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Coulomb drag is a transport phenomenon whereby long-range Coulomb interaction between charge
carriers in two closely spaced but electrically isolated conductors induces a voltage (or, in a closed
circuit, a current) in one of the conductors when an electrical current is passed through the other. The
magnitude of the effect depends on the exact nature of the charge carriers and the microscopic, many-
body structure of the electronic systems in the two conductors. Drag measurements have become part
of the standard toolbox in condensed matter physics that can be used to study fundamental properties
of diverse physical systems including semiconductor heterostructures, graphene, quantum wires,
quantum dots, and optical cavities.
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I. FRICTIONAL DRAG

Inner workings of solids are often studied with the help of
transport measurements. Within the linear response, the out-
come of such measurements is determined by the properties of
the unperturbed system, which are often the object of study. In
a typical experiment a current is driven through a conductor
and the voltage drop along the conductor is measured. In
conventional conductors at low temperatures the resulting
Ohmic resistance is mostly determined by disorder (which is
always present in any sample) (Ziman, 1965; Lifshitz and
Pitaevskii, 1981), while interactions between charge carriers
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lead to corrections that affect the temperature dependence of
transport coefficients (Altshuler and Aronov, 1985).
In his pioneering work, Pogrebinskii (1977) suggested an

alternative measurement that involves two closely spaced, but
electrically isolated conductors (hereafter referred to as
“layers”). In such a system, an electric current I1 flowing
through one of the layers, known as the “active” layer, induces a
current (or, in an open circuit, a voltage V2, see Fig. 1) in the
other, “passive” layer bymeans of “mutual friction.”By this one
typically understands scattering between charge carriers belong-
ing to different layers due to long-range interactions. These
scattering events are accompanied by energy and momentum
transfer from the carriers in the active layer to the carriers in the
passive layer, effectively “dragging” them along. At the simplest
level, such friction effects can be described by introducing a
phenomenological relaxation rate. In the case of frictional drag,
the corresponding rate τ−1D generally depends on the exact nature
of the charge carriers, interlayer interaction, and microscopic
structure of the electronic system. Thus, measurements of this
relaxation rate provide additional insight into microscopic
properties of interacting many-body systems.
A related phenomenon, where a quasiparticle flow insti-

gates a partial transfer of energy and momentum between
separate, but interacting subsystems of quasiparticles, is known
as “phonon drag” (Gurevich, 1946a, 1946b;Herring, 1954) and
manifests itself in a rising thermoelectric power in semi-
conductors at low temperatures (Frederikse, 1953; Geballe
and Hull, 1954). In the presence of a temperature gradient,
lattice vibrations become anisotropic since the phonons travel
preferentially from hot to cold (providing a mechanism for
thermal conduction). Interacting with electrons, the phonons
effectively drag them toward the cold end of the sample,
creating an excess charge density (this process continues until
the electrostatic field created by the accumulated charge
counterbalances the drag effect). In a nonequilibrium system
of electrons and phonons, their mutual drag is intertwined with
heating effects and affects charge transport (Gurevich and
Mashkevich, 1989). The resulting correction to the standard
transport theory is important in thermoelectric measurements.
In contrast, frictional drag in double-layer systems is not a

correction: in the absence of the interlayer interaction, charge
carriers in two disjoined conductors are insensitive to each
other (therefore, any drag effect should necessarily vanish in the
limit of infinitely remote layers). In other words, the drag
phenomenon simply does not exist in noninteracting systems.
Consequently, initial experimental work on mutual drag was
devoted to quantitative measurement of the strength of inter-
actions between quasiparticle subsystems in various semicon-
ductor devices including p-modulation-doped GaAs quantum
wells (Höpfel et al., 1986; Höpfel and Shah, 1988), capacitively
coupled two- and three-dimensional (2D-3D) electron
systems in AlGaAs/GaAs heterostructures (Solomon et al.,
1989; Solomon and Laikhtman, 1991), 2D electron systems in
AlGaAs/GaAs double quantum wells (Gramila et al., 1991,
1992, 1994; Solomon and Laikhtman, 1991; Eisenstein, 1992),
and electron-hole bilayers (Sivan, Solomon, and Shtrikman,
1992). Numerical simulations of the drag effect between 3D
systems were performed by Jacoboni and Price (1988) and
between 2D systems byMoško, Cambel, and Mošková (1992),
Cambel and Moško (1993), and Mosko, Pelouard, and Pardo

(1994). At low temperatures and for closely spaced layers, the
interlayer scattering rate τ−1D appeared to be dominated by the
Coulomb interaction (Price, 1983, 1988).
Coulomb drag between spatially separated electron systems

is ultimately caused by fluctuations (or inhomogeneities) of
the charge density in the two layers (Zheng and MacDonald,
1993). Indeed, an infinite layer with uniformly distributed
electric charge creates a uniform electric field in the normal
direction that does not exert any lateral force upon the carriers
in another layer. If both layers are in the Fermi-liquid state,
then the usual phase-space argument (Gramila et al., 1991)
yields the quadratic temperature dependence τ−1D ∝ T2 in
qualitative agreement with the observed behavior at low
enough temperatures. A more detailed analysis of the exper-
imental data revealed the presence of additional mechanisms
leading to frictional drag, such as the indirect interlayer
interaction mediated by phonons (Gramila et al., 1993;
Rubel et al., 1995, 1996; Noh et al., 1999), plasmon effects
(Hill et al., 1997; Noh et al., 1998), and thermoelectric
phenomena (Solomon and Laikhtman, 1991).
Theoretically, it was realized early on that mutual Coulomb

scattering between electrons in the two layers results in the
exchange of both energy and momentum (Price, 1983; Boiko
and Sirenko, 1988; Maslov, 1992). Initial calculations aimed
at energy and momentum relaxation in a nondegenerate 2D
electron gas (2DEG) due to proximity to a 3Dconductor (Boiko
and Sirenko, 1988, 1990) were followed by the investigation of
transport properties in coupled 2D and 3D systems (Laikhtman
and Solomon, 1990; Boiko, Vasilopoulos, and Sirenko, 1992),
1D systems coupled to conductors of arbitrary dimensionality
(Sirenko and Vasilopoulos, 1992), coupled 1D wires (Tso and
Vasilopoulos, 1992; Tanatar, 1996, 1998; Gurevich, Pevzner,
and Fenton, 1998), and quantum Hall (QH) edge states (Orgad
and Levit, 1996). Following the groundbreaking experiments
in AlGaAs/GaAs double quantum wells (Gramila et al., 1991;
Eisenstein, 1992), a lot of work was devoted to drag between
two degenerate 2DEGs.While the purely Coulombmechanism
(Jauho and Smith, 1993; Zheng and MacDonald, 1993;
Flensberg et al., 1995; Kamenev and Oreg, 1995) captures
the most qualitative features of the effect, other mechanisms of
momentum transfer may also contribute to the observed

FIG. 1. The drag signal V2 induced by the current I1. From
Price et al., 2007.
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behavior. In samples with larger interlayer spacing
(d ∼ 50 − 500 nm) as much as 30% of the measured signal
was attributed to phonon-mediated interactions (Gramila et al.,
1993). These measurements appeared to be consistent with the
virtual-phonon exchange mechanism (Tso, Vasilopoulos, and
Peeters, 1992, 1994). Other suggested scattering mechanisms
involved acoustic (Bønsager et al., 1998a) and optical (Hu,
1998) phonons, plasmon effects (Flensberg andHu, 1994), and
coupled plasmon-phonon modes (Güven and Tanatar, 1997a).
Bilayers subject to strong magnetic fields were shown to form
interlayer correlated states (Varma, Larkin, and Abrahams,
1994; Girvin and MacDonald, 1997). For superconducting
(SC) layers, interlayer magnetic interaction due to spontane-
ously created vortices was also suggested (Shimshoni, 1995).
Mutual Coulomb scattering was studied also in a hybrid

device (Huang, Bazan, and Bernstein, 1995) comprising
normal (Au/Ti) and superconducting (AlOx) 2D films sepa-
rated by an insulating (Al2O3) layer. In that case, as well as in
“cross-talk” measurements in superconductor–insulator–
normal-metal trilayers (Giordano and Monnier, 1994), the
phenomenological Drude-like description of drag in terms of
τ−1D does not apply. The Drude description also fails when the
system is subjected to a strong magnetic field: in contrast to
the naive description, numerous experiments (Hill et al., 1996,
1998; Patel et al., 1997; Rubel et al., 1997; Rubel, Fischer,
Dietsche, von Klitzing, and Eberl, 1997; Feng et al., 1998;
Jörger, Dietsche et al., 2000; Lok, Kraus, Pohlt, Dietsche
et al., 2001; Lok, Kraus, Pohlt, Güven et al., 2001) showed
significant dependence of the measured drag resistivity ρD on
the applied field, especially in the extreme quantum regime
(Lilly et al., 1998). More sophisticated theoretical calculations
on Coulomb drag in quantum Hall states (Shimshoni and
Sondhi, 1994), superfluid condensates in paired electron-hole
layers (Vignale and MacDonald, 1996), drag of composite
fermions (Ussishkin and Stern, 1997, 1998; Kim and Millis,
1999; Zhou and Kim, 1999), vortex drag (Vitkalov, 1998),
nondissipative drag (Rojo and Mahan, 1992), supercurrent
drag (Duan and Yip, 1993), as well as drag between charged
Bose gases (Tanatar and Das, 1996) and mesoscopic rings
(Shahbazyan and Ulloa, 1997a, 1997b; Baker, Vignale, and
Rojo, 1999) confirmed the expectation that the drag resistivity
reflects not only the exact character of interlayer interaction,
but also the nature of elementary excitations in each layer and
their fundamental properties.
After the turn of the century, drag measurements became

part of the standard toolbox in condensed matter physics.
They have been used to investigate properties of electron-
electron scattering in low-density 2D electron systems
(Kellogg, Eisenstein et al., 2002; An et al., 2006); signatures
of metal-insulator transition in dilute 2D hole systems (Jörger,
Cheng, Dietsche et al., 2000; Jörger, Cheng, Rubel et al.,
2000; Pillarisetty et al., 2002; Pillarisetty, Noh, Tsui et al.,
2005; Pillarisetty, Noh, Tutuc et al., 2005); quantum coher-
ence of electrons (Price et al., 2007, 2008; Kim et al., 2011)
and composite fermions (Price, Savchenko, and Ritchie,
2010); exciton effects in electron-hole bilayers (Keogh et al.,
2005; Croxall et al., 2008; Morath et al., 2009; Seamons et al.,
2009); exotic bilayer collective states (Eisenstein, 2014),
especially the quantum Hall effect (QHE) at the total filling
factor νT ¼ 1 (Kellogg, Spielman et al., 2002; Kellogg et al.,

2003; Spielman et al., 2004; Tutuc, Pillarisetty, and Shayegan,
2009; Finck et al., 2010; Schmult et al., 2010); compressible
QH states at half-integer filling factor (Zelakiewicz et al.,
2000; Muraki et al., 2004); integer QH regime (Lok et al.,
2002); Luttinger liquid effects (Debray et al., 2001; Laroche
et al., 2008, 2014); Wigner crystallization in quantum wires
(Yamamoto et al., 2002, 2006, 2012); and one-dimensional
(1D) subbands in quasi-1D wires (Debray et al., 2000;
Laroche et al., 2011). More generally, interlayer interaction
and corresponding transport properties have been studied in
hybrid devices comprising a quantum wire and a quantum
dot (Krishnaswamy, Goodnick, and Bird, 1999), a SC
film and a 2D electron gas (Farina et al., 2004), Si metal-
oxide-semiconductor systems (Laikhtman and Solomon,
2005), quantum point contacts (Khrapai et al., 2007), insulat-
ing a-SiNb films (Elsayad, Carini, and Baxter, 2008), ferro-
magnetic-antiferromagnetic-SC trilayers (Cuoco et al., 2009),
nanosize CdSe-CdS semiconductor tetrapods (Mauser et al.,
2010), electron-hole scattering in quantum wells (Prunnila
et al., 2008; Takashina et al., 2009; Yang et al., 2011),
graphene monolayers (Kim et al., 2011; Gorbachev et al.,
2012; Kim and Tutuc, 2012; Titov et al., 2013), and hybrid
graphene-semiconductor systems (Gamucci et al., 2014).
On the theory side, the variety of suggested extensions and

generalizations of the original drag problem is even richer.
The theory of Coulomb drag between two 2DEGs was
extended to dilute 2D hole systems (Hwang et al., 2003)
and to the cases where one allows for certain tunneling
processes between the layers (Oreg and Kamenev, 1998;
Oreg and Halperin, 1999), interlayer disorder correlations
(Gornyi, Yashenkin, and Khveshchenko, 1999; Hu, 2000a),
in-plane potential modulation (Alkauskas et al., 2002), and
disorder inhomogeneities (Apalkov and Raikh, 2005; Spivak
and Kivelson, 2005; Zou, Refael, and Yoon, 2009, 2010).
Theory of Coulomb drag between composite fermions was
generalized to include phonon-mediated coupling (Bønsager,
Kim, and MacDonald, 2000; Khveshchenko, 2000). Mutual
friction was also suggested to occur between non-Fermi-liquid
phases including Luttinger liquids (Flensberg, 1998; Nazarov
and Averin, 1998; Klesse and Stern, 2000), Wigner crystals
(Baker and Rojo, 2001; Braude and Stern, 2001), and strongly
localized electrons (Raikh and von Oppen, 2002). Drag or
similar measurements of interlayer interactions were also
considered for composite (or hybrid) systems comprising
ballistic quantum wires (Gurevich and Muradov, 2000,
2005; Raichev and Vasilopoulos, 2000a; Wang,
Mishchenko, and Demler, 2005), coupled 2D-1D systems
(Lyo, 2003), nonequilibrium charged gases (Wang and da
Cunha Lima, 2001), multiwall nanotubes (Lunde and Jauho,
2004; Lunde, Flensberg, and Jauho, 2005), quantum point
contacts (Levchenko and Kamenev, 2008a), few level quantum
dots (Moldoveanu and Tanatar, 2009), optical cavities
(Berman, Kezerashvili, and Lozovik, 2010a; Berman,
Kezerashvili, and Kolmakov, 2014), coupled mesoscopic rings
(Yang and MacDonald, 2001), superconductors (Levchenko
and Norman, 2011), and normal-metal–ferromagnet–normal-
metal structures (Zhang andZhang, 2012).Other developments
include mesoscopic fluctuations of Coulomb drag (Narozhny
and Aleiner, 2000; Narozhny, Aleiner, and Stern, 2001),
frictional drag mediated by virtual photons (Donarini et al.,
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2003) and plasmons (Badalyan et al., 2007), exciton effects in
semiconductors (Laikhtman and Solomon, 2006) and topo-
logical insulators (Mink et al., 2012), interlayer Seebeck
effects (Lung and Marinescu, 2011) and spin drag
(D’Amico and Vignale, 2000; Flensberg, Stibius Jensen, and
Asger Mortensen, 2001; Vignale, 2005; Pustilnik,
Mishchenko, and Starykh, 2006; Tse and Das Sarma, 2007;
Badalyan and Vignale, 2009; Duine and Stoof, 2009; Duine
et al., 2010, 2011; Glazov et al., 2011). Recently, the focus of
the theoretical work was shifted toward the drag effect in
graphene-based devices (Narozhny, 2007; Tse, Hu, and Sarma,
2007; Song, Abanin, and Levitov, 2013; Narozhny et al., 2015)
and strongly interacting high-mobility double layers with low-
density carrier concentration (Apostolov, Levchenko, and
Andreev, 2014; Chen, Andreev, and Levchenko, 2015).
Given the rather large amount of literature devoted to

frictional drag, it seems unreasonable to cover all possible
angles in a single paper. Early work on frictional drag was
reviewed by Rojo (1999). Various experimental aspects were
discussed in reviews on exciton condensates (Snoke, 2002;
Eisenstein, 2014), electron-hole bilayers (Das Gupta et al.,
2011), strongly correlated 2D electron fluids (Spivak et al.,
2010), and 1D ballistic electron systems (Debray et al., 2002).
A discussion of drag in strong magnetic fields was included
in a review of magnetotransport in 2D electron systems
(Dmitriev et al., 2008). In this review, we limit ourselves
to the discussion of standard (“electrical”) Coulomb drag.
Spin-related phenomena and thermoelectric effects are beyond
the scope of this review.

II. COULOMB DRAG IN SEMICONDUCTOR
HETEROSTRUCTURES

In an idealized experiment, a constant (dc) current I1 is
passed through the active layer, keeping the passive layer
isolated at the same time (such that no current is allowed to
flow in it); see Fig. 1. The voltage V2 induced in the passive
layer is proportional to I1 and the coefficient1

RD ¼ −V2=I1 ð1Þ
is a direct measure of interlayer interactions.
In his original paper, Pogrebinskii (1977) derived the

Drude-like description of transport in double-layer systems
comprising two coupled equations of motion

dv1
dt

¼ e
m1

E1 þ
e

m1c
½v1 × B� − v1

τ1
−
v1 − v2
τD

; ð2aÞ

dv2
dt

¼ e
m2

E2 þ
e

m2c
½v2 × B� − v2

τ2
−
v2 − v1
τD

; ð2bÞ

where e is the electric charge, vi, mi, and Ei are the drift
velocities, effective masses, and electric fields in the two
layers, and the nonquantizing magnetic field B is assumed to
be uniform. Intralayer impurity-scattering processes yielding

the Drude resistivity in the two layers are described by the
mean-free times τi. The last term in each of Eqs. (2) describes
the mutual friction between the charge carriers in the two
layers that tends to equalize drift velocities. If treated
phenomenologically, the model (2) describes two distinct
types of carriers coupled by the friction term, but does not
explicitly require them to be spatially separated (Hänsch and
Mahan, 1983; Cui, Lei, and Horing, 1988; Söderström,
Buyanov, and Sernelius, 1996).
Solving the equations (2), one finds the resistivity matrix

ρðijÞαβ [hereafter the indices i, j ¼ 1, 2 denote the two layers and
α, β ¼ x, y—spatial coordinates orthogonal to B ¼ Bez; the
layers described by Eqs. (2) can represent 2D or 3D con-
ductors, see Sec. VI for the 1D case]. The “drag resistivity”
(also called the transresistivity or the drag coefficient) is given
by the Drude-like formula

ρD ¼ −ρð12Þxx ¼ m2=ðe2n1τDÞ: ð3aÞ

The expression (3a) is independent of the magnetic field. This
statement has the same status as the absence of the classical
magnetoresistance.2 Indeed, the single-layer longitudinal
resistivity derived from Eqs. (2) is given by

ρð11Þxx ¼ m1

e2n1

�
1

τ
þ 1

τD

�
: ð3bÞ

In most cases, drag is rather weak (τD ≫ τ) and the usual
Drude formula remains a good approximation for ρð11Þxx

(Eisenstein, 1992; Rojo, 1999). The single-layer Hall coef-
ficient is unaffected by the presence of the second layer and is
determined solely by the carrier density

ρð11Þyx ¼ B=ðn1ecÞ: ð3cÞ

Within the applicability of the Drude model, frictional drag is
purely longitudinal: “Hall drag” does not occur3

ρHD ¼ ρð12Þyx ¼ 0: ð3dÞ

At the phenomenological level, the drag resistivity (3a) is
independent of the disorder strength. Moreover, in the “clean”
limit τ → ∞ the interlayer and intralayer resistivities tend to
the same value and the resistivity matrix becomes degenerate
(the corresponding conductivities diverge):

ρð11Þxx ðτ → ∞Þ ¼ ρDðτ → ∞Þ: ð4Þ

Thus a system comprising two capacitively coupled, ideal
conductors is characterized by nonzero resistivity and exhibits
perfect drag!

1The minus sign in Eq. (1) is motivated by Eq. (3a). An alternative
definition without the explicit minus sign is also widely used in
literature.

2In this section we are discussing the simplest situation, where
both τD and τ are unaffected by weak enough magnetic fields.

3Under the assumptions of this section, magnetic field has no
effect on drag. Hence, up until Sec. II.G we focus on the zero-field,
longitudinal transport. Drag in magnetic field is discussed in
Secs. II.G, IV.E, and VII.A.
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A. Interlayer Coulomb interaction

The “Drude formula” (3a) for the drag resistivity becomes
falsifiable provided that something is known about the
properties of the “drag rate” τ−1D (e.g., its dependence on
temperature, carrier density, interlayer separation, and other
experimentally relevant parameters). To leading order, the
contribution of the interlayer Coulomb interaction to τ−1D
can be calculated within the Born approximation (or, equiv-
alently, using Fermi’s golden rule) (Laikhtman and Solomon,
1990; Jauho and Smith, 1993). In the language of Feynman
diagrams, the corresponding process (Zheng and MacDonald,
1993; Flensberg et al., 1995; Kamenev and Oreg, 1995) is
described by the Aslamazov-Larkin diagrams (Aslamazov and
Larkin, 1968) shown in Fig. 2.
The effective interlayer interaction can be found as a

solution to the Poisson equation for the potential of a point
source belonging to one of the layers. In principle, this can be
done for any system of coupled conductors. Coupling between
a 2DEG and a 3DEG was considered by Laikhtman and
Solomon (1990). A double-quantum-well system was dis-
cussed by Jauho and Smith (1993), where the finite width of
the wells was taken into account by assuming a specific form
of the electron wave function in the direction perpendicular to
the layers. However, the obtained results are qualitatively the
same as in the simplest case of purely two-dimensional layers.
If electrons in each layer are confined to move in a 2D

plane, the “bare” Coulomb potential4 has the form5

V11 ¼ V22 ¼ 2πe2=q; V12ðqÞ ¼ ð2πe2=qÞe−qd: ð5Þ

Here e is the electron charge and d is the interlayer separation
that determines the maximum value (or, rather, the order of
magnitude thereof) of the momentum q that can be transferred
between the layers (see footnote 5):

q ≪ 1=d: ð6Þ

Taking into account dynamical screening within the usual
random phase approximation (RPA) modifies the interlayer
interaction (Das Sarma and Madhukar, 1981; Santoro and

Giuliani, 1988; Halperin, Lee, and Read, 1993; Stern and
Halperin, 1995), but does not change the exponential decay at
large q. The resulting retarded interaction propagator can be
written as

DR
12 ¼ −

1

ΠR
1ΠR

2 ð4πe2=qÞ sinh qdþ ½q=ð2πe2Þ þ ΠR
1 þ ΠR

2 �eqd
:

ð7Þ
Here ΠR

i is the single-layer retarded polarization operator. It is
quite common [see, e.g., Laikhtman and Solomon (1990) and
Jauho and Smith (1993)] to include the dielectric constant ϵ of
the insulating spacer into the bare potential. Since the same ϵ
should enter the expression for the inverse Thomas-Fermi
screening length

ϰ ¼ 2πe2ν ¼ 2πe2ΠRðq < 2kF;ω ¼ T ¼ 0Þ; ð8Þ

the dielectric environment can be taken into account by
expressing the results in terms of ϰ (ν denotes the thermo-
dynamic density of states of the 2DEG). For high carrier
densities (Gramila et al., 1991), Eq. (7) can be simplified
(Kamenev and Oreg, 1995) by assuming the small screening
length ϰd ≫ 1 [see Eqs. (20) and (33b)].
The condition (6) allows one to distinguish the following

two regimes (Kamenev and Oreg, 1995):
(i) If the interlayer separation is large compared to the

mean-free path d ≫ l, then it follows from Eq. (6)
that q ≪ 1=l; in this case the motion of charge
carriers is diffusive.

(ii) In the opposite case, d ≪ l, transport is dominated
by ballistic propagation of charge carriers with
1=d ≫ q ≫ 1=l; see Eq. (36). Most measurements
(Gramila et al., 1991; Gorbachev et al., 2012) are
performed on ballistic samples.

The majority of analytic (Rojo, 1999) and numerical (Moško,
Cambel, and Mošková, 1992) work on Coulomb drag in
semiconductor heterostructures was performed treating the
interaction (7) in the lowest order of perturbation theory. For
generalizations see Secs. II.D and II.F.

B. Kinetic theory of ballistic drag

Ballistic motion of charge carriers in semiconductors can be
described by using the kinetic equation approach, where
impurity scattering is taken into account within the simplest
τ approximation (Pogrebinskii, 1977; Laikhtman and Solomon,
1990; Jauho and Smith, 1993). One starts with the generic
Boltzmann equation

∂fi
∂t þ vi∇fi þ

�
eEi þ

e
c
½vi × B�

� ∂fi
∂p ¼ −

δfi
τ

þ I ij; ð9Þ

where fi is the distribution function (in layer i ¼ 1, 2), I ij is
the collision integral due to interlayer Coulomb interaction, τ
is the transport impurity-scattering time, and δfi is the
nonequilibrium correction to the distribution function. Here
we consider only degenerate electron systems [as realized in
semiconductor heterostructures (Gramila et al., 1991)]. Weak
deviations from the equilibrium Fermi-Dirac distribution

FIG. 2. Aslamazov-Larkin diagrams describing the lowest-order
contribution to drag. The solid lines refer to quasiparticle Green’s
functions and the wavy lines describe the interlayer interaction.
The left and right triangles correspond to nonlinear susceptibil-
ities of the two layers.

4Although electrons are confined to move in two dimensions, they
interact by means of “real, 3D” Coulomb interaction.

5While discussing the theory, we use the natural units where
temperature and relaxation rates are measured in energy units
(ℏ ¼ kB ¼ 1). We attempt to restore the Planck’s constant in final
expressions for the drag resistivity and while discussing experimental
findings.
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function fð0Þi (as appropriate within the linear response) are
described by (Lifshitz and Pitaevskii, 1981)

δfi ≡ fi − fð0Þi ≡ fð0Þi ½1 − fð0Þi �hi ¼ −T½∂fð0Þi =∂ϵ�hi: ð10Þ
Here we consider only the steady state and uniform fields

∂fi=∂t ¼ 0; ∇fi ¼ 0: ð11Þ
The latter condition physically means that the sample size is
large compared to the length scale of typical relaxation
processes in the system; see also Sec. IV.D.
In the absence of interlayer interaction, the task of finding

linear-response transport coefficients from Eq. (9) is a textbook
problem (Ziman, 1965; Smith and Jensen, 1989; Seeger, 2002).
Under the above assumptions, the theory is qualitatively
equivalent to the Drude theory (2) yielding the standard results
(3b) and (3c). Not surprisingly, taking into account the collision
integral I ij leads to the Drude-like description of the drag
resistivity (3a) and (3d). The advantage of the present “micro-
scopic” calculation is that now we can determine the phenom-
enological relaxation time τD in terms of the model parameters.
The standard perturbative calculation (Lifshitz and

Pitaevskii, 1981; Laikhtman and Solomon, 1990; Boiko,
Vasilopoulos, and Sirenko, 1992; Jauho and Smith, 1993)
amounts to finding the nonequilibrium distribution functions
hi in the two layers to the leading order in the interlayer
interaction and the electric field E1 applied to the active layer.
Then one uses the definition of the electric current (here the
sum runs over all of the single-particle states)

ji ¼ e
X

vδfi; ð12Þ

and finds the current j2 in the passive layer. The coefficient of
proportionality between j2x and E1x defines the drag conduc-
tivity σD. The drag coefficient ρD can then be obtained by
inverting the 2 × 2 conductivity matrix (see footnote 3)

ρD ¼ σD
σ1σ2 − σ2D

≈
σD
σ1σ2

; ð13Þ

where σi is the longitudinal conductivity in layer i; the latter
relation follows from the smallness of the effect

σD ≪ σi; ð14Þ

as observed in experiment (Eisenstein, 1992; Rojo, 1999).
This way, one finds for the phenomenological drag rate

τ−1D ¼ m1

16πe2τ2n2T

Z
∞

−∞

dω
sinh2½ω=ð2TÞ�

×
Z

d2q
ð2πÞ2 jD12ðω; qÞj2Γx

1ðω; qÞΓx
2ðω; qÞ: ð15Þ

A similar expression6 can be derived for ρD and σD. The
nonlinear susceptibility (also knownas the rectification function)

Γiðω; qÞ (in layer i) is a response function relating a voltage
VðriÞeiωt to a dc current it induces by the quadratic response:

J ¼
Z

dr1

Z
dr2Γðω; r1; r2ÞVðr1ÞVðr2Þ; ð16Þ

with J being the induced dc current. From gauge invari-
ance

R
dr1ΓðωÞ ¼

R
dr2ΓðωÞ ¼ 0.

The same result follows from the standard Kubo
formula approach within the diagrammatic perturbation theory
(Flensberg et al., 1995; Kamenev and Oreg, 1995), memory
function formalism (Zheng and MacDonald, 1993), and the
more general Boltzmann-Langevin theory of the stochastic
kinetic equation (Chen, Andreev, and Levchenko, 2015).

1. Electron-hole asymmetry and rectification

The rectification function Γðω; qÞ is the central object in the
perturbative theory of Coulomb drag. Equation (15) of the
interlayer relaxation rate in terms of Γðω; qÞ explicitly
demonstrates the key role of electron-hole asymmetry in
the leading-order drag effect.7

Indeed, in order to induce a voltage (or generate a current)
in the passive layer, one needs to somehow move the charge
carriers. This is achieved by transferring momentum from the
active layer. The macroscopic state of the electronic system in
the active layer is characterized by the finite electric current
driven by an external source. In a typical electron gas, there
are two kinds of excitations—“electronlike,” with energies
ϵ > EF above the Fermi energy (i.e., the occupied states
outside the Fermi surface), and “holelike,”with ϵ < EF. These
quasiparticles are oppositely charged. As the current is driven
through the active layer they move in opposite directions; see
Fig. 3. Then the active layer can be characterized by a nonzero
total momentum only if there is some asymmetry between
electronlike and holelike quasiparticles. Likewise, in the
passive layer the momentum is transferred equally to electrons
and holes, such that the resulting state can carry the current
only in the case of electron-hole asymmetry. In conventional
semiconductors (Kamenev and Oreg, 1995), the electron-hole
asymmetry appears due to curvature of the conduction band
spectrum [leading to the energy dependence of the density of
states (DOS) and/or diffusion coefficient]. Consequently, in
the Fermi-liquid theory the electron-hole asymmetry can be
expressed (Narozhny, Aleiner, and Stern, 2001) as a derivative
of the single-layer conductivity σ1ð2Þ with respect to the
chemical potential (assuming either a constant impurity-
scattering time or diffusive transport). The simple estimate
∂σ1ð2Þ=∂μ ∼ σ1ð2Þ=μ then explains the typical smallness of the
effect (Solomon et al., 1989; Gramila et al., 1991; Sivan,
Solomon, and Shtrikman, 1992); see Eq. (14).
The same arguments can be applied to any system con-

taining carriers with opposite signs of the electric charge. For
instance, one can consider semimetals (or even band insulators
at high enough temperature), where the electric current can be
carried by electrons from the conduction band and holes from

6The three quantities ρD, σD, and τ−1D are proportional to each other
and differ only by trivial prefactors; see Eqs. (3a) and (13). All three
are used in the literature on equal footing.

7Another known effect of the electron-hole asymmetry in elec-
tronic systems is the thermopower described by the Mott formula
(Mott and Jones, 1936; Lunde, Flensberg, and Glazman, 2006, 2007).
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the valence band. A particularly interesting example is
graphene (see Sec. IV), which exhibits exact particle-hole
symmetry at the charge neutrality point (Katsnelson, 2012). At
that point, the nonlinear susceptibility of graphene [Eq. (73)]
vanishes (Narozhny, 2007; Tse, Hu, and Sarma, 2007)
implying the absence of the drag effect. In contrast, experi-
ment (Gorbachev et al., 2012) shows nonzero drag resistivity
at charge neutrality, which in addition is greatly enhanced by
the external magnetic field (Titov et al., 2013).
Indeed, the outlined physical picture is not universal. In

fact, it describes only a particular (although often dominant)
scattering process, where momentum is transferred from an
electron-hole pair in the active layer to another electron-
hole pair in the passive layer. Technically, this process is
described by the leading-order perturbation theory, see Fig. 2,
yielding Eq. (15). Higher-order processes [including the so-
called “third-order” drag (Levchenko and Kamenev, 2008b;
Schütt et al., 2013), see Sec. II.D, and the effect of the
correlated disorder (Gornyi, Yashenkin, and Khveshchenko,
1999, 2000; Schütt et al., 2013; Song, Abanin, and Levitov,
2013), see Sec. IV.F] may result in additional contributions
which are less sensitive to electron-hole symmetry.
In conventional heterostructures, higher-order processes

remain subleading at least within the temperature range
where most of the experiments are performed; see Sec. II.D.
Specifically in the ballistic regime, the dominant contribution to
drag is indeed given by Eq. (15) [with the corresponding drag
resistivity Eq. (3a)] and is determined by the nonlinear
susceptibility, which in the simplest case of energy-independent
impurity-scattering time τ is given by (Kamenev and Oreg,
1995)

Γðq;ωÞ ¼ 2

π
eτq

ω

vFq
θðvFq − ωÞ: ð17Þ

As shown in Kamenev and Oreg (1995), the resulting
Eq. (17) for the nonlinear susceptibility is proportional
to the imaginary part of the single-layer polarization
operator

Γðq;ωÞ ¼ 2eτq
m

ImΠRðq;ωÞ; ð18Þ

where (for two-dimensional, noninteracting electron gas in
the ballistic regime)

ImΠRðq;ωÞ ¼ ν
ω

vFq
θðvFq − ωÞ: ð19Þ

Within the kinetic theory, one can observe Eq. (18) already
at the level of the collision integral (Giuliani and Quinn,
1982); hence many [see, e.g. Jauho and Smith (1993), Zheng
and MacDonald (1993), Shimshoni and Sondhi (1994), and
Ussishkin and Stern (1997)] proceed to express Eq. (15) in
terms of ImΠRðq;ωÞ instead of the nonlinear susceptibility.
Under the assumption of energy-independent impurity-
scattering time τ and neglecting intralayer correlations
(Flensberg et al., 1995; Kamenev and Oreg, 1995), such
calculations lead to the correct result [see Eq. (21)]. At the
same time, within such an approach the physics of electron-
hole asymmetry remains hidden. Generalization to more
general settings is also nontrivial: Eq. (18) is by no means
a general theorem (Flensberg et al., 1995; Kamenev and Oreg,
1995; Narozhny and Aleiner, 2000; Narozhny et al., 2012);
for explicit examples of the two quantities being inequivalent
see Secs. III and IV.

2. Drag resistivity in ballistic samples

In the limit of strong screening ϰd ≫ 1, one can approxi-
mate (Kamenev and Oreg, 1995) the interlayer interaction
propagator (7) by

DR
12 ¼ −

πe2

ϰ1ϰ2

q
sinh qd

: ð20Þ

Combining Eq. (20) and the nonlinear susceptibility (18) with
the interlayer relaxation rate (15) and Eq. (3a), one finds the
following expression for the drag resistivity (Jauho and Smith,
1993; Zheng and MacDonald, 1993; Flensberg and Hu, 1994;
Kamenev and Oreg, 1995):

ρD ¼ ℏ
e2

π2ζð3Þ
16

T2

EF1EF2

1

ϰ1ϰ2kF1kF2d4
: ð21aÞ

The same result can also be expressed8 in terms of the
interlayer relaxation rate (15) [e.g., using Eq. (3a)]

FIG. 3. The momentum transfer due to interlayer interaction. As
the current I1 is driven through the active layer, electrons and
holes are moving in the opposite directions since they carry the
opposite charge. Such a state has nonzero total momentum only
due to electron-hole asymmetry. Once the momentum is trans-
ferred to the passive layer, the electrons and holes there are
pushed in the same direction. This process can induce a voltage
again only due to electron-hole asymmetry.

8Most expressions for ρD (Jauho and Smith, 1993; Zheng and
MacDonald, 1993; Flensberg and Hu, 1994; Flensberg et al., 1995;
Rojo, 1999) can be reduced to Eqs. (21) using the following simple
relations, valid under the assumptions of this section: EF ¼ πn=m,
n ¼ EFν, and νD ¼ EFτ=π, where D ¼ v2Fτ=2 is the diffusion
constant and ν ¼ m=π is the density of states.
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τ−1D ¼ π2ζð3Þ
16

n1
m2

T2

EF1EF2

1

ϰ1ϰ2kF1kF2d4
: ð21bÞ

Physically, these expressions (see footnote 8) can be under-
stood based on the Fermi golden rule [which was explicitly
used in the solution of the kinetic equation (Laikhtman and
Solomon, 1990; Jauho and Smith, 1993)]. Indeed, there are
three basic elements that combine into the result (21): (i) the
phase space available for electron-hole pairs in the two layers,
which is limited by temperature, hence τ−1D ∝ T2; (ii) the
electron-hole asymmetry, which results in the overall smallness
of the effect, τ−1D ∝ ðEF1EF2Þ−1; and (iii) the matrix element of
the interlayer interaction, determining the dependence on the
interlayer separation; in the ballistic case the matrix element is
dominated by small-angle scattering (Gramila et al., 1991).
The drag resistivity (21), and especially the quadratic

temperature dependence, is often quoted as the “Fermi-liquid”
result. However, Eq. (21) was obtained under a number of
assumptions: (i)ϰd≫ 1, (ii)d ≫ l, and (iii)T ≪ Td ∼ vF=d∼
EF=ðkFdÞ. The latter assumption appears only implicitly and is
often overlooked.
Indeed, substituting the interaction propagator (20) and the

nonlinear susceptibility (17) into Eq. (15), one finds that
except for the θ function in Eq. (17) the frequency and
momentum integrals factorize. The exponential decay of the
corresponding integrands allows one to estimate the typical
values of transferred energy ω ∼ T and momentum q ∼ 1=d.
Assuming T ≪ Td, this yields ω < vFq, which automatically
satisfies the θ function. Based on this observation, one may
omit the θ function and subsequently extend the integration
limits in both integrals in Eq. (15) to infinity. The remaining
integration is straightforward and yields Eq. (21).
At higher temperatures T ≫ Td, the θ function in Eq. (17)

is not satisfied automatically. Physically, it represents
kinematic restrictions on the phase space available to
electron-hole pairs associated with predominantly small-angle
scattering (Gramila et al., 1991). The frequency integration is
now cut off at vFq (or Td), rather than T, which leads to the
linear temperature dependence [first reported by Gramila
et al. (1991) and Solomon and Laikhtman (1991), see also
Jauho and Smith (1993), and recently rediscovered by Chen,
Andreev, and Levchenko (2015)],

ρDðT ≫ TdÞ ¼
ℏ
e2

π3

360

1

ðkFdÞ3ðϰdÞ2
T
EF

: ð22Þ

This behavior may be observable in samples with either
nondegenerate 2DEGs or large interlayer separation. In the
latter case Td ≪ T ≪ EF, both layers are perfectly described
by the Fermi-liquid theory which is not synonymous with
quadratic temperature dependence of transport coefficients.

3. Plasmon contribution

The approximate form of the interlayer Coulomb interac-
tion (20) appears justified in the “ballistic” regime where the
dominant interlayer relaxation processes are characterized by
relatively large momentum transfers ω < vFq. The imaginary
part of the single-particle polarization operator (19) vanishes
at smaller momenta (or larger frequencies) making these

calculations consistent. At the same time, approximating
the interlayer interaction propagator (7) by Eq. (20) one
completely neglects a possible contribution of plasmon modes
that (within the simplest RPA approach) can be found by
setting the denominator of Eq. (7) to zero. At zero temperature
and for ω ≫ vFq (where ImΠR ¼ 0), the polarization operator
is known to be given by (Stern, 1967)

Πðq;ωÞ≃ −nq2=ðmω2Þ:

Using this expression and expanding the bare Coulomb
potential in small momenta yields the acoustic (“−”) and
optical (“þ”) plasmon modes with dispersions

ω− ¼ eq
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πnd=m

p
; ωþ ¼ e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πnq=m

p
:

Both of these modes lie outside of the particle-hole continuum
and in the parameter region, where the nonlinear susceptibil-
ity (17) vanishes. Hence, one may conclude that the plasmons
cannot contribute to frictional drag.
However, at finite temperatures thermally excited quasi-

particles and plasmons may coexist in the same parameter
region, which may result in an additional contribution to drag
(Flensberg and Hu, 1994). In order to accurately describe the
plasmon contribution to ρD, one has to consider intralayer
equilibration due to electron-electron collisions (Chen,
Andreev, and Levchenko, 2015) which gives rise to two
important features: (i) the polarization operator acquires
nonvanishing spectral weight within the high-frequency part
of the spectrum at ω > vFq (Flensberg and Hu, 1994), and
(ii) the plasmons acquire a finite lifetime (Hruska and Spivak,
2002; Mishchenko, Reizer, and Glazman, 2004) that regu-
larizes the pole in the interaction propagator.
The theory discussed in Secs. II.A, II.B.1, and II.B.2

is based on the implicit assumption that the intralayer
equilibration is the fastest process in the system.
Characterizing inelastic electron-electron scattering by
the quasiparticle lifetime τee, one finds that the standard
theory [and hence Eq. (22)] is valid as long as the time τee is
much smaller than the interlayer scattering time τee ≪ τD
and at temperatures below the corresponding thresh-
old T ≪ Tc ∼ EF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kF=ðϰ2dÞ

p
.

At higher temperatures T > Tc, the system enters the
collision-dominated regime, where Coulomb drag is domi-
nated by plasmons. In this regime, Chen, Andreev, and
Levchenko (2015) found a stronger temperature dependence

ρDðTc < T < ThÞ≃ ℏ
e2

1

ðkFdÞ4
T3

E3
F
: ð23Þ

The rise of the plasmon contribution to drag persists so long as
the quasiparticle decay rate remains small compared to the
plasma frequency (at the wave vector 1=d), i.e., up to the third
crossover temperature Th ∼ EF

ffiffiffiffiffiffiffiffiffiffi
kF=ϰ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ðϰdÞ4

p
. At temper-

atures above the crossover T > Th, the electronic system
enters the hydrodynamic regime that can be understood on
the basis of the classical Navier-Stokes hydrodynamics
(Apostolov, Levchenko, and Andreev, 2014). In this limit
the drag resistivity decays as
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ρDðT > ThÞ≃ ℏ
e2

1

ðkFdÞ2ðϰdÞ3
EF

T
: ð24Þ

The resulting temperature dependence of the drag coef-
ficient is summarized in Fig. 4. The nonmonotonicity of ρD
originates from the delicate interplay of various scattering
channels in the electronic system. Perhaps the most striking
feature of the theory of Chen, Andreev, and Levchenko (2015)
is that intralayer collisions promote stronger drag. Indeed,
should one naively continue Eq. (22) up to the temperatures of
the order Th one would underestimate the actual maximum
value of ρD by

ffiffiffiffiffiffiffiffi
kFd

p
≫ 1.

C. Effects of potential disorder

In ballistic samples, potential disorder played a limited role.
In fact, the resulting drag resistivity (21) is independent of the
impurity-scattering time τ. In diffusive samples with d ≫ l
only small momenta q ≪ 1=l can be transferred between the
layers. Typically this results in a small contribution to the drag
resistivity, which in ballistic samples can be neglected. This is
not always the case—at low enough temperatures drag is
dominated by mesoscopic fluctuations which are mostly due
to processes with small momentum transfers; see Sec. III.
Coulomb drag in diffusive systems was considered by

Zheng and MacDonald (1993) using the memory function
formalism and by Kamenev and Oreg (1995) using the
diagrammatic technique. To the lowest order in interlayer
interaction, one can use the Kubo formula analysis (Kamenev
and Oreg, 1995; Narozhny and Aleiner, 2000) to derive the
expression for the drag conductivity (S is the area of the
sample)

σD ¼ 1

16πTS

Z
dω

sinh2ðω=2TÞD
R
12Γx

23D
A
34Γx�

41; ð25Þ

where numerical subscripts indicate spatial coordinates and
are implied to be integrated over. Averaging over disorder
restores translational invariance. In the absence of interlayer
disorder correlations [this special case was considered by

Gornyi, Yashenkin, and Khveshchenko (1999)], the nonlinear
susceptibilities in each layer have to be averaged independ-
ently of each other. Then one recovers the drag relaxation
rate (15), where each quantity should be understood as
disorder averaged, i.e., hΓx

23i → ΓxðqÞ.

1. Drag resistivity in diffusive regime

In the diffusive regime, the nonlinear susceptibility Γ can be
found from Ohm’s law (Landau, Lifshitz, and Pitaevskii,
1984),

j ¼ σ̂E − eD∇n; ð26Þ

where σ̂ is the conductivity matrix and D is the diffusion
coefficient (in two dimensions D ¼ v2Fτ=2). Combining
Eq. (26) with the continuity equation, one finds the linear
response of the carrier density n to the electric field E:

hnðq;ωÞi ¼ 1

e
iqασαβEβðq;ωÞ
−iωþDq2

; ð27Þ

where h� � �i indicates averaging over disorder. Nonlinear
response follows from the density dependence of the con-
ductivity jdc ¼ Reð∂σ=∂nÞnðq;ωÞEð−q;−ωÞ and yields

hΓγi ¼ 2ν

e
∂hσγδi
∂n qδ

ωDq2

ω2 þD2q4
: ð28Þ

In the absence of a magnetic field hσαβi ¼ σδαβ, and the
nonlinear susceptibility (28) is parallel to q. The disorder-
averaged conductivity is linear in the carrier density
∂σαβ=∂n ≈ σαβ=n. As a result,

hΓi ¼ 2q
eνD
EF

ωDq2

ω2 þD2q4
: ð29Þ

This expression can be recast into two equivalent forms.
Noting the similarity between Eq. (29) and the standard
diffusive form of the polarization operator (Altshuler and
Aronov, 1985; Smith and Jensen, 1989)

ΠRðq;ωÞ ¼ ν
Dq2

−iωþDq2
; ð30Þ

one finds (Kamenev and Oreg, 1995)

hΓi ¼ 2q
eD
EF

ImΠRðq;ωÞ: ð31Þ

Furthermore, one can emphasize the fact that the density
dependence of the conductivity σ is a manifestation of
electron-hole asymmetry by rewriting the fraction in
Eq. (31) as (Narozhny and Aleiner, 2000)

hΓi ¼ 2eqD
∂ lnðνDÞ

∂μ ImΠRðq;ωÞ: ð32Þ

In the simplest case (see footnote 8), this expression
can be obtained directly from Eq. (28) by noticing that

FIG. 4. Schematic illustration for the drag resistivity at high
temperatures showing the plasmon peak at T ∼ Th. The asymp-
totic dependences are exaggerated for clarity. Definitions of the
three crossover scales are given in the main text. From Chen,
Andreev, and Levchenko, 2015.
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∂σαβ=∂n ¼ ð∂σαβ=∂μÞð∂μ=∂nÞ ¼ ð∂σαβ=∂μÞð1=νÞ and using
the Einstein relation. The same result can be found evaluating
diagrams shown in Fig. 5.
The diffusive approximation for the interlayer interaction

follows from Eqs. (7) and (30). Focusing on small momenta
q ≪ 1=d, one can obtain alternative expressions for the
interaction propagator by either expanding the bare matrix
element (5) in small qd (and subsequently limiting the
momentum integration from above) or keeping the exponen-
tial in Eq. (5) intact, leaving the momentum integral con-
verging in the ultraviolet. The former approach was taken by
Narozhny and Aleiner (2000). Generalizing to inequivalent
layers one finds

DR
12 ¼ −

1

q2
ð−iωþD1q2Þð−iωþD2q2Þ

ðν1D1 þ ν2D2Þ½−iωþ ð1þ ϰ�dÞD�q2� ; ð33aÞ

where

ϰ� ¼ 4πe2
ν1ν2

ν1 þ ν2
; D� ¼ ðν1 þ ν2ÞD1D2

ν1D1 þ ν2D2

:

The latter alternative was taken by Kamenev and Oreg
(1995), where in addition (just as in the ballistic case) the
limit ϰd ≫ 1 was used. As a result, the interaction propagator
takes the form

DR
12 ¼ −

πe2q
ϰ1ϰ2 sinh qd

−iωþD1q2

D1q2
−iωþD2q2

D2q2
: ð33bÞ

With logarithmic accuracy, the resulting drag coefficient is
independent of the distinction between the two and can be
written as (Kamenev and Oreg, 1995)

hρDi ¼
ℏ
e2

π2T2

12EF1EF2

1

ϰ1ϰ2kF1kF2l1l2d2
ln
T0

2T
: ð34aÞ

The only difference between using the two expressions for the
interaction propagator in Eq. (33) is the exact value of T0.
Using Eq. (33a) in the limit ϰ�d ≫ 1, one finds

T0 ¼
4πe2ν1D1ν2D2

ðν1D1 þ ν2D2Þd
;

while Eq. (33b) leads to (Kamenev and Oreg, 1995)

T0 ¼ minfϰ1D1; ϰ2D2g=d:

Both expressions are of the same order of magnitude and
coincide for the case of identical layers.
The result can be expressed also in terms of the interlayer

relaxation rate (Zheng and MacDonald, 1993)

1

τD
¼ π2

12

n1
m2

T2

EF1EF2
ln
T0

2T
1

ϰ1ϰ2kF1kF2l1l2d2
: ð34bÞ

Equivalently, one can use Eq. (32) and express the drag
conductivity (Narozhny and Aleiner, 2000) as (here the layers
are assumed to be identical for simplicity)

σD ¼ e2

ℏ
π2

3

ðℏTÞ2
g2ðϰdÞ2

� ∂
∂μ ðνDÞ

�
2

ln
T0

2T
; ð35Þ

where the derivative highlights the crucial role of the electron-
hole asymmetry in the leading-order drag effect.
The diffusive result for the drag resistivity (34) appears to

be rather similar to its ballistic counterpart Eq. (21). Indeed,
disregarding the numerical prefactors and the logarithm in
Eq. (34), one finds

ρdiffD =ρbalD ∼ d2=ðl1l2Þ: ð36Þ

This relation may serve as an a posteriori justification for the
statement that the drag effect in samples with d ≪ l is
dominated by ballistic propagation of carriers with momenta
l−1 ≪ q ≪ d−1. Carriers with small momenta q ≪ l−1 also
participate in drag, but their contribution is small [according to
Eq. (36)] and is typically neglected.

2. Weak localization corrections

The nonlinear susceptibility (29) and drag coefficient (34)
were obtained as the leading approximation in the standard
perturbation theory of disordered metals (Altshuler and
Aronov, 1985), controlled by the large parameter g ¼
25.8 kΩ=R□ representing the dimensionless conductance
of the layers [with R□ being the layer (sheet) resistance].
Within the assumptions adopted in this section (see foot-
note 8) g ∼ νD ∼ kFl ∼ EFτ ≫ 1.
The next-order terms in the perturbation theory are known

as quantum corrections to transport coefficients (Altshuler and
Aronov, 1985; Aleiner, Altshuler, and Gershenson, 1999).
Physically, they describe leading interference processes that
arise in the course of subsequent scattering events. Although
the resulting contribution to transport is proportional to a small
factor 1=g, quantum corrections dominate the temperature and
magnetic field dependence of transport coefficients at low
temperatures.
To the leading order in 1=g, one may distinguish three types

of corrections: (i) interference between self-intersecting,
time-reversed scattering paths leads to a positive correction
to resistivity, known as the weak localization correction
(Abrahams et al., 1979; Gorkov, Larkin, and Khmel’nitzkii,
1979; Altshuler et al., 1980); (ii) coherent scattering off
Friedel oscillations yields the Altshuler-Aronov correction
(Altshuler and Aronov, 1979; Finkelstein, 1983, 1984; Zala,

FIG. 5. Disorder averaging of the nonlinear susceptibility
(Kamenev and Oreg, 1995). The dotted lines represent the
diffuson ladder (Altshuler and Aronov, 1985).
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Narozhny, and Aleiner, 2001); and (iii) in small, mesoscopic
samples interference between scattering paths gives rise to
universal conductance fluctuations (Altshuler, 1985; Lee and
Stone, 1985). The latter effect has a direct counterpart in
double-layer systems, namely, mesoscopic fluctuations of
Coulomb drag discussed in Sec. III. At the time of writing,
no qualitative interference effect due to electron-electron
interaction has been identified for drag measurements. At
the technical level, the third-order drag effect (see Sec. II.D)
bears certain resemblance to the Altshuler-Aronov diagrams
(Gornyi and Narozhny, 2014). Here we discuss the weak
localization correction to Coulomb drag (Flensberg et al.,
1995; Kamenev and Oreg, 1995).
In the absence of interlayer disorder correlations [such

effects were discussed by Gornyi, Yashenkin, and
Khveshchenko (1999)], impurity scattering is confined to
each individual layer. It should come as no surprise that the
same mechanism behind the weak localization correction to
single-layer conductivity (i.e., interference between time-
reversed, self-intersecting paths) yields a correction to the
nonlinear susceptibility. Technically, this interference mecha-
nism is described by a “maximally crossed” element of the
diagram technique known as the Cooperon (Gorkov, Larkin,
and Khmel’nitzkii, 1979). Diagrams for the corresponding
corrections to the nonlinear susceptibility are shown in Fig. 6
[further corrections, e.g., two-Cooperon diagrams, considered
by Flensberg et al. (1995) and Kamenev and Oreg (1995) were
found to be subleading]. The resulting nonlinear susceptibility
is given by

hΓi ¼ 2q
eνDðτ−1φ ; 0Þ

EF

ωDðω; qÞq2
ω2 þD2ðω; qÞq4 ; ð37Þ

where the renormalized diffusion coefficient in two dimen-
sions is (Gorkov, Larkin, and Khmel’nitzkii, 1979)

Dðω; qÞ ¼ D

�
1 −

1

πkFl
ln

1

ωτ

�
; ð38Þ

and τφ is the dephasing time (Altshuler et al., 1980). The result
(37) is valid in the first order in δD ¼ Dðω; qÞ −D.
The resulting leading-order weak localization correction to

Coulomb drag is (Kamenev and Oreg, 1995)

δρD
ρD

¼ −
1

πkF1l1

ln
1

2Tτ1
−

1

πkF2l2

ln
1

2Tτ2
; ð39Þ

where ρD is given by Eq. (34). The result (39) is similar to the
weak localization corrections in 2D (Gorkov, Larkin, and
Khmel’nitzkii, 1979; Altshuler et al., 1980), except that in
Eq. (39) the logarithmic singularity is cut by temperature
rather than by the dephasing time.
In conventional 2DEG, weak localization effects result in a

dependence on a weak magnetic field (Altshuler et al., 1980).
Here the characteristic scale of the magnetic field is
Hc ∼ T=eD. A similar scale describes intralayer interaction
corrections to magnetoresistance (Altshuler and Aronov,
1985), making the weak localization corrections to the drag

coefficient hard to observe experimentally (Kamenev and
Oreg, 1995).

D. Third-order drag effect

The leading contribution to Coulomb drag, Eqs. (15)
and (25), describes the effect to the lowest order in the
interlayer Coulomb interaction; see Fig. 2. Since the particles
belonging to different layers interact through a layer of an
insulating material, a certain weakness of the effective
interaction is intuitively expected. In many-body electron
systems the Coulomb interaction is usually screened and the
perturbative analysis gives a reasonable account of most basic
observable quantities (Ziman, 1965; Altshuler and Aronov,
1985). Consequently, the vast majority of theoretical studies
of Coulomb drag are devoted to the investigation of the
lowest-order effect. Notable exceptions are given by the
studies of the interlayer correlated states, in the context of
either quantum Hall devices (Girvin and MacDonald, 1997;
Yang, 1998; Stern et al., 2000; Kim et al., 2001; Yang and
MacDonald, 2001; Stern and Halperin, 2002) or quantum
wires (Nazarov and Averin, 1998; Klesse and Stern, 2000), as
well as strongly correlated intralayer states, such as Wigner
crystals (Baker and Rojo, 2001; Braude and Stern, 2001) or
Anderson insulators (Raikh and von Oppen, 2002).
The “single-particle” drag resistivity, Eqs. (21) and (34), is

determined (besides the interlayer interaction) by the quasi-
particle phase space, electron-hole asymmetry (see Sec. II.B),
and disorder effects (see Secs. II.C and III). At T ¼ 0 or at a
point of exact electron-hole symmetry (e.g., in neutral
graphene, see Sec. IV), these factors may conspire to nullify
the effect. Then ρD may be determined by higher orders of the
perturbation theory, implying that saturation of drag resistivity
at low temperatures should not necessarily point toward a
strongly correlated state.
To the third order in interlayer interaction (see Fig. 7 for the

“skeleton” diagram), Coulomb drag was first discussed by
Levchenko and Kamenev (2008b) in the diffusive regime
Tτ ≪ 1. It was shown that the third-order drag contribution
remains finite at zero temperature9:

FIG. 6. Leading weak localization corrections to the nonlinear
susceptibility (Kamenev and Oreg, 1995). The black, parallel
dotted lines represent the diffuson ladder (Altshuler and Aronov,
1985; Aleiner, Altshuler, and Gershenson, 1999). The dotted
(blue), crossing lines represent the Cooperon (Gorkov, Larkin,
and Khmel’nitzkii, 1979).

9More precisely, the result is valid down to lowest temperatures
T ∼ τ−1e−πg. Below this scale the diffusive approximation breaks
down.
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ρð3ÞD ðT < h=τÞ ¼ 0.27ðh=e2Þg−3ðϰdÞ−2: ð40Þ

This surprising result was attributed (Levchenko and
Kamenev, 2008b) to the singular behavior of matrix elements
in the diffusive regime. In single-layer systems, a similar
enhancement of the matrix elements leads to singular inter-
action effects (Altshuler and Aronov, 1985). Here the diver-
gence of the matrix elements is compensated by the smallness
of the phase space yielding the T-independent contribution to
the drag resistivity.
The third-order effect (40) does not rely on electron-hole

asymmetry (technically, the third-order diagram in Fig. 7
contains four-point vertices instead of the triangular vertices in
Fig. 2). Hence, ρð3ÞD is independent of EF. This provides an
additional explanation of the T-independent result (40): in the
diffusive regime there is no other scale for a temperature
dependence.
Another contribution to drag that is insensitive to electron-

hole symmetry is due to interlayer disorder correlations
(Gornyi, Yashenkin, and Khveshchenko, 1999; Hu, 2000a).
For temperatures higher than the inverse interlayer coherence
time, but still in the diffusive regime τ−1g ≪ T ≪ τ, one finds

ρDðτ−1g ≪ T ≪ τ−1tr Þ ∼ ðh=e2Þðk2Fd2ϰlÞ−2 lnðTτgÞ; ð41Þ

which might dominate over Eq. (34).
While these higher-order effects have not been observed in

semiconductor samples, they may provide an explanation of
the observed nonzero drag resistivity in neutral graphene
(Gorbachev et al., 2012); see Sec. IV.

E. Transconductance due to tunneling bridges

A qualitatively different mechanism of transconductance
takes place in the double-layer systems with pointlike
shortages (bridges) or when the insulating layer is sufficiently
thin such that electrons may tunnel between the two layers
(Raichev, 1997; Oreg and Kamenev, 1998; Oreg and Halperin,
1999). Such bridges can be present in metallic double-layer
systems due to device fabrication imperfections, or they can
be introduced on purpose (Giordano and Monnier, 1994).
One should distinguish two mechanisms of transresistivity

due to tunneling. The first one is essentially classical and
originates from a voltage drop in the passive layer due to the
current leaking directly from the active layer. This mechanism
can be simply visualized and understood using a resistive
network model where the two layers are connected in parallel
by a set of resistors (Raichev, 1997). Applying Kirchhoff’s

laws to such a circuit, one finds that for sufficiently long
samples L >

ffiffiffiffiffiffiffiffiffiffi
Dτ12

p
(here τ12 is the mean intralayer scattering

time associated with the interlayer tunneling conductance per
unit area σ⊥ ¼ e2ν=τ12), half of the current supplied to the
active layer leaks into the passive one. In this case, the sign of
the drag effect is reversed compared to the standard result of
Eq. (3a) and ρD is given by the resistance of a single layer of a
doubled width. This classical effect is practically insensitive to
temperature. Furthermore, the tunneling rate τ12 is strongly
dependent on a Fermi-surface mismatch between the layers
and thus may be affected by a gate voltage or an in-plane
magnetic field (Boebinger et al., 1991; Berk et al., 1995),
which gives an experimental knob to control the magnitude of
the classical tunnel drag resistivity.
The second, purely quantum effect was suggested by Oreg

and Kamenev (1998) and Oreg and Halperin (1999). Here
drag originates from the intralayer exchange correlations due
to wave-function overlap of carriers in different layers (that
may exist in the presence of interlayer tunneling). The sign of
the quantum effect is negative for the carriers of the same
charge, i.e., the same as in the above classical effect. This
mechanism yields a strongly temperature-dependent drag
resistivity, which saturates to a constant value at zero temper-
ature. The latter feature is an indication that the exchange
contribution to drag resistivity does not require electron-hole
asymmetry. Hence, even for a small tunneling rate, this
mechanism may become stronger than the standard effect
of Eq. (3a) at low enough temperatures.
The interplay among tunneling, Coulomb interaction, and

intralayer disorder scattering yields the three energy scales
τ−112 , ϰdτ

−1
12 , and τ−1. Here the factor of ϰd stems from the

screening effects. At high temperatures T > τ−1, the quantum
drag resistivity can be computed to the lowest order in
tunneling (the corresponding diagrams are shown in Fig. 8,
top panel). Furthermore, since for Tτ ≫ 1 the motion of
electrons is ballistic, one can omit disorder ladders (diffusons)

FIG. 8. Top: Two diagrams contributing to the transconductance
that are second order in the tunneling matrix element denoted by a
cross. The solid lines with arrows are electron Green’s functions,
the dashed lines represent diffusons, and the wavy lines screened
interactions. Two additional diagrams with arrows in the opposite
direction should be included. The numbers indicate the layer
index. Bottom: Examples of diagrams contributing to the
transconductance that are fourth order in tunneling. Diagrams
with interaction lines connecting “upper” and “lower” Green’s
functions, as well as diagrams with an opposite direction of
electron lines are also implicit. From Oreg and Kamenev, 1998.

FIG. 7. Typical diagrams describing higher-order drag effects.
Left: Third-order drag (Levchenko and Kamenev, 2008b). Right:
The effect of interlayer disorder correlations (Gornyi, Yashenkin,
and Khveshchenko, 1999; Hu, 2000a).
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in these diagrams. Then the transconductance is given by the
temperature-independent expression (Oreg and Kamenev,
1998)

σD ¼ −
e2

ℏ
π

32

1

ϰd
vFτ2

dτ12
: ð42Þ

At lower temperatures T < τ−1, the diffusive character of
the electron motion should be taken into account. The drag
resistivity can still be computed to the leading order in
tunneling using the same set of diagrams in Fig. 8 (top
panel), but with the insertion of disorder renormalizations. As
a result, one finds the following temperature-dependent
contribution to the transconductance (Oreg and Kamenev,
1998):

σD ¼ −
e2

ℏ
1

24π

lnðϰdÞ
ϰd

1

Tτ12
: ð43Þ

In the diffusive limit, such singular temperature dependence is
not entirely unexpected. Indeed, the diagrams in Fig. 8
(top) are analogous to the Altshuler-Aronov corrections to
the conductivity of 2D systems, which are known to be
logarithmically singular (Altshuler and Aronov, 1985; Zala,
Narozhny, and Aleiner, 2001). In the present context, the
interplay of tunneling and Coulomb interaction makes this
singularity stronger.
Quantum physics becomes even more pronounced at lower

yet temperatures T < ϰdτ−112 , where the quantum drag mecha-
nism is dominated by coherent tunneling of electrons to the
passive layer and back to the active one accompanied by
intralayer Coulomb interactions; see Fig. 8 (bottom). In this
regime, the temperature dependence is even stronger (Oreg
and Kamenev, 1998)

σD ¼ −
e2

ℏ
3ζð3Þ
8π4

lnðTτ12Þ
ðTτ12Þ2

: ð44Þ

The low-temperature divergence in the transconductance of
Eqs. (43) and (44) should be cut off by the finite-size effects at
the Thouless energy ET ¼ D=L2. Interestingly enough, for
large systems L ≫

ffiffiffiffiffiffiffiffiffiffi
Dτ12

p
, there is an additional temperature

range ET < T < τ−112 , where the exchange contribution to σD
is due to multiple tunneling processes. In that case, the
transconductance becomes logarithmic in temperature (Oreg
and Kamenev, 1998)

σD ¼ −
e2

ℏ
1

8π2
ln

1

Tτ12
: ð45Þ

Up to the factor of 1=4, this result coincides with the standard
Altshuler-Aronov correction to the 2D conductivity (Altshuler
and Aronov, 1985; Zala, Narozhny, and Aleiner, 2001). This
extra numerical factor is not accidental and reflects the essence
of the drag measurement setup, where the current is allowed to
flow in one part of the system only while the induced potential
is measured in another part.

F. Comparison to experiment

The theory outlined in the preceding sections describes an
idealized phenomenon of mutual friction between two two-
dimensional electron systems. The electrons were assumed to
belong to a parabolic band, with energy-independent impu-
rity-scattering time and negligible intralayer correlations.
Clearly, such assumptions can be realized in any experimental
sample only approximately.
Coulomb drag between two two-dimensional electron gases

was first observed by the group of J. Eisenstein (Gramila et al.,
1991; Eisenstein, 1992) in GaAs double-quantum wells; see
Fig. 9. A detailed comparison of the experimental data to the
quantitative predictions of the Coulomb drag theory showed
that the latter accounts for about 50% of the measured
values.10 This was judged as sufficient evidence of the
relevance of the Coulomb mechanism of frictional drag.
Also, the overall reduction of the drag resistance with the
increase of the interwell barrier width (see Fig. 9) was in rough
agreement with Eq. (21b). At the same time, the data (see the
right panel in Fig. 9) show noticeable deviations from the T2

behavior predicted by Eqs. (21) and (34), indicating that other
scattering mechanisms might also be important.
One additional mechanism (Gramila et al., 1991) is due to

electron-phonon interaction. This suggestion was developed
theoretically by Tso, Vasilopoulos, and Peeters (1992),
Bønsager et al. (1998a, 1998b), and Badalyan and Rössler
(1999) and experimentally by Rubel et al. (1995), Noh et al.
(1999), and Jörger, Cheng, Dietsche et al. (2000); see Fig. 10.

FIG. 9. Left panel: Temperature dependence of the drag
resistivity GaAs double-quantum wells. The additional scale
on the right provides the corresponding values of the momen-
tum-transfer rate (see main text for more details). Inset: An
idealized energy diagram for a double-quantum-well structure
indicating the ground subband energy E0 and the Fermi energy
EF. From Gramila et al., 1991. Right panel: Temperature
dependence of the interlayer momentum transfer rate divided
by T2. The three sets of data were measured in samples
with interwell barrier widths of 175, 225, and 500 Å. From
Gramila et al., 1992.

10The momentum relaxation time reported by Gramila et al.
(1991) is twice smaller than Eq. (21b). In addition, the paper cited
unpublished calculations of MacDonald, Gramila, and Eisenstein
involving a more realistic modeling of finite-width quantum wells. In
particular, these calculations were reported to include vertex correc-
tions to the RPA interaction propagator Eq. (7). Hence, it is difficult
to judge whether that factor of 2 has played any role in the actual
analysis of Gramila et al. (1991).
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Both the Coulomb and phonon drag mechanisms assume
smallness of the transferred momentum q [see, e.g., Eq. (6)],
which is fully justified for samples with the small screening
length ϰd ≫ 1. In addition, for low-density samples with
closely spaced layers (i.e., for kFd ∼ 1) backward scattering
processes with q ∼ 2kF may become important (Kellogg,
Eisenstein et al., 2002). The contribution of such processes
to drag shows the T2 lnT temperature dependence [in contrast
to Eq. (21)]. While such logarithmic correction is difficult to
ascertain, the experiment (Kellogg, Eisenstein et al., 2002)
shows sizable deviations from Eq. (21) with the observed
unusual density dependence of ρD suggesting the importance
of the 2kF scattering processes. A quantitative theoretical
description of these results was later achieved by Yurtsever,
Moldoveanu, and Tanatar (2003) and Asgari, Tanatar, and
Davoudi (2008) using a numerical approach based on the
effective interaction scheme developed by Kukkonen and
Overhauser (1979) and Vignale and Singwi (1985).
Further corrections to the single-particle Coulomb mecha-

nism are associated with the plasmon contribution. As shown
by Flensberg and Hu (1994), plasmons are expected to be
most important at intermediate temperatures T ∼ 0.5TF. This
prediction was tested experimentally by Hill et al. (1997); see
the left panel in Fig. 11 and in Noh et al. (1998). While the
theoretical results show qualitative agreement with the data,
discrepancies persist. Taking into account many-body corre-
lations [see, e.g., Swierkowski, Szymanski, and Gortel
(1995)] improves the agreement, but further advances in
many-body theory are necessary before a more precise
quantitative description of the correlation effects in double-
layer structures is achieved.
The discrepancies between the simple single-particle

description and laboratory experiments are by no means
universal, especially since many measurements were per-
formed in very different systems. One of the first drag
experiments (Solomon et al., 1989) was performed on a
hybrid 2D-3D system. This device showed considerable
thermoelectric effects masking the purely Coulomb contribu-
tion to drag. Experiments on electron-hole systems (Sivan,

Solomon, and Shtrikman, 1992) showed behavior that could
not be accounted for by either the phonon or plasmon
corrections. Instead, generalized RPA (taking into account
exchange processes to all orders) (Tso, Vasilopoulos, and
Peeters, 1993) appears to yield satisfactory agreement with
observations of Sivan, Solomon, and Shtrikman (1992) at low
temperatures. Apparently, the traditional RPA overestimates
screening which results in the underestimated drag resistivity.
Experiments on dilute 2D hole systems (Pillarisetty et al.,

2002, 2004) show marked enhancement of the drag resistivity,
along with the stronger temperature dependence (empirically,
ρD ∝ T2.5 at low temperatures, followed by a crossover toward
a sublinear temperature dependence at T ≃ EF). These sys-
tems are characterized by rather high values of the dimension-
less Wigner-Seitz radius11 (Ando, Fowler, and Stern, 1982;
Giuliani and Vignale, 2005) rs ≃ 20–40 and also exhibit signs
of a metal-insulator transition in single-layer measurements
(Pillarisetty, Noh, Tutuc et al., 2005). The data obtained by
Pillarisetty et al. (2002) are not explained by taking into
account corrections due to phonons (Bønsager et al., 1998a),
plasmons (Flensberg and Hu, 1994), or many-body effects
(Swierkowski, Szymanski, and Gortel, 1995), as follows from
the density dependence of the measured drag illustrated in the
right panel of Fig. 11. The lack of adequate theoretical
description of these experiments is not surprising, given that
the regime of relatively high rs remains an unsolved problem
in single-layer (bulk) systems as well.
Croxall et al. (2008) and Das Gupta et al. (2008) reported

anomalous drag in electron-hole bilayers. Below T ¼ 1 K, the
measured drag resistivity exhibits an upturn that may be

FIG. 10. Left panel: Calculated τ−1D =T2 (solid curves) compared
to the data of Gramila et al. (1991). A less optimal choice of a
fitting parameter yields results shown by the dashed curves. Inset:
Calculated contribution of virtual-phonon exchange processes to
τ−1D =T2). From Tso, Vasilopoulos, and Peeters, 1992. Right panel:
Calculated ρD=T2 for various values of the phonon mean-free
path and d ¼ 500 Å (solid curves). The dots show the data of
Gramila et al. (1992). The dotted line represents the contribution
of the modified plasmon pole. Inset: The crossover of the T6 to T
temperature dependence. From Bønsager et al., 1998a.

FIG. 11. Left panel: Measured ρD=T2 for various values of the
carrier density n1 ¼ n2. Dashed lines represent the results of
Flensberg and Hu (1994) adjusted for the sample parameters of
the experiment. Solid lines show the results of additional
calculations taking into account intralayer many-body correla-
tions within the Hubbard approximation. From Hill et al., 1997.
Right panel: Measured ρD=T2 for different carrier densities.
Inset: (a) Peak position temperature vs matched layer density;
(b) ρD vs density ratio for T ¼ 860, 730, and 600 mK. From
Pillarisetty et al., 2002.

11Physically, the dimensionless Wigner-Seitz radius can be under-
stood as the ratio of the average potential energy to the average kinetic
energy of the electronic system. In 2D systems it can be estimated as
rs ¼ e2m�=ðℏ2ϵ

ffiffiffiffiffiffi
πn

p Þ ¼ ð ffiffiffi
2

p
=ϵÞ½e2=ðℏvFÞ�, where m� is the band

mass and ϵ is the dielectric constant.
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followed by a downturn, although ρD does not seem to vanish
for T → 0. The observed upturn may indicate exciton for-
mation (Vignale and MacDonald, 1996; Hu, 2000b); however,
neither the observed violation of Onsager reciprocity nor the
apparent downturn at lower temperatures is anticipated by the
theory. The effect of density imbalance on the drag upturn was
studied by Morath et al. (2009). The data were interpreted in
terms of a pairing-fluctuations mechanism based on the theory
of Hwang and Das Sarma (2008b). The theory accounts for
most qualitative features of the effect; however the predicted
peak in ρD at equal layer densities was not observed in
experiment (Morath et al., 2009).
Further experiments demonstrate interesting correlation

effects such as Wigner crystallization in quantum wires
(Yamamoto et al., 2006, 2012), exciton formation in elec-
tron-hole bilayers (Seamons et al., 2009), or quantum Hall
effect (Girvin and MacDonald, 1997; Lilly et al., 1998); see
Sec. VII.A. Clearly these phenomena cannot be described by
the simple theory presented in this section. At the same time,
single-particle effects are still important at relatively low
temperatures (T ≲ 0.2TF) in traditional semiconductor heter-
ostructures hosting two-dimensional electron systems and
even more so in graphene (see Sec. IV), where interlayer
separation can be as small as several interatomic distances
(Gorbachev et al., 2012).

1. Phonon effects

Electrical resistivity due to electron-phonon scattering is a
standard topic in condensed matter physics (Ziman, 1965). At
temperatures higher than the Debye frequency T ≫ ωD, it
exhibits linear behavior ρ ∝ T that is observed in a wide class
of materials including high-mobility 2DEG (Stormer et al.,
1990) and graphene (Efetov and Kim, 2010). At low temper-
atures T ≪ ωD [in low-density electron systems the crossover
occurs at a lower scale, the so-called Bloch-Grüneisen temper-
ature T ≪ TBG < ωD (Stormer et al., 1990)], the phonon
contribution is rapidly decreasing as ρ ∝ T5 in metals (Bloch,
1930; Grüneisen, 1933) and heterostructures (Price, 1984;
Stormer et al., 1990) and as ρ ∝ T4 in graphene (Hwang and
Das Sarma, 2008a; Efetov and Kim, 2010).
Qualitative physics of the electron-phonon interaction in

semiconductor double-quantum-well heterostructures is cap-
tured by the following interaction Hamiltonian:

Hep ¼
1ffiffiffiffi
V

p
X
λ;λ0;k

X
Q;η

Mη
λ;λ0 ðQÞFλ;λ0 ðqzÞ

× ½b̂†ηð−QÞ þ b̂ηðQÞ�ĉ†λðkÞĉλ0 ðkþ qÞ: ð46Þ

Here Q ¼ ðq; qzÞ is the 3D wave vector of a phonon with
polarization η, k is the 2D electron wave vector, and Mν

λ;λ0 is
the bulk electron-phonon matrix element corrected by the
subband form factor

Fλ;λ0 ðqzÞ ¼
Z

∞

−∞
dzξλðzÞξ�λ0eiqzz; ð47Þ

where ξλðzÞ is the bound state wave function associated with
the quantized motion in the subband λ. This Hamiltonian was

used to study the effects of interaction between electrons and
longitudinal optical phonons in Das Sarma and Mason (1985)
and to calculate quasiparticle properties in weakly polar
2DEG in Jalabert and Das Sarma (1989). In double-layer
systems, the Hamiltonian (46) was used to describe interlayer
interaction mediated by acoustic phonons in Zhang and
Takahashi (1993) and Bønsager et al. (1998a) and by optical
phonons in Hu (1998).
Electrons experience the phonon-mediated interaction (46)

alongside the Coulomb interaction. The propagator of the
effective interlayer interaction can be obtained within the RPA
(Jalabert and Das Sarma, 1989; Zhang and Takahashi, 1993;
Bønsager et al., 1998a) similarly to Eq. (7). The result can be
represented in the form D12 ¼ ðV12 þD12Þ=ϵðq;ωÞ, where
D12 is the propagator of the phonon-mediated interaction and
ϵðq;ωÞ is the effective dielectric function for interlayer
interactions that is also determined by the sum of the
Coulomb interaction (5) and the phonon propagator. Thus
the phonon and Coulomb mechanisms are generally not
independent of each other. However, the Coulomb interaction
contributes only to small momentum transfers (6), while the
phonon contribution peaks at q ∼ 2kF (Bønsager et al.,
1998a). Neglecting interference between the two, one can
estimate the effect of phonon-mediated interaction by con-
sidering only the phonon part D12 → D12=ϵðq;ωÞ.
A simple analytical estimate for the strength of the phonon-

mediated interaction in GaAs/AlGaAs systems was suggested
by Bønsager et al. (1998a). In this material, electron-phonon
interaction is due to the deformation potential and piezo-
electric effect. It turns out that the deformation mechanism
dominates (except for very low electron densities). Assuming
an infinite phonon mean-free path, the corresponding
(unscreened) effective interaction has the form

D12 ¼ −
CDPω

2e−d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2−ω2c−2l

p

νkFcl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2l q

2 − ω2
q ; ð48Þ

where cl is the velocity of longitudinal acoustic phonons and
CDP ≈ 2.7 × 10−3kF=ð106 cm−1Þ. The smallness of electron-
phonon coupling constants implies weakness of the phonon-
mediated interlayer interaction as compared to the Coulomb
interaction. However, the effective interaction (48) diverges
near ω ≈ clq leading to a logarithmic divergence in the drag
resistivity. Although this divergence is removed by either
dynamic screening or phonon relaxation, this argument
illustrates the reason behind the relative strength of the
phonon-mediated interlayer interaction.
Detailed calculations of the phonon-mediated drag resis-

tivity have been performed numerically by several authors.
Tso, Vasilopoulos, and Peeters (1992) showed that combining
the phonon and Coulomb mechanisms of mutual friction
accounts for the nonparabolic temperature dependence
observed in GaAs/AlGaAs devices (Gramila et al., 1991);
see the left panel of Fig. 10. A refined discussion of the
phonon mechanism was given by Bønsager et al. (1998a);
see the right panel of Fig. 10. It was shown that the
temperature dependence of the phonon contribution to drag
exhibits a crossover from linear to T6 behavior around the
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Bloch-Grüneisen temperature (see the inset in Fig. 10),
explaining the peak in the drag resistivity, Fig. 9. In addition,
it was shown that there exists a collective mode that can be
found setting ϵðq;ωÞ ¼ 0. This mode is similar to the usual
plasmon and results from coupling of the electrons from both
layers to the phonons with ω ∼ clq. A similar mode resulting
from interaction between electrons and optical phonons was
discussed by Güven and Tanatar (1997a, 1997b). A detailed
analysis of the mutual friction due to optical phonons was
given by Hu (1998).

2. Interlayer interaction beyond RPA

Equation (7) for the dynamically screened interlayer
Coulomb interaction has been obtained within the RPA.
While capturing the qualitative physics of the effect, this
representation is by no means exact. In particular, RPA-based
calculations seem to underestimate the value of ρD as compared
to experimental data (Sivan, Solomon, and Shtrikman, 1992).
A pedagogical discussion of the RPA and possible approaches
to interacting many-body systems that go “beyond” the RPA
can be found in Giuliani and Vignale (2005). Most of these
approaches are not parametrically justified. The results of the
calculations are typically compared to either experimental data
or computer simulations.
Coulomb drag between electron and hole layers within the

generalized RPA approach was considered by Tso,
Vasilopoulos, and Peeters (1993). The resulting ρD is about
twice larger than that calculated within the RPA, but still about
twice smaller than the experimental data. Furthermore,
Swierkowski, Szymanski, and Gortel (1995) understood that
the true temperature dependence of ρD should exhibit a
crossover from the T2 dependence at low temperatures to a
power law at higher temperatures. However, the local field
approach [or the Singwi-Tosi-Land-Sjölander method (Singwi
et al., 1968)] used in this work still fails to reproduce ρDðTÞ
measured by Sivan, Solomon, and Shtrikman (1992), although
it yields roughly the same magnitude of the effect (in contrast
to the RPA and generalized RPA calculations). This approach
was further extended to drag between two 2DEG by
Swierkowski, Szymanski, and Gortel (1996, 1997). The
results of that work suggested that many-body correlations
enhance interlayer interaction and improve agreement with
experiments. Nevertheless, experiments [see, e.g., Hill et al.
(1997) and Fig. 11] show that existing theoretical methods are
still incapable of providing a precise quantitative description
of real systems.
A detailed consideration of Coulomb drag resistivity based

on an extrapolation of Fermi-liquid-based formulas to the
region where intralayer correlations are strong was carried out
by Hwang et al. (2003) in an attempt to address the striking
data of Pillarisetty et al. (2002) in low-density and high-
mobility hole bilayers. The observed drag was 2 to 3 orders of
magnitude larger than previously reported values. The calcu-
lations of Hwang et al. (2003) were different from that leading
to Eq. (21a) in several points, all of them leading to an increase
of the drag resistivity: (i) a Hubbard approximation was
employed to obtain the polarization operator, which accounts
for the exchange-driven local field corrections; (ii) an exper-
imentally measured dependence of conductivity on density

was used to extract the electron-hole asymmetry factor; (iii) a
large momentum transfer component was included to calcu-
late drag; (iv) a finite thickness of quantum wells was included
to calculate form factors of Coulomb matrix elements;
and (v) last, phonon contribution was added. Combining all
these factors, Hwang et al. (2003) were able to account for
most of the results of the measurements within a Fermi-liquid
approach.

G. Single-particle drag in magnetic field

The semiclassical Drude model described by Eqs. (2)
predicts that the drag resistivity is independent of the magnetic
field. Moreover, there is no Hall drag: the direction of the
induced motion of charge carriers in the passive layer is
expected to coincide with that of the driving current. These
predictions contradict numerous experiments [see, e.g., Rubel,
Fischer, Dietsche, von Klitzing, and Eberl (1997), Lilly et al.
(1998), Eisenstein and MacDonald (2004), Muraki et al.
(2004), Finck et al. (2010), and Nandi et al. (2012)] showing
that Coulomb drag is not only sensitive to the magnetic field,
but in fact the drag resistivity can be greatly enhanced once the
field is applied.
In single-layer measurements, magnetoresistance is usually

associated with either (i) multiband systems or (ii) quantum
effects. A close analog of the former can be found in graphene-
based systems; see Gorbachev et al. (2012), Titov et al. (2013),
and Sec. IV. The latter effects are manifest in strong, quantizing
magnetic fields leading to the emergence of a qualitatively
different behavior (Girvin and MacDonald, 1997; Eisenstein
and MacDonald, 2004) discussed in Sec. VII.
The situation somewhat simplifies if the field is tuned close

enough to the point where the Landau levels in the two layers
are half filled. In this case, the many-body state in each layer
can be viewed as a Fermi liquid of composite fermions
(Halperin, Lee, and Read, 1993). A long-range, interlayer
interaction between these excitations can lead either to a
single-particle drag effect (Sakhi, 1997; Ussishkin and Stern,
1997, 1998; Kim and Millis, 1999) or to novel correlated
states; see Sec. VII. Alternative approaches include magneto-
drag due to electron-phonon interaction (Badalyan and Kim,
2003), semiclassical theory (Brener and Metzner, 2005),
diagrammatic theory in high Landau levels (Bønsager et al.,
1996, 1997; von Oppen, Simon, and Stern, 2001; Gornyi,
Mirlin, and von Oppen, 2004), self-consistent Hartree
approximation (Tso, Geldart, and Vasilopoulos, 1998), and
the effect of magnetoplasmons (Khaetskii and Nazarov, 1999;
Manolescu and Tanatar, 2002).

1. Hall drag in weak (classical) magnetic field

Recall that the standard single-band Drude theory (2) does
not allow for any dependence of the drag resistivity on the
magnetic field and, in particular, predicts zero Hall drag;
see Eq. (3d). The same conclusion can be reached using
diagrammatic perturbation theory (Kamenev and Oreg, 1995).
This result is justified by the assumption of energy-
independent impurity-scattering time τ. Lifting this
assumption (Hu, 1997), one can show that a weak Hall drag
signal may appear
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ρHD ∝ sT4; s ¼ ∂τðϵÞ
∂ϵ

EF

τðEFÞ
: ð49Þ

As argued by Hu (1997), this effect is hard to observe in
conventional semiconductor heterostructures, where intralayer
relaxation processes are dominated by electron-electron inter-
action: in this case the nonequilibrium distribution function
quickly relaxes to a drifted Fermi-Dirac distribution and hence
the impurity-scattering time is effectively almost independent
of energy, i.e., s ≪ 1.
Hall drag in weak magnetic fields was studied by Patel et al.

(1997). The experimental device comprised two 180-Å-wide
quantum wells separated by 100 Å and exhibited measurable
tunneling between the layers, contrary to the assumptions of
Hu (1997). Hall drag in graphene (Titov et al., 2013) was
attributed to a different mechanism; see Sec. IV. Other
observations of Hall drag were performed in the quantum
Hall regime (see Sec. VII), where the effect is much stronger
(von Oppen, Simon, and Stern, 2001) than Eq. (49).

2. Coulomb drag of composite fermions

All of the previous discussion was based on the underlying
physical picture of weakly interacting fermions. Typically, this
picture becomes invalid in a strong, quantizing magnetic field.
The only exception to this statement is the peculiar state at the
half-filled Landau level. This state can be described as a Fermi
liquid of composite fermions (Halperin, Lee, and Read, 1993).
Each composite fermion is an electron with two attached flux
quanta (Jain, 1989) that interacts with the others both
electrostatically and by means of a Chern-Simons interaction.
Composite fermions can be characterized by linear-

response functions similar to those of electrons. In particular,
their respective single-layer resistivities are related to each
other by (Halperin, Lee, and Read, 1993)

ρ̂el ¼ ρ̂cf þ
2h
e2

�
0 1

−1 0

�
: ð50Þ

If one is interested in the relation between conductivities of the
electrons and composite fermions, then one has to invert the
resistivity matrices in Eq. (50). Clearly, the electronic con-
ductivity is not identical to that of the composite fermions.
Extending Eq. (50) to the case of a double-layer system, one

obtains a similar relation for the 4 × 4 resistivity matrices
(Ussishkin and Stern, 1997). If the interlayer interaction is
weak enough, so that composite fermions in a given layer are
not sensitive to the Chern-Simons field of the other layer, then
similarly to Eq. (50), longitudinal resistivities of the electrons
and composite fermions are the same and hence

ρelD ¼ ρcfD : ð51Þ

Again, conductivities (in particular, drag conductivities) of
electrons and composite fermions are not equivalent.
The quantity measured in drag experiments is the electronic

drag resistivity ρelD, Eq. (13). Given the equality (51), one can
calculate either ρcfD or ρelD. The former approach was developed
by Kim and Millis (1999), while the latter was considered by
Ussishkin and Stern (1997). Both calculations are based

on the standard lowest-order perturbation theory and yield
similar results (albeit with a rather different interpretation12).
The calculation of Kim and Millis (1999) consisted of
evaluating Eq. (15) for composite fermions and using the
correspondence (51). Alternatively, one can treat the problem
(Ussishkin and Stern, 1997) in purely electronic terms
assuming that interlayer interaction is dominated by the direct
Coulomb coupling [the assumption which justifies Eq. (51)].
At the same time, single-layer electronic response functions
(such as ImΠR) can be calculated within the composite-
fermion approach of Halperin, Lee, and Read (1993).
Within RPA (including the response of composite fermions

to the external, Coulomb, and Chern-Simons potentials) and
in the limit q ≪ kF, ω ≪ vFq, the electronic density-density
response function (the polarization operator) is given by
(Halperin, Lee, and Read, 1993)

ΠRðq;ωÞ ¼ dn
dμ

q3

q3 − 8πiωkFðdn=dμÞ
; ð52Þ

where dn=dμ is the thermodynamic compressibility of the ν ¼
1=2 state. At large momenta, ImΠ−1 ∝ q−3; consequently, the
momentum integration in Eq. (15) is dominated (Ussishkin
and Stern, 1997) by the region q ≈ kFðT=T0Þ1=3 [i.e., deter-
mined by poles of the interlayer interaction, rather than
Eq. (6)]. As a result, the temperature dependence of the drag
resistivity is weaker than in the absence of magnetic field
(Stern and Ussishkin, 1997; Ussishkin and Stern, 1997)

ρD ¼ 0.825ðh=e2ÞðT=T0Þ4=3; ð53Þ

where the characteristic temperature depends on the carrier
density n, interlayer spacing d, dielectric constant ε, and
thermodynamic compressibility

T0 ¼
πe2nd

ε

�
1þ ε

2πe2d

�
dn
dμ

�
−1
�
:

The same temperature dependence was reported by Sakhi
(1997) and Kim and Millis (1999).
For realistic parameter values similar to those of the

experiment of Lilly et al. (1998), the drag resistivity (53) is
much larger than the zero-field result (21). This fact is
associated with the smallness of the typical momenta involved
in the interlayer scattering processes and slow relaxation of
density fluctuations in the ν ¼ 1=2 state.
The effect of disorder on drag in the ν ¼ 1=2 state was

considered by Stern and Ussishkin (1997). In the diffusive
regime, the polarization operator is given by the standard form
of Eq. (30) and hence the drag resistivity is given by Eq. (34),
albeit with a different diffusion coefficient than the same
system would have in the absence of magnetic field. The result

12The subquadratic temperature dependence (53) of the drag
resistivity at ν ¼ 1=2 was interpreted by Kim and Millis (1999) as
a signature of the non-Fermi-liquid nature of composite fermions. In
particular, it was related to the similar power law in the self-energy of
the composite fermions leading to the ω ∼ q3 scaling of the typical
frequencies.
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is much larger than at B ¼ 0. In the diffusive regime, this
follows from the observation that the longitudinal conduc-
tivity (or the diffusive constant, which encodes all microscopic
details) at ν ¼ 1=2 is much smaller than at B ¼ 0.
Although this theory is qualitatively similar to the exper-

imental observations (Lilly et al., 1998) (e.g., drag at ν ¼ 1=2

is much larger than at B ¼ 0; the temperature dependence in
clean samples is subquadratic), theoretical calculations sig-
nificantly underestimate the overall value of ρD as compared
to the experiment of Lilly et al. (1998). Yang (1998) suggested
that the reason for the discrepancy is that the interlayer
separation in the samples of Lilly et al. (1998) was close
to the critical value, where the system forms an incompressible
interlayer state (for a detailed discussion of correlated states,
see Sec. VII). An alternative suggestion by Ussishkin and
Stern (1998) attributed the unexplained features of the
experiment (including the extrapolated nonvanishing drag at
T ¼ 0) to pairing fluctuations of composite fermions. The
two scenarios could be distinguished by measuring Hall drag,
which vanishes in the latter theory. Finally, the anomalous
temperature dependence shown in the inset of the lower
left panel in Fig. 12 appears to be qualitatively similar to the
effect of mesoscopic fluctuations of Coulomb drag; see
Fig. 13. A later experiment (Price, Savchenko, and Ritchie,
2010) reported both the magnitude and temperature depend-
ence of Eq. (53) to be in good agreement with the mea-
sured data.

III. MESOSCOPIC FLUCTUATIONS OF COULOMB DRAG

Universal conductance fluctuations (Altshuler, Lee, and
Webb, 1991) are quantum interference effects which are
manifestations of the wave nature of electrons. As the same
electrons are responsible for Coulomb drag, it is natural to
expect that the drag resistivity also exhibits mesoscopic
fluctuations. The drag fluctuations were first studied theo-
retically by Narozhny and Aleiner (2000) and Mortensen,
Flensberg, and Jauho (2001, 2002a) and then observed
experimentally by Price et al. (2007, 2008), Price,
Savchenko, and Ritchie (2010), and Kim et al. (2011).
In a disordered system, it is impossible to track each

individual impurity and one uses a statistical approach.
Impurities are described by a distribution function and each
physical quantity is treated as being random. Observables
correspond to average values of the random physical quan-
tities with respect to the distribution of impurities. If a system
is large enough, it can be viewed as a combination of smaller
parts, which become statistically independent if they are
separated by distances larger than any relaxation length.
Then instead of averaging over a statistical ensemble, one
can average over the volume of one large system.
In the problem of electronic transport, averaging over the

system volume can be understood as averaging over all
possible paths that an electron can take moving between
points A and B (Altshuler and Aronov, 1985; Altshuler, Lee,
and Webb, 1991; Aleiner, Altshuler, and Gershenson, 1999).
Such paths can cover all of the system volume and thus
experience all possible local impurity configurations, making
the average over the system equivalent to ensemble averaging.
Consider two paths between points A and B. The total

transmission probability is determined by the absolute value
of the sum of the corresponding quantum amplitudes
(Altshuler and Lee, 1988; Altshuler, Lee, and Webb, 1991):

W ¼ jA1 þ A2j2 ¼ jA1j2 þ jA2j2 þ 2jA1jjA2j cosðφ1 − φ2Þ;

FIG. 13. Left: Qualitative picture of the typical measured drag
signal. At high enough temperatures T > T� the average drag
conductivity (35) is representative, σD ∝ T2, with positive co-
efficient. Below T� (left of the dotted line), fluctuations dominate
and the sign of the measured signal becomes random, i.e.,
dependent on a particular configuration of disorder. For T <
T� the temperature dependence weakens to σD ∝ 1=

ffiffiffiffi
T

p
. At very

low (most likely, experimentally inaccessible) temperatures
T < ET ≪ T�, the quadratic temperature dependence is restored,
but with a random coefficient as fluctuations in the effectively 0D
system are much stronger than the average; see Eq. (58). Right:
Measured drag resistance as a function of carrier density in the
passive layer for T ¼ 1, 0.4, 0.24 K (from top to bottom). Inset:
The temperature dependence of the same data for the two values
of n2 denoted by vertical dotted lines in the main plot. The line
indicates the T2 dependence. From Price et al., 2007.

FIG. 12. Coulomb drag measurements at ν ¼ 1=2. Left panel:
The top plot shows the experimental ρDðTÞ (solid line) compared
to the theory of Stern and Ussishkin (1997); the bottom plot
shows the field dependence. The inset shows ρD at B ¼ 11.45 T
for two values of the driving current. From Lilly et al., 1998.
Right panel: (A) circuit schematic; (B) ρDðTÞ (dots) vs Eq. (53);
(C) ρDðBÞ for different temperatures T ¼ 0.05–5.6 K. The
vertical line corresponds to the B field at which the points
plotted in (B) were measured. From Price, Savchenko, and
Ritchie, 2010.
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where φ1ð2Þ are the quantum-mechanical phases that an
electron accumulates along the paths. Typically, the phases
φ1ð2Þ are random (or incoherent). As a result, the interference
term vanishes upon averaging over all possible paths (or
impurity configurations), leading to the semiclassical sum of
transition probabilities13

hcosðφ1 − φ2Þi ¼ 0 ⇒ W ¼ W1 þW2;

W1ð2Þ ¼ jA1ð2Þj2:

Random quantities can be characterized not only by their
average value, but also by higher moments of their statistical
distribution, which may be sensitive to the interference term
even if the phases φ1ð2Þ are still random. Indeed, fluctuations
of the transition probability

h½W − hWi�2i ¼ 4W1W2hcos2ðφ1 − φ2Þi ¼ 2W1W2

are completely determined by the interference term.
Fluctuations of the transmission probability result in fluc-

tuations of transport coefficients. The effect of such fluctua-
tions can be observed only in small enough samples
(Altshuler, Lee, and Webb, 1991). Indeed, in order to justify
the concept of the phase associated with a given electronic
path, the length of the path should be less than a typical
inelastic relaxation length Lφ, otherwise coherence would be
lost before the electron reaches point B (Anderson, Abrahams,
and Ramakrishnan, 1979). At the same time, the path length
should be larger than the mean-free path in the system
(otherwise electron motion along the path would be deter-
ministic). Therefore, typical paths (and hence, the sample
sizes) should be characterized by intermediate lengths L:

l ≪ L ≪ Lφ:

Fluctuations observed at such length scales are known as
“mesoscopic fluctuations” (Altshuler, Lee, and Webb, 1991).

A. Drag fluctuations in conventional diffusive samples

Mesoscopic fluctuations of the usual conductance
(Altshuler, Lee, and Webb, 1991) are known as the “universal
conductance fluctuations” (UCFs). The universality is mani-
fest when T ≪ ET , where ET is the Thouless energy of the
sample (i.e., in small samples or at low temperatures; in
the diffusive regime ET ¼ D=L2 ¼ g=ð2πνL2Þ, with g the
dimensionless conductance and ν, the DOS). Then the
fluctuations are characterized by the universal value

δσ ≃ e2

ℏ
; hδG2i ≈ e4

h2
;

ffiffiffiffiffiffiffiffiffiffiffiffi
hδG2i
hGi2

s
≃ 1

gðLÞ ; ð54Þ

where G ¼ ge2=h is the conductance of the system. The latter
equality emphasizes the fact that the dimensionless conduct-
ance is a function of the system size.
In larger samples, hδG2i is a function of temperature and

the sample size. Arguments leading to Eq. (54) are valid only
for coherent samples (Altshuler, Lee, and Webb, 1991). At
larger length scales L ≫ Lφ the coherence is lost, and the
disorder averaging should be performed by dividing the
sample into patches of the size Lφ. Individual self-coherent
patches (54) can be combined as a network of random
conductors. This yields (in dimension d)

hδG2ðLÞi≃ hδG2ðLφÞiðLφ=LÞd: ð55Þ

The patches of the size Lφ remain self-coherent as long as
T ≪ ETðLφÞ. At higher temperatures, thermal averaging
should be performed up to energies of order T, suppressing
the conductance fluctuations

hδG2ðLφÞi≃ ðe2=hÞ2ETðLφÞ=T:

The conductance fluctuations of the sample become

hδG2½L;T > ETðLφÞ�i≃ ðe2=hÞ2ðLφ=LÞdℏ=ðTτφÞ; ð56Þ

where τφ ¼ E−1
T ðLφÞ is the dephasing time (Altshuler

et al., 1980).
The fluctuations (56) are observable only in mesoscopic

samples. Assuming the samples to be “metallic,” g ≫ 1, the
UCFs (54) yield only a small correction to the average value of
conductance. For example, in the experiment of Price et al.
(2007) the single-layer resistance fluctuates by about 200 mΩ
around the average of about 500 Ω.
Now we apply these arguments to Coulomb drag

(Narozhny and Aleiner, 2000). The drag conductivity depends
on (i) the phase space available to electron-hole excitations;
(ii) matrix elements of the interlayer interaction; and (iii) elec-
tron-hole asymmetry, expressed through the energy depend-
ence of the density of states (or the density dependence of the
single-layer Drude conductivity). This can be schematically
summarized by

σD ≃ e2

ℏ

� ∂
∂μ ln g

�
2

×

�
phase

volume

�
×

�
matrix

element

�
: ð57Þ

The average drag conductivity [cf. Eqs. (34) and (35)]
can then be understood (up to the logarithmic factor) by
estimating the phase volume by T2, the matrix element by
ðϰdÞ−2 (coming from static screening), and the factor of the
electron-hole asymmetry by E−2

F .
Fluctuations of the drag conductivity can also be estimated

with the help of Eq. (57). Consider first the lowest temper-
atures T ≪ ET , where the sample is effectively zero dimen-
sional (0D). The phase space is then limited only by
temperature, yielding the usual factor of T2. The factor of
the electron-hole asymmetry in Eq. (57) is a random quantity
with the typical value ∼E−2

T , since the Thouless energy is the
typical scale of mesoscopic effects. Interaction matrix ele-
ments in 0D are independent of energy (Aleiner, Altshuler,

13In special cases of coherent paths (for instance, time-reversed
paths) the phase difference is exactly zero. Then the interference term
does not vanish and leads to quantum corrections to semiclassical
transport properties, such as the weak localization correction
(Altshuler and Aronov, 1985; Altshuler, Lee, and Webb, 1991).
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and Gershenson, 1999); fluctuations are determined by off-
diagonal elements that contain a small factor of g−2. As a
result, one finds the variance of the drag conductivity that
strongly exceeds the average

δσD ∼
e2

ℏ
T2

g2E2
T
;

ffiffiffiffiffiffiffiffiffiffiffiffi
hδσ2Di

p
hσDi

≃ E2
F

g2E2
T
≃ L4

l4
≫ 1: ð58Þ

The quadratic temperature dependence of the variance of
the drag conductivity (Narozhny and Aleiner, 2000) for
mesoscopic samples (L ≪ Lφ, T ≪ ET) was also obtained
in the context of quantum circuits [see Sec. V and Levchenko
and Kamenev (2008a)] and within the random matrix theory
(Mortensen, Flensberg, and Jauho, 2001, 2002b).
In order to extend the 0D argument to larger samples

L ≫ Lφ, we again divide the system into patches of the size
Lφ. Since the patches are largely uncorrelated (due to the loss
of phase coherence), they can be combined as a network of
random conductors; see Eq. (55). Each patch can be analyzed
similarly to the 0D case. However, now the interaction matrix
elements become energy dependent on the scales larger than
ET , decreasing with the transmitted energy ω as jMj2 ∼ ω−2.
Thus the energy transfer is limited by the Thouless energy of
the patch ω ∼ ETðLφÞ ¼ τ−1φ , rather than temperature. As a
result, the phase space is limited by Tτ−1φ , rather than the usual
T2. The fluctuations of the density of states (which determine
the factor of electron-hole asymmetry) should now be calcu-
lated on the scale of temperature rather than the Thouless
energy. This suppresses the fluctuations in each layer by
the factor of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ETðLφÞ=T

p
. Combining the above estimates,

we find

δσDðLφÞ ∼
e2

ℏ

Tτ−1φ
g2E2

TðLφÞ
ETðLφÞ

T
∼

e2

ℏg2
; ð59Þ

which is T independent, in contrast to the 0D result (58).
Finally the Coulomb drag fluctuations in 2D samples can be

estimated by combining Eqs. (55) and (59):

hδσ2DðLÞi ∼
e4

ℏ2g4
L2
φ

L2
∼

e4

ℏ2g4
ETðLÞτφ ∝

1

T
: ð60Þ

The temperature dependence of the fluctuations (60) is
contained in the dephasing time τφ ∼ g=T (Altshuler and
Aronov, 1985). At high enough temperatures T ≫ T�, the
fluctuations are small [the average value of σD of Eq. (35) is
representative], but for T ≪ T� fluctuations dominate; see
Fig. 13. The crossover temperature T� can be found by setting
the relative fluctuation to unity

T� ∼ EFðg2nL2Þ−1=5:

The fluctuation-dominated regime is characterized by typical
values of σD determined by Eq. (60) rather than the average. In
particular, the temperature dependence of the measured drag
conductivity in this regime appears almost saturating as
σD ∝ 1=

ffiffiffiffi
T

p
. The value of the prefactor in this expression

is sample dependent and has a random sign. If temperature is
decreased further, then eventually (although probably only in

theory) one can reach the regime where T < ET . Then the
sample will become effectively zero dimensional and the
quadratic temperature dependence σD ∝ T2 will be restored.
In this regime of lowest temperatures, fluctuations greatly
exceed the average [see Eq. (58)] and therefore the coefficient
in the quadratic temperature dependence will be random (with
random sign). The temperature dependence of a typical drag
signal is sketched in the left panel of Fig. 13 [cf. the inset in
the right panel of Fig. 13; see also the inset in the lower left
panel of Fig. 12 and the discussion of the data of Lilly et al.
(1998) in Sec. III.C].
This qualitative picture is in full agreement with micro-

scopic calculations (Narozhny and Aleiner, 2000). The aver-
age square of the drag conductivity has the form

hσαβD σα
0β0

D i ¼ ðδαα0δββ0 þ δαβ
0
δα

0βÞhσ2Di; ð61aÞ

hσ2Di ¼
e4

ℏ2

γ

18π3

�
32 ln 2 − 14

3

�
ETτφ ln ϰd

g4ðϰdÞ3 ; ð61bÞ

where γ ¼ 1.0086. Comparing Eq. (61) with the average drag
conductivity in the diffusive regime (35), one finds the
crossover temperature T� ¼ EFð16πg2nL2Þ−1=5.
For heterostructures used by Gramila et al. (1991) and Lilly

et al. (1998), the value of T� can be estimated as T� ≈ 0.2 K,
which is below the temperature range of these experiments.
Hence, the average drag coefficients (34) and (35) were
sufficient to account for the observed effect with no trace
of the random sign predicted by Eqs. (61).
More recently, drag fluctuations were observed in diffusive

graphene-based double-layer samples (Kim et al., 2011; Kim
and Tutuc, 2012); see Fig. 14. The temperature dependence
δσD ∝ T−1=2 [following from Eq. (61) and the assumption that
the main phase-breaking mechanism in the device is electron-
electron scattering (Altshuler and Aronov, 1985)] appears to
be in agreement with the experimental data. Other aspects of
these experiments are specific to graphene. The fluctuations
appear to be more pronounced in the vicinity of the charge

FIG. 14. Mesoscopic fluctuations of Coulomb drag in graphene.
At low temperatures the fluctuations fully obscure the average
drag. The curves are shifted for clarity; the horizontal dashed
lines indicate 0Ω for each curve. From Kim et al., 2011.
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neutrality point. However, at the time of writing, a theory of
drag fluctuations in graphene has not been developed. There is
also no explanation for the most puzzling feature of the data
reported in Kim and Tutuc (2012) showing an apparent
violation of Onsager reciprocity as the drag fluctuations
depend only on the charge density in the passive layer and
not in the active layer.
The result (61) is valid for homogeneous 2D diffusive

samples in the absence of magnetic field. The randomness
(i.e., the sample to sample variation) of the sign of the effect
should be contrasted with the deterministic sign change of the
drag resistivity suggested for bilayer systems with in-plane
periodic potential modulation (Alkauskas et al., 2002). Drag
signals of both signs have been observed in vertically
integrated 1D quantum wires (Laroche et al., 2011). While
the observed effect has been argued (Büttiker and Sánchez,
2011) to have a mesoscopic origin (Mortensen, Flensberg, and
Jauho, 2001) dominated by charge fluctuations (Levchenko
and Kamenev, 2008a; Sánchez et al., 2010), the data appear to
be not random, but reproducible. Very similar data were
obtained in the subsequent experiment (Laroche et al., 2014)
and interpreted with the help of the Luttinger liquid theory
(Pustilnik et al., 2003) (see Sec. VI).
In closing this section, we note that strong fluctuations of

Coulomb drag ultimately follow from strong fluctuations
of the nonlinear susceptibility. The fact that the fluctuations
of the drag resistivity exceed the average is related to the
overall smallness of the drag effect due to electron-hole
symmetry. A related phenomenon is the fluctuations of the
electroacoustic current (see footnote 7) determined by the
same nonlinear susceptibility.

B. Giant fluctuations of Coulomb drag

The predictions of the fluctuation theory (Narozhny and
Aleiner, 2000) were put to the test in the dedicated experiment
(Price et al., 2007). Both the UCF and drag fluctuations were
measured in the same structure. The observed UCFs have
shown the usual behavior (Altshuler, Lee, and Webb, 1991).
A direct comparison of the correlation fields for the UCF
and drag fluctuations confirmed that both effects depend
on the same coherence length Lφ (Aleiner, Altshuler, and
Gershenson, 1999) and have the same quantum origin.
Surprisingly, the observed giant drag fluctuations (Price et al.,
2007) greatly exceeded the original prediction (Narozhny and
Aleiner, 2000). This discrepancy was attributed to the fact
that the experiment was performed in the ballistic regime
(Zala, Narozhny, and Aleiner, 2001; Narozhny, Zala, and
Aleiner, 2002).
Let us remind the reader (see Sec. II) that the drag

measurements difference between diffusive and ballistic
samples is in the relation between the mean-free path l
and interlayer separation d. The latter sets the upper limit for
the interlayer momentum transfer due to the exponential decay
of the Coulomb interaction (5). Thus, if the mean-free path is
small l ≪ d, then q ≪ d−1 ≪ l−1 and the effect is dominated
by the diffusive motion of charge carriers. In cleaner samples
with l ≫ d, both small q ≪ l−1 and large l−1 ≪ q ≪ d−1

momentum transfers are possible. The conventional statement,
that in such samples Coulomb drag is dominated by

ballistically moving carriers (Kamenev and Oreg, 1995),
follows from observing that processes with large momentum
transfers yield a much larger drag resistivity Eq. (21) com-
pared with the diffusive result (34); see Eq. (36).
Coherence properties of electrons are also sensitive to the

nature of their motion. The dephasing time τφ is a manifes-
tation of inelastic electron-electron scattering (Altshuler and
Aronov, 1985; Aleiner, Altshuler, and Gershenson, 1999). The
conventional theory of interaction effects in electronic systems
(Altshuler and Aronov, 1985) yields the following estimate for
the dephasing time in diffusive systems:

τ−1φ ðTτ ≪ 1Þ ∼ ðT ln gÞ=g: ð62aÞ

At higher temperatures, transport is dominated by processes
with one or few successive impurity scatterings. In this
ballistic regime (Zala, Narozhny, and Aleiner, 2001), the
dephasing time exhibits somewhat stronger temperature
dependence (Narozhny, Zala, and Aleiner, 2002)

τ−1φ ðTτ ≫ 1Þ ∼ ðT2=EFÞ lnð2EF=TÞ: ð62bÞ

In Eqs. (62a) and (62b) the parameter distinguishing the
diffusive and ballistic regimes is Tτ which is independent of
the interlayer separation. This is to be expected since the
theory leading to Eqs. (62a) and (62b) was devoted to two-
dimensional systems and not bilayers.
The effect of the external magnetic field on the single-layer

conductance fluctuations analyzed by Price et al. (2007)
demonstrates the expected crossover between the ballistic
and diffusive results:

τ−1φ ∝
	
T; Tτ ≲ 1;

T2; Tτ ≳ 1:
ð62cÞ

The same sample where Coulomb drag is dominated by the
ballistic motion of electrons with large interlayer momentum
transfers l−1 ≪ q ≪ d−1 may exhibit both the diffusive and
ballistic behaviors of single-layer transport properties, e.g., of
the dephasing time (62).
A similar crossover was observed also in the drag fluctua-

tions that exhibited strikingly different temperature depend-
ence at large and small Tτ (Price et al., 2007):

hδσ2Di ∝
	
T−1; Tτ ≲ 1;

T−4; Tτ ≳ 1:
ð63Þ

The crossover temperature in Eq. (63) was found to be about
the same as in Eq. (62). This coincidence raised the question
of whether the large magnitude of the observed drag fluctua-
tions and their unexpected temperature dependence (63) had
the same origin that would involve large momentum transfers
l−1 ≪ q ≪ d−1 [given that the small momentum transfers
lead to Eq. (61)].
Scattering processes characterized by large momentum

transfers q ≫ 1=l involve two electrons at a distance that
is smaller than the average impurity separation. Thus, the
effect should be determined by local electron properties. Local
properties, such as the local DOS, are known to exhibit
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mesoscopic fluctuations stronger than those of the global
properties (responsible for drag fluctuations in the diffusive
regime). In particular, fluctuations of the local DOS are given
by (Lerner, 1988)

δν2 ∼ ðν2=gÞ ln½maxðLT; LφÞ=l�; ð64Þ

where LT ¼ ffiffiffiffiffiffiffiffiffiffi
D=T

p
is the thermal length.

Contribution of processes with large momentum transfers to
drag fluctuations can be estimated using Eqs. (55) and (57).
Electron-electron scattering can be described with the help of
ballistic expressions discussed in Sec. II.B. As small-angle
scattering plays the dominant role, the matrix element of the
interlayer interaction is proportional to the ratio of the mean-
free path to the interlayer separation jMj2 ∼ g−2l2=ðϰ2d4Þ. As
this interaction is static, the phase space is limited only by T.
Assuming that the fluctuations of the nonlinear susceptibility
are dominated by fluctuations of the local density of states
(64), one finds (up to a logarithmic factor)

δσDðLφÞ ∼
e2

ℏ
T

gETðLφÞ
l2

ϰ2d4
; ð65Þ

where the thermal smearing was taken into account similarly
to Eq. (59). This leads to the estimate for the drag fluctuations
in the whole sample (Price et al., 2007)

hδσ2Di ∼
e4

ℏ2

l4

g2ϰ4d8
T2

E2
TðLφÞ

L2
φ

L2
∝ T2τ3φ: ð66Þ

The result (66) contains two falsifiable predictions: (i) the
magnitude and (ii) the temperature dependence of the drag
fluctuations. In comparison with Eq. (61), the prefactor in
Eq. (65) contains the large factor l4=d4 and moreover g2

instead of g4 in the denominator. Consequently, the drag
fluctuations (66) are much stronger than the diffusive

prediction. At the same time, using the temperature depend-
ence of the dephasing time (62), one immediately recovers the
measured temperature dependence of the drag coefficient (63).
The crossover between the two temperature regimes in
Eqs. (63) and (66) is illustrated in Fig. 15.

C. Drag fluctuations at the half-filled Landau level

Mesoscopic fluctuations of Coulomb drag of composite
fermions were studied theoretically by Narozhny, Aleiner, and
Stern (2001) and experimentally by Price, Savchenko, and
Ritchie (2010). Despite the significant increase in the magni-
tude of drag of composite fermions relative to that of normal
electrons (Lilly et al., 1998; Jörger, Dietsche et al., 2000;
Zelakiewicz et al., 2000; Muraki et al., 2004) the fluctuations
of the drag resistivity can still exceed the average, resulting in
an alternating sign of the measured drag resistivity.
Qualitatively, one can estimate the fluctuation effects using

Eq. (25). Similarly to the B ¼ 0 case, drag fluctuations stem
from the fluctuations of the nonlinear susceptibility. In the
diffusive regime, hΓi is given by Eq. (28) with the polarization
operator having the standard form (30), although with a
different diffusion constant (Stern and Ussishkin, 1997). In
contrast to the B ¼ 0 case, the ν ¼ 1=2 state is characterized
by a large Hall conductivity. This leads to the nonlinear
susceptibility being approximately orthogonal to the trans-
ferred momentum q [unlike Eq. (31)].
Fluctuations of Γ (and thus of the drag resistivity) result

from mesoscopic fluctuations of ∂σ=∂n. Other parameters
such as the compressibility and the diffusion constant can be
taken at their average values (their fluctuations are much
smaller than the averages). To estimate fluctuations of ∂σ=∂n,
one can express the conductivity in terms of the response
functions of composite fermions using Eq. (50). On average,
the conductivity matrix of composite fermions is diagonal.
Assuming the large dimensionless conductance of composite
fermions gcf ≫ 1, the electronic longitudinal conductivity is
inversely proportional to gcf, meaning smallness of the
electronic dimensionless conductance

g ≈ 1=ð4gcfÞ ≪ 1: ð67Þ

This is the reason one needs to perform calculations in the
composite-fermion basis: the B ¼ 0 theory of Sec. III.A is
justified by the small parameter 1=g.
Adapting the B ¼ 0 theory to the case of composite

fermions, Narozhny, Aleiner, and Stern (2001) found the
fluctuations of the nonlinear susceptibility (28) of a coherent
sample of size L in the ν ¼ 1=2 state to be large

δΓ ∼ iq
e
h
L2

g2cf
ImΠR;

hδΓ2i
hΓγi2 ∼

k4FL
4

g4cf
≫ 1; ð68Þ

similar to Eq. (58). This is already an observable conclusion:
in a fully coherent sample in the diffusive regime, fluctuations
of the acoustoelectric current (determined by the same non-
linear susceptibility) are much larger than its average. The
result Eq. (68) is justified as long as the thermal Lcf

T ≡

FIG. 15. Drag fluctuations in ballistic samples. The lines
represent the asymptotic power laws; see Eq. (63). The inset
shows the measured dephasing time. The lines in the inset
represent the power laws from Eq. (62). Adapted from Price
et al., 2007.
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏDcf=T

p
and phase-breaking Lcf

φ length scales of composite
fermions are much larger than L.
For larger samples, the global phase coherence is lost and

one has to employ the averaging procedure described in
Sec. III.A. The system can be divided into L2=ðLcf

φ Þ2 self-
coherent patches of the size of the phase-breaking length of
composite fermions Lcf

φ . Summing up contributions of all
patches according to Eq. (55), one finds

hρ2Di ¼
h2

e4
1

g4cfðκdÞ2
�
Lcf
φ

L

�2

min

�
1; α1

�
g2cfTτ

cf
φ

κdℏ

�2�

× min ½α3; α2ðTτcfφ =ℏÞ2�; ð69Þ
where α3 ≈ 0.2ð32=9πÞ ¼ 0.23 and the coefficients α1;2 are of
the order of unity (Narozhny, Aleiner, and Stern, 2001).
The magnitude of the mesoscopic fluctuations depends on

the precise source of phase breaking, but their temperature
dependence is robust: all generic models of phase breaking in
two dimensions (Altshuler and Aronov, 1985) lead to 1=τφ ∝
T in the diffusive regime. In the ν ¼ 1=2 state phase breaking
comes from the quasielastic scattering of composite fermions
off the thermal quasistatic fluctuations of the Chern-Simons
magnetic field. This mechanism can be illustrated using a
cartoon shown in Fig. 16. Consider a density fluctuation
where the excess charges in the two layers have opposite
signs. Such a fluctuation is accompanied by a random flux that
interacts with the composite fermions leading to the loss of
coherence. The energy of this fluctuation is of the order of T.
It can also be estimated as the energy of a simple capacitor
2πe2d=½εðLcf

φ Þ2�≃ T, where ε is the bulk dielectric constant
and Lcf

φ is the typical size of the density fluctuation with the
electron number of the order of unity creating the random flux
of approximately Φ0. As a result,

1=τcfφ ≃ gcfT=ðϰdÞ: ð70Þ

Substituting the above estimate into Eq. (69), one finds
(assuming gcf ≫ ϰd)

hρ2Di≃ h2

e4
2πe2d
TεL2g6cf

:

Using realistic parameters (Lilly et al., 1998) (i.e.,
L≃ 100 μm, d ¼ 300 Å, T ¼ 0.6K, R ¼ 3kΩ=□ leading

to gcf ≈ 8, and hρDi ¼ 15Ω=□), the magnitude of the drag
fluctuations can be estimated as δρD ≈ 0.3 Ω, which is much
smaller than the experimental data of Lilly et al. (1998); see
the lower left panel of Fig. 12. That experiment remains
poorly understood. For lower temperatures and smaller
samples, the theory predicts stronger fluctuations (i.e.,
exceeding the average). Such strong fluctuations were
observed by Price, Savchenko, and Ritchie (2010), albeit
again with a substantially larger magnitude that follows from
the above estimate; see Fig. 17.
The dephasing time due to the quasielastic scattering of

composite fermions on thermal fluctuations of the Chern-
Simons field appears to be shorter than the temperature
scale Tτcfφ ≪ 1. This does not create any additional com-
plication since most of the phase breaking results from
scattering off the Chern-Simons field fluctuations whose
dynamics (with characteristic frequency T=gcf) is very slow
compared to τcfφ , but fast compared to the time of the
experiment. Field fluctuations which are static on the scale
of the experiment time affect the mesoscopic fluctuations
only by affecting gcf . Field fluctuations that are faster than
that scale make the potential landscape seen by the
composite fermions time dependent and lead to a suppres-
sion of the mesoscopic fluctuations by partial ensemble
averaging.
Consider the correlation function

hρDðBÞρDðBþ δBÞi − hρDðBÞihρDðBþ δBÞi ¼ F1

�
δB
B�

�
;

with the field B near the ν ¼ 1=2 value. An experimental
study of the decay of this correlation function is a way to

FIG. 17. Mesoscopic fluctuations of Coulomb drag at ν ¼ 1=2,
T ¼ 50 mK. Upper panel: Comparison of δρD as a function of the
filling fraction ν obtained by varying either the carrier density or
magnetic field. The gray (red) curve shows a different measure-
ment run demonstrating the reproducibility of the fluctuations.
Similarity of the periods of ρDðnÞ and ρDðBÞ is the proof of
composite-fermion drag. Lower panel: Autocorrelation function
of the fluctuations shown in the upper panel. Squares represent
ρDðBÞ and circles represent ρDðnÞ. From Price, Savchenko, and
Ritchie, 2010.

FIG. 16. The phase-breaking mechanism at ν ¼ 1=2. A random
flux in the system can be generated by charge-density fluctuations
with the opposite signs of excess local charges in the two layers.
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measure Lcf
φ : the characteristic magnetic field of the decay is

B� ∼ ðLcf
φ Þ−2Φ0. The decay of this correlator as a function of

density

hρDðnÞρDðnþ δnÞi − hρDðnÞihρDðnþ δnÞi ¼ F2

�
δn
n�

�

also yields Lcf
φ : the characteristic density change n� at which it

decays is expected to correspond to half of an electron in a
phase coherent region, i.e., n� ¼ ðLcf

φ Þ−2=2. This statement
holds as long as the composite-fermion cyclotron radius is
much larger than its mean-free path, i.e., for jν − 1=2j <
ð2gcfÞ−1.
The ratio of the above characteristic field B� to the

characteristic density n� yields two flux quanta

B�

n�
≃ 2Φ0: ð71Þ

This should be contrasted to the zero-field case, where

B� →
Φ0

L2
φ
; n� →

kFl
L2
φ
⇒

B�

n�
≃ Φ0

g
:

At B ¼ 0 the electrons do not carry any attached flux.
Therefore the characteristic density n� corresponds to a
change in the chemical potential of the order of τ−1φ .
Consequently, observation of the ratio (71) in a laboratory
experiment serves as a verification of the concept of the flux
attachment and the fact that charge carriers in the system are
indeed composite fermions.
In single-layer measurements of mesoscopic fluctuations,

the ratio (71) was reported by Kvon et al. (1997). In double-
layer systems, mesoscopic fluctuations of Coulomb drag were
investigated by Price, Savchenko, and Ritchie (2010), where it
was shown that the fluctuations of drag resistivity obtained
either by varying the magnetic field (with n ¼ const) or by
varying the carrier density (holding B constant) exhibit the
same characteristic scale (or a “period”), if plotted as a
function of the filling factor ν ¼ nh=eB; see Fig. 17. The
similarity of the two periods is equivalent to the ratio (71).

IV. DRAG IN GRAPHENE-BASED DOUBLE-LAYER
DEVICES

The physical picture of frictional drag outlined in the
preceding sections is based on the following assumptions:
(i) each of the layers is in a Fermi-liquid state, which at the
very least means μ1ð2Þ ≫ T; (ii) the electron-electron inter-
action does not contribute to the intralayer transport scattering
time; and (iii) the interlayer Coulomb interaction is assumed to
be weak enough, α ¼ e2=vF ≪ 1, such that ρD is determined
by the lowest-order perturbation theory (Jauho and Smith,
1993; Zheng and MacDonald, 1993; Flensberg and Hu, 1994;
Flensberg et al., 1995; Kamenev and Oreg, 1995) leading to
Eq. (15). Most of the experiments in semiconductor devices
(Eisenstein, 1992; Rojo, 1999) were performed on samples
with high carrier density, where μ1ð2Þ ≫ T [with the notable
exception of Pillarisetty et al. (2002)].

Lifting one or more of these assumptions leads to signifi-
cant changes in the drag effect. Recently drag measurements
were performed in a system of two parallel graphene sheets
(Kim et al., 2011; Gorbachev et al., 2012; Kim and Tutuc,
2012; Titov et al., 2013). This system offers much greater
flexibility compared to prior experiments in semiconductor
heterostructures. The graphene-based system allows one to
scan a wide range of chemical potentials (by electrostatically
controlling carrier density) from the Fermi-liquid regime to
the charge neutrality (or Dirac) point μi ¼ 0. Moreover, using
hexagonal boron nitride as a substrate (Ponomarenko et al.,
2011; Titov et al., 2013), one can decrease disorder strength in
the system and reach the regime, where transport properties of
the two layers are dominated by electron-electron interaction
τ ≫ τee. In addition, modern technology allows for a con-
trolled growth of boron nitride yielding devices with a
relatively wide range of the interlayer separations, which
can be as low as d ¼ 1 nm (corresponding to only three
atomic layers). While the experiments (Kim et al., 2011;
Gorbachev et al., 2012; Kim and Tutuc, 2012; Titov et al.,
2013) were performed at relatively low temperatures T <
vg=d (vg is the quasiparticle velocity in graphene), the range
of temperatures available for these measurements (typically,
4–240 K) is much wider than in earlier studies. In a parallel
development, Coulomb drag measurements in graphene
double ribbon structures were reported by Chen and
Appenzeller (2013).
In graphene one can reach parameter regimes which were

inaccessible in semiconductor samples; see Fig. 18: (i) near
charge neutrality, the chemical potential may become smaller
than temperature μ1ð2Þ ≪ T; the electronic system becomes
nondegenerate; (ii) low-energy excitations in graphene are
characterized by the linear Dirac-like dispersion; there is no

FIG. 18. The parameter regimes and the resulting drag coef-
ficient in graphene for identical layers μ ≪ minðT=α; v=dÞ and
uncorrelated disorder. Bottom row (below curve 2,
τ−1 ≪ α2T2=μ): solutions to the quantum kinetic equation; see
Sec. IV.B. Curve 1 (τ−1 ¼ α2μ2=T) separates the two regimes in
Eq. (104). Middle row (α2T ≪ τ−1 ≪ T): the region where the
quantum kinetic equation approach overlaps with the perturba-
tion theory (Narozhny et al., 2012). The third-order contribution
ρð3ÞD ¼ Oðα3Þ yielding nonzero drag at μ ¼ 0 is shown in red.
Upper row (τ−1 ≫ T): the diffusive regime, where ρð3ÞD saturates
for τ−1 ≫ T=α2). From Schütt et al., 2013.
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Galilean invariance in the system and transport properties are
strongly affected by electron-electron interaction (Schütt et al.,
2011; Katsnelson, 2012). Moreover, electrons interact by
means of 3D nonrelativistic Coulomb interaction, which
breaks the Lorenz invariance of the Dirac Hamiltonian.
Nondegenerate systems were considered in the early work

on frictional drag (Pogrebinskii, 1977; Price, 1983; Boiko and
Sirenko, 1988; Jacoboni and Price, 1988) in the context of
semiconductors, where elementary excitations are typically
modeled by quasiparticles with parabolic dispersion. In that
case, the electron-electron interaction plays a subleading role
in single-layer transport (due to Galilean invariance). In
contrast, in ultraclean graphene near the Dirac point single-
layer transport is dominated by the electron-electron inter-
action (Schütt et al., 2011; Narozhny et al., 2012).
The low-temperature degenerate regime T ≪ μ can be

achieved by, e.g., electrostatically tuning the carrier density
away from charge neutrality. In this case the system is
expected to exhibit the same qualitative behavior as the
semiconductor devices. Indeed, in ballistic samples and
under the additional assumption of the small screening length
ϰd ≫ 1, one recovers (Tse, Hu, and Sarma, 2007; Narozhny
et al., 2012) the standard expression for the drag resistivity
(21), albeit with an extra factor N ¼ 4 reflecting higher
degeneracy of the single-particle spectrum in graphene.
However, this regime might be outside of the experimentally
accessible parameter range of drag measurements in gra-
phene-based samples (Kim et al., 2011; Gorbachev et al.,
2012; Kim and Tutuc, 2012; Titov et al., 2013).
For weaker doping, the assumption of the small screening

length is invalid and the standard result (21) has to be modified
(Narozhny et al., 2012). A perturbative treatment can still be
developed as long as the transport properties of both layers are
dominated by disorder (i.e., τee ≫ τ). If electron-electron
interaction is weak enough

α2Tτminð1; T=μiÞ ≪ 1; ð72Þ
then the drag conductivity is given by the standard expression
(25). Close to the Dirac point (μi ≪ T), this yields ρD ∝ μ1μ2.
At intermediate densities (μ ∼ T), the drag coefficient reaches
a maximum and then decays toward the asymptotic limit (21).
This decay is characterized by a long crossover from the

logarithmic behavior at μi > T to the standard result (21) that
is achieved only for small screening lengths ϰd ≫ 1. As a
result, the density dependence of ρDðμi ≳ vg=dÞ cannot be
described by a power law. Partially due to this fact, several
conflicting results for ρD have been reported in the literature
(Tse, Hu, and Sarma, 2007; Hwang, Sensarma, and Sarma,
2011; Katsnelson, 2011; Peres, Santos, and Neto, 2011;
Amorim and Peres, 2012; Carrega et al., 2012; Lux and
Fritz, 2012; Song and Levitov, 2012, 2013).

A. Perturbative regime in ballistic samples

The perturbation theory is valid when transport properties
of the sample are dominated by potential disorder, such that
τ ≪ τee; see Eq. (72). In ballistic samples the mean-free path
is large compared to the interlayer separation l ≫ d. For
experimentally relevant temperature range T < vg=d, the
latter condition is compatible with the more standard con-
dition for ballistic transport in disordered systems Tτ ≫ 1.
The resulting parameter range occupies the middle row of the
“phase diagram” shown in Fig. 18 between the line Tτ≃ 1
and curve 2.
Perturbative calculations in the ballistic regime can be

performed using either the diagrammatic (see Fig. 2) or kinetic
equation approach (see Sec. II.B). In both cases, one arrives at
an expression similar to Eq. (15), where the nonlinear
susceptibility and screened interlayer interaction (and hence
the polarization operator) have to be specified for Dirac
fermions in graphene.

1. Nonlinear susceptibility in graphene

In contrast to the theory reviewed in Sec. II, here we are
interested in a wide range of chemical potentials including the
Dirac point μ ¼ 0. The nonlinear susceptibility and polariza-
tion operator in graphene for arbitrary μ and T were derived in
Narozhny et al. (2012). Assuming the long, energy-indepen-
dent impurity-scattering time τ and neglecting intralayer
interaction, the nonlinear susceptibility has the form

Γðω; qÞ ¼ −2
eτq
π

g

�
ω

2T
;
vgq

2T
;
μ

T

�
; ð73Þ

where [with W ¼ ω=ð2TÞ, Q ¼ vgq=ð2TÞ, and x ¼ μ=T]

gðW;Q; xÞ ¼

8><
>:

ffiffiffiffiffiffiffiffiffiffiffiffiffi
W2

Q2 − 1
q R

1
0 dz

z
ffiffiffiffiffiffiffi
1−z2

p
z2−W2=Q2 Iðz;W;Q; xÞ; jWj > Q;

−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − W2

Q2

q R
∞
1 dz z

ffiffiffiffiffiffiffi
z2−1

p
z2−W2=Q2 Iðz;W;Q; xÞ; jWj < Q;

ð74Þ

Iðz;W;Q; xÞ ¼ tanh
zQþW þ x

2
− tanh

zQþW − x
2

þ tanh
zQ −W − x

2
− tanh

zQ −W þ x
2

: ð75Þ

Under the same assumptions, the polarization operator is given by

ΠR ¼ q
4π2vg

Z
1

0

Z
1

0

dz1dz2
z1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − z21Þð1 − z22Þ

p �
ðz−21 − 1Þ

�
Q

z2QþW þ iη
þ Q
z2Q −W − iη

�
J1ðz−11 ; z2; xÞ

þ ð1 − z22Þ
�

Q
z−11 QþW þ iη

þ Q
z−11 Q −W − iη

�
J2ðz−11 ; z2; xÞ

�
; ð76aÞ
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where

J1ð2Þðz1; z2; xÞ ¼ tanh
ðz1 þ z2ÞQþ x

2
þ tanh

ðz1 þ z2ÞQ− x
2

∓ tanh
ðz1 − z2ÞQþ x

2
∓ tanh

ðz1 − z2ÞQ − x
2

:

ð76bÞ

The perturbative calculation amounts to using the polarization
operator (76) to determine the effective interlayer interaction
(7) and then evaluating the drag conductivity [cf. Eqs. (15) and
(25)] (Tse, Hu, and Sarma, 2007)

σαβD ¼ 1

16πT

X
q

Z
dω

jDR
12j2

sinh2ω=ð2TÞΓ
β
1ðω; qÞΓα

2ðω; qÞ; ð77Þ

using the nonlinear susceptibility (73). The drag resistivity is
then given by Eq. (13). For arbitrary μ and T this calculation
has to be performed numerically (Peres, Santos, and Neto,
2011; Lux and Fritz, 2012). At the same time, all qualitative
features of the drag effect can be elucidated by using simple
limiting values.
The nonlinear susceptibility (73) decays exponentially for

q ≫ maxðμ; TÞ. In the vicinity of the Dirac point T ≫ μ, the
integral that determines the function gðW;Q; xÞ cannot be
evaluated in terms of elementary functions. It can be shown,
however, that in this case the nonlinear susceptibility is
proportional to μ=T (Narozhny et al., 2012):

gðx ≪ 1Þ ∝ μ=T; ð78Þ

which could be expected since drag is supposed to vanish—or,
more precisely, to change sign—at the Dirac point.
In the degenerate limit T ≪ μ, the dimensionless function

gðW;Q; xÞ may be approximated by

gðx≫ 1; jWj<QÞ≈4W
Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

W2

Q2

s
sinhx

coshQþ coshx
: ð79Þ

Furthermore, for μ ≫ vFq ≫ ω ∼ T (or Q ≫ W) the non-
linear susceptibility becomes similar to the standard
(Kamenev and Oreg, 1995) Fermi-liquid expression for the
ballistic regime (17)

gðx ≫ 1; jWj ≪ QÞ ≈ 4ω=ðvgqÞ; ð80Þ

where the extra factor of 4 corresponds to extra degeneracy of
Dirac fermions in graphene (Tse, Hu, and Sarma, 2007;
Amorim and Peres, 2012).
The relation (18) between Γ and ImΠ is not satisfied in

graphene. This follows from a direct comparison between
their respective integral representations. In particular, the
nonlinear susceptibility (73) vanishes at the Dirac point due
to exact electron-hole symmetry Γðμ ¼ 0Þ ¼ 0 (Tse, Hu, and
Sarma, 2007), while the polarization operator (76) remains
finite ImΠðμ ¼ 0Þ ≠ 0 (Schütt et al., 2011).
Similarly to the usual Lindhard function (Lindhard, 1954;

Giuliani and Vignale, 2005), the polarization operator in
doped graphene has the simple static limit

ΠRðω ¼ T ¼ 0Þ ¼ 2kF=ðπvgÞ: ð81Þ

At the Dirac point, the result is somewhat different

ΠRðμ ¼ ω ¼ 0Þ ¼
	 q=ð4vgÞ; T ≪ vgq;

4T ln 2=ðπv2gÞ; T ≫ vgq:
ð82Þ

2. Lowest-order perturbation theory

We now use the above approximations to find the limiting
expressions for the drag resistivity in the perturbative regime
(Narozhny et al., 2012).
In the simplest limit Nαμ ≪ T, the perturbative approach is

justified automatically. In this case, the single-layer conduc-
tivity is determined by weak impurity scattering and has the
form

σ0 ¼ e2Tτh0ðμ=TÞ; ð83aÞ

where

h0ðxÞ¼
2

π

Z
∞

−∞

dzjzj
cosh2ðzþx=2Þ¼

2

π

	
x; x≫ 1;

2 ln2; x≪ 1.
ð83bÞ

In this limit screening is ineffective and for μi, T ≪ vg=d the
interlayer spacing drops out of the problem. Then we may use
the bare Coulomb potential (5), while the frequency and
momentum integration in Eq. (77) are determined by the
nonlinear susceptibility (73).
Close to the double Dirac point μi ≪ T, the nonlinear

susceptibility can be approximated by Eq. (78), while the
remaining integration is dominated by frequencies and
momenta of order temperature ω, vgq ∼ T, yielding a dimen-
sionless coefficient. The resulting drag resistivity is given by

ρDðμi ≪ TÞ ≈ 1.41α2ðℏ=e2Þμ1μ2=T2: ð84aÞ

If only one of the layers is tuned close to the Dirac point
μ1 ≪ T ≪ μ2, the drag conductivity (77) is independent of the
properties of the second layer, as the integration in Eq. (77) is
still determined by the region ω, vgq ∼ T. The single-layer
conductivity in the second layer is still determined by μ2; see
Eq. (83). As a result,

ρDðμ1 ≪ T ≪ μ2Þ ≈ 5.8α2ðℏ=e2Þμ1=μ2: ð84bÞ

In the opposite limit μi ≫ T, the nonlinear susceptibility is
given by Eq. (79). Now the momentum integral in Eq. (77) is
logarithmic and is dominated by large values of momentum
Q ≫ W. The ratio of the hyperbolic functions in Eq. (79) is
similar to the step function: it is equal to unity for Q ≪ x and
vanishes at larger values of momentum Q ≫ x. Therefore x
effectively acts as the upper cutoff and the momentum integral
can be approximated by a logarithm

Z
∞

W

dQ
Q

sinh2x
ðcoshQþ cosh xÞ2 ≈ ln

x
W

: ð84cÞ

Consequently the drag coefficient is similar to the standard
results of Sec. II
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ρDðμ2 > μ1 ≫ TÞ ≈ α2
ℏ
e2

8π2

3

T2

μ1μ2
ln
μ1
T
: ð84dÞ

This is to be expected, since at low temperatures T ≪ μi the
phase-space argument yielding the T2 dependence is justified
and the electron-hole asymmetry determines the dependence
on the chemical potential. The logarithmic factor is beyond
such qualitative estimates [the result (84d) was calculated with
logarithmic accuracy].

a. Static screening for vanishing interaction strength

For a slightly stronger interaction (i.e., smaller dielectric
permittivity of the insulating substrate) or slightly larger
interlayer spacing the condition Nαμi ≪ T, μi ≪ vg=d breaks
down and one needs to take into account static screening.
Static screening corresponds to the approximation (81) to the
polarization operator. If the interaction strength is still small
α → 0, then the interaction can be described by

DR
12 ¼ −

2παv2g
vgqþ 2Nαμ

e−qd; ð85Þ

where N ¼ 4 is due to spin and valley degeneracy. The
additional constant in the denominator affects the logarithmic
integral (84c). As the chemical potential is being increased
away from the Dirac point, the following regimes may be
gradually achieved (here we discuss these regimes for the case
of identical layers; the generalization to the case of two
inequivalent layers is straightforward):

(i) Nαμ ≪ T ≪ μ ≪ vg=d: This regime is identical to
the arguments leading to Eq. (84d).

(ii) Nαμ ≪ T ≪ vg=d ≪ μ: If the chemical potential is
increased beyond the inverse interlayer spacing, then
the momentum integration in Eq. (84c) is cut off by
vg=d instead of μ. The logarithmic behavior of the
drag conductivity will be modified and σD no longer
depends on the chemical potential

σD ∼ α2e2T2τ2 ln½vg=ðTdÞ�: ð86aÞ
(iia) T ≪ Nαμ ≪ μ ≪ vg=d: In this case one finds in-

stead of Eq. (86a)

σD ∼ α2e2T2τ2 ln½1=ðNαÞ�: ð86bÞ
(iii) T ≪ Nαμ ≪ vg=d ≪ μ: Increasing the chemical

potential further leads to the regime where the static
screening can no longer be neglected. Now the lower
integration limit in Eq. (84c) is effectively given by
the inverse screening length rather than the fre-
quency. The upper limit is still determined by the
interlayer spacing. Therefore the drag conductivity
again depends logarithmically on the chemical
potential (Katsnelson, 2011)

σD ∼ α2e2T2τ2 ln½vg=Nαμd�; ð86cÞ

but now this is a decreasing function, indicating
the existence of the absolute maximum of the
drag conductivity as a function of the chemical
potential.

(iv) T ≪ vg=d ≪ Nαμ ≪ μ: Finally, if the chemical
potential is so large that the screening length
becomes smaller than the interlayer spacing, the
momentum integral in Eq. (84c) is no longer
logarithmic. As the integration is now dominated
by momenta large compared to T, the nonlinear
susceptibility may be approximated by Eq. (80),
leading to the standard Fermi-liquid result

σD ¼ ζð3Þ
4

e2τ2T2

ðkFdÞ2ðϰdÞ2
; ϰ ¼ 4αkF; ð86dÞ

which differs from that of Kamenev and Oreg (1995)
[see Eq. (21)] only by the factor reflecting valley
degeneracy in graphene (Tse, Hu, and Sarma, 2007;
Katsnelson, 2011; Amorim and Peres, 2012). These
results are illustrated in Fig. 19.

b. Static screening for intermediate interaction strength

The results (84) and (86) rely on the interaction weak-
ness. For stronger interaction Nα > 1, (i) the approximation
(85) might be unjustified and the full expression (7) for
the interaction propagator should be used; (ii) the four
regimes (86) may not exist, since it might happen that
T=ðNαÞ ≪ T < vg=ðNαdÞ ≪ vg=d. In this case, perturbative
analysis can still be justified in the degenerate regime μ ≫ T,
where there are two distinct regimes, (a) μ ≪ vg=d, and
(b) μ ≫ vg=d (Narozhny et al., 2012); the latter regime is
usually identified with the Fermi-liquid result (86d). As the
single-layer conductivity is still large and dominated by
disorder, the condition (72) can be somewhat relaxed:

τee ≫ τ ⇒ τ−1 ≫ α2T2=μ ⇒ α2Tτ ≪ μ=T: ð87Þ

FIG. 19. The drag conductivity (in units of α2e2τ2, identical
layers) as a function of the chemical potential illustrating the
results (86). The colored line shows the quadratic dependence
(84a) in the vicinity of the Dirac point. If T ≫ Nαvg=d, then
the region (iia) should be replaced by (ii): the logarithmic
dependence T2 lnð1=αÞ should be replaced by T2 ln½vg=ðTdÞ�,
and the limits vg=d and T=ðNαÞ should be exchanged. From
Narozhny et al., 2012.
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Proceeding under the assumptions of static screening and the
ballistic regime (i.e., the dominant contribution to the effect
comes from largemomenta vgq > ω), the result ofmomentum
integration is determined by the upper limit and can be
assumed independent of ω. The frequency and momentum
integrals factorize and neglectingW=Q under the square root
in Eq. (79) one finds

σD ¼ α2e2T2τ2f0

�
μ

T
; α;

Td
vg

�
;

f0ðx; α; λÞ ≈
32

3

Z
∞

1

dQQ3e−4λQ

f½Qþ ~αðxÞ�2 − ~αðxÞ2e−4λQg2

×
sinh2x

ðcoshQþ cosh xÞ2 ; ð88Þ

where

~αðxÞ ¼ Nαx=2: ð89Þ

The results for weaker interaction, Eqs. (86), can be
recovered from Eq. (88) by neglecting terms proportional
to ~α2 in the denominator [which corresponds to approximating
the interlayer interaction (7) by Eq. (85)]. In the limit
μ ≫ vg=d, the function f0 depends on a single parameter

f0ðxλ ≫ 1Þ ≈ ~f0ð4λ ~αÞ; ð90aÞ

where

~f0ðyÞ ¼
32

3

Z
∞

0

dZZ3e−Z

½ðZ þ yÞ2 − y2e−Z�2 : ð90bÞ

The function (90b) describes the crossover between the
regimes (iii) and (iv) of Eqs. (86) (see Fig. 19). This can
be seen by evaluating the integral in the two limits (here γ0 ≈
0.577 216 is the Euler’s constant)

~f0ðy ≪ 1Þ ≈ −32=3ðln yþ γ0 þ 11=6Þ; ð91aÞ

~f0ðy ≫ 1Þ ≈ 64ζð3Þy−4: ð91bÞ

Numerically, this crossover spans a large interval of values of
the chemical potential such that the Fermi-liquid result (86d)
is practically unattainable in graphene-based drag measure-
ments (Tutuc, Pillarisetty, and Shayegan, 2009); see Fig. 20.
In experiment one typically measures carrier density rather

than the chemical potential (Kim et al., 2011; Gorbachev
et al., 2012; Kim and Tutuc, 2012; Titov et al., 2013). In
graphene, the electron density is given by

n ¼
Z

∞

−∞

dϵjϵj
πv2g

�
tanh

ϵ

2T
− tanh

ϵ − μ

2T

�
: ð92aÞ

Using the asymptotic expressions

n ¼ 1

πv2g

	
μ2; μ ≫ T;
ð4 ln 2ÞμT; μ ≪ T;

ð92bÞ

one can obtain the qualitative dependence of ρD on n; see
Table I.
The strongly doped, Fermi-liquid regime has attracted the

most attention in literature. Most authors report the standard
ρD ∼ T2n−3d−4 behavior (Tse, Hu, and Sarma, 2007; Hwang,
Sensarma, and Sarma, 2011; Katsnelson, 2011; Amorim and
Peres, 2012; Carrega et al., 2012; Narozhny et al., 2012)
assuming the energy-independent impurity-scattering
time.

3. Energy-dependent scattering time

In graphene, the impurity-scattering time strongly depends
on the type of disorder and on energy (Katsnelson, 2012). In
particular, for Coulomb scatterers (Ando, 2006; Cheianov and
Fal’ko, 2006; Nomura and MacDonald, 2006, 2007) or strong
short-range impurities (Ostrovsky, Gornyi, and Mirlin, 2006)

τðϵÞ ¼ τ20jϵj: ð93aÞ

For weak short-ranged disorder (Shon and Ando, 1998)

τðϵÞ ¼ γ=jϵj: ð93bÞ

Moreover, quenched disorder in graphene experiences loga-
rithmic renormalization (Aleiner and Efetov, 2006).

FIG. 20. Results of the numerical evaluation of the drag
coefficient in the case of identical layers. The squares represent
the calculation of Eq. (25) with the only approximation that the
polarization operator in the screened interlayer interaction (7) was
evaluated in the absence of disorder. The line on top of the
squares corresponds to the same calculation, with the polarization
operator replaced by Eq. (81). The asymptotic tail at μ=T > 8was
calculated with the approximate expression (90b), valid for
μ ≫ vg=d. Left panel: α ¼ 0.01, Td=vg ¼ 0.1. Right panel: α ¼
0.3 and Td=vg ¼ 0.2, log-log scale. The straight line represents
the Fermi-liquid result (86d). From Narozhny et al., 2012.

TABLE I. Asymptotic expressions for the drag coefficient to the
leading order of perturbation theory assuming “realistic” interaction
strength αN ≳ 1, identical layers n1 ¼ n2 ¼ n, and the experimen-
tally relevant situation T < vg=d. In the opposite regime T ≫ vg=d
all results for ρD should be divided by Td=vg (Lux and Fritz, 2012;
Narozhny et al., 2012).

Parameter region Drag coefficient

μ ≪ T ρD ∼ nT−2

T ≪ μ ≪ vg=d ρD ∼ T2n−1 lnðαNn1=2d=vgÞ
μ ≫ vg=d ρD ¼ ρFLD ∼ T2n−3d−4
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Drag in the presence of Coulomb impurities was first
considered by Hwang, Sensarma, and Sarma (2011) and
Peres, Santos, and Neto (2011). Both papers reported a
stronger dependence of the drag coefficient on the carrier
density and interlayer separation ρD ∼ T2n−4d−6. This result
was later disputed by Amorim et al. (2012), Carrega et al.
(2012), and Narozhny et al. (2012). They showed that the
energy (or momentum) dependence of τ is qualitatively
irrelevant for the asymptotic behavior of ρD. In the degenerate
limit, microscopic calculations lead to the same results with
τðμÞ substituted in place of τ. Close to the neutrality point, the
drag coefficient acquires an additional logarithmic factor

ρDðμi ≪ TÞ ∼ α2ðℏ=e2Þðμ1μ2=T2Þ lnTτðTÞ: ð94Þ

4. Plasmon contribution

The dynamically screened interaction propagator contains
plasmon poles that may (see Sec. II.B) affect the resulting drag
resistivity. Theoretically, plasmons were studied in graphene
monolayers (at T ¼ 0) by Wunsch et al. (2006), Hwang and
Das Sarma (2007), and Schütt et al. (2011) and in double-
layer graphene systems by Badalyan and Peeters (2012),
Profumo et al. (2012), and Stauber and Gómez-Santos (2012).
Renormalization of the plasmon spectrum due to electron-
electron interaction was considered by Abedinpour et al.
(2011). Experimentally, plasmons were observed in graphene
on SiO2 substrate (Fei et al., 2011, 2012), graphene-insulator
stacks (Yan, X. Li et al., 2012), and in graphene microribbon
arrays (Ju et al., 2011). Bound states of plasmons with charge
carriers, the so-called “plasmarons,” were observed by
Bostwick et al. (2010) and Walter et al. (2011). Plasmons
subjected to high magnetic field were studied by Yan, Z. Li
et al. (2012). For reviews of graphene plasmonics see
Grigorenko, Polini, and Novoselov (2012) and Luo et al.
(2013). More recently, plasmonic excitations in Coulomb
coupled N-layer graphene structures were studied by Zhu,
Badalyan, and Peeters (2013).
Within this perturbative approach, i.e., Eq. (72), and for low

enough temperatures μ, T ≪ vg=d, the plasmon contribution
to drag is subleading (Narozhny et al., 2012). The plasmon
pole appears in the region ω > vgq. Similarly to the situation
in semiconductor devices (Sec. II.B), double-layer graphene
systems admit an acoustic (ω ∼ q) and an optical (ω ∼ ffiffiffi

q
p

)
plasmon mode (Das Sarma and Madhukar, 1981; Principi
et al., 2012). In the case where the plasmon decay rate is small
(as determined by either weak Coulomb interaction or weak
disorder), one can use the δ-function approximation to the
interlayer interaction propagator (Flensberg and Hu, 1995).
The corresponding contribution to the drag conductivity
contains a small factor g2jDj2 ∼ α3 for small momenta vgq ∼
αT (or α4 for vgq ∼ T). If the energy dependence of the
scattering time is taken into account, the small parameter is
α2Tτ; see Eq. (72).
This conclusion is illustrated in Fig. 20 showing a

comparison between the full numerical evaluation of the
perturbative drag coefficient using Eqs. (7), (73), (76), and
(77) and the same calculation within the approximation
of static screening (85). Numerical modeling of experimen-
tal samples, see Figs. 21 and 22, includes the plasmon

contribution automatically by using the dynamically
screened interaction propagator (7).
At the same time, a quantitative description of experiments,

especially in devices with wider interlayer spacing, might be
significantly affected by such aspects as inhomogeneous
dielectric background (Badalyan and Peeters, 2012; Carrega
et al., 2012) and hybridization between phonon and plasmon
modes (Amorim et al., 2012). Plasmon-mediated drag
between graphene wave guides was suggested by Shylau
and Jauho (2014).

FIG. 21. Results of the numerical evaluation (lines) of the drag
coefficient and comparison with the data (symbols) of Kim et al.
(2011). The interlayer spacing (d ¼ 14 nm) and dielectric con-
stants of the insulating material were chosen to represent the
experimental device. Inset: the relation of the carrier densities and
gate voltage, obtained from the electrostatic model of the sample.
From Peres, Santos, and Neto, 2011.

FIG. 22. Results of the numerical evaluation (Titov, Narozhny,
and Gornyi, 2013) of the drag coefficient (red line) and the
experimental data (green dots) (Ponomarenko, 2013) in the case
of identical layers. The values of T ¼ 240 K and d are taken from
the experiment. The only fitting parameter is the energy-
independent impurity-scattering time (once the value of αg is
chosen). The polarization operator was calculated at T ¼ 240 K
and in the presence of disorder (in the ballistic regime).
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5. Drag between massless and massive fermions

Graphene-based double-layer devices can be used to
observe Coulomb drag between massless and massive par-
ticles by coupling Dirac fermions in monolayer graphene to
quasiparticles with parabolic dispersion in either bilayer
graphene (Scharf and Matos-Abiague, 2012) or a usual
2DEG (Principi et al., 2012; Scharf and Matos-Abiague,
2012). Experimental realizations were reported by Fisichella
et al. (2014) and Gamucci et al. (2014).
Theoretical analysis of Principi et al. (2012) and Scharf and

Matos-Abiague (2012) is based on the standard expression
(77). Both works focus on the low-temperature, degenerate
regime T ≪ μ. As expected, in the case of strong screening
ϰd ≫ 1, both works reproduce the standard result (21). For
ϰd ≪ 1, the resulting drag coefficient is still quadratic in
temperature, but contains also a logarithmic factor reminiscent
of Eqs. (86). Principi et al. (2012) reported a d-independent
drag in the special case kg ¼ k2D (which implies a density
mismatch between the layers due to the difference in the
degeneracies of single-particle states). In the low-density limit
n → 0 this yields ρD ∝ n−1, similar to the results of Carrega
et al. (2012); see also Table I. On the other hand, Scharf and
Matos-Abiague (2012) reported ρD ∝ n−2 in the limit d → 0

and for ng ¼ 2n2D. Such discrepancies in the asymptotic
behavior of ρD may appear due to the complicated structure of
the nonlinear susceptibility in graphene; see Eqs. (86)
and Fig. 19.
The predicted T2 dependence is observed in experiment

(Gamucci et al., 2014) in the 10 < T < 40 K range, although
with the smaller magnitude. At higher temperatures, a
violation of Onsager reciprocity was observed. This was
attributed to the interlayer current. Most interestingly, at
lower temperatures T < 10 K, the measured drag shows a
marked upturn that may indicate a phase transition at
Tc ∼ 10 − 100 mK; see Sec. VII.B.
The system of coupled Dirac and Schrödinger quasi-

particles was also considered by Balram, Hutasoit, and Jain
(2014), where it was found that interspecies interac-
tion plays a significant role in determining collective
(plasmon) modes.

6. Numerical evaluation of the drag coefficient

The previous discussion demonstrates that already at the
perturbative level the drag conductivity (77) exhibits multiple
asymptotic dependences. Consequently, virtually every paper
on the subject presents results of a numerical evaluation of
Eq. (77). In contrast to the earlier work on semiconductor
devices (see Sec. II), most authors focus on the density (or
chemical potential) dependence rather than on the T depend-
ence. The overall shape of ρDðnÞ curves is qualitatively the
same in all calculations. At the Dirac point, drag vanishes,
ρDðn ¼ 0Þ ¼ 0 [this conclusion does not agree with the
experiments of Gorbachev et al. (2012) and Titov et al.
(2013), see below]. Deep in the degenerate (or low-temper-
ature) regime T ≪ μ, ϰd ≫ 1, the drag coefficient reaches the
standard decaying result (21). Therefore, for intermediate
densities there has to be a maximum, roughly at μ ∼ T. The
corresponding shape is shown in Fig. 20.

Peres, Santos, and Neto (2011) presented detailed numeri-
cal calculations aimed at describing the experimental findings
of Kim et al. (2011); see Fig. 21. This calculation included
electrostatic modeling of the device (which included two
insulators SiO2 and Al2O3), dynamically screened (within
RPA) electron-electron interaction and the realistic model of
Coulomb impurities. For doped graphene layers, the results of
the calculation show excellent agreement with the data.
Theoretical modeling of ultraclean graphene double layers

(using boron nitride as a substrate as well as insulating spacer)
based on the theory of Narozhny et al. (2012) was performed
by Titov, Narozhny, and Gornyi (2013); see Fig. 22. In this
calculation, the polarization operator was calculated at the
experimental temperature in the presence of disorder, in
contrast to the T ¼ 0, free-electron expression (76). The
use of full, dynamically screened Coulomb interaction
ensured that all plasmon-related features were automatically
taken into account. Choosing realistic values (Kozikov et al.,
2010; Peres, Santos, and Neto, 2011) for the effective
coupling constant, the only fitting parameter in this calculation
was the impurity-scattering time τ, which was taken to be
energy independent similar to the earlier discussion. Such a
calculation was also able to reproduce the data (Ponomarenko,
2013) in the doped regime.
The results shown in Figs. 21 and 22 confirm the appli-

cability of the perturbative approach to Coulomb drag in
doped graphene. In contrast to similar calculations aimed at
semiconductor devices (see Sec. II), these theories are able to
reach quantitative agreement with the experimental data with
the minimum of fitting parameters. This implies that frictional
drag in graphene is dominated by Coulomb interaction, with
phonons playing only a subleading role. The latter conclusion
can be expected, given that electrons in graphene are physi-
cally confined to move in a two-dimensional plane and the
rigidity of the crystal lattice (Katsnelson, 2012).

B. Hydrodynamic regime

The perturbation theory outlined in Sec. IV.A can be
justified either in the case of weak interaction α ≪ 1 or in
the degenerate regime μ ≫ T; see Eq. (72). At the same
time, the applicability condition (72) involves the impurity-
scattering time τ: the perturbation theory fails if the system is
“too clean,” or in other words if electronic transport is
dominated not by disorder, but rather by the electron-electron
interaction. The latter affects transport properties of graphene
due to the absence of Galilean invariance: the velocity of Dirac
fermions v ¼ v2gp=ϵ is independent of the absolute value of the
momentum and therefore total momentum conservation does
not prevent velocity (or current) relaxation. As a result,
electron-electron scattering is characterized by its own trans-
port relaxation time, which may become smaller than the
scattering time due to potential disorder τee ≪ τ.
“Ultraclean” graphene double layers were discussed by

Schütt et al. (2013), Titov et al. (2013), and Narozhny et al.
(2015) within the framework of the quantum kinetic equation.
In principle, solving the kinetic equation in a strongly
interacting system is a formidable problem that cannot be
solved in general terms using presently available analytic
methods. However, in graphene, one can take advantage of the
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kinematic peculiarity specific to Dirac fermions. Indeed, the
scattering of particles with almost collinear momenta is
enhanced since the momentum and energy conservation laws
coincide. This restricts kinematics of the Dirac fermions (Fritz
et al., 2008; Kashuba, 2008; Schütt et al., 2011) and leads to
the singularity in the collision integral. This singularity leads
to the fast thermalization of particles within a given direction
and allows one to derive macroscopic, or hydrodynamic,
equations that generalize Eq. (2) for interacting Dirac fer-
mions. In monolayer graphene, this approach was discussed
by Fritz et al. (2008), Kashuba (2008), Müller and Sachdev
(2008), Foster and Aleiner (2009), and Svintsov et al. (2012).
An alternative macroscopic approach to Coulomb drag in
graphene14 was suggested by Song and Levitov (2012, 2013)
and Song, Abanin, and Levitov (2013).

1. Collinear scattering singularity

Singular behavior of the collision integrals in the case of
collinear scattering of the Dirac fermions (Arnold, Moore, and
Yaffe, 2000; Fritz et al., 2008; Kashuba, 2008; Müller,
Schmalian, and Fritz, 2009; Schütt et al., 2013) is central
to the hydrodynamic approach to transport in graphene.
The general form of the kinetic equation in layer i is given

by Eq. (9) with the addition of the intralayer collision integral.
If the system is weakly perturbed from equilibrium, then the
distribution function can be written in the form (10). Weak
deviations from equilibrium are associated with the smallness
of the nonequilibrium correction h, allowing one to linearize
the collision integrals (Lifshitz and Pitaevskii, 1981). The
linearized form of the collision integrals is given by

I ij ¼
X
1;10;20

w12;1020f
ð0Þ
j;1f

ð0Þ
i;2 ½1 − fð0Þj;10 �½1 − fð0Þi;20 �

× ½hj;10 þ hi;20 − hj;1 − hi;2�; ð95aÞ

where the function

w1;2;10;20 ¼ jh1; 2jUj10; 20ij2ð2πÞ3δðϵ1 þ ϵ2 − ϵ10 − ϵ20 Þ
× δðk1 þ k2 − k01 − k02Þ ð95bÞ

determines the probability of scattering from states 10, 20 into
states 1, 2 (within the Fermi golden-rule approximation). Here
h1; 2jUj10; 20i is the interaction matrix element. The indices i,
j ¼ 1, 2 denote the two layers.15

In graphene, the interaction matrix elements are most
conveniently expressed in the basis of the eigenstates of
the Dirac Hamiltonian jϵ; evi labeled by their energy ϵ and the
unit vector ev ¼ v=vg pointing in the direction of velocity (for
a given spin and valley projection):

jh1; 2jUj10; 20ij2 ¼ jUðqÞj2 1þ eð1Þv eð1
0Þ

v

2

1þ eð2Þv eð2
0Þ

v

2
: ð96Þ

Here q ¼ k1 − k01 is the transferred momentum and the two
fractions are the “Dirac factors” (Katsnelson, 2012). Now one
can separate quantities related to the initial and final states in
the function w12;1020 by using the identities

δðϵ1 þ ϵ2 − ϵ01 − ϵ02Þ ¼
Z

dωδðϵ1 − ϵ01 þ ωÞδðϵ2 − ϵ02 − ωÞ;

δðk1 þ k2 − k01 − k02Þ ¼
Z

d2qδðk1 − k01 þ qÞδðk2 − k02 − qÞ:

The δ functions yield ϵ01 ¼ vgjk1 þ qj and hence allow one to
sum over the states 10 and 20 in the collision integral (95). Each
of these sums results in a diverging factor16:

X
10

∝
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2gq2 − ω2
q : ð97Þ

One can see that the divergence corresponds to collinear
scattering by examining the angle φk1q at the light cone:

cosφk1qðω ¼ vgqÞ ¼ 1 ⇒ φk1q ¼ 0 ðor πÞ:

Hence, the argument of one of these δ functions vanishes:
ϵ01 ¼ ϵ1 þ ω. A similar conclusion follows for the momentum
k2. Thus, all momenta are collinear.
Physically, the divergence (97) represents the fact that for

the linear spectrum the energy and momentum-conservation
laws coincide. Consequently, any relaxation rate obtained by
integrating the collision integral (95) over the state 2 will be
logarithmically divergent. In order to regularize this diver-
gence, one has to go beyond the golden-rule approximation
and take into account renormalization of the spectrum
(Abrikosov and Beneslavskii, 1971; González, Guinea, and
Vozmediano, 1999; Son, 2007). This leads (Arnold, Moore,
and Yaffe, 2000; Fritz et al., 2008) to the appearance of a large
factor j lnðαÞj ≫ 1 in generic relaxation rates in graphene. In
disordered graphene, this singularity is also cut off by
disorder-induced broadening of the momentum-conservation
δ function (Narozhny et al., 2012).

2. Macroscopic linear-response theory in graphene

The collinear scattering singularity (97) allows for an
approximate, yet nonperturbative solution of the kinetic
equation in graphene (Fritz et al., 2008; Kashuba, 2008;
Schütt et al., 2013; Narozhny et al., 2015). The idea is to find
zero modes of the collision integral and build macroscopic
equations for the corresponding currents.
The standard perturbative description of Coulomb drag is

based on the energy-independent approximation for the14The theory of Song and Levitov (2012, 2013) and Song, Abanin,
and Levitov (2013) relies on correlations of the disorder potential in
the two layers; see Sec. IV.F.

15In the perturbative approach of Sec. II.B, the kinetic equation (9)
contained only the interlayer collision integral. Therefore, one could
associate the states 1 and 2 with the active and passive layers and
avoid extra layer indices.

16In Sec. IV.A, the nonlinear susceptibility (73) did not exhibit this
divergence due to an accidental cancellation that is specific to the
particular case of energy-independent impurity-scattering time. In a
more general situation the cancellation does not occur and as a result
the rate τ−1D contains an extra logarithmic factor; see Eq. (94).
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nonequilibrium distribution function (10). This constant
solution of the kinetic equation describes the single zero
mode of the intralayer collision integral corresponding to
conservation of the electric charge (or the number of par-
ticles). Macroscopic charge flow is described by the electric
current (12). Integrating the kinetic equation, one finds the
macroscopic equation for j equivalent to the Drude theory; see
Eqs. (2). Such a solution is justified by the condition (72),
which means that the collision integral in the kinetic equation
is dominated by disorder.
In contrast, in ultraclean graphene the collision integral is

dominated by Coulomb interaction. Using the collinear
scattering singularity [i.e., for j lnðαÞj ≫ 1], one can neglect
all but the zero modes of I [treated as an integral operator
acting on hiðϵÞ]. In practice, this means retaining only those
terms in the power series of the distribution function hi which
correspond to either zero modes of the collision integral or to
its eigenmodes with nondivergent eigenvalues. Fritz et al.
(2008), Kashuba (2008), and Schütt et al. (2013) developed
the following two-mode approximation:

hi ¼ ðaðiÞ0 þ aðiÞ1 ϵÞv: ð98Þ
The vectors ai can be expressed in terms of the two macro-
scopic currents in graphene, the electric current (12) and the
energy current

Qi ¼
X

ϵvδfi: ð99Þ

The appearance of inequivalent currents is the essential
feature of graphene physics. In general, the collision integral
has three nondecaying eigenmodes; hence Narozhny et al.
(2015) used the three-mode approximation:

hi ¼ ðaðiÞ0 þ aðiÞs signðϵÞ þ aðiÞ1 ϵÞv: ð100Þ
The signðϵÞ mode is described by the imbalance current
(Foster and Aleiner, 2009)

Pi ¼
X

signðϵÞvδfi: ð101Þ

Integrating the kinetic equation with the help of either of
these approximations for the nonequilibrium distribution
function, one obtains macroscopic equations for the currents
j, Q, and P that generalize Ohm’s law for graphene.17

Solutions of these equations yield linear-response transport
coefficients. Note that this approach does not rely on the Kubo
formula. In particular, the drag coefficient can be obtained
without the use of the perturbative expressions (15) or (77).
The simplest macroscopic equation describes the energy

current. In an infinite sample, where all quantities are
homogeneous, the equation reads (Schütt et al., 2013)

ev2gnEþ ðv2g=cÞ½j × B� ¼ Q=τ; ð102Þ

where n is the carrier density in graphene (92). The collision
integral does not contribute to Eq. (102) due to energy

conservation. In the limit μ ≫ T, all currents are equivalent,
such that jðμ ≫ TÞ ≈ ðe=μÞQðμ ≫ TÞ, and Eq. (102) becomes
equivalent to the Ohm’s law (26). In this limit, the Galilean
invariance is restored, all relaxation rates due to electron-
electron interaction vanish, and all three macroscopic equa-
tions become equivalent.
At the charge neutrality point n ¼ 0, Eq. (102) yields

ðv2g=cÞ½j × B� ¼ Q=τ. This simple-looking relation illustrates
all the essential qualitative features of linear-response transport
in graphene. First, in the absence of disorder τ → ∞, the
equation becomes senseless, at least when the system is
subjected to external magnetic field. Physically, this means
that in the absence of disorder the assumption of the steady state
in an infinite system becomes invalid: under external bias, the
energy current increases indefinitely. Second, if the system is
stabilized by disorder, but B ¼ 0, then one finds Q ¼ 0.
Finally, if the system is subjected to an external magnetic
field, the electric and energy currents are orthogonal j⊥Q. This
leads to the appearance of classical, positivemagnetoresistance
(Müller and Sachdev, 2008; Narozhny et al., 2015)

δRðB; μ ¼ 0Þ ∝ ðv4gτ=c2ÞB2=T3; ð103Þ

as well as magnetodrag in graphene; see Sec. IV.D. These
results are in sharp contrast with the standard Drude theory;
see Eqs. (3).

3. Coulomb drag in weakly disordered graphene

Close to charge neutrality and in the presence of weak,
uncorrelated disorder α2Tτ ≫ 1 (i.e., τ−1 ≪ τ−1ee ), the drag
resistivity in the absence of magnetic field was found by
Schütt et al. (2013) and has the form

ρDðμi ≪ TÞ ≈ 2.87
h
e2

α2μ1μ2
μ21 þ μ22 þ 0.49T=ðα2τÞ : ð104Þ

As long as any (even infinitesimal) disorder is present, ρD
vanishes at the double Dirac point ρDðμ1 ¼ μ2 ¼ 0Þ ¼ 0 and
grows sharply in its immediate vicinity; see Fig. 23. If only
one of the layers is tuned to the Dirac point (median lines in
Fig. 23), the drag resistivity always vanishes

ρDðμ1 ¼ 0; μ2 ≠ 0Þ ¼ ρDðμ1 ≠ 0; μ2 ¼ 0Þ ¼ 0:

If one varies the carrier density in one of the layers through
the Dirac point, then the drag resistivity changes sign. In the
color maps in Fig. 23 this is represented by the color change
between neighboring quadrants. The same sign patterns of the
drag resistivity (in zero magnetic field) were observed in the
experiments of Kim et al. (2011), Gorbachev et al. (2012), and
Kim and Tutuc (2012).
At the double Dirac point in the absence of disorder, one

finds (for B ¼ 0) ρDðμ1 ¼ μ2 ¼ 0Þ ∼ α2gh=e2. This peculiar
feature is shown in Fig. 23 by the black curve in the lower left
panel. It is, however, unlikely that this result is relevant to
the nonzero drag resistivity at the Dirac point observed by
Gorbachev et al. (2012). A possible explanation for this

17The full three-mode equations are too cumbersome to reproduce
here; see Narozhny et al. (2015).
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observation is provided by the higher-order effects (Schütt
et al., 2013).
For intermediate disorder strength α2T ≪ τ−1 ≪ T, the

applicability region of the hydrodynamic approach overlaps
with that of the conventional perturbation theory reviewed in
Sec. IV.A and one recovers perturbative results; see Fig. 18.
Finally, let us stress the novel qualitative feature of the

hydrodynamic approach: the electron-hole asymmetry does
not play a definitive role in the drag effect. Indeed, the
drag rate τ−1D dominates the observable effect only under the
standard assumptions of the Fermi-liquid behavior in the two
layers. On the contrary, in the vicinity of the Dirac point in
graphene, another scattering process, the interplay of fast
interlayer energy and current relaxation which is insensitive to
the electron-hole asymmetry, becomes important. Further
examples to such novel behavior are presented in Sec. IV.D.

C. Diffusive regime

In strongly disordered graphene samples or, equivalently, at
the lowest temperatures Tτ ≪ 1, the electron motion becomes
diffusive. In this regime, the standard perturbative approach
based on Eq. (77) is applicable. In particular, the polarization
operator has the standard form (30). The nonlinear suscep-
tibility can be found using the argument leading to Eq. (28). In
graphene close to the Dirac point μ ≪ T ≪ τ−1, the derivative
of the longitudinal conductivity with respect to the carrier
density is independent of the precise nature of disorder and is
given by (Schütt et al., 2013)

∂σ=∂n ∼ nv4τ4:

In contrast to the theory reviewed in Sec. II, in graphene the
Thomas-Fermi screening length is much longer than the
interlayer spacing ϰd ≪ 1; hence one finds the following
expression for the drag resistivity:

ρDðμi ≪ T ≪ τ−1Þ ∼ ðh=e2Þα2μ1μ2Tτ3; ð105Þ

vanishing at μi ¼ 0 due to the electron-hole symmetry.
In the degenerate regime μ ≫ T, one recovers the usual

quadratic temperature dependence of the drag resistivity. The
behavior of ρD in the diffusive regime is summarized in
Fig. 18 (the upper row). The Fermi-liquid result (34) is
recovered only in the academic limit of strong screening
ϰd ≫ 1. This regime is not shown in Fig. 18 since in graphene
it can be reached only at the extreme values of the chemical
potential; see Fig. 20.
Calculations of the lowest-order drag resistivity in the

diffusive regime are essentially the same in any system; see
Sec. II.C. As shown in Fig. 18, the behavior of ρD at the lowest
temperatures may be dominated by higher-order drag effects.

D. Giant magnetodrag in graphene

Although the effect of classical magnetoresistance in
multiband systems is well known in semiconductor physics
(Seeger, 2002), the equivalent effect in Coulomb drag was
only recently observed in graphene-based devices
(Gorbachev et al., 2012; Titov et al., 2013). One of the
reasons is that the majority of earlier drag measurements
were performed in double-well semiconductor heterostruc-
tures. Then each of the layers is represented by a two-
dimensional electron gas that is formed by electrons
occupying the lowest level in the quantum well at the
interface between two semiconductors in the device. In
contrast to graphene, the conductance and valence bands
touch at the Dirac point and, as a result, both electrons and
holes participate in transport phenomena at low doping.
The experimental data on magnetodrag in graphene

(Gorbachev et al., 2012) is shown in Fig. 24.18 There are
two outstanding features in Fig. 24. At high carrier densities
(or in the degenerate regime), the effect of the magnetic field is
relatively weak. This observation is consistent with the
expectation that transport properties of doped graphene are
dominated by one of the two bands (the contribution of the
other being exponentially suppressed). In the vicinity of the
Dirac point both types of carriers contribute to transport.
Moreover, the leading contribution to drag at zero field
vanishes right at the neutrality point due to the exact
electron-hole symmetry of the Dirac spectrum. Once the
magnetic field is applied, the system develops a drag signal
which is no longer determined by electron-hole asymmetry.
As a result, the drag resistivity near the Dirac point in the
presence of weak magnetic field is much higher than the
maximum value in zero field; see, e.g., Fig. 22.
The classical, two-band mechanism of magnetodrag in

graphene at charge neutrality can be readily illustrated in
the case, where the system size is much larger than any
characteristic length scale, such that the two graphene sheets
may be considered effectively infinite. In this case (see

FIG. 23. Leading-order drag coefficient in the ballistic regime as
a function of carrier densities (in units of 1011 cm−2) for
d ¼ 9 nm. Left: ρD at T ¼ 250 K; the upper panel refers to
ultraclean graphene τ−1 ¼ 0.5 K; the lower left panel shows the
evolution of ρD with increasing disorder from τ−1 ¼ 0 to
τ−1 ¼ 50 K. Right: ρD for τ−1 ¼ 50 K; the lower panel shows
ρD for T ¼ 150, 200, 250, and 300 K. From Schütt et al., 2013.

18Note that Gorbachev et al. (2012) adopted an alternative
definition of the drag resistivity ρDxx ¼ E2x=j1x. Therefore in this
section we discuss the off-diagonal resistivity ρ12xx ¼ E2x=j1x rather
than ρD that is defined in the rest of the paper with the opposite sign.
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Fig. 24), the driving current in the active layer j1 corresponds
to the counterpropagating flow of electrons and holes with
zero total momentum (due to the exact electron-hole sym-
metry). Once the weak magnetic field is applied, electrons and
holes are deflected by the Lorentz force and drift in the same
direction. The resulting quasiparticle flow P1 carries a nonzero
net momentum in the direction perpendicular to j1. This
momentum can be transferred to the passive layer by the
interlayer Coulomb interaction inducing the quasiparticle
current P2 in the same direction as P1. The Lorentz forces
acting on both types of carriers in the passive layer drive the
charge flow in the direction opposite to j1. If the passive circuit
is open, this current is compensated by a finite drag voltage,
yielding a positive drag resistivity (Titov et al., 2013).
This mechanism of magnetodrag at charge neutrality is

closely related to the anomalous Nernst effect in single-layer
graphene (Müller and Sachdev, 2008; Wei et al., 2009; Zuev,
Chang, and Kim, 2009). Indeed, the quasiparticle current is
proportional to the heat current at the Dirac point. The fact that
the Lorentz force in the electron and hole bands has the
opposite sign is also the reason for the vanishing Hall effect at
charge neutrality.
Despite being qualitatively clear, this description of mag-

netodrag yields the induced drag voltage which has the sign
opposite to that observed in experiment (Gorbachev et al.,
2012; Titov et al., 2013); see Fig. 24. In fact, the negative drag
in Fig. 24 can appear only if the quasiparticle currents in the
two layers P1 and P2 have opposite directions. According to
Titov et al. (2013) and Narozhny et al. (2015), this is what
happens in small, mesoscopic samples used in experiment.
Consider the continuity equation for the quasiparticle

current P1, including relaxation by electron-hole recombina-
tion (Foster and Aleiner, 2009; Titov et al., 2013)

∇P1 ¼ −ðρ1 − ρ0Þ=τph − ðρ1 − ρ2Þ=ð2τQÞ; ð106Þ

where ρi are the quasiparticle densities in the two layers, ρ0 ¼
πT2=ð3v2gÞ is the equilibrium quasiparticle density at the Dirac
point, τph describes the energy loss from the system dominated
by phonon scattering, and τQ characterizes quasiparticle
imbalance relaxation due to interlayer Coulomb interaction.
The equation for the passive layer can be obtained by
interchanging layer indices. In the absence of quasiparticle
recombination, hard-wall boundary conditions at the sample
boundaries allow only for the trivial solution. In contrast,
taking into account inelastic processes, one finds the nontrivial
solution illustrated in Fig. 24: P1 ¼ −P2.
Combining the continuity equation (106) with the hydro-

dynamic description of linear-response transport in graphene
(with the additional gradient terms that account for inhomo-
geneity of physical quantities in finite-size systems), one can
describe the negative drag observed in experiment (Titov
et al., 2013; Narozhny et al., 2015); see Fig. 25. The
exponential collapse of theoretical curves at high carrier
density is an artifact of the two-mode approximation adopted
by Titov et al. (2013). The more accurate three-mode
approximation (Narozhny et al., 2015) includes thermoelec-
tric effects formulated in terms of energy currents; the
corresponding hydrodynamic description yields only the
power-law decay of the magnetodrag at μi ≫ T, in contrast
to the exponential collapse shown in Fig. 25. As compared to
lower-temperature data (see Fig. 24), the results shown in
Fig. 25 exhibit qualitatively new features which can be
attributed to higher efficiency of relaxation processes at higher
temperature.

E. Hall drag in graphene

Hall drag measurements in graphene were reported by Titov
et al. (2013). These experiments were performed at relatively
high temperatures T ¼ 160–240 K, where macroscopic
coherence is not expected to exist. While disorder effects
in graphene are often attributed to Coulomb scatterers

FIG. 25. Off-diagonal resistivity ρ12xx in magnetic field, measured
in a graphene-based double-layer device. Both graphene sheets
are kept at the same carrier density n1 ¼ n2 ¼ n and at
T ¼ 240 K. Solid symbols represent the experimental data. From
Titov et al., 2013.

FIG. 24. Left: Off-diagonal resistivity ρ12xx in magnetic field,
measured in a graphene-based double-layer device. The two
graphene sheets are kept at “opposite” carrier densities n1 ¼
−n2 ¼ n and T ¼ 150 K. From Gorbachev et al., 2012. Right:
Mechanism of magnetodrag at charge neutrality. Upper panel: In
an infinite system quasiparticle currents in the two layers
(denoted by Pi) flow in the same direction, leading to positive
ρ12xx. Lower panel: In a thermally isolated system no net quasi-
particle flow is possible; the quasiparticle currents in the two
layers have opposite directions yielding negative ρ12xx. From Titov
et al., 2013.
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characterized by mean-free time that is linear in energy, the
measured Hall drag resistivity is not small as would follow
from a mechanism similar to that suggested by Hu (1997) and
von Oppen, Simon, and Stern (2001).
Instead, double-layer graphene samples demonstrate a

much simpler, yet still strong effect based on the coexistence
of electron and hole liquids in each layer (Foster and Aleiner,
2009). Consequently, the observed Hall drag resistance,
Fig. 26, is large when one of the layers is close to the
neutrality point and vanishes if two layers have the same
charge densities with opposite signs (a white line running
from the top left to bottom right corner in the left panel
of Fig. 26).
Hall drag effect in graphene can be understood with the

help of the hydrodynamic theory (Titov et al., 2013; Narozhny
et al., 2015). Indeed, given the presence of two noncollinear
currents in the model, it is not surprising to see the nonzero
Hall drag away from the Dirac point, where both the conven-
tional Hall effect and Hall drag change sign together with the
carrier density and thus have to vanish.19 Hall drag also has to
vanish in the degenerate regime where only one band contrib-
utes to transport and the standard single-band theory (2) holds.
However, this regime lies outside of the parameter range of the
experiment (Titov et al., 2013). Thus, some Hall drag signal
is observed at all densities, but ρDxy decays to rather small values
as the density increases beyond n≃1×1011 cm−2. Interestingly
enough, the data show a sign change of ρDxy at n ≈�2×
1011 cm−2. This rather weak effect requires a more accurate
consideration.
The right panel of Fig. 26 shows the results of the hydro-

dynamic theory alongside experimental data. This calculation
was performed without any fitting (Titov et al., 2013). The
value of the impurity-scattering time τ was determined from

the measured single-layer resistivity. The effective interaction
parameter was estimated by the most plausible value for
graphene on hexagonal boron nitride, αg ≈ 0.2 [see, e.g.,
Kozikov et al. (2010) and Reed et al. (2010) for general
considerations and the experimental evidence for possible
values of αg].

F. Higher-order effects in graphene

All theories of Coulomb drag in graphene discussed so far
were concerned with the leading-order contribution of the
interlayer interaction. Indeed, even the nonperturbative results
of the hydrodynamic approach were obtained by solving the
kinetic equation with the collision integral (95), where the
transition probability was estimated using the Fermi golden
rule. All such theories predict vanishing drag at the point of
exact electron-hole symmetry [with the exception of the
academic case of pure graphene, see Eq. (104) and Fig. 23].
However, measurements (Gorbachev et al., 2012; Titov

et al., 2013) reveal nonzero drag at the double Dirac point; see
Fig. 24. At the time of writing, there is no consensus in the
community regarding the origin of this effect. At the same
time, higher-order processes (see Sec. II.D) are known to be
insensitive to the electron-hole symmetry and thus may
provide a plausible explanation (Titov et al., 2013).

1. Third-order drag in graphene

The third-order drag effect in graphene was considered by
Schütt et al. (2013). The principle results are shown in Fig. 18.
A schematic illustration of the relative strength of the second-
and third-order contributions is given in the left panel
of Fig. 27.
The third-order drag resistivity in the diffusive regime can

be found similarly to the conventional case; see Sec. II.D. All
microscopic details are masked by the diffusive nature of
electronic motion. However, due to the relatively weak
screening and the possibility to tune the carrier density to
the Dirac point, one finds a richer physical picture with
multiple parameter regimes.
The standard Fermi-liquid regime (Levchenko and

Kamenev, 2008b) corresponds to the condition

Nϰ ≫ max fd−1;
ffiffiffiffiffiffiffiffiffiffi
T=D

p
g;

FIG. 26. Left panel: Hall drag resistivity in graphene as a
function of gate voltages controlling carrier densities in the two
layers. The white diagonal area corresponds to vanishing Hall
drag for n1 ¼ −n2. The lines track positions of maxima in single-
layer resistivity in top (open symbols) and bottom (solid symbols)
layers. Right panel: Hall drag resistivity as a function of carrier
density for n1 ¼ n2 ¼ n. Blue squares represent the experimental
data. The red curve represents the theoretical prediction. From
Titov et al., 2013.

FIG. 27. Schematic view of the drag resistivity at low temper-
atures. The dashed line illustrates the third-order drag effect. Left
panel: The black solid line represents the lowest-order contribu-
tion to drag. The arrows indicate the tendency of the two terms
with the decrease of temperature T → 0. Right panel: The purple
solid line represents the contribution of correlated disorder. From
Schütt et al., 2013.

19A similar two-fluid model was used by Song, Abanin, and
Levitov (2013) to explain Hall drag in terms of the “energy-driven
drag mechanism.” Indeed, if one omits the interlayer frictional force,
one would still find nonzero Hall drag due to the interlayer energy
relaxation.
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where N ¼ 4 describes spin and valley degeneracy of quasi-
particle states in graphene. Here the temperature-independent
result (40) is reproduced, although with the extra factors of N

ρð3ÞD ∼ ðh=e2ÞN−5g−3ðϰdÞ−2: ð107Þ

At higher temperatures, one can achieve a different, high-
temperature regime with

d−1 ≪ Nϰ ≪
ffiffiffiffiffiffiffiffiffiffi
T=D

p
:

In this case, the resulting drag resistivity decays rapidly

ρð3ÞD ∼
h
e2

1

g3
1

ðNϰdÞ2
�
Dϰ2

T

�
3=2

: ð108Þ

The experiment of Gorbachev et al. (2012) was performed
on samples with the small interlayer spacing. In the limit
ϰd ≪ 1, one finds three different temperature regimes.
Close to the Dirac point and at lowest temperatures, the

drag resistivity is temperature independent:

ρð3ÞD ðμ ≪ T;Tτ ≪ α2Þ ∼ h=e2: ð109Þ

Note that this result is also independent of the strength of the
Coulomb interaction α.
At somewhat higher temperatures (or, equivalently, for

slightly weaker disorder strength), the third-order contribution
decays as a function of temperature

ρð3ÞD ðμ ≪ T ≪ τ−1 ≪ α−2TÞ ∼ ðh=e2Þðα2TτÞ−3=2: ð110Þ

These results are illustrated in the right panel in Fig. 27.
Away from the Dirac point, the third-order contribution

decays as a function of the chemical potential (or, equiv-
alently, carrier density) and quickly becomes subleading, see
the left panel in Fig. 27:

ρð3ÞD (μτ ≫ max ½1; α−1ðTτÞ1=2�) ∼ h
e2

1

ðμτÞ3 : ð111Þ

As a result, ρð3ÞD may be detectable only at low temperatures
and in the vicinity of the Dirac point.
While estimating ρð3ÞD ðμ ¼ 0Þ, the single-layer conductivity

was assumed to be of the order of the quantum conductance
σ ∼ e2=h, i.e., discarding localization effects. Indeed, single-
layer measurements on high-quality samples show temper-
ature-independent conductivity down to 30 mK (Tan et al.,
2007) [possibly due to the specific character of impurities in
graphene (Ostrovsky, Gornyi, and Mirlin, 2007)].
For weak disorder or higher temperature the diffusive

approximation fails. Drag in vicinity of the Dirac point can
then be described by the quantum kinetic equation approach.
The previously reviewed results, e.g., Eq. (104), were
obtained by approximating the collision integrals with the
help of the Fermi golden rule; see Eq. (95b). However, taking
into account next-order matrix elements yields a nonzero
contribution, similar to the third-order result ρð3ÞD .

Taking into account the second-order matrix element, one
can generalize the golden-rule expression (96) by using the
combination

jUð1Þ
12 þ Uð2Þ

12 j2 ≃ jUð1Þ
12 j2 þ 2RefUð1Þ

12 ½Uð2Þ
12 ��g: ð112Þ

Since Uð1Þ
12 ∝ α and Uð2Þ

12 ∝ α2, all relaxation rates will now get
an additional contribution of the order of α3. In particular, the
drag rate τ−1D gets a contribution that is independent of the
carrier density

τ−1D ∼ α2Nðμ=TÞ2 þ α3NT; ð113Þ

which dominates near the Dirac point. In this case, one may
neglect the conventional, second-order drag contribution; the
result is (Schütt et al., 2013)

ρD ∼
h
e2

α3T þ α4μ2τN
T þ α2μ2τN

; μ ≪ α1=2T; Tτ ≫ 1:

Exactly at the Dirac point this yields

ρD ∼ ðh=e2Þα3: ð114Þ

This result is illustrated in the right panel of Fig. 27 by the
horizontal asymptote at Tτ ≫ 1.

2. Interlayer disorder correlations

Within the conventional theory, charge carriers in each layer
scatter off an independent disorder potential. This picture is
clearly applicable to the cases where impurities are mostly
concentrated in the substrate insulator sandwiching the
double-layer structure. In the case of the standard double-well
heterostructures (Solomon et al., 1989; Gramila et al., 1991;
Eisenstein, 1992; Hill et al., 1997; Lilly et al., 1998), the
random potential originates in the delta-doped layers providing
charge carriers. These layers are typically located on the outer
sides of the double-well structure. In graphene, the disorder
potential is often attributed to the insulating substrate, in
particular, to SiO2. Indeed, in graphene-based samples of
Kim et al. (2011) and Kim and Tutuc (2012), graphene
monolayers are exfoliated onto a thick SiO2 dielectric, while
the interlayer spacer consists of 14-mm-thick Al2O3. In such a
structure, the impurity potential created by the silicon oxide is
likely to affect only the nearest monolayer.
In contrast, the samples of Gorbachev et al. (2012)

consisted of graphene-hexagonal-boron-nitride heterostruc-
tures, where the interlayer spacer contains only a few atomic
layers of the same insulator (boron nitride) that is used as a
substrate. In this case, the impurity potential originating from
the interlayer spacer would be equally felt by carriers in both
graphene layers. Another scenario for disorder correlation
(Gorbachev et al., 2012; Song and Levitov, 2012) involves
interactions between charge-density inhomogeneities forming
due to impurity potential in the two layers.
The effect of the correlated disorder in the drag measure-

ments is insensitive to the electron-hole symmetry (Gornyi,
Yashenkin, and Khveshchenko, 1999; Hu, 2000a), and thus
may also provide an explanation (Song and Levitov, 2012;
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Schütt et al., 2013) for the observed nonzero drag in graphene
at the Dirac point (Gorbachev et al., 2012).
At high temperatures Tτ ≫ 1, the effect of the correlated

disorder can be described by the skeleton diagram similar to
the third-order drag contribution; see the right panel of Fig. 7.
Interlayer disorder correlations can be incorporated into the
scattering amplitude, but now instead of the second-order
matrix element in Eq. (112), one has to introduce an interlayer
disorder scattering rate 1=Tτ12. The resulting drag rate τ−1D is
given by

1=τcorrD ∼ α2T=ðTτ12Þ ¼ α2=τ12;

corresponding to the drag resistivity

ρcorrD ∼ α2=ðTτ12Þ;

which overcomes the third-order drag contribution ρð3ÞD ∼ α3

at 1=τ12 > αT. This happens in the perturbative regime
(1=τ > α2T for moderately correlated disorder, τ12 ∼ τ),
where the correlated-disorder contribution can be calculated
diagrammatically.
Macroscopic inhomogeneities can be described in terms of

macroscopic spatial fluctuations δμi in chemical potentials of
the two layers (Song and Levitov, 2012), characterized by the
correlation function

FðμÞ
ij ðr − r0Þ ¼ hδμiðrÞδμjðr0Þi ≠ 0: ð115Þ

Assuming the spatial scale of the fluctuations to be much
larger than all characteristic scales related to the particle
scattering, one can solve the hydrodynamic equations locally,
yielding the local drag rate

1=τDðrÞ ∼ α2Nμ1ðrÞμ2ðrÞ=T: ð116Þ

Averaging over the small fluctuations of the correlated
chemical potentials, one arrives (Schütt et al., 2013) at the
correction to the universal third-order result (114),

ΔρDðμ ¼ 0Þ ∼ h
e2

α2FðμÞ
12 ð0Þ
T2

ð1þ α2NTτÞ: ð117Þ

Finally, in the ultraclean limit

1=τ ≪ α2NFð0Þ
ii =T; ð118Þ

one can approximate the local drag resistivity by an analog of
Eq. (104):

ΔρDðr; μ ¼ 0Þ ∼ h
e2

α2
δμ1δμ2

δμ1δμ1 þ δμ2δμ2
: ð119Þ

In particular, for perfectly correlated chemical potentials
δμ1ðrÞ ¼ δμ2ðrÞ, the fluctuation drops out from Eq. (119)
and the local resistivity turns out to be independent of r. In a
more general case, the averaging over fluctuations becomes
nontrivial, but this affects only the numerical prefactor in the
final result. Thus, the correlated large-scale fluctuations of the

chemical potentials in the layers in effect shift curve 1 in
Fig. 18 upward, extending the validity of the fully equilibrated
result,

ρD ∼ ðh=e2Þα2; ð120Þ

to the case of finite disorder, Eq. (118), at the Dirac point. This
implies that in the case of correlated inhomogeneities the
disorder-induced dip in the lower left panel of Fig. 23
develops only for sufficiently strong disorder.

V. COULOMB DRAG AT THE NANOSCALE

The effects of Coulomb interaction are especially pro-
nounced at the nanoscale. In quantum dot devices one can
utilize the Coulomb-modified Fano resonance to detect the
electric charge (Johnson et al., 2004). A two-level pulse
technique was used to detect individual electron spin
(Elzerman et al., 2004). Quantum dots were also used as
high-frequency noise detectors (Onac et al., 2006). Transport
measurements on adjacent but electrically isolated quantum
point contacts (QPCs) exhibit a counterflow of electrons [i.e.,
detector current flowing in the direction opposite to the
driving current (Khrapai et al., 2007)]. In nanosize CdSe-
CdS semiconductor tetrapods (Mauser et al., 2010), Coulomb
draglike effects lead to photoluminescent emission.
Theoretically, Coulomb drag in a system of two electrically

isolated QPCs was considered by Levchenko and Kamenev
(2008a). Within the linear response the drag mechanism was
found to be similar to that in the bulk 2D electron systems.
Remarkably, already for seemingly modest drive voltages
(much smaller than temperature) the system crosses over to
the nonlinear regime, where the effect is dominated by the
excess shot noise of the drive circuit. Nonlinear transport was
also found to be crucial for drag effects in a system of parallel
quantum dots (Moldoveanu and Tanatar, 2009). An exciting
new development is the proposal to use the drag effects to
study transport properties of polaritons in optical cavities and,
in particular, their superfluidity (Berman, Kezerashvili, and
Lozovik, 2010a, 2010b).

A. Quantum dots and quantum point contacts

Interactively coupled mesoscopic and nanoscale circuits,
such as quantum wires (Debray et al., 2000, 2001; Morimoto
et al., 2003; Yamamoto et al., 2006; Laroche et al., 2011),
quantum dots (Aguado and Kouwenhoven, 2000; Onac et al.,
2006), or point contacts (Khrapai et al., 2006, 2007), provided
new fruitful ways of studying Coulomb drag phenomena and
revealed a plethora of interesting physics. These devices
typically have dimensions smaller than the temperature length
LT ¼ vF=T and voltage-related length scale LV ¼ vF=eV and
differ substantially from their two-dimensional quantum-well
counterparts in several important ways. (i) The strength of
Coulomb interaction is naturally enhanced by reducing the
system size that should lead to a more profound dragging
effect. (ii) Transmission across the device in the drag (drive)
circuit or both can be efficiently controlled by the gate
voltages that allow one to open quantum conduction channels
one by one. (iii) The electron-hole symmetry in such devices
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is broken much stronger than in bulk systems. In mesoscopic
devices this is due to random configurations of impurities,
while in the quantum nanocircuits the effect is due to the
energy dependence of transmission coefficients in the
Landauer picture of transport (Landauer, 1957, 1970;
Büttiker et al., 1985). (iv) Because of these reasons, the
quantum circuits may be easily driven out of the linear-
response domain and the corresponding voltage scale is
parametrically smaller than the temperature. (v) Ultimately,
the mere mechanism of drag in the nonlinear regime is
different and governed by the quantum noise fluctuations.
The most peculiar feature of the observed Coulomb drag

in such systems was that the drag current exhibited
maxima for specific values of the gate voltage, where
the drive circuit was tuned to an opening of another
conductance channel; see Fig. 28. This hinted at the
importance of the electron shot noise in the drive circuit,
which was known to exhibit a qualitatively similar behav-
ior (Lesovik, 1989; Reznikov et al., 1995). Indeed,
electron current shot noise power is proportional to the
product of the transmission and reflection coefficients that
is peaked between the conductance plateaus. It was argued
early on that drag may be interpreted as a rectification of
nearly equilibrium classical thermal fluctuations in the
drive circuit (Kamenev and Oreg, 1995). The extension
of this idea to rectification of the quantum shot noise was
plausible and happened to be correct in a certain regime.
The subtlety of this picture was that such a rectification is
possible due only to electron-hole asymmetry in both
circuits; otherwise, drag currents of electrons and holes
cancel each other. The mismatch between transmission
probabilities of electron and hole excitations is maximal at
the verge of an opening of the new conduction channel,
which implies that spikes of drag conductance may
originate from the asymmetry alone rather than from shot
noise.
In order to get insight into these delicate details consider the

linear-response regime when drag conductance gD can be
expressed as follows (Levchenko and Kamenev, 2008a):

gD ¼
Z

dω
8πT

jZ12ðωÞj2
ω2

Γ1ðωÞΓ2ðωÞ
sinh2ðω=2TÞ : ð121Þ

Here Z12ðωÞ is the interactively induced transimpedance
relating local fluctuating currents and voltages between the
circuits (Geigenmüller and Nazarov, 1991). The correspond-
ing rectification coefficients are given explicitly by

ΓiðωÞ ¼
2e
RQ

X
n

Z
dϵ½fðϵ−Þ − fðϵþÞ�½jtinðϵþÞj2 − jtinðϵ−Þj2�;

ð122Þ
where RQ ¼ 2πℏ=e2 is the quantum of resistance,
ϵ� ¼ ϵ� ω=2, fðϵÞ is the Fermi distribution function, and
jtinj2 is the energy-dependent transmission coefficient in the
transversal channel n of the circuit i ¼ 1, 2. This expression
admits a transparent interpretation: potential fluctuations with
frequency ω, say on the left of the quantum point contact,
create electron-hole pairs with energies ϵ� on the branch of
right moving particles. Consequently, the electrons can pass
through the quantum point contact with the probability
jtinðϵþÞj2, while the holes with the probability jtinðϵ−Þj2.
The difference between the two gives the net current flowing
across the contact while the Fermi functions in Eq. (122) take
care of the statistical occupation of participating scattering
states. Note that, unlike in the Landauer formula for con-
ductance of a single quantum point contact where trans-
missions can be treated as being energy independent, the
energy dependence of these probabilities in the drag formula
is crucial in order to have the asymmetry between electrons
and holes, and thus nonzero rectification ΓiðωÞ. A particular
functional dependence of Γ on frequency depends on a model
and details of device circuitry. It is instructive to focus on a
limit of a single partially open channel in a smooth adiabatic
quantum point contact. One may think then of the potential
scattering barrier across it as being practically parabolic. In
such a case its transmission probability is given by

jtinðϵÞj2 ¼ fexp½ðeVgi − ϵÞ=Δi� þ 1g−1; ð123Þ
where Δi is an energy scale associated with the curvature of
the parabolic barrier in the point contact i, while gate
voltages Vgi move the top of the barrier relative to the Fermi
energy within each of the point contacts. This form of
transmission was used to explain quantum point contact
conductance quantization (Glazman et al., 1988) and it turns
out to be useful in the application to the Coulomb drag
problem. For the low-temperature limit T ≪ Δi using
Eq. (123) in Eq. (122) and carrying out energy integration
yields

ΓiðωÞ ¼
2eΔi

RQ
ln

�
coshðeVgi=ΔiÞ þ coshðω=ΔiÞ

coshðeVgi=ΔiÞ þ 1

�
: ð124Þ

In the opposite limit when T ≫ Δi one should replace
Δi → T. One should notice that for small frequency
Γi ∝ ω2, whereas transimpedance Z12ðωÞ is practically
independent of frequency in this limit since its characteristic
scale is typically set by the inverse RC time of circuits.
Assuming that T ≪ maxfΔi; τ−1RCg one arrives at

FIG. 28. Left panel: Inset (a) represents a scanning electron
micrograph of the gate structure defined on top of the semi-
conductor heterostructure. The gates highlighted by dashed lines
are used to define a quantum dot (QD) on the left and a quantum
point contact (QPC) on the right. Inset (b) shows current IQD vs
plunger gate voltage, whereas inset (c) displays QPC conductance
GQPC as a function of the gate voltage. In such a device the QPC
is used as a noise generator and the QD as a detector. The right
panel shows the current through the QD, as a function of the
plunger gate voltage, under the influence of shot noise generated
by the QPC with characteristic peaks. From Onac et al., 2006.
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gD
gQ

¼ π2u2

6

T2

Δ1Δ2

1

cosh2ðeVg1=Δ1Þcosh2ðeVg2=Δ2Þ
;

ð125Þ

where u ¼ Z12ð0Þ=RQ. The resulting expression for the
drag conductance exhibits peaks as a function of gate
voltage in drag or drive quantum point contact. Yet at this
level it has nothing to do with the shot noise peaks, but
rather reflects rectification of near-equilibrium thermal
fluctuations (hence proportionality to T2) along with the
electron-hole asymmetry (hence a nonmonotonic depend-
ence on Vgi). However, one should realize that the cross-
over to the nonlinear regime of transport in such devices
can occur at rather low voltages eV� ∼ T2=Δi such that
Eq. (121) becomes inapplicable already at V > V�. More
general considerations by Levchenko and Kamenev
(2008a), Chudnovskiy (2009), and Sánchez et al. (2010)
revealed that for the out of equilibrium nonlinear regime
the drag current is due to the rectification of the quantum
shot noise and hence proportional to the Fano factorP

njtnij2½1 − jtnij2�. It again exhibits a generic nonmono-
tonic behavior of drag with multiple peaks but for an
entirely different reason independent of the asymmetry
factor. Nonlinear transport was also found to be crucial
for drag effects in a system of parallel quantum dots
(Moldoveanu and Tanatar, 2009).
Drag phenomena in quantum circuits can be naturally

connected to our earlier discussion of drag in mesoscopic
systems in Sec. III. Indeed, one or both circuits may be
represented by a multichannel quasi-one-dimensional
(or two-dimensional) mesoscopic sample. In this caseP

njtnðϵÞj2 ¼ gðϵÞ is a dimensionless (in units of R−1
Q )

conductance of the sample as a function of its Fermi energy.
As discussed earlier, such conductance exhibits universal
fluctuations, that is gðϵÞ ¼ gþ δgðϵÞ, where g ≫ 1 is an
average conductance and δgðϵÞ ∼ 1 is a sample and energy-
dependent fluctuating part. Since the characteristic scale of
the energy dependence of the fluctuating part is the Thouless
energy ET one naturally finds from Eq. (122) that corre-
sponding mesoscopic fluctuations of the rectification coef-
ficient are of the order

ΓðωÞ ∼� e
RQ

ω2

ET
. ð126Þ

This result ultimately leads to the an estimate of the variance
of drag in the form of Eq. (58).
Quantum Coulomb drag circuits provide a rich platform to

explore nanoscale transport far beyond ideas of using them for
high-frequency noise sensing. In particular, a different drag
effect may also be observed in the absence of any drive current
if one nanocircuit is made hotter than the other—the cold
circuit is expected to rectify the thermal charge fluctuations of
the hot circuit (Sothmann et al., 2012). Furthermore, inter-
actively coupled devices provide unique tools to test nonlinear
fluctuation-dissipation relations and its closely related
Onsager symmetry relations in the far from equilibrium
conditions when detailed balance is explicitly broken
(Sánchez et al., 2010; Bulnes Cuetara et al., 2013).

Other intriguing examples include nanosize CdSe-CdS
semiconductor tetapods (Mauser et al., 2010), where
Coulomb draglike effects lead to photoluminescent emission.
As an alternative to optical probes, electrical readout of a
single electron spin becomes possible in Coulomb draglike
devices of interactively coupled QPC and QD (Elzerman
et al., 2004).

B. Optical cavities

The Coulomb interaction is not exclusive to electrons and
can couple any charges. Moreover, even neutral, composite
objects may interact with charges by means of an effective
“polarization” or “charge-dipole” interaction (Margenau and
Kestner, 1969), which ultimately stems from the Coulomb
interaction between an external charge and individual charged
constituents of the composite object. In particular, long-
ranged interactions between spatially separated electrons
and polaritons may lead to interesting drag effects
(Kulakovskii and Lozovik, 2004; Berman, Kezerashvili,
and Lozovik, 2010a, 2010b) that can be used, e.g., for
designing electrically controlled optical switches (Berman,
Kezerashvili, and Kolmakov, 2014).
Two-dimensional excitonic polaritons have been the subject

of intensive research (Kasprzak et al., 2006; Balili et al., 2007;
Snoke, 2008; Amo et al., 2009). These excitations appear as a
result of resonant exciton-photon interaction in a system
consisting of an optical microcavity and a quantum well
embedded within the cavity. The lower polariton branch is
characterized by extremely small effective mass raising the
possibility of achieving the Bose-Einstein condensation and
superfluidity at relatively high temperatures (Balili et al.,
2007; Littlewood, 2007).
The optically excited excitons in microcavities should

not be confused with the spontaneously formed excitons
in double quantum wells discussed in Sec. VII.A. In
particular, these excitons can be excited by laser pumping
in the single quantum well embedded within the cavity.
Now, if a second quantum well is added to the device
(Berman, Kezerashvili, and Lozovik, 2010a), then the
Coulomb interaction binding electrons and holes into
excitons can be screened (Finkelstein, Shtrikman, and
Bar-Joseph, 1995; Gubarev et al., 2000) by a 2DEG
populating the second well. As a result, the excitonic
binding energy is reduced and as the density of the 2DEG
approaches a certain critical value, the excitons may
disappear altogether. The excitonic collapse manifests
itself through disappearance of the corresponding line
in the photoluminescence spectrum.
Keeping the electron density below the critical value, one

obtains a system containing coexisting, spatially separated
excitons and electrons. The effective interaction between
electrons and excitons was considered by Lozovik and
Nikitkov (1999). This interaction leads to mutual friction
between the two systems that can be observed by selectively
exciting one of them by external probes.
By focusing laser pumping on a particular region within

the cavity, one can generate a gradient of exciton and
polariton densities. These gradients induce a flow of both
polaritons and excitons. The long-range interaction between
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the excitons (or the exciton component of the polaritons)
may transfer energy and momentum to the electronic system
in the second quantum well, generating an electric current
or inducing voltage, similar to the standard drag effect
discussed in Sec. II.
Alternatively, one can drive a current through the 2DEG.

In this case, the mutual friction will lead to the appearance
of the exciton flow. These excitons are entangled with
cavity photons and their flow will create a flow of polar-
itons. In other words, the long-ranged electron-exciton
interaction allows one to effectively “move” the cavity
photons by applying electric current to the 2DEG
(Berman, Kezerashvili, and Lozovik, 2010a, 2010b). The
drag effects in microcavities are schematically illustrated
in Fig. 29.
Recently, Berman, Kezerashvili, and Kolmakov (2014)

proposed to use the drag effect in optical cavities for building
an electrically controlled optical switch; see Fig. 30. The
polaritons are assumed to be created at a constant rate by
external laser pumping. The wedgelike shape of the micro-
cavity is chosen in order to create a force driving the polaritons
along the cavity toward the Y junction. Without the drag
effect, the polariton flux is distributed equally between the
two branches of the junction. Driving an electric current

through a second quantum well results in a drag force in the
junction region that effectively redistributes the polaritons
flux between the branches. Berman, Kezerashvili, and
Kolmakov (2014) found that for realistic parameters of the
device one can achieve 90% accuracy of the switching of the
polariton flow.

VI. COULOMB DRAG BETWEEN PARALLEL
NANOWIRES

It is well known that the physics of electrons confined to
one spatial dimension (1D) is dominated by interactions.
Coulomb drag between two closely spaced but electrically
isolated quantum wires was used to observe Wigner crystal-
lization (Yamamoto et al., 2002, 2006, 2012) and Luttinger
liquid effects (Debray et al., 2001; Laroche et al., 2008, 2014).
The effect was also used to study 1D subbands in quasi-1D
wires (Debray et al., 2000; Laroche et al., 2011).
Early theoretical work on drag between 1D systems (Hu

and Flensberg, 1996; Gurevich, Pevzner, and Fenton, 1998;
Raichev and Vasilopoulos, 1999, 2000a, 2000b; Gurevich
and Muradov, 2000, 2005) was based on the Fermi-liquid
approach and targeted multiple-channel wires at high
enough temperatures, where electron correlation effects
(other than screening) are not important. Tanatar (1998)
considered the role of disorder. It is, however, well known
that the Fermi-liquid theory fails for purely 1D systems, i.e.,
single-channel wires (Giamarchi, 2004), quasi-1D wires
with single 1D subband occupancy (Laroche et al.,
2014), and systems comprising a small number of coupled
1D channels. Coulomb drag between two Luttinger liquids
with a pointlike interaction region was discussed by
Flensberg (1998) and Komnik and Egger (2001). Nazarov
and Averin (1998) considered two independent Luttinger
liquids coupled by interwire backscattering. Schlottmann
(2004a, 2004b) used Bethe-ansatz methods to solve the
problem of two wires coupled by a particular δ-function
potential. Especially interesting is the prediction of the
Mott-insulator–type state corresponding to the formation
of two interlocked charge-density waves (CDW) in quantum
wires (Klesse and Stern, 2000; Fuchs, Klesse, and Stern,
2005) [see also Furuya, Matsuura, and Ogata (2015)].
A theory of Coulomb drag based on the Tomonaga-

Luttinger liquid (TLL) theory (Tomonaga, 1950; Luttinger,
1963; Haldane, 1981a, 1981b) predicts a behavior that
qualitatively deviates from that in higher dimensions.
Below a certain crossover scale T�, the drag resistivity
between infinitely long quantum wires of equal electron
density is predicted to increase exponentially with decreasing
temperature (Klesse and Stern, 2000)

ρD ∼ ρT expðΔ=TÞ: ð127Þ

The energy gap Δ and crossover temperature T� are compli-
cated functions of the interwire distance d, width of wires w,
effective Bohr radius aB of the host material, and electron
density n. For widely separated wires (kFd ≫ 1) they are
exponentially suppressed

Δ ∼ T� ∼ EF exp ½−kFd=ð1 − KÞ�; ð128Þ

FIG. 29. Left: Quasiparticle flow in the cavity polariton sub-
system induced by the electric current in the 2DEG at low
temperatures. Right: Electric current in the 2DEG induced by the
optically excited flow in the polariton subsystem. From Berman,
Kezerashvili, and Lozovik, 2010b.

FIG. 30. The wedge-shaped microcavity formed by two dis-
tributed Bragg reflectors (DBR) that encompasses the embedded
quantum wells. The excitons are located in the quantum well
(gray) between the reflectors. A metal layer deposited on the
upper DBR creates a Y-shaped potential energy landscape for the
polaritons. The driving current runs perpendicularly to the stem
of the channel in the quantum well. From Berman, Kezerashvili,
and Kolmakov, 2014.
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and the drag resistivity exhibits the high-temperature power-
law behavior20

ρD ∼ ðh=e2ÞkFλ2ðT=EFÞ4K−3 ð129Þ

for all practically relevant scales. Here K is the TLL
interaction parameter in the relative charge sector determined
by the difference of the small momentum intrawire and
interwire couplings and λ is the dimensionless interwire
backscattering potential strength.
The physical picture behind Eq. (127) is that at low

temperatures T < T� the electrons in both wires form a
zigzag-ordered interlocked CDW. Then a relative charge
displacement can be created only by overcoming a potential
barrier, which ultimately translates into transport via activa-
tion and consequently into Arrhenius-like behavior of drag.
For short wires, Klesse and Stern (2000) reported a

qualitatively different behavior. Here the CDW in one wire
may slip as a whole relative to the CDW in the other wire.
These instantaneous slips may stem from either thermal
fluctuations or tunneling events. The latter leads to the drag
resistance that tends to a finite, but exponentially large (in the
wire length L) value as T → 0. In contrast, Ponomarenko and
Averin (2000) found a vanishing drag resistance ρD ∼ T2,
regardless of whether the CDW is formed or not.
For wires with different electron densities, Fuchs, Klesse,

and Stern (2005) found that the drag resistance (127) is
suppressed by an additional exponential factor expð−jδμj=TÞ,
where δμ ¼ μ1 − μ2 is the difference between the chemical
potentials μi in the two wires. The high-temperature result
(129) also becomes exponentially suppressed as soon as jδμj
exceeds the temperature.
Allowing for a spin degree of freedom adds extra complex-

ity to the problem, since the system might be unstable toward
a gap opening in the spin sectors.21 If this does not happen (or
at temperatures exceeding the spin gaps), the system shows
the same qualitative behavior as before, but the exponent in
Eq. (129) changes to 2K − 1. However, if the single wires
develop spin gaps, the drag resistivity vanishes at T ¼ 0

(Klesse and Stern, 2000).
At temperatures above T�, the charge sector is gapless and

the system can be described as two coupled wires in the TLL
phase. For quasiparticles with linear dispersion the only
process contributing to drag is the interwire backscattering
characterized by large momentum transfers q ∼ 2kF. This
process can be described by the usual drag formula (15),
where one typically assumes the nonlinear susceptibility to be
proportional to the imaginary part of the polarization operator
(Pustilnik et al., 2003; Fiete, Hur, and Balents, 2006):

ρD ¼ h
e2

Z
dqdω
4π3

q2V2
q

n2T
½ImΠðq;ωÞ�2
sinh2ðω=2TÞ ; ð130Þ

where Vq describes the interwire interaction. In the limit
qd ≫ 1, the asymptotic form of Vq is given by

Vq ¼ ðe2=ϵÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π=ðqdÞp

expð−qdÞ. The polarization operator
for the TLL model is known (Giamarchi, 2004). For spinless
fermions, the spectral weight of 2kF density fluctuations is
given by

ImΠðq�;ωÞ ¼ −
sin πK
4π2u

�
2παT
u

�
2K−2

× B

�
K
2
−
iðω − uq�Þ

4πT
; 1 − K

�

× B

�
K
2
−
iðωþ uq�Þ

4πT
; 1 − K

�
; ð131Þ

where α ∼ k−1F is the short-distance cutoff of the TLL theory,
q� ¼ q� 2kF, u is the renormalized Fermi velocity, and
Bðx; yÞ is the Euler beta function. Using Eq. (131) in Eq. (130)
one recovers Eq. (129), which was obtained by Klesse and
Stern (2000) by means of a renormalization group analysis.
In the perturbative approach, the interaction parameter
λ in Eq. (129) is given by λ ¼ V2kF=vF. This leads to the
exponential dependence of ρD on distance separating the wires
[since V2kF ∝ expð−2kFdÞ]. The regime of spin-incoherent
Luttinger liquid and the effect of disorder modify temperature
dependence of Eq. (129) (Fiete, Hur, and Balents, 2006). In
the weakly interacting limit (K ≃ 1) the drag resistivity is
expected to grow linearly with temperature (Hu and
Flensberg, 1996; Gurevich, Pevzner, and Fenton, 1998).
In recent years, a lot of the attention was devoted to 1D

liquids with nonlinear dispersion [for reviews on this topic,
see Deshpande et al. (2010), Imambekov, Schmidt, and
Glazman (2012), and Matveev (2013)]. In the TLL theory,
the curvature of the quasiparticle spectrum is described by an
irrelevant operator (in the renormalization group sense).
However, at high enough temperatures it might lead to
important effects and even mask the pure Luttinger behavior.
In the context of Coulomb drag (Pustilnik et al., 2003; Aristov,
2007; Rozhkov, 2008; Pereira and Sela, 2010; Dmitriev,
Gornyi, and Polyakov, 2012), this is particularly important
since nonlinearity of the band kinematically allows drag with
small momentum transfer q ∼ T=vF ≪ kF.
Analytic calculation of the dynamical structure factor

ImΠðq;ωÞ for arbitrary interactions and nonlinear dispersion
is a major challenge. However, such calculation is readily
available in the case of weakly interacting electrons. At finite
temperatures, but with the accuracy of the order T ≪ mv2F, the
one-loop diagram yields

ImΠðq;ωÞ ¼ m
4k

sinhðω=2TÞ
coshðqvFξþ=2TÞ coshðqvFξ−=2TÞ

; ð132Þ

where ξ� ¼ 2mðω − vFqÞ=q2 � 1. It is now tempting to
follow the conventional path and use this result for ImΠ in
the expression for the drag (130) to obtain

ρD ≃ ðhkF=e2ÞðV0=vFÞ2ðT=EFÞ2; ð133Þ

with the conclusion that curvature effects restore the
Fermi-liquid behavior of drag in 1D wires; furthermore, the

20In 1D, ρD ¼ −limI1→0ð1=LÞdV2=dI1 is the drag resistivity per
unit length (Klesse and Stern, 2000; Pustilnik et al., 2003).

21For a comprehensive discussion of ground state properties
of capacitively coupled 1D systems, see Giamarchi (2004) and
Carr, Narozhny, and Nersesyan (2013).
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contribution (133) would dominate over the backscattering
component (129) already at temperatures above T > EFe−4kFd

[in Eq. (133) V0 should be understood as Vq∼T=vF ]. At even
higher temperatures, v=d<T <EF, the same approach yields
a saturating drag resistivity, ρD ∼ ðℏkF=e2ÞðV0=vFÞ2 ×
ðv=dEFÞ2, followed by a falloff ρD ∝ 1=T3=2 at T > EF.
For nonidentical wires there appears an additional energy
scale Tδ ¼ kFjδvj describing splitting between symmetric and
antisymmetric plasmon modes in the double-wire system,
which is determined by the difference between Fermi veloc-
ities in the wires δv ¼ vF1 − vF2. Assuming that Tδ ≪ Td,
Eq. (133) holds only for Tδ < T < Td, whereas below Tδ drag
resistivity due to forward scattering decreases as ρD ∝ T5 with
lowering temperature.
However, as shown by Dmitriev, Gornyi, and Polyakov

(2012) the conclusions about the forward scattering contri-
bution to drag may be premature. The reason is subtle:
Eq. (130) was derived under the tacit assumption that the
intralayer relaxation processes due to electron-electron inter-
action are faster than the interwire momentum transfer. Now,
in purely 1D systems relaxation is determined by three-body
collisions (Lunde, Flensberg, and Glazman, 2007; Micklitz,
Rech, and Matveev, 2010; Levchenko, Ristivojevic, and
Micklitz, 2011; Rieder et al., 2014) as inelastic two-body
interaction is forbidden by energy and momentum conserva-
tion. The same kinematic restrictions require that intrawire
backscattering responsible for equilibration involves states
deep at the bottom of the band. Because of the Pauli statistics,
the probability to find such a state unoccupied is exponentially
small. Consequently, the equilibration rate τ−1eq in 1D is
exponentially suppressed, τ−1eq ∝ e−EF=T , and Eqs. (130) and
(133) are difficult to justify.
At the same time, interwire backscattering with small

momentum transfer q ∼ T=VF ≪ kF is also allowed in 1D
systems with nonlinear spectrum. This process involves a pair
of scattering states: one near the Fermi level and another at the
bottom of the band. Dmitriev, Gornyi, and Polyakov (2012)
found a solution of two coupled kinetic equations [cf. Eqs. (9)]
yielding the drag resistivity in the form

ρD ≃ ℏkF
e2

�
V0

vF

�
2 1

kFd
Td

T

ffiffiffiffiffiffi
EF

T

r
e−2EF=T: ð134Þ

By comparing the exponential factors in Eqs. (129) and (134),
one can see that backscattering-induced drag friction due to
soft collision (namely, collisions with small momentum
transfer) dominates over direct backscattering with 2kF
momentum transfer at temperatures T > Td. This is despite
the fact that the contribution of soft collisions is strongly
suppressed compared to Eq. (133).
At even higher temperatures there exists delicate inter-

play between the relaxation rates of two-particle interwire
backscattering with small momentum transfer and triple-
body intrawire chirality changing soft collisions that deter-
mine the behavior of ρDðTÞ. Each of these scattering
processes can be described by respective functions
D2ðTÞ and D3ðTÞ, which physically correspond to diffusion
coefficients in momentum space. Their functional form is
not universal and determined by the interaction model

considered. Three-particle collisions dominate provided
that D3 > D2e−EF=T . This condition implicitly defines a
new crossover temperature scale Tc >Td at which Eq. (134)
crosses over to (Dmitriev, Gornyi, and Polyakov, 2012)

ρD ≃ ℏ
e2

D3

kFEF

�
EF

T

�
3=2

e−EF=T: ð135Þ

Note that in this transport regime ρD is suppressed only by
a single exponential factor. In the case of short-ranged
interaction D3 ∝ T2, whereas D2 is temperature indepen-
dent so that the preexponential factor in Eq. (135) scales
with T as T1=2. In the case of the Coulomb interaction this
scaling is different since D3 ∝ T5.
Coulomb drag between true 1D systems was recently

observed by Laroche et al. (2014) in a system of vertically
integrated quantum wires where each wire has less than
one 1D sub-band occupied. The most striking theoretical
prediction, i.e., the upturn in the temperature dependence,
was revealed below the crossover temperature T� ∼ 1.6 K;
see Fig. 31. However, a quantitative comparison between
the data and the theoretical results proved to be difficult.
Using the experimental estimates for the carrier density
n1D ¼ ffiffiffiffiffiffiffiffi

n2D
p

and interwire distance d≃ 40 nm, one arrives
at kFd ∼ 2. Then, from Eq. (128) one finds the values for
the Luttinger parameter K ≃ 0.1 − 0.2 (for samples 3-R
and 2-C) corresponding to very strong interaction that is
beyond the applicability of the bosonization theory of
Klesse and Stern (2000). On the other hand, fitting the
high-temperature data to the power-law behavior (129)
yields K ≃ 1.5. This estimate, however, should be
approached with caution, since Eq. (129) was derived
for identical wires which is not the case in experiment,
where electronic densities in the parent 2D layers differ by
about 20%. In that case one expects (Fuchs, Klesse, and
Stern, 2005) an exponential suppression of ρD. All these
issues remain to be clarified both theoretically and
experimentally.

FIG. 31. Left: Measurement schematic (top) and single-wire
conductance quantization (bottom). Right: Temperature depend-
ence of the drag signal for three different samples (the
magnitude of ρD in sample 2-L is divided by 200 for visibility).
For samples 2-L and 2-C, the temperature dependence was
taken with no more than one 1D subband occupancy in each
wire, whereas the number of 1D subbands occupied in sample
3-R is known to be bounded by 0 < Ndrive ≤ 2 and
0 < Ndrag ≤ 3. From Laroche et al., 2014.
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VII. NOVEL MANY-BODY STATES IN DOUBLE-LAYER
SYSTEMS

When a double-layer system is subjected to a strong
magnetic field, the standard theoretical description of
Coulomb drag (Jauho and Smith, 1993; Zheng and
MacDonald, 1993; Kamenev and Oreg, 1995) fails: in contrast
to naive expectations, numerous experiments (Hill et al.,
1996, 1998; Patel et al., 1997; Rubel et al., 1997, 1998; Rubel,
Fischer, Dietsche, von Klitzing, and Eberl, 1997; Feng et al.,
1998; Jörger, Dietsche et al., 2000; Lok, Kraus, Pohlt,
Dietsche et al., 2001; Lok, Kraus, Pohlt, Güven et al.,
2001; Pillarisetty et al., 2003) show significant dependence
of the measured drag resistivity ρD on the applied field,
especially in the extreme quantum regime (Murphy et al.,
1994; Lilly et al., 1998; Nandi et al., 2012).
Further experiments revealed the existence of novel quan-

tum Hall states that are specific to bilayer systems and have no
analog in single-layer samples. Early work in this direction
was reviewed in Eisenstein (1992, 1997). Remarkably, the
bilayer many-body states exhibiting the quantum Hall effect
(Murphy et al., 1994) may at the same time support a
condensate of indirect (or interlayer) excitons (Wiersma et al.,
2007; Finck et al., 2010; Nandi et al., 2012). An interlayer
exciton is a bound pair of an electron from one layer and a hole
from another layer of the device. The exciton carries no
electric charge. Nevertheless, exciton transport (especially in
the superfluid state) leads to interesting electrical effects. The
experimental situation in the field was reviewed by Eisenstein
and MacDonald (2004) and Eisenstein (2014). Here we focus
on the manifestations of this exciting new physics in the drag
measurements.

A. Quantum Hall effect in double-layer systems

In a seminal paper, Halperin (1983) suggested a generali-
zation of the Laughlin wave function for the analysis of
multicomponent systems. The simplest example of an extra
degree of freedom that can be accounted for using this
approach is the electron spin. A double-layer system provides
another example, which is similar to the spin-1=2 system in
some respects and is significantly different in other. The two
possible values of the layer index can be represented by the
two orientations of a pseudospin (Yang et al., 1994; Stern
et al., 2000). However, unlike the real spin, the double-layer
system does not possess the SU(2) symmetry due to the
difference between the intralayer and interlayer matrix ele-
ments of the Coulomb interaction. Consequently, in the
double-layer system the energy eigenstates do not have to
be eigenstates of the total spin operator ŜT (Girvin and
MacDonald, 1997). As a result, states described by
Halperin’s wave functions that are not eigenstates of ŜT
may be realized in double layers (Eisenstein et al., 1992;
Suen et al., 1992).
In this review we are mostly interested in double-layer

systems where tunneling between the two layers is negligible.
Such systems support novel many-body quantum Hall states
that are specific to bilayers and arise due to the interlayer
Coulomb interaction (Chakraborty and Pietiläinen, 1987;
Haldane and Rezayi, 1987). Yoshioka, MacDonald, and

Girvin (1989) investigated a wide class of such states using
Halperin’s two-component wave functions (Halperin, 1983).
The ground state of the system crucially depends on the ratio
of the interlayer separation and magnetic length d=l0. For a
given filling factor, themagnetic lengthl0 is proportional to the
average separation between electrons in one layer. Therefore,
the ratio d=l0 parametrizes the relative strength of intralayer
and interlayer Coulomb interactions. Assuming truly two-
dimensional layers (i.e., setting aside complications that arise
due to the finite width of the quantum wells in GaAs samples),
one finds that the interlayer many-body states are stable
for d=l0 ∼ 1. At large d, the interlayer Coulomb interaction
is inefficient and then the system behaves as if one connects
two quantum Hall samples in parallel (Eisenstein, 1997).
This observation can be illustrated with the help of the typical
phase diagram shown in Fig. 32 for the case of the total filling
factor νT ¼ 1 (Murphy et al., 1994). In the opposite limit
d=l0 → 0, the system approaches the SU(2)-symmetric
point, and thus the Halperin states that are not eigenstates of
ŜT are expected to collapse (Eisenstein, 1997).
Double layers at the total filling factor νT ¼ 1 and with

large interlayer separation (experimentally, d=l0 ∼ 2 − 4)
behave as two weakly coupled systems of composite fermions
(i.e., each layer is at ν ¼ 1=2) while exhibiting strongly
enhanced drag as compared to the zero-field case; see
Sec. II.G. As the ratio d=l0 is decreased, experiments
(Kellogg, Spielman et al., 2002; Kellogg et al., 2003) show
a gradual development of the Hall drag signal and a non-
monotonic behavior of the longitudinal drag resistivity ρD. As
d=l0 approaches the transition into the strongly correlated,
many-body state,22 ρD shows strong enhancement, followed
by a decrease. In the strongly coupled interlayer νT ¼ 1 state

FIG. 32. The quantum Hall effect at νT ¼ 1 in double-layer
systems. ΔSAS is the tunnel splitting and e2=ϵl is the Coulomb
energy. Each symbol corresponds to a particular double-layer
sample. Only the samples represented by solid symbols exhibit a
quantized Hall plateau at νT ¼ 1. The interlayer quantum
Hall state exists also in the absence of tunneling. From
Murphy et al., 1994.

22Since the transition between the weakly and strongly coupled
quantum Hall states is still poorly understood, one should be
speaking in terms of the transition region instead of the precise
critical value of d=l0.
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ρD practically vanishes. At the same time, the Hall drag
resistance develops a quantized plateau; see Fig. 33. Similar
behavior was observed by Tutuc, Shayegan, and Huse
(2004), Wiersma et al. (2004), and Tutuc, Pillarisetty, and
Shayegan (2009).
Early theoretical work on drag in quantum Hall states was

focused on the nondissipative drag (Renn, 1992; Duan, 1995;
Yang, 1998; Yang and MacDonald, 2001). In contrast to the
case of the weak magnetic field (see Sec. II.G), a strong,
quantized Hall drag has been identified as a signature of the
interlayer correlated states. The 2 × 2 Hall resistivity matrix
(for the two layers) was shown (Renn, 1992; Yang, 1998) to be
proportional to the Gram matrix (Conway and Sloane, 1988;
Read, 1990) describing topological order in the quantum Hall
state (Wen, 1995):

ρxyij ¼ ðh=e2ÞKij ⇒ ρxy12 ¼ nh=e2; n > 0: ð136Þ

A similar conclusion was reached by Yang and MacDonald
(2001) on general topological grounds.
Kim et al. (2001) suggested using the drag resistivity to

distinguish between various quantum Hall states in double-
layer systems at νT ¼ 1. For the compressible (weak-
coupling) state at large interlayer separation, the Hall drag
resistivity vanishes, while the longitudinal drag is determined
by gauge-field fluctuations and is given by Eq. (53).
The compressible state exhibits a strong pairing instability
(Greiter, Wen, and Wilczek, 1991; Bonesteel, 1993). If
Landau-level mixing is substantial (as it often is in exper-
imental samples), the paired state may be described by the
ð3; 3;−1ÞHalperin wave function. This state resembles a px þ
ipy superconductor of composite fermions. As a result, it is
expected to exhibit the quantized Hall drag resistivity (136)
with n ¼ −1.
For smaller interlayer separation (d≃ l0) the system

undergoes a transition into an incompressible, correlated
“quantum Hall ferromagnet” state described by the (1, 1, 1)
Halperin wave function. This state possesses a gapless neutral

mode and is characterized by the Hall resistivity (136)
with n ¼ 1.
The nature of the transition between the compressible,

weak-coupling state at large interlayer separation and the
incompressible, strong-coupling state at d≃ l0 is not com-
pletely understood (Finck et al., 2010; Eisenstein, 2014).
Numerical evidence (Schliemann, Girvin, and MacDonald,
2001; Burkov et al., 2002) suggested a first order transition at
T ¼ 0, which contradicts the experimental observation of
gradual development of the quantized Hall drag (Kellogg,
Spielman et al., 2002; Kellogg et al., 2003); see Fig. 33. Stern
and Halperin (2002) suggested a phenomenological descrip-
tion of the drag resistivity in the transition region. Postulating
that in the transition region the system is split into regions of
the strong-coupling (1, 1, 1) phase and regions of the weak-
coupling compressible phase, they describe the transition as
the point where the fraction f of the sample occupied by the
(1, 1, 1) phase reaches the percolation threshold fc ¼ 1=2.
In a system of identical layers, the linear-response theory

can be formulated in terms of symmetric and antisymmetric
states. Denoting the 2 × 2 resistivity matrices corresponding
to symmetric and antisymmetric currents by ρs and ρa, one
finds the drag resistivity as ρD ¼ ðρa − ρsÞ=2.
In the weak-coupling phase at d ≫ l0, the drag resistivity is

very small, ρD ≪ ρaðsÞ. Neglecting ρD, one may approximate
the resistivities as (in units of h=e2)

ρaðd ≫ l0Þ ¼ ρsðd ≫ l0Þ ¼
�

ϵ 2

−2 ϵ

�
; ð137Þ

where ϵ ¼ 1=kFltr ≪ 1 (within the composite-fermion
model), kF ¼ 4πn is the Fermi wave vector, n is the electronic
density, and ltr is the transport mean-free path. For T < 1 K,
the experimentally measured values of ρD are almost 2 orders
of magnitude less than ϵ.
The strong-coupling (1, 1, 1) phase exhibits features of the

quantum Hall state for the symmetric currents

ρs0ðd≲ l0Þ ¼
�

0 2

−2 0

�
; ð138Þ

while for the antisymmetric currents it is a superfluid (Stern
and Halperin, 2002) ρa0ðd≲ l0Þ ¼ 0.
Analyzing the system close to the transition as a composite

system comprising regions of both phases, Stern and Halperin
(2002) found a phenomenological expression for the drag
resistivity

ρDxx ¼
8ϵfð1 − fÞð1 − 2fÞ
ϵ2 þ 4ð1 − 2fÞ2 : ð139Þ

As f increases from zero, this drag resistivity grows from zero
[or rather, the very small value in the compressible state that is
neglected in Eq. (139)] reaching a maximum at f� ≈ 1=2 −
ϵ=4 (for small ϵ) and again vanishing at the percolation
threshold, in qualitative agreement with the nonmonotonic
drag observed by Kellogg, Spielman et al. (2002) and Kellogg
et al. (2003).

FIG. 33. Left: Hall (open dots) and longitudinal (closed dots)
drag resistance at νT ¼ 1 and T ¼ 50 mK as a function of the
ratio d=l0. The two lower panels show the temperature depend-
ence of the location and the half-width of the peak in RD

xx. The
lines are guides for the eye. From Kellogg et al., 2003. Right:
Drag resistivity and Hall drag resistivity in units of h=e2 for
different temperatures. The end points represent the strong-
coupling (ρDxy ¼ −1) and weak-coupling (ρDxy ¼ 0) regimes.
The dashed line represents Eq. (140). From Tutuc, Pillarisetty,
and Shayegan, 2009.
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Furthermore, using the semicircle law (Dykhne and Ruzin,
1994), it can be shown that to the lowest order in ϵ the drag
resistivities satisfy the following (Stern and Halperin, 2002):

ðρDxy þ 1=2Þ2 þ ðρDxxÞ2 ¼ 1=4; ð140Þ

yielding vanishing Hall drag for the compressible state
(f ¼ 0) and the quantized value (136) with n ¼ −1 for the
(1, 1, 1) state at f ≥ 1=2. Between the two extremes the
negative ρDxy varies monotonously. The apparent discrepancy
in the sign of ρDxy obtained by Stern and Halperin (2002) and
Kim et al. (2001) seems to stem from the alternative definition
of drag resistivities. Similar predictions for transport coef-
ficients, in particular, Eq. (140), but without the explicit phase
separation were obtained by Simon, Rezayi, and Milovanovic
(2003). An alternative model invoking the coexistence of the
two phases was suggested by Spivak and Kivelson (2005).
The semicircle relation (140) was experimentally tested by

Tutuc, Pillarisetty, and Shayegan (2009); see Fig. 33. Instead
of comparing a number of double-well devices with different
interlayer separations (Kellogg et al., 2003), Tutuc,
Pillarisetty, and Shayegan (2009) varied the electron density
and observed the transition between the strong-coupling state
at νT ¼ 1 and the weakly coupled state at νT ¼ 2. The data at
intermediate temperatures T ≈ 300 K are in a good quantita-
tive agreement with the theory. At the same time, Eq. (140) is
only approximate and is expected to hold if the drag resistivity
is much larger than the symmetric bilayer resistivity at all
fillings. Drag resistivity in the weak-coupling state is also
neglected. Given these approximations, the agreement
between the data and the phenomenological theory of Stern
and Halperin (2002) is satisfactory.

B. Interlayer exciton formation

Further experiments revealed the most intriguing feature of
the strong-coupling quantum Hall state at νT ¼ 1: the pres-
ence of the exciton condensate capable of neutral superfluid
transport (Eisenstein and MacDonald, 2004; Eisenstein,
2014). Originally envisioned for optically generated excitons
in bulk semiconductors (Blatt, Böer, and Brandt, 1962;
Moskalenko, 1962; Keldysh and Kopaev, 1964; Keldysh
and Kozlov, 1968), the phenomenon was also predicted for
indirect excitons in double-layer systems (Lozovik and
Yudson, 1976; Shevchenko, 1976).
The quantized Hall effect along with the vanishing longi-

tudinal resistivity at νT ¼ 1 indicated a gapped spectrum of
charged excitations. In these measurements (Eisenstein et al.,
1992; Suen et al., 1992; Eisenstein, 2014), electrical currents
in the two layers flow in the same direction. In contrast, the
condensate couples to antiparallel or counterflowing currents
(Kellogg et al., 2004; Tutuc, Shayegan, and Huse, 2004;
Wiersma et al., 2004) and manifests itself through vanishing
Hall voltage. The simplest explanation for this observation is
based on charge neutrality of excitons: as neutral objects,
excitons do not experience the Lorentz force and hence no
Hall voltage develops when equal, counterpropagating cur-
rents are flowing through the two layers.
Another spectacular manifestation of the exciton conden-

sate is the Josephson-like tunneling anomaly (Spielman et al.,

2000; Wiersma et al., 2006, 2007; Finck et al., 2008;
Tiemann, Dietsche et al., 2008; Yoon et al., 2010) that
theoretically was predicted by Wen and Zee (1992) and
Park and Das Sarma (2006) and later discussed by Dolcini
et al. (2010).
Finally, the latest experiments revealing the existence of the

exciton condensate utilized the multiple connected Corbino
geometry (Tiemann, Dietsche et al., 2008; Tiemann, Lok
et al., 2008; Finck et al., 2011; Nandi et al., 2012). For a
theoretical discussion of the superfluid flow in the Corbino
geometry, see Su and MacDonald (2008). The advantage of
the Corbino samples is that they support the exciton flow
through the bulk (in contrast to the Hall bar samples where
transport is dominated by the edges).
Coulomb drag has played an important role in discovering

the interlayer correlated state (Eisenstein, 2014). Quantized
Hall drag measured in the simply connected square geometry
(Kellogg, Spielman et al., 2002) was one of the first
indications of anomalous in-plane transport in double-layer
systems at νT ¼ 1. Remarkably, the quantized Hall voltage
has been found to be the same in both layers. At first glance,
this contradicts the boundary conditions of the drag meas-
urement: drag experiments involve passing current through
one of the layers and measuring the induced voltage in the
other, where no current is allowed to flow. The absence of the
current seems to yield the absence of the Lorentz force and
hence lead to the standard conclusion that no Hall voltage
should be induced in the passive layer; see Sec. II.G. However,
this argument does not take into account collective effects. In
the presence of the condensate, the driving current can be
decomposed into the symmetric and antisymmetric parts
(Stern and Halperin, 2002). While the symmetric current
carries the electric charge, the antisymmetric (or counter-
propagating) current is equivalent to the condensate flow. In
the passive layer the two currents cancel each other thus
satisfying the boundary condition. At the same time, it is the
symmetric, charge-carrying current that can couple to the
magnetic field. This current is shared between the layers,
yielding the identical quantized Hall voltage across both
layers.
Similar arguments lead to the expectation of “perfect”

longitudinal drag (Su and MacDonald, 2008): the symmetric
current shared between the layers should be responsible not
only for the Hall, but also for the longitudinal voltage in the
passive layer. This prediction was tested in a dedicated
experiment by Nandi et al. (2012) using Corbino samples.
Deviating from the standard setup, Nandi et al. (2012) closed
the electric circuit in the passive layer and measured the
induced current, rather than the voltage. In this case, perfect
drag means that the induced current should be the same in
magnitude as the driving current passed through the active
layer while flowing in the opposite direction. This is exactly
what was observed by Nandi et al. (2012), at least for small
driving currents; see Fig. 34.
The previous arguments neglect the impact of disorder that

might affect the presumed dissipationless excitonic transport
(Su and MacDonald, 2008) across the bulk of the device
(Fertig and Murthy, 2005; Huse, 2005; Fil and Shevchenko,
2007; Lee, Eastham, and Cooper, 2011). Assuming a phe-
nomenological resistance Rs of the excitonic system, one still
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finds [neglecting the Corbino conductance (Nandi et al.,
2012)] perfect drag I1 ¼ I2 ¼ V=ðR1 þ R2 þ RsÞ, where Ri
represent the net resistances in series with the Corbino sample;
see the inset in Fig. 34. As the magnitude of R1 þ R2 is
expected to always exceed 2h=e2 (Su and MacDonald, 2008;
Pesin and MacDonald, 2011), the ability of the experiment to
detect small values of Rs is limited. The issue of dissipation in
the excitonic system might be clarified by future multiterminal
measurements.
So far we discussed experiments on the exciton physics in

double-layer systems comprising similar electronic layers
(Eisenstein and MacDonald, 2004). It is also possible to
create devices with oppositely doped layers, the so-called
electron-hole bilayers (Keogh et al., 2005; Das Gupta et al.,
2011). Coulomb drag measurements in these systems (Croxall
et al., 2008; Seamons et al., 2009) do not provide direct
evidence of interlayer coherence, but nevertheless demon-
strate an upturn in ρD as the temperature is lowered below 1 K.
The upturn is seen only in devices with smaller (20 nm)
interlayer separation suggesting exciton formation.
A microscopic theory of Coulomb drag in proximity to a

phase transition was suggested by Hu (2000b) and Mink et al.
(2012, 2013). As the system approaches the transition temper-
ature Tc from above, the drag resistivity was found to exhibit a
logarithmic divergence

ρD ¼ ρ0 þ A ln½Tc=ðT − TcÞ�; ð141Þ

where ρ0 and A are two fitting parameters (Gamucci et al.,
2014). While qualitatively resembling the upturn observed in
electron-hole bilayers (Croxall et al., 2008; Seamons et al.,
2009), the theory does not account for either a subsequent

downturn at the lowest temperatures or the apparent violation
of Onsager reciprocity (Croxall et al., 2008) [although the
latter might be related to heating effects (Seamons et al.,
2009)]. The theory also does not make falsifiable predictions
regarding the dependence of ρD on carrier densities in the two
layers (Morath et al., 2009) [at higher temperatures, where the
data show the standard T2 dependence, the density depend-
ence of ρD is stronger than expected on the basis of the
Fermi-liquid many-body calculations (Hwang and Das
Sarma, 2008b)].
The logarithmic temperature dependence (141) fits well

with the upturn in the drag resistivity observed by Gamucci
et al. (2014) in hybrid devices comprising either a monolayer
or bilayer graphene sheet and a GaAs quantum well; see
Fig. 35. In fact, the search for exciton physics was one of the
main motivations for experimental studies of Coulomb drag in
double-layer graphene-based structures (Kim et al., 2011;
Gorbachev et al., 2012).
Exciton condensation in graphene has attracted consider-

able theoretical attention (Aleiner, Kharzeev, and Tsvelik,
2007; Kharitonov and Efetov, 2008, 2010; Lozovik and
Sokolik, 2008; Min et al., 2008; Zhang and Joglekar,
2008; Fil and Kravchenko, 2009; Efimkin and Lozovik,
2011; Lozovik, Ogarkov, and Sokolik, 2012; Pikalov and
Fil, 2012; Sodemann, Pesin, and MacDonald, 2012;
Suprunenko, Cheianov, and Fal’ko, 2012; Abergel et al.,
2013). Several contradicting values of the transition temper-
ature in double-layer graphene systems have been reported.
The initial estimate (Zhang and Joglekar, 2008; Mink et al.,
2012) of Tc close to room temperature appeared to be too
optimistic. Screening effects (Kharitonov and Efetov, 2008,
2010) were shown to lead to extremely low values under 1 mk
(Tc ∼ 10−7EF). More recent investigations involving a
detailed analysis of screened Coulomb interaction
(Lozovik, Ogarkov, and Sokolik, 2012; Sodemann, Pesin,
and MacDonald, 2012; Abergel et al., 2013), multiband
pairing (Lozovik, Ogarkov, and Sokolik, 2012; Mink et al.,
2012), and pairing with nonzero momentum (Efimkin and
Lozovik, 2011) suggested somewhat higher values of Tc,
making the transition experimentally accessible.
High-temperature coherence and superfluidity was also

suggested in thin films of topological insulators (Seradjeh,
Moore, and Franz, 2009; Efimkin, Lozovik, and Sokolik,
2012; Mink et al., 2012, 2013).
The effect of exciton condensation on Coulomb drag was

numerically investigated in graphene by Zhang and Jin (2013)
and analytically in topological insulator films by Efimkin and
Lozovik (2013). The latter work focused on the drag effect at
temperatures exceeding Tc, where the pairing fluctuations are
expected to play an important role. In addition to the Maki-
Thompson–type contribution (Hu, 2000b; Mink et al., 2012,
2013) to the drag resistivity, Efimkin and Lozovik (2013)
analyzed the Aslamazov-Larkin–type contribution and found

δρALD ∝ ½lnðT=TcÞ�−1: ð142Þ

Far away from the transition, the result (142) decays loga-
rithmically, similarly to Eq. (141), but close to the transition
exhibits a stronger divergence δρALD ∝ ðT − TcÞ−1.

FIG. 34. Corbino Coulomb drag. Solid lines show the drive and
drag currents. The measurement was performed at νT ¼ 1,
T ¼ 17 mK, and d=l0 ¼ 1.5. Dashed lines represent the results
of simulations incorporating estimated series resistances and
measured Corbino conductivity. The inset shows the measure-
ment schematic. The resistances Ri comprise both external circuit
resistors and the resistances intrinsic to the device. From Nandi
et al., 2012.
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VIII. OPEN QUESTIONS AND PERSPECTIVES

The physics of the Coulomb drag in double-layer systems is
well understood if both layers are in the Fermi-liquid state
(Flensberg et al., 1995; Kamenev and Oreg, 1995). The
current in the passive layer is created by exciting electron-
hole pairs (each pair consisting of an occupied state above the
Fermi surface and an empty state below) in a state charac-
terized by finite momentum. The momentum comes from
the electron-hole excitations in the active layer created by the
driving current. The momentum transfer is due to the
interlayer Coulomb interaction. Therefore it follows from
the usual phase-space considerations that the drag coefficient
is proportional to the square of the temperature ρD ∝ T2.
Remarkably, this simple argument is sufficient to describe the
observed low-temperature dependence of ρD. Deviations from
the quadratic dependence at higher temperatures are primarily
due to the effect of phonons and plasmons (Rojo, 1999).
The universality of the Landau Fermi-liquid theory

(Lifshitz and Pitaevskii, 1981; Altshuler and Aronov, 1985)
can be traced to the linearization of the quasiparticle spectrum.
Within this approximation all details of the microscopic
structure of the system are contained in a limited number
of parameters, such as the Fermi velocity and DOS at the
Fermi level. Many observable quantities (e.g., the electronic
contribution to the specific heat, spin susceptibility, period of
the de Haas–van Alphen oscillations, etc.) can be expressed in
terms of these parameters and thus exhibit the “universal”
behavior (as a function of temperature or external fields). The
same arguments can be applied to elementary excitations in
strongly doped graphene (μ ≫ T), where the Fermi-liquid
theory is expected to be applicable.
Coulomb drag belongs to a different class of observables. In

conventional semiconductor devices, it reflects the degree of
electron-hole asymmetry in the system vanishing in the
approximation of linearized spectrum (Kamenev and Oreg,
1995). The drag coefficient is determined by the subleading
contribution taking into account the curvature of the quasi-
particle spectrum. Indeed, in the passive layer the momentum
is transferred equally to electrons and holes so that the

resulting state can carry current only in the case of electron-
hole asymmetry. Likewise, this asymmetry is necessary for the
current-carrying state in the active layer to be characterized by
nonzero total momentum. The electron-hole asymmetry man-
ifests itself (Narozhny, Aleiner, and Stern, 2001; von Oppen,
Simon, and Stern, 2001) in the energy (or chemical
potential) dependence of such quantities as the density of
states, single-layer conductivity, and diffusion coefficient.
Within the Fermi-liquid theory (Kamenev and Oreg, 1995),
the asymmetry is weak, ∂σi=∂μi ≈ σi=μi, leading to
the drag effect that is much weaker than the single-layer
conductivity.
Coulomb drag in non-Fermi-liquid systems is much more

interesting. In particular, it was used to study novel strongly
correlated, many-body states in double quantum wells
(Eisenstein, 2014), graphene (Gamucci et al., 2014), quantum
wires (Laroche et al., 2014), and optical cavities (Berman,
Kezerashvili, and Kolmakov, 2014), where practical applica-
tions in optical switches have been suggested. In these
systems, drag measurements have proved to be an invaluable
tool to study the microscopic structure of complex, interacting
many-body systems.
At the same time, our understanding of many of these

systems is incomplete. In contrast to the Fermi-liquid theory,
many aspects of the strongly correlated many-body states lack
a detailed theoretical description. Consequently, their trans-
port properties, including Coulomb drag, can be evaluated
only with the help of heuristic or phenomenological models.
One can only hope that a proper microscopic theory of these
effects will eventually be developed.
This brings us to the list of unresolved questions related to

the theory reviewed in this paper and possible direction of the
field in the near future.
(i) At low enough temperatures and especially in strong

magnetic fields, double-layer systems may host excitonic
condensates (Eisenstein, 2014). In monolayer graphene, such
condensation is also possible, but for reasonably weak
interactions the condensation temperature appears to be rather
low (Aleiner, Kharzeev, and Tsvelik, 2007; Kharitonov and
Efetov, 2008; Mink et al., 2012). Nevertheless, a possibility of

FIG. 35. Coulomb drag in a graphene-2DEG vertical heterostructure. Left: Measured drag resistivity. The dashed line represents the
best fit for the standard temperature dependence RD ¼ aT2, a ¼ ð5.8� 0.3Þ × 10−4 ΩK−2. Middle: A fit of the low-T upturn based on
Eq. (141). The critical temperature found from the fit is Tc ∼ 10 − 100 mK. Right: The low-T upturn in a bilayer graphene-2DEG
heterostructure. The fit based on Eq. (141) yields Tc ∼ 190 mK. From Gamucci et al., 2014.
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interlayer correlated states in graphene-based systems [and
possibly in hybrid devices involving other materials (Geim
and Grigorieva, 2013)] is rather exciting and certainly requires
theoretical attention.
(ii) The hydrodynamic approach of Sec. IV.B should be

extended to include thermoelectric effects in graphene-based
double structures as well as in monolayer and bilayer
graphene. As pointed out by Foster and Aleiner (2009) and
Narozhny et al. (2015), the quasiparticle imbalance in
graphene may play a decisive role in thermal transport.
Another promising direction may be opened by generalization
of the macroscopic linear-response equations to a true, non-
linear hydrodynamics. The relation between the quantum
kinetic equation of Zala, Narozhny, and Aleiner (2001) and
the hydrodynamic approach [both in graphene (Narozhny
et al., 2015) and in 2DEG (Andreev, Kivelson, and Spivak,
2011; Apostolov, Levchenko, and Andreev, 2014)] is also of
certain theoretical interest.
(iii) Dirac fermions can be found as low-energy excitations

not only in graphene, but also in topological insulators
(Bernevig and Hughes, 2013; Shen, 2013). An extension of
the present theory of Coulomb drag to various possible system
configurations involving topological insulators and/or hybrid
devices involving topological insulators, graphene, etc.,
appears to be very promising (Mink et al., 2012).
(iv) Novel aspects of Luttinger liquid physics and the role of

equilibration processes on drag can be further explored with
the edge states of quantum Hall systems or topological edge
liquids of the quantum spin Hall effect. Some theoretical
predictions have already been made (Zyuzin and Fiete, 2010)
and recent experimental advances (Roth et al., 2009; Altimiras
et al., 2010; König et al., 2013; Du et al., 2015) bring these
exciting perspectives within reach.
(v) Mesoscopic fluctuations of Coulomb drag in ballistic

samples should be further analyzed on the basis of the
microscopic theory. The theory should be further extended
to the cases of Dirac fermions in graphene and composite
fermions at the half-filled Landau level. Experimental work in
this direction was already initiated by Price, Savchenko, and
Ritchie (2010) and Kim et al. (2011).
(vi) The third-order drag effect (see Sec. IV.F) bears a

certain resemblance to the well-known Altshuler-Aronov
corrections to single-layer conductivity (Altshuler and
Aronov, 1985; Zala, Narozhny, and Aleiner, 2001). Zala,
Narozhny, and Aleiner (2001) showed that the dominant
contribution to conductivity at low (diffusive regime) and
high (ballistic regime) temperatures technically comes from
different diagrams describing conceptually similar, but at the
same time distinct interference processes. Similarly, we expect
that the third-order drag contribution in ballistic regime might
be governed by scattering processes which are distinct from
those considered by Levchenko and Kamenev (2008a).
We close this review by pointing out the surprising richness

of the Coulomb drag problem. The original suggestion of a
way to observe interwell interactions in semiconductor het-
erostructures has developed into a vibrant field of research
where technological advances go hand in hand with theoreti-
cal developments. New experiments with novel materials keep
being devised and stimulate new avenues for theoretical
thinking. We are expecting to see further intriguing

discoveries being made related to frictional drag in the
foreseeable future.
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NOTE ADDED IN PROOF.—After the submission of this
review to the editorial offices, several important develop-
ments occurred.
Drag measurements were performed in the double bilayer

graphene (BLG) structures (Li et al., 2016; Lee et al., 2016).
In contrast to the devices based on monolayer graphene, these
new BLG samples exhibit drag response with an inverse sign
in the regime of low temperatures and intermediate densities.
Careful measurements with BLG devices having different
aspect ratios combined with the new nonlocal method of
reading off drag voltage showed that the observed data cannot
be simply understood using traditional theoretical approaches.
Understanding these results remains a challenge for theorists.
Magnetodrag and Hall drag measurements in these systems
are underway.
Since BLG allows a great degree of tunability of interaction

strength, this platform paves the way for the pursuit of new
emergent phases in strongly interacting bilayers, such as the
elusive exciton condensate. In a parallel development, novel
aspects of Coulomb drag in the electron-hole bilayers specific
to the formation of excitons have been discussed theoretically
by Efimkin and Galitski (2016) in the context of earlier data
on GaAs/GaAlAs quantum wells, and by Mou et al. (2015) in
the context of graphene double layers.
Coulomb drag in one-dimensional electron liquids contin-

ues to attract considerable attention. This particular direction
is primarily driven by theoretical proposals and ideas such as
those discussed by Chou, Levchenko and Foster (2015) and
Dmitriev, Gornyi, and Polyakov (2015). Further experimental
studies in this field are highly desirable to stimulate further
progress. In particular, the recent observation of a helical
Luttinger liquid in the edge channels of an InAs/GaSb
quantum spin Hall insulator (Li et al., 2015) gives hope that
Coulomb drag can be realized in this novel system.
In the context of other nanoscale systems, Coulomb drag

has been measured recently in systems of coupled quantum
dots (Keller et al., 2016) revealing a cotunneling mediated
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drag mechanism. A related theory was reported by Kaasbjerg
and Jauho (2016). Measurements on a system of stacked
graphene quantum dots (Bischoff et al., 2015) exhibited much
richer physics than was previously anticipated (Sánchez et al.,
2010). The observed quantum-mechanical detector backaction
in the regime of strongly correlated transport is yet to be
understood theoretically.
Transport properties of novel materials systems including

topological insulator films (Liu, Liu, and Culcer, 2016) and
phosphorene based double-layer heterostructures (Saberi-
Pouya et al., 2016) have been studied theoretically. The
predicted drag effect in these systems is awaiting its exper-
imental verification.
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