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Interactions induced by electromagnetic fluctuations, such as van der Waals and Casimir forces, are of
universal nature present at any length scale between any types of systems. Such interactions are
important not only for the fundamental science of materials behavior, but also for the design and
improvement of micro- and nanostructured devices. In the past decade, many new materials have
become available, which has stimulated the need for understanding their dispersive interactions. The
field of van der Waals and Casimir forces has experienced an impetus in terms of developing novel
theoretical and computational methods to provide new insights into related phenomena. The
understanding of such forces has far reaching consequences as it bridges concepts in materials,
atomic and molecular physics, condensed-matter physics, high-energy physics, chemistry, and
biology. This review summarizes major breakthroughs and emphasizes the common origin of van der
Waals and Casimir interactions. Progress related to novel ab initio modeling approaches and their
application in various systems, interactions in materials with Dirac-like spectra, force manipulations
through nontrivial boundary conditions, and applications of van der Waals forces in organic and
biological matter are examined. The outlook of the review is to give the scientific community a
materials perspective of van der Waals and Casimir phenomena and stimulate the development of
experimental techniques and applications.
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I. INTRODUCTION

Phenomena originating from electromagnetic fluctuations
play an important role in many parts of science and technology.
TheCasimir effect, first predicted as an attractive force between
neutral perfect metals (Casimir, 1948), has made an especially
large impact. This nonclassical electromagnetic force is typ-
ically associated with the coupling between objects with
macroscopic dimensions. The same type of interaction known
as a Casimir-Polder force concerns atom-surface configura-
tions (Casimir and Polder, 1948). The conceptual realization of
the Casimir and Casimir-Polder effects, however, is much more
general. The connection of such interactions with broader
definitions of “dispersion forces” establishes a close relation-
shipwith thevan derWaals (vdW) force (Mahanty andNinham,

1976; Barton, 1999; Parsegian, 2006). The common origin of
vdW and Casimir interactions is directly related to their
fluctuations nature, since at thermodynamic equilibrium the
electromagnetic energy of dipoles (associated with the vdW
force) can also be associated with the energy stored in their
corresponding fluctuating electromagnetic fields (typically
associatedwith theCasimir regime), as illustrated schematically
in Fig. 1. The fact that these constitute the same phenomenon
has been known for several decades. Specifically, Barash and
Ginsburg (1984) write “The fluctuation nature of the van der
Waals forces for macroscopic objects is largely the same as for
individual atoms and molecules. The macroscopic and micro-
scopic aspects of the theory of the van der Waals forces are
therefore intimately related.”
This ubiquitous force, present between any types of

objects, has tremendous consequences in our understanding
of interactions and stability of materials of different kinds, as
well as in the operation of devices at the microscales and
nanoscales. The Casimir force becomes appreciable for
experimental detection at micron and submicron separations.
After the first experimental confirmation (Sparnaay, 1958),
subsequent and more precise measurements using torsional
pendulum (Lamoreaux, 1997), atomic force microscope
(AFM) (Mohideen and Roy, 1998), and micromechanical
systems (MEMS) (Chan et al., 2001; Decca et al., 2003) were
reported. It was realized that this interaction is especially
relevant for nanomechanical and micromechanical devices,
such as most electronic gadgets we use every day, where
stiction and adhesion appear as parasitic effects (Serry,
Walliser, and Maclay, 1995, 1998; Buks and Roukes, 2001).
van derWaals interactions are recognized to play a dominant

role in the stability and functionality of materials with chemi-
cally inert components, especially at reduced dimensions. The
most interesting recent example has been graphene and its
related nanostructures (Novoselov et al., 2004). The graphene
Dirac-like spectrum together with the reduced dimensionality
is responsible for novel behaviors in their Casimir and vdW
forces. The graphene explosion in science and technology has
stimulated discoveries of other materials, including 2D dichal-
cogenides, 2D oxides or other honeycomb layers, such as
silicene, germanene, or stanene, where dispersive forces are of
primary importance. Engineering heterostructures by stacking
different types of layers via vdWassembly is an emerging field
with many technological applications (Geim and Grigorieva,
2013). Other materials with Dirac spectra are also being

FIG. 1. Schematic representation of dispersive interactions induced by electromagnetic fluctuations for (a) the dipolar vdW force
between atoms and molecules, (b) the Casimir-Polder force between atoms and large objects, and (c) the Casimir force between large
objects. For small enough separations one can neglect retardation effects due to the finite speed of light c, which corresponds to the vdW
regime. For large enough separations, retardation effects become important, which is characteristic for the Casimir regime.
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investigated. For example, topological insulators, Chern
insulators, and Weyl semimetals are very interesting for the
Casimir or vdW field as the surface of such materials has a
distinct nature from the bulk.
The importance of the vdW interaction extends to organic

and biological matter. Perhaps the adhesion of the gecko,
a type of lizard from the Gekkota infraorder, has become a
pop-cultural poster child for such interactions after Autumn
and co-workers (Autumn et al., 2002) in a series of experi-
ments showed that complex hierarchical nanomorphology of
the gecko’s toe pads (Lee, 2014) allow them to adhere to
hydrophobic substrates (Autumn and Peattie, 2002).
Dispersion forces play an important role in the organization
of other biosystems, such as cellulose, lignin, and proteins.
The stability of biological matter via an array of lipid
membranes coupled through the vdW force is a fundamental
problem of much current interest in soft matter physics.
The stabilityofmanyhardmaterials, including composites and

heterostructures, is also closely related to their Casimir and vdW
interactions. Its electromagnetic nature makes this phenomenon
inherently long ranged as it depends in a complicated manner
upon the electromagnetic boundary conditions and response
properties of the materials. Metallic and dielectric structures
of nontrivial shapes lend themselves as a platform where this
aspect canbe investigated inorder to tailor this force in termsof its
magnitude and sign. The payoff is highly beneficial in the context
of being able to reduce the unwanted stiction and adhesion in
nano-electro-mechanical and micro-electro-mechanical devices
and improve their performance. Structured materials, including
metamaterials, photonic crystals, and plasmonic nanostructures,
on the other hand, allow the engineering of the optical density
of states and magnetic response, which is also useful for
manipulating the Casimir force.
Research published in the past decade has shown that the role

of materials can hardly be overestimated when it comes to the
description and understanding of dispersive interactions. In
addition to recent books discussing basic concepts (Parsegian,
2006; Bordag, Klimchitskaya et al., 2009; Dalvit et al., 2011;
Buhmann, 2012a, 2012b; Simpson and Leonhardt, 2015), there
are several existing topical reviews on the Casimir effect
with different emphasis. Aspects such as the quantum field
theory nature (Bordag, Mohideen, and Mostepanenko, 2001;
Milton, 2004), the quantum electrodynamics (QED) method
(Buhmann and Welsch, 2007), experimental progress
(Lamoreaux, 2005), the Lifshitz theory and proximity
force approximation (PFA) with related experiments
(Klimchitskaya, Mohideen, and Mostepananko, 2009), non-
trivial boundary conditions (Dalvit et al., 2011; Rodriguez,
Capasso, and Johnson, 2011; Buhmann, 2012b; Reid,
Rodriguez, and Johnson, 2013; Rodriguez et al., 2015), and
nanoscale aspects of long-ranged interactions (French et al.,
2010) have been summarized. Much of the research in these
works has focused on utilizing the Lifshitz approach and its
variations on the interplay between optical properties, thermal
effects, and geometrical configurations in typical metals,
semiconductors, and dielectrics.
A broader materials perspective of vdW and Casimir

interactions has not been considered so far. With recent
advances in materials science, especially in novel low-
dimensional materials, composites, and biosystems, this field

has become a platform for bridging not only distance scales,
but also concepts from condensed-matter, high energy, and
computational physics. There is an apparent need for discus-
sing progress beyond the existing topical reviews via a
materials perspective and give a broader visibility of this
field. The purpose of this article is to summarize advances in
the development and application of theoretical and computa-
tional techniques for the description of Casimir and vdW
interactions guided and motivated by progress in materials
discoveries. Each section of this review describes a separate
direction defined by the type of systems, length scales, and
applications of vdW and Casimir phenomena. An important
goal of this review is to provide a succinct presentation of
first-principles and coarse-grained computational methods,
highlighting how the distance scale is interconnected with
adequate microscopic and macroscopic descriptions of the
materials themselves. We consider vdWand Casimir phenom-
ena under equilibrium conditions, leaving aside other impor-
tant effects including nonequilibrium or critical Casimir
forces, which arguably warrant a separate review.
We begin the discussion with the vdW regime (Sec. II). The

most significant advances in the past decade have been
in the development of novel first-principles methods for
vdW calculations. Much of this progress has been motivated
by the need for an accurate description of vdW interactions in
materials as well as relevant experimental measurements.
In the next section (Sec. III), we move on to larger separation
scales and focus on emerging materials with Dirac-like spectra,
such as graphene and systems with nontrivial topological
phases. By summarizing results obtained via the Lifshitz theory,
QED approach, and perturbative Coulomb interaction calcu-
lations, we discuss how the Dirac spectra affect various
characteristics of the vdW and Casimir forces. The following
two sections are devoted to Casimir interactions in structured
materials. We discuss how the force can be manipulated by
engineering the response properties of materials and by the
presence of nontrivial boundary conditions. For this purpose, we
summarize important work in metamaterials, photonic crystals,
and plasmonic nanostructures in Sec. IV. Progress in the
development and application of brute-force computational
techniques based on macroscopic electromagnetism for dealing
with complex geometries in typical materials is presented in
Sec. V, along with recent comparisons of exact predictions
against well-established but ad hoc approximations, including
the proximity-force and pairwise-additive approximations.
Biological materials are included in Sec. VI by highlighting
results obtained via the Lifshitz and Hamaker theory calcula-
tions. Fluctuation phenomena for biosystems are also discussed
in light of other, Casimir-like phenomena.Much of this review is
focused on the rapid expansion of theoretical and computational
advances applied to the vdWand Casimir interactions, although
key experiments giving us unprecedented insight into vdWand
Casimir interactions are reviewed throughout the paper as well
as in Sec. VII. In the last section, we give our outlook for the
future by discussing open problems in this field.

II. AB INITIO METHODS FOR VAN DER WAALS FORCES

Noncovalent interactions between materials at separations
on the Å to a few nm scale, especially those arising from
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correlated electron fluctuations, play a key role in under-
standing their stability and organization. In recent years,
important advances have been made toward computational
methods for calculating vdW interactions with sufficient
accuracy. These state-of-the-art methods are firmly based
on a microscopic description of vdW interactions. Based on
the treatment of the electron degrees of freedom of the
atomistic system, we distinguish between two types of
approaches: exact and approximate formulations of the
many-body correlation energy. We discuss the essentials in
terms of the adiabatic connection fluctuation-dissipation
theorem (ACFDT), as both approaches rely on it. Based on
the substantial evidence accumulated over the last few years,
we argue that ubiquitous many-body effects in the vdWenergy
are crucial for accurate modeling of realistic materials. The
inclusion of these effects in first-principles calculations and
comparative performance evaluation for a wide range of
materials, including finite and periodic molecular systems,
(hard) insulating and semiconducting solids, and interfaces
between organic and inorganic systems are also discussed.

A. Exact nonrelativistic treatment of microscopic
van der Waals interactions

The exact energy of a microscopic system obtained via the
solution of its Schrödinger equation seamlessly includes the
vdW contribution. Explicitly solving the Schrödinger equa-
tion for more than a few electrons, however, is still a
prohibitive task due to the complexity of the many-body
problem. Therefore, first-principles modeling of realistic
materials often starts with more tractable mean-field models,
such as the Hartree-Fock approximation (HFA), or density-
functional approximations (DFAs), which utilize the three-
dimensional electron charge density nðrÞ in lieu of the more
complicated many-electron wave function. Unfortunately,
these commonly utilized approximations are unable to
describe the long-range electronic correlation energy and
therefore fail to treat vdW interactions.
The vdW energy is directly related to the electron corre-

lation energy Ec, which can be constructed exactly by
invoking the ACFDT (Gunnarsson and Lundqvist, 1976;
Langreth and Perdew, 1977)

Ec ¼ −
ℏ
2π

Z
∞

0

dω

×
Z

1

0

dλTrf½χλðr; r0; iωÞ − χ0ðr; r0; iωÞ�vðr; r0Þg; ð1Þ

where χλðr; r0; iωÞ and χ0ðr; r0; iωÞ are, respectively, the
interacting at Coulomb coupling strength λ and bare (non-
interacting) response functions. Here ω is the frequency of the
electric field, vðr; r0Þ ¼ jr − r0j−1 is the Coulomb potential,
and Tr denotes the spatial trace operator (six-dimensional
integral) over the spatial electronic coordinates r and r0. The
essential idea is that Eq. (1) is an adiabatic connection
between a reference noninteracting mean-field system with
λ ¼ 0 and the fully interacting many-body system with λ ¼ 1.
The vdW contribution can be found from Ec in a tractable
manner provided that a set of single-particle orbitals computed

with DFAs or HFA can be used to construct χ0ðr; r0; iωÞ.
This is still a formidable computational task for systems with
thousands of electrons. In addition, approximations are
needed to obtain χλðr; r0; iωÞ for 0 < λ ≤ 1.
The power and significance of the ACFDT approach is that

essentially all existing vdW modeling methods can be derived
from approximations to Eq. (1). For example, the widely
employed pairwise approximation is obtained by truncating
the ACFDT expression to second order in the perturbative
expansion of the Coulomb interaction. The simple addition of
interatomic vdW potentials that is used to compute the vdW
energy in classical force fields and DFA calculations can be
recovered from Eq. (1) by further approximating the response
function as a sum of independent dipole oscillators located at
every nucleus in a given material (Tkatchenko, Ambrosetti,
and DiStasio, 2013). The vdW-DF approach originated by
Langreth, Lundqvist, and collaborators (Dion et al., 2004;
Cooper, Kong, and Langreth, 2010; Lee et al., 2010) that has
become widely used to correct semilocal DFAs can also be
derived from Eq. (1) by making a local approximation to the
response function in terms of the electron density and then
employing second-order perturbation theory. However, the
main shortcoming of all these rather efficient approximations
is that they are unable to capture the nontrivial many-body
effects contained in the interacting response function
χλðr; r0; iωÞ as well as the infinite-order nature of the
ACFDT expression in Eq. (1).

B. Response functions and polarization waves

The interacting response function is defined self-
consistently via the Dyson-like equation

χλ ¼ χ0 þ χ0ðλvþ fxcλ Þχλ; ð2Þ

which contains the exchange-correlation kernel fxcλ ðr; r0; iωÞ,
an unknown quantity which must be approximated in practice.
Neglecting the explicit dependence of fxcλ on the coupling
constant allows for an analytic integration over λ in Eq. (1) and
forms the basis for the most widely employed approximation,
namely, the random-phase approximation (RPA) (Bohm and
Pines, 1953; Gell-Mann and Brueckner, 1957).
The noninteracting response function can be obtained using

the Adler-Wiser formalism (Adler, 1962; Wiser, 1963), given
a set of occupied and unoccupied electronic orbitals fϕig with
corresponding energies fϵig and occupation numbers ffig
determined from semilocal density-functional theory (DFT),
Hartree-Fock, or hybrid self-consistent field calculations, i.e.,

χ0ðr; r0; iωÞ ¼
X
ij

ðfi − fjÞ
ϕ�
i ðrÞϕiðr0Þϕ�

jðr0ÞϕjðrÞ
ϵi − ϵj þ iω

: ð3Þ

This mean field χ0 can exhibit relatively long-range fluctua-
tions (polarization waves), the extent of which is determined
by the overlap between occupied and rather delocalized
unoccupied electronic states used in Eq. (3). In this frame-
work, the fluctuations in χ1 may be shorter ranged than in χ0,
especially in 3D solids where the Coulomb interaction leads to
significant screening effects. The situation is generally very
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different in anisotropic nanostructured materials, where the
Coulomb interaction might lead to so-called antiscreening
effects, i.e., significantly farsighted polarization waves [see
Fig. 2(a)].
So far, the general understanding of polarization waves

comes from coarse-grained approximations to the density-
density response function. For example, Dobson, White, and
Rubio (2006) found that the asymptotic vdW interaction
between two low-dimensional metallic objects differs quali-
tatively from the commonly employed sum-over-pairs expres-
sions. Another example is the vdW graphene-graphene
interaction energy decays as d−3, instead of the conventionally
expected d−4 power law. Here, however, many-body renorm-
alization of the Dirac graphene carriers beyond the RPA might
lead to a vdW interaction power law between d−3 and d−4

(Dobson, Gould, and Vignale, 2014) (also discussed in
Sec. III.C). This is a matter of ongoing debate.
For some time it was assumed that complete delocalization

of fluctuations is required to identify interesting deviations
from the otherwise pairwise-additive behavior. However,
Misquitta et al. (2010, 2014) demonstrated that semiconduct-
ing wires also exhibit unusual asymptotics, which becomes
more pronounced with the decrease of the band gap. In this
case, the vdW interaction exhibited a power law of d−2 at large
but finite distances, converging to the standard d−5 behavior
for large interwire separations. Ambrosetti et al. (2016)
analyzed the spatial extent of dipole polarization waves in
a wide range of systems and demonstrated a continuous
variation of the power law for finite distances between 1D
wires and 2D layers with visibly enhanced nonlocal responses
due to the collective many-body effects. Such relative
farsightedness of vdW interactions provides an avenue for
appropriately tuning the interactions between complex polar-
izable nanostructures.

Another way to understand polarization waves in materials
consists of studying the renormalization (nonadditivity) of
polarizability and vdW coefficients for different systems as a
function of their size and topology. Ruzsinsky et al. (2012)
modeled the polarizability of fullerenes employing a hollow
shell model with a finite thickness. They demonstrated that the
polarizability scales superlinearly as a function of fullerene
size. This leads to a superquadratic increase in the vdW C6

coefficients, clearly demonstrating the importance of long-
range fluctuations. Tao and Perdew (2014) extended these
findings to a wide range of nanoclusters. Recently, Gobre and
Tkatchenko (2013) studied the dependence of carbon-carbon
vdW coefficients for a variety of carbon nanomaterials and
they found that vdW C6 coefficients could change from 20 to
150 hartree bohr6 depending on the dimensionality, topology,
and size of the carbon nanostructure. This demonstrates the
extreme nonadditivity of vdW interactions in low-dimensional
materials and highlights the need to include collective effects
in vdW interactions when modeling the self-assembly of such
nanostructures.

C. Approximate microscopic methods for van der Waals
interactions

Since the vdWenergy is a small part of the total energy of a
many-electron system, vdW methods have to be coupled to an
underlying electronic structure method that provides an
adequate treatment of hybridization, charge transfer, electro-
statics, and induced polarization, among other electronic
structure effects. DFT with approximate exchange-correlation
functionals provides an optimal approach in this regard. DFT
is able to correctly describe short-range quantum-mechanical
interactions and also treats classical electrostatic and polari-
zation effects rather accurately. The total energy Et of a many-
electron system is

Et ¼ Ekin þ Ees þ Ex þ Ec; ð4Þ

where Ekin is the electronic kinetic energy (corresponding to
mean-field kinetic energy in the Kohn-Sham framework), Ees
is the electrostatic energy (including nuclear repulsion, elec-
tron-nucleus attraction, and Hartree electron-electron repul-
sion), and Ex and Ec are the nonclassical exchange and
correlation terms, respectively. Most DFT methods utilize
semilocal approximations by using information about the
electron density (local density approximation) and its gra-
dients (generalized gradient approximation, GGA). Other
approaches are based on the Laplacian of the electron density
in the so-called meta-GGA functionals (Zhao and Truhlar,
2008; Sun et al., 2013). It may also be advantageous to
include a certain amount of exact Hartree-Fock exchange in
the DFA, leading to so-called hybrid functionals.
We note that from ACFDT Ex and Ec are nonlocal [Eq. (1)].

The correlation energy Ec, which is of relevance to the vdW
interaction, can be written as Ec ¼ Esl þ Enl, where Esl is the
semilocal correlation energy and Enl is the nonlocal part. The
fact that such partition is not unique has led to a flurry of
heuristic approaches that aim to construct a reliable approxi-
mation to the full electronic correlation energy. The different
classes of methods for the nonlocal correlation energy are

(a) (b)

(c) (d)

FIG. 2. Schematic representation of first-principles methods for
the (a) exact formulation of the electronic correlation energy Ec
from the adiabatic connection fluctuation-dissipation theorem;
(b) formulation based on coupled dipolar fluctuations, such as the
many-body dispersion (MBD) methods (Tkatchenko, DiStasio
et al., 2012;Ambrosetti, Reilly et al., 2014); (c)Ec using two-point
functionals obtained by approximating the nonhomogeneous
system with a homogeneouslike response; and (d) fragment-based
correlation energy obtained from multipolar expansions.

L. M. Woods et al.: Materials perspective on Casimir and van der …

Rev. Mod. Phys., Vol. 88, No. 4, October–December 2016 045003-5



schematically shown in Fig. 2 and are summarized in what
follows.

1. Two-point density functionals for van der Waals interactions

Obtaining an exact expression for χλðr; r0;ωÞ in general is
not possible. However, for a 3D homogeneous electron gas the
correlation energy can be written exactly in terms of the
electron density nðrÞ. Approximating the polarization of a
nonhomogeneous system assuming an homogeneouslike
response is possible in certain situations (Rapcewicz and
Ashcroft, 1991; Dobson and Dinte, 1996). These ideas have
led to the derivation of the vdW-DF approach. In addition to
the approximation of the interacting polarizability as a local
quantity, one also takes a second-order approximation in
Eq. (1) assuming χλ ¼ χ1. Thus the nonlocal correlation
energy is obtained as

EvdW-DF
nl ¼

Z
nðrÞKðr; r0Þnðr0Þdrdr0; ð5Þ

where Kðr; r0Þ is a “vdW propagator” [Fig. 2(c)]. Note that
Eq. (5) constitutes a great simplification over the exact Eq. (1)
since only nðrÞ and its gradient (utilized in K) are required.
The original implementation of this additive nonlocal

correlation energy to the total DFT energy was proposed to
couple EvdW-DF

nl to a revised Perdew-Burke-Ernzerhof func-
tional (Zhang and Yang, 1998), the rationale being that this
functional yields repulsive binding energy for prototypical
vdW-bound systems, such as rare-gas dimers (Dion et al.,
2004). A follow-up implementation using the DFT functional
PW86 (Lee et al., 2010) has generated a revised, vdW-DF2
functional. While the vdW-DF2 approach was shown to
perform much better for intermolecular interactions, its
behavior at vdW distances is significantly deteriorated when
compared to vdW-DF (Vydrov and Van Voorhis, 2010).
Specifically, while the vdW C6 coefficients in the vdW-DF
method are accurate to 19%, the error increases to 60% when
using vdW-DF2. These approaches illustrate the challenging
problem of balancing between semilocal and nonlocal inter-
actions in a meaningful manner.
Following the success of the vdW-DF approach, Vydrov

and Van Voorhis (VV) provided a significantly simplified
vdW functional derivation and revised the definition of
local polarizability by employing a semiconductorlike
dielectric function along with the Clausius-Mossotti relation
between polarizability and dielectric function (Vydrov and
Van Voorhis, 2009, 2012). The VV approach requires one
parameter for the local polarizability and a second one for the
coupling between the nonlocal vdW energy with the parent
DFA approach. The VV functional was assessed with a wide
range of semilocal and hybrid functionals, and by tuning
these two parameters, it yielded remarkable performance for
intermolecular interactions compared to benchmark data from
high-level quantum-chemical calculations (Vydrov and
Van Voorhis, 2012). Other approaches, such as the C09x
functional of Cooper (2010) and the “opt” family by Klimeš,
Bowler, and Michaelides (2010, 2011), rely on the same
definition in Eq. (5); however, the coupling with the DFA is
revised by adjusting one or more parameters in the semilocal

functional. The opt functional parameters, in particular, were
adjusted to a benchmark database of intermolecular inter-
action energies showing a good performance for cohesive
properties of solids (Klimeš, Bowler, and Michaelides, 2011).
There are indications, however, that the opt functionals
overestimate the binding in larger and more complex molecu-
lar systems (Klimeš and Michaelides, 2012).
These recent developments have led to many novel insights

into the nature of vdW interactions. However, the drastic
approximations in EvdW-DF

nl in terms of the additive polar-
izability and the dependence on the electron density on two
points only must be assessed carefully for realistic materials.
The neglected nonadditive effects can play an important role
in many systems (Dobson, White, and Rubio, 2006; Misquitta
et al., 2010, 2014; Ruzsinsky et al., 2012; Gobre and
Tkatchenko, 2013; Tao and Perdew, 2014; Tkatchenko,
2015; Ambrosetti et al., 2016). Also, the neglected three-
body Axilrod-Teller and higher-order terms may be quite
prominent as well (Donchev, 2006; Shtogun and Woods,
2010; DiStasio, von Lilienfeld, and Tkatchenko, 2012;
Tkatchenko, DiStasio et al., 2012; Marom et al., 2013;
Ambrosetti, Alfe et al., 2014; Kronik and Tkatchenko,
2014). At this point it is unclear how to incorporate higher-
order terms in existing nonlocal vdW functionals without
substantially increasing their cost. One possibility is going
toward RPA-like approaches, but this would mean departing
from a pure density-functional picture. Another possibility
entails further coarse graining of the system to a fragment-
based description, the progress of which is summarized next.

2. Fragment-based methods for van der Waals interactions

Fragment-based methods can be traced back to the original
work of London (1930), in which case by utilizing second-
order perturbation theory for the Coulomb interaction the
dispersion energy between two spherical atoms A and B can
be obtained. The London expression, often using just the
dipolar term C6;AB=R6

AB, is the basis for calculating vdW
dispersion energies in a wide range of atomistic methods,
including Hartree-Fock calculations (Hepburn and Scoles,
1975; Ahlrichs, Penco, and Scoles, 1977), DFA calculations
(Johnson and Becke, 2005; Grimme, 2006; Tkatchenko and
Scheffler, 2009; Grimme et al., 2010; Steinmann and
Corminboeuf, 2011), and quantum chemistry methods

(Tkatchenko et al., 2009). Eð2Þ
vdW is valid only at large

separations for which the overlap between orbitals of atoms
A and B can be neglected. At shorter separations the overlap
naturally reduces the interaction (Koide, 1976), which can be
conveniently included by a damping function (Tang and
Toennies, 1984; Johnson and Becke, 2005; Grimme, 2006;
Tkatchenko and Scheffler, 2009; Grimme et al., 2010)

Eð2Þ
vdW ¼

X6;8;10;…

n

fd;nðRAB; Rc;ABÞ
Cn;AB

Rn
AB

; ð6Þ

where fd;nðRAB; Rc;ABÞ is the damping function that depends
on a cutoff radius Rc;AB [Fig. 2(d)]. This type of approach can
be quite useful in DFA-GGA functionals, such as PBE
(Perdew, Burke, and Ernzerhof, 1996), which perform very
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well for chemical bonds. In this case, the dipolar approxima-
tion to Eq. (6) is sufficient (Elstner and Hobza, 2001;
Wu et al., 2001; Wu and Yang, 2002; Grimme, 2004;
Zimmerli, Parrinello, and Koumotsakos, 2004). These
“DFT-D” approaches have experienced tremendous develop-
ments. In particular, Grimme (2006) published a set of
empirical parameters for a range of elements and demon-
strated that the addition of dispersion energy to a wide range
of functionals yields remarkably accurate results for intermo-
lecular interactions. In the latest DFT-D3 method, Grimme
extended his empirical set of parameters to cover elements
from H to Pu (Grimme et al., 2010).
Considerable efforts have been dedicated toward determin-

ing vdW parameters directly from electronic structure calcu-
lations also. (Johnson and Becke (2005) developed an
approach based on the exchange-hole dipole moment to
determine vdW coefficients, which can be computed by using
Hartree-Fock orbitals. Later, Steinmann and Corminboeuf
(2011) presented an alternative derivation based on electron
density and its first and second derivatives. The alternative
derivation of the fragment-based vdW-DF functional by Sato
and Nakai (2009, 2010) demonstrated an interesting connec-
tion (and potential equivalence) between fragment-based
methods and explicit nonlocal functionals. Tkatchenko and
Scheffler (2009) (TS) developed a DFA based approach to
determine both C6;AB coefficients and Rc;AB radii as func-
tionals of the electron density, which implies that the vdW
parameters respond to changes due to hybridization, static
charge transfer, and other electron redistribution processes.
The TS approach demonstrated that by utilizing the electron
density of a molecule and high-level reference data for the free
atoms, it is possible to obtain asymptotic vdW coefficients
with accuracy of 5.5%, improving by a factor of 4–5 on other
existing approaches at the time. Bučko et al. (2013a, 2014)
pointed out that an iterative Hirshfeld partitioning scheme for
the electron density can significantly extend the applicability
of the TS method to ionic materials.
This field is still developing at a rather quick pace; therefore

revised and completely new fragment-based approaches are
still being introduced.

3. Beyond pairwise additivity: Improved accuracy and efficiency
via many-body van der Waals methods

In more complex and heterogeneous systems, it is necessary
to go beyond the simple additive models and further efforts of
atomistic vdW modeling must be directed toward the inclu-
sion of many-body effects. In principle, RPA using DFA
orbitals provides a good model; however, the dependence of
χ0 on the exchange-correlation functional and the high
computational cost in the χ0 computations may be limiting
factors. The main challenge is to construct reliable approx-
imations for the long-ranged vdW correlations, since the
short-ranged correlation effects are well accounted for in DFA.
Therefore, the full χ0ðr; r0; iωÞ is often unnecessary as is the
case in nonmetallic or weakly metallic systems. In such
situations, it is possible to describe χ0 by a set of localized
atomic response functions (ARFs), which can be constructed
to accurately capture the electronic response beyond a certain
cutoff distance.

Although the ARF concept has been employed in model
systems starting 50 years ago (Bade, 1957; Donchev, 2006,
Cole et al., 2009; Shtogun and Woods, 2010; Liu, Angyan,
and Dobson, 2011), only recently has this idea been extended
to nonlocal vdW interactions in realistic materials (DiStasio,
Gobre, and Tkatchenko, 2014). For this purpose, spatially
extended ARFs that increase the applicability of the model to
include close contact have been used within the so-called
many-body dispersion (MBD) method, schematically illus-
trated in Fig. 2(b) (Tkatchenko, DiStasio et al., 2012;
Ambrosetti, Reilly et al., 2014). Within this approach, each
pth atom in the material is represented by a single dipole
oscillator with a frequency-dependent polarizability

αpðiωÞ ¼
αp;0ω

2
p;0

ω2
p;0 þ ω2

;

where αp;0 is the static polarizability and ωp;0 is an effective
excitation (or resonant) frequency. The bare ARF response
then is written as

χ0;pðr; r0; iωÞ
¼ −αpðiωÞ∇rδ

3ðr −RpÞ ⊗ ∇r0δ
3ðr0 −RpÞ; ð7Þ

where Rp is the location of the pth atom and ⊗ signifies a
tensor product. The bare response function for a collection of
atoms follows simply as the direct sum over the individual
ARFs, χ0ðr; r0; iωÞ ¼ χ0;pðr; r0; iωÞ ⊕ χ0;qðr; r0; iωÞ ⊕ � � �.
The ARF response contains the infinite-order correlations
from the start and it can be used in Eq. (1) to calculate the
interaction energy. It has been demonstrated that the RPA
correlation energy is equivalent to the exact diagonalization of
the Hamiltonian corresponding to ARFs coupled by a long-
range dipole potential (Tkatchenko, Ambrosetti, and DiStasio,
2013). Using second-order perturbation theory one also
recovers the well-known pairwise-additive formula for the
vdW energy (Tkatchenko, Ambrosetti, and DiStasio, 2013).
We note that the solution of Eq. (1) for a model system of

ARFs yields an expression for the long-range correlation
energy beyond what would simply be called “vdW dispersion
energy” in the traditional London picture (London, 1930).
Even for two atoms described by dipole-coupled ARFs, the
correlation energy contains an infinite number of terms
Cn;AB=Rn

AB. The polarizability of the combined AB system
in general is not equal to the sum of polarizabilities of isolated
atoms A and B, and higher-order correlation terms account
precisely for this fact. It was found that the convergence of the
perturbative series expansion in Eq. (6) can be extremely slow,
especially for systems which have either high polarizability
density or low dimensionality. This is clearly illustrated by the
binding energy in supramolecular complexes or double-
walled nanotubes, for which even 8-body terms make a
non-negligible contribution to the correlation energy on the
order of 2%–3% (Ambrosetti, Alfe et al., 2014).

D. Applications of atomistic van der Waals methods to materials

Our previous discussions show that the developments of
novel many-body methods and understanding of many-body
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effects in the vdW energy are an area of significant current
interest (Tkatchenko, DiStasio et al., 2012; Otero-de-la Roza
and Johnson, 2013; Silvestrelli, 2013; Ambrosetti, Reilly
et al., 2014; Modrzejewski, Chałasinski, and Szczesniak,
2014). This is highly motivated from an experimental point
of view as well. Being able to describe vdW interactions in
different systems is highly desirable in order to explain
existing and predict new experimental findings. Figure 3
summarizes typical results from ab initio calculations, as
described later, for cohesion energies and error ranges as
compared to available reference data.

1. Finite and periodic molecular systems

For smaller molecules, high-level quantum-chemical
benchmarks using coupled-cluster calculations are now wide-
spread (Jurecka et al., 2006; Takatani et al., 2010; Rezac,
Riley, and Hobza, 2011). In particular, the coupled-cluster
method with single, double, and perturbative triple excitations
[CCSD(T)] is currently considered as the “gold standard” of
quantum chemistry. For yet larger molecules (up to 200 light
atoms), it is possible to carry out diffusion quantum
Monte Carlo (DQMC) calculations (Ambrosetti, Alfe et al.,
2014; Benali et al., 2014) using massively parallel computer
architectures. DQMC calculations in principle yield the exact
solution (within statistical sampling accuracy) for the
Schrödinger equation within the fixed-node approximation
(Foulkes et al., 2001). Examples of small molecules bench-
mark databases are those for the S22 (Jurecka et al., 2006;
Takatani et al., 2010) and S66 (Rezac, Riley, and Hobza,
2011) dimers, containing 22 and 66 dimers, respectively. For
supramolecular systems, the S12L database was recently
introduced by Grimme (2012) and benchmark binding ener-
gies for 6 of these 12 complexes were calculated using DQMC
(Ambrosetti, Alfe et al., 2014). For extended periodic

molecular crystals, one can rely on experimental lattice
enthalpies, extrapolated to 0 K and with zero-point energy
subtracted. Two databases, C21 (Otero-de-la Roza and
Johnson, 2012) and X23 (Reilly and Tkatchenko, 2013a),
were recently introduced for molecular crystals. Both of these
databases include molecular crystals bound primarily by either
hydrogen bonds or vdW dispersion, including a few crystals
with mixed bonding nature. The X23 database extended the
C21 one and improved the calculation of vibrational con-
tributions required to convert between experimental sublima-
tion enthalpies and lattice energies.
Initially, the development of atomistic methods for vdW

interactions was largely driven by their performance for small
molecules in the S22 and S66 databases. Currently, the best
methods are able to achieve accuracies of 10–20 meV (better
than 10%) in the binding energies compared to reference
CCSD(T) values (Fig. 3). The errors are due to inaccuracy in
the asymptotic vdW coefficients, empirical parameters in
damping functions, and errors in the exchange-correlation
functional.
Because of such rather uniform performance of different

methods for small molecules, the focus has shifted to
assessing the performance for larger systems. Here, in fact,
the differences are more prominent, because the vdW energy
makes a much larger relative contribution to cohesion. For
example, for polarizable supramolecular systems, such as the
“buckyball catcher” complex, pairwise dispersion corrections
overestimate the binding energy by 0.4–0.6 eV (Tkatchenko,
Alfè, and Kim, 2012) compared to reference DQMC values.
Only upon accurately including many-body dispersion effects
does one obtain results within 0.1 eV from the best available
benchmark (Ambrosetti, Alfe et al., 2014). So far, vdW-DF
functionals have not been applied to study binding energetics
in the S12L database.

FIG. 3. Various types of materials with calculated cohesion energies and errors as compared to available reference data. The top row of
values shows typical errors of atomistic vdW methods compared to benchmark bending energies, while the bottom row of values shows
contributions of the vdW energy to the binding energy of the corresponding materials.
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For periodic molecular crystals, some pairwise and many-
body fragment-based methods are able to achieve remarkable
accuracy of 40–50 meV per molecule (5% mean absolute
relative error), compared to experimental results (Reilly and
Tkatchenko, 2013a, 2013b; Brandenburg and Grimme, 2014).
Since the difference in lattice energies between various
available experiments is on the same order of magnitude,
this highlights the mature state of vdW dispersion corrections
to the DFA. The vdW-DF2 approach yields a somewhat larger
error of ≈70 meV (7.5%) on the C21 database (Otero-de-la
Roza and Johnson, 2012). Understanding the performance of
different vdW-inclusive methods for large molecular systems
is still a subject of ongoing research. Some of the pairwise
correction approaches have been specifically fitted to periodic
systems, trying to mimic many-body screening effects by
changing the short-range damping function. This procedure
seems to work well for certain molecular crystals with high
symmetry, but this is obviously not a transferable approach.
Many-body vdW correlations become even more relevant

for the relative energetics of molecular systems, which are
essential to predict the correct polymorphic behavior of
molecular crystals. Marom et al. (2013) demonstrated the
fact that only upon including many-body effects is one able to
correctly reproduce the structures and relative stabilities of
glycine, oxalic acid, and tetrolic acid. Another interesting
example is the aspirin crystal, for which a long-standing
controversy has been about the relative stability of poly-
morphs forms I and II (Ouvrard and Price, 2004). Reilly and
Tkatchenko (2014) recently demonstrated that the stability of
the most abundant form I arises from an unexpected coupling
between collective vibrational and electronic degrees of
freedom (dynamic plasmon-phonon coupling). In this case,
many-body vdW correlations renormalize phonon frequencies
leading to low-frequency phonon modes that increase the
entropy and ultimately determine the stability of this ubiqui-
tous form of aspirin in comparison to the metastable form II.
Furthermore, the bulk and shear moduli of both forms are
substantially modified and become in better agreement with
experiments when calculated with DFAþMBD. The aspirin
example illustrates how the inclusion of many-body vdW
effects may lead to novel qualitative predictions for the
polymorphism and elastic response of molecular materials.

2. Condensed materials

For hard solids (ionic solids, semiconductors, and metals),
the role of vdW interactions was considered to be negligible for
a long time, as judged, for example, by classical condensed-
matter textbooks (Ashcroft and Mermin, 1976; Kittel, 1986).
The rather strong cohesion in hard solids stems from covalent
and metallic bonds or from classical Coulomb interaction
between localized charges (Fig. 3). Early estimates of vdW
interactions in hard solids varied substantially from being
negligible to being very important (Mayer, 1933; Rehr,
Zaremba, and Kohn, 1975; Ashcroft and Mermin, 1976;
Richardson and Mahanty, 1977; Tao, Perdew, and
Ruzsinszky, 2010). Recently, this issue was systematically
revisited by employing DFA with vdW interactions. Zhang
et al. (2011) demonstrated that long-range vdW interactions
account for ≈ 0.2 eV=atom in the cohesive energy for Si, Ge,

GaAs, NaCl, and MgO, and 9–16 GPa in the bulk modulus.
This amounts to a contribution of 10%–15% in the cohesive
energy and bulk modulus—far from being negligible if one
aims at an accurate description of these properties. Klimeš,
Bowler, and Michaelides (2011) applied their opt functionals
based on the vdW-DF approach to a large database of solids
finding that vdW interactions play an important role for an
accurate description of cohesive properties. Overall, their
conclusion is that vdW interactions allow the improvement
of the performance of many different xc functionals, achieving
good performance for both small molecules and hard solids.
Because vdW interactions are important for absolute

cohesive properties of solids, any property that depends on
energy differences is also likely to be influenced by vdW
effects. Therefore, vdW interactions often play an important
role in the relative stabilities of different solid phases, phase
transition pressures, and phase diagrams as demonstrated for
polymorphs of TiO2 (Moellmann et al., 2012), ice (Santra
et al., 2011), different reconstructed phases of the oxidized
Cu(110) surface (Bamidele et al., 2013), and alkali borohy-
drites (Huan et al., 2013).
The properties of many solids are substantially affected by

the presence of simple and complex defects, such as neutral
and charged interstitials and vacancies (Freysoldt et al., 2014).
The formation of defects entails a modification of polarization
around defect sites and this can have a substantial effect on the
contribution of vdW energy to the stability and mobility of
defects. Gao and Tkatchenko (2013) demonstrated the fact
that the inclusion of many-body vdW interactions in DFA
improves the description of defect formation energies, sig-
nificantly changes the barrier geometries for defect diffusion,
and brings migration barrier heights into close agreement with
experimental values. In the case of Si, the vdW energy
substantially decreases the migration barriers of interstitials
and impurities by up to 0.4 eV, qualitatively changing the
diffusion mechanism (Gao and Tkatchenko, 2013). Recently,
the proposed mechanism was confirmed by explicit RPA
calculations (Kaltak, Klimeś, and Kresse, 2014).

3. Interfaces between molecules and solids

The predictive modeling and understanding of hybrid
systems formed between molecules and solids are essential
prerequisites for tuning their electronic properties and func-
tions. The vdW interactions often make a substantial con-
tribution to the stability of molecules on solids (Tkatchenko
et al., 2010). Indeed, until recent developments for efficiently
incorporating the long-range vdW energy within state-of-the-
art DFAs, it was not possible to study the structure and
stability of realistic interfaces (Liu, Tkatchenko, and Scheffler,
2014). Exposed surfaces of solid materials are characterized
by the formation of collective electronic states; thus the long-
range screening effects should be treated at least in an effective
way, as done, for example, in the DFTþ vdWsurf method that
accounts for the collective electronic response effects by a
combination between an interatomic dispersion expression
and the Lifshitz-Zaremba-Kohn theory (Ruiz et al., 2012).
This method was demonstrated to be reliable for the structure
and stability of a broad class of organic molecules adsorbed on
metal surfaces, including benzene, naphthalene, anthracene,
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diindenoperylene, C60, and sulfur and oxygen-containing
molecules (thiophene, NTCDA, and PTCDA) on close-
packed and stepped metal surfaces, leading to an overall
accuracy of 0.1 Å in adsorption heights and 0.1–0.2 eV in
binding energies with respect to state-of-the-art experiments
(Liu, Tkatchenko, and Scheffler, 2014).
A particularly remarkable finding is that vdW interactions

can contributemore to the binding of strongly boundmolecules
on transition-metal surfaces than they do for molecules
physisorbed on coinage metals (Carrasco, Hodgson, and
Michaelides, 2012; Liu et al., 2012). The accurate inclusion
of vdW interactions also significantly improves molecular
tilting angles and adsorption heights and can qualitatively
change the potential-energy surface for adsorbed molecules
with flexible functional groups. Activation barriers for molecu-
lar switches (Liu et al., 2013) and reaction precursors
(Rodriguez-Reyes et al., 2014) are modified as well.
Ongoing work concentrates on understanding the interplay
between many-body effects within the solid material and
collective effects within the adsorbed molecular layers.

III. DIRAC MATERIALS BEYOND ATOMIC SCALE
SEPARATIONS

Without a doubt, novel ab initio methods have advanced
our understanding of vdW interactions between systems at
atomic scale separations. When the objects are taken farther
apart, however, other approaches become more appropriate.
Dispersion interactions involving objects with macroscopic
dimensions at distances for which the electronic distribution
overlapping effects are not important are typically described
by the Lifshitz formalism (Lifshitz, 1956; Dzyaloshinskii,
Lifshitz, and Pitaevskii, 1961), which has been the main-
stream theory for conventional metals and dielectrics for over
several decades. New materials with Dirac spectra are emerg-
ing, however, and the Lifshitz approach is an excellent tool to
capture the signatures of the Dirac carriers in the vdW and
Casimir interactions.

A. Lifshitz formalism

A generalized Lifshitz formula can be obtained from the
ACFDT expression in Eq. (1) for distance separations larger
than several Å’s, where the overlap of the electronic distri-
bution residing on each object can be neglected. In this case,
the response properties are independent of each other; thus
they are described by the individual response functions χð1;2Þ0

(1, 2 denote the two objects) and the mutual Coulomb

potential can be taken as a perturbation. Although χð1;2Þ0 do
not include electronic correlations from the overlap, they
contain the electronic correlations within each object. When

χð1;2Þ0 are calculated via the RPA approach and the mutual
Coulomb interaction is described by the RPA ring diagrams
(Lifshitz, 1956; Dzyaloshinskii, Lifshitz, and Pitaevskii, 1961;
Fetter and Walecka, 1971), the ACFDT expression [Eq. (1)] is
transformed to the nonretarded Lifshitz formula given in the
Fourier basis for planar homogeneous objects (Despoja,
Sunjic, and Marusic, 2007; Dobson and Gould, 2012)

EðLÞ

A
¼ ℏ

Z
dk∥

ð2πÞ2
Z

∞

0

dω
2π

log½1 − χð1Þ0 ðk∥; iωÞV12ðk∥; iωÞ

× χð2Þ0 ðk∥; iωÞV21ðk∥; iωÞ�; ð8Þ

where A is the area, k∥ is the 2D wave vector, and V12ðk∥; iωÞ
is the Coulomb interaction between the two objects.
Distance separations on the order of sub-μm and μm scales

are characteristic for the Casimir regime, where retardation
becomes prominent. For such separations one has to include
all photon interactions being exchanged with the finite speed
of light c. The Casimir energy can be derived using scattering
methods by solving the boundary conditions arising from the
electromagnetic Maxwell equations. The interaction energy
can be written in the form (Lambrecht, Maia Neto, and
Reynaud, 2006; Lambrecht and Marachevsky, 2008; Rahi
et al., 2009)

EðCÞ

A
¼ ℏ

Z
∞

0

dω
2π

×
Z

dk∥

2π2
log det

h
I −R1ðiωÞR2ðiωÞe−2d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2=c2þk2

∥

p i
;

ð9Þ

where R1;2 are the reflection matrices of the individual objects
evaluated at imaginary frequencies. The reflection matrices
describe appropriate boundary conditions and they are
expressed in terms of the macroscopic response properties
of the objects. Equation (9) can be obtained equivalently via
QED techniques relying on the evaluation of the Maxwell
stress tensor whose components represent the vacuum expect-
ation of the electromagnetic field and they are given in terms
of the dyadic Green’s function (more details on this approach
are found in Sec. V) (Dzyaloshinskii, Lifshitz, and Pitaevskii,
1961; Buhmann and Welsch, 2007). Utilizing the fluctuation-
dissipation theorem and standard complex contour integration
techniques, Matsubara frequencies iωn ¼ in2πkBT=ℏ are
introduced in the description. As a result, the Casimir
interaction energy EðCÞ can be cast into a temperature-
dependent form using

ℏ
Z

∞

0

dω
2π

→ kBT
X∞
n¼0

0

(the prime in the sum means that the n ¼ 0 term is multiplied
by 1=2). We further note that by setting c ¼ ∞ in Eq. (9) the
nonretarded Lifshitz expression [Eq. (8)] is recovered.
Being able to utilize independently calculated response

properties with different models (including RPA or the Kubo
formalism) or even use experimental data in Eqs. (8) and (9)
has been especially useful for the versatility of the Lifshitz
macroscopic approach. In addition, the Matsubara frequencies
give the means to take into account temperature in the
interaction unlike the ab initio methods (Sec. II), which
calculate the vdW energy at zero temperature. Much of the
progress in theoretical and experimental work concerning
typical metals and dielectrics interactions, captured by the
Lifshitz formalism, has been summarized in several books and

L.M. Woods et al.: Materials perspective on Casimir and van der …

Rev. Mod. Phys., Vol. 88, No. 4, October–December 2016 045003-10



recent reviews (Lamoreaux, 2005; Parsegian, 2006; Buhmann
and Welsch, 2007; Bordag, Klimchitskaya et al., 2009;
Klimchitskaya, Mohideen, and Mostepananko, 2009; Dalvit
et al., 2011).
It was revealed that the interplay between the Lifshitz

approach and the Drude dielectric gives unexpected outcomes
for the thermal interaction between typical metals (Boström
and Sernelius, 2000), namely, that the low-frequency trans-
verse electric contribution to the Casimir force is zero. Later
on, the thermal Casimir force was calculated with the plasma
model and critically compared with the results obtained
using the Drude model (Bordag et al., 2000). The main issue
is that the particular description of the low-frequency optical
response of the systems leads to different magnitudes,
especially at larger separations where the difference can be
as large as 100%. Sushkov et al. (2011) measured the Casimir
force between metallic samples, and they interpreted their
results in agreement with the Drude model, after subtracting a
force systematics due to electrostatic patches that was mod-
eled and fitted to the total observed force. Recent independent
measurements of patch potential distributions on metallic
samples used in Casimir force experiments report different
strengths and scaling laws for the patch contribution to the
total force (Behunin et al., 2014; Garrett, Somers, and
Munday, 2015). We should note, however, that Bezerra et al.

)2011 ) criticized the interpretation based on the Drude model
done by Sushkov et al. (2011). In contrast, several other
Casimir experiments (Decca et al., 2005, 2007; Banishev,
Chang, Klimchitskaya et al., 2012; Chang et al., 2012;
Banishev et al., 2013a, 2013b) are in agreement with the
plasma model description, which is surprising given that this
model neglects dissipation effects in metals. For separations
on the submicron scales, however, the differences between the
plasma versus the Drude model calculations are on the order
of a few percent in the studied geometries and conditions. A
proposal based on the isoelectronic technique, which elimi-
nates the need for electrostatic corrections due to patches, was
put forward that makes a significant step forward toward
understanding this problem (Bimonte, 2014a, 2014b, 2015).
With this setup, it becomes possible to strongly enhance the
discrepancy between the predictions for the Casimir force
based on either model for the dielectric response. Recent
measurements are in favor of theoretical extrapolations to low
frequency based on the plasma model (Bimonte, López, and
Decca, 2016). This issue is currently under investigation in the
context of typical materials and magnetodielectrics by tack-
ling fundamental theoretical questions, such as the importance
of thermal effects, the validity of the Nernst theorem, and the
consistency with the Bohr–van Leeuwen theorem (Bezerra
et al., 2004; Geyer, Klimchitskaya, and Mostepanenko, 2005,
2010; Høye et al., 2007; Pitaevskii, 2008, 2009; Bimonte,
2009; Dalvit and Lamoreaux, 2009; Klimchitskaya and
Mostepanenko, 2015a).
The materials library is expanding, however. This is not

only important for giving new light in the Drude versus
plasma models problem, but also in identifying novel direc-
tions for fluctuation-induced interactions. A subset of sys-
tems, characterized by Dirac fermions in their low-energy
spectra, has emerged recently (Welding, Black-Schaffer, and
Balatsky, 2014). This distinct class of materials has properties

markedly different from the ones of conventional metals and
semiconductors whose fermions obey the Schrödinger’s
equation. Recent discoveries have shown that there are many
types of systems with Dirac nodes in the band structure,
including graphene, topological insulators (TIs), and Weyl
semimetals. Research efforts on vdWand Casimir interactions
involving graphene and related systems have shown that
fluctuation-induced phenomena are strongly influenced by
the Dirac nature of the carriers. As discussed previously,
ab initio calculations have been indispensable for the dem-
onstration of atomic registry-dependent effects, unusual scal-
ing laws, farsightedness, and the many-body nature of their
vdW interaction in graphitic systems (Lebegué et al., 2010;
Shtogun and Woods, 2010; Bučko et al., 2013a, 2013b, 2014;
Gobre and Tkatchenko, 2013). Nevertheless, it is very
important from a fundamental point of view to consider
regimes where the dispersion interactions are determined
primarily by the low-energy Dirac carriers. Unlike ab initio
methods which take into account the entire band structure of
the interaction materials, the Lifshitz formalism relying on
response functions calculated via low-energy models gives us
an opportunity to study the emergent physics of the Dirac
carriers in vdW and Casimir forces.

B. Basic properties of graphene nanostructures

After the discovery of graphene (Novoselov et al., 2004),
significant progress was made toward understanding its
properties. For example, basic science in terms of the 2D
Dirac-like nature (Neto et al., 2009), electronic transport (Das
Sarma et al., 2011), collective effects due to electron-electron
interactions (Kotov et al., 2012), and spectroscopy (Basov
et al., 2014) has been studied. Quasi-1D allotropes, such as
carbon nanotubes (CNTs) and graphene nanoribbons (GNRs),
are also available (Saito, Dresselhaus, and Dresselhaus, 1998;
Ma, Wang, and Ding, 2013), and key scientific breakthroughs
have been summarized (Charlier, Blase, and Roche, 2007;
Yaziev, 2010). In addition to the internal properties, under-
standing how chemically inert carbon nanostructures interact
at larger length scale separations (more than several Å’s) is of
primary importance. Much progress in the past several years
has been achieved toward learning how such dispersive forces
are influenced by the graphitic internal properties and external
factors, such as temperature, doping, and applied fields. This
knowledge is relevant for a variety of phenomena including
the formation and stability of materials and composites,
adsorption, manipulation of atoms, and operation of devices,
among others. Since the description of the interaction via the
macroscopic Lifshitz formalism depends upon the low-energy
electronic structure and optical properties, here we provide an
overview of the relevant characteristics of graphene, CNTs,
and GNRs.
Graphene is a 2D atomic layer composed of hexagonally

oriented rings (Fig. 4). Many of its properties can be
captured by a nearest-neighbor tight-binding model within
the first Brillouin zone with two inequivalent K points at
K ¼ ð�4π=

ffiffiffi
3

p
a; 0Þ (a is the graphene lattice constant),

which describes a π valence bonding band with one electron
and an empty π� antibonding band with one hole. The
linearization of the energy spectrum around the K centered
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valleys yields the low-energy massless chiral Dirac-like
Hamiltonian in 2D

Hgr ¼ ℏvFσ · q − μ; ð10Þ

where μ is the chemical potential and σ is the 2D spinor. The
nonzero spinor components σx; σy are the Pauli matrices,
which refer to the graphene pseudospin rather than the real
spin. The energy spectrum Egr is linear with respect to the
wave vector q ¼ k −K according to Egr ¼ ℏvFq with the

electronic group velocity being vF ¼ ffiffiffi
3

p
t0a=2ℏ ∼ 106 m=s

(t0 is the nearest-neighbor tight-binding hopping integral). It is
interesting to note that although graphene was synthesized
not long ago, theoretical insight in terms of the low-energy
massless Dirac-like Hgr was discussed much earlier by
Semenoff (1984), who expanded upon the tight-binding
description introduced by Wallace (1947).
The tight-binding model can be extended to CNTs as well.

By imposing periodic boundary conditions around the cylin-
drical circumference, the corresponding wave functions are
zone folded, meaning that the wave vector in the azimuthal
direction takes a set of discrete values. The nomenclature of
CNTs is described via a chirality vector Ch ¼ na1 þma2,
where n andm are integers and a1;2 are defined in Fig. 4(a). As
a result, single-walled CNTs are denoted via a chirality index
ðn;mÞ with the achiral nanotubes labeled as armchair ðn; nÞ or
zigzag ðn; 0Þ, as shown in Fig. 4. The CNT energy bands can
also be found (Mintmire, Dunlap, and White, 1992; Tasaki,
Maekawa, and Yamabe, 1998) with zone-folding boundary
conditions leading to a chirality dependent energy spectrum.
The tight-binding energy band structure for GNRs, on the
other hand, is obtained by requiring the wave function be
periodic along the GNR axis and vanish at the edges, which
introduces edge dependent (zigzag or armchair) phase factors
in the energy spectra (Brey and Fertig, 2006; Akhmerov and
Beenakker, 2008; Sasaki et al., 2011).
The electronic structure of graphene systems determines

their optical response properties—key components for the
vdW and Casimir calculations. The Dirac-like carriers have

profound effects on how electromagnetic excitations are
handled by graphene. The chiral symmetry for the graphene
quasiparticles in a given K valley is either parallel or
antiparallel to the direction of motion of the electrons and
holes. An immediate consequence is that in the kBT ≪ ℏω
limit the optical conductivity for undoped graphene is inde-
pendent of any materials properties σ0 ¼ e2=4ℏ (Kuzmenko
et al., 2008). Even at room temperature, it is found exper-
imentally that the optical absorption is very small ∼2.3% and
it depends only on the fine structure constant α ¼ e2=ℏc ¼
1=137 (Nair et al., 2008). Doping and gating influence the
optical properties significantly leading to Pauli blocking
for photons with energy less than 2μF (μF is the Fermi level)
and achieving carrier concentrations which can modify
the transmission in the visible spectrum (Li et al., 2008;
M. Liu et al., 2011). Graphene plasmonics is also quite
interesting since graphene plasmons are tunable by gating and
doping and they are temperature dependent (Gangadharaiah,
Farid, and Mishchenko, 2008). In addition to longitudinal
plasmons, graphene can support a transverse plasmon mode. It
is also interesting to note that the longitudinal modes are
gapless; however, the transverse ones exist in the window
1.7 < ℏω=μF < 2 and can be tunable from radio to infrared
frequency by doping and electric fields (Mikhailov and
Ziegler, 2007).
Plasmons in GNRs can exist in the near-infrared to far-

infrared range and further tunability via a gate voltage can be
achieved (Freitag et al., 2013). The optical properties of CNTs
are also quite unique. The CNT optical activities, such as
electron-energy-loss spectroscopy (EELS) spectra and circular
dichroism, are chirality dependent (Wang et al., 2005;
Dresselhaus et al., 2007). Competing effects due to
Coulomb interactions and an attractive e-h coupling are
strong in CNTs, which have led to the realization that strong
excitonic effects need to be taken into account (especially in
small diameter nanotubes) to achieve agreement with exper-
imental optical data (Spataru et al., 2001, 2004, 2005).
The optical response of graphene can be described by

considering its 2D conductivity tensor calculated within the

(a) (b)

(c)

FIG. 4. (a) A graphene layer is an atomically thin sheet of honeycomb carbon atoms. Zigzag (green) and armchair (blue) graphene
nanoribbons can be realized by cutting along the specified edges. Carbon nanotubes can be obtained by folding along the chirality vector
~Ch, determined by the indices n andm and the lattice unit vectors ~a1;2. The chirality index ðn;mÞ uniquely specifies each nanotube with
two achiral examples shown: (b) zigzag ðm; 0Þ and (c) armchair ðn; nÞ. Alternatively, folding a zigzag nanoribbon along the axial
direction results in an armchaired nanotube, while folding an armchair nanoribbon gives a zigzag nanotube.
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Kubo formalism (Falkovsky and Varlamov, 2007). Evaluating
this general expression for the lowest conduction and highest
valence energy bands in the q → 0 approximation leads to the
intraband (intra) and interband (inter) contributions

σintraðiωÞ ¼
e2 ln 2
ℏ2πβω

þ e2

ℏ2πβω
ln½coshðβΔÞ þ coshðμβÞ�

−
e2Δ2

πℏ2ω

Z
∞

Δ

dE
E2

sinhðβEÞ
coshðμβÞ þ coshðβEÞ ; ð11Þ

σinterðiωÞ ¼
e2ω
π

Z
∞

Δ
dE

sinhðβEÞ
coshðμβÞ þ coshðβEÞ

1

ðℏωÞ2 þ 4E2

þ e2ωΔ2

π

Z
∞

Δ

dE
E2

sinhðβEÞ
coshðμβÞ þ coshðβEÞ

×
1

ðℏωÞ2 þ 4E2
; ð12Þ

where Δ is an energy gap in the graphene spectrum. When
Δ ¼ μ ¼ 0 and kBT ≪ ℏω, σ acquires the universal value
σ0 ¼ e2=4ℏ, also confirmed experimentally (Li et al., 2008;
Nair et al., 2008). The graphene conductivity is isotropic when
spatial dispersion is not taken into account and the difference
between σxx and σyy (graphene is in the x-y plane) is mostly
pronounced for larger q (Falkovsky and Varlamov, 2007;
Drosdoff et al., 2012).
The optical response properties can also be characterized by

considering the longitudinal polarization function χlðq; iωÞ,
which corresponds to the longitudinal component of the
conductivity

σðq; iωÞ ¼ ie2ω
q2

χlðq; iωÞ

for q → 0. Alternatively, the transverse electric (TE) and
transverse magnetic (TM) excitations can be captured via
the polarization tensor Π calculated by a (2þ 1) Dirac model
(Bordag, Fialkovsky et al., 2009; Fialkovsky, Marachevsky,
and Vassilevich, 2011; Klimchitskaya, Mostepanenko, and
Sernelius, 2014; Sernelius, 2015). It is found that the
longitudinal polarization function is related to the Π00

component

χl ¼ −
1

4πe2ℏ
Π00;

while the transverse polarization function is

χtr ¼ −
c2

4πe2ℏω2
ðk2Πtr − q2lΠ00Þ.

The optical response of the quasi-1D structures, such as
GNRs and CNTs, follows from the Kubo formalism for
graphene. Taking into account the zone-folded wave functions
and chirality dependent energies leads to the intraband and
interband optical conductivity spectra of CNTs (Tasaki,
Maekawa, and Yamabe, 1998). Similarly, incorporating the
edge dependent wave functions with the appropriate tight-
binding energies results in the intraband and interband

conductivities of zigzag and armchair GNRs (Brey and
Fertig, 2006; Sasaki et al., 2011).

C. Casimir interactions and graphene nanostructures

1. Graphene

The vdW and Casimir interactions involving a graphene
sheet and semi-infinite dielectric medium can be calculated
using the fully retarded expression in Eq. (9) with response
properties [Eqs. (11) and (12)] corresponding to its low-energy
Dirac spectrum. The boundary conditions are contained in the
matrices R1;2, whose nonzero diagonal components for a
graphene or semi-infinite medium system with dielectric and
magnetic response properties reflecting the TE (ss) and TM
(pp) modes are

RðssÞ
1 ¼ −

2πωσq̄c2

1þ 2πωσq̄c2
; RðppÞ

1 ¼ 2πσq̄=ω
1þ 2πσq̄=ω

; ð13Þ

RðssÞ
2 ¼ μðiωÞq̄ − k̄

μðiωÞq̄þ k̄
; RðppÞ

2 ¼ ϵðiωÞq − k̄

ϵðiωÞq̄þ k̄
; ð14Þ

where q̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2∥ þ ðω=cÞ2

q
and k̄ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2∥ þ μðiωÞϵðiωÞω2=c2

q
.

The dielectric and magnetic response functions for the semi-
infinite medium are ϵðiωÞ and μðiωÞ, respectively. The reflec-
tion coefficients here are expressed in terms of the graphene
conductivity σ; however, these can be given equivalently via
other response characteristics using the relations discussed
previously. For a graphene-graphene system, the components
of the R2 matrix are replaced by the components of the R1

matrix.
One of the first studies of Casimir interactions for graphene

was reported by Bordag et al. (2006), where they considered
graphene or perfect metallic semi-infinite mediums and atom
and graphene systems. Graphene was modeled as a plasma
sheet leading to results strongly dependent on the plasma
frequency. A more suitable representation of the graphene
sheet was later considered by taking into account the Dirac-
like nature of the carriers explicitly. It was obtained that the
Casimir force is quite weak compared to the one for perfect
metals and that it is strongly dependent upon the Dirac mass
parameter (Bordag, Fialkovsky et al., 2009). Describing the
graphene response via the 2D universal graphene conductivity
σ0 as valid in the kBT ≪ ℏω limit (Falkovsky and Varlamov,
2007; Nair et al., 2008), others (Drosdoff and Woods, 2010)
found a unique form of the graphene-graphene Casimir force
per unit area A,

F0

A
¼ −

3ℏσ0
8πd4

¼ −
3e2

32πd4
.

This result shows that the distance dependence is the same as
the one for perfect metals whose Casimir force is

Fm

A
¼ −

ℏcπ2

240d4
;

however the magnitude is much reduced F0=Fm ∼ 0.00538. It
is interesting to note that retardation does not affect the
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interaction and ℏ is canceled after taking into account that
σ0 ¼ e2=4ℏ.
The graphene interaction has also been investigated via the

nonretarded Lifshitz formalism in Eq. (8) (Dobson, White,
and Rubio, 2006; Gómez-Santos, 2009; Sarabadani et al.,
2011; Sernelius, 2015), where the polarization and Coulomb
interaction are calculated with the RPA approach. The RPA is
a useful tool to study long-ranged dispersive interactions as it
gives a natural way to take into account the electron
correlation effects of each object and spatial dispersion
(Fetter and Walecka, 1971; Dobson, 2011), as discussed
earlier. It was found that for separations d > 50 nm the
nonretarded Lifshitz approach results in a graphene-graphene
force of the form F0=A ¼ −B=d4, where the magnitude of the
constant B agrees with the results from the retarded Casimir
calculations (Drosdoff and Woods, 2010; Drosdoff et al.,
2012). It is thus concluded that the graphene-graphene
interaction is determined by the nonretarded TM mode
contribution (captured in the longitudinal polarization) even
at distances corresponding to the Casimir regime. These
results are truly remarkable since the interaction appears to
be independent of all of the graphene properties in the low T
and/or d > 50 nm regime. A further interpretation can be
given by noting that the electromagnetic fluctuations
exchange occurs at speed vF [Eq. (10)] rather than the speed
of light. This means that the typical thermal wavelength
λT ¼ℏc=kBT, which sets the scale where quantum-mechanical
(d < λT) or thermal (d > λT) fluctuations dominate the
interaction, becomes ~λT¼ℏvF=kBT. The quantum-mechanical
contributions determine the graphene interaction at separa-
tions d < ~λT ∼ 50 nm as opposed to d < λT ∼ 7 μm for
typical metals and dielectrics at T ∼ 300 K. The thermal
fluctuations for graphene become relevant at much reduced
distances, and for d > ~λT the interaction is

FT

A
¼ −

ζð3Þ
8π

kBT
d3

;

where ζðnÞ is the Riemann zeta function (Gómez-Santos,
2009). Essentially, vF takes the role of the speed of light
enhancing the importance of the zero Matsubara frequency at
much lower T and smaller d as compared to conventional
metals and dielectrics.
For closer separations (d < 50 nm), a more complete

model for the graphene properties is needed. Deviations from
the asymptotic behavior at low T are found (Drosdoff and
Woods, 2010) by using the graphene optical conductivity
taken into account by a Drude-Lorentz model that corresponds
to higher frequency range π → π� and σ → σ� transitions.
Recently, it was shown that the Casimir interaction in a stack
of identical graphene layers exhibits a fractional distance
dependence in the energy (E ∼ d−5=2) as a result of the Lorentz
oscillators (Khusnutdinov, Kashparov, and Woods, 2015).
Other researchers (Gould, Simpkins, and Dobson, 2008;
Gould, Gray, and Dobson, 2009; Lebegué et al., 2010;
Gould, Dobson, and Lebegué, 2013; Gould, Lebegué, and
Dobson, 2013) utilized the RPA approach combined with
first-principles calculations for the electronic structure to

investigate the nonretarded interaction at very short separa-
tions (d < 10 nm) for an infinite number of parallel graphene
layers. Interestingly, the interaction energy is found to be
E ∼ d−4. This insulatorlike behavior is attributed to the full
energy band structure [beyond the two-band model in
Eq. (10)] and the associated higher transitions in the response
properties. Others (Sarabadani et al., 2011) also considered
the vdW interaction in a multilayered graphene configuration
within the RPA; however, the reported unusual asymptotic
distance dependences may be an artifact of the considered
finite graphene thickness.
It was also shown that temperature together with other

factors, such as doping or external fields, affects the graphene
thermal and quantum-mechanical regimes in an intricate way.
In particular, the classical Casimir-vdW interaction deter-
mined by the thermal fluctuations was examined by several
authors in different situations. Fialkovsky, Marachevsky, and
Vassilevich (2011) used the polarization tensor and corre-
sponding reflection coefficients to express the dominating
thermal regime [kBTd=ℏc ≫ α lnðα−1Þ=2ζð3Þ] in terms of the
fine structure constant α. Sernelius (2011) utilized the longi-
tudinal graphene response in Eq. (8) to show that doping
plays an important role in the interaction at larger separations
as the force can be increased by an order of magnitude
for large degrees of doping. Bordag, Klimchitskaya,
and Mostepanenko (2012) and Klimchitskaya and
Mostepanenko (2013) used the fully relativistic Dirac model
with the T-dependent polarization tensor to investigate how a
finite mass gap Δ in the Dirac model affects these regimes in
graphene-graphene and graphene and dielectrics. It is found
that for kBT ≪ Δ thermal fluctuations are not important,
while for Δ ≤ kBT the thermal effects become significant, as
shown in Figs. 5(a) and 5(b). The thermal and quantum-
mechanical regimes were also studied by Drosdoff et al.
(2012) via the longitudinal thermal conductivity, which
includes spatial dispersion, an energy gap, and chemical
potential in the Dirac model. They showed that tuning Δ
and μ can be effective ways to modulate the interaction;
however, the spatial dispersion does not play a significant
role except for the case of small Δ and low T, as shown in
Figs. 5(d) and 5(e).
Recent studies (Klimchitskaya and Mostepanenko, 2014;

Klimchitskaya, Mostepanenko, and Sernelius, 2014;
Bordag et al., 2015; Sernelius, 2015) provided a thorough
analysis of the balance between the thermal and quantum-
mechanical effects in the graphene Casimir interaction. It is
shown that equivalent representations within the temperature-
dependent longitudinal and transverse polarization and the
temperature-dependent polarization tensor are possible. The
comparison between results from the temperature-dependent
polarization tensor and density-density correlation function
shows that at low T both approaches give practically the
same results proving that retardation and TE polarization are
unimportant. For T ≠ 0, deviations are found as shown in
Fig. 5(c) for graphene-graphene and graphene-metal
configurations.
Dobson, Gould, and Vignale (2014) revealed that the

collective excitations beyond the RPA approximation may
be quite important, qualitatively and quantitatively, for the
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graphene nonretarded vdW interaction. In general, it is
assumed that higher vertex corrections may change the
magnitude of the force somewhat, but not the asymptotic
distance dependence. However, this may not be the case for
graphene as the type of renormalization yields very different
results. The renormalization-group method (Kotov et al.,
2012; Sodemann and Fogler, 2012) results in a weak correc-
tion to the interaction energy as opposed to the two-loop level
in the large-N limit approach (Das Sarma, Hwang, and Tse,
2007), where the characteristic distance dependence has a
different power law (Dobson, Gould, and Vignale, 2014).
These findings indicate that graphene may be the first type of
material for which RPA is not enough to capture the vdW
force in the quantum limit. Along the same lines, Sharma et al.
(2014) showed that for strained graphenes, where electron-
electron correlations beyond RPA are much more pronounced,
corrections to the vdW interaction, consistent with the
renormalization-group model, are found.
Besides the fundamental questions regarding basic proper-

ties of graphene Casimir and vdW interactions, other and more
exotic applications of this phenomenon have been proposed.
For example, Phan et al. (2012) proposed that a graphene
flake suspended in a fluid, such as Teflon or bromobenzene,
can serve as a prototype system for measuring thermal effects
in Casimir interactions. The balance of gravity, buoyancy, and
the Casimir force on the flake creates a harmoniclike potential,
which causes the flake to be trapped. By measuring changes in

the temperature-dependent frequency of oscillations, one can
potentially relate these changes to the Casimir interaction.
Alternative ways to tailor the graphene Casimir interaction
have also been recognized. For example, Svetovoy et al.
(2011) showed that the thermal effects can be enhanced or
inhibited if one considers the force between graphene and
different substrates. Sernelius (2012) found that retardation
due to the finite speed of light can also be made prominent
depending on the type of substrates graphene interacts with.
Drosdoff and Woods (2011) proposed that metamaterials with
magnetically active components can result in a repulsive
Casimir force. Phan et al. (2013) showed a regime where
repulsion can be achieved with a lipid membrane. Also, Dirac
carriers with constant optical conductivity result in unusual
Casimir effects behavior in nonplanar objects. For example,
the interaction on a spherical shell with σ ¼ const has
markedly different asymptotic behavior and sign when com-
pared to the one for a plasma shell or for planar sheets with
σ ¼ const (Bordag and Khusnutdinov, 2008; Khusnutdinov,
Drosdoff, and Woods, 2014).
The Casimir-Polder force involving atoms and graphene

sheets has also been of interest due to their relevance to several
phenomena, including trapping or coherently manipulating
ultracold atoms by laser light (Ito et al., 1996; Bajcsy et al.,
2009; Goban et al., 2012). The theoretical description follows
from Eq. (9) by considering one of the substrates as a rarefied
dielectric (Dzyaloshinskii, Lifshitz, and Pitaevskii, 1961;
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FIG. 5. (a) Casimir pressure between two graphene sheets at separation d ¼ 30 nm as a function of temperature for different
values of the gap Δ. Adapted from Klimchitskaya and Mostepanenko, 2013. (b) Relative thermal correction δFð%Þ ¼
½FðTÞ − FðT ¼ 0Þ�=FðT ¼ 0Þ for the graphene-Si plate interaction at separation d ¼ 100 nm. Adapted from Bordag, Klimchitskaya,
and Mostepanenko, 2012. (c) Relative deviation δFð%Þ ¼ ½FddðTÞ − FptðTÞ�=FptðTÞ for graphene-graphene (red) and graphene-Au
plate (blue) interactions, where FddðTÞ is the Casimir force calculated via the density-density correlation function and FptðTÞ is the
Casimir force calculated via the polarization tensor. Adapted from Klimchitskaya, Mostepanenko, and Sernelius, 2014. Casimir
graphene-graphene force normalized to F0 ¼ −3e2=ð32πd4Þ with and without spatial dispersion in the graphene conductivity at
T ¼ 0 K as a function of (d) the gap Δ and (e) the chemical potential μ. From Drosdoff et al., 2012.
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Lifshitz and Pitaevskii, 1980; Milonni, 1993). In addition to
atom and graphene (Judd et al., 2011), configurations con-
taining additional substrates have been studied (Chaichian
et al., 2012). Others have suggested that it may be possible to
observe quantum reflection of He and Na atoms via the
Casimir-Polder interaction as a means to discriminate between
the Dirac and hydrodynamic model description for graphene
(Churkin et al., 2010). Casimir-Polder shifts of anisotropic
atoms near multilayered graphene sheets in the presence of a
Huttner-Barnett dielectric (a linearly polarizable medium,
which is modeled by microscopic harmonic fields) have also
been calculated (Eberlein et al., 2012). Thermal fluctuation
effects in atom and graphene configurations can also be
much stronger due to the reduced thermal wavelength
~λT . Thermal Casimir-Polder effects become apparent for
d > 50 nm at room temperature as the interaction is essen-
tially due to the zero Matsubara frequency giving rise to FT ¼
−3kBTαð0Þ=4d4 (Chaichian et al., 2012; Drosdoff et al.,
2012; Kaur et al., 2014; Bordag et al., 2015). Interesting
possibilities for temporal changes in the atomic spectrum
affecting the graphene sheet by creating ripples have also been
suggested (Ribeiro and Scheel, 2013a). The Casimir-Polder
force has also been explored for shielding vacuum fluctuations
using the framework of the Dirac model (Ribeiro and
Scheel, 2013b).

2. Quasi-1D graphene nanostructures

Investigating atom and CNT interactions is of utmost
importance for applications, such as trapping cold atoms near
surfaces (Petrov et al., 2009; Goodsell et al., 2010), manipu-
lating atoms near surfaces for quantum information processing
(Schmiedmayer, Folman, and Calarco, 2002), and hydrogen
storage (Dillon et al., 1997). CNT-CNT interactions are
relevant for the stability and growth processes of nanotube
composites (Charlier, Blase, and Roche, 2007). To calculate
the interaction, one must take into account the cylindrical
boundary conditions. Researchers have utilized scattering
techniques to study the distance dependence involving met-
allic wires with Dirichlet, Neumann, and perfect-metal boun-
dary conditions (Emig et al., 2006; Noruzifar, Emig, and
Zandi, 2011). Inclined metallic wires have also been consid-
ered (Dobson, Gould, and Klich, 2009; Noruzifar et al., 2012;
Rodriguez-Lopez and Emig, 2012). Calculations for CNT
interactions, however, are challenging as one has to take into
account simultaneously the chirality dependent response
properties and the cylindrical boundary conditions for the
electromagnetic fields.
The Lifshitz approachwas applied to CNTs via the proximity

force approximation, which is typically appropriate at suffi-
ciently close separations (Blocki et al., 1977). The cylindrical
surface is represented by an infinite number of plane strips of
infinitesimal width, which are then summed up to recover the
CNT surface. This method has been applied to atom and
single-walled nanotubes and atom and multiwall nanotubes
treated as a cylindrical shell of finite thickness (Blagov,
Klimchitskaya, and Mostepanenko, 2005, 2007; Bordag et al.,
2006; Klimchitskaya, Blagov, and Mostepanenko, 2008;
Churkin et al., 2011). In these studies, the dielectric response
of the nanotubes is not chirality dependent. Blagov,

Klimchitskaya, andMostepanenko (2005) used an extrapolated
dielectric function for graphite, Bordag et al. (2006) used the
response to be due to a surface density of the π electrons
smeared over the surface, Blagov, Klimchitskaya, and
Mostepanenko (2007) utilized a free-electron gas representation
for the cylindrical CNT surfaces, while Churkin et al. (2011)
took the graphene Dirac and hydrodynamic models. In these
works, the interaction energy is always of the form
E ¼ −C3ðdÞ=d3, where the coefficientC3ðdÞ is also dependent
on the cylindrical curvature and atomic polarizability.
Interactions between nanotubes in a double-wall configu-

ration have been calculated using the QED approach suitable
for dispersive and absorbing media as well (Buhmann and
Welsch, 2007). Within this formalism the boundary conditions
are taken into account by solving the Fourier domain operator
Maxwell equations using a dyadic Green’s function, which
also allows the inclusion of the chirality dependent response
properties of the individual nanotubes. The calculations utilize
the fluctuation-dissipation theorem and the force per unit area
is the electromagnetic pressure on each surface expressed in
terms of the Maxwell stress tensor (Tomaš, 2002). For planar
systems, the QED and the Lifshitz theory lead to the same
expression [Eq. (9)], which has also been shown for systems
involving graphene (Hanson, 2008; Drosdoff and Woods,
2010). The QED method, applied to the interaction in various
double-walled CNTs, revealed that the chirality dependent
low-energy surface plasmon excitations play a decisive role in
the interaction (Popescu, Woods, and Bondarev, 2011; Woods
et al., 2013). The attractive force is actually dominated by low-
energy interband plasmon excitations of both nanotubes. The
key feature for the strongest attraction is for the CNTs to have
overlapping strong plasmon peaks in the EELS. This is true for
concentric ðn; nÞ armchair CNTs, which exhibit the strongest
interaction as compared to tubes with comparable radii, but
having other chiralities, as shown in Fig. 6. The results are
consistent with electron diffraction measurements showing
that the most probable double-walled CNT is the one in which
both tubes are of armchair type (Harihara et al., 2006). This
indicates that the mutual Casimir interaction influenced by the
collective excitations may be a potential reason for this
preferential formation.
The Casimir-Polder interaction involving CNTs has also

been considered via the QED formalism. For this purpose, one
utilizes a generalized atomic polarizability tensor containing
dipolar and multipolar contributions and a scattering Green’s
function tensor expressed in cylindrical wave functions (Tai,
1994; Li et al., 2000; Buhmann et al., 2004). It has been
shown that the chirality dependent CNT dielectric function
plays an important role determining the strength of the atom
and nanotube coupling (Fernari, Scheel, and Knight, 2007).
The QED approach was also used initially by Bondarev and
Lambin (2004, 2005), where the nonretarded interaction
potential is equivalently given in terms of a photonic density
of states. These studies also show that the interaction is
sensitive to the CNT chirality (Rajter et al., 2007, 2013). It
was found that the stronger optical absorption by the metallic
CNTs suppresses the vdW atomic attraction, which can be of
importance to tailor atomic spontaneous decay near CNT
surfaces.
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For GNRs the situation is even more technically difficult as
compared to nanotubes since analytical results for the boun-
dary conditions for striplike systems are not available.
Nevertheless, a perturbation series expansion of the Lifshitz
formula in the dilute limit separates the geometrical and
dielectric response property contributions into convenient
factor terms, which can be quite useful to study the finite
extensions of the nanoribbons in their vdW interaction
(Stedman, Drosdoff, and Woods, 2014). A recent study also
showed that a nonretarded Lifshitz-like formula for the vdW
interaction between parallel quasi-1D systems having width
W ≪ d can also be derived (Drosdoff and Woods, 2014). The
force per unit length is written in terms of a TM-like
“reflection coefficient” containing the GNR response proper-
ties, which makes the expression reminiscent of the Lifshitz
vdW expression for planar objects in Eq. (9). This is quite
appealing as it presents a general way to calculate vdW
interactions in any type of 1D parallel systems.
Applying this theory to GNRs described by their

specific response properties (Brey and Fertig, 2006) shows
that the chemical potential is crucial in the interplay between
quantum-mechanical and thermal effects in the interaction. A
μ-dependent transition between these two regimes is reported
correlating with the onset of intraband transitions (Drosdoff
and Woods, 2014). While GNRs with μ ¼ 0 behave like
typical dielectric materials with a vdW force F ∼ −1=d6,
when μ ∼ Eg (Eg is the energy gap in the GNR band structure),
the interaction becomes completely thermal with a character-
istic behavior

F ¼ −
πkBT

64d½lnðd=WÞ�2 .

For semiconductors, such as GaAs wires, however, thermal
fluctuations dominate the interaction completely. This is at
complete odds with the dispersive interaction involving
standard materials, where thermal effects are typically very
small (Klimchitskaya, Mohideen, and Mostepananko, 2009).
It turns out that for GaAs quantum wires the plasma frequency
is much reduced as compared to 3D GaAs (Das Sarma,
Hwang, and Zheng, 1996) resulting in the force being
dominated by the n ¼ 0 Matsubara term.

D. Materials with topologically nontrivial phases

In addition to graphene, there are other materials with Dirac
spectra and TIs have a special place in this class of systems.
TIs are a new phase of matter with nontrivial topological
invariants in the bulk electronic wave function space. The
topological invariants are quantities that do not change under
continuous deformation, and they lead to a bulk insulating
behavior and gapless surface Dirac states in the band structure
(Qi, Hughes, and Zhang, 2008; Hasan and Kane, 2010; Qi and
Zhang, 2011; Ando, 2013; Cayssol, 2013). The modern
history of TIs started with the realization that a strong
spin-orbit coupling can result in a TI phase with several
materials being proposed as possible candidates, including
BixSb1−x, Bi2Se3, Bi2Te3, and TlBiSe2 among others (Chen
et al., 2009; Ando, 2013). In the low momentum limit the 2D
states, which are topologically protected by symmetry invari-
ance, are described by a helical version of the massless Dirac
Hamiltonian (Zhang et al., 2009; Liu et al., 2010)

Hsurf ¼ ẑ · ðσ × kÞ; ð15Þ

where ẑ is the unit vector perpendicular to the surface (located
in the x-y plane), σ ¼ ðσx; σy; σzÞ are the Pauli matrices, and k
is the 3D wave vector.
Topologically nontrivial materials can be classified via their

symmetries and dimensions (Schnyder et al., 2008; Kitaev,
2009; Hasan and Kane, 2010; Ryu and Takayanagi, 2010) or
by dimensional reduction (Qi, Hughes, and Zhang, 2008).
Three-dimensional systems are characterized by time
reversal (TR) symmetry leading to each eigenstate of the
Hamiltonian (15) being accompanied by its TR conjugate or
Kramers partner (Schnyder et al., 2008). Experimentally,
however, one observes an odd number of Dirac states. This
is understood by realizing that the Dirac cones of the Kramer’s
pairs appear on each side of the surface of the material and the
cone in empty space cannot be detected. In addition, these
surface states are protected from backscattering by the TR
symmetry, which makes them insensitive to spin-independent
scattering—a useful feature for quantum computation appli-
cations (Leek et al., 2007). Chern insulators (CIs) are
essentially two-dimensional TIs and their low-energy band
structure, also described by Eq. (15), consists of an even
number of helical edge states. CIs have strong enough
interband exchange energy, responsible for the hybridization
of the surface states from the Dirac cone doublets. CI states are
further described by a topological integer Chern number
C ∈ Z quantified as C ¼ 1

2

P
N
i¼1 signðΔiÞ, where N denotes

the (even) number of Dirac cones and Δi is the mass gap of
each Dirac cone. The mass gap can be tailored by an applied

FIG. 6. Electromagnetic pressure on each nanotube in a double-
wall CNT system as a function of separation. The inset shows
calculated EELS for several armchair ðn; nÞ and zigzag ðn; 0Þ
nanotubes as a function of frequency in eV. The attraction is
strongest between two concentric armchair nanotubes due to the
presence of strong overlapping low-frequency peaks in the
spectra. The notation ðm; 0Þ@ðn; nÞ corresponds to ðm; 0Þ as
the inner tube and ðn; nÞ as the outer tube.
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magnetic field or other means and it can be positive or
negative.
The properties affecting the vdW and Casimir interactions

in systems with topologically nontrivial phases are linked to
the dimensionality and response characteristics of the
involved Dirac materials. The optical conductivity compo-
nents of TIs and CIs involving the low-energy Dirac carriers
have been obtained within the standard Kubo approach or the
quantum kinetics equation method (Tse and MacDonald,
2010; Rodriguez-Lopez and Grushin, 2014). Analytical
representations for the longitudinal surface optical conduc-
tivity in the small temperature regime kBT ≪ minðjμFj; jΔjÞ
(here μF is the Fermi energy relative to the Dirac point) and
small disorder have been found (Tse and MacDonald, 2010,
2011; Chen and Wan, 2011, 2012; Grushin et al., 2012) with
expressions similar to the ones for graphene [Eqs. (11) and
(12)]. In addition, the topologically protected surface states
lead to a strong quantum Hall effect without an external
magnetic field whenever perturbations breaking the TR
symmetry induce a gap in the band structure. For the low-
energy carriers in Eq. (15) the associated surface Hall
conductivity has the following expression at imaginary
frequency:

σxyðiωÞ ¼ −
αcΔ
2πℏω

�
tan−1

�
ℏω
2ϵc

�
− tan−1

�
ℏω
2jΔj

��
: ð16Þ

Here ϵc is the energy cutoff of the Dirac Hamiltonian, which
we associate with the separation between the Dirac point and
the closest bulk band.
For the Casimir interaction involving CIs, it is important

to note that these materials can exhibit a quantum anomalous
Hall effect at zero frequency or in the absence of an external
magnetic field. By tuning the mass gap (via doping or
changing the magnetization of the involved material), one
can make the zero-frequency 2D optical conductivity vanish
σxxðω ¼ 0; jμFj < jΔjÞ ¼ 0, while the Hall conductivity
becomes σxyðω ¼ 0; jμFj < jΔjÞ ¼ ðαc=4πÞsignðΔÞ. After
summing up the contributions from all Dirac cones, one
obtains a quantized Hall conductivity in terms of the Chern
number σxyðω ¼ 0Þ ¼ ðαc=2πÞC.
Inducing a mass gap has important consequences for the

surface Hall response in 3D TIs as well. By applying an
external magnetic field, it is possible to realize the fractional
quantum Hall effect with a quantized conductivity

σxyðω ¼ 0; jΔj > jμFjÞ ¼
αc
2π

ð1
2
þ nÞ;

where n is an integer (Zheng and Ando, 2002; Hasan and
Kane, 2010). Nevertheless, one also needs to add the bulk
dielectric response. Typically, a standard Drude-Lorentz
model is sufficient, and it has been shown that specifically
for the Casimir interaction a single oscillator for the dielectric
function is enough to capture the characteristic behavior
(Chen and Wan, 2011; Grushin, Rodriguez-Lopez, and
Cortijo, 2011; Grushin and de Juan, 2012). Therefore, the
bulk response can be considered as

ϵðiωÞ ¼ ϵ0 þ
ω2
e

ω2
R þ ω2

;

where ωe is the strength of the oscillator and ωR is the location
of the resonance.
The surface response properties dramatically affect the

electrodynamics in topologically nontrivial materials in 3D.
In fact, the electrodynamic interaction can be described
via generalized Maxwell equations containing a magneto-
electric coupling due to the surface Hall conductivity.
Equivalently, this generalized electrodynamics includes an
axion field θðr; tÞmanifested in a Chern-Simmons term in the
Lagrangian, Lθ ¼ ½αθðr; tÞ=2π2�E · B, whose role is to pre-
serve the TR symmetry in the Maxwell equations (Wilczek,
1987). While θðr; tÞ depends on position and time in general,
for topological insulators, this is a constant field, such that
θ ≠ 0 in the bulk and θ ¼ 0 in the vacuum above the surface of
the material. We further note that the quantization of the Hall
effect in 3D TIs is inherited in the axion term according to
θ ¼ ð2nþ 1Þπ (Qi, Hughes, and Zhang, 2008; Essin, Moore,
and Vanderbilt, 2009).
The concept of axion electrodynamics was first proposed in

high-energy physics as a possible means to explain dark
matter (Peccei and Quinn, 1977; Wilczek, 1987), and now an
axion type of electromagnetic interactions appears in the
description of condensed-matter materials, such as TIs. The
axion field originating from the topologically nontrivial sur-
face states leads to many new properties, including induced
magnetic monopoles, a quantized Faraday angle in multiple
integers of the fine structure constant, and a large Kerr angle
(Wilczek, 1987; Qi et al., 2009; Tse and MacDonald, 2010,
2011). The modified electrodynamics due to the Chern-
Simmons term with the associated boundary conditions is
also of importance to the Casimir interaction as shown
earlier from a high-energy physics perspective (Bordag and
Vassilevich, 2000).

E. Possibility of Casimir repulsion in topological materials

The underlying electronic structure of the materials and
their unconventional Hall response open up opportunities to
explore the Casimir effect in new directions. Figure 7(a)
depicts the low-energy Dirac band structure for an appro-
priate lattice model for a CI with the associated longitudinal
(σxx) and Hall (σxy) conductivities (Grushin et al., 2012;
Rodriguez-Lopez and Grushin, 2014). The reflection
matrices in the Lifshitz expression from Eq. (9) have been
determined for two semi-infinite TI substrates with isotropic
surface conductivity σij and dielectric and magnetic bulk
response properties taken as diagonal 3D matrices ϵ ¼
ϵðωÞI and μ ¼ μðωÞI, respectively. Generalizations due to
nonlocal effects and anisotropies in the response (Grushin,
Rodriguez-Lopez, and Cortijo, 2011), as well as finite width
substrates (Peterson and Ström, 1974), can also be included.
The reflection coefficients for CIs follow from the ones for
the 3D TIs simply by setting ε; μ → 1 (Tse and MacDonald,
2012; Martinez and Jalil, 2013; Rodriguez-Lopez and
Grushin, 2014). It turns out, however, that in all cases
the surface Hall conductivity is a key component in
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understanding the asymptotic distance dependence, magni-
tude, and sign of the interaction.
Figure 8(a) summarizes results for calculated Casimir

energies at the quantum-mechanical regime (low T and/or
large d). The graph indicates that there is a change of distance
dependence behavior when comparing the small and large d
asymptotics for interacting CIs. The analytical expressions for
the conductivity components, which agree very well with
the numerical Kubo formalism calculations according to
Figs. 7(b) and 7(c), are especially useful in better understanding
the underlying physics of the Casimir energy. It was obtained
that the energy at small d is determined by the longitudinal
component of the conductivity and the interaction is always

attractive (Rodriguez-Lopez and Grushin, 2014). For large d,
however, it is possible to achieve repulsion if the two CIs have
Chern numbers C1C2 < 0 and the Hall conductivity is much
larger than the longitudinal one. The interaction energy in this
case is a nonmonotonic function of distance and it is quantized
according to E ∼ C1C2, which also indicates that the strongest
repulsion occurs for materials with large Chern numbers. It is
concluded that if repulsion is desired, one must search for CI
materials with vanishing diagonal conductivity components
and strong Hall conductivity capable of sustaining much
enhanced C numbers. Let us note that a quantized Casimir
interaction may be typical for materials that can support a
strong Hall effect. In fact, such a phenomenon was predicted to

(a)

(b)

(c)

FIG. 7. (a) Energy band structure of a CI calculated via a generic two-band tight-binding model (Grushin et al., 2012). The low
momentum limit of the energy band structure is consistent with the Dirac Hamiltonian in Eq. (15). (b) Real part of σxyðωÞ (left panel) and
σxyðiωÞ (right panel). (c) Real parts of σxxðωÞ (left panel) and σxxðiωÞ (right panel) correspond to the energy band structure from (a). The
calculations are performed with C ¼ 1, Δ ¼ 0.25t, and ϵ ¼ 2.25t (t denotes the hopping integral for the employed lattice model; here it
is taken to be equal to the frequency bandwidth). The conductivities are in units of αc=ð2πÞ. The analytically found σxxðωÞ and σxyðωÞ
are in excellent agreement with numerically evaluated Kubo expressions. From Rodriguez-Lopez and Grushin, 2014.

(a) (b)

FIG. 8. (a) Casimir interaction energy EðdÞ between two CIs in units of E0ðdÞ ¼ −ℏcα2=ð8π2d3Þ as a function of d̄ ¼ td=ℏc for
different values of C1;2 and jΔj ¼ t. (b) Phase diagram ðωe=ωR; θ=2πÞ for the interaction energy between two semi-infinite TI substrates
for all separation scales. The parameters ωe and ωR correspond to the strength and location of the Drude-Lorentz oscillator, respectively.
The repulsion for large separations at T ¼ 0 K is given by the red region (outlined by the red line), while the repulsion for all separations
at high T is given by the green region (outlined by the green line). Here θ=2π ¼ ðnþ 1=2Þ and θ1 ¼ −θ2 ¼ θ for the substrates.
Repulsion is observed for a large range of Chern numbers. Adapted from Rodriguez-Lopez and Grushin, 2014.
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exist in graphene-graphene systems at sufficiently large sep-
arations with an external magnetic field (Tse and MacDonald,
2012). The associated Landau-level filling factors in the Hall
conductivity lead to a quantization condition in the force, and
similar findings have been reported for atom and graphene
configurations (Cysne et al., 2014).
The Casimir interaction between TIs has also been studied,

in which case the bulk dielectric response is included
(Sec. III.D). Recent work (Grushin and Cortijo, 2011) has
shown that the energy has unique characteristics due to the
balance between the bulk and surface state contributions
mediated by the axion term θ. Figure 8(b) summarizes
numerical results for the interaction energy phase diagram
showing repulsive and attractive regimes depending on the
Drude-Lorentz parameters (ωe=ωR) and the surface contribu-
tion (θ). Reported analytical calculations enable a better
understanding of the important factors determining the inter-
action in various limits. It is found that if the bulk response is
treated as a single Lorentz oscillator, it is possible to obtain
Casimir repulsion at larger separations (Rodriguez-Lopez,
2011), where the surface contributions through the Hall
conductivity dominate the response provided θ1θ2 < 0. For
shorter separations the bulk response becomes dominant, and
the Casimir interaction is attractive. One also obtains attrac-
tion at all distance scales when θ1θ2 > 0 (Rodriguez-Lopez,
2011). Others have predicted that repulsion is also possible in
the regime of short separations; however, this is considered to
be an artifact of a frequency independent surface conductivity
taken in the calculations (Chen and Wan, 2011; Grushin and
Cortijo, 2011; Grushin, Rodriguez-Lopez, and Cortijo, 2011;
Nie et al., 2013). In addition, several recent works have shown
that the behavior of the Casimir interaction and the existence
of repulsion, in particular, depend strongly on the magnitude
of the finite mass gap, the applied external magnetic field, and
the thickness of the TI slabs (Chen and Wan, 2011; Nie et al.,
2013). The thermal Casimir interaction between TIs has also
been studied (Grushin and Cortijo, 2011; Rodriguez-Lopez,
2011). The energy corresponding to the n ¼ 0Matsubara term
depends strongly on the axion fields. The interaction is found
to be attractive when θ1θ2 > 0. However, thermal Casimir
repulsion is obtained at all distances for θ1θ2 < 0 as shown in
Fig. 8(b). Similar considerations for repulsion may apply for
CIs, since their thermal Casimir energy can be obtained
analogously to be proportional to the surface Hall conductiv-

ities σð1Þxy σ
ð2Þ
xy . These results indicate that topological Dirac

materials, such as 2D CIs and 3D TIs, may be good candidates
to search for a repulsive thermal Casimir interaction.
The long-ranged dispersive interactions involving systems

with nontrivial topological texture are complex phenomena.
Materials with Dirac carriers lend themselves as templates
where concepts, typically utilized in high-energy physics,
cross over to condensed-matter physics with vdWand Casimir
interactions as a connecting link. Topologically nontrivial
features in the electronic structure and optical response
properties result in unusual asymptotic distance dependences,
an enhanced role of thermal fluctuations at all distance scales,
and new possibilities of Casimir repulsion. Ongoing work in
the area of Dirac materials will certainly continue stimulating
further progress in the field of vdW and Casimir physics

and further widening the scope of fluctuation-induced
phenomena.

IV. STRUCTURED MATERIALS

The geometry of the interacting objects and the interplay
with the properties of the materials is also of interest for
tailoring the Casimir force. Structured materials, including
metamaterials, photonic crystals, and plasmonic nanostruc-
tures, allow the engineering of the optical density of states by
proper design of their individual components. As a result, one
is able to manipulate the interaction utilizing complex, non-
planar geometries. Recent experimental studies have begun
the exploration of such geometry effects particularly with
dielectric and metallic gratings (Chan et al., 2008; Intravaia
et al., 2013). The theoretical description has been challenging
due to the complex dependence of dispersive interactions
upon nonplanar boundary conditions. One approach relies on
effective medium approximations, where the emphasis is on
models of the dielectric response of the composite medium as
a whole. The second approach deals with particular boundary
conditions via computational techniques. While the interac-
tion of electromagnetic waves with metallic and dielectric
structures of complex shapes is well established in classical
photonics, the main challenge stems from the inherently
broadband nature of Casimir interactions, where fluctuations
at all frequencies and wave vectors have to be taken into
account simultaneously.

A. Metamaterials

Electromagnetic metamaterials are composites consisting
of conductors, semiconductors, and insulators that resonantly
interact with light at designed frequencies. The individual
components make up an ordered array with unit cell size much
smaller than the wavelength of radiation. As a result, an
electromagnetic wave impinging on the material responds to
the overall combination of these individual scatterers as if it
were an effectively homogeneous system. Metamaterials were
speculated almost 50 years ago by Victor Veselago (1968),
who was the first to explore materials with negative magnetic
permeability in optical ranges. However, it was over 20 years
ago that John Pendry proposed the workhorse metamaterials’
structure, the split-ring resonator (SRR), that allowed an
artificial magnetic response and was a key theoretical step
in creating a negative index of refraction (Pendry et al., 1999).
David Smith and colleagues were the first to experimentally
demonstrate composite metamaterials, using a combination of
plasmonic-type metal wires and an SRR array to create a
negative effective permittivity ϵeffðωÞ and a negative effective
permeability μeffðωÞ in the microwave regime (Shelby, Smith,
and Schultz, 2001). Many exotic phenomena have been
discovered afterward, including negative index of refraction,
reversal of Snell’s law, perfect focusing with a flat lens,
reversal of the Doppler effect and Cherenkov radiation,
electromagnetic cloaking, and transformation optics.
Such materials are of great interest for Casimir force

modifications. Casimir repulsion was predicted by Boyer
(1974) between a perfectly conducting plate and a perfectly
permeable one, but it may also occur between real plates as
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long as one is mainly (or purely) nonmagnetic and the other
mainly (or purely) magnetic (Kenneth et al., 2002). The latter
possibility was considered unphysical (Iannuzzi and Capasso,
2003), since naturally occurring materials do not show strong
magnetic response at near-infrared or optical frequencies,
corresponding to gaps d ¼ 0.1–10 μm. However, recent
progress in nanofabrication has resulted in metamaterials
with magnetic response in the visible range of the spectrum
(Shalaev, 2007), fueling the hope for “quantum levitation.”
The Casimir force for structured materials with unit cells

much smaller than the wavelength of light can be calculated
via Eq. (9) for magnetodielectric media with reflection
coefficients for two identical substrates (R1 ¼ R2 ¼ R)
found as

RðssÞ ¼ μeffðiωÞq̄ − k̄

μeffðiωÞq̄ − k̄
; RðppÞ ¼ ϵeffðiωÞq̄ − k̄

ϵeffðiωnÞq̄ − k̄
; ð17Þ

where q̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2∥ þ ðω=cÞ2

q
and k̄ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ μeffϵeffω

2=c2
p

.

Calculations based on this approach suggested that left-
handed metamaterials might lead to repulsion (Henkel and
Joulain, 2005; Leonhardt and Philbin, 2007). Metamaterials,
however, typically have narrow-band magnetic response and
are anisotropic. Thus questions naturally arise concerning
the validity of such predictions for real systems. Given that the
Lifshitz formula is dominated by low-frequency modes
ω < c=d, a repulsive force is in principle possible for a
passive left-handed medium as long as μeffðiωÞ is sufficiently
larger than ϵeffðiωÞ in that regime. Then the repulsion is a
consequence of the low-frequency response behavior and not
of the fact that the medium happens to be left handed in a
narrow band about some real resonant frequency. Application
of the Lifshitz formalism requires the knowledge of ϵeffðiωÞ
and μeffðiωÞ for a large range, up to the order of ω ¼ c=d.
Such functions can be evaluated via the Kramers-Kronig
relations in terms of ϵeffðωÞ and μeffðωÞ at real frequencies.
The point about the broadband nature of the response proper-
ties is very important, as it shows that knowledge of a metallic-
based metamaterial near a resonance is not sufficient for the
computation of Casimir forces: the main contribution to
ϵeffðiωÞ and μeffðiωÞ typically comes from frequencies lower
than the resonance frequency. This also implies that repulsive
forces, if any, are in principle possible without the requirement
that the metamaterial resonance should be near the frequency
scale defined by the inverse of the gap of the Casimir cavity.
In typical metamaterial structures, the effective electric

permittivity ϵeffðωÞ and magnetic permeability μeffðωÞ close to
the metamaterial resonance are well described in terms of a
Drude-Lorentz model,

ϵeffðωÞ; μeffðωÞ ¼ 1 −
Ω2

e;m

ω2 − ω2
e;m þ iγe;mω

ð18Þ

in which Ωe ðΩmÞ is the electric (magnetic) oscillator
strength, ωe ðωmÞ is the metamaterial electric (magnetic)
resonance frequency, and γe ðγmÞ is a dissipation parameter.
These parameters depend mainly on the subwavelength
geometry of the unit cell, which can be modeled as a LRC
circuit. For metamaterials that are partially metallic, such as

SRRs (operating in the GHz–THz range) and fishnet arrays
(operating in the near infrared or optical) away from reso-
nance, it is reasonable to assume that the dielectric function
also has a Drude background

ϵDðωÞ ¼ 1 −
Ω2

D

ωðωþ iγDÞ

(here ΩD is the plasma frequency and γD is the Drude
dissipation rate). As the Drude background overwhelms the
resonant contribution at low frequencies, it contributes sub-
stantially to the Casimir force between metallic metamaterial
structures. Effects of anisotropy, typical in the optical response
of 3D metamaterials and of 2D metasurfaces, can also be
incorporated (Rosa, Dalvit, and Milonni, 2008a). Figure 9,
which depicts the Casimir force between two identical planar
3D uniaxial metamaterials that have only electric anisotropy,
shows that the interaction is always attractive.
A key issue here is the realization that it is incorrect to use

these Drude-Lorentz expressions when computing dispersion
interactions (Rosa, Dalvit, and Milonni, 2008b). Indeed,
although Eq. (18) is valid close to a metamaterial resonance,
it does not hold in a broadband frequency range. In particular,
calculations based on Maxwell’s equations in a long wave-
length approximation for SRRs result in a slightly different
form for the effective magnetic permeability (Pendry et al.,
1999)

μSRRðωÞ ¼ 1 −
fω2

ω2 − ω2
m þ iγmω

; ð19Þ

10−4
10−3

10−2

10
−4

10
−3

10
−2

−1

0

1

2

3

4

5
x 10

−3
 

 

0

1

2

3

4

x 10
−3

hc
FΛ4

f f

a)

FIG. 9. Casimir force per unit area A between a metallic
semispace and an anisotropic metallic-based planar magnetic
metamaterial with a weak Drude background. The filling factors
f∥ and f⊥, parallel and orthogonal to the vacuum-metamaterial
interface, account for the fraction of metallic structure contained
in the metamaterial. The SRR Drude parameters are ΩD ¼
2πc=Λ ¼ 1.37 × 1016 rad=s and γD ¼ 0.006ΩD (corresponding
to silver) and its Drude-Lorentz parameters are Ωe=ΩD ¼ 0.04,
Ωm=ΩD ¼ 0.1, ωe=ΩD ¼ωm=ΩD ¼ 0.1, and γe=ΩD ¼ γm=ΩD ¼
0.005. The Drude parameters for the metallic semispace are Ω ¼
0.96ΩD and γ ¼ 0.004ΩD. Temperature is set to zero, and the
distance between the bodies is fixed at d ¼ Λ. From Rosa, Dalvit,
and Milonni, 2008a.
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where the filling factor f < 1 is a geometry dependent
parameter. The crucial difference between Eqs. (18) and
(19) is the ω2 factor in the numerator of the latter, a
consequence of Faraday’s law (Rosa, 2009). Although close
to the resonance both expressions give almost identical
behaviors, they differ in the low-frequency limit
μeffðiωÞ > 1, while μSRRðiωÞ < 1. The fact that all passive
materials have ϵðiωÞ > 1 implies that Casimir repulsion is
impossible for any magnetic metamaterial made of metals and
dielectrics (Rosa, Dalvit, and Milonni, 2008a). This conclu-
sion is confirmed by scattering theory calculations that do not
rely on any effective medium or homogenization approxima-
tions. For example, Yannopapas and Vitanov (2009) exactly
computed the Casimir force for 2D metasurfaces made of a
square close-packed array of nonmagnetic microspheres of
LiTaO3 (an ionic material) or of CuCl (a semiconductor).
Although the systems are magnetically active in the infrared
and optical regimes, the force between finite slabs of
these materials and metallic slabs is attractive since the
effective electric permittivity at imaginary frequencies is
larger than the magnetic permeability. In Fig. 10 we show
the Casimir force (normalized with respect to the ideal zero-
temperature Casimir force FC) between a gold plate and a 2D
LiTaO3 metasurface together with the effective permittivity
and permeabilities of a close-packed LiTaO3 crystal. The
results confirm that the Casimir interaction is attractive in
magnetic metamaterials made of nonmagnetic meta-atoms.
In contrast, intrinsically magnetic meta-atoms could poten-
tially lead to Casimir repulsion. Naturally occurring ferro-
magnets do not show magnetic response in the infrared
and optical regimes, as needed by the Casimir effect, but
small magnetic nanoparticles (e.g., a few nanometer-sized
Ni spheres) become superparamagnetic in the infrared.
A realization of the original idea for Casimir repulsion by
Boyer was then proposed based on a metasurface made of
such intrinsically magnetic nanoparticles (Yannopapas and
Vitanov, 2009).
Chiral metamaterials made of metallic and dielectric meta-

atoms were also proposed as candidates for Casimir repulsion
(Zhao et al., 2009). When described by an effective medium
theory, such systems possess an effective magnetoelectric
response that modifies the standard constitutive relations in
Maxwell’s equations as D ¼ ϵ0ϵEþ iκmH=c and B ¼
μ0μϵH − iκmE=c. Close to a resonance, the magnetodielectric
coefficient κm can be modeled as

κmðωÞ ¼
ωκmω

ω2 − ω2
κmr þ iγκmω

.

For such materials the reflection matrix is no longer diagonal
and there is polarization mixing. Repulsive Casimir forces
and stable nanolevitation was predicted for strong chirality
(large values of ωκm=ωκmr) (Zhao et al., 2009). However, these
results were shown to be incompatible with the passivity and
causal response of the materials (Silveirinha and Maslovski,
2010), which implies that the condition Im½ϵðωÞ�Im½μðωÞ� −
ðIm½κmðωÞ�Þ2 > 0 must be satisfied. This relation imposes
a limit of the strength of the imaginary part of κm and results
in an attractive Casimir force between chiral metamaterials

made of metallic or dielectric meta-atoms for any physical
values of the magnetoelectric coupling (Silveirinha, 2010).
These theoretical arguments were also confirmed by full-
wave simulations of chiral metamaterial structures (McCauley,
Zhao et al., 2010), and it was shown that microstructure
effects (i.e., proximity forces and anisotropy) dominate
the Casimir force for separations where chirality was predicted
to have a strong influence. Still, chiral metamaterials may
offer a way to strongly reduce the Casimir force (Zhao
et al., 2010).

B. Photonic crystals

Photonic crystals are man-made electromagnetic structures
that, unlike metamaterials, have unit cell sizes on the order of
the wavelength of light. The most important property of
photonic crystals made of low-loss dielectric periodic

FIG. 10. Top: Normalized Casimir force as a function of
separation between a gold semispace and a 2D metasurface
made of close-packed (lattice constant a ¼ 11.24 μm) LiTaO3

spheres of radius r ¼ 5.62 μm, calculated via scattering
theory. The optical response of LiTaO3 is described
by a single-resonance Drude-Lorentz model ϵðωÞ ¼
ϵ∞½1þ ðω2

L − ω2
TÞ=ðω2

T − ω2 − iωγÞ�, where ϵ∞ ¼ 13.4, the
transverse and longitudinal optical phonon frequencies are
ωT ¼ 26.7 × 1012 and ωL ¼ 46.9 × 1012 rad=s, and the dissipa-
tion parameter is γ ¼ 0.94 × 1012 rad=s. The gold Drude param-
eters are taken as ℏΩD ¼ 3.71 eV and ΩDγ

−1
D ¼ 20. Bottom:

Effective permittivity and permeability of the close-packed
LiTaO3 spheres as a function of (a) real and (b) imaginary
frequencies as calculated by the Maxwell-Garnett effective
medium theory. From Yannopapas and Vitanov, 2009.
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structures occurs when the wavelength is about twice their
period (Joannopoulos et al., 2008). Many exotic phenomena
are found, including the appearance of photonic band gaps
preventing light from propagating in certain directions with
specified frequencies, the localization of electromagnetic
modes at defects, and the existence of surface states that
bound light to the surface for modes below the light line.
Photonic crystals were codiscovered by Yablonovitch (1987),
who proved that spontaneous emission is forbidden when a
three-dimensional periodic structure has an electromagnetic
band gap which overlaps with an electronic band edge, and
John (1987), who showed that strong localization of photons
could take place in disordered dielectric superlattices. The
simplest possible photonic crystal, a 1D multilayered stack
made of materials of alternating dielectric constants, had been
already investigated more than a century ago by Lord
Rayleigh. Today photonic crystals come in different fashions,
including complex 3D structures [e.g., the Yablonovite
(Yablonovitch, Gmitter, and Leung, 1991)], periodic dielectric
waveguides, and photonic-crystal slabs and fibers.
Photonic crystals offer great flexibility in designing atomic

traps close to surfaces at submicrometer distances allowing the
integration of nanophotonics and atomic physics with a host of
exciting quantum technologies. Trapping atoms near surfaces
is determined by the Casimir-Polder force. However, in
analogy to Earnshaw’s theorem of electrostatics, there are
no stable Casimir-Polder (or Casimir) equilibria positions for
any arrangements of nonmagnetic systems, provided the
electric permittivities of all objects are higher or lower than
that of the medium in between them (Rahi, Kardar, and Emig,
2010). For example, there is no stable equilibrium position for
a ground-state atom above a metallic or dielectric structure.1

Fortunately, no such constraints exist for excited state atoms
or when the trapping potential energy is the superposition
of the Casimir-Polder interaction and an external optical
trapping field.
The Casimir-Polder interaction can be calculated for an

atom in state lwith polarizability αlðωÞ considering Eq. (9) for
a rare-field dielectric, as shown in Dzyaloshinskii, Lifshitz,
and Pitaevskii (1961), Lifshitz and Pitaevskii (1980), and
Milonni (1993). Typically, the arising Green’s function is
solved via computational finite-difference time-domain
(FDTD) techniques (to be reviewed in Sec. V). It has been
shown that the Casimir-Polder force between a ground-state
atom and a 1D dielectric grating can trap atoms along the
lateral directions of the dielectric surface (Contreras-Reyes
et al., 2010). However, there is no trapping along the
directions parallel to the grating’s grooves. Fully stable traps
in 3D can be obtained utilizing photonic crystals, such as 1D
periodic dielectric waveguides (Hung et al., 2013). These

proposed structures support a guided mode suitable for atom
trapping within a unit cell, as well as a second probe mode
with strong atom-photon interactions. The combination of the
light shifts from a laser beam together with the Casimir-Polder
force from the dielectric nanostructure results in a fully stable,
3D atomic trap. Aligning the photonic band gap edges with
selected atomic transitions substantially enhances the atom-
photon interactions, since the electromagnetic density of state
diverges due to a van Hove singularity. These ideas were
recently implemented experimentally with a Cs atom trapped
within a 1D photonic-crystal waveguide consisting of two
parallel SiN nanobeams with sinusoidal corrugation (Goban
et al., 2014). The measured rate of emission into the guided
mode along the 1D waveguide was Γ1D ¼ 0.32Γ0, where Γ0 is
the decay rate into all other channels. Such a high coupling
rate is unprecedented in all current atom-photon interfaces and
paves the way for studying novel quantum transport and
many-body phenomena in optics. Other works involving
atom-surface dispersive interactions in close proximity to
photonic crystals include resonant dipole-dipole energy trans-
fer (Bay, Lambropoulos, and Mølmer, 1997) and enhanced
resonant forces (Incardone et al., 2014) between atoms with
transition frequencies near the edge of the photonic band gap,
and strong localization of matter waves mediated by quantum
vacuum fluctuations in disordered dielectric media (Moreno
et al., 2010).

C. Plasmonic nanostructures

Metallic nanostructures can support collective electromag-
netic modes, such as surface plasmons (also known as surface
plasmon polaritons), which can propagate along the surface,
decay exponentially away from it, and have a characteristic
frequency of the order of the plasma frequency (Maier, 2007).
Surface plasmons affect the Casimir interaction in a nontrivial
manner (Intravaia and Lambrecht, 2005), and this point was
also discussed for Dirac materials in Sec. III. When written in
terms of real frequencies, the Lifshitz formula, Eq. (9), for
planar systems has a term arising from the propagative modes,
which gives an attractive force at all distances. There is a
second term associated with the evanescent hybrid plasmonic
modes, which results in an attractive force at short distances
(shorter than the plasma wavelength) and a repulsive one at
longer distances. There is a subtle cancellation between the
attractive and repulsive terms at large separations, resulting in
an always attractive force between planar metallic surfaces for
all separations. This observation suggests that metallic nano-
structures at scales below the plasma wavelength can poten-
tially enhance the repulsive contribution due to plasmons and
lead to a suppression of the Casimir force. Nanostructured
metallic surfaces with tailored plasmonic dispersions have
already impacted classical nanophotonics, with applications
ranging from extraordinary light transmission (Ebbesen et al.,
1998) to surface-enhanced Raman scattering (Nie and Emory,
1997). Metallic structures with strong deviations from the
planar geometry and possessing geometrical features on very
small scales are also likely to give significant new insights into
potential Casimir devices.
In addition to plasmons associated with the metallic nature

of the plates, there is another type of plasmonic excitation, the

1A corollary of this theorem is that there is no Casimir repulsion
for any metallic- or dielectric-based metamaterial treated in the
effective medium approximation. Hence, when applied to dispersive
interactions, effective medium is a good approach only at separations
larger than the unit cell dimensions of the metamaterial. At short
distances, displacements of structured Casimir plates might lead to
repulsion that, however, must be compatible with the absence of
stable equilibria.
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so-called spoof plasmons, that arise from geometry and exist
even for perfectly reflecting surfaces. Pendry and co-workers
(Pendry, Martin-Moreno, and Garcia-Vidal, 2004; Garcia-
Vidal, Martín-Moreno, and Pendry, 2005) proposed engi-
neered dispersion by periodically nanostructuring surfaces by
perforating perfect electrical conductors. The resulting surfa-
ces support surface modes that have dispersion similar to real
surface plasmons in metals, but with the effective plasma
frequency determined by the geometric parameters of the
perforation. Spoof plasmons are also present in nanostructures
made of real metals, enhance the modal density of states, and
modify the Casimir interaction in nanostructured metallic
cavities (Davids, Intravaia, and Dalvit, 2014).
Besides computations of the interaction in complex sys-

tems, including nanostructured surfaces (Büscher and Emig,
2004; Lambrecht and Marachevsky, 2008; Davids et al., 2010;
Intravaia et al., 2012; Guérout et al., 2013; Noto et al., 2014),
advances in Casimir force measurements have also been
reported. However, the experimental progress has been limited
due to difficulties associated with the reliable fabrication and
the measurement of the force. Using an in situ imprinting
technique, whereby the corrugation of a diffraction grating
was imprinted onto a metallic sphere by mechanical pressure,
the lateral Casimir force between two axis-aligned corrugated
surfaces was measured as a function of their phase shift (Chen
et al., 2002; Chiu et al., 2009, 2010), and the normal Casimir
force between them was also measured as a function of the
angle between their corrugation axes (Banishev, Wagner et al.,
2013). Nanostructured lamellar gratings made of highly doped
Si have been used to measure the Casimir interaction with a
metallic sphere (Chan et al., 2008), with conclusive evidence
of the strong geometry dependency and nonadditivity of the
force. More recently, a strong Casimir force reduction through
metallic surface nanostructuring was reported (Intravaia et al.,
2013). In Fig. 11 the experimental setup is shown, consisting
of a plasmonic nanostructure in front of a metallic sphere
attached to a microelectromechanical system (MEMS) oscil-
lator. A deep metallic lamellar grating with sub-100 nm
features strongly suppressed the Casimir force, and for large
intersurface separations reduced it beyond what would be
expected by any existing theoretical prediction. Existing state-
of-the-art theoretical modeling, based on the proximity force
approximation for treating the curvature of the large-radius
sphere (R ¼ 151.7 μm, much larger than any geometrical
length scale in the system), and an exact ab initio scattering
analysis of the resulting effective plane-grating geometry, did
not reproduce the experimental findings. The development of
a full numerical analysis of the sphere-grating problem,
capable of dealing with the disparate length scales present
in the experiment (Intravaia et al., 2013) with plasmonic
nanostructures, remains an open problem. A step in this
direction was recently reported by Messina et al. (2015),
where the exact Casimir interaction between a gold sphere and
a fused silica 1D grating was numerically evaluated.
Nanostructured surfaces have also been used in studies of

atom-surface dispersion interactions. Casimir-Polder forces
between a single atom or a Bose-Einstein condensate (BEC)
above a grating have been measured using different methods
(Grisenti et al., 1999; Oberst et al., 2005; Perreault and
Cronin, 2005; Pasquini et al., 2006; Zhao et al., 2008), and the

near- and field-field scaling laws of the Casimir-Polder
potential were verified. Theoretical proposals have also
been put forward to measure the Casimir-Polder potential
at corrugated surfaces with Bose-Einstein condensates
(Messina et al., 2009; Moreno, Dalvit, and Calzetta, 2010).
In a series of recent experiments, ultracold atoms were utilized
to survey the potential landscape of plasmonically tailored
nanostructures. Stehle et al. (2011) accelerated a Rb Bose-
Einstein condensate toward Au plasmonic microstructures
whose plasmons were excited by external laser fields in a
Kretschmann configuration (Fig. 12). A blue-detuned laser
beam generates an evanescent optical field that repels the
atoms from the surface, while the atom-grating Casimir-
Polder interaction produces an attractive potential. This
combination results in a potential barrier that can be mapped
by classical or quantum reflection measurements. Diffraction

FIG. 11. Top: (a) Schematic of the experimental configuration
used to measure the Casimir force between a gold-coated sphere
and a gold nanostructured grating. One of themany nanostructures
used in the experiment is shown [scanning electron microscopy
images in (b)–(d)]. The radius of the Au sphere is R ¼ 151.7 μm.
Bottom: Plane-grating pressure as a function of sphere-grating
separation for a lamellar grating with period p ¼ 250 nm, tooth
width w ¼ 90 nm, and height h ¼ 216 nm. Experimental mea-
surements of sphere-grating force gradient divided by 2πR (dots
with error bars), and plane-grating pressure computed with the
proximity force approximation (dashed lines), exactly using
scattering theory (solid line). From Intravaia et al., 2013.
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measurements of Bose-Einstein condensates from metallic
nanogratings have allowed one to locally probe the Casimir-
Polder potential (Bender et al., 2014), revealing information
about its landscape (Fig. 12) in agreement with theoretical
calculations based on the scattering approach to atom-grating
Casimir interactions.

V. NONTRIVIAL BOUNDARY CONDITIONS

In this section, we further delineate some of the ways in
which Casimir interactions are fundamentally changed by the
shapes of boundaries and interfaces of macroscopic bodies,
leading for instance to complex and highly nonadditive effects
(Dalvit et al., 2011; Rodriguez, Capasso, and Johnson, 2011;
Buhmann, 2012b; Reid, Rodriguez, and Johnson, 2013;
Rodriguez et al., 2015). Understanding the ways in which
nontrivial shapes and boundary conditions affect the force has
not only shed light on various ways to design forces used to
combat unwanted Casimir effects in nanoelectromechanical
system (NEMS) and MEMS, but continues to reveal regimes
and situations where the often-employed PFA and pairwise
summation (PWS) approximation fail dramatically. Such
structures can also lead to forces that differ significantly from
the attractive, monotonically decaying force laws associated
with planar bodies and/or dilute, atomic media. Underlying
the study of nontrivial boundary conditions are novel

theoretical techniques (reviewed below) that, while intimately
related, bear little semblance to the original and decades-old
formulas used to compute Casimir interactions.
Early studies of Casimir forces focused on simple geom-

etries, e.g., planar bodies and generalizations thereof, by
employing sum-over-mode formulations where the zero-point
energy of electromagnetic fields (field fluctuations) rather
than dipolar interactions (charge fluctuations) were summed
(Casimir, 1948; Milonni, 1993). The equivalence of these two
perspectives comes from the fluctuation-dissipation theorem,
relating the properties (amplitude and correlations) of current
fluctuations in bodies to the thermodynamic and dissipative
properties of the underlying media (Lifshitz, 1956; Lifshitz
and Pitaevskii, 1980; Eckhardt, 1984). Ultimately, the con-
nection between current and field fluctuations arises from
the well-known dyadic electromagnetic Green’s function
(Jackson, 1998):

Gijðr;r0;ωÞ ¼ f½∇×∇×−εðr;ωÞω2�−1êjδðr− r0Þgi; ð20Þ

where êj is the unit vector. The connection to sum-over-mode
formulas arises from the trace of the Green’s function being
related to the electromagnetic density of states

ρðωÞ ¼ 1

π

dðω2εÞ
dω

TrImGijðr; r;ωÞ;

which when integrated
P

ωρðωÞ ¼
R
dωρðωÞ leads to the

famous E ¼ P
ωðℏω=2Þ formula (van Kampen, Nijober, and

Schram, 1968; Gerlach, 1971; Rodriguez, Ibanescu, Iannuzzi,
Joannopoulos, and Johnson, 2007). Although this formulation
was originally developed in special geometries involving
perfectly metallic conductors, where Hermiticity leads to
well-defined modes, it has also been extended to handle other
situations of interest such as open structures and lossy
dielectrics (van Enk, 1995a; Genet, Lambrecht, and
Reynaud, 2003; Mochan and Villarreal, 2006; Graham,
Quandt, and Weigel, 2009; Davids et al., 2010; Milton,
Wagner et al., 2010; Intravaia and Behunin, 2012). Despite
these generalizations, the sum-over-mode approach poses
practical challenges for computations in general structures
due to the cumbersome task of having to compute all of the
modes of the system (Ford, 1993; van Enk, 1995b; Rodriguez,
Ibanescu, Iannuzzi, Joannopoulos, and Johnson, 2007).
Instead, more powerful applications of the fluctuation-

dissipation theorem exist in which Green’s functions are
directly employed to compute energy densities and stress
tensors (momentum transport) rather than modal contributions
to the energy, reducing the problem to a series of classical
scattering calculations: scattered fields due to known incident
fields and sources. This latter viewpoint was originally
employed by Lifshitz and others to calculate forces between
planar dielectrics bodies (Dzyaloshinskii, Lifshitz, and
Pitaevskii, 1961; Lifshitz and Pitaevskii, 1980), and it turns
out to be much more useful when dealing with complex
geometries. The advantage comes from the fact that the
Green’s function does not need to be obtained analytically
as was done for planar bodies, but it can be routinely and
efficiently computed numerically via classical electromagnet-
ism. These ideas lie at the center of recently developed

FIG. 12. Top: Schematic configuration to measure the Casimir-
Polder potential probed by a BEC diffracted from a plasmonic
nanostructured being excited by an external laser field in the
Kretschmann configuration. Bottom: Atom-grating potential
landscape arising from the combination of a repulsive evanes-
cent-wave potential and the Casimir-Polder attraction. The
external laser field has a power of P ¼ 211 mW. The evanescent
field from the grating modulates the repulsion, and the attractive
Casimir-Polder potential is the strongest on top of the gold
stripes. At a distance of 200 nm, the potential is laterally
modulated with an amplitude of ΔE=kB ¼ 14 μK. From Stehle
et al., 2011, and Bender et al., 2014.
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general-purpose techniques, schematically shown in Fig. 13,
for computing forces in complex structures which boil down to
a series of classical scattering calculations of Green’s functions
(Rodriguez, Ibanescu, Iannuzzi, Joannopoulos, and Johnson,
2007; Pasquali and Maggs, 2008, 2009; Rodriguez et al.,
2009; Xiong and Chew, 2009; McCauley, Rodriguez et al.,
2010; Xiong et al., 2010) or related quantities such as
scattering matrices (Emig, 2003; Gies, Langfeld, and
Moyaerts, 2003; Büscher and Emig, 2004; Gies and
Klingmuller, 2006b; Lambrecht, Maia Neto, and Reynaud,
2006; Emig et al., 2007; Kenneth and Klich, 2008; Rahi et al.,
2009; Reid et al., 2009; Milton, Parashar et al., 2010; Reid,
White, and Johnson, 2011, 2013; Atkins et al., 2013).
Despite their relative infancy, thesemethods have already led

to a number of interesting predictions of unusual Casimir forces
in a wide range of structures, including spheres (Gies and
Klingmuller, 2006a; Emig, 2008; Maia Neto, Lambrecht, and
Reynaud, 2008), cylinders (Emig et al., 2006), cones
(Maghrebi et al., 2011), waveguides (Rodriguez, Ibanescu,
Iannuzzi, Capasso et al., 2007; Zaheer et al., 2007; Rahi et al.,
2008; Rodriguez-Lopez, Rahi, and Emig, 2009; Pernice et al.,
2010), and patterned surfaces (Emig et al., 2003; Büscher
and Emig, 2004; Rodrigues et al., 2006; Lambrecht and
Marachevsky, 2008; Rodriguez, Joannopoulos, and Johnson,
2008; Chiu et al., 2009, 2010; Davids et al., 2010; Guérout
et al., 2013), among others (Rodriguez et al., 2008; Rodriguez,
McCauley et al., 2010; Rodriguez, Woolf et al., 2010; Broer
et al., 2012).Herewe provide a concise but inclusive exposition
of themain techniques employed in state-of-the-art calculations
along with discussions of their suitability to different kinds of
problems, all the while focusing on representative results that
reveal the highly nonadditive character of Casimir forces.

A. Scattering methods

A sophisticated and powerful set of techniques for calcu-
lating Casimir forces are scattering methods [Fig. 13(a)].
While these approaches come in a variety of flavors, they often
rely on formulations that exploit connections between the
electromagnetic density of states (Emig, 2003; Gies, Langfeld,
and Moyaerts, 2003; Emig et al., 2006; Kenneth and Klich,
2008) or path-integral representations of the electromagnetic
energy (Kardar and Golestanian, 1999; Lambrecht, Maia
Neto, and Reynaud, 2006; Emig et al., 2007; Kenneth and
Klich, 2008; Rahi et al., 2009; Reid et al., 2009; Milton,

Parashar et al., 2010; Reid, White, and Johnson, 2011), and
classical scattering matrices (Dalvit et al., 2011). Regardless
of the chosen starting point, the Casimir energy is often
written in the following form:

E ¼ −
ℏ
2π

Z
∞

0

dω log detðMM−1
0 Þ; ð21Þ

where the matrix M is

M ¼

0
BB@

Mð11Þ Mð12Þ � � �
M21 Mð22Þ � � �
..
. ..

. . .
.

1
CCA

whose diagonal blocks MðααÞ are precisely the scattering
matrices of isolated bodies and whose off-diagonal blocks
MðαβÞ encapsulate interactions and scattering among the
bodies (Lambrecht, Maia Neto, and Reynaud, 2006;
Rahi et al., 2009). Multiplication by the inverse matrix
M−1

0 ensures that the divergent, self-interaction energy of
the bodies in isolation (separations d → ∞) is subtracted,
leaving behind a finite quantity (Rahi et al., 2009).
Although Eq. (21) may appear largely unrelated to the

Lifshitz formula [Eq. (9)], the connection between the two
becomes apparent when considering extended structures.
Specifically, given two semi-infinite, periodic bodies the
formula can be written in the more familiar form E ¼R
∞
0 dω log det ð1 − Rð1ÞMð12ÞRð2ÞMð21ÞÞ, where RðαÞ are the
reflection matrices of each individual half-space andMðαβÞ are
translation matrices that describe wave propagation between
them (Lambrecht, Maia Neto, and Reynaud, 2006; Lambrecht
and Marachevsky, 2008; Rahi et al., 2009). For planar bodies,
as discussed in Sec. III.A, the scattering matrices can be
expressed in a Fourier basis and the above expression reduces
to the Lifshitz formula (Lifshitz, 1956), originally obtained via
direct evaluation of the Maxwell stress tensor.
It is also possible to derive a slightly different scattering

formula, known as the TGTG formula (Kenneth and Klich,
2008; Klich and Kenneth, 2009), in which the energy between
two arbitrary bodies is expressed as

E ¼
Z

∞

0

dκ log detð1 − T ð1ÞGð12Þ
0 T ð2ÞGð21Þ

0 Þ; ð22Þ

(a) (b)

FIG. 13. Schematic illustration of numerical methods recently employed to compute Casimir interactions in complex geometries:
(a) scattering methods where the field unknowns are either incident or outgoing propagating waves (left) or vector currents JðxÞ defined
on the surfaces of the bodies (right), and the resulting energies are given by Eq. (21); (b) stress-tensor methods in which the force is
obtained by integrating the thermodynamic Maxwell stress tensor over a surface surrounding one of the bodies utilizing the fluctuation-
dissipation theorem.
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where T ðαÞ are the T operators appearing in the Lippmann-
Schwinger equation (related to the scattering matrices of

individual bodies), and GðαβÞ
0 are the homogeneous Green’s

functions of the intervening medium, describing the wave
propagation. Note that even though these formulations may
appear to be completely divorced from the original picture of
dipole fluctuations, the fact that the energy is described by the
scattering properties of the bodies is not surprising. In
particular, as discussed later, at equilibrium it is possible to
describe the statistics of field fluctuations independently of the
corresponding current sources of the fluctuations (Lifshitz and
Pitaevskii, 1980; Eckhardt, 1984). Intuitively, one can con-
sider Casimir interactions as arising from the scattering and
momentum exchange of vacuum electromagnetic fields origi-
nating from radiating sources infinitely far away (rather than
within the bodies) and that ultimately end up equilibrating as
they get scattered, absorbed, and reemitted by the bodies.
Equation (21) was originally exploited to study forces

between highly symmetric structures, e.g., spheres and cyl-
inders, where the corresponding propagators, scattering, and
translation matrices can be expanded in terms of convenient,
delocalized free-wave solutions of the Helmholtz equation
(Kenneth and Klich, 2008; Lambrecht and Marachevsky,
2008; Rahi et al., 2009; Milton, Parashar et al., 2010;
Maghrebi et al., 2011), as illustrated in Fig. 13(a). The
resulting spectral methods (Balian and Duplantier, 1978;
Dalvit et al., 2006; Lambrecht, Maia Neto, and Reynaud,
2006; Mazzitelli, Dalvit, and Lombardo, 2006; Emig et al.,
2007; Kenneth and Klich, 2008; Lambrecht and Marachevsky,
2008; Milton, Parashar, and Wagner, 2008; Rahi et al., 2009)
are advantageous in a number of ways: First, they yield
analytical results that offer insight into the properties of the
Casimir force at asymptotically large separations (Rahi et al.,
2009) or under assumptions of dilute media (Milton, Parashar,
and Wagner, 2008; Milton and Wagner, 2008; Golestanian,
2009; Bitbol et al., 2013). Second, the trace operations for
smooth and high-symmetry structures can be efficiently
implemented due to the very high-order and possibly even
exponential convergence of the basis expansions (Boyd, 2001;
Dalvit et al., 2011). Finally, since the energy expressions
involve simple products of scattering matrices having well-
studied properties, this formulation is well suited for establish-
ing general constraints on the signs and magnitudes of forces
under various circumstances. Of particular importance is the
recent demonstration that the force between any two mirror-
symmetric bodies must always be attractive (Kenneth et al.,
2002; Kenneth and Klich, 2006), resolving a long-standing
question about the sign of the internal pressure or self-force on
a perfectly metallic, isolated sphere (the limit of two opposing
hemispheres) (Boyer, 1968; Milton, DeRaad, and Schwinger,
1978; Brevick and Einevoll, 1988; Bordag, Mohideen, and
Mostepanenko, 2001). Similarly, recent works have shown
that stable suspensions (local equilibria) between vacuum-
separated, nonmagnetic bodies are generally impossible
(Lambrecht, Jaekel, and Reynaud, 1997; Rahi, Kardar, and
Emig, 2010).
For more complicated bodies lacking special symmetries,

involving sharp corners, or where nonuniform spatial reso-
lution is desired, it is advantageous to employ localized basis

functions. More commonly, the unknowns are defined on a
generic mesh or grid and the resulting equations are solved
numerically, examples of which are the finite-difference
(Taflove and Hagness, 2000), finite element (Jin, 2002),
and boundary element (Bonnet, 1999; Chew et al., 2001)
methods. The latter category is closely related to scattering
methods (Rodriguez, Ibanescu, Iannuzzi, Joannopoulos, and
Johnson, 2007; Reid et al., 2009; Xiong et al., 2010; Reid,
White, and Johnson, 2011); in the surface-integral equation
formulation of electromagnetic scattering, the scattering
unknowns are fictitious electric and magnetic currents defined
on the surfaces of the bodies, illustrated in Fig. 13(a), and
expanded in terms of an arbitrary basis of surface vector fields
(Chew et al., 2001). The connection to scattering problems
comes from the fact that incident and scattered fields are
related to the current unknowns via homogeneous Green’s
functions (analytically known); not surprisingly, this formu-
lation leads to a similar trace expression for the Casimir
energy given in Eq. (21), except that the elements ofM consist
of overlap integrals among the various surface basis functions.
A powerful implementation of this approach is the boundary
element method (BEM), where the current unknowns are
expanded in terms of localized basis functions (typically, low-
degree polynomials) defined on the elements of some dis-
cretized surface, as illustrated in Fig. 13(a). As a result the M
matrices turn out to be none other than the well-studied BEM
matrices that arise in classical scattering calculations (Chew
et al., 2001). Such a formulation allows straightforward
adaptations of sophisticated BEM codes, including recently
published, free, and widely available software packages (Reid,
2012). Like most numerical methods, the BEM method can
handle a wide range of structures, including interleaved bodies
with corners, and enables nonuniform resolutions to be
employed as needed.

B. Stress-tensor methods

Although originally conceived as a semianalytical method
for computing forces in planar bodies (Jaekel and Reynaud,
1991; Zhou and Spruch, 1995; Klimchitskaya, Mohideen, and
Mostepanenko, 2000; Tomaš, 2002), leading to the famous
Lifshitz formula (Sec. III.A), the stress-tensor approach can
also be straightforwardly adapted for numerical computations
(Rodriguez, Ibanescu, Iannuzzi, Joannopoulos, and Johnson,
2007; Rodriguez, Joannopoulos, and Johnson, 2008;
Rodriguez et al., 2008, 2009; Xiong and Chew, 2009;
McCauley, Rodriguez et al., 2010) since it relies on repeated
calculations of Green’s functions. In this formulation
[schematically shown in Fig. 13(b)], the Casimir force on
an object is expressed as an integral of the thermodynamic,
Maxwell stress tensor hTiji ¼ εðhEiEji − 1

2

P
khEkEkiÞ þ

ðhHiHji − 1
2

P
khHkHkiÞ over an arbitrary surface S sur-

rounding the object,

F ¼
Z

∞

0

dκ
Z Z

S
hTi · dS: ð23Þ

Similar to scattering methods, here the picture of fluctuating
dipoles is masked by an equivalent scattering problem
involving fields rather than fluctuating volume currents,
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whereby the correlation functions hEiEji; hHiHji ∼ Gij, a
consequence of the fact that at equilibrium, currents and
field fluctuations become thermodynamically equivalent
(Eckhardt, 1984).
Beyond special-symmetry structures where the Green’s

functions can be expanded in a convenient spectral
basis (Jaekel and Reynaud, 1991; Zhou and Spruch, 1995;
Klimchitskaya, Mohideen, and Mostepanenko, 2000; Tomaš,
2002), recent implementations of the stress-tensor method for
arbitrary geometries exploit general-purpose techniques, such
as the finite-difference method illustrated in Fig. 13(b), where
space is divided into a uniform grid of finite resolution, and
the resulting matrix equations for the Green’s functions
are solved numerically (Strikwerda, 1989; Anderson et al.,
1999; Taflove and Hagness, 2000). Early implementations
include both finite-difference frequency-domain (Rodriguez,
Ibanescu, Iannuzzi, Joannopoulos, and Johnson, 2007; Xiong
and Chew, 2009) and time-domain (Rodriguez et al., 2009;
McCauley, Rodriguez et al., 2010) methods.
Because Casimir forces involve broad bandwidth fluctua-

tions time-domain methods are advantageous in that
Gijðr; r0;ωÞ at all frequencies can be computed at once via
Fourier transforms (Taflove and Hagness, 2000). While the
finite-difference stress-tensor method does not offer the
efficiency and sophistication of other formulations and dis-
cretization schemes, such as the BEM fluctuating-surface
current method (Reid, White, and Johnson, 2011), they are
compensated by their flexibility and generality. For instance,
they are extremely simple to implement [leading to many free
and easy-to-use numerical packages (Oskooi et al., 2010)],
can handle many different kinds of boundary conditions and
materials (including anisotropic and even nonlinear dielec-
trics), and are well understood. A BEM implementation of the
stress-tensor method was also first suggested by Rodriguez,
Ibanescu, Iannuzzi, Joannopoulos, and Johnson (2007) and

subsequently implemented by Xiong and Chew (2009),
although for small problems the trace formulas provide a
simpler and more efficient alternative since they do not require
repeated integration over surfaces and involve only products
of BEM matrices. On the other hand, the stress-tensor method
offers computational advantages for large problems since it
involves repeated evaluation of Green’s functions, or matrix-
vector products, making it an ideal candidate for applications
of fast-solver (iterative) techniques (Chew et al., 1997).

C. Casimir interactions in complex geometries

While PFA and PWS approximations provide simple,
quickly solvable, and intuitive expressions for forces in
arbitrary geometries, they are uncontrolled when pushed
beyond their limits of validity and have been shown to fail
(even qualitatively) in the simplest of structures (Bordag,
2006; Gies and Klingmuller, 2006a; Dalvit et al., 2011;
Rodriguez, Capasso, and Johnson, 2011; Bitbol et al.,
2013). Increased demand for experimental guidance has
stimulated recent efforts in quantifying the validity and
accuracy of PFA (Chiu et al., 2009, 2010).
Although PFA is technically only applicable in geometries

with smooth, large-curvature objects and small separations, it
has nevertheless been heuristically applied in the past to study
a wide range of other situations (Lambrecht, Maia Neto, and
Reynaud, 2008; Rodriguez et al., 2015). For instance, a
number of recent works have employed scattering methods
to investigate extensions of PFA in the sphere-plate geometry
at large separations in the idealized limit of perfect conductors
(Bimonte et al., 2012; Fosco, Lombardo, and Mazzitelli,
2012), where the PFA energy takes on the closed-form
expression EPFA ¼ π3ℏcR=1440d2, where R denotes the
sphere radius. The plotted ratio of energies in Fig. 14(a)
shows that PFA increasingly overestimates the energy as

(a) (b)

FIG. 14. Results illustrating the range of validity of PFA and PWS approximations in the sphere-plate geometry, involving a sphere of
radius R separated from a semi-infinite plate by a surface-surface distance d. The exact Casimir energy is computed by application of the
scattering method. (a) Ratio of the exact and PFA energies as a function of d=R for perfectly metallic conductors. Numerical data (dots)
are compared to the first correction of the PFA (dashed lines), described in the text, and also to a fit performed via Padé approximants
(solid curves), in which the energy ratio is given by E=EPFA ¼ 1þ ð1=3Þð1 − 60=π2Þd=Rþ ð8=100Þðd=RÞ2 logðd=RÞ. From Bimonte
et al., 2012. (b) Ratio of the PWS and exact Casimir energies as a function of the static permittivities of the sphere and plate, for various
ratios d=R (blue curves). The red (steepest) and black (least steep) curves represent equivalent results for the plate-plate and sphere-plate
geometries in the limit of infinite separations. From Bitbol et al., 2013.
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d → ∞, which is to be expected since at d=R ≫ 1, the
interaction approaches that of a dipole above a plate exhibiting
a significantly faster decay ∼1=d6 (Buhmann and Welsch,
2007). Higher-order perturbative PFA corrections for large
curvatures d=R ≪ 1 have also been obtained (Bordag, 2006;
Lambrecht, Maia Neto, and Reynaud, 2008; Bimonte et al.,
2012; Fosco, Lombardo, and Mazzitelli, 2012) [Fig. 14(a)].
Techniques based on Padé approximants, which constrain the
force at short and large separations using gradient and
multipole expansions [Fig. 14(a)], have also culminated in
analytical expressions (Bimonte et al., 2012), leading to the
hope that similar methods can be applied to more complex
geometries. The situation is more complicated in cases
involving realistic metals and finite temperatures, as illustrated
by recent predictions of geothermal effects involving non-
trivial interplay between geometry, materials, and temperature
in the sphere-plate geometry (Maia Neto, Lambrecht, and
Reynaud, 2008; Canaguier-Durand et al., 2010; Weber and
Gies, 2010a, 2010b).
The PWS approximation, applicable in the limit of large

separations and dilute media, relies on dividing the object into
small elements (“atoms”) and summing the corresponding
vdWand Casimir-Polder interactions (Bergstrom, 1997; Veble
and Podgornik, 2007; Milton, Parashar, and Wagner, 2008;
Golestanian, 2009). The presence of multiple scattering,
otherwise absent in the limit of weak coupling or dilute
media (Milton, Parashar, and Wagner, 2008), has long been
known to significantly modify the underlying two-body force
laws (Axilrod and Teller, 1943). Despite these shortcomings,
PWS approximations have been recently applied to numeri-
cally approximate interactions in complex geometries
(Tajmar, 2004; Sedmik, Vasiljevich, and Tajmar, 2007),
especially in the field of microfluidics (Stone and Kim,
2001; Parsegian, 2006). While PWS approximations are
strictly applicable in the limit of dilute media, recently they
were shown to lead to larger errors in the experimentally
relevant case of dielectric materials (Bitbol et al., 2013). This
situation is illustrated in Fig. 14(b), which shows that PWS
underestimates the energy in the perfect-metal limit (ε → −∞)
by ≈20%, is exact in the dilute limit of ε → 1, and is
(surprisingly) most inaccurate at intermediate ε ∼ 10 where
it overestimates the energy by roughly 60%. Such counter-
intuitive results shed light on the complexities associated with
dilute approximations, since a heuristic argument based on the
screening of fields in materials with large dielectric contrasts
would predict strictly monotonically increasing deviations. By
examining interactions between compact objects at asymp-
totically large separations, it is also possible to obtain
perturbative corrections to Casimir-Polder forces (Balian
and Duplantier, 1977; Golestanian, 2000, 2009; Emig et al.,
2006; Emig, 2008; Milton and Wagner, 2008; Rahi et al.,
2009; Stedman, Drosdoff, and Woods, 2014). Formal deri-
vations of PWS approximations in the limit of dilute media as
well as perturbative corrections applicable in systems with
larger index contrasts have also been developed (Milton,
Parashar, and Wagner, 2008; Golestanian, 2009; Rodriguez-
Lopez, 2009).
At intermediate separations that are on the order of the sizes

of the objects and for realistic materials, neither PFA nor

PWS, nor perturbative corrections thereof can accurately
predict the behavior of the Casimir force. However, it is
precisely this regime that is most easily tackled by numerical
methods. Application of scattering methods to the study of
compact bodies interacting with planar objects have led to a
number of interesting predictions, a select number of which
are illustrated in Fig. 15. In geometries involving perfect-
conductor bodies with special symmetries such as spheres,
cones, wedges, or cylinders, scattering-matrix methods have
been employed to obtain both numerical and semianalytical
results (Emig et al., 2006, 2009; Mazzitelli, Dalvit, and
Lombardo, 2006; Maia Neto, Lambrecht, and Reynaud,
2008; Rahi et al., 2009; Dalvit et al., 2011). Other, more
complicated shapes such as waveguides, disks, cubes, tetra-
hedral particles, and capsules are less amenable to spectral
methods, but have nevertheless been studied using brute-force
techniques (Rodriguez, Ibanescu, Iannuzzi, Capasso et al.,
2007; Reid et al., 2009; Atkins et al., 2013; Reid, White, and
Johnson, 2013). Figure 15 shows that the energy of a cone
with a semiopening angle θ0 and a substrate vanishes
logarithmically E ∼ −ðℏc=dÞð1= log θ0Þ as θ0 → 0, a type
of divergence that is characteristic of lines and other scale-
invariant objects (Maghrebi et al., 2011). In contrast, the PFA
energy is predicted to vanish linearly as θ0 → 0. For a tilted
wedge, the PFA energy remains constant until the back surface
of the wedge becomes visible to the plate, while exact results
indicate smoothly varying angle dependence despite the
screening effects (Maghrebi et al., 2011). Earlier calculations
of forces between cylinders, spheres, and ellipsoidal bodies
and plates have also demonstrated unexpectedly weak decay
rates and other interesting nonadditive modifications (Dalvit
et al., 2006; Emig et al., 2006, 2007, 2009; Mazzitelli, Dalvit,
and Lombardo, 2006; Maia Neto, Lambrecht, and Reynaud,
2008). For more complicated structures, such as the pair of
cubes shown in Fig. 15, it is more convenient to employ brute-
force techniques like the BEM method (Reid, White, and
Johnson, 2013).
Unusual Casimir interactions in multibody geometries have

also recently been studied (Dalvit et al., 2011; Rodriguez,
Capasso, and Johnson, 2011). For instance, application of
numerical methods [first employing stress tensors (Rodriguez,
Ibanescu, Iannuzzi, Capasso et al., 2007) and subsequently
scattering matrices (Rahi et al., 2008)] in a structure composed
of two metallic coplanar waveguides suspended above adja-
cent metal sidewalls [Fig. 16(a)] reveal that the attractive
Casimir force per unit length between the waveguides varies
nonmonotonically as a function of their separation from the
sidewalls h. Large deviations from PFA can be explained from
the fact that PFA is unable to accurately capture the competing
effects of TE and TM fields at small and large h (Hertzberg
et al., 2007; Zaheer et al., 2007; Rahi et al., 2008). Extensions
of this geometry to situations involving finite rods, such as the
cylindrically symmetric geometry of Fig. 16(a), where the
sidewalls are joined to form a cylindrical tube and described
by either perfect-electric or perfect-magnetic boundary con-
ditions (McCauley, Rodriguez et al., 2010), demonstrate the
importance of dimensionality and boundary conditions on the
behavior of the force. Along similar lines, structures involving
periodic arrays of finite cylinders on slabs [Fig. 16(b)] reveal
strong variations in the force depending on whether the arrays
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are aligned or crossed, even leading to changes in its sign at
close separations when the system is immersed in a fluid
(Rodriguez et al., 2009; McCauley, Rodriguez et al., 2010;
McCauley, Rosa et al., 2011). Exact calculations are also
compared to predictions based on PFA, showing significant,
qualitative deviations. An effective medium theory description
of the problem, in which the slabs are treated as homogeneous,
anisotropic dielectrics, gives surprisingly accurate predictions
down to separations of the order of the period.
Objects with nontrivial geometry can also be utilized to

obtain repulsive Casimir interactions in vacuum (Rodriguez
et al., 2015). A proof of principle of the feasibility of repulsion
in vacuum was recently demonstrated using BEM and FDTD
numerics in a structure involving a small, elongated particle
above a plate with a hole (Levin et al., 2010), shown
schematically in Fig. 16(c). Because of constraints on the
size of the particles and hole as well as on the length scales
needed to observe these effects, the force in that geometry
turns out to be too small (atto-Newtons) for current exper-
imental detection (Levin et al., 2010). However, extensions to
multiple particles (attached to a substrate) have demonstrated
a thousandfold force enhancements without the need to
change hole radii or length scales (McCauley, Rodriguez
et al., 2011), as illustrated in Fig. 16(c). Interestingly, the
enhancement can be understood as arising not only from the
presence of additional bodies, but from increased repulsion
due to the larger polarizability of the particles as they interact
with fringing fields near the edge of the plate (Eberlein et al.,

2011; Milton et al., 2011, 2012). One can also show that the
interaction between a polarizable particle and a perfect-metal
wedge or half plate is repulsive (Milton et al., 2012), provided
that the wedge is sufficiently sharp and that the particle is
sufficiently anisotropic. Similar results should extend to vdW
interactions on molecules and atoms near structured surfaces,
but the main challenge in these systems is the need to attain a
large degree of particle anisotropy. Recent calculations show
that Rydberg atoms cannot achieve a high enough anisotropy
(Ellingsen, Buhmann, and Scheel, 2010). Regardless of their
current experimental observability and practical considera-
tions, these recent theoretical predictions demonstrate the fact
that geometry can prove to be a powerful resource for shaping
Casimir forces.

VI. SOFT AND BIOLOGICAL MATERIALS

Besides the prominent role of fluctuation-induced inter-
actions in inorganic materials systems, vdW forces have many
other interesting manifestations. The adhesion of the gecko,
with no help from glues, suction, or interlocking, is perhaps
the most popular example for vdW interactions in biological
and biorelated matter. Researchers have shown experimentally
that vdW interactions between the gecko spatular toes and
hydrophobic surfaces in air are responsible for the
gecko clinging to substrates (Autumn and Peattie, 2002;
Autumn et al., 2002; Lee, 2014). Other experiments suggest
that while geckos indeed use no glue, they do leave

(a) (b) (c)

(d)

FIG. 15. Selected results of Casimir interactions involving compact bodies suspended above planar objects or interacting with other
compact bodies, calculated via scattering-matrix techniques in combination with spectral methods. (a) Casimir energy of a perfectly
conducting vertically oriented cone, suspended above a perfectly conducting plate by a fixed distance d, as a function of the
semiopening angle θ0 of the cone. From Maghrebi et al., 2011. The PFA approximation is shown as the dashed line. (b) Casimir energy
of a perfectly conducting wedge and plate of length L and tilt angle π=4 as a function of the opening angle ψ . The system is suspended
above a semi-infinite perfectly conducting plate by a surface-surface distance d. From Maghrebi et al., 2011. The PFA prediction,
dashed lines, is compared to the exact calculation, solid circles. (c) Ratio of the exact Casimir and PFA energies of the perfectly
conducting cylinder-plate structure shown in the inset, as a function of a=R, decomposed into TE and TM contributions. From
Emig et al., 2006. (d) Distance dependence of the Casimir force between perfectly conducting metallic cubes (red squares) or spheres
(green circles), as computed by the BEMmethod of Reid, White, and Johnson (2013), divided by the corresponding PFA forces. Results
for spheres are compared to computations performed using scattering-matrix methods (blue circles) which yield fast-converging
semianalytical formulas, in contrast to situations involving realistic materials with dispersion such as gold, which require brute-force
methods.
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“footprints” of residue identified as phospholipids with
phosphocholine head groups (Hsu et al., 2011). On the other
hand, the contact surface between the gecko’s toes and the
substrate is saturated with methylene moieties of the phos-
pholipids and contains no water. This is furthermore consis-
tent with predominantly hydrophobic surface of gecko setae
(Stark et al., 2013), landing additional support to the mostly
vdW origin of the adhesion force. Currently there is much
gecko-inspired interest in constructing materials with similar
adhesion properties (Jeonga and Suh, 2009). Single strand
vertical arrays of cylindrical pillars produced by electron-
beam lithography and etched into an array of vertical round
shaped pillars are expected to show behavior similar to gecko
toes. Dry adhesives for robotic applications based upon the
characteristics of vertical and angled flaps from polydime-
thylsiloxane are also being considered for applications
(Yu et al., 2011).

A. The importance of aqueous solvent

The most important defining characteristics of vdW inter-
actions in soft and biomatter comes from the presence of a
solvent, i.e., water (Israelachvili, 1991). The interaction
between two substrates with dielectric function εðωÞ separated
by a water layer with εwðωÞ can be described by the standard
Lifshitz formula [Eq. (9)] (Bordag, Klimchitskaya et al.,

2009). The fact that typically εð0Þ≪ εwð0Þ makes the n¼ 0

Matsubara term quite important and can account for about
50% or more of the total value of the Hamaker coefficient
(Ninham and Parsegian, 1970). For lipid-water systems
(Kollmitzer et al., 2015) retardation effects are not important
even at very large distances (Parsegian and Ninham, 1970;
Parsegian, 2006). The significant thermal effects from the
n ¼ 0 term show that results for vdW interactions in standard
condensed media cannot be simply transcribed into the soft
matter context. Also, apart from its large static dielectric
constant, the full dielectric spectrum of water leads to non-
monotonic features in the vdW interaction between ice and
water vapor (Elbaum and Schick, 1991) or hydrocarbon films
(Bar-Ziv and Safran, 1993) across a liquid water layer in the
retardation regime (Wilen et al., 1995).
Solvent effects are also important when their dispersion

properties are in a certain relation with those of interacting
materials. Recent work by Munday and Capasso (2007) and
Munday, Capasso, and Parsegian (2009), as well as previous
work by various others (Milling, Mulvaney, and Larson, 1996;
Meurk, Luckham, and Bergstrom, 1997; Lee and Sigmund,
2001, 2002; Feiler, Bergstrom, and Rutland, 2008), made it
clear that for specific asymmetric interaction geometries a
solvent whose dielectric permittivity εmðωÞ is between those
of the interacting bodies 1 and 2, ε1ðωÞ > εmðωÞ > ε2ðωÞ, can
create repulsive vdW interactions. Although in principle this

(a) (c)

(b)

FIG. 16. Selected results illustrating unusual Casimir effects from nonadditive interactions in complex structures. (a) Casimir force
between either translationally invariant waveguides (solid lines) or cylindrically symmetric rods (dotted lines), normalized by the
corresponding PFA force, as a function of their separation from adjacent sidewalls a distance h apart (Rodriguez, Ibanescu, Iannuzzi,
Capasso et al., 2007; McCauley, Rodriguez et al., 2010). Configurations of either perfect-electric (blue) or perfect-magnetic (red)
conductors are considered. (b) Casimir pressure between two patterned structures involving periodic arrays of gold cylinders (ϵ1)
embedded in a semi-infinite silica substrate (ϵ2) surrounded by ethanol (ϵ3), as a function of their surface-surface separation d, computed
by application of both scattering and FDTD methods (Rodriguez et al., 2009; McCauley, Rodriguez et al., 2010; McCauley, Rosa et al.,
2011). Exact calculations (solid lines), PFA (dotted lines), and effective medium theory (dashed lines) are also shown. (c) Casimir force
between a small, anisotropic gold particle (top panel) or a circular array of N gold particles (bottom panel) and a gold plate with a hole
(Levin et al., 2010; McCauley, Rodriguez et al., 2011), demonstrating repulsion for vacuum-separated metallic bodies.
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solvent-mediated Casimir-Lifshitz levitation has been known
since the appearance of the Lifshitz theory (Dzyaloshinskii,
Lifshitz, and Pitaevskii, 1961), it has not been used to
effectively control the sign of the vdW interaction. Solvent
mixtures with low molecular weight solutes such as glucose
and sucrose also affect the dielectric properties of the solution
and can thus modify the vdW interactions (Neveau et al.,
1977). Solventlike effects could be important also for two
graphene sheets separated by atomic hydrogen gas, with one
sheet adsorbed on a SiO2 substrate, while the other is
freestanding (Boström and Sernelius, 2012), as discussed in
Sec. III.C.
Electrolyte screening is also a defining feature for biomatter

in aqueous environments. The presence of salt ions screens the
n ¼ 0 Matsubara frequency in the Hamaker coefficient.
The existence of this screening is connected to the fact that
the n ¼ 0Matsubara term actually corresponds to the classical
partition function of the system, and for confined Coulomb
fluids, such as inhomogeneous electrolytes, can lead to a
thoroughly different form of the n ¼ 0 term in the full
Matsubara sum of the Lifshitz theory (Podgornik and Zeks,
1988; Naji et al., 2013), as discussed later. The screening
of vdW interactions in electrolyte solutions can be derived
in a variety of ways, most simply by replacing the Laplace
equation with the linearized Debye-Huckel equation
(Israelachvili, 1991; Parsegian, 2006). In this approach, the
free ions present in the aqueous solution are taken into account
just as in the case of bad conductors (Pitaevskii, 2008), where
the number of charge carriers is small and obeys the
Boltzmann statistics. The zero-frequency Matsubara term in
Eq. (9) then leads to an approximate n ¼ 0 Hamaker
coefficient H0ðdÞ ¼ ð3=4ÞkBTð1þ 2κ0dÞe−2κ0d (Parsegian,
2006). This expression is screened with half the Debye
screening length κ−10 ¼ 8πlBn0, where lB ≃ 0.7 nm is the
Bjerrum thermal length and n0 is the bulk salt concentration.
In many biosystems, the vdW free energy is typically

cast into the form of the Hamaker-type approximation
F ðd; TÞ ¼ −HðdÞ=12πd2, with the separation-dependent
Hamaker coefficient that can be calculated exactly via the
Lifshitz formalism, when accurate experimental data for the
dielectric properties are available. For example, the Hamaker
coefficients for lignin and glucomannan interacting with
cellulose, titania, and calcium carbonate in vacuum, water,
and hexane are found within a relatively narrow range of
∼35–58 zJ for intervening vacuum and ≃8–17 zJ for an
intervening aqueous medium (Hollertz et al., 2013), with
the dielectric response properties extracted via spectroscopic
ellipsometry (Bergstrom et al., 1999). The Hamaker coeffi-
cients for the interactions of the wood components with
common additives in paper such as TiO2 and CaCO3 in
water were obtained as ≃3–19 zJ (Hollertz et al., 2013) and
can explain important adhesion, swelling, and wetting phe-
nomena ubiquitous in paper processing.
The long-range interaction between proteins is also of vdW

nature (Leckband and Sivasankar, 1999; Leckband and
Israelachvili, 2001). Estimates for protein-protein interactions
across water or dilute salt solutions report Hamaker coeffi-
cients mostly within the range ≃10–20 zJ (Farnum and
Zukoski, 1999). H for interacting proteins, such as bovine

serum album, has been found to be ≃12 zJ by considering a
Drude-Lorentz model for the dielectric function and the zero
Matsubara frequency term included (Roth et al., 1996; Neal,
Asthagiri, and Lenhoff, 1998). Using the anisotropic coarse-
grained model of a protein on the level of amino acid residues,
one can calculate effective polarizabilities of bovine pancre-
atic trypsin inhibitor, ribonuclease inhibitor, and lysozyme in
an aqueous solution (Song, 2002). These results have to be
approached with caution, however. Accurate frequency-
dependent polarizabilities are rarely available from either
theoretical or experimental studies (Nandi, Bhattacharyya,
and Bagchi, 2000); thus one has to rely on plausible but
probably unrealistic model approximations (Song and Zhao,
2004). The same is true for the static dielectric constant that
shows pronounced variation from the inside to the periphery
of the protein (Li et al., 2013). The anisotropic optical
spectrum of collagen, a fibrous protein, has been calculated
by ab initiomethods (Poudel et al., 2014) and used to estimate
the corresponding nonisotropic Hamaker coefficients (Dryden
et al., 2015). The vdW interactions between collagen
fibers show a substantial angle-independent component of
the Hamaker coefficient ≃9.3 zJ. The origin of the angular
dependence of vdW interactions is in fact twofold: the
morphological anisotropy, given by the shape, and the
material anisotropy, given by the dielectric response tensor.
Both contribute to the general angular dependence and
consequently torques between biological macromolecules
(Hopkins et al., 2015), see later discussion.

B. Lipid membranes

In general, the vdW interaction is of fundamental impor-
tance for the stability of biological matter (Nel et al., 2009)
and for membrane arrays, in particular (Petrache et al., 2006;
Pasichnyk, Everaers, and Maggs, 2008). The essential com-
ponent of a membrane is the lipid bilayer, a planar layer of
finite thickness composed of a hydrocarbon core with hydro-
phyllic boundaries facing the aqueous solution (Tristram-
Nagle and Nagle, 2004). vdW interactions between lipid
membranes were in fact the first example of using full
Lifshitz theory in condensed media (Parsegian and Ninham,
1969). Calculated nonretarded Hamaker coefficients were
found to be in the range 1–10 zJ. The importance of the
ionic screening of the zero-frequency Hamaker term in
electrolyte solutions for membranes has also been carefully
quantified (Ninham and Parsegian, 1970; Petrache et al.,
2006). As stated in Sec. VI.A, the very high static dielectric
constant of water (Parsegian, 2006) leads to an anomalously
large contribution to the entropy of vdW interactions, which
remains unretarded for all separations as it corresponds mostly
to the n ¼ 0 Matsubara term. However, taking into account
electrolyte screening at sufficiently large salt concentrations
reverses the anomalous effect of the water dielectric constant,
so that retardation effects emerge from a combination of
electrolyte screening and standard retardation screening
(Ninham and Parsegian, 1970).
Most experiments yielding the strength of the nonretarded

Hamaker coefficients are actually based on multilamellar
interaction geometries that allow for detailed osmotic stress
small-angle x-ray scattering (SAXS) studies (Tristram-Nagle
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and Nagle, 2004; Kollmitzer et al., 2015) (see Fig. 17).
One also needs to consider the nonpairwise additive vdW
effects in multilamellar geometries that can be significant
(Narayanaswamy and Zheng, 2013). The interaction of a pair
of two lipid membranes with thickness a at a separation d in a
multilamellar stack yields for the interaction surface free
energy density F ða; dÞ:

F ða; dÞ≃ −
kBT

4πðaþ dÞ2
�
1

2

�
ζ

�
2;

d
aþ d

�
− 2ζð2; 1Þ

þ ζ

�
2;
dþ 2a
aþ d

��
Δ̄2ð0Þ

þ
X∞
n¼1

�
Z
�
2þ y;

d
aþ d

�
− 2Zð2þ y; 1Þ

þ Z
�
2þ y;

dþ 2a
aþ d

��
Δ̄2ð{ωnÞ

�
; ð24Þ

where ζðm; nÞ is the zeta function and y ¼
2ðωn=cÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵBðıωnÞ

p ðaþ dÞ. The function Zð2þ y; xÞ is expo-
nentially screened with y according to Podgornik, French, and
Parsegian (2006) and Δ̄ðωÞ ¼ ðρAϵB − ρBϵAÞ=ðρAϵB þ ρBϵAÞ,
where ϵAðωÞ and ϵBðωÞ are the permittivities of lipid and
water, respectively. Also, ρ2A;B ¼ Q2 − ϵA;Bω

2=c2, where Q is
the magnitude of the transverse wave vector [for details see
Podgornik, French, and Parsegian (2006)].
The nonadditive effects in F ða; dÞ vanish at d ≪ a, where

the interaction is obviously reduced to that of two semi-
infinite lipid regions across water. Approximating the water
response function by one Debye and 12 Lorentz oscillators
(Roth and Lenhoff, 1996; Dagastine, Prieve, and White,
2000), and the lipid response function by four Lorentz
oscillators in the ultraviolet regime (Parsegian, 2006) yields
Hða ¼ 4 nm; d ∼ aÞ ¼ 4.3 zJ. The usually quoted theoreti-
cal result with no retardation effects (Parsegian, 2006) is
Hða; d ∼ aÞ ¼ 3.6 zJ, while experimentally determined H is
typically in the range 2.87–9.19 zJ for dimyristoyl phospha-
tidylcholine and dipalmitoyl phosphatidylcholine lipid

multilayers (Petrache et al., 1998). The lipid bilayer thickness
dependence is clearly seen in recent experiments with
dioleoyl phosphocholine/distearoyl-phosphocholine/cholestrol
(DOPC/DSPC/Chol) mixtures that phase separate into liquid-
ordered (Lo) and liquid-disordered (Ld) domains with H ¼
4.08 zJ for Ld and H ¼ 4.15 zJ for Lo domains (Kollmitzer
et al., 2015).
Other fluctuation-induced Casimir-like interactions (Kardar

and Golestanian, 1999) are also of relevance in the context of
lipid membranes. Among these, the Helfrich interactions due
to steric repulsion between fluctuating membranes have
received very detailed attention; see Freund (2013) and Lu
and Podgornik (2015). However, more directly related to
the Casimir effect are the thermal height fluctuations of
membranes, constrained on average to be planar, that can
couple in various manners to the local membrane composition.
For example, embedded macromolecules, such as proteins
(Phillips, Kondev, and Theriot, 2008), cause modifications of
the height fluctuations due to the spatial variation of the
effective membrane rigidity at the position of the inclusion.
Thus, there is an elastic Hamiltonian (Deserno, 2015) in terms
of the membrane height function hðxÞ (Lipowsky, 1991)

H½hðxÞ� ¼
Z

d2x

�
1

2
κrðxÞ½∇2hðxÞ�2

þ κ̄rðxÞ
�∂2hðxÞ

∂x2
∂2hðxÞ
∂y2 −

�∂2hðxÞ
∂x∂y

�
2
��

; ð25Þ

where the local bending rigidity κrðxÞ and the local Gaussian
rigidity κ̄rðxÞ are position dependent upon x ¼ ðx; yÞ denot-
ing the in-plane coordinates for the membrane projected area
(Dean, Parsegian, and Podgornik, 2015). In single component
membranes, where κr and κ̄r are constant, the κ̄r term is zero
when the membrane is a free-floating sheet, since by virtue of
the Gauss-Bonnet theorem it depends only on the boundary
and topology of the membrane (David, 2004). The height
correlator can be found analytically in this case (Deserno,
2015). In the presence of elastic inclusions, both moduli
contain an unperturbed constant part κ0;r and κ̄0;r as well as the

1.5
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3.0

3.5

d

FIG. 17. Multilamellar array of lipidmembranes immersed in water, each composed of a hydrocarbon corewith two surface hydrophillic
headgroup layers. Left: A realistic presentation with fluctuating positions of the membranes [for details see Kollmitzer et al. (2015b)].
Middle: A model system with a rigid array of alternating solvent (B) membrane (A) solvent (B) regions. Right: The Hamaker coefficient,
Hða; dÞ in [zJ], as a function of the separation between membranes d and the thickness of the lipid bilayers a in nm. The Hamaker
coefficient is calculated based on the full dispersion spectra of water and lipids (hydrocarbons). From Podgornik, French, and
Parsegian, 2006.
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position dependent parts Δκ̄rðxÞ and Δκrðx0Þ that vanish
outside of the inclusions. Other parametrizations of the effect
of inclusions are also possible and have been considered
(Netz, 1997). Alternatively, membrane inclusions can also be
considered as curvature sources (Dommersnes and Fournier,
1999a). To the above energy one can also add surface energy
and an external potential energy when appropriate (Noruzifar,
Wagner, and Zandi, 2013). Apart from the order of derivatives
in the fluctuating field, second for membranes and first for
electrostatic field, and the local bending rigidity taking the
role of the local dielectric permittivity, H½hðxÞ� is completely
analogous to the electrostatic field Hamiltonian (Naji et al.,
2013) or indeed to the Hamiltonian of critical mixtures
(Trondle et al., 2010). Thus one can expect that thermal
fluctuation effects will also be present.
Indeed, inclusions in the membrane, which modify its local

mechanical properties, can experience fluctuation-induced
forces between them (Goulian, Bruinsma, and Pincus,
1993; Golestanian, Goulian, and Kardar, 1996a, 1996b;
Park and Lubensky, 1996; Bartolo and Fournier, 2003; Lin
et al., 2011; Yolcu, Rothstein, and Deserno, 2011). The
interactions are energetically of the order of kBT and can
in certain circumstances, in particular, for tensionless mem-
branes, be long ranged and therefore potentially exhibit an
important effect on the organization of the membrane
(Machta, Veatch, and Sethna, 2012). Several studies have
considered the coupling of membrane inclusions to the
membrane curvature via the elastic stress (Bitbol,
Dommersnes, and Fournier, 2010; Lin et al., 2011; Yolcu,
Rothstein, and Deserno, 2011) or to topological defects in
orientational disorder (Golestanian, Goulian, and Kardar,
1996a; Korolev and Nelson, 2008). Assuming that κrðxÞ
and κ̄rðxÞ are small, one can calculate the cumulant expansion
of the partition function (Goulian, Bruinsma, and Pincus,
1993). The effective two-body interaction between regions
deviating from the background rigidity κ0;r is then obtained in
the simple form

H2 ¼
kBT

4π2κ20;r

Z
d2xd2x0 Δκ̄rðxÞΔκrðx0Þ

jx − x0j4 þ � � � ð26Þ

after expanding to the lowest order in the deviation from the
constant values of the rigidities Δκ̄rðrÞ andΔκrðr0Þ that vanish
outside of the inclusion. When the separation between local
regions (inclusions) characterized by change in rigidities is
much larger than the size of the regions, the first-order term in
a multipole expansion of the energy between the two regions
therefore decays as the fourth power of separation. Notably,
both κrðxÞ and κ̄rðxÞ have to be present in order to have a
fluctuation interaction. On the other hand, considering mem-
brane inclusions as curvature sources one can bypass these
constraints, at the same time also strongly enhancing and
increasing the range of the interactions (Dommersnes and
Fournier, 1999a). These Casimir-like forces are dominated by
fluctuations and their variance also shows a characteristic
dependence on the separation (Bitbol, Dommersnes, and
Fournier, 2010) as well as pronounced many-body aspects
(Dommersnes and Fournier, 1999b), as expected for Casimir-
like interactions.

Scattering methods developed for the electromagnetic
Casimir effect (Rahi, Emig, and Jaffe, 2011) and discussed
in Sec. V have been employed for the interaction between two
membrane embedded disks of radius R to all orders, leading to
an asymptotic result for large separations (Lin et al., 2011).
The effective field theory formalism also affords an efficient
framework for the computation of membrane fluctuation-
mediated interactions (Yolcu, Rothstein, and Deserno, 2011;
Yolcu and Deserno, 2012). In the case of broken cylindrical
symmetry of the inclusions, the fluctuation interaction
retains the same separation dependence, but its strength
depends on the two orientation angles as cos 2θ1 cos 2θ2
and cos 4ðθ1 þ θ2Þ (Golestanian, Goulian, and Kardar,
1996b; Park and Lubensky, 1996). This of course implies
the existence of fluctuation or vdW torques; see Sec. VI.C.
Experimentally, fluctuation-mediated interactions between

membrane inclusions might be difficult to measure directly, if
at all feasible. More promising seems to be the detection of
their consequences, such as fluctuation-induced aggregation
of rigid membrane inclusions (Dommersnes and Fournier,
1999b; Weikel, 2001) or through their effect on the
miscibility of lipid mixtures in multicomponent membranes
(Machta, Veatch, and Sethna, 2012; Dean, Parsegian, and
Podgornik, 2015).

C. van der Waals torques

Biological materials are typically anisotropic in terms of
shapes as well as response properties (Hopkins et al., 2015).
Such anisotropy leads to vdW torques, which were first
studied by Kats (1978) for the special case of isotropic
boundaries with anisotropic intervening material, and inde-
pendently by Parsegian and Weiss (1972) who studied the
inverse case of bodies with anisotropic dielectric response
interacting across an isotropic medium in the nonretarded
limit (Kornilovitch, 2013). The full retarded Lifshitz result
was obtained only much later in a veritable tour de force by
Barash (1978), following previous partial attempts (Barash,
1973), leading to a series of recent developments (van Enk,
1995b; Munday et al., 2005; Shao, Tong, and Luo, 2005). The
general Lifshitz formulas for the interaction between two
anisotropic half-spaces or even an array of finite size slabs
(Veble and Podgornik, 2009) are algebraically very compli-
cated and untransparent, with little hope of a fundamental
simplification (Philbin and Leonhardt, 2008). Morphological
anisotropy effects are seen either between anisotropic bodies
(Emig et al., 2009; Rahi, Emig, and Jaffe, 2011) or between
surfaces with anisotropic decorations such as corrugations
(Banishev, Wagner et al., 2013; Banishev et al., 2014). vdW-
like torques have also been predicted between anisotropic
inclusions within fluctuating membranes (Golestanian,
Goulian, and Kardar, 1996b; Park and Lubensky, 1996).
The first attempt to evaluate the vdW interaction between

two cylinders comes from Barash and Kyasov (1989). Results
for two infinitely long anisotropic cylinders can be obtained in
a dilution process (Parsegian, 2006), such that the presence of
dielectric cylinders can be considered as a small change of the
dielectric permittivity of two semi-infinite regions (Pitaevskii,
2008). This approach leads to interactions between infinite
cylinders of radius R at minimum separation d at any angle of
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inclination θ in nonretarded (Rajter et al., 2007) as well as
retarded limits (Siber et al., 2009), but also between cylinders
and anisotropic semi-infinite layers (Saville et al., 2006;
Hopkins et al., 2015). The vdW interaction free energy for
inclined cylinders is

F ðd; θÞ ¼ −
ðπR2Þ2

2πd4 sin θ
½Að0ÞðdÞ þAð2ÞðdÞ cos 2θ�; ð27Þ

where 1= sin θ stems from the shape anisotropy and the cos 2θ
dependence associated with the material anisotropy; see
Fig. 18. The Hamaker coefficients Að0ÞðdÞ and Að2ÞðdÞ are
functions of separation and the relative anisotropy measures,
but do not depend explicitly on the angle of inclination θ.
They also depend on the material types and Matsubara
sampling frequencies (Siber et al., 2009; Stark et al.,
2015). In the symmetric interaction case (Hopkins et al.,
2015) both Að0ÞðdÞ and Að2ÞðdÞ decompose into a square and
thus cannot be negative or change sign. In the asymmetric
case, however, the signs of the interactions as well as the signs
of the torques are more complicated, as they depend on the
perpendicular and parallel dielectric responses of the interact-
ing bodies. They do not follow the general rule for interacting
planar bodies 1 and 2 across a medium m, with a change of

sign implied by the sequence ε1ðωÞ > εmðωÞ > ε2ðωÞ; see
Sec. VI.A.
vdW torques between semi-infinite anisotropic materials

also imply torques between anisotropic cylindrical molecules,
such as filamentous graphitic systems of metallic and semi-
conducting single-walled CNTs (Rajter et al., 2007, 2013;
Siber et al., 2009), multiple composites of DNA (Zheng et al.,
2009; Sontz, Muren, and Barton, 2012; Young et al., 2014),
type I collagen (Cheng et al., 2008), and polystyrene (Jin
et al., 2005). DNA optical properties (Pinchuk, 2004) have
been converted into the corresponding separation dependence
vdW free energy in the case of pairs of nucleotides (Pinchuk
and Vysotskii, 1999, 2001). A static dielectric constant of 8
for DNA, that enters the n ¼ 0 Matsubara term, was recently
measured inside single T7 bacteriophage particles by electro-
static force spectroscopy (Cuervo et al., 2014). Optical
dispersion data are also available for single nucleotides,
nucleosides and their derivatives, synthetic polynucleotides
(polyuridylic acid, polyadenylic acid, poly-AU), various
nucleic acids, such as RNA and native bacterial DNAs in
aqueous solutions (Voet et al., 1963), or wet and dry
polymerized oligonucleotides and mononucleotides (Silaghi
et al., 2005; Zalar et al., 2007) as well as dry DNA thin films
(Sonmezoglu and Sonmezoglu, 2011). Optical properties of
DNA oligonucleotides (AT)10, (AT)5(GC)5, and (AT-GC)5
using ab initio methods and ultraviolet-visual decadic molar
absorbance measurements show a strong dependence of the
position and intensity of UV absorbance features on oligo-
nucleotide composition and stacking sequence (Schimelman
et al., 2015). The calculated Hamaker coefficients for various
types of DNA molecules are overall small but depend on the
base-pair sequence details and could control the finer details
of the equilibrium assembly structure (Bishop et al., 2009). In
fact, the stacking sequence dependence of the optical proper-
ties has important repercussions for the molecular recognition
between two approaching DNA molecules that depends on
vdW interactions (Lu, Naji, and Podgornik, 2015). The angle-
independent part of the Hamaker coefficient is ≃5 zJ, while
the angular part is effectively zero when the zero-frequency
Matsubara component is fully screened by the electrolyte
solution. At least for DNA molecules, it then appears that the
anisotropy effects stem purely from the shape anisotropy,
whereas this is not the case for CNTs. Among the fibrous
proteins collagen also shows strong vdW interactions with
silica resulting in a Hamaker coefficient that is 39% larger
than that of the silica-(GC)10 DNA interaction at 5 nm
separation (Dryden et al., 2015).
Although the vdW torque, defined as τðd; θÞ ¼

−∂F ðd; θÞ=∂θ, is eminently measurable, it has however not
been measured directly yet (Iannuzzi et al., 2005; Capasso
et al., 2007; Chen and Spence, 2011). The anisotropy that
engenders the vdW torque can be of different origins: it can
result either from anisotropy of the dielectric response of the
interacting bodies or from their asymmetric shape (Hopkins
et al., 2015). Both give effective Hamaker coefficients that
depend on the mutual orientation of the dielectric or shape
axes (Dryden et al., 2015). The material anisotropy can also be
either intrinsic or a consequence of arrays of nanoparticles
embedded in an isotropic background (Esquivel-Sirvent and
Schatz, 2013), and/or a consequence of the action of external

FIG. 18. Forces and torques between anisotropic molecules and
molecular aggregates. Top: ~τðd; θÞ, torque between two inclined
long cylindrical molecules (above DNA, below single-walled
CNTs) as a function of the closest separation d and angle of
inclination θ, calculated within the Lifshitz theory. The angle of
inclination is between the axes of the two cylindrical systems.
The two Hamaker coefficientsAð0ÞðdÞ andAð2ÞðdÞ depend on the
dielectric anisotropy of the interacting materials as well as on the
separation due to retardation effects, but they do not depend on
mutual orientation. Bottom: τðd; θÞ, torque per unit surface area
between two planar semi-infinite slabs composed of arrays of
cylindrical molecules at separation d with angle of inclination θ
between their anisotropic uniaxial tensors. Only the surface layer
of the bottom slab and one molecule of the upper slab are shown.
Again, the Hamaker coefficient Að2ÞðdÞ depends on the dielectric
anisotropy of the interacting materials as well as on the separation
due to retardation effects, but not on the orientation of the
dielectric tensors. Adapted from Dryden et al., 2015.
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fields (Esquivel-Sirvent, Cocoletzi, and Palomino-Ovando,
2010). It remains unclear which anisotropic effects would be
best suited for accurate experiments or whether two-body or
many-body configurations would be optimal (Lu and
Podgornik, 2016).

D. Electrostatic fluctuations

The n ¼ 0 (“static”) Matsubara term corresponds to the
classical partition function of the Coulomb system and can
have a form very different from the one derived from the
Lifshitz theory. For an interacting Coulomb fluid such as a
confined electrolyte or plasma, a counterion only system, or a
system of dipoles or polarizable particles in an inhomo-
geneous dielectric background, the n ¼ 0 Matsubara term
corresponds to the free energy of fluctuations around the mean
field in the range of parameter space where the mean-field
(Poisson-Boltzmann or weak coupling) approximation holds
[for details, see Naji et al. (2013)]. This leads to effects such as
screening of the Hamaker coefficient, universal value for the
Hamaker coefficient, or its anomalous separation dependence.
In effect, the n ¼ 0 Matsubara term actually corresponds
to Gaussian or one-loop electrostatic potential fluctuations
around the mean field for a fully coupled system (Podgornik
and Zeks, 1988; Netz, 2001b) and thus presents a first-order
correction to the description of Coulomb fluids on the mean-
field level (Holm, Kekicheff, and Podgornik, 2001). Formally
this follows from an effective non-Gaussian “field action” S½ϕ�
that one can derive from an exact field-theoretic representation
of the confined Coulomb fluid partition function in terms of
the fluctuating local electrostatic potential (Edwards and
Lenard, 1962; Podgornik, 1990). The mean-field theory is
then defined as the saddle point of this field action (Naji
et al., 2013).
Thermal fluctuations around the saddle point at the first-

order loop expansion representing the contribution from
correlated Gaussian fluctuations around the mean field or
saddle-point solution (Dean et al., 2014) lead to a thermal
fluctuation-induced vdW-like attraction in the form of the
trace log of the field-action Hessian

F ¼ −kBTTr log
�

δ2S½ϕ�
δϕðrÞδϕðr0Þ

				
ϕðrÞ¼−iψPBðrÞ

�
þOðϕ3Þ;

ð28Þ

where ϕðrÞ ¼ −iψPBðrÞ is the saddle-point (Poisson-
Boltzmann) electrostatic potential configuration. This second-
order correction universally lowers the interaction pressure
between surfaces and thus leads to an attractive contribution to
the total interaction pressure. It also includes a term that
exactly cancels the zero-frequency contribution in the Lifshitz
theory (Podgornik, 1990) so it should be viewed as a substitute
for the n ¼ 0 Lifshitz term. As a rule, this fluctuation
attraction is weaker than the repulsive leading-order saddle-
point contribution; thus the total interaction remains repulsive
(Netz and Orland, 2000; Netz, 2001a). In certain models that
either assume charge asymmetry (Kanduc et al., 2008),
surface condensation, or adsorption of counterions on
(fixed) charged boundaries, the repulsive mean-field effects

are strongly suppressed and the total interaction is then
mostly due to thermal fluctuations (Lau et al., 2001, 2002;
Lau and Pincus, 2002). This can happen in the case of
oppositely charged surfaces where the thermal fluctuation
interactions can become dominant (Lau and Pincus, 1999;
Ben-Yaakov et al., 2007; Kanduc et al., 2008).
A related problem of thermal electrostatic fluctuations is

presented by the Kirkwood-Shumaker (KS) interactions that
exist between macroions with dissociable charges, such as
proteins (Lund and Jonsson, 2013). Originally this interaction
was obtained from a perturbation theory around an uncharged
state (Kirkwood and Shumaker, 1952; Lund and Jonsson,
2013). The KS interaction is similar to the thermal vdW
interaction but it corresponds to monopolar charge fluctua-
tions (Adzic and Podgornik, 2014) and is thus in principle
much longer ranged. Monopolar fluctuations cannot arise for
fixed charges on interacting bodies and some surface charging
mechanism or charge regulation, where the macroion surfaces
respond to the local electrostatic potential with a variable
effective charge, is needed (Borkovec, Jonsson, and Koper,
2001). Formally charge regulation can be described by
another, nonlinear source term in the field action fS(ϕðrÞ)
that involves the fluctuating potential at the surface (S) (Adzic
and Podgornik, 2015). Nonlinearity of this field action is
essential as a linear dependence on the fluctuating potential, in
fact, corresponds to a fixed charge that cannot exhibit
monopolar charge fluctuations. These are given by the surface
capacitance determined by the second derivative of fSðϕÞwith
respect to the surface potential, and the KS interactions
depend quadratically on this capacitance. The KS interaction
between two macroions in the asymptotic regime between
particles 1 and 2 then assumes the form F ∼ −C1C2=R2. The
exact form of fS and thus the capacitance C is not universal as
it depends on the surface-ion interaction (Fleck and Netz,
2007; Markovich, Andelman, and Podgornik, 2014; Adzic
and Podgornik, 2015). Although calculating the KS inter-
action is challenging, exact solutions are available in 1D,
demonstrating a rich variety of behaviors due to charge
regulation and the ensuing correlated fluctuations (Maggs
and Podgornik, 2014). Some of these 1D properties transfer
also to the more realistic 3D models between globular proteins
with dissociable surface charge groups (Adzic and Podgornik,
2015). Similar anomalously long-range monopolar fluctua-
tions and concurrent Casimir or vdW-like interactions can also
result from a different mechanism where monopolar charge
fluctuations result not from charge regulation but rather from
nanocircuits with capacitor components, where fluctuating
charges are transferred through the wire connection in a
capacitor system (Drosdoff et al., 2016).
The link between Coulomb interactions and thermal

Casimir and vdW interactions has been implicated also in
some theoretical approaches to the Hofmeister or specific ion
effects (Salis and Ninham, 2014). These works motivated
numerous investigations of nonelectrostatic ion-specific inter-
actions between ions and surfaces and their role in modifying
surface tension of electrolyte solutions or indeed the solution
behavior of proteins. In fact, the standard Onsager-Samaras
result was only recently realized to be fluctuational in nature
(Markovich, Andelman, and Podgornik, 2014). Ninham and
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co-workers as well as others (Edwards and Williams, 2004)
made attempts to include vdW interactions into a complete
theory of ion interactions in confined aqueous solutions
(Boström et al., 2005, 2006; Boström and Ninham, 2006).
The major problem in including vdW interactions into the
description of inhomogeneous electrolytes is that the contri-
butions of fixed charges and ion polarizability are in general
not additive (Demery, Dean, and Podgornik, 2012). However,
they sometimes can be approximated by an additive contri-
bution on the strong coupling level, provided that the polar-
izability of the ions is large enough. A popular ansatz that
simply adds a vdW ion-polarizability dependent contribution
to the electrostatic potential of mean force has thus a very
limited range of validity.

VII. EXPERIMENTS PROBING MATERIALS ASPECTS
OF VAN DER WAALS AND CASIMIR INTERACTIONS

The small magnitude of the Casimir force has motivated
many experimental efforts to measure this interaction with
ever increasing precision. Such investigations have been
invaluable in understanding the applicability of the Lifshitz
formalism and its variations for standard metals (Au, Al, Cr),
semiconductors (Si, Ge), and dielectrics (silica) in the plane-
plane, sphere-plane, cylinder-plane, and atom-plane geom-
etries (Lamoreaux, 1997; Mohideen and Roy, 1998; Roy, Lin,
and Mohideen, 1999; Chan et al., 2001; Bressi et al., 2002;
Decca et al., 2003; Brown-Hayes et al., 2005; Chen et al.,
2005; Obrecht et al., 2007; Kim et al., 2009). Several studies
have shown that the interaction can be manipulated by
utilizing specific materials characteristics. For example, using
indium tin oxide (ITO) has proven a powerful way to reduce
the Casimir force when compared to bodies made of noble
metals (de Man et al., 2009; de Man, Heeck, and Iannuzzi,
2010; Chang et al., 2011; Banishev, Chang, Castillo-Garza
et al., 2012). Furthermore, according to Chang et al. (2011)
and Banishev, Chang, Castillo-Garza et al. (2012), the UV
illumination of an ITO plate transforms it into the dielectric
state. As a result, the agreement with the predictions of the
Lifshitz theory can be achieved only after one neglects the
contribution of free charge carriers in the dielectric permit-
tivity. Interesting possibilities from phase changing materials
have also been found. Compositions characterized by amor-
phous to crystalline phase transitions can experience large
changes in the response properties, which affect the Casimir
interaction significantly (Torricelli et al., 2010, 2012). The
role of the magnetic response of ferromagnetic materials
has also been probed experimentally (Banishev, Chang,
Klimchitskaya et al., 2012; Banishev et al., 2013a, 2013b)
using either a Ni or Au coated sphere and a Ni coated plate.
They found the data to be in agreement with the plasma model
and excluded the Drude model for the free-electron scattering
in metals. They noted that the results of these measurements
taken together with the measurement results for two Au test
bodies cannot be reconciled with the Drude model even with
the introduction of any background force (such as those arising
from electrostatic patches), either attractive or repulsive.
Experimental research continues its advances in utilizing

other materials and structured systems to probe this subtle
force at various length scales. AFM techniques have been

employed in vdWmeasurements giving unprecedented insight
into smaller and heterogeneous systems. Pulling single mol-
ecules with an AFM tip from metallic surfaces (Wagner et al.,
2014) confirms the asymptotic d−3 force law and quantifies
the nonadditive part of the vdW interaction. Nonadditive
effects have also been demonstrated in adhesion measure-
ments in various tribological environments as well (Loskill,
Hahl et al., 2012, Loskill, Puthoff et al., 2012). Another recent
report gives clear evidence of the vdW screening capabilities
in graphene and MoS2 heterostructures giving insight into
adhesion properties of graphene and other layered materials
(Tsoi et al., 2014). These nonadditive and screening effects are
particularly challenging for theory, which has motivated
developments in first-principles calculations methods, as
discussed in Sec. II.
The first experimental measurement of the Casimir force

involving graphene was reported by Banishev, Wen et al.
(2013). Subsequent investigations show good agreement
between experimental data and calculations, taking into
account the Dirac spectrum (Klimchitskaya, Mohideen, and
Mostepanenko, 2014; Klimchitskaya and Mostepanenko,
2015b). However, many issues need to be investigated further.
For example, more precise comparison with theory is needed,
which requires measurements of freestanding graphene
interactions. Schemes to determine the asymptotic distance
dependence and temperature effects are absent. Experiments
in this direction are extremely desirable as they can serve to
validate the numerous theoretical predictions. Reliable experi-
ments for stacks of graphene are also much desired in order to
directly determine the binding energy of graphite and settle the
wide range of values reported through indirect measurements
(Benedict et al., 1998; Zacharia, Ulbricht, and Hertel, 2004). It
would also be interesting to seek experimental knowledge of
vdW and Casimir interactions involving other systems with a
Dirac spectrum. Probing novel topological phases in such
dispersive interactions using topological and Chern insulators
can be very beneficial.
Experimental measurements in structured materials con-

tinue to shed light on many aspects of the Casimir force, from
nonadditive effects in grating and related geometries (Chan
et al., 2008; Banishev, Wagner et al., 2013; Intravaia et al.,
2013) to repulsive interactions in interleaved structures
(Rodriguez, Joannopoulos, and Johnson, 2008; Tang et al.,
2015), to strong temperature corrections arising at large
separations (Sushkov et al., 2011) or in situations involving
structured magnetic media (Bimonte, 2015). Experiments at
nanometric scales, involving objects with nontrivial surface
topology due to roughness or patch charges, are also begin-
ning to push the boundaries of theoretical techniques (Kim
et al., 2010; Dalvit et al., 2011). For instance, recent AFM
characterizations of the surface morphology of planar objects
(van Zwol, Palasantzas, and De Hosson, 2008) coupled with
predictions based on the above-mentioned state-of-the-art
simulation techniques (Broer et al., 2012) reveal that the
presence of roughness on the scale of their separations
manifests as strong deviations in the power-law scaling of
the force (Broer et al., 2013). Challenges that continue to be
addressed in current-generation experiments include the need
to control and calibrate materials properties. Specifically,
accurate comparison between theory and experiments requires
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accurate knowledge of the dielectric response over a broad
spectral region, spurring recent efforts to characterize numer-
ous material properties from dc to ultraviolet wavelengths
(van Zwol, Palasantzas, and De Hosson, 2009; Sedighi et al.,
2014). Finally, a number of experiments employing novel
fabrication techniques have begun to explore Casimir forces in
on-chip, integrated systems (Yamarty and McNamara, 2009;
Zho et al., 2013) where parallelism is no longer a key
impediment, removing the need for external instrumentation
needed to bring objects closer together and paving the way for
applications where the force is exploited in conjunction with
other effects (e.g., mechanical or optical actuation) to enable
new functionalities (Yamarty and McNamara, 2009; Pernice
et al., 2010; Rodriguez et al., 2011).
On the other hand, small-angle x-ray scattering techniques

are useful for measuring vdW potentials in soft matter and
biomatter systems. Their contribution to the elucidation of the
details of long-range interactions in multilamellar membrane
array context is crucial and continuing (Kollmitzer et al.,
2015). It remains to be seen whether SAXS coupled to
osmotic stress could provide also a vdW component to the
interaction potential between filamentous biomolecules (Yasar
et al., 2015), allowing also a determination of the Hamaker
coefficient that could be compared with calculations (Poudel
et al., 2014; Schimelman et al., 2015). While the Hamaker
coefficients for general proteins could be approaching solid
predictions (Eifler et al., 2014), their experimental determi-
nation is marred by the limitations inherent in the second virial
coefficient determination of the global characteristics of the
interaction potential (Prausnitz, 2015). Novel methodologies
such as colloid-probe AFM could be a new potential source of
valuable data on intermolecular potential (Borkovec et al.,
2012), including protein-protein interactions at all values of
separation (Singh et al., 2015).

VIII. FUTURE OUTLOOK

Casimir or vdW forces have manifestations in many parts of
physics as discussed at length in this review. The quest for a
fundamental understanding of these ubiquitous and subtle
forces bridges concepts from condensed-matter and high-
energy physics, which has become much more apparent with
recent discoveries of novel materials. This field has also
stimulated the development of computational methods at the
atomistic level as well as larger scale with the goal of taking
into account the collective and nonadditive nature of the same
dispersive interaction. This particular direction has also been
stimulated due to materials science expansion and better
design of devices. Nevertheless, the field can become even
broader with several eminent problems awaiting solutions.
Materials with Dirac spectrum hold much promise to

discover new science about the vdW or Casimir interaction.
Unusual behavior of the Casimir force in terms of sign,
magnitude, distance dependence, and other factors has been
found in graphene, TIs and CIs, as discussed in this review. But
there are many new entering players with emergent properties.
2D TIs, such as HgTe/Cd/Te, Bi bilayers, and InAs/GaSb; 3D
TIs, such as Bi1−xSbx, Bi2Te3, Heusler alloys, and topological
crystalline insulators, such as SnTe, Pb1−xSnxSe, have promi-
nent spin-orbit interaction, which coupled with the Dirac

spectrum can lead to diverse optical response (Welding,
Black-Schaffer, and Balatsky, 2014). 3D Weyl and Dirac
semimetals such as Cd3Al2 and Na3Bi can also be put in this
category. Recent reports show that the quantum electrodynam-
ics in Weyl semimetals results in a nontrivial response due to
the associated axion field,which can lead to a repulsive Casimir
interaction (Grushin, 2012; Wilson, Allocca, and Galistki,
2015). However, external electric and magnetic fields together
with temperature and doping can modulate the electronic
structure and optical properties by creating new topological
phases, such as valley polarized materials, for example. These
are yet to be studied in the context of the vdW and Casimir
interactions (Rodriguez-Lopez et al., 2016).
Another interesting direction to explore originates from

nonlocality, especially at very small separations. For instance,
at nanometric scales, the combination of structured materials,
thermal as well as dielectric inhomogeneities, and nonlocal
effects associated with atomic scale physics, can potentially
conspire to affect fluctuation phenomena. Preliminary works
studying nonlocal material effects have begun to shed light on
these issues (Esquivel-Sirvent et al., 2006; Despoja, Sunjic,
and Marusic, 2011; Luo, Zhao, and Pendry, 2014). One
promising set of scattering techniques that could be used to
tackle these emerging regimes are volume-integral equation
methods, related to surface-integral equations but involving
volume rather than surface currents inside the bodies
(Polimeridis et al., 2015). Another set of techniques that
are beginning to pave the way for fundamentally new designs
in nanophotonics but which have yet to be exploited in
Casimir computations are large-scale optimization methods
(Bendsoe and Sigmund, 2003). While such brute-force explo-
rations require careful and efficient formulations due to the
large number of required calculations, the above-mentioned
numerical developments offer hope that such an approach to
design is within reach. Finally, although many of the interest-
ing, nonadditive Casimir effects predicted thus far still remain
out of reach of current experiments, perhaps related physical
principles can be employed to discover other structures where
nonmonotonicity and/or repulsion is larger and more exper-
imentally accessible.
Transformation optics, a powerful method for solving

Maxwell’s equations in curvilinear coordinates (Leonhardt,
2006; Pendry, Schurig, and Smith, 2006), may offer a different
perspective to the vdW and Casimir effects, especially for
systems that have sizes comparable to their separation. It can be
an efficient numerical approach for vdW calculations by taking
into account nonlocal effects for absorption and scattering
spectra, electromagnetic modes, and field enhancement.
Transformation optics has been a powerful tool for optics
design with applications, such as perfect lensing and cloaking
(Pendry, Schurig, and Smith, 2006). Recent reports have shown
interesting physical insight for vdW interactions in 3D objects
with nonlocal dielectric properties (Pendry, Fernandez-
Dominguez, and Zhao, 2013; Luo, Zhao, and Pendry, 2014).
An exciting future direction can be to examine many of such
predictions and applications in the context of vdWand Casimir
interactions for new directions of control and manipulations.
We further note that fluctuation-induced phenomena go

beyond the dipolar fluctuations that give rise to the vdW and
Casimir forces. Charge and potential fluctuations, beyond the
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situations discussed in biomaterials, may be very interesting in
solid state devices. Dispersive forces of charged objects are
much less studied. Systems with reduced dimensionality may
be used to investigate much longer ranged monopolar fluc-
tuation forces which can exist on their own or be entangled
with the “traditional” dipolar fluctuations (Bimonte, 2007;
Drosdoff et al., 2016). This practically unexplored direction
holds promise to expand fluctuation-induced interactions
beyond dipolar excitations and further broaden the perspective
of Casimir-like phenomena.
We conclude with the puzzle about the relaxation properties

of conduction carriers and their role in the Lifshitz theory. As
discussed in Sec. III.A, depending on the dielectric model
used different magnitudes of the thermal Casimir force
between metallic or magnetic systems are predicted. Some
measurements show that the Drude model is in agreement
with the experimental data (Sushkov et al., 2011), while other
reports are in favor of the plasma model (Decca et al., 2005,
2007; Banishev, Chang, Klimchitskaya et al., 2012; Chang
et al., 2012; Banishev et al., 2013a, 2013b; Bimonte, López,
and Decca, 2016). To date, a basic understanding of this
fundamental problem in Casimir physics is still missing. More
work is needed in precise measurements and calculations
involving standard materials with various geometries and
distance ranges by taking into account simultaneously
dispersion, electrostatic effects, defects, and imperfections
in the interacting objects. Another potential way to resolve this
issue is to consider materials with reduced dimensions and
novel phases. For example, the thermal fluctuation effects are
much more prominent for graphene, which can be a possible
direction to explore in this context. A different pathway could
be that more sophisticated models for the response properties
are needed. Nevertheless, a possible resolution to this open
problem may be found by improving our understanding of
materials properties.

IX. CONCLUSIONS

A broad perspective in materials and their properties was
given to the field of van der Waals and Casimir interactions.
This comprehensive review shows that this is a broad area
where materials have played an important role in motivating
the development of new theoretical models and computational
approaches as well as advances in experimental techniques.
Materials may hold the answers to several open problems in
fluctuation-induced phenomena, which are of fundamental
and applications relevance.
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