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Integral cross sections for optically allowed electronic-state excitations of atoms and molecules
by electron impact, by applying scaled plane-wave Born models, are reviewed. Over 40 years
ago, Inokuti presented an influential review of charged-particle scattering, based on the theory
pioneered by Bethe forty years earlier, which emphasized the importance of reliable cross-
section data from low eV energies to high keV energies that are needed in many areas of
radiation science with applications to astronomy, plasmas, and medicine. Yet, with a couple of
possible exceptions, most computational methods in electron-atom scattering do not, in general,
overlap each other’s validity range in the region from threshold up to 300 eV and, in particular,
in the intermediate region from 30 to 300 eV. This is even more so for electron-molecule
scattering. In fact this entire energy range is of great importance and, to bridge the gap between
the two regions of low and high energy, scaled plane-wave Born models were developed to
provide reliable, comprehensive, and absolute integral cross sections, first for ionization by Kim
and Rudd and then extended to optically allowed electronic-state excitation by Kim. These and
other scaling models in a broad, general application to electron scattering from atoms and
molecules, their theoretical basis, and their results for cross sections along with comparison to
experimental measurements are reviewed. Where possible, these data are also compared to
results from other computational approaches.
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I. INTRODUCTION

Phenomena involving electron collisions are of funda-
mental importance in atomic and molecular physics
(Celotta and Huebner, 1979; Trajmar and Cartwright,
1984; Fano and Rau, 1986) and play an important role
in other fields such as aeronomy, astrophysics, atmospheric
physics (Campbell and Brunger, 2013), chemistry (Itikawa,
2003; Engmann et al., 2013), plasma physics (Itikawa,
2007; White et al., 2014a), and radiation science and
medicine (Tanaka and Itikawa, 2011; Sanz et al., 2012;
Petrović et al., 2014; White et al., 2014b). A recent
EU-FP7 e-infrastructure project devoted to building a
common electronic infrastructure for the exchange and
distribution of atomic and molecular data, the Virtual
Atomic and Molecular Data Centre (VAMDC: http://
sup‑vamdc.vamdc.eu/), reflects this importance. In electron
collisions with atomic systems (atoms and molecules), a
wide variety of kinematic processes can occur: elastic and
inelastic scattering, and reactions. Some reviews of a
selection of the extensive, but still far from complete,
measurements and calculations in electron-molecule scat-
tering processes can be found in Brunger and Buckman
(2002), Yoon et al. (2010), Anzai et al. (2012), and
Flosadóttir et al. (2012).
After the discovery of the electron in 1897 (Thomson,

1897), the first inelastic electron collision experiments
were performed by Lenard (1902). The Bohr model
(Bohr, 1913a, 1915), which postulated quantized energy
levels in atoms, was confirmed directly by studies of the
inelastic scattering of electrons from Hg atoms in the
electron swarm experiment of Franck and Hertz (1914)
(Robson, White, and Hildebrandt, 2014). After the devel-
opment of the quantum-mechanical scattering theory
(Born, 1926), the well-known Bethe-Born approximation

(Bethe, 1930; Massey and Mohr, 1931) was first applied to
treat electron scattering at high incident energies. These
early and significant efforts were reviewed by Mott and
Massey (1965), Massey, Burhop, and Gilbody (1969), and
Massey (1976).
There is a fascinating video interview of Bethe himself

talking about the important paper of Born that included
also the probability interpretation of quantum mechanics
(http://www.webofstories.com/play/hans.bethe/12). Bethe
extensively used the approximation introduced in that
paper, having arrived independently at it. Now known
as the Born approximation, Bethe comments in his own
words about becoming aware of its prior introduction by
Born, and that it was as if he had been “Moliere’s
Gentilhomme speaking prose” without being conscious
of it. In his reminiscences about his paper, Bethe says he
“considered it to be quite an important paper” and
submitted it for his habilitation, also noting that he
introduced a second step that has proved useful although
it became “very clumsy and involved” (http://www
.webofstories.com/play/hans.bethe/13) and was so criti-
cized by Pauli.
After a hiatus that might be ascribed to World War II

and a predominant shift in focus of the physics community
to nuclear physics, there was renewed awareness in the
early 1960s of electron scattering as a useful tool in
elucidating the energy-absorbing properties of atoms and
molecules. Specifically, since the latter half of the 1960s,
Lassettre (1965, 1969) and Lassettre and Skerbele (1974)
and the NBS [then National Bureau of Standards (U.S.),
currently NIST, National Institute of Standards and
Technology] (Vriens, Simpson, and Mielczarek, 1968;
Huebner et al., 1975; Kuyatt, Mielczarek, and Weiss,
1976) groups emphasized the need for the Bethe-Born
(BB) approximation and pioneered its application. Those
groups were strongly inspired by Fano and Cooper (1968).
This was well reviewed theoretically by Inokuti (1971)
who, along with Kim and their mentor Robert Platzman,
strongly emphasized the need for consistent data in
radiation science.
Since then, the field widely known as electron-impact

spectroscopy has been clearly identified. Both the exper-
imental and theoretical methods for studying collisions in
electron-atomic systems have been extensively developed,
not only in electron impact but also in combination with
other techniques and fields (such as nuclear physics).
Pertinent examples include (a) experimental techniques,
including photon impact by laser and synchrotron radiation
sources, ion-impact excitation, and coincidence techniques,
etc., (b) the development of ab initio accurate scattering
theory, such as the close-coupling (CC) and related methods
(Bray et al., 2002), the R-matrix method (Tennyson, 1996;
Zatsarinny and Bartschat, 2013), complex Kohn and
Schwinger multichannel variational methods (Takatsuka
and McKoy, 1981), and others. Several excellent works
dealing with these and later experimental and theoretical
developments have been published by Celotta and Huebner
(1979), Shimamura and Takayanagi (1984), Trajmar and
Cartwright (1984), Fano and Rau (1986), and Huo and
Gianturco (1995).
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Along with their importance for providing a fundamental
understanding of electron dynamics in atomic systems,
electron-atom and electron-molecule collisional cross sections
have become required input data for the design, modeling, and
understanding of a wide variety of naturally occurring and
laboratory-produced phenomena. Examples include planetary
atmospheric entry plasmas (Bultel, Annaloro, and Morel,
2012), laboratory astrophysics (Savin et al., 2012), the upper
atomosphere of Titan (Lavvas et al., 2011, 2015), plasma
processes in cometary and planetary atmospheres (Campbell
and Brunger, 2013), radiation effects and biomedical appli-
cations (Baccarelli et al., 2011; Flosadóttir et al., 2012;
Engmann et al., 2013), and low-temperature plasmas: appli-
cations in microelectronic device fabrication (Makabe and
Petrovic, 2015).
Energy transfer from electrons is central to radiation

penetration in matter, including chemical or biological matter,
because regardless of the incident radiation, whether protons
and heavier charged particles or x rays and gamma rays, the
first steps of the interaction lead to energetic electrons, with
these secondary electrons leading to further excitations and
ionizations in matter (Hayashi and Udagawa, 2011; Tanaka
and Itikawa, 2011; Sanz et al., 2012; Petrović et al., 2014;
White et al., 2014b). Of the about 105 ion pairs created by a
5 MeValpha particle in water vapor before it stops, about half
result from primary ionization by the alpha particle and the
other half from the secondary electrons. The same proportion
of one-half also applies to protons, while most of the energy
of gamma rays is deposited through Compton electrons. Thus,
a variety of electron-atom or molecule cross sections for
excitation or valence and inner shell ionization are needed in
radiation science.
For cross-section data to be applicable to any of those

practical problems, they must fulfill the threefold require-
ment that the data be correct, absolute, and comprehensive.
The word “absolute” means the cross sections should be
available as numerical values in cm2 or a20, where a0 is the
Bohr radius (0.529 Å). The term “comprehensive” means
that the data must cover a wide enough kinematic range of
variables (energy and scattering angles of the incident,
scattered, and, if applicable, ejected particles). However,
unfortunately, our knowledge of cross sections is largely
limited, with experimental and theoretical groups often
disagreeing significantly even for familiar molecules
(Trajmar and McConkey, 1994; Christophorou and
Olthoff, 2001; Tanaka and Sueoka, 2001; Itikawa, 2003,
2007). Reliable theoretical predictions are particularly valu-
able for many of the interesting cross sections that are
especially difficult to measure experimentally. Moreover,
from the standpoint of using cross sections as input data in
certain modeling applications (Sanz et al., 2012; Campbell
and Brunger, 2013; Petrović et al., 2014; Robson, White,
and Hildebrandt, 2014; White et al., 2014a, 2014b), it is
helpful to have an analytical expression (http://www.nist
.gov/pml/data/ionization) for the cross section as a function
of the collision energy. The merit of analytical expressions is
of convenience and increased applicability when cross
sections may be required in more complicated modeling
situations.

Starting in the 1970s, it was especially the group of Inokuti,
Kim, and their collaborators, working through a mix of theory,
analytical extrapolations, and consistency checks of calculated
or measured cross sections, that developed such a set of
reliable data for radiation science. Nonetheless they were not
alone in this endeavor. For example, there was historically a
widely used formula proposed by Lotz (1968), for electron-
atom ionization, and an analytical parametrization for the
shape of atomic ionization cross sections put forward by Rost
and Pattard (1997). This latter approach had the advantage of
being not only applicable for electron-impact ionization, but
could also be employed for positron-, proton-, and antiproton-
impact ionization. However, perhaps the greatest rival to the
work of Inokuti, Kim, and their collaborators, and which may
be employed to calculate electron-impact ionization cross
sections for atoms, ions, molecules, radicals, and clusters
(Deutsch and Märk, 1987; Märk, 1992; Deutsch et al., 1993,
1994, 1995, Deutsch, Becker, and Märk, 1995), is the so-
called semiclassical Deutsch-Märk (DM) formalism. This
approach has also been widely used within the community,
and indeed an example of its efficacy is given in Sec. II.B for
carbon difluoride. Our concentration on the scalings discussed
by Kim and Inokuti is because they cover the range of energies
from threshold to 300 eV mentioned in the abstract.
Collision phenomena are often divided into two classes, fast

and slow, respectively, high and low energy, depending on a
comparison of the incident electron velocity with the orbital
velocity of the electrons in the target. The relatively simple
first Born approximation gives, in general, quite reliable cross
sections for low energy-loss processes at high incident
energies, for example, above ∼100 eV. The approximation
applies with the incident electron acting only as an impulsive
perturbation on the target system. Even if the interaction is
itself not weak, the high speed of the incident particle and
thereby the limited time of interaction restricts the momentum
transferred to the atomic system. A description as an N-
electron target plus one electron is natural, the electron
remaining as a projectile distinct from the target and itself
only slightly deflected. The first Born approximation thus
neglects any change of the projectile to treat it as a plane wave
and is sometimes referred to as plane-wave Born (PWB). Note
that the projectile could be any other charged particle as well,
a 1 keV electron being equivalent in velocity to a 2 MeV
proton or a 8 MeV alpha particle.
Thus, fast collisions break naturally into two factors, the

first a Rutherford cross section for elastic scattering of charged
particles with a definite momentum transfer, and the second an
inelastic “form factor” for the excitation of a particular state
(including continuum states, that is, ionization) as a result of
that momentum transfer. The first factor sets the magnitude
and the dependence on incident electron energy of the cross
section, the second form factor being a property of the N-
electron atomic system alone. It is worth noting that the
Rutherford factor does not involve the Planck constant ℏ and
is, therefore, part of the classical limit of quantum physics.
Indeed, Bohr (1913a, 1913b, 1915) already derived some
elements of stopping power before his quantum model of the
hydrogen atom. He also employed a consistency check for the
second factor in the form of a sum rule which states that
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whatever the distribution of oscillator strength into the
quantum states of the system through the new mechanics,
the total integrated strength must equal the number of
oscillators, namely, the number of electrons in the atom or
molecule. It was independently discovered by others such as
Thomas, Reiche, and Kuhn, and by Bethe in a more general
form. This sum rule is also a key to the basic Heisenberg
commutator that underlies quantum mechanics.
Bethe also speaks of his own effective use of a sum over

cross sections multiplied by the energy change. This repre-
sents an effective average energy loss (http://www
.webofstories.com/play/hans.bethe/22). Bethe, calling the
Bohr work “a beautiful paper,” elaborates on his own result
differing very slightly, a feature that intrigued Bohr. As a
result, Felix Bloch investigated and found the explanation that
Bohr’s classical formula works better for slow collisions,
especially of a projectile with large charge, whereas Bethe’s
quantum formula applies to fast collisions of small charge
(http://www.webofstories.com/play/hans.bethe/24).
Next a small momentum transfer is equivalent to a large

impact parameter so that the target sees a pulse of broadband
electromagnetic illumination as the incident electron goes by.
In such glancing collisions, the dipole approximation domi-
nates so that the energy-loss spectra in essence reduce to
photoabsorption spectra. Cross sections for the secondary
electrons produced, especially the slow ones, are often more
difficult to obtain than photoionization spectra so that this
theoretical connection is one of the important consistency
checks for data on secondary electrons and their extrapolation
to low energies. Normalization against total ionization cross
sections requires knowledge of this low-energy region.
Turning to slow collisions, many sophisticated approaches

have been carried out to study collision dynamics when the
incoming slow electron couples strongly with the target and
thereby becomes indistinguishable from the N orbital elec-
trons, the whole now better treated as a (N þ 1)-electron
system. As a result, optically forbidden valence and Rydberg
transitions and short-lived resonant negative ion formation are
all possible. Extensive comparisons between experimental
data and computational results of Born and related approx-
imations proved that these models do not produce reliable
differential cross sections, and somewhat overestimate integral
cross sections in the low- and intermediate-energy regions.
These include the Born-Oppenheimer, Ochkur-Rudge, and
first-order exchange approaches. A large number of those
theoretical methods were reviewed by Lane (1980) and those
details are not repeated here. However, in the somewhat ill-
defined region between high and low energy, that is, at
intermediate projectile energies from a few tens of electron
volts up to 100 eV, there remain some unsolved issues. While
convergent close coupling (CCC) (Bray et al., 2002) and
complex R-matrix (Zatsarinny and Bartschat, 2013) calcula-
tions build in all the relevant physics, they involve such large
basis sets, complicated coupled equations, and integrations
out to large distances that they are not easily applied to each
specific atom or molecule for which data are needed. This has
left the field open for further experimental and theoretical
work (Anzai et al., 2012; Brunger et al., 2014) and it is this
that is the subject of our review.

The binary-encounter-Bethe (BEB) theory developed by
Kim and Rudd (1994) has been quite successful for computing
electron-impact ionization cross sections for many atoms
and molecules (http://www.nist.gov/pml/data/ionization).
This method was extended to scale the plane-wave Born
cross sections for electron-impact excitation of neutral atoms
(Kim, 2001) and molecules (Kim, 2007), with the important
restriction that the scaling is applicable only to integral cross
sections (ICS) for electric dipole-allowed transitions. A
selection of other scaling formulas for electron-molecule
collision cross sections can be found in Green and Dutta
(1967), Inokuti et al. (1994), Teulet, Sarrette, and Gomes
(1999), Adamson et al. (2007), and Erwin and Kunc (2008).
As described later, three intrinsic atomic properties—
ionization energy, excitation energy, and the dipole optical
oscillator strength (f)—are used in the so-called BE- and BEf-
scaling approaches, which are all accessible from accurate
target orbital wave functions, and hence in some sense are free
of adjustable parameters. The scaling does not, however,
describe resonances, which are often seen near excitation
thresholds.
Our systematic comparison between the BEf-scaling

results and corresponding experimental results also demon-
strated that this conceptually simple approach has the capabil-
ity to produce accurate ICS for the optically allowed electronic
excitation cross sections in atoms (Hoshino et al., 2009) and
molecules (Anzai et al., 2012), at intermediate energies in
between the high- and low-energy regions.
We adopt two approaches to validate and use the scaling

method:
(1) Since accurate values of the required atomic and

molecular data are often available from other sources,
Born cross sections calculated from simple wave
functions serve as adequate starting points. Hereafter,
we refer to this as the “computational approach.”

(2) Along with the apparent generalized oscillator strength
(GOS) introduced by Lassettre, Skerbele, and Dillon
(1969), which applies at all incident energies and so is
independent of the validity of the Born approximation,
an integral first Born cross section based on measured
values can be obtained by fitting to a semiempirical
formula (Lassettre, 1965; Rau and Fano, 1967; Vriens,
1967; Vriens, Simpson, and Mielczarek, 1968), with-
out recourse to the wave functions, and hereafter is
referred to as the “experimental approach.” In either
case, based on the Born approximation, the scaling has
proven very useful for producing reliable, comprehen-
sive, and absolute integral cross sections for electric
dipole-allowed transitions (Brunger, Thorn, Campbell,
Kato et al., 2008).

After comparing the similarities in shape and magnitude
of the ionization cross sections and those for resonance
excitation (the optically allowed transition) of the alkaline-
earth elements, Chen and Gallagher (1976) noted that “these
comparisons will help stimulate a search for a simple universal
improvement on the Born and Bethe approximations for the
intermediate-energy range.” This article may serve this pur-
pose by extending these approximations to more neutral
atomic and molecular cases, leading one to realize that, while
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its basis may still only be at the level of the Bethe-Born
approximation, it is a useful set of approximations and
scalings that go beyond the original Bethe theory.
The purpose of this article is to summarize the recent results

of the theoretical and experimental scaling approaches for
electron-impact excitation of atoms and molecules. Our
emphasis will be on integral cross sections for optically
allowed transitions in atoms and molecules, but in some cases
differential cross sections will also be discussed as required.
On this phenomenological approach to scaling, even while its
physical content is not fully clarified, this paper may serve to
show its wide application to many atoms and molecules. The
low-energy region of less than a few tens of eV will not be
discussed here except for comparisons between experiment
and theory as presented in the figures.
It would be remiss of us not to mention the scaled Born

dipole approximation (BDA) (Takayanagi and Itikawa, 1970)
approach that was employed extensively by Ehrhardt’s group
[see Sohn et al. (1985) and references therein] to calculate
vibrationally elastic and vibrational excitation cross sections,
for polar molecules, at low electron-impact energies. In this
case the scaling was effected by allowing the permanent dipole
moment of the molecule in question to vary, until a best fit to the
measured angular distributions, at many electron energies, was
achieved. At that point reasonably reliable integral cross
sections, for the processes in question and at each energy,
could then be determined for use in modeling simulations.
However, as this method no longer appears to be used by the
scattering community and as the main thrust of this review is for
ionization and discrete electronic-state excitation in atoms and
molecules, by electrons with energies above the first ionization
potential of the species in question, we do not discuss it further.
Ours is not a theoretical review, but rather a guide to provide
and assess reliable, absolute, and comprehensive cross sections
as a bridge linking the low- and high-energy regimes.
An overview of the theoretical techniques is subdivided into

the basic formulas and the scaling methods. Since the Bethe-
Born approximation and the concept of the GOS were reviewed
by Inokuti (1971), Celotta and Huebner (1979), and Hall and
Read (1984), they will only be stated briefly along with results
from earlier experimental studies by Lassettre (1965, 1969) and
Lassettre and Skerbele (1974) in Sec. II.A. Section II.B
summarizes the scaling methods initiated by Kim and Rudd
(1994) and Kim (2007), while some germane experimental
preliminaries are discussed for quantitative cross-section mea-
surements in Sec. III. Section IV presents in some detail a
procedure employed in the data analysis to obtain cross sections
by fitting the experimental GOS data that were extracted from
electron energy-loss spectra. A recent application of results for
the rare gases and some typical small molecules is reviewed,
and a discussion of such data is given in Sec. V. Section VI
provides our concluding remarks.

II. AN OVERVIEW OF THE THEORETICAL
BETHE-BORN AND SCALING METHODS

A. The basic formulas

Electron-impact spectroscopy provides information con-
cerning a variety of energetically possible excitation processes

(elastic scattering, excitation, ionization, dissociation, electron
capture, etc.), and to various combinations of these elementary
processes. The probability for those processes occurring is
usually expressed in terms of quantities called cross sections.
The total collision cross section (σ) includes the sum of the
cross sections for all these processes, in addition to the elastic
cross sections σ0, that is,

σ ¼ σ0 þ
X
n

σn þ
Zεmax

0

σεdε: ð1Þ

In Eq. (1), σn is the ICS for excitation of the nth state of the
target atomic system and σεdε is that for an ionizing collision
in which the energy of the ejected electron lies between ε and
εþ dε, namely, excitation into a continuum state, with a
continuous variable ε in place of the excitation energy En.
Here an individual cross section such as σn is expressed in the
following form:

σn ¼
Z

InðθÞdΩ ¼ 2π

Zπ
0

InðθÞ sin θdθ; ð2Þ

where InðθÞdΩ, the differential cross section, with
dΩ ¼ 2π sin θdθ, defines the angular distribution of the
electrons that are scattered in exciting the target atomic
system to the nth state. Note that azimuthal symmetry applies
to atoms and for molecules when averaged over all orienta-
tions; otherwise, for aligned molecules, the differential cross
section will also depend on the angle ϕ with integration over
that variable in place of the 2π factor.
Returning to Eq. (1), we note that integration over ε yields

the total cross section for ionization σi:

σi ¼
Zεmax

0

σεdε: ð3Þ

These ionizing collisions give rise to a positive ion. If an
electron is sufficiently energetic, there will be a finite chance
that it will “knock out” more than one electron from the target
system in an ionizing collision, leaving the target doubly,
triply, or multiply ionized. Such direct ejection of several
electrons will require extension of Eq. (1) with integrations
over the energy distribution among the electrons.
The scattering amplitudes and the differential cross sections

are formally represented in terms of the transition-matrix
element T, that is, they are proportional to jhψfjTjψ iij2, where
ψf and ψ i are the final and initial wave functions for the
(N þ 1)-electron system. Besides the many target electrons
involved in electron-atom or electron-molecule scattering,
theoretical calculations become more complicated in electron-
molecule scattering due to the nonspherical nature of the
molecular force fields experienced by the incident and
scattered electrons. Nonetheless, some physically reasonable
simplifications can be made in order to make the calculations
more tractable and also assist in the interpretation of the
measured energy-loss spectra. For instance, because the nuclei
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are so much heavier than an electron, one might expect
electron-impact excitation of nuclear motions (rotation, vibra-
tion, recoil) to be relatively unimportant at high impact
energies. Thus, the molecular wave function is often assumed
to be a product of the electronic, vibrational, and rotational
parts, respectively, based on the Born-Oppenheimer (BO)
adiabatic separation, so that the (N þ 1)-electron wave func-
tion can be factored as ψeψvψ rfe, where fe is the scattered
electron wave function. From the experimental side, even in
simple diatomic molecules there can be significant overlap
of vibrational sublevels of different electronic states, thus
complicating the interpretation of the spectra. These are also
difficult and time-consuming experiments, which might
explain why relatively little work has been undertaken on
electronic-state excitation in molecules.
For fast electrons as presented here, the Born approxima-

tion has been widely used to treat electron-impact excitation of
atoms and molecules. Specifically, the first Born approxima-
tion, retaining the lowest order in a power-series expansion of
the scattering T matrix with respect to the incident electron
energy, is one where the exact wave function is replaced by a
plane wave. Further simplifications can also follow. Since
rotational levels, other than for H2 (which has an unusually
large rotational spacing), are not usually resolved in current
electron-impact spectroscopy, the excitation cross section may
be averaged over the initial rotational states and summed over
the final states. Vibrational structure of an excited electronic
state is, however, often observed in the electron energy-loss
spectra as in the case of optical spectroscopy. This usually
consists of a complicated overlapping of different vibrational
modes corresponding to a particular electronic state or several
neighboring states. In the energy range where the Born
approximation is reliable, these relative vibrational intensities
observed in the energy-loss spectrum are approximated by
using the Franck-Condon (FC) factor that is well known in
molecular spectroscopy (Lassettre et al., 1968; Lassettre,
1969; Inokuti, 1971; Trajmar and Cartwright, 1984; Brunger
and Buckman, 2002).
By combining these simplifications, the electronic excita-

tion cross section is calculated at a fixed nuclear separation
for a fixed molecular orientation and then averaged over all
molecular orientations. In contrast to this, the elastic and
ionization channels represent the major contributors to the
total electron-scattering cross sections. Nonetheless, one must
account for the largest electronic-state cross sections associ-
ated with the optically allowed transitions at intermediate
impact energy and for small scattering angles. It is precisely
these transitions that lead to the photon decays that play
fundamental roles in low-temperature plasma diagnostics and
remote sensing opportunities (Becker, Deutsch, and Inokuti,
2000; Campbell and Brunger, 2009; Campbell et al., 2012;
Buckman, Brunger, and Ratnavelu, 2013). Furthermore, since
electron-exchange effects become progressively unimportant
as the incident electron energy increases, the simple first
Born approximation may be used, so that other Born-related
methods to treat electron exchange are not included here
in this discussion. Theoretical formulations of inelastic-
scattering processes based on the Born approximation for
rotational, vibrational, and electronic excitations were
reviewed by Shimamura and Takayanagi (1984).

For simplicity, the following discussion briefly deals with
electron-atom scattering for the basic formulas; generalization
to molecules is then straightforward in principle. Excellent
previous reviews are available for a theoretical guide (Inokuti,
1971; Shimamura and Takayanagi, 1984; Fano and Rau,
1986) on that point.

1. Some consequences of the Born approximation

For sufficiently fast electrons (but still nonrelativistic), the
cross section for a collision that transfers a certain amount of
energy and momentum consists of two factors. One factor, the
Rutherford factor, concerns the kinematics of the scattered
electron, and the other, the form factor, describes the exci-
tation properties of the target. In a collision event in which an
electron of massm scatters from an atomic system (an atom or
a molecule) in its ground electronic state and promotes a
bound electron to an excited state n, with excitation energy En,
the first Born approximation, neglecting exchange of the
incident electron with one of the target electrons, gives for the
differential cross section:

dσn
dΩ

¼ k0

k
jfnðθ;φÞj2 ¼ a20

k0

k
K−4jεnðKÞj2; ð4aÞ

with

fnðθ;ϕÞ ¼ − 2me2

ℏ2K2

Z
� � �

Z
ψn

Xz
j¼1

expðiK · rjÞψ0dr1 � � � drz

¼ − 2me2

ℏ2K2
hψnj

Xz
j¼1

expðiK · rjÞjψ0i; ð4bÞ

where the interaction potential is taken to be Coulombic and
K is the momentum transfer vector K ¼ k − k0. The scalar
magnitude of K can be related to the initial and the scattered
electron momenta, k and k0, and to the corresponding incident
and final energies, T and T 0 ¼ T − En, respectively, by
conservation of energy and momentum:

ðKa0Þ2 ¼ ðka0Þ2 þ ðk0a0Þ2 − 2kk0a02 cos θ ð5aÞ

¼ T
Ry

þ T − En

Ry
− 2

½TðT − EnÞ�1=2
Ry

cos θ; ð5bÞ

where T is the reduced kinetic energy, T ¼ mv2=2 with v the
projectile speed, a0 is the Bohr radius (0.529 Å), and Ry is the
Rydberg energy (13.6 eV). The form factor or atomic matrix
element εnðKÞ and the scattering amplitude in Eq. (4) are
defined later.
When the target is a diatomic molecule with a closed shell,

the differential cross section is given for the initial a and final
a0 electronic 1Σ states as

Tanaka et al.: Scaled plane-wave Born cross sections for …

Rev. Mod. Phys., Vol. 88, No. 2, April–June 2016 025004-6



dσa0v0

dΩ
¼ k0

k

X
J0;M0

jfðavJM; k → a0v0J0M0; k0Þj2

¼ k0

k

����
�
2me2

ℏ2K2

�Z
dR̂
4π

Z Z X
j
expðiK · rjÞ

× χv
0

a0 ðRÞϕ�
a0 ðrm;RÞχvaðRÞϕaðrm;RÞdRdrm

����2; ð6aÞ

with v and v0 the vibrational and J and J0 the rotational
quantum numbers, and the scattering amplitude is defined by

fðavJM; k → a0v0J0M0; k0Þ

¼ − 2me2

ℏ2K2

ZZZ X
j

expðiK · rjÞχv
0;J0

a0 ðRÞY�
J0M0 ðR̂Þ

× ϕ�
a0 ðrm;RÞχv;Ja ðRÞYJ;MðR̂Þϕaðrm;RÞdRdR̂drm: ð6bÞ

In Eqs. (6a) and (6b) the function ϕa represents the electronic
state a for fixed internuclear distance R, and rm represents
the electronic coordinate of electron m in the molecule, χv;Ja

are the vibrational wave functions, and YJ;MðR̂Þ the rotational
wave function along the molecular axis R̂ (with dependence
on the rotational quantum number due to the centrifugal
potential, it is a spherical harmonic). When the rotational
excitation is small, the dependence of the vibrational wave
functions χ on the rotational excitation state is assumed to be
negligibly small. The result is that the rotational quantum
numbers appear only in the spherical harmonics. Here the
absolute square of Eq. (6b) is summed over the final rotational
state J0M0 in Eq. (6a) and further averaged over the initial
rotational state.
As mentioned, Eq. (4a) includes two clearly identifiable

parts: the first factor is determined completely by the
experimental parameters of the projectile and is simply the
Rutherford cross section for an electron scattered from a
free and initially stationary electron. It is evaluated from the
observable quantities k, k0, and θ concerning the electron.
Note that if quantum exchange between the incident and an
atomic electron is included, as necessary at lower energies, it
is replaced by the Mott cross section. The other quantity in
Eq. (4a), jεnðKÞj, is a form factor as occurs widely in physics
and here is the absolute value of the transition-matrix element
between the initial and final state functions ψ0 and ψn of the
target, respectively. It is given by

εnðKÞ ¼ hψnj
XN
j¼1

expðiK · rjÞjψ0i; ð7Þ

where N is the total number of electrons in the target atomic
system, and rj is the position vector of the jth electron of the
target. Referred to as the inelastic-scattering form factor (or
collision strength), it is a property of the target as is evident
from Eq. (7).
Remarks on the Born approximation and its validity were

summarized by Inokuti (1971) and Fano and Rau (1986), and
more conceptually illustrated by Inokuti (1981) and Inokuti
et al. (1994). Therefore, we do not repeat those details here.
However, in Fig. 1, we provide an updated version of the

original figure of Inokuti (1981) that summarized the energy
domains of validity of some of the important theoretical
treatments. In the incident energy and angular momentum l
plane, regions of validity of various methods are shown:
first-order Born at higher, second-Born and other orders, and
distorted-Born approximations at somewhat lower energies;
close-coupling and R-matrix methods; the Wannier (1953)
threshold region; and relativistic treatments at the highest
energies.

2. The generalized oscillator strength

In parallel with the theory for the absorption of electro-
magnetic radiation, Bethe introduced the concept of the GOS
for an atom by using Eq. (4a),

fnðKÞ ¼ ðEn=RyÞðKa0Þ−2jεnðKÞj2: ð8Þ

Analogously, the generalized oscillator strength for a mol-
ecule is defined by

F0αðKÞ ¼ ½ðEα − E0Þ=Ry�ðKa0Þ−2hjεα0ðKÞj2iav; ð9aÞ

where

εα0ðKÞ ¼
ZZ

χv
0

a0ðRÞϕ�
a0ðrm;RÞχvaðRÞϕaðrm;RÞ

×
X
j

expðiK · rjÞdRdrm; ð9bÞ

FIG. 1. Map showing the domains of applicability of different
theoretical treatments for the process eþ A → e0 þ A�. The
horizontal axis represents the dimensionless energy ðka0Þ2 and
the vertical axis the dimensionless angular momentum lðlþ 1Þ,
both on logarithmic scales.
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and E0 and Eα are the internal energies of the molecule in the
states 0ða; vÞ and α (a0, v0). Here the integrated cross section is
obtained by integrating over the direction of the scattered
electron k0 in Eq. (6a),

σðav → a0v0Þ ¼ 8π

k2

�����
Z

χv
0

a0 ðRÞϕ�
a0 ðrm;RÞχvaðRÞϕaðrm;RÞ

×
X
j

expðiK · rjÞdRdrm
����2
�

av
; ð9cÞ

where the symbol hiav represents the averaging over the
molecular orientations.
Here we emphasize again that our discussion will explicitly

deal with an atom, which is generalized to molecules in
principle by replacing fnðKÞ by F0α (K) in the following
equations. With Eq. (8) in Eq. (4a), we obtain an expression
for the differential cross section:

dσ
dΩ

¼ 4a02
k0

k

�
1

ðKa0Þ2
�

fnðKÞ
En=Ry

ð10aÞ

¼ 4a02

T=Ry
kk0

K2

fnðKÞ
En=Ry

: ð10bÞ

Operationally, one can use Eqs. (10a) and (10b) to define
an apparent GOS fnðK; TÞ that is based on the measured
cross section and equals the Bethe GOS defined by Eqs. (7)
and (8) when the Born approximation is valid. The
apparent GOS (Lassettre, Skerbele, and Dillon, 1969) is thus
defined as

fnðK; TÞ ¼
1

4πa20

�
T
Ry

�
K2

kk0
En

Ry
dσ
dΩ

; ð11aÞ

where

K2

kk0
¼ γ2 þ 4sin2

θ

2
; ð11bÞ

with

γ2 ¼
�
1 − En

T

�−1=2�
1 −

�
1 − En

T

�
1=2

�
2

: ð11cÞ

All quantities on the right-hand side of Eqs. (11) are
experimentally measurable, and from the experimental point
of view, Eq. (11) is essentially a definition. Equations (7)
and (8) then represent theoretical analogs of this quantity and
should equal Eqs. (11) only for sufficiently large incident
electron energies where the Born approximation is valid. It is
also important to note that when the Born approximation
applies, the apparent GOS in Eq. (11a) is independent of T.
Although Eqs. (10a) and (10b) apply to excitations between

discrete states, they are readily adapted for transitions to a
continuum final state by replacing σ by dσ=dE and fn (K) by
df ðK;EÞ=dE as discussed by Inokuti (1971). For such cases,
dfðK;EÞ=dE is the density of the generalized oscillator
strength per unit range of E, and in practice is summed over
all discrete and continuum states resulting in an energy

transfer at the value E. A formula defining this density that
includes Eq. (8) is

dfðK;EÞ=dE ¼
X
n

ðEn=RyÞ½jεnðKÞj2=ðKa0Þ2�δðEn − EÞ;

ð12Þ

where δðEn − EÞ is a delta function of the energy transfer.
This definition applies equally to discrete and continuous
energy absorption.
The importance of the GOS formulation introduced by

Bethe arises from the direct relation it bears to OOS, the
optical (dipole) oscillator strength f0 familiar from photo-
absorption. This relation is closest in the limit of small
momentum transfer K → 0 a:u: (atomic units). A straightfor-
ward power series expansion of the operator in Eq. (7) gives

εnðKÞ ¼
X∞
m¼1

ðiKa0Þm
m!

hψnj
XN
j¼1

�
rj
a0

· q̂

�
m
jψ0i

¼
X∞
m¼1

ðiKa0Þm
m!

εnm; ð13Þ

where q̂ is a unit vector in the direction of K, eiK·rj ¼ 1þ
iK · rþ ði2=2!ÞðK · rÞ2þ (higher order terms). Since the GOS
is defined in terms of the square of the absolute value of
εn (K), only even powers of K occur in a final expression for
fn (K). Using this power series expansion in Eq. (8), it is easy
to show that only the dipole term survives at small momentum
transfer. Consequently, in the limit as the momentum transfer
K approaches zero, the GOS reduces to

lim
K→0

fnðKÞ ¼
En

Ry
jεnj2 ¼ f0; ð14Þ

or to

lim
K→0

df
dE

¼
X
n

En

Ry
jεnj

2

δðEn − EÞ ¼ df
dE

: ð15Þ

The emergence of the optical, or dipole, oscillator strength
in the limit of vanishing K is plausible since this corresponds
to wavelengths large on the scale of atomic size, reducing
the exponential in Eq. (13) to its first term, the dipole term
withm ¼ 1. Physically, as noted earlier, glancing collisions of
low momentum transfer are equivalent to the atomic system
experiencing a pulse of electromagnetic radiation. Higher
expansion coefficients in Eq. (13) correspond to matrices of
electronic multipole (electric quadrupole, octupole, etc.)
transitions, all of which are optically forbidden.
Furthermore, the Bethe sum rule (Inokuti, 1971) gives

X
n

fðK;EnÞ þ
Z

dE
dfðK;EÞ

dE
¼ N; ð16Þ

where N is the number of electrons in the target and the sum
over the energy loss of the discrete transitions and integration
over the continuum is carried out at constant momentum
transfer. Equation (16) is useful in principle for placing
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relative intensity measurements on an absolute scale. This sum
rule (Bethe and Salpeter, 1977), with various names such as
Thomas, Reiche, and Kuhn attached to it (who derived it for
the K ¼ 0 optical limit), was already used by Bohr and Bethe
in early investigations of the stopping power of radiation in
matter and also as a guiding principle by Bohr and Heisenberg
in the early days of the development of quantum mechanics.
Whatever form the new mechanics took, broad conclusions of
this kind on the total number of oscillators present in an N-
electron system had to apply. Much like thermodynamics is a
constraint on the underlying statistical mechanics, so also are
such sum rules a constraint on the underlying mechanics.
Mathematically, application of such rules by summing over an
entire spectrum of discrete and continuum states is realized in
what is called the closure of such a complete set of states.
It has also been noted (Inokuti, 1971) that the stopping

power, or the closely related concept of a range of a charged
particle in a medium, which is derived from the cross sections
in Eqs. (4) and (10), has the velocity of the particle as the key
variable. Bethe emphasizes the role this played, especially in
the early years. In combination with the bending of such a
charged particle in a magnetic field that depends on its
momentum, it allowed determination of the mass of the
particle (http://www.webofstories.com/play/hans.bethe/23).
Although this derivation assumes the same conditions

implicit in Eqs. (4) (that is, within the Born approximation),
it has been generally shown that the limiting value in Eqs. (14)
and (15) is valid regardless of whether the Born approximation
holds or not. Therefore, we refer to this as the Lassettre limit
theorem (Lassettre, Skerbele, and Dillon, 1969), and it appears
to be consistent with all available theoretical and experimental
data. It is important to note the following two practical
aspects: (a) because K ¼ 0 a:u: cannot be achieved in a real
electron collision experiment [see Inokuti (1971) for relevant
plots and a discussion of the minimum and maximum values
set by energy conservation and Eqs. (38)], the GOS can be
determined only at finite values of K and its limiting optical
value can be reached only by some extrapolation procedure,
and (b) at low incident electron kinetic energies, the extrapo-
lation may extend over a large region of K and can possibly
lead to a large uncertainty in the limiting value obtained.
However, due to its generality (Hall and Read, 1984), the limit
theorem does provide a sound theoretical basis for comparing
electron energy loss and optical spectra even at impact
energies below those considered appropriate for using the
Born approximation. This is especially important for the
extraction of optical oscillator strength values from electron-
impact measurements.
In terms of the generalized oscillator strength, the integral

cross sections can also be obtained as

σð0 → nÞ ¼ 8πa20
T=Ry

Z
Kmax

Kmin

Ry
En − E0

f0nðKÞ
dK
K

; ð17Þ

where

dΩ ¼ sin θdθdφ ¼ dðK2Þ
2kk0

dφ; ð18Þ

with explicit values of Kmin and Kmax given in Eqs. (38).
Ionization, however, involves excitation into the continuum
and En is replaced by a continuous variable E.
Integrated cross sections per unit range of excitation energy

E for transitions into the continuum from the ith orbital are
given by

dσi
dE

¼ 8πa20
T=Ry

Z
Kmax

Kmin

dfðK;EÞ=dE
E=Ry

dK
K

: ð19aÞ

Integration of Eq. (19a) over the continuum energy E yields
the so-called ionization cross section σi. According to Fano
(1954), a convenient way of representing ionization cross
sections at high energies is the simple asymptotic expression
of Miller and Platzman (1957) (Inokuti, 1971; Fano and Rau,
1986),

σi ¼
8πa20
T=Ry

M2
i lnð4ciT0=RyÞ; ð19bÞ

where M2
i and ci are constants,

M2
i ¼

Z∞
Ei

df
dE

Ry
E

dE; ð19cÞ

and

ln ci ¼ ln½ðKa0Þ2ðRy=EiÞ2�; ð19dÞ

with Ei involving the binding energy B of the ith orbital in the
subshell. Thus, a plot of σiðT=RyÞ vs lnðT=RyÞ asymptotes to
a straight line with slope dependent on the oscillator strength.
For details and illustrative “Fano plots,” see Inokuti (1971)
and Fano and Rau (1986).
In terms of the generalized oscillator strength, the integrated

Born cross sections for a molecule are given by

σð0 → αÞ ¼ 8πa20
T=Ry

Ry
Eα − E0

Zjk0þkαj

jk0−kαj
F0αðKÞ

dK
K

; ð20Þ

where in Eq. (17) f0n has been simply replaced by F0α for a
molecule; see Eqs. (8) and (9a).

B. The scaling methods

As is well known, the Born approximation can be used
at high incident energies (E0 ≥ 1000 eV) but, as the incident
energy decreases, serious deviations set in at low and
intermediate electron energies. Extensive comparisons
between experimental and computational data show conclu-
sively that the Born approximation and its related methods do
not predict reliable differential cross sections, and that they
generally overestimate the integral cross sections by a factor of
2–5 even in the case of an optically allowed transition, except
at high incident electron energies. However, when there is a
need to obtain rough estimates of cross sections, this approxi-
mation is still useful due to its simplicity in computation.
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Second Born and other higher order approximations are
extremely hard to implement, requiring sums over intermedi-
ate states that can be infinite in number. As a result, quantum
scattering theory is still dependent for the most part on the
Born approximation.
A theoretical model, free of adjustable fitting parameters,

for calculating, without too much computational expense,
electron-impact integral cross sections for atoms and mol-
ecules is needed, as noted earlier (Tanaka and Itikawa, 2011;
Sanz et al., 2012; Campbell and Brunger, 2013; Engmann
et al., 2013; Petrović et al., 2014; White et al., 2014a,
2014b), in a wide range of applications. These include
modeling the plasmas used for plasma processing of semi-
conductors, designing mercury-free fluorescent lamps,
assessing the efficiency of ion gauges, normalizing mass
spectrometer output, understanding plasmas in magnetic
fusion devices, and modeling radiation effects on materials
(Graves et al., 1996). With this in mind, Kim and Rudd
(1994) and Kim (2001, 2007) developed several scaling
methods: the BEB dipole, the scaled first-order plane-wave
Born f scaling and BE scaling. These methods are described
now in some detail.

1. Electron-impact ionization

Proper understanding of the role of ejected electrons is
crucial because a large number of them, mostly slow electrons,
are generated in the course of an energetic incident particle
penetrating through matter (Sanz et al., 2012). These electrons
in turn interact with other species until the electrons are
thermalized. Therefore, the basic formulation of the problem
of electron-impact ionization cross sections has been exten-
sively studied and been classified into three different
approaches: (1) empirical and semiempirical rules and for-
mulas, (2) classical and semiclassical collision theories, and
(3) quantum-mechanical approximations. Review articles on
them are well summarized by Märk (1984).

a. Binary-encounter dipole (BED) model

As described by Kim and Rudd (1994), there have been
many attempts to combine the dipole contribution with either
the Rutherford or Mott cross section (Mott, 1930) to derive the
ionization cross section. The binary-encounter theory was also
introduced into the Mott cross section, by assigning a velocity
or momentum distribution to a target electron without a more
complete description through a wave function (Burgess,
1964). But, they have had only limited success because they
failed to find the correct ratio between “soft” and “hard”
collisions (see later). As noted earlier, electron-atom collisions
can be divided into soft or distant collisions with large impact
parameters and hard or close collisions with small impact
parameters.
The following is summarized from the original paper by

Kim and Rudd (1994). Their starting point is the Rutherford
cross section for an electron of kinetic energy T ejecting an
electron of kinetic energy W,

dσ
dW

¼ 4πa20
W2

Ry
T
.

As noted, this predates quantum physics and is the classical
result for scattering of charged particles. The Born approxi-
mation also gives the same result and is valid at high energies.
But, in extending to intermediate (or low) energies, quantum-
mechanical exchange between the incident and ejected
electrons has to be invoked, giving the Mott cross section
that symmetrizes the amplitudes for W and T −W before
squaring,

dσ
dW

¼ 4πa20Ry
2

T

�
1

W2
− 1

WðT −WÞ þ
1

ðT −WÞ2
�
:

Next, Kim and Rudd (1994) allowed for the fact that the
ejected electron was bound with some binding energy B by
replacing W by the energy transfer E ¼ W þ B and T by
T þ B. With B providing a natural scale for energies, the
above expression contains inverse powers of [ðW=BÞ þ 1] and
[ðW=BÞ þ ðT=BÞ], leading to a more general series expansion
of this form suggested to them by Inokuti:

dσðW;TÞ
dW

¼ S
B

X3
1

FnðtÞ
�

1

ðωþ 1Þn þ
1

ðt − ωÞn
�
; ð21Þ

where S ¼ 4πa20NðRy=BÞ2, t ¼ T=B, ω ¼ W=B, a0 ¼
0.529 Å, and Ry ¼ 13.6 eV. The number of electrons N
has also been inserted as a multiplicative factor. The Mott
cross section corresponds to the following choice of
FnðtÞ∶ F1 ¼ −F2=ðtþ 1Þ, F2 ¼ 1=t, F3 ¼ 0.
A theoretical justification for adding B to T is to observe

that the K−2 factor in Eq. (4b), or its square K−4 in the basic
Rutherford cross section of Coulomb scattering, arises fromR
ei ~K·~r=r, that is, the Fourier transform of 1=r. Dillon and

Inokuti (1981, 1985) argued that for the H atom, where the
wave functions are analytically known, bound state wave
functions in the matrix element also introduce an exponential
factor involving the radial variable as expð−r=na0Þ. This
means a replacement of K by (K þ i=na0) so the jKj2 is
similarly replaced by [K2 þ ð1=na0Þ2]. Indeed, this led them
to show that the exact expression for the H atom has such
additions of the binding energy B to other energies such as T.
The argument is actually more general because even in other
atoms or molecules the large-r behavior of bound state radial
wave functions involves such an exponential dropoff with
the binding energy as a scale factor, making plausible these
scalings introduced by Lassettre (1965, 1969), Lassettre,
Skerbele, and Dillon (1969), Vriens (1969), Lassettre and
Skerbele (1974), Kim and Rudd (1994), and Kim (2001).
Similar arguments can be made for the general structure of the
asymptotic behavior in K or E of the generalized oscillator
strength (Rau and Fano, 1967).
A further variant called the binary encounter (each

atomic electron seen as scattering from the incident electrons
and acquiring all the momentum transfer) cross section for
electron-impact ionization can also be characterized by the
same form in Eq. (21). Instead of just B to characterize the
bound electron, allowance is made for the momentum dis-
tribution in that bound orbital but without going to a complete
wave function description. The orbital kinetic energy
U ≡ h ~p2i=2m, with ~p the momentum of the electron in the

Tanaka et al.: Scaled plane-wave Born cross sections for …

Rev. Mod. Phys., Vol. 88, No. 2, April–June 2016 025004-10



subshell, is invoked along with the binding energy B and
the electron occupation number N to characterize the orbital.
This idea was originally introduced by Burgess (1964) and
Vriens (1966, 1969) to scale ionization cross sections, in
which the orbital kinetic energy U was used in place of E in
Eq. (21), and thus is referred to as Burgess-Vriens (BV)
scaling. The binary-encounter cross section is reproduced
by choosing F1 ¼ −F2=ðtþ 1Þ, F2 ¼ 1=ðtþ uþ 1Þ, and
F3 ¼ 4u=3ðtþ uþ 1Þ, where u ¼ U=B. According to the
binary-encounter theory, the extra terms in the denominators
of Fn, namely u and 1, represent the acceleration of the
incident electron due to the nuclear attraction.
The ðt − ωÞ−n terms may be ignored in the asymptotic

region t ≫ ω, that is, Eq. (21) becomes

dσ
dω

¼ S
X3
n¼1

FnfnðωÞ; ð22Þ

with

fnðωÞ ¼
1

ðωþ 1Þn n ¼ 1; 2. ð23Þ

The total cross section, upon integrating Eq. (22) over ω,
does not however have the correct asymptotic behavior. Since
the Bethe theory describes this correctly, with the dipole
contribution dominant,

Q ¼ 2

N

Z
B

BþW
df
dW

�
≡ 2B

N

Z
1

ωþ 1

df
dω

dω

�
; ð24Þ

Rudd and Kim corrected Eq. (23) with the choice

f3ðωÞ ¼
1

Nðωþ 1Þ
dfðωÞ
dω

; ð25Þ

hence giving the name the binary-encounter dipole model.
In all, the BED model can be represented by

F1 ¼ −F2=ðtþ 1Þ, F2 ¼ 2 − ðNi=NÞ=ðtþ uþ 1Þ, and F3 ¼
ln t=ðtþ uþ 1Þ in Eq. (22), where N is the number of bound
electrons, and

Ni ≡
Z∞
0

df
dω

dω: ð26Þ

The upper limit of integration for Ni has been extended to ∞
in the anticipation that f3ðωÞ diminishes rapidly enough
(Dillon and Inokuti, 1985) as ω → ∞ to make it valid.
The BED model has a threshold behavior of the ionization

cross section, when t → 1, of σi ð1þ ΔtÞ ¼ constΔt, with
Δt ≪ 1. While this does not conform to the threshold
behavior given by the Wannier theory (Wannier, 1953;
Rau, 1971) that predicts σi ∝ ðΔtÞ1.127 for nuclear charge
Z ¼ 1, the error made over the small threshold region (about
1–2 eV) by the linear behavior (Rudge, 1968) of the BED
model is not very significant.
In practical applications of the BED model, values of B, U,

N, and the differential oscillator strengths df=dω are needed

for each subshell of a given target. Of these, B and N are
readily available from the literature or a commercially
available quantum chemistry code such as GAUSSIAN

(www.gaussian.com., Frisch et al., 2010). The values of Ni
and M2

i can be calculated from df=dω. The average kinetic
energy U needed in the BED model is a theoretical construct
that can easily be obtained from wave function codes such as
GAUSSIAN. Good sources of differential oscillator strengths
are in the book by Berkowitz (1979) and the review article by
Gallagher et al. (1988), from which one can find the original
papers. Rudd and Kim emphasized that they had used the
experimental df=dω when those were more reliable than
the calculated ones, particularly near threshold. Note that
although any form of theoretical df=dω can be used,
analytical fits are certainly more convenient to use than either
numerical tables or graphs.
The important ingredient of the BED model is the differ-

ential dipole oscillator strength for ionization, which can be
derived from either a theoretical or experimental photoioni-
zation cross section. The BED model constructs ionization
cross sections subshell by subshell, and in principle can be
used to construct ionization cross sections for any target atom
or molecule as long as corresponding differential oscillator
strengths for ionization are known. When high accuracy (10%
or better) is not required, differential oscillator strengths
calculated from Hartree-Fock or simpler wave functions are
probably sufficient.

b. Binary-encounter-Bethe (BEB) dipole model

Kim and Rudd proposed a simpler version of the BED
model, to be referred to as the BEB model, which may be
used when the required differential oscillator strengths are not
available. Combining the Mott cross section with the high-T
behavior of the Bethe cross section, this BEB approach is
known to be versatile and successfully provides total and
partial ionization cross sections for atoms and molecules (Kim
and Rudd, 1994, http://www.nist.gov/pml/data/ionization). To
arrive at the BEB model, however, we must first introduce the
Q-parametrized binary-encounter (BEQ) approach (http://
www.nist.gov/pml/data/ionization).
In the BEQ model, for the integration to obtain Ni and M2

i
in Eqs. (26) and (19c), respectively, a simple form of df=dω is
assumed. As observed from the simple shapes of df=dω for H,
He, and H2, the differential oscillator strength is represented
by inverse powers of (ωþ 1) as in Eqs. (23) and (25), in the
form of a polynomial, starting from ðωþ 1Þ−2,

df
dω

¼ b
ðωþ 1Þ2 þ � � � ; ð27Þ

where b is a constant. Combining Eq. (27) with
Eqs. (19b)–(19d), and retaining only the first term, we have
M2

i ¼ RNi=2B and Q ¼ Ni=N. Note E is replaced byW þ B
in Eqs. (19b)–(19d).
Equation (27) is not, however, expected to hold for all

subshells in targets with complicated shell structures. Then,
one can reduce Eq. (25) to
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f3ðωÞ ¼
Q

ðωþ 1Þ3 ; ð28Þ

where Q ¼ Ni=N is substituted for 4u=3. Finally, with
F1 ¼ −F2=ðtþ 1Þ, F2 ¼ 2 −Q=ðtþ uþ 1Þ, and F3 ¼
Q × ln t=ðtþ uþ 1Þ, from Eq. (22), one has a convenient
formula to estimate the total ionization cross section,

σBEQ ¼ S
tþ ðuþ 1Þ=n

�
Q × ln t

2

�
1 − 1

t2

�

þ ð2 −QÞ
�
1 − 1

t
− ln t
tþ 1

��
; ð29Þ

where the constant n on the right-hand side is used for ion
targets and for valence orbitals of large atoms, as discussed
in more detail by Scott and Irikura (2005). This formula,
distinguished in not having any fitting parameters, provides a
simple analytical expression for the ionization cross section
per atomic or molecular orbital.
This BEQ model is useful even without much knowledge of

Ni,M2
i , and df=dω, although at some cost to reliability. When

df=dW is unknown, one can putQ ¼ 1 in Eq. (29) as a further
approximation and determine ionization cross sections of the
correct order of magnitude even when nothing is known about
differential or total dipole oscillator strengths. This final
simplification leads us to the now well-known BEB model
(Kim, Santos, and Parente, 2000). Rudd, Kim, and the NIST
group provided extensive, reliable total ionization cross
sections for many atoms and molecules (http://www.nist
.gov/pml/data/ionization), validating this simple improvement
on the Born and Bethe approximations for the intermediate-
energy range.

c. Some examples of these scalings

Experimental data are available more for total ionization
cross sections than for electronic excitations and largely verify
the scaling given by the theoretical approach. Because
ionization data are essential for plasma discharges, the
BED and BEB scaling methods have been applied to many
molecules relevant to plasma processing, and it has been
shown that these approaches are useful for estimating
unknown total ionization cross sections for hard-to-measure
targets (http://www.nist.gov/pml/data/ionization). Scott and
Irikura (2005) recommended an alternative, simpler procedure
for molecules that contain heavier elements (Z > 10). Based
on effective core potentials, it does not require any kinetic
energy corrections.
The resulting ionization cross sections for small atoms, a

variety of large and small molecules, and radicals, are 5% to
20% accurate from threshold to T ∼ 1 keV. Just as important,
all these cross sections are readily available to the public
through thewebsite (http://www.nist.gov/pml/data/ionization).
We present a few representative data to illustrate the utility of
this approach, and Sec. V considers many more atoms and
molecules.

i. Atomic hydrogen (H). In Fig. 2, we depict the total
ionization cross sections for electron scattering from atomic
hydrogen. Shown in this figure are the measured cross

sections from Shah, Elliott, and Gilbody (1987), a classical
cross section from Gryziński (1965a, 1965b, 1965c), a
distorted-wave Born result from Younger (1981), and the
BEQ and BEB results. It is clear from this figure that both the
BEQ and BEB cross sections, from threshold up to ∼4 keV,
are consistent with the measured results (Dillon and Inokuti,
1985) to within experimental errors. While not shown, the
fully ab initio convergent close-coupling results (Bray et al.,
2012) also well reproduce the measured data and BEB and
BEQ calculations.

ii. Helium (He). If anything, the level of accord between
the BEQ and BEB results and the measured ionization cross
sections from Montague, Harrison, and Smith (1984) and
Shah et al. (1988) for electron-He scattering is even more
impressive than that for H. This is seen in Fig. 3. Note that the
distorted-wave Born calculation (Younger, 1981) again fails to
reproduce the data at intermediate energies and, although not
shown, the convergent close-coupling computational result
(Bray et al., 2012) also does an excellent job in reproducing
the measurements.

iii. Atomic oxygen (O). The example of the ionization of O
by electron impact is one for which direct experimental
measurement is a challenge. This is because discharges are
often required to produce O from the molecular oxygen
precursor, and the dissociation process is rarely 100% effec-
tive, leading to a mixture of O2, O, and excited O (O�). Both O
and O� play important roles in the atmospheric chemistry of
our planet and that of Jupiter’s moon Europa (Campbell
et al., 2012), and as a consequence a knowledge of these
cross sections is important. In Fig. 4, we show experimental
measurements from Brook, Harrison, and Smith (1978), Zipf
(1985), and Thompson, Shah, and Gilbody (1995), compared
to the BEB results for direct ionization from the ground state
of O, ionization from O�, and the sum of these ionization cross
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FIG. 2. Total cross section for ionization of H by electron
impact. The abscissa is the incident electron energy T in eV.
Circles, experimental data by Shah, Elliott, and Gilbody (1987);
solid line, BEB cross section; short-dashed line, BEQ cross
section; medium-dashed line, Gryzinski’s classical cross section
(Gryziński, 1965a, 1965b, 1965c); long-dashed line, distorted-
wave Born cross section with electron-exchange correction by
Younger (1981).
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sections to give the total ionization cross section for e− þ O
(Thompson, Shah, and Gilbody, 1995). As can be observed
from Fig. 4, this total BEB ionization cross section is in good
agreement with the measured data, to within the stated errors
on those data. This suggests that even when reliable exper-
imental data are unavailable, the BEB approach might be used
to calculate the unknown ionization cross sections with some
confidence.

iv. Carbon tetrafluoride (CF4). Before its deleterious effects
on the environment, as indicated by its large global warming

potential, were appreciated, CF4 was a popular feedstock gas
in low-temperature plasma etch reactors. Therefore a knowl-
edge of its ionization cross sections was important in trying to
model the behavior of those plasmas. In Fig. 5, we compare
the BEB ionization cross sections (Nishimura et al., 1999)
against a selection of the measured data from Beran and Kevan
(1969), Poll et al. (1992), Bruce and Bonham (1993), Rao and
Srivastava (1997), and Nishimura et al. (1999) and a recom-
mended set of data from Christophorou, Olthoff, and Rao
(1996). We again find that to within the error bars of the
experimental results BEB scaling provides a good description
for the total ionization cross section of this system.

v. Carbon difluoride (CF2). It is well known (Nikitović
et al., 2009) that in a plasma with CF4 as the feedstock gas,
radicals such as CF, CF2, and CF3 will also be formed. As an
example of one of these species, we now look at the total
ionization cross sections for electron scattering from CF2. In
Fig. 6, we show results from the BEB approach, a modified
BED approach that allows for shielding of the long-range
dipole potential in the collision (siBED) (Huo, Tarnovsky, and
Becker, 2002), a result using the DM model (Deutsch et al.,
2000), and experimental data from Huo, Tarnovsky, and
Becker (2002). In this case we find that it is the siBED
approach that best reproduces the measured data, although the
BEB scaling result is far from being hopeless. Further work by
Becker and colleagues (Huo, Tarnovsky, and Becker, 2002)
suggested that for radicals the modified siBED scaling method
might give the most accurate data. In addition to the CF2
ionization cross sections being important to modeling the
behavior of plasma reactors in which it is a constituent, they
also played a crucial role in allowing Maddern and colleagues
(Maddern, Hargreaves, Bolorizadeh et al., 2008; Francis-
Staite et al., 2009) to set the absolute scale of their CF2 elastic
differential and consequently integral cross-section data.
Since, in the modeling of any plasma reactor, cross sections
for all relevant scattering processes over a wide energy range
are required, this was a crucial result.

vi. Carbon tetrachloride (CCl4). We conclude our examples
on the efficacy of the ionization scaling approaches in electron
scattering by looking at the results for a molecule (CCl4)
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FIG. 3. Total cross section for ionization of He by electron
impact. Filled circles, experimental data by Shah et al. (1988);
filled diamonds, data by Montague, Harrison, and Smith (1984);
solid line, BEB cross section (with the tþ uþ 1 denominator for
a neutral target); medium-dashed line, Younger’s distorted-wave
Born cross section (Younger, 1981); short-dashed line, BEQ cross
section.
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FIG. 4. Total cross section for ionization of atomic oxygen by
electron impact. Shown are the BEB result for direct ionization
from its ground state, ionization from excited electronic states of
O within a BEB approach, and their sum to give the total BEB
ionization cross section. Also shown are experimental results, at
the incident electron energies indicated in the legend, from
Brook, Harrison, and Smith (1978), Zipf (1985), and Thompson,
Shah, and Gilbody (1995). See also the legend. The BEB results
are taken from Kim and Desclaux (2002).
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FIG. 5. Total ionization cross sections for electron scattering
from CF4. See the legend and the text for further details.
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which contains an atom (Cl) with Z > 10. In this case see
Scott and Irikura (2005) for full details, with a summary of the
results given in Fig. 7. Here we find that when the standard
BEB approach is modified to allow for the effective core
potential, good agreement is found with most of the available
experimental data (Hudson et al., 2001; Lindsay et al., 2004;
Martinez et al., 2004) to within the uncertainty on those data.
While we have given an example only for the case of a
chlorine atom in a molecule, the NIST website (http://www
.nist.gov/pml/data/ionization) shows that this modified BEB
scaling method is equally effective for other species that
include an atom with Z > 10.
While we have thus far concentrated on the nonrelativistic

BEB cross sections for electron-impact ionization, the method
has also been extended to deal with relativistic incident

electron energies (Kim, Santos, and Parente, 2000).
However, a thorough discussion of that extension is excluded
here as it is outside the scope of this review. In Sec. II.B.2, the
BEB model for ionization of atoms and molecules is extended
to the case of dipole-allowed transitions in the electron-impact
excitation of neutral atoms and molecules. Furthermore, the
performance of this new scaling method for estimating
unknown discrete electronic-state data that might not be
accessible experimentally is demonstrated. Limitations on
this method of Kim (Suzuki et al., 2011) are also noted
where appropriate.

2. Electron-impact discrete excitation

After the success of the BEB theory for describing ioniza-
tion cross sections for atoms and molecules, Kim extended it
to scale the first-order PWB cross sections for electron-impact
excitation of neutral atoms (Kim, 2001) and molecules (Kim,
2007), provided that the scaling is applicable only to integral
cross sections for electric dipole-allowed transitions. It is not
applicable to the differential cross sections. As in the case of
ionization, three atomic properties—the ionization energy,
excitation energy, and dipole f value—are used in the new
scalings called BE and BEf scalings. These quantities are
accessible from accurate wave functions and hence are free of
adjustable parameters. The new scaling approaches do not,
however, allow for the resonances often seen near excitation
thresholds, nor do they fare well in systems where interchan-
nel coupling between the target electronic states is strong, with
an example of this being Rydberg-valence mixing in molecu-
lar oxygen (O2) (Suzuki et al., 2011).

a. The BE-scaling model

Once again, as the starting point, the first-order PWB cross
section is used in the scaling because (a) the plane wave is
the correct wave function at infinity for an electron colliding
with a neutral atom or molecule, and (b) it is the simplest, first-
order perturbation result that uses the target wave function
explicitly. For brevity, the asymptotic Born cross section
derived from Eq. (19b) is rewritten as

σPWB ¼ 8πa20Ry
T

M2
α ln

�
4cαT
Ry

�
≡ 8πa20Ry

T
FPWBðTÞ; ð30Þ

where FPWBðTÞ is the collision strength.
From the analogy with the scaling for the ionization cross

sections, Kim replaced T in the denominator of Eq. (30) by
T þ Bþ E, where E is the excitation energy. That is, the
BE scaling is given by

σBEðTÞ ¼
T

T þ Bþ E
σBornðTÞ: ð31Þ

As before, this BE scaling corrects the well-known deficiency
of the Born approximation at low T, without losing its validity
at high T. The additional constant of Bþ E accounts in a
simple but effective manner for the electron exchange,
distortion, and polarization effects that are absent in the
first-order PWB approximation. These scaled PWB cross

T (eV)

 

FIG. 6. Total single ionization cross section of CF2 calculated
using the siBED model and the experimental data. Also
presented are theoretical cross sections calculated using the
BEB model of Kim and Rudd (1994) and the DM model
(Deutsch et al., 2000). “Present expt” refers to data from Huo,
Tarnovsky, and Becker (2002).

T (eV)

 

FIG. 7. Total ionization cross section for CCl4. Theoretical
values are indicated by the solid (effective core-potential) and
dashed (all-electron) curves. Experimental values are indicated
by the symbols. See Scott and Irikura (2005) and text for further
details.
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sections for integral cross sections of dipole-allowed transi-
tions have been quite successfully applied to describe elec-
tron-impact excitation of neutral atoms and molecules as will
be seen.

b. f scaling

The f scaling is introduced to take advantage of the
availability of reliable f values from other sources. The
f-scaled Born cross section σf is given by

σfðTÞ ¼
faccur
fBorn

σBornðTÞ; ð32Þ

where T is again the incident electron energy, faccur is an
accurate dipole f value from an accurate wave function or
experiment, and fBorn is the dipole f value from the same
wave function used to calculate the unscaled Born cross
section σBorn. The f-scaling process has the effect of replacing
(normalizing) the wave function used for σBorn with an
accurate wave function. Experimental f values are discussed
in Sec. IV.

c. BEf scaling

If we now combine these two models, the BEf-scaled Born
cross section σBEf is given by

σBEfðTÞ ¼
faccurT

fBornðT þ Bþ EÞ σBornðTÞ: ð33Þ

If an unscaled σBorn is obtained from poor quality wave
functions while an accurate f value is known, then both
f scaling and BE scaling can be applied to obtain a BEf-
scaled Born cross section σBEf. These three models to scale
plane-wave Born cross sections have been shown to produce
atomic excitation cross sections comparable in accuracy to
those obtained by more sophisticated collision theories. In
addition, Kim demonstrated that these models could also be
successfully applied to molecular systems and indeed our
scaled Born integral cross sections have been found to be
in excellent agreement, from near threshold to 200 eV, with
those derived from experiments for integral cross sections
for electric dipole-allowed transitions in some molecules
(Brunger, Thorn, Campbell, Kato et al., 2008). In particular,
we note the comparisons for the scaling results with experi-
ment for the atoms He (Hoshino et al., 2010) and Ne
(Hoshino, Murai, Kato, Itikawa et al., 2013; Hoshino,
Murai, Kato, Brunger et al., 2013) and for molecules H2

(Kato et al., 2008), CO (Kato et al., 2007; Kawahara et al.,
2008a), O2 (Suzuki et al., 2011), CO2 (Kawahara et al.,
2008b), N2O (Kawahara et al., 2009), OCS (Limão-Vieira
et al., 2015), H2O (Thorn et al., 2007b), BF3 (Duflot et al.,
2014), and C6H6 (Kato et al., 2011) in Sec. V. Note that, in
comparing with results from the experimental approach, the
BE scaling itself, without using the f scaling, has also proved
reliable in many cases.

III. EXPERIMENTAL RESULTS

A. Experimental preliminaries

Over the last 40 or so years, there has been a convergence in
ideas on how to make accurate and reliable absolute cross-
section measurements for electron scattering from atoms and
molecules. To reach this level of consensus has seen extensive
contributions from many different groups. These include, and
this is by no means an exhaustive list, the seminal contribution
of Read’s group at the University of Manchester in practical
electron-optics design criteria [see, e.g., Harting and Read
(1976) and Imhof and Read (1977)], the methodology
and theory behind the relative flow technique for absolute
elastic scattering differential cross-section measurements from
the JPL group of Trajmar and colleagues [see, e.g., Csanak
et al. (1984), Trajmar and Register (1984), Nickel et al.
(1989), and Trajmar and McConkey (1994)], and the
approaches to inelastic cross-section measurements pioneered
by Ehrhardt’s group [see, e.g., Gote and Ehrhardt (1995)],
Linder’s group [see, e.g., Rohr and Linder (1976)], and the
JPL group [see, e.g., Nickel et al. (1989)]. All of those and
other earlier experimental contributions, including from the
group at Fribourg [see, e.g., Allan (1995)], Flinders University
[see, e.g., Brunger and Teubner (1990)], Argonne National
Laboratory [see, e.g., Tanaka and Heubner (1976) and Spence
et al. (1984)], Sophia University [see, e.g., Wakiya (1978) and
Tanaka et al. (1982)], the Australian National University [see,
e.g., Brunger, Buckman, and Newman (1990) and Brunger
et al. (1991)], and CSU at Fullerton [see, e.g., Khakoo and
Segura (1994) are adequately summarized in the review of
Brunger and Buckman (2002) and so they are not repeated
again here. Subsequent to that review, there have been several
important developments in experimental measurement tech-
niques. These include the analyzer transmission calibration
approach from Allan (2005), the use of an orifice as an atomic
or molecular beam forming device, in particular, for applica-
tion with the relative flow technique for elastic scattering from
Khakoo et al. (2010), and references therein, the extension
of the relative flow technique to pulsed supersonic target-
molecule expansions, to enable radicals to be studied, by
Maddern and colleagues (Hargreaves et al., 2007; Maddern,
Hargreaves, Francis-Staite et al., 2008), the development of an
electron-trap (pulsed) source by the Madrid group (Fuss et al.,
2013), and the evolution of the experimental approaches at
Sophia University which we shortly discuss in some detail.
The experimental technique employed in generating the

data used for comparison with the scaling results discussed
earlier in this review can be found in Kim (2001, 2007),
specifically, in regard to the total ionization measurements.
Here we describe as a representative example measurement
techniques for absolute cross sections at Sophia University for
excitation of discrete electronic states in molecules. Other,
currently active, groups employ somewhat similar spectrom-
eters and experimental procedures (Kanik, Nickel, and
Trajmar, 1992; Brunger and Buckman, 2002; Allan, 2005;
Khakoo et al., 2008). For a quantitative measurement of the
cross sections, characterizing the analyzer transmission func-
tion for the range of scattered electron energies associated
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with the excitation of electronic states in atoms and molecules
is, in particular, an important issue.
One note of caution is in order here. In this review,

measurements of differential cross sections (DCSs) by elec-
tron impact will be needed to evaluate the efficacy of the
scaled Born integral cross sections for the intermediate-energy
region down to ∼20–30 eV. However, in the so-called
experimental approach, DCSs for only some very forward
angles at the higher incident electron energies of 100 to
300 eV are sufficient to scale the integral Born cross section
σBornðTÞ. This is one of the expected advantages in employing
the experimental approach when using BEf scaling. In the
description that follows, we outline the measurement tech-
niques for the specific case of e-Ne scattering but they are
equally applicable to other species we discuss later in Sec. V.
There were in fact two crossed-beam configurations used for
the electron energy-loss spectroscopy of Ne, which we denote
as “setup 1” and “setup 2.”
Setup 1: For incident energies below 50 eV, the exper-

imental apparatus and method were described in detail earlier
(Tanaka et al., 1988; 1998) and only some specific features of
the neon work are briefly highlighted here. The spectrometer
consists of an electron-scattering spectrometer, gas flow
system, computer-driven voltages, and counting electronics
for detecting and storing the scattered electron signal. The
scattering spectrometer, as shown in Fig. 8, is of conventional
crossed-beam geometry with an electron gun, single hemi-
spherical energy selector and analyzer, cylindrical lens sys-
tems, and a channeltron for the detection of the scattered
electrons.
Setup 2: Above 100 eV, we effectively have setup 1 but with

the addition of double tandem hemispheres in the analyzer
system (Hoshino, Murai, Kato, Itikawa et al., 2013) and a real
aperture placed between the analyzer hemispheres to eliminate
the unwanted part of the electron beam due to any background
scattering or primary electron beam interference. Indeed, this
spectrometer was used for all the measurements between 100

and 300 eV, and thus was crucial in determining the
experimental approach BEf-scaled ICS.
The nozzle (a simple tube of diameter 0.3 mm and length

5 mm), through which target gas effuses to produce a well-
defined beam of the target gas, was kept at 50 °C above room
temperature in order to prevent accumulation of any surface
charges. Variations in the electron beam intensity as different
gases are cycled through the chamber are reduced by enclos-
ing the electron-beam generating system and the analyzer in
separate casings, and pumping them differentially. No effects
of the target gases on either of the spectrometers were
observed. A combination of a 2-mm-thick μ-metal shield
with Helmholtz coils around the top and bottom flanges of the
vacuum vessel reduced the Earth’s magnetic field to less than
a few mG. The angular resolution amounts to about�2° below
50 eV and �1° above 100 eV, with the true zero-scattering
angle being determined by noting the symmetry of the
measured elastic scattering and/or the inelastic intensities
[He 21P [21.218 eV] (Trajmar et al., 1992; Hoshino et al.,
2010) and/or Ne 3s0½1=2�1 [16.848 eV] (Hoshino, Murai,
Kato, Brunger et al., 2013) as obtained in the neon study
(Hoshino et al., 2010; Hoshino, Murai, Kato, Itikawa et al.,
2013)]. When assembling the spectrometer, the geometrical
alignment for mounting both the selector and the analyzer
relative to the nozzle center was checked as precisely as
possible by employing a laser beam.
Typically, the spectrometer in setup 1 was operated at fixed

incident electron energies between 20 and 50 eV and over the
scattered electron angular range from −20° to 130°. At higher
incident energies, with the double tandem hemispheres in
the analyzer (setup 2) system, the scattering angles usually
covered were limited to 2°–12.6° for 100 eV, 1.6°–15.6° for
200 eV, and 0.53°–5.48° for 300 eV. The overall energy
resolution, at Faraday-cup currents of 3–7 nA, was about
28 meV (full width at half maximum of the observed elastic
peaks), sufficient to separate the four peaks in neon under
consideration as shown in Fig. 9. By fitting to a Gaussian

FIG. 8. The configuration of a typical crossed-beam apparatus, such as was used at Sophia University, for making the DCS
measurements.
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profile, the relative contributions of the 3s½3=2�1ð3P0Þ and
3s0½1=2�1ð1P1Þ states were determined. The impact energy
was invariably calibrated against the 19.366 eV resonance of
He (Brunt, King, and Read, 1977).

B. Transmission function

For the incident energies of interest (E0 ¼ 20, 25, 30, 50,
100, 200, and 300 eV), and energy lossesΔE ¼ 15.5–17.5 eV
in neon, their ratio lies in the range 0.05 < ΔE=E0 < 0.88.
It is important to establish the transmission of the analyzer
over this entire range. At Sophia University, the spectrometer
employed a crossed-beam method with either single and/or
double tandem hemispherical energy selectors and a pass
energy of 1.5–2 eV with virtual entrance and exit apertures.
Cylindrical lenses are used throughout to transport the
electron beam. Three possible approaches could be adopted
to calibrate the analyzer transmission as described.

(1) All lens voltages have been calculated with a computer
program that traces the electrons through the electric
fields of the lenses and minimizes the sum of the
squared deviations from user-specified aims such as
the image position, magnification, and beam angle.
[CPO, Ltd., computer code CPO (charged particle
optics program) (http://www.electronoptics.com)].
This is achieved by automatically adjusting up to
three of the lens voltages at any given time. Other
voltages are set such that the maximum angle (beam
angle plus pencil angle) is less than 5.5° over the full
range of residual energies down to 0.5 eV. After
calculating a set of variable voltages for the analyzer
for the residual energies of interest (ΔEr ¼ E0 − ΔE),
we fit a cubic spline through the data and use the result
to drive the lens voltages under computer control.
Such voltage sets have been calculated for all impact
energies from 20 to 300 eV and for all the residual
energy ranges of interest.

(2) The second procedure is a more direct way to
characterize the analyzer response. At each T or E0

of interest, both the energy selector and analyzer are

optimized initially by the calculated set of voltages and
then refined using He and the elastic scattering process
at a scattering angle of 30°. By readjusting the incident
electron energy from a residual energy of 0 eV to a
residual energy range of interest, while monitoring the
current carefully at the Faraday cup (placed at 10 mm
from the collision center with 2-mm acceptance
diameter), the elastic scattering intensities from He
were measured by the analyzer under the same
conditions as those for the initial optimization at T
(or E0). The measured intensity is scaled to a constant
initial electron current as well as being normalized to
the absolute He cross section. A constant factor over
all residual energies implies an ideal response of the
analyzer, which is achieved above E0 ¼ 30 eV to
within a few % and, conversely, a strongly nonuniform
response showed up as a consistent pattern in all plots
of the scaling factor as a function of residual energies
below E0 ¼ 25 eV as expected. Figure 10 shows one
example of the variations in the transmission function
of the analyzer, over a relevant residual energy range,
for the impact energy range of 20–50 eV. Note that,
below E0 ¼ 30 eV, over the range from 0 eV to some
residual energy, the collision volume is assumed to be
constant whereas the current intensity only varies like
the electron current monitored in the Faraday cup.

(3) The third way to estimate the transmission factor is to
make a comparison with the energy dependence of
other measured cross sections for inelastic scattering.
For determining the response function of the analyzer, a
reliable and absolute inelastic cross section is essential;
furthermore, the energy-loss region should preferably
be close to that of Ne for the 3s0½1=2�1 state at
16.848 eV. In the Sophia University experiment, the
excitation of the 21P state in He was employed, as the
only benchmark cross-section data available, to gauge
the analyzer response although its energy loss is larger
than for Ne 3s0½1=2�1. Absolute scales were thus placed
in terms of the measured intensity of the 21P to the
elastic intensity ratio at 30° for each E0 of 25, 30, and
50 eV. Consequently, ratios of those measured cross
sections to the benchmark data correspond to the
analyzer transmission at 21.2 eV as shown in Fig. 10,
which are seen to be consistent with those estimated
above in method 2. As a consequence, it was found that
determining the analyzer transmission response is
crucial below 25 eV but not above 50 eV.

Not all experimentalists seem to have been equally careful
in calibrating the transmission response of their spectrometers.
This contributes to some of the uncertainties and variations in
the existing measured cross sections at low-impact energy.
Therefore, in terms of assessing the validity of a BEf-scaling
result, we have carefully checked the absolute scale of those
previous data.

C. Normalization and integration of the cross sections

The observed counts of the scattered electrons from Ne,
although it could equally well be any of the species we
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FIG. 9. Typical energy-loss spectrum in neon (Hoshino, Murai,
Kato, Itikawa et al., 2013). The incident beam energy was 40 eV
and the scattered electron angle was 30°.
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considered in Sec. V, were converted into absolute cross
sections by sequential remeasurement of the known DCSs
of He (Boesten and Tanaka, 1992) in conjunction with the
relative flow method (Srivastava, Chutjian, and Trajmar, 1975;
Nickel et al., 1989). The calibration requires constant
Knudsen numbers for equal Ne and He densities in the
collision volume, for which the values of the relevant hard
sphere diameters for He (2.18 Å) and Ne (2.60 Å) (Lide, 2007)
were used. Under the framework of Lassettre’s theorem
(Lassettre, 1965, 1969; Lassettre, Skerbele, and Dillon,
1969; Lassettre and Skerbele, 1974), the normalized
DCSexpt were next integrated to obtain the integral cross
section by using an apparent (or experimental) generalized
oscillator strength (GOSexpt or Gexpt) as per the fitting
procedures described in Sec. IV. Normally, this procedure
is applied at high impact energies but, throughout this study,
this approach has been extended to low-impact energies to
ensure the integrity of the ICS determination over the entire
relevant impact energy range.
The errors associated with the data stem from (1) normali-

zation with the reference elastic He DCS (∼10%), (2) and/or
normalization with the reference inelastic feature He 21PDCS
(∼12%), (3) the uncertainty in the transmission response of the
analyzer (10%), and (4) statistical (5%) and other uncertainties
(for example, in the deconvolution process if it is needed) in
the evaluation of the inelastic peak heights (15%). In the case
of neon, these latter uncertainties are quite small for the
strongest feature (i.e., the 3s0½1=2�1 (1P1) state) but are the
dominant errors for the weak and composite features of
the 3s½3=2�1 (3P0) state. The sum of all the contributing
errors [that is, ~X ¼ ðPiX

2
i Þ1=2] has been calculated as the total

error of ∼22% in the DCSs. In addition to these errors, further
uncertainties arise in the extrapolation of the DCSs to the 0°
and 180° scattering angles for determining the integral
excitation cross section. Although corresponding integral
cross sections were derived analytically by applying a
generalized oscillator strength analysis as described in

Sec. IV, an uncertainty of ∼26% on the ICS necessarily arises
due to the unknown behavior of the DCSs at small and large
scattering angles. Thus a least-squares fit of the experimental
GOS would typically add an additional 4% error to the ICS
from the value quoted earlier for the respective DCSs.
For consistency, the most practical and reliable method of

generating absolute electron-impact excitation cross sec-
tions for a given target is to normalize its measured relative
excitation cross sections to those for its elastic scattering
cross section, which in turn can be accurately determined by
normalization to elastic scattering from He. To determine
the BE scaling and/or BEf-scaling curve, on the other hand,
it is sufficient to measure the DCSs at high-energy impact,
above at least 100 eV, and for small scattering angles.
Hence, with a good measurement, one can undertake the
BE scaling and/or BEf scaling where only the cross section
for the elastic scattering in He, as the benchmark, is required
to be known.

IV. FITTING PROCEDURES OF THE GOS

To perform the scaling of the Born cross section, we start
with the theorem of the limiting oscillator strength (Lassettre,
1965, 1969; Lassettre, Skerbele, and Dillon, 1969; Lassettre
and Skerbele, 1974) which makes possible the utilization of
electrons as pseudophotons, thus determining optical absorp-
tion and ionization cross sections from electron-impact data.
That is, as per Eq. (14), the generalized oscillator strength
fnðKÞ obtained from electron collision measurements
approaches the optical f0 value at small K. Further, as
discussed earlier in Sec. II.A.2, within the first Born approxi-
mation, it was demonstrated that as the generalized oscillator
strength can be expanded in a series of even powers of K, with
f0 as the first term, the limiting value of fnðKÞ as K goes to
zero is f0. In addition, Lassettre, Skerbele, and Dillon (1969)
proved a more general theorem which applies at all incident
energies T and is independent of the validity of the first Born
approximation. In this case, fn is the apparent generalized
oscillator strength as defined in Eq. (11a).
In practice, one measures electron-impact cross sections

as a function of the scattering angle at high impact energies
and converts them into generalized oscillator strengths (or
apparent generalized oscillator strengths) as a function of the
momentum transfer squared. An extrapolation of these quan-
tities to zero momentum transfer then yields the optical f
value. It must be noted, however, that the extrapolation
method considers the following points that equally affect
the inverse procedure of normalizing electron-impact data to
optical f0 values. Namely, (1) the optical limit is approached
most closely at θ ¼ 0°, but in practice it is not possible to
measure at this angle since the detector must accept a finite
range of angles and there is also necessarily a finite range
of angles in the incident electron beam (Lassettre, Skerbele,
and Dillon, 1969). (2) The low-angle DCSs, being important
in the limit of zero momentum transfer, suffer from exper-
imental uncertainties. Nevertheless, this procedure has
proven to be very useful and in some instances it is the only
procedure available for normalization of the inelastic electron-
scattering data.
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FIG. 10. Typical results in He for calibrating the analyzer
transmission response at the scattered electron angle of 30°
(Hoshino, Murai, Kato, Brunger et al., 2013). Results using
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Along these lines, extensive experimental effort has been
made to generate optical f0 values. For example, we highlight
the following:
(a) Lassettre and co-workers (Lassettre, 1965, 1969;

Lassettre, Skerbele, and Dillon, 1969; Lassettre and
Skerbele, 1974) determined many such generalized
oscillator strengths of valence, Rydberg, and con-
tinuum levels of many simple molecules by using
this type of extrapolation to deduce f0. Their DCS
measurements were usually carried out at impact
energies from 300 to 700 eV. The overall error was
estimated to be typically less than 10%, made up of the
experimental and extrapolation uncertainties.

(b) The NBS (presently NIST) group (Celotta and
Huebner, 1979) provided useful results for optical
oscillator strengths by the zero-scattering electron
energy-loss technique at T ¼ 100 eV. The finite
analyzer acceptance solid angle was corrected through
oscillator strengths derived from zero-angle energy-
loss spectra and the incident electron beam was also
highly collimated in this work. The relative oscillator
strength determined from the (relative) energy-loss
intensity distribution was normalized to a selected
optically measured value at one point in the smooth
continuous spectrum. Alternatively, a gas mixture was
used for the normalization in which the sample gas is
precisely mixed with a reference gas such as He that
has many well-known optical oscillator strengths.
These data agreed to within 10%.

(c) Brion and co-workers (Brion, 1975; Tan et al., 1978)
conducted systematic measurements of optical
oscillator strengths at an incident energy of T ¼
2.5 keV, with coincidence techniques applied to
obtain quantitative photoionization, photofragmenta-
tion, and photofluorescence cross sections. Normali-
zation of the experimental data to the absolute scale
was achieved by the oscillator strength sum rule. The
uncertainty on the absolute oscillator strength scale is
claimed to lie within ±5%. Moreover, from the
dependence of fðKÞ on K, one can discriminate
between optically allowed and forbidden transitions.
More details are given in Inokuti (1971). Thus, the
electron energy-loss technique still has the advantage
of providing an easier and usually more accurate
calibration of the absorption spectrum over very wide
energy ranges, even today with synchrotron radiation
sources in widespread use.

Based on these characteristics of fn, the discrete excitation
scaling has been carried out for atoms and molecules as
follows. In the theoretical approach, an unscaled Born cross
section corresponds to the theoretical data in the form of
dimensionless GOS, tabulated as a function of the momentum
transfer squared. In the experimental approach, one can use
the experimental data reported in the previous articles at
various angles and energies (preferably at small angles and
high impact energies) to plot the apparent fnðKÞ values as a
function of K2, and then extrapolate the resulting curve to
zero momentum transfer. Alternatively, one can carry out

one’s own experiment at very high impact energy and low
scattering angles and assume that the results correspond to the
optical limit.
As the scaling methods described previously are valid only

for integral cross sections, it is convenient to present a GOS
in an analytical form. Vriens (1967) proposed the following
formula to represent a GOS for a dipole-allowed excitation:

fðxÞ ¼ 1

ð1þ xÞ6
"X∞
m¼0

amxm

ð1þ xÞm
#
; ð34Þ

where

x ¼ Q=α2 ð35Þ

and

α ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
B=Ry

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB − EÞ=Ry

p
: ð36Þ

In Eq. (34), am are the fitting coefficients and α is identified
from the analytic properties of the GOS, while the binding
energy B of an electron in a many-electron molecule can be
defined only in the context of a simple independent particle
model. As a fitting parameter along with the am, the simple
form α2 in Eq. (35) was found to illustrate a GOS calculated
from multiconfiguration wave functions. To fit a theoretical
GOS, the OOS [f0 in Eq. (14)] should be the one obtained
with the same wave functions as those used to calculate the
GOS. A GOS for a dipole-allowed excitation usually peaks
at the optical limit, that is, K ¼ 0. Sometimes, however, a
theoretical GOS has a second peak at a larger K value due to
radial nodes in the wave functions. For more details on this
latter point, see the review of Inokuti (1971).
The same analytical formula can also be used to fit and

extrapolate experimental DCSs to the forward and backward
angles not observed in the experiment, and then to integrate
that DCS. Here even f0 should be treated as a fitting
parameter. The so-called “experimental”GOS can be obtained
by substituting the values of the measured DCSs into
Eq. (11a). At low T, experimental GOS often have secondary
peaks, as seen later. The secondary peaks here have a very
different origin than those seen in the theoretical GOS: the
former come from interactions not represented in the Born
approximation—such as interference between the direct
and exchange scattering amplitudes—while the latter, as noted
previously, come from the radial nodes in the wave functions.
The secondary peaks in the experimental GOS at low T

cannot be well fitted by directly including extra terms in
Eq. (34). Instead, the following function with two fitting
parameters b and c, in addition to the leading fraction in
Eq. (34), was found to well represent the experimental GOS
at low T:

gðxÞ ¼ bx exp ð−cxÞ: ð37Þ

For He 21P, the unscaled GOS curve was drawn from the
measured DCS at high impact energies of 100 to 300 eV. The
unscaled GOS was verified by the Lassettre limit theorem to
compare with the optical limit at K ¼ 0 a:u. An example of
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the GOS versus K2 fits, specifically for the He 21P state, can
be found in Fig. 11. As can be seen from this figure, the fit to
the data by a modified Vriens parametrization [Eqs. (34) and
(37)] was very good.
Integral cross sections are now obtained by integrating the

GOS over the limits corresponding to θ ¼ 0° and θ ¼ 180° in
Eqs. (17) and (19a) with

Kmin ¼ 2
T
Ry

�
1 − E

2T
−

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − E

T

r �
;

Kmax ¼ 2
T
Ry

�
1 − E

2T
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − E

T

r �
: ð38Þ

In the case of experimental integral cross sections, Eqs. (17),
(19a), and (38) remain valid, although it is the analytical form
of fexp (K) that is explicitly used in Eqs. (17) and (19a), with
the result now being the σexp (T) of interest. This experimental
approach has been applied for atoms and molecules at Sophia
University and also on a more limited scale at Flinders
University.

V. APPLICATIONS: EXAMPLES AND DISCUSSION

Systematic comparisons between the scaling and exper-
imental results were performed to investigate the validity of
this simple scaling approach to produce optically allowed
electronic excitation cross sections for atoms (Inokuti et al.,
1994; Kim, 2001) and molecules (Brunger, Thorn, Campbell,
Kato et al., 2008a; Anzai et al., 2012). In the experimental
approach, we applied the scaling to the largest cross sections
associated with the optically allowed transitions at intermedi-
ate impact energies (and small scattering angles). The values
of these cross sections increase gradually with increasing
impact energy, from threshold to about 10 times the threshold
energy, and then slowly decrease in magnitude at high energy.
The angular distributions are typically forward peaked, more
so with increasing impact energy. On the other hand, integral

cross sections for the optically forbidden transitions, like a
spin-forbidden transition, rise steeply in magnitude near
threshold, reach their peak value within a few electron volts
of their threshold energy, and then decrease sharply with
increasing impact energy. See illustrative examples of this
behavior in Inokuti (1971). The DCSs associated with these
forbidden transitions are in many cases nearly isotropic. The
latter observation may result in a deviation from the scaling
ICS, when a forbidden transition overlaps with an allowed one
due to the finite energy resolution of the spectrometer, as in the
case of CO (Kato et al., 2007; Kawahara et al., 2008a).
In accordance with the progress in applying the BEf-

scaling approach, this section is divided into a discussion of
results for atoms and molecules. Only fundamental, well-
established, physical and chemical constants are required,
such as given by Kim (2001, 2007), http://physics.nist.gov/
PhysRefData/ASD/levels_form.html, Ogawa and Ogawa
(1975), Pantos, Philis, and Bolovinos (1978), Lewis et al.
(1988), Hagenow et al. (1989), Chan, Cooper, and Brion
(1993a, 1993b, 1993c, 1994), Berkowitz (2002), Hoshino,
Murai, Kato, Itikawa et al., 2013, and Limão-Vieira et al.
(2015) and shown in Table 1 in the Supplemental Material
[370], in conjunction with the scattering data, to employ the
approaches described earlier.

A. Atoms

Employing the Born cross sections calculated from simple
wave functions, Kim (2001) demonstrated that the BE and
f scalings produced excitation cross sections comparable in
accuracy to those obtained by more sophisticated theories
such as the CCC method (Bray et al., 2002) and the R-matrix
method (Zatsarinny and Bartschat, 2013). As noted previ-
ously, he used the plane-wave Born approximation as the
starting point because (a) the plane wave is the correct wave
function at infinity for an electron colliding with a neutral
atom, and (b) it is the simplest collision theory that uses wave
functions explicitly. The explicit presentation of target wave
functions enables one to use relativistic wave functions for
heavy atoms and to distinguish the final state of the target.
Along our so-called theoretical approach, Kim further showed
that the scaled cross sections were in excellent agreement with
available theoretical and experimental data for excitations in
H, He, Li, Be, Na, Mg, K, Ca, Rb, Sr, Cs, Ba, Hg, and Tl.
Since then, following the so-called experimental approach, the
scaling method has been performed for a subset of the
available excitation processes in He, Ne, Ar, Kr, and Xe,
although we note that at this time only data for He (Hoshino
et al., 2010) and Ne (Hoshino, Murai, Kato, Itikawa et al.,
2013; Hoshino, Murai, Kato, Brunger et al., 2013) have been
published. Those results verified the possibility that rapid and
reliable estimations of excitation cross sections can be
achieved with the scaling method for many other neutral
atoms. The validity of that assertion was fully discussed in the
original papers, but some representative examples are briefly
summarized for H, He, Ne, Li, Be, and Hg next.
The scaling method does not account for the resonances

often observed near excitation thresholds, electron exchange
with target electrons, distortion of the plane waves in the
vicinity of the target atom, and the polarization of the target
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due to the incident electron. Furthermore, the proposed scaling
approaches apply only to the integrated excitation cross
sections, not to their angular distributions, because the scaling
does not alter the shape of the angular distribution as described
by the unscaled Born cross sections.

1. Hydrogen and helium

Electron scattering from atomic hydrogen and helium are of
fundamental theoretical interest. But, for the H atom, exper-
imental investigation of electron scattering is something of a
challenge as it requires preparing the atomic beam source from
molecular hydrogen. The first measurements were performed
in the late 1950s by microwave techniques to dissociate
molecular hydrogen. Because of this experimental difficulty
and also problems related to normalization, the measured data
have not yet settled down for the electronic excitations of H.
As stated by Kim (2001), under those circumstances, the
scaling can demonstrate its validity, as shown in Fig. 12, by its
excellent agreement with the well-established CCC method
(Bray and Stelbovics, 1992). For reference, the BE-scaled ICS
curve is added in Fig. 12, which is derived from the DCS data
of Williams (1981) using the experimental scaling approach.
Another typical example, in this case for excitation of its

21P state, is shown for He in Fig. 13 (Hoshino et al., 2010).
Helium has served for many years as a prototype for
investigating the fundamentals of electron correlation, both
theoretically and experimentally, and Hoshino et al. (2009)
quite recently studied in depth excitation of the n ¼ 2

electronic-state manifold in He at the differential cross-section
level. Many of the available data are in good agreement with
one another and with sophisticated theories like the CCC
approach. Thus, at least for the n ¼ 2 states, helium can be
considered to be a benchmarked system, for both the inelastic
and elastic scattering cross sections. Note that in the relative
flow method developed by Srivastava and colleagues
(Srivastava, Chutjian, and Trajmar, 1975; Nickel et al.,
1989), the He elastic scattering cross section (Boesten and
Tanaka, 1992) is referred to as the normalization standard.
As a consequence, the data shown in Fig. 13 are particularly
strong evidence in support of the utility of the scaling
methods. As pointed out by Kim, the scaled cross section

is somewhat lower in magnitude around the maximum of the
ICS and that discrepancy is still an open question. However,
even if accidental, the agreement is remarkably good near
threshold. As an analytical form for the cross section, the
scaling method is useful here for modeling and simulation in
practical applications.

2. Neon

Electron scattering from neon is important in simulation
studies in the lighting and laser industries (Puech and Mizzi,
1991; Gray, Latimer, and Spoor, 1996), plasma processing
(Malyshev, Donnelly, and Samukawa, 1998; Moshkalyov
et al., 1999; Dodt et al., 2010), and for the interpretation
of astrophysical data (Hauschildt et al., 1995; Kanik, Ajello,
and James, 1996). Therefore, it is not surprising that there
have been some quite significant experimental (Register et al.,
1984; Suzuki et al., 1994; Khakoo et al., 2002; Allan,
Zatsarinny, and Bartschat, 2006; Allan et al., 2009;
Hoshino, Murai, Kato, Itikawa et al., 2013; Hoshino,
Murai, Kato, Brunger et al., 2013) and theoretical
(Machado, Leal, and Csanak, 1982; Zeman et al., 1997;
Ballance and Griffin, 2004; Zatsarinny and Bartschat, 2004,
2012a, 2012b; Pflüger et al., 2013) studies of its scattering
behavior. The most recent study of the excitation of the
3s½3=2�1 and 3s0½1=2�1 electronic states in Ne was undertaken
by Hoshino, Murai, Kato, Itikawa et al. (2013) and Hoshino,
Murai, Kato, Brunger et al., 2013, with an example of a
typical energy-loss spectrum from that work being found in
Fig. 9. Using the experimental methods detailed earlier in
Sec. III, they determined absolute DCSs that were sub-
sequently converted into generalized oscillator strengths as
a function of the momentum transfer squared (K2). Those
results are plotted in Fig. 14, along with corresponding
relevant data from Register et al. (1984), Suzuki et al.
(1994), Khakoo et al. (2002), and Cheng et al. (2005), and
a relativistic distorted-wave calculation from Vos et al. (2011).

FIG. 12. Comparison of the 1s-2p excitation cross sections of
H. Solid curve, plane-wave Born cross section with BE scaling;
dashed curve, unscaled plane-wave Born cross section; open
circles, CCC cross section. From Bray and Stelbovics, 1992.
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Applying now the formulation of Vriens (1967), as described
earlier in Sec. IV, Hoshino, Murai, Kato, Brunger et al., 2013
were able to determine OOS for both states [see Eq. (14)],
with their derived values being in good agreement with many
earlier independent results as summarized in Table 2 in the
Supplemental Material [370]. These experimental and theo-
retical OOSs are from Wiese, Smith, and Glennon (1966),
Gruzdev and Loginov (1973), Natali, Kuyatt, and Mielczarek
(1973), Albat and Gruen (1974), Aleksandrov et al. (1983),
Tsurubuchi, Watanabe, and Arikawa (1990), Chan, Cooper,
Guo, and Brion (1992), Hibbert, Ledourneuf, and Mohan
(1993), Ligtenberg et al. (1994), Suzuki et al. (1994), Curtis
et al. (1995), Gibson and Risley (1995), Zhong et al. (1997),
Avgoustoglou and Beck (1998), and Hoshino, Murai, Kato,
Brunger et al. (2013). Note the ICSs (Hoshino, Murai, Kato,
Itikawa et al., 2013) were corrected for E0 ≥ 100 eV in
Fig. 15 (Hoshino, Murai, Kato, Itikawa et al., 2015), although
those corrections were minor.
Using fits such as those in Fig. 14, in conjunction with

Eqs. (17) and (38), Hoshino, Murai, Kato, Itikawa et al.
(2013) were able to derive ICSs for both Ne states. Those ICS
data, in conjunction with their relevant BEf-scaling results
and other experimental (Register et al., 1984; Phillips,

Anderson, and Lin, 1985; Suzuki et al., 1994; Kanik,
Ajello, and James, 1996; Khakoo et al., 2002; Allan,
Zatsarinny, and Bartschat, 2006; Allan et al., 2009) and
theoretical results (Machado, Leal, and Csanak, 1982;
Zatsarinny and Bartschat, 2012b), are plotted in Fig. 15.
For the strong dipole-allowed transition to the 3s0½1=2�1 state,
excellent agreement was found between the measured ICSs of
Hoshino, Murai, Kato, Itikawa et al. (2013), their BEf-scaling
result, and the B-spline R-matrix result (Zatsarinny and
Bartschat, 2012b) over the common energy ranges. Indeed,
for this state, only near threshold where the R-matrix
calculation shows some resonance structure is there any major
discrepancy between the BEf-scaling and R-matrix results.
For the 3s½3=2�1 state, however, while agreement between the
measured data of Hoshino, Murai, Kato, Itikawa et al. (2013)
and the B-spline R-matrix computation is excellent over their
common energy range, their agreement with the BEf-scaling
result is satisfactory only for E0 ≥ 100 eV. This behavior can
be interpreted as follows. In strict LS-coupling terms, the
3s½3=2�1 state is in fact optically forbidden. However, due to
configuration mixing, the wave function requires both a
singlet and a triplet coefficient for a proper description.
Therefore, at high energies where the singlet coefficient
dominates, the BEf-scaling result agrees well with the
measured data for the 3s½3=2�1 state. But, at lower energies,
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where the triplet coefficient becomes more important as
exchange scattering begins to contribute, we find that the
BEf-scaling result, which as noted previously does not
account for electron exchange, necessarily underestimates
the magnitude of the experimental ICS.
The top pane in Fig. 15 also indicates important near-

threshold resonance structure in the 3s½3=2�1 cross section,
which also cannot be accounted for within the plane-wave
Born scaling framework we consider here. Hence, in this case,
the utility of the BEf-scaling results is limited to the higher
energy regime although this is still useful for the modeling
and simulation communities. Finally, we note that Hoshino,
Murai, Kato, Itikawa et al. (2013) recently detected a minor
error in their ICS for both states and for E0 ≥ 100 eV. The
correct ICS are plotted here in Fig. 15, with full details being
found in the errata of Hoshino, Murai, Kato, Brunger et al.
(2015) and Hoshino, Murai, Kato, Itikawa et al. (2015).

3. Alkali and alkaline-earth elements

There is an extensive series of electron-impact optical
emission measurements on the alkali metals from Gallagher
and co-workers. All of those studies largely concentrate on the
main dipole-allowed transitions, an appropriate filter being
used to select the required wavelengths for the emission in
question. Corrections to the raw data for cascade contributions
and for the polarization of the emitted radiation were
attempted for each atom, with the normalization of the
corrected photon signal, as a function of energy, being
achieved through the use of a high-energy Born calculation.
Typical errors on the so determined ICS were usually better
than 10%. As just one example, although the conclusions from
it also hold for the main dipole-allowed transitions in sodium,
potassium, rubidium, and cesium, let us consider the results
for the 2s-2p excitation in lithium. In Fig. 16, we compare the
unscaled plane-wave Born cross sections and BEf-scaled ICS
with the experimental 2s-2p results of Leep and Gallagher
(1976) and a CCC calculation result from Schweinzer et al.
(1999). It is clear that the BEf-scaling method gives cross

sections that are in excellent agreement with the measure-
ments across all the common energy range. Indeed, for Li, the
scaling method results are quite probably in better accord with
the experimental results than those from the more sophisti-
cated CCC approach. The utility of using the scaling method
for this system is thus evident.
Beryllium is the first member of the group IIA alkaline-

earth elements with its scaled Born cross sections for the
excitation of the 21P level having been calculated by Kim
(2001) with both Dirac-Fock and multiconfiguration wave
functions. Those ICSs are plotted in Fig. 17 and compared
with independent CCC calculations from Fursa and Bray
(1997). While no experimental data exist for the excitation of
the 2s2p1P state in Be, we note the good agreement between
Born scaling results and various measurements in magnesium
(Mg: 31P state) (Leep and Gallagher, 1976), calcium (Ca: 41P
state) (Ehlers and Gallagher, 1973), strontium (Sr: 51P state)
(Chen, Leep, and Gallagher, 1976), and barium (Ba: 61P state)
(Chen and Gallagher, 1976). This, and the excellent agreement
seen in Fig. 17 between the BEf-scaling results and the CCC
results, gives us confidence in the validity of applying the
scaling approach to the group IIA elements, at least for the
main dipole-allowed (E1) transitions in modeling studies.
Further details for all the group IIA elements are well
summarized by Kim (2001). Note that Be has assumed some
importance recently as one of the materials for use in the
International Thermonuclear Experimental Reactor (ITER)
project. Modeling of its performance under the anticipated
operational conditions is thus crucial, with reliable electron
cross sections being a part of the extensive data base that is
needed for such modeling.

4. Heavy elements

Ever since the seminal experiment of Franck and Hertz
(1914), members of both the electron-scattering and gaseous

FIG. 16. Comparison of the 2s-2p excitation cross sections of
Li. Dashed curve: unscaled plane-wave Born σPWB; solid curve:
BE- and f-scaled σPWB; solid dots: experimental data for optical
emission from Leep and Gallagher (1976); and circles: CCC
theory of Schweinzer et al. (1999).

FIG. 17. Comparison of the 2s2-2s2p1P excitation cross sec-
tions of Be. Circles: CCC cross section (Fursa and Bray, 1997);
short-dashed curve: unscaled plane-wave Born cross section from
uncorrelated wave functions; medium-dashed curve: unscaled
plane-wave Born cross section from multiconfiguration wave
functions; long-dashed curve: BE-scaled plane-wave Born cross
section from multiconfiguration wave functions; solid curve: BE-
and f-scaled plane-wave Born cross sections from uncorrelated
wave functions.
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electronics communities have been very interested in under-
standing the fundamental physics that underpins the phenom-
ena they observed (Robson, White, and Hildebrandt, 2014).
Thus, integral cross sections for the main electron-scattering
excitation processes in mercury, including the 6s2-6s6p1P
optically allowed transition, have been of topical interest for
quite some time and as a consequence Kim (2001) provided
scaled Born cross-section results for that main dipole tran-
sition. Those results are plotted in Fig. 18, along with
corresponding experimental data from Peitzmann and
Kessler (1990) and Panajotović et al. (1993), and a relativistic
distorted-wave theory (RDW) result from Srivastava et al.
(1993). It is clear from Fig. 18 that both the RDW and
unscaled Born cross sections overestimate, quite significantly,
the magnitude of the 61P integral cross section, whereas both
the BE- and BEf-scaled results are in much better accord
with the measured data (Peitzmann and Kessler, 1990;
Panajotović et al., 1993). Indeed the results from
Peitzmann and Kessler (1990), at 15, 60, and 100 eV, are
in excellent agreement with those from the BEf-scaled ICSs,
while the data of Panajotović et al. (1993) lie typically
between the BE- and BEf-scaled calculations. However,
the absolute scale of the Panajotović et al. cross sections
was set using the optical oscillator strength from Lurio (1965)
whose value is about 10% higher than more recent OOS
results for this transition on the NISTwebsite (http://www.nist
.gov/pml/data/ionization). If the results from Panajotović et al.
were scaled down by ∼10% to account for this observation,
then good agreement across the common energy range would
now be found with the BEf-scaled cross sections. This
illustrates the usefulness of the Born scaling method even
for heavy elements, where a relativistic description of the
target might be anticipated as being required.

B. Molecules

Along with the apparent (or experimental) GOS introduced
by Lassettre, Skerbele, and Dillon (1969), which applies at all

incident energies and is independent of the validity of the Born
approximation, the integral first Born cross section based on
the measured differential cross section (see Sec. IV) can be
obtained by the fitting of a semiempirical formula (Lassettre,
1965, 1969; Vriens, 1967; Lassettre, Skerbele, and Dillon,
1969; Lassettre and Skerbele, 1974) to the derived GOS as a
function of K2. This is important for electron-molecule
scattering cases because unscaled Born cross sections are
seldom readily available for molecules.
As mentioned previously, in electron-molecule scattering

ab initio theoretical calculations are complicated because of
the nonspherical, multicentered composite target with its
associated internal degrees of freedom of motion: rotation,
vibration, and dissociation. The analysis is further compli-
cated due to the often significant overlap of the vibrational
progressions of the different electronic states, as shown in
Figs. 19(a) and 20(a), for even simple diatomic molecules
such as H2 and CO. Calculation and analysis of the spectra
thus becomes much more complicated than in atoms.
However, for inelastic electron-molecule collisions at high

energy, the integrated cross section in Eq. (9c) is simplified by
introducing the following two approximations to give

σða; v → a0; v0Þ

¼ 8π

k2

����
Z

dRχv
0

a0χ
v
a

����2
Z

kþk0

k−k0
dK
K3a20

hjϵa;a0 ðR;KÞj2iav; ð39Þ

where (1) we assumed that the vibrational spacing is consid-
erably less than both the electronic excitation energy in
question and the incident energy T, and (2) based on the
Franck-Condon principle, the integral over the electronic
coordinates is assumed to be independent of R, that is, an
appropriate constant R (such as the equilibrium bond length)
is substituted for R in Eqs. (6a) and (6b). Here each vibrational
component of a given electronic state is characterized by the
Franck-Condon factor. Note that although Eq. (39) is derived
under quite restrictive assumptions (Lassettre et al., 1968;
Inokuti, 1971), experimental evidence suggests that the
Franck-Condon factor approach is valid. The relative inten-
sities for vibrational peaks belonging to the same electronic
transition are found to be remarkably independent of the
scattering angle and the incident electron energy down to
around 20–30 eV for a number of molecular transitions with
excitation energies as high as about 10 eV. This situation in
which the first Born approximation is clearly inappropriate
suggests application of a sudden approximation to the nuclear
motion.
Thus, also assuming that k0 depends only slightly on v0, the

vibrational wave functions are factorized in the integrated
cross section as

ϵa;a0 ðR;KÞ ¼
Z

drmϕ�
a0 ðrm; RÞϕ0ðrm; RÞ: ð40Þ

Consequently, the electronic excitation cross section is
calculated at the equilibrium distance (Re ¼ R) in the initial
state and then averaged over all molecular orientations.
Furthermore, if the excited states in the Franck-Condon region
are repulsive, a continuous energy band emerges over a

FIG. 18. Comparison of the 6s2-6s6p1P excitation cross sec-
tions of Hg. Short-dashed curve: unscaled plane-wave σPWB;
medium-dashed curve: BE-scaled σPWB; solid curve: BE- and f-
scaled σPWB; squares: relativistic distorted-wave Born theory of
Srivastava et al. (1993); upright triangles: experimental data for
direct excitation from Peitzmann and Kessler (1990); and inverted
triangles: data for direct excitation from Panajotović et al. (1993).
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portion of the energy-loss spectrum, the so-called dissociation
continuum. An example of this in molecular oxygen, for the
Schumann-Runge continuum (Suzuki et al., 2011), can be
seen in Fig. 21(a). Because of the high density of available

excited states in polyatomic molecules, dissociative continua
frequently overlap discrete states and tend to mask their
presence. When the discrete and continuum states are coupled,
discrete lines may be broadened by the nonradiative decay
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channel, with an effect called predissociation. Several
Rydberg states are also observed as a series of peaks in the
energy-loss spectra. However, when Rydberg and valence
states strongly couple, expected vibrational sublevels may be
suppressed in the energy-loss spectra. This effect is known to

be strongly dependent on the kinematical conditions under
investigation (Lewis et al., 2001). Moreover, disagreement
between the scaling results and the measured ICS data may be
caused by contributions from optically forbidden transitions
near the electronic excitation threshold.
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Because these complications in the data analysis are
inevitable for molecules, note that the present scaling method
has some inherent performance limitations in addition to those
caused by the instrumental energy resolution. Even so,
however, as shown later, the scaling model is a promising
approach to provide reliable cross sections for optically
allowed excitations in molecules. This, when coupled with
its efficacy for describing ionization, as established earlier,
makes the scaling model a potentially useful tool in describing
phenomena for which electron-driven processes are important.
The first demonstration to validate scaling methods for

molecules was carried out for H2 by Kim just before his tragic
death (Kim, 2007). There were several reasons for this initial
choice: H2 is the simplest molecule, playing the same role
among molecules as does the hydrogen atom among atoms,
and considerable data are available to test the scaling models
for the excitation of ground-state H2 to the lowest two dipole-
allowed excited electronic states B1Σu

þ and C1Πu (Kim,
2007). However, Kim found that the energy dependence and
magnitude of the available integrated excitation cross sections
differed between the existing theories and experiments (Kim,
2007). Consequently, more reliable experimental data were
required to assess the scaling models. A subsequent paper
(Kato et al., 2008) showed that the scaled Born integral cross
sections in H2 were in good agreement with experiment, from
near threshold to 200 eV (and from some of the earlier results)
for integral cross sections for those electric dipole-allowed
transitions.
The scaling model was extended to CO (Kato et al., 2007;

Kawahara et al., 2008a), O2 (Suzuki et al., 2011), N2, NO,
CO2 (Kawahara et al., 2008b), OCS (Limão-Vieira et al.,
2015), BF3 (Duflot et al., 2014), H2O (Thorn et al., 2007b),
N2O (Kawahara et al., 2009), and C6H6 (Kato et al., 2011),
some of which are summarized later. In addition, as they now
represent benchmark electronic-state cross sections, these
integral cross sections, for some of the dipole-allowed
excitations in these molecules, are added into the original
cross-section sets taken from the data reviews for H2 (Yoon
et al., 2008), O2 (Itikawa, 2009), CO2 (Itikawa, 2002), H2O
(Itikawa and Mason, 2005), CO (Zecca, Karwasz, and Brusa,
1996), and N2O (Karwasz, Brusa, and Zecca, 2001). The
review of Itikawa and Mason (2005) for H2O is now generally
regarded as being out of date, with a more complete and
benchmarked compilation being found in de Urquijo et al.
(2014). Similarly, a recent compilation for CO (Itikawa, 2015)
supercedes the earlier review of Zecca and colleagues.

1. H2

Electron energy-loss (ΔE) spectroscopy (EELS) measure-
ments were made for various incident energies (E0) in the
range 40 to 200 eV, and for scattered electron angles θ from
3.5° to 130° (Kato et al., 2008). A typical energy-loss
spectrum is plotted for the B1Σu

þ and C1Πu excitation states
in Fig. 19(a) over the energy-loss range from∼10.5 to 16.7 eV,
at E0 ¼ 40 eV and θ ¼ 10°.
The complication here in the data analysis is that there are

many overlapping vibrational sublevels of the respective H2

electronic states in this energy-loss range. As a consequence,
the various B1Σu

þ and C1Πu contributions to the energy-loss

spectra had to be spectrally deconvolved very carefully.
To achieve this, Kato et al. (2008) adapted the approach
outlined in detail by Campbell et al. (1997), modified here to
incorporate the relevant energies and Franck-Condon factors
from Wrkich et al. (2002) and from the International Atomic
Energy Agency (IAEA) website (http://www‑amdis.iaea.org/
data/INDC‑457/).
Using energy-loss spectra such as in Fig. 19(a), obtained by

employing the experimental techniques and normalization
procedure outlined earlier in Sec. III, as well as a spectral
deconvolution of the overlapping vibrational features, Kato
et al. (2008) were able to determine manifold differential cross
sections as a function of the scattered electron angle for
both the B1Σu

þ and C1Πu states. Those DCSs as a function
of θ were then, using Eqs. (10b) and (5a), transformed to
generalized oscillator strengths as a function of K2 where-
upon a Vriens-type analysis (see Sec. IV) was performed. A
typical result from that approach, for data taken at 100 and
200 eV and for the B1Σu

þ electronic state, is illustrated in
Fig. 19(b).
Here we find that a single function represents the data well

at both 100 and 200 eV, and from Eq. (14) the limiting value at
K2 → 0 a:u: is the optical oscillator strength for that tran-
sition. Results of the OOS determined by Kato et al. (2008)
for both the B1Σu

þ and C1Πu electronic states are summarized
in Table 3 in the Supplemental Material [370], along with a
selection of previous experimental work from Geiger and
Schmoranzer (1969), Fabian and Lewis (1974), Berkowitz
(1979), Chan, Cooper, and Brion (1992), and Zhong et al.
(1998), and theoretical work from Allison and Dalgarno
(1970), Arrighini, Biondi, and Guidotti (1980), Liu and
Hagstrom (1993), and Borges and Bielschowsky (1999).
While the OOSs, to within their stated error of 20%, of
Kato et al. (2008) were consistent with most of the other
results in Table 3, their values for both the B1Σu

þ and C1Πu
states were a little bit lower (systematically) than those other
data. This might be an indication that 100 and 200 eV are a
little low in energy if your main aim is to determine OOS.
However, this observation in no way affects the use of the
apparent GOS in order to determine the ICS for those states at
each energy.
Employing the derived apparent GOS in Eq. (20) and using

Eqs. (38), Kato et al. (2008) determined relevant ICS at each
energy they studied, for both the B1Σu

þ and C1Πu electronic
states with those results being plotted in Figs. 19(c) and 19(d),
respectively. Also plotted in these figures are corresponding
results from Srivastava and Jensen (1977), Ajello et al. (1984),
Khakoo and Trajmar (1986), and Wrkich et al. (2002), a
distorted-wave Born calculation (Fliflet and McKoy, 1980),
both unscaled and scaled plane-wave Born calculations (Kim,
2007), an R-matrix calculation (Branchett, Tennyson, and
Morgan, 1990), and a data compilation from Landolt-
Bornstein (Brunger, Buckman, and Elford, 2003). Both
Figs. 19(c) and 19(d) demonstrate the efficacy of the BEf-
scaling results (Kim, 2007) to describe the ICSs for each of the
B1Σu

þ and C1Πu electronic states. Note that Ajello et al.
(1984) measured the intensity of light emitted from the states
in question, after the H2 molecule was excited by electron
impact. This method has the disadvantage of possible cascade
contamination from higher states (Kim, 2007).
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The updated cross-section data set of H2 from Itikawa
and colleagues (Yoon et al., 2008) is shown in Fig. 19(e),
along with integrated cross sections for the H2

1Σu
þ and 1Πu

electronic excitation states assessed against BEf-scaling com-
putation for a wide energy range from threshold to 1000 eV.
Within the paradigm of the BEf-scalingmethod, the calculated
cross sections track reasonably well the experimental results
over the entire common energy range and are also mostly
consistent with the previously recommended data.

2. CO

Electron energy-loss spectra were measured (Kato et al.,
2007, 2009; Kawahara et al., 2008a) at various incident
energies in the range 20 to 200 eV for scattered electron
angles from 3.5° to 130°. A typical energy-loss spectrum
is plotted for the A1Π, C1Σþ þ c3Π, and E1Π states in
Fig. 20(a). The A1Π state consists of the vibrationally resolved
(ν0 ¼ 0–8) sublevels, while the optically forbidden c3Π
electronic state is almost degenerate in energy with the
C 1Σþ state. As there was no possibility, with the current
energy resolution, of uniquely resolving those c and C states,
no attempt by Kawahara et al. (2008a) and Kato et al. (2009)
was made to do so. Note that the A1Π electronic state
represents an excellent choice to test the BEf-scaling
approach, because it is a strong optically allowed transition
from the ground state and because it is isolated from the
other excited electronic states in the spectrum of CO [see
Fig. 20(a)].
Using the techniques and procedures described previously

in Secs. III and IV, Kato et al. (2007) and Kawahara et al.
(2008a) determined absolute DCSs for each of the vibrational
sublevels of the A1Π electronic state and for the C1Σþ þ c3Π,
and E1Π electronic states. The 100 and 200 eV data were then
converted into apparent GOS as a function ofK2 and a Vriens-
type fit (Vriens, 1967) performed in each case. Note that at
these higher energies the c3Π contribution will be very small
and can be effectively ignored. An example of this process for
the ν0 ¼ 2 sublevel of the A1Π electronic state can be found in
Fig. 20(b). Taking the limit as K2 → 0 a:u:, OOSs for each
vibrational sublevel of the A1Π state and for the C1Σþ and
E1Π states were subsequently determined. Those data are
summarized in Table 4 in the Supplemental Material [370] and
compared with other relevant experimental determinations
from Lassettre and Skerbele (1971), Chan, Cooper, and Brion
(1993a), Zhong et al. (1997), and Eidelsberg et al. (1999), and
theory from Kirby and Cooper (1989) and Chantranupong
et al. (1992). Typically the OOSs from Kato et al. (2007) and
Kawahara et al. (2008a) were found to be in good agreement
with those from Chan, Cooper, and Brion (1993a) and Zhong
et al. (1997). This demonstrates the elegance, power, and
usefulness of the limit theorem in Eq. (14). However, the
theoretical OOS values from Chantranupong et al. do not
agree with those from the experiments due to their vibrational
wave functions for higher ν0 being inaccurate.
The updated integral cross-section data sets of CO are

shown in Figs. 20(c)–20(e), with the ICS for the A1Π,
C1Σþ þ c3Π, and E1Π electronic excitation states from
Kato et al. (2007) and Kawahara et al. (2008a) benchmarked
against a corresponding BEf-scaling computation for a wide

energy range from threshold to 1000 eV. Here the theoretical
ICSs are determined from the work of Chantranupong et al.
(1992). Also shown in Figs. 20(c)–20(e) are other experi-
mental results from Lassettre and Skerbele (1971), Trajmar,
Williams, and Cartwright (1971), Zobel et al. (1996),
Zhong et al. (1997), and Zetner, Kanik, and Trajmar
(1998), and a Landölt-Bornstein compilation (Brunger,
Buckman, and Elford, 2003). A Born-Rudge calculation result
from Chung and Lin (1974) is also plotted where possible.
For the A1Π state in Fig. 20(c), excellent agreement was
found between the experimental and BEf-scaled ICS for each
vibrational sublevel. For the C1Σþ þ c3Π states in Fig. 20(d),
at the higher (>30 eV) energies, the C1Σþ BEf-scaling
calculation is in good agreement with the experimental data
and most of the other experimental data at least to within the
stated uncertainties on those ICS (Kawahara et al., 2008a). At
lower (<30 eV) energies, however, the available ICS tend to
be somewhat higher in magnitude than the BEf-scaling result.
This discrepancy is due to the contribution from the c3Π state
that cannot be experimentally resolved. For the E1Π state,
there is again excellent agreement between the experimental
data and the BEf-scaled result. This can be clearly seen in
Fig. 20(e).
Finally, in Fig. 20(f) we update the recommended data

compilation for CO of Zecca, Karwasz, and Brusa (1996) to
incorporate both the measured ICS of Kawahara et al. (2008a)
and their BEf-scaling results. Only the manifold A1Π integral
cross section has been plotted here. A plot such as Fig. 20(f) is
illustrative in showing that the contribution of the excited
electronic states in CO to the total cross section is really quite
small. Nonetheless, it is the emissions from precisely those
excited states that, for just one example, provide important
remote sensing opportunities for studying planetary atmos-
pheres (Campbell and Brunger, 2013). Itikawa (2015) recently
compiled a recommended data compilation for electron-CO
scattering. This database incorporates all the results from
Kawahara et al. (2008a), including their BEf-scaling
computations.

3. O2

EELS were measured at various incident energies in the
range 15 to 200 eV for scattered electrons ranging from 2° to
130°. A typical energy-loss spectrum from Suzuki et al.
(2011) is plotted for the B3Σu

− [the Schumann-Runge (SR)
continuum], E3Σu

− ðv0 ¼ 0Þ [longest band (LB)], and
E3Σu

− ðv0 ¼ 1Þ [second band (SB)] electronic excitation
states in Fig. 21(a), over the energy-loss range from 4.9 to
14.4 eV and at E0 ¼ 100 eV and θ ¼ 5.1°. The electronic-
state spectroscopy of O2 is actually quite complicated
(Cartwright, 2005), as indicated in Fig. 21(b), and it is well
known that the SR continuum, LB, and SB states in O2 suffer
from the effects of extensive Rydberg-valence interactions in
varying degrees (Lefebvre-Brion and Field, 1986). In particu-
lar, it is generally considered (Lewis et al., 2001) that these
Rydberg-valence perturbations lead to an anomalous (non-
Franck-Condon) behavior in the vibrational intensity distri-
bution of the E3Σu

− state. This is seen in Fig. 21(c) where an
avoided level crossing is apparent. Hence, the LB and SB
transitions actually arise as excitations from the ground
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molecular state of O2 to the lowest two members of the
vibrational progression in the excited E3Σu

− electronic state.
Despite the complicated valence electronic structure of O2,

Suzuki et al. (2011) were able to measure cross sections
for the SR, LB, and SB states. Those data are plotted in
Figs. 21(d)–21(f), respectively, where they are compared to
corresponding experimental ICSs from Lassettre, Silverman,
and Krasnow (1964), Trajmar, Williams, and Kuppermann
(1972), Wakiya (1978), Newell, Khakoo, and Smith (1980),
Shyn, Sweeney, and Grafe (1994), and Shyn, Sweeney, Grafe,
and Sharp (1994). For the case of the SR continuum, ICSs
derived from electron-transport (swarm) data by Hake and
Phelps (1967) are also plotted. Plane-wave Born ICSs and
BEf-scaled ICSs were additionally determined by Suzuki
et al. (2011), with those results also being shown in
Figs. 21(d)–21(f). For the SR continuum, Suzuki et al.
(2011) used the experimental GOS of Xu et al. (2010) to
determine the unscaled Born ICS and the accurate OOS
from Chan, Cooper, and Brion (1993b) to then effect the

BEf-scaling method; for the LB and SB states the unscaled
Born ICSs were found using the theory results from Li et al.
(1992), while the required accurate OOSs were taken from
Ogawa and Ogawa (1975) and Lewis et al. (1988),
respectively.
Finally, but only for the SR continuum, in Fig. 21(d) some

theoretical impact parameter ICSs (Garrett et al., 1985;
Laricchiuta, Celiberto, and Capitelli, 2000) and a Born-
Ochkur level ICS (Chung and Lin, 1980) are given. The
following points are worth noting: (1) For the SR-continuum
transition, the absolute values of the Suzuki et al. (2011)
experimental ICS were largely consistent with the higher
(>100 eV) energy experimental data and the calculations
available. Their data in the other lower (<100 eV) energy
range were also appropriate for the trend of the earlier
measured cross sections over the entire energy range, although
this agreement was more marginal with the previous results
from other groups (Suzuki et al., 2011) that showed more
scatter. The experimental SR-continuum ICSs of Suzuki et al.
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were systematically higher in magnitude than their corre-
sponding BEf-scaling results, for energies less than about
100 eV, suggesting contamination from the accidentally
degenerate or near-degenerate states of C3Πg and d1Πg
classification. (2) For the LB, there is significantly less
measured data and no other theory against which we can
compare the recent Suzuki et al. (2011) results. The break-
down in the applicability of the BEf-scaling method emerged
here due to the well-known (Lewis et al., 2001) strong
Rydberg-valence perturbations that affect the E3Σu

−
(v0 ¼ 0) state in O2. Thus any use of the BEf-scaling ICSs
for systems with strong interchannel coupling should be
undertaken with caution. (3) For the SB, through the assess-
ment of Suzuki et al. (2011) by applying the BEf-scaling
method, a more reliable ICS can now be provided.
The original recommended cross-section database for O2

from Itikawa (2009) can now be updated to use the measured
and/or BEf-scaled O2 ICSs from Suzuki et al. (2011). This is
illustrated in Fig. 21(g). Further updates of that recommended

set, to incorporate ICSs for the ν0 ¼ 0 → 2, 3, and 4 ground-
state vibrational excitation processes, using data from Noble
et al. (1996), should probably also be contemplated.

4. CO2

We now shift our focus away from diatomic species to
consider a series of triatomic molecules, namely, CO2, N2O,
OCS, and H2O. The first of these molecules that we consider
is CO2, which was identified (Morrison and Greene, 1978) as
being an important constituent in the atmospheres of Venus
and Mars in terms of electron energy transfer processes. It is
also well known to play a significant role in global warming
on planet Earth. EELS spectra were measured by Kawahara
et al. (2008b) at various incident energies in the range 30 to
200 eV, and for scattered electron angles from 3.5° to 130°. A
typical energy-loss spectrum is plotted, that includes the 1Σu

þ

and 1Πu excitation states, in Fig. 22(a), over the energy-loss
range from ∼6 to 14 eV and at E0 ¼ 100 eV and θ ¼ 15°.
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From EELS such as in Fig. 22(a), absolute DCSs for both
the 1Σu

þ and 1Πu electronic states were derived following the
methods outlined earlier in Sec. III. Those cross sections were
then transformed, using Eqs. (5a) and (10b), to GOSs as a
function of K2. Subsequently, on the 100 and 200 eV data of
Kawahara et al. (2008b), a Vriens analysis (see Sec. IV) was

performed with the results from this process being given in
Fig. 22(b). Also shown in Fig. 22(b) are corresponding results,
although from experiments for which the incident electron
energies were 300 and 500 eV, from Klump and Lassettre
(1978). To within the uncertainties on both sets of data, we
see that they are largely consistent. Using the limit theorem,
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Eq. (14), Kawahara et al. (2009) determined OOSs for both
the 1Σu

þ and 1Πu electronic states. Those data are presented in
Table 5 in the Supplemental Material [370], where they are
compared to other experimental results from Inn, Watanabe,
and Zelikoff (1953), Klump and Lassettre (1978), and Chan,
Cooper, and Brion (1993c), and with theoretical results from
McCurdy and McKoy (1974), Padial et al. (1981), and
Buenker et al. (2000). While the measured results, for both
electronic states in question, of Chan, Cooper, and Brion
(1993c) and Kawahara et al. (2008b) are in good accord, none
of the available theories reproduce them very well. This
indicates an inadequacy in the target basis description of the
1Σu

þ and 1Πu states in all of those calculations (McCurdy and
McKoy, 1974; Padial et al., 1981; Buenker et al., 2000).
Employing the derived apparent GOS for each state in

Eq. (20) and using Eqs. (38), Kawahara et al. (2008b)
determined relevant ICS with those results for the 1Σu

þ state
being plotted in Fig. 22(c) and for the 1Πu state in Fig. 22(d).
Note that here the new results in Kawahara et al. incorporated
data from measurements independently made at Sophia
University and Flinders University, and that at the common
energy of 30 eV the agreement between them was excellent.
Also plotted in Figs. 22(c) and 22(d) are ICSs from Klump and
Lassettre (1978) and BEf-scaling results that were originally
determined from the work of Buenker et al. (2000),
BE scaling, and then corrected using the OOSs from Chan,
Cooper, and Brion (1993c), in each case, to effect the
f-scaling procedure. It is clear from Figs. 22(c) and 22(d)
that, over the common energy range, the BEf-scaling ICSs
were found to be in good agreement with the measured data.
Thus, once again, the efficacy of the BEf-scaling method has
been demonstrated here for the first time for a triatomic
molecule.
The updated cross-section data set of CO2 from Itikawa

(2002) is shown in Fig. 22(e), with the ICS from Kawahara
et al. (2008b) for the 1Σu

þ and 1Πu electronic excitation states
being assessed against their own BEf-scaling computation
for a wide energy range from threshold to 1000 eV. The
interesting thing about Fig. 22(e) is that for CO2 there appears
to be a database that covers many of the relevant scattering
processes and an extended energy range. The data are absolute
and if also correct, the threefold requirement we outlined
earlier for a database to be useful in modeling and simulation
applications would appear to be met here.

5. N2O

EELS spectra were measured by Kawahara et al. (2009) at
various incident energies in the range 15 to 200 eV, and for
scattered electron angles from 2° to 130°. A typical energy-
loss spectrum is plotted that includes the C1Π and D1Σþ

electronic excitation states of interest in Fig. 23(a) over the
energy-loss range from 4 to 13 eV and at E0 ¼ 100 eV and
θ ¼ 4.3°. Note that, as indicated in this figure, some d3Π
contribution to the C1Π dipole-allowed excitation and some
23Π contribution to the D1Σþ dipole-allowed excitation may
be important here. N2O is isoelectronic with CO2, both
molecules are linear triatomics and both species have very
similar dipole polarizabilities (Kawahara et al., 2009).
However, while CO2 is nonpolar, we find that N2O has a

weak permanent dipole moment of ∼0.16 D (Jalink, Parker,
and Stolte, 1987) and, more importantly, CO2 has a C2v point
group symmetry while that for N2O is C∞v. Therefore we
would, at best, expect to find only a qualitative similarity in
the valence electronic structures of CO2 and N2O and this is
indeed what we observe when we compare Fig. 22(a) for CO2

with Fig. 23(a) for N2O.
Following the now established process, Kawahara et al.

(2009) transformed their measured DCSs for the C1Π and
D1Σþ electronic states into apparent generalized oscillator
strengths as a function of K2. From those, estimates for the
ICS of both of these states could then be obtained at each
energy studied. If we consider the GOS vs K2 result of
Kawahara et al. (2009) for their highest energy measured
(200 eV), where any triplet contribution would be effectively
zero or small enough to be ignored, and considering only for
the D1Σþ electronic state here, we find the result given in
Fig. 23(b). Also plotted in Fig. 23(b) are corresponding
2.5 keV results from Zhu, Sun, and Xu (2007), 1 keV results
from Boechat-Roberty et al. (2000), and a Vriens-type fit
(Vriens, 1967) to all three sets of the experimental results. A
good fit to the measurements is observed, leading to (using the
limit theorem) an estimate of the OOS as tabulated in Table 6
in the Supplemental Material [370].
This same approach for the C1Π electronic state was also

followed by Kawahara et al. (2009), and that value for the
OOS is also listed in Table 6 in the Supplemental Material
[370]. The results from Kawahara et al. (2009) are compared
with earlier measurements from Zelikoff, Watanabe, and Inn
(1953), Rabalais et al. (1971), Huebner et al. (1975), Lee and
Suto (1984), and Chan, Cooper, and Brion (1994), as well as a
theory result from Chutjian and Segal (1972) in that table.
Good agreement is generally found between the measured
data, except for the OOS from Zelikoff, Watanabe, and Inn
(1953), for both states.
While the main focus of this review is on examining the

validity of the scaling approaches we introduced, we continue
to highlight the OOS results, in our consideration of dipole-
allowed discrete excitations, for the following two reasons.
First, for the experimentalists, the determination of the
OOS and its comparison to independent results provides a
self-consistency check for their measurement techniques and
analysis. Second, for the theoreticians, an accurate OOS gives
a strong benchmark for the quality of the target basis set
description being used for the species in question. A good
description of the wave function will lead to a theoretical OOS
in good agreement with an accurate experimental OOS.
However, if that agreement is not found, then this is an
indication that the target wave function is inaccurate. Of
course if the target description is inaccurate, scattering cross
sections computed with that wave function will also likely be
inaccurate.
Shown in Fig. 23(c) are the ICSs for electron-impact

excitation of the C1Π electronic state from Kawahara et al.
(2009). Also plotted is a BEf-scaled ICS that employed the
theoretical work of Peyerimhoff and Buenker (1968) to
compute the unscaled Born cross section and the accurate
OOS from Chan, Cooper, and Brion (1994) and an exper-
imental result from Zhu, Sun, and Xu (2007). For energies
greater than about 40 eV, excellent agreement is found
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between the BEf-scaled ICS and all the measured data. For
energies <40 eV, however, the experimental ICS is larger in
magnitude than that predicted by the BEf-scaled result. This
observation we believe is likely to be explained by the d3Π
state contribution [the d3Π state strongly overlaps the C1Π

state in the EELS of Fig. 23(a)] to the measured C1Π signal
at those lower energies. A similar story is also found in
Fig. 23(d) for the D1Σþ electronic state, although in this case
it is the 23Π electronic state that contributes to the D1Σþ

intensity. The results in Figs. 23(c) and 23(d) raise an
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intriguing possibility. On the basis of the level of accord we
saw earlier for other molecules, if we accept the validity of the
BEf-scaled results for the C1Π and D1Σþ electronic states
here then we could subtract in each case their ICSs from the
measured cross sections (Kawahara et al., 2009) with the
result being estimates for the d3Π and 23Π ICSs, respectively.
As it is unlikely those triplet cross sections will be measured
directly, this perhaps allows an expansion of the N2O database
beyond what is currently available.
The updated cross-section data set of Zecca and colleagues

(Karwasz, Brusa, and Zecca, 2001) for N2O is shown in
Fig. 23(e), with the ICS of Kawahara et al. (2009) for the C1Π
and D1Σþ electronic excitation states assessed against their
own BEf-scaling computation for a wide energy range from
threshold to 1000 eV. It is clear from Fig. 23(e) that the
recommended data set from Karwasz, Brusa, and Zecca
(2001) is far from complete, suggesting that more work needs
to be undertaken in N2O before the threefold requirement
is met.
Electronic-state spectroscopy of another linear triatomic

molecule, namely, carbonyl sulphide (COS), has recently been
investigated using high resolution vacuum ultraviolet photo-
absorption spectroscopy and electron energy-loss spectros-
copy in the energy-loss range of 4.0 to 10.8 eV. The absolute
optical oscillator strengths derived from the photoabsorption
cross section are determined for the 1Σþ and 1Π transitions,
which agreed well with the corresponding f0 values derived
by applying a generalized oscillator strength analysis. ICSs
predicted by the BEf-scaling approach for those same
electronic states are confirmed from 300 down to 60 eV in
the intermediate-energy range. For more details, see Limão-
Vieira et al. (2015).

6. H2O

Given that the approximate chemical composition (by
weight) of a biological cell is 70% water, 24% macromole-
cules (proteins, nucleic acids, polysaccharides), and 4%
inorganic ions, sugars, and amino acids, it is not surprising
that in order to quantitatively assess a radiation dose and any
radiation induced damage in biological matter water (H2O) is
a pivotal compound. Indeed, water is often used as the default
molecule to represent living tissue in Monte Carlo simulations
(Agostinelli et al., 2003; Allison et al., 2006; Muñoz
et al., 2007; Salvat, Fernández-Varea, and Sempau, 2011;
Champion, Le Loirec, and Stosic, 2012) for describing
charged-particle interactions within living tissue. EELS spec-
tra were measured at various incident energies in the range 20
to 200 eV, for scattered electron angles from 3.5° to 130°. A
typical energy-loss spectrum from Thorn et al. (2007b) is
plotted for the relevant excitation states in Fig. 24(a), over the
energy-loss range from 6 to 11 eV and at the kinematical
conditions of E0 ¼ 200 eV and θ ¼ 3°. The A1B1 excitation,
in particular, is an important channel for the production of the
OH radical. However, even for this important molecule, there
are currently only scanty experimental and theoretical results
for its electronic excitations (Thorn et al., 2007b, 2007a;
Brunger, Thorn, Campbell, Diakomichalis et al., 2008; Ralphs
et al., 2013; Rescigno and Orel, 2013; White et al., 2014b; de
Urquijo et al., 2014).

The main dipole-allowed transition in water corresponds
to the ~X 1A1 → ~A 1B1 transition and was the focus of the
work of Thorn et al. (2007b). Extensions of that original study
were later provided by Thorn et al. (2007a), Brunger, Thorn,
Campbell, Diakomichalis et al. (2008), and Thorn, Campbell,
and Brunger (2009), with that last work providing an
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extensive set of ICSs for discrete inelastic processes in H2O
that were incorporated in the database for electron swarm
studies in H2O (Ness et al., 2012) and H2O and He mixtures
(de Urquijo et al., 2014). Work on a subset of the electronic
states of water was given by Ralphs et al. (2013) and Rescigno
and Orel (2013).
Concentrating on excitation of the ~A1B1 electronic state, in

Fig. 24(b) we show the results of the GOS vs K2 and Vriens-
type fit (Vriens, 1967) from Thorn et al. (2007b). In this case,
data at both 100 and 200 eV are shown, with the limit theory
(K2 → 0) OOS from that analysis being listed in Table 7 in
the Supplemental Material [370]. Independent experimental
determinations for this OOS from Laufer and McNesby
(1965), Lassettre and White (1974), Lee and Suto (1986),
Chan, Cooper, and Brion (1993d), and Yoshino et al. (1996,
1997) are also shown in Table 7, as are theoretical results from
Buenker and Peyerimhoff (1974), Wood (1974), Williams and
Langhoff (1979), Diercksen et al. (1982), Theodorakopoulos
et al. (1985), Phillips and Buenker (1987), Bhanuprakash
et al. (1989), and Durante et al. (1995). The OOS from Thorn
et al. (2007b) for the A1B1 state is in excellent agreement with
many of the other experimental results (Lee and Suto, 1986;
Chan, Cooper, and Brion, 1993d; Yoshino et al., 1996, 1997)
and some of the theory (Phillips and Buenker, 1987; Durante
et al., 1995) as well as with the recommended value of
Berkowitz (1979).
Following procedures very similar to those outlined in

Secs. III and IV, Thorn et al. (2007b) derived ICS as a function
of energy between 20 and 200 eV. Those data are plotted in
Fig. 24(c), along with an adiabatic-nuclei-R-matrix result
from Gorfinkiel, Morgan, and Tennyson (2002), a close-
coupling complex Kohn calculation from Gil et al. (1994), and
higher energy ICSs as measured by Lassettre and White
(1974). Unscaled Born cross sections were generated from the
work of Durante et al. (1995), while the BEf-scaling ICS was
achieved with the recommended OOS from Berkowitz (1979)
with those results also being plotted in Fig. 24(c). Finally, a set
of ICS from Flinders University (circles) can be found in
Fig. 24(c). Those data were determined by a molecular phase-
shift analysis (MPSA) procedure (Campbell et al., 2001) that
did not include a Born-dipole term. As the dipole moment of
water has a large effect on the very forward angle DCS, the
MPSA results failed to provide a physical extrapolation to
θ ¼ 0° and, in spite of the sin θ weighting term in the
calculation of an ICS from a DCS, gave ICS that were too
low in magnitude.
This illustrates the importance of allowing for the molecular

dipole in polar species in trying to derive accurate ICS from
DCSs that have been measured only over a finite scattered
electron angular range. In general, Fig. 24(c) indicates that for
the ~A1B1 electronic state the BEf-scaling ICS does a good job
in reproducing the experimental data over the common
(extended) energy range. However, before proceeding, we
note the following. For the energies between 20 and 50 eV
most of the DCSs were measured at Flinders University, with a
couple of crosscheck DCSs, at one or two θ, also being
determined at Sophia University. While all those data from
both the laboratories overlapped to within their error bars, the
Sophia University results were typically a little larger in
magnitude. As a consequence, on the basis of obtaining a

better quality GOS fit, the Flinders University data were
scaled by Kim to the Sophia University data. This we believe
was a reasonable approach given the scaling was typically
modest and the error bars overlapped.
Since the Flinders and Sophia University investigation, two

more studies of note by Ralphs et al. (2013) and Rescigno and
Orel (2013) have become available for a subset of the
electronic states in water and including the ~A1B1 state. The
first of these studies was an experimental investigation
(Ralphs et al., 2013), while the latter was theoretical
(Rescigno and Orel, 2013). If we concentrate on the ~A1B1

state, then at 15 and 20 eV there is quite good agreement
between Ralphs et al. and Rescigno and Orel, with both being
larger in magnitude than the experimental and BEf-scaled
results in Thorn et al. (2007b). For energies less than 15 eV,
however, there is now a significant disagreement between
Ralphs et al. (2013) and the theory (Rescigno and Orel, 2013),
with the measured ICS being much larger in magnitude than
the Kohn calculation. Thus the picture for the A1B1 state no
longer appears to be as clear cut as indicated in Fig. 24(c).
There are, however, two pieces of further information we need
to consider before any final judgment can be made.
The first is that in their electron-transport studies in pure

H2O and H2O=He mixtures, White and colleagues (Ness
et al., 2012; de Urquijo et al., 2014) essentially used the BEf-
scaling result for the A1B1 state in their H2O cross-section
database when solving the Boltzmann equation. As the
simulated transport coefficients were in excellent agreement
with the measured transport coefficients, this provides some
independent evidence in support of the BEf-scaling result.
Second, Lima and colleagues recently established the impor-
tant role of multichannel-coupling effects in electron-
molecule scattering (da Costa et al., 2014, 2015; Neves et al.,
2015a). In essence, if an ab initio calculation is performed
with a limited target basis, namely, if the incident electron
energy is high enough to access physical channels that are not
included in the basis description, the calculated cross sections
will always be higher, sometimes significantly higher (by
orders of magnitude) than the “correct” result. In their
calculation, Rescigno and Orel (2013) included eight states
in their basis, whereas in fact at 15 eV there are 25 electronic
states that are accessible. Assuming multichannel-coupling
effects are important in water, as they are likely to be, we can
expect the ~A1B1 integral cross section of Rescigno and Orel
(2013) to drop in energy and in doing so move toward the
BEf-scaling result. This is also precisely what we saw earlier
for neon (Hoshino, Murai, Kato, Itikawa et al., 2013;
Hoshino, Murai, Kato, Brunger et al., 2013). Nonetheless,
electronic-state excitation in water remains something of an
open question.
If we followed our recent practice, we would now update

the recommended cross-section database of Itikawa and
Mason (2005) to incorporate the result from Thorn et al.
(2007b). However, it is now generally accepted in the
community, and demonstrated quite transparently from the
work of White and colleagues (Ness et al., 2012; de Urquijo
et al., 2014), that this database (Itikawa and Mason, 2005) is
inadequate and in need of revision and expansion. Therefore,
unlike with Fig. 21(g) for O2, Fig. 22(e) for CO2 and so on, we
do not provide an updated figure here.

Tanaka et al.: Scaled plane-wave Born cross sections for …

Rev. Mod. Phys., Vol. 88, No. 2, April–June 2016 025004-35



7. BF3

Boron trifluoride (BF3), a highly symmetric (D3h) and
planar molecule, has been extensively studied by photo-
absorption (Hagenow et al., 1989; Suto, Ye, and Lee,
1990) and photoelectron spectroscopies (Boyd and Frost,
1968; Bassett and Lloyd, 1971; Åsbrink et al., 1981;
Shpinkova, Holland, and Shaw, 1999; Yencha, Lopes, and
King, 2002; Mackie et al., 2003). BF3 has also attracted
interest with regard to its quite broad range of technological
applications as a sensitive neutron detector (Chen and Chung,
1997), as an alternative agent for plasma doping (Kruzelecky
et al., 1986), and for metal surface treatment (Gutiérrez,
Cárabe, and Gandía, 1992; Hunger and Löbig, 1997; Zhang
and Matsumoto, 2000; Yamamoto et al., 2006). Because of a
need for understanding its molecular properties in terms of
modeling phenomena in electron-assisted processes contain-
ing BF3, the first complete EELS of BF3 was provided by
Duflot et al. (2014) for energy loss ranging from 10 to 20 eV
and at impact energies of 40 to 300 eV.
In addition, they provided calculations showing a more

reliable assignment in the spectra (Duflot et al., 2014). The
major energy-loss bands, centered at 13.13, 13.98, 14.70,

15.56, and 16.10 eV, can be classified mainly as a mixture of
Rydberg-valence transitions due to the promotion of an
electron from the occupied to unoccupied molecular orbitals.
The lowest lying singlet excited state was previously reported
by Hagenow et al. (1989) and Suto, Ye, and Lee (1990), with a
maximum at 13.13 and 13.19 eV, respectively, which agrees
well with the value of 13.13 eV by electron-impact spectros-
copy (Duflot et al., 2014). This feature is assigned to the
transition [1A0

1 →
1E0, πð1e00Þ → π�ð2a002Þ] with the highest

calculated oscillator strength (∼0.4), and the others of
(nF → σ�) and (π → σ�) character are members of a
Rydberg series converging to the lowest ionization energies.
A generalized oscillator strength analysis was employed by

Duflot et al. (2014) to derive ICSs from the corresponding
DCSs for the strong optically allowed ðπ; 1e00Þ → ð2a002; π�Þ
transition. This work was restricted to 100, 200, and 300 eV
incident electron energies. While a comparison of their f0
value [0.210� 0.065, Fig. 25(a)] with the photoabsorption
data shows another assessment for verification and validation
of the electron measurement, the OOS value of Duflot et al.
(2014) is around 30% lower than the oscillator strength (0.26)
reported from Hagenow et al. (1989). Nonetheless it falls
within the experimental uncertainty and thus is not an
impediment when computing the corresponding ICS
(Duflot et al., 2014). In Fig. 25(b), the BEf-scaling curve
of Duflot et al. (2014) is depicted, although unfortunately we
are not aware of any other data in the literature to compare
this result with. However, as the BEf-scaling results are
consistent with their measured ICS, they will be appropriate
for use for the transition in question in any modeling studies in
which BF3 is an important constituent. We note, however, that
significantly more work into BF3 is still required before any
meaningful attempt to construct a recommended database for
such modeling studies could be contemplated.

8. C6H6

Benzene (C6H6), the simplest aromatic hydrocarbon, is a
very useful compound as a precursor in many organic
synthesis techniques in the petrochemical and pharmaceutical
industries. From a more fundamental perspective, it possesses
a large dipole polarizability (∼70 a:u:) and even though it is
nonpolar we might anticipate that its low-energy scattering
dynamics is dominated by its dipole polarizability.
Additionally, while benzene is a relatively large molecule
having 42 electrons, its high symmetry suggests that ab initio
electron-polyatomic molecule scattering calculations will in
principle be more tractable than would otherwise be the case.
Finally, benzene plays an important role in the chemistry of
some planetary atmospheres including haze formation on
Titan (Wilson, Atreya, and Coustenis, 2003) and in the
atmosphere of the protoplanetary nebula CRL618
(Cernicharo et al., 2001).
A typical energy-loss spectrum, for an incident electron

energy of 100 eV and a scattered electron angle of 5°, for
benzene from Kato et al. (2011) is shown in Fig. 26(a). The
two main dipole-allowed transitions are excitations of the 1B1u
and 1E1u electronic states, although we note that a 3E2g state
overlaps significantly with the 1B1u state and at lower energies
would therefore be expected to contribute to the observed
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spectral intensity. Following the practices outlined earlier in
Secs. III and IV, Kato et al. (2011), at E0 ¼ 100 and 200 eV,
derived apparent GOS vs K2 for both the 1B1u and 1E1u states
and then applied the limit theorem in each case to determine,
respectively, their OOS. An example for the 1E1u electronic
state of this process can be found in Fig. 26(b), while the OOS
of Kato et al. (2011) are compared to the results from other
measurements in Table 8 in the Supplemental Material [370].
Note that in Fig. 26(b) individual Vriens-type fits (Vriens,
1967) to the 100 and 200 eV data are shown. In Table 8 in the
Supplemental Material [370] the independent experimental
results are from Hammond and Price (1955), Pantos, Philis,
and Bolovinos (1978), Philis et al. (1981), Suto et al. (1992),
Feng, Cooper, and Brion (2002), and Boechat-Roberty et al.
(2004). Agreement is probably best between the determination
of Kato et al. (2011) and those from Hammond and Price
(1955), Pantos, Philis, and Bolovinos (1978), and Boechat-
Roberty et al. (2004).
Employing the derived apparent GOS for each state and at

each energy in Eq. (20) and using Eqs. (38), Kato et al. (2011)
determined relevant ICSs with those results for the 1B1u state
being plotted in Fig. 26(c) and for the 1E1u state in Fig. 26(d).
Also plotted are results for unscaled Born cross sections, using

Read and Whiterod (1965) with the BEf scaling being
performed using the OOS of Pantos, Philis, and Bolovinos
(1978) [as recommended by Berkowitz (1979)]. Considering
Fig. 26(c) first, we find that at the higher energies good
agreement between the measured ICS for the 1B1u electronic
state and the BEf-scaling result is found. At energies
<100 eV, however, the magnitude of the measured ICS for
the 1B1u state is larger than that from the BEf-scaling result.
As we alluded to earlier, there is a strong overlap between the
1B1u and 3E2g electronic states, so that the behavior we
observed in Fig. 26(c) might be ascribed to a strong triplet
contribution to the 1B1u intensity. In our discussion in
Sec. V.B.5 we noted that when such an overlap between a
singlet and a triplet state occurs, the BEf-scaling ICS might be
subtracted from the measured ICS in order to derive a cross
section for the optically forbidden triplet state. This is
precisely what Kato et al. (2011) did, with an estimate for
the 3E2g cross section also being plotted in Fig. 26(c). While
there are no independent calculations or experimental results
available for the cross sections of the 3E2g electronic state, the
data determined by Kato et al. (2011) are consistent with what
we might anticipate for electron-impact excitation of an
optically forbidden state.
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Finally, in Fig. 26(d) we considered the ICS for the 1E1u
electronic state. This is a very strong dipole-allowed transition
so that it is probably by now not too surprising that excellent
agreement is found between the measured ICS and their BEf-
scaling result for this state.
Recently, an extensive study on another ring compound

(phenol) was also reported (Jones et al., 2014; Neves et al.,
2015a, 2015b; da Costa et al., 2015). In that work they noted a
qualitative similarity between the energy-loss spectra of
benzene and phenol [see Fig. 26(a) and Jones et al.
(2014)], although with eight more electrons to accommodate
in phenol their electronic structures are in fact quite different.
In addition, with the lifting of the high symmetry in benzene
there are many more nondegenerate singlet and triplet states in
phenol than benzene. However, those states are very closely
spaced so the work in phenol was restricted to reporting OOS,
DCS, GOS, and ICS for bands of electronic states (Jones
et al., 2014; Neves et al., 2015b). In the case of bands 2–4,
BEf-scaling ICS were also reported (Neves et al., 2015b) and
given the scope in phenol for low-energy triplet contamination
and the high level of interchannel coupling (da Costa et al.,
2015) the actual level of accord between the BEf-scaling ICS
and the measured ICS was surprisingly good.

VI. CONCLUDING REMARKS

The understanding of radiation action on matter requires a
vast range of knowledge of atomic and molecular collision
cross sections. In particular, elementary interactions of elec-
trons with atoms and molecules are indispensable for model-
ing studies of radiation effects (Fuss et al., 2015). Inokuti
(1987) noted: “The cross section data are demanded to fulfill
the trinity of requirements: correct, absolute, and compre-
hensive.” Here the term comprehensive should be interpreted
to mean that the data pertain to a wide range of variables such
as the incident electron energy, the energy transfer to the
target, and the scattering angle. He also said, “Sometimes, it is
said that cross section data obtained from the measurements in
the gas phase are irrelevant to the condensed-phase and soft
matter problems.” This is clearly a wrong view, as explicitly
shown by McEachran et al. (2012) and White et al. (2014b) in
their recent work on charged-particle transport in liquids and
soft matter. Indeed, those parts of the cross-section data which
are governed by the motion of energetic electrons are certainly
always relevant to condensed phases. The term energetic
electrons means those electrons having kinetic energies far
exceeding the potential in the condensed phase. By contrast,
electrons of lower energies are in general subject to con-
densed-phase or coherent scattering effects.
Along with this strategy for the determination of reliable

cross sections as originally advised by Platzman, and as
summarized by Fano (1975), the Born-Bethe theory has been
best applied for testing the consistency of the cross sections as
long as the incident particle energy is much higher than the
interaction energy, that is, within the framework of perturba-
tion theory. This review emphasized the usefulness of
the Born-Bethe approximation along with the scalings dis-
cussed for ionization and discrete electronic-state excitation.
Its relation to optical transition probabilities—generalized
oscillator strengths—and to the plane-wave cross section lies

in it being the first term in the expansion in powers of the
interaction between an electron and a target atom or molecule.
Since the 1970s, the excellent success of the Born-Bethe
theory in representing the ionization process is seen in the
work of Kim (1975a, 1975b, 1975c), Miller and Manson
(1984), Rudd (1989), and Inokuti et al. (1994) on the energy
distribution of secondary electrons from electron impact.
This review also emphasized the following three aspects:

(1) a simple universal improvement introduced in the BEB
scaling model, that is, the plane-wave Born cross section
scaled by the “Burgess denominator,” extends the potential of
the Born-Bethe approximation into the intermediate energy
region, thereby bridging the gap between the two regions
categorized conventionally as “slow” and “fast” collisions.
This entire energy range is of great importance in many areas
of radiation science, plasma physics, atmospheric science, and
other phenomena where electron-driven processes play a role
(Duque et al., 2015). In addition, (2) the BEB scaling model
can serve to represent integral cross sections in an analytical
expression and distinguish it from the data fitting often used
instead. In the absence of analytical expressions, integral
cross-section values must be prepared in the form of a table,
which are often available only at intermittent energy values or
over a limited energy range so that reliable data interpolation
and extrapolation is required. This point is equally valid for
differential cross sections, in terms of finite values of the
scattered electron angle only being available and that they are
not available for all angles between 0° and 180°. Furthermore,
(3) this scaling paradigm includes two approaches, computa-
tional and experimental; when it is experimentally difficult to
obtain cross sections, the computational approach may be
applied to estimate the cross section from simple wave
functions, or vice versa. The scaling model is clearly at an
advantage, both as being easier to implement and economical
in terms of computational cost, compared to fully ab initio
methods.
Additionally, we presented some of the problems in

performing accurate measurements of these targets that were
encountered at Sophia University, although they are in fact
general to all crossed-beam spectrometers. We have also
carefully selected the data that can provide valuable bench-
marks for checking the range of validity of the BEf-scaling
model and for comparing with different theoretical models
and with the normalization of measurements of cross sections
from other groups. Although the data presented here are now
well established, there is always a need for periodic
reappraisal to identify the most accurate cross sections
available. The new data are the result of continued improve-
ments in experimental techniques and/or theoretical compu-
tations. Electron-impact ionization cross sections successfully
calculated for many atoms and molecules by the BEB
theory have been compiled, as a general database accessible
from the NIST website (http://www.nist.gov/pml/data/
ionization). This review, which may also be viewed as that
database’s extension, provides the current database for opti-
cally allowed discrete transition cross sections of neutral
atoms and molecules by electron impact and points to the
need for a web-based database that focuses on discrete
electronic excitation that is similar to that of NIST for
ionization.
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LIST OF SYMBOLS AND ABBREVIATIONS

BB Bethe-Born theory. Bethe’s pioneering
treatment of charged-particle inter-
actions with atoms and molecules, using
the Born approximation.

BDA Born-dipole approximation. A method
to calculate rotational excitation cross
sections, which might then be summed
to vibrationally determine elastic or
vibration excitation data.

BE Binary-encounter models. Each atomic
electron viewed as in a binary encounter
with the projectile electron and thus
acquiring the full momentum trans-
ferred.

BE scaling Adding the binding energy B to the
incident electron kinetic energy T, and
to the ejected electron energy W in
ionization cross sections or to the excita-
tion energy in excitation cross sections.

BV scaling Burgess-Vriens scaling.Use of the orbital
kinetic energy in place of the energy
transfer in ionization cross sections.

BEB Binary-encounter Bethe. A simplifica-
tion of the BED model with a simpler
form of the dipole oscillator strength.

BED Binary-encounter dipole. Binary-
encounter cross sections corrected to
reflect the asymptotic behavior given
by the dipole contribution that domi-
nates in this limit.

BEf scaling A combination of BE and f scaling, in
which ionization and excitation ener-
gies and dipole oscillator strengths are
used to scale cross sections.

BEQ Q-parametrized binary encounter, a
more general case of the simplification
of the BED model, in which setting
Q ¼ 1 gives the BEB.

Bethe sum rule Closely related to the Thomas-Reiche-
Kuhn sum rule for the optical limit, it
states that the total oscillator strength of
an atomic system must sum to the
number of oscillators, that is, the total
number of electrons in the system.

BO Born-Oppenheimer approximation in
which the large mass difference between
an electron and the nuclei, and conse-
quent difference in their velocities, is
used to separate adiabatically the two
motions.

CC Close-coupling method. An expansion
of the (N þ 1)-electron wave function
in terms of a complete set of N-electron
basis functions.

CCC Convergent close-coupling method. A
close-coupling expansion in a very large
basis set that yields well-converged
results.

DCS Differential cross section.

DM Deutsch-Märk method. A semiclassical
formalism to calculate electron-impact
ionization cross sections.

Dipole oscillator
strength f

A measure of the response of an atomic
system to electromagnetic radiation. It
provides the strength of the coupling of
the electrons over spectral frequency
intervals, whether in the discrete or
the continuum.

EELS Electron energy-loss spectroscopy.

f scaling Scaling the Born cross section by the
ratio of the accurate to the Born values
of the optical oscillator strength.

FC Franck-Condon principle and factor. An
electronic transition in a molecule takes
place so rapidly on the time scale of
motion of the nuclei that they may be
assumed to be frozen, resulting in a
“vertical” transition at fixed internuclear
radius R. Thereby, that contribution
reduces to a simple factor, the squared
overlap of the corresponding vibrational
wave functions at that R.

FOMBT First-order many-body theory.

Form factor Widely used in physics to describe the
response of a system to an external
disturbance, it is a matrix element of
an operator between states of the system
independent of details of the disturber.
In scattering, it depends only on the
target, not the projectile.

GOS Generalized oscillator strength. Intro-
duced by Bethe, and closely related to
the atomic form factor, it is the Fourier
component of the electronic charge
distribution associated with the transi-
tion. Its square gives the scattering cross
section, whereas for small momentum
transfer it reduces to the optical or
dipole oscillator strength.

ICS Integral cross section.

MTCS Momentum transfer cross section.

OOS Optical oscillator strength, the same as
the dipole oscillator strength f.

PWB Plane-wave Born: first Born approxi-
mation, with the incident charged-
particle considered undeflected and de-
scribed by a plane wave.

R matrix A method that connects solutions at
small radius to those in the outer region
through the logarithmic derivative at the
boundary between the regions.

Scattering
amplitude

With dimensions of length, it is the
matrix element whose squared modulus
gives the scattering cross section.

siBED The BED model with a shielded long-
range dipole potential.

TCS Total cross section.
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