconducting systems with the ground-state BdGKS

solution with κ ≠ 0, the Green’s function with the outgoing
(incoming) boundary condition can be constructed for a
spherical system using the partial-wave expansion (Belyaev
et al., 1987). The quasiparticle states Ψ0

i , whose energy is
smaller than the absolute value of the chemical potential
Ei < jμj, are bound and discrete, while those with Ei > jμj are
unbound with continuum spectra. The summation over the
quasiparticle states in Eq. (67) must be performed with respect
to all the negative-energy states ~Ψ0

i . This is not trivial because
the index i is not discrete but continuous. To overcome this
difficulty, the contour integral in the complex energy plane is
useful (Matsuo, 2001). The spectral representation of the
Green’s function (B3) leads to

X
i

fð−EiÞ ~Ψ0
i
~Ψ0†
i ¼ ð2πiÞ−1

Z
C
fðEÞG0ðEÞ; ð68Þ

for arbitrary function fðEÞ. Here the contour C is chosen to
enclose the negative part of the real axis. Replacing the
summation in Eq. (67) by the contour integral of Eq. (68), the
response function is able to describe escaping of one-particle
and two-particle decays from excited states. Therefore, the
QRPA linear response theory with the Green’s function can
describe correlations among two escaping particles.
In the TDKS scheme for normal systems (Δ ¼ 0), the

negative-energy quasiparticles ~Ψ0
i are nothing but hole states

and the summation over i runs over only the hole states. This
method is known as the continuum RPA and is much easier
than the continuum QRPA. The numerical applications were
first achieved for spherical systems (Shlomo and Bertsch,
1975; Zangwill and Soven, 1980). The continuum RPA
calculations with the Gogny EDFs have been recently
achieved for spherical systems by transforming the RPA
eigenvalue equation (54) into those for the channel functions
(De Donno et al., 2011).
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For deformed systems, decomposing the BdGKS
Hamiltonian into its spherical and deformed parts Hs ¼
Hsph þ Vdef , we can use the identity

G0ðEÞ ¼ GsphðEÞ þ GsphðEÞVdefG0ðEÞ;

where GsphðEÞ is the Green’s function for the spherical
Hamiltonian Hsph. This method with the three-dimensional
coordinate-space representation has been applied to normal
systems, such as photoabsorption in molecules (Nakatsukasa
and Yabana, 2001, 2003a; Yabana et al., 2006) and light nuclei
(Nakatsukasa and Yabana, 2005), however, not to supercon-
ducting systems. For deformed superconducting nuclei,
although the full continuum linear response calculation has
not been achieved yet, the construction of the Green’s function
has been carried out by using the coupled-channel scheme
(Oba and Matsuo, 2009). A similar method was developed
earlier for normal systems and applied to a linear density
response in axial symmetric molecules (Levine and Soven,
1983, 1984; Levine, 1984).

F. Real-time method

Another approach to the linear response is to solve the
TDBdGKS equation (28) directly in real time, with a weak
perturbative external field. In the calculation, we do not
linearize the equation. Thus, the same numerical code could
serve for studies of the nonlinear dynamics (Sec. IV). This is
particularly convenient for the calculation of the strength
function Sðω;FÞ for a wide range of energy, associated with a
one-body operator F which does not excite the ANG modes.
On the contrary, the method is not suitable for obtaining
information on a few excited normal modes. This is due to the
uncertainty principle; the achieved energy resolution ΔE is
inversely proportional to the duration of time evolution T.
A bulk property of the linear response is determined by time

evolution of a short period of time. For instance, the EWSR
value associated with a one-body operator F is obtained
instantly as

m1 ¼
X
n

ΩnjhnjFj0ij2 ¼
1

2η

d
dt

Tr½FRðtÞ�
����
t¼0

;

where the initial state is boosted by the operator F as

Ψiðt ¼ 0Þ ¼
�

eiηFUi

e−iηFVi

�
;

where the parameter η is a small number. This is generally true
for all odd-L moments mL ∝ dLTr½FRðtÞ�=dtLjt¼0.

1. Strength functions

The real-time calculation of the strength function is
performed in the following way. The initial state is the ground
state, and an external potential VðtÞ ¼ fðtÞF, which is
proportional to the operator F, is activated at time t ¼ 0. In
the linear regime, the function fðtÞ should be small to
validate the linear response. The strength function (52) can
be obtained as

Sðω;FÞ ¼ −1
2fðωÞ Im

Z
∞

−∞
Tr½FRðtÞ�gðtÞeiωtdt; ð69Þ

where fðωÞ is a Fourier transform of fðtÞ. If we choose
fðtÞ ¼ f0δðtÞ, we have fðωÞ ¼ f0 which excites all the
normal modes with equal strength. In the linear regime,R
Tr½FRðtÞ�eiωtdt is proportional to fðωÞ. Thus, Eq. (69)

gives a unique result.
In order to get a smooth energy profile Sðω;FÞ, the time

dependence in the integrand in Eq. (69) must vanish at t ¼ T.
In practice, it is customary to include the damping factor gðtÞ
in the integrand in Eq. (69), e.g., the exponential damping
associated with a smearing width γ; gðtÞ ¼ θðtÞθðT − tÞe−γt=2.
The idea of the real-time method was proposed by Błocki and
Flocard (1979) to calculate the energies of the giant reso-
nances. The strength functions are calculated with modern
Skyrme EDFs (Maruhn et al., 2005; Nakatsukasa and Yabana,
2005; Umar and Oberacker, 2005; Fracasso, Suckling, and
Stevenson, 2012), including pairing effects (Tohyama and
Umar, 2002; Hashimoto and Nodeki, 2007; Ebata et al., 2010;
Stetcu et al., 2011; Hashimoto, 2012; Ebata, Nakatsukasa, and
Inakura, 2014; Scamps and Lacroix, 2014).

2. Absorbing boundary condition

In general, an external potential VðtÞ excites the system
into a superposition of many different elementary modes of
excitation. Therefore, the particle decays simultaneously
occur at different energies. In contrast to the linear response
equation with fixed frequency ω, we do not know the
asymptotic form in the real-time method. Nevertheless, in
the linear regime, there is a useful method to realize an
approximate outgoing boundary condition for normal
systems.
A key is that the ground-state KS orbitals φið~rÞ and

the transition density in the linear response δρð~r; tÞ ¼P
iφið~rÞδφ�

i ð~r; tÞ þ c:c: are both localized in space. During
the time evolution, we may simply absorb the outgoing waves
from φið~r; tÞ in an outer region (r > r0), where φið~rÞjr>r0 ¼ 0.
This can be approximately done by choosing a proper
absorbing imaginary potential in the outer region. Note
that, in the linear regime, the particle number is still con-
served, because

R
out δρð~r; tÞd~r ¼ 0. This absorbing boundary

condition was adopted in nuclear TDDFT calculations
(Nakatsukasa and Yabana, 2002, 2003b, 2005; Reinhard et al.,
2006) and treated in a rigorous manner (Pardi and Stevenson,
2013). It is also used in other fields of physical problems
(Muga et al., 2004; Yabana et al., 2011). For the super-
conducting case, even at the ground state of finite localized
systems, most of Uið~r; σÞ are not localized in space. Thus, the
application of the absorbing boundary condition is not trivial
in this case.

G. Extension: Particle-vibration coupling

The QRPA calculation is successful in reproducing a variety
of properties of nuclear excitations, especially of high-lying
giant resonances. However, it has known limitations too. For
instance, the widths of giant resonances in heavy nuclei are
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not well accounted for, although the peak energy and summed
strength are well reproduced. The continuum QRPA is capable
of calculating the escaping width of neutrons, however, it does
not describe the spreading associated with coupling to com-
plex configurations, such as many-particle–many-hole states.
A possible improvement is explicit inclusion of higher-order
terms and two-body correlations, which are presented in
Sec. V.D.5. Another approach discussed here is the par-
ticle-vibration coupling (PVC) scheme. The PVC is also
supposed to be responsible for the fact that the experimental
single-particle level density near the Fermi level is higher than
that in modern EDFs whose effective masses are smaller
than unity.
The idea of the PVC is very old and connected to the

essential concept of the Bohr-Mottelson unified model. That is
to say, the single-particle motion and the vibrational (collec-
tive) motion in nuclei are coupled and influence each other. In
earlier times, a phenomenological potential with a schematic
separable interaction ðκ=2ÞF̂ F̂ was used in many applications,
which is essentially inspired by the field coupling H0 ¼ καF̂
of Bohr and Mottelson (1975). The PVC produces dressed
(renormalized) single-particle states. This affects many kinds
of single-particle properties, including self-energies, single-
particle moments, transfer matrix elements, and fragmentation
of single-particle strengths; see Fig. 3(a). It is also expected to
contribute to effective two-particle interactions, as in Fig. 3(b),
which may be partially responsible for the attractive pairing
interaction.
The causal single-particle Green’s function obeys the

Dyson equation

GðEÞ ¼ G0ðEÞ þ G0ðEÞΣðEÞGðEÞ;

where G0ðEÞ is the unperturbed Green’s function similar to
Eq. (B3) with the causal boundary condition, and ΣðEÞ is the
proper self-energy part. The self-energy is alternatively
denoted as MðEÞ and called “mass operator” (Mahaux et al.,
1985). In the PVC, ΣðEÞ takes account of coupling to
collective vibrations. Normally, low-lying collective vibra-
tional states are selectively included in ΣðEÞ. The lowest-order
contribution to ΣðEÞ is in the second-order coupling in H0,
as seen in Fig. 3(a). The diagonal approximation is often
adopted for the Dyson equation, namely, only the diagonal
matrix elements of ΣðEÞ in the quasiparticle basis are taken
into account.

Recently, the PVC calculation was carried out with modern
EDFs (Litvinova and Ring, 2006; Colò, Sagawa, and
Bortignon, 2010; Litvinova and Afanasjev, 2011; Brenna,
Colò, and Bortignon, 2012; Cao et al., 2014; Niu, Colò, and
Vigezzi, 2014). It is extended to the quasiparticle-vibration
coupling (Litvinova, Ring, and Tselyaev, 2008; Yoshida,
2009; Litvinova, 2012). They have shown successful descrip-
tions of various kinds of nuclear phenomena, although there
exist some ambiguities due to a selection of vibrational modes
to be taken into account. For weakly bound systems, vibra-
tional states as well as the single-particle states may be in the
continuum. As discussed in Sec. III.E.2, this can be handled
by the proper boundary condition for the Green’s function.
The Dyson equation in the coordinate-space representation
provides a scheme to treat the continuum boundary condition,
using a causal response function Π also with the continuum
(Mizuyama, Colò, and Vigezzi, 2012). This was done for
spherical normal systems, so far.
It is not so straightforward to formulate the PVC consistent

with the principle of the DFT. A subtraction prescription is
proposed (Tselyaev, 2007, 2013) and applied to the PVC
(Litvinova, Ring, and Tselyaev, 2010) and the second RPA
(Gambacurta, Grasso, and Engel, 2015). For the Skyrme
EDF (zero-range effective interactions), some attempts have
been recently made to renormalize the divergent second-order
diagrams and to produce new EDFs for PVC calculations
(Moghrabi et al., 2012; Brenna, Colò, and Roca-Maza, 2014).
To our knowledge, full respect of the Pauli principle and
construction of the DFT-based particle-vibration coupling
theory remain as challenging subjects.

H. Illustrative examples

Recent trends in the linear response studies for nuclei are
calculations with all the residual fields (interactions), con-
tinuum, pairing, and deformed ground states. Let us show
some examples.

1. Giant resonances and ground-state deformation

One of the successful applications of the nuclear EDF to
linear response is the study of giant resonances. The giant
resonances are high-frequency collective modes of excitation
in nuclei, which exhaust a major part of the energy-weighted
sum rule of the transition strengths. They are usually classified
according to the spin S, isospin T, and multipolarity L. Their
properties are supposed to reflect some basic quantities of the
nuclear matter, such as the incompressibility, the symmetry
energy, and the effective mass (Ring and Schuck, 1980;
Harakeh and van derWoude, 2001).Among them, the isovector
giant dipole resonance (S ¼ 0, T ¼ 1,L ¼ 1), which is excited
by the photoabsorption, is best known for a long time. The giant
dipole resonance is simply characterized by the out-of-phase
oscillations of neutrons and protons. The symmetry energy
plays amajor role in determination of its peak position. Figure 4
shows the photoabsorption cross section for Nd and Sm
isotopes. These isotopes are classical examples in the rare-
earth region exhibiting the spontaneous shape transition in the
ground state from spherical to prolate-deformed shapes, with
increasing the neutron number fromN ¼ 82 (142Nd and 144Sm)

FIG. 3. Second-order diagrams for particle-vibration coupling,
contributing to (a) the self-energy part ΣkiðEÞ and (b) effective
two-particle interactions.
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toN ¼ 92 (152Nd and 144Sm) (Bohr andMottelson, 1975). The
experimental intrinsic quadrupole moment Q0 is estimated
from BðE2; 2þ1 → 0þgsÞ values, assuming the strong-coupling
rotor (Bohr andMottelson, 1975; Ring and Schuck, 1980). The
self-consistent calculation with SkM� and the pairing energy
functional (Yamagami, Shimizu, and Nakatsukasa, 2009)
nicely reproduces these values for N ≥ 86. The development
of nuclear deformation leads to a broadening and peak splitting
in the photoabsorption cross section. It is the well-known
deformation splitting associated with two oscillation modes
parallel to the symmetry axis (Kπ ¼ 0−) and perpendicular to
that (Kπ ¼ 1−).
The calculation involves solving the eigenvalue problem of

Eq. (57) within the space truncated with the two-quasiparticle
energies Ei þ Ej ≤ 60 MeV. The photoabsorption cross sec-
tion is obtained from the E1 transition strengths, according to
Eq. (59), smeared with the Lorentzian width of 2 MeV. This
smearing width is the only free parameter in the calculation,

which accounts for the spreading effect beyond the present
QRPA treatment; see Sec. III.G. Note that for light systems
(A≲ 40) the agreement is not as good as in heavy nuclei
(Erler, Klüpfel, and Reinhard, 2010). This may suggest an
insufficient surface symmetry energy in current EDFs.
The isoscalar and isovector giant monopole resonances

(L ¼ 0) also show the deformation splitting forN ≥ 86, which
is consistent with the experimental data. The excitation
energies of the split peaks are shown in Fig. 5 for Sm.
This splitting is due to the coupling to the Kπ ¼ 0þ compo-
nent of the giant quadrupole resonance (L ¼ 2). The monop-
ole and quadrupole are decoupled for spherical nuclei.
However, they are coupled in deformed nuclei, and the lower
peak in Fig. 5 appears at the Kπ ¼ 0þ peak of the corre-
sponding giant quadrupole resonance.
The deformation of the momentum distribution (Fermi

sphere) plays an essential role in the restoring force for the
isoscalar giant resonances (Ring and Schuck, 1980). A typical
well-studied example is the giant quadrupole resonance whose
energy is approximately fit by 64A−1=3 MeV. The nuclear
EDFs in the KS scheme nicely account for this effect of the
quantum Fermi liquid, producing the correct mass number
dependence. For deformed systems, in addition to this, the
deformation splitting among Kπ ¼ 0þ, 1þ, and 2þ peaks is
well reproduced. The simple pairing-plus-quadrupole inter-
action produces theK splitting, EK¼2 − EK¼0, of about 7 MeV
for 154Sm. This is too large and inconsistent with experiments
(Kishimoto et al., 1975). It is due to the violation of the
nuclear self-consistency between the shapes of the potential
and the density distribution. The calculation of the SkM�

functional predicts the K splitting of 2.8 MeV (Yoshida and
Nakatsukasa, 2013).
Systematic calculations with Skyrme EDFs for spherical

nuclei have been performed using the canonical-basis QRPA
(Paar et al., 2003; Terasaki and Engel, 2006). The QRPA
computer codes for deformed nuclei based on the matrix
diagonalization were developed for the Skyrme EDF (Yoshida
and Van Giai, 2008; Losa et al., 2010; Terasaki and Engel,
2010; Yoshida and Nakatsukasa, 2011), the Gogny EDF (Péru
and Goutte, 2008; Péru et al., 2011), and the covariant EDF
(Arteaga, Khan, and Ring, 2009). The calculations for

FIG. 4. Deformation and photoabsorption in Nd and Sm
isotopes, calculated with the Skyrme energy functional of
SkM�. Calculated and experimental intrinsic quadrupole mo-
ments are denoted by open and closed symbols, respectively, for
(a) Nd and (b) Sm isotopes. For spherical nuclei with N ¼ 82
and 84, we also plot the values (triangles) extracted from the
QRPA calculation for BðE2; 2þ → 0þÞ. Photoabsorption cross
sections for (c) Nd and (d) Sm isotopes. The solid lines show
the calculation and the solid (blue) symbols are experimental
data (Carlos et al., 1971, 1974). Adapted from Yoshida and
Nakatsukasa, 2011.

FIG. 5. The excitation energies of the isoscalar giant monopole
resonances in the Sm isotopes; calculated values (solid symbols)
and experimental data (open symbols) (Itoh et al., 2003). From
Yoshida and Nakatsukasa, 2013.
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deformed systems require large computational resources for
construction and storage of matrix H in Eq. (55). Systematic
calculations for a wide range of nuclei have been performed
by avoiding explicit calculations of H, with the finite
amplitude method (Inakura, Nakatsukasa, and Yabana,
2009b, 2011; Nakatsukasa et al., 2011), and with the real-
time method in Sec. IV.A (Scamps and Lacroix, 2013b; Ebata,
Nakatsukasa, and Inakura, 2014).

2. Low-lying quadrupole states

Low-lying states associated with the quadrupole vibrations
have been one of the major interests in nuclear structure
problems. Systematic analysis of the QRPA calculations for
the first excited Jπ ¼ 2þ states in spherical nuclei and the
gamma vibrations (Kπ ¼ 2þ) in deformed rare-earth nuclei
were performed by Terasaki, Engel, and Bertsch (2008) and
Terasaki and Engel (2011) using the Skyrme EDFs. They
qualitatively agree with the trend of experimental data for
spherical nuclei. Overall agreement of the QRPA results with
experiments is better than that of the other approaches based
on the generator coordinate method (GCM) (Sabbey et al.,
2007). However, the agreement is not quite as good for
deformed nuclei. The five-dimensional collective Hamiltonian
for the large-amplitude quadrupole motion may give a better
description (Bertsch et al., 2007; Delaroche et al., 2010). The
problems in the description of low-frequency quadrupole
modes of excitation are discussed in Sec. V.

3. Charge-exchange modes

The isovector excitations have charge-changing (τ�) modes.
For spherical nuclei, the calculations have been performed
mostlywith the SkyrmeEDFs (Engel et al., 1999; Bender et al.,
2002; Fracasso and Colò, 2005; Paar et al., 2007), but alsowith
the covariant EDFs (Paar et al., 2004; Liang, Van Giai, and
Meng, 2008; Niu et al., 2013). The deformed QRPA calcu-
lations for the charge-exchange modes have been performed
with the separable approximation (Sarriguren, de Guerra, and
Escuderos, 2001; Sarriguren, 2012). Recently, the full QRPA
calculations have become available too (Mustonen and Engel,
2013; Yoshida, 2013; Martini, Péru, and Goriely, 2014). The
neutrino-nucleus reaction was also studied including inelastic
neutral-current scattering (Dapo and Paar, 2012). The Gamow-
Teller strength distribution (S ¼ 1, T ¼ 1) significantly affects
the β-decay half-lives and thewaiting point of the rapid neutron
capture process (r process). To determine the r-process path far
away from the stability line, the reliable theoretical estimates
are highly desired.

4. Nuclear response in the continuum

For nuclei near the neutron drip line, weakly bound
neutrons may produce large transition strength just above
the threshold. Examples were observed in low-energy electric
dipole (E1) strength in light halo nuclei, such as 11Be
(Nakamura et al., 1994) and 11Li (Ieki et al., 1993;
Shimoura et al., 1995; Zinser et al., 1997; Nakamura et al.,
2006). The enhancement is not associated with the collectiv-
ity, but due to the quantum mechanical “threshold effect.”
Whether the collective low-energy dipole resonances exist in

heavier neutron-rich nuclei is still an open question (Hansen
and Jonson, 1987; Ikeda, 1992). In order to properly address
these issues in which the continuum plays an important role,
the Green’s function method in Sec. III.E is a powerful tool.
For doubly closed spherical nuclei, we may neglect the
pairing, and the continuum RPA calculations have been
extensively performed to study a variety of strength functions;
see Sagawa (2001) and Paar et al. (2007) and references
therein. However, for open-shell and heavier systems, we need
to treat the deformation and the paring correlations in addition
to the continuum. This has been partially achieved with
modern EDFs; the Green’s function method for deformed
systems (Nakatsukasa and Yabana, 2005) and that for super-
conducting systems (Mizuyama, Matsuo, and Serizawa, 2009;
Serizawa and Matsuo, 2009; Daoutidis and Ring, 2011;
Matsuo, 2015). The simultaneous treatment of the deforma-
tion, the pairing, and the continuum still remains as an
unsolved problem.
The photoabsorption of neutron-rich nuclei leads to neutron

decays if the excitation energy exceeds the neutron separation
energy, which is very low in nuclei near the neutron drip line.
It has been known that one can decompose the strength
function (the photoabsorption cross section) in the continuum
RPA into partial strength functions for individual channels of
particle escape (Zangwill and Soven, 1980; Nakatsukasa and
Yabana, 2001). Matsuo (2015) recently extended the idea
to the continuum QRPA. The decomposition allows one, using
the reciprocity theorem for the inverse processes, to compute
the cross section of the direct neutron capture cross sections
for different entrance channels separately. Figure 6 shows
those for nþ 141Sn, calculated from the E1 strength functions
in the continuum QRPA. In this example, the cross section
follows the power-law scaling rule. This would not be the case
if there was a low-energy resonance.

IV. REAL-TIME CALCULATIONS BEYOND
THE LINEAR REGIME

In nuclear physics, the real-time real-space calculations of
the TDDFT have been explored since the 1970s, starting with
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FIG. 6. Neutron capture cross sections nþ 141Sn as functions of
neutron energy e, for incident neutrons in s1=2, d3=2, and d5=2
states. The Skyrme SLy4 EDF and the density-dependent pairing
EDF are used. The dotted lines indicate the power-law scaling
∝ el−1=2. From Matsuo, 2015.
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simplified energy functionals (Bonche, Koonin, and Negele,
1976). It became the primary approach for studying low-
energy heavy-ion collisions. Since the Pauli blocking hinders
the two-body collisions, the method was thought to work well
at low energy, typically lower than the Fermi energy of about
40 MeV. There is an excellent review paper on these develop-
ments in early years, before 1982 (Negele, 1982). In recent
years, we observed important progress in the real-time
calculations with respect to several aspects.

(1) Realistic EDF: In earlier works, it was common
to adopt simplified EDFs such that the spin-orbit
term is neglected. Recent calculations remove
these restrictions and incorporate the full EDF
self-consistently. The adopted EDFs for time-
dependent calculations have become as realistic as
those for static calculations. Most time-dependent
calculations beyond the linear regime have been
performed with Skyrme energy functionals (Kim,
Otsuka, and Bonche, 1997; Umar and Oberacker,
2006c; Simenel, 2012; Maruhn et al., 2014). These
changes produce even qualitative differences in nu-
clear dynamics. For instance, the famous fusion
window anomaly was significantly hindered by the
inclusion of the spin-orbit term in EDFs (Umar,
Strayer, and Reinhard, 1986; Reinhard et al., 1988).
Extensive studies have been performed recently for
studies of nuclear dynamics, such as quasifission
(Oberacker, Umar, and Simenel, 2014; Scamps,
Simenel, and Lacroix, 2015; Umar, Oberacker, and
Simenel, 2015), charge equilibration (Iwata et al.,
2010a, 2010b), and high-spin rotation (Ichikawa et al.,
2014).

(2) TDBdGKS (TDHFB) scheme: Until recently, the
dynamical pairing correlations were always ne-
glected in real-time calculations. In the TDBdGKS
scheme, the number of quasiparticle orbitals is
identical to the dimension of the single-particle
model space we adopt. Therefore, the real-time
solution of the TDBdGKS (TDHFB) equations
requires extremely heavy computational tasks.

Applications of the full TDBdGKS scheme for
realistic nuclear EDF were performed with the
spherical symmetry restriction (Avez, Simenel,
and Chomaz, 2008). Later, it was achieved with
no assumption on the spatial symmetry with the
Skyrme (Stetcu et al., 2011, 2015; Bulgac, 2013)
and Gogny EDFs (Hashimoto, 2012). However, the
applications are very limited at present, because of
its high computational demands and some prob-
lems inherent in the TDBdGKS including the
preparation of the initial state and treatment of
the nonvanishing wave functions at the boundary.
An approximate feasible approach is shown in
Sec. IV.A.

(3) Nucleus-nucleus potential and friction parameters:
To get insight into nuclear dynamics with energy
dissipation, several ideas were proposed in the late
1970s and 1980s to extract “macroscopic” quan-
tities, such as the nucleus-nucleus potential and the
friction parameter associated with the one-body

dissipation (Koonin et al., 1977; Brink and Stancu,
1981; Cusson et al., 1985). These ideas, which
have been combined with realistic EDFs and recent
computational advances, lead to further develop-
ments producing a number of new results in recent
years. Two different approaches are presented in
Sec. IV.B.

(4) Transfer reaction and fluctuations: The particle-num-
ber projection method in a restricted coordinate space
was proposed to study the mass (charge) distribution
in transfer reactions (Simenel, 2010). It is identical to
the method based on the decomposition of the Slater
determinant proposed by Koonin et al. (1977); how-
ever, the former has a significant computational
advantage for heavier systems. Recent calculations
with realistic EDFs show qualitative agreements with
experiments; see Sec. IV.C.

The TDDFT simulations for heavy-ion collisions in
early days showed that although the average values of
one-body observables were well reproduced, their
fluctuations were underestimated. Accordingly, for
the transfer reaction, the calculated production rates
are well reproduced in major channels, however, not
good in rare channels. In order to overcome the
difficulties, the fluctuation around the TDDFT path
is taken into account; see Sec. IV.C.2.

A. Approximate schemes for TDBdGKS equations

Although the real-time calculation based on the full
TDBdGKS equations in the three-dimensional space
becomes available for a few cases (Stetcu et al., 2011,
2015; Hashimoto, 2012), it is still a very demanding task.
Thus, its approximate schemes are useful at present.
The easiest and old one is the introduction of the fixed

fractional occupation numbers for KS orbitals. For the
stationary Bardeen-Cooper-Schrieffer (BCS) ground state,
each orbital ϕi has a time-reversal-conjugate partner ϕī and
the occupation probability ρi ¼ jvij2. Then, for the time
evolution, we simply neglect the pair potential ΔijðtÞ ¼ 0.
The TDKS equations for Nc orbitals (Nc > N) are solved
in real time. Thus, the pairing effect is taken into account
only in the fractional occupation which is completely
determined at the preparation of the initial state. In this
scheme, the pair potentials play no role in the time
evolution.
To include the dynamical pairing in a minimum way, we

may keep the diagonal form of the Hamiltonian, but with the
pair potential Δij̄ðtÞ ¼ −ΔiðtÞδij. The quasiparticles are given
by the canonical pair of orbitals ϕi and ϕī multiplied by
complex factors (juij2 þ jvij2 ¼ 1):

Φi ¼
� uiϕi

−v�iϕ�̄
i

�
; Φī ¼

�
uiϕī

v�iϕ
�
i

�
:

Then the TDBdGKS equation (28) is factorized into 2 × 2

form. Using the relation Δiīϕ
�̄
i ¼ −Δiϕi, the TDBdGKS

equations are split into
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i
∂
∂tϕiðtÞ ¼ fhs½ρðtÞ� − μ − ηiðtÞgϕiðtÞ; i ↔ ī;

i
d
dt

ρiðtÞ ¼ κiðtÞΔ�
i ðtÞ − κ�i ðtÞΔiðtÞ;

i
d
dt

κiðtÞ ¼ fηiðtÞ þ ηīðtÞgκiðtÞ þ ΔiðtÞf2ρiðtÞ − 1g;

ð70Þ

where ρiðtÞ≡ jviðtÞj2, κiðtÞ≡ uiðtÞviðtÞ, and ηiðtÞ are param-
eters to control the phase of the canonical orbitals ϕiðtÞ. The
ηiðtÞ are arbitrary, if the diagonal form of the pair potential is
consistent with the gauge invariant EDFs. When it is violated
in practice, a choice of the minimal phase change was
proposed (Ebata et al., 2010).
When the pair potential is calculated from the antisymme-

trized two-body interaction v̄, ΔiðtÞ ¼ −
P

j>0κjðtÞv̄iī;jj̄. The
densities are constructed as

ρðαβ; tÞ ¼
X
i

ρiðtÞϕiðα; tÞϕ�
i ðβ; tÞ;

κðαβ; tÞ ¼
X
i>0

κiðtÞfϕiðα; tÞϕīðβ; tÞ − ϕīðα; tÞϕiðβ; tÞg:

Equations similar to Eq. (70) were derived using the time-
dependent variational principle some time ago (Błocki and
Flocard, 1976) and revisited in terms of the TDBdGKS
equations (Ebata et al., 2010). The conservation of the average
particle number is guaranteed for an arbitrary choice of μ;
however, the energy conservation depends on the choice of the
parameter ηiðtÞ (Ebata et al., 2010), and the current con-
servation is violated in this approximation (Scamps et al.,
2012). The equations may describe dynamical pairing effects,
coupled to motion of the canonical orbitals. The method has
been applied to real-time calculations for linear response
(Ebata et al., 2010; Scamps and Lacroix, 2013b; Ebata,
Nakatsukasa, and Inakura, 2014), neutron transfer reactions
(Scamps and Lacroix, 2013a), and fusion and fission reactions
(Ebata and Nakatsukasa, 2014, 2015; Scamps, Simenel, and
Lacroix, 2015).

B. Heavy-ion collision: Nucleus-nucleus potential and
one-body dissipation

In real-time calculation of heavy-ion collisions so far, the
TDKS equations with κ ¼ Δ ¼ 0 are solved in most appli-
cations. The initial state is prepared as two nuclei in their
ground states, placed well separated in space. First we locate
the two nuclei ðNL; ZLÞ in the left and ðNR; ZRÞ in the right,
with respect to the z coordinate. In this initial state, each KS
orbital jϕii belongs to either “left” or “right,” and those in the
left nucleus are boosted toward the right by jϕiðt ¼ 0Þi ¼
eikLzjϕii, while those in the right by jϕiðt ¼ 0Þi ¼ e−ikRzjϕii.
Then, the time evolution of KS orbitals is computed to obtain
the density ρðαβ; tÞ ¼PiρiðtÞϕiðα; tÞϕ�

i ðβ; tÞ.
Recently, there are a number of works to extract the

nucleus-nucleus potential and the friction from nonempirical
TDDFT calculations. To achieve this, we divide the total
system into two parts, one associated with a small number of
collective degrees of freedom, and the rest of the Hilbert
space called intrinsic space. To our understanding this
division is guided by a priori assumptions, not by the
TDDFT dynamics itself.

1. Density-constraint calculation

Among many kinds of densities, for the colliding nuclei
under consideration, the normal density distribution ρð~r; tÞ
and the current density ~jð~r; tÞ ¼ ð1=2iÞð ~∇ − ~∇0Þρð~r; ~r0; tÞj~r¼~r0

are regarded as quantities associated with collective motion.
Then the collective energy associated with the collisional

motion is assumed to be a functional of ρð~rÞ and ~jð~rÞ, which is
defined as the minimization with constraints on the density
and the current,

Ecoll½ρð~r; tÞ; ~jð~r; tÞ� ¼ min
ρ→(ρð~rÞ;~jð~rÞ)

F½ρ� − EL − ER; ð71Þ

where EL and ER are the ground-state energies of two nuclei.
For the initial state with two nuclei far apart (t ¼ 0), this
approximately corresponds to the sum of the kinetic energy of
the center of mass of each nucleus P2

L=ð2ALmÞ þ P2
R=ð2ARmÞ

and the Coulomb energy between the two ZLZRe2=j~RL − ~RRj.
Since the total energy is conserved during the time evolution,
we have Etotal ≈ EL þ ER þ Ecollðt ¼ 0Þ.
The TDDFT simulation of the heavy-ion collision produces

the time-dependent density ρð~r; tÞ and current ~jð~r; tÞ. From
these, the intrinsic excitation energy during the collision is
given by

E�ðtÞ ¼ Etotal − Ecoll½ρð~r; tÞ; ~jð~r; tÞ� − EL − ER: ð72Þ

Furthermore, the collective energy is divided into two;

Ecoll½ρð~rÞ;~jð~rÞ� ¼Ekin½ρð~rÞ;~jð~rÞ�þVpot½ρð~rÞ� and the nucleus-
nucleus potential is defined by the latter, obtained by
minimization with a constraint on ρð~rÞ,

Vpot½ρð~rÞ� ¼ min
ρ→ρð~rÞ

F½ρ� − EL − ER: ð73Þ

This minimization automatically produces ~jð~rÞ ¼ 0 for even-
even nuclei. In practice, since the density and current con-
straint calculation of Eq. (71) is computationally demanding,
the density-constraint calculation of Eq. (73) is performed.
Then, the collective kinetic energy is assumed to be

Ekin½ρð~rÞ; ~jð~rÞ� ¼
1

2m

Z j~jð~rÞj2
ρð~rÞ d~r: ð74Þ

So far all the quantities are calculated as functions of time t.
A possible mapping from t to a collective coordinate RðtÞ is
given in Sec. IV.B.2.
The idea and computational algorithm of this method were

proposed by Cusson et al. (1985). Extensive studies have been
performed in recent years by Oberacker, Umar, and co-
workers (Umar and Oberacker, 2006a, 2006b, 2007, 2008;
Umar et al., 2009, 2010, 2012; Oberacker et al., 2010; Umar,
Oberacker, and Horowitz, 2012; Oberacker and Umar, 2013;
Simenel et al., 2013). The TDDFT naturally provides a
dynamical change of the nuclear structure during collisions.
Therefore, the potential Vpot in Eq. (73) contains such
polarization effects. However, the separation between the
collective energy (71) and the dissipation energy (72) is less
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reliable when two nuclei are significantly overlapped. Even

without any dissipation, the current density ~jð~rÞ is reduced in
the overlapping region because two nuclei are moving in
opposite directions. This leads to the reduction of Ecoll (Ekin)
and to overestimation of E�.

2. Mapping to one-dimensional Hamilton equations of motion

Another even simpler method is based on the explicit
introduction of the one-dimensional (1D) collective coordi-
nate and momentum. We recapitulate here the method
presented by Washiyama and Lacroix (2008) to extract the
nucleus-nucleus potential VpotðRÞ and friction parameter γðRÞ.
Similar methods were proposed earlier (Koonin et al., 1977;
Brink and Stancu, 1981). We introduce the relative distance
between two nuclei RðtÞ, calculated as the distance between
two centers of mass in the left and right. Assuming the head-
on collision on the z axis, RðtÞ ¼ ð1=ARÞ

R
R zρð~r; tÞd~r −

ð1=ALÞ
R
L zρð~r; tÞd~r. The momentum PðtÞ is calculated as

PðtÞ¼½AL

R
Rjzð~r;tÞd~r−AR

R
Ljzð~r;tÞd~r�=ðALþARÞ. Here the

integrations
R
RðLÞ d~r are defined by

R
RðLÞ d~rfð~rÞ ¼R

d~rfð~rÞθ(� ðz − z0Þ). The z ¼ z0 plane can be chosen,
for instance, as the plane of the lowest density (neck position).
The TDDFT calculation produces RðtÞ and PðtÞ as functions
of time, which are assumed to obey the 1D classical Hamilton
equation of motion:

dR
dt

¼ P
μðRÞ ;

dP
dt

¼ −
dVpot

dR
− γðRÞ dR

dt
; ð75Þ

where the first equation provides the definition of the reduced
mass μðRÞ. There are two unknown quantities remaining, the
force dVpot=dR and the friction parameter γðRÞ. Assuming
weak energy dependence of these quantities, we can estimate
them by performing the TDDFT simulation with two slightly
different initial energies. Note that, because of the head-on
assumption, the parameter γðRÞ may represent only the radial
friction, not the tangential one.
Since the density-constraint calculation at different RðtÞ is

not necessary in this approach, it is computationally easier
than the previous one. Similar to the density-constrained
calculation, the calculated relative momentum decreases after
two nuclei touch, even if no dissipation takes place. In
addition, the assumption that R and P are canonical conjugate
variables becomes questionable as well.

C. Heavy-ion collision: Transfer reaction

1. Number projection

The mass number distribution after the collision was
estimated for a schematic EDF (Koonin et al., 1977). It is
based on the decomposition of the single Slater determinant in
a restricted space and has been used for electron transfer
processes in atomic collisions (Ludde and Dreizler, 1983;
Nagano et al., 2000). Recently, an alternative expression was
given using the particle-number projection (Simenel, 2010).
They are identical in principle; however, the latter has a
computational advantage over the previous expression.

Let us divide the space V into two regions: Vf and the rest
Vf̄ ¼ V − Vf. The particle number in the space Vf, Nf, is

defined by N̂f ¼ Rf ψ̂†ð~rσÞψ̂ð~rσÞd~r. The particle-number

projection in the right space P̂fðNÞ is given by

P̂fðNÞ ¼ 1

2π

Z
2π

0

dθeiθðN−N̂fÞ.

Let us define the matrix BijðθÞ as BijðθÞ≡ hϕijϕjif̄ þ
e−iθhϕijϕjif, with the overlap in the spaces Vf and Vf̄

given by

hϕijϕjifðf̄Þ ≡
X
σ

Z
fðf̄Þ

ϕ�
i ð~rσÞϕjð~rσÞd~r:

The probability that the N particles are present in Vf is
given by

PN ¼ 1

2π

Z
2π

0

dθeiθN detBðθÞ. ð76Þ

In the real-time simulation, after the two nuclei collide and
separate again, we specify the region Vf where one of the
nuclei is located. Then the mass number distribution is
calculated according to Eq. (76). The production cross section
of the nucleus with N particles is estimated by repeating the
same calculation with different impact parameter b,

σðNÞ ¼ 2π

Z
dbbPNðbÞ: ð77Þ

This is most useful for the calculations of transfer reaction
cross section σ�N;�Z. When the pair potential is present, the
number projection is required for the initial state too.
The expectation value of the operator in each reaction

product can also be evaluated with the present technique
(Sekizawa and Yabana, 2014, 2015; Sonika, et al., 2015).
For instance, the one-body operator local in the coordinate
Ô ¼Pσ

R
Oð~rÞψ̂†ð~rσÞψ̂ð~rσÞd~r is given by

ON ¼ 1

2πPN

Z
2π

0

dθeiθN detBðθÞ

×
X
i

ðhϕijOjϕiiL þ e−iθhϕijOjϕiiRÞ.

2. Fluctuations

The TDDFT provides feasible approaches to nuclear
collective dynamics in a large-amplitude nature and has been
successful in describing mean values of one-body observables.
However, it has been known for some time that it under-
estimates fluctuations (Koonin et al., 1977; Negele, 1982). As
long as we calculate the one-body observables according to
the KS orbitals, a severe limitation comes from mainly two
sources: One is the missing effect of two-body collisions. The
inclusion of the nucleon-nucleon collision is treated by a
stochastic approach (Aichelin, 1991) or by explicit inclusion
of two-body correlations (Shun-jin and Cassing, 1985).
Although the two-body collision becomes less important at
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lower energy, there is another well-known limitation, which
we address here. The TDDFT is described by a single time-
dependent mean-field (KS) potential. The collision of nuclei,
in general, leads to the superposition of different final
states jΦð1Þi; jΦð2Þi;… for which different mean fields should

exist vð1Þs ð~rÞ; vð2Þs ð~rÞ;…. Since these dynamics in multichan-

nels are described by a single average mean field vðavÞs , the
TDDFT naturally hinders the fluctuation. This may be crucial
at low energies, in which one-body dynamics are supposed to
play a dominant role (Ikeda, Yoshida, and Yamaji, 1986).
A practical way to improve the situation is given by

replacing the quantum fluctuation by a classical statistical
ensemble in the initial state. Each state is evolved in time with
its own mean field. This is often called “stochastic mean-field
theory” (Ayik, 2008; Lacroix and Ayik, 2014).
The quantum fluctuation at the initial state is estimated by

the fluctuation of the one-body operator Â in a Slater
determinant

σ2A ≡ hÂ2i − hÂi2 ¼
X
ij

jhϕijÂjϕjij2ρið1 − ρjÞ:

For normal systems at zero temperature, the occupation is an
integer number ρi ¼ 0 or 1. In order to describe this quantum

fluctuation by the classical statistical average as hÂi ¼
tr½ρðnÞA� and σ2A ¼ ðtr½δρðnÞA�Þ2, we use random Gaussian

numbers for one-body density ρðnÞ ¼ ρðnÞ þ δρðnÞ, which
satisfies the ensemble average values

ρðnÞij ¼ ρiδij; ð78Þ

δρðnÞij δρðnÞkl ¼ 1
2
δilδjkfρið1 − ρjÞ þ ρjð1 − ρiÞg: ð79Þ

Starting from each initial configuration ρðnÞ, ρðnÞðtÞ evolves in
time following the TDKS equation (35), with the density
given by

ρðnÞðtÞ ¼
X
ij

jϕðnÞ
i ðtÞiρðnÞij hϕðnÞ

j ðtÞj:

Since the off-diagonal elements of ρðnÞij are nonzero, we need
to solve the time evolution of not only the hole states, but also
the particle states.
For calculations of small fluctuations around the TDKS

trajectory in the observable Â at t ¼ tf, instead of performing
the forward time evolution of δρðtÞ with the initial fluctuation
of Eqs. (78) and (79), we may utilize a backward time
evolution. The time evolution of δρðtÞ is described by a
unitary operator UðtÞ as ρðtÞ ¼ UðtÞρðt ¼ 0ÞU†ðtÞ in general.
Note that the linear approximation with respect to δρðnÞ leads
to the operator UðtÞ independent of the event label (n), Thus,
the fluctuating part of the observable Â can be written as

δAðnÞðtfÞ ¼ tr½ÂδρðnÞðtfÞ� ¼ tr½B̂δρðnÞð0Þ�;

where tf represents the final time when the observation is
made and t ¼ 0 is the initial time. Here the one-body

Hermitian operator B̂ is given by Bij ¼ fU†ðtfÞÂUðtfÞgij.
The fluctuation of Â at t ¼ tf is now given by the ensemble
average at t ¼ 0,

σ2A ¼ fδAðnÞðtfÞg2 ¼
X
ijkl

BijBklδρ
ðnÞ
ji δρ

ðnÞ
lk ð80Þ

¼
X
ij

jBijj2ρið1 − ρjÞ. ð81Þ

In fact, Eq. (81) is the same as the one previously derived
with the variational approach by Balian and Vénéroni (1985).
It is easy to see that Eq. (81) can be alternatively written as
−tr½½B; ρð0Þ�2�=2 with ρijð0Þ ¼ ρiδij. Thus, modifying the

TDDFT density ρðtÞ at t ¼ tf as ηϵðtfÞ≡ eiϵÂρðtfÞe−iϵÂ,
the backward evolution of ηϵðtÞ up to t ¼ 0 gives the
following expression:

σ2A ¼ lim
ϵ→0

1

2ϵ2
tr½fU†ðtfÞηϵðtfÞUðtfÞ − ρð0Þg2�: ð82Þ

This is useful for practical calculations (Simenel, 2011, 2012).
The KS wave functions jϕiðtfÞi are modified to eiϵÂϕiðtfÞ
with small ϵ, and then we calculate the backward time
evolution to t ¼ 0. This provides U†ðtfÞηϵðtfÞUðtfÞ.
Several different values of ϵ may be enough to identify its
quadratic dependence. More details and derivation can be
found in Simenel (2012).

D. Illustrative examples

In this section, we present some examples of recent
calculations in studies of nuclear collision dynamics. The
full TDBdGKS calculation of collision dynamics has not
been achieved, but is under progress (Stetcu et al., 2015).
Most of the recent calculations beyond the linear regime
have been performed based on the TDKS equations with the
Skyrme EDFs.

1. Internucleus potential and precompound excitation

Extensive studies using the real-time simulation have been
performed for microscopic derivation of the nucleus-nucleus
potential and dissipation energy at initial stages of the nuclear
fusion. This can be done with the density-constraint calcu-
lation shown in Sec. IV.B. The real-time simulation for the
fusion reaction produces the time evolution of the density

ρð~r; tÞ, the current ~jð~r; tÞ, etc. At the beginning, the total
energy is given by Etotal ¼ Ecollðt ¼ 0Þ þ EL þ ER. After the
two nuclei touch, Etotal is also shared by the intrinsic excitation
energy E�.
According to Eqs. (72), (73), and (74), Umar et al. (2009)

estimated the nucleus-nucleus potential VðRÞ and the intrinsic
excitation E�ðRÞ for 40Caþ 40Ca. These are illustrated in
Figs. 7 and 8. The amount of the dissipative energy E� is
roughly proportional to the bombarding energy Ec.m. ¼
Ecollðt ¼ 0Þ, while the potential Vpot is approximately inde-
pendent of the choice of Ec.m.. The excitation energy for the
fused system 80Zr is expected to be Etotal − Eg:s:ð80ZrÞ at the
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end. The calculated E� at the capture point near R ¼ 6 fm is
still lower than this value by about 20MeV. It is confirmed that
this 20 MeV is due to the difference in the density distribution
between the ground state of 80Zr and the capture point.
The internucleus potential obtained from the mapping to the

1D classical equation of motion (75) seems to be similar to
the one of the density-constrained calculation for some light
systems (Washiyama and Lacroix, 2008). However, in heavier
systems where the dissipation becomes more relevant, they
may produce different potentials. In fact, for the heavy
systems with ZLZR ≳ 1600, it is known that the fusion
probability is significantly hindered. An example is given
by the fact that the fusion cross section of 96Zr þ 124Sn
(ZLZR ¼ 2000) is much smaller than that of 40Ar þ 180Hf

(ZLZR ¼ 1296), both leading to the same fused system 220Th
(Sahm et al., 1985). This was supposed to be due to the strong
energy dissipation inside the Coulomb barrier (Swiatecki,
1982). The quasifission before the formation of a compound
nucleus may play a primary role in the fusion hindrance.
Although the TDDFT cannot fully take into account the
collisional damping, it reproduces some features of the
quasifission process (Simenel, 2012; Oberacker, Umar, and
Simenel, 2014).
Figure 9 shows the calculated potential for 96Zr þ 124Sn.

The potential of the density-constrained calculation shows a
maximum around R ¼ 13.1 fm and decreases at R < 13 fm.
This is very different from the one obtained by mapping to the
1D classical equations, which keeps rising even at R < 13 fm.
This must be attributed to the difference in the decomposition
of the total energy into VðRÞ, EkinðRÞ, and E�ðRÞ. Since we
can expect the Ekin in these two methods are rather similar, the
intrinsic excitation E�ðRÞ should compensate the difference in
VðRÞ. The relation between the two methods in Secs. IV.B.1
and IV.B.2 is not clear at present. Further studies are desired to
clarify the microscopic origin of the fusion hindrance (Guo
and Nakatsukasa, 2012; Simenel, 2012). It is also related to a
conceptual question: What are the collective variables, the
potential, and the inertial mass for proper description of many
kinds of nuclear reaction? This is the main subject of Sec. V.

2. Multinucleon transfer reaction

Another example of a low-energy nuclear reaction is the
multinucleon transfer reaction for heavy-ion collisions. At
energies near the Coulomb barrier, this reaction involves many
kinds of quantum nonequilibrium many-body dynamics, such
as shell effects, neck formation, and tunneling. The GRAZING

model (Winther, 1994) is frequently used to describe the
multinucleon transfer reaction. This model is based on
statistical treatment of the single-particle transfer processes
and a semiclassical formulation of the coupled-channel
method. The TDKS (TDHF) simulation may provide an
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alternative microscopic approach to the low-energy transfer
reaction and help our fundamental understanding of the
quantum dynamics.
After the real-time simulation at the impact parameter b, the

transfer probability PN;ZðbÞ for each channel of ðN; ZÞ can be
calculated according to Eq. (76). Repeating the calculation
with different values of b, the cross section σN;Z is calculated
as Eq. (77). An example for the 48Caþ 124Sn reaction is
presented in Fig. 10, showing the production cross sections of
Ar (−2p), K (−1p), Ca (0p), Sc (þ1p), and Ti (þ2p)
isotopes. The horizontal axis corresponds to the neutron
number of fragments. In the major channels of 0p and
�1p, the experimental data are well reproduced. The calcu-
lated mass distribution is rather symmetric with respect to the
neutron number around N ¼ 28. The experimental data seem
to suggest that this symmetry is broken for the �2p channels.
In general, the discrepancy becomes more prominent for
rarer channels with a large number of exchanged nucleons
(Sekizawa and Yabana, 2013). Nevertheless, the quality of the
agreement is the same as the GRAZING calculation. It should be
noted that the simulation was carried out using the Skyrme
SLy5 EDF and there were no free parameters.
As seen in Fig. 10, in the �2p channels, the neutrons tend

to move together with the protons, which are not reproduced

in the calculation. This is due to the fact that the TDDFT
calculation does not have correlations between neutron and
proton distributions, namely, PN;Z ¼ PNPZ. This missing
correlation and fluctuation have been studied by Simenel
(2011) for 40Caþ 40Ca at Ec.m. ¼ 128 MeV, using the Balian-
Vénéroni formula analogous to Eq. (82). For small impact
parameter b, he found a strong correlation between proton and
neutron distributions. In addition, the fluctuation of the proton
distribution is compared with the available experiment in
Fig. 11. The conventional TDDFT simulation significantly
underestimates the fluctuation. It is enhanced by Eq. (82)
getting closer to the experimental data, although it is not
enough for the perfect reproduction.

V. COLLECTIVE SUBMANIFOLD AND
REQUANTIZATION OF TDDFT

In this section, we introduce an assumption that the time
evolutions of the densities are determined by a few collective
coordinates and momenta, Rðq; pÞ as done in Sec. II.E. This
leads to a microscopic derivation of the collective Hamiltonian
describing large-amplitude collective phenomena. We then
quantize the collective variables and obtain the collective
Schrödinger equation. Numerical examples are given for low-
frequency quadrupole collective excitations which dominate
in low-lying states in almost all nuclei. We focus on recent
advances and basic ideas of the approaches based on the
TDDFT but relations to other time-independent approaches
are also briefly discussed.

A. Problems in large-amplitude collective motion

First let us discuss conceptual problems in TDDFT studies
beyond the linear regime in nuclear physics. We have
presented in Sec. III that excitation energies and transition
amplitudes can be obtained in the linear response. For
instance, the Fourier analysis on the time evolution of the
density, such as Eq. (69), allows us to extract those quantities.
In this case, when we scale the external field by a parameter f
as V → fV, the density fluctuation δRðωÞ is invariant except
for the same linear scaling δRðωÞ → fδRðωÞ. This allows us
to uniquely define the transition densities.
In principle, the TDDFT can describe exact dynamics of

many-body systems (see Sec. II.D). However, in nuclear
EDFs, at least, we do not know in practice how to extract
information on excited states and genuine quantum phenom-
ena which involve large-amplitude many-body dynamics.
Perhaps, the most typical example is given by spontaneous
fission phenomena. Even if the nucleus is energetically
favored by dividing it into two fragments, the nonlinearity
of the TDDFT forbids the tunneling.
Beyond the linear regime, as the oscillating amplitudes

become larger, the nonlinear effects play more important roles.
In fact, there are some attempts to quantify the nonlinear
coupling strengths between different modes of excitation
using real-time TDDFT calculations (Simenel, Chomaz,
and de France, 2001, 2007; Simenel and Chomaz, 2003).
In addition to the linear response, the quadratic dependence is
identified to extract the coupling between dipole and quadru-
pole modes (Simenel and Chomaz, 2009). Nevertheless, the
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practical real-time method to quantify energy spectra of
anharmonic vibrations has not been established.
Our strategy for these difficulties is to adopt the “requan-

tization” procedure. Perhaps this is not perfectly consistent
with the original principle of TDDFTwhich should be “exact”
and does not require additional quantum fluctuation in the
theory. However, as noted in Secs. I.C and II.B.2, since the
present nuclear EDF is reliable within a certain time scale
(typically the SSB time scale), the quantum fluctuations
associated with longer time scales should be addressed addi-
tionally. The TDDFT dynamics of Eq. (33) can be para-
metrized with classical canonical variables ðξα; παÞ which
obey the classical Hamilton equations (Blaizot and Ripka,
1986). The space spanned by these variables is called the
“TDHFB phase space,” whose dimension is twice the number
of two-quasiparticle pairs. Therefore, in nuclear physics, the
issue has been often discussed in terms of the requantization
of the TDDFT dynamics. Further arguments on the requan-
tization are given by the stationary phase approximation to the
functional integral formulation of the many-body quantum
theory (Negele, 1982).
To describe long time-scale slow motion in nuclei, we

introduce a small number of collective variables. In low-energy
spectra in nuclei, we observe a number of states which possess
properties very difficult to quantify with the real-time TDDFT
simulations; for instance, states with fluctuating shapes, those
with a mixture of different shapes, the anharmonic nature of
many-phonon states, or quasirotational spectra which show
features betweenvibrational and rotational excitations. Nuclear
fission also provides another typical example of nuclear large-
amplitude collective motion. These low-energy dynamics in
nuclei requires us to develop practical theories applicable to
nuclear large-amplitude collective motion (LACM).

B. Fundamental concepts for low-energy nuclear dynamics
and historical remarks

In Sec. III, we present the QRPA method, as a small-
amplitude approximation of the TDDFT, for microscopically
describing various kinds of collective excitations around the
equilibrium points, given by ½Heff ½R0� − μN ; R0� ¼ 0. In
Sec. V, we review the recent advances of the approaches
aiming at microscopic description of LACM by extending the
basic ideas of the QRPA to nonequilibrium states far from the
local minima of the EDF. Construction of microscopic theory
of LACM has been a difficult long-standing subject in nuclear
structure theory. The issues in the 1980s were discussed in a
proceedings (Abe and Suzuki, 1983), including the one by
Villars (1983), which summarized problems and questions for
theories of nuclear collective motion. Since then, we have
achieved a significant progress in theoretical formulation and
applications to real nuclear phenomena in recent years.

1. Basic ideas

The basic idea for constructing, on the basis of the
time-dependent density-functional method, a microscopic
theory of large-amplitude collective phenomena (at zero
temperature) is to introduce an assumption that time evolution
of the density is determined by a few collective coordinates

qðtÞ ¼ fq1ðtÞ; q2ðtÞ;…; qfðtÞg and collective momenta
pðtÞ ¼ fp1ðtÞ; p2ðtÞ;…; pfðtÞg. We assume that the time-
dependent density can be written as RðtÞ ¼ R(qðtÞ; pðtÞ). At
this stage, p and q are introduced as parameters in place of
the time t. We shall see, however, that it is possible to
formulate a theory such that they are canonical variables
obeying the Hamilton equations of motion, i.e., they are
classical dynamical variables. Accordingly, we call them
“collective variables.” The great merit of this approach is that
they are readily quantized, according to the standard canonical
quantization. In this way, we can derive, microscopically and
self-consistently, the quantum collective Hamiltonian describ-
ing LACM. Because of developments in the nuclear-theory
history, we call this canonical quantization procedure a
“collective quantization of time-dependent self-consistent
mean field.” In the TDDFT terminology, this can be regarded
as the inclusion of missing correlations in long time scales. In
Sec. V.C, we develop this idea in a more concrete form.
Notes on terminology and notation.—Because of these

practical and historical reasons, it is customary to use the
terminology and the notation of mean-field theories, such as
TDHF and TDHFB instead of TDDFT (TDKS, TDBdGKS).
We follow this tradition in this section. The theory presented
here takes account of correlations and fluctuations beyond the
mean field, which correspond to those missing in current
nuclear EDFs.
In order to help comprehensibility, we introduce the

TDHF(B) state jϕðtÞi in Sec. V.C, which is defined by the
quasiparticle vacuum aiðtÞjϕðtÞi ¼ 0 at every time t [time-
dependent version of Eq. (12)]. Accordingly, we also use the
Hamiltonian Ĥ which is related to the EDF as E½ρ�¼
hϕðtÞjĤjϕðtÞi.

2. ANG modes associated with broken symmetries
and quantum fluctuations in finite systems

We discussed in Sec. II.E.2 how to treat the collective
motions restoring the symmetries spontaneously broken in the
mean fields for three typical examples (center-of-mass
motion, pair rotation in gauge space, and three-dimensional
rotation in coordinate space). Let us recall, in particular:

(1) The ANG modes restoring the gauge invariance
broken in the BCS theory of superconductivity have
been experimentally observed in nuclei as the pairing
rotational modes (Brink and Broglia, 2005).

(2) The rotational spectra widely seen in nuclei can be
regarded as ANG modes restoring the spherical
symmetry spontaneously broken in the mean field
(Alder et al., 1956; Bohr and Mottelson, 1975;
Frauendorf, 2001).

(3) We know generators of the collective variables for
the ANG modes, at least for the ones of Q

∘
and P

∘
in

Sec. II.E. Those are given by global one-body operators,
such as the center-of-mass coordinate and the momen-
tum for the translation, the angular momentum for the
rotation, and the particle number for the pair rotation.
However, the generators conjugate to the angular
momentum and the particle number are not trivial.

On the other hand, we should keep in mind that the mean
fields of finite quantum systems always accompany quantum
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fluctuations. One of the most important characteristics of low-
energy excitation spectra of nuclei is that the amplitudes of the
quantum shape fluctuation often become very large. Among
large-amplitude shape fluctuation phenomena, we should, of
course, refer to the well-known spontaneous fission, which can
be regarded as macroscopic quantum tunnelings through the
potential barrier generated by the self-consistent mean field. To
construct amicroscopic theory capable of describing such large-
amplitude shape fluctuations and evolutions has been a chal-
lenge in nuclear structure theory. Historically, such attempts
started in the 1950s to formulate a microscopic theory of a
collective model of Bohr andMottelson. The major approach at
that time is to introduce collective coordinates explicitly as
functions of coordinates of individual nucleons and separate
collective shape degrees of freedom from the rest [see, e.g.,
Tomonaga (1955)]. This turned out to fail in the description of
low-energy modes of shape fluctuations. One of the important
lessonswe learned from these early attempts is that, in contrast to
the ANG modes, it is not trivial at all to define the microscopic
structure of collective coordinates appropriate for low-energy
shape vibrations. The low-energy collective vibrations are
associated with fluctuations of order parameters characterizing
the mean field (Stringari, 1979). In this sense, it may be
categorized as a kind of Higgs amplitude mode (Pekker and
Varma, 2015), but we need to go beyond the small-amplitude
approximation for fluctuations about the equilibrium points in
order to describe them.
After the initial success of the BCSþ QRPA approach for

small-amplitude oscillations in the 1960s, attempts to construct
a microscopic theory of LACM started in the mid-1970s. At
that time, real-time TDHF (TDDFT) calculations for heavy-ion
collisions also started, using semirealistic EDFs. These
attempts introduced collective coordinates as parameters
specifying the time evolution of the self-consistent mean field,
instead of explicitly defining them as functions of coordinates
of individual nucleons. Thiswas a historical turning point in the
basic concept of collective coordinate theory: In these new
approaches, it is unnecessary to define global collective
operators as functions of coordinates of individual nucleons.
As we shall see in Sec. V.C, it is sufficient to determine
infinitesimal generators for the time evolution of the self-
consistent mean field, locally at every point of the collective
variables ðq; pÞ. Note that we use, in this section, the term local
to indicate the neighbor of a point ðq; pÞ in the collective space,
instead of the conventional coordinate ~r in the three-
dimensional coordinate space. In general, the microscopic
structures of the infinitesimal generators for shape evolution
may change as functions of ðq; pÞ. From this point of view, it is
not only unnecessary but also inappropriate to introduce the
global operators in order to describe low-energy shape fluc-
tuations. This is in sharp contrast with the high-frequency giant
quadrupole resonances for which the small-amplitude approxi-
mation works well and the mass-quadrupole operator can be
regarded as an approximate collective coordinate operator.

3. Characteristics of quadrupole excitation
spectra in low-lying states

Low-frequency quadrupole vibrations of the nucleus may
be regarded as collective surface excitations of a finite

superfluid system. Accordingly, pairing correlations and
varying shell structure of the self-consistent mean field play
essential roles in their emergence (Bohr and Mottelson, 1975;
Åberg, Flocard, and Nazarewicz, 1990; Bender, Heenen, and
Reinhard, 2003; Rowe and Wood, 2010; Matsuyanagi,
Hinohara, and Sato, 2013). For nuclei in the transitional
region from spherical to deformed, amplitudes of quantum
shape fluctuation remarkably increase. This corresponds to
soft modes of the quantum phase transition toward symmetry-
violating equilibrium deformations of the mean filed. The
gain in binding energies due to the symmetry breaking is
comparable in magnitude to the vibrational zero-point ener-
gies. The transitional region is prevalent in the nuclear chart,
and those nuclei exhibit a rich variety of excitation spectra in
systematics.
In finite quantum systems such as nuclei, the rotational

ANG modes may couple rather strongly with quantum shape
fluctuation modes. For instance, even when the self-consistent
mean field acquires a deep local minimum at a finite value of
β, the nucleus may exhibit a large-amplitude shape fluctuation
in the γ degree of freedom, if the deformation potential is
flat in this direction. Here, as usual, β and γ represent the
magnitudes of axially symmetric and asymmetric quadrupole
deformations, respectively. Such a situation is widely
observed in experiments and called γ-soft nuclei. The rota-
tional degrees of freedom about three principal axes are all
activated once the axial symmetry is dynamically broken due
to the quantum shape fluctuation. Consequently, rotational
spectra in such γ-soft nuclei do not exhibit a simple IðI þ 1Þ
pattern. Such an interplay of the shape fluctuation and
rotational modes may be regarded as a characteristic feature
of finite quantum systems and provides an invaluable oppor-
tunity to investigate the process of the quantum phase
transition through the analysis of quantum spectra.
Thus, we need to treat the two kinds of collective variables,

i.e., those associated with the symmetry-restoring ANG
modes and those for quantum shape fluctuations, in a unified
manner to describe low-energy excitation spectra of nuclei.

C. Microscopic derivation of collective Hamiltonian

1. Extraction of collective submanifold

As mentioned in Sec. V.A, the TDHFB dynamics is
represented as the classical Hamilton equations for canonical
variables in the TDHFB phase space ðξα; παÞ (Negele, 1982;
Yamamura and Kuriyama, 1987; Kuriyama et al., 2001). The
dimension of this phase space is large, α ¼ 1;…; D, where D
is the number of all the two-quasiparticle pairs. The TDHFB
state vector jϕðtÞi ¼ jϕ(ξðtÞ; πðtÞ)i is regarded as a general-
ized coherent state moving on a trajectory in the TDHFB
phase space. For low-energy fluctuations in collective motion,
however, we assume that the time evolution is governed by a
few collective variables.
During the attempts to construct microscopic theory of

LACM since the latter half of the 1970s, significant progress
has been achieved in the fundamental concepts of collective
motion. Especially important is the recognition that micro-
scopic derivation of the collective Hamiltonian is equivalent to
extraction of a collective submanifold embedded in the
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TDHFB phase space, which is approximately decoupled from
other “noncollective” degrees of freedom. From this point of
view we can say that collective variables are nothing but local
canonical variables which can be flexibly chosen on this
submanifold. Here we recapitulate recent developments
achieved on the basis of such concepts.
Attempts to formulate a LACM theory without assuming

adiabaticity of large-amplitude collective motion were ini-
tiated by Rowe and Bassermann (1976) and Marumori (1977)
and led to the formulation of the self-consistent collective
coordinate (SCC) method (Marumori et al., 1980). In these
approaches, collective coordinates and collective momenta are
treated on the same footing. In the SCC method, basic
equations determining the collective submanifold are derived
by requiring maximal decoupling of the collective motion of
interest from other noncollective degrees of freedom. The
collective submanifold is invariant with respect to the choice
of the coordinate system, whereas the collective coordinates
depend on it. The idea of coordinate-independent theory of
collective motion was also developed by Rowe (1982) and
Yamamura and Kuriyama (1987). This idea gave a significant
impact on the fundamental question, “what are the collective
variables?” The SCC method was first formulated for the
canonical form of the TDHF without pairing. Later, it was
extended to that of TDHFB for describing nuclei with
superfluidity (Matsuo, 1986).
In the SCC method, the TDHFB state jϕðtÞi is written as

jϕðq; pÞi under the assumption that the time evolution is
governed by a few collective coordinates q ¼ ðq1; q2;…; qfÞ
and collective momenta p ¼ ðp1; p2;…; pfÞ. Note that para-
metrizing the TDHFB state with the 2f degrees of freedom
ðq; pÞ is nothing but defining a submanifold inside the
TDHFB phase space ðξα; παÞ, which we call a “collective
submanifold.” The time-dependent densities are readily
obtained from the TDHFB state jϕðq; pÞi by

ρð~r; q; pÞ ¼
X
σ

hϕðq; pÞjψ̂†ð~rσÞψ̂ð~rσÞjϕðq; pÞi;

κð~r; q; pÞ ¼ hϕðq; pÞjψ̂ð~r↓Þψ̂ð~r↑Þjϕðq; pÞi:

The following basic equations determine the TDHFB state
jϕðq; pÞi parametrized by ðq; pÞ and its time evolution, which
gives the definition of the submanifold.
Invariance principle of the TDHFB equation: We require

that the TDHFB equation of motion is invariant in the
collective submanifold. This requirement can be written in
a variational form as

δhϕðq; pÞj
�
i
∂
∂t − Ĥ

�
jϕðq; pÞi ¼ 0: ð83Þ

Here the variation δ is given by δjϕðq; pÞi ¼ a†i a
†
j jϕðq; pÞi in

terms of the quasiparticle operators fa†i ; ajg, which satisfy the
vacuum condition aijϕðq; pÞi ¼ 0. Under the basic
assumption, the time derivative is replaced by

∂
∂t ¼

Xf
i¼1

�
_qi

∂
∂qi þ _pi

∂
∂pi

�
¼ _qi

∂
∂qi þ _pi

∂
∂pi

:

Hereafter, to simplify the notation, we adopt the Einstein
summation convention to remove

Pf
i¼1. Accordingly,

Eq. (83) is rewritten as

δhϕðq; pÞjf _qiP∘ iðq; pÞ − _piQ
∘ iðq; pÞ − Ĥgjϕðq; pÞi ¼ 0

ð84Þ

in terms of the local infinitesimal generators defined by

P
∘
iðq; pÞjϕðq; pÞi ¼ i

∂
∂qi jϕðq; pÞi; ð85Þ

Q
∘ iðq; pÞjϕðq; pÞi ¼ −i

∂
∂pi

jϕðq; pÞi: ð86Þ

These are one-body operators that can be written as linear
combinations of bilinear products fa†i a†j ; a†i aj; ajaig of the
quasiparticle operators defined with respect to jϕðq; pÞi.
Equations (84), (85), and (86) correspond to Eqs. (40),
(41), and (42) in Sec. II.E, respectively.
Canonicity conditions: We require q and p to be canonical

variables. According to the theorem of Frobenius and
Darboux (Arnold, 1989), pairs of canonical variables ðq; pÞ
exist for the TDHFB states jϕðq; pÞi satisfying the following
canonicity conditions:

hϕðq; pÞjP∘ iðq; pÞjϕðq; pÞi ¼ pi þ
∂S
∂qi ; ð87Þ

hϕðq; pÞjQ∘ iðq; pÞjϕðq; pÞi ¼ −
∂S
∂pi

; ð88Þ

where S is an arbitrary differentiable function of q and p
(Marumori et al., 1980; Yamamura and Kuriyama, 1987).
By specifying S we can fix the type of allowed canonical
transformations among the collective variables ðq; pÞ.
We discuss typical examples in subsequent sections
and call the canonicity conditions with a specified function
S canonical-variable conditions. Taking derivatives of
Eqs. (87) and (88) with respect to pi and qi, respectively,
we can readily confirm that the local infinitesimal
generators satisfy the “weakly” canonical commutation
relations,

hϕðq; pÞj½Q∘ iðq; pÞ; P∘ jðq; pÞ�jϕðq; pÞi ¼ iδij:

Taking variations of Eq. (84) in the direction of the

collective variables q and p, generated by P
∘
i and Q

∘ i
, we

obtain the Hamilton equations of motion,

dqi

dt
¼ ∂H

∂pi
;

dpi

dt
¼ −

∂H
∂qi : ð89Þ

Here the total energy Hðq; pÞ≡ hϕðq; pÞjĤjϕðq; pÞi plays
the role of the classical collective Hamiltonian.
Equation of collective submanifold: The invariance princi-

ple (84) and Eq. (89) lead to the following equation of
collective submanifold:
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δhϕðq; pÞj
�
Ĥ −

∂H
∂pi

P
∘
iðq; pÞ −

∂H
∂qi Q

∘ iðq; pÞ
�
jϕðq; pÞi ¼ 0:

ð90Þ

Taking variations δ⊥ in the directions orthogonal to q and p,
we can immediately find δ⊥hϕðq; pÞjĤjϕðq; pÞi ¼ 0. This
implies that the energy expectation value is stationary with
respect to all variations except for those along directions
tangent to the collective submanifold. In other words, the
large-amplitude collective motion is decoupled from other
modes of excitation.

2. Solution with ðη;η�Þ expansion
In the original paper of the SCC method (Marumori et al.,

1980), the TDHFB state jϕðq; pÞi is written as

jϕðq; pÞi ¼ Uðq; pÞjϕ0i ¼ eiĜðq;pÞjϕ0i:

Here Uðq; pÞ represents a time-dependent unitary transfor-
mation from the HFB ground state jϕ0i taken as an initial
state; Uðq; pÞ ¼ 1 at q ¼ p ¼ 0. It is written in terms of an
Hermitian one-body operator Ĝðq; pÞ.
With use of complex variables η ¼ ðη1; η2;…; ηfÞ

defined by

ηi ¼
1ffiffiffi
2

p ðqi þ ipiÞ; η�i ¼
1ffiffiffi
2

p ðqi − ipiÞ;

we can rewrite the TDHFB state as

jϕðη; η�Þi ¼ Uðη; η�Þjϕ0i ¼ eiĜðη;η�Þjϕ0i.

Correspondingly, we define local infinitesimal generators

O
∘ †
i ðη; η�Þ and O

∘
iðη; η�Þ by

O
∘ †
i ðη; η�Þjϕðη; η�Þi ¼

∂
∂ηi jϕðη; η

�Þi;

O
∘
iðη; η�Þjϕðη; η�Þi ¼ −

∂
∂η�i jϕðη; η

�Þi:

Replacing ðq; pÞ by ðη; η�Þ, the equation of collective sub-
manifold (90) is rewritten as

δhϕ0jU†ðη; η�Þ
�
Ĥ −

∂H
∂η�i O

∘ †
i ðη; η�Þ −

∂H
∂ηi O

∘
iðη; η�Þ

�
× Uðη; η�Þjϕ0i ¼ 0: ð91Þ

Here the variation is to be performed only for the HFB ground
state jϕ0i.
We assume the following canonical-variable conditions:

hϕðη; η�ÞjO∘ †
i ðη; η�Þjϕðη; η�Þi ¼

1

2
η�i ; ð92Þ

hϕðη; η�ÞjO∘ iðη; η�Þjϕðη; η�Þi ¼
1

2
ηi; ð93Þ

which are obtained by a specific choice of

S ¼ −
1

2

X
i

qipi

in the canonicity conditions (87) and (88). From Eqs. (92) and
(93), we can easily obtain the “weak” boson commutation
relations,

hϕðη; η�Þj½O∘ iðη; η�Þ; O
∘ †
jðη; η�Þ�jϕðη; η�Þi ¼ δij:

Because only linear canonical transformations among η and η�

keep Eqs. (92) and (93) invariant, these canonical-variable
conditions are suitable for a solution of the variational
equation (91) with a power-series expansion of Ĝ with respect
to ðη; η�Þ,

Ĝðη; η�Þ ¼ Ĝð10Þ
i η�i þ Ĝð01Þ

i ηi þ Ĝð20Þ
ij η�i η

�
j þ Ĝð11Þ

ij η�i ηj

þ Ĝð02Þ
ij ηiηj þ � � � .

Requiring that the variational principle (91) holds for
every power of ðη; η�Þ, we can successively determine the
one-body operator Ĝðm;nÞ with mþ n ¼ 1; 2; 3;… . This
method of solution is called the “ðη; η�Þ-expansion method.”
Because ðη; η�Þ are complex canonical variables, they are
replaced by boson operators after the canonical quantiza-
tion. The lowest linear order corresponds to the QRPA.
Accordingly, the collective variables ðηi; η�i Þ correspond to a
specific QRPA mode in the small-amplitude limit. However,
in the higher orders, the microscopic structure of Ĝ changes
as a function of ðη; η�Þ due to the mode-mode coupling
effects among different QRPA modes. In this sense,
the ðη; η�Þ-expansion method may be regarded as a dynami-
cal extension of the boson expansion method (Matsuo
and Matsuyanagi, 1985a). Thus, the SCC method with
the ðη; η�Þ expansion is a powerful method of treating
anharmonic effects to the QRPA vibrations originating
from mode-mode couplings. This is shown in its application
to the two-phonon states of anharmonic γ vibration
(Matsuo, Shimizu, and Matsuyanagai, 1985; Matsuo and
Matsuyanagi, 1985b). The SCC method was also used for
derivation of the 5D collective Hamiltonian and analysis of
the quantum phase transition from spherical to deformed
shapes (Yamada, 1993) and for constructing diabatic rep-
resentation in the rotating shell model (Shimizu and
Matsuyanagi, 2001). The validity of the canonical quanti-
zation procedure, including a treatment of the ordering
ambiguity problem, was examined by Matsuo and
Matsuyanagi (1985a).

3. Solution with adiabatic expansion

The ðη; η�Þ expansion about a single HFB equilibrium point
is not suitable for treating situations where a few local minima
energetically compete in the HFB potential energy surface. It
is also difficult to apply the expansion method to a collective
motion which goes far away from the equilibrium, such as
nuclear fission. These low-energy LACMs in nuclei are often
characterized by slow motion. For describing adiabatic LACM

Nakatsukasa et al.: Time-dependent density-functional description …

Rev. Mod. Phys., Vol. 88, No. 4, October–December 2016 045004-32



extending over very far from the HFB equilibrium, a new
method of solution was proposed (Matsuo, Nakatsukasa, and
Matsuyanagi, 2000). In this method, the basic equations of the
SCC method are solved by an expansion with respect to the
collective momenta, keeping full orders in the collective
coordinates. It is called the “adiabatic SCC (ASCC) method.”
Similar methods have also been developed by Klein, Walet,
and Dang (1991) and Almehed and Walet (2004).
A microscopic theory for adiabatic LACM is constructed by

the ASCC method in the following way. We assume that the
TDHFB state jϕðq; pÞi can be written in the form

jϕðq; pÞi ¼ exp fipiQ̂
iðqÞgjϕðqÞi; ð94Þ

where Q̂iðqÞ are one-body operators corresponding to infini-
tesimal generators of pi locally defined at the state jϕðqÞi
which represents a TDHFB state jϕðq; pÞi at p → 0. This
state jϕðqÞi is called a “moving-frame HFB state”; see Fig. 12
for illustrations. We use the canonical-variable conditions
different from Eqs. (92) and (93),

hϕðq; pÞjP∘ iðq; pÞjϕðq; pÞi ¼ pi; ð95Þ

hϕðq; pÞjQ∘ iðq; pÞjϕðq; pÞi ¼ 0; ð96Þ

which are obtained by putting S ¼ const in the canonicity
conditions (87) and (88). Because Eqs. (95) and (96) are
invariant only against point transformations q → q0ðqÞ (more
generally, similarity transformations), which do not mix p and
q, these canonical-variable conditions are suitable for the
adiabatic expansion with respect to the collective momenta p.
We insert this form of the TDHFB state (94) into the

equation of collective submanifold (91) and the canonical-
variable conditions (95) and (96) and make a power-series

expansion in p. We can determine the microscopic structures
of Q̂iðqÞ and jϕðqÞi by requiring that these equations hold for
every power of p. We take into account up to the second order.
The canonical-variable conditions, (95) and (96), then yield
the “weakly” canonical commutation relations,

hϕðqÞj½Q̂iðqÞ; P̂jðqÞ�jϕðqÞi ¼ iδij:

We also obtain hϕðqÞjQ̂iðqÞjϕðqÞi ¼ 0 and hϕðqÞj
P̂iðqÞjϕðqÞi ¼ 0, which are trivially satisfied. Here the
displacement operators P̂iðqÞ are defined by

P̂iðqÞjϕðqÞi ¼ i
∂
∂qi jϕðqÞi:

Note that Q̂iðqÞ and P̂iðqÞ operate on jϕðqÞi, while Q∘ iðq; pÞ
and P

∘
iðq; pÞ operate on jϕðq; pÞi. The time derivatives _qi

and _pi are determined by the Hamilton equations of motion
(89) with the classical collective Hamiltonian Hðq; pÞ
expanded with respect to p up to the second order,

Hðq; pÞ ¼ VðqÞ þ 1

2
BijðqÞpipj;

VðqÞ ¼ Hðq; p ¼ 0Þ; BijðqÞ ¼ ∂2H
∂pi∂pj

����
p¼0

:

The collective inertia tensorsBijðqÞ are defined as the inverse
matrix of BijðqÞ, BijBjk ¼ δik. Under these preparations,
the following equations, which constitute the core of the
ASCC method, can be derived (Matsuo, Nakatsukasa, and
Matsuyanagi, 2000). Here, to further simplify the expres-
sion, we show the case for normal systems with TDHF.
Moving-frame HF(B) equation:

δhϕðqÞjĤMðqÞjϕðqÞi ¼ 0; ð97Þ

where ĤMðqÞ represents the Hamiltonian in the frame
attached to the moving mean field,

ĤMðqÞ ¼ Ĥ −
∂V
∂qi Q̂

iðqÞ:

Moving-frame (Q)RPA equations:

δhϕðqÞj½ĤMðqÞ; Q̂iðqÞ� − 1

i
BijðqÞP̂jðqÞ

þ 1

2

�∂V
∂qj Q̂

jðqÞ; Q̂iðqÞ
�
jϕðqÞi ¼ 0; ð98Þ

δhϕðqÞj
�
ĤMðqÞ;

1

i
P̂iðqÞ

�
− CijðqÞQ̂jðqÞ

−
1

2

��
ĤMðqÞ;

∂V
∂qk Q̂

kðqÞ
�
; BijðqÞQ̂jðqÞ

�
jϕðqÞi ¼ 0;

ð99Þ

where

P(q) = i d/dq

q1
q2

P2(q) = i d/dq2

P1(q) = i d/dq1

(a)

(b)

FIG. 12. Schematic illustrations of collective submanifold in the
TDHFB space. (a) 1D collective path specified by a series of the
states jϕðqÞi with a local generator PðqÞ ¼ id=dq. (b) A section
of a 2D collective hypersurface and local generators of the
collective coordinate (P̂1ðqÞ; P̂2ðqÞ).
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CijðqÞ ¼
∂2V

∂qi∂qj − Γk
ij
∂V
∂qk ;

Γk
ijðqÞ ¼

1

2
Bkl

�∂Bli

∂qj þ
∂Blj

∂qi −
∂Bij

∂ql
�
:

The double-commutator term in Eq. (99) arises from the
q derivative of the infinitesimal generators Q̂iðqÞ and represents
the curvatures of the collective submanifold. Diagonalizing the
matrix BikCkj at each point of q, we may identify the local
normalmodes and eigenfrequenciesωiðqÞ of themoving-frame
QRPA equations.
Extension from TDHF to TDHFB for superfluid nuclei can

be achieved by introducing the particle number n≡ N − N0

and their conjugate angle θ as additional collective variables;
see Sec. V.C.4 and Matsuo, Nakatsukasa, and Matsuyanagi
(2000) for more details.
Solving Eqs. (97), (98), and (99) self-consistently, we can

determine the state jϕðqÞi and the microscopic expressions of
the infinitesimal generators Q̂iðqÞ and P̂iðqÞ in bilinear forms
of the quasiparticle creation and annihilation operators defined
locally with respect to jϕðqÞi; see Fig. 12. Note that these
equations reduce to the HF(B) and (Q)RPA equations at the
equilibrium point where ∂V=∂qi ¼ 0. Therefore, they are
natural extensions of the HFB-QRPA equations to nonequili-
brium states. Here we remark on some key points of the ASCC
method.

(1) Difference from the constrained HFB equations:
The moving-frame HFB equation (97) resembles the
constrained HFB equation. An essential difference is
that the infinitesimal generators Q̂iðqÞ here are self-
consistently determined together with P̂iðqÞ as sol-
utions of the moving-frame QRPA equations (98) and
(99) at every point of the collective coordinate q. Thus,
contrary to constrained operators in the constrained
HFB theory, their microscopic structure changes as
functions of q. The optimal “constraining” operators
are locally determined at each q. The collective
submanifold embedded in the TDHFB phase space
is extracted in this way.

(2) Meaning of the term “adiabatic”: The word “adiabatic
approximation” is frequently used with different mean-
ings. In the present context, we use this term for the
approximate solution of the variational equation (84)
by taking into account up to second order in an
expansion with respect to the collective momenta p.
It is important to note that the effects of finite frequency
of the LACM are taken into account through the
moving-frame QRPA equation. No assumption is
made, such as the kinetic energy of LACM is much
smaller than the lowest two-quasiparticle excitation
energy at every point of q.

(3) Collective inertial mass: Although the collective
submanifold is invariant against coordinate transfor-
mations q → q0ðqÞ, the collective inertial tensors
BijðqÞ depend on the adopted coordinate system.
The scale of the coordinates can be arbitrarily
chosen as far as the canonical-variable conditions
are satisfied. Note, however, that it is convenient to

adopt a conventional coordinate system, such as the
quadrupole ðβ; γÞ variables, to obtain physical insights
and to find the effects of time-odd components in the
mean field (see Sec. V.D.1).

(4) Canonical quantization: The collective inertia tensors
BijðqÞ take a diagonal form when the classical
collective Hamiltonian is represented in terms of the
local normal modes of the moving-frame QRPA
equations. We can then make a scale transformation
of the collective coordinates q such that they become
unity. The kinetic energy term in the resulting collec-
tive Hamiltonian depends only on p. Thus, there is no
ordering ambiguity between q and p in the canonical
quantization procedure.

4. Inclusion of the pair rotation and gauge invariance

In the QRPA at the HFB equilibrium, the ANG modes
such as the number fluctuation (pairing rotational) modes
are decoupled from other normal modes. Thereby, the
QRPA restores the gauge invariance (number conserva-
tion) broken in the HFB mean field (Brink and Broglia,
2005). It is desirable to keep this nice property beyond the
small-amplitude approximation. Otherwise, spurious num-
ber fluctuation modes would heavily mix in the LACM
of interest. This can be achieved in the SCC method
(Matsuo, 1986).
Introducing the number fluctuation n ¼ N − N0 and their

conjugate angle θ as additional collective variables, we
generalize the TDHFB state (94) to

jϕðq; p; θ; nÞi ¼ e−iθN̂ jϕðq; p; nÞi;
jϕðq; p; nÞi ¼ ei½piQ̂

iðqÞþnΘ̂ðqÞ�jϕðqÞi;

where Θ̂ðqÞ denotes the infinitesimal generator for the pair-
rotation degree of freedom. The state vector jϕðq; p; nÞi may
be regarded as an intrinsic state for the pair rotation. In
practice, (N̂; Θ̂ðqÞ) should be doubled to treat both neutrons
and protons. The extension of the equation for the collective
submanifold (84) is straightforward:

δhϕðq; p; θ; nÞj
�
i _qi

∂
∂qi þ i _pi

∂
∂pi

þi_θ
∂
∂θ − Ĥ

�
jϕðq; p; θ; nÞi

¼ 0.

Note that _n ¼ 0, because the Hamilton equations for the
canonical conjugate pair ðn; θÞ are

_θ ¼ ∂H
∂n ; _n ¼ −

∂H
∂θ ;

and the classical collective Hamiltonian Hðq; p; θ; nÞ≡
hϕðq; p; θ; nÞjĤjϕðq; p; θ; nÞi does not depend on θ.
Expanding in n as well as p up to the second order, we can

determine Θ̂ðqÞ simultaneously with Q̂iðqÞ and P̂iðqÞ such
that the moving-frame equations become invariant against the
rotation of the gauge angle θ.
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Hinohara et al. (2007) investigated the gauge-invariance
properties of the ASCC equations and extended the infini-
tesimal generators Q̂iðqÞ to include quasiparticle creation-
annihilation parts in addition to two-quasiparticle creation and
annihilation parts. This is the reason why Eqs. (98) and (99)
are written in a more general form than those originally given
by Matsuo, Nakatsukasa, and Matsuyanagi (2000). The gauge
invariance implies that we need to fix the gauge in numerical
applications. A convenient procedure of the gauge fixing is
discussed by Hinohara et al. (2007). A more general consid-
eration on the gauge symmetry is given from a viewpoint of
constrained dynamical systems (Sato, 2015).

D. Relations to other approaches

In Sec. V.C, we reviewed the basics of a microscopic theory
of LACM focusing on new developments in the ASCC
method, achieved after 2000. In this section, we discuss the
relations of the above formulation to other approaches to
LACM. Typical approaches developed up to 1980 are
described in detail in Ring and Schuck (1980), and achieve-
ments during 1980–2000 are well summarized by Dang,
Klein, and Walet (2000).

1. Constrained HFB + adiabatic perturbation

Thismethod is convenient andwidelyused in themicroscopic
description of LACM. The theory is based on the adiabatic
assumption that the collective motion is much slower than the
single-particle motion (see remarks in Sec. V.C.3). We first
postulate a few one-body operators F̂i corresponding to col-
lective coordinatesαi. The collective potential energy is given by
the constrained HFB (or constrained HFþ BCS) equations

δhϕ0ðαÞjĤ − μiðαÞF̂ijϕ0ðαÞi ¼ 0;

αi ¼ hϕ0ðαÞjF̂ijϕ0ðαÞi;

where μiðαÞ are the Lagrange multipliers. Then assuming
that the frequency of the collective motion is much smaller
than the two-quasiparticle energies, we calculate the collective
kinetic energy Tcoll using the adiabatic perturbation theory;
Tcoll ¼ ð1=2ÞDijðαÞ _αi� _αj, where

DijðαÞ ¼ 2
X
n

hϕ0ðαÞj∂=∂αi�jϕnðαÞihϕnðαÞj∂=∂αjjϕ0ðαÞi
EnðαÞ − E0ðαÞ

are called Inglis-Belyaev cranking masses (Ring and Schuck,
1980). Here jϕ0ðαÞi and jϕnðαÞi represent the ground and
two-quasiparticle excited states for a given set of values
α ¼ fαig. In most applications, it is simplified furthermore
by an assumption that the derivatives of the constrained HFB
Hamiltonian with respect to αi are proportional to F̂i, which
leads to

DijðαÞ ¼
1

2
½M−1

1 ðαÞM3ðαÞM−1
1 ðαÞ�ij;

MkðαÞij ¼
X
n

hϕ0ðαÞjF̂i
†jϕnðαÞihϕnðαÞjF̂jjϕ0ðαÞi
½EnðαÞ − E0ðαÞ�k

.

These cranking masses were used in conjunction with
phenomenological mean-field models in the study of fission
dynamics (Brack et al., 1972). In recent years, it has become
possible to carry out such studies using self-consistent
mean fields obtained by solving the constrained HFB
equations (Baran et al., 2011). The Inglis-Belyaev cranking
masses have also been used for low-frequency quadrupole
collective dynamics (Libert, Girod, and Delaroche, 1999;
Yuldashbaeva et al., 1999; Próchniak et al., 2004; Delaroche
et al., 2010). At present, a systematic investigation on low-
lying quadrupole spectra is underway in terms of the five-
dimensional (5D) collective Hamiltonian (see Sec. V.E.1),
which is derived from the relativistic (covariant) density
functionals and by using the Inglis-Belyaev cranking for-
mula (Li et al., 2009, 2011; Nikšić et al., 2009; Li, Nikšić,
Vretenar, and Meng, 2010; Li, Nikšić, Vretenar, Ring, and
Meng, 2010; Nikšić, Vretenar, and Ring, 2011; Fu
et al., 2013).
A problem of the Inglis-Belyaev cranking formula is that

time-odd mean-field effects are ignored; thus, it underesti-
mates the collective masses (inertial functions) (Dobaczewski
and Dudek, 1995). Moving mean fields induce time-odd
components that change sign under time reversal.
However, the Inglis-Belyaev cranking formula ignores their
effects on the collective masses. By taking into account such
time-odd corrections to the cranking masses, one can better
reproduce low-lying spectra (Hinohara et al., 2012). For
rotational moments of inertia, we may estimate the time-odd
corrections taking the limit of ωrot → 0 for the quasista-
tionary solution of Eq. (44). Since this provides about
20%–40% enhancement from the Inglis-Belyaev formula,
the similar enhancement factors of 1.2–1.4 have been
often utilized for vibrational inertial masses without solid
justification. A better treatment of the time-odd mean-field
effects is required for describing the masses of collective
motion and the effective mass of single-particle motion in a
self-consistent manner. For this purpose, it is highly desirable
to apply the microscopic theory of LACM in Sec. V.C.3 to
the TDDFT with realistic EDFs. At present, however, it
remains as a challenge for the future.

2. Adiabatic TDHF theory

Attempts to derive collective Hamiltonian using adiabatic
approximation to time evolution of mean fields started in
the 1960s (Baranger and Kumar, 1965; Belyaev, 1965). In
these pioneer works, the collective quadrupole coordinates
ðβ; γÞ were defined in terms of expectation values of the
quadrupole operators and the 5D collective Hamiltonian
was derived using the pairing plus quadrupole (Pþ Q)
force model (Bes and Sorensen, 1969). During the 1970s
this approach was generalized to a theory applicable to any
effective interaction. This advanced approach is called the
adiabatic TDHF (ATDHF) theory (Brink, Giannoni, and
Veneroni, 1976; Baranger and Vénéroni, 1978; Goeke and
Reinhard, 1978).
In the ATDHF theory, the density matrix ρðtÞ is written in

the following form and expanded as a power series with
respect to the collective momentum χðtÞ:
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ρðtÞ ¼ eiχðtÞρ0ðtÞe−iχðtÞ
¼ ρ0ðtÞ þ ½iχ; ρ0� þ 1

2
½iχ; ½iχ; ρ0�� þ � � �

¼ ρ0ðtÞ þ ρ1ðtÞ þ ρ2ðtÞ þ � � � .

Correspondingly, the time-dependent mean-field Hamiltonian
hðtÞ is also expanded with respect to a power of χðtÞ,

h½ρðtÞ� ¼ W0ðtÞ þW1ðtÞ þW2ðtÞ þ � � � .

Inserting these into the TDHF (TDKS) equation (35), we
obtain for the time-odd part

i_ρ0 ¼ ½W0; ρ1� þ ½W1; ρ0�;

and the time-even part

i_ρ1 ¼ ½W0; ρ0� þ ½W0; ρ2� þ ½W1; ρ1� þ ½W2; ρ0�:

These are the basic equations of the ATDHF.
Let us introduce collective coordinates α ¼ ðα1;…; αfÞ as

parameters describing the time evolution of the density matrix
ρ0ðtÞ as

ρ0ðtÞ ¼ ρ0(αðtÞ); _ρ0ðtÞ ¼
X
i

∂ρ0
∂αi _α

i:

Baranger and Vénéroni (1978) proposed iterative procedures
to solve the ATDHF equations for the density matrix para-
metrized in this way, but this idea has not been realized until
now. The ATDHF does not reduce to the RPA in the small-
amplitude limit if a few collective coordinates are introduced
by hand. In fact it gives a collective mass different from that of
the RPA (Giannoni and Quentin, 1980a, 1980b).
The ATDHF theory developed by Villars (1977) aims at

self-consistently determining optimum collective coordinates
on the basis of the time-dependent variational principle. This
approach, however, encountered a difficulty so that we cannot
get a unique solution of its basic equations determining the
collective path. This nonuniqueness problem was later solved
by treating the second-order terms of the momentum expan-
sion in a self-consistent manner (Mukherjee and Pal, 1982;
Klein, Walet, and Dang, 1991). It was shown that, when the
number of collective coordinates is only 1, a collective path
maximally decoupled from noncollective degrees of freedom
runs along a valley in the multidimensional potential energy
surface associated with the TDHF states.
In order to describe low-frequency collective motions, it is

necessary to take into account the pairing correlations. Thus,
we need to develop the adiabatic TDHFB (ATDHFB) theory.
This is one of the reasons why applications of the ATDHF
theory have been restricted to collective phenomena where the
pairing correlations play minor roles, such as low-energy
collisions between spherical closed-shell nuclei (Goeke et al.,
1983). When large-amplitude shape fluctuations take place,
single-particle level crossings often occur. To follow the
adiabatic configuration across the level crossing points, the
pairing correlation plays an essential role. Thus, an extension
to ATDHFB is indispensable for the description of low-
frequency collective excitations.

In the past, Dobaczewski and Skalski (1981) tried to
develop the ATDHFB theory assuming the axially symmetric
quadrupole deformation parameter β as the collective coor-
dinate. Quite recently, Li et al. (2012) tried to derive the 5D
quadrupole collective Hamiltonian on the basis of the
ATDHFB. However, the extension of ATDHF to ATDHFB
is not as straightforward as we naively expect. This is because,
as discussed in Sec. V.C.4, we need to decouple the pair-
rotational degrees of freedom (number fluctuation) from the
LACM of interest.

3. Boson expansion method

The boson expansion method is an efficient microscopic
method of describing anharmonic (nonlinear) vibrations
going beyond the harmonic approximation of QRPA. In this
approach, we first construct a collective subspace spanned by
many-phonon states of vibrational quanta (determined by the
QRPA) in the huge-dimensional shell-model space. These
many-phonon states are mapped onto many-boson states in an
ideal boson space. Anharmonic effects neglected in the QRPA
are treated as higher-order terms in the power-series expansion
with respect to the boson creation and annihilation operators.
Starting from the QRPA about a spherical shape, one can thus
derive the 5D quadrupole collective Hamiltonian in a fully
quantum mechanical manner. The boson expansion method
has been successfully applied to low-energy quadrupole
excitation spectra in a wide range of nuclei including those
lying in transitional regions of quantum phase transitions from
spherical to deformed shapes (Sakamoto and Kishimoto,
1988; Klein and Marshalek, 1991).
In the time-dependent mean-field picture, state vectors in

the boson expansion method are written in terms of the
creation and annihilation operators ðΓ†

i ;ΓiÞ of the QRPA
eigenmodes, or, equivalently, in terms of the collective
coordinate and momentum operators ðQ̂i; P̂iÞ,

jϕðtÞi ¼ eiĜðtÞjϕ0i;
iĜðtÞ ¼ ηiðtÞΓ†

i − η�i ðtÞΓi ¼ ipiðtÞQ̂i − iqiðtÞP̂i:

With increasing amplitudes of the quadrupole shape vibration
jηiðtÞj [jqiðtÞj], anharmonic (nonlinear) effects become
stronger. Strong nonlinear effects may eventually change
even the microscopic structure of the collective operators
ðQ̂i; P̂iÞ determined by the QRPA. In such situations, it is
desirable to construct a theory that allows variations of
microscopic structure of collective operators as functions of
qiðtÞ. The SCC method has accomplished this task; see
Sec. V.C.

4. Generator coordinate method

In the GCM, quantum eigenstates of collective motion
are described as superpositions of states jϕðαÞi labeled by
the parameters α ¼ ðα1;…; αfÞ, which are called generator
coordinates,

jΨi ¼
Z

dαfðαÞjϕðαÞi:
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jϕðαÞi are generating functions, normally chosen as mean-
field states (Slater determinants), which provide a nonorthog-
onal basis for a collective subspace. The Ritz variational
principle then leads to the Hill-Wheeler equation

Z
dαf�ðαÞhϕðαÞjĤ − Ejϕðα0Þi ¼ 0

determining the weight function fðαÞ. Here
R
dα denotes

multiple integration with respect to the f-dimensional gen-
erator coordinates, and volume elements of integration are
absorbed in the weight function fðαÞ.
The GCM has been used for a wide variety of nuclear

collective phenomena (Reinhard and Goeke, 1987; Egido and
Robledo, 2004; Bender, 2008; Robledo and Bertsch, 2011;
Shimada, Tagami, and Shimizu, 2015). For low-frequency
quadrupole collective motion in superfluid nuclei, although
the proper generator coordinates are not obvious, a possible
choice may be the axial and triaxial deformation parameters
ðβ; γÞ, and the pairing gaps for neutrons and protons ðΔn;ΔpÞ.
In addition, to treat the rotational motions associated with
spatial and gauge deformations, the analytic solutions of the
angular-momentum eigenstates and the number eigenstates
are constructed by integration over the Euler angles of rotation
Ω ¼ ðϑ1; ϑ2; ϑ3Þ, and the gauge angles ðφn;φpÞ, respectively.
In the major applications at the present time, however, the
pairing gaps ðΔn;ΔpÞ are not treated as generator coordinates
to reduce the dimensionality of integration. This leads to the
following superpositions:

jΨi
NZIMi ¼

Z
dβdγ

X
K

fiNZIKðβ; γÞP̂NP̂ZP̂IMK jϕðβ; γÞi;

where P̂IMK and P̂N (P̂Z) denote projection operators for the
angular momentum in the three-dimensional space and the
neutron (proton) number, respectively. It has been a great
challenge in nuclear structure physics to carry out high-
dimensional numerical integrations for solving the GCM
equation using the constrained HFB states. In recent years,

remarkable progress has been taking place, which makes it
possible to carry out large-scale numerical computations
(Bender and Heenen, 2008; Rodríguez and Egido, 2010,
2011; Yao et al., 2010, 2011, 2014; Rodríguez, 2014) A
recent example is shown in Fig. 13. As discussed in Sec. II, the
HFB calculations using the density-dependent effective inter-
actions are better founded by DFT. Correspondingly, the
modern GCM calculation is often referred to asmultireference
DFT (Bender and Heenen, 2008).
The GCM is a useful fully quantum approach but the

following problems remain to be solved.
(1) Numerical stability: In numerical calculation, one

needs to find an optimum discretization (selection
of basis) for the generator coordinates α, because the
continuum limit of integration is not stable in general
(Bonche et al., 1990). It is usually determined semi-
empirically but a deeper understanding of its physical
basis is desirable. Another problem is a singular
behavior that may occur during the symmetry projec-
tions in calculations with use of effective interactions
that depend on a noninteger power of density. Cur-
rently, efforts are underway to overcome this problem
(Anguiano, Egido, and Robledo, 2001; Dobaczewski
et al., 2007; Duguet et al., 2009).

(2) Necessity of complex coordinates: It is well known
that one can derive a collective Schrödinger equation
by making a Gaussian overlap approximation (GOA)
to the GCM equation (Griffin and Wheeler, 1957;
Onishi and Une, 1975; Reinhard and Goeke, 1987;
Rohoziński, 2012). There is no guarantee, however,
that dynamical effects associated with time-odd
components of the moving mean field are suffi-
ciently taken into account in the collective masses
(inertial functions) obtained through this procedure.
In the case of center-of-mass motion, we need to use
complex generator coordinates to obtain the correct
mass, implying that collective momenta conjugate to
collective coordinates should also be treated as
generator coordinates (Peierls and Thouless, 1962;
Ring and Schuck, 1980). The GOA with respect to

FIG. 13. Low-lying spectra and BðE2Þ values in e2 fm4 for 76Kr; (a) experimental data from Clément et al. (2007), (b) the relativistic
GCM calculations in the ðβ; γÞ plane with the particle-number and the angular-momentum projections, and (c) the calculation of the 5D
collective Hamiltonian using the cranking inertial masses (Sec. V.D.1). From Yao et al., 2014.
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the momenta leads to a theory very similar to ATDHF
(Goeke, Grümmer, and Reinhard, 1983). Realistic
applications with complex generator coordinates are
so far very few.

(3) Choice of generator coordinates: The most funda-
mental question is how to choose the optimum
generator coordinates. It is desirable to variationally
determine the generating functions jϕðαÞi them-
selves. Let S denote the space spanned by jϕðαÞi.
The equation determining the space S is then
given by

Z
S
dαf�ðαÞhϕðαÞjĤ − Ejδϕðα0Þi⊥ ¼ 0; ð100Þ

where jδϕðα0Þi⊥ denotes a variation perpendicular to
the space S. Let us add an adjective “optimum” to the
generator coordinate determined by solving the above
variational equation. It was shown that the mean-field
states parametrized by a single optimum generator
coordinate run along a valley of the collective potential
energy surface (Holzwarth and Yukawa, 1974). This
line of investigation was further developed (Reinhard
and Goeke, 1979) and greatly stimulated the challenge
toward constructing the microscopic theory of
LACM. However, direct applications of Eq. (100) to
realistic EDFs may have a problem. As discussed in
Sec. V.A, the missing correlations in nuclear EDFs
are those in long ranges and long time scales.
The variation in Eq. (100) may take into account
additional short-range correlations, which could lead
to unphysical solutions (Shinohara et al., 2006;
Fukuoka et al., 2013).

Finally, we note that conventional GCM calculations para-
metrized by a few real generator coordinates do not reduce to
the (Q)RPA in the small-amplitude limit. It is equivalent to
RPA only when all the particle-hole degrees of freedom are
treated as complex generator coordinates (Jancovici and
Schiff, 1964). An extension to the QRPA is not straightfor-
ward either. Thus, systematic comparison of collective inertial
masses evaluated by different approximations including the
ASCC, the ATDHFB, the GCMþ GOA, and the adiabatic
cranking methods is desirable for a better understanding of
their physical implications.

5. Time-dependent density-matrix theory and higher QRPA

The TDHF theory describes the time evolution of the
one-body density matrix ρij ¼ hϕjc†jcijϕi on the basis of
the time-dependent variational principle. To generalize this
approach, one may consider, in addition to ρij, the time
evolution of the two-body correlation matrix Cijkl ¼
hϕjc†kc†l cjcijϕi − ρikρjl þ ρilρjk. This approach is called the
time-dependent density-matrix (TDDM) theory (Shun-jin and
Cassing, 1985). The extended RPA (Tohyama and Schuck,
2007) and the second RPA (Drozdz et al., 1990; Gambacurta,
Grasso, and Catara, 2011; Gambacurta et al., 2012; Tohyama
and Nakatsukasa, 2012) can be derived as approximations to
the small-amplitude limit of the TDDM theory (Tohyama and
Gong, 1989) and have been used for the analysis of damping

mechanisms of giant resonances and anharmonicities of low-
frequency vibrations.
In the TDDM theory, the pairing correlations are taken

into account by the two-body correlations Cijkl. This
requires a large computational cost, however. The TDDM
theory using the HFB quasiparticle representations is not
available. On the other hand, the higher QRPA may provide
another practical approach to its small-amplitude approxi-
mation. In the higher QRPA, in addition to the two-
quasiparticle creation and annihilation operators in the

conventional QRPA, Γð2Þ†
n ¼Pi;jðψnð2Þ

ij a†i a
†
j þ φnð2Þ

ij ajaiÞ,
equations of motion for four quasiparticle creation and
annihilation operators,

Γð4Þ†
n ¼

X
i;j;k;l

ðψnð4Þ
ijkl a

†
i a

†
ja

†
ka

†
l þ ϕnð4Þ

ijkl a
†
i a

†
jalak

þ φnð4Þ
ijkl alakajaiÞ;

are derived. This approach may be suitable for describing
various mode-mode coupling effects and anharmonicities
arising from Pauli-principle effects in two-phonon states
where two QRPA vibrational quanta are excited. We note

that the a†i a
†
jalak terms in Γð4Þ†

n are often ignored

(ϕnð4Þ
ijkl ¼ 0). It is known, however, that collectivities of

two-phonon states cannot be well described without these
terms, because they are responsible for making the ratio
BðE2; 2 phonon → 1 phononÞ=BðE2; 1 phonon → g:s:Þ ¼ 2
in the harmonic limit (Tamura and Udagawa, 1964). This
problem may be overcome by using the quasiparticle new
Tamm-Dancoff method (Kanesaki et al., 1973a, 1973b;
Sakata, Marumori, and Takada, 1981). In the limit of
vanishing pairing correlations, the quasiparticle-pair scatter-
ing terms a†i a

†
jalak reduce to the particle-hole-pair scattering

terms. Their effects are taken into account in the extended
RPA, while they are ignored in the second RPA
(Tohyama, 2001).
To our knowledge, no attempt has been made to introduce

collective variables and derive collective Hamiltonian on the
basis of the TDDM theory.

E. Application to shape coexistence and
fluctuation phenomena

1. Five-dimensional quadrupole collective Hamiltonian

Vibrational and rotational motions of the nucleus can be
described as the time evolution of a self-consistent mean field.
This is the basic idea underlying the unified model of Bohr
and Mottelson (Bohr, 1976; Mottelson, 1976). In this
approach, the 5D collective Hamiltonian describing the
quadrupole vibrational and rotational motions is given by
(Bohr and Mottelson, 1975; Próchniak and Rohoziński, 2009)

H ¼ Trot þ Tvib þ Vðβ; γÞ; ð101Þ

with

Trot ¼
1

2

X
k

J kω
2
k
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and

Tvib ¼ 1
2
Dββ

_β2 þDβγ
_β _γþ1

2
Dγγ _γ

2;

where ωk and J k in the rotational energy Trot are the three
components of the angular velocities and the corresponding
moments of inertia, respectively, while ðDββ; Dβγ; DγγÞ in Tvib

represent the inertial masses of the vibrational motion.
Note that J k¼1;2;3 and ðDββ; Dβγ; DγγÞ are functions of β
and γ. The “deformation parameters” β and γ are treated here
as dynamical variables, and _β and _γ represent their time
derivatives. They are related to the expectation values of the
quadruple operators (with respect to the time-dependent
mean-field states) and their variations in time. Note also that
they are defined with respect to the principal axes of the body-
fixed (intrinsic) frame that is attached to the instantaneous
shape of the time-dependent mean field.
In the case that the potential energy Vðβ; γÞ has a deep

minimum at finite value of β and γ ¼ 0° (or γ ¼ 60°), a regular
rotational spectrum with the IðI þ 1Þ pattern may appear. In
addition to the ground band, we expect the β and γ bands to
appear, where vibrational quanta with respect to the β and γ
degrees of freedom are excited. Detailed investigations on the
γ-vibrational bands over many nuclei have revealed, however,
that they usually exhibit significant anharmonicities (non-
linearities). The β-vibrational bands are even more mysteri-
ous in that they couple, sometimes very strongly, with the
pairing-vibrational modes (associated with fluctuations of
the pairing gap). Recent experimental data indicate the strong
need for a radical review of their characters (Heyde and
Wood, 2011).

2. Microscopic derivation of the 5D collective Hamiltonian

For collective submanifolds of two dimensions (2D) or
higher, an enormous amount of numerical computation is
necessary to find fully self-consistent solutions of the ASCC
equations. To handle this problem, a practical approximation
scheme, called the “local QRPA” (LQRPA) method, has been
developed (Hinohara et al., 2010; Sato and Hinohara, 2011;
Sato et al., 2012). This scheme may be regarded as a
noniterative solution of Eqs. (97)–(99) without the consis-
tency in the generator Q̂iðqÞ between the moving-frame HFB
equation and the moving-frame QRPA equations. It may also
be regarded as the first step of the iterative procedure for
solving the self-consistent equations. Further approximation is
that, instead of treating the 5D collective coordinates simulta-
neously, we first derive the 2D collective Hamiltonian for
vibrational motions corresponding to the ðβ; γÞ deformations,
and subsequently take into account the three-dimensional
(3D) rotational motions associated with Euler angles at each
point of ðβ; γÞ. With this procedure, we can easily derive the
5D collective Hamiltonian.
First, we solve the moving-frame HFB equation:

δhϕðqÞjĤMðqÞjϕðqÞi¼ 0;

ĤMðqÞ¼ Ĥ−
X
τ

λðτÞðqÞ ~NðτÞ−
X
m¼0;2

μmðqÞD̂ðþÞ
2m :

This equation corresponds to Eq. (97) for the 2D case
with q ¼ ðq1; q2Þ and with Q̂iðqÞ replaced by the mass-

quadrupole operators D̂ðþÞ
2m . The variables ðβ; γÞ are

defined by

β cos γ ¼ ηDðþÞ
20 ðqÞ ¼ ηhϕðqÞjD̂ðþÞ

20 jϕðqÞi; ð102Þ

1ffiffiffi
2

p β sin γ ¼ ηDðþÞ
22 ðqÞ ¼ ηhϕðqÞjD̂ðþÞ

22 jϕðqÞi; ð103Þ

where η is a scaling factor with the dimension of L−2. These
equations determine the relation between q ¼ ðq1; q2Þ
and ðβ; γÞ.
Next, we solve the following equations for i ¼ 1 and 2:

δhϕðqÞj½ĤMðqÞ; Q̂iðqÞ� − 1

i
BiðqÞP̂iðqÞjϕðqÞi ¼ 0;

δhϕðqÞj½ĤMðqÞ;
1

i
P̂iðqÞ� − CiðqÞQ̂iðqÞjϕðqÞi ¼ 0:

These are the moving-frame QRPA equations without the
curvature terms and are called the LQRPA equations.
Displacement of the quadrupole deformation is related to

that of ðq1; q2Þ by

dDðþÞ
2m ¼

X
i¼1;2

∂DðþÞ
2m

∂qi dqi; m ¼ 0; 2:

Making a scale transformation such that the inertial masses
with respect to the collective coordinates ðq1; q2Þ become
unity and using this relation, we can write the following
kinetic energy of vibrational motions in terms of time
derivatives of the quadrupole deformation:

Tvib ¼
1

2

X
i¼1;2

ð _qiÞ2 ¼ 1

2

X
m;m0¼0;2

Mmm0 _DðþÞ
2m

_DðþÞ
2m0 ;

Mmm0 ðβ; γÞ ¼
X
i¼1;2

∂qi
∂DðþÞ

2m

∂qi
∂DðþÞ

2m0
:

With Eqs. (102) and (103), it is straightforward to rewrite this
expression using the time derivatives of ðβ; γÞ.
Subsequently, we solve the LQRPA equations for 3D

rotational motions at every point of q. This is given by the
replacement of QiðqÞ → Ψ̂kðqÞ and BiðqÞP̂iðqÞ → Îk=J kðqÞ,
where Ψ̂kðqÞ represents the local angle operator conjugate to
the angular momentum Îk. The solution provides the moments
of inertia J kðβ; γÞ ¼ 4β2Dkðβ; γÞ sin2ðγ − 2πk=3Þ which
determine the rotational masses Dkðβ; γÞ and the rotational
energy Trot.
We can quantize the collective Hamiltonian (101) using

the quantization scheme for curvilinear coordinates (the
so-called Pauli prescription). The quantized rotational and
vibrational Hamiltonians are given, respectively, by

T̂rot ¼
1

2

X
k

Î2k=J k
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and

T̂vib ¼
−1

2
ffiffiffiffiffiffiffiffi
WR

p
�
1

β4

� ∂
∂β
�
β2

ffiffiffiffiffi
R
W

r
Dγγ

∂
∂β
��

−
∂
∂β
�
β2

ffiffiffiffiffi
R
W

r
Dβγ

∂
∂γ
��

þ 1

β2 sin 3γ

�
−

∂
∂γ
� ffiffiffiffiffi

R
W

r
sin 3γDβγ

∂
∂β
�

þ ∂
∂γ
� ffiffiffiffiffi

R
W

r
sin 3γDββ

∂
∂γ
���

ð104Þ

with β2W ¼ DββDγγ −D2
βγ and R ¼ D1D2D3.

The collective wave functions are written as

ΨIMkðβ; γ;ΩÞ ¼
XI
K¼0

ΦIKkðβ; γÞhΩjIMKi;

where ΦIKkðβ; γÞ and hΩjIMKi represent the vibrational and
rotational wave functions, respectively. Solving the collective
Schrödinger equations

½T̂rot þ T̂vib þ Vðβ; γÞ�ΨIMkðβ; γ;ΩÞ ¼ EIMkΨIMkðβ; γ;ΩÞ;

we obtain quantum spectra of quadrupole collective motion.
Details of the above derivation are given by Hinohara et al.
(2010) and Matsuyanagi et al. (2016).

F. Illustrative examples

The spherical shell structure gradually changes following
the deformation of the mean field. If we plot single-particle
level diagrams as functions of deformation parameters,
significant gaps, called “deformed magic numbers,” appear
at the Fermi surface for certain deformations. Such deformed
shell effects stabilize some deformed shapes of the mean field.
Accordingly, in the HFB calculations, we may encounter
multiple local minima with different shapes in similar ener-
gies. The LACM connecting multiple local minima via
tunneling through potential barriers may take place to generate
the shape fluctuation. These phenomena may be regarded as a
kind of macroscopic quantum tunneling. Note that the barriers
are not external fields but self-consistently generated as a
consequence of quantum dynamics of the many-body system
under consideration. Quantum spectra of low-energy excita-
tion that involve dynamics associated with different shapes
have been observed in almost all regions of the nuclear chart
(Heyde and Wood, 2011). When different kinds of quantum
eigenstates associated with different shapes coexist in the
same energy region, we call it “shape coexistence phenome-
non.” This is the case when shape mixing due to tunneling
motion is weak and collective wave functions retain their
localization about different equilibrium shapes. On the other
hand, if the shape mixing is strong, large-amplitude shape
fluctuations extending to different local minima may occur.
Next we illustrate these concepts with numerical applications
of the LQRPA method to the oblate-prolate shape coexistence
and fluctuation phenomena.

Figures 14 and 15 show some results of the application of
the ASCC and QRPA methods to the oblate-prolate shape
coexistence phenomenon in 68Se. It is clearly seen in
Fig. 14 that the collective potential exhibits two local
minima corresponding to the oblate and prolate shapes.
They are associated with the deformed magic numbers at
N ¼ Z ¼ 34 appearing for both shapes (Hamamoto, 2012).
The valley runs in the triaxially deformed region and the
barrier connecting the oblate and prolate minima is low.
This is an intermediate situation between the oblate-prolate
shape coexistence and the γ-unstable model of Wilets and
Jean (1956). In the former, the barrier is high and the
mixing of the oblate and prolate shapes is suppressed, while
the collective potential is flat with respect to the γ degree of
freedom in the latter. The theoretical calculation indicates
that large-scale quantum shape fluctuation occurs along the
triaxial valley.
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FIG. 14. Application of the ASCC method to the oblate-prolate
shape coexistence phenomenon in 68Se. (a) The collective path
for 68Se obtained by the ASCC method. The solid (red)
line shows the collective path running along the valley of the
potential energy surface projected on the ðβ; γÞ deformation
plane. (b) Vibrational wave functions squared of the lowest (left)
and the second-lowest states (right) for each angular momentum.
In each panel, different K components of the vibrational wave
functions and the sum of them are plotted as functions of γðqÞ.
For excitation spectra, see Fig. 15. Adapted from Hinohara
et al., 2009.
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In Fig. 14, the collective path (one-dimensional collective
submanifold) self-consistently determined by solving the
ASCC equations (97), (98), and (99) is indicated. The
self-consistent collective path runs along the valley to connect
the prolate and oblate minima. The inertial mass BðqÞ is also
determined by Eqs. (98) and (99). For the one-dimensional
case, properly choosing the scale of the collective coordinate
q, one can make BðqÞ ¼ B constant. The moments of inertia
J kðqÞ are calculated by solving the Thouless-Valatin equa-
tions at every point on the collective path.
The collective wave functions displayed in Fig. 14(b) are

obtained by solving the collective Schrödinger equation for the
4D collective Hamiltonian (the 1D collective path plus 3D
rotational degrees of freedom)microscopically derivedwith the
ASCCmethod (Hinohara et al., 2009). The ground state shows
a γ-unstable feature, and accordingly the second 0þ state also
shows strong mixing between the prolate and oblate shapes.
However, increasing the angular momentum, the yrast (yrare)

band becomes more and more oblate (prolate) dominant. The
nuclear shape is localized (stabilized) by the rotation.
In order to confirm that the one-dimensional collective

coordinate is enough for the low-energy dynamics of 68Se,
it is desirable to find the two-dimensional collective submani-
fold. This is approximately done according to the LQRPA
(Sec.V.E.2), inwhich the self-consistency between themoving-
frame HFB and QRPA equations is ignored, and no iteration is
performed. Figure 15 shows the result of the application of
the LQRPA method for deriving the 5D collective Hamiltonian
(the 2D vibrational and 3D rotational coordinates). The poten-
tial Vðβ; γÞ is shown in Fig. 15(a). The vibrational masses
Dββðβ; γÞ and Dγγðβ; γÞ significantly change as functions of
ðβ; γÞ. In addition, considerable variation in the ðβ; γÞ plane is
also observed in the paring gaps (monopole and quadrupole)
and the rotational moments of inertia. Because of the time-
odd contributions of the moving HFB self-consistent field,
the collective inertial masses (the vibrational masses and the

(a)

(b)

(c)

FIG. 15. Application of the LQRPAmethod to the oblate-prolate shape coexistence and fluctuation phenomenon in 68Se. (a) Collective
inertial masses Dββðβ; γÞ and Dγγðβ; γÞ, (b) excitation spectrum, and (c) vibrational wave functions β4

P
K jΦIKkðβ; γÞj2. Adapted from

Hinohara et al., 2010.
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rotational moments of inertia) calculated with the LQRPA
method are larger than those evaluated with the Inglis-
Belyaev cranking formula. Their ratios also change as functions
of ðβ; γÞ (Hinohara et al., 2010).
A remarkable agreement with experiment is seen in

Fig. 15(b). An improvement over the 4D calculation is mostly
due to the angular-momentum dependence of the optimal 1D
collective path. The calculated collective wave functions in
Fig. 15(c) clearly indicate the importance of the fluctuation
with respect to the γ degree of freedom, which is consistent
with the 1D collective path shown in Fig. 14. However, this
path gradually shifts to larger β with increasing angular
momentum. This stretching effect is missing in the 4D
calculation.

VI. RELATION TO TDDFT IN ELECTRONIC SYSTEMS

DFTandTDDFThave been extensively applied to electronic
systems, matters composed of electrons and nuclei such as
atoms, molecules, nanomaterials, and solids (Parr and Yang,
1989; Dreizler and Gross, 1990; Koch and Holthausen, 2001;
Martin, 2004; Sholl and Steckel, 2009;Gross andMaitra, 2012;
Ullrich, 2012). Electrons in matters always need treatment by
quantum mechanics, and nuclear motions can be in most cases
treated by classical mechanics. In this section, we discuss DFT
and TDDFT for electrons in matters, stressing similarities with
and differences from nuclear DFT.
An apparent difference between electronic and nuclear

systems is the interaction. The Hamiltonian of electronic
systems is composed of the attractive one-body Coulomb
potential between electrons and nuclei and the repulsive
Coulomb interaction among electrons. Besides the difference
in the interaction, the researchers in the two fields have
different concepts on the DFT and TDDFT. We first discuss
these conceptual differences in Sec. VI.A and describe the
electronic EDFs in practical use in Sec. VI.B.We then describe
applications of TDDFT in electronic systems. As in nuclear
physics, there are two distinct applications: linear response
TDDFT and TDDFT for large-amplitude motion as an initial-
value problem. Former applications include electronic excita-
tions and optical responses in molecules and solids, while the
latter applications include electron dynamics in matters
induced by strong laser pulses.

A. Conceptual difference between electronic and
nuclear (TD)DFT

In electronic systems, DFT and TDDFT are considered as
“self-contained” theories that can in principle be exact if
accurate functionals are obtained. Improvements of the quality
of the calculations should be achieved through improvement
of the EDFs. There are other theoretical frameworks that can
also in principle exactly describe properties of electronic
many-body systems, many-body perturbation theory (MBPT)
in condensed matter physics, and wave function based
methods in the field of quantum chemistry. These three
approaches, (TD)DFT, MBPT, and wave function based
methods, are recognized as completely different theories
and constitute independent, self-contained theoretical frame-
works. In practical applications, DFT and MBPT are

sometimes used simultaneously: for example, Green’s func-
tions that appear in the MBPT are approximately constructed
from solutions of the KS equation. However, in such cases, the
mixed use of different theories is clearly recognized, with
some reasons such as computational conveniences.
The (TD)DFT in nuclear physics is rather different from

this: for example, DFT and MBPT are often used in a mixed
way. One of the reasons for this difference is probably due to
different roles of the genuine HF approximation. In electronic
systems, the HF approximation provides a reasonable starting
point for the MBPT. The solutions of the HF and the KS
equations are clearly different. In nuclear systems, on the other
hand, the HF calculation using a bare nuclear force does not
provide any useful result. The KS solution is the only
appropriate starting point for the MBPT.
There are also qualitative differences in applications and

interpretations of DFT and TDDFT between two kinds of
systems. One example is the size of the system that the DFT
and TDDFT are applied to: In nuclear applications, the DFT
and TDDFT are usually adopted for studies of nuclei with a
few tens of nucleons or more. In contrast, for electronic
systems, the DFT and TDDFT are applied to as small as a few
electron systems, even one electron systems. For a one
electron system, of course, no potential originating from
the EDF should appear. However, due to an approximate
nature of the EDF in practical use, this property is often
violated. The condition of a vanishing potential for a one
electron system is used to improve the EDF to remove the self-
interaction error, which is known as the self-interaction
correction (Perdew and Zunger, 1981).
Another important difference appears in the interpretation of

linear response TDDFT calculations. In nuclear TDDFT, we
understand that the linear response TDDFT is accurate only for
processes characterized by small-amplitude oscillation around
the ground state. Low-lying excited states are characterized by
large-amplitude motion and are considered to need requantiza-
tion, as described in Sec. V. In electronic TDDFT, on the other
hand, the linear response TDDFT has been applied to any
electronic excitations no matter how the properties of the states
are. The necessity of requantization has not been recognized in
electronic TDDFT. The linear response TDDFT for electronic
excitations and optical responses is simply called TDDFT. The
linear response is regarded merely as a computational method,
not as an approximation to the TDDFT.
We also find differences in the treatment of collision effects.

In nuclear physics, theories of the two-body nucleon-nucleon
collisions have been developed, so as to treat these effects in
addition to the TDDFT. In contrast, efforts have been made to
incorporate electron-electron collision effects within the
TDKS formalism in electronic TDDFT, introducing correla-
tion potentials with retardation. One example is an attempt to
describe double ionization of atoms by strong laser pulse,
discussed in Sec. VI.C. There are also attempts to treat
electron-electron collisions as an extension of quantum
chemistry methods such as multiconfiguration TDHF and
time-dependent configuration interaction theories (Caillat
et al., 2005).
In electronic systems, DFT and TDDFT have been widely

applied to extended systems. In describing electronic motions
in infinitely periodic systems (crystalline solids), the KS
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equation is solved in a unit cell of the solid, which is called
“first-principles band calculations.” Extended systems are
classified into metallic and insulating systems, depending
on the presence or absence of the band gap. Applying an
external field to insulators, there appear a dielectric polariza-
tion and a surface charge. The surface charge has an influence
on electrons inside the solid. Since it is the long-range effect, it
cannot be incorporated in the LDA. To include the polariza-
tion effect in the DFT, density polarization functional theory
(Gonze and Lee, 1997) has been developed in which the
polarization is treated as an independent degree of freedom.
A similar argument is applicable to electron dynamics in the
TDDFT. Consider a current flowing in an extended system, or
in a finite system, for example, a circular current flowing
through a nanomaterial of ring shape. It is difficult to
incorporate effects of the current on electron dynamics by
local approximation. For such cases, time-dependent current
density-functional theory (TDCDFT) treating current and
vector potential as basic variables has been developed
(Ullrich, 2012). The TDCDFT also attracts interest to incor-
porate retardation effects. It has been realized that the
retardation effects cannot be introduced consistently in
TDDFT, if one assumes the LDA (Dobson, 1994). In the
TDCDFT, it is possible to include the retardation effect in the
local approximation scheme (Vignale and Kohn, 1996).

B. Energy density functionals

In this section, we describe properties of EDFs of electronic
systems in practical use, with some emphasis on differences
from those in nuclear systems. As in nuclear TDDFT, the
adiabatic approximation of Eq. (32) is usually adopted for
most applications of electronic TDDFT; one employs the same
EDF as that in the static calculation, replacing a static density
with a time-dependent density without retardation. Therefore,
here we mainly describe EDF for the static (ground-state)
calculations. At the end of this section, we briefly mention
progress beyond the adiabatic approximation.
In nuclear DFT, a general form of the EDF as a functional of

density, density gradient, kinetic energy density, current
density, spin density, pair density, and so on has been
considered since the early stage of its progress (Engel et al.,
1975). In contrast, electronic DFT started with an EDF of
density only in the LDA and gradually developed to include
more complex elements.
The energy density of a uniform system as a function of

density is the most fundamental information for the EDF. An
accurate energy density of an electron gas system in the
ground state was obtained around 1980 (Ceperley and Alder,
1980). It was obtained by the MBPT at high density and by
numerical calculations using a quantum Monte Carlo method
at medium and low density, connecting to the energy density
of the Wigner crystal at very low density. Since then, a number
of LDA calculations have been carried out for various
systems, utilizing analytic forms of the functional which
are obtained by fitting the numerical energy density. When
treating systems with spin polarization such as isolated atoms
and ferromagnetic materials, a local spin density approxima-
tion treating densities of spin up and spin down as basic
variables was developed.

As a step toward higher accuracy from the LDA, EDFs
including a gradient of electron density were developed.
A group of EDFs with density gradient that are widely used
today is called the generalized gradient approximation (GGA).
They were constructed around 1990 and succeeded to increase
the accuracy substantially from the LDA (Sousa, Fernandes,
and Ramos, 2007). To further improve the accuracy, EDFs
including a kinetic energy density were developed. They are
called the meta-GGA (Tao et al., 2003). In developing these
new EDFs, exact analytical properties that should be satisfied
by an EDF are respected. These attempts to increase the
accuracy of the EDFs employing more and more elements
were named the Jacob’s ladder of the DFT by Perdew
et al. (2005).
At present, most successful EDFs in the sense of an

accurate description of measured properties are those called
“hybrid functional” (Koch and Holthausen, 2001). They use a
mixture of semilocal and nonlocal forms for the exchange
energy. The ratio of the mixture, which is determined
empirically, is chosen to be about 3∶1. In molecules, the
functional named B3LYP (Stephens et al., 1994) is known to
give good results for many systems and has quite often been
used (Laurent and Jacquemin, 2013). In infinitely periodic
systems, hybrid functionals have also been proposed (Heyd,
Scuseria, and Ernzerhof, 2003). However, their use is some-
what limited because the calculation of the nonlocal exchange
terms is computationally expensive in the plane wave basis
method that is popular in solid state calculations.
In electronic systems, computational methods to solve the

KS equation are classified into two. One is the local basis
expansion method in which the basis functions are given with
respect to atomic positions. This is adopted in most quantum
chemistry codes for molecules. The other is the grid repre-
sentation either in the coordinate or in the momentum space.
The grid representation in momentum, which is often called
the plane wave basis method, has been widely adopted in
computational codes of crystalline solids. Recently, the real-
space grid representation becomes more and more popular,
since it is superior for calculations with massively parallel
computers (Enkovaara et al., 2010; Andrade et al., 2012). In
the grid approach, it is difficult to describe inner orbitals that
are strongly bound to nuclei. The pseudopotential methods
have been developed to avoid this difficulty. In the local basis
expansion methods, nonlocal exchange terms can be managed
with a reasonable computational cost. However, in the grid
representation methods, the computational cost becomes
extremely high. This situation is similar to the nuclear DFT
calculations. In Skyrme HF calculations in which no nonlocal
term appears, the real-space grid representation is a popular
computational method, while in the HF calculations with
Gogny interaction, the basis expansion method such as the
harmonic oscillator basis is used to handle the nonlocal
Fock terms.
Even with hybrid functionals it is not possible to incorpo-

rate long-range electron correlations that are responsible
for the van der Waals forces which are important between
two neutral molecules. For this problem, one practical
and successful approach is to add a long-range potential
energy −C=R6 to every pair of atoms, on top of the DFT
(Grimme, 2006). Microscopic approaches to construct EDFs
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incorporating the long-range electron correlations have also
been actively pursued (Berland et al., 2015).
While accurate calculation of the ground-state energy is the

principal goal of the DFT calculations, orbital energies, in
particular, the energy gap between occupied and unoccupied
orbitals, is important to describe electronic excitations and
dynamics in TDDFT. Comparing energy gaps of insulators
obtained from eigenvalues of the KS equation with measured
energy gaps, the KS energy gaps are systematically too small.
For a better description of energy gaps, potentials as func-
tionals of the density gradient and of the kinetic energy
density have been developed. For atoms and molecules, a
potential named LB94 (van Leeuwen and Baerends, 1994),
which includes the density gradient, has been successfully
used for optical response calculations. The potential is
constructed so that it has the correct asymptotic form
−e2=r, which should be satisfied in electrically neutral
systems. For extended systems, the meta-GGA potential that
includes kinetic energy density was proposed by Tran and
Blaha (2009), which has attracted recent interest. These
potentials are directly given as a functional of density, gradient
of the density, and kinetic energy density. The EDFs that
provide these potentials are not constructed. We do not know
even whether such EDFs exist or not.
Beyond the adiabatic approximation is certainly an impor-

tant issue. In the linear response TDDFT, the number of
excited states is equal to the number of 1p − 1h configura-
tions. If one would hope to describe many-particle–
many-hole-like configurations within the linear response
TDDFT, the frequency dependence of the exchange-correla-
tion kernel, the second derivative of the energy density
functional with respect to densities, should be crucial.
Inclusion of electron-electron collision effects through the
energy density functional will also require the frequency
dependence. Although extensive efforts have been made to
construct nonadiabatic functionals, the functionals which are
useful for wide purposes have not yet been obtained. A
nonadiabatic energy functional in TDCDFT proposed by
Vignale and Kohn (1996) has been tested for several prob-
lems. In that functional, the nonadiabaticity has been dis-
cussed making relations to the viscoelastic stresses of
electronic quantum liquid.

C. Applications

1. Linear response

Among applications of electronic TDDFT, the linear
response TDDFT in the adiabatic approximation has been
widely used and highly successful to describe electronic
excitations and optical responses of molecules. As in nuclear
TDDFT, the basic idea is to extract excitation energies and
response functions from the density change induced by a weak
external field applied to molecules.
Historically, optical responses of spherical systems have

been investigated first. Using a similar approach to that in
nuclear theory employing the continuum Green’s function,
optical responses of rare gas atoms have been investigated by
Zangwill and Soven (1980) and of metallic clusters by Ekardt
(1984); see Sec. III.E.

In the middle 1990s and later, efficient computational
methods have been developed for linear response TDDFT
calculations of molecules without any spatial symmetries. A
matrix diagonalization method preparing occupied and unoc-
cupied orbitals was developed by Casida et al. (1998) and
named the “Casida method” (Sec. III.B). A method solving
the linear Schrödinger-like equation for a given external field
with a fixed frequency is known as the Sternheimer method
(Nakatsukasa and Yabana, 2001). A real-time method was
also developed (Yabana and Bertsch, 1996; Yabana et al.,
2006), solving the TDKS equation in real time after an
impulsive external field applied to the system (Sec. III.F).
The matrix diagonalization method is the most widely used in
practical purposes. The real-time method is superior to
calculate collective excitations to which a large number of
electron-hole pairs contribute. After the middle 1990s, linear
response TDDFT was implemented in many quantum chem-
istry codes as a tool to calculate electronically excited states of
molecules with reasonable accuracy and cost. Using these
codes, researchers who do not have much knowledge and
experience with TDDFT, including experimentalists, can
easily perform the linear response TDDFT calculations of
molecules. After 2011, the number of papers that include
TDDFT as keywords exceeded 1000 per year.
As the method was applied to a wide variety of molecules,

it was realized that linear response TDDFT with local or
semilocal approximation fails systematically (Ullrich, 2012).
For example, electronic excitation energies of long-chain
molecules are systematically underestimated. Excitation ener-
gies of charge-transfer excitations, in which the electron and
the hole are spatially remote, are also underestimated. These
failures are attributed to the incomplete cancellation of the
electron self-energy.
Linear responses of extended systems are characterized by

dielectric functions ϵð~q;ωÞ. The dielectric functions of met-
allic systems that are dominated by plasmon are reasonably
described by the adiabatic TDDFT. In contrast, it does not give
satisfactory results for semiconductors and insulators. In
these solids, optical responses around the band gap energy
are characterized by excitons, bound excited states of elec-
trons and holes. It was realized that the excitons cannot be
described in the adiabatic TDDFT with local approximations
(Onida, Reining, and Rubio, 2002). For optical responses in
semiconductors and insulators, the GW-plus-Bethe-Salpeter
approach, solving theBethe-Salpeter equationwith theGreen’s
functions containing self-energy given by the GW approxi-
mation, was quite successful (Rohlfing and Louie, 2000).

2. Electron dynamics under strong field

In nuclear physics, TDDFT calculations as initial-value
problems have been developed in the studies of heavy-ion
collisions. In electronic systems, similar initial-value
approaches have been widely applied to interactions of a
strong laser pulse with matters.
One of the active frontiers of laser science is to produce

strong and ultrashort light pulses and to explore their
interaction with matter. At an extremely intense limit, high
energy phenomena such as vacuum breakdown and nuclear
reactions induced by strong laser pulses have been actively
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investigated (Di Piazza et al., 2012). In material sciences,
interactions of light pulses whose scales are approaching
atomic units have attracted significant interest. When the
magnitude of the laser electric field approaches those of
binding electrons to ions, the electron dynamics induced by
the laser pulse will become extremely nonlinear (Brabec and
Krausz, 2000). The shortest light pulse available today is
comparable to the period of a hydrogen atom. Using such an
ultrashort laser pulse as a flash light, there have been intense
attempts to take snapshots of electron dynamics in atoms,
molecules, and solids (Krausz and Ivanov, 2009). To theo-
retically investigate extremely nonlinear and ultrafast electron
dynamics in matter, computational approaches solving the
time-dependent Schrödinger equation for one-electron sys-
tems and the TDKS equation for many-electron systems have
been extensively developed.
In strong laser pulse irradiation on atoms and molecules,

various phenomena such as tunnel and multiphoton ioniza-
tions, above threshold ionization, high harmonic generation,
and Coulomb explosion have been described using the real-
time TDDFT (Chu and Telnov, 2004; Marques and Gross,
2004; Ullrich, 2012). In the interaction of strong laser pulses
with metallic clusters, nonlinear interactions between a strong
laser pulse and the plasmon, collective electronic excitation,
play an important role (Calvayrac et al., 2000; Wopperer et al.,
2015). In the multiple ionization of atoms at relatively low
laser intensities, it is known that the secondary ionization
proceeds mainly through the rescattering process: an ionized
electron is accelerated by the applied laser pulse and collides
with the atom from which the electron was first emitted. This
collision process has been regarded as a test case to develop
EDFs that could describe collision effects. However, it turned
out that finding such a functional is, as anticipated, not an easy
task (Ullrich, 2012).
Recently, interactions of strong laser pulses with solids have

attracted interest, aiming at exploring new phenomena that
could bring innovative optical devices. The TDDFT calcu-
lations have been carried out to analyze nonlinear electron
dynamics in solids, including ultrafast current generation in
transparent material (Wachter et al., 2014), and coupled
dynamics of electrons and macroscopic electromagnetic fields
(Yabana et al., 2012).
Real-time TDDFT calculations have been applied to fields

other than laser sciences. One example is electron transfer
dynamics in ion collisions. Electronic TDHF calculations
have also been applied to nuclear fusion reactions in astro-
physical environments to investigate electronic screening
effects (Shoppa et al., 1993). The collision of energetic ions
impinging on a graphene sheet has been explored (Bubin
et al., 2012; Zhang, Miyamoto, and Rubio, 2012). Collisions
between multiply ionized and neutral atoms have been
investigated (Nagano et al., 2000).

3. Coupled dynamics of electrons and atoms

Before ending this section, we present a simultaneous
description of electronic and atomic motions. In nuclear
physics, there is no degree of freedom corresponding to
atomic motion. However, coupling of a slow collective motion

with fast internal motions as in nuclear fusion and fission
dynamics may have some similarities.
If the material has an energy gap and electrons always

stay in their ground state, we assume the adiabatic, Born-
Oppenheimer approximation. In such cases, we separate the
problem into two steps: For a given atomic configuration, we
first solve the static KS equation to obtain the electronic
ground state. Then the forces acting on atoms are calculated
using the Feynman-Hellman theorem. Finally the atomic
motions are calculated solving the Newton equation. This
is the so-called ab initio molecular dynamics calculation,
initiated with a slightly different implementation by Car and
Parrinello (1985).
Simultaneous descriptions of electronic excitation and

atomic motion, which are often termed nonadiabatic molecu-
lar dynamics, are much more involved. We first consider a
simple molecule where one or at most a few electronic states
are important. When the electronic levels are well separated,
we assume Newtonian motion for atoms on the adiabatic
potential energy surface. When the two electronic states come
close in energy at a certain atomic configuration, quantum
transitions between different potential energy surfaces need to
be treated. The potential energy surfaces may be efficiently
calculated with the linear response TDDFT. Such simulations
were widely applied to photomolecule reactions (Persico and
Granucci, 2014). We note that in such simulations the TDKS
equation needs not to be solved in real time.
How can we treat cases in which a number of electronic

levels are close in energy and transitions frequently take
place? The electronic excitation spectra can even form the
continuum in solids. There is an alternative method called
the Ehrenfest dynamics. In this method, the TDKS equations
for electrons and Newtonian equations for atoms are solved
simultaneously in real time, as coupled equations. At each
time, the force acting on each atom is calculated from the
electron density (Shinohara et al., 2010; Tavernelli, 2015).
These two methods are conceptually very different. The

former method utilizes the linear response TDDFT to prepare
potential energy surfaces, while the latter utilizes a solution
of real-time TDKS equation as an initial-value problem. At
present, it is empirically decided which method to use for a
given problem. Accumulation of results will eventually make
it possible to assess the quality of approximation of the two
approaches.

VII. SUMMARY AND FUTURE OUTLOOK

The TDDFTusing modern nuclear EDFs provides a unified,
systematic, and quantitative description of nuclear structure
and reaction. Thanks to its nontrivial density dependence, these
EDFs are capable of simultaneously reproducing the bulk
properties of nuclei (saturation, equation of state, etc.) and
properties of individual nucleus (shell effects, deformation,
etc.). The nuclear EDF also shows various kinds of sponta-
neous breaking of the symmetry (SSB). Especially, the trans-
lational symmetry is always violated for finite nuclei. The SSB
can be incorporated in a stringent manner by the DFT theorems
for the wave-packet states. Nevertheless, there remain several
open questions for rigorous justification of the DFT in nuclear
physics (Giraud, 2010). Because of a significant increase in
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computational resources and development in parallelized
computer programs, the TDDFT serves as modern approaches
to a variety of nuclear phenomena which were addressed only
with phenomenological models. Since all the parameters in
nuclear EDFs are basically fixed, it can provide nonempirical
predictions. In the present review, we summarize recent
developments in the three categories: linear density response,
real-time method, and requantization of TDDFT collective
submanifold.
The linear density response around the ground state is

known as (Q)RPA in nuclear physics. Recent calculations treat
all the residual fields induced by the density variations in the
EDF. This is particularly important for the separation of ANG
modes associated with the SSB. The program coding and
numerical computation have been facilitated by the finite
amplitude method and other iterative methods to the linear
response. These developments significantly reduce the com-
putational costs and necessary memory capacity for deformed
heavy nuclei.
The treatment of the continuum is another issue which has

been extensively studied in recent years to explore unique
properties of weakly bound nuclei near the drip lines. The
most complete formalism is the continuum QRPA simulta-
neously treating the continuum in the particle-hole and
particle-particle (hole-hole) channels with the Green’s func-
tion method. However, so far the numerical calculation has
been achieved only for spherical systems.
The real-time TDDFT calculation provides useful insight

into nuclear many-body dynamics, such as microscopic
understanding of nuclear reaction and energy dissipation.
One of the recent major achievements is the large-scale 3D
calculation in the TDBdGKS (TDHFB) scheme (Sec. IV).
Although the full calculations for nuclear dynamics in this
scheme are so far limited to the linear response, one can expect
further applications to large-amplitude dynamics in the near
future. In the meantime, the approximate treatment of the
BCS-like pairing may provide a useful guidance for that
(Sec. IV.A).
A microscopic derivation of the internucleus potential and

the dissipation was recently developed by several authors and
applied to many systems (Sec. IV.B). This provides a con-
nection between the microscopic TDDFT simulation and the
phenomenological potential approaches to nuclear fusion. The
method even quantitatively describes the sub-barrier fusion
reaction for some cases, by extracting the potential from the
TDDFT calculation (Umar and Oberacker, 2007, 2008). These
methods may be justifiable before two nuclei overlap sub-
stantially in the fusion process. However, it requires further
development and studies in clarifying the entire dynamics in
the fusion process. The real-time TDDFT studies of quasi-
fission are in progress too (Sec. IV).
Recent studies on the multinucleon transfer reaction show

reasonable agreement with experimental mass distribution
(Sec. IV.C). The fluctuations in major channels seem to be
taken into account by the TDDFT simulation with the particle-
number projection. However, some discrepancies were also
identified, especially in minor channels. For the improvement,
the stochastic mean-field and Baranger-Vénéroni variational
approaches may provide a tool to correct these missing

fluctuations and correlations (IV.C.2). It was partially suc-
cessful but further studies are desired.
At present, all the available nuclear EDFs seem to be unable

to express, in the KS scheme, correlations associated with
low-energy modes of (slow) collective motion. They have
been addressed by additional correlations beyond the KS
scheme, which includes the particle-vibration coupling, the
higher random-phase approximation, the time-dependent
density-matrix method, the generator coordinate method,
and so on. In this review, we put some emphasis on the
requantization of the TDDFT collective submanifold to take
into account the missing correlations (Sec. V). The self-
consistent derivation of a collective Hamiltonian (submani-
fold) suitable for description of low-energy large-amplitude
motion can be achieved by solving the ASCC equations. The
inertial masses include time-odd effects and are guaranteed to
produce the correct total mass for the translation. The method
also overcomes known difficulties in the adiabatic TDHF
method. It has been applied to studies of nuclear quadrupole
dynamics in the pairing-plus-quadrupole model. For the aim
of deriving a collective Hamiltonian for various kinds of
LACM on the basis of the modern EDFs, the finite amplitude
method and new iterative solvers in Sec. III.D may be utilized
to numerically solve the moving-frame QRPA equations in an
efficient way.
The collective inertial masses should be studied further-

more. The collective inertial mass, which is locally defined,
represents the inertia of the many-body system against an
infinitesimal change of the collective coordinate. As the
single-particle-energy spectrum in the mean field changes
during the LACM, the level crossing at the Fermi energy
successively occurs. We expect that the configuration rear-
rangement at the level crossing is essential to keep the system
at low energy. Thus, for low-energy nuclear dynamics, the
pairing correlation plays an essential role in determination of
the collective mass parameters (Barranco et al., 1990). It
remains as an interesting subject to investigate how the self-
consistent determination of the optimal directions of collective
motion and the finite frequency ωðqÞ of the moving-frame
QRPA modes affect the level crossing dynamics of the
superfluid nuclear systems.
In addition to the quadrupole collective motions, large-

amplitude collective phenomena associated with instability
toward octupole deformations of the mean field as well as
interplay of the quadrupole and octupole modes of excitations
have been widely observed in low-lying states of nuclei
(Butler and Nazarewicz, 1996). In the high-spin yrast
region where the nucleus is highly excited but cold (zero
temperature), new types of rotations and vibrations may
emerge (Satuła and Wyss, 2005), such as wobbling motions
(Hamamoto and Hagemann, 2003; Shoji and Shimizu,
2009; Frauendorf and Dönau, 2014) and superdeformed shape
vibrations (Nakatsukasa et al., 1996). It is quite interesting to
apply the microscopic theory of LACM to these new collec-
tive phenomena (Matsuyanagi et al., 2010). Macroscopic
quantum tunnelings through self-consistently generated bar-
riers, such as spontaneous fissions and deep sub-barrier
fusions, are, needless to say, great challenges of nuclear
structure physics.
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In electronic TDDFT, the linear response is considered to be
exact, and the anharmonic large-amplitude nature should not
matter (Sec. VI.A). The failures in describing a certain class of
excited states are due to incomplete EDFs, not to the limited
applicability of the linear response. This makes a striking
contrast to the concept of nuclear DFT and TDDFT. Because
of these conceptual differences, major efforts in the electronic
DFT and TDDFT are devoted to the improvement in the
quality of EDFs. Construction of a practical and accurate EDF
including the retardation effects beyond the adiabatic local
density approximation is currently under investigation. This is
a challenging subject in the electronic TDDFT. Nevertheless,
using the adiabatic EDFs, there have been numerous success-
ful applications in both the linear response and the initial-
value TDDFT for molecules and solids (Sec. VI.C).
The nuclear many-body dynamics in the large-amplitude

collective motion is still a big challenge for nuclear physics.
This review has described theoretical and computational
progress in the nuclear TDDFT studies, which we think is
significant in the last decades. We hope it provides stimulus to
researchers in the field.
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APPENDIX A: KRYLOV REDUCTION
OF THE RPA SPACE

It is easy to see that the 2d Krylov subspace (64) contains
the RPA-conjugate partners. In fact, ðNHÞmFv and
ðNHÞm ~Fv are RPA conjugate to each other [ðNHÞm ~Fv ¼
ð−1ÞmIfðNHÞmFvg�]. We can show this using HI ¼ IH�

and NI ¼ −IN .
Next let us map the RPA equation in the 2D space to that in

the 2d space. Suppose that we construct the N -orthonormal-
ized basis fQ1;…; Qd; ~Q1;…; ~Qdg from Eq. (64). Let us
define the 2D × 2d rectangular matrixQ≡ ðQ; ~QÞ, which is a
projection from the 2D full space into the 2d subspace. For
instance, the Hamiltonian and the norm matrix in Eq. (55) are
transformed into 2d × 2d Hermitian matrices as

h≡Q†HQ ¼
�

a b

b� a�

�
; n≡Q†NQ ¼

�
1 0

0 −1

�
:

Here a and b are d × d matrices given by aij ≡Q†
iNHQj ¼

−ð ~Q†
iNH ~QjÞ� and bij ≡Q†

iNH ~Qj ¼ −ð ~Q†
iNHQjÞ�. The

eigenvectors

zn ≡
�
xn
yn

�
; ~zn ≡

�
y�n
x�n

�

are obtained by diagonalizing the 2d × 2d matrix nh. In
analogy to Eq. (56), we define the matrix notation

z≡ ðz; ~zÞ ¼
�
x y�

y x�

�
; ω≡

�
ωd 0

0 ωd

�
:

The eigenvalue equation (57) is mapped to

nhz ¼ zωn: ðA1Þ

It is easy to show that the reduction (A1) preserves the sum
rules mL with odd L. Since the subspace (64) is complete for
intermediate states (L < 2d) in Eq. (63), we can replace the
norm matrix N by QnQ†. Then, Eq. (63) can be rewritten as

mL ¼ 1

2
ðFv þ ~FvÞ†QðnhÞLnQ†ðFv þ ~FvÞ

¼ 1

2
ðFv þ ~FvÞ†QzωLz†Q†ðFv þ ~FvÞ

¼
Xd
n¼1

ωL
n jhnjFj0ij2;

where we used the relation z†hz ¼ ω which is derived from
Eq. (A1). Here z†Q†ðFv þ ~FvÞ is nothing but the transition
strength hnjFj0i calculated with the approximate eigenvectors

Z0 ¼ Qz ¼
�
X0 Y 0�

Y 0 X0�

�
.

APPENDIX B: RESPONSE FUNCTION WITH THE
GREEN’S FUNCTION

In this Appendix, we show the derivation of Eq. (67). The
unperturbed (independent-particle) density response δR0ðωÞ
is defined by the limit of the vanishing residual kernels
w ¼ w0 ¼ 0. Since the response function Π0ðωÞ is diagonal
in the quasiparticle basis, it can be easily obtained from
Eq. (65) as

δR0ðωÞ ¼
X
i;j

�
Ψ0

i V
ðþ−Þ
ij

~Ψ0†
j

ω − Ei − Ej
þ

~Ψ0
i V

ð−þÞ
ij Ψ0†

j

−ω − Ei − Ej

�

¼
X
i;j

�
Ψ0

iΨ
0†
i V ~Ψ0

j
~Ψ0†
j

ω − Ei − Ej
þ

~Ψ0
i
~Ψ0†
i VΨ0

jΨ
0†
j

−ω − Ei − Ej

�
; ðB1Þ

which has poles at the two-quasiparticle energies
ω ¼ �ðEi þ EjÞ. Note that we have converted the quasipar-
ticle representation to a general form [cf. the transition
densities of Eq. (60)]. Adding the following zero to the
right-hand side,

X
i;j

� ~Ψ0
i
~Ψ0†
i VðωÞ ~Ψ0

j
~Ψ0†
j

ωþ Ei − Ej
þ

~Ψ0
i
~Ψ0†
i VðωÞ ~Ψ0

j
~Ψ0†
j

−ω − Ei þ Ej

�
¼ 0;

leads to

δR0ðωÞ ¼
X
i

fG0ðω − EiÞVðωÞ ~Ψ0
i
~Ψ0†
i

þ ~Ψ0
i
~Ψ0†
i VðωÞG0ð−ω − EiÞg: ðB2Þ
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Here the Green’s function G0ðEÞ is given by

G0ðEÞ ¼ ðE −Hs½R0�Þ−1 ¼
X
i

�
Ψ0

iΨ
0†
i

E − Ei
þ

~Ψ0
i
~Ψ0†
i

Eþ Ei

�
: ðB3Þ

This Green’s function contains both normal and abnormal
Green’s functions G0ðEÞ and F0ðEÞ in the 2 × 2 matrix form.
Equation (B2) can also be derived by the Fourier transform of
Eq. (48):

δR0ðωÞ ¼
X
i

fδ ~ΨiðωÞ ~Ψ0†
i þ ~Ψ0

i δ ~Ψ
†
i ð−ωÞg

and δ ~ΨiðωÞ ¼ G0ðω − EiÞVðωÞ ~Ψ0
i .

Now let us adopt a single-particle representation fαg. It
should be noted that, since the quasiparticle state has upper
and lower componentsUðαÞ and VðαÞ, the quantities with two
single-particle indices, such as VðωÞ, δR0ðωÞ, and G0ðEÞ,
are expressed in 2 × 2 matrix form. The response functions
Π0ðωÞ and ΠðωÞ with four indices should be expressed in the
ð2 × 2Þ ⊗ ð2 × 2Þ form. In order to avoid these complications,
we adopt the primed indices α0; β0;…, which are given
after Eq. (16).
Equation (B2) is represented as

δR0ðα0β0;ωÞ ¼
X
μ0ν0

Π0ðα0β0; μ0ν0;ωÞVðμ0ν0;ωÞ;

Π0ðα0β0; μ0ν0;ωÞ ¼
X
i

fG0ðα0μ0;ω − EiÞ ~Ψ0
i ðν0Þ ~Ψ0†

i ðβ0Þ

þ ~Ψ0
i ðα0Þ ~Ψ0†

i ðμ0ÞG0ðν0β0;−ω − EiÞg:
ðB4Þ

Similarly, the residual kernel W is represented by four
indices. In principle, according to Eq. (66), we may obtain
the QRPA response function ΠðωÞ and the density
response δRðωÞ.
Here we distinguish the upper Ψ0ð1Þ

i ¼ Ui and lower com-

ponents Ψ0ð2Þ
i ¼ Vi of the quasiparticle Ψ0

i , and introduce the
2 × 2 matrix form for the density δRðmnÞ and the external
potential VðmnÞ, and the ð2×2Þ⊗ ð2×2Þ form for the response
function Πðmn;pqÞ and the residual kernels Wðmn;pqÞ, with the
indices m; n; p; q ¼ 1 and 2. If the potential and residual
kernels have the diagonal character VðmnÞðαβÞ ¼ VðmnÞðαÞδαβ,
Wðmn;pqÞðαβ; μνÞ ¼ Wðmn;pqÞðα; μÞδαβδμν, we may simplify
Eq. (B4) to its diagonal representation

Πðmn;pqÞ
0 ðα; β;ωÞ ¼

X
i

fGðmpÞ
0 ðαβ;ω − EiÞ ~Ψ0ðqÞ

i ðβÞ ~Ψ0ðnÞ†
i ðαÞ

þ ~Ψ0ðmÞ
i ðαÞ ~Ψ0ðpÞ†

i ðβÞGðqnÞ
0 ðβα;−ω − EiÞg;

ðB5Þ

and the unperturbed density response is given by

δRðmnÞ
0 ðααÞ ¼

X
p;q¼1;2

X
β

Πðmn;pqÞ
0 ðα; βÞVðpqÞðβÞ:
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