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Symmetry-protected topological (SPT) phases of matter have been interpreted in terms of anomalies,
and it has been expected that a similar picture should hold for SPT phases with fermions. Here a
description is given in detail of what this picture means for phases of quantum matter that can be
understood via band theory and free fermions. The main examples considered are time-reversal
invariant topological insulators and superconductors in two or three space dimensions. Along the way,
the precise meaning of the statement that in the bulk of a 3D topological insulator, the electromagnetic
θ angle is equal to π, is clarified.
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I. INTRODUCTION

A. Goal of this paper

Symmetry-protected topological (SPT) bosonic phases of
matter can be characterized by anomalies (Chen et al., 2013).
The meaning of this statement is as follows.
A d-dimensional SPT phase is gapped in bulk and has

no topological order in the usual sense: on a compact
d-dimensional spatial manifold M without boundary, it has
a unique ground state. But such a theory is not quite trivial. On
a compact spacetime manifold X of dimension D ¼ dþ 1, in
the large volume limit, in general in the presence of a suitable
background gauge field, and after removing local, nonuni-
versal terms, the partition function of such a theory is a
complex number of modulus 1, ZX ¼ eiΦ. Here eiΦ is the
partition function of a topological quantum field theory T that
is “invertible,” its inverse being the theory with complex
conjugate partition function Z−1

X ¼ e−iΦ.
In this situation, typically eiΦ cannot be defined as a

topological invariant in a satisfactory way—consistent with
all expected symmetries and with physical principles such as
unitarity—if the spatial manifold M (and therefore the
spacetime X) has a boundary. To define the theory T in this
situation, the boundary of M (and X) must be endowed with
additional degrees of freedom of some kind. There are several
possibilities, but the case of interest in this paper is that there
are gapless degrees of freedom along the boundary of M and
X, preserving the symmetries of theory T.
We write B for the theory describing the gapless degrees of

freedom on the boundary of X. This theory has an “anomaly”
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of some kind and does not possess all of the desired physical
properties, since if B were an entirely satisfactory and
symmetry-preserving theory by itself, then including it on
the boundary Y ¼ ∂X of X would not resolve whatever
difficulty there is in defining theory T on X in the first place.
The anomaly in defining theory B on ∂X somehow cancels
the difficulty in defining theory T on X. Thus, this situation
exemplifies, usually in a more abstract way, the idea of
anomaly inflow from the bulk to the boundary (Callan and
Harvey, 1985). For a general mathematical treatment of this
situation, see D. S. Freed (2014). The prototype of this
situation in condensed matter physics is the integer quantum
Hall effect on a two-manifold M with boundary. On M, or
rather on the three-manifold X ¼ R ×M, where R para-
metrizes the time, there is a Chern-Simons coupling of the
electromagnetic vector potential A:

I ¼ kCSðAÞ; CSðAÞ ¼ e2

4π

Z
Y
d3xϵijkAi∂jAk; k ∈ Z:

ð1:1Þ

This coupling is not gauge invariant on a manifold with
boundary, and the associated anomaly is canceled by the
coupling of A to chiral edge modes that propagate on the
boundary. (If these modes all have unit charge, then their
multiplicity is k.) Theory B describes those chiral edge
modes, and its anomaly is the two (spacetime) dimensional
version of the Adler-Bell-Jackiw anomaly for chiral fermions
(Adler, 1969; Bell and Jackiw, 1969).
Some of the most interesting SPT phases studied in recent

years, and observed experimentally in several important cases,
are the topological insulators and superconductors that can be
constructed out of free fermions via band theory. For intro-
ductions and reviews, see Hasan and Kane (2010), Hasan and
Moore (2011), and Qi and Zhang (2011). The crucial
symmetries in these examples are time-reversal symmetry T
and the U(1) symmetry associated with conservation of
electric charge. The purpose of this paper is to understand
these free fermion topological phases of matter from the
standpoint of anomalies and anomaly inflow. Several results in
this direction were obtained previously by Ryu, Moore, and
Ludwig, 2010, where it was conjectured, correctly, as will
become clear, that a fuller picture would result from consid-
eration of global anomalies. In analyzing this problem, we
make use of index theory, applied to fermion path integrals.
This is not surprising, since the free fermion phases can be
classified via K theory (Kitaev, 2009) [or by classes of
matrices, which are related (Ryu et al., 2010)], and index
theory was invented (Atiyah and Singer, 1963, 1968) as the
analysis associated with K theory.
We should say at the outset that a few of our considerations

are somewhat fanciful from the point of view of condensed
matter physics. We work in a relativistic framework in which
one can consider a theory on an arbitrary D-manifold X, with
spatial boundary Y. As in most studies of anomalies, it is
technically convenient to take X to have Euclidean signature,
and we do so. The relativistic framework is available because
the boundary fermions of the standard topological phases are
governed by Dirac-like equations with an emergent relativistic

symmetry, but relying on it is unnatural from the point of view
of condensed matter physics. Perhaps it is possible to interpret
our results in a Hamiltonian framework more natural for
condensed matter physics, but we will not try to do this.
Experience seems to show that gapped condensed matter
systems are frequently governed by fully relativistic theories,
but this is not fully understood.
Also, because of their emergent relativistic symmetry, the

boundary fermions we study inevitably possess an emergent
symmetry that in D ¼ 4 is usually called CPT (where C is
charge conjugation and P is parity or spatial inversion).
However, this formulation is not valid for odd D (even spatial
dimension d), since in that case P is contained in the
connected part of the spatial rotation group and should be
replaced by an operation that reverses the orientation of space.
To use a language that is equivalent to the usual CPT
statement for even D but is uniformly valid for all D, we
refer instead to CRT symmetry, where R is a reflection of one
spatial coordinate. CRT symmetry is always valid in a
relativistic theory of any dimension, so, although not very
natural in condensed matter physics, it is an emergent
symmetry of the usual gapless fermions on ∂X for all of
the usual free fermion phases. This will be used at some
points, notably in Sec. III.G to describe the topological
quantum field theory associated with a topological insulator
in 2 space dimensions.
Actually we have been a little imprecise in this Introduction

in speaking of topological quantum field theory (TQFT).
Theories studied in this paper contain fermions, so they
require a spin structure on spacetime (or a pin structure in
the unorientable case). Hence the structure of interest is
analogous to a TQFT except that spacetime is required to
have a chosen spin (or pin) structure. We use the name sTQFT
(spin topological quantum field theory) to refer to a theory that
is like a TQFT except that it includes fermions. For an early
study of such theories in the context of D ¼ 3 Chern-Simons
theory, see Dijkgraaf and Witten (1990). The “s” in sTQFT
can refer to either a spin structure or a pin structure, depending
on context. The interested reader can consult the Appendixes
for explanations of spin and pin structures and related matters.

B. Some generalities about fermions

Now we explain a few generalities about fermions and
anomalies that will provide useful background. First, anoma-
lies always come from massless fermions only; massive
fermions never contribute to anomalies. A technical explan-
ation is that whatever symmetries a massive fermion ψ may
possess are also possessed by a Pauli-Villars regulator field (a
field of opposite statistics, obeying the same Dirac equation as
ψ but with a much larger mass). So massive fermions can
always be regularized in a way that preserves their sym-
metries, and they never contribute anomalies.
Hence, as one would expect intuitively, in analyzing

fermion anomalies, one can ignore gapped degrees of free-
dom. In fact, we can ignore gappable degrees of freedom—
fermions that could have a symmetry-preserving bare mass,
even if they do not—since again a symmetry-preserving
regulator is possible for such fermions. A corollary is that
in any relativistic theory of fermions ψ in any dimension, there
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is no problem in defining the absolute value jZψ j of the
fermion path integral Zψ , consistent with all symmetries and
physical principles. This is because a conjugate set of
fermions ~ψ , transforming under any symmetries as the
complex conjugate of ψ , and with an action that is the
complex conjugate of the action of ψ , would have partition
function Z̄ψ . The combined system of fermions ψ ⊕ ~ψ is
always gappable. This combined system would have a
partition function Zψ Z̄ψ ¼ jZψ j2. Thus there is no anomaly
in jZψ j2 or equivalently in jZψ j.
Implicit in the previous paragraph is that in Euclidean

signature, and in contrast to Lorentz signature, fermions do
not necessarily transform in a real or self-conjugate repre-
sentation of the relevant symmetry group (so ψ and ~ψ may
transform differently). For example, the edge modes in the
integer quantum Hall effect are described by a fermion field ψ
in spacetime dimension 2 that has definite chirality, meaning
in Euclidean signature that ψ transforms with spin 1=2 (or spin
−1=2) under the rotation group SO(2). The chiral asymmetry
of the edge modes means that there is no corresponding field
of the opposite chirality, transforming as the complex
conjugate of ψ . It is only in Lorentz signature that fermions,
like bose fields, are real. For instance, continuing with the
example of the chiral edge states, the spin 1=2 representation
of SO(2), in which a rotation by an angle φ acts as eiφ=2,
becomes after continuation to Lorentz signature a one-
dimensional representation of SO(1,1), in which a Lorentz
transformation

�
coshw sinhw

sinhw coshw

�

acts by ew=2, which is real.
In general, relativistic fermions fit in three broad classes,

according to how they transform under the appropriate
symmetry group K in Euclidean signature. In K, we include
the rotation group SOðDÞ, possible discrete symmetries such
as1 T or R, and gauge and/or global symmetries. Fermions
may transform in (1) a pseudoreal representation, (2) a real
representation, or (3) a complex representation. Of course,
mixtures of these cases are also possible; for example, a theory
may have some fermions transforming in a representation of
one type and some in a representation of the other type. (Also,
a reducible representation can be of more than one type; see
Sec. III.F.) We encounter all three types in this paper.
An irreducible representation R of the group K is said to be

pseudoreal if it admits an invariant, antisymmetric bilinear
form ω. In this case, fermions transforming in the repre-
sentation R, which we denote as ψα, α ¼ 1;…; dimR, can

have a K-invariant bare mass ωαβψ
αψβ. (This is consistent

with Fermi statistics, since ω is antisymmetric.) Hence,
fermions transforming in a pseudoreal representation will
never contribute to anomalies, and strictly speaking case (1) is
not relevant to our considerations. However, there is a variant
of this case that we might call case (10). This is the case of a
T-conserving theory with fermions that transform in a
representation R that is pseudoreal if one omits T in the
definition of K, but not if one includes T. Since the fermions
are pseudoreal if T is ignored, such a theory can always be
quantized in a consistent way, but there may be an anomaly in
T symmetry. This anomaly comes from a problem involving
the sign of the fermion path integral Zψ , as explained in
Sec. II. Basic examples are the boundary fermions of a 3D
topological insulator or superconductor, formulated on an
orientable manifold only. We begin with this example,
because the topological invariants involved are relatively
familiar. Also, our results in the case of the 3D topological
insulator may be particularly interesting, as we get a more
precise description of the sense in which (Qi, Hughes, and
Zhang, 2008) a 3D topological insulator is characterized by an
electromagnetic θ angle equal to π.
Concerning case (2), an irreducible representation R of K is

said to be real if it admits an invariant, symmetric bilinear form
h. For a fermion ψ transforming in such a representation, a
bare mass is forbidden by Fermi statistics, since hαβψαψβ ¼ 0

because of Fermi statistics. However, if we double the fermion
spectrum, adding a second multiplet ~ψ also transforming in
the representation of R, then a K-invariant bare mass hαβψα ~ψβ

becomes possible. Doubling the spectrum replaces the fer-
mion path integral Zψ with its square Z2

ψ , so Z2
ψ is anomaly

free and for real fermions, an anomaly can affect only the sign
of Zψ . The basic examples that we consider are edge states of a
2D topological superconductor or insulator.
Finally, concerning case (3), R is said to be complex if it

admits no invariant bilinear form. In this case, the fermion
path integral Zψ is complex in general. Unlike the other cases,
fermions that transform in a complex representation can have
perturbative anomalies—the standard Adler-Bell-Jackiw
anomaly, and its analogs in other dimension. In this context,
a “perturbative” anomaly is one that can be seen when
fermions are quantized in a weak gauge or gravitational field,
as opposed to “global” or “nonperturbative” anomalies that
are invisible in weak background fields and involve global
considerations. For example, the edge modes in the integer
quantum Hall effect transform in a complex representation,
and they do have a perturbative anomaly [which compensates
for the lack of gauge invariance of the Chern-Simons
coupling (1.1) on a manifold with boundary]. However, in
this paper, we consider only cases in which perturbative
anomalies are absent, leaving only the more subtle global
anomalies. Our basic example of complex fermions is edge
modes of a 3D topological superconductor or insulator, now
on a possibly unorientable manifold. In particular, in the case
of the topological superconductor, it turns out that the
anomaly involves a 16th root of unity. [A specific computation
for this system exhibiting an anomaly involving an 8th root of
unity was performed by Hsieh, Cho, and Ryu (2015); the
sense in which the anomaly is of order 16 rather than 8 is

1In Euclidean signature, all symmetries act on the fermions in a
linear fashion. The antilinear nature of T arises in analytic continu-
ation back to Lorentz signature. The CRT theorem means that one
Euclidean symmetry can be continued to two distinct symmetries in
Lorentz signature; for example, a Euclidean signature symmetry CR
continues to either the antilinear symmetry T or the linear symmetry
CR in Lorentz signature, depending on whether the reflection R acts
on the spacetime coordinate that is being analytically continued.
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rather subtle, as explained in Sec. IV.F.] The fact that the
anomaly involves a 16th root of unity means that, although at
the free fermion level, topological superconductors are clas-
sified by a Z-valued invariant, anomalies see only the
reduction of this invariant mod 16. In fact, it is known
(Fidkowski, Chen, and Vishwanath, 2013; Metlitski et al.,
2014; Wang and Senthil, 2014; Kitaev, 2015) that with
interactions included the classification of 3D topological
supeconductors is reduced from Z to Z16, so anomalies
precisely detect the 16 different classes. For a 3D topological
insulator, the anomaly even on an unorientable manifold
involves only a sign and the anomaly detects precisely the
expected Z2-valued invariant.
Anomalies for the case in which the representation R in

Euclidean signature is real were originally studied by Witten
(1982, 1985a). Such anomalies can be understood topologi-
cally in a fairly direct way, in terms of the mod 2 index of the
Dirac operator. The case of pseudoreal fermions can be
understood somewhat similarly, using the ordinary Dirac
index rather than the mod 2 index, and was originally studied
by Niemi and Semenoff (1983), Redlich (1984), and Alvarez-
Gaumé, Della Pietra, and Moore (1985). Finally, global
anomalies for complex fermions were analyzed by Witten
(1985b) and were expressed in terms of the Atiyah, Patodi,
and Singer (1975) (APS) η invariant. This relation was later
refined in a result that we call the Dai-Freed theorem (Dai and
Freed, 1994). The Dai-Freed theorem is useful in a variety of
problems involving complex fermions, such as the world sheet
path integral of the heterotic string (Witten, 2000). We make
use of it in Sec. IV.D.
Part of the motivation for this work was the suggestion

(Kapustin et al., 2014) that the partition function of a 3D
topological superconductor on a four-manifold would be the
exponential of an η invariant. We will see that this proposal
follows from a standard characterization of the phase tran-
sition between a trivial and topological superconductor. We
will show by direct computation of partition functions that, as
suggested by previous work,2 sTQFTs associated with free
fermion states of matter have cobordism-invariant partition
functions. The proposal by Kapustin et al. (2014) that sTQFTs
associated with free fermion states of matter have cobordism-
invariant partition functions follows from direct calculation of
partition functions for the bulk gapped fermions. The relation
of these bulk calculations to the anomalies of boundary
fermions follows from the Dai-Freed theorem in general,
and from more elementary considerations when the gapless
boundary fermions are real or pseudoreal.

The literature on anomalies is too vast to be properly
summarized here. However, several additional papers in which
various problems are treated in a similar spirit to the approach
here are Bunke (2009), in which considerations of Witten
(2000) concerning the heterotic string are formulated rigor-
ously; Diaconescu, Moore, andWitten (2002) with (see Sec. 2)
a precise definition of the path integral of M-theory on an 11-
manifold3; Freed and Moore (2006), in which a more general
version of that problem is treated precisely; Mikhaylov and
Witten (2014), in which (see Sec. 5.3) an analog of the
topological insulator appears in a problem involvingD-branes
in string theory; and Monnier (2014), on the anomaly field
theory associated with chiral fermions. As this paper neared
completion, I became aware of related work involving the
η invariant in the context of SPT phases (Metlitski, 2015).

C. Organization and general remarks

The contents of this paper are summarized as follows. In
Sec. II, we discuss pseudoreal fermions or more precisely
fermions that are pseudoreal if one ignores T symmetry. In
Sec. III, we discuss real fermions, and in Sec. IV, we discuss
complex fermions. In Sec. V, we briefly consider another
example with real fermions: the Majorana chain (Fidkowski
andKitaev, 2009) in1þ 1 dimensions.Theoverall idea is to start
with simple examples andgradually introducemore complicated
ones.Wegivea sortofoverviewof thedifferent cases inSec. II.C.
We tried to make this paper relatively self-contained,

but some details are contained in the Appendixes. For
basic definitions about spinors in Riemannian geometry,
see Appendix A. For details in low dimension, see
Appendix B. The η invariant in four (and two) dimensions
is analyzed in Appendix C.
In this paper, with the sole exception of Sec. V, we only

consider time-reversal symmetries with T2 ¼ ð−1ÞF [here
ð−1ÞF is the operator that counts fermions mod 2]. This also
means that the square of a spatial reflection R [or CR in the
presence of a U(1) symmetry] is þ1, and that when we work
on an unorientable manifold, we use a Pinþ structure, not a
Pin− structure. For an explanation of these concepts, see
Appendix A. In Sec. V, all statements are reversed: T2 ¼ þ1,
R2 ¼ ð−1ÞF, and the spacetime is endowed with a Pin−

structure.
We frequently introduce a Pauli-Villars regulator field as an

aid in defining precisely a continuum theory of fermions. The
sign of the regulator mass is then an important variable. In
condensed matter physics, there would be no regulator but a
physical cutoff. For example, in band theory, gapless relativ-
istic fermions arise at a particular point (or points) in a band,
and the topology of the rest of the band plays a role analogous
to the sign of the regulator mass in the Pauli-Villars approach.
We usually phrase our arguments in terms of partition

functions. There is much more to a physical theory than its

2As briefly explained in the discussion of Eq. (5.4) in D. Freed
(2014), in general U(1)-valued cobordism invariants are partition
functions of unitary TQFTs or sTQFTs. Kapustin et al. (2014)
showed that in the examples we consider in this paper, the possible
cobordism invariants are in one-to-one correspondence with free
fermion phases of matter. (In higher dimensions, there are cobordism
invariants that do not have an obvious connection to free fermion
phases, so they may be associated with interacting phases of matter.)
In Secs. II.A.7 and II.A.9, we give some very partial indications of
how cobordism invariance is related to physical principles such as
unitarity and the behavior under cutting and gluing.

3Because of the mod 8 periodicity of real K theory, this 11-
dimensional problem actually has much in common with the case of
three-dimensional boundary fermions treated in Sec. II. But the
details are different and the anomaly cancels with no need for inflow
from 12 dimensions.
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partition function, but in the case of free fermions, if there is a
satisfactory definition of the partition function, there is always
a satisfactory definition of correlation functions. So focusing
on the partition function is a convenient shorthand for
determining if a theory is well defined. Occasionally the
partition function vanishes and one must consider the path
integral measure instead.

II. PSEUDOREAL FERMIONS

A. Topological insulator in d = 3

1. Basics

Our first example will be a topological insulator in d ¼ 3,
studied in this section on an oriented (3þ 1)-dimensional
spacetime X. X has a spatial boundary, which is a (2þ 1)-
dimensional orientable manifold Y. The boundary mode of the
topological insulator is a (2þ 1)-dimensional massless two-
component Dirac fermion ψ , with action

I ¼
Z
Y
d3xψ̄iDψ : ð2:1Þ

Here D ¼ P
2
μ¼0 γ

μDμ is the usual Dirac operator. ψ couples
to the vector potential A of electromagnetism, just like the
electron; indeed, in band theory, ψ originates as a mode of the
electron.
It is possible to endow ψ with a Lorentz-invariant mass

term. The Dirac equation then becomes4

ðD −mÞψ ¼ 0; ð2:2Þ

with real m. This describes a particle of mass jmj and spin
1
2
signðmÞ. Time reversal and reflection symmetry reverse the

sign of the particle spin, so the perturbation to m ≠ 0 is T and
R violating. Concretely, a T transformation5

Tψðt; x1; x2Þ ¼ γ0ψð−t; x1; x2Þ ð2:3Þ

is easily seen to reverse the sign of m in the Dirac equation. If,
however, we have two identical Dirac fermions ψ1 and ψ2,
both transforming under T as in Eq. (2.3), then one can add a
T-invariant6 mass term to the Dirac equation:

�
D −

�
0 im

−im 0

���
ψ1

ψ2

�
¼ 0: ð2:4Þ

Diagonalizing the mass term, one finds that T exchanges two
modes of equal mass (and charge) and opposite spin. Since a
single Dirac fermion cannot acquire a T-conserving mass, it
follows that in dimension 3þ 1, if a T-invariant material has a
single massless Dirac fermion on its boundary, then this state
of affairs is protected by T invariance. We have written this
paragraph in Lorentz signature, because this makes the action
of T most transparent, but in our analysis of the path integral
for ψ and its anomaly, we take Y to have Euclidean signature.
The path integral Zψ of the ψ field is formally the

determinant of the operator D ¼ iD:

Zψ ¼ detD: ð2:5Þ

The operator D is Hermitian, so its eigenvalues are real:

Dψ i ¼ λiψ i; λi ∈ R: ð2:6Þ

Formally, the determinant is the product of eigenvalues:

detD ¼
Y
i

λi: ð2:7Þ

Formally, this is real, since all the factors are real. This
reality has a simple physical meaning: it reflects the T invari-
ance of the classical field theory that we are trying to quantize.
In general, in any unitary QFT, on an orientable spacetime X
of Euclidean signature, the partition function is complex
conjugated if one reverses the orientation of X. In a
T-invariant theory, this reversal of orientation is a symmetry,
so the partition function is always real. All this is true only for
orientable X; for unorientable X, T invariance does not require
the partition function to be real. See Sec. IV for examples.
For two massless Dirac fermions, the path integral is

Z2
ψ ¼

Y
i

λ2i : ð2:8Þ

Every factor is not just real but positive, so formally one
certainly expects Z2

ψ to be positive, and indeed the path
integral for two massless Dirac fermions can be naturally
defined to be positive. Being positive, it is equal to jZψ j2, and
thus is completely anomaly free, since as explained in
Sec. I.B, the absolute value jZψ j of a relativistic fermion path
integral can always be defined in a completely anomaly-free
way, preserving all symmetries. In particular, the path integral
for two massless Dirac fermions on Y can be defined in a
T-invariant fashion. This should come as no surprise, since we
have seen that a T-invariant mass and therefore a T-invariant
Pauli-Villars regulator are possible. [The T-invariant Pauli-
Villars regularization is based on the T-invariant massive
Dirac equation (2.4), so it uses a regulator of positive mass for
one linear combination of the two Dirac fermions and of
negative mass for the other.]
With only one Dirac fermion, however, we have a problem,

because the formal expression

4In local Lorentz coordinates, our Dirac matrices are real matrices
obeying fγa; γbg ¼ 2ηab where η ¼ diagð−1; 1; 1Þ. These conven-
tions are convenient for T-invariant systems with T2 ¼ ð−1ÞF, and
make it straightforward to compare Majorana and Dirac fermions.

5For a Majorana fermion, we have to consider two possible signs
in this equation: Tψð−t; x1; x2Þ ¼ �γ0ψð−t; x1; x2Þ. For a Dirac
fermion with U(1) symmetry, we can eliminate this sign by trans-
forming, if necessary, ψ → iψ .

6The mass term in Eq. (2.4) is R violating, assuming that a spatial
reflection R is supposed to act the same way on both ψ1 and ψ2 by
Rψ iðt; x1; x2Þ ¼ �γ1ψ iðt;−x1; x2Þ. (The mass term conserves a
different R symmetry.) The only general symmetry in relativistic
QFT is CRT, which means that T symmetry is equivalent to CR
symmetry. Given a T symmetry, there is a canonical CR symmetry,
but there is no canonical R symmetry.
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Zψ ¼
Y
i

λi ð2:9Þ

is naturally real but not naturally positive. Its sign is roughly
speaking the number of λi that are negative, mod 2, but the
number of negative λi is infinite, and there is no natural way to
decide if this infinite number is even or odd.

2. Global anomaly and spectral flow

In fact, if we try to define Zψ to be positive and gauge
invariant, we run into a contradiction. We could pick an
arbitrary metric and gauge field, say g ¼ g0 and A ¼ A0, and
define Zψ to be, say, positive at ðA; gÞ ¼ ðA0; g0Þ. Then letting
A and g vary, we could follow the sign of Zψ continuously,
saying that this sign changes whenever an eigenvalue of D
passes through 0. However, this procedure leads to a conflict
with gauge invariance. Let ϕ be a gauge transformation or the
combination of a gauge transformation and a diffeomorphism.
Let ðAϕ

0 ; g
ϕ
0 Þ be whatever A0 and g0 transform into under ϕ. It

is always possible to continuously interpolate from ðA0; g0Þ to
ðAϕ

0 ; g
ϕ
0 Þ. One introduces a real parameter s, 0 ≤ s ≤ 1, and

then one sets

As ¼ ð1 − sÞA0 þ sAϕ
0 ; gs ¼ ð1 − sÞg0 þ sgϕ0 : ð2:10Þ

These formulas have been chosen so that ðAs; gsÞ coincides
with ðA0;ϕ0Þ at s ¼ 0 and with ðAϕ

0 ; g
ϕ
0 Þ at s ¼ 1. Before

accepting this interpolation from ðA0;ϕ0Þ to ðAϕ
0 ; g

ϕ
0 Þ, we

should make sure that As and gs are well defined for all s. A
metric gs is supposed to be positive definite. There is no
problem because gs for 0 < s < 1 is a linear combination with
positive coefficients of the positive metrics g0 and gϕ0 . For As,
there is actually no analogous condition to be checked.
Now we evolve ðAs; gsÞ continuously from s ¼ 0 to s ¼ 1,

and we check how many times Zψ changes sign. Gauge
invariance implies that Zψ should have the same sign at s ¼ 1

as at s ¼ 0, since ðAs; gsÞ at s ¼ 1 is gauge equivalent to what
it is at s ¼ 0. However, in general there is a problem. Gauge
invariance implies that the spectrum of the Dirac operator at
s ¼ 1 is the same as it is at s ¼ 0, but between s ¼ 0 and
s ¼ 1, there can be a net “spectral flow” of the Dirac
eigenvalues, as shown in Fig. 1. Such a spectral flow is
possible only because D has infinitely many positive and
negative eigenvalues.
In the case of the boundary fermions of the 3D topological

insulator, there definitely is such an inconsistency in trying to
define the sign of Zψ , assuming that one expects it to be real.
There actually is a topological formula for the net numberΔ of
eigenvalues flowing through λ ¼ 0, namely,

Δ ¼ I; ð2:11Þ

where as described momentarily, I is a certain Dirac index in
D ¼ 4. The corresponding formula for the sign change of Zψ

between s ¼ 0 and s ¼ 1 is

Zψ → Zψð−1ÞI: ð2:12Þ

I will be a Dirac index on a certain four-manifold X,
known as the mapping torus. This manifold will be a
calculational tool to study anomalies in the fermion theory
on Y. In our discussion of the topological insulator, a four-
manifold will generically be called X, whether it is a tool to
study anomalies or is the world volume of a physical system.
This reason is that the same mathematical considerations will
enter in either case. This is not a coincidence but represents the
importance of the boundary anomalies in the physics of the
topological insulator.
To define X, let I be the unit interval 0 ≤ s ≤ 1. We glue

together the ends of I × Y via the diffeormorphism ϕ to build a
four-manifold X without boundary.7 A manifold constructed
in this way is called a mapping torus. Using also the gauge
transformation part of ϕ, we glue together the gauge bundles
over the ends of I × Y to make a U(1) gauge bundle L → X.
ThenI is the index of the 4D Dirac operator on8 X, coupled to
L. (See Sec. II.A.6 for the definition of the Dirac index.) This
relation between spectral flow in three dimensions and the
Dirac index in four dimensions, originally obtained by Atiyah,
Patodi, and Singer (1975), has applications in QCD and has
been described in the physics literature (Callan, Dashen, and
Gross, 1978; Kiskis, 1978).
What has just been described, in which one looks for a

possible inconsistency in the sign or phase of Zψ as a function

FIG. 1. Spectral flow for a Dirac operator. The vertical axis
parametrizes an eigenvalue λ and the horizontal axis parametrizes
a parameter s on which the eigenvalues depend. In the case
shown, the spectrum is the same at s ¼ 1 as at s ¼ 0, but there is a
net upward flow of one eigenvalue through λ ¼ 0 between s ¼ 0
and s ¼ 1. This leads to a sign change of the fermion path
integral Zψ .

7One can slightly modify the s dependence of the metric so that the
metric on X is smooth at the end points s ¼ 0 and 1.

8Instead of working on the compact mapping torus X, we could set
u ¼ 1=ð1 − sÞ − 1=s ¼ ð2s − 1Þ=sð1 − sÞ, so 0 < s < 1 corre-
sponds to −∞ < u < ∞, and work on the noncompact four-manifold
X0 ≅ R × Y, with metric du2 þ gsðuÞ, and the corresponding
u-dependent gauge field AuðsÞ. The index of the Dirac operator on
X0, in the space of square-integrable wave functions, is the same as
the index on X.
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of a parameter s, is the framework of the 1980s (Witten, 1982,
1985a, 1985b) for studying global anomalies. At one time it
was assumed to be the whole story. Nowadays it is clear that
this is not the case, and in this paper we need a more complete
treatment. The reason that we have begun with the traditional
framework is not that we want to delve into history but that
this is the most elementary way to introduce the important
topological invariants—notably the index I in the present
example and its analogs in examples that we introduce later.
What is missing in the traditional framework can be

described as follows. The absence of an anomaly in the sign
of Zψ means that on a particular Y, Zψ is well defined as a
function of ðA; gÞ, up to an overall sign that depends on Y but
not on ðA; gÞ. [In the above reasoning, this sign was intro-
duced as the sign of Zψ at some arbitrary starting point
ðA0; g0Þ.] But we need a way to determine this overall sign,
and we should certainly not expect to get a satisfactory theory
if we define the sign of Zψ independently for each Y. A
definite physical theory produces definite answers for these
signs. Physically, there must be a sensible behavior under
various cutting and pasting operations in which various three-
manifolds Yi are cut in pieces and glued together in differ-
ent ways.
The prototype of such a cutting relation arises in

ordinary quantum mechanics, with Hamiltonian H, if a time
interval of length t is decomposed in successive intervals of
length t1 and t2, where t ¼ t1 þ t2. One has expð−iHtÞ ¼
expð−iHt2Þ expð−iHt1Þ, leading to a well-known result for
transition amplitudes

hfj expð−iHtÞjii ¼
X
k

hfj expð−iHt2Þjkihkj expð−iHt1Þjii;

ð2:13Þ

with a sum over intermediate states. This has an analog in
quantum field theory in any dimension, where one cuts a
manifold into pieces and claims that the path integral on the
whole manifold is the product of path integrals on individual
pieces (with a sum over physical states where gluing occurs).
The quantum field theory story is much richer than the
quantum mechanical case because in higher dimensions there
are many more ways to cut a manifold into pieces.
Compatibility with cutting and pasting is the essence of the
locality of quantum field theory.
In cases relevant to topological states of matter—a good

example being the 3D topological superconductor—even if
there is no anomaly in the traditional sense of an inconsistency
in defining the path integral on a specific Y, there can be an
anomaly in the more subtle sense that there is no satisfactory
way to define overall signs or phases of the path integral on
different Y’s. One needs to take these more subtle anomalies
into account as part of the following paradigm: “Anomalies in
d dimensions ↔ SPT phases in dþ 1 dimensions.”
Taking these anomalies into account means giving an

absolute definition of the sign of the fermion path integral
Zψ for each Y and each ðA; gÞ. We will do this next in the case
of the topological insulator, following Alvarez-Gaumé, Della
Pietra, and Moore (1985).

3. T anomaly

The fact that there is a problem in defining the sign of Zψ

for a (2þ 1)-dimensional Dirac fermion ψ does not mean that
this theory is inconsistent. It only means that the theory cannot
be quantized in a T-invariant (or R-invariant) way. It is
possible to define Zψ consistently if we do not try to make
it real.
After all, ψ could have a gauge-invariant bare mass, which

violates T symmetry but otherwise is perfectly physically
acceptable. The possibility of a T-violating mass means that,
at the cost of losing T symmetry, we can regularize this theory
by adding a Pauli-Villars regulator field χ, which one can
think of as a bosonic field that obeys a massive Dirac equation
ðiDþ iμÞχ ¼ 0, for very large μ. In Euclidean signature, the
regularized path integral is

Zψ ;reg ¼
Y
k

λk
λk þ iμ

: ð2:14Þ

Actually, what we have written, although good enough for our
purposes, is only an approximation to the Pauli-Villars
procedure. In general one introduces a variety of massive
Bose and Fermi fields, with different large masses μa,
a ¼ 1;…; t, chosen so that the regularized path integral
converges for fixed μa. Then one takes the limit μa → ∞,
adding local countertermsWðμa; A; gÞ to the action so that the
limit of Zψ ;reg exp½−Wðμa; A; gÞ� exists. The limit is the
renormalized fermion path integral. We do not need to follow
this procedure in detail, because we are interested only in the
phase of Zψ , and Eq. (2.14) is good enough to motivate the
correct formula for this phase. (The counterterms that are
needed in three spacetime dimensions are all real and do not
affect the discussion of the phase.)
Going back to Eq. (2.14), we see that for large μ > 0, each

eigenvalue λk contributes a phase i−1 or i to Zψ , depending on
the sign of λk. So formally

Zψ ¼ jZψ j exp
�
−
iπ
2

X
k

signðλkÞ
�
: ð2:15Þ

Thus

Zψ ¼ jZψ j exp ð−iπη=2Þ; ð2:16Þ

where η [the APS η invariant (Atiyah, Patodi, and Singer,
1975)] is a regularized version of the difference between the
number of positive and negative eigenvalues9 of D.

9In the present derivation, the λk are the eigenvalues of the Dirac
operatorD acting on the positively charged Dirac fermion ψ , without
including charge conjugate eigenmodes ofD acting on the negatively
charged field ψ̄ . We can also define a similar invariant η in which one
sums over modes of both kind. By charge conjugation symmetry, the
relation between the two is just η ¼ 2η. Later, when we consider
Majorana fermions [with no U(1) symmetry and so no distinction
between modes of positive or negative charge], we will want to
express all formulas in terms of η.
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As usual, the precise regularization does not matter. The
original APS definition was10

η ¼ lim
s→0

X
k

signðλkÞjλkj−s: ð2:17Þ

An equivalent definition would be

η ¼ lim
ε→0þ

X
k

signðλkÞ expð−ελ2kÞ: ð2:18Þ

For our present application, we do not need to know what is
meant by signðλÞ if λ ¼ 0, because if one of the λk is 0, then
jZψ j ¼ 0 and it does not matter what value we assign to η.
However, the formulas of index theory work smoothly if in the
definition of η, we set

signðλÞ ¼
�
1 if λ ≥ 0;

−1 if λ < 0:
ð2:19Þ

It would work just as well to take signðλÞ ¼ −1 for λ ¼ 0; the
important thing is to treat all zero modes in the same way.
The formula

Zψ ¼ jZψ j expð−iπη=2Þ; ð2:20Þ

together with any standard procedure to define jZψ j, gives a
satisfactory definition of Zψ for all Y and all A, g, with all
desirable properties except T and R symmetry. T and R
symmetry do not hold, since they require Zψ to be real. T and
R symmetry have been violated by the choice of sign of the
regulator mass. An equally good regularization with the
opposite sign would have given the opposite phase to Zψ ,
so we really have two equally good definitions with

Zψ ¼ jZψ j expð∓ iπη=2Þ: ð2:21Þ

Either of these formulas gives the partition function, in a
background field ðA; gÞ, of a gapless free fermion QFT that is
perfectly unitary and Poincaré invariant—and even confor-
mally invariant—and otherwise physically sensible, but is not
T or R invariant.
To conclude this section, we explain some aspects of the

statement that Eq. (2.21) for the path integral is physically
sensible. The fermion path integral Zψ is supposed to change
sign when a fermion eigenvalue passes through 0.
Equation (2.20) does have this property. While the first factor
jZψ j of course does not change in sign, the second factor
expð∓ iπη=2Þ does change sign, because η jumps by �2
when an eigenvalue passes through 0.
We also want to verify that our definition of the partition

function is consistent with unitarity. In Euclidean signature,
unitarity corresponds to reflection positivity. Let Y1 and Y2 be

two identical three-manifolds, endowed with the same gauge
fields and spin structures, and let M be their common
boundary. Build a three-manifold Y by gluing Y1 and Y2

along M (after reversing the orientation of Y2 so that the
orientations match). This construction is illustrated in Fig. 2.
Zψ should be real and non-negative in this situation for the
following reason. The path integral on Y1 constructs a state
jΦi, a “ket,” in the Hilbert space of quantum states on M. The
path integral on Y2 constructs the corresponding “bra” hΦj in
the same Hilbert space. The full path integral Zψ on Y is the
inner product hΦjΦi. In a unitary quantum field theory, this of
course must be real and non-negative.
To show that Zψ ≥ 0, we need to show that expð∓ iπη=2Þ is

equal to 1 in this situation, as long as there are no zero modes
(that is, as long as jZψ j ≠ 0). This is true because the reflection
that exchanges Y1 and Y2, and reverses the orientation of Y,
anticommutes with the Dirac operator D ¼ iD ¼
i
P

3
μ¼1 γ

μDμ. For example, if Y ¼ R3 with a flat metric, a
reflection

Rψðx1; x2; x3Þ ¼ γ1ψð−x1; x2; x3Þ ð2:22Þ

anticommutes with D. This is actually a universal result for
any orientation-reversing symmetry on a manifold of odd
dimension. So reflection symmetry in Fig. 2 implies that the
eigenvalues of the Dirac operator are invariant under λ ↔ −λ,
and this in turn implies (in the absence of zero modes) that
η ¼ 0 and expð∓ iπη=2Þ ¼ 1.
The fact that a symmetry reversing the orientation of

spacetime anticommutes with the Dirac operator is the
reason that a mass term added to the Dirac equation violates
such symmetries. If R commuted with iD, then a massive
Dirac equation, which in Euclidean signature would be
ðiDþ imÞψ ¼ 0, would be R invariant.

4. Canceling the anomaly from the bulk

The anomaly in T invariance just discussed for the
boundary fermions of a 3D topological insulator is related
to the fact (Qi, Hughes, and Zhang, 2008) that in bulk such a
material has an electromagnetic θ angle of π.

FIG. 2. A mirror-symmetric construction of a three-manifold Y,
by gluing together identical pieces Y1 and Y2 along their common
boundary M, with reversed orientation for Y2.

10Some analytic continuation is required in this definition. One
first defines the sum on the right-hand side of Eq. (2.17) for large
Re s, where it converges. Then one analytically continues to s ¼ 0.
Note that the alternative definition in Eq. (2.18) does not require such
analytic continuation.
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The instanton number of a U(1) gauge field in four
spacetime dimensions is defined as

P ¼ e2

32π2

Z
X
d4xϵμναβFμνFαβ; ð2:23Þ

where Fμν ¼ ∂μAν − ∂νAμ is the electromagnetic field
strength. If X is a compact manifold with boundary, then P
is always an integer. A typical example with P ≠ 0 is the case
that X ¼ S2 × S2 with one unit of flux (that is,

R
S2 F ¼ 2π=e)

on each factor. This example has P ¼ 1.
The electromagnetic θ angle is defined by saying that the

P-dependent part of the effective action is

Iθ ¼ θP: ð2:24Þ

If P can be assumed to be integer valued, then physics will be
invariant under θ → θ þ 2π, since in quantum mechanics, we
care about only the value of the action mod 2πZ.
P is odd under reflection or time reversal, so θ is likewise

odd. In a T- or R-invariant theory, θ must equal 0 or π (T and
R map θ ¼ π to θ ¼ −π, which is equivalent to θ ¼ π
mod 2π). It was shown by Qi, Hughes, and Zhang (2008)
that, assuming that θ ¼ 0 in vacuum, θ ¼ π inside a 3D
topological insulator.
However, a real topological insulator has a boundary and its

world volume X does not fill all of spacetime. In this case, P
(defined as an integral over X and not over all of spacetime) is
generically not an integer. So it is not T invariant to merely
include in the path integral a factor expð�iπPÞ. On an
orientable spacetime, T invariance requires that the argument
of the path integral should be real, and expð�iπPÞ certainly
does not have this property when P is not Z valued. Acting
with T reverses the sign in the exponent expð�iπPÞ.
More concretely, if we simply include in the functional

integral in the presence of a topological insulator a factor
expð�iπPÞ, then by a well-known argument this produces on
the surface of the topological insulator a Hall conductivity
with ν ¼ �1=2 (as usual, ν is the Hall conductivity in units of
e2=2πℏ). This is certainly not T conserving.
In the context of a topological insulator, the assertion that

θ ¼ π is T conserving really means that it is T conserving in
bulk, and that we may be able to maintain T invariance along
the boundary if we find the right boundary state. A trivial
gapped boundary state is not suitable.
However, the standard boundary state with massless Dirac

fermions combines with the bulk system of θ ¼ π to maintain
T symmetry. We recall that the partition function of the
boundary fermions is

Zψ ¼ jZψ j expð∓ iπη=2Þ; ð2:25Þ

where the sign depends on the choice of regulator. It turns
out that if one subtracts from P a gravitational correction that
for the moment we denote11 as ÂðRÞ, then the bulk contri-
bution to the path integral with θ ¼ π combines with
the partition function of the boundary fermions to give a

T-conserving result. In fact, according to Atiyah, Patodi, and
Singer (1975),

expð∓ iπη=2Þ exp f�iπ½P − ÂðRÞ�g ¼ ð−1ÞI; ð2:26Þ

where I is an integer. As we explain in Sec. II.A.8, I is the
index of the Dirac operator computed with APS boundary
conditions. Hence the complete path integral measure after
integrating out the boundary fermions is

jZψ j expð∓ iπη=2Þ exp f�iπ½P − ÂðRÞ�g ¼ jZψ jð−1ÞI:
ð2:27Þ

[This formula was essentially found by Mikhaylov and Witten
(2014), Sec. 5.3, in a related context involving D-branes in
string theory.] This is real and so T conserving.
In the rest of this section, we discuss the physical inter-

pretation of the formula (2.27), and then review the APS
formula (2.26).

5. Physical meaning of θ= π

To have θ ¼ π in a topological insulator should mean, in
some sense, that the path integral measure changes sign when
a U(1) instanton moves from outside to inside a topological
insulator. To make this concrete, we set up a thought experi-
ment that makes some sense in condensed matter physics in
which it is possible to move an instanton in this way.
We take space to be not R3 but R × S2, with two

dimensions compactified to a two-sphere S2. (We could just
as well replace S2 with T2, a two-torus corresponding to
periodic boundary conditions in two spatial directions.) We
consider a topological insulator supported on Rþ × S2 ⊂ R ×
S2 (Fig. 3) where Rþ ⊂ R is a half line y ≥ 0. Including the
time direction, which we parametrize by R0 (another copy of
R), the full spacetime is X̂ ¼ R0 ×R × S2 and the world
volume of the topological insulator is X ¼ R0 ×Rþ × S2.
We consider a gauge field that has one unit of magnetic flux

on S2, and also one unit of electric flux on R0 × R:

Z
R0×R

dtdxF01 ¼
2π

e
: ð2:28Þ

Such a gauge field has the value of 1 of

FIG. 3. A topological insulator supported on the right half of
R × S2 (solid black region).11We write ÂðRÞ as an abbreviation for the more usual

R
X ÂðRÞ.
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P̂ ¼ e2

32π2

Z
X̂
d4xϵμναβFμνFαβ: ð2:29Þ

Note that this is an integral over the whole spacetime
X̂ ¼ R0 × R × S2. By contrast, we define P [Eq. (2.23)] as
a similar integral over only the world volumeR0 ×Rþ × S2 of
the topological insulator. So P̂ is a topological invariant but P
is not. If the unit of electric flux in Eq. (2.28) is localized far to
the left in Fig. 3, then P̂ ¼ 1 but P ¼ 0. If it is localized far to
the right, then P̂ ¼ P ¼ 1.
To consider in this context the formula

jZψ jð−1ÞI ð2:30Þ

for the path integral measure, we compactify the time direction
and go to Euclidean signature, since the formula was derived
in that case. For example, to compute a thermal partition
function Tr expð−βHÞ, withH the Hamiltonian of the system,
we take the time direction to be a circle S of circumference β.
As long as the electric flux is deep inside or outside the
topological insulator, but at any rate far from its boundary, the
boundary fermions do not “see” this flux. Generically (for a
generic value of

H
S A, to be precise) the boundary fermions

have no zero mode, so jZψ j > 0. On the other hand, I ¼ 0 if
the instanton is outside the topological insulator (that is if
P ¼ 0) and I ¼ 1 if the instanton is inside the topological
insulator (that is if P ¼ 1). The path integral measure is
always real and so T conserving, but it passes smoothly from
positive to negative values as the instanton is brought inside
the topological insulator. The jump in I from 0 to 1, and thus
the change in sign of the path integral measure, occurs
precisely when an eigenvalue of the boundary Dirac operator
passes through zero, or in other words when jZψ j ¼ 0.
The fact that the path integral is negative when P ¼ 1 can

be described by saying that the path integral measure of the
topological insulator contains a factor ð−1ÞP ¼ expðiπPÞ.
This gives a precise meaning to the statement that θ ¼ π
inside the topological insulator.
Another and perhaps less technical way to give a precise

meaning to the statement that θ ¼ π has already been
described in the literature (Rosenberg and Franz, 2010).
Let us go back to the Lorentz signature picture in which
the full spacetime is X̂ ¼ R0 × R × S2, the topological insu-
lator lives on X ¼ R0 × Rþ × S2, and the boundary Dirac
fermion lives on ∂X ≅ R0 × f0g × S2. To find the quantum
states of the boundary fermions, we have to find the
eigenmodes of the 2D Dirac operator on S2, and then quantize
them. In the presence of a unit magnetic flux on S2, the 2D
Dirac operator has a single charge −e zero mode of one
2D chirality, and a single chargeþe zero mode of the opposite
2D chirality. (The existence of these zero modes is guaranteed
by the 2D version of the Atiyah-Singer index theorem. The
two zero modes are complex conjugate; complex conjugation
reverses both the charge and the 2D chirality.) As in Jackiw
and Rebbi (1976), quantization of these modes gives a pair of
states with electric charge�e=2. The fact that the boundary of
the topological insulator, when pierced by a unit of flux,
supports half-integral electric charge can be understood if we

imagine creating this unit of magnetic flux by dragging a
magnetic monopole of unit charge into the topological
insulator. (We assume that the monopole starts far to the left
of the topological insulator in Fig. 3, with its flux in the initial
state going off to the left and not entering the topological
insulator.) When the monopole enters the material, a unit of
flux appears on its surface and accordingly the charge on its
surface jumps by a half-integral amount. But the electric
charge of the monopole also jumps by a half-integral amount
when it enters the topological insulator, because a magnetic
monopole in a world with θ ¼ π has half-integral electric
charge (Witten, 1979). It has indeed been shown in a lattice
model of a topological insulator that when a magnetic
monopole enters a topological insulator, half-integral charge
appears on the surface of the topological insulator and the
monopole itself acquires half-integral charge (Rosenberg and
Franz, 2010). This gives a direct interpretation of what it
means to say that the topological insulator has θ ¼ π.

6. Why is the partition function equal to ð−1ÞI?
Part of the previous story is that on a compact four-manifold

X without boundary, with a background U(1) gauge field A,
the topological field theory associated with a topological
insulator has a partition function ð−1ÞI. The interested reader
may wonder how this is related to other known descriptions of
a topological insulator.
We use the following standard characterization of the phase

transition between a topological insulator and an ordinary one.
This transition occurs when the mass parameter m of a D ¼ 4

Dirac fermion ψ passes through zero and changes sign.
First we recall the definition of the index of the Dirac

operator. On an oriented four-manifold, we define the chirality
operator

γ̄ ¼ 1

4!
ϵijklγiγjγkγl; ð2:31Þ

where ϵijkl is the Levi-Civita tensor. We write ψ ¼ ψþ þ ψ−
where ψ� ¼ ð1=2Þð1� γ̄Þψ satisfy γ̄ψ� ¼ �ψ�; we say that
ψþ and ψ− have positive or negative chirality. γ̄ anticommutes
with the Dirac operatorD, soDmaps ψþ to ψ− and vice versa.
Wewrite nþ for the dimension of the space of zero modes ofD
acting on ψþ and n− for the dimension of the space of zero
modes of D acting on ψ−. The index of the Dirac operator is
I ¼ nþ − n−. It is a basic topological invariant.
To prove topological invariance of I, observe that γ̄

anticommutes with D, so that if Dψ ¼ λψ with λ ≠ 0, then
Dðγ̄ψÞ ¼ −λγ̄ψ and γ̄ψ must therefore be linearly indepen-
dent if λ ≠ 0, and hence the chiral projections ψ� ¼
ð1=2Þð1� γ̄Þψ are nonzero. Consider the “Hamiltonian”
H ¼ D2. Zero modes of D are the same as zero modes of
H, and more generally eigenstates of H, obeying Hψ ¼ Eψ
are linear combinations of solutions of Dψ ¼ � ffiffiffiffi

E
p

ψ . If
E ≠ 0, a solution of Dψ ¼ � ffiffiffiffi

E
p

ψ has nonzero chiral pro-
jections ψ� with the same E. Hence nonzero energy levels of
H occur in pairs with positive and negative chirality. When we
vary the gauge field or metric on X, all that can happen to the
space of zero energy states is that a pair of states of opposite
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chirality can move to or from zero energy. In the process, nþ
and n− change, but I ¼ nþ − n− is unchanged.
Let us assume that X and A are such that I ≠ 0 and for

definiteness take I > 0. Generically, for I > 0, ψþ will have
I zero modes and ψ− will have none. We now assume that we
are in this situation. What about zero modes of the oppositely
charged fermion field ψ̄? Writing ψ̄− and ψ̄þ for its compo-
nents of definite chirality, ψ̄− will have I zero modes and ψ̄þ
will have none. (The zero modes of ψ̄− are complex
conjugates of the zero modes of ψþ.)
Because of these 2I zero modes, the fermion path integral

vanishes if m ¼ 0. However, for m ≠ 0, the action has a term

I ¼
Z

d4xð� � � −mψ̄−ψþ þ � � �Þ; ð2:32Þ

and accordingly the integrand e−I of the path integral has a
factor

exp

�
m
Z

d4xψ̄−ψþ

�
: ð2:33Þ

Expanding this factor, a ψ̄− zero mode and a ψþ zero mode
can be lifted at the cost of a factor of m.
Accordingly, for small m, the path integral is proportional

to mI. Therefore, if the path integral is positive definite for,
say, m > 0, then its sign for m < 0 is ð−1ÞI. (Zero modes
beyond the ones we assumed would contribute an even power
of m and thus would not affect this sign.) This sign is the
universal part of the answer and is the partition function of the
topological field theory that one extracts as the long distance
limit of the topological insulator.
We treat several similar problems later in a slightly more

precise way including an explanation of the regularization;
see, for example, Sec. III.D.

7. The index and cobordism invariance

We defined the Dirac indexI in Sec. II.A.6 by using the fact
that, on an oriented four-dimensional spin manifold X without
boundary, the equationDψ ¼ 0 for a fermion zero mode splits
as separate equations for the chiral projections ψþ and ψ−.
The same is true in any even dimension, and the original

Atiyah-Singer index theorem (Atiyah and Singer, 1963, 1968)
gives a cohomological formula forI. For a U(1) gauge field in
D ¼ 4, the formula is

I ¼ Â − P: ð2:34Þ
Here P is the instanton number defined in Eq. (2.23), and

Â ¼ −
1

48

Z
X

trR∧R
ð2πÞ2 ; ð2:35Þ

with R being the Riemann tensor regarded as a matrix-valued
two-form. Equation (2.34) immediately implies 12 that I is a
cobordism invariant: it vanishes if X is the boundary of an

oriented five-dimensional spin manifold Z over which the
U(1) gauge field extends (Fig. 4). For in that situation
Â ¼ P ¼ 0, so I ¼ 0. For example, one has

Â ¼ −
1

48

Z
X

trR∧R
ð2πÞ2 ¼ −

1

48

Z
Z
d
trR∧R
ð2πÞ2 ¼ 0 ð2:36Þ

(here one uses Stokes’s theorem to express an integral over X
as an integral over Z, and then one uses the Bianchi identity
DR ¼ 0 to prove that dtrR∧R ¼ 0). A similar argument
shows that P ¼ 0.
Since I is a cobordism invariant, so is ð−1ÞI, which we

have seen to be the partition function (on an orientable
manifold) of the bulk sTQFT associated with a topological
insulator. As we proceed, it will become clear that partition
functions of sTQFT’s associated with free fermion states of
matter are always cobordism invariants. This was conjectured
by Kapustin et al. (2014).
In general,13 starting with such a U(1)-valued cobordism

invariant [a homomorphism from an appropriate cobordism
group to U(1)], one can always construct an invertible
topological field theory with the given invariant as its partition
function. The rough idea behind this statement is that
cobordism invariance implies relations among partition func-
tions that one would expect on physical grounds in a
topological field theory. The simplest example of such a
statement is illustrated in Fig. 5. Another example of how
cobordism invariance implies a physical property (unitarity) is
described at the end of Sec. II.A.9.
It appears to be unknown whether all unitary invertible

TQFTs or sTQFTs are associated with cobordism invariants.
Since this is unknown, we do not really know if the fact that
the usual free fermion phases are associated with cobordism
invariants is a consequence just of the fact that they are gapped
and have no topological order in bulk, or is more special. At
any rate, cobordism invariance is much stronger than topo-
logical invariance.

FIG. 4. A topological invariant I defined for a manifold X is
said to be a cobordism invariant if it vanishes whenever X is the
boundary of a manifold Z of one dimension more. If X has some
structure [such as an orientation, a spin structure, or a U(1) gauge
field] that is required in defining I, then this structure is required
to extend over Z.

12Here we are reversing the original logic. In the original proof of
the index theorem (Atiyah and Singer, 1963), it was shown first that
the index is a cobordism invariant, and this knowledge was used to
deduce a formula for it.

13For a brief explanation, see the discussion of Eq. (5.4) in D.
Freed (2014).
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8. The APS index theorem

To define the Dirac index I in Sec. II.A.6, we used the fact
that on an oriented four-manifold, the Dirac equation Dψ ¼ 0
splits as separate equations for the chiral projections ψþ and
ψ− of ψ .
The APS index theorem (Atiyah, Patodi, and Singer, 1975)

is a generalization of the original Atiyah-Singer index theorem
(Atiyah and Singer, 1963, 1968) to a manifold X with
boundary. In trying to find such a generalization, one
immediately finds that there is no convenient local boundary
condition along Y ¼ ∂X that can be used in defining an index.
The Dirac operator admits the local boundary condition

γ · nψ ¼ �ψ ; ð2:37Þ

where n is the unit normal to Y and γ · n ¼ γμnμ. This
boundary condition is the most general one that preserves
the local rotation symmetry of the boundary and it is
physically sensible in the sense that with this boundary
condition the Dirac operator is Hermitian. However, because
γ · n anticommutes with the chirality operator γ̄, this boundary
condition mixes the two fermion chiralities and so does not
allow one to define a Dirac index.
What can we do to define a Dirac index in this situation?

The APS construction starts by replacing a manifold X that
has a boundary with a manifold X0 without boundary that is
not compact but has a complete Riemannian metric. This is
done by picking a Riemannian metric on X, and, in particular,
on Y, and building X0 by gluing to the boundary of X a semi-
infinite tube Y × Rþ, where Rþ is the half line y ≥ 0 (Fig. 6).
The Riemannian metric in the tube is taken to be the obvious
one dy2 þ gY , where gY is the chosen metric on Y.
Because X0 has no boundary, the Dirac equation on X0 does

not mix positive and negative chirality spinors. Therefore, one
can define spaces Hþ and H− of square-integrable solutions
of the Dirac equation on X0 of positive and negative chirality.

Their dimensions are integers nþ and n−. Assume for the
moment that the metric gY of Y is sufficiently generic so that
the Dirac operatorDY of Y has no zero modes. Then the index
I is defined in the usual way as I ¼ nþ − n−.
The APS index theorem gives a formula for I:

I ¼ Â − P −
η
2
: ð2:38Þ

Here η is the η invariant (2.17) of the Dirac operator DY on Y.
Thus −η=2 appears as a sort of boundary correction to the
index theorem.
On a manifold X without boundary, the index of the Dirac

operator is an integer and moreover is a topological invariant.
When X has a boundary and the index is defined with APS
boundary conditions, it is still an integer but it is no longer a
topological invariant. The APS index formula makes this
clear. As the metric and gauge field on X and Y are varied so
that an eigenvalue of DY passes through 0, η jumps by �2, so
I must jump by ∓ 1. To understand explicitly how this
happens, we look at the Dirac equation in the tube
Y 0 ¼ Y × Rþ. The Dirac operator DY 0 on Y 0 is defined using
gamma matrices γy and γi, i ¼ 1, 2, and 3 with

DY 0 ¼ i

�
γy

∂
∂yþ

X3
i¼1

γi
D
Dxi

�
; ð2:39Þ

where xi, i ¼ 1;…; 3 are local coordinates on Y. So the
equation DY 0ψ ¼ 0 is

� ∂
∂y − i

X3
i¼1

iγyγi
D
Dxi

�
ψ ¼ 0: ð2:40Þ

We want to express this in terms of the Dirac operator on Y,
which would be

DY ¼ i
X3
i¼1

γ̂i
D
Dxi

: ð2:41Þ

Here γ̂i are purely three-dimensional gamma matrices obeying
fγ̂i; γ̂jg ¼ 2gij. In a locally Euclidean frame, we can take them
to be γ̂i ¼ σi (where σi are the Pauli matrices) and so to obey

FIG. 6. The complete but not compact manifold X0 is built by
gluing onto the manifold X, which has a boundary Y, and a semi-
infinite tube Y × Rþ.

FIG. 5. The simplest illustration of the statement that cobordism
invariance leads to relations that are natural in topological field
theory. The connected sum M of two D manifolds M1 and M2 is
made by cutting small holes out of M1 and M2 and gluing them
together along their boundaries. If the space of physical states on
a sphere SD−1 is one dimensional (as expected in a unitary
topological field theory), one can deduce a universal relation
between partition functions: ZM ¼ gZM1

ZM2
, where g is a

constant characteristic of the theory. Cobordism invariance
implies such a relation with g ¼ 1, because M is cobordant to
the disjoint union of M1 and M2. This cobordism is sketched in
this figure (for the case D ¼ 1 with all manifolds being circles).
Topological field theories derived from cobordism invariants
always satisfy the condition that the space of physical states on
any (D − 1) manifold has a dimension of 1, which is why they
lead to a relation of the given kind.
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γ̂1γ̂2γ̂3 ¼ iϵ123 ð2:42Þ

(and cyclic permutations), where ϵijk is the Levi-Civita tensor
of Y.
In the definition (2.31) of the chirality operator of X, we

orient X so that ϵyijk ¼ ϵijk. The matrices γ0i ¼ iγyγi appearing
in Eq. (2.40) obey the same Clifford algebra fγ0i; γ0jg ¼ 2gij as
γ̂i. They also satisfy in a local Euclidean frame γ01γ

0
2γ

0
3 ¼

γ̄ · iϵ123. From this one can deduce that the matrices γ̄γ0i obey
the same Clifford algebra and the same equation (2.42) as the
purely 3D Dirac matrices γ̂i, and so we can set γ̄γ0i ¼ γ̂i. Then
we can rewrite the D ¼ 4 Dirac equation (2.40) in the form

� ∂
∂y − γ̄DY

�
ψ ¼ 0: ð2:43Þ

So if ψ0 is a spinor field on Y satisfying DYψ0 ¼ λψ0, and
moreover γ̄ψ0 ¼ aψ0, a ¼ �1, then we can solve the D ¼ 4

Dirac equation with

ψ ¼ expðaλyÞψ0: ð2:44Þ

To get a square-integrable solution of this equation, we need
λ < 0 if a ¼ 1 or λ > 0 if a ¼ −1.
Now we can complete the construction by explaining APS

boundary conditions on the original manifold with boundary
X. LetH be the space of all spinor fields on Y, and decompose
H ¼ Hþ ⊕ H− where Hþ and H− are spanned, respectively,
by the eigenstates of DY with λ > 0 or with λ < 0. Let ψþ and
ψ− be as usual the positive and negative chirality parts of a 4D
spinor ψ. Then APS boundary conditions on X say that the
restrictions of ψ� to Y ¼ ∂X obey

ψþjY ∈ H−; ψ−jY ∈ Hþ: ð2:45Þ

The point is that solutions to the Dirac equation on X that can
be extended to square-integrable solutions on X0 are precisely
those that obey this condition. So we can compute the indexI
either in terms of solutions of the Dirac equation on X that
obey this APS boundary condition or in terms of square-
integrable solutions on X0.
This should make it clear how I can fail to be a topological

invariant. When an eigenvalue of DY passes through 0, the
spaces H� change discontinuously, the APS boundary con-
ditions change discontinuously, and the index I also changes
discontinuously.
As long asDY has no zero modes, the spectrum of the Dirac

operator on X with APS boundary conditions varies contin-
uously with the metric and gauge fields on X (and, in
particular, on Y) and I is constant. In the above, we defined
I, Hþ, and H− only in the generic case that DY has no zero
modes. The definitions can be slightly modified so that the
APS index formula (2.38) is valid in general, with η defined
using Eq. (2.19).
We now make a few more remarks on the APS index

theorem. First, in Eq. (2.38), we have written the APS index
theorem for D ¼ 4. However, this theorem holds in any
dimension D. In general, Â − P has to be replaced by the
bulk contribution to the index that is given by the original

Atiyah-Singer index theorem (Atiyah and Singer, 1963,
1968). This bulk contribution can be written in general asR
X ÂðRÞtreF, where F is the Yang-Mills field strength or
curvature and the trace is taken in the representation that the
fermions live in. The boundary contribution is always −η=2.
However, for odd D, the bulk contribution vanishes14 and the
APS index theorem reduces to

I ¼ −
η
2
: ð2:46Þ

Since I is always an integer, this shows that for odd D, if a
D − 1 manifold Y is the boundary of some D-dimensional X
over which the relevant structures extend (so that an APS
index theorem on X is available), then the η invariant on Y
obeys η=2 ∈ Z. In later applications to Majorana fermions, we
will want to write this formula in terms of I ¼ 2I, η ¼ 2η:

I ¼ −
η

2
: ð2:47Þ

Another important consequence of the APS index formula
is the relationship between η and the Chern-Simons function

CSðAÞ ¼ e2

4π

Z
Y
d3xϵijkAi∂jAk: ð2:48Þ

CSðAÞ is only gauge invariant mod 2πZ [which is why the
coupling k in Eq. (1.1) is an integer in any material that can be
described by an effective action for A only], but its variation
δCSðAÞ in a continuous change in A is completely gauge
invariant. If the spin manifold Y on which we are trying to
define CSðAÞ is the boundary of some X (over which A and
the spin structure extend), then

CSðAÞ ¼ 2πPmod 2πZ; ð2:49Þ

where P is the instanton number, integrated over X that
appears in the index formula (2.38). This formula depends on
the choice of a four-dimensional spin manifold X with
boundary Y, along with an extension of A over X, but it is
independent of these choices mod 2πZ. To prove this, suppose
that X and X0 are spin manifolds with the same boundary Y; let
P and P0 be the instanton numbers integrated over X and X0,
respectively. Then the difference P − P0 is an integer, because
it is the instanton number integrated on a closed oriented four-
dimensional spin manifold X̂ built by gluing X0 to X with a
reversal of orientation of X0 (Fig. 7).
Similarly, one can define a gravitational Chern-Simons term

CSgrav, also defined mod 2πZ, that satisfies

CSgrav ¼ 2π
Â
2
: ð2:50Þ

14The reason for this is that R and F are both two-forms, so
ÂðRÞtreF is a linear combination of forms of even degree. IfD is odd,
then ÂðRÞtreF has no degree D piece that could be a bulk
contribution in the index theorem.
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(It is understood that Â is integrated over X. The formula is
written in terms of Â=2 because Â is even on a four-dimensional
spin manifold without boundary. This fact will be important in
Sec. II.B.) Given these definitions, and assuming a suitable X
exists, the APS index theorem for X implies

η
2
¼ CSðAÞ

2π
− 2

CSgrav
2π

modZ: ð2:51Þ

The statement is true only modZ because it does not take into
account the I term in the index formula. [Also, CSðAÞ=2π is
only well defined modZ so the statement really only makes
sense modZ.]
In deducing this relation between η and Chern-Simons, we

assumed that the manifold Y on which we are studying these
objects is that boundary of some X on which we can use the
APS index theorem. This is true if Y is a three-dimensional
spin manifold with a U(1) gauge field, but in a more general
problem to which we might apply the APS index theorem, it
will not always be true. Even then, a somewhat weaker
statement is true. In general, the difference between η=2 and
the corresponding Chern-Simons invariant is constant (but is
not necessarily an integer) as one varies the metric and gauge
field on Y, keeping away from jumps in η. To state the relation
in generality, we assume that Y has dimension d, and we
generically write CSðg; AÞ=2π for the Chern-Simons invariant
that is related to the curvature polynomial15 ÂtreF that appears
in the index theorem in D ¼ dþ 1 dimensions [generalizing
Â − P for U(1) gauge theory in four dimensions]. Then under
any continuous variation of the metric and gauge field ðg; AÞ
on Y, modulo even integer jumps in η, we have

δη
2

¼ δCSðg; AÞ
2π

: ð2:52Þ

This is proved by applying the APS index theorem to the
D manifold X ¼ Y × ½0; 1�, with one pair of fields ðg; AÞ at

one end, and a slightly different pair ðg0; A0Þ ¼ ðgþ δg; Aþ
δAÞ at the other end. Including the jumps in η, the statement is

η
2
¼ CSðg; AÞ

2π
þ const modZ: ð2:53Þ

The constant, which is valued in R=Z, is an important
topological invariant in some situations. It can appear in
global anomalies, because of the relation of global anomalies
to η (Sec. IV).
In a context in which one only cares about η=2modZ,

and assuming X exists [as it always does for U(1) gauge
theory on a three-dimensional spin manifold], Eq. (2.51) can
be used to replace η with the more elementary invariants
CSðAÞ and CSgrav. However, the boundary fermions of
the 3D topological insulator have a partition function
Zψ ¼ jZψ j expð−iπη=2Þ, which depends on (η=2) mod 2Z,
not modZ. The replacement (2.51) is not adequate for
describing those boundary fermions. If we try to make that
replacement, we will lose control of the overall sign of Zψ ,
which as we have seen is very important in describing the
topological insulator.

9. Reflection positivity

Another question is why the formula jZψ jð−1ÞI for the
partition function is consistent with unitarity that is with
reflection positivity.
Actually, in the specific case at hand, we can give a trivial

answer to this question. We have built jZψ jð−1ÞI as a product
of two factors jZψ j expð∓ iπη=2Þ and expf�iπ½P − ÂðRÞ�g.
We showed the first factor to be reflection positive in the
discussion of Fig. 2, and the second factor is also compatible
with reflection positivity; otherwise, gauge and gravitational
θ angles would in general not be physically sensible.
[Concretely, expf�iθ½P − ÂðRÞ�g is consistent with reflection
positivity for any real θ because P and ÂðRÞ are odd under
reflection and vanish for any reflection-symmetric gauge field
and metric.]
However, with a view to other cases, we directly establish

the reflection positivity of jZψ jð−1ÞI. We want to show that
jZψ jð−1ÞI is real and non-negative whenever a spacetime X,
with boundary Y, is built by gluing together, along their
common boundary M, two mirror image copies of some
manifold X0, as in Fig. 8. If X has boundary Y, then this
boundary is likewise built by gluing together mirror image
pieces. In that case, X0 is really a manifold with corners, as in
Fig. 8. We assume that the gauge field, metric, and spin
structure on X are invariant under the reflection that exchanges
the two copies of X0.
Since jZψ j is trivially real and non-negative, to show

reflection positivity of jZψ jð−1ÞI it suffices to show that
I ¼ 0 in a reflection-symmetric situation. A reflection
reverses the chirality of a D ¼ 4 fermion, so in any reflec-
tion-symmetric situation, the index I computed with APS
boundary conditions vanishes. This completes the proof.
Alternatively, we could prove the vanishing of ð−1ÞI in the

situation of Fig. 8 by using cobordism invariance. This
explanation has the advantage that it applies almost

FIG. 7. By gluing together two oriented four-manifolds X and
X0 that have the same boundary Y (after reversing the orientation
of X0 so that the orientations are compatible), we build a closed
oriented four-manifold X̂. X̂ is a spin manifold if X and X0 have
spin structures that agree along Y.

15A curvature polynomial is just a polynomial in the Riemann
curvature R and the gauge theory field strength or curvature F.

Edward Witten: Fermion path integrals and topological phases

Rev. Mod. Phys., Vol. 88, No. 3, July–September 2016 035001-14



directly16 to the other examples that we study in the rest of this
paper, since they all involve cobordism-invariant sTQFTs. If X
is constructed as in Fig. 8 by “doubling” some manifold X0,
then X is always the boundary of a manifold Z that can be
constructed as follows. Let M be the boundary of X0 along
which the gluing occurs, as in the figure. Let Z0 ¼ X0 × I,
where I is the unit interval [0, 1], and in X0, collapseM × I to
M. This gives a manifold Z with boundary X. The local
picture, near M, is that Y looks like M ×Rþ and Z looks like
M ×R2þ, where Rþ and R2þ are half-spaces in R or R2. The
existence of Z ensures vanishing of a cobordism invariant of X
such as ð−1ÞI.

10. Running the story in reverse

Finally, it may be illuminating to run this story in reverse.
We do this by first postulating in bulk a sTQFT, and then
determining what sort of symmetry-preserving boundary state
it can have.
We consider a D ¼ 4 sTQFT, with U(1) symmetry, that is

characterized by saying that its partition function on a compact
D ¼ 4 spin manifold X, in the presence of a background U(1)
gauge fieldA, is ð−1ÞI,I being the index of theDirac operator.
This is the partition function of an sTQFT because the Atiyah-
Singer index theorem shows thatI is a cobordism invariant and
in general such a U(1)-valued cobordism invariant is the
partition function of a topological field theory.
A topological insulator can have a spatial boundary, and in

fact in the real world (as opposed to thought experiments)
spatial boundaries are unavoidable. So we would like to
extend our sTQFT to make sense on a manifold X with
boundary. This is not straightforward. The index I of the
Dirac operator cannot be defined with local boundary con-
ditions on ∂X, but it can be defined with global APS boundary
conditions. But I defined this way is not a topological
invariant, and moreover as the background data (the metric

and gauge field on X) are varied, I jumps in an unphys-
ical way.
The standard boundary state of the topological insulator has

massless Dirac fermions living on ∂X. In the presence of these
modes, the jumps in I make sense physically. The formula
jZψ jð−1ÞI that we have described is a physically sensible
formula for the partition function of a combined system
consisting of an sTQFT in bulk coupled to Dirac fermions
on the boundary. The jumps in I compensate for the problem
in defining the sign of the fermion partition function.

B. Topological superconductor in d = 3

We now turn to the topological superconductor in 3þ 1
dimensions, formulated for now on an orientable mani-
fold only.

1. Fermions and Pfaffians

The topological superconductor is gapped in bulk (at least
for fermionic excitations), but on the boundary it supports a
two-component Majorana fermion ψ . The main difference
from the analysis of the topological insulator is that ψ does not
carry any conserved charge [except ð−1ÞF, the operator that
counts fermions mod 2]. In particular, and in contrast to the
topological insulator, there is no distinction between fermion
modes of positive and negative charge. This necessitates a few
changes in the details of our explanations, although the main
ideas are the same. In the absence of a conserved additive
charge carried by the fermions, we have to use fermion
Pfaffians rather than determinants. Moreover, we need a more
careful argument to explain a doubling of the spectrum that is
rather trivial in the U(1)-invariant case.
A 3DMajorana fermion ψ in Lorentz signature has two real

components—they transform in the real two-dimensional
representation of Spinð1; 2Þ ≅ SLð2;RÞ. After continuing
to Euclidean signature, ψ still has two independent
components, although they are no longer real fields; they
transform in the two-dimensional pseudoreal representation of
Spinð3Þ ≅ SUð2Þ. [This is simply the spin 1=2 representation
of SU(2).] We cannot claim that ψ is real, because this would
not be compatible with SU(2) symmetry, but nonetheless the
complex conjugate of ψ does not appear in the formalism.17

When we write the Euclidean version of the action for ψ

Iψ ¼
Z

d3xψ̄Dψ ; ð2:54Þ

despite appearances, there is actually no complex conjugation
involved in the definition of ψ̄ . Indeed, for a Majorana
fermion continued to Euclidean space, the definition is just
ψ̄α ¼ εαβψ

β, where εαβ is the Spinð3Þ ¼ SUð2Þ invariant
antisymmetric tensor. Thus Iψ is simply an antisymmetric
bilinear expression in the fermion field ψ . It is antisymmetric
because of Fermi statistics.

FIG. 8. A spacetime X with boundary Y that is built by gluing
together mirror image copies of some manifold X0. The copies
are denoted X0 and X0

0. Y is likewise the union of mirror image
pieces. X0 has two types of boundaries: M, along which it is
glued to X0

0, and also its intersection with Y ¼ ∂X. X0 has
corners along M ∩ Y.

16To do this properly requires some important details about the
gluing of the spin or pin structures of X0 and X0

0 that have been
described to me by D. Freed. These details have to be used in
establishing that the spin or pin structure of X extends over the
manifold Z constructed below.

17This leads to no contradiction because fermion integration is
really an algebraic procedure. We define it for an odd variable ψ by
saying

R
dψ · 1 ¼ 0,

R
dψ · ψ ¼ 1, without ever having to claim that

ψ is real or to mention its complex conjugate.
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It is useful to carefully distinguish between operators and
bilinear forms. The usual Hermitian Dirac operatorD ¼ iD ¼
i
P

3
i¼1 γ

iDi is an “operator,” schematically ψα →
P

βiD
α
βψ

β.
A spinor index of ψα can be raised or lowered using the
antisymmetric tensor εαβ, and if we do this we get the
antisymmetric bilinear form Dγβ ¼ εγαiDα

β .
The path integral of the ψ field is formally the Pfaffian of

this antisymmetric form:

Zψ ¼ PfðDÞ: ð2:55Þ

Whenever one has a theory of fermions, the quadratic part of
the fermion action is always antisymmetric by virtue of Fermi
statistics and the corresponding fermion path integral is the
Pfaffian of the antisymmetric bilinear form that appears in the
action.
When can one speak of a fermion “determinant” rather than

a Pfaffian? This is possible if there is a conserved U(1)
charge18 and a splitting of ψ into fields ψþ and ψ− of positive
and negative charge, respectively. U(1) symmetry then ensures
that in a basis ðψþ

ψ−
Þ the form D will be block off diagonal

D ¼
�

0 D

−Dtr 0

�
: ð2:56Þ

Here D is not subject to any condition of symmetry or
antisymmetry, and Dtr is its transpose. In such a situation,
one has

PfðDÞ ¼ detðDÞ; ð2:57Þ

and so the fermion path integral can be written as a
determinant.
Going back to the Hermitian Dirac operator D for the

Majorana fermion, its eigenvalues have even multiplicity
because of a Euclidean analog of Kramers doubling.19 If a
c-number spinor χ is an eigenvector of the Dirac operator,

Dχ ¼ λχ; λ ∈ R; ð2:58Þ

then ~χ defined by ~χα ¼ εαβχ�β is an eigenvector with the same
eigenvalue

D~χ ¼ λ~χ: ð2:59Þ

Here we write χ�β for the complex conjugate of χβ. Although
there is no field in the Euclidean field theory that corresponds
to the complex conjugate of ψ , when we expand ψ in
eigenmodes of D as a step toward performing a functional

integral, it makes sense to consider the behavior of these
eigenmodes under complex conjugation. If we define an
antilinear operation T on spinors by

ðT χÞα ¼ εαβχ�β; ð2:60Þ

then ½T ;D� ¼ 0 and T 2 ¼ −1. Just as in the study of Kramers
doubling in 3þ 1 dimensions, this implies that the eigenval-
ues of D have even multiplicity. The doubling of the spectrum
always occurs, for the same reason, for pseudoreal fermions.
One simply has to replace εαβ by the invariant antisymmetric
bilinear form relevant to a given case.
Let χ and T χ be a pair of eigenmodes of D with the same

eigenvalue λ. Because of the definition Dγβ ¼ εγαDα
β , in a

2 × 2 block with basis ð χ
T χÞ, D takes the form

D ¼
�
0 −λ
λ 0

�
: ð2:61Þ

More generally, consider a basis of eigenmodes of D of the
form χi; T χi (where χi; T χi are orthogonal to χj; T χj
for i ≠ j). In such a basis, D is block diagonal with 2 × 2
blocks of the form (2.61). Accordingly, the Pfaffian of D is
formally

PfðDÞ ¼
Y

i
0λi; ð2:62Þ

where the product is over eigenvalues ofD and the symbol
Q0

means that in the product, we take only one eigenvalue from
each pair.
Let us compare this to the corresponding equation (2.7) for

a Dirac fermion. On the left-hand side of Eq. (2.7), we wrote
detD instead of PfðDÞ, reflecting the fact that PfðDÞ can be
written as detD in the U(1)-invariant case. On the right-hand
side of Eq. (2.7), the product over eigenvalues runs only over
fermion eigenvalues of positive charge. (In that derivation, D
was defined as the Hermitian Dirac operator acting on a
Dirac fermion ψ , meaning a fermion of definite charge,
which we may as well consider to be positive charge.) By
charge conjugation symmetry of the Dirac equation, the
corresponding negatively charged fermion has exactly the
same eigenvalues, but they are not considered in Eq. (2.7).
The doubling of Dirac eigenvalues that we got in the
Majorana case from a relatively subtle argument using the
fact that T 2 ¼ −1 is more trivial in the Dirac case: it just
means that the eigenvalues are the same for fermions of
positive or negative charge. A formula like Eq. (2.62) can be
written for any system of pseudoreal fermions; it reduces to
something along the lines of Eq. (2.7) when there is a
suitable symmetry.

2. Vanishing of the spectral flow

Now let us consider the sign of D. As in the discussion of
the topological insulator, there is potentially a problem in
defining the sign of the formal expression (2.62), since there
are infinitely many eigenvector pairs with λ < 0. On a given
three-manifold Y, we can start with a particular metric g0,
define the sign of PfðDÞ as we wish, and then evolve this

18U(1) can be replaced by some other group as long as there is a
splitting of ψ that leads to a structure like that of Eq. (2.56).

19The mathematical facts that lead to this Euclidean analog of
Kramers doubling for c-number modes in three spacetime dimen-
sions are the same ones that lead to conventional Kramers doubling
for quantum states in 3þ 1 dimensions. A definition of T that is less
intrinsic but may look more familiar is given in Appendix B.2; see
Eq. (B13).
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sign as the metric is varied by counting how many times an
eigenvalue pair flows through λ ¼ 0. To decide if this
procedure gives an answer that is invariant under diffeo-
morphisms not connected to the identity, one follows the
procedure involving the mapping torus that was described in
Sec. II.A.2. We consider the same spectral flow problem as in
Fig. 1, and ask if the number Δ of eigenvalue pairs flowing
through λ ¼ 0 is even or odd.
It turns out thatΔ always vanishes. The steps in proving this

are as follows. First, the spectral flow arguments (Atiyah,
Patodi, and Singer, 1975; Callan, Dashen, and Gross, 1978;
Kiskis, 1978) that we mentioned in explaining Eq. (2.11) are
also valid for Majorana fermions. The only differences are as
follows: (1) when there is no U(1) symmetry, the spectral flow
Δ should be defined as the number of eigenvalue pairs flowing
through λ ¼ 0, rather than the number of positive charge
eigenvalues flowing through λ ¼ 0; (2) similarly, when there
is no U(1) symmetry, we have to express Δ in terms of a
D ¼ 4 Dirac index I computed in the space of all fermion
fields, not an index I computed in the space of positively
charged fermions only. The relation between the two types of
index (when they are both defined) is just

I ¼ 2I; ð2:63Þ

since charge conjugation implies that the D ¼ 4 index for
negatively charged fermions is the same as that for positively
charged ones. As a result the generalization of Eq. (2.11) that
is valid without assuming a U(1) symmetry is

Δ ¼ I
2
: ð2:64Þ

This formula makes sense because in D ¼ 4, I is always
even,20 a fact that will be important in what follows. Similarly
the analog of Eq. (2.12) is that the transformation of the
fermion path integral under a diffeomorphism ϕ is

PfðDÞ → PfðDÞð−1ÞI=2: ð2:65Þ

Here I is the index of the Dirac operator on the mapping torus
built from ϕ, taking all fermions into account.
This formula is not limited to the case of a single Majorana

fermion coupled to gravity only. It applies (on an orientable
three-manifold; we postpone the unorientable case to Sec. IV)
to any system of 3D Majorana fermions transforming in a real
representation of any compact gauge group. In many cases
[such as the topological insulator, where Eq. (2.65) is
equivalent to Eq. (2.12)], the formula implies an anomaly
in the sign of PfðDÞ. However, there is no such anomaly for a
single Majorana fermion coupled to gravity only. Even though

I=2 can be odd in general on a compact D ¼ 4 spin manifold
without boundary,21 it always vanishes on a mapping torus.22

3. The sign of the path integral

The last statement means that in the traditional sense there
is no anomaly in PfðDÞ for a 3D Majorana fermion coupled to
gravity only on an oriented three-manifold Y: after picking its
sign in an arbitrary fashion at some starting metric g0, the sign
can be defined in a consistent way for all metrics in a way
invariant under orientation-preserving diffeomorphisms.
However, it is not physically satisfactory to allow an arbitrary
independent sign in the path integral for every Y. As already
remarked in Sec. II.A.2, a satisfactory definition of the theory
will determine the phase of the path integral for all Y’s,
compatibly with physical requirements of cutting and pasting.
We now explain how, even though there is no anomaly in

the traditional sense, a physically natural procedure to define
the fermion path integral of the (2þ 1)-dimensional Majorana
fermion in a consistent way for all Y’s leads to a violation of T
and R symmetry, just as happens for the topological insulator.
Moreover, in the context of this procedure, it will be clear that
even though ð−1ÞI=2 ¼ 1 for mapping tori, the fact that
ð−1ÞI=2 ≠ 1 for some other (compact, closed, orientable spin)
manifolds represents an obstruction to defining the (2þ 1)-
dimensional Majorana fermion by itself in a T-invariant way,
without coupling to a bulk topological superconductor. With
coupling to the bulk included, we get a well-defined and
T-invariant answer.
Although I do not claim to have a formal proof, one would

expect that any other procedure to precisely define the
partition function of the (2þ 1)-dimensional Majorana fer-
mion for all Y will lead to the same conclusions. In general,
one expects that two reasonable regularizations of the same
theory differ by a local counterterm, but there is no possible
local counterterm that would change our conclusions.
To define the (2þ 1)-dimensional Majorana fermion, we

use the same Pauli-Villars regularization that we used for the
Dirac fermion. The analog for the Pfaffian of Eq. (2.14) for the
fermion determinant is

PfðDÞreg ¼
Y

k
0 λk
λk � iμ

; ð2:66Þ

20This assertion is proven by an argument similar to the one used
to show the doubling of the Dirac spectrum for d ¼ 3. The spinor
representation of Spin(4) is pseudoreal, and therefore the eigenmodes
of a Majorana fermion in D ¼ 4 are doubled because of an antilinear
symmetry ðT χÞα ¼ εαβχ�β, T 2 ¼ −1, and ½T ;D� ¼ 0. The zero
modes of positive or negative chirality are both doubled by this
argument, and therefore I is even; see Appendix B.3.

21For example, I=2 ¼ 1 on a K3 surface.
22One way to prove this is to note that in four dimensions the Dirac

index for a Majorana fermion coupled to gravity only is related to the
signature σ by I ¼ σ=8. But for a mapping torus of any dimension, a
relatively elementary topological argument shows that σ ¼ 0. Let
X → S1 be a mapping torus, of dimension 4n for some n, with fiber Y
of dimension 4n − 1. Consider the subspace Γ ⊂ H2nðX;ZÞ gen-
erated by cycles of the form W × p, with W ⊂ Y and p a point in S1.
Modulo torsion, Γ is a null subspace for the intersection pairing on
H2nðX;ZÞ. (For any W;W0 ⊂ Y, the intersection number of W × p
andW0 × p is 0 becauseW0 × p is homologous to W0 × p0, for some
p0 ≠ p ∈ S1, andW0 × p0 does not intersectW × p.) Poincaré duality
can be used to show that Γ is middle dimensional. The existence of a
middle-dimensional null subspace of H2nðX;ZÞ mod torsion shows
that the signature of X is 0.
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where we allow both signs of the regulator mass. The same
steps that led to Eq. (2.21) now give for the Majorana fermion
path integral

Zψ ¼ jZψ j expð∓ iπη=2Þ; ð2:67Þ

where we can now define η as a restricted sum

η ¼ lim
s→0

X
k
0signðλkÞjλkj−s ð2:68Þ

in which one only includes one eigenvalue from each pair.
However, it is more customary to define an η invariant as a
sum over all eigenvalues

η ¼ lim
s→0

X
k

signðλkÞjλkj−s; ð2:69Þ

so that

η ¼ 2η; ð2:70Þ

and then we should write the fermion path integral as

Zψ ¼ jZψ j expð∓ iπη=4Þ: ð2:71Þ

This is T violating because it is not real, but as in Sec. II.A
we can restore T invariance if we assume that the three-
manifold Y that supports the massless Majorana fermion is
actually the boundary of the world volume X of a topological
superconductor. The salient property of the topological super-
conductor is that in the large volume limit its partition function
on a closed (orientable) four-manifold without boundary is
ð−1ÞI=2. (This is always �1, since I is even.) This claim
about the partition function of a topological superconductor
can be justified by precisely the same reasoning given in
Sec. II.A.6 for the topological insulator, starting with the fact
that the phase transition between an ordinary and a topological
D ¼ 4 superconductor occurs when the mass m of a D ¼ 4
Majorana fermion passes through 0. What happens to the sign
of the path integral when this mass changes sign? To absorb I
fermion zero modes requires I=2 mass insertions, so the
partition function is proportional for smallm tomI=2. And if it
is positive for one sign of m, then for the opposite sign of m it
is proportional to ð−1ÞI=2.
The partition function ð−1ÞI=2 can be interpreted in terms

of a gravitational θ angle. In general, such an angle gives a
factor expðiθI=2Þ in the path integral measure, so the fact that
the topological superconductor partition function is ð−1ÞI=2
means that its gravitational θ angle is π. [See Ryu, Moore, and
Ludwig (2010) for a previous explanation of this fact.] On a
manifold without boundary, the Atiyah-Singer index theorem
gives ð−1ÞI=2 ¼ exp½�iÂðRÞ=2�, but on a manifold with
boundary, with I defined using APS boundary conditions,
the APS index theorem gives a boundary correction in this
statement:

expð∓ iπη=4Þ exp ½�iπÂðRÞ=2� ¼ ð−1ÞI=2: ð2:72Þ

This formula is the analog of Eq. (2.26).

The combined path integral of the Majorana fermion on
Y ¼ ∂X and the topological superconductor in bulk is then

jZψ j expð∓ iπη=4Þ exp ½�iπÂðRÞ=2� ¼ jZψ jð−1ÞI=2: ð2:73Þ

This is quite analogous to the topological insulator, with the
sole difference I → I=2. Since jZψ jð−1ÞI=2 is real, T
invariance has been recovered.
Now let us reexamine the partition function of the boundary

Majorana fermions on Y. The combined path integral that
describes these fermions and the bulk sTQFTon X is supposed
to give jZψ jð−1ÞIX=2, where we write IX (and not just I) to
emphasize the role of X. But does this formula depend on X?
To decide this question, suppose that X and X0 are orientable
spin manifolds with the same boundary Y. By gluing them
together with a reversal of orientation on one of them, we
build an orientable spin manifold X̂ without boundary (see
Fig. 7). The gluing formula for the index with APS boundary
conditions gives23

ð−1ÞIX=2ð−1ÞIX0=2 ¼ ð−1ÞI X̂=2: ð2:74Þ

Thus in general ð−1ÞIX=2 and ð−1ÞIX0=2 are different precisely
because ð−1ÞI X̂=2 can be nontrivial for a suitable X̂ without
boundary. Because ð−1ÞIX=2 and ð−1ÞIX0=2 are different in
general, jZψ jð−1ÞIX=2 depends on X. This X dependence is the
obstruction to defining the (2þ 1)-dimensional Majorana
fermion by itself in a T-invariant way.
That is the basis for saying that the nontriviality of ð−1ÞIX=2

for someX, even though it is trivial for mapping tori, represents
an anomaly for the (2þ 1)-dimensional Majorana fermion.
Viewed from the bulk point of view, the significance of the

fact that ð−1ÞIX=2 can be nontrivial may seem more obvious. If
ð−1ÞIX=2 were equal to 1 for all X without boundary, then the
corresponding sTQFT would be completely trivial, and we
could define it to be still trivial if X has a boundary. Boundary
fermions would play no essential role.
In Sec. IV, we reconsider the 3D topological insulator and

superconductor on unorientable manifolds. We will see that
this does not change much for the topological insulator, but for
the topological superconductor it does. What we have said
here about the topological superconductor is only a small part
of the full story, but treating this part by itself gave us the
chance to explain some important points in a simple context.

C. Overview of the remaining cases

Before getting into any details, we give an overview of the
rest of this paper. We will discuss the remaining cases of real

23The theorem says that I X̂ ¼ IX þ IX0 , which clearly implies
Eq. (2.74). It follows from the Atiyah-Singer index formula
I X̂ ¼ R

X ÂðRÞtreF, together with the APS index theorem, which

says that IX ¼ R
X ÂðRÞtreF − η=2, with a similar formula for IX0.

When we take the sum IX þ IX0 , the integrals over X and X0 add up
to the integral over X̂ that gives IðX̂Þ, and the boundary terms −η=2
cancel because η is odd under reversal of orientation.
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and complex fermions in a way very similar to the way that we
have analyzed pseudoreal fermions.
In each case, there will be a “bulk” invariant that will play

the role of the Dirac index I or I in the cases analyzed so far.
For real fermions, this invariant will be ð−1Þζ, where ζ is the
mod 2 index of a Dirac operator in dimensionD. (This concept
will be explained in Sec. III.B.) For complex fermions, the
analog will be expð−iπη=2Þ, where η is the APS η invariant24

of a Dirac operator in dimension D. In each case, ð−1Þζ or
expð−iπη=2Þ will be the partition function of a suitable
sTQFT in D dimensions.
However, just like ð−1ÞI=2 [or its special case ð−1ÞI], the

invariants ð−1Þζ and expð−iπη=2Þ are not straightforwardly
defined on a manifold X with a spatial boundary. When X has
a spatial boundary, something has to happen on Y ¼ ∂X.
Although there are other possibilities, the standard boundary
states of topological insulators and superconductors have
gapless fermions supported on the boundary. In each case,
the fermion partition function Zψ is not well defined by itself.
But the product jZψ jð−1Þζ or jZψ j expð−iπη=2Þ is well
defined and compatible with all physical principles.
Here jZψ jð−1Þζ or jZψ j expð−iπη=2Þ is the partition func-

tion of the combined system consisting of gapless fermions on
∂X and an sTQFT in bulk. These combined partition functions
cannot be usefully factored as the product of a partition
function for the boundary fermions and one for the bulk
sTQFT. In each case, the boundary fermions have an anomaly
that compensates for the difficulty in defining the bulk sTQFT
on a manifold with boundary.
In a certain sense, the invariant expð−iπη=2Þ is universal

and the more elementary invariants ð−1ÞI=2 and ð−1Þζ can be
viewed as special cases to which expð−iπη=2Þ reduces under
favorable circumstances. It logically would have been possible
to begin this paper with a general analysis leading to
expð−iπη=2Þ and then to deduce as corollaries the more
easily understood formulas involving ð−1ÞI=2 or ð−1Þζ, but
this might have made the presentation rather opaque.

III. REAL FERMIONS

In this section, we consider topological states of matter in
which the boundary modes, in Euclidean signature, are real
fermions. Our basic example will be the (2þ 1)-dimensional
T-invariant topological superconductor. However, we also
consider the (2þ 1)-dimensional topological insulator.

A. Symmetry of the spectrum

In two spacetime dimensions, we need only two gamma
matrices. In Euclidean signature, they should obey fγa; γbg ¼
2δab, and they can be 2 × 2 real matrices, for example,
γ1 ¼ σ1, γ2 ¼ σ3.
The operator D ¼ P

2
i¼1 γ

iDi is therefore a real antisym-
metric operator. The corresponding Hermitian Dirac operator

D ¼ iD is imaginary and antisymmetric. This is true even on
on unorientable two-manifold.
Consider the eigenvalue problem Dχ ¼ λχ in this situation.

The spectrum is invariant under λ → −λ, because if Dχ ¼ λχ,
thenDχ� ¼ −λχ�. Note that we have made use of an antilinear
operation T ∶χ → χ� that obeys T 2 ¼ 1. By contrast, for
pseudoreal fermions, to prove that the spectrum is doubled for
each value of λ, we used in Sec. II.B an antilinear symmetry
with T 2 ¼ −1. In the real case, the symmetry λ → −λ gives a
pairing of eigenvalues with λ ≠ 0, but there may be unpaired
zero modes. (Indeed, these would represent a mod 2 index,
which we come to in Sec. III.B.) For the moment we assume
that generically there are no zero modes.
The edge modes of a (2þ 1)-dimensional T-invariant

topological superconductor are a (1þ 1)-dimensional
Majorana fermion (coupled to gravity only). There is no
U(1) symmetry and the fermion path integral is best under-
stood as the Pfaffian of an antisymmetric bilinear form D. The
definition of D in terms of the Hermitian Dirac operator D is
slightly different from what it is for pseudoreal fermions,
which were discussed in Sec. II.B. Instead of Dγβ ¼ εγαDα

β as
in that case, with εαβ an invariant antisymmetric tensor in the
space of fermion fields, we now have Dγβ ¼ δγαDα

β , with δγα
an invariant symmetric tensor.
The result of this is that D is the direct sum of 2 × 2 blocks,

with one such block for each eigenvalue pair λi;−λi of D:

D ¼ ⨁
i

�
0 λi

−λi 0

�
: ð3:1Þ

This contrasts with the pseudoreal case, in which D has a
2 × 2 block for each pair of states with the same eigenvalue λ.
An important detail is that if we are given an antisymmetric

bilinear form D, then its “skew eigenvalues” λi are uniquely
determined only up to sign. An orthogonal transformation by
the 2 × 2 matrix diagð1;−1Þ acting in the ith block would
reverse the sign of λi in Eq. (3.1). So up to sign (and modulo
the need for regularization), the fermion path integral is

PfðDÞ ¼
Y
i

λi: ð3:2Þ

Broadly speaking, we are in a familiar situation. To
decide on the sign of PfðDÞ, we need to know, mod 2, how
many of the λi should be considered negative. In general,
such a question does not have a natural answer. However,
we observe that as a function of the metric tensor g of a
two-manifold Y PfðDÞ should change sign whenever a pair
of eigenvalues λi;−λi passes through 0. So to get a partial
answer, we can pick the sign of PfðDÞ for some chosen
metric g0 on a two-manifold Y, and then determine the sign
as a function of g by counting how many times an
eigenvalue pair passes through 0 in interpolating from g0
to g.
To understand the behavior of PfðDÞ under a diffeomor-

phism ϕ, we have to count mod 2 how many times the sign of
PfðDÞ changes when we interpolate, via a family of metrics gs
parametrized by s ∈ ½0; 1�, from a starting metric g0 to its
conjugate gϕ0 under ϕ (Fig. 9). The difference from the

24Typically expð−iπη=2Þ is not a topological invariant, but if the
original complex fermions have no perturbative anomaly, then the
particular invariant expð−iπη=2Þ that controls their global anomaly is
a topological invariant and in fact a cobordism invariant.
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pseudoreal case of Fig. 1 is that instead of counting the net
flow of eigenvalues (or eigenvalue pairs) from λ < 0 to λ > 0

as s increases from 0 to 1, which is an integer-valued invariant,
now we are interested in counting mod 2 how many times a
pair of eigenvalues �λ passes through 0. It is easily seen that
this is only a mod 2 topological invariant.
In Sec. II, we exploited the fact that the integer-valued

spectral flow invariant that arises for pseudoreal fermions in
d spacetime dimensions can be expressed in terms of the
index of the Dirac operator in D ¼ dþ 1 dimensions. The
general version of this formula without assuming a U(1)
symmetry is in Eq. (2.64). The Z2-valued spectral flow
invariant for real fermions is likewise a Dirac index of a
sort, but a less familiar sort. It is equal to the mod 2 index
(Atiyah and Singer, 1971) of the Dirac operator in D
dimensions, which we denote as ζ. This is a rather subtle
invariant. In the original papers on global anomalies in
fermion path integrals (Witten, 1982, 1985a), it was shown
that the mod 2 spectral flow invariant for real fermions in d
spacetime dimensions equals the corresponding mod 2 Dirac
index ζ in D ¼ dþ 1 dimensions. Thus the transformation
law of the fermion path integral is

PfðDÞ → PfðDÞð−1Þζ; ð3:3Þ

where ζ is the mod 2 index of the Dirac operator on the
mapping torus. The proof is similar to the proof of
Eqs. (2.11) and (2.64), which we recall reflect a relationship
between spectral flow for pseudoreal fermions in d space-
time dimensions and an ordinary Dirac index in D ¼ dþ 1

dimensions (Atiyah, Patodi, and Singer, 1975; Callan,
Dashen, and Gross, 1978; Kiskis, 1978).

B. An interlude on the mod 2 index

The most straightforward way to define the mod 2 index
physically is just to observe the following. Suppose in general
that in D spacetime dimensions, we can write an action for
some system of fermions:

I ¼
Z

dDxψ̄Dψ : ð3:4Þ

The only universal property of D is that it can be viewed as an
antisymmetric bilinear form—antisymmetric because of
Fermi statistics. The canonical form of an antisymmetric
bilinear form D is a direct sum of 2 × 2 blocks with some zero
eigenvalues:

0
BBBBBBBBBBBBB@

0 a1
−a1 0

0 a2
−a2 0

. .
.

0

0

1
CCCCCCCCCCCCCA

: ð3:5Þ

The number of zero modes of D is a topological invariant
mod 2, since as one varies the parameters a1; a2;… that
appear in the nonzero blocks, zero modes can appear or
disappear only in pairs. The number of zero modes mod 2 is
called the mod 2 index. (As an example of this definition, one
can see that if Ω is an antisymmetric bilinear form on a finite-
dimensional vector space V, then its mod 2 index is simply the
dimension of V mod 2.)
Here are the simplest examples of the mod 2 index in low

dimension. (In all these examples, we consider fermions
coupled to gravity only.) In one dimension, there is only
one gamma matrix γ1 obeying γ21 ¼ 1, so we represent it as
γ1 ¼ 1 and consider a one-component fermion field ψ . A
compact one-manifold without boundary is a circle S1. There
are two possible spin structures, depending whether ψ obeys
periodic or antiperiodic boundary conditions. The Dirac
equation is dψ=dt ¼ 0, and there is one zero mode in the
periodic case and none in the antiperiodic case. As a result the
mod 2 index is 1 or 0 for periodic or antiperiodic fermions.
In two dimensions, we can consider a one-component chiral

fermion ψ coupled to gravity only (the edge mode of a chiral
superconductor in 2þ 1 dimensions), which can be formu-
lated only on an orientable two-manifold. An example of a
compact orientable two-manifold is a torus T2, for example,
the quotient of the complex z plane by

z ≅ zþ 1 ≅ zþ i: ð3:6Þ

The Dirac equation for a chiral fermion is ∂ψ=∂z̄ ¼ 0. There
are four spin structures depending on whether ψ is periodic or
antiperiodic under z → zþ 1 and under z → zþ i. In the
completely periodic case, there is one zero mode and in the
other cases there are none. So the mod 2 index is nonzero
precisely in the completely periodic spin structure.
What about a Majorana fermion ψ in two dimensions? On

an orientable two-manifold, ψ can be decomposed in com-
ponents ψþ and ψ− of positive and negative chirality, and the
Dirac equation Dψ ¼ 0 for a zero mode splits as separate
equations for ψþ and ψ−. The complex conjugate of a ψþ zero

FIG. 9. Spectral flow for real fermions. The spectrum is
symmetric under λ ↔ −λ. The fermion path integral changes
sign whenever an eigenvalue pair flows through 0, so we count
mod 2 how many times this happens in interpolating from an
initial metric g0 to its transform gϕ0 under some diffeomorphism ϕ.
In the example shown, this occurs once, so PfðDÞ is odd under ϕ.
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mode is a ψ− zero mode, so the number of zero modes of ψ is
trivially even and the mod 2 index inevitably vanishes.
This is not so if we formulate the Majorana fermion on an

unorientable two-manifold. For a concrete example, we con-
sider the Klein bottle (KB) constructed as the quotient of the
two-torus (3.6) by z → z̄þ 1=2. Equivalently, introducing real
coordinates by setting z ¼ x1 þ ix2, the relations are

ðx1; x2Þ ≅ ðx1 þ 1; x2Þ ≅ ðx1; x2 þ 1Þ ≅ ðx1 þ 1=2;−x2Þ:
ð3:7Þ

We define a pinþ structure25 on KB by requiring

ψðx1; x2Þ ¼ ψðx1 þ 1; x2Þ ¼ ψðx1; x2 þ 1Þ
¼ γ2ψðx1 þ 1=2;−x2Þ: ð3:8Þ

One of the two zeromodes thatψ would have onT2 is projected
out when we go to KB, so with this pinþ structure, the mod 2
index of ψ is 1.
For our last example,we consider a two-componentMajorana

fermion ψ in D ¼ 3 spacetime dimensions. There is a Dirac
action for such a system, so it is possible to define amod 2 index.
This mod 2 index always vanishes on an orientable three-
manifold X. Indeed, on an orientable three-manifold, the
eigenvalues of the Dirac operator always have even multiplicity,
as shown earlier using the antilinear operation defined in
Eq. (2.60). However, on an unorientable three-manifold, the
mod 2 index can be nontrivial. A simple example is X ¼ KB×
S1, where KB and the spin structure on it were defined in
Eqs. (3.7) and (3.8), andwe take the periodic spin structureonS1.
The only zero mode of ψ is a mode that is constant in the S1

direction and whose restriction to KB is the zero mode found in
the previous paragraph. So the mod 2 index is 1.
We conclude this introduction to the mod 2 index by

stressing that despite its name the mod 2 index is not the
mod 2 reduction of an ordinary index or indeed of any integer-
valued invariant. In fact, we have given examples in one and
three dimensions of a nontrivial mod 2 index, but the ordinary
index always vanishes in odd dimensions. The mod 2 version
of the Atiyah-Singer index theorem (Atiyah and Singer, 1971)
does not give a formula for the mod 2 index,26 analogous to the
familiar Atiyah-Singer index formula for the ordinary index. It
does imply that the mod 2 index is a cobordism invariant, so,
in particular, there is a 3D sTQFT (defined on spin or more
precisely pinþ manifolds) with partition function ð−1Þζ.
Before discussing what happens when this theory is consid-
ered on a manifold with boundary, we present some simple
examples of the global anomaly of a 2D Majorana fermion.

C. Simple examples of the global anomaly

We learned in Sec. III.B that inD ¼ 3 the mod 2 index of the
Dirac operator is always zero on an orientable manifold, but

that on an unorientablemanifold themod 2 index of aMajorana
fermion coupled to gravity only can be nonzero. This should
mean that in two spacetime dimensions a Majorana fermion ψ
is consistent as long as we formulate it only on an orientable
two-manifold and only allow orientation-preserving diffeo-
morphisms, but becomes anomalous otherwise.
The anomaly if we formulate the Majorana fermion ψ on an

unorientable two-manifold or if we allow orientation-reversing
symmetries can be seen by elementary examples that do not
really require the general formalism. First, let us consider the
ψ field on the Klein bottle KB, which we take as an example of
an unorientable two-manifold. Aswe have seen, with a suitable
pin structure on KB, the mod 2 index is nonzero. This means
that generically the Dirac operator has a single c-number zero
mode χ0. Other modes are paired in a natural way under the
symmetry λ ↔ −λ of the spectrum. In such a situation, the
measure in the fermion path integral is odd under the symmetry
ð−1ÞF that counts fermions mod 2. Concretely, the fermion
partition function on KB vanishes because of the zero mode,
but the (unnormalized) one-point function hR d2x

ffiffiffi
g

p
χ̄0ψiwith

an operator insertion that removes the zero mode is nonzero.
Since this correlation function has an odd number of fermion
insertions, it is odd under ð−1ÞF.
Clearly, we can understand this example without thinking

about the mapping torus, but how would we understand it in
terms of the mapping torus construction? Any diffeomorphism
of a manifold Y that can act on fermions at all can act in two
different ways, differing by an overall sign. In particular, the
trivial diffeomorphism of Y can be taken to act trivially on
fermions or to act as multiplication by −1. If we lift the trivial
diffeomorphism of Y to act trivially on fermions, we get the
trivial symmetry 1, but if we take it to act as−1 on fermions, we
get the symmetry ð−1ÞF. So we think of the trivial symmetry 1
or the nontrivial symmetry ð−1ÞF as special cases of a diffeo-
morphism and apply the mapping torus construction.
The mapping torus associated with the trivial diffeomor-

phism of KB is just the product KB × S1. The two lifts of the
trivial diffeomorphism to act on fermions correspond to two
different pinþ structures in which the fermions are periodic or
antiperiodic around the S1 direction. (The pinþ structure on KB
is arbitrary and is kept fixed in this discussion.) The trivial
symmetry 1 and the symmetry ð−1ÞF correspond to the
antiperiodic and periodic pinþ structures, respectively. This
is analogous to the fact that in statistical mechanics, with
HamiltonianH, to compute a trace Tre−βH or Trð−1ÞFe−βH, we
do a path integral on a circle of circumference β with fermions
that are, respectively, antiperiodic or periodic around the circle.
Now, let us compute the mod 2 index on KB × S1 with our two
pinþ structures. If the fermions are antiperiodic on S1, corre-
sponding to the trivial symmetry 1, then the lowest eigenvalue of
the Dirac operator on KB × S1 is π=β (or larger), where again β
is the circumference of the circle. There are no zero modes, so
themod 2 index of themapping cylinder vanishes, implying that
the path integral measure on KB is invariant under the trivial
symmetry. But if the fermions are periodic onS1, corresponding
to the symmetry ð−1ÞF, then as seen in Sec. III.B, the mod 2
index on KB × S1 is the same as it is on KB. This means that
precisely when the mod 2 index on KB is nonzero, the path
integral measure on KB is odd under ð−1ÞF.

25This concept, which is the analog of a spin structure on an
unorientable manifold, is described in Appendix A.2.

26To be more precise, the formula expresses the mod 2 index in
terms of K theory but does not give a formula in a conventional sense
as an integral.
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In these statements, KB could be replaced with any two-
manifold Y. Whenever there is a nontrivial mod 2 index on Y,
and thus an anomaly in ð−1ÞF, this anomaly shows up in the
mod 2 index on the mapping torus Y × S1.
For another simple example, let us consider the Majorana

fermion ψ on the orientable two-manifold T2. But now we
consider a diffeomorphism ϕ that acts as a reflection of one
coordinate, reversing the orientation of T2. Taking on T2 the
spin structure that is periodic in both directions, ψ has two
zero modes, say χ1 and χ2. Because of these zero modes, the
partition function of the ψ field on T2 vanishes, but the
(unnormalized) two-point function

�Z
Y
d2x

ffiffiffi
g

p
χ̄1ψ ·

Z
Y
d2x

ffiffiffi
g

p
χ̄2ψ

�
ð3:9Þ

is nonzero. Of the two zero modes, one linear combination is
even under ϕ and one is odd, so the matrix element in Eq. (3.9)
is odd under ϕ, showing that the path integral measure is odd
under ϕ.
Let us again try to understand this global anomaly in the

mapping torus construction. We take for T2 the quotient of the
x2 − x3 plane by ðx2; x3Þ ≅ ðx2 þ 1; x3Þ ≅ ðx2; x3 þ 1Þ, with
the Majorana fermion field ψ assumed to be periodic in both
directions. We consider ϕ to act by ðx2; x3Þ → ð−x2; x3Þ. To
construct the mapping torus associated with ϕ, we introduce a
copy ofR parametrized by another variable x1 and consider the
quotient of R × T2 by ðx1; x2; x3Þ → ðx1 þ 1=2;−x2; x3Þ. But
this is just another way to construct the familiar three-manifold
KB × S1. We must further say how we want ϕ to act on
fermions. We do this by saying that a fermion field ψ on KB ×
S1 is a fermion field on R × T2, periodic in the T2 directions,
that obeys ψðx1 þ 1=2;−x2; x3Þ ¼ γ2ψðx1; x2; x3Þ. But this
gives the pinþ structure onKB × S1 thatwas already considered
in Sec. III.B. As explained there, themod 2 index with this pinþ

structure is nonzero, so again the mapping torus construction
detects the global anomaly in the reflection symmetry of T2.

D. Bulk sTQFT associated with the T-invariant topological
superconductor

Now, let us consider the sTQFTwhose partition function on
a closed three-manifold X with a pinþ structure is ð−1Þζ. This
theory is trivial if X is orientable, but in general not otherwise.
Our first task is to explain why this sTQFT is the bulk state

of a T-conserving topological superconductor in D ¼ 3
spacetime dimensions. The style of the argument should be
familiar from Sec. II.A.6.
We start in Lorentz signature with two 3D fermions ψ1 and

ψ2 that transform oppositely27 under T:

Tψ1ðt; x1; x2Þ ¼ γ0ψ1ð−t; x1; x2Þ;
Tψ2ðt; x1; x2Þ ¼ −γ0ψ2ð−t; x1; x2Þ: ð3:10Þ

The opposite signs are chosen so that it is possible to have a
T-conserving off-diagonal mass term mψ̄1ψ2. (Diagonal
mass terms m0ψ̄1ψ1 or m00ψ̄2ψ2 are T violating.) The phase
transition between a topologically trivial and a topologically
nontrivial insulator is achieved when m changes sign. Now,
we study as a function of m the partition function of this
system on a compact manifold X of Euclidean signature.
Suppose that X and the pinþ structure on X are such that
ζ ≠ 0. Then setting m ¼ 0, both ψ1 and ψ2 have an odd
number of zero modes (generically 1 each). It takes an odd
number of insertions of mψ̄1ψ2 to lift these zero modes, and
therefore the partition function is proportional to an odd power
ofm; thus, it changes sign in passing throughm ¼ 0whenever
ζ ≠ 0. There is no such sign change if ζ ¼ 0. So if the partition
function is positive definite for, say, m > 0 then its sign is
ð−1Þζ for m < 0.
A more precise explanation is as follows. Since ψ1 and ψ2

transform oppositely under an orientation-reversing sym-
metry, they combine together to a single Majorana fermion
ψ̂ on an oriented three-manifold X̂ that arises as the oriented
double cover of X. The partition function of the ψ1 − ψ2

system on X is the same as the ψ̂ partition function on X̂. To be
precise about this partition function, we add (rather as in
Sec. II.A.3) Pauli-Villars regulator fields χ1 and χ2 with
opposite statistics to ψ1 and ψ2 and a T-conserving mass
term μχ̄1χ2. On X̂, these combine to a single regulator field χ̂.
X̂ has an orientation-reversing symmetry (the quotient of X̂ by
this symmetry is the original X). The Dirac operator on X̂
anticommutes with such a symmetry [see the discussion of
Eq. (2.22)], and hence the nonzero eigenvalues of the Dirac
operator on X̂ are paired under λ → −λ. [There is also a
doubling of the spectrum on X̂ for each value of λ, because of
the antilinear symmetry (2.60), but as in Eq. (2.62) a Majorana
fermion partition function is computed by taking only one
eigenvalue from each such pair.] With ψ̂ having mass m and χ̂
having mass μ, the contribution of a pair λ;−λ to the fermion
path integral is

λþ im
λþ iμ

−λþ im
−λþ iμ

: ð3:11Þ

This is always positive, regardless of the signs of μ andm, and
so the contribution of nonzero modes to the regularized path
integral is always positive. Now, let us suppose that the
massless Dirac operator on X has ι zero modes (with
ι ≅ ζmod 2). Then the field ψ̂ on X̂ has 2ι zero modes.
Since a mass insertion can lift two zero modes of ψ̂ or χ̂, every
pair of such zero modes gives a factor of m in the ψ̂ path
integral and a factor of 1=μ in the regulator path integral. As a
result the path integral is proportional to ðm=μÞι; it is positive
definite if m and μ have the same sign, and its sign is ð−1Þζ
otherwise.
The case that m and μ have the same sign corresponds

to a topologically trivial T-invariant superconductor. The

27In Eq. (2.4), we wrote a massive Dirac equation for a pair of
3D fermions ψ1 and ψ2 assumed to transform the same way under
T. These, however, were complex Dirac fermions, and the factor of
i multiplying the mass term in Eq. (2.4) was necessary for
T invariance. For Majorana fermions, the Dirac equation must
be real, so this factor of i is not possible; a T-invariant mass term
linking two fermions ψ1 and ψ2 is possible only if they transform
with opposite signs under T.
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topologically nontrivial case is the case that m and μ have
opposite signs. This second case is the topologically interesting
one and ð−1Þζ is the partition function of the bulk sTQFT
associated with it.

E. Extending the sTQFT to a manifold with boundary

We now extend this sTQFT to the case that X has a spatial
boundary Y. For this, we need to extend the definition of
the mod 2 index ζ to the case that X has such a boundary.
However, there is no symmetry-preserving local boundary
condition that will let us define ζ.
Let us look carefully at this crucial point. If X is

orientable, then its boundary Y is also orientable, and it is
possible to define a local boundary condition on the
Dirac equation along the lines of Eq. (2.37). Let ~n be the
unit normal vector to Y. Then we can impose the boundary
condition

γ · nψ jY ¼ �ψ jY; ð3:12Þ

with some choice of sign, and these are the most general
possible covariant boundary conditions.28 With either choice
of sign, this is a physically sensible classical boundary
condition,29 and with this boundary condition, we can define
the mod 2 index of the Dirac operator. However, this
boundary condition does not make sense globally if Y is
unorientable. A quick way to see this is as follows. Starting
with a two-component fermion field ψ , the boundary
condition (3.12) selects one component that can be nonzero
along Y, and it is not difficult to see30 that this component
has a definite chirality in the two-dimensional sense. But the
chirality cannot be defined globally along Y if Y is
unorientable, so the boundary condition (3.12) does not
make sense globally.
If Y is orientable and we pick an orientation, then the

boundary condition (3.12) with some choice of sign makes
sense. Defining ζ to be the mod 2 index of the Dirac
operator on X with some choice of sign, we can define a 3D
sTQFT on a three-manifold with boundary whose partition
function is ð−1Þζ. This gives a gapped and topologically
unordered but symmetry-breaking boundary condition for
the 3D sTQFT. It is symmetry breaking because the choice

of sign in Eq. (3.12), which involves a choice of one 2D
chirality, breaks reflection or time-reversal symmetry along
the boundary.
We can define ζ in a T-invariant way if we use the

global APS boundary conditions. Concretely this amounts
to replacing X by the noncompact manifold X0 of Fig. 6, and
defining ζ to be the dimension mod 2 of the space of square-
integrable zero modes of the Dirac operator. This gives a
T-invariant definition of ζ, but ζ defined this way is not a
topological invariant. When the metric on Y ¼ ∂X is varied so
that a pair of eigenvalues of the 2D Dirac operator on Y passes
through 0, the APS boundary conditions on X jump and ζ
also jumps.
At this point ð−1Þζ jumps in sign, so a bulk theory with

partition function ð−1Þζ is not physically sensible by itself in
this situation. However, hopefully it is clear at this point what
we should say. The bulk theory with partition function ð−1Þζ
has to be combined with a boundary system consisting of
Majorana fermions on the boundary. The partition function of
the combined system is

jZψ jð−1Þζ: ð3:13Þ

Here ð−1Þζ jumps whenever a pair of eigenvalues �λ
of the boundary fermions passes through λ ¼ 0, that is,
whenever the path integral of the boundary fermions would
be expected to change sign. So the product is physically
sensible.

F. The orientable case and chiral symmetry

Let us now look more closely at the case that Y is
orientable. In this case, subject to one restriction that we
mention in a moment, we can assume that Y is the boundary of
an orientable spin manifold X. This manifold has ζ ¼ 0.
Indeed, the argument given in Sec. III.B showing that ζ ¼ 0 if
X is orientable remains valid with ∂X ≠ 0, as long as we use
APS boundary conditions.
Since ð−1Þζ is always 1 in this situation, we conclude

that if Y is orientable, we can sensibly define the Majorana
fermion partition function on Y to be positive definite. A
more direct explanation of this is to observe that if Y is
orientable, then the Majorana fermion ψ on Y can be
decomposed as a sum of fields ψþ and ψ− of positive and
negative chirality; moreover, the action and path integrals of
ψþ and ψ− are complex conjugates. So the overall path
integral is positive.
As long as Y and X are orientable, the formula (3.13) for the

partition function does not depend on X, since ζ ¼ 0 for any
X, so it seems that we can forget about X and we get a
definition of the massless Majorana fermion theory on Y as a
purely two-dimensional theory. However, there is a detail that
requires some care. Until this point, we have only assumed
that Y is orientable, but we have not actually had to pick an
orientation. Momentarily, we will see that to give a complete
definition of the Majorana fermion theory on Y requires
picking an orientation of Y, and therefore allowing only
orientation-preserving diffeomorphisms as symmetries. This
should not come as a surprise, because to analyze an

28A local boundary condition must set to zero one-half of the
fermion components along Y ¼ ∂X, and Eq. (3.12) is the most
general way to do this that is invariant under rotation of the normal
plane at a point p ∈ Y. Any other matrix that we might use instead of
γ · n would violate the local rotation symmetry.

29Quantum mechanically, a D ¼ 3 fermion with such a boundary
condition will have a perturbative gravitational anomaly along ∂X ¼
Y (Horava and Witten, 1996). That is not important here because we
are interested in the mod 2 index of the D ¼ 3 fermion, not its
partition function.

30In a local Euclidean frame, we can take the three gamma
matrices to be γa ¼ σa, a ¼ 1;…; 3, obeying γ1γ2γ3 ¼ i. Let us
assume that the normal direction to the boundary is the 3 direction.
The 2D chirality along the boundary is measured by iγ1γ2 ¼ −γ3, so
the condition (3.12) on the eigenvalue of n ¼ γ3 selects one 2D
chirality.
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orientation-reversing symmetry of Y the mapping torus con-
struction will tell us to think about the mod 2 index on an
unorientable three-manifold X, and this can be nontrivial, as
discussed in Sec. III.B.
The reason that some care is needed is that, for given Y,

with a given spin structure, a suitable X may not exist. The
obstruction to existence of X arises precisely if Y is such that
the mod 2 index ζY for a positive chirality fermion ψþ on Y is
not zero. (By complex conjugation, ζY is also the mod 2 index
of a negative chirality fermion ψ− on Y.) This mod 2 index is a
cobordism invariant, and if it is nonzero on Y, then Y with its
given spin structure is not the boundary of an orientable spin
manifold X.
Suppose that this index is nonzero on Y. Then ψþ and ψ−

each have an odd number of zero modes; for simplicity, let us
assume that this number is 1, the generic value, and write ψþ;0

and ψ−;0 for the coefficients of the zero modes in a mode
expansion of ψ . The path integral over nonzero fermion modes
on Y is naturally positive, as the ψ− path integral is the
complex conjugate of the ψþ path integral. Since ψþ;0 and
ψ−;0 are coefficients of zero modes, their path integral
vanishes in the absence of operator insertions, so the question
we should ask is how to define the path integral measure. But
there is no natural way to define the sign of this measure,
unless an orientation of Y is chosen: whether we write
dψþ;0dψ−;0 or dψ−;0dψþ;0 is tantamount to a choice of
orientation of Y. We actually considered this situation in
Sec. III.C for the case Y ¼ T2 and interpreted the fact that the
path integral measure on Y is odd under an orientation-
reversing symmetry in terms of the mapping torus
construction.
We conclude this discussion with the following remark.

Although we have taken the 2D Majorana fermion as our
basic example of real fermions, the special behavior for
orientable Y that we have just found reflects the fact that
this example is somewhat special. The classification of
representations of a compact group K as being real,
pseudoreal, or complex properly refers to irreducible rep-
resentations, which are real (they admit an invariant sym-
metric bilinear form), pseudoreal (they admit an invariant
antisymmetric form), or complex (they admit no invariant
bilinear form). Reducible representations do not have this
classification and a reducible representation may admit both
a symmetric bilinear form and an antisymmetric one. That is
the case with the (1þ 1)-dimensional Majorana fermion on
an orientable spacetime Y. The spinor representation of
Spinð2Þ is not irreducible but decomposes as the sum of
components of positive or negative chirality. If b is a
bosonic spinor of Spinð2Þ with chiral components bþ and
b−, then there exist both an invariant symmetric form
dbþ ⊗ db− and an invariant antisymmetric form
dbþ∧db−. By contrast, if Y is unorientable, then we have
to consider the Majorana fermion as a representation of
Pinþð2Þ. Only the symmetric form and not the antisym-
metric one is invariant under the reflections in Pinþð2Þ
(which exchange bþ and b−), and as a representation of
Pinþð2Þ, the Majorana fermion is real and not pseudoreal.
So that case is a better example of the general paradigm of
real fermions.

There are many interesting examples of real fermions in
which this issue does not arise (the Euclidean space fermions
have a real structure and no pseudoreal one). One such case is
the original example in which the mod 2 index was interpreted
as a global anomaly for real fermions (Witten, 1982),
namely,31 an SU(2) gauge theory in four dimensions with a
single multiplet of fermions transforming in the spin 1=2
representation of SU(2). A more elementary example, which
we discuss in Sec. V, is given by a one-component fermion on
the boundary of a D ¼ 2 Majorana chain (Fidkowski and
Kitaev, 2009).

G. (2þ 1)-dimensional topological insulator

We now turn to the topological insulator in 2þ 1 dimen-
sions.32 This is a system with T symmetry and also with U(1)
symmetry. Crucially, T commutes with the electric charge
operator Q, the generator of U(1). (At the end of this section,
we consider the contrary case of a conserved charge that is odd
under T.)
The boundary modes of the (2þ 1)-dimensional topologi-

cal insulator are a (1þ 1)-dimensional massless charged Dirac
fermion ψ , say of charge 1. Its charge conjugate, of course, has
charge −1. The Dirac fermion ψ can be expanded in terms of
two Majorana fermions ψ1 and ψ2 as ψ ¼ ðψ1 þ iψ2Þ=

ffiffiffi
2

p
.

The U(1) symmetry of electric charge rotations is

δψ1 ¼ ψ2; δψ2 ¼ −ψ1: ð3:14Þ

Since this formula is real and the (1þ 1)-dimensionalEuclidean
gammamatrices can also be chosen to be real, we conclude that
the boundary fermions of the (2þ 1)-dimensional topological
insulator are real in Euclidean signature. (A remark made in
Sec. III.F also applies here, for essentially the same reason: on
an orientable two-manifold Y, these fermions can be given a
pseudoreal structure as well as a real one.)
Given that the fermions are real, more or less everything

stated about the (2þ 1)-dimensional superconductor has an
analog for the topological insulator. On a closed three-manifold
X, the sTQFT associated with the topological insulator has a
partition function ð−1Þζ, where ζ is the mod 2 index that must
be computed in the space of all fermion components [meaning
that in computing ζ, we have to include both ψ1 and ψ2 or
equivalently both charge eigenstates ðψ1 � iψ2Þ=

ffiffiffi
2

p
]. If X has

a boundary Y, then ð−1Þζ cannot be defined as a topological
invariant, without breaking the time reversal or reflection
symmetry. We can preserve the symmetry in defining ð−1Þζ
if we use APS boundary conditions, but the result is not a
topological invariant. It jumps in a way that only makes
physical sense if we also include the boundary fermions,
and then the partition function of the combined system is as
usual jZψ jð−1Þζ.

31The model was pointed out to the author by S. Coleman in
Aspen in the summer of 1976. It is difficult to recall what his view
was at the time.

32Some of the following issues were previously treated by Hsieh
et al. (2014).
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But is the invariant ð−1Þζ nontrivial in this situation?
Here we run into an essential novelty. Because the T
transformation that is a symmetry of a topological insulator
commutes with the electric charge generator Q, it really
does correspond in relativistic terms to T and not to CT. In
a relativistic theory, there is a CRT theorem, so T symmetry
is equivalent to CR symmetry. In Euclidean signature, it is
more natural to work with CR (which upon analytic
continuation back to Lorentz signature implies both T
and CR).
In detail, CR is a symmetry that reverses the orientation

of space and also anticommutes with the generator Q of
electric charge. In terms of gauge theory, the last statement
means that the electromagnetic gauge potential A does not
transform as a one-form under a spatial reflection, but
transforms with an extra minus sign. For example, the
reflection R∶ðx1; x2; x3Þ → ð−x1; x2; x3Þ combined with
charge conjugation C∶A → −A gives the combined CR
transformation

CRA1ðx1; x2; x3Þ ¼ A1ð−x1; x2; x3Þ;
CRAiðx1; x2; x3Þ ¼ −Aið−x1; x2; x3Þ; i ¼ 2; 3: ð3:15Þ

Once one understands that an orientation-reversing sym-
metry should be combined with charge conjugation, it is
straightforward to see that the mod 2 index ζ can be nonzero.
We start with the two-torus T2 parametrized by 0 ≤ x1; x2 ≤
1 with end points identified. On T2, we place a gauge field A
with one unit of magnetic flux

R
T2 dx1dx2F12 ¼ 2π=e. Pick a

basis ψ�
� for the components of a Dirac fermion on T2,

where the superscript is the U(1) charge �1 and the
subscript is the 2D chirality. Using standard facts about
the 2D Dirac equation in a magnetic field, one finds that ψþ

þ
and ψ−

− have one zero mode each and ψþ
− and ψ−þ have none.

Now consider a reflection R∶ðx1; x2Þ → ð−x1; x2Þ. One can
choose A to be invariant under the combined operation CR
(this depends on the fact that

R
T2 F is odd under both C and

R and so is CR invariant). The effect of CR is to exchange
ψþ
þ with ψ−

−, so precisely one linear combination of the two
zero modes on T2 is CR invariant. If it were the case that R
acted freely on T2, we would now consider the quotient of
T2 by the Z2 group generated by R to get a 2D example
with a nonzero mod 2 index. However, this is not the
case. Instead we take a product T3 ¼ T2 × S1, where S1

is a circle parametrized by 0 ≤ x3 ≤ 1 again with end points
identified. We take the gauge field A to be a pullback from
T2, and we define the orientation-reversing symmetry
R0∶ðx1; x2; x3Þ → ð−x1; x2; x3 þ 1=2Þ. Now R0 does act
freely on T3, and the quotient T3=Z2, where Z2 is generated
by CR0, is a 3D example with a nontrivial mod 2 index.
It is probably fairly clear at this point that whatever we have

said about the D ¼ 3 topological superconductor has an
analog for the topological insulator.
To conclude, we consider a system with a conserved

charge Q that is odd rather than even under T. In
condensed matter physics, Q could be a component of
the electron spin, which for some systems is approximately
conserved. A time-reversal symmetry that reverses the only

pertinent conserved charge would be called CT in relativ-
istic language. Then in Euclidean signature, one would
have to consider an R symmetry, rather than CR, meaning
that the gauge field A transforms under reversal of
orientation as an ordinary one-form. In this case, one
can show33 that on any three-manifold X, and for any
gauge field, ζ is universally 0. So there is no nontrivial
sTQFT with partition function ð−1Þζ. This is consistent
with the fact that in D ¼ 3 there is according to standard
arguments no analog of a topological insulator for a
T-invariant system with a U(1) symmetry whose generator
Q is assumed to be odd under T. In particular, a Dirac
fermion with a conserved charge that is odd under T can be
given a symmetry-preserving bare mass.

IV. COMPLEX FERMIONS

A. Overview

Our basic example with complex fermions will be the
topological insulator or superconductor in 3 space or 4
spacetime dimensions. We already treated this problem in
Sec. II, but there we considered only orientable space-
times. Here we discuss what happens if the spacetime is
permitted to be unorientable. In this case,34 the boundary
fermions transform in a complex representation of Pinþð3Þ
rather than a pseudreal representation of Spinð3Þ ≅ SUð2Þ.
Their partition function, even at a formal level, is now
complex valued, not real valued, and we have to consider
anomalies in a complex-valued path integral of complex
fermions.
We start with the topological superconductor, which

proves to be the more interesting case. The discussion
proceeds in a more or less familiar way. First, we consider
the anomaly of the boundary modes, which are a d ¼ 3

Majorana fermion. As usual, this anomaly can be expressed

33In the case ofR rather than CR symmetry, A is a connection on a
U(1) bundle L → X, where X is a possibly unorientable three-
manifold with pinþ structure. [CR symmetry would mean that the
structure group is O(2) rather than U(1).] The first Chern class c1ðLÞ
is Poincaré dual to an embedded circle U ⊂ X. Let Û be a tubular
neighborhood of U in X. Topologically Û ¼ U ×D2 where D2 is a
two-dimensional disk. Since we are trying to calculate a topological
invariant, we can assume that in a suitable gauge, A ¼ 0 on the
complement of Û. One can construct an elementary cobordism from
X to the disjoint union X1∪X2, where X1 is obtained from X by
cutting out Û and then gluing back in a copy of Û with A ¼ 0 (so that
A ¼ 0 everywhere on X1), and X2 is obtained by embedding Û ¼
U ×D2 in U × S2 (using the obvious embedding D ⊂ S2, and taking
A ¼ 0 outside Û). Let ζX , ζX1

, and ζX2
be the mod 2 indices on the

indicated three-manifolds. By cobordism invariance of the mod 2
index, ζX ¼ ζX1

þ ζX2
. On X1, A ¼ 0 so a charged Dirac fermion on

X1 is equivalent to two Majorana fermions on X1 coupled to gravity
only; they contribute equally to ζX1

, which therefore trivially
vanishes. X2 is orientable, and ζX2

vanishes because of the usual
antilinear symmetry; thus ζX ¼ 0.

34We consider systems with T2 ¼ ð−1ÞF so that the appropriate
group is Pinþð3Þ and not Pin−ð3Þ; see Appendix A.2.
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as a topological invariant of the mapping torus. For complex
fermions in general (Witten, 1985b), the relevant invariant
of the mapping torus is expð−iπη=2Þ, where η is an APS
η invariant of a Dirac operator in one dimension more—in
our example the Dirac operator of a D ¼ 4 Majorana
fermion. Then, we consider the partition function of the
sTQFT associated with the bulk topological superconductor.
Using a standard characterization of the phase transition to
topological superconductivity in D ¼ 4, we show that the
partition function of the bulk sTQFT is again expð−iπη=2Þ.
Like other bulk invariants we have encountered as sTQFT
partition functions, this one cannot be defined with a local,
symmetry-preserving boundary condition. We can define it
in a symmetry-preserving way using APS boundary con-
ditions, but then it is not a topological invariant and again is
not satisfactory by itself. But the product jZψ j expð−iπη=2Þ
is physically sensible as shown by the Dai-Freed theorem
(Dai and Freed, 1994). This product should be interpreted as
the combined partition function of the boundary fermions
and the bulk sTQFT.
Finally, we consider a question that does not have a close

analog in cases studied earlier in this paper. This involves a
D ¼ 4 system whose boundary supports ν identical gapless
Majorana fermions. At the free fermion level, ν is an integer-
valued invariant, but it has been argued (Fidkowski, Chen, and
Vishwanath, 2013; Metlitski et al., 2014; Wang and Senthil,
2014; Kitaev, 2015) that at the interacting level ν is only an
invariant mod 16. From the present point of view, this is true
because, in D ¼ 4, expð−iπη=2Þ is in general a 16th root of 1,
and there is no satisfactory, symmetry-preserving definition of
expð−ν · iπη=2Þ on a four-manifold with spatial boundary,
unless ν is a multiple of 16.
A somewhat similar explanation of the value ν ¼ 16 was

proposed by Kapustin et al. (2014) based on a suggestion
that the relevant sTQFT partition function would be a
cobordism invariant. An explicit global anomaly computa-
tion (Hsieh, Cho, and Ryu, 2015) showed that the boundary
theory with ν identical Majorana fermions is anomalous
unless ν is an integer multiple of 8. It is actually rather
subtle what happens for ν ¼ 8. We will show that although
expð−iπη=2Þ is a 16th root of unity in general, it is an 8th
root of unity in the case of a mapping torus. Thus the ν ¼ 8

theory does not have a traditional anomaly that can be
detected via the mapping torus construction. Nevertheless,
for ν ¼ 8 there is a more subtle problem, analogous to what
we explained in Sec. II.B.3 for a single Majorana fermion
considered on an oriented three-manifold only: even though
there is no anomaly in the traditional sense, there is also no
natural way to specify the sign of the partition function. In
Sec. II.B.3, this was because ð−1ÞI=2 is in general non-
trivial, though it equals 1 for a mapping torus; in the present
context, the reason is that the analogous statement holds for
the invariant expð−8 · iπη=2Þ.
The ν ¼ 8 problem has one more interesting property that

certainly shows its subtlety. It actually is possible to define a
gapped symmetry-preserving boundary state without topo-
logical order for the ν ¼ 8 theory, that is for the 8th power of
the ν ¼ 1 sTQFT, but this boundary state is not compatible
with unitarity.

The d ¼ 3 topological insulator is also related to the
η invariant by the same arguments. But in this case there is
no analog of the integer-valued parameter ν. Hence the results
are less interesting and going to an unorientable spacetime
does not reveal much structure beyond what we explored
in Sec. II.

B. Anomaly of the boundary fermions

An unorientable three-manifold Y can always be con-
structed as a quotient Ŷ=Z2, where Ŷ is the oriented double
cover of Y, and Z2 is generated by an orientation-reversing
symmetry τ∶Ŷ → Ŷ that obeys τ2 ¼ 1. Suppose that we are
given a τ-invariant spin structure S on Ŷ. This means, in
particular, that we have a notion of fermion field ψ̂ on Ŷ and an
action of τ on ψ̂ , obeying τ2 ¼ 1.
In this case, we can define a pinþ structure P on Y, by

saying that a fermion field ψ on Y with this pinþ structure is a
fermion field ψ̂ on Ŷ that obeys τψ̂ ¼ ψ̂ . Moreover, every
pinþ structure on Y arises in this way, for some choice of
τ-invariant spin structure S on Y.
But we can also define a “complementary” pinþ structureP0

on Y, by saying that a fermion fieldψ 0 on Y with this alternative
pinþ structure is a fermion field ψ̂ on Ŷ that obeys τψ̂ ¼ −ψ̂ .
Actually, the relationship between P and P0 is completely
reciprocal and neither of them is preferred. When given a
geometrical symmetry τ∶Ŷ → Ŷ and a spin structure S → Ŷ
that is τ invariant up to isomorphism, this does not tell us the
sign with which τ should be taken to act on S. The choice of
sign determines what we mean by P and what we mean by P0.
On Ŷ, we can define the usual Hermitian Dirac operator

D ¼ iD ¼ i
P

kγ
kDk. However, in odd dimensions, the Dirac

operator anticommutes with an orientation-reversing sym-
metry. This point was illustrated in Eq. (2.22), and, as
explained there, is the reason that a mass term added to the
Dirac equation in 2þ 1 dimensions would violate reflection
symmetry.
In particular, D is odd under τ, so if τψ ¼ �ψ , then

τðDψÞ ¼∓ Dψ . Interpreted on Y, this statement means that
there is no self-adjoint Dirac operator acting on a fermion field
ψ that is a section of P, or on a fermion field ψ 0 that is a
section of P0. Rather, the natural Dirac operator on Y maps P
to P0 and P0 to P. The operators DP∶P → P0 and DP0∶P0 →
P are adjoints, so we can combine them to a self-adjoint
operator which in the basis ðPP0Þ is

D ¼
�

0 DP0

DP 0

�
: ð4:1Þ

In fact, D is just the usual self-adjoint Dirac operator of Ŷ (for
spin structure S), acting on a spinor field ψ̂ that has been
reinterpreted as a pair ψ, ψ 0 on Y.
More fundamentally, the reason that there is no self-adjoint

Euclidean signature Dirac operator for ψ or for ψ 0 is that in
Euclidean signature these are complex fermions, not real or
pseudoreal ones. As explained in Appendix B.2, the group
Pinþð3Þ has two different two-dimensional representations,
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which are complex conjugates of each other. The fields ψ and
ψ 0 are associated with these two different representations.
Although we cannot write a self-adjoint Dirac operator for

ψ or ψ 0 only, there is no problem with the classical Dirac
action Z

d3x
ffiffiffi
g

p
ψ̄iDψ ð4:2Þ

for ψ (or likewise for ψ 0) only. Recall that, as discussed in
Sec. II.B.1, the Dirac action really involves an antisymmetric
bilinear form D rather than an operator D. Up on Ŷ, the
relation between the two is Dγβ ¼ εγαDα

β , where εγβ is the
antisymmetric bilinear form on the two-dimensional repre-
sentation of Spinð3Þ ¼ SUð2Þ. But this form is odd under τ
[more generally, it is odd under the disconnected component
of Pinþð3Þ]. As Dα

β is also odd under τ, it follows that Dγβ is
even, and thus can be defined only for the τ-even fermion ψ or
the τ-odd fermion ψ 0.
All of what we have said has an analog that is probably

much more familiar on an orientable manifold of, say,
dimension 2. In 2 dimensions, we can consider chiral fermions
ψþ and ψ− which in Euclidean signature are complex
conjugates of each other. The 2D Dirac operator maps ψþ
to ψ− and ψ− to ψþ, and to write a self-adjoint Dirac operator
one has to combine the two chiralities. But the Dirac action
pairs ψþ with ψþ and ψ− with ψ−, so (modulo questions of
anomaly cancellation) it makes sense to consider a theory with
one chirality only—such as the edge modes of a (2þ 1)-
dimensional chiral topological superconductor.
Returning to the fields ψ and ψ 0 on a possibly unorientable

three-manifold, the Dirac action and path integral for ψ 0 are
the complex conjugates of those for ψ, and the two partition
functions Zψ and Zψ 0 are complex conjugates. In fact,
concretely ψ and ψ 0 combine to the fermion ψ̂ on Ŷ, so
formally ZψZψ 0 ¼ Zψ̂, and we claim that Zψ̂ ≥ 0. As usual, we
have Zψ̂ ¼ jZψ̂ j expð−iπη=4Þ. However, as the Dirac operator
D of Ŷ is odd under τ, its spectrum is symmetric under
λ ↔ −λ, so nonzero modes on Ŷ do not contribute to η. Either
there are no zero modes, in which case η ¼ 0 and Zψ̂ > 0, or
there are zero modes and Zψ̂ ¼ 0.
While the product ZψZψ 0 is positive and, in particular, is

completely anomaly free, Zψ and Zψ 0 separately are complex
and subject to anomalies. They have no perturbative anoma-
lies (in general there are no perturbative anomalies in odd-
dimensional spacetimes without boundary), but they have
global anomalies. Indeed, the global anomaly of Zψ was
computed recently by Hsieh, Cho, and Ryu (2015) for a
particular example. This is analogous to the fact that, in the
more familiar case of the chiral fermions ψþ and ψ− in 2
spacetime dimensions, Zψþ and Zψ−

are anomalous (in this
case with perturbative as well as global anomalies), but the
product ZψþZψ−

is non-negative and anomaly free.
A general framework to calculate the global anomaly in a

complex fermion path integral was described in Sec. 4
of Witten (1985b). Given a diffeomorphism ϕ of Y (or
a combined diffeomorphism and gauge transformation in a
more general problem), one constructs as in Sec. II.A.2 a
mapping torus X. X is a four-manifold obtained by gluing

together the ends of Y × I, where I is the interval 0 ≤ s ≤ 1,
via ϕ. We endow X with a metric

dl2 ¼ ds2 þ ϵ2gs; ð4:3Þ
where gs is an s-dependent family of metrics on Y and ϵ is a
suitable small parameter. In the basis (4.1), one introduces a
new gamma matrix

γs ¼
�
1 0

0 −1

�
: ð4:4Þ

Then one defines a Dirac operator on X:

DX ¼ iγs
D
Ds

þ 1

ϵ

�
0 DP0

DP 0

�
: ð4:5Þ

Here

DY ¼
�

0 DP0

DP 0

�

is the Dirac operator on Y with s-dependent metric gs, and the
explicit factor 1=ϵ comes because in Eq. (4.3) we use the
metric ϵ2gs. The result of the analysis by Witten (1985b) is to
show that the change of the partition function Zψ under ϕ can
be expressed in terms of the η invariant of D ¼ 4 Dirac
operator DX:

Zψ → Zψ expð−iπη=2Þ: ð4:6Þ
We do not repeat this calculation in detail and just mention
a few points. Because we are trying to compute a topo-
logical invariant, we can consider a generic s-dependent
family of metrics gs such that DY has no level crossings as a
function of s. By also taking ϵ sufficiently small, one can
reduce to the case that the spectrum of DX, and therefore its
η invariant, can be computed by an adiabatic approxima-
tion.35 In the adiabatic approximation, the contribution of
each eigenvalue of DY to expð−iπη=2Þ comes essentially
from the holonomy of its Berry connection (Berry, 1984).
[The Berry connection for adiabatic evolution of a given
eigenstate is introduced, although not by that name, in the
middle of p. 215 of Witten (1985b).] In the adiabatic
approximation, the same holonomy gives the contribution
of each eigenvalue to the change of phase of Zψ under ϕ.
A consequence of Eq. (4.6) is that, as in previous examples,

the anomaly is a cobordism invariant, meaning that it is trivial
if X is the boundary of a five-manifold Z over which the pinþ

structure extends. Here we make use of Eq. (2.47). On a
five-dimensional pinþ manifold, the index I is always
even because of pseudoreality, so Eq. (2.47) implies that if
X is a boundary, then η is a multiple of 4 and hence
expð−iπη=2Þ ¼ 1.

35If λiðsÞ are the eigenvalues of ϵ−1DY as a function of s
(we assume that these are nondegenerate except for the twofold
degeneracy that comes from pseudoreality), the condition for the
adiabatic approximation is that dλi=ds should be sufficiently small
compared to the relevant eigenvalue differences. This condition is
satisfied for sufficiently small ϵ, assuming there are no level crossings.
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The interested reader who actually consults Witten (1985b)
and the later paper by Dai and Freed (1994) in which an
important refinement was made will find that it is assumed that
Y has even dimension and X has odd dimension. The reason
for this was simply that, if Y is orientable, complex fermions
on Y exist only if its dimension is even. Applications
involving unorientable manifolds were not envisioned so it
was natural to assume Y to have even dimension. However, the
reasoning in these papers applies equally well to complex
fermions in any dimension, even or odd.
In terms of the applications of the results, an important

difference comes from the fact that in even dimensions
complex fermions generically give rise to perturbative anoma-
lies.36 Moreover, if Y has even dimension, then X has odd
dimension, and if it is the boundary of some Z, then Z again
has even dimension. If DX is a Dirac operator on X and η is its
η invariant, then typically expð−iπη=2Þ is not a cobordism
invariant (or even a topological invariant) because there is a
curvature term in the APS index theorem on Z. [For Z of
dimension 4, this curvature term is the term Â − P of
Eq. (2.38).] However, on an even-dimensional manifold Y,
we recover cobordism invariance in the case of complex
fermions whose perturbative anomalies cancel.37 This follows
from the formula for η given by the APS index theorem. Here
of course the global anomaly comes from an η invariant that
receives contributions from all fermion multiplets in a given
theory; so in using the APS index theorem, we likewise sum
over all multiplets. The curvature term in the APS index
theorem on Z is precisely the anomaly polynomial of the
fermions, so after summing over multiplets, it cancels in a
theory that is free of perturbative anomalies. The APS index
theorem then shows that in any theory without perturbative
anomalies, in even or odd D, the invariant expð−iπη=2Þ that
controls the global anomaly is a cobordism invariant.
The relationship of η to global anomalies is a slight

refinement of a result that is much better known: perturbative
anomalies in D dimensions are related to Chern-Simons in
Dþ 1 dimensions and to a curvature polynomial in Dþ 2

dimensions. In fact the APS index theorem implies [see
Eqs. (2.51)–(2.53)] a close relationship between η and
Chern-Simons. Usually the distinction between them is
important only when one asks rather delicate questions, for
example, about global anomalies.

C. Bulk partition function

Here we compute the bulk partition function of the (3þ 1)-
dimensional topological superconductor. The strategy should
be familiar from Secs. II.A.6 and III.D.
A standard description of the phase transition between an

ordinary and a topological superconductor in 3þ 1

dimensions is that it occurs when the mass m of a D ¼ 4

Majorana fermion ψ passes through 0. Even on an unorient-
able four-manifold X, one can define a Hermitian Dirac
operator D (we recall from Sec. IV.B that this is not true
in 3 spacetime dimensions), and its spectrum is doubled by a
version of Kramers doubling, reflecting the fact that the
Majorana fermion transforms in a pseudoreal representation
of Pinþð4Þ. For details on these statements, see
Appendixes A.3 and B.3. The path integral of the
Majorana fermion is a Pfaffian which can be computed by
taking one eigenvalue from each pair. We write m for the bare
mass of ψ and we regulate the partition function Zψ by
including a Pauli-Villars field of mass μ obeying the same
Dirac equation but with opposite statistics. The regularized
partition function is

Zψ ;reg ¼
Y

k
0 λk þ im
λk þ iμ

; ð4:7Þ

where as usual
Q

k
0 is an instruction to take a single eigenvalue

from each pair.
There are essentially two cases, depending on whether m

and μ have the same sign or opposite signs. Ifm and μ have the
same sign, we get a topologically trivial superconductor.
Indeed, in the limit that X is very large, the precise values
of m and μ do not matter, only their signs. If m and μ have the
same sign, we may as well set m ¼ μ, and then Zψ ;reg ¼ 1 is
completely trivial.
The interesting case is that m and μ have opposite signs. In

this case, we may as well set m ¼ −μ, so

Zψ ;reg ¼
Y

k
0 λk − iμ
λk þ iμ

: ð4:8Þ

A shortcut to analyzing this expression is to factor it

Zψ ;reg ¼
Y

k
0 λk
λk þ iμ

·
Y

k
0 λk − iμ

λk
: ð4:9Þ

The second factor is the inverse complex conjugate of the first,
so they contribute the same phase. The first factor was
analyzed in Sec. II.A.3, with a result given in Eq. (2.17).
In using this result, we have to replace η (computed in the
space of positive charge fermions only) with η=2 (where η is
computed using all eigenvalues of the Dirac operator and the
factor of 1=2 reflects the

Q
k
0 symbol). This replacement η →

η=2 should be familiar from Eqs. (2.68) and (2.69). Thus the
two factors in Eq. (4.9) each contribute a factor expð−iπη=4Þ,
and the final result for the partition function of the bulk
sTQFT of the topological superconductor is expð−iπη=2Þ.
As a check, let us verify that if X is orientable, this answer

agrees with the result ð−1ÞI=2 that was claimed in Sec. II.B.3.
If X is orientable, we can define the chirality operator γ̄
[Eq. (2.31)] and the operation ψ → γ̄ψ ensures that nonzero
eigenvalues ofD are paired under λ ↔ −λ. (The spectrum also
has even multiplicity for each λ because of pseudoreality, so
nonzero modes are in quartets λ; λ;−λ;−λ.) Pairs λ;−λ do not
contribute to η, and for X orientable, η receives contributions
only from zero modes. Let nþ and n− be the number of zero

36In Witten (1985b) but not in Dai and Freed (1994), it is assumed
that perturbative anomalies cancel.

37An example is the standard model of particle physics, in D ¼ 4,
with gauge group G ¼ SUð3Þ × SUð2Þ × Uð1Þ. In Euclidean signa-
ture, the fermions are in a complex but highly reducible representa-
tion of Spinð4Þ ×G. This representation is such that perturbative
anomalies cancel.
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modes of positive or negative chirality. Each zero mode
contributes þ1 to η [see Eq. (2.19)], so η ¼ nþ þ n− and
expð−iπη=2Þ ¼ expð−iπðnþ þ n−Þ=2Þ. On the other hand,
I ¼ nþ − n−, so that ð−1ÞI=2 ¼ ð−1Þðnþ−n−Þ=2. These are
equal as nþ and n− are even. For a more direct explanation,
one can return to Eq. (4.8) and see that a quartet of eigenvalues
λ; λ;−λ;−λ makes no contribution but a pair of zero modes
contributes a factor of −1, just as in ð−1ÞI=2.
Note that in the course of the argument we have shown that

if X is orientable, then η is an even integer. But if X is
orientable and has an orientation-reversing symmetry, then
nþ ¼ n− and so η is a multiple of 4.

D. Anomaly cancellation and the Dai-Freed theorem

As usual, there is a problem in defining the partition
function expð−iπη=2Þ of the bulk sTQFT on a four-manifold
X with boundary. There does not exist a local, symmetry-
preserving, self-adjoint boundary condition for the 4D Dirac
operator in Euclidean signature that could be used to give a
satisfactory definition of η. We can use nonlocal APS
boundary conditions to define η in a symmetry-preserving
fashion. But expð−iπη=2Þ defined this way is not a topologi-
cal invariant and only makes sense physically when combined
with gapless modes on the boundary.
In Sec. IV.B, we explained that the usual boundary fermions

of the topological superconductor are complex fermions with
a complex path integral when formulated on an unorientable
three-manifold Y. Moreover, according to the general global
anomaly formula for complex fermion path integrals (Witten,
1985b), the anomaly involves expð−iπη=2Þ where as in the
previous paragraph, η is the η invariant of a D ¼ 4 Majorana
fermion.
As in other cases that we have studied, what is physically

sensible is the product

jPfðDÞj expð−iπη=2Þ; ð4:10Þ

where PfðDÞ is the Pfaffian of the boundary fermions and η is
the bulk η-invariant computed with APS boundary conditions.
Indeed, the assertion that this product is physically sensible is
essentially the content of what we will call the Dai-Freed
theorem (Dai and Freed, 1994), which is a refinement of the
general global anomaly formula.
We do not attempt to describe the proof of the Dai-Freed

theorem, but we make a few remarks that may be helpful.
First, the theorem is actually phrased in Dai and Freed (1994)
in a more abstract way. To explain this, we note that the usual
mathematical viewpoint about anomalies is to say that
although PfðDÞ cannot be naturally defined as a complex
number, or as a complex-valued function of the metric on Y,
there is always a unitary complex line bundle over the space of
metrics on Y (or metrics plus gauge fields in a more general
case) such that PfðDÞ is canonically defined as a section of this
line bundle. This line bundle is called the Pfaffian line bundle
and we denote it asPfðDÞ. The Dai-Freed theorem as stated by
Dai and Freed (1994) asserts that expðiπη=2Þ is naturally
defined as a section of PfðDÞ. An equivalent statement is that
the product PfðDÞ expð−iπη=2Þ (where the two factors are
sections of inverse line bundles) is well defined as a complex

number. However, as long as we restrict to the locus on which
the boundary Dirac operator has no zeromodes, the line bundle
PfðDÞ has a natural trivialization. Relative to this trivialization,
the Pfaffian PfðDÞ is positive and can be replaced by its
absolute value, and expð−iπη=2Þ is likewise a well-defined
complex number,38 with the usual definition (2.69).
Finally, we explain in concrete terms the meaning of the

statement that the product jPfðDÞj expð−iπη=2Þ is physically
sensible. For real or pseudoreal fermions, a key point was that
jPfðDÞjð−1Þζ or jPfðDÞjð−1ÞI=2 behaves sensibly when the
boundary Dirac operator develops a zero eigenvalue. This
happened because the sign of ð−1Þζ or ð−1ÞI=2 jumps
whenever the path integral of the boundary fermions is
expected to change sign. For complex fermions, we are not
dealing with sign changes, because PfðDÞ is not naturally real.
But it is still essential to understand what happens when zero
modes develop.
Near a point at which the boundary Dirac operator develops

a pair of zero modes, the associated bilinear form D, in its
canonical form, has a 2 × 2 block

�
0 λ

−λ 0

�
; ð4:11Þ

with small λ. Here λ is a complex number and to make it
vanish we must vary two parameters in the metric and/or
gauge field on Y. For example, there may be two parameters
u1 and u2 such that

λ ¼ u1 þ iu2: ð4:12Þ

Equivalently, setting u1 þ iu2 ¼ ϱeiφ, we have λ ¼ ϱeiφ. We
expect the path integral to be proportional to λ for λ → 0. For
the formula jPfðDÞj expð−iπη=2Þ for the combined bulk and
boundary partition function to be physically sensible near
λ ¼ 0, expð−iπη=2Þ must not be smooth near λ ¼ 0. On the
contrary, it must be proportional to eiφ, which is ill defined at
λ ¼ 0. Concretely, this happens because of the way APS
boundary conditions depend on φ. APS boundary conditions
depend on which modes of the Dirac operator on Y have
negative eigenvalues. For very small (positive) ϱ, the Dirac
operator on Y has low-lying modes, and which linear
combinations of them are eigenmodes with negative eigen-
value depends on φ.
A more comprehensive explanation of the statement that

Eq. (4.10) for the fermion path integral is physically sensible
involves the following. The variation of this expression in an
infinitesimal change in the metric of X depends only on the
change in the metric along the boundary of X and is related in
the usual way to the expectation value of the fermion stress
tensor.

38We do not need to discuss the meaning of expð−iπη=2Þwhen the
boundary Dirac operator does have zero modes, since in that case
PfðDÞ ¼ 0. As explained by Dai and Freed (1994), this case is subtle
because the definition of APS boundary conditions is subtle when the
boundary fermions have zero modes.
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E. The case of ν bands

At the free fermion level, the topological superconductor is
characterized by an integer-valued invariant ν. Let us recall
how ν is defined.
On the boundary, we consider n1 Majorana fermions that

transform under T as

Tψð−t; x1; x2Þ ¼ γ0ψðt; x1; x2Þ; ð4:13Þ

and n2 that transform with the opposite sign

Tψð−t; x1; x2Þ ¼ −γ0ψðt; x1; x2Þ: ð4:14Þ

A pair of Majorana fermions ψ ;ψ 0 that transform with
opposite signs can have a T-conserving bare mass ψ̄ψ 0. Up
to T-invariant perturbations, only the difference ν ¼ n1 − n2 is
relevant.
In bulk, the basic object, as explained in Sec. IV.C, is a

Majorana fermion ψ of mass m that has a regulator of mass μ.
The interesting case is that m and μ have opposite signs. In
Sec. IV.C, we took μ > 0,m < 0 and arrive at expð−iπη=2Þ as
the sTQFT partition function. With the opposite signs, μ < 0

and m > 0, the same derivation would give expðiπη=2Þ. In
bulk, ν is defined as the difference between the number of
μ > 0; m < 0 pairs and the number of μ < 0; m > 0 pairs.
The bulk partition function is expð−νiπη=2Þ.
At the free fermion level, ν is an integer-valued invariant,

but it is known (Kitaev, 2015) that when T-conserving
interactions are taken into account, ν is a topological invariant
only mod 16.
It was pointed out by Kapustin et al. (2014) that for a four-

dimensional Pinþ manifold, expð−iπη=2Þ is always (Gilkey,
1985; Stolz, 1988) a 16th root39 of 1. Accordingly, the product
of ν copies of the sTQFT whose partition function is
expð−iπη=2Þ is trivial if and only if ν is an integer multiple
of 16. This was offered by Kapustin et al. (2014) as an
explanation of why even at the interacting level ν is well
defined mod 16. We have put those considerations on a firmer
footing by showing in Sec. IV.C that the partition function of
the basic sTQFT associated with the D ¼ 4 topological
superconductor is indeed expð−iπη=2Þ.

F. Special behavior for ν= 8

It was shown by Hsieh, Cho, and Ryu (2015) that, at least in
a special case, anomalies associated with the mapping torus
detect the value of ν mod 8 but not mod 16. We can now
explain why this is true. First, expð−iπη=2Þ is a cobordism
invariant of a pinþ four-manifold X. Moreover, it generates the
group of cobordism invariants, and any other U(1)-valued
cobordism invariant is a power of this one. In particular, taking
w4 to represent the fourth Stieffel-Whitney class, ð−1Þw4 is a
nontrivial U(1)-valued cobordism invariant so it must be a

power of expð−iπη=2Þ. The power must be 8 since ð−1Þw4 is
valued in f�1g:

ð−1Þw4 ¼ expð−8iπη=2Þ: ð4:15Þ

For example, for X ¼ RP4, one has w4 ¼ 1, expð−πiη=2Þ ¼
expð�2iπ=16Þ, with the sign depending on the pinþ structure.
Thus the ν ¼ 8 case of a topological superconductor has

ð−1Þw4 for its bulk partition function. The Stieffel-Whitney
classes are defined without choosing a spin or pin structure, so
unlike what happens for other values of ν, the ν ¼ 8

topological superconductor does not depend on the pinþ

structure of the four-manifold X. There is a full-fledged
TQFT with partition function ð−1Þw4 .
For a rank 4 real vector bundle, such as the tangent bundle

of a four-manifold, w4 is the same as the mod 2 reduction of
the Euler class. So an alternative statement is that the ν ¼ 8

theory has ð−1ÞχðXÞ as its bulk partition function,40 where χðXÞ
is the Euler characteristic of X.
Now we can explain the result found by Hsieh, Cho, and

Ryu (2015) and see that it is general. If X is a mapping torus,
meaning that it is total space of a fiber bundle X → S1, the
fiber being a three-manifold Y, then χðXÞ ¼ 0. One way to
prove this is to observe that in general the Euler characteristic
is multiplicative in fibrations, so that χðXÞ ¼ χðYÞχðS1Þ. But
this vanishes, since χðS1Þ ¼ 0.
We are then in a similar situation to what we found in

Sec. II.B.3 for the same problem on an orientable mani-
fold. If ν is a multiple of 8, this ensures that the theory of
ν identical Majorana fermions on a three-manifold Y has
no traditional global anomaly—detectable via the invariant
expð−νiπη=2Þ of a mapping torus. But to give a natural
definition of the sign of the partition function for a system
of ν identical (2þ 1)-dimensional Majorana fermions, with
no need for “anomaly inflow” from a four-manifold X, one
wants expð−νiπη=2Þ to equal 1 for all four-manifolds, not
just mapping tori. For this, we need ν to be a multiple
of 16.
The fact that the bulk state for ν ¼ 8 has a partition function

ð−1ÞχðXÞ may seem, at first sight, to offer a way to define a
symmetry-preserving gapped boundary state without topo-
logical order. After all, the Euler characteristic of a manifold
with boundary is perfectly well defined and has natural
cobordism properties. In the TQFT with partition function
ð−1ÞχðXÞ, one can define a symmetry-preserving boundary
state by saying that the partition function on a four-manifold X
with any spatial boundary Y is ð−1ÞχðXÞ. This boundary state
satisfies cutting and gluing axioms of TQFT, but it is not
compatible with reflection positivity or unitarity. For a simple
counterexample, take Y to be a 3-sphere and X a 4-ball with
boundary Y. Then ð−1ÞχðXÞ ¼ −1, but because X can be built
by gluing two identical pieces as in Fig. 8 of Sec. II.A.9,

39Moreover, all 16th roots do occur. For X ¼ RP4, one has
expð−iπη=2Þ ¼ expð�2iπ=16Þ, where the sign depends on the
choice of pinþ structure. For an introduction to these matters, see
Appendix C.

40We started with w4 rather than χ because Stieffel-Whitney
numbers such as w4 are always cobordism invariants, which made
it easier to explain the relationship to expð−iπη=2Þ. Likewise, the
relationship of χ to w4 is the simplest way to explain that ð−1ÞχðXÞ is a
cobordism invariant.
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reflection positivity would require that the partition function
for X should be positive.

G. The d = 3 topological insulator on an unorientable spacetime

Now we very briefly consider the (3þ 1)-dimensional
topological insulator on a possibly unorientable spacetime.
Everything that we have said about the topological super-
conductor has a fairly obvious analog, with one exception. In
contrast to the integer-invariant ν of the topological super-
conductor, the topological insulator has only a Z2-valued
invariant, even at the free fermion level. Indeed, we have
already written in Eq. (2.4) a T-conserving mass term for a
pair of (2þ 1)-dimensional Dirac fermions ψ1 and ψ2 that
transform the same way under T. T symmetry only protects
mod 2 the number of massless charged Dirac fermions.
We therefore expect that it will turn out that expð−iπη=2Þ is

always �1 for the topological insulator, even on an unorient-
able four-manifold. To understand this statement, we first
recall that the symmetry that protects the SPT state of a
topological insulator is, in relativistic terminology,41 T and not
CT. As discussed in Sec. III.G, this means that in Euclidean
signature we should consider the symmetry CR—in other
words, a symmetry that reverses the orientation of spacetime
also acts as charge conjugation.
Now let X be a possibly unorientable four-manifold and X̂

its oriented double cover. The invariant expð−iπη=2Þ on X that
we want to understand is the η invariant of a Dirac operator
acting on fermion fields ψ�

�, where the superscript is the U(1)
charge and the subscript is the chirality. There is an equivalent
definition on X̂ in which one considers only fermion fields ψ̂þ

�
of positive U(1) charge but any chirality: the Dirac spectrum
on X̂ computed from eigenvalues of the Dirac operator acting
on ψ̂þ

� only is the same as the Dirac spectrum on X in the full
set of fields ψ�

�. Indeed, X is the quotient of X̂ by a CR
symmetry, so the fields ψþ

þ and ψ−
− on X combine to ψ̂þ

þ on X̂,
and similarly ψþ

− and ψ−þ on X combine to ψ̂þ
− on X̂. So instead

of computing an η invariant by summing over the spectrum of
a Dirac operator on X acting on the full set of fields ψ�

�, we
can sum over the spectrum of a Dirac operator on X̂ acting on
ψþ
� only.
As X̂ is orientable, the Dirac spectrum on X̂ is symmetric

under λ ↔ −λ. This follows as usual from considerations of
chirality. But a pair of eigenvalues λ;−λ does not contribute to
the η invariant. So in computing η on X̂, we can consider zero
modes only. The space of zero modes of the Dirac operator on
X̂ is even dimensional because of the usual antilinear
symmetry of the Dirac equation, so η is an even integer.
Consequently, expð−iπη=2Þ ¼ �1, as we aimed to show.

V. THE MAJORANA CHAIN

At a microscopic level, the time-reversal operation that
holds in the real world obeys T2 ¼ ð−1ÞF, where ð−1ÞF is the
operator that counts fermions mod 2. But there are some

situations in condensed matter physics in which it is natural to
consider a time-reversal symmetry that obeys T2 ¼ 1. This
usually happens because either spin is unimportant or the
symmetry under consideration is really the productRT of time
reversal with a reflection of one space coordinate. [In nature
ðRTÞ2 ¼ 1, and RT can act as time reversal on a thin layer or
long chain that is localized at the fixed point set of R.]
In the context of SPT phases of matter, there is a very

interesting example in which a time-reversal symmetry is
assumed with T2 ¼ 1. This is the Majorana chain in one space
dimension (Fidkowski and Kitaev, 2009).
A boundary of such a system is zero dimensional, that is a

point, and we begin there. In this paper, we have built in the
condition T2 ¼ ð−1ÞF by taking our Lorentz signature gamma
matrices to be real matrices obeying fγμ; γνg ¼ 2ημν, where
ημν ¼ diagð−1; 1; 1;…; 1Þ. Then we take T to act by

ψðt; ~xÞ → �γ0ψð−t; ~xÞ; ð5:1Þ

ensuring that T2ψ ¼ −γ20ψ ¼ −ψ . Since γ2i ¼ þ1 for i > 0, it
follows that a spatial reflection squares to þ1. In Euclidean
signature, this leads to a pinþ structure.
In 0þ 1 dimensions, we need only one gamma matrix γ0.

To get the most economical possible theory, we take γ20 ¼ þ1,
rather than −1 as in our discussion so far. Then we can
represent γ0 by the number 1 × 1 matrix 1 (or −1), and it is
possible to consider a 1-component real (Majorana) fermion
field ψ with action

I ¼ i
2

Z
dtψ

d
dt

ψ : ð5:2Þ

We take T to act on such a field by

TψðtÞ ¼ �ψð−tÞ; ð5:3Þ

with some choice of the sign, so that T2 ¼ 1. A pair of
fermions ψ and ψ 0 that transform with opposite signs can have
a T-invariant “mass” term iψψ 0, and as in Sec. IV.E, the
natural invariant is the difference ν between the number of
fermions transforming under T with a þ sign and the number
transforming with a − sign. At the free fermion level, ν is an
integer invariant, but (Fidkowski and Kitaev, 2009) at the
interacting level, ν is only an invariant mod 8. [This statement
means that a (0þ 1)-dimensional system consisting of eight
real fermions all transforming under T with the same sign can
be gapped by a suitable T-invariant four-fermion coupling.]
When ν is not a multiple of 8, this system has a subtle

(ν-dependent) anomaly in the realization of the symmetries T
and ð−1ÞF. We will not repeat this story here, and instead we
will ask how the system with ν boundary fermions can
naturally appear on the boundary of a T-conserving system
in 1þ 1 dimensions. The choice γ20 ¼ þ1 that we have made
in setting up this problem corresponds to a Pin− structure, and
once we have assumed a Pin− structure on the (0þ 1)-
dimensional boundary of spacetime, we must also (if we
want the Dai-Freed theorem or a similar tool to be available)
assume a Pin− structure on the 1þ 1-dimensional bulk. So we
consider fermions with (1þ 1)-dimensional gamma matrices

41C and CT, which exchange electrons with positrons, are never
true symmetries in condensed matter physics.
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that obey γ20 ¼ 1 ¼ −γ21, or more covariantly fγμ; γνg ¼
−2ημν. In Euclidean signature, this becomes fγμ; γνg ¼
−2δμν, where the minus sign corresponds to a Pin− structure.
(2 × 2 matrices satisfying fγμ; γνg ¼ −2δμν exist but cannot
be chosen to be real. The fact that a bare mass is possible, as
discussed next, makes it clear that a Majorana fermion with
T2 ¼ 1 is pseudoreal in Euclidean signature.)
In contrast to the case T2 ¼ −1, a 2D Majorana fermion

with T2 ¼ 1 can have a T-invariant bare mass. In Lorentz
signature, the T-invariant Dirac equation can be written

ðγ0∂0 þ γ1∂1 −mγ̄Þψ ¼ 0; ð5:4Þ

wherem is real and γ̄ ¼ γ0γ1 is the chirality operator. Actually,
this equation is T invariant for either sign in fγμ; γνg ¼ �2ημν,
but if one writes the equation in Hamiltonian form i∂tψ ¼ Hψ
for some linear operator H, one sees that H is only Hermitian
for the case of a − sign. So that is the case for which this mass
term is physically sensible.
After generalizing to curved spacetime and continuing to

Euclidean signature, Eq. (5.4) becomes ðD − imγ̄Þψ ¼ 0. But
it is convenient to multiply by γ̄ and write the equation as

ðD0 þ imÞψ ¼ 0: ð5:5Þ

Here D0 ¼ γ̄D is a Hermitian and reflection-symmetric Dirac
operator. Because it is reflection symmetric, it makes sense on
any two-manifold, possibly unorientable, that is endowed with
a Pin− structure. (See Appendix A.3 for more on this.)
The bulk sTQFT of the Majorana chain is constructed by

taking a fermion field ψ of mass m, together with a Pauli-
Villars regulator field of mass μ. As in Sec. IV.C, the
interesting case is that m and μ have opposite signs. For
μ > 0, m < 0, the phase of the partition function is
expð−iπη=2Þ, by the familiar argument. This is the partition
function of the bulk sTQFT associated with the Majorana
chain. It is always an 8th root of 1; it equals expð�2iπ=8Þ for
RP2, where the sign depends on the choice of Pin− structure
(see Appendix C). Because expð−πiη=2Þ is always an 8th root
of 1, the bulk sTQFT of the Majorana chain is trivial for ν
multiple of 8. [This was argued by Kapustin et al. (2014)
based on an assumption of cobordism invariance.]
As usual, if ν is not a multiple of 8, the bulk partition

function expð−νiπη=2Þ cannot be defined as a topological
invariant in a symmetry-preserving fashion on a possibly
unorientable two-manifold with boundary. However, the Dai-
Freed theorem applies in this situation and says that the
product of the path integral of ν boundary fermions times
expð−νiπη=2Þ is well defined. This is the path integral of the
combined system consisting of the bulk sTQFT and the
boundary fermions.
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APPENDIX A: SPINORS IN RIEMANNIAN GEOMETRY

1. Spinors on orientable manifolds

To introduce spinors and the Dirac equation on a
Riemannian manifold W of dimension42 n, it is useful to first
pick a “vielbein” that is an orthonormal basis of tangent
vectors ea, a ¼ 1;…; n. We denote as eia, i ¼ 1;…; n, the
components of ea in an arbitrary local coordinate system xi ¼
fx1;…; xng on W. The statement that the ea are orthonormal
means that, if gij is the metric tensor of W, then

eiae
j
bgij ¼ δab: ðA1Þ

Equivalently,

δabeiae
j
b ¼ gij: ðA2Þ

Indices of eia are raised and lowered with δab and gij and, in
particular, eai is the inverse matrix to eia. “Flat space” gamma
matrices are 2½n=2� × 2½n=2� matrices γa, a ¼ 1;…; n, obeying

fγa; γbg ¼ 2δab: ðA3Þ

The corresponding “curved space” gamma matrices are
γi ¼ eai γa, obeying

fγi; γjg ¼ 2gij: ðA4Þ

While the orientation-preserving rotation group SOðnÞ acts
on the tangent space to W at a given point p ∈ W, the
corresponding group that acts on spinors on W is a double
cover of SOðnÞ that is known as SpinðnÞ. Its generators are

Σab ¼ 1
4
½γa; γb�: ðA5Þ

The covariant derivative of a spinor field Ψ is defined as

D
Dxi

Ψ ¼
� ∂
∂xi þ ωab

i Σab

�
Ψ; ðA6Þ

where ωab
i is the Levi-Civita connection on the tangent bundle

of W. We can define a Hermitian Dirac operator

D ¼ i
Xn
i¼1

γiDi: ðA7Þ

This construction depended on the choice of a vielbein feag,
which in general can be made only locally. To define a
global Dirac operator, one glues together local descriptions.
A down-to-earth way to proceed is to coverW with small open
sets Wx, x ¼ 1;…; s, picking a vielbein eax, a ¼ 1;…; n, on
each Wx. On Wx ∩ Wy , since eax and eay are both ortho-
normal bases of the tangent bundle ofW, they are related by an
orthogonal transformationMxy: ex ¼ Mxyey , or in more detail

42In our applications, W is usually either the spacetime X of
dimension D or its boundary Y ¼ ∂X of dimension d ¼ D − 1.
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eax ¼
X
b

Ma
b
xyeby : ðA8Þ

(Here Ma
b
xy are the matrix elements of the n × n orthogonal

matrixMxy .) IfW is orientable, as assumed in this section, we
can pick the local vielbeins ex such that Mxy is valued in
SOðnÞ [rather than OðnÞ]. The transition matrices Mxy obey
a consistency condition: in triple overlaps Wx ∩ Wy ∩ Wz,
we have

MxyMyzMzx ¼ 1: ðA9Þ

Once a local vierbein is picked in an open set Wx, we can
define a spinor field Ψx (with components Ψαx,
α ¼ 1;…; 2½n=2�) in this open set. The covariant derivatives
and Dirac equation for Ψx are as in Eqs. (A1) and (A7). On
intersections Wx ∩ Wy , we compare Ψx and Ψy via

Ψx ¼ M̂xyΨy; ðA10Þ

where M̂xy is a 2½n=2� × 2½n=2� matrix that is obtained by
“lifting” Mxy to the spinor representation. Thus M̂xy

is an element of SpinðnÞ, the double cover of SOðnÞ
associated with spin. Because the sign with which a given
element of SOðnÞ acts on spinors is not uniquely determined,
the lift from Mxy to M̂xy is only uniquely determined up to
sign. For consistency, the signs must be chosen so that in triple
overlaps

M̂xyM̂yzM̂zx ¼ 1: ðA11Þ

A choice of signs satisfying this condition is called a
spin structure on W; once a spin structure is picked, we can
piece together the local descriptions and globally study
fermions and the Dirac equation on W. In dimension ≥ 4, a
given W may not admit a spin structure because it may
be impossible to satisfy Eq. (A11); in this case, spinors
cannot be defined on W (an example is W ¼ CP2). This
possibility does not play a primary role in the present paper.
We simply restrict our attention to spacetimes on which
spinors can be defined.
More important for our purposes is the fact that a given W

may admit more than one spin structure. If we do find a choice
of signs consistent with Eq. (A10), then a different choice
M̂0

xy ¼ M̂xyð−1Þcxy , for some Z2-valued function cxy , obeys
the same condition if

ð−1Þcxy ð−1Þcyzð−1Þczx ¼ 1 ðA12Þ

for all x, y, and z. We want to impose on c a gauge
equivalence cxy ≅ cxy þ dx − dy for any Z2-valued function
dx, since in Eq. (A10) the change in M̂xy resulting from such a
change in cxy can be absorbed in redefining the local spinors
by Ψx → ð−1ÞdxΨx. Given the condition (A12) and the gauge
invariance just stated, cxy defines an element of the group
H1ðW;Z2Þ. Any two spin structures onW differ by “twisting”
by an element of this group.

For an elementary example of this, take W to be an
n torus Tn, with flat metric. Parallel transport of tangent
vectors on W is completely trivial: the Levi-Civita con-
nection on tangent vectors is 0. However, in defining
spinors on W, we are free to say that a spinor changes
sign under parallel transport around a noncontractible loop
l ⊂ Tn. As there are n independent loops to consider, there
are 2n choices of sign in defining spinors on Tn, and these
are the spin structures on Tn. The group H1ðTn;Z2Þ is
isomorphic to Zn

2 and labels these choices of sign. [For
W ¼ Tn, but not in general, there is a distinguished spin
structure, namely, the “trivial” one in which spinors are
parallel transported with no sign changes. As a result, in this
example, the set of spin structures can be canonically
identified with the group H1ðW;Z2Þ.]
A manifold W endowed with a choice of spin structure is

called a spin manifold. [Orientability is built into the notion of
a spin manifold, since in the starting point we took the
transition functions of the tangent bundle to be valued in
SOðnÞ.] IfW is a spin manifold, the matricesMxy , understood
as 2½n=2� × 2½n=2� matrices in the spin representation of SpinðnÞ,
are transition functions for a vector bundle S → W. A section
of this bundle is a fermion field on W. We sometimes refer to
S as the spin structure. If S is one spin structure, then any
other spin structure is S ⊗ ρ, where ρ → W is a real line
bundle of order 2 [defined in the above construction by the
transition functions ð−1Þcxy ].
For even dimension n, the irreducible representation of

the Clifford algebra is unique up to isomorphism. This can
be proven by writing n gamma matrices in terms of n=2
pairs of creation and annihilation operators, which have a
unique irreducible representation. But for even n, the
irreducible representation of the Clifford algebra is not
irreducible as a representation of SpinðnÞ; it decomposes as
the sum of two representations of SpinðnÞ of positive or
negative chirality. For odd n, matters are different. Up to
isomorphism, there is only one spinor representation of
SpinðnÞ, but there are two inequivalent representations of
the Clifford algebra. The two representations differ by
γi → −γi, which preserves the anticommutation relations of
the Clifford algebra and does not affect the SpinðnÞ
generators Σij ¼ ð1=4Þ½γi; γj�, but gives an inequivalent
representation of the Clifford algebra. The two represen-
tations differ by the sign of the product γ1γ2 � � � γn—which
commutes with the Clifford algebra and so is a c number
(�1 or �i, depending on n) in an irreducible representation
of the Clifford algebra. For example, in three dimensions,
the two representations of the Clifford algebra correspond
in a locally Euclidean frame to γi ¼ �σi, and thus the
gamma matrices obey

γiγj ¼ gij � iϵijkγk; ðA13Þ

where ϵijk is the Levi-Civita tensor. In this formula, �ϵijk
can be regarded as a choice of orientation of W. Thus the
two representations of the Clifford algebra are associated
with the two possible orientations of W. The Dirac
operator D ¼ i

P
kγ

kDk is odd under γk → −γk, and so
the sign of the Dirac operator depends on the orientation of
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W. The η invariant of the Dirac operator changes sign if
one changes the sign of this operator (thereby changing the
sign of all of its eigenvalues), and this is why the
η invariant is odd under parity, that is under the reversal
of orientation.

2. Fermions on an unorientable manifold

Now we consider the unorientable case. On an unorientable
n manifold W, the transition matrices Mxy of the tangent
bundle of W are valued in OðnÞ rather than SOðnÞ, and the
corresponding matrices M̂xy that act on spinors must similarly
take values in a double cover of OðnÞ. There are two choices
of this double cover,43 depending on whether a spatial
reflection R acting on spinors satisfies R2 ¼ 1 or R2 ¼ −1.
For most physical applications, the appropriate choice is
R2 ¼ 1. The double cover of SpinðnÞ that arises if R2 ¼ 1

is called PinþðnÞ. [If we choose R2 ¼ −1, we get a double
cover of SpinðnÞ that is called Pin−ðnÞ.]
A reflection symmetry in Euclidean signature can be

continued to either a reflection or a time-reversal symmetry
in Lorentz signature, depending on whether the reflection acts
on the spacetime coordinate that is analytically continued in
the change of signature. This process is subtle and, as is well
known, T is antilinear in quantum field theory while R is
linear. Related to this, C (charge conjugation) enters in the
continuation, so R in Euclidean signature can be continued to
CT in Lorentz signature, and CR can be continued to T. If R
(or CR) squares to þ1 on fermions, then CT (or T) squares to
−1, and vice versa.
To concretely describe the group PinþðnÞ, we work on Rn

and ask how a reflection that reverses the sign of one
coordinate acts on spinors. Let w be a unit vector and consider
the reflection xi → xi − 2wiw · x. Setting γ · w ¼ γiwi, the
reflection acts on spinors by

ψ → γ · wψ : ðA14Þ

These transformations square toþ1, and adjoining them to the
SpinðnÞ transformations generated by Σab ¼ ð1=4Þ½γa; γb�
gives PinþðnÞ. One way to describe Pin−ðnÞ is simply to
take the given reflection to act by ψ → iγ · wψ, an operation
that squares to −1.
To define a pinþ structure on W, one lifts the transition

functions Mxy of the tangent bundle from OðnÞ to PinþðnÞ-
valued functions M̂xy . In dimension ≥2, there is a possible
obstruction to this (for example, RP2 admits no pinþ

structure). If W does admit a pinþ structure, this structure
is not necessarily unique; just like spin structures, pinþ

structures differ by twisting by an element of H1ðW;Z2Þ.
A manifold with a choice of pinþ structure is called a pinþ

manifold.
If W is a pinþ manifold, the transition functions M̂xy ,

understood as before as 2½n=2� × 2½n=2� matrices, define a vector
bundle P → W. We can define a spinor field ψ that is a section
of this bundle and the Dirac operator D ¼ iD can act on ψ .
But some of its properties are different from the orientable
case, as seen in the main text and discussed further in
Appendix A.3.
If P → W is one pinþ structure, then just as in the spin case,

any other pinþ structure is P ⊗ ρ for some real line bundle
ρ → W. However, there is a new ingredient when W is
unorientable. There is then a canonical real line bundle
ε → W, namely, the orientation bundle: the holonomy of ε
around a closed loop l ⊂ W is −1 if the orientation of W is
reversed in going around l, and otherwise it is þ1. P0 ¼
P ⊗ ε is a new pinþ structure on W that we call the pinþ

structure complementary to P. Concretely, the transition
functions M̂0

xy of P0 are obtained from the transition functions
M̂xy of P by reversing the sign of M̂xy whenever it is in the
orientation-reversing component of PinþðnÞ.
Everything that we have just said for pinþ has an immediate

analog for pin− except that the obstruction to a pin− structure
begins in dimension 4.

3. Dirac operators

Consider a reflection in Rn:

Rψðx1; x2;…; xnÞ ¼ γ1ψð−x1; x2;…; xnÞ: ðA15Þ

It is not difficult to see that such a reflection anticommutes
with the Dirac operator

D ¼ iD ¼ i
Xn
j¼1

γjDj: ðA16Þ

More generally, on a spin manifold Ŵ, any orientation-
reversing symmetry anticommutes with D. Suppose that Ŵ
has an orientation-reversing symmetry τ that acts freely and
obeys τ2 ¼ 1. Then we can pass from Ŵ to its quotient
W ¼ Ŵ=Z2. If in addition τ acts as a symmetry of the spin
bundle S → Ŵ, still obeying τ2 ¼ 1, then W is endowed with
two pinþ structures P and P0 that can be defined as follows. A
section ψ of P → W is a section ψ̂ of S → Ŵ that obeys

τψ̂ ¼ ψ̂ ; ðA17Þ

and a section ψ 0 of P0 → W is a section ψ̂ of S → Ŵ that
obeys

τψ̂ ¼ −ψ̂ : ðA18Þ

Since the sign with which τ acts on S depends on an arbitrary
choice, the relationship between P and P0 is completely
symmetrical.

43Here we consider Majorana fermions, that is fermions coupled to
gravity only, as is appropriate physically for a topological super-
conductor. In the presence of the U(1) gauge symmetry of electro-
magnetism, one can combine a spatial reflection with a gauge
transformation and define a symmetry for which R2 acts on electrons
with an arbitrary phase. Mathematically, this is related to a possible
generalization from spin and pin structures to spinc and pinc
structures. This generalization is useful in analyzing topological
states of matter, but is not relevant in the present paper.
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Consider any point p ∈ Ŵ and a path l̂ from p to τðpÞ.
After dividing by τ, l̂ projects to a closed loop l ⊂ W around
which the orientation of W is reversed. The relative minus
sign in Eqs. (A17) and (A18) means that the monodromies
around l of the pinþ bundles P and P0 differ in sign. Thus P
and P0 are complementary pinþ bundles in the sense of
Appendix A.2.
Every pinþ manifold W arises in this construction, with Ŵ

being the oriented double cover of W.
Now suppose that ψ is a fermion field on W valued in a

particular pinþ structure P. From what we have said, it is clear
that the usual Dirac operator D ¼ i

P
kγ

kDk cannot be defined
as a self-adjoint operator acting on ψ . On the covering space
Ŵ, D anticommutes with τ, so it maps sections of P to
sections of P0 and vice versa.
For odd dimension n, there is no way to remedy this

situation and there is no self-adjoint Dirac operator acting on a
P-valued field ψ . The upshot of this is that the corresponding
path integral Zψ can be defined as the Pfaffian of a complex-
valued antisymmetric bilinear form, but not as the determinant
of a self-adjoint operator. Accordingly it is complex valued,
and in general it can be affected by a global anomaly involving
a complex number of modulus 1, not just a real number �1.
This issue was explored in the main text in Sec. IV.B.
For even n, matters are different and there is always a self-

adjoint Dirac operator acting on a fermion field valued in any
given pinþ structure P. This was assumed in the main text at
several points and here we explain the details. First we start on
the orientable manifold Ŵ with spin structure S. As Ŵ is
orientable, one can define a chirality operator γ̄ that acts on S
(and leads to a decomposition S ¼ Sþ ⊕ S−, where Sþ and
S− are the bundles of positive or negative chirality spinors).
Assuming that we want γ̄2 ¼ 1, the proper definition of γ̄
depends slightly on whether n is congruent to 0 or 2 mod 4.
For example, in two dimensions (and similarly in 4kþ 2

dimensions for any k), one defines

γ̄ ¼ i
2!
ϵijγiγj: ðA19Þ

In four dimensions (and similarly in 4k dimensions for any k),
one omits the factor of i and defines

γ̄ ¼ 1

4!
ϵijklγiγjγkγl: ðA20Þ

On an orientable manifold Ŵ of even dimension, instead of
the usual Dirac operator D ¼ iD, we can use the alternate
Dirac operator

D0 ¼ γ̄D: ðA21Þ
D0 is self-adjoint, like D, and the two operators have the
same spectrum, since they are conjugate. Indeed, if U ¼
ð1 − iγ̄Þ= ffiffiffi

2
p

, then

D0 ¼ UDU−1: ðA22Þ
This depends on the fact that γ̄ commutes with the action of
SpinðnÞ on the spinor representation, and thus commutes with
the SpinðnÞ connection that is hidden in the definition of D.

So on Ŵ, we could equally well useD orD0. However, if we
want to descend to the unorientable manifold W ¼ Ŵ=Z2,
where Z2 is generated by the orientation-reversing isometry τ,
then it is better to use D0. Indeed, since γ̄ and D are both odd
under τ, D0 is even, and it descends to a perfectly good self-
adjoint operator acting on the pinþ bundle P of W.
In the main text, we sometimes write simply D rather than

D0 for the self-adjoint Dirac operator of an even-dimensional
Pinþ manifold W. A justification for this is that in fact up on
Ŵ what we mean by D or D0 depends on the choice of
representation of the Clifford algebra. We can define new
gamma matrices

γi
0 ¼ UγiU−1. ðA23Þ

Concretely

γi
0 ¼ −iγ̄γi ¼

�−ϵijγj if n ¼ 2;
i
3!
ϵijklγ

jγkγl if n ¼ 4.
ðA24Þ

In terms of the new gamma matrices, D0 takes the standard
form

D0 ¼ i
X
k

γ0kDk: ðA25Þ

(The covariant derivativesDk take the same form in old or new
gamma matrices.)
However, if we use the new gamma matrices, then the

transformation law (A14) under a reflection [and therefore
under any orientation-reversing element of PinþðnÞ] is modi-
fied. It becomes

ψ → iγ̄0γ0 · wψ : ðA26Þ

(Here γ̄0 is the chirality operator constructed from the new
gamma matrices; it coincides with γ̄.) Actually, this is the most
common choice in particle physics in four spacetime dimen-
sions.44 The reason that we started with Eq. (A14) instead,
apart from the fact that it is fairly standard mathematically, is
that it leads for many purposes to a formalism that works
uniformly in all dimensions. It is hard to find conventions for
fermions that are convenient for all purposes.

APPENDIX B: EXAMPLES IN LOW DIMENSION

We will look more closely at low-dimensional examples
that are important in this paper.

1. Two dimensions

To describe spinors on R2, we only need two gamma
matrices, and we can pick real 2 × 2 gamma matrices γ1 ¼ σ1,
γ2 ¼ σ3. The group Spinð2Þ is generated by Σ ¼ ð1=2Þγ1γ2.

44For example, see Eq. (2.33) of Bjorken and Drell (1964), which
however is written with an arbitrary phase for Dirac fermions and also
is a formula for the transformation of a fermion under parity (a
reflection of all three spatial coordinates, not just one).
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Abstractly, Spinð2Þ is a copy of SO(2), with the spinors as
the fundamental real two-dimensional representation. But,
because the eigenvalues of Σ are �i=2 (not �i), Spinð2Þ is a
double cover of the original SO(2) that acts by rotations onR2.
To get Pinþð2Þ, we include the reflections xi → xi−

2wiw · x, acting by

ψ → γ · wψ : ðB1Þ
This gives a real, two-dimensional representation of Pinþð2Þ.
The group Pinþð2Þ is abstractly isomorphic to O(2), although
it is a double cover of the usual O(2) that acts by rotation and
reflection of R2.
Naively, one might think that one can define a second real,

two-dimensional representation of Pinþð2Þ in which a reflec-
tion acts by

ψ → −γ · wψ : ðB2Þ
Shortly we will see that something like this does work in three
dimensions, but in two dimensions the two representations are
conjugate under ψ → γ1γ2ψ, which represents a π rotation
of R2.
Since the spinor representation of Pinþð2Þ is real, there is an

antilinear operation

T ψ ¼ ψ�; T 2 ¼ 1 ðB3Þ
that anticommutes with the Hermitian Dirac operator D0 and
ensures that on any two-manifold, orientable or not, the
spectrum is symmetric under λ ↔ −λ.
On an orientable two-manifold, we can also define an

antilinear operation

T 0ψ ¼ γ̄ψ�; ðT 0Þ2 ¼ −1 ðB4Þ
that commutes with D (or D0) and ensures that the Dirac
eigenvalues all have even multiplicity. Here γ̄ ¼ iγ1γ2 ¼ σ2 is
the chirality operator.
The reason that both structures exist is that, if we restrict to

Spinð2Þ, then the two-dimensional spinor representation is
reducible; it decomposes in one-dimensional representations
of positive or negative chirality which are complex conjugates
to each other. Accordingly, the Dirac operator anticommutes
with γ̄ and we can include it in defining T 0. On an unorientable
two-manifold, the definition of T makes sense, but T 0 can no
longer be defined, because γ̄ is not defined globally.

2. Three dimensions

Now we go to three dimensions. For the 2 × 2 gamma
matrices, we can take the Pauli σ matrices

γa ¼ σa; a ¼ 1;…; 3: ðB5Þ
The double cover of SO(3) that acts on spinors is
Spinð3Þ ¼ SUð2Þ. Spinors transform in the spin 1=2 repre-
sentation of SU(2). This representation is pseudoreal, since the
trivial representation of SU(2) appears antisymmetrically in
the tensor product 1=2 ⊗ 1=2. Concretely, the invariant
antisymmetric tensor on the spin 1=2 representation of
SU(2) is given by the 2 × 2 Levi-Civita symbol εαβ, α,

β ¼ 1, 2. If ψ is a fermion field valued in this representation,
then the corresponding “mass term,” often written as ψ̄ψ , is

ðψ ;ψÞ ¼ εαβψ
αψβ: ðB6Þ

The group Pinþð3Þ is obtained by adjoining to Spinð3Þ ¼
SUð2Þ the reflection matrices γ · w for w a unit vector in R3.
Such a reflection matrix is a 2 × 2 unitary matrix of deter-
minant −1. So Pinþð3Þ is the subgroup of U(2) consisting of
matrices of determinant �1:

Pinþð3Þ ¼ fg ∈ Uð2Þj det g ¼ �1g: ðB7Þ

In contrast to Spin(3), Pinþð3Þ has two inequivalent two-
dimensional irreducible representations R and R0. If ψ and ψ 0

are valued, respectively, in R and R0, then g ∈ Pinþð3Þ acts on
them by

ψ → gψ ; ψ 0 → gðdet gÞψ 0: ðB8Þ

Thus the difference is precisely that a spatial reflection (or any
orientation-reversing transformation) acts on ψ and ψ 0 with
opposite signs. The representations R and R0 are both complex
representations, meaning that they do not admit an invariant
bilinear form. Indeed, the mass terms ðψ ;ψÞ ¼ εαβψ

αψβ and
ðψ 0;ψ 0Þ ¼ εαβψ

0αψ 0β are both odd under reflection. Under
ψ → gψ , ψ 0 → g det gψ 0, we have

ðψ ;ψÞ → det g ðψ ;ψÞ; ðψ 0;ψ 0Þ → det g ðψ 0;ψ 0Þ: ðB9Þ

But the “off-diagonal” mass term

ðψ ;ψ 0Þ ¼ εαβψ
αψ 0β ðB10Þ

that links two fermions ψ and ψ 0 that transform oppositely
under R (or T) is invariant.
Since there is always an invariant pairing between a

representation of a compact group such as Pinþð3Þ and its
complex conjugate, the invariance of the pairing ðψ ;ψ 0Þ
means that the representation R is isomorphic to the complex
conjugate of R0. Indeed, one can show that the complex
conjugates of the matrices g acting on representation R can
be conjugated by a unitary transformation to the correspond-
ing matrices g det g acting on representation R0:

σyg�σ−1y ¼ g det g: ðB11Þ

To show this, one can consider separately the cases that g ¼
γ · w is a reflection, and that g ∈ Spinð3Þ, with det g ¼ 1.
Equation (B11) is equivalent to T gT −1 ¼ g det g, where T is
the antilinear operation that we introduce momentarily.
On an orientable three-manifold, the spinor representation

of Spinð3Þ ≅ SUð2Þ admits the invariant antisymmetric tensor
εαβ, as discussed previously. Hence one can define an anti-
linear operation

ðT ψÞα ¼ εαβψ�
β; ðB12Þ

where ψ�
β is the complex conjugate of ψβ. It obeys T 2 ¼ −1

and commutes with the Dirac operator D. Accordingly, there
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is a version of Kramers doubling: the eigenvalues of D all
have even multiplicity.
We have given a rather intrinsic definition of T , but some

may also want to see a description in local coordinates. After
picking a vielbein and “flat space” gamma matrices γa ¼ σa,
and writing K for complex conjugation, one can define

T ¼ Kσy; T 2 ¼ −1: ðB13Þ

This operation can be defined using any vielbein, and because
it is actually SU(2) invariant, despite not being written in a
way that makes this manifest, the definition of T does not
depend on the choice of vielbein, as long as we consider only
vielbeins that determine the same orientation on spacetime
(i.e., as long as we allow only orientation-preserving trans-
formations between vielbeins).
A special case of the fact that the spectrum of the Dirac

operator has even multiplicity on an orientable three-manifold
is that the mod 2 index of this operator vanishes. However, T
anticommutes with the gamma matrices and hence with the
reflection elements of Pinþð3Þ. As a result, T cannot be
defined as a transformation of spinor fields on an unorientable
three-manifold W. Going up to the oriented double cover Ŵ,
withW ¼ Ŵ=Z2, T can be defined but anticommutes with the
orientation-reversing generator τ ofZ2. So if ψ̂ is a spinor field
on Ŵ and τψ̂ ¼ �ψ̂ , then τðT ψ̂Þ ¼∓ T ψ̂ . Recalling the
definition of the complementary pinþ structures P and P0, we
can interpret this statement on W. It means that although T
cannot be defined to map sections of P to themselves or
sections of P0 to themselves, it makes sense as a map from
sections of P to sections of P0 and vice versa. This means, in
particular, that P and P0 have the same mod 2 index (not
necessarily 0, as we know from Sec. III.B). In fact, T
transforms a zero mode of the Dirac operator D∶P → P0 to
a zero mode of the adjoint Dirac operator D∶P0 → P.

3. Four dimensions

In four dimensions, we need four gamma matrices. We can
take them to be 4 × 4 matrices, but it is not possible for them
to be all real. For example, we can take

γ1 ¼ σ1 ⊗ 1; γ2 ¼ σ2 ⊗ 1;

γ3 ¼ σ3 ⊗ σ1; γ4 ¼ σ3 ⊗ σ3: ðB14Þ

With this choice, γ2 is imaginary and the others are real.
The group Spin(4) is isomorphic to the product of two

copies of SU(2), which we write as SUð2Þl × SUð2Þr. The
action of Spin(4) commutes with the chirality operator
γ̄ ¼ γ1γ2γ3γ4, and accordingly the four-dimensional spinor
representation of Spin(4) splits as the direct sum of two 2-
dimensional representations with γ̄ ¼ �1. These are the
representations ð1=2; 0Þ and ð0; 1=2Þ of SUð2Þl × SUð2Þr.
Those representations are both pseudoreal, simply because

the two-dimensional representation of SU(2) is pseudoreal. As
a result spinors of Spin(4) are pseudoreal. If we denote a field
valued in the ð1=2; 0Þ representation as ψα0 and one valued in
the ð0; 1=2Þ representation as ψα00 , then there are invariant
antisymmetric tensors εα0β0 and εα00β00 for the ð1=2; 0Þ and

ð0; 1=2Þ representations, respectively. Each of these is
uniquely determined by SUð2Þl or SUð2Þr symmetry up to
a constant multiple.
To pass from Spin(4) to Pinþð4Þ, we add reflection

symmetries xi → xi − 2wiðw · xÞ. A reflection acts as usual by

ψ → γ · wψ : ðB15Þ

Such a reflection exchanges SUð2Þl with SUð2Þr, anticom-
mutes with γ̄, and exchanges ð1=2; 0Þ with ð0; 1=2Þ. So the
representation ð1=2; 0Þ ⊕ ð0; 1=2Þ of Spin(4) is irreducible as
a representation of Pinþð4Þ. There is only one such spinor
representation of Pinþð4Þ, up to isomorphism, since a sign in
Eq. (B15) could be removed by conjugation with γ̄.
Spin(4) does not determine a relative normalization

between εα00β00 and εα0β0 . However, a reflection that exchanges
SUð2Þl with SUð2Þr maps a particular choice of εα0β0 to a
choice of εα00β00 . With this choice, the sum εα0β0 ⊕ ϵα00β00 is an
invariant antisymmetric bilinear form εαβ on the four-
dimensional spinor representation of Pinþð4Þ. (Indices α
and β can now be of either type α0; β0 or α00; β00.)
This enables us to define an antilinear operation on spinors

on a pinþ four-manifold W:

ðT ψÞα ¼ εαβψ�
β: ðB16Þ

Since T 2 ¼ −1, the eigenvalues of the self-adjoint Dirac
operator D0 on such a manifold have even multiplicity.
One might prefer to see T defined explicitly using a local

vielbein. Using the representation (B14) for the flat space
gamma matrices, the definition is

T ¼ Kγ2γ̄: ðB17Þ

This commutes with Pinþð4Þ, so this definition does not really
depend on the choice of the vielbein and makes sense globally.

4. Five dimensions

Naively, in this paper, we do not need to know about spinors
and the Dirac operator in five dimensions. But in Appendix C,
we want to know what the APS index theorem says about the
four-dimensional η invariant, and for this one needs to know
some facts about five dimensions.
In five dimensions, one can find a 4 × 4 representation of

the Clifford algebra. One uses the four gamma matrices in
Eq. (B14) along with γ5 ¼ σ3 ⊗ σ2. Note that of the five
gamma matrices, two are imaginary (γ2 and γ5) and the others
are real.
Thus the group Spin(5) has a four-dimensional spinor

representation.45 The group Spin(5) is actually isomorphic
to Sp(4), and its four-dimensional spinor representation is
simply the fundamental four-dimensional representation of
Sp(4). Sp(4) is defined as the subgroup of U(4) that preserves
a certain nondegenerate antisymmetric bilinear form, and, in

45This representation is pseudoreal in Lorentz signature, so one
needs to take two copies of it to make a sensible theory of fermions.
This is not really relevant for our limited purposes here.
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particular, the four-dimensional representation of Sp(4) is
pseudoreal and spinors of Spin(5) are pseudoreal.
Concretely, on spinors of Spin(5), we can define an anti-

linear operation

T ¼ Kγ2γ5; T 2 ¼ −1: ðB18Þ

Thus on a five-dimensional spin manifold (orientable for the
time being), there is a form of Kramers doubling, and all
eigenvalues of the Dirac operator have even multiplicity.
So far all this parallels what happens in three dimensions.

Now let us go to the unorientable case. Reflections are
included in the usual way. The reflection xi→xi−2wiðw·xÞ
acts by

ψ → �ðγ · wÞψ : ðB19Þ

As in three dimensions, the sign is meaningful and gives two
distinct four-dimensional representations R and R0 of Pinþð5Þ.
However, there is an important difference. In three dimen-
sions, the representations R and R0 are complex representa-
tions that are complex conjugates of each other, but in five
dimensions, they are each pseudoreal. To see this, we observe
that the antilinear operation T defined in Eq. (B18) commutes
with a reflection acting as in Eq. (B19). So T can be defined
separately in R and in R0, and these representations are both
pseudoreal. At an elementary level, the difference from three
dimensions is that in five dimensions the number of gamma
matrices that are imaginary is even.
As in any odd dimension, there is no self-adjoint Dirac

operator acting on a field valued in a particular pinþ structure;
rather pinþ structures come in complementary pairs P, P0 that
are exchanged by the Dirac operator. We can define the index
of the Dirac operator I as the number of zero modes of
D∶P → P0 minus the number of zero modes of the adjoint
operator D∶P0 → P. This index is 0 on a five-manifold
without boundary, but on a manifold with boundary (and
with APS boundary conditions), it can be nonzero, as we learn
in Appendix C. However, I is always even because the
antilinear symmetry T ensures that the number of zero modes
of D acting on either P or P0 is even.

APPENDIX C: THE η INVARIANT IN FOUR
DIMENSIONS

In Secs. IV.E and IV.F, we needed some facts about the
η invariant in D ¼ 4. Analogous facts in D ¼ 2 were invoked
in Sec. V. Our goal in this Appendix is to briefly explain these
facts. [The arguments we give are similar to the original ones
(Gilkey, 1985).]
Our first goal is to show that in D ¼ 4, η is always an

integer multiple of 1=4, so that expð−iπη=2Þ is always a 16th
root of 1. The nontrivial case is that X is unorientable;
otherwise η is a multiple of 2, as noted in Sec. IV.C.
Suppose that X has pinþ structure P and complementary
pinþ structure P0 ¼ P ⊗ ε, where ε is a real line bundle, the
orientation bundle of X. We can define η invariants ηP , ηP0 for
a Majorana fermion valued in either of these pinþ structures.

The first useful relation is that

ηP þ ηP0 ¼ 0 mod 4: ðC1Þ

The point is that a Majorana fermion on X coupled to P
together with a Majorana fermion on X coupled to P0 combine
together to a Majorana fermion coupled to a spin structure on
X̂, the oriented double cover of X. So ηP þ ηP0 ¼ η̂, where η̂ is
the η invariant of the Majorana fermion on X̂. Because X̂ is
orientable and also has an orientation-reversing symmetry (the
quotient by this symmetry being X), η̂ is a multiple of 4, as
noted in Sec. IV.C.
We need one more relation, which is that

8ηP0 ¼ 8ηP mod 4: ðC2Þ

Together, these relations imply that ηP and ηP0 are both
multiples of 1=4.
To explain Eq. (C2), it is helpful to generalize the problem.

Let V → X be any real vector bundle. We consider the Dirac
operator DV acting on fermions valued in V, that is, acting on
sections of P ⊗ V. For any V, we can define ηP⊗V , the
η invariant of the Dirac operator acting on such a field. Here
ηP⊗V , for any V, is a topological invariant (independent of the
metric of X and the connection on V) mod 4. This follows
from the APS index theorem, which in odd dimensions takes
the simple form (2.47). To apply the theorem without
assuming that X is a boundary, we consider the five-manifold
Z ¼ X × ½0; 1� with one metric and gauge field ðg; AÞ at one
end and some other ðg0; A0Þ at the other end. The theorem then
says that the difference of −η=2 between the two ends is equal
to I , the index of the Dirac operator on Z with APS boundary
conditions. This index is always even, as explained in
Sec. B.4, and the difference between the two values of η is
a multiple of 4. More directly, what is happening is that as we
vary ðg; AÞ on a manifold of even dimensions, η is constant
except that it jumps by 2 when an eigenvalue passes through 0.
In four dimensions, the eigenvalues have even multiplicity
because of a version of Kramers doubling, so the jumps are
multiplies of 4 and η is a topological invariant mod 4.
We can interpret 8ηP0 as ηP⊗V where V ¼ ε⊕8 is the direct

sum of eight copies of the real line bundle ε. Similarly
8ηP ¼ ηP⊗R8 , where R8 is a trivial real vector bundle of
rank 8. So to establish Eq. (C2), it suffices to prove that ε⊕8 is
trivial, that is isomorphic to R8.
To show that a real vector bundle V over a four-manifold X

is trivial, it suffices to show vanishing of Stieffel-Whitney
classes wiðVÞ, 1 ≤ i ≤ 4, and also of a certain class λ ∈
H4ðX;ZÞ that is subtle to define, but that obeys 2λ ¼ p1ðVÞ,
where p1 is the first Pontryagin class.
For the first point, the total Stieffel-Whitney class of V is

wðVÞ ¼ wðε⊕8Þ ¼ wðεÞ8 ¼ ½1þ w1ðεÞ�8 ¼ 1, where in the
last step we use the fact that the relevant binomial coefficients
vanish mod 2. So wiðVÞ ¼ 0 for i ≥ 1.
To show vanishing of λðVÞ, we first write V ¼ V0 ⊕ V0,

with V0 ¼ ε⊕4. So λðVÞ ¼ 2λðV0Þ ¼ p1ðV0Þ. We are reduced
to showing that p1ðV0Þ ¼ 0. To compute p1ðV0Þ, we observe
that the complexification of V0 is the direct sum of four copies
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of εC ¼ ε ⊗R C. In general, if V0 → X is a real vector bundle
whose complexification is ⊕i Li for some complex line
bundles Li → X, then p1ðV0Þ ¼

P
ic1ðLiÞ2. In the present

case, this formula gives p1ðV0Þ ¼ 4c1ðεCÞ2, and this vanishes
because c1ðεCÞ is 2-torsion. The last statement is a general one
that holds for εC ¼ ε ⊗R C for any real line bundle ε over a
topological space.
This completes the proof that expð−iπη=2Þ is a 16th root

of 1.
We also want to show that for X ¼ RP4, expð−πiη=2Þ ¼

expð�2iπ=16Þ, with the sign depending on the choice of Pinþ
structure. We start on the five-torus T5 parametrized by
variables x1;…; x5 of period 1. We give T5 a spin structure
in which spinors are periodic in all directions. The spin bundle
S of T5 has rank 4, since the spinor representation of SO(5) is
four dimensional.
The Dirac operator D ¼ i∂ on T5 is self-adjoint, and its

index certainly vanishes. Now we replace T5 by T5=Z2, where
Z2 acts by P∶xi → −xi, i ¼ 1;…; 5. Here T5=Z2 is not a
manifold, and we correct for that in a moment. We defineHþ
and H− to be the spaces of spinor fields on T5 that obey,
respectively, ψð−xÞ ¼ ψðxÞ and ψð−xÞ ¼ −ψð−xÞ. Because
D anticommutes with P, it maps Hþ to H−, and vice versa.
We define the index I ofD on T5=Z2 to be the number of zero
modes of D acting onHþ minus the number of zero modes of
D acting on H−. (These operators are adjoints of each other
since the full Dirac operator acting on Hþ ⊕ H− is self-
adjoint.)
It is straightforward to compute I . The zero modes of D

acting on Hþ are the four-dimensional space of constant
spinors, and there are no zero modes of D acting on H−. So
the index is I ¼ 4.
Now T5=Z2 is not a manifold because P has 32 fixed

points: the points with coordinates xi ∈ Z=2, i ¼ 1;…; 5. To
get a manifold, we remove from T5 a small ball around each
fixed point to get a manifold T 0 with boundary. The quotient of
T 0 by P is then a manifold X with a boundary that consists of
32 copies ofRP4. X acquires two pinþ structures P, P0 whose
sections are spinor fields on T 0 that are even or odd under P.
The Dirac operator D maps sections of P to sections of P0,
and vice versa. Hence it has an index I . A fairly elementary
argument46 using the conformal invariance of the Dirac

operator shows that the Dirac index on X, with APS boundary
conditions, has the same value I ¼ 4 found in the previous
paragraph on T5=Z2. In odd dimensions, as in Eq. (2.47) the
APS index theorem says that η=2 ¼ −I , where I is the
Dirac index on a manifold T 0 and η is the η invariant of its
boundary. In the present case, the boundary consists of 32
copies of RP4 (all with the same pinþ structure, since they are
permuted by obvious symmetries). So the formula becomes
16ηRP4 ¼ −I ¼ −4, or ηRP4 ¼ −1=4.
We leave it to the interested reader to show in a similar way

that in two dimensions expð−iπη=2Þ is an eigth root of 1,
and ηRP2 ¼ �1=2.
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