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Dynamics of shear Alfvén waves and energetic particles are crucial to the performance of burning
fusion plasmas. This article reviews linear as well as nonlinear physics of shear Alfvén waves and
their self-consistent interaction with energetic particles in tokamak fusion devices. More specifically,
the review on the linear physics deals with wave spectral properties and collective excitations by
energetic particles via wave-particle resonances. The nonlinear physics deals with nonlinear wave-
wave interactions as well as nonlinear wave-energetic particle interactions. Both linear as well as
nonlinear physics demonstrate the qualitatively important roles played by realistic equilibrium
nonuniformities, magnetic field geometries, and the specific radial mode structures in determining the
instability evolution, saturation, and, ultimately, energetic-particle transport. These topics are
presented within a single unified theoretical framework, where experimental observations and
numerical simulation results are referred to elucidate concepts and physics processes.
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I. INTRODUCTION

Since the mid 20th century, mankind has pursued magnetic
fusion energy (MFE) research, which has reached a crucial
stage with the construction of the International Thermonuclear
Experimental Reactor (ITER) (Tamabechi et al., 1991; Aymar
et al., 1997). The purpose of ITER is investigating the physics
of burning plasmas, where deuterium-tritium (D-T) fusion
reactions

Dþ T → 4Heð3.52 MeVÞ þ nð14.06 MeVÞ

produce α particles and neutrons. In ideal conditions for a
fusion reactor, α particles thermalize (slow down) due to
Coulomb collisions with the thermal plasma and sustain the
fusion process by supplying the power input required to keep
the plasma in “ignition” condition. Thus, α particles need to
have sufficiently good confinement.
In toroidally symmetric magnetic fusion experimental

devices (tokamaks), e.g., ITER, the geometry of the confining
equilibrium magnetic field B0 is conceived to ensure properly
confined charged-particle orbits, including fusion α particles.
While transport due to classical collisional processes is
sufficiently small, the concern is transport via collective
fluctuations driven unstable by α particles via wave-particle
resonances. Such collective instabilities may be toroidal
symmetry breaking and, thus, lead to enhanced α-particle
loss. Such “anomalous” enhanced loss is, of course, detri-
mental to the success of MFE research.
In order to achieve wave-particle resonances, the α-particle

characteristic dynamical frequencies need to match the wave
frequencies of collective instabilities. As typically α-particle
velocity-space distribution function is isotropic and, after
slowing down due to Coulomb collisions, decreases with
energy; i.e., a velocity-space gradient is stabilizing, no collec-
tive fluctuations around the cyclotron frequency (or “gyrofre-
quency”) will be excited. That is, the relevant instability drive is
due to the finite real-space gradients. The dynamical frequen-
cies are, thus, associated with the guiding-center motion, i.e.,
transit, bounce, and precessional frequencies in, e.g., a tokamak
device. The corresponding wave frequencies then fall inside the

magnetohydrodynamic (MHD) regime (Alfvén, 1942, 1950),
which are Oð10−2Þ smaller than the ion gyrofrequency Ωi for
typical tokamak parameters. As to the three finite-frequency
MHD modes, the most relevant one is the nearly incompress-
ible, anisotropic shear Alfvén wave (SAW) with dispersion
relation ω ¼ k∥vA. Here k∥ ¼ k · B0=B0 is the parallel wave
number and vA ¼ B0=

ffiffiffiffiffiffiffiffiffiffiffiffi
4πϱm0

p
is the Alfvén speed, with ϱm0

the plasma mass density. The compressional, fast Alfvén wave
with ωf ≃ kvA tends to have frequencies at least Oð10Þ higher
than those of SAWand generally is more difficult to excite. The
slow sound wave with ωs ≃ k∥cs (cs is the ion sound speed) is
also typically stable due to significant ion Landau damping with
Te ∼ Ti, where Te and Ti are, respectively, thermal electron and
ion temperatures. This discussion is also applicable to energetic,
fast (relative to the thermal background plasma) charged
particles produced by auxiliary heating sources such as
radio-frequency waves and/or neutral beam injection.
Collective excitations of SAW instabilities by energetic, fast
particles (EPs) and the ensuing nonlinear consequences on EP
confinement as well as, on longer time scales, the confinement
and stability of thermal background plasmas are, thus, crucial
issues for both present-day MFE devices and future burning-
plasma experiments.

A. Historical review

Energetic particles in burning plasmas consist of electrically
charged fusion products as well as suprathermal ions and
electrons, generated by external power sources that are used for
heating and current drive or, more generally, for tailoring and
controlling equilibrium plasma profiles. The possible detrimen-
tal roles of SAWs on EP confinement in burning plasmas was
brought to researchers’ attention since the pioneering works by
Kolesnichenko and Oraevskij (1967), Belikov, Kolesnichenko,
and Oraevskij (1968), Mikhailovskii (1975), and Rosenbluth
and Rutherford (1975). In particular, Kolesnichenko and
Oraevskij (1967) suggested that instabilities may be caused
by fusion products, and Belikov, Kolesnichenko, and Oraevskij
(1968) showed for the first time the existence of SAW
instabilities with ω≃ k∥vA driven by monoenergetic EPs. As
the characteristic frequencies of EP motions in fusion devices
are of the same order of those typical of SAWs, and the SAW
group velocity is parallel to B0, resonant wave-particle inter-
actions may directly excite a variety of SAWs as well as yield
an efficient transport channel for EPs.
In the 1980s, increasing theoretical attention was devoted to

the analysis of the effects of fusion α’s in burning plasmas,
e.g., in the works by Kolesnichenko (1980) and Tsang,
Sigmar, and Whitson (1981). However, the problem of
SAWs interactions with EPs and of related transport processes
became an issue of immediate practical interest at the time of
the first observation of the fishbone mode instability in the
Poloidal Divertor eXperiment (PDX) tokamak (McGuire
et al., 1983), causing dramatic global losses of EPs due to
a secular transport process (White et al., 1983). This insta-
bility was explained as resonant excitation of an internal kink
mode and its self-consistent nonlinear interplay with the EP
nonuniform source (Chen, White, and Rosenbluth, 1984;
Coppi and Porcelli, 1986). After fishbone observation and
theoretical interpretation, MHDmodes were considered on the

015008-2 L. Chen and F. Zonca: Physics of Alfvén waves and energetic …

Rev. Mod. Phys., Vol. 88, No. 1, January–March 2016



same footing as SAWs concerning their possible effect on EPs
confinement. Essential physics ingredients in these analyses
were nonuniform equilibrium profiles of EP sources, of SAW
continuous spectrum (Chen, White, and Rosenbluth, 1984;
Cheng, Chen, and Chance, 1985; Chen, 1988, 1994), the
corresponding continuum damping by phase mixing (Grad,
1969), the specific equilibrium geometries of magnetized
plasmas, and the resultant frequency gaps inside the SAW
continuum (Pogutse and Yurchenko, 1978; D’Ippolito and
Goedbloed, 1980; Kieras and Tataronis, 1982). In the same
years, further demonstration of the articulated role played by
EPs in tokamak plasmas came with the evidence of
“sawtooth”1 stabilization in plasma discharges with additional
heating (Campbell et al., 1988) observed in the Joint European
Torus (JET) (Rebut, Bickerton, and Kenn, 1985). This was
explained with the strong stabilizing effect of magnetically
trapped EPs on the internal kink mode (Coppi et al., 1988;
White et al., 1988) and is an important example of plasma
operation control by external power input.
An important theoretical result was that discrete Alfvén

eigenmodes (AEs), such as toroidal AEs (TAEs), can exist
essentially free of continuum damping in the frequency gaps
of the SAW continuous spectrum (Cheng, Chen, and Chance,
1985). Experimental observations of TAEs (Heidbrink et al.,
1991; Wong et al., 1991) and of lower frequency AEs dubbed
beta-induced AEs (BAEs) (Heidbrink, Strait et al., 1993), and,
most importantly, the evidence that these modes may have
significant impact on EP transport were the findings that
brought significant and continuing attention to the physics of
SAWs and EPs in burning plasmas. In fact, only a small
fraction of fusion α’s or EP losses can be tolerated in ITER
without significantly degrading the fusion yield or damaging
the plasma facing components (ITER Physics Expert Group
on Energetic Particles, Heating and Current Drive, 1999;
Fasoli et al., 2007; Pinches et al., 2015).
Another important theoretical prediction was the existence

of energetic-particle continuum modes (EPMs) (Chen, 1994),
i.e., non-normal modes of the SAW continuous spectrum,
which emerge as discrete fluctuations at the frequency that
maximizes wave-EP power exchange above the threshold
condition associated with continuum damping. In this respect,
fishbones could be considered the first example of EPM. In
the presence of EPM and/or fishbones, the low critical level of
tolerable EP losses in a fusion device can become more severe.
In fact, being non-normal modes, both fishbones and EPMs
maintain maximum wave-EP power exchange and ensuing EP
transport through their nonlinear evolution by phase locking
with resonant particles via frequency sweeping (Briguglio,
Zonca, and Vlad, 1998; Vlad et al., 2004, 2013; Zonca et al.,
2005, 2015b; Briguglio et al., 2007). In turn, phase locking is
responsible for the secular transport process first introduced
by White et al. (1983) to explain fishbone induced EP losses.
Intuitively, secular losses of EPs are characterized by a
different energy spectrum than EP diffusive losses and tend
to be more critical, since resonant EPs are typically lost before
significant thermalization (White et al., 1983; Chen, 1988).

The self-consistent nonlinear interplay of EP spatial distribu-
tions with the EPM radial mode structures plays a crucial role
in all of these processes. Experimental observations of EPMs
and corresponding EP transport came right after their theo-
retical prediction (Gorelenkov et al., 2000; Gorelenkov and
Heidbrink, 2002). Meanwhile, first spectacular observations
of these phenomena, dubbed abrupt large amplitude events
(ALEs) (Shinohara et al., 2001), were reported in the JT-60U
tokamak (Shinohara et al., 2004) and are among the clearest
experimental evidences of strong EP redistributions along
with observations of EP losses and redistributions in the
Doublet III-D (DIII-D) (Duong et al., 1993; Strait et al., 1993;
Heidbrink and Sadler, 1994) and National Spherical Torus
eXperiment (NSTX) tokamaks (Fredrickson et al., 2009;
Podestà et al., 2009, 2011).
Since the early evidence of AEs and EPMs in tokamak

plasmas, a whole “zoology” of modes have been observed
(Heidbrink, 2002), with a classification following the quali-
tative features of experimental measurements. All these
fluctuations can be actually understood and explained within
the theoretical framework based on one single general fish-
bonelike dispersion relation (GFLDR) (Zonca and Chen,
2014b, 2014c), first introduced for the description of the
fishbone mode (Chen, White, and Rosenbluth, 1984), and
later on derived for different branches of SAW fluctuations,
demonstrating its general validity (Zonca and Chen, 2006,
2007; Chen and Zonca, 2007a; Zonca et al., 2007a; Chen,
2008). The usefulness of the GFLDR theoretical framework
stands in its capability of providing a simple description of the
underlying physics and extracting the distinctive features of
the different AE and EPM branches that have been observed
experimentally or in numerical simulations. Furthermore, the
GFLDR also naturally introduces the spatiotemporal scales of
the process involved, explaining thereby the connection
between MHD fluctuations, SAWs, and drift wave turbulence
(DWT). The historical review of various experimental obser-
vations of AE and EPM and their theoretical interpretations is
further articulated in Secs. III and IV. Successful feedbacks
between theory and experiment in this area were made
possible by the development of impressive diagnostic tech-
niques as well as numerical simulation capabilities, accom-
panied by detailed physics understanding. Meanwhile, one
element of enrichment was brought by the fruitful exchanges
between MFE tokamak and stellarator expert communities
(Kolesnichenko et al., 2011; Toi et al., 2011).
Of the two “routes” to nonlinear dynamics of EP-drivenSAW

instabilities (Chen and Zonca, 2013), i.e., nonlinear wave-wave
and wave-EP interactions (cf. Sec. IV), the former one was
historically addressed first in the classic work by Hannes
Alfvén, demonstrating the existence of the pure “Alfvénic
state,” where SAW can exist in uniform, incompressible
MHD plasmas independently of their amplitude due to the
cancellation of Reynolds and Maxwell stresses and the incom-
pressible plasma motion produced by SAW (Alfvén, 1942,
1950; Walén, 1944). However, nonlinear SAW-EP interactions
have attracted most of the interest until recently because of the
important role of EP transport in burning plasmas.
Within the first route, it is illuminating to explore the

various nonlinear wave-wave interactions that could lead to
the breaking of the Alfvénic state (Chen and Zonca, 2013).

1This name refers to the “shape” of the time trace of plasma
electron temperature on the magnetic axis.
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The effect of plasma compressibility in the macroscopic MHD
limit was investigated by Sagdeev and Galeev (1969), dem-
onstrating the decay instability of a SAW into an ion sound
wave (ISW) and a backscattered SAW. Later, plasma com-
pressibility effects were explored by Hasegawa and Chen
(1976) for microscale fluctuations with wavelengths of the
order of the thermal ion Larmor radius. This analysis not only
generalized the MHD results on the decay instability, but
demonstrated important consequences on plasma transport
due to the different features of scattered SAW fluctuation
spectra. These processes are discussed in Sec. IV.B, while
Sec. IV.C analyzes examples of processes that could break the
Alfvénic state in toroidal geometry as well as lead to cross-
scale couplings among MHD fluctuations, SAWs, and DWT.
Within the second route (cf. Sec. IV.D), the first nonlinear

analysis of “thermonuclear Alfvén instability” was reported
by Belikov, Kolesnichenko, and Oraevskij (1974), using the
quasilinear description of a weakly turbulent plasma
(Vedenov, Velikhov, and Sagdeev, 1961; Drummond and
Pines, 1962). This case shows the important influence of
original works on nonlinear wave-particle dynamics in one-
dimensional (1D) systems, investigated by pioneers in the
early 1960s (O’Neil and Malmberg, 1968), adopting the
paradigmatic case of the interaction of a suprathermal electron
beam with a plasma in a strong axial magnetic field. This
system provides the framework in which various processes
were investigated and understood, such as mode dispersion
relations, Landau damping in a finite-amplitude wave
(Mazitov, 1965; O’Neil, 1965), and nonlinear behavior due
to wave-particle interactions (O’Neil, Winfrey, and Malmberg,
1971). The interest for the beam-plasma system was revived in
the 1990s, when it was proposed as a paradigm for interpret-
ing experimental observation of AEs excitation by EPs and
related nonlinear dynamics processes near marginal stability
(Berk, Breizman, and Ye, 1992a; Breizman, Berk, and Ye,
1993; Berk, Breizman, and Pekker, 1996; Berk, Breizman,
and Petiashvili, 1997; Breizman et al., 1997), based on their
one-to-one correspondence with the evolution of the “bump-
on-tail” instability (Langmuir wave) in a 1D uniform plasma
(Berk and Breizman, 1990a, 1990b, 1990c). This bump-on-
tail paradigm, recently reviewed by Breizman and Sharapov
(2011), was extensively applied for comparisons of theoretical
model predictions with experimental observations. There are,
however, processes crucial to the dynamics of toroidal
plasmas such as fishbone induced EP losses (White et al.,
1983) as well as nonlinear EPM dynamics and ensuing EP
transport (Briguglio, Zonca, and Vlad, 1998; Zonca et al.,
2000, 2005; Vlad et al., 2004), which would require theo-
retical analyses based on an alternative “fishbone” paradigm
(Chen and Zonca, 2013; Zonca et al., 2015b). Magnetic field
geometry and plasma nonuniformities play major roles in this
fishbone paradigm. In particular, nonlinear dynamics due to
the self-consistent interplay of fluctuations evolution and EP
transport leads typically to secular EP losses due to
EPMs, fishbones, and phase locking of fluctuations with
resonant particles via frequency sweeping. Ultimately,
it is possible to demonstrate the unification of these two
paradigms for nonlinear wave-EP interactions (cf. Sec. IV.D),
based on the solution of the Dyson equation for the EP
distribution function (Al’tshul’ and Karpman, 1965).

Because of the intrinsic complexity involved in a self-
consistent nonlinear description of SAW fluctuations with
EPs, EP transport in burning plasmas has typically been
addressed by test-particle methods (Hsu and Sigmar, 1992;
Sigmar et al., 1992), i.e., removing the possible feedback of
EP redistributions on a given fluctuation spectrum (cf. Sec. V).
As AE fluctuations are local in nature and have generally
small intensity [see, e.g., Heidbrink (2008)], EP redistrib-
utions by AEs are expected to be typically small, unless
stochastization threshold of EP motions in phase space is
reached in the presence of many modes. Realistic predictions
of test-particle transport in ITER are, however, still not
available. In fact, not only is the threshold for stochastic
EP transport sensitive to details of the underlying physics
and adopted model (White et al., 2010a, 2010b), but predict-
ing EP redistributions and losses requires necessarily realistic
sources, geometries, and boundary conditions. Such thorough
and detailed calculation of AE spectra in ITER with
comprehensive global gyrokinetic and/or extended hybrid
MHD-gyrokinetic codes (cf. Sec. II) could be likely available
in the near future due to the progress in both computational
capabilities and understanding of essential physics
ingredients.

B. Scope of the present review

The first and thorough experimental review of SAWand EP
physics in burning plasmas was given by Heidbrink and
Sadler (1994). This work was followed by that of Wong
(1999), which was focused on experiments in the Tokamak
Fusion Test Reactor (TFTR) (Grove and Meade, 1985) but
provided a general overview in this area. A dedicated review
of α-particle physics experiments in TFTR was given by
Zweben et al. (2000), while high performance D-T experi-
ments in JET (Gibson, 1998) were stable to SAW excited by
fusion α’s (Sharapov et al., 1999). Meanwhile, the ITER
Physics Expert Group on Energetic Particles, Heating and
Current Drive (1999) gave the first review of the physics of
SAW and EPs in ITER plasmas, which was updated later on
(Fasoli et al., 2007), while the most recent review of this topic
can be found in Pinches et al. (2015).
Basic theoretical reviews can be found in Mahajan (1995),

analyzing the general linear properties of the SAW fluctuation
spectrum, and in Chen and Zonca (1995), with a discussion of
the complications and twists of SAW physics in realistic
toroidal geometries. A general overview of both linear and
nonlinear SAWand EP physics was given by Vlad, Zonca, and
Briguglio (1999), along with a discussion of numerical
simulation results using the hybrid MHD-gyrokinetic model
(Park et al., 1992). The work by Pinches et al. (2004) mainly
focused on the interplay between advancements in nonlinear
theory, also reviewed by Breizman (2006), and comparisons
with experimental data. Other brief overviews are available,
with emphasis on the self-consistent interaction of nonlinear
SAW dynamics with EP transport and complex behavior in
burning plasmas (Zonca et al., 2006; Chen and Zonca, 2007a).
Key issues for burning plasmas were summarized by

Heidbrink (2002) and a general review of basic physics of
SAWs and EPs in toroidal plasmas was given by Heidbrink
(2008). An updated view of experimental results since Wong
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(1999) and Heidbrink (2002) and of the further progress in
nonlinear theory comparison with experimental data was
presented by Breizman and Sharapov (2011). Recent over-
view works meanwhile focused on the progress made in
developing innovative diagnostic techniques and on the
modeling effort for the interpretation of the corresponding
observations (Sharapov et al., 2013; Gorelenkov, Pinches, and
Toi, 2014) as well as on the kinetic models and numerical
solution strategies adopted in comparisons of numerical
simulation results to experiments (Lauber, 2013). For stella-
rators, a recent experimental review can be found in Toi et al.
(2011), while theoretical aspects were reviewed by
Kolesnichenko et al. (2011), with emphasis on both the
“affinity and difference between energetic-ion-driven insta-
bilities in 2D and 3D toroidal systems.”
The scope of this review is to provide a comprehensive

analysis of physics processes involved with SAW and EP
behavior in burning plasmas within a unified and self-
contained theoretical framework. As prevalent Alfvénic fluc-
tuations are in the MHD frequency range (jωj ≪ Ωi), basic
equations are derived from the nonlinear gyrokinetic equation
(Frieman and Chen, 1982); cf. Sec. II. Most detailed deriva-
tions, which interested readers can find in Zonca and Chen
2014b, 2014c), are omitted in Sec. II. The main scope of
Sec. II is the discussion of fundamental physics processes
described by basic equations, especially their characteristic
spatial and temporal scales.
Experimental observations and numerical simulation results

are important elements of existing literature in this area and
are referred to in this work as a means for elucidating
theoretical concepts. Thus, this review offers different levels
of reading that are merged and integrated into the same
narrative to address the different aspects that may be of interest
to theoreticians, modelers, and/or experimentalists. The
GFLDR (cf. Sec. III.C) provides the foundation for the unified
theoretical framework used throughout this work and is
derived and discussed in Zonca and Chen (2014b, 2014c).
The present review shows the usefulness of the GFLDR
theoretical framework in suggesting the interpretation of
experimental observations and numerical simulation results
on the basis of the underlying physics. In this respect, various
models and computation techniques with different levels of
approximation can also be employed to validate and verify
theoretical predictions.
The application of the GFLDR theoretical framework to

nonlinear SAW and EP dynamics (cf. Sec. IV) allows
separating wave-wave and wave-EP nonlinear interactions
based on the respective spatiotemporal scales and unifying the
bump-on-tail and fishbone paradigms for nonlinear SAW-EP
interactions (Zonca et al., 2015b) based on the solution of the
Dyson equation for the EP distribution function. It also
naturally yields to the formulation of a general nonlinear
Schrödinger equation (NLSE) with integrodifferential non-
linear terms (cf. Sec. IV.A), which can be used to draw
analogies between this area of MFE and neighboring fields of
physics research, such as fluid turbulence, condensed matter,
nonlinear dynamics and complexity, fractional kinetics, and
accelerator physics (cf. Secs. IV.D and IV.E). This unified
approach also elucidates the role of EPs as mediators of cross-
scale coupling and long time-scale behavior in burning

plasmas (Zonca, 2008; Zonca and Chen, 2008; Zonca
et al., 2013), reviewed by Zonca et al. (2015a).
In spite of the broad range of topics discussed in this review,

it is far from being complete. A summary of relevant issues
left out of this work is given in Sec. VI, along with elements
for reflections on some of the major research topics in the
MFE field for the next decade or so, in the perspective of ITER
operations.

II. BASIC EQUATIONS AND CONCEPTS

In this section, we consider a magnetized plasma in general
geometry and briefly review equations for low-frequency
electromagnetic fluctuations, produced by the self-consistent
charged-particle motion. The low-frequency ordering in mag-
netized plasmas is referred as usual to oscillation frequencies
that are much smaller than the ion cyclotron frequency Ωi,
where Ω ¼ eB0=mc, with the subscript i denoting ions, B0

denotes the strength of the local equilibrium magnetic field,
e stands for the generic particle electric charge, and m for its
mass. Similarly, the subscript e refers to electrons and the
subscript E denotes EPs, which may be ions and/or electrons.
A self-consistent description of low-frequency fluctuations

is based on the derivation of gyrokinetic Maxwell equations
(Antonsen and Lane, 1980; Catto, Tang, and Baldwin, 1981;
Frieman and Chen, 1982),2 expressed in terms of moments of
the gyrocenter Vlasov (Boltzmann) distribution. Within this
approach, one can systematically decouple (Rutherford and
Frieman, 1968; Taylor and Hastie, 1968) the nearly periodic
particle gyromotion (Kruskal, 1962; Northrop, 1963) from the
fluctuation dynamics. This is achieved in two steps (Dubin
et al., 1983; Hahm, 1988; Hahm, Lee, and Brizard, 1988;
Brizard, 1989), based on asymptotic decoupling of the fast
gyromotion time scale from a set of Hamilton equations by
Lie-transform methods (Littlejohn, 1982; Brizard, 1990; Qin
and Tang, 2004). First, the guiding-center Hamilton equations
are derived eliminating the gyroangle dependence due to the
gyromotion of charged particles about B0. Second, the new
gyrocenter Hamilton equations are obtained eliminating the
gyroangle dependence in the perturbed guiding-center equa-
tions due to the presence of electromagnetic fluctuations. In
this way (Brizard and Hahm, 2007), it is possible to construct
the gyrocenter magnetic moment as an adiabatic invariant
corresponding to the fast and nearly periodic particle gyro-
motion in the gyrocenter gyroangle, while the guiding-center
magnetic moment adiabatic invariance is modified by the
introduction of low-frequency fluctuations (Taylor, 1967).
In the following, we discuss equations governing the low-

frequency response of a quasineutral, finite-β, magnetized
plasma, with β ¼ 8πP=B2

0 defined as the ratio between kinetic
and magnetic energy densities. We describe the low-frequency
plasma oscillations in terms of three fluctuating scalar fields,
having chosen to work in the Coulomb gauge: the scalar
potential perturbation δϕ, the parallel (to b ¼ B0=B0) mag-
netic field perturbation δB∥, and the parallel (to b) vector
potential fluctuation δA∥. For simplicity and hence clarity, we,

2See Brizard and Hahm (2007) for a recent and comprehensive
review.
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unless otherwise explicitly stated, neglected in this review
plasma rotation effects, which may be important in practical
applications (see, e.g., Secs. III.C and V.B) and can be, in
principle, included via extensions of the present theoretical
framework.

A. Gyrokinetic ordering of physical quantities

The ordering of spatiotemporal scales and fluctuation
strength is the usual one in gyrokinetic theory. The back-
ground plasma is described by means of the small parameter
ϵB ≡ ρi=LB, with ρi denoting the ion Larmor radius and

jρi∇ lnB0j ∼ ϵB and

���� 1Ωi

∂
∂t lnB0

���� ∼ ϵ3B: ð2:1Þ

A similar ordering is introduced for the background Vlasov
(Boltzmann) distribution function f0:

jρi∇ ln f0j ∼ ϵF and

���� 1Ωi

∂
∂t ln f0

���� ∼ ϵ3F: ð2:2Þ

The usefulness of having separate orderings, based on ϵB and
ϵF, is the possibility of introducing ϵB=ϵF as an auxiliary
ordering parameter for exploiting the inverse aspect-ratio
expansion in a=R0 ∼ ϵB=ϵF, with a and R0 the torus minor
and major radii, respectively. The time-scale ordering of
Eqs. (2.1) and (2.2) is consistent with the transport time-scale
ordering (Hinton and Hazeltine, 1976), as noted by Frieman
and Chen (1982).
Spatial and temporal scales in the fluctuation fields

ðδϕ; δA∥; δB∥Þ and distribution function ðδfÞ are described
in terms of the ordering parameters ðϵ⊥; ϵωÞ

jk⊥ρij ∼ ϵ⊥ ∼ 1 and

���� ωΩi

���� ∼ ϵω ≪ 1; ð2:3Þ

with k and ω the wave vector and angular frequency, and the
subscript ⊥ indicating the component perpendicular to b. The
ordering for k∥ is obtained from the condition that strong
wave-particle interactions may be accounted for, i.e., denoting
by vti the ion characteristic (thermal) speed

ω ∼ k∥vti and

���� k∥k⊥
���� ∼ ϵω

ϵ⊥
: ð2:4Þ

The ordering of Eqs. (2.3) and (2.4) may be applied either to
thermal ions as usual or to EPs, yielding to a broad range of
frequency and wavelength spectra of fluctuations that can be
described within the present theoretical framework
(cf. Secs. II.B, II.D, and II.E as well as Sec. III).
When investigating fluctuations of the Alfvén branch, the

jk∥=k⊥j ratio reflects the frequency ratio of shear to compres-
sional waves. In most of this work (see Secs. II.D and II.E), we
assume that these frequency scales are well separated for this
is the condition under which SAW and DAW (drift Alfvén
wave) are most easily excited by both thermal plasma and EPs
in fusion plasmas. Meanwhile, when considering compres-
sional Alfvén waves (CAWs), the frequency ordering reads
ω=Ωi ∼ jk⊥jvA=Ωi ∼ jk⊥ρij=β1=2, so that the oscillation

frequency can no longer be considered small compared with
Ωi for typical conditions in fusion plasmas. In this case, a
high-frequency gyrokinetic description of linear plasma
dynamics may still be derived (Chen and Tsai, 1983; Tsai,
Van Dam, and Chen, 1984; Lashmore-Davies and Dendy,
1989; Qin, Tang, Lee, and Rewoldt, 1999; Qin, Tang, and Lee,
2000), but its discussion is outside the scope of this review.
Note that while the condition jk∥=k⊥j≃ ϵω=ϵ⊥ ≪ 1 is con-
sistent with gyrokinetic ordering, it is in general not necessary
(Qin, Tang, and Rewoldt, 1998, 1999; Brizard and
Hahm, 2007).
The relative fluctuation levels are estimated by the ordering

parameter ϵδ:

ϵ⊥
���� δff0

����∼
���� δB⊥
B0

����∼
���� δ

_̄X⊥
vti

���� ∼ ϵδ ≪ 1; ð2:5Þ

with δ _̄X⊥ the perturbed gyrocenter velocity [cf. Eq. (2.25)]

jδ _̄X⊥j∼
���� cδE⊥

B0

���� ∼
����v∥ δB⊥

B0

���� ∼
����ϵ⊥ e

Ti
δϕ

����vti ∼
����ϵ⊥ e

Ti

v∥
c
δA∥

����vti
ð2:6Þ

and Ti stands for the ion characteristic (thermal) energy.
Finally, due to the condition jk∥=k⊥j ≪ 1, the compressional
component of the magnetic field fluctuation3 δB∥ satisfies the
perpendicular pressure balance (Chen and Hasegawa, 1991)

∇⊥ðB0δB∥ þ 4πδP⊥Þ≃ 0: ð2:7Þ

Thus, δB∥ is ordered as

���� δB∥

B0

���� ∼ βϵδ ≪ 1 ⇒

����μ∇⊥δB∥

Ωi

���� ∼ βϵ⊥ϵδvti ð2:8Þ

which applies in general for both low- and high-β magnetized
plasmas. Here μ ¼ v2⊥=ð2B0Þ is the magnetic moment.
In Sec. II.B, we summarize equations governing the low-

frequency response of a quasineutral, finite-β, magnetized
plasma, which apply for arbitrary β, i.e., in both space (Chen
and Hasegawa, 1991), for β ∼ 1, and laboratory plasmas
(Hahm, Lee, and Brizard, 1988), for β ≪ 1. The simplified
equations for β ≪ 1, more readily adopted for the description
of DAW dynamics in tokamaks which are the main focus of
this review, will be discussed in Sec. II.D. Finally, the further
limiting case of governing equations that may be generally
adopted for investigating DAW excitation by EPs in burning
plasmas is given in Sec. II.E.

B. Theoretical model and formal governing equations

Consistent with the gyrokinetic wavelength ordering, dis-
cussed in Sec. II.A, we assume k2λ2D ∼ λ2D=ρ

2
i ¼ Ω2

i =ω
2
pi ≪ 1,

with λD the Debye length and ωpi the ion plasma frequency.

3This denomination is due to the fact that δB∥ modifies the
magnetic energy density at order ϵδ.
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Thus, Poisson’s equation becomes the quasineutrality
condition

X
ehδfiv ¼ 0; ð2:9Þ

where
P

implicitly indicates summation on all particle
species and h� � �iv denotes integration in velocity space.
The equation for δB∥ is readily obtained from the

perpendicular component of the low-frequency Ampère’s
law (without displacement current, since jkj2c2 ≫ jωj2)

∇⊥δB∥ ¼ κδB∥ þ ∇∥δB⊥ þ ð∇bÞ · δB⊥

þ 4π

c

X
ehb × v⊥δfiv: ð2:10Þ

Here ∇∥ ≡ b · ∇, ∇⊥ ≡ ∇ − b∇∥, κ≡ b · ∇b is the equilib-
rium magnetic field curvature, and the perpendicular magnetic
field fluctuation can be expressed as

δB⊥ ¼ ∇⊥δA∥ × bþ ðb × κÞδA∥ þ b × ∇∥δA⊥
þ ðb × ∇bÞ · δA⊥: ð2:11Þ

The equation for δA∥ can be written in terms of the vorticity
equation

∇ · δj ¼ B0 · ∇
�
δj∥
B0

�
þ ∇ · δj⊥ ¼ 0: ð2:12Þ

Here the fluctuating parallel current density is expressed in
terms of δA∥ via the parallel component of the low-frequency
Ampère’s law

δj∥ ¼
c
4π

b · ∇ × ð∇ × δAÞ

¼ c
4π

f½−∇2 þ κ2 þ ð∇bÞ∶ð∇bÞ�δA∥ þ ð∇ × bÞ∥δB∥

þ ð∇bÞ∶ð∇δA⊥Þ þ ∇ · ½ð∇bÞ · δA⊥�
þ ðκ · ∇bÞ · δA⊥ þ ðb · ∇δA⊥Þ · κg; ð2:13Þ

while the fluctuating perpendicular current is obtained from
the perpendicular component of the force balance

∂
∂t δðϱmuÞ ¼ −∇ · δP þ δ

�
j × B
c

�
: ð2:14Þ

Here as usual we introduced the fluctuating plasma mass
density and flow

δϱm ¼
X

mhδfiv and δðϱmuÞ ¼
X

mhvδfiv; ð2:15Þ

as well as the perturbed stress tensor δP

δP ¼
X

mhvvδfiv: ð2:16Þ

Equation (2.14) is readily solved for δj⊥ and yields

�
1þ δB∥

B0

�
δj⊥ ¼ c

B0

b ×

� ∂
∂t δðϱmuÞ þ ∇ · δP

�

− j⊥0

δB∥

B0

þ ðj∥0 þ δj∥Þ
δB⊥
B0

: ð2:17Þ

Substituting back into Eq. (2.12), one obtains the general form
of the vorticity equation

B0

�
bþδB⊥

B0

�
·∇

�
δj∥
B0

�
þδB⊥ ·∇

�
j∥0
B0

�
þδB∥∇∥

�
δj∥
B0

þj∥0
B0

�

−ðj0þδjÞ ·∇
�
δB∥

B0

�
þ∇ ·

�
c
B0

b×

� ∂
∂tδðϱmuÞþ∇ ·δP

��
¼0:

ð2:18Þ

Equations (2.9), (2.10), and (2.18) form the closed set of
dynamic equations formally governing the low-frequency
response of a quasineutral, finite-β, magnetized plasma, once
the perturbed particle distribution function δf is given and the
perpendicular magnetic field fluctuation is obtained by
Eq. (2.11). Note that they still hold for finite plasma rotation,
about which no assumption has been made so far. Meanwhile,
Eqs. (2.13) and (2.17) are considered as definitions for δj∥ and
δj⊥, and Eqs. (2.15) and (2.16) are used for δðϱmuÞ and δP. In
fact, given δA∥ and δB∥ ¼ b · ∇ × δA, and noting the Coulomb
gauge ∇ · δA ¼ 0, δA⊥ is uniquely determined. By construc-
tion, Eqs. (2.9), (2.10), and (2.18), for wavelengths that are
much longer than the Debye length, are completely equivalent
to the gyrokinetic Maxwell equations (Brizard and Hahm,
2007), once the perturbed particle fluid moments are expressed
in terms of the perturbed gyrocenter fluid moments (Brizard,
1992). These equations are also equivalent to the formulation
adopted in most literature, once the parallel Ampère’s law is
employed in the vorticity equation (2.18).

C. Ordering estimates of vorticity equation and physical
time scales

Unlike most treatments available in the literature, the
present theoretical framework does not assume any particular
ordering of the perpendicular wavelength with respect to
characteristic equilibrium spatial scales: this is the reason why
Eqs. (2.10), (2.11), and (2.13) maintain terms that depend on
equilibrium geometry, which may be important when treating
long-wavelength modes (Qin, Tang, and Rewoldt, 1998, 1999;
Brizard and Hahm, 2007). However, while the nonlinear
formal kinetic equations governing collisionless plasmas in
the drift-kinetic limit (vanishing Larmor radius) were given by
Kulsrud (1983), expressions of the perturbed particle in terms
of the perturbed gyrocenter fluid moments (Brizard, 1992),
valid for general low-frequency fluctuations and at arbitrary
wavelengths are still not available at present. Nonetheless,
Eqs. (2.9), (2.10), and (2.18) allow a detailed discussion of the
relative importance of various contributions and, ultimately,
the derivation of a set of reduced nonlinear equations, which
will be used in the present work.
The first term in the vorticity equation (2.18) represents the

linear magnetic field line bending, which we denote as Oð1Þ.
The second one is its nonlinear extension, related to the
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perpendicular Maxwell stress, ordered as ∼ϵ⊥ϵδ=ϵω
(cf. Sec. II.A). The third term, representing the kink drive,
is of the order of ∼ϵF=ϵ⊥. Meanwhile, the fourth to seventh
terms containing δB∥ are, respectively, of the order of βϵδ,
βϵB=ϵ⊥, β2ϵF=ϵB, and β2ϵ⊥ϵδ=ϵω. The last two terms in
Eq. (2.18) represent the plasma inertia response and the stress
tensor contribution, which includes the usual Reynolds stress
as well as the divergence of the nonlinear diamagnetic current.
The linear plasma inertia response is of the order of
∼ω2=k2∥v

2
A, whereas its nonlinear contribution is an order

∼ϵδ=ϵ⊥ higher. The stress tensor linear contribution is of the
same order as the inertia term, while the nonlinear pressure
stress tensor response is ∼ðϵδϵ⊥=ϵωÞðω2=k2∥v

2
AÞ, the same as

the Maxwell stress.
From these estimates, we note that while the perpendicular

Maxwell stress and the pressure stress tensor contribution are
of the same order, ∼ϵ⊥ϵδ=ϵω, the inertia (polarization) non-
linearity is of the order of ∼ϵδ=ϵ⊥. Therefore, we can
anticipate that for ϵ2⊥ ∼ ϵω there will be a transition from
nonlinear dynamics dominated by the polarization response
(Sagdeev and Galeev, 1969), where the nonlinear MHD
description is reasonably applicable, to a regime where
dominant nonlinear interactions are due to the pressure stress
tensor and Maxwell stress, which is the typical condition of
gyrokinetic plasma behavior. This transition, first pointed out
by Hasegawa and Chen (1976) for kinetic Alfvén waves
(KAWs), is further discussed in Sec. IV.B and has important
consequence on the spectral features of Alfvén waves and
related transport processes (Chen and Zonca, 2011).
Applying the same orderings to other terms in Eq. (2.18), it

can also be concluded that in tokamaks of current interest,
where β ≲OðϵB=ϵFÞ ∼Oð10−1Þ, the linear terms ∝ δB∥ are
∼βϵB=ϵ⊥ and ∼β2ϵF=ϵω ∼ β2ϵF=ϵB ≲ β and, hence, generally
negligible. However, more careful consideration is needed
concerning the nonlinear behavior. For ϵω > ϵ2⊥, the polari-
zation nonlinearity overwhelms the Maxwell stress and the
pressure stress tensor nonlinearity, and the nonlinear δB∥
contribution is negligible provided that

Oðϵδ=ϵ⊥Þ ≫ Oðβϵδ; β2ϵ⊥ϵδ=ϵωÞ
⇒ Oðϵ−1⊥ Þ > Oðϵ1=2ω =ϵ⊥Þ > Oð1Þ > β;

which is readily satisfied for laboratory plasmas. In the
opposite limit, ϵω < ϵ2⊥, Maxwell stress and pressure stress
tensors are also typically larger than the nonlinear δB∥
contribution, since

Oðϵ⊥ϵδ=ϵωÞ ≫ Oðβϵδ; β2ϵ⊥ϵδ=ϵωÞ:

However, for long-wavelength incompressible SAWs in uni-
form plasmas, satisfying ω2 ¼ k2∥v

2
A, Reynolds and Maxwell

stresses cancel exactly, yielding the well-known properties of
the Alfvénic state (Alfvén, 1942, 1950; Walén, 1944; Elsasser,
1956; Hasegawa and Sato, 1989), discussed in Sec. IV.B.
Although a realistic system can approach only the Alfvénic
state, it is in this case important to make sure that residual
effects of nonexact cancellations of Reynolds and Maxwell
stresses remain more significant than the δB∥ nonlinear term.

Since it is possible to formally write ω ¼ ω0 þ i∂t, with ω0

the typical linear mode frequency, the significance of the
nonlinear terms also depends on the relative time scales of
the phenomena they produce in the dynamic evolution of the
system. Ignoring the nonlinear δB∥ contribution for ϵω < ϵ2⊥
thus sets a minimum constraint on both the linear (γL) and
nonlinear (τ−1NL) rates, i.e.,

jγL=ω0j ∼ jω0τNLj−1 ≫ Oðβϵδ; β2ϵ⊥ϵδ=ϵωÞ:
Thus, one needs to keep these self-consistency requirements
in mind when making numerical simulations or theoretical
analyses close to the marginal stability condition and/or
examining a long time-scale behavior. In fact, nonlinear
Alfvén wave behavior and self-consistent interactions with
EPs in fusion plasmas (see Sec. IV) are characterized by
τNL ∼ γ−1L ∼ ϵBϵ

−1
F β−1ω−1 ≪ ϵ−1B ϵ−1ω Ω−1. For typical low-β

toroidal plasmas [β ≲OðϵB=ϵFÞ ∼Oð10−1Þ], which are the
main focus of this work, ∝ δB∥ terms in Eq. (2.18) typically
affect the mode dynamics on time scales that are longer than
τNL. Thus, they can be consistently neglected in the present
analysis. However, these terms may become important when
considering longer time-scale behavior, e.g., τNL ∼ ϵ−1ω ω−1,
where β2 ≪ ϵω=ϵ⊥ may not be so well satisfied in tight aspect-
ratio tokamaks (Cox and MAST Team, 1999; Ono et al.,
2000). These self-consistency requirements on linear and
nonlinear rates must also be obeyed when looking at mode
nonlinear dynamics to explore the global variations of plasma
equilibrium on the transport time scale [see Eqs. (2.1) and
(2.2)]. Although this is an important issue as the forefront of
magnetic fusion research, it is outside the scope of this review.
In Sec. II.D, the reduced nonlinear gyrokinetic forms of

governing equations are derived specifically for low-β plas-
mas, which may be readily adopted for the description of the
DAW dynamics in tokamaks (Mikhailovskii and Rudakov,
1963; Hasegawa and Chen, 1976; Tang and Luhmann, 1976;
Chen et al., 1978; Tang, Connor, and Hastie, 1980; Frieman
and Chen, 1982; Hahm, Lee, and Brizard, 1988; Scott, 1997).

D. Reduced equations for low-β drift Alfvén waves

Since all the works in this review are limited to time scales

jω0τNLj−1 ∼ jγL=ω0j ≫ ϵω;

we may self-consistently neglect δB∥ terms (cf. Sec. II.C) and
following Chen et al. (2001) derive the nonlinear gyrokinetic
vorticity equation by taking moments of the nonlinear
gyrokinetic equation of Frieman and Chen (1982). Note that
this is equivalent to describing the gyrocenter Hamiltonian up
to ∼ϵδ linear terms. For longer time scales, we need to include
∼ϵ2δ terms to ensure the exact conservation of the gyrokinetic
energy (Brizard and Hahm, 2007).
It can be readily shown that the particle distribution

function f can be written as

f ¼ e−ρ·∇
�
F̄ −

e
m

�∂F̄
∂E þ 1

B0

∂F̄
∂μ

�
hδLgi

�

þ e
m

�∂F̄
∂E δϕþ 1

B0

∂F̄
∂μ δL

�
; ð2:19Þ
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where F̄ is the gyrocenter distribution function (Brizard and
Hahm, 2007), e−ρ·∇ is the transformation from guiding center
to particle coordinates, ρ≡Ω−1b × v, h� � �i denotes gyrophase
averaging, E ¼ v2=2 is the energy per unit mass, μ is the
magnetic moment adiabatic invariant μ ¼ v2⊥=ð2B0Þ þ � � �,
and

δLg ¼ δϕg −
v∥
c
δA∥g ¼ eρ·∇δL¼ eρ·∇

�
δϕ−

v∥
c
δA∥

�
: ð2:20Þ

In Eq. (2.19), all terms that are not acted upon by e−ρ·∇ are the
adiabatic response of the particle distribution function,
the other terms representing the nonadiabatic response of
the guiding-center distribution. Up to order OðϵδÞ, one can
further reduce Eq. (2.19) to the following decomposition for
the fluctuating particle distribution function (Frieman and
Chen, 1982):

δf¼ e−ρ·∇
�
δg−

e
m

1

B0

∂F̄0

∂μ hδLgi
�
þ e
m

�∂F̄0

∂E δϕþ 1

B0

∂F̄0

∂μ δL

�
;

ð2:21Þ

where the fluctuating gyrocenter distribution function δF̄ is
related to the nonadiabatic response δg as

δF̄ ¼ δgþ e
m
∂F̄0

∂E hδLgi; ð2:22Þ

and δg obeys the following nonlinear gyrokinetic equation
(Frieman and Chen, 1982):

� ∂
∂tþ v∥∇∥ þ vd · ∇⊥

�
δg

¼ −
�
e
m

∂
∂t hδLgi

∂F̄0

∂E þ c
B0

b × ∇hδLgi · ∇F̄0

�

−
c
B0

b × ∇hδLgi · ∇δg: ð2:23Þ

Here the magnetic-drift velocity vd is

vd ¼
b
Ω
× ðμ∇B0 þ κv2∥Þ≃

ðμB0 þ v2∥Þ
Ω

b × κ; ð2:24Þ

where ∇B0 ≃ κB0 in the low-β limit and is consistent
with well-known cancellations in the linear vorticity
equation, arising from the perpendicular pressure balance,
Eq. (2.7), and plasma equilibrium condition (Hasegawa and
Sato, 1989). In the long-wavelength limit, Eq. (2.23) has
to be slightly modified to account for the perturbed
gyrocenter motion at OðϵδÞ being given by (Brizard and
Hahm, 2007)

δ _̄X⊥ ¼ c
B0

b × ∇hδLgi þ
v∥
B0

κhδA∥gi

¼ c
B0

b × ∇hδϕgi þ v∥
hδB⊥gi
B0

; ð2:25Þ

with hδB⊥gi ¼ ∇ × bhδA∥gi. As shown by Qin, Tang, and
Rewoldt (1998, 1999), this distinction is important for the
linear response only, since the nonlinear E × B convection and
nonlinear line bending are small at ϵ2⊥ < ϵω (see Sec. II.B).
For simplicity and hence clarity, Eq. (2.23) assumes no
equilibrium plasma rotation that, however, can be taken into
account by nonlinear gyrokinetic theory [see, e.g., Brizard and
Hahm (2007)].
The following nonlinear gyrokinetic vorticity equation

(Chen et al., 2001) can then be derived from Eq. (2.23) acted
upon by

P
ee−ρ·∇ and integrated in velocity space (Zonca and

Chen, 2014b):

B0

�
∇∥ þ

δB⊥
B0

· ∇
��

δj∥
B0

�
− ∇ ·

X�
e2

m
2μ

Ω2

�
B0

∂F̄0

∂E þ ∂F̄0

∂μ
��

J20 − 1

λ2

�	
v
∇⊥

∂
∂t δϕ

−
X

ecb × ∇
�
2μ

Ω2
F̄0

�
J20 − 1

λ2

�	
v
· ∇∇2⊥δϕþ c

B0

b × κ · ∇
X

hmðμB0 þ v2∥ÞJ0δgiv

þ δB⊥ · ∇
�
j∥0
B0

�
þ
X

e

�
J0

�
c
B0

b × ∇ðJ0δϕÞ · ∇δg
�
−

c
B0

b × ∇δϕ · ∇ðJ0δgÞ
	

v

þ c
B0

b × ∇δϕ · ∇
�
∇ ·

X�
e2

m
2μ

Ω2

∂F̄0

∂μ
�
1 − J20
λ2

�	
v
∇⊥δϕ

�
¼ 0: ð2:26Þ

Here J0 is the Bessel function of argument λ and λ2 ¼
2μB0k2⊥=Ω2. Nonlinear plasma behavior enters implicitly,
in the pressure curvature coupling with δg, and explicitly,
through the perpendicular Maxwell stress (nonlinear line
bending) and the next to last term on the left-hand side,
which can be shown to be connected with nonlinear
diamagnetic response and gyrokinetic generalization of

the Reynolds stress. Note that Eq. (2.26) is pertinent
to the short-wavelength regime (ϵ2⊥ > ϵω), consistent with
the gyrokinetic ordering discussed in Sec. II.A. In the
ϵ2⊥ ≲ ϵω long-wavelength limit, it is necessary to include
an additional term on the left-hand side of Eq. (2.26),
representing the divergence of the nonlinear polarization
current due to mass density fluctuation, i.e.,
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−
c2

4π
∇ ·

�
δϱm
ϱm0v2A

∇⊥
∂
∂t δϕ

�
: ð2:27Þ

Meanwhile, the quasineutrality condition equation (2.9)
can be rewritten as

X�
e2

m
∂F̄0

∂E
	

v
δϕþ∇ ·

X�
e2

m
2μ

Ω2

∂F̄0

∂μ
�
J20− 1

λ2

�	
v
∇⊥δϕ

þ
X

heJ0ðλÞδgiv ¼ 0: ð2:28Þ

The presence of J0 and of velocity-space integrals
involving δg in Eqs. (2.26) and (2.28) shows that they
are integrodifferential equations. Given that δB⊥ ¼
½∇ × ðbδA∥Þ�⊥ and δB∥ ¼ ð∇ × bÞ∥δA∥,

4 these equations
are closed by the nonlinear gyrokinetic equation (2.23),
along with Eq. (2.25), and by the reduced form of the
parallel Ampère’s law, Eq. (2.13),

δj∥ ¼
c
4π

b ·∇× ð∇× δAÞ

¼ c
4π

½−∇2 þ κ2 þ ð∇bÞ∶ð∇bÞ þ ð∇× bÞ2∥�δA∥: ð2:29Þ

Equations (2.26)–(2.29) are the governing gyrokinetic
equations for low-β DAWs, adopted throughout this work
to investigate their nonlinear dynamics on time scales
γLτNL ∼ 1.
Equations (2.26)–(2.29) need to be supplemented by

equations governing zonal structures, i.e., for fluctuations
that have k∥ ≡ 0 identically in the whole plasma5 and play
crucial roles in regulating DAW dynamics, as shown in
Sec. IV. First we note that Eqs. (2.26) and (2.28) are not
independent for δϕz (Chen et al., 2001), with the subscript z
standing for zonal. While Eq. (2.26) governs the evolution of
δϕz, δA∥z is governed by Eq. (2.29), with the zonal current
δj∥z computed from the solution of Eq. (2.23). Assuming
consistently throughout this review that δj∥ is carried by
electrons and that k2⊥δ2e ∼ ϵ2⊥δ2e=ρ2i ≪ 1, with δe ¼ c=ωpe the
collisionless skin depth and ωpe the electron plasma fre-
quency, Eq. (2.29) for the zonal current becomes essentially
δj∥ze ≃ 0, which reads

∂
∂t δA∥z ¼

�
c
B0

b × ∇δA∥ · ∇δψ
�

z
; ð2:30Þ

after a straightforward calculation of δfze from Eq. (2.23),

∂
∂t δfze ¼

e
Te

v∥
c
F̄0e

� ∂
∂t δA∥ −

c
B0

b × ∇δA∥ · ∇δψ
�

z
;

with δψ defined by

b · ∇δψ ≡ −
1

c
∂
∂t δA∥; ð2:31Þ

for given δA∥ with k∥ ≠ 0. Note that Eq. (2.30) can also be
readily derived from a massless electron force balance along
B0. When considering DAWs excited by EPs, Eq. (2.26) can
be further reduced, as done in Sec. II.E.

E. Drift Alfvén waves excited by energetic particles in low-β
fusion plasmas

In burning plasmas, EPs are characterized by an energy
density, which is comparable to that of the thermal plasma, so
that βE ∼ β. However, due to the significantly higher energy
T0i=T0E ¼ Oð10−2Þ, the EP density is typically low,
n0E=n0i ∼ T0i=T0E. Thus, it is generally possible to consider
reactor relevant plasmas consisting of two components (Chen,
White, and Rosenbluth, 1984): a core or thermal plasma
component, essentially providing an isotropic Maxwellian
background made of electrons (e) and ions (i), and an
energetic component (E), which is often anisotropic and
non-Maxwellian.
A detailed discussion of the general wavelength and

frequency orderings for the case of DAWs resonantly excited
by EPs in space plasmas was given by Chen and Hasegawa
(1991) and later by Zonca and Chen (2006) for low-β
laboratory plasmas, where

n0E=n0i ∼ T0i=T0E ¼ Oð10−2Þ ≲ βi ∼ βE ≲Oð10−1Þ: ð2:32Þ

Meanwhile, most unstable EP-driven modes are characterized
by jkθρEj≲ 1 (Berk, Breizman, and Ye, 1992b; Fu and Cheng,
1992; Tsai and Chen, 1993; Chen, 1994), where ρE is the EP
Larmor radius. More precisely, ρE represents the characteristic
EP magnetic-drift orbit width, corresponding to the relevant
wave-particle resonance and typically larger than the EP
Larmor radius. Finally, thermal electrons typically have
vte ≫ vA, corresponding to β ≫ me=mi, and hence can be
approximated as a massless fluid. These orderings, in addition
to those of Sec. II.A and the low-β assumption used in
Sec. II.D, allow us to further simplify Eqs. (2.26) and (2.28),
while maintaining an accurate description of nonlinear
dynamics of SAW excited by EPs.
From Eq. (2.23), the thermal electron response as a

massless fluid (jv∥∇∥j ≫ j∂tj and jv∥δB⊥j ≫ jcδE⊥j) is
�
bþ δB⊥

B0

�
· ∇δge ¼ −

�
e

mec

∂δA∥

∂t
∂F̄0e

∂E þ δB⊥
B0

· ∇F̄0e

�
:

ð2:33Þ

Here e denotes the positive electron charge and core electron
response due to particles near the trapped to circulating
particle boundary has been neglected. Using Eq. (2.33) for
a Maxwellian electron core to explicitly evaluate the corre-
sponding perturbed electric charge and recalling Eq. (2.31),
the quasineutrality condition, Eq. (2.28) acted upon by
ðbþ δB⊥=B0Þ · ∇ can be cast as (Zonca and Chen, 2014b)

4Note that δB∥ includes a further contribution due to δA⊥, which
ensures that Eq. (2.7) is fulfilled. This contribution is accounted for
implicitly, when using the expression of magnetic drifts given by
Eq. (2.24), as discussed by Chen and Hasegawa (1991).

5See Diamond et al. (2005) for a recent review on the physics of
zonal structures.
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n0ee2

T0e

�
b · ∇ðδϕ − δψÞ þ δB⊥

B0

· ∇δϕ
�

¼
�
bþ δB⊥

B0

�
· ∇

X
≠e

ðehδfiv þ ehF̄0ivÞ; ð2:34Þ

where
P

≠e denotes a summation on particle species except
for core electrons and equilibrium charge neutrality has been
used explicitly. Note that Eq. (2.34) is just the extended Ohm’s
law

�
bþ δB⊥

B0

�
· δE ¼ −

�
bþ δB⊥

B0

�
·
∇Pe

n0ee
; ð2:35Þ

having assumed isothermal electron response. Furthermore,
the ordering of Eq. (2.32) allows ignoring the contribution of
EPs to the plasma density,6 while the wavelength ordering
jkθρEj≲ 1 indicates that ϵ⊥ ≪ 1 for the core plasma compo-
nent. Thus, the quasineutrality condition, Eq. (2.28) or (2.34),
at the lowest order reduces to the ideal MHD approximation
δE∥ ¼ 0 or δϕ ¼ δψ.
The gyrokinetic vorticity equation is also greatly simplified

with the additional ordering introduced in this section and
can be shown to yield [see Zonca and Chen (2014b) for
details]

B0

�
∇∥þ

δB⊥
B0

·∇
��

δj∥
B0

�

−
c2

4π
∇ ·


��
1þδϱm

ϱm0

�
1

v2A
þ3π

B2
0

�
P0⊥i

Ω2
i
þP0⊥E

Ω2
E

�
∇2⊥

�
∇⊥

∂
∂tδϕ

�

þ c2

4π
b×∇

�
4π

B2
0

�
P0⊥i

Ωi
þP0⊥E

ΩE

��
·∇∇2⊥δϕ

þ c
B0

b×κ ·∇
X

hmðμB0þv2∥ÞJ0δgivþδB⊥ ·∇
�
j∥0
B0

�

þ
X
≠e

ec
2Ω2

fb×∇ð∇2⊥δϕÞ ·∇hμδgiv−b×∇δϕ ·∇hμ∇2⊥δgiv

−∇2⊥½b×∇δϕ ·∇hμδgiv�g¼0: ð2:36Þ

Here we used the definition P0⊥ ¼ hmμB0F̄0iv and adopted
the long-wavelength limit for both thermal and energetic ions.
In this way, note that energetic ions,7 even though they do not
contribute to plasma inertia due to Eq. (2.32), contribute both
to a finite Larmor radius correction to the plasma inertia
(KAW) (Briguglio et al., 1995) and to the diamagnetic
response (Wang et al., 2011; Lauber et al., 2012) (see
Sec. III.C), for these terms depend explicitly on perpendicular
pressure. Note also that we omitted the long-wavelength
formal expansions of pressure gradient curvature coupling
for simplicity and clarity of the physics presentation.
In the case of highly energetic ions, the gyrokinetic vorticity

equation (2.26), formally viewed as the fluctuating charge

continuity equation, i.e., ∇ · δj ¼ 0, can be read as currents
in the core component balancing the “charge uncovering”
(charge separation) effect due to the large EP orbits
(Rosenbluth, 1982; Berk et al., 1985). This interpretation
was originally proposed by Rosenbluth (1982) in stability
analyses of tandem mirror and elmo bumpy torus configu-
rations. The corresponding reduced form of Eq. (2.26) can
then be obtained taking J0 → 0 in EP contributions, while
the thermal plasma component is still described by the long-
wavelength limit as in Eq. (2.36). This approach to charge
uncovering was reproposed by Mikhailovskii et al. (2004)
and Sharapov, Mikhailovskii, and Huysmans (2004) to
investigate the effects of nonresonant EPs on MHD insta-
bilities. A general description, valid for arbitrary wave-
lengths, can be obtained by noting that magnetic-drift orbits
of highly suprathermal EPs are typically much larger than
their Larmor radius. Thus, taking the drift-kinetic limit
(J0 ¼ 1) for EPs is consistent with both small and large
EP magnetic-drift orbit limits and adequately renders both
resonant and nonresonant EP dynamics, including their
nearly adiabatic response to short-wavelength modes [see
Zonca and Chen (2006) for an in-depth discussion of these
issues]. For this reason, EP contribution to KAW and
diamagnetic terms can be formally neglected in
Eq. (2.36), which further reduces to

B0

�
∇∥ þ

δB⊥
B0

· ∇
��

δj∥
B0

�

−
c2

4π
∇ ·


��
1þ δϱm

ϱm0

�
1

v2A
þ 3π

B2
0

�
P0⊥i

Ω2
i

�
∇2⊥

�
∇⊥

∂
∂t δϕ

�

þ c2

4π
b × ∇

�
4π

B2
0

�
P0⊥i

Ωi

��
· ∇∇2⊥δϕ

þ c
B0

b × κ · ∇
X

hmðμB0 þ v2∥ÞJ0δgiv

þ δB⊥ · ∇
�
j∥0
B0

�
þ
X
≠e

ec
2Ω2

fb × ∇ð∇2⊥δϕÞ · ∇hμδgiv

− b × ∇δϕ · ∇hμ∇2⊥δgiv −∇2⊥½b × ∇δϕ · ∇hμδgiv�g ¼ 0:

ð2:37Þ
Here the nonlinear stress tensor is due to thermal ions only
and J0 → 1 in the EP pressure gradient curvature coupling
term. It is also worthwhile noting that Eq. (2.37) correctly
describes reactor relevant plasma conditions, since βE ∼
ðτsd=τEÞβi and the energetic ion (collisional) slowing down
time on thermal electrons τsd is short compared to the
energy confinement time τE. Equation (2.37) is crucial for
the validity of many of the hybrid MHD-gyrokinetic
descriptions of SAW excitations by energetic ions (Park
et al., 1992, 1999; Briguglio et al., 1995; Todo et al., 1995;
Briguglio, Zonca, and Vlad, 1998; Todo and Sato, 1998),
which have provided the first successful numerical simu-
lation approach to this problem.
In the linear limit, Eq. (2.37) coincides with the gyrokinetic

vorticity equation discussed by Qin, Tang, and Rewoldt (1998,
1999) and, dropping KAW and diamagnetic terms as well,
with the reduced form of the linear kinetic-MHD model by
Brizard (1994).

6In doing so, some attention must be paid to applications to present
day experiments, where suprathermal particles may not be as
energetic and low density as estimated in Eq. (2.32).

7Suprathermal electrons, if present, give a negligible contribution
to KAW and diamagnetic terms.
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III. LINEAR ALFVÉN WAVE PHYSICS
IN NONUNIFORM PLASMAS

Shear Alfvén waves are anisotropic electromagnetic waves
existing in magnetized plasmas, which have parallel wave-
lengths λ∥ ∼ L∥ comparable to the system size along the
equilibrium magnetic field B0. They can, however, have a
wide range in the perpendicular wavelengths λ⊥, ρi<λ⊥<L⊥,
with ρi the ion Larmor radius and L⊥ the system size
perpendicular to B0. The SAW frequency is ω≃ k∥vA ∼
OðvA=L∥Þ much less than the ion cyclotron frequency Ωi.
Here notations are those introduced in Sec. II.
SAW dynamics is, hence, of low frequency and macro-

scopic scales and, therefore, may cause significant perturba-
tions in the bulk of the plasma. Furthermore, SAW dynamics
is nearly incompressible, whereas CAW and slow sound
waves tend to be stabilized by finite magnetic and/or plasma
compression as well as finite ion Landau damping. These are
the primary reasons why SAWs play many important roles in
laboratory and space plasmas. Some examples are (1) heating
of laboratory (Grossman and Tataronis, 1973; Chen and
Hasegawa, 1974a; Hasegawa and Chen, 1974; Tataronis,
1975) and solar corona plasmas (Ionson, 1982); (2) resonant
interactions with EPs produced during high-power neutral
beam and/or radio-frequency laboratory heating experiments
or with alpha particles produced in D-T fusion
plasmas (Kolesnichenko and Oraevskij, 1967; Belikov,
Kolesnichenko, and Oraevskij, 1968; Mikhailovskii, 1975;
Rosenbluth and Rutherford, 1975; Kolesnichenko, 1980;
Tsang, Sigmar, and Whitson, 1981; Chen, 1988; Fu and
Van Dam, 1989a, 1989b), which is the main subject of this
review work; (3) cross-field transport in magnetospheric
plasmas, e.g., the day-side magnetopause (Hasegawa and
Mima, 1978); and (4) acceleration of electrons along the
auroral field lines (Hasegawa, 1976).
One of the most important properties of SAW is that its

group velocity vg is directed along B0, i.e., vg ≃ vA. In
nonuniform plasmas with spatially varying vA this property
can then lead to singular oscillations at the local SAW
frequency, for the wave energy is “confined” to the local
field line. As the local SAW frequency varies continuously, we
then have oscillations which constitute the so-called SAW
continuous spectrum or continuum (Grad, 1969). The exist-
ence of SAW continuum then suggests that at the layer where
the frequency of the applied radio-frequency source matches
the local SAW frequency, the wave equation has a singular
point leading to resonant wave absorption and the Alfvén
wave heating scheme (Grossman and Tataronis, 1973; Chen
and Hasegawa, 1974a, 1974b; Hasegawa and Chen, 1974).
That the wave solution becomes singular is due to the
inadequacy of ideal MHD approximation. Including micro-
scopic kinetic effects, such as finite ion Larmor radii (FLR),
removes the singular behavior by allowing small but finite vg
across B0. That is, we have the linear mode conversion of
resonant SAW to KAW (Hasegawa and Chen, 1975, 1976).
More generally, plasma nonuniformity and equilibrium

magnetic field geometry not only modify the SAW frequency
spectrum, causing the existence of gaps in the continuum
(Pogutse and Yurchenko, 1978; D’Ippolito and Goedbloed,
1980; Kieras and Tataronis, 1982), but may also cause

collective oscillations, i.e., discrete AEs within the gaps
(Cheng, Chen, and Chance, 1985). These fundamental con-
cepts and processes of SAW in nonuniform plasmas are briefly
reviewed in this section, since basic theoretical reviews of
linear SAW spectrum properties are available in the literature
for both 1D systems (Mahajan, 1995) and axisymmetric
toroidal (2D) plasmas (Chen and Zonca, 1995). Numerical
simulations of stability properties of SAW excited by EP in
tokamak plasmas were extensively discussed by Vlad, Zonca,
and Briguglio (1999), and in the recent review by Lauber
(2013), focused on kinetic models, numerical solution strat-
egies, and comparison to tokamak experiments. Similarities
and differences of these physics with those of SAW in 3D
toroidal equilibria were given by Kolesnichenko et al. (2011)
and Toi et al. (2011). This section is also devoted to the
formulation of the GFLDR, which provides a unified theo-
retical framework for describing and understanding the
various branches of SAW fluctuations (Zonca and Chen,
2014b, 2014c). The GFLDR can also be extended to
nonlinear analyses and will be the starting point for our
discussion of nonlinear SAW physics and their inter-
actions with EPs in Sec. IV.

A. Continuous spectrum, kinetic Alfvén waves,
and global Alfvén eigenmodes

Considering a 1D plasma slab confined in straight magnetic
field (Chen and Hasegawa, 1974a; Goedbloed, 1984), one can
demonstrate that the governing equation for the plasma
displacement in the direction of nonuniformity (say x)
becomes singular at

ω2 ¼ ω2
AðxÞ≡ k2∥ðxÞv2AðxÞ ð3:1Þ

and

ω2 ¼ ω2
SðxÞ≡ ½1þ v2SðxÞ=v2AðxÞ�−1k2∥ðxÞv2SðxÞ; ð3:2Þ

corresponding to the appearance of two continuous spectra
with v2SðxÞ ¼ ΓP0ðxÞ=ϱm0ðxÞ representing the sound speed
and Γ the appropriate adiabatic index. Meanwhile, adopting
the slow sound wave approximation (v2S=v

2
A → 0) and assum-

ing, for simplicity, that ϱ0 ¼ ϱ0ðxÞ while B0 ¼ B0ez, it is
possible to show that the plasma displacement δξx becomes
logarithmically singular as the SAW resonance is approached.
In fact, the SAW group velocity is directed along B0. Thus, the
latter one “piles up” wave energy at the radial location where
the SAW spectrum is resonantly excited, explaining the origin
of “local singular oscillations” (Chen and Zonca, 1995).
Resonant excitation is connected with SAW resonant

absorption (Chen and Hasegawa, 1974a, 1974b). In fact, a
finite amount of wave energy can be absorbed at the SAW
resonant layer. Meanwhile, the time-averaged energy absorp-
tion rate is given by the Poynting flux into that infinitely
narrow layer, and it occurs on time scales ∼ðωA

0ΔxÞ−1, with
Δx the perturbation “radial” extent.8 Corresponding to this,

8Here “radial” stands for the direction of nonuniformity, which is
generally identified as the gradient of the equilibrium magnetic flux.
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the radial wave vector jkxj ∼ jωA
0ðxÞtj and, thus, jkxj → ∞ as

t → ∞, i.e., the wave function becomes singular in the
asymptotic time limit, in agreement with the eigenmode
analysis. While δξx ∼ ð1=tÞ exp½−iωAðxÞt� as t → ∞ because
of phase mixing of the SAW continuous spectrum
(Barston, 1964; Grad, 1969; Sedláček, 1971), the binormal
(ey ¼ ez × ex) plasma displacement δξy ∼ exp½−iωAðxÞt� does
not decay algebraically in time and represents the undamped
oscillations at frequencies of the SAW continuum, which are
routinely observed in the Earth’s magnetosphere (Engebretson
et al., 1987) and have also been demonstrated by ideal MHD
initial value numerical simulations [see, e.g., Vlad, Zonca, and
Briguglio (1999)].
When the ideal MHD model breaks down at very short

scales, the typically most relevant new dynamics are asso-
ciated with charge separation, i.e., with the finite δE∥
fluctuations due to FLR (ρi), small but finite electron inertia
and finite plasma resistivity. In the presence of finite δE∥,
additional effects due to wave-particle interactions also
appear, which yield collisionless wave dissipation (Landau
damping). Incorporating such “kinetic” effects essentially
allows finite energy propagation across the resonant surfaces.
Thus, wave energy will no longer pile up at these radial
locations and all wave-function singularities are removed on
short scales. A dedicated monograph on KAWs was given by
Wu (2012). Here we limit our discussion to the case in which
me=mi ≪ βe ≪ 1. Furthermore, for simplicity, we also
assume ðk2x þ k2yÞρ2i ≡ k2⊥ρ2i ≪ 1. It is then possible to show
that the Wentzel-Kramers-Brillouin (WKB) local dispersion
relation of KAWs is an extension of Eq. (3.1):

ω2 ¼ ð1þ k2⊥ρ2KÞω2
A; ð3:3Þ

where (Hasegawa and Chen, 1975, 1976)

ρ2K ¼ ½ð3=4Þð1 − iδiÞ þ ðTe=TiÞð1 − iδeÞ�ρ2i
− iηc2=4πω: ð3:4Þ

Here terms ∝ 3=4 and Te=Ti represent, respectively, FLR
corrections to plasma inertia and parallel electric field, δi and
δe indicate ion and electron Landau damping contributions,
and η is plasma resistivity.
That KAW possesses finite δE∥ not only modifies the linear

wave properties but also, perhaps more significantly, the
nonlinear particle and wave dynamics. More specifically,
δE∥ may lead to phase-space transport, i.e., heating, accel-
eration, and cross-field transport (Hasegawa and Chen, 1976;
Chen, 1999). In addition, KAW could break the so-called
nonlinear pure Alfvénic state (Alfvén, 1942, 1950; Walén,
1944; Elsasser, 1956; Hasegawa and Sato, 1989)
(cf. Sec. IV.B) and lead to enhanced rates of nonlinear
mode-coupling effects such as parametric decay instabilities
(DuBois and Goldman, 1965, 1967; Nishikawa, 1968; Kaw
and Dawson, 1969) (cf. Sec. IV.B) as well as the generation of
convective cells or zonal structures (Hasegawa, Maclennan,
and Kodama, 1979) (cf. Secs. IV.B and IV.C).
In addition to the local oscillations of the SAW continuum,

a global AE (GAE) (Appert et al., 1982; Ross, Chen, and
Mahajan, 1982; Mahajan, Ross, and Chen, 1983; Goedbloed,

1984) may also exist in a 1D nonuniform plasma. Such global
modes, if destabilized by EPs, could affect confinement over a
large region of the plasma. In order to minimize damping due
to coupling with the SAW continuum, global mode structures
are preferentially excited near regions where the resonant
energy absorption rate ∝ ωA

0 vanishes, i.e., near an extremum
of the SAW continuous spectrum (cf. Sec. III.B for further
discussion). Detailed analyses of mode structures, frequen-
cies, and stability properties can be found in Appert et al.
(1982), Ross, Chen, and Mahajan (1982), Mahajan, Ross, and
Chen (1983), Goedbloed (1984), and Mahajan (1995). In the
presence of nonideal terms, such as, e.g., resistivity or FLR
effects, other discrete, closely spaced (in frequency), localized
(in radius) kinetic GAE modes (KGAEs) also exist in addition
to GAEs (Mahajan, 1995). These modes “replace” the SAW
continuous spectrum, due to the trapping of KAW as a bound
state in the radial region where the mode frequency exceeds
the local SAW continuum frequency. That nonideal effects
discretize the SAW continuum is a general result that will be
further discussed in Sec. III.B.

B. Alfvén eigenmodes and energetic-particle modes
in two-dimensional toroidal plasmas

In nearly 2D or 3D toroidal devices, the main additional
complication that modifies the SAW fluctuation spectrum
with respect to the 1D case is due to modulations of vA along
B0. This causes the loss of translational symmetry for SAWs
traveling along B0 and sampling regions of periodically
varying vA. Similar to electron wave packets traveling in a
1D periodic lattice of period L [see, e.g., Kittel (1971)], SAWs
in toroidal systems are characterized by gaps in their con-
tinuous spectrum, corresponding to the formation of standing
waves at the Bragg reflection condition, i.e.,

k∥ ¼
l
2L0

; ω2 ¼ l2v2A
4L2

0

; l ∈ N; ð3:5Þ

with L ¼ 2πL0 the connection length9 and vA being a
“typical” value of the Alfvén speed on the reference magnetic
surface. In tokamak plasmas, the existence of gaps in the
SAW continuous spectrum was discussed by Pogutse and
Yurchenko (1978), D’Ippolito and Goedbloed (1980), and
Kieras and Tataronis (1982). In this case, given that L0 ≃ qR0

for circular plasmas with large aspect ratio R0=a [see Sec. II,
the remark following Eq. (2.2)], q being the safety factor
(representing the pitch of equilibrium magnetic field lines
winding on a given flux surface), the dominant frequency gap
occurs at vA=ð2qR0Þ and is due to the finite poloidal
asymmetry of the system (Kieras and Tataronis, 1982).
Other gaps also generally exist at ω ¼ lvA=ð2qR0Þ, due
to either noncircularity of the magnetic flux surfaces
(l ¼ 2; 3;…) (Betti and Freidberg, 1991), to the anisotropic
trapped EP population (l ¼ 1; 2; 3;…) (Van Dam and
Rosenbluth, 1998), or to finite-β (mainly l ¼ 2, with β the
ratio between kinetic and magnetic pressures) (Zheng and

9It is the length of a magnetic field line connecting two distinct
points on a magnetic surface where the SAW frequency is the same.
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Chen, 1998a, 1998b). A low-frequency gap, corresponding to
l ¼ 0, also exists because of finite plasma compressibility
(Chu et al., 1992, 1993; Turnbull et al., 1993) at ω≃
β1=2i vA=R0 ≪ vA=R0.
In order to nullify or minimize continuum damping,

discrete AEs must be localized in the SAW continuum
frequency gaps and/or around radial positions, where
ðd=drÞωAðrÞ ¼ 0 (cf. Sec. III.A). The degeneracy of AE
mode frequency with the continuous spectrum is removed by
equilibrium nonuniformities, which make it possible for these
fluctuations to exist as discrete modes. Continuing further the
analogy with the 1D periodic lattice case, discrete AE can be
localized in the continuum frequency gaps because of MHD
and/or kinetic effects due to both thermal plasma and/or EPs,
which play the role of “defects” (Zonca et al., 2006; Chen and
Zonca, 2007a). The particular role of EPs in the resonant
excitation of SAWs was noted already in the late 1960s and
1970s along with the possible detrimental effects of collective
SAW fluctuations as well as of lower frequency MHD modes
on EP confinement (see Sec. I.A).
Discrete AEs existing in the various frequency gaps have

accordingly been given different names. The first example is
TAE (Cheng, Chen, and Chance, 1985) for ω≃ vA=ð2qR0Þ.
This is a particularly important case for it was the first
demonstration of the existence of AEs in toroidal plasmas,
thereby fixing a paradigm for subsequent AE investigations.
Other examples are the ellipticity induced AE (EAE) (Betti
and Freidberg, 1991, 1992) for ω≃ vA=ðqR0Þ and noncircular
triangularity (or other shaping effects) induced AE (NAE)
(Betti and Freidberg, 1991, 1992) for ω≃ lvA=ð2qR0Þ
and l ≥ 3, as shown by Eq. (3.5). The low-frequency SAW
continuum frequency gap at ω≃ β1=2i ð7=4þ Te=TiÞ1=2vA=R0

(Mikhailowskii, 1973; Kotschenreuther, 1986; Zonca, Chen,
and Santoro, 1996) deserves a special note, since the mode
frequency can be comparable with thermal ion diamagnetic
(ω�pi) and/or transit (ωti) frequencies, i.e., jωj ∼ ω�pi ∼ ωti.
This is the frequency range where SAWs may exist as MHD
fluctuations and/or their kinetic or resistive counterparts. We
generally refer to this frequency gap as the kinetic thermal ion
(KTI) gap (Chen and Zonca, 2007a). In fact, the ideal MHD
accumulation point, ω ¼ 0 at k∥ ¼ 0 from Eq. (3.5), is shifted
either by the ion diamagnetic drift, as in the kinetic ballooning
mode (KBM) case (Biglari and Chen, 1991), or by parallel and
perpendicular ion compressibility, as for BAEs (Heidbrink,
Strait et al., 1993; Turnbull et al., 1993), or, more generally, by
the combined effects of finite ion temperature gradient (∇Ti)
and wave-particle resonances with thermal ions, as for the
Alfvén ion temperature gradient (AITG) driven mode (Zonca
et al., 1999). For the AITG, the SAW continuum accumulation
point could be shifted to the complex ω plane (Mikhailowskii,
1973; Kotschenreuther, 1986; Zonca, Chen, and Santoro,
1996) and, thus, become unstable for modes with sufficiently
short wavelength (λ⊥ ≳ ρi). The mode localization condition
inside the frequency gap then leads to the excitation of
unstable discrete AITG even in the absence of EP drive
(Zonca, Chen, and Santoro, 1996; Zonca et al., 1998, 1999;
Nazikian et al., 2006). In this case, they are sometimes
referred to as beta-induced temperature gradient eigenmodes
(Mikhailovskii and Sharapov, 1999a, 1999b). The predomi-
nance of either an ion diamagnetic drift (KBM) or parallel and

perpendicular ion compressibility (BAE) in the KTI frequency
gap depends on both wave number and plasma equilibrium
nonuniformity: AITGs are typically excited when both effects
are of the same order (Zonca, Chen, and Santoro, 1996; Zonca
et al., 1999). Thus, two bands of low-frequency Alfvénic
activities are generally expected, with varying frequency-
dependent geodesic curvature coupling to the ion-acoustic
wave (Chavdarovski and Zonca, 2009, 2014; Lauber et al.,
2009; Zonca et al., 2010), of which—in the long-wavelength
limit—the lower one refers to the ion diamagnetic frequency,
consistent with recent numerical simulation results and
experimental observations (Curran et al., 2012; Lauber
et al., 2012). Another low-frequency fluctuation branch also
exists, characterized by strong coupling of the SAW to the ion-
acoustic wave and called the beta-induced Alfvén acoustic
eigenmode (BAAE) (Gorelenkov et al., 2007, 2009;
Gorelenkov, Berk et al., 2007), which, however, is affected
by strong Landau damping, unless Te=Ti ≫ 1 (Zonca et al.,
2010). In this respect, experimental observation of BAAEs in
NSTX and JET (Gorelenkov et al., 2007; Gorelenkov, Berk
et al., 2007) with Te=Ti ∼ 1 is somewhat “puzzling.”
Experimental evidence of BAAEs is also reported in
DIII-D (Gorelenkov et al., 2009), ASDEX Upgrade
(Curran et al., 2012), and HL-2A (Yi et al., 2012). This
“puzzle” may be actually understood with a proper kinetic
treatment of low-frequency Alfvénic and acoustic modes,
which demonstrates that strong coupling of KBM and BAAE
branches may occur and affect mode frequency, polarization,
and damping rate, suggesting such fluctuations may indeed be
observed in this “strong coupling” condition due to reduced
damping (Chavdarovski and Zonca, 2014).
Consistently with the fact that degeneracy of AE frequency

with the SAW continuum is removed by equilibrium non-
uniformities, various local plasma profiles can produce
variants of the AEs mentioned previously. In the case of
TAEs with low magnetic shear values, jsj¼jðr=qÞdq=drj≪1
typical of the plasma near the magnetic axis, they have been
called core-localized TAEs (Berk, Van Dam et al., 1995; Fu,
1995) or also tornado modes (Kramer et al., 2004) when they
are excited within the q ¼ 1magnetic flux surface. GAEs may
also exist (cf. Sec. III.A), although they tend to be more
strongly damped due to coupling with the continuous spec-
trum (Li, Mahajan, and Ross, 1987; Weiland, Lisak, and
Wilhelmsson, 1987; Cheng, Fu, and Van Dam, 1988; Fu et al.,
1989) and are localized in both frequency and radial position
near ðd=drÞωAðrÞ ¼ 0. A special case of ðd=drÞωAðrÞ ¼ 0 is
given by hollow-q profiles, characterized by negative mag-
netic shear s < 0 inside the minimum-q surface. For these
equilibria, a frequency gap is formed in the local SAW
continuous spectrum, where AE can be excited (Berk
et al., 2001) yielding the so-called Alfvén cascades (ACs)
(Sharapov et al., 2001) or reversed-shear AE (RSAE) (Kimura
et al., 1998; Takechi et al., 2002). These modes have
frequencies that are typically less than that of TAEs, although
there are experimental observations of RSAE near the EAE
and NAE gaps (Kramer and Fu, 2006; Kramer et al., 2008).
In addition, a variety of kinetic counterparts of ideal AEs

also exists, in analogy to the existence of KAW as a
counterpart of SAWs, discussed in Sec. III.A. Typical exam-
ples are kinetic TAE (KTAE) that are obtained when, e.g.,
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finite resistivity (Cheng, Chen, and Chance, 1985) or FLR
effects are accounted for, as in Mett and Mahajan (1992a,
1992b), Berk, Mett, and Lindberg (1993), and Candy and
Rosenbluth (1993, 1994). Similarly, one could show that
kinetic BAE (KBAE) also exist (Zonca et al., 1998, 1999;
Wang, Zonca, and Chen, 2010; Wang et al., 2011) as the
granularity of the SAW continuum becomes evident when the
plasma response is probed on sufficiently short spatial scales
and sufficiently long temporal scales (Chen and Zonca, 1995;
Zonca and Chen, 1996). The most practically important
consequence of KAW is their excitation by mode conversion
(Hasegawa and Chen, 1975, 1976), mostly via FLR effects,
due to the radial singular structures of SAW continuous
spectrum (cf. Sec. III.A). Since KAW are not generally
absorbed locally nearby the mode conversion layer in high
temperature plasmas (Jaun, Fasoli, and Heidbrink, 1998; Jaun
et al., 2000; Kolesnichenko et al., 2005), mode structures, and
stability properties of SAWs are truly kinetic and global in
nature, and it becomes crucial to properly account for all these
physics in realistic comparisons with experimental observa-
tions and in stability predictions in reactor relevant conditions.
A final important class of Alfvénic fluctuations in 2D

nonuniform systems is given by EPMs (Chen, 1994), which
originate at marginal stability as non-normal modes of the
SAW continuous spectrum and are resonantly excited at the
characteristic frequency of EP motions. The excitation con-
dition of EPM is independent of the existence of AE inside the
frequency gaps, but it requires that the mode drive is
sufficiently strong to overcome continuum damping
(cf. Sec. III.C). Being connected with a condition on the
beam energy density, EPM can manifest themselves in a
variety of different forms, the best known and first observed of
which is the fishbone mode (McGuire et al., 1983), i.e., an
internal kink oscillation with toroidal mode number n ¼ 1,
which is resonantly excited typically by the toroidal preces-
sion resonance with magnetically trapped EPs (Chen, White,
and Rosenbluth, 1984). As for AE, the fishbone “gap mode”
also exists, for weaker EP beam power density, in the low-
frequency KTI gap, dominated by diamagnetic response and
smoothly connecting with the ideal and resistive internal kink
mode for vanishing kinetic effects (Coppi and Porcelli, 1986).
As all instabilities that tap the expansion free energy from

EP spatial gradients, AE and EPM have both linear growth
and transport rates (Chen, 1999) proportional to the mode
number; thus, short wavelengths tend to be favored. On the
other hand, due to the orbit-averaging effect in wave-particle
interactions, the typical lower bound for λ⊥ is set by the
characteristic EP orbit width ρE, which, in toroidal devices, is
determined by magnetic drifts and is generally larger than the
Larmor radius (Berk, Breizman, and Ye, 1992b; Fu and
Cheng, 1992; Tsai and Chen, 1993; Chen, 1994). For this
reason, modes with λ⊥ ≳ ρE are expected to play a dominant
role both for resonant excitations of collective SAWs and
DAWs and for producing fluctuation enhanced EP transport.
This condition corresponds to nmaxq≲ r=ρE for the maximum
toroidal mode number of linearly excited Alfvénic modes.
Generally, AEs in the same gap have nearly degenerate
frequency for the various toroidal mode numbers, as in the
case of TAE (Cheng, Chen, and Chance, 1985). Moreover,
each nth mode has ∼Oðnqr=R0Þ different possible

realizations (radial eigenstates) of AE localized at different
radial locations. Thus, within the TAE gap we may expect
∼Oðn2qr=R0Þ AEs forming a “dense population of eigenm-
odes (lighthouses) with unique (equilibrium-dependent)
frequencies and locations” (Chen and Zonca, 2007a). In
Secs. V and VI, the significant implications of this fact on
the nonlinear AE physics are discussed.
In Sec. III.C, we discuss how all this Alfvén zoology

(Heidbrink, 2002) can be described by one single dispersion
relation (GFLDR) written in a general “fishbonelike” form,
which can be adopted for linear stability studies as well as for
systematic extensions to the nonlinear regime (cf. Sec. IV.A)
(Zonca and Chen, 2014b, 2014c).

C. The general fishbonelike dispersion relation

We assume that the equilibrium B0 can be expressed in the
usual form

B0 ¼ FðψÞ∇φþ ∇φ × ∇ψ ; ð3:6Þ

where φ is the physical toroidal angle, identifying the
symmetry of the system at equilibrium, and ψ is the poloidal
magnetic flux function. Moreover, we use a straight magnetic
field line toroidal coordinates system ðr; θ; ζÞ, where r is a
radial-like coordinate depending only on the magnetic flux
function ψ ,10 while θ and ζ are periodic anglelike variables,
the latter being the ignorable (symmetry) coordinate of the
plasma equilibrium. More precisely, ζ is the general toroidal
angle defined by

B0 · ∇ζ=B0 · ∇θ ¼ qðrÞ; ð3:7Þ

where qðrÞ is the safety factor profile and θ is chosen such that
the Jacobian J ¼ ð∇ψ × ∇θ · ∇ζÞ−1 satisfies the condition of
JB2

0 being a flux function, i.e., ðr; θ; ζÞ are Boozer coor-
dinates (Boozer, 1981, 1982). A scalar function fðr; θ; ζÞ,
describing a generic fluctuating field, can be decomposed as a
Fourier series

fðr; θ; ζÞ ¼
X
n∈Z

einζFnðr; θÞ ¼
X
m;n∈Z

einζ−imθfm;nðrÞ; ð3:8Þ

where Z denotes the set of integers, and the toroidal Fourier
components Fnðr; θÞ are independent in the linear limit, while
the poloidal Fourier components fm;nðrÞ are not, due to the
equilibrium geometry. Note that, for simplicity, time depend-
ences are assumed implicit. The GFLDR derivation is based on
the construction of a nonlinear functional form δLðδϕ; δψÞ
from Eqs. (2.26) and (2.28) (Chen and Hasegawa, 1991; Edery
et al., 1992). The final result can be put in close connectionwith
various forms of the MHD energy principle (Bernstein et al.,
1958; Kruskal and Oberman, 1958; Rosenbluth and Rostoker,
1959; Taylor and Hastie, 1965; Antonsen, Lane, and Ramos,
1981; Antonsen and Lee, 1982; Van Dam, Rosenbluth, and

10One possible choice is r=a ¼ ðψ − ψ0Þ1=2=ðψa − ψ0Þ1=2, with
ψ0 the value of ψ on the magnetic axis and ψa its value at the plasma
minor radius r ¼ a.
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Lee, 1982; Porcelli and Rosenbluth, 1998), due to the fact
that, in the long-wavelength limit, Eqs. (2.26)–(2.29) can
be cast as Eqs. (2.34)–(2.37), i.e., they recover reduced
MHD as a limiting case of nonlinear gyrokinetic equations
and their linearized form reduces to the kinetic-MHD
equations discussed in Sec. II.E. When nonlinear terms are
included, δLðδϕ; δψÞ is generally not variational, although
δLðδϕ; δψÞ ¼ 0 by definition, when the functional is com-
puted for the actual solution of Eqs. (2.34) and (2.37).
The construction of the GFLDR assumes that fluctuations

are characterized by two radial scales, due to the existence of
the SAW continuous spectrum. As a result, the contribution
from regular regions δW is readily separated from that due to
singular layers −δI, yielding δL ¼ δW − δI. Radial scale
separation can be explicitly accounted for by adopting the
mode structure decomposition approach discussed by Zonca,
Chen, and White (2004) and Lu, Zonca, and Cardinali
(2012),11 which, for short-wavelength modes, reduces to
the well-known “ballooning representation” (Coppi, 1977;
Glasser, 1977; Lee and Van Dam, 1977; Connor, Hastie, and
Taylor, 1978, 1979; Pegoraro and Schep, 1978; Dewar et al.,
1981; Hazeltine, Hitchcock, and Mahajan, 1981; Dewar et al.,
1982), and consists of writing a generic fluctuating field
fðr; θ; ζÞ, decomposed as in Eq. (3.8), in the form

fðr;θ;ζÞ¼
X
m;n∈Z

einζ−imθ

Z
∞

−∞
eiðm−nqÞϑf̂nðr;ϑÞdϑ

¼
X
m;n∈Z

einζ−imθ

Z
∞

−∞
eiðm−nqÞϑPBnðr;ϑÞ½f�dϑ: ð3:9Þ

Equation (3.9) introduces and defines the projection operator
PBnðr; ϑÞ∶fðr; θ; ζÞ ↦ f̂nðr; ϑÞ, with f̂nðr; ϑÞ satisfying
regularity conditions at jϑj → ∞ (Zonca and Chen, 2014b),
and ϑ corresponds to an extended poloidal angle. In fact,
multiplication by a periodic function pðθÞ in ðr; θÞ space
corresponds to multiplication by a periodic function pðϑÞ in
ðr; ϑÞ space and b · ∇ ↦ ðJB0Þ−1∂ϑ. Finally, when operating
on a function in this ballooning representation, we find

∇⊥ ↦ ∇r
�
−inq0ϑþ ∂

∂r
�
þ in∇ζ þ ∇θ

� ∂
∂ϑ − inq

�

−
b

JB0

∂
∂ϑ ; ð3:10Þ

with q0 denoting the radial derivative of qðrÞ, defined by
Eq. (3.7), with respect to r. Introducing the magnetic shear as

s ¼ sðrÞ ¼ rq0ðrÞ=qðrÞ; ð3:11Þ

and adopting the notation

δΨ̂n ≡ κ̂⊥δψ̂n and k2ϑκ̂
2⊥ ≡ −∇2⊥; ð3:12Þ

it can be shown that δI is given by (Zonca and Chen, 2014b)

δI ¼ 2π2c2

jωj2
X
n∈Z

jkϑjðdψ=drÞ
jsj2JB2

0

����
r¼r0;ϑ¼0

ðδΨ̂†
−n0þδΨ̂n0þÞijsjΛn;

ð3:13Þ

with the summation on all singular layer contributions left
implicit. Furthermore, δψ† is the adjoint of δψ with the
definition by Gerjuoy, Rau, and Spruch (1983), δΨ̂n0þ ¼
δΨ̂nðr0; ϑ → 0þÞ is used as normalization, and Λn is obtained
from

iΛn ≡ 1
2
ðδΨ̂†

−n0þδΨ̂n0þÞ−1½δΨ̂†
−nðϑÞ∂ϑδΨ̂nðϑÞ�ϑ→0þ

ϑ→0− ; ð3:14Þ

i.e., from the solution of Eq. (2.37) for κ̂2⊥ ¼ k2⊥=k2ϑ ≃
s2ϑ2j∇rj2 ≫ 1 with outgoing wave boundary conditions,
corresponding to causality constraints. Thus, Eq. (3.13) con-
tains the information on the sharp varying structures of SAW
fluctuation associated with the continuous spectrum.
Meanwhile, one can show that (Zonca and Chen, 2014b)

δW ¼ lim
ϑ1→∞

ð2πÞ3
Z

a

0

dr
dψ=dr

2

Z
ϑ1

−ϑ1
J dϑ

×
X
n;l∈Z

e−2πinql


PB−nðr;ϑÞ½δB†� ·PBnðr;ϑþ 2πlÞ

�
δB
4π

�

þPB−nðr;ϑÞ½∂−1
t δϕ†�PBnðr;ϑþ 2πlÞ

×

�
−
c2

4π
∇ ·

�
1

v2A
∇⊥

∂
∂tδϕ

�
þ c2

4π
b×∇

�
4π

B2
0

�
P0⊥i

Ωi

��

·∇∇2⊥δϕþ c
B0

b× κ ·∇
X

hmðμB0 þ v2∥ÞJ0δgiv

þ δB⊥ ·∇
�
j∥0
B0

���
: ð3:15Þ

Formally nonlinear terms due to core plasma dynamics
(cf. Secs. II.D and II.E) may be dropped in the expression
for δW (Zonca and Chen, 2014b). For the same reason,
thermal ion FLR terms are dropped and δϕ ¼ δψ is explicitly
imposed in Eq. (3.15). As in ideal MHD, most important
destabilization effects come from the last two terms, the
“ballooning interchange” and the “kink” drive, respectively
(Furth et al., 1965; Greene and Johnson, 1968; Freidberg,
1987). Note that the expression for δW is still nonlinear due to
the implicit nonlinear response included in the ballooning-
interchange contribution, which also maintains FLR effects of
EPs. Adopting the normalization for δW in Eq. (3.15) as in
Eq. (3.13), it is possible to rewrite (Zonca and Chen, 2014b)

δW ¼ 2π2c2

jωj2
X
n∈Z

jkϑjðdψ=drÞ
jsj2JB2

0

����
r¼r0;ϑ¼0

ðδΨ̂†
−n0þδΨ̂n0þÞδŴn:

ð3:16Þ

Thus, the GFLDR is derived from δL ¼ δW − δI ¼ 0 com-
bining Eqs. (3.13) and (3.16), and for a single-n toroidal
mode, is given by

11This representation relies solely on the Poisson summation
formula and its general properties. A thorough discussion of these
issues and of applications of Eq. (3.9) to Alfvén waves was given by
Zonca and Chen (2014b).
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ijsjΛn ¼ δŴnf þ δŴnk: ð3:17Þ

The generalized inertia term ΛnðωÞ accounts for the thermal
ion response and can be extended to include EP effects for
long-wavelength modes (Briguglio et al., 1995), as well as, for
shorter wavelength modes, thermal ion FLR effects.
Meanwhile, Λn can also be modified to include the stress
tensor, Maxwell stress, and polarization nonlinearity, by
including the corresponding terms from Eq. (2.37) (see
Sec. IV.C). Same as the inertia term, the potential energy
δŴn accounts for both linear and nonlinear responses due to
the presence of δg in Eq. (3.15). The right-hand side of
Eq. (3.17) also distinguishes between “fluid” (δŴnf) and
kinetic (δŴnk) contributions to the potential energy δŴn
(Chen, White, and Rosenbluth, 1984). The expression for
δŴnf is obtained from Eq. (3.16) using the fluid limit for the
gyrokinetic particle response δg in Eq. (3.15), while δŴnk
accounts for the remaining kinetic particle response. In the
low-frequency limit (jΛ2

nj ≪ 1), δŴnf is independent of ω and
reduces to the well-known MHD limiting forms. Meanwhile,
δŴnkðωÞ is always a function of ω, as it reflects resonant as
well as nonresonant wave-particle interactions. Dispersion
relations in a form similar to Eq. (3.17) have been derived in
many works on the effect of EPs on low-frequency MHD
modes by precession resonance (Chen, White, and
Rosenbluth, 1984; Rewoldt and Tang, 1984; Spong et al.,
1985; Weiland and Chen, 1985; White et al., 1985; Biglari and
Chen, 1986; Coppi and Porcelli, 1986; White, Romanelli, and
Bussac, 1990). Meanwhile, the generality of Eq. (3.17) and its
applicability to low-frequency MHD modes (Chen, White,
and Rosenbluth, 1984; Liljeström and Weiland, 1992), as well
as to KBM (Biglari and Chen, 1991; Tsai and Chen, 1993) and
higher frequency SAWs (Chen, 1988; Chen et al., 1989;
Biglari, Zonca, and Chen, 1992), was formulated by Chen
(1994) and Zonca, Chen, and Santoro (1996) and formalized
by Zonca et al. (1999, 2007a), Zonca and Chen (2006, 2007),
and Chen and Zonca (2007a). When magnetic shear vanishes
at one isolated singular layer (s ¼ 0 at r ¼ r0 where
k∥n ¼ k∥n0), it is possible to construct the (local) extension
of Eq. (3.17) that, for jΛ2

nj ≪ 1, becomes (Zonca et al., 2007a)

iSðΛ2
n − k2∥n0L

2
0Þ1=2½ð1=nÞk∥n0L0 − ði=nÞðΛ2

n − k2∥n0L
2
0Þ1=2�1=2

¼ δŴnf þ δŴnk; ð3:18Þ

originally derived by Hastie et al. (1987) for internal kink
mode stability analyses, where

S2 ¼ r20q
00ðr0Þ=qðr0Þ2: ð3:19Þ

The GFLDR generally demonstrates the existence of two
types of modes (Zonca and Chen, 2006): a discrete gap mode,
or AE, for ReΛ2

n < 0, and an EPM (Chen, 1994) for
ReΛ2

n > 0. The combined effect of δŴnf and δŴnk deter-
mines the existence conditions of AEs, and various effects in
δŴnf and δŴnk can lead to AE localization in various gaps,
i.e., to different species of AE (Chen and Zonca, 2007a). The
transition between AE and EPM is generally continuous with
varying plasma parameters and a net distinction is possible
only when the distance of the mode frequency from the SAW

accumulation point (Λn ¼ 0) is larger than the mode linear
growth rate γL or the characteristic inverse nonlinear time τ−1NL
(cf. Sec. II.C). In the low-frequency limit (jΛ2

nj ≪ 1), when the
AE frequency is above the SAW continuum accumulation
point ωl, the causality constraint for AE existence inside the
SAW frequency gap is (Chen and Zonca, 2007a; Zonca and
Chen, 2014b)

δŴnf þ ReδŴnk > 0: ð3:20Þ

Similarly, for AE frequency below the SAW continuum
accumulation point ωu, the AE existence condition becomes

δŴnf þ ReδŴnk < 0: ð3:21Þ

For EPM meanwhile the iΛn term in Eq. (3.17) represents
continuum damping and the threshold in EP drive for mode
excitation. In fact, near marginal stability,

δŴnf þ ReδŴnk ¼ 0; ⇒ determinesω0;

γL
ω0

¼ jsj−1ImδŴkn − Λn

ð−ω0jsj−1∂ReδŴn=∂ω0Þ
; ⇒ determines γL: ð3:22Þ

Equations (3.17) and (3.18) are global by construction and
can be used for computing the (generally nonlinear) mode
dispersion relation. The fact that Eqs. (3.17) and (3.18) follow
from a variational principle, at least in the linear limit, allows
evaluating δŴnf and δŴnk by trial function method, thus,
even with realistic mode structures obtained numerically.
Furthermore, Λn can generally be computed by solving an
ordinary (nonlinear) differential equation with outgoing wave
boundary conditions, Eq. (2.37) [or Eq. (2.26) in the same
limit, accounting for full FLR effects (Connor, Tang, and
Taylor, 1983)] for κ̂2⊥ ¼ k2⊥=k2ϑ ≃ s2ϑ2j∇rj2 ≫ 1, which can
be done analytically in many cases of practical interest (Zonca
and Chen, 2014b, 2014c), or numerically. The generality of
Eqs. (3.17) and (3.18) makes them applicable to a variety of
MHD modes as well (Zonca and Chen, 2014b, 2014c), e.g.,
internal and/or external kink modes by suitable extension of
δŴnf and δŴnk expressions. Stability of these modes is
expected to be strongly influenced by plasma rotation, due
to the ideal MHD coupling with sound (Bondeson and Ward,
1994; Betti, 1995) and Alfvén waves (Gregoratto et al., 2001;
Zheng, Kotschenreuther, and Chu, 2005), or due to resistive
layer (Finn, 1995; Gimblett and Hastie, 2000) and viscous
boundary layer damping (Fitzpatrick and Aydemir, 1996).
However, even stronger effects are expected when resonant
interactions are accounted for with thermal ions at the bounce
or transit frequencies (Bondeson and Chu, 1996; Liu et al.,
2004), or with either trapped thermal ions or electrons at the
precession frequency (Hu and Betti, 2004). Experimental
evidence also suggests the existence of EP-driven external
kink modes (Heidbrink et al., 2011; Okabayashi et al., 2011),
which are the EPM counterpart of the resistive wall mode
(RWM) (Pfirsch and Tasso, 1971). Recent reviews of the
physics of internal kink (sawtooth) stabilization (Chapman
et al., 2007; Graves et al., 2010, 2012) and analyses of high-β
regimes for the demonstration power plant (DEMO)
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(Chapman, Kemp, and Ward, 2011) confirm the necessity of
thorough kinetic models for the description of the plasma
operation control in burning plasmas.
For short-wavelength SAW with radially localized mode

structures, the mode structure decomposition of Eq. (3.9)
reduces to the ballooning representation

fðr; θ; ζÞ ¼
X
m;n∈Z

AnðrÞeinζ−imθ

Z
eiðm−nqÞϑf̂0nðr; ϑÞdϑ

¼
X
m;n∈Z

AnðrÞeinζ−imθ

Z
eiðm−nqÞϑPBnðr; ϑÞ½f0n�dϑ;

ð3:23Þ

where PBnðr; ϑÞ∶f0nðr; nq −mÞ ↦ f̂0nðr; ϑÞ and the func-
tions f0nðr; nq −mÞ are nearly invariant under radial trans-
lations by multiples of ðnq0Þ−1, while the radial envelope
functions AnðrÞ have characteristic spatial dependences on
mesoscales, intermediate between the perpendicular wavelength
and the equilibrium scale length (Zonca and Chen, 1993; Zonca,
1993a). Because of the spatial scale separation among
f0nðr; nq −mÞ, AnðrÞ, and equilibrium nonuniformities, it is
possible to use the eikonal ansatz AnðrÞ ∼ exp½i R nq0θkðrÞdr�
(Dewar et al., 1981, 1982). Thus, Eq. (3.10) becomes

∇⊥ ↦ ikϑ∇rðsϑ − sθkÞ þ in∇ζ þ ikϑr∇θ ð3:24Þ
and Eq. (2.37) can be rewritten as

� ∂2

∂ϑ2 −
∂2
ϑκ̂⊥
κ̂⊥

�
δΨ̂n −

J 2B2
0

v2A

∂
∂t

� ∂
∂tþ iω�pi −

3

4
k2ϑρ

2
i κ̂

2⊥
� ∂
∂tþ iω�pi þ iω�Ti

��
δΦ̂n

−
4πJ 2B0

ck2ϑκ̂⊥
b × κ · ∇

X�
mðμB0 þ v2∥ÞJ0

∂
∂t δĝn

	
v
þ ½nonlinear terms� ¼ 0: ð3:25Þ

Here we introduced the notation δΦ̂n ≡ κ̂⊥δϕ̂n, as in
Eq. (3.12), and ω�pi ¼ ω�ni þ ω�Ti, with

ω�ni ¼
�

T0c
en0B0

�
i
ðb × ∇n0iÞ · k⊥;

ω�Ti ¼
�

c
eB0

�
i
ðb × ∇T0iÞ · k⊥;

ð3:26Þ

for Maxwellian thermal plasma ions, and k⊥ ¼ −i∇⊥.
Furthermore, we have omitted the kink drive, for it scales
as n−1 (cf. Sec. II.C), and the nonlinear terms, since they are
analyzed specifically in Sec. IV.C. Equations (3.13) and
(3.16) meanwhile become

δI ¼ 2π2c2

jωj2
X
n∈Z

Z
a

0

dr
jkϑj2ðdψ=drÞ

JB2
0

����
ϑ¼0

× ðδΨ̂†
−n0þδΨ̂n0þÞiΛn; ð3:27Þ

δW ¼ 2π2c2

jωj2
X
n∈Z

Z
a

0

dr
jkϑj2ðdψ=drÞ

JB2
0

����
ϑ¼0

× ðδΨ̂†
−n0þδΨ̂n0þÞδW̄n; ð3:28Þ

with the ballooning δW̄n expressed as, noting that
δΨ̂†

−n0þδΨ̂n0þ ¼ δΦ̂†
−n0þδΦ̂n0þ ,

δW̄n ¼ δW̄nf þ δW̄nk

¼ ðδΦ̂†
−n0þδΦ̂n0þÞ−1

1

2

Z
∞

−∞

�� ∂
∂ϑ δΦ̂−n

�†� ∂
∂ϑ δΦ̂n

�
þ ∂2

ϑκ̂⊥
κ̂⊥

δΦ̂†
−nδΦ̂n þ δΦ̂†

−n
J 2B2

0

v2A

∂
∂t

� ∂
∂tþ iω�pi

�
δΦ̂n

þδΦ̂†
−n

4πJ 2B0

ck2ϑκ̂⊥
b × κ · ∇

X�
mðμB0 þ v2∥ÞJ0

∂
∂t δĝn

	
v

�
dϑ: ð3:29Þ

Here Λn, δW̄n, and other physical quantities are dependent
on r, due to the global equilibrium profile variations. For
very localized modes, whose radial envelope variation
AnðrÞ on mesoscales can be ignored, a direct comparison
of Eqs. (3.16) and (3.28) yields δŴn ¼ jsjδW̄n and the
GFLDR becomes a local dispersion relation.
In the more general case, where global plasma nonun-

iformities play important roles, the GFLDR can be cast as

½iΛn − ðδW̄f þ δW̄kÞn�AnðrÞ ¼ Dnðr; θk;ωÞAnðrÞ
¼ 0; ð3:30Þ

with Dnðr; θk;ωÞ playing the role of a local dispersion
function. This equation can be generally solved using the fact
thatω ¼ ω0 þ i∂t, withω0 the typical (linear) mode frequency
(cf. Sec. II.C). In fact, we can describe the spatiotemporal
evolution of SAWwave packets in toroidal plasmas expanding
the solutions of Eq. (3.30) about the characteristics

Dn(r; θk0ðrÞ;ω0) ¼ 0: ð3:31Þ

Then, letting AnðrÞ ¼ expð−iω0tÞAn0ðr; tÞ, with ∂tAn0ðr; tÞ ∼
γLAn0ðr; tÞ ∼ τ−1NLAn0ðr; tÞ (cf. Secs. II.C and IV.A), the spa-
tiotemporal evolution equation for An0ðr; tÞ is

015008-18 L. Chen and F. Zonca: Physics of Alfvén waves and energetic …

Rev. Mod. Phys., Vol. 88, No. 1, January–March 2016



∂Dn

∂ω0

�
i
∂
∂t
�
An0 þ

∂Dn

∂θk0
�
−

i
nq0

∂
∂r − θk0

�
An0

þ 1

2

∂2Dn

∂θ2k0
��

−
i
nq0

∂
∂r − θk0

�
2

An0 −
i
nq0

∂θk0
∂r An0

�

¼ Snðr; tÞ: ð3:32Þ

The Snðr; tÞ on the right-hand side can represent either a source
term or nonlinear interactions (cf. Sec. IV.A). The solution of
Eq. (3.32) identifies important time scales, such as the inverse
linear growth time γ−1L and the formation time of the global
eigenmode structure τA, which is of the order of the wave-
packet bounce time between WKB turning points (Zonca,
Chen, and White, 2004). It can be shown that the global mode
dispersion relation is (Zonca and Chen, 1993; Zonca, 1993a,
1993b)

Φ0ðω0Þ ¼
I

nq0θk0dr − kπ ¼ 2lπ; l ∈ N: ð3:33Þ

Here k ¼ 0 or k ¼ 1, respectively, for librations or rotations of
θk0 characteristics of Eq. (3.31).
Detailed applications of the GFLDR theoretical framework

to various branches of the SAW spectrum in toroidal plasmas
(cf. Sec. III.B) and their experimental observations are given
by Zonca and Chen (2014c). In this work, we are mainly
interested in the extensions of those analyses to nonlinear
phenomena (cf. Sec. IV).

IV. NONLINEAR ALFVÉN WAVE BEHAVIOR
AND SELF-CONSISTENT INTERACTIONS
WITH ENERGETIC PARTICLES

The ordering estimates of the vorticity equation in Sec. II.C
introduce two different nonlinear dynamic regimes in the
long-wavelength limit. For ϵω > ϵ2⊥, nonlinear wave-wave
interactions are determined by the polarization (inertia) non-
linearity and the MHD plasma description is reasonably
accurate. Meanwhile, for ϵω < ϵ2⊥, Maxwell stress and pres-
sure stress tensor nonlinearity become dominant and kinetic
theory becomes necessary at increasingly shorter wave-
lengths. Thus, the nonlinear dynamics of Alfvén waves
crucially depends on the existence of the so-called Alfvénic
state (cf. Sec. II.C), where Reynolds and Maxwell stresses
cancel exactly and large amplitude SAW can be supported.
Consequently, physics processes that are responsible for
breaking the Alfvénic state are of great importance for the
nonlinear evolution of the SAW spectrum.
As anticipated in Sec. III, the GFLDR theoretical frame-

work provides a useful starting point for our analyses of
nonlinear physics of SAW, DAW, and EPs in burning plasmas.
Section IV.A discusses the general theoretical approach
adopted here, which is formulated as a NLSE with integro-
differential nonlinear terms. That equation is then used in later
sections to investigate nonlinear processes affecting DAW
behavior.
Many of these issues can be analyzed and illuminated in

uniform plasmas and are presented in Sec. IV.B, where the
finite ion compressibility effect (polarization nonlinearity) is
analyzed in the long-wavelength limit, showing that it yields

the decay of a SAW into another SAW and an ISW (Sagdeev
and Galeev, 1969) (cf. Sec. IV.B.1). However, for sufficiently
short wavelength there is a transition to nonlinear behavior
dominated by Reynolds and Maxwell stresses, which requires
accounting for wavelengths comparable with the ion Larmor
radius (Hasegawa and Chen, 1975, 1976). In this case, KAWs
break the ideal Alfvénic state and the three-wave SAW decay
is taken over by the three-wave KAW decay (Hasegawa and
Chen, 1976). Such a transition has important consequences on
plasma transport, since SAW decay preserves the anisotropy
of the initial k⊥ spectrum, while KAW decay tends to make it
isotropic (cf. Sec. IV.B.2). These findings, thus, demonstrate
that, in general, it may be necessary to adopt the kinetic
description in the study of DAW turbulence. The breaking of
the Alfvénic state by KAWs also affects the nonlinear
excitation of convective cells, as shown in Sec. IV.B.3.
Convective cells are the uniform plasma counterpart of zonal
flows and fields in toroidal systems. Studying convective cells
thus provides useful insights to understanding the more
complex nonlinear interplay between Alfvén waves and zonal
structures (ZS) (cf. Sec. II.D), which will be further discussed
later in this section and in Sec. VI within a broader physics
framework.
In Sec. IV.C, we show how geometry of the plasma

equilibrium and spatial nonuniformities affect, both qualita-
tively and quantitatively, the nonlinear processes discussed
previously. The tokamak counterpart of the SAW decay
process in a uniform plasma is TAE frequency cascading
via nonlinear Landau damping (Hahm and Chen, 1995),
discussed in Sec. IV.C.1. At shorter wavelengths, as in the
KAW decay, polarization nonlinearity becomes subdominant,
and Maxwell stress and pressure stress tensor (including
Reynolds stress; cf. Secs. II.B and II.D) nonlinear terms
determine the cross section of TAE frequency cascading. This
analysis, however, remains to be carried out. In Sec. IV.C.2,
we also discuss the generation of ZS by finite-amplitude TAE
(Spong, Carreras, and Hedrick, 1994; Todo, Berk, and
Breizman, 2010; Chen and Zonca, 2012) as the toroidal
geometry analog of the generation of convective cells by
KAW. These various processes may by themselves yield to
TAE or AE saturation levels that possibly explain some
experimental observations. More generally, however, satura-
tion levels (jδBr=B0j ∼ 10−3) expected for the individual
nonlinear interactions are larger than observed values
(jδBr=B0j≲ 5 × 10−4) [see, e.g., Heidbrink et al. (2008)]. It
is nonetheless important to identify and keep these processes
in account, especially in conditions where a number of
nonlinear interactions may be simultaneously active and
ultimately determine the AE fluctuation amplitude. In addition
to regulating turbulence intensity and plasma transport,
coherent nonlinear interaction of AE and ZS may influence
fine structures of the AE frequency spectrum (cf. Sec. IV.C.2),
as is the case of modulation interactions due to wave-particle
nonlinear dynamics (Fasoli et al., 1998) (cf. Sec. IV.D.3 and
related discussion in Sec. IV.D.6). Finally, we analyze the AE
nonlinear interplay with the SAW continuous spectrum in
nonuniform systems, which may yield either enhanced con-
tinuum damping (Vlad et al., 1992; Zonca et al., 1995; Chen
et al., 1998) (cf. Sec. IV.C.3) or nonlinear instability, as in the
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case with finite-amplitude MHD activity (Biancalani et al.,
2010a, 2010b, 2011) (cf. Sec. IV.C.4).
The nonlinear wave-particle interaction of AEs and EPMs

with EPs is discussed in Sec. IV.D. We start from the analysis
of the nonlinear dynamics of a nearly monochromatic ener-
getic electron beam in a 1D plasma (O’Neil, Winfrey, and
Malmberg, 1971; O’Neil and Winfrey, 1972), given in
Sec. IV.D.1, for this is the classical problem on which the
mode dispersion relation and nonlinear behavior in a beam-
plasma system were formulated and understood for the first
time. The 1D beam-plasma problem is also important for
understanding aspects of the nonlinear interaction of AE with
EPs. In fact, there are currently two paradigms for discussing
these physics. One is the bump-on-tail paradigm, which is
based on wave trapping in uniform plasma, including effects
of source and dissipation,12 that occurs due to wave-particle
“resonance detuning.” This paradigm was extensively devel-
oped by Berk and Breizman (1990a, 1990b, 1990c) and
applied to explain experimental observations [see Breizman
and Sharapov (2011) for a recent review]. The other paradigm
may be called the fishbone paradigm (Chen and Zonca, 2013;
Zonca et al., 2015b) in which the role of magnetic field
geometry and plasma nonuniformity is crucial, and wave-
particle interaction may be limited due to the finite radial
localization of the mode structures, i.e., “radial decoupling”
(Chen, White, and Rosenbluth, 1984; Briguglio, Zonca, and
Vlad, 1998; Zonca et al., 2005). Furthermore, the self-
consistent interplay of instabilities and EP transport may lead
to secular EP losses due to phase locking of fluctuations and
resonant particles via frequency sweeping (White et al.,
1983).
The nonlinear physics of the bump-on-tail paradigm are

analyzed in Sec. IV.D.2, stemming from the original works by
Berk and Breizman (1990a, 1990b, 1990c). Its applications to
AE experimental observations are discussed in Sec. IV.D.3,
which also addresses its underlying assumptions and its
consequent validity limits. Some of these limitations can be
overcome by approximate numerical simulation models,
based on perturbative treatment of EPs, which are presented
in Sec. IV.D.4. The bump-on-tail paradigm applies sufficiently
close to marginal stability, when fluctuation-induced radial
particle excursions are smaller than the mode radial wave-
length. For sufficiently strong external power inputs and,
therefore, EP power density sources, nonlinear EP excursions
explore regions of radially varying mode structures and thus a
transition typical of nonuniform plasmas is expected in the AE
nonlinear dynamics (Zonca et al., 2005), while EP redistrib-
utions occur on mesoscales. The general theoretical frame-
work, formulated in Sec. IV.D.5, allows one to describe the
transition from uniform to nonuniform plasma behavior,
illuminated by recent numerical simulation results (Wang et
al., 2012; Zhang, Lin, and Holod, 2012; Briguglio et al.,
2014) and to unify bump-on-tail and fishbone paradigms

(Zonca et al., 2015b). Effects of such a transition become
more important as drive strength increases and are most
apparent for EPMs (cf. Sec. IV.D.6) and fishbones
(cf. Sec. IV.D.7), which are characterized by the nonpertur-
bative interplay of nonlinear mode dynamics and EP transport
processes.
Further remarks and discussion related to the general

theoretical formulation of Sec. IV.A are presented in
Sec. IV.E, where possible interesting connections to other
fields of physics research are also discussed.

A. General theoretical approach

Here we further elaborate on the GFLDR theoretical
framework and derive a general form of governing equations
for addressing nonlinear physics of SAW, DAW, and EPs in
burning plasmas. Equation (3.32) describes the spatiotemporal
evolution of DAWwave packets in toroidal plasmas due to the
influence of external sources and/or nonlinear dynamics.
From Eq. (3.30), a useful formal interpretation of the left-
hand side is obtained isolating linear terms in the local
dispersion function Dn(r; θk0ðrÞ;ω0), while nonlinear and
external source terms are collected on the right-hand side.
Thus,

Snðr; tÞ ¼ −DNL
n þ Sextn ðr; tÞ

¼ ðδW̄NL
f þ δW̄NL

k Þ
n
− iΛNL

n þ Sextn ðr; tÞ; ð4:1Þ

where Sextn ðr; tÞ explicitly denotes external sources, the super-
script NL stands for nonlinear, and the definition of the
various terms follows from Eqs. (3.13), (3.16), (3.27), and
(3.28). In general, Snðr; tÞ can be written symbolically, in
terms of amplitude expansion, as (Chen, Zonca, and Lin,
2005; Zonca et al., 2006)

Snðr; tÞ − Sextn ðr; tÞ ¼ ðCn;0 þ C0;nÞ ∘ An0ðr; tÞAz0ðr; tÞ

þ
Xn0;n00≠n

n0þn00¼n

Cn0;n00 ∘ An00ðr; tÞAn000ðr; tÞ;

ð4:2Þ

where Cn0;n00 are generally integrodifferential operators, which
imply nonlocal interactions in the n toroidal mode number
space and whose composition with (action on) Az0; An0 is
denoted by “∘,” and Az0 and An0 are, respectively, the radial
envelope functions of the zonal and n ≠ 0 components. Here
we included nonlinear dynamics that modify the n ¼ 0
“zonal” particle distribution function δF̄z, given by
Eq. (2.22) (Zonca et al., 2000). Therefore, Az0 not only
represents the amplitude of ZS, but it also symbolically
indicates the nonlinear distortion of the equilibrium particle
distribution function. This distortion effect enters Eq. (4.1)
through velocity-space integrals, implying that Az0, when
accounting for interactions with δF̄z, is by itself a nonlinear
function of An0 and that the dependence is quadratic,
Az0 ∝ jAn0j2. As explained in Sec. IV.D.5.b, we refer to these
contributions as phase-space ZS (Zonca et al., 2013, 2015b).
Thus, the source term in Eq. (4.1) is intended to contain a
cubic nonlinearity with respect to the envelope function

12Source and dissipation account for the generation of the EP
population by external heating and/or current drive systems in
toroidal plasmas of fusion interest as well as for the relaxation
of their distribution function via Coulomb collisions (Berk and
Breizman, 1990a).
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An0ðr; tÞ. The last term in Eq. (4.2) accounts for three-wave
interactions and, in general, nonlocal spectral transfers.
Combining all the various terms, Eq. (3.32) can be cast in
the form of a NLSE with integrodifferential terms

∂DL
n

∂ω0

�
i
∂
∂t
�
An0ðr; tÞ þ

∂DL
n

∂θk0
�
−

i
nq0

∂
∂r − θk0

�
An0ðr; tÞ

þ 1

2

∂2DL
n

∂θ2k0
��

−
i
nq0

∂
∂r − θk0

�
2

−
i

nq0
∂θk0
∂r

�
An0ðr; tÞ

¼ Sextn ðr; tÞ þ ðCn;0 þ C0;nÞ∘An0ðr; tÞAz0ðr; tÞ

þ
Xn0;n00≠n

n0þn00¼n

Cn0;n00∘An00ðr; tÞAn000ðr; tÞ: ð4:3Þ

Note that Eq. (4.3) describes both short-wavelength modes,
for which Eq. (3.32) was derived, and global long-wavelength
modes with one isolated singular layer. The argument yielding
Eq. (4.3) from Eqs. (3.30) and (3.32) can be repeated for the
GFLDR in the form of Eq. (3.17). As a result, one obtains
Eq. (4.3) again, provided that θk0 ¼ ∂=∂r ¼ 0 is assumed,
i.e., considering An0 as the amplitude of the n mode at the
singular layer (cf. Sec. IV.D.7). The same also applies for the
vanishing magnetic shear case, Eq. (3.18). Thus, we may
consider Eq. (4.3) as the general form of governing equations
for addressing nonlinear physics of Alfvén waves and EPs in
burning plasmas. Expressions of the nonlinear-coupling oper-
ators Cn0;n00 depend on the specific nonlinear interactions, and
some examples are discussed in the remainder of this section.
Equation (4.3) demonstrates that observations of the EP-

driven DAW spectrum are expected to be largely described by
linear physics, as noted experimentally by Van Zeeland et al.
(2006), while nonlinear dynamics can be understood as
coupling of relevant degrees of freedom on a time scale τNL ∼
γ−1L [cf. Sec. II.C and Zonca and Chen (2014b), and Zonca et
al. (2015a, 2015b) for an in-depth discussion of this point].
Furthermore, Eq. (4.3) allows us to readily recognize the
various spatiotemporal scales for the nonlinear dynamic
evolution of DAWs. In addition to the inverse linear growth
rate γ−1L and the formation time of the global eigenmode
structure τA (Zonca, Chen, andWhite, 2004) (cf. Sec. III.C), in
fact, one can identify nonlinear processes and corresponding
time scales separating ideal region response from singular
layer dynamics, as suggested by Eq. (4.1). Recalling that
τNL ∼ γ−1L , different behavior is expected for τA < τNL ∼ γ−1L ,
typical of AE, and for τA ∼ τNL ∼ γ−1L , which generally applies
for EPM.
Equation (4.3) is also a useful starting point for constructing

reduced nonlinear dynamic models with various levels of
approximation for understanding selected aspects of the
processes under investigation. Different terms entering
Eq. (4.3) can be evaluated either analytically or with sim-
plified numerical descriptions, helping, thus, building models
with reliable predictive capabilities. Three-wave couplings
modify the nonlinear dynamics via the processes discussed in
Secs. IV.B and IV.C, which are the dominant nonlinear
dynamics of the DAW spectrum caused by the core plasma
component (cf. Sec. II.E) and directly affecting fluctuation-
induced transport of the thermal plasma. Meanwhile, for a

spectrum of low-amplitude fluctuations, jδB⊥=B0j ∼ 10−4

with jγL=ω0j ∼ jω0τNLj−1 ≪ 1 as in the case of DAWs excited
by EPs (cf. Sec. II.E), transport processes are dominated by
wave-particle resonant interactions (White et al., 1983, 2010a,
2010b) and by the evolution of phase-space ZS (cf. Sec. IV.D).
Nonlinear wave-wave couplings and wave-particle inter-
actions for DAW excited by EPs are historically considered
separately, for simplicity and clarity of the analysis. However,
noting that the existence of the SAW continuous spectrum
could lead to the excitation of short-wavelength modes via
resonant mode conversion of longer scale lengths excited by
EPs, EPs could then act as mediators of cross-scale couplings
(Zonca, 2008; Zonca and Chen, 2008)13 and play a unique role
in determining complex behavior in burning plasmas (see also
Secs. IV.E and VI.B). Thus, a comprehensive understanding
of the nonlinear physics of DAW instabilities excited by EPs
would require a self-consistent treatment of both nonlinear
wave-wave and wave-particle interactions and is beyond the
scope of this review. Here, we mainly focus on nonlinear
dynamics of single-n modes14 and separate the analysis of
wave-wave and wave-particle nonlinear interactions in order
to delineate more clearly the underlying physics mechanisms.

B. Nonlinear shear Alfvén waves in uniform plasmas

Let us first explore the simple limit of an infinite, uniform
plasma with B0 ¼ B0ẑ. Within the generally valid approxi-
mation of the quasineutrality condition andmi ≫ me, we have
the following one-fluid equation of motion:

ϱmð∂t þ u ·∇Þu ¼ −∇ · Pþ j × B=c; ð4:4Þ

where ϱm ¼ P
jnjmj ≃ nimi and u≃ ui. Equation (4.4) is

readily obtained from Eq. (2.14) decomposing the stress
tensor as pressure and Reynolds stress, as usual, i.e., defining
P ≡ Pþ ϱmuu. Letting u ¼ u0 þ δu, etc., and noting
u0 ¼ j0 ¼ 0, Eq. (4.4) becomes

ðϱm0 þ δϱm0Þð∂t þ δu ·∇Þδu ¼ −∇ · δPþ δj × B=c: ð4:5Þ

We further assume that SAWand CAW frequencies are well
separated (j∇⊥j ≫ j∇∥j) and β ≪ 1. Thus, Eqs. (2.7) and (2.8)
apply and only dynamics of SAWand ISWare kept. If we now
further make the crucial assumption that all the interacting
waves are SAWs, which are nearly incompressible, we then
have ∇ · δu≃ 0 and δϱm ≃ 0, δP≃ 0. Then, Eq. (4.5)
becomes

ϱm0∂tδu ¼ Fð2Þ
p þ δj × B0=c; ð4:6Þ

where the nonlinear ponderomotive force Fð2Þ
p is defined as

13This aspect was recently explored by Qiu, Zonca, and Chen
(2012) in connection with the analysis of radial structures of EP-
driven geodesic acoustic modes (Berk et al., 2006; Fu, 2008).

14Note that, in toroidal geometry, this corresponds anyhow to
many coupled poloidal Fourier harmonics in Eq. (3.23) and, due to
nonlinear interactions, to the coupling of different radial states (not
necessarily eigenstates) of the same toroidal mode n.
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Fð2Þ
p ¼ δj×δB=c−ϱm0δu ·∇δu¼−∇ðδBÞ2=ð8πÞ−Mx−Re;

and

Mx ¼ −ðδB ·∇ÞδB=ð4πÞ≃ −ðδB⊥ ·∇ÞδB⊥=ð4πÞ;
Re ¼ ϱm0ðδu ·∇Þδu≃ ϱm0ðδu⊥ ·∇Þδu⊥; ð4:7Þ

are, respectively, the divergence of Maxwell and Reynolds
stresses. The approximations are justified since β ≪ 1 and
j∇⊥j ≫ j∇∥j; both δB∥ and δu∥ are, hence, suppressed here.
Equation (4.6) may be regarded as the basic equation for SAW
interactions subject to the above constraints.
Equation (4.6) gives δj⊥ as

δj⊥ ¼ δjð1Þ⊥ þ δjð2Þ⊥ ; ð4:8Þ

where δjð1Þ⊥ ¼ ðc=B0Þb × ϱm0∂tδu⊥ is the polarization current,

and δjð2Þ⊥ is the nonlinear current

δjð2Þ⊥ ¼ −ðc=B0Þb × Fð2Þ
p : ð4:9Þ

For SAW dynamics, Eqs. (2.12) and (2.13), ∇2δA∥ ≃∇2⊥δA∥ ¼ −ð4π=cÞδj∥, yield the following vorticity equation:

ðb ·∇Þð−c=4πÞ∇2⊥δA∥ þ∇⊥ · δj⊥ ¼ 0; ð4:10Þ

where δB ¼ ∇ × δA, δE ¼ −ð∇δϕþ ∂tδA=cÞ, and δA≃
δA∥b. Thus, we have δE⊥ ≃ −∇⊥δϕ and δE∥ ¼
−b ·∇δϕ − ∂tδA∥=c. Adopting the flux function δψ defined
in Eq. (2.31), Eq. (4.10) can be written as

ðc2=4πÞðb ·∇Þ2∇2⊥δψ þ ∂tð∇⊥ · δj⊥Þ ¼ 0: ð4:11Þ

We now make the final MHD approximations,

δu⊥ ≃ ðc=B0ÞδE⊥ × b ¼ ðc=B0Þb ×∇⊥δϕ; ð4:12Þ

and

δE∥ ¼ −b ·∇ðδϕ − δψÞ≃ 0: ð4:13Þ

Equation (4.11) then becomes

c2½ðb ·∇Þ2 − v−2A ∂2
t �∇2⊥δϕþ 4π∂t½∇ · δjð2Þ⊥ � ¼ 0; ð4:14Þ

and

∇ · δjð2Þ⊥ ¼ −ðc=B0Þb ·∇ × ðReþMxÞ: ð4:15Þ

Equation (4.15) has the interesting properties that∇⊥ ·δj
ð2Þ
⊥ ¼0

if ReþMx ¼ 0 or

δu⊥w=vA ¼ �δB⊥w=B0: ð4:16Þ

Equation (4.16) is the Walén relation (Walén, 1944). In terms
of δϕ and δA∥, we have

δϕw=vA ¼ �δA∥w=c

or

∂tðδϕw=vAÞ ¼∓ ðb · ∇Þδψw ¼∓ ðb · ∇Þδϕw: ð4:17Þ

Equation (4.17) thus demonstrates that given the Walén
relation, Eq. (4.16),

½ðb ·∇Þ2 − v−2A ∂2
t �δϕw ¼ 0; ð4:18Þ

and Eq. (4.14) is self-consistently satisfied regardless of the
magnitude of δϕw and δAw or δu⊥w and δB⊥w. This is the
celebrated Alfvénic state (Alfvén, 1942, 1950; Walén, 1944;
Elsasser, 1956; Hasegawa and Sato, 1989). That is, a
purely copropagating ½∂t þ ðb ·∇Þ�δϕwþ ¼ 0 or counterpro-
pagating ½∂t − ðb ·∇Þ�δϕw− ¼ 0 finite-amplitude SAW is a
self-consistent solution to the nonlinear SAWequation (4.14).
Nonlinear interactions thus can occur only among oppositely
propagating SAWs. There exists a vast amount of literature
[see, e.g., Biskamp (1993)] investigating the consequences of
such interactions within the incompressibility and ideal MHD
assumptions, and we will not go into details here. Instead, this
paper focuses on effects relevant to fusion plasmas, which
break the constraints leading to the existence of Alfvénic
states. More specifically, in the following sections, we inves-
tigate nonlinear SAW dynamics including effects of finite
compressibility, ion Larmor radii, and geometries.

1. Effects of finite ion compressibility

By relaxing the incompressibility constraints, it was first
shown by Sagdeev and Galeev (1969) that a SAW can
parametrically decay into an ISW and a backscattered
SAW. Specifically, let us consider the three-wave interactions
among the pump SAW Ω0 ¼ ðω0; k0Þ, the daughter ISW
Ωs ¼ ðωs; ksÞ, and the lower-sideband SAW Ω− ¼ðω−;k−Þ,
where ω− ¼ ωs − ω0 and k− ¼ ks − k0. Note that, in the Ωs
mode, the dynamics is predominantly along B0. One can then
show that the dominant nonlinear effect of SAW on the Ωs
mode enters via the parallel ponderomotive force, i.e.,

b · ðδj⊥ × δB⊥Þs=c ¼ −∇∥ðδB2⊥Þs=ð8πÞ
¼ −n0e∇∥δϕps; ð4:19Þ

δB⊥ ¼ P
kδBk⊥ expð−iωktþ ik · xÞ, ðδB2⊥Þs ¼ δB0⊥ · δB−⊥,

and δϕps is the corresponding ponderomotive potential.
That is,

ϱm0ð−iωsÞδu∥s ¼ −iks∥ðδPs þ δB0⊥ · δB−⊥=8πÞ: ð4:20Þ

Applying the equation of state, we have δPs ¼
ðγeTe þ γiTiÞδns ≡ Tδns. The continuity equation
n0ks∥δu∥s ¼ ωsδns then yields

ω2
sϵsδϱms ¼ k2s∥δB0⊥ · δB−⊥=ð8πÞ ð4:21Þ

and, with c2s ≡ T=mi,
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ϵs ¼ 1 − k2s∥c
2
s=ω2

s : ð4:22Þ

As to the Ω− SAW sideband, the dominant coupling effect
to Ωs is via δϱms in the polarization current, i.e.,

δjð2Þ⊥− ¼ ðc=B0Þb × ½δϱms∂tδu⊥�−
¼ ðc=B0Þδϱmsðiω0Þb × δu�⊥0: ð4:23Þ

The vorticity equation (4.14), for the Ω− mode, then becomes

ϵA−k2−⊥δϕ− ¼ ðδϱms=ϱm0Þðk0⊥ · k−⊥Þδϕ�
0; ð4:24Þ

where

ϵA− ¼ 1 − k2−∥v
2
A=ω

2
−; ð4:25Þ

and we noted δϕ0;− ≃ δψ0;−. Equation (4.21) along with
Eq. (4.24) then yields the following parametric dispersion
relation:

ϵsϵA− ¼ 1

2
k20⊥ρ2s cos2 θc

�
k−∥
k0∥

�
jΦ0j2; ð4:26Þ

where Φ0 ¼ eδϕ0=T, ρs ¼ cs=Ωi, and θc is the angle between
k0⊥ and k−⊥. For resonant decays, we have ωs ¼ iγ þ ωsr,
ωsr ¼ ks∥cs, ω− ¼ iγ þ ðωsr − ω0Þ, ω0 − ωsr ¼ jk−∥jvA, and
Eq. (4.26) then reduces to

γ2

ω0ωsr
¼ 1

8
k20⊥ρ2s cos2 θc

�
k−∥
k0∥

�
jΦ0j2: ð4:27Þ

Equation (4.27) shows that instability sets in when
k0∥=k−∥ > 0. Since jω0j ≫ jωsj, we have jω−j≃ ω0,
k−∥ ¼ ks∥ − k0∥ ≃ k0∥, or ks∥ ≃ 2k0∥, and meanwhile,
ω−=k−∥ ≃ −vA, i.e., the parallel phase velocity of the
lower-sideband SAW is opposite to that of the pump wave.
Equation (4.27) also shows that the parametric instability
maximizes around θc ¼ 0, i.e., k−⊥ aligns with k0⊥. This
carries a significant implication to the transport process
induced by the SAW turbulence (cf. Sec. IV.B.2). Note also
that including damping of the SAW sideband and ISW in
Eq. (4.27) would lead to a threshold in jΦ0j.
For fusion plasmas, we have typically Te ∼ Ti and the ISW

becomes a quasimode due to significant ion Landau damping.
In this case, we need to treat ions kinetically and the
corresponding parametric decay process becomes a nonreso-
nant decay via nonlinear ion Landau damping (Sagdeev and
Galeev, 1969; Cohen and Dewar, 1974; Kulsrud, 1978). Since
nonlinearities enter via ion dynamics only, for the Ωs ion
sound wave, we have δnse=n0 ¼ eδϕs=Te with δϕs being the
self-consistent electrostatic potential, and

δnsi=n0 ¼ −eχisðδϕs þ δϕpsÞ: ð4:28Þ

Here δϕps is given by Eq. (4.19) and

χis ¼ ð1=TiÞhF0iks∥v∥=ðks∥v∥ − ωsÞiv
¼ ð1=TiÞ½1þ ξsZðξsÞ�; ð4:29Þ

h� � �iv denotes
R
dvð� � �Þ, F0i is taken to be Maxwellian, ZðξsÞ

is the plasma dispersion function [see, e.g., Stix (1992)],
ξs ¼ ωs=jks∥jvti and vti ¼ ð2Ti=miÞ1=2. The quasineutrality
condition then gives

ϵskδϕs ¼ −Teχisδϕps; ð4:30Þ

where

ϵsk ¼ 1þ Teχis: ð4:31Þ

Equations (4.19) and (4.30) then yield

ϵsk
δϱms

ϱm0

¼ −
χis
8πn0

δB0⊥ · δB−⊥: ð4:32Þ

Note that for jωsj ≫ jks∥vtij Eq. (4.32) recovers the fluid
result of Eq. (4.21) with c2s ¼ Te=mi.
Substituting Eq. (4.32) into Eq. (4.24), with Φ0 ≡ eδϕ0=Te,

and proceeding as in the previous one-fluid analysis, one
readily derives the following parametric decay dispersion
relation:

ϵskϵA− ¼ −
1

2
Teχisk20⊥ρ2s cos2 θc

�
k−∥
k0∥

�
jΦ0j2: ð4:33Þ

While Ωs is a quasimode since jImϵskj ∼Oð1Þ, Ω− remains a
normal mode. Thus, let ω− ¼ ω−r þ iγ and ω−r ¼
ωsr − ω0 ¼ jk−∥jvA; the imaginary part of Eq. (4.33) then
yields, noting Teχis ¼ ϵsk − 1,

2γ

ω0

¼ 1

2
k20⊥ρ2scos2θc

�
k−∥
k0∥

�
TeImχis
jϵskj2

jΦ0j2; ð4:34Þ

where, from Eq. (4.29),

Imχis ¼ ð1=TiÞIm½ξsZðξsÞ�
≃ ðπ=TiÞωsrhF0iδðks∥v∥ − ωsrÞiv: ð4:35Þ

Thus, the nonresonant decay maximizes around jωsrj ¼
jω0 þ ω−rj ≈ jks∥vtij ¼ jk0∥ þ k−∥jvti. Since jω0j≃ jω−rj ≫
jk∥vtij0;−, maximal interaction requires k0∥k−∥ > 0, i.e.,
k−∥ ≃ k0∥, ks∥ ≃ 2k0∥, and ω−=k−∥ ≃ −vA, similar to resonant
decay. Furthermore, from Eqs. (4.34) and (4.35), the decay
instability ðγ > 0Þ occurs when ωsr > 0, i.e., jω−rj ¼
jωsr − ω0j < ω0; that is, the parametrically excited lower-
sideband SAW has a real frequency lower than ω0,
jω−rj≃ ω0 − 2k0∥vti, and a parallel phase velocity opposite
to that of the pump wave. Again, including finite damping of
the SAW sideband and ISW would lead to a threshold in jΦ0j.
We note that the current analysis has assumed (Chen and

Zonca, 2011, 2013)

jk⊥ρsj20;− < jω0=Ωij ≪ 1: ð4:36Þ

Equation (4.36) is the same condition derived in Sec. II.C,
discussing the transition between nonlinear (MHD) dynamics
dominated by the polarization response to a regime where
dominant nonlinear (gyrokinetic) interactions are due to the
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pressure stress tensor (cf. the introduction to Sec. IV) and
Maxwell stress. Thus, for SAWs with jk⊥ρsj > jω0=Ωij1=2 ∼
Oð10−1Þ typically we need to employ the nonlinear gyroki-
netic equation (2.23), and the parametric decay processes are
significantly altered both quantitatively and qualitatively
(cf. Sec. IV.B.2).

2. Parametric decays of kinetic Alfvén waves

We now consider three-wave interactions among Ω0, Ωs,
and Ω− with β ≪ 1 as in Sec. IV.B.1, but jk⊥ρij formally of
Oð1Þ. Here we sketch only the derivations and refer to Chen
and Zonca (2011) for details. Following Frieman and Chen
(1982), we can adopt the nonlinear gyrokinetic theoretical
framework of Sec. II.D. Thus, assuming that both electrons
and ions have F̄0 ¼ FM ≡ n0F0, with F0 taken to be
Maxwellian, Eq. (2.21) yields

δf ¼ −ðe=TÞFMδϕþ exp ð−ρ · ∇Þδg; ð4:37Þ

while Eq. (2.23) for δg becomes

ð∂t þ v∥b · ∇þ hδuEgi · ∇Þδg ¼ ðe=TÞFM∂thδLgi: ð4:38Þ

Here we introduced the notation hδuEgi ¼ ðc=B0Þb × ∇hδLgi.
In terms of Fourier modes, Eq. (4.38) can be expressed as

iðk∥v∥ − ωkÞδgk − ðc=B0ÞΛk00
k0 ½hδLgik0δgk00 − hδLgik00δgk0 �

¼ −iωkðe=TÞFMhδLgik; ð4:39Þ

where Λk00
k0 ≡ b · ðk0⊥ × k00⊥Þ. Meanwhile, the quasineutrality

condition, Eq. (2.28), becomes

ð1þ Ti=TeÞδϕk ¼ ðTi=n0eÞhJkδgki − δgkeiv; ð4:40Þ

where e stands for the (positive) electron charge, and the
vorticity equation (2.26) can be written as

ik∥δj∥k − i
c2

4π

ωkk2⊥
v2Abk

ð1 − ΓkÞδϕk

¼ −Λk00
k0

�
δA∥k0

δj∥k00

B0

− δA∥k00
δj∥k0

B0

�

þ ec
B0

Λk00
k0 h½ðJkJk0 − Jk00 ÞδLk0δgk00i

− ðJkJk00 − Jk0 ÞδLk00δgk0i�iv; ð4:41Þ

with δj∥k¼ðc=4πÞk2⊥δA∥k. Here hδLgik¼Jkðδϕ−v∥δA∥=cÞk≡
JkδLk, Jk ¼ J0ðk⊥ρÞ, and k ¼ k0 þ k00. Furthermore, bk ¼
k2⊥ρ2i ¼ k2⊥ðTi=miÞ=Ω2

i , Γk ¼ hJ2kF0iiv ¼ I0ðbkÞ expð−bkÞ, I0
is the modified Bessel function, and jk⊥ρej ≪ 1 was assumed.
On the right-hand side of Eq. (4.41) the first term represents the
usual Maxwell stress, whereas the second term reduces to the
well-known Reynolds stress for k⊥ρi ≪ 1. Noting the ordering
jk∥vtej ≫ jωkj ≫ jk∥vtij, with vte and vti denoting electron and
ion thermal velocities, and defining δψk ¼ ðωδA∥=ck∥Þk from
Eq. (2.31), we can readily recover the following linear KAW
results (Hasegawa and Chen, 1975, 1976):

δψk ≃ ½1þ τð1 − ΓkÞ�δϕk ≡ σkδϕk; ð4:42Þ

where τ ¼ Te=Ti, and the KAW linear dispersion relation
(cf. Sec. III.A)

ω2=ðk2∥v2AÞ≃ σkbk=ð1 − ΓkÞ: ð4:43Þ

As to the excitation of ISW, Ωs, by the two KAWs, Ω0 and
Ω−, we note that due to the frequency ordering discussed in
Sec. IV.B.1 Ωs is predominantly an electrostatic mode.
Equation (4.39) can then be used to calculate linear and
nonlinear responses of δgs for both electrons and ions.
Substituting these results into the quasineutrality condi-
tion (4.40), we then obtain

ϵsKδϕs ¼ −iðc=B0ω−ÞΛs
0β1δϕ−δϕ0; ð4:44Þ

where

ϵsK ¼ 1þ τ þ τΓsξsZðξsÞ; ð4:45Þ

β1 ¼ τF1½1þ ξsZðξsÞ� þ σ−σ0; ð4:46Þ

ϵsK is the short-wavelength extension of ϵsk introduced in
Eq. (4.31), F1 ¼ hJsJ0J−F0iiv, Js; J0; J− stand for J0ðk⊥ρÞ
computed at k⊥s; k⊥0; k⊥−, respectively, and we applied the
corresponding linear KAW wave properties, noting that Ω0

and Ω− are normal modes.
Since Ωs could be a heavily damped quasimode

(cf. Sec. IV.B.1), we need to include both linear and nonlinear
responses of δgs in its coupling to Ω− via Ω0. The corre-
sponding quasineutrality condition (4.40) then becomes

δψ− ¼ ½σ− þ σð2Þ− �δϕ− þD1δϕsδϕ
�
0; ð4:47Þ

where σ− is defined in Eq. (4.42),

σð2Þ− ¼
�

c
B0ω−

Λs
0

�
2
�
τ½1þ ξsZðξsÞ�hJ20J2−ii −

k∥0
k∥−

σ20σ−

�
jδϕ0j2

ð4:48Þ

and

D1 ¼ −iðc=B0ω−ÞΛs
0τ½1þ ξsZðξsÞ�F1: ð4:49Þ

Proceeding in the same way, we may compute Eq. (4.41) for
the KAW sideband. In this case, the Maxwell stress does not
contribute to the nonlinear dynamics forΩs is a predominantly
electrostatic mode. Thus, the parametric decay is mediated by
the generalized Reynolds’ stress in Eq. (4.41). Applying the
results of δgs derived earlier, we can obtain

k2⊥−½ð1 − Γ− þ αð2Þ− Þb−1− δϕ− − ðk2∥v2A=ω2Þ−δψ−�
¼ ðD2=ρ2sÞδϕsδϕ

�
0; ð4:50Þ

where ρ2s ¼ τρ2i and αð2Þ− and D2 are due to the nonlinear ion
response

015008-24 L. Chen and F. Zonca: Physics of Alfvén waves and energetic …

Rev. Mod. Phys., Vol. 88, No. 1, January–March 2016



αð2Þ− ¼ ðc=B0ω−Þ2Λs2
0 ½1þ ξsZðξsÞ�½hJ20J2−F0iiv − F1�jδϕ0j2;

ð4:51Þ

D2 ¼ iðc=B0ω−ÞΛs
0τf½1þ ξsZðξsÞ�F1 − ξsZðξsÞΓs − Γ0g:

ð4:52Þ

Combining Eqs. (4.47) and (4.50), we then obtain the
following equation for theΩ− KAWmodified by the nonlinear
coupling between Ωs and Ω0 modes:

bs−ðϵAK− þ ϵð2ÞAK−Þδϕ− ¼ iðc=B0ω−ÞΛs
0β2δϕsδϕ

�
0; ð4:53Þ

where bs− ¼ τb−,

ϵAK− ¼ ½ð1 − Γ−Þ=b− − ðk2∥v2A=ω2Þ−σ−� ð4:54Þ

is the short-wavelength extension of Eq. (4.25),

ϵð2ÞAK− ¼ ½αð2Þ− =b− − ðk2∥v2A=ω2Þ−σð2Þ− �; ð4:55Þ

and

β2 ¼
�
F1

Γs

�
ðϵsK − σsÞ

�
1 −

�
k2∥v

2
A

ω2

�
−
bs−

�
− ϵsK þ σ0

¼ ½ðϵsK − σsÞF1=Γs þ σ−ðσ0 − σsÞ�=σ−
¼ β1=σ− − ϵsK: ð4:56Þ

Combining Eqs. (4.44) and (4.53), the resultant parametric
instability dispersion relation becomes

ϵsKðϵAK− þ Δð2Þ
A− þ χð2ÞA−Þ ¼ CkjΦ0j2; ð4:57Þ

where Φ0 ¼ eδϕ0=Te, Ck ¼ ðλHÞ2,

Δð2Þ
A−¼½ðσs=ΓsÞðF2

1=Γs−GÞþðσ−−2F1=Γs−σ0k∥0=k∥−Þσ0σ−
þσ20σ

2
−k∥0=k∥− �λ2jΦ0j2; ð4:58Þ

χð2ÞA− ¼ ϵsKðλ2=ΓsÞGjΦ0j2; ð4:59Þ

λ2 ¼ ðΩi=ω0Þ2ρ4sΛs2
0 =ðσ−bs−Þ; ð4:60Þ

G ¼ hJ20J2−F0iiv − F2
1=Γs; ð4:61Þ

and

H ¼ ðσ0σ− − F1σs=ΓsÞ: ð4:62Þ

Note also that, in Eq. (4.61), G ≥ 0 from Schwartz inequality.

On the left-hand side of Eq. (4.57), the Δð2Þ
A− term

describes the nonlinear frequency shift only, while the con-

tribution χð2ÞA− accounts for processes involving resonant wave-
particle interactions due to low-frequency nonlinear thermal
ion response to Ω0 and Ω− KAW modes. Therefore, this
process involves spectral transfer of fluctuation energy toward
the low-frequency region and is generally referred to as

nonlinear ion Compton scattering (Sagdeev and Galeev,
1969). Meanwhile, the nonresonant scatterings of Ω0 off
the fluctuations due to the Ωs mode are described by the right-
hand side, which thus accounts for shielded-ion scatterings.
Ignoring nonlinear frequency shift and keeping terms relevant
to the stability analysis, the resultant parametric dispersion
relation becomes

ϵsKðϵAK− þ χð2ÞA−Þ ¼ CkjΦ0j2: ð4:63Þ

The term χð2ÞA− in Eq. (4.63) is absent in the previous drift-
kinetic analysis (Hasegawa and Chen, 1975, 1976). This can
be understood, since jGj ∼Oðk4⊥ρ4i Þ for jk⊥ρij ≪ 1 and the
drift-kinetic analysis formally keeps only Oðk2⊥ρ2i Þ terms.
Meanwhile, for jk⊥ρij ≪ 1, H ≃ τðb0 þ b− þ τb0b− − bsÞ,
and the drift-kinetic results are recovered.
For Te ≳ 5Ti, both Ωs and Ω− are weakly damped normal

modes, and Eq. (4.63) yields the following resonant-decay
dispersion relation:

ðγþ γdA−Þðγþ γdsÞ¼ ðλHjΦ0jÞ2
�
−
∂ϵsKr

∂ωsr

∂ϵAK−r
∂ωA−r

�
−1
; ð4:64Þ

where γ is the parametric growth rate, γdA− and γds are,
respectively, the linear damping rates of the KAW sideband
and ISW, and ωA−r and ωsr are the corresponding normal
mode frequencies, i.e., ϵAK−rðωA−rÞ ¼ 0 and ϵsKrðωsrÞ ¼ 0,
−∂ϵAK−r=∂ωA−r ≃ 2ð1 − Γ−Þ=ðω0rb−Þ and ∂ϵsKr=∂ωsr ≃
2σs=ωsr. Note that, similar to the Sec. IV.B.1 analysis for
SAW, KAW parametric decay instability requires ω0rωs > 0,
i.e., −ω0r < ωA−r < 0, having chosen ω0r > 0 without loss of
generality.
For Te ∼ Ti, Ωs becomes a quasimode, while Ω− ≃ −ΩA ≡

−ðωA; kAÞ remains a KAW normal mode. The growth rate of
the parametric decay instability is then given by

ðγ þ γdA−Þ
�
−
∂ϵAK−r
∂ωA−r

�
¼ Im

�
χð2ÞA− −

Ck

ϵsK
jΦ0j2

�

¼ jλΦ0j2½G=Γs þH2=jϵsK j2�ImϵsK;

ð4:65Þ

where again G ≥ 0,

ImϵsK ¼ τΓsIm½ξsZsðξsÞ�; ð4:66Þ

and ξs ¼ ðω0 − ωArÞ=jk∥0 − k∥Ajvti. In Eq. (4.65), the G and
H2 terms correspond, respectively, to the nonlinear ion
Compton and shielded-ion scatterings. Note that for
jk⊥ρij ∼Oð1Þ, G ∼H2 ∼ jϵsK j, the two scattering processes
are additive and have comparable magnitudes. Similar to
previous studies (Sagdeev and Galeev, 1969; Hasegawa and
Chen, 1976), Eq. (4.66) indicates that the scattering is
maximized when k∥0k∥A < 0, i.e., the backscattered KAW
daughter wave (since ω0rωAr > 0), and γ > 0 requires ξs > 0,
i.e., ω0 > ωAr, or the parametric decay process leads to
cascading in KAW frequencies. Note also that, while for
jk⊥ρij ≪ 1, γ increases with jk⊥j, it decreases as jk⊥ρij−1 for
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jk⊥ρij ≫ 1, and, thus, the decay processes tend to maximize
around jk⊥ρij ∼Oð1Þ.
It is illuminating to compare the present results with those

derived in Sec. IV.B.1. In fact, if in Eq. (4.63)

Ck ¼ ðΩi=ω0Þ2ðτb0=σ−ÞH2 sin2 θc ð4:67Þ

is replaced by

CI ¼ ½τb0=ðγe þ γiTi=TeÞ� cos2 θc; ð4:68Þ

one readily recovers Eq. (4.26) in the MHD limit. For
k⊥ρi ∼Oð1Þ, H ∼Oð1Þ, and jCkj=jCIj ∼OðΩ2

i =ω
2
0Þ ≫ 1.

In fact, for jk⊥ρij < 1, σ− ≃ 1, H ∼ k2⊥ρ2i τ, and jCkj=jCI j∼
ðΩi=ω0Þ2ðk⊥ρiÞ4, that is, consistent with the general discus-
sion of Sec. II.C, the kinetic process dominates for k2⊥ρ2i >
jω0=Ωij ∼ 10−2 typically. Thus, while the ideal MHD theory
holds for k2⊥ρ2i ≪ 1 in the linear physics description, it breaks
down much earlier in nonlinear physics applications.
Furthermore, Ck and CI peak, respectively, at θc ¼ π=2
and θc ¼ 0. Thus, while the ideal MHD results predict
KAWs are excited with k−⊥ parallel to the pump k0⊥, the
kinetic excitation process shows that k−⊥ is predominantly
perpendicular to k0⊥. This difference has significant qualita-
tive implications to plasma transport induced by KAWs. More
specifically, let the pump KAW be excited via resonant mode
conversion and thus k0⊥ ≃ k0r∇r. Ideal MHD theory would
predict the KAW spectrum peaks along kr with little kθ
components in the b × ∇r direction and, hence, little radial
transport. On the other hand, the kinetic theory predicts the
KAW spectrum with significant kθ components and, hence,
significant radial plasma transport. These findings thus ques-
tion the applicability of MHD based theories for realistic
comparisons with experimental measurements and observa-
tions of Alfvénic fluctuation spectra and related transport even
more severely than those stemming from accurate linear
physics descriptions.

3. Nonlinear excitation of convective cells
by kinetic Alfvén waves

Zonal structures, such as zonal flows, are known to play
crucial roles in dynamically regulating plasma transport in
tokamak plasmas. The analogs in uniform plasma are the
convective cells, which have been extensively studied in the
1970s (Taylor and McNamara, 1971; Okuda and Dawson,
1973; Chu, Chu, and Ohkawa, 1978; Lin, Dawson, and
Okuda, 1978) in the context of cross-field transport (Shukla
et al., 1984), especially with regard to potential applications to
space plasmas. In particular, it is worthwhile mentioning the
extensive studies of convective cells excitation by KAW in the
context of the generation of turbulence flows in the upper
ionosphere (Sagdeev, Shapiro, and Shevchenko, 1978).
As can be anticipated from previous discussions on the

Alfvénic state, since SAWs participating in the ZS nonlinear
generation are copropagating along B0, nontrivial finite non-
linear couplings have long been known to rely on deviations
from the ideal MHD approximations. Nonetheless, previous
theoretical analyses often rely on two limiting assumptions:
(i) neglecting FLR corrections to the Reynolds stress, and

(ii) decoupling between the electrostatic (ESCC, described by
δϕz only) and the magnetostatic (MSCC, described by δA∥z
only) convective cells. Both assumptions, as will be shown,
could lead to erroneous conclusions on the spontaneous
excitation of convective cells by KAW.15 The details of the
analysis are complicated and, in the following, we simply
demonstrate that one needs to employ the nonlinear gyroki-
netic equation in order to properly account for the finite
nonideal effects.
Let Ω0 ¼ ðω0; k0Þ be the pump KAW, Ωz ¼ ðωz; kzÞ be the

zonal mode, and Ωþ ¼ ðωþ; kþÞ and Ω− ¼ ðω−; k−Þ be the
upper- and lower-sideband KAWs, respectively. Here we note
that jωzj≃ 0, kz · b ¼ 0, and ω� ¼ ωz � ω0, k� ¼ kz � k0.
We also assume kz⊥k0⊥, which maximizes the nonlinear
coupling. Let us first consider how the zonal mode is
generated by KAWs. The vorticity equation (4.10) for the
Ωz mode is given by ∇⊥ · δjz⊥ ¼ 0, or

−iωz
c2

B2
0

ϱm0k2zδϕz ¼ −h∇⊥ · δjð2Þ⊥ iz; ð4:69Þ

where in terms of Fourier modes δϕk and δψk ≡
ðk∥c=ωkÞδA∥k Eq. (4.15) becomes (Chen and Zonca, 2013)

h∇ ·δjð2Þ⊥ iz ¼−
1

2

�
c
B0

�
3

ϱm0

X
k0þk00¼kz

Λk00
k0 ðk002⊥−k02⊥Þ

×

�
Gk0Gk00δϕk0δϕk00 −

�
k0∥vA
ωk0

��
k00∥vA
ωk00

�
δψk0δψk00

�
;

ð4:70Þ

Λk00
k0 ¼ ðk0⊥ × k00⊥Þ · b was defined in Sec. IV.B.2 and in the

Reynolds stress, Eq. (4.7), we have

δu⊥k ¼ i
c
B0

ðb × k⊥ÞGkδϕk; ð4:71Þ

with Gk accounting for the ion FLR effects. In the small bk
limit, Gk0Gk00 ≃ 1 − ð3=4Þðbk0 þ bk00 Þ, having used the
notations of Sec. IV.B.2. Equation (4.70) provides the
following illuminating perspectives in the long-wavelength
ðjk⊥ρij; jk⊥ρsj → 0þÞ limit. First, we have Gk → 1, and
δE∥k → 0 for KAW, such that δϕk ¼ δψk. Meanwhile,
jωkj → jk∥vAj. The same limiting behaviors apply for KAW
pump and sideband modes. Now with k00∥ ¼ kz∥ − k0∥, kz∥ ¼ 0,
ωk00 ¼ ωz − ωk0 , and jωzj ≪ jωkj, we have k00∥ ¼ −k0∥ and

ωk00 ≃ −ωk0 , and thus, h∇ · δjð2Þ⊥ iz → 0 in this limit. This, in
fact, can be expected since, in the jk⊥ρij → 0 limit, k0 and k00

modes reduce to copropagating ideal MHD SAWs, which do
not interact nonlinearly.
It is, therefore, clear that in order to nonlinearly generate

δϕz in uniform plasmas, one needs to introduce finite jk⊥ρij
effects, which, in turn, induce finite h∇ · δj⊥iz by modifying
the various terms mentioned previously. To properly take into
account FLR corrections to the Reynolds stress, one needs to

15See, e.g., the recent analysis and summary of previous literatures
on this topic given by Zhao et al. (2011).
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employ the nonlinear gyrokinetic equation. Noting that, for
the KAWs, we have ve ≫ jωk=k∥j ≫ vi and jδψkj ∼ jδϕkj,
Eq. (4.41) for the scalar potential δϕz then becomes, in the
bk ≪ 1 limit,

−iωzbzδϕz ¼
c

2B0

ρ2i
X

k0þk00¼kz

Λk00
k0 ðk002⊥ − k02⊥Þ

×



δϕk0δϕk00

�
1 −

3

4
ðbk0 þ bk00 Þ

�

−
�
k0∥vA
ωk0

��
k00∥vA
ωk00

�
δψk0δψk00

�
; ð4:72Þ

where the bk terms inside the angle bracket may be regarded
as the ion FLR corrections to the Reynolds stress. Meanwhile,
the equation governing the vector potential δAz∥ can be
derived from Eq. (2.30) and is given by

δAz∥ ¼ ði=2Þ
X

k0þk00¼kz

Λk00
k0 ðδAk0∥δAk00∥=k0∥B0Þ: ð4:73Þ

For the KAW sidebands Ωþ and Ω− we have, from
Eq. (4.40), noting jωk=k∥j ≪ ve and again bk ≪ 1,

ð1þ τbkÞδϕk − δψk ¼ −iðc=B0ÞΛk00
kz
ðδϕk00=ωk00 Þ

× ð1þ τb0Þðδϕz − δψ zÞ; ð4:74Þ

where k¼k�, k00 ¼�k0, k¼k00þkz, and δψ z ≡ ω0δAz∥=ck0∥.
Furthermore, Eq. (4.41) can be shown to become

k2⊥½ð1 − 3bk=4Þδϕk − ðk2∥v2A=ω2
kÞδψk�

¼ iðc=B0ÞΛk00
kz
ðk002⊥ − k2zÞðδϕk00=ωkÞ

× ½ð1 − 3b0=4Þðδϕz − δψ zÞ − ð3=4Þbzδϕz�: ð4:75Þ

Equations (4.72)–(4.75) are the desired set of equations for
Ωþ, Ω−, and Ωz coupled via Ω0.
To analyze the modulational stability properties of Ωz, we

first note that Ω0 is a normal KAW mode and thus ϵAK0 ¼ 0,
where, consistent with Eq. (4.54),

ϵAKk ¼ 1 − ð3=4Þbk − ðk2∥v2A=ω2
kÞð1þ τbkÞ ð4:76Þ

is the KAW linear dielectric constant in the bk ≪ 1 limit.
Letting ωz ¼ iγz, we then have

ϵAK� ≃�½2ω0=ðω0 � iγzÞ2�½1 − ð3=4Þðb0 þ bzÞ�
× ðiγz ∓ Δ ∓ γ2z=2ω0Þ; ð4:77Þ

where Δ≃ ðω0=2Þðτ þ 3=4Þbz is the frequency mismatch
between ω0 and the normal mode frequency of Ωþ and
Ω−. Substituting Eqs. (4.74) and (4.75) into Eq. (4.72), taking
Eq. (4.77) into account and noting that on the right-hand side
of Eq. (4.72) k0 ¼ k− and k00 ¼ k0 as well as k0 ¼ kþ and
k00 ¼ −k0, we have

δϕz ¼ −αϕðδϕz − δψ zÞ=ðγ2z þ Δ2Þ; ð4:78Þ

where

αϕ ¼
���� ckzk0⊥δϕ0

B0

����
2 b0½ðτ þ 3=4Þð2b0 þ bzÞ�

b0 þ bz
: ð4:79Þ

Similarly, Eq. (4.73) reduces to

δψ z ¼ −αψðδϕz − δψ zÞ=ðγ2z þ Δ2Þ; ð4:80Þ

where

αψ ¼
���� ckzk0⊥δϕ0

B0

����
2 b0bzðτ þ 3=4Þ

b0 þ bz
: ð4:81Þ

Equations (4.78) and (4.81) then yield the following
dispersion relation for the modulational excitation of the Ωz
zonal mode:

1 ¼ −ðαϕ − αψÞ=ðγ2z þ Δ2Þ: ð4:82Þ

Note that αϕ − αψ > 0. Hence, γ2z ¼ −ω2
z < 0 and KAW

cannot spontaneously excite convective cells or zonal struc-
tures in the bk ≪ 1 limit regardless of the τ ¼ Te=Ti value
(Chen and Zonca, 2013), consistent with some of the recent
results by Zhao et al. (2011) and in contrast with the analyses
of Onishchenko et al. (2004), Pokhotelov et al. (2004), and
Mikhailovskii et al. (2007).
Equations (4.78) and (4.80) are, respectively, the generating

equations for ESCC and MSCC. Thus, it is readily noted
that they are excited by KAW simultaneously as
jδψ z=δϕzj ¼ Oð1Þ. Artificially assuming that δψ z is sup-
pressed yields the incorrect ESCC dispersion relation,
Eq. (4.82) with αψ ¼ 0, but still the correct qualitative
conclusion that ESCCs are not spontaneously excited by
KAW in the long-wavelength limit. However, the analogous
assumption that δϕz is suppressed delivers the erroneous
MSCC dispersion relation, Eq. (4.82) with αϕ ¼ 0, as well as
the erroneous claim that MSCC can be spontaneously excited
by KAW for bk ≪ 1 [see, e.g., the discussion given by Zhao
et al. (2011)].

C. Nonlinear mode coupling of shear Alfvén waves
in toroidal plasmas

In this section, we illustrate how equilibrium geometry and
plasma nonuniformity can contribute to breaking the Alfvénic
state. As a counterpart of a “pump” SAW exciting a lower
frequency “daughter” SAW via nonlinear Landau damping in
a uniform plasma (cf. Sec. IV.B.1), Sec. IV.C.1 discusses TAE
frequency cascading (Hahm and Chen, 1995). Similarly,
Sec. IV.C.2 addresses the generation of ZS by finite-amplitude
TAE (Spong, Carreras, and Hedrick, 1994; Todo, Berk, and
Breizman, 2010; Chen and Zonca, 2012) as a toroidal
geometry analog of convective cells generated by KAW
(cf. Sec. IV.B.3). Particular emphasis is given on the impor-
tance of spontaneous versus forced generation of ZS
(Chen and Zonca, 2012), given their potentially important
self-regulatory roles on Alfvénic oscillations and, more
broadly, on DAW turbulence.
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As geometry effects importantly affect the SAW continuous
spectrum (cf. Sec. III.B), Sec. IV.C.3 discusses how AE
nonlinear effects modify the SAW continuum and, thereby,
lead to enhanced continuum damping (Vlad et al., 1992;
Zonca et al., 1995; Chen et al., 1998). Finite-amplitude MHD
activity can also yield to deformation of the SAW continuum,
as illustrated in Sec. IV.C.4. However, due to a quasistatic
helical deformation of the axisymmetric tokamak equilibrium,
this effect may be destabilizing for BAEs (Marchenko and
Reznik, 2009; Biancalani et al., 2010a, 2010b, 2011).

1. Toroidal Alfvén eigenmode frequency cascading via
nonlinear ion Landau damping

In uniform plasmas (Sec. IV.B), a pump SAW can para-
metrically excite a daughter SAW with a lower frequency and
opposite parallel phase velocity via nonlinear ion Landau
damping. Hahm and Chen (1995) applied this frequency
cascading mechanism to the nonlinear saturation of TAE with
high-n toroidal mode numbers. Because of realistic equilib-
rium profile variations, there in general exists OðnqaÞ TAEs
with the same toroidal mode number n. Here qa is the safety
factor at the outmost flux surface. Thus, for jnqaj ≫ 1=ϵ ¼
R0=r, many TAEs with different mode frequencies may exist
within the frequency gaps.
Following Hahm and Chen (1995), let k0 be the pump wave,

k be the decay wave, and k00 ¼ k − k0 be the ISWand applying
the parametric decay dispersion relation (4.34) to the wave

intensity Ik ¼ j∇⊥ϕkj2, where ð� � �Þ denotes appropriate
averaging of (� � �) over the radial TAE mode structure, we
can obtain the following wave-kinetic equation:

∂
∂t Ik ¼ γLðkÞIk −

X
k0
Mk;k0Ik0Ik; ð4:83Þ

where

Mk;k0 ¼
ω0

2

Imχis
jϵskj2

mi

B2
0

≡ ω0Vs; ð4:84Þ

χis and ϵsk are defined by, respectively, Eqs. (4.29) and (4.31),
with ωsr ¼ ω − ω0 and ks∥ ¼ k∥ − k0∥, and we summed over
all the k0 pump modes. Now Mk;k0 has a maximum frequency
interaction width jω − ω0j≃ j2k0∥vtij ∼ vti=qR0 and thus if the

adjacent TAE’s frequency difference jΔωj ∼ jvA=ðnq2R0Þj is
smaller than vti=qR0 or β1=2 ≫ j1=nqj, we can replace the
sum over k0 by an integral over ω0; that is, Eq. (4.83) becomes

∂
∂t IðωÞ ¼ γLðωÞIðωÞ − IðωÞ

Z
ωM

ω
dω0Iðω0Þω0Vsðω − ω0Þ:

ð4:85Þ

Here Iðω0Þ is the continuum version of
P

k0Ik0δðω0 − ωk0 Þ,
ωM ≃ ωu, the upper TAE gap accumulation point frequency,
corresponds to the highest frequency of linearly unstable
TAEs. Noting that IðωÞ has a frequency width typically of the
order of the frequency gap, ∼ϵvA=qR0, and Vsðω00 ¼ ω − ω0Þ
being an odd function in ω00 with an interacting width
∼vti=qR0, we can expand the integrand about ω, assuming

ϵvA=qR0 > vti=qR0 or ϵ > β1=2i , and render Eq. (4.85) into the
following differential equation:

∂
∂t IðωÞ ¼ γLðωÞIðωÞ þ IðωÞU1ðωÞ

∂
∂ω ðωIÞ; ð4:86Þ

where (Hahm and Chen, 1995)

U1ðωÞ ¼
Z

ω−ω1

ωM−ω
ðω−ω0ÞVsðω−ω0Þdω0≃

Z
∞

−∞
ω00Vsðω00Þdω00

¼ π

2
½ð1þ τÞB0qR0�−2≡ Ū1: ð4:87Þ

Here τ≡ Te=Ti and ω1 ≈ ωl, the lower TAE gap accumu-
lation point frequency, corresponds to the low-frequency end
of IðωÞ. Note that γLðω1Þ < 0 and Iðω1Þ≃ 0. At saturation,
∂I=∂t ¼ 0; Eq. (4.86) then yields

IðωÞ≃ ð1=ωÞ
Z

ωM

ω
½γLðω0Þ=Ū1�dω0: ð4:88Þ

Here the spectral transfer of the wave energy is toward the
lower frequency, and we let IðωÞ≃ 0 at the highest frequency
end ωM, i.e., IðωÞ tends to peak away from ωM. The
corresponding overall magnetic fluctuation level jδBr=B0j≃
jckθδϕ=B0vAj is then given by

���� δBr

B0

����
2 ≃

�
kθ
kr

�
2

ð1þ τÞ2 2=π
ω2
A

Z
ωM

ω1

γLðωÞ ln
�
ω

ω1

�
; ð4:89Þ

where ωA ¼ vA=qR0. Expanding ω ¼ ω1 þ ðω − ω1Þ,
Eq. (4.89) gives the following estimate:

���� δBr

B0

����
2

∼
1

2π
ð1þ τÞ2

�
γ̄L
ωA

�
ϵ2ϵ2eff ; ð4:90Þ

with ϵeff ¼ 1 − ω1=ωM, γ̄L is a typical value of γLðωÞ and
having noted jkθ=krj ∼ ϵ. Quantitatively, with the estimate
jγ̄L=ωAj≲Oð10−2Þ, ϵeff ∼ ϵ ∼ 10−1, and τ ≲ 1, Eq. (4.90)
yields a saturation amplitude at jδBr=B0j≲ 10−3.

2. Nonlinear excitation of zonal structures by toroidal Alfvén
eigenmodes

Since ZS varies predominantly only radially, the self-
regulation of DWT and DAW is achieved via spontaneous
excitations of modulational instabilities, and consequently the
damping of the driving instabilities via scatterings to the short-
radial wavelength stable domain (Chen, Lin, and White,
2000). However, while zonal electric fields and corresponding
zonal flows are widely measured in experiments with proper-
ties that are consistent with the general theoretical framework
(Diamond et al., 2005), zonal magnetic fields and currents
predicted theoretically (Chen et al., 2001; Guzdar, Kleva, Das,
and Kaw, 2001; Gruzinov et al., 2002; Diamond et al., 2005)
have only recently been observed in experiments in the
compact helical system (CHS) (Fujisawa et al., 2007).
As TAE plays crucial roles in the SAW instabilities in

burning fusion plasmas, it is thus important to understand and
assess the possible roles of ZS on the nonlinear dynamics of
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TAE. First numerical analyses of this problem were reported
by Spong, Carreras, and Hedrick (1994). More recently,
numerical simulation results by Todo, Berk, and Breizman
(2010) showed that ZS may be force driven by finite-
amplitude TAE, while the importance of spontaneous versus
forced generation of ZS was emphasized by Chen and Zonca
(2012) (cf. Sec. IV).
We follow the theoretical approach of Chen, Lin, and White

(2000) and Chen et al. (2001), which is also adopted in
Sec. IV.B for our treatment of convective cells generated by
KAWs in uniform plasmas. Thus, we consider the nonlinear
couplings among the pump TAE Ω0, the upper- and lower-
sideband TAEs Ωþ and Ω−, and the zonal mode Ωz. We
then have, for example, δϕ ¼ δϕA þ δϕz and δϕA ¼
δϕ0 þ δϕþ þ δϕ−.
Assuming jk⊥ρij2 ∼ jkzρsj2 < ϵ ¼ r0=R0 < 1, we adopt

the ideal MHD approximation and obtain from the vorticity
equation of the Ωz mode Eq. (4.72),

−iωzχizδϕz¼−
c
B0

kzkθk2zρ2i

��
1−

k20∥v
2
A

ω2
0

�	
x

ðA�
0Aþ−A0A−Þ;

ð4:91Þ

where χiz ≃ 1.6q2ϵ−1=2k2zρ2i corresponds to the trapped-ion
enhanced polarizability (Rosenbluth and Hinton, 1998), k∥ ¼
ðx − jÞ=qR0, h� � �ix ≡

R
dxjΦ0j2ð� � �Þ, h1ix ¼ 1, Φ0ðx − jÞ ¼

δϕn0ðr; nq −mÞ describes the radial dependence of the mth
poloidal harmonics [cf. Eq. (3.23)], and A0 and A� are,
respectively, amplitudes of the pump and sidebands. Noting
that jΦ0j2ðxÞ is localized at and even16 with respect to jxj ¼
1=2 with a width Δx ∼OðϵÞ, Eq. (4.91) becomes

−iωzχizδϕz ¼−ðc=B0Þkzkθk2zρ2i ð1−ω2
A=4ω

2
0ÞðA�

0Aþ−A0A−Þ;
ð4:92Þ

where ωA ¼ vA=qR0. δAz∥ or δψ z ≡ ω0δAz∥=ck0∥ is given by
the weighted averaging h� � �ix of Eq. (4.73),

δψ z ¼ iðckzkθ=ω0B0ÞðA�
0Aþ þ A0A−Þ: ð4:93Þ

Including the nonlinear correction to ideal MHD Ohm’s
law, the nonlinear vorticity equations for theΩ� sidebands can
be rendered into a set of differential-difference equations
(Chen and Zonca, 2012), which after weighted averaging
yields

A�ϵA�b� ¼ −2i
c
B0

kθkzω0b0

�
A0

A�
0

�
ðδϕ − δψÞz; ð4:94Þ

where b0 ¼ ρ2i hj∇0Φ0j2ix, bþ ¼ ρ2i hj∇þΦ0j2i ¼ b0 þ bz,
bz ¼ k2zρ2i , and b− ¼ bþ. Meanwhile,

ϵA� ¼
�

ω4
A

ϵ0ω
2
ΛT0ðωÞD0ðω; kzÞ

�
ω¼ω�

; ð4:95Þ

with ϵ0 ¼ 2ðr=R0 þ Δ0Þ, Δ0 is the radial derivative of the
Shafranov shift, D0ðω; kzÞ ¼ −2Γ−Dðω; kzÞ, Γ� ¼
ðω2=ω2

AÞð1� ϵ0Þ − 1=4, and Dðω; kzÞ is the TAE dispersion
function consistent with Eq. (3.30) in the notations introduced
in Sec. III.C. Meanwhile, ΛT0 ¼ −2Γ−ΛT ¼ ð−ΓþΓ−Þ1=2,
consistent with Eq. (3.14).17 Solutions of D0ðω; kzÞ ¼ 0 are
ω ¼ �ωTðkzÞ, with the pump TAE frequency given by
ω0 ¼ ωTðkz ¼ 0Þ. In light of the general discussion of
Sec. IV.A and Eq. (4.95), Eq. (4.94) can be considered as
the implicit definition of ∝ ΛNL

n term in Eq. (4.1), showing
that the effect of ZS on TAE nonlinear dynamics results in a
renormalization of the (sideband) inertia. This, in general, is
also the case for other types of AEs (cf. Sec. IV.D.7).
Combining Eq. (4.94) with Eqs. (4.92) and (4.93) and

letting −iωz ¼ γz yield

δϕz ¼ 2i

�
c
B0

kθkz

�
2 bz
χiz

�
1 −

ω2
A

4ω2
0

�

×
ω0b0
γzbþ

jA0j2
�

1

ϵAþ
−

1

ϵA−

�
ðδϕ − δψÞz; ð4:96Þ

δψ z ¼ 2

�
c
B0

kθkz

�
2 b0
bþ

jA0j2
�

1

ϵAþ
þ 1

ϵA−

�

× ðδϕ − δψÞz: ð4:97Þ

Noting that D0ðω�; kzÞ ¼ �ð∂D0=∂ω0Þðiγz ∓ ΔTÞ, with
ΔT ≡ ωTðkzÞ − ω0, Eqs. (4.96) and (4.97) further reduce to,
in analogy with Eqs. (4.78) and (4.80),

δϕz ¼ 2

�
c
B0

kθkzjA0j
�

2
�
ω2
0

ω2
A
−
1

4

��
bz
χiz

�
b0
bþ

ϵ0
ΛT0ðω0Þ

×
2ω0=ω2

A

∂D0=∂ω0

ðδϕ − δψÞz
γ2z þ Δ2

T

≡ −αϕT
ðδϕ − δψÞz
γ2z þ Δ2

T
; ð4:98Þ

δψ z ¼ −2
�

c
B0

kθkzjA0j
�

2
�
b0
bþ

��
ΔT

ω0

�
ϵ0ω

2
0=ω

2
A

ΛT0ðω0Þ

×
2ω0=ω2

A

∂D0=∂ω0

ðδϕ − δψÞz
γ2z þ Δ2

T

≡ −αψT
ðδϕ − δψÞz
γ2z þ Δ2

T
: ð4:99Þ

Equations (4.98) and (4.99) then yield the following desired
dispersion relation:

16This is valid strictly for TAEs near SAW continuum accumu-
lation points. However, TAE mode structures have generally mixed
parity (Zonca and Chen, 1993, 1996; Zonca, 1993a; Chen and Zonca,
1995). Here we strictly follow Chen and Zonca (2012) and assume
jΦ0j2ðxÞ is even, noting that the present analysis is readily gener-
alized to mixed parity modes.

17Here we adopt the notations of Chen and Zonca (2012) and use
D0 and ΛT0, symmetric with respect to lower and upper continuum
accumulation points, rather than D and ΛT that, for TAE, is the
notation for Λn obtained from Eq. (3.14), having dropped the
subscript n for simplicity.
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γ2z ¼ αψT − αϕT − Δ2
T; ð4:100Þ

i.e., instability will set in when

�
c

B0ω0

kθkzjA0j
�

2 b0
bþ

ϵ0ω
2
0=ω

2
A

ΛT0ðω0Þ
4ω0=ω2

A

∂D0=∂ω0

×

�
ΔT

ω0

þ bz
χiz

�
1 −

ω2
A

4ω2
0

��
>

�
ΔT

ω0

�
2

. ð4:101Þ

Note that jΔT=ω0j ∼Oðϵ0Þ and jbzð1 − ω2
A=4ω

2
0Þ=χizj∼

Oðϵ3=20 =q2Þ. Meanwhile, we typically have ω0ð∂D0=∂ω0Þ>0

(Chen and Zonca, 2012). Thus, Eq. (4.101) becomes

ΔT=ω0 > 0 ð4:102Þ

and

�
c

B0ω0

kθkzjA0j
�

2 b0
bþ

ϵ0ω
2
0=ω

2
A

ΛT0ðω0Þ
4ω0=ω2

A

∂D0=∂ω0

>
ΔT

ω0

: ð4:103Þ

This inequality essentially determines the condition for the
spontaneous excitation of the zonal field δψ z, given by
Eq. (4.99), which dominates over the usual zonal flow δϕz
because of the enhanced trapped-ion polarizability. The sign
of ΔT=ω0 depends on the specific equilibria and plasma
parameters and must be computed for individual cases. For the
case of nearly circular plasmas with monotonic q profiles,
ΔT=ω0 < 0 (Zonca and Chen, 1993; Zonca, 1993a), so that
Eq. (4.102) is violated. However, Eq. (4.101) can still be
satisfied for mode frequencies in the upper TAE gap,
ω2
0 > ω2

A=4, and small jΔT=ω0j, with δϕz dominating over
δψ z. Note that, especially when strongly driven by EPs, TAE
modes tend to be characterized by ω2

0 < ω2
A=4. This may

provide a plausible explanation for the numerical simulation
results by Todo, Berk, and Breizman (2010), where the ZS
response to TAE is found to be force driven rather than
spontaneously excited (cf. Secs. IV.C.3 and IV.D.4).
In order to give a quantitative estimate for the onset

condition of the modulational instability, Eq. (4.101), we
recall that TAE linear stability analysis yields (Chen and
Zonca, 2012)

ϵ0ω
2
0=ω

2
A

ΛT0ðω0Þ
4ω0=ω2

A

∂D0=∂ω0

∼ 1:

Thus, considering bz ≲ k2θρ
2
i ∼ ϵ0b0 and 2qR0k∥0 ≃ 1, the

threshold condition for spontaneous excitation of the most
unstable zonal mode with b0 ∼ ϵ0 becomes

�
c

B0ω0

kθkzjA0j
�

2

∼
����ΔT

ω0

���� ∼ ϵ0
bz
k2θρ

2
i
∼
bz
ϵ0

;

⇔

���� δBr

B0

����
2

th
∼

ρ2i
4ϵ0q2R2

0

: ð4:104Þ

For some typical tokamak parameters, this estimate yields
jδBr=B0j2th ∼Oð10−8Þ, suggesting that spontaneous excitation
of ZS may be a process effectively competing with other

nonlinear dynamics in determining the saturation level of TAE
and other AE modes if constraints specified below Eq. (4.103)
can be satisfied.
Coherent nonlinear interactions of AE and ZS if sponta-

neously excited, in addition to playing important self-
regulatory roles in AE nonlinear dynamics, could also influ-
ence fine structures of the AE frequency spectrum. These
features in experimental observations [see, e.g., Fasoli et al.
(1998) and the review by Breizman and Sharapov (2011)] are
generally interpreted as evidence of modulation interactions
due to wave-particle nonlinear dynamics (cf. Sec. IV.D.3). In
principle, it should be possible to discriminate these different
underlying nonlinear physics processes on the basis, e.g., of the
different scaling of the frequency splitting with the “pumpAE”
amplitude, given by Eq. (4.100) in the case of modulation
interactions of TAE and ZS.

3. Toroidal Alfvén eigenmode saturation via nonlinear
modification of local continuum

Since the difference between TAE frequency and the lower
or upper SAW continuum accumulation frequencies is rela-
tively small, jΔωj≲ ϵvA=qR0 with ϵ≡ r=R0, an efficient
nonlinear saturation mechanism is via nonlinear modification
of the local SAW continuum structures, such that the fre-
quency difference Δω vanishes due to the corresponding
nonlinear frequency shift. Within the general theoretical
framework of Sec. IV.A, this process is accounted for by
the ∝ ΛNL

n term in Eq. (4.1). As the TAE frequency gap is due
to the coupling of ðm� 1; nÞ and ðm; nÞ modes, the con-
tribution to ΛNL

n may be produced by ðm ¼ �1; n ¼ 0Þ
components of δE × b flow and δB⊥ field line bending, rather
than by the generation of ZS discussed in Sec. IV.C.2. So far
two such mechanisms have been proposed. One depends on
the nonlinear modification in the magnetic surface structure
(Zonca et al., 1995) and the other depends on the nonlinear
modification in the density structures (Chen et al., 1998).
Although of different underlying nature, these two processes
are described by essentially the same nonlinear equations.
Therefore, we discuss in some detail only the former.
In general, mechanisms for nonlinear modification of the

local SAW continuum structures at short-radial scales men-
tioned previously yield mode saturation above a critical
amplitude threshold because of the appearance of fine scales
in the mode structure, i.e., of enhanced mode damping in the
presence of finite dissipation. This phenomenon may be
physically interpreted as mode conversion to short scale
damped oscillations, produced by the TAE modes due to
the nonlinear SAW continuum distortion. Note that this
mechanism is different from that discussed by Todo, Berk,
and Breizman (2010, 2012a, 2012b), which is connected with
power transfer to nonlinear driven oscillations, which are
damped possibly through the fine structures connected with
resonant excitation of higher toroidal mode-number continu-
ous spectra (cf. Sec. IV.D.4).
Let us consider a local TAE structure that consists of

toroidal mode number n and poloidal mode numbers m and
mþ 1, with given frequency ω0. The dominant nonlinear
interactions yield a low-frequency fluctuation with ðm ¼ 1;
n ¼ 0Þ and a ð2mþ 1; 2nÞ component at 2ω0, which can be

015008-30 L. Chen and F. Zonca: Physics of Alfvén waves and energetic …

Rev. Mod. Phys., Vol. 88, No. 1, January–March 2016



expressed as (Vlad et al., 1992, 1995; Zonca et al., 1995;
Vlad, Zonca, and Briguglio, 1999)

δϕ1;0 ¼ −
ckθ0
ω0B0

∂
∂r ðδϕ

�
m;nδϕmþ1;nÞ;

δA∥1;0 ¼
c2kθ0

ω0B0vA

�
δϕ�

m;n
∂
∂r δϕmþ1;n − δϕmþ1;n

∂
∂r δϕ

�
m;n

�
;

ð4:105Þ

∂
∂r δϕ2mþ1;2n ¼

ckθ0
ω0B0

�
2
∂
∂r δϕm;n

∂
∂r δϕmþ1;n

− δϕm;n
∂2

∂r2 δϕmþ1;n − δϕmþ1;n
∂2

∂r2 δϕm;n

�
;

δA∥2mþ1;2n ¼ −
c2kθ0

ω0B0vA

�
δϕmþ1;n

∂
∂r δϕm;n

− δϕm;n
∂
∂r δϕmþ1;n

�
: ð4:106Þ

These equations can be derived from Eqs. (2.35) and (2.37),
neglecting thermal ion compressions and EP contribution in
the singular layer (cf. Sec. III). Furthermore, we have assumed
jnj ≫ 1 for simplicity and defined kθ0 ¼ −m=r0, with r0 the
radial position of the considered local TAE frequency gap. In
particular, in Eq. (4.105), we have also neglected the effect of
thermal ion Landau damping, considering a very narrow TAE
spectrum centered at ω0. The effect of ion Landau damping
may become important for a broader TAE frequency spectrum
and can be included in the present analysis following the
derivations of Secs. IV.B and IV.C.1. It is also worthwhile
noting that due to toroidal geometry ð2m; 2nÞ and
ð2mþ 2; 2nÞ Fourier modes are nonlinearly driven at 2ω0

in addition to the ð2mþ 1; 2nÞ harmonic given by Eq. (4.106).
These modes may locally interact with the SAW continuum
since the frequency gap at ≃vA=qR0 is very narrow for
toroidal equilibria with circular flux surfaces (Zheng and
Chen, 1998a, 1998b). In this case, the effect of the 2n
nonlinear mode can be significant and contribute to the
saturation of the pump TAE mode (Todo, Berk, and
Breizman, 2012b). More generally, however, the ð2m; 2nÞ
and ð2mþ 2; 2nÞmodes at 2ω0 do not locally interact with the
SAW continuum, due to the frequency gap at ≃vA=qR0

produced by finite magnetic flux surface ellipticity (Betti
and Freidberg, 1991). Therefore, in the typical case of
elongated plasmas, the effect of ð2m; 2nÞ and ð2mþ 2; 2nÞ
results in a nonlinear frequency shift OðϵÞ smaller than that
due to the ð2mþ 1; 2nÞ harmonic given in Eq. (4.106), and
thus can be neglected (Vlad et al., 1992, 1995; Zonca
et al., 1995).
Adopting the general notation of Eq. (3.23) for the

fluctuating fields structure, let us define

U ¼ 8
ffiffiffi
2

p
mqs

�
R0

r0

��
βbs
ϵ30

�
1=2 e

Te þ Ti
δϕ0nðr; nq −mÞ;

V ¼ 8
ffiffiffi
2

p
mqs

�
R0

r0

��
βbs
ϵ30

�
1=2 e

Te þ Ti
δϕ0nðr; nq −m − 1Þ;

ð4:107Þ

where bs ¼ k2θ0ðTe þ TiÞ=miΩ2
i . Meanwhile, the dimension-

less time can be defined as τ≡ ϵ0vAt=4qR0, and the
corresponding dimensionless radial coordinate is x≡
ð4=ϵ0Þðnq −m − 1=2Þ. The effect of the nonlinearly driven
ðm ¼ 1; n ¼ 0Þ and ð2mþ 1; 2nÞ components on the pump
TAE mode is obtained by direct substitution of Eqs. (4.105)
and (4.106) into the coupled vorticity equations for ðm; nÞ and
ðmþ 1; nÞ modes near r0 (cf. Sec. II). The final governing
equations are

ði∂τ − xÞ∂xU þ ∂xV − ∂2
xjVj2∂xU ¼ Ā;

ði∂τ þ xÞ∂xV þ ∂xU − ∂2
xjUj2∂xV ¼ −Ā:

ð4:108Þ

Here Ā and B̄ are defined as

�
Ā

B̄

�
¼ 8ffiffiffi

π
p mq

�
R0

r0

��
βbs
ϵ30

�
1=2 e

Te þ Ti

�
Að0Þ
Bð0Þ

�
; ð4:109Þ

where Að0Þ≡ Aðθ ¼ 0Þ and Bð0Þ≡ Bðθ ¼ 0Þ, given the
representation of the TAE fluctuation field as δΦ̂n ¼
AðθÞ cosðθ=2Þ þ BðθÞ sinðθ=2Þ (cf. Sec. III) (Cheng, Chen,
and Chance, 1985). The local TAE dispersion relation in the
form of the GFLDR (cf. Secs. III.C and IV.C.2) is obtained
from the solutions of Eq. (4.108) with the matching condition

Z
∞

−∞
∂xUdx ¼ −

Z
∞

−∞
∂xVdx ¼ −πB̄: ð4:110Þ

Since the ratio B̄=Ā depends only on δŴf in the absence of
EPs, Eq. (4.110) describes the nonlinear frequency shift with
respect to ω0, produced by the finite TAE amplitude. It can be
shown that, above a certain critical Ā ¼ ĀcðδŴfÞ, the sol-
utions of Eq. (4.108) start producing fine radial structures
due to enhanced interaction with the local continuous spec-
trum. The critical fluctuation level for this to occur can be
estimated as

�
δBr

B0

�
c
∼

1

8jsjmq
r0
R0

ϵ3=20 jUj

∼
1

4jsjmq

�
r0
R0

�
5=2

ĀcðδŴfÞ ≲ 10−3ĀcðδŴfÞ:

ð4:111Þ

As ĀcðδŴfÞ ≪ 1 for some choice of plasma equilibrium
profiles (nonlinear) enhanced continuum damping may effec-
tively yield mode saturation.
Again we note that the local SAW continuum may also be

modified via nonlinear density changes (Chen et al., 1998).
The corresponding critical fluctuation level for enhanced
continuum damping is given by

�
δBr

B0

�
c
∼ ðβϵ30Þ1=2ĀcðδŴfÞ ≲ 10−2ĀcðδŴfÞ: ð4:112Þ

The critical amplitude in Eq. (4.112) is typically larger than
that in Eq. (4.111). That is, the dominant mechanism for
nonlinearly enhanced continuum damping is expected to be
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due to the nonlinear modification in the magnetic surface
structure and plasma flow.

4. Alfvén eigenmodes in the presence of a finite-size
magnetic island

Theoretical analyses of Alfvénic fluctuations in the pres-
ence of a finite-size magnetic island were originally motivated
by the experimental observation of BAEs in Frascati Tokamak
Upgrade (FTU) (Annibaldi, Zonca, and Buratti, 2007), where
they are excited without EP drive but in the presence of a
sufficiently large magnetic island (Buratti et al., 2005), as also
reported in the Tokamak EXperiment for Technology Oriented
Research (TEXTOR) (Zimmermann et al., 2005) and the
Chinese Toroidal Device–2A (HL-2A) (Chen et al., 2011).
Theoretically, the low-frequency magnetic island can be

considered as a nonaxisymmetric distortion of the tokamak
equilibrium, and a detailed analysis was given by Biancalani
et al. (2010a, 2010b, 2011). This situation has evident
analogies with the formation of frequency gaps in the SAW
continuous spectrum in helical devices [see, e.g.,
Kolesnichenko et al. (2011) and Toi et al. (2011)]. A case
of particular interest is when the toroidal periodicity of the
singular perturbations representing the SAW continuum coin-
cides with that of the magnetic island, assumed to have
ðm0; n0Þ poloidal and toroidal mode numbers. In this case, the
SAW continuous spectrum is qualitatively modified
(Biancalani et al., 2011). In particular, the BAE frequency
is upshifted by the finite-size magnetic island to

ωBAE ¼ ωBAE0

�
1þ n20s

2q20
4

W2
isl

r20

ω2
A

ω2
BAE−CAP

�
1=2

: ð4:113Þ

Here ωBAE0 is the BAE frequency in the reference axisym-
metric tokamak equilibrium without magnetic island, Wisl
stands for the magnetic island (half) width, ωBAE−CAP denotes
the BAE continuum accumulation point frequency defined as
Λ2
nðωBAE−CAPÞ ¼ 0, ωA ¼ vA=q0R0, q0 ¼ m0=n0, r0 is the

island O-point position, and s is the magnetic shear.
Equation (4.113) has been successfully tested against FTU
experimental observations for sufficiently small magnetic
island width (Tuccillo et al., 2011).
The actual physics determining the threshold in magnetic

island size for BAE excitation has not been fully clarified.
Two possible mechanisms have been proposed so far: (i) the
core plasma profiles, modified inside the finite-size magnetic
island, along with the modified SAW continuum structures,
may alter the stability properties of BAE modes and even-
tually excite them even in the absence of EPs (Biancalani
et al., 2011); and (ii) the island-induced modification of the
thermal ion equilibrium distribution function (Smolyakov,
Garbet, and Ottaviani, 2007) may be sufficient to yield a
change in sign of ion Landau damping and cause mode
excitation (Marchenko and Reznik, 2009).

D. Nonlinear wave-particle dynamics

As remarked in the introduction to Sec. IV, there are
currently two paradigms for discussing nonlinear interactions
of Alfvénic fluctuations with EPs in fusion plasmas (Chen and

Zonca, 2013; Zonca et al., 2015b): the bump-on-tail and the
fishbone paradigms. It is possible to adopt the former one
provided that the system is sufficiently close to marginal
stability. In particular, the nonlinear modification of resonant
EP orbits must be small compared with the characteristic
fluctuation wavelength (Berk and Breizman, 1990b, 1990c).
Thus, this model can account only for local EP transport in the
presence of an isolated resonance, i.e., unless the threshold is
exceeded for the onset of stochasticity in the particle phase
space due to resonance overlap (cf. Secs. V.A and VI.A). The
essential physics of the bump-on-tail paradigm are the same as
those originally introduced in the analysis of the temporal
evolution of a small cold electron beam interacting with a
plasma in a 1D system (Al’tshul’ and Karpman, 1965;
Mazitov, 1965; O’Neil, 1965; O’Neil, Winfrey, and
Malmberg, 1971) and are discussed in Sec. IV.D.1. There
we also give the self-consistent nonlinear solution for the low-
frequency beam distribution function in the presence of a
periodic fluctuation, as derived by Al’tshul’ and Karpman
(1965). In fact, this is the solution of the Dyson equation for a
1D uniform plasma, which is the starting point for its
extension to nonuniform systems (Zonca et al., 2005) and
provides the theoretical basis for the construction of the
fishbone paradigm later on. The dynamics of the nonlinear
beam-plasma system with sources and collisions are analyzed
in Sec. IV.D.2, based on the original works by Berk and
Breizman (1990a, 1990b, 1990c). These include steady-state
and bursting behaviors (periodic and chaotic) (Berk,
Breizman, and Ye, 1992a; Breizman, Berk, and Ye, 1993;
Berk, Breizman, and Pekker, 1996; Breizman et al., 1997), the
formation of hole and clump pairs in the resonant particle
phase space (Berk, Breizman, and Petiashvili, 1997; Breizman
et al., 1997; Berk et al., 1999), and the existence of subcritical
states (Berk et al., 1999). Applications of the 1D bump-on-tail
paradigm to AE experimental observations are discussed in
Sec. IV.D.3, with notable examples being fine structures
(frequency splitting) of AE spectral lines (Fasoli et al.,
1998) as well as AE adiabatic frequency chirping (Pinches
et al., 2004; Vann, Dendy, and Gryaznevich, 2005;
Gryaznevich and Sharapov, 2006), where the mode frequency
sweeping rate is much less than the wave-particle trapping
frequency j _ωj ≪ ω2

B. Section IV.D.3 also addresses the
assumptions underlying the 1D bump-on-tail paradigm and
analyzes its validity limits.
One approximate method for analyzing finite AE mode

width effects is based on perturbative treatment of EPs and
prescribedAE structures, which ultimately yieldsAEnonlinear
dynamics in terms of time evolution of wave amplitudes and
phases (Chen and White, 1997). Numerical simulation results
using this approach are presented in Sec. IV.D.4. In fusion
plasmas, however, EP effects are generally nonperturbative and
modify the plasma dielectric response as well as the fluctuation
structure and frequency. This behavior is related to equilibrium
geometry and plasma nonuniformity effects via EP resonance
conditions, which depend on EP constants of motion and via
finite mode structures, which affect wave-EP interactions.
These issues are analyzed in Sec. IV.D.5. First theoretically
yielding an estimate of jγL=ωj for the transition from local
redistributions to mesoscales EP transport and the correspond-
ing shift from the bump-on-tail to the fishbone paradigm. Then
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these physics are illustrated by numerical simulation results
(Briguglio, Zonca, and Vlad, 1998; Briguglio, 2012; Wang
et al., 2012; Zhang, Lin, andHolod, 2012;Briguglio andWang,
2013). Finally, Sec. IV.D.5 derives the general equations for the
nonlinear dynamics of phase-space ZS (PSZS) within the
theoretical framework of Sec. IV.A, yielding the generalization
of the Dyson equation introduced in Sec. IV.D.1 (Al’tshul’ and
Karpman, 1965) to nonuniform plasmas with the addition of
sources and collisions. This result is then used to discuss the
unification of bump-on-tail and fishbone paradigms (Zonca
et al., 2015b).
In general, the Dyson equation approach of Sec. IV.D.5

provides an exact description of nonlinear wave-particle
interactions for which a numerical solution is necessary. In
nonuniform plasmas, with the mode frequency set by the
nonlinear dispersion relation, the nonlinear mode evolution is
dominated by resonant EPs whose phase is locked with the
wave, since these maximize wave-EP power exchange while
at the same time are most efficiently displaced by the mode.
Depending on the wave dispersive properties, the mode can
nonlinearly modify its structure to further enhance the wave-
EP power exchange by tapping the steeper spatial gradient
regions due to phase-locked resonant EPs. When the mode can
readily respond by readapting its frequency and/or mode
structure to the modified EP distribution, resonant EP radial
motion is secular as long as wave-particle phase locking is
maintained, as theoretically predicted (White et al., 1983) and
observed experimentally (Duong et al., 1993; Heidbrink,
2008). This process, called “mode-particle pumping” in the
original work by White et al. (1983), was introduced to
explain EP losses due to fishbones in PDX (McGuire et al.,
1983). It applies to nonlinear dynamics of radially extended
EPM (cf. Sec. IV.D.6) and fishbones (cf. Sec. IV.D.7) and is
accompanied by fast nonadiabatic frequency chirping j _ωj ∼
ω2
B with ωB the wave-particle trapping frequency for fixed ω

that suppresses wave-particle trapping as shown in
Sec. IV.D.5. The ability to adapt and “follow” phase-locked
EPs is characteristic of EPMs, of which fishbones are the first
and one well-known example (Chen and Zonca, 2007a), and it
is borne in the mode dispersion relation. In fact, nonadiabatic
chirping and phase locking can be preserved through the
nonlinear phase because nonlinear wave-EP power transfer
balances the linear diffusive or dispersive response.
Meanwhile, assuming phase locking and additional approx-
imations (to be verified a posteriori) allows us to further
simplify and solve the Dyson equation for the cases of EPM
(Sec. IV.D.6) as well as fishbones (Sec. IV.D.7). For EPM, in
particular, Sec. IV.D.6 demonstrates that the general NLSE
with integrodifferential nonlinear terms of Sec. IV.A reduces
to a special case of the complex Ginzburg-Landau equation
(van Saarloos and Hohenberg, 1992; Conte and Musette,
1993), for which the convectively amplified EPMwave packet
constitutes an attractor. Section IV.D.6 furthermore discusses
the radial modulation effects of the self-consistent interplay of
AE and EPM mode structures and EP transport, which are the
analogs of the modulation interaction of AE with ZS
(Sec. IV.C.2) extended to generally include wave-particle
resonance effects in the case of PSZS and, in general, can
influence fine features of the AE abd EPM frequency spectra
(Sec. IV.D.3).

More generally, the study of convectively amplified EPM
wave packets as solitonlike solutions of a complex NLSE
introduces analogies with research fields other than plasma
physics (cf. Sec. IV.D.6). These include possible formulations
of fractional-derivative extensions of the NLSE as well as the
Fokker-Planck equation, based on a first-principle physics
model derived from general equations governing the nonlinear
evolution of a nonuniform plasma system with wave-particle
resonant interactions that are responsible for nonlocal spatio-
temporal behavior. Further discussion of general implications
of the theoretical framework introduced in Sec. IV.A is given
in Sec. IV.E.

1. The physics of the collisionless nonlinear beam-plasma system

The temporal evolution of a small cold electron beam
interacting with a plasma in a 1D system was described by
O’Neil, Winfrey, and Malmberg (1971). Following the
linear analysis of O’Neil and Malmberg (1968), let us
consider a uniform 1D beam-plasma system, where elec-
trons have density n and are Maxwellian, with a thermal
speed vT significantly lower than the electron beam
drifting speed vD such that thermal electron Landau
damping is negligible. Beam electrons of density nB≪n
have a Lorentzian distribution with velocity spread vB,
while thermal ions are considered as a fixed neutralizing
background.
The most unstable wave is a beam mode, which is nearly

degenerate with the Langmuir wave, i.e., ω ¼ ω0 þ δω and
k ¼ k0 þ δk, with ω0 ¼ ωp and k0 ¼ ωp=vD. More precisely,
introducing x¼ðδk=k0Þð2n=nBÞ1=3, y ¼ ðδω=ω0Þð2n=nBÞ1=3,
and s ¼ ðvB=vDÞð2n=nBÞ1=3, the most unstable mode for
s ¼ 0 has x ¼ 0, y ¼ −1=2þ i

ffiffiffi
3

p
=2 and group velocity

∂ω=∂k ¼ ð2=3ÞvD. The half-width Δk of the linear
growth rate spectrum is Δk ¼ ð3=2Þk0ðnB=2nÞ1=3. For
ðnB=2nÞ1=3 ≪ 1, beam electrons are moving locally over a
single wave with relative velocity Δv ∼ ðnB=nÞ1=3vD. When
the wave grows to an amplitude such that ϕ ∼mΔv2=e∼
ðnB=nÞ2=3mv2D=e, the wave saturates and starts oscillating
(O’Neil, Winfrey, and Malmberg, 1971). Meanwhile, the
nonlinear evolution takes place in two stages (Shapiro,
1963): first, the beam-plasma interaction heats the beam, as
the nonlinear Δv≳ vB; second, the beam distribution is
modified (flattened by phase mixing) in velocity space by
nonlinear interactions.
Following O’Neil, Winfrey, and Malmberg (1971),

we consider δϕ ¼ δϕ0ðtÞ expðik0xÞ þ c:c., x ¼ z − vDt, and
ω0 ¼ ωp. A general direct solution of the Poisson’s equation
can be obtained assuming that in one wavelength 2π=k0 the
beam spatial charge is made of i ¼ 1; 2; 3;…;M charge sheets
located at xj with charge −2πenB=Mk0. Thus, recalling that
the plasma can be treated as a linear dielectric medium and
that the wave is nearly monochromatic and introducing the
normalized quantities ξjðτÞ ¼ k0xjðtÞ, τ ¼ ω0tðnB=2nÞ1=3,
and ΦðτÞ ¼ −ð2n=nBÞ2=3eδϕ0ðtÞ=mv2D,

_ΦðτÞ ¼ −i
M

XM
j¼1

exp ½−iξjðτÞ�; ð4:114Þ
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̈ξjðτÞ ¼ −iΦðτÞ exp ½iξjðτÞ� þ c:c:; ð4:115Þ

are, respectively, the evolution equation for ΦðτÞ ¼
Φð0Þ exp ½−i R τ

0 yðτ0Þdτ0�, with y the normalized frequency
variable introduced earlier, and the equation of motion for the
electron beam charge sheets. Equations (4.114) and (4.115)
recover the linear dispersion relation y3 ¼ 1 for the most
unstable beam mode in the cold beam case. They describe the
early nonlinear evolution of the most unstable beam-plasma
wave under the single-mode assumption. The numerical
solution shows that the fastest growing mode dominates the
dynamics and grows until electrons are trapped and begin
sloshing back and forth in the wave. Then the wave stops
growing and begins oscillating about a mean value due to
energy exchange between electrons and the wave itself. This
process is similar to the oscillatory behavior observed with an
externally launched large amplitude wave (Mazitov, 1965;
O’Neil, 1965). Equations (4.114) and (4.115) can be seen as a
dynamical system and are formally obtained in the framework
of Hamiltonian system theory (Mynick and Kaufman, 1978;
Tennyson, Meiss, and Morrison, 1994; Antoni, Elskens, and
Escande, 1998). An interesting aspect of this description is
that it results in a self-consistent Hamiltonian formulation,
which is formally equivalent to that of the free-electron laser
dynamics (Antoniazzi et al., 2008). Using the same formu-
lation, it was recently shown (Carlevaro et al., 2014) that the
suprathermal electron distribution function in the quasista-
tionary states (intermediate out-of-equilibrium states) pro-
duced by the nonlinear evolution of the beam-plasma system
are accurately predicted by the maximum entropy principle
proposed by Lynden-Bell (Lynden-Bell, 1967; Antoni,
Elskens, and Escande, 1998).
Momentum and energy conservation can be derived from

Eqs. (4.114) and (4.115), respectively, as

jΦðτÞj2 þ 1

M

XM
j¼1

_ξjðτÞ ¼ 0; ð4:116Þ

ReyjΦðτÞj2 þ 1

4M

XM
j¼1

_ξ2jðτÞ ¼ 0; ð4:117Þ

yielding ReyðτÞ ¼ ð1=4ÞPj
_ξ2jðτÞ=

P
j
_ξjðτÞ. Noting that

ImyðτÞ ¼ ð1=2Þðd=dτÞjΦðτÞj2=jΦðτÞj2 by definition, the non-
linear frequency oscillation is always downward as shown by
Eq. (4.117), and it occurs with a frequency which is twice that
of jΦðτÞj oscillations and maximum negative excursions
corresponding to the minima of fluctuation intensity. The
excursions of both ReyðτÞ and ImyðτÞ are Oð1Þ as can be
estimated from the optimal ordering _ω ∼ k0 _v ∼ ω2

B.
On long time scales, the wave cannot be considered

monochromatic any longer and the total energy dependence
of the particle trapping period causes the particle distribution
function inside the separatrix to smooth out the increasingly
finer structures by phase mixing. This is the coarse-grained
distribution function (Sagdeev and Galeev, 1969) and when it
is asymptotically formed on long time scales the mode
amplitude reaches a steady state (Mazitov, 1965; O’Neil,

1965).18 Considering Ez ¼ Ez0 sin ξ in the wave moving
frame, the particle motion is described by

_ξ2 ¼ ð4ω2
B=κ

2Þ½1 − κ2 sin2ðξ=2Þ�; ð4:118Þ

where ω2
B ¼ jekEz0=mj is the trapping frequency of deeply

trapped particles, κ2 ¼ 2eEz0=ðkW þ eEz0Þ, andW is the total
energy. This is the equation of a nonlinear pendulum with
κ2 < 1 describing rotations, κ2 > 1 denoting oscillations or
librations, and κ2 ¼ 1 defining the separatrix. Defining
ΔW ¼ ð∂W=∂vÞΔv ¼ const, the coarse-grained distribution
function is given by (O’Neil, 1965; Sagdeev and Galeev,
1969)

½f� ¼
H
F0ðvÞΔvdξH

Δvdξ

≃ F0ðω0=k0Þ þ
∂F0ðω0=k0Þ

∂v
H
dξ=k0H
dξ=_ξ

; ð4:119Þ

where ½f� ¼ ð2πÞ−1 H fdξ. For κ2 > 1, i.e., for trapped par-
ticles, it can be noted that ½f� ¼ F0ðω0=k0Þ. Thus, the time
asymptotic coarse-grained distribution function takes up the
constant value corresponding to the equilibrium particle
distribution at resonance. Meanwhile, for circulating particles,
κ2 < 1,

½f� ¼ F0ðω0=k0Þ þ
∂F0ðω0=k0Þ

∂v
πωB=k0
κKðκÞ ; ð4:120Þ

with KðκÞ the complete elliptic integral of the first kind.
Note that the coarse-grained distribution is continuous at
the separatrix κ2 ¼ 1 but has discontinuous derivatives. The
flattened coarse-grained particle distribution function in the
resonance region explains why the nonlinear oscillations
eventually fade away due to phase mixing. This is exactly
the same time asymptotic state reached when a large ampli-
tude plasma wave is externally driven at a fluctuation level
corresponding to ωB ≫ γL, i.e., the Landau damping due to
resonant wave-particle interactions (Mazitov, 1965; O’Neil,
1965). The main difference is in the relative value of
fluctuation amplitude oscillations. In the case of a large
amplitude wave, the amplitude undergoes small oscillations
about an essentially constant value. Meanwhile, for the beam-
plasma system, the amplitude is fluctuating by an Oð1Þ
quantity about the mean value as the system evolves from
the initial exponential growth, with ωB ≪ γL, to the saturation
phase, with ωB ∼ γL (Onishchenko et al., 1970a, 1970b;
O’Neil, Winfrey, and Malmberg, 1971; Shapiro and
Shevchenko, 1971; O’Neil and Winfrey, 1972). After resonant
electrons get trapped and begin sloshing back and forth in the
wave, Oð1Þ amplitude oscillations at ωB and harmonics

18It is worthwhile noting the difference between this time
asymptotic equilibrium state, characterized by the coarse-grained
distribution function (Sagdeev and Galeev, 1969), and the quasista-
tionary states, which were discussed (Carlevaro et al., 2014) in the
context of the Lynden-Bell approach (Lynden-Bell, 1967).
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eventually fade away with the wave amplitude reaching a
constant level at ωB ≃ 3γL (Levin et al., 1972).
A different approach to the beam-plasma problem was

given by Al’tshul’ and Karpman (1965) based on the general
solution of the nonlinear Poisson equation

Ekz ¼ −
4π

k
iδϱ̂k ¼

4π

k
ie
Z

dvδfk; ð4:121Þ

with δfk obtained from the Vlasov equation

ð∂t þ ikvÞδfk ¼ −
e
m

X
q

iðk − qÞδϕk−q
∂
∂v fq; ð4:122Þ

solved for assuming a monochromatic wave. This approach is
relevant for the issues dealt with in Secs. IV.D.2–IV.D.7 and is
valid in the early nonlinear saturation phase. Furthermore, it
touches important aspects of the theory of nonlinear
oscillations in collisionless plasmas. Here we sketch its
derivations and summarize the main results. Recalling that
the thermal plasma is a linear dielectric medium and ω ¼
ωk0 þ i∂t for a nearly monochromatic wave, ðωk0 ; k0Þ ¼ðωp; k0Þ, Eq. (4.121) can be cast as

2

ωp

∂
∂t δϕk0 ¼

4π

k20
ie
Z

dvδfEk0 ; ð4:123Þ

where ∼e−iωpt time dependences are extracted, and the sub-
script E stands for energetic beam electrons (cf. Sec. II.E) and
is dropped in the following for simplicity of notation.
Introducing the standard definition

δfkðtÞ ¼
Z þ∞

−∞
e−iωtδf̂kðωÞdω;

δf̂kðωÞ ¼
1

2π

Z þ∞

0

eiωtδfkðtÞdt
ð4:124Þ

for the Laplace transform, the solution of Eq. (4.122) for
k ¼ 0 is readily obtained as

f̂0ðωÞ ¼
i

2πω
F0 þ

e
m
k0
ω

Z þ∞

−∞

�
δϕ̂k0ðω0Þ ∂

∂v δf̂−k0ðω − ω0Þ

− δϕ̂−k0ðω0Þ ∂
∂v δf̂k0ðω − ω0Þ

�
dω0: ð4:125Þ

Meanwhile, assuming vanishing initial conditions for δfk0 and
u≡ v − ωp=k0,

δf̂k0ðωÞ ¼
e
m

k0
ω − k0u

Z þ∞

−∞
δϕ̂k0ðω0Þ ∂

∂u f̂0ðω − ω0Þdω0:

ð4:126Þ

By direct substitution of Eq. (4.126) into Eqs. (4.123) and
(4.125), one readily obtains, respectively,

2

ωp

∂
∂t δϕk0 ¼

ω2
p

nk0
i
Z

dv
ZZ þ∞

−∞
e−iωt

δϕ̂k0ðω0Þ
ω − k0u

×
∂
∂u f̂0ðω − ω0Þdωdω0; ð4:127Þ

f̂0ðωÞ ¼
i

2πω
F0

−
e2

m2

k20
ω

ZZ þ∞

−∞

�
δϕ̂k0ðω0Þδϕ̂−k0ðω00Þ

×
∂
∂u

�
1

ω − ω0 þ k0u
∂
∂u f̂0ðω − ω0 − ω00Þ

�

þ δϕ̂−k0ðω0Þδϕ̂k0ðω00Þ

×
∂
∂u

�
1

ω − ω0 − k0u
∂
∂u f̂0ðω − ω0 − ω00Þ

��
dω0dω00:

ð4:128Þ

This last equation is the analog of the Dyson’s equation [see,
e.g., Kaku (1993)] in quantum field theory as noted by
Al’tshul’ and Karpman (1965). The physics processes
described by Eqs. (4.127) and (4.128) are schematically
depicted in Fig. 1. When Eq. (4.128) is solved by formal
expansion in the field amplitudes, the lowest order solution is
f̂0ðωÞ ¼ iF0=ð2πωÞ. Assuming that

δϕ̂k0ðωÞ ¼
i
2π

δϕk0

ω − ωk0

; ð4:129Þ

with δϕk0 being the k0 field in the linear approximation, the
subsequent steps in the iterative solution of the “Dyson”
equation (4.128) will have a second order pole at ω ¼ 0,
corresponding to a secular term ∝ t in the t representation and
to the second order diagram in Fig. 1(b), etc. Similarly, in the
solution of Eq. (4.127), a second order pole at ω ¼ ωk0 in the
nonlinear expression on the right-hand side corresponds to a
secular term ∝ t expð−iωk0 tÞ, etc. Even accounting for a
complex frequency ωk0 would replace the secular terms ∝ tl

with terms ∝ ðReωk0=Imωk0Þl ≫ 1 (Montgomery, 1963;
Al’tshul’ and Karpman, 1965). For this reason, it is crucial
to take into account all terms in the Dyson series as shown in
Fig. 1 (c) bottom frame. In general, Eqs. (4.127) and (4.128)
can bewritten for a generic fluctuation spectrum of waves with
jImωk0=Reωk0 j ≪ 1 assuming that the evolution of the fluc-
tuating fields is dominated by the nonlinear modification of
f̂0ðωÞ, Eq. (4.128), rather than by the generation of nonlinear
harmonics in the fields and the distribution function. For the
case ofmanywaveswith overlapping resonances, Al’tshul’ and
Karpman (1965) have demonstrated that Eqs. (4.127) and
(4.128) reduce to the well-known quasilinear limit (Vedenov,
Velikhov, and Sagdeev, 1961; Drummond and Pines, 1962). In
this sense, they can be referred to as generalized quasilinear
equations (Galeev, Karpman, and Sagdeev, 1965). Meanwhile,
in the case of a nearly monochromatic wave with constant
amplitude in time, Eq. (4.129), Al’tshul’ and Karpman (1965)
showed that Eq. (4.128) admits a solution which oscillates
around the coarse-grained distribution in the resonant region,
with a frequency spectrum given by the wave-particle trapping
frequency ωB and harmonics. More specifically,

L. Chen and F. Zonca: Physics of Alfvén waves and energetic … 015008-35

Rev. Mod. Phys., Vol. 88, No. 1, January–March 2016



F0ðu; tÞ ¼ F0ð0Þ þ
α

k0

X∞
l¼0

βl
ð2lþ 1Þ

d
du

ψl

�
k0u
α

�

× ½1 − cos ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p
αtÞ�; ð4:130Þ

with the notation α2 ≡ ffiffiffi
2

p jek0Ek0=mj ¼ ffiffiffi
2

p
ω2
B, x ¼ k0u=α,

and ψlðxÞ≡ ð2ll!π1=2Þ−1=2e−x2=2HlðxÞ with HlðxÞ the
Hermite polynomials, and βl ≡

R
∞
−∞½dF0ð0Þ=dx�ψlðxÞdx.

Note that Eq. (4.130) describes the oscillations of particles
trapped in the wave, which, however, do not decay in time as
expected from phase mixing. It was pointed out by O’Neil
(1965) that this is due to the assumption of the negligible
harmonic generation at k ¼ lk0 ðl ≥ 2Þ in both δϕk and δfk,
which breaks down on long time scales.

2. The nonlinear beam-plasma system with sources and collisions

In a series of papers in the 1990s, Berk and Breizman
(1990a, 1990b, 1990c) reconsidered the nonlinear beam-
plasma problem (cf. Sec. IV.D.1) including sources and
collisions and applied it to the description of nonlinear
dynamics of AEs near marginal stability. In this case (Berk
and Breizman, 1990a), the coarse-grained distribution func-
tion, Eq. (4.119), maintains a residual slope (Zakharov and
Karpman, 1962) inside the separatrix including the phase
space of wave-trapped resonant particles, so that a steady state
can be reached when the residual nonlinear drive balances the
background dissipation. The extension of this analysis to
electrostatic waves in a plasma slab with a sheared equilibrium
magnetic field B0, destabilized by an EP beam with a spatial
gradient transverse to B0, was discussed by Berk and
Breizman (1990b). Meanwhile, Berk and Breizman (1990c)
further extended the same approach to AEs destabilized by
nonuniform EP sources. Assumptions of these analyses
generally involve (i) one single low-amplitude wave, such
that mode structures can be neglected,19 (ii) finite background
dissipation independent of the finite-amplitude wave, and

(iii) wave dispersiveness set by the background plasma and
independent of the EP dynamics.

a. Steady-state saturation of the collisional beam-plasma system

A steady-state saturation level is reached when background
dissipation balances wave drive reduced by nonlinear inter-
actions (cf. Sec. IV.D.1), i.e.,

d
dt

T ¼ nm
2

Z
dvv2

∂
∂t ½f�≃

nm
2

ω2
0

k20

Z
dv

∂
∂t ½f�

¼ −2γdW: ð4:131Þ

With a source term QðvÞ and particle annihilation at a rate
νðvÞ, the Vlasov equation is

∂tf þ v∂xf þ _v∂vf ¼ −νðvÞf þQðvÞ: ð4:132Þ

For ν ≪ ωB, the lowest order time asymptotic ½f� is still given
by the coarse-grained distribution function, Eqs. (4.119) and
(4.120), which is readily obtained with F0ðvÞ ¼ QðvÞ=νðvÞ.
At next order in ν=ωB, the small but finite residual slope
within the wave-particle trapping region maintains a residual
drive with respect to the linear expression ðdT=dtÞL, which is
given by (Berk and Breizman, 1990a)

dT=dt ¼ 1.9ðν=ωBÞðdT=dtÞL: ð4:133Þ

Thus, noting ðdT=dtÞL ¼ −2γLW, Eqs. (4.131) and (4.133)
readily yield the saturation level ωB ≃ 1.9ðν=γdÞγL.
In order to emulate a beam slowing down, Berk and

Breizman (1990a) also considered the case of a source at
fixed velocity v0 and particle drag

∂tf þ v∂xf þ _v∂vf ¼ −νðvÞf þQ0δðv − v0Þ
þ a∂vf: ð4:134Þ

Denoting the Heaviside step function as H, the corresponding
equilibrium steady-state solution is F0 ¼ ðQ0=aÞ×
exp½ðν=aÞðv − v0Þ�Hðv0 − vÞ, which again yields the lowest
order time asymptotic ½f� in terms of the coarse-grained
distribution function given by Eqs. (4.119) and (4.120). For
ω2
B > ka, i.e., for a sufficiently large perturbation, the rate at

which particles cross a separatrix width in velocity space

FIG. 1. (a) The generation of the distribution δfk due to the interaction of f0 with the field δϕk, corresponding to the solution of
Eq. (4.126). (b) Nonlinear distortion of f0 due to emission and absorption of the field δϕk. (c) The process is defined in the top frame,
while the solution of the Dyson equation (4.128) corresponds to the summation of all terms in the Dyson series (bottom) (Al’tshul’ and
Karpman, 1965).

19When the Hamiltonian is accidentally degenerate, i.e., the
resonance condition is verified for particular values of the action
coordinates, the maximum excursion of the action about the
resonance scales as the square root of the perturbation strength
[see, e.g., Lichtenberg and Lieberman (1983, 2010)].
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because of drag is νeff ¼ kaω−1
B ∼ νðω=ωBÞ. Thus, ωB >

νeff ≫ ν and for adiabatically growing wave amplitude trap-
ping regions cannot be filled by drag, so that the distribution
function eventually vanishes because of particle annihilation.
In this scenario, a discontinuity is expected in the particle
distribution function near the separatrix and the residual
nonlinear drive is enhanced

dT=dt ¼ ð16=π2Þðν2eff=ν2Þðν=ωBÞðdT=dtÞL: ð4:135Þ

Using this expression, the steady-state saturation level can be
computed as for Eqs. (4.131) and (4.133).
In a more realistic description with sources and sinks, the

Vlasov equation is (Berk and Breizman, 1990b)

dtf ¼ νd∂λð1 − λ2Þ∂λf þ ðν=v2Þ∂v½ðv3 þ v3cÞf�
þ ð4πv20Þ−2Qδðv − v0Þ; ð4:136Þ

where the term ∝ νd on the right-hand side accounts for pitch
angle scattering, with λ ¼ v · B0=vB0. Depending on the
relative ordering of ν and νd, three different regimes can be
identified: (i) νdðω2=ω2

BÞ ≪ ν, where particles slow down
completely, without appreciable pitch angle scattering;
(ii) νdðω=ωBÞ ≪ ν < νdðω2=ω2

BÞ, where particles slow down
one separatrix width without appreciable diffusion; and
(iii) ν ≪ νdðω=ωBÞ, where particles are pitch angle scattered
before they slow down one separatrix width. The regime to be
expected in fusion plasmas is (iii), for which the residual
nonlinear drive, with νeff ¼ νdðω2=ω2

BÞ ≪ ωB, is given by
(Berk and Breizman, 1990b)

dT=dt ∼ ðνeff=ωBÞðdT=dtÞL; ð4:137Þ

which with the help of Eq. (4.131) yields the respective
saturation level.

b. Collisional beam-plasma system with periodic and chaotic
pulsations

Steady-state solutions with constant amplitude are not the
only possibility for nonlinear dynamics of the beam-plasma
system. Different scenarios are possible depending on the
relative ordering of γL, νeff ∼ νdðω2=ω2

BÞ, and γd (Berk,
Breizman, and Ye, 1992a; Breizman, Berk, and Ye, 1993).
In Sec. IV.D.1, it was shown that in a region of width Δv ∼
ωB=k0 near an isolated resonance a finite-amplitude wave
eventually yields to flattening of the coarse-grained distribu-
tion function by phase mixing. Meanwhile, the distribution
function is reconstructed at a rate νeff , while energy is
dissipated at a rate γd. Thus, for γd < νeff, the predicted
steady-state level trapping frequency is larger than the linear
drive ωB ∼ γLνeff=γd and steady-state solutions can be sus-
tained (cf. Sec. IV.D.2.a). Conversely, for γd > νeff, the
background distribution is not effectively reconstructed and
after saturation at ωB ∼ γL (cf. Sec. IV.D.1) the mode
amplitude decays at rate γd, so that fluctuation bursting can
be expected. The typical interval between bursts scales as
∼1=νeff . Meanwhile, the transition between steady-state and
bursting behaviors takes place when ωB ∼ γL and νeff ¼
νeff 0 ¼ νdω

2=γ2L ≃ γd (Berk, Breizman, and Ye, 1992a;

Breizman, Berk, and Ye, 1993). Numerical particle-in-cell
(PIC) simulations of a single Langmuir wave excited by an
inverted gradient F0ðvÞ ¼ QðvÞ=νðvÞ confirm analytical pre-
dictions about bursting versus steady-state saturation for the
bump-on-tail problem (Berk, Breizman, and Pekker, 1995).
Changing the externally imposed dissipation for fixed γL

changes the qualitative features of numerical solutions of the
Vlasov-Poisson system obtained for a monochromatic wave
(Berk, Breizman, and Pekker, 1996). In particular, ωB ¼
αðγL − γdÞ at the maximum oscillation amplitude, with α
varying from α ¼ 3.2 to 2.9 when γd=γL is varied from
γd=γL ¼ 0 to 0.6. More importantly, however, when
γ ≡ γL − γd is reduced to a sufficiently low level, the
amplitude of the system oscillates rather than decays at a
rate ∼γd after reaching the peak amplitude at ωB ∼ γ. To
investigate this phenomenology near marginal stability, the
Poisson’s equation (4.121) can be replaced by (Berk,
Breizman, and Pekker, 1996)

∂tEkz ¼ 4πe
Z

dvvδfk − γdEkz; ð4:138Þ

in order to introduce an imposed extrinsic damping.
Equation (4.138) can be reduced to

2

ωp

∂
∂t δϕk0 ¼

4π

k20
ie
Z

dvδfEk0 −
2γd
ωp

δϕk0 ; ð4:139Þ

i.e., Eq. (4.123) adding an ad hoc background dissipation.
Meanwhile, the Vlasov equation (4.122) is modified to
account for source, sink, and collision terms on the right-
hand side in the form of one of the models discussed
previously, e.g., Eq. (4.132). Introducing E ¼ E0ðtÞ cos ξ with
ξ ¼ k0z − ωpt ¼ k0x (cf. Sec. IV.D.1), and dropping sub-
scripts k0 and E in Eq. (4.139), the solution of Eq. (4.132) can
be cast as

f ¼ f0 þ
X∞
n¼1

δfneinξ þ c:c:; ð4:140Þ

∂tf0 þ νf0 ¼ QðvÞ − ω2
BðtÞ∂uReδf1; ð4:141Þ

∂tδf1þ iuδf1þνδf1 ¼−ð1=2Þω2
BðtÞ∂uðf0þδf2Þ; ð4:142Þ

etc. Here ω2
BðtÞ ¼ ek0E0ðtÞ=m and u ¼ k0v − ωp, while

Eq. (4.139) becomes

d
dt

ω2
B ¼ −

ω2
p

n0

ω0

k0

Z
∞

−∞
Reδf1du − γdω

2
B: ð4:143Þ

For monochromatic fluctuations (dropping δf2),
Eqs. (4.141)–(4.143) are the t representation of
Eqs. (4.126)–(4.129) with the addition of finite ν, Q, and
γd. Near marginal stability f0 ¼ F0 þ δf0, with F0 ¼
QðvÞ=νðvÞ, and the problem can be solved iteratively with
a perturbative asymptotic expansion based on the ordering
γ≡ γL− γd∼ν∼ juj≪ γL and expansion parameter ω2

B=ν
2 ∼

ω2
B=u

2 ∼ ω2
B=γ

2 ∼ ðγ=γLÞ1=2, which applies for ωBt ≪ 1
(Berk, Breizman, and Pekker, 1996). The iterative solution
corresponds to
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δf0 ¼ −
Z

t

0

e−νðt−t1Þω2
Bðt1Þ∂uReðδf1L þ � � �Þdt1;

δf1 ¼ −ð1=2Þ
Z

t

0

e−ðνþiuÞðt−t1Þω2
Bðt1Þ∂uf0dt1;

ð4:144Þ

where δf1L is the linearized form of δf1 obtained for
f0 → F0 ¼ QðvÞ=νðvÞ. Introducing τ ¼ ðγL − γdÞt, ν̂ ¼
ν=ðγL − γdÞ, and AðτÞ ¼ ðω2

B=γ
2Þγ1=2L =γ1=2, the validity limits

of the asymptotic analysis impose τ ≪ ðγ=γLÞ−1=4 (from
ωBt ≪ 1) and A ∼ ν̂ ∼ 1. Meanwhile, the iterative solution
of Eqs. (4.143) and (4.144) yields

d
dτ

A ¼ A −
1

2

Z
τ=2

0

z2Aðτ − zÞdz

×
Z

τ−2z

0

Aðτ − z − xÞAðτ − 2z − xÞe−ν̂ð2zþxÞdx:

ð4:145Þ
Here the occurrence of the secular term ∝ z2 in the normalized
time variable is due to the truncation of the Dyson series
(cf. Fig. 1), as discussed below Eq. (4.129). Equation (4.145)
admits a fixed point solution A0 ¼ 2

ffiffiffi
2

p
ν̂2 which is stable for

ν̂ > ν̂cr ≃ 4.38. For ν̂ < ν̂cr, AðτÞ first oscillates and for
further decreasing ν̂ it loses the periodic behavior, entering
a chaotic regime (Breizman et al., 1997). Meanwhile, for
sufficiently low values of ν̂ the system exhibits a finite time
singularity which is unphysical and again due to the truncation
of the Dyson series.
The work of Berk, Breizman, and Pekker (1996) was

generalized by Breizman et al. (1997) [see also Berk,
Breizman, and Pekker (1997)] to the generic case of weakly
unstable modes excited by resonant wave-particle inter-
actions, for which

d
dτ

A ¼ A − eiϕ
Z

τ=2

0

z2Aðτ − zÞdz

×
Z

τ−2z

0

Aðτ − z − xÞA�ðτ − 2z − xÞe−ν̂ð2zþxÞdx:

ð4:146Þ
Here the factor eiϕ depends on the linear physics of the
underlying mode. Breizman et al. (1997) also investigated the
effect of replacing the source or collisional terms −νðf − F0Þ
and F0 ¼ QðvÞ=νðvÞ with a diffusivelike collision operator
ν3effð∂2=∂Ω2Þðf − F0Þ, with Ω ¼ _ξ ¼ ∂H=∂I and ðI; ξÞ the
action-angle coordinates of the relevant wave-particle reso-
nance. Thus, exp½−ν̂ð2zþ xÞ� in Eq. (4.146) is replaced by
exp½−ν̂3z2ð2z=3þ xÞ� with ν̂ ¼ νeff=γ, yielding

d
dτ

A ¼ A − eiϕ
Z

τ=2

0

z2Aðτ − zÞdz

×
Z

τ−2z

0

Aðτ − z − xÞA�ðτ − 2z − xÞe−ν̂3z2ð2z=3þxÞdx:

ð4:147Þ
Similar to Eq. (4.145), Eqs. (4.146) and (4.147) also admit a
fixed point for ν̂ > ν̂cr. At ν̂ ¼ ν̂cr a first bifurcation occurs
and AðτÞ has a solution in the form of a limit cycle, which then
goes through subsequent period doubling bifurcations for

further decreasing ν̂ and eventually becomes chaotic
(Breizman et al., 1997; Fasoli et al., 1998; Heeter, Fasoli,
and Sharapov, 2000). In the case of Eq. (4.147), ν̂cr ≃ 2.05 for
jϕj ≪ 1 (Breizman et al., 1997).
Systematic numerical investigations of the Vlasov-Poisson

system were carried out (Vann et al., 2003; Vann, Dendy, and
Gryaznevich, 2005; Lesur, Idomura, and Garbet, 2009) in
order to characterize the fully nonlinear solutions of
Eq. (4.138) and of the Vlasov equation for monochromatic
waves with different source, sink, and collisionality models. In
particular, Lesur, Idomura, and Garbet (2009) and more
recently Lesur and Idomura (2012) adopted a model collision
term in the form of Eq. (4.132) and carefully discussed the
validity limits of the aforementioned analytical works com-
paring where appropriate fully nonlinear solutions with
analytic ones. It was shown that there are conditions where
the thermal plasma does not respond as a linear dielectric
medium, e.g., when the resonance involves a finite amount of
thermal electrons. The bifurcation diagram in the ðγd; νÞ
parameter space, similar to that discussed by Vann et al.
(2003), confirms that at fixed γd and for decreasing values of ν
numerical solutions are damped, converge to a steady state
(cf. Sec. IV.D.2.a), are periodic, or chaotic, or characterized by
frequency sweeping phase-space structures. This latter
behavior is discussed in Sec. IV.D.2.c and corresponds to
the parameter regime, where the analytic solutions of
Eqs. (4.145)–(4.147) exhibit finite time singularity.
Furthermore, Lesur, Idomura, and Garbet (2009) demonstrated
the existence of subcritical states, consistent with former
numerical results that nonlinear excitation of phase-space
structures is possible if fluctuation is initialized at sufficiently
large amplitude, ω2

B ∼ ðνþ γÞ5=2ðγLÞ−1=2 (Berk et al., 1999).
Metastable kinetic modes were also investigated by Nguyen,
Lütjens et al. (2010), where it was shown that purely nonlinear
steady-state regimes are found by numerical simulations,
when the nonlinear reduction of the resonant damping rate
due to thermal plasma is larger than the corresponding
reduction of the EP drive. Such processes may be relevant
for BAE nonlinear dynamics, for which purely nonlinear
steady-state regimes could exist for typical tokamak equilib-
rium conditions (Nguyen, Garbet et al., 2010). Nonlinear
instabilities of phase-space structures in both marginally
unstable and linearly stable (subcritical) regimes were recently
discussed by Lesur and Diamond (2013).

c. Nonlinear dynamics of phase-space holes and clumps

For sufficiently small ν̂, Eqs. (4.146) and (4.147) exhibit
the same finite time singularity of Eq. (4.145) due to the
unphysical truncation of the Dyson series (cf. Fig. 1). This
behavior suggests the existence of a fourth dynamic regime
of Eqs. (4.145)–(4.147), in addition to steady-state
(cf. Sec. IV.D.2.a), periodic, and chaotic regimes
(cf. Sec. IV.D.2.b). It was investigated by numerically solving
Eq. (4.139) and the Vlasov equation with a variety of source,
sink, and collision models (Berk, Breizman, and Pekker,
1997; Berk, Breizman, and Petiashvili, 1997; Breizman
et al., 1997; Berk et al., 1999). In particular, it was found
that numerical solutions are characterized by the formation of
pairs of phase-space holes (Berk, Nielson, and Roberts, 1970;
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Dupree, 1982; Berman, Tetreault, and Dupree, 1983;
Tetreault, 1983) and clumps (Dupree, 1970, 1972, 1982;
Berman, Tetreault, and Dupree, 1983; Tetreault, 1983).
After formation, holes and clumps move away from the
original resonance in velocity space, corresponding to energy
extraction from the particle distribution function and to,
respectively, upward (hole) and downward (clump) frequency
sweeping phase-space structures, which can be viewed as
Bernstein-Greene-Kruskal (BGK) modes (Bernstein, Greene,
and Kruskal, 1957). Since the work by Breizman et al. (1997),
the steady-state, periodic, and chaotic regimes of the solution
of the Vlasov-Poisson system are referred to as “soft” non-
linear behavior, to discriminate them from the “hard” non-
linear regime where hole and clump structures are formed. The
definition of a hard nonlinear regime is justified by noting that
for fixed νeff sufficiently low ν̂ can be achieved for sufficiently
strong net drive γ ¼ γL − γd. In the work by Berk et al. (1999),
it was noted that this hard regime is not observed for
γd=γL ≲ 0.4. On the other hand, Lesur, Idomura, and
Garbet (2009) showed that frequency chirping is observed
in numerical simulations for γd=γL as low as γd=γL ¼ 0.2. In
fact, Lilley and Nyqvist (2014) recently demonstrated that
holes and clumps may be generated with any small amount of
background dissipation, provided that a phase-space plateau is
formed by phase mixing and dissipative damping of an
unstable kinetic resonance. More precisely, in this case holes
and clumps are negative energy waves that grow because of
background dissipation.
Equations (4.141)–(4.143) were reconsidered by Lilley,

Breizman, and Sharapov (2009) with a model collision term in
the form

dtf ¼ ðν3k−20 ∂2
v þ α2k−10 ∂v − βÞðf − F0Þ; ð4:148Þ

where F0 is the equilibrium distribution function and ν, α, and
β control, respectively, velocity-space diffusion, dynamical
friction, and particle annihilation rate. Equations. (4.145)–
(4.147) are then generalized to

d
dτ

A ¼ A −
1

2

Z
τ=2

0

z2Aðτ − zÞdz
Z

τ−2z

0

Aðτ − z − xÞ

× A�ðτ − 2z − xÞe−ν̂3z2ð2z=3þxÞ−β̂ð2zþxÞþiα̂2zðzþxÞdx;

ð4:149Þ

with ν̂ ¼ ν=γ, α̂ ¼ α=γ, β̂ ¼ β=γ, and γ ¼ γL − γd. For
ν̂ ¼ β̂ ¼ 0, i.e., with dominant dynamical friction,
Eq. (4.149) always exhibits finite time singularity, in contrast
to Eqs. (4.145)–(4.147), whose evolutions exhibit both soft
and hard nonlinear dynamic behaviors (cf. Sec. IV.D.2.b).
This result is confirmed by numerical solutions of Eqs. (4.139)
and (4.148), which show frequency sweeping holes and
clumps when dynamical friction is the dominant collisional
process (Lilley, Breizman, and Sharapov, 2010).
The first analytical theory of hole-clump frequency sweep-

ing was proposed by Berk, Breizman, and Petiashvili (1997)
and Berk et al. (1999). There one assumes that the frequency
separation of holes and clumps is larger than γL and ωB, so
that they are treated independently as isolated structures.
Furthermore, both mode amplitude and frequency are

postulated to evolve adiabatically, i.e., j _ωj≪ω2
B, j _ωBj≪ω2

B,
etc. Defining ω¼ω0þδωðtÞ, q ¼ ξ −

R
t
0 δωðt0Þdt0, and using

the generating function F2 ¼ ½pþ δωðtÞ�½ξ − R
t
0 δωðt0Þdt0�,

with p ¼ Ω − ω0 − δωðtÞ and Ω ¼ _ξ, the Hamiltonian is
(Berk et al., 1999)

H ¼ p2=2 − δω2=2 − ω2
B cos qþ qδ _ω: ð4:150Þ

Meanwhile, Eq. (4.139) becomes

�
d
dt

þ γd

�
AðtÞ

¼ −
i
π2

γL
∂F0=∂Ω

Z
dqdpe−iq−i

R
t

0
δωðt0Þdt0fðq; p; tÞ: ð4:151Þ

Since wave amplitude and frequency change slowly, there
exists an adiabatic action invariant and at lowest order particle
response is independent of the corresponding angle. Thus, f
slightly deviates from the coarse-grained distribution
(cf. Sec. IV.D.1) and inside the separatrix f ¼ F0 þ g and
at the lowest order

g≃ g0 ¼ F0ðω0Þ − F0ðω0 þ δωÞ: ð4:152Þ

Furthermore, the dynamics is adiabatic and maintains near
marginal stability at every instant. Therefore, frequency
sweeping is obtained from the condition of balancing back-
ground dissipation with power released by hole and clump
motion in phase space (Berk et al., 1999). By means of
Eqs. (4.151) and (4.152), it is possible to show that

ωB

γL
¼ 16

3π2
; and

δω

γL
¼ 16

3π2

ffiffiffi
2

3

r
ðγdtÞ1=2; ð4:153Þ

having assumed ĝðxÞ¼ ½F0ðω0þxÞ−F0ðω0Þ�=F0
0ðω0Þx≃1.

This result consistently describes the adiabatic evolution
of hole and clump structures for times jωBtj ≫ 1. Note this
limit is opposite to the jωBtj ≪ 1 assumption underlying
Eqs. (4.145)–(4.147).
The theory of adiabatic frequency chirping of hole and

clump structures in phase space for the bump-on-tail problem
near marginal stability was investigated by Breizman (2010).
This work further extends the water bag model of driven
continuously phase-locked coherent structures in uniform
unmagnetized plasmas and of the associated BGK modes
(Khain and Friedland, 2007; Barth, Friedland, and Shagalov,
2008). The theoretical analysis assumes the background
plasma as a linear dielectric medium (cf. Sec. IV.D.1) and
solves Poisson’s equation for the BGK mode in terms of the
self-similar scalar potential

δϕk0 ≡ −ð1=eÞU½z − sðtÞ; t�; ð4:154Þ

where U½z − sðtÞ; t� is a periodic function of z − sðtÞ and a
slowly varying function of t. The wave phase velocity
∝ _s ¼ dsðtÞ=dt, with _s0 ¼ ω0=k0 at the initial time, is
determined by the condition that the power released by the
phase-space structure motion balances collisional dissipation
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due to the friction force exerted by bulk plasma electrons.
The exact nonlinear solution of this problem shows that
U½z − sðtÞ; t� depends on the narrow depletion (hole) or
protrusion (clump) inside the separatrix, i.e., on
F0ð_sÞ − F0ð_s0Þ. Meanwhile, assuming that the motion is
adiabatic and maintained near marginal stability, the predicted
time evolution of the BGK mode recovers Eq. (4.153) in the
early stage, where _s≃ _s0. It, however, can significantly depart
from that at later times due to significant deviations of _s from
_s0. In this respect, this model can describe long-range
frequency sweeping events (cf. also Sec. IV.D.3), provided
that the thermal plasma response remains a linear dielectric
medium. For a more detailed description, see the original
work (Breizman, 2010) [see also Breizman (2011) and
Breizman and Sharapov (2011)].
The first evidence of long-range frequency sweeping was

reported in numerical simulations of Eqs. (4.138) and (4.148)
with α ¼ ν ¼ 0 (Vann, Berk, and Soto-Chavez, 2007). The
simulations investigated the nonlinear behavior of strongly
driven 1D bump-on-tail systems with comparable values of
the thermal plasma and beam densities as well as velocity
spread. In these simulations, upward frequency sweeping
holes are preferentially formed, connected with strong non-
linear distortions of both thermal and energetic-particle dis-
tribution functions (cf. Sec. IV.D.1). Meanwhile, only the
time-averaged particle distribution function is maintained near
marginal stability. As expected for strongly nonlinear bursting
behavior, a structure more stable than the marginal distribution
function exists, following which the distribution function is
slowly rebuilt by external sources.
For significantly less strong drive and near mode marginal

stability, numerical simulation results of Eqs. (4.139) and
(4.148) confirm the existence of the long-range frequency
sweeping events described by Breizman (2010, 2011) and
Breizman and Sharapov (2011), which correspond to con-
vective particle transport in buckets via the adiabatic evolution
of the underlying BGK modes. The frequency sweeping
phase-space structures described by Lilley, Breizman, and
Sharapov (2010) move upward (holes) and downward
(clumps) until the nonlinear frequency shift exceeds the
frequency width of the linear unstable spectrum, which is
much smaller than the frequency of the initial linear instability
as assumed in the adopted model.20 Thus, holes and clumps
eventually “stuck up” and, by resonance overlap, cause a
relaxation of the particle distribution function to a plateau
extending throughout the linearly unstable region (Lilley,
Breizman, and Sharapov, 2010), leading to maximized energy
extraction from fast particle phase space. This extended
flattening was recently shown to be more important near
marginal stability than quasilinear diffusion in the presence of
many modes (Lilley and Breizman, 2012). Long-range chirp-
ing also occurs in the collisionless limit, near marginal
stability. In this case, the continuous generation of hole and
clump pairs is due to the steepening of the ambient

distribution function in the wake of such structures (Lilley,
Breizman, and Sharapov, 2010). In fact, phase-space holes
and clumps can be generated close as well as far from
instability threshold (Lilley and Nyqvist, 2014). However,
for increasing instability drive the bump-on-tail paradigm will
ultimately break down and one needs to adopt the fishbone
paradigm when mesoscale EP physics becomes important
(cf. Sec. IV.D.5).

3. The bump-on-tail problem as paradigm for Alfvén eigenmodes
near marginal stability

A detailed discussion of applications of the bump-on-tail
paradigm to AE nonlinear dynamics was given in Breizman
and Sharapov (2011). Here we present only the main findings
and discuss the underlying physics basis for such applications.
The first application of the bump-on-tail paradigm to

experimental observations is the interpretation of the pitchfork
splitting of TAE spectral lines in JET during ion cyclotron
resonance heating (ICRH) (Fasoli et al., 1998; Heeter, Fasoli,
and Sharapov, 2000) as manifestation of the soft nonlinear
regime discussed in Sec. IV.D.2. More precisely, Fasoli et al.
(1998) used the frequency spectrum of the limit cycle solution
of Eq. (4.147) at the bifurcation point, i.e., with ν̂ ¼ ν̂cr ≃ 2.05
for jϕj ≪ 1, and compared it with high resolution measure-
ments of TAE frequency. This work motivated further analyses
aimed at providing information on the values of γL, γd, and νeff
from MHD spectroscopy (Fasoli et al., 2002; Pinches et al.,
2004; Pinches, Berk et al., 2004) with the advantage of
interpreting some features of AE experimental observations
and inferring local kinetic plasma parameters, which are
otherwise difficult to obtain. Pinches et al. (2004) also noted
that the frequency chirping expression from Eq. (4.153) agrees
with the experimentally observed chirping in experimental
devices near marginal stability. Meanwhile, Vann, Dendy, and
Gryaznevich (2005) interpreted the observation of frequency
chirpingAEs in theMegaAmpere Spherical Tokamak (MAST)
(Gryaznevich and Sharapov, 2004; Pinches et al., 2004) as
evidence of the hard nonlinear regime of the bump-on-tail
nonlinear dynamics (Breizman et al., 1997).
The different types of chirping modes observed in MAST

(Gryaznevich and Sharapov, 2006; Gryaznevich et al., 2008)
have recently attracted significant interest due to the different
dynamic behaviors that are predicted by the 1D bump-on-tail
paradigm with different collision models and EP sources
(Lilley, Breizman, and Sharapov, 2009, 2010). In particular,
special emphasis was given to numerical solutions of
Eqs. (4.143) and (4.148) showing that frequency sweeping
holes and clumps are the only type of nonlinear behavior when
dynamical friction dominates (cf. Sec. IV.D.2.c). These
findings were proposed by Lilley, Breizman, and Sharapov
(2009, 2010) as a possible explanation of why soft nonlinear
behavior is expected for ICRH heated plasmas, with prevail-
ing velocity-space diffusion, whereas neutral beam injection
(NBI), mostly affected by dynamical friction, generally yields
hard nonlinear regimes.21

20Note that using Eq. (4.138) and including the kinetic response of
the thermal plasma component allows the investigation of the
nonlinear frequency shift of the order of the linear mode frequency
(Vann, Berk, and Soto-Chavez, 2007).

21Note that experimental observations of hard nonlinear behavior
in ICRH heated plasmas also exist, as in the case of high-frequency
fishbones (Nabais et al., 2005; Zonca et al., 2009).
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As application of the numerical method by Lesur, Idomura,
and Garbet (2009) with a model collision term in the form of
Eq. (4.148), Lesur et al. (2010) analyzed experimental
measurements of quasiperiodic chirping TAE in JT-60U
(Oyama, 2009) and developed a fitting procedure for calcu-
lating γL, γd, and collision frequencies from the frequency
spectrum provided by Mirnov coil measurements.
Reconstructed drive and damping rates are in qualitative
and quantitative agreement with experimental findings as
are the reconstructed collision frequencies compared with
values from experimental equilibrium data. Furthermore,
dynamical friction and velocity-space diffusion are found to
be essential to reproduce nonlinear features observed in
experiments, with dynamical friction playing a crucial role
in the asymmetry between hole and clump chirping (Lesur
et al., 2010; Lesur and Idomura, 2012), as also noted by Lilley,
Breizman, and Sharapov (2009, 2010). These analyses (Lesur
et al., 2010) clarify that TAE in JT-60U typically exist in
regimes away from marginal stability and that frequency
sweeping events are generally nonadiabatic.
As noted earlier, the applicability of the bump-on-tail

paradigm to AE nonlinear dynamics requires, in particular,
the fluctuation-induced EP excursions be small compared
with the radial wavelength (Berk and Breizman, 1990b,
1990c). This allows assuming constant mode amplitude in
the radial direction as implicitly required by the formal
equivalence r↔v. Quantitative discussions on its applicability
regime are presented in Sec. IV.D.5. In general, it depends on
the type of resonant EPs as well as on the wave dispersive
properties and mode structures. For circulating resonant EPs,
the validity limits are least stringent and the upper bound on
the drive strength is in the range γL=ω0 ≲ 10−2. Meanwhile,
for EPMs (Chen, 1994) the bump-on-tail paradigm is not
applicable, since mode structure and frequency depend on EPs
and the frequency-dependent background damping is due to
the SAW continuous spectrum (cf. Secs. III and IV.D.6). The
applicability conditions also imply that small EP redistrib-
utions are expected in the case of an isolated resonance.
Meanwhile, by exchanging r↔v, the long-range frequency
sweeping events (Breizman, 2010, 2011; Lilley, Breizman,
and Sharapov, 2010; Breizman and Sharapov, 2011; Lilley
and Breizman, 2012) correspond to local radial perturbations
in the EP distribution function propagating across B0 for a
distance comparable to the EP equilibrium profile scale
length. Thus, the absence of mode structures and plasma
nonuniformities in this model renders its generalization to
either AE or EPM nonlinear dynamics in toroidal plasmas
dubious (cf. Sec. IV.D.5). The original 1D bump-on-tail
paradigm was significantly extended by Wang and Berk
(2012) and Wang (2013), taking into account the local
TAE radial mode structure near one radially isolated gap in
the SAW continuous frequency spectrum, but preserving the
ansatz of proximity to marginal stability and perturbative EP
dynamics (Wang, 2013). Time evolution of the local TAE
mode structure is demonstrated to be crucial for describing
chirping events with nonlinear frequency shifts comparable
with the distance of linear mode frequency from the SAW
continuum accumulation point (Wang, 2013), consistent with
the results of prior theoretical analyses (Zonca et al., 2000,
2005) and of hybrid MHD-gyrokinetic simulations (Briguglio,

Zonca, and Vlad, 1998; Briguglio et al., 2002; Zonca et al.,
2002; Vlad et al., 2004; Wang et al., 2012). In this way, it was
shown that the predicted chirping may be nonadiabatic,
j _ωj≲ ω2

B, thereby, challenging the self-consistency of
assumptions made for the derivation of model equations
(Wang and Berk, 2012; Wang, 2013). These works, nonethe-
less, suggest that nonadiabatic chirping is naturally developed
in nonlinear dynamics of phase-space holes and clumps, as
anticipated by Gorelenkov et al. (2000), Zonca and Chen
(2000), and Zonca et al. (2005). Furthermore (Wang, 2013),
extended model equations predict the possible penetration of
downward frequency sweeping TAE clumps into the lower
SAW continuum similar to the long-range chirping mode
behavior observed in MAST (Gryaznevich and Sharapov,
2006). As the mode structure evolves into that of an EPM, we
note that a nonperturbative treatment of EP nonlinear dynam-
ics becomes, however, in general necessary (cf. Sec. IV.D.6).
Frequency sweeping is an important phenomenon, as

recognized since early experimental observations of chirping
AEs and EPMs (Heidbrink, 1995; Bernabei et al., 1999;
Kramer et al., 1999; McClements et al., 1999; Takechi et al.,
1999; Wong, 1999; Gorelenkov et al., 2000) and the first
theoretical analyses of these phenomena (Berk and Breizman,
1996) emphasizing that wave-particle energy exchange can be
enhanced by resonance sweeping. In particular, Berk and
Breizman (1996) showed that this enhancement is higher for
adiabatic than for nonadiabatic frequency chirping. This result
is consistent with the phenomenology of autoresonance
(Meerson and Friedland, 1990), discussed in Sec. IV.E, where
adiabatic chirping of a phase-locked resonance structure is
imposed externally for optimized energy extraction from the
particle phase space. When the system dynamically evolves
sufficiently near marginal stability (Sec. IV.D.2.c), the coarse-
grained particle distribution function (cf. Sec. IV.D.1) in the
hole and clump resonance region preserves its value at the
initial linear resonance and its adiabatic dynamics is set by
the balance between the power extraction from the particle
phase space and the energy dissipation rate (Breizman, 2010).
However, for sufficiently strong drive that radial mode
structures as well as plasma nonuniformity and equilibrium
geometry become important, nonadiabatic frequency sweep-
ing via phase locking becomes the condition for maximized
wave-particle power exchange (cf. Sec. IV.D.5) and is
associated with rapid EP profile redistributions (Gorelenkov
et al., 2000; Zonca and Chen, 2000). For EPM, furthermore,
new distinctive features and nonadiabatic bursting behavior
(cf. Sec. IV.D.6) are expected due to the interplay among
nonlinear dynamics, mode structures, and EP transport.
Deviation from adiabatic frequency sweeping for suffi-

ciently strong drive is also expected in the solutions of the 1D
bump-on-tail problem. This is observed by numerical simu-
lations of Eqs. (4.138) and (4.148) with α ¼ ν ¼ 0, showing
nonperturbative and fast chirping events with frequency
sweeping ∝ t rather than ∝ t1=2 (Vann, Berk, and Soto-
Chavez, 2007). These are qualitatively similar to EPM in
their general phenomenological features as they involve
bursting behavior of a strongly driven nonlinear system.
Nonadiabatic processes also underlie the formation of

phase-space structures, such as clumps and holes. In fact,
phase-space structures can be formed only for ωBt ∼ 1
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(Briguglio et al., 2014; Zonca et al., 2015b). This is the
mechanism underlying the continuous generation of hole and
clump pairs in the collisionless 1D bump-on-tail problem near
marginal stability (Lilley, Breizman, and Sharapov, 2010)
(cf. Sec. IV.D.2.c) with similarities to what occurs in the case
of EPM nonlinear dynamics (Zonca et al., 2005; Briguglio,
2012; Briguglio et al., 2014) (cf. Sec. IV.D.5). However, the
absence of an intrinsic interplay between mode structures and
particle transport in the 1D bump-on-tail problem remains a
crucial and fundamental difference.
We now briefly remark on the case of many modes, which is

less explored than the single-mode case discussed previously.
The role of radial mode structures is more subtle in the case of
the dense spectrum of AEs characterizing burning plasmas
(Chen and Zonca, 2007a) (cf. Sec. III.B), where resonance
overlap (Chirikov, 1979) of finite-size phase-space islands can
yield enhanced stochastic transport (Hsu and Sigmar, 1992;
Sigmar et al., 1992; Breizman, Berk, and Ye, 1993). The
qualitative scenario of the onset of stochastic transport within
the 1D bump-on-tail paradigm was recently reviewed by
Breizman (2011) and Breizman and Sharapov (2011), and
the implications of quasilinear diffusion in the presence of
many modes were discussed by Lilley and Breizman (2012).
Sufficiently above the stochasticity threshold and for a
sufficiently dense and broad AE spectrum, finite radial mode
structures and thus plasma nonuniformities are not expected to
significantly affect diffusive transport. Nonetheless, equilib-
rium geometry will still play important roles in setting the
wave-particle decorrelation time via wave-particle resonance
conditions as noted by Zhang et al. (2010) on EP turbulent
transport (cf. Sec. V.C) and as it more generally applies to
turbulent transport [see, e.g., Lin et al. (2007) and Feng, Qiu,
and Sheng (2013)]. The detailed mechanisms by which a 1D
uniform plasma in the presence of many modes reaches the
onset condition for diffusive transport by stochastization of
particle orbits in the phase space due to resonance overlap
(Chirikov, 1979) have been addressed by Breizman, Berk, and
Ye (1993). The onset of stochasticity is rarely global in phase
space (Lichtenberg and Lieberman, 1983, 2010) and actually
the energy release from the particle distribution function in the
considered phase-space region affected by diffusive transport
may induce the growth of additional fluctuations, otherwise
disallowed, in adjacent phase-space domains, where local
gradients are enhanced as predicted by Eqs. (4.119) and
(4.120). This “domino effect” (Berk, Breizman, Fitzpatrick,
and Wong, 1995; Berk et al., 1996) qualitatively resembles
that of avalanches in sandpile systems involving self-
organized criticality (SOC) (Bak, Tang, and Wiesenfeld,
1987), i.e., of “chain reactions” of transport events. For
investigating this process applied to multiple toroidal
mode-number AEs, Berk, Breizman, Fitzpatrick, and Wong
(1995) introduced a “line-broadened quasilinear burst model”
for treating resonance overlap of modes with bursting behav-
ior and applied it to characterize the nonlinear response of
driven systems in weak turbulence theory (Berk et al., 1996).
It may be expected that near the onset of stochasticity
equilibrium geometry and nonuniformity of plasma profiles
significantly affect nonlinear dynamics through radial mode
structures and their influence on nonlinear particle orbits,
whose typical size is of the order of the radial width of the

single poloidal Fourier harmonics [see Eq. (3.9)] for typical
values of the linear mode growth rate (cf. Sec. IV.D.5). This is
supported by recent findings of test-particle simulations
of EP transport in DIII-D (White et al., 2010a, 2010b)
showing that the stochastic threshold depends on modeling
details (cf. Sec. V.A). These issues are further discussed in
Sec. VI.A.

4. Numerical simulations of perturbative excitation
of Alfvén eigenmodes

For numerical investigation of AE nonlinear dynamics
driven by EPs, simplification is possible by considering
perturbative EP dynamics.22 The mode structures meanwhile
are computed from a linear stability analysis and taken to be
fixed. More specifically, the EP distribution function com-
puted in the given AE fields taking into account sources and
collisions yields the corresponding EP currents, which are
used to obtain the time evolution of wave amplitudes and
phases (Chen and White, 1997). This approach is very
efficient and can provide an accurate description of AE
nonlinear evolution even in the presence of many modes,
provided that the predicted nonlinear frequency shifts are
consistent with the fixed radial structure of the single poloidal
Fourier harmonics [see Eq. (3.9)].23 For practical applications
and comparisons with experimental observations, however,
further simplifications are often employed. In fact, test-
particle analyses are often adopted (cf. Sec. V.A), where
not only AE mode structures are assumed, but also mode
amplitude and phases are given from experimental data.
Perturbative EP numerical analyses were adopted by Wu,

Cheng, and White (1994) for investigating the effect of a
single TAE mode in typical TFTR and ITER plasmas and by
Wu et al. (1995), where the saturation level of the bump-on-
tail problem in the absence of collisions and background
dissipation was found to be ωB ≃ 3.3γL, consistent with Levin
et al. (1972), while the saturation of a n ¼ 3 TAE mode in
ITER was estimated to scale as ωB ≃ 4γL. With a similar
approach, Candy et al. (1997) developed a Lagrangian
representation for AEs time evolution weakly driven by a
perturbative EP population. Meanwhile, introducing collisions
by Eq. (4.132), Wong and Berk (1998) verified the scaling of
the steady-state TAE saturation amplitude predicted by
Eq. (4.133) and for decreasing collisionality the existence
of amplitude fluctuations, whose downshifted and upshifted
frequency components are compatible with the ∝ t1=2 scaling
of Eq. (4.153). A more systematic theoretical framework for
handling collisions as in Eq. (4.136) was presented by Chen
and White (1997), by means of which Chen et al. (1999)
verified the theoretically predicted scaling of the saturation
amplitude with linear growth rate and collision rate as derived
from Eq. (4.137). This approach was used to predict the

22This method does not apply to EPMs, for which even the linear
description requires a nonperturbative analysis of the EP response
(Chen, 1994).

23We recall here that the radial structure of poloidal Fourier
harmonics changes with the mode frequency and tends to become
singular as the accumulation point of the SAW continuous spectrum
is approached.
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saturation levels of TAE excited by fusion alpha particles in
TFTR and to successfully compare theoretical predictions with
experimental observations (Gorelenkov et al., 1999). The same
approach was used by Bergkvist and Hellsten (2004) to show
that ICRH can also have an effect similar to the pitch angle
scattering term in Eq. (4.136), pointing out that both processes
have a diffusive nature in velocity space, but Coulomb
collisions are more effective at low energies while ICRH
interactions are more effective at high energies. In plasma
scenarios typical for JET and accounting for collisions and
ICRH on the same footing, Bergkvist et al. (2005) showed that
time evolution of TAE amplitude computed with the perturba-
tive analysis of Chen and White (1997) and Chen
et al. (1999) is consistent with experimental observations
and typically dominated by the effect of ICRH. For example,
accounting for ICRH effects improves the comparison of the
computed numerical TAE spectrum with the observed splitting
of TAE spectral lines (Fasoli et al., 1998; Heeter, Fasoli, and
Sharapov, 2000). Furthermore, due to the fact that ICRH acts as
an effective resonance broadening (Bergkvist, Hellsten,and
Holmström, 2007), ICRH is expected to be important in the
onset of stochasticity in phase space and enhanced fluctuation-
induced transport in the case of resonance overlap due to many
modes (cf. Secs. V.A and VI.A). Recently, Fu et al. (2010) and
Lang and Fu (2011) discussed plasma microturbulence as a
possible mechanism to enhance EP phase-space diffusion
(cf. Sec. V.C). In particular, lettingDr be the EP radial diffusion
coefficient, it was argued that the pitch angle scattering part of
the collision operator in Eq. (4.136) near a resonance
Ω ¼ ω − k∥v∥ ¼ 0 can be rewritten as

νdð1 − λ2Þð∂λΩÞ2∂2
Ωf; ð4:155Þ

while the effect of turbulence driven radial diffusion becomes

Drð∂rΩÞ2∂2
Ωf; ð4:156Þ

to be added on the right-hand side. By comparisons of
Eqs. (4.155) and (4.156), Fu et al. (2010) and Lang and Fu
(2011) concluded that turbulence-induced radial diffusion
might bemore important than collisional effects in determining
the saturation level of EP-driven AEs near marginal stability in
burning-plasma experiments.
Hybrid MHD-gyrokinetic codes (Park et al., 1992)

(cf. Sec. II.E) were also adopted for the investigation of
EP-driven TAE nonlinear dynamics near marginal stability.
Simulation results showed the expected scaling jδB⊥=B0j ∼
ðγL=ω0Þ2 at saturation (Fu and Park, 1995; Todo et al., 1995;
Park et al., 1999). Deviations from this scaling were shown to
occur in hybrid MHD-gyrokinetic numerical simulations of
TAEs with increasing EP drive, when the nonlinear EP radial
displacement was comparable with the characteristic radial
wavelength of the mode (Briguglio, Zonca, and Vlad, 1998)
(cf. Sec. IV.D.5). EP losses were also observed in early hybrid
MHD-gyrokinetic simulations in the presence of multiple
TAEs (Todo and Sato, 1998). Fokker-Planck collision models
with source terms were implemented in hybrid MHD-
gyrokinetic simulations (Todo et al., 2001; Lang, Fu, and
Chen, 2010) and applied to verification of theoretical

predictions (Berk et al., 1999) (cf. Sec. IV.D.2) based on
the bump-on-tail paradigm (Lang, Fu, and Chen, 2010), as
well as to the investigation of recurrent TAE bursts observed
in TFTR NBI heated plasmas (Todo, Berk, and Breizman,
2003), for which the numerical repetition time of subsequent
TAE bursts is close to experimental values. Neglecting mode-
mode nonlinear couplings, the stored beam energy is found to
be ∼40% of that expected in the absence of fluctuations,
although the predicted saturation level of jδB⊥=B0j≃ 2 ×
10−2 is significantly larger than that observed experimentally,
jδB⊥=B0j ∼ 10−3. Meanwhile, particle phase-space mapping
showed that EP redistributions are due to both resonance
overlap of different eigenmodes and stochastization of particle
orbits due to secondary and higher order resonances of a
single eigenmode. The same numerical simulation was
repeated recently (Todo, Berk, and Breizman, 2012a), with
the inclusion of MHD mode-mode couplings, finding lower
TAE saturations levels and two possible scenarios, i.e., TAE
steady-state saturation at jδB⊥=B0j≃ 2 × 10−3 for low MHD
dissipation coefficients and TAE bursting with peak fluc-
tuation levels at jδB⊥=B0j≃ 5 × 10−3 for the higher dissipa-
tion case. The lower saturation level in the former case is
attributed to the enhanced effective dissipation due to the
nonlinearly driven modes, with both n ¼ 0 and n ≠ 0,
possibly through the fine structures connected with resonant
excitation of higher toroidal mode-number continuous spectra
(Todo, Berk, and Breizman, 2010, 2012b). Thus, it is different
from the enhanced nonlinear coupling with the SAW con-
tinuum or the spontaneous generation of ZS, analyzed in
Secs. IV.C.2 and IV.C.3, which are collisionless processes and
are expected to play important roles in high temperature
burning plasmas.
Model Fokker-Planck collision terms in the form of

Eq. (4.136) were also implemented in gyrokinetic codes for
investigating nonlinear TAE dynamics as, e.g., by Chen and
Parker (2011). There it was shown that an n ¼ 15 TAE in
ITER, found to be the most unstable mode from previous
linear stability analyses of the considered reference scenario
(Chen et al., 2010) [see also Gorelenkov et al. (2003) and
Vlad et al. (2006)], nonlinearly evolves up to a peak
fluctuation amplitude, consistent with ωB ∼ γL, and then
decays to a steady-state saturation level, which scales as
ν2=3d , consistent with Eq. (4.137) and is typically dominated by
pitch angle scattering (Chen and Parker, 2011).
Gyrokinetic and extended hybrid MHD-gyrokinetic codes

are becoming of routine use for linear AE and EPM stability
studies and comparisons with experimental observations [see
Lauber (2013) for an extended and recent review]. Linear
spectra and mode structures are then used for perturbative EP
transport analyses, as described previously, in present experi-
ments (Schneller et al., 2013) as well as in ITER (Lauber,
2015; Schneller, Lauber, and Briguglio, 2016) (cf. Sec. VI).

5. Nonlinear dynamics of Alfvénic fluctuations in nonuniform
toroidal plasmas

Nonlinear wave-particle interactions are significantly modi-
fied by geometry of the plasma equilibrium and spatial
nonuniformities. In this section, we first present a qualitative
discussion of these modifications and the necessary
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corresponding deviations from marginal stability. We then
give a quantitative and formal description of the same
phenomena, based on numerical simulation results and the
general theoretical framework introduced in Sec. IV.A. This
allows us to ultimately derive general equations for the
nonlinear dynamics of PSZS and to demonstrate the uni-
fication of bump-on-tail and fishbone paradigms.
A detailed analysis of resonant wave-particle interactions in

2D toroidal plasmas was given by Zonca et al. (2013, 2015b),
using the general time-scale ordering jω0τNLj−1 ∼ jγL=ω0j ≫
ϵω ∼Oðω=ΩiÞ (Sec. II.D). Thus, the effect of nonlinear
dynamics is sufficiently small that wave-particle resonances
yield cumulative effects of bounce and transit-averaged
processes on unperturbed particle motion. The resonant
particle response to a fluctuating field fðr; θ; ζÞ, represented
as in Eq. (3.8), can then be written as

fðr; θ; ζÞ ¼
X
m;n;l

eiðnω̄dþlωbÞτþiΘn;m;lPm;n;l∘fm;nðr̄þ ΔrÞ;

ð4:157Þ

where Θm;n;l and Δr are, respectively, the nonlinear wave-
particle phase shift and radial displacement, and Pm;n;l∘fm;n
stand for “push-forward” operators to magnetic-drift orbit
centers (Brizard and Hahm, 2007). This represents a lifting of
fðr; θ; ζÞ to the particle phase space in action-angle coor-
dinates given by ðcm2μ=e; αÞ, with μ ¼ v2⊥=ð2B0Þ þ � � � the
magnetic moment (see Sec. II) and α the gyrophase, ðPφ;φÞ,
with the canonical toroidal angular momentum Pφ at the
leading order

Pϕ ¼ e
c

�
FðψÞ v∥

Ω
− ψ

�
; ð4:158Þ

and by ðJ; θcÞ, with J the “second invariant” and θc the
respective conjugate canonical angle24

J ¼ m
I

v∥dl; θc ¼ ωb

Z
θ

0

dθ0=_θ0: ð4:159Þ

Here dl is the arc length along the particle orbit and we
introduced the unified notation of ωbðμ; J; PϕÞ,

ωbðμ; J; PϕÞ ¼ 2π

�I
dθ=_θ

�
−1
; ð4:160Þ

for bounce and transit frequency of trapped and circulating
particles, respectively. Note that guiding-center equations of
motion include first order corrections due to B0 nonuniform-
ity, which are conceptually important for the construction of
proper adiabatic invariants and for the accuracy of numerical
codes (Brizard and Tronko, 2012). As a consequence, leading
order expressions of phase-space actions given earlier may be
found to “oscillate” along the particle orbits, especially for
EPs in spherical tori (Belova, Gorelenkov, and Cheng, 2003).

For given ðμ; J; PϕÞ, the particle coordinates ðr; θ; ζÞ are
parametrized as (Zonca et al., 2015b)

r ¼ r̄þ ~ρðθcÞ; ð4:161Þ

θ ¼ ~ΘcðθcÞ; ð4:162Þ

ζ ¼ ω̄dτ þ q̄θ þ ~ΞðθcÞ; ð4:163Þ

for magnetically trapped particles, while for circulating
particles Eq. (4.162) is substituted by

θ ¼ θc þ ~ΘcðθcÞ: ð4:164Þ

Here r̄, ~ρðθcÞ, ~ΘcðθcÞ, ~ΞðθcÞ, and

q̄≡
I

qdθ=
I

dθ ð4:165Þ

are also functions of ðμ; J; PϕÞ, which can be computed from
equations of motion in the equilibrium B0. Furthermore, the
tilde (~) denotes a generic harmonic function in θc with zero
average, while the toroidal precessional frequency

ω̄dðμ; J; PϕÞ ¼ ð2πÞ−1ωb

I
ð_ζ − q_θÞdθ=_θ: ð4:166Þ

In Eq. (4.157), l ∈ Z stands for the “bounce harmonic,”
while the Pm;n;l∘fm;n functions are defined as

Pm;n;l∘fm;n ¼ð2πÞ−1λm;n

I
expfin ~ΞðθcÞ

þ i½nq̄ðr̄Þ−m� ~ΘcðθcÞgfm;n(r̄þ ~ρðθcÞ)e−ilθcdθc;
ð4:167Þ

with λm;n ¼ 1 for trapped particles while for circulating
particles, parametrizing θc ¼ ωbτ,

λm;n ¼ exp fi½nq̄ðr̄Þ −m�ωbτg: ð4:168Þ

Furthermore, in Eq. (4.157), Δr ¼ R
τ
0 δ_rdτ

0 and (Zonca et al.,
2013, 2015b)

Θn;m;l ¼ nΔζ −mΔθþ n

�∂ω̄d

∂Pϕ

Z
τ

0

δPϕdτ0 þ
∂ω̄d

∂J
Z

τ

0

δJdτ0
�

þ l
�∂ωb

∂Pϕ

Z
τ

0

δPϕdτ0 þ
∂ωb

∂J
Z

τ

0

δJdτ0
�
−
Z

τ

0

δωdτ0

þ ½nq̄ðr̄Þ−m�
�∂ωb

∂Pϕ

Z
τ

0

δPϕdτ0 þ
∂ωb

∂J
Z

τ

0

δJdτ0
�

þ nωb
dq̄
dr̄

Z
τ

0

δrdτ0: ð4:169Þ

Here Δζ and Δθ are the cumulative nonlinear shifts in ζ and θ,
while δPϕ, δJ, and δr ¼ r − r̄ are, respectively, the nonlinear
deviations from particle constants of motions and the
radial nonlinear deviation, and integrations are along unper-
turbed orbits. Meanwhile, the nonlinear frequency shift

24A recent review of coordinate systems and their connection with
the description of the guiding-center particle motion (see Sec. II) was
given by Cary and Brizard (2009).

015008-44 L. Chen and F. Zonca: Physics of Alfvén waves and energetic …

Rev. Mod. Phys., Vol. 88, No. 1, January–March 2016



δω ¼ ωðτÞ − ω0 is explicitly taken into account, leaving
implicit only the ∼e−iω0t dependence of the reference linear
instability. Note that the last two lines of Eq. (4.169) apply to
circulating particles only and are the nonlinear extension
of ð−i ln λm;nÞ.
Assuming Θn;m;l¼0, Δr¼0, and fðr; θ; ζÞ ∼ expð−iω0tÞ,

the linear resonance condition may be derived from
Eq. (4.157) and yields

ω0 ¼ ωðμ; J; PϕÞ ¼ nω̄d þ lωb ð4:170Þ

for magnetically trapped particles, while for circulating
particles,

ω0 ¼ ωðμ; J; PϕÞ ¼ nω̄d þ lωb þ ½nq̄ðr̄Þ −m�ωb: ð4:171Þ

In the presence of fluctuations, Eq. (4.157) accounts for their
cumulative effects on multiple bounce and transit periods,
discriminating between resonance detuning ∼ expðiΘn;m;lÞ
and radial decoupling ∼Pm;n;l ∘ fm;nðr̄þ ΔrÞ (Zonca et al.,
2013; 2015b; Zonca and Chen, 2014a). Wave-particle inter-
actions are thus characterized by finite interaction length ΔrL
and finite interaction time τNL, i.e., the typical spatial and time
scales required for particles to effectively lose the resonance
condition. Noting that Δr=r ∼ ΔPϕ=Pϕ ∼ ðω�EP=ω0ÞΔE=E
(cf. Sec. II) (Chen, Vaclavik, and Hammett, 1988), with
ω�EP the EP diamagnetic frequency and that typically
jω�EP=ω0j ≫ 1 for SAW and DAW in fusion plasmas, it is
possible to simplify Eq. (4.169) and show, for shifted circular
magnetic flux surfaces,

_Θn;m;l ≃ ðn∂ r̄ω̄d þ l∂ r̄ω̄bÞΔr − δω;

_Θn;m;l ≃ nðdr̄q̄ÞωtΔr − δω;
ð4:172Þ

for magnetically trapped and circulating EPs, respectively.
Here we denoted EP transit frequency with ωt for clarity. In
general, we may estimate ωB ∼ _Θm;n;l and, since SAW and
DAW are resonantly excited by EPs, τNL ∼ ð3γLÞ−1 (Zonca
et al., 2015b) (cf. Secs. IV.D.2 and IV.D.4).
Near marginal stability and for adiabatic frequency sweep-

ing, τNL ∼ ω−1
B ∼ ð3γLÞ−1 at saturation. However, Eq. (4.172)

suggests that there always exists a special class of
“phase-locked” resonant EPs, for which ωBτNL ≪ 1 if
_Θm;n;l is minimized for a proper combination of Δr and
δω, yielding nonadiabatic frequency sweeping ( _ω ∼ ω2

B,
cf. Sec. IV.D.5.a). Below we show that important qualitative
and quantitative changes take place in the wave-particle
nonlinear dynamics when the effect of phase-locked particles
is nonperturbative. When fluctuations maintain the wave-
particle resonance condition via phase locking through the
nonlinear evolution, the chirping rate is proportional to the
mode amplitude as observed experimentally by Heidbrink
(2008) and Podestà et al. (2011), and in numerical simulations
of nonlinear EPM evolutions (Briguglio, Zonca, and Vlad,
1998; Vlad, Zonca, and Briguglio, 1999; Briguglio et al.,
2002, 2014; Zonca et al., 2002; Vlad et al., 2004) as well as
nonlinear fishbone dynamics (Fu et al., 2006; Vlad et al.,
2012, 2013). This behavior is also demonstrated analytically
for nonlinear EPM dynamics (Zonca et al., 2005). Meanwhile,

resonant particle motion is secular and corresponding trans-
port is ballistic and/or convective: this particular nonlinear
dynamic regime has been called mode-particle pumping in
the original work (White et al., 1983), where it was proposed
for interpreting EP transport caused by fishbones
(cf. Sec. IV.D.7).
Phase locking can be accounted for by means of ϵ _ω ≤ 1,

defined such that _Θm;n;l ≡ ϵ _ω _Θm;n;lðδω ¼ 0Þ (Zonca et al.,
2015b). Thus, ϵ _ω ¼ 1 for fixed frequency or adiabatic chirp-
ing modes, while ϵ _ω ≪ 1 for phase-locked fluctuations. The
expression of ΔrL is then concisely given as

ΔrL=r ∼ 3ϵ−1_ω λ−1n ðγL=ωÞ; ð4:173Þ

where λn ¼ jnrq0j for circulating EPs and λn ¼ 1 for trapped
EPs, respectively. This expression for ΔrL=r implies that
circulating EP transport is expected to be mostly diffusive in
the presence of many high-n modes, typical of ITER con-
ditions (cf. Secs. V.A and VI.A). On the contrary, magneti-
cally trapped EP transport may be affected by convective
(ballistic) processes (cf. Sec. IV.D.6) with intrinsically non-
local features (Briguglio, Zonca, and Vlad, 1998; Vlad,
Zonca, and Briguglio, 1999; Briguglio et al., 2002; Vlad
et al., 2004), i.e., characterized by mesoscales larger than
jnq0j−1, with analogies to electron behavior in gyrokinetic
numerical simulations of collisionless trapped electron mode
turbulence (Xiao and Lin, 2011). For moderate or low-n
fluctuations, more typical of present day tokamaks, the
situation is less well defined and requires more articulation
as shown hereafter.25

a. From local to mesoscale energetic-particle redistributions

In nonuniform plasmas, Eq. (4.173) should be compared
with the characteristic scale of Pm;n;l ∘ fm;nðr̄þ ΔrÞ, Δrd,
i.e., with radial decoupling due to nonlinear wave-particle
dynamics. From Eq. (3.23), one can readily write

Δrd=r ∼ ϵΔjnrq0j−1; ð4:174Þ

where ϵΔ < 1 controls the perpendicular fluctuation scale
(Zonca and Chen, 2014c; Zonca et al., 2015b). From
Eqs. (4.173) and (4.174) it is clear that “radial decoupling”
becomes just as or more significant than “radial detuning”
when

γL=ω≳ λnjnrq0j−1ϵ _ωϵΔ=3: ð4:175Þ

25This point, together with similar remarks made earlier about
wave-wave couplings (cf. Sec. IV.C) and the different nonlinear
dynamic regimes expected in burning plasmas with respect to those
in present day devices, suggests that understanding nonlinear SAW
and EP physics in existing experiments may be more difficult. This
indeed partly applies to sufficiently short time-scale behavior
(cf. Secs. II.C and II.D). However, this point also shows the need
of theory and numerical simulations for reliable extrapolations of the
present understanding of nonlinear SAW dynamics to burning plasma
conditions, especially when tackling new physics issues such as those
of complex behavior and spatiotemporal cross-scale couplings
discussed in Sec. VI.B.
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This condition, which depends on mode dispersive properties
via ϵ _ωϵΔ and on the type of resonance via λn, can also be
considered as criterion for estimating the validity limits of the
bump-on-tail paradigm. In addition, since significant EP radial
redistributions take place on the characteristic fluctuation
length scale, both the mode dispersiveness and structures
may be affected for nonperturbative EPs, when this condition
is satisfied. Equation (4.175) is most restrictive for circulating
EPs, for which λn ¼ jnrq0j and the condition for radial
decoupling to become important is

γL=ω≳ ϵ _ωϵΔ=3 ∼ 3 × 10−2 ð4:176Þ

as an upper bound, having assumed ϵ _ωϵΔ ≲ 10−1. Meanwhile,
for magnetically trapped EPs, the corresponding condition is
γL=ω≳ 10−2 for moderate mode numbers and γL=ω≳ 10−3

for the high-n modes expected in ITER.
Once the condition of Eq. (4.175) is exceeded, effects of

mode structures become increasingly more important and
eventually give rise to novel behavior due to the interplay
between mode structures and EP transport (Zonca et al.,
2005). This transition can also be understood in terms of EP
redistributions, which for isolated resonances change in nature
from the local character connected with the short-radial scale
of AEs as upper bound to mesoscale features ≳jnrq0j−1
(Zonca and Chen, 2014c; Zonca et al., 2015b).
In general, the threshold condition given by Eq. (4.175) can

be exceeded in situations of practical interest for trapped
as well as circulating particles. In fact, the short time
scale (τ−1NL ∼ γL, cf. Secs. II.C, II.D, and IV.A) EP power
density is linearly proportional to time and injected power
(cf. Sec. IV.D.7). Thus, the effective strength of EP drive is
directly controlled by additional power input, which may be
tuned equally well to achieve plasma conditions either with
AEs excited near marginal stability (cf. Secs. IV.D.3 and
IV.D.4) or with strongly driven AE and EPM, as routinely
observed in experiments with strong ICRH (Bernabei et al.,
1999, 2001; Nabais et al., 2005; Zonca et al., 2009) and
neutral NBI (Gryaznevich and Sharapov, 2004, 2006; Lesur
et al., 2010; Podestà et al., 2011). It is also interesting to note
that the threshold condition can be exceeded nonlinearly, due
to the combined effect of different fluctuations. Experimental

evidence for this case was given by “TAE avalanches” in
NSTX (Fredrickson et al., 2009; Podestà et al., 2009), where
significant rapid EP losses occur in bursts of nonadiabatic
frequency sweeping modes (Podestà et al., 2011, 2012),
which are consistent with the general features of EPMs
and cause up to ∼30% EP losses, following the activity
of quasiperiodic TAE fluctuations with limited frequency
chirping (Fredrickson et al., 2009; Podestà et al., 2009)
(cf. Sec. V.B).
The transition from local to mesoscale nonlinear EP

redistributions was investigated numerically for the first time
by Briguglio, Zonca, and Vlad (1998) for the case of TAE and
EPM. In this work, linear TAE and EPM regimes were
identified from the behavior of the mode growth rate versus
the EP energy density. In the same work it was also shown that
TAE to EPM transition is properly described only with a fully
nonperturbative treatment of the EPs.
The work by Briguglio, Zonca, and Vlad (1998) confirmed

that nonlinear saturation of TAE modes occurs because of
wave-particle trapping, as noted earlier (Fu and Park, 1995;
Todo et al., 1995). However, for increasing growth rate, EP
redistributions by finite-amplitude TAE affect an increasingly
broader radial region, which eventually becomes of the
same order of the characteristic fluctuations length scale
(cf. Sec. IV.D.5.a). This is also visible in the scaling of
TAE saturation amplitude versus γL shown in Fig. 2(a). When
the radial width of the wave-particle resonant region becomes
comparable with the finite mode width, the saturation ampli-
tude deviates from the simple scaling jδB⊥=B0j ∼ ðγL=ωÞ2
(cf. Secs. IV.D.1 and IV.D.4) and eventually becomes inde-
pendent of the linear drive. For this case of TAE excited by
EPs via transit resonance, the jδB⊥=B0j ∼ ðγL=ωÞ2 behavior
holds for γL=ω≲ 10−2 consistent with the criterion of
Eq. (4.176). The same type of behavior was recently observed
in BAE hybrid MHD-gyrokinetic simulations and is reported
in Fig. 2(b). The mechanism by which radial decoupling
changes the scaling of the saturation amplitude with γL=ω0

was also explained by Wang et al. (2012) in terms of a
simplified analytical model, which incorporates the wave-
particle resonance as well as the finite interaction length
due to mode localization. The observed deviation of the
mode saturation amplitude from the ∼ðγL=ωÞ2 scaling in

FIG. 2. (a) TAE saturation amplitude vs the normalized linear growth rate, expressed in Alfvén time units τA ¼ R0=vA computed at the
magnetic axis and with R0 denoting the geometric center of the circular toroidal plasma (Briguglio et al., 1995). From Briguglio, Zonca,
and Vlad, 1998. (b) BAE saturation amplitude, expressed by the peak scalar potential energy normalized with respect to the EP birth
energy, whose distribution function is an isotropic slowing down, is shown vs the normalized mode linear growth rate. From
Wang et al., 2012.
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simulations (Briguglio, 2012; Briguglio et al., 2012, 2014;
Wang et al., 2012; Zhang, Lin, and Holod, 2012) is thus
indicative of the increasing importance of radial decoupling
with respect to resonance detuning.
Another important aspect of the transition from local to

mesoscale EP redistributions is that the system is not near
marginal stability, as discussed in Secs. IV.D.2 and IV.D.3,
and its dynamics is nonadiabatic. This is due to the non-
perturbative power exchange between waves and EPs under-
going an Oð1Þ variation on the characteristic time τNL
(cf. Sec. IV.D.5.a). These physics are demonstrated in recent
numerical simulations of BAE nonlinear dynamics with both
gyrokinetic (Zhang, Lin, and Holod, 2012) and hybrid MHD-
gyrokinetic (Wang et al., 2012) approaches. In the work by
Zhang, Lin, and Holod (2012), BAE was excited predomi-
nantly by trapped EPs via precession resonance and the
nonlinear mode evolution is characterized by continuous
bursting without EP sources or sinks and with EPs assumed
to initially have an isotropic Maxwellian distribution function.
In the growth phase of the BAE mode, the frequency sweeps
downward consistently with the mode dispersion relation,
while outward-moving EPs continue driving the mode via
maintaining the following phase locking condition from
Eqs. (4.172):

δ _ω≃ ðn∂ r̄ω̄d þ l∂ r̄ω̄bÞΔ_r: ð4:177Þ

EPs that are moving inward and damp the mode are also more
easily detuned from resonance. Thus, power transfer from EPs
to the wave is maximized as well as are EP nonlinear radial
displacement and mode growth. Similar behavior was
observed by Wang et al. (2012), where BAE is destabilized
by EPs via transit resonance and nonlinear mode dynamics is
produced uniquely by wave-EP interaction as the thermal ion
kinetic response is linearized. In this case, the frequency
sweeps upward in the growth phase of the BAE mode,
consistent with the mode dispersion relation (Wang et al.,
2012). Thus, from Eqs. (4.172) the phase locking condition,

δ _ω≃ nðdr̄q̄ÞωtΔ_r; ð4:178Þ

is more easily maintained for outward-moving instability-
driving EPs with positive parallel velocities. This thus leads to
symmetry breaking in v∥ for the wave-particle power
exchange as well as EP transport.
In both these recent works on nonlinear BAE dynamics, the

role of EPs is nonperturbative and results in nonadiabatic
frequency chirping _ω ∼ ω2

B, while dominant wave-EP reso-
nant interactions satisfy phase locking as expressed by
Eqs. (4.177) and (4.178). This can be understood from the

estimate Δ_r ∼ δ _̄X⊥ (cf. Sec. II.D), with

ω2
B ≃ λnjðω=rÞδ _̄X⊥j≃ λnjðω=rÞðnq=rÞðc=B0Þδϕj: ð4:179Þ

These results furthermore confirm that PSZS formation and
evolution occur on a time scale ωBt ∼ 1, as anticipated in
Sec. IV.D.3. Recent and detailed theoretical as well as
numerical analyses of these issues were given by Briguglio
et al. (2014) and Zonca et al. (2015a, 2015b).

b. Nonlinear equations for energetic-particle phase-space zonal
structures

The self-consistent and generally nonadiabatic nonlinear
evolution of Alfvénic fluctuations and resonant EP PSZS is
analyzed here allowing the investigation of the transition from
local to mesoscale EP redistributions (cf. Sec. IV.D.5.a). The
denomination of PSZS follows by analogy that of ZS in
configuration space (cf. Secs. IV.A, IV.B.3, and IV.C.2), and,
as n ¼ m ¼ 0 low-frequency structures in the phase space,
they set the dominant nonlinear time scale in resonant wave-
particle interactions (Zonca et al., 2015b). As a particular case
of theoretical and practical interest, we discuss the fishbone
paradigm illustrating the behavior of a magnetized toroidal
plasma as a nonautonomous 1D nonuniform system. Then we
show that this paradigm reduces to the bump-on-tail paradigm
in the proper limit. Thus, phase-space holes and clumps
are particular cases of PSZS, where time-scale separation
applies between their long characteristic dynamic nonlinear
evolution and the much shorter wave-particle trapping time
(cf. Secs. IV.D.2 and IV.D.3), and nonlinear particle displace-
ment is small compared with the fluctuation length scale.
For low-frequency fluctuations, the nonlinear description of

EP PSZS is obtained from the nonlinear gyrokinetic equations
(Frieman and Chen, 1982), i.e., from Eq. (2.21):

δfz¼
X
m

fPm;0;0∘½J0ðλÞδg�m;0g−
�
J0ðλÞ

�
e
m

1

B0

∂F̄0

∂μ hδLgi
��

0;0

þ e
m

�∂F̄0

∂E δϕþ 1

B0

∂F̄0

∂μ δL

�
0;0
; ð4:180Þ

where the projection operator Pm;0;0 is a particular case, which
stands here as the “pullback” operator from magnetic-drift
orbit centers (Brizard and Hahm, 2007) of Pm;n;l defined in
Eq. (4.167) and used in the nonlinear representation of
Eq. (4.157). Meanwhile, the evolution equation for the zonal
component of δg is obtained from Eq. (2.23) (Zonca et al.,
2015b). Assuming that jk∥j ≪ jk⊥j (cf. Sec. II.A), it can be
cast as (Zonca et al., 2005)

∂δgz
∂t ¼ −P0;0;0∘

�
e
m

∂
∂t hδLgiz

∂F̄0

∂E
�

0;0

þ i
X
m

Pm;0;0∘ c
dψ=dr

∂
∂r

X
n

nðδgnhδLgi−nÞm;0;

ð4:181Þ

where
P

n stands for a summation on toroidal mode numbers,
specified as a subscript of fluctuating fields where needed. In
turn, the evolution equation for δgn is

� ∂
∂t −

inc
dψ=dr

hδLgiz
∂
∂rþ v∥∇∥ þ vd · ∇⊥

�
δgn

¼ i
e
m

�
QF̄0 −

nB0

Ωdψ=dr
P0;0;0∘ ∂δgz∂r

�
hδLgin: ð4:182Þ

Here QF̄0 is defined as
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iQF̄0 ¼ −
∂F̄0

∂E
∂
∂tþ

b × ∇F̄0

Ω
· ∇; ð4:183Þ

the contribution ∝ hδLgiz on the left-hand side represents the
Doppler-shifted mode frequency due to ZS, while the term
∝ ∂rδgz on the right-hand side accounts for the “radial
corrugation” effect of PSZS (cf. Secs. IV.A, IV.D.6,
and IV.D.7).
Equations (4.181) and (4.182) along with the field equa-

tions for Alfvénic fluctuations, i.e., Eq. (4.3) without the
multiple-n coupling term, and Eqs. (2.26) and (2.30) for δϕz
and δA∥z, respectively, fully characterize the short time-scale
nonlinear evolution of DAWs and EPs. They are hence the
relevant equations for the self-consistent evolution of PSZS
excited by EPs and related transport. These equations have so
far been investigated only in simplified limits, i.e., either
dropping the contribution of wave-particle resonances (Chen,
Lin, and White, 2000; Chen et al., 2001; Chen and Zonca,
2007b, 2012, 2013; Guo, Chen, and Zonca, 2009)
(cf. Sec. IV.C) or neglecting the effect of ZS, hδLgiz
(Zonca et al., 2000, 2005, 2006, 2007b). Thus, the simplified
evolution equations for PSZS excited by EPs and related
transport, used hereafter, are the NLSE, Eq. (4.3), without the
multiple-n coupling term, i.e., the Gross-Pitaevsky (Gross,
1961; Pitaevskii, 1961) or Zakharov (Zakharov, 1968) equa-
tion. The NLSE in turn is closed by Eqs. (4.181) and (4.182),
rewritten as

∂F0

∂t ¼ iP0;0;0∘
X
m

Pm;0;0∘ c
dψ=dr

∂
∂r

X
n

nðδgnhδLgi−nÞm;0;

ð4:184Þ

and

� ∂
∂tþ v∥∇∥ þ vd · ∇⊥

�
δgn ¼ i

e
m
QF0hδLgin: ð4:185Þ

Here F0 ≡ F̄0 þ P0;0;0∘δgz. Furthermore, we note that for EPs
with jω�Ej ≫ jω0j Eq. (4.182) reduces to Eq. (4.185) except
for an higher order term. These equations may be used to
investigate a number of nonlinear dynamics problems involv-
ing a generic DAW spectrum with jγL=ω0j ∼ jω0τNLj−1 ≪ 1,
accounting the reaction of waves on the particle distribution
function.
In order to simplify the present analysis further, we restrict

Eqs. (4.184) and (4.185) to precessional resonance with
magnetically trapped EPs while neglecting finite orbit width
effects. Assuming j∂tj ∼ nω̄d ≪ ωb, the second invariant J,
defined in Eq. (4.159), becomes a constant of motion as μ.
Then the “bounce averaged” dynamics of magnetized toroidal
plasma reduces to that of a nonautonomous 1D nonuniform
system, i.e., to the model description adopted in the fishbone
paradigm (Zonca et al., 2015b) and used hereafter to dem-
onstrate that in the uniform plasma limit it reduces to the
bump-on-tail paradigm. Using Eq. (4.157), we can write δḡn,
the bounce averaged expression of δgn, as

δḡn ¼ einðζ−qθÞ
X
m

Pm;n;0∘δgm;n: ð4:186Þ

Meanwhile,

δϕ̄n ¼ einðζ−qθÞ
X
m

Pm;n;0∘δϕm;n ¼ e−inqθeinqθδϕn; ð4:187Þ

with ð� � �Þ ¼ τ−1b
H ð� � �Þdθ=_θ denoting bounce averaging.

Furthermore, introducing the definition

δg≡ δK þ iðe=mÞQF̄0∂−1
t hδψgi ð4:188Þ

and adopting the notation of Eq. (4.124) for the Fourier-
Laplace transform, Eq. (4.184) can be solved as

F̂0ðωÞ ¼
i
ω
StF̂0ðωÞ þ

i
ω
Ŝ0ðωÞ þ

i
2πω

F̄0ð0Þ

þ nc
ωðdψ=drÞ

∂
∂r

Z
∞

−∞
½δ ˆ̄ϕkðyÞδ ˆ̄K−kðω − yÞ

− δ ˆ̄ϕ−kðyÞδ ˆ̄Kkðω − yÞ�dy: ð4:189Þ

Here we neglected the higher order contribution of reversible
processes [see Zonca et al. (2015b) for details]. We also
included the effect of collisions, formally denoted by StF̂0ðωÞ,
and of an external source term Ŝ0ðωÞ, while F̄0ð0Þ denotes the
initial value of F0 at t ¼ 0. Moreover, for clarity, we explicitly
indicated dependences on ω only (and y as a dummy
integration frequency variable), and the summation on mode
numbers has been replaced by an implicit summation on the
subscript k, which from now on will be short notation for
ðm; nÞ. Meanwhile, for EP precessional resonance we readily
obtain

δ ˆ̄KkðωÞ ¼
e
m

Z þ∞

−∞

ω̂dk

y

Qk;yF̂0ðω − yÞ
nω̄dk − ω

δ ˆ̄ϕkðyÞdy; ð4:190Þ

where the subscripts in Qk;yF̂0 denote wave number and
frequency at which the operator defined by Eq. (4.183) must
be evaluated; we introduced the definition

e−inqθeinqθωdδϕn ≡ ω̂dkδ
ˆ̄ϕk: ð4:191Þ

It can be verified that Eq. (4.190) gives the linear limit for
F̂0ðωÞ ¼ ð2πωÞ−1iF̄0ð0Þ. Substituting Eq. (4.190) into
Eq. (4.189), one obtains

F̂0ðωÞ ¼
i
ω

StF̂0ðωÞ þ
i
ω
ŜðωÞ þ i

2πω
F̄0ð0Þ

þ e
m

nc
ωðdψ=drÞ

∂
∂r

ZZ
∞

−∞

�
δ ˆ̄ϕkðyÞ

ω̂d−k

y0

×
Q−k;y0F̂0ðω − y − y0Þ
−nω̄d−k þ y − ω

δ ˆ̄ϕ−kðy0Þ

− δ ˆ̄ϕ−kðyÞ
ω̂dk

y0
Qk;y0 F̂0ðω − y − y0Þ

nω̄dk þ y − ω
δ ˆ̄ϕkðy0Þ

�
dydy0:

ð4:192Þ

This equation is the analog of Eq. (4.128), i.e., Dyson’s
equation in quantum field theory, extended to the case of
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nonuniform toroidal plasmas under investigation with the
addition of sources and collisions. Following Al’tshul’ and
Karpman (1965) it is possible to show that in the case of many
waves with overlapping resonances Eq. (4.192) reduces to the
quasilinear theory of a weakly turbulent plasma (Vedenov,
Velikhov, and Sagdeev, 1961; Drummond and Pines, 1962), as
noted already for Eqs. (4.127) and (4.128). Similar to
Eq. (4.128), Eq. (4.192) can also be considered as a gener-
alized quasilinear equation (Galeev, Karpman, and Sagdeev,
1965) (cf. Sec. IV.D.1), including effects of equilibrium
geometries and plasma nonuniformity. It thus addresses
resonance detuning and radial decoupling in wave-particle
interactions on the same footing, and the present approach
may be used to explore the transition of EP transport through
stochasticity threshold with all the necessary physics
ingredients for a realistic comparison with experimental
observations.
In Secs. IV.D.6 and IV.D.7, we focus on the case where the

DAW spectrum is very narrow, e.g., the case of a periodic
fluctuation (cf. Sec. IV.D.1), whose frequency may be slowly
evolving in time, j _ωkj ≪ jγLkωkj. Therefore, this case includes
both adiabatic (j _ωkj ≪ ω2

B) and nonadiabatic (j _ωkj≲ ω2
B)

frequency sweeping and may well represent the nonlinear
dynamic evolution of a single toroidal mode-number AE or
EPM.26 Using the representation

δ ˆ̄ϕkðωÞ ¼
i
2π

δϕ̄k0ðr; τÞ
ω − ωkðτÞ

;

δ ˆ̄ϕ−kðωÞ ¼
i
2π

δϕ̄−k0ðr; τÞ
ωþ ω�

kðτÞ
;

ð4:193Þ

Equation (4.192) may be reduced to the following form:

F̂0ðωÞ ¼
i
ω
StF̂0ðωÞ þ

i
ω
ŜðωÞ þ i

2πω
F̄0ð0Þ

þ e
m

nc
ωðdψ=drÞ

∂
∂r


�Q�
k;ωkðτÞ
ω�
kðτÞ

F̂0(ω − 2iγðτÞ)
ω − ωkðτÞ þ nω̄dk

þQk;ωkðτÞ
ωkðτÞ

F̂0(ω − 2iγðτÞ)
ωþ ω�

kðτÞ − nω̄dk

�
ω̂dkjδϕ̄k0ðr; τÞj2

�
:

ð4:194Þ

Here we explicitly denoted the slow time dependence of
ωkðτÞ, i.e., j _ωkj ≪ jγLkωkj. Furthermore, we kept the ðr; τÞ
dependences explicit only in δϕ̄0k, as they emphasize the
important role of radial mode structures, which may change
in time along with the particle distribution function.
Meanwhile, γkðτÞ≡Im½ωkðτÞ�, ð−nÞω̄d−k¼−nω̄dk, ω̂d−k ¼
−ω̂dk, Q−k;−ω�

kðτÞ ¼ −Q�
k;ωkðτÞ, and Eq. (4.193) is the analog

of Eq. (4.129) for frequency sweeping modes.
Equations (4.192) and (4.194) are the general formulation

for nonlinear DAW interactions with EPs adopting the fish-
bone paradigm and thus may be used to demonstrate its
unification with the bump-on-tail paradigm (Zonca et al.,

2015b). More specifically, the correspondence to the non-
linear beam-plasma system (cf. Sec. IV.D.1) can be readily
established ignoring the effect of plasma nonuniformities and

geometry. That is, postulating constant δ ˆ̄ϕkðωÞ fluctuations,
and letting

k0
∂
∂u↔ −

m
e

nc
dψ=dr

∂
∂r ; ð4:195Þ

and nω̄dk − ωk ≃ nω̄dk0ðr − r0Þ=Ldk0↔k0u, with Ldk0 the
characteristic length of variation of ω̄dk,

27 one can draw a
one-to-one correspondence between Eqs. (4.126) and (4.190)
as well as between Eqs. (4.128) and (4.192), which become
identically the same. This also holds for the reduced forms,
e.g., Eq. (4.194), once Eqs. (4.129) and (4.193) are intro-
duced, respectively. As pointed out earlier and by Zonca et al.
(2015b), this reduction of the general formulation illuminates
both the validity limits of the bump-on-tail paradigm and its
applicability conditions, as well as the qualitative and quanti-
tative differences introduced by equilibrium geometry and
plasma nonuniformity.
To be more precise, consider the uniform plasma limit as in

Eq. (4.195). Introducing a simple Krook collision operator,
Eq. (4.192) then becomes

ð−iωþ νÞδf̂0ðωÞ

¼ i
e2k20
m2

∂
∂u

ZZ
∞

−∞

�
δϕ̂k0ðyÞ

−∂uF̂0ðω − y − y0Þ
y − k0u − ω − iν

δϕ̂−k0ðy0Þ

− δϕ̂−k0ðyÞ
∂uF̂0ðω − y − y0Þ
yþ k0u − ω − iν

δϕ̂k0ðy0Þ
�
dydy0; ð4:196Þ

when expressed for the nonlinear deviation δf̂0ðωÞ of
the particle distribution function from the equilibrium (initial)
value F0ð0Þ ¼ QðvÞ=νðvÞ (cf. Sec. IV.D.2.b). The
iterative solution of Eq. (4.144) corresponds to taking
F̂0ðω− y− y0Þ ¼ ið2πÞ−1F0ð0Þðω− y− y0Þ−1 in Eq. (4.196),
i.e., to considering only the first loop in the Dyson series
schematically shown in Fig. 1. Moving to the t representation,
the recursive solution of Eq. (4.196) is then obtained as

� ∂
∂tþ ν

�
δf0

¼ i
e2k20
m2

∂
∂u

ZZ
∞

−∞
e−iðyþy0Þt

�
δϕ̂k0ðyÞ

∂uF0ð0Þ
y0 þ k0uþ iν

δϕ̂−k0ðy0Þ

þ δϕ̂−k0ðyÞ
∂uF0ð0Þ

y0 − k0uþ iν
δϕ̂k0ðy0Þ

�
dydy0; ð4:197Þ

which is readily cast as

26Here we remind the reader again that one single toroidal mode
number involves the coupling of many poloidal harmonics, due to the
toroidal geometry of the plasma equilibrium.

27Note that Eq. (4.195) implies that directions of incrementing u
correspond to decreasing r and vice versa; however, ω̄dk is generally
also a decreasing function of r.
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� ∂
∂tþ ν

�
δf0 ¼

ω2
BðtÞ
4

∂
∂k0u

Z
t

0

½e−ðνþik0uÞðt−t0Þ þ c:c:�ω2
Bðt0Þ

×
∂F0ð0Þ
∂k0u dt0: ð4:198Þ

This equation coincides with Eq. (4.144) noting that here
ω4
B ≡ 4ðe=mÞ2k40jδϕk0 j2, in order to preserve the same nor-

malizations of Fourier amplitudes used in Sec. IV.D.2.b. Thus,
this is proof that the fishbone paradigm reduces to the bump-
on-tail paradigm in the uniform plasma limit.
Finally, as elucidation of Eq. (4.194) in the uniform plasma

case, we follow Al’tshul’ and Karpman (1965) and assume
that the periodic fluctuation of Eq. (4.193) is weakly growing
(γL ≪ ωB) such that Eq. (4.194), with no sources and
collisions and accounting for Eq. (4.195), yields the solution
of Eq. (4.130). Here we remind one that Eq. (4.130) describes
the oscillations of particles that are trapped in the wave, which,
however, do not decay in time as expected as a consequence of
phase mixing. This limitation is not significant for the
analyses of Secs. IV.D.6 and IV.D.7, since phase locking
makes wave-particle trapping essentially ineffective; de facto
suppressing harmonic generation.

6. Nonlinear dynamics of energetic-particle modes and
avalanches

The novel feature of EPM nonlinear dynamics in contrast to
that of AEs is the interplay between EP transport and mode
structure evolution, which is crucially influenced by the
structure of the SAW continuous spectrum (Briguglio,
Zonca, and Vlad, 1998) [see also Vlad, Zonca, and
Briguglio (1999), Briguglio et al. (2002, 2007), Vlad et al.
(2004, 2006, 2009), and Bierwage et al. (2011, 2012)].

The first analysis of EPM nonlinear behavior was given by
Briguglio, Zonca, and Vlad (1998), reporting numerical
results from hybrid MHD-gyrokinetic simulations. In that
work, it was shown that unlike in the TAE case EPM
saturation occurs because of “macroscopic outward displace-
ment of the energetic-ion population,” which is characterized
by a convective secular process. There it was also shown that
MHD nonlinearities weakly affect the EPM evolution by
direct comparison of two different simulations, carried out
without and with MHD mode-mode couplings. These results
are consistent with theoretical analyses showing the funda-
mental role played by EPs in determining EPM dispersive
properties and threshold conditions (Chen, 1994; Chen and
Zonca, 1995; Zonca and Chen, 1996) as well as radial mode
structure and spatial localization (Zonca and Chen,
1996, 2000).
Most of the distinctive features of low mode-number EPMs

are the same as those typical of fishbone modes
(cf. Sec. IV.D.7). However, the nonperturbative interplay of
EP transport with mode structures is peculiar to EPM and is
most evident as well as relevant for high mode numbers
typical of ITER (Briguglio et al., 2002; Vlad et al., 2004;
Zonca et al., 2005), since the characteristic scales of EP
profiles are longer than the typical mode width (Zonca and
Chen, 2000). In these conditions and for sufficiently strong
wave-particle power exchange, EP transport occurs in ava-
lanches (Zonca et al., 2015a, 2015b), i.e., as a secular loss
process accompanied by a convectively amplified EPM wave
packet (Briguglio et al., 2002; Vlad et al., 2004; Zonca et al.,
2005) and a local gradient steepening of the EP pressure
profile, followed by a relaxation phase (Zonca et al., 2006).
This mechanism was demonstrated with hybrid MHD-
gyrokinetic numerical simulation results by Vlad et al.

FIG. 3. Radial profiles of βE and ðm; n ¼ 2Þ Fourier components of the EPM scalar potential fluctuations during the linear growth
(left), the end of the EPM avalanche (middle), and saturation phase (right). Time normalization is ωAt, with ωA ¼ vA=R0 computed at
the magnetic axis. From Vlad et al., 2004.
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(2004), investigating the EPM nonlinear dynamics in the
ITER-FEAT (the refined design of the Fusion Energy
Advanced Reactor) reversed-shear scenario (see Sec. V.B
for more details). The simulation results are summarized in
Fig. 3, where βE radial profiles are shown along with ðm; nÞ
Fourier components of the EPM scalar potential fluctuations
during the linear growth (left), the end of the EPM avalanche
(middle), and saturation phase (right). Meanwhile, Fig. 4 gives
evidence of the peak EP pressure gradient value steepening at
the location where the EPM wave packet is localized (Zonca
and Chen, 2000; Zonca et al., 2005). Thus, an EPM avalanche
consists of an unstable wave packet that is convectively
amplified as it radially propagates outward, in phase with
the strengthening EP free-energy source (pressure gradient).
This process continues as long as the EPM wave packet can be
amplified by resonant wave-particle interactions. Eventually,
the mode saturates due to radial decoupling and relative
strengthening of background damping due to plasma non-
uniformity. EP transport meanwhile becomes diffusive and the
pressure gradient relaxes (Zonca et al., 2006) as shown in
Fig. 4. Similar results were obtained by Briguglio et al. (2002)
studying EP transport in hollow current profile plasmas and
showing that the minimum-q magnetic surface is the natural
location, where the radial propagations of EPM induced EP
avalanches are expected to stop.
These characteristic EPM nonlinear dynamics were

studied analytically by Zonca et al. (2005) in connection
with the transition from local to mesoscale EP redistributions
(cf. Sec. IV.D.5). For simplicity, we analyze EPM excitation
by precessional resonance with EPs adopting the fishbone
paradigm (cf. Sec. IV.D.5.b). We also in order to compare
analytic theory with hybrid MHD-gyrokinetic simulations of
EPM avalanches assume the following initial (equilibrium) EP
isotropic slowing down distribution function:

F̄0 ¼
3P0E

4πEF

HðEF=mE − EÞ
ð2EÞ3=2 þ ð2Ec=mEÞ3=2

: ð4:199Þ

Here H denotes the Heaviside step function and the normali-
zation condition is chosen such that the EP energy density is
ð3=2ÞP0E for EF ≫ Ec. This condition also implies that EP
energy is predominantly transferred to thermal electrons by
collisional friction (Stix, 1972) as it occurs for α particles in
fusion plasmas. Furthermore, we ignore source and collision
terms in Eq. (4.194). The analysis consequently is then
reduced to computing the nonlinear contribution to δW̄nk,
which considering Eq. (3.29) together with Eq. (4.190) can be
written as

δW̄nk ¼
Z

EdEdλ
X

v∥=jv∥j¼�

π2qR0

c2k2ϑjsj
e2

m

�
τbn2ω̄2

dn

ωðτÞ
�

×
Z þ∞

−∞

ωþ ωðτÞ
nω̄dn − ωðτÞ − ω

e−iωtQk;ωðτÞF̂0ðωÞdω;

ð4:200Þ

where τb ¼ 2π=ωb. Note that here ωðτÞ ¼ ω0ðτÞ þ iγðτÞ is
the slowly changing frequency of the periodic EPM allowing
nonadiabatic frequency chirping. With the notations of
Sec. IV.A and the use of Eq. (4.194), the nonlinear contri-
bution to δW̄nk can be written as

δW̄NL
nk ≃ i

Z
EdEdλ

X
v∥=jv∥j¼�

π2qR0

c2k2ϑjsj
e2

m

�
τbn2ω̄2
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ωðτÞ
�
k2ϑv

2
Eρ

2
LE

×∂−2
t

∂2

∂r2
��Z þ∞

−∞

nω̄dnðγ− iωÞe−iωtQk;ωðτÞF̂0ðωÞ
ðnω̄dn−ω0Þ2þðγ− iωÞ2 dω

�

×

���� eETE
δϕ̄nðr;tÞ

����
2
�
; ð4:201Þ

where v2E ¼ TE=mE, TE ¼ EF=mE, ρ2LE ¼ v2E=Ω2
E, and ∂−2

t
denotes the action of −ðωþ 2iγÞ−2 under the integration in
dω. Meanwhile, the fluctuation intensity in Eq. (4.201) can be
rewritten as

���� eETE
δϕ̄nðr; tÞ

����
2

¼ ð2πÞ2
���� eETE

Anðr; tÞ
����
2

×
X
l;l0

e−2πinql
0δΦ̂†

−n

κ̂⊥

����
ϑ¼2πðl−l0Þ

δΦ̂n

κ̂⊥

����
ϑ¼2πl

:

ð4:202Þ

Here we used the mode structure decomposition and notations
of Eqs. (3.23) and (4.187). Equation (4.202) demonstrates the
existence of fine radial structures of the order of or less than
jnq0j−1, due to nonlinear modulations via wave-particle
interactions of the EP radial profiles. While such fine
structures are visible in mode structures shown in Fig. 3,
they are smoothed out in the pressure profiles due to velocity-
space integration. These features are very general and were
recently observed in gyrokinetic numerical simulations
addressing the effect of ion temperature gradient turbulence
driven zonal flows on nonlinear SAW dynamics excited by

FIG. 4. Radial position ðr=aÞmax (top) and value of the maxi-
mum gradient ½dðrβEÞ=dr�max vs ωAt for the EPM simulation in
Fig. 3. The strong convection, characteristic of the avalanche
phase, is accompanied by gradient steepening, followed by a
relaxation phase, characterized by diffusive EP transport. From
Vlad et al., 2004.
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EPs (Bass and Waltz, 2010) (cf. Sec. VI.B). These fine
structures were demonstrated to be modulationally stable
below a critical threshold amplitude of the driving modes
(Zonca et al., 2000). For this reason, we consider for now only
the l0 ¼ 0 component in Eq. (4.202). We will later discuss the
conditions under which radial corrugations in the EP profiles
are produced spontaneously. Thus, Eq. (4.202) can be rewrit-
ten as (cf. Sec. III.C)

���� eETE
δϕ̄nðr; tÞ

����
2 ≃ 2π2

jsj ðδΦ̂
†
−n0δΦ̂n0Þ

���� eETE
Anðr; tÞ

����
2

≡ jĀnðr; tÞj2; ð4:203Þ

where normalizations are consistent with those of Zonca
et al. (2005).
Equation (4.201) can be used to formally write the EPM

nonlinear equation (Zonca et al., 2005, 2006)

Dn(x;−i∂x;ω0ðtÞþ i∂t)Ān0ðx;tÞ¼ δW̄NL
nk Ān0ðx;tÞ; ð4:204Þ

where the fast time dependence has been isolated and
Ānðr; tÞ≡ Ān0ðx; tÞ exp½−i

R
t ω0ðt0Þdt0�. Equations (4.201)

and (4.204) are closed by the leading order evolution equation
for F0ðtÞ, i.e.,

∂
∂t F0ðtÞ≃ 2k2ϑv

2
Eρ

2
LE

�
nω̄dn

ω0

�

×
∂
∂r

��Z þ∞

−∞

ðγ − iωÞ
ðnω̄dn − ω0Þ2 þ ðγ − iωÞ2

× e−iωt
∂F̂0ðωÞ

∂r dω

�
jĀn0ðr; tÞj2

�
: ð4:205Þ

Note that here we ignored terms ∝ StF̂0ðωÞ and ∝ ŜðωÞ in
Eq. (4.194), which, however, can be readily included
(cf. Sec. IV.D.7). Furthermore, as in the case of
Eq. (4.201), ∂−1

t formally applied on the right-hand side
when explicitly integrating Eq. (4.205) denotes the action of
ð−iωþ 2γÞ−1 under the integration in dω.
The complex features of EPM nonlinear dynamics and

more generally of DAW resonantly excited by EPs are visible
from the structure of Eq. (4.205). For sufficiently strong
(nonperturbative) EP drive, as in the case of EPM, radial
structures of F̂0ðωÞ and jĀn0j vary self-consistently and favor
the most unstable growing mode, i.e., the maximization of
wave-particle power exchange. Therefore, the mode fre-
quency continuously readjusts to the resonance condition
due to mode dispersive properties and radial envelope struc-
tures. In turn, particles are most effectively transported out-
ward as they amplify the mode. In Eq. (4.205), phase locking
and frequency chirping ensure that ∝ ðnω̄dn − ω0Þ2 in the
denominator is essentially vanishing for resonant particles.
Thus, the nature of Eq. (4.205) could change from parabolic to
hyperbolic for phase-locked particles that play a crucial role in
the EPM avalanche of Fig. 3. The hyperbolic nature is
intrinsically connected with ballistic resonant particle
transport.
The solution of Eqs. (4.201), (4.204), and (4.205) in the

early phase of the EPM wave-packet convective amplification

(Zonca et al., 2005) is summarized hereafter in order to
illustrate the underlying physics (Zonca et al., 2015b). We
assume that the nonlinear distortion of the EP distribution
function is sufficiently small that F̂0ðωÞ in Eq. (4.201) takes
on its equilibrium value, i.e., F̂0ðωÞ ¼ ð2πωÞ−1iF̄0ð0Þ, with
F̄0ð0Þ chosen as in Eq. (4.199) and

αE ¼ αE0 exp

�
−
ðr − r0Þ2
L2
pE

�
≃ αE0

�
1 −

x2=s2

k2ϑL
2
pE

�
; ð4:206Þ

with αE ¼ −8πR0q2P0
0E=B

2
0, αE0 ¼ αEðr ¼ r0Þ, and x ¼

jskϑjðr − r0Þ. Assuming that the resonant EPs are deeply
magnetically trapped, δW̄NL

nk can be reduced to

δW̄NL
nk0 ≃ 3πðr=R0Þ1=2αE

8
ffiffiffi
2

p jsj iπ
ω0

ω̄dF
k2ϑv

2
Eρ

2
LE∂−2

t
∂2

∂r2 jĀn0j2;

ð4:207Þ

where ω̄dF ≡ nω̄dnðE ¼ EFÞ, and we assumed that the radial
scale of αE is longer than that of jĀn0j. In Eq. (4.207), it is
crucial to note that the entire right-hand side is computed at
the instantaneous frequency ω0 and at the radial location of the
EPM wave packet. With δW̄NL

nk0 replacing δW̄NL
nk , Eq. (4.204)

recovers the nonlinear EPM envelope equation of Zonca et al.
(2005), whose solution can be expressed as the convectively
amplified propagating (self-similar) wave packet

Ān0ðξ; tÞ ¼ ŪðξÞe
R

t

0
γðt0Þdt0 ; ð4:208Þ

with ξ given by

ξ − ξ0 ≡ kn0
jskϑj

ðx − x0Þ

≡ kn0
jskϑj

�
x − jskϑj

Z
t

0

vgðt0Þdt0
�
; ð4:209Þ

kn0 denoting the nonlinear wave vector, and vg denoting the
nonlinear group velocity. Adopting the usual procedure, one
first balances the nonlinear term in Eq. (4.204), for
δW̄NL

nk → δW̄NL
nk0, with the linear dispersiveness in Dn, which

for moderate values of ðs; α ¼ −R0q2β0Þ is given by

Dn ≃ iΛT −
jsjπ
8

�
1þ 2κðsÞ − α

αcr

�
−
jsjπ
8

κðsÞ ∂2

∂x2

−
3πðr=R0Þ1=2

8
ffiffiffi
2

p jsj αE0

�
1 −

x2=s2

k2ϑL
2
pE

�

×



1þ ω

ω̄dF

�
ln

�
ω̄dF

ω
− 1

�
þ iπ

��
: ð4:210Þ

Here Dn ¼ iΛT − ðδW̄L
nf þ δW̄L

nkÞ as in Eq. (3.30), ΛT ¼
ð1=2ÞðΓþ=Γ−Þ1=2 (cf. Sec. IV.C.2), αcr ¼ s2=ð1þ jsjÞ, and
κðsÞ≃ ð1=2Þð1þ 1=jsjÞe−1=jsj (Zonca and Chen, 1992, 1993;
Chen and Zonca, 1995). This optimal balance gives (Zonca
et al., 2015b)
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vg ¼ λgv̂E×B; k2n0 ¼
k2ϑ
λ2g

s2ImδW̄L
nkðω0Þ

∂2Dn=∂θ2k0 ; ð4:211Þ

where v̂E×B ¼ ð−kϑc=B0Þmax½δϕ̄nðr; tÞ� is the EP peak
radial E × B velocity, θk0 ≡ −i∂x, and λg is a control
parameter to be determined as specified by Eq. (4.215).
Meanwhile,
letting ŪðξÞ≡ eiϵgξUðξÞ, with UðξÞ≡ eiφðξÞWðξÞ and ϵg≡
λ2gkn0vgðImδW̄L

nkÞ−1∂ReδW̄L
nk=∂ω0, UðξÞ satisfies the follow-

ing nonlinear Zonca-Chen equation:

∂2
ξU ¼ ðλ0 − ϵ2gÞU − 2iUjUj2; ð4:212Þ

which is a particular case of the complex Ginzburg-Landau
equation (van Saarloos and Hohenberg, 1992; Conte and
Musette, 1993). The solution of Eq. (4.212), discussed by
Zonca et al. (2015b) in the limit ϵg → 0, is shown in

Fig. 5 and is given by WðξÞ ¼ sech½ð ffiffiffi
2

p
=3Þ1=2ξ�, φðξÞ ¼

−
ffiffiffi
2

p
ln cosh ½ð ffiffiffi

2
p

=3Þ1=2ξ�, for the value of λ0 − ϵ2g ¼
−

ffiffiffi
2

p
=3þ ið4=3Þ≃ −0.47þ i1.33, which corresponds to

the ground state of the corresponding complex nonlinear
oscillator. Using Eqs. (4.210)–(4.212), the mode frequency
and growth rate are then defined by the dispersion relation
(computed at x ¼ x0)

DLl
n ðωÞjx¼x0 −

λ0
2λ2g

ImδW̄L
nkðω0Þjx¼x0

¼ 0; ð4:213Þ

where

DLl
n ðωÞ ¼ i½ΛTðω0Þ − ImδW̄L

nkðω0Þ� − ½δW̄L
nf þ ReδW̄L

nkðω0Þ�

−
�
ω0

∂ReδW̄L
nkðω0Þ

∂ω0

�
i
γ

ω0

ð4:214Þ

is the local linear EPM dispersion relation obtained from
Eq. (4.210) neglecting the linear dispersiveness term ∝ ∂2

x.
Equation (4.213) through the ∝ λ−2g term is the nonlinear
extension of the linear EPM dispersion relation (Zonca and

Chen, 2000). It describes a one-parameter family λg of EPM
wave packets that are convectively amplified as they radially
propagate with group velocity ∼v̂E×B. The value of λ2g for the
dominant mode is determined by maximizing the wave-
particle power transfer in the phase locking regime, i.e.,

dγ
dλ2g

¼ ∂γ
∂λ2g þ

∂γ
∂ω0

dω0

dλ2g
¼ 0: ð4:215Þ

This equation has a solution λ2g ≲ 1 due to the optimal ordering
in the nonlinear dispersion relation and to the fact that
dγ=dλ2g > 0 for λ2g → 0, while dγ=dλ2g < 0 for λ2g → ∞. For
typical tokamak parameters, one obtains λg ≃ 0.5 − 0.6 with a
spread Δλg ≃ Δλ2g ≃ γ1=2½−d2γ=ðdλ2gÞ2�−1=2 ∼ 0.1. This is
readily verified to yield phase locking of the EPM wave
packet with the dominant resonant particle fraction contrib-
uting to wave-particle power exchange (Zonca et al., 2015b).
In the initial EPM avalanche phase, characterized by phase

locking and wave-packet convective amplification,
Eq. (4.213) yields a frequency shift Δω relative to the “linear”
(initial) mode frequency ω0L (Zonca et al., 2005),

Δω
ω0L

≃ ðs − 1Þ x0
jskϑr0j

¼ s − 1

r0

Z
t

0

vgðt0Þdt0; ð4:216Þ

i.e., a frequency chirping rate that is proportional to the mode
amplitude, as discussed at the beginning of Sec. IV.D.5.
Meanwhile, Eq. (4.213) also shows that the EPM wave packet
can be convectively amplified, yielding the avalanching
process of Fig. 3, as long as the strengthening of the mode
drive, due to pressure gradient steepening, compensates the
reduced drive, due to equilibrium nonuniformities.
Equilibrium geometry and plasma nonuniformities influence
the wave-packet propagation speed and characteristic width as
well. Because of its form, the intensity of the convectively
amplified wave packet grows as the square of the distance in
analogy with the superradiance (Dicke, 1954) operation
regime of a free-electron laser (FEL), where the peak power
also increases as the square of the distance along the undulator
(Bonifacio et al., 1990, 1994; Giannessi, Musumeci, and
Spampinati, 2005; Watanabe et al., 2007). The mechanism by
which EPs eventually lose resonance by residual resonance
detuning and are substituted by new resonant EPs reinforces
this analogy (Zonca et al., 2015b). The EPM wave-packet
propagation could generally be in either radial directions.
However, outward propagation is favored as the moving wave
packet can more easily maintain the phase locking condition
with the larger fraction of EPs that are transported outward
while driving the mode, due to the conservation of the
Hamiltonian in the extended phase space. Another important
factor that may break the symmetry in the radial propagation
direction is equilibrium nonuniformity, associated with both
EP profiles and continuum damping. Thus, unless radial
nonuniformity inhibits outward propagation, frequency chirp-
ing is predicted to be generally downward for EPM avalanche
events, since characteristic EP resonant frequencies are
radially decreasing for typical equilibrium radial profiles.
As a final point, we analyze the conditions under which

radial corrugations in the EP profiles, discussed in connection
with Eq. (4.202), are excited spontaneously (Zonca et al.,

FIG. 5. The functions WðxÞ and φðxÞ describing the self-
similar shape UðxÞ ¼ WðxÞeiφðxÞ of the EPM wave-packet
propagation in the early phase of its nonlinear evolution
(Zonca et al., 2005, 2015b).
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2000). Following the same procedure introduced in
Sec. IV.C.2, the nonlinear dispersion relation for the EPM
modulational instability can be written as

���� ∂D0

∂ω0

����
2

½Δ2
T − ðωz þ iγdÞ2�

þ 4iγ2M
ðωz þ 2iγÞ2

�
ðωz þ iγdÞ

∂ReD0

∂ω0

− iΔT
∂ImD0

∂ω0

�

þ 3γ4M
ðωz þ 2iγÞ4 ¼ 0: ð4:217Þ

Here D0 stands for Dn of the EPM pump, γd is the sideband
damping, and ΔT the frequency mismatch, while

γ2M ¼ 3π2ðr=R0Þ1=2αE
8

ffiffiffi
2

p jsj
ω0

ω̄dF
k2ϑρ

2
LEk

2
zv2EjĀ0j2: ð4:218Þ

Equation (4.217) shows common features with the dispersion
relation of ZS induced by finite-amplitude TAE, discussed
in Sec. IV.C.2. The novel element here is that resonant
wave-particle interactions typically produce modulational
instability of the EP pressure profile (Vlad et al., 2004;
Zonca et al., 2006) characterized by both finite growth rate
and real frequency shift (Zonca et al., 2000). As pointed out in
Sec. IV.C.2, all physical processes yielding fluctuation ampli-
tude modulation may result in nonlinear splitting of the
corresponding spectral lines. From ordering considerations,
it is evident that the onset condition for the EPM induced
modulational instability gives jωzj ∼ ϵ0ω0 ∼ γd ∼ γ∼
γM=jΔT=ω0j1=2, with ΔT ∼ ϵ0ω0 (Zonca et al., 2000; Zonca
and Chen, 2014c). Thus, using Eq. (4.203) the threshold

condition for jδBr=B0j in this case is, respectively, ∼ϵ1=40 α−1=2E

and ∼ϵ1=20 q−1α−1=2E higher than when TAE induced ZS are
dominated by the zonal current or zonal flows
(cf. Sec. IV.C.2). These results suggest that for sufficiently
strong EP drive, i.e., sufficiently high αE, ZS are expected to
not significantly modify the nonlinear EPM dynamics
(Zonca et al., 2000). In particular, when analyzing the
modulational instability of EPM driven by EP transit reso-
nance, the criterion for neglecting the effect of zonal flows

becomes αE ≫ ϵ3=20 =q2, as the EPM drive is not reduced by
the trapped particle fraction. This is consistent with the
empirical scaling αE > βeq2, βe being the thermal electron
plasma β, obtained from numerical gyrokinetic simulation
results (Bass and Waltz, 2010).
Finally, it is worthwhile to make some further general

remarks and comments on this analysis. Note that Eq. (4.212)
is similar to that of a nonlinear oscillator in the so-called
“Sagdeev potential” V ¼ ð−U2 þ U4Þ=2, which generates the
equation of motion

∂2
ξU ¼ U − 2U3; ð4:219Þ

and gives U ¼ sechðξÞ. This form appears in solitonlike
solutions of NLSE, e.g., the Gross-Pitaevsky equation
(Gross, 1961; Pitaevskii, 1961) describing the ground state
of a quantum system of identical bosons using the

pseudopotential interaction model, as well as the envelope
of modulated water wave groups, as demonstrated by
Zakharov (1968). The same form was also more recently
shown to appear in the propagation of the short optical pulse
of a FEL in the superradiant regime (Bonifacio et al., 1990,
1994; Giannessi, Musumeci, and Spampinati, 2005) discussed
earlier, as well as in the radial spreading of drift wave–zonal
flow turbulence via soliton formation (Guo, Chen, and Zonca,
2009). The complex nature of Eq. (4.212), however, is novel
and connected with the unique role of wave-particle reso-
nances, which dominate the nonlinear dynamics of EPMs via
resonant wave-particle power exchange. Maximization of
such power exchange yields two effects: (i) the mode radial
localization, similar to the analogous mechanism discussed for
the linear EPM mode structure (Zonca and Chen, 2000,
2014c); and (ii) the strengthening of the mode drive
(Imλ0 > 0), connected with the steepening of the pressure
gradient, convectively propagating with the EPM wave
packet. These two effects are consistent with and clearly
illustrated by the numerical simulation results of Fig. 3 (Zonca
et al., 2005).
More generally, Eqs. (4.201), (4.204), and (4.205) are of

integrodifferential nature and thus they describe processes
characterized by nonlocality in space and time connected with
wave-particle resonant interactions. This case can be appre-
ciated from the structure of Eq. (4.201) and the operator
∂−2
t ∂2

r . Assuming that Eq. (4.204) admits a self-similar
solution in the form Ān0ðξÞ, as in Eq. (4.208), and that the
radial profile of F̂0ðωÞ can be described by a stretched
Gaussian distribution ∝ exp ½−jξ − ξ0jμ�, with some fractional
μ ∈ ð1; 2Þ, δW̄NL

nk Ān0 can be rewritten in terms of fractional-
derivative operators (Zonca et al., 2006), ∝ ∂2−μ

ξ jĀn0j2, with

∂2−μ
ξ Ψ≡ 1

Γðμ − 1Þ
∂
∂ξ

Z
ξ

−∞

Ψðξ0Þ
ðξ − ξ0Þ2−μ dξ

0; ð4:220Þ

corresponding to the Weyl definition of fractional derivative
[see, e.g., Metzler and Klafter (2000)]. Its appearance in the
nonlinear evolution equation (4.204) reminds one of fractional
generalizations of the Ginzburg-Landau and NLSE [(Weitzner
and Zaslavsky, 2003; Milovanov and Rasmussen, 2005),
reviewed by Zelenyi and Milovanov (2004)], characterized
by a competition between a weak nonlinearity and space-time
nonlocal properties. Indeed, equations built on fractional-
derivative operators incorporate in a natural, unified way the
key features of non-Gaussianity and long-range dependence
that often break down the restrictive assumptions of locality
and lack of correlations underlying the conventional statistical
mechanical paradigm [see Metzler and Klafter (2004) for a
review of this subject]. It is worthwhile noting that, following
Eq. (4.220) and Zonca et al. (2006), when the free-energy
source function in Eq. (4.201) is taken to be Gaussian, i.e.,
F̂0ðωÞ ∝ exp ½−ðξ − ξ0Þ2�, Eq. (4.204) can be reduced to the
canonical form of the Ginzburg-Landau equation (Lifshitz and
Pitaevsky, 1980), which finds many applications other than
fusion plasma physics. Fractional time derivatives can also be
introduced for the description of Eq. (4.205) nonlocality in
time (and correspondingly in space), which is intrinsically
connected with ballistic resonant particle transport but more
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generally may describe a wider class of behaviors as
well. Doing so naturally yields fractional Fokker-Planck
equations and thus applications of general interest [see,
e.g., the recent work by Górska et al. (2012)] with their
further extension to nonlinear problems [cf. Eq. (4.205)]. This
shows the special role of EPs in fusion plasmas, which
introduce a completely novel class of nonlinear behaviors
due to the existence of the SAW continuous spectrum, and the
property of EPMs to lock onto the proper resonance for
maximizing wave-particle power exchange and particle trans-
port (Zonca et al., 2006; Chen and Zonca, 2007a; Chen, 2008)
due to phase locking.

7. The fishbone burst cycle

The observation of fishbone oscillations (McGuire et al.,
1983), interpreted as bursts of internal kink modes resonantly
excited by EPs via precessional resonance (Chen, White, and
Rosenbluth, 1984; Coppi and Porcelli, 1986), is the first key
experimental evidence of the rich nonlinear dynamics involv-
ing the interaction of EPs with MHD and Alfvénic fluctua-
tions. Nonlinear fishbone dynamics is determined by both
nonlinear wave-wave (MHD) and wave-particle interactions.
However, the key role played by EPs was clear from the early
experimental evidence that fluctuations are locked onto the
characteristic EP (precessional) frequency, while they are
transported out preserving the resonance condition (White
et al., 1983). Thus, it is intuitive that for sufficiently strong
power input fishbone dynamics should be dominated by
wave-particle nonlinear interactions.
Early analyses of the fishbone burst cycle relied on

simplified predator-prey models (Chen, White, and
Rosenbluth, 1984; Coppi and Porcelli, 1986; Coppi,
Migliuolo, and Porcelli, 1988) on which more detailed
discussion is given below. Fishbone induced EP transport
studies and comparisons with experimental observations were
meanwhile based on test-particle numerical simulations
(White et al., 1983) (cf. Secs. V and V.A). The first nonlinear
numerical studies of fishbone excitation by nonperturbative
wave-EP interactions were reported by Candy et al. (1999),
assuming a linear MHD description and mode structure given

by a rigid ðm; nÞ ¼ ð1; 1Þ radial displacement. The nonlinear
EP kinetic response is computed numerically as a contribution
to the potential energy in a kinetic energy principle, i.e.,
Eq. (3.17) with a simplified form of the inertia enhancement
(Glasser, Green, and Johnson, 1975). Their results reproduce
the dynamics of a fishbone burst, with downward frequency
chirping and mode saturation at a level ∼10 smaller than the
dimensional estimate jδξr=rsj ∼ 1 with δξr and rs being,
respectively, the radial displacement and the q ¼ 1 radial
position. They also estimate that in their case the condition for
neglecting MHD nonlinearity is marginally satisfied. The
relative role of MHD and EP nonlinearities can, however, be
more precisely estimated on the basis of Eq. (3.17), by
comparing ΛNL

n with δŴNL
nk due to EPs. Ödblom et al.

(2002) demonstrated that ΛNL
n is predominantly determined

by ZS (flows and currents), generated self-consistently by the
dominant ðm; nÞ ¼ ð1; 1Þ component of the fishbone fluc-
tuation. The MHD model employed by Ödblom et al. (2002)
ignores kinetic thermal ion and geometry effects and yields

ΛNL ∼
jδξr0j2
Δ2

Λ ∼
jδξr0j2

r2sðγL=ω0Þ2
s2

Λ
; ð4:221Þ

where we dropped the n ¼ 1 subscript, δξr0 is the constant
value of δξr, Δ ∼ rsðΛ=sÞðγL=ω0Þ is the inertial layer width, s
is the magnetic shear at the q ¼ 1 surface, and Λ can be
estimated at its typical linear value. Including inertia enhance-
ment, Eq. (4.221) still applies but a realistic estimate yields
jΛj ∼ jsj (Zonca et al., 2007b). Meanwhile, the estimate for
δŴNL

nk can be obtained as [cf. Eq. (4.231) and Sec. IV.D.5]

δŴNL
k ∼ ImδŴL

k
jδξr0j2

r2sðγL=ω0Þ2
; ð4:222Þ

where ImδŴL
k ∼ ðR0=rsÞβEr, with βEr being the βE value of

resonant EPs. Thus, noting Eqs. (3.17), (4.221), and (4.222),
one can conclude that EP nonlinearities dominate the preces-
sional fishbone for βEr ≫ jsj3ðrs=R0ÞjΛj−1. However, for
jΛj ∼ jsj and near marginal stability, both nonlinear effects
must be kept on the same footing. Here we focus on strongly

FIG. 6. (a) Evolution of the fishbone frequency vs time. The frequency is expressed in units of ωA0 ¼ vA0=R0 and the time in
units of ω−1

A0 . (b) Evolution of the resonant EP distribution function for v=vA0 ¼ 0.8 and μB0=E ¼ 1. From Fu et al., 2006.
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driven fishbones, where wave-wave (MHD) nonlinearities can
be neglected.
Comprehensive numerical fishbone simulations based on

the hybrid MHD-gyrokinetic model (cf. Sec. II) are more
recent (Fu et al., 2006; Vlad et al., 2012, 2013). Fishbone
linear stability analyses based on the same approach were
reported by Park et al. (1999). Meanwhile, the first nonlinear
simulation of a fishbone burst cycle was given by Fu et al.
(2006), where it was shown that mode saturation and
frequency chirping are connected with the secular outward
motion of resonant EPs, as depicted in Fig. 6. More specifi-
cally, Fig. 6 shows both frequency variation in time and the
change in the resonant EP distribution function for v=vA0 ¼
0.8 and μB0=E ¼ 1 (cf. Sec. II.D), with vA0 the Alfvén speed
on magnetic axis. The normalization of Pϕ is such that Pϕ ¼
−0.42 corresponds to the plasma center and Pϕ ¼ 0 to the
plasma boundary. In these numerical simulations, MHD
nonlinearities are found to reduce the mode saturation level,
but not drastically, showing that EPs dominate nonlinear
dynamics, consistent with Eqs. (4.221) and (4.222).
Further demonstration of the nonlinear physics underlying

the fishbone burst cycle was recently provided for “electron
fishbones” (e-fishbones) (Vlad et al., 2012, 2013), due to
precessional resonance with suprathermal electrons (Wong
et al., 2000; Ding et al., 2002; Zonca et al., 2007a). Their
simulation results are consistent with those of Fu et al. (2006)
and demonstrate that nonlinear mode saturation is accompa-
nied by downward frequency chirping. In addition, they
illuminate and further clarify the nonlinear fishbone dynamics
by means of the phase-space numerical diagnostics introduced
by Briguglio (2012) and Briguglio and Wang (2013); see Vlad
et al. (2012, 2013) for further details. The convective resonant
particle motion yielding mode saturation by radial decoupling
is demonstrated by a time sequence of kinetic Poincaré plots
(White, 2012), which show EPs moving outward at essentially
constant wave-particle phase and the formation of a steeper
gradient region that is also outward moving. At the same time,
a flatter region in the EP particle distribution is formed at

smaller radii, which extends further inward as more EPs are
convectively pumped outward. Meanwhile, as resonant EPs
are convected outward and their ω̄d decreases, the mode chirps
downward as shown in Fig. 7(a), which illustrates the time
evolution of ω̄D and δωD. Here ω̄D is the average of ω̄d of
simulation particles weighted by the wave-particle power
exchange in the linear phase, and δωD is the corresponding

spread from ω̄D. One can similarly define _̄Θ and δ _Θ as well as
r̄ and δr, shown, respectively, in Figs. 7(b) and 7(c). In
particular, Fig. 7(b) shows that frequency chirping is due to
phase locking (black line) and maximization of wave-particle
power exchange, and that, with no frequency chirping

accounted for, _̄Θjω¼const (red line) would yield rapid resonance
detuning. Saturation of the fishbone burst instead is due to
radial decoupling, as illustrated in Fig. 7(c), showing the time
evolution of r̄ (middle, black line) and r̄� δr (top and bottom,
red lines), referred to the linear mode structure (in arbitrary
units) jðm=rÞδϕm;nj ∝ jδξrm;nj.
The above nonlinear fishbone simulation results may be

understood within the theoretical framework introduced in
Sec. IV.D.5. Assuming deeply trapped EPs as in Sec. IV.D.6
and considering a rigid plasma displacement,28 we have

δŴk ¼ 2
π2

B2
0

mΩ2
R0

r2s

Z
rs

0

r3

q
dr

Z
EdEdλ

×
X

v∥=jv∥j¼�1

τbω̄
2
d

ωðτÞ
Z

∞

−∞

ωþ ωðτÞ
ω̄d − ωðτÞ − ω

× e−iωtQk;ωðτÞF̂0ðωÞdω; ð4:223Þ

where as in Eq. (4.200) ωðτÞ ¼ ω0ðτÞ þ iγðτÞ is the time
evolving complex frequency. The evolution equation for F0ðtÞ
is also obtained from Eq. (4.194):

FIG. 7. (a) Time evolution of ω̄D (red line) and ω̄D � δωD (dashed red lines), compared with the time evolving mode frequency from

simulation results (black line). (b) Time evolution of _̄Θ (black line) and _̄Θ� δ _Θ (dashed black lines); _̄Θjω¼const, obtained neglecting
frequency chirping is also shown (red line). From Vlad et al., 2013. (c) Time evolution of r̄ (middle, black line) and of r̄� δr
(top and bottom, red lines). The linear mode structure is also shown by jðm=rÞδϕm;nj ∝ jδξrm;nj in abscissa vs the normalized
radial position on the vertical axis. The harmonic in red refers to the dominant ðm; nÞ ¼ ð1; 1Þ component. From Vlad
et al., 2013.

28A fully self-consistent treatment must generally allow the mode
structure to evolve due to nonperturbative redistributions of EPs.
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∂
∂t F0ðtÞ≃ StF0ðtÞ þ SðtÞ þ 2

�
ω̄d

ω0ðτÞ
�

×
∂
∂r

��Z þ∞

−∞

ðγ − iωÞ − ðω̄d − ω0Þγ=ω0

ðω̄d − ω0Þ2 þ ðγ − iωÞ2

× e−iωt
∂F̂0ðωÞ

∂r jω0ðτÞj2jδξr0j2dω
��

: ð4:224Þ

Equation (4.224) is the analog of Eq. (4.205) having
maintained an explicitly external source and collision terms
as well as the next order correction terms in the asymptotic
expansion in γ=ω0. With δŴk given by Eqs. (4.223) and
(4.224), the GFLDR Eq. (3.17) provides a description of the
fishbone burst cycle dominated by EP nonlinearity (Zonca
et al., 2007b), reducing to the case investigated numerically
by Candy et al. (1999) if the core plasma response is
described by ideal MHD (Glasser, Green, and Johnson,
1975). Because of the global nature of the fishbone mode
structures, these equations generally require a numerical
solution, which is not given in the literature except that in
the MHD limit considered by Candy et al. (1999). However,
further analytic progress is possible if one introduces
subsidiary approximations, which help to elucidate the
nature of the saturation process and EP transport due to
fishbone bursts (Zonca et al., 2007b).
Let us consistent with Fig. 7 assume that δŴk is predomi-

nantly provided by a localized radial region inside rs. Using
the formal decomposition δŴk ≡ δŴL

k þ δŴNL
k as in

Sec. IV.D.6, it can be readily verified that ReδŴk ≃
ReδŴL

k at the leading order of the asymptotic expansion in
γ=ω0. For radially localized EP response,

½ω̄d−ωðτÞ−ω�−1≃ ~ω−1
d ½E−E0− iðγ− iωÞ= ~ωd�−1; ð4:225Þ

with ω̄dðr̄Þ≡ ~ωdE and ω0 ≡ ~ωdE0. Meanwhile, noting that
τb ¼ 2πqR0E−1=2ðR0=rÞ1=2 for deeply trapped particles, as
well as kϑ ∝ −nq=r, ω̄2

d ∝ ~ω2
d ∝ ðnq=rÞ2, and jω�Ej ≫ jωðτÞj,

we can write

ReδŴk ≃ ReδŴL
k

¼ −
R0

rs

Z
rs

0

q2
r
rs

�
R0

r

�
1=2

×
∂
∂r

��
r
R0

�
1=2

β̂Eðr;ω0ðτÞÞ
�
dr; ð4:226Þ

where

β̂E(r;ω0ðτÞ) ¼ 2
π2

B2
0

mjΩj r
q2

Z
EdEdλ

×
X

v∥=jv∥j¼�1

τbω̄
2
d

Z
∞

−∞

ðω̄d − ω0Þ
ðω̄d − ω0Þ2 þ ðγ − iωÞ2

× e−iωtF̂0ðωÞdω: ð4:227Þ

This definition assumes that modes have positive frequency
when rotating in the EP diamagnetic direction; i.e., n ¼ 1 for
energetic ions and n ¼ −1 for energetic electrons. The

expression for β̂E depends only on the ratio ω0=ω̄dF, with
ω̄dF being the characteristic EP precessional frequency.
In the case considered in Sec. IV.D.6, it is the precessional
frequency at the injection energy of the EP beam. Thus,
Eq. (3.17) yields

δŴf þ ReδŴL
k ≃ 0; ð4:228Þ

and Eq. (4.226) shows that the fishbone frequency is set by the
condition ω0=ω̄dF ≃ const, to be computed at the position of
the radial shell where the most significant EP contribution is
localized. Meanwhile, we can write29

ImδŴk¼−
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; ð4:229Þ

where the resonant EP βE is defined as

βEr(r;ω0ðτÞ) ¼ 2
π2

B2
0

mjΩj r
q2
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EdEdλ

×
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× e−iωtF̂0ðωÞdω: ð4:230Þ

Substituting the formal solution of Eq. (4.224) into
Eq. (4.229), it is possible to obtain

βEr ¼ ∂−1
t ð _βErS−νextβErÞþ∂−2

t
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×
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1=2

βEr)
��

: ð4:231Þ

Together with Eq. (4.229) this equation justifies the estimate
for δŴNL

k given in Eq. (4.222), which yields the optimal
ordering for the saturation amplitude as jδξr0j ∼ rsjγL=ω0j,
consistent with simulation results (Vlad et al., 2013). Here we
have also introduced the effects of sources and collisions on
the resonant EP population using the definitions

_βErS ≡ 2
π2

B2
0

mjΩj r
q2

Z
EdEdλ

×
X

v∥=jv∥j¼�1

τbω̄
2
d

γ

ðω̄d − ω0Þ2 þ γ2
SðtÞ; ð4:232Þ

νextβEr ≡ −2
π2

B2
0

mjΩj r
q2

Z
EdEdλ

×
X

v∥=jv∥j¼�1

τbω̄
2
d

γ

ðω̄d − ω0Þ2 þ γ2
StF0ðtÞ; ð4:233Þ

29Note that here we use a slightly different definition than Zonca
et al. (2007b) in order to take into account the assumption of deeply
trapped EPs.
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which explicitly separate these contributions as suggested
by White (2010) in order to emphasize their different roles
in the dynamics of the fishbone burst cycle on time scales
longer than τNL ∼ γ−1L (see the following discussion).
Finally, the system of Eqs. (4.226)–(4.233) is closed by
the evolution equation for jδξr0j; i.e.,

∂
∂t ln jδξr0j

2 ¼ 2ðR0=rsÞ
−∂ReδŴL

k =∂ω0



−
Z

rs

0

q2
r
rs

�
R0

r

�
1=2

×
∂
∂r

��
r
R0

�
1=2

βEr(r;ω0ðτÞ)
�
dr

−
�
rs
R0

jsjΛðω0Þ
��

: ð4:234Þ

Without sources and collisions, and assuming
q ∼ const as well as ω0=ω̄dF ∼ const, Eq. (4.231) describes
the propagation of ðr=R0Þ1=2βEr as a function of
r2 − 2rjω0∥δξr0j, and resonant EP compression propagates
with speed _r≃ jω0∥δξr0j, which is a function of r. This is
the mechanism of mode-particle pumping (White et al.,
1983) that yields mode saturation by ejection of resonant
particles from the r ¼ rs surface when the ejection rate
∼jω0∥δξr0j=rs balances the growth rate ∼γL. Thus, as
resonant EPs are convected outward and the mode growth
rate decreases, the downward frequency shift by phase
locking can be computed by Eq. (4.216), with
vg ¼ jω0∥δξr0j. This picture is consistent with simulation
results of Fig. 7(c) and is in essence similar to that of
nonlinear EPM dynamics (cf. Sec. IV.D.6) with, however,
different underlying mode structures. When EPs that most
efficiently provide mode drive are transported sufficiently
outward that radial decoupling becomes important, they are
gradually replaced by lower energy particles, which res-
onate at smaller r value and continue driving the mode
(White, 2000). In this way, particles can be extracted from
increasingly lower energies and inner regions of the
plasma core and be pumped outward, far beyond the rs
surface and up to the plasma boundary (White et al.,
1983). Proceeding further in the γ=ω0 asymptotic expan-
sion, the frequency sweeping rate can be determined with a
better precision than based on the simple expression
ω0=ω̄dF ∼ const.
Equations (4.231) with sources and collisions and

(4.234) can be used to derive reduced nonlinear
models for the fishbone burst cycle. Without the nonlinear
term, Eq. (4.231) gives the asymptotic solution
βEr ¼ βEr0 ¼ _βErS=νext. For strongly driven fishbones, we
may consider βEr0 significantly larger than the threshold
condition βEr ¼ βc, around which βEr is linearly increasing
in time due to _βErS. Formally acting with ∂t on
Eq. (4.231), estimating ∂2

r ∼ −1=r2s , and considering the
remaining ∂−1

t ∼ τNL ∼ rs=jω0∥δξr0j, Eqs. (4.231) and
(4.234) can be modeled as

dβ=dτ ¼ S − Aβc;

dA=dτ ¼ γ0ðβ=βc − 1ÞA; ð4:235Þ

where we dropped the subscript in βEr and used notations
by White (1989), τ is a normalized time, A ¼ jδξr0j=rs is
the normalized fishbone amplitude, and γ0 is a measure of
the linear growth rate. Equations (4.235) [cf. problem # 3
on p. 280 of White (1989)] are the same as those originally
proposed by Chen, White, and Rosenbluth (1984).30 As
noted by Chen, White, and Rosenbluth (1984) and White
(1989), the solution of Eqs. (4.235) is cyclic; i.e., it can be
generally written as FðA; βÞ ¼ const, where FðA; βÞ has a
maximum at the fixed point position β ¼ βc, and
A ¼ S=βc. A crucial feature of Eqs. (4.235) is the linear
dependence on A of the loss term in the β evolution
equation. From Eq. (4.231), this is readily recognized to be
a consequence of the ∂−2

t operator acting on the nonlinear
response, which is the manifestation of secular resonant EP
losses by mode-particle pumping (White et al., 1983). This
term constitutes the fundamental difference of the Chen,
White, and Rosenbluth (1984) approach with respect to the
predator-prey model discussed by Coppi and Porcelli
(1986) and Coppi, Migliuolo, and Porcelli (1988), which
adopts a loss term ∝ A2.
In the form of Eqs. (4.235), the temporal nonlocality built

in Eq. (4.231) and more generally in Eq. (4.224) is lost.
However, it was recently proposed in the context of
predator-prey modeling of TAE bursting behavior
(Heidbrink, Duong et al., 1993) that nonlocal time behavior
may be accounted for by introducing a time delay in the
wave-particle power exchange and in the phase-space
island-induced particle diffusion (Parker and White,
2010). Another worthwhile remark concerns the role of
the collision term ∝ −νextβEr in Eq. (4.231). By definition,
νext reduces to the well-known (linear) effective collision
frequency only in the weakly nonlinear case. For sufficiently
strong nonlinear distortions, νext may even change sign and,
therefore, modify the nonlinear behavior of the dynamic
system of Eqs. (4.235) with a formal substitution
S → Sþ νβ → νβ, as hinted at by Zonca et al. (2007b),
while the loss term may become ∼ − Aβ for large fluctua-
tions. Both the time delay and the nonlinear νext models,
however, have not yet been fully explored.
Much richer physics is expected to become increasingly

more relevant as plasma conditions approach marginal sta-
bility; e.g., MHD nonlinearities cannot be neglected (Ödblom
et al., 2002). Correspondingly, more theory and simulation
studies are needed to fully understand and explain the diverse
experimental evidence recently reported and summarized by
Guimarães-Filho et al. (2012) for the specific case of electron
fishbones. In general, the present understanding of wave-
particle and wave-wave nonlinear effects calls for a compre-
hensive treatment addressing these physics on the same
footing, while accounting for kinetic core plasma response
in realistic toroidal geometry.

30Note that Chen, White, and Rosenbluth (1984) assumed that the
nonlinear term in the β evolution equation is multiplied by the
Heaviside function Hðβ − βminÞ; i.e., it is considered effective only if
β is above a minimum βmin value, considered to be that reached as a
consequence of the secular expulsion of EPs from within the r ¼ rs
magnetic surface.
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E. Further remarks on general theoretical issues and broader
implications

By construction, Eq. (4.3) is inapplicable to investigations
of broadband plasma turbulence. However, it has been used
successfully to investigate nonlinear processes in DWT, where
time-scale separation may be systematically applied.
Examples are the excitation of ZS by coherent wave-wave
interactions (Chen, Lin, and White, 2000; Chen et al., 2001;
Guzdar, Kleva, and Chen, 2001), turbulence spreading (Lin
et al., 2002; Hahm et al., 2004; Lin and Hahm, 2004)
enhanced by DW-zonal flow interaction (Chen, White, and
Zonca, 2004; Zonca, White, and Chen, 2004; White, Chen,
and Zonca, 2005; Guo, Chen, and Zonca, 2009), and
saturation of electron temperature gradient driven turbulence
due to inverse cascade via scatterings off driven low mode-
number quasimodes (Chen, Zonca, and Lin, 2005; Lin, Chen,
and Zonca, 2005). Equation (4.3) can also be used for
addressing spatiotemporal cross-scale couplings between
DAWs and EP dynamics and DWT and turbulent transport
(cf. Sec. VI.B). Thus, the formal separation of nonlinear
interaction with ZS on the right-hand side of Eq. (4.3) captures
two different processes, i.e., the coherent nonlinear interaction
with the ZS generated by the fluctuation itself (self-
interaction) and the incoherent interaction with ZS generated
by other fluctuating fields, including DWT (Zonca et al.,
2015a). Assuming, for illustration, nondispersive waves along
with local nonlinear interactions in n space, the form of
Eq. (4.3) becomes that of a discrete Anderson NLSE
with randomness (Shepelyansky, 1993; Pikovsky and
Shepelyansky, 2008; Iomin, 2010; Krivolapov, Fishman,
and Soffer, 2010):

iℏ
∂
∂tψn ¼ ĤLψn þ ζjψnj2ψn; ð4:236Þ

where ĤL is the Hamiltonian of the linear problem, account-
ing for the random transitions between nearest-neighbor states
(Anderson, 1958). An important feature which arises in the
analysis of Eq. (4.236) as well as Eq. (4.3) is competition
between nonlinearity and randomness. It has been argued that
when the nonlinearity parameter ζ is sufficiently small the
random properties play the dominant role through the dynam-
ics [see, e.g., Wang and Zhang (2009) and Krivolapov,
Fishman, and Soffer (2010)], thus sustaining the phenomena
of Anderson localization as in the linear case (Anderson,
1958). That means that the diffusion is suppressed and an
initially localized wave packet will not spread to infinity.
Despite this evidence, direct numerical simulations show that
the phenomena of Anderson localization are destroyed above
a certain critical strength of repulsive (ζ > 0) nonlinearity
(Pikovsky and Shepelyansky, 2008; Flach, Krimer, and
Skokos, 2009), and an unlimited subdiffusive spreading of
the wave field across the lattice occurs. This can be explained
noting that the loss of Anderson localization in the presence of
nonlinearity is a critical phenomenon (Milovanov and Iomin,
2012), and that the delocalization occurs spontaneously above
a threshold value of ζ, similarly to the percolation transition in
random lattices. Meanwhile, soliton solutions of Eq. (4.236)
are typically found for attractive nonlinearity (ζ < 0) (Zelenyi

and Milovanov, 2004). Similarities with DWT spreading due
to coherent DW-ZS interaction again become evident, con-
sidering that the zonal flow self-interaction term is attractive
(Chen, White, and Zonca, 2004) and, therefore, that turbu-
lence spreading may occur via soliton structure formation
(Guo, Chen, and Zonca, 2009).
The theoretical analysis of Sec. IV.D.2 suggests a clear

connection between AE nonlinear dynamics near marginal
stability and autoresonance in driven 1D Vlasov-Poisson
systems. Autoresonance (Meerson and Friedland, 1990) is
the phenomenon of a nonlinear pendulum that can be driven to
large amplitude, which evolves in time to instantaneously
match the nonlinear frequency to that of an external drive with
sufficiently slow downward frequency sweeping. This phe-
nomenon is common in many fields of physics and “was first
observed in particle accelerators, and has since been noted in
atomic physics, fluid dynamics, plasmas, nonlinear waves,
and planetary dynamics” (Fajans and Friedland, 2001). In
fusion plasmas, the idea of autoresonance and resonant
particle transport in buckets was proposed by Mynick and
Pomphrey (1994) for removing helium ash from the plasma
core and other possible applications, such as burn control,
profile control, and diagnostic tool. The same notion has clear
analogies to the idea of affecting the direct coupling of fusion
alpha particle power, known as “alpha channeling” (Fisch and
Rax, 1992) (cf. Sec. VI). Autoresonance is a process with a
critical threshold in the amplitude of the external drive, which
scales as ∼ _ω3=4 and was observed in experiments with trapped
electron clouds (Fajans, Gilson, and Friedland, 1999).
Electron phase-space holes were formed and controlled in a
plasma by adiabatic nonlinear phase locking (autoresonance)
with a chirped frequency driving wave via Cherenkov-type
resonance (Friedland, Khain, and Shagalov, 2006), for which
a kinetic theory interpretation was given by Khain and
Friedland (2007). As noted by Friedland, Khain, and
Shagalov (2006), one important difference emerges when
BGK structures (Bernstein, Greene, and Kruskal, 1957) are
formed by instabilities, as they are poorly controllable. As
long as the effect of EP transport on the plasma dielectric
response can be considered small (cf. Secs. IV.D.1 and
IV.D.2), the connection between autoresonance and the
hole-clump nonlinear dynamics in the 1D beam-plasma
problem with sources and sinks (Berk, Breizman, and
Petiashvili, 1997; Berk et al., 1999) is preserved. In the
former case, the frequency sweeping is imposed by the
external drive; in the latter one, chirping is set by balancing
the rate of energy extraction of hole-clump dynamics in phase
space with dissipation. However, when EP response is non-
perturbative, resonant particle radial motion is secular as long
as phase locking is maintained and frequency chirping is
nonadiabatic, as discussed in Sec. IV.D.5 and, respectively, in
Sec. IV.D.6 for EPMs and Sec. IV.D.7 for fishbones. The
secular EP loss, predicted theoretically (White et al., 1983)
and observed experimentally (Duong et al., 1993), may also
be considered an autoresonant effect, spontaneously driven by
EP transport for sufficiently strong drive. In between these two
limiting behaviors there is a transition where the role of
equilibrium geometry and plasma nonuniformity becomes
increasingly more important for increasing mode drive (Wang
et al., 2012; Zhang, Lin, and Holod, 2012; Briguglio et al.,
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2014). These physics, embedded in Eq. (4.3) by the inte-
grodifferential nature of nonlinear terms and, more specifi-
cally, by the renormalized solution for the EP distribution
function, Eqs. (4.192) and (4.194) (Dyson equation), suggest a
number of possible model NLSEs, possibly with fractional
partial derivatives, to be used for the description of multi
spatiotemporal scale dynamics (cf. Secs. IV.D.6 and IV.D.7).

V. ENERGETIC-PARTICLE TRANSPORT IN FUSION
PLASMAS

One fundamental issue in studies of collective mode
excitation by EPs in burning plasmas is to assess whether
significant degradation in the plasma performance could occur
due to SAW fluctuations and what level of wall loading and
damaging of plasma facing materials can be caused by energy
and momentum fluxes due to collective fast particle losses.
Losses up to 70% of the entire EP population have been both
predicted theoretically and found experimentally (Duong
et al., 1993; Strait et al., 1993; Heidbrink and Sadler, 1994).
The simplest prediction of fusion alpha density profiles in

ITER is based on marginal stability arguments. This was
proposed by Angioni et al. (2009), based on the assumption
that fusion alpha transport from short-wavelength DWT is
“stiff”; i.e., the profiles are maintained close to marginal
stability to be computed by realistic linear gyrokinetic
simulations. This work was recently extended by Waltz and
Bass (2014) to include marginal stability transport due to
long-wavelength AEs. In light of results discussed in this
review, these predictions can capture only the averaged alpha
density profiles on sufficiently long spatiotemporal scales,
while more detailed investigations are needed to predict
fluctuations about averaged profiles of EP density, temper-
ature, etc., and to describe nonlinear dynamics of correspond-
ing transport events (Chen and Zonca, 2007a, 2013; Zonca
et al., 2015a) [see also the recent reviews by Gorelenkov,
Pinches, and Toi (2014) and Pinches et al. (2015)].
The standard approach to modeling EP losses due to a given

spectrum of SAW fluctuations (AEs and EPMs) is based on
test-particle transport studies. These are expected to well
represent the actual transport phenomena provided that
transport processes themselves do not significantly modify
the fluctuation spectrum. It thus cannot describe the transition
to secular transport phenomena, where the interplay of non-
linear mode dynamics and transport processes themselves is
intrinsically nonperturbative as in the case of EPM avalanches
discussed in Sec. IV.D.6 (cf. also Sec. VI.A). One important
“exception” is the case of fishbones, where nonlinear transport
processes do not significantly modify the MHD mode
structure,31 but predominantly causes the mode frequency
to rapidly chirp downward (cf. Secs. IV.D.7 and V.B). In this
case test-particle transport studies give good agreement
between simulation results and experimental measurements
of EP redistributions even assuming that the mode frequency

is fixed. This is because the particle excursion in the radial
coordinate is comparable to the machine size, due to the weak
radial dependence of the precessional frequency (White et al.,
1983). Thus, accounting for the observed frequency sweeping
is not crucial for EPs to be pumped out of the system. In many
cases of practical interest, however, test-particle transport
improves accuracy in comparisons of simulation results
against experimental observations when the measured fre-
quency sweeping is accounted for [see, e.g., Fredrickson et al.
(2009) as well as Perez von Thun et al. (2011, 2012)]. This
important point was noted in the early test-particle simulations
of EPs by fast frequency chirping modes (White, 2000).

A. Suprathermal test-particle transport

The test-particle loss mechanism is essentially of two types
(Hsu and Sigmar, 1992; Sigmar et al., 1992): (1) transient
losses,which scale linearly (≈δBr=B)with themode amplitude,
due to resonant drift motion across the orbit-loss boundaries in
the EP phase space; and (2) diffusive losses, which scale as
≈ðδBr=BÞ2, due to EP stochastic diffusion and eventually
transport across the orbit-loss boundaries. Both mechanisms
were observed experimentally [see, e.g., García-Muñoz et al.
(2011)], as the result of accurate diagnostics for measurement
of internal EP redistributions, the fast-ion D-alpha (FIDA)
spectroscopy (Heidbrink et al., 2004), and global losses by
scintillator based fast-ion loss detectors (FILDs) (García-
Muñoz, Fahrbach, and Zohm, 2009). Because of the large
system size, mainly stochastic losses are expected to play a
significant role in ITER, while the dominant loss mechanism
below stochastic threshold is expected to be that of scattering of
barely counterpassing particles into unconfined “fat” banana
orbits (Hsu and Sigmar, 1992; Sigmar et al., 1992).32 After the
first work on fishbone induced EP losses (White et al., 1983),
numerical simulations of test-particle transport were success-
fully adopted for investigating alpha-particle redistributions by
MHD activity in TFTR (Zweben et al., 1999), beam ion
transport during tearing modes in the DIII-D tokamak
(Carolipio et al., 2002), EP confinement in the presence of
stochastic magnetic fields in the Madison symmetric torus
reversed field pinch (Fiksel et al., 2005), and more recently to
model neoclassical tearing mode induced EP losses in ASDEX
Upgrade (García-Muñoz et al., 2007).
Suprathermal particle transport by AEs has been addressed

in many works (Sigmar et al., 1992; Appel et al., 1995; Todo
and Sato, 1998; Candy et al., 1999; Carolipio et al., 2001;
Todo, Berk, and Breizman, 2003; Pinches et al., 2006), all
yielding the similar conclusion that appreciable losses (above
the stochastic threshold) require mode amplitudes on the order
of δBr=B ∼ 10−3, when single-n (toroidal mode number)
modes are considered. An actual quantitative estimate of
the stochastic threshold in the multiple-n modes case depends
on the specific features of the system being considered (see the
following discussion), although it has been shown that the

31The linear fishbone mode structure may instead be importantly
modified in the case of high-frequency fishbones (Nabais et al., 2005;
Zonca et al., 2007a, 2009) as discussed by Kolesnichenko, Lutsenko,
and White (2010).

32This same mechanism has been experimentally shown to be the
dominant EP loss mechanism due to RSAE (Pace et al., 2011) and
energetic particle driven geodesic acoustic modes (Kramer et al.,
2011) in some recent DIII-D experiments.
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multiple-mode stochastic threshold may be greatly reduced
ðδBr=B ≲ 10−4Þ with respect to the single-n mode case (Hsu
and Sigmar, 1992; Sigmar et al., 1992). The critical aspects
connected with the stochastic threshold for EP transport were
discussed in a pair of recent works (White et al., 2010a,
2010b), which analyzed the modification of deuterium beam
distribution in DIII-D plasmas due to the interaction with AEs
(TAE and RSAE). The main finding of test-particle transport
analyses is that observed fluctuation levels are slightly above
the stochastic threshold of the system, making simulation very
sensitive not only to mode amplitudes but also to other small
effects: e.g., omitting the scalar potential fluctuations com-
ponent of the magnetic perturbations while retaining all other
relevant features in the modeling “leads to beam transport
more than an order of magnitude too small to explain the
observed profile flattening.” Near the onset of local stochas-
ticity in the particle phase space (Chirikov, 1979; Lichtenberg
and Lieberman, 1983, 2010), transport events due to reso-
nance overlap of different-n AEs (Breizman, Berk, and Ye,
1993; Berk, Breizman, Fitzpatrick, and Wong, 1995; Berk
et al., 1996) (avalanches) may exhibit characteristic aspects of
sandpile physics and were observed in numerical simulations
of ITER plasmas (Candy et al., 1997), showing negligible α-
particle transport due to weakly damped core-localized
modes, and of TAE mode bursting in a TFTR-like plasma
during NBI (Candy et al., 1999). These issues are closely
connected with the crucial roles played by equilibrium
geometry and plasma nonuniformity in the nonlinear EP
phase-space dynamics and the onset of stochasticity.
Multimode hybrid MHD-gyrokinetic simulations were also

used to analyze central flattening of the EP profile in reversed-
shear DIII-D discharges, assuming an initial EP profile com-
puted from classical NBI deposition (Vlad et al., 2009).
Simulation results show good agreement of the relaxed EP
profile due to fast growing n ¼ 1 and 2EPMswith experiments
measured with the FIDA diagnostics. Furthermore, in the EPM
saturated phase, EPMs are transformed to weak RSAE modes,
also in good agreement with experimental measurements in
both frequency and radial localization. After the initial non-
linear evolution, simulation results for EP redistributions are
remarkably consistent with those obtained by test-particle
transport (White et al., 2010a, 2010b). This suggests that with
an adequatemodeling of the EP source nonlinear gyrokinetic or
equivalent numerical simulations (cf. Sec. II) have the capabil-
ity of analyzing EP transport in the presence of multiple AEs,
and the results may be comparable to test-particle transport
calculations, if particle redistributions and nonlinear mode
dynamics are not strongly interlinked.

B. Self-consistent nonperturbative energetic-particle transport

When the interplay of nonlinear mode dynamics and EP
transport processes is intrinsically nonperturbative
(cf. Secs. IV.D and VI.A), test-particle transport simulations
may not reflect the underlying physics of EP redistributions.
The first evidence of secular EP transport by EPM was given
by Briguglio, Zonca, and Vlad (1998), showing that mode
saturation occurs when the finite radial mode structure
characteristic scale is comparable to the fluctuation-induced
EP displacement (cf. Sec. IV.D.5).

Hybrid MHD-gyrokinetic simulations have confirmed
the fact that rapid EP transport is expected when the
system is significantly above marginal stability and that
fast radial particle redistributions lead to fishbone mode
saturation and downward frequency chirping (Fu et al.,
2006; Vlad et al., 2012). Simulation results also indicate
that fluid nonlinearities do not qualitatively alter the
dynamics of the fishbone burst cycle and EP transport
(Fu et al., 2006).
Dramatic transport events, such as those observed in

fishbones and EPMs, occur on time scales of a few inverse
linear growth rates (generally, 100–200 Alfvén times) and
have a ballistic character (White et al., 1983) that differ-
entiates them from the diffusive multiple-n AE induced
transport. Experimental observations in the JT-60U tokamak
have also confirmed macroscopic and rapid EP radial redis-
tributions in connection with the so-called ALEs (Shinohara
et al., 2001). Numerical simulations of an n ¼ 1 EPM
burst (Briguglio et al., 2007) show that radial profiles of
EPs, computed before and after the EPM induced particle
redistributions, agree qualitatively and quantitatively with
experimental measurements (Shinohara et al., 2004). Good
agreement is also obtained on the burst duration. The EP
transport meanwhile also explains the saturation of the ALE
burst. These simulation results have been recently confirmed
by further numerical studies of ALE nonlinear dynamics, with
detailed investigations of the importance of equilibrium
geometry (Bierwage et al., 2011) and plasma compressibility
effects (Bierwage et al., 2012). Hybrid MHD-gyrokinetic
simulations of single-n modes were also used to compare
linear and nonlinear dynamics of Alfvénic oscillations in
ITER burning plasma scenarios (Gorelenkov et al., 2003;
Vlad et al., 2006).
In experimental conditions of practical interest, AE and

EPM may coexist and be interlinked by nonlinear transport
processes. This is the case of slow upward sweeping ACs
observed in JET together with repeated rapid down-sweeping
modes (Pinches et al., 2004). This observation as suggested by
hybrid MHD-gyrokinetic simulations of JET experimental
conditions (Zonca et al., 2002) may be explained in terms of
early resonant excitation of a EPM within the q-minimum
surface and followed later, due to nonlinear dynamic evolution
of the fluctuations, by the formation of a cascade mode at the
q-minimum surface. Similar coexistence of TAE and EPM are
the plausible interpretation of TAE avalanches in NSTX
(Fredrickson et al., 2009, 2013; Podestà et al., 2009,
2011), where the activity of quasiperiodic TAE fluctuations
with limited frequency chirping is followed by the so-called
TAE avalanche. Such phenomenon causes EP losses of up to
∼30% over 1 ms and manifests itself as a larger burst
amplitude with nonadiabatic frequency sweeping. Test-
particle transport simulations show reasonable agreement of
predicted particle losses with experimental observations,
whose features are consistent with the onset of stochastic
diffusion discussed by Berk, Breizman, Fitzpatrick, and Wong
(1995) and Berk et al. (1996). On the other hand, the evidence
of nonadiabatic frequency chirping suggests that resonance
overlap may enhance the free-energy source in the first
phase of quasiperiodic TAE fluctuations with limited
frequency chirping. Once the EPM excitation threshold is
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exceeded,33 EPMs, characterized by nonadiabatic frequency
sweeping and rapid secular particle redistributions, as dis-
cussed in Sec. IV.D.5, may then be triggered. Further
indications of interesting nonlinear interplay between mode
structures and EP transport in the case of TAE avalanches
(Fredrickson et al., 2009) come from the experimental growth
rates ∼10−1ðω0=2πÞ (Podestà et al., 2011) that are typically
larger than those computed from linear stability analyses
∼10−2ðω0=2πÞ and from the mode structures that are not
always the same as those reconstructed from reflectometry
measurements (Podestà et al., 2009). More recent analyses of
these phenomena are given by Fredrickson et al. (2013).
The synergy between AE and MHD activity, notably

sawteeth, is also connected with nonperturbative redistribu-
tions of EPs. In the case of DIII-D, the use of high harmonic
ICRH generates an EP population that transiently stabilizes
the sawtooth instability but destabilizes TAEs (Heidbrink
et al., 1999). In the further evolution of the plasma discharge,
saturation of the central heating correlates with the onset of the
TAEs, while sawtooth crash is eventually caused by the
continued expansion of the q ¼ 1 surface radius. Similar
observations are made in TFTR plasmas (Bernabei et al.,
2000, 2001), where the eventual crash of long-period sawteeth
is explained in terms of the loss of the stabilizing effect of EPs
that are transported outward by EPM from within the q ¼ 1
surface. An effect similar to that of EPM on sawteeth can also
be induced by TAEs when, with high values of the safety
factor at the plasma boundary, their mode structures are
shifted deeper into the plasma core, where they can cause
sufficient EP redistributions to affect sawtooth stabilization.
Meanwhile, in some TFTR discharges, it has been demon-
strated that the loss of ICRH efficiency may be due to the
combined effect of EPM and TAE, which eventually redis-
tribute EPs in a broader region of the plasma volume and may
even cause global particle losses (Bernabei et al., 1999). More
recent analyses of the impact of strongly driven fishbones and
AEs on EP losses in JET are given by Nabais et al. (2010),
while comparisons of numerical simulations and fast-ion loss
detector measurements for fishbones are discussed by Perez
von Thun et al. (2011, 2012).

C. Transport of energetic particles by microscopic turbulence

The problem of EP transport by microscopic turbulence was
addressed in the early work by Belikov, Kolesnichenko, and
Yavorskij (1976), discussing the energy spectrum of α particles
escaping from a plasma as a result of turbulent diffusion. A
later and more systematic theoretical description of the fusion
α-particle confinement in tokamaks was provided by White
and Mynick (1989), demonstrating that suprathermal particle

confinement is much less deteriorated by microturbulence
than that of thermal plasma, due to orbit averaging and wave-
particle decorrelation effects. This picture was also confirmed
by numerical simulations of test-particle transport in strong
electrostatic drift wave turbulence (Manfredi and Dendy,
1996) and more recently by numerical simulation of turbulent
transport of a slowing down distribution of suprathermal
particles with high birth energy compared to the thermal
plasma energy (Angioni and Peeters, 2008; Zhang, Lin, and
Chen, 2008; Angioni et al., 2009). Experimental observations
confirmed these general expectations and quantitatively esti-
mated the turbulent diffusivity of EPs to be 1 order of
magnitude less than that of thermal ions for particle energies
E=Tc ≳ 10 (Heidbrink and Sadler, 1994; Zweben et al.,
2000), with Tc standing for the core plasma thermal energy.
Significant interest in this topic was revived more recently by
experimental observations in plasmas with NBI, showing
evidence of anomalies in EP transport in AUG (Günter
et al., 2007), JT-60U (Suzuki et al., 2008), and DIII-D
(Heidbrink, Murakami et al., 2009; Heidbrink, Park et al.,
2009), which might have raised concerns about the negative
NBI efficiency in ITER. These observations were connected
with theoretical (Vlad and Spineanu, 2005) and numerical
simulation analyses (Estrada-Mila, Candy, and Waltz, 2005,
2006; Albergante et al., 2009; Angioni et al., 2009), support-
ing the fact that a significant level of EP transport could be
driven by microturbulence. This discrepancy between exper-
imental measurements and neoclassical predictions of cross-
field diffusion of EPs was clarified by Heidbrink, Murakami
et al. (2009) and Heidbrink, Park et al. (2009) looking at
DIII-D plasmas, where EP diffusivity was dominated by ion
temperature gradient (ITG) driven turbulence, and showing that
anomalies were more pronounced at lowE=Tc, where the effect
of microturbulence is strongest. Numerical simulation results
(Zhang et al., 2010) demonstrated that EP diffusivities are
consistent with quasilinear predictions (Chen, 1999), confirm-
ing the conclusions of original theoretical and numerical works.
Thus, EP transport by microturbulence in reactor relevant
conditions and above the critical energy (at which plasma ions
and electrons are heated at equal rates by EPs) is negligible and
EP turbulent diffusivities have intrinsic interestmostly in present
day experiments with low characteristic values of E=Tc. The
potential problemofEP transport due tomagnetic fluctuations in
ITER (Hauff et al., 2009), as also reported by Breizman and
Sharapov (2011), is resolved by these findings (Heidbrink,
Murakami et al., 2009;Heidbrink, Park et al., 2009; Zhang et al.,
2010), and is further confirmed in dedicated numerical simu-
lations (Albergante et al., 2010, 2011, 2012) as well as
experimental studies in DIII-D, supported by numerical and
analyticmodeling (Pace et al., 2013). Themain possible concern
remains as the increased suprathermal particle diffusivities that
may be expected in DEMO, due to the significantly larger
operation temperature and consequently lower value of E=Tc
(Albergante et al., 2012).

VI. CONCLUDING REMARKS AND OUTLOOKS

This work addressed a wide range of linear and nonlinear
physics issues related to SAWs and EPs in burning plasmas
without, however, the intention of being comprehensive.

33Note that for sufficiently strong mode drive, of the order of the
real frequency shift from the continuous spectrum accumulation
point, there is no clear distinction between AE and EPM, as discussed
in Sec. III.C, and EPMs could easily exist inside the SAW frequency
gap. In addition, in typical NSTX experimental conditions, equilib-
rium mean flow shear is strong enough to significantly alter the SAW
continuous spectrum and generally cause strong coupling of TAEs
with the SAW continuous spectrum and thereby with EPMs (Podestà,
2012).
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Among the physics issues addressed in this work, the
theoretical formulation of the GFLDR provides a unified
framework for linear as well as nonlinear physics studies and
may serve as a useful interpretative tool for numerical
simulation results and experimental observations. Linear
stability problems essentially require the use of already
available comprehensive gyrokinetic (or equivalent) codes
along with careful modeling of realistic plasma equilibria and
physical boundary conditions. The many benchmarking
activities in progress worldwide give confidence that such
predictions on linear physics will be available in the near
future. As to nonlinear physics, we have shown that the
governing equation for the fluctuation radial envelope has the
theoretical structure of a NLSE with integrodifferential non-
linear terms. In simplified examples, this equation is shown to
yield convective amplification of radially outward-moving
EPM wave packets, accompanied by secular displacement of
resonant EPs, as well as a fishbone burst cycle. Comparisons
among reduced nonlinear theoretical models, numerical sim-
ulations, and experimental observations in present toroidal
devices have already started providing new insight into the
fundamental issues underlying these processes. Current theo-
retical understanding of nonlinear physics have, in particular,
indicated the crucial importance of equilibrium geometry,
plasma nonuniformities, radial mode structures, and kinetic
processes. Simplified descriptions based on the analogy of the
resonant excitation of SAWs by EPs with the 1D bump-on-tail
problem are capable of capturing some of the important
nonlinear dynamics near marginal stability, but, however,
do not address the important roles of radial mode structures
and plasma nonuniformities. Nonlinear physics therefore
require substantially more significant effort to reach the level
of maturity for reliable predictions of Alfvénic fluctuation and
related transport in reactor relevant conditions. The rapid
development of impressive diagnostics systems and numerical
simulation capabilities renders it feasible that one can expect
rapid advance in this important area.
The intended scope of this review has left out several

important topics. For example, high-frequency fluctuations
(jωj≳ Ωi) have been neglected, although there is evidence of
fusion alpha-particle driven ion cyclotron emission [see, e.g.,
Cauffman et al. (1995)], interpreted as resonantly excited
compressional Alfvén eigenmodes (CAEs) (Belikov,
Kolesnichenko, and Silivra, 1995; Gorelenkov and Cheng,
1995a, 1995b; Fülöp et al., 1997). The CAE phenomenology
has been widely studied in NSTX (Fredrickson et al., 2002;
Fredrickson, Gorelenkov, and Menard, 2004). Another impor-
tant aspect involving the interaction of EPs with waves in the
high radio-frequency (rf) range is the so-called alpha chan-
neling (Fisch and Rax, 1992; Fisch, 2006, 2010, 2012), i.e.,
“the diversion of energy from energetic alpha particles to
waves” (Fisch, 2000), as an “attempt at detailed control over
plasma behavior” to facilitate the development of an eco-
nomical fusion reactor. The use of bucket transport in fusion
plasmas for removing helium ash from the plasma core as well
as burn control, profile control, and diagnostic tool was
proposed by Mynick and Pomphrey (1994) (cf. Sec. IV.E).
Kolesnichenko, Yakovenko, and Lutsenko (2010) and
Kolesnichenko, Yakovenko, Lutsenko, White, and Weller
(2010) pointed out that DAW may channel the energy and

momentum of EPs to different spatial regions, where waves
are absorbed. In this way, EP-driven instabilities may not
affect only the EP radial profiles, but alter thermal plasma
transport as well, notably, the electron heat transport across the
equilibrium magnetic field and the plasma rotation profile,
consistent with observations in NSTX (Stutman et al., 2009)
and W7-AS (Kolesnichenko et al., 2005). Furthermore, it is
worthwhile mentioning that Wong et al. (2005) showed the
possibility of producing an internal transport barrier, induced
by radial redistribution of EPs due to Alfvénic instabilities.
Finally, this review has not addressed important issues related
to the intrinsic 3D nature of all real systems, including
“axisymmetric” toroidal devices. For issues such as toroidal
field ripple induced transport (Goldston and Towner, 1981;
Goldston, White, and Boozer, 1981), which arise from the
breaking of axisymmetry in 2D toroidal system, see the
comprehensive ITER summaries (ITER Physics Expert
Group on Energetic Particles, Heating and Current Drive,
1999; Fasoli et al., 2007) and recent reviews by Gorelenkov,
Pinches, and Toi (2014) and Pinches et al. (2015). Here we
emphasized that AEs may cause global EP losses through
induced ripple trapping, as discussed by White et al. (1995).
For the similarities and differences between tokamaks and
stellarators, recent and comprehensive reviews are given by
Kolesnichenko et al. (2011) and Toi et al. (2011).
Looking beyond, we note that there are two issues which

have received increasing attention within the fusion commu-
nity. One deals with EP transport in the presence of many
modes as expected in ITER. The other deals with the
investigation of burning fusion plasmas as complex systems,
with many interacting degrees of freedom, where the long
time-scale behavior will ultimately determine the reactor
performance. These two interlinked issues are further articu-
lated in Secs. VI.A and VI.B, which then conclude this review.

A. Energetic-particle transport in the presence of many modes

Collective oscillations excited by EPs in burning plasmas
are characterized by a dense spectrum of modes with
characteristic frequencies and spatial locations (Chen and
Zonca, 2007a; Chen, 2008). One crucial issue, as noted at the
beginning Sec. V, remains the realistic prediction of global
transport of EPs and fusion products and their impact on the
system material walls. While quasilinear theory is suited for
explaining EP transport by plasma turbulence (cf. Sec. V), it
was argued that the onset of phase-space stochasticity may be
described by a “line-broadened” quasilinear model (Berk,
Breizman, Fitzpatrick, and Wong, 1995), accounting for a
discrete spectrum of overlapping modes in the case of multiple
AEs (Berk et al., 1996) and which was recently extended and
applied to the analysis of beams interacting with AEs in DIII-
D (Ghantous et al., 2012). A detailed discussion of model
assumptions and validity limits was given by Ghantous, Berk,
and Gorelenkov (2014). The actual transition to stochastic
behavior in realistic systems, however, depends on the details
of plasma nonuniformities and equilibrium geometries via
resonance conditions and finite mode structures (cf. Sec. V),
as recently shown by White et al. (2010a, 2010b). For this
reason, the only presently viable modeling of EP losses by
multiple AEs is test-particle transport or more sophisticated
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nonlinear simulations with gyrokinetic or equivalent codes
(cf. Sec. II). Simulations along these lines, using linear
fluctuation spectra and mode structures, were carried out
for ASDEX Upgrade (Schneller et al., 2013) and are being
pursued for ITER (Lauber, 2015; Schneller, Lauber, and
Briguglio, 2016) (cf. Sec. IV.D.4). Other reduced nonlinear
dynamic descriptions are possible as discussed in Secs. IV.A
and IV.D.5, which may offer a useful tool for gaining deeper
insights into the underlying physics.
The DAW spectrum in present day experiments is, in

general, significantly different from that expected of burning
plasmas (much lower mode numbers, corresponding to much
larger relative EP orbits compared with machine size). The
same holds for the associated kinetic processes and cross-scale
couplings yielding to complex behavior, which will be further
discussed in Sec. VI.B. Nonetheless, some aspects of complex
behavior may still be addressed in existing machines, provid-
ing precious feedbacks for theory and modeling. One example
is the analysis of EP transport during TAE avalanches in
NSTX, where multiple modes are excited and the resultant EP
redistributions are so far not completely understood
(cf. Sec. V). Nonlinear simulation tools may be needed to
yield more reliable interpretations of these observations
(Fredrickson et al., 2009, 2013).

B. Complex behavior in burning plasmas

A burning plasma is a complex self-organized system,
where among the crucial processes to understand there are
(turbulent) transport and fast-ion–fusion product induced
collective effects (Zonca et al., 2006). Complexity and self-
organization are intrinsic to the very nature of burning
plasmas, where the self-sustainment of fusion reactions for
efficient power production requires that stationary conditions
are achieved when in D-T plasmas almost the whole power
density balance to compensate losses is provided by heating
from fusion alphas. Meanwhile, fast ions in the same MeV
energy range, produced mainly by ICRH and negative NBI
(NNBI), will be used to heat and fuel the thermal plasma,
provide rotation, and drive current. Together with fusion
produced alpha particles, these fast ions are a potential
free-energy source for driving collective plasma oscillations,
which may induce or enhance transport processes.
Complexity and self-organization are consequences of the
interaction of EPs with plasma instabilities and turbulence; of
the strong nonlinear coupling mediated by the EP population
that will take place between fusion reactivity profiles, pressure
driven currents, MHD stability, transport, and plasma boun-
dary interactions; and, finally, of the long time-scale nonlinear
(complex) behavior that may affect the overall fusion perfor-
mance and eventually pose issues for the stability and control
of the fusion burn. The role of EPs is also unique as mediators
of cross-scale couplings, for they can drive instabilities on the
mesoscales, intermediate between the microscopic thermal ion
Larmor radius and the macroscopic plasma equilibrium scale
length. EP-driven Alfvénic instabilities could also provide a
nonlinear feedback onto the macroscale system via the inter-
play of plasma equilibrium and fusion reactivity profiles, as
well as excite microscopic radial mode structures at SAW
continuum resonances, which by mode conversion yield

fluctuations that may propagate and be absorbed elsewhere
(Kolesnichenko, Yakovenko, and Lutsenko, 2010).
Furthermore, noting that instabilities may also be excited
from microscales to mesoscales to macroscales (cf. Sec. III)
has made the theoretical approach based on an extended
inertial range dubious for burning fusion plasmas.
These physics are unique to burning plasmas and require a

conceptual shift with respect to the way phenomena are
currently investigated in present day experiments. For exam-
ple, EP power density profiles and characteristic wavelengths
of the collective modes in reactor relevant plasmas will be
different. MeV energy ion tails, meanwhile, will provide the
dominant electron heating and, thereby, introduce different
weighting of the electron driven microturbulence.
Furthermore, plasma operation scenarios will reflect different
plasma edge conditions and plasma wall interactions at high
density and low collisionality. For these reasons, important
roles will be played by predictive capabilities based on
numerical simulations (Batchelor et al., 2007; Lauber,
2013) as well as by fundamental theories for developing
simplified yet relevant models, to provide the necessary
insight into the basic physics processes. Experiments in this
respect have a key role in providing experimental evidence for
modeling verification and validation. In the perspective of
ITER (Tamabechi et al., 1991; Aymar et al., 1997), it is crucial
to investigate these physics issues, exploiting positive feed-
backs between experiment, numerical simulation, and theory,
and integrating the largest number of aspects that are impor-
tant for complexity in reactor relevant plasmas.
In addition to spontaneous generation by DWT, zonal flows

including the finite-frequency geodesic acoustic mode (GAM)
(Winsor, Johnson, and Dawson, 1968) or more generally ZS
can also be generated by nonlinear AE and EPM dynamics,
depending on proximity to marginal stability (cf. Sec. IV.C).
Meanwhile, strongly driven EPMs cause radial modulations in
EP profiles, affecting thus the EP distribution function
(cf. Secs. IV.D.5 and IV.D.6), which may produce similar
structures in the electron temperature profile and eventually
alter the free-energy source driving DW turbulence and
transport. In general, the ZS evolution must be self-
consistently determined with that of all other relevant non-
linearly coupled degrees of freedom and could determine the
long time-scale nonlinear dynamics of burning plasmas and,
thereby, the reactor fusion performance.
In this respect, one important issue is the determination of

hierarchy of relevant nonlinear time scales for the various
cross-scale couplings including realistic conditions, such as
proper equilibrium geometry, spatial nonuniformity, and
kinetic effects (Zonca, 2008; Zonca and Chen, 2008; Zonca
et al., 2013, 2015a). Numerical simulations as well as
experimental studies are beginning to address these issues.
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