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Topological materials have become the focus of intense research in recent years, since they exhibit
fundamentally new physical phenomena with potential applications for novel devices and quantum
information technology. One of the hallmarks of topological materials is the existence of protected
gapless surface states, which arise due to a nontrivial topology of the bulk wave functions. This
review provides a pedagogical introduction into the field of topological quantum matter with an
emphasis on classification schemes. Both fully gapped and gapless topological materials and their
classification in terms of nonspatial symmetries, such as time reversal, as well as spatial symmetries,
such as reflection, are considered. Furthermore, the classification of gapless modes localized on
topological defects is surveyed. The classification of these systems is discussed by use of homotopy
groups, Clifford algebras, K theory, and nonlinear sigma models describing the Anderson (de)
localization at the surface or inside a defect of the material. Theoretical model systems and their
topological invariants are reviewed together with recent experimental results in order to provide a
unified and comprehensive perspective of the field. While the bulk of this article is concerned with the
topological properties of noninteracting or mean-field Hamiltonians, a brief overview of recent results
and open questions concerning the topological classifications of interacting systems is also provided.
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I. INTRODUCTION

In the last decade since the groundbreaking discovery of
topological insulators (TIs) induced by strong spin-orbit
interactions, tremendous progress has been made in our
understanding of topological states of quantum matter.
While many properties of condensed matter systems have
an analog in classical systems and may be understood without
referring to quantum mechanics, topological states and
topological phenomena are rooted in quantum mechanics in
an essential way: They are states of matter whose quantum
mechanical wave functions are topologically nontrivial and
distinct from trivial states of matter, i.e., an atomic insulator.
The precise meaning of the wave function topology will be
elaborated on. The best known example of a topological phase
is the integer quantum Hall state, in which protected
chiral edge states give rise to a quantized transverse Hall
conductivity. These edge states arise due to a nontrivial wave
function topology that can be measured in terms of a
quantized topological invariant, i.e., the Chern or Thouless–
Kohmoto–Nightingale–den Nijs number (Thouless et al.,
1982; Kohmoto, 1985). This invariant, which is proportional
to the Hall conductivity, remains unchanged under adiabatic
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deformations of the system, as long as the bulk gap is not closed.
It was long thought that topological states and topological
phenomena are rather rare in nature and occur only under
extreme conditions. However, with the advent of spin-orbit-
induced topological insulators, it became clear that topological
quantum states are more ubiquitous than previously thought. In
fact, the study of topological aspects has become increasingly
widespread in the investigation of insulating and semimetallic
electronic structures, unconventional superconductors (SCs),
and interacting bosonic and fermionic systems.
Another theme that emerged from spin-orbit-induced

topological insulators is the interplay between symmetry
and topology. Symmetries play an important role in the
Landau-Ginzburg-Wilson framework of spontaneous sym-
metry breaking for the classification of different states of
matter (Wilson and Kogut, 1974; Landau, Lifshitz, and
Pitaevskii, 1999). Intertwined with the topology of quantum
states, symmetries serve again as an important guiding
principle, but in a way that is drastically different from the
Landau-Ginzburg-Wilson theory. First, topological insulators
cannot be distinguished from ordinary, topologically trivial
insulators in terms of their symmetries and their topological
nontriviality cannot be detected by a local order parameter.
Second, in making a distinction between spin-orbit-induced
topological insulators and ordinary insulators, time-reversal
symmetry is crucial. That is, in the absence of time-reversal
symmetry, it is possible to adiabatically deform spin-orbit-
induced topological insulators into a topologically trivial state
without closing the bulk gap. For this reason, topological
insulators are called symmetry-protected topological (SPT)
phases of matter. Roughly speaking, an SPT phase is a short-
range entangled gapped phase whose topological properties
rely on the presence of symmetries.

A. Overview of topological materials

Let us now give a brief overview of material systems in
which topology plays an important role.
First, insulating electronic band structures can be catego-

rized in terms of topology. By now, spin-orbit-induced
topological insulators have become classic examples of
topological band insulators. In these systems strong spin-
orbit interactions open up a bulk band gap and give rise to an
odd number of band inversions, thereby altering the wave
function topology. Experimentally, this topological quantum
state has been realized in HgTe/CdTe semiconductor quantum
wells (Bernevig, Hughes, and Zhang, 2006; Konig et al.,
2007), in InAs/GaSb heterojunctions sandwiched by AlSb
(C. Liu et al., 2008; Knez, Du, and Sullivan, 2011), in BiSb
alloys (Hsieh et al., 2008), in Bi2Se3 (Hsieh et al., 2009; Xia
et al., 2009), and in many other systems (Hasan and Moore,
2011; Ando, 2013). The nontrivial wave function topology of
these band insulators manifests itself at the boundary as an
odd number of helical edge states or Dirac cone surface states,
which are protected by time-reversal symmetry. As first shown
by Kane and Mele, the topological properties of these
insulators are characterized by a Z2 invariant (Kane and
Mele, 2005a, 2005b; Fu and Kane, 2006, 2007; Fu, Kane, and
Mele, 2007; Moore and Balents, 2007; Roy, 2009a, 2009b), in
a similar way as the Chern invariant characterizes the integer

quantum Hall state. Besides the exotic surface states which
completely evade Anderson localization (Bardarson et al.,
2007; Nomura, Koshino, and Ryu, 2007; Roushan et al.,
2009; Alpichshev et al., 2010), many other novel phenomena
have been theoretically predicted to occur in these systems,
including axion electrodynamics (Qi, Hughes, and Zhang,
2008; Essin, Moore, and Vanderbilt, 2009), dissipationless
spin currents, and proximity-induced topological supercon-
ductivity (Fu and Kane, 2008). These novel properties have
recently attracted great interest, since they could potentially be
used for new technical applications, ranging from spin
electronic devices to quantum information technology.
In the case of spin-orbit-induced topological insulators

the topological nontriviality is guaranteed by time-reversal
symmetry, a nonspatial symmetry that acts locally in position
space. However, SPT quantum states can also arise from
spatial symmetries, i.e., symmetries that act nonlocally in
position space, such as rotation, reflection, or other space-
group symmetries (Fu, 2011). One prominent experimental
realization of a topological phase with spatial symmetries is
the rock-salt semiconductor SnTe, whose Dirac cone surface
states are protected by reflection symmetry (Dziawa et al.,
2012; Hsieh et al., 2012; Tanaka et al., 2012; Xu et al., 2012).
Second, topological concepts can be applied to unconven-

tional superconductors and superfluids. In fact, there is a direct
analogy between TIs and topological superconductors (TSCs).
Both quantum states are fully gapped in the bulk, but exhibit
gapless conducting modes on their surfaces. In contrast to
topological insulators, the surface excitations of topological
superconductors are not electrons (or holes), but Bogoliubov
quasiparticles, i.e., coherent superpositions of electron and
hole excitations. Because of the particle-hole symmetry of
superconductors, zero-energy Bogoliubov quasiparticles con-
tain equal parts of electron and hole excitations, and therefore
have the properties of Majorana particles. While there exists
an abundance of examples of topological insulators, topo-
logical superconductors are rare, since an unconventional
pairing symmetry is required for a topologically nontrivial
state. Nevertheless, topological superconductors have become
the subject of intense research, due to their protected Majorana
surface states, which could potentially be utilized as basic
building blocks of fault-tolerant quantum computers (Nayak
et al., 2008). Indeed, there has recently been much effort to
engineer topological superconducting states using hetero-
structures with conventional superconductors (Alicea, 2012;
Beenakker, 2013; Stanescu and Tewari, 2013). One promising
proposal is to proximity induce p-wave superconductivity
in a semiconductor nanowire (Lutchyn, Sau, and Das Sarma,
2010; Oreg, Refael, and von Oppen, 2010; Mourik et al.,
2012); another is to use Shiba bound states induced by
magnetic adatoms on the surface of an s-wave superconductor
(Nadj-Perge et al., 2014). In parallel, there has been renewed
interest in the B phase of superfluid 3He, which realizes
a time-reversal symmetric topological superfluid. The pre-
dicted surface Majorana bound states of 3He-B have been
observed using transverse acoustic impedance measurements
(Murakawa et al., 2009).
Third, nodal systems, such as semimetals and nodal super-

conductors, can exhibit nontrivial band topology, even though
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the bulk gap closes at certain points in the Brillouin zone (BZ).
The Fermi surfaces (superconducting nodes) of these gapless
materials are topologically protected by topological invariants,
which are defined in terms of an integral along a surface
enclosing the gapless points. Similar to fully gapped topo-
logical systems, the topological characteristics of nodal
materials manifest themselves at the surface in terms of
gapless boundary modes. Depending on the symmetry proper-
ties and the dimensionality of the bulk Fermi surface, these
gapless boundary modes form Dirac cones, Fermi arcs, or flat
bands. Topological nodal systems can be protected by non-
spatial symmetries (i.e., time-reversal or particle-hole sym-
metry) as well as spatial lattice symmetries, or a combination
of the two. Examples of gapless topological materials include
dx2−y2 -wave superconductors (Ryu and Hatsugai, 2002),
the A phase of superfluid 3He (Volovik, 2003, 2011), nodal
noncentrosymmetric superconductors (Brydon, Schnyder, and
Timm, 2011; Schnyder and Ryu, 2011), Dirac materials
(Z. Wang et al., 2012; Z. Wang et al., 2013d), and Weyl
semimetals (Wan et al., 2011). Recently, it was experimentally
shown that the Dirac semimetal is realized in Na3Bi (Liu et al.,
2014b), while the Weyl semimetal is realized in TaAs
(Lv et al., 2015; S.-Y. Xu et al., 2015b).
All of the aforementioned topological materials can be

understood, at least at a phenomenological level, in terms of
noninteracting or mean-field Hamiltonians. While the topo-
logical properties of these single-particle theories are reason-
ably well understood, less is known about the topological
characteristics of strongly correlated systems. Recently, a
number of strongly correlated materials have been discussed
as interacting analogs of topological insulators. Among them
are iridium oxide materials (Shitade et al., 2009), transition-
metal oxide heterostructures (Xiao et al., 2011), and the
Kondo insulator SmB6 (Dzero et al., 2010, 2012; Wolgast
et al., 2013). On the theory side, the Haldane antiferromag-
netic spin-1 chain has been identified as an interacting
SPT phase. Experimentally, this phase may be realized in
some quasi-one-dimensional spin-1 quantum magnets,
such as Y2BaNiO5 (Darriet and Regnault, 1993) and
NiðC2H8N2Þ2NO2ðClO4Þ (Renard et al., 1987).

B. Scope and organization of the review

A major theme of solid-state physics is the classification
and characterization of different phases of matter. Many
quantum phases, such as superconductors or magnets, can
be categorized within the Landau-Ginzburg-Wilson frame-
work, i.e., by the principle of spontaneously broken sym-
metry. The classification of topological quantum matter, on
the other hand, is not based on the broken symmetry, but
the topology of the quantum mechanical wave functions
(Thouless et al., 1982; Wen, 1990). The ever-increasing
number of topological materials and SPT phases, as discussed
in the previous section, calls for a comprehensive classifica-
tion scheme of topological quantum matter.
In this review, we survey recently developed classification

schemes of fully gapped and gapless materials and discuss
new experimental developments. Our aim is to provide a
manual and reference for condensed matter theorists and
experimentalists who wish to study the rapidly growing field

of topological quantum matter. To exemplify the topological
features we discuss concrete model systems together with
recent experimental findings. While the main part of this
article is concerned with the topological characteristics of
quadratic noninteracting Hamiltonians, we will also give a
brief overview of established results and open questions
regarding the topology of interacting systems.
The outline of the article is as follows. After reviewing

symmetries in quantum systems in Sec. II, we start in Sec. III
by discussing the topological classification of fully gapped
free-fermion systems in terms of nonspatial symmetries,
namely, time-reversal symmetry (TRS), particle-hole sym-
metry (PHS), and chiral symmetry, which define a total of ten
symmetry classes (Schnyder et al., 2008; Kitaev, 2009;
Ryu, Schnyder et al., 2010). This classification scheme,
which is known as the tenfold way, categorizes quadratic
Hamiltonians with a given set of nonspatial symmetries into
topological equivalence classes. Assuming a full bulk gap,
two Hamiltonians are defined to be topologically equivalent, if
there exists a continuous interpolation between the two that
preserves the symmetries and does not close the energy gap.
Different equivalence classes for a given set of symmetries are
distinguished by topological invariants, which measure the
global phase structure of the bulk wave functions (Sec. III.B).
We review how this classification scheme is derived using
K theory (Sec. III.C) and nonlinear sigma models describing
the Anderson (de)localization at the surface of the material
(Sec. III.F). In Sec. III.D we discuss how the classification of
gapless modes localized on topological defects can be derived
in a similar manner.
Recently, the tenfold scheme has been generalized to

include spatial symmetries, in particular, reflection sym-
metries (Chiu, Yao, and Ryu, 2013; Morimoto and
Furusaki, 2013; Shiozaki and Sato, 2014), which is the
subject of Sec. IV. In a topological material with spatial
symmetries, only those surfaces which are invariant under the
spatial symmetry operations can support gapless boundary
modes. We review some examples of reflection-symmetry-
protected topological systems, in particular, a low-energy
model describing the physics of SnTe. This is followed in
Sec. V by a description of the topological characteristics of
gapless materials, such as semimetals and nodal supercon-
ductors, which can be classified in a similar manner as fully
gapped systems (Matsuura et al., 2013; Zhao andWang, 2013;
Chiu and Schnyder, 2014; Shiozaki and Sato, 2014). We
discuss the topological classification of gapless materials in
terms of both nonspatial (Sec. V.A) and spatial symmetries
(Sec. V.B).
In Sec. VI, we give a brief overview of various approaches

to diagnose and possibly classify interacting SPT phases.
Because the field of interacting SPT phases is still rapidly
growing, the presentation in this section is less systematic than
in the other parts. Interactions can modify the classification in
several different ways: (i) Two different phases which are
distinct within the free-fermion classification can merge in the
presence of interactions, and (ii) interactions can give rise to
new topological phases which cannot exist in the absence of
correlations. As an example of case (i) we discuss in Sec. VI
various topological superconductors in one, two, and three
spatial dimensions, where the interaction effects invalidate the
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free-fermion classification. Finally, we conclude in Sec. VII,
where we give an outlook and mention some omitted topics,
such as symmetry-enriched topological phases, fractional
topological insulators, and Floquet topological insulators.
We also give directions for future research.
Given the constraint of the size of this review and the large

literature on topological materials, this article cannot provide a
complete coverage of the subject at this stage. For further
background and reviews on topological quantum matter
beyond the scope of this article, we mention in addition to
the Rev. Mod. Phys. articles by Hasan and Kane (2010) and Qi
and Zhang (2011), the following works: Volovik (2003),
König et al. (2008), Moore (2010), Shen (2012), Ando (2013),
Bernevig and Hughes (2013), Franz and Molenkamp (2013),
Turner and Vishwanath (2013), Witczak-Krempa et al. (2014),
Zahid Hasan, Xu, and Neupane (2014), Ando and Fu (2015),
Hasan, Xu, and Bian (2015), Mizushima et al. (2015),
Schnyder and Brydon (2015), and Senthil (2015). There
are also a number of reviews on the subject of Majorana
fermions (Alicea, 2012; Beenakker, 2013; Stanescu and
Tewari, 2013; Elliott and Franz, 2015).

II. SYMMETRIES

In this section, we review how different symmetries are
implemented in fermionic systems. Let fψ̂ I ; ψ̂

†
IgI¼1;…;N be a

set of fermion annihilation or creation operators. Here we
imagine for ease of notation that we have “regularized” the
system on a lattice, and I; J;… are combined labels for the
lattice sites i; j;…, and if relevant, of additional quantum
numbers, such as, e.g., a Pauli-spin quantum number [e.g.,
I ¼ ði; σÞ with σ ¼ �1=2]. The creation and annihilation
operators satisfy the canonical anticommutation relation
fψ̂ I ; ψ̂

†
Jg ¼ δIJ.

Let us now consider a general noninteracting system of
fermions described by a “second quantized” Hamiltonian Ĥ.
For a nonsuperconducting system, Ĥ is given generically as

Ĥ ¼ ψ̂†
IH

IJψ̂J ≡ ψ̂†Hψ̂ ; ð2:1Þ

where the N × N matrix HIJ is the “first quantized”
Hamiltonian. In the second expression of Eq. (2.1) we adopt
Einstein’s convention of summation on repeated indices,
while in the last expression in Eq. (2.1) we use matrix
notation. [Similarly, a superconducting system is described
by a Bogoliubov–de Gennes (BdG) Hamiltonian, for which
we use Nambu spinors instead of complex fermion operators,
and whose first quantized form is again a matrix H when
discretized on a lattice.]
According to the symmetry representation theorem by

Wigner, any symmetry transformation in quantum mechanics
can be represented on the Hilbert space by an operator that is
either linear and unitary, or antilinear and antiunitary. We start
by considering an example of a unitary symmetry, described
by a set of operators fG1; G2;…g which form a group. The
Hilbert space must then be a representation of this group with
fĜ1; Ĝ2;…g denoting the operators acting on the Hilbert
space. For our purposes, it is convenient to introduce the
symmetry transformations in terms of their action on

fermionic operators. That is, we consider a linear trans-
formation

ψ̂ I → ψ̂ 0I ≔ Ûψ̂ IÛ
−1 ¼ UI

Jψ̂J; ð2:2Þ

where Û and ψ̂ I , ψ̂
†
I are second quantized operators that act on

states in the fermionic Fock space. UI
J, however, is “a

collection of numbers,” i.e., not a second quantized operator.
(More general possibilities, where a unitary symmetry
operator mixes ψ̂ and ψ̂†, will be discussed later.) Now, the
system is invariant under Û if the canonical anticommutation
relation and Ĥ are preserved, fψ̂ I; ψ̂

†
Jg ¼ Ûfψ̂ I ; ψ̂

†
JgÛ−1 and

Û Ĥ Û−1 ¼ Ĥ. The former condition implies that UI
J is a

unitary matrix, while the latter leads to U�K
IHKLUL

J ¼ HIJ,
or U†HU ¼ H in matrix notation.
The unitary symmetry operation Û is called spatial (non-

spatial) when it acts (does not act) on the spatial part (i.e., the
lattice site labels i; j;…) of the collective indices I; J;…. In
particular, when Û can be factorized as Û ¼Qi Ûi, i.e., when
it acts on each lattice site separately, it is nonspatial and is
called on site. A similar definition also applies to antiunitary
symmetry operations. In this section, we focus on nonspatial
symmetries, i.e., “internal” symmetries, such as time-reversal
symmetry. Spatial symmetries are discussed in Sec. IV.
Note that the unitary symmetry of the kind considered in

Eq. (2.2) is a global (i.e., nongauge) symmetry. As seen in
Sec. VI, local (i.e., gauge) symmetries will play a crucial role
as a probe for SPT phases.

A. Time-reversal symmetry

Let us now consider TRS. Time reversal T̂ is an antiunitary
operator that acts on the fermion creation and annihilation
operators as

T̂ ψ̂ I T̂
−1 ¼ ðUTÞIJψ̂J; T̂ iT̂ −1 ¼ −i: ð2:3Þ

[One could in principle have ψ̂† appearing on the right-hand
side of Eq. (2.3). But this case can be treated as a combination
of TR and PH.] A system is TR invariant if T̂ preserves the
canonical anticommutator and if the Hamiltonian satisfies
T̂ Ĥ T̂ −1 ¼ Ĥ. Note that if a Hermitian operator Ô, built out
of fermion operators, is preserved under T̂ , then T̂ Ĥ T̂ −1 ¼
Ĥ implies that T̂ ÔðtÞT̂ −1 ¼ T̂ eþiĤtÔe−iĤtT̂ −1 ¼ Ôð−tÞ. In
noninteracting systems, the condition T̂ Ĥ T̂ −1 ¼ Ĥ leads to

T̂ ∶ U†
TH
�UT ¼ þH: ð2:4Þ

Because any given Hamiltonian has many accidental,
i.e., nongeneric, symmetries, we consider in the following
entire parameter families (i.e., ensembles) of Hamiltonians,
whose symmetries are generic. Such an ensemble of
Hamiltonians with a given set of generic symmetries is called
a symmetry class. We now let H run over all possible
single-particle Hamiltonians of such a symmetry class with
TRS. Applying the TRS condition (2.4) twice, one
obtains ðU�TUTÞ†HðU�TUTÞ ¼ H. Since the first quantized
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Hamiltonian H runs over an irreducible representation space,
U�TUT should be a multiple of the identity matrix 1 due to
Schur’s lemma, i.e., U�TUT ¼ eiα1. Since UT is a unitary
matrix, it follows that U�T ¼ eiαU†

T ⇒ ðUTÞT ¼ eiαUT .
Hence, we find e2iα ¼ 1, which leads to the two possibilities
U�TUT ¼ �1. Thus, acting on a fermion operator ψ̂ I with T̂ 2

simply reproduces ψ̂ I , possibly up to a sign T̂ 2ψ̂ I T̂
−2 ¼

ðU�TUT ψ̂ÞI ¼ �ψ̂ I . Similarly, for an operator consisting of n
fermion creation and annihilation operators T̂ 2ÔT̂ −2 ¼
ð�ÞnÔ. To summarize, TR operation T̂ satisfies

T̂ 2 ¼ ð�1ÞN̂ when U�TUT ¼ �1; ð2:5Þ

where N̂ ≔
P

Iψ̂
†
I ψ̂ I is the total fermion number operator.

In particular, when U�TUT ¼ −1, T̂ squares to the fermion
number parity defined by

Ĝf ≔ ð−1ÞN̂ : ð2:6Þ

For systems with T̂ 2 ¼ −1 (i.e., for systems with an odd
number of fermions and T̂ 2 ¼ Ĝf), TR invariance leads to the
Kramers degeneracy of the eigenvalues, which follows from
the famous Kramers theorem.

B. Particle-hole symmetry

Particle hole Ĉ is a unitary transformation that mixes
fermion creation and annihilation operators:

Ĉψ̂ I Ĉ
−1 ¼ ðU�CÞIJψ̂†

J: ð2:7Þ

Ĉ is also called charge conjugation, since in particle-number
conserving systems, it flips the sign of the Uð1Þ charge
Ĉ Q̂ Ĉ−1 ¼ −Q̂, where Q̂ ≔ N̂ − N=2 and N=2 is half the
number of “orbitals,” i.e., half the dimension of the single-
particle Hilbert space. Requiring that the canonical anticom-
mutation relation is invariant under Ĉ, one finds that UC is a
unitary matrix. For the case of a noninteracting Hamil-
tonian Ĥ, PHS leads to the condition Ĥ ¼ Ĉ Ĥ Ĉ−1 ¼
−ψ̂†ðU†

CH
TUCÞψ̂ þ TrH, which implies

Ĉ∶ U†
CH

TUC ¼ −H: ð2:8Þ

Observe from Eq. (2.8) it follows that TrH ¼ HII ¼ 0. Since
H is Hermitian, this PHS condition for single-particle
Hamiltonians may also be written as −U†

CH
�UC ¼ H.

Inspection of Eq. (2.8) reveals that Ĉ when acting on a
single-particle Hilbert space, is not a unitary symmetry, but
rather a reality condition on the Hamiltonian H modulo
unitary rotations. By repeating the same arguments as in
the case of TRS, we find that there are two kinds of PH
transformations:

Ĉ2 ¼ ð�1ÞN̂ when U�CUC ¼ �1: ð2:9Þ

In PH symmetric systems Ĥ, where Ĉ Ĥ Ĉ−1 ¼ Ĥ, the particle-
hole reversed partner Ĉjαi of every eigenstate jαi of Ĥ is also

an eigenstate, since Ĉ Ĥ Ĉ−1Ĉjαi ¼ EαĈjαi. Similarly, for
single-particle Hamiltonians, it follows that for every eigen-
wave function uA of H with single-particle energy εA,
HIJuAJ ¼ εAuAI , its particle-hole reversed partner U†

CðuAÞ�
is also an eigenwave function, but with energy −εA,
since U†

CH
�UCU

†
CðuAÞ� ¼ εAU†

CðuAÞ�.
As an example of a PH symmetric system, we examine the

Hubbard model defined on a bipartite lattice

Ĥ ¼
Xi≠j
ij

X
σ

tijĉ
†
iσ ĉjσ − μ

X
i

X
σ

n̂iσ þ U
X
i

n̂i↑n̂i↓; ð2:10Þ

where ĉ†iσ is the electron creation operator at lattice site i with
spin σ ¼ ↑=↓ and n̂iσ ¼ ĉ†iσ ĉiσ . Here ti;j ¼ t�ji, μ, and U
denote the hopping matrix element, the chemical potential,
and the interaction strength, respectively. Now consider the
following PH transformation: Ĉĉiσ Ĉ

−1 ¼ ð−1Þiĉ†iσ , Ĉĉ†iσĈ−1 ¼
ð−1Þiĉiσ , where the sign ð−1Þi isþ1 (−1) for sites i belonging
to sublattice A (B). The Hamiltonian (2.10) is invariant under
Ĉ when the tij’s connecting sites from the same (different)
sublattice are imaginary (real) and μ ¼ U=2.

C. Chiral symmetry

The combination of T̂ with Ĉ leads to a third symmetry, the
so-called chiral symmetry. That is, one can have a situation
where both T̂ and Ĉ are broken, but their combination is
satisfied

Ŝ ¼ T̂ · Ĉ: ð2:11Þ

Chiral symmetry Ŝ acts on fermion operators as

Ŝψ̂ IŜ
−1 ¼ ðUCUTÞIJψ̂†

J: ð2:12Þ

It follows from Ŝ Ĥ Ŝ−1 ¼ Ĥ that the invariance of a quadratic
Hamiltonian H under Ŝ is described by

Ŝ∶ U†
SHUS ¼ −H; where US ¼ U�CU

�
T: ð2:13Þ

Note that TrH ¼ 0 follows immediately from Eq. (2.13).
Applying the same reasoning that we used to derive
T̂ 2 ¼ Ĉ2 ¼ ð�ÞN̂ , we find that U2

S ¼ eiα1. By redefining
US → eiα=2US, the chiral symmetry condition for single-
particle Hamiltonians simplifies to

Ŝ∶fH;USg ¼ 0; U2
S ¼ U†

SUS ¼ 1: ð2:14Þ

With this, one infers that the eigenvalues of the chiral operator
are �1. Additionally, one may impose the condition
TrUS ¼ 0, which, however, is not necessary (see later for
an example). Chiral symmetry gives rise to a symmetric
spectrum of single-particle Hamiltonians: if jui is an eigen-
state of H with eigenvalue ε, then USjui is also an eigenstate,
but with eigenvalue −ε. In the basis in which US is diagonal,
the single-particle Hamiltonian H is block off-diagonal,

Chiu et al.: Classification of topological quantum matter …

Rev. Mod. Phys., Vol. 88, No. 3, July–September 2016 035005-6



H ¼
�

0 D

D† 0

�
; ð2:15Þ

whereD is a NA × NB rectangular matrix with NA þ NB ¼ N.
As an example, let us consider a tight-binding Hamiltonian

of spinless fermions on a bipartite lattice:

Ĥ ¼
X
m;n

tmnĉ
†
mĉn; tmn ¼ t�nm ∈ C: ð2:16Þ

To construct a chiral symmetry we combine the PH trans-
formation discussed in Eq. (2.10) (but drop the spin degree
of freedom σ) with TRS for spinless fermions, which is
defined as T̂ ĉmT̂

−1 ¼ ĉm, with T̂ iT̂ ¼ −i. This leads to the
symmetry condition ŜĉmŜ

−1 ¼ ð−Þmĉ†m, with ŜiŜ−1 ¼ −i.
Hence, Ĥ is invariant under Ŝ when tmn is a bipartite hopping,
i.e., when tmn only connects sites on different sublattices.
Observe that in this example TrUS ¼ NA − NB, whereNA=B is
the number of sites on sublattice A=B.
Besides the bipartite hopping model (Gade and Wegner,

1991; Gade, 1993), chiral symmetry is realized in BdG
systems with TRS and Sz conservation (Foster and Ludwig,
2008) and in QCD (Verbaarschot, 1994). Chiral symmetry
also appears in bosonic systems (Dyson, 1953; Gurarie and
Chalker, 2002, 2003; Kane and Lubensky, 2014) and in
entanglement Hamiltonians (Turner, Zhang, and
Vishwanath, 2010; Hughes, Prodan, and Bernevig, 2011;
Chang, Mudry, and Ryu, 2014).

D. BdG systems

Important examples of systems with PHS and chiral
symmetry are BdG Hamiltonians, which we discuss in this
section. These BdG examples demonstrate that physically
different symmetry conditions at the many-body level may
lead to the same set of constraints on single-particle
Hamiltonians.

1. Class D

BdG Hamiltonians are defined in terms of Nambu spinors,

ϒ̂ ¼

0BBBBBBBBBBBB@

ψ̂1

..

.

ψ̂N

ψ̂†
1

..

.

ψ̂†
N

1CCCCCCCCCCCCA
; ϒ̂† ¼ ðψ̂†

1;…; ψ̂†
N; ψ̂1;…; ψ̂NÞ; ð2:17Þ

which satisfy the canonical anticommutation relation
fϒ̂A; ϒ̂

†
Bg ¼ δAB (A; B ¼ 1;…; 2N). It is important to note

that ϒ̂ and ϒ̂† are not independent, but are related to each
other by

ðτ1ϒ̂ÞT ¼ ϒ̂†; ðϒ̂†τ1ÞT ¼ ϒ̂; ð2:18Þ

where the Pauli matrix τ1 acts on Nambu space. Using Nambu
spinors, the BdG Hamiltonian Ĥ is written as

Ĥ ¼ 1
2
ϒ̂†

AH
AB ϒ̂B ¼ 1

2
ϒ̂†Hϒ̂: ð2:19Þ

Since ϒ̂ and ϒ̂† are not independent, the single-
particle Hamiltonian H must satisfy a constraint. Using
Eq. (2.18), we obtain Ĥ ¼ ð1=2Þðτ1ϒ̂ÞTHðϒ̂†τ1ÞT ¼
−ð1=2Þϒ̂†ðτ1Hτ1ÞTϒ̂þ ð1=2ÞTrðτ1Hτ1Þ, which yields

τ1HTτ1 ¼ −H: ð2:20Þ

Thus, every single-particle BdG Hamiltonian satisfies PHS of
the form (2.8). However, condition (2.20) does not arise due to
an imposed symmetry, but is rather a “built-in” feature of BdG
Hamiltonians that originates from Fermi statistics. For this
reason, τ1HTτ1 ¼ −H in BdG systems should be called a
particle-hole constraint, or Fermi constraint (Kennedy and
Zirnbauer, 2016), and not a symmetry. Because of Eq. (2.20),
any BdG Hamiltonian can be written as

H ¼
�

Ξ Δ
−Δ� −ΞT

�
; Ξ ¼ Ξ†; Δ ¼ −ΔT; ð2:21Þ

where Ξ represents the “normal” part and Δ is the “anoma-
lous” part (i.e., the pairing term).
BdG Hamiltonians can be thought of as single-particle

Hamiltonians of Majorana fermions. The Majorana represen-
tation of BdG Hamiltonians is obtained by letting

�
λ̂I

λ̂IþN

�
¼
 

ψ̂ I þ ψ̂†
I

iðψ̂ I − ψ̂†
I Þ

!
; ð2:22Þ

where λ̂ are Majorana fermions satisfying

fλ̂A; λ̂Bg ¼ 2δAB; λ̂†A ¼ λ̂A ðA; B ¼ 1;…; 2NÞ: ð2:23Þ

In this Majorana basis, the BdG Hamiltonian can be written as

Ĥ ¼ iλ̂AXABλ̂B; X� ¼ X; XT ¼ −X: ð2:24Þ

The 4N × 4N matrix X can be expressed in terms of Ξ and Δ
as

iX ¼ 1

2

�
R− þ S− −iðRþ − SþÞ

iðRþ þ SþÞ R− − S−

�
;

where

R� ¼ Ξ� ΞT ¼ �RT
�; S� ¼ Δ� Δ� ¼ −ST�: ð2:25Þ

We note that the real skew-symmetric matrix X can be
brought into a block diagonal form by an orthogonal trans-
formation, i.e.,
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X ¼ OΣOT; Σ ¼

0BBBBBBB@

0 ε1

−ε1 0

. .
.

0 εN

−εN 0

1CCCCCCCA;

ð2:26Þ

where O is orthogonal and εI ≥ 0. In the rotated basis
ξ̂ ≔ OT λ̂, the Hamiltonian takes the form Ĥ ¼ iξ̂TΣξ̂ ¼
2
P

N
I¼1 εI ξ̂2I−1ξ̂2I .

While it is always possible to rewrite a BdG Hamiltonian in
terms of Majorana operators, it is quite rare that the Majorana
operator is an eigenstate of the Hamiltonian. That is, unpaired
or isolated Majorana zero-energy eigenstates are quite rare in
BdG systems and appear only in special occasions. Moreover,
we note that in general there is no natural way to rewrite a
given Majorana Hamiltonian in the form of a BdG
Hamiltonian, since in general there does not exist any natural
prescription on how to form complex fermion operators out of
a given set of Majorana operators. (A necessary condition for
such a prescription to be well defined is that the Majorana
Hamiltonian must be an even-dimensional matrix.)
To summarize, single-particle BdG Hamiltonians are char-

acterized by the PH constraint (2.20). The ensemble of
Hamiltonians satisfying Eq. (2.20) is called symmetry class
D. By imposing various symmetries, BdG Hamiltonians can
realize five other symmetry classes: DIII, A, AIII, C, and CI,
which we discuss next.

2. Class DIII

Let us start by studying how TRS with T̂ 2 ¼ Ĝf restricts the
form of BdG Hamiltonians. For this purpose, we label the
fermion operators by the spin index σ ¼ ↑=↓, i.e., we let
ψ̂ I → ψ̂ Iσ . We introduce TRS with the condition

T̂ ψ̂ IσT̂
−1 ¼ ðiσ2Þσσ0 ψ̂ Iσ0 ; ð2:27Þ

where σ2 is the second Pauli matrix acting on spin space. The
BdG Hamiltonian then satisfies

τ1HTτ1 ¼ −H and σ2H�σ2 ¼ H: ð2:28Þ

As discussed before, the PH constraint (2.20) and the
TRS (2.27) can be combined to yield a chiral symmetry
τ1σ2Hτ1σ2 ¼ −H. Observe that in this realization of chiral
symmetry, TrUS ¼ 0. The ensemble of Hamiltonians satisfy-
ing conditions (2.28) is called symmetry class DIII. (Imposing
T̂ 2 ¼ þ1 instead of T̂ 2 ¼ Ĝf leads to a different symmetry
class, namely, class BDI.)

3. Classes A and AIII

Next we consider BdG systems with a Uð1Þ spin-rotation
symmetry around the Sz axis in spin space. This symmetry
allows us to rearrange the BdG Hamiltonian into a reduced
form, i.e.,

Ĥ ¼ Ψ̂†
AH

ABΨ̂B; ð2:29Þ

up to a constant, whereH is an unconstrained 2N × 2N matrix
and

Ψ̂† ¼ ð ψ̂†
I↑ ψ̂ I↓ Þ; Ψ̂ ¼

� ψ̂ I↑

ψ̂†
I↓

�
: ð2:30Þ

Observe that, unlike for ϒ, ϒ†, there is no constraint relating
Ψ̂ and Ψ̂†. As H is unconstrained, this Hamiltonian is a
member of symmetry class A. Since Ψ̂ and Ψ̂† are indepen-
dent operators, it is possible to rename the fermion operator
ψ̂†
↓ as ψ̂†

↓ → ψ̂↓. With this relabeling, the BdG Hamiltonian
(2.29) can be converted to an ordinary fermion system with
particle-number conservation. In this process, the Uð1Þ spin-
rotation symmetry of the BdG system becomes a fictitious
charge Uð1Þ symmetry.
Let us now impose TRS on Eq. (2.29), which acts on Ψ̂ as

T̂ Ψ̂ T̂ −1 ¼
� ψ̂↓

−ψ̂†
↑

�
¼ iρ2ðΨ̂†ÞT ≕ Ψ̂c; ð2:31Þ

where ρ1;2;3 denote Pauli matrices acting on the particle-hole
and spin components of the spinor (2.30). Observe that, if we
let ψ̂†

↑ → ψ̂↑, then T̂ in Eq. (2.31) looks like a composition of

T̂ and Ĉ, i.e., it represents a chiral symmetry. Indeed, the
relationship between chiral symmetry T̂ Ĉ and the Uð1Þ
charge Q̂ in particle-number conserving systems
ðT̂ ĈÞQ̂ðT̂ ĈÞ−1 ¼ Q̂ is isomorphic to the relationship
between TRS and Ŝz in BdG systems with Sz conservation
T̂ ŜzT̂

−1 ¼ Ŝz. That is, by reinterpreting Eq. (2.29) as a
particle-number conserving system TRS leads to an effective
chiral symmetry. The ensemble of Hamiltonians satisfying a
chiral symmetry is called symmetry class AIII. Hence, BdG
systems with Sz conservation and TRS belong to symmetry
class AIII.

4. Classes C and CI

We now study the constraints due to SUð2Þ spin-rotation
symmetries other than Sz conservation. A spin rotation Ûϕ

n
by an angle ϕ around the rotation axis n acts on the doublet
ðψ̂↑; ψ̂↓ÞT as�
ψ̂↑

ψ̂↓

�
→ Ûϕ

n

�
ψ̂↑

ψ̂↓

�
; Û−ϕ

n ¼ e−iðϕ=2Þσ·n
�
ψ̂↑

ψ̂↓

�
: ð2:32Þ

That is, a spin rotation by ϕ around the Sx or Sy axis

transforms Ψ̂ into

Ûϕ
Sx
Ψ̂Û−ϕ

Sx
¼ cosðϕ=2ÞΨ̂ − i sinðϕ=2ÞΨ̂c;

Ûϕ
Sy
Ψ̂Û−ϕ

Sy
¼ cosðϕ=2ÞΨ̂ − sinðϕ=2ÞΨ̂c; ð2:33Þ

respectively. Thus, both Ûϕ
Sx

and Ûϕ
Sy

rotate Ψ̂ smoothly into

Ψ̂c. In particular, a rotation by π around Sx or Sy acts as a
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discrete PH transformation, Ψ̂ → −iΨ̂c or −Ψ̂c. That is, if we
interpret Eq. (2.29) as a particle-number conserving system,
then Ûπ

Si ŜzÛ
−π
Si ¼ −Ŝz for i ¼ x, y can be viewed as a charge

conjugation Ĉ Q̂ Ĉ−1 ¼ −Q̂. Observe that the π rotations Ûπ
Si

are examples of PH transformations which square to −1,
which is in contrast to the PH constraint of class D. For the
single-particle Hamiltonian H the π-rotation symmetries Ûπ

Si
lead to the condition

ρ2HTρ2 ¼ −H: ð2:34Þ

The ensemble of Hamiltonians satisfying this condition is
called symmetry class C. We note that for quadratic
Hamiltonians the π-rotation symmetry constrains of Ûπ

Si
actually correspond to a full SUð2Þ spin-rotation symmetry.
This is because for an arbitrary SUð2Þ rotation around Sx or
Sy, the Hamiltonian Ĥ is transformed into a superposition of

Ψ̂†HΨ̂ and its conjugate Ψ̂c†HΨ̂c [i.e., Ĥ → αΨ̂†HΨ̂þ
ð1 − αÞΨ̂c†HΨ̂c, for some α], since Ψ̂†HΨ̂c ¼ Ψ̂c†HΨ̂ ¼ 0.
It follows from Ψ̂†HΨ̂ ¼ Ψ̂c†HΨ̂c together with the Sz
invariance that the BdG Hamiltonian is fully invariant under
SUð2Þ spin-rotation symmetry.
Finally, imposing TRS (2.31) in addition to Sz conservation

leads to Ψ̂†HΨ̂ → Ψ̂Tρ2H�ρ2ðΨ̂†ÞT ¼ −Ψ̂†ρ2H†ρ2Ψ̂ ¼ Ĥ,
i.e., ρ2H†ρ2 ¼ −H. Combined with PHS (2.34), this gives
the conditions

ρ2HTρ2 ¼ −H; H� ¼ H; ð2:35Þ

which defines symmetry class CI.

E. Symmetry classes of tenfold way

Let us now discuss a general symmetry classification of
single-particle Hamiltonians in terms of nonunitary sym-
metries. Note that unitary symmetries, which commute with
the Hamiltonian, allow us to bring the Hamiltonian into a
block diagonal form. Here our aim is to classify the symmetry
properties of these irreducible blocks, which do not exhibit
any unitary symmetries. So far we have considered the
following set of discrete symmetries:

T−1HT ¼ H; T ¼ UTK; UTU�T ¼ �1;
C−1HC ¼ −H; C ¼ UCK; UCU�C ¼ �1;
S−1HS ¼ −H; S ¼ US; U2

S ¼ 1; ð2:36Þ

where K is the complex conjugation operator. As it turns out,
this set of symmetries is exhaustive. That is, without loss
of generality we may assume that there is only a single TRS
with operator T and a single PHS with operator C. If the
Hamiltonian H was invariant under, say, two PH operations
C1 and C2, then the composition C1 · C2 of these two
symmetries would be a unitary symmetry of the single-particle
Hamiltonian H, i.e., the product UC1

· U�C2
would commute

with H. Hence, it would be possible to bring H into block

form, such thatUC1
· U�C2

is a constant on each block. Thus, on
each block UC1

and UC2
would be trivially related to each

other, and therefore it would be sufficient to consider only one
of the two PH operations. The product T · C, however,
corresponds to a unitary symmetry operation for the single-
particle Hamiltonian H. But in this case, the unitary matrix
UT ·U�C does not commute, but anticommutes with H.
Therefore, T · C does not represent an “ordinary” unitary
symmetry of H. This is the reason why we need to consider
the product T · C [i.e., chiral symmetry S in Eq. (2.36)] as an
additional crucial ingredient for the classification of the
irreducible blocks, besides TR and PH symmetries.
Now it is easy to see that there are only ten possible ways

for how a Hamiltonian H can transform under the general
nonunitary symmetries (2.36). First we observe that there are
three different possibilities for how H can transform under
TRS (T): (i) H is not TR invariant, which we denote by T ¼ 0
in Table I; (ii) the Hamiltonian is TR invariant and the TR
operator T squares toþ1, in which case we write T ¼ þ1; and
(iii) H is symmetric under TR and T squares to −1, which we
denote by T ¼ −1. Similarly, there are three possible ways
for how the Hamiltonian H can transform under PHS with
PH operator C (again, C can square to þ1 or −1). For these
three possibilities we write C ¼ 0, þ1, −1. Hence, there are
3 × 3 ¼ 9 possibilities for how H can transform under both
TRS and PHS. These are not yet all ten cases, since it is also
necessary to consider the behavior of the Hamiltonian under
the product S ¼ T · C. A moment’s thought shows that for
eight of the nine possibilities the presence or absence of
S ¼ T · C is fully determined by howH transforms under TRS
and PHS. (We write S ¼ 0 if S is not a symmetry of the
Hamiltonian, and S ¼ 1 if it is.) But in the case where both
TRS and PHS are absent, there exists the extra possibility
that S is still conserved, i.e., either S ¼ 0 or S ¼ 1 is possible.
This then yields ð3 × 3 − 1Þ þ 2 ¼ 10 possible behaviors of
the Hamiltonian.

TABLE I. Periodic table of topological insulators and supercon-
ductors; δ ≔ d −D, where d is the space dimension and Dþ 1 is the
codimension of defects; the leftmost column (A;AIII;…;CI) denotes
the ten symmetry classes of fermionic Hamiltonians, which are
characterized by the presence or absence of time-reversal (T),
particle-hole (C), and chiral (S) symmetries of different types denoted
by�1. The entriesZ,Z2, 2Z, and 0 represent the presence or absence
of nontrivial topological insulators or superconductors or topological
defects, and when they exist, types of these states. The case ofD ¼ 0
(i.e., δ ¼ d) corresponds to the tenfold classification of gapped bulk
topological insulators and superconductors.

δ
Class T C S 0 1 2 3 4 5 6 7

A 0 0 0 Z 0 Z 0 Z 0 Z 0
AIII 0 0 1 0 Z 0 Z 0 Z 0 Z

AI þ 0 0 Z 0 0 0 2Z 0 Z2 Z2

BDI þ þ 1 Z2 Z 0 0 0 2Z 0 Z2

D 0 þ 0 Z2 Z2 Z 0 0 0 2Z 0
DIII − þ 1 0 Z2 Z2 Z 0 0 0 2Z
AII − 0 0 2Z 0 Z2 Z2 Z 0 0 0
CII − − 1 0 2Z 0 Z2 Z2 Z 0 0
C 0 − 0 0 0 2Z 0 Z2 Z2 Z 0
CI þ − 1 0 0 0 2Z 0 Z2 Z2 Z
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These ten possible behaviors of the first quantized
Hamiltonian H under T, C, and S are listed in the first
column of Table I. These are the ten generic symmetry classes
(the “tenfold way”) which are the framework within which
the classification scheme of TIs and TSCs is formulated in
Sec. III. We note that these ten symmetry classes were
originally described by Altland and Zirnbauer in the context
of disordered systems (Zirnbauer, 1996; Altland and
Zirnbauer, 1997) and are therefore sometimes called
Altland-Zirnbauer (AZ) symmetry classes. The tenfold way
extends and completes the well-known “threefold way”
scheme of Wigner and Dyson (Dyson, 1962).

III. FULLY GAPPED FREE-FERMION SYSTEMS AND
TOPOLOGICAL DEFECTS

In this section we discuss the topological classification of
fully gapped noninteracting fermionic systems, such as band
insulators and fermionic quasiparticles in fully gapped SCs
described by BdG Hamiltonians, in terms of the ten AZ
symmetry classes. When considering superconductors, the
superconducting pairing potentials will be treated at the
mean-field level, i.e., as a fixed background to fermionic
quasiparticles. We also discuss in this section the topologi-
cal classification of zero-energy modes localized at topo-
logical defects in insulators and SCs. As shown, gapped
topological phases and zero modes bound to topological
defects can be discussed in a fully parallel and unified
fashion (Teo and Kane, 2010b) by introducing the parameter
δ ≔ d −D, where d is the space dimension and Dþ 1
denotes the codimension of defects (see Sec. III.A.2 for
more details). When necessary, by taking δ ¼ d and
D ¼ 0, one can easily specialize to the case of gapped
topological systems, instead of defects of codimension
greater than 1.

A. Tenfold classification of gapped free-fermion systems and
topological defects

1. Gapped free-fermion systems

Gapped phases of quantum matter can be distinguished
topologically by asking if they are connected in a phase
diagram. If two gapped quantum phases can be trans-
formed into each other through an adiabatic or a continu-
ous path in the phase diagram without closing the gap (i.e.,
without encountering a quantum phase transition), then
they are said to be topologically equivalent. In particular,
states which are continuously deformable to an atomic
insulator, i.e., a collection of independent atoms, are called
topologically trivial or trivial, e.g., trivial band insulators.
On the other hand, those that cannot be connected to
atomic insulators are called topologically nontrivial or
topological.
Since physical systems can be characterized by the presence

or absence of symmetries (Sec. II), it is meaningful to discuss
the topological distinction of quantum phases in the presence
of a certain set of symmetry conditions. Let us then consider
an ensemble of Hamiltonians within a given symmetry
class and for a fix spatial dimension d and ask if there
is a topological distinction among ground states of gapped

insulators and SCs.1 In particular, we focus on the classification
of topological insulators and superconductors in free-fermion
systems, described by quadratic Bloch-BdG Hamiltonians.
Namely, we are interested in quadratic Hamiltonians of the
form

Ĥ ¼
X
r;r0

ψ̂†
i ðrÞHijðr; r0Þψ̂ jðr0Þ; ð3:1Þ

where ψ̂ iðrÞ is amulticomponent fermion annihilation operator,
and index r labels a site on a d-dimensional lattice. Quadratic
BdG Hamiltonians defined on a d-dimensional lattice can be
treated or discussed similarly. The single-particle Hamiltonians
Hijðr; r0Þ belong to one of the ten AZ symmetry classes and are,
in general, subject to a set of symmetry constraints;
see Eq. (2.36).
Assuming that the physical system has translation sym-

metry Hijðr; r0Þ ¼ Hijðr − r0Þ with periodic boundary condi-
tions in each spatial direction, it is convenient to use the
corresponding single-particle Hamiltonian in momentum
space HijðkÞ,

Ĥ ¼
X
k∈BZd

ψ̂†
i ðkÞHijðkÞψ̂ jðkÞ; ð3:2Þ

where the crystal momentum k runs over the first BZ. The
Fourier components of the fermion operator and the
Hamiltonian are given by ψ̂ iðrÞ ¼

ffiffiffiffi
V
p −1P

k∈BZdeik·rψ̂ iðkÞ
and HijðkÞ ¼Pre

−ik·rHijðrÞ, respectively, where V is the
total number of sites.2 TRS, PHS, and chiral symmetry act on
the single-particle Hamiltonian HðkÞ as

THðkÞT−1 ¼ Hð−kÞ; ð3:3Þ

CHðkÞC−1 ¼ −Hð−kÞ; ð3:4Þ

SHðkÞS−1 ¼ −HðkÞ; ð3:5Þ

where T, C, and S are the antiunitary TR, PH, and unitary
chiral operators, respectively. With this setup, we then ask
whether two gapped quadratic Hamiltonians, which belong to
the same symmetry class, can be continuously transformed
into each other without closing the gap. That is, we classify
gapped Hamiltonians of a given symmetry class into different
topological equivalence classes. The result of this classifica-
tion is summarized by the periodic table of TIs and TSCs
(Qi, Hughes, and Zhang, 2008; Schnyder et al., 2008, 2009;
Kitaev, 2009; Ryu, Schnyder et al., 2010); see Table I. [The
case of D ¼ 0 (i.e., δ ¼ d) corresponds to the tenfold
classification of gapped bulk TIs and TSCs.] Systematic
derivations of this classification table are discussed later.

1More specifically, we are not interested in systems with genuine
topological order, whose existence has nothing to do with the
presence or absence of symmetries, but in symmetry-protected
topological phases; see Sec. VI.

2It should, however, be emphasized that all TIs and TSCs in the ten
AZ symmetry classes are stable against disorder, and hence the
assumption of translation invariance is not at all necessary (see
Sec. III.F).
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Here the following comments on noticeable features of the
table are in order:

(1) The symmetry classes A and AIII, and the other eight
classes are separately displayed. We call the former
“the complex symmetry classes,” and the latter “the
real symmetry classes.” The complex symmetry
classes do not have TRS nor PHS.

(2) The symbols Z, Z2, 2Z, and 0 indicate whether or not
TIs and TSCs exist for a given symmetry class in a
given dimension, and if they exist, what kind of
topological invariant characterizes the topological
phases. For example, 2Z3 indicates that the topological
phase is characterized by an even-integer topological
invariant, and 0 simply means there is no TI or TSC;
i.e., all states in a symmetry class in a given dimension
are adiabatically deformable.

(3) In Table I, the so-called weak TIs and TSCs, which are
nontrivial topological phases that exist in the presence
of lattice-translation symmetries, are not presented.
That is, the table shows only the strong TIs and TSCs
whose existence does not rely on translation sym-
metries. However, the presence or absence of weak TIs
or TSCs in a given symmetry class can be deduced
from the presence or absence of strong TIs or TSCs in
lower dimensions in the same symmetry class.

(4) The classification table exhibits a periodicity of 2 and
8 as a function of spatial dimension, for the complex
and real symmetry classes, respectively. (The table is
shown only up to d ¼ 7 for this reason.) In addition,
note that the classifications for different symmetry
classes are related by a dimensional shift. For this
reason it is convenient to label the eight real AZ
symmetry classes by an integer s running from 0 to 7,
which can be arranged on a periodic eight-hour clock,
the “Bott clock” (Fig. 1). Denoting the classification
of TIs and TSCs in symmetry class s and in space
dimension d by Kðs; d; 0Þ, the periodic table can be
summarized as Table II.

(5) Now let us examine the pattern in which the different
kinds of topological phases appear in the table. Along
the main diagonal of the table the entries appear for
topological phases characterized by an integer topo-
logical invariant (Z). These topological phases are
called the “primary series.” Just below the primary
series (i.e., to the lower left), there are two sets of
diagonal entries for the topological phase character-
ized by a Z2 topological invariant. These topological
phases are called the “first descendants” and the
“second descendants”, respectively. There is also a
series of topological phases characterized by 2Z
invariants, i.e., by an even-integer topological invari-
ant. These entries are called the “even series.”

To discuss an observable consequence of having a topo-
logically nontrivial state, let us recall that, by definition,

topologically nontrivial and trivial states in the phase diagram
are always separated by a quantum phase transition, if the
symmetry conditions are strictly enforced. This, in turn,
implies that if a TI or TSC is in spatial proximity to a trivial
phase, there should be a gapless state localized at the boundary
between the two phases. This gapless (i.e., critical) state can
be thought of as arising due to a phase transition occurring
locally in space, where the parameters of the Hamiltonian
change as a function of the direction transverse to the
boundary. Such gapless boundary modes are protected in
the sense that they are stable against perturbations as long as
the bulk gap is not destroyed and the symmetries are
preserved. In particular, gapless boundary modes are com-
pletely immune to disorder and evade Anderson localization
completely (Sec. III.F). The presence of such gapless boun-
dary states is the most salient feature of TIs and TSCs, and in
fact can be considered as a definition of TIs and TSCs. This
close connection between nontrivial bulk topological proper-
ties and gapless boundary modes is known as the bulk-
boundary correspondence (Sec. III.D).

2. Topological defects

Boundaries separating bulk TIs and TSCs from trivial states
of matter, which host topologically protected gapless modes,
are codimension one objects, i.e., one dimension less than the
bulk. It is possible to discuss general higher codimension
topological defects, such as point and line defects introduced
in a gapped bulk system, and their topological classification.
Topological properties of adiabatic cycles can also be dis-
cussed in a similar manner.

FIG. 1. The eight real symmetry classes that involve the
antiunitary symmetries T (time-reversal) and/or C (particle-hole)
are specified by the values of T2 ¼ �1 and C2 ¼ �1. They can
be visualized on an eight-hour clock. Adapted from Teo and
Kane, 2010b.

TABLE II. The eightfold periodic classification of topological
insulators and superconductors and topological defects with time-
reversal and/or particle-hole symmetries. s labels the Altland-
Zirnbauer symmetry classes (see Fig. 1), δ ¼ d −D is the topological
dimension, and Zð1;2Þ2 are the first and second descendant Z2

classifications.

s − δ 0 1 2 3 4 5 6 7

Kðs; d;DÞ Z Zð1Þ2 Zð2Þ2
0 2Z 0 0 0

3The label 2Z indicates that the topological invariant is given by
an even integer, reflecting the fact that there is an even number of
protected gapless surface modes. Note, however, that the group of
integers (Z) and the group of even integers (2Z) are isomorphic.
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Topological defects were discussed originally in the context
of spontaneous symmetry breaking. For example, the quantum
flux vortex of a type II SC (de Gennes, 1999) involves the
winding of the pairing order parameter, which breaks the
charge conserving Uð1Þ symmetry. Dislocations and discli-
nations (Chaikin and Lubensky, 2000; Nelson, 2002) are
crystalline defects that associate discrete torisional and cur-
vature fluxes in a lattice medium, which breaks continuous
translation and rotation symmetries. They all involve
nontrivial long length scale modulations of some order
parameter around the defects.
Topological defects in the context of topological band

theories (Teo and Kane, 2010b) have a different origin in
that they are not necessarily associated with spontaneous
symmetry breaking. For example, the mass gap that inverts
between topological and trivial insulators does not break any
symmetry. It is nonetheless a parameter in the band theory
that controls the topology of the bulk material, and we refer
to them as band parameters or topological parameters.
Topological defects in insulators and SCs are therefore non-
trivial long length scale windings of these topological param-
eters around the defects.
Topological defects for our interest are described by a

defect Hamiltonian, which is a band Hamiltonian HrðkÞ ¼
Hðk; rÞ that is slowly modulated by a parameter r, which
includes spatial coordinates and/or a temporal parameter. A
defect Hamiltonian describes the long length scale environ-
ment surrounding of a defect—far away from it. The modu-
lation is slow enough so that the bulk system well separated
from the defect core has microscopic spacetime translation
symmetry and hence can be characterized by momentum k.
More precisely, we assume ξj∇rHðk; rÞj ≪ εg, where ξ is a
characteristic microscopic length scale similar to the lattice
spacing, or a time scale similar to 1=εg, where εg is the bulk
energy gap.4 TR, PH, and chiral symmetry act on a defect
Hamiltonian as

THðk; rÞT−1 ¼ Hð−k; rÞ; ð3:6Þ

CHðk; rÞC−1 ¼ −Hð−k; rÞ; ð3:7Þ

SHðk; rÞS−1 ¼ −Hðk; rÞ; ð3:8Þ

where the spatial (temporal, when discussing adiabatic cycles)
parameter r is unaltered, since the symmetries act on local
microscopic degrees of freedom, which are independent of the
slowly varying modulation.
Different defect Hamiltonians are distinguished by (i) the

AZ symmetry class s, (ii) the bulk dimension d, and (iii) the
defect codimension dc defined in terms of the dimension of
the defect ddefect by dc ¼ d − ddefect. A spatial defect of
dimension ddefect is wrapped by a D-dimension sphere SD,
where D ¼ dc − 1 ¼ d − ddefect − 1. For example, a point
defect in 3D has codimension dc ¼ 3 − 0 ¼ 3 and thus is

surrounded by a 2D sphere. Adiabatic cycles are incorporated
as topological defects that depend on a cyclic temporal
parameter. In this case the defect is enclosed by a sphere
SD−1 of dimension D − 1 ¼ d − ddefect − 1 in d-dimensional
real space. Together with the temporal parameter that lives on
S1, the adiabatic cycle is wrapped by a D-dimensional
manifold such as SD−1 × S1. A table of low-dimensional
defects is presented in Fig. 2.
For real AZ symmetry classes, it was shown that the

classification of topological defects depends only on a single
number (Teo and Kane, 2010b; Freedman et al., 2011)

s − δ ¼ s − dþD modulo 8; ð3:9Þ

where δ ¼ d −D is called the topological dimension that
takes the role of the usual dimension d in the case of gapped
TIs and TSCs. For spatial defects, the topological dimension is
related to the defect dimension by δ ¼ ddefect þ 1 and is
independent of the bulk dimension d. For instance, point
defects always have δ ¼ 1, while line defects always have
δ ¼ 2. For adiabatic cycles, the extra temporal parameter in
the D-component parameter r reduces the topological dimen-
sion by 1. For example, a temporal cycle of point defects has
δ ¼ 0. The classification is summarized in Tables I and II. (As
in the case of gapped TIs and TSCs, we are interested in the
highest dimension strong topologies of the defect that do not
involve lower dimensional cycles.)
Topological defects in the two complex AZ classes A and

AIII are classified in a similar manner, except that the
symmetry classes now live on a periodic two-hour clock,
and the topological dimension δ ¼ d −D as well as the
number d − δ are now integers modulo 2. Topological
defects in class A (class AIII) are Z classified when δ is
even (when δ is odd). Otherwise they are trivially classified.
By forgetting the antiunitary symmetries, the real AZ classes
separate into the two complex classes AI;D;AII;C → A and
BDI;DIII;CI;CII → AIII, where the chiral operator S is given
by the product of TR and PH (possibly up to a factor of i). This
procedure (forgetful functor, see Sec. III.C) relates real and
complex classifications. For instance, the 2Z classification for
s − δ≡ 4 modulo 8 in Table II is normalized according to the
corresponding complex Z classification. This means when

t

t

d = 1 d = 2 d = 3

D = 0

D = 1

D = 2

FIG. 2. Topological defects characterized by a D parameter
family of d-dimensional Bloch-BdG Hamiltonians. Line defects
correspond to d −D ¼ 2, while point defects correspond to
d −D ¼ 1. Temporal cycles for point defects correspond to
d −D ¼ 0. Adapted from Teo and Kane, 2010b.

4Note, however, that the topological classification of topological
defects, which is presented in the following, also applies to the cases
where this assumption is not satisfied, such as sharp interfaces or
domain walls between different gapped bulk phases.
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forgetting the antiunitary symmetries, the topological invar-
iants must be even for s − δ≡ 4.
Like the bulk-boundary correspondence that relates bulk

topology to boundary gapless excitations, we have a bulk-
defect correspondence that guarantees gapless defect
excitations from the nontrivial winding of bulk topological
parameters around the defect. This framework unifies numer-
ous TI and TSC defect systems (Sec. III.D).

B. Topological invariants

In this section, we discuss the tenfold classification of
gapped TIs and TSCs and topological defects, in terms of bulk
topological invariants. A short summary of topological invar-
iants that will be discussed is presented in Table III. Various
specific examples of the topological invariants and systems
characterized by the topological invariants will be discussed,
but we mostly confine ourselves to examples taken from
gapped TIs and TSCs. Examples of topological defects are
discussed later in Sec. III.D. A systematic derivation of the
periodic table and physical consequences of the nontrivial
bulk topologies measured by the topological invariants, such
as gapless modes localized at boundaries and defects, is
discussed in Secs. III.C and III.D, respectively.
The topological invariants introduced in this section are

given in terms of the eigenfunction of a Bloch-BdG
Hamiltonian. We denote the ath eigenfunction with energy
εaðk; rÞ by juaðk; rÞi, Hðk; rÞjuaðk; rÞi ¼ εaðk; rÞjuaðk; rÞi. By
assumption, there is a spectral gap at the Fermi energy in the
band structure given by εaðk; rÞ. We assume that there are
N−=þ bands below and above the Fermi energy. The total
number of the bands is Nþ þ N−. We denote the set of filled
Bloch wave functions by fjuα−ðk; rÞig, or simply fjuαðk; rÞig,
where the Greek index α ¼ 1;…; N− labels the occupied
bands only.
The Bloch wave functions are defined on the base manifold

BZd ×MD, the (dþD)-dimensional total phase space para-
metrized by ðk; rÞ. Here the D-dimensional manifold MD

wraps around the topological defect (Fig. 2). (It deformation
retracts from the defect complement of spacetime.) For
example, taking away a point defect in real 3-space leaves
behind a punctured space, which has the same homotopy type
as the 2-sphere S2. The complement of an infinite defect line
in 3-space can be compressed along the defect direction onto a
punctured disk, which then can be deformation retracted to the
circle S1. The D manifold MD enclosing a more complicated
topological defect may not be spherical. For instance, the one
surrounding a link in 3-space is a 2-torus. TheDmanifold of a
temporal cycle must contain a noncontractible 1-cycle that

corresponds to the periodic time direction. For the bulk of the
review, we are interested in the highest dimension strong
topologies of defects that do not involve lower dimensional
cycles. For this purpose, we compactify the phase space into a
sphere

ðk; rÞ ∈ BZd ×MD�!compactify
SdþD

by contracting all lower dimensional cycles. Physically this
means the defect band theory are assumed to have trivial
winding around those low-dimensional cycles.

1. Primary series for s even: The Chern number

For gapped topological phases and topological defects in
nonchiral classes (i.e., s is even), the Z-classified topologies
are characterized by the Chern number

Chn ¼
1

n!

�
i
2π

�
n
Z
BZd×MD

TrðF nÞ; ð3:10Þ

where n ≔ ðdþDÞ=2. The Berry curvature5

F ¼ dAþA2 ð3:12Þ

is given in terms of the non-Abelian Berry connection

Aαβðk; rÞ ¼ huαðk; rÞjduβðk; rÞi
¼ huαðk; rÞj∇kuβðk; rÞi · dk
þ huαðk; rÞj∇ruβðk; rÞi · dr: ð3:13Þ

The Chern number is well defined only when dþD is even.
Furthermore, it vanishes in the presence of TRS (or PHS)
when δ ¼ d −D is 2 (respectively, 0) mod 4. Moreover it
must be even when s − δ is 4 mod 8.
The Chern number detects an obstruction in defining a set

of Bloch wave functions smoothly over the base space
BZd ×MD. Associated with each ðk; rÞ, we have a set of
wave functions juaðk; rÞi, a collection of which can be thought
of as a member of UðNþ þ N−Þ. There is, however, a gauge
redundancy: UðN�Þ rotations among unoccupied or occupied
Bloch wave functions give rise to the same quantum
ground state (the Fermi-Dirac sea) at given ðk; rÞ. In other
words, the quantum ground state at a given ðk; rÞ is a

TABLE III. Strong topological invariants for topological defects.
The Z invariants apply to both complex and real Altland-Zirnbauer
classes.

Nonchiral classes (s even) Chiral classes (s odd)

Z Chern number (Ch) Winding number (ν)
Zð1Þ2

CS (CS) Fu-Kane (FK)

Zð2Þ2
Fu-Kane (FK) CS (fCS)

5As in Eqs. (3.10)–(3.12), we use the differential form notation,
e.g.,

Aαβ ¼ Aαβ
I ðsÞdsI; Aαβ

I ðsÞ ≔ huðsÞj∂IuðsÞi;
F αβ ¼ dAαβ þAαγ ∧ Aγβ

¼ ð∂IA
αβ
J þ Aαγ

I Aγβ
J ÞdsI ∧ dsJ

¼ 1
2
ð∂IAJ − ∂JAI þ ½AI; AJ�ÞαβdsI ∧ dsJ; ð3:11Þ

where s ¼ ðk; rÞ and I; J ¼ 1;…; dþD. The wedge symbol ∧ is
often omitted. When necessary, we use a subscript to indicate that a
differential form An is an n-form.
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member of the coset space UðNþ þ N−Þ=UðN−Þ ×UðNþÞ,
the complex Grassmannian. The Fermi-Dirac sea at ðk; rÞ
can be conveniently described by the spectral projector:

Pðk; rÞ ¼
XN−

α¼1
juαðk; rÞihuαðk; rÞj ð3:14Þ

[or Pijðk; rÞ ¼PN−
α¼1 ui

αðk; rÞ½ujαðk; rÞ�� if indices are
shown explicitly], which specifies a subspace of the total
Hilbert space defined by the set of occupied Bloch wave
functions. The projector is gauge invariant and a member
of the complex Grassmannian Pðk; rÞ ∈ UðNþ þ N−Þ=
UðN−Þ × UðNþÞ. For what follows, it is convenient to
introduce the “Q matrix” by

Qðk; rÞ ¼ 1 − 2Pðk; rÞ: ð3:15Þ

The Q matrix is Hermitian and has the same set of
eigenfunctions as Hðk; rÞ, but its eigenvalues are either �1
since Q2 ¼ 1.
As we move around in the base space BZd ×MD, the set of

wave functions undergoes adiabatic changes. Such wave
functions thus define a fiber bundle, which may be “twisted”:
It may not be possible to find smooth wave functions that are
well defined everywhere over the base space. One quick way
to see when the fiber bundle is twisted is to note that the set of
Bloch functions (or equivalently the projector) defines a map
from the base space to UðNþ þ N−Þ=UðNþÞ × UðN−Þ.
Topologically distinct maps of this type can be classified
by the homotopy group

πdþD½UðNþ þ N−Þ=UðNþÞ × UðN−Þ�: ð3:16Þ

For large enough N� and when dþD is even,
πdþD½UðNþ þ N−Þ=UðNþÞ × UðN−Þ� ¼ Z. Topologically
distinct maps are therefore characterized by an integer
topological invariant, namely, by

−1
22nþ1

1

n!

�
i
2π

�
n
Z
BZd×MD

Tr½QðdQÞ2n�: ð3:17Þ

This, in turn, is nothing but the Chern number.

a. Example: The 2D class A quantum anomalous Hall effect

As an illustration, let us consider band insulators with
Nþ ¼ N− ¼ 1 in two spatial dimensions d ¼ 2. In general,
two-band Bloch Hamiltonians can be written in terms of four
real functions R0;1;2;3ðkÞ as

HðkÞ ¼ R0ðkÞσ0 þ RðkÞ · σ; ð3:18Þ

where R ¼ ðR1; R2; R3Þ. The energy dispersions of the bands
are given by ε�ðkÞ ¼ R0ðkÞ � RðkÞ with RðkÞ ≔ jRðkÞj.
For band insulators, there is a spectral gap at the Fermi
energy, which we take to be zero for convenience. Hence we
assume R0ðkÞ þ RðkÞ > 0 > R0ðkÞ − RðkÞ, which, in particu-
lar, implies RðkÞ > 0 for all k.

In this two-band example, the Bloch Hamiltonian HðkÞ or
the four vector Rμ¼0;1;2;3ðkÞ defines a map from the BZ to the
space of the unconstrained four vector Rμ. The Bloch wave
functions, however, depend only on the normalized vector
nðkÞ≡ RðkÞ=RðkÞ, as seen easily from (i) R0ðkÞ inHðkÞ does
not affect the wave functions, and (ii) RðkÞ · σ ¼ RðkÞnðkÞ · σ.
[Note that because of the presence of the spectral gap,
RðkÞ > 0 for all k, and the normalized vector nðkÞ is always
well defined.] Thus, from the point of view of the Bloch
wave functions, we consider a map from the BZ to the space
of the normalized vector n, which is simply S2. The latter
is the simplest example of the complex Grassmannian
Uð2Þ=Uð1Þ ×Uð1Þ≃ S2.
Within the two-band model, different band insulators can

thus be characterized by different maps nðkÞ. By “compacti-
fying” the BZ T2 to S2, topologically distinct maps can be
classified by the second homotopy group π2ðS2Þ, which is
given by π2ðS2Þ ¼ Z. For a given map n, the integer
topological invariant

1

4π

Z
BZ

n · dn × dn ∈ Z ð3:19Þ

counts the number of times the unit vector n “wraps” around
S2 as we go around the BZ and hence tells us to which
topological class the map nðkÞ belongs.
Let us now construct the Bloch wave functions explicitly.

One possible choice is

ju�i ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2RðR∓R3Þ

p �
R1 − iR2

�R − R3

�
: ð3:20Þ

Observe that the occupied Bloch wave function ju−i has a
singularity at R ¼ ð0; 0;−RÞ, i.e., at the “south pole.” When
the topological invariant (3.19) is nonzero, the vector nðkÞ
necessarily maps at least one point in the BZ to the south pole,
and hence one encounters a singularity, if one insists on using
the wave function (3.20) everywhere in the BZ. There is an
obstruction in this sense in defining wave functions that are
smooth and well defined globally in the BZ. To avoid the
singularity, one can “patch” the BZ and use different wave
functions on different patches. For example, near the south
pole one can make an alternative choice,

ju�i ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2RðR� R3Þ

p ��Rþ R3

R1 þ iR2

�
; ð3:21Þ

which is smooth at the south pole, but singular at the north
pole R ¼ ð0; 0; RÞ. With the two patches with the wave
functions (3.20) and (3.21), one can cover the entire BZ. In
those regions where the two patches overlap, the two wave
functions are related to each other by a gauge transformation.
With the explicit form of the Bloch wave functions, one

can compute the spectral projector or the Q matrix, and check
that the different gauge choices (3.20) and (3.21) give rise to
the same projector (the projector is gauge invariant), and
that it depends only on nðkÞ, i.e., QðkÞ ¼ nðkÞ · σ. From the
Bloch wave functions, one can compute the Berry connec-
tion and then the Chern number Ch ¼ ði=4πÞ RBZ TrF.
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The Chern number is, in fact, equal to the topological invariant
(3.19), as seen from Eq. (3.17), since TrF ðkÞ ¼
ði=2Þεijknið∂μnjÞð∂νnkÞdkμ ∧ dkν.
An explicit example of the two-band model (3.18) with

nonzero Chern number is given in momentum space by

RðkÞ ¼

0BB@
−2 sin kx
−2 sin ky

μþ 2
P
i¼x;y

cos ki

1CCA: ð3:22Þ

There are four phases separated by three quantum critical
points at μ ¼ 0,�4, which are labeled by the Chern number as
Ch ¼ 0 (jμj > 4), Ch ¼ −1 (−4 < μ < 0), and Ch ¼ þ1
(0 < μ < þ4). Band insulators on d ¼ 2 dimensional lattices
having nonzero Chern number and without net magnetic field
are commonly called Chern insulators and exhibit the quan-
tum anomalous Hall effect (Haldane, 1988; Nagaosa et al.,
2010), which generalizes the integer quantum Hall effect
(QHE) realized in the presence of a uniform magnetic field
(Klitzing, Dorda, and Pepper, 1980; Laughlin, 1981; Thouless
et al., 1982; Kohmoto, 1985; Prange Girvin, 1990). The Chern
number is nothing but the quantized Hall conductance σxy.
Experimental realizations of Chern insulators include Cr-
doped ðBi; SbÞ2Te3 thin films (Yu et al., 2010; Chang et
al., 2013; G. Xu et al., 2015), InAs/GaSb and Hg1−yMnyTe
quantum wells (C.-X. Liu et al., 2008; Q.-Z. Wang et al.,
2014), graphene with adatoms (Qiao et al., 2010), and
La2MnIrO6 monolayers (Zhang et al., 2014).

2. Primary series for s odd: The winding number

a. Winding number

The Chern number can be defined for Bloch-BdG
Hamiltonians in any symmetry class as long as dþD is
even (although its allowed value depends on symmetry classes
and δ). On the other hand, there are topological invariants
which can be defined only in the presence of symmetries. One
example is the winding number topological invariant ν, which
can be defined only in the presence of chiral symmetry,
fHðk; rÞ; USg ¼ 0, with U2

S ¼ 1. For simplicity, we focus
below on the case of TrUS ¼ 0, i.e., Nþ ¼ N− ¼ N.
While in the absence of chiral symmetry the spectral

projector is a member of the complex Grassmannian, in the
presence of chiral symmetry the relevant space is the unitary
group UðNÞ. This can be seen from the block-off-diagonal
form of chiral symmetric Hamiltonians,

Hðk; rÞ ¼
�

0 Dðk; rÞ
D†ðk; rÞ 0

�
: ð3:23Þ

Correspondingly, in this basis, the Q matrix is also block off-
diagonal,

Qðk; rÞ ¼
�

0 qðk; rÞ
q†ðk; rÞ 0

�
; ð3:24Þ

where the off-diagonal block qðk; rÞ is a unitary matrix.
Hence, the q matrix defines a map from the base space

BZd ×MD to the space of unitary matrices UðNÞ.
Topologically distinct maps of this type are classified by
the homotopy group πdþD½UðNÞ�, which is nontrivial when
dþD is odd, i.e., πdþD½UðNÞ� ¼ Z (for large enough N).
Topologically distinct maps are characterized by the winding
number, which is given by

ν2nþ1½q� ¼
Z
BZd×MD

ω2nþ1½q�;

ω2nþ1½q� ¼
ð−1Þnn!
ð2nþ 1Þ!

�
i
2π

�
nþ1

Tr½ðq−1dqÞ2nþ1�; ð3:25Þ

where dþD ¼ 2nþ 1 is an odd integer. For example, when
ðd;DÞ ¼ ð1; 0Þ; ð3; 0Þ, we have

ν1 ¼
i
2π

Z
BZ

dkTr½q−1∂kq�;

ν3 ¼
Z
BZ

d3k
24π2

ϵμνρTr½ðq−1∂μqÞðq−1∂νqÞðq−1∂ρqÞ�; ð3:26Þ

respectively, where ∂μ ¼ ∂kμ .

b. Chern-Simons invariant

We now introduce yet another topological invariant, the
Chern-Simons invariant (CS invariant). This invariant can be
defined when dþD ¼ odd and is not quantized in general,
unlike the Chern number. In the presence of symmetries,
however, it may take discrete values. We use the quantized CS
invariant later to characterize first and second descendants.
Here we show that the CS invariant is also quantized in the
presence of chiral symmetry.
The CS invariant is defined in terms of the CS form Q2nþ1

in dþD ¼ 2nþ 1 dimensions, where

Q2nþ1ðAÞ ≔
1

n!

�
i
2π

�
nþ1 Z 1

0

dtTrðAF n
t Þ;

with F t ¼ tdAþ t2A2 ¼ tF þ ðt2 − tÞA2: ð3:27Þ

Integrating the CS form over the base space yields the CS
invariant

CS2nþ1½A� ≔
Z
BZd×MD

Q2nþ1ðAÞ: ð3:28Þ

For example, for n ¼ 0, 1, 2,

Q1ðAÞ ¼
i
2π

TrA;

Q3ðAÞ ¼
−1
8π2

Tr

�
AdAþ 2

3
A3

�
;

Q5ðAÞ ¼
−i
48π3

Tr

�
AðdAÞ2 þ 3

2
A3dAþ 3

5
A5

�
: ð3:29Þ

The CS forms are not gauge invariant. Neither are the
integrals of the CS forms. However, for two different
choices of gauge A and Ag, which are connected by a
gauge transformation g as
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Ag ≔ g−1Agþ g−1dg; F g ¼ g−1Fg; ð3:30Þ

the difference Q2nþ1ðAgÞ −Q2nþ1ðAÞ is given by the
winding number density ω2nþ1½g� up to a total derivative
term,

Q2nþ1ðAgÞ −Q2nþ1ðAÞ ¼ ω2nþ1½g� þ dα2nþ1ðA; gÞ: ð3:31Þ

Thus, for the integral of the CS form,

CS2nþ1½Ag� − CS2nþ1½A� ¼ integer; ð3:32Þ

and hence the exponential

W2nþ1 ≔ expf2πiCS2nþ1½A�g ð3:33Þ

is a well-defined, gauge invariant quantity, although it is not
necessarily quantized.
The discussion so far has been general. We now compute

the CS invariant in the presence of chiral symmetry. To
this end, we first explicitly write down the Berry connection
for chiral symmetric Hamiltonians. For a given qðk; rÞ, the
eigenfunctions can explicitly be constructed as

juαϵ ðk; rÞiN ¼
1ffiffiffi
2
p
� jnαi
ϵq†ðk; rÞjnαi

�
; ϵ ¼ �; ð3:34Þ

where jnαi are N momentum independent orthonormal
vectors. For simplicity we choose ðnαÞβ ¼ δαβ. These wave
functions are free from any singularity, i.e., we explicitly
demonstrated that there is no obstruction to constructing
eigenwave functions globally. The Berry connection is com-
puted as AN ¼ ð1=2Þqðk; rÞdq†ðk; rÞ. In this gauge, the CS
form Q2nþ1 is shown to be one-half of the winding number
density, i.e., Q2nþ1ðANÞ ¼ ω2nþ1½q†�=2. We conclude that
CS2nþ1½AN � ¼ ν2nþ1½q†�=2 and hence

W2nþ1 ¼ expfπiν2nþ1½q�g ¼ �1: ð3:35Þ

That is, for Hamiltonians with chiral symmetry W2nþ1 can
take on only two values W2nþ1 ¼ �1.
When ðd;DÞ ¼ ð1; 0Þ (n ¼ 0), the CS invariant W1 is a

Uð1Þ Wilson loop defined in the BZd¼1 ≃ S1. The logarithm
of W1 represents the electric polarization (King-Smith and
Vanderbilt, 1993; Vanderbilt and King-Smith, 1993; Resta,
1994), which can be quantized by chiral symmetry and
inversion symmetry (Zak, 1989; Ryu and Hatsugai, 2002).
In this context, the noninvariance of CS1½A�, Eq. (3.32), is
related to the fact that the displacement of electron coordinates
in periodic systems has a meaning only within a unit cell, i.e.,
two coordinates that differ by an integer multiple of the lattice
constant should be identified.
When ðd;DÞ ¼ ð3; 0Þ (n ¼ 1), CS3 represents the quan-

tized magnetoelectric polarizability or “θ angle.” The θ angle,
which is given in terms of the Chern-Simons integral as

θ ¼ 2π

Z
BZ3

Q3ðkÞ mod 2π; ð3:36Þ

appears in the electrodynamic efffective action through the
axion term δS ¼ ðθα=4πÞ R d3rdtE ·B, where α is the fine
structure constant. The quantized magnetoelectric polarizabil-
ity was first noted in the context of 3D TR symmetric TIs (in
class AII) (Qi, Hughes, and Zhang, 2008; Essin, Moore, and
Vanderbilt, 2009; Xiao et al., 2009). Besides TRS, chiral and
inversion symmetries also quantize the CS invariant W3

(Hosur, Ryu, and Vishwanath, 2010; Ryu, Schnyder et al.,
2010; Turner, Zhang, and Vishwanath, 2010; Deng, Wang,
and Duan, 2014; S.-T. Wang et al., 2015).

c. Example: The 1D class AIII polyacetylene

Consider the bipartite hopping model (2.16) on the 1D
lattice,

Ĥ ¼ t
X
i

ðâ†i b̂i þ H:c:Þ − t0
X
i

ðb̂†i âiþ1 þ H:c:Þ; ð3:37Þ

where âi=b̂i are the fermion annihilation operators on sub-
lattice A=B in the ith unit cell. We consider only real-valued
nearest neighbor hopping amplitudes in Eq. (2.16), which we
denote by t, t0, where we assume that t, t0 ≥ 0. This is the
Su-Schrieffer-Heeger (SSH) model describing transpolyace-
tylene (Su, Schrieffer, and Heeger, 1980; Heeger et al., 1988).
In momentum space, the Hamiltonian is written as Ĥ ¼P

kΨ̂
†ðkÞHðkÞΨ̂ðkÞ, where Ψ̂ðkÞ ¼ ðâk; b̂kÞT , k ∈ ½−π; π�,

and

HðkÞ ¼ RðkÞ · σ; RðkÞ ¼

0B@ t − t0 cos k

−t0 sin k
0

1CA: ð3:38Þ

The energy dispersion is εðkÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − 2tt0 cos kþ t02
p

. The
Hamiltonian has chiral symmetry as discussed around
Eq. (2.16), which in momentum space translates into the
condition σ3HðkÞσ3 ¼ −HðkÞ. With this symmetry, the two
gapped phases with t > t0 and t < t0 are topologically distinct
and are separated by a quantum critical point at t ¼ t0. Ground
states in the phase t > t0 are adiabatically connected to an
atomic insulator (a collection of decoupled lattice sites)
realized at t0 ¼ 0. On the other hand, ground states in the
phase t0 > t are topologically distinct from topologically
trivial, atomic insulators, once chiral symmetry is imposed.
These two phases are characterized by the winding number

ν½q� ¼ i
2π

Z
BZ

dkq†∂kq ¼
�
1; t0 > t;

0; t0 < t;
ð3:39Þ

where the off-diagonal component of the projector is given
by qðkÞ ¼ ðt − t0e−ikÞ=jεðkÞj. Correspondingly, the CS
invariant also takes two distinct quantized values CS ¼
1ð0Þ for t0 > t and t > t0, respectively. Provided t=t0 is
close to the critical point, the low-energy physics of the
SSH model is captured by the continuum Dirac
Hamiltonian

HðkÞ≃ −t0kσ2 þ ðt − t0Þσ1; ð3:40Þ
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which is obtained from Eq. (3.38) by expanding around
k ¼ 0. Note that t − t0 plays the role of the mass m.
To discuss domain walls, we first simplify the notation

by letting t → tþm and t0 → t. Furthermore, we make m
position dependent, which defines a defect Hamiltonian in
class AIII or BDI:

Hðk; rÞ ¼ ½tð1 − cos kÞ þmðrÞ�σ1 − t sin kσ2: ð3:41Þ
Let us consider a spatially modulated mass gap mðrÞ that
describes a domain wall profile, i.e., mðrÞ ¼ sgnðrÞm0 for
jrj ≥ R0 with m0 ≠ 0. From Eq. (3.25), we associate a
topological invariant to this domain wall

ν1 ¼
i
2π

Z
BZ×S0

q†dq

¼ i
2π

Z
2π

0

dk½qðk; R0Þ†∂kqðk; R0Þ

− qðk;−R0Þ†∂kqðk;−R0Þ� ¼ �1; ð3:42Þ
where S0 ¼ fR0;−R0g is the two points that sandwich the
point defect at the origin. The defect is also characterized by
the CS integral (3.46), which in this case is the electric
polarization:

CS1 ¼
i
2π

Z
BZ×S0

A

¼ i
2π

Z
2π

0

dk½Aðk; R0Þ − Aðk;−R0Þ� ¼
1

2
mod Z:

ð3:43Þ

The invariants (3.42) and (3.43) tell the difference between the
two sides of the domain wall. They are well defined even for
the continuum Jackiw-Rebbi analog (Jackiw and Rebbi, 1976)

Hðk; rÞ ¼ −tkσ2 þmðrÞσ1; ð3:44Þ

where the bulk topological invariants on either side do not take
integer values without a regularization. Their differences as
presented in Eqs. (3.42) and (3.43), however, are regulariza-
tion independent, and detect the localized zero-energy mode at
the domain wall. The properties of these localized modes are
further discussed later in Sec. III.D.

d. Example: The 3D class DIII 3He-B

Three-dimensional TSCs in class DIII have been discussed
in the context of the B phase of superfluid 3He (Volovik, 2003;
Schnyder et al., 2008; Wada et al., 2008; Chung and Zhang,
2009; Murakawa et al., 2009, 2011; Qi et al., 2009; Ryu,
Schnyder et al., 2010), in superconducting copper doped
bismuth selinide (Fu and Berg, 2010; Hor et al., 2010; Wray
et al., 2010), and in noncentrosymmetric SCs (Schnyder
and Ryu, 2011). Here we consider the Balian-Werthamer
state of the B phase of 3He. The BdG Hamiltonian that
describes the B phase is given in terms of the Nambu spinor
Ψ̂† ¼ ðψ̂†

↑; ψ̂
†
↓; ψ̂↑; ψ̂↓Þ composed of the fermion annihilation

operator for 3He ψ̂↑;↓ as Ĥ ¼ ð1=2ÞPkΨ̂
†ðkÞHðkÞΨ̂ðkÞ,

where

HðkÞ ¼
�

ξðkÞ ΔðkÞ
Δ†ðkÞ −ξðkÞ

�
;

ξðkÞ ¼ k2=2m − μ; ΔðkÞ ¼ Δ0iσ2k · σ: ð3:45Þ

The BdG Hamiltonian satisfies τ1Hð−kÞTτ1 ¼ −HðkÞ and
σ2Hð−kÞ�σ2 ¼ HðkÞ, and belongs to class DIII. From the
periodic table, class DIII in d ¼ 3 dimensions admits topo-
logically nontrivial SCs (superfluid), which are characterized
by an integer topological invariant, i.e., the winding number
ν3½q�. The winding number for the BdG Hamiltonian (3.45) is
given by ν3 ¼ ð1=2Þðsgnμþ 1Þ. Hence, for μ > 0 a topologi-
cal superfluid is realized. When terminated by a surface,
topological superfluids support a topologically stable surface
Andreev bound state (Majorana cone). Surface acoustic
impedance measurements experimentally detected such a
surface Andreev bound state in 3He-B (Wada et al., 2008;
Murakawa et al., 2009, 2011).

3. The first Z2 descendant for s even

While for the primary series the topological phases or
topological defects are characterized by an integer-valued
Chern number (or winding number), for the first and second
descendants the topological phases are characterized by a Z2

invariant. To discuss these Z2 indices in a unified framework,
we follow two strategies: First, we construct various Z2

topological invariants by starting from the CS invariants
and using symmetry conditions to restrict their possible values
(CS and fCS in Table III). Second, we use both the Chern
numbers and CS integrals to construct Z2 invariants (FK in
Table III).
The first Z2 descendant topologies are characterized by the

CS integral

CS2n−1 ¼
Z
BZd×MD

Q2n−1 ∈
1

2
Z; ð3:46Þ

for n ¼ ðdþDþ 1Þ=2. The CS invariant is well defined only
up to an integer. Note that under antiunitary symmetries, the
CS invariant can in general take half-integer values. The Z2

topology is trivial when CS2n−1 is an integer or nontrivial
when CS2n−1 is a half integer.
There is a subtlety when computing the CS integrals (3.46)

for a general defect Hamiltonian [this also applies to the Fu-
Kane invariant (3.63), which will be discussed later]: they
require a set of occupied states defined globally on the base
space, which is unnecessary for the definition of the Chern
number (3.10) and the winding number (3.25). There may be a
topological obstruction to such global continuous basis. In
particular, a global valence frame does not exist whenever
there are nontrivial weak topologies with nonzero Chern
invariants in lower dimensions. In this case, one needs to
include artificial Hamiltonians, i.e., Hðk; rÞ → Hðk; rÞ ⊕
H0ðk; r0Þ, that cancel the weak topologies while at the same
time do not affect the highest dimensional strong topology
(Teo and Kane, 2010b). This can be achieved by a lower
dimensional Hamiltonian H0ðk; r0Þ, where r0 lives in some
proper cycles N D0 ⊊ MD that do not wrap around the defect
under consideration; see Sec. III.D.1.b for an example.
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a. Class D in d ¼ 1

A BdG Hamiltonian in class D in d ¼ 1 dimensions
satisfies C−1Hð−kÞC ¼ −HðkÞ, with C ¼ τ1K, where k ∈
ð−π; π� is the 1D momentum. Class D TSCs in d ¼ 1 are
characterized by the CS integral (3.46). As chiral symmetry,
PHS also quantizes W ¼ expð2πiCS½A�Þ to be �1 (Qi,
Hughes, and Zhang, 2008; Budich and Ardonne, 2013). To
see this, we first recall that if juα−ðkÞi is a negative energy
solution with energy −εðkÞ, then jτ1u�α− ð−kÞi is a positive
energy solution with energy εðkÞ (Sec. II.B). Consequently,
the Berry connections for negative and positive energy states
are related by

Aαβ
− ðkÞ ¼ huα−ðkÞj∂kuβ−ðkÞi ¼ Aαβ

þ ð−kÞ: ð3:47Þ

The 1D CS integral is then given byZ þπ
−π

dkTrA− ¼
Z

π

0

dkTr½A− þ Aþ�

¼
Z

π

0

dku�ai ∂kuai ¼
Z

π

0

dkTrU†∂kU; ð3:48Þ

where a runs over all the bands, while α runs over half of the
bands (i.e., only the negative energy bands). Here we
introduced unitary matrix notation with Ua

i ðkÞ ≔ uai ðkÞ.
By noting that

R
π
0 dkTrU†∂kU ¼

R
π
0 dk∂k ln det½UðkÞ� ¼

ln detUðπÞ − ln detUð0Þ, the CS invariant reduces to

W ¼ ½detUðπÞ�−1½detUð0Þ�: ð3:49Þ

At the PH symmetric momenta k ¼ 0, π, the unitary matrix
UðkÞ has special properties. This can be seen most easily by
using the Majorana basis (2.22). That is, by the basis change in
Eq. (2.22), we obtain from HðkÞ the Hamiltonian XðkÞ in the
Majorana basis. Remember that at TR invariant momenta
τ1H�ðkÞτ1 ¼ −HðkÞ. Hence, Xðk ¼ 0; πÞ is a real skew-
symmetric matrix, which can be transformed into its canonical
form by an orthogonal matrix Oðk ¼ 0; πÞ [see Eq. (2.26)].W
can then be written in terms of Oðk ¼ 0; πÞ as

W ¼ ½detOðπÞ�−1½detOð0Þ�: ð3:50Þ

Since Oðk ¼ 0; πÞ are orthogonal matrices, their determinants
are eitherþ1 or −1, and so is the CS invariantW ¼ �1. Using
a Pfaffian of 2n-dimensional skew-symmetric matrices

PfðXÞ ¼ 1

2nn!

X
σ∈S2n

ð−1ÞjσjXσð1Þσð2Þ � � �Xσð2n−1Þσð2nÞ; ð3:51Þ

where σ runs through permutations of 1;…; 2n, and noting
further the identities PfðOXOTÞ ¼ PfðXÞ detðOÞ, and
sgn(Pf½XðkÞ� det½OðkÞ�) ¼ 1, W can also be written as

W ¼ sgn(Pf½Xð0Þ�Pf½XðπÞ�); ð3:52Þ

which is manifestly gauge invariant (i.e., independent of the
choice of wave functions).

b. Example: The class D Kitaev chain

The 1D TSC proposed by Kitaev has stimulated many
studies on Majorana physics (Kitaev, 2001; Sau et al., 2010;
Alicea, 2012). Evidence for the existence of Majorana modes
in 1D chains has been observed in a number of recent
experiments (Lutchyn, Sau, and Das Sarma, 2010; Oreg,
Refael, and von Oppen, 2010; Cook and Franz, 2011;
Das et al., 2012; Deng et al., 2012; Mourik et al., 2012;
Churchill et al., 2013; Finck et al., 2013; Lee et al., 2014;
Nadj-Perge et al., 2014). The Hamiltonian of the Kitaev chain
is given by

Ĥ ¼ t
2

X
i

ðĉ†i ĉiþ1 þ ĉ†iþ1ĉiÞ − μ
X
i

ðĉ†i ĉi − 1=2Þ

þ 1

2

X
i

ðΔ�ĉ†i ĉ†iþ1 − ΔĉiĉiþiÞ: ð3:53Þ

Without loss of generality, Δ can be taken as a real number,
since the global phase of the order parameter Δ ¼ eiθΔ0 can
be removed by a simple gauge transformation ĉi → ĉieiθ=2. In
momentum space Ĥ reads

Ĥ ¼ 1

2

X
k

ð ĉ†k ĉ−k ÞHðkÞ
�

ĉk

ĉ†−k

�
;

where HðkÞ ¼ ðt cos k − μÞτ3 − Δ0 sin kτ2: ð3:54Þ

There are gapped phases for jtj > μ and jtj < μ, which are
separated by a line of critical points at t ¼ �μ. The Kitaev
chain can be written in terms of the Majorana basis

λ̂j≔ ĉ†jþ ĉj; λ̂0j≔ ðĉj− ĉ†jÞ=i; Λ̂j≔

 
λ̂j

λ̂0j

!
; ð3:55Þ

as Ĥ ¼ ði=2ÞPkΛ̂
TðkÞXðkÞΛ̂ð−kÞ, where

XðkÞ ¼ −iðt cos k − μÞτ2 þ iΔ0 sin kτ1: ð3:56Þ

We read off the CS invariant as W ¼ ∓1 for jμj < jtj and
jμj > jtj, respectively.
Similar to the SSH model, we also consider a domain wall

by changing μ as a function of space, which traps a localized
zero-energy Majorana mode. Properties of the localized zero-
energy Majorana mode are discussed in Sec. III.D.

c. Class AII in d ¼ 3

We now discuss the topological property of TR invariant
insulators in d ¼ 3 dimensions (Fu, Kane, and Mele, 2007;
Moore and Balents, 2007; Roy, 2009b). The topological
characteristics of these band insulators are intimately tied
to the invariance of the Hamiltonian under TRS, i.e.,
T−1Hð−kÞT ¼ HðkÞ. Because of this relation, the Bloch
wave functions at k and those at −k are related. If juαðkÞi
is an eigenstate at k, then TjuαðkÞi is an eigenstate at −k.
Imagine now that we can define juαðkÞi smoothly for the
entire BZ. (This is possible since TRS forces the Chern
number to be zero and, hence, there is no obstruction.) We
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then compare juαð−kÞi and TjuαðkÞi. Since both juαð−kÞi
and TjuαðkÞi are eigenstates of the same Hamiltonian Hð−kÞ,
they must be related to each other by a unitary matrix
juαð−kÞi ¼ ½wαβðkÞ��jTuβðkÞi. (The complex conjugation
on w here is to comply with a common convention.)
Hence, the sewing matrix

wαβðkÞ ¼ huαð−kÞjTuβðkÞi; ð3:57Þ

which is given by the overlaps between the occupied eigen-
states with momentum −k and the time reversed images of the
occupied eigenstates with momentum k, plays an important
role in defining the Z2 index (Fu, Kane, and Mele, 2007). The
matrix elements (3.57) obey

wαβð−kÞ ¼ −wβαðkÞ; ð3:58Þ

which follows from the fact that T is antilinear and antiunitary,
and T2 ¼ −1. Consequently, there is a relation between the
Berry connection at k and at −k:

Aμð−kÞ ¼ −wðkÞA�μðkÞw†ðkÞ − wðkÞ∂μw†ðkÞ: ð3:59Þ

That is, −Aμð−kÞ and A�μðkÞ ¼ −AT
μ ðkÞ are related to each

other by a gauge transformation.
With this constraint on the Berry connection, we now show

that the CS invariant is given in terms of the winding number
of the sewing matrix w as

CS½A� ¼ 1

2

Z
BZ

ω½w� ¼ 1

2
× integer; ð3:60Þ

and hence W ¼ expð2πiCS½A�Þ ¼ �1. To see this, we change
variables from k to−k in the integral CS½A�, and use Eq. (3.59),
Aμð−kÞ ¼ −½Ag�

μ ðkÞ�� with g ¼ w†, to show CS½A� ¼
−CS½ðAg� Þ�� ¼ −ðCS½Ag� �Þ� ¼ −CS½Ag� �, where in the last
equality we noted that CS½A� is real. Using Eq. (3.31),

CS½A� ¼ −CS½A� −
Z
BZ
fw½g�� þ dαðA; g�Þg; ð3:61Þ

and
R
BZ ω½g� ¼

R
BZ ω½w†� ¼ −

R
BZ ω½w� proves the quantiza-

tion of the CS invariant (3.60).
The CS invariant can also be written by using the Pfaffian of

the gluing matrix w at TR invariant momenta K in the BZ as
(Kane and Mele, 2005a, 2005b; Fu and Kane, 2007)

W ¼
Y
K

Pf½wðKÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ½wðKÞ�p : ð3:62Þ

The equivalence between the quantized CS invariant and the
Pfaffian invariant (3.62) was shown in Wang, Qi, and
Zhang (2010).

4. The second Z2 descendant for s even

The Fu-Kane (FK) invariant (Fu and Kane, 2006) applies to
the second Z2 descendent for nonchiral symmetry classes and
is defined by

FKn ¼
1

n!

�
i
2π

�
n
Z
BZd

1=2×M
D
TrðF nÞ −

I
∂BZd

1=2×M
D
Q2n−1;

ð3:63Þ

where n ¼ ðdþDÞ=2. It involves an open integral of the
Berry curvature over half of the Brillouin zone BZd

1=2, where
one of the momentum paramenters, say k1, runs between ½0; π�
so that the complement of BZd

1=2 is its TR conjugate. The CS

integral over ∂BZd
1=2, the boundary of the half BZ where

k1 ¼ 0; π, is gauge dependent and requires special attention in
the choice of basis. For TRS systems (classes AI and AII), the
occupied states juαðk; rÞi that build the Berry connection Aαβ

need to satisfy the gauge constraint

wαβðk; rÞ ¼ huαð−k; rÞjTuβðk; rÞi ¼ const; ð3:64Þ

for ðk; rÞ ∈ ∂BZd
1=2 ×MD. For instance the original FK-

invariant characterizing 2D class AII TIs requires
wðk; rÞ ¼ iσ2. For PHS systems (classes D and C), the
occupied states juαðk; rÞi generate the unoccupied ones
jvαðk; rÞi by the PH operator C, i.e., jvαðk; rÞi ¼
jCuαð−k; rÞi. The CS form in the FK invariant (3.63) needs
to be built from occupied states satisfyingZ

∂BZd
1=2×M

D
Tr½ðXdX†ÞdþD−1� ¼ 0; ð3:65Þ

where Xðk; rÞ ¼ ðu1;…; uN; v1;…; vNÞ is the unitary matrix
formed by the eigenstates. The gauge constraints (3.64) and
(3.65) are essential for the FK invariant in Eq. (3.63). Without
them, the CS integral can be changed by any integer value by a
large gauge transformation of occupied states juαi → gαβjuβi.
The gauge constraints restrict such transformations so that the
CS term can be changed only by an even integer. The FK
invariant therefore takes values in Z2 ¼ f0; 1g.

a. Class AII in d ¼ 2

The topological invariant for 2D time-reversal symmetric
TIs is the Fu-Kane invariant (3.63) (Fu and Kane, 2006). As in
the case of 3D time-reversal symmetric TIs, this Z2 invariant
has the following alternative expression:

W ¼
Y
K

Pf½wðKÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ½wðKÞ�p ; ð3:66Þ

where K runs over two-dimensional TR fixed momenta. This
topological invariant can also be written in a number of
different ways. For example, it can be introduced as TR
invariant polarization (Fu and Kane, 2006), which can be
written as an SUð2ÞWilson loop in momentum space (Lee and
Ryu, 2008; Ryu, Mudry et al., 2010; Yu et al., 2011); see also
Kane and Mele (2005a, 2005b), Prodan (2011), Soluyanov
and Vanderbilt (2011), Freed and Moore (2013), and Fruchart
and Carpentier (2013) for different representations of the Z2

invariant.
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5. The first Z2 descendant for s odd

The first Z2 descendant for the chiral classes relates
isomorphically to the second Z2 descendant for the nonchiral
classes. This relation is discussed in more detail in

Sec. III.C.2. The topological invariant for chiral Zð1Þ2 is
therefore given by the FK invariant (3.63) with the gauge
constraint (3.64) for s ¼ 1, 5 (classes CI and DIII) or
Eq. (3.65) for s ¼ 3, 7 (classes BDI and CII).

a. Class DIII in d ¼ 2

As in the case of time-reversal symmetric TIs in d ¼ 2

(AII), the FK invariant for time-reversal symmetric TSCs in
d ¼ 2 (DIII) can be written in terms of the Pfaffian for-
mula (3.62). The presence of TRS allows us to define the Z2

invariant. The Pfaffian formula can also be given in terms of
theQmatrix. To see this, we write the BdG Hamiltonian in the
off-diagonal basis, i.e., in the form

HðkÞ ¼
�

0 DðkÞ
D†ðkÞ 0

�
; DðkÞ ¼ −DTð−kÞ: ð3:67Þ

In this representation, the TR operator is given by
T ¼ UTK ¼ iσ2 ⊗ 1K, and the Q matrix reads

QðkÞ ¼
�

0 qðkÞ
q†ðkÞ 0

�
; qðkÞ ¼ −qTð−kÞ: ð3:68Þ

To compute the Z2 topological number we choose the
basis juα�ðkÞiN , in which the sewing matrix is given by
wαβðkÞ ¼ −qαβð−kÞ. The Z2 topological number can thus
be expressed as (Schnyder and Ryu, 2011)

W ¼
Y
K

Pf½qðKÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ½qðKÞ�p ; ð3:69Þ

where K denotes the four TR invariant momenta of the 2D BZ.

6. The second Z2 descendant for s odd

The second Z2 descendant for chiral classes is given by the
CS integral CS2n−1 in Eq. (3.46) for n ¼ ðdþDþ 1Þ=2.
Similar to the FK invariants, the CS form here needs to be built
from occupied states that satisfy the gauge constraint (3.64)
for classes CI and DIII or Eq. (3.65) for classes BDI and CII.
Together with the antiunitary symmetry, this gauge constraint
forces the Chern-Simions invariant (3.46) to be a full integer.
The Z2 topology is trivial if CS2n−1 is even, and nontrivial if
CS2n−1 is odd.

a. Class DIII in d ¼ 1

In d ¼ 1 the gauge constraint (3.64) is automatically
satisfied. The CS integral (3.46) becomes the “polarization”
(3.43), which takes value in full integers. By taking the basis
where the Hamiltonian and the Q matrix take the form of
Eq. (3.68), the CS integral can be simplified into the following
Z2 invariant:

ð−1Þν ¼ Pf½qðπÞ�
Pf½qð0Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det½qð0Þ�pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det½qðπÞ�p ; ð3:70Þ

that relies on information only on the fixed momenta k ¼ 0, π
(Qi, Hughes, and Zhang, 2010). Note that the branchffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det½qðkÞ�p

must be chosen continuously between the two
fixed momenta. A proof of the equivalence of the 1D CS
integral and Eq. (3.70) can be found in Teo and Kane (2010b).
As an example, let us consider the class DIII Hamiltonian in
the form of Eq. (3.68) with

DðkÞ ¼ −t sin kσ1 − i½Δþ uð1 − cos kÞ�σ2; ð3:71Þ

where k ∈ ½−π; π� and u ≫ jΔj. By noting that det½qðkÞ� is
always real and positive, Pf½qð0Þ�= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det½qð0Þ�p ¼ sgnðΔÞ
while Pf½qðπÞ�= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det½qðπÞ�p ¼ 1. Hence this model is non-
trivial according to Eq. (3.70) when the pairing Δ is negative.
Before concluding this section, it is worth mentioning that

the topological invariants discussed can be cast in many
different forms. Moreover, they can be extended, in certain
cases, in a way that they are valid in the presence of disorder
and interactions. For example, the Chern invariant can be
written in terms of many-body ground state wave functions,
which depend on twisting boundary conditions (Niu,
Thouless, and Wu, 1985; Wang and Zhang, 2014). All
topological invariants discussed can be written in the language
of scattering matrices (Akhmerov et al., 2011; Fulga et al.,
2011; Fulga, Hassler, and Akhmerov, 2012). Topological
invariants can also be written in terms of Green’s functions
(Ishikawa and Matsuyama, 1987; Volovik, 2003; Gurarie,
2011; Wang, Qi, and Zhang, 2012; Wang and Zhang, 2012)
and by using C� algebra (Bellissard, van Elst, and Schulz-
Baldes, 1994; Loring and Hastings, 2010; Hastings and
Loring, 2011; Prodan, Leung, and Bellissard, 2013;
Prodan, 2014; Prodan and Schulz-Baldes, 2014).

C. K-theory approach

In this section, we derive the classification of gapped
topological phases and topological defects, which is summa-
rized in Table I. The classification can be shown either by
relating to the homotopy groups of classifying spaces or by a
K-theoretical argument (Kitaev, 2009). We also demonstrate
the use of the Clifford algebra in identifying classifying
spaces of symmetry-allowed Dirac mass terms. This method
effectively allows us to translate topological problems into
algebraic problems, and makes use of a known connection
between K theory and Clifford algebras; the Bott periodicity
of K theory is proved by using Clifford algebras (Atiyah, Bott,
and Shapiro, 1964; Lawson and Michelsohn, 1990; Hatcher,
2001). For a more complete and precise description of
K theory, Clifford algebra, and Bott periodicity see the
literature in mathematics (Milnor, 1963; Karoubi, 1978;
Lawson and Michelsohn, 1990; Atiyah, 1994) as well as in
physics (Stone, Chiu, and Roy, 2011; Abramovici and
Kalugin, 2012; Fulga, Hassler, and Akhmerov, 2012; Wen,
2012; Budich and Trauzettel, 2013; Freed and Moore, 2013;
Kennedy and Zirnbauer, 2016; Thiang, 2016).
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1. Homotopy classification of Dirac mass gaps

We have seen already that many topologically nontrivial
phases (as well as trivial phases) have a massive Dirac
Hamiltonian representative. One could then be interested in
focusing on and classifying Dirac representatives. One may
think this is a crude approximation, but as it turns out one does
not lose much by narrowing one’s focus in this way (see
Sec. III.C.2). We thus consider the low-energy description of
Bloch-BdG Hamiltonians near the relevant momentum point
K0, which generically takes the Dirac form

Hðk; rÞ ¼ k · ΓþmΓ0ðrÞ; ð3:72Þ

where k ¼ ðk1;…; kdÞ is the momentum deviation from K0

and Γ ¼ ðΓ1;…;ΓdÞ are Dirac matrices that satisfy the
Clifford relation fΓμ;Γνg ¼ ΓμΓν þ ΓνΓμ ¼ 2δμν (μ; ν ¼
0;…; d). The mass term mΓ0ðrÞ, which depends on a D-
dimensional spatial parameter r, anticommutes with all Dirac
matrices in the kinetic term and is responsible for a bulk
energy gap. For a stable classification, which is independent of
and insensitive to the addition of irrelevant trivial bands, the
dimension of the Dirac matrices (the number of bands) are
taken to be sufficiently large, log½dimðΓ0Þ�≫ dþD, the
motivation of which will become clear later. In the presence
of symmetries [Eqs. (3.6)–(3.8)], the Dirac matrices satisfy

TΓ0ðrÞT−1 ¼ Γ0ðrÞ; TΓT−1 ¼ −Γ; ð3:73Þ

CΓ0ðrÞC−1 ¼ −Γ0ðrÞ; CΓC−1 ¼ Γ; ð3:74Þ

SΓ0ðrÞS−1 ¼ −Γ0ðrÞ; SΓS−1 ¼ −Γ: ð3:75Þ

For a general TI or TSC, the mass term mΓ0 lives in some
parameter space R that has the same topology (or homotopy
type) as a certain classifying space (Lawson and Michelsohn,
1990; Hatcher, 2001; Freedman et al., 2011), which will be
identified shortly. Suppose we have a domain wall sandwiched
by two bulk regions A and B. For example, a domain wall
separating a Chern insulator and a trivial insulator in 2D can
be topologically captured by Eq. (3.72), where the mass term
changes its sign across the interface. Now pick arbitrary points
rA in A and rB in B. The domain wall is topological and carries
protected interface modes, if there does not exist any con-
tinuous path in the parameter space R that connects mΓ0ðrAÞ
and mΓ0ðrBÞ. The topology is therefore characterized by
π0ðRÞ ¼ ½S0;R�, the 0th-homotopy group of R that counts
the path connected components.
For general topological defects other than domain walls,

we first approximate the defect Hamiltonian by the Dirac
Hamiltonian, where r is now the modulation parameter that
wraps around the defect in spacetime. In this case, we are
interested in the highest dimensional strong topologies, where
r lives on (or deformation retracts to) the compactified
sphere SD.
The mass term mΓ0 belongs to different classifying spaces

Rs−d for different symmetry classes s and bulk dimension d.
As we will see, the classifying space is determined by the
symmetries (3.73). Let us now demonstrate this for a
few cases.

a. Class A in d ¼ 2 and d ¼ 1

As the first example, we identity the classifying space that is
relevant for 2D Chern insulators in class A. To this end, let us
first recall the lattice model given by Eq. (3.22). By linearizing
the spectrum near K0 ¼ 0, we obtain from Eq. (3.22) a d ¼ 2
massive Dirac model HðkÞ ¼ kxσ1 þ kyσ2 þmσ3. There are
two distinct phases in this model form > 0 andm < 0, whose
Chern number differs by 1. (Note here that we discuss only the
relative Chern number.) To discuss phases with more general
values of the Chern number, we enlarge the matrix dimension
of the Hamiltonian and consider the following 2N × 2N Dirac
Hamiltonian:

Hðk; rÞ ¼ kxσ1 ⊗ 1N þ kyσ2 ⊗ 1N þM: ð3:76Þ

Since the mass M anticommutes with the kinetic term, M
should have the form M ¼ σ3 ⊗ A, where A is a N × N
Hermitian matrix. By considering A ¼ diagðm1;…; mNÞ,
mi ≠ 0, we can realize band insulators with different values
of the (relative) Chern number. These are simply N decoupled
copies of different Dirac insulators with different masses.
The magnitude of the masses does not matter for the
Chern number, while the sign sgnmi does. So, without losing
generality, we can consider A ¼ Λn;N−n, where Λn;m ¼
diagð1n;−1mÞ. Starting from Λn;N−n, more generic mass terms
can be generated by a unitary matrix U as A ¼ UΛn;N−nU†,
which share the same Chern number as Λn;N−n. Conversely,
for a given A, as far as its eigenvalues are properly normalized,
one can diagonalize A by a unitary matrix U and write
A ¼ UΛn;N−nU†. Thus, A is a member of UðNÞ=UðnÞ×
UðN − nÞ. Two masses A1 and A2 which have the same
canonical form are unitarily related to each other, i.e.,
UðNÞ=UðnÞ ×UðN − nÞ is simply connected. However,
two masses A1 and A2 which have different canonical forms
(i.e., different n) are not. Summarizing, the set of masses for a
given N is ⋃0≤n≤NUðNÞ=½UðnÞ ×UðN − nÞ�.
So far we have fixed N, but this is clearly not enough for the

purpose of realizing Dirac representatives for all possible
phases since for givenN, the (relative) Chern number can be at
most N, whereas insulators in class A in d ¼ 2 can be
characterized by the Chern number which can be any integer.
To realize insulators with arbitrary Chern number, we can take
N as large as possible, and this leads us to consider

C0 ¼ ⋃
N

n¼0

UðNÞ
UðnÞ ×UðN − nÞ �!

N→∞
BU × Z: ð3:77Þ

The disconnected components of this space π0ðC0Þ is the
space of topologically distinct masses, for which it is known
that π0ðC0Þ ¼ Z. This agrees with the classification of class A
in d ¼ 2.
The fact that we take the limit of an infinite number of

bands, which can be achieved by adding as many orbitals as
we want, is an essential ingredient of K theory. In general, one
would expect that the addition of trivial atomic bands should
not affect the nontrivial topological properties of gapped
phases. Hence, one is interested in general in topological
properties that are stable against inclusion of trivial bands.
However, there are topological distinctions of gapped phases
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that exist only when the number of bands is restricted to be
some particular integer. For example, it is known that there
does not exist nontrivial class A TIs in 3D with an arbitrary
number of bands. However, if we restrict ourselves to 2-band
models, nontrivial topologies exist as supported by the non-
trivial homotopy π3ðCP1Þ ¼ Z (Moore, Ran, and Wen, 2008;
De Nittis and Gomi, 2014, 2015; Kennedy and Zirnbauer,
2016), which is unstable against the addition of trivial bands.
By taking the limit of infinitely many bands, we eliminate in
the following such unstable or accidental topologies, viz., we
are interested in the stable equivalence of the ground states of
gapped noninteracting systems.
The problem of classifying possible masses can be for-

mulated in an alternative way as follows (Kitaev, 2009;
Abramovici and Kalugin, 2012; Morimoto and Furusaki,
2013). First, the Dirac kinetic term (the part without mass)
consists of gamma matrices, forming a Clifford algebra. In
general, a complex Clifford algebra Cln is given in terms of a
set of generators feigi¼1;…;n, which satisfy

fei; ejg ¼ 2δij: ð3:78Þ

“Complex” here means we allow these generators to be
represented by a complex matrix. (More formally, we are
interested in a 2n-dimensional complex vector space
fCp1p2���e

p1

1 ep2

2 � � �g, where pi ¼ 0, 1 and Cp1p2��� is a complex
number.) For the present example of the class A TI in d ¼ 2,
the Dirac matrices in the kinetic term satisfy fσi; σjg ¼ 2δij
(i ¼ 1, 2), i.e., they form Cl2. A mass should anticommute
with all Dirac matrices in the kinetic term fσi;Mg ¼ 0, ∀i,
i.e., with the mass, we now have Cl3. When considering a
mass, we are thus extending the algebra from Cl2 to Cl3 by
adding one generator (mass). Counting different ways to
extend the algebra is nothing but counting unitary nonequiva-
lent masses.
In the general case, we first consider a set of symmetry

operators (and Dirac kinetic terms). They are represented as
Clifford generators. We then consider, in addition to these
generators, possible mass terms, which in turn extend the
Clifford algebra. That is, for a fixed representation of the
symmetry generators, we look for possible representations
of a new additional generator (¼ mass). The set of these
representations form a classifying space (Lawson and
Michelsohn, 1990; Hatcher, 2001). Topologically distinct
states correspond to distinct extensions of the algebra.
As yet another example, let us consider class A insulators in

d ¼ 1 and their Dirac representatives given by HðkÞ ¼
kxσ3 ⊗ 1N þM. As before, the mass must anticommute with
the Dirac kinetic term fσ3;Mg ¼ 0. The generic solution to
this is

M ¼
�

0 U†

U 0

�
; U ∈ UðNÞ: ð3:79Þ

Since π0(UðNÞ) ¼ 0, for fixed N, all masses can be con-
tinuously deformed to each other. That is, there is no
topological distinction among gapped phases. As before, this
problem can be formulated as an extension problem
Cl1 → Cl2. The space classifying the extension is

C1 ¼ UðNÞ ð3:80Þ

and its homotopy group is given by π0ðC1Þ ¼ 0.
This analysis can be repeated for arbitrary d. One considers

the extension Cld → Cldþ1. Denoting the corresponding
classifying space Cd, we look for π0ðCdÞ. Because of
Clnþ2 ≃ Cln ⊗ Cð2Þ, where Cð2Þ is an algebra of 2 × 2
complex matrices (which does not affect the extension
problem), we have a periodicity of classifying spaces

Cnþ2 ≃ Cn; ð3:81Þ

from which the twofold dimensional periodicity for the
topological classification of class A follows.

b. Class AIII

As seen, the dimensional periodicity of the topological
classification problem for a given symmetry class follows
directly from the Clifford algebras. Similarly, the dimensional
shift in the classification, caused by adding a symmetry, can
also be understood using Clifford algebras. As an example, let
us consider a zero-dimensional system in symmetry class AIII,
whose mass (i.e., the Hamiltonian itself) H satisfies the chiral
symmetry relation fH;USg ¼ 0. The unitary matrix US, like
the gamma matrices in the Dirac kinetic term, can be thought
of as a Clifford generator. With a proper normalization
(spectral flattening), the zero-dimensional Hamiltonian H
has eigenvalues �1 and can be considered as an additional
Clifford generator. We then consider an extension problem
Cl1 → Cl2, whose classifying space is C1 and π0ðC1Þ ¼ 0.
Thus, the presence of symmetries can be treated by adding a
proper number of Clifford generators, and has effectively the
same effect as increasing the space dimension.

c. Class D in d ¼ 0, 1, 2

So far we discussed the use of complex Clifford algebras for
the classification of Dirac masses in classes A and AIII. Real
Clifford algebras are relevant for the classification of Dirac
masses in the eight real symmetry classes, as we now
illustrate.
We begin with the class D example in d ¼ 0, i.e., we

consider the Hamiltonian HðrÞ ¼ mΓ0ðrÞ, which anticom-
mutes with C ¼ K. Let u1;…;uN be the orthonormal positive
eigenvectors of Γ0. By PHS, u�1;…;u�N are negative eigen-
vectors. Let aj and bj be the real and imaginary parts of uj,

uj ¼ ðaj þ ibjÞ=
ffiffiffi
2
p

. The orthonormal relation u†
iuj ¼ δij

and uT
i uj¼0 translates into aTi aj¼bT

i bj¼ δij and aTi bj ¼ 0.
Thus we have an Oð2NÞ matrix A ¼ ða1;…; aN;b1;…;bNÞ.
Note that the same Γ0 can correspond to different orthogonal
matrices A, due to the UðNÞ basis transformation
uj → u0j ¼ Ujkuk. Hence, the class D mass term Γ0 in
d ¼ 0 lives in the classifying space

R2 ¼ Oð2NÞ=UðNÞ: ð3:82Þ

Moving on to 1D, we considerHðk; rÞ ¼ kΓ1 þmΓ0ðrÞ. By
a suitable choice of basis, we can assume that the PH operator
has the form C ¼ K and Γ1 ¼ τ3 ⊗ 1N . The mass term is thus
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Γ0ðrÞ ¼ τ2 ⊗ γ1ðrÞ þ τ1 ⊗ iγ2ðrÞ, where γ1, γ2 are the real
symmetric and antisymmetric components of anN × N matrix
γðrÞ ¼ γ1ðrÞ þ γ2ðrÞ. The normalization Γ2

0 ¼ 1 implies that γ
must be orthogonal. Thus, class D mass terms in 1D belong to
the classifying space

R1 ¼ OðNÞ: ð3:83Þ

Finally, we discuss the 2D case, where Hðk; rÞ ¼
k1Γ1 þ k2Γ2 þmΓ0ðrÞ. We choose the basis such that
C ¼ K, Γ1 ¼ τ1 ⊗ 1N , and Γ2 ¼ τ3 ⊗ 1N . The mass term
must be of the form Γ0ðrÞ ¼ τ2 ⊗ γðrÞ, where γ is real
symmetric and γ2 ¼ 1 in order for Γ0 to have the appropriate
symmetry and square to unity. One can diagonalize γ by an
orthogonal matrix O ¼ ða1;…; an; anþ1;…; aNÞ ∈ OðNÞ,
where the first n vectors are positive eigenvectors of γ and
the others are negative ones. We observe that the same γ
can correspond to different orthogonal matrices, due to
OðnÞ ×OðN − nÞ basis transformations that do not mix
positive and negative eigenvectors. Thus class D mass terms
in 2D belong to the classifying space

R0 ¼ ⋃
N

n¼0

OðNÞ
OðnÞ ×OðN − nÞ �!

N→∞
BO × Z: ð3:84Þ

As in complex symmetry classes, the relevant classifying
spaces can be identified through an extension problem.
Similar to complex Clifford algebras, a real Clifford algebra
Clp;q is generated by a set of generators feig, which satisfy

fei; ejg ¼ 0; i ≠ j;

e2i ¼
�−1 1 ≤ i ≤ p;

þ1 pþ 1 ≤ i ≤ pþ q.
ð3:85Þ

“Real” here means we are interested in real matrices if these
generators are represented by matrices. For real symmetry
classes, we use the Majorana representation of quadratic
Hamiltonians Ĥ ¼ Ψ̂†

AH
ABΨ̂B ¼ iλ̂AXABλ̂B. The real antisym-

metric matrix X can be brought into its canonical form by an
orthogonal transformation X → OTXO, which reveals the
condition X2 ¼ −1, the only condition in class D. Thus,
we have the extension problem Cl0;0 → Cl1;0. Let us denote
the classifying space of the extension problem Clp;q →
Clp;qþ1 as Rp;q. It then turns out that all other extension
problems are described by Rp;q. First, since Clpþ1;qþ1≃
Clp;q ⊗ Rð2Þ, Rp;q depends only on q − p, Rp;q ≡Rq−p.
Second, since Clp;q ⊗ Rð2Þ≃ Clq;pþ2, the extension problem
Clp;q → Clpþ1;q is mapped to Clq;pþ2 → Clq;pþ3. Thus, the
classifying space of Clp;q → Clpþ1;q isRpþ2−q. Finally, since
Clpþ8;q ≃ Clp;qþ8 ≃ Clp;q ⊗ Rð16Þ the Bott periodicity

Rqþ8 ≃Rq ð3:86Þ

follows. By using these results, the extension problem Cl0;0 →
Cl1;0 can be mapped to Cl0;2 → Cl0;3 and the corresponding
classifying space is R0;2 ¼ R2 ¼ Oð2NÞ=UðNÞ.

d. Summary

One can repeat this process for different symmetry classes
and dimensions. The classifying space for symmetry s in d
dimension is given by Cs−d for the complex AZ classes, or
Rs−d for the real cases (Table IV). The winding of the
mass terms mΓ0ðrÞ as the spacetime parameter r wraps once
around the defect is classified by the homotopy group
(Freedman et al., 2011) πDðRs−dÞ ¼ ½SD;Rs−d�, which
counts the number of topologically distinct nonsingular mass
terms as continuous maps mΓ∶SD → Rs−d. We recall that
classifying spaces are related to each other by looping, i.e.,
Rpþ1 ≃ ΩRp ¼ MapðS1;RpÞ. This implies the following
relation between homotopy groups: πnðRpþ1Þ ¼ πnþ1ðRpÞ.
Hence

πDðRs−dÞ ¼ π0ðRs−dþDÞ ð3:87Þ

classifies topological defects in class s with topological
dimension δ ¼ d −D. This shows that the classification
depends only on the combination s − dþD and proves the
classification Table II by use of Table IV.
As a digression, let us briefly mention that Table II can also

be derived from a stability analysis of gapless surface
Hamiltonians, instead of using the homotopy group classi-
fication of mass terms. The first step in this approach is to
write down a (d − 1)-dimensional gapless Dirac Hamiltonian
with minimal matrix dimension

HsurfðkÞ ¼
Xd−1
j¼1

kjγj; fγi; γjg ¼ 2δij1; ð3:88Þ

which describes the surface state of a d-dimensional
gapped bulk system belonging to a given symmetry class.
Note that the form of Hsurf is restricted by the symmetries of
Eqs. (3.3)–(3.5). Second, we ask if there exists a symmetry-
allowed mass termmγ0, which anticommutes withHsurf . If so,
the surface mode can be gapped, which indicates that the bulk
system has trivial topology labeled by 0 in Table II. On the
other hand, if there does not exist any symmetry-allowed mass
term mγ0, then the surface state is topologically stable (i.e.,
protected by the symmetries), which indicates that the bulk is
topologically nontrivial. To distinguish between a Z and a

TABLE IV. Classifying spaces for complex (Cs) and real (Rs)
classes. The rightmost column shows the corresponding Altland-
Zirnbauer symmetry classes for zero-dimensional systems.

Classifying space Extension π0ð�Þ AZ class

C0 BU × Z Cl0 → Cl1 Z A
C1 UðNÞ Cl1 → Cl2 0 AIII

R0 BO × Z Clp;p → Clp;pþ1 Z AI
R1 OðNÞ Clp;pþ1 → Clp;pþ2 Z2 BDI
R2 Oð2NÞ=UðNÞ Clp;pþ2 → Clp;pþ3 Z2 D
R3 UðNÞ=SpðNÞ Clp;pþ3 → Clp;pþ4 0 DIII
R4 BSp × Z Clp;pþ4 → Clp;pþ5 Z AII
R5 SpðNÞ Clp;pþ5 → Clp;pþ6 0 CII
R6 Spð2NÞ=UðNÞ Clp;pþ6 → Clp;pþ7 0 C
R7 UðNÞ=OðNÞ Clp;pþ7 → Clp;pþ8 0 CI
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Z2 classification, one needs to consider multiple copies of the
surface Hamiltonian, e.g., Hsurf ⊗ 1N . If the surface Dirac
Hamiltonian is stable for an arbitrary number of copies (i.e., if
there does not exist any symmetry-allowed mass term), the
corresponding bulk is classified by an integer topological
invariant Z. If, however, the surface state is stable only for an
odd number of copies, the bulk is classified by a Z2 invariant.
It is possible to derive the entire classification table in this

way. As an example, let us consider classes A, AII, and AIII in
d ¼ 3 dimensions. A 2D surface Dirac Hamiltonian with
minimal matrix dimension can be written as

HsurfðkÞ ¼ k1σ1 þ k2σ2: ð3:89Þ

For class A, the mass term mσz gaps out the surface mode,
leading to the trivial classification 0 in Table I. For classes AII
and AIII, however,mσz, which is the only possible mass term,
breaks TRS (3.3) and chiral symmetry (3.5) with T ¼ σyK and
S ¼ σz, respectively. To further distinguish between a Z2 and
Z classification, we consider Hsurf ⊗ 12, for which the
symmetry operators are given by T ¼ σy ⊗ 12K and
S ¼ σz ⊗ 12. There exists only one mass term for this doubled
Hamiltonian, namely, mσz ⊗ σy, which preserves TRS but
breaks chiral symmetry. Thus, classes AII and AIII are
classified by Z2 and Z invariants, respectively.
Using a similar approach it is also possible to classify TIs

and TSCs in terms of crystalline symmetries; see Sec. IV.
Furthermore, this classification strategy can also be applied to
topological semimetals and nodal SCs; see Sec. V.

2. Defect K theory

The homotopy group classification of mass terms discussed
in the previous section seemingly depends on the fact that the
defect Hamiltonian (3.72) is of a Dirac type. However, it
actually applies to a general defect Hamiltonian Hðk; rÞ (i.e.,
not only to Dirac Hamiltonians), as long as there is a finite
energy gap separating the occupied bands from unoccupied
ones. This general classification can be presented in the
language of K theory (Teo and Kane, 2010b). For a fixed
AZ symmetry class and dimensions ðd;DÞ, the collection of
defect Hamiltonians forms a commutative monoid—an asso-
ciative additive structure with an identity—by considering a
direct sum

H1 ⊕ H2 ¼
�
H1 0

0 H2

�
; ð3:90Þ

where direct sums of symmetry operators T1 ⊕ T2, C1 ⊕ C2

are defined similarly. Clearly, H1 ⊕ H2 has the same
symmetries and dimensions as its constituents. The identity
element is the 0 × 0 empty Hamiltonian H ¼ ∅. Physically,
the direct sum operation simply means to put the two
systems on top of each other without letting them couple
to each other.
As in ordinary K theories, this monoid can be promoted to a

group by introducing topological equivalence and applying
the Grothendieck construction, which will be explained later.
Two defect Hamiltonians H1ðk; rÞ and H2ðk; rÞ with the same
symmetries and spatial dimensions, but not necessarily with

the same matrix dimensions (dimH1 ≠ dimH2), are stably
topologically equivalent,

H1ðk; rÞ≃H2ðk; rÞ; ð3:91Þ

if, for large enough M and N, H1ðk; rÞ ⊕ ðσ3 ⊗ 1MÞ can be
continuously deformed into H2ðk; rÞ ⊕ ðσ3 ⊗ 1NÞ without
closing the energy gap or breaking symmetries. Here σ3 ⊗ 1M
is a trivial atomic 2M × 2M Hamiltonian that does not depend
on k and r, and M − N ¼ dimH2 − dimH1.
Stable topological equivalence defines equivalent classes of

defect Hamiltonians

½H� ¼ fH0∶H0 ≃Hg; ð3:92Þ

which is compatible with the addition structure ½H1� ⊕ ½H2� ¼
½H1 ⊕ H2�. The identity element is 0 ¼ ½∅� which consists of
all topologically trivial Hamiltonians that can be deformed
into σ3 ⊗ 1N . Each Hamiltonian class now has an additive
inverse. By adding trivial bands, we can always assume a
Hamiltonian has an equal number of occupied and unoccupied
bands. Consider the direct sumH ⊕ ð−HÞ, where in (−H) the
occupied states are inverted to unoccupied ones. This sum is
topologically trivial as the states below the gap consist of both
the valence and conduction states inH and they are allowed to
mix. This shows that ½H� ⊕ ½−H� ¼ 0 and [−H] is the additive
inverse of [H]. We see that the collection of equivalent classes
of defect Hamiltonians forms a group and defines a K theory

Kðs; d;DÞ ¼

8>><>>:
Hðk; rÞ; a gapped defect

½H�∶ Hamiltonian of AZ class

s and dimensions ðd;DÞ

9>>=>>;: ð3:93Þ

Now we establish group homomorphisms relating K groups
with different symmetries and dimensions (Teo and Kane,
2010b)

Φþ∶ Kðs; d;DÞ → Kðsþ 1; dþ 1; DÞ; ð3:94Þ

Φ−∶ Kðs; d;DÞ → Kðs − 1; d;Dþ 1Þ: ð3:95Þ

That is, given any defect Hamiltonian Hsðk; rÞ in symmetry
class s, one can define a new gapped Hamiltonian

Hs�1ðk; θ; rÞ

¼
�
cos θHsðk; rÞ þ sin θS; s odd;

cos θHsðk; rÞ ⊗ σ3 þ sin θ1 ⊗ σ1;2; s even.
ð3:96Þ

Here θ ∈ ½−π=2; π=2� is a new variable that extends ðk; rÞ,
which lives on the sphere SdþD, to the suspension
ΣSdþD ¼ Sdþ1þD. This is because the new Hamiltonian
Hs�1 is independent of ðk; rÞ at the north and south poles
where θ ¼ �π=2.
We first look at the case when s is odd. For real symmetry

classes, the chiral operator is set to be the product S ¼
iðsþ1Þ=2TC of the TR and PH operators. The factor of i is to
make S Hermitian and square to unity. The addition of the
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chiral operator in Eq. (3.96) breaks the chiral symmetry since
the Hamiltonian Hs�1 does not anticommute with S anymore.
Depending on how the new variable θ transforms under the
symmetries θ → �θ, the new Hamiltonian Hs�1 preserves
only either TRS or PHS. If θ is odd (even), it belongs to the
symmetry class sþ 1 (respectively, s − 1). This also applies to
complex symmetry classes.
Next we consider the even s cases. For real symmetry

classes, Hs has one antiunitary symmetry, say TRS. (The case
of PHS can be argued by a similar manner.) The introduction
of the σ degree of freedom doubles the number of bands and
the new HamiltonianHs�1 in Eq. (3.96) has a chiral symmetry
S ¼ 1 ⊗ σ2;1 which anticommutes with the extra term
sin θ1 ⊗ σ1;2. For the case when S ¼ σ2, there is a new
PHS with the operator C ¼ iT ⊗ σ2 that fixes the new
parameter θ → θ. For the other case for S ¼ σ1, the new
PHS operator is C ¼ T ⊗ σ1 and the new parameter flips
θ → −θ under the symmetry. The new Hamiltonian then
belongs to the symmetry class s − 1 for the former case,
and sþ 1 for the latter.
To summarize, Eq. (3.96) defines the correspondences

Φ�∶ ½Hsðk; rÞ� → ½Hs�1ðk; θ; rÞ�: ð3:97Þ

For the þ case, θ is odd under the symmetry and behaves like
a new momentum parameter. It increases the dimension
d → dþ 1. For the − case, θ is even under the symmetry.
The extra spacelike parameter then increases D → Dþ 1. Φ�
commutes with direct sums Φ�½H1 ⊕ H2� ¼ Φ�½H1� ⊕
Φ�½H2� and therefore are group homomorphisms between
K theories. These homomorphisms are actually invertible and
provide isomorphisms between (Teo and Kane, 2010b)

Kðs; d;DÞ ≅ Kðsþ 1; dþ 1; DÞ
≅ Kðs − 1; d;Dþ 1Þ: ð3:98Þ

To see this, we begin with an arbitrary defect Hamiltonian
Hs�1ðk; θ; rÞ. It can be shown to be topologically equivalent to
one with the particular form in Eq. (3.96). We then consider
the artificial action

S½H̄ðk; θ; rÞ� ¼
Z

dθddkdDrTrð∂θH̄∂θH̄Þ ð3:99Þ

on the moduli space of flat-band Hamiltonians H̄ so that
H̄2 ¼ 1. By satisfying the Euler-Lagrangian equation

δS
δH

����
H2¼1

¼ ∂2
θH þH ¼ 0; ð3:100Þ

Eq. (3.96) locally minimizes the action. The action also
defines a natural minimizing flow direction that deforms an
arbitrary HamiltonianHðk; θ; rÞ to the form of Eq. (3.96). This
shows the invertibility of Φ�.
The isomorphisms (3.98) prove that the classification of

topological defects depends only on the combination
s − dþD. Furthermore, the defect K theory is related to
the classifications of TI and TSC by

Kðs; d;DÞ ≅ KðsþD; d; 0Þ ≅ Kðs; d −D; 0Þ; ð3:101Þ

which classifies class s topological band theories in δ ¼
d −D dimensions. The equivalence (3.101) extends character-
istics of the classification of TIs and TSCs to the classification
of topological defects.
Beside Eq. (3.101), there are further relationships among

K groups having different s, d, D. For example, topological
states in the first and second descendants are related to their
“parent” states in primary series, by dimensional reduction
(Qi, Hughes, and Zhang, 2008; Ryu, Schnyder et al., 2010).
This procedure is one way to understand how the Z2

characterization of the first and second descendants emerge.
Let us consider a d-dimensional Bloch Hamiltonian HðkÞ
describing a gapped topological state in the first descendants.
One can then consider a (dþ 1)-dimensional Bloch
Hamiltonian ~Hðk; kdþ1Þ which belongs to the same symmetry
class and satisfy ~Hðk; 0Þ ¼ HðkÞ. Furthermore, if there is a
spectral gap in ~Hðk; kdþ1Þ, one can compute the topological
invariants introduced above, since ~Hðk; kdþ1Þ belongs to the
primary series. However, as one immediately notices, there is
no unique higher-dimensional Hamiltonian to which the
original Hamiltonian can be embedded, nor a unique value
for the topological invariant. Nevertheless, the parity of the
topological invariant can be shown to be independent of the
way we embed the Hamiltonian. This is the origin of the Z2

classification of the first descendants. Similar arguments apply
to the second descendants.
Summarizing, the first and second Z2 topologies are related

to their parent Z topology of the same symmetry class by the
surjections

Zð2Þ2  
i�

≅
Zð1Þ2  

i�
Z; ð3:102Þ

where i�∶ Kðs; dþ 1; DÞ → Kðs; d;DÞ is the restriction
homomorphism that restricts

i�∶ Hsðk; kdþ1; rÞ↦ Hsðk; rÞjkdþ1¼0; ð3:103Þ

where ðk; kdþ1; rÞ lives on the compactified Sdþ1þD and ðk; rÞ
belongs to the equator SdþD.
As yet another relationship, the first Z2 descendant for

the chiral classes relates isomorphically to the second Z2

descendant for the nonchiral classes:

ð3:104Þ

Here the map between K theories

f∶Kðs; d;DÞ ≅ Zð1Þ2 → Kðsþ 1; d;DÞ ≅ Zð2Þ2 ð3:105Þ

is the forgetful functor that ignores either TRS or PHS so that
the chiral band theory now belongs to the nonchiral symmetry
class sþ 1. It agrees with the composition f ¼ i�∘Φþ, where
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Φþ∶ Kðs; d;DÞ → Kðsþ 1; dþ 1; DÞ is the isomorphism
(3.96) and i� restricts the Hamiltonian Hsþ1ðk; θ; rÞ onto
the equator where θ ¼ 0. Since both i� and Φþ are isomor-
phisms, so is the forgetful map f. The topological invariant for

chiral Zð1Þ2 is therefore given by the FK invariant (3.63) with
the gauge constraint (3.64) for s ¼ 1, 5 (classes CI and DIII)
or (3.65) for s ¼ 3, 7 (classes BDI and CII).

D. Bulk-boundary and bulk-defect correspondence

In this section, we relate the bulk topological invariants
discussed in Sec. III.B to the protected gapless excitations
localized at boundaries and defects. This will be done by
introducing proper indices that “count” the number of zero
modes and gapless modes localized at defects (à la index
theorems), and by identifying these indices as the topological
invariants. This bulk-boundary and bulk-defect correspon-
dence unifies numerous TI and TSC defect systems, which we
demonstrate in terms of a variety of examples. In addition to
the following discussion, we refer the interested reader to the
literature of Essin and Gurarie (2011) and Graf and Porta
(2013), where different approaches to establish the bulk-
boundary and bulk-defect correspondence have been studied.

1. Zero modes at point defects and index theorems

We start by demonstrating the protected zero-energy modes
localized at topological point defects (δ ¼ d −D ¼ 1). The
simplest examples are given by the SSH and 1D Kitaev
models, or their continuum counterparts, the Jackiw-Rebbi
model, discussed in Secs. III.B.2.c and III.B.3.b. The domain
wall defects in these 1D models trap zero-energy bound states
protected by chiral or PH symmetry. The continuum versions
of these models (3.44) are given by the differential operator

H ¼ −ivσ2
d
dr
þmðrÞσ3; r ∈ ð−∞;þ∞Þ; ð3:106Þ

where the mass mðrÞ, which changes sign at the origin,
describes the domain wall. The zero-energy bound state jγi,
which is exponentially localized at the domain wall (i.e., at the
origin), is an eigenstate of the chiral or PH operator Sjγi ¼
�jγi or Cjγi ¼ jγi, where S ¼ σ1 and C ¼ σ1K. The chiral
eigenvalue, called chirality, of the zero mode has a definite
sign, depending on the sign of the winding number (3.42). The
sign of the PH eigenvalue, on the other hand, is unphysical,
since it can be flipped by multiplying jγi by i. Hence, for the
zero-energy Majorana bound state (MBS) protected by PHS
the PH eigenvalue can always be assumed to be þ1.
Since the 1D example (3.106) is invariant under chiral or

PH symmetry, its energy levels must come in �ε conjugate
pairs. The zero mode jγi, however, is self-conjugate, and
therefore does not have a conjugate partner. Hence, jγi is
pinned at zero energy and, as a consequence, is robust against
any perturbation that does not close the bulk energy gap. We
list in Table V the different symmetry classes that can support
zero-energy modes at topological point defects. Depending on
the symmetry class, these zero-energy modes are of a different
type, as indicated by the last column in Table V.

a. Index theorems

In general, if a point defect supports an odd number of zero-
energy bound states, only an even number of them can be
paired up and gapped out upon inclusion of PH symmetric
perturbations. This leaves at least one unpaired zero-energy
bound state. The even-odd parity of the number of zero modes
is known as a Z2 analytic index of the differential operator H,

indð1ÞZ2
½H� ¼

�
number of zero-

energy bound states

�
mod 2; ð3:107Þ

which we claim is identical to the Z2 topological index,

indð1ÞZ2
½H� ¼ 2CS2d−1½Hðk; rÞ�; ð3:108Þ

given by the Chern-Simons integral in Eq. (3.46) for a point
defect in d dimensions. The equality (3.108) is an example of
the bulk-boundary correspondence.
For chiral symmetric systems, on the other hand, the chiral

operator S defines in addition an integral quantity

indZ½H� ¼ TrðSÞ; ð3:109Þ

which is referred to as the chirality of the point defect. It
counts the difference between the number of zero modes with
positive and negative chiral eigenvalues. This Z analytical
index is robust against any chiral symmetric perturbation that
does not close the bulk gap. This is because all conjugate pairs
of energy eigenstates, which can always be related by the
chiral symmetry j − εi ¼ Sj þ εi, do not contribute to TrðSÞ,
as j þ εi � j − εi must have opposite eigenvalues of S. For a
point defect in d dimensions, it is found that the chirality is
identical to the Z topological index, i.e., the winding number
given in Eq. (3.25)

indZ½H� ¼ ν2d−1½Hðk; rÞ�: ð3:110Þ

Moreover, Eq. (3.109) also agrees with the Z2-analytic index

indZ½H� ¼ indð1ÞZ2
½H� mod 2: ð3:111Þ

Equation (3.108) applies to general point defects in all
symmetry classes in any dimension, while Eq. (3.110) applies
to arbitrary chiral ones. For instance, from the defect classi-
fication (Tables II and V), we see that the CS invariant for a
point defect is nonvanishing only for classes AIII, BDI, and D.

TABLE V. Symmetry classes supporting nontrivial point topologi-
cal defects and their associated zero-energy modes.

Symmetry Topological classes Bound states at ε ¼ 0

AIII Z Chiral Dirac
BDI Z Chiral Majorana
D Z2 Majorana
DIII Z2 Majorana Kramers doublet

(¼ Dirac)
CII 2Z Chiral Majorana Kramers

doublet (¼ chiral Dirac)
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Equation (3.108) then agrees with the fact that only point
defects in these AZ classes can support an odd number of
zero-energy MBS. All other classes either do not have a PHS
or the zero modes must come in Kramers doublets. This also
explains the even chirality indZ½H� for class CII point defects
and matches, by the index theorem (3.110), with the 2Z
winding number ν2d−1½Hðk; rÞ�.
Last, there is another Z2-analytic index associated with the

second descendants. It applies to point defects with an
antiunitary symmetry T or C that squares to −1, so that
zero-energy states come in Kramers pairs:

indð2ÞZ2
½H� ¼

�
number of zero-energy

Kramers pairs

�
mod 2: ð3:112Þ

This index is identical to the second descendant Z2-topological
index

indð2ÞZ2
½H� ¼ CS2d−1½Hðk; rÞ�; ð3:113Þ

for a d-dimensional point defect, where the Chern-Simons
invariant is defined in Eq. (3.46) with the gauge constraint
(3.64) for T2 ¼ −1 or Eq. (3.65) for C2 ¼ −1. The defect
classification (Table II) tells us that only point defects in
class DIII support protected zero-energy Majorana Kramers
pairs. These zero modes cannot be detected by the other indices
in Eq. (3.108) or (3.110), since there are an even number of
MBSs which necessarily carry opposite chirality, as S and T
anticommute.
It is worth noting that the Z-analytic index (3.109) and its

identification to the topological index (3.110) is a rendition of
the original celebrated index theorem in the mathematics
literature (Atiyah and Singer, 1963). A chiral symmetric
defect Hamiltonian H, in the form of a differential operator,
takes the off-diagonal form

H ¼
�

0 D†

D 0

�
; ð3:114Þ

where D is a Dirac operator, which is Fredholm.
Equation (3.109) is identical to

indZ½H� ¼ dim kerðDÞ − dim kerðD†Þ; ð3:115Þ

which is the original definition of the analytic index of a Dirac
operator. The index theorem (3.110) can be proven by means
of a heat kernel method (Lawson and Michelsohn, 1990;
Berline, Getzler, and Vergne, 1992). Several alternative proofs
have been derived in the context of both condensed matter and
high energy physics (Jackiw and Rebbi, 1976; Jackiw and
Rossi, 1981; Weinberg, 1981; Nakahara, 2003; Volovik, 2003;
Fukui, 2010; Fukui and Fujiwara, 2010).
In the following, we present some examples of zero-energy

bound states at topological point defects in both 2D and 3D.
We focus on point defects that trap unpaired zero-energy
MBSs or Majorana Kramers doublets. In many cases the
topological invariants can be simplified into products of a bulk
topological invariant and a defect winding number. MBSs are
predicted to exists in many systems, e.g., in quantum flux

vortices in chiral px þ ipy SCs or in superfluid 3He-A, in TI-
SC-ferromagnet (FM) heterostructures in 2D and 3D, and so
on. The theory of topological defects unifies the topological
origin of all these examples. For instance, the appearance of
protected zero-energy MBSs is always a consequence of

Kðs; d;DÞ ¼ Zð1Þ2 for s ¼ 2 (class D), while the presence
of protected zero-energy Majorana Kramers doublets is a

result of Kðs; d;DÞ ¼ Zð2Þ2 for s ¼ 3 (class DIII). For exam-
ple, the protected zero-energy MBS at a quantum flux vortex
of a spinless chiral px þ ipy SC turns out to have the same
topological origin as a MBS located at a dislocation or
disclination of a nonchiral p-wave SC (Teo and Hughes,
2013; Hughes, Yao, and Qi, 2014).

b. Example: 2D class D px þ ipy superconductors

We first look at a quantum flux vortex of a spinless chiral
px þ ipy SC (Anderson and Morel, 1961; Balian and
Werthamer, 1963; Leggett, 1975, 2006; Sigrist and Ueda,
1991; Rice and Sigrist, 1995; Luke et al., 1998; Volovik,
1999, 2003; Read and Green, 2000; Ivanov, 2001; Kitaev,
2006; Xia et al., 2006; Gurarie and Radzihovsky, 2007;
Tewari et al., 2008). Consider a 2D BdG Hamiltonian on
the square lattice

H0ðkÞ ¼ Δðsin kxτ1 þ sin kyτ2Þ
þ ½tðcos kx þ cos kyÞ − μ�τ3; ð3:116Þ

where τi¼1;2 acts on the Nambu degrees of freedom ðĉ; ĉ†Þ,
and the PH operator is C ¼ τ1K. When the electron hopping
strength and Fermi energy are arranged so that 2t > jμj > 0,
this bulk 2D model has a unit Chern invariant and carries a
chiral Majorana edge mode. In the continuum limit, a chiral
px þ ipy SC can be represented by

H0ðkÞ ¼ Δðkxτ1 þ kyτ2Þ þ
�
ℏ2k2

2m
− μ

�
τ3; ð3:117Þ

where the Fermi energy μ is positive. A ϕ ¼ hc=2e quantum
flux vortex can be described by the defect Hamiltonian

Hðk; rÞ ¼ e−iφðrÞτ3=2H0ðkÞeiφðrÞτ3=2; ð3:118Þ

where the SC pairing phase φ winds by 2π × l (l ∈ Z)
around the vortex, and can be taken as the angular parameter
φðrÞ ¼ tan−1ðy=xÞ × l. The vortex can be shown to carry a
protected zero-energy Majorana bound state, so that

indð1ÞZ2
½H� ¼ 1. The index theorem (3.108) can be verified

by evaluating the Chern-Simons invariant CS3. [For the
technical reason explained following Eq. (3.46), we need to
consider the modified defect Hamiltonian ~Hðk;rÞ¼Hðk;rÞ⊕
(−H0ðkÞ), where the lower block cancels the 2D Chern
invariant without contributing to extra point defect states. This
modification is to ensure that there is a global continuous basis
of occupied states for the CS integral.] The CS 3-form can be
simplified (Teo and Kane, 2010b) and decomposed into
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Q3 ¼
�

i
2π

�
2

Tr½F 0ðkÞ� ∧ dφ; ð3:119Þ

where F 0 is the Berry curvature for the pþ ip SC H0ðk; rÞ
without a vortex. The topological index therefore is a simple
product of the bulk Chern number and the vorticity l,

2CS3½Hðk; rÞ� ¼
i
2π

Z
BZ2

TrðF 0Þ
I
S1
dφðrÞ

¼ Ch1 × l: ð3:120Þ

Equations (3.119) and (3.120) apply to a general defect
Hamiltonian of the form of Eq. (3.118), and the parity of
the number of zero-energy MBSs at a flux vortex can always
be read off from (Volovik, 2003; Stone and Roy, 2004; Kitaev,
2006)

indð1ÞZ2
½H� ¼ Ch1½H0ðkÞ� × l: ð3:121Þ

Physical chiral px þ ipy SCs are spinful. Strontium ruth-
enate (Sr2RuO4) is a plausible candidate of a spinful chiral
p-wave SC with odd parity spin-triplet pairing (Rice and
Sigrist, 1995; Luke et al., 1998; Xia et al., 2006), although its
precise pairing nature is still under debate (Maeno, Rice, and
Sigrist, 2001; Raghu, Kapitulnik, and Kivelson, 2010; Maeno
et al., 2012). A continuum model of a 2D spinful chiral
p-wave SC is given by

H0ðkÞ ¼ Δðσ · dÞσ2ðkxτ1 þ kyτ2Þ

þ
�
ℏ2k2

2m
− μ

�
τ3; ð3:122Þ

where σi¼1;2;3 acts on the spin degree of freedom, and the
d vector specifies a special spin direction, say along the
x-y plane, in the triplet pairing. The Nambu basis is taken to be
ðĉ↑; ĉ↓; ĉ†↓;−ĉ†↑Þ and the PH operator is C ¼ σ2 ⊗ τ2K. From
Eq. (3.121), a full hc=2e quantum vortex (FQV) carries two
MBSs γ̂↑, γ̂↓, which split by a perturbation δĤ ¼ iεγ̂↑γ̂↓ into a
�ε pair, due to spin-orbit coupling (SOC) or an in-plane
magnetic field. On the other hand, a half-quantum vortex
(HQV) of flux ϕ ¼ hc=4e consists of a π rotation of the
pairing phase as well as the d vector about the z axis (Salomaa
and Volovik, 1985; Das Sarma, Nayak, and Tewari, 2006;
Chung, Bluhm, and Kim, 2007; Jang et al., 2011). The HQV is
represented by the defect Hamiltonian

Hðk; rÞ ¼ e−iφðrÞðτ3þσ3Þ=4H0ðkÞeiφðrÞðτ3þσ3Þ=4; ð3:123Þ

where φ is the angular parameter around the vortex. The
spatial configuration of the d vector is shown in Fig. 3(a).
Effectively, the HQV acts as a quantum vortex only on one
of the two spin sectors where τ3 and σ3 have the same sign.
This gives a single protected zero-energy MBS as shown in
Fig. 3(b).

c. Example: 2D class DIII ðpþ ipÞ × ðp − ipÞ superconductors
There exists also an unconventional spinful p-wave SC that

preserves TRS (Kitaev, 2009; Schnyder et al., 2009; Zhang,
Kane, and Mele, 2013b). It involves an opposite chirality in
the two spin species, and the pairing has a ðpx þ ipyÞ↑ ×
ðpx − ipyÞ↓ structure. A continuum BdG Hamiltonian
describing this SC is given by

H0ðkÞ ¼ Δðkxτ1 þ kyσ3τ2Þ þ
�
ℏ2k2

2m
− μ

�
τ3; ð3:124Þ

where the Nambu basis is chosen to be ðĉ↑; ĉ↓; ĉ†↑; ĉ†↓Þ and the
PH operator is C ¼ τ1K. H0ðkÞ has a TRS with T ¼ σ2τ3K
and therefore belongs to class DIII. The nontrivial Z2 top-
ology of H0ðkÞ corresponds to a gapless helical Majorana
edge mode. The Hamiltonian (3.124) is topologically equiv-
alent, by a basis transformation, to the 2D 3He-B model
(Volovik, 2003)

H0ðkÞ ¼ Δðkxσ1 þ kyσ2Þτ1 þ
�
ℏ2k2

2m
− μ

�
τ3; ð3:125Þ

where the Nambu basis is now ðĉ↑; ĉ↓; ĉ†↓;−ĉ†↑Þ with PH
operator C ¼ σ2τ2K and TR operator iσ2K. A vortex that
respects TRS can be introduced in Eq. (3.125) via

Hðk; rÞ ¼ e−iφðrÞσ3=2H0ðkÞeiφðrÞσ3=2; ð3:126Þ
which consists of a 2π rotation of spin once around the vortex
core. One finds that a Majorana Kramers doublet is bound at
the vortex core, as guaranteed by the second Z2 index (3.113).

d. Example: Dislocations and disclinations in crystalline
superconductors (class D)

Zero-energy MBSs can also exist in nonchiral media. We
have already seen that they appear as boundary modes in a
topological 1D p-wave SC [see Eq. (3.41)]. This can be
generalized to 2D by stacking the 1D chains into a 2D array. A
lattice dislocation (see Fig. 4) binds a zero-energy MBS if
the 1D chains are aligned horizontally, so that the MBS is
located at the end of a half line (Asahi and Nagaosa, 2012;
Juričić et al., 2012; Teo and Hughes, 2013; Benalcazar, Teo,
and Hughes, 2014; Hughes, Yao, and Qi, 2014). In general, a
nonchiral p-wave SC in 2D can carry a weak Z2 topology.
This is described by weak indices, which originate from the
lower dimensional cycles of the 2D BZ, BZ2 ¼ S1 × S1. The
weak indices characterize a homogeneous 2D SC that is

(a) (b)

FIG. 3. (a) Spatial configuration of the d vector around a half-
quantum vortex of a pþ ip SC. (b) Zero-energy Majorana
modes of a half-quantum vortex (HQV) and a full quantum
vortex (FQV).
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topologically equivalent to an anisotropic array of p-wave
chains. They can be written in the form of a Z2-valued
reciprocal lattice vector

Gν ¼ ν1b1 þ ν2b2 with

νi ¼
i
π

I
Ci

TrðAÞmod 2; ð3:127Þ

where Ci ¼ fπbi þ sϵijbjjs ∈ ð−π; π�g is the cycle on the
boundary of the BZ along the primitive reciprocal lattice
direction bi. On a boundary normal to Gν, the weak TSC
carries a protected nonchiral Majorana edge mode, where
the zero-energy left- and right-moving modes are located at
different PH symmetric momenta 0 and π so that back-
scattering is prohibited by PH and translation symmetry.
By the use of Eq. (3.108) together with Eq. (3.127), one
finds the following bulk-defect correspondence:

indð1ÞZ2
¼ 1

2π
B ·Gν mod 2; ð3:128Þ

where B is the Burgers vector—the Bravais lattice vector
associated with the net translation picked up by a particle
going once around the dislocation (Chaikin and Lubensky,
2000; Nelson, 2002). The product in Eq. (3.128) counts the
parity of the number of zero-energy MBSs located at a
dislocation in a 2D weak TSC. It does not rely on a chiral
px þ ipy pairing order or a nonvanishing Chern invariant.
Discrete rotation symmetries of a crystalline SC provide

further lattice symmetry-protected topologies (Teo and
Hughes, 2013; Benalcazar, Teo, and Hughes, 2014); see also
Sec. IV. These topological crystalline superconductors (TCSs)
possess BdG states juaðKÞi that behave differently under
rotation R at different rotation fixed points K. For example, the
fourfold symmetric BdG model (3.116) has at the two fourfold
fixed momenta (0,0) and ðπ; πÞ inverted occupied states, i.e.,
juð0; 0Þi ¼ e2 and juðπ; πÞi ¼ e1. These two eigenstates have
distinct rotation eigenvalues R ¼ eiðπ=4Þτ3 , since τ3 ¼ �1 for
these two BdG states. The lattice symmetry-protected bulk
topologies can lead to zero-energy MBSs located at discli-
nations, i.e., at conical point defects. These disclinations
correspond to singularities of the curvature that rotate the
frame of an orbiting particle by a Frank angle Ω after one
cycle. Examples on a square lattice are illustrated in Figs. 4(b)

and 4(c). The Z2 index that counts the parity of the zero-
energy MBSs at a disclination takes the form of (Teo and
Hughes, 2013; Benalcazar, Teo, and Hughes, 2014)

indð1ÞZ2
¼ 1

2π
T ·Gν þ

Ω
2π

�
Ch1 þ

rotation

invariant

�
mod 2;

ð3:129Þ

where T is a translation piece of the disclination similar to the
Burgers vector of a dislocation. The specific form of the
rotation invariant depends on the rotation symmetry and is
always a combination involving the rotation eigenvalues of
BdG states. Disclination MBSs are proposed to be present in
the form of corner states in Sr2RuO4 and at grain boundaries
in superconducting graphene and silicene.

e. Example: Superconducting heterostructures (class D)

We have seen that MBSs appear in the form of vortex states
in chiral (pþ ip) SCs and as lattice defects in nonchiral p-
wave SCs. Here we review 2D and 3D heterostructures that
involve s-wave SCs, but still support robust zero-energy
MBSs (Fu and Kane, 2008, 2009; Hasan and Kane, 2010;
Teo and Kane, 2010b; Chiu, Gilbert, and Hughes, 2011;
Hosur et al., 2011; Qi and Zhang, 2011; Chiu, Ghaemi, and
Hughes, 2012; Hung et al., 2013; J.-P. Xu et al., 2014; S.-Y.
Xu et al., 2014).
(i) We first look at the gapless helical edge modes of a 2D

quantum spin Hall (QSH) insulator consisting of a pair of
counterpropagating electronic states (Sec. III.D.2), which
couple to a TR-breaking backscattering potential h and a
Uð1Þ symmetry breaking SC pairing Δ [Fig. 5(a)]. This setup
can be described by the boundary BdG Hamiltonian

H1dðk; rÞ ¼ vFkσ3τ3 þ hðrÞσ1 þ ΔðrÞτ1; ð3:130Þ

(a) (b) (c)

FIG. 4. (a) Dislocation on a square lattice. (b) Two inequivalent
Ω ¼ −π=2 disclinations. (c) A Ω ¼ �π=2 disclination dipole.

FIG. 5. Zero-energy MBSs (yellow dots) in heterostructures:
(a) superconductor (SC)—magnet (M) domain wall along a QSH
edge or a Chern insulator interface; (b) a flux vortex across a
superconducting interface between a 3D topological (TI) and
trivial insulator (I).
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where σi and τi act on spin and Nambu degrees of freedom,
respectively. Here the Nambu basis is chosen to be
ðĉ↑; ĉ↓; ĉ†↓;−ĉ†↑Þ, so that the PH operator is C ¼ σ2τ2K and
the TR operator is T ¼ iσ2K. The TR-breaking mass gap h
can be generated by magnetic impurities, by a Zeeman field,
or by proximity with a ferromagnet (M). The SC pairing Δ, on
the other hand, can be induced by proximity coupling with
an s-wave SC. The two terms Δ and h commute and
correspond to competing orders. An SC-M domain wall,
where jhðrÞj − jΔðrÞj changes its sign, traps a zero-energy
MBS. This can be seen by decomposing Eq. (3.130) into H ¼
Hþ ⊕ H− by the good quantum number σ1τ1 ¼ �1, where

H�1dðk; rÞ ¼ vFk ~σ3 þ ½hðrÞ � ΔðrÞ� ~σ2; ð3:131Þ

where ~σ acts on the two-dimensional subspaces. Assuming
both hðrÞ and ΔðrÞ are non-negative throughout the edge,
Hþðk; rÞ always has a gap while the mass term for H−ðk; rÞ
changes its sign across the domain wall. H− is exactly the
Jackiw-Rebbi model (3.44) and therefore traps a zero mode
between the SC and M regions.
(ii) Helical modes also occur in an interface between an s-

wave SC and two adjacent Chern insulators that have the same
unit Chern number [Fig. 5(a)]. For example, consider the
spinful band Hamiltonian (3.116) on a square lattice, where τ
now acts on the spin degree of freedom. It supports a spin
polarized chiral edge mode and has opposite polarizations on
opposite edges. A protected MBS therefore is located at the
SC-M domain wall of a weakly coupled Chern insulator
interface. More exotic parafermionic defects are proposed in
SC-M heterostructures in fractional TIs (Cheng, 2012;
Lindner et al., 2012; Clarke, Alicea, and Shtengel, 2013;
Vaezi, 2013; Zhang and Kane, 2014b).
(iii) The same idea applies to semiconducting nanowires

with strong SOC in a magnetic field. This ballistic 1D system
can be modeled in the continuum limit by the following
spinful Hamiltonian:

H0ðkÞ ¼
ℏ2k2

2m
12 þ uSOkσ3 þ bσ1: ð3:132Þ

The Hamiltonian (3.132) has an energy spectrum, which
consists of a spin-filtered pair of counterpropagating modes,
provided that the Fermi energy lies within the direct magnetic
gap (Fig. 6). These helical modes can be gapped out by a
superconducting pairing, which is proximity induced by a
bulk s-wave SC. This SC nanowire then behaves like a 1D
Kitaev p-wave SC and hosts protected boundary MBSs

(Lutchyn, Sau, and Das Sarma, 2010; Oreg, Refael, and
von Oppen, 2010; Sau et al., 2010; Alicea et al., 2011). InSb
nanowires with a low impurity density which are proximity
coupled to an ordinary s-wave SC provide an experimental
realization of this 1D p-wave SC. Recently, numerous trans-
port measurements on these systems have observed zero-bias
conductance peaks, which were interpreted as evidence of the
boundary MBSs (Das et al., 2012; Deng et al., 2012; Mourik
et al., 2012; Rokhinson, Liu, and Furdyna, 2012).
(iv) Going back to the SC-M domain wall along a QSH

edge, the point defect can be equivalently described in 2D.
The defect Hamiltonian that incorporates the 2D bulk takes in
the continuum limit the 8-band form of

H2dðk; rÞ ¼ ½tðkxσ1 þ kyσ2Þμ1 þmðrÞμ3�τ3
þ hðrÞμ2 þ ΔðrÞτ1: ð3:133Þ

Here the first line describes the transition between the QSHI
and the trivial vacuum as the mass gap mðrÞ changes its sign
along the y axis in Fig. 5(a). The Pauli matrices σ and μ act on
spin and orbital degrees of freedom. [Note that the k2

regularizationmðrÞ → mðrÞ − εk2 is not necessary for a defect
Hamiltonian, just as in the Jackiw-Rebbi model (3.44).]
The TR-breaking hðrÞμ2 term here is actually antiferromag-
netic as it also breaks the inversion P ¼ μ3. It, however, can be
replaced by an ordinary ferromagnetic one, like hðrÞσ2. The
magnetic and pairing orders appear only near the interface, the
x axis in Fig. 5(a), where jhðrÞj − jΔðrÞj changes its sign
across each domain wall point defect. Similar to the boundary
Hamiltonian (3.130), the 2D point defect Hamiltonian can be
decomposed into H ¼ Hþ ⊕ H− according to the good
quantum number μ2τ1. Let us assume that h and Δ are both
non-negative. Then Hþ is always gapped and the defect is
captured by

H−
2dðk; rÞ ¼ tðkxσ1 þ kyσ2Þ~τ3 þmðrÞ~τ1 þ nðrÞ~τ2; ð3:134Þ

where nðrÞ ¼ hðrÞ − ΔðrÞ, and ~τ acts on the 2D subspace
where μ2τ1 ¼ −1. This Hamiltonian is identical to the 2D
Jackiw-Rossi model [cf. Eq. (3.72) (Jackiw and Rossi, 1981;
Teo and Kane, 2010b] where the mass terms in mΓ0ðrÞ ¼
mðrÞ~τ1 þ nðrÞ~τ2 can be organized as a vector field vðrÞ ¼
(mðrÞ; nðrÞ) that winds once around the defect. This winding
mass term represents the nontrivial element in π1ðBOÞ ¼ Z2,
which classifies class D point defects in 2D (Sec. III.C.1).
As a consequence of the unit winding, the nontrivial topo-
logical index CS3 in Eq. (3.46) guarantees a protected zero-
energy MBS.
(v) The idea generalizes even to 3D (Teo and Kane, 2010a)

[Fig. 5(b)]. An SC interface between a bulk TI and a trivial
insulator (I) in 3D can be described by the 8-band BdG
Hamiltonian

H3dðk; rÞ ¼ tðkxσ1 þ kyσ2 þ kzσ3Þμ1τ3
þmðrÞμ3τ3 þ ΔxðrÞτ1 þ ΔyðrÞτ2; ð3:135Þ

where the TRS mass gap mðrÞ changes its sign across the TI-I
interface, and Δ ¼ Δx þ iΔy is the SC pairing. The model is
of the same form as Dirac Hamiltonian (3.72) with spatially

FIG. 6. Energy spectrum of the spin-orbit coupled nanowire
(3.132) in a magnetic field.
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modulated mass term mΓ0ðrÞ¼mðrÞμ3τ3þΔxðrÞτ1þΔyðrÞτ2.
A quantum flux vortex brings a unit winding to the pairing
phase Δ ¼ jΔjeiφ. The coefficients in the Dirac mass term can
be grouped together into a 3D vector field

nðrÞ ¼ (ΔxðrÞ;ΔyðrÞ; mðrÞ); ð3:136Þ

which looks like a “hedgehog” around the vortex core
[Fig. 5(b)]. As the vector field is nonsingular except at the
point defect, the hedgehog configuration corresponds to a
continuous map n̂∶S2 → S2 over a 2-sphere spatially enclos-
ing the defect. This map has a unit winding

ν ¼ 1

4π

Z
S2
n̂ · dn̂ × dn̂ ¼ �1 ð3:137Þ

and represents the generator in the homotopy group
π2ðS2Þ ¼ ½S2; S2� ¼ Z. It also represents the nontrivial
element in π2½UðNÞ=OðNÞ� ¼ Z2, for instance n̂ wraps the
2-cycle in Uð2Þ=Oð2Þ ∼ Uð1Þ × S2, that classifies class D
point defects in 3D. The winding number ν translates into a
nontrivial topological index CS5 in Eq. (3.46) and guarantees
a protected zero-energy MBS at the vortex core. The 1D, 2D,
and 3D point defect models (3.130), (3.133), and (3.135) are
unified by the Kðs; d;DÞ classification (Teo and Kane, 2010b)

Kð2; 1; 0Þ ≅ Kð2; 2; 1Þ ≅ Kð2; 3; 2Þ ≅ Z2; ð3:138Þ

where s ¼ 2 for class D.

2. Gapless modes along line defects and index theorems

In this section, we discuss protected gapless modes that
propagate along topological line defects (δ ¼ d −D ¼ 2).
Relevant symmetry classes and types of gapless modes are
summarized in Table VI and Fig. 7. By discussing their
transport properties, we introduce proper indices counting the
degrees of freedom of the propagating gapless modes, which,
by the bulk-boundary correspondence, will be identified with
the topological invariants.

a. Edge transports

Here we demonstrate the appearance of protected 1D modes
along topological line defects in terms of 1D edges of 2D bulk
topological systems. Topological line defects in higher
dimensions and their topological origin are discussed later.
The most well-known example is the chiral edge modes

[Fig. 7(a)] along the boundary of an integer quantum Hall
(QH) fluid (Laughlin, 1981; Halperin, 1982; Volovik, 1992;

Hatsugai, 1993; Schulz-Baldes, Kellendonk, and Richter,
2000). A chiral mode is an electronic channel that propagates
in a single direction. For example the (spin polarized) lowest
Landau level in 2D—despite having a bulk cyclotron
gap—carries one conducting gapless chiral edge mode. At
zero temperature, each chiral channel carries an electric
current

I1e ¼
Z

kF

kcutoff

dk
2π

evðkÞ ¼ e
h
ðεF − εcutoffÞ; ð3:139Þ

where e is the electric charge, εF is the Fermi energy, and
vðkÞ ¼ ∂εðkÞ=∂k is the velocity. In a more general scenario,
the 1D boundary may carry multiple chiral channels.
Dropping the Fermi energy independent cutoff term, the
net electric current takes the form of

Ie ≈ c−
e
h
εF; ð3:140Þ

where the integer coefficient is a Z analytic index that counts
the spectral flow (Nakahara, 2003; Volovik, 2003)

c−¼
�

number of forward

propagatingDiracmodes
−

number of backward

propagatingDiracmodes

�
:

ð3:141Þ

The integer QHE (Klitzing, Dorda, and Pepper, 1980) is
generated by a transverse bias across the top and bottom
edges of a Hall bar. This gives a potential difference edVy ¼
dεF ¼ εtopF − εbottomF between the two edges and drives a
horizontal current dIx ¼ Itope − Ibottome ¼ σxydVy, where

σxy ¼ c−
e2

h
ð3:142Þ

is the quantized Hall conductance.
At small temperature T, each chiral Dirac mode also carries

an energy (thermal) current (Luttinger, 1964; Kane and Fisher,
1997; Cappelli, Huerta, and Zemba, 2002; Kitaev, 2006)

TABLE VI. Symmetry classes that support topologically nontrivial
line defects and their associated protected gapless modes.

Symmetry Topological classes 1D gapless fermion modes

A Z Chiral Dirac
D Z Chiral Majorana
DIII Z2 Helical Majorana
AII Z2 Helical Dirac
C 2Z Chiral Dirac

k

E

Dirac
Kramers doublet

k

E

k

E

k

E

Majorana
Kramers doublet

(a) (b)

(c) (d)

FIG. 7. Gapless spectra inside the bulk gap: (a) chiral Dirac
modes, (b) helical Dirac mode, (c) chiral Majorana modes, and
(d) helical Majorana mode. From Qi et al., 2009.
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I1T ¼
Z

dk
2π

f(εðkÞ − μ)vðkÞεðkÞ

≈ I0 þ
π2k2B
6h

T2 þOðT4Þ; ð3:143Þ

where fðεÞ¼ðeε=kBTþ1Þ−1 is the Fermi-Dirac distribution and
kB is the Boltzmann constant. Dropping the T-independent
contribution I0, a general boundary with multiple chiral modes
carries the net anomalous energy current

IT ≈ c−
π2k2B
6h

T2: ð3:144Þ

The QH fluid has a thermal Hall response so that a transverse
temperature difference dT ¼ T top − Tbottom across the Hall bar
drives an energy current dIT ¼ ItopT − IbottomT ¼ κxydT, where

κxy ¼ c−
π2k2B
3h

T ð3:145Þ

is the thermal Hall conductivity, which can be related to the
gravitational anomaly (Alvarez-Gaume and Witten, 1984;
Volovik, 1990; Wang, Qi, and Zhang, 2011; Nomura et al.,
2012; Ryu, Moore, and Ludwig, 2012; Stone, 2012). Thermal
response applies to systems that lackUð1Þ charge conservation,
like SCs. A chiral SC hosts chiral Majorana edge modes. These
neutral modes do not carry electric currents, but they do carry
energy current (3.144). A chiral SC in general has no quantized
electric Hall response, but exhibits a thermal Hall response
(3.145). Since a Dirac mode is decomposed into two Majorana
ones as its real and imaginary components ψ ¼ ðγ1 þ iγ2Þ=2,
the Z analytic index c− in Eq. (3.141) translates into

c− ¼
1

2

�
number of forward

Majorana modes
−

number of backward

Majorana modes

�
;

ð3:146Þ

so that c− now can take half-integral values. For instance,
c− ¼ �1=2 for a chiral spinless px þ ipy SC. This quantity
extends to many-body systems supporting fractionalization
(e.g., fractional QH systems), where the ð1þ 1ÞD gapless
boundary can be effectively described by a conformal field
theory (CFT) (Francesco, Mathieu, and Senechal, 1997). It
corresponds to the chiral central charge c− ¼ cR − cL, the
difference of the central charges between forward and backward
propagating channels of the edge CFT.
Chiral modes necessarily break TRS, as they are not

symmetric under k ↔ −k. But in the presence of TRS with
T2 ¼ −1 another type of robust gapless edge modes can exist:
Helical modes [Figs. 7(b) and 7(d)] are nonchiral, as they have
both forward and backward channels. Backscattering is
however forbidden by TRS, since the crossing is protected
by Kramers theorem. Unlike chiral modes, helical modes are
Z2 classified since a TR symmetric backscattering term can
remove a pair of them. TheZ2-analytical index thus counts the
(nonchiral) central charge c ¼ cR ¼ cL

c ¼ ðnumber of Dirac helical modesÞ mod 2; ð3:147Þ

for Uð1Þ preserving systems, or

c ¼ 1
2
ðnumber of Majorana helical modesÞ mod 1;

ð3:148Þ

for Uð1Þ breaking SCs. These TRS protected modes appear
on the boundaries of 2D TIs in class AII (such as a QSH
insulator with c ¼ 1) and TSCs in class DIII [such as a
ðpþ ipÞ↑ × ðp − ipÞ↓SC with c ¼ 1=2].
Along an unequilibrated edge, the pair of counterpropagat-

ing channels of a helical mode can have different temper-
atures, or different chemical potentials, if they are of the Dirac
type. This difference can be generated by connecting two
charge or heat reservoirs to the 1D boundary. As each Dirac
chiral channel carries an electric current (3.139), a potential
difference edV ¼ εRF − εLF between the forward and backward
components of a Dirac helical mode drives a net electric
current dIe ¼ σxxdV, where

σxx ¼ c
e2

h
mod

2e2

h
ð3:149Þ

is the longitudinal electric conductance along a single edge. In
reality the two charge reservoirs must be connected by a pair
of edges, the top and bottom boundaries of a 2D bulk, so that
the measured conductance is twice that of Eq. (3.149). A
conductance close to 2e2=h is experimentally seen across the
QSHI of HgTe/CdTe quantum wells (Konig et al., 2007). On
the other hand, a helical Majorana edge mode—in a SC where
Uð1Þ symmetry is broken—responds to a thermal difference
dT ¼ TR − TL between the counterpropagating components
and gives the net energy current dIT ¼ κxxdT, where

κxx ¼ c
π2k2B
3h

T mod
π2k2B
3h

T ð3:150Þ

is the longitudinal thermal conductance along a single edge.
Again, the measured conductance must be contributed by two
edges and is double of that in Eq. (3.150).

b. Index theorems

We have seen that gapless modes along 1D boundaries of a
2D topological bulk can give rise to anomalous transport
signatures. Similar signatures also arise when a line defect in
higher dimensions carries these gapless modes. Just like the
bulk-boundary correspondence that relates the bulk topology
to edge excitations, the gapless excitations along a line defect
is guaranteed by the topology of the defect.
The net chirality (3.141) of gapless Dirac modes along a

line defect in d dimensions is determined by the Chern
invariant

c− ¼ Chd−1½Hðk; rÞ� ∈ Z; ð3:151Þ

where Chd−1 is defined in Eq. (3.10) and the defect
Hamiltonian Hðk; rÞ describes the long length scale spatial
variation of the insulating band Hamiltonian around the
defect. For instance in 2D, the chirality of a QH fluid or
Chern insulator is given by the first Chern number. If the
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system is superconducting, the line defect carries Majorana
instead of Dirac modes. The net chirality is then given by

c− ¼ 1
2
Chd−1½HBdGðk; rÞ� ∈ 1

2
Z; ð3:152Þ

where Hðk; rÞ is now the BdG defect Hamiltonian. For
example, the edge chirality of a (pþ ip) SC is half of the
bulk first Chern invariant. Equations (3.151) and (3.152) are
consistent with each other, since the band Hamiltonian of an
insulator is artificially doubled in the BdG description which
has twice the original Chern number.
The defect classification (Table II) allows nontrivial chi-

rality only for the TR-breaking symmetry classes A, D, and C.
The PH operator for class C squares to −1, C2 ¼ −1. The
Kramers theorem applies to zero-energy modes at the sym-
metric momenta k∥ ¼ 0, π and requires chiral modes to come
in pairs. This agrees with the 2Z defect classification.
The number parity of gapless helical modes along a TRS

line defect in d dimensions equates to a Fu-Kane invariant

c ¼ FKd−1½Hðk; rÞ� mod 2; ð3:153Þ

for Dirac systems in bulk insulators, or

c ¼ 1
2
FKd−1½Hðk; rÞ� mod 1; ð3:154Þ

for Majorana systems in bulk SCs. Classes AII and DIII are
the only TR symmetric classes that support Kramers degen-
erated helical modes. For example, the helical Dirac mode
along the edge of a 2D TI or QSHI is protected by the original
Fu-Kane Z2 invariant. The helical Majorana edge mode of a
2D TSC, such as 3He-B, has the same topological origin.
Similarly, the helical 1D mode along a dislocation line in a 3D
weak TI falls under the same classification as the helical edge
mode of a 2D QSHI (Ran, 2010).

c. Line defects in three dimensions

We consider various examples of line defects in 3D that
host topologically protected gapless modes. The defect
Hamiltonian Hðk;ϕÞ is slowly modulated by the spatial
angular parameter ϕ ∈ ½0; 2π� that wraps once around the
defect line. We begin by looking at heterostructures where the
line defect is the trijunction between three different bulk
electronic materials (Fig. 8). A finite energy gap is required
everywhere away from the trijunction line. This includes the
three surface interfaces that separate the three bulk materials.
For instance, when the three bulk materials have noncom-
peting orders, the surface interfaces can be smeared out into
the 3D bulk where different orders coexist. The defect
Hamiltonian takes the Dirac form (3.72)

Hðk;ϕÞ ¼ ℏvk · ΓþmΓ0ðϕÞ; ð3:155Þ

where the mΓ0ðϕÞ incorporates coexisting orders as anti-
commuting mass terms and winds nontrivially around the
defect line.

d. Example: TI-AF heterostructure (class A)

We now explicitly demonstrate the chiral Dirac mode
bounded by the TI-AF heterostructure shown in Fig. 9(a).
The surface Dirac cone of a TI can be gapped out by a TRS
breaking mass term

Hsurfaceðkx; kz; xÞ ¼ ℏvðkxσ1 þ kzσ2Þ þmðxÞσ3; ð3:156Þ

where the surface is parallel to the x-z plane. When the mass
term changes its sign mðx → �∞Þ ¼ �m0, there is a chiral
Dirac mode running along the domain wall. Near the line
defect the system is described by Eq. (3.156) with kx replaced
by −id=dx, i.e., by the differential operator

HsurfaceðkzÞ ¼
�
−iℏvσ1

d
dx
þmðxÞσ3

�
þ ℏvkzσ2: ð3:157Þ

Note that the operator inside the square bracket is exactly the
Jackiw-Rebbi model (3.44), which traps a zero mode jψ0i for
kz ¼ 0. As σ2jψ0i ¼ þjψ0i, it has a chiral energy spectrum
HsurfaceðkzÞjψ0i ¼ þℏvkzjψ0i. This chiral Dirac mode is
topologically guaranteed by the Chern invariant (3.151)

c− ¼ Ch1½Hðkx; ky; xÞ�

¼ i
2π

Z
kx;ky

TrðF jx>0Þ − TrðF jx<0Þ ¼ 1; ð3:158Þ

A B

Cm  ( )

 = 0

 = 2π

Gapped surface interfaces

Gapless 1D excitation

x

y

z

0

FIG. 8. Line defect (yellow line) at a heterostructure. A, B, and
C are different bulk gapped materials put together so that there is
no gapless surface modes along interfaces of any pairs. The mass
term mΓ0ðϕÞ wraps nontrivially around the line interface which
results in a gapless 1D excitation localized at the line defect.

AF-I AF-I

TI  = 

 = +
AF-TI AF-TI

I

TI TSC TI

(a)

(c) (d)

(b)

AF-I AF-ISC AF-I
SC SC

weak-TI

I I
P = 0 P = 

FIG. 9. Heterostructure cross section on the x-y plane.
AF ¼ antiferromagnetic, I ¼ trivial insulator, TI ¼ topological
insulator, SC ¼ superconductor, and TSC ¼ class DIII
topological superconductor. (a) The chiral Dirac mode ⊙ pro-
tected by winding of the magnetoelectric θ angle. (b) The
helical Dirac mode ⊙ ⊗ separating opposite polarization insu-
lating domains. (c) The chiral Majorana mode. (d) The helical
Majorana mode between SC domains with TRS pairing phase
φ ¼ 0, π.
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where the integral is taken over kx, ky ∈ ð−∞;∞Þ. Note that
in the defect description, as in the Jackiw-Rebbi model, a εk2

regularization in Eq. (3.156) is unnecessary.
Alternatively, the TI-AF heterostructure can be described

by a 3D defect Hamiltonian in the continuum limit

H3dðk;ϕÞ ¼ ℏvk · σμ1 þm1ðϕÞμ3 þm2ðϕÞμ2; ð3:159Þ

or its discrete counterpart obtained by making the
replacements ki → sin ki and m1ðϕÞ → m1ðϕÞ þm1ðϕÞ þ
εð3 −P3

i¼1 cos kiÞ, where σ and μ are Pauli matrices acting
on spin and orbital degrees of freedom. The Dirac mass
mΓ0ðϕÞ ¼ m1ðϕÞμ3 þm2ðϕÞμ2 incorporates (i) the TRS mass
that changes its sign m1ðy → �∞Þ ¼ �m0 across the hori-
zontal TI surface, and (ii) the AF mass that changes its sign
m2ðx → �∞Þ ¼ �m0 across the vertical y-z plane where the
Néel order flips. Here m2μ2 corresponds to an AF order as it
breaks inversion symmetry I ¼ μ3. It, however, can be
replaced by a ferromagnetic one, i.e., hσ1. The mass parameter
mðϕÞ ¼ (m1ðϕÞ; m2ðϕÞ) is modulated along a circle with
radius R0 far away from the line defect. In the homogeneous
limit, m1 and m2 coexist and are given by mðϕÞ ≈
ðm0 sinϕ; m0 cosϕÞ. It winds once around the origin. This
corresponds to the generator of the homotopy classification
π1(UðNÞ) ¼ Z of class A line defects in 3D, where UðNÞ is
the classifying space for 3D class A band Hamiltonians. For
instance mΓ0ðϕÞ wraps around the nontrivial cycle in Uð4Þ.
This nontrivial winding matches with the second Chern
invariant (3.151) and (3.10):

c− ¼ Ch2½H3dðk;ϕÞ�

¼ −1
8π2

Z
BZ3×S1

Tr½F ðk;ϕÞ ∧ F ðk;ϕÞ�

¼ 1

2π

Z
S1
dθðϕÞ ¼ 1; ð3:160Þ

where θðϕÞ ¼ 2π
R
BZ3 Q3ðk;ϕÞ (mod 2π) is the magnetoelec-

tric polarizablility (theta angle) (Sec. III.B.2.b), which in this
case is slowly modulated by the spatial angle ϕ and winds
once from 0 to 2π around the origin [Fig. 9(a)].
The topology of the long length scale Hamiltonian (3.159)

corresponds to the chiral Dirac mode appearing at the
heterostructure. Near the line defect the system is effectively
described by the differential operator

H3dðkzÞ ¼ ½−iℏvð∂xσ1þ ∂yσ2Þμ1þm1ðx; yÞμ3þm2ðx; yÞμ2�
þ ℏvkzσ3μ1; ð3:161Þ

which is obtained from Eq. (3.159) by replacing kx=y ↔
−i∂x=y. Note that the operator inside the square bracket is
exactly the 2D Jackiw-Rossi model which has a zero mode
jψ0i at kz ¼ 0. As the zero mode has positive chirality
Sjψ0i ¼ þjψ0i with respect to the chiral operator
S ¼ σ3μ1, it gives a chiral Dirac mode with a linear energy
spectrum HðkzÞjψ0i ¼ þℏvkzjψ0i.

e. Example: Helical modes in heterostructures (class AII)

Heterostructures in symmetry classes AII, D, and DIII can
host helical modes. Figure 9(b) shows a helical Dirac mode
on the surface of a weak TI, which hosts a pair of Dirac
cones at the two TR invariant surface momenta K1 and K2.
The two cones can be gapped out by a translation breaking
TRS perturbation u with a finite wave vector K1 − K2. This
density wave u introduces a polarization P ¼ 0, π (mod 2π)
depending on the sign of u. A domain wall on the surface
separating two regions with opposite polarization traps a
protected helical Dirac mode (Liu, Qi, and Zhang, 2012;
Chiu, 2014).

f. Example: Chiral Majorana modes in heterostructures (class D)

Figure 9(c) shows a chiral Majorana mode realized in two
superconducting heterostructures. First, the surface Dirac
cone of a TI can be gapped by a TRS or Uð1Þ symmetry
breaking order. When restricting the defect momentum to
kz ¼ 0 (Tanaka, Yokoyama, and Nagaosa, 2009; Tanaka,
Sato, and Nagaosa, 2012). This problem reduces to the
previous 2D QSHI-FM-SC heterostructure [Fig. 5(a) and
Eq. (3.133)]. The zero-energy MBS now turns into a gapless
chiral Majorana mode that disperses linearly in kz and carries
the chiral central charge c− ¼ 1=2. Instead of the SC-AF
domain wall on the TI surface, one can also consider a domain
wall in the SC phase on the TI surface, which hosts a helical
Majorana defect mode [Fig. 9(d)]. Second, the surface of a
TSC in class DIII can host multiple (¼ n) copies of Majorana
cones, with chiralities χ1;…; χn ¼ �1. These surface states
are sensitive to a TR-breaking perturbation that opens up mass
gaps m1;…; mn. A domain wall where certain mass gaps
change their sign hosts chiral Majorana modes with a chiral
central charge of

c− ¼
1

2
lim
x→∞

Xn
a¼1

χa
sgn½maðxÞ� − sgn½mað−xÞ�

2
: ð3:162Þ

g. Example: Dislocations in weak TIs and TSCs

Gapless modes can also appear along lattice dislocations
in weak TIs and TSCs. The 2D weak topological indices
of a 3D bulk TI and TSC is expressed as a reciprocal lattice
vectorGν ¼ ν1b1 þ ν2b2 þ ν3b3, where the ith weak index νi
is evaluated on the 2-cycle Ci ¼ fk ∈ BZ3∶k · ai ¼ πg
perpendicular to aj and ak on the boundary of the BZ, where
ai;j;k are distinct primitive lattice vectors. Note that the
2-cycles Ci are invariant under the involution k ↔ −k and
restricting the Hamiltonian onto these momentum planes give
2D Hamiltonians with the same symmetries. For example, νi
are first Chern invariants for classes A, D, and C, or Fu-Kane
invariants (or equivalently Pfaffian invariants) for classes AII
and DIII. The topological index that characterizes the gapless
modes along a dislocation line defect is the product (Ran,
Zhang, and Vishwanath, 2009)

ind ¼ 1

2π
B ·Gν; ð3:163Þ

Chiu et al.: Classification of topological quantum matter …

Rev. Mod. Phys., Vol. 88, No. 3, July–September 2016 035005-34



where B is the Burgers vector, the net amount of translation
when a particle circles once around the dislocation line. This
integral quantity counts the chiral central charge c− of Dirac
dislocation modes in a weak 3D Chern insulator, or twice the
chiral central charge of Majorana dislocation modes in a weak
3D class D SC. For weak class AII TI or class DIII TSC, this
index becomes a Z2 number that counts helical Dirac or
Majorana dislocation modes, respectively.

E. Adiabatic pumps

Adiabatic pumps are temporal cycles of defect systems. The
Hamiltonian is of the form Hðk; r; tÞ, where k lives in the BZ,
BZd, r ∈ MD−1 wraps the defect in real space, and t is the
temporal parameter of the adiabatic cyclic. The topological
classification is determined by the symmetry class s of the
Hamiltonian and the topological dimension δ ¼ d −D, and is
given by the classification in Table I. The antiunitary sym-
metries normally flip ðk; r; tÞ → ð−k; r; tÞ. However, in some
cases it can also flip the temporal parameter (Zhang and Kane,
2014a), but this will not be the focus of this review.
The simplest pumps appear in symmetry class A in 1D,

known as Thouless pumps (Thouless, 1983) and are classified
by an integer topological invariant, the first Chern invariant:

Ch1 ¼
i
2π

Z
BZ1×S1

Tr½F ðk; tÞ�; ð3:164Þ

where F is the Berry curvature of the occupied states and S1

parametrizes the temporal cycle. For example,

Hðk; tÞ ¼ t sin kσ1 þ u sin tσ2 þmð3
2
− cos k − cos tÞσ3

ð3:165Þ

realizes a nontrivial pump with Ch1 ¼ 1, where t runs a cycle
in ½0; 2π� so that Hðk; 0Þ ¼ Hðk; 2πÞ. The signature of a
Thouless pump is the spectral flow of boundary modes: The
end of the 1D system does not hold protected bound modes.
However, during the adiabatic cycle, a certain number of
boundary modes appear and as a function time connect the
occupied and unoccupied bands. [See Fig. 7(a), but with k∥
replaced by t such that the red midgap bands represent the
temporal evolution of the boundary states.] A charge is
pumped to (or away from) the boundary when a boundary
state is dragged from the unoccupied bands to the occupied
ones (respectively, occupied bands to the unoccupied ones)
after a cycle. The index theorem relates the Chern invariant
and the spectral flow:

Ch1 ¼ ðcharge accumulated at boundary after 1 cycleÞ:
ð3:166Þ

General charge pumps are adiabatic cycles of point defects
in d dimensions. The class A Hamiltonian takes the form
Hðk; r; tÞ where ðk; r; tÞ ∈ BZd × Sd−1 × S1. They are char-
acterized by the dth Chern invariant (3.10) defined by the
Berry curvature F ðk; r; tÞ of occupied states. For example, the
Laughlin argument (which proves that a hc=2e flux quantum
in an integer QH fluid carries charge hσxy=e, with σxy the Hall

conductance) can be rephrased as an adiabatic pump of a 2D
point defect (Laughlin, 1981).
Adiabatic pumps can also appear in superconducting class

D or BDI systems. They are Z2 classified and are charac-
terized by the Fu-Kane invariant (3.63) with the gauge
constraint (3.65). The simplest example is the fermion parity
pump realized along a 1D p-wave SC wire (Kitaev, 2001; Fu
and Kane, 2009; Teo and Kane, 2010b). The bulk BdG
Hamiltonian is of the form of

Hðk; tÞ ¼ e−itσ3=2½Δ sin kσ1 þ ðu cos k − μÞσ3�eitσ3=2
¼ Δ sin kðcos tσ1 þ sin tσ2Þ þ ðu cos k − μÞσ3;

ð3:167Þ

where t evolves from 0 to 2π in a cycle. Note that
Hðk; 0Þ ¼ Hðk; 2πÞ. At all time Hðk; tÞ is a p-wave SC with
a nontrivial Z2 index when juj > jμj and, hence, supports
protected boundary Majorana zero modes. The SC pairing
phase winds by 2π as the system goes through a cycle. The
evolution operator e−itσ3=2, however, is not cyclic as it has a
period of 4π. Hence, since jγti ¼ e−itσ3=2jγ0i, the Majorana
zero mode γ at the wire end changes its sign after a cycle.
Consider a weak link along a topological p-wave SC wire.

At the completely cutoff limit, there are two uncoupled
Majorana zero modes γ̂1, γ̂2 sitting at the two sides of the
link. They form a fermionic degree of freedom
ĉ ¼ ðγ̂1 þ iγ̂2Þ=2, which realizes a two-level system j0i and
j1i ¼ ĉ†j0i. Electron tunneling across the link splits the zero
modes with an energy gap proportional to the tunneling
strength, where the ground state has now a definite fermion
parity j0i or j1i. A phase slip δφ ¼ φR − φL is a discontinuity
of the SC pairing phase across the weak link, where φR=L are
the phases of the two disconnected SC wires on the two sides
of the weak link. In the scenario where the phase slip
adiabatically winds by 2π, the fermion parity operator
ð−1ÞN̂ðδφÞ ¼ iγ̂1ðδφÞγ̂2ðδφÞ evolves and acquires an extra sign
after a cycle, i.e., ð−1ÞN̂ð2πÞ ¼ −ð−1ÞN̂ð0Þ. In other words, this
flips ĉ ↔ ĉ† [up to a Uð1Þ phase]. Physically, although there
is an energy gap when δφ ¼ 0, this gap has to close and
reopen as the two-level system undergoes a level crossing
during the adiabatic cycle. The single (or in general odd
number of) level crossing cannot be removed and is protected
by the nontrivial Z2 bulk topology. The fractional Josephson
effect is a consequence of such a nontrivial topology (Kitaev,
2001; Fu and Kane, 2009; Zhang and Kane, 2014b), which
can also arise in TR symmetric systems (Keselman et al.,
2013; Zhang and Kane, 2014a). Unconventional Josephson
effects that may have a topological origin have recently been
observed in certain experimental systems (Williams et al.,
2012; Yamakage, Sato et al., 2013; Kurter et al., 2014).

F. Anderson “delocalization” and topological phases

So far TIs and TSCs were described from the bulk point of
view and by establishing a bulk or defect-boundary corre-
spondence. Here we show that it is also possible to identify
TIs and TSCs from the boundary point of view, i.e., by
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studying the effects of disorder on the boundary modes
(Schnyder et al., 2008).
Let us recall how the bulk topological properties of TIs and

TSCs manifest themselves at the boundary of the system: TIs
and TSCs are always accompanied by gapless excitations
localized at their boundaries. These boundary states are stable
against perturbations which respect the symmetries of the
system (Sec. III.D). As a deformation of the system let us
consider spatially inhomogeneous perturbations, i.e., disorder.
As it turns out, the bulk or defect-boundary correspondence
holds even in the presence of disorder, and hence gapless
boundary and defect excitations are stable against disorder.
That is, the boundary modes do not Anderson localize even in
the presence of disorder, as long as the symmetry conditions
are preserved (enforced), and as long as the inhomogeneous
perturbations due to disorder do not close the bulk gap.
Adding sufficiently strong disorder in an ordinary metal

almost always leads to an (Anderson) insulator.6 In his
seminal paper Anderson (1958) showed by the so-called
“locator expansion” that, if one starts from the atomic limit,
the presence of sufficiently strong impurities leads to the
absence of electron diffusion (i.e., to Anderson localization).
If we follow Anderson’s analysis, we expect Anderson
localization in any system with sufficiently strong disorder,
as long as Anderson’s assumption applies, i.e., that the system
is connected to the atomic limit. Reversing this logic, the
absence of Anderson localization implies the absence of an
atomic limit, or the impossibility of discretizing the system
on a lattice. The absence of Anderson localization (i.e.,
“Anderson delocalization”), can thus be used as a criterion
to identify theories that cannot be discretized on a lattice—
lattice versions of such theories can be realized only as a
boundary of some topological bulk system. Historically,
Anderson delocalization at boundaries was hypothesized to
be the defining property of TIs and TSCs. Adopting this
hypothesis, it was shown that the Anderson delocalization
approach is powerful enough to establish the tenfold classi-
fication of TIs and TSCs (Schnyder et al., 2008).
In this section, we review Anderson delocalization and the

tenfold classification of TIs and TSCs mainly by using effective
field theories, i.e., nonlinear sigma models (NLσMs) (Wegner,
1979; Efetov, Larkin, and Kheml’Nitskiı̌, 1980; Efetov, 1983;
Evers and Mirlin, 2008)—a convenient framework to discuss
the physics of Anderson localization and delocalization in
various dimensions and in the presence of various symmetry
conditions.We also briefly touch upon the effects of disorder on
bulk TIs and TSCs.

1. Nonlinear sigma models

The NLσMs for the Anderson localization problem are
effective field theories that describe the properties of (dis-
order-averaged) single-particle Green’s functions and prod-
ucts thereof. Using the NLσM framework, one can compute

all essential properties of single-particle Green’s functions,
and hence of single-particle Hamiltonians.
The basic concepts that underlie the framework of NLσMs

can be illustrated by taking a classical magnet as an example.
The classical Heisenberg ferromagnet in d space dimensions
can be described, in the long-wave-length limit, by an Oð3Þ
NLσM. Its action is given by

S½n� ¼ 1

t

Z
ddr∂μn · ∂μn; ð3:168Þ

where n is a three-component unit vector and t is the coupling
constant, which is proportional to the temperature, the
magnitude of spin, and the magnetic exchange interaction.
The partition function is given by the functional integral
Z ¼ R D½n� expð−S½n�Þ, where the sum runs over all maps
nðrÞ from the d-dimensional space to the space of the order
parameter S2 ≃Oð3Þ=Oð2Þ. The space of the order parameter
is called the target space. HereOð3Þð¼ GÞ is the symmetry of
the classical Heisenberg ferromagnet, and Oð2Þð¼ HÞ is
the residual symmetry when the Oð3Þ is spontaneously
broken. The Nambu-Goldstone theorem tells us that G=H ¼
Oð3Þ=Oð2Þ is the target manifold representing the fluctuations
of the order parameter.
The Nambu-Goldstone modes that are relevant to the

physics of Anderson localization correspond to the diffusive
motion of electrons or Bogoliubov quasiparticles. These
modes are called “diffusons” and “Cooperons” and their
dynamics can be described by NLσMs, whose action and
path integral are given by (Friedan, 1985)

S½X� ¼ 1

t

Z
ddrGAB½X�∂μXA∂μXB;

Z ¼
Z

D½X� expð−S½X�Þ; ð3:169Þ

respectively. Here XAðrÞ∶ Rd → G=H are coordinates on a
suitably chosen target manifold G=H, which represents a map
from d-dimensional physical space to the target manifold
G=H. GAB½X� denotes the metric of the target space. In the
context of Anderson localization and delocalization, the
coupling constant t in the NLσMs is inversely proportional
to the conductivity. For our discussion, d either can be the
spatial dimension of the boundary of a (dþ 1)-dimensional
(topological) insulator or SC or can be the bulk dimension of a
TIs or TSCs. (Technically, the NLσMs in Anderson locali-
zation physics are derived by using the replica trick to handle
quenched disorder averaging. In the following, we use the
fermionic replica trick.) Two typical phases described by
NLσMs, ordered and disordered phases, correspond, in the
context of Anderson localization, to a metallic and an insulator
phase, respectively.
In the NLσM description of Anderson localization, the

differences between symmetry classes are encoded by differ-
ent target manifolds. (See Table VII, which lists the target
manifolds.) While generic NLσMs can have more than one
coupling constant, the action (3.169) has only one coupling
constant t. This is a crucial feature of NLσMs relevant to
Anderson localization. This fact is nothing but a reincarnation

6There are a few exceptions to this rule, but even in such cases,
homogeneous but lattice-translation symmetry breaking perturba-
tions (i.e., charge density wave or dimerization) can turn the system
into a band insulator.
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of the single parameter scaling hypothesis by Abrahams et al.
(1979). The target spaces of the NLσMs which allow only one
coupling constant are called symmetric spaces. These have
been fully classified by the mathematician E. Cartan
(Helgason, 1978). Ignoring those symmetric spaces which
involve exceptional Lie groups, there are only ten (families of)
symmetric spaces.
To summarize, the action (3.169) depends only on spatial

dimension, the choice of target manifolds, and the conduc-
tivity. (This fact indicates universality in the physics of
Anderson localization.) According to the scaling theory
(and also the locator theory of Anderson), if one starts from
sufficiently strong disorder, then, by the renormalization
group, disorder will be renormalized and become stronger.
In other words, Anderson localization is inevitable. Using the
analogy to the classical magnet, this means that at infinite
temperature a “paramagnetic phase” is always realized, i.e.,
the NLσMs universally predict Anderson localization at
t ¼ ∞. We are thus led to conclude that the NLσMs cannot
describe the physics at the boundaries of TIs and TSCs.
How can Anderson delocalization possibly happen then?

We need a mechanism that prevents Anderson localization.
What has escaped from our attention is the effects of topology
of the target manifolds. When the target manifolds have
nontrivial topology, one can add a topological term to the
action of the NLσM:

Z ¼
Z

D½X� expð−S½X� − iStop½X�Þ: ð3:170Þ

The topological term Stop½X� is an imaginary part of the action
and depends only on global information of field configura-
tions. If there is a topological term, there are interferences
(cancellations) in the functional integral among different field
configurations, and there is a possibility that different physics
may emerge.
A famous example of topological terms is the so-called

theta terms. They can appear when πdðG=HÞ ¼ Z. Taking
again an example from magnetic systems, consider the
Haldane topological term in quantum spin chains. Similar
to the classical Heisenberg ferromagnet in 2D, the quantum
Heisenberg antiferrmagnet in ð1þ 1ÞD can be described at
low energies and long wavelengths by the Oð3Þ NLσM,
Eq. (3.168) (Haldane, 1983a, 1983b). However, an important

twist in the quantum case is the possible presence of a
topological term, whose presence or absence crucially affects
the structure of the low-energy spectrum (i.e., it leads to the
presence or absence of the “Haldane gap”). The theta term in
this case is given by Stop½n� ¼ θ × ðintegerÞ with θ ¼ 2πS,
where S is the spin magnitude, and the integer is a topological
invariant defined for a given texture nðrÞ. The low-energy
properties of the system are dramatically different for integer
spin S than for half-odd integer spin S.

2. Anderson delocalization at boundaries

For the application of NLσMs to the boundary physics of
TIs and TSCs, Wess-Zumino-Novikov-Witten (WZNW)
terms and Z2 topological terms (Fendley, 2000; Ostrovsky,
Gornyi, and Mirlin, 2007; Ryu et al., 2007) are important,
rather than theta terms. In contrast to theta terms, for which the
coefficient (the “theta angle”) can be tuned continuously as
one changes microscopic details (Affleck, 1988), the coef-
ficients of WZNW or Z2 topological terms are not tunable.
Furthermore, when these terms are present, it is expected that,
as in the case of theta terms with θ ¼ π × odd integer, systems
are at their critical points. In the context of Anderson
localization, critical Nambu-Goldstone bosons indicate that
the localization length is diverging and hence the system
delocalizes. Hence, in NLσMs with WZNW or Z2 terms,
Anderson delocalization is unavoidable.
From the mathematical point of view, Z2 topological terms

and WZNW terms exist when πdðG=HÞ ¼ Z2 and
πdþ1ðG=HÞ ¼ Z, respectively. Thus, by merely looking at
the homotopy group of the target manifolds, one can infer if
Anderson delocalization can occur or not. In turn, such
delocalized states that cannot be Anderson localized must
be realized as a boundary state of some bulk TIs or TSCs.
Hence, the bulk topological classification of Z2 or Z type
corresponds to the type of topological terms (Z2 or WZNW) at
the boundary. Combining these considerations all together,
one derives the periodic table of TIs and TSCs. For Dirac
models of boundary modes of TIs and TSCs, one can
explicitly check (i.e., one by one) the existence of these
topological terms in the NLσM description (Bocquet, Serban,
and Zirnbauer, 2000; Altland, Simons, and Zirnbauer, 2002;
Bernard and LeClair, 2002; Ostrovsky, Gornyi, and Mirlin,
2007; Ryu et al., 2007, 2012).
Generically, however, it is difficult to quantify the precise

effects of topological terms in NLσMs in a controlled way
when the boundary is of dimension larger than 1. Only general
arguments are then available (Xu and Ludwig, 2013). When
the boundary is 0D or 1D, it is possible to decide in a
controlled way if the boundary state is immune to disorder.
For example, along the 1D boundary of a TI in the symmetry
class AII, by using the Dorokov-Mello-Pereyra-Kumar equa-
tions for the transmission eigenvalues of quasi-1D disordered
wires, it is possible to show that the edge states contribute a
longitudinal conductance of order 1 in the thermodynamic
limit (Takane, 2004a, 2004b, 2004c). Historically, this prob-
lem was also studied by using the NLσM which can be
augmented by the Z2 topological term (Zirnbauer, 1992;
Brouwer and Frahm, 1996), but the connection to bulk

TABLE VII. The NLσM target manifolds (in the fermionic replica
approach) for the symmetry classes of the tenfold way.

AZ class NLσM target space

A Uð2NÞ=UðNÞ ×UðNÞ
AI Spð2NÞ=SpðNÞ × SpðNÞ
AII Oð2NÞ=OðNÞ ×OðNÞ
AIII UðNÞ ×UðNÞ=UðNÞ
BDI Uð2NÞ=SpðNÞ
CII UðNÞ=OðNÞ
D Oð2NÞ=UðNÞ
C SpðNÞ=UðNÞ
DIII OðNÞ ×OðNÞ=OðNÞ
CI SpðNÞ × SpðNÞ=SpðNÞ
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topology phases was only realized after the discovery of the
quantum spin Hall effect.
In 2D, some Dirac fermion models in the presence of

disorder can be solved exactly (Ludwig et al., 1994;
Nersesyan, Tsvelik, and Wenger, 1994; Tsvelik, 1995;
Mudry, Chamon, and Wen, 1996). 2D Dirac modes with
disorder, realized on the surface of 3D TR symmetric TIs,
can be studied numerically to demonstrate Anderson delo-
calization (Bardarson et al., 2007; Nomura, Koshino, and
Ryu, 2007). For the latter, the complete absence of back-
scattering (Ando, Nakanishi, and Saito, 1998) was later
confirmed in experiments on the surface of 3D TR sym-
metric TIs (Roushan et al., 2009; Alpichshev et al., 2010).
The combined effects of disorder and interactions in 2D
boundaries of 3D TI and TSCs have also been studied
(Ostrovsky, Gornyi, and Mirlin, 2010; Foster and
Yuzbashyan, 2012; Foster, Xie, and Chou, 2014; Xie,
Chou, and Foster, 2015).

3. Effects of bulk disorder

Before concluding this section, let us briefly discuss the
effects of bulk disorder in TIs and TSCs. The effects of
disorder in the most famous example of TIs, the integer QHE,
manifest themselves by quantized plateaus of the Hall
conductivity separated by a continuous phase transitions. If
this is the case, the bulk phase diagrams of TIs and TSCs
can be understood qualitatively by a NLσM augmented by a
theta term, e.g., the so-called Pruisken term for the integer
QHE (Pruisken, 1984). From this NLσM which now has two
coupling constants, t and the theta term, one then expects that
the phase diagram of the integer QH system is described in
terms of two parameters, i.e., the longitudinal and transverse
conductivities (Khmel’Nitskiı̌, 1983; Pruisken, 1984).
Transitions in the presence of disorder between topologically
distinct phases were also studied in 2D bulk TSCs (Senthil
et al., 1998; Gruzberg, Ludwig, and Read, 1999; Senthil,
Marston, and Fisher, 1999; Read and Green, 2000), in 3D TIs
and TSCs (Ryu and Nomura, 2012), and in (quasi-)1D by
scattering matrix approaches (Brouwer et al., 1998, 2000;
Brouwer, Mudry, and Furusaki, 2000; Titov et al., 2001;
Gruzberg, Read, and Vishveshwara, 2005; Akhmerov et al.,
2011; Rieder and Brouwer, 2014) and by using NLσMs
(Altland et al., 2014; Altland, Bagrets, and Kamenev,
2015). For the effects of disorder on TR symmetric Z2 TIs,
see, for example, Obuse et al. (2007, 2008), Shindou and
Murakami (2009), Shindou, Nakai, and Murakami (2010),
Goswami and Chakravarty (2011), Ryu and Nomura (2012),
and K. Kobayashi et al. (2014) and, in particular, for
topological Anderson insulators (i.e., disorder-driven transi-
tions from a trivial insulator into a TI), see Groth et al. (2009),
Li et al. (2009), Guo et al. (2010), Yamakage et al. (2011),
and Yamakage, Nomura et al. (2013). Phase diagrams for
disordered TIs and TSCs can also be studied by using
noncommutative geometry (Bellissard, van Elst, and
Schulz-Baldes, 1994; Loring and Hastings, 2010; Hastings
and Loring, 2011; Prodan, Leung, and Bellissard, 2013;
Prodan and Schulz-Baldes, 2014) and by K theory
(Morimoto, Furusaki, and Mudry, 2015a).

IV. TOPOLOGICAL CRYSTALLINE MATERIALS

We have so far focused on topological phases and topo-
logical phenomena protected only by nonspatial AZ sym-
metries. In this section, we introduce additional spatial
symmetries and discuss how these modify the topological
distinction of gapped phases. There are two possible effects
upon imposing additional symmetries. First, additional sym-
metries may not change the topological classification, but lead
to simplified expressions for the topological invariants of the
tenfold classification (Dzero et al., 2010, 2012; Fang, Gilbert,
and Bernevig, 2012; Ye, Allen, and Sun, 2013). For example,
the Z2 invariant of 3D TR symmetric TIs in the presence of
inversion symmetry can be computed from the parity eigen-
values at TR invariant momenta (Fu and Kane, 2007). Second,
additional spatial symmetries can modify the topological
classification (Fu, 2011). Examples of this case include weak
TIs and TSCs, whose existence relies on the presence of a
lattice-translation symmetry; see Sec. III.A (Fu, Kane, and
Mele, 2007; Ran, Zhang, and Vishwanath, 2009; Ran, 2010;
Teo and Hughes, 2013; Hughes, Yao, and Qi, 2014). Besides
translation symmetries, point-group symmetries, such as
reflection and rotation, can lead to new topological phases,
giving rise to an enrichment of the tenfold classification of TIs
and TSCs (Ando and Fu, 2015). These TIs and TSCs which
are protected by crystalline symmetries are called topological
crystalline insulators and superconductors (TCIs and TCSs).

A. Spatial symmetries

Spatial symmetries of a crystal or a lattice are described by
space groups. Operations in space groups are composed of
translations, including, in particular, lattice translations, and
point-group operations that leave at least one point in space
unchanged. The latter includes reflection, inversion, proper,
and improper rotations. By the crystallographic restriction
theorem, only rotations with 1-, 2-, 3-, 4-, and 6-fold axes
are compatible with lattice-translation symmetries. A space-
group operation G maps the mth site in the unit cell at r to the
m0th site in the unit cell at uGrþ Rm, where uG is a d × d
orthogonal matrix and Rm is a lattice vector. Correspondingly,
fermion annihilation operators in real space ψ̂ iðrÞ are trans-
formed by a unitary operator Ĝ acting on the electron field
operator as

Ĝψ̂ iðrÞĜ−1 ¼ ðUGÞijψ̂ jðuGrþ RiÞ; ð4:1Þ

whereUG is a unitary matrix, and i and j are combined indices
labeling the sites within a unit cell as well as internal degrees
of freedom, such as spin (summation over the index j is
implied). It is known that one can always choose the
lattice-translation operators to be diagonal in an irreducible
representation. In other words, one can always use
momentum-space Bloch functions as the basis functions in
generating irreducible representations of a space group.
The fermion annihilation operators in momentum space
transform as

Ĝψ̂ iðkÞĜ−1 ¼ (UGðuGkÞ)ijψ̂ jðuGkÞ; ð4:2Þ
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where (UGðuGkÞ)ij ¼ ðUGÞije−iuGk·Ri (i is not summed over).
For example, for a 1D chain with two different sublattices A
and B (i.e., two atoms in the unit cell) reflection R̂ about the A
atom in the j ¼ 0th unit cell is given by R̂∶ âj → â−j and

b̂j → b̂−j−1 (see the example discussed in Sec. III.B.2.c). In

momentum space reflection acts as R̂∶ âðkÞ → âð−kÞ
and b̂ðkÞ → e−ikb̂ð−kÞ.
In the presence of the crystalline symmetry Ĝ Ĥ Ĝ−1 ¼ Ĥ,

the Bloch-BdG Hamiltonian obeys

HðkÞ ¼ U†
GðkÞHðu−1G kÞUGðkÞ: ð4:3Þ

For crystalline symmetry operations, which leave at least one
point fixed (k0, say), we have ½Hðk0Þ; UGðk0Þ� ¼ 0. It is
thus possible to define topological invariants at k0 in each
eigenspace of UGðk0Þ. Crystalline symmetries are either
symmorphic or nonsymmorphic space-group symmetries. In
the following, we mainly focus on reflection symmetry, which
is symmorphic. Topological phases and gapless surface states
protected by nonsymmorphic space-group symmetries have
recently been discussed by Roy (2012), Parameswaran et al.
(2013), Liu, Zhang, and VanLeeuwen (2014), Fang and Fu
(2015), Shiozaki, Sato, and Gomi (2015), Young and Kane
(2015), Dong and Liu (2016), and Lu et al. (2016).
Let us consider a reflection symmetry in the rl direction,

R̂lψ̂ iðrÞR̂−1
l ¼ðURl

Þji ψ̂ jðr̄þRiÞ, where r̄ ¼ ðr1;…; rl−1;−rl;
rlþ1;…; rdÞ. This reflection symmetry acts on the Bloch
Hamiltonian as

HðkÞ ¼ U†
Rl
ðkÞHðk̄ÞURl

ðkÞ; ð4:4Þ

where k̄ ¼ ðk1;…; kl−1;−kl; klþ1;…; kdÞ. For particles with
spin, spatial symmetries also transform the spin degrees of
freedom. For example, reflection flips the sign of orbital
angular momentum, and hence, the sign of spin, i.e.,
R̂xŜxR̂

−1
x ¼ Ŝx and R̂xŜy;zR̂

−1
x ¼−Ŝy;z. Hence, for spin-1=2

particles, URl
is given by URl

¼ isl. The reason to include
the factor of i here is to ensure U2

R ¼ −1, since R−1
l

effectively corresponds to a spin rotation by 2π. In general,
pure spin reflection operation is often combined with some
internal symmetry operation. To allow for this possibility we
loosely call any symmetry that involves r → r̄ a reflection
symmetry.

B. Classification of topological insulators and superconductors
in the presence of reflection symmetry

We now discuss the classification of TCIs and TCSs in the
presence of reflection symmetry. Consider a d-dimensional
Bloch Hamiltonian HðkÞ, which is invariant under reflection
in the r1 direction:

R−1
1 Hð−k1; ~kÞR1 ¼ Hðk1; ~kÞ; ð4:5Þ

where ~k ¼ ðk2;…; kdÞ, and the reflection operator R1 is
unitary and can depend only on k1, since it is symmorphic.
(For simplicity, we drop the subscript 1 in R1 henceforth.)

With a proper choice of the phase of R, R satisfies on a given
reflection plane,

R† ¼ R; R2 ¼ 1: ð4:6Þ

Thus, all eigenvalues of R are either þ1 or −1. The algebraic
relations obeyed by R and the AZ symmetry operators T, C,
and S can be summarized as

SR ¼ ηSRS; TR ¼ ηTRT; CR ¼ ηCRC; ð4:7Þ

where ηS;T;C ¼ �1 specify whether R commutes (þ1) or
anticommutes (−1) with S, T, and C. These different pos-
sibilities are labeled by RηT, RηS , and RηC for the nonchiral
symmetry classes AI, AII, AIII, C, and D, and by RηTηC for the
chiral symmetry classes BDI, CI, CII, and DIII. Hence, we
distinguish a total of 27 different symmetry classes in the
presence of AZ and reflection symmetries (Table VIII and
Fig. 10). [Note that the physical reflection operator always
commutes with nonspatial symmetries (e.g., TRS). However,
due to the phase convention adopted in Eq. (4.6), Hermitian R
may fail to commute with T. For example, for spin-1=2
fermions R anticommutes with T since, in order to fulfill
Eq. (4.6), R is defined as the physical reflection operator
multiplied by −i. On the other hand, for spinless fermions, R
commutes with T.]
The classification of TCIs and TCSs in the 27 symmetry

classes with reflection symmetry is summarized in Table VIII
(Chiu, Yao, and Ryu, 2013; Morimoto and Furusaki, 2013;
Shiozaki and Sato, 2014). In even (odd) spatial dimension d,
10 (17) out of the 27 symmetry classes allow for the existence
of nontrivial TCIs and TCSs, which are characterized and
labeled by the following topological invariants: (i) integer or
Z2 topological invariants (Z or Z2) of the original tenfold
classification of TIs and TSCs without reflection symmetry;
(ii) mirror Chern or winding numbers (MZ) (Teo, Fu, and
Kane, 2008), or mirror Z2 invariants (MZ2); (iii) Z2 invariants
with translation symmetry (TZ2); (iv) a combined invariant
MZ ⊕ Z (or MZ2 ⊕ Z2), which consists of an integer Z
number (or Z2 quantity) and a mirror Chern or winding
number MZ (or mirror Z2 quantity MZ2). Let us now give a
more precise description of these invariants and of the
boundary modes that arise as a consequence.
(i) Z and Z2 invariants: For symmetry classes with at least

one AZ symmetry that anticommutes with R, the topological
invariants (Z or Z2) of the original tenfold classification
continue to exist in certain cases, even in the presence of
reflection. These topological invariants protect gapless boun-
dary modes, independent of the orientation of the boundary.
(ii) MZ and MZ2 invariants: The mirror Chern numbers,

the mirror winding numbers, and the mirror Z2 invariants,
denoted by MZ and MZ2, respectively, are defined on the
hyperplanes in the BZ that are symmetric under reflection. For
concreteness, let us consider space groups possessing the two
reflection hyperplanes k1 ¼ 0 and k1 ¼ π. Since the Bloch
Hamiltonian at k1 ¼ 0 and k1 ¼ π, HðkÞjk1¼0;π , commutes
with R, it can be block diagonalized with respect to the two
eigenspaces R ¼ �1 of the reflection operator. Note that each
of the two blocks of HðkÞjk1¼0;π is invariant under only those

Chiu et al.: Classification of topological quantum matter …

Rev. Mod. Phys., Vol. 88, No. 3, July–September 2016 035005-39



nonspatial symmetries that commute with the reflection
operator R. Therefore, depending on the nonspatial sym-
metries of the R ¼ �1 blocks of HðkÞjk1¼0;π , each block can
be characterized by topological invariants of the original

tenfold classification in d − 1 dimension. For instance, when
the R ¼ þ1 block of HðkÞjk1¼0ðπÞ is characterized by the
Chern or winding number νk1¼0ðπÞ, we introduce a mirror
Chern or winding invariant by (Chiu, Yao, and Ryu, 2013)

nMZ ¼ sgnðνk1¼0 − νk1¼πÞðjνk1¼0j − jνk1¼πjÞ: ð4:8Þ

Similarly, when the R ¼ þ1 block of HðkÞjk1¼0ðπÞ is charac-
terized by a Z2 invariant nk1¼0ðπÞ ¼ �1, the mirror Z2

invariant MZ2 is defined by

nMZ2
¼ 1 − jnk1¼0 − nk1¼πj: ð4:9Þ

A nontrivial value of these mirror indices indicates the
appearance of protected boundary modes at reflection-
symmetric surfaces, i.e., at surfaces that are perpendicular
to the reflection hyperplane x1 ¼ 0. Surfaces that break
reflection symmetry, however, are gapped in general.
(iii) TZ2 invariant: In symmetry classes where R anti-

commutes with TR and PH operators (R− and R−− in
Table VIII), the second descendant Z2 invariants are well
defined only in the presence of translation symmetry. That is,

TABLE VIII. Classification of reflection-symmetry-protected topological crystalline insulators and superconductors (TCI and TCS) as well as
of stable Fermi surfaces (FS1 and FS2) in terms of the spatial dimension d of the TCIs and TCSs, and the codimension p of the Fermi surfaces.
FS1 denotes Fermi surfaces that are located at high-symmetry points within mirror planes. FS2 stands for Fermi surfaces that are within mirror
planes but away from high-symmetry points. Note that for gapless topological materials the presence of translation symmetry is always
assumed. Hence, there is no distinction between TZ2 and Z2 for the classification of stable Fermi surfaces. Furthermore, we remark that Z2,
MZ2, and TZ2 invariants can protect Fermi surfaces of only dimension zero (dFS ¼ 0) at high-symmetry points of the Brillouin zone (FS1). For
the entries labeled by the superscript a, there can exist surface states and bulk Fermi surfaces of type FS2 that are protected by Z and MZ
invariants inherited from classes A or AIII. That is, in these cases TRS or PHS does not trivialize these topological invariants.

TCI/TCS d ¼ 1 d ¼ 2 d ¼ 3 d ¼ 4 d ¼ 5 d ¼ 6 d ¼ 7 d ¼ 8
Reflection FS1 in mirror p ¼ 8 p ¼ 1 p ¼ 2 p ¼ 3 p ¼ 4 p ¼ 5 p ¼ 6 p ¼ 7

FS2 in mirror p ¼ 2 p ¼ 3 p ¼ 4 p ¼ 5 p ¼ 6 p ¼ 7 p ¼ 8 p ¼ 1

R A MZ 0 MZ 0 MZ 0 MZ 0
Rþ AIII 0 MZ 0 MZ 0 MZ 0 MZ
R− AIII MZ ⊕ Z 0 MZ ⊕ Z 0 MZ ⊕ Z 0 MZ ⊕ Z 0

Rþ, Rþþ AI MZ 0 0a 0 2MZa 0 MZa
2 MZ2

BDI MZ2 MZ 0 0a 0 2MZa 0 MZa
2

D MZa
2 MZ2 MZ 0 0a 0 2MZa 0

DIII 0 MZa
2 MZ2 MZ 0 0a 0 2MZa

AII 2MZa 0 MZa
2 MZ2 MZ 0 0a 0

CII 0 2MZa 0 MZa
2 MZ2 MZ 0 0a

C 0a 0 2MZa 0 MZa
2 MZ2 MZ 0

CI 0 0a 0 2MZa 0 MZa
2 MZ2 MZ

R−, R−− AI 0a 0 2MZa 0 TZa
2 Z2 MZ 0

BDI 0 0a 0 2MZa 0 TZa
2 Z2 MZ

D MZ 0 0a 0 2MZa 0 TZa
2 Z2

DIII Z2 MZ 0 0a 0 2MZa 0 TZa
2

AII TZa
2 Z2 MZ 0 0a 0 2MZa 0

CII 0 TZa
2 Z2 MZ 0 0a 0 2MZa

C 2MZa 0 TZa
2 Z2 MZ 0 0a 0

CI 0 2MZa 0 TZa
2 Z2 MZ 0 0a

R−þ BDI, CII 2Za 0 2MZa 0 2Za 0 2MZa 0
Rþ− DIII, CI 2MZa 0 2Za 0 2MZa 0 2Za 0

Rþ− BDI MZ ⊕ Z 0 0a 0 2MZ ⊕ 2Za 0 MZ2 ⊕ Za
2 MZ2 ⊕ Z2

R−þ DIII MZ2 ⊕ Za
2 MZ2 ⊕ Z2 MZ ⊕ Z 0 0a 0 2MZ ⊕ 2Za 0

Rþ− CII 2MZ ⊕ 2Za 0 MZ2 ⊕ Za
2 MZ2 ⊕ Z2 MZ ⊕ Z 0 0a 0

R−þ CI 0a 0 2MZ ⊕ 2Za 0 MZ2 ⊕ Za
2 MZ2 ⊕ Z2 MZ ⊕ Z 0

FIG. 10. The 27 symmetry classes with reflection symmetry can
be visualized as “the extended Bott clock.”
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boundary modes of these phases can be gapped out by
density-wave-type perturbations, which preserve reflection
and AZ symmetries but break translation symmetry. Hence,
protected TCIs and TCSs can exist when reflection, trans-
lation, and AZ antiunitary symmetries are all there.
(iv) MZ ⊕ Z and MZ2 ⊕ Z2 invariants: In some cases,

topological properties of reflection-symmetric insulators
(SCs) with chiral symmetry are described both by a global
Z or Z2 invariant and by a mirror index MZ or MZ2,
which are independent of each other. At boundaries which
are perpendicular to the mirror plane, the number of protected
gapless states is given by max fjnZj; jnMZjg (Chiu, Yao, and
Ryu, 2013), where nZ denotes the global Z invariant, whereas
nMZ is the mirror Z invariant.
The classification of reflection-symmetric TIs and TSCs

(Table VIII) can be generalized to any order-two symmetry
(Z2 symmetry) and, moreover, to include the presence of
topological defects (cf. Sec. III.C.2). The generalized clas-
sification can be inferred from K groups labeled by six
integers Kðs; t; d; d∥; D;D∥Þ, where d∥ (D∥) is the number of
momentum (spatial) coordinates that are flipped by the Z2

operation, s denotes the AZ symmetry class, t ¼ 0, 1, 2, and
3 labels the reflection Bott clock (Fig. 10), and ðd;DÞ are the
dimensions of the defect Hamiltonian. It was shown by
Shiozaki and Sato (2014) that the generalized classification
follows from the relation Kðs;t;d;d∥;D;D∥Þ¼Kðs−dþD;
t−d∥þD∥;0;0;0;0Þ. For reflection-symmetric TIs and SCs,
we have d∥ ¼ 1, D∥ ¼ 0, and D ¼ 0, which reproduces
Table VIII.

1. Bulk-boundary correspondence in topological crystalline
systems

While gapless topological surface states exist at any
boundary of TIs and TSCs protected by nonspatial AZ
symmetries (cf. Sec. III.D), this is not the case for topological
crystalline materials. TCIs and TCSs exhibit gapless modes
on only those surfaces that are left invariant by the crystal
symmetries. In other words, the absence of gapless modes at
boundaries that break the spatial symmetries does not indicate
trivial bulk topology and therefore cannot be used to infer the
topology of TCIs and TCSs. However, for topological
crystalline materials one can use the midgap states in the
entanglement spectrum or in the entanglement Hamiltonian as
a generic way to distinguish between topological trivial and
nontrivial phases (Ryu and Hatsugai, 2006; Fidkowski, 2010;
Fang, Gilbert, and Bernevig, 2013; Chang, Mudry, and Ryu,
2014). For example, for TCIs and TCSs protected by inversion
symmetry, for which there is no boundary that respects the
inversion, and hence no gapless topological state at physical
surfaces, stable gapless boundary modes in the entanglement
spectrum indicate the nontriviality of the bulk topology
(Turner, Zhang, and Vishwanath, 2010; Hughes, Prodan,
and Bernevig, 2011; Turner et al., 2012).
Another difference between the boundary modes of TCIs

and TCSs and those of ordinary TIs and TSCs exists with
regard to disorder. While the surface modes of TIs and TSCs
with AZ symmetries are robust to spatial disorder (Sec. III.F),
the protection of the delocalized surface modes of topological
crystalline materials relies crucially on spatial symmetries,

which typically are broken by disorder. However, the gapless
surface modes of TCIs and TCSs may evade Anderson
localization when the disorder respects the spatial symmetries
on average. This is the case, for example, for the surface states
of weak TIs in class AII in d ¼ 3, which can be gapped out by
charge-density-wave perturbations that preserve TRS but
break translation symmetry. However, inhomogeneous per-
turbations due to disorder which respect translation sym-
metry on average do not lead to Anderson localization of the
surface states (Mong, Bardarson, and Moore, 2012; Ringel,
Kraus, and Stern, 2012; Diez et al., 2014; Fulga et al., 2014;
Obuse et al., 2014). Similarly, for class AIIþ R− in d ¼ 3

the surface modes remain delocalized in the presence of
disorder which preserves TRS and respects reflection
symmetry on average (Fu and Kane, 2012). The quantum
spin Hall effect with spin Sz conservation is another similar
case: When spin Sz rotation symmetry is preserved only on
average due to disorder, the spin Chern number remains well
defined (Prodan, 2009) and leads to delocalized edge modes
even if TRS is broken. Whether the surface states of TCIs
and TCSs remain delocalized in the presence of disorder that
respects the spatial symmetries only on average depends, in
general, on the symmetry class and the spatial dimension of
the system. A more detailed discussion of this topic can be
found in Diez et al. (2015) and Morimoto, Furusaki, and
Mudry (2015b).

2. Example: 3D reflection-symmetric topological crystalline
insulators (class Aþ R and class AIIþ R−)

Using angle-resolved photoemission spectroscopy
(ARPES), SnTe, Pb1−xSnx, and Pb1−xSnxTe have been exper-
imentally identified as TCIs protected by reflection symmetry
(Dziawa et al., 2012; Hsieh et al., 2012; Tanaka et al., 2012;
Xu et al., 2012). The topology of these materials is charac-
terized by nonzero mirror Chern numbers, which leads to four
surface Dirac cones that are protected by reflection symmetry
(TRS in not necessary). For example, on the (001) surface of
SnTe, the low-energy Hamiltonian near the high-symmetry
point X̄1 ¼ ð0; πÞ in the surface BZ is given by (Fang et al.,
2013; Liu, Duan, and Fu, 2013)

HX̄1
ðkÞ ¼ ðvxkxs2 − vykys1Þτ0 þms0τ3 þ δs1τ2; ð4:10Þ

where vx;y are Fermi velocities, si and τi are Pauli matrices
acting on spin and A=B sublattice degrees of freedom,
respectively, and δ, m are small parameters. The
Hamiltonian (4.10) preserves TRS with T ¼ is2K and reflec-
tion symmetry in the x direction. The reflection operator in the
entire surface BZ is k dependent due to the rock-salt structure
of SnTe, i.e., URx

¼ is1 ⊗ diagð1; e−ikxÞ. Near X̄1 ¼ ð0; πÞ
the reflection operator reduces to URx

≈ is1τ0. One verifies
that the low-energy Hamiltonian (4.10) is indeed invariant
under Rx, i.e., U

†
Rx
HX̄1
ð−kx; kyÞURx

¼ HX̄1
ðkx; kyÞ. It can be

checked that all gap opening perturbations are forbidden by
Rx. [Note that on the (001) surface of SnTe there are two
additional Dirac cones located near X̄2 ¼ ðπ; 0Þ, which are
protected by reflection in the y direction.]
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The fact that the bulk Hamiltonian of SnTe is characterized
by Z topological invariants (i.e., mirror Chern numbers) can
be inferred by considering n identical copies of the surface
Hamiltonian HX̄1

⊗ 1n and by checking that all perturbations
that (partially) gap out the enlarged surface Hamiltonian are
prohibited by reflection symmetry with the operator
URx

⊗ 1n. Furthermore, one finds that TRS breaking pertur-
bations that respect reflection symmetry do not remove the
gapless surface states. In the absence of TRS, the Hamiltonian
for SnTe belongs to class Aþ R. In the presence of TRS, we
redefine URx

→ iURx
to make URx

Hermitian. Hence
fURx

; Tg ¼ 0, which corresponds to class AIIþ R−. As
shown in Table VIII, classes Aþ R and AIIþ R− in 3D
are both classified by MZ.
In the presence of TRS (i.e., class AIIþ R−) the surface

states of SnTe are robust against disorder which respects
reflection symmetry on average. To gain some insight into
this, consider the mass perturbation ms3τ2 in Eq. (4.10),
which preserves TRS but breaks reflection. As shown in Hsieh
et al. (2012), Liu, Qi, and Zhang (2012), and Chiu (2014),
domain walls in ms3τ2 support protected helical 1D modes.
When the mass m varies randomly over the surface, but in a
way such that reflection symmetry is preserved on average,
domain walls and their associated helical modes appear on the
entire surface, leading to a gapless (i.e., conducting) surface.
Further interesting features of the surface states of these TCIs,
such as instabilites toward symmetry-broken phases, Lifishitz
transitions, and Landau level spectroscopy, etc., have been
investigated by Hsieh et al. (2012), Fang et al. (2013), Liu,
Duan, and Fu (2013), Okada et al. (2013), Safaei, Kacman,
and Buczko (2013), Wojek et al. (2013), Drüppel, Krüger, and
Rohlfing (2014), Fang, Gilbert, and Bernevig (2014a), J. Liu
et al. (2014), Pletikosić, Gu, and Valla (2014), Serbyn and Fu
(2014), and J. Wang et al. (2014).
Recently, it was proposed that the antiperovskite materials

Ca3PbO and Sr3PbO also realize a reflection-symmetric TCI
(Kariyado and Ogata, 2011; Hsieh, Liu, and Fu, 2014).
Furthermore, it was shown that TlBiS2 turns into a TCI with
mirror symmetry upon applying pressure (Zhang, Cheng, and
Schwingenschlogl, 2015).

C. TCIs and TCSs protected by other point-group symmetries

Besides reflection symmetry, other point-group symmetries
can also give rise to new TCIs. For example, TCIs protected
by Cn point-group symmetries (Fu, 2011; Fang, Gilbert, and
Bernevig, 2012, 2013; Liu, He, and Law, 2014) and Cnv point-
group symmetries (Alexandradinata et al., 2014) have recently
been discussed. It was argued that graphene on a BN substrate
is a possible candidate for a TCI protected by C3 rotation
symmetry (Jadaun et al., 2013). A monolayer of PbSe was
proposed to realize a TCI protected by a combination of mirror
and C2 rotation symmetry (Wrasse and Schmidt, 2014).
Inversion-symmetric TCIs have been considered by Lu and
Lee (2014a). TCIs protected by magnetic symmetry groups
have been investigated by Zhang and Liu (2015). A partial
classification of TCIs protected by space-group symmetries
has been developed by Slager et al. (2013). The classification

of 2D gapless surfaces on 3D TCIs has been completed by
Dong and Liu (2016) by investigating all 17 2D space groups.
As for TCSs, TCSs in 2D with discrete rotation symmetries

have been discussed by Teo and Hughes (2013) and
Benalcazar, Teo, and Hughes (2014). TCSs protected by
magnetic symmetry groups (Fang, Gilbert, and Bernevig,
2014b) and by C3 symmetry (Mendler, Kotetes, and Schön,
2015) have also been studied. Finally, there are also TCSs
which are protected by a combination of PHS and reflection
symmetry (Kotetes, 2013; Ueno et al., 2013; Yao and Ryu,
2013; Zhang, Kane, and Mele, 2013a; Sato, Yamakage, and
Mizushima, 2014); cf. Table VIII. Majorana gapless modes on
the surfaces of these TCSs are protected by reflection.

V. GAPLESS TOPOLOGICAL MATERIALS

By definition, Fermi surfaces, Fermi points, and nodal lines
are sets of zeros of the energy dispersion εðkÞ ¼ const in
momentum space. For simplicity, all these objects will be
collectively called Fermi surfaces (FSs) in the following.
When an FS exists at any energy, the (bulk) system is gapless.
FSs are said to be topologically stable (or simply “stable”),
when they cannot be fully gapped by perturbations that are
local in momentum space and small, such that the bulk gap
remains intact sufficiently far away from the FS. (The precise
meaning of “local” here will be elaborated on shortly.) In this
section, we review topological classifications of stable FSs
that appear in gapless (semi)metals and nodal SCs (Volovik,
2003, 2013; Hořava, 2005; Matsuura et al., 2013; Zhao and
Wang, 2013; Chiu and Schnyder, 2014; Shiozaki and Sato,
2014; Yang, Pan, and Zhang, 2014; Zhao and Wang, 2014).
As seen, the classification of gapless topological materials and
fully gapped TIs and TSCs can be developed along paral-
lel lines.
Note that in lattice systems it is only meaningful to discuss

the stability for a “single” FS (i.e., of one FS that is “isolated”
from the other FSs in the BZ). That is, we consider FSs that are
located only within a part of the BZ, but do not include all FSs
in the entire BZ. This is so since, for any lattice system, it is
expected that FSs can be gapped pairwise by nesting, i.e., by
including perturbations that connect different FSs. Thus, FSs
are at best only locally stable in momentum space, i.e., robust
against perturbations that are smooth in real space and slowly
varying on the scale of the lattice. This is closely related to the
fermion doubling theorem (Nielsen and Ninomiya, 1981),
from which it follows that FSs with nontrivial topological
charges in any lattice system are always accompanied by
“partners” with opposite topological charges. Hence, the sum
of the topological charges of all FSs in a compact BZ adds up
to zero. As a consequence of this, the topological invariants
for FSs are defined in terms of an integral along a submanifold
of the BZ, and not in terms of an integral over the entire BZ as
in the case of TIs and TSCs.
We start by reviewing the classification of stable FSs

protected by nonspatial AZ symmetries and then describe
how this classification is modified and extended in the
presence of additional crystal symmetries, such as reflection.
The properties of these topologically stable FSs are illustrated
by selected examples.
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A. Tenfold classification of gapless topological materials

The topological classification of gapless materials depends
on the symmetry class of the Hamiltonians and the codimen-
sion p of the FS,

p ¼ d − dFS; ð5:1Þ

where d and dFS denote the dimension of the BZ and the
“minimal” dimension of the FS, respectively. Since the
dimension of the FS can be different for different Fermi
energies, we define here dFS as the dimension of the band
crossing, which is independent of the Fermi energy. In other
words, dFS is the smallest possible dimension (i.e., the
“minimal dimension”) of the Fermi surface, as the Fermi
energy is varied.7 For example, for Weyl semimetals dFS ¼ 0,
since the Fermi surface is either 0D (when the Fermi energy is
at the Weyl node) or 2D (when the Fermi energy is away from
the band crossing). Furthermore, we note that p ≤ d since dFS
cannot be negative.
For the classification of topological FSs, we need to

distinguish whether or not the FSs are left invariant by the
nonspatial AZ symmetries (Matsuura et al., 2013), i.e., two
different cases have to be examined (Fig. 11): (i) each
individual FS is left invariant under antiunitary AZ sym-
metries (FS1) (Zhao and Wang, 2013, 2014; Shiozaki and
Sato, 2014), and (ii) different FSs are pairwise related to each
other by AZ symmetries (FS2) (Matsuura et al., 2013; Chiu
and Schnyder, 2014). Note that in case (i) the FSs must be
located at high-symmetry points of the BZ, which are invariant
under k → −k.

1. Fermi surfaces at high-symmetry points (FS1)

The complete tenfold classification of stable FSs that are
located at high-symmetry points (i.e., of FSs which are left
invariant under AZ symmetries) is shown in Table IX, where
the first row (FS1) indicates the codimension p of the FS
(Hořava, 2005; Matsuura et al., 2013; Zhao and Wang,
2013; Chiu and Schnyder, 2014; Shiozaki and Sato, 2014;
Zhao and Wang, 2014). We observe that this classification is
related to the periodic table of gapped TIs and TSCs
(Table I) by a dimensional shift. It is important to point
out that for a given symmetry class and codimension p, a
Z-type topological invariant guarantees the stability of the
FS independent of dFS. A Z2-type topological number, on
the other hand, protects FSs only with dFS ¼ 0, i.e., Fermi
points. By the bulk-boundary correspondence, gapless
topological materials support protected boundary states,
which, depending on the case, are either Dirac or
Majorana cones, dispersionless flat bands, or Fermi arc
surface states, etc. (see example a in Sec. V.A.1).

a. Example: 2D nodal SC with TRS (p ¼ 2, class DIII)

As an example of stable point nodes in a SC, let us consider
the following 2D Hamiltonian on the square lattice:

HðkÞ ¼ sin kxσ1 þ sin kyσ2; ð5:2Þ

which belongs to class DIII, since it preserves TRS and PHS
with T ¼ σ2K and C ¼ σ1K (T2 ¼ −1 and C2 ¼ þ1). This
SC exhibits four point nodes (dFS ¼ 0, p ¼ 2) at the four TR
invariant momenta (0,0), ð0; πÞ, ðπ; 0Þ, and ðπ; πÞ. According
to Table IX, these point nodes are protected by an integer
topological invariant, which takes the form of the winding
number (3.26), ν ¼ ði=2πÞ RC q�dq, where the closed contour
C encircles one of the four nodal points and qðkÞ ¼
ðsin kx − i sin kyÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2kx þ sin2ky

q
. One finds that ν ¼ þ1

for the nodes at (0,0) and ðπ; πÞ, whereas ν ¼ −1 for the nodes
at ð0; πÞ and ðπ; 0Þ. (The contour integral is performed
counterclockwise.) The topological nature of these point
nodes results in the appearance of protected flat-band edge

FIG. 11. The classification of stable Fermi surfaces depends on
how the Fermi surfaces transform under nonspatial antiunitary
symmetries and hence their location in the Brillouin zone. Here d
denotes the spatial dimension (the dimension of the Brillouin
zone) and p is the codimension of the Fermi surface. The blue
circles and spheres represent the contour on which the topological
invariant is defined. (a) Each Fermi surface (red points and lines)
is left invariant under nonspatial symmetries. (b) Different Fermi
surfaces are pairwise related by the nonspatial symmetries which
map k ↔ −k. Adapted from Chiu and Schnyder, 2014.

7If necessary, the energy bands should be adjusted without
changing the topology to reach the minimal dimension of the FS.
For example, although a type II Weyl node does not possess a 0D FS
(Soluyanov et al., 2015; Xu, Zhang, and Zhang, 2015), the node can
be continuously deformed into a type I Weyl node. Hence, dFS ¼ 0.
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states at all surfaces, except the (10) and (01) faces. These flat-
band states connect two nodal points with opposite winding
numbers in the boundary BZ.

2. Fermi surfaces off high-symmetry points (FS2)

The classification of stable FSs that are located away from
high-symmetry points of the BZ is shown in Table IX, where
the second row (FS2) gives the codimension p of the FS. We
remark that only Z invariants can guarantee the stability of
FSs away from high-symmetry points.Z2 indices, on the other
hand, cannot protect these FSs, but they may lead to the
appearance of zero-energy surface states at high-symmetry
points of the boundary BZ (Chiu and Schnyder, 2014). It is
important to note that, in contrast to the classification of fully
gapped systems, the label 0 in Table IX does not always
indicate trivial topology. That is, for entries with the super-
script a there can exist surface states and stable bulk FSs that
are protected by the Z invariants inherited from classes A and
AIII, i.e., in these cases, the Z invariants are not required to be
zero in the presence of TRS or PHS.
In experimental systems, the FSs are usually positioned

away from the high-symmetry points of the BZ. Indeed, there
are numerous experimental examples of protected FSs off
high-symmetry points, such as Weyl point nodes protected by
a Chern number in superfluid 3He-A phase (class A) (Volovik,
2011) and in chiral (d� id)-wave SCs (Goswami and Balicas,
2013; Fischer et al., 2014), point nodes in dx2−y2 -wave SCs
protected by a winding number (Ryu and Hatsugai, 2002), and
line nodes in nodal noncentrosymmetric SCs protected by a
winding number (Sato, 2006; Béri, 2010; Brydon, Schnyder,

and Timm, 2011; Schnyder and Ryu, 2011). In order to
illustrate some of the properties of these gapless topological
materials let us consider two examples in more detail, namely,
protected point nodes in Weyl semimetals and unprotected
Dirac nodes in a 3D TR symmetric semimetal.

a. Example: Weyl semimetal (p ¼ 3, class A)

The point nodes of 3D Weyl semimetals are a canonical
example of gapless topological bulk modes located away
from high-symmetry points. These bulk modes are linearly
dispersing Weyl fermions, which are robust without requiring
any symmetry protection (Murakami, 2007; Burkov and
Balents, 2011; Burkov, Hook, and Balents, 2011; Wan
et al., 2011; Vafek and Vishwanath, 2014). The generic
low-energy Hamiltonian for a Weyl node located at k0 ¼
ðk0x; k0y; k0zÞ is given by

HWeylðkÞ ¼
X

i;j¼1;2;3
vijðki − k0i Þσj; ð5:3Þ

where vij denotes the Fermi velocity. Weyl nodes cannot be
gapped out, since there exists no “fourth Pauli matrix” that
anticommutes with HWeyl. AWeyl node is characterized by its
chirality χk0 ¼ sgn½detðvijÞ� ¼ �1, which measures the rela-
tive handedness of the three momenta k − k0i with respect to
the Pauli matrices σj in Eq. (5.3).
In a lattice model, Weyl nodes must come in pairs with

opposite chiralities (Nielsen and Ninomiya, 1981). Let us
demonstrate how Weyl nodes arise in a simple four-band
lattice model, and show that Weyl semimetals support Fermi
arc surface states, which connect the projected bulk Weyl
nodes with opposite chiralities in the surface BZ. To that end,
consider the following cubic-lattice Hamiltonian describing a
four-band semimetal with two Dirac points:

HðkÞ ¼ sin kxτ1s1 þ sin kyτ1s2 þMðkÞτ3s0; ð5:4Þ

where the two sets of Pauli matrices τα and sα operate in spin
and orbital spaces, respectively, andMðkÞ ¼ cos kx þ cos kyþ
cos kz −m. For concreteness, we set m ¼ 2. With this choice,
the bulk Dirac points of HðkÞ are located at k�¼ð0;0;�π=2Þ.
The Dirac semimetal (5.4) preserves TRS and inversion
symmetry with T¼ τ0s2K and UI¼ τ0s3, respectively.
When one of these two symmetries is broken, a Dirac node
can be separated into two Weyl nodes. For example, a Zeeman
term Δτ0s3 (with Δ ¼ 1=2 for simplicity), which breaks TRS,
separates the two Dirac cones into four Weyl nodes located at
k0 ¼ ð0; 0;�π=3Þ and k0 ¼ ð0; 0;�2π=3Þ. These Weyl points
realize (anti)hedgehog defects of the vector of the Berry
curvature [TrðF ijÞϵijldkl] [see the right part of Fig. 5(b)], and
are protected by the nonzero Chern number

ChðN k0Þ ≔
i
2π

Z
N k0

TrðF Þ

¼
�þ1; for k0 ¼ ð0; 0;− π

3
Þ; ð0; 0; 2π

3
Þ;

−1; for k0 ¼ ð0; 0;− 2π
3
Þ; ð0; 0; π

3
Þ; ð5:5Þ

TABLE IX. Classification of stable Fermi surfaces in terms of the
ten AZ symmetry classes, which are listed in the first column. The
first and second rows (FS1 and FS2) give the codimension p ¼
d − dFS for Fermi surfaces at high-symmetry points [Fig. 11(a)] and
away from high-symmetry points of the BZ [Fig. 11(b)], respectively.
The classification of stable Fermi surfaces is related to the classi-
fication of gapped topological insulators and superconductors (the
third row) by a simple dimensional shift. For entries labeled with the
superscript a, there can exist surface states and bulk Fermi surfaces of
type FS2 that are protected by Z invariants inherited from classes A
or AIII, since in these cases TRS or PHS does not trivialize the Z
invariants. Also note that Z2 topological invariants protect only
Fermi surfaces of dimension zero at high-symmetry points. That is,
Z2 topological numbers cannot protect Fermi surfaces located away
from high-symmetry points. This is indicated by the superscript b.

FS1 p ¼ 8 p ¼ 1 p ¼ 2 p ¼ 3 p ¼ 4 p ¼ 5 p ¼ 6 p ¼ 7
FS2 p ¼ 2 p ¼ 3 p ¼ 4 p ¼ 5 p ¼ 6 p ¼ 7 p ¼ 8 p ¼ 1
TI/TSC d ¼ 1 d ¼ 2 d ¼ 3 d ¼ 4 d ¼ 5 d ¼ 6 d ¼ 7 d ¼ 8

A 0 Z 0 Z 0 Z 0 Z
AIII Z 0 Z 0 Z 0 Z 0

AI 0 0a 0 2Z 0 Za;b
2

Zb
2

Z
BDI Z 0 0a 0 2Z 0 Za;b

2
Zb

2

D Zb
2

Z 0 0a 0 2Z 0 Za;b
2

DIII Za;b
2

Zb
2

Z 0 0a 0 2Z 0
AII 0 Za;b

2
Zb

2
Z 0 0a 0 2Z

CII 2Z 0 Za;b
2

Zb
2

Z 0 0a 0
C 0 2Z 0 Za;b

2
Zb

2
Z 0 0a

CI 0a 0 2Z 0 Za;b
2

Zb
2

Z 0
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where the integral is over a small closed surface N k0

surrounding the Weyl node at k0. We observe that the
chiralities χk0 of the Weyl nodes, which can be computed
from the low-energy description (5.3), are identical to the
topological invariant, i.e., ChðN k0Þ ¼ χk0 , where N k0 enc-
loses a single Weyl point. In general, the integral topological
invariant ChðN k0Þ counts the number of Weyl points within
N k0 weighted by their chiralities. Two Weyl nodes with
opposite chiralities at the same momentum in the BZ can be
easily gapped out by local perturbations. However, when the
two Weyl nodes are located at different momenta, nesting
instabilities that gap out the Weyl nodes carry finite momen-
tum, and hence necessarily break translation symmetry.
Therefore, as long as translation symmetry is preserved,
Weyl nodes are robust. Even in the presence of disorder
which is sufficiently smooth on the scale of the lattice and
does not induce scattering between Weyl nodes with opposite
chiralities, the Weyl points are protected and do not Anderson
localize.
As seen from Eq. (5.5), Weyl nodes are sources and drains

of Berry flux, i.e., there is a Berry flux of 2π flowing from
one Weyl node to another along the kz direction, which is
measured by the Chern number (5.5). To exemplify this,
consider a family of planes fN ðkzÞg, which are perpendicular
to the kz axis and parametrized by kz. When kz is in between a
pair of Weyl nodes with opposite chiralities, N ðkzÞ has a
nonzero Chern number

ChðkzÞ ≔
i
2π

Z
N ðkzÞ

Tr½F ðkzÞ�

¼
�−1; for π=3 < jkzj < 2π=3;

0; for jkzj < π=3 and 2π=3 < jkzj.
ð5:6Þ

Each of these planes can be interpreted as a 2D fully gapped
Chern insulator with a chiral edge mode. Hence, the surface
states of the Weyl semimetal form a 1D open Fermi arc in the
surface BZ, connecting the projected bulk Weyl nodes with
opposite chiralities; see Fig. 12. These chiral surface states
give rise to a quantum anomalous Hall effect, with the Hall
conductivity proportional to the separation of Weyl nodes with
opposite chiralities in momentum space. A number of other
exotic transport phenomena have also been discussed for Weyl
semimetals, including negative magnetoresistance, nonlocal
transport, and chiral magnetic and vortical effects (Zyuzin and
Burkov, 2012; Hosur and Qi, 2013; Liu, Ye, and Qi, 2013;
Vazifeh and Franz, 2013; Parameswaran et al., 2014).
An alternative way to create Weyl nodes in the Hamiltonian

(5.4) is to break inversion symmetry by adding sin kzτ1s3
(which, however, preserves reflection symmetry and TRS).
The resulting four Weyl nodes are located at ð0; 0;�π=4Þ and
ð0; 0;�3π=4Þ and are robust in the absence of scattering
between these nodes. The Weyl nodes are protected by a Z
topological invariant, even though the Hamiltonian (5.4) itself
belongs to class AII with p ¼ 3 (see footnote a in Table IX for
more details). In the presence of TRS the number of Weyl
nodes with chirality �1 is always a multiple of 4 due to the
vanishing Chern numbers on TR symmetric planes. Note that
this TR symmetric Weyl semimetal exhibits besides the arc
surface states also Dirac surface states at kz ¼ 0, π which are

protected by a Z2 topological invariant (cf. discussion in the
following example). Thus, this is an example of a gapless
topological material with surface states that are protected by a
different invariant than the bulk nodes.
Over the last few years a number of materials with Weyl

nodes in their band structure have been investigated. For
example, the transition-metal monophosphide TaAs is an
experimental realization of a TR symmetric Weyl semimetal.
Based on first-principle calculations, this material was theo-
retically identified to be an inversion-symmetric Weyl semi-
metal (S.-M. Huang et al., 2015; Weng, Fang et al., 2015),
which was later confirmed by ARPES experiments (Lv et al.,
2015; S.-Y. Xu et al., 2015b). Magnetotransport measure-
ments on TaAs have revealed a negative megnetoresistance,
which is a signature of the chiral anomaly of Weyl semimetals
(X. Huang et al., 2015; Zhang et al., 2015). Other exper-
imental realizations of TR symmetric Weyl semimetals are
TaP, NbAs, and NbP (Shekhar et al., 2015; Weng, Fang et al.,
2015; S.-Y. Xu et al., 2015a). AWeyl phase with broken TRS
has been theoretically proposed to exist in pyrochlore iridates
(Wan et al., 2011; Chen and Hermele, 2012; Witczak-Krempa
and Kim, 2012), magnetically doped TIs, and TI multilayers
(Burkov and Balents, 2011). However, these TRS breaking
Weyl semimetals have not yet been discovered experimen-
tally. A double Weyl semimetal, where the Weyl nodes have
chiralities χk0 ¼ �2, has been predicted to be realized in the
ferromagnetic spinel HgCr2Se4 (Xu et al., 2011). The

FIG. 12. Surface spectrum of the Weyl semimetal (5.4) for the
(100) face in the presence of the Zeeman term Δτ0s3. The
surface and bulk states are colored in green and gray, respec-
tively. (a) Surface spectrum as a function of surface momenta
ðky; kzÞ. (b), (c) Surface spectrum as a function of surface
momentum ky and kz with fixed kz ¼ π=4 and ky ¼ 0, respec-
tively. (d) Bulk Fermi surface and surface Fermi arc at the
energy E ¼ 0.1. The Fermi arcs located within the interval
π=3 < jkzj < 2π=3 are protected by the nonzero Chern number
ChðkzÞ ¼ −1; see Eq. (5.6). The surface modes with jkzj < π=3
are unstable and can be gapped out by surface perturbations
[e.g., by the term cosð3kz=2Þτ1s3].
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conditions for the existence of double Weyl nodes were
recently discussed by Fang et al. (2012). Furthermore, the
band structure of photonic crystals can be designed in such a
way that it exhibits Weyl nodes (Lu et al., 2013, 2015).

b. Example: 3D Dirac semimetal (p ¼ 3, class AII)

As a second example we consider the Hamiltonian (5.4)
with two Dirac points, which are located away from high-
symmetry momenta in the BZ, i.e., at ð0; 0;�π=2Þ, and
impose TRS with T ¼ τ0s2K. Although a Z2 invariant can
be defined for this case, these Dirac points are not protected by
TRS (Table IX), since there exists a TRS preserving mass
term, namely, sin kzτ2s0. While the class AII Z2 invariant does
not guarantee the stability of the bulk Dirac points, it
nevertheless leads to protected gapless surface states at
high-symmetry momenta of the surface BZ. To see this, we
first need to remove some accidental symmetries of Eq. (5.4)
that also give rise to protected surface states (see the
discussion in Sec. V.B.2.a). These accidental symmetries
are reflections with Ry ¼ τ3s2 [cf. Eq. (5.7)] and chiral
symmetry with S ¼ τ1s3. Both of these accidental symmetries
can be broken on the surface by adding the perturbation
þg sin kzτ1s3 on the (100) and (1̄00) faces. In the presence of
this perturbation the surface states are gapped except at
kz ¼ 0, where there exists a helical mode protected by TRS
and the Z2 invariant of class AII; see Figs. 13(a)–13(c). This
type of helical surface mode was observed by ARPES in the
Dirac semimetal Na3Bi (S.-Y. Xu et al., 2015c).

B. Topological semimetals and nodal superconductors protected
by reflection symmetry

Let us now discuss how the classification of stable FSs is
enriched by the presence of reflection symmetry (Chiu and
Schnyder, 2014). Similar to the classification of fully gapped
TCIs and TCSs (cf. Sec. IV.B), one needs to distinguish
whether the reflection operator commutes or anticommutes
with the operators of the AZ symmetries (Chiu and Schnyder,
2014). The classification of reflection-symmetry-protected
semimetals and nodal SCs also depends on the codimension
of the FSs, p ¼ d − dFS, and on how the FSs transform under
reflection and AZ symmetries. In general, one distinguishes
the following three different situations: (i) Each FS is left
invariant by both reflection and AZ symmetries; (ii) FSs are
invariant under reflection symmetry, but are pairwise related
to each other by the internal symmetries; and (iii) different FSs
are pairwise related to each other by both reflection and AZ
symmetries. In cases (i) and (ii), the FSs are located within a
reflection plane, whereas in case (iii) they lie outside the
reflection plane. For brevity we focus here only on cases (i)
and (ii). Case (iii) was discussed extensively by Chiu and
Schnyder (2014) and Morimoto and Furusaki (2014).

1. Fermi surfaces at high-symmetry points within mirror plane
(FS1 in mirror)

First we consider case (i), where the FSs are located within
a reflection plane and at high-symmetry points in the BZ. In
this situation the classification of stable FSs with dFS ¼ 0 can
be inferred from the classification of TIs and TSCs protected
by reflection by a dimensional reduction procedure. Namely,
the surface states of reflection-symmetric d-dimensional TIs
and TSCs can be viewed as reflection-symmetry-protected
FSs in d − 1 dimensions. It then follows that the classification
of stable Fermi points (dFS ¼ 0) is obtained from the
classification of reflection-symmetric TIs and TSCs by a
dimensional shift d → d − 1; see Table VIII. This logic also
works for FSs with dFS > 0, if their stability is guaranteed by
an MZ or 2MZ topological number. However, Z2 and MZ2

topological numbers ensure only the stability of Fermi points,
i.e., FSs with dFS ¼ 0. Derivations based on Clifford algebras
and K theory (Chiu and Schnyder, 2014; Shiozaki and Sato,
2014) corroborate these findings.

2. Fermi surfaces within mirror plane but off high-symmetry
points (FS2 in mirror)

In case (ii), the FSs transform pairwise into each other by AZ
symmetries, which relate k and −k. Using an analysis based on
the minimal-Dirac-Hamiltonian method (Chiu and Schnyder,
2014) it was shown that only MZ and 2MZ topological
numbers can ensure the stability of reflection-symmetric FSs
off high-symmetry points. Z2 andMZ2 invariants, on the other
hand, do not give rise to stable FSs. Nevertheless, Z2 or MZ2

invariants may lead to protected zero-energy surface states at
TR invariant momenta of the surface BZ. We observe that the
classification of reflection-symmetric FSs located away from
high-symmetry points with codimension p is related to the
classification of reflection-symmetric TIs and TSCs with spatial
dimension d ¼ p − 1; see Table VIII.

FIG. 13. Surface spectrum of the time-reversal symmetric (i.e.,
without Zeeman term) Dirac semimetal (5.4) for the (100) face.
The surface and bulk states are colored in green and gray,
respectively. (a)–(c), (d)–(f) The surface spectrum in the presence
and absence of the surface perturbation þg sin kzτ1s3, respec-
tively, which breaks reflection and chiral symmetry. (b), (e) The
surface bands as a function of surface momentum ky with fixed
kz ¼ π=4 and kz ¼ 0, respectively. (c), (f) The bulk and surface
states for a fixed energy ε ¼ 0.1. The surface Dirac cone of (a) is
protected by a Z2 invariant, while the surface Fermi arc of (d) is
protected by the mirror winding number νþ (see Sec. V.B.2.a).
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Reflection-symmetry-protected FSs in most experimental
systems are of type FS2. Let us in the following illustrate the
properties of these FSs using two examples.

a. Example: FS2 with p ¼ 3 in DIIIþ R−−

We consider a topological nodal SC with point nodes,
described by the Hamiltonian (5.4). It preserves TRS with
T ¼ τ0s2K and PHS with C ¼ iτ1s1K. In addition, it is
symmetric under reflection,

R−1
y Hðkx;−ky; kzÞRy ¼ Hðkx; ky; kzÞ; ð5:7Þ

with Ry ¼ τ3s2. The reflection operator Ry anticommutes with
T and C, and hence the Hamiltonian (5.4) is a member of
symmetry class DIIIþ R−−. According to Table VIII, the
Dirac nodes in Eq. (5.4) [Fig. 13(d)] are protected by an MZ
invariant, i.e., the mirror winding number νþ. The mirror
invariant is defined by a 1D integral along a contour that lies
within the mirror plane ky ¼ 0. Within the ky ¼ 0mirror plane
the Hamiltonian can be block diagonalized with respect to Ry.
For the block with mirror eigenvalue Ry ¼ þ1 by choosing a
one-parameter family of contours CðkzÞ that are parallel to the
kx axis with fixed kz, the mirror winding number is given by
νþðkzÞ ¼ −1 for jkzj < π=2 whereas νþðkzÞ ¼ 0 for
jkzj > π=2. This indicates that there exists a gapless Fermi
arc state on the (100) surface, connecting the projection of the
bulk Dirac nodes at k� ¼ ð0; 0;�π=2Þ; see Figs. 13(d)–13(f).
Other types of topological nodal SCs with crystal symmetries
have been studied by Schnyder, Brydon, and Timm (2012), S.
Kobayashi et al. (2014), and Schnyder and Brydon (2015).

b. Example: FS2 with p ¼ 2 in class AI + Rþ (“spinless graphene”)

As a second example we discuss spinless fermions hopping
on the honeycomb lattice. Provided one neglects the spin
degrees of freedom, this model describes the electronic
properties of graphene (Castro Neto et al., 2009). The
Dirac cones of spinless graphene are protected by TR,
reflection, and translation symmetry. [Note that the Dirac
cones are also stable in the presence of inversion symmetry
instead of reflection symmetry (Mañes, Guinea, and
Vozmediano, 2007).] The tight-binding Hamiltonian is given
by Ĥ ¼PkΨ̂

†
kHðkÞΨ̂k with the spinor Ψ̂k ¼ ðâk; b̂kÞT and

HðkÞ ¼
�Θk Φk

Φ�k Θk

�
;

Φk ¼ t1
P

3
i¼1 e

ik·si ; Θk ¼ t2
P

6
i¼1 e

ik·di ; ð5:8Þ

where âk and b̂k denote the fermion annihilation operators
with momentum k on sublattices A and B, respectively, si and
di are the nearest- and second-neighbor bond vectors, respec-
tively [Fig. 14(a)], and the hopping integrals t1;2 are assumed
to be positive. The Hamiltonian (5.8) is invariant under TR
with T ¼ σ0K and reflection kx → −kx with R ¼ σ1.
[Incidentally, the Hamiltonian (5.8) is also symmetric under
ky → −ky, which, however does not play any role for the
protection of the Dirac points.] Since T2 ¼ þ1 and ½R; T� ¼ 0,
the Hamiltonian (5.8) belongs to symmetry class AIþ Rþ.

The energy spectrum of Eq. (5.8), ε�k ¼ Θk � jΦkj, exhibits
two Dirac points, which are located on the mirror line kx ¼ 0,
i.e., at ðkx; kyÞ ¼ ð0;�k0Þ with k0 ¼ 4π=ð3 ffiffiffi

3
p Þ. These two

Dirac points transform pairwise into each other under
TRS. Any gap opening term is forbidden by TRS and
reflection symmetry, and the Dirac points are topologically
stable. In particular, the TRS preserving mass term σ3 is
forbidden by reflection symmetry R. This finding is
consistent with the classification in Table VIII, which
indicates that the stability of the Dirac points is guaran-
teed by an MZ-type invariant.
The mirror invariant nMZ can be computed from the

eigenstates ψ�k of HðkÞ with energy ε�k , ψ�k ¼
ð�eiφk ; 1ÞT= ffiffiffi

2
p

, where φk ¼ argðΦkÞ. Noting eiφð0;kyÞ ¼
þ1 ð−1Þ for jkyj < k0 (jkyj > k0), ψ�ð0;kyÞ are simultaneous

eigenstates of the reflection operator with opposite eigenval-
ues (þ1 and −1), and do not hybridize. The mirror invariant
nMZ is given in terms of the number of states with energy ε−k
and reflection eigenvalue R ¼ þ1, nnegðkyÞ, as

nMZ ¼ nnegðjkyj > k0Þ − nnegðjkyj < k0Þ ¼ þ1: ð5:9Þ

Because of the bulk-boundary correspondence, the nontrivial
topology of the Dirac points leads to a linearly dispersing edge
mode, which connects the projected Dirac points in the
(10) edge BZ [Fig. 14(b)].

C. Dirac semimetals protected by other point-group symmetries

Besides reflection symmetry, other point-group sym-
metries, such as rotation or inversion, can give rise to
topologically stable FSs (Z. Wang et al., 2012, 2013d;
Young et al., 2012; Kim et al., 2015; Yu et al., 2015).

FIG. 14. (a) The honeycomb lattice is a bipartite lattice
composed of two interpenetrating triangular sublattices A (black
dots) and B (blue dots). The vectors connecting nearest-neighbor
and next-nearest-neighbor sites are denoted by si (green) and di

(red), respectively, where s1 ¼ ð−1; 0Þ, s2 ¼ 1
2
ð1; ffiffiffi

3
p Þ, s3¼

1
2
ð1;− ffiffiffi

3
p Þ, and d1 ¼ −d4 ¼ 1

2
ð3; ffiffiffi

3
p Þ, d2 ¼ −d5 ¼ 1

2
ð3;− ffiffiffi

3
p Þ,

d3 ¼ −d6 ¼ ð0;−
ffiffiffi
3
p Þ. The mirror line x → −x is indicated by

the green line. (b) Energy spectrum of a graphene ribbon with
(10) edges (i.e., zigzag edges) and ðt1; t2Þ ¼ ð1.0; 0.1Þ. A linearly
dispersing edge state (red trace) connects the Dirac points at
ky ¼ 2π=3 and ky ¼ 4π=3 in the edge BZ. Adapted from Chiu
and Schnyder, 2014.
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1. 3D semimetals with p= 3

First, let us briefly illustrate how rotation symmetry can
lead to protected Dirac points by using the Hamiltonian (5.4)
again as a simple example. As discussed, the Dirac points of
Eq. (5.4), located at ð0; 0;�π=2Þ, are not protected by TRS.
However, spatial symmetries can protect these Dirac cones.
One example is chiral symmetry together with mirror sym-
metry (5.7), which was described before; another example is
the fourfold C4 rotation symmetry along the z axis, which acts
on HðkÞ as

R−1
C4
Hð−ky; kx; kzÞRC4

¼ Hðkx; ky; kzÞ; ð5:10Þ

where RC4
¼ τ3ðs0 þ is3Þ=

ffiffiffi
2
p

. We find that there exist two
mass terms that can gap out the Dirac nodes, namely,
f1ðkzÞτ2s0 and f2ðkzÞτ1s3, since these are the terms that
anticommute with HðkÞ. Here f1ðkzÞ and f2ðkzÞ represent kz
dependent masses. However, these two gap opening terms
break the C4 rotation symmetry (5.10), since they anticom-
mute with RC4

. However, each Dirac point can be decomposed
into two Weyl nodes along the z direction in the presence of
the C4-preserving term τ0s3. (The additional inversion sym-
metry and TRS forbid this term.) Thus, the gapless nature of
the Hamiltonian (5.4) is protected by the C4 rotation sym-
metry (5.10), and the Dirac points are protected by the full
point group D6h. Note that similar arguments can be used to
explain the gapless stability of the bulk Dirac points of Na3Bi
and Cd3As2, which possess C3 and C4 rotation symmetries,
respectively (Yang and Nagaosa, 2014; Chiu and Schnyder,
2015; Yang, Morimoto, and Furusaki, 2015).
Recently, several materials were experimentally identified

as topological semimetals protected by crystalline symmetry.
Among them are the Dirac materials Cd3As2 (Borisenko et al.,
2014; Jeon et al., 2014; Liu et al., 2014a; Neupane et al.,
2014; Liang et al., 2015) and Na3Bi (Z. Wang et al., 2012; Liu
et al., 2014b; S.-Y. Xu et al., 2015c), whose gapless spectrum
is protected by rotation symmetry. The Fermi arc states of
Na3Bi were recently observed by ARPES (S.-Y. Xu et al.,
2015c). Unusual magnetoresistence was also reported in these
Dirac systems (Liang et al., 2015; Novak et al., 2015; Li et al.,
2016). Superconducting Dirac semimetals were theoretically
investigated by Kobayashi and Sato (2015).

2. 3D semimetals with p= 2

Topological nodal lines with p ¼ 2, i.e., 1D FSs in a 3D
BZ, were theoretically proposed to exist in several materials.
For semimetals with negligible spin-orbit coupling, it was
shown that topological nodal lines are typically protected by
either reflection symmetry or the combination of TRS and
inversion symmetry (Chan et al., 2015; Fang et al., 2015).
There are two different types of topological line nodes,
namely, Weyl and Dirac line nodes. While for the stability
of Weyl line nodes the presence of just a single symmetry
(e.g., reflection or chiral symmetry) is usually sufficient (Fang
et al., 2012; Chiu and Schnyder, 2014), Dirac line nodes,
which can be viewed as two copies of Weyl line nodes, need
additional symmetries for their protection. For example, the
compound Ca3P2 (Chan et al., 2015; Xie et al., 2015)

possesses a stable Dirac line protected by reflection symmetry
together with SUð2Þ spin-rotation symmetry. In Ca3P2 the
nodal line is located at the Fermi level, which makes it an ideal
system to study the unconventional transport properties of
nodal line semimetals. Besides Ca3P2, CaAgP, CaAgAs
(Yamakage et al., 2015), and rare-earth monopnictides LaX
(X ¼ N, P, As, Sb, Bi) (Zeng et al., 2015) have been proposed
to possess Dirac nodal lines protected by reflection symmetry
and SUð2Þ spin-rotation symmetry. Dirac line nodes also
appear in the band structure of some orthorhombic perovskite
iridates (Chen, Lu, and Kee, 2015). Examples of Dirac line
nodes protected by inversion, TRS, and SUð2Þ spin-rotation
symmetry include Cu3N (Kim et al., 2015), Cu3PbN (Yu
et al., 2015), and all-carbon Mackay-Terrones crystals (Weng,
Liang et al., 2015).
Weyl line nodes protected by reflection symmetry exist in

the band structure of PbTaSe2 (Bian et al., 2016) and TlTaSe2
(Bian et al., 2016). These materials belong to symmetry class
AIIþ R− in Table VIII. Their Weyl lines, which are located
away from high-symmetry points, are protected by the MZ
invariant that is inherited from class Aþ R (compare with the
discussion about Weyl nodes in Sec. V.A.2.a).

VI. EFFECTS OF INTERACTIONS: THE COLLAPSE OF
NONINTERACTING CLASSIFICATIONS

A. Introduction

In this section we present a brief overview of topics that
go beyond the classification of noninteracting fermionic
systems. Interactions can affect or modify topological
classifications of noninteracting fermion systems in various
ways. For example, interactions can “destroy” noninteract-
ing topological phases—a would-be topological state of a
single-particle Hamiltonian, characterized by a topological
invariant built out of single-particle wave functions, can be
adiabatically deformable to a topologically trivial state,
once interactions are included. To describe such situations,
we say the noninteracting classification “collapses” or
“reduces.” Another possibility is that interactions can create
new topological states which are topologically distinct from
trivial states.
Examples of the latter case include, e.g., interaction-

enabled symmetry-protected topological phases in 1D
(Lapa, Teo, and Hughes, 2016), topological insulating phases
in 3D that arise only in the presence of interactions (together
with topological band insulators, these fall into a Z2 × Z2

classification of 3D gapped insulating phases) (Wang, Potter,
and Senthil, 2014), and fractional topological insulators in
ð2þ 1ÞD and ð3þ 1ÞD (Young, Lee, and Kallin, 2008; Levin
and Stern, 2009; Maciejko et al., 2010; Neupert et al., 2011,
2014; Sheng et al., 2011; Swingle et al., 2011; Parameswaran,
Roy, and Sondhi, 2012; Bergholtz and Liu, 2013; Chan et al.,
2013; Repellin, Bernevig, and Regnault, 2014; Maciejko and
Fiete, 2015).
Even when interactions do not destroy a noninteracting

topological phase (i.e., it exists irrespective of the absence or
presence of interactions), characterizing such states without
relying on the single-particle picture is often nontrivial.
Because of the rapidly developing nature of the field of
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strongly interacting topological phases, we do not aim to give
a complete review of this field here, but focus our discussion
instead on the collapse of the classification of noninteracting
fermionic systems. More specifically, we discuss the classi-
fication of interacting TSCs [fermionic phases which lack
Uð1Þ charge conservation] with various symmetries (such as
TRS, spin parity conservation, and reflection symmetry) in
one, two, and three spatial dimensions.

1. Symmetry-protected topological phases, short-range
and long-range entanglement

Before discussing examples of interacting fermionic sys-
tems, let us first introduce a few concepts and common
terminologies, which are useful in discussing general inter-
acting (topological) phases. In the previous sections, we
discussed TIs and TSCs within noninteracting band theories,
described by quadratic Bloch or BdG Hamiltonians. In a
broader context, including bosonic systems, and, in particular,
in the presence of interactions, the terminology symmetry-
protected topological (SPT) phases is used (Gu and Wen,
2009). In the absence of symmetry conditions these phases are
trivial states of matter which are continuously deformable to,
e.g., an atomic insulator. On the other hand, in the presence of
a set of symmetry conditions, they are topologically distinct
from trivial states and are separated from trivial states by a
quantum phase transition.
SPT phases are also called states with short-range entan-

glement or short-range entangled (SRE) states. To be more
precise, SRE states are states that can be transformed, by
applying a finite-depth local unitary quantum circuit, into a
product state. In contrast, those states which cannot be
disentangled into a product state by a finite-depth local
unitary quantum circuit are called states with long-range
entanglement, or long-range entangled (LRE) states (Chen,
Gu, and Wen, 2010). Note that in this definition noninteract-
ing, integer QH states are examples of LRE states, even
though they do not have topological order as measured by the
topological entanglement entropy (Kitaev and Preskill, 2006)
or by the nontrivial topological ground state degeneracy (Wen
and Niu, 1990). Because of the lack of topological order, SPT
phases are also sometimes called symmetry-protected trivial
phases (Wen, 2014).
There exists an alternative definition for short-range entan-

glement in the literature, where SRE states are defined as
systems with gapped and nondegenerate bulk spectra, namely,
as having no topological entanglement order (Kitaev, 2015).
In this definition, SRE states include SPT states as a subset.
SRE states of this kind are also called invertible or having
invertible topological order (Freed, 2014; Kong and
Wen, 2014).
While LRE states are not adiabatically deformable to trivial

states even in the absence of any symmetry, symmetries can
coexist and intertwine with topological orders and can lead to
a distinction between states which share the same topological
order. To discuss such distinctions between topologically
ordered states with symmetries, the terminology symmetry-
enriched topological (SET) phases is used (Chen et al., 2013),
while in other contexts the term weak symmetry breaking or

projective symmetry groups (Wen, 2002; Kitaev, 2006) is
used. In the following, we focus on fermionic SPT phases,
although some of the techniques and concepts discussed are
also applicable to SET phases.

B. Example in ð1þ 1ÞD: Class BDI Majorana chain

The first example of a collapse of a noninteracting classi-
fication was shown by Fidkowski and Kitaev for a ð1þ 1ÞD
TSC (Fidkowski and Kitaev, 2010, 2011). To discuss this
example we use as our starting point the Kitaev chain defined
in Eq. (3.53) in terms of spinless fermions. The Kitaev chain
is a member of symmetry class D and its different phases
are classified by the Z2 topological index discussed in
Sec. III.B.3.a. To impose on this 1D model TRS, we recall
that TRS acts on spinless fermions as

T̂ ĉjT̂
−1 ¼ ĉj; T̂ ĉ†j T̂

−1 ¼ ĉ†j ; T̂ 2 ¼ 1: ð6:1Þ

[In the Majorana fermion basis (3.55), TRS acts as T̂ λ̂jT̂
−1 ¼

−λ̂j and T̂ λ̂0jT̂
−1 ¼ λ̂0j.] While particle-number conservation is

broken in BdG systems, the fermion number parity Ĝf remains

conserved. Ĝf acts on the fermion operators as

ĜfĉjĜ
−1
f ¼ −ĉj; Ĝfĉ

†
j Ĝ

−1
f ¼ −ĉ†j : ð6:2Þ

The symmetry operations T̂ and Ĝf constitute the full
symmetry group of the example at hand. These operators
satisfy T̂ Ĝf ¼ ĜfT̂ and T̂ 2 ¼ Ĝ2

f ¼ 1. Hence, since T̂ 2 ¼ 1,
the relevant symmetry class is BDI, whose topologically
distinct ground states in 1D are distinguished by a winding
number ν; see Sec. III.B.2.c. For Eq. (3.53) we find that
ν ¼ 0 for jtj < jμj, whereas ν ¼ 1 for jtj > jμj. In the
topologically nontrivial phases with ν ≠ 0 there appear ν
isolated Majorana zero modes localized at the end. These
Majorana end states are stable against quadratic perturba-
tions which preserve the symmetries. Phases with higher
winding number ν ¼ Nf can be realized by taking Nf

identical copies of the Majorana chain
PNf

a¼1 Ĥ0ðĉa†; ĉaÞ,
where Ĥ0ðĉa†; ĉaÞ is the quadratic Hamiltonian of the Kitaev
chain for the ath copy (flavor), and the fermion creation and
annihilation operators for different copies are denoted by
ĉa†j , ĉaj with a ¼ 1;…; Nf.
Fidkowski and Kitaev demonstrated that when Nf ¼ 0

(mod 8), the noninteracting topological phase with the wind-
ing number ν ¼ Nf can be adiabatically connected to the
topologically trivial phase, once interactions are included
(Fidkowski and Kitaev, 2010, 2011). Specifically, they con-
sidered the following interacting Hamiltonian for the case of
Nf ¼ 8:

Ĥ ¼
XNf

a¼1
Ĥ0ðĉa†; ĉaÞ þ w

X
j

½Ŵðλ̂aj Þ þ Ŵðλ̂0aj Þ�; ð6:3Þ

where Ŵðλ̂aÞ can be given, conveniently and suggestively, in
terms of two species of spin-full complex fermion operators,
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ĉ1↑ ¼ ðλ̂1 þ iλ̂2Þ=2, ĉ†1↓ ¼ ðλ̂3 þ iλ̂4Þ=2, ĉ2↓ ¼ ðλ̂5 þ iλ̂6Þ=2,
ĉ†2↑¼ðλ̂7þ iλ̂8Þ=2, as Ŵ ¼ 16Ŝ1 · Ŝ2 þ 2ðn̂1 − 1Þ2þ
2ðn̂2 − 1Þ2 − 2, where Ŝi¼c†iαðσαβ=2Þciβ and n̂i¼ n̂i↑þn̂i↓.
This interaction preserves an SOð7Þ subgroup of the SOð8Þ
acting on the flavor index. Since the Hamiltonian now
depends on three parameters, i.e., on ðt; μ; wÞ (we set
Δ0 ¼ t for simplicity), it is possible to construct a path that
connects the noninteracting topological phase (jtj > jμj and
w ¼ 0) to the noninteracting trivial phase (jtj < jμj and
w ¼ 0) via the interacting phase (w ≠ 0) without gap closing.
To explicitly construct this path, we start from ðt; μ; 0Þ with
jtj > jμj and switch off μ, ðt; μ; 0Þ → ðt; 0; 0Þ. Along this
deformation, we stay in the topological phase. At the point
ðt; 0; 0Þ, the system is a collection of decoupled dimers. We
then switch on w and let t → 0, ðt; 0; 0Þ → ð0; 0; wÞ. The
interaction term Ŵ is designed so that the system remains
gapped throughout this path. Finally, we switch on μ and let
w → 0, ð0; 0; wÞ → ð0; μ; 0Þ, which brings us to the non-
interacting trivial phase without closing the gap. This
completes the construction of a path in the phase diagram
connecting the noninteracting topological phase to the
trivial phase and proves the triviality of the ν ¼ 0

(mod 8) phase. Thus, the noninteracting classification
reduces from Z to Z8. Similar interaction effects on other
1D fermionic topological phases have been studied by
Rosch (2012), Tang and Wen (2012), Ning, Jiang, and
Liu (2015), and Lapa, Teo, and Hughes (2016). Proposals on
how to realize 1D interaction enable topological phases in
experiments were discussed by Chiu, Pikulin, and Franz
(2015a, 2015b).

1. Projective representation analysis

More insight into the underlying “mechanism” of the
collapse of the classification can be gained by considering
the symmetry properties of the boundary Majorana fermion
modes of the Kitaev chain. When ν ¼ Nf, there are Nf

zero-energy Majorana bound states at the end of the Kitaev
chain, which are described by Nf dangling Majorana
fermion operators η̂1; η̂2;…; η̂Nf

. As emphasized in
Sec. II.D.1, these bound states are unpaired (i.e., isolated)
Majorana zero-energy modes, which are different from the
ones that appear in the bulk BdG Hamiltonian, i.e., λ̂ and λ̂0,
which always come in pairs. While the symmetry operators
T̂ and Ĝf act on the full Hilbert space of fermion operators

ĉ†j , ĉj in a way such that the standard group multiplication

laws T̂ Ĝf ¼ ĜfT̂ and T̂ 2 ¼ Ĝ2
f ¼ 1 are satisfied, these

symmetries act on the Hilbert space of the dangling
Majorana fermions η̂i in a way such that the group
composition and multiplication law is respected only up
to a phase. That is, the symmetries in the Hilbert space of the
dangling Majorana fermions are realized only projectively
or anomalously. The group structure of the symmetry
generators T̂ and Ĝf acting on the Hilbert space of the
dangling Majorana fermions was calculated by Fidkowski
and Kitaev (2011) and Turner, Pollmann, and Berg (2011).
The result of this calculation is summarized as follows:

νðmod 8Þ 0 1 2 3 4 5 6 7

a þ1 þ1 −1 −1 þ1 þ1 −1 −1
T̂2 þ1 þ1 þ1 −1 −1 −1 −1 þ1

;

ð6:4Þ

where a specifies the (anti)commutation relation between T̂
and Ĝf as T̂ĜfT̂

−1 ¼ aĜf. From the eightfold periodicity
of Eq. (6.4), we see that the noninteracting classification
collapses from Z to Z8. Note that this result can also be
derived in terms of Green’s functions (Gurarie, 2011;
BenTov, 2015) and in terms of nonlinear sigma models
(You and Xu, 2014; Morimoto et al., 2015b).

a. Matrix product states

The analysis of the projective symmetry group realized
at the boundary of the Kitaev chain can be generalized
to arbitrary SPT phases in ð1þ 1ÞD. Besides the inter-
acting Kitaev chain, another well-known example of a 1D
interacting SPT phase is the Haldane antiferromagnetic
spin-1 chain (Haldane, 1983a, 1983b), which has an SOð3Þ
spin-rotation symmetry. The Haldane spin-1 chain exhibits
dangling spin-1=2 moments at its ends, which transform
according to a half-integer projective representation of the
SOð3Þ group.
A convenient and unifying way to describe generic SPT

phases in ð1þ 1ÞD is provided by the matrix product state
(MPS) representation of ground states of ð1þ 1ÞD systems
(Pollmann et al., 2010, 2012; Chen, Gu, and Wen, 2011a;
Schuch, Perez-Garcia, and Cirac, 2011). In the MPS repre-
sentation, a quantum state jΨi defined on a 1D lattice is
written as

jΨi ¼
X

s1;s2;…

As1
ij A

s2
jk � � � js1s2 � � �i

¼
X

s1;s2;…

Trχ ½As1As2 � � ��js1s2 � � �i; ð6:5Þ

where js1s2 � � �i is a basis ket of the many-body Hilbert space,
which is composed of the basis kets jsji at each site j of the
1D lattice, e.g., jsji ¼ j↑i; j↓i for a spin 1=2 chain. The As

ij’s
are χ × χ matrices on site s, with i; j; k;… ¼ 1;…; χ, and χ is
the bond dimension of the MPS. For simplicity, periodic
boundary conditions are assumed. By suitably choosing the
matrix elements of the As

ij’s (using a variational approach, say)
and by making the bond dimension χ large enough, an MPS is
in many cases a good approximation to the true ground state.
In fact, it has been shown that the ground state of any gapped
(local) 1D Hamiltonian can efficiently and faithfully be
represented by an MPS with sufficiently large, but finite,
bond dimension χ (Hastings, 2007; Schuch et al., 2008;
Gottesman and Hastings, 2010).
In order to describe SPT phases using MPSs, one needs to

examine how the symmetries act on the matrices As
ij that

constitute the MPS. To that end, it is crucial to distinguish
between the “physical” indices si and the “auxiliary” indices
i, j. Physical indices represent physical degrees of freedom.
The way they transform under symmetries is fully determined
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by the microscopic physical laws. The symmetry transforma-
tions of the auxiliary indices (or the auxiliary Hilbert space),
on the other hand, are not entirely fixed by the symmetries of
the physical system. Instead, MPSs representing different
phases with the same physical symmetries may transform
differently under the symmetries. More precisely, the sym-
metries may be realized projectively within the auxiliary
Hilbert space of the MPS.
To make this more explicit, let us consider a system with the

symmetry group G ¼ fg; h;…g. For simplicity, we consider
only unitary and on-site symmetry operations here. For the
physical degrees of freedom there exists a unitary representa-
tion of G with unitary operators ÛðgÞ that act on the local
physical degrees of freedom as jsi → ÛðgÞs0s js0i. Now, since
the quantum state jΨi is left invariant by the symmetries G up
to an overall phase θg, we find that the symmetry trans-
formation ÛðgÞ induces a corresponding transformation on the
auxiliary space as

ÛðgÞs0s As ¼ V̂−1ðgÞAs0 V̂ðgÞeiθg ; ð6:6Þ

where V̂ðgÞ operates on the auxiliary space indices i and j.
While the transformations on the physical index s form a
linear representation of the group G, i.e., ÛðgÞÛðhÞ ¼ ÛðghÞ,
the operations V̂ðgÞ form, in general, a projective representa-
tion of G, i.e.,

V̂ðgÞV̂ðhÞ ¼ eiαðg;hÞV̂ðghÞ: ð6:7Þ

The phase αðg; hÞ distinguishes between different projective
representations of G which, as it turns out, correspond to
different SPT phases. In particular, when eiαðg;hÞ ≠ 1 the
corresponding SPT phase is topologically nontrivial.

C. Examples in ð2þ 1ÞD: TSCs with Z2 and reflection symmetry

In this section, we present two examples of 2D TSCs, for
which the noninteracting classification collapses due to
interactions. Furthermore, we show that the collapse of these
classifications can be inferred from (i) the absence of a global
gravitational anomaly and (ii) the braiding statistics of the
quasiparticles of the SPT phase with gauged global symmetry.
a. Example: Z2 symmetric TSC.—The first example is a 2D

TSC with Nf left- and right-moving Majorana edge modes,
protected by aZ2 symmetry in addition to the fermion number
parity conservation (Ryu and Zhang, 2012; Qi, 2013). To
introduce this TSC we first consider a spin-1=2 system with
two conserved Uð1Þ charges, given by the total fermion
number N↑ þ N↓ and the total spin Sz quantum number
N↑ − N↓, respectively. By introducing an SC pair potential,
we break the electromagnetic Uð1Þ symmetry down to Z2,
such that only the fermion number parity ð−1ÞN↑þN↓ is
conserved. To generate a second Z2 symmetry, we relax
the conservation of total Sz and demand that only the parity
ð−1ÞN↑ [and consequently ð−1ÞN↓ ] is conserved. Observe that
in the presence of these two Z2 symmetries it is possible to
block diagonalize the single-particle BdG Hamiltonian into a
spin-up and a spin-down block, since the Z2 × Z2 symmetry

does not allow any spin flip terms, i.e., any bilinears connecting
the spin-up and spin-down sectors. These two sub-blocks
belong to symmetry class A (cf. Sec. II.D.3) and their
topological properties are characterized by Chern numbers,
i.e., by Ch↑ and Ch↓ for the spin-up and spin-down blocks,
respectively. When Ch↑ þ Ch↓ ≠ 0, TRS is necessarily bro-
ken, which corresponds to a class D TSC with Chtot ≔ Ch↑ þ
Ch↓ chiral Majorana edge modes. The class D TSC is robust
against interactions as well as disorder for any Chtot.
Here, however, we are interested in the case where the total

Chern number is vanishing, Chtot ¼ 0, but the spin Chern
number is nonzero, Chs ≔ ðCh↑ − Ch↓Þ=2 ≠ 0. A lattice
model that realizes this situation can be constructed by
combining two copies of chiral p-wave SCs with opposite
chiralities. This TSC supports Chs ¼ Nf nonchiral (i.e.,
helical) edge modes, which are described by

Ĥ ¼
Z

dx
XNf

a¼1
½ψ̂a

Liv∂xψ̂
a
L − ψ̂a

Riv∂xψ̂
a
R�; ð6:8Þ

where x is the spatial coordinate along the edge of the TSC,
ψ̂a
L (ψ̂a

R) denote the left- (right-) moving ð1þ 1ÞD Majorana
fermions with flavor index a, and v is the Fermi velocity. The
generators of the Z2 × Z2 symmetry of the bulk TSC are
realized within the edge theory (6.8) as ĜL ¼ ð−ÞN̂L and
ĜR ¼ ð−ÞN̂R , where N̂Lð¼ N̂↑Þ [N̂Rð¼ N̂↓Þ] is the total left-
moving (right-moving) fermion number at the edge. The
Z2 × Z2 symmetry prohibits all mass terms ψ̂a

Lψ̂
b
R at the edge,

since they are odd under the left- or right-Z2 parity (ĜL or ĜR).
Hence, this noninteracting TCS is classified by a Z invariant,
which is simply the number of flavors of the (nonchiral)
modes Nf.
Now, to study the effects of interactions we consider quartic

interaction terms of the form ψ̂a
Lψ̂

b
Lψ̂

c
Rψ̂

d
R that preserve the

Z2 × Z2 symmetries. As it turns out, whenNf ≡ 0mod 8, one
can construct an interaction of this form that destabilizes the
edge, i.e., that gaps out the edge without breaking the
symmetries (neither explicitly nor spontaneously). This inter-
action term takes the form of the SOð7Þ Gross-Neveu
interaction and is given essentially by the continuum-limit
version of the interaction Ŵ in Eq. (6.3). We note that this
interaction can also be constructed in terms of twist operators,
which twist the boundary conditions of the Majorana fermion
fields when inserted in the path integral (see Sec. VI.C.3). To
conclude, in the presence of interactions the classification of
the Z × Z symmetric TSC collapses from Z to Z8.
b. Example: TCS in DIIIþ R−−.—The second example is a

2D topological crystalline superconductor belonging to class
DIIIþ R−− (Yao and Ryu, 2013); see Sec. IV.B. [Note that
this example and the Z2 symmetric TSCs discussed previ-
ously are related by the CPT theorem (i.e., by the combined
charge, parity, and time-reversal symmetry) (Hsieh,
Morimoto, and Ryu, 2014).] According to the noninteracting
classification of Table VIII, TCSs in this symmetry class are
characterized by an integer topological invariant, i.e., the
mirror winding number. Hence, in the absence of interactions
this TCS supports an integer number of stable gapless non-
chiral edge states, provided that the edge is symmetric under
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reflection. These edge states are described by Hamiltonian
(6.8). Time reversal T̂ and reflection R̂ act on the Majorana
fields in the edge theory (6.8) as

T̂ ψ̂a
LðxÞT̂ −1 ¼ ψ̂a

RðxÞ; T̂ ψ̂a
RðxÞT̂ −1 ¼ −ψ̂a

LðxÞ;
R̂ψ̂a

LðxÞR̂−1 ¼ ψ̂a
Rð−xÞ; R̂ψ̂a

RðxÞR̂−1 ¼ −ψ̂a
Lð−xÞ;

T̂ 2 ¼ R̂2 ¼ Ĝf: ð6:9Þ

One can check that in the presence of both TRS and reflection
symmetry there exists no gap opening quadratic mass term
within the edge theory (6.8) for any Nf. On the other hand,
quartic interaction terms can fully gap out the edge states of
phases with Nf ¼ 0 mod 8. These quartic interactions are of
the same form as those of the Z2 symmetric TSC. Thus, in the
presence of interactions the classification of the 2D TCS in
class DIIIþ R−− reduces from Z to Z8.
The approach that we took in the previous two examples can

be summarized as follows: For a topological bulk state with a
given set of symmetries, we first obtain representative edge
theories (and many copies thereof when necessary), describing
the gapless edge modes. As a second step, we derive interaction
terms within the edge theory which gap out the edge modes
and which do not break the symmetries, neither explicitly
nor spontaneously. Such a microscopic stability analysis of
edge theories is quite powerful in ð2þ1ÞD and has been
applied to many SPT as well as SET phases, such as bosonic
SPT phases and fractional TIs (Levin and Stern, 2009, 2012;
Neupert et al., 2011; Lu and Vishwanath, 2012, 2013; Hung
and Wen, 2014).
As in the ð1þ 1ÞD example of Sec. VI.B, we now present

alternative derivations of the collapse of the free-fermion
classification, which will give us a deeper insight into why
certain edge theories are stable while others are not. To that
end, we introduce three important concepts: twisting and
gauging (i.e., orbifolding) symmetries, quantum anomalies,
and braiding statistics.

1. Twisting and gauging symmetries

SPT phases, by definition, are topologically trivial in the
absence of symmetries. In order to determine whether a given
SPT phase is topological or not, it is thus necessary to probe
the phase in a way that takes into account the symmetries. This
can be done by many different means as described next.
First of all, quantum systems with symmetries can be

probed by coupling them to an external (source) gauge field
corresponding to the symmetry. This is most commonly done
for unitary on-site (i.e., nonspatial) symmetries [e.g., con-
tinuous Uð1Þ symmetries] in the spirit of linear-response
theory. While for discrete symmetries (e.g., nonspatial unitary
Z2 symmetries) linear-response functions cannot be defined,
the coupling to external gauge fields is in this case still a useful
probe for SPT phases. The partition functions of SPT phases
in the presence of external gauge fields, typically given in
terms of topological terms of gauge theories, can be used to
distinguish and even classify different SPT phases (Cheng and
Gu, 2014; Hung and Wen, 2014; Wen, 2014; Gu, Wang, and
Wen, 2015; Wang, Gu, and Wen, 2015).

A second possibility to probe the topology of an SPT phase
is to twist the boundary conditions in space and time by
elements of the symmetry group G. (Note that twisted
boundary conditions can be turned into untwisted ones, by
introducing background gauge fields and by applying suitable
gauge transformations.) This approach, which can be applied
in the presence of both interactions and disorder, is commonly
used to define and compute many-body Chern numbers.
Specifically, this is done by twisting the spatial boundary
conditions by a Uð1Þ symmetry (Laughlin, 1981; Niu,
Thouless, and Wu, 1985; Wang and Zhang, 2014).
Taking a step further, one can promote symmetries in SPT

phases to gauge symmetries, by making the external gauge
field dynamical. This “gauging” of symmetries was proposed
and shown to be a useful method to diagnose and distinguish
different SPT phases (Levin and Gu, 2012). A similar
procedure is the so-called orbifolding (as known from
conformal field theories), where one introduces twisted
boundary conditions in space and time and then considers
the sum (average) over all possible twisted boundary con-
ditions (Ryu and Zhang, 2012; Sule, Chen, and Ryu, 2013).
Gauging and orbifolding have a similar effect in that both
procedures remove states in the original theory that are not
singlets under the symmetry group G, i.e., the theory is
projected onto the gauge singlet sector. Another effect of
gauging and orbifolding is to introduce (i.e., “deconfine”)
additional topological excitations (quasiparticles).
Orbifolding and gauging can be applied not only to SPT

phases with unitary nonspatial symmetries, but also to phases
with unitary spatial symmetries, such as reflection. For
example, twisting the boundary conditions by reflection leads
to theories that are defined on nonorientied manifolds,
e.g., Klein bottles, which have recently been discussed for
SPT phases in ð2þ 1ÞD and ð3þ 1ÞD (Hsieh et al., 2014;
Cho et al., 2015; Hsieh, Cho, and Ryu, 2016). Interestingly,
this twisting procedure provides a link between SPT phases
and so-called “orientifold field theories,” i.e., field theories
discussed in the context of unoriented superstring theory.

2. Quantum anomalies

Another diagnostic for topological phases with symmetries
is quantum anomalies. A quantum anomaly is the breaking of
a symmetry of the classical action by quantum effects. That is,
an anomalous symmetry is a symmetry of the action, but not
of the quantum mechanical partition function. The presence of
quantum anomalies can be used for diagnosing, defining, and
perhaps even classifying SPT phases. Quantum anomalies
give us also a deeper insight into the properties of the edge
theory of a topological phase.
For example, the edge theory of the QHE suffers from a

Uð1Þ gauge anomaly, i.e., the Uð1Þ charge is not conserved
by the edge theory due to quantum mechanical effects. The
presence of this anomaly is directly related to the nontrivial
topology of the bulk: Charge conservation is broken at the
boundary, since current can leak into the bulk due to nonzero
Hall conductance and hence due to the QHE. Besides theUð1Þ
charge, also energy is not conserved at the edge of the QH
system. This is caused by the gravitational anomaly, i.e., by
the fact that the chiral edge theory of the QH state is not
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invariant under infinitesimal coordinate transformations
(Alvarez-Gaume and Witten, 1984). The breaking of energy
conservation at the edge signals that the bulk is topologically
nontrivial, which allows leaking of energy momentum into
the bulk due to the nonzero thermal Hall conductance κxy
(Volovik, 1990; Read and Green, 2000; Cappelli, Huerta, and
Zemba, 2002).
The Uð1Þ and gravitational anomalies discussed so far are

examples of perturbative anomalies. That is, the edge theory is
not invariant under infinitesimal gauge or general coordinate
transformations that can be reached by successive infinitesi-
mal transformations from the identity. On the other hand, edge
theories may also possess global anomalies, in which case the
quantum theory is not invariant under large gauge or large
coordinate transformations that are preserved in the classical
theory. Here the term “large” (or “global”) refers to a trans-
formation that cannot be continuously connected to the
identity. Global gauge and global gravitational anomalies
lead to anomalous phases picked up by the partition function
of quantum field theories under large gauge and coordinate
transformations, respectively (Witten, 1982, 1985). Note that
Laughlin’s gauge argument for the robustness of the QHE
against disorder and interactions (Laughlin, 1981) is based on
the globalUð1Þ gauge anomaly. The presence of such a global
anomaly can be used as a powerful diagnostic for TR-breaking
interacting topological phases with conserved particle number.
It has been shown in numerous works that quantum

anomalies generically appear in the boundary theories of
SPT phases (Ryu, Moore, and Ludwig, 2012; Cappelli and
Randellini, 2013; Ringel and Stern, 2013; Wang and Wen,
2013; Wen, 2013; Koch-Janusz and Ringel, 2014; Santos and
Wang, 2014; Cappelli and Randellini, 2015; Wang, Gu,
and Wen, 2015; Wang, Santos, and Wen, 2015). Because
of the presence of various types of quantum anomalies, the
d-dimensional boundary theory of these SPT phases in
dþ 1 dimensions cannot be realize in isolation, i.e., there
exists an “obstruction” to discretize the boundary theory on a
d-dimensional lattice.

a. Global gravitational anomaly and orbifolds
of a Z2 symmetric TSC

Let us now discuss how the collapse of the noninteracting
classification of the Z2 TSCs of example a in Sec. VI.C can be
inferred from the presence or absence of global gravitational
anomalies. To this end, we put the edge theory (6.8) on a flat
spacetime torus T2 ¼ S1 × S1 with periodic spatial and
imaginary time coordinates. The geometry of the flat torus
T2 is specified by two real parameters (so-called moduli),
which can be arranged into a single complex parameter
τ ¼ ω2=ω1, namely, the ratio of the two periods ωi of the
torus (Imτ > 0). Two different modular parameters τ and τ0

describe the same toroidal geometry if they are related by an
integer linear transformation with unit determinant, τ → τ0 ¼
ðaτ þ bÞ=ðcτ þ dÞ with a; b; c; d ∈ Z and ad − bc ¼ 1.
These are large coordinate transformations on the torus T2

and are referred to as modular transformations, which form a
group. In general, any conformal field theory on T2

that describes the continuum limit of an isolated ð1þ 1ÞD
lattice system is required to be invariant under modular

transformations, and hence anomaly free (Cardy, 1986). For
an edge theory, however, modular invariance is not necessarily
required. That is, the inability to construct a modular-invariant
partition function signals that the theory cannot be realized as
an isolated ð1þ 1ÞD system and must be realized as an edge
theory of a ð2þ 1ÞD topological bulk state.
For the edge theory (6.8) we find that the partition

function is modular invariant in the absence of the Z2 × Z2

symmetry. In the presence of this symmetry, however,
modular invariance cannot always be achieved. To see this,
we need to examine the orbifolded partition function of
Eq. (6.8), i.e., the partition function summed over all possible
twisted boundary conditions

Zðτ; τ̄Þ ¼ jGj−1
X
g;h∈G

ϵðg; hÞZg
hðτ; τ̄Þ; ð6:10Þ

where the group elements g; h ∈ G ¼ Z2 × Z2 specify the
boundary conditions for the partition function Zg

h in time and
space directions, respectively. That is, g (h) specify if the left-
moving or right-moving fermions obey periodic or antiperi-
odic temporal (spatial) boundary conditions. The weights
ϵðg; hÞ in the superposition (6.10) are constant phases with
jϵðg; hÞj ¼ 1. Now the question is whether the orbifolded
partition function Zðτ; τ̄Þ can be made modular invariant
Zðτ; τ̄Þ ¼ Zðτ0; τ̄0Þ (i.e., free from global gravitational anoma-
lies) by a suitable choice of ϵðg; hÞ. One can show that this is
possible only when the number of Majorana fermion flavors is
Nf ¼ 0 mod 8 (Sule, Chen, and Ryu, 2013), which indicates
that the noninteracting classification collapses from Z → Z8,
thereby confirming the microscopic stability analysis of the
edge theory; see example a in Sec. VI.C.
The discussed approach of studying modular invariance of

orbifolded partition functions of edge theories to determine
the topological character of the bulk has been successfully
applied to other models, for example, 2D SPT phases (Sule,
Chen, and Ryu, 2013) and 2D electron systems without any
symmetries (Levin, 2013). For the examples considered by
Sule, Chen, and Ryu (2013), it was shown that the orbifolded
partition functions can be made modular invariant, whenever
the symmetry group acts on left- and right-moving sectors of
the edge theory (i.e., the holomorphic and antiholomorphic
sectors of the edge CFT) in a symmetric fashion. On the other
hand, modular invariance can no longer be achieved, if the
symmetry group acts in an asymmetric manner on the left- and
right-moving sectors. In that case the corresponding orbi-
folded partition function is referred to as an “asymmetric
orbifold.” It turns out that many nontrivial SPT phases are
directly related to asymmetric orbifolds.

3. Braiding-statistics approach

By promoting the symmetry group G of an SPT phase to a
gauge symmetry one can associate a topologically ordered
phase to each SPT phase. As shown by Levin and Gu (2012)
the topological properties of the original SPT phase can then
be inferred by constructing the excitations of the gauged
theory and by examining their quasiparticle braiding statistics.
This provides a way to distinguish between different SPT
phases: If two gauged theories have different quasiparticle
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statistics, then the corresponding “ungauged” SPT phases
must be distinct and cannot be continuously connected with-
out breaking the symmetries. Moreover, using this so-called
“braiding-statistics approach” one can infer the stability of the
edge theory. That is, for the cases where the gauged theories
are Abelian topological phases [i.e., phases that do not allow
non-Abelian statistics but only Abelian (fractional) statistics],
the stability of the edge theories can be diagnosed from the
braiding statistics of the gauge theories. This braiding-
statistics approach has recently been used to show that the
noninteracting classification of the Z2 symmetric TSCs
(example a in Sec. VI.C) collapses from Z → Z8 (Gu and
Levin, 2014), thereby confirming the microscopic stability
analysis [see also Cheng et al. (2015)].
As discussed, gauging and orbifolding are similar in that

both procedures project the theory onto the gauge singlet
(G-invariant) sector. [Although gauging means in general that
the singlet condition is imposed locally (e.g., at each site of a
lattice), while orbifolding enforces the projection only glob-
ally.] To make this connection between orbifolding and
gauging more explicit, let us consider edge theories with
symmetry groupG. As in any quantum field theory we can use
the global symmetries g ∈ G to twist the boundary conditions.
This leads to a “g-twisted” sector in the edge theory, which has
twisted boundary conditions and whose ground state jgi
satisfies ½Φ̂ðxþ lÞ − Ug · Φ̂ðxÞ�jgi ¼ 0. Here Φ̂ðxÞ denotes
a field operator that is composed of left- and right-moving
Majorana fermions ψ̂a

L and ψ̂a
R. UgΦ̂ is the field operator Φ̂

transformed by g and l is the circumference of the edge. All
the states in this g-twisted sector can be constructed from the
ground state jgi. Now, by using the state-operator correspon-
dence, we can also construct a corresponding operator, the
so-called twist operator σ̂g, which implements this twisting.

That is, by dragging the field operator Φ̂ around the twist
operator σ̂g in spacetime, Φ̂ gets twisted by g, i.e., Φ̂ → Ug · Φ̂.
By use of the bulk-boundary correspondence, we find that
corresponding to this there exists a bulk excitation (i.e., an
“anyon”). The bulk statistical properties of the gauged theory
can then be read off from the operator product expansions
and fusion rules obeyed by the twist operators σ̂g. Hence, by
the braiding-statistics approach it follows that different unga-
uged SPT phases can be distinguished by studying the
statistical (i.e., braiding) properties of the corresponding twist
operators σ̂g, i.e., two ungauged SPT phases must be distinct if
their corresponding twist operators have different statistical
properties.
It is known that for Abelian edge theories (e.g., multi-

component chiral and nonchiral bosons compactified on a
lattice), the braiding-statistics approach and the principle of
the modular invariance of the orbifolded (gauged) edge theory
give the same stability criterion for the edge theories. This
follows, for example, from a self-dual condition together with
an even-lattice condition that guarantees that modular invari-
ance is achieved (Sule, Chen, and Ryu, 2013). Alternatively,
this result can be derived from arguments based on braiding
statistics (Levin, 2013).
In closing, we note that the braiding-statistics approach has

recently been extended to ð3þ 1ÞD SPT phases, in which case

one needs to examine the statistics among loop excitations
(Jian and Qi, 2014; Jiang, Mesaros, and Ran, 2014; Wang and
Levin, 2014; Wang and Wen, 2015). Gauging symmetries of
ð3þ 1ÞD SPT phases was studied by Cho, Teo, and Ryu
(2014), Chen et al. (2015), Cho et al. (2015), and Hsieh, Cho,
and Ryu (2016).

D. Example in ð3þ 1ÞD: Class DIII TSCs

To illustrate the collapse of a noninteracting classification in
ð3þ 1ÞD, let us now consider TR symmetric SCs in class DIII.
Example: Class DIII TSCs.—At the noninteracting level,

3D TR symmetric SCs with T̂ 2 ¼ Ĝf (i.e., 3D SCs of class
DIII) are classified by the 3D winding number ν (3.26), which
counts the number of gapless surface Majorana cones. One
example of a class DIII TSC is the B phase of 3He, described
by Eq. (3.45). This topological superfluid has ν ¼ 1 and
supports at its surface a single Majorana cone described by the
low-energy Hamiltonian

Ĥ ¼
Z

dxdyψ̂Tð−i∂xσ3 − i∂yσ1Þψ̂ ; ð6:11Þ

where ψ̂ denotes a two-component real fermionic field
satisfying ψ̂† ¼ ψ̂ . The surface Hamiltonian is invariant under
TRS, which acts on ψ̂ as T̂ ψ̂ T̂ −1 ¼ iσ2ψ̂ . For TSCs with
ν ¼ Nf, the surface modes are described by Nf copies of the
Hamiltonian (6.11).
One can verify that in the absence of interactions this surface

theory is robust against perturbations for any value of ν ¼ Nf.
In the presence of interactions, however, the surface theory
(6.11) is unstable when ν ¼ 0 mod 16, leading to a collapse of
the noninteracting classification from Z to Z16 (Fidkowski,
Chen, and Vishwanath, 2013; Metlitski et al., 2014; Wang and
Senthil, 2014; Senthil, 2015). This result has been obtained by a
number of different approaches. Among them are the so-called
“vortex condensation approach” and a method based on
symmetry-preserving surface topological order, which we
review next (You and Xu, 2014; Kapustin et al., 2015;
Kitaev, 2015). Note that in recent works a similar collapse of
noninteracting classifications was derived for ð3þ 1ÞD crys-
talline TIs and TSCs (Isobe and Fu, 2015; Morimoto et al.,
2015b; Hsieh, Cho, and Ryu, 2016).

1. Vortex condensation approach and symmetry-preserving
surface topological order

The vortex condensation approach was first developed in
the context of bosonic TIs (Vishwanath and Senthil, 2013), but
can also be applied to fermionic SPT phases (Metlitski et al.,
2014; Wang and Senthil, 2014; You, BenTov, and Xu, 2014).
A crucial observation used in this approach is that the gapped
surface theory of a trivial insulator is dual to a quantum
disordered superfluid, which is similar to the duality between
the superfluid and the Mott insulator phases of the ð2þ 1ÞD
Bose-Hubbard model. This approach hence applies most
directly to SPT phases, whose symmetry group contains a
Uð1Þ symmetry, for example, an Sz spin-rotation symmetry or
an electromagnetic charge conservation. One then imagines
driving the surface of the SPT phase into a “superfluid” phase,
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which spontaneously breaks theUð1Þ symmetry and leads to a
gapped surface. The nontrivial topology of the symmetry-
broken surface state can then be inferred from the properties of
the topological defects of the order parameter, i.e., from the
vortices of the superfluid.
One possibility is that quantum disordering the superfluid

by proliferating (condensing) the vortices restores the Uð1Þ
symmetry, leading to a topologically trivial gapped surface that
respects all symmetries. This then indicates that the bulk phase
is topologically trivial. However, this is possible only if the
vortices do not have any abnormal properties. For example, if
the vortices transform abnormally under the symmetries or if
they have exotic exchange statistics, it may not be possible to
condense the vortices, such that the surface becomes a gapped
trivial state respecting all the symmetries.
Another possibility is that, while vortices may be anoma-

lous in the above sense, vortices with vorticity > 1 (i.e.,
multivortices) may behave in an ordinary way. If this is the
case it might be possible to condense these multivortices to
form a gapped surface state that respects all symmetries. This
surface state, however, inevitably exhibits an intrinsic topo-
logical order (Balents, Fisher, and Nayak, 1999; Senthil and
Fisher, 2000), thereby signaling that the bulk phase is non-
trivial. This surface topological order is anomalous, since it
cannot be realized in an isolated ð2þ 1ÞD system while
preserving the symmetries. The existence of symmetry-pre-
serving surface topological order may in fact be used as a
nonperturbative definition of 3D SPT phases. Surface states
with symmetry-preserving topological order have recently
been constructed for fermionic TIs (Bonderson, Nayak, and
Qi, 2013; Wang, Potter, and Senthil, 2013, 2014; Chen,
Fidkowski, and Vishwanath, 2014; Metlitski, Kane, and
Fisher, 2015), as well as for bosonic TIs (Metlitski, Kane,
and Fisher, 2013; Vishwanath and Senthil, 2013; Wang and
Senthil, 2013; Burnell et al., 2014).

a. Application to class DIII TSC

Let us now discuss how the vortex condensation approach
works for the 3D class DIII TSC with an even number ν of
Majorana surface cones (Metlitski et al., 2014; Wang and
Senthil, 2014). Since ν is even, we can construct an artificial
“flavor” Uð1Þ symmetry by combing Majorana cones pair-
wise. We then drive the surface state into a superfluid phase
where this artificial Uð1Þ symmetry is spontaneously broken
and the surface Majorana cones are gapped. Next, we imagine
quantum disordering the superfluid by condensing the vorti-
ces. However, it turns out that for general ν the vortices are
nontrivial: An elementary vortex (with vorticity 1) binds ν=2
chiral Majorana modes. Hence the vortex core resembles the
edge of a 1D TSC in class BDI. As discussed in Sec. VI.B,
interactions can gap out these Majorana modes without
breaking the symmetries when they come in multiples of 8.
Thus, for ν ¼ 16 the vortices on the surface of the class DIII
TSC are trivial. Hence, by condensing these vortices the
Uð1Þ symmetry can be restored, which gives rise to a
topologically trivial gapped surface state which respects all
symmetries of class DIII. However, for smaller even ν, the
elementary vortices are nontrivial and cannot condense with-
out breaking the symmetries. This confirms the collapse of the

noninteracting classification from Z → Z16, discussed pre-
viously. Fidkowski, Chen, and Vishwanath (2013) constructed
symmetry-preserving gapped surface states with intrinsic
topological order explicitly for this 3D TSC.

E. Proposed classification scheme of SPT phases

So far we introduced various approaches to diagnose the
properties of a given interacting SPT phase. More generically,
one want to obtain a comprehensive and exhaustive classi-
fication of all possible SPT phases. Here we present two
approaches to this problem: the group cohomology method
and the cobordism approach. For other related and comple-
mentary approaches, see also Freed (2014) and Wen (2015).

1. Group cohomology approach

The idea of using MPSs to diagnose and distinguish SPT
phases discussed in Sec. VI.B.1.a can be used for ground
states of generic gapped Hamiltonians in ð1þ 1ÞD, and in
fact, provides a complete classification of SPT phases in
ð1þ 1ÞD (Pollmann et al., 2010, 2012; Chen, Gu, and Wen,
2011a, 2011b; Schuch, Perez-Garcia, and Cirac, 2011). Recall
from Sec. VI.B.1.a that the phases αðg; hÞ of Eq. (6.7)
distinguish between different projective representations of
the symmetry group G and hence between different SPT
phases. [Note that the set of phase functions αðg; hÞ are called
2-cocycles, since they must satisfy the so-called 2-cocycle
condition αðh; kÞ þ αðg; hkÞ ¼ αðgh; kÞ þ αðh; kÞ, which fol-
lows from associativity of the symmetry group.] Since V̂ðgÞ in
Eq. (6.7) is defined only up to a phase, one finds that two
different projective representations with the phase functions
α1ðg; hÞ and α2ðg; hÞ are equivalent, if they are related by
α2ðg; hÞ ¼ α1ðg; hÞ þ βðghÞ − βðgÞ − βðhÞ. (Here the func-
tion β is called a coboundary.) This relation defines equivalent
classes, which form a group, the so-called second cohomology
group of G over Uð1Þ denoted by H2(G;Uð1Þ). Different
gapped ð1þ 1ÞD phases with symmetry G are then classified
by H2(G;Uð1Þ). In higher dimensions d > 1, a large class of
bosonic SPT phases can be systematically constructed using
the tensor network method and path integrals on discrete
spacetime using elements in Hdþ1(G;Uð1Þ) (Dijkgraaf and
Witten, 1990; Chen et al., 2012, 2013). For fermionic systems,
group supercohomology theory has been used to classify SPT
phases (Gu and Wen, 2014).

2. Cobordism approach

While the group cohomology approach is one of the
most systematic and general methods to classify SPT phases,
it was shown that it does not describe all possible phases
(Vishwanath and Senthil, 2013; Wang and Senthil, 2013;
Kapustin, 2014b). Among these is a bosonic SPT phase in
ð3þ 1ÞD (Vishwanath and Senthil, 2013). An alternative
approach to classify SPT phases, based on the cobordism,
was proposed (Kapustin, 2014a, 2014b; Kapustin and
Thorngren, 2014a, 2014b; Kapustin et al., 2015).
Assuming that the low-energy effective action of the SPT
phase is cobordism invariant, SPT phases with finite sym-
metry group G have been classified by use of the cobordism
groups of the classifying spaces corresponding to G. As an
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example, the result of this classification for fermionic SPT
phases with various symmetries is shown in Table X. Note that
the classification shown in this table agrees with the results
presented in the previous sections.

VII. OUTLOOK AND FUTURE DIRECTIONS

The discovery of spin-orbit-induced topological insulators
has taught us that topological effects, which were long thought
to occur only under extreme conditions, can profoundly affect
the properties of seemingly normal materials, such as band
insulators, even under ordinary conditions. Over the last few
years, research on topological materials has made impressive
progress starting from the experimental realizations of the
quantum spin Hall and quantum anomalous Hall effects to the
construction and classification of interacting SPT phases.
While the basic properties of noninteracting topological
systems are relatively well understood theoretically, there is
much work to be done to find, design, and improve material
systems that realize the theoretical models and allow one to
experimentally verify the theoretical predictions.
For further progress on the theoretical front, a deeper

understanding of fractional topological phases and correlated
SPT phases in d > 1 is important. Other outstanding problems
include realistic material predictions for interacting SPTs,
fractional TIs, and TSCs, and the development of effective
field theory descriptions. Furthermore, the full classification of
noninteracting Hamiltonians in terms of all (magnetic) space-
group symmetries, in particular, nonsymmorphic symmetries,
remains as an important open issue for future research.
On the experimental side, perhaps the most important task is

the engineering of topological electronic states. An attractive
possibility is to realize topological phases in heterostructures,
involving, for example, iridates or other materials with strong
SOC (Xiao et al., 2011), since this allows for a fine control of
the interface properties and therefore of the topological state.
There is already a large number of experimental studies that
investigate interfaces between TIs and s-wave (M.-X. Wang
et al., 2012) or dx2−y2-wave superconductors (Zareapour et al.,
2012; E. Wang et al., 2013). We expect that this remains a
major research direction for the foreseeable future. Another
important task is the perfection of existing materials, in
particular, the growth of topological materials with sufficiently
high purity, such that the bulk is truly insulating.
There are numerous topics and developments which we

could not mention in this review due to space limitations.
These include topological field theories describing the electro-
magnetic, thermal, or gravitational responses of topological

phases (Qi, Hughes, and Zhang, 2008; Ryu, Moore, and
Ludwig, 2012; Chan et al., 2013; Furusaki et al., 2013),
Floquet topological insulators (Kitagawa et al., 2010; Lindner,
Refael, and Galitski, 2011; Ezawa, 2013; Y. H. Wang et al.,
2013), topological phases of ultracold atoms (Goldman et al.,
2010, 2014; Jiang et al., 2011; Sun et al., 2012), photonic
topological insulators (Khanikaev et al., 2013; Rechtsman
et al., 2013), topological states in quasicrystals (Kraus et al.,
2012; Verbin et al., 2013), and quantum phase transitions
without gap closing in the presence of interactions (Amaricci
et al., 2015). Other interesting topics that we left out are
symmetry-enriched topological phases (Cho, Lu, and Moore,
2012; Lu and Vishwanath, 2012; Chen et al., 2013; Essin and
Hermele, 2013; Hung and Wen, 2013; Mesaros and Ran,
2013; Barkeshli et al., 2014; Teo, Hughes, and Fradkin,
2015; L. Wang et al., 2015) and experimental realizations of
interacting SPT phases (Lu and Lee, 2014b).
We also did not have space to discuss potential applications

that utilize the conducting edge states of topological materials.
Possible avenues for technological uses are low-power-
consumption electronic devices based on the dissipationless
edge currents of TIs. Furthermore, TSCs or heterostructures
between TIs and SCs might lead to new architectures of
quantum computing devices. An important first step in order
to realization such devices is to control and manipulate the
topological currents using, e.g., electric fields (Ezawa, 2012,
2015;Wray et al., 2013), magnetic fields (Garate and Franz,
2010; Linder et al., 2010; Schnyder, Timm, and Brydon,
2013), or mechanical strain (Liu et al., 2011; Winterfeld
et al., 2013).
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