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Recent advances in our understanding of the phase structure and the phase transitions of hadronic
matter in strong magnetic fields B and zero quark chemical potentials μf are reviewed in detail. Many
aspects of QCD are described using low-energy effective theories and models such as the bag model,
the hadron resonance gas model, chiral perturbation theory (χPT), the Nambu–Jona-Lasinio (NJL)
model, the quark-meson (QM) model, and Polyakov-loop extended versions of the NJL and QM
models. Their properties and applications are critically examined. This includes mean-field
calculations as well as approaches beyond the mean-field approximation such as the functional
renormalization group. Renormalization issues are discussed and the influence of the vacuum
fluctuations on the chiral phase transition is pointed out. At T ¼ 0, model calculations and lattice
simulations predict magnetic catalysis: The quark condensate increases as a function of the magnetic
field. This is covered in detail. Recent lattice results for the thermodynamics of non-Abelian gauge
theories with emphasis on SUð2Þc and SUð3Þc are also discussed. In particular, inverse magnetic
catalysis around the transition temperature Tc as a competition between contributions from valence
quarks and sea quarks resulting in a decrease of Tc as a function of B is focused on. Finally, recent
efforts to modify models in order to reproduce the behavior observed on the lattice are discussed.
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I. INTRODUCTION

The phase structure of QCD is usually displayed in a phase
diagram spanned by the temperature T and the baryon
chemical potential μB. The first phase diagram was
conjectured already in the 1970s suggesting a confined low-
temperature phase of hadrons and a deconfined high-
temperature phase of quarks and gluons. Since the appearance
of this phase diagram, large efforts have been made to map it
out in detail. It turns out that the phase diagram of QCD is
surprisingly rich, for example, there may be several color
superconducting phases at low temperature depending on the
baryon chemical potential μB (Alford, Berges, and Rajagopal,
2000; Hsu and Schwetz, 2000; Rajagopal and Wilczek, 2001;
Alford, Schmitt, and Rajagopal, 2008; Fukushima and
Hatsuda, 2011). Furthermore, the phase diagram can be
generalized in a variety of ways. For example, instead of
using a baryon chemical potential μB, i.e., the same chemical
potential for each quark flavor, one can introduce an inde-
pendent chemical potential μf for each flavor. Equivalently
(for two quark flavors), one can use a chemical potential μ ¼
μu þ μd and an isospin chemical potential μI ¼ μu − μd. A
nonzero isospin chemical potential allows for new phases with
pion condensation once it exceeds the pion mass μI ≥ mπ
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(Son and Stephanov, 2001). One can also add one new axis for
each quark mass mf. It turns out that the nature of the chiral
transition depends on the number of flavors and on their
masses (Pisarski and Wilczek, 1984; Stephanov, 2006), and
this information has been conveniently displayed in the so-
called Columbia plot. Finally, there are external parameters,
such as an external magnetic field B, that can be varied and are
of phenomenological interest.
There are at least three areas of high-energy physics where

strong magnetic fields play an important role:
(1) noncentral heavy-ion collisions,
(2) compact stars, and
(3) the early Universe.

In noncentral heavy-ion collisions, very strong and time-
dependent magnetic fields are created. The basic mechanism
is simple. In the center-of-mass frame, the two nuclei
represent electric currents in opposite directions and, accord-
ing to Maxwell’s equations, they produce a magnetic field B.
The magnetic field depends on the energy of the ions, the
impact parameter b, and position as well as time. Detailed
calculations of these magnetic fields depend on a number of
assumptions. For example, it is common to ignore the
contribution to the magnetic field from the particles produced
in the collision as the expansion of these is almost spherical. It
is then sufficient to take into account only the colliding
particles. (Kharzeev, McLerran, and Warringa, 2008). The
strengths of these short-lived fields have been estimated to be
up to the order of B ∼ 1019 G or jqBj ∼ 6m2

π, where q is
the electric charge of the pion (1 T ¼ 104 G and
1 T ¼ 694.44 eV2).
Detailed calculations have been carried out by Kharzeev,

McLerran, and Warringa (2008), Skokov, Illarionov, and
Toneev (2009), and Bzdak and Skokov (2012). The result
of such a calculation is displayed in Fig. 1, where the curves
show the magnetic field as a function of proper time τ for three
different impact parameters.
There is a certain class of neutron stars, called magnetars,

that is characterized by very high magnetic fields and
relatively low rotation frequencies as compared to a typical
neutron star (Duncan and Thompson, 1992). The strengths of
the magnetic fields on the surface of such stars are believed to
be on the order of 1014–1015 G. The magnetic field strength
depends on the density and is highest in the core of the star. In
the interior one expects magnetic fields on the order of
1016–1019 G. This implies that in order to calculate the
mass-radius relation for magnetars, detailed knowledge of
the equation of state of strongly interacting matter in a large
range of magnetic field strengths is required. If the density in
the core of the star is sufficiently large to allow for quark
matter, one must match the equation of state for hadronic
matter to that of deconfined quark matter. The latter may again
be color superconducting and perhaps even inhomogeneous
depending on the values of the relevant parameters (Ferrer, de
la Incera, and Manuel, 2005, 2006; Ferrer and de la Incera,
2007; Noronha and Shovkovy, 2007, 2012; Fukushima and
Warringa, 2008).
The situation is further complicated by the fact that a star is

(globally) electrically neutral as well as the fact that the
magnetic field breaks spherical symmetry. The magnetic field

then gives rise to an anisotropic pressure P whose components
Pij can be expressed in terms of the components of the
energy-momentum tensor T ij that enter on the right-hand side
of Einstein’s field equations (Strickland, Dexheimer, and
Menenez, 2012).
In the absence of a magnetic field, the minimal standard

model has a first-order transition for low Higgs masses mH
(Kajantie et al., 1997). With increasing mH the first-order
transition becomes weaker (Kajantie et al., 1996) and the first-
order line eventually ends at a second-order point for a critical
value mc

H ≈ 72 GeV (Rummukainen et al., 1998). The uni-
versality class of the critical end point is that of the three-
dimensional Ising model. For larger Higgs masses, there is
only a crossover. In the presence of a (hyper)magnetic field,
the transition becomes somewhat stronger (Giovannini and
Shaposhnikov, 1998). Allowing for a primordial hypermag-
netic field of arbitrary magnitude, it is possible that even at the
physical Higgs mass, the electroweak phase transition may be
first order. If the magnetic fields are generated from bubble
collisions during the electroweak transition, they will typically
be of the order of B=T2 ≲ 0.5 (Baym, Bödeker, andMcLerran,
1996), in which case nonperturbative numerical simulations
suggest that the transition is still not first order at the physical
Higgs mass (Kajantie et al., 1999). Moreover, such magnetic
fields could have other implications relevant for baryogenesis,
for instance, through its effect on sphaleron processes (De
Simone et al., 2011). In the minimal supersymmetric standard
model, the transition is stronger than in the standard model,
and even moderate magnetic fields may allow for a first-order
transition at the physical Higgs mass.
There is now a large body of literature on QCD in a

magnetic background and we think that a review on the
subject is timely. In order to restrict the topics covered, we
focus on the phase structure in the B-T plane and the chiral
and deconfinement phase transitions at zero chemical poten-
tials μf ¼ 0. After the submission of our paper, two related
reviews appeared (Kharzeev, 2015; Miransky and Shovkovy,
2015). The first is focusing on heavy-ion collisions and the

FIG. 1. Magnetic field as a function of proper time τ for three
different values of the impact parameter b. From Kharzeev,
McLerran, and Warringa, 2008.
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chiral magnetic effect, while the second has a much broader
scope, ranging from QCD to graphene. The three reviews are
complementary and together they cover many aspects of
matter in magnetic fields.
For the convenience of the reader, we summarize the most

important conclusions:
(•) Magnetic catalysis at T ¼ 0: Model calculations and

lattice simulations predict that the quark condensate is an
increasing function of the magnetic field B. This is
magnetic catalysis.

(•) Vacuum fluctuations: The critical temperature and the
order of the phase depend on how the vacuum fluctua-
tions are treated.

(•) Critical temperature: Naive calculations using chiral
models predict that the critical temperature for the chiral
transition is an increasing function of the magnetic field
B. The deconfinement and chiral transitions split.

(•) Critical temperature: Lattice calculations for three-color
QCD with realistic quark masses predict that the critical
temperature is a decreasing function of the magnetic
field B. This is inverse magnetic catalysis. The critical
temperatures for the deconfinement and chiral transition
are the same.

It is the aim of this review to critically discuss the basis for
these conclusions and provide enough details for the reader to
appreciate the progress that has been made in recent years.
Finally, a word of caution. Writing a review is a challenge in

terms of notation. We have tried to consistently use the same
notation for a given quantity, but once in a while we have
changed the notation so as not to be in conflict with the
notation for other quantities. Hopefully, it is clear from the
context which is which. The review is organized as follows. In
Sec. II, we briefly discuss the solutions to the Dirac equation
in a constant magnetic field and explain that there is no sign
problem in lattice QCD in a finite magnetic field. In Sec. III,
we calculate the one-loop free energy densities for fermions
and bosons in a constant magnetic field using dimensional
regularization and ζ-function regularization. In Sec. IV, we
discuss Schwinger’s classic results for the vacuum energy of
bosons and fermions in a constant magnetic background B. In
Sec. V, we discuss various low-energy models and theories
that are being used to study the behavior of hadronic systems
at finite T and B. These include the Massachusetts Institute of
Technology (MIT) bag model, chiral perturbation theory
(χPT), the Nambu–Jona-Lasinio (NJL) model, the quark-
meson (QM) model, and the hadron resonance gas model.
The Polyakov-loop extended versions of the NJL and QM
models (PNJL and PQM models) are discussed in Sec. VI. In
Sec. VII, we review the functional renormalization group and
its application to hadronic matter at finite B. In Sec. VIII, we
discuss magnetic catalysis at zero temperature and compare
models with Dyson-Schwinger (DS) and lattice calculations.
In Sec. IX, lattice results for SUð3Þc and SUð2Þc at finite
temperature are reviewed, focusing on the mechanisms behind
(inverse) magnetic catalysis. In Sec. X, we analyze recent
efforts to incorporate inverse magnetic catalysis in model
calculations. Finally, in Sec. XI, we conclude and briefly
discuss directions for future studies. The appendixes provide
our conventions and notation, a list of sum integrals needed in

the calculations, series expansions of some special functions,
and some explicit calculations.

II. ENERGY SPECTRA FOR CHARGED
PARTICLES IN A CONSTANT MAGNETIC
FIELD AND THEIR PROPAGATORS

In this section, we briefly discuss the spectra of fermions
and bosons in a constant magnetic background B. We first
consider fermions. The Dirac equation for a single fermion of
mass mf in a background electromagnetic gauge field AEM

μ is
given by

ðiD −mfÞψ ¼ 0; ð1Þ

where D ¼ γμDμ, γμ are the γ matrices in Minkowski space,
Dμ ¼ ∂μ þ iqfAEM

μ is the covariant derivative, and qf is the
electric charge. In the case where the zeroth component of the
gauge field vanishes, AEM

0 ¼ 0, the stationary solutions can be
written as

ψ ¼ e−iEt
�
ϕ

χ

�
; ð2Þ

where ϕ and χ are two-component spinors. Inserting Eq. (2)
into Eq. (1) and using the Dirac representation of the
γ matrices, we obtain the coupled equations

ðE −mfÞϕ ¼ −iðσ · DÞχ; ð3Þ

ðEþmfÞχ ¼ −iðσ · DÞϕ: ð4Þ

Eliminating χ from Eqs. (3) and (4), we find an equation for ϕ:

ðE2 −m2
fÞϕ ¼ −ðσ · DÞ2ϕ: ð5Þ

Specializing to a constant magnetic field, we choose the
Landau gauge AEM

μ ¼ ð0; 0;−Bx; 0Þ.1 Using ðσ ·AÞðσ · BÞ ¼
A ·Bþ iσ · ðA ×BÞ, Eq. (5) becomes

�
E2 −m2

f þ
∂2

∂x2 þ
� ∂
∂y − iqfBx

�
2

þ ∂2

∂z2 þ σzqfB

�
ϕ ¼ 0:

ð6Þ

The solution is now written as ϕ ¼ e−is⊥ðqfBÞpyyþipzzfðxÞ,
where s⊥ðqfBÞ ¼ signðqfBÞ. The equation for fðxÞ then
becomes

�
−

d2

dx2
þðs⊥pyþqfBxÞ2−σzqfB

�
fðxÞ¼ ½E2−m2

f−p2
z �fðxÞ:

ð7Þ

This is a 2 × 2 matrix equation. However, the two equations
decouple and the solutions can then be written as

1Another common choice is the symmetric gauge AEM
μ ¼

1
2
ð0; By;−Bx; 0Þ.
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fðxÞ ¼
�
fþðxÞ
0

�
and fðxÞ ¼

�
0

f−ðxÞ

�
; ð8Þ

where the subscripts � indicate that the solutions are
eigenvectors of σz with eigenvalues �1, respectively. The
equation for f�ðxÞ finally becomes

�
−

d2

dx2
þ ðs⊥py þ qfBxÞ2

�
f�ðxÞ

¼ ½E2 −m2
f − p2

z � qfB�f�ðxÞ: ð9Þ

This is the equation for a harmonic oscillator with known
solutions involving the Hermite polynomials HkðxÞ. The
solutions are

ϕ ¼ ce−ð1=2Þðx=lþpylÞ2Hk

�
x
l
þ pyl

�
× e−is⊥pyyþipzz; ð10Þ

where c is a normalization constant and l ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffijqfBj

p
. The

spectrum is

E2
k ¼ m2

f þ p2
z þ jqfBjð2kþ 1 − sÞ; ð11Þ

where k ¼ 0; 1; 2;…, and s ¼ �1. The state with the lowest
energy has k ¼ 0 and s ¼ 1 and is nondegenerate. All other
states have a twofold degeneracy. Moreover, the energy is
independent of py and the energy levels are therefore
degenerate in this variable. The degeneracy is associated with
the position of the center of the Landau levels. Assume that we
use a quantization volume V ¼ L3, where L is the length of
the side of the box. Since the characteristic size of a Landau
level is 1=

ffiffiffiffiffiffiffiffiffiffiffijqfBj
p

, the degeneracy N associated with the
quantum number py is N ¼ ðjqfBj=2πÞL2. The sum over

states in the quantization volume V is then given by a sum over
spin s, Landau levels k, and the z component of the
momentum pz multiplied by N:

1

V

jqfBj
2π

L2
X
s¼�1

X∞
k¼0

X
pz

: ð12Þ

In the thermodynamic limit, the sum over pz is replaced by an
integral such that the expression in Eq. (12) is replaced by

jqfBj
2π

X
s¼�1

X∞
k¼0

Z
∞

−∞

dpz

2π
: ð13Þ

In the thermodynamic limit and for B ¼ 0, the sum over three-
momenta p is replaced by an integral in the usual way

1

V

X
p

→
Z

d3p
ð2πÞ3 : ð14Þ

Once we found a complete set of eigenstates, we can calculate
the fermion propagator. We then need the expression for the
two-component spinor χ as well. The fermion propagator at
T ¼ 0 for a fermion with electric charge qf in Minkowski
space is given by (Shovkovy, 2013)

Sðx; x0Þ ¼ eiΦðx⊥;x0⊥Þ
Z

d4p
ð2πÞ4 e

−ipðx−x0Þ ~Sðp0; p3;p⊥Þ; ð15Þ

where x ¼ ðt;xÞ ¼ ðt; x1; x2; x3Þ, x⊥ ¼ ðx1; x2Þ, p ¼
ðp0;pÞ ¼ ðp0; p1; p2; p3Þ, p⊥ ¼ ðp1; p2Þ, and with
Φðx⊥;x0⊥Þ and ~SðpÞ given by

Φðx⊥;x0⊥Þ ¼ s⊥
ðx1 þ x01Þðx2 − x02Þ

2l2
; ð16Þ

~Sðp0; p3;p⊥Þ ¼
Z

∞

0

ds exp

�
is½p2

∥ −m2
f� − i

p2⊥
jqfBj

tan ðjqfBjsÞ
�

× f½γ0p0 − γ · pþmþ ðp1γ2 − p2γ1Þ tanðqfBsÞ�½1 − γ1γ2 tanðqfBsÞ�g; ð17Þ

where γ⊥ ¼ ðγ1; γ2Þ and p∥ ¼ ðp0; p3Þ. The prefactor Φðx⊥; x0⊥Þ is the so-called Schwinger phase and the term ~Sðp0; p3;p⊥Þ is
translationally invariant. The translationally invariant part can be decomposed into contributions from the different Landau levels

~Sðp0; p3;p⊥Þ ¼ ie−p
2⊥=jqfBj

X∞
k¼0

ð−1ÞkDkðp0; p3;p⊥Þ
p2
∥ −m2

f − 2jqfBjk
; ð18Þ

where

Dkðp0; p3;p⊥Þ ¼ ðγ0p0 − γ3p3 þmÞ
�
ð1þ is⊥γ1γ2ÞLk

�
2

p2⊥
jqfBj

�

− ð1 − is⊥γ1γ2ÞLk−1

�
2

p2⊥
jqfBj

��
þ 4ðγ⊥ · p⊥ÞL1

k−1

�
2

p2⊥
jqfBj

�
; ð19Þ

and La
kðxÞ are the generalized Laguerre polynomials. Note that La

−1ðxÞ ¼ 0.
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The spectrum for bosons with mass m and charge q can be
found using the same techniques. In this case, the differential
operator does not involve the term jqfBjσz and so the resulting
eigenvalue equation is easier to solve. The spectrum is
obtained immediately by setting s ¼ 0:

E2
k ¼ m2 þ p2

z þ jqBjð2kþ 1Þ; ð20Þ

where k ¼ 0; 1; 2;…. The eigenfunctions are again given by
Eq. (10). Once we have a complete set of eigenfunctions, we
can derive the propagator. We derive the bosonic propagator in
Appendix D and at T ¼ 0; it reads

Δðx; x0Þ ¼ eiΦðx⊥;x0⊥Þ
Z

d4p
ð2πÞ4 e

−ipðx−yÞΔðp⊥; p∥Þ; ð21Þ

where the translationally invariant part is

Δðp∥; p⊥Þ ¼
Z

∞

0

ds
cosðjqBjsÞ

× exp

�
is½p2

∥ −m2� − ip2⊥
tanðjqBjsÞ

jqBj
�
: ð22Þ

We close this section with briefly commenting on the sign
problem of QCD. It is straightforward to show that there is no
sign problem in QCD in an external Abelian gauge field AEM

μ .
In order to show this, we go to Euclidean space. The partition
function of QCD can be written as

Z ¼
Z

Dψ̄DψDAμe
−
R

β

0
dτ
R

d3xψ̄ ½ðDþmfÞ�ψe−Sg

¼
Z

DAμe−Sg detðDþmfÞ; ð23Þ

where β ¼ 1=T, the covariant derivative is
Dμ ¼ ∂μ − iqfAEM

μ − iAμ, Aμ ¼ Aa
μTa, and Ta are the gen-

erators of SU(3). Sg is the Euclidean action for the gluons,

Sg ¼
1

2g2

Z
β

0

dτ
Z

d3xTr½GμνGμν�; ð24Þ

where g is the non-Abelian coupling and Gμν is the field
strength tensor. Sg > 0 and the exponent can be regarded as a
positive probability weight. We also have to check the sign of
the fermion determinant. It is convenient to use the chiral
representation of the γ matrices. The matrix D can then be
written as

D ¼
�

0 iX

iX† 0

�
; ð25Þ

where iX ¼ D0 þ iσ · D. The fermion determinant then takes
the form

detðDþmfÞ ¼ det ½X†X þm2
f�; ð26Þ

which shows that it is manifestly positive. QCD in a magnetic
field is therefore free of the sign problem and one

can use standard lattice techniques based on importance
sampling.

III. ONE-LOOP FREE ENERGY DENSITIES

In this review, we are often concerned with Euclidean
Lagrangian densities of the form

L ¼ ψ̄fγμDμψf þmfψ̄fψf þ ðDμΦiÞ†ðDμΦiÞ
þm2Φ†Φþ Lint; ð27Þ

where ψf is a fermion field of flavor f and Φi are complex
scalar fields ði ¼ 1; 2;…; NÞ. Unless otherwise stated, we
consider two flavors, Nf ¼ 2 and f ¼ u; d. Moreover, Dμ ¼
∂μ − iqAEM

μ is the covariant derivative for bosons and Dμ ¼
∂μ − iqfAEM

μ is the covariant derivative for fermions. Here
q ¼ �e is the electric charge for the charged scalars, and qu ¼
2=3e and qd ¼ −1=3e are the electric charges for u quarks and
d-quarks, respectively. m and mf are the tree-level masses of
the bosons and fermions. Lint is the interacting part of the
Lagrangian. It may contain bosonic and fermionic four-point
interactions as well as Yukawa-type couplings between
bosons and fermions.
In the functional approach to the imaginary-time formalism,

the partition function Z is given by a path integral

Z ¼
Z

DΦ†DΦDψ̄Dψe−S; ð28Þ

where the Euclidean action is given by

S ¼
Z

β

0

dτ
Z

ddxL; ð29Þ

and d is the number of spatial dimensions. In many cases, we
approximate the free energy density F ¼ −ðT=VÞ logZ
(where V is the spatial volume) of the system by a one-loop
calculation. We therefore need to perform Gaussian integrals
over bosonic or fermionic fields. These are given by the
standard expressions. The one-loop free energy density F 1 for
a boson is

F 1 ¼
1

2

1

βV
Tr lnD−1

0 ; ð30Þ

and for a fermion

F 1 ¼ −
1

βV
Tr lnD−1

0 ; ð31Þ

whereD−1
0 is the free inverse propagator. Here the trace is over

spacetime, field indices, and Dirac indices in the case of
fermions. These expressions are general as they apply whether
or not the particle couples to an external magnetic field. Of
course, the explicit expressions after evaluating the traces and
making the substitutions (13) or (14) are different. For
example, the one-loop free energy density for a neutral boson
with mass m reads
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F 1 ¼
1

2

XZ
P

ln½P2
0 þ p2 þm2�; ð32Þ

where the sum integral is defined in Eq. (B1) and involves a
sum over Matsubara frequencies P0 and an integral over three-
momenta p. The explicit expression for this sum integral as
well as others needed is listed in Appendix B. The one-loop
free energy density for a boson with electric charge q and for a
fermion with electric charge qf as a function of B are given by
the sum integrals

F 1 ¼
1

2

XZB
P

ln½P2
0 þ p2

z þm2 þ jqBjð2kþ 1Þ�; ð33Þ

F 1 ¼ −
XZB
fPg

ln½P2
0 þ p2

z þm2
f þ jqfBjð2kþ 1 − sÞ�; ð34Þ

where the sum integrals are defined in Eqs. (B4) and (B5) and
involve a sum over spin s, Landau levels k, and Matsubara
frequencies P0, as well as an integral over pz. We next evaluate
the sum integral (34) in some detail. We first sum over the
Matsubara frequencies using Eq. (B19). This yields

F 1 ¼ −
jqfBj
2π

×
X
s¼�1

X∞
k¼0

Z
pz

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þM2

B

q
þ 2T ln ½1þ e−β

ffiffiffiffiffiffiffiffiffiffiffi
p2
zþM2

B

p
�
�
;

ð35Þ

whereM2
B ¼ m2

f þ jqfBjð2kþ 1 − sÞ. Let us first consider the
temperature-independent term. Using dimensional regulariza-
tion in d − 2 ¼ 1 − 2ϵ dimensions to regulate the ultraviolet
divergences, we obtain

Z
pz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þM2

B

q
¼ −

M2
B

4π

�
eγEΛ2

M2
B

�
ϵ

Γð−1þ ϵÞ; ð36Þ

where Λ is the renormalization scale associated with the
modified minimal subtraction scheme (MS). The sum over
Landau levels k involves the term M2−2ϵ

B and is divergent for
ϵ ¼ 0. We will regularize the sum using ζ-function

regularization. The sum over spin s and Landau levels k can
then be written as

X
s¼�1

X∞
k¼0

M2−2ϵ
B ¼ 2ð2jqfBjÞ1−ϵ

X∞
k¼0

�
kþ m2

f

2jqfBj
�1−ϵ

−m2−2ϵ
f

¼ 2ð2jqfBjÞ1−ϵζð−1þ ϵ; xfÞ −m2−2ϵ
f ; ð37Þ

where we defined xf ¼ m2
f=2jqfBj and the Hurwitz ζ function

ζðs; qÞ is defined by

ζðs; qÞ ¼
X∞
k¼0

ðqþ kÞ−s: ð38Þ

Inserting Eq. (37) into Eq. (35), the temperature-independent
part of the free energy density F T¼0

1 becomes

F T¼0
1 ¼8ðqfBÞ2

ð4πÞ2
�
eγEΛ2

2jqfBj
�

ϵ

Γð−1þϵÞ
�
ζð−1þϵ;xfÞ−

1

2
x1−ϵf

�
:

ð39Þ

Expanding Eq. (39) in powers of ϵ through order ϵ0 gives

F T¼0
1 ¼ 1

ð4πÞ2
�

Λ2

2jqfBj
�

ϵ
��

2ðqfBÞ2
3

þm4
f

��
1

ϵ
þ 1

�

− 8ðqfBÞ2ζð1;0Þð−1; xfÞ − 2jqfBjm2
f ln xf þOðϵÞ

�
;

ð40Þ

where we defined

ζð1;0Þð−a; xÞ ¼ ∂ζð−aþ ϵ; xÞ
∂ϵ

				
ϵ¼0

: ð41Þ

Equation (40) has simple poles in ϵ. One of the divergences is
proportional to ðqfBÞ2 while the other is proportional to m4

f.
Later we show how one can eliminate these divergences by
renormalization.
The temperature-dependent part of the free energy density

F T
1 in Eq. (35) can be integrated by parts and this gives

F T
1 ¼ −

jqfBj
π

T
X
s¼�1

X∞
k¼0

Z
pz

ln ½1þ e−β
ffiffiffiffiffiffiffiffiffiffiffi
p2
zþM2

B

p
�

¼ −
8jqfBj
ð4πÞ2 ðeγEΛ2Þϵ Γð1

2
Þ

Γð3
2
− ϵÞ

X
s¼�1

X∞
k¼0

Z
∞

0

p2−2ϵ
z dpzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þM2

B

p 1

eβ
ffiffiffiffiffiffiffiffiffiffiffi
p2
zþM2

B

p
þ 1

:

¼ −
2

ð4πÞ2
�

Λ2

2jqfBj
�

ϵ

KB
0 ðβmfÞjqfBjT2; ð42Þ

where KB
0 ðβmfÞ is defined in Eq. (B18). The sum of

Eqs. (40) and (42) is then Eq. (B10). The other sum
integrals needed can be calculated using the same tech-
niques. They are listed in Appendix B.

We close this section with some comments on regulators.
By changing variables p2⊥ ¼ 2kjqfBj, summing over s,
and taking the limit B → 0 in Eq. (35), the first term
reduces to

Andersen, Naylor, and Tranberg: Phase diagram of QCD in a magnetic field

Rev. Mod. Phys., Vol. 88, No. 2, April–June 2016 025001-6



F T¼0
1 ¼ −2

Z
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

f

q
; ð43Þ

where p2 ¼ p2⊥ þ p2
z . Using dimensional regularization, this

becomes

F T¼0
1 ¼ 1

ð4πÞ2
�
Λ2

m2
f

�
ϵ
��

1

ϵ
þ 3

2

�
m4

f þOðϵÞ
�
: ð44Þ

This is the same result one finds if one takes the limit B → 0 in
Eq. (40) and uses the large-xf expansion of ζð1;0Þð−1; xfÞ
given by Eq. (C5). Using a sharp three-dimensional cutoff Λ,
one obtains

F T¼0 ¼
1

ð4πÞ2
�
−2Λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þm2

f

q
ð2Λ2 þm2

fÞ

þ 2m4
f ln

�
Λ
mf

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ2

m2
f

s ��
: ð45Þ

If the starting point is the expression for the free energy
density as a four-dimensional Euclidean integral, one finds by
imposing a four-dimensional cutoff Λ (Ebert and Klimenko,
1999)

F T¼0 ¼−2
Z

d4p
ð2πÞ4 ln ½p

2þm2
f�

¼ 1

ð4πÞ2
�
−Λ4 ln

�
1þm2

f

Λ2

�
−Λ2m2

fþm4
f ln

�
1þΛ2

m2
f

��
;

ð46Þ

where we subtracted the value of the integral at mf ¼ 0.
Notice that the coefficient of the logarithmic term is inde-
pendent of the regulator, while the power divergences (for
Λ → ∞) depend on the regulator. In particular, they are all set
to zero in dimensional regularization while the logarithimic
divergence in the cutoff scheme corresponds to a pole in ϵ in
dimensional regularization.

IV. SCHWINGER’S RESULTS

In this section, we rederive Schwinger’s classic results
(Schwinger, 1951) for the vacuum energy of a boson and a
fermion in a constant magnetic field B. In the original
derivation, the results were given for an arbitrary constant
electromagnetic field. Not only is the calculation useful to see
the connection with the derivation in Sec. III, but the one-loop
expression for the vacuum energy also takes a form such that it
is straightforward to use a simple ultraviolet cutoff Λ instead
of dimensional regularization and ζ-function regularization.
This will be useful when we consider Nambu–Jona-Lasinio
models in which the ultraviolet divergences often are regu-
lated by a simple UV cutoff.
The starting point is the zero-temperature expression for the

one-loop free energy density for a charged boson with massm
and charge q, and its antiparticle with mass m and charge −q.
In the limit T → 0, the sum over Matsubara frequencies
approaches an integral over the continuous variable p0.
The free energy density reads

F 1 ¼
jqBj
2π

X∞
k¼0

Z
∞

−∞

dp0

2π

Z
pz

ln ½p2
0 þ p2

z þM2
B�; ð47Þ

where M2
B ¼ m2 þ jqBjð2kþ 1Þ. The derivative of F 1 with

respect to m2 is

∂F 1

∂m2
¼ jqBj

2π

X∞
k¼0

Z
∞

−∞

dp0

2π

Z
pz

1

p2
0 þ p2

z þM2
B
: ð48Þ

Theeffective propagator inmomentumspace1=ðp2
0þp2

zþM2
BÞ

has the integral representation

1

p2
0 þ p2

z þM2
B
¼
Z

∞

0

e−sðp
2
0
þp2

zþM2
BÞds: ð49Þ

Inserting Eq. (49) into Eq. (48), we obtain

∂F 1

∂m2
¼ jqBj

2π

X∞
k¼0

Z
∞

−∞

dp0

2π

×
Z
pz

Z
∞

0

e−sðp
2
0
þp2

zþM2
BÞds: ð50Þ

The integral overpz is finite for ϵ ¼ 0 and after integration over
pz and p0, Eq. (50) reduces to

∂F 1

∂m2
¼ 2jqBj

ð4πÞ2
X∞
k¼0

Z
∞

0

e−sM
2
B

s
ds: ð51Þ

Likewise, the sum over Landau levels is convergent and after
summation over k, Eq. (51) reduces to

∂F 1

∂m2
¼ 1

ð4πÞ2
Z

∞

0

ds
s2

e−sm
2 jqBjs
sinhðjqBjsÞ : ð52Þ

Finally integrating overm2, we obtain the one-loop free energy
density

F 1 ¼ −
1

ð4πÞ2
Z

∞

0

ds
s3

e−sm
2 jqBjs
sinhðjqBjsÞ ; ð53Þ

where the constant of integration has been set to zero. The result,
Eq. (53), is divergent at s ¼ 0. Since s has mass dimension −2,
this corresponds to an ultraviolet divergence in momentum
space. It is therefore convenient to organize the result by adding
and subtracting divergent terms to Eq. (53), writing it as

F 0þ1 ¼
1

2
B2 þ ðqBÞ2

6ð4πÞ2
Z

∞

0

ds
s
e−sm

2 −
1

ð4πÞ2
Z

∞

0

ds
s3

e−sm
2

−
1

ð4πÞ2
Z

∞

0

ds
s3

e−sm
2

� jqBjs
sinhðjqBjsÞ − 1þ ðqBsÞ2

6

�
;

ð54Þ

where we added the tree-level term 1
2
B2. The first and second

integrals are divergent at s ¼ 0, while the third integral is finite.
The divergent integrals are regulated by introducing an ultra-
violet cutoffΛ via s ¼ 1=Λ2 and evaluating Eq. (54), we obtain
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F 0þ1 ¼
1

2
B2

�
1þ q2

3ð4πÞ2
�
ln
Λ2

m2
− γE

��
−

1

2ð4πÞ2
�
Λ4 − 2Λ2m2 þm4

�
ln
Λ2

m2
− γE þ 3

2

��

þ 4ðqBÞ2
ð4πÞ2

�
ζð1;0Þ

�
−1;

1

2
þ x

�
þ 1

4
x2 −

1

2
x2 ln xþ 1

24
ln xþ 1

24

�
; ð55Þ

where x ¼ m2=2jqBj. In most applications, one omits the Λ4 term as it is independent of m and B.
For fermions with mass mf and electric charge qf, one obtains in a similar manner the result

F 0þ1 ¼
1

2
B2 þ 2ðqfBÞ2

3ð4πÞ2
Z

∞

0

ds
s
e−sm

2
f þ 2

ð4πÞ2
Z

∞

0

ds
s3

e−sm
2
f þ 2

ð4πÞ2
Z

∞

0

ds
s3

e−sm
2
f

�
jqfBjs cothðjqfBjsÞ − 1 −

1

3
ðqfBsÞ2

�

¼ 1

2
B2

�
1þ 4q2f

3ð4πÞ2
�
ln

Λ2

m2
f

− γE

��
þ 1

ð4πÞ2
�
Λ4 − 2Λ2m2

f þm4
f

�
ln

Λ2

m2
f

− γE þ 3

2

��

−
8ðqfBÞ2
ð4πÞ2

�
ζð1;0Þð−1; xfÞ þ

1

4
x2f −

1

2
x2f ln xf þ

1

2
xf ln xf −

1

12
ln xf −

1

12

�
: ð56Þ

We end this section by noting that there is an alternative
way of regularizing the divergent integrals over s. Instead
of performing these integrals in one dimension, we use
dimensional regularization. For example, the second in-
tegral in Eq. (54) is replaced by

ðeγEΛ2Þϵ
ð4πÞ2

Z
∞

0

ds
s3−ϵ

e−sm
2 ¼ m4

ð4πÞ2
�
eγEΛ2

m2

�
ϵ

Γð−2þϵÞ

¼ m4

2ð4πÞ2
�
1

ϵ
þ3

2
þ ln

�
Λ2

m2

�
þOðϵÞ

�
:

ð57Þ

With the extra factor of eγEϵ, the result (57) is identical to
that obtained in the MS scheme; cf. Eq. (B7).

V. EFFECTIVE THEORIES AND MODELS

A. MIT bag model

The MIT bag model was introduced in the 1970s as a simple
phenomenological model for the confinement of quarks inside
hadrons (Chodos et al., 1974). The quarks are confined to a
spherical cavity by requiring that the quark vector current
vanishes on the boundary. The quarks inside the bag are
considered noninteracting which is justified by appealing to
the asymptotic freedom of QCD. The idea is that the vacuum
energy density of the perturbative vacuum inside the bag is
larger than that of the nonperturbative vacuum outside the bag.
This difference is denoted by B, the bag constant. Equivalently,
the vacuum pressure inside the bag is smaller than that outside
the bag and the radius R of a hadron is (heuristically) given by
the balance between this difference and the pressure generated
by the quarks inside the bag. The bag constant B can be
estimated as follows (Johnson, 1975). The pressure generated
by the quarks inside a spherical cavity is, by the uncertainty
relation, on the order of 1=R. Balancing this contribution and
that from the bag, which is on the order of R3, one finds a
relation between the mass and the radius of a hadron.
Minimizing the total mass with respect to R gives R ∼ B−1=4

and using the mass of a proton gives a bag constant on the order
of ð100 MeVÞ4. In the actual bag-model calculations discussed
later, only the bag constant B is needed, while all the
complications due to the boundary conditions do not enter.
Chakrabarty (1996) was the first to discuss the MIT bag

model in a magnetic field in the context of compact stars and
the stability of strange quark matter. More recently, the
deconfinement transition was investigated using the bag
model (Fraga and Palhares, 2012).
One can investigate the phase structure of QCD by

calculating the pressure in the hadronic phase as well as in
the deconfined phase as a function of temperature, particle
masses, and magnetic field B. The phase with the larger
pressure wins and the transition takes place when the pressure
in the two phases is equal. Note there is no order parameter for
the deconfinement transition in the bag model. This is different
from the chiral models we discuss later, such as the Polyakov-
loop extended Nambu–Jona-Lasinio model and the Polyakov-
loop extended quark-meson model. In these models, we
analyze the behavior of the Polyakov-loop variable which is
an order parameter for confinement in pure-glue QCD and an
approximate order parameter in QCD with dynamical quarks
(Yaffe and Svetitsky, 1982a, 1982b).
The free energy density of the hadronic phase is approxi-

mated by that of an ideal gas of massive pions and reads

FHHG ¼ 1

2
B2 þ 1

2

XZ
P

ln ½P2 þm2
π�

þ
XZB
P

ln ½P2
0 þ p2

z þM2
B�; ð58Þ

where the subscript HHGmeans hot hadron gas. The first term
is the tree-level contribution from the constant magnetic field
and the second term is from the neutral pions that do not
couple to the magnetic field. The third term is the contribution
from the charged pions. This expression is the same as
obtained from a one-loop approximation to the free energy
density in chiral perturbation theory. We discuss χPT later.
Using the expressions for the bosonic sum integrals given

by Eqs. (B7) and (B8), Eq. (58) can be written as
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FHHG¼
1

2
B2þ 1

2ð4πÞ2
�

Λ2

j2qBj
�

ϵ
��ðqBÞ2

3
−m4

π

��
1

ϵ
þ1

�

þ8ðqBÞ2ζð1;0Þ
�
−1;

1

2
þx

�
−2JB0 ðβmπÞjqBjT2

�

−
1

4ð4πÞ2
�
Λ2

m2
π

�
ϵ
�
m4

π

�
1

ϵ
þ3

2

�
þ2J0ðβmπÞT4

�
; ð59Þ

where the thermal integrals JnðβmÞ and JBn ðβmÞ are defined in
Appendix B. The first divergence is proportional to ðqBÞ2
which is removed by wave-function renormalization of the
term ð1=2ÞB2 in Eq. (59). This is done by making the
replacement B2 → Z2B2, where Z is the wave-function
renormalization term. The second divergence, which is
proportional to m4

π , can be removed by adding an appropri-
ately chosen vacuum counterterm ΔE to the free energy
density. The counterterms are given by

Z2 ¼ 1 −
q2

3ð4πÞ2ϵ ; ΔE ¼ 3m4
π

4ð4πÞ2ϵ : ð60Þ

After renormalization, the free energy density of the hot
hadronic gas is

FHHG ¼ 1

2
B2

�
1þ q2

3ð4πÞ2 ln
Λ2

2jqBj
�
−

3m4
π

4ð4πÞ2
�
ln
Λ2

m2
π
þ 3

2

�

þ 4ðqBÞ2
ð4πÞ2

�
ζð1;0Þ

�
−1;

1

2
þ x

�

þ 1

4
x2 −

1

2
x2 ln xþ 1

24

�
−

1

2ð4πÞ2 ½J0ðβmπÞT4

þ 2JB0 ðβmπÞjqBjT2�: ð61Þ
Note that here, and in the following, the thermal integrals
JnðβmÞ, JBn ðβmÞ, KnðβmÞ, and KB

n ðβmÞ are always evaluated
at ϵ ¼ 0whenever they appear in renormalized expressions for
the free energy density and other physical quantities.

The free energy density in the quark-gluon plasma (QGP)
phase is

FQGP ¼ 1

2
B2 þ ðN2

c − 1Þ
XZ
P

lnðP2Þ

− Nc

X
f

XZB
fPg

ln ½P2
0 þ p2

z þM2
B� þ B; ð62Þ

where the first term is from the constant magnetic field, the
second term is from the gluons, the third term is from the
quarks, and the last term B is the bag constant. This term
represents the difference in the vacuum energy between the
two phases. Using the expressions for the bosonic and
fermionic sum integrals Eqs. (B7) and (B10), we find

FQGP ¼ −ðN2
c − 1Þ π

2T4

45
þ 1

2
B2 þ Nc

ð4πÞ2
�

Λ2

j2qfBj
�

ϵ

×
X
f

��
2ðqfBÞ2

3
þm4

f

��
1

ϵ
þ 1

�

− 8ðqfBÞ2ζð1;0Þð−1; xfÞ − 2jqfBjm2
f ln xf

− 2KB
0 ðβmfÞjqfBjT2

�
þ B: ð63Þ

Again, the ultraviolet divergences are removed by wave-
function renormalization and by adding a vacuum counter-
term. This amounts to the substitutions B2 → Z2B2 and
B → B þ ΔB, where

Z2 ¼ 1 − Nc

X
f

4q2f
3ð4πÞ2ϵ ; ΔB ¼ −Nc

X
f

m4
f

ð4πÞ2ϵ : ð64Þ

The renormalized free energy density in the quark-gluon
plasma phase then reduces to

FQGP ¼ −ðN2
c − 1Þ π

2T4

45
þ 1

2
B2

�
1þ Nc

X
f

4q2f
3ð4πÞ2 ln

Λ2

j2qfBj
�
þ Nc

ð4πÞ2
X
f

m4
f

�
ln

Λ2

m2
f

þ 3

2

�

−
8Nc

ð4πÞ2
X
f

ðqfBÞ2
�
ζð1;0Þð−1; xfÞ þ

1

4
x2f −

1

2
x2f ln xf þ

1

2
xf ln xf −

1

12

�
−

2Nc

ð4πÞ2
X
f

KB
0 ðβmfÞjqfBjT2 þ B: ð65Þ

Fraga and Palhares (2012) took a slightly different approach to the renormalization of the MIT bag model than the one
presented so far. The divergent terms ðqBÞ2=ϵ and ðqfBÞ2=ϵ in the two phases remain after the subtraction of the vacuum energy
at T ¼ B ¼ 0. These divergences can be removed as done previously, but leave us with some finite terms. They argued that the
finite terms proportional to ðqBÞ2 and ðqfBÞ2 must be subtracted in an ad hoc fashion since the charges that generate the magnetic
field are not included in the description. They therefore subtract all mass-independent terms that are proportional to ðqBÞ2 or
ðqfBÞ2, which leads to free energy densities in the two phases

FHHG ¼ 4ðqBÞ2
ð4πÞ2

�
ζð1;0Þ

�
−1;

1

2
þ x

�
− ζð1;0Þ

�
−1;

1

2

�
þ 1

4
x2 −

1

2
x2 ln x

�
−

1

2ð4πÞ2 ½J0ðβmπÞT4 þ 2JB0 ðβmπÞjqBjT2�; ð66Þ

FQGP ¼ −ðN2
c − 1Þ π

2T4

45
−

8Nc

ð4πÞ2
X
f

ðqfBÞ2
�
ζð1;0Þð−1; xfÞ − ζð1;0Þð−1; 0Þ þ 1

4
x2f −

1

2
x2f ln xf þ

1

2
xf ln xf

�

−
2Nc

ð4πÞ2
X
f

KB
0 ðβmfÞjqfBjT2 þ B: ð67Þ
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In Fig. 2 we show the critical temperature Tc for the phase
transition as a function of jqBj=m2

π for Nc ¼ 3 and Nf ¼ 2.
We used mπ ¼ 140 MeV, mu ¼ md ¼ 5 MeV, as well as
Λ ¼ 600 MeV, and B ¼ ð200 MeVÞ4. The black (bottom)
curve is with the B ¼ 0 vacuum fluctuations and the blue (top)
curve is where the B ¼ 0 vacuum fluctuations have been
subtracted. Clearly the figure demonstrates the importance of
how one treats the vacuum fluctuations in the model. In both
cases, we have an effective B-dependent bag constant, which
can be easily found by absorbing all the T ¼ 0 terms into B.
The value we used for the renormalization scale is that of a
typical UV cutoff in the NJL model. Since there are logarithms
of ratios of several scales, not all logarithms can be made small
at the same time. Moreover, it is not obvious that one should
choose the same scale in the two phases. Our point is to
demonstrate how sensitive the results are to the inclusion of
the vacuum fluctuations.
We close this section by mentioning two related calcula-

tions (Agasian and Fedorov, 2008; Orlovsky and Simonov,
2014). Instead of a bag constant, the pressure contains another
constant term arising from the gluonic condensate. The energy
density term in the hadrodnic phase is of the form

Evac ¼ −
b

8ð4πÞ2 hG
2i; ð68Þ

where b ¼ ð11Nc − 2NfÞ=3 and G2 ¼ ðgsGa
μνÞ2. At temper-

atures around the transition temperature, the condensate is
approximately half the value at T ¼ 0. Lattice calculations at
zero magnetic field give the value hG2i ¼ ð0.87 GeVÞ4 and a
critical temperature of 177 MeV. Agasian and Fedorov (2008)
showed that the critical temperature as well as the latent heat
decreases as functions of the magnetic field B. The deconfine-
ment transition is first order as defined by a nonzero latent heat
between the two phases for magnetic fields smaller thanffiffiffiffiffiffiffiffiffijqBjp

∼ 600 MeV. The transition is a crossover for magnetic
fields larger than this value.
As pointed out by Orlovsky and Simonov (2014), the

masses of the pions are strongly dependent on the magnetic
field and should be taken into account. Similarly, the vacuum
energy density (68) also depends on B (Ozaki, 2014). This
calls for a more systematic study at finite magnetic field.

B. Chiral perturbation theory

Chiral perturbation theory is an effective low-energy theory
for QCD in the hadronic phase (Weinberg, 1979; Gasser and
Leutwyler, 1984, 1985). It is a model-independent framework
in the sense that it depends only on the symmetries of QCD,
the symmetry breaking pattern of QCD in the vacuum, and the
relevant degrees of freedom. At sufficiently low energy or
temperature, only the pseudo-Goldstone bosons are relevant
degrees of freedom, although other degrees of freedom can be
systematically added. In massless QCD with Nf flavors, the
chiral Lagrangian has a global SUðNfÞL × SUðNfÞR sym-
metry describing N2

f − 1 massless excitations. If the quarks
have equal masses, this symmetry is explicitly broken to
SUðNfÞV . Explicit symmetry breaking in the chiral
Lagrangian can be systematically included by adding terms
to the Lagrangian that respect the SUðNfÞV symmetry.
In QCD, when one couples the quarks to an electromagnetic

field, the flavor symmetry is broken. One can no longer freely
transform a u quark into a d quark or an s quark. For massless
QCD with Nf ¼ 2, the SUð2ÞL × SUð2ÞR symmetry is broken
down to Uð1ÞV × Uð1ÞA by electromagnetic interactions. The
Uð1ÞV symmetry corresponds to the invariance under a rotation
of a u quark by an angle α, u → eiαu, and a rotation of a d quark
by the opposite angle d → e−iαd. The Uð1ÞA symmetry corre-
sponds to the invariance under chiral rotations u → eiγ5αu
and d → e−iγ5αd.
Chiral perturbation theory is not an expansion in some

small coupling constant, but is an expansion in powers of
momentum p, where a derivative in the Lagrangian counts as
one power and a quark mass counts as two powers. χPT is a
nonrenormalizable quantum field theory, implying that a
calculation at a given order n in momentum p requires
that one adds higher-order operators in order to cancel the
divergences arising in this calculation. One needs more and
more couplings as one goes to higher loop orders and
therefore more measurements to determine them. However,
this poses no problem; as long as one is content with finite
precision, a nonrenormalizable field theory has predictive
power and is as good as any other field theory. This is the
essence of effective field theory.
In this section, we restrict ourselves to two-flavor QCD.

χPT is then an effective theory for the three pions and the
effective Lagrangian can be written as a power series

Leff ¼ Lð2Þ þ Lð4Þ þ � � � ; ð69Þ

where the superscript indicates the order in momentum. In
Euclidean space, the leading term is given by

Lð2Þ ¼ 1
4
F2Tr½ðDμUÞ†ðDμUÞ −M2ðU þ U†Þ�; ð70Þ

where M and F are the tree-level values of the pion mass and
pion decay constant, respectively. Moreover U ¼ eiτiπi=F is a
unitary SU(2) matrix, τi are the Pauli matrices, πi are the pion
fields, and Dμ is the covariant derivative defined by

DμU ¼ ∂μU þ i½Q;U�AEM
μ ; ð71Þ
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FIG. 2. Critical temperature as a function of jqBj=m2
π in the MIT

bag model. See the main text for details.
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where Q is the charge matrix of the quarks,
Q ¼ diagð2=3;−1=3Þe. As explained earlier, a constant mag-
netic field B explicitly breaks the global chiral symmetry that
transforms u and d quarks into each other, but leaves a residual
Uð1ÞA symmetry. Because of this reduced symmetry, there is
only one true Goldstone boson, namely, the neutral pion
π0 ≡ π3. If the magnetic field is sufficiently strong, the charged
pions are very heavy and expected to decouple from the low-
energy dynamics. In this regime, the low-energy field theory
involves a single massless particle. The spacetime symmetry is
SOð1; 1Þ × SOð2Þ, which are Lorentz boosts in the x0x3 plane
as well as rotations in the x1x2 plane perpendicular to B. We
therefore need to separately consider the derivative operators
∂⊥ ¼ ð∂1; ∂2Þ and ∂∥ ¼ ð∂0; ∂3Þ and build our invariants from
these. The effective Lagrangian for π0 then reads

Leff ¼ 1
4
½Fð1Þ

⊥ �2ð∂⊥U⊥Þ†ð∂⊥U⊥Þ þ 1
4
½Fð1Þ

∥ �2ð∂∥U∥Þ†ð∂∥U∥Þ
þ � � � ; ð72Þ

whereU⊥ ¼ eiπ
0=F⊥ andU∥ ¼ eiπ

0=F∥ . Note thatwemust allow

for two different decay constants Fð1Þ
⊥ and Fð1Þ

∥ (Fayazbakhsh
and Sadooghi, 2013; Kamikado and Kanazawa, 2014). The
Lagrangian (72) is a special case (albeit with different notation)
of the general case with Nu up-quark flavors and Nd down-
quark flavors considered byMiransky andShovkovy (2002). In
this case the symmetry is SUðNuÞL×SUðNuÞR×SUðNdÞL×
SUðNdÞR×Uð1ÞA which is broken down to the diagonal
subgroup SUðNuÞV × SUðNdÞV . This gives rise to N2

u þ N2
d −

1 massless Goldstone particles. We now return to the
Lagrangian Lð2Þ given in Eq. (70). It can be expanded in
powers of the pion fields. Through fourth order,
we obtain

Lð2Þ ¼ −F2M2 þ 1

2
ð∂μπ

0Þ2 þ 1

2
M2ðπ0Þ2

þ ð∂μ þ iqAEM
μ Þπþð∂μ − iqAEM

μ Þπ− þM2πþπ−

−
M2

24F2
½ðπ0Þ2 þ 2πþπ−�2 þ 1

6F2
f2π0½∂μπ

0�½∂μðπþπ−Þ�
− 2πþπ−ð∂μπ

0Þ2 − 2½ðπ0Þ2 þ 2πþπ−�ð∂μπ
þÞð∂μπ

−Þ
þ ½∂μðπþπ−Þ�2g; ð73Þ

where we defined the complex pion fields as

π� ¼ 1ffiffiffi
2

p ðπ1 � iπ2Þ.

In the same manner, we can expand the Lagrangian Lð4Þ to
second order in the pion fields

Lð4Þ ¼ 1

4
F2
μν þ

2l5
F2

ðqFμνÞ2πþπ− þ 2il6
F2

qFμν½ð∂μπ
−Þð∂νπ

þÞ

þ iqAEM
μ ∂νðπþπ−Þ� þ ðl3 þ l4Þ

M4

F2
ðπ0Þ2

þ 2ðl3 þ l4Þ
M4

F2
πþπ− þ l4

M2

F2
ð∂μπ

0Þ2 þ 2l4
M2

F2
ð∂μ

þ iqAEM
μ Þπþð∂μ − iqAEM

μ Þπ−: ð74Þ

The Lagrangian Lð6Þ contains more than 50 terms for two
flavors. However, in a two-loop calculation of the pressure at
finite B only one term contributes, namely, M2ðqFμνÞ2
(Agasian and Shushpanov, 2000; Werbos, 2008).
As mentioned previously, the parameters M and F in the

Lagrangian can be interpreted as the tree-level values of the
pion mass mπ and pion decay constant Fπ , respectively.
However, these quantities receive loop corrections and they
can no longer be identified with the bare parameters of the
Lagrangian L. The loop integrals are ultraviolet divergent
and the divergences are canceled by the renormalization of the
low-energy constants li (i ¼ 1; 2; 3;…) that appear in the
Lagrangian. The relation between the bare low-energy con-
stants li and their renormalized counterparts l̄i is

li ¼ −
γi

2ð4πÞ2
�
1

ϵ
þ l̄i

�
; ð75Þ

evaluated at the scale Λ ¼ M. The coefficients γi have been
tabulated by Gasser and Leutwyler (1984). In the actual
calculations, presented later, we need γ3 ¼ 1=2 and γ4 ¼ 2.
Note that our Eq. (75) does not involve the renormalization
scale Λ as in Gasser and Leutwyler (1984) since it is a part of
the definition of the sum integrals. Moreover, our Eq. (73) for
the truncated Lagrangian Lð2Þ differs from the expression
found in Agasian and Shushpanov (2000) and Werbos (2008)
since they use a different parametrization for the unitary
matrix U, namely, the Weinberg parametrization. However,
we obtain the same expressions for physical quantities
independent of parametrization (Bochkarev and Kapusta,
1996). This simply reflects the fact that physical quantities
are independent of the coordinate system used.
To leading order in chiral perturbation theory and second

order in the pion fields, the Lagrangian describes free bosons
in a magnetic field. Thus a one-loop calculation of the free
energy density is the same as the one we did in the hadronic
phase for the MIT bag model and the renormalized result is
given by Eq. (61), except that one must add the tree-level term
−F2M2 from Eq. (73), i.e., F χPT

1 ¼ −F2M2 þ FHHG. The
vacuum energy to one-loop order at finite B was first
calculated by Schwinger (1951) and generalized to two loops
by Agasian and Shushpanov (2000). The two-loop result for
the free energy density at finite temperature first appeared in
Andersen (2012a, 2012b).

1. Quark condensate, pion mass, and pion decay constant

The zero-temperature quark condensate at one loop in the
chiral limit was first derived by Shushpanov and Smilga
(1997) and later generalized to finite quark mass, i.e., finite
mπ by Cohen, McGady, and Werbos (2007). They also
generalized their result to constant electromagnetic fields.
The two-loop result for the chiral condensate in the chiral limit
was calculated by Agasian and Shushpanov (2000) and
generalized to finite pion mass by Werbos (2008). Agasian
and Shushpanov also calculated the finite-temperature
quark condensate at one loop (Agasian and Shushpanov,
2001), which was extended to two loops by Andersen
(2012a, 2012b).
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Let us write the free energy density through n loops as
F n ¼ F vac

n þ F T
n þ FB

n , where F vac
n is the contribution in the

vacuum, i.e., for B ¼ T ¼ 0, FB
n is the zero-temperature

contribution due to a finite magnetic field, and F T
n is the

finite-temperature contribution. The chiral condensate is given
by (Gerber and Leutwyler, 1989)

hq̄qiB ¼ hq̄qi0
�
1 −

c
F2

∂ðFB
n þ F T

nÞ
∂m2

π

�
; ð76Þ

where hq̄qi0 denotes the quark condensate at T ¼ B ¼ 0, and

c ¼ −F2
∂m2

π

∂m hq̄qi−10 .

Using FB
1 þ F T

1 ¼ FHHG − FHHGðT ¼ B ¼ 0Þ and the fact
that c ¼ 1 to leading order (Gerber and Leutwyler, 1989), one
obtains the one-loop result for the quark condensate

hq̄qiB ¼ hq̄qi0
�
1þ 1

ð4πÞ2F2

�
IBðMÞ − 1

2
J1ðβMÞT2

− JB1 ðβMÞjqBj
��

; ð77Þ

where the function IBðMÞ is defined by

IBðMÞ ¼ M2 ln
M2

2jqBj −M2

− 2jqBjζð1;0Þ
�
0;
1

2
þ x

�
: ð78Þ

Here x ¼ M2=2jqBj. Taking the limit M → 0 and using the
first term of the small-x expansion [Eq. (C4)], one finds that
the condensate at T ¼ 0 grows linearly with the field in the
chiral limit (Shushpanov and Smilga, 1997),

hq̄qiB ¼ hq̄qi0
�
1þ jqBj ln 2

ð4πÞ2F2

�
: ð79Þ

Expanding Eq. (77) around B ¼ 0 at T ¼ 0 and using
Eq. (C8) yields to second order in B (Werbos, 2008):

hq̄qiB ¼ hq̄qi0
�
1þ 1

6ð4πÞ2
ðqBÞ2
F2M2

�
: ð80Þ

The interesting observation here, first made by Endrődi
(2013), is that the prefactor is proportional to the one-loop
β function of scalar QED, β ¼ 1=3ð4πÞ2.
In Fig. 3, we show the one- and two-loop results for the

normalized quark condensate hq̄qiB=hq̄qi0 in the chiral limit
as a function of T for jqBj ¼ 5m2

π and for B ¼ 0 for
comparison. The vacuum contribution has been included
and amounts to an increase of the chiral condensate of about
5% in this case. The effects are large due to the very strong
magnetic field, and for weaker fields, the difference between
the two sets of curves is smaller. The curves suggest that the
critical temperature for the chiral transition is increasing as a
function of B, but since χPT breaks down at perhaps

T ∼ 150 MeV, one should be careful making quantitative
statements. For temperatures where χPT can be trusted the
curves suggest that perturbation theory in a magnetic field
converges at least as well as for B ¼ 0.
We next consider the correction to the neutral pion mass

mπ0 due to a magnetic field. The Feynman diagrams contrib-
uting to the one-loop self-energyΠðP0;pÞ are shown in Fig. 4.
The inverse propagator can be written as

Γð2ÞðP0;pÞ ¼ P2 þM2 þ ΠðP0;pÞ; ð81Þ

where the the one-loop self-energy is given by

ΠðP0;pÞ

¼ −
2

3F2
P2
XZB
K

1

K2
0 þ k2z þM2

B

þ 1

6F2
M2

�
2
XZB
K

1

K2
0 þ k2z þM2

B
− 3
XZ
P

1

K2 þM2

�

þ 2l4P2
M2

F2
þ 2ðl3 þ l4Þ

M4

F2
; ð82Þ

where the terms in the second line are counterterms coming
from Lð4Þ. Collecting all terms proportional to P2, we redefine
the field π0 such that the coefficient of P2 in Eq. (81) equals
unity (Loewe and Villavicencio, 2003). This yields

Γð2ÞðP0;pÞ ¼ P2 þm2
π0
; ð83Þ

where the physical pion mass squared m2
π0

is

FIG. 3. Normalized quark condensate at one and two loops in
the chiral limit as a function of T for B ¼ 0 and jqBj ¼ 5m2

π .
From Andersen, 2012a.

FIG. 4. One-loop graphs contributing to the self-energy of the
neutral pion.
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m2
π0

¼ M2 þM2

F2

XZB
P

1

P2
0 þ p2

z þM2
B

−
1

2

M2

F2

XZ
P

1

P2 þM2
þ 2l3

M4

F2

¼ M2

�
1 −

1

ð4πÞ2F2

�
IBðMÞ þ 1

2
J1ðβMÞT2

− JB1 ðβMÞjqBj
��

: ð84Þ

This result was first obtained at zero temperature by
Shushpanov and Smilga (1997) and later generalized to finite
temperature by Agasian and Shushpanov (2000). We note that
mπ0 vanishes in the chiral limit M → 0, as it must since the
neutral pion is a Goldstone boson. This massless excitation is
associated with the breakdown of the Uð1ÞA symmetry
mentioned previously.
We next consider the pion decay constant for the neutral

pion Fπ0 . The components of the axial currentA0
μ are given by

A0
μ ¼ −F∂μπ

0 þ 2

3F
½2πþπ−∂μπ

0 − π0∂μðπþπ−Þ�
− 2M2l4∂μπ

0: ð85Þ

In order to calculate the pion decay constant, we need to
evaluate the matrix element Fπ0 ¼ h0jA0

μjπ0i. In a consistent
one-loop calculation, one needs to take into account wave-
function renormalization of the tree-level term −F∂μπ

0.2

Calculating the matrix element, one finds

Fπ0 ¼ F

�
1 −

1

F2

XZB
P

1

P2
0 þ p2

z þM2
B
þM2

F2
l4

�
: ð86Þ

After renormalization, we find

Fπ0 ¼ F

�
1þ 1

ð4πÞ2F2
½IBðMÞ−JB1 ðβMÞjqBj�

�
. ð87Þ

Using Eqs. (84) and (87), we see that

m2
π0
F2
π0

¼ 2mhq̄qiB; ð88Þ

which is the Oakes–Gell-Mann–Renner relation in a
magnetic field. This relation was first shown by Agasian
and Shushpanov (2001).

C. Nambu–Jona-Lasinio model

The NJL model was originally proposed as a theory for
interacting nucleons and pions in the 1960s before the discovery
of quarks (Nambu and Jona-Lasinio, 1961a, 1961b). After the
discovery of quarks and the formulation ofQCDas the theory of
the strong interactions, the fermion fields in the Lagrangian
were reinterpreted as quark fields and the NJL model as an

effective low-energy model for QCD. We make a few remarks
on the NJL model later, but for a detailed discussion of its
properties, see Klevansky (1992) and Buballa (2005). In the
NJLmodel, one-gluon exchange between the quarks is replaced
by local four-point quark interactions. Thus there are no gauge
fields in the model and the local SUðNcÞ gauge symmetry of
QCD is replaced by a globalSUðNcÞ symmetry. As a result, two
of the most prominent features of QCD, asymptotic freedom
and confinement, are lost. The latter can be seen by the fact that
the polarization function for pions ΠMðp2Þ develops an imagi-
nary part for p2 > 4M2, whereM is the constituent quark mass
and the pions become unstable against decay into a quark-
antiquark pair (Buballa, 2005).
Another important aspect of QCD, namely, that of chiral

symmetry breaking in the vacuum, is taken into account by the
NJL model. The spontaneous breaking of chiral symmetry
guarantees via the Goldstone theorem the appearance of
massless, or light if chiral symmetry is explicitly broken,
bosonic excitations in the spectrum. For Nf ¼ 2, these
particles are the (light) pions and the explanation of the
low pion mass was a success of the NJL model. We note that
in Lorentz invariant theories the number of Goldstone bosons
equals the number of broken generators. When Lorentz
invariance is broken, for example, at finite density, the number
of massless excitations may be strictly smaller than the
number of broken generators (Nielsen and Chadha, 1976;
Brauner, 2010) and some of them have a quadratic dispersion
relation E ∼ p2 instead of a linear one.
However, chiral symmetry breaking is not seen at any

finite order in perturbation theory and one needs to sum an
infinite number of a certain class of diagrams to obtain a
nonzero chiral condensate. This is done by introducing a set of
collective bosonic or auxiliary fields such that the Lagrangian
becomes bilinear in the quark fields. One can then exactly
integrate out the fermions in the path integral and afterward
expand the resulting functional determinant in powers of the
collective fields and their derivatives. This expansion is an
expansion in 1=Nc. To leading order in 1=Nc, i.e., in the large-
Nc limit, this gives rise to a gap equation for the chiral
condensate. This is also referred to as the mean-field approxi-
mation, since the collective fields are replaced by their expect-
ation values. At next-to-leading order, this expansion generates
kinetic terms for the bosonic fields and so they become
propagating quantum fields. At next-to-next-to-leading order,
the expansion generates interaction terms among the bosons
(Eguchi, 1976; Klevansky, 1992; Boomsma and Boer, 2009).
The NJL model is nonrenormalizable in the sense that loop

diagrams generate divergences that cannot be canceled by
local counterterms of the same type as those appearing in the
original Lagrangian. One therefore needs to add new operators
to cancel these divergences. The operators that are induced
this way are suppressed by some power of some (large) mass
scale Λ. This mass scale signals new physics that is not
captured by the model, but as long as we stay well below this
scale, this is not a problem. At finite precision, only a finite
number of operators contribute to a given physical quantity.
One way of dealing with the ultraviolet divergences in the
momentum integrals is by cutting them off using a sharp three-
dimensional cutoff Λ or a smooth ultraviolet cutoff. In the case
of a sharp cutoff, the momentum scale Λ can be interpreted as
an upper scale below which the model or theory is valid.

2This wave-function renormalization counterterm is the same we
used to obtain Eq. (84).
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A smooth cutoff is often referred to as a form factor and
denoted by FðpÞ, where p ¼ jpj. A form factor that mimics
asymptotic freedom is

FðpÞ ¼ Λ2

Λ2 þ p2
; ð89Þ

where Λ is a mass scale. The function FðpÞ guarantees that
loop integrals converge for large momentum p. A three-
dimensional cutoff breaks Lorentz invariance in contrast to,
e.g., dimensional regularization. There are other form factors
that are tailored to the problem of a magnetic background and
we briefly discuss them later.
The Minkowski space Lagrangian of the NJL model with

Nf ¼ 2 can be written as

L ¼ L0 þ Lq̄q þ Ldet; ð90Þ
where the various terms are

L0 ¼ ψ̄ ½iD −m0�ψ ; ð91Þ

Lq̄q ¼ G1½ðψ̄ψÞ2 þ ðψ̄τψÞ2 þ ðψ̄iγ5ψÞ2þðψ̄iγ5τψÞ2�; ð92Þ

Ldet ¼ G2½ðψ̄ψÞ2 − ðψ̄τψÞ2 − ðψ̄ iγ5ψÞ2þðψ̄ iγ5τψÞ2�; ð93Þ

where τ are the Pauli spin matrices, and D ¼ γμDμ. Dμ ¼
∂μ þ iQAμ is the covariant derivative, where Q ¼
diagð2=3;−1=3Þe is the chargematrix.G1 andG2 are coupling
constants and m0 is the mass matrix, m0 ¼ diagðmu;mdÞ.
As is normally done in the literature, we use mu ¼ md. For
Nf ¼ 2, ψ is an isospin doublet,

ψ ¼
�
u

d

�
: ð94Þ

The terms L0 þ Lq̄q are invariant under the global symmetries
SUðNcÞ×SUð2ÞL×SUð2ÞR×Uð1ÞB×Uð1ÞA in the chiral limit
and SUðNcÞ × SUð2ÞV × Uð1ÞB at the physical point.3 These
are the symmetries of QCD, except that the color symmetry is
global and not local. The termLdet breaks the Uð1ÞA symmetry
while preserving the others. This is the ’t Hooft instanton-
induced interaction term and mimics the breaking of the axial
Uð1ÞA symmetry in theQCDvacuum (’t Hooft, 1976). In three-
color QCD, this is a six-quark interaction which is necessary to
explain the relatively large mass of the η0 particle.
We next consider the two nonzero quark condensates

hūui and hd̄di. These can be expressed in terms of hψ̄ψi and
hψ̄τ3ψi as 1

2
ðhψ̄ψi � hψ̄τ3ψiÞ and a nonzero hψ̄τ3ψi implies

that hūui ≠ hd̄di. We can write ðψ̄ψÞ2¼ðψ̄ψ−hψ̄ψiÞ2þ
2hψ̄ψiψ̄ψ−hψ̄ψi2 and ðψ̄τ3ψÞ2 ¼ ðψ̄τ3ψ − hψ̄τ3ψiÞ2þ
2hψ̄τ3ψiψ̄τ3ψ − hψ̄τ3ψi2. In the mean-field approximation,
we linearize the interaction terms in the presence of the
two condensates hψ̄ψi and hψ̄τ3ψi, i.e., we neglect the
fluctuations around the mean field. Hence, we approximate
the quartic terms by

ðψ̄ψÞ2 ≈ 2hψ̄ψiψ̄ψ − hψ̄ψi2; ð95Þ

ðψ̄τ3ψÞ2 ≈ 2hψ̄τ3ψiψ̄τ3ψ − hψ̄τ3ψi2: ð96Þ

Substituting Eqs. (95) and (96) into Eq. (90), we obtain the
Lagrangian which is bilinear in the fermion fields:

Lbilinear ¼−
ðM0−m0Þ2

4G0

−
M2

3

4ð1−2cÞG0

þ ψ̄ ½iD−M�ψ ; ð97Þ

where M ¼ M0 þ τ3M3 and we introduced

M0 ¼ m0 − 2G0hψ̄ψi; ð98Þ

M3 ¼ −2ð1 − 2cÞG0hψ̄τ3ψi; ð99Þ

G1 ¼ ð1 − cÞG0; ð100Þ

G2 ¼ cG0: ð101Þ

The parameter c controls the instanton interaction or the amount
of explicit breaking of the Uð1ÞA symmetry. The constituent
quark masses for the u and d quarks can be expressed asMu ¼
M0 þM3 and Md ¼ M0 −M3. Generally these constituent
quark masses are different, and only for G1 ¼ G2 are they
identical. This corresponds to c ¼ 1=2. The fact that hūui
generally is different from hd̄di should come as no surprise as
the electric charge of the u quark is different from that of
the d quark.
The Lagrangian (97) is bilinear in the quark fields and we

can integrate over them exactly. The resulting vacuum energy
density is evaluated using dimensional regularization together
with ζ-function regularization in the usual way and whoseM-
independent (divergent and finite) terms are omitted.4 The
remaining divergences can be isolated by adding and sub-
tracting the vacuum energy for B ¼ 0. The difference between
the two vacuum energies is finite, while the subtracted vacuum
energy is evaluated using a hard three-dimensional cutoff Λ.
This yields the free energy density (Menezes et al., 2009;
Boomsma and Boer, 2010)

F 0þ1 ¼
1

2
B2 þ ðM0 −m0Þ2

4G0

þ M2
3

4ð1 − 2cÞG0

þ 2Nc

ð4πÞ2

×
X
f

�
M4

f ln

�
Λ
Mf

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ2

M2
f

s �

−MfΛðM2
f þ 2Λ2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ2

M2
f

s �

−
8Nc

ð4πÞ2
X
f

ðqfBÞ2
�
ζð1;0Þð−1; xfÞ þ

1

4
x2f −

1

2
x2f ln xf

þ 1

2
xf ln xf

�
−
2NcT2

ð4πÞ2
X
f

KB
0 ðβMfÞjqfBj; ð102Þ

3This is for the case mu ¼ md. If mu ≠ md, the symmetry SUð2ÞV
reduces to Uð1ÞI3 .

4This corresponds to ignoring wave-function renormalization of
the tree-level term ð1=2ÞB2 in the free energy density.
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where xf ¼ M2
f=j2qfBj. A similar expression can be found in

Ebert and Klimenko (1999), where a four-dimensional cutoff
is used; cf. Eq. (46).

1. Quark condensates

The calculations discussed in this section were presented by
Boomsma and Boer (2010). In these calculations, they used
m0 ¼ 6 MeV, Λ ¼ 590 MeV, and G0Λ2 ¼ 2.435. These
values lead to a pion mass of 140.2 MeV, a pion decay
constant of 92.6 MeV, and a quark condensate
hūui ¼ hd̄di ¼ ð−241.5 MeVÞ3, all in the vacuum.
The constituent quark masses Mu and Md are obtained by

solving the gap equations

∂F 0þ1

∂Mf
¼ 0; f ¼ u; d: ð103Þ

In Fig. 5, the constituent quark masses Mu and Md are shown
as functions of B measured in units of m2

π=e for c ¼ 0, i.e.,
with the Uð1ÞA symmetry intact. Notice that Mu ¼ Md for
B ¼ 0, while they split for the finite magnetic field and the
splitting increases as B grows. This difference is due to the
different electric charges of the u and d quarks. A nonzero c
will bring the masses closer together and at c ¼ 1=2 they
are equal.
In Fig. 6, the constituent quark mass Mu ¼ Md ¼ M is

shown as a function of T for three different values of the
magnetic field. The results are in the chiral limit and for
c ¼ 1=2. The number x in x LL is the number of Landau levels
one must include such that the error is less than 1%. The
stronger the magnetic field, the fewer Landau levels need to be
included in the sum in order to obtain a certain accuracy. The
reason is that the effective mass of the fermions increases with
the magnetic field and that more Landau levels are effectively
Boltzmann suppressed. The transition is second order with
mean-field critical exponents for all values of the magnetic
field (Inagaki, Kimura, and Murata, 2004; Boomsma and
Boer, 2010). The order of the phase transition in various
approximations is discussed further in Secs. V.D and VII.

In Fig. 7, the constituent quark mass Mu ¼ Md ¼ M at the
physical point and for c ¼ 1=2 is shown as a function of T for
four different values of the magnetic field. The constituent
quark mass is a strictly positive continuous function of T and
hence the transition is a crossover.

2. Other condensates

So far we discussed the quark condensates hūui and hd̄di as
functions of the magnetic field. However, due to the external
magnetic field, the symmetry of the system is reduced and
other nonzero condensates are possible. Ferrer et al. (2014)
considered a one-flavor NJL model in the chiral limit in a
constant external magnetic field B. A constant magnetic field
breaks Lorentz invariance down to SOð1; 1Þ × SOð2Þ, where
the latter corresponds to rotations around the axis in the
direction of the magnetic field B. The standard interaction
term they consider is

Lð1Þ
int ¼

G
2
½ðψ̄ψÞ2 þ ðψ̄ iγ5ψÞ2�; ð104Þ
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where G ¼ 2G0 is the usual coupling in the NJL model The
new interaction term that respects chiral symmetry and is
invariant under SOð1; 1Þ × SOð2Þ is

Lð2Þ
int ¼

G0

2
½ðψ̄Σ3ψÞ2 þ ðψ̄ iγ5Σ3ψÞ2�; ð105Þ

where Σ3 ¼ ði=2Þ½γ1; γ2� is the spin operator along the field
direction and G0 is a new coupling constant. The interaction
terms in Eqs. (104) and (105) can be derived from one-gluon
exchange in QCD using Fierz identities. The value of the
coupling constant G0 is unknown, but vanishes in the limit
B → 0. The reduced symmetry gives rise to a new nonzero
condensate

ξ ¼ −G0hψ̄iγ1γ2ψi; ð106Þ

in addition to σ ¼ −Ghψ̄ψi. Calculating the thermodynamic
potential Ω in the mean-field approximation and using the
equations of motion ∂Ω=∂σ ¼ 0 and ∂Ω=∂ξ ¼ 0, they
showed that

ξ ¼ G0

G
σ: ð107Þ

Thus the spin condensate vanishes in zero magnetic field as
expected and for nonzero magnetic field it is proportional to
the quark condensate. Because of Eq. (107), the two con-
densates evaporate at the same critical temperature. The same
behavior was found on the lattice (Bali et al., 2012b), where ξ
and σ drop to zero at around T ¼ 160 MeV.
The spectrum of fermionic excitations was calculated by

Ferrer et al. (2014) and reads

E2
k ¼ p3

z þ ðσ þ ξÞ2; k ¼ 0; ð108Þ

E2
k ¼ p3

z þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2 þ 2jqfBjk
q

� ξ

�
2

; k ≥ 1; ð109Þ

where � correspond to the positive and negative spin
projections, respectively. Here we notice that there is a
Zeeman splitting in the spectrum for k ≥ 1 but not so for
k ¼ 0. The interpretation of the term involving ξ is that it
arises from an anomalous magnetic moment of the quarks and
antiquarks.
The critical temperature Tc for the system changes due to

the existence of the condensate ξ. If the magnetic field is
sufficiently strong that all the particles are in the lowest
Landau level (LLL) (at finite T this is obviously an approxi-
mation), one can calculate the critical temperature analytically.
In this case, the dynamical mass of the quarks in the LLL is
given by Mξ ¼ σ þ ξ and the critical temperature is propor-
tional toMξ. A calculation by Ferrer et al. (2014) showed that

Tc ¼ 0.58Mξ: ð110Þ

Thus the critical temperature increases linearly withMξ and is
governed by the coupling G0.
We close this section with a brief discussion of a possible

new phase in the QCD vacuum at very strong magnetic fields.

In this phase, charged ρ mesons condense and as a result the
vacuum behaves as a superconductor. The idea goes back to
Nielsen and Olesen (1978) and Ambjørn and Olesen (1989a,
1989b) who showed that the W� bosons condense in a
sufficiently strong magnetic field: the energy of a W� boson
becomes purely imaginary signaling an instabilty of the
electroweak vacuum and the formation of a condensate. The
dispersion relation for a charged ρmeson in a magnetic field is

E2
k ¼ m2

ρ þ p2
z þ jqBjð2kþ 1 − 2sÞ; ð111Þ

where s ¼ �1. For a particle in the lowest Landau level with
zero longitudinal momentum pz, the energy becomes purely
imaginary when the magnetic field exceeds Bc ¼ m2

ρ=q, with
mρ ¼ 775 MeV. This suggests that the QCD vacuum is
unstable against condensation of charged ρ mesons
(Chernodub, 2010, 2011; Callebaut, Dudal, and Verschelde,
2013). The condensate is inhomogeneous and breaks a U(1)
symmetry, however, this is not in conflict with the Vafa-Witten
theorem as nomasslessNambu-Goldstone bosons appear in the
spectrum (Hidaka and Yamamoto, 2013; Chernodub, 2014).

D. Quark-meson model

Introducing the collective fields and integrating over the
quark fields in the NJL model leads to a fermion determinant
in the expression for the effective action. This functional
determinant is a function of the background fields σ and π. As
explained earlier, the mean-field approximation consists of
replacing the quantum fields fields σ and π by their expectation
values and ignoring fluctuations. Expanding the fluctuation
determinant around the expectation values of the fields one
generates kinetic terms for the mesons as well as interaction
terms. The terms that are generated are in principle all those that
are consistent with the symmetries of the NJL model. These
terms can be organized according to the powers of the fields and
their derivatives. If one truncates the series at second order in
derivatives and fourth order in the fields, we are effectively left
with a quark-meson model whose coupling constants depend
on the parameters of the NJL model and some one-loop
fermionic integrals. We discuss this model next.
The Euclidean Lagrangian of the two-flavor quark-meson

model can be written as

L ¼ ψ̄ ½γμDμ þ gðσ þ iγ5τ · πÞ�ψ þ 1

2
½ð∂μσÞ2 þ ð∂μπÞ2�

þ 1

2
m2½σ2 þ π2� þ λ

24
½σ2 þ π2�2 − hσ: ð112Þ

The Lagrangian has an SUð2ÞL × SUð2ÞR symmetry for
h ¼ 0, which is explicitly broken to SUð2ÞV for nonzero
h.5 This term gives rise to nonzero pion masses after
spontaneous symmetry breaking. However, once we couple
the quark-meson model to an Abelian gauge field, the model is
only Uð1ÞV × Uð1ÞA invariant for h ¼ 0 and Uð1ÞV invariant
for h ≠ 0. The transformations are ψ → eiτ3αψ and
ψ → eiγ5τ3αψ . Introducing the linear combinations

5In addition to a global SUðNcÞ symmetry.
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Δ ¼ 1ffiffiffi
2

p ðπ1 þ iπ2Þ ¼ πþ

and

v ¼ 1ffiffiffi
2

p ðσ þ iγ5π0Þ;

it can be shown that the transformations are

Δ → e−2iαΔ; v → v ðvectorÞ;
Δ → Δ; v → e−2iγ5αv ðaxialÞ.

ð113Þ

This implies that we have two invariants jvj2 ¼ σ2 þ π20 and
jΔj2 ¼ πþπ− instead of a single invariant σ2 þ π2. We there-
fore have two mass parameters m2

1 and m2
2 instead of a single

mass parameterm2, and three coupling constants λ1, λ2, and λ3
instead of a single coupling λ. Finally, the Yukawa interaction
term splits into the two terms g1ψ̄ðσþiγ5τ3π3Þψ and
g2ψ̄iγ5ðτ1π1þ τ2π2Þψ . These couplings are in principle func-
tions of the magnetic field B but we do not know their

B dependence, only that their values are identical for B ¼ 0.
As is commonly done in the literature, we therefore set all the
couplings and masses equal and equal to their values in the
vacuum.
Denoting the expectation value of v by ð1= ffiffiffi

2
p Þϕ, the tree-

level potential is

F 0 ¼
1

2
B2 þ 1

2
m2ϕ2 þ λ

24
ϕ4 − hϕ: ð114Þ

The tree-level masses of the sigma, the pions, and the quark
are (before coupling to B)

m2
σ ¼ m2 þ λ

2
ϕ2; ð115Þ

m2
π ¼ m2 þ λ

6
ϕ2; ð116Þ

mq ¼ gϕ: ð117Þ
The pion mass satisfies h ¼ m2

πϕ at the minimum of the tree-
level potential and therefore vanishes for h ¼ 0 in agreement
with the Goldstone theorem. The one-loop potential then
becomes

F 0þ1 ¼
1

2
B2 þ 1

2
m2ϕ2 þ λ

24
ϕ4 − hϕ −

1

4ð4πÞ2
�
Λ2

m2
σ

�
ϵ
��

1

ϵ
þ 3

2

�
m4

σ þ 2J0ðβmσÞT4

�

−
1

4ð4πÞ2
�
Λ2

m2
π0

�
ϵ
��

1

ϵ
þ 3

2

�
m4

π0
þ 2J0ðβmπ0ÞT4

�
þ 1

2ð4πÞ2
�

Λ2

j2qBj
�

ϵ
��ðqBÞ2

3
−m4

π0

��
1

ϵ
þ 1

�

þ 8ðqBÞ2ζð1;0Þ
�
−1;

1

2
þ x

�
− 2JB0 ðβmπ0ÞjqBjT2

�
þ Nc

ð4πÞ2
X
f

�
Λ2

2jqfBj
�

ϵ
��

2ðqfBÞ2
3

þm4
q

��
1

ϵ
þ 1

�

− 8ðqfBÞ2ζð1;0Þð−1; xfÞ − 2jqfBjm2
q ln xf − 2KB

0 ðβmqÞjqfBjT2 þOðϵÞ
�
: ð118Þ

The B-dependent divergence is removed by making the
replacement B2 → Z2B2, where

Z2 ¼
�
1 −

q2

3ð4πÞ2ϵ − Nc

X
f

4q2f
3ð4πÞ2ϵ

�
: ð119Þ

The other divergences are removed by making the replace-
ment m2 → m2 þ Δm2, λ → λþ Δλ, and adding a vacuum
energy counterterm ΔE, where

Δm2 ¼ λm2

ð4πÞ2ϵ ; Δλ ¼ 2λ2 − 24NcNfg4

ð4πÞ2ϵ ;

ΔE ¼ m4

ð4πÞ2ϵ :
ð120Þ

The renormalized one-loop effective potential becomes

F 0þ1 ¼
1

2
B2

�
1þ q2

3ð4πÞ2 ln
Λ2

j2qBj þ Nc

X
f

4q2f
3ð4πÞ2 ln

Λ2

j2qfBj
�
þ 1

2
m2ϕ2 þ λ

24
ϕ4 − hϕ −

m4
σ

4ð4πÞ2
�
ln
Λ2

m2
σ
þ 3

2

�

−
3m4

π0

4ð4πÞ2
�
ln

Λ2

m2
π0
þ 3

2

�
þ Ncm4

q

ð4πÞ2
X
f

�
ln

Λ2

m2
q
þ 3

2

�
þ 4ðqBÞ2

ð4πÞ2
�
ζð1;0Þ

�
−1;

1

2
þ x

�
þ 1

4
x2 −

1

2
x2 ln xþ 1

24

�

−
8Nc

ð4πÞ2
X
f

ðqfBÞ2
�
ζð1;0Þð−1; xfÞ þ

1

4
x2f −

1

2
x2f ln xf þ

1

2
xf ln xf −

1

12

�

−
1

2ð4πÞ2 ½J0ðβmσÞT4 þ J0ðβmπ0ÞT4þ2JB0 ðβmπ0ÞjqBjT2� − 2NcT2

ð4πÞ2
X
f

KB
0 ðβmqÞjqfBj: ð121Þ
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A common approximation in the QM model is to neglect
the quantum and thermal fluctuations of the mesons
(Scavenius et al., 2001; Fraga and Mizher, 2008). We
make this approximation in the remainder of this section
and discuss the inclusion of mesonic fluctuations in Sec. VII
on the functional renormalization group,

F 0þ1 ¼
1

2
B2

�
1þ Nc

X
f

4q2f
3ð4πÞ2 ln

Λ2

j2qfBj
�
þ 1

2
m2ϕ2

þ λ

24
ϕ4 − hϕþ Ncm4

q

ð4πÞ2
X
f

�
ln
Λ2

m2
q
þ 3

2

�

−
8Nc

ð4πÞ2
X
f

ðqfBÞ2
�
ζð1;0Þð−1; xfÞ þ

1

4
x2f

−
1

2
x2f ln xf þ

1

2
xf ln xf −

1

12

�

−
2NcT2

ð4πÞ2
X
f

KB
0 ðβmqÞjqfBj: ð122Þ

In the literature, the parameters are often fixed at tree level.
The parametersm2, λ, and h in the Lagrangian (112) can be
expressed in terms of the sigma mass, the pion mass, and
the pion decay constant as6

m2 ¼ −1
2
ðm2

σ − 3m2
πÞ; ð123Þ

λ ¼ 3ðm2
σ −m2

πÞ
f2π

; ð124Þ

h ¼ fπm2
π: ð125Þ

Having determined the parameters as described earlier, the
tree-level potential has its minimum at the correct value
ϕ ¼ fπ ¼ 93 MeV, while the minimum of the one-loop
potential depends on the renormalization scale. We can
choose Λ such that the minimum of the one-loop effective
potential (122) in the vacuum, i.e., T ¼ B ¼ 0, still is at
ϕ ¼ fπ ¼ 93 MeV for the same set of parameters. This is
done by requiring

dF 0þ1

dϕ

				
ϕ¼fπ

¼ 0: ð126Þ

A straightforward calculation yields

Ncg4f2π
ð2πÞ2

�
ln

Λ2

g2f2π
þ 1

�
¼ 0: ð127Þ

Using fπ ¼ 93 MeV and g ¼ 3.2258 (see below), this
yields Λ ¼ 181.96 MeV. Even if we use this value for
the renormalization scale such that F 0þ1 has its minimum
at ϕ ¼ fπ , it is strictly speaking not correct to use the

parameters Eqs. (123)–(125) in the one-loop effective
potential. The reason is that the sigma and pion masses
receive radiative corrections, which must be taken into
account in the equations that relate the physical masses and
the parameters of the theory. In other words, Eqs. (123)–
(125) receive corrections. The sigma mass is often defined
by the curvature or the second derivative of the effective
potential. At tree level, this is given by Eq. (115), but the
expression for mσ changes if we take the one-loop
correction to the effective potential into account. To
illustrate the dramatic difference, we calculated the second
derivative of the effective potential at tree level and at one
loop. Using parameters such that the sigma mass at tree
level is 750 MeV and the pion mass is 140 MeV, the
curvature of the one-loop effective potential with Λ ¼
182 MeV corresponds to a sigma mass of 530MeV. Even if
one takes radiative corrections into account and determines
the parameters at the one-loop level, this procedure is not
entirely correct. Determining the sigma mass by the
curvature of the effective potential corresponds to including
its self-energy evaluated at zero external momentum
p2 ¼ 0. However, the physical mass of the sigma is given
by the pole of the propagator, which involves the self-
energy evaluated self-consistently at p2 ¼ −m2

σ. The differ-
ence between the self-energy evaluated at these two points
gives rise to a finite shift of the sigma mass that is normally
not taken into account. A similar remark applies to the pion
mass at the physical point.
We present next numerical results based on the effective

potential (122). At the physical point, we use a pion mass of
mπ ¼ 140 MeV, a sigma mass of mσ ¼ 800 MeV, a con-
stituent quark mass of mq ¼ 300 MeV, and a pion decay
constant of fπ ¼ 93 MeV. This yields the parameters
m2 ¼ −290 600 MeV2, λ ¼ 215.19, and g ¼ 3.2258. In the
chiral limit, we instead use mπ ¼ 0, which yields
m2 ¼ −320 000 MeV2, λ ¼ 222, and g ¼ 3.2258. We use
these parameter values to generate the results presented in
Figs. 8–11.
In Fig. 8, we show the renormalized effective potential at

T ¼ 0 normalized to f4π as a function of ϕ for different values
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FIG. 8. Normalized effective potential F 0þ1=f4π in the chiral
limit for T ¼ 0. Tree level (solid curve), one loop with jqBj ¼ 0

(dashed curve), one loop with jqBj ¼ 5m2
π (dash-dotted curve),

and one loop with jqBj ¼ 10m2
π (double dot-dashed curve).

6The parameter g is determined by the value of the constituent
quark mass mq ¼ gfπ .
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of the magnetic field. The minimum is moving to the right as
the magnetic field increases and so the model exhibits
magnetic catalysis as expected. Moreover, the effective
potential is unstable for large values of the field ϕ. This
instability is present already for B ¼ 0 and is due to a term
∼m4

q lnðΛ2=m2
qÞ, which dominates the effective potential at

large ϕ and becomes negative7 for mq ¼ gϕ > Λ. The one-
loop bosonic term is also of the form m4 lnðΛ2=m2Þ with the
opposite sign and may stabilize the effective potential if the
prefactor is suffiently large. However, perturbative calcula-
tions typically break down for large value of the field. In fact, a
renormalization group improvement is necessary to make
large values of ϕ accessible by removing large logarithms.
These issues are discussed in detail by Sher (1989), Ford et al.
(1993), and Einhorn and Jones (2007).
In Fig. 9, we show the transition temperature for the QM

model as a function of jqBj=m2
π in the chiral limit (black

squares) and at the physical point (red circles). Both are
growing functions of the magnetic field, which shows that the
QM model exhibits magnetic catalysis. Vacuum fluctuations
are included.
In Fig. 10, we show the normalized effective potential in the

chiral limit for four different temperatures, jqBj ¼ 5m2
π , and

with vacuum fluctuations. The curves show that the phase
transition is of second order.
In Fig. 11, we show the normalized effective potential in the

chiral limit for four different temperatures jqBj ¼ 5m2
π , where

we omitted the vacuum fluctuations. The curves show that the
phase transition is of first order. Moreover, we notice that
including the vacuum fluctuations gives a significantly higher
critical temperature Tc.
We have now seen numerically that the phase transition is

first order if the fermionic vacuum fluctuations are neglected
and second order if they are included. It turns out that the role
of vacuum fluctuations in the quark-meson model is the same
also in the absence of a magnetic field. This case was carefully
analyzed by Skokov et al. (2010) in the case of the chiral
transition in the QM model with B ¼ 0. Recently, the analysis
was generalized to a finite B field by Ruggieri, Tachibana, and
Greco (2013).
One wants an analytic understanding of this result. The

basic idea is to construct a Ginzburg-Landau effective
potential of the form

VGL ¼ 1
2
α2m2

q þ 1
4
α4m4

q; ð128Þ

where mq ¼ gϕ, and α2 and α4 are parameters that depend on
the temperature T, the parameters of the Lagrangian, and the
magnetic field B. A temperature T�

c is defined by a vanishing
coefficient α2, i.e., α2ðT�

cÞ ¼ 0. If α4ðT�
cÞ > 0, then the

transition is second order and the critical temperature is
Tc ¼ T�

c. If α4ðT�
cÞ < 0, the effective potential has two

degenerate minima for T slightly larger than T�
c. The transition

is first order and the critical temperature is Tc > T�
c.

In Figs. 12–14, the parameters used correspond to
fπ ¼ 92.4 MeV, mq ¼ 335 MeV, mπ ¼ 0, and mσ ¼
700 MeV. We first consider the renormalized case, i.e., the
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FIG. 9. The transition temperature for the chiral transition as a
function of jqBj=m2

π . Black squares are the chiral limit and red
circles are the physical point.
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FIG. 11. The effective potential in the chiral limit normalized by
f4π for four different temperatures and jqBj ¼ 5m2

π , where we
omitted the vacuum fluctuations (bottom curve, blue: T ¼ 0,
next-to-bottom curve, pink: T ¼ 120 MeV, next-to-top
curve, orange: T ¼ Tc ¼ 158.0 MeV, and top curve, green:
T ¼ 176 MeV).
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FIG. 10. The effective potential in the chiral limit normalized by
f4π for four different temperatures and jqBj ¼ 5m2

π , where we
have included the vacuum fluctuations (bottom curve, blue:
T ¼ 0, next-to-bottom curve, pink: T ¼ 140 MeV, next-to-top
curve, orange: T ¼ Tc ¼ 177.9 MeV, and top curve, green:
T ¼ 185 MeV).

7This is the leading term in the large-x expansion (C5).
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case where one adds counterterms for the mass and coupling
and imposes some appropriate renormalization conditions. In
Fig. 12, the normalized coefficient α2=f2π is shown as a
function of T for different values of the magnetic field B. We
see that α2 is an increasing function of T and T�

c is an
increasing function of jqBj.
In Fig. 13, the dimensionless coefficient α4 is shown as a

function of T for different values of the magnetic field B. The
coefficient is positive for all values of T implying that the
transition is second order.
We next consider the unrenormalized case, i.e., the case

where one regularizes the divergences by a sharp ultraviolet
cutoffΛ. In Fig. 14, the coefficient α4 is shown as a function of
B evaluated at T�

c for Λ ¼ 550 MeV. The coefficient is
negative for jqBj > jqBcj ≈ 47 m2

π and so the transition is
first order for large magnetic fields. The position of Bc
depends on Λ and, for Λ → ∞, one recovers the results in
the renormalized case. On the other hand, if the cutoff Λ is
below a critical value Λc, the transition is first order for all
values of B. The sensitivity to the value of the sharp cutoff
suggests that one should be careful and, in particular, not

choose a cutoff below the scale set by the largest mass of the
particles in the theory.

E. Hadron resonance gas model

In this section, we briefly discuss the hadron resonance gas
(HRG) model in a magnetic background. This model was
studied in detail by Endrődi (2013). It can be used to access
the low-temperature phase of QCD, even at nonzero chemical
potential. The partition function is given by a sum of
partition functions of noninteracting hadrons and resonances.
This approach gives a surprisingly good description of the
thermodynamics of QCD in the confined phase up to temper-
atures just below the transition region (Karsch, Redlich,
and Tawfik, 2003; Borsanyi et al., 2010; Huovinen and
Petreczky, 2010).
We can schematically write the free energy density as

F ¼
X
h

dhF hðB; T;mh; qh; sh; ghÞ; ð129Þ

where dh,mh, qh, sh, and gh are the multiplicity, mass, electric
charge, spin, and gyromagnetic ratio of hadron h, respectively.
For simplicity, the gyromagnetic ratio in Endrődi (2013) was
set to gh ¼ 2qh=e. The hadrons taken into account in the sum
are π�; π0;…;

P
0.

Since the free energy density is a sum of the free energy
densities of noninteracting mesons and baryons, Eq. (129) is
given by a sum of the one-loop terms Eqs. (B8) and (B10).
Renormalization can be performed using minimal subtraction
as discussed previously. However, they used Schwinger’s
renormalization scheme which involves an extra logarithmic
term. For example, the wave-function counterterm for a
boson is8
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FIG. 12. Coefficient α2 normalized to f2π as a function of
temperature T for different values of the magnetic field. From
Ruggieri, Tachibana, and Greco, 2013.
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FIG. 13. Coefficient α4 as a function of temperature T for
different values of the magnetic field. From Ruggieri, Tachibana,
and Greco, 2013.

0 20 40 60 80

eB/mπ
2

-1

-0.5

0

0.5

1

 α
4

FIG. 14. Coefficient α4 as a function of magnetic field B at T�
c.

From Ruggieri, Tachibana, and Greco, 2013.

8There is an extra factor of lnð4π=eγEÞ since the MS scheme is
used.
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Z2 ¼
�
1 −

q2

3ð4πÞ2ϵþ
q2

3ð4πÞ2 ln
m2

Λ2

�
: ð130Þ

Defining the renormalized magnetic field Br via B2
r ¼ B2Z2

and subtracting the free energy density at B ¼ 0, the one-loop
free energy density for a boson is

F 0þ1 ¼
1

2
B2
r þ

4ðqBÞ2
ð4πÞ2

�
ζð1;0Þ

�
−1;

1

2
þ x

�
þ 1

4
x2

−
1

2
x2 ln xþ 1

24
ln xþ 1

24

�
; ð131Þ

where the Hurwitz ζ function ζðs; qÞ is defined in Eq. (38) and
x ¼ m2=j2qBj. This is turn implies that the renormalized free
energy density approaches zero in the limit mh → ∞ instead
of growing logarithmically. However, the prescription cannot
be used in the massless limit due to infrared divergences
coming from this extra term. Furthermore, the order-B2 term is
given by the first term in Eq. (131) as the term in the bracket
vanishes in the limit of small B.
Figures 15 and 16 show the individual contributions to the

HRG pressure as a function of the temperature T for zero
magnetic field and for jqBj ¼ 0.2 GeV2, respectively. We first
note that the contribution from the neutral particles is
independent of B as the gyromagnetic ratio was set to zero.

The relative contribution of the charged particles is changing
with B. The reason is that the effective mass is essentially
meff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

h þ jqhBjð1 − 2sÞ
p

, and this increases for mπ�

(s ¼ 0) and decreases for ρ� (s ¼ 1) and so the Boltzmann
weight changes with B. This is clearly seen in Figs. 15 and 16.
Moreover, the pressure is an increasing function of the

magnetic field for fixed temperature T. This implies that the
magnetization is positive and hence that the hadronic phase is
paramagnetic. The speed of sound cs (not shown) displays a
peak, which moves to lower temperatures as the magnetic
fields grows. The peak is for T in the 40–70 MeV range for
jqBj up to 0.3 GeV2.

VI. POLYAKOV-LOOP EXTENDED MODELS

As mentioned earlier, the NJL model is not confining.
Likewise, the QM model is an effective theory that consists of
deconfined quarks as well as mesons as effective degrees of
freedom (Bowman and Kapusta, 2009). This is probably a
good description at temperatures around the transition temper-
ature, but for very low temperatures it is certainly not. At low
temperatures, the thermodynanmics is dominated by the light
pions. While these models incorporate chiral symmetry
breaking, they are not confining. This is a serious shortcoming
as an effective low-energy description of QCD. Next we see
that we can mimic, in a statistical sense, the effects of
confinement by coupling the chiral models to an SU(3)
background gauge field Aμ (Fukushima, 2004). One can
express this background gauge field in terms of the com-
plex-valued Polyakov-loop variable Φ and so the effective
potential becomes a function of the expectation value of the
chiral condensate as well as the expectation value of the
Polykov loop operator. Finally, one adds the contribution to
the free energy density from the gluons via a phenomeno-
logical Polyakov-loop potential UðΦ; Φ̄Þ.

A. Coupling to the Polyakov loop

In the pure gauge theory, the Polyakov loop Φ is an order
parameter for deconfinement (Yaffe and Svetitsky, 1982a,
1982b). For QCD with dynamical quarks, it is an approximate
order parameter. It is defined as the trace of the thermal Wilson
line L, which is given by

LðxÞ ¼ P exp

�
i
Z

β

0

dτA0ðx; τÞ
�
; ð132Þ

where A0 ¼ Aa
0Ta and P denotes path ordering. Here Aa

μ are
the SUðNcÞ gauge fields and Ta the generators. For SUð3Þc,
we have Ta ¼ ð1=2Þλa, where λa are the Gell-Mann matrices.
The Polyakov-loop operator l and its complex conjugate are
then given by

l ¼ 1

Nc
TrL; ð133Þ

l† ¼ 1

Nc
TrL†: ð134Þ

FIG. 15. Individual contributions to the HRG pressure as a
function of the temperature T for B ¼ 0. From Endrődi, 2013.

FIG. 16. Individual contributions to the HRG pressure as a
function of the temperature T for jqBj ¼ 0.2 GeV2. From
Endrődi, 2013.
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The expectation values of l and l† are denoted by Φ and Φ̄,
respectively. The expectation value of the Polykov loop
transforms nontrivially under the center group ZNc

of
the gauge group SUðNcÞ, Φ → e2πin=NcΦ, where n ¼
0; 1; 2;…; Nc − 1. The behavior of Φ in the pure gauge
theory is

Φ ∼ 0; confinement at low T; ð135Þ

Φ ∼ 1; deconfinement at highT; ð136Þ

and so the center symmetry ZNc
is broken in the high-

temperature phase.
A constant non-Abelian background is now introduced via

the covariant derivative which takes the form

Dμ ¼ ∂μ − iqfAEM
μ − iAμ; ð137Þ

where AEM
μ ¼ ð0; 0;−Bx; 0Þ and Aμ ¼ δμ0A0. In the Polyakov

gauge, we can write the background gauge field A0 as

A0 ¼ t3A
ð3Þ
0 þ t8A

ð8Þ
0 . ð138Þ

For constant gauge fields, the thermal Wilson line can be
written as

L ¼
0
@ eiðϕ1þϕ2Þ 0 0

0 eið−ϕ1þϕ2Þ 0

0 0 e−2iϕ2

1
A; ð139Þ

where ϕ1 ¼ ð1=2ÞβAð3Þ
0 and ϕ2 ¼ ð1=2 ffiffiffi

3
p ÞβAð8Þ

0 . In the
perturbative vacuum ϕ1 ¼ ϕ2 ¼ 0 and in the confining
vacuum ϕ1 ¼ ϕ2 ¼ π=3. Using ϕ1 ¼ ϕ2, the Polyakov loop
reduces to

Φ ¼ 1
3
½1þ 2 cosð2ϕ1Þ�: ð140Þ

The zeroth component of the gauge field acts as a chemical
potential in the covariant derivative (137). With this obser-
vation and the definition (132), we can immediately make
the following replacement for a fermion in the background
field:

ln ½1þ e−βEq � → 1

2Nc
Tr ln ½1þ Le−βEq �

þ 1

2Nc
Tr ln ½1þ L†e−βEq �; ð141Þ

where the trace on the right-hand side is in color space and Eq

is the energy of the fermionic excitations. Performing the trace
of the first term in Eq. (141) using Eq. (139), one obtains

1

Nc
Tr ln ½1þLe−βEq �¼ 1

3
ln ½1þ3ðΦþ Φ̄e−βEqÞe−βEq þe−3βEq �;

ð142Þ

and where the second term in Eq. (141) can be obtained by
Hermitean conjugation. The temperature-dependent part of

the one-loop fermionic contribution to the free energy density
can then be written as

F T
1 ¼ −T

X
f

jqfBj
2π

×
X
s¼�1

X∞
k¼0

Z
pz

fln ½1þ 3ðΦþ Φ̄e−βEqÞe−βEq þ e−3βEq �

þ ln ½1þ 3ðΦ̄þ Φe−βEqÞe−βEq þ e−3βEq �g: ð143Þ

It reduces to the second term in Eq. (35) in the limit Φ; Φ̄ → 1,
with an extra factor ofNc ¼ 3, as it should. We note in passing
that the vacuum part of the one-loop fermionic free energy
density is unchanged and therefore the PNJL model reduces to
the NJL model at T ¼ 0.
Taking the trace in color space, the Fermi-Dirac distribution

is generalized to

nFðβEÞ ¼
1þ 2Φ̄eβEq þ Φe2βEq

1þ 3Φ̄eβEq þ 3Φe2βEq þ e3βEq
: ð144Þ

It is instructive to look at the behavior of Eq. (144) at very low
and very high temperatures. At low temperatures, we have
Φ ≈ 0 and therefore the Fermi-Dirac distribution reduces to

nFðβEqÞ ≈
1

e3βEq þ 1
; ð145Þ

which is the distribution function of a fermion with energy
3Eq. Thus the contribution from the fermions to the effective
potential is suppressed at low temperature as compared to the
corresponding chiral model without the Polyakov loop. This is
referred to as statistical confinement. In the same manner, we
see that Eq. (144) at high temperature behaves as

nFðβEqÞ ≈
1

eβEq þ 1
; ð146Þ

where we have Φ ≈ 1. This is a distribution function of a
fermion with energy Eq, i.e., that of deconfined quarks. A
word of caution here is appropriate. The same behavior as
Eq. (145) is found in two-color QCD with quarks in the
adjoint representation (Zhang, Brauner, and Rischke, 2010)
and so the number x in xβEq does not necessarily give the
correct number of quarks to form a color singlet.
We have now coupled the Polyakov-loop variable to the

matter sector of theory. However, we must also include the
contribution to the free energy density from the gauge sector
and this is done by adding a phenomenological Polyakov-loop
potential UðΦ; Φ̄Þ. This potential is required to reproduce the
pressure for pure-glue QCD as calculated on the lattice for the
temperatures around the transition temperature.
A number of forms for the Polyakov-loop potential

have been proposed and investigated at the mean-field level
for the PNJL model (Lourenco et al., 2011) and the PQM
model with μB ¼ 0 (Schaefer, Wagner, and Wambach, 2010).
In the following we review three different Polyakov-loop
potentials. Since the Polyakov-loop variable is the order
parameter for the Z3 center symmetry of pure-glue QCD,
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a Ginzburg-Landau–type potential should incorporate this.
A polynomial expansion then leads to (Ratti, Thaler, and
Weise, 2006)

Upoly

T4
¼ −

1

2
b2ðTÞΦΦ̄ −

1

6
b3ðΦ3 þ Φ̄3Þ þ 1

4
b4ðΦΦ̄Þ2; ð147Þ

where the coefficients are

b2ðTÞ ¼ 6.75 − 1.95

�
T0

T

�
þ 2.625

�
T0

T

�
2

− 7.44

�
T0

T

�
3

;

ð148Þ

b3 ¼ 0.75; ð149Þ

b4 ¼ 7.5: ð150Þ

The parameter T0 is the transition temperature for pure-glue
QCD lattice calculations, T0 ¼ 270 MeV (Karsch, Laermann,
and Peikert, 2001). Ratti et al. (2007) and Roessner, Ratti, and
Weise (2007) proposed another form of the Polyakov-loop
potential based on the SU(3) Haar measure:

Ulog

T4
¼ −

1

2
aðTÞΦΦ̄

þ bðTÞ ln ½1− 6Φ̄Φþ 4ðΦ3 þ Φ̄3Þ− 3ðΦ̄ΦÞ2�; ð151Þ

where the coefficients are

aðTÞ ¼ 3.51 − 2.47

�
T0

T

�
þ 15.2

�
T0

T

�
2

; ð152Þ

bðTÞ ¼ −1.75
�
T0

T

�
3

: ð153Þ

We note that the logarithmic term ensures that the magnitudes
of Φ and Φ̄ are constrained to be in the region between −1 and
1, i.e., the possible attainable values for the normalized trace
of an element of SU(3). The coefficient aðTÞ approaches
16ðπ2=90Þ ≈ 3.51 as T → ∞ such that the potential Eq. (151)
reproduces the Stefan-Boltzmann limit. Finally, Fukushima
(2008) proposed the following Polyakov-loop potential:

UFuku

T4
¼ −

b
T3

f54e−aT0=TΦΦ̄

þ ln ½1 − 6ΦΦ̄þ 4ðΦ3 þ Φ̄3Þ − 3ðΦΦ̄Þ2�g; ð154Þ

where the constants are a ¼ 664=270 and b ¼ ð196.2 MeVÞ3.
This potential differs from the logarithmic potential (151) only
by the coefficient of the first term. Finally, note that the
effective potential including the glue potential is symmetric
under Φ ↔ Φ̄ for μB ¼ 0. Hence Φ ¼ Φ̄.
A problem with all the proposed Polyakov-loop potentials

is that they are independent of the number of flavors and the
baryon chemical potential. However, we know that, for
example, the transition temperature for the deconfinement
transition is a function of Nf. In other words, one ought to
incorporate the backreaction from the fermions to the gluonic
sector. Schaefer, Pawlowski, and Wambach (2007) used

perturbative arguments to estimate the effects of the number
of flavors and the baryon chemical potential on the deconfine-
ment transition temperature T0. The functional form of T0

(Herbst, Pawlowski, and Schaefer, 2011) for μB ¼ 0 is

T0 ¼ Tτe−1=α0bðNfÞ; ð155Þ

where

bðNfÞ ¼
1

6π
ð11Nc − 2NfÞ; ð156Þ

and the parameters are Tτ ¼ 1.77 GeV and α0 ¼ 0.304. This
yields a deconfinement transition temperature of 240 and
208 MeV for Nf ¼ 1 and Nf ¼ 2, respectively. Another way
of including the backreaction from the fermions was imple-
mented by Haas et al. (2013) and Herbst et al. (2014). They
calculated the glue potential as a function of a background
gauge field with and without dynamical fermions using the
functional renormalization group. They compared the two
potentials and found a mapping between them and this
mapping is used to modify the Polyakov-loop potential
discussed previously.
The phase stucture of the Polyakov-loop extended model is

then found by simultaneously solving the gap equations

∂F
∂M0

¼ 0;
∂F
∂Φ ¼ 0 ðPNJLÞ; ð157Þ

∂F
∂ϕ ¼ 0;

∂F
∂Φ ¼ 0 ðPQMÞ; ð158Þ

where F is the sum of the free energy density from the
fermions and the Polyakov-loop potential U.
Gatto and Ruggieri (2010) considered the PNJL model

using the logarithmic potential Eq. (151). They used G1 ¼ G2

and added an eight-quark interaction term of the form

δL ¼ G8½ðψ̄ψÞ2 þ ðψ̄iγ5τψÞ2�2; ð159Þ

where G8 is a coupling constant. In this case, the constituent
quark mass reads M0 ¼ m0 − 2G0hψ̄ψi − 4G8hψ̄ψi3. They
also used a form factor of the form

FðpÞ ¼ Λ2N

Λ2N þ ðp2
z þ 2jqfBjkÞN

; ð160Þ

choosing the values N ¼ 5 and N ¼ 7.
Figure 17 shows the phase diagram in the B-T plane for the

chiral (dot-dashed) as well as the deconfinement transition
(dashed) for N ¼ 5. The critical temperatures Tχ and TP have
been normalized to the common pseudocritical temperature
T0 ¼ 175 MeV at B ¼ 0. We note that the transition temper-
ature Tχ is increasing more with the magnetic field than TP is.
The shaded area corresponds to a phase where the quarks are
deconfined but where chiral symmetry is still broken.
The PNJL model was extended by several using a nonlocal

NJL vertex (Sasaki, Friman, and Redlich, 2007; Hell et al.,
2009; Kondo, 2010). Kondo (2010) derived from QCD a
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nonlocal vertex that depends explicitly on T as well as the
phase of the Polyakov loop. Such a model is called the
entangled Polyakov-loop model (EPNJL), which was used by
Gatto and Ruggieri (2011) at finite B to study the chiral and
deconfinement transitions. In contrast to the PNJL model,
there is basically no splitting of the two transitions in the
EPNJL model.
Another mean-field analysis was carried out by Mizher,

Chernodub, and Fraga (2010) using the PQM model focusing
on the physical point. Renormalization is carried out by
subtracting the divergent fluctuation determinant for B ¼ 0.
They made several interesting observations. If the fermionic
vacuum fluctuations are neglected,9 the transition temperature
for the deconfinement transition coincides with that of the
chiral transition, and they are both first order, except for very
small values of the magnetic field, where they are crossovers.
Moreover, the transition temperatures are decreasing with
increasing B. If the vacuum fluctuations are included, the
transition temperatures are increasing with B and the resulting
phase diagram is qualitatively the same as in Fig. 17. The
chiral transition is now a crossover.

B. Two-color PNJL model

So far we have been discussing QCD with three colors. In
this section, we consider two-color QCD. Two-color QCD is
interesting for a number of reasons. In contrast to three-color
QCD, one can perform lattice simulations at finite baryon
chemical potential μB. This is a consequence of the special
properties of the gauge group SUð2Þc which leads to a real-
valued Dirac determinant even for μB ≠ 0. Hence, the sign
problem is absent in this case and one can use importance
sampling techniques as usual. Moreover, the order of the
deconfinement transition for pure-glue QCD is different in
SUð2Þc and SUð3Þc. For Nc ¼ 2 it is second order, while for
Nc ¼ 3 it is first order. In two-color QCD, the critical
exponents are expected to be those of the two-state Potts
model, which follows from universality arguments.
In this section, we discuss two-color QCD in a strong

magnetic field. While there is a number of model calculations
in two-color QCD at finite temperature and baryon chemical

potential, there is only a single calculation at finite B (Cruz
and Andersen, 2013).
In the Polyakov gauge, the background non-Abelian gauge

field is diagonal in color space,

A0 ¼ 1
2
σzθ; ð161Þ

where θ is real. The thermal Wilson line can then be written as

L ¼
�
eiϕ 0

0 e−iϕ

�
; ð162Þ

where ϕ ¼ ð1=2Þβθ. The Polyakov-loop variable becomes

Φ ¼ cosðϕÞ. ð163Þ

In analogy with Eq. (144), the Fermi-Dirac distribution
function becomes

nFðβEqÞ ¼
1þ ΦeβEq

1þ 2ΦeβEq þ e2βEq
: ð164Þ

At low temperature, Φ ≈ 0 and so Eq. (164) describes
excitations with energy 2Eq, i.e., that of a bound state.10

Again this is referred to as statistical confinement. At high
temperature, Φ ≈ 1 and Eq. (164) describes excitations with
energy Eq, i.e., deconfined quarks.
The Polyakov-loop potential in the gauge sector used is

(Brauner, Fukushima, and Hidaka, 2009)

Ωgauge ¼ −bT½24Φ2e−βa þ ln ð1 − Φ2Þ�; ð165Þ

where a and b are constants. This form is motivated by the
lattice strong coupling expansion (Fukushima, 2008). In the
gauge theory without dynamical quarks, one can find an
explicit expression for the Polyakov-loop variable

Φ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

24
eβa

r

as a function of T and so a ¼ Tc ln 24. Moreover, Φ goes to
zero in a continuous manner and the theory exhibits a second-
order transition.
A few remarks about the parameters in two-color QCD are

in order. ForNc ¼ 2, there are no experimental results to guide
us in the determination of the parameters. A common way of
determining them is to use Nc scaling arguments (Brauner,
Fukushima, and Hidaka, 2009). The pion decay constant
scales as

ffiffiffiffiffiffi
Nc

p
and the chiral condensate as Nc. With a cutoff

of Λ ¼ 657 MeV, this yields G ¼ 7.23 GeV−2 at the physical
point (Brauner, Fukushima, and Hidaka, 2009).
In Fig. 18, we show the Polyakov loop as a function of

T=mπ found by minimizing the Polyakov-loop potential (165)
(dotted line). We also show the normalized quark condensate

C SB
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T
TP

TB 0 175 MeV
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0.8

0.9
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1.2

eB m 2

T
,T

P
M

eV

FIG. 17. Phase diagram in the B-T plane. From Gatto and
Ruggieri, 2010.

9Note that there are still some B-dependent vacuum terms that
have not been removed by this renormalization procedure.

10For Nc ¼ 2, two (anti)quarks can form a color singlet that
belongs to the same multiplet as the usual three quark-antiquark
bound states. These states are the “baryons” of two-color QCD.
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obtained in the NJL model (dash-dotted line). The dashed and
solid lines show the Polyakov loop and normalized quark
condensate as functions of T=mπ in the PNJL model. From the
figure, we see that the coupling between the two variables
forces the curve for the normalized quark condensate to the
right and the curve for the Polyakov to the left so that the two
transitions have a common transition temperature.
In Fig. 19, we show the transition temperatures for the

chiral and deconfinement transitions as functions of jqBj=m2
π .

The bands show the values of the order parameters
0.4 < M=M0 < 0.6 and 0.4 < Φ < 0.6, where M0 is the
chiral condensate at T ¼ 0. For comparison we also show
the chiral transition for the NJL model. There seems to be a
minimum in Tc for the two transitions; see the discussion in
Sec. IX.B. The transitions coincide for B ¼ 0 (cf. Fig. 18), but
split at finite B. Note the similarity with the curves in Fig. 17
and that the deconfinement temperature is almost independent
of temperature.

VII. FUNCTIONAL RENORMALIZATION GROUP

The functional renormalization group (Wetterich, 1993) is a
powerful nonperturbative method that has gained popularity

since its formulation more than two decades ago. It is one way
of implementing the renormalization group ideas of Wilson
from the early 1970s. The average effective action, which is
denoted by Γk½ϕ�, is a function of a set of fields collectively
denoted by ϕ. The subscript indicates that the effective action
is a function of a momentum scale k.
This sliding scale k acts as an infrared cutoff, such that all

momenta q between k and the ultraviolet cutoff of the theory
Λ have been integrated out. At k ¼ Λ, no momenta have been
integrated out and the effective action equals the bare action
ΓΛ½ϕ� ¼ S½ϕ�. Thus the value S½ϕ� is the boundary condition
for the effective action. Moreover, when k ¼ 0, all the
quantum and thermal fluctuations have been integrated out
and Γ0½ϕ� is equal to the full quantum effective action. The
average effective action satisfies a functional integrodiffer-
ential equation, whose right-hand side depends on the particle
content. For the quark-meson model, a diagrammatic repre-
sentation of the flow equation is shown in Fig. 20 and it
reads

∂kΓk½ϕ� ¼ 1
2
Trf∂kRB

k ðpÞ½Γð2;0Þ
k ½ϕ� þ RB

k ðpÞ�−1g
− f∂kRF

k ðpÞ½Γð0;2Þ
k ½ϕ� þ RF

k ðpÞ�−1g; ð166Þ

where Γðm;nÞ
k ½ϕ� denotes the mth functional derivative with

respect to the bosonic fields and the nth functional derivative
with respect to the bosonic fields of the average effective
action. Moreover, the trace is over momentum space, field
indices, and for fermions over Dirac indices. The so-called
regulator functions RB

k ðpÞ and RF
k ðpÞ are added to implement

the renormalization group ideas mentioned previously. These
functions are large for p < k and small for p > k if
0 < k < Λ. The regulator functions also satisfy RB

ΛðpÞ ¼
RF
ΛðpÞ ¼ ∞. These properties guarantee that the modes with

p < k are heavy and decouple and only the modes p between
the sliding scale k and the ultraviolet cutoff Λ are light and
integrated out. We return to the choice of regulator func-
tions later.

A. Local-potential approximation

Of course one cannot solve the flow equation exactly, then
one would have solved the theory exactly, and so one needs to
make approximations. A framework for systematic approx-
imations is the derivative expansion. The leading-order
approximation in the derivative expansion is called the
local-potential approximation (LPA) (Morris, 1994) since
the full quantum effective action is approximated by the
Euclidean action (here for B ¼ 0)

FIG. 19. Transition temperatures for the deconfinement and the
chiral transition in the PNJL model as a function of jqBj=m2

π in
two-color QCD. From Cruz and Andersen, 2013.

FIG. 20. Diagrammatic representation of the exact flow equa-
tion for the effective action Γk½ϕ� for the quark-meson model. The
lines denote the exact field-dependent propagators for bosons
(solid) and fermions (dashed), while the circles denote the
insertion of the regulator functions RB

k ðpÞ or RF
k ðpÞ.

FIG. 18. Normalized constituent quark mass and Polyakov loop
in the chiral limit as a function of T=mπ . From Cruz and
Andersen, 2013.
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Γk½ϕ� ¼
Z

β

0

dτ
Z

d3x

�
ψ̄∂ψ þ gψ̄ðσ þ iγ5τ · πÞψ þ 1

2
ð∂μσÞ2 þ

1

2
ð∂μπÞ2 þ Uk − hσ

�
; ð167Þ

where Uk is a k-dependent local potential that depends on the Oð4Þ invariant σ2 þ π2. The term Γð2;0Þ
k ½ϕ� in Eq. (166) is

Γð2;0Þ
k ½ϕ� ¼

0
BBBBB@

p2 þ RB
k ðpÞ þ U0

k þ 2ρU00
k 0 0 0

0 p2 þ RB
k ðpÞ þ U0

k 0 0

0 0 � � � 0

0 0 0 � � �

1
CCCCCA; ð168Þ

where the � � � indicates p2 þ RB
k ðpÞ þ U0

k. Moreover U0
k ¼∂Uk=∂ρ and U00

k ¼ ∂2Uk=∂ρ2 with ρ ¼ ð1=2Þϕ2 ¼
ð1=2Þðσ2 þ π2Þ. We notice that the matrix Eq. (168) has
the form of an inverse bosonic tree-level propagator
where we make the substitution V → Uk þ RB

k ðpÞ, where
V ¼ ð1=2Þm2ϕ2 þ ðλ=24Þϕ4. Similarly, the second term in
Eq. (166) has the form of an inverse fermion tree-level
propagator with a quark mass mq ¼ gϕ.
We used a modification of the regulators (Litim, 2001;

Stokic, Friman, and Redlich, 2010)

RB
k ðpÞ ¼ ðk2 − p2Þθðk2 − p2Þ; ð169Þ

RF
k ðpÞ ¼

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
0 þ k2

P2
0 þ p2

s
− 1

!
pθðk2 − p2Þ: ð170Þ

The integral over three-momenta p is now easy to carry out
due to the step functions. It is also straightforward to carry out
the sum over Matsubara frequencies and the integrodiffer-
ential flow equation reduces to a partial differential equation
(Stokic, Friman, and Redlich, 2010)

∂kUk ¼
4k4

3ð4πÞ2
�

3

ω1;k
½1þ 2nBðω1;kÞ� þ

1

ω2;k
½1þ 2nBðω2;kÞ�

− 4NcNf

�
1

ωq;k
ð1 − 2nFðωq;kÞ

��
; ð171Þ

where ω1;k¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þU0p

, ω2;k¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þU0þ2ρU00p

, and ωq;k ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 2g2ρ

p
.

The flow equation can be generalized to a constant
magnetic background: we modify the regulators by
making the replacements p2 → p2

z þ jqBjð2nþ 1Þ and p2 →
p2
z þ jqfBjð2nþ 1 − sÞ above. (Note that here and in the

remainder of this section we denote the Landau levels by n so
there is no confusion with the sliding scale k.) After
integrating over pz and summing over Matsubara frequencies
P0, the flow equation can be written as (Skokov, 2012)

∂kUk ¼
4k4

3ð4πÞ2
�

1

ω1;k
½1þ 2nBðω1;kÞ�þ

1

ω2;k
½1þ 2nBðω2;kÞ�

�

þ 8jqBj
ð4πÞ2

X∞
n¼0

k
ω1;k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 −p2⊥ðq;n;0Þ

q
θ(k2 −p2⊥ðq;n;0Þ)

× ½1þ 2nBðω1;kÞ�

−
8Nc

ð4πÞ2
X∞

s;f;n¼0

jqfBjk
ωq;k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 −p2⊥ðqf;n; sÞ

q

× θ(k2 −p2⊥ðqf;n; sÞ)½1− 2nFðωqf;kÞ�; ð172Þ

where p2⊥ðq; n; sÞ ¼ jqBjð2nþ 1 − sÞ.
In a constant magnetic background, Uk depends on the two

invariants jvj and jΔj, where v ¼ ð1= ffiffiffi
2

p Þðσ þ iγ5π0Þ and
Δ ¼ ð1= ffiffiffi

2
p Þðπ1 þ iπ2Þ. Thus the potential depends on two

Oð2Þ invariants in accordance with the discussion in Sec. V.D.
We are not including a pion condensate and therefore the local
potential is evaluated at jΔj ¼ 0. However, the flow equation
still depends on the two partial derivatives ∂Uk=∂jvj and
∂Uk=∂jΔj. In the mean-field approximation, these partial
derivatives are identical, but beyond they generally are not.
In order to make the flow equation numerically tractable,
Andersen, Naylor, and Tranberg (2014) made the approxi-
mation that they are equal.
The flow equation (172) reduces to the flow equation (171)

in the limit B → 0: One defines the variable p2⊥ ¼ 2jqBjn,
makes the substitution p⊥dp⊥ ¼ jqBjdn, replaces the
sum by an integral over p⊥, and finally performs the
integral.
Sometimes, one defines a so-called extended mean-field

equation by omitting the bosonic terms on the right-hand side
of the flow equation. Then the terms that depend on the
derivatives of Uk on the right-hand side drop out and one can
formally integrate the flow equation to obtain the effective
potential (Kamikado et al., 2013). For T ¼ 0, this can be done
analytically even for nonzero magnetic field B.
The k-dependent minimum fπ;k satisfies

∂Uk

∂ϕ
				
ϕ¼fπ;k

¼ h; ð173Þ

i.e., by minimizing the modified effective potential ~Uk ¼
Uk − hϕ. The k-dependent masses m2

π;k and m2
σ;k can be
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expressed in terms of the second derivatives of the k-
dependent effective potential at the k-dependent minimum
fπ;k as follows:

m2
π;k ¼

∂Uk

∂ρ
				
ϕ¼fπ;k

; ð174Þ

m2
σ;k ¼ m2

π þ ρ
∂2Uk

∂ρ2
				
ϕ¼fπ;k

: ð175Þ

Combining Eqs. (173) and (174), we find fπ;km2
π;k ¼ h. For

k ¼ h ¼ 0, this is Goldstone’s theorem.
The boundary condition for the effective potential at k ¼ Λ

has the Oð4Þ-invariant form

UΛ ¼ 1

2
m2

Λϕ
2 þ λΛ

24
ϕ4: ð176Þ

The bare parametersm2
Λ and λΛ are tuned such that one obtains

the correct pion mass and pion decay constant in the vacuum
at k ¼ 0. In the calculation we use an ultraviolet cutoff
Λ ¼ 800 MeV, although the results are not too sensitive to
the exact value. We ignore the running of the Yukawa
coupling and set g ¼ gk ¼ 3.2258 for all values of k. This
gives a constituent quark mass of mq¼gϕ0¼gfπ¼300MeV.
Further details of the numerical implementation can be found
in Andersen and Tranberg (2012) and Andersen, Naylor, and
Tranberg (2014).
Once we have determined the parameters m2

Λ and λΛ, we
can solve the flow equation (172) for each value of B and T.
From these calculations, one can extract the critical temper-
ature for the chiral transition. In Fig. 21, we show the critical
temperature as a function of the magnetic field B at the
physical point. The dashed curve is the quark-meson model
and solid curve is the Polyakov-loop extended quark-meson
model. In agreement with various mean-field results, the
critical temperature is an increasing function of B.
It is interesting to note that the coupling to the Polyakov-

loop variable Φ lowers Tc. This is an interesting observation,
in particular, since the Polyakov loop has no influence on
magnetic catalysis at zero temperature. This effect can be
understood by calculating the free energy density in a given
background ϕ1 and comparing it with the free energy density
in the deconfining background ϕ1 ¼ 0 (Bruckmann, Endrődi,
and Kovacs, 2013).11 The difference between these two free
energy densities is

ΔF ¼ jqfBj
π2

Z
∞

0

ds
s2

e−m
2s cothðjqfBjsÞ

×

�
θ3

�
ϕ1 þ

1

2
π; e−1=4sT

2

�
− θ3

�
1

2
π; e−1=4sT

2

��
;

ð177Þ

where the elliptic theta function θ3ðu; qÞ is defined by

θ3ðu; qÞ ¼ 1þ 2
X∞
n¼1

qn
2

cosð2nuÞ: ð178Þ

The function jqfBj cothðjqfBjsÞ increases with s for all values
of s. Thus a magnetic field favors deconfined Polyakov loops
and therefore tends to lower the transition temperature. We
also note that this effect decreases with larger quark massesm.
We are not aware of any mean-field calculations that

directly compare the chiral transition temperature with and
without the Polyakov loop.12 However, based on this argu-
ment as well as the renormalization group calculations,
we expect to see the same behavior in the mean-field
approximation.

B. Beyond the local-potential approximation

The results we have been discussing so far are obtained
using the local-potential approximation. Recently, Kamikado

FIG. 21. Normalized critical temperature TϕðBÞ=Tϕð0Þ for the
chiral transition as a function of the magnetic field B with and
without the inclusion of the Polyakov loop.

FIG. 22. The transition temperature for the chiral transition as a
function of jqBj=m2

π for three different approximations normal-
ized to the transition temperature at B ¼ 0. From Kamikado and
Kanazawa, 2014.

11Recall Φ ¼ ð1=3Þ½1þ 2 cosð2ϕ1Þ� ¼ 1 for ϕ1 ¼ 0.

12There are of course many mean-field calculations with and
without the Polyakov loop, but a comparison between them requires
that physical observables in the vacuum are the same.
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and Kanazawa (2014) go beyond the LPA by including the
wave-function renormalization terms Z⊥ and Z∥. In order to
avoid the complication of having two invariants jvj and jΔj on
which the effective potential Uk depends, they consider the
case Nf ¼ 1. In this case, the symmetry is Uð1ÞV × Uð1ÞA in
the chiral limit or Uð1ÞV at the physical point. Either way, the
quark condensate gives rise to a single (pseudo)Goldstone
boson. One expects the charged pions to decouple for
sufficiently large magnetic fields since they become heavy
and therefore the Nf ¼ 2 model essentially reduces to the
model they considered; cf. the discussion after Eq. (71).
Moreover, their calculations were done at the physical point.
One of the interesting aspects of their work is the systematic

study of the various approximations. For example, they
studied the transition temperature in the mean-field approxi-
mation, the LPA, and beyond the LPA. The transition temper-
ature is determined by the peak of dMq=dT, where Mq is the
constituent quark mass. The result is shown in Fig. 22, where
the colored lines show the normalized transition temperature
in the three approximations. The inclusion of the mesonic
fluctuations lowers the transition temperature compared to the
mean-field approximation, while the inclusion of wave-
function renormalization effects increases the slope some-
what. It would be of interest to see the effects of including the
Polyakov loop as well.
The constituent quark mass as a function of B normalized to

the constituent quark mass for B ¼ 0 as a function of the

temperature normalized to the transition temperature Tpc;B¼0

for B ¼ 0 for the three different approximations is shown in
Fig. 23. For all temperatures, we see that the constituent quark
mass is an increasing function of the magnetic field; thus the
system shows magnetic catalysis. This is the reason for the
increase of the transition temperature as a function of B
displayed in Fig. 22.13 We note that magnetic catalysis is less
pronounced in the LPA as compared to the mean-field
approximation and this can probably be attributed to the
mesonic fluctuations that tend to counteract symmetry break-
ing (Andersen and Tranberg, 2012). The inclusion of the
wave-function renormalizaton terms increases magnetic
catalysis as a function of B such that the transition temperature
lies between the mean-field and the LPA curves. Again, it
would be of interest to see the effects of adding the Polyakov-
loop variable.
We next consider the wave-function renormalization terms

Z∥
k and Z

⊥
k . The regulator functions chosen are the anisotropic

functions

RB
k ðpÞ ¼ ðk2 − p2

zÞZ∥
kθðk2 − p2

zÞ; ð179Þ

RF
k ðpÞ ¼ −pz

�
k

jpzj
− 1

�
θðk2 − p2

zÞ; ð180Þ

FIG. 23. Normalized constituent quark mass as a function of the normalized temperature for the three different approximations and
different values jqBj. From Kamikado and Kanazawa, 2014.

13The small dip in the LPA curve is probably due to numerical
error (Kamikado and Kanazawa, 2015a).
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where pz ¼ γ3pz. Note that the regulators do not suppress p2⊥
and that they break rotational invariance even for B ¼ 0.
However, they give rise to a simple scale-dependent fermion
propagator and so it is useful for practical calculations. The
boundary condition for the wave-function renormalization
terms at k ¼ Λ and B ¼ 0 is Z∥

k¼Λ ¼ Z⊥
k¼Λ ¼ 1. Because of

theOð4Þ symmetry at B ¼ 0, we have Z∥
k¼0 ¼ Z⊥

k¼0. However,
due to the breaking of rotational invariance, they instead fine-
tuned Z∥

k¼Λ and Z⊥
k¼Λ such that Z∥

k¼0 ¼ Z⊥
k¼0 at T ¼ 3 MeV

and jqBj ¼ 0.5m2
π . This gives the values Z∥

k¼Λ ¼ 0.002
and Z⊥

k¼Λ ¼ 0.236.
The wave-function renormalization terms Z∥ and Z⊥ as

functions of the normalized temperature for various strengths
of the magnetic field are shown in Fig. 24. We first notice that
while Z∥

k¼0 increases with the magnetic field, Z⊥
k¼0 decreases.

This can probably be attributed to the fact that the flow
equation of the former has an explicit B dependence, while the
flow equation of the latter does not. Second, all curves meet
for sufficiently large temperatures and that the curves for Z⊥
have done so already before the transition temperature.

VIII. MAGNETIC CATALYSIS

In this section, we discuss magnetic catalysis at T ¼ 0.
Magnetic catalysis is the effect of either of the following:

(1) The magnitude of a condensate is enhanced by the
presence of an external magnetic field B if the
condensate is already present for zero magnetic field.

(2) An external magnetic field induces symmetry breaking
and the appearance of a condensate when the sym-
metry is intact for B ¼ 0.

Case (2) is also referred to as dynamical symmetry breaking by
a magnetic field. In the context of low-energy effective theories
of QCD, the condensate is the nonzero expectation value of the
sigma field or the quark condensate. The early works on
magnetic catalysis dated back to the late 1980s and early 1990s
and focused on the NJL model in 2þ 1 dimensions (Klimenko,
1991, 1992a, 1992b; Gusynin, Miransky, and Shovkovy, 1994,
1995a) and in 3þ 1 dimensions (Klevansky and Lemmer,
1989; Gusynin, Miransky, and Shovkovy, 1995b; Ebert and
Klimenko, 1999; Klimenko and Zhukovsky, 2008), and QED

(Gusynin, Miransky, and Shovkovy, 1995c, 1997, 1999). Other
applications are in QCD (Miransky and Shovkovy, 2002;
Ozaki, 2014) and the Walecka model in nuclear physics
(Haber, Preis, and Schmitt, 2014). Magnetic catalysis is now
considered a generic feature of matter in an external magnetic
field (Shovkovy, 2013).
Inspecting the dispersion relation for fermions in a mag-

netic field Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

f þ p2
z þ jqfBjð2kþ 1 − sÞ

q
we see that

it resembles the dispersion relation of a massive particle in
one spatial dimension with an effective mass M2

eff ¼
m2

f þ jqfBjð2kþ 1 − sÞ. Only for fermions with spin 1=2
(s ¼ 1) in the lowest Landau level (k ¼ 0) is this effective
mass independent of the magnetic field. This property dis-
tinguishes spin-1=2 fermions from bosons; cf. the spectrum,
Eq. (20). When the fermionic mass scale is much smaller than
the magnetic mass scale m2

f ≪ jqfBj, the higher Landau
levels decouple from the low-energy dynamics and the
long-distance behavior is determined by the lowest Landau
level. Since the particles in the lowest Landau level essentially
are confined to move along the magnetic field, i.e., the z axis,
the system becomes effectively one dimensional and the
system exhibits dimensional reduction D ¼ 3þ 1 → 1þ 1.
The (1þ 1)-dimensional character of the lowest Landau level
at low momentum can also be inferred from the form of the
fermion propagator given by Eq. (18). Isolating the k ¼ 0
contribution, we find

~S0ðp0; p3;p⊥Þ ¼ i exp

�
−

p2⊥
jqfBj

�
γ0p0 − γ3p3 þmf

p2
∥ −m2

f

× ½1þ is⊥γ1γ2�; ð181Þ

where we used La
−1ðxÞ ¼ 0. Note that dimensional reduction

does not take place for bosons as the ground-state energy is
not vanishingly small compared to the energy of the first
excited state k ¼ 0 and 1 in Eq. (20).
At this point, a few remarks on dimensional reduction and

spontaneous symmetry breaking are in order. We have seen
that a magnetic field enhances (spontaneous) symmetry
breaking as well as reduces the system to being essentially
1þ 1 dimensional. However, we know from the Coleman
theorem that there is no spontaneous symmetry breaking of a

FIG. 24. Wave-function renormalization terms Z∥
k¼0 and Z⊥

k¼0 as functions of the normalized temperature for various magnetic fields.
From Kamikado and Kanazawa, 2014.
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continuous symmetry in 1þ 1 dimension and therefore no
massless Nambu-Goldstone boson can exist (Coleman,
1973).14 The point here is that hψ̄ψi is neutral with respect
to the magnetic field and that the Goldstone boson π0 is a
neutral excitation with respect to the magnetic field (Gusynin,
Miransky, and Shovkovy, 1996). The motion of the center of
mass of π0 is not restricted to being along the magnetic field as
it is an electrically neutral particle.
Let us discuss the NJL model first. For simplicity, we

consider the chiral limit m0 ¼ 0 and the case Nc ¼ Nf ¼ 1. If
we denote the constituent quark mass by M, the mean-field
contribution to the free energy density is given byM2=2G; cf.
the first two terms in Eq. (102) withM0 ¼ M3 ¼ M for c ¼ 0.
Using a four-dimensional ultraviolet cutoff Λ, the one-loop
contribution to the effective potential for B ¼ T ¼ 0 is given
by Eq. (46). In the limit M ≪ Λ, we find

F ¼ M2

2G
þ 1

ð4πÞ2
�
−2Λ2M2 þ 1

2
M4 þM4 ln

Λ2

M2

�
: ð182Þ

The minimum is found by solving the gap equation, which
reads

M

�
4π2

G
− Λ2 þM2 ln

Λ2

M2

�
¼ 0: ð183Þ

M ¼ 0 is always a solution. However, a nontrivial solution
exists for G > Gc ¼ 4π2=Λ2. Hence, for couplings larger than
the critical value Gc, quantum fluctuations induce symmetry
breaking in the model. The possible solutions to the gap
equation in a constant magnetic field were first considered by
Klevansky and Lemmer (1989). For finite magnetic field, the
gap equation is

4π2

G
−Λ2þM2 ln

�
Λ2

M2

�

− j2qfBj
�
ζð1;0Þð0;xfÞþxf−

1

2
ð2xf−1Þ lnxf

�
¼ 0; ð184Þ

where xf ¼ M2=2jqfBj as before. For nonzero magnetic field
B and any G, this equation has only a nonzero solution for M.
Consequently, for G < Gc, a nonzero magnetic field induces
symmetry breaking when the symmetry is intact for B ¼ 0.
This effect was first observed in the context of the NJL model
in 2þ 1 dimensions by Klimenko (1991, 1992a, 1992b). For
G < Gc, the solution to Eq. (184) is (Gusynin, Miransky, and
Shovkovy, 1995b)

M2 ¼ jqfBj
π

exp

�
−

1

jqfBj
�
4π2

G
− Λ2

��
: ð185Þ

The gap (185) connects to the trivial solution in the limit
jqfBj → 0 as it should. Moreover, Eq. (185) has an essential
singularity at G ¼ 0, which shows its nonperturbative nature:
i.e., it is obtained by summing Feynman graphs from all orders
of perturbation theory. Any finite-order perturbative calcu-
lation yields a vanishing gap.15 In the lowest Landau level
approximation, the solution to the gap equation (184) is
M2 ¼ Λ2 exp½−4π2=GjqfBj�, where Λ is the cutoff. This
has the same form as Eq. (185) if we identify the cutoff Λ
with

ffiffiffiffiffiffiffiffiffiffiffijqfBj
p

. Thus dynamical symmetry breaking is essen-
tially a (1þ 1)-dimensional phenomenon. Furthermore, it is
interesting to note the dependence on G in Eq. (185) is the
same dependence as the solution to the gap equation in the
BCS theory for superconductivity (albeit at zero magnetic
field) (Gusynin, Miransky, and Shovkovy, 1996; Shovkovy,
2013). Because of the Fermi surface, the dynamics is also
1þ 1 dimensional.
We next turn to the QM model. As shown in Fig. 8, the

minimum ϕ of the one-loop effective potential at zero
temperature is an increasing function of B. Thus the model
exhibits magnetic catalysis. Ifm2 > 0, there is no spontaneous
symmetry at zero magnetic field, but at nonzero B, the gap is
ϕ2 ∼ jqBj exp½−m2=jqBj�; cf. Eq. (185).
Let us next discuss the functional renormalization group. In

Fig. 25, we show the minimum of the effective potential
Uk¼0ðϕÞ at T ¼ 0 as a function of ðjqBjÞ1=2=Λ in the quark-
meson model using the functional renormalization group. We
see that the minimum is an increasing function of the magnetic
field, so the model shows magnetic catalysis.
There have been a number of lattice calculations of the

chiral condensate at T ¼ 0 as a function of the magnetic field
both in the quenched approximation (Buividovich et al.,
2010a, 2010b; Braguta et al., 2012) and with dynamical
quarks (D’Elia and Negro, 2011; Endrődi, 2013).
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FIG. 25. Magnetic catalysis in the quark-meson model at the
physical point and at T ¼ 0. The vacuum expectation value of the
field ϕ as a function of the magnetic field scaled by the ultraviolet
cutoff Λ.

14This applies to massless excitations that are linear in the
momentum p for small p. Magnons are massless excitations in
ferromagnets that are quadratic in the momentum p for small p and
exist in 1þ 1 dimension. Linear Goldstone modes exist in 2þ 1

dimensions at T ¼ 0. See, e.g., Watanabe and Murayama (2014) for a
detailed discussion.

15Recall that the Nc expansion is nonperturbative in the sense that
each order corresponds to a sum of Feynman diagrams from all
orders of perturbation theory. The large Nc is the sum of all daisy and
superdaisy graphs.
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In Fig. 26, the results for the relative increment of the
condensates hūui and hd̄di as well as their average are shown
as functions of the magnetic field (D’Elia and Negro, 2011).
We notice that the ūu condensate is larger than the d̄d in
agreement with model calculations; cf. Fig. 5.
Bali et al. (2012d) defined the dimensionless quantity

ΣfðB; TÞ ¼
2mf

m2
πF2

½ψ̄fψfðB; TÞ − ψ̄fψfð0; 0Þ� þ 1: ð186Þ

In Fig. 27, the change of the condensate ð1=2ÞðhΔΣui þ
hΔΣdiÞ is shown as a function of jqBj at T ¼ 0 and at
the physical point (Bali et al., 2012d) [ΔΣf ¼
ΣfðB; TÞ − Σfð0; TÞ]. The lattice results are continuum
extrapolated. The model calculations are from one-loop chiral
perturbation theory (Cohen, McGady, and Werbos, 2007;
Andersen, 2012a, 2012b) as well as the Polyakov-loop
extended NJL model (Gatto and Ruggieri, 2011). Note that
at T ¼ 0 the PNJL model reduces to the NJL model. Clearly,
the result of the χPT calculations are in quantitative agreement
with lattice simulations for magnetic fields up to

jqBj ≈ 0.15 GeV2. For the (P)NJL model, the agreement with
lattice extends up to jqBj ≈ 0.30 GeV2.
The behavior of the quark condensate as a function of B can

also be understood in terms of the Banks-Casher relation
(Banks and Casher, 1980). The quark condensate hψ̄ψi is
proportional to the spectral density ρðλÞ of the Dirac operator
around zero. The Dirac operator depends on the magnetic
field, and therefore the spectral density depends on B. A
constant magnetic field enhances the spectral density around
zero and as a result it enhances the quark condensate; see also
the discussion in Sec. IX. This behavior of the spectral density
is already found in the quenched approximation (Buividovich
et al., 2010a, 2010b; Braguta et al., 2012) in which there is no
backreaction from the quarks to the non-Abelian gauge fields.
In model calculations, the quark condensate is given by the
expectation value of the operator Tr½DðBÞ þm�−1, which is
enhanced by the magnetic field. This enhancement is due to an
increase of the spectral density, which is a consequence of the
degeneracy being proportional to the magnetic flux; cf. the
discussion after Eq. (11).
Recently, Mueller, Bonnet, and Fischer (2014) investigated

dynamical quark mass generation and spin polarization in a
strong magnetic field B using the DS equations. They do this
in both the quenched and unquenched approximations at
T ¼ μB ¼ 0. The starting point is the Dyson-Schwinger
equation for the fermion propagator Sðx; yÞ in coordinate
space

S−1ðx; yÞ ¼ S−10 ðx; yÞ þ Σðx; yÞ; ð187Þ

where S0ðx; yÞ is the free fermion propagator and Σðx; yÞ is the
fermion self-energy

Σðx; yÞ ¼ ig2CFγ
μSðx; yÞΓνðyÞDμνðx; yÞ; ð188Þ

where

CF ¼ N2
c − 1

2Nc
;

ΓνðyÞ is the dressed fermion vertex and Dμνðx; yÞ is the
quenched gluon propagator. The quenched gluon propagator
in momentum space can be written as Dμνðk2Þ ¼ Dðk2ÞPμν,
where the projection operator is Pμν ¼ δμν − kμkν=k2. The
fermion propagator in the Ritus representation (Ritus, 1978) is

Sðx; yÞ ¼
X∞
k¼0

Z
d2p∥

ð2πÞ4
Z

∞

−∞
dp2EpðxÞ

×
1

iγ · p∥A∥ðpÞ þ iγ · p⊥A⊥ðpÞ þ BðpÞ ĒpðyÞ;

ð189Þ

where A∥ðpÞ, A⊥ðpÞ, and BðpÞ are the so-called dressing
functions. By taking the trace in the Dyson-Schwinger
equation, one finds a set of coupled equations for these
functions.
The gluon propagator function Dðk2Þ is written in terms of

the dressing function Zðk2Þ via Dðk2Þ ¼ Zðk2Þ=k2. The
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FIG. 26. Relative increment of the hūui (black circles) and hd̄di
(red up triangles) condensates as well as their average (blue down
triangles) as a function of b, where jqBj ∼ bð180 MeVÞ2. From
D’Elia and Negro, 2011.

FIG. 27. Comparison of the continuum limit of the change of the
condensate with that of chiral perturbation theory (Cohen,
McGady, and Werbos, 2007; Andersen, 2012a, 2012b) and the
(P)NJL model (Gatto and Ruggieri, 2011). From Bali et al.,
2012d.
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function Dðk2Þ has been calculated to high precision both
on the lattice (Leinweiber, 1999, 2000) and by solving the
Dyson-Schwinger equations (Fischer, Maas, and Pawlowski,
2009; Huber and von Smekal, 2013). The quenched gluon
propagator is used as input to the Dyson-Schwinger equation
together with the dressed vertex ΓμðpÞ. The latter is, however,
poorly known, and Mueller, Bonnet, and Fischer (2014) made
a simple Ansatz for it.
In the unquenched approximation, the gluon propagator is

improved by taking into account the quark loop in the Dyson-
Schwinger equation. This is shown diagrammatically in
Fig. 28 and the Dyson-Schwinger equation in momentum
space can then be written as

D−1
μν ðkÞ ¼ ðD−1

μν Þ0ðkÞ þ Πg
μνðkÞ þ Πq

μνðkÞ
≈D−1;eff

μν ðkÞ þ Πq
μνðkÞ; ð190Þ

where D−1;eff
μν ðkÞ is an effective inverse propagator corre-

sponding to the first diagram on the right-hand side in Fig. 28.
The self-energy Πq

μνðkÞ corresponds to the quark loop in
Fig. 28. The big blobs represent dressed propagators and
dressed vertices. Since the term D−1;eff

μν ðkÞ is isotropic, it is the
quark loop that generates the anisotropies in the dressed gluon
propagator.
Figure 29 displays the regularized16 hūui (solid black line)

and hd̄di quark condensates (solid red line) in the unquenched
approximation as a function of the magnetic field. For
comparison, the hūui condensate (dashed black line) in the
quenched approximation has been shown as well. One
observes that the condensates are different. This simply
reflects the isospin breaking due to the different electric
charges of the u and d quarks. The most interesting result
is that the quenched condensate is larger than the unquenched
condensate. Taking the backreaction of the quarks on the
gluonic sector leads to reduced magnetic catalysis. Whether
this leads to inverse magnetic catalysis around Tc is an open
question, but it is certainly of interest to investigate it.
A similar approach was used by Watson and Reinhardt

(2014), in which the Dyson-Schwinger equation was studied
in the rainbow approximation. In this approximation, the
dressed quark-gluon vertex is replaced with the bare (tree-
level) vertex, while the quark propagator and its inverse are
dressed. The gluon dressing function has a phenomenological
form that has been used to study dynamical chiral symmetry
breaking. They pay particular attention to the weak-field limit
and so this is complementary to Mueller, Bonnet, and Fischer
(2014). In order to connect to the case B ¼ 0, a

nonperturbative approximation to the quark propagator is
constructed, which involves a summation over the Landau
levels. If one does not sum over Landau levels, the mass gap
vanishes in the limit B → 0, which is incorrect (see Fig. 29). In
Fig. 30, the relative increment [see also Eq. (195)] is shown
using the Dyson-Schwinger approach as well as lattice results
from D’Elia and Negro (2011). The agreement is very good up
to field strengths of jqBj ¼ 0.3 GeV2. One must be cautious,
however, as the DS equations are solved in the chiral limit,
while the lattice results are for quark masses that correspond
to mπ ≈ 200 MeV.

IX. LATTICE SIMULATIONS AND INVERSE
MAGNETIC CATALYSIS

As discussed in the Introduction, QCD at zero baryon
chemical potential μB in an Abelian background field AEM

μ is
free of the sign problem and so QCD can in principle be
straightforwardly simulated on the lattice using standard
Monte Carlo algorithms. This statement is independent of
the color gauge group, which opens up the possibility for
doing lattice simulations for different theories. In this section,
we discuss lattice simulations and inverse magnetic catalysis
for both Nc ¼ 2 and 3.

FIG. 28. Dyson-Schwinger equation for the inverse gluon
propagator.
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FIG. 29. Regularized hūui (black) and hd̄di quark condensates
(red) together with the hūui condensate in the quenched approxi-
mation (dashed). From Mueller, Bonnet, and Fischer, 2014.
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FIG. 30. Comparison of the up-quark relative increment with
the lattice results of D’Elia and Negro (2011). ω is a parameter of
the gluon dressing function. From Watson and Reinhardt, 2014.

16The condensate of a heavy quark has been subtracted to obtain a
finite result (Mueller, Bonnet, and Fischer, 2014).
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A. SUð3Þc
In the physical case Nc ¼ 3 and with Nf ¼ 2, the first

lattice simulations at finite magnetic field were carried out by
D’Elia, Mukherjee, and Sanfilippo (2010). They used differ-
ent values of the bare quark masses corresponding to a pion
mass in the 200–480 MeV range. The magnetic field strengths
were up to jqBj ∼ 0.75 GeV2 and the calculations were
carried out with a lattice spacing of 0.3 fm and the results
were not continuum extrapolated. They found no evidence for
a splitting between the chiral and deconfinement transitions in
contrast to the PNJL and PQM model calculations. They also
found that the critical temperature increases very slowly with
the magnetic field as can be seen in Fig. 31. The results seem
to be in agreement with model calculations presented in
Secs. V and VII.
Bali et al. (2012c, 2012d) carried out lattice simulation

using the physical pion mass of mπ ¼ 140 MeV. Their results
are shown in Fig. 32. Their results have been continuum
extrapolated and show, perhaps somewhat surprisingly, that
the transition temperature is decreasing with the magnetic
field B. The results suggest that the critical temperature is a
complicated function of the magnetic field and the quark
masses.
Endrődi (2015) carried out lattice simulations up to mag-

netic fields of jqBj ¼ 325 GeV2. In addition, the limit B → ∞
was simulated directly, by considering the effective theory
relevant for this limit. This theory is an anisotropic pure gauge
theory (Miransky and Shovkovy, 2002). There is strong
evidence that this theory has a first-order transition implying
that the QCD phase diagram has a critical point and the
location of it was estimated based on lattice data. The resulting
phase diagram is shown in Fig. 33. Note, in particular, that the
numerical simulations suggest that Tc decreases with B for all
values of B.
Recently Bali et al. (2012c, 2012d) and Bruckmann,

Endrődi, and Kovacs (2013) analyzed in detail lattice results
and thereby explained the discrepancy for Tc as a function of
B between the model calculations such as (P)NJL and (P)QM
models and their results.

The chiral condensate can be written as

hψ̄ψi ¼ 1

ZðBÞ
Z

dUe−Sg det½DðBÞ þm�Tr½DðBÞ þm�−1;

ð191Þ

where the partition function ZðBÞ is

ZðBÞ ¼
Z

dUe−Sg det½DðBÞ þm�; ð192Þ

and Sg is the pure-glue action. The magnetic field enters via
the operator Tr½DðBÞ þm�−1 as well as the fermion functional
determinant detðDðBÞ þmÞ. We can think of
Pðm;U; BÞ≡ ½1=ZðBÞ�e−Sg detðDðBÞ þmÞ, where U
denotes the gauge-field configuration that corresponds to
e−Sg as a measure. In order to study the contributions to
magnetic catalysis coming separately from the change in the
operator and in the measure, one defines the two condensates

hψ̄ψival ¼ 1

Zð0Þ
Z

dUe−Sg det½Dð0Þ þm�Tr½DðBÞ þm�−1;

ð193Þ
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FIG. 31. Transition temperature normalized to Tc at B ¼ 0 for
the deconfinement and the chiral transition as a function of
jqBj=T2. Here T ¼ 1=Nta, where Nt is the number of lattice
points and a is the lattice spacing. From D’Elia, Mukherjee, and
Sanfilippo, 2010.

FIG. 32. Transition temperature for the deconfinement as a
function of jqBj for different lattice spacings (solid curves) and
the continuum-extrapolated result (band). From Bali et al., 2012a.

FIG. 33. Phase diagram in the B-T plane. From Endrődi, 2015.
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hψ̄ψisea ¼ 1

ZðBÞ
Z

dUe−Sg det½DðBÞ þm�Tr½Dð0Þ þm�−1:

ð194Þ

These are the so-called valence and sea condensates. The
valence condensate is the average of the trace of the
propagator in a constant magnetic background, but where
the sampling of the non-Abelian gauge configurations is done
at B ¼ 0. The sea contribution is the average of the same
operator in zero magnetic field, but where the sampling is
done at nonzero B. The sea effect is absent in the quenched
approximation. More generally, a sea observable is an
observable that does not depend explicitly on the magnetic
field. The Polyakov loop is another example of a sea
observable. We note that the sea condensate equals a con-
densate of a neutral quark in a two-flavor theory with one
electrically charged and one neutral quark since the magnetic
field does not appear in the operator, but in the determinant.
A useful quantity is the relative increment rðBÞ of the quark

condensate as a function of B, which is defined by

rðBÞ ¼ hψ̄ψiðBÞ
hψ̄ψið0Þ − 1: ð195Þ

The relative increments rval=seaðBÞ are defined in a similar
manner. D’Elia and Negro (2011) calculated the three quan-
tities rðBÞ, rvalðBÞ, and rseaðBÞ at zero temperature. The result
is shown in Fig. 34. The valence contribution rvalðBÞ (up
triangles, red data points) and the sea contribution rseaðBÞ
(down triangles, blue data points) are both positive. The sum
of the two (open circles) and rðBÞ (full circles) are shown as
well. We notice that the open circles are very close to the full
circles, except for very large values of B, which suggests that
the relative increment can be written as a sum of the valence
and sea contributions. The same behaviors of rvalðBÞ and
rseaðBÞ are found in the simulations by Bruckmann, Endrődi,
and Kovacs (2013) for physical quark masses at T ¼ 0.

As mentioned earlier, it is possible to understand the
behavior of the valence condensate by employing the
Banks-Casher relation (Banks and Casher, 1980). In the chiral
limit, the chiral condensate is proportional to the spectral
density ρðλÞ of the Dirac operator around zero. In Fig. 35,
Bruckmann, Endrődi, and Kovacs (2013) showed the spectral
density for three values of the magnetic field B. The
ensembles of non-Abelian gauge-field backgrounds are gen-
erated at zero magnetic field and at T ¼ 142 MeV. It is
evident from Fig. 35 that the spectral density and therefore the
valence condensate increases with the strength of the magnetic
field. This behavior is independent of the temperature.
At temperatures around the transition temperature, the

valence condensate is still positive while the sea condensate
is negative. Hence there is a competition between the two,
leading to a net inverse catalysis. The sea contribution can be
viewed as a backreaction of the fermions on the gauge fields
and this effect is not present in the model calculations as there
are no dynamical gauge fields. The behavior of the sea
contribution was also carefully analyzed by Bruckmann,
Endrődi, and Kovacs (2013). Introducing −ΔSfðBÞ ¼
log det½DðBÞ þm� − log det½Dð0Þ þm�, one can rewrite the
full condensate as

hψ̄ψi ¼ he−ΔSfðBÞTr½DðBÞ þm�−1i0
he−ΔSfðBÞi0

; ð196Þ

where the subscript 0 indicates that the expectation values are
at B ¼ 0. We note that Eq. (196) reduces to the valence
condensate if we replace the exponential factor e−ΔSfðBÞ

by unity.
In Fig. 36, Bruckmann, Endrődi, and Kovacs (2013) showed

a scatter plot of the condensate as a function of the change in the
action ΔSfðBÞ due to the magnetic field for a magnetic field
strength of jqBj ≈ 0.5 GeV2 and T around the transition
temperature. Each point represents a gauge configuration and
they were generated at B ¼ 0, and therefore a simple averaging
of Tr½DðBÞ þm�−1 without weighting each configuration in the
ensemble with the Boltzmann factor e−ΔSfðBÞ gives the valence
condensate. In order to calculate the full quark condensate, one
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FIG. 34. Relative increments rðBÞ, rvalðBÞ, and rseaðBÞ at zero
temperature See the main text for details. From D’Elia and Negro,
2011.

FIG. 35. Spectral density of the Dirac operator for three different
values of the magnetic field B. From Bruckmann, Endrődi, and
Kovacs, 2013.
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must average Tr½DðBÞ þm�−1 over the gauge configurations
including the weight factor e−ΔSfðBÞ. Generally, larger values of
the condensate correspond to larger values ofΔSfðBÞ and, as a
result, the weight of the associated gauge configuration is
suppressed. This suppression is particularly effective around Tc
and in fact overwhelms the valence effect and therefore leads to
inverse magnetic catalysis in the transition region. This sup-
pression is not present for larger quark masses; cf. Fig. 34. One
therefore might expect the sea effect to be even more pro-
nounced in the chiral limit. We finally add that the recent
simulations of Bornyakov et al. (2014) with large quark masses
that correspond to a pionmass of approximately 500MeV show
a different behavior. Using chiral fermions instead of staggered
fermions, they found clear evidence for inverse magnetic
catalysis also for large pion masses. The analysis was based
on the behavior of the chiral condensate, the expectation value
of the Polyakov loop, as well as the spectral density as functions
of B for two different values of the temperature. The results
seem to indicate that the chiral properties are an important
ingredient in inverse magnetic catalysis.

B. SUð2Þc
Recently, Ilgenfritz et al. (2012, 2014) carried out lattice

simulations with dynamical fermions. We focus on their

second paper, which is an extension of the first to smaller
quark masses. They used Nf ¼ 4 and equal electric charge as
well as quark masses that correspond to a pion mass mπ of
approximately 175 MeV. The transition temperature for B ¼ 0

is in this case Tc ≈mπ .
Figure 37 shows the mass dependence of the bare chiral

condensate for three different values of the magnetic
field, B ¼ 0 (gray), jqBj ¼ 0.67 GeV2 (blue), and jqBj ¼
1.69 GeV2 (red) and two different temperatures: 147 MeV
(left) and 195 MeV (right). Inspecting the left panel, the data
points suggest that the system is in the chirally broken phase
for all three values of the magnetic field. In contrast, the data
points on the right panel indicate that the chiral condensate is
zero (extrapolating to the chiral limit) for B ¼ 0 and
jqBj ¼ 0.67 GeV2, while the chiral condensate is nonzero
for jqBj ¼ 1.69 GeV2. This behavior suggests that the critical
temperature grows with B for very strong magnetic fields.
Further insight can be gained from Fig. 38, where they

show the expectation values of the Polyakov loop (left panel)
and the chiral condensate (right panel) at T ¼ 195 MeV as
functions of jqBj up to jqBj ¼ 1.69 GeV2. The left panel
shows a rise of the Polyakov loop for magnetic fields up to
approximately jqBj ¼ 0.7 GeV2. This suggests that one goes
deeper into the deconfinement region and that the system
exhibits inverse magnetic catalysis at low values of the
magnetic field. For values of the magnetic field larger than
jqBj ¼ 0.7 GeV2, there is a significant drop of the expectation
value of the Polyakov loop. This indicates that we are going
back into the confinement region and that the system exhibits
magnetic catalysis for large values of the magnetic field.
The results suggest that the critical temperature decreases

for weak magnetic fields and increases for strong magnetic
fields. A conjectured phase diagram based on these observa-
tions is shown in Fig. 39. A direct comparison with the only
existing model calculation (Cruz and Andersen, 2013) is not
straightforward since Nf ¼ 2 with qu ¼ 2=3 and qd ¼ −1=3
were used. Nevertheless, note the similarity with Fig. 19,
where a small minimum can be seen. However, to firmly
conclude, a thorough analysis involving separating the valence
and sea effects along the lines of Bruckmann, Endrődi, and
Kovacs (2013) would be of interest.

FIG. 36. Scatter plot of the down-quark condensate as a function
of ΔSfðBÞ. The magnetic field strength is jqBj ≈ 0.5 GeV2 and
T ∼ Tc. From Bruckmann, Endrődi, and Kovacs, 2013.

FIG. 37. Mass dependence of the bare chiral condensate for three different values of the magnetic field and two different temperatures:
147 MeV (left) and 195 MeV (right). From Ilgenfritz et al., 2014.
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X. MODEL CALCULATIONS REVISITED

After it was realized that most model calculations were in
disagreement with the lattice calculations, there has been
significant effort to modify them such that they reproduce the
correct behavior of Tc as a function of B, or to propose a
mechanism for inverse magnetic catalysis around Tc
(Fukushima and Pawlowski, 2012; Chao, Chu, and Huang,
2013; Fraga, Noronha, and Palhares, 2013; Fukushima and
Hidaka, 2013; Kojo and Su, 2013; Ayala et al., 2014; Braun,
Mian, and Rechenberger, 2014; Farias et al., 2014;
Fayazbakhsh and Sadooghi, 2014; Ferreira, Costa,
Lourenco et al., 2014; Ferreira, Costa, Menezes et al.,
2014; Ferreira, Costa, and Providência, 2014; Fraga, Mintz,
and Schaffner-Bielich, 2014; Tawfik and Magdy, 2014; Yu,
Liu, and Huang, 2014; Ayala, Loewe, and Zamora, 2015;
Ferrer, de la Incera, and Wen, 2015; Mueller and Pawlowski,
2015; Yu, Van Doorsselaere, and Huang, 2015). A large
number of papers have been focusing on B-dependent
coupling constants or B-dependent parameters in the model
and we discuss some of them next.

A. B-dependent transition temperature T0

The parameter T0 that enters the Polyakov-loop potential
depends on the number of flavors Nf (and on the chemical

potential at finite density). At finite B, one expects T0 to
depend on the magnetic field B as well as Nf, which can be
taken into account by using a B-dependent function b ¼
bðNf; BÞ in analogy with Eq. (155). The first attempt to
incorporate a B-dependent transition temperature T0ðqBÞ was
made by Ferreira, Costa, Menezes et al. (2014) using the
entangled PNJL model. They made the Ansatz

T0ðqBÞ ¼ T0ðqB ¼ 0Þ þ ζðqBÞ2 þ ξðqBÞ4; ð197Þ

and fitted the parameters ζ and ξ to reproduce the transition
temperature extracted from the strange quark number suscep-
tibility data (Bali et al., 2012c). This approach gives a
crossover for jqBj < 0.25 GeV2 and a first-order transition
for jqBj > 0.25 GeV2, when T0ðqB ¼ 0Þ ¼ 186 MeV, which
corresponds to the critical temperature for 2þ 1 massless
flavors. The range of crossover transitions increases signifi-
cantly by using T0ðqB ¼ 0Þ ¼ 270 MeV, which corresponds
to the transition temperature for pure glue, i.e., by omitting the
backreaction from the fermions at B ¼ 0.
Recently Fraga, Mintz, and Schaffner-Bielich (2014) ana-

lyzed the possibility of inverse magnetic catalysis by allowing
the parameter T0 to be a a function of B in the PQM model.
They calculated the transition temperature Tc for the chiral
transition as a function of the parameter T0 in the mean-field
approximation. The result is plotted in Fig. 40. Any para-
metrization of T0ðBÞ gives rise to a continuous curve that
starts at some point on the black curve corresponding to B ¼ 0

and crosses the other curves as B is varied. Tc as a function of
B can be a decreasing function only if T0ðBÞ decreases
sufficiently fast. This can be the case for low values of the
magnetic field, if the point T0ðB ¼ 0Þ is sufficiently far to the
right on the black curve. However, since the curves become
flatter as one moves to the left in the figure, it is clear that
this behavior cannot be sustained. In other words, even if
the critical temperature initially is decreasing with B, even-
tually it will have a minimum and start increasing again
for larger values of B. Specific parametrizations bðnf; BÞ ¼
bðNfÞ − 60ðqBÞ2=m4

τ and bðnf; BÞ ¼ b0 − 60
ffiffiffiffiffiffiffiffiffijqBjp

=mτ

FIG. 38. Expectation values of the Polyakov loop (left) and the chiral condensate (right) vs jqBj at T ¼ 195 MeV. From Ilgenfritz et
al., 2014.

FIG. 39. Conjectured phase diagram in the B-T plane. The
horizontal line is T� ¼ 195 MeV. From Ilgenfritz et al., 2014.
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were given by Fraga, Mintz, and Schaffner-Bielich (2014) to
illustrate this point. The result is shown in Fig. 41.
Andersen, Naylor, and Tranberg (2015) recently performed

the same type of calculations using the functional renormal-
ization group. The inclusion of mesonic fluctuations does not
change the results and conclusions as anticipated by Fraga,
Mintz, and Schaffner-Bielich (2014).

B. B-dependent coupling constant

Farias et al. (2014) investigated the possibility of obtaining
inverse magnetic catalysis in the NJL model by using an
effective coupling constant that is a function of the magnetic
field B and the temperature T. Motivated by the running of the
QCD coupling, they proposed a B-dependent coupling GðBÞ
given by

GðBÞ ¼ G0

1þ α ln ð1þ β jqBj
Λ2
QCD

Þ
; ð198Þ

where G0 ¼ 5.022 GeV−2 is the value of the coupling at
B ¼ 0. Here α and β are free parameters that are determined

such that one obtains a reasonable description of the average
ð1=2ÞðΣu þ ΣdÞ calculated on the lattice at T ¼ 0 (Bali et al.,
2012d), where the dimensionless quantity Σf is defined in
Eq. (186). We notice that GðBÞ → 0 as B → ∞, a behavior
that is inspired by the running of αs at very large magnetic
fields jqBj ≫ Λ2

QCD (Miransky and Shovkovy, 2002):
1=αs ∼ lnðjqBj=Λ2

QCDÞ. At finite temperature they propose a
coupling GðB; TÞ given by

GðB; TÞ ¼ GðBÞ
�
1 − γ

jqBj
Λ2
QCD

T
ΛQCD

�
: ð199Þ

Here γ is another parameter that is fitted to reproduce lattice
data (Bali et al., 2012d) for ð1=2ÞðΣu þ ΣdÞ at the highest
temperatures available.
In Fig. 42, the average ð1=2ÞðΣu þ ΣdÞ is shown as a

function of temperature T for different values of the magnetic
field. The data points are from the lattice simulations of
Bali et al. (2012d).
The Ansätze for the coupling, Eqs. (198) and (199),

then give a reasonable description of the lattice data. At
T ¼ 0, increasing magnetic field implies larger average
ð1=2ÞðΣu þ ΣdÞ. However, for T ≈ 140 MeV, the curves cross
each another and the order of the curves is reversed beyond
this temperature. This shows inverse magnetic catalysis
around the transition temperature. The curves in Fig. 42
become steeper around the transition temperature as the
magnetic field increases, suggesting that transition becomes
first order for sufficiently large values of B. Strong evidence
for this behavior was found by Endrődi (2015) using lattice
simulations.
The thermal susceptibility is defined by

χ ¼ −mπ
∂σ
∂T ; ð200Þ

where

σ ¼ ðhūui þ hd̄dÞiðB; TÞ
ðhūui þ hd̄dÞiðB; 0Þ ; ð201Þ
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FIG. 40. Transition temperature Tc for the chiral transition as a
function of T0 for different values of the magnetic field. From
Fraga, Mintz, and Schaffner-Bielich, 2014.
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FIG. 42. The average ð1=2ÞðΣu þ ΣdÞ as a function of temper-
ature T for different values of the magnetic field. The data
points are the lattice results from Bali et al. (2012d). From
Farias et al., 2014.
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and is shown in Fig. 43 as a function of T for different values
of B. The peaks move to the left as a function of the magnetic
field. The peak of the thermal susceptibility χ defines a
pseudocritical temperature Tpc and in Fig. 44 the pseudocrit-
ical temperature is shown as a function of jqBj.
A similar approach was used by Ferreira, Costa, Lourenco

et al. (2014), where an effective coupling GsðjqBj=Λ2
QCDÞ was

determined such that the NJL model reproduces the normal-
ized transition temperature determined on the lattice. In the fit,
the lattice data points are for magnetic fields in the range
0 < jqBj < 1 GeV2. This way of determining the effective
coupling leads to a temperature-dependent average
ð1=2ÞðΣu þ ΣdÞ that qualitatively looks like the plot in
Fig. 42. The resulting normalized transition temperature
Tχ
c=T

χ
cðB ¼ 0Þ together with lattice data points is shown

in Fig. 45.
The B-dependent coupling GsðjqBj=Λ2

QCDÞ was sub-
sequently used as input to a PNJL calculation of the critical
temperature for the chiral as well as the deconfinement
transition. In the calculations, they used the value T0 ¼
210 MeV for the parameter in the Polyakov-loop potential.
The result is displayed in Fig. 46, where it is seen that a gap of
approximately 30 MeV between the two transitions persists
for all values of jqBj, with Tc for the chiral transition being
higher. The interesting feature here is not the gap as such since
this can probably be tuned by using a different value of T0;
rather it is the similar behavior of the two curves.

Recently Ferrer, de la Incera, and Wen (2015) studied the
possibility of inverse magnetic catalysis using the NJL model
in the lowest-Landau-level approximation. The starting point
is the gap M at zero temperature, which is given by

M ¼ 2GΛ
Gþ G0 exp

�
− 2π2

ðGþ G0ÞNcjqfBj
�
; ð202Þ

where G0 is the coupling in Eq. (105). In this approximation,
the phase transition is of second order and the critical
temperature is given by

Tc ¼ 1.16
ffiffiffiffiffiffiffiffiffiffiffi
jqfBj

q
exp

�
−

2π2

ðGþ G0ÞNcjqfBj
�
: ð203Þ

In the absence of a magnetic field, the coupling constant G is
related to the strong coupling constant αs via the one-gluon
exchange as G ¼ 4παs=Λ2. In a magnetic field, the strong
coupling splits into α∥s and α⊥s , and only the former depends on
B. Since jqfBj effectively acts as a cutoff in the LLL

approximation, the effective coupling becomes Gþ G0 ¼
4πα∥s=jqfBj and so the critical temperature goes like

Tc ¼ 1.16
ffiffiffiffiffiffiffiffiffiffiffi
jqfBj

q
exp

�
−

π

2Ncα
∥
s

�
: ð204Þ
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FIG. 43. Thermal susceptibility χ as a function of the temper-
ature T for different values of the magnetic field. From Farias et
al., 2014.
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FIG. 44. Pseudocritical temperature Tpc temperature as a func-
tion of the magnetic field B in the NJL model with the B and
T-dependent coupling (199). From Farias et al., 2014.

FIG. 45. Normalized pseudocritical temperature Tχ
c=T

χ
cðB ¼ 0Þ

as a function of jqBj in the NJL model with a B and T-dependent
coupling. From Ferreira, Costa, Lourenco et al., 2014.

FIG. 46. Pseudocritical temperatures for the chiral (solid line)
and deconfinement (dashed line) transitions as functions of jqBj
in the PNJL model. From Ferreira, Costa, Lourenco et al., 2014.
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Since α∥s is a decreasing function of the magnetic field (Ferrer,
de la Incera, and Wen, 2015), it is clear that Tc decreases
with B.
There have been attempts at obtaining inverse magnetic

catalysis by varying the Yukawa coupling g in the QM model
(Fraga, Mintz, and Schaffner-Bielich, 2014). This is possible
if g is an increasing function of B; see Fig. 47. However, any
curve gðBÞ must start at gð0Þ ¼ 3.22 (indicated by the vertical
dotted line) and successively cross the dashed (red) and solid
(black) curves. One therefore soon enters the shaded region
which indicates a first-order transition in the QM model. The
existence of a critical point suggested by lattice simulations at
very high B fields (Endrődi, 2015) then requires that gðBÞ
grows rapidly with B.
Motivated by the recent work on inverse magnetic catalysis

at finite temperature, Andersen, Naylor, and Tranberg (2015)
studied the quark-meson model using both dimensional
regularization and a sharp cutoff ΛUV. The critical temperature
for the chiral transition was calculated as a function of the
Yukawa coupling using different values of a sharp cutoff. The
results are shown in Fig. 48. The results using dimensional
regularization and a renormalization scale of Λ ¼ 100 MeV
and a low value for the sharp cutoff are in qualitative
agreement with the results of Fraga, Mintz, and Schaffner-
Bielich (2014), namely, a decreasing transition temperature as
a function of g.17 At larger values of the sharp cutoff, i.e., for
more reasonable cutoffs, the transition temperature is an
increasing function of the Yukawa coupling. This suggests
that magnetic catalysis is much more delicate than using a
B-dependent coupling constant; cf. the discussion of the sea
and valence effects in Sec. IX.
Recent papers (Braun, Mian, and Rechenberger, 2014;

Mueller and Pawlowski, 2015) studied the problem using
the Dyson-Schwinger equation and fixed-point analysis of the
effective four-quark coupling G at finite temperature and
magnetic field. Here the effects of the strong coupling are
incorporated in the quark gap equation and the

renormalization group equation for G. The results show
inverse magnetic catalysis for values of the magnetic field
up to approximately jqBj ∼ 1 GeV2. For larger values of the
magnetic field, magnetic catalysis is observed. The reason for
this nonmonotonous behavior is screening effects of the gauge
sector (Mueller and Pawlowski, 2015).

XI. CONCLUSIONS AND OUTLOOK

In this review, we discussed a number of low-energy models
and theories that are used to describe QCD in a magnetic
background at zero and finite temperature.
One aspect we think is missing in the literature is systematic

studies of various approximations. As discussed, parameter
fixing is important and nontrivial. There are many papers in
which a certain model and a specific set of parameters are
employed. However, it would be useful to compare various
approximations and levels of sophistication using the same
values for physical quantities. For example, it would be useful
to calculate the critical temperature or the magnetization in the
NJL model and its Polyakov-loop extended version and
compare the two. One of the few papers where a systematic
study was carried out is by Kamikado and Kanazawa (2014),
where the critical temperature is calculated in the mean-field
approximation, in the LPA, and beyond the LPA.
It is instructive to compare the results of the (P)NJL model

and the (P)QMmodel at the mean-field level. In this case, only
fermionic fluctuations are taken into account. If one takes into
account the vacuum fluctuations of the (P)QM model, the
results are similar. For example, the nature of the transition is
the same and the phase diagrams closely resemble each other.
This is not surprising as one is essentially evaluating the same
fermionic functional determinant. However, we have seen that
if the vacuum contribution is omitted in the (P)QM model, the
crossover at finite pion mass turns into a first-order transition.
In the same manner, the second-order transition in the chiral
limit becomes first order. In the (P)NJL model it makes no
sense to subtract the vacuum fluctuations as they are respon-
sible for spontaneous symmetry breaking in the vacuum. In
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FIG. 47. Tc as a function of the Yukawa coupling g for various
values of B. B ¼ 0: black solid line, jqBj ¼ 5m2

π : red dashed line,
and jqBj ¼ 10m2

π: blue dash-dotted line. From Fraga, Mintz, and
Schaffner-Bielich, 2014.

FIG. 48. Critical temperature as a function of the Yukawa
coupling g for various values of the sharp cutoff as well as a
renormalization scale of Λ ¼ 100 MeV. From Andersen, Naylor,
and Tranberg, 2015.

17The result in dimensional regularization is insensitive to the
precise value of Λ.
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the (P)QM model, spontaneous symmetry breaking is present
already at tree level provided by the quartic Higgs potential.
Regarding the calculations using the functional renormal-

ization group, there are several directions for further improve-
ment. For the physically most interesting cases Nf ¼ 2 and 3
[see Kamikado and Kanazawa (2015b) for a recent application
with Nf ¼ 2þ 1], one should solve the flow equation for the
effective potential as a function of the two invariants jvj and
jΔj, including wave-function renormalization terms in the
calculations. One might consider another regulator function
that ensures Z∥

k¼0 ¼ Z⊥
k¼0 in the vacuum. Finally, including

new condensates that are invariant under rotations about the
z axis is of interest. However, this requires the inclusion of
new interaction terms in the Lagrangian of the quark-meson
model and the problem is that one does not know the value of
their couplings.
The most important issue that we discussed is the disagree-

ment between model and lattice calculations regarding the
behavior of the transition temperature as a function of the
magnetic field. On the lattice, two contributions to the quark
condensate have been identified, namely, the valence and sea
contributions. While the former increases as a function of B
for all temperatures, the behavior of the latter is more
complicated. At zero temperature the sea contribution is also
increasing with the magnetic field and together with the
valence contribution, they give rise to magnetic catalysis.
Around the transition temperature, however, it decreases as a
function of B for physical quark masses. The sea contribution
overwhelms the valence contribution such that there is a net
suppression of the condensate, which leads to inverse mag-
netic catalysis and a decrease of the transition temperature as a
function of B. The mechanism behind this effect is that the
magnetic field in the quark determinant changes the relative
weight of the gauge configurations and that gauge configu-
rations with larger values of the condensate are suppressed by
the quark determinant (Bruckmann, Endrődi, and Kovacs,
2013). Moreover, using staggered fermions, the backreaction
of the quark determinant on the glue sector is very delicate;
small quark masses lead to inverse catalysis while large quark
masses lead to magnetic catalysis. Calculations employing the
(P)NJL model or the (P)QM show a different behavior;
the transition temperature increases with the strength of the
magnetic field. In hindsight, this disagreement should perhaps
not be surprising as there is no sea effect in the (P)NJL and (P)
QM models. However, it is interesting to note that the
coupling to the Polyakov loop in the QM model gives less
magnetic catalysis around the transition temperature than
without; cf. Fig. 21. Regarding the attempts to modify models
to accommodate inverse magnetic catalysis, most of them
simply use a B-dependent coupling, but do not couple the
Polyakov-loop variable to the quark determinant. The idea of
using a B-dependent parameter T0 in the Polyakov-loop
potential was implemented by Fraga, Mintz, and Schaffner-
Bielich (2014); however, it was shown not to lead to inverse
magnetic catalysis.
In conclusion, although the level of complexity and

sophistication in model calculations of the QCD transition
in a magnetic background are steadily improving, it remains a

challenge to properly incorporate the phenomenon of inverse
magnetic catalysis.
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APPENDIX A: NOTATION AND CONVENTIONS

We use the Minkowski metric gμν ¼ diagð1;−1;−1;−1Þ
and natural units such that kB ¼ ℏ ¼ c ¼ 1.
We use the Dirac and chiral representations of the γ matri-

ces. In Minkowski space they are given by

γ0 ¼
�
1 0

0 −1

�
; γ ¼

�
0 σ

−σ 0

�
; ðA1Þ

γ0 ¼
�
0 1

1 0

�
; γ ¼

�
0 σ

−σ 0

�
; ðA2Þ

where σ are the Pauli spin matrices. The γ matrices satisfy

fγμ; γνg ¼ 2gμν1; Tr½γμγν� ¼ 4gμν: ðA3Þ

The Euclidean γ matrices are related to the γ matrices in
Minkowski space by γj ¼ iγj and γ0 ¼ γ0. They satisfy

fγμ; γνg ¼ 2δμν1; Tr½γμγν� ¼ 4δμν: ðA4Þ

APPENDIX B: SUM INTEGRALS

The bosonic and fermionic sum integrals are defined by

XZ
P

¼ T
X

P0¼2πnT

Z
p
; ðB1Þ

XZ
fPg

¼ T
X

P0¼ð2nþ1ÞπT

Z
p
; ðB2Þ

where the integral is in d ¼ 3 − 2ϵ dimensions,

Z
p
¼
�
eγEΛ2

4π

�
ϵ Z ddp

ð2πÞd . ðB3Þ

The prefactor ðeγEΛ2=4πÞϵ is chosen such that Λ is associated
with the renormalization scale in the modified minimal
subtraction scheme MS. Here γE is the Euler-Mascheroni
constant. In the case of particles with electric charge qmoving
in a constant magnetic field, the sum -integral is a sum over
Matsubara frequencies P0, a sum of Landau levels k, and an
integral over momenta in d − 2 ¼ 1 − 2ϵ dimensions. For
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fermions, we also sum over spin s. We define for bosons and
fermions, respectively,

XZB
P

¼ jqBj
2π

T
X∞
k¼0

X
P0¼2πnT

Z
pz

; ðB4Þ

XZB
fPg

¼ jqfBj
2π

T
X
s¼�1

X∞
k¼0

X
P0¼ð2nþ1ÞπT

Z
pz

; ðB5Þ

where the integral is in d − 2 ¼ 1 − 2ϵ dimensions,

Z
pz

¼
�
eγEΛ2

4π

�
ϵ Z dd−2p

ð2πÞd−2 : ðB6Þ

Equations (B4) and (B5) reduce to Eqs. (B1) and (B2) in the
limit B → 0.
The specific sum integrals we need are

XZ
P

ln½P2
0 þ p2 þm2� ¼ −

1

2ð4πÞ2
�
Λ2

m2

�
ϵ
��

1

ϵ
þ 3

2

�
m4 þ 2J0ðβmÞT4 þOðϵÞ

�
; ðB7Þ

XZB
P

ln½P2
0 þ p2

z þM2
B� ¼

1

2ð4πÞ2
�

Λ2

j2qBj
�

ϵ
��ðqBÞ2

3
−m4

��
1

ϵ
þ 1

�
þ 8ðqBÞ2ζð1;0Þ

�
−1;

1

2
þ x

�
− 2JB0 ðβmÞjqBjT2 þOðϵÞ

�
;

ðB8Þ
XZ
fPg

ln½P2
0 þ p2 þm2

f� ¼ −
1

2ð4πÞ2
�
Λ2

m2
f

�
ϵ
��

1

ϵ
þ 3

2

�
m4

f − 2K0ðβmfÞT4 þOðϵÞ
�
; ðB9Þ

XZB
fPg

ln½P2
0 þ p2

z þM2
B� ¼ −

1

ð4πÞ2
�

Λ2

j2qfBj
�

ϵ
��

2ðqfBÞ2
3

þm4
f

��
1

ϵ
þ 1

�
− 8ðqfBÞ2ζð1;0Þð−1; xfÞ

− 2jqfBjm2
f ln xf − 2KB

0 ðβmfÞjqfBjT2 þOðϵÞ
�
; ðB10Þ

XZ
P

1

ðP2
0 þ p2 þm2Þ ¼ −

1

ð4πÞ2
�
Λ2

m2

�
ϵ
��

1

ϵ
þ 1

�
m2 − J1ðβmÞT2 þOðϵÞ

�
; ðB11Þ

XZB
P

1

ðP2
0 þ p2

z þM2
BÞ

¼ −
1

ð4πÞ2
�

Λ2

j2qBj
�

ϵ
�
1

ϵ
m2 − 2ζð1;0Þ

�
0;
1

2
þ x

�
jqBj − JB1 ðβmÞjqBj þOðϵÞ

�
; ðB12Þ

XZ
fPg

1

ðP2
0 þ p2

z þm2
fÞ

¼ −
1

ð4πÞ2
�
Λ2

m2
f

�
ϵ
��

1

ϵ
þ 1

�
m2

f þ K1ðβmfÞT2 þOðϵÞ
�
; ðB13Þ

XZB
fPg

1

ðP2
0 þ p2

z þM2
BÞ

¼ −
1

ð4πÞ2
�

Λ2

j2qfBj
�

ϵ
�
1

ϵ
m2

f − 2ζð1;0Þð0; xfÞjqfBj þ KB
1 ðβmfÞjqfBj þOðϵÞ

�
; ðB14Þ

where x ¼ m2=2jqBj, xf ¼ m2
f=2jqfBj. The bosonic and fermionic masses are MB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jqBjð2kþ 1Þ

p
and

MB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

f þ jqfBjð2kþ 1 − sÞ
q

, respectively. The generalized ζ function is defined by ζðs; qÞ ¼P∞
k¼0ðqþ kÞ−s. The thermal

functions JnðβMÞ, JBn ðβMÞ, KnðβmfÞ, and KB
n ðβmfÞ are defined by

JnðβmÞ ¼ 4eγEϵΓð1
2
Þ

Γð5
2
− n − ϵÞ β

4−2nm2ϵ

Z
∞

0

p4−2n−2ϵdpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p 1

eβ
ffiffiffiffiffiffiffiffiffiffiffi
p2þm2

p
− 1

; ðB15Þ

JBn ðβmÞ ¼ 8eγEϵΓð1
2
Þ

Γð3
2
− n − ϵÞ β

2−2nðj2qBjÞϵ
X∞
k¼0

Z
∞

0

p2−2n−2ϵ
z dpzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þM2

B

p 1

eβ
ffiffiffiffiffiffiffiffiffiffiffi
p2
zþM2

B

p
− 1

; ðB16Þ
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KnðβmfÞ ¼
4eγEϵΓð1

2
Þ

Γð5
2
− n − ϵÞ β

4−2nm2ϵ
f

Z
∞

0

p4−2n−2ϵdpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

f

q 1

eβ
ffiffiffiffiffiffiffiffiffiffiffi
p2þm2

f

p
þ 1

; ðB17Þ

KB
n ðβmfÞ ¼

4eγEϵΓð1
2
Þ

Γð3
2
− n − ϵÞ β

2−2nðj2qfBjÞϵ
X
s¼�1

X∞
k¼0

Z
∞

0

p2−2n−2ϵ
z dpzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þM2

B

p 1

eβ
ffiffiffiffiffiffiffiffiffiffiffi
p2
zþM2

B

p
þ 1

: ðB18Þ

The sum over Matsubara frequencies is

T
X
P0

ln ½P2
0 þ ω2� ¼ ωþ 2T ln ½1� e−βω�; ðB19Þ

where the upper sign is for fermions and the lower signs is for bosons.

APPENDIX C: SMALL AND LARGE-B EXPANSIONS

In this Appendix we list a number of small- and large-B
expansions of various ζ functions. The small-x expansions of
the various derivatives of the Hurwitz ζ functions are

ζð1;0Þð−1; xÞ ¼ ζ0ð−1Þ þ 1
2
x − 1

2
lnð2πÞx − x ln x

þOðx2Þ; ðC1Þ

ζð1;0Þð−1; 1
2
þ xÞ ¼ −1

2
ζ0ð−1Þ − 1

24
ln 2 − 1

2
x ln 2

þOðx2Þ; ðC2Þ

ζð1;0Þð0; xÞ ¼ −1
2
lnð2πÞ − ln x − γExþOðx2Þ; ðC3Þ

ζð1;0Þð0; 1
2
þ xÞ ¼ −1

2
ln 2 − 2x ln 2 − γExþOðx2Þ; ðC4Þ

where ζ0ð−1Þ ¼ 1=12 − lnðAÞ ≈ −0.165 421 and A is the
Glaisher-Kinkelin constant. The large-x expansion of the
various derivatives of the Hurwitz ζ functions are

ζð1;0Þð−1; xÞ ¼ −
1

4
x2 þ 1

2
x2 ln x −

1

2
x ln xþ 1

12
ln x

þ 1

12
þO

�
1

x2

�
; ðC5Þ

ζð1;0Þ
�
−1;

1

2
þ x

�
¼ −

1

4
x2 þ 1

2
x2 ln x −

1

24
ln x

−
1

24
þO

�
1

x2

�
; ðC6Þ

ζð1;0Þð0; xÞ ¼ x ln x − x −
1

2
ln xþ 1

12x
þO

�
1

x3

�
;

ðC7Þ

ζð1;0Þ
�
0;
1

2
þ x

�
¼ x ln x − x −

1

24x
þO

�
1

x3

�
: ðC8Þ

APPENDIX D: PROPAGATORS IN A MAGNETIC
BACKGROUND

In this Appendix, we briefly discuss the boson
propagator in a constant magnetic background. Denoting

the bosonic propagator in coordinate space by Δðx; x0Þ, it
satisfies the equation

½DμDμ þm2�Δðx; x0Þ ¼ δ4ðx − x0Þ; ðD1Þ

where Dμ ¼ ∂μ þ iqAEM
μ is the covariant derivative. In the

Landau gauge, we have AEM
μ ¼ ð0; 0;−Bx; 0Þ. We next

introduce the propagator Δðp0; p3;x⊥;x0⊥Þ via the Fourier
transform

Δðx; x0Þ ¼
Z

dp0dp3

ð2πÞ2 e−ip
0ðx0−x00Þþip3ðx3−x03ÞΔðp0;p3;x⊥;x0⊥Þ;

ðD2Þ

where x⊥ ¼ ðx1; x2Þ and x⊥ ¼ ðx01; x02Þ. Inserting Eq. (D2)
into Eq. (D1), we find

�
−p2

∥ − ∂2
x1 −

� ∂
∂x2 − iqBx

�
2

þm2

�
Δðp0; p3;x⊥;x0⊥Þ

¼ δ2ðx⊥ − x0⊥Þ; ðD3Þ

where p∥ ¼ ðp0; p3Þ. We next need a complete set of
eigenfunctions of the operator ∂2

x1 þ ð∂=∂x2 − iqBxÞ2, which
are the well-known solutions involving the Hermite poly-
nomials HkðxÞ. The normalized wave functions are

ψk;p2ðx⊥Þ ¼
1ffiffiffiffiffiffiffi
2πl

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kk!

ffiffiffi
π

pp Hk

�
x1

l
þ p2l

�

× e−1=2l
2ðx1þp2l2Þ2e−is⊥x2p2

; ðD4Þ

where s⊥ ¼ signðqBÞ and l2 ¼ 1=jqBj. These functions
satisfy the usual orthonormality and completeness relations:

Z
d2x⊥ψ�

k;p2ðx⊥Þψk0;p02ðx⊥Þ ¼ δkk0δðp2 − p02Þ; ðD5Þ

Z
∞

−∞
dp2

X∞
k¼0

ψk;p2ðx⊥Þψ�
k;p2ðx0⊥Þ ¼ δ2ðx⊥ − x0⊥Þ: ðD6Þ

Using the completeness relation (D6), the propagator can be
written as
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Δðp0;p3;x⊥;x0⊥Þ¼
Z

∞

−∞
dp2

X∞
k¼0

½−p2
∥þm2þjqBjð2kþ1Þ�−1

×ψk;p2ðx⊥Þψ�
k;p2ðx0⊥Þ; ðD7Þ

which after some algebra can be written as

Δðp0; p3;x⊥;x0⊥Þ

¼ 1

2πl

Z
∞

−∞
dp2

X∞
k¼0

½−p2
∥ þm2 þ jqBjð2kþ 1Þ�−1 1

2kk!
ffiffiffi
π

p

×Hk

�
x1

l
þ p2l

�
Hk

�
x01

l
þ p2l

�

× e−½p2lþðx1þx01Þ=2lþis⊥ðx2−x02Þ=2l�2e−ð1=4l2Þðx2−x02Þ2

× e−ð1=4l2Þðx1−x01Þ2eðis⊥=2l2Þðx1þx01Þðx2−x02Þ: ðD8Þ

We next need the following integral:

Z
∞

−∞
dxe−x

2

Hkðxþ zÞHkðxþ wÞ ¼ 2kk!
ffiffiffi
π

p
Lkð−2zwÞ; ðD9Þ

where LkðxÞ is a Laguerre polynomial of order k. In Eq. (D8),
we make the substitution p02 ¼ p2 þ ðx1 þ x01Þ=2l2 þ
is⊥ðx2 − x02Þ=2l2 and so we identify z ¼ ðx1 − x01Þ=2l −
is⊥ðx2 − x02Þ=2l and w ¼ −ðx1 − x01Þ=2l − is⊥ðx2 − x02Þ=2l.
This implies that −2zw ¼ ðx⊥ − x0⊥Þ2=2l2 and we can write

Δðp0; p3;x⊥;x0⊥Þ

¼ 1

2πl2
X∞
k¼0

½−p2
∥ þm2 þ jqBjð2kþ 1Þ�−1e−ð1=4l2Þðx⊥−x0⊥Þ2

× Lk

�ðx⊥ − x0⊥Þ2
2l2

�
eis⊥Φðx⊥;x0⊥Þ; ðD10Þ

where the so-called Schwinger phase is

Φðx⊥;x0⊥Þ ¼
ðx1 þ x01Þðx2 − x02Þ

2l2
: ðD11Þ

The propagator in Eq. (D10) is now a product of a
translationally invariant part and the Schwinger phase. The
Fourier transform Δðp∥; p⊥Þ of the translationally invariant
part is

Δðp∥;p⊥Þ ¼−2e−p2⊥l2
X∞
k¼0

ð−1Þk
p2
∥ −m2 − jqBjð2kþ 1ÞLkð2p2⊥l2Þ:

ðD12Þ

The term p2
∥ −m2 − jqBjð2kþ 1Þ is rewritten using

Schwinger’s trick

i
p2
∥ −m2 − jqBjð2kþ 1Þ ¼

Z
∞

0

dseis½p
2
∥−m

2−jqBjð2kþ1Þ�: ðD13Þ

Using the summation formula for the generalized Laguerre
polynomials Lα

nðxÞ

X∞
k¼0

Lα
kðxÞzk ¼ ð1 − zÞ−ðαþ1Þexz=ðz−1Þ; ðD14Þ

the translationally invariant propagator can be written as

Δðp∥; p⊥Þ ¼ i
Z

∞

0

ds
cosðjqBjsÞ

× exp

�
is½p2

∥ −m2� − ip2⊥
tanðjqBjsÞ

jqBj
�
. ðD15Þ

Finally, the propagator Δðx; x0Þ takes the form

Δðx; x0Þ ¼ eis⊥Φðx⊥;x0⊥Þ
Z

d4p
ð2πÞ4 e

−ipðx−x0ÞΔðp∥; p⊥Þ: ðD16Þ
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