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The simplest theories often have much merit and many limitations, and, in this vein, the value of
neutral theory (NT) of biodiversity has been the subject of much debate over the past 15 years. NTwas
proposed at the turn of the century by Stephen Hubbell to explain several patterns observed in the
organization of ecosystems. Among ecologists, it had a polarizing effect: There were a few ecologists
who were enthusiastic, and there were a larger number who firmly opposed it. Physicists and
mathematicians, instead, welcomed the theory with excitement. Indeed, NT spawned several
theoretical studies that attempted to explain empirical data and predicted trends of quantities that
had not yet been studied. While there are a few reviews of NT oriented toward ecologists, the goal
here is to review the quantitative aspects of NT and its extensions for physicists who are interested in
learning what NT is, what its successes are, and what important problems remain unresolved.
Furthermore, this review could also be of interest to theoretical ecologists because many potentially
interesting results are buried in the vast NT literature. It is proposed to make these more accessible by
extracting them and presenting them in a logical fashion. The focus of this review is broader than NT:
new, more recent approaches for studying ecological systems and how one might introduce realistic
non-neutral models are also discussed.
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I. INTRODUCTION

“It is interesting to contemplate an entangled bank, clothed
with many plants of many kinds, with birds singing on the
bushes, with various insects flitting about, and with worms
crawling through the damp earth, and to reflect that these
elaborately constructed forms, so different from each other in
so complex a manner, have been all produced by laws acting
around us.” In this celebrated text from the Origin of Species
(Darwin, 1909), Darwin eloquently conveys his amazement
for the underlying laws of nature: despite the striking diversity
of shapes and forms, it exhibits deep commonalities that have
emerged over wide scales of space, time, and organizational
complexity. For more than 50 years now, ecologists have
collected census data for several ecosystems around the world
from diverse communities such as tropical forests, coral reefs,
plankton, etc. However, despite the contrasting biological and
environmental conditions in these ecological communities,
some macroecological patterns can be detected that reflect
strikingly similar characteristics in very different communities
(see Table I). This suggests that there are ecological mech-
anisms that are insensitive to the details of the systems and that
can structure general patterns. Although the biological proper-
ties of individual species and their interactions retain their
importance in many respects, it is likely that the processes that
generate such macroecological patterns are common to a
variety of ecosystems and they can therefore be considered to
be universal. The question then is to understand how these
patterns arise from just a few simple key features shared by all
ecosystems. Contrary to inanimate matter, living organisms
adapt and evolve through the key elements of inheritance,
mutation, and selection.
This fascinating intellectual challenge fits perfectly into the

way physicists approach scientific problems and their style of
inquiry. Statistical physics and thermodynamics have taught
us an important lesson that not all microscopic ingredients are
equally important if a macroscopic description is all one
desires. Consider, for example, a simple system like a gas. In
the case of an ideal gas, the assumptions are that the molecules

behave as pointlike particles that do not interact and that only
exchange energy with the walls of the container in which they
are kept at a given temperature. Despite its vast simplifica-
tions, the theory yields amazingly accurate predictions of a
multitude of phenomena, at least in a low-density regime and/
or at not too low temperatures. Just as statistical mechanics
provides a framework to relate the microscopic properties of
individual atoms and molecules to the macroscopic or bulk
properties of materials, ecology needs a theory to relate key
biological properties at the individual scale, with macro-
ecological properties at the community scale. Nevertheless,
this step is more than a mere generalization of the standard
statistical mechanics approach. Indeed, in contrast to inanimate
matter, for which particles have a given identity with known
interactions that are always at play, in ecosystems we deal with
entities that evolve, mutate, and change, and that can turn on or
off as well as tune their interactions with partners. Thus the
problem at the core of the statistical physics of ecological
systems is to identify the key elements one needs to incorporate
in models in order to reproduce the known emergent patterns
and eventually discover new ones.
Historically, the first models defining the dynamics of

interacting ecological species were those of Lotka and
Volterra, which describe asymmetrical interactions between
predator-prey or resource-consumers systems. The Lotka and
Volterra equations have provided much theoretical guidance.
For instance, MacArthur (1970) developed a model for
studying interactions among consumers which exploit
common resources. By making use of different time scales,
he showed how resources can be included in the Lotka and
Volterra equations. He also derived the formulas for the
competition matrix, which provided hints about how it can
be measured empirically (MacArthur, 1970). Seemingly, this
suggested a viable way to measure niche overlap between
species. Soon after, May and MacArthur (1972) studied the
problem of how similar competing species can be and yet
coexist in a community. According to Gause’s competitive
exclusion principle (Gause, 1934), two species cannot occupy
the same niche in the same environment for a long time (see
Table II). They found that environmental fluctuations limit
niche overlap and therefore species’ similarity. All these
studies, and many other variations and generalizations, pro-
vided a robust theoretical basis for understanding ecosystems.
Their limitations were identified as more research was carried
out (Roughgarden, May, and Levin, 1989). These approaches
share the idea that species can be well described by deter-
ministic models which are shaped by the fundamental concept
of niche, which, however, can be appropriately defined only
a posteriori. This theoretical focus is not eminently suited for
studying a wide range of empirical patterns. In fact, all such
models have several drawbacks: (1) They are mostly deter-
ministic models and often do not take into account stochastic
effects in the demographic dynamics (May, 2001). (2) As the
number of species in the system increases, they become
analytically intractable and computationally expensive.
(3) They have a lot of parameters that are difficult to estimate
from ecological data or experiments. (4) It is very difficult to
draw generalizations that include spatial degrees of freedom.
And (5) while time series of abundance are easily analyzed, it
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remains challenging to analytically study the macroecological
patterns they generate and thus, their universal properties.
A pioneering attempt to explain macroecological patterns as

a dynamic equilibrium of basic and universal ecological
processes—and that also implicitly introduced the concept
of neutrality in ecology—was made byMacArthur andWilson
(1967) in the famous monograph titled “The theory of island
biogeography.” In this work, they proposed that the number of
species present on an island (and forming a local community)
changes as the result of two opposing forces: on the one hand,
species not yet present on the island can reach the island from
the mainland (where there is a metacommunity); and on the
other hand, the species already present on the island may
become extinct. MacArthur and Wilson’s model implies a
radical departure from the then main current of thought among
contemporary ecologists for at least three reasons: (1) Their
theory stresses that demographic and environmental stochas-
ticity can play a role in structuring the community as part of
the classical principle of competitive exclusion. (2) The
number of coexisting species is the result of a dynamic
balance between the rates of immigration and extinction.
(3) No matter which species contribute to this dynamic
balance between immigration and extinction on the island,
all the species are treated as identical. Therefore, they
introduced a model that is neutral at the level of species
(see Table II), even though they did not think of it as such.
Just a few years later, the ecologist H. Caswell proposed a

model in which the species in a community are essentially a
collection of noninteracting entities and their abundance is

driven solely by random migration and immigration. In
contrast to the mainstream vision of niche community
assembly, where species persist in the community because
they adapt to the habitat, Caswell stressed the importance of
random dispersal in shaping ecological communities.
Although the model was unable to correctly describe the
empirical trends observed in a real ecosystem, it is important
because it pictured ecosystems as an open system, within
which various species have come together by chance, past
history, and random diffusion.
In 2001, greatly inspired by the theory of island biogeog-

raphy and the dispersal limitation concept (see Table II),
Hubbell published an influential monograph titled “The
Unified Neutral Theory of Biodiversity and Biogeography”
[however, the debate dates back to 1979 (Hubbell, 1979)].
Unlike the niche theory and the approach adopted by Lotka
and Volterra, the neutral theory (NT) aims to model only
species on the same trophic level (monotrophic communities,
see Table II), species that therefore compete with each other
because they all feed on the same pool of limited resources.
For instance, competition arises among plant species in a
forest because all of them place demands on similar resources
like carbon, light, or nitrate. Other examples include species of
corals, bees, hoverflies, butterflies, birds, and so on. The NT is
an ecological theory within which organisms of a community
have identical per-capita probabilities of giving birth, dying,
migrating, and speciating, regardless of the species they
belong to. Thus, from an ecological point of view, the
originality of Hubbell’s NT lies in the combination of several

TABLE I. Descriptions of the Macroecological patterns.

Macroecological pattern Definition

Alpha diversity: The number of species found in a given area, regardless of their abundance and
spatial distributions. Sometimes it is more appropriate to assess the diversity of a
local community by taking into account their abundances as well. For this purpose
two alternative indexes have been used, the Shannon (H) and Simpson (D) indexes
(Simpson, 1949).

Beta diversity: The probability that two individuals at distance r belong to the same species (i.e.,
they are conspecific). Several alternative definitions have been used in the
literature, including the pair (or two-point) correlation function (PCF), the
Sørensen similarity index, or the Jaccard similarity index. However, the general
purpose of beta diversity is to describe the turnover of multiple species in space.

Pair correlation function (PCF): The correlation in species’ abundance between pairs of samples as a function of their
distance.

Relative species abundance (RSA): The probability that a species has n individuals in a given region. When multiplied by
the total number of species in the region, this gives the number of species with n
individuals (see Sec. II). This is sometimes called the species-abundance
distribution (SAD).

Species (time) turnover distribution (STD): The probability density function that the ratio of the future to the current population
sizes of any species has a value λ in a given ecological community (see Sec. III).

Persistence or lifetime distribution (SPT): The probability density function of the time interval between the emergence and local
extinction of any species within a given area (see Sec. III).

Species-area relationship (SAR): The function that relates the mean number of species S to the area A they live in. On a
relatively large range of spatial scales it is well approximated by a power law
SðAÞ ¼ cAz, where 0 < z < 1 (typical values of z are 0.2 or 0.3). It has been
shown that the SAR in the log-log scale has three qualitatively different behaviors
from local to continental spatial scales: approximately linearlike at very small and
very large scales, and power-law-like for intermediate scales. This is referred to as
a triphasic SAR (see Sec. IV).

Endemic-area relationship (EAR): The mean number of species that are present in the area A but not outside it (see
Sec. IV).
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factors: (i) it assumes competitive equivalence among interact-
ing species; (ii) it is an individual-based stochastic theory
founded on mechanistic assumptions about the processes
controlling the origin and interaction of biological populations
at the individual level (i.e., speciation, birth, death, and
migration); (iii) it can be formulated as a dispersal limited
sampling theory; and (iv) it is able to describe several macro-
ecological patterns through just a few fundamental ecological
processes, such as birth, death, and migration (Bell, 2000;
Hubbell, 2001; Chave, 2004; Butler and Goldenfeld, 2009).
Although the theory has been highly criticized by many
ecologists as being unrealistic (McGill, 2003; Nee, 2005;
Ricklefs, 2006; Leigh, 2007; Clark, 2009; Ricklefs and
Renner, 2012), it does provide very good results when
describing observed ecological patterns and it is simple enough
to allow analytical treatment (Volkov et al., 2003, 2005, 2007;
Hubbell, 2005; Muneepeerakul et al., 2008). However, such
precision does not necessarily imply that communities are truly
neutral and indeed non-neutral models can also produce similar
patterns (Adler,HilleRisLambers, andLevine, 2007;Du, Zhou,
and Etienne, 2011). Yet the NT does call into question
approaches that are either more complex or equally unrealistic
(Purves and Turnbull, 2010; Noble et al., 2011). Moreover, NT
is not only a useful tool to reveal universal patterns but also it is
a framework that provides valuable information when it fails.
One of the strengths of NT is that one can, in fact, falsify one or
more of its assumptions and thereby actually test the theory.

Few models in community ecology meet this gold standard.
These features have made NT an important approach in the
study of biodiversity (Harte, 2003; Chave, 2004; Alonso,
Etienne, and McKane, 2006; Hubbell, 2006; Walker, 2007;
Rosindell, Hubbell, and Etienne, 2011; Black and McKane,
2012; Rosindell et al., 2012).
From a physicist’s perspective, NT is appealing as it

represents a “thermodynamic” theory of ecosystems.
Similar to the kinetic theory of ideal gases in physics, NT
is a basic theory that provides the essential ingredients to
further explore theories that involve more complex assump-
tions. Indeed, NT captures the fundamental approach of
physicists, which can be summarized by Einstein’s celebrated
quote “Make everything as simple as possible, but not
simpler.” Finally, it should be noted that the NTof biodiversity
is basically the analog of the theory of neutral evolution in
population genetics (Kimura, 1985) and indeed several results
obtained in population genetics can be mapped to the
corresponding ecological case (Blythe and McKane, 2007).
Statistical physics is contributing decisively to our under-

standing of biological and ecological systems by providing
powerful theoretical tools and innovative steps (Goldenfeld
and Woese, 2007, 2010) to understand empirical data about
emerging patterns of biodiversity. The aim of this review is not
to present a complete and exhaustive summary of all the
contributions to this field in recent years—a goal that would
be almost impossible in such an active and broad

TABLE II. Ecological glossary.

Ecological terminology Definition

Trophic level: The set of all species belonging to the same level in the food chain. Individuals of species belonging to higher
levels feed upon those in the lower ones, while individuals belonging to the same trophic level compete for
the same pool of resources. Neutral theory is an ecological theory for species in one specific trophic level,
whereas Niche theory (see below) can also deal with species at different trophic levels.

Gause’s competitive
exclusion principle:

A pair of species cannot stably coexist if they feed upon exactly the same resources under the same
environmental conditions (Gause, 1934).

Niche theory: Species can stably coexist in an ecological community if their characteristics (or traits) allow them to
specialize on one particular set of resources or environment conditions (niches) in which they are superior
to their competitors. In other words, they occupy different niches (Hutchinson, 1957). Such niche
separation is deemed to enhance trade-offs and facilitate coexistence, even though there is no a priori
method to identify the correct niches that favor coexistence. The underlying rationale of the theory is
Gause’s exclusion principle, and the classical model is the Lotka-Volterra set of differential equations. In
contrast to niche theory, neutral theory claims that niche differences are not essential for coexistence.

Species-level neutral
models:

These models assume that all species are equivalent as they all have the same probability of immigration,
extinction, and speciation. The only state variable of these models is the number of species in a community
and, thus, it cannot predict the distribution of the population sizes across species (see RSA) (MacArthur
and Wilson, 1967).

Individual-level neutral
models:

These models assume that all species are equivalent at the individual level, having the same birth, death,
immigration, and speciation rates regardless of their identity. Therefore, although species can have
different abundances, they are competitively equivalent. The state variable of these models is the
population of any species in a region and therefore, such models can be used to understand species
richness and abundance (Hubbell, 2001).

Symmetric models: Any model whose outcomes are invariant when exchanging species identities. The family of symmetric
models is larger than the neutral ones: for instance, effects of environmental stochasticity or density
dependence of individuals on the per-capita birth and death rates can be accommodated in symmetric (but
not neutral) models. Some do not make a distinction between symmetric and neutral models.

Dispersal limited process: Any process that constrains offspring to disperse in the vicinity of its parents.
Multispecies voter model

(MVM) with speciation:
A spatially explicit neutral model in which each individual is located in a regular lattice and belongs to a

species. Given a spatial configuration at time t, the configuration at time tþ 1 is obtained as follows: an
individual is chosen at random and is replaced by a copy of one of its nearest neighbors (chosen at random)
with a probability 1 − ν, or by an individual belonging to a new species (not already present in the lattice)
with probability ν. ν is the speciation parameter, although it may incorporate immigration effects.
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interdisciplinary field—but rather, we want to introduce this
exciting new field to physicists that have no background in
ecology and yet are interested in learning about NT. Thus, we
focus on what has already been done and what issues must be
addressed most urgently in this nascent field, that of statistical
physics applied to ecological systems. A nice feature of this
field is the availability of ecological data that can be used to
falsify models and highlight their limitations. At the same
time, we see how the development of a quantitative theoretical
framework will enable one to better understand the multi-
plicity of empirical experiments and ecological data.
This review is organized into six main sections. Section II is

a review of several important results that have been obtained
by solving neutral models at stationarity. In particular, we
present the theoretical framework based on Markovian
assumptions to model ecological communities, where differ-
ent models may be seen as the results of different NT
ensembles. We also show how NT, despite its simplicity,
can describe patterns observed in real ecosystems. In Sec. III,
we present more recent results on dynamic quantities related
to NT. In particular, we discuss the continuum limit approxi-
mation of the discrete Markovian framework, paying special
attention to boundary conditions, a subtle aspect of the time-
dependent solution of the NT. In Sec. IV, we provide examples
of how space plays an essential role in shaping the organi-
zation of an ecosystem. We discuss both phenomenological
and spatially implicit and explicit NT models. A final
subsection is devoted to the modeling of environmental
fragmentation and habitat loss. In Secs. V and VI we propose
some emerging topics in this fledgling field and present the
problems currently being faced. Finally, we close the review
with a section dedicated to conclusions.

II. NEUTRAL THEORY AT STATIONARITY

Neutral theory deals with ecological communities within a
single trophic level, i.e., communities whose species compete
for the same pool of resources (see Table II). This means that
neutral models will generally be tested on data describing
species that occupy the same position in the food chain, like
trees in a forest, breeding birds in a given region, butterflies in
a landscape, plankton, etc. Therefore, ecological food webs
with predator-prey-type interactions are not suitable to be
studied with standard neutral models.
As explained in the Introduction, ecologists have been

studying an array of biodiversity descriptors over the last 60
years (see Table I), including RSA, SAR, and spatial PCF (see
Fig. 1). For instance, the RSA represents one of the most
commonly used static measures to summarize information on
ecosystem diversity. The analysis of this pattern reveals that
the RSA distributions in tropical forests share similar shapes,
regardless of the type of ecosystem, geographical location, or
the details of species interactions (see Fig. 2). Therefore, the
functional form of the RSA [see seminal papers by Fisher,
Corbet, and Williams (1943) and Preston (1948) for a
theoretical explanation of its origins] has been one of the
great problems studied by ecologists. Indeed, much attention
has been devoted to the precise functional forms of these
patterns. A meta-analysis revealed that RSA distributions have
basically three shapes: more often unimodal (log-normal like)

in fully sampled communities, and either power law or
without any mode (log-series like) within incompletely
censused regions (Ulrich, Ollik, and Ugland, 2010). Also,
it is difficult to tease apart, from the RSA alone, the nature of
the basic processes driving communities (Pueyo, 2006),
because neutral and non-neutral mechanisms coexist in nature.
It is instructive to derive some of these functional forms by

starting with a very simple but extreme neutral model, which
assumes that species are independent and randomly distrib-
uted in space. This null model tells us what we should expect
when the observed macroecological patterns are driven only
by randomness, with no underlying ecological mechanisms. If
the density of individuals in a very large region is ρ, then the
probability that a species has n individuals within an area a is
well approximated by a Poisson distribution with a mean ρa.
As defined in Table I, this is the RSA for the area a. However,
the empirical data are not well described by a Poisson
distribution and as we shall see later on better fits are usually
given by log-series, gamma, or log-normal distributions.
The SAR curve can also be calculated within a slightly

more accurate model, which still assumes that species are
independent and randomly situated in space. Let us now
suppose that a region with area A0 contains Stot species in total
(α diversity; see Table I), and that the species i has ni
individuals in A0. If we consider a smaller area A within
the region, then the probability that an individual will not be
found in such area is 1 − A=A0, while the probability that the
whole species i is not present therein is ð1 − A=A0Þni ¼
1 − pi. If we now consider the random variable IiðAÞ, which

FIG. 1. Visual scheme of two important macroecological
patterns (see Table I): RSA and SAR. The functional shape of
the RSA depends on the spatial scale considered, while the SAR
generally displays a triphasic behavior (see Sec. IV). There is a
growing appreciation that the various descriptors of biodiversity
are intrinsically interrelated, and substantial efforts have been
devoted to understand the links between them. From Azaele
et al., 2015.
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is 1 when the species i is found within the area A and 0 if not,
then hIiðAÞi ¼ pi ¼ 1 − ð1 − A=A0Þni , because IiðAÞ is a
Bernoulli random variable with an expectation value pi.
Therefore, the mean number of species in the area A (i.e.,
the SAR) is simply SðAÞ ¼ P

ihIiðAÞi, which is

SðAÞ ¼ Stot −
XStot
i¼1

ð1 − A=A0Þni : ð1Þ

Although this model was originally studied by Coleman
(1981), we now know that it significantly overestimates
species diversity at almost all spatial scales (Plotkin
et al., 2000).
Beta diversity (see Table I) can be estimated under the

assumptions we have mentioned. Now, regardless of the
spatial distance between two individuals, the probability
that two of them belong to the same species i is
niðni − 1Þ=NðN − 1Þ, where N is the total number of indi-
viduals in the community, i.e., N ¼ P

ini. Therefore, the
probability to find any pair of conspecific individuals is
ð1=StotÞPStot

i¼1 niðni − 1Þ=NðN − 1Þ. This means that the ran-
dom placement model with independent species predicts that
beta diversity should not depend on the distance between two
individuals. Again, we now have clear evidence that the
probability that two individuals at distance r belong to the
same species is a decaying function of r (Morlon et al., 2008).
The failure of the random placement model to capture the

RSA, SAR, and beta diversity is a clear indication that
ecological patterns are driven by nontrivial mechanisms that
need to be appropriately identified. Thus, we shall assess to

what extent the NT at stationarity can provide predictions in
agreement with empirical data.
There are two related but distinct analytical frameworks that

have been used to mathematically formulate the NT of bio-
diversity at stationarity for both local and metacommunities:
the first fixes the total population, whereas the second fixes the
average total population of a community. From an ecological
point of view, a local community is defined as a group of
potentially interacting species sharing the same environment
and resources. Mathematically, when modeling a local com-
munity the total community population abundance remains
fixed. Alternatively, a metacommunity can be considered a set
of interacting communities that are linked by dispersal and
migration phenomena. In this case, it is the average total
abundance of the whole metacommunity that is held constant.
From the physical point of view, these roughly correspond to
the microcanonical (fixed total abundance) and the grand-
canonical (fixed average total abundance) ensembles, respec-
tively. The microcanonical ensemble or so-called zero-sum
dynamics when death and birth events always occur as a pair
originates from the sampling frameworks in population genet-
ics pioneered by Warren Ewens and Ronald Fisher (Fisher,
Corbet, andWilliams, 1943). Note that even though a fixed size
sample is one way to analyze available data, for the majority of
cases (apart from very small size samples) the grand-canonical
ensemble approach is that used routinely in statistical physics
and it provides a precise yet largely simplified description of the
system. The ultimate reason for this lies in the surprising
accuracy of the asymptotic expansion of the gamma function
(the mathematical framework heavily uses combinatorials and
factorials, etc.). The Stirling approximation can be used for
very large values of the gamma function; nevertheless, it is
quite accurate even for values of the arguments of the order of
20. The advantages of the master equation (ME) (see
Sec. II.A.1) and the grand-canonical ensemble approach stem
from their computational simplicity, which make the results
more intuitively transparent.
We now introduce the mathematical tools of stochastic

processes that will be used extensively in the rest of the article.

A. Markovian modeling of neutral ecological communities

1. The master equation of birth and death

Let c be a configuration of an ecosystem that could be as
detailed as the characteristics of all individuals in the
ecosystem, including their spatial locations or as minimal
as the abundance of a specified subset of species. Let
Pðc; tjc0; t0Þ be the probability that a configuration c is seen
at time t, given that the configuration at time t0 was c0
[referred to as Pðc; tÞ for simplicity]. For our applications, the
configurations c are typically species abundance (denoted
by n).
Assuming that the stochastic dynamics are Markovian, the

time evolution of Pðc; tÞ is given by the ME (Kampen, 2007;
Gardiner, 2009)

∂Pðc; tÞ
∂t ¼

X
c0
fT½cjc0�Pðc0; tÞ − T½c0jc�Pðc; tÞg; ð2Þ

FIG. 2. Tree relative species-abundance data from the Barro
Colorado Island (BCI), Yasuni, Pasoh, Lambir, Korup, and
Sinharaja plots for trees that are 10 cm in stem diameter at
breast height. The frequency distributions are plotted using
Preston’s binning method as described by Volkov et al. (2003)
and the bars are the observed number of species binned into
logð2Þ abundance categories. The first histogram bar represents
hϕ1i=2, the second bar hϕ1i=2þ hϕ2i=2, the third bar hϕ2i=2þ
hϕ3i þ hϕ4i=2, the fourth bar hϕ4i=2þ hϕ5i þ hϕ6i þ hϕ7iþ
hϕ8i=2, and so on. Here hϕni is the number of species with an
abundance n. As examples, we show the fits of a density-
dependent symmetric model (black line), which will be studied
in greater detail in Sec. II. From Volkov et al., 2007.
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where T½cjc0� is the transition rate from the configuration c0 to
configuration c. Under suitable and plausible conditions
(Kampen, 2007), Pðc; tÞ approaches a stationary solution at
long times PsðcÞ, which satisfies

X
c0
fT½cjc0�Psðc0Þ − T½c0jc�PsðcÞg ¼ 0: ð3Þ

Equation (3) is typically intractable with analytical tools,
because it involves a sum of all the configurations. If each
term in the summation is zero, i.e.,

T½cjc0�Psðc0Þ − T½c0jc�PsðcÞ ¼ 0; ð4Þ

detailed balance is said to hold. A necessary and sufficient
condition for the validity of detailed balance is that for all
possible cycles in the configuration space, the probability of
walking through it in one direction is equal to the probability
of walking through it in the opposite direction. Given a cycle
fc1; c2;…; cn−1; c1g, detailed balance holds if and only if, for
every such cycle,

T½c1jc2�T½c2jc3� � � �T½cn−2jcn−1�T½cn−1jc1�
¼T½c1jcn−1�T½cn−1jcn−2� � � �T½c3jc2�T½c2jc1�: ð5Þ

This condition evidently corresponds to a time-reversible
condition.
Now let us apply these mathematical tools to the study of

community dynamics that is driven by random demographical
drift. Consider a well-mixed local community. This is equiv-
alent to saying that the distribution of species in space is not
relevant, which should hold for an ecosystem with a linear size
smaller than or of the same order as the seed dispersal range.
In this case one can use c ¼ ðn1;…; nSÞ ¼ n, where ni is the
population of the ith species and the system contains S
species. We can rewrite Eq. (2) in the following way:

∂Pðn; tÞ
∂t ¼

X
n0≠n

T½njn0�Pðn0; tÞ −
X
n0≠n

T½n0jn�Pðn; tÞ: ð6Þ

In this case, T½n0jn� can take into account birth and death, as
well as immigration from a metacommunity. The simplest
hypothesis is that T½n0jn� is the result of S elementary birth
and death processes that occur independently for each of the S
species, i.e.,

T½n0jn� ¼
XS
k¼1

Y
i≠k

δn0i;nk ½δn0k;nkþ1Tkðnþ 1jnÞ

þ δn0k;nk−1Tkðn − 1jnÞ�; ð7Þ

where δk0;k is a Kronecker delta,

Tkðnþ 1jnÞ ¼ bðn; kÞ ð8Þ

is the birth rate, and

Tkðn − 1jnÞ ¼ dðn; kÞ ð9Þ

the death rate. This particular choice corresponds to a sort of
mean-field (ME) approach (Vallade and Houchmandzadeh,
2003; Volkov et al., 2003, 2007; Alonso and McKane, 2004;
McKane, Alonso, and Solé, 2004; Pigolotti, Flammini, and
Maritan, 2004; Zillio et al., 2008).
Our many-body ecological problem can also be formulated

in a language more familiar to statistical physicists, where we
consider the distribution of balls into urns. The “urns” are the
species and the “balls” are the individuals. Birth and death
processes correspond to adding or removing a ball to or from
one of the urns using a rule as dictated by Eqs. (8) and (9).
Equation (6) with the choice (7) can be simplified if one
assumes that the initial condition is factorized as Pðn;t¼0Þ¼Q

S
k¼1Pkðnk;t¼0Þ. In this case the solution is again factorized

as Pðn; tÞ ¼ Q
S
k¼1 Pkðnk; tÞ where each Pk satisfies the

following ME in 1 degree of freedom nk:

∂Pkðnk; tÞ
∂t ¼ Pkðnk − 1; tÞbðnk − 1; kÞ

þ Pkðnk þ 1; tÞdðnk þ 1; kÞ
− ½bðnk; kÞ þ dðnk; kÞ�Pkðnk; tÞ: ð10Þ

The stationary solution of Eq. (10) is easily seen to satisfy
the detailed balance (Kampen, 2007; Gardiner, 2009).
First we note that because of the neutrality hypothesis

species are assumed to be demographically identical and
therefore, we can drop the k dependence factor from Eqs. (8)
and (9). In other words, we can concentrate on the probability
PðnÞ that a given species (urn) has an abundance n (balls). In
this case, species do not interact and thus in our calculation we
can follow a particular species (the urns are taken to be
independent). Following Eq. (4), it is easy to see that the
solution of the birth-death ME (2) that satisfies the detailed
balance condition and that thus corresponds to equilibrium is
(Kampen, 2007; Gardiner, 2009)

PsðnÞ ¼ P0

Yn
z¼1

bðz − 1Þ
dðzÞ ; ð11Þ

where P0 can be calculated by the normalization conditionP
nPsðnÞ ¼ 1, and assuming that all the rates are positive. In

particular, bð0Þ > 0 and dð0Þ ¼ 0.
When there are S urns, all satisfying the same birth-death

rules, the general and unique equilibrium solution is

Psðn1; n2;…; nSÞ ¼
YS
k¼1

PsðnkÞ. ð12Þ

Depending on the functional form of bðnÞ and dðnÞ, one
can readily work out the desired PsðnÞ. We start with some
cases that are familiar to physicists (Volkov, Banavar, and
Maritan, 2006) and then move onto more ecologically mean-
ingful cases (Volkov et al., 2003, 2007).

2. Physics ensembles

The random walk and Bose-Einstein distribution.: If one
chooses bðnÞ ¼ b0 and dðnÞ ¼ d1 for n ≥ 1, and dðnÞ ¼ 0
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otherwise [or alternatively, bðnÞ¼ðnþ1Þb0 and dðnÞ ¼ d1n],
one obtains a pure exponential distribution PðnÞ ¼ rnð1 − rÞ
where r ¼ b0=d1. Note that in both these cases, bðn − 1Þ=
dðnÞ is the same. Substituting this into Eq. (12) gives us the
well-known Bose-Einstein distribution for nondegenerate
energy levels, i.e.,

Pðn1; n2;…; nSÞ ¼ rNð1 − rÞS; ð13Þ

whereN ¼ P
knk. Here r corresponds to e

−βðε−μÞ in the grand-
canonical ensemble.
The Fermi-Dirac distribution: If dðnÞ ¼ d1n and bðnÞ ¼ 0

for any n other than 0, and equal to b0 otherwise, then
PðnÞ ¼ rn=ð1þ rÞ for n ¼ 0 or n ¼ 1 and PðnÞ ¼ 0 for other
values of n, and accordingly the Fermi-Dirac distribution is
achieved

Pðn1; n2;…; nSÞ ¼ r
P

k
nkð1þ rÞ−S for nk ¼ 0 or

nk ¼ 1 ∀ i; ð14Þ

Pðn1; n2;…; nSÞ ¼ 0 otherwise: ð15Þ

Boltzmann counting: If dðnÞ ¼ d1n and bn ¼ b0 for all n,
then one obtains a Poisson distribution PðnÞ ¼ e−rrn=n!, and
this leads to

Pðn1; n2;…; nSÞ ∝
rNQ

S
k¼1 nk!

: ð16Þ

This is the familiar grand-canonical ensemble Boltzmann
counting in physics, where r plays the role of fugacity. It is
noteworthy that, unlike the conventional classical treatment
(Huang, 2001), where an additional factor of N! is obtained,
here one gets the correct Boltzmann counting and thereby
avoids the well-known Gibbs paradox (Huang, 2001). Thus, if
one were to ascribe energy values to each of the boxes and
enforce a fixed average total energy, the standard Boltzmann
result would be obtained whereby the probability of occu-
pancy of an energy level ε is proportional to e−βε, where β is
proportional to the inverse of the temperature.

3. Ecological ensembles

Density independent dynamics: We now consider the
dynamic rules of birth, death, and speciation that govern
the population of an individual species. The most simple
ecologically meaningful case is to consider dðnÞ ¼ dn and
bðnÞ ¼ bn for n > 0, and bð0Þ > 0, dð0Þ ¼ bð−1Þ ¼ 0. We
define r ¼ b=d. Moreover, in order to ensure that the
community will not become extinct at longer times, speciation
may be introduced by ascribing a nonzero probability of the
appearance of an individual from a new species, i.e.,
bð0Þ ¼ b0 ¼ ν. In this case the probability for a species of
having n individuals at stationarity is

PðnÞ ¼ ~ν½1 − ~ν lnð1 − rÞ�−1rn=n; ð17Þ

where ~ν ¼ ν=b and n > 0 and Pð0Þ ¼ 1=½1 − ~ν lnð1 − rÞ�.
The RSA hϕðnÞi is the average number of species with a

population n, and this is simply (Volkov et al., 2003)

hϕðnÞi ¼ SPðnÞ ¼ θrn=n: ð18Þ

This is the celebrated Fisher log-series distribution, i.e., the
distribution Fisher proposed as that describing the empirical
RSA in real ecosystems (Fisher, Corbet, and Williams, 1943).
The parameter θ ¼ S~ν=½1 − ~ν lnð1 − rÞ� is known as the Fisher
number or biodiversity parameter.
In 1948, F. W. Preston, published a paper (Preston, 1948)

challenging Fisher’s point of view. He showed that the log
series is not a good description for the data from a large sample
of birds. In fact, he observed an internal mode in the RSA that
was absent in a log-series distribution. In particular, Preston
introduced a way to plot the experimental RSA data by octave
abundance classes (i.e., [2k, 2kþ1], for k ¼ 1; 2; 3;…), showing
that a good fit of the data was represented by a log-normal
distribution. Indeed, there are several examples of RSA data
that display this internal mode feature (see Fig. 2). The
intuition of Preston was that the shape of the RSA must
depend on the sampling intensity or size of the community.
Conventionally, when studying ecological communities, ecol-
ogists separate them into two distinct classes: small local
communities (e.g., on an island) and metacommunities of
much larger communities or those composed of several smaller
local communities (see Fig. 3). The neutral modeling schemes
for these two cases, that we denote by the subscripts L andM,
respectively, are not the same as the ecological processes
involved differ. In fact, the immigration rate (m) in a local

(a) (b)

(c) (d)

FIG. 3. Different neutral models of community ecology. In all
these models, ni represents the abundance of the species i in the
community, and JL and JM the total abundance in the local and
metacommunities, respectively. (a) Hubbell’s zero-sum neutral
model (Hubbell, 2001). In the local community, each death is
immediately followed by a birth or an immigration event.
Speciation (or, equivalently, immigration) enables diversity to
be maintained in the metacommunity. (b) Local community
with immigrants from a metacommunity (Vallade and
Houchmandzadeh, 2003). The local community now interacts
with the metacommunity through a migration process (m).
(c) Coalescent-type approach (Etienne and Olff, 2004b), where
community members are traced back to the ancestors that once
immigrated into the community. (d) Joint RSA of many local
communities (Volkov et al., 2007). The whole metacommunity
RSA distribution is built by considering the joint RSA distribu-
tions of multiple local communities.
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community is a crucial parameter as the community is mainly
structured by dispersal limited mechanisms, and the speciation
rate (ν) can be neglected. On the other hand, in a metacom-
munity immigration does not occur (species colonize within
the community) and the community is shaped by birth-death-
competition processes, although speciation ν also plays an
important role. A metacommunity can also be thought of as
consisting of many small semi-isolated local communities,
each of which receives immigrants from other local commun-
ities. When considering metacommunity dynamics, the natural
choice is to put a soft constraint on JM, i.e., the total number of
individuals is free to fluctuate around the average population
hJMi. Indeed, one finds that at the largest JM limit, the results
obtained with a hard constraint on JM are equivalent to those
with a soft constraint. On the other hand, when considering a
local community, it is safer to place a hard constraint on the
total population JL. In both these cases, S represents the total
number of species that may potentially be present in the
community, while the average number of species observed in
the community is denoted by hSi.
There are several ecological meaningful mechanisms that

can generate a bell-shaped Preston-like RSA. The first of these
involves density-dependent effects on birth and death rates.
The second involves considering a Fisher log series as the
RSA of a metacommunity acting as a source of immigrants to
a local community embedded within it. The dynamics of the
local community are governed by births, deaths, and immi-
gration, whereas the metacommunity is characterized by
births, deaths, and speciation. This leads to a local community
RSAwith an internal mode (McKane, Alonso, and Solé, 2000;
Vallade and Houchmandzadeh, 2003; Volkov et al., 2003,
2007). A third way is to incrementally aggregate several local
communities (see Appendix A).
Local dynamics with density-dependent rates: One of the

most fundamental and long debated questions in community
ecology is to understand what maintains species diversity
within communities (Hutchinson, 1959; Chave, Muller-
Landau, and Levin, 2002). Mechanisms which are able to
promote diversity include competitive trade-offs among spe-
cies because of species-specific traits, balance between
speciation and extinction, frequency or density dependence,
and environmental variability. For instance, processes that
hold the abundance of a common species in check inevitably
lead to rare-species advantages, given that the space or
resources freed up by density-dependent death can be
exploited by less-common species. Therefore, interspecies
frequency dependence is the community-level consequence of
intraspecies density dependence, and, thus, they may be
thought of as two different manifestations of the same
phenomenon (Volkov et al., 2005). Because these processes
are capable of driving community-level patterns such as SAR
or RSA, one might hope to identify mechanisms by delving
into observed patterns. However, communities with different
governing processes can unexpectedly show similar patterns,
thus suggesting that their shape cannot be, in general, used to
identify specific mechanisms (Chave, Muller-Landau, and
Levin, 2002; Purves et al., 2005).
In this review we focus on two of the most prominent

hypotheses that explain species coexistence through fre-
quency and density dependence: the Janzen-Connell

(Janzen, 1970; Connell, 1970) and the Chesson-Warner
hypotheses (Chesson and Warner, 1981). These mechanisms
generally predict the reproductive advantage of a rare species
due to ecological factors and they can be readily captured in a
common mathematical framework that is presented later.
The Janzen-Connell hypothesis postulates that host-specific

pathogens or predators act in the vicinity of the maternal
parent. Thus, seeds that disperse farther away from the mother
are more likely to escape mortality. This spatially structured
mortality effect suppresses the uncontrolled population
growth of locally abundant species relative to uncommon
species, thereby producing a reproductive advantage to a rare
species. The Chesson-Warner storage hypothesis explores
the consequences of a variable external environment and it
relies on three empirically validated observations: species
respond in a species-specific manner to the fluctuating
environment, there is a covariance between the environment
and intraspecies and interspecies competition, or life history
stages buffer the growth of population against unfavorable
conditions. Such conditions prevail when species have
similar per-capita rates of mortality but they reproduce
asynchronously and there are overlapping generations.
We begin by noting that the mean number of species with n

individuals hϕni is not determined by the absolute rates of
birth or death but rather by their ratio ri;k ¼ bði; kÞ=
dðiþ 1; kÞ. This follows from the observation that hϕni is
proportional to hr1;kr2;k � � � rn−1;kik, where the average h� � �ik
is obtained from all the species. This simple formulation
(Volkov et al., 2005) is sufficiently general to represent the
communities of either symmetric species (in which all the
species have the same demographic birth and death rates) or
the case of asymmetric or distinct species. The more general
asymmetric situation captures niche differences and/or differ-
ing immigration fluxes that might arise from the different
relative abundances of distinct species in the surrounding
metacommunity (see Table II).
The density dependence arising from the Janzen-Connell

effect is spatially explicit, in plant communities at least,
because it is caused by interactions among neighboring
individuals. Here instead we formulate a density dependence
which is spatially implicit and only abundance driven. We
therefore introduce a modified symmetric theory that incor-
porates a rare-species advantage or common species disad-
vantage by making rn a decreasing function of abundance.
The equations of density dependence in the per-capita birth
and death rates for an arbitrary species of abundance n are

bðnÞ
n

¼ b

�
1þ b1

n
þ o

�
1

n2

��

and

dðnÞ
n

¼ d

�
1þ d1

n
þ o

�
1

n2

��
;

for n > 0 as the leading term of a power series in (1=n),

bðnÞ
n

¼ b
X∞
l¼0

bln−l
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and

dðnÞ
n

¼ d
X∞
l¼0

dln−l;

where bl and dl are constants. This expansion captures the
essence of density dependence by ensuring that the per-capita
rates decrease and approach a constant value for a large n,
given that the higher order terms are negligible. As noted
earlier, the quantity that controls the RSA distribution is the
ratio bn=dnþ1. Thus, the birth and death rates bn and dn can be
defined up to fðnþ 1Þ and fðnÞ, respectively, where f is any
arbitrary well-behaved function.
Strikingly, any relative abundance data can be considered as

arising from effective density-dependent processes in which
the birth and death rates are given by these expressions. Thus,
one would expect that the per-capita birth rate or fecundity
drops as the abundance increases, whereas mortality ought to
increase with abundance. Indeed, the per-capita death rate can
be arranged to be an increasing function of n, as observed in
nature, by choosing an appropriate function f and appropri-
ately adjusting the birth rate so that the ratio bn=dnþ1 remains
the same. This then ensures that the RSA does not vary.
The mathematical formulation of the density dependence

may seem unusual to ecologists familiar with the logistic or
Lotka-Volterra systems of equations, wherein the density
dependence is typically described as a polynomial expansion
of powers of n truncated at the quadratic level. Such an
expansion is valid when the characteristic scale of n is
determined by a fixed carrying capacity. Conversely, here
the range of n is from 1 to an arbitrarily large value and not to
some carrying capacity. Therefore, an expansion in terms of
the powers of 1=n is more appropriate. For this symmetric
model (Volkov et al., 2005), and bearing in mind that

hϕni ¼ SP0

Yn−1
i¼0

bðiÞ
dðiþ 1Þ;

one readily arrives at the following relative species-
abundance relationship:

hϕni ¼ θ
xn

nþ c
; ð19Þ

where x ¼ b=d and, for parsimony, we make the simple
assumption that b1 ¼ d1 ¼ c and the higher order coefficients,
b2, d2, b3, d3,…, are all 0. The biodiversity parameter θ is the
normalization constant that ensures the total number of species
in the community is S, and it is given by θ ¼ S½ð1þ cÞ=cx�=
Fð1þ c; 2þ c; xÞ, where Fð1þ c; 2þ c; xÞ is the standard
hypergeometric function. The parameter c measures the
strength of the symmetric density and frequency dependence
in the community, and it controls the shape of the RSA
distribution. This simple model (Volkov et al., 2005) does a
good job of matching the patterns of abundance distribution
observed in the tropical forest communities throughout the
world (see Fig. 2). Note that when c → 0 (the case of no density
dependence), one obtains the Fisher log series. In this case θ
captures the effects of speciation.

Various analytical solutions for the Markovian (ME)
approach have been suggested in the literature. Based on
pioneering work by McKane, Alonso, and Solé (2000), an
analytical solution was proposed for the ME when the size
of both the local community and the metacommunity was
fixed (McKane, Alonso, and Solé, 2000; Vallade and
Houchmandzadeh, 2003; Volkov et al., 2003). Here we refer
to the work of Vallade and Houchmandzadeh (2003), in whose
model the birth and death rates in the metacommunity are
given by

Tðnþ 1jnÞ ¼ bMðnÞ ¼
JM − n
JM

n
JM − 1

ð1 − νÞ; ð20Þ

Tðn − 1jnÞ ¼ dMðnÞ ¼
n½JM − nþ ðn − 1Þν�

JMðJM − 1Þ : ð21Þ

During a unit of time, the population (n ≠ 0; JM) of the
species under consideration can increase by one individual if
we uniformly pick at random an individual that does not
belong to that species [this occurs with probability
ðJM − nÞ=JM], we substitute it with an individual randomly
picked from the considered species [with probability
n=ðJM − 1Þ], and, finally, there is no speciation (probability
1 − ν). Multiplying all these terms, we get the birth rate in
Eq. (20). On the other hand, in the same unit of time the
population of the species under consideration can decrease by
one individual if we uniformly pick at random an individual
that belongs to that species (probability n=JM) and we
substitute it either with a completely new individual (speci-
ation with probability ν) or with an individual which does not
belong to the considered species [with probability
ðJM − nÞ=ðJM − 1Þ]. These terms provide the death rate
in Eq. (21).
Let hϕnðtÞiM designate the average number of species of

abundance n in the metacommunity. Then in the stationary
limit (t → ∞), the species that contribute to hϕnðtÞiM are those
which entered the system by mutation at time t − τ and that
have reached size n at time t (Vallade and Houchmandzadeh,
2003; Suweis, Rinaldo, and Maritan, 2012). As speciation is a
Poissonian event (of rate ν) and due to neutrality, all species
have the same probability pðτÞdτ ¼ νdτ of appearing between
the time interval ½τ; τ þ dτ�. Thus, the time evolution of
hϕnðtÞi is then simply given by hϕnðtÞi ¼

R
t
0 Pðn; t − τÞ

pðτÞdτ ¼ ν
R
t
0 Pðn; τÞdτ, where Pðn; tÞ is the solution of

the ME (6) with transition rates given by Eqs. (20) and
(21) and with the initial condition Pðn; 0Þ ¼ δn;1 (δ represents
the Kronecker delta). Using Laplace transforms, the stationary
RSA for the metacommunity of size JM is (Vallade and
Houchmandzadeh, 2003)

hϕkiM ¼ θΓðJM þ 1ÞΓðJM þ θ − kÞ
kΓðJM þ 1 − kÞΓðJM þ θÞ ; ð22Þ

where θ ¼ ðJM − 1Þν=ð1 − νÞ .
Therefore the density of species of relative abundance ω ¼

k=JM in the metacommunity can be written as
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gMðωÞ ¼
θð1 − ωÞθ−1

ω
; ð23Þ

where gMðωÞ ¼ limJM→∞JMhϕkiM and with ω and θ kept
fixed (implying that ν tends to zero and k tends to infinity).
Let us now consider a local community (of size JL) in

contact with the aforementioned metacommunity. As
JM ≫ JL, then mutations within the local community can
be neglected (ν → 0) and the equilibrium distribution in the
metacommunity is negligibly modified by migration from or
toward the community. Nevertheless, there is migration from
the metacommunity to the local community and, thus, a
migration rate m must be included in the transition rates for
the local community dynamics:

bLðnÞ ¼
JL − n
JL

�
n

JL − 1
ð1 −mÞ þmω

�
; ð24Þ

dLðnÞ ¼
n
JL

�
JL − n
JL − 1

ð1 −mÞ þmð1 − ωÞ
�
; ð25Þ

where ω ¼ k=JM is the relative abundance of the species in
the metacommunity and k is the abundance of the tracked
species within the metacommunity.
The stationary solution PnðωÞ of the corresponding ME can

be calculated exactly using Eq. (11), considering m as the
immigration rate (Vallade and Houchmandzadeh, 2003):

PnðωÞ ¼
�
JL
n

� ðμωÞn½μð1 − ωÞ�JL−n
ðμÞJL

; ð26Þ

where ðJLn Þ is the binomial coefficient, ðaÞn ¼ Γðaþ nÞ=ΓðaÞ
is the Pochammer symbol, and μ ¼ ðJL − 1Þm=ð1 −mÞ.
Finally, the average number of species with abundance n in

the local community hϕniL is given by

hϕniL ¼
XJM
k¼1

Pnðk=JMÞhϕkiM; ð27Þ

which displays an internal mode for appropriate values of the
model parameters. A generalization of this result to a system
of two communities of arbitrary yet fixed sizes that are
subject to both speciation and migration (Vallade and
Houchmandzadeh, 2006) has also been carried out.
Alonso and McKane (2004) suggested that the log-series

solution for the species-abundance distribution in the meta-
community is applicable only for species-rich communities, and
that it does not adequately describe species-poor metacommun-
ities. Application of theME approach to the asymmetric species
casewas considered (Alonso, Ostling, and Etienne, 2008) and it
was further demonstrated that the species-abundance distribu-
tion has exactly the same sampling formula for both zero-sum
and nonzero-sum models within the neutral approximation
(Etienne, Alonso, and McKane, 2007; Haegeman and Etienne,
2008). The simplest mode of speciation, a point mutation, has
been the one most commonly used to derive the species-
abundance distribution of the metacommunity. A Markovian
approach incorporating various modes of speciation such as
random fission was also presented by Haegeman and Etienne

2009, 2010). An innovative way to model speciation was used
by Rosindell et al. (2010). They introduced protracted speci-
ation, i.e., a gradual process whereby new species are created
with a few individuals, instead of being an instantaneous
process starting with exactly one individual. This gradual
speciation improves predictions of species lifetimes, speciation
rates, and the number of rare species.

B. Coalescent approach to neutral theory

An alternative approach to compute the distribution of
individuals in a community is based on coalescent theory. The
idea of this approach consists of tracing each member of the
community back to their ancestors that first immigrated into
the community (Etienne and Olff, 2004b; Etienne, 2005). A
succinct comparison between the coalescent approach and
other methods is presented by Etienne and Alonso (2005) and
Chave, Alonso, and Etienne (2006).
Within this framework, the local community consists of a

fixed number of individuals J that undergo zero-sum dynam-
ics. At each time step a randomly chosen individual dies and is
replaced by a new individual that is an offspring of a randomly
chosen individual in the community (of size J − 1), or by one
of I potential immigrants from the metacommunity. The
immigration rate is thusm ¼ I=ðI þ J − 1Þ, where the param-
eter I is merely a proxy for the immigration rate. The
metacommunity is governed by the same dynamics, with
speciation replacing immigration.
Two observations are crucial to derive the sampling formula

for the species-abundance distribution. First, because there is
no speciation in the local community, each individual is either
an immigrant or a descendent of an immigrant. Thus, the
information pertaining to the species-abundance distribution
is specified by considering “the ancestral tree” (tracing back
each individual to its immigrant ancestor, which is somewhat
similar to the phylogenetic tree construction in genetics) and
the species composition of the set of all the ancestors. Second,
this set of all ancestors can be considered as a random sample
from the metacomunity and its species-abundance distribution
is provided by the Ewens’ sampling formula (Ewens, 1972),
corresponding to the Fisher’s log series in the limit of large
sample size that describes neutral population genetics models
with speciation and no immigration. As we do not know the
ancestor of each individual, the final formula for the species-
abundance composition of the data comes from summing the
probabilities of all possible combinations of ancestors that
give rise to the observed data.
In a tour de force calculation, the resulting sampling

formula is found to be (Etienne, 2005)

P½Djθ; m; J� ¼ J!Q
S
i¼1 ni

Q
J
j¼1 Φj!

θS

ðIÞJ
XJ
A¼S

KðD;AÞ IA

ðθÞA
;

ð28Þ
where P½Djθ; m; J� is the probability of observing the empiri-
cal data D consisting of S species with abundances ni, i ∈
½1; S� given the value of the fundamental biodiversity number
θ of the metacommunity, the immigration rate m, and the
local community size J. Φj is the number of species with
abundance j,
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KðD;AÞ ¼
X

fa1;…;aSj
P

S
i¼1

ai¼Ag

YS
i¼1

s̄ðni; aiÞs̄ðai; 1Þ
s̄ðni; 1Þ

; ð29Þ

where s̄ is the unsigned Stirling number of the first kind.
Finally, ðxÞy is the Pochhammer symbol

Qy
i¼1ðxþ i − 1Þ.

These expressions are simplified versions of the original
results presented and as expected they provide a comparable
fit to the ME approach for the data from the tropical forests. It
is heartening that equivalent results can be derived using very
different approaches.

III. DYNAMICS IN NEUTRAL THEORY

So far we have focused on the implications of neutral theory
when models describing neutral patterns reach a steady state.
The stationary condition allows one to take advantage of a
variety of different mathematical techniques to obtain analyti-
cal expressions of ecological patterns. However, stationarity is
not always a good approximation, either because the ecosystem
is still in a state of flux or because the assumption may hide
different and important processes that lead to the same final
steady state. Furthermore, one can calculate time-dependent
correlation functions (Hashitsume et al., 1991); see, for
example, Eq. (46). It is therefore essential to understand the
temporal behavior of ecosystems in order to discriminate
between ecological processes that would otherwise be indis-
tinguishable at stationarity. Statistical comparisons between
time-dependent patterns are usually more difficult than those
between stationary patterns because they require more data and
long empirical time series that are rarely available. In addition,
although time-dependent solutions facilitate stronger tests
when confronted with data, they are more difficult to obtain
and this is the reason why only a few studies have investigated
the temporal behavior of neutral models.
An important method to study the time dependence is

van Kampen’s system size expansion. Assuming that the total
population of the system N is very large and the initial
population is of the order of N, one expects that, at short times
at least, the probability distribution of the system Pðn; tÞ
would peak sharply around the macroscopic value n ¼ NϕðtÞ
with a width of order ∼

ffiffiffiffi
N

p
. The function ϕðtÞ is chosen to

describe the evolution of the peak. These considerations lead
to the ansatz n ¼ NϕðtÞ þ ffiffiffiffi

N
p

ξ, where ξ is a new random
variable. When expressing the ME in terms of ξ and expand-
ing it in

ffiffiffiffi
N

p
, at order

ffiffiffiffi
N

p
one recovers the deterministic

evolution of the macroscopic state of the system, and at order
N0 one obtains a linear Fokker-Planck (FP) equation whose
coefficients depend on time through the function ϕðtÞ.
Therefore, fluctuations around the peak are Gaussian in a
first approximation [details of the method can be found in
Kampen (2007)]. This expansion has some attractive features
but it is usually only a good approximation of the temporal
evolution of the original ME at short or intermediate temporal
scales, since the Gaussian behavior is usually lost over longer
periods. The time dependence of mean-field neutral models
was investigated by means of van Kampen’s system size
expansion in McKane, Alonso, and Solé (2000, 2004) and a
good agreement with simulations was found at early times.

Some neutral models can also be formulated in terms of
discrete-time Markov processes that have the form
piðtþ 1Þ ¼ P

jQijpjðtÞ, where piðtÞ is the probability that
a species has i individuals at time t, and Qij is the probability
that a species changes its abundance from j to i in one time
step (i.e., the transition matrix). If the community has N
individuals in total and either one birth or one death is allowed
in one time step, thenQ is a tridiagonal matrix with dimension
N þ 1. Solving these models in time is basically equivalent to
finding the eigenvalues along with the left and right eigen-
vectors of the matrix Q, which is usually a nontrivial task.
Using a theorem derived in population genetics, Chisholm
(2011) was able to obtain the eigendecomposition of the
transition matrix of a neutral model that describes the behavior
of the local community in the original Hubbell model
(Hubbell, 2001). Also, he was able to show that the first
two eigenvectors are sufficient to provide a good approxima-
tion of the full time-dependent solution.
Others have focused on specific temporal patterns that can

sometimes be calculated more easily. For instance, a measure
that has been used to quantify the diversity of a community is
the Simpson index (Simpson, 1949)D, which is defined as the
probability that two individuals drawn randomly from a well-
mixed community belong to the same species. If the individ-
uals are drawn with replacement, then one obtains
D ¼ P

in
2
i =N

2, where ni is the number of individuals of
species i (we have already encountered this index in Sec. II
when we calculated the beta diversity in the random placement
model). This index is also a good indicator of the relative
importance of spatial effects in a community. The dynamic
evolution of D is usually simple enough to allow analytical
calculations (Vanpeteghem, Zemb, and Haegeman, 2008).
Other interesting dynamic properties of neutral models have
been studied, where species’ extinction and monodominance
were investigated by looking into the first-passage properties
and fixation times of the process (Babak, 2006; Babak and He,
2009). Empirical power-law relationships between the tem-
poral mean and variance of population fluctuations (the so-
called Taylor’s power law) are also in good agreement with
neutral predictions (Keil et al., 2010).
Although it is not mandatory from the neutral assumption,

models often assume that demographic stochasticity is the
main source of fluctuations in stochastic neutral dynamics
(Ricklefs, 2003; Hu, He, and Hubbell, 2006). Demographic
randomness originates from the intrinsic stochastic nature of
birth and death events within a discrete population of
individuals. However, other sources may be important, such
as environmental stochasticity that, by contrast, encompasses
effects of abiotic and biotic environmental variables on all
individuals [strictly speaking, we should more correctly refer
to symmetric, instead of neutral, models (see Table II) when
these incorporate environmental fluctuations, because the per-
capita vital rates vary across individuals; however, many
authors do not appreciate this distinction]. There is theoretical
and empirical evidence that forest dynamics exhibit signatures
of environmental variability (Lande, Engen, and Saether,
2003; Chisholm et al., 2014; Kalyuzhny, Kadmon, and
Shnerb, 2015). Usually, neutral models based only on dem-
ographic stochasticity tend to overestimate the expected times
to extinction for abundant species (Ricklefs, 2006), whose
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temporal fluctuations will also be underestimated (Mutshinda,
O’Hara, and Woiwod, 2008). Incorporating an environmental
source of randomness as well as more realistic forms of
speciation have made some dynamic aspects of NT more
realistic (Allen and Savage, 2007).
Here we focus on the dynamic aspects of the SAD (Azaele

et al., 2006) which under appropriate assumptions can be
studied in detail (Lehnigk, 1993; Masoliver and Perelló,
2012) and whose predictions can be benchmarked against
empirical data. We also review recent progress in modeling
dynamic patterns, including the species turnover distribution
(Azaele et al., 2006) as well as species’ persistence-times (or
lifetimes) distributions (Pigolotti et al., 2005; Bertuzzo et al.,
2011; Pinto and Muñoz, 2011; Suweis et al., 2012); see
Table I.

A. The continuum limit of the master equation

The microscopic description of a system starts by correctly
identifying the variables that define all the possible configu-
rations of the system.Having decided how to describe the states
of the system, the next step is to consider the transition rates
among different states. The configurations of an ecological
community can be described by different variables according to
different levels of coarsening of the spatiotemporal scales.
However, for simplicity, we focus on ecosystems comprising S
species and N individuals in total, in which the configurations
are specified fully by the variable n ¼ ðn1;…; nSÞ, where ni is
the population of the ith species. Therefore, for the time being,
we ignore any spatial effects, which will be considered
in Sec. IV.
If the ecological community at time t0 was in the configu-

ration n0, then the probability that the system will be in
configuration n at time t > t0 is Pðn; tjn0; t0Þ [Pðn; tÞ for
brevity]. Assuming a Markovian stochastic dynamics, the
evolution of Pðn; tÞ is governed by the ME (6) with transition
rates T½njn0� from the states n0 to n. As seen in Sec. II, the
specification of a model is tantamount to defining the
transition rates. This equation can be recast in another form
that allows a simple expansion. Interactions among species
change the variable n in steps of size rl, where l ¼ 1; 2;…; L
and L is the total number of distinct possible changes or
reactions. For instance, if a species can either decrease or
increase its population by k in a given time step, then L ¼ 2.
Species that change by 1 or that remain constant in a given
time interval are instead described by L ¼ 3, and when the
total population is conserved, we have

P
L
l¼1 ri;l ¼ 0. Of all

the possible reactions, however, only a few are usually
significant, ecologically relevant, or meaningful. Moreover,
unlike chemical reactions these meaningful reactions can be
considered irreversible. Therefore, instead of summing over
states n0, as in Eq. (6), we can sum over L different reactions.
If tl½n� is the transition rate of the lth reaction which involves
the jumps rl when species’ populations are n, then we can
recast Eq. (6) in the form

∂Pðn; tÞ
∂t ¼

XL
l¼1

ftl½n − rl�Pðn − rl; tÞ − tl½n�Pðn; tÞg:

ð30Þ

Assuming that tl½n� is only a function of x ¼ n=N [this
corresponds to Eqs. (20) and (21) with N ¼ JM and
Eqs. (24) and (25) with N ¼ JL and N ≫ 1 in both cases],
we can write

∂Pðx; tÞ
∂t ¼

XL
l¼1

�
tl

�
x −

rl
N

�
P

�
x −

rl
N
; t

�
− tl½x�Pðx; tÞ

�
;

ð31Þ

where n has been replaced by Nx. This form of the ME
suggests that jrlj=N ≪ 1 when N ≫ 1 and hence, a Taylor
expansion around x of tl and P is legitimate, at least far
from the boundaries. This is known as the Kramers-Moyal
expansion (Gardiner, 2009). Truncating to second order in
N, we obtain a Fokker-Planck equation of the form

∂Pðx; τÞ
∂τ ¼ −

XS
i¼1

∂
∂xi ½AiðxÞPðx; τÞ�

þ 1

2N

XS
i;j¼1

∂2

∂xi∂xj ½BijðxÞPðx; τÞ� þOðN−2Þ;

ð32Þ

where the time has been rescaled (τ ¼ t=N), the functions
AiðxÞ have been defined as

AiðxÞ≡
XL
l¼1

ri;ltl½x�; ð33Þ

and the entries of the matrix BðxÞ are

BijðxÞ≡
XL
l¼1

ri;lrj;ltl½x�: ð34Þ

The matrix BðxÞ is a S × S symmetric matrix that is
positive semidefinite (Gardiner, 2009). For one-step jumps,
the entries of the matrices rl ⊗ rl can only be 1, −1, or 0.
Unlike the ME (30), the Fokker-Planck equation (32)
governs the evolution of continuous stochastic variables
that represent the relative species’ populations under the so-
called diffusion approximation. As the total population
extends to infinity, we recover the deterministic evolution
given by the Liouville equation

∂Pðx; τÞ
∂τ ¼ −

XS
i¼1

∂
∂xi ½AiðxÞPðx; τÞ�; ð35Þ

whose solution, for initial condition Pðx; 0Þ ¼ δðx − x0Þ,
has the simple form, where δ is the Dirac delta function.
This form of P implies that xðτÞ, i.e., the relative species’
populations, are the solutions of the deterministic system
_xiðτÞ ¼ AiðxÞ, where i ¼ 1; 2;…; S (Gardiner, 2009).
So far we have assumed that the system has a fixed and

finite total population N and therefore each population
cannot exceed N, despite its fluctuations. However, some-
times it is useful to relax this constraint and allow each
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population to fluctuate within the interval ½0;∞Þ. In this
case, a parameter may or may not exist that allows one to
recover the deterministic limit. However, if we assume that
tl½n� are smooth functions of n, and when n → nþ rl, they
vary little with respect to a characteristic scale of the model
(e.g., the total average population), and then, we can treat n
as continuous variables and expand tl½n − rl�Pðn − rl; tÞ
around n. Starting from the ME (30) and using x to indicate
the continuous populations, we obtain

∂Pðx; tÞ
∂t ¼ −

XS
i¼1

∂
∂xi ½AiðxÞPðx; tÞ�

þ 1

2

XS
i;j¼1

∂2

∂xi∂xj ½BijðxÞPðx; tÞ�; ð36Þ

where time has not been rescaled and AiðxÞ and BijðxÞ are
as in Eqs. (33) and (34). If we are within a neutral
framework with one-step jumps, then S ¼ 1, L ¼ 2, and
r1 ¼ 1; r2 ¼ −1. Setting t1½x�≡ bðxÞ (birth rate) and t2½x�≡
dðxÞ (death rate), from Eq. (36) one gets

∂Pðx; tÞ
∂t ¼ ∂

∂x ½dðxÞ − bðxÞ�Pðx; tÞ

þ 1

2

∂2

∂x2 ½dðxÞ þ bðxÞ�Pðx; tÞ: ð37Þ

Starting from the discrete formulation of the birth and death
rates thatwehave seenpreviously, one canderive the expressions
of the corresponding continuous rates. Following our earlier
discussion, we can write the following general expansion:

bðxÞ
x

¼ b1 þ
b0
x
þ � � � ; ð38aÞ

dðxÞ
x

¼ d1 þ
d0
x
þ � � � ; ð38bÞ

where we dropped higher order terms in 1=x. Clearly, Eq. (38)
can be applied when species have sufficiently large populations.
Theconstantsb0 andd0 produceadensity-dependenceeffect that
causes a rare-species advantage (disadvantage) when b0 > d0
(b0 < d0). This effect has its roots in ecological mechanisms,
such as the Janzen-Connell (Janzen, 1970; Connell, 1970) or
Chesson-Warner effects (Chesson andWarner, 1981). However,
the presence of net immigration or speciation in a local
community (Volkov et al., 2003) can also produce such density
dependence, which is captured here by a mean-field approach.
Usually, the skewness of the RSA of various tropical forests and
coral reefs indicates a rare-species advantage (Volkov et al.,
2005), and thus wewill use b0 > d0. In addition, to simplify the
analytical treatment and for parsimony, we choose b0 ¼ −d0.
Substituting the rates in Eq. (38) into Eq. (37) and setting
b0 ¼ −d0 > 0, we obtain

∂Pðx; tÞ
∂t ¼ ∂

∂x ½ðμx − bÞPðx; tÞ� þD
∂2

∂x2 ½xPðx; tÞ�; ð39Þ

where D ¼ ðd1 þ b1Þ=2, μ ¼ 1=τ ¼ d1 − b1 > 0, and b ¼
2b0 > 0. Pðx; tÞ≡ Pðx; tjx0; 0Þ is the probability density

function of finding x individuals in the community at time t,
given that at time t ¼ 0 therewerex0. Therefore

R
nþΔn
n Pðx; tÞdx

is the fractionof specieswith apopulationbetweenn andnþ Δn
at time t. Equation (39) defines our model for species-rich
communities and it governs the time evolution of a community
population under the neutral approximation. The deterministic
term drives the population to the stationary mean population per
species b=μ and therefore, within our model, the population and
the number of species can also fluctuate at stationarity with the
ratio of the population to the number of species being fixed on
average.Thus, thismodel ismore flexible than theoriginalmodel
by Hubbell (2001) in which “zero-sum dynamics” that fixes the
total number of individuals in a community was assumed.
The link established between the FP equation and the

ME provides a useful interpretation of the coefficients: μ ¼
d1 − b1 is the imbalance between the per-capita death and
birth rates that inexorably drives the ecosystem to extinction in
the absence of immigration or speciation. In this model τ is the
characteristic time scale associated with perturbations to the
steady state. WhenDτ ≫ 1 (as for the tropical forests we have
analyzed) we have d1 ¼ ð2Dþ τ−1Þ=2≃D, and so D can be
thought of as an individual death rate. Finally, b plays the role
of an effective immigration (or speciation) rate that prevents
the community from becoming extinct.
As expected, different choices of b0 and d0 lead to very good

fits of the RSA of various tropical forests. In particular, it is
possible to see that the RSA fits are readily improved for large x
when b0 and d0 are arbitrary parameters. However, if one
introduces a fourth free parameter, the analytical treatment of
the dynamics is much more involved. The Fokker-Planck
equation with just three parameters is an ideal starting point
to understand the dynamics governing species-rich ecosystems
in a simplified fashion. Indeed, the agreement between empiri-
cal data and the macroecological properties predicted by the
model is consistent with the simplifying assumption that
tropical forests are close to their steady state. In addition,
because the model is not only neutral, but also noninteracting,
one may speculate that surviving species are those that were
able to reach a steady state of coexistence by minimizing
interspecies interactions.
Further insights into the nature of stochasticity can be

achieved by writing down Eq. (36) in the equivalent Langevin
form, which is an equation for the state variables themselves.
Within the Itô prescription (Kampen, 2007), Eq. (36) is
equivalent to the following Langevin equation:

_xiðtÞ ¼ AiðxÞ þ
XS
j¼1

bijðxÞξjðtÞ; ð40Þ

where ξjðtÞ is Gaussian white noise with a zero mean and
correlation hξiðtÞξjðt0Þi ¼ δijδðt − t0Þ, and the matrix bðxÞ is
defined by BðxÞ ¼ bðxÞbTðxÞ, where the entries of BðxÞ are
given in Eq. (34). This shows that bðxÞmay be thought of as the
“square root” of BðxÞ. However, because any orthogonal trans-
formation of the noise ξjðtÞ leaves the mean and the correlation
unchanged, the matrix bðxÞ is not uniquely determined.
For the present model, the Fokker-Planck equation (39) is

equivalent to
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_xðtÞ ¼ b −
xðtÞ
τ

þ
ffiffiffiffiffiffiffiffiffiffiffiffi
DxðtÞ

p
ξðtÞ; ð41Þ

where we have instead assumed that the time correlation is
hξðtÞξðt0Þi ¼ 2δðt − t0Þ. Equation (41) shows how demo-
graphic stochasticity accounts for random ecological drift.
In fact, given the relatively large number of individuals of any
species, one expects that the detailed nature of the stochastic
noise is not important, such that fluctuations are proportional
to

ffiffiffiffiffiffiffiffi
xðtÞp

due to the central limit theorem (Kampen, 2007).
Thus, the multiplicative noise in the Langevin equation is not
introduced ad hoc and can be justified on the basis of more
general considerations.

B. Boundary conditions

The stochastic dynamics described by Eq. (41) governs the
evolution of the population when it is strictly positive.
Assuming that b > 0 and starting at some positive value,
the process cannot reach negative values because the drift
brings it to a positive value bdt in the time interval dt.
Therefore, the process is always non-negative with the origin
acting as a singular boundary, which must be specified on the
basis of ecological considerations, i.e., one should define what
happens when the random ecological drift occasionally leads
to a vanishing population. The most frequent ecological
situations are given by the following boundaries.

• We use reflecting boundary conditions at x ¼ 0 to
describe ecological communities in which a vanishing
population is immediately replaced by a new individual
(belonging to either a new or old species). For instance,
this may happen when an ecosystem is coupled to a
metacommunity that extends across large spatial scales.
With these boundary conditions, one can describe
ecosystems in which biodiversity is continuously sus-
tained by the net immigration of new individuals of new
or old species. This prevents an ecosystem from becom-
ing extinct and can finally achieve a nontrivial steady
state. In the case of the model defined by Eq. (39),
reflecting boundaries are obtained by setting the flux of
the probability distribution as zero at x ¼ 0, although
there are some equations for which such boundaries
cannot be arbitrarily set, such as Eq. (39) (Feller, 1951).

• A second possibility arises when a community can lose
individuals without any replacement or a net emigration
flux of individuals from the ecosystem exists. One can
then describe the system by introducing absorbing
boundary conditions at x ¼ 0. These constraints force
ecosystems to march inexorably to extinction and the
final steady state corresponds to the complete extinction
of species, i.e., limt→∞Pðx; tÞ ¼ δðxÞ. Usually, absorb-
ing boundaries are obtained by setting the probability
distribution at x ¼ 0 equal to zero, yet some equations do
have norm decreasing solutions, such as Eq. (39) (Feller,
1951), which do not vanish at x ¼ 0.

It is possible to define other kinds of boundaries, according to
different ecological behaviors when the population consists of

just a few individuals. However, the reflecting and absorbing
boundaries capture the most interesting situations in ecology.
Aswe have alluded, the reflecting and absorbing solutions of

theFokker-Planck equation (39) have rather unusual properties.
This is essentially due to the fact that the diffusion term Dx
vanishes at x ¼ 0. Obviously, it is always possible to rewrite a
vanishing diffusion term at zero into a nonvanishing onewith a
suitable change of variables, yet the same change of variables
leads to a singular drift term at the boundary. Thus, equations
with a vanishing diffusion term or with a singularity of the drift
termat theboundary ingeneral share similar unusual properties.
In fact, there exist regions in the parameter space of Eq. (39) in
which one cannot arbitrarily fix a boundary at zero, and the
solution is completely defined once the initial condition is
prescribed. This is because the probability of accessing the
origin dependson thevalues of theparameters.Theproblemcan
be studied by introducing the probability to reach the origin for
the first time. It ispossible toshow(MasoliverandPerelló,2012)
that this first-passage probability to the origin is zero when
b=D > 1 and, therefore, in this case one cannot obtain any
solutionwith absorbing boundaries and the solution can only be
reflecting at x ¼ 0. However, a (unique) norm decreasing
solution exists when 0 < b=D < 1, which corresponds to the
regular absorbing solution but that does not vanish at x ¼ 0.
Also, in the same region of parameters, a reflecting solution
exists with an integrable singularity at x ¼ 0. All ecosystems
that we have studied so far arewell described by b andDwithin
this parameter region.

C. Stationary and time-dependent solutions

An ecosystem described by Eq. (39) can reach a nontrivial
steady state when setting reflecting boundary conditions at
x ¼ 0. In this case, the normalized stationary solution is the
gamma distribution (Kampen, 2007), i.e.,

P0ðxÞ ¼
ðDτÞ−b=D
Γðb=DÞ xb=D−1e−x=Dτ; ð42Þ

where ΓðxÞ is the gamma function (Lebedev, 1972). Note the
distribution exists only when b > 0, i.e., when the ecosystem
has a net immigration rate of species. P0ðxÞ is the probability
density function (pdf) of the relative species abundance at
stationarity and it gives the probability that a given arbitrary
species present in the ecosystem has x individuals. Fitting the
empirical RSAs allows one to estimate two combinations of
the parameters, i.e., b=D and Dτ, with τ being the character-
istic temporal scale to approach stationarity. Interestingly, for
0 < b=D ≪ 1 one obtains the continuum approximation of
the celebrated Fisher log series (Fisher, Corbet, and Williams,
1943), the RSA distribution of a metacommunity.
One can analytically solve Eq. (39) at any time with

arbitrary initial conditions, so that the evolution of the
population can be traced even far from stationary conditions.
The time-dependent solution with reflecting boundary con-
ditions (b > 0) and initial population x0 is
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Prðx; tjx0; 0Þ ¼
�

1

Dτ

�
b=D

xb=D−1e−x=Dτ ½ð1=DτÞ2x0xe−t=τ�1=2−b=2D
1 − e−t=τ

× exp

�
−
ð1=DτÞðxþ x0Þe−t=τ

1 − e−t=τ

�
Ib=D−1

�ð2=DτÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0xe−t=τ

p
1 − e−t=τ

�
; ð43Þ

where IνðzÞ is the modified Bessel function of the first kind
(Lebedev, 1972). Because IνðzÞ≃ ðz=2Þν=Γðνþ 1Þ when
z → 0þ, for large time intervals Eq. (43) converges to P0ðxÞ
in Eq. (42). By setting x ¼ Dy2=4 (y > 0), when b=D ¼
1=2 the process can be mapped into the simpler Ornstein-
Uhlenbeck process (Kampen, 2007) with a boundary
(reflecting or absorbing) at x ¼ 0, and when b=D ¼ 1 it
can be mapped into the (reflecting) Rayleigh process
(Gardiner, 2009).
From the Fokker-Planck equation (39), it is easy to derive

the evolution of the mean population per species. It is simply

hxðtÞi ¼ bτ þ ðx0 − bτÞe−t=τ; ð44Þ
where hxð0Þi ¼ x0 is the initial population per species in the
community. The mean number of individuals per species
converges to bτ at stationarity, with standard deviation
τ

ffiffiffiffiffiffiffi
bD

p
. The autocovariance κðtÞ¼hxðtÞxð0Þi−hxðtÞihxð0Þi

under stationary conditions is given by

κðtÞ ¼
Z

∞

0

½xx0 − hxðtÞihxð0Þi�Prðx; tjx0; 0ÞP0ðx0Þdxdx0;
ð45Þ

where Prðx; tjx0; 0Þ is the reflecting solution in Eq. (43)
and P0ðx0Þ is the stationary solution in Eq. (42). However,
κðtÞ can be more rapidly obtained from Eq. (41). In fact, since
in the Itô prescription ξðtÞ and xðtÞ are uncorrelated, one gets
h ffiffiffiffiffiffiffiffi

xðtÞp
ξðtÞi ¼ h ffiffiffiffiffiffiffiffi

xðtÞp ihξðtÞi ¼ 0 because we have assumed
that hξðtÞi ¼ 0. Therefore the evolution equation for
hxðtÞxð0Þi becomes ∂thxðtÞxð0Þi ¼ bhxð0Þi − hxðtÞxð0Þi=τ,
whose solution is hxðtÞxð0Þi ¼ ðbτÞ2 þ bDτ2e−t=τ. Hence,
under stationary conditions, we have hxi ¼ bτ, hx2i ¼ hxi2 þ
bDτ2, and then κðtÞ ¼ bDτ2e−t=τ for t > 0. Therefore, the time
correlation function is a simple exponential. Because the
equation has only one temporal scale, τ is also the characteristic
relaxation time of the process, i.e., the temporal scale upon
which the system at stationarity recovers from a small
perturbation.

D. The species turnover distribution

According to the NT, the turnover of ecological commun-
ities reflects their continuous reassembly through immigration
and emigration and local extinction and speciation. Species’
histories overlap by chance due to stochasticity, yet their
lifetimes are finite and distributed according to the underlying
governing process. Nontrivial stationary communities are
reached because old species are continuously replaced by
new species, bringing about a turnover of species that can be
studied and modeled within our framework.

To measure species turnover one usually considers the
population of a given species at different times, then studying
the temporal evolution of their ratios. For an ecosystem close
to stationarity, one can look at the distribution Pðλ; tÞ, i.e., the
probability that at time t the ratio xðtÞ=xð0Þ is equal to λ,
where xðtÞ and xð0Þ are the population of a given species at
time t > 0 and t ¼ 0, respectively. Thus, the STD Pðλ; tÞ by
definition is

Pðλ; tÞ ¼ hδðλ − x=x0Þi

¼
Z

∞

0

dx0

Z
∞

0

dxPðx; tjx0; 0ÞP0ðx0Þδðλ − x=x0Þ:

ð46Þ

Here Pðx; tjx0; 0Þ is either the reflecting or absorbing solution
defined in Eqs. (43) and (49), and P0ðxÞ is given in Eq. (42),
and λ > 0 and t > 0.
In Eq. (46), one can use the time-dependent reflecting or

absorbing solution according to different ecological dynamics.
We should use the reflecting solution when not concerned
with the extinction of the species present at the initial time
point and especially when accounting for any new species
introduced through immigration or speciation. The expression
for the reflecting STD can be found in Azaele et al. (2006).
One can show that it has the following power-law asymp-

totic behavior for a fixed t:

Pðλ; tÞ ≈
(

k1ðtÞ
λb=Dþ1 for λ ≫ 1;

k2ðtÞλb=D−1 for λ ≪ 1;
ð47Þ

where the functions k1 and k2 are independent of λ.
Customarily, rather than the random variable λ, ecologists
study r ¼ logðλÞ that is distributed according to gðr; tÞ ¼
erPðer; tÞ and that can be compared to empirical data in
Fig. 4. We obtain an estimate of τ, the characteristic time scale
for the BCI forest, which is around 3500� 1000 yrs [for trees
with > 10 cm of stem diameter at breast height (dbh)] and
2900� 1100 yrs (for trees with> 1 cm dbh), where the broad
uncertainty is due to the fact that the data are sampled over
relatively short time intervals.
These fits not only provide direct information about the

time scale of evolution but also they underline the importance
of rare species in the STD. b=D is closely tied to the
distribution of rare species and in fact P0ðxÞ ∼ xb=D−1 for
x ≪ Dτ. Alternatively, the dependence of the STD on b=D
and τ suggests that at any fixed time t > 0 rare species are
responsible for the shape of the STD.
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E. Persistence or lifetime distributions

A theoretical framework to study and analyze persistence
or extinctions of species in ecosystems allows one to
understand the link between environmental changes [like
habitat destruction or climate change (Diamond, 1989;
Brown, 1995; Thomas et al., 2004; Svenning and Condit,
2008; May, 2010)] and the increasing number of threatened
species.
The persistence or lifetime τ of a species is defined as the

time interval between its emergence and its local extinction
(see Fig. 5) within a given geographic region (Keitt and
Stanley, 1998; Pigolotti et al., 2005). In statistical physics, this
is known as the distribution of first-passage times to zero of
the stochastic processes describing the species-abundance
dynamics. According to the neutral theory of biodiversity,
species can span very different lifetime intervals and thus, at a
local scale, persistence times are largely controlled by
ecological processes like random drift, dispersal, and
immigration.

1. Discrete population dynamics

The simplest baseline model to study the persistence-time
distribution is a random walk in the species abundance n, i.e.,
ME (10) with bn ¼ dn ¼ c and absorbing boundary condition
in n ¼ 0. According to this scheme, local extinction is
equivalent to a random walker’s first passage to zero and
thus, the resulting persistence-time distribution has a power-
law decay with exponent 3=2 (Chandrasekhar, 1943; Pigolotti
et al., 2005).
A further step in modeling lifetime distributions can be

made by taking into account birth, death, and speciation
(Hubbell, 2001; Volkov et al., 2003; Alonso, Etienne, and
McKane, 2006; Muneepeerakul et al., 2008) through a mean-
field scheme of the voter model with speciation (Durrett and
Levin, 1996; Chave and Leigh, 2002) (see description in
Sec. IV), i.e., ME (6) with birth and death rates given by
Eqs. (20) and (21) in the large JM limit, bðnÞ ¼ ð1 − νÞn=JM
and dðnÞ ¼ n=JM for n ≥ 0. The corresponding persistence or
lifetime distribution is given by pτðtÞ ¼ −dPð0; tÞ=dt, where
Pð0; tÞ is the probability that a species has a zero population at
time t. The asymptotic behavior of the resulting persistence-time
distribution [i.e., pτðtÞ] exhibits a power-law scaling modified
by an exponential cutoff (Pigolotti et al., 2005):

pτðtÞ ∝ t−2e−νt; ð48Þ

for t greater than some lower cutoff value. Here t is measured in
units of JM and ν is now a speciation rate rather than a
probability [Eq. (48) is derived in Appendix B]. Note that, in this
context, pτðtÞ has a characteristic time scale 1=ν for local
extinctions determined by the speciation or migration rate. The
general case when none of the coefficients is zero and are given
by Eqs. (38) can also be solved. In this case, pτ displays a
crossover from the t−3=2 to the t−2 behavior at a certain
characteristic time and finally, an exponential decay beyond
yet another characteristic time scale (Pigolotti et al., 2005). It has
been shown numerically (Bertuzzo et al., 2011; Suweis et al.,
2012) that for the spatial voter model in dimensions d ¼ 1, 2, 3,
the exponent of the power law in Eq. (48) changes to t−α, with
α < 2 depending on the topological structure underlying the
voter model. In particular, α ¼ 3=2 in d ¼ 1 and α ¼ 2 for any
d ≥ 3, whereas in d ¼ 2 one gets pτðtÞ ∝ t−2e−νt ln t as shown
in Pinto and Muñoz (2011) and references therein.
We have seen in Sec. II that the RSA pattern does not

depend on the biological details of the ecosystem under
analysis. Thus, one may wonder if the persistence-time
distribution is also a universal macroecological pattern.
Indeed, it has been shown (Bertuzzo et al., 2011; Suweis
et al., 2012) that the power law with an exponential cutoff
shape predicted for the persistence-time distribution by the NT
(see Appendix B) is common to very different types of
ecosystems (see Fig. 6). Other exact formulas for species
ages and species lifetimes have been proposed in neutral
(Chisholm and O’Dwyer, 2014) and non-neutral models
(O’Dwyer and Chisholm, 2014; Noble and Fagan, 2015).
Another interesting and related quantity is the survival

distribution Pτs defined as the probability that a species
randomly sampled from the community at stationarity is still
present in the community after a time t. This quantity depends

FIG. 5. Schematic representation of persistence time (or life-
time) of a species τ and survival times τs, defined as the time to
local extinction of a species randomly sampled among the
observed assemblages at a certain time T. From Suweis, Rinaldo,
and Maritan, 2012.

FIG. 4. STD for the interval 1990–1995 in the BCI forest. The
main panel shows the results for individuals of more than 10 cm
dbh, and the inset the results for individuals of more than 1 cm
dbh (Center for Tropical Forest Science website). The black line
represents the analytical solution given by Eq. (46). From Azaele
et al., 2006.
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on the initial conditions as PτsðtÞ ¼
R
pτðtjn0ÞP0ðn0Þdn0,

where pτðtjn0Þ is the lifetime distribution for a species that
initially has a population n0. Assuming that the stationary
distribution of population abundances is the Fisher log series,
then PτsðtÞ ∼ t−1 when t ≪ t�, whereas PτsðtÞ ∼ e−t=t

�
when

t ≫ t� (Pigolotti et al., 2005; Suweis et al., 2012). It can be
shown that this asymptotic behavior of the survivor distribu-
tion is valid regardless of the functional shape of the birth and
death rates bðnÞ and dðnÞ involved in the ME driving the
evolution of Pðn; tÞ (Suweis, Rinaldo, and Maritan, 2012).

2. Continuum limit

In the continuum limit, a crucial distribution for the analysis
of species’ extinction is the time-dependent solution of
Eq. (39) with absorbing boundaries at x ¼ 0. We refer to
Feller (1951) for its complete derivation. This probability
distribution exists only when b < D and is given by

Paðx; tjx0;0Þ ¼
ðDτÞ−1
1− e−t=τ

exp

�
−
ð1=DτÞðxþ x0e−t=τÞ

1− e−t=τ

�

×

�
x
x0

et=τ
�

b=2D−1=2
I1−b=D

�ð2=DτÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0xet=τ

p
et=τ − 1

�
:

ð49Þ

Note that Eq. (49) is finite at x ¼ 0 but limx→0þPaðx; tjx0; 0Þ
≠ 0.
The lifetime distribution can be calculated analytically

using Eq. (49), i.e., pτðtÞ ¼ −ðd=dtÞ R∞
0 Paðx; tj1; 0Þdx. It

can be shown that the lifetime distribution calculated in this
way displays the same asymptotic behavior as Eq. (48),
although the functional form is different (Azaele et al.,

2006). In the continuum limit, one can also obtain the mean
extinction time (Azaele et al., 2006):

hti ¼ τ

Z
1

0

x−b=D − 1

1 − x
dx ¼ −τ½γ þ ψð1 − b=DÞ�; ð50Þ

which depends only on 0 < b=D < 1 and τ. Here γ ¼
0.577… is the Euler constant and ψðzÞ ¼ Γ0ðzÞ=ΓðzÞ is the
logarithmic derivative of the gamma function (Lebedev,
1972). Equation (42) can be used to fit the RSA of various
tropical forests yielding hti=τ ¼ 1.94, 1.67, 0.67, 0.95, and
1.38 for Yasuni, Lambir, Sinharaja, Korup, and Pasoh,
respectively (Azaele et al., 2006). These time scales are in
accordance with the estimates of extinction times presented
elsewhere (Pimm et al., 1995) and it is quite interesting that
hti=τ depends on b=D only, which can be calculated from the
steady-state RSA without the need for dynamic data. The
values of b=D obtained from various tropical forests (Azaele
et al., 2006) suggest that hti≃ τ, although this is not built into
the model. In general, if τ ≫ hti, extinction would be much
faster than recovery and the ecosystem will not reach a steady
state. However, if τ ≪ hti the ecosystem would recover from
external disturbances very rapidly with respect to the extinc-
tion time and, therefore, it would be very robust. This would
leave little room for the action of evolution. Therefore, the fact
that hti≃ τ suggests that ecosystems at stationarity might be
marginally stable—not so stable that they are frozen in time
and not so fragile that they are prone to extinction. From
estimates of the model parameters b=D, τ and thus predictions
of hti, many biological and ecological features of the
ecosystem may be understood.

IV. NEUTRAL SPATIALMODELS AND ENVIRONMENTAL
FRAGMENTATION

So far we have considered models, which assume that all
individuals, at a given time, experience essentially the same
conditions. They live in well-mixed habitats in which envi-
ronmental heterogeneity and spatial distance are not impor-
tant. These models are conceptually and mathematically
simple and this is the basic reason why they have been
widely used. However, the spatial structure of ecosystems is
able to control the shape of many patterns and it is also a
critical factor for understanding species’ coexistence (Tilman,
1994). In fact, models with well-mixed populations predict
that the best competitor is able to displace a pool of species
competing for the same limiting resource. There is empirical
and theoretical evidence that space plays a crucial role in
maintaining species diversity in communities with a single
limiting resource, as demonstrated in the grasslands of the
Cedar Creek Natural History Area (USA) (Tilman, 1994).
Space is therefore an essential element for understanding

the organization of an ecosystem and most empirical obser-
vations are spatial. Often, the dynamics and composition of a
community cannot be disentangled from its spatial aspects.
Unfortunately, it is very difficult to derive analytical predic-
tions for spatial (stochastic) models. The main difficulty is due
to the fact that these are out-of-equilibrium models (Grilli
et al., 2012a).

FIG. 6. Comparison between persistence empirical distributions
for North American breeding birds, Kansas grasslands, New
Jersey BSS forest, and an estuarine fish community and the
corresponding theoretical species persistence-times pdfs. The
circles and solid lines show the observational distributions and
fits, respectively. The finiteness of the time window ΔTw imposes
a cutoff in the maximum observable persistence time and thus,
only lifetimes where τ < ΔTw have been considered and the
theoretical predictions have been adjusted appropriately (see
Appendix B). Adapted from Suweis et al., 2012.
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Spatial effects can be incorporated into the theoretical
framework, with the ME of Eq. (6) remaining formally the
same by considering the index i in ni as a composite index
i ¼ ðα; rÞ, where α identifies the species and r identifies its
spatial location. The set of all spatial locations r will be
denoted by Λ. Now the transition rates should take into
account dispersal from nearby locations. To simplify, we will
use the notation niðrÞ, where i indicates one of the S species
and r a spatial location.
At present, no coherent spatial neutral theory exists but

rather there is a collection of models and techniques that can
explain some spatial patterns. In this section, we review some
of those approaches.
The relationship between the number of species and the

area sampled is probably one of the oldest quantities studied in
ecology (Watson, 1835). Schoener (1976) referred to it as
“one of community ecology’s few genuine laws.” The SAR is
defined as the average number of species hSðAÞi sampled in
an area A.
Arrhenius (1921) postulated a power-law relationship

hSðAÞi ¼ cAz. Empirical curves show an inverted S shape
(Preston, 1960) (see Fig. 7), with a linear behavior at small and
large areas, and a power law with an exponent z at inter-
mediate scales. This behavior seems to be pervasive and has
been reported for distinct ecosystems.
Despite some notable exceptions (Gould, 1979), the

value of the exponent z has attracted the most attention in
the studies of SAR. This value of z is far from universal,
ranging from 0.1 to 0.5 (Martín and Goldenfeld, 2006) and
showing dependence on latitude (Schoener, 1976), body mass,
taxa, and general environmental conditions (Power, 1972;
Martin, 1981). The exponent z is interpreted as a measure of
biodiversity.
Several models tried to reproduce the empirical behavior

and a simple but useful assumption involves considering
different species as independent realizations of the same
process (Coleman, 1981). It is important to note that this
assumption is stronger than neutrality, because neutrality does
not imply independence. Under these assumptions the SAR is
given by Eq. (1).
The EAR is defined as the number of species that are

completely contained (i.e., endemic) in a given area (see

Table I). It is not generally simply related to the SAR (He
and Hubbell, 2011). If the species are considered as
independent realizations of a unique process, then

hEðAÞi ¼ StotP0ðAcÞ; ð51Þ

where Stot is the total number of species in the system,
P0ðAcÞ is the probability that a species is not present in Ac,
the complement of A, and that it is therefore completely
contained in A.
The β diversity is a spatially explicit measure of bio-

diversity. A simple and useful measure of β diversity is the
similarity index, i.e., the fraction of common species shared
between different locations. It can also be defined as the
probability FðrÞ that two individuals at a distance r are
conspecific (Chave and Leigh, 2002). This quantity may be
related to the two-point correlation function GijðrÞ. Under
the assumption of translational invariance, this latter is
defined as

GijðrÞ ≔ hniðxÞnjðyþ rÞi

¼ 1

S

�
1

V

X
x

X
y

niðxÞnjðyÞδijδð∥x − y∥ − rÞ
�
; ð52Þ

where niðxÞ is the number of individuals of the species i
in the location x, ∥x − y∥ is the distance between x and y,
V is the number of site locations, and δð∥x − y∥ − rÞ
selects only pairs at a distance r. FðrÞ is the probability
that two individuals at a distance r are conspecific, i.e., it
is the ratio between the number of pairs of individuals
belonging to the same species at a distance r and the total
number of pairs of individuals at a distance r. Therefore
we obtain

FðrÞ ¼
P

i

P
x

P
y niðxÞniðyÞδð∥x − y∥ − rÞP

i

P
j

P
x

P
y niðxÞnjðyÞδð∥x − y∥ − rÞ ð53Þ

that can be rewritten as

FðrÞ ¼
P

ihniðxÞniðxþ rÞiP
i

P
jhniðxÞnjðxþ rÞi ¼

P
iGiiðrÞP

i

P
j GijðrÞ

: ð54Þ

FIG. 7. Triphasic shape of the species-area relationship. The left panel shows the three behaviors on different scales. At a local scale the
relationship is linear, becoming a power-law relationship at the regional scale and returning to linear at very large intercontinental scales.
The right panel shows empirical data of species diversity at the regional scale (from the BCI forest). From Azaele et al., 2015.
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If the spatial positions of different species are indepen-
dent, then GijðrÞ ¼ hnðxÞi2 ≔ ρ2, and by defining GiiðrÞ ¼
G2ðrÞ, the β diversity reads

FðrÞ ¼ G2ðrÞ
ðS − 1Þρ2 þ G2ðrÞ

: ð55Þ

Most theoretical work consists of attempts to relate these
ecological quantities with other spatial and nonspatial observ-
able factors. For instance, a typical problem is to calculate the
SAR knowing the β diversity and the RSA over a global scale.
One of the future challenges will be to relate and predict
spatial patterns on different scales (upscaling and down-
scaling), having only local information on one or more
patterns.

A. Phenomenological models

Phenomenological models do not assume any microscopic
dynamics but they are rather based on a given phenomeno-
logical distribution of individuals in space. The simplest
assumption is to consider individuals at random positions
in space (Coleman, 1981; Coleman, Mares, and Hsieh, 1982).
This null model, usually known as a “random placement”

model, can be used to obtain predictions for the SAR and EAR
having the RSA or the SAD as an input. Even though this
assumption is not realistic, the random placement model turns
out to be very useful to capture the relevant aspects of the
relationship between RSA and SAR, and it also gives
reasonable predictions that can be benchmarked against
empirical data. In addition, this assumption also allows direct
connections between SAR and EAR to be formulated (He and
Hubbell, 2011).
Consider SðA0Þ species in a region of total area A0. Species

i has an abundance ni and the N ¼ P
ini individuals are

uniformly distributed at random in the area A0. If we observe a
subregion of area A, the probability of observing a particular
individual is simply A=A0, while the probability of not
observing it is 1 − A=A0. The probability of not observing
species i will then be ð1 − A=A0Þni , given the fact that the
positions of individuals are independent. We can then obtain
the average number of species observed in an area A as

hSðAÞi ¼ SðA0Þ −
XS
i¼1

�
1 −

A
A0

�
ni
; ð56Þ

where SðA0Þ ¼ Stot is the total number of species in the
system.
The simple framework of the random placement model also

allows the EAR to be calculated. Using Eq. (51) we obtain

hEðAÞi ¼
XS
i¼1

�
A
A0

�
ni
: ð57Þ

Despite the simplicity of the approximation, the EAR evalu-
ated using random placement captures the quantitative behav-
ior of several observed ecosystems (He and Hubbell, 2011).
Under random placement assumptions, one can obtain the

EAR from the SAR and vice versa. To calculate the EAR in

Eq. (51), we calculated the number of species with zero
individuals in the area complementary to that of interest. This
number is equal to the difference between the number of
species in the whole area and the number of species in the
complementary area. The complementary area has a nontrivial
shape and under general assumptions this quantity is not easy
to calculate. Under the random placement assumption, the
number of species in the complementary area is the SAR of
the complementary area. The EAR is therefore

hEðAÞi ¼ SðA0Þ − SðA0 − AÞ: ð58Þ

He and Hubbell (2011) presented a careful analysis of the
reliability of this extrapolation to predict the empirical EAR
and showed that the random placement approximation
describes the empirical data well.
One can obtain a closed form expression for the EAR and

SAR by starting with a RSA distribution. In the case of a
Fisher log series [see Eq. (18)], the SAR reads

hSðAÞi ¼ SðA0Þ −
X∞
n¼1

θ
rn

n

�
1 −

A
A0

�
n

¼ θ log

�
1þ r

1 − r
A
A0

�
; ð59Þ

which follows from the observation that SðA0Þ is equal to
−θ logð1 − rÞ of Eq. (18). The same calculation can be
performed for the EAR, obtaining

hEðAÞi ¼ −θ log
�
1 − r

A
A0

�
: ð60Þ

In real ecosystems, individuals are not distributed uni-
formly in space but rather, due to dispersal limitation,
individuals of the same species tend to be clustered. This is
confirmed by empirical β-diversity plots (Chave and Leigh,
2002). The phenomenological approach of random placement
can be generalized to a nonuniform distribution of individuals
in space, taking into account the empirically observed spatial
clustering of conspecific individuals (Grilli et al., 2012b).
Individuals are distributed in space via a Poisson cluster
process (PCP). In a PCP, the centers of the cluster of points are
uniformly distributed in space. A random number of points are
distributed around each center according to a given spatial
kernel. The process depends on two distributions: the number
of points in each cluster and the spatial kernel. It is possible to
show (Grilli et al., 2012b) that these two distributions may be
related to the RSA and the β diversity. An analytical formula
for the SAR and the EAR can therefore be obtained given the
RSA and the β diversity. This approach reproduces the
S-inverted shape observed in empirical systems, showing that
this shape can be explained simply in terms of spatial
correlations of conspecific individuals.

B. Spatial stochastic processes

There are two possible ways to include space in a neutral
stochastic model, either implicitly or explicitly.
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1. Spatially implicit model

Spatially implicit models are based on the observation that
one can relate the sample area A to the total number of
individuals J (Hubbell, 2001), given that J ¼ ρA, where ρ is
the density. One can therefore obtain species-area curves in
nonspatial models, looking at the scaling of the number of
species S with the number of individuals J. Spatial implicit
models can thus be thought of as mean-field “well-mixed”
models, where one can neglect dispersal limitation.
In a metacommunity the number of species hϕðnÞi of a

population n is a Fisher log series (see Sec. II)

hϕðnÞi ¼ θ
rn

n
; ð61Þ

where r is the ratio of the birth to death rate. The
average number of individuals in the metacommunity is JM ¼
θr=ð1 − rÞ and the expected number of species can be easily
computed

hSðJMÞi ¼ θ
X∞
n¼1

rn

n
¼ −θ logð1þ rÞ ¼ θ log

�
1þ JM

θ

�
:

ð62Þ

This result corresponds exactly to that found using the random
placement in Eq. (59). At small sample sizes, the number of
species JM ≪ θ is equal to the number of individuals
hSðJMÞi ¼ JM. In other words when small areas are sampled
the individuals belong to different species and the number of
species grows along with the number of individuals. With
larger sample sizes, the number of species JM ≫ θ grows
logarithmically with the number of individuals. This approach
allows one to calculate the SAR directly from the RSA
distribution and it is clearly applicable to any RSA
distribution.
Real ecosystems are of course spatially explicit, but one

might wonder how spatially implicit models or, more
generally, models that do not consider space explicitly,
are predictive and how their parameters are related to

spatially explicit ones. A way to assess this is to measure
the efficacy of nonspatial models in predicting the behavior
of spatially explicit models (Etienne and Rosindell, 2011).
As expected, nonspatial models have a good predictive
power when the dispersal lengths are sufficiently large and
they are particularly good in predicting nonspatial patterns
such as the RSA.

2. Spatially explicit model

Spatially explicit models are typically defined as birth-
death-diffusion processes. A model is fully specified given a
ME and can be obtained in several ways, i.e., it is possible
to write several different MEs that include space in a neutral
model. The ME is not tractable analytically and one has to
introduce approximations in order to get analytical results.
Spatially explicit models are particularly difficult to solve
because of the lack of detailed balance (see Sec. II).
The voter model (Holley and Liggett, 1975) was origi-

nally introduced to describe opinion formation, whereby
voters are located in a network and each one has one
opinion among q possibilities. In ecological applications,
voters become individuals and their opinion corresponds to
the species they belong to (Durrett and Levin, 1996). An
individual (voter) is chosen at random and is replaced by a
copy of one of its neighbors (see Fig. 8). This process has
an absorbing state, because when a species disappears there
is no way to introduce it again. In the long run, the system
is populated by only one species. In order to overcome this
problem, one can introduce the possibility of new species
entering the system (Durrett and Levin, 1996; Zillio et al.,
2005), a model we will refer to as the MVM with
speciation.
Consider a lattice of d dimensions (for a typical ecological

landscape d ¼ 2), where a is the lattice spacing with exactly
one individual at each site (ad is the average volume occupied
by one individual), and a total number of N individuals. At
each time step, one individual chosen at random is removed
and is replaced with a copy of one of its neighbors with a
probability 1 − ν, or with an individual of a species not already
present in the system with a probability ν. The case ν ¼ 1 is

FIG. 8. Microscopic moves of the multispecies voter model in a 2D lattice and with a nonregular network (Carrara et al., 2012). In the
2D structure, each site is occupied by one and only one individual, whose color represents the species it belongs to. At each time step,
one random individual is replaced by a daughter of one of its neighbors with probability 1 − ν (black lines). The probability that a
speciation event occurs is ν, wherein the individual is replaced by an individual of a new species (red lines). In the case of a nonregular
network (right panel), the number of neighbors depends on the site considered.
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trivial, whereas the case ν ¼ 0 has an absorbing state, i.e., a
state where a single species is present. The MVM is clearly a
neutral model, and the microscopic dynamics is the same for
all species. It is also a zero-sum process, because the total
number of individuals J is conserved. The mean-field version
of the voter model, where the neighbors of each node are all
the other nodes, is governed by the ME (6), with the transition
rates given by Eqs. (20) and (21).
We want to write an equation for FðrÞ (the probability

that two individuals picked at random at a distance r belong to
the same species). Assuming translational invariance, one
obtains

FðrÞtþ1 ¼ FðrÞt
�
1 −

2

N

�

þ 1 − ν

dN

Xd
μ¼1

½Fðrþ êμÞt þ Fðr − êμÞt�; ð63Þ

where FðrÞt is the probability that two individuals separated
by r at time t belong to the same species. The solution is
obtained with the boundary condition Fð0Þt ¼ 1.
The stationary solution of Eq. (63) can be obtained from a

Fourier series in the continuum limit, by taking the limit of
a → 0, N → ∞, and ν → 0, and constraining γ2 ¼ 2dν=a2 to
be a constant. In this way one obtains (Zillio et al., 2005) the
following second order differential equation:

∇2FðrÞ − γ2FðrÞ þ cδdðrÞ ¼ 0; ð64Þ

where δd is the d-dimensional Dirac delta, and whose
solution is

FðrÞ ¼ cγd−2

ð2πÞd=2 ðγrÞ
ð2−dÞ=2Kð2−dÞ=2ðγrÞ; ð65Þ

where KzðrÞ is the modified Bessel function and c is a
constant such that

R
r<a d

drFðrÞ ¼ 1 with a being the average
distance between neighboring trees. By using the properties of
KzðrÞ, one finds that in one dimension the solution is
FðrÞ ¼ cξ expð−r=ξÞ=2, with ξ ¼ γ−1. Interestingly, the exact
solution in the (1D) discrete lattice is Fx ¼ expð−x=ξÞ, where
x ¼ 0; a; 2a;… and

ξ

a
¼

�
log

1 − ν

1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
νð2 − νÞp �

−1
; ð66Þ

with a being the lattice spacing. Equation (66) converges to
ξ ¼ γ−1 in the continuum limit. The correlation length
depends only on the speciation rate ν and it grows as
1=

ffiffiffi
ν

p
when ν → 0, a limit that is distinct from the special

case ν≡ 0, in which at stationarity a single species is present
across the whole finite lattice (monodominance). The β
diversity obtained in Eq. (65) was shown to be in good
agreement with empirical data from different forest censa
(Chave and Leigh, 2002). The prediction could be improved
taking into account the Janzen-Connell effect (Zillio
et al., 2005).

It is possible to obtain interesting results on the SAR via
extensive numerical simulations. In the case of NT, one can
take advantage of the coalescent approach (Kingman, 1982;
Rosindell, Wong, and Etienne, 2008). Instead of simulating
the stochastic dynamics directly, one can reconstruct the
genealogy of the individuals in the sample area by regressing
in time. The main value of this method is that there is no need
to wait for any transient state to decay and, therefore, this
approach is much faster than forward dynamics (Rosindell,
Wong, and Etienne, 2008) as well as allowing infinite land-
scapes to be simulated.
The coalescent approach has been applied to the MVMwith

a different dispersal kernel (Rosindell and Cornell, 2007).
Instead of a nearest-neighbor diffusion, once an individual is
removed it is replaced by the offspring of another individual
with a probability that depends on its distance from the
individual removed. In an infinite landscape, the SAR shows
the characteristic inverted-S shape. The model depends only
on two parameters (up to a choice of the functional form of the
dispersal kernel): the speciation rate ν and the dispersal length
ξ. The SAR scales as

hSðA; ξ; νÞi ¼ ξrSðAξ−r; νÞ; ð67Þ

where the exponent r is independent of ν and very close to 2
(as expected by dimensional analysis). The exponent z of the
power-law regime can be calculated as the derivative of the
curve evaluated at the inflection point of the SAR (in log-
log scale), i.e., the minimum value of d logðSÞ=d logðAÞ.
Additional simulations (Pigolotti and Cencini, 2009),
obtained with a wider spectrum of speciation rates, suggests
a logarithmic relationship

z ¼ 1

qþm logðνÞ ; ð68Þ

where q and m are two real parameters, which confirms the
original prediction of Durrett and Levin (1996). This inverse
logarithmic trend seems very robust and it has also been
observed in other spatial models (Cencini, Pigolotti, and
Muñoz, 2012). Indeed, it was shown that power-law dispersal
kernels better fit data than other short-ranged kernels
(Rosindell and Cornell, 2009), whereby the estimation of
the speciation rate corresponding to a given value of the
exponent gives much smaller values.
An attempt to connect spatial and temporal patterns can be

found (Bertuzzo et al., 2011), where the persistence-time
distribution was studied in MVM (see Sec. III.E). It was
shown that the empirical persistence-time distribution is
consistent with that predicted by MVM and

pðtjAÞ ∼ t−αe−t=τðAÞ; ð69Þ

where τ is the average time of persistence in an area A. The
exponent α is universal and depends only on the dimension of
the system, while the time scale τ is a function of the sampled
area. Empirically, the time scale τ scales with the area as Aβ. In
the MVM τ ¼ 1=ν. Using this fact and that the rate of
appearance of a new species is λ ¼ νN ∼ νA, one can relate
these quantities with the SAR. Indeed, the SAR is the product
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of the rate of appearance of new species and their average
persistence time

SðAÞ ¼ λhti ∼ A1−βðα−1Þ: ð70Þ

Here we assumed that hti ∼ τ2−α to obtain a scaling relation-
ship that connects the exponent z and the other exponents
z ¼ 1 − βðα − 1Þ. This allows spatial patterns to be connected
with temporal ones in a manner consistent with the empirical
patterns shown in Fig. 6.

C. Environmental fragmentation and habitat loss

Resources are not equally distributed and, even over small
scales, their distribution in space is far from uniform. This
spatial heterogeneity affects the distribution of individuals and
species in space and has clear implications for the conserva-
tion of ecosystems. The space within which ecosystems are
embedded is often fragmented and a species may be present in
only part of the landscape. Moreover, different patches are not
independent but they are rather connected via immigration.
In the absence of speciation, the voter model (Holley and

Liggett, 1975) predicts monodominance in dimension d ≤ 2.
Spatial heterogeneity can be modeled as quenched disorder
(Borile, Maritan, and Muñoz, 2013) and when two species are
considered, it is postulated that different locations on a lattice
prefer one species over the other. At each site i, a binary
variable σi resides that takes values of �1, depending on
which species is present. Spatial heterogeneity can be mod-
eled as a quenched external field τi, which also takes values
�1, and the dynamics are fully specified by the transition rates

W½σi → −σi� ¼
1 − ϵτiσi

2z

X
j∈∂i

ð1 − σiσjÞ; ð71Þ

where ∂i is the set of nearest neighbors of i, and z is the size
of this set. The quantity ϵ measures the strength of the
preference. The main result from this model (Borile,
Maritan, and Muñoz, 2013) was that this randomness enhan-
ces the coexistence of species. Indeed, if ϵ is larger than
ϵc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ð2þ NÞp

, species coexist in any dimension in the
limit of a large system. One can introduce the quantity ϕ ¼
ð1=NÞPiσi and if coexistence occurs hϕ2i < 1, whereas this
quantity tends to 1 otherwise. It was shown that (Borile,
Maritan, and Muñoz, 2013) for small ϵ

PðϕÞ ∝ expf−ðN=2Þ½ϵ2=ð1 − ϵ2Þ�ϕ2g
ð1 − ϵ2Þð1 − ϕ2Þ þ 2ν

; ð72Þ

where a small mutation rate [ν ≪ 2=ð2þ NÞ] was introduced
to regularize the solution. If ϵ > ϵc, then the average hϕ2i < 1,
i.e., coexistence is stable.
NT has also been applied to predict the extinction rate of

species after habitat loss (Halley and Iwasa, 2011). Habitat
loss corresponds to a reduction of the area available and
therefore to the total number of individuals. When this area is
destroyed, the endemic species suddenly disappear and what
follows is a delayed series of extinctions due to habitat loss.
The community was modeled as a neutral assembly of species

and a typical time scale of extinctions was obtained, along
with its dependence on the number of species and the habitat
destroyed. The predictions obtained in this way reproduced
the available data of avifaunal extinctions well (Halley and
Iwasa, 2011).

V. BEYOND NEUTRALITY

A. Reconciling neutral and niche theory

The concept of a niche is central in classical ecology
(MacArthur and Wilson, 1967; Chesson, 2000; Chase and
Leibold, 2003). An ecological niche is “the requirements of a
species for existence in a given environment and its impacts on
that environment” (Chase and Leibold, 2003) and it describes
how an organism or a population responds to changes in
resources, competitors, and predators. A possible mathemati-
cal realization of the concept of a niche is the Hutchinsonian
niche, which involves a n-dimensional hypervolume, where
the axes are environmental conditions or resources. A position
in this space represents a set of behaviors and traits character-
izing a species or a group of individuals. In niche theory much
relevance is given to the specific traits of species and their
interdependence. A central concept in niche theory is com-
petitive exclusion, which states that two species cannot
occupy the same niche, as two identical, yet distinct species,
cannot coexist for an indefinite time.
The mathematical representation of an ecological commu-

nity that includes niche aspects typically coincides with the
Lotka-Volterra equations. In this case, the focus is on the
properties of the fixed points (or other dynamical attractors) of
these systems of equations and the typical problem that is
analyzed is their stability, in relation to the parameters and the
species present in the system.
The main difference between neutral and niche theory

therefore depends on which mechanism plays the main role in
shaping ecosystems (Jeraldo et al., 2012). Neutral theory
assumes that random processes, such as dispersal, demo-
graphic stochasticity, speciation, and ecological drift, have a
stronger impact on many of the observed patterns than niche
differences. Niche theory assumes the opposite, that the
quantitatively important processes are related to differences
in species and their interdependence.
As we might expect in a real ecosystem both stochasticity

and niche differences play a role, and it is natural to try to
quantify how neutral behavior emerges from a niche model. In
many cases, niche-based and neutral models yield compatible
fits of biodiversity patterns (Chave, Muller-Landau, and
Levin, 2002; McGill, 2003; Mouquet and Loreau, 2003;
McGill, Maurer, and Weiser, 2006), and it is impossible to
distinguish between the mechanisms by looking at those
patterns. As pointed out by Adler, HilleRisLambers, and
Levine (2007) neutrality emerges when species have the same
or very similar fitness.
Neutrality has often been proposed to emerge under some

conditions from models considering niche differences (Gravel
et al., 2006; Haegeman and Loreau, 2011; Noble, Hastings,
and Fagan, 2011), and neutrality and niche theory were
proposed to be the extremes of a more general model
(Gravel et al., 2006; Haegeman and Loreau, 2011). In both
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cases, a Lotka-Volterra equation is introduced to describe
community dynamics, while population dynamics is modeled
by also taking into account demographic stochasticity and
immigration. By considering different values of parameters,
one can move from a scenario where species differences
matter a lot and the stable configuration is very close to the
solution of the deterministic Lotka-Volterra equation to a
scenario where demographic stochasticity is more important
and the community behaves like a neutral community. A
slightly different approach has also been considered (Fisher
and Mehta, 2014), analyzing a stochastic version of Lotka-
Volterra dynamics and quantifying, when stochasticity is
varied, the difference between the prediction of the neutral
model with the full model. In this case, instead of a continuum
of strategies, neutral and niche regimes are two macroscopic
phases separated by a phase transition. Others have also
incorporated neutral and non-neutral features within the same
framework (Etienne and Olff, 2004a; Kessler and Shnerb,
2015): species with comparable sizes were considered func-
tionally equivalent, thereby entailing a neutral dynamics; and
parameters such as speciation, dispersal, and populations of
organisms of distinct sizes were obtained from allometric
scaling laws. With this approach, Etienne and Olff (2004a)
were able to explain why species richness reaches a maximum
at intermediate body size.
A different approach was based on effectively considering

niche theory as a model where per-capita death and birth rates
are species dependent (Borile et al., 2012). In this case, one
might expect the difference between species abundances to
reflect the differences between these parameters. More pre-
cisely, in a neutral scenario, all the species fluctuate around a
given abundance value, while when niche characteristics play
a role, each species fluctuates around its own distinct value of
abundance. A third scenario was proposed (Borile et al.,
2012), wherein the per-capita birth and death rates do not have
a monotonic effect on species abundance. The symmetry
between species, due to the neutrality of the process, can yet
be spontaneously broken. In this case, the stable states are not
symmetric in terms of species abundance.
So far macroevolutionary patterns such as phylogenetic

trees have not been a major focus in NT. However, there is
evidence that NT is not able to satisfactorily capture phylo-
genetic diversity (Davies et al., 2011). Multiple patterns of
evolutionary history in bacterial communities seem to deviate
from the predictions of NT (O’Dwyer, Kembel, and Sharpton,
2015). However, recent models which incorporate either
neutral population dynamics into the cladogenesis
(Manceau, Lambert, and Morlon, 2015) or a mild selection
into an otherwise neutral model (Rosindell, Harmon, and
Etienne, 2015) are able to slow down the diversification
process as well as match phylogenies observed in nature.
These represent promising developments, which can improve
and broaden the spectrum of predictions of NT.

B. Emergent neutrality

Ecologists have highly criticized NT because of its unre-
alistic assumptions. The patterns that we have studied so far
can in fact be explained without introducing species
differences, and this has led some ecologists to oppose NT

because it assumes that nature is actually governed by neutral
processes, whereas it is not. Clearly, no one believes that
nature is truly neutral. The patterns of community ecology are
actually generated by a cocktail of processes, and it is both
inappropriate and dangerous to consider processes in isolation
from a macroecological pattern or empirical data set.
However, it is informative to study whether, how, and which

ecological processes can drive a community toward a state in
which demographic stochasticity and immigration play a
crucial role in the face of strong species’ differences that
are dictated by classical competitive exclusion. Such a state
should allow similar species to emerge in the niche space with
the ability to coexist for sufficient time. Indeed, when this
problem was studied, it was shown that species can evolve
into groups of relatively more similar species that coexist for
very long times (Scheffer and van Nes, 2006). A large number
of species were placed at random along a hypothetical niche
axis, which represents a specific trait, assuming that inter-
specific competition can be calculated through niche overlap.
Running a classical Lotka-Volterra competition model and
studying evolution, groups of multiple species were evident
that aggregated around similar values in the niche axis and
they could coexist for many generations before the majority of
them head toward an inexorable extinction. Eventually, only
one species survives from each group, producing the expected
pattern of single species equally spaced in the niche space.
In other words, the niche similarity of species prevents

competitive exclusion from swiftly selecting the best com-
petitor among a group of similar species, allowing their
coexistence for very long times even though only the superior
species will ultimately persist.
This model may be considered as one of the possible steps

toward a reconciliation of niche and neutral theories. Species
that are initially ecologically nonequivalent, and that therefore
behave in a non-neutral fashion, are driven by community and
evolutionary processes toward states in which the dynamics
may well be better approximated by neutral models over
appropriate spatial and temporal scales. More recently, further
support for this approach came from showing that the model
can produce multimodal RSAs (Vergnon, van Nes, and
Scheffer, 2012). Immigration may also be an important
component in the neutral-like behavior of communities
(Gravel et al., 2006; Holt, 2006). Parasitoids competing for
a common species (Bonsall, Jansen, and Hassell, 2004) have
been used to show that clusters of species separated by gaps
emerge along the niche axis, confirming—using a quite
different approach—that processes exist that can lead com-
munity dynamics to be effectively neutral (Purves
et al., 2005).
The basic Lotka-Volterra model has been extended to

investigate the possibility that some processes decrease the
risk of competitive exclusion so that species lumps are not
only transient, but ultimately permanent (Scheffer and van
Nes, 2006). Density-dependent regulation was introduced that
stabilizes the coexistence of species within a group. This
approach unfortunately has a drawback that the mechanism
introduces a discontinuity in the competition strength of the
species (Barabás et al., 2013), which means that unmodeled
species differences may be responsible for coexistence in the
community. However, it has been shown that more realistic
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density-dependent terms, or even other mechanisms [e.g.,
migration (Vergnon et al., 2013)], can eliminate this problem,
making the approach more robust (Vergnon, van Nes, and
Scheffer, 2013).

C. Maximum entropy models

The maximum entropy principle is a useful method to
obtain the least biased information from empirical measure-
ments (Jaynes, 2003). This powerful tool, borrowed from
statistical mechanics, has a wide range of applications
(Banavar, Maritan, and Volkov, 2010), including ecology
(Banavar, Maritan, and Volkov, 2010; Harte, 2011). In its
ecological application, the Max Ent principle is an inference
method (Chayes, Chayes, and Lieb, 1984) used to evaluate the
effective strength of interactions among species based on
either species-abundance data (Volkov et al., 2009) or simply
the presence or absence of the species (Azaele et al., 2010).
This methodology provides a way to systematically incorpo-
rate the most important species interactions into the develop-
ment of a theory beyond the purely noninteracting case. In
addition, the Max Ent principle was implemented as a method
to predict biodiversity patterns across different spatial scales
using only the information on local interactions (Harte, 2011;
Adorisio et al., 2014). Here we discuss the extension of Max
Ent to the study of spatial biodiversity patterns. Consider an
ecosystem in which S species (belonging to the same trophic
level, see Table II) live within a given area A, divided into N
adjacent sites of equal area. Let us assume that there are
empirical records of the species contained within each site.
From these data one can calculate, for example, the average
presence of any species in the ecosystem and the co-occur-
rence of any pair of species in neighboring sites. When
applying Max Ent, we can consider these mean occurrences
and co-occurrences as given constraints. We introduce the
binary random variable σαi , which records the occurrence of
species α ¼ 1;…; S at each site i ¼ 1;…; N. If species α is
present in plot i, then σαi ¼ 1, otherwise σαi ¼ 0. Therefore the
“state” of any species α can be characterized by the random
vector σα. There is empirical evidence that species belonging
to the same trophic level interact weakly (Veech, 2006; Volkov
et al., 2009; Azaele et al., 2010) and therefore, in a first
approximation, one may assume that species occur in a
given geographical location independently of one another.
Because of such independence, the probability of finding the
system in the configuration σ ¼ ðσ1; σ2; ::; σSÞ is thus
PðσÞ ¼ Q

S
α¼1 pαðσαÞ, where pα gives the probability dis-

tribution of finding a species α in the configuration σα. In
order to build the Max Ent model, we maximize Shannon’s
entropy H¼−

P
σ1 ���

P
σSPðσÞlnPðσÞ¼−

P
α

P
σαpαðσαÞ

lnpαðσαÞ, imposing the average occurrence constraint,
i.e., hMi ¼ P

α

P
σα pαðσαÞMαðσαÞ with MαðσαÞ ¼

P
iσ

α
i ,

and the average co-occurrence constraint, i.e., hEi ¼P
α

P
σα pαðσαÞEαðσαÞ with EαðσαÞ ¼

P
ði;jÞσαi σ

α
j , where

ði; jÞ indicates two nearest neighbor locations. Both hMi
and hEi are meant to match the corresponding empirical
averages, as calculated from the empirical records of species
contained in the region. Maximization (Adorisio et al.,
2014) provides an expression for the probability pα of
finding a species α in the configuration σα. Thus,

pαðσαÞ ¼
eJαEαðσαÞþhαMαðσαÞ

Zα
; ð73Þ

where Zα ¼ Zαðhα; JαÞ is the partition function. From
Eq. (73) one can characterize the spatial biodiversity
patterns of the ecosystem, i.e., calculate the SAR or the
EAR (Adorisio et al., 2014). This type of approach may
well be suited to infer biodiversity properties of commun-
ities over larger spatial scales by upscaling the model results
at local scales. However, only a few studies have tackled
this problem (see Sec. VI).

VI. OPEN PROBLEMS AND FUTURE CHALLENGES

In this section, we consider how one might advance theory
in terms of adding essential details without making the system
unnecessarily complex or having an explosion of species-
specific parameters. What is the relative importance of species
traits, their interactions, and spatial and environmental effects?
Throughout this review, we have treated the total number of
species and the total number of individuals as parameters
which are provided as input. How would one determine and
predict these parameters? A mechanistic explanation is needed
for why one region may be more biodiverse than another, what
sustains biodiversity, and how evolutionary pressures sculpt
ecological communities.

A. Analytical spatially explicit models

At the moment, we do not have a spatially explicit theory
that can analytically predict the most important ecological
patterns. This would be important, because it would allow us
to understand what drives biodiversity across spatial and
temporal scales. Indeed, it is likely that biological processes
are not equally important across scales. As evident in particle
physics, we might eventually find that ecosystems will need to
be described by different effective theories according to the
range of scales in which we are interested. In a pioneering
paper, which received great interest, a ME was proposed that
seemed to permit analytical calculations of the SAR
(O’Dwyer and Green, 2010). Indeed, an analytical expression
for the SAR was obtained. However, the promised solution
was neither correct, nor was it an approximation of the actual
SAR (Grilli et al., 2012a). The main technical difficulty
preventing an analytical solution was that the model was
inherently out of equilibrium. Detailed balance, which is the
condition that makes the calculation of stationary probabilities
possible, did not hold (Grilli et al., 2012a). The time is ripe for
explorations of this kind. The challenge is to develop new and
powerful techniques in nonequilibrium statistical mechanics.
Others have applied NT to study biodiversity patterns on river
networks. By exploiting the network connectivity of such
dendritic landscapes (Carrara et al., 2012), they were able to
explain several empirical large-scale spatial biodiversity
patterns (Muneepeerakul et al., 2008, 2011; Carrara et al.,
2014) and show how changes in riverine ecosystems may
impact the spread of species and local species richness (Lynch
et al., 2011; Mari et al., 2014).
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B. Linking different macroecological patterns

Over the last few decades, ecologists have come to appre-
ciate the importance of spatial patterns and processes, and the
explicit introduction of space has the potential to revolutionize
what we know about natural populations and communities
(Tilman and Kareiva, 1997; Storch et al., 2007). It has become
apparent that key ecological patterns, such as SAR, RSA, and
spatial patterns of species distributions and turnover, are
intimately intertwined and scale dependent (see Fig. 1).
However, despite a plethora of models that address spatial
patterns, only a few practical methods have been proposed to
link them across different scales. Specifically, spatial
approaches (Plotkin et al., 2000; McGill and Collins, 2003)
lack the needed analytical machinery, whereas most theoretical
approaches are not spatially explicit or sufficiently flexible
(Harte et al., 2008; Volkov et al., 2009). Even neutral theory
was conceived to reflect the idealized behavior of natural
systems at equilibrium, rather than to reflect nonpristine
landscapes produced by environmental change or management
(Hubbell, 2001). Therefore, a general methodology is required
to predict and link these ecological patterns across scales that is
sufficiently robust and flexible to allow its application to a
range of natural or managed systems. One possible way to
tackle this challenging problem is through a theoretical
framework inspired by ideas coming from phenomenological
renormalization (Azaele et al., 2015). The fundamental
assumption at the core of this theoretical setting is that the
functional form of the RSA remains the same across all spatial
scales, even though the parameters of the curve are likely to
vary. Because of this assumption, the spatial dependence of the
abundance distribution can be obtained by making the RSA
parameters suitable functions of scale. Together with the
functional shape of the RSA, the other model input is the
spatial PCF, which describes the correlation in species’
abundances between pairs of samples as a function of the
distance between them (Zillio et al., 2005; Azaele et al., 2009).
If populations were randomly distributed in space, distinct
communities would on average share the same fraction of
species regardless of their spatial separation, and therefore the
PCF would not depend on distance. In contrast, in highly
aggregated communities correlations in abundance would fall
off steeply with increasing distance. The PCF not only
measures the rate of turnover in species composition but it
also reflects the variation of population clustering across scales,
given that the variance in species abundances at any particular
scale can be calculated directly from the PCF (Azaele et al.,
2015). Therefore, the PCF is related to the spatial species-
abundance distribution. Thus, the PCF can link the effects of
aggregation, similarity decay, species richness, and species
abundances across scales. Building on the intrinsic relationship
among these patterns, while accounting for spatial correlations
with fidelity, is critical for predicting the biodiversity profiles
across scales when information on a limited number of fine-
scale scattered samples is available (Ter Steege et al., 2013; Slik
et al., 2015). The explosion of publicly available large-scale
biodiversity data for paradigmatic ecosystems such as the
Amazonian forest (ter Steege et al., 2015) and ocean plankton
(Bork et al., 2015) makes this problem one of the most exciting
scientific challenges in this field.

C. Environmental noise

Most neutral (symmetric) models are solely governed by
the underlying stochastic birth-death process and do not take
into account any environmental stochasticity (Kalyuzhny
et al., 2014). Recently it was shown that environmentally
induced variations of the demographic rates dominate the
long-term dynamics and have an important impact on some
dynamic properties [such as age-size relationships and species
extinction time (Kessler et al., 2015)], while not affecting the
already good accord of neutral models with ecological static
patterns (such as the RSA) (Kalyuzhny, Kadmon, and Shnerb,
2015). However, analytical results on neutral (symmetric)
models for ecological communities subject to correlated
environmental noise are mainly missing [although some
recent results have been obtained for white noise (Kessler
et al., 2015; Melbinger and Vergassola, 2015)], incentivizing
physicists to explore these paths.

D. Multitrophic ecosystems: Ecological networks

Although we are progressing in understanding the suit-
ability and limits of noninteracting and nonspatial models,
most neutral models still assume that species interact ran-
domly with each other. However, a network approach to
modeling ecological systems provides a powerful representa-
tion of the interactions among species (Paine, 1966; Bastolla
et al., 2009; Suweis et al., 2013). Ecological networks may be
viewed as a set of different species (nodes) and connections or
links (edges) that represent interspecific interactions (e.g.,
competition, predation, parasitism, and mutualism). The
architecture of ecological interaction networks has become
a bubbling area of research, and it seems to be a critical feature
in shaping and regulating community dynamics and structure
diversity patterns (Allesina and Tang, 2012; Allesina et al.,
2015). An important step relevant for multitrophic systems
will be to obtain a general framework within which a network
of preferences or disfavors modifies the birth and death rates
of different species and can be superposed on neutral models
(like the voter model presented in this review). Recent studies
of ecological networks have considered the exciting task of
anticipating critical transitions in such systems and to design
structures that are less vulnerable to collapse (Scheffer et al.,
2012; Suweis and D’Odorico, 2014). Connecting stochastic
quasineutral models, ecological networks, and critical tran-
sitions within a unified theoretical framework is an important
challenge as it will enhance our capacity to understand and
thus manage the crucial interplay between ecological dynam-
ics and species interactions.

VII. CONCLUSIONS

In this paper, we have attempted to describe some of the
theoretical frameworks that can be used to understand key
issues related to biodiversity and that will serve to address
important questions. These frameworks are necessarily
elementary and incomplete, yet they have the advantage of
being tractable and related to the central issues. Unlike
standard approaches to more traditional physics, here the
Hamiltonian function or the interactions among the
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components are completely unknown and even identifying the
state variables may sometimes be a nontrivial task. We have a
fleeting picture of what an ecosystem is and it is not
necessarily in equilibrium. We have little knowledge of the
myriad degrees of freedom and their interactions. The real
challenge is to discern the most essential degrees of freedom
and to develop a framework to understand and predict the
emergent ecological behavior.
The basic message of this review is that to resolve these

challenging problems, ideas and techniques must be recruited
from different disciplines. We are still at the beginning of this
adventure. Moving forward is not only important but it is also
urgent. The pressures of habitat destruction, pollution, and
climate change are having highly undesirable consequences
on the health of ecological communities. To address practical
issues related to conservation biology, we need models that
can be used across scales in order to extrapolate information
on biodiversity from accessible regions to inaccessible yet
important scales. There is plenty of room for ideas that matter,
and community ecology can greatly benefit from the con-
tribution of other disciplines, including physics.
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APPENDIX A: DENSITY DEPENDENCE AND
ASSEMBLING OF LOCAL COMMUNITIES

In this Appendix, we present an alternative method to
introduce density dependence and how ecosystems emerge by
assembling local communities.
First, one can set bkðnÞ ¼ bðnþϒkÞ (for the kth species)

and dðnÞ ¼ dn, where ϒk incorporates the effects of both
intraspecific interactions, such as those giving rise to density
dependence, and the immigration occurring from a metacom-
munity. This approach can be applied to two distinct ecosys-
tems: coral reefs and tropical forests.
The steady-state solution of the ME for PkðnÞ yields a

negative binomial distribution:

PkðnÞ ¼ ð1 − rkÞϒk
ΓðnþϒkÞ
ΓðϒkÞ

rnk
n!

ðA1Þ

with a mean hnki ¼ rkϒk=ð1 − rkÞ, where Γ is the gamma
function.
The number of species containing n individuals is given by

ϕn ¼
P

S
k¼1 In;k, where In;k is a random variable that is 1 with

a probability PkðnÞ and 0 with a probability 1 − PkðnÞ. Thus,
the RSA is given by

hϕni ¼
XS
k¼1

In;k ¼
XS
k¼1

PkðnÞ ¼ θ
rn

n!
ΓðnþϒÞ; ðA2Þ

where θ ¼ S=½ð1 − rÞ−ϒ − 1�Γ½ϒ� is the biodiversity param-
eter (Hubbell, 2001), and we dropped the k dependence
because of the symmetric hypothesis. For a small ϒ, the
RSA for the communities resembles the Fisher log series and
it does not have an interior mode.
Note that a nontrivial k dependence might arise even under

the neutral hypothesis. For example, one can set ϒk ¼ ~mpk,
where ~m is a measure of the immigration rate from the
metacommunity, in units of the birth rate b and pk is the
fraction of individuals in the surrounding metacommunity
belonging to the kth species. As a result, one can obtain the
following RSA for the community of tropical forests:

hϕni ¼ θ
xn

n!

Z
∞

0

Γðyþ nÞ
Γðyþ 1Þ e

−ωydy≡ θ
xn

n!
fðn;ωÞ; ðA3Þ

where ω ¼ θ= ~m − lnð1 − xÞ. This approach provides a vir-
tually indistinguishable fit to the empirical data as

hϕni ¼ θ
xn

nþ c

considered earlier with the advantage of having ecologically
meaningful parameters.
The average number of species observed in the local

community is

Sobs ¼ hSi ¼ S − hϕ0i ¼
XS
k¼1

ð1 − rÞ−ϒ ¼ S½1 − ð1 − rÞϒ�.

ðA4Þ

If the sample considered has JL individuals, and thus the
community dynamics obeys the zero-sum rule (i.e., it has a
fixed total population), then the multivariate probability
distribution is

PðnjJLÞ ¼ N
YS
k¼1

PkðnÞδðJL − n1 − n2 − � � � − nSÞ

¼
�
JL þP

kϒk − 1

JL

�−1 YS
k¼1

�
nk þϒk − 1

nk

�

× δðJL − n1 − n2 − � � � − nSÞ ðA5Þ

that is a compound multinomial Dirichlet distribution where
N is the normalization constant.
Metacommunity composition: Now let us gradually assem-

ble the metacommunity of coral reefs by considering it as an
assemblage of local communities. Let us start by considering
the joint RSA of two local communities A and B with nA and
nB individuals, respectively. The probability that the species
has n individuals in the metacommunity formed by A and B is
(Volkov et al., 2007)

Sandro Azaele et al.: Statistical mechanics of ecological systems: …

Rev. Mod. Phys., Vol. 88, No. 3, July–September 2016 035003-27



Pðn ¼ nA þ nBÞ ¼
X

nAþnB¼n

PðnAÞPðnBÞ ∝
rn

n!
Γðnþ 2ϒÞ;

ðA6Þ

where the actual spatial locations of the local reef
communities have been neglected (all local communities
are well mixed in the metacommunity, i.e., a mean-field
approximation). The elegant result of the ϒ’s adding to each
other follows ecologically from their interpretation as immi-
gration rates. For the metacommunity, we can introduce
speciation with a rate ν ≪ 1 as we have seen it has a crucial
role when n ¼ 0 (under the assumption of neutrality, the
species label of the new species is of no consequence), i.e.,
ϒk ¼ ν and PðnkÞ ¼ νrn=nþOðν2Þ.
Extending the calculation of the joint RSA distribution to

more and more local communities, it can be shown that the
RSA of the metacommunity is characterized by an effective
immigration parameter Lϒ, where L is the total number of
local communities comprising the metacommunity, and it
becomes log normal like if L ≫ 1, in agreement with the
available data (Volkov et al., 2007).
A Fisher log series is observed in two limiting cases—in the

metacommunity in which there are no immigration events and
in the very small local community that has a high immigration
rate from the metacommunity characterized by a Fisher log-
series RSA.

APPENDIX B: PERSISTENCE OR LIFETIME
DISTRIBUTIONS

In this Appendix, we present the derivation for the
persistence (or lifetime) distribution that leads to the
empirical choice made in Eq. (48). The master equation
we want to solve is

∂Pðn; tÞ
∂t ¼ bðn − 1ÞPðn − 1; tÞ þ dðnþ 1ÞPðnþ 1; tÞ

− ½bðnÞ þ dðnÞ�Pðn; tÞ; ðB1Þ

where the birth rate is bðnÞ ¼ ð1 − νÞn=JM with bð−1Þ ¼ 0,
and the death rate is dðnÞ ¼ n=JM and n ≥ 0. We can
redefine the time scale t → JMt so that the factor 1=JM
disappears from the birth and death rates. As the initial
condition we choose Pðn; t ¼ 0Þ ¼ δn;n0 with the initial
population as n0. Our goal is to calculate the survival
probability defined as

PðtjνÞ ¼
X
n≥1

Pðn; tÞ ¼ 1 − Pðn ¼ 0; tÞ: ðB2Þ

Thus, we introduce the generating function

Gðz; tÞ ¼
X
n≥0

Pðn; tÞzn ðB3Þ

whose radius of convergence is ≥ 1. Note that Gðz ¼
1; tÞ ¼ 1 and Gðz ¼ 0; tÞ ¼ Pðn ¼ 0; tÞ ¼ 1 − PðtjνÞ.
Using Eq. (B1) the time evolution of the generating function
is derived immediately

∂Gðz; tÞ
∂t ¼ ½ð1 − νÞz − 1�ðz − 1Þ ∂Gðz; tÞ∂z ðB4Þ

with the initial condition Gðz; t ¼ 0Þ ¼ zn0 . The previous
equation is a linear partial differential equation and it can be
solved by standard methods. One introduces a function ZðτÞ
satisfying the time evolution equation

dZðτÞ
dτ

¼ −½ð1 − νÞZðτÞ − 1�½ZðτÞ − 1�; ðB5Þ

with a “final” condition Zðτ ¼ tÞ ¼ z. Using Eq. (B4), one
is led to

dG(ZðτÞ; t)
dτ

¼ 0; ∀ τ; ðB6Þ

implying that

Gðz; tÞ ¼ G(ZðtÞ; t) ¼ G(Zð0Þ; 0) ¼ Zð0Þn0 : ðB7Þ

The solution of Eq. (B5), with the chosen final condition
gives

Zðτ ¼ 0Þ ¼ 1 − Aðz; tÞ
1 − ð1 − νÞAðz; tÞ with

Aðz; tÞ ¼ 1 − z
1 − ð1 − νÞz e

−νt
ðB8Þ

and thus

Gðz; tÞ ¼
�

1 − Aðz; tÞ
1 − ð1 − νÞAðz; tÞ

�
n0
: ðB9Þ

Finally, we get the survival probability

PðtjνÞ ¼ 1 − Gðz ¼ 0; tÞ ¼ 1 − ½1þ νðeνt − 1Þ−1�−n0 :
ðB10Þ

In the scaling, if we consider the limit of fixed νt as t
becomes large, we get the scaling form

PðtjνÞ ¼ 1

t
FðνtÞ; ðB11Þ

with

FðxÞ ¼ n0
x

ex − 1
: ðB12Þ

The lifetime distribution is simply given by

pτðtÞ ¼ −dPðtjνÞ=dt ¼ 1

t2
fðνtÞ; ðB13Þ

where the last equality holds in the scaling limit as

fðxÞ ¼ n0ex
�

x
ex − 1

�
2

; ðB14Þ
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which for x → 0 tends to a nonzero constant. As x → ∞,
fðxÞ decays exponentially, leading to the empirical scaling
form of the kind given by Eq. (48).

APPENDIX C: THE SPECIES TURNOVER DISTRIBUTION
WITH ABSORBING BOUNDARY CONDITIONS

In this Appendix, we present another temporal pattern
predicted by the model defined by Eq. (39) or (41). For an
ecosystem at or near stationarity, the model can provide the
exact expression for the STD when using the time-dependent
absorbing solution of Eq. (39): the so-called species turnover
distribution with absorbing boundary conditions. Unlike the
reflecting species turnover distribution, this distribution cor-
responds to a new kind of measure that only accounts for the
species present at the initial time, and it does not take into
account any new species introduced by immigration or
speciation or any old species that reappear after their apparent
extinction until t > 0. This amounts to the selection of a
particular sample and the study of the temporal behavior of
those selected individuals. The species turnover distribution
with absorbing boundary conditions Pabsðλ; tÞ can be
obtained through Eq. (46) where the conditional probability
must now be paðx; tjx0; 0Þ defined as in Eq. (49). The final
expression is

Pabsðλ; tÞ ¼ sinðπb=DÞ
πð1 − b=DÞ

e−t=τðet=τ − 1Þb=D
ðλþ 1Þ2

× 2F1

�
1;
3

2
; 2 − b=D;

4λe−t=τ

ðλþ 1Þ2
�
; ðC1Þ

where b=D < 1. Note that Pabsðλ; tÞ decays exponentially to
zero at a rate ð1 − βÞ=τ, regardless of λ.
It is noteworthy that the STD’s with absorbing and

reflecting boundaries are indistinguishable whenever t ≪ τ
and λ are not too small (for b=D < 1). Since the BCI data are
sampled over relatively short times intervals (at most 10 years),
the distributions are almost the same within the interval
1=2 < λ < 3=2.
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