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A reflection of our ultimate understanding of a complex system is our ability to control its
behavior. Typically, control has multiple prerequisites: it requires an accurate map of the network
that governs the interactions between the system’s components, a quantitative description of the
dynamical laws that govern the temporal behavior of each component, and an ability to influence
the state and temporal behavior of a selected subset of the components. With deep roots in
dynamical systems and control theory, notions of control and controllability have taken a
new life recently in the study of complex networks, inspiring several fundamental questions:
What are the control principles of complex systems? How do networks organize themselves to
balance control with functionality? To address these questions here recent advances on the
controllability and the control of complex networks are reviewed, exploring the intricate
interplay between the network topology and dynamical laws. The pertinent mathematical results
are matched with empirical findings and applications. Uncovering the control principles of
complex systems can help us explore and ultimately understand the fundamental laws that
govern their behavior.
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I. INTRODUCTION

To understand the mechanisms governing the behavior of a
complex system, we must be able to measure its state variables
and to mathematically model the dynamics of each of the
system’s components. Consequently, the traditional theory of
complex systems has predominantly focused on the measure-
ment and the modeling problem. Recently, however, questions
pertaining to the control of complex networks became an
important research topic in statistical physics (Liu, Slotine,
and Barabási, 2011a; Nepusz and Vicsek, 2012; Yan et al.,
2012; Cornelius, Kath, and Motter, 2013; Sun and Motter,
2013; Ruths and Ruths, 2014). This interest is driven by the
challenge to understand the fundamental control principles of
an arbitrary self-organized system. Indeed, there is an increas-
ing realization that the design principles of many complex
systems are genuinely determined by the need to control their
behavior. For example, we cannot divorce the understanding
of subcellular networks from questions on how the activity or
the concentrations of genes, proteins, and other biomolecules
are controlled. Similarly, the structure and the daily activity of
an organization is deeply determined by governance and
leadership principles. Finally, to maintain the functionality
of large technological systems, like the power grid or the

Internet, and to adapt their functions to the shifting needs of
the users, we must solve a host of control questions. These and
many similar applications have led to a burst of research
activity, aiming to uncover to what degree the topology of a
real network behind a complex system encodes our ability to
control it.
The current advances in controlling complex systems

were facilitated by progress in network science, offering a
quantitative framework to understand the design principles
of complex networks (Watts and Strogatz, 1998; Barabási
and Albert, 1999; Albert and Barabási, 2002; Milo et al.,
2002; Newman, 2006; Dorogovtsev, Goltsev, and Mendes,
2008; Barabási, 2016). On one end, these advances have
shown that the topologies of most real systems share
numerous universal characteristics. Equally important was
the realization that these universal topological features are
the result of the common dynamical principles that govern
their emergence and growth. At the same time we learned
that the topology fundamentally affects the dynamical
processes taking place on these networks, from epidemic
spreading (Cohen et al., 2000; Pastor-Satorras and
Vespignani, 2001) to transport and flow processing
(Toroczkai and Bassler, 2004), and synchronization
(Nishikawa et al., 2003; Wang and Slotine, 2005). Hence,
it is fair to expect that the network topology of a system also
affects our ability to control it.
While the term “control” is frequently used in numerous

disciplines with rather diverse meanings, here we employ it
in the strict mathematical sense of control theory, a highly
developed interdisciplinary branch of engineering and
mathematics. Control theory asks how to influence the
behavior of a dynamical system with appropriately chosen
inputs so that the system’s output follows a desired trajec-
tory or final state. A key notion in control theory is the
feedback process: The difference between the actual and
desired output is applied as feedback to the system’s input,
forcing the system’s output to converge to the desired
output. Feedback control has deep roots in physics and
engineering. For example, the centrifugal governor, one of
the first practical control devices, has been used to regulate
the pressure and distance between millstones in windmills
since the 17th century and was used by James Watt to
maintain the steady velocity of a steam engine. The feed-
back mechanism relies on a system of balls rotating around
an axis, with a velocity proportional to the engine velocity.
When the rotational velocity increases, the centrifugal force
pushes the balls farther from the axis, opening valves to let
the vapor escape. This lowers the pressure inside the boiler,
slowing the engine (Fig. 1). The first definitive mathemati-
cal description of the centrifugal governor used in Watt’s
steam engine was provided by James Maxwell in 1867,
proposing some of the best-known feedback control mech-
anisms in use today (Maxwell, 1867).
The subsequent need to design well-controlled engineered

systems has resulted in a mathematically sophisticated array
of control theoretical tools, which are today widely applied in
the design of electric circuits, manufacturing processes,
communication systems, airplanes, spacecrafts, and robots.
Furthermore, since issues of regulation and control are central
to the study of biological and biochemical systems, the
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concepts and tools developed in control theory have proven
useful in the study of biological mechanisms and disease
treatment (Sontag, 2004; Iglesias and Ingalls, 2009). For
example, feedback control by transcranial electrical stimula-
tion has been used to restore the aberrant brain activity during
epileptic seizures (Berényi et al., 2012).
Modern control theory heavily relies on the state

space representation (also known as the “time-domain
approach”), where a control system is described by a set
of inputs, outputs, and state variables connected by a set
of differential (or difference) equations. The concept of
state, introduced into control theory by Rudolf Kalman in
the 1960s, is a mathematical entity that mediates between
the inputs and the outputs of a dynamical system, while
emphasizing the notions of causality and internal structure.
Any state of a dynamical system can then be represented as a
vector in the state space whose axes are the state variables.
The concept of the state space was inspired by the phase
space concept used in physics, developed in the late 19th
century by Ludwig Boltzmann, Henri Poincaré, and
Willard Gibbs.
For a nonlinear dynamical system, we can write the state

space model as

_xðtÞ ¼ f(t;xðtÞ;uðtÞ;Θ); ð1aÞ

yðtÞ ¼ h(t;xðtÞ;uðtÞ;Θ); ð1bÞ

where the state vector xðtÞ ∈ RN represents the internal state
of the system at time t, the input vector uðtÞ ∈ RM captures
the known input signals, and the output vector yðtÞ ∈ RR

captures the set of experimentally measured variables. The
functions fð·Þ and hð·Þ are generally nonlinear, and Θ collects
the system’s parameters. Equations (1a) and (1b) are called the
state and output equations, respectively, and describe the
dynamics of a wide range of complex systems. For example,
in metabolic networks the state vector xðtÞ represents the
concentrations of all metabolites in a cell, the inputs uðtÞ

represent regulatory signals modulated through enzyme
abundance, and the outputs yðtÞ are experimental assays
capturing the concentrations of a particular set of secreted
species or the fluxes of a group of reactions of interest. In
communication systems xðtÞ is the amount of information
processed by a node and yðtÞ is the measurable traffic on
selected links or nodes.
A significant body of work in control theory focuses on

linear systems (Kailath, 1980), described by

_xðtÞ ¼ AðtÞxðtÞ þ BðtÞuðtÞ; ð2aÞ

yðtÞ ¼ CðtÞxðtÞ þ DðtÞuðtÞ; ð2bÞ

where Eqs. (2a) and (2b) represent so-called linear time-
varying systems. Here AðtÞ ∈ RN×N is the state or system
matrix, telling us which components interact with each
other and the strength or the nature of those interactions;
BðtÞ ∈ RN×M is the input matrix, CðtÞ ∈ RR×N is the output
matrix, and DðtÞ ∈ RR×M is the feedthrough or feedforward
matrix. In case AðtÞ, BðtÞ, CðtÞ, and DðtÞ are constant
matrices, Eqs. (2a) and (2b) represent a linear time-invariant
(LTI) system, which is the starting point of most control
theoretical approaches. Note that since we typically know
uðtÞ and DðtÞ, we can simply define a new output vector
~yðtÞ≡ yðtÞ − DðtÞuðtÞ ¼ CðtÞxðtÞ, allowing us to ignore the
DðtÞuðtÞ term.
Many nonlinear systems like Eqs. (1a) and (1b) can be

linearized around their equilibrium points, resulting in an
LTI system. For example, in stick balancing, a prototypical
control problem (Luenberger, 1979), our goal is to balance (or
control) the stick in the upright position using the horizontal
position of the hand as the control input uðtÞ. This mechanical
system has a natural state space representation derived from
Newton’s second law of motion. Consider a stick of length L
whose mass M is concentrated at the top.1 Denote the angle
between the stick and the vertical direction with θðtÞ. The
hand and the top of the stick have horizontal displacement uðtÞ
and xðtÞ, respectively [Fig. 2(a)]. The nonlinear equation of
motion for this system is

Lθ̈ðtÞ ¼ g sin θðtÞ − üðtÞ cos θðtÞ; ð3Þ

where g is the gravitational constant and

xðtÞ ¼ uðtÞ þ L sin θðtÞ: ð4Þ

When the stick is nearly at rest in the upright vertical position
(θ ¼ 0, which is an equilibrium point), θ is small; hence we
can linearize Eqs. (3) and (4), obtaining

ẍðtÞ ¼ g
L
½xðtÞ − uðtÞ�: ð5Þ

FIG. 1. Feedback control. A centrifugal governor represents a
practical realization of a feedback process designed to control the
speed of an engine. It uses velocity-dependent centrifugal force to
regulate the release of fuel (or working fluid), maintaining a near-
constant speed of the engine. It has been frequently used in steam
engines, regulating the admission of steam into the cylinder(s).

1For a more realistic case, treating the stick as a rigid body of
uniform density, see Stépán and Kollár (2000).

Yang-Yu Liu and Albert-László Barabási: Control principles of complex systems

Rev. Mod. Phys., Vol. 88, No. 3, July–September 2016 035006-3



Using the state vector xðtÞ ¼ (xðtÞ; vðtÞ)T with velocity
vðtÞ ¼ _xðtÞ, and assuming yðtÞ ¼ xðtÞ, we can rewrite the
state and output equations in the form of an LTI system

_xðtÞ ¼
"
0 1
g
L 0

#
xðtÞ þ

"
0

− g
L

#
uðtÞ; ð6aÞ

yðtÞ ¼ ½ 1 0 �xðtÞ: ð6bÞ

This form allows us to perform a linear controllability
analysis. Indeed, as shown in Sec. II.B, the linearized system
(6a) is controllable, in line with our experience that we can
balance a stick on our palm.
Linearization of a nonlinear system around its nominal

trajectory fx�ðtÞ;u�ðtÞg generally leads to a linear time-
varying system. Consider the motion of a rocket thrust
upward, following

mðtÞḧðtÞ ¼ _mðtÞve −mðtÞg; ð7Þ

where mðtÞ is the mass of the rocket at time t and hðtÞ is its
altitude. The thrust force _mðtÞve follows Newton’s third law of
motion, where _mðtÞ denotes the mass flow rate and ve is the
assumed-constant exit velocity of the exhaust [Fig. 2(b)]. If we
define the state vector xðtÞ ¼ (hðtÞ; vðtÞ; mðtÞ)T with velocity
vðtÞ ¼ _hðtÞ, the control input uðtÞ ¼ _mðtÞ, and the output
yðtÞ ¼ hðtÞ, we have the state space representation

2
64
_x1ðtÞ
_x2ðtÞ
_x3ðtÞ

3
75 ¼

2
64

x2ðtÞ
uðtÞve
x3ðtÞ − g

uðtÞ

3
75; ð8Þ

yðtÞ ¼ x1ðtÞ: ð9Þ

The state equation (8) is clearly nonlinear. Let us consider
its linearization around a nominal trajectory that corre-
sponds to a constant control input u�ðtÞ ¼ u0 < 0, i.e., a
constant mass flow rate. This nominal trajectory follows
x�1ðtÞ ¼ ve½ðm0=u0 þ tÞ lnð1 þ u0t=m0Þ� − gt2=2, x�2ðtÞ ¼
ve lnð1 þ u0t=m0Þ − gt, and x�3ðtÞ ¼ m0 þ u0t, where m0

is the initial mass of the rocket. By evaluating the partial
derivatives ∂fðx; uÞ=∂x and ∂fðx; uÞ=∂u at the nominal
trajectory, we obtain the linearized state and output equations
in the form of a linear time-varying system

_xδðtÞ ¼

2
64
0 1 0

0 0 −u0ve
ðm0þu0tÞ2

0 0 0

3
75xδðtÞ þ

2
64

0
ve

m0þu0t

1

3
75uδðtÞ;

yδðtÞ ¼ ½ 1 0 0 �xδðtÞ;

ð10Þ

where the deviation variables xδðtÞ ¼ xðtÞ − x�ðtÞ, uδðtÞ ¼
uðtÞ − u�ðtÞ, and yδðtÞ ¼ yðtÞ − y�ðtÞ ¼ xδðtÞ.
Notwithstanding our ability to design such well-controlled

systems as a car or an airplane, we continue to lack an
understanding of the control principles that govern self-
organized complex networked systems. Indeed, if given the
wiring diagram of a cell, we do not understand the funda-
mental principles that govern its control, nor do we have tools
to extract them. Until recently the degree of penetration of
control theoretical tools in the study of complex systems was
limited. The reason is that to extract the predictive power of
Eqs. (1a) and (1b), we need (i) the accurate wiring diagram of
the system, (ii) a description of the nonlinear dynamics that
governs the interactions between the components, and (iii) a
precise knowledge of the system parameters. For most
complex systems we lack some of these prerequisites. For
example, current estimates indicate that in human cells the
available protein-protein interaction maps cover less than 20%
of all potential protein-protein interactions (Sahni et al.,
2015). In communication systems we may be able to build
an accurate wiring diagram, but we often lack the analytical
form of the system dynamics f(xðtÞ;uðtÞ;Θ). In biochemical
reaction systems we have a good understanding of the
underlying network and dynamics, but we lack the precise
values of the system parameters, like the reaction rate
constants. Although progress is made on all three fronts,
offering increasingly accurate data on the network structure,
dynamics, and the system parameters, accessing them all at
once is still infeasible for most complex systems. Despite
these difficulties, in the past decade we have seen significant
advances pertaining to the control of complex systems.
These advances indicate that many fundamental control
problems can be addressed without knowing all the details
of Eqs. (1a) and (1b). Hence, we do not have to wait for the
description of complex systems to be complete and accurate
to address and understand the control principles governing
their behavior.
Graph-theoretical methods have been successfully applied

to investigate the structural and qualitative properties of
dynamical systems since the 1960s (Yamada and Foulds,
1990). This raises a question: Can the recent renaissance of
interest in controlling networked systems offer a better

FIG. 2. Two mechanical systems whose natural state space
representation with linear time-invariant (LTI) dynamics can be
derived from Newton’s laws of motion. (a) The goal of stick
balancing, a simple but much-studied control problem (also
known as the inverted perdulum problem), is to balance a stick
on a palm. Adapted from Luenberger, 1979. (b) A rocket being
thrust upward. The rocket ascends from the surface of the Earth
with thrust force guaranteed by the ejection of mass. Adapted
from Rugh, 1993.
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understanding of control principles than previous graph-
theoretical methods? To answer this we must realize that
the current interest in control in the area of complex systems is
driven by the need to understand such large-scale complex
networks as the Internet, the WWW, wireless communication
networks, power grids, global transportation systems,
genome-scale metabolic networks, protein interaction net-
works, and gene regulatory networks, to name only a few
(Chen, 2014). Until the emergence of network science in the
21st century we lacked the mathematical tools to characterize
the structure of these systems, not even mentioning their
control principles. The nontrivial topology of real-world
networks, uncovered and characterized in the past two
decades, brings an intrinsic layer of complexity to most
control problems, requiring us to rely on tools borrowed
from many disciplines to address them. A typical example is
the structural controllability problem of complex networks.
Structural control theory developed in the 1970s offered
sufficient and necessary conditions to check if any network
with LTI dynamics is structurally controllable (Lin, 1974).
Yet, it failed to offer an efficient algorithm to find the
minimum set of driver nodes required to control the network,
nor an analytical framework to estimate the fraction of driver
nodes. Advances on this front became possible by mapping
the control problem into well-studied network problems, like
matching, and utilizing the notion of thermodynamic limit in
statistical physics and the cavity method developed in spin
glass theory, tools that were traditionally beyond the scope of
control theory (Liu, Slotine, and Barabási, 2011a).
The goal of this article is to review the current advances in

controlling complex systems, be they of biological, social, or
technological in nature. To achieve this we discuss a series of
topics that are essential to understand the control principles of
networks, with emphasis on the impact of the network
structure on control. The review is organized around several
fundamental issues.

(i) Controllability: Before deciding how to control a
system, we must make sure that it is possible to
control it. Controllability, a key notion in modern
control theory, quantifies our ability to steer a dynami-
cal system to a desired final state in finite time. We
discuss the impact of network topology on our ability
to control complex networks and address some prac-
tical issues, like the energy or effort required for
control.

(ii) Observability: As a dual concept of controllability,
observability describes the possibility of inferring the
initial state of a dynamical system by monitoring its
time-dependent outputs. We discuss different methods
to identify the sensor nodes, whose measurements over
time enable us to infer the initial state of the whole
system. We also explore a closely related concept,
identifiability, representing our ability to determine the
system’s parameters through appropriate input and
output measurements.

(iii) Steering complex systems to desired states or trajecto-
ries: The ultimate goal of control is to drive a complex
system from its current state or trajectory to some
desired final state or trajectory. This problem has
applications from ecosystem management to cell

reprogramming. For example, we want to design
interventions that can move a cell from a disease
(undesired) to a healthy (desired) state. We discuss
different ways of achieving such control: (a) by apply-
ing small perturbations to a set of physically or
experimentally feasible parameters, (b) via compensa-
tory perturbations of state variables that exploit the
basin of attraction of the desired final state, or (c) by
mapping the control problem into a combinatorial
optimization problem on the underlying network.

(iv) Controlling collective behavior: Collective behavior, a
much-studied topic in modern statistical physics, can
result from the coordinated local activity of many
interdependent components. Examples include the
emergence of flocking in mobile agents or synchroni-
zation in coupled oscillators. Controlling such proc-
esses has numerous potential applications, from the
design of flocking robots (Olfati-Saber, 2006) to the
treatment of Parkinson’s disease (Tass et al., 1998). We
review a broad spectrum of methods to determine the
conditions for the emergence of collective behavior
and discuss pinning control as an effective control
strategy.

Control problems are ubiquitous, with direct relevance to
many natural, social, and technological phenomena. Hence
the advances reviewed here probe our fundamental under-
standing of the complexity of the world surrounding us,
potentially inspiring advances in numerous disciplines.
Consequently, our focus is on conceptual advances and tools
pertaining to control that apply to a wide range of problems
emerging in physical, technological, biological, and social
systems. It is this diversity of applications that makes control
increasingly unavoidable in most disciplines.

II. CONTROLLABILITY OF LINEAR SYSTEMS

A system is controllable if we can drive it from any initial
state to any desired final state in finite time (Kalman, 1963).
Many mechanical problems can be formalized as control-
lability problems (Fig. 2). Consider, for example, the control
of a rocket thrust upward. The rocket is controllable if we can
find a continuous control input (thrust force) that can move the
rocket from a given initial state (altitude and velocity) to a
desired final state. Another example is the balancing of a stick
on our hand. We know from our experience that this is
possible, suggesting that the system must be controllable
(Luenberger, 1979). The scientific challenge is to decide
for an arbitrary dynamical system if it is controllable or
not, given a set of inputs.
The current interest in the control of complex networked

systems was induced by recent advances in the controllability
of complex networks (Liu, Slotine, and Barabási, 2011a,
2012; Jia et al., 2013; Pósfai et al., 2013; Gao, Liu et al.,
2014), offering mathematical tools to identify the driver
nodes, a subset of nodes whose direct control with appropriate
signals can control the state of the full system. In general
controllability is a prerequisite of control, hence understand-
ing the topological factors of the underlying network that
determine a system’s controllability offers numerous insights
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into the control principles of complex networked systems. As
we will discuss below, thanks to a convergence of tools from
control theory, network science and statistical physics, our
understanding of network controllability has advanced con-
siderably recently.

A. Linear time-invariant systems

The starting point of most control theoretical approaches is
the LTI control system ðA;BÞ

_xðtÞ ¼ AxðtÞ þ BuðtÞ: ð11Þ

Many mechanical systems can be naturally described by
LTI dynamics, where the state vector captures the position and
velocity of objects and the LTI dynamics is either directly
derived from Newton’s second law or represents some
reasonable linearization of the underlying nonlinear problem,
as illustrated by the stick balancing problem Eq. (5).
A significant fraction of the control theory literature

deals exclusively with linear systems. There are multiple
reasons for this. First, linear systems offer an accurate
model for some real problems, such as consensus or
agreement formation in multiagent networks, where the
state of each agent captures its opinion (Tanner, 2004; Liu
et al., 2008; Rahmani et al., 2009; Mesbahi and Egerstedt,
2010). Second, while many complex systems are charac-
terized by nonlinear interactions between the components,
the first step in any control challenge is to establish the
controllability of the locally linearized system (Slotine and
Li, 1991). Furthermore, for systems near their equilibrium
points the linearized dynamics can actually characterize the
underlying nonlinear controllability problem. Third, the
nontrivial network topology of real-world complex systems
brings a new layer of complexity to controllability. Before
we can explore the fully nonlinear dynamical setting,
which is mathematically much harder, we must understand
the impact of the topological characteristics on linear
controllability, serving as a prerequisite of nonlinear
controllability.
Consider the LTI dynamics (11) on a directed weighted

networkGðAÞ of N nodes (Fig. 3). The state variable xiðtÞ can
denote the amount of traffic that passes through a node i on a
communication network (Pastor-Satorras and Vespignani,
2004), or transcription factor concentration in a gene regu-
latory network (Lezon et al., 2006). The state matrix A ≔
ðaijÞN×N represents the weighted wiring diagram of the
underlying network, where aij is the strength or weight with
which node j affects or influences node i: a positive (or
negative) aij means the link (j → i) is excitatory (or inhibi-
tory), and aij ¼ 0 if node j has no direct influence on node i.
Consider M independent control signals fu1;…; uMg applied
to the network. The input matrix B ≔ ðbimÞN×M identifies the
nodes that are directly controlled, where bim represents the
strength of an external control signal umðtÞ injected into
node i.
The input signal uðtÞ ¼ (u1ðtÞ;…; uMðtÞ)T ∈ RM can be

imposed on all nodes or only a preselected subset of the nodes.
In general the same signal umðtÞ can drive multiple nodes. The

nodes directly controlled by uðtÞ are called actuator nodes or
simply actuators, such as nodes x1, x2, and x5 in Fig. 3. The
number of actuators is given by the number of nonzero
elements in B. The actuators that do not share input signals,
e.g., nodes x1 and x2 in Fig. 3, are called driver nodes or
simply drivers. The number of driver nodes equals the number
of columns in B.
Controllability, the ability to steer a system into an arbitrary

final state in a finite time, implies that we can move the state
variable of each node of a network to a predefined value,
corresponding to the system’s desired position in the state
space. Our ability to do so is largely determined by the
network topology. For example, if the network structure is
such that a signal cannot get from our driver nodes to a
particular node, that node, and hence the system as a whole, is
uncontrollable. Our challenge is to decide when control is
possible and when it is not. The answer is given by
controllability tests described next.

B. Kalman’s criterion of controllability

Controllability tests allow us to check if an LTI system is
controllable from a given set of inputs. The best known is
Kalman’s rank condition (Kalman, 1963), stating that the LTI
system ðA;BÞ is controllable if and only if the N × NM
controllability matrix

C≡ ½B;AB;A2B;…;AN−1B� ð12Þ

has full rank, i.e.,

rankC ¼ N: ð13Þ

To understand the origin of Eq. (12), we consider the formal
solution of Eq. (11) with xð0Þ ¼ 0, i.e.,

xðtÞ ¼
Z

t

0

exp½Aðt − τÞ�BuðτÞdτ: ð14Þ

FIG. 3. Graphical representation of a linear time-invariant
system (11). The state matrix A represents the weighted wiring
diagram of the network that describes which components interact
with each other and the direction of the signal or information flow
for each link; the input matrix B identifies the nodes (state
variables) that are controlled by an outside controller. The
network shown in the figure is controlled by an input vector
u ¼ (u1ðtÞ; u2ðtÞ)T with two independent signals u1ðtÞ and
u2ðtÞ. The three actuator nodes (x1, x2, and x5) are the nodes
directly controlled by uðtÞ. These actuator nodes correspond to
the three nonzero elements in B. The two driver nodes (x1 and
x2), representing nodes that do not share input signals, corre-
spond to the two columns of B. Note that node x5 is an actuator
node, but not a driver node.
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If we expand exp½Aðt − τÞ� in series, we realize that xðtÞ is
actually a linear combination of the columns in the matrices
fB;AB;A2B;…g. Note that for any N0 ≥ N, we have
rank½B;AB;A2B;…;AN0−1B� ¼ rankC. So if rankC < N,
then even the infinite series of fB;AB;A2B;…g will not
contain a full basis to span the entire N-dimensional state
space. In other words, we cannot fully explore the state space,
regardless of uðtÞ, indicating that given our inputs the system
is stuck in a particular subspace, unable to reach an arbitrary
point in the state space (Fig. 4). If, however, rankC ¼ N, then
we can find an appropriate input vector uðtÞ to steer the
system from xð0Þ to an arbitrary xðtÞ. Hence, the system is
controllable.
One can check that in the stick balancing problem (6a), the

controllability matrix has full rank (rankC ¼ N ¼ 2), indicat-
ing that the system is controllable. In the network control
problem of Fig. 4(a) the controllability matrix

C ¼

2
64
b1 0 0

0 a21b1 0

0 a31b1 0

3
75 ð15Þ

is always rank deficient. Hence, the system is uncontrollable.
By contrast, for Fig. 4(c) we have

C ¼

2
64
b1 0 0 0 0 0

0 b2 a21b1 0 0 0

0 0 a31b1 0 0 0

3
75; ð16Þ

which has full rank, as long as the parameters b1, b2, a21, and
a31 are nonzero. Hence the system is controllable.
The example of Fig. 4 implies that the topology of the

controlled network, which consists of both the network itself
and the control signals applied to some nodes, imposes
some inherent limits on the controllability matrix: some
configurations are controllable [Fig. 4(c)], while others are
not [Fig. 4(a)]. Thanks to the Kalman criterion, control-
lability can be easily tested when the dimension of the
controllability matrix is small and its rank test can be done
even without knowing the detailed values of its nonzero
matrix elements. For large real networks the controllability
test (13) is difficult to perform, however. Indeed, there is no
scalable algorithm to numerically determine the rank of the
controllability matrix C, which has dimension N × NM.
Equally important, executing an accurate rank test is ill
conditioned and is very sensitive to round-off errors and
uncertainties in the matrix elements. For example, if we plug
the numerical values of bi and aij into Eq. (12), we may
obtain extremely large or small matrix elements, such as
aN−1
ij , which for large N are rather sensitive to numeric

precision. Hence, for large complex systems we need to
determine the system’s controllability without numerically
calculating the rank of the controllability matrix. As we
discuss in the next section, this can be achieved in the
context of structural control theory.

C. Structural controllability

For many complex networks the system parameters
(e.g., the elements in A) are not precisely known.
Indeed, we are often unable to measure the weights of
the links, knowing only whether there is a link or not. In
other cases the links are time dependent, like the traffic on
an internet cable or the flux of a chemical reaction. Hence,
it is hard, if not conceptually impossible, to numerically
verify Kalman’s rank condition using fixed weights.
Structural control, introduced by C.-T. Lin in the
1970s, offers a framework to systematically avoid this
limitation (Lin, 1974).

1. The power of structural controllability

An LTI system ðA;BÞ is a structured system if the elements
in A and B are either fixed zeros or independent free
parameters. The corresponding matrices A and B are called
structured matrices. The system ðA;BÞ is structurally con-
trollable if we can set the nonzero elements in A and B such
that the resulting system is controllable in the usual sense
(i.e., rankC ¼ N).
The power of structural controllability comes from the fact

that if a system is structurally controllable then it is control-
lable for almost all possible parameter realizations (Lin, 1974;
Glover and Silverman, 1976; Shields and Pearson, 1976;
Davison, 1977; Hosoe and Matsumoto, 1979; Mayeda, 1981;
Linnemann, 1986; Reinschke, 1988; Dion, Commault, and
van der Woude, 2003). To see this, denote with S the set of all
possible LTI systems that share the same zero-nonzero
connectivity pattern as a structurally controllable system
ðA;BÞ. It has been shown that almost all systems that belong

FIG. 4. Controlling star networks. (a) Controlling the central
node of a directed star does not assure controllability of the
whole network, as shown in Eq. (15). (b) Indeed, the system
is stuck in the plane a31x2ðtÞ ¼ a21x3ðtÞ; hence no signal
u1ðtÞ can make the system leave this plane and explore the
whole state space. The reason is simple: if we change u1ðtÞ,
x2ðtÞ and x3ðtÞ always evolve in a correlated fashion,
indicating that we are unable to control the two nodes
independently of each other. Note that while the system is
not controllable in the whole state space, it remains control-
lable within the plane. It is natural that ensuring control-
lability within a restricted subspace will require fewer driver
nodes than ensuring controllability within the whole state
space (Liu, Slotine, and Barabási, 2011b; Müller and
Schuppert, 2011). (c) To ensure controllability, we must
inject an additional signal u2 to either x2 or x3, in which
case, according to Eq. (16), the network becomes control-
lable. From Liu, Slotine, and Barabási, 2011b.
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to the set S are controllable except for some pathological cases
with Lebesgue measure zero (Lin, 1974; Shields and Pearson,
1976). This is rooted in the fact that if a system ðA0;B0Þ ∈ S
is uncontrollable, then for every ϵ > 0 there exists a control-
lable system ðA;BÞ with ‖A −A0‖ < ϵ and ‖B −B0‖ < ϵ,
where ‖ · ‖ denotes matrix norm (Lee and Markus, 1968; Lin,
1974). In other words, an uncontrollable system in S becomes
controllable if we slightly alter some of the link weights. For
example, the system shown in Fig. 5(d) is controllable for
almost all parameter realizations, except when the edge
weights satisfy the constraint a32a221 ¼ a23a223. But these
pathological cases can be easily avoided by slightly changing
one of the edge weights, hence this system is structurally
controllable.
Taken together, structural control tells us that we can decide

a network’s controllability even if we do not know the precise
weight of each edge. All we have to make sure is that we have
an accurate map of the system’s wiring diagram, i.e., know
which components are linked and which are not. As we
demonstrate in the next section, this framework considerably
expands the practical applicability of control tools to real
systems.

2. Graphical interpretation

Structural control theory allows us to check if a controlled
network is structurally controllable by simply inspecting its
topology, avoiding expensive matrix operations. This is
possible thanks to the graphical interpretation2 of Lin’s
structural controllability theorem, discussed next.

Consider an LTI system ðA;BÞ represented by a digraph
GðA;BÞ ¼ ðV; EÞ (Fig. 3). The vertex set V ¼ VA ∪ VB
includes both the state vertices VA ¼ fx1;…; xNg≡
fv1;…; vNg, corresponding to the N nodes of the network,
and the input vertices VB¼fu1;…;uMg≡fvNþ1;…;vNþMg,
corresponding to theM input signals that are called the origins
or roots of the digraph GðA;BÞ. The edge set E ¼ EA ∪ EB
includes both the edges among state vertices EA ¼
fðxj; xiÞjaij ≠ 0g, corresponding to the links of network A,
and the edges connecting input vertices to state vertices
EB ¼ fðum; xiÞjbim ≠ 0g. These definitions allow us to for-
mulate a useful statement: The system ðA;BÞ is not struc-
turally controllable if and only if it has inaccessible nodes or
dilations (Lin, 1974).
Let us consider these two cases separately. A state

vertex xi is inaccessible if there are no directed paths reaching
xi from the input vertices [Fig. 6(a)]. Consequently, an
inaccessible node cannot be influenced by input signals
applied to the driver nodes, making the whole network
uncontrollable.
The digraph GðA;BÞ contains a dilation if there is a subset

of nodes S ⊂ VA such that the neighborhood set of S, denoted
as TðSÞ, has fewer nodes than S itself [Fig. 6(b)]. Here TðSÞ is
the set of vertices vj for which there is a directed edge from vj
to some other vertex in S. Note that the input vertices are not
allowed to belong to S but may belong to TðSÞ. Roughly
speaking, dilations are subgraphs in which a small subset of
nodes attempts to rule a larger subset of nodes. In other words,
there are more “subordinates” than “superiors.” A controlled
network containing dilations is uncontrollable. For example,
in a directed star configuration, where we wish to control all
the leaves via a central node, any two leaf nodes form a
dilation with the central hub. If we control the central hub
only, the system remains uncontrollable because we
cannot independently control the difference between the
two leaf nodes’ states (Fig. 4). In other words, we cannot
independently control two subordinates if they share the same
superior.

FIG. 5. Controllability, structural controllability, and strong
structural controllability. (a) A directed path can be controlled
by controlling the starting node only. The controllability is
independent of the detailed (nonzero) values of b1, a21, and
a32, so the system is strongly structurally controllable. (b) A
directed star can never be controlled by controlling the central
hub (node x1) only. (c) The network obtained by adding a self-
edge to a leaf node x3 in (b) can be controlled by controlling x1
only. The controllability is independent of the detailed (nonzero)
values of b1, a21, a31, and a33, so the system is strongly
structurally controllable. (d) This network is controllable for
almost all weight combinations. It will be uncontrollable only in
some pathological cases, for example, when the weights satisfy
the constraint a32a221 ¼ a23a231 exactly. Hence, the system is
structurally controllable but does not display strong structural
controllability.

 inaccessbility dilation cactus

bud

bud

bud

stem

root

(a) (b)  (c)

FIG. 6. Inaccessibility, dilations, and cactus. (a) The shaded
(red) nodes x1 and x2 are inaccessible from the input node u1
[shaded (blue)], as variations in u1 do not influence the states of
x1 and x2. (b) The shaded (red) nodes in the set S ¼ fx3; x4g
cause a dilation. Indeed, their neighborhood set TðSÞ ¼ fx5g
contains only one node, implying that a single node in TðSÞ aims
to control two nodes in S. As shown in Eq. (15) and Fig. 4(a), this
is not possible. (c) A cactus contains neither inaccessible nodes
nor dilations. Note that in the cactus structure TðSÞ ¼ fx2; x5g,
hence there is no dilation. There is only one stem (green) in one
cactus. There could be multiple buds (purple) in the same cactus.
A cactus is a minimal structure for structural controllability.

2The structural controllability theorem also has a pure algebraic
meaning (Shields and Pearson, 1976), which plays an important role
in the characterization of strong structural controllability (Mayeda
and Yamada, 1979).
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Taken together, Lin’s structural controllability theorem
states that an LTI system ðA;BÞ is structurally controllable
if and only if the digraph GðA;BÞ does not contain inacces-
sible nodes or dilations. These two conditions can be
accurately checked by inspecting the topology of the digraph
GðA;BÞ without dealing with any floating-point operations.
Hence, this bypasses the numerical issues involved in evalu-
ating Kalman’s controllability rank test and also our lack of
detailed knowledge on the edge weights in GðA;BÞ.
An alternative graph-theoretical formulation of Lin’s

structural controllability theorem is often useful in practice.
A general graph is covered or spanned by a subgraph
if the subgraph and the graph have the same vertex set.
Typically the spanning subgraph has only a subset of
links of the original graph. For a digraph, a sequence of
oriented edges fðv1 → v2Þ;…; ðvk−1 → vkÞg, where the ver-
tices fv1; v2;…; vkg are distinct, is called an elementary path.
When vk coincides with v1, the sequence of edges is called an
elementary cycle. For the digraph GðA;BÞ, we define the
following subgraphs [Fig. 6(c)]: (i) a stem is an elementary
path originating from an input vertex; (ii) a bud is an
elementary cycle C with an additional edge e that ends, but
does not begin, in a vertex of the cycle; (iii) a cactus is defined
recursively: A stem is a cactus. Let C, O, and e be,
respectively, a cactus, an elementary cycle that is disjoint
with C, and a directed edge that connects C to O in GðA;BÞ.
Then C ∪ feg ∪ O is also a cactus. GðA;BÞ is spanned by
cacti if there exists a set of disjoint cacti that cover all state
vertices.
Note that a cactus is a minimal structure that contains

neither inaccessible nodes nor dilations. That is, for a given
cactus, the removal of any edge will result in either inacces-
sibility or dilation, hence the controllability of the cactus is
lost (Fig. 6). We can now formulate Lin’s structural control-
lability theorem as follows: An LTI system ðA;BÞ is struc-
turally controllable if and only if GðA;BÞ is spanned by cacti
(Lin, 1974). Later we show that this formulation helps us
design an efficient algorithm to identify a minimum set of
inputs that guarantee structural controllability.

3. Strong structural controllability

The fundamental assumption of structural control is that the
entries of the matricesA andB are either zeros or independent
free parameters. Therefore structural control does not require
knowledge of the exact values of parameters, and by avoiding
floating-point operations, it is not subject to any numerical
errors. However, some systems have interdependent param-
eters, making it uncontrollable despite the fact that it is
structurally controllable. For example, Fig. 5(d) displays an
LTI system that is structurally controllable, but becomes
uncontrollable when the parameters satisfy the constraint
a32a221 ¼ a23a231. This leads to the notion of strong structural
controllability: A system is strongly structurally controllable if
it remains controllable for any value (other than zero) of the
indeterminate parameters (Mayeda and Yamada, 1979). In
other words, there is no combination of nonzero link weights
that violates Kalman’s criterion (13). For example, the LTI
systems shown in Figs. 5(a) and 5(c) are strongly structurally
controllable.

Both graph-theoretic (Mayeda and Yamada, 1979;
Jarczyk, Svaricek, and Alt, 2011) and algebraic conditions
(Reinschke, Svaricek, and Wend, 1992) for strong structural
controllability have been studied. Unfortunately, those
conditions do not lead to efficient algorithms. Recently,
necessary and sufficient graph-theoretical conditions involv-
ing constrained matchings were derived (Chapman and
Mesbahi, 2013). These conditions can be applied to check
if an input set leads to a strongly structurally controllable
network of size N with time complexity OðN2Þ. Although
finding a minimum cardinality input set is proven to be
nondeterministic polynomial time (NP) complete, a greedy
OðN2Þ algorithm has been developed to provide a strongly
structural controllable input set, which is not necessarily
minimal (Chapman and Mesbahi, 2013).

D. Minimum inputs problem

If we want to control a networked system, we first need to
identify the set of driver nodes that, if driven by different
signals, can offer full control over the network. Any system is
fully controllable if we control each node individually. Yet,
such full control is costly and typically impractical. Hence, we
are particularly interested in identifying a minimum driver
node set (MDNS), whose control is sufficient to make the
whole system controllable. In other words, we want to control
a system with minimum inputs.

1. Solution based on structural control theory

Kalman’s rank condition does not offer us the MDNS—it
tells us only if we can control a system through a given set of
potential driver nodes that we must guess or select.
Furthermore, to numerically check Kalman’s rank condition,
we have to know all the entries in A and B, which are often
unknown for complex networks. Even if we know all the
weights (parameters) exactly, a brute-force search for the
MDNS would require us to compute the rank of almost 2N

distinct controllability matrices, a combinatorially prohibitive
task for any network of reasonable size. Yet, as we show next,
we can identify the MDNS by mapping the control problem
into a purely graph-theoretical problem called maximum
matching (Yamada and Foulds, 1990; Commault, Dion, and
van der Woude, 2002; Murota, 2009; Liu, Slotine, and
Barabási, 2011a).
Matching is a widely studied problem in graph theory, with

many practical applications (Lovász and Plummer, 2009). On
undirected graphs, where it was originally defined, a matching
represents a set of edges without common vertices [gray (red)
edges in Fig. 7(g)]. Maximum matching is a matching of the
largest size. For most graphs we can find multiple maximum
matchings [Figs. 7(h1)–7(h3)]. The end vertices of a matching
edge are called matched, and the remaining vertices are
unmatched. If all vertices are matched, then the matching
is called perfect [Fig. 7(g)].
Many real-world problems can be formalized as a maxi-

mum matching problem on bipartite graphs [Fig. 7(c)].
Consider, for example, M job applicants applying for N
openings. Each applicant is interested in a subset of the
openings. Each opening can accept only one applicant and
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an applicant can accept only one job offer. Finding an
assignment of openings to applicants such that as many
applicants as possible get a job is a classical maximum
matching problem.
In structural control theory, the role of matching is well

studied and matching was originally defined in the bipartite
representation of a digraph (Yamada and Foulds, 1990;
Commault, Dion, and van der Woude, 2002; Murota,
2009). The extended definition of matching on a digraph
connects more naturally to the cactus structure (Fig. 8), which
is a fundamental notion in structural control theory. In a
directed graph (digraph), a matching is defined to be a set of
directed edges that do not share common start or end vertices
[gray (red) edges in Figs. 7(j)] (Liu, Slotine, and Barabási,
2011a). A vertex is matched if it is the end vertex of a
matching edge. Otherwise, it is unmatched. For example, in a
directed path, all but the starting vertex are matched [Figs. 7(d)
and 7(j)]. A matching of maximum size is called a maximum
matching. A maximum matching is called perfect if all
vertices are matched, as in a directed elementary cycle
[Figs. 7(f) and 7(l)]. We can prove that a matching of a
digraph can be decomposed into a set of directed paths and/or

directed cycles [Fig. 8(b)]. Note that directed paths and cycles
are also the basic elements of the cactus structure [Fig. 8(d).
Hence, matching in digraphs connects naturally to the cactus
structure.
The usefulness of matching in network control comes from

a theorem that provides the minimum number of driver nodes
in a network (Liu, Slotine, and Barabási, 2011a).

a. Minimum inputs theorem

To fully control a directed network GðAÞ, the minimum
number of inputs, or equivalently the minimum number of
driver nodes, is

ND ¼ max fN − jM�j; 1g; ð17Þ

where jM�j is the size of the maximum matching in GðAÞ. In
other words, the driver nodes correspond to the unmatched
nodes. If all nodes are matched (jM�j ¼ N), we need at least
one input to control the network, hence ND ¼ 1. We can
choose any node as our driver node in this case.

FIG. 7. Matching. The maximum matchings of (a), (b) undirected graphs, (c) a bipartite graph, and (d)–(f) digraphs. For
undirected or bipartite graphs, a matching represents a set of edges without common vertices. For digraphs, a matching is a set of
directed edges that do not share the common start or end vertices. Maximum matching is a matching with the largest number of
edges. (g)–(l) Edges in the matching are colored in gray (red). Matched (or unmatched) nodes are shown as shaded (green) (or
white), respectively.

FIG. 8. Graph-theoretic proof of the minimum inputs theorem. (a) A directed network. (b) The maximum matching represents the
largest set of edges without common heads or tails. All maximum matchings can be decomposed into a set of vertex-disjoint
directed paths and directed cycles, shown in gray (red). If a node is the head of a matching edge, then this node is matched [shaded
(green)]. Otherwise, it is unmatched (white). The unmatched nodes must be directly controlled to control the whole network, hence
they are the driver nodes. (c) By injecting signals into driver nodes, we get a set of directed paths whose starting points are the
input nodes. The resulting paths are called stems and the resulting digraph is called a U-rooted factorial connection. (d) By
“grafting” the directed cycles to those stems, we get buds. The resulting digraph is called cactus or cacti. A cactus is a minimal
structure for structural controllability as removing any of its edges will cause either inaccessible nodes or dilations. (e) According to
the structural controllability theorem, since there is a cacti structure [light shading (yellow)] underlying the controlled network, the
system is structurally controllable. Note that (a)–(d) also suggest an efficient method to identify the minimal cacti, i.e., the cacti
structure with the minimum number of roots. The minimal cacti structure serves as the control skeleton that maintains the structural
controllability of the system.
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The minimum inputs theorem maps an inherently
dynamical problem, i.e., our ability to control a network
from a given subset of nodes, into a purely graph-theoretical
problem of finding the maximum matching of a diagraph.
Most importantly, it bypasses the need to search all node
combinations for a minimum driver node set, as the driver
nodes are provided by the solution of the underlying
matching problem.

b. Maximum matching: Algorithmic solution

The mapping of the MDNS problem to a matching problem
via Eq. (17) seems to map a problem of high computational
complexity—an exhaustive search for the MDNS—into
another just as complicated problem, that of finding the
maximum matching for a digraph. The real value of this
mapping, however, comes from the fact that the maximum
matching problem in a digraph is not NP hard, but can
be solved in polynomial time. Indeed, the maximum
matching for a digraph can be identified by mapping the
digraph to its bipartite representation, as illustrated in Fig. 9.
Consider a digraph GðAÞ, whose bipartite representation is
HðAÞ≡ ðVþ

A ∪ V−
A;ΓÞ. Here Vþ

A ¼ fxþ1 ;…; xþNg and V−
A ¼

fx−1 ;…; x−Ng are the set of vertices corresponding to the N
columns and rows of the state matrix A, respectively. The
edge set of this bipartite graph is Γ ¼ fðxþj ; x−i Þjaij ≠ 0g. In
other words, we split each node xi of the original digraph into
two “nodes” xþi and x−i . We then place an edge ðxþj ; x−i Þ in the
bipartite graph if there is a directed edge ðxj → xiÞ in the
original digraph. Note that since we allow self-loops ðxi → xiÞ
in the original digraph, there can be edges of this type ðxþi ; x−i Þ
in the bipartite graph. A maximum matching of a bipartite
graph can be found efficiently using the Hopcroft-Karp
algorithm, which runs in Oð ffiffiffiffi

V
p

EÞ time (Hopcroft and
Karp, 1973). After running the algorithm, we can map the
maximum matching in the bipartite representation, e.g.,
ðxþ1 ; x−2 Þ; ðxþ3 ; x−3 Þ in Fig. 9(b), back to the maximummatching
in the original diagraph, e.g., ðx1; x2Þ; ðx3; x3Þ in Fig. 9(a),
obtaining the desired maximum matching and hence the
corresponding MDNS.

Taken together, the maximum matching algorithm allows
the efficient identification of the MDNS using the following
steps (Fig. 10): (i) Given the directed network we want to
control, we generate its bipartite representation (Fig. 9). Next
identify a maximum matching on the underlying bipartite
graph using the Hopcroft-Karp algorithm. (ii) To each
unmatched node add a unique control signal, as unmatched
nodes represent the driver nodes. (iii) As there could be
multiple maximum matchings for a general digraph, multiple
MDNSs exist, with the same size ND.
Recently, several algorithmic approaches have been devel-

oped to optimize the network controllability (in the sense of
decreasing ND) via minimal structural perturbations, such as
adding a minimum number of edges at judiciously chosen
locations in the network (Wang et al., 2012), rewiring
redundant edges (Hou et al., 2013), and assigning the
direction of edges (Hou et al., 2012; Xiao et al., 2014).

c. Maximum matching: Analytical solution

While the maximum matching allows us to efficiently
identify the MDNS, the algorithmic approach provides no
physical insights about the impact of the network topology on
ND. For example, what network characteristics influence ND,
and how does ND depend on them? Which networks are easier
to control and which are harder? To answer these questions
we turn to the cavity method, a versatile tool of statistical
physics (Mézard and Parisi, 2001; Zhou and Ou-Yang, 2003;
Zdeborová and Mézard, 2006). We illustrate this approach by
analytically calculating n̄D, representing the fraction of driver
nodes nD (≡ND=N) averaged over all network realizations
compatible with the network’s degree distribution Pðkin; koutÞ
(Liu, Slotine, and Barabási, 2011a). We start by describing a
matching M in a digraph G ¼ fVðGÞ; EðGÞg by the binary
variables sa ¼ sði→jÞ ∈ f0; 1g assigned to each directed edge
a ¼ ði → jÞ ∈ EðGÞ with sa ¼ 1 if a belongs to the matching
M and sa ¼ 0 otherwise. According to the definition of
matching in a digraph, matching edges do not share start
or end nodes, formally resulting in two constraints for each
vertex i ∈ VðGÞ: (i) Pj∈∂þi sði→jÞ ≤ 1; (ii)

P
k∈∂−i sðk→iÞ ≤ 1

(a) (b)

FIG. 9. Maximum matching calculation. The maximum match-
ing of the digraph (a) can be computed from its bipartite
representation (b), which is obtained by splitting each node xi
into two nodes (xþi and x−i ) and placing an edge ðxþj ; x−i Þ in the
bipartite graph if there is a directed edge ðxj → xiÞ in the original
digraph. The maximum matching of any bipartite graph can be
identified in polynomial time using the Hopcroft-Karp algorithm.
Mapped back to the digraph, we obtain the maximum matching
of the original digraph and the driver nodes of the corresponding
control problem.

FIG. 10. Identifying the driver nodes. For a general directed
network, such as the one shown in the left panel, there
could be multiple maximum matchings, shown in gray (red)
on the right panels. Hence, we can identify multiple MDNSs
(white nodes). To each driver node we must add a unique
control signal [shaded (blue)] necessary to ensure structural
controllability.
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with ∂−i and ∂þi indicating the sets of nodes that point to i or
are pointed by i, respectively.
The quantity EiðfsgÞ ¼ 1 −

P
k∈∂−i sðk→iÞ tells us the state

of each vertex: vertex i is matched if EiðfsgÞ ¼ 0 and
unmatched if EiðfsgÞ ¼ 1. Consequently, the cost (or energy)
function gives for each matching M ¼ fsg the number of
unmatched vertices

EGðfsgÞ ¼
X

i∈VðGÞ
EiðfsgÞ ¼ N − jMj: ð18Þ

We define the Boltzmann probability in the space of
matchings as

PGðfsgÞ ¼
e−βEGðfsgÞ

ZGðβÞ
; ð19Þ

where β is the inverse temperature and ZGðβÞ is the partition
function

ZGðβÞ ¼
X
fsg

e−βEGðfsgÞ: ð20Þ

In the limit β → ∞ (i.e., the zero temperature limit), the
internal energy EGðβÞ and the entropy SGðβÞ provide the
ground state properties, i.e., the properties of the maximum
matchings. In particular, EGð∞Þ represents the number of
unmatched vertices (with respect to any maximum matching),
and the entropy SGð∞Þ yields the logarithm of the number of
maximum matchings.
In the zero temperature limit, the average fraction of driver

nodes is given by

n̄D ¼ 1

2

�
½Gðŵ2Þ þ Gð1 − ŵ1Þ − 1�

þ ½Ĝðw2Þ þ Ĝð1 − w1Þ − 1�

þ z
2
½ŵ1ð1 − w2Þ þ w1ð1 − ŵ2Þ�

�
; ð21Þ

where w1; w2; w3; ŵ1; ŵ2; ŵ3 satisfy the set of self-consistent
equations

w1 ¼ Hðŵ2Þ; w2 ¼ 1−Hð1− ŵ1Þ; w3 ¼ 1−w2 −w1;

ŵ1 ¼ Ĥðw2Þ; ŵ2 ¼ 1− Ĥð1−w1Þ; ŵ3 ¼ 1− ŵ2 − ŵ1;

ð22Þ

and

GðxÞ≡ X∞
kout¼0

PðkoutÞxkout ; ĜðxÞ≡X∞
kin¼0

P̂ðkinÞxkin ;

HðxÞ≡ X∞
kout¼0

Qðkoutþ1Þxkout ; ĤðxÞ≡
X∞
kin¼0

Q̂ðkinþ1Þxkin

ð23Þ

are the generating functions, and

QðkoutÞ≡ koutPðkoutÞ
hkouti

; Q̂ðkinÞ≡ kinP̂ðkinÞ
hkini

are the out- and in-degree distributions of node i when one
selects uniformly at random a directed edge ði → jÞ from the
digraph.
While the cavity method does not offer a closed-form

solution, Eq. (21) allows us to systematically study the impact
of key network characteristics, such as the average degree hki
or the degree exponent γ of the underlying network, on n̄D in
the thermodynamic limit (N → ∞) (see Fig. 11). For example,
for directed Erdős-Rényi (ER) random networks (Erdős and
Rényi, 1960; Bollobás, 2001), both PðkinÞ and PðkoutÞ follow
a Poisson distribution, i.e., e−hki=2ðhki=2Þk=k!. In the large hki
limit we have

nD ∼ e−hki=2: ð24Þ

FIG. 11. Analytical results on the fraction of driver nodes (nD ¼ ND=N) for canonical model networks. (a) For directed Erdős-Rényi
random networks, nD decays exponentially for large hki. (b) For directed scale-free networks nD approaches 1 as the degree exponent γ
approaches 2, indicating that in such networks all nodes need to be controlled.
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For directed scale-free (SF) networks, we assume that
PðkinÞ and PðkoutÞ have the same functional form, following
a power law with degree exponent γ and exponential cutoff,
i.e., PðkinÞ ¼ Ck−γin e

−k=κ, PðkoutÞ ¼ Ck−γoute
−k=κ. Here the nor-

malization constant is C ¼ ½Liγðe−1=κÞ�−1, where LinðxÞ is the
nth polylogarithm of x. Because of the exponential cutoff
e−k=κ, the distribution is normalizable for any γ. One can show
that as γ → 2, we have nD → 1. This means one has to control
almost all the nodes to achieve full control over the network.
Therefore γ ¼ 2 is the critical value for the controllability of
scale-free networks, as only for γ > 2 can we obtain full
controllability by controlling only a subset of the nodes. Note
that for γ → 2 superhubs emerge that connect to almost all
nodes in the network (Albert and Barabási, 2002; Barabási,
2016). We know that for a starlike digraph with one central
hub and N − 1 leaves, one has to control ND ¼ N − 1 nodes
(the central hub and any N − 2 leaves). In the large N limit,
ND ≈ N, which explains intuitively why we have to control
almost all nodes when γ → 2.
For SF networks with degree exponent γin ¼ γout ¼ γ

generated from the static model (Goh, Kahng, and Kim,
2001), the parameters hki and γ are independent. In the
thermodynamic limit the degree distribution is

PðkÞ ¼ ½mð1 − αÞ�1=α
α

Γðk − 1=α; m½1 − α�Þ
Γðkþ 1Þ ;

where ΓðsÞ is the gamma function and Γðs; xÞ is the
upper incomplete gamma function. In the large k limit,
PðkÞ ∼ k−ð1þ1=αÞ ¼ k−γ , where γ ¼ 1þ 1=α. The asymptotic
behavior of nDðhki; γÞ for large hki is

nD ∼ e−ð1=2Þ½1−1=ðγ−1Þ�hki: ð25Þ

If γin ≠ γout, the smaller of the two exponents, i.e.,
min½γin; γout� determines the asymptotic behavior of nD.
Equation (25) indicates that as γ → 2, nD → 1, which is
consistent with the result that γc ¼ 2 for a purely SF
network.
The systematic dependence of nD on hki and γ prompts us

to ask: How do other network characteristics, such as degree
correlations, clustering, modularity, or the fraction of low
degree nodes, influence nD (Pósfai et al., 2013; Menichetti,
Dall’Asta, and Bianconi, 2014)? A combination of analytical
and numerical results indicates that the clustering coefficient
and modularity have no discernible effect on nD. At the same
time the symmetries of the underlying matching problem
generate linear, quadratic, or no dependence on degree
correlation coefficients, depending on the nature of the
underlying degree correlations (Pósfai et al., 2013).
For uncorrelated directed networks, the density of nodes

with kin; kout ¼ 1 or 2 determine the size of maximum
matchings (Menichetti, Dall’Asta, and Bianconi, 2014).
This suggests that uncorrelated random networks whose
minimum kin and kout are greater than 2 typically have perfect
matchings and hence can be fully controlled via a single

control input (i.e., ND ¼ 1), regardless of the other properties
of the degree distribution.

2. Solution based on Popov-Belevitch-Hautus
controllability test

In structural control theory we assume that the system
parameters, such as the link weights in GðA;BÞ, are either
fixed zeros or independent free parameters. This framework is
ideal for many systems for which we know only the under-
lying wiring diagram (i.e., zero or nonzero values, indicating
the absence or presence of physical connections) but not the
link characteristics, such as their weights. Yet the independent
free parameter assumption is very strong, and can be violated
in some systems, such as in undirected networks, where the
state matrix A is symmetric, or unweighted networks, where
all link weights are the same. In such cases structural control
theory could yield misleading results on the minimum number
of driver nodes ND. Hence, it is important to move beyond
structural control as we explore the controllability and other
control related issues.
For LTI systems with exactly known system parameters the

minimum inputs problem can be efficiently solved using the
Popov-Belevitch-Hautus (PBH) controllability test. The PBH
controllability test states that the system ðA;BÞ is controllable
if and only if (Hautus, 1969)

rank½sI −A;B� ¼ N; ∀ s ∈ C: ð26Þ

Since the first N × N block of the N × ðN þMÞ matrix
½sI −A;B� has full rank whenever s is not an eigenvalue
of A, we need only to check each eigenvalue of A, i.e.,
s ∈ λðAÞ, when running the PBH test.
Note that the PBH test (26) and Kalman’s rank condition

(13) are equivalent. Yet the advantage of the PBH test comes
from the fact that it connects the controllability of ðA;BÞ to
the eigenvalues and eigenvectors of the state matrix A. This
can be used to solve the minimum inputs problem exactly.
Indeed, the PBH controllability test suggests that ðA;BÞ is
controllable if and only if there is no left eigenvector of A
orthogonal to all the columns of B. In other words, the
columns of B must have a component in each eigendirection
of A. Recall that for an eigenvalue λ0 ∈ λðAÞ, its algebraic
multiplicity is the multiplicity of λ0 as a root of the
characteristic polynomial pðλÞ ¼ detðA − λIÞ. Its geometric
multiplicity is the maximal number of linearly independent
eigenvectors corresponding to it. Hence, the number of
control inputs must be greater than or equal to the largest
geometric multiplicity of the eigenvalues of A (Antsaklis
and Michel, 1997; Sontag, 1998; Yuan et al., 2013). In
other words, the minimum number of control inputs (or
equivalently the minimum number of driver nodes) is
determined by the maximum geometric multiplicity of the
eigenvalues of A, i.e.,

ND ¼ max
i
fμðλiÞg; ð27Þ

where μðλiÞ ¼ dimVλi ¼ N − rankðλiIN −AÞ is the geo-
metric multiplicity of A’s eigenvalue λi, representing the
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dimension of its eigenspace. Note that the algebraic multi-
plicity of eigenvalue λi, denoted by δðλiÞ, is its multiplicity
as a root of the characteristic polynomial. In general,
δðλiÞ ≥ μðλiÞ. But for symmetric A, which is the case of
undirected networks, we have δðλiÞ ¼ μðλiÞ.
Based on Eq. (27), we can develop an efficient algorithm to

identify the minimum set of driver nodes for arbitrary LTI
systems (Fig. 12), allowing us to explore the impact of the
network topology and link-weight distributions on ND (Yuan
et al., 2013). For undirected and unweighted ER networks of
connectivity probability p, the results indicate that for
small p, nD decreases with p, while for sufficiently large
p, nD increases to ðN − 1Þ=N, which is exact for p ¼ 1.
For results of some special graphs, see Table I. This approach
was recently extended to multiplex networks (Yuan et al.,
2014).

E. Minimal controllability problems

Any networked system with LTI dynamics is fully con-
trollable if we control each node individually with an
independent signal, i.e., M ¼ N. But this is costly and
typically impractical for large complex systems. Hence, we
are particularly interested in fully controlling a network with
minimum number of nodes. Depending on the objective
function and the way we “inject” input signals, we can
formalize different types of minimal controllability problems
(MCPs) (Olshevsky, 2014).
MCP0: We try to minimize the number of independent

control signals, corresponding to the number of columns in the
input matrix B, or equivalently, the number of driver nodes
(Liu, Slotine, and Barabási, 2011a) whose control is sufficient
to fully control the system’s dynamics [Fig. 13(a)]. This is
nothing but the minimum inputs problem discussed in
Sec. II.D.
MCP1: We assume dedicated inputs, i.e., each control

input ui can directly control only one node (state variable).
In the matrix form, this amounts to finding a diagonal
matrix B ∈ RN×N that has as few nonzero entries as possible
so that the LTI system _x ¼ Axþ Bu is controllable
[Fig. 13(b)].
MCP2: We set uiðtÞ ¼ uðtÞ and aim to find a vector b that

has as few nonzero entries as possible such that the system
_x ¼ Axþ bu is controllable [Fig. 13(c)].
Note that in solving MCP0, one signal can be applied to

multiple nodes. The number of actuator nodes (corresponding

(a)

(b)

(c)

FIG. 12. Identifying a minimum set of driver nodes of small networks. For each network, we show the matrix A − λMI, its
column canonical form, all eigenvalues λ ofA, and the eigenvalue λM with the largest geometric multiplicity. We highlight the rows that
are linearly dependent on others in the column canonical form in gray (red). The corresponding nodes are the driver nodes [gray (red)] of
the corresponding networks. For undirected networks in (a) and (c), μðλMÞ is equal to the maximum algebraic multiplicity, that is,
the multiplicity of λM . The configuration of driver nodes is not unique as it relies on the elementary column transformation,
but the minimum number of drivers is uniquely determined by the maximum geometric multiplicity μðλMÞ of matrix A. From
Yuan et al., 2013.

TABLE I. Eigenvalues and minimum number of driver nodes of
some special graphs of N nodes. For an unweighted and undirected
star and a complete graph, the table shows the algebraic multiplicity
of eigenvalues in the parenthesis. From Yuan et al., 2013.

Network Eigenvalue ND

Chain 2 cos qπ
Nþ1

, q ¼ 1;…; N 1

Ring 2 cos 2πðq−1ÞN , q ¼ 1;…; N 2

Star 0ðN − 2Þ, � ffiffiffiffiffiffiffiffiffiffiffiffi
N − 1

p ð1Þ N − 2

Complete graph N − 1ð1Þ, −1ðN − 1Þ N − 1
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to those nonzero entries in B) is not necessarily minimized. In
MCP1 uðtÞ is a vector of control inputs, i.e., we have multiple
input signals, while in MCP2, uðtÞ is a scalar, i.e., there is only
one input signal. In both cases, we try to minimize the number
of actuator nodes that are directly controlled by input signals.
Although MCP0 for a general LTI system is easy to solve,

MCP1 and MCP2 are NP hard (Olshevsky, 2014). Yet, if we
need to guarantee only structural controllability, MCP1 can be
easily solved (Pequito, Kar, and Aguiar, 2013, 2015). For a
directed network G with LTI dynamics the minimum number
of dedicated inputs (or actuators) Nda required to assure
structural controllability is

Nda ¼ ND þ β − α; ð28Þ

where ND is the minimum number of driver nodes; β is the
number of root strongly connected components (rSCCs),
which have no incoming links from other SCCs; and α is
the maximum assignability index of the bipartite representa-
tion BðGÞ of the directed network G. An rSCC is said to be a
top assignable SCC if it contains at least one driver node with
respect to a particular maximum matchingM�. The maximum

assignability index of BðGÞ is the maximum number of top
assignable SCCs that a maximum matching M� may lead to.
The minimum set of dedicated actuators can be found with
polynomial-time complexity (Pequito, Kar, and Aguiar,
2013, 2015).
Consider, for example, the network shown in Fig. 3,

which has in total two different maximum matchings M1¼
fðx1→x4Þ;ðx4→x3Þ;ðx5→x5Þg, M2 ¼fðx1 → x2Þ;ðx4 → x3Þ;
ðx5 → x5Þg. Both have size 3; hence the number of driver
nodes is ND ¼ maxfN − jM�j; 1g ¼ 2, according to Eq. (17).
Note that the two maximum matchings will yield two
minimum sets of driver nodes, i.e., fx1; x2g and fx1; x4g.
The former is shown in Fig. 3. There are two rSCCs, fx1g and
fx5g, each containing a single node, hence β ¼ 2. The rSCC
fx1g is a top assignable SCC, because it contains one driver
node with respect to either M1 or M2. The rSCC fx5g is not a
top assignable SCC, because it contains no driver nodes.
Hence the maximum assignability index of this system is
α ¼ 1. Finally, the minimum number of dedicated actuators is
Nda ¼ ND þ β − α ¼ 3 and there are two minimum sets of
actuators, i.e., fx1; x2; x5g and fx1; x4; x5g.

F. Role of individual nodes and links

As seen in Sec. II.D.1, a system can be controlled by
multiple driver node configurations, each corresponding to a
different maximum matching (Fig. 10). Some links may
appear more often in the maximum matchings than other
links. This raises a fundamental question: What is the role of
the individual node (or link) in control? Are some nodes
(or links) more important for control than others? To answer
these questions, in this section we discuss the classification of
nodes and links based on their role and importance in
the control of a given network (Liu, Slotine, and Barabási,
2011a; Jia et al., 2013; Ruths and Ruths, 2014; Vinayagam
et al., 2016).

1. Link classification

In both natural and technological systems we need to
quantify how robust is our ability to control a network under
unavoidable link failure. To address this question, we can use
structural controllability to classify each link into one of the
following three categories: (1) a link is critical if in its absence
we must increase the number of driver nodes to maintain full
control over the system. In this case the link is part of all
maximum matchings of the network; (2) a link is redundant if
it can be removed without affecting the current set of driver
nodes (i.e., it does not appear in any maximum matching);
(3) a link is ordinary if it is neither critical nor redundant (it
appears in some but not all maximum matchings). Note that
this classification can be efficiently done with a polynomial
time algorithm based on Berge’s property (Régin, 1994),
rather than enumerating all maximum matchings, which is
infeasible for large networks.
We can compute the density of critical (lc ¼ Lc=L),

redundant (lr ¼ Lr=L), and ordinary (lo ¼ Lo=L) links for
a wide range of real-world networks. It turns out that most real
networks have few or no critical links. Most links are ordinary,
meaning that they play a role in some control configurations,

FIG. 13. Different minimal controllability problems (MCPs).
For each MCP, we show the corresponding graph representation
GðA;BÞ, and the input matrix B (where ×’s stand for nonzero
elements. MCP0: We aim to minimize the number of driver
nodes, or equivalently, the number of independent input signals.
One signal can drive multiple nodes. MCP1: We aim to minimize
the number of dedicated actuator nodes that receive independent
input signals. One signal can drive only one actuator node.
MCP2: We aim to minimize the number of actuator nodes with
only one signal. This unique signal can drive multiple actuator
nodes. In all cases, we assume there are four actuator nodes
(x1, x2, x3, and x4). We colored the driver nodes in gray (pink).
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but the network can be still controlled in their absence (Liu,
Slotine, and Barabási, 2011a).
For model networks (ER and SF), we can calculate lc, lr,

and lo as functions of hki (Fig. 14). The behavior of lc is easy
to understand: for small hki all links are essential for control
(lc ≈ 1). As hki increases the network’s redundancy increases,
decreasing lc. The increasing redundancy suggests that the
density of redundant links lr should always increase with hki,
but it does not: it reaches a maximum at hkic, after which it
decays. This nonmonotonic behavior results from a structural
transition driven by core percolation (Liu, Slotine, and
Barabási, 2011a). Here the core represents a compact cluster
of nodes left in the network after applying a greedy leaf
removal procedure: Recursively remove in-leaf (with kin ¼ 1)
and out-leaf (with kout ¼ 1) nodes’ neighbors’ all outgoing
(or incoming) links. The core emerges through a percolation
transition [Figs. 14(b) and 14(d)]: for k < hkic, ncore ¼
Ncore=N ¼ 0, so the system consists of leaves only. At hkic
a small core emerges, decreasing the number of leaves. For
ER random networks, the analytical calculations predict
hkic ¼ 2e ≈ 5.436 564, in agreement with the numerical
result [Fig. 14(b)], a value that coincides with hki where lr
reaches its maximum. Indeed, lr starts decaying at hkic
because after hkic the number of distinct maximum matchings
increases exponentially, which can be confirmed by calculat-
ing the ground state entropy using the cavity method
(Liu, Slotine, and Barabási, 2011a). Consequently, the
chance that a link does not participate in any control
configurations decreases. For SF networks we observe the
same behavior, with the caveat that hkic decreases with γ
[Figs. 14(c) and 14(d)].

2. Node classification

Given the existence of multiple driver node configurations,
we can classify nodes based on their likelihood of being
included in the MDNSs: a node is (1) critical if that node must
always be controlled to control the system, implying that it is
part of all MDNSs; (2) redundant if it is never required
for control, implying that it never participates in an MDNS;
and (3) intermittent if it is a driver node in some control
configurations, but not in others (Jia et al., 2013).
For model networks with symmetric in- and out-degree

distributions, we find that the fraction of redundant nodes (nr)
undergoes a bifurcation at a critical mean degree hkic: for low
hki the fraction of redundant nodes (nr) is uniquely determined
by hki, but beyond hkic two different solutions for nr coexist,
one with very high and the other with very low values, leading
to a bimodal behavior [Fig. 15(a)]. Hence for large hki (after the
bifurcation) two control modes coexist (Jia et al., 2013):
(i) Centralized control: In networks that follow the upper
branch of the bifurcation diagram most of the nodes are
redundant, as in this case nr is very high. This means that in
these networks only a small fraction of the nodes are involved in
control (nc þ ni is very low), hence control is guaranteed by a
few nodes in the network. A good analogywould be a company
involved in manufacturing whose leadership is concentrated in
the hands of a few managers and the rest of the employees are
only executors. (ii) Distributed control: In networks on the
lower branch nc þ ni can exceed 90%. Hence, most nodes
participate as driver nodes in some MDNSs, implying that one
can engagemost nodes in control. A good analogy would be an
innovation-based horizontal organization,where any employee
can take a leadership role, as the shifting tasks require.

(a) (c)

(b) (d)

FIG. 14. Link classification and core percolation. (a) Dependence on hki of the fraction of critical (red, lc), redundant (green, lr), and
ordinary (gray, lo) links for an Erdős-Rényi (ER) network: lr peaks at hki ¼ hkic ¼ 2e and the derivative of lc is discontinuous at
hki ¼ hkic. (b) Core percolation for the ER network occurs at hki ¼ hkic ¼ 2e, which explains the lr peak. (c), (d) Same as in (a) and (b)
but for scale-free networks constructed using the static model. The ER and SF networks have N ¼ 104 nodes and the results are
averaged over ten realizations with error bars defined as the standard error of the mean. Dotted lines are a guide for the eye. From Liu,
Slotine, and Barabási, 2011a.
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For ER random networks this bifurcation occurs at
hkic ¼ 2e, corresponding to the core percolation threshold
(Liu et al., 2012).
Another way to assess a node’s importance for control is to

quantify the impact of its removal on controllability. Consider
a network with minimum number of driver nodes ND. After a
node is removed (deleted), denote the minimum number of
driver nodes with N0

D. Once again, each node can belong to
one of three categories: (1) A node is deletion critical if in its
absence we have to control more driver nodes, i.e., N0

D > ND.
For example, removing a node in the middle of a directed path
will increase ND. (2) A node is deletion redundant if in its
absence we have N0

D < ND. For example, removing a leaf
node in a star will decrease ND by 1. (3) A node is deletion
ordinary if in its absence N0

D ¼ ND. For example, removing
the central hub in a star will not change ND. The above node
classification has been applied to a directed human protein-
protein interaction network, where the edge direction indicates
signal flow (Vinayagam et al., 2016). In this context critical
nodes tend to correspond to disease genes, viral targets,
through which a virus takes control over its host, and targets
of FDA approved drugs, indicating that control-based classi-
fication can select biologically relevant proteins.

3. Driver node classification

To understand why a node is a driver node, we decompose
the driver nodes (ND) into three groups (Ruths and Ruths,
2014): (1) source nodes (Ns) that have no incoming links,

hence they must be directly controlled, being always
driver nodes; (2) external dilations (Ne) arise due to a surplus
of sink nodes (Nt) that have no outgoing links. Since each
source node can control one sink node, the number of external
dilation is Ne ¼ maxð0; Nt − NsÞ; (3) internal dilations (Ni)
occur when a path must branch into two or more paths in order
to reach all nodes (or equivalently a subgraph has more
outgoing links than incoming links). This classification leads
to the control profile of a network defined as ðηs; ηe; ηiÞ ¼
ðNs=N; Ne=N;Ni=NÞ, which quantifies the different propor-
tions of control-inducing structures present in a network. The
measurements indicate that random network models do not
reproduce the control profiles of real-world networks and that
the control profiles of real networks group into three well-
defined clusters, dominated by external dilations, sources, or
internal dilations (Ruths and Ruths, 2014).
These results offer insight into the high-level organization

and function of complex networks (Fig. 16). For example,
neural and social networks are source dominated, which allow
relatively uncorrelated behavior across their agents and are
thus suitable to distributed processing. Food webs and airport
interconnectivity networks are internal dilation dominated.
They are mostly closed systems and obey some type of
conservation laws. In contrast, trust hierarchies and transcrip-
tional systems are external dilation dominated. With their
surplus sink nodes, these systems display correlated behavior
across their agents that are downstream neighbors of a
common source.

FIG. 15. Emergence of bimodality in controlling complex networks. (a) nr and nc (inset) vs hki in scale-free networks with degree
exponents γout ¼ γin ¼ 3, displaying the emergence of a bimodal behavior for high hki. (b) nr in scale-free networks with asymmetric in-
and out-degree distributions, i.e., γout ¼ 3, γin ¼ 2.67 (upper branch), and γout ¼ 2.67, γin ¼ 3 (lower branch). The control mode is
predetermined by their degree asymmetry. (c), (d) Networks displaying centralized or distributed control. Both networks have ND ¼ 4
and Nc ¼ 1 (red node), but they have a rather different number of redundant nodes (blue nodes), Nr ¼ 23 in (c) and Nr ¼ 3 in (d). From
Jia et al., 2013.
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G. Controllable subspace, control centrality, and structure
permeability

Lin’s structural controllability theorem can tell us whether
an LTI system ðA;BÞ is structurally controllable or not. If,
however, the system is not structurally controllable, the
theorem does not provide further information about control-
lability. Even if we are unable to make the system reach any
point in the state space, we want to understand which region of
the state space is accessible to it, i.e., what region of the state
space can we control? For example, in the network of Fig. 4(a)
the control input u1 is applied to the central hub x1 of the
directed star with N ¼ 3 nodes. The system is therefore stuck
in the plane described by a31x2ðtÞ ¼ a21x3ðtÞ, shaded in
Fig. 4(b). Consequently, the network is not controllable in
the whole state space, but it is controllable within the subspace
defined by the plane.
When we control a single node i, the input matrixB reduces

to a vector bðiÞ with a single nonzero entry, and the
controllability matrix C ∈ RN×N becomes CðiÞ. We can use
rank(CðiÞ) as a natural measure of node i’s ability to control
the system. If rank(CðiÞ) ¼ N, then node i alone can control
the whole system. Any rank(CðiÞ) less than N yields the
dimension of the subspace i can control. For example, if
rank(CðiÞ) ¼ 1, then node i can control only itself.
In reality the system parameters (i.e., the entries of A and

B) are often not known precisely, except the zeros that mark
the absence of connections, rendering the calculation of
rank(CðiÞ) difficult. This difficulty can be again avoided
using structural control theory. Assuming A and B are

structured matrices, i.e., their elements are either fixed zeros
or independent free parameters, then rank(CðiÞ) varies as a
function of the free parameters of A and B. However, it
achieves its maximum for almost all sets of values of the free
parameters except for some pathological cases with Lebesgue
measure zero. This maximal value is called the generic rank
(Johnston, Barton, and Brisk, 1984) of the controllability
matrix CðiÞ, denoted as rankg(CðiÞ), which also represents
the generic dimension of the controllable subspace.
We define the control capacity of a single node i, or

control centrality, as the generic dimension of the controllable
subspace (Liu, Slotine, and Barabási, 2012)

dcðA;bðiÞÞ ¼ rankgðCðiÞÞ: ð29Þ

This definition can also be extended to the case when we
control via a group of nodes. The definition corresponds
directly to our intuition of how powerful a single node is (or a
group of nodes are) in controlling the whole network. For
example, if the control centrality of a single node isN, then we
can control the whole system through it.
The calculation of dcðA;BÞ has a graph-theoretic inter-

pretation (Hosoe, 1980). Consider a structured system ðA;BÞ
in which all state vertices are accessible, and let us denote with
G the set of subgraphs of GðA;BÞ which can be spanned by a
collection of vertex-disjoint cycles and stems. In this case, the
generic dimension of the controllable subspace is

dcðA;BÞ ¼ max
G∈G

jEðGÞj; ð30Þ

FIG. 16. Control profiles of real and model networks. The control profiles of real networks show a tendency to cluster around the
three components ðηs; ηe; ηiÞ of the control profile, implying that real networks broadly fall into three distinct classes: external-dilation
dominated, source dominated, and internal-dilation dominated. The coloring of each small heat map indicates the clustering
observed in a wide range of real networks, with numbers in parentheses indicating the number of networks present in each heat
map. Deeper shades of the heat map represent a greater density of networks with control profiles located in that region. From Ruths and
Ruths, 2014.
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where jEðGÞj is the number of edges in the subgraph G. This
is called Hosoe’s controllable subspace theorem. Essentially,
Hosoe’s theorem tells us that to calculate the generic dimen-
sion of the controllable subspace we need to find the cactus
that contains as many edges as possible. Note that Hosoe’s
theorem applies only to a structured system ðA;BÞ that has no
inaccessible state vertices. In calculating dcðA;BÞ for a
general system ðA;BÞ, we should consider only the accessible
part of the network.
For a digraph with no directed cycles Hosoe’s theorem

further simplifies: the controllability of any node equals its
layer index CsðiÞ ¼ li. Here the layer index of a node is
calculated from the unique hierarchical structure of the
digraph following a recursive labeling procedure (Liu,
Slotine, and Barabási, 2012). For general networks, we can
use linear programming to calculate dcðA;BÞ (Poljak, 1990).
We first get a new graph G0ðA;BÞ from GðA;BÞ by adding to
GðA;BÞ the edges ðvi; vNþjÞ for i ¼ 1;…; N, j ¼ 1;…;M;
and the loops ðvi; viÞ for i ¼ 1;…; N þM, if they do not exist
inGðA;BÞ (see Fig. 17). We associate the weight we ¼ 1with
every original edge e of GðA;BÞ and the weight we ¼ 0
with every new edge. A collection of node-disjoint cycles
in G0ðA;BÞ covering all nodes is called a cycle partition.
It is easy to check that to calculate maxG∈GjEðGÞj is
equivalent to calculating the maximum-weight cycle
partition in G0ðA;BÞ, which can then be solved by the
following linear programming: max

P
e∈G0ðA;BÞ wexe subject

to (1)
Pðxe∶ e leaves nodeviÞ¼1 for every node vi∈G0ðA;BÞ;

(2)
Pðxe∶ eenters nodeviÞ¼1 for every node vi ∈ G0ðA;BÞ;

and (3) xe ∈ f0; 1g for every edge e ∈ G0ðA;BÞ.
Hosoe’s theorem also allows us to address a problem

complementary to the notion of control centrality: identify
an optimal set of driver nodes of fixed cardinality M, denoted
as ΩDðMÞ, for a network of size N such that the dimension of
the controllable subspace, denoted as jCðMÞj, is maximized
(Lo Iudice, Garofalo, and Sorrentino, 2015). If we solve
this problem for each M ∈ ½1; N�, we obtain a sequence of
jCðMÞj. To quantify the readiness or propensity of a network
to be controllable, we can calculate the so-called network

permeability measure (Lo Iudice, Garofalo, and Sorrentino,
2015)

μ ¼
R
N
0 ½jCðMÞj −M�dMR

N
0 ðN −MÞdM : ð31Þ

Note that μ ∈ ½0; 1�: 0 for N disconnected nodes, and 1 for
networks that are completely controllable by one driver node.
Generally, for a network with a high permeability, a large
controllable subspace can be obtained with a reasonable small
set of driver nodes.

H. Controlling edges

So far we focused on nodal dynamics, where we monitored
and controlled the state of nodes. The sole purpose of the
edges was to pass information or influence between the nodes.
In social or communication networks nodes constantly proc-
ess the information received from their upstream neighbors
and make decisions that are communicated to their down-
stream neighbors. Most importantly, in these systems nodes
can communicate different information along different edges.
Hence the information received and passed on by a node can
be best represented by state variables defined on the incoming
and outgoing edges, respectively. In this section we ask how to
control systems characterized by such edge dynamics.
To model such systems we place the state variables on

the edges (Nepusz and Vicsek, 2012). Let y−i ðtÞ and yþi ðtÞ
represent vectors consisting of the state variables associated
with the incoming and outgoing edges of node i, respectively.
Let Mi denote the koutðiÞ × kinðiÞ matrix. The equations
governing the edge dynamics can be written as

_yþi ðtÞ ¼ Miy−i ðtÞ − τi ⊗ yþi ðtÞ þ σiuiðtÞ; ð32Þ
where τi is a vector of damping terms associated with the
outgoing edges,⊗ denotes the entrywise product of twovectors
of the same size, and σi ¼ 1 if node i is a driver node and 0
otherwise. Note that even though the state variables and the
control inputs are defined on the edges, we can still designate a
node to be a driver node if its outgoing edges are directly
controlled by the control inputs. Equation (32) states that the
state variables of the outgoing edges of node i are determined by
the state variables of the incoming edges, modulated by a decay
term. For a driver node, the state variables of its outgoing edges
will also be influenced by the control signals ui. Since each
node i acts as a switchboardlike device mapping the signals of
the incoming edges to the outgoing edges using a linear operator
Mi, Eq. (32) is often called the switchboard dynamics.
There is a mathematical duality between edge dynamics on

a network G and nodal dynamics on its line graph LðGÞ,
which represents the adjacencies between edges of G. Each
node of LðGÞ corresponds to an edge in G, and each edge in
LðGÞ corresponds to a length-two directed path in G. By
applying the minimum input theorem directly to this line
graph, we obtain the minimum number of edges we must drive
to control the original network. However, this procedure does
not minimize the number of driver nodes in the original
network. This edge control problem can be mapped to a
graph-theoretical problem as follows (Nepusz and Vicsek,
2012). Define node i to be (i) divergent, if koutðiÞ > kinðiÞ;

FIG. 17. Calculation of control centrality. (a) The original
controlled system is represented by a digraph GðA;BÞ.
(b) The modified digraph G0ðA;BÞ used in solving the linear
programming. Dotted and solid lines are assigned with weight
wij ¼ 0 and 1, respectively. The maximum-weight cycle partition
is shown in red, which has weight 3, corresponding to the generic
dimension of controllable subspace by controlling node x1 or
equivalently the control centrality of node x1. From Liu, Slotine,
and Barabási, 2012.
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(ii) convergent, if koutðiÞ < kinðiÞ; or (iii) balanced, if
koutðiÞ ¼ kinðiÞ. A connected component in a directed network
is called a balanced component if it contains at least one
edge and all the nodes are balanced. We can prove that the
minimum set of driver nodes required to maintain structural
controllability of the switchboard dynamics on a directed
network G can be determined by selecting the divergent nodes
of G and an arbitrary node from each balanced component.
The controllability properties of this edge dynamics signifi-

cantly differ from simple nodal dynamics. For example, driver
nodes prefer hubs with large out-degree and heterogeneous
networks are more controllable, i.e., require fewer driver nodes,
than homogeneous networks (Nepusz and Vicsek, 2012).
Moreover, positive correlations between the in-degree and
out-degree of a node enhances the controllability of edge
dynamics, without affecting the controllability of nodal dynam-
ics (Pósfai et al., 2013). Conversely, adding self-loops to
individual nodes enhances the controllability of nodal dynamics
(Liu, Slotine, and Barabási, 2011a; Pósfai et al., 2013), but
leaves the controllability of edge dynamics unchanged.

I. Self-dynamics and its impact on controllability

The nodes of networked systems are often characterized by
some self-dynamics, e.g., a term of the form _xi ¼ aiixi, which

captures the node’s behavior in the absence of interactions
with other nodes. If we naively apply structural control theory
to systems where each node has a self-dynamic term we obtain
a surprising result—a single control input can make an
arbitrarily large linear system controllable (Liu, Slotine,
and Barabási, 2011a; Cowan et al., 2012). This result
represents a special case of the minimum inputs theorem:
The self-dynamics contributes a self-loop to each node, hence
each node can be matched by itself. Consequently,GðAÞ has a
perfect matching, independent of the network topology, and
one input signal is sufficient to control the whole system (Liu,
Slotine, and Barabási, 2011a).
To understand the true impact of self-dynamics on net-

work controllability, we must revisit the validity of the
assumption that the system parameters are independent of
each other. As we show next, relaxing this assumption
offers a more realistic characterization of real systems, for
which not all system parameters are independent.
Assuming a prototypical linear form of self-dynamics, e.g.,

first-order _x ¼ a0x, second-order ẍ ¼ a0xþ a1 _x, etc., we can
incorporate the linear self-dynamics with the LTI dynamics of
the network in a unified matrix form, as illustrated in Fig. 18.
An immediate but counterintuitive result states that in the
absence of self-dynamics nD is exactly the same as in the case
when each node has a self-loop with identical weight w, i.e.,

(a)

(b)

(c)

FIG. 18. Integrating the network topology with nodal self-dynamics. (a) First-order self-dynamics _x ¼ a0x. (b) Second-order self-
dynamics ẍ ¼ a0xþ a1 _x. (c) Third-order self-dynamics x⃛ ¼ a0xþ a1 _xþ a2ẍ. To develop a graphical representation for the dth-order
individual dynamics xðdÞ ¼ a0xð0Þ þ a1xð1Þ þ � � � þ ad−1xðd−1Þ, we denote each order by a colored square. The couplings among orders
are characterized by links or self-loops. This graphical representation allows the individual dynamics to be integrated with the network
topology, giving rise to a unified matrix that reflects the dynamics of the whole system. In particular, each dynamic unit in the unified
matrix corresponds to a diagonal block and the nonzero elements (denoted by �) outside these blocks stand for the couplings among
different dynamic units. Therefore, the original network of N nodes with order d self-dynamics is represented by a dN × dN matrix.
From Zhao et al., 2015.
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each node is governed by precisely the same self-dynamics.
This is a direct consequence of the identity

rank½B;AB;…;AN−1B�
¼ rank½B; ðAþ wIÞB;…; ðAþ wIÞN−1B�; ð33Þ

where on the left we have the rank of the controllability
matrix in the absence of self-loops, and on the right the
same for a network where each node has an identical self-
loop. For more general cases the minimum number of driver
nodes ND can be calculated from Eq. (27), i.e., the
maximum geometric multiplicity of A’s eigenvalues.
Note a remarkable symmetry in network controllability:

If we exchange the fractions of any two types of self-loops
with distinct weights, the system’s controllability, as measured
by nD, remains the same (Fig. 19). For example, consider a
network without self-loops. Equivalently, we can assume that
each node contains a self-loop with weight zero. Then we
systematically add more nonzero self-loops with identical
weights to the network. Equivalently, we are replacing the
zero-weight self-loops with nonzero self-loops. nD will first
decrease as the fraction ρ of nonzero self-loops increases,
reaching a minimum at ρ ¼ 1=2. After that, nD increases,
reaching its maximum at ρ ¼ 1, which coincides with nD
observed for ρ ¼ 0 [Fig. 19(a)]. We can introduce more
types of self-loops with different weights. If we exchange
the fractions of any two types of self-loops, nD remains the
same. This exchange-invariant property gives rise to a global
symmetry point, where all the different types of self-loops
have equal densities and the system displays the highest
controllability (i.e., lowest number of driver nodes). This
symmetry-induced optimal controllability holds for any
network topology and various individual dynamics (Zhao
et al., 2015).

J. Control energy

Indentifying the minimum number of driver or actuator
nodes sufficient for control is only the first step of the control
problem. Once we have that, we need to ask an equally
important question: How much effort is required to control a
system from a given set of nodes? The meaning of the term
“control effort” depends upon the particular application (Kirk,
2004). In the case of a rocket being thrust upward, the control
input uðtÞ is the thrust of the engine, whose magnitude juðtÞj
is assumed to be proportional to the rate of fuel consumption.
In order to minimize the total expenditure of fuel, the control
effort can be defined as

R
T
0 juðtÞjdt, which is related to the

energy consumed by the rocket. In the case of a voltage source
driving a circuit containing no energy storage elements, the
source voltage is the control input uðtÞ and the source current
is directly proportional to uðtÞ. If the circuit is to be controlled
with minimum energy dissipation, we can define the control
effort as

R
T
0 u2ðtÞdt, which is proportional to the energy

dissipation. If there are several control inputs, the general
form of control effort can be defined as

R
T
0 uTðtÞRðtÞuðtÞdt,

where RðtÞ is a real symmetric positive-definite weighting
matrix.
Consider the LTI system (11) driven from an arbitrary initial

state xi toward a desired final state xf by the external signal
uðtÞ in the time interval t ∈ ½0; T�. We define the associated
control effort in the quadratic form

EðTÞ≡
Z

T

0

‖uðtÞ‖2dt; ð34Þ

called the “control energy” in the literature (Yan et al., 2012,
2015; Chen et al., 2016). Note that Eq. (34) may not have the
physical dimension of energy, i.e., ML2 T−2, in real control
problems. But for physical and electronic systems we can
always assume there is a hidden constant in the right-hand
side of Eq. (34) with proper dimension, which ensures that
EðTÞ has the dimension of energy. In many systems, like
biological or social systems, where Eq. (34) does not
correspond to energy, it captures the effort needed to control
a system.
For a fixed set of driver nodes the control input uðtÞ that

can drive the system from xi to xf can be chosen in many
different ways, resulting in different trajectories followed by
the system. Each of these trajectories has its own control
energy. Of all the possible inputs, the one that yields the
minimum control energy is

uðtÞ ¼ BT exp½ATðT − tÞ�W−1ðTÞvf ; ð35Þ
where WðtÞ is the Gramian matrix

WðtÞ≡
Z

t

0

expðAτÞBBT expðATτÞdτ; ð36Þ

which is nonsingular for any t > 0 (Lewis, Vrabie, and
Syrmos, 2012). Note that Wð∞Þ is known as the control-
lability Gramian, often denoted with Wc (Kailath, 1980). The
energy associated with the optimal input (35) is EðTÞ ¼
vTf W

−1ðTÞvf , where vf ≡ xf − expðATÞxi represents the dif-
ference between the desired state under control and the final

(a) (b)

FIG. 19. Impact of first-order self-dynamics on the fraction of
driver nodes nD. The values of the off-diagonal nonzero elements
in A are randomly chosen and hence are independent. (a) nD in
function of ρs, the density of nodes that have the same type of
nonzero self-loops. We observe a clear symmetry around
ρs ¼ 1=2, indicating that nD reaches its minimum at ρs ¼ 1=2,
where the densities of nodes with zero and nonzero self-loops are
equal. (b) nD for an Erdős-Rényi random network with three
types of self-loops s1, s2, and s3 with densities ρ

ð1Þ
s , ρð2Þs , and ρð3Þs ,

respectively. The color bar denotes the value of nD and the
coordinates in the triangle stand for ρð1Þs , ρð2Þs , and ρð3Þs . There is a
global symmetry point where the three types of self-loops have
the same density 1=3, and nD reaches its minimum value. From
Zhao et al., 2015.
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state during free evolution without control. Without loss of
generality, we can set the final state at the origin xf ¼ 0 and
write the control energy as

EðTÞ ¼ xT
i H

−1ðTÞxi; ð37Þ

whereHðTÞ ¼ expð−ATÞWðTÞ expð−ATTÞ is the symmetric
Gramian matrix. We can further define the normalized control
energy as

EðTÞ≡ EðTÞ
‖xijj2

¼ xT
i H

−1xi

xT
i xi

: ð38Þ

When xi is parallel to the direction of one ofH’s eigenvectors,
the inverse of the corresponding eigenvalue represents the
normalized energy associated with controlling the system
along the particular eigendirection.
Using the Rayleigh-Ritz theorem, the normalized control

energy obeys the bounds

η−1max ≡ Emin ≤ EðTÞ ≤ Emax ≡ η−1min; ð39Þ

where ηmax and ηmin are the maximum and minimum eigen-
values of H, respectively (Yan et al., 2012).
Assuming linear individual dynamics characterized by

the self-loop aii ¼ −ðaþ siÞ, where si ¼
P

j≠i aij is the
strength of node i and a is a parameter that can make the
symmetric A (describing an undirected network) either
positive or negative definite, we can choose a single node
with index c as the driver node. In this case, the lower and
upper energy bounds follow

Emin ∼

8>>><
>>>:

T−1 smallT;

1=½ðAþATÞ−1�cc largeT;A is PD;

T−1 → 0 largeT;A is semi PD;

exp ð2λNTÞ → 0 largeT;A is not PD;

ð40Þ

Emax ∼

8>>><
>>>:

T−θðθ ≫ 1Þ smallT;

εðA; cÞ largeT;A is not ND;

T−1 → 0 largeT;A is semi ND;

exp ð2λ1TÞ → 0 largeT;A is ND.

ð41Þ

Here λ1 > λ2 > � � � > λN are the eigenvalues of A, and
εðA; cÞ is a positive energy that depends on the matrix A
and the choice of the controlled node c. PD or ND means
positive definite or negative definite, respectively. The
scaling laws (40) and (41) can be generalized to directed
networks, in which case the decay exponents λ1 and λN are
replaced by Reλ1 and ReλN , respectively.
Equations (40) and (41) suggest that the scaling of the

control energy is rather sensitive to the control time T. For
small T, in which case we wish to steer our system very
fast to its destination, both Emin and Emax decay with
increasing T, implying that setting a somewhat longer
control time requires less energy. For large T, however, we
reach a point where we cannot reduce the energy by

waiting for a longer time. This occurs when the system has
its equilibrium point in the origin, then any attempt to steer
the system away from the origin must overcome a certain
energy barrier.
The control energy is rather sensitive to the direction of the

state space in which we want to move the system (see Fig. 20)
(Yan et al., 2015). To see this, consider a scale-free network
with degree exponent γ. If we drive the system through all its
nodes (ND ¼ N), the control energy spectrum, describing the
probability that moving in a randomly chosen eigendirection
will require energy E, follows the power law PðEÞ ∼ E−γ.
Consequently, the maximum energy required for control
depends sublinearly on the system size Emax ∼ N1=ðγ−1Þ,
implying that even in the most costly direction the required
energy grows slower than the system size. In other words, if
we control each node, there are no significant energetic
barriers for control. If, however, we aim to control the
system through a single node (ND ¼ 1), the control spectrum
follows a power law with exponent −1, i.e., PðEÞ ∼ E−1,
which only weakly depends on the network structure.
Therefore the maximum energy required for control increases
as Emax ∼ eN . This exponential increase means that steering
the network in some directions is energetically prohibitive.
Finally, if we drive a finite fraction of nodes (1 < ND < N),
the control spectrum has multiple peaks and the maximum
energy required for control scales as Emax ∼ eN=ND . Hence, as
we increase the number of driver nodes, the maximum energy
decays exponentially.
These results raise an important question: in the case of

1 < ND < N, how to choose the optimal set of ND driver
nodes such that the control energy is minimized? Such a
combinatorial optimization problem (also known as the
actuator placement problem) has not been extensively studied
in the literature. Only recently has it been shown that
several objective functions, i.e., energy-related controllability
metrics associated with the controllability GramianWc of LTI
systems [e.g., TrðW−1

c Þ, logðdetWcÞ, and rankðWcÞ], are
actually submodular (Summers and Lygeros, 2014; Cortesi,
Summers, and Lygeros, 2014; Summers, Cortesi, and
Lygeros, 2016). A submodular function3 f has the so-called
diminishing returns property that the difference in the function
value that a single element xmakes when added to an input set
X decreases as the size of the input set increases. The
submodularity of objective functions allows for either an
efficient global optimization or a simple greedy approxima-
tion algorithm with certain performance guarantee to solve the
combinatorial optimization problems (Nemhauser, Wolsey,
and Fisher, 1978). In particular, the submodularity of those
energy-related controllability metrics has been explored to
address the actuator placement problem in a model of the
European power grid (Summers and Lygeros, 2014;
Cortesi, Summers, and Lygeros, 2014; Summers, Cortesi,
and Lygeros, 2016).

3Denote PðSÞ as the power set (i.e., the set of all the subsets)
of a set S. Then a submodular function is a set function f∶PðSÞ→R
that satisfies fðX ∪ fxgÞ − fðXÞ ≥ fðY ∪ fxgÞ − fðYÞ, for any
X ⊆ Y ⊆ S and x ∈ SnY.
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K. Control trajectories

So far we have focused on the minimization of driver and
actuator nodes and the energy cost of controlling LTI systems.
The characteristics of the resulting control trajectories are also
interesting and worthy of exploration (Sun and Motter, 2013).
A state xð0Þ of the LTI system is called strictly locally
controllable (SLC) if for a ball Bðxð0Þ; εÞ centered at xð0Þ

with radius ε > 0 there is a constant δ > 0 such that any final
state xð1Þ inside the ball Bðxð0Þ; δÞ can be reached from xð0Þ

with a control trajectory entirely inside the ball Bðxð0Þ; εÞ [see
Fig. 21(a)]. Figure 21(b) shows that in a two-dimensional LTI
system _x1 ¼ x1 þ u1ðtÞ, _x2 ¼ x1, for any state in the x1 > 0

half plane, the minimal-energy control trajectories to any
neighboring final state with a smaller x2 component will
necessarily cross into the x1 < 0 half plane.
It has been shown that for a general LTI system whenever

the number of control inputs is smaller than the number of
state variables (i.e., ND < N), then almost all the states are not
SLC (Sun and Motter, 2013). Therefore, the minimal-energy
control trajectory is generally nonlocal and remains finite even
when the final state is brought arbitrarily close to the initial
state. The length

R tf
0 ‖ _xðtÞ‖dt of such a trajectory generally

increases with the condition number of the Gramian.

Furthermore, the optimal control input (35) that minimizes
the energy cost

R tf
0 ‖uðtÞ‖2dt will fail in practice if the

controllability Gramian (36) is ill conditioned. This can occur
even when the controllability matrix is well conditioned.
There is a sharp transition, called the controllability transition,
as a function of the number of control inputs, below which
numerical control always fails and above which it succeeds.
These results indicate that even for the simplest LTI dynamics,
the disparity between theory and practice poses a fundamental
limit on our ability to control large networks (Sun and
Motter, 2013).
Indeed, we usually do not use the minimum energy control

input (35) to steer the system to desired final states, simply
because it is an open-loop (or nonfeedback) controller,4 which
tends to be very sensitive to noise. A more practical and robust
strategy is to use a simple linear feedback control to bring
the system asymptotically toward a certain state, while

(a) (b)

(c) (d)

FIG. 20. Energy spectrum. (a) A three-node weighted network can be controlled via a single control input uðtÞ, injected to the driver
node shown in red. The input matrix B is reduced to a vector ð1; 0; 0ÞT. Each node has a negative self-loop, which makes all eigenvalues
of the state matrixA negative, hence stable. (b) The optimal control signals that minimize the energies required to steer the network from
the initial state x0 ¼ xð0Þ ¼ ð0; 0; 0ÞT to three different desired states xd ¼ xðtÞ at t ¼ 3, with the constraint ‖xd‖ ¼ 1. (c) The
trajectories of the network state xðtÞ driven by the control inputs shown in (b). (d) The energy surface for all normalized desired states,
i.e., ‖xd‖ ¼ 1, which is an ellipsoid spanned by the controllability Gramian’s three eigendirections (arrows). The ellipsoid nature of the
spectrum illustrates the widely different energies we need to move the network shown in (a) in different directions in the state space. The
squares correspond to the three cases depicted in (b) and (c). From Yan et al., 2015.

4An open-loop control system does not use feedback. The control
input to the system is determined using only the current state of the
system and a model of the system and is totally independent of
the system’s output. In contrast, in a closed-loop control system, the
output has an effect on the input (through feedback) so that the input
will adjust itself based on the output.
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minimizing the energy cost. This is a typical objective of
optimal control theory, which aims to design control signals
that will cause a process to satisfy some physical constraints
and maximize (or minimize) a chosen performance criterion
(or cost function) (Naidu, 2002; Kirk, 2004).

III. CONTROLLABILITY OF NONLINEAR SYSTEMS

So far we focused on the controllability of linear systems.
Yet the dynamics of most real complex systems is nonlinear,
prompting us to review the classical results on nonlinear
controllability and their applications to networked systems.
Consider a control system of the form

_x ¼ fðx;uÞ; ð42Þ

where the state vector x is in a smooth connected manifold
M of dimension N, and the control input u ∈ U is a subset
of RM. Note that Eq. (42) has been frequently used to
model the behavior of physical, biological, and social
systems (Hermann and Krener, 1977). Roughly speaking,
Eq. (42) is controllable if one can steer it from any point
x0 ∈ M to any other point x1 ∈ M by choosing u from a
set of admissible controls U, which is a subset of functions
mapping Rþ to U.
The controllability of nonlinear systems has been exten-

sively studied since the early 1970s (Elliot, 1971; Haynes and
Hermes, 1970; Lobry, 1970; Brockett, 1972; Sussmann and
Jurdjevic, 1972; Hermann and Krener, 1977; Rugh, 1981;
Nijmeijer and van der Schaft, 1990; de Figueiredo and Chen,
1993; Isidori, 1995; Sontag, 1998; Conte, Moog, and Perdon,
2007). The goal was to derive results of similar reach and
generality as obtained for LTI systems. However, this goal
turned out to be too ambitious, suggesting that a general
theory on nonlinear controllability may not be feasible.
Fortunately, as discussed in this section, the concerted effort
on nonlinear control has led to various weaker notions of
nonlinear controllability, which are easier to characterize and
often offer simple algebraic tests to explore the controllability
of nonlinear systems.

A. Accessibility and controllability

As we will see in the coming sections, we can rarely prove
or test controllability of an arbitrary nonlinear system. Instead,
we prove and test weaker versions of controllability called
local accessibility and local strong accessibility. We start by
defining these notions.
Accessibility concerns the possibility to reach or access an

open set of states in the state space from a given initial state.
If the system (42) is locally accessible from an initial state x0,
then we can reach or access the neighborhood of x0 through
trajectories that are within the neighborhood of x0.
Mathematically, the system (42) is called locally accessible
from x0 if for any nonempty neighborhoods V ⊂ M of x0 and
any t1 > 0, the reachable set RVðx0;≤ t1Þ contains a non-
empty open set. The system is called locally accessible if this
holds for any x0. Here the reachable setRVðx0;≤ t1Þ includes
all states that can be reached from x0 within a time t1,
following trajectories that are within the neighborhood of x0.
Mathematically, the reachable set from x0 in time up to t1 is
defined as RVðx0;≤ t1Þ≡ ∪τ≤t1 R

Vðx0; τÞ. Here RVðx0; τÞ is
the reachable set from x0 at time τ > 0 following trajectories
that remain in V for t ≤ τ.
If we look at states that can be reached exactly at time t1, then

wehave a stronger versionof local accessibility. Thesystem(42)
is said to be locally strongly accessible from x0 if at any small
time t1 > 0 the system can reach or access the neighborhood of
x0 through trajectories that are within the neighborhood of x0.
Mathematically, this means that for any nonempty neighbor-
hoods V of x0 and any t1 > 0 sufficiently small, the reachable
set RVðx0; t1Þ contains a nonempty open set. If this holds for
any x0, then the system is called locally strongly accessible.
Clearly, local strong accessibility from x0 implies local acces-
sibility from x0. The converse is generally not true.
Local controllability asks whether the system is controllable

in some neighborhood of a given state. Mathematically, the
system (42) is called locally controllable from x0 if for any
neighborhood V of x0, the reachable setRVðx0;≤ t1Þ is also a
neighborhood of x0 for any t1 small enough. The system is
called locally controllable if this holds for any x0. Clearly,

(a) (b)

FIG. 21. Strictly local controllability. (a) Illustration of a state that is strictly locally controllable (left) and a state that is not (right).
(b) The state space of a simple LTI system with two state variables x1 and x2. The curves indicate control trajectories of minimal energy
for a given initial state (open symbol) and final states (solid symbols). The arrows in the background represent the vector field in the
absence of control input u1ðtÞ. Note that any state that is not on the line x1 ¼ 0 is not SLC, because the minimal-energy control
trajectories to any neighboring final state with a smaller x2 component will necessarily cross into the x1 < 0 half plane. From Sun and
Motter, 2013.
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local controllability implies local accessibility. It turns out that
for a large class of systems local controllability implies local
strong accessibility. But the converse is not always true.
If we do not require the trajectories of the system to remain

close to the starting point, i.e., we allow excursions, then we
have the notion of global controllability. The system (42) is
globally controllable from x0 if the reachable set from x0 isM
itself, i.e., Rðx0Þ≡ ∪t1≥0 R

Mðx0; t1Þ ¼ M. In other words,
for any x1 ∈ M, there exists t1 > 0 and u∶ ½0; t1� → U such
that the solution of Eq. (42) starting at x0 at time 0 with control
uðtÞ satisfies xðt1Þ ¼ x1. If this holds for all x0 ∈ M, then the
system is called globally controllable.
Complete algebraic characterizations of global controllabil-

ity of nonlinear systems have proved elusive. Weaker notions
of controllability are easier to characterize than controllability.
For example, it can be proven that for some nonlinear systems,
accessibility can be decided in polynomial time, while
controllability is NP hard (Sontag, 1988). For complex
networked systems we expect that only weaker notions of
controllability can be characterized.

B. Controllability of linearized control system

It is typically difficult to test the controllability of a
nonlinear system. Yet, as we discuss next, studying the
controllability properties of its linearization around an equi-
librium point or along a trajectory can often offer an efficient
test of local nonlinear controllability (Coron, 2009).

1. Linearization around an equilibrium point

Consider an equilibrium point ðx�;u�Þ∈M×U of the non-
linear control system (42),meaning that fðx�;u�Þ ¼ 0. Assume
that U contains a neighborhood of u�. For ϵ>0, we define a set
of control functions Uϵ ≡ fuð·Þ ∈ Uj‖uðtÞ − u�‖ < ϵ; t ≥ 0g.
The linearized control system at ðx�;u�Þ is a linear control
system _x ¼ Axþ Bu with

A ¼ ∂f
∂x ðx

�;u�Þ; B ¼ ∂f
∂u ðx�;u�Þ: ð43Þ

If the linearized control system is controllable (in the sense of an
LTI system), then for any ϵ > 0 the original nonlinear system is
locally controllable from x�, where the control functions uð·Þ
are taken from the set Uϵ.
In other words, many real systems operate near some

equilibrium points and in the vicinity of such points, con-
trollability can be decided using the tools developed for linear
systems, discussed in Sec. II.

2. Linearization around a trajectory

We can also study the linearized control system along a
trajectory. Consider a nonlinear control system in the
form of Eq. (42). A trajectory represents the path the system
follows as a function of time in the state space. It can be
mathematically defined as a function ðx̄; ūÞ∶ ½T0; T1� → O,
where O is a nonempty open subset of RN ×RM and x̄ðt2Þ ¼
x̄ðt1Þ þ

R t2
t1 f(x̄ðtÞ; ūðtÞ)dt, for all ðt1; t2Þ ∈ ½T0; T1�. The

linearized control system of Eq. (42) along a trajectory ðx̄; ūÞ∶
½T0; T1� → O is a linear time-varying control system _x ¼
AðtÞxþ BðtÞu with t ∈ ½T0; T1�, and

AðtÞ¼ ∂f
∂x(x̄ðtÞ; ūðtÞ); BðtÞ¼ ∂f

∂u(x̄ðtÞ; ūðtÞ): ð44Þ

If the linearized control system along the trajectory
ðx̄; ūÞ∶ ½T0; T1� → O is controllable in the sense of a linear
time-varying system, then the original nonlinear system is
locally controllable along the trajectory. Once again, this
means that we can use linear control theory to explore the
controllability of nonlinear systems.

3. Limitations of linearization

The linearization approaches described may sound power-
ful, but they have severe limitations. First, they only provide
information about controllability in the immediate vicinity
of an equilibrium point or a trajectory. Second and most
important, it may be the case that the linearized control system
is not controllable, but the original nonlinear system is
actually controllable.
Consider, for example, a model of a front-wheel drive car

with four state variables: the positions (x1, x2) of the center of
the front axle, the orientation ϕ of the car, and the angle θ of
the front wheels relative to the car orientation (Fig. 22). There
are two control inputs ðu1; u2Þ, where u1, the steering velocity,
represents the velocity with which the steering wheel is
turning, and u2 is the driving velocity. Assuming that the
front and rear wheels do not slip and that the distance between
them is l ¼ 1, the car’s equations of motion have the form
(Nelson, 1967; Sontag, 1998)

0
BBB@

_x1
_x2
_ϕ

_θ

1
CCCA ¼ u1

0
BBB@

0

0

0

1

1
CCCAþ u2

0
BBB@

cosðθ þ ϕÞ
sinðθ þ ϕÞ

sin θ

0

1
CCCA: ð45Þ

FIG. 22. Controlling a car. A model of a front-wheel drive car
with four state variables ðx1; x2;ϕ; θÞ and two control inputs
ðu1; u2Þ. While this system is globally controllable (see
Sec. III.E), its linearized dynamics around the origin is not
controllable. Adapted from Sontag, 1998.
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The linearization of Eq. (45) around the origin is

0
BBB@

_x1
_x2
_ϕ

_θ

1
CCCA ¼

0
BBB@

u2
0

0

u1

1
CCCA; ð46Þ

which is uncontrollable, because x2 and ϕ are time invariant
and not controlled by any of the system’s inputs. Yet, from our
driving experience we know that a car is controllable. We will
prove that this system is indeed globally controllable in
Sec. III.E.
The system (45) belongs to an especially interesting class of

nonlinear systems, called control-affine systems, where
fðx;uÞ is linear in the control signal u

_x ¼ fðxÞ þ
XM
i¼1

giðxÞui: ð47Þ

Here f is called the drift vector field, or simply drift; and
g1;…; gM are called the control vector fields. The system (47)
is called driftless if fðxÞ≡ 0, which arises in kinematic
models of many mechanical systems, e.g., in Eq. (45).
Control-affine systems are natural generalization of linear
time-invariant systems. Many nonlinear controllability results
were obtained for them. Hereafter we focus on control-affine
systems; see Hermann and Krener (1977) and Sontag (1998)
for more general nonlinear systems.

C. Basic concepts in differential geometry

Before we discuss the nonlinear tests for accessibility and
controllability, we need a few concepts in differential geom-
etry, such as Lie brackets and distributions.

1. Lie brackets

For nonlinear control systems, both controllability and
accessibility are intimately tied to Lie brackets. The reason
is simple. In the nonlinear framework, the directions in which
the state may be moved around an initial state x0 are those
belonging to the Lie algebra generated by vector fields
fðx0;uÞ, when u varies in the set of admissible controls U
(Isidori, 1995; Sontag, 1998). Here the Lie algebra A
generated by a family F of vector fields is the set of Lie
brackets ½f;g� with f;g ∈ F , and all vector fields that can be
obtained by iteratively computing Lie brackets. In turn, a Lie
bracket is the derivative of a vector field with respect to
another.
Consider two vector fields f and g on an open set D ⊂ RN .

The Lie bracket operation generates a new vector field ½f;g�,
defined as

½f;g�ðxÞ≡ ∂g
∂x fðxÞ −

∂f
∂xgðxÞ; ð48Þ

where ∂g=∂x and ∂f=∂x are the Jacobian matrices of g and f,
respectively. Higher-order Lie brackets can be recursively
defined as

ad0fgðxÞ≡ gðxÞ; ð49Þ

adkfgðxÞ≡ ½f; adk−1f g�ðxÞ; ∀ k ≥ 1; ð50Þ

where “ad” denotes “adjoint.”
To understand the physical meaning of the Lie bracket,

consider the following piecewise constant control inputs

uðtÞ ¼

8>>>>><
>>>>>:

ð1; 0ÞT; t ∈ ½0; τÞ;
ð0; 1ÞT; t ∈ ½τ; 2τÞ;
ð−1; 0ÞT; t ∈ ½2τ; 3τÞ;
ð0;−1ÞT; t ∈ ½3τ; 4τÞ;

ð51Þ

applied onto a two-inputs control-affine system

_x ¼ g1ðxÞu1 þ g2ðxÞu2 ð52Þ

with initial state xð0Þ ¼ x0 (Sastry, 1999). The piecewise
constant control inputs (51) can be considered as a sequence
of “actions” applied, for example, to a car (g1, g2, reverse g1,
and reverse g2). In the limit τ → 0 the final state reached at
t ¼ 4τ is

xð4τÞ ¼ x0 þ τ2
�∂g2

∂x g1ðx0Þ −
∂g1

∂x g2ðx0Þ
�
þOðτ3Þ: ð53Þ

We see that up to terms of order τ2, the state change is
exactly along the direction of the Lie bracket ½g1;g2�ðx0Þ
(see Fig. 23).
Consider two examples that demonstrate the meaning of Lie

brackets. First, the Brockett system is one of the simplest
driftless control-affine systems (Brockett, 1982)

_x1ðtÞ¼u1 ; _x2ðtÞ¼u2 ; _x3ðtÞ¼u2x1−u1x2 ; ð54Þ

which can be written in the form of Eq. (52) using g1ðxÞ ¼
ð1; 0;−x2ÞT and g2ðxÞ ¼ ð0; 1; x1ÞT, or equivalently

FIG. 23. Lie bracket. The physical meaning of a Lie bracket
can be demonstrated by applying the piecewise constant control
inputs (51) to a two-inputs driftless control-affine system
_x ¼ g1ðxÞu1 þ g2ðxÞu2. Up to terms of order τ2, the difference
between the final state xð4τÞ and the initial state x0 is given by
the Lie bracket ½g1;g2�ðx0Þ.
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g1 ¼
∂
∂x1 − x2

∂
∂x3

and

g2 ¼
∂
∂x2 þ x1

∂
∂x3 .

These two operators g1 and g2 have a nontrivial Lie bracket
½g1;g2�ðxÞ¼g3ðxÞ¼2ð0;0;1ÞT, or equivalently g3¼2∂=∂x3.
Consider the system (54) initially at the origin, hence
g1ð0Þ ¼ ð1; 0; 0ÞT, g2ð0Þ ¼ ð0; 1; 0ÞT. If we again apply the
control sequence (51) with time interval τ ¼ 1, we can check
that the final state reached at t ¼ 4 is ð0; 0; 2ÞT, which is
precisely captured by ½g1;g2�ð0Þ.
Note that for the Brockett system we have

½g1; ½g1;g2��ðxÞ ¼ ½g2; ½g1; g2��ðxÞ ¼ 0. A similar three-
dimensional Lie algebra, called the Heisenberg algebra, also
arises in quantum mechanics. Hence the Brockett system is
also known as the Heisenberg system (Bloch, 2003). Note,
however, that the commutation relations obeyed by the
Heisenberg algebra do not always apply to general nonlinear
systems. To see this consider again the model of a front-wheel
drive car (45), representing another two-input control-affine
system, where the two control vector fields g1 ¼ ð0; 0; 0; 1ÞT
and g2 ¼ ( cosðθ þ ϕÞ; sinðθ þ ϕÞ; sin θ; 0)T can be inter-
preted as the actions steer and drive, respectively. Some
Lie brackets from g1ðxÞ and g2ðxÞ are

g3ðxÞ≡ ½g1;g2�ðxÞ ¼

0
BBB@

− sinðθ þ ϕÞ
cosðθ þ ϕÞ

cos θ

0

1
CCCA; ð55Þ

g4ðxÞ≡ ½½g1;g2�; g2�ðxÞ ¼

0
BBB@

− sinϕ

cosϕ

0

0

1
CCCA: ð56Þ

Equation (55) can be interpreted as ½steer; drive� ¼ wriggle,
arising from the sequence of actions (steer, drive, reverse steer,
reverse drive), which is what we do in order to get a car out of
a tight parking space. Similarly, Eq. (56) can be interpreted as
½wriggle; drive� ¼ slide, arising from the sequence of actions
(wriggle, drive, reverse wriggle, reverse drive), which is what
we do during parallel parking. Equations (55) and (56)
indicate that starting from only two control inputs: steer
and drive, we can “generate” other actions, e.g., wriggle and
slide, which allows us to fully control the car.
These two examples demonstrate that by applying the right

sequence of control inputs we can steer the system along a
direction that the system does not have direct control over. In
general, by choosing more elaborate sequences of control
inputs we can steer a control-affine system in directions
precisely captured by higher-order Lie brackets, e.g.,
½g2; ½g1;g2��, ½½g1;g2�; ½g2; ½g1; g2���, etc. If the system of
interest has a drift term f, we also have to consider Lie

brackets involving f. This is the reason why nonlinear
controllability is closely related to the Lie brackets.

2. Distributions

To discuss the nonlinear tests of accessibility and control-
lability, we need the notion of distribution in the sense of
differential geometry. A distribution can be roughly consid-
ered as the nonlinear version of the controllability matrix of a
linear system.
Consider m vector fields g1;g2;…;gm on an open set

D ⊂ RN . We denote

ΔðxÞ ¼ spanfg1ðxÞ;g2ðxÞ;…;gmðxÞg ð57Þ

as the vector space spanned by the vectors
g1ðxÞ;g2ðxÞ;…;gmðxÞ at any fixed x ∈ D. Essentially, we
assign a vector space ΔðxÞ to each point x in the set D. The
collection of vector spaces ΔðxÞ, x ∈ D, is called a distribu-
tion and is referred to by

Δ ¼ spanfg1; g2;…;gmg: ð58Þ

If the vectors g1ðxÞ;g2ðxÞ;…;gmðxÞ are linearly independent
for any x in D, then the dimension of ΔðxÞ is constant and
equals m. In this case we call Δ a nonsingular distribution
on D. For example, in the Brockett system we have g1ðxÞ ¼
ð1; 0;−x2ÞT, g2ðxÞ ¼ ð0; 1; x1ÞT, and g3ðxÞ ¼ ½g1;g2�ðxÞ ¼
ð0; 0; 2ÞT. Since g1ðxÞ, g2ðxÞ, and g3ðxÞ are linearly inde-
pendent for all x ∈ R3, we conclude that the distribution Δ ¼
spanfg1;g2;g3g is nonsingular. Similarly, in the front-wheel
drive car system of Fig. 22, g1ðxÞ;g2ðxÞ; g3ðxÞ, and g4ðxÞ are
linearly independent for all x ∈ R4, hence the distribution
Δ ¼ spanfg1;g2;g3; g4g is nonsingular. Note that a non-
singular distribution is analogous to a full rank matrix.

D. Nonlinear tests for accessibility

1. Accessibility

Roughly speaking, accessibility concerns whether we can
access all directions of the state space from any given state.
The accessibility of control-affine systems can be checked
using a simple algebraic test based on Lie brackets.
For control-affine systems (47), we denote C as the linear

combinations of recursive Lie brackets of the form

½Xk; ½Xk−1; ½…; ½X2;X1�…���; k ¼ 1; 2;…; ð59Þ

where Xi is a vector field in the set ff; g1;…;gMg. As the
linear space C is a Lie algebra, it is closed under the Lie
bracket operation. In other words, ½f;g� ∈ C whenever f and g
are in C. Hence C is called the accessibility algebra.
The accessibility distribution C is the distribution generated

by the accessibility algebra C:

CðxÞ ¼ spanfXðxÞjX ∈ Cg: ð60Þ

Consider a control-affine system (47) and a state
x0 ∈ M ⊂ RN . If

Yang-Yu Liu and Albert-László Barabási: Control principles of complex systems

Rev. Mod. Phys., Vol. 88, No. 3, July–September 2016 035006-27



dimCðx0Þ ¼ N ð61Þ

then the system is locally accessible from x0. Equation (61) is
often called the accessibility rank condition (ARC) at x0. If it
holds for any x0, then the system is called locally accessible.
Interestingly, the sufficient ARC is “almost” necessary for

accessibility. Indeed, if the system is accessible then ARC
holds for all x in an open and dense subset of RN (Isidori,
1995; Sontag, 1998).
The computation of the accessibility distribution C is

nontrivial, because it is not known a priori how many (nested)
Lie brackets of the vector fields need to be computed until the
ARC holds. In practice, a systematic search must be per-
formed by starting with ff;g1;…;gMg and iteratively gen-
erating new, independent vector fields using Lie brackets. This
can be achieved by constructing the Philip Hall basis of the
Lie algebra, which essentially follows a breadth-first search
and the search depth is defined to be the number of nested
levels of bracket operations (Serre, 1992; Duleba, 1998).
In general, accessibility does not imply controllability,

which is why accessibility is a weaker version of control-
lability. Consider a simple dynamical system

_x1 ¼ x22 ; _x2 ¼ u ; ð62Þ

which can be written in the control-affine form (47) with
fðxÞ ¼ ðx22; 0ÞT and gðxÞ ¼ ð0; 1ÞT. We can compute some
Lie brackets ½f;g�ðxÞ ¼ −ð2x2; 0ÞT, ½f; ½f; g��ðxÞ ¼ ð2; 0ÞT.
Since ½f; ½f;g��ðxÞ is independent from gðxÞ, we conclude
that dimCðxÞ ¼ 2, for any state in R2, indicating that the
system is locally accessible. But the system is not locally
controllable: _x1 ¼ x22 > 0 for all x2 ≠ 0, i.e., x1 always grows
as long as the system is not at the x2 axis. In other words, the
drift vector field f always steers the system to the right
unless x2 ¼ 0.
If we compute the accessibility distribution C for a

linear system _x ¼ Axþ Bu ¼ AxþP
M
i¼1 biui where

B ¼ ½b1;…;bM�, we find that Cðx0Þ is spanned by Ax0

together with the constant vector fields bi;Abi;A2bi;…, for
i ¼ 1;…;M. More precisely,

Cðx0Þ ¼ spanfAx0g þ ImðB;AB;A2B;…;AN−1BÞ; ð63Þ

where Imð Þ stands for the image or column space of a matrix.
Note that the term spanfAx0g does not appear in Kalman’s
controllability matrix (12). Only at x0 ¼ 0, Eq. (63) reduces to
Kalman’s controllability matrix. This shows that accessibility
is indeed weaker than controllability, because the former does
not imply the latter while the latter induces the former.

2. Strong accessibility

A nonlinear test for strong accessibility tells us whether
we can reach states in the neighborhood of the initial state
exactly at a given small time. Define C0 as the strong
accessibility algebra, i.e., the smallest algebra which contains
g1;g2;…;gM and satisfies ½f;w� ∈ C0, ∀ w ∈ C0. Note that
C0 ⊂ C and C0 does not contain the drift vector field f. Define
the corresponding strong accessibility distribution

C0ðxÞ ¼ spanfXðxÞjX ∈ C0g: ð64Þ

If dimC0ðx0Þ ¼ N then the system is locally strongly
accessible from x0. If this holds for any x0, then the system
is called locally strongly accessible. If we compute the
strong accessibility distribution C for a linear system ðA;BÞ,
we find that

C0ðx0Þ ¼ ImðB;AB;A2B;…;AN−1BÞ: ð65Þ

Then dimC0ðx0Þ ¼ N is equivalent with Kalman’s rank
condition (13). In other words, strong accessibility and
controllability are equivalent notions for linear systems.

E. Nonlinear tests for controllability

For general nonlinear systems, we lack conditions that are
both sufficient and necessary for controllability. Yet, as we
discuss next, we have some sufficient conditions that are
believed to be almost necessary as well.
Consider a special class of control-affine system (47) with

fðxÞ ∈ spanfg1ðxÞ;…;gMðxÞg for all x ∈ M ⊂ RN . In
other words, the drift vector field fðxÞ, which describes
the intrinsic dynamics of the system, can be spanned
by the control vector fields g1ðxÞ;…; gMðxÞ. Then, if
dimCðx0Þ ¼ N, the system is locally controllable from
x0. If this holds for all x ∈ M, then the system is globally
controllable.
Driftless systems [fðxÞ≡ 0], such as the front-wheel drive

car system (45), naturally fall into this class. To see this,
we recognize that the determinant of the matrix formed
by the vectors g1ðxÞ;g2ðxÞ;g3ðxÞ ¼ ½g1;g2�ðxÞ and g4ðxÞ ¼
½½g1;g2�;g2�ðxÞ, i.e.,

det

0
BBB@

0 cosðθ þ ϕÞ − sinðθ þ ϕÞ − sinϕ

0 sinðθ þ ϕÞ cosðθ þ ϕÞ cosϕ

0 sin θ cos θ 0

1 0 0 0

1
CCCA; ð66Þ

is identically equal to 1, regardless of x, implying that
dimCðx0Þ ¼ N ¼ 4 for all x0 ∈ R4. Hence the front-wheel
drive car system is globally controllable, in line with our
physical intuition and experience.
For control-affine systems that do not fall into the above

two classes, Sussmann (1987) provided a general set of
sufficient conditions. We call a Lie bracket computed from
ff; g1;…;gMg bad if it contains an odd number of f factors
and an even number of each gk factors. Otherwise we call it
good. The degree of a bracket is the total number of vector
fields from which it is computed. Denote with

P
M the

permutation group on M symbols. For σ ∈
P

M and b a
Lie bracket computed from ff;g1;…;gMg, define σ̄ðbÞ as the
bracket obtained by fixing f and changing gk by gσðkÞ,
1 ≤ k ≤ M. The control-affine system (47) is locally control-
lable from x0 if dimCðx0Þ ¼ N and every bad bracket b
has the property that βðbÞðx0Þ≡P

σ∈ΣM
σ̄ðbÞðx0Þ is a linear

combination of good brackets, evaluated at x0, of degree
lower than b.
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F. Controllability of nonlinear networked systems

1. Neuronal network motifs

While most complex systems are described by nonlinear
continuous-time dynamics defined over a network, there has
been little attention paid so far to the controllability of such
systems, due to mathematical challenges. Controllability
studies of continuous-time nonlinear dynamics are still limited
to very simple networks consisting of a few nodes, such as
neuronal network motifs governed by Fitzhugh-Nagumo
dynamics (Whalen et al., 2015). These offered an opportunity
to study the impact of structural symmetries on nonlinear
controllability. The three-node neuronal motifs shown in
Fig. 24 can have multiple symmetries. Yet not all symmetries
have the same effect on network controllability. For example,
with identical nodal and coupling parameters, motif 1 has a
full S3 symmetry, rendering the poorest controllability over
the entire range of coupling strengths. Similarly, no control-
lability is obtained from node 2 in motif 3, which has a
reflection S2 symmetry across the plane through node 2.
Surprisingly, the rotational C3 symmetry in motif 7 does not
cause loss of controllability at all. Note that symmetries have
an impact on network controllability in linear systems as well.
For example, in the case of a directed star with LTI dynamics
for which we control the central hub (Fig. 4), a symmetry
among the leaf nodes renders the system uncontrollable.
Extending this analysis to larger networks with symmetries

remains a challenge, however. Group representation theory
might offer tools to gain insight into the impact of symmetries
on the controllability of nonlinear networked systems
(Whalen et al., 2015). Note, however, that for large real
networks such symmetries are less frequent.

2. Boolean networks

The controllability of Boolean networks, a class of discrete-
time nonlinear systems that are often used to model gene
regulations, has been intensively studied (Akutsu et al., 2007;
Cheng and Qi, 2009; Zañudo and Albert, 2015). We can prove
that finding a control strategy leading to the desired final state
is NP hard for a general Boolean network and this problem
can be solved in polynomial time only if the network has a tree
structure or contains at most one directed cycle (Akutsu et al.,
2007). Interestingly, based on a semitensor product of

matrices (Cheng, Qi, and Xue, 2007) and the matrix expres-
sion of Boolean logic, the Boolean dynamics can be exactly
mapped into the standard discrete-time linear dynamics
(Cheng and Qi, 2009). Necessary and sufficient conditions
to assure controllability of Boolean networks can then be
proved (Cheng and Qi, 2009). Despite the formal simplicity,
the price we need to pay is that the size of the discrete-time
linear dynamical system is 2N , where N is the number of
nodes in the original Boolean network. Hence, the control-
lability test will be computationally intractable for large
Boolean networks.

IV. OBSERVABILITY

Before controlling a system, it is useful to know its position
in the state space, allowing us to decide in which direction we
should steer it to accomplish the control objective. The
position of a system in the state space can be identified only
if we can measure the state of all components separately, such
as the concentration of each metabolite in a cell, or the current
on each transmission line of a power grid. Such detailed
measurements are often infeasible and impractical. Instead, in
practice we must rely on a subset of well-selected accessible
variables (outputs) that can be used to observe the system, i.e.,
to estimate the state of the system. A system is said to be
observable if it is possible to recover the state of the whole
system from the measured inputs and outputs. This is a
fundamental and primary issue in most complex systems.
In general, we can observe a system because its components

form a network, hence the state of the nodes depends on the
state of their neighbors’. This offers the possibility to estimate
all unmeasured variables from the measured ones. If the inputs
and model of the system are known, observability can be
equivalently defined as the possibility to recover the initial
state xð0Þ of the system from the output variables.
To be specific, let us assume that we have no knowledge of a

system’s initial state xð0Þ, but we can monitor some of its
outputs yðtÞ in some time interval. The observability problem
aims to establish a relationship between the outputs yðtÞ, the
state vector xðtÞ, and the inputs uðtÞ such that the system’s
initial state xð0Þ can be inferred. If no such relation exists, the
system’s initial state cannot be estimated from the experimental
measurements, i.e., the system is not observable. In other
words, if the current value of at least one state variable cannot
be determined through the outputs sensors, then it remains
unknown to the controller. This may disable feedback control,
which requires reliable real-time estimates of the system’s state.
Note that observability and controllability are mathemati-

cally dual concepts. Both concepts were first introduced by
Kalman for linear dynamical systems (Kalman, 1963) and
were extensively explored in nonlinear dynamical systems by
many others (Hermann and Krener, 1977; Diop and Fliess,
1991a, 1991b; Sontag and Wang, 1991; Isidori, 1995;
Besanon, 2007).
In this section, we first discuss methods that test the

observability of linear and nonlinear control systems. We
also discuss the parameter identifiability problem, which is a
special case of the observability problem. Finally, we intro-
duce a graphical approach to identify the minimum set of
sensor nodes that assure the observability of nonlinear systems

FIG. 24. Symmetries and controllability. The eight different
three-node neuronal network motifs studied by Whalen et al.
(2015). Those motifs display a variety of symmetries. For
example, motif 1 has a full S3 symmetry, and motif 3 has a
reflection S2 symmetry across the plane through node 2. Not all
symmetries have the same effect on network controllability.
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(Siddhartha and van Schuppen, 2001; Aguirre and Letellier,
2005; Letellier and Aguirre, 2005, 2010; Letellier, Aguirre,
and Maquet, 2006; Khan and Moura, 2008; Khan and
Doostmohammadian, 2011) and its application to metabolic
networks (Liu, Slotine, and Barabási, 2013).

A. Observability tests

1. Linear systems

For linear systems there is an exact duality between
controllability and observability. To see this, consider an
LTI control system

_xðtÞ ¼ AxðtÞ þ BuðtÞ; ð67aÞ

yðtÞ ¼ CxðtÞ: ð67bÞ

The duality principle states that an LTI system ðA;B;CÞ is
observable if and only if its dual system ðAT;CT;BTÞ is
controllable. Mathematically, the duality can be seen and
proved from the structure of the controllability Gramian and
the observability Gramian. In terms of network language the
duality principle has a straightforward interpretation: The
linear observability of a network A can be addressed by
studying the controllability of the transposed network AT,
which is obtained by flipping the direction of each link
in A (Fig. 25).
Thanks to the duality principle, many observability tests

can be mapped into controllability tests. For example, accord-
ing to Kalman’s rank condition, the system ðA;B;CÞ is
observable if and only if the observability matrix

O ¼

2
666666664

C

CA

CA2

..

.

CAN−1

3
777777775

ð68Þ

has full rank, i.e., rankO ¼ N (Kalman, 1963; Luenberger,
1979). This rank condition is based on the fact that if the N
rows of O are linearly independent, then each of the N state
variables can be determined by linear combinations of the
output variables yðtÞ.

2. Nonlinear systems

Consider a nonlinear control system with inputs uðtÞ ∈ RK

and outputs yðtÞ ∈ RM:

_xðtÞ ¼ f(t;xðtÞ;uðtÞ); yðtÞ ¼ h(t; xðtÞ;uðtÞ); ð69Þ

where fð·Þ and hð·Þ are some nonlinear functions.
Mathematically, we can quantify observability from either an

algebraic viewpoint (Diop and Fliess, 1991a, 1991b; Conte,
Moog, and Perdon, 2007) or a differential geometric viewpoint
(Hermann and Krener, 1977). Here we focus on the former. If a
system is algebraically observable, then there are algebraic
relations between the state variables and the successive deriv-
atives of the system’s inputs andoutputs (Diop andFliess, 1991a,
1991b). These algebraic relations guarantee that the system is
observable and forbid symmetries. A family of symmetries is
equivalent to infinitely many trajectories of the state variables
that fit the same specified input-output behavior, in which case
the system is not observable. If the number of such trajectories is
finite, the system is called locally observable. If there is a unique
trajectory, the system is globally observable.
Consider, for example, the dynamical system defined by the

equations

_x1 ¼ x2x4þu; _x2 ¼ x2x3 ; _x3 ¼ 0 ; _x4 ¼ 0 ; y¼ x1 .

ð70Þ

The system has a family of symmetries σλ: fx1; x2; x3; x4g →
fx1; λx2; x3; x4=λg so that the input u and the output y and
all their derivatives are independent of λ (Anguelova, 2004).
This means that we cannot distinguish whether the system
is in state ðx1; x2; x3; x4ÞT or its symmetric counterpart
ðx1; λx2; x3; x4=λÞT, because they are both consistent with
the same input-output behavior. Hence we cannot uncover the
system’s internal state by monitoring x1 only.
The algebraic observability of a rational system is deter-

mined by the dimension of the space spanned by the gradients
of the Lie derivatives

Lf ≡ ∂
∂tþ

XN
i¼1

fi
∂
∂xi þ

X
j∈N

XK
l¼1

uðjþ1Þ
l

∂
∂uðjÞl

ð71Þ

of its output functions h(t;xðtÞ;uðtÞ). The observability
problem can be further reduced to the so-called rank test:
the system (69) is algebraically observable if and only if the
NM × N Jacobian matrix

J ¼

2
6666666666666664

∂L0
fh1

∂x1
∂L0

fh1
∂x2 � � � ∂L0

fh1
∂xN

� � � � � � � � � � � �
∂L0

fhM
∂x1

∂L0
fhM
∂x2 � � � ∂L0

fhM
∂xN

..

. ..
. ..

. ..
.

∂LN−1
f h1
∂x1

∂LN−1
f h1
∂x2 � � � ∂LN−1

f h1
∂xN

� � � � � � � � � � � �
∂LN−1

f hM
∂x1

∂LN−1
f hM
∂x2 � � � ∂LN−1

f hM
∂xN

3
7777777777777775

ð72Þ
FIG. 25. Duality principle. If a system follows the LTI dynamics
(67a), the observability of the network A shown in (a) can be
addressed by studying the controllability of the transposed
network AT shown in (b), obtained by reversing the direction
of each link. This is a general property of all networks.
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has full rank (Diop and Fliess, 1991a, 1991b), i.e.,

rankJ ¼ N: ð73Þ

Note that for an LTI system (67a) and (67b), the Jacobian
matrix (72) reduces to the observability matrix (68).
For rational dynamical systems, the algebraic observability

test can be performed using an algorithm developed by
Sedoglavic (2002). The algorithm offers a generic rank
computation of the Jacobian matrix (72) using the techniques
of symbolic calculation, allowing us to test local algebraic
observability for rational systems in polynomial time.
This algorithm certifies that a system is locally observable,
but its answer for a nonobservable system is probabilistic
with a high probability of success. A system that is
found nonobservable can be further analyzed to identify a
family of symmetries, which can confirm the system is truly
nonobservable.

B. Minimum sensors problem

In complex systems, the state variables are rarely indepen-
dent of each other. The interactions between the system’s
components induce intricate interdependencies among them.
Hence a well-selected subset of state variables can contain
sufficient information about the remaining variables to recon-
struct the system’s complete internal state, making the system
observable (Liu, Slotine, and Barabási, 2013).
We assume that we can monitor a selected subset of state

variables, i.e., yðtÞ ¼ (…; xiðtÞ;…)T, corresponding to the
states of several nodes that we call sensor nodes or just
sensors. Network observability can then be posed as follows:
Identify the minimum set of sensors from whose measurement
we can infer all other state variables. For linear systems, this
problem can be solved using the duality principle and solving
the minimum inputs problem of the transposed network AT.
For general nonlinear systems this trick does not work. While
Eq. (73) offers a formal answer to the observability issue and
can be applied to small engineered systems, it has notable
practical limitations for large and complex systems. First it can
confirm only if a specific set of sensors can be used to observe
a system or not, without telling us how to identify them.
Therefore, a brute-force search for a minimum sensor set
requires us to inspect via Eq. (73) about 2N sensor combi-
nations, a computationally prohibitive task for large systems.
Second, the rank test of the Jacobian matrix via symbolic
computation is computationally limited to small systems
(Sedoglavic, 2002).
To resolve these limitations, we can exploit the dynamic

interdependence of the system’s components through a
graphical representation (Lin, 1974; Reinschke, 1988;
Siddhartha and van Schuppen, 2001; Murota, 2009; Khan
and Doostmohammadian, 2011). The procedure consists of
the following steps (Liu, Slotine, and Barabási, 2013):

(i) Inference diagram: Draw a directed link xi → xj if xj
appears in xi’s differential equation (i.e., if ∂fi=∂xj is
not identically zero), implying that one can retrieve
some information on xj by monitoring xi as a function
of time. Since the constructed network captures the

information flow to infer the state of individual
variables, we call it the inference diagram [Fig. 26(c)].

(ii) SCC decomposition: Decompose the inference dia-
gram into a unique set of maximal SCCs [dashed
circles in Fig. 26(c)], i.e., the largest subgraphs chosen
such that in each of them there is a directed path from
every node to every other node (Cormen, Leiserson,
and Rivest, 1990). Consequently, each node in an SCC
contains some information about all other nodes within
the SCC.

(iii) Sensor node selection: Those SCCs that have no
incoming edges are referred to as root SCCs [shaded
circles in Fig. 26(c)]. We must choose at least one node
from each root SCC to ensure the observability of the
whole system. For example, the inference diagram of
Fig. 26(c) contains three root SCCs; hence we need at
least three sensors to observe the system.

FIG. 26. The graphical approach to determine the minimum
sensors of a chemical reaction system. (a) A chemical reaction
system with 11 species (A;B;…; J;K) involved in four reactions.
Since two reactions are reversible, we have six elementary
reactions. (b) The balance equations of the chemical reaction
system shown in (a). The concentrations of the 11 species are
denoted by x1; x2;…; x11, respectively. The rate constants of the
six elementary reactions are given by k1; k2;…; k6, respectively.
The balance equations are derived using the mass-action kinetics.
(c) The inference diagram is constructed by drawing a directed
link (xi → xj) as long as xj appears in the right-hand side (rhs) of
xi’s balance equation shown in (b). SCCs are marked with dashed
circles. Root SCCs, which have no incoming links, are shaded in
gray. A potential minimum set of sensor nodes, whose measure-
ments allow us to reconstruct the state of all other variables
(metabolite concentrations), are shown in red. From Liu, Slotine,
and Barabási, 2013.
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The graphical approach (GA) described can be used to
determine whether a variable provides full observability of
small dynamical systems (Letellier and Aguirre, 2005;
Aguirre et al., 2008). As these systems have only a few state
variables, steps (ii) and (iii) are often not necessary. For large
networked systems, the GA is very powerful because it
reduces the observability issue, a dynamical problem of a
nonlinear system with many unknowns, to a property of the
static graph of the inference diagram, which can be accurately
mapped for an increasing number of complex systems, from
biochemical reactions to ecological systems.
We can prove that monitoring the root SCCs identified by

the GA are necessary for observing any nonlinear dynamic
system (Liu, Slotine, and Barabási, 2013). In other words,
the number of root SCCs yields a strict lower bound for the
size of the minimum sensor set. Consequently, any state
observer (i.e., a dynamical device that aims to estimate the
system’s internal state) will fail if it does not monitor these
sensors.
If the dynamics is linear, the duality principle maps the

minimum sensors problem into the minimum inputs problem
and predicts not only the necessary, but also the sufficient
sensor set for observability. Numerical simulations on model
networks suggest that for linear systems the sufficient sensor
set is noticeably larger than the necessary sensor set predicted
by the GA (Liu, Slotine, and Barabási, 2013). This is because
any symmetries in the state variables leaving the inputs,
outputs, and all their derivatives invariant will make the
system unobservable (Sedoglavic, 2002). For structured linear
systems, the symmetries correspond to a particular topological
feature, i.e., dilations, which can be detected from the
inference diagram. Yet, for general nonlinear systems, the
symmetries cannot be easily detected from the inference
diagram only.
For linear systems the minimum sensor set predicted by the

GA is generally not sufficient for full observability. Yet, for
large nonlinear dynamical systems the symmetries in state
variables are extremely rare, especially when the number of
state variables is large; hence the sensor set predicted by GA is
often not only necessary but also sufficient for observability
(Liu, Slotine, and Barabási, 2013).
To better understand network observability, next we apply

the developed tools to biochemical and technological
networks.

1. Biochemical reaction systems

Consider a biochemical reaction system of N species
fS1;S2;…;SNg involved in R reactions fR1;R2;…;RRg
with

Rj∶
XN
i¼1

αjiSi →
XN
i¼1

βjiSi; ð74Þ

where αji ≥ 0 and βji ≥ 0 are the stoichiometry coefficients.
For example, Eq. (74) captures the reaction 2H2 þ O2 ¼
2H2O with α11 ¼ 2, α12 ¼ 1, and β11 ¼ 2.
Under the continuum hypothesis and the well-mixed

assumption the system’s dynamics is described by Eq. (69),
where xiðtÞ is the concentration of species Si at time t, the

input vector uðtÞ represents regulatory signals or external
nutrient concentrations, and the vector yðtÞ captures the set of
experimentally measurable species concentrations or reaction
fluxes. The vector vðxÞ ¼ (v1ðxÞ; v2ðxÞ;…; vRðxÞ)T is often
called the flux vector, which follows the mass-action kinetics
(Heinrich and Schuster, 1996; Palsson, 2006)

vjðxÞ ¼ kj
YN
i¼1

x
αji
i ð75Þ

with rate constants kj > 0. The system’s dynamics is therefore
described by the balance equations

_xi ¼ fiðxÞ ¼
XR
j¼1

ΓijvjðxÞ; ð76Þ

where Γij ¼ βji − αji are the elements of the N × R stoichio-
metric matrix Γ. The rhs of Eq. (76) represents a sum of all
fluxes vj that produce and consume the species Si.
Assuming that the outputs yðtÞ are just the concentrations of

a particular set of sensor species that can be experimentally
measured, then the observability problem aims to identify a
minimum set of sensor species from whose measured con-
centrations we can determine all other species’ concentrations.
In this context, the advantage of the GA is that it does not
require the system’s kinetic constants (which are largely
unknown in vivo), relying only on the topology of the
inference diagram. For a metabolic network or an arbitrary
biochemical reaction system, the topology of the inference
diagram is uniquely determined by the full reaction list, which
is relatively accurately known for several model organisms
(Schellenberger et al., 2010). Applying the GA to biochemical
reaction systems offers several interesting results, elucidating
the principles behind biochemical network observability (Liu,
Slotine, and Barabási, 2013):
(a) Species that are not reactants in any reaction, being

instead pure products, will be root SCCs of size 1.
Consequently, they are always sensors and must
be observed by the external observer [e.g., x6 in
Fig. 26(c)].

(b) For root SCCs of size larger than 1 [e.g., fx4; x5g and
fx7; x8; x9g in Fig. 26(c)], any node could be chosen as
a sensor. Given that some root SCCs are quite large,
and typically we need to monitor only one node for
each root SCC, the number of sensor nodes is thus
considerably reduced.

(c) A minimum set of sensors consists of all pure products
and one node from each root SCC of size larger than 1
[e.g., fx5; x6; x7g in Fig. 26(c)].

(d) Since any node in a root SCC can be selected as a
sensor node, there are Ωs ¼

QNroot−SCC
i¼1 ni equivalent

sensor node combinations, representing the product of
all root SCCs’ sizes. For example, in Fig. 26(c) we
have three root SCCs with sizes ni ¼ 1, 2, and 3,
hence Ωs ¼ 1 × 2 × 3 ¼ 6. This multiplicity offers
significant flexibility in selecting experimentally
accessible sensors.
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It turns out that the minimum set of sensors obtained by the
GA almost always achieves full observability for the whole
system, except in some pathological cases (Liu, Slotine, and
Barabási, 2013). The sufficiency of the sensors predicted by
the GA is rather unexpected because substantial details about
the system’s dynamics are ignored in the GA. Offering an
exact proof that the sufficiency of the predicted sensors for
observability is rather difficult, if not impossible. The rigorous
proof of sufficiency and the systematic search for exceptional
cases making a system unobservable remain open questions.

2. Power grid

In a power grid, the state variables can be chosen to represent
the voltage of all nodes, which in practice can be determined by
phasor measurement units (PMUs). Since a PMU can measure
the real-timevoltage and line currents of the corresponding node,
a PMU placed on a node i will determine the state variables of
both node i and all of its first nearest neighbors. In this case the
observability problem can be mapped to a purely graph-
theoretical problem. The random placement of PMUs leads to
a network observability transition (Yang, Wang, and Motter,
2012), which is a new type of percolation transition that
characterizes the emergence of macroscopic observable com-
ponents in the network as the number of randomly placed PMUs
increases (Fig. 27). Using the generating function formalism
(Newman, Strogatz, and Watts, 2001), we can analytically
calculate the expected size of the largest observable component
for networks with any prescribed degree distribution. This has
been demonstrated for real power grids (Yang, Wang, and
Motter, 2012). Moreover, it has been found that the percolation
threshold decreases with the increasing average degree or degree
heterogeneity (Yang, Wang, and Motter, 2012).
The random placement of PMUs apparently will not solve

the minimum sensors problem. For a power grid, the problem
of identifying the minimum set of sensor nodes is reduced to

the minimum dominating set (MDS) problem: Identify a
minimum node set D ⊆ V for a graph G ¼ ðV; EÞ such that
every node not in D is adjacent to at least one node in D
[Figs. 28(a) and 28(b)]. Consider a undirected network G.
Node i is either empty (with occupation state ci ¼ 0) or
occupied by a sensor (with ci ¼ 1). In other words, if ci ¼ 1

then node i can be considered a sensor node. Node i is called
observed if it is a sensor node itself or it is not a sensor node but
adjacent to one or more sensor nodes. Otherwise node i is
unobserved. The MDS problem requires us to occupy a
minimum setD of nodes so that allN nodes ofG are observed.5

The MDS problem for a general graph is NP hard, and the
best polynomial algorithms can offer only dominating sets

FIG. 27. Observability transitions in power grids. (a) Fraction of
the largest observable component as a function of the fraction of
directly observed nodes (ϕ) in networks with prescribed degree
distributions of the power grids of Eastern North America (black
diamonds), Germany (red triangles), Europe (green circles), and
Spain (blue squares). The continuous lines are analytical pre-
dictions, and the symbols represent the average over ten 106-node
random networks for ten independent random PMU placements
each. The inset shows a magnification around the transitions, with
the analytically predicted thresholds ϕc indicated by arrows.
From Yang, Wang, and Motter, 2012.

(a) (b)

(c) (d)

FIG. 28. Dominating set and generalized leaf removal process.
(a), (b) Dominating set. A dominating set of a graph G ¼ ðV; EÞ
is a subset D of V such that every vertex not in D is adjacent to at
least one vertex in D. A minimum dominating set (MDS, shown
in blue) is a dominating set of the smallest size. (c), (d) Gener-
alized leaf removal (GLR) process. If a network is sufficiently
sparse, then its MDS can be found exactly using GLR, consisting
of two basic operations illustrated in (c) and (d). Dark shaded
(blue) circles denote nodes occupied with sensor nodes. White
circles denote empty (i.e., nonoccupied) and unobservable nodes.
Light shaded (green) circles denote empty but observable nodes.
(c) For an empty leaf node i, its only adjacent node j must be
occupied, i.e., be chosen as a sensor node. Consequently, all
adjacent nodes of j are observed. Node j and its adjacent nodes
can be removed from the network to simplify the MDS problem.
(d) If an empty observed node i has only a single unobserved
adjacent node j, then it must be an optimal strategy not to occupy
node i. Hence, the link between i and j can be removed from the
network to simplify the MDS problem. From Zhao, Habibulla,
and Zhou, 2015.

5Interestingly, the MDS problem can also be formalized as a
control problem on a undirected network by assuming that every edge
in a network is bidirectional and every node in the MDS can control
all of its outgoing links separately (Jose and Tatsuya, 2012). This
formulation has recently been applied to analyze biological networks
(Wuchty, 2014; Nacher and Akutsu, 2016).
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with sizes not exceeding logN times of the minimum size of
the dominating sets (Lund and Yannakakis, 1994; Raz and
Safra, 1997). Recently, probabilistic methods have been
developed to approximate the size of the MDS in scale-free
networks (Molnár et al., 2014).
Note that if the underlying network has no core, we can

exactly solve the MDS problem in polynomial time using a
generalized leaf removal (GLR) process [Figs. 28(c) and
28(d)]. The GLR process can be recursively applied to
simplify the network G. If eventually all the nodes are
removed, then the set of nodes occupied during this process
must be an MDS and choosing them as sensor nodes will
make the whole network observable (Zhao, Habibulla, and
Zhou, 2015). If, however, the final simplified network is
nonempty, then there must be some nodes that are still
unobserved after the GLR process. The subnetwork induced
by these unobserved nodes is referred to as the core of the
original network G. For networks with an extensive core, a
belief-propagation algorithm, rooted in spin glass theory, can
offer nearly optimal solutions, which also performs well on
real-world networks (Zhao, Habibulla, and Zhou, 2015).

C. Target observability

In many applications it is overkill to observe the full system,
but it is sufficient to infer the state of a subset of target
variables. Such target variables could, for example, corre-
spond to the concentrations of metabolites whose activities are
altered by a disease (Barabási, Gulbahce, and Loscalzo,
2011), representing potential biomarkers. In case those target
variables cannot be directly measured, we can invoke target
observability and aim to identify the optimal sensor(s) that can
infer the state of the target variables. These could represent the
optimal experimentally accessible biomarkers for a disease.
The graphical approach discussed above helps us select such
optimal sensors as follows: (a) The state of a target node xt can
be observed from a sensor node xs only if there is a directed
path from xs to xt in the inference diagram. For example, in
Fig. 26(c), x4 can be inferred only from x5 while x1 can be
inferred from any other nodes. (b) There are important
differences in the complexity of the inference process, which
depends on the size of the subsystem we need to infer for a
given sensor choice. The SCC decomposition of the inference
diagram indicates that to observe xt from xs, we need to
reconstruct N s ¼

P
ni⊂Ss

ni metabolite concentrations, where
Ss denotes the set of all SCCs that are reachable from xs, and
ni is the size of the ith SCC. This formula can be extended to
multiple targets. (c) To identify the optimal sensor node for
any target node, we can minimize

P
ni⊂Ss

ni, which is the
minimum amount of information required for the inference
process. For example, if xt is inside an SCC of size larger than
1 [e.g., x1 in Fig. 26(c)], then the optimal sensor can be any
other node in the same SCC [e.g., x2 or x3 in Fig. 26(c)]. If all
other nodes in the same SCC is experimentally inaccessible,
then the optimal sensor node belongs to the smallest SCC that
points to xi [e.g., x6 in Fig. 26(c)]. Note that this minimization
procedure can be implemented for any inference diagram in
polynomial time. Hence the graphical approach can aid
the efficient selection of optimal sensors for any targeted

node, offering a potentially indispensable tool for biomarker
design.

D. Observer design

The observability test and the graphical approach men-
tioned above do not tell us how to reconstruct the state of the
system from measurements. To achieve this we must design an
observer, a dynamic device that runs a replica of the real
system, adjusting its state from the available outputs to
uncover the missing variables.
For an LTI system (67a) and (67b), we can design

the so-called Luenberger observer (Luenberger, 1964, 1966,
1971)

_zðtÞ ¼ AzðtÞ þL½yðtÞ − CzðtÞ� þ BuðtÞ; ð77Þ

where the N × K matrix L is to be specified later. Note that
with initial condition zð0Þ ¼ xð0Þ, the Luenberger observer
will follow zðtÞ ¼ xðtÞ exactly for all t > 0. Because xð0Þ is
typically unaccessible, we start from zð0Þ ≠ xð0Þ and hope
that zðtÞ will asymptotically converge to xðtÞ, i.e., the state of
the observer tracks the state of the original system. This can be
achieved by choosing a proper L matrix such that the matrix
½A −LC� is asymptotically stable, in which case the error
vector eðtÞ ¼ zðtÞ − xðtÞ, satisfying _eðtÞ ¼ ½A −LC�eðtÞ,
will converge to zero with a rate determined by the largest
eigenvalue of ½A −LC�.
For nonlinear systems the observer design is rather involved

and still an open challenge (Friedland, 1996; Besançon,
2007).

1. Parameter identification

Most modeling efforts assume that the system parameters,
such as the rate constants of biochemical reactions, are known.
Yet, for most complex systems, especially in biological
context, the system parameters are usually unknown or are
known only approximately. Furthermore, the known param-
eters are typically estimated in vitro, and their in vivo
relevance is often questionable. This raises a natural question:
Can we determine the model parameters through appropriate
input and output measurements, such as monitoring the
concentrations of properly selected chemical species? This
problem is called parameter identification (PI) in control
theory (Bellman and Aström, 1970; Pohjanpalo, 1978;
Glad and Ljung, 1990; Ljung, 1999; Saccomani, Audoly,
and D’Angio, 2003).
We can formalize the parameter identifiability problem as

the observability problem of an extended system as follows
(Anguelova, 2004). For this we consider the system param-
eters Θ as special state variables with time-derivative zero
(dΘ=dt ¼ 0). We can extend the state vector to include a
larger set of state variables, i.e., (xðtÞ;Θ), allowing us to
formally determine whether and how the system parameters
can be identified from the input-output behavior by checking
the observability of the extended system. Consequently, PI can
be considered as a special observer design problem.
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2. Network reconstruction

When the system parameters contain information about
the network structure, the corresponding PI problem can be
generalized to a network reconstruction (NR) problem.
Consider a network whose state variables are governed by
a set of ordinary differential equations (ODEs)

_xiðtÞ ¼
XN
j¼1

aijfij(xiðtÞ; xjðtÞ)þ uiðtÞ; ð78Þ

where i ¼ 1;…; N; the coupling functions fij∶ R ×R → R
capture the interactions between nodes: self-interactions when
i ¼ j or pairwise interactions when i ≠ j. The term uiðtÞ ∈ R
represents either known signals or control inputs that can
affect node i’s state. The interaction matrix A ¼ ½aij� ∈ RN×N

captures the directed interactions between the nodes: aji ≠ 0 if
node j directly affects node i’s dynamics. Given measured
temporal data fxiðtÞ; uiðtÞgNi¼1, ∀t ∈ ½t0; t1�, NR aims to
recover some properties of the A matrix, e.g., its sign pattern
S ¼ ½sij� ¼ ½signðaijÞ� ∈ f−1; 0; 1gn×n, connectivity pattern
C ¼ ½cij� ¼ ½jsijj� ∈ f0; 1gn×n, adjacency patternK ¼ ½kij� ¼
½cijð1 − δijÞ� ∈ f0; 1gn×n (δij is the Kronecker delta), or in-
degree sequence d ¼ ½di� ¼ ½Pj cij� ∈ Zn. Note that PI aims
to recover the A matrix itself.
There are three principally different NR approaches, which

assume various levels of a priori knowledge about the system
(Timme and Casadiego, 2014).

a. Driving response

Here we try to measure and evaluate the collective response
of a networked system to external perturbations or driving. As
the response depends on both the external driving signal
(which unit is perturbed, when and how strong is the
perturbation, etc.) and the (unknown) structural connectivity
of the network, sufficiently many driving-response experi-
ments should reveal the entire network. This approach is
relatively simple to implement and the required computational
effort scales well with the system size. It has been well
established for the reconstruction of gene regulatory networks
(Gardner et al., 2003; Tegnér et al., 2003; Yu, 2010; Yu and
Parlitz, 2010). Yet this approach requires us to measure and
drive the dynamics of all units in the system, which is often
infeasible. The collective dynamics suitable for the driving-
response experiments also needs to be simple (i.e., to exhibit a
stable fixed point or periodic orbits, or to allow the system to
be steered into such a state). For systems exhibiting more
complex features, e.g., chaos, bifurcations, or multistability,
this approach is not applicable. If the system exhibits the same
fixed point for different constant inputs (as some biological
systems that have “perfect adaptation”), it is impossible to
reconstruct the network using driving-response experiments
(Prabakaran, Gunawardena, and Sontag, 2014).

b. Copy synchronization

This approach sets up a copy of the original system and
updates its interaction matrix continuously until the copy
system synchronizes its trajectories with the original system

(Yu, Righero, and Kocarev, 2006). We expect the final
interaction matrix of the copy system to converge to that of
the original system. Unfortunately, sufficient conditions for
the convergence of this approach have not been fully under-
stood and the approach is model dependent. Knowing the
details of the coupling functions fijðxi; xjÞ is crucial to
set up the copy system. Furthermore, fijðxi; xjÞ needs to be
Lipschitz continuous. These constraints significantly narrow
the applicability of this approach.

c. Direct approach

This approach relies on the evaluation of temporal
derivatives from time series data (Shandilya and Timme,
2011). Exploiting smoothness assumptions, it finds the
unknown interaction matrix by solving an optimization
problem (e.g., l1 or l2-norm minimization). The rationale
is as follows. If the time derivatives of the state variables are
evaluated, and if the system coupling functions are also
known, then the only remaining unknown parameters are the
edge weights or interaction strengths aij’s. Repeated eval-
uations of Eq. (78) at different sufficiently closely spaced
times tm ∈ R comprise a simple and implicit restriction on
the interaction matrix A. This approach serves as a simple
starting strategy of NR. Yet it has a fundamental drawback—
there is no reason why the true interaction matrix should be
optimal in some a priori metric. Moreover, it may suffer
from the poor evaluation of time derivatives of noisy time
series data.
All three approaches suffer from one common issue: The

necessary and sufficient conditions under which they succeed
are unknown. An important exception is the modular response
analysis method (Kholodenko et al., 2002; Sontag, 2008),
which is a special driving-response approach and guarantees
to recover the interaction matrix using steady-state data
collected from sufficiently many perturbation experiments.
Recently, two classes of fundamental limitations of NR

were characterized by deriving necessary (and in some cases
sufficient) conditions to reconstruct any desired property of
the interaction matrix (Angulo et al., 2015). The first class of
fundamental limitations is due to our uncertainty about the
coupling functions fijðxi; xjÞ, leading to a natural trade-off:
the more information we want to reconstruct about the
interaction matrix the more certain we need to be about the
coupling functions. For example, it is possible to reconstruct
the adjacency patternKwithout knowing exactly the coupling
functions. But, in order to reconstruct the interaction matrix A
itself, it is necessary to know these functions exactly. In this
sense, if we are uncertain about the coupling functions, NR is
easier than PI. The second class of fundamental limitations
originates solely from uninformative temporal data. Here by
uninformative temporal data we mean that the measured
experimental signals are not rich enough to span the frequen-
cies of dynamical interest. This leads to a rather counterin-
tuitive result: regardless of how much information we aim to
reconstruct (e.g., edge weights, sign pattern, or connectivity
pattern), the measured temporal data need to be equally
informative. This happens even if we know the coupling
functions exactly. Hence, in the sense of informativeness of
the measured data, reconstructing any property of the
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interaction matrix is as difficult as reconstructing the inter-
action matrix itself, i.e., NR is as difficult as PI. A practical
solution to circumvent this limitation without acquiring more
temporal data (i.e., performing more experiments, which are
sometimes either infeasible or too expensive) is to leverage
prior knowledge of the interaction matrix, e.g., the bounds of
the edge weights (Angulo et al., 2015).

V. TOWARD DESIRED FINAL STATES OR
TRAJECTORIES

A significant body of work in control theory deals with the
design of control inputs that can move the system from a given
initial state to a desired final state in the state space (Sontag,
1998). For linear dynamics, Eq. (35) provides the optimal
input signal to take an arbitrary linear system into an arbitrary
final state using the minimum control energy

R
T
0 ‖uðtÞ‖2dt.

For nonlinear dynamics we lack a ready-to-use solution and
finding one can be very difficult. Yet, solving such nonlinear
control problems has important applications from robotics to
ecosystem management, and from cell reprogramming to drug
discovery. For example, in robotics engineers frequently
encounter the so-called motion- or path-planning problem,
needing to decompose a desired movement into discrete
motions that satisfy specific movement constraints and pos-
sibly optimize some aspect of the trajectory. The parallel
parking problem is a typical example, requiring us to
determine the sequence of motions a car must follow in order
to parallel park into a parking space.
In many cases, we are interested in steering the system

toward a desired trajectory or attractor, instead of an arbitrary
final state. A trajectory or an orbit of a dynamical system is a
collection of points (states) in the state space. For example, a
periodic orbit repeats itself in time with period T, so that
xðtÞ ¼ xðtþ nTÞ for any integer n ≥ 1. Roughly speaking, an
attractor is a closed subset A of a dynamical system’s state
space such that for “many” choices of initial states the system
will evolve toward states in A (Milnor, 2006). Simple
attractors correspond to fundamental geometric objects, such
as points, lines, surfaces, spheres, toroids, manifolds, or their
simple combinations. Fixed (or equilibrium) point and limit
cycle are common simple attractors. Fixed points are defined
for mappings xnþ1 ¼ fðxnÞ, where x is a fixed point if
x ¼ fðxÞ, whereas equilibrium points or equilibria are defined
for flows (ODEs) _x ¼ fðxÞ, where x is an equilibrium point if
fðxÞ ¼ 0. A limit cycle is a periodic orbit of the dynamical
system that is isolated. An attractor is called strange if it has a
fractal structure that cannot be easily described as fundamental
geometric objects or their simple combinations. A strange
attractor often emerges in chaotic dynamics.
In this section we briefly review progress made in

several directions with the common goal of controlling non-
linear dynamical systems: (a) Control of chaos, which requires
us to transform a chaotic motion into a periodic trajectory
using open-loop control (Hubler et al., 1988), Poincaré map
linearization (Ott, Grebogi, and Yorke, 1990) or time-delayed
feedback (Pyragas, 1992). (b) Systematic design of compen-
satory perturbations of state variables that take advantage of
the full basin of attraction of the desired final state (Cornelius,
Kath, and Motter, 2013). (c) Construction of the attractor

network (Lai, 2014; Wang et al., 2014). (d) Mapping the
control problem into a combinatorial optimization problem
on the underlying network (Fiedler et al., 2013; Mochizuki
et al., 2013).

A. Controlling chaos

A deterministic dynamical system is said to be chaotic if
its evolution is highly sensitive to its initial conditions.
This sensitivity means that arbitrary small measurement
errors in the initial conditions grow exponentially with
time, destroying the long-term predictability of the sys-
tem’s future state. This phenomenon, known as the
butterfly effect, is often considered troublesome (Lorenz,
1963). Chaotic behavior commonly emerges in natural and
engineered systems, being encountered in chemistry, non-
linear optics, electronics, fluid dynamics, meteorology, and
biology (Strogatz, 1994).
It has been realized that well-designed control laws can

overcome the butterfly effect, forcing chaotic systems to
follow some desired behavior (Hubler et al., 1988; Ott,
Grebogi, and Yorke, 1990; Pyragas, 1992; Toroczkai, 1994;
Sass and Toroczkai, 1996). Next, we review several key
methods devised for the control of chaotic systems from the
theoretical perspective (Chen and Dong, 1998; Boccaletti
et al., 2000; Fradkov and Evans, 2005).

1. Open-loop control

Since the late 1980s, a series of methods have emerged to
manipulate chaotic systems toward a desired “goal dynamics”
gðtÞ (Hubler et al., 1988). Consider a controlled system

_x ¼ FðxÞ þ BuðtÞ; ð79Þ

where x ∈ RN is the state vector and uðtÞ ∈ RM is the control
input. In contrast with the network-based problems discussed
earlier, here we assume that all state variables are controlled
(M ¼ N) and detB ≠ 0. The goal is to design uðtÞ so that xðtÞ
converges to a desired trajectory gðtÞ, i.e., jxðtÞ − gðtÞj → 0
as t → ∞. We can use open-loop control for this purpose,
using the control input called the Hubler action,

uðtÞ ¼ B−1½ _gðtÞ − F(gðtÞ)�; ð80Þ

which ensures that xðtÞ ¼ gðtÞ is a solution of the controlled
system. In this case, the error eðtÞ ¼ xðtÞ − gðtÞ satisfies

_eðtÞ ¼ FðeðtÞ þ gðtÞÞ − FðgðtÞÞ; ð81Þ

which can be linearized as _eðtÞ ¼ AðtÞeðtÞ, where AðtÞ ¼
∂FðxÞ=∂xjx¼gðtÞ. If the linearized system is uniformly
asymptotically stable, i.e., its equilibrium point e� ¼ 0 is
stable for all t > 0, then the error eðtÞ converges to zero,
and xðtÞ converges to the desired trajectory gðtÞ. We call
the regions of the state space from which the controlled
orbits converge to the goal trajectory gðtÞ entrainment
regions.
Note that the method (79) and (80) is not tailored to chaotic

systems, but potentially works for any nonlinear system. It has
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several disadvantages, though, such as the following: (i) the
open-loop control (80) requires a priori knowledge of the
dynamics, which is often not precisely known for complex
systems; (ii) the applied controls are not always small,
requiring high control energy; and (iii) the convergence of
jxðtÞ − gðtÞj → 0 for t → ∞ depends on the detailed func-
tional form of FðxÞ and the initial condition xð0Þ, hence this
method is not guaranteed to work for arbitrary systems.

2. Linearization of the Poincaré map: OGY method

The OGY method proposed by Ott, Grebogi, and Yorke
(1990) exploits the observation that typically an infinite
number of unstable periodic orbits (UPOs) are embedded
in a chaotic attractor (Fig. 29). Therefore we can obtain a
desired periodic motion by making only small perturbations to
an accessible system parameter.
The OGY method can be summarized as follows: First, we

determine and examine some of the low-period UPOs
embedded in the chaotic attractor. Second, we choose a
desired UPO. Finally, we design small time-dependent
parameter perturbations to stabilize this preexisting UPO.
This method is not only very general and practical, but also

suggests that in some systems the presence of chaotic behavior
can be an advantage for control. Indeed, if the attractor of a
system is not chaotic but has a stable periodic orbit, then small
parameter perturbations can only slightly change the existing
orbit. Therefore, given that any one of the infinite number of
UPOs can be stabilized, we can always choose the UPO that
achieves the best system performance. Hence, chaotic behav-
ior offers us a diverse and rich landscape for the desired
dynamic behavior of the system.

To demonstrate this method, let us consider a nonlinear
continuous-time dynamical system

_x ¼ fðx; uÞ; ð82Þ

where x ∈ RN is the state vector and u ∈ R represents a
tunable parameter, which can be considered as a control input.
Our task is to reach a desired trajectory x�ðtÞ that satisfies
Eq. (82) with u ¼ 0. To achieve that we first construct a
surface S, called the Poincaré section, which passes through
the point x0 ¼ x�ð0Þ transversally to the trajectory x�ðtÞ (see
Fig. 30). Consider a map x ↦ Fðx; uÞ, where Fðx; uÞ is the
point of first return to the Poincaré section of the solution of
Eq. (82) that begins at the point x and was obtained for the
constant input u. Since we can integrate Eq. (82) forward in
time from x, the map x ↦ Fðx; uÞ, called the Poincaré map,
must exist. Note that even though we may not be able to write
down the map F explicitly, the knowledge that it exists is still
useful (Shinbrot et al., 1993). By considering a sequence of
such maps, we get a discrete system

xkþ1 ¼ Fðxk; ukÞ; ð83Þ

where xk ¼ xðtkÞ, tk is the time of the kth intersection of the
Poincaré section S, and uk is the value of control uðtÞ over the
interval between tk and tkþ1.
A key step in the OGY method is to linearize the discrete

system (83) as

zkþ1 ¼ Azk þ Buk; ð84Þ

where zk ¼ xk − x0, A ¼ ∂F=∂xjx0
is the Jacobian matrix,

and B ¼ ∂F=∂ujx0
is a column vector.

To stabilize the linear system (84) and hence steer
the original system to a desired periodic orbit that passes
through x0, the OGY method employs a linear state feedback
control law

uk ¼
�
Czk if jzkj ≤ δ;

0 otherwise;
ð85Þ
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FIG. 29. Chaotic behavior in a nonlinear electronic circuit.
The vertical axis measures the voltage drop VðtÞ across a
50 Ω resistor, being proportional to the current in the circuit.
The system ergodically visits the unstable periodic orbits
(UPOs) embedded in the chaotic attractor. The plot shows
three such UPOs. From Sukow et al., 1997.

FIG. 30. Poincaré map. In a continuous dynamical system the
Poincaré map is the intersection of a periodic orbit in the state space
with a certain lower-dimensional subspace, called the Poincaré
section S, transversal to the flow of the system. In the Poincaré
sectionS, the Poincarémapx ↦ Fðx; uÞ projects pointx onto point
Fðx; uÞ, i.e., xk ¼ Fðxk−1; uk−1Þ, xkþ1 ¼ Fðxk; ukÞ, etc.
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where δ > 0 is a sufficiently small parameter. Note that
the control is applied only in some neighborhood of the desired
trajectory, which ensures the smallness of the control action.
To guarantee the efficiency of the method, the matrix C must
be chosen so that in the linear closed-loop system zkþ1 ¼
ðAþ BCÞzk, the norm jðAþ BCÞzj ≤ ρjzj decreases,
where ρ < 1.
Extensive numerical simulations have corroborated the

practical utility of the OGY method (see Fig. 31).
Furthermore, the OGY method was proven to be effective
in experimental systems as well, allowing the stabilization of
UPOs in a chaotically oscillating magnetoelastic ribbon, a
driven diode circuit, a multimode laser with an intracavity
crystal, a thermal convection loop, and the Belousov-
Zhabotinsky reaction (Boccaletti et al., 2000). Slow conver-
gence was often reported, which is a price we must pay to
achieve global stabilization of a nonlinear system with small
control action (Fradkov and Evans, 2005).
The advantage of the OGYmethod is that it does not require

prior knowledge of the system’s dynamics. Instead, we just
rely on the system’s behavior to learn the necessary small
perturbation to nudge it toward a desired trajectory. This is
similar to the balancing of a stick on our palm, which can be
achieved without knowing Newton’s second law of motion
and the stick’s detailed equation of motion. Indeed, in the
OGY method, both A and B in Eq. (84) can be extracted
purely from observations of the trajectory on the chaotic
attractor (Shinbrot et al., 1993).

3. Time-delayed feedback: Pyragas method

The Pyragas method employs continuous feedback to
synchronize the current state of a system with a time-delayed
version of itself, offering an alternative approach to stabilizing
a desired UPO embedded in a chaotic attractor (Pyragas,
1992). Consider the nonlinear system (82). If it has a desired

UPO Γ ¼ fx�ðtÞg with period T for u ¼ 0, then we can use
the feedback control

uðtÞ ¼ K½xðtÞ − xðt − τÞ�; ð86Þ

where K is the feedback gain and τ is the delay time, to
stabilize the desired UPO. If τ ¼ T and the solution xðtÞ of the
closed-loop system (82) and (86) begins on the UPO, then it
remains on the UPO for all t ≥ 0. Surprisingly, xðtÞ can
converge to the UPO even if it initially is not on the UPO,
i.e., xð0Þ ∉ Γ.
Considering that not all the state variables are experimen-

tally accessible, we can rewrite Eq. (86) as

uðtÞ ¼ K½yðtÞ − yðt − TÞ� ð87Þ

for a desired UPO of period T. Here yðtÞ ∈ R is an
experimentally accessible output signal. The advantage of
the time-delayed feedback control law (87) is that it does not
require rapid switching or sampling, nor does it require a
reference signal corresponding to the desired UPO.
Unfortunately, the domain of system parameters over which
control can be achieved via Eq. (87) is limited. Furthermore,
the method fails for highly unstable orbits. Note, however, that
an extended variant of the Pyragas method, using a control law
whose form is closely related to the amplitude of light
reflected from a Fabry-Pérot interferometer, can stabilize
highly unstable orbits (Socolar, Sukow, and Gauthier, 1994).
Despite the simple form (86) and (87) of the control signal,

the analytical study of the closed-loop system is challenging.
Indeed, while there are extensive numerical and experimental
results pertaining to the properties and application of the
Pyragas method, the sufficient conditions that guarantee its
applicability remain unknown (Fradkov and Evans, 2005).

FIG. 31. Controlling chaos. The use of the Ott-Grebogi-Yorke (OGY) method to control the chaotic behavior in the Hénon map
Xnþ1 ¼ pþ 0.3Yn − X2

n; Ynþ1 ¼ Xn, where the parameter p is set to p0 ¼ 1.4. (a) The Hénon attractor contains period-1 point A�,
which is revisited in each map iteration, period-2 points B1 and B2, which are revisited every other map iteration, i.e.,
B1 → B2 → B1 → B2 → � � �, and period-4 points C1, C2, C3, and C4, which are cycled through every four map iterations. (b) The
result of stabilizing the periodic orbit A� of the Hénon attractor by tuning p by less than 1% around p0. The arrow indicates the time step
at which the small perturbation is initiated. For the first 86 iterations, the trajectory moves chaotically on the attractor, never falling
within the desired small region about A�. On the 87th iteration, following the application of the control perturbation, the state falls within
the desired region, and is held near A�. From Shinbrot et al., 1993.
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Note that similar to the Pyragas method, a geometric
method of stabilizing UPOs (Toroczkai, 1994; Sass and
Toroczkai, 1996) also uses time delays. This method does
not require explicit knowledge of the dynamics (which is
similar to the OGY method), but only experimentally acces-
sible state information within a short period of the system’s
immediate past. More specifically, it requires a rough location
of the UPO and a single parameter easily computed from four
data points. This geometric method does not have the
problems of the Pyragas method in stabilizing UPOs. The
drawback of this geometric method is that it has been
formulated only for 2D maps and 3D flows.

B. Compensatory perturbations of state variables

The control tools described previously were mainly
designed for low-dimensional dynamical systems with a
simple structure. Most complex systems are high dimensional,
however, consisting of a network of components connected
by nonlinear interactions. We need, therefore, tools to bring a
networked system to a desired target state. A recently
proposed method can work even when the target state is
not directly accessible due to certain constraints (Cornelius,
Kath, and Motter, 2013). The basic insight of the approach is
that each desirable state has a “basin of attraction,” represent-
ing a region of initial conditions whose trajectories converge
to it. For a system that is in an undesired state, we need to
identify perturbations to the state variables that can bring the

system to the basin of attraction of the desired target state.
Once there, the system will evolve spontaneously to the target
state. Assume that a physically admissible perturbation fulfills
some constraints that can be represented by vector expressions
of the form

gðx0;x0
0Þ ≤ 0 and hðx0;x0

0Þ ¼ 0; ð88Þ

where the equality and inequality apply to each component
individually. To iteratively identify compensatory perturba-
tions we use the following procedure (see Fig. 32): Given the
current initial state of the network x0, we integrate the
system’s dynamics over a time window t0 ≤ t ≤ t0 þ T to
identify the time when the orbit is closest to the target
tc ≡ argmin jx� − xðtÞj. We then integrate the variational
equation up to tc to obtain the corresponding variational
matrix MðtcÞ, which maps a small change δx0 in the initial
state of the network to a change δxðtcÞ in the resulting
perturbed orbit at tc according to δxðtcÞ ¼ MðtcÞ · δx0. This
mapping is used to select an incremental perturbation δx0 that
minimizes the distance between the perturbed orbit and the
target at time tc, subject to the constraints (88) and additional
constraints on δx0 to ensure the validity of the variational
approximation.
The selection of δx0 is performed via a nonlinear opti-

mization that can be efficiently solved using sequential
quadratic programming. The initial condition is then updated
x0 → x0 þ δx0, and we test whether the new initial state lies

FIG. 32. Steering a network using compensatory perturbations of state variables. (a) The control set (shown in yellow) is a set of nodes
that are accessible to compensatory perturbations. (b) In the absence of control, the network is in an initial state x0 and evolves to an
undesirable equilibrium xu (red curve). By perturbing the initial state (orange arrow), the network reaches a new state x0

0, which evolves
to the desired target state (blue curve). (c) Typically, the compensatory perturbations must obey some constraints. In this example, we
can perturb only three out of N dimensions, corresponding to the three-node control set (shown in yellow), and the state variable of each
control node can only be reduced. These constraints form a cube (gray volume) within the three-dimensional subspace of the control
nodes. The network can be steered to the target state if and only if the corresponding slice of the target’s basin of attraction (blue volume)
intersects this cube. (d) Along each orbit there is a point that is closest to the target state. We seek to identify a perturbation (magenta
arrow) to the initial condition that brings the closest point closer to the target (green arrow). (e) This process is repeated (dashed curves),
until we identify a perturbed state x0

0 that is in the attraction basin of the target state, hence the system automatically evolves to the target
state. This results in a compensatory perturbation x0 → x0

0 (orange arrow). From Cornelius, Kath, and Motter, 2013.

Yang-Yu Liu and Albert-László Barabási: Control principles of complex systems

Rev. Mod. Phys., Vol. 88, No. 3, July–September 2016 035006-39



in the target’s basin of attraction by integrating the system
dynamics over a long time τ. If the system’s orbit reaches a
small ball of radius κ around x� within this time, we declare
success and recognize x0

0 − x0 as a compensatory perturbation
(for the updated x0

0). If not, we calculate the time of closest
approach of the new orbit and repeat the procedure.
Similar to the open-loop control of chaos discussed in

Sec. V.A.1, the approach based on compensatory perturbation
potentially works for any nonlinear system. It has been
successfully applied to the mitigation of cascading failures
in a power grid and the identification of drug targets in a
cancer signaling network (Cornelius, Kath, and Motter, 2013).
Yet the approach requires a priori knowledge of the detailed
model describing the dynamics of the system we want to
control, a piece of knowledge we often lack in complex
systems. With an imperfect model, a compensatory perturba-
tion may steer the system into a different basin of attraction
than the desired one. Studying the dependence of the success
rate of this approach on the parameter uncertainty and system
noise remains an analytically challenging issue. Moreover, it
is unclear how to choose the optimal control set consisting of
one or more nodes accessible to compensatory perturbations
so that some control objectives, such as the number of control
nodes or the amount of control energy, are minimized.

C. Small perturbations to system parameters

The control method described in Sec. V.B perturbs the state
variables of a networked system. In analogy with the OGY
method (Ott, Grebogi, and Yorke, 1990), we can also control
complex networked systems via perturbations to the system
parameters (Lai, 2014), an approach complementary to the
approaches based on perturbations of the state variables. The
key step of this approach is to choose a set of experimentally
adjustable parameters and determine whether small perturba-
tions to these parameters can steer the system toward the
desired attractor (Lai, 1996, 2014). Depending on the physical
constraints the control parameters obey, the directed control
path from the undesired attractor to the desired attractor can be
either via a direct connection or via intermediate attractors
along the control path. If there are no feasible control paths
reaching the desired attractor, then we cannot steer the system
to that attractor, hence control is not possible.
Considering each attractor as a node, and the control paths

as directed edges between them, we can construct an “attractor
network,” whose properties determine the controllability of
the original dynamic network (Lai, 2014). For a given non-
linear system, the attractor network can be constructed as
follows. First, we identify all possible attractors and choose a
set of system parameters that can be experimentally perturbed.
Second, we set the system into a specific attractor a, and
determine the set of attractors into which the system can
evolve from the original attractor a with a reasonable
combination of the adjustable parameters. This effectively
draws a link from attractor a to all other attractors reachable
by feasible parameter perturbations. Finally, we repeat this
procedure for all attractors, obtaining the attractor network
(Lai, 2014).
To illustrate the construction of such an attractor network,

consider the epigenetic state network (ESN) that describes the

phenotypic transitions on the epigenetic landscape of a cell
(Fig. 33). In the epigenetic landscape, two neighboring fixed-
point attractors, corresponding to stable cell phenotypes, are
connected by a minimal-energy path through an unstable
transition point (first-order saddle point) (Wang et al., 2011,
2014). The number of fixed points (nodes) and saddle points
(edges) grows exponentially with the number of genes
(dimensionality). We can rely on a conditional root-finding
algorithm (Wang et al., 2014) to construct this ESN. The
obtained ESN captures the global architecture of stable cell
phenotypes, helping us translate the metaphorical Waddington
epigenetic landscape concept (Waddington and Kacser, 1957;
Slack, 2002) into a mathematical framework of cell pheno-
typic transitions.

D. Dynamics and control at feedback vertex sets

For regulatory networks described as a digraph of depend-
encies, it was recently shown that open-loop control applied to
a feedback vertex set (FVS) will force the remaining network
to stably follow the desired trajectories (Fiedler et al., 2013;
Mochizuki et al., 2013). An FVS is a subset of nodes in the
absence of which the digraph becomes acyclic, i.e., contains
no directed cycles (Fig. 34). Unlike the approaches discussed
in Secs. V.B and V.C, this approach has rigorous analytical
underpinnings.

FIG. 33. Epigenetic state network (ESN). (a) On the epige-
netic landscape, a minimal-energy path connects two neighbor-
ing attractors through an unstable transition point (first-order
saddle point). The landscape can be represented by a network,
where nodes are attractors or basins of attraction and edges are
minimal-energy paths connecting the neighboring attractors.
(b) The vector field of a mutually inhibitive two-gene circuit
(inset). Nodes S1, S2, and S3 are fixed-point attractors. The pie
diagram of each attractor represents the expression pattern of
the two genes. The first-order saddle points (green diamond)
are surrounded by forward and backward optimal paths (dark
blue) connecting two neighboring attractors. (c) The ESN
constructed from (a) by connecting neighboring attractors.
From Wang et al., 2014.
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Consider a general nonautonomous nonlinear networked
system

_xi ¼ Fiðt; xi; xI i
Þ; ð89Þ

where i ¼ 1;…; N, and I i denotes the set of upstream
neighbors of node i, i.e., j ∈ I i if there is a directed edge

ðj → iÞ in the network. The corresponding network is often
called the system digraph, which is the transpose of the
inference diagram introduced in Sec. IV.B.
An open-loop control applied to the nodes of an FVS will

completely control the dynamics of those nodes and hence
effectively remove all the incoming links to them.
Consequently, those nodes will not be influenced by other
nodes. They will, however, continue to influence other nodes
and drive the whole system to a desired attractor. Consider, for
example, the gene regulatory network of circadian rhythms in
mice, consisting of 21 nodes [Fig. 35(a)]. In general there can
be multiple minimal FVSs for a given digraph. One such
minimal FVS of size seven, i.e., F ¼ fPER1; PER2;CRY1;
CRY2;RORc;CLK;BMAL1g, is highlighted by red circles in
Fig. 35(a). The associated dynamical system can be described
by a set of ODEs involving 21 variables and hundreds of
parameters. Under a particular choice of parameters, the
system has several invariant sets: (i) two stable periodic
oscillations (P1 and P2), (ii) one unstable periodic oscillation
(UP), and (iii) one unstable stationary point (USS) [Figs. 35(b)
and 35(c)]. Let us aim to steer the system from P1 to P2. To
achieve this, we first need to calculate the time tracks of the
seven FVS nodes on the desired invariant set P2, denoted as
xP2i , i ∈ F , which can be done by numerically integrating the
ODEs. Then we prescribe the time tracks of the seven nodes in
F to follow their desired values xP2i . This way, we effectively

(a) (b) (c)

(d) (e)

FIG. 34. Feedback vertex set (FVS). Examples of FVSs in
directed graphs, whose removal renders the graphs acyclic. The
gray vertices represent a choice of a minimal FVS in each panel
(a)–(e). Controlling the dynamics of the nodes in an FVS allows
us to switch the dynamics of the whole system from one attractor
to some other attractor. From Mochizuki et al., 2013.
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FIG. 35. Controlling a system through its feedback vertex set (FVS). (a) A regulatory network with 21 variables describes the
mammalian circadian rhythms in mice (Mirsky et al., 2009). A minimal FVS of seven elements, denoted as I , is highlighted by red
circles. (b) Trajectories of two stable periodic orbits, period1 (P1, dotted and broken curves) and period2 (P2, dotted curve), one
unstable periodic orbit (UP, broken curve) and one unstable stationary state (USS, solid line), represented by time tracks of the variable
Per2. (c) Trajectories of the same solutions in the phase plane of the two variables Per1 and Per2, which are not in the FVS.
(d)–(g) Numerical trajectories of successful open-loop controls of circadian rhythms via the full feedback vertex set I . Zooms into P2,
UP, and USS are shown as top-right insets. The initial and resulting trajectories of the control experiment are shown in light gray and red
(dark gray) curves, respectively. (d) From P1 to P2. (e) From P2 to P1. (f) From P1 to UP. (g) From P1 to USS. From Mochizuki
et al., 2013.
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remove any influence from the other 14 nodes to the 7 nodes
in F . The dynamics of the remaining 14 nodes xi; i ∉ F , are
determined by the remaining 14 ODEs of the system, where
the initial state of these remaining nodes is chosen to coincide
with an arbitrary point on the P1 trajectory. As shown in
Fig. 35(d), the trajectories of the remaining 14 nodes deviate
from the original stable periodic orbit P1 and quickly converge
to the competing orbit P2. The whole system eventually
displays periodic oscillation on the P2 orbit. In this example,
the identified FVS is a minimal one, i.e., any subset ofF is not
an FVS. Yet, a minimal FVS is not guaranteed to be the
minimum one that contains the least number of nodes.
Naturally, it will be more desirable to identify and control
the nodes in the minimum FVS. Unfortunately, finding the
minimum FVS of a general digraph is an NP-hard problem
(Karp, 1972).
This FVS-based open-loop control can be applied to a wide

range of nonlinear dynamical systems. It requires only a few
conditions (e.g., continuous, dissipative, and decaying) on the
nonlinear functions Fi that are very mild and satisfied by
many real systems (Fiedler et al., 2013). For systems
associated with a digraph GðV; EÞ, we can rigorously prove
that clamping the dynamics of a subset of nodes S ⊆ V will
control the rest of the network toward the desired attractor for
all choices of nonlinearities Fi that satisfy the above-
mentioned conditions if and only if S is an FVS in G
(Fiedler et al., 2013). Yet, specific systems do exist (with
certain nonlinearity Fi) where clamping a reduced FVS (i.e.,
removing one or more nodes from an FVS) is sufficient to
control the system to a desired attractor. In other words, for a
specific system, clamping an FVS might not be necessary. It
would be a natural starting point, though.
Note that to apply the two approaches discussed in the

previous Secs. V.B and V.C, namely, compensatory perturba-
tions of state variables (Sec. V.B), and small perturbations of
system parameters (Sec. V.C), we need a detailed knowledge
of the system dynamics, including all system parameters. In
many cases, we lack such a piece of knowledge. In contrast, to
apply the FVS-based open-loop control (Sec. V.D), we just
need the trajectories of FVS nodes on the desired attractors.
We do not have to know full dynamics, nor the exact
parameter values. We just need to assure a few mild conditions
on the nonlinear functions Fi are satisfied.

VI. CONTROLLING COLLECTIVE BEHAVIOR

Dynamical agents interacting through complex networks
can display a wide range of collective behavior, from
synchronization to flocking among many interacting agents.
In particular, the study of network-mediated synchronization
has a long history, with applications from biology to neuro-
science, engineering, computer science, economy, and social
sciences (Arenas et al., 2008). Flocking has also gained
significant attention in the past two decades, capturing
phenomena from the coordinated motion of birds or fish to
self-organized networks of mobile agents. Applications range
from massive distributed sensing using mobile sensor net-
works to the self-assembly of connected mobile networks,
and military missions such as reconnaissance, surveillance,
and combat using cooperative unmanned aerial vehicles

(Olfati-Saber, Fax, and Murray, 2007). These problems pose,
however, a number of fundamental questions pertaining to the
control of self-organized networks.
If we aim to achieve a desired collective behavior, it is often

infeasible to directly control all nodes of a large network. This
difficulty is partially alleviated by the notion of pinning
control (Wang and Chen, 2002a, 2002b), which relies heavily
on feedback processes. In pinning control a feedback control
input is applied to a small subset of nodes called pinned nodes,
which propagates to the rest of the network through the edges.
The design and implementation of feedback control must take
into account both the individual dynamics of the components
and the network topology. Conceptually, pinning control is
similar to the minimum controllability problem of a linear
system discussed in Sec. II. The key difference is that, instead
of fully controlling a system, pinning control aims to control
only the system’s collective behavior, such as synchronization
or flocking. Pinning control has been extensively applied to
the synchronization of coupled oscillators and flocking of
interacting agents (Wang and Chen, 2002a, 2002b; Li, Wang,
and Chen, 2004; Sorrentino et al., 2007; Chen and Duan,
2008; Porfiri and di Bernardo, 2008; Zou and Chen, 2008; Yu,
Chen, and Lü, 2009; Yu et al., 2013; Bernardo and
DeLellis, 2014).
In this section we review some fundamental results on

controlling the collective behavior of complex networked
systems. We pay particular attention to the pinning control of
synchronization and flocking. Synchronization of coupled
oscillators is typically studied on fixed network topology. We
build on the master stability formalism to explore pinning
synchronization, focusing on local and global stability con-
ditions and adaptive strategies. Flocking of multiagent sys-
tems are typically associated with switching or time-varying
network topology, because the agents, such as robots,
vehicles, or animals, are often mobile. To illustrate this we
discuss the Vicsek model of flocking behavior, emphasizing
its control theoretical interpretation. Finally, we review key
protocols that can induce flocking in multiagent systems.

A. Synchronization of coupled oscillators

Consider a static network of N identical nodes (oscillators)
with nearest-neighbor coupling:

_xi ¼ fðxiÞ þ σ
XN
j¼1

aijwij½hðxjÞ − hðxiÞ�

¼ fðxiÞ − σ
XN
j¼1

gijhðxjÞ; ð90Þ

where xi ∈ Rd is the d-dimensional state vector of the ith
node, fðxiÞ∶ Rd → Rd determines the individual dynamics of
each node, σ is the coupling strength, also called the coupling
gain,A ¼ ðaijÞ is the N × N adjacency matrix of the network,
and wij ≥ 0 is the weight of link ði; jÞ. The output function
hðxÞ∶ Rd → Rd is used to couple the oscillators and is
identical for all oscillators. For example, if we use hðxÞ ¼
ðx; 0; 0ÞT for a three-dimensional oscillator, such as the Lorenz
or Rössler oscillator, it means that the oscillators are coupled
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only through their x components. In general, hðxÞ can be any
linear or nonlinear mapping of the state vector x. G ¼ ðgijÞ is
the N × N coupling matrix of the network (gij ¼ −aijwij for
i ≠ j and gii ¼ −

P
N
j¼1;j≠i gij). If wij ¼ 1 for all links,G is the

Laplacian matrix L of the network. Note that G is not
necessarily symmetric.
The system (90) is synchronized when the trajectories of all

nodes converge to a common trajectory, i.e.,

lim
t→∞

‖xiðtÞ − xjðtÞ‖ ¼ 0 ð91Þ

for all i; j ¼ 1;…; N. Such synchronization behavior
describes a continuous system that has a uniform movement,
used to model synchronized neurons, lasers, and electronic
circuits (Pecora and Carroll, 1998).
Because of the diffusive coupling, the completely

synchronized state x1ðtÞ ¼ x2ðtÞ ¼ � � � ¼ xNðtÞ ¼ sðtÞ is a
natural solution of Eq. (90). This also defines a linear invariant
manifold, called the synchronization manifold, where all the
oscillators evolve synchronously as _s ¼ fðsÞ. Note that sðtÞ
may be an equilibrium point, a periodic orbit, or even a chaotic
solution.
Despite the fact that the completely synchronized state is a

natural solution of Eq. (90), it may not emerge spontaneously.
For example, if the coupling gain σ is close to zero, the
oscillators tend to behave independently. If the coupling gain
σ is too strong, the oscillators may not synchronize either. Our
goal is to identify the conditions under which the system (90)
can synchronize. A broad spectrum of methods allows us to
address this question (Wu and Chua, 1994; Pecora and
Carroll, 1998; Barahona and Pecora, 2002; Belykh, Belykh,
and Hasler, 2004b; Chen, 2007; Russo and Di Bernardo,
2009). The best-known method, discussed next, is based on
the calculation of the eigenvalues of the coupling matrix.

1. Master stability formalism and beyond

Consider the stability of the synchronization manifold in
the presence of a small perturbation xiðtÞ ¼ sðtÞ þ δxiðtÞ. By
expanding fðxiÞ and hðxiÞ to the first order of δxi, we obtain a
linear variational equation for δxiðtÞ,

δ _xi ¼ J ðsÞδxi − σ
XN
j¼1

gijEðsÞδxj; ð92Þ

with Jacobian matrices J ðsÞ ¼ ∂fðxÞ=∂xjx¼s and EðsÞ ¼
∂hðxÞ=∂xjx¼s. Let δX≡ ½δx1;…; δxN �T. Then formally we
have

δ _X ¼ ½I ⊗ J ðsÞ − σG ⊗ EðsÞ�δX; ð93Þ

where I is the N × N identity matrix and ⊗ is the Kronecker
product (a.k.a. matrix direct product).
The key idea of the master stability formalism is that we

need to consider only variations that are transverse to the
synchronization manifold, as variations along sðtÞ leave the
system in the synchronized state (Pecora and Carroll, 1998;
Barahona and Pecora, 2002). If these transverse variations
damp out, then the synchronization manifold is stable. To

separate out the transverse variations, we can project δX
into the eigenspace spanned by the eigenvectors ei of the
coupling matrix G, i.e., δX ¼ ðP ⊗ IdÞΞ with P−1GP ¼
Ĝ ¼ Diagðλ1; λ2;…; λNÞ. Then we have

_Ξ ¼ ½I ⊗ J ðsÞ − σĜ ⊗ EðsÞ�Ξ; ð94Þ

which results in a block diagonalized variational equation with
N blocks, corresponding to N decoupled eigenmodes. Each
block has the form

_ξi ¼ ½J ðsÞ − σλiEðsÞ�ξi; ð95Þ

where ξi is the eigenmode associated with the eigenvalue λi of
G. Note that in deriving Eq. (94) we implicitly assumed that
the coupling matrix G is diagonalizable, which is always true
for symmetric G. Thus each eigenmode of the perturbation is
decoupled from the others and will damp out independently
and simultaneously. If G is not diagonalizable, we can
transform G into the Jordan canonical form. In this case,
some eigenmodes of the perturbation may suffer from a long
transient (Nishikawa and Motter, 2006).
We can order the eigenvalues of G such that

0 ¼ λ1 ≤ Reλ2 ≤ � � � ≤ ReλN . Because the row sum of G is
zero, the minimal eigenvalue λ1 is always zero with the
corresponding eigenvector e1 ¼ ð1; 1;…; 1ÞT. Hence the first
eigenmode _ξ1 ¼ J ðsÞξ1 corresponds to the perturbation
parallel to the synchronization manifold. According to the
Gerschgorin circle theorem, all other eigenvalues must have
non-negative real parts. The corresponding (N − 1) eigenm-
odes are transverse to the synchronization manifold and must
decay to have a stable synchronization manifold.
The form of each block in Eq. (95) is the same up to the

scalar multiplier σλi. This leads to the variational equation,
called the master stability equation,

_ξ ¼ ½J − ðαþ iβÞE�ξ: ð96Þ

For small ξ we have ‖ξðtÞ‖ ∼ exp½Λðα; βÞt�, which decays
exponentially if the maximum Lyapunov characteristic expo-
nent Λðα; βÞ < 0. Consequently, Λðα; βÞ is called the master
stability function (MSF). Given a coupling strength σ, the sign
of the MSF in the point σλi in the complex plane reveals the
stability of that eigenmode. If all eigenmodes are stable [i.e.,
ΛðσλiÞ < 0 for all i’s], then the synchronization manifold is
stable at that coupling strength. Note that since the master
stability formalism assesses only the linear stability of the
synchronized state, it yields only the necessary but not the
sufficient condition for synchronization.
For undirected and unweighted networks, the coupling

matrix G is symmetric and all its eigenvalues are real,
simplifying the stability analysis. In this case, depending
on J and E, the MSF ΛðαÞ can be classified as follows:

(i) Bounded: ΛðαÞ < 0 for α1 < α < α2. This usually
happens when hðxÞ ≠ x. The linear stability of the
synchronized manifold requires that α1 < σλ2 ≤ � � �
≤ σλN < α2. This condition can be fulfilled only for σ
when the eigenratio R satisfies

Yang-Yu Liu and Albert-László Barabási: Control principles of complex systems

Rev. Mod. Phys., Vol. 88, No. 3, July–September 2016 035006-43



R≡ λN
λ2

<
α2
α1

: ð97Þ

The beauty of this inequality comes from the fact
that its rhs depends only on the dynamics while its
left-hand side (lhs) depends only on the network
structure. If R > α2=α1, for any σ the synchronization
manifold is unstable, indicating that it is impossible
to synchronize the network. If R<α2=α1, the synchro-
nization manifold is stable for σmin ¼ α1=λ2 <
σ < σmax ¼ α2=λN . The synchronizability of the
network can be quantified by the relative interval
σmax=σmin ¼ α2=ðα1RÞ. A network is more synchro-
nizable for higher σmax=σmin (or smaller R).

(ii) Unbounded: ΛðαÞ < 0 for α > α1. The stability criteria
of the synchronized manifold is α1 < σλ2 ≤ � � � ≤ σλN ,
which is true if

σ > σmin ¼ α1=λ2: ð98Þ

The larger λ2 is the smaller the synchronization thresh-
old σmin is, hence the more synchronizable is the
network.

Inequalities (97) and (98) demonstrate that the MSF
framework provides an objective criteria (R or λ2) to assess
the synchronizability of complex networks based on the
spectrum of the coupling matrix G only, without referring
to specific oscillators and output functions. The MSF frame-
work allows us to address the impact of the network topology
and edge weights on synchronizability (Arenas et al., 2008).
Consequently, there have been numerous numerical attempts
to relate the spectral properties of network models to a single
structural characteristic of the underlying network, such as
mean degree, degree heterogeneity, path lengths, clustering
coefficient, degree-degree correlations, etc. (Arenas et al.,
2008). The outcome of these analyses is occasionally con-
fusing, because in a networked environment it is usually
impossible to isolate a single structural characteristic while
keeping the others fixed. Overall, several network character-
istics can influence synchronizability, but none of them is an
exclusive factor in the observed dependencies.
The fundamental limitation of MSF is that it assesses only

the linear or local stability of the synchronized state, which is a
necessary but not a sufficient condition for synchronization
(Arenas et al., 2008). To obtain a sufficient condition, one can
use global stability analysis, such as Lyapunov’s direct
method (Wu and Chua, 1994, 1995a, 1995b, 1995c;
Belykh, Belykh, and Hasler, 2004a, 2004b, 2006; Belykh
et al., 2005; Chen, 2006, 2007, 2008; Li et al., 2009) or
contraction theory (Lohmiller and Slotine, 1998; Wang and
Slotine, 2005; Li, Small, and Fu, 2007; Pham and Slotine,
2007; Russo and Di Bernardo, 2009; Tabareau, Slotine, and
Pham, 2010; Aminzare and Sontag, 2014).

2. Pinning synchronizability

If a network of coupled oscillators cannot synchronize
spontaneously, we can design controllers that, applied to a
subset of pinned nodes C, help synchronize the network.
Hence the pinned nodes behave like leaders (Wang and Chen,

2002a; Li, Wang, and Chen, 2004; Wang and Slotine, 2005,
2006), forcing the remaining follower nodes to synchronize.
This procedure, known as pinning synchronization, is funda-
mentally different from spontaneous synchronization of
coupled oscillators, where we do not specify the synchronized
trajectory sðtÞ, hence the system “self-organizes” into the
synchronized trajectory under appropriate conditions. In
pinning synchronization, we choose the desired trajectory
sðtÞ, aiming to achieve some desired control objective, and
this trajectory must be explicitly taken into account in the
feedback controller design. Note that in the literature pinning
synchronizability is often called pinning controllability. Here
we use the term synchronizability to avoid confusion with the
classical notion of controllability discussed in Secs. II and III.
A controlled network is described by

_xi ¼ fðxiÞ − σ
XN
j¼1

gijhðxjÞ þ δiuiðtÞ; ð99Þ

where δi ¼ 1 for pinned nodes and 0 otherwise, and

uiðtÞ ¼ σ½pi(sðtÞ) − pi(xiðtÞ)� ð100Þ

is the d-dimensional linear feedback controller (Wang and
Chen, 2002a; Li, Wang, and Chen, 2004), pi(xðtÞ) is the
pinning function that controls the input of node i, and
sðtÞ is the desired synchronization trajectory satisfying
_sðtÞ ¼ f(sðtÞ). Note that in the fully synchronized state
x1ðtÞ ¼ x2ðtÞ ¼ � � � ¼ xNðtÞ ¼ sðtÞ, we have uiðtÞ ¼ 0 for
all nodes. The form of the linear feedback controller (100)
implies that the completely synchronized state is a natural
solution of the controlled network (99).
Similar to spontaneous synchronization, we must derive the

necessary and sufficient conditions for pinning synchroniza-
tion. These conditions are more important from the control
perspective, because they are the prerequisite for the design of
any practical controller. If we focus on the local (or global)
stability of the synchronized manifold of the controlled
network (99), we obtain the necessary (or sufficient) condition
for pinning synchronization, describing the local (or global)
pinning synchronizability.

a. Local pinning synchronizability

Given the presence of inhomogeneous dynamics at the
controlled and uncontrolled nodes, the MSF approach cannot
be directly applied to the controlled network (99). Instead,
we first introduce a virtual node whose dynamics follows
_sðtÞ ¼ f(sðtÞ), representing the desired synchronization sol-
ution (Sorrentino et al., 2007; Zou and Chen, 2008). The
extended system now has N þ 1 nodes: yiðtÞ ¼ xiðtÞ for
i ¼ 1;…; N, and yNþ1ðtÞ ¼ sðtÞ. The virtual node is con-
nected to each pinned node.
We choose the pinning function

piðxÞ ¼ κihðxÞ ð101Þ

with control gains. By defining the pinning function via
Eq. (101) we can then rewrite Eq. (99) in the form of
Eq. (90), with an effective coupling matrix satisfying the
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zero row-sum condition, allowing us to apply the MSF
approach. Indeed, plugging Eq. (101) into Eq. (100), we
have uiðtÞ ¼ σκi½h(sðtÞ) − h(xiðtÞ)� and Eq. (99) becomes

_yi ¼ fðyiÞ − σ
XNþ1

j¼1

mijhðyjÞ; ð102Þ

where

M¼

2
666666664

g11 þ δ1κ1 g12 � � � g1N −δ1κ1
g21 g22 þ δ2κ2 � � � g3N −δ2κ2
..
. ..

. . .
. ..

. ..
.

gN1 gN2 � � � gNN þ δNκN −δNκN
0 0 � � � 0 0

3
777777775

ð103Þ

is the effective coupling matrix of the (N þ 1)-dimensional
extended system. Apparently, M ¼ ðmijÞðNþ1Þ×ðNþ1Þ is a
zero row-sum matrix; hence we can sort its eigenvalues as
0 ¼ λ1 ≤ Reλ2 ≤ � � � ≤ ReλNþ1. We can now apply
the MSF approach to numerically explore the local stabi-
lity of the synchronization manifold of the controlled
network (102).
The role of the control gain (κi), coupling gain (σ), and

the number and locations of the pinned nodes on local
pinning synchronizability has been systematically studied
(Sorrentino et al., 2007). Consider, for example, a Barabási-
Albert (BA) scale-free network of N identical Rössler
oscillators coupled in the x and z directions. By assuming
κ1 ¼ � � � ¼ κN ¼ κ, it was found that for a wide range of
coupling gain σ, the eigenratio RNþ1 ≡ ReλNþ1=Reλ2 of the
new coupling matrix M is minimized and hence the local
pinning synchronizability is maximized around a specific
σ-dependent value of the control gain κ. In other words, too
large or too small control gain can reduce the network pinning
synchronizability [Figs. 36(a) and 36(b)]. By contrast, the
number of pinned nodes, regardless if they are chosen
randomly or selectively within the network, has a monotonic
impact on pinning synchronizability: Controlling more nodes
always enhances the network pinning synchronizability, in
line with our intuition [Figs. 36(c) and 36(d)]. Furthermore,
selective pinning, when the nodes are chosen in the order of
decreasing degree, yields better synchronizability than ran-
dom pinning.

b. Global pinning synchronizability

By describing the time evolution of the controlled network
(102) in terms of the error dynamics, we can map the global
pinning synchronizability of Eq. (102) to the global asymp-
totic stability of the synchronized manifold, which can be
studied via Lyapunov stability theory.
If the desired asymptotic trajectory is an equilibrium

point [_s ¼ fðsÞ ¼ 0], we can derive sufficient conditions
for globally stabilizing the pinning controlled network
(Li, Wang, and Chen, 2004). For a more general desired

trajectory, it has been shown that a single feedback controller
can pin a complex network to a homogenous solution, without
assuming symmetry, irreducibility, or linearity of the cou-
plings (Chen, Liu, and Lu, 2007).
If the oscillator dynamics fðxÞ fulfills

fðz1Þ − fðz2Þ ¼ F z1;z2ðz1 − z2Þ; ∀ z1; z2 ∈ Rd; ð104Þ

where F z1;z2 ∈ Rd×d is bounded, i.e., there exists a positive
constant α such that for any z1; z2 ∈ Rd, ‖F z1;z2‖ ≤ α, then
we can derive tractable sufficient conditions for global pinning
synchronizability in terms of the network topology, the
oscillator dynamics, and the linear state feedback (Porfiri
and di Bernardo, 2008). Note that the condition (104) applies
to a large variety of chaotic oscillators (Jiang, Tang, and Chen,
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FIG. 36. Local pinning synchronizability of scale-free networks.
The local pinning synchronizability is quantified by the eigenra-
tio RNþ1 ¼ ReλNþ1=Reλ2 of the extended system (102). The
calculation was performed for N ¼ 103 identical Rössler oscil-
lators coupled in the x and z directions, with coupling gain σ and
a p fraction of pinned nodes, placed on a Barabási-Albert (BA)
scale-free network with mean degree hki ¼ 4. We choose p ¼
0.1 fraction of nodes to pin and study the impact of control gain κ
on local pinning synchronizability with coupling gain (a) σ ¼ 0.3
and (b) 2.8, respectively. We find that in both cases the eigenratio
RNþ1 ≡ ReλNþ1=Reλ2 of the new coupling matrix M is mini-
mized and hence the local pinning synchronizability is maxi-
mized around a specific σ-dependent value of the control gain κ.
We study the impact of the fraction of pinned nodes on local
pinning synchronizability: (c) σ ¼ 0.3, κ ¼ 10; (d) σ ¼ 2.8,
κ ¼ 1.5. The horizontal continuous lines (red) represent the
eigenratio RN of the corresponding uncontrolled system (99).
We find that the number of pinned nodes, regardless if they are
chosen randomly or selectively within the network, has a
monotonic impact on the pinning synchronizability. Controlling
more nodes always enhances the network pinning synchroniz-
ability. In all plots squares represent the case of random pinning,
i.e., a p fraction of nodes is randomly chosen to be pinned. In (c)
and (d), triangles represent the case of selective pinning, where
nodes have been sorted in the order of decreasing degree and the
top p fraction of the nodes are chosen to be pinned. From
Sorrentino et al., 2007.
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2003). The results indicate that for a connected network, even
for a limited number of pinned nodes, global pinning
synchronizability can be achieved by properly selecting the
coupling strength and the feedback gain (Chen, Liu, and
Lu, 2007).
If hðxÞ ¼ Γx and the oscillator dynamics fðxÞ satisfies

ðx − yÞT½fðx; tÞ − fðy; tÞ� ≤ ðx − yÞTKΓðx − yÞ ð105Þ

for a constant matrix K, sufficient conditions for global
pinning synchronizability can also be derived (Yu, Chen,
and Lü, 2009; Song and Cao, 2010; Yu et al., 2013). Note
that the condition (105) is so mild that many systems from
the Lorenz system to the Chen system, the Lü system,
recurrent neural networks, or Chua’s circuit may satisfy this
condition (Yu et al., 2013). Counterintuitively, it was found
that for undirected networks the small-degree nodes, instead
of hubs, should be pinned first when the coupling strength σ
is small (Yu, Chen, and Lü, 2009). For directed networks,
nodes with very small in-degree or large out-degree
should be pinned first (Yu et al., 2013). This result can
be understood by realizing that low in-degree nodes receive
less information from other nodes and hence are less
“influenced” by others. In the extreme case, nodes with
zero in-degree will not be influenced by any other nodes,
hence they must be pinned first. On the other hand, large
out-degree nodes can influence many other nodes, hence it
makes sense to pin them first.

3. Adaptive pinning control

Implementing the linear feedback pinning controller
(100) requires detailed knowledge of the global network
topology. This is because we have to check whether there
are possible coupling and control gains that ensure pinning
synchronizability. Yet, in practice we do not always have
access to the global network topology. Given this limitation,
recently adaptive control has been proposed for pinning
synchronization, in which case a controller adapts to a
controlled system with parameters that vary in time, or are
initially uncertain, without requiring a detailed knowledge
of the global network topology (Wang and Slotine, 2006;
Wang et al., 2008, 2010; Zhou, Lu, and Lü, 2008; DeLellis,
di Bernardo, and Turci, 2010; DeLellis, di Bernardo, and
Russo, 2011). As discussed next, many different strategies
have been designed to tailor the control gains, coupling
gains, or to rewire the network topology to ensure pinning
synchronizability.

(i) Adaptation of control gains: To adapt the control gain
κi in Eq. (101), representing the ratio between the
pinning function and output function, we choose
the control input uiðtÞ ¼ −δiκiðtÞ½xiðtÞ − s�, and the
control gains as (Wang et al., 2008; Zhou, Lu, and Lü,
2008)

_κiðtÞ ¼ qijeiðtÞj: ð106Þ

In other words, the control gain κi varies in time and
adapts to the error vector eiðtÞ≡ sðtÞ − xiðtÞ that

describes the deviation of the oscillator i from the
reference signal sðtÞ. If the individual dynamics fðxÞ
satisfies the Lipschitz condition, then the global
stability of this adaptive strategy can be assured.

(ii) Adaptation of coupling gains: The coupling gain σij,
defining the mutual coupling strength between
node pair ði; jÞ, can also be adapted using (DeLellis,
di Bernardo, and Turci, 2010)

_σijðtÞ ¼ ηijjeiðtÞ − ejðtÞj2: ð107Þ

This strategy is very effective in controlling networks
of quadratic dynamical systems, where the dynamics
fðx; tÞ of each oscillator satisfies ðx− yÞT½fðx; tÞ −
fðy; tÞ�− ðx− yÞTΔðx− yÞ≤−ωðx− yÞTðx− yÞ. Here
Δ is a d × d diagonal matrix and ω is a real positive
scalar.

Note that the adaptive strategies (106) and (107) are
based on the local error vectors of nodes or between
neighboring nodes, hence they avoid the need for a
prior tuning of the control or coupling gains. This is
attractive in many circumstances. However, these
adaptive strategies still require a prior selection of
the pinned nodes based on some knowledge of the
network topology. This limitation can be avoided by
choosing pinned nodes in an adaptive fashion, as
discussed next.

(iii) Adaptive selection of pinning nodes: Adaptive pinning
can be achieved by assuming the pinning node in-
dicator δi to be neither fixed nor binary. A common
approach is to introduce

δiðtÞ ¼ b2i ðtÞ; ð108Þ

where biðtÞ satisfies the dynamics

b̈i þ ζ _bi þ
dUðbiÞ
dbi

¼ gðjeijÞ: ð109Þ

In other words, biðtÞ follows the dynamics of a
unitary mass in a potential UðbiÞ subject to an external
force g that is a function of the pinning error ei and a
linear damping term described by ζ _bi. This is termed
as the edge-snapping mechanism. For convenience,
Uð·Þ can be chosen as a double-well potential
UðzÞ ¼ kz2ðz − 1Þ2, where the parameter k defines
the height of the barrier between the two wells. Then
Eq. (109) has only two stable equilibria, 0 and 1,
describing whether node i is pinned or not, respec-
tively. Sufficient conditions for the edge-snapping
mechanism (109) to drive the network to a steady-
state pinning configuration have been derived
(DeLellis, di Bernardo, and Russo, 2011). The key
advantage of the adaptive selection of pinning nodes is
that we do not have to choose the nodes we need to pin
before we design the controller. Instead, we can select
them as we go in an adaptive fashion.

(iv) Adaptation of the network topology: We can ensure
synchronization by adapting the network topology.
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Specially, we can set each off-diagonal element of the
Laplacian matrix of the network as

LijðtÞ ¼ −σijðtÞα2ijðtÞ; ð110Þ

where σijðtÞ is the mutual coupling strength between
node pair ði; jÞ, which is adapted as in Eq. (107).
The weight αijðtÞ is associated with every undirected
edge of the target pinning edge and is adapted as

_αij þ ν _αij þ
dUðαijÞ
dαij

¼ cðjeijjÞ;

i; j ¼ 1;…; N; i ≠ j; ð111Þ

where eijðtÞ ¼ ejðtÞ − eiðtÞ, and Uð·Þ can be again
chosen as a double-well potential so that Eq. (111)
has only two stable equilibria, 0 and 1. In this case,
the target network topology evolves in a decentral-
ized way. The local mismatch of the trajectories can
be considered as an external forcing on the edge
dynamics (111), inducing the activation of the
corresponding link, i.e., αij ¼ 1.

These adaptive strategies cope better when pinning
controllability using a nonadaptive or static approach is
initially not feasible. They are also successful in ensuring
network synchronization in the presence of perturbations
or deterioration, such as link failures (Jin, Yang, and
Che, 2012).
Taken together, we have multiple strategies to force a

networked system to synchronize. The discussed tools have
a wide range of applications for systems in which a
synchronized state is desired. In some cases synchronization
can be harmful, as in the case of synchronized clients or
routers that cause congestion in data traffic on the Internet
(Li and Chen, 2003), or in schizophrenia. In this case the
synchronized state can be destroyed by the addition of a
single link with inhibitory coupling (Slotine, Wang, and
Rifai, 2004).

B. Flocking of multiagent dynamical systems

The flocking of birds, shoaling of fish, swarming of insects,
and herding of land animals are spectacular manifestations of
a coordinated collective behavior of multiagent systems.
These phenomena have fascinated scientists from diverse
disciplines, from ecologists to physicists, social, and computer
scientists (Olfati-Saber, 2006; Vicsek and Zafeiris, 2012).
Many models have been proposed to reproduce the behavior
of such self-organized systems. The first widely known
flocking simulation was primarily motivated by the visual
appearance of a few dozen coherently flying objects, e.g.,
imaginary birds and spaceships (Reynolds, 1987). Yet the
quantitative interpretation of the emerging behavior of huge
flocks in the presence of perturbations was possible only
following the development of a statistical physics-based
interpretation of flocking obtained through the Vicsek model
(Vicsek et al., 1995). As discussed next, the Vicsek model and
its variants can be interpreted as a decentralized feedback
control system with time-varying network structure, offering a

better understanding of the origin of collective behavior
(Jadbabaie, Lin, and Morse, 2003; Moreau, 2005; Ren and
Beard, 2005; Olfati-Saber, 2006).

1. Vicsek model and the alignment problem

The Vicsek model explains the origin of alignment, a key
feature of flocking behavior (Vicsek et al., 1995). It is a
discrete-time stochastic model in which autonomous agents
move in a plane with a constant speed v0, initially following
randomly chosen directions. The position xi of agent i
changes as

xiðtþ 1Þ ¼ xiðtÞ þ viðtþ 1Þ; ð112Þ

where the velocity of each agent has the same absolute value
v0. The direction of agent i is updated using a local rule that
depends on the average of its own direction and the directions
of its “neighbors,” i.e., all agents within a distance r from
agent i (Fig. 37), and some random perturbations. In other
words,

θiðtþ 1Þ ¼ hθiðtÞir þ ΔiðtÞ: ð113Þ

Here hθiðtÞir ≡ arctan ½hsin θðtÞir=hcos θðtÞir� denotes the
average direction of the agents (including agent i) within a
circle of radius r. The perturbations are contained in ΔiðtÞ,
which is a random number taken from a uniform distribution
in the interval ½−η=2; η=2�. Therefore the final direction of
agent i is obtained after rotating the average direction of the
neighbors with a random angle. These random perturbations
can be rooted in any stochastic or deterministic factors that
affect the motion of the flocking agents.
The Vicsek model has three parameters: (i) the agent

density ρ (number of agents in the area L2), (ii) the speed
v0, and (iii) the magnitude of perturbations (i.e., the noise
level) η. The model’s order parameter is the normalized
average velocity

r

FIG. 37. Vicsek model. The direction of agent i at time tþ 1
(red) is the average of its own direction and the directions of all
other agents at a distance less than r to agent i at time t (gray), up
to some random perturbations. Agents outside this circle (white),
do not contribute to the direction of agent i at time tþ 1.
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ϕ≡ 1

Nv0

����XN
i¼1

vi

����: ð114Þ

For small speed v0, if we decrease the magnitude of
perturbations η, the Vicsek model displays a continuous
phase transition from a disordered phase [zero average
velocity ϕ, implying that all agents move independently of
each other, Fig. 38(b)] to an ordered phase when almost all
agents move in the same direction, through a spontaneous
symmetry breaking of the rotational symmetry [Fig. 38(d)].
This much-studied kinetic phase transition takes place
despite the fact that each agent’s set of nearest neighbors
changes with time as the system evolves and the absence of
centralized coordination.
Numerical results indicate that the phase transition is

second order and the normalized average velocity ϕ
scales as

ϕ ∼ ½ηcðρÞ − η�β; ð115Þ

where the critical exponent β ≈ 0.45 and ηcðρÞ is the critical
noise for L → ∞ (see Fig. 39) (Vicsek et al., 1995). Many
studies have explored the nature of this phase transition
(whether it is first or second order), finding that two factors
play an important role: (i) the precise way that the noise is
introduced into the system, and (ii) the speed v0 with which
the agents move (Grégoire and Chate, 2004; Aldana et al.,
2007; Pimentel et al., 2008; Aldana, Larralde, and Vazquez,
2009; Baglietto and Albano, 2009).
The Vicsek model raises a fundamental control problem:

Under what conditions can the multiagent system display a
particular collective behavior? Behind each flock of collec-
tively moving agents, like biological organisms or robots,
there is a dynamically changing or temporal network, where
two agents are connected if they interact, e.g., if their distance
is under a certain threshold. Since the agents are moving, the
network of momentarily interacting units evolves in time in a
complicated fashion.
To offer a control theoretical explanation for the emer-

gence of the ordered phase in the Vicsek model, we
consider the following updating rule (Jadbabaie, Lin, and
Morse, 2003):

θiðtþ 1Þ ¼ 1

1þ kiðtÞ
�
θiðtÞ þ

X
j∈N iðtÞ

θjðtÞ
�
: ð116Þ

Although the scalar average in Eq. (116) is fundamentally
different from the vectorial average in Eq. (113), this
updating rule still captures the essence of the Vicsek model
in the absence of perturbation. More importantly, Eq. (116)
can be considered as a decentralized feedback control
system

θðtþ 1Þ ¼ θðtÞ þ uðtÞ ð117Þ

with the control input

uðtÞ ¼ −ðDσðtÞ þ IÞ−1LσðtÞθðtÞ: ð118Þ

Here Lp ¼ Dp −Ap is the Laplacian matrix of graph Gp

with p ∈ P. Ap is the adjacency matrix of graph Gp and Dp

is a diagonal matrix whose ith diagonal element is the
degree of node i in the graph Gp. σðtÞ∶ 0; 1;…; → P is a
switching signal whose value at time t is the index of the
interaction graph at time t, i.e., GðtÞ.
If the interaction radius r is small, some agents are always

isolated, implying that GðtÞ is never connected. If r is large,
then GðtÞ is always a complete graph. The situation of interest
is between the two extremes. The goal is to show that for
any initial set of agent directions θð0Þ and for a large class of
switching signals the directions of all agents will converge
to the same steady state θss, reaching alignment asymptoti-
cally. Mathematically, this means that the state vector θðtÞ
converges to a vector of the form θss1 with θss the steady-state
direction, i.e.,

(a) (b)

(c) (d)

FIG. 38. Emergence of order in the Vicsek model. The panels
show the agent velocity for varying values of the density and the
noise level. The actual velocity of an agent is indicated by a small
arrow while their trajectories for the last 20 time steps are shown
as short continuous curves. The number of agents is N ¼ 300,
and the absolute velocity is v0 ¼ 0.03. (a) At t ¼ 0, the positions
and the direction of velocities are randomly distributed: L ¼ 7,
η ¼ 2.0. Here we use the interaction radius r as the distance unit.
(b) For small densities (L ¼ 25) and low noise level (η ¼ 0.1),
the agents form groups that move together in random directions.
(c) At higher densities (L ¼ 7) and noise level (η ¼ 2.0) the
agents move randomly with some correlation. (d) When
the density is large (L ¼ 5) and the noise level is low
(η ¼ 0.1), the motion becomes ordered on a macroscopic scale
and all agents tend to move in the same spontaneously selected
direction. From Vicsek et al., 1995.

Yang-Yu Liu and Albert-László Barabási: Control principles of complex systems

Rev. Mod. Phys., Vol. 88, No. 3, July–September 2016 035006-48



lim
t→∞

θðtÞ ¼ θss1; ð119Þ

where 1≡ ð1;…; 1ÞTN×1, representing the case when all agents
move in the same direction.
If GðtÞ is connected for all t ≥ 0, then we can prove that

alignment will be asymptotically reached (Jadbabaie, Lin, and
Morse, 2003). But this condition is very stringent. It can be
relaxed by considering that the agents are linked together
across a time interval, i.e., the collection or union of graphs
encountered along the interval is connected. It has been
proven that if the N agents are linked together for each time
interval, then the alignment will be asymptotically reached
(Jadbabaie, Lin, and Morse, 2003). This result has been
further extended by proving that if the collection of graphs
is ultimately connected, i.e., there exists an initial time t0 such
that over the infinite interval ½t0;∞Þ the union graph G ¼
∪∞

t¼t0 Gt is connected, then the alignment is asymptotically
reached (Moreau, 2005).
Although the control theoretical analysis (Jadbabaie, Lin,

and Morse, 2003; Moreau, 2005; Ren and Beard, 2005) is
deterministic, ignoring the presence of noise, it offers
rigorous theoretical explanations, based on the connected-
ness of the underlying graph, for some fundamental aspects
of the Vicsek model. For example, by applying the nearest-
neighbor rule, all agents tend to align the same direction
despite the absence of centralized coordination and despite
the fact that each agent’s set of nearest neighbors changes in
time. These control theoretical results suggest that to
understand the effect of additive noise, we should focus
on how noise inputs affect the connectivity of the associated
neighbor graphs. For example, the numerical finding that for
a fixed noise beyond a critical agent density all agents
eventually become aligned can be adequately explained by
percolation theory of random graphs (Jadbabaie, Lin, and
Morse, 2003).

2. Alignment via pinning

While the virtue of the Vicsek model is its ability to
spontaneously reach an ordered phase, we can also ask if such

a phase can be induced externally. Therefore, we consider an
effective pinning control strategy in which a single pinned
node (agent) facilitates the alignment of the whole group. This
is achieved by adding to the Vicsek model an additional agent,
labeled 0, which acts as the group’s leader. Agent 0 moves at
the same constant speed v0 as its N followers but with a fixed
direction θ0, representing the desired direction for the whole
system. Each follower’s neighbor set includes the leader
whenever it is within the follower’s circle of radius r.
Hence we have

θiðtþ1Þ¼ 1

1þkiðtÞþbiðtÞ
�
θiðtÞþ

X
j∈N iðtÞ

θjðtÞþbiðtÞθ0
�
;

ð120Þ

where biðtÞ ¼ 1 whenever the leader is a neighbor of agent i
and 0 otherwise. It has been proved that if the (N þ 1) agents
are linked together for each time interval, then alignment will
be asymptotically reached (Jadbabaie, Lin, and Morse, 2003).
In other words, if the union of graphs of the (N þ 1) agents
encountered along each time interval is connected, then
eventually all the follower agents will align with the leader.

3. Distributed flocking protocols

Alignment, addressed by the Vicsek model, is only one
feature of flocking behavior. Indeed, there are three heuristic
rules for flocking (Reynolds, 1987): (i) cohesion: an attempt to
stay close to nearby flock mates; (ii) separation: avoid
collisions with nearby flock mates; and (iii) alignment: an
attempt to match velocity with nearby flock mates.
We therefore need a general theoretical framework to

design and analyze distributed flocking algorithms or proto-
cols that embody these three rules. The formal approach
described next extracts the interaction rules that can ensure the
emergence of flocking behavior (Olfati-Saber, 2006).
Consider a gradient-based flocking protocol equipped with

a velocity consensus mechanism, where each agent is steered
by the control input

FIG. 39. Kinetic phase transition in the Vicsek model. (a) The normalized average velocity (ϕ) vs the magnitude of perturbations (noise
level η) in cells of various sizes (L) with a fixed density ρ ¼ N=L2 ¼ 0.4. As η decreases, ϕ increases, implying the emergence of order
in the Vicsek model. (b) Dependence of ϕ on ½ηcðLÞ − η�=ηc in log-log scale. The slope of the lines is associated with the critical
exponent β for which we get β ¼ 0.45� 0.07. The scaling behavior of ϕ observed in such a kinetic phase transition is analogous to what
we often observe in continuous phase transitions in equilibrium systems. From Vicsek et al., 1995.
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ui ¼ fgi þ fdi : ð121Þ
The first term

fgi ≡ −∇qi
ViðqÞ ð122Þ

is gradient based and regulates the distance between agent i
and its neighbors, avoiding the collision and cohesion of the
agents. This term is derived from a smooth collective potential
function ViðqÞ, which has a unique minimum when each
agent is at the same distance from all of its neighbors on the
proximity graph GðqÞ, representing the ideal case for flocking
[Fig. 40(a)]. The second term

fdi ¼
X

j∈N iðtÞ
aijðtÞðpj − piÞ ð123Þ

regulates the velocity of agent i to match the average
velocity of its neighbors, being responsible for the velocity
alignment. Here the weighted spatial adjacency matrix
AðtÞ ¼ ½aijðtÞ� is calculated from the proximity network
GðqÞ. The flocking protocol (121) embodies all three rules
of Reynolds. However, for a generic initial state and a large
number of agents (e.g., N > 100), the protocol (121) leads
to fragmentation, rather than flocking (Olfati-Saber, 2006),
meaning that the agents spontaneously form several
groups, where different groups move in different directions
[Fig. 40(c)]. To resolve this fragmentation issue, we
introduce a navigational feedback term to the control input
of each agent

ui ¼ fgi þ fdi þ fγi ; ð124Þ
where

fγi ¼ −c1ðqi − qγÞ − c2ðpi − pγÞ ð125Þ

drives agent i to follow a group objective. The group
objective can be considered as a virtual leader with the
following equation of motion:

_qγ ¼ pγ ; _pγ ¼ fγðqγ;pγÞ ; ð126Þ

where qγ;pγ; fγðqγ;pγÞ ∈ RD are the position, velocity,
and acceleration (control input) of the virtual leader,
respectively. By taking into account the navigational feed-
back, the protocol (124) enables a group of agents to
track a virtual leader that moves at a constant velocity
and hence leads to flocking behavior (see Fig. 41)
(Olfati-Saber, 2006).
Note that protocol (124) requires all agents to be

informed, i.e., to know the group objective, or, equivalently,
the current state ðqγ;pγÞ of the virtual leader. It turns out that
this is not necessary for flocking. Motivated by the idea of
pinning control, it has been shown that, even when only a
fraction of agents are informed (or pinned), the flocking
protocol (124) still enables all the informed agents to
move with the desired constant velocity. An uninformed
agent will also move with the desired velocity if it can be
influenced by the informed agents from time to time
(Su, Wang, and Lin, 2009). Numerical simulations suggest
that the larger the informed group is, the bigger fraction of
agents will move with the desired velocity (Su, Wang, and
Lin, 2009).
If the virtual leader travels with a varying velocity pγðtÞ, the

flocking protocol (124) enables all agents to eventually
achieve a common velocity. Yet this common velocity is
not guaranteed to match pγðtÞ. To resolve this issue, we
incorporate the acceleration of the virtual leader into the
navigational feedback (125) as follows:

fγi ¼ fγðqγ;pγÞ − c1ðqi − qγÞ − c2ðpi − pγÞ: ð127Þ

The resulting protocol enables the asymptotic tracking of the
virtual leader with a varying velocity, ensuring that the
position and velocity of the center of mass of all agents
will converge exponentially to those of the virtual leader
(Su, Wang, and Lin, 2009).
In summary, the combination of control theoretical and

network science approaches can help us understand the
emergence of order in multiagent systems. These tools are
indispensable if we wish to understand how to induce order
externally, aiming to control the collective behavior of the
system.
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FIG. 40. Geometry of flocking and fragmentation. (a) Lattice-type flocking configuration in D ¼ 2. In this ideal case, each agent is at
the same distance from all of its neighbors on the proximity graph. (b) A quasilattice for D ¼ 2 with N ¼ 150 nodes. (c) Fragmentation
phenomenon, where agents merge to form a few groups and different groups are moving in different directions. This configuration will
never lead to flocking behavior. From Olfati-Saber, 2006.
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VII. OUTLOOK

Given the rapid advances in the control of complex
networked systems, we have chosen to focus on a group of
results that will likely stay with us for many years to come.
The process of organizing the material has also exposed
obvious gaps in our knowledge. Therefore, next we highlight
several research topics that must be addressed to realize the
potential of the control of complex systems. Some of these
may be addressed shortly; others, however, may continue to
challenge the community for many years to come.

A. Stability of complex systems

Stability is a fundamental issue in the analysis and the
design of a control system, because an unstable system is
extremely difficult and costly to control, and such a system
can also be potentially dangerous (Slotine and Li, 1991; Chen,
2001). Loosely speaking, a system is stable if its trajectories
do not change too much under small perturbations.
The stability of a nonlinear dynamical system _x ¼ fðx; tÞ

can be analyzed by the Lyapunov stability theory (LST),
without explicitly integrating the differential equation. LST
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FIG. 41. Flocking behavior in multiagent systems. After the application of the flocking algorithm (124) for a few seconds, the flocking
of N ¼ 100 agents in 2D is observed. From Olfati-Saber, 2006.
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includes two methods: (i) The indirect (or linearization)
method, concerned with small perturbation around a system’s
equilibrium points x� and the stability conclusion, is inferred
from a linear approximation of the nonlinear systems around
this equilibrium point. This justifies the use of linear control
for the design and analysis of weakly nonlinear systems.
(ii) The direct method is based on the so-called Lyapunov
function—an “energylike” scalar function whose time varia-
tion can be viewed as “energy dissipation.” It is not restricted
to small perturbations and in principle can be applied to any
dynamical system. Yet we lack a general theory to find a
suitable Lyapunov function for an arbitrary system. We have
to rely on our experience and intuition to formulate Lyapunov
functions (Slotine and Li, 1991).
For a wide range of complex systems certain diagonal-

type Lyapunov functions are useful for stability analysis
(Kaszkurewicz et al., 2000). More importantly, in many cases
the necessary and sufficient conditions for the stability of
nonlinear systems are also the necessary and sufficient
conditions for the diagonal stability of a certain matrix
associated with the nonlinear system. This matrix naturally
captures the underlying network structure of the nonlinear
dynamical system.
Matrix diagonal stability is a well-known notion in stability

analysis since its introduction by Volterra around 1930 in the
context of ecological systems (Volterra, 1931). Yet its use-
fulness is limited by the difficulty of characterizing the class of
large diagonally stable matrices. Although there are efficient
optimization-based algorithms to numerically check if a
given matrix is diagonally stable (Boyd et al., 1994), there
are no effective theoretical tools to characterize general large
diagonally stable matrices. Recently, however, necessary and
sufficient diagonal stability conditions for matrices associated
with special interconnection or network structures were
studied (Arcak and Sontag, 2006, 2008; Arcak, 2011),
improving our understanding of the stability of gene regula-
tory and ecological networks. More research is required to
understand stability, an important prerequisite for control.
The stability concepts we discussed previously consider

perturbations of initial conditions for a fixed dynamical
system. There is another important notion of stability, i.e.,
structural stability, which concerns whether the qualitative
behavior of the system trajectories will be affected by small
perturbations of the system model itself (Andronov and
Pontryagin, 1937; Kuznetsov, 2004). The notion of structural
stability has not been well explored in complex networked
systems.

B. Controlling adaptive networks

Adaptability, representing a system’s ability to respond to
changes in the external conditions, is a key characteristic of
complex systems. Indeed, the structure of many real networks
coevolves with the dynamics that takes place on them,
naturally adapting to shifting environments (Gross and
Sayama, 2009).
Adaptive networks, also known as state-dependent dynamic

networks in control theory (Mesbahi, 2005; Mesbahi and
Egerstedt, 2010), are collections of units that interact through
a network, whose topology evolves as the state of the units

changes with time. Adaptive networks are a special class of
temporal networks, whose edges are not continuously active
(Karsai et al., 2011; Holme and Saramäki, 2012; Pan and Li,
2014; Pósfai and Hövel, 2014). If the temporal order of the
network snapshots at different time points depend on the states
of the nodes, then the temporal network is adaptive. A special
case of adaptive networks is switched systems, which consist
of a family of subsystems and a switching law that orches-
trates the switching among them (Xie, Zheng, and Wang,
2002; Xie and Wang, 2003).
Adaptive networks are ubiquitous, especially in biology.

For example, mycelial fungi and acellular slime molds grow as
self-organized networks that explore new territory for food
sources, while maintaining an effective internal transport
system to resist continuous attacks or random damage
(Fessel et al., 2012). Honed by evolution, these biological
networks are examples of adaptive transportation networks,
balancing real-world compromises between search strategy
and transport efficiency (Tero et al., 2010). The genome is
also an intriguing example of an adaptive network, where
the chromosomal geometry directly relates to the genomic
activity, which in turn strongly correlates with geometry
(Rajapakse, Groudine, and Mesbahi, 2011). Similarly, neuro-
nal connections (synapses) in our brains can strengthen or
weaken and form, in response to changes in brain activity, a
phenomenon called synaptic plasticity (Perin, Berger, and
Markram, 2011; Bayati and Valizadeh, 2012).
A comprehensive analytical framework is needed to address

the control of adaptive networks. This framework must
recognize the network structure itself as a dynamical system,
together with the nodal or edge dynamics on the network,
capturing the feedback mechanisms linking the structure and
dynamics. Studying the controllability of such systems would
be a natural starting point because seemingly mild limitations
on either the network structure or the dynamical rules may
place severe constraints on the controllability of the whole
system. Identifying these constraints is crucial if we want to
refrain from improving systems that already operate close to
their fundamental limits.

C. Controlling networks of networks

Many natural and engineered systems are composed of a set
of coupled layers or a network of subsystems, characterized by
different time scales and structural patterns. New notions,
from multiplex networks (Boccaletti et al., 2014; Kivelä et al.,
2014) to networks of networks (D’Agostino and Scala, 2014;
Gao, Li, and Havlin, 2014), have recently been proposed to
explore the properties of these systems, focusing mainly on
their structural integrity and robustness. Consider a multiplex
network, i.e., a set of coupled layered networks, where
different layers have different characteristics. We can model
such a system as a layered network, whose interconnections
between layers capture the interactions between a node in one
layer and its counterpart in another layer. Similarly, in a
network of networks each node itself is a network or a multi-
input and multi-output (MIMO) subsystem. Different nodes
(subsystems) could have totally different dimensions and
dynamics. This is rather different from the control frame-
work discussed in much of this paper, where we typically
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assumed that all the nodes share the same type of dynamics
or even just scalar dynamics (with state variables xi ∈ R for
all nodes).
Developing a framework to control networks of networks

is a necessary step if we want to understand the control
principles of complex systems. Early attempts have focused
on the issues of controllability or observability with linear
dynamics (Chapman, Nabi-Abdolyousefi, and Mesbahi, 2014;
Yuan et al., 2014; Menichetti, Dall’Asta, and Bianconi, 2016;
Wang et al., 2016; Zhou, 2015; Zhang, Garas, and Schweitzer,
2016). For example, some controllability conditions on the
overall network topology, the node dynamics, the external
control inputs, and the inner interactions have been derived for
a networked MIMO system (Wang et al., 2016). Interestingly,
the controllability of the networked MIMO system is an
integrated result of multiple factors, which cannot be
decoupled into the controllability of the individual subsystem
or the properties solely determined by the network topology.
Despite these efforts, we lack a general framework to
systematically explore the control of networks of networks.
Yet the problem’s importance will likely trigger more research
in both network science and control theory.

D. Noise

Complex systems, especially biological systems, are noisy.
They are affected by two kinds of noise: the intrinsic
randomness of individual events and the extrinsic influence
of changing environments (Lestas, Vinnicombe, and Paulsson,
2010; Hilfinger and Paulsson, 2011). Consider, for example,
regulatory processes in a cell. The intrinsic noise is rooted in
the low copy number of biomolecules or diffusive cellular
dynamics. In particular, if N is the number of molecules in the
system, fluctuations inN lead to statistical noise with intensity
in the order of N−1=2. For large N, we can assume that a
continuous deterministic dynamics effectively describes the
changes of the average concentrations. However, for small N
the statistical noise cannot be ignored. For example, gene
regulation may be affected by large fluctuations due to the low
copy number of transcription factors. The extrinsic noise of a
biological system is mainly due to the changing environments
experienced by the system. The environmental change may
have microscopic origin (such as cellular age or cell cycle
stage and organelle distributions) or can be related to the
macroscopic physical or chemical environment (like illumi-
nation conditions, temperature, pressure, and pH level). To
infer or reconstruct the states of a biological system, we also
need to deal with the measurement error, which is independent
of the biological system and can also be considered as
extrinsic noise.
Both internal and external noises are known to affect the

control of complex systems. At this time we lack a full
understanding of the role of noise or stochastic fluctuations on
the control of complex systems.

E. Controlling quantum networks

Quantum control theory aims to offer practical methods to
control quantum systems. Despite recent progress, quantum
control theory is still in its infancy (Dong and Petersen,

2010) for several reasons. First, in classical control it is
assumed that the measurement does not affect the measured
system. By contrast, in quantum control it is difficult, if not
impossible, to acquire information about quantum states
without destroying them. Second, some classes of quantum
control tasks, such as controlling quantum entanglement and
protecting quantum coherence, are unique for quantum
systems. In other words, there are no corresponding tasks
in classical control theory.
The notion of quantum networks was recently proposed

by the quantum information community (Acín, Cirac, and
Lewenstein, 2007; Perseguers, Cirac, and Wehr, 2008; Cuquet
and Calsamiglia, 2009, 2012; Lapeyre, Wehr, and Lewenstein,
2009; Perseguers, 2010; Perseguers et al., 2010, 2013; Czekaj,
Chhajlany, and Horodecki, 2012; Ritter et al., 2012), offering
fresh perspectives in the field of complex networks. In a
quantum network, each node possesses exactly one qubit for
each of its neighbors. Since nodes can act on these qubits, they
are often called “stations.” The edge between two nodes
represents the entanglement between two qubits. The degree
of entanglement between two nodes can be considered as the
connection probability (p) in the context of classical random
graphs.
In a classical random graph if we let p scale with the graph

size as p ∼ Nz, increasingly complex subgraphs appear as z
exceeds a series of thresholds. For example, for z ≤ −2 almost
all graphs contain only isolated nodes and edges. When z
passes through −3=2 (or −4=3), trees of order 3 (or 4)
suddenly appear. As z approaches −1, trees and cycles of
all orders appear (Albert and Barabási, 2002). Surprisingly, in
quantum networks any subgraph can be generated by local
operations and classical communication, provided that the
entanglement between pairs of nodes scales with the graph
size as p ∼ N−2 (Perseguers et al., 2010). In other words,
thanks to the superposition principle and the ability to
coherently manipulate the qubits at the stations, even for
the lowest nontrivial connection probability that is just
sufficient to get simple connections in a classical graph, we
obtain quantum subgraphs of any complexity.
This result illustrates that quantum networks have unique

properties that are impossible in their classical counterparts.
Hence, the control of quantum complex networks will require
new methodologies.

F. Conclusion

Revealing the control principles of complex networked
systems remains a challenging problem that, given its depth
and applications, will probably engage multiple research
communities for the next decade. In this review we aimed
to summarize in a coherent fashion the current body of
knowledge on this fascinating topic. This forced us to explore
key notions in control theory, such as controllability and
observability, but also to explore how to steer a complex
networked system to a desired final state or trajectory or a
desired collective behavior. There are many outstanding open
questions to be addressed, advances on which will require
interdisciplinary collaborations. We hope that this review will
catalyze new interdisciplinary approaches, moving our
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understanding of control forward and enhancing our ability to
control complex systems.
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