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These lectures give an introduction to the quantum physics of black holes, including recent
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I. INTRODUCTION

Black holes are fascinating objects in quantum gravity.
Starting from fairly mundane initial conditions (such as a
collapsing star), nature is able to produce a geometry that
amplifies short-distance fluctuations to macroscopic sizes.
This “stretching” of spacetime circumvents the Wilsonian
decoupling of high-energy physics from low-energy physics,
making deep questions of Planck-scale dynamics relevant for
low-energy (thought) experiments.1 Indeed in an extraordi-
nary pair of classic papers, Hawking (1975, 1976) argued first
that this stretching of fluctuations causes black holes to
evaporate and second that the evaporation process is incon-
sistent with the quantum mechanical principle that pure states
always evolve to other pure states. This conclusion is usually
called the black hole information problem, and it has
instigated a large amount of research in the almost 40 years
since Hawking’s papers. Is information indeed lost? If not,
then what is the nature of the Planckian interference that
prevents it? Significant progress has been made on these

1This amplification is also present in an expanding universe, and it
seems likely that a complete understanding of black hole physics will
lead to valuable lessons for quantum cosmology.
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questions, but recent work has emphasized the extent to which
we still do not have satisfactory answers to them.
The goal of these lectures is first to give an introduction to

as much as is reasonable of the techniques that go into
formulating and analyzing these questions, and second to give
an overview of the new paradoxes that have led to an
explosion of recent work on the subject. I also discuss some
ideas that have been proposed to resolve the paradoxes, but I
by no means aim at a comprehensive review; I have through-
out done my best to prioritize pedagogy over completeness.
Of course in a field as chaotic as this one currently is, my
views on which material should be included will be somewhat
idiosyncratic. As a general rule I attempted to give, or at least
sketch, the “real” arguments for things. When the foundations
of the subject are under as much doubt as they are here, it is
my view that sloppy logic should be avoided as much as
possible.
Occasionally some details of the material are new, but I

try to not call attention to this since it is awkward and
tedious, and in any event my “improvements” are mostly
cosmetic.
Not all sections of the notes are equally important in getting

to the paradoxes of Sec. VII. Sections II and III are essential,
as are Secs. IV.A–IV.F. From there things get more flexible,
and Secs. IV.G and IV.H can be skipped on a first reading, as
can Secs. V.D–V.F. When the lectures were actually presented
I skipped all of Sec. VI, although I would not necessarily
recommend that to the reader.
A considerable amount of background material is

reviewed in the online Supplemental Material to this article
and is referred to throughout [193]. Readers who wish to
avoid this cross referencing may instead use the arXiv
version of this article, where this material is included as
appendixes.
Finally a comment on the target audience for these notes:

the lectures were given at the 31st winter school on
theoretical physics at Hebrew University in Jerusalem to
a diverse audience, including condensed matter, quantum
information, and high-energy theorists. The situation might
be described by saying that the union of their background
knowledge was maximal but the intersection was empty.
On behalf of the first two groups I have fairly extensively
reviewed rather standard facts about general relativity,
black holes, and AdS/CFT. On behalf of the first and third
groups I have done the same for some basic results in
quantum information theory. Quantum field theory (QFT)
is familiar to at least the first and third groups, but even
they might not be comfortable with the aspects of it I use
here, so on behalf of all three I have reviewed that as well. I
hope that this will not cause the resulting size of these
notes to deter potential readers from quickly jumping to
whatever aspect they find most interesting. My reason for
writing these notes is that there did not seem to be a
convenient source for many of the things discussed here,
some of which are dispersed throughout the literature and
some of which are widely known but as far as I know do
not appear in print anywhere. The source with the most
overlap is probably Susskind and Lindesay (2005), from
which I learned many of the things in the earlier sections of
these notes. For other shorter reviews, see Preskill (1992),

Giddings (1994), and Mathur (2009). I have heard from
many people that there is a high barrier of entry to this
field, and I hope I have lowered it a bit.

A. Conventions

To simplify equations, starting in Sec. II.B I work in units
where the Schwarzschild radius 2GM is set to 1. This is a silly
convention to use once we begin to consider situations where
the black hole mass is time dependent, so it stops in Sec. IV.D.
In Sec. V I switch to Planckian units where 8πG≡ l2

p is set to
1, in Sec. VI I instead set the anti–de Sitter radius to 1, and
from Sec. VII onward the equations are simple enough that I
keep all three explicit. Like any civilized person I will of
course set c ¼ ℏ ¼ kB ¼ 1 throughout.
I use the symbol Ω in two different contexts; I denote

ground state wave functions as jΩi, and I refer to coordinates
on the sphere Sd as Ω. dΩ2

d is the standard “round” metric on
Sd, dΩd is the volume element for use in integrals, and

Ωd ≡ 2π½ðdþ 1Þ=2�
Γ½ðdþ 1Þ=2�

is the volume.
In multipartite quantum mechanical systems I refer to the

subsystems by capital Roman letters such as A; B;…, I refer to
their associated Hilbert spaces as HA;HB;…, and I call the
dimensions of their Hilbert spaces jAj; jBj;….
Except for Sec. VI I work almost exclusively in 3þ 1

spacetime dimensions. Results for asymptotically Minkowski
black holes in other dimensions can be obtained from the
AdS formulas in Sec. VI by taking the limit rads → ∞. I will
not discuss black holes with charge or angular momentum.
These more general black holes provide interesting labora-
tories for the information problem and reconstructing the
interior, but in the end they so far do not seem to add much
conceptually.

II. CLASSICAL BLACK HOLES

In this section I review the main properties of classical black
holes in general relativity. For readers who are unfamiliar with
this theory I give an extremely compact description in Sec. I of
the Supplemental Material [193].

A. The Schwarzschild geometry

The Schwarzschild geometry is the unique source-free
solution of Einstein’s equation with spherical symmetry
that approaches ordinary Minkowski space at large dis-
tances. By itself the Schwarzschild geometry does not quite
describe a black hole in the astrophysical sense, but
understanding it is a necessary prerequisite for studying
them. Explicitly the spacetime metric for the Schwarzschild
geometry is given by

ds2 ¼ −
r − 2GM

r
dt2 þ r

r − 2GM
dr2

þ r2ðdθ2 þ sin2θdϕ2Þ: ð1Þ
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Here G is Newton’s gravitational constant and M is a
parameter with units of mass.2 The quantity in brackets is
the unit metric dΩ2

2 on the two sphere S2, so the coordinate
r parametrizes the proper size of this S2. r ¼ 0 and r ¼
2GM are clearly special, and most of the interesting
physics of black holes lies in understanding what happens
at these two radii.
At r ¼ 0 the S2 shrinks to zero size and the metric diverges;

this is called the singularity. This pathology can be described
in a coordinate-invariant way as the divergence of the fully
contracted Riemann tensor RαβγδRαβγδ. Since the Riemann
tensor physically encodes the strength of tidal effects on freely
falling objects, this divergence leads to formally infinite tidal
forces that would destroy anyone unfortunate enough to find
herself in the vicinity of r ¼ 0. These divergences are
probably regulated by Planck-scale physics, but that is little
consolation.
The radius rs ≡ 2GM is called the Schwarzschild radius.

The metric appears to also be singular here, but we see in the
next section that unlike the singularity at r ¼ 0 this singularity
is a spurious artifact of our choice of coordinates. At least
classically it does not lead to any locally detectable diver-
gence. Something important globally does happen at r ¼ rs;
in Eq. (1) the signs of the coefficients of dr2 and dt2 switch.
The coordinate r has become timelike, and any test particle
which falls into the region with r < rs will necessarily
continue to evolve toward smaller r until it approaches the
singularity. Somebody inside of the horizon cannot prevent
this for the same reason you cannot prevent yourself moving
forward in ordinary time. This is true even for massless
particles, so the region behind the horizon is completely
invisible to anybody who stays outside at r > rs.

3

In any spacetime, if the set of points that can ever send a
signal to a particular timelike geodesic has a boundary then
that boundary is called the event horizon of the geodesic. In
the Schwarzschild geometry we are especially interested in
timelike geodesics that stay outside of the black hole for all
times, and the surface r ¼ rs is the event horizon for any such
geodesic. In this case this surface is usually just called the
horizon of the black hole.
One very important feature of the Schwarzschild horizon is

its gravitational redshift. As we approach the horizon, a fixed
unit of coordinate time counts for less and less proper time

along a curve of fixed r. This means that signals sent with a
fixed energy from a point that gets closer and closer to the
horizon have lower and lower energy when they reach
r ≫ 2GM. Conversely, a signal propagating away from the
horizon that has some fixed energy at r ≫ 2GM has higher
and higher energy from the point of view of a fixed r observer
as we move r closer and closer to 2GM. This feature seems to
allow an observer at r ≫ 2GM to be sensitive to very high-
energy physics, and it is at the heart of the connection between
black hole thought experiments and quantum gravity.

B. The Kruskal extension

The ðt; r;ΩÞ coordinate system we used in the previous
section is convenient for thinking about experiments in the
r ≫ 1 region, but it is not well suited for understanding near-
horizon physics.4 A better choice is the Kruskal-Szekeres
coordinates. These are motivated by first observing that radial
null geodesics in the Schwarzschild geometry can be para-
metrized as

t ¼ �r� þ C; ð3Þ

where C is some constant of motion and r� is a new radial
coordinate

r� ≡ rþ logðr − 1Þ: ð4Þ

r� is called the “tortoise” coordinate, presumably because it
fits an infinite coordinate range into a finite geodesic distance.
The Kruskal-Szekeres coordinates are then defined as

U ≡ −eðr�−tÞ=2; ð5Þ

V ≡ eðr�þtÞ=2: ð6Þ

By construction they have the property that lines of constantU
or V are radial null geodesics. These coordinates have the
convenient feature that

UV ¼ ð1 − rÞer; ð7Þ

so the singularity is when UV ¼ 1 while the horizon is when
either U or V is zero. The metric is

ds2 ¼ −
2

r
e−rðdUdV þ dVdUÞ þ r2dΩ2

2; ð8Þ

where r is obtained implicitly from Eq. (7). The off-diagonal
nature of the metric may appear unfamiliar, but it can be easily
removed by defining yet another set of coordinates

U ¼ T − X;

V ¼ T þ X; ð9Þ

in terms of which the metric is

2To understand the physical meaning of the parameter M, we can
observe that for r ≫ 2GM the geodesic equation (6) of the Supple-
mental Material for a massive nonrelativistic test particle in this
geometry reduces to the standard Newtonian equation

m ̈~x ¼ −
GmM
r2

r̂ ð2Þ

for the motion of a particle about a point source of mass M. Many
experimental tests of general relativity are based on detecting the
Oðr=2GMÞ corrections to this approximation.

3These statements can be justified more carefully by studying the
geodesic equation in the Schwarzschild metric. One also finds that
any massive observer will always reach the singularity in a finite
proper time. In fact one survives the longest by not struggling; firing
rockets to try to escape just causes you to die faster. 4From here until Sec. IV.D I work in units where rs ¼ 2GM ¼ 1.
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ds2 ¼ 4

r
e−rð−dT2 þ dX2Þ þ r2dΩ2

2: ð10Þ

Note that there is now no singularity of any kind at r ¼ 1.
Equation (10) defines a geometry over the full XT plane. It

is interesting to understand which parts of it correspond to the
regions discussed in the previous Sec. II.A. This is illustrated
in Fig. 1. The region defined by r > 1, −∞ < t < ∞ in the old
Schwarzschild coordinates is sent to the right blue wedge. In
continuing to r < 1, however, there is a branch cut in the
definition (5) which allows us to either reach the region T > 0,
X2 − T2 < 0, shown in green, the region T < 0, X2 − T2 < 0,
which is shown in red. The singularity at r ¼ 0 is the
hyperboloid X2 − T2 ¼ −1, so it has not one but two con-
nected components, one at the boundary of each of these
regions. I refer to these two regions as the future and past
interiors, respectively. Finally there is a fourth region, the left
blue wedge, which is a second asymptotically Minkowski
region in which we can again have r ≫ 1. Combining all of
the regions, we can interpret the full Schwarzschild geometry
as a wormhole connecting two asymptotically flat universes,
each of them behaving at r ≫ 1 as if there were a gravitational
point source of mass M. The wormhole is nontraversable in
the sense that no signal can be sent from one blue region to the
other, but observers who jump in from opposite sides are able
to meet in the middle and compare notes.

C. Penrose diagrams

In gravitational thought experiments we are often uninter-
ested in the details of the spacetime geometry. We might care
only about the causal structure of the spacetime in the sense of

which points can receive signals from which other points. If
this is the case, then we should be able to throw out some of
the irrelevant information in the metric. Indeed the following
theorem gives us a useful way to do this:

• Theorem: Two spacetimes whose metrics differ only by
multiplication by a positive scalar function on the space-
time, that is, which are related as g0μνðxÞ ¼ e2ωðxÞgμνðxÞ
for some smooth real function ωðxÞ, have the same null
geodesics. Timelike and spacelike geodesics in one metric
will not necessarily be timelike or spacelike geodesics in
the other, but timelike and spacelike curves in one metric
will be timelike or spacelike curves in the other.

Two metrics which are related in this way are said to be
conformally equivalent. The proof of this theorem is not
difficult and is left to the interested reader as an exercise.
It was realized long ago by Penrose that this theorem gives

an elegant way to represent the asymptotic behavior of
spacetimes at large distance (such as the r → ∞ limit in
Minkowski space). The idea is to judiciously choose a
function ωðxÞ that diverges as we approach infinity in just
such a way that infinity is brought in to finite proper distance.
We may then include infinity as a boundary of the spacetime,
turning it into a manifold with boundary. This procedure is
called conformal compactification.
Conformal compactification is perhaps best understood

by studying an example, so let us consider ordinary flat
Minkowski space. The usual spacetime metric is

ds2 ¼ −dt2 þ dr2 þ r2dΩ2
2: ð11Þ

There is interesting asymptotic behavior as we take r → ∞
and/or jtj → ∞ that we would like to analyze. The rough idea
is to use the function arctanðxÞ to “pull in” the boundary to
finite distance, but to preserve the simplicity of the causal
structure we need to do this in lightlike directions. We thus
define

T þ R≡ arctanðtþ rÞ;
T − R≡ arctanðt − rÞ; ð12Þ

which gives a metric

ds2 ¼ 1

cos2ðT þ RÞcos2ðT − RÞ

×

�
−dT2 þ dR2 þ

�
sinð2RÞ

2

�
2

dΩ2
2

�
: ð13Þ

These new coordinates have ranges jT � Rj < π=2, R ≥ 0, so
we can now compactify the spacetime by including the points
at the boundary jT � Rj ¼ π=2. The prefactor diverges at this
boundary, as itmust since the boundary is infinitely far away, but
we can now use the theorem to define a new spacetime with the
same causal structure as Minkowski space by simply removing
this prefactor. This construction is illustrated in Fig. 2.
The new boundary is naturally divided into five parts: past

and future timelike infinity, marked as i∓ in the figure, past
and future null infinity, marked as J∓ in the figure, and spatial
infinity, marked as i0 in the figure. i∓ are where timelike
geodesics “come from” and “go to,” J∓ are the same for null

T

r=0

X

U=0V=0

r=0

FIG. 1. The XT plane of the Kruskal extension. Lines of
constant U and V, or in other words radial null geodesics, are
straight lines with slope �π=4. Lines of constant r are hyper-
boloids centered at the origin, with the blue regions having r > 1
and the red/green regions having r < 1. The horizons are the
dashed lines. The original exterior region is the right light blue
wedge, the new exterior is the left blue wedge, the future interior
is in green, and the past interior is in red. It is manifest that no
radial null geodesic can escape the future interior into one of the
blue regions, and it is also clear that no null geodesic connects the
right and left blue wedges.

015002-4 D. Harlow: Jerusalem lectures on black holes and quantum …

Rev. Mod. Phys., Vol. 88, No. 1, January–March 2016



geodesics, and i0 is where spatial geodesics end. The scatter-
ing matrix maps states on J−∪i− to states on Jþ∪iþ, with
massless particles entering and leaving at J∓ and massive
particles entering and leaving at i∓. Conserved charges in
general relativity such as the total energy or electromagnetic
charge are always written as boundary integrals at i0. The
diagram also makes it clear that there are no event horizons in
Minkowski space; any timelike geodesic can eventually
receive signals from everywhere in the space.
The right-hand diagram in Fig. 2 is our first example of a

Penrose diagram. It is an extremely compact way of describing
the causal structure of the spacetime without any extraneous
details. Just from the diagram we have already seen that this
spacetime has no horizons, and that it should have a nice
description in terms of an S matrix.
Let us now understand in more detail what happened to the

other two dimensions. At each point of the Penrose diagram
there is an S2 which we have suppressed. It is the spherical
symmetry of the metric (13) which allows us to do this without
losing much information about the spacetime, and indeed
we can draw a similar diagram for any spacetime with S2

symmetry. There are only two ways to have a boundary of a
Penrose diagram: one is for the S2 to have infinite size, as
happens at jT � Rj ¼ π=2 in our Minkowski diagram. The
other way is for the S2 to collapse to zero size, as happens at
R ¼ 0. In the interior of the diagram, the spacetime is locally
just a product manifold where the radius of the S2 varies as we
move around in the diagram; this is often called a warped
product.5

Another useful example of a Penrose diagram is that of
de Sitter space, which has metric

ds2 ¼ −dτ2 þ cosh2τdΩ2
3: ð14Þ

This is a solution of Einstein’s equation with positive vacuum
energy, and it is a good approximation to the geometry of
our Universe today at the largest scales, as well as during
cosmological inflation in the past. The spatial geometry is an
S3 which first shrinks exponentially to some minimum size
and then expands exponentially. The Penrose diagram of
de Sitter space is shown in Fig. 3. From the diagram it is easy
to see two important properties of de Sitter space:

• de Sitter space has event horizons. Two observers
moving on timelike geodesics, say vertical straight lines
in the diagram, will eventually be unable to communi-
cate. Crudely this is because the accelerating expansion
of the Universe has caused them to be moving away from
each other faster than light.

• de Sitter space has no infinite spatial boundary i0, nor
any separate lightlike infinity J� distinct from i�. This is
a serious problem for attempts to formulate a quantum
theory of de Sitter space, since existing well-defined
theories of quantum gravity require at least one of these.
In particular there is no straightforward sense in which
de Sitter space has an S matrix.

Finally we of course should understand the Penrose dia-
gram of the Schwarzschild geometry. The Kruskal-Szekeres
coordinates have already done most of the work for us, since
the metric is already in the form (10). From a causal structure
point of view the only difference between these ðT; X;ΩÞ
coordinates and the ðt; r;ΩÞ coordinates in Minkowski space
we just considered are their ranges. In Minkowski space we
had −∞ < t < ∞ and r ≥ 0, while for the Kruskal-Szekeres
coordinates we have X2 − T2 > 1. We can use the same
compactification transformation as for Minkowski space

T 0 þ X0 ≡ arctanðT þ XÞ;
T 0 − X0 ≡ arctanðT − XÞ; ð15Þ

but now instead starting with the diamond jR� Tj < π=2 and
throwing out the region R < 0, we instead start with the
diamond jX0 � T 0j < π=2 and throw out the region jTj > π=4.
The resulting Penrose diagram is shown in Fig. 4. This

R

T

π/2

-π/2

π/2 i

i

i

0

+

-

J

J

+

-

FIG. 2. On the left, the full Minkowski space is the pink wedge
in the RT plane. Radial light rays move on lines of slope �π=4.
Some slices of constant t are shown in blue and a slice of constant
r is also shown in red. On the right we formalize this into a
genuine Penrose diagram.

i

i

+

-

FIG. 3. The Penrose diagram of de Sitter space. The S2 shrinks
to zero size on both the left and right boundaries, while it grows to
infinite size at i�. Note that here i� are each spacelike surfaces
instead of just points; it is this property that leads to the presence
of horizons.

5More generally, in d spacetime dimensions Penrose diagrams are
useful anytime we can write the geometry as a warped product of a
d − 2 dimensional space over some subset of the two-dimensional
plane.
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diagram is rather similar to the Kruskal diagram in Fig. 1, but
the spacetime boundaries are now explicitly shown.

D. Real black holes

So far I have not said much about black holes. The reason is
that the Schwarzschild geometry, with its two asymptotic
infinities and no matter, is not a good description of the black
holes that usually form in nature. Real astrophysical black
holes result from the gravitational collapse of ordinary matter
either at the end of the life of a star or in the center of a galaxy.
These processes have some irritating limitations arising from
details of particle physics. For example, there is a lower bound
on the mass of black holes that can form from stellar collapse:
below a mass which is of the order of the solar mass M⊙,
gravitational collapse is halted by the formation of a neutron
star and no black hole is created.6 To avoid having to worry
about this kind of thing, it is convenient to instead imagine
making a black hole out of a spherically symmetric infalling
shell of photons.7 The infalling shell can be very diffuse at the
moment when it passes through its own Schwarzschild radius,
so there is no obstacle to forming a black hole in this way. In
fact we can explicitly construct the geometry in this case by
sewing together a piece of Minkowski space and a piece of the
Schwarzschild solution. The Penrose diagrams for these two
methods of collapse are shown in Fig. 5.
It is interesting to note that in the case of the collapsing

photon shell, the horizon extends into the region that is purely

Minkowski space. Somebody who was passing through the
horizon down at that point would have absolutely no idea that
his fate was sealed. In fact we could currently be passing
through the horizon of some gigantic yet-to-be-formed black
hole, and we would not know. This illustrates the “acausal”
nature of horizons; their locations depend on events that have
not yet happened.

III. ENTANGLEMENT IN QUANTUM FIELD THEORY

I will now take a break from black holes to recall some basic
facts about relativistic quantum field theory.

A. Quantum field theory

A quantum field theory is a particular quantum mechanical
system where the Hilbert space can be thought of as an infinite
tensor product over all points in space of a finite number of
degrees of freedom at each point.8 The simplest example is a
single degree of freedom at each spatial point: a scalar field
ϕðxÞ. The Hilbert space is spanned by states jϕi where the field
has a definite value at each point in space. Time evolution is
generated by a Hamiltonian H which is usually taken to be a
single integral over space of some fairly simple function of the
degrees of freedom and their derivatives. For example, a free
scalar field of mass m has a Hamiltonian

J

i

JJ

J

i

i

ii

i00

+ +

++

-
-

--

FIG. 4. The Penrose diagram for the Schwarzschild geometry.
The S2 shrinks to zero size only at the singularities at the top and
bottom horizontal lines. There are two copies of the asymptotic
boundaries of Minkowski space, one on either side. For con-
venience the horizons are marked with dashed lines.

FIG. 5. Classical black hole formation. Left: A black hole
forming from the collapse of a cloud of massive particles, shown
in orange. Right: A black hole forming from the collapse of a
spherical shell of photons. In both cases the top boundary is the
singularity, the left boundary is the origin of polar coordinates,
and the other boundaries are the usual asymptotic ones for
Minkowski space. In the right-hand figure, the geometry above
the orange line is exactly a piece from the upper right corner of
the Schwarzschild geometry, while below it we have a piece of
Minkowski space. As usual the horizon is a dashed line.

6This bound is fairly easily understood as a consequence of the
uncertainty principle. A neutron star is a degenerate Fermi gas of
neutrons, so the typical neutron momentum kn is of the order of the
inverse spacing of the neutrons, which is of the order of N1=3=R,
where N ¼ M=mn is the total number of neutrons, R is the radius of
the star,M is its mass, and mn is the mass of a neutron. We can relate
M and R by equating the gravitational energyGM2=R and the kinetic
energy Nk2n=mn. Demanding that the neutrons stay nonrelativistic,
i.e., that kn ≲mn, gives M ≲mpðmn=mpÞ2 ≈ M⊙ for the existence
of a neutron star, wheremp is the Planck mass. Determining theOð1Þ
coefficient requires more work; see, for example, Bombaci (1996),
where a bound between 1.5M⊙ and 3M⊙ is quoted.

7If you do not want to assume the existence of photons then you
can use gravitons instead.

8The infinite number of points on a spatial slice is the source of the
well-known UV (short-distance) and IR (long-distance) divergences
of quantum field theory. IR divergences can be regulated by working
in finite volume, while UV divergences can be controlled by instead
considering a theory with degrees of freedom only on some fine
spatial lattice of points. It is rather awkward to carry this around
explicitly, so for the most part I will not attempt to. I will bring back
the UV cutoff occasionally when it is needed to regulate a divergence.
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H ¼ 1

2

Z
d3x½πðxÞ2 þ ~∇ϕðxÞ · ~∇ϕðxÞ þm2ϕðxÞ2�: ð16Þ

Here πðxÞ is the canonical momentum −iδ=δϕðxÞ conjugate to
ϕ; together they obey

½ϕðxÞ; πðyÞ� ¼ iδ3ðx − yÞ;
½ϕðxÞ;ϕðyÞ� ¼ 0;

½πðxÞ; πðyÞ� ¼ 0: ð17Þ

Note that these commutation relations are consistent with the
statement that fields at different points act on different tensor
factors of the Hilbert space. This Hamiltonian follows from the
Lorentz-invariant action

S ¼ −
1

2

Z
d4xð∂μϕ∂μϕþm2ϕ2Þ: ð18Þ

In conventional quantum mechanics we are often interested
in explicitly describing the ground state wave function jΩi.9
This is possible for the free massive scalar field; indeed one
can show (Weinberg, 1995) that

hϕjΩi ∝ e−ð1=2Þ
R

d3xd3yϕðxÞϕðyÞKðx;yÞ; ð19Þ

where

Kðx; yÞ ¼
Z

d3k
ð2πÞ3 e

i~k·ð~x−~yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k2 þm2

q

¼ m
2π2r

d
dr

�
1

r
K−1ðmrÞ

�
: ð20Þ

Here r≡ jx − yj and K−1 is a modified Bessel function
(Abramowitz and Stegun, 19645). This expression is not
particularly useful, however, and it is rather inconvenient to
generalize to theories with interactions.
Rather than trying to write down the vacuum wave

functional explicitly it is usually more fruitful to instead
study the vacuum expectation values of products of
Heisenberg picture fields ϕðt; xÞ≡ eiHtϕðxÞe−iHt. For the
free massive scalar field we can write a simple expression
for the solution of this operator equation of motion:

ϕðt; xÞ ¼
Z

d3k
ð2πÞ3

1ffiffiffiffiffiffiffiffi
2ωk

p ½eið~k·~x−ωktÞa~k þ e−ið~k·~x−ωktÞa†~k�;

ð21Þ

where ωk ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k2 þm2

q
. The creation and annihilation oper-

ators a~k, a
†
~k
obey

½a~k; a†~k0 � ¼ ð2πÞ3δ3ð~k − ~k0Þ;
½a~k; a~k0 � ¼ 0;

½a†~k; a
†
~k0
� ¼ 0;

½H; a~k� ¼ −ωka~k:

The vacuum state jΩi is annihilated by all of the a~k, and
low-lying excitations are created by acting on the vacuum
with a†~k’s.
More abstractly what this expression says is that we look

for a complete basis of positive-frequency solutions10 fnðxÞ to
the wave equation

ð∂μ∂μ −m2Þfðt; xÞ ¼ 0: ð22Þ

We do not want solutions that grow at infinity, so we want
them to in some sense be normalizable. The best choice is to
have the solutions fn be orthonormal in the Klein-Gordon
(KG) norm

ðf1; f2ÞKG ≡ i
Z

d3xðf�1 _f2 − _f�1f2Þ: ð23Þ

To each fn we then associate an annihilation operator an, and
we express the field as

ϕ ¼
X
n

ðfnan þ f�na
†
nÞ: ð24Þ

The choice of normalization ensures that an and a†n have the
standard algebra. The solutions fn are typically referred to as
“modes.” In Eq. (21) we chose a plane-wave set of modes,
which are delta-function normalized, but we could also have
chosen some other set. This more abstract formalism will be
very useful in thinking about black holes.
Finally we look at some vacuum expectation values in the

free massive theory. These are typically called correlation
functions. The one-point functions vanish trivially:

hΩjϕðt; xÞjΩi ¼ 0: ð25Þ

This follows from the action of the creation and annihilation
operators on the vacuum, but it is also a consequence of the
translation invariance of the vacuum. The two-point function
is more interesting, when the two points are at equal times it is
given by

hΩjϕð0; xÞϕð0; yÞjΩi ¼ 1

4π2
m

jx − yjK1ðmjx − yjÞ: ð26Þ

This correlation function scales as 1=jx − yj2 for
jx − yj ≪ m−1, while for jx − yj ≫ m−1 it goes as e−mjx−yj.
When a correlation function falls exponentially with separa-
tion, the decay constant, here m−1, is often called the
correlation length. Note that if m ¼ 0, the correlation length

9In relativistic quantum field theory one often refers to the ground
state as the vacuum. I use the two terms interchangeably.

10Somewhat confusingly, positive frequency means time depend-
ence of the form e−iωt with ω > 0.
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is infinite and we have power-law behavior all the way out. In
this case the theory is sometimes said to be “gapless,” since
there are excited states with energies arbitrarily close to the
ground state energy.
In fact, a massless scalar field enjoys a symmetry larger

than just the relativistic Poincaré group; it is invariant under
the conformal group. Among other things this bigger sym-
metry group includes rescalings of spacetime x0μ ¼ λxμ, so the
theory is scale invariant. A quantum field theory with this
larger symmetry group is called a conformal field theory
or CFT.
Although the correlation function (26) is valid only in free

scalar field theory, its basic structure of short-distance power-
law divergence and long-distance decay is expected to be true
in any relativistic QFT.
We also eventually consider the two-point function when

the two fields have different times, but since fields at timelike
separation do not necessarily commute we need to be more
careful about their ordering. A particularly nice object is the
“time-ordered” two-point function hΩjTϕðt; xÞϕðt0; yÞjΩi,
which is defined by ordering the fields in such a way that
their time increases as we go to the left. This can be interpreted
as a “transition amplitude,”where we act on the vacuum with a
field ϕ at some time, evolve forward for a while, and then
compute the projection onto the state we would have gotten by
acting on the vacuum at the later time. For our free massive
scalar theory the time-ordered two-point function is

hΩjTϕðt; xÞϕðt0; yÞjΩi ¼ 1

4π2
mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jx− yj2 − ðt− t0Þ2 þ iϵ
p

×K1

�
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jx− yj2 − ðt − t0Þ2 þ iϵ

q �
;

ð27Þ

where ϵ is a positive infinitesimal quantity which is there to
remind us which branch of the square root we should take
when the points are timelike separated. We should always take
ϵ → 0 in any observable.

B. Entanglement in the vacuum

We saw in Sec. III.A that the ground state of a relativistic
QFT has nonzero correlation between field operators at
spatially separated points.11 One convenient way to interpret
this correlation is as an illustration of the entanglement of
different regions of spacetime in the vacuum of a relativis-
tic QFT.
For comparison recall the two-qubit state12

jΨi ¼ 1ffiffiffi
2

p ðj00i þ j11iÞ: ð28Þ

This state is entangled in the sense that the full state is pure
while the reduced state on either qubit is mixed, but we can
also illustrate this using correlation functions. Consider the
Pauli operators Xi, Yi, and Zi acting on the spins. Their one-
point functions in the state jΨi are all zero, but they have two-
point functions

hΨjX1X2jΨi ¼ 1;

hΨjY1Y2jΨi ¼ −1;

hΨjZ1Z2jΨi ¼ 1:

This is the same qualitative behavior for one- and two-point
functions that we saw in QFT, provided that we make the
connection that the different qubits correspond to different
regions in the QFT and the Pauli operators correspond to
fields.
More explicitly we imagine decomposing the Hilbert

space of the quantum field theory into a tensor product
of the local field degrees of freedom in a region A and its
complement B. By studying a two-point function with one
field in A and the other in B, we can learn about the
entanglement between A and B. In fact we saw that at short
distances the correlation functions are divergent, so if we
allow our two points to approach each other at the interface
between region A and region B, as illustrated in Fig. 6, the
correlation becomes infinite. This must mean that in some
formal sense there is an infinite amount of entanglement
between neighboring regions in the ground state of a
relativistic quantum field theory.
Another fairly rigorous illustration of the entangled nature

of the vacuum state in relativistic QFT is the Reeh-Schlieder
theorem (Streater and Wightman, 2000), which says that for
any region A, by acting on the vacuum jΩi with operators
located in that region, we can produce a set of states which is
dense in the full Hilbert space of the QFT. In other words, by
acting on the vacuum with some operators localized in this
classroom we can create the moon, or the Andromeda galaxy.
This is possible because of the highly entangled nature of the
vacuum. Were the field theory degrees of freedom in the
vicinity of the moon in a product state with the field degrees of
freedom here, then no operators we act with here could do
anything there.13

11The presence of interesting correlation in the ground state is a
special property of quantum field theories. The ground state of a
noninteracting nonrelativistic gas of massive particles just has all the
particles sitting on the floor.

12Readers unfamiliar with qubit notation should see Sec. II of the
SupplementalMaterial [193]. Also for a more detailed discussion of the
definition and meaning of entanglement see Sec. III.

13To see the connection with entanglement more clearly, consider
the state jΨi ¼ P

abCabjaijbi in a tensor product Hilbert space
HA ⊗ HB. For simplicity say that the dimensionalities ofHA andHB

are equal. Then if the matrix Cab is invertible, it is easy to see that we
can produce any state in the Hilbert space by acting on jΨi with an
operator which acts nontrivially only onHA. That Cab is invertible is
a statement about entanglement. In quantum field theory both
dimensionalities are infinite so one has to work harder to prove
the theorem, but this example captures the basic point. Note that a
common confusion here is that if we were restricted to only acting
with unitary operators on HA the theorem would be false, since they
would not be able to change the amount of entanglement. It is
essential that we are allowed to use nonunitary operators such as
projections.
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C. The Rindler decomposition

In Sec. III.B we demonstrated vacuum entanglement in
QFT in a rather general sense, but we want to have a more
quantitative understanding of who exactly is entangled with
whom and by how much. To this end, it is extremely useful to
introduce the Rindler decomposition of Minkowski space.
The basic idea is to pick one of the three spatial

coordinates, say x, and then divide the Hilbert space of
the field theory into a factor HR acted on by fields with x > 0
and a factor HL acted on by fields with x < 0. We then want
to find a nice basis of states for each factor in which we can
decompose the vacuum. For this purpose it is convenient to
introduce the Lorentz boost operator Kx that mixes x and t,
while acting trivially on y and z. This operator will exist in
any relativistic QFT, for example, in our free massive theory
it is given by

Kx ¼
1

2

Z
d3x½xð _ϕ2 þ ~∇ϕ · ~∇ϕþm2ϕ2Þ þ t _ϕ∂xϕ�: ð29Þ

This operator appears time dependent, but in the Heisenberg
picture the time dependence of the fields cancels the explicit
time dependence. The action of the boost operator in the xt
plane is shown in Fig. 7. As the figure makes clear, there are
four different regions on which the boost operator has a well-
defined action. On the right Rindler wedge shown in blue, it
evolves forward in time from one black line to another. On
the left Rindler wedge also shown in blue, it evolves
backward in time along the same lines. In the future and
past wedges, shown in green and red, respectively, its action
is spacelike. The resemblance of this figure to Fig. 1 is not a
coincidence. Indeed a large percentage of the confusions one
encounters about black holes is eventually resolved by
understanding the Rindler decomposition better.
In order to understand how to express the vacuum state in

the basis of boost eigenstates in the left and right Rindler
wedges, it is extremely useful to introduce the Euclidean path
integral. Recall that, in any quantum system, one way to find
the ground state is simply to act on any generic state jχi with
e−HT , where T is some long time. More precisely, we have

hϕjΩi ¼ 1

hΩjχi lim
T→∞

hϕje−HT jχi: ð30Þ

In the Euclidean path integral formalism, this means that we
can compute this wave functional as14

hϕjΩi ∝
Z

ϕ̂ðtE¼0Þ¼ϕ

ϕ̂ðtE¼−∞Þ¼0

Dϕ̂e−IE ; ð31Þ

where IE is the Euclidean action, obtained from the usual one
by analytic continuation t → −itE. For the free massive scalar
field it is

IE½ϕ̂� ¼
1

2

Z
d3xdtE½ð∂tE ϕ̂Þ2 þ ð ~∇ ϕ̂Þ2 þm2ϕ̂2�: ð32Þ

For simplicity I choose the early time boundary conditions to
be ϕ ¼ 0. In the free massive case it is possible to evaluate this
path integral explicitly to obtain Eq. (19). In understanding the
entanglement of the vacuum, however, it is more convenient to
evaluate it in a way that continues to work when interactions
are present. The method is shown in Fig. 8. It is based on the
observation that the boost operator Kx in the Euclidean plane
generates rotations in the xtE plane, as can be seen from
analytically continuing its action on t and x. So instead of
evaluating the path integral from tE ¼ −∞ to 0, we evaluate it
along the angular direction over an angle π. From the point of
view of the path integral this is just a trivial change of
variables, but it makes clear that there is an alternative Hilbert
space interpretation of the same path integral

hϕLϕRjΩi ∝ hϕRje−πKRΘjϕLiL; ð33Þ

where KR is the restriction of Kx to the right Rindler wedge
and Θ is an antiunitary operator that exists in all quantum field

AB

FIG. 6. Decomposing a QFT into a tensor product of the fields
in region A and the fields in region B. The two-point function of
fields at the indicated points diverges as they approach each other,
indicating UV-divergent entanglement between the two factors.
The boundary between the two regions is often called the
entangling surface.

x

t

FIG. 7. The Rindler decomposition of Minkowski space. The
orbits of the boost operator are shown in red, and slices of Rindler
time are shown as black straight lines. The right and left Rindler
wedges are shown in blue, the future wedge is shown in green,
and the past wedge is shown in red.

14In this expression ϕ̂ is a field history depending on both position
and time, while ϕ is the field configuration at t ¼ 0 and is thus time
independent.
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theories and is usually called CPT. Its action on a Heisenberg
picture scalar field is15

Θ†Φðt; x; ~yÞΘ ¼ Φ†ð−t;−x; ~yÞ; ð34Þ

although for a real scalar we can ignore the dagger since the
field is Hermitian; it gives a natural map betweenHL andHR.
It is needed in Eq. (33) for two reasons: first to allow us to
reinterpret the left-hand side of Eq. (33) as a matrix element
just in HR and second because in the left-hand diagram of
Fig. 8 ϕL is playing the role of a final state while in the right-
hand diagram we need an initial state. We can then evaluate
Eq. (33) by inserting a complete set of KR eigenstates:

hϕLϕRjΩi ∝
X
i

e−πωihijΘjϕLihϕRjiiR

∝
X
i

e−πωihϕLji�iLhϕRjiiR; ð35Þ

where the antiunitarity16 of Θ is used and

ji�iL ¼ Θ†jiiR: ð36Þ

Thus we arrive at the following simple expression for the
vacuum state:

jΩi ¼ 1ffiffiffiffi
Z

p
X
i

e−πωi ji�iLjiiR: ð37Þ

Note that the entanglement between the left and right
wedges is now completely manifest. We can also compute
the reduced density matrix for the right wedge:

ρR ¼ 1

Z

X
i

e−2πωi jiiRhij: ð38Þ

This is nothing other than the thermal density matrix with
temperature

T ¼ 1

2π
: ð39Þ

It may appear mysterious that the temperature (39) is
dimensionless; later I will comment on the physical meaning
of this.

D. Free fields in Rindler space

To get some more intuition for the Rindler decomposition,
we can study it in the free massive scalar theory. The basic
idea is to find a set of modes fn which are better suited to the
Rindler decomposition than the usual plane waves, and then
expand the field in creation and annihilation operators for
them. To accomplish this, it is convenient to introduce new
coordinates for the left and right Rindler wedges17:

x ¼ eξR cosh τR ¼ −e−ξL cosh τL;

t ¼ eξR sinh τR ¼ e−ξL sinh τL. ð40Þ

These coordinates have the property that evolving with the
boost operator Kx is just a translation of τR forward in time
and a translation of τL backward in time. The ξL;R coordinates
label hyperboloids that are orbits of Kx; they are also
trajectories of constant proper acceleration. The coordinate
ranges are −∞ < ξL;R < ∞, −∞ < τL;R < ∞, and they
cover the left and right Rindler wedges, respectively,
but not the future or past Rindler wedges. The surfaces
ξR ¼ −∞, ξL ¼ ∞ are usually called the Rindler horizons,
although they are not actually event horizons according
to the definition given in Sec. II.A. The metric in these
coordinates is

ds2 ¼ e2ξRð−dτ2R þ dξ2RÞ þ d~y2

¼ e−2ξLð−dτ2L þ dξ2LÞ þ d~y2; ð41Þ

where for convenience y and z are combined into a vector ~y.
The idea is then to look for solutions of the massive wave
equation of the form

fR=Lωk ¼ e−iωτR=Lei~k·~yψR=LkωðξR=LÞ; ð42Þ

where ω > 0 and the wave equation implies that ψRkω and
ψLkω obey

½−∂2
ξR
þ ðm2 þ ~k2Þe2ξR − ω2�ψRkω ¼ 0;

½−∂2
ξL
þ ðm2 þ ~k2Þe−2ξL − ω2�ψLkω ¼ 0: ð43Þ

Formally these equations are nothing but the Schrödinger
equations for a nonrelativistic particle in an exponential
potential. It can be solved explicitly in terms of Bessel
functions, but for our purposes it is sufficient simply to
observe that the normalizable solutions [in the KG norm (23)]

t

x

E

ϕ ϕL R

ϕR

LΘϕ

π

FIG. 8. Evaluating the Euclidean path integral representation of
the vacuum wave functional.

15In even numbers of spacetime dimensions one usually combines
this with a rotation of the ~y directions to invert them as well, but this is
the definition that works in any dimension.

16Remember that for an antilinear operator A the adjoint is defined
as hxjA†yi ¼ hyjAxi. If A is antiunitary then hAxjAyi ¼ hyjxi.

17In this transformation I suppressed an arbitrary choice of length
scale, which I call l, which is needed to make the units work out. I
restore it at the end of this section.
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will oscillate at sufficiently negative ξR (or sufficiently
positive ξL), and will decay exponentially at sufficiently
positive ξR (or sufficiently negative ξL). We can thus think
of the modes as being “confined” to be near the horizon, with
lower energy and/or higher tranverse momentum modes being
confined more strongly.
Of course the point of introducing these modes is that they

have definite boost energy: ω in the right wedge and −ω in the
left wedge. As such, if we expand the field in terms of them as

ϕ ¼
X
k;ω

ðfRωkaRωk þ fLωkaLωk þ f�Rωka
†
Rωk þ f�Lωka

†
LωkÞ;

ð44Þ

then the creation operators a†L;Rωk create states of definite
boost energy on the Rindler vacuum j0i, which is defined as
being annihilated by the annihilation operators aL;R;ωk. We can
thus rewrite Eq. (37) as a product state over all modes

jΩi ¼ ⊗
ω;k

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2πω

p X
n

e−πωnjniLωð−kÞjniRωk
�
; ð45Þ

where n labels the number of particles on top of the Rindler
vacuum in each mode. The sign flip for k comes from the CPT
conjugation in Eq. (37).18 As expected, in the reduced density
matrix on either side each mode is thermally occupied with
temperature (39).
For future reference note that the state (45) is annihilated by

the operators

c1ωk ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2πω

p ðaRωk − e−πωa†Lωð−kÞÞ;

c2ωk ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2πω

p ðaLωk − e−πωa†Rωð−kÞÞ; ð46Þ

so we can think of the vacuum state as the joint zero
eigenspace of the “number” operators c†1ωkc1ωk and
c†2ωkc2ωk. States where these oscillators are excited are excited
states with respect to the Minkowski Hamiltonian H.19

We now come back to the meaning of the temperature (39).
In defining the dimensionless Rindler coordinates ξR;L and
τR;L, an arbitrary choice of length scale l is suppressed. Had
they been defined to have units of length, the temperature
would have been 1=2πl. But what is the meaning of l? Indeed
it is straightforward to see that it is the inverse proper
acceleration of an observer at ξR ¼ 0, who also happens to
have τR as her local proper time. Energy defined with respect
to τR is thus the energy that such an observer would define in
her locally inertial frame. This strongly suggests that any

observer with acceleration a ¼ 1=l should actually perceive a
temperature

TUnruh ¼
ℏa

2πkBc
; ð47Þ

where the dimensionful constants have been restored. This
is called the Unruh effect and is one of the more striking
results of relativistic QFT. Note that both relativity and
quantum mechanics are important; either c → ∞ or ℏ → 0

would send TUnruh to zero. You may wonder if this temper-
ature is actually real; in fact one can build a model of a
detector that couples to the scalar field and set it on an
accelerating trajectory, and indeed one finds that it clicks
just as if it were in the presence of thermal fluctuations at
temperature TUnruh. For more details about this, as well as
other interesting observations about the physics of the
Rindler decomposition, see Unruh and Wald (1984).

E. Entanglement is important for horizon crossing:
An introduction to firewalls

Before finally getting back to black holes, I need to make
one final point about the Rindler decomposition. So far I
have mostly focused on the left and right Rindler wedges,
but of course the future and past wedges are also interesting.
In particular, the entanglement of the Minkowski vacuum
jΩi across the entangling surface x ¼ 0 is essential for
having a smooth transition from either the left or the right
Rindler wedges to the future interior. To see this, imagine
that instead of the ground state jΩi, we put the system into
the mixed state

ρ ¼ ρL ⊗ ρR; ð48Þ

where ρL;R are the thermal density matrices obtained on
either side by tracing out the other in the vacuum jΩi. For
any observer who stays in the left or right Rindler wedges,
this state is indistinguishable from the vacuum. But in fact
it has infinite energy: the Hamiltonian includes a gradient
term that is divergent if the field is discontinuous at x ¼ 0.
More precisely if the left and right wedges are completely
uncorrelated, as in the state (48), then the typical difference
between neighboring fields on either side is of the order of
the typical field fluctuation, which is given by 1=ϵ, where ϵ
is a UV length cutoff, so we have

∂xϕjx¼0 ∝
1

ϵ2
: ð49Þ

The gradient term in the Hamiltonian then produces a
contribution

dx
Z

d2yð∂xϕÞ2 ∝ ϵ

Z
d2y

1

ϵ4
¼ A

ϵ3
; ð50Þ

where I have replaced dx → ϵ. There is thus a large
concentration of energy sitting at x ¼ 0, waiting to annihi-
late anybody who tries to jump through the Rindler horizon

18More explicitly, Θ sends τR → −τL, ξR → −ξL, and ~y → ~y.
Applying this to the right-hand modes Eq. (42) sends positive-
frequency modes to negative-frequency modes, so to get the
coefficient of an annihilation operator we need to take the complex
conjugate. This flips the sign of ~k.

19A more technical way of seeing this is to observe that the modes
annihilated by the c’s have only positive frequency with respect to the
Minkowski time t, so they must agree with the usual plane-wave
modes about the definition of the ground state.
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into the future wedge. This type of thing has recently been
given a new name: a firewall.20

One can study this more concretely using a model detector.
I will not describe this in detail here, but one can see without
too much difficulty that even fairly mild decorrelation already
leads to Oð1Þ probability that the detector clicks as it crosses
the horizon. For a related calculation see Sec. III.D of
Giddings (2006).
An important point here is that although entanglement is

necessary for a smooth infalling experience through the
Rindler horizon, it is not sufficient. Heuristically, imagine
that the states ð1= ffiffiffi

2
p Þðj00i � j11iÞ both had smooth horizons.

By the linearity of quantum mechanics this would mean that
the product states j00i and j11i must as well, but we just saw
that no product state possibly can have a smooth horizon in
QFT. Not only do we need entanglement to get a smooth
horizon, it needs to be the right entanglement.21

IV. QUANTUM FIELD THEORY IN A BLACK HOLE
BACKGROUND

We have now discussed classical black holes and quantum
field theory; it is time to combine them. To really analyze the
problem correctly, we need to treat both the metric and the
matter fields quantum mechanically in a full theory of
quantum gravity. I will discuss how this might be done in
Sec. VI, but first discuss the much simpler problem of
quantum field theory in a fixed black hole background.
Physically this is the limit where we send the Newton constant
G to zero and the black hole mass M to infinity in such a way
that the Schwarzschild radius rs ¼ 2GM is fixed. Stated in
terms of dimensionless quantities, we send M=mp → ∞,
where mp ≡ 1=

ffiffiffiffiffiffiffiffiffi
8πG

p
is the Planck mass, and then study

observables whose length scale is of the order of rs in this
ratio. In this limit there are no gravitational interactions, and
the metric can be viewed as a fixed external field.22

This limit is quite reasonable from the point of view of
astrophysical black holes: for a solar mass black hole we are
working to leading order in

mp

M
≈ 10−38; ð51Þ

which is not a bad thing to base a perturbation theory on. The
Schwarzschild radius is of the order of kilometers, which is

indeed the type of scale at which we could imagine doing
experiments. Of course detecting individual photons whose
wavelength is a kilometer is no picnic, but nobody credible
ever said life would be easy.

A. Two-sided Schwarzschild and the Rindler decomposition

Before proceeding further, we need to decide which of the
two geometries discussed in Sec. II.D to study: the full two-
sided Schwarzschild geometry or the one-sided collapse
geometry that is only Schwarzschild after the infalling matter
has gone in? Both are interesting, but it is easier to begin with
the two-sided case to avoid the complications of the infal-
ling shell.
From the Kruskal and Szekeres expression for the met-

ric (10) it is clear that, for r ≈ 1 and sufficiently small angular
displacements, the Schwarzschild geometry resembles the
region of Minkowski space that is near the Rindler horizon in
the Rindler decomposition. More explicitly, in the right
exterior (r > 1) and using the tortoise coordinate

r� ¼ rþ logðr − 1Þ; ð52Þ

we have

ds2 ¼ r − 1

r
ð−dt2 þ dr2�Þ þ r2dΩ2

2: ð53Þ

If we define y1 ≡ θ1, y2 ≡ θ2, where θ1 and θ2 are two
orthogonal angular coordinates on the sphere, then for r ≈ 1

we have

ds2 ≈ er�−1ð−dt2 þ dr2�Þ þ d~y2: ð54Þ

This is very reminiscent of the right Rindler wedgemetric (41),
and indeed if we define

r� ¼ 2ξR þ 1 − log 4;

t ¼ 2τR; ð55Þ

they become equivalent. We can extend this argument to the
other three parts of the geometry; the upshot is illustrated in
Penrose diagrams in Fig. 9.
This observation makes it plausible that, whatever initial

state we pick for the quantum field in the Schwarzschild
geometry, if it is to locally look like the Minkowski vacuum
near the interface of the left and right exteriors, they need to be
thermally entangled just as in the Rindler decomposition. We
can determine the temperature with respect to Schwarzschild
time, the natural time for obervations made at r ≫ 1, from the
relationship (55) between Schwarzschild and Rindler time;
apparently

THawking ¼
TUnruh

2
¼ 1

4πrs
: ð56Þ

I temporarily restored the Schwarzschild radius rs ¼ 2GM.
In fact for pedagogical purposes we can restore all of the
dimensionful constants:

20We can also study this firewall by computing the expectation
value of the number operator c†1ωkc1ωk for the modes defined by
Eq. (46). In the state (48) a short calculation shows that
hc†1ωkc1ωki ¼ 2=ðeπω − e−πωÞ2, so for ω≲ 1 the mode will have
anOð1Þ excitation. Since there are many such modes, the state will be
quite singular.

21One way to think about this is that the divergence of the two-point
function of ϕ as we bring the points together is precisely the divergent
correlation between the left and right which is necessary to avoid a large
expectationvalue for the gradient. If we correlate the fields in thewrong
manner, for example, if we anticorrelate them, then the gradientwill still
be large.

22This is not quite true; free gravitons are still present in this limit,
but we can just treat them as another matter field.
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THawking ¼
ℏc3

8πkBGM
: ð57Þ

Note that the temperature decreases as the black hole increases
in size; for example, for a solar mass black hole this
temperature is of the order of 10−7 K, which is fairly cold.
This global pure state for the Schwarzschild geometry,

where the two exteriors are thermally entangled as in Rindler
space, is called the Hartle-Hawking (HH) state (or the Hartle-
Hawking-Israel state) (Hartle and Hawking, 1976; Israel,
1976). We describe it more explicitly in Sec. IV.H.

B. Schwarzschild modes

Nowwe study free fields in the Schwarzschild geometry. To
begin we need to find a simple set of modes f that solve the
free scalar equation of motion

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νϕÞ ¼ m2ϕ; ð58Þ

where gμν is the Schwarzschild metric and g is its determinant.
We can then express the field in terms of these modes as in
Eq. (24) and study its properties in an appropriate quantum
state such as the Hartle-Hawking state.
We focus on the right exterior of the Schwarzschild

geometry, covered by the coordinates ðt; r;ΩÞ. We look for
solutions of the form

fωlm ¼ 1

r
YlmðΩÞe−iωtψωlðrÞ: ð59Þ

As in the Rindler wedge, we can write an effective
Schrodinger equation for ψωl. It is again convenient to work
in the tortoise coordinate, in terms of which we have

−
d2

dr2�
Ψωl þ VðrÞΨωl ¼ ω2Ψωl; ð60Þ

with

VðrÞ ¼ r − 1

r3

�
m2r2 þ lðlþ 1Þ þ 1

r

�
: ð61Þ

In solving this equation we express r implicitly in terms of r�.
A considerable amount of the physics lies in Eq. (61) for the

effective potential. We first consider the mass m; it is quite
reasonable to assume for simplicity that the Compton wave-
length 1=m is either much larger or much smaller than the
Schwarzschild radius. We are mostly interested in the case
where it is much larger, in which case we can set the mass to
zero, but I will briefly comment on the massive case. For
r ≫ 1 the potential goes to a constant m2, so massive modes
will propagate near infinity only if ω ≥ m. Since we are taking
m ≫ 1, this means that any modes whose energy ω is of the
order of the Schwarzschild radius will be confined very near
the horizon, having only exponentially small tails at infinity.
Since we already concluded that the temperature of the black
hole is of the order of the inverse Schwarzschild radius, we
will indeed mostly be interested in modes with ω ≈ 1. For this
reason massive particles are usually not of much interest in
black hole physics; from now on we restrict to the case
of m2 ¼ 0.
In the massless case, the asymptotic behavior of the

potential is

V ≈
	 lðlþ1Þ

r2�
r� → ∞;

ðl2 þ lþ 1Þer�−1 r� → −∞;
ð62Þ

so it vanishes polynomially in r� at spatial infinity and
exponentially in r� near the horizon. In between the two
regions there is a barrier. For l ≫ 1 the peak of the barrier is at
r ¼ 3=2 and the height is of the order of l2. This potential is
plotted for the first few l in Fig. 10.
For modes whose energy is less than the height of the

barrier, in particular, those with energy of the order of the
temperature, we can think of the barrier as dividing the black
hole exterior into two regions. For r ≫ 3=2 the geometry is
weakly curved, and the propagating modes are the usual
ones of Minkowski space. For 1 < r < 3=2, there are also
propagating modes but they are mostly confined to be near
the horizon. This region is sometimes called the “thermal
atmosphere,” since these modes will typically be occupied
by a Boltzmann distribution with temperature THawking ≈ 1.

FIG. 9. The shaded region of the Rindler Penrose diagram on the
left well approximates the shaded region of the Schwarzschild
Penrose diagram on the right. The Rindler Penrose diagram is
different from the Minkowski Penrose diagram in Fig. 2, even
though they represent the same spacetime. The reason is that at
each point I have suppressed an R2 instead of an S2.

–5 5
r *
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V

FIG. 10. Plots of V as a function of r� for l ¼ f0; 1; 2; 3g.
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Recently people have also started to call the near-horizon
region “the zone.”
From the effective Schrodinger equation point of view, it is

clear that the relation between these two regions is a scattering
problem. This is illustrated in Fig. 11. Modes can come in
either from the white hole horizon at r� → −∞ or from J− at
r� → ∞, and they can go out either through the black hole
horizon at r� → −∞ or through Jþ at r� → ∞. To get a unique
mode, we need to pick boundary conditions of some sort. One
obvious choice is send in particles from the right and then see
if they are absorbed by the black hole. The absorption
probability is just the transmission coefficient of this
Schrodinger problem. This type of mode has most of its
support out in the asymptotic r ≫ 1 region. Another choice is
to say that there is no flux coming in from the right, but allow
some to come in from the left. This is a flux coming in out of
the white hole and mostly being reflected off of the barrier
back into the black hole, with a small amount tunneling
through the barrier and transmitting out to infinity. Modes of
the latter type have most of their support in the near-horizon
region and are often called “zone modes” or “modes in
the zone.”
To understand which modes are important, we need some

sort of prescription for the initial quantum state of the field we
build out of creation and annihilation operators for them. In
the Hartle-Hawking state both are excited with a thermal
distribution at temperature THawking. There is a steady flux of
thermal particles going in and coming out at each end of the
wormhole. The one-sided black hole made from collapse is
more subtle, and I turn to it now.

C. Hawking’s calculation of black hole radiation

We now focus on a black hole created from the collapse of a
matter. The Penrose diagram is shown in Fig. 12.

The mode solutions discussed in the previous section now
apply only above the shell. Below the shell they must be
matched onto solutions of the ordinary Minkowski wave
equation such as plane waves. This matching will be non-
trivial; since there is no global time-translation symmetry,
positive-frequency modes with respect to Schwarzschild time
above the shell will evolve back to mixtures of positive and
negative frequency modes with respect to the Minkowski time
below the shell. In fact the negative frequency part comes
entirely from the part of the solution that propagates back
through the photon shell. The part that reflects off of the
barrier while still in the Schwarzschild region will conserve
energy and stay positive frequency.
We then define the quantum state in such a way that other

than the shell which created the black hole, at early times the
Minkowski modes below the shell are not excited. In other
words their annihilation operators will annihilate the state.
Because of the mixing between positive and negative fre-
quency just described, the modes which are positive frequency
in the Schwarzschild region will be excited in this state. To
figure this out one needs to know how to relate the creation
and annihilation operators for the Minkowski modes below
the shell to the creation and annihilation operators for the
Schwarzshild modes above the shell. The details are not hard
but are slightly technical; they are explained in Hawking’s
original paper (Hawking, 1975) [and nicely reviewed in Wald
(2010)]. The result is that in this choice of initial state the
energy flux in a band of late-time outgoing modes fωlm with
width dω is

dE
dt

¼ ωdω
2π

Pabsðω;lÞ
eβω − 1

: ð63Þ

Here β ¼ 1=THawking, and Pabsðω;lÞ is the absorption prob-
ability for a “blue” mode of this frequency and angular
momentum to be transmitted through the barrier from the
right in Fig. 11. It is often called a gray-body factor, since
other than this factor Eq. (63) is just the standard formula for
radiation from a blackbody at temperature T ¼ β−1 into the

V

r*

FIG. 11. The spacetime interpretation of scattering in the
effective Schrodinger potential. Incoming and outgoing modes
are shown above on the potential and below on a section of the
Schwarzschild Penrose diagram, with the region −∞ < r� < r�
shaded in gray.

FIG. 12. The geometry for a black hole made from collapse. The
collapsing shell is now shown in blue, and the backward
evolution of an outgoing wave packet at late times is shown
in orange. Part of it is scattered off of the potential barrier, and
part of it goes back through the photon shell.
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vacuum.23 We saw earlier that the height of the potential
barrier grows like l2, so the emission is dominated by the
modes with the very lowest angular momentum.
We are thus led to the following picture of the quantum state

of a field near a black hole formed from collapse: after an
initial ringdown period, the modes in the atmosphere are in a
quasistationary state where they are excited thermally, with the
low-l modes gradually carrying energy out to infinity by
tunneling through the barrier.
Any massless field that happens to be around will carry

away energy in this manner, but those with higher spin will
carry less (Page, 1976). A simple way to understand this is that
particles with spin can only radiate into modes with l > 0

(dipole radiation for photons, quadrupole for gravitons, etc.),
so they encounter higher potential barriers. The largest
fraction of the energy is thus carried away by whatever the
lowest spin massless particles are; in our Universe it would be
photons. A smaller, but still Oð1Þ fraction would be radiated
into gravitons.
Although I will not use it in what follows, there is a

heuristic explanation of Hawking radiation that is occasionally
brought up. The idea is that entangled pairs of particles are
constantly jumping into existence near the horizon via vacuum
fluctuations, and sometimes one of them falls in and one of
them gets out. This cartoon has several problems if it is taken
literally, among them that the “particles” involved have
wavelengths comparable to the size of the black hole and
that the Hawking process is not really stochastic, and in my
view it tends to create more confusion than it resolves.

D. Evaporation

In the QFT-in-curved-spacetime limit considered so far, the
mass of the black hole, and therefore its energy, is infinite. The
black hole can radiate away a constant energy flux forever
without decreasing in size. This is clearly unphysical, but to
fix it we need to restore dynamical gravity. Since the black
hole mass will now be time dependent, it is absurd to continue
setting the Schwarszchild radius rs ¼ 2GM to 1.
Before discussing the decrease of the mass due to evapo-

ration, I briefly comment on the fact that we should think of
the mass M of a black hole as its energy. So far we somewhat
cavalierly defined the energy as the generator of t translations
in the Schwarzschild geometry, but in general relativity such a
coordinate-dependent definition cannot really be correct.
There is a long and interesting story about this which I will
not get into, but the upshot is that in a proper Hamiltonian
formulation of general relativity in asymptotically flat space
the energy is defined as a certain boundary integral on a two-
sphere at r → ∞, or more rigorously as a boundary integral on
i0 in the Penrose diagram (Regge and Teitelboim, 1974). It is
usually called the ADM energy, in honor of Arnowitt, Deser,
and Misner who were the first to write it down and realize its

relevance to a Hamiltonian formulation (Arnowitt, Deser, and
Misner, 2008). For our purposes though, it is enough just to
know that the ADM energy is conserved and that a black hole
of massM formed from the collapse of a shell does have ADM
energy M.
We are now in a position to estimate the lifetime of a black

hole of massM. The total energy flux leaving the black hole is

dE
dt

¼
X
l;m

Z
∞

0

dω
2π

ωPabsðω;lÞ
eβω − 1

: ð64Þ

Unfortunately computing Pabs involves solving the differ-
ential equation (60), which cannot be done analytically. Page
(1976) solved it numerically to compute exact lifetimes, but
for our purposes a simple estimate is enough. For ω≲ 1=rs
we can approximately solve the equation to find
Pabsðω;l ¼ 0Þ ∼ ðωrsÞ2. Higher l modes have Pabs propor-
tional to some higher power of (ωrS) in the same limit, so
roughly we can neglect the l > 0 terms in the sum and use this
approximation for l ¼ 0 to find

dE
dt

≈
C
r2s

; ð65Þ

where C is some constant that this crude method is unable to
compute. Amusingly this is consistent with what a naive
application of the Stefan-Boltzmann law dE=dAdt ¼ σT4

would predict, although the constant factor is different. The
mass of the black hole as a function of time thus obeys the
differential equation

dM
dt

¼ −
C

ðGMÞ2 ; ð66Þ

so a black hole of initial mass M will evaporate in time

tevap ∼ G2M3: ð67Þ

For a solar mass black hole this time is of the order of 1066 yr.
This can be compared, for example, to the age of the Universe,
which is about 13.8 × 109 yr.24 It seems that if we are ever to
do experiments to test this prediction, we had better find a way
to make black holes which are smaller than those produced
astrophysically.
Hawking evaporation means that our old Penrose diagram

of Fig. 5 needs to be revisited; I show the improved diagram
in Fig. 13.

E. Entropy and thermodynamics

If a black hole has a temperature and an energy, it must also
have an entropy. Recall that the standard definition of temper-
ature in statistical mechanics is23Including this factor it is the standard formula for radiation from

an imperfect blackbody that has some probability to absorb incoming
modes. It is derived by demanding that the absorption and emission
probabilities are related in such a way that the body can be in thermal
equilibrium with an external radiation field.

24As a side comment, this should more accurately be called the
time since the beginning of nucleosynthesis. The actual age of the
Universe is unknown and could quite possibly be infinite.

D. Harlow: Jerusalem lectures on black holes and quantum … 015002-15

Rev. Mod. Phys., Vol. 88, No. 1, January–March 2016



dS
dE

¼ 1

T
: ð68Þ

For the black hole we have T ¼ 1=8πGM, so identifying
M ¼ E and assuming that SðE ¼ 0Þ ¼ 0 we find

S ¼ A
4G

¼ 2π
A
l2
p
; ð69Þ

where A ¼ 4πr2s is the area of the horizon and lp ¼ ffiffiffiffiffiffiffiffiffi
8πG

p
is

the Planck length. This entropy is enormous, of the order of
1078 for a solar mass black hole, which is much larger than the
entropy of the Sun, which is of the order of 1060. In fact the
entropy of the entire observable Universe excluding black
holes, which is dominated by the cosmic microwave back-
ground photons, is of the order of ð1010 pc=1 mmÞ3 ≈ 1087,
while the entropy of a single 106 solar mass black hole like
that in the center of the Milky Way is of the order of 1088. The
largest supermassive black holes have masses of the order of
1010 solar masses, and thus entropies of the order of 1096.
Historically it was actually the black hole entropy which

was discovered before the temperature. In classical general
relativity, one can prove under rather general assumptions that
the area of an event horizon can never decrease in time
(Hawking, 1971). This property is reminiscent of the second
law of thermodynamics, and if we formally define an entropy
proportional to the horizon area and a temperature of the order
of 1=rS, then the first law of thermodynamics dM ¼ TdS is
also satisfied (Bardeen, Carter, and Hawking, 1973;
Bekenstein, 1973). Bardeen, Carter, and Hawking (1973)
viewed this as only a mathematical analogy, but it was the
point of view of Hebrew University’s own Jacob Bekenstein
that this entropy should actually represent the statistical
entropy of the black hole in the sense of counting the number
of ways the black hole could have formed (Bekenstein, 1973,
1974). Bekenstein argued the entropy should be given by

some constant multiple of the horizon area in Planck units and
provided evidence for this by considering various thought
experiments where an entropic system is thrown into a black
hole. He saw that in each case the black hole entropy defined
in this way always increased more than the exterior entropy
decreased from losing the system. Bekenstein called this
observation the generalized second law and conjectured that it
was true in general.25 It was at this point that Hawking’s paper
on the temperature appeared, closing the circle. For these
reasons Eq. (69) is usually called the Bekenstein-Hawking
entropy.
The idea that the Bekenstein-Hawking entropy counts

microstates has found quite strong support in string theory,
a set of ideas that has produced many insights into quantum
gravity in the last few decades (Polchinski, 1998a, 1998b).
General arguments based on counting the states of a long
vibrating string are able to produce the area scaling of Eq. (69)
in a wide variety of situations (Susskind, 1993; Horowitz and
Polchinski, 1997), and in certain special supersymmetric cases
(Strominger and Vafa, 1996) one is actually able to sharpen
these arguments enough to compute the numerical coefficient
analogous to the 1=4 in Eq. (69).

F. The information problem

We have now seen that black holes behave like thermody-
namic objects in many respects, and it seems almost irresist-
ible, following Bekenstein, to take the point of view that the
Bekenstein-Hawking formula indeed counts the logarithm of
the number of microstates of a black hole of a given size. For a
moment say that we nonetheless insist that in fact black holes
are really only distinguished by their mass (and charge and
angular momentum if we had included these), as suggested by
general relativity. We then find ourselves in tension with a
basic principle of physics: if we know the state of a system at
some time, we should be able to infer its initial state by
running the dynamics backward. This proposal thus is really
saying that by creating a black hole, we destroy most of the
information about how we made it. Since we would like to
preserve this principle, we are naturally led to assume that
indeed black holes have microstates. In one of the most
remarkable papers in the last 50 yr however, Hawking
brilliantly argued that, once we allow the black hole to
evaporate, this assumption is not sufficient to avoid the
destruction of information.
Before explaining Hawking’s argument, it is worth saying a

bit more about the principle of information conservation. In
classical mechanics time evolution is generated by
Hamiltonian flow on phase space, which can always be
reversed by changing the sign of the Hamiltonian. More
prosaically we can just solve the equations of motion back-
ward. Similarly in quantum mechanics, time evolution is
described as unitary evolution in Hilbert space, which can
again be reversed by switching the sign of the Hamiltonian. In
both cases the principle applies only if the system is isolated;

FIG. 13. The Penrose diagram for an evaporating black hole
formed by a collapse of a shell of photons. The Hawking
radiation seems to all come out at once, but this is only an
illusion arising from the conformal transformation. The singu-
larity is shown in red, and the two vertical black lines both
represent a nonsingular origin of polar coordinates. The dashed
line is the event horizon, which exists even though the black
hole evaporates since there are still points that cannot send
messages to iþ.

25The name is a bit misleading. If we take Bekenstein’s suggestion
seriously that black hole entropy is real, then his “generalized”
second law is really just the ordinary second law.
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otherwise, information can leak out. The quantum case is
slightly counterintuitive since the measurement process is
nondeterministic, but measurement always involves coupling
the system being measured to some external apparatus.
The evolution of the joint system remains unitary and
deterministic.
Hawking’s point then was that his calculation of black hole

radiation described in Sec. IV.C has the property that the
outgoing radiation is completely independent of the details of
the initial state of photons. This was made more explicit by
Wald (1975), where it was emphasized that the emission
rate (63) arises from a diagonal density matrix

ρ ∝ ⊗
ω;l;m

�X
n

jnihnjω;l;mPabsðω;lÞe−βωn
�

ð70Þ

for (late-time wave packets of) the Schwarzschild modes
fω;l;m. This should be reminiscent of our Rindler result (45)
that the reduced density matrix for the right (or left) Rindler
wedge is just a thermal density matrix, but here it leads to
catastrophic consequences once we turn gravity back on.
Consider a black hole that was formed by a shell of matter

in some pure quantum state jΨi. As time goes on, the quantum
state of the radiation field outside becomes more and more
mixed, which we can quantify by saying that its entanglement
entropy is increasing.26 This may not seem so bad at first,
since after all in looking at the late radiation we are looking
just at the part of the state which is outside of the black hole
horizon. As the black hole evaporates, however, it decreases in
size until at some point it becomes Planckian. Equation (70) is
supposed to be accurate up to corrections of the order of
mp=M, so until this point the entanglement entropy of the
radiation field outside continues to increase. At this point one
of two things must happen:

(1) The evaporation stops, and the Planck-sized object just
sits around. This possibility is called a remnant. For
the total state to remain pure, as required if the
evolution of the system is to be unitary, the remnant
must have an extraordinary amount of entanglement
entropy. Even before it becomes Planck sized its
entanglement entropy would need to exceed the
Bekenstein-Hawking value, which would violate the
state-counting interpretation of Eq. (69).

(2) The black hole finishes evaporating into ordinary
quanta such as photons and gravitons. Energy con-
servation prevents the final burst of quanta from
containing nearly enough entanglement entropy to
purify the earlier radiation, so the end result of the
evaporation process is a mixed state of the radiation
field whose entropy is of the order of the initial black
hole horizon area in Planck units.

Hawking argued for option (2), claiming that the process of
black hole formation and evaporation cannot be described by a
unitary map from the ingoing shell to the outgoing radiation,
since this would have resulted in a pure quantum state of the

radiation. Moreover, since different initial states result in the
same final state, he claimed that black holes violate the
principle of information conservation. Option (2) is thus
usually referred to as information loss.
Basic physical principles are not often discarded, and this

should only be done once it is clear that we have no other
choice. How might information loss be avoided? Option (1) is
in principle possible, but is rather difficult since it requires
objects with finite energy but an infinite number of states and
has rarely been taken seriously (Preskill, 1992; Giddings,
1995; Susskind, 1995b). Most people who are unwilling to
accept information loss have instead gone for a third option:

(3) Equation (70) is correct only in a coarse-grained sense;
the Hawking radiation does not actually come out in a
mixed state. The information is carried out in subtle
correlations between the Hawking photons, and the
final state of the evaporation is a pure state of the
radiation field. Because it is a complicated state any
small subsystem looks thermal, justifying the approxi-
mate validity of Eq. (70) if we do not look at too many
photons at once. There is a complete basis of such pure
states whose dimensionality is the exponential of the
Bekenstein-Hawking formula, which thus can indeed
be interpreted as counting microstates.

Option (3) may obviously seem like the best of the three, but it
is more radical than it appears at first. Equation (70) seems to
follow from very widely held assumptions about the validity
of quantum field theory on scales that are large compared to
the Planck scale. If it is wrong, then should not this violation
of quantum field theory be detectable in other ways? Since all
three options thus have unappealing features, this state of
affairs is referred to as the black hole information problem.
There is however at least one reason why one might expect

substantial corrections to Eq. (70) (’t Hooft, 1985; Unruh,
1994; Corley and Jacobson, 1996). Returning to Fig. 12,
consider the limit where we have the outgoing mode coming
out later and later. If it comes out more than a time27

tscr ≡ rs log
rs
lp

ð71Þ

after the initial shell falls in, then as we evolve it back in time
its collision with any of the photons that make up the initial
shell happens at a center of mass energy that is greater than the
Planck scale. Intuitively this is because near the horizon in
tortoise coordinates the proper distance to the horizon behaves
like er� , so from Eq. (3) we see that wave packets which come
out of the potential barrier at times that are later than Eq. (71)
after the formation of the black hole will have come out from
within a Planckian distance of the horizon. In Hawking’s
calculation these modes are being “pulled out of the vacuum”
near the horizon from an imaginary reservoir of trans-
Planckian degrees of freedom; this is called the trans-
Planckian problem.

26For more details on the basic properties of pure and mixed states,
as well as entanglement entropy, see Sec. III of the Supplemental
Material [193].

27In this name “scr” stands for “scrambling.” The reason is that this
is the time scale it takes for perturbations of the black hole to die
down to Planckian size. It is the time it takes them to be “scrambled”
by the black hole horizon. I discuss this further in Sec. V.F.
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To see the trans-Planckian collision with the initial shell more
explicitly, we can note from Eq. (3) that an ingoing null
geodesic that crosses the potential barrier at time t ¼ 0

intersects an outgoing geodesic that crosses the potential barrier
at time tout ≫ rs at

rcollision ≈ 1þ e−tout=2rs : ð72Þ

To compute the energy of the collision we need the four-
momenta of the two photons in Schwarzschild coordinates,
which are given by28

pμ
� ¼ E�

�
r

r − rs
;�1; 0; 0

�
; ð73Þ

where E� are the energies of the massless particles. The center
of mass energy of the collision is then

Ec.m. ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1
2
pμ
þpν

−gμν
q

≈
ffiffiffiffiffiffiffiffiffiffiffiffi
EþE−

p
etout=4rs : ð74Þ

The outgoing photon will always haveEþ ∼ 1=rs, which is also
a lower bound for E− since otherwise the infalling photon
would not have fit into the black hole in the first place, so we
see that indeed after a time (71) the center of mass collision
energy is Planckian.
There has been much debate over whether or not the trans-

Planckian problem is a serious criticism of Hawking’s argu-
ment for information loss. There is a well-known candidate
rebuttal called the “nice-slice” argument (Polchinski, 1995).
Basically one argues that we can perform Hawking’s calcu-
lation in Kruskal coordinates where the trans-Planckian origin
of the Schwarzschild modes is absorbed into the standard
renormalization of quantum field theory in curved spacetime.
Although this prescription gives a well-defined procedure that
reproduces Hawking’s calculation for the late-time state of the
radiation, in my view it is not completely satisfactory since it
does not get rid of the fact that projecting onto possible final
states of the late-time Hawking radiation produces states with
a genuine high-energy collision in the past. The renormaliza-
tion procedure used in the nice-slice argument does involve
making an arbitrary choice about physics at high-energy
scales, and, unlike in most situations where quantum field
theory is used, the redshifting of the black hole geometry
allows low-energy properties of the state at later times to
depend on this choice.29 I believe that the trans-Planckian
problem gives a plausible excuse for why Hawking’s

calculation might not be completely correct for times longer
than tscr.
You might ask why we do not conclude from this that

Eq. (70) is completely wrong for t > tscr, for example, the
black hole could explode at t ¼ tscr? This is actually ruled out
experimentally; the black hole in the center of our galaxy
would have already exploded, but we could imagine some-
thing more mild.30 Anything along these lines besides
option (3) however would mean that we should not really
think of the black hole as a complex thermal system with
entropy SBH. The apparent successes of black hole thermo-
dynamics would be a mirage. Aesthetically this is rather
unappealing, since so far all cases of systems that behave
thermodynamically ultimately have their explanations in
statistical mechanics. This would also be in tension with
the string theory microstate counting arguments mentioned in
Sec. IV.F, and we will see powerful evidence in favor of
unitary evaporation with approximate thermality from the
AdS/CFT correspondence in Sec. VI. For now I will thus
provisionally adopt the point of view that option (3) is correct.
In the final two parts of this section I discuss two important

aspects of QFT in black hole backgrounds which do not quite
fit into the main flow but are in my opinion too important to
leave out. Casual or first-time readers may wish to skip these
final two sections and proceed to Sec. V.

G. The brick wall model and the stretched horizon

To get some intuition for black hole thermodynamics, it is
interesting to study the thermodynamics of a scalar quantum
field in a black hole background.31 We have already seen that
the region outside the horizon can be understood in terms of
the modes fωlm, and Hawking’s analysis says that all of these
modes are excited thermally. We then roughly have the total
energy

E ¼
X
ωlm

ω

eβω − 1
ð75Þ

and entropy

S ¼
X
ωlm

�
βω

eβω − 1
− log ð1 − e−βωÞ

�
; ð76Þ

where β is the inverse temperature. These expressions are not
really well defined; it is not clear what is meant by

P
ω. It

cannot just be
R
dω, since this would not have the right units.

This ambiguity reflects something physical; these quantities
are both UV and IR divergent. The IR divergence arises from
the infinite volume of flat space in the region where r → ∞,
and the UV divergence arises from the near-horizon region.
The former can be regulated by putting the black hole in a
large box, while the latter are presumably regulated by some
sort of Planckian physics close to the horizon.

28This is determined by finding an appropriate affine parametriza-
tion of the null geodesics in Eq. (3), as discussed in Sec. I of the
Supplemental Material [193].

29It is sometimes argued that the adiabatic theorem of quantum
mechanics prevents us from making other choices that would lead to
different results for the Hawking radiation (Polchinski, 1995), but the
adiabatic theorem applies only to the global conserved energy, not to
the center of mass energy of localized excitations. Projections on the
late Hawking radiation will not appreciably change the energy, since
any localized excitations that are created this way are redshifted by
the horizon.

30For another observational argument, the trans-Planckian prob-
lem also exists in the early univere during inflation, but nothing too
terrible seems to have come out of it.

31In this section I again set rs ¼ 1 to simplify formulas.
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As a simple model, ’t Hooft suggested implementing the
near-horizon cutoff by simply putting Dirichlet boundary
conditions ϕ ¼ 0 on a surface a Planckian distance from
the horizon (’t Hooft, 1985). More explicitly one demands the
field vanishes at r ¼ rmin, which we can express in terms of
the proper distance ϵ from the horizon as

rmin ≡ 1þ ϵ2

4
: ð77Þ

This is called the “brick wall” model. It is not a good model
from the point of view of the full black hole geometry; we do
not think the infalling observer will actually encounter a brick
wall. The actual cutoff imposed by quantum gravity is
undoubtably more subtle. Nonetheless the brick wall does
give a physically motivated way to discretize the sum over ω,
allowing estimates for Eqs. (75) and (76).
The IR box is a little awkward to deal with explicitly, but it

can be dispensed by instead including only the modes which
have no incoming piece outside of the barrier; these are the
zone modes of Sec. IV.B. By doing this we are throwing out
the contributions to the thermal energy and entropy of the
radiation field in the region r ≫ 1, but these should not be
considered as part of the black hole anyway. The quantization
of ω is also messy to derive in detail, but there is a simple way
to estimate it. Returning for a moment to tortoise coordinates,
the brick wall is at

r�min ≈ 2 log
ϵ

2
: ð78Þ

I focus on modes with l ≫ 1 and ω≲ 1, since these will
dominate the thermodynamic ensemble.32 The turning point
where the potential barrier becomes important and the mode
begins to decay exponentially is at

r�turn ≈ 2 log
ω

l
: ð79Þ

We can thus approximate this mode problem as the
Schrodinger problem of a particle in a box of size

Δr� ≈ 2 log
2ω

lϵ
; ð80Þ

where I neglected various order 1 factors. We then have a
quantization condition

ωn ≈
πn

2 logð2ωn=lϵÞ
; ð81Þ

which allows the replacement

X
ωlm

fðωÞ ≈ 4

Z
∞

0

dω
2π

fðωÞ
Z

2ω
ϵ

0

dlð2lþ 1Þ log 2ω
lϵ

≈
8

ϵ2

Z
∞

0

ω2dω
2π

fðωÞ: ð82Þ

We can finally then compute the energy and entropy

E ≈
rs

960πϵ2
;

S ≈
r2s

180ϵ2
; ð83Þ

where I have set β ¼ 1=THawking ¼ 4πrs and restored rs.
These results are manifestly divergent as we remove the
short-distance cutoff ϵ, but on physical grounds we should
probably not take ϵ to be any smaller than the Planck
length lp ¼ ffiffiffiffiffiffiffiffiffi

8πG
p

. Indeed if we choose 180πϵ2 ¼ G ∼ l2
p,

we then have

E ¼ 3

8
M;

S ¼ A
4G

: ð84Þ

With this choice the entropy of the field is the full
Bekenstein-Hawking entropy SBH of the black hole, and
its energy is comparable to the full black hole energy M.
Taking ϵ≳ lp is thus essential in ensuring that the fields
do not carry more energy and entropy than the black hole
itself.
In fact in this model we essentially replaced the black hole

with the field theory degrees of freedom near the horizon, and
there is nothing left for the black hole to do. Of course this
choice of ϵwas rather arbitrary, and by making it larger we can
imagine a separation of degrees of freedom into QFT degrees
of freedom at distances greater than ϵ from the horizon and
“quantum gravity” degrees of freedom closer in. In this more
general model, one imagines a dynamical membrane a Planck
distance away from the horizon, which is usually called the
stretched horizon. The stretched horizon then carries most of
the black hole entropy and energy, and in a unitary theory it
absorbs infalling matter and reemits it later in scrambled form.
In this picture the stretched horizon is in thermal equilibrium
with the QFT modes in the atmosphere, and evaporation
happens because these modes occasionally tunnel out to
infinity.
Clearly any such model cannot be taken too seriously; a

real brick wall or stretched horizon would be detectable by
an infalling observer who crosses the horizon. This may
seem like a trivial comment, but as seen in Sec. VII,
harmonizing a unitary description of black hole evaporation
with a smooth experience for an infalling observer is
proving more difficult than many people expected. In any
event these models make it clear that there is a somewhat
arbitrary distinction between which degrees of freedom are
counted as being “part of the black hole” and which are
“part of the atmosphere.”

32Modes with larger ω are Boltzmann suppressed since we will
take β ¼ 1=THawking ∼ 1, and modes with low l are entropically
suppressed.
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H. The Euclidean black hole

I now return to the full two-sided Schwarzschild geometry of
Fig. 1.33 In the Rindler decomposition of Minkowski space, we
found the ground state by evaluating the Euclidean path
integral (31). We want to do the same for quantum fields in
the Schwarzschild geometry, but to do this we need to identify
an appropriate Euclidean version of the geometry to evaluate
the path integral on. This geometry should be a spherically
symmetric solution of the Euclidean Einstein equation
Rμν ¼ 0 with asympotically flat boundary conditions. Since
we already know that the Schwarzschild geometry is the unique
such geometry in Lorentzian signature, it is natural to find its
Euclidean version by simple analytic continuation t → tE:

ds2 ¼ r − 1

r
dt2E þ r

r − 1
dr2 þ r2dΩ2

2: ð85Þ

This geometry still appears to be singular at r ¼ 0 and
r ¼ 1, but here a surprise is in order. If we define a new
coordinate

dρ ¼
ffiffiffiffiffiffiffiffiffiffi
r

r − 1

r
dr; ð86Þ

then near the horizon (ρ → 0) we have

r ≈ 1þ ρ2

4
;

ds2 ≈ dρ2 þ 1

4
ρ2dt2E þ dΩ2

2: ð87Þ

The first two terms look very much like the origin of polar
coordinates in R2, and in fact if we were to decide to have tE
be an angular variable with period 4π, then the apparent
singularity at ρ ¼ 0 would be resolved by the geometry
capping off smoothly. Remarkably, this means that the
curvature singularity at r ¼ 0 has been completely excised,
and we are left with an entirely nonsingular geometry. This is
illustrated in the upper part of Fig. 14.
By cutting this Euclidean geometry in half and evaluating

the Euclidean path integral over the lower half, we can define
the Hartle-Hawking wave functional for the Lorentzian
Schwarzschild geometry (Hartle and Hawking, 1976; Israel,
1976). By the same argument we used for the Rindler
decomposition, this allows a simple explicit expression for
the quantum state of the fields:

jΨiHH ∝
X
i

e−βEi=2ji�iLjiiR: ð88Þ

Here i labels eigenstates of the Schwarzschild Hamiltonian in
the left and right exteriors and � indicates CPT conjugation.34

As in the Rindler case, this derivation does not assume that the
quantum fields are free.

Tracing out one of the two sides we immediately see that in
the Hartle-Hawking state the reduced density matrix on either
side is the thermal density matrix, with temperature

THawking ¼
1

4π
ð89Þ

as expected. Indeed this type of state was suggested outside
of the context of black holes as a method for doing thermal
field theory calculations (Takahashi and Umezawa, 1996), and
in this broader context it is usually called the thermofield
double state.
This derivation of the black hole temperature is much more

compact than that presented in Sec. IV.C, and one might
expect that a similar derivation is possible for the entropy. This
is indeed the case (Gibbons and Hawking, 1977), but the
analysis is more subtle and involves some assumptions. It also
involves more advanced geometry. The basic idea is to
interpret the path integral over the full Euclidean
Schwarzschild geometry as a partition function. In ordinary
field theory this is the standard observation that

ZðβÞ≡ Tre−βH ¼
Z

Dϕ

Z
ϕ̂ðtE¼βÞ¼ϕ

ϕ̂ðtE¼0Þ¼ϕ
Dϕ̂e−IE ; ð90Þ

or in other words that the partition function can be computed
from a Euclidean path integral that is periodic in Euclidean time.
Once we have computed the partition function it is straightfor-
ward to compute the energy and entropy via the standard
formulas

E ¼ −
Z0

Z
;

S ¼ βEþ logZ: ð91Þ

We want to compute the black hole entropy along similar
lines, but it is clear that in order to get the Bekenstein-
Hawking entropy S ¼ A=4G it is insufficient to integrate

tE

r=1

FIG. 14. The Hartle-Hawking construction. The upper diagram
is the Euclidean Schwarzschild “cigar,” with the two-sphere
suppressed. The wave functional of the quantum fields in the
Lorentzian Schwarzschild geometry is constructed by evaluating
the Euclidean path integral on the lower half of the cigar and then
using this as initial data, as shown in the lower diagram.

33In this section evaporation is unimportant, so I continue to use
units where rs ¼ 1.

34CPT here acts as Θ†ΦLðt; r;ΩÞΘ ¼ Φ†
Rð−t; r;ΩÞ. In the free

case the modes which are entangled are related by m → −m.
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only over a single scalar field. There is nowhere for the G to
come from. This is not a surprise; in computing the partition
function we must take into account all dynamical fields,
including the metric. Once we start integrating over metrics,
it is not immediately clear what family of geometries to
integrate over. Roughly we want them to be asymptotically
flat with periodic Euclidean time. To make this condition
precise it is convenient to introduce an explicit boundary in
the spacetime by cutting off the geometry at some finite two-
sphere radius rc. We then integrate over compact geometries
whose only boundary has topology S1 × S2 and induced
metric

ds2 ¼ dt2E þ r2cdΩ2
2: ð92Þ

Here the periodicity of tE is taken to be β. Two such
geometries are the piece of the Euclidean Schwarzschild
geometry with r ≤ rc, which I call gsch, and ordinary
Euclidean S1 × R3 in cylindrical coordinates

ds2 ¼ dt2E þ dr2 þ r2dΩ2
2; ð93Þ

again with r ≤ rc and tE periodicity β, which I call gflat.
It so happens that the leading order behavior in M=mp of

the partition function is not affected by matter fields, so we
want to compute the path integral

ZðβÞ ¼
Z

Dge−IE ð94Þ

over the set of Euclidean compact geometries with boundary
metric (92). The Euclidean action is

IE ¼ −
1

16πG

Z
M

d4x
ffiffiffi
g

p
R −

1

8πG

Z
∂M

d3x
ffiffiffi
γ

p
K; ð95Þ

where M denotes some compact manifold with a boundary
∂M. The topology of this manifold is not fixed; we should
sum over different topologies. In particular, gsch has the
topology of a disk times a two-sphere while gflat has the
topology of a circle times a three-dimensional ball. γμν is
the induced metric on the boundary, and K is the trace γμνKμν

of the extrinsic curvature tensor Kμν¼∇μnν≡∂μnν−Γα
νμnα,

where nν is the outward-pointing normal vector at the
boundary. This extra term is necessary to include in the
gravitational action when a boundary is present if we want to
fix the induced geometry on the boundary (Gibbons and
Hawking, 1977). To leading order in the mp=M expansion we
can compute this path integral by saddle-point techniques:

Z½β� ≈
X
gcl

e−IE½gcl�; ð96Þ

where gcl correspond to geometries which solve the classical
equations of motion. Here there are two contributions: gsch and
gflat, and their Euclidean actions are

IE½gflat� ¼ −
βrc
G

IE½gsch� ¼ IE½gflat� þ
β2

16πG
: ð97Þ

The dominant contribution to Eq. (96) thus comes from gflat.
This is not surprising. We already know that black holes in
asymptotically flat space evaporate, so it must be that a gas of
radiation in flat space dominates the thermal ensemble. If we are
nonetheless interested in understanding the subleading contri-
bution of the black hole to the ensemble, it is natural to look at
the contribution to the partition function from gsch. Even in the
black hole geometry however there is a large contribution from
thermal excitations of gravitons far away from the black hole,
which we do not want to include as part of the black hole. We
can remove both of these effects by including only gsch in the
sum over solutions and subtracting from its action the action of
gflat, so we find that the partition function of the black hole only
is (Gibbons and Hawking, 1977)35

ZBHðβÞ ≈ e−β
2=16πG: ð98Þ

From Eq. (91) we then have

E ¼ M;

S ¼ A
4G

; ð99Þ

as expected.
It is instructive to compare what happened here to the brick

wall model of the previous section. We could have also
included a scalar field here, whose saddle point would have
been ϕ ¼ 0, and its one-loop determinant would have pro-
duced a UV-divergent contribution to the partition function
that would match the brick wall model result. In the Euclidean
formalism however we interpret this contribution (and a
similar one from gravitons) as a renormalization of G, which
combines with the “bare” contribution from the gravitational
action in such a way that the entropy becomes A=4G with
the renormalized G (Susskind and Uglum, 1994; Demers,
Lafrance, and Myers, 1995). This is a nontrivial statement
since the renormalization of G in a given cutoff scheme can
also be computed by using Feynman diagrams for gravita-
tional scattering (Demers, Lafrance, and Myers, 1995). It
guarantees that the Bekenstein-Hawking formula for the
entropy is independent of the arbitrariness of how we divide
up the black hole and the atmosphere. Although it is some-
what mysterious, the Euclidean gravity path integral is
apparently a quite powerful method for extracting the thermo-
dynamic properties of gravitational systems.

V. UNITARY EVAPORATION

In this section I explore some consequences of the
assumption that black hole evaporation is unitary. In this

35This argument is admittedly rather vague. We see in Sec VI that
for black holes in anti–de Sitter space an analogous argument can be
justified more rigorously.
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section I work in Planckian units, where 8πG ¼ 1. Up to the
order of 1 constants, this means that we can collect the results
of the previous section as

T ∼
1

M
; ð100Þ

S ∼M2; ð101Þ

tevap ∼M3: ð102Þ

Starting in this section I begin to use more techniques from
quantum information theory, so one unfamiliar with these
techniques should consult the Supplemental Material [193] as
needed.

A. The S matrix

So far we have mostly been working in the limit of quantum
field theory in curved spacetime, with the gravitational coupling
G taken to zero compared to any other scale in the problem. In
this limit we are able to make precise sense out of local ideas
such as a field operator at a particular point in the spacetime.
Operationally this is possible because in this limit one can
imagine arbitrarily precise rods and clocks, which can be used
to determine the background as accurately as one would like.
Once we allow nonzero G, however, we immediately run into
the issue that any apparatus wemight like to usewill necessarily
backreact on the geometry. This is a consequence of the
“universal” nature of gravitational interactions. It does not
seem to be possible to invent matter that does not couple to
gravity.36 It thus seems likely that in an exact theory of quantum
gravity we are going to need some formulation in which local
field operators are emergent and approximate notions.37

In asymptotically flat spacetimes, such as those relevant for
the formation and evaporation of black holes we have consid-
ered so far, there is a very natural candidate for an exact quantity
to study in place of the correlation functions of local operators
that one naturally studies in quantum field theory. This quantity
is the Smatrix. It is defined as a linear map from initial states on
i−∪J− to final states on iþ∪Jþ with the property that

PðχjψÞ ¼ jhχjSjψij2: ð103Þ

In other words the probability of finding an “out” state jχi given
an “in” state jψi is given by the absolute value squared of the
matrix elements of the S matrix. Formally we can think of the
S matrix as

S ¼ e−i∞H; ð104Þ

although this expression needs to be taken with a grain of salt. It
is not hard to see that the S matrix must be a unitary map for
Eq. (103) to make sense, which is consistent with Eq. (104).38

I illustrate the basic idea of the S matrix in Fig. 15.
Before the S matrix can really have any nontrivial content,

we of course need to specify the meanings of its labels. In
other words, are there natural bases for the spaces of in and out
states that have simple physical interpretations? Here we are in
luck; as we approach infinity any incoming or outgoing
particles which are around become more and more widely
separated, so gravitational (and any other) interactions
between them become irrelevant and we can really make
sense out of them as exact quantum states. So in fact we expect
the Hilbert space of states at past or future infinity to simply
have the structure of a free quantum field theory. States are
labeled by how many particles there are of such-and-such type
and such-and-such momentum or spin, making sure to include
the appropriate boson or fermion statistics.39

That the unitary S matrix should be an exact observable
of asymptotically flat quantum gravity has been confirmed
in the one real example we know so far of such a theory (in
a number of dimensions large enough to have black holes):
the Banks-Fischler-Shenker-Susskind (BFSS) matrix model
(Banks et al., 1997). Among other things this model
provided the first example of a unitary theory which is
expected to have black holes. I will not discuss it in any
detail because AdS/CFT gives a broader and easier set of
examples.

?

FIG. 15. The S matrix. We send in massless (orange) particles
and massive particles (blue) from past infinity; they interact in
some complicated way, and then more particles come back out at
future infinity. The S matrix encodes the transition probabilities
of this process via Eq. (103).

36This is actually not quite true; there exist things called
topological field theories where one indeed has fields that do not
couple to the metric. The simplest example is the Chern-Simons
theory in 2þ 1 dimensions. This only seems to be possible however
if none of the fields which are present interact with the metric. One
cannot have fields which do not interact with the metric interacting
with fields that do. The reason is that any such interaction would
induce interaction with the metric even if it was not there before.

37I discuss this more in Sec. VI.A.

38In Hawking’s attempts to study information loss he introduced
the idea of a “$”matrix, which is a linear map from density operators
to density operators. Today this kind of thing is called a superoperator
or a quantum channel, and it often appears in discussions of noise and
communications.

39It is clear that this is a subtle claim to make precise. Even in
quantum field theory one has to make sure that one picks the right set
of asymptotic particles, and the choice is not always obvious.
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B. The Page curve

For our purposes we are interested in a particular type of
scattering process, one where we create a black hole from
infalling matter and then watch it evaporate. This is illustrated
in Fig. 16.
In this setting we want to get a sense of how the quantum

state of the black hole and its radiation evolves with time. One
fairly rigorous way to do this is by making a split of the
Hawking radiation into “late” and “early,” as shown in Fig. 16.
This gives a tensor product decomposition of the out state of
the Hawking radiation into a bipartite system

Hout ¼ HR ⊗ HBH; ð105Þ

and we can study how the reduced density matrix on R or on
BH depends on when we do the decomposition.
One thing that is particularly interesting to compute is the

entanglement entropy SR as a function of time. The plot of
this function is called the “Page curve,” in honor of its
inventor40 (Page, 1993b, 2013). Now we think about what to
expect. At the beginning of the experiment the black hole is
in a pure state, so the radiation field is trivial and has
SR ¼ 0. As the black hole begins to radiate SR will start

increasing. At some point however it must turn over and
come back to zero, since once all the radiation is out it must
again be in a pure state. I show a plot of one possibility
in Fig. 17.
In fact, Andy Strominger has argued that being able to

compute the Page curve in some particular theory is what it
means to have solved the black hole information problem.
Even in AdS/CFT or the BFSS model we are far from being
able to really do this. Nonetheless there are some fairly
compelling arguments, perhaps not surprisingly due to Don
Page, about what its basic form should be. I will now explain
these arguments, but first we need a bit of technology from
quantum information theory.

C. Page’s theorem

Consider a bipartite system

HAB ¼ HA ⊗ HB: ð106Þ

Without loss of generality I will take jAj ≤ jBj, whereby j · j I
mean the dimensionality of the indicated system. We say that
the system is maximally entangled if the state ρAB is pure but
the state ρA obtained from it by partial trace is proportional
to the identity operator on HA.
Page’s theorem (Page, 1993a) then says that a randomly

chosen pure state inHAB is likely to be very close to maximally
entangled as long as jAj=jBj ≪ 1. In order to state the theorem
precisely, I need to describe first how to choose a random pure
state and second how to quantify what “close” means.
Choosing a random pure state is accomplished by acting on

any particular state jψ0i with a random unitary matrix:

jψðUÞi≡Ujψ0i: ð107Þ

U is chosen from the group-invariant Haar measure. We can
compute the reduced density matrix ρAðUÞ by tracing out B.

R
BH

FIG. 16. The S matrix for a black hole (BH) that is made from
an initial orange shell of photons and then decays into a
Hawking cloud. The horizon is shown as the short-dashed line;
it forms and then dissipates. It is often convenient to split the
Hawking radiation into an early part R and a late part BH,
represented by the long-dashed line. The names are meant to
suggest that at some time the photons in R were already out in
the radiation while the photons in BH had yet to be emitted from
the black hole.

t

RS

FIG. 17. Page’s suggestion for a Page curve, in black. SR
increases as the black hole evaporates until a time of the order of
tevap=2, at which point we have SR ≈ S0=2, where S0 is the initial
coarse-grained entropy of the black hole. It then decreases back to
zero as the black hole evaporates. A more detailed analysis (Page,
2013) based on the arguments in Sec. V.C puts the turnover at
t ¼ 0:54tevap and at entropy SR ¼ 0:6S0. For comparison I show
Hawking’s proposal as the dotted blue line, where SR continues to
increase until at the end of the evaporation it reaches the full
initial coarse-grained entropy, violating unitarity.

40In fact, because of the UV divergences of quantum field theory,
what one really plots is the renormalized entanglement entropy
SfrengR ≡ SR − SfvacgR , where SfvacgR is the entanglement entropy of the
vacuum. For notational simplicity I will ignore this subtlety in what
follows, but if you are worried about it an excellent laboratory for
convincing yourself it is ok is the “moving mirror” model of black
hole evaporation (Holzhey, Larsen, andWilczek, 1994). In this model
the Page curve is computable analytically, and one can see that it has
the basic features suggested here.
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Closeness of states is defined using the operator trace norm,
also called the L1 norm, which is defined for any operatorM as

∥M∥1 ≡ tr
ffiffiffiffiffiffiffiffiffiffiffi
M†M

p
: ð108Þ

The trace norm distance between two density matrices ρ and σ
is then defined as ∥ρ − σ∥1.

41 We are also interested in the L2

norm, defined as

∥M∥2 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trM†M

p
: ð109Þ

It is not too hard to show that these obey

∥M∥2 ≤ ∥M∥1 ≤
ffiffiffiffi
N

p
∥M∥2; ð110Þ

for any operator M, where N is the dimensionality of the
Hilbert space.
We are now in a position to state (a version of) Page’s

theorem.
Theorem: For any bipartite Hilbert spaceHA ⊗ HB, we have

Z
dU∥ρAðUÞ − IA

jAj∥1 ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jAj2 − 1

jAjjBj þ 1

s
: ð111Þ

For intuition we can slightly weaken the bound by writingffiffiffiffiffiffiffiffiffiffiffiffiffiffijAj=jBjp
on the right-hand side. Page’s theorem then says

that once jBj is significantly larger than jAj, the typical
deviation of ρA from the maximally mixed state is extremely
small. For example, say that the two systems are sets of qubits;
if B has 10 more qubits than A, then the typical deviation from
maximal entanglement is bounded by 2−5.
The proof goes as follows:

�Z
dU∥ρAðUÞ − IA

jAj∥1

�
2

≤
Z

dU

�
∥ρAðUÞ − IA

jAj∥1

�
2

≤ jAj
Z

dU

�
∥ρAðUÞ − IA

jAj∥2

�
2

;

ð112Þ

with the first inequality following from Jensen’s inequality and
the second following from Eq. (110). We can then evaluate the
integral over U exactly, using unitary matrix technology which
is developed in Sec. IVof the Supplemental Material [193], and
take the square root of both sides to find the right-hand side of
Eq. (111). Note that this version of the theorem does not have
any assumptions about either jAj or jBj being large, although
clearly to get jAj=jBj ≪ 1 we want jBj ≫ 1.
Page actually stated his theorem in terms of the entangle-

ment entropy SA instead of the trace norm. This version is
derived by a similar argument: First defining

ΔρA ≡ ρA −
IA
jAj ; ð113Þ

we have

Z
dUSA ¼ −

Z
dUTrρA log ρA

¼ Tr

��
IA
jAj þ ΔρA

�

×

�
log jAj − jAjΔρA þ 1

2
jAj2Δρ2A þ � � �

��

¼ log jAj − jAj
2

Z
dUTrΔρ2A þ � � �

¼ log jAj − 1

2

jAj
jBj þ � � � ; ð114Þ

where � � � indicate terms that are smaller in the limit jAj,
jBj ≫ 1. Abstractly I prefer the trace norm version, both
because the trace norm is a better measure of the distance
between states and because no limit is necessary, but the
entropy version is also useful.
Indeed we can now use Page’s theorem to justify the

proposed form of the Page curve shown in Fig. 17. The idea is
that black hole evaporation is such a complex process that it is
plausible to assume that the pure state of R and BH together is
random, up to the basic constraints imposed by energy
conservation and causality. At early times the coarse-grained
entropy SfcoarsegR ¼ log jRj of the Hawking radiation is small
compared to the coarse-grained entropy SfcoarsegBH ¼ log jBHj
of the black hole. More explicitly, most of the Hawking
radiation is emitted into photons in the lowest l modes, which
we can approximately think of as a (1þ 1)-dimensional
photon gas. Its coarse-grained entropy at early times is then

SfcoarsegR ∝ tT; ð115Þ

where t is the time since the black hole began evaporating and
T ∼ 1=M is the temperature of the black hole. The coarse-
grained entropy of the black hole is just the Bekenstein-
Hawking entropy, which is of the order of M2, so we see that
for t ≪ M3 we have SfcoarsegR ≪ SfcoarsegBH . By Page’s theorem
we then have42

41The motivation for this definition is as follows: say that
∥ρ − σ∥1 < ϵ. Then for any projection operator Π we also have
tr½Πðρ − σÞ� < ϵ, so the probability for any experimental outcome
differs between ρ and σ by at most ϵ. Also beware that it is somewhat
common to define a trace distanceDðρ; σÞ≡ ð1=2Þ∥ρ − σ∥1, but this
factor of 2 would make our lives more difficult.

42A subtlety in applying Page’s theorem here is that the subspace of
statesof fixedenergy inHBH ⊗ HR doesnothavea tensorproduct form,
so to respect energy conservation we should not really average over all
states in the product Hilbert space. In the limit of weak interactions
betweenA andBonecanmodify theproofofPage’s theorem todealwith
this. Thebasic steps are the samebut the notation is a bit heavier sincewe
need to ensure that the random unitary acts only within the subspace of
fixed total energy. As you might expect, the result is that the reduced
densitymatrixforthesmallersystemA isveryclose tothe thermaldensity
matrix ð1=ZAÞe−βHA ,with the inverse temperatureβ chosenso thatAhas
the right expectationvalue for its remaining energy. The questionof how
weakthe interactionsneedtobeisasubtleone,butagoodruleof thumbis
that the unperturbed thermal expectation value of the perturbation to the
Hamiltonian should be small compared to the unperturbed expectation
value of the unperturbed Hamiltonian.
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SR ≈ SfcoarsegR ; t ≪ M3; ð116Þ

so for a while the Page curve grows linearly in t. Eventually we
have SfcoarsegR ≈ SfcoarsegBH , which is defined to happen at the
“Page time” tPage. At this point SR is some order one fraction of
the original coarse-grained entropy S0 of the black hole. After
the Page time we can apply Page’s theorem in the other
direction, so we expect to have SBH ≈ SfcoarsegBH . Since the total
state is pure we must have SBH ¼ SR at all times (this follows
from the Schmidt decomposition described in Sec. III of the
Supplemental Material [193]), so we now have

SR ≈ SfcoarsegBH ∝ S0

�
1 −

t
tevap

�
2=3

; tpage < t < tevap:

ð117Þ

Thus by using Page’s theorem we reproduced the qualitative
features of Fig. 17. By being more careful about details of the
evaporation, such as gray-body factors and the number and
helicities of the available massless particles, one can work out
moreof thequantitativedetailsaboutexactlywhenthecurve turns
over andatwhatvalueof the entropy (Page, 2013).The results for
a four-dimensional Schwarzschild black hole radiating into
photons and gravitons are quoted in the caption of Fig. 17.
Intuitively we can think of what is going on as follows: at

the beginning of the evaporation process the radiation that
comes out is entangled with the remaining black hole. But
eventually it must start coming out entangled with the earlier
radiation, since eventually the final state of the radiation must
be pure. It is only once we are past the Page time that we can
think of the quantum information about the initial state as
having started to come out.

D. How hard is it to test unitarity?

I now consider a different question; say that we are
convinced theoretically that black hole evaporation is unitary.
Is there a good way to test this experimentally? There are a
host of practical difficulties that would need to be dealt with.
First we would need to figure out how to reliably make black
holes in a laboratory setting. They will need to be considerably
smaller than the black holes that are produced astrophysically,
for example, a black hole that evaporates in a year has a mass
of the order of 109 kg and a radius of the order of 10−18 m.
Second we would need to be able to directly manipulate
individual photons (and possibly gravitons) in the Hawking
radiation. The energies of these photons and gravitons for this
black hole would be of the order of 100 GeV. Most worrying,
the entropy is of the order of 1034, so we have 1034 particles to
deal with. We can improve this by making the black hole even
smaller, but that comes with its own technical challenges.
These obstacles are worrisome to say the least, but even if we
were able to surmount them there is still a purely quantum
mechanics question of how we should go about verifying the
unitarity of black hole evaporation, say for a black hole whose
entropy is only of the order of 1010.
We thus imagine that we are successfully able to create a

black hole and capture the full quantum state of the Hawking
radiation, which we can then transfer to the memory of a

quantum computer.43 We could of course determine the
quantum state explicitly by sampling from an ensemble of
exponentially many (in the entropy) identically prepared black
holes, but this is rather impractical.44 If we grant ourselves the
ability to simulate the black hole formation and evaporation
process on a quantum computer in polynomial time,45 then a
simpler option is to transfer the final state of the Hawking
radiation to a quantum computer and then apply the time
reverse of this simulation. What emerges should then be the
initial state of the black hole. We could easily check this, for
example, by entangling the first few qubits in the collapse with
some reference system and then checking if the output of the
computation still possesses that entanglement. A downside of
this method is that it requires us to know the S matrix, but an
upside is that we can therefore check if we got it right.
Alternatively Hayden and Preskill (2007) suggested an

experiment that does not require a time-reversed simulation.
The idea is to prepare two identical black holes and then
capture their radiation in the memory of a quantum computer.
We then pass these two states through the quantum algorithm
shown in Fig. 18. This algorithm measures the unitary “swap”
operator that exchanges the two systems, so it returns �1 with
expectation value Trρσ, where ρ and σ are the (possibly
mixed) quantum states of the two Hawking clouds. This
expectation value is close to zero unless the two states are both

H H0

ρ

σ

FIG. 18. The swap test. This circuit measures the expectation
value of the swap operator in the state ρ ⊗ σ. The circuit works
by starting with an extra qubit in the state j0i, applying the
Hadamard transformation that exchanges the Z and X eigenbases,
applying a controlled swap which exchanges the two lower states
only if the upper qubit is j1i, reapplying the Hadamard, and then
measuring the Z operator for extra qubit. One can convince
themself (homework) that the expectation value for this last
measurement is Trρσ.

43Those unfamiliar with quantum computation and quantum
circuits should see Sec. V of the Supplemental Material for a brief
introduction [193].

44People with a particle-physics background sometimes talk about
“measuring high-point correlation functions” to test unitarity; that is
another version of this brute-force algorithm.

45This is probably possible for the quantum gravity theories we
know about such as the BFSS matrix model or AdS/CFT (Feynman,
1982; Lloyd et al., 1996; Jordan, Lee, and Preskill, 2011), and if you
believe in what Scott Aaronson and Stephen Jordan called in their
lectures the “extended Church-Turing-Deutsch hypothesis” then it
must be possible.
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equal and pure.46 This is thus like trying to distinguish a fair
coin from a weighted one that almost gives heads. An Oð1Þ
number of trials is sufficient to determine if the states are pure
and equal to high probability, which would confirm the
unitarity of the evaporation. Somewhat miraculously this is
possible without knowing either the final state of the Hawking
radiation or the dynamics of the black hole. This protocol is
called the swap test (Buhrman et al., 2001).
These algorithms inconveniently require us to really capture

the full state of the evaporation. As soon as we start making
mistakes, for example, because it is rather difficult to detect
gravitons, they do not work. In particular, if we try to use the
swap test to compare subsystems of the two states then the
states would be mixed and as just argued the test would fail.
To deal with missing (or corrupted) radiation we need to do
some kind of quantum error correction. A brief introduction to
quantum error correction and its computational complexity is
given in Sec. IVof Harlow and Hayden (2013). The upshot is
that quantum error correction is possible provided that we do
not lose too much of the radiation. We can lose or corrupt up to
almost half if we know which part is affected, while if we do
not know we can lose or corrupt up to a quarter. Recalling our
observation in Sec. IV.C that black holes radiate less into
higher-spin particles, losing gravitons is thus not really a
principled obstruction: even if we do not measure any of them
we will be able to correct for the loss. Unfortunately it seems
likely that this error correction procedure will take exponential
time in the number of affected qubits, so if anOð1Þ fraction of
the radiation is lost then the correction procedure will
probably take a time which is exponential in the black hole
entropy. To deal with this exponential we thus need to take the
entropy to be at most Oð10 − 20Þ, which corresponds to a
black hole whose radius is only slightly larger than the
Planck scale.
At present it thus seems that testing the unitarity of

Hawking radiation experimentally will be outside of our
technological capability for the foreseeable future, even
though there seems to be no in principle obstruction prevent-
ing it. Does this mean we should not worry about it? Not
necessarily; remember that thought experiments about trains
moving close to the speed of light were very helpful to
Einstein in understanding relativity, even though we still do
not have trains that move at almost the speed of light. The
black hole information problem is a litmus test for theories of
quantum gravity. Any consistent theory of quantum gravity
must either give us an answer or explain why the question
does not make sense, and once we have found such a theory it
may be experimentally testable in other ways which today are
unimaginable.

E. What is a typical microstate?

So far I have been discussing black holes made out of a
fairly rapid collapse of a matter or photon shell. But what
fraction of the total number of microstates can we make this
way? We can estimate this as follows: a (3þ 1)-dimensional
photon gas at temperature T and in volume V has energy and
entropy

E ∼ VT4;

S ∼ VT3; ð119Þ

so if we imagine forming the black hole by compressing a gas
of energy E ¼ M into a volume V ≈ r3s ∼M3, then the entropy
is

S ∼M3=2 ∼ A3=4; ð120Þ

where A is the area of the horizon. Comparing this to the full
black hole entropy S ∼ A, we see that we can make only a small
fraction of the microstates this way. How do we make the rest?
In statistical mechanics there is a standard way of answering
this question. All known laws of physics are CPT invariant, so
a typical microstate must have coarse-grained behavior which is
time symmetric. In other words, to make a black hole in a
typical member of its microcanonical ensemble of dimension-
ality e2πA, we must slowly build it up over a time of the order of
M3 by sending in low-l photons at the Hawking temperature in
such a way that no radiation comes out until we are done. This
is an entropy-decreasing process; it looks like the time reverse
of the usual Hawking evaporation. Once we finish building the
typical black hole, it will evaporate in the usual manner and the
whole process will look time symmetric.
The geometry of the interior in a typical microstate is

somewhat mysterious. The Penrose diagram of Fig. 13 is not
time symmetric, and if we try to make it so then we invariably
end up drawing a past singularity as well as a future
singularity. Do these two singularities meet in the middle?
Is there a piece of smooth geometry between them? Or could it
be the case that there is no global geometry describing the
interior and exterior of a typical state? We will see in Sec. VII
that there are indeed some reasons to suspect that there may
not be a smooth interior for typical states, although it is too
early to reach a definite conclusion.

F. Scrambling and recovery of quantum information

Say that we throw a quantum diary into a black hole. How
long do we have to wait before its contents comes out in the
Hawking radiation? This question was studied by Hayden and
Preskill (2007); I here give a sketch of their arguments. The
problem can be broken into two parts:

(1) How long does it take the black hole to absorb the
information?

(2) Once the information has been absorbed, how much
radiation needs to come out before we can recover it?

Before answering these questions, I first say a little about what
it means to recover quantum information.

46One way to see this is to observe that Trρσ defines an inner
product on the space of Hermitian operators. We can then apply the
Cauchy-Schwarz inequality to see that

ðTrρσÞ2 ≤ Trðρ2ÞTrðσ2Þ: ð118Þ

The right-hand side will be small unless both ρ and σ are close to
being projection operators or in other words are close to being pure.
Moreover the inequality is saturated only if they are equal.
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Say we have a quantum system in a state

jψi ¼
X
i

Cijii; ð121Þ

where jii is some complete basis for a Hilbert space of
dimensionality 2n. For example, it could be a a state of a
system of n qubits. Fully describing this quantum state
requires specifying 2n−1 complex numbers (the Ci’s modulo
normalization), but this is not what is usually meant by the
“quantum information” contained in the state. Classically an
n-bit string is specified by only n bits of information, and this
should be true for quantum information as well. The expo-
nential comes from trying to classically describe n qubits. If I
want to give a quantum state to you, it would be extremely
inefficient for me to write down all of the Ci’s, send them to
you in the mail, and then have you prepare a system in the
state jψi. I should really just send you the quantum state itself.
In other words quantum information is carried by qubits, not
bits. When we talk about sending or recovering quantum
information, this is what we always mean: we have some set of
physical operations which at the end of the day enable the
transportation of an arbitrary quantum state jψi of some
number of qubits from one place to another, without anybody
having to measure it.47

The ability to send and receive quantum information is
significantly hampered by the “no-cloning” theorem of
quantum mechanics (Dieks, 1982; Wootters and Zurek,
1982). This theorem says that it is impossible to find a
system C such that, after adjoining it to an arbitrary quantum
state jψi times an empty register j0i of the same dimension-
ality, we have time evolution

jψij0ijϕiC → jψijψijϕ0iC: ð122Þ

The proof follows immediately by contradiction when we
try to use this evolution and the linearity of quantum
mechanics to clone the state ð1= ffiffiffi

2
p Þðjψi þ jχiÞ for some

jχi orthogonal to jψi. This means that in some sense we can
think of quantum information as being conserved: I can send a
quantum state to you only if I lose it myself.48

There is a convenient method for determining whether or
not a particular protocol successfully transfers quantum
information from one place to another. Say that we have a
procedure which for any jψi implements

jψiAj0iB → j0iAjψiB: ð123Þ

This protocol transfers quantum information from system A to
system B. Now introduce an additional auxiliary system C, of
the same dimensionality as A and B, and maximally entangle
it with A. By linearity we then have the evolution

1ffiffiffiffiffiffijAjp X
i

jiiAj0iBjiiC → j0iA
1ffiffiffiffiffiffijAjp X

i

jiiBjiiC: ð124Þ

The evolution thus transfers the purification of C from A to
B.49 More generally we might imagine an evolution

jψiAj0iB → j0iAUBjψiB; ð125Þ

where UB is some unitary transformation on B. This is
typically still counted as successfully transferring the quantum
information, since after all the receiver can get back to the
previous evolution by acting with U†

B. The evolution once we
maximally entangle A with C is then

1ffiffiffiffiffiffijAjp X
i

jiiAj0iBjiiC → j0iA
1ffiffiffiffiffiffijAjp X

i

UBjiiBjiiC: ð126Þ

In either case we can theoretically test if the transfer was
successful by comparing the final states ρAC and ρA ⊗ ρC in
trace norm. They will be close to equal if and only if the
purification has been successfully switched.
We now apply this discussion to the quantum diary falling

into a black hole.50 Following Hayden and Preskill we first
assume that the black hole absorbs the diary instantly,
neglecting question (1) above. We can model this as follows.
We begin with a diaryDmaximally entangled with a reference
system S. We then throw the diary into a black hole B, which
we model by acting on the joint BD system with a random
unitary U. We can also include the radiation process as part of
this unitary, so we reinterpret the BD system after U has acted
as a tensor product of some Hawking radiation R and a
remaining black hole B0. The question is then how large R has
to be before we can recover the quantum diary, or in other
words how long we have to wait before

∥ρSB0 − ρS ⊗ ρB0∥1 ≪ 1: ð127Þ

If black hole B started in a pure state, then we can think of the
diary as being an extra piece of the infalling matter that created

47An important point here is that the state does not have to be carried
by the same physical qubits at the end as it was in the beginning. For
example, quantum teleportation (Bennett et al., 1993) is a famous
protocol by which we can send an arbitrary state of n qubits from one
place to another by exchanging only n classical bits of information.

48You might object that I can easily prepare multiple copies of a
quantum state for which I know the Ci’s. This is true, but missing the
point. In sending classical information it is not necessary to know the
message to send it; for example, it could be in a sealed envelope or be
encrypted. What we want is a single procedure that works for a single
copyof anystate of thequbits.Measuring the state todetermine theCi’s
and then sending them does not count, since it requires many initial
copies of the same state.

49See Sec. III of the Supplemental Material [193] for more
discussion on purification.

50We can phrase the following discussion more rigorously in terms
of decomposing the states at past and future null infinity, as done in
Sec. V.B, but I will not attempt it. The new subtlety is that, in arguing
that the matrixU that appears below is unitary and does not act on E or
S, we need to use the cluster decomposition property of the S matrix.
This property is a crude form of locality which says that the S matrix
approximately factorizes for widely separated systems. It is definitely
true in quantum field theory and is usually expected to be true even in
quantum gravity; see, for example, Fitzpatrick, Kaplan, and Walters
(2014) for a recent discussion in AdS/CFT. To justify this discussion,
we need to study this more quantitatively to make sure it works.
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the black hole. From Page’s theorem we then already know the
answer for how long we have to wait until information gets
out. Until the Page time the Hawking radiation is maximally
mixed and carries no quantum information.
What Hayden and Preskill realized however is that the

situation is more interesting if we wait until after the Page time
to throw in the diary. In this situation the black hole is already
maximally entangled with its early radiation E; see Fig. 19.
Using the same random unitary technology used above in
proving Page’s theorem, one can then show that (Hayden and
Preskill, 2007)

Z
dU∥ρSB0 − ρS ⊗ ρB0∥

1

≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjDj2 − 1ÞðjB0j2 − 1Þ

jDj2jEj2 − 1

s
≈
jDj
jRj ;

ð128Þ

where in the approximation I have used that jB0jjRj ¼ jEjjDj
and assumed all systems are large enough we can ignore the
1’s. Intuitively this result says the following: say that the
number of bits radiated after throwing in the diary is c bits
more than were contained in the diary itself. Then the right-
hand side is 2−c, which rapidly becomes extremely small. So
the information essentially comes out as fast as it possibly
could. This result led Hayden and Preskill to describe “old”
black holes as “information mirrors.” Beware however that, as
in Eq. (125), a unitary transformation on ER will in general be
necessary to put the quantum state of the diary back into
usable form. This unitary transformation might be quite
difficult to perform, and indeed as we discuss later this is
probably the case (Harlow and Hayden, 2013).
Finally we return to the question of how long it takes the

black hole to absorb the diary and reemit it, or in other words
how long it takesU to act. A first guess is to treat the diary as a
massless particle sent inward from some fixed radius r0, and
then ask how much Schwarzschild time goes by before it
reaches the stretched horizon at r − rs ≈ l2

p=rs (recall that the
stretched horizon is the surface a Planckian proper distance
outside the actual horizon). From Eq. (3) for the trajectory of a
radial null geodesic, we see that the time is

Δt ≈ tscr ≡ rs log
rs
lp

; ð129Þ

which is the same time scale encountered previously around
Eq. (71) in our discussion of the trans-Planckian problem.
Here we are interpreting it as the time for the diary to appear to
have been completely thermalized from the point of view of an
outside observer. Using the same calculation as done below
Eq. (71) any signal sent from the diary at that point would
need to have super-Planckian energy to be distinguishable
from the thermal atmosphere. The time scale (129) is also the
time it takes for geometric perturbations of the black hole to
ring down to Planckian amplitude (Price and Thorne, 1986).51

For these reasons the time scale tscr is usually called the
scrambling time.
In fact, scrambling is a technical notion in quantum

information theory. We say that a piece of quantum information
is scrambled into a system if it cannot be recovered from any
subfactor of the system that is smaller than some order one
fraction of the whole. Hayden and Preskill’s result (128) shows
that a random unitary accomplishes this, and indeed were the
transformation U not to have this property it would not
necessarily be the case that we could recover the diary from
RE since there might be some information left in B. It is not
immediately clear that the evolution of a black hole for a time of
the order of tscr is really “sufficiently random” to scramble the
system in this technical sense, but Hayden and Preskill
provided plausible evidence for this from the theory of quantum
circuits.52 What they pointed out is that a level of scrambling
which is sufficient for Eq. (128) to hold can be produced by
much smaller quantum circuits than the exponential-sized ones
which would be needed to produce Haar-typical U’s. For a
system of n qubits there exist families of quantum circuits
called ϵ-approximate unitary two-designs, with the property
that Eq. (128) holds to within accuracy ϵ if we replace the
average over all unitaries by an average just over one of these
families (Dankert et al., 2009). Moreover these circuits have a
depth which scales like Oðlog n log 1=ϵÞ. Hayden and Preskill
then modeled the black hole horizon as a set of S qubits
positioned at the stretched horizon. They further imagined that
any two of the qubits can interact pairwise via two-qubit gates,
and that each layer of the circuit requires one Planck unit of
proper time to execute. A time step of the order of lp near the
horizon is redshifted to a time step of the order of rs in
Schwarzschild time, so the total execution time for an ϵ-
approximate unitary two-design on these qubits will be of the
order of rs log S, which is consistent with Eq. (129).53

The scrambling time (129) is quite short compared to the
evaporation time. Note that the Planck scale appears only
inside of the logarithm, so even for a solar mass black hole the

FIG. 19. The Hayden-Preskill experiment. We throw a diary D
entangled with a reference system S into a black hole B that is
already maximally entangled with its early Hawking radiation E.
The diary is absorbed by the black hole, which then partially
evaporates into a remaining black hole B0 and some more
radiation R. The question is to find when the purification of S
is transferred to ER.

51The reason for this is straightforward; the scrambling time is the
time it takes to function rse−t=rs to become of the order of lp.

52See Sec. V of the Supplemental Material [193] for an intro-
duction to quantum circuits.

53Actually Hayden and Preskill did not quite get this right, since
they imposed locality on the qubit interactions and then had to cancel
it by having the circuit run faster. This was corrected by Sekino and
Susskind (2008).
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scrambling time is only about 10−4 s. It is also quite fast
compared to what is expected for more conventional systems
with comparable entropy, and in the aftermath of the Hayden
and Preskill paper there was quite a bit of activity aimed at
understanding what sorts of physical systems might realize
this “fast scrambling” (Barbon and Magan, 2011, 2012;
Lashkari et al., 2013; Sekino and Susskind, 2008). More
recently Shenker and Stanford were able to independently
derive the scrambling time (129) for certain “large” black
holes by using the AdS/CFT correspondence (Shenker and
Stanford, 2013, 2014). I describe this in more detail in
Sec. VI.J.

G. Black hole complementarity

So far in this section we have only studied the physics of the
Smatrix. The interior region of the black hole has disappeared
from view. This was not an accident; essentially everything we
really know about the quantum mechanics of black holes rests
on the precise formalism of the Smatrix (or its AdS equivalent
that I introduce in the next section). Unfortunately there does
not seem to be any simple way to relate the experience of an
infalling observer who crosses the horizon to the properties of
the S matrix. What then are we to do? It seems clear to me at
least that we cannot really claim to understand black holes
until we understand the experience of the infalling observer.
The black hole interior has been an extremely hot subject in

the last year or two, which I will return to in the final two
sections of this article, but as a teaser I will now discuss what
up until recently was the best-known attempt to grapple with
the implications of unitary evaporation for the experience of
an infalling observer. This is an analysis by Susskind and
Thorlacius (1994) of the possibility of seeing quantum cloning
by jumping into a black hole.
The setup is shown in Fig. 20. In order to describe what is

seen by the infalling observer in a quantum mechanical
manner, we apparently need to introduce some type of degrees
of freedom that live behind the horizon. How these degrees of
freedom relate to those that describe the in and out states at
past and future infinity is of course an important question that
any theory of the interior needs to address, but for now I will

try not to do this. The strongest assumption we could make is
that there is a valid low-energy field theory description of the
quantum state throughout the red and then the blue spatial
slices in the figure. These types of slices are sometimes called
nice slices, since they seem to be the kind of thing you would
want to draw to get a complete Hamiltonian description of the
spacetime including the interior.
What Susskind and Thorlacius emphasized, following a

suggestion of Preskill, is that if we believe the evaporation to
be unitary, this description of the slices cannot be consistent
with quantum mechanics. The reason is that the quantum
information on the red slice that is in the infalling shell
apparently is cloned on the blue slice. We could throw in
arbitrary quantum states and they would both stay inside in the
shell and reappear in the Hawking radiation. This type of
evolution violates the quantum no-cloning theorem described
in the previous section. It is inconsistent with the linearity of
quantum mechanics. Both pieces of quantum information
seem to be real. Somebody could jump in riding the shell and
find the state up in the left corner or somebody could stay
outside and see the information come out in the Hawking
radiation. What Susskind and Thorlacius pointed out [and
which was later refined by Hayden and Preskill (2007)] is that
no single observer can see both copies. In the diagram this is
essentially obvious by causality, since anybody who waits
around long enough (i.e., after a Page time) to get out the
quantum information will then jump in far too late to be able
to see the infalling shell on this slice. We could try to avoid
this by bending the blue slice back down toward the horizon,
but this causes an enormous redshift of the infalling shell from
the point of view of the person jumping in late, which prevents
her from seeing the second copy. This argument was signifi-
cantly improved by Hayden and Preskill, who pointed out that
a much more stringent test arises if the infalling observer waits
until a Page time has passed and then throws in a diary as
discussed previously. We saw that in this case the information
now comes out after a time which is only of the order of the
scrambling timeM logM, which is much shorter. Hayden and
Preskill nonetheless showed that the observer is still just
barely not able to see any quantum cloning.
You might be tempted to say that a contradiction is a

contradiction, regardless of whether somebody sees it or not.
And indeed this contradiction certainly does show that imag-
ining that there is unitary quantum mechanical evolution on
these nice slices is inconsistent with having the evaporation
process be unitary. But Susskind and Thorlacius instead
interpreted the inability to see the potential cloning as an
argument against using these slices in the first place. If nobody
can see the quantum state on the whole slice, why should it
exist? They argued that quantum mechanics only needs to
describe the experiences of individual observers, who are
appropriately restricted by causality in what they can do.
They called this idea black hole complementarity (Susskind,
Thorlacius, and Uglum, 1993; Susskind and Thorlacius, 1994;
Kiem, Verlinde, and Verlinde, 1995; Lowe et al., 1995).
If this seems like it is getting too philosophical to you, I am

sympathetic. After all nobody ever managed to really imple-
ment black hole complementarity into an actual theory, so its
consistency (or indeed its precise definition) was never clear.
But it is worth saying that this type of argument does have at

FIG. 20. Black hole cloning. If we believe that Hawking
evaporation is unitary, then the quantum information on the
red slice about how the black hole was made is apparently present
at two places on the blue slice.
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least one very successful historical analog: the Heisenberg
uncertainty principle. Heisenberg’s realization that it is opera-
tionally impossible to measure both the position and momen-
tum of a particle could have been dismissed by a hide-bound
“classical physicist” as follows: “Of course the particle has
both a position and a momentum, that is part of what makes it
a particle. What do I care if you can’t figure out how to
measure it”! This would have been a profoundly wrong retort.
The correct interpretation is that Heisenberg’s operational
limitation is an essential part of the consistency of a new type
of theory where “particle” no longer means what it used to.
For black hole complementarity we have yet to find the new
theory, and indeed recent work that I discuss in Secs. VII and
VIII suggests that more new ideas are needed before such a
theory can be found, but black hole complementarity may yet
play an important role in its eventual formulation.

VI. HOLOGRAPHY AND THE AdS=CFT
CORRESPONDENCE

The debate over whether or not black hole evaporation is
unitary persisted for a while, but major progress in string
theory in the 1990s managed to eventually push most people
in the field into the prounitarity camp [including Hawking
himself (Hawking, 2005)]. The first important part of this was
the microscopic calculations of black hole entropy in string
theory already mentioned in Sec. IV.E, but the main source of
the shift was the explicit realization in AdS/CFT (Gubser,
Klebanov, and Polyakov, 1998; Witten, 1998a; Maldacena,
1999) of the holographic principle (’t Hooft, 1993; Susskind,
1995a). In this section I give a brief overview of these ideas,
focusing mostly on material relevant for understanding the
black hole information problem. It will by no means be
complete; AdS/CFT is an extensive subject. Only two years
after its discovery the standard introduction (Aharony et al.,
2000) already weighed in at 261 pages. Interested readers are
encouraged to turn there for more details on AdS/CFT,
although many things described in this section were not
known at the time of that review. In this section I will restore
the Planck scale and instead mostly work in units where the
AdS radius rads is set to 1. Given the wide variety of interesting
AdS/CFT examples in various spacetime dimensions, in this
section I will mostly work in dþ 1 spatial dimensions instead
of just 3þ 1.
The precision of the AdS/CFT correspondence means that

this section will necessarily have a higher density of technical
results than the previous ones. The upshot is that the
correspondence provides compelling evidence for the unitar-
ity of black hole evaporation.

A. Entropy bounds and the holographic principle

Perhaps surprisingly, the idea that black holes have micro-
states and are described by unitary dynamics has interesting
implications for the statistical mechanics of other systems.54

For the first example, say that we have an object of linear
size L and energy E. By lowering it to within a proper distance

of order L of the horizon of a black hole whose Schwarzschild
radius rs is much greater than L, we can use the gravitational
redshift to decrease the energy of the object as seen from
infinity by a factor of the order of L=rs. If we then drop the
object into the black hole, the black hole mass changes by
ΔM ¼ LE=rs. The change in the Bekenstein-Hawking
entropy of the black hole is

ΔSbh ∝ LE: ð130Þ

This experiment potentially is a challenge to the second law of
thermodynamics. If the increase in the black hole entropy is
less than the entropy of the system we threw in then the total
entropy would decrease. This led Bekenstein to conjecture
that for any system we must have

S < CLE; ð131Þ

where C is some Oð1Þ coefficient not determined by this
argument (Bekenstein, 1981). This conjecture is called the
Bekenstein bound, and it has the rather surprising feature that,
although it was motivated from an argument about black holes,
the Planck scale does not appear on either side of the inequality.
A priori there does not seem to be an independent reason for it to
be true, so it at first appears to be a nontrivial constraint on the
typeof nongravitational systems that can be consistently coupled
to gravity. Indeed there has been quite a lot of controversy in the
literature, both about whether or not the bound is true and
whether or not it needs to be true to preserve the second law
(Unruh andWald, 1982; Marolf, Minic, and Ross, 2004; Marolf
and Sorkin, 2004). Most of the controversy stems from the issue
that the precise definitions of the quantitiesS,L, andE appearing
in the bound are not clear. Recently however Casini (2008) gave
a simple and elegant proof that a precise version of the bound
holds in any relativistic quantum field theory.55 This makes it
clear that the Bekenstein-Casini bound is not really a constraint
on matter theories, but it is nonetheless a deep and surprising
property they possess which does not seem particularly natural
unless we think about black holes.
To get a bound that involves the Planck scale explicitly,

Susskind suggested a different thought experiment (Susskind,
1995a). Consider a stationary object of entropy S and energy
E, which is contained in a sphere of area A. If we assume that
it is not a black hole, then Emust be less than the massM of a
black hole with horizon area A. Now consider the process
where we collapse a spherical shell of matter onto this object

54For a broad review of the ideas in this section, see Bousso
(2002).

55The proof of the Bekenstein-Casini bound is based on the
positivity of relative entropy, which for any two density matrices is
defined as SðρjσÞ≡ trρ log ρ − trρ log σ. Casini interprets the left-
hand side of the bound as the renormalized von Neumann entropy
−trρV log ρV þ trρ0V log ρ

0
V of some region V in an excited state ρV ,

where ρ0V is the reduced density matrix of the ground state in the same
region. The right-hand side of the bound is interpreted as the
renormalized expectation value trρVK − trρ0VK of the modular
Hamiltonian K ≡ − log ρ0V in the excited state ρ. The bound then
follows immediately from the positivity of SðρV jρ0VÞ. I encourage the
reader to read his paper for the details; the motivation and discussion
are transparent, as is the explanation of why the theorem avoids
various potential objections such as increasing the number of species.
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whose energy isM − E; this results in the formation of a black
hole of mass M and area A. In order for this process to not
violate the second law we apparently need

S ≤
A
4G

; ð132Þ

which is called the holographic entropy bound. Roughly it
says that the maximal amount of entropy in a spacetime region
scales with the area of the boundary of the region. From a
quantum field theory point of view this is surprising. Typically
we are used to entropies scaling extensively with the volume
of a spacetime region. For example, if we imagine a lattice of
Planckian spacing with some finite number of degrees of
freedom at each point on the lattice, then the logarithm of the
Hilbert space dimension would scale with the volume of the
lattice in Planck units. So the holographic entropy bound is
saying that the number of degrees of freedom in spacetime is
much less than we might have naively thought; if you try to
excite more you make a black hole. The bound (132) as stated
has several problems (Bousso, 2002), but a more general
covariant version of it (Bousso, 1999a, 1999b) has survived
many quantitative tests and been proven to hold in a wide
variety of classical and semiclassical situations (Flanagan,
Marolf, and Wald, 2000; Wall, 2010, 2012a; Bousso
et al., 2014).
Clearly if the holographic entropy bound is correct then

there is a large amount of nonlocality in whatever the correct
theory of quantum gravity is. Indeed the area scaling of the
entropy led ’t Hooft and Susskind (’t Hooft, 1993; Susskind,
1995a) to conjecture that a true theory of quantum gravity
must in some sense live in one fewer dimensions than naively
expected; Susskind called this idea the holographic principle.

B. Statement of the AdS/CFT correspondence

The holographic principle has so far had its most precise
realization in the widely celebrated anti–de Sitter/conformal
field theory correspondence. AdS/CFT was originally discov-
ered by studying the low-energy limit of brane systems in
string theory (Maldacena, 1999). In the most well-known
example, one looks at a stack ofN D3 branes in type IIB string
theory in ten dimensions.56 At large N the branes backreact
and produce a nontrivial geometry which approaches five-
dimensional anti–de Sitter space times an S5 in the vicinity of
the branes. The AdS radius in Planck units is of the order of
N1=4. At any N, however, the region near the branes has a low-
energy description given by a particular (3þ 1)-dimensional
conformally invariant quantum field theory called maximally
supersymmetric SUðNÞ Yang-Mills theory, with a gauge
coupling constant given by g2YM ¼ 4πg, where g is the string
coupling constant. In the region of overlapping validity these
two theories must be the same, and since the latter one makes
sense at any N (and g) it is natural to conjecture that the
equivalence holds at finite N (and g). For reasons we will soon

see, the AdS description is often called the “bulk” theory
while the CFT is called the “boundary” theory.57 Rather than
unpack the details of this argument, however, with the benefit
of hindsight I will instead present AdS/CFT as a self-
consistent framework. I will state the correspondence pre-
cisely below, but I will first briefly introduce the ingredients.

1. Anti–de Sitter space

So far in this article we considered geometries which
asymptote to ordinary flat Minkowski space. In the presence
of a nonzero vacuum energy, however, Minkowski space is not
a solution of Einstein’s equations. If the vacuum energy is
negative, the simplest solution is anti–de Sitter space, which in
dþ 1 spacetime dimensions has metric

ds2 ¼ −
�
1þ

�
r

rAdS

�
2
�
dt2 þ dr2

1þ ðr=rAdSÞ2
þ r2dΩ2

d−1:

ð133Þ

Here we have t ∈ ð−∞;∞Þ, r ∈ ½0;∞Þ. The length rAdS is
related to the vacuum energy density ρ0 as

1

r2AdS
¼ −

16πGρ0
dðd − 1Þ . ð134Þ

For the remainder of this section I will work in units where
rAdS ¼ 1. This geometry manifestly has the property that for
r ≪ 1 it resembles Minkowski space in spherical coordinates.
It is not obvious in this presentation, but it has an isometry
group SOðd; 2Þ which is large enough to send any point in the
spacetime to any other point; the geometry is homogeneous.
As r → ∞ it does not approach Minkowski space, so it has its
own interesting boundary structure. As usual we can describe
this more intuitively with a Penrose diagram, which can be
derived by introducing a new coordinate r ¼ tan ρ:

ds2 ¼ 1

cos2ρ
½−dt2 þ dρ2 þ sin2ρdΩ2

d−1�: ð135Þ

We have ρ ∈ ½0; π=2Þ, so we can conformally compactify by
discarding the diverging prefactor and including the boundary
at ρ ¼ π=2. The diagram is shown in Fig. 21.
Themain lesson of theAdSPenrose diagram is thatwe should

think ofAdS as a box.Massless particles sent out from the center
get all the way out to the boundary and back in a finite proper
time π, as seen by somebody at the center.58 This is also true for
massive particles; say you are floating in the center of AdS and
you throw a ball away from you. It will go out some finite

56This argument may be difficult for someone unfamiliar with
string theory to follow, but there are only so many things I can review.
These objects are defined, for example, by Polchinski (1998b), but do
not worry, they will not be on the final.

57This terminology is convenient but it can be misleading. The
situation here is different from an often-encountered one in con-
densed matter physics, where there are “edge modes” at the boundary
of some system that also has quasiparticle excitations in its interior. In
that type of system, the two types of excitations exist in the same
theory. In AdS/CFT, the two theories are equivalent, and we should
use either one description or the other but not both.

58Provided that we choose reflecting boundary conditions at
r ¼ ∞, as we probably should if we want to view AdS as a closed
system.
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distance (unlike a massless particle it will not make it all theway
to the boundary), but eventually it will turn around and return to
you after a timeof the order of 1 inAdSunits.These observations
are formalized in the statement that the boundary is timelike. It
has the topology of R × Sd−1 with the R being temporal.
As in flat space there is a natural notion of asymptotically

AdS spacetime (Henneaux and Teitelboim, 1985). I will not
define this rigorously, but roughly a spacetime is asymptotically
AdS if its only boundary is timelike and in the vicinity of that
boundary the geometry approaches that of AdS near r → ∞. In
a theory of quantum gravity with nontrivial states there will be
backreaction, so this type of geometry will need to be included
to get anything interesting. These states will lie in representa-
tions of the AdS symmetry SOðd; 2Þ in the same way that in
Minkowski space excitations can be characterized by their
Lorentz transformation properties. One of the generators of this
symmetry is the AdS version of the ADM Hamiltonian H,
which generates translations of the boundary coordinate t, so
quantum gravity in asymptotically AdS space is a strong
candidate for a closed Hamiltonian system. Moreover, since
excitations reach the boundary and return in finite time, we can
think of it as “gravity in a box”; in particular, we should expect
that the spectrum of H is discrete.

2. Conformal field theory

A conformal field theory is a relativistic quantum field
theory which is also invariant under a larger set of spacetime
transformations, the conformal group, which is generated by
the usual Poincaré transformations, rescalings of the coor-
dinates x0μ ¼ λxμ, and special coordinate transformations

x0μ ¼ xμ þ aμx2

1þ 2xνaν þ a2x2
: ð136Þ

More abstractly the conformal group is defined as the set of
transformations of Minkowski Rd which preserve angles but
not necessarily lengths. It is isomorphic to SOðd; 2Þ, which
already suggests a connection to AdSdþ1.
The simplest example of a CFT is a free massless scalar

field, which in 3þ 1 Minkowski space is invariant under the
dilatation transformation

x0μ ¼ λxμ;

ϕ0ðx0Þ ¼ λ−1ϕðxÞ: ð137Þ

CFTs have many interesting properties which I do not have
time to go into, but two are crucial for us. First in any CFTwe
can always find a special set of local operators, called primary
operators, which transform simply under conformal trans-
formations.59 In particular under dilatations they transform as

O0ðx0Þ ¼ λ−ΔOðxÞ; ð138Þ

where Δ is the conformal dimension of the primary operator
O. In a unitary conformal field theory Δ is real and positive,
and if O is a scalar operator it obeys Δ ≥ ðd − 2Þ=2.
Derivatives ∂nO of a primary operator are called descendants;
they have conformal dimension Δþ n, meaning that they
rescale as λ−Δ−n under dilatations, but they are no longer
primary. Primary operators have simple correlation functions,
for example, in any CFT a scalar primary O of dimension Δ
has a time-ordered two-point function60

hΩjTOðx; tÞOð0; 0ÞjΩi ¼ 1

ðjxj2 − t2 þ iϵÞΔ : ð139Þ

Second it is often interesting to study a CFT on the
“cylinder” R × Sd−1, with metric

FIG. 21. The Penrose diagram for anti–de Sitter space. The left
side is the origin of polar coordinates at r ¼ 0 and the right side is
the timelike spatial boundary of AdS at r ¼ ∞. The time
coordinate t is the proper time at r ¼ 0, so we see immediately
that signals can be sent out to the boundary and return in a finite
amount of proper time at the center. The diagram continues
infinitely far to the past and future so it is not really compact. This
can be fixed by an additional coordinate transformation, but the
current form of the diagram is actually more useful so people
usually do not do this.

FIG. 22. The state-operator correspondence. The path integral
over the ball ρ < 1 with boundary condition ϕ and an operator O
at ρ ¼ 0 computes a wave functional Ψ½ϕ� which has energy Δ if
O has dimension Δ. Moreover given such a state, we can
construct the operator by evolving the state radially inward
assuming no operators are present until we are left with some-
thing at the center that must be local.

59More precisely a local operator is primary if when it is located at
x ¼ 0 its commutators with the special conformal generators are zero.

60Remember that time ordering means that operators at earlier
times appear to the right of operators at later times. ϵ is a positive
infinitesimal quantity which fixes the interpretation of the branch cut.
For the special case of a massless free field in 3þ 1 dimensions this
formula follows from the m → 0 limit of Eq. (27).
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ds2 ¼ −dt2 þ dΩ2
d−1: ð140Þ

As in our previous discussion of the Hilbert space of
quantum field theory in Sec. III.A, a natural basis of states
for this system is field configurations on Sd−1. Another
natural basis is the set of eigenstates of the Hamiltonian H
that generates t translation. In fact in CFTs there is a natural
bijection between local operators of dimension Δ and these
energy eigenstates. The bijection is based on the observation
that Euclidean Rd

ds2 ¼ dρ2 þ ρ2dΩ2
d−1 ð141Þ

is conformally equivalent to R × Sd−1 in the sense of
Sec. II.C. Indeed the coordinate transformation ρ ¼ eτ puts
the metric (141) into the form

ds2 ¼ e2τðdτ2 þ dΩd−1Þ: ð142Þ

Note that dilatations of ρ become time translations of τ,
which after analytic continuation becomes t. In a conformal
field theory we can essentially ignore conformal equiva-
lences in the metric. They do not affect angles and they
should basically leave the theory invariant.61 The bijection
then works by using the Euclidean path integral on the ball
ρ < 1 in Rd with a local operator of dimension Δ at ρ ¼ 0

to construct a quantum state of energy Δ at t ¼ 0 on
R × Sd−1, as shown in Fig. 22. This is called the state-
operator correspondence.

3. The dictionary

We now state the AdS/CFT correspondence. The modern
version is as follows (Heemskerk et al., 2009):

• Any relativistic conformal field theory on R × Sd−1 with
metric (140) can be interpreted as a theory of quantum
gravity in an asymptotically AdSdþ1 ×M spacetime.
Here M is some compact manifold that may or may not
be trivial.

This statement is really something of a definition; at the
moment we do not know an alternative precise theory of
quantum gravity in asymptotically AdS space, so we are
instead using something well defined (the CFT) to say what it
is we mean by quantum gravity in AdS space. In order for this
definition to be good, we need to address several issues:

(1) What is the detailed map between the theories? Given
an AdS quantity we are interested in, how do we
compute it in the CFT?

(2) In what cases does the CFT lead to a gravity theory
with a good semiclassical description? In other words,
under what circumstances is the AdS radius large in
Planck units?

Question (1) is answered by the “dictionary” of AdS/CFT:
the list of CFT expressions for interesting bulk quantities. I
describe here some of the most important entries in the
dictionary. First of all the Hilbert space of physical states
of the bulk is by definition identical to the CFT Hilbert space.
Moreover symmetry generators of SOðd; 2Þ in the CFT are
identified with the corresponding bulk symmetry generators of
asymptotically AdS space. In particular the Hamiltonian is the
same on both sides. Quantities which depend only on the
space of states and the Hamiltonian, for example, the thermal
partition function or the free energy at finite temperature, are
thus computed by their CFT expressions by definition. We
also want to have something like a CFT expression for a local
bulk field, but as already argued in Sec. VI.A local bulk fields
should not exist in a true theory of quantum gravity such as
AdS/CFT is claiming to provide. In Sec. V.A, however, we
argued that states at past and future infinity in Minkowski
space could be described in terms of free fields. Along similar
lines we might guess that in AdS we should be able to make
precise sense of the boundary limits of local bulk fields.
Indeed the AdS/CFT dictionary postulates, for example, that if
O is a scalar primary CFT operator then there is a bulk scalar
field ϕ such that

lim
r→∞

rΔϕðt; r;ΩÞ≡Oðt;ΩÞ: ð144Þ

In other words if we extrapolate a bulk field to the boundary,
stripping off a normalization factor, thenweget a quantity which
is exactly described in the CFT as a primary operator with
dimension Δ.62 In an expectation value of products of bulk
operators, the limit in Eq. (144) should be taken simultaneously
for all operators together.63

As an example of the extrapolate dictionary, consider a free
massive scalar field in AdS. Its time-ordered two-point
function is64

61More carefully one can show that for correlation functions of
scalar primary operators we have

hO1ðx1Þ � � �OnðxnÞie−2ωg
¼ eΔ1ωðx1Þþ���þΔnωðxnÞeA½g;ω�hO1ðx1Þ � � �OnðxnÞig; ð143Þ

where A½g;ω� is some known local functional of g and ω that weakly
depends on the theory under consideration but is independent of
which operators appear in the correlation function. It is called the
conformal anomaly functional and is nonzero only when d is even. A
similar equivalence holds for wave functionals computed from path
integrals on conformally equivalent geometries.

62This version of the dictionary, sometimes called the “extrapo-
late” dictionary, was first proposed by Banks et al. (1998). Its
equivalence to another version (Gubser, Klebanov, and Polyakov,
1998; Witten, 1998a), sometimes called the “differentiate” dictionary,
was shown to all orders in perturbation theory in Harlow and Stanford
(2011).

63Other choices of how we scale the operators will lead to CFT
correlation functions computed on spaces other than Eq. (140). There
are several interesting options, for example, we can instead get CFT
correlation functions on Rd (“AdS-Poincaré slicing”) or on R × Hd−1

(“AdS-Rindler slicing”), but I will not describe these in detail here.
64See, for example, Burgess and Lutken (1985). The most elegant

way to derive this involves starting with the Euclidean Green’s
function on the hyperbolic disk, which depends only on the geodesic
distance and obeys the wave equation, and analytically continuing.
For an example see an analogous calculation for dS space in
Appendix B of Harlow and Stanford (2011).
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hΩjTϕðxÞϕðx0ÞjΩi ¼ ð2Δ − dÞ−12−2Δπ−d=2 ΓðΔÞ
ΓðΔ − d=2Þ

× uΔF

�
Δ;Δþ 1 − d

2
; 2Δ − dþ 1; u

�
;

ð145Þ

where

u ¼ 2

1þ coshl
; ð146Þ

with l the geodesic distance between the two points
and F a hypergeometric function. Δ is related to the mass
m as

Δ ¼ d
2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ 4m2

p
: ð147Þ

In terms of the coordinates in Eq. (133), we have

u ¼ 1

1 − rr0 cos αþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ r2Þð1þ r02Þ

p
cos ½ðt − t0Þð1 − iϵÞ� :

ð148Þ

Here α is the angle between the two points on Sd−1 and ϵ
is an infinitesimal positive quantity that picks out the right
branch of uΔ. Applying the dictionary (144) we then have

hΩjTOðt; αÞOðt0; 0ÞjΩi ∝
�

1

cos ½ðt − t0Þð1 − iϵÞ� − cos α

�
Δ
;

ð149Þ

which is the correct two-point function in conformal
field theory on R × Sd−1 for a scalar operator of
dimension Δ.65

The extrapolate dictionary works not only for scalars, but
indeed any CFT has a unique energy momentum tensor Tμν

which is a spin two primary operator of dimension d. Its
bulk dual is the metric tensor, which of course should exist
in any theory of gravity. Moreover if the CFT has global
symmetries then by Noether’s theorem it must have con-
served currents of dimension d − 1, and these are dual to
gauge fields in the bulk. There are also other interesting
items in the dictionary, among them Wilson lines
(Maldacena, 1998) and von Neumann entropy (Hubeny,
Rangamani, and Takayanagi, 2007; Lewkowycz and
Maldacena, 2013; Ryu and Takayanagi, 2006; Nishioka,
Ryu, and Takayanagi, 2009) in the boundary theory. I will
briefly discuss the latter in Sec. VI.J.
Returning now to question (2), recall that in the original

example of AdS/CFT the number N of D3 branes is what
set the AdS radius in Planck units. It was only in the large
N limit that bulk gravity was approximately classical. We
now extend this to a general statement about AdS/CFT. A
general CFT has a large N limit if there exists a parameter
N, possibly discrete, such that the set of primary operators

whose dimensions do not scale with N have the following
properties:66

• There is a finite set67 of “single-trace” primary operators
Oi, each of which has spin ≤ 2. There is only one, the
stress tensor, with spin exactly 2 and Δ ¼ d. If we
normalize their two-point functions so that Eq. (149) (or
its higher-spin generalization) holds with no extra
prefactor, then the three-point function of any three of
them is suppressed by powers of 1=N.

• For any collection of single-trace operators
fOi1 ;…;Oing there exists a “multitrace” operator
Oi1 � � �Oin with dimension Δ ¼ Δi1 þ � � � þ Δinþ
Oð1=NÞ.

• If we normalize the two-point functions of multitrace
operators to OðN0Þ, then their correlation functions with
each other and with other single-trace operators are
Oð1=NÞ unless their components can be matched in
pairs. So, for example, hOiðxÞOjðyÞOiOjðzÞi is OðN0Þ,
but hOiðxÞOjðyÞOiOkðzÞi with k ≠ j is Oð1=NÞ. More-
over if they can be matched in pairs, then to leading order
in 1=N the correlation function is the sum over all such
matchings of the product of the two-point functions of
the matched pairs. This property is called large-N
factorization.

• All operators whose dimensions are OðN0Þ are single-
trace primary operators, multitrace primary operators, or
their descendants.

These properties may seem somewhat ad hoc, but they can
be easily remembered by considering bulk Feynman dia-
grams in a theory where all interactions are proportional to
1=N. The parameter N is always proportional to some
power of the AdS radius in Planck units. The last require-
ment is crucial; via the state-operator correspondence it says
that the low-energy spectrum of the CFT is consistent with
weakly coupled low-energy effective field theory in AdS.
More explicitly the states corresponding to single-trace
operators are single-particle states in the bulk, while the
states corresponding to multitrace operators are multiparticle
states. We now study this in a bit more detail.

C. Perturbations of the AdS vacuum

Consider a free massive scalar field in AdSdþ1, written in
coordinates where the metric is Eq. (133). As usual we begin
by looking for positive-frequency normalizable modes for use
in Eq. (24), which we can expand as

fωl ~mðt; r;ΩÞ≡ r−ðd−1Þ=2Yl ~mðΩÞψωlðrÞ: ð150Þ

65This can be determined from Eqs. (139) and (143).

66This list is not necessarily exhaustive. I am not sure if a
completely sharp definition of what we mean by having a large-N
limit exists. Also note that I have intentionally excluded theories with
higher-spin symmetry in the bulk; although these exist (Vasiliev,
1990) and sometimes have simple gravity duals (Giombi and Yin,
2010; Klebanov and Polyakov, 2002; Gaberdiel and Gopakumar,
2011), they are sufficiently opaque that it is unclear to what extent
they are good models for conventional gravity.

67Or a discrete tower with Oð1Þ spacing if there is a nontrivial
compact manifold M.
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As usual ψωl obeys a Schrödinger equation

−
d2

dr2�
ψωl þ VðrÞψωl ¼ ω2ψωl; ð151Þ

with the tortoise coordinate now being

r� ¼ arctan r ð152Þ

and the potential being

VðrÞ ¼
�
1þ 1

r2

���
m2 þ ðd − 1Þðdþ 1Þ

4

�
r2

þ lðlþ d − 2Þ þ ðd − 1Þðd − 3Þ
4

�
: ð153Þ

This potential diverges at the boundary r� ¼ π=2, so ψωl is
confined to lie in the region r� ∈ ð0; π=2Þ. The basic features
of the solutions are thus the same as for the infinite square well

system. In particular, the frequency ω will be quantized with a
constant high-energy density of states (at fixed l). This is
consistent with the gravity in a box intuition for physics in
AdS; single-particle states created by the creation operators
for these modes have no continuous quantum numbers. The
“ground state” of this Schrödinger problem with l ¼ 0

corresponds to a particle localized “at rest” in the center of
AdS, and excited states and/or states with l > 0 correspond to
the particle moving around.
In fact in this case the modes can be found analytically

(Breitenlohner and Freedman, 1982), and the quantization
condition is68

ωnl ¼ Δþ lþ 2n; n ¼ 0; 1; 2;…; ð154Þ

with Δ given by Eq. (147). As expected, the lowest energy
state for the particle has l ¼ n ¼ 0.
Although we will not really need it, for posterity a properly

normalized (in the KG norm) expression for the mode is

r−ðd−1Þ=2ψnlðrÞ ¼
1

ΓðΔ − d=2þ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γðnþ Δ − d=2þ 1ÞΓðnþ Δþ lÞ

Γðnþ 1ÞΓðnþ lþ d=2Þ

s

× r−Δ
�
1þ 1

r2

�
−ðlþΔþ2nÞ=2

× F

�
−n;−nþ 1 − l − d=2;Δ − d=2þ 1;−

1

r2

�
; ð155Þ

where F is a hypergeometric function that goes to 1 as
r → ∞ and is actually equivalent to some polynomial for
n ¼ 0; 1; 2;… . This quantization condition is necessary
for this mode to also be normalizable near r ¼ 0.
Equation (154) has a nice CFT interpretation via the state-

operator correspondence. The state created by the l ¼ n ¼
0 creation operator is the CFT state produced by inserting
the single-trace primary O dual to ϕ into the center of the
Euclidean path integral as in Fig. 22, and the various excited
states come from inserting its descendants. As a simple
check consider the states with energy ω ¼ Δþ 2 in AdS4.
There are two types: a single state with l ¼ 0, n ¼ 1 and
five states with l ¼ 2, n ¼ 0. In the CFT we get descend-
ants of this dimension by acting on O with two derivatives.
There is an angular momentum singlet where we contract
the two derivatives and a traceless symmetric tensor where
we do not. The latter has five linearly independent

components so the degeneracies match. It is not hard to
generalize this counting to arbitrary d, n, and l, and
needless to say it works.
We can also understand multiparticle states along these

lines. The ground state with no particles is just the CFT
ground state, produced by inserting the identity in the
Euclidean path integral. The rest of the multiparticle
Fock space can be built in the CFT by inserting multitrace
operators. In fact this discussion can be condensed into the
single statement that to leading order in 1=N the operator
Fourier transform Onl ~m of the single-trace primary operator
O has an algebra consistent with it being proportional to the
lowering operator anl ~m for the mode fnl ~m (Banks et al.,
1998). We can determine the constant of proportionality by
comparing Eqs. (24), (144), and (155) in the limit r → ∞,
to find

Onl ~m ¼ 1

ΓðΔ − d=2þ 1Þ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γðnþ Δ − d=2þ 1ÞΓðnþ Δþ lÞ

Γðnþ 1ÞΓðnþ lþ d=2Þ

s
anl ~m: ð156Þ

Since the left-hand side of this equation is a CFT operator,
together with Eq. (24) this then allows us to write a CFT
expression for a local bulk field at any bulk point. This may

68For people who are familiar with it, this is the “standard
quantization” of the field (Breitenlohner and Freedman, 1982;
Klebanov and Witten, 1999), where the boundary conditions require
the modes to behave like r−Δ at infinity. Generically normalizability
requires this choice, but if d=2 < Δ < ðdþ 2Þ=2 then we can instead
choose modes which behave like rΔ−d at infinity. The operatorO will
then have dimension Δ− ≡ d − Δ, and formulas for that case can be
obtained from those here by replacing Δ → Δ−.
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seem disturbing, given our general arguments that this
should not be possible, but remember that this construction
is valid only to leading order in 1=N, and only in states
close to the vacuum. It can be “fixed up” perturbatively in
1=N (Heemskerk et al., 2012; Kabat, Lifschytz, and Lowe,
2011), but there is no reason to expect a generalization that
holds nonperturbatively and good reasons not to.69 The
regime of validity of this construction of local bulk fields
has recently been reinterpreted in the language of quantum
error correction, a subject that is unfortunately beyond the
scope of this paper (Almheiri, Dong, and Harlow, 2015).

D. One-sided AdS black holes at fixed energy

The main new feature of black holes in AdS is that their
Hawking radiation is reflected back by the boundary in
finite time. For small enough black holes this is not really
important, since after all the entire black hole could
evaporate before the radiation gets to the boundary. But
as the Schwarzschild radius of the black hole approaches the
AdS radius we eventually reach a point where the radiation
is being reflected back into the black hole as fast as it is
being emitted. At this point the black hole never evaporates,
so large enough black holes in AdS are eternal. One thus
often hears discussion of “big” and “small” black holes in
AdS, with the distinction almost always meaning that the
big ones are stable and the small ones are not.70

The crossover point between stability and instability can
be estimated by a simple statistical argument (Horowitz,
2000). A typical state of energy E in the CFT will have
some fraction x of its energy in a black hole and the rest in
the radiation field. We are interested in finding the x which
maximizes the total entropy, which [in AdS4, ignoring Oð1Þ
factors, and temporarily restoring rAdS] is

S ≈ ðElpÞ2x2 þ ðErAdSÞ3=4ð1 − xÞ3=4: ð157Þ

Here the first term is the black hole entropy and the second
term is the entropy of the radiation field, which we can
think of being in a box of linear size rAdS.

71 At low energies

the second term dominates and the function decreases
monotonically. We maximize the entropy by taking x ¼ 0
so typically there is no black hole. This matches our
Minkowski intuition that black holes should evaporate. At
sufficiently large E, however, the first term dominates so we
win by taking x to be very close to 1; in fact there is a local
maximum that is near but not quite at x ¼ 1. Thus almost
all of the energy (and entropy) are contained in a single
black hole that never evaporates. The crossover apparently
happens when the two terms are of comparable size, which
happens when

ErAdS ¼
�
rAdS
lp

�
2
�
rAdS
lp

�
−2=5

: ð158Þ

I have written it this way because the first term is the energy
in AdS units of a black hole whose Schwarzschild radius is
of the order of rAdS, so we see that the crossover happens
when the black hole is parametrically smaller in rAdS=lp
than the AdS radius (Horowitz, 2000).72

This crude argument cannot really tell us what happens
when rs of the order of the size of the AdS radius or larger, so
to proceed further we need to address this. The AdSdþ1

version of the Schwarzschild geometry, which is the unique
spherically symmetric solution of Einstein’s equation with
negative vacuum energy, has (for d ≥ 3) metric (again setting
rAdS ¼ 1)

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2
d−1: ð159Þ

Here

fðrÞ ¼
�
r2 þ 1 −

α

rd−2

�
; ð160Þ

and α is related to the AdS version of the ADM mass M as

α ¼ 16πGM
ðd − 1ÞΩd−1

: ð161Þ

The Schwarzschild radius rs is the unique positive root of f.
By demanding that the Euclidean version of this geometry be
smooth at r ¼ rs as we did for the Minkowski black hole in
Sec. IV.H, one finds the temperature is

T ¼ d − 2þ dr2s
4πrs

: ð162Þ

For rs ≪ 1 and d ¼ 3 you can check that this agrees with
Eq. (56). Combining this with

M ¼ ðd − 1ÞΩd−1

16πG
rd−2s ½1þ r2s � ð163Þ

69You might also worry about the gauge invariance of “local” bulk
operators, but this can be dealt with by first fixing a gauge and then
defining these operators (Heemskerk, 2012; Kabat and Lifschytz,
2013). This is somewhat similar to the situation with computing
primordial density perturbations produced during inflation in cosmol-
ogy (Maldacena, 2003b). In both cases, however, at higher orders in
perturbation theory it is not completely clear whether or not the gauges
used are “physical” in the sense that the quantities which appear simple
are actually quantities that we observe.

70This distinction is a bit subtle, since as we will see the transition
happens at different values of the energy in the microcanonical and
canonical ensembles. Some usually seem to have the canonical
transition in mind, and since as we will see it happens at higher
energy it is always safe to assume this when a big black hole is being
discussed.

71I assume here that the Schwarzschild radius of the black hole is
small enough compared to rAdS that we can use the usual Minkowski
formula for the entropy, we will see momentarily that this is self-
consistent.

72This holds up in AdSdþ1, with the suppression being
ðrAdS=lpÞ−ðd−1Þðd−2Þ=ð2d−1Þ. If there is a large compact manifold,
such as for the AdS5 × S5 example, then dþ 1 is the total number of
large dimensions.
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for the energy we can integrate to find the entropy

S ¼ Ωd−1rd−1s

4G
¼ A

4G
: ð164Þ

Thus as we keep increasing the energy, rs and the entropy both
continue to grow. There is less and less room for the radiation
gas, so the black hole continues to win entropically. Through
the AdS/CFT dictionary we thus arrive at the following
statement: At sufficiently large energy, almost all states in
the CFT have a bulk description as a single gigantic black
hole. More carefully, black hole states dominate the micro-
canonical ensemble of the CFT at sufficiently large energy.
This provides a concrete realization of Bekenstein’s proposal
that black hole entropy should actually count microstates.
In the special case of d ¼ 2 we can actually quantitatively

confirm this result. For d ¼ 2 we replace the AdS-
Schwarzschild geometry (159) by the BTZ black hole
(Banados, Teitelboim, and Zanelli, 1992)

ds2 ¼ −ðr2 − r2sÞdt2 þ
dr2

r2 − r2s
þ r2dθ2; ð165Þ

but the entropy and temperature are still obtained by the d → 2

limits of Eqs. (162) and (164). The energy differs from the
d → 2 limit of Eq. (163) by an rs-independent shift, such that
we still have M → 0 as rs → 0.73 The thermal partition
function of a general unitary 1þ 1 CFT with a discrete
spectrum of primary operator dimensions quantized on a
circle of radius L was shown by Cardy (1986) to scale at high
temperature as

Z½β� ¼ eπ
2cL=3β½1þOðe−4π2ΔL=βÞ�; ð166Þ

where Δ is the dimension of the lowest-dimension nontrivial
primary and c is the “Virasoro central charge” of the CFT.
This central charge can also be computed in the bulk (Brown
and Henneaux, 1986), giving

c ¼ 3rAdS
2G

: ð167Þ

c thus plays the role of the parameter we have been calling N
in higher dimensions, so it should be large in a CFT with a
semiclassical bulk dual. The energy and entropy we compute
from Eq. (166) using Eq. (91) are

E ¼ π2Lc
3β2

;

S ¼ 2π2cL
3β

¼ 2π

ffiffiffiffiffiffiffiffiffi
cLE
3

r
: ð168Þ

Replacing L → rAdS ¼ 1 (as the r → ∞ behavior of the
metric requires) and comparing with Eqs. (162) and (164),
we find precise agreement between the entropy of the CFT
and the entropy of the black hole. The energy also agrees
with Eq. (163) up to the above-mentioned shift. Moreover
from Eq. (166) this calculation stops being correct when
β ∼ L, which we will now see is exactly the order of the
temperature where the black hole stops dominating the
canonical ensemble.74

E. One-sided AdS black holes at fixed temperature
and the Hawking-Page transition

The transition from unstable to stable black holes can also
be studied at finite temperature instead of finite energy, where
it is possible to be more rigorous along the lines of Sec. IV.H
(Hawking and Page, 1983; Witten, 1998b). We should expect
the transition to happen at a temperature corresponding to a
higher energy than Eq. (158), since at finite temperature it is
possible for energy to be absorbed by the heat bath instead of
being reflected back into the black hole, which makes it harder
for the black hole to win in the canonical ensemble. As in
Sec. IV.H, one proceeds by evaluating the Euclidean gravi-
tational action

IE ¼ −
1

16πG

Z
M

ddþ1x
ffiffiffiffiffiffi
−g

p ½Rþ dðd − 1Þ�

−
1

8πG

Z
∂M

ddx
ffiffiffi
γ

p
K; ð169Þ

of the AdS-Schwarzschild geometry (159) and comparing it to
the Euclidean gravitational action of pure AdS space with
compactified Euclidean time. In doing this one needs to cut off
the geometry at some large rc and ensure that the physical
radius of the temporal S1 at this cutoff matches for the two
geometries. I will not work out the details, but the result is that

IE½gAdS� ¼ −
ðd − 1ÞβΩd−1

8πG
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1=r2c
p rd−1c ð1þ r2cÞ;

IE½gSch� ¼ IE½gAdS� þ
βΩd−1

16πG
rd−2s ð1 − r2sÞ þOð1=r2cÞ:

ð170Þ

73Note that with this convention the energy of empty AdS, which
we obtain from taking r2s → −1, is actually negative. Solutions with
−1 < r2s < 0 have a naked singularity and are usually considered to
be unphysical, so there is thus a nontrivial energy gap between the
vacuum and the “lightest BTZ black hole.” It might seem more
natural to define the energy so that the vacuum energy is zero, but for
various reasons in (1þ 1)-dimensional CFTs the convention I use
here is standard.

74An important subtlety here is that the asymptotics of Eq. (166)
are only really rigorous in the “high temperature limit” where we
keep c fixed and take β ≪ L, whereas for the Bekenstein-Hawking
entropy formula to be valid we also want the “semiclassical limit”
c ≫ 1 but only need β ≲ L to be above the Hawking-Page transition.
Taking c to be large may in principle interfere with Eq. (166) if the
density of states grows too rapidly with c. For an analysis see
Hartman, Keller, and Stoica (2014), who confirm the validity of the
Cardy formula in the semiclassical limit.
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Here rs is related to β by Eq. (162). The divergent parts of
IE½gAdS� can all be canceled by adding a series of boundary
terms to Eq. (169) that depend only on the induced metric γ at
the boundary. These terms correspond to possible counter-
terms in the CFT, and we are always free to add them without
destroying the variational interpretation of Eq. (169). In fact it
is necessary to add them if we wish the ground state energy to
be zero.
In any event the main point is that, unlike what we found in

asymptotically flat space, IE½gSch� − IE½gAdS� changes sign at
rs ¼ 1 (Hawking and Page, 1983). The two saddle points
exchange dominance in Eq. (96) for the partition function.
This is the transition we are interested in; at sufficiently large
temperatures the black hole wins, while at lower temperatures
the thermal gas in AdS wins. As expected, the transition
happens at a higher temperature than what we found in the
previous section for the microcanonical ensemble.
This discussion has the great advantage over our discussion

in Sec. IV.H that we now actually know what we are
computing: the thermal partition function in the CFT. We
saw already in the previous section that in 1þ 1 dimensions
this can be checked explicitly, and in higher dimensions the
CFT interpretation of this transition is still fairly well under-
stood (Witten, 1998b; Aharony et al., 2004). The basic idea is
that for a CFT quantized on a spatial Sd−1, when the
temperature is considerably larger than the inverse sphere
radius the system basically behaves like a gas of ∼Nα free
particles in d − 1 spatial dimensions, where α is some Oð1Þ
constant. This is consistent with Eqs. (163) and (164) for the
black hole energy and entropy, which at high temperature
scale as Td and Td−1, as they must if these quantities are to be
extensive. This will no longer be true when the temperature is
less than the inverse sphere radius, which must be the case
since we now have a gas of free particles in d spatial
dimensions in the bulk. On the CFT side the thermodynamics
are now dominated by the constant modes of the fields, which
in the special case of large N gauge theories like the N ¼ 4
super Yang-Mills theory in 3þ 1 dimensions are dominated
by the holonomies of the gauge fields about the Euclidean
thermal circle. It is reassuring to see the bulk and boundary
descriptions of the physics line up in this manner.

F. Fields in the AdS-Schwarzschild background

We now briefly study fields propagating in the exterior of
the AdS-Schwarzschild background. We can decompose the
modes as Eq. (150), as we did for pure AdS, but the tortoise
coordinate is now defined by

dr�
dr

¼ 1

fðrÞ ; ð171Þ

with fðrÞ defined by Eq. (160). For simplicity I will take
r ¼ ∞ to be r� ¼ 0, in which case we have

r� ¼ −
Z

∞

r

dr0

fðr0Þ : ð172Þ

The potential appearing in the effective Schrödinger equa-
tion (151) is now

VðrÞ ¼ fðrÞ
r2

��
m2 þ ðdþ 1Þðd − 1Þ

4

�
r2

þ
�
lðlþ d − 2Þ þ ðd − 1Þðd − 3Þ

4

�

þ ðd − 1Þ2
4

·
α

rd−2

�
: ð173Þ

The details here are not important; the main point is that, since
fðrÞ has a simple root at r�, the tortoise coordinate r� now
runs from −∞ to 0 as r runs from rs to ∞. Moreover the
effective potential now vanishes as r� → −∞, so the effective
Schrödinger problem is no longer confined to a box; the
modes will now have a continuous frequency spectrum. As in
our discussion of the brick wall model, however, this
continuum is presumably discretized by Planckian physics
near the horizon.75

It is worthwhile to note that the decomposition into
“modes in the atmosphere” and “modes in the radiation”
that we found for Minkowski black holes is not really valid
once rs ≳ 1. Once this is the case then the black hole
potential barrier and the AdS barrier at r� ¼ 0 essentially
merge, so “the zone” fills the whole AdS space.76

It is interesting to understand to what extent we can extend
our discussion of constructing local bulk field operators from
Sec. VI.C to the AdS-Schwarzschild geometry. The situation
is more subtle than it was around the vacuum, since there we
had a clear picture of the structure of the Hilbert space from
the state-operator correspondence. Acting on the vacuum with
low-dimension primaries we were able to reproduce the
detailed Fock space of low-energy field theory in AdS. A
big black hole in a pure state by contrast is dual to a high-
energy pure state in the CFT, which we can realize via the
state-operator correspondence as the insertion of a very high
dimension operator in radial quantization. This state is part of
a densely spaced ensemble in the CFT. The subspace of states
in some energy width of the order of the temperature has a
dimensionality of the order of eS. Understanding the details of
this set of states is a hopeless task, so it is not immediately
clear to what extent we can “find” the effective field theory
Hilbert space buried within. The continuum spacing of the
classical modes is certainly consistent with this dense spacing
and introducing something like the brick wall will produce
some set of states which have about the right density of states,
but we want to have a prescription which does not require
introduction of an arbitrary cutoff. To proceed further it is
necessary to make some sort of typicality assumption about
the state of the black hole. At least to leading order in 1=N this
allows us to replace the detailed choice of pure state with a
thermal density matrix, about which much more is known. In
particular, the Fourier modes of CFT primary operators
continue to behave in thermal expectation values as if they
were creation and annihilation operators, but now for the

75We see CFT evidence for this in Sec. VI.I.
76A shallow barrier will still exist for l ≫ r2d=ðd−2Þs , but the valley

outside of it will be at very high energy so any mode localized there
would be highly Boltzmann suppressed.
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Schwarzschild modes we have been discussing (Papadodimas
and Raju, 2013). This then seems to allow Eq. (24) for the
bulk field, at least for fields located outside of the horizon.
One can then attempt to extend the definition behind the
horizon (Fidkowski et al., 2004; Kabat and Lifschytz, 2014;
Papadodimas and Raju, 2013), at least for the two-sided
Schwarzschild geometry I will discuss in more detail, but
there is considerably more to be said about this than what is
currently known, especially about the regime of validity of the
perturbative expansion in 1=N.77

G. Collapsing shells and the two-sided AdS wormhole

So far I have not been particularly specific about the global
structure of the geometry of AdS black holes. As in the
asymptotically flat case, the full AdS-Schwarzschild geometry
describes a wormhole connecting two asymptotic regions.
Here each “exterior” region is asymptotically AdS. We can see
this explicitly by introducing an AdS version of Kruskal
coordinates78:

U ≡ −eðr�−tÞ=2f0ðrsÞ;

V ≡ eðr�þtÞ=2f0ðrsÞ: ð174Þ

As in Sec. II.B there are two singularities at some positive
value of UV, but now there are also two AdS boundaries at

UV ¼ −1. Defining U ¼ T − X and V ¼ T þ X we can write
the metric as

ds2 ¼ 4
fðrÞ
f0ðrsÞ

e−r�f
0ðrsÞð−dT2 þ dX2Þ þ r2dΩ2

d−1: ð175Þ

Although not completely obvious, using Eq. (172) one can see
that this geometry is smooth at the horizon at UV ¼ 0. As
usual the Penrose diagram is more illuminating, however, it is
shown on the left part of Fig. 23. I also show the one-sided
geometry for a stable AdS black hole, created by some sort of
collapsing shell. Note that in order to avoid the shell reflecting
off of the boundary and going back in as we go back in time,
we need to have it enter the system from the outside at t ¼ 0.
Such a one-sided state will not be typical, after all its time
reverse would be a black hole which spontaneously spits out
all of its mass into a single narrow shell. A typical big black
hole would be one that we assemble over a time that is
exponentially long in N.
As with the two-sided asymptotically Minkowski black

hole we discussed earlier, there is a natural choice of bulk
ground state for the AdS wormhole: the Hartle-Hawking
equation (88). As the geometry has two asymptotically AdS
boundaries, the extrapolate dictionary strongly suggests that it
should be realized as a state in the Hilbert space of two copies
of the CFT (Maldacena, 2003a). Indeed by comparison with
Eq. (88) there is a natural candidate for the CFT version of the
Hartle-Hawking state:

jψHHi≡ 1

Z

X
i

e−βH=2ji�iLjiiR; ð176Þ

where the states jiiR are now understood as being energy
eigenstates of a single copy of the CFT, and ji�iL ¼ ΘjiiR,
where Θ is an antiunitary operator that exchanges the two
CFTs and reverses the direction of time in each.79 This state is
generated by the CFT Euclidean path integral on an interval
times a sphere, as shown in Fig. 24. As in the asymptotically

FIG. 23. The two-sided AdS-Schwarzschild wormhole and a
one-sided big AdS black hole formed from collapse.

ϕ ϕL R

FIG. 24. The CFT construction of the Hartle-Hawking state. If
the CFT lives on the boundary of the tube, so the field
configurations at either end describe CFT field configurations
on Sd−1.

77It was pointed out that, even if we stay outside the horizon, this
construction cannot immediately be written in position space with
the bulk field realized as an integral of some kernel times the position
space CFT operator, contrary to the situation near the vacuum where it
can (Leichenauer and Rosenhaus, 2013). This does not seem to be an
insurmountable obstruction for two reasons: first, we can work in
terms of the modes and not ask for such a formula. Second, if we
allow ourselves to smear the bulk operator over a small region, then
there is an expression of the desired form. In this sense the non-
convergence discussed by Leichenauer and Rosenhaus (2013) is
similar to the observation that formally the standard expressionR ½d4k=ð2πÞ4�eikx=ðk2 þm2 − iϵÞ for a free field propagator is diver-
gent at large k, which can also be resolved by smearing [see Morrison
(2014) for a similar perspective].

78The nontrivial factors of f0ðrsÞ are needed to ensure thatU and V
stay real under analytic continuation. In Sec. II.B we had
f0ðrsÞ ¼ 1=rs, so in the rs ¼ 1 convention we were using we did
not need them.

79Θ should not be confused with the natural CPT operation on a
single copy of the CFT on a sphere, which reverses time but also
reverses a longitudinal direction within the sphere.
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Minkowski case discussed earlier, the Hartle-Hawking (or
Hartle-Hawking-Israel) state is also often called the thermo-
field double state.
This proposal for the CFT description of the two-sided

wormhole may seem obvious, but it has a rather surprising
consequence. The Hamiltonian of the joint system is just the
sum of the two CFT Hamiltonians; there are no interactions
between the two CFTs. This is consistent with the bulk
picture, where the ADM Hamiltonian is a sum of two
boundary terms, one localized at each of the two boundaries,
but it leads to the rather striking conclusion that two
completely noninteracting systems can nonetheless have an
alternate description where there is a single connected
geometry where observers from the right and the left can
jump in and meet each other in the middle. This is made
possible by the diffeomorphism invariance of gravity. The
bulk interactions that enable such a meeting are buried in the
Hamiltonian constraint of canonical gravity and are invisible
in the gauge-invariant CFT description of the system. This has
led to a more general proposal that “entanglement generates
geometry” (Van Raamsdonk, 2010), which recently has been
given the name of “ER ¼ EPR” (Maldacena and Susskind,
2013).80

The two-sided AdS-Schwarzschild wormhole is perhaps
the best understood of all black hole-type systems, and it has
justly taken a central role in many recent analyses of black
hole physics. Wewill meet it again frequently in the remainder
of this article.

H. The information problem in AdS/CFT

We now have all the pieces on the table, so we can return
to the black hole information problem. I discuss it for small
black holes in this section and big black holes in the
following one. The thing to do is embed Hawking’s original
thought experiment of forming a black hole and watching it
evaporate into AdS=CFT and see what happens. We need
the black hole to be large enough to be semiclassical:

ErAdS ≫
�
rAdS
lp

�
; ð177Þ

but small enough to evaporate:

ErAdS ≪
�
rAdS
lp

�ðd2−1Þ=ð2d−1Þ
: ð178Þ

Here Eq. (178) is the (dþ 1)-dimensional version of
Eq. (158). Remember that it is stability in the micro-
canonical ensemble that decides whether or not a black
hole of fixed energy evaporates. To create the black hole,
we can act with the CFT creation operators we defined in
Sec. VI.C to create an infalling spherical shell of matter
that from the bulk point of view is expected to collapse

into a black hole. We can then evolve this state forward in
the CFT and see what it looks like after a time which is
greater than the bulk evaporation time. This evolution is
unitary, so to the extent that AdS/CFT is a definition of
the bulk theory, this resolves the information problem in
the sense of telling us the answer: information is
preserved.
Because of the strongly coupled nature of the CFT it is

difficult to actually compute the result of this evolution. But
after we have evolved long enough for the CFT to thermal-
ize there is a fairly simple argument that the state we get
should typically have a bulk interpretation as a cloud of
radiation in a pure quantum state with no significant
projection onto any state whose semiclassical interpretation
is not clear. Recall from Sec. VI.C that in the CFT we can
produce multiparticle states by acting repeatedly on the
vacuum with the Fourier modes of single-trace operators.
Once we act with enough operators to get to energies of the
order of Eq. (177) there will occasionally be states where
the bulk wave packets are so close together that they
collapse to form small black holes, but as long as we stay
below the energy (178) we expect from the bulk discussion
around Eq. (158) that states where the bulk radiation cloud
is weakly coupled should be the most entropic.81 I refer to
such states as “radiation states.” Classically if the set of
radiation states has a larger entropy than its complement, we
should expect to find ourselves in such a state after
thermalization, but quantum mechanically it is a little less
straightforward. The set of radiation states is closed under
quantum superposition, so we can then write the CFT
Hilbert space within some energy band as a direct sum
of a “radiation” subspace whose states can be produced by
acting with CFT creation operators from Sec. VI.C that are
separated enough in the bulk to avoid a breakdown of bulk
effective field theory, and its complement, which I will call
the “black hole” subspace. We can then use our unitary
integration technology to show that a typical state in this
energy band has almost no projection onto the black hole
subspace, or more carefully that a typical state is exponen-
tially close in the trace norm to its projection onto the
radiation subspace. As in our discussion of Page’s theorem,
we can write the typical state as

jψðUÞi ¼ Ujψ0i; ð179Þ

where jψ0i is some reference state and U is chosen
randomly from the Haar measure. The average trace norm
distance (see Sec. V.C) between jψðUÞi and its projection
onto the radiation subspace then obeys

80This refers to the classic work of Einstein and Rosen on
wormholes and Einstein, Podolsky, and Rosen on entanglement
(Einstein, Podolsky, and Rosen, 1935; Einstein and Rosen, 1935).

81For Elp ≪ 1 this follows from our large N assumptions about
the spectrum of low-dimension operators in the theory. In the
intermediate energy regime we are considering here there is perhaps
an additional assumption that the states we produce this way continue
to dominate the CFT spectrum as suggested by the bulk. In some
special cases we can confirm it directly [see, for example, Shenker
and Yin (2011)], but for this argument to really be airtight we would
need to be able to show this in general in the strongly coupled CFT.
For the conclusion to fail however we would need to be totally wrong
in this estimate, and missing a few states would not change anything.
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Z
dU∥jψðUÞihψðUÞj − 1

hψðUÞjΠradjψðUÞiΠradjψðUÞihψðUÞjΠrad∥
1

¼ 2

Z
dU

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hψðUÞjΠbhjψðUÞi

p
≤ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
dUhψðUÞjΠbhjψðUÞi

s
¼ 2e−ðSrad−SbhÞ=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ e−ðSrad−SbhÞ
p :

Here Πrad is the projection onto the radiation subspace, Πbh
is the projection onto the black hole subspace, and as in the
proof of Page’s theorem I used Jensen’s inequality and the
unitary matrix technology of Sec. IV of the Supplemental
Material [193]. Since we have Srad > Sbh by assumption,
and since if we are not right up against the energy
scale (178), their difference will be fairly large. We see
that for all practical purposes the pure quantum state in the
CFT that results from collapsing a shell and then waiting
for the system to equilibrate will almost always be “all
radiation.”
What this “before” and “after” analysis leaves unclear is

what happened in the middle; we have not yet achieved
Strominger’s success criterion of actually computing the Page
curve. Nonetheless using assumptions about the structure of
the CFT Hilbert space, we have ruled out remnants and
information loss.82 This is most assuredly progress.

I. Unitarity for big AdS black holes

The discussion of the information loss problem in the
previous section required a treatment of the CFT realization of
the bulk effective field theory Hilbert space of the radiation
gas. In particular, we needed an assumption about the CFT
spectrum for Elp ≫ 1 which, although well motivated, we
would prefer to do without. In fact, Maldacena pointed out
that in the context of big nonevaporating AdS black holes
there is still an issue analogous to the information loss
problem, but which has a cleaner resolution in AdS/CFT
(Maldacena, 2003a) [see also Barbon and Rabinovici
(2003, 2014)].
Consider two CFTs entangled in the Hartle-Hawking

state (176). The essence of the information problem is that
according to bulk quantum field theory the correlation
between an object that we throw in early and the radiation
that comes out late vanishes as the radiation comes out later
and later. What Maldacena pointed out is that this assertion
can also be tested simply by considering the two-point
function of two primary operators in one of the CFTs in
the limit in which we take their time separation to be large.
The idea is that in the naive bulk theory this two-point
function, interpreted via the extrapolate dictionary (144) as the
boundary limit of a two-point function of bulk fields, will
decay exponentially for arbitrarily long times. By contrast in
the CFT it will decay only until it is of the order of e−S, after

which it will undergo chaotic quasiperiodic behavior. The
latter is characteristic of unitary evolution in a system with
finite entropy, so the former is inconsistent with unitarity.
Thus the bulk will reproduce the “coarse-grained” behavior of
this CFT two-point function, but will not get the detailed late-
time structure right; this lends considerable support to
option (3) of Sec. IV.F. The goal of this section is to explain
these statements in some more detail.
We first get some idea of what sort of time dependence is

expected for quantum field theory correlation functions in the
thermal ensemble. A full treatment of this subject requires
analytic continuations along the lines of Sec. IV.H, but we can
get to the main point from our existing results on the Rindler
decomposition. Recall from Secs. III.C and III.D that the
reduced density matrix in the right Rindler wedge is thermal,
so if we study the correlation functions in the Minkowski
vacuum restricted to the wedge then we can reinterpret them as
thermal QFT correlators with respect to the Rindler time τR. In
particular, consider the free massless scalar field in 3þ 1

dimensions; the time-ordered two-point function is given by
the m → 0 limit of Eq. (27):

hΩjTϕðt; xÞϕðt0; x0ÞjΩi ¼ 1

4π2
1

jx − x0j2 − ðt − t0Þ2 : ð180Þ

If we take both points to lie in the right Rindler wedge, with
τR ¼ τ and τ0R ¼ ξR ¼ ξ0R ¼ ~y ¼ ~y0 ¼ 0, then using Eq. (40)
we can rewrite this as

hΩjTϕðτ; 0Þϕð0; 0ÞjΩi ¼ 1

8π2
1

1 − cosh τ
: ð181Þ

Thus we see that at large time separation in the thermal
ensemble the correlation decays exponentially in time. Recall
that in Eq. (40) we suppressed a length scale that sets the
effective temperature for an observer at ξR ¼ 0, so it is the
temperature that sets the exponential decay constant. This is
quite intuitive; whatever perturbation we put in at τ ¼ 0 will
be rapidly thermalized, so it will be difficult to detect the
perturbation with a single local operator at much later times.83

Moreover we saw in Sec. VI.F the fields on the AdS-
Schwarzschild background effectively all live in the thermal
atmosphere, where as discussed in Sec. IV.A the Rindler
wedge is a good model. So we should expect that correlation
functions of boundary operators in the right exterior should
have the same qualitative behavior of exponential decay at
large timelike separation. This can be confirmed explicitly for82The argument against remnants can be strengthened if we allow

large black holes in AdS to evaporate by locally coupling the CFT to
an external system (Rocha, 2008). In this case to preserve unitarity
using remnants we would need arbitrarily entropic low-energy states
in the CFT, which certainly do not exist.

83Note that conceptually this is a different exponential decay than
the exponential decay with distance that we found for massive fields
in the vacuum expectation value (26).
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the special case of AdS3 and with somewhat more difficulty in
higher dimensions (Maldacena, 2003a).
Now consider what sort of behavior is expected for

unitary systems with finite entropy. We are interested in
“thermodynamic” systems, where the thermal entropy S ¼
−trρðβÞ log ρðβÞ is very large. Moreover we assume that
the energy spectrum is densely spaced in the vicinity of the
energy that dominates the canonical ensemble, with typical
energy spacing of the order of e−S times the temperature.
The energy levels are distributed chaotically, with the only
degeneracies arising from a small number of compact
symmetries such as rotations, parities, etc. In such a
system we want to understand the long-time behavior of
quantities like

GðtÞ≡ 1

Z
tr½e−βHOðtÞOð0Þ� ð182Þ

¼ 1

Z

X
ij

e−βEiþiðEi−EjÞtjOijj2; ð183Þ

where OðtÞ is a Heisenberg picture operator and
Oij ≡ hijOð0Þjji, with jii a complete basis of energy
eigenstates. One simple way to do this is to compute
the time average of jGðtÞj2 over some very long time T:

1

T

Z
T

0

dtjGðtÞj2 ¼ 1

Z2

X
ij;i0j0

e−βðEiþEi0 ÞjOijj2jOi0j0 j2

×

�
1

T

Z
T

0

dteiðEi−EjþEj0−Ei0 Þt
�
: ð184Þ

As T → ∞, the quantity in square brackets is equal to 1
when Ei − Ej þ Ej0 − Ei0 ¼ 0 and is 0 otherwise. Given our
assumptions about the spectrum, it will be nonzero only if
Ei − Ej ¼ Ei0 − Ej0 ¼ 0 or Ei − Ei0 ¼ Ej − Ej0 ¼ 0. Thus
we see that the average is finite in the limit T → ∞,
which means that, unlike for the black hole correlation
function, GðtÞ cannot decrease monotonically to zero at
late times.
If we do not know anything about O we cannot say much

more about the late-time behavior of GðtÞ, but using
assumptions we can estimate its typical size. First I assume
that there is a symmetry which acts on O as O → −O. This
is more of a convenience than a necessity, but it is
consistent with O being a CFT operator dual to a bulk field
ϕwhich has such a symmetry.What this buys us is that, perhaps
after some reshufflingof the jii’swithindegenerate eigenspaces
of H, we have Oii ¼ 0; this implies that the thermal one-point
function of O is zero. We also want to ensure that GðtÞ is
“stable” under small changes, either of β or of the high-energy
structure of the theory. Concretely consider

Gð0Þ ¼ 1

Z

X
ij

e−βEi jOijj2: ð185Þ

We want this quantity to be of the order of 1 and to be a
reasonably continuous function of β. For the sum over j to even
converge we need Oij to fall off sufficiently fast at fixed i and

large Ej, and since we think of the operator as being a “probe”
we can further demand that it falls off fast enough that the
sum is dominated by the region where Ej − Ei ≪ hHi ¼
ð1=ZÞtrHe−βH.84 Since even in this region of j there are of
the order of eS states, we need the individual Oij’s to be
Oðe−S=2Þ. Moreover to get a reasonable function of β we
need the dependence of jOijj on i; j to be a reasonably
smooth function of Ei and Ej; we make no similar
restriction on the i; j dependence of its phase.85 With these
assumptions we then see that the time average (184) is of
the order of e−2S, and thus that the typical late-time
behavior of GðtÞ is of the order of e−S. Over long time
scales the correlator will fluctuate erratically, and over even
longer time scales it will sometimes come back up to an
Oð1Þ value.
How then are we to reconcile this with the endless

exponential decay of Eq. (182)? The resolution of course is
that, as we found in the brick wall model of Sec. IV.G, the
entropy of the Rindler wedge is infinite due to the infinite
collection of modes near the horizon in tortoise coordi-
nates. By studying the correlation at very large τ separa-
tion, we take advantage of these degrees of freedom near
the horizon. If the black hole entropy is actually finite, as
it certainly is in AdS/CFT, then the exponential decay must
eventually stop. That the CFT agrees with the black hole
result for this correlation function at short times [this is
shown in more detail in Papadodimas and Raju (2013)],
but disagrees at long times as required by unitarity, is
compelling evidence for the unitarity of black hole
evaporation.86

84In fact these statements will not be true for local field
operators, which do actually have significant matrix elements
between low- and high-energy states. This is the origin of the
short-distance singularities in their correlation functions, which
here would say that GðtÞ → ∞ as t → 0. We can fix this by
“smearing” the operators against wave packets whose size in
space and time is of the order of β, which will not affect the late-
time behavior that we are interested in.

85These properties of Oij are sometimes referred to as the
“eigenstate thermalization hypothesis,” with the hypothesis being
that for local Hamiltonians H the local operators O that we are
interested in obey them (Deutsch, 1991; Srednicki, 1996). More
generally if we do not assume there is an O → −O symmetry the
eigenstate thermalization hypothesis says that

Oij ¼ OðEiÞδij þ e−S½ðEiþEjÞ=2�=2fðEi; EjÞRij; ð186Þ
where OðEÞ and fðE; E0Þ are real smooth functions of their argu-
ments, but Rij is a complex (both in the sense of “not real” and in the
sense of “complicated”) Oð1Þ function of i and j.

86Maldacena (2003a) also pointed out that subleading saddles in
the path integral can give rise to long-time corrections which are of
the order of e−S as required by unitarity. This is sometimes
misunderstood as an argument that including such saddle points is
sufficient to resolve the information problem and reproduce the
chaotic late-time CFT behavior, but this is most likely not the case
(Barbon and Rabinovici, 2003). There are presumably other non-
perturbative effects in quantum gravity beyond those suggested by
Euclidean gravity, and it would be unreasonable to expect a semi-
classical interpretation for all of them.
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J. von Neumann entropy and the Ryu-Takayanagi formula

This concludes the background in AdS/CFT needed for the
remainder of this paper, but there is one more aspect which
deserves to be mentioned. This is the proposal of Ryu and
Takayanagi (RT), later generalized by Hubeny, Rangamani, and
Takayanagi (HRT), for a holographic expression for the
von Neumann entropy of a subregion in the boundary theory
(Ryu and Takayanagi, 2006; Hubeny, Rangamani, and
Takayanagi, 2007). A vast literature understanding and using
this conjecture has appeared in the last few years, so here I will
state only the conjecture and mention two applications of
interest to black hole physics.
The basic idea is as follows: take the CFT to live on

Sd−1 × R, and in the Schrödinger picture pick out any
particular Cauchy slice with topology Sd−1 and study a
quantum state of the CFT on that slice. A natural thing to
do with the state is decompose the slice into a region A and its
complement B and then compute the von Neumann entropy

SA ¼ −trρA log ρA: ð187Þ
The RT-HRT proposal says that to compute SA, using the bulk
gravity theory, look for the codimension two extremal-area
surface Σ in the bulk with the property in which ∂Σ ¼ ∂A.87 If
there is more than one such Σ, take the one of smallest area.
The proposal is then that to leading order in 1=N we have

SA ¼ AðΣÞ
4G

; ð188Þ

where AðΣÞ is the area of Σ in the bulk geometry. The basic
idea is illustrated in Fig. 25.
The RT-HRT proposal has passed many nontrivial checks,

especially for AdS3=CFT2, where both sides can be computed
explicitly in many cases (Faulkner, 2013; Hartman, 2013). It
also obeys nontrivial properties of entropy like strong sub-
additivity (Headrick and Takayanagi, 2007; Wall, 2012b).
Indeed a general “heuristic proof” was given by Lewkowycz
and Maldacena (2013), although the range of validity of this
argument is still being actively explored by the community. The
RT-HRT conjecture has also recently been extended to bulk
theories more general than Einstein gravity (Dong, 2014), and it
also has been used to derive formulas for the areas of more
general nonextremal bulk surfaces (Balasubramanian et al.,
2014; Czech, Dong, and Sully, 2014).
Aword of warning: the RT-HRT proposal is often described

as computing entanglement entropy, but this is misleading
since it is supposed to work even if the total state is not pure.
From the point of view of this article, however, the most

important applications of the RT-HRT proposal involve its use
in spacetimes with black holes. Two especially interesting
examples of this are its use to study the two-sided AdS-
Schwarzschild geometry by Hartman and Maldacena (2013),
and perturbations thereof, by Shenker and Stanford (2013,
2014). The calculation of Hartman and Maldacena builds on an

observation of Morrison and Roberts (2012), who emphasized
that at t ¼ 0 in the Hartle-Hawking state (176) of two CFTs
there is considerable “local entanglement.” What this means is
that if I take a suitable region AL in the left CFT and its mirror
region AR in the right CFT, their mutual information
IðAL; ARÞ≡ SAL

þ SAR
− SALAR

is nonvanishing, and in fact
is proportional to the black hole entropy. This statement can be
confirmed in the bulk by using the RT-HRT proposal (Morrison
and Roberts, 2012). What Hartman and Maldacena studied is
how this statement evolves as we evolve time forward simulta-
neously on the two sides.88 Say that the linear size of the region
is L, and that the temperature is large enough compared to the
Hawking-Page transition that we can have β ≪ L ≪ 1 (this is
what “suitable” means). Hartman and Maldacena then argued
that the mutual information IðAL; ARÞ starts out positive and
decreases linearly with time, changing nontrivially over a time
of order β, until at a time of the order of L it drops to zero. In
1þ 1 dimensions they were able to also confirm this behavior
directly in the CFT. Moreover they found that the extremal
surface used in computing SALAR

over this time scale extends
through the wormhole, with the details of the result depending
on the metric in the interior. The successful matching with the
CFT calculation provides good evidence that, at least in this
special case, the CFT knows about the interior geometry, which
should thus be taken seriously despite the paradoxes I describe
in the following section.
The decrease of the mutual information IðAL; ARÞ found by

Hartman and Maldacena is reminiscent of thermalization,
since it represents the “dilution” of a special property of the
state at t ¼ 0, the local entanglement, into the rest of the
system as time evolves. Soon after Shenker and Stanford
introduced a modification of this setup in which the con-
nection to thermalization in the CFT can be made even more
explicit. Their idea was to instead study how this special
property of the state is affected by introducing a small
perturbation to the system at an earlier time t ¼ −tw (with

FIG. 25. Two examples of the RT-HRT proposal, shown in
AdS3=CFT2 for simplicity. On the left there is a time-translation
symmetry (the geometry is “stationary”), and I have chosen the
spatial slice in the boundary to respect this. The extremal surface
Σ is a geodesic of minimal area that lies in the green bulk Cauchy
slice that also respects the symmetry. This was the setup
originally studied by Ryu and Takayanagi. On the right I show
a more arbitrary slice in a possibly nonstationary geometry. The
extremal surface no longer lies in any preferred bulk slice.

87Technically we also require the fact that the surface Σ is
homologous to the region A on the boundary (Headrick and
Takayanagi, 2007).

88Note that evolving time forward on one side and backward on
the other is a symmetry of the HH state (176), but evolving both sides
forward is nontrivial.
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tw > 0). They modeled this in the bulk theory by sending in a
spherical shell of matter on one side of the wormhole at this
earlier time, whose energy was of the order of the temperature
β−1. They found that the local effect of this perturbation on the
extremal surface at t ¼ 0 grows exponentially in tw, for
essentially the same reason that the center of mass collision
energy grew exponentially in our discussion of the trans-
Planckian problem in Sec. IV.F, and thus that the backreaction
of the shell becomes significant for the RT-HRT calculation at
a time of the order of

tw ≈ β log S: ð189Þ

This is nothing other than the scrambling time (129), which
we argued in a rather different way in Sec. V.F is the relevant
time scale for a black hole to absorb information. The effect of
this backreaction is to make the wormhole “longer,” which
causes the mutual information to vanish since the minimal-
area extremal surface used in computing SALAR

switches to a
pair of surfaces that do not extend through the wormhole (this
is also what causes it to drop to zero in the Hartman-
Maldacena calculation). This is essentially a bulk illustration
of the “butterfly effect” in the CFT evolution. We perturb a
state at t ¼ −tw which was carefully tuned to produce local
entanglement at t ¼ 0, but our perturbation prevents it from
doing so. The black hole entropy S appears in the calculation
since, unlike in the Hartman-Maldacena setup, we need to
wait for the perturbation to be mixed throughout the system. It
is gratifying to see such a chaotic effect in the CFTs emerging
from a straightforward bulk calculation.

VII. PARADOXES FOR THE INFALLING OBSERVER

Having at least provisionally settled the information para-
dox, it is now time to return to the description of the black hole
interior. In Sec. V.G we saw that unitarity of the evaporation
process leads to a possible inconsistency in the description of
the interior: a violation of the no-cloning theorem (Susskind
and Thorlacius, 1994). We saw however that this cloning
seemed to be unobservable (Susskind and Thorlacius, 1994;
Hayden and Preskill, 2007), and thus considered the possibil-
ity that the principle of “black hole complementarity” could
allow us to formulate a theory in which no observer sees a
violation of quantum mechanics, avoiding both nonunitarity
outside and cloning inside.
Many were reasonably satisfied with this state of affairs, but

there were always some lingering doubts and, in particular,
there was a sizable contingent who were never convinced
(Unruh and Wald, 1995; Mathur, 2009; Giddings, 2012). If
black hole complementarity is consistent and correct, should
we not be able to find a real theory of the interior that realizes
it? As we will now see, it seems to be the case that black hole
complementarity as originally formulated cannot be consis-
tent. We will also see in the following sections that there are a
number of problems with any naive attempt to “reconstruct”
the interior in AdS/CFT using the same machinery as we did
for perturbations of the vacuum in Sec. VI.C. As of now the
status of these arguments is somewhat controversial. One will
notice a definite decrease in the precision of the arguments as
we move in from the boundary, but they raise serious

obstructions that one would need to address before claiming
to possess a satisfactory theory of black holes.

A. The entanglement-monogamy problem

The argument against the consistency of complementarity I
presented is due to Almheiri, Marolf, Polchinski, and Sully
(2013), who I will refer to as AMPS, but its basic building
blocks have a long history. Throughout the discussion of the
information problem, there was some concern that changing the
state of the evaporating modes from Hawking’s result would be
dangerous to the infalling observer (Giddings, 1994, 2012;
Polchinski, 1995; Mathur, 2009; Avery, 2013). In particular, the
main quantitative piece of the AMPS argument, based on the
strong subadditivity of von Neumann entropy, is due to Mathur
(2009). Many aspects of the argument were also independently
realized by Braunstein, Pirandola, and Życzkowski (2013), who
suggested the term “energetic curtain” for what AMPS later
called a “firewall.” The contribution of AMPS was to assemble
these pieces and use them to attack complementarity in a
concrete way. The argument presented in this section differs in
detail from their argument, in particular, neither strong sub-
additivity nor a discussion of black hole mining (Brown, 2013)
is needed, but the basic idea is the same.
The goal of the AMPS argument is to put all of the “moving

parts” of the black hole information problem into the past light
cone of a single observer, preventing any use of complemen-
tarity to avoid an observable violation of effective field theory
or quantum mechanics. The basic setup is shown in Fig. 26.
Rather than assuming that there is some well-defined state of
the quantum fields on an entire nice slice such as the blue one
in Fig. 20, we make the weaker assumption that there exists
such a state only on the red slice that stays within the past light
cone of an infalling observer Alice in Fig. 26. This is still a
strong assumption, one that goes well beyond the asymptotic
S matrix and boundary correlator assumptions used in this
article, and it almost certainly will not survive in the correct
theory of the interior. Nonetheless it has proven quite difficult

A B
R

FIG. 26. A spatial slice in the diamond of an infalling observer.
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to come up with consistent alternatives that are able to
reproduce quantum field theory in the expected limits, so
for now we make this assumption; it might be called “taking
the quantummechanics of effective field theory seriously.”We
will not need to assume anything about the dynamics of how
different such time slices are related. We can get into trouble
just by trying to find any quantum field theory state for this
slice that is consistent both with the horizon being smooth for
an infalling observer and with unitarity.
To proceed, in Fig. 26 I have indicated three important sets of

modes. The mode B is one of the thermally occupied
Schwarzschild modes (59) in the atmosphere, confined between
the horizon and the barrier of the effective potential (61) (I have
assumed here that we have waited long enough after the black
hole formation that the geometry in the vicinity of B is well
approximated by the upper corner of the Schwarzschild geom-
etry). The mode A is the “mirror” of B behind the horizon. It is
analytically continued up from right-moving modes near the
horizon of the left exterior region of the two-sidedSchwarzschild
geometry inFig. 1. If the horizon is smooth,we expectA andB to
be highly entangled as in Eq. (45). If not then at least in quantum
field theorywewould expect something singular to happen at the
horizon, as explained in Sec. III.E.89

You might think that unitarity does not impose any
significant constraint on the colored slice of Fig. 26; after
all this observer never gets to measure the S matrix, so what
would unitarity mean operationally? One answer is provided
by Page’s theorem. Once the black hole is sufficiently old, we
saw in Sec. V.C that we should expect a considerable degree of
entanglement between the black hole BH and its early
radiation R. In fact we saw that, ignoring energy conservation,
they should be maximally entangled. Once we include energy
conservation what should be true instead is that BH will
typically be thermally entangled with R, in the sense that
ρBH ¼ ð1=ZBHÞe−βHBH . Moreover as discussed in Sec. III.B.3
of the Supplemental Material this means that, provided that B
is sufficiently weakly interacting with the rest of the black
hole, it can be purified by some tensor factor RB in the early
radiation in the sense that ρBRB

is close to a pure quantum
state. This is a statement that lies within the infalling
observer’s diamond; it must then be a property of the state
on the colored slice of Fig. 26. This is what we need to form a
contradiction. If B is strongly entangled with RB, then it
cannot also be significantly entangled with A without violat-
ing a principle: called monogamy of entanglement (Koashi
and Winter, 2004).
We can illustrate the contradiction more precisely using

some entropy inequalities from Sec. III of the Supplemental
Material [193]. We begin by assuming that B and RB are
thermally entangled, so that SBRB

¼ 0. From the non-neg-
ativity of the mutual information IA;BRB

≡ SA þ SBRB
− SABRB

and the triangle inequality (40), we see that

SA ¼ SABRB
; ð190Þ

and thus that

IA;BRB
≡ SA þ SBRB

− SABRB
¼ 0: ð191Þ

We saw in Sec. III of the Supplemental Material that the
mutual information between two tensor factors vanishes only
if the state is a product state, so

ρABRB
¼ ρA ⊗ ρBRB

; ð192Þ

which is incompatible with any entanglement, or indeed
correlation of any kind, between A and B. Conversely we
could assume that A and B are thermally entangled, in which
case there is no correlation between B and R. We thus seem to
be led to the conclusion that either unitarity is violated or
sufficiently old black holes have singular horizons; this is the
firewall paradox.
One issue with this argument is whether or not B really is

“sufficiently weakly interacting” with the rest of the black
hole to allow us to approximate the thermal density matrix ρBH
as a product between a thermal density matrix for B and a
thermal density matrix for the rest of the black hole. This is not
a trivial point. We saw in Sec. III.E that gradient interaction
between the two Rindler wedges leads to a high “energy cost”
for firewalls, which causes them to be Boltzmann suppressed
in a thermal distribution defined with respect to the
Minkowski Hamiltonian H. The difference here however is
that the asymptotic time-translation symmetry of Minkowski
space, which is conjugate to the conserved energy, behaves in
the vicinity of the Schwarzschild horizon as a boost K rather
than H. From our Eq. (29) for the quantum field theory boost
operator, we see that the gradient interactions between the two
sides are suppressed by an extra factor of x at the origin, which
prevents them from being as restrictive. Alternatively we saw
in Sec. IV.G that modes with Schwarzschild energy of the
order of the temperature can be thought of as living in a box of
size logðrs=llpÞ in the tortoise coordinate r�. This allows us
to form wave packets of narrow frequency that are nonetheless
well localized away from the horizon, so any contribution
from the interactions near the horizon is suppressed appro-
priately. Nonetheless I think it is worthwhile to understand
these energetics better, especially in the context of a careful
treatment of the Hamiltonian formulation of canonical gravity,
but I leave this to future work.90

89One might worry that we have evolved the modes up from the
bifurcate horizon in Fig. 1, which is not part of the diagram in Fig. 26,
but the Hamiltonian is conserved by this evolution so we can recast
the discussion of Sec. III.E entirely as a calculation at some later time
where the two relevant modes are given by A and B in Fig. 26.

90Even if there is some subtlety in general with the energetics of B,
it seems unlikely that it would be so radical as to impose entangle-
ment across the horizon for the lowest l modes. These are the ones
which directly carry out the information, and it is difficult to see how
the evaporation could be unitary if they do not come out entangled
with R. For this reason some sometimes contemplate an “s-wave
firewall,” which corrupts only those B modes with Oð1Þ angular
momentum. This has some resonance with the second energetic
argument just given, since for sufficiently large l we cannot think of
logðrs=llpÞ as being large; perhaps energetics prevent a full firewall
but allow an s wave one?
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B. Firewall typicality

The AMPS argument of the previous section does not apply
to big asymptotically AdS black holes; they do not evaporate.
One way to deal with this is to enable them to evaporate, either
by coupling the CFT to an external system or by “mining”
them, but it would be better to have a version of the paradox
that does not require evaporation. Indeed the only thing we
really needed the evaporation for in the previous section was
to argue that the black hole was in a thermally mixed state. At
least if we are playing by the usual rules of quantum
mechanics, and assuming some crude form of locality, then
any local experiment in the vicinity of the black hole should
not care whether this mixed state is purified by the early
Hawking radiation.91 If we instead interpret the thermal
density matrix as a classical ensemble of pure states, then
the energetic argument of the previous section suggests that
firewalls are “typical” in this ensemble. Unlike in ordinary
Minkowski space they are not energetically suppressed
(Bousso, 2013b).
One can make this “typicality” argument more precisely

for big AdS black holes (Marolf and Polchinski, 2013).
Consider again our Schwarzschild mode B, which has a
frequency of the order of the temperature and is localized
away from the horizon. Since we are now considering big
AdS black holes, meaning for simplicity black holes that are
stable in the canonical ensemble and thus have a
Schwarzschild radius at least of the order of the AdS
radius, the mode B will automatically be in the thermal
atmosphere (“the zone”), since as we saw in Sec. VI.F this
fills the entire space. The AdS/CFT description of such
black holes is as excited states of a conformal field theory
quantized on a spatial sphere cross time. We also saw in
Sec. VI.F that to leading order in 1=N we can plausibly
interpret the operator Fourier transform Oωlm of a single-
trace primary O dual to a bulk field ϕ as the annihilation
operator for a bulk Schwarzschild mode such as B, and, in
particular, we can define a number operator

NB ≡O†
ωlmOωlm þOð1=NÞ: ð193Þ

The operator O†
ωlmOωlm exactly commutes with the CFT

Hamiltonian, so to leading order in 1=N we can simulta-
neously diagonalize NB and H. This is rather problematic,
since it implies that we can find a complete basis for the
microcanonical ensemble (the subspace of all states built
from energy eigenstates within a narrow energy width
centered at some large energy E0) with the property that
each basis element is an eigenstate of the occupation
number for B. Such states are very far from the expected
entanglement of Eq. (45), so they cannot be expected to
locally resemble the Minkowski vacuum.
We now argue that the existence of a complete basis of

“bad” states implies that almost all pure states sampled from
the microcanonical ensemble are bad, but to really make this
argument we need to make one final assumption based on the

linearity of quantum mechanics. Namely, we assume that in
addition to the existence of a CFT operator Oωlm which
annihilates B, there is also a CFT operator ~Oωlm which
annihilates A. Unlike Oωlm we do not have an explicit
expression for this operator, but it is quite natural to assume
it exists. After all the occupation number for A is an
observable and thus it should correspond to a self-adjoint
operator according to the general principles of quantum
mechanics. Given this operator we can then define the
annihilation operator

c1ωlm ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−βω

p ðOωlm − e−βω=2 ~O†
ωlð−mÞÞ; ð194Þ

which we saw in Secs. III.D and III.E can be used as
“diagnostic” for firewalls. Indeed we saw that its number
operator c†c will annihilate any state with a smooth horizon,
whereas it will have Oð1Þ expectation value in a disentangled
state. If we now compute the expectation value of c†c in the
microcanonical ensemble, however, we are free to use the
basis of NB eigenstates. In this case the average will be Oð1Þ.
Moreover it is a general fact [see Sec. II.D of Harlow (2014)]
that the microcanonical expectation value of some operator is
exponentially close to the expectation value of the same
operator in a randomly chosen pure state from the ensemble.
Thus c†c will have an Oð1Þ expectation value in almost all
pure states. Since this argument can be applied to any mode,
firewalls that corrupt all B modes are typical (Marolf and
Polchinski, 2013).
This argument has several technical points which have

not been completely explicated in the literature. In particu-
lar, I am not really sure that the 1=N corrections are under
control, and I am also not totally sure about the bulk
interpretation of Oω. Nonetheless so far no decisive objec-
tion has been raised, and even if this argument does not end
up being correct it will be illuminating to understand why
it fails.
One aspect of the argument of this section which is less

satisfying than the original AMPS argument of the previous
section is that it is less operational. There is no low-energy
experiment that illustrates the paradox. I will return to this in
Sec. VIII.A.

C. The creation operator problem

The paradoxes of the previous two sections arose from
taking the quantum mechanics of bulk effective field theory
seriously. In this section and the next, I will describe two
additional arguments that suggest that one might not want to
do this.
I first focus on the mode A, which lives just behind the

horizon. One way to think about our construction of the CFT
representation of creation and annihilation operators for the
mode B is that it proceeds by solving the bulk equations of
motion in from the boundary, with the boundary conditions
given by the extrapolate dictionary (144) (Heemskerk et al.,
2012). A similar evolution for the mode A however would
involve propagating either forward to the singularity or
backward through the trans-Planckian bulk collision with
the infalling shell, as described in Sec. IV.F. This means that

91We will see some tension with this statement in Sec. VII.D, as
well as in Sec. VIII.B.
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any attempt to produce a CFT expression for creation or
annihilation operators for A via the same method will require
an understanding of trans-Planckian bulk physics (Almheiri,
Marolf, Polchinski, Stanford, and Sully, 2013).
In fact there is a more basic problem with finding a CFT

expression for this mode. Consider a candidate raising
operator ~O† for A. Within effective field theory we expect
this operator to lower the energy of the quantum state.
Remember that the Schwarzschild isometry acts within the
vicinity of the horizon as a boost, and the Amode has negative
boost energy. Moreover within effective field theory there are
no states that this operator can annihilate. If we assume that
these two properties are true for the CFT operator ~O†, we
reach a contradiction. The density of states of the CFT
decreases as we go to lower energy, so it is impossible for
an operator that lowers the energy on all states to not have any
states it annihilates. Thus we seem to have an obstruction to a
naive representation of creation operators for the A modes
within the CFT (Almheiri, Marolf, Polchinski, Stanford, and
Sully, 2013).
It is not clear to me that constructing the interior really

requires an operator with the assumed properties. As
mentioned previously I want to see a more careful treatment
of energetics and bulk diffeomorphism invariance, but it is
interesting to note that this argument seems to oppose the
firewall typicality argument of the previous section. It says
that one of the assumptions of that argument, the existence
of a ~O operator in the CFT with the expected properties
from effective field theory, cannot be true. On some level
this is encouraging; it means that rather than accepting
firewalls we should look for a less naive description of the
interior.92

D. The Marolf-Wall paradox

Another interesting obstruction to a naive “inclusion” of
effective field theory into the CFT was pointed out by Marolf
and Wall (2013) [see also Avery and Chowdhury (2014)]. The
idea is as follows: consider a single large-N CFT in a thermal
density matrix

ρCFT ¼ 1

Z
e−βH; ð195Þ

with β > 1 so that black holes dominate the ensemble. In
ordinary quantum mechanics, we are free to interpret this state
either as a classical probability distribution for energy eigen-
states or as being purified by an auxiliary system. But for the
black hole interior it seems like there is a difference between
the two cases.
Say that we view this density matrix as a probability

distribution for one-CFT states. According to the rules of
quantum mechanics there should be linear operators on the
single CFT whose expectation values we can compute to see
what is going on in the interior. But alternatively say we
view this density matrix as being purified by a second copy

of the same CFT, and moreover say that we choose the joint
system to be in the thermofield double state (176). As
described in Sec. VI.G, this system is usually interpreted as
describing the two-sided AdS-Schwarzschild geometry, with
the two sides connected by a wormhole. For definiteness we
can interpret the left CFT as the “auxiliary” one and the
right CFT as the one we started with. There is now
something of a paradox; in the two-sided system there is
nothing to stop us from acting on the left CFT with a
unitary operator that sends a signal into the wormhole. An
observer on the right side could jump into the wormhole
and receive this signal. But if he or she uses the right-CFT
operators we just motivated in the single-CFT case, their
expectation values will be identical whether or not we send
a signal from the left. Any dictionary for the interior which
could detect this signal would need to involve operators
from both CFTs.
What are we to make of this? Marolf and Wall

suggested that we need additional degrees of freedom
beyond the two CFTs in describing this setup. They
wanted to use these extra degrees of freedom to distin-
guish between two black holes which just happen to be
entangled with each other but do not share a common
interior (interpretation one of the previous paragraph) and
two entangled black holes connected by a wormhole
(interpretation two). I find it more natural to say that
there are just two different interpretations of the two-CFT
system, one which assumes there is a bridge and the other
which does not. The Hamiltonian and Hilbert space are
the same in both cases but the dictionary for observables
is different. It is interesting that we seem to have this
choice in defining the dictionary. There does not seem to
be an analogous ambiguity for observables that are not
behind horizons, since they can always be unambiguously
evolved back to the boundary and matched onto the
extrapolate dictionary.

VIII. PROPOSALS FOR THE INTERIOR

We have now seen that there are several interesting
obstructions to a quantum description of the black hole
interior. In this section I will describe what I consider to be
some of the more promising ideas that have been proposed
to resolve the paradoxes of the previous section. Since
none of these ideas are unambiguously successful, I will
be brief.

A. Complementarity from computational complexity?

The AMPS argument of Sec. VII.A presented a thought
experiment testing the unitarity of black hole evaporation
that appears to be doable by a single observer without
violating causality. Could it be however that there is some
principle other than causality that prevents the experiment
from being done? If so, then it may be that some version
of black hole complementarity as described in Sec. V.G
may yet provide an escape from the apparent inconsistency
of unitary evaporation and smooth infall without requiring
an observable breakdown of some principle of physics.
Several reasons why the AMPS experiment might be

92This objection does not invalidate the argument that there is a
complete basis of NB eigenstates spanning the microcanonical
ensemble.
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impossible have been proposed (Harlow, 2012; Freivogel
et al., 2014; Hui and Yang, 2014; Ilgin and Yang, 2014),
but the most robust is that the computational complexity of
“distilling” the purification RB from the Hawking radiation
is so severe that it almost certainly requires an exponential
amount of time in the entropy of the black hole (Harlow
and Hayden, 2013). This far exceeds the evaporation time,
which is only of the order of S3=2 in Planck units, so the
infalling observer of Fig. 26 will not succeed in extracting
RB until long after the black hole has evaporated and she
can no longer jump in and see a contradiction. In the
remainder of this section I explain why this is probably the
case and then briefly comment on to what extent this is a
satisfactory resolution of the paradoxes of the previous
section.
To be concrete we can model the old black hole of

Sec. VII.A as a qubit system, with the mode B taken to be
a single qubit, its complement H in the black hole taken to
be m qubits, and the radiation R being a further n qubits.
The black hole will be old in the Page sense if n ≫ m. We
can take the state of the system to be a random pure state
of BHR, which by Page’s theorem will be maximally
mixed on BH. By the Schmidt decomposition of Sec. III
in the Supplemental Material [193], we can represent the
state as

jψi ¼ 1ffiffiffiffiffiffiffiffiffi
2jHjp X

bh

jbiBjhiHURjbh0iR; ð196Þ

where b and h label convenient bases for B and H, and we
have chosen a local basis for the radiation in the sense that
a state like j10110 � � �iR is analogous to a state where all
the radiation modes have definite occupation number. UR
is some unitary transformation on the radiation that relates
this basis to the natural basis of the Schmidt decomposi-
tion where the entanglement of the state jψi is manifest.
UR is defined only up to an arbitrary unitary on the
orthogonal complement of the subspace spanned by jbh0i.
In order to observe a violation of entanglement monogamy
along the lines of the AMPS experiment, our infalling
observer must first use a quantum computer to act with U†

R
to “distill” the purification of B in the radiation into an
easily usable form. We want to assess the “difficulty” of
doing this, as defined using the quantum circuit model
described in Sec. V of the Supplemental Material [193].
The first obvious objection to any claim that implement-

ing U†
R requires a time that is exponential in n is that the

black hole certainly does not require exponential time to
produce the state (196). Indeed we should probably accept
the fact that there exists a polynomial-sized circuit Udyn
with the property that acting on the state j0iBj0iHj000iR it
produces the state jψi. This amounts to the quite plausible
assumption that quantum gravity can be “efficiently simu-
lated.”93 The problem however is that even if we have
available a polynomial-sized circuit for Udyn, we cannot use

its inverse to decode the Hawking radiation, since that would
only work if we are also able to act on the degrees of
freedom H that remain inside the black hole [this is
explained in more detail in Harlow and Hayden (2013)].
The argument above Eq. (196) does ensure the existence of a
distilling U†

R that acts only on the radiation, but it is
nonconstructive and gives no information about the complex-
ity of this distillation. Without a construction, we are left with
the basic fact reviewed in Sec. V of the Supplemental
Material that almost all unitaries on n qubits require a circuit
whose size is of the order of 22n to implement.
Of course it could still be the case that we can somehow use

the simplicity of Udyn to argue in a more complicated way that
there must be a polynomial-sized circuit for UR, but we were
able to give a complexity theoretic argument that this is
probably not the case. We can phrase this as a general question
about quantum circuits.

• Hawking distillation problem: Say we are given a
product Hilbert space of three-qubit systems B, H,
and R, along with a polynomial-sized circuit Udyn that
prepares a quantum state jψi ¼ Udynj0i, where j0i is the
product state that is all 0’s for all three factors, and
moreover say that jψi has the property that it is
maximally mixed on BH. Also say that the dimension-
ality jBj is some Oð1Þ number. Does there exist a small
quantum circuit U†

R, meaning a circuit whose size is at
most polynomial in m ¼ log2 jHj and n ¼ log2 jRj, that
distills the purification of B, in the sense that

U†
Rjψi ≈

1ffiffiffiffiffiffiffiffiffiffiffiffiffijBjjHjp �X
b

jbiBjbiRB

�

×

�X
h

jhiHU0
Rjh0iRB̄

�
: ð197Þ

I have here allowed for some remaining scrambling UR
0

of the purification ofH, although this can be removed by
a basis redefinition of H. The approximation should be
understood as saying the two states are close in the
trace norm.

We argued based on the assumed hardness of a quantum
complexity class called QSZK (quantum statistical zero
knowledge that the answer to this question is typically no,
but I will instead give a more elegant pair of arguments
due to Scott Aaronson that lead to the same conclusion.94

As with most complexity theoretic arguments, it is too
difficult to directly prove that no efficient distillation U†

R
exists. So what one does instead is show that if it did exist,
this would enable us to do something which is widely
expected to be difficult.
The difficult task Aaronson uses is the inversion of “one-

way functions,” meaning functions that are easy to evaluate
but difficult to invert. It is not a priori clear that such
functions should exist, but they are widely expected to;
indeed almost all of modern cryptography is based on their

93In the cases where we really understand it, such as the BFSS
matrix model or AdS/CFT, this seems likely to be the case (Feynman,
1982; Lloyd et al., 1996; Jordan, Lee, and Preskill, 2011).

94The first argument is also explained at http://www.scottaaronson
.com/talks/hawking.ppt, the second came out of a recent discussion
with Aaronson.
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assumed existence (Arora and Barak, 2009). In quantum
language we can think of a one-way function as a map f
from m-bit strings to n-bit strings, with n ≥ m, such that
there exists a polynomial-sized circuit Uf, where

Ufjx; 0i ¼ jx; fðxÞi; ð198Þ

but no polynomial-sized circuit Uf−1 such that

Uf−1 j0; fðxÞi ¼ jx; 0i: ð199Þ

Note that although Uf is invertible, we cannot use its
inverse to invert the function. If we give it j0; fðxÞi it will
not necessarily do anything useful.95 What Aaronson was
able to do was show that if our Hawking distillation
problem has a positive answer, then one can use that
answer to efficiently invert any candidate injective one-way
function; in other words no injective one-way function
could exist.96 This may not sound so bad to physics
readers, but in computer science and cryptography it
would be a genuine catastrophe (or revelation) of almost
a similar order of magnitude as a proof that P ¼ NP
(Impagliazzo, 1995).
Indeed say we are given a candidate injective one-way

function f on m-bit strings and an efficient circuit Uf that
implements it, as in Eq. (198). It is not difficult using the
Hadamard and CNOT gates of Sec. V of the Supplemental
Material [193] to come up with a polynomial-sized quantum
circuit which, given the all zero state of BHR, prepares the
state

jψi ¼ 1ffiffiffiffiffiffiffiffiffi
2jHjp X

h

jhiH(j0iBj0; h; 0iR þ j1iBj1; fðhÞiR):

ð200Þ

Now assume that the Hawking distillation problem has a
positive answer: there then must exist an efficient distilling
unitary transformation U†

R which acts as

U†
Rj0; h; 0iR ¼ j0; gðhÞiR; ð201Þ

U†
Rj1; fðhÞiR ¼ j1; gðhÞiR; ð202Þ

where jgðhÞi is some given set of 2m states of the radiation
minus a qubit. But now by combining UR and U†

R with the X
operation that flips the first qubit we can directly construct
an efficient circuit Uf−1 which implements Eq. (199),

contradicting the one-way nature of f.97 Thus the Hawking
distillation problem is tractable in general only if injective
one-way functions do not exist. Since there is strong evidence
that they do exist, Hawking distillation is most likely a hard
problem.
A subtlety with this argument however is that, although we

need to do something hard to distill manifest entanglement,
the state (200) already exhibits classical correlation with the
radiation in the sense that its mutual information with the first
qubit of R is nonzero. This is in fact already sufficient to
prevent maximal entanglement between B and something else,
so a slight modification of the AMPS experiment is sufficient
to argue that the state (200) cannot have a smooth horizon
even if we cannot distill manifest entanglement. What we want
to argue is that in the setup of the Hawking distillation
problem, even distilling classical correlation between B and R
is usually exponentially difficult. In fact a small modification
of Aaronson’s argument, again due to Aaronson, is able to
resolve this. Namely, we consider instead the state

1ffiffiffiffiffiffiffiffiffi
2jHjp X

h1;h2

jh1; h2iH(jh1 · h2iBjfðh1Þ; h2; 0iR

þ jh1 · h2 þ 1iBjfðh1Þ; h2; 1iR); ð203Þ

where we split H into two equal size pieces H1 and H2. Here
f is a candidate injective one-way function on m=2 bits, and
by h1 · h2 I mean the inner product of the two strings,
computed mod 2. It is not difficult to see that this state
satisfies the conditions of the Hawking distillation problem.
It can be simply generated using a circuit Uf that computes f
as in Eq. (198), and it is maximally mixed on BH. Now
imagine that there exists an efficient circuit U†

R that is able to
distill a bit of R that is classically correlated with B in the
sense that their mutual information is close to log 2 (or close
to 1 if we define the entropy with a base two logarithm). We
must then have

U†
Rjfðh1Þ; h2; 0iR ¼ jh1 · h2; gðh1; h2ÞiR;

U†
Rjfðh1Þ; h2; 1iR ¼ jh1 · h2 þ 1; g0ðh1; h2ÞiR; ð204Þ

which means that using U†
R to determine h1 · h2 given

(fðh1Þ; h2). This however again allows us to invert the
function (Goldreich and Levin, 1989); for example, given
fðh1Þ we can determine the first bit of the input by
choosing h2 to be 1 for the first qubit and 0 for the rest.
Thus the assumed existence of one-way functions also
ensures the exponential difficulty of distilling classical
correlation.
Given these arguments, it seems highly likely that computa-

tional complexity prevents an AMPS experiment from being
done. What then are we to conclude? One option would be to
declare victory for black hole complementarity and move on;
by the standards of the mid-1990s this would bewhat wewould
do.What the past few years have taught us however is that those

95In fact, the standard definition of one-way functions is slightly
weaker than this. It demands only that no efficient algorithm exists
which can invert the function on a fraction of inputs which at most are
polynomially small in m. Since we will see that solving Hawking
distillation cracks the stronger version this distinction is not relevant
for our purposes, although it could be if we tried to define a version of
Hawking distillation that allowed for “imperfect distillation.”

96Injectivity is not a very strong restriction; if n > 2m then we
avoid the birthday paradox and the function f will typically be
injective.

97More carefully it implements it with the assistance of a single
extra ancillary qubit, which does not increase the complexity in any
practical sense.
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standards were too low. Without an actual theory of the interior
we cannot be sure that complementarity actually provides the
mechanism whereby unitarity is made consistent with a smooth
experience for the infalling observer. One problem is that
somebody might later come up with another thought experi-
ment that cannot be resolved in the same way, and then we
would be back in the soup.98 Even if they do not, however, there
are basic physical questions such as “what happens if we form
and evaporate a little black hole inside of a big one?” that seem
to really require a theory of the black hole interior that goes
beyond effective field theory. It is only after we find this real
theory of the interior that we will be able to see whether or not
limitations from computational complexity play an important
role in its consistency; at best they currently can be thought of as
a tool to use in looking for that theory. In the historical analogy
suggested in Sec. V.G, it could be that our computational
complexity restrictions on experiments are analogous to the
uncertainty principle, but if so then we have not yet discovered
the theory analogous to quantum mechanics. Until we do, there
will always be stodgy classical physicists saying “of course you
can measure the position and momentum, you just need to think
more about how to do it.”99 In particular, the firewall typicality
arguments of Sec. VII.B are not expressed as operational
contradictions accessible to a low-energy thought experimenter
in the bulk and thus are not immediately addressed by
complexity theoretic concerns. Perhaps these arguments are
resolved by noting that they are based on assumptions that are
analogous to asserting that a particle has both a position and a

momentum, despite the unobservability of this notion. To
confirm (or refute) this however, we need a theory.

B. Nonlinearity?

I now turn to proposals that, unlike complementarity, give
some sort of positive prescription for what the theory of the
interior might be.
One idea for evading the entanglement-monogamy para-

dox is to declare that in the theory of quantum gravity the
interior mode A is simply defined to be “whatever is
entangled with B.” In the language of Sec. VII.A this is
sometimes called A ¼ RB. Versions of this idea have been
proposed in many places (Bousso, 2013a; Harlow and
Hayden, 2013; Papadodimas and Raju, 2013; Verlinde
and Verlinde, 2013b; Maldacena and Susskind, 2013). I
have recently written a general discussion of what I consider
to be the best defined of the options, that of Raju and
Papadodimas (Verlinde and Verlinde, 2013a; Papadodimas
and Raju, 2014a, 2014b); see there for more details
(Harlow, 2014). In this section I make a few general points
about the features of these proposals in the context of a
simple qubit model.
Before beginning, however, it may seem crazy that we

should think of the interior of an old black hole as having
anything to do with the distant Hawking radiation that has
already been emitted. We know that there is some type of
nonlocality in holography, but this may seem to “just be
too much.” An argument in this regard was emphasized by
Maldacena and Susskind, and by Van Raamsdonk, who
suggested taking the Hawking radiation cloud of a black
hole that has just evaporated halfway and collapsing it into
a second black hole that is thermally entangled with the
first in the thermofield double state (Maldacena and
Susskind, 2013; Van Raamsdonk, 2013). From
Sec. VI.G it then seems at least somewhat plausible that
the two black holes will be connected by a wormhole.
Assuming that this is the case, from the Penrose diagram
in Fig. 4 (or Fig. 23) we can affect the interior of the
original black hole by throwing things into the other black
hole. It thus seems that at least there is one unitary
operation we can do on the Hawking radiation which
directly affects the interior.100 Given that this is the case, it
does not seem so unreasonable to try to look for a general
theory of the interior that allows us to use whatever the
black hole is entangled with as part of the theory.
In trying to turn this observation into a theory of the

interior however one runs into serious problems that so far
have resisted a clear resolution. For simplicity I will
illustrate them in the simple qubit model of the previous
section, where we think of the factors B, H, and R as qubit
systems. I will again model B as a single qubit, so by the

98Indeed there have been several attempts to come up with thought
experiments that evade our computational constraints. Some of these
involve direct manipulation of the microscopic degrees of freedom
from the outside of the system and thus cannot be performed by
observers who are actually part of the system and are restricted to
local operations allowed by perturbative semiclassical physics
(Almheiri, Marolf, Polchinski, Stanford, and Sully, 2013), while
others require the ability to precisely manipulate the degrees of
freedom in the atmosphere without introducing any decoherence
(Oppenheim and Unruh, 2014). At the moment I do not find either
proposal convincing. It is not clear what we should expect to come
out of direct manipulation of UV degrees of freedom, indeed because
of the fundamental nonlocality in holography I expect that large scale
action at a distance is possible in the bulk by such operations, so
asking for a semiclassical description of such an experiment may well
be futile. The second type of proposal requires large amounts of
machinery in the vicinity of the black hole, and it is hard to see how
this could be possible without introducing at least some decoherence.
Oppenheim and Unruh (2014) suggested a mechanism to “correct”
the decoherence, but implementing it again seems to require an
exponentially long quantum computation.

99One direction for a more “positive” approach to complemen-
tarity is called “strong complementarity,” and operates under the
basic assumption that different observers have different Hilbert
spaces and observables, with the only consistency condition being
that they must agree on the results of experiments that they can both
do (Banks and Fischler, 2012; Harlow, 2012; Almheiri, Marolf,
Polchinski, Stanford, and Sully, 2013; Bousso, 2013a; Harlow and
Hayden, 2013). So far this idea is somewhat ambiguous and no
precise version of it has appeared.

100We can make this more precise by starting with a large AdS
black hole in a CFTand allowing it to evaporate into a second copy of
the CFT by coupling the two through a simple local coupling at the
boundary as in Rocha (2008). By then manipulating the second copy
we can prepare the thermofield double state of the two CFTs, which
is quite plausibly described in the bulk by a wormhole connecting the
two asymptotically AdS regions.
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Schmidt decomposition I can represent a typical state of
the system as

jψþi ¼
1ffiffiffi
2

p ðj0iBj~0iHR þ j1iBj~1iHRÞ: ð205Þ

I will also imagine that the “smooth” horizon state for A
and B is j00iAB þ j11iAB, and I have labeled the states of
HR appearing in the Schmidt decomposition appropriately.
The problems arise from the interpretation of the three
other states

jψ−i≡ 1ffiffiffi
2

p ðj0iBj~0iHR − j1iBj~1iHRÞ;

jχ�i≡ 1ffiffiffi
2

p ðj0iBj~1iHR � j1iBj~0iHRÞ: ð206Þ

If we are trying to define the interior modes using
whatever B is entangled with, then since all of these
states have maximal entanglement it is tempting to look for
a definition where they all “look smooth”; after all they are
just as typical as the state jψþi that we started with. We
then find ourselves confronted by the following issues
(Almheiri, Marolf, Polchinski, Stanford, and Sully, 2013;
Bousso, 2014; Harlow, 2014) [see also Bousso (2013a) and
Chowdhury (2013)].

• Nonlinearity: By taking simple superpositions of these
four states we can produce states where B is pure and
unentangled with anything; in fact there is a complete
basis of such states. We saw in Sec. VII.B that it is
impossible for such states to have unexcited horizons.
This means that we cannot view “unexcitedness” as a
conventional observable realized by a self-adjoint operator
on the Hilbert space. If it were then since all four of these
states are unexcited the “unexcitedness operator” is the
identity on this subspace and any superposition must also
be unexcited, contradicting the fact that there are excited
states. There is thus a basic tension between wanting all
four states to have a smooth horizon and the linearity of
quantum mechanics. This situation is sometimes de-
scribed as “state dependence”: for a given observable,
say the excitation number of the A qubit behind the
horizon, one tries to use a different self-adjoint operator
depending on which of the four states the system is in
(Almheiri, Marolf, Polchinski, Stanford, and Sully, 2013).

• Frozen vacuum: Say we want to excite the horizon by
acting with the X operator on B. From a semiclassical
point of view this should produce an excitation at the
horizon, but here this operator just permutes us among the
four states which are all taken to be smooth. We then do
not seem to be able to realize these excited states, even
though they exist semiclassically (Almheiri, Marolf,
Polchinski, Stanford, and Sully, 2013; Bousso, 2014;
Harlow, 2014).

• Nonunitary measurement: Now say we want to design an
apparatus which measures the Z operator on the interior
qubit A which is entangled with B. A straightforward
argument (Harlow, 2014) shows that, unlike in conven-
tional quantum mechanics, the measurement process
cannot be described as unitary evolution on the system

together with the apparatus. This is essentially a conse-
quence of the nonlinearity; it is a general problem
for attempts to formulate “state-dependent” quantum
mechanics. It is also a good concrete criterion for
distinguishing “illegal” state dependence of the type
needed here from more conventional experiments that
naively seem to involve state-dependent observables
(Harlow, 2014).

• Nonuniqueness: We see in Sec. III of the Supplemental
Material [193] that the purification RB is not uniquely
defined. We are free to conjugate it by any unitary
transformation which fixes the subspace of states ap-
pearing in the Schmidt decomposition, here the space
spanned by fj~0iBH; j~1iBHg. This means that any attempt
to define interior operators acting directly on the sub-
factor RB will not be unique. How then are we to choose
which operators to use?

• Commutator problem: Once we want to define interior
operators out of operators that act nontrivially on H and
R, it is no longer clear that these operators will commute
with “simple” operators on H and R (Almheiri, Marolf,
Polchinski, Stanford, and Sully, 2013). This raises the
possibility of acausal signaling; we can in principle use
this commutator to either create a firewall by doing
something simple on the distant radiation or communi-
cate from inside the black hole to the outside.

So far no version of A ¼ RB has appeared which can give
completely satisfying resolutions to these objections. The
proposal that comes closest is that of Papadodimas and
Raju (2014a, 2014b), which among other things is able to
“postpone” the commutator problem to operations that
involve some order one fraction of the radiation, but in my
view it still is ultimately vulnerable to (somewhat more
precise) versions of these problems (Harlow, 2014).101 In
the end if some version of A ¼ RB is to work, it will need
to come with a completely developed measurement theory
that generalizes and replaces that of quantum mechanics,
and it will need to make clear predictions for any thought
experiment we can reasonably imagine doing.

C. Postselection?

Another interesting proposal for modifying quantum
mechanics to obtain a consistent description of the black
hole interior is the quantum postselection formalism of
Horowitz and Maldacena (2004). Quantum postselection is
a generalization of quantum mechanics to allow probabilities
to depend not only on the initial state of the system, as is usual,
but also on some additional “final state” that in general has no
relation to the initial state (Aharonov, Bergmann, and
Lebowitz, 1964). To concisely state the proposal, it is
convenient to first introduce a condensed formalism for
describing the predictions of quantum mechanics for succes-
sive experiments. Say that we have a quantum system that

101In particular, the operations for which the proposal fails are
vastly simpler than the exponentially complex quantum computations
considered in the previous section; there does not seem to be any
serious obstruction to doing them.
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begins life in a (possibly mixed) quantum state ρi. If we then
measure a series of observables A1; A2;…; An, it is not too
hard to show that the joint probability distribution for the
outcomes a1; a2;…; an for all the experiments is given by

Pða1; a2;…; anÞ ¼ trðΠan � � �Πa1ρiΠa1 � � �ΠanÞ; ð207Þ

where Πaj is the projection operator onto the outcome aj from
measuring Aj. This remarkable formula combines the Born
rule and the collapse of the wave function into a single
equation. It elegantly captures some of the more surprising
features of quantum measurement theory.

• If two sequential observables do not commute, then the
probability distribution depends on which we measure
first. If they commute then it does not.

• Regardless of commutators, the probability distribution for
the outcomes of the firstmmeasurements is independent of
any measurements that come later. For example,

Pða1Þ≡
X
a2

Pða1; a2Þ ¼ trðΠa1ρiΠa1Þ: ð208Þ

This is essential for quantum mechanics to respect causal-
ity; our results for measurements today should not depend
on what we decide to do tomorrow.

• Averaging over results of a measurement in themiddle of
the chain affects the probability distribution for the
results of the other measurements. For example, if
½A1; A2� ≠ 0 we usually have

Pða2Þ≡
X
a1

Pða1; a2Þ ≠ trðΠa2ρiΠa2Þ. ð209Þ

“Averaging out” a measurement is not in general
equivalent to not doing the measurement, unlike in
classical physics where we allow measurements that
acquire any information we like about the system
without disturbing it.102

Now to generalize to including a “final state,” the idea is
simply to replace Eq. (207) by

Pða1;…; anÞ ¼
1

N
trðρfΠan � � �Πa1ρiΠa1 � � �ΠanÞ; ð210Þ

where the final state is ρf (Aharonov, Bergmann, and
Lebowitz, 1964) and

N ¼
X
a0
1
���a0n

trðρfΠa0n � � �Πa0
1
ρiΠa0

1
� � �Πa0nÞ: ð211Þ

This defines a normalized set of probabilities for the results
of any experiment we can imagine doing. The first thing to
note however is that we now lose our ability to average out
later measurements as in Eq. (208); postselected quantum
mechanics violates causality. It also immediately grants us the
ability to solve nondeterministic polynomial (NP)-complete
problems in polynomial time (Aaronson, 2005). These may
already be sufficient grounds to reject it, but as we will now
see it may provide a surprisingly simple way of getting
information out of a black hole without disrupting the
experience of an infalling observer.
To see what postselection has to do with black holes,

following Horowitz and Maldacena we can again take
seriously the effective field theory Hilbert space on a nice
slice such as the blue one shown in Fig. 20. In Sec. V.G we
saw that together with unitarity this led to quantum cloning,
but now we are violating quantum mechanics anyway so let us
press on. We can model the Hilbert space as a tensor product

H ¼ HM ⊗ HA ⊗ HB; ð212Þ

where now we are interpreting M as the full set of “left-
moving” modes behind the horizon, A as the full set of “right-
moving” modes behind the horizon, and B as the full set of
“outgoing” modes in the atmosphere. We can think of them as
all having dimensionality jMj ¼ eSBH, since M describes “all
things that we throw in,” B describes “all radiation that comes
out,” and A is “all Hawking partners of the radiation.” We can
take the initial state to be

jψ iiMAB ¼ jψiM ⊗ jϕiAB; ð213Þ

with

jϕiAB ≡ 1ffiffiffiffiffiffiffijMjp X
a

jaiAjaiB: ð214Þ

Here I have denoted the initial quantum state of the infalling
matter as jψiM and taken A and B to be maximally entangled
as required for a smooth horizon. Were we to proceed as usual
we would conclude that this state has information loss, since
the state of B is mixed and has no memory of jψiM, but the
insight of Horowitz and Maldacena was that if we now
introduce a final state

ρf ¼ jχihχjMA ⊗
IB
jMj ; ð215Þ

with

jχiMA ¼ 1ffiffiffiffiffiffiffijMjp X
a

S†jaiMjaiA; ð216Þ

the information actually gets out. More explicitly, say that we
want to compute the probability distribution PðbÞ for some set

102A sufficient condition for a sequence of measurements to
allow such averaging is for the decoherence functional
Dða1;…; an; a01;…; a0nÞ≡ trðΠan � � �Πa1ρiΠa0

1
� � �Πa0nÞ to be diago-

nal in the sense of vanishing unless aj ¼ a0j ∀ j. Such sequences of
projection operators are sometimes called “consistent histories,”
although this term is rather misleading since there is nothing
inconsistent about more general sequences of measurements. What
“consistent” really means here is that when Dða; a0Þ is diagonal, we
are allowed to think of the system as having a definite “classical
history” in the sense that we can imagine that each observable has a
well-defined value at each point in time whether or not we look at it.
Of course this classical history is just us lying to ourselves about the
fundamental indeterminacy of quantum mechanics, but it can be
useful in understanding under what circumstances classical mechan-
ics emerges from quantum mechanics (Gell-Mann and Hartle, 1993).
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of measurements on the radiation B. We can represent the
sequence of projectors for some set of outcomes as
Cb ≡ Πb1 � � �Πbn , in which case it is not too hard to see that

trðρfC†
bρiCbÞP

b0 trðρfC†
b0ρiCb0 Þ

¼ hψ jS†CC†Sψi: ð217Þ

In other words the outcomes of all measurements on the
outgoing radiation are consistent with taking it to be in the
pure state SjψiB and using ordinary quantum mechanics.
Of course to really address the AMPS paradox, we need to

understand the implications of this proposal for experiments that
involve the infalling observer (Bousso and Stanford, 2014;
Lloyd and Preskill, 2014). Consider an experiment where an
infalling observer attempts to confirm that A and B are indeed
entangled as in Eq. (213). She can do this by measuring the
projection operator Πϕ ¼ IM ⊗ jϕihϕjAB. Using Eq. (210), a
straightforward computation shows that the probability for
observing jϕiAB is 1; she will always see the desired entangle-
ment. Thus we see that postselected quantum mechanics allows
us to both have our cake and eat it too; the Hawking radiation is
unitary, but the horizon is smooth.
Unfortunately the simple story presented so far in this section

becomes more complicated once we try to include more details.
In the formalism I have presented here I have not taken into
account interactions betweenM and A, and doing so requires a
more delicate choice of final state (Gottesman and Preskill,
2004). Moreover once we consider experiments like the AMPS
experiment that involves both attempting to verify the entan-
glement between A and B and confirms the purity of the
radiation, the acausality intrinsic to the proposal rears its ugly
head (Bousso and Stanford, 2014; Lloyd and Preskill, 2014).
One point that is especially confusing is that the apparatus of
the infalling observer must be included as part of the infalling
system M and must interact with A. Since this is eventually
postselected on it may be necessary to “undo” any measure-
ment that happens by a redefinition of the final state. At the
moment there does not seem to be completely satisfactory
resolutions of these issues. One possibility that is perhaps worth
exploring more is that the computational complexity restric-
tions we discussed in Sec. VIII.A may relieve some or all of the
pressure on the Horowitz-Maldacena proposal (Bousso and
Stanford, 2014; Lloyd and Preskill, 2014).

D. Firewalls?

The final possibility I consider is that some version of a
firewall actually exists. I take this term to mean any observable
violation of low-energy effective field theory for simple
experiments in the vicinity of a black hole horizon. Six
options, in particular, have been discussed in some detail.

• Full-strength firewall: AMPS originally argued that the
most conservative resolution of the tension in the
previous section is to simply imagine that the horizon
becomes singular and the interior no longer exists, either
for typical big AdS black holes or for old asymptotically
flat black holes (Almheiri, Marolf, Polchinski, and Sully,
2013; Marolf and Polchinski, 2013). Given the proposals
in the previous sections, one may be sympathetic to

considering this option more seriously. It still has sub-
stantial drawbacks however: there is currently no dynami-
cal explanation for why a singularity should form at the
horizon “out of nothing,” and if one does it seems rather
unlikely that we should still take Hawking’s calculation
of the temperature and entropy seriously. Since this
calculation is what justified black hole thermodynamics
in the first place, the firewall proposal is somewhat
self-defeating.103

• Typical-states-only firewall: Another possibility is to
accept that black holes formed in typical states have
firewalls, but then attempt to argue that the ones that
form in nature never do, even if they are old evaporating
black holes. This could be possible because, as argued in
Sec. V.E, the black holes we make in short collapses are
only a vanishingly small fraction of the total ensemble
whose dimensionality is eSBH . As the black hole evap-
orates the state of the remaining black hole becomes
more typical by Page’s theorem, but the state of the joint
black hole and radiation system stays atypical. If we are
willing to allow the radiation to be used in constructing
the interior according to Sec. VIII.B, then we can use this
to avoid the genericity argument of Sec. VII.B. Recently
Susskind has been exploring arguments based on com-
putational complexity that may support this possibility
(Susskind, 2014) [see also Stanford and Susskind (2014)
and Susskind and Zhao (2014)], although this proposal
still seems to be subject to the criticism of invalidating
Hawking’s calculation of the temperature and entropy,
with the same caveats as before.

• S-wave firewall:We saw in Sec. VII.A that at least some
of the paradoxes can be satisfied by a firewall that affects
only low angular momentum modes. So far this proposal
has not received too much attention in the literature,
perhaps mostly because, to quote Raphael Bousso, one
would like to “get rid of firewalls entirely or don’t
bother.” Nonetheless this idea does have some things
going for it, perhaps chief among them that the back-
reaction becomes small and thus the basic structure of
Hawking’s calculation should go through. One would

103Lenny Susskind emphasized to me however that one can
attempt a “strictly exterior” calculation of the entropy and temper-
ature by arguing that quantum fields outside the horizon have a large
backreaction in the Schwarzschild geometry if we put them at a
temperature other than THawking. This is true, but if we are willing to
allow large backreaction right at the horizon in the form of a firewall,
why should we not also allow it further out in the atmosphere?
Keeping the bad behavior quarantined at the horizon may be the
“least objectionable” thing to do, but without an explanation for how
the firewall forms we cannot be sure it does not extend further. We
know from AdS/CFT that at least in some cases it does not, for
example, in AdS3=CFT2, where we can compare the BH entropy and
the Cardy formula as in Sec. VI.D. Logically we can only interpret
this as constraining firewalls to lie strictly at the horizon and not
outside, but it seems natural to interpret it as validating the whole
coarse-grained semiclassical picture of the horizon, including a
smooth experience for an infalling observer. Of course we still need
to understand how to resolve the paradoxes of Sec. VII before really
dismissing firewalls.
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still need a mechanism for how the S-wave firewall
develops however.

• Nonviolent nonlocality: Another possibility that Gid-
dings has been exploring is that there is a more diffuse
violation of effective field theory that is spread out
nonlocally through the atmosphere rather than concen-
trated at the horizon (Giddings, 2013a; Giddings and Shi,
2014).104 The models he has studied so far indeed have
the property that black hole thermodynamics tends to be
modified. Preventing this requires large modifications
of the Schwarzschild geometry outside the horizon that
may even be detectable in upcoming experiments
(Almheiri, Marolf, Polchinski, Stanford, and Sully,
2013; Giddings, 2013b, 2014).105 Once we allow such
large modifications of effective field theory outside the
horizon, however, it is difficult to see how they will not
arise in other situations as well; small violations of
causality tend to have a way of not staying small.

• Fuzzballs: For certain higher-dimensional black holes
with large charges under various gauge form fields such
as one finds in string theory, there exist so-called
“fuzzball” solutions, which resemble the black hole
solution near infinity but near the horizon cap off into
higher dimensions in various ways, effectively excising
the interior. There is a vast literature discussing these
solutions; see Gibbons and Warner (2014) for an
introduction and further references. It is sometimes
argued that there might be enough of these solutions
to account for the full Bekenstein-Hawking entropy of
these black holes. Despite the capping off of fuzzball
geometries at the horizon, there have been some attempts
to argue that an infalling observer nonetheless experi-
ences a smooth horizon (Mathur and Turton, 2014a,
2014b), but this certainly is not what the fuzzball
geometries naively tell us (Bena, Puhm, and Vercnocke,
2012), so if it is true it will require some new idea. In any
case fuzzball solutions exist only in these special cases,
and so far there are no analogous solutions for uncharged
black holes and in fact there are theorems forbidding
their existence, which makes the relevance of these
solutions for a general solution of the information
problem unclear.

• Shut up and calculate in the UV theory: In string theory
we already have available at least one candidate theory
of quantum gravity; should we not see what it predicts
at the horizon? If it predicts a firewall should we not
then just accept it? Of course the problem with this
correct philosophy is that we do not understand the
theory well enough to decide what it predicts; the only
case where it really seems well defined so far is in the

AdS/CFT correspondence, which as discussed has not
yet given us a clear answer. Nonetheless some attempts
to study the black hole information problem have been
made using perturbative string theory in the bulk. For
some preliminary results that go in the direction of
nonlocality, see Lowe et al. (1995) Amati, Ciafaloni,
and Veneziano (2008), Giddings, Gross, and Maharana
(2008), Dodelson and Silverstein (2014), and Silver-
stein (2014), although at this point it is not so clear
whether these results actually lead us to expect observ-
able violations of effective field theory. See also
Horowitz, Lawrence, and Silverstein (2009) for another
stringy attempt at behind the horizon physics.

Thus we find ourselves in the enviable situation of having
an interesting problem with no really satisfying answer. If
we are lucky this means that we will learn something deep.
It is my hope that what we learn can then be applied to the
other profound problem of quantum gravity—making sense
of cosmology. Observers behind black hole horizons have
many common features with observers in expanding uni-
verses, and what is in my view the best proposal for the
global structure of spacetime, the landscape of string theory
populated by eternal inflation, has perplexing difficulties
which seem to be grown-up versions of the problems we are
already confronting in black hole physics. If you have made
it this far in this paper I hope it is clear to you that at least
one major new idea is needed to understand the black hole
interior, and it is exciting to imagine where it might lead us
in the future.
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