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Over the last few years lattice techniques have been used to investigate candidate theories of new
physics beyond the standard model. This review gives a survey of results from these studies. Most of
these investigations have been of systems of gauge fields and fermions that have slowly running
coupling constants. A major portion of the review is a critical discussion of work in this particular
subfield, first describing the methods used and then giving a compilation of results for specific models.
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I. INTRODUCTION
! A. What does “lattice tests of beyond standard
9 model dynamics” mean?
3 With the recent discovery of the Higgs boson (Aad et al.,
13 2012; Chatrchyan et al., 2012), the standard model’s particle
14 spectrum seems to be complete. But, is the particle at 126 GeV
really the standard model Higgs, a fundamental scalar field, or
14 is it something else? And, what about experimental observa-
14 tions that do not have a standard model explanation?
14  Examples of such physics include neutrino masses and
16 oscillations, the origin of the matter-antimatter asymmetry
of the Universe, the nature of dark matter, and of dark energy.
17 For that matter, why are the fundamental parameters of the
standard model what they are? Why is the electron so light?
20 Attempts to answer these questions are what is generically
20 meant by “beyond standard model” physics.
23 “Lattice” refers to lattice gauge theory, which is a collection
24 of analytic and numerical techniques for studying quantum
52 field theories. In principle, a lattice calculation starts with a
7 Lagrangian and a cutoff and ends with a fully nonperturbative
s prediction for some observable. Lattice methods have become
23 a standard technique to study nonperturbative properties of the
theory of the strong interactions, quantum chromodynamics
29 (QCD). Most of the information we have about the particle
spectrum of baryons and mesons, and of many hadronic
30 matrix elements relevant to standard model tests, comes from
30 lattice calculations.
And why put “lattice” and “beyond standard model” in the
31 same title? For almost 40 years, phenomenologists have
conjectured that some beyond standard model physics might
be nonperturbative. For example, the Higgs boson might not
015001-1 © 2016 American Physical Society
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be fundamental; it could be a composite object held together
by some new kind of strong force. About 8 years ago, several
physicists with lattice tool kits realized that the techniques
they used for QCD might be applied to studies of candidates
beyond standard model systems. The field became very active.
This review is an attempt to describe the systems that were
studied, the techniques that were used, and the results that
were obtained.

B. A lattice perspective on issues relevant to beyond standard
model physics

Before going beyond the standard model, we should visit
the standard model itself. [See Logan (2014) for a more
pedagogic introduction.] It has a product gauge symmetry
SU@3) x SU(2) x U(1) encoding, respectively, color (the
strong interactions), weak isospin, and weak hypercharge:
the last two gauge symmetries break spontaneously, resulting
in massive W and Z bosons and leaving the unbroken U(1)
symmetry of electromagnetism. Quarks and leptons fall
into three generations; the left- and right-handed (negative
and positive helicity) fermions have different electroweak
couplings.

In particular, the left-handed leptons and quarks form a
doublet of weak isospin

U, u
EL = (e_) ) QL = (d) ) (1)
L L

while the right-handed particles eg, ug, and dy are singlets.
This is for the first generation of fermions; there are identical
terms for the second and third generations. The Lagrangian
has three parts

‘CSM = Eg + £¢. + ‘Cm' (2)

L, holds the kinetic terms for the fermions and gauge bosons

3 . . _ . .
L, =Y [E|(D)E| + 0] (iD)0]
j=1

+ ep(iD) ey + iy (iD)uy + dy(iD)dy]

_%Fzy_%w;zw_%B;%u (3)
in terms of the field strengths of the gluons F, the SU(2) weak
fields W, and the U(1) field B. D is the covariant derivative.
The index j runs over the three generations of fermions. £,
conceals three parameters, the three standard model gauge
couplings. These gauge invariant interactions make up the part
of the standard model that is most well tested: from £, follows
all of electrodynamics, asymptotic freedom, parity violation in
the weak interactions, and much more.

Equation (3) describes a set of massless gauge bosons.
Electroweak symmetry is spontaneously broken, that is, the
symmetries of the Lagrangian are not respected by the
vacuum. The mechanism for doing this is contained in Lg.
In the standard model this is achieved by the Higgs field ®, a
single scalar field whose components form a complex doublet
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of weak SU(2). Three of the four components of ®, which
would be Goldstone bosons, are “eaten” by the SU(2) and
U(1) gauge fields to give the massive W+, W, and Z,. The
fourth component becomes the Higgs particle. The potential is
arranged to accomplish this. In the standard model it is just

Ly = |D,®* - V(P) 4)
and
V(®) = —p> 070 4 (DT D). (5)

The sign of the quadratic term is taken by hand to be negative,
to insure spontaneous symmetry breaking. V(®) is charac-
terized by two parameters y and 1. ® develops a vacuum
expectation value

<¢»>=%(3), ©)

where v? = u? /). The Higgs and Goldstone masses are found
by considering small fluctuations around the minimum,

1 ¢ + iy
d=——
ﬁ(v+H+i¢3)’ ™

and the Higgs mass is m% = 2u> = 24v>. The measured
masses of the W, Z, and the Higgs (126 GeV) and the known
value for the SU(2) and U(1) couplings g and ¢ tell us that
v =246 GeV and 1 = 0.13, u*> = (89 GeV)>.

L,, generates the masses of quarks and leptons. A mass
term couples left-handed and right-handed fermions to each
other. This coupling, if present, would violate gauge invari-
ance, because left-handed and right-handed fermions trans-
form differently under SU(2). However, a trilinear coupling of
the Higgs, a left-handed fermion, and a right-handed fermion
is consistent with gauge invariance. Thus the standard model’s
mass term is, schematically,

L, = =410} - @dy — Al O, - @]
- WE, - ®ef + He. (8)

When & gets its vacuum expectation value v, this trilinear
interaction generates (generalized) mass terms for the quarks
and leptons, parametrized by the elements of the three
complex matrices Y. This is usually done in terms of the
Cabibbo-Kobayashi-Maskawa matrix, but we do not need this
in what follows. L4 and £,, are the parts of the standard model
that are most often replaced or augmented by some new
beyond standard model physics. Most often Ly, is replaced by
some new mechanism to break electroweak symmetry, per-
haps without a Higgs boson. Finding something to replace £,,
which does not involve a Higgs field and also does not
introduce unwanted (unobserved) new physics is often a
serious issue.

The phrase “beyond standard model” has been around in
the literature almost as long as the phrase “standard model.”
Why is that? There are several reasons.
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First, there is known physics that is not part of the standard
model: neutrino masses and mixings, dark matter, the origin
of the Universe’s matter-antimatter asymmetry, the origin of
inflation, and dark energy.

Second, the large number of parameters in the standard
model seems excessive for a fundamental theory. The standard
model has many couplings: for three generations of particles,
there are mass terms for the six quarks and three charged
leptons and four Cabibbo-Kobayashi-Maskawa matrix ele-
ments responsible for mixing quark mass and weak interaction
eigenstates. Additionally, L4 holds two Higgs couplings (1
and p), and L, contains three gauge couplings. Could there not
be something underneath, for which the standard model is
just a low-energy effective field theory, and from which its
couplings are derived?

Third, there are issues of principle with the Higgs sector. To
begin, what is the origin of electroweak symmetry breaking?
In the standard model, the Higgs potential is simply postulated
to have a negative quadratic term in order to induce sponta-
neous symmetry breaking. This seems arbitrary.

The next issue is the “naturalness” or “hierarchy” problem.
Imagine that there is some new scale in nature, an ultraviolet
(UV) “cutoff scale” A for the standard model. If this scale is
very high, why is the electroweak scale so low compared to
it? The problem is the instability of the Higgs mass against
radiative corrections. There is a quadratic dependence of the
shift in the Higgs mass on A. Any new physics scale A induces
a shift in the squared mass of the Higgs, which is a value that is
of the order of g A? in size. (g7 is a generic label for one of the
standard model couplings.)

This effect can be seen in the standard model itself. At one
loop, the shift in the mass term from its bare value (value at the
cutoft) y is

2 o Ao W, 368+
Wk =g gt e O
The three terms on the right side of the equation come from
the Higgs self-interaction, the effect of the top quarks, and the
interaction of the Higgs with W and Z particles. y, is the top-
quark Yukawa coupling and g and ¢ are the SU(2) and U(1)
gauge couplings. I neglected the other quarks, because their
masses, and hence their Yukawa couplings, are so much
smaller than the top quark’s. If A is very large, y, must be
delicately tuned to set u to its low-energy value of 89 GeV.
This could be the case, but it also seems arbitrary.

Alternatively, imagine setting the Higgs mass to its known
value and setting the couplings to their observed values. Solve
Eq. (9) for A assuming p, = 0. This gives A ~ 5 TeV. Is this a
hint of a new physics scale?

Before the discovery of the Higgs, it was hoped that the
Higgs mass itself would indicate a value for the scale of
new physics (which I label A). The situation for a large Higgs
mass is called the “triviality bound,” while too small a Higgs
mass led to an “instability bound.” Either situation might have
hinted at a low value for A. Both bounds come from looking
at the one-loop beta function for the Higgs self-coupling.
Including only the Higgs self-interaction and the top-quark
Yukawa coupling in the equation for the running coupling

(t = log Q%) gives
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di 3
i WW + Ayt =il (10)
The triviality bound arises from the fact that the scale
dependent Higgs self-interaction becomes stronger as the
momentum scale increases. At some point, it might become
so strongly interacting that perturbation theory would break
down. If we neglect everything but the self-interaction of the
Higgs, we can integrate Eq. (10) to find

HQo)
1 = (3/47*)4(Qo) log(Q?/ Q)

MQ) = (11)

As the energy scale grows, so does 4(Q). To prevent 1/1(Q)
from vanishing, the Higgs mass must not become too large.
Replacing A(Q,) by m%/2v* in Eq. (11) gives

2 2
my 87
—_— <. 12
v?  3log(A%/v?) (12)
The other bound is the instability bound. Including only the
top-quark Yukawa coupling in Eq. (10) gives

dai 3
i —m)’?- (13)
Then
3 A?
AA) =) = —4—2)’? 10g—2. (14)
4 v

To keep the vacuum stable, we need A(A) > 0. Preventing this
from happening gives a lower bound on the Higgs mass,

2 2
My 3 a1 N
o > oy v; log ol (15)

These two bounds combine to give the “Higgs chimney”; if
the Higgs mass were too small or too large, the scale A would
become low, and the standard model would signal its own
upper limit. Unfortunately (or fortunately), 126 GeV is in the
middle, and there seems to be no need for a nearby new
physics scale for stability. The standard model could simply be
the low-energy limit of delicately arranged dynamics at some
high cutoff scale.

As it stands, the standard model is a renormalizable
quantum field theory, which could be valid all the way up
to the Planck scale. Its low-energy properties are independent
of how it is cut off at arbitrarily short distance. It is a logical
possibility that its couplings at the cutoff scale could have
been fine-tuned.

But there is physics beyond the standard model (neutrino
masses and so on). How can we combine the standard model
with this new physics in some unified description?

The first possibility is that new physics is far away in
energy. To deal with this situation, there is another way to
view the standard model: it is an effective, low-energy theory
of nature, which arises from some as yet unknown dynamics.
Choose units so that the Lagrange density has dimensions
(energy)* or A*, where A is a generic energy scale. Give all
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fields their engineering dimensions to achieve this. Write
down the most general SU(3) x SU(2) x U(1) symmetric
Lagrangian with the field content of the standard model and
coupling constants that are either dimensionless or (only for
u?) of positive energy dimension. That Lagrangian is the
standard model itself. Then, one can imagine adding new
terms, which still involve only standard model fields (since
that is all there is) but with dimensionful couplings. Including
these terms (and symmetries), one would write the electro-
weak Lagrangian as a set of terms L;, where i is the
dimensionality of the operator: generically,

1 1
£=£SM+X£5+F£6+"'. (16)

The terms in this expansion have been cataloged. The
enumeration was first given by Buchmuller and Wyler
(1986). There is only one dimension-5 term, a Majorana
mass term for the neutrinos. Bounds on neutrino masses
constrain its A to be larger than about 10'* GeV. At dimension
six, there are 80 operators, each with its own A. Fortunately,
in any given process, only a few of them contribute, and so in
principle one could consider some electroweak process, fit it
to a combination of standard model plus higher dimensional
processes and see if there is a signal for new physics.

From the theory side, one could take some beyond standard
model theory, match it to the Lagrangian of Eq. (16), and
either make predictions for its couplings or let data constrain
the proposed new physics. For a useful discussion of this
procedure, see Han and Skiba (2005). This matching might be
done via a lattice calculation, if one imagined that new physics
was nonperturbative, lived at some very high scale, and was
accessible to simulation. This could range from something
like a calculation of a decay constant in QCD (like f,), to an
analog of the kaon B parameter, to a full-blown calculation
of the expectation value of some composite operator, plus its
associated anomalous dimension.

Alternatively, new physics could involve particles that
could actually be observed in the near future in experiments.
[This was the hope before the Large Hadron Collider (LHC)
turned on and it is still the hope today.] These new degrees
of freedom have to be realized as explicit terms in the
Lagrangian. If the new particle arose from nonperturbative
dynamics, the appropriate lattice calculation would be of its
mass, like the spectroscopic ones done in a lattice QCD
simulation.

In either case, the issue is that the standard model by itself is
a very accurate description of many things; the new physics
has to be carefully concealed. This is a strong constraint on
model building (or on the size of coefficients in the effective
field theory description). This problem has been well analyzed
in the particle physics literature.

These days, the branching ratios of the 126 GeV particle
strongly constrain new physics. [The “Review of Particle
Properties” (Olive et al., 2014) has the latest numbers. To give
a one-sentence summary, the couplings of the Higgs are
broadly consistent with standard model expectations, although
experimental uncertainties are still large.] Direct searches
for new heavy particles also constrain new physics. [See
Halkiadakis, Redlinger, and Shih (2014) for a recent
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summary.] The situation involving the rest of the standard
model can be described in a few sentences: The most obvious
manifestations of new physics in the low-energy sector of the
standard model occur in the vacuum polarization of the
SU(2) x U(1) gauge bosons (Peskin and Takeuchi, 1990,
1992; Altarelli and Barbieri, 1991). There are four such
amplitudes involving the physical photon, Z, their mixing,
and the W, which are parametrized by a set of SU(2) x U(1)
quantities, conventionally called Iy, (involving the photon),
I1;; for the ith component of weak isospin, and a mixing term
I13,. All are functions of the squared momentum g* flowing
through the gauge boson. At low energy, it is sensible to
expand these quantities in a power series in ¢>/M?, where M
sets the new physics scale. Contributions to the electromag-
netic current vanish at g> = 0 due to the usual Ward identity.
Then

Myo = ¢*TMpy(0) + -+,
Ty = ¢’ (0) + -+,
I, = I0,,(0) + ¢*I}; (0) + - - -,
My = M33(0) + ¢*T43(0) + -+ - .

(17)

There are six unknown on the right-hand side of Eq. (17).
Three of them can be fixed by experimental determinations of
the fine structure constant a, the Fermi coupling G, and the
Z-boson mass, leaving three linear combinations, convention-
ally called S, 7, and U, to be probes of new physics. They are

S = 162[[13;(0) — II;,(0)],
4z
T = Ym0 - L)
$in?0ycos? Oy m> [I1;,(0) 33(0)] (18)

U = 16alT,(0) — I, (0)].

A decade ago, Barbieri ef al. (2004) and Han and Skiba
(2005) combined precision electroweak data with an effective
field theory analysis of beyond standard model couplings, to
constrain the scale of new physics. Typical bounds, even then,
were that A’s were in the few TeV range. The recent analysis
of Ciuchini ef al. (2013) pushes the scale for many kinds of
new physics up to the 5-15 TeV range. Most of this new
physics involves flavor structures which are different from the
standard model’s £,, [Eq. (8)]. This is quite a different
situation from the relatively low scales needed to address
the hierarchy problem.

The absence of new physics for some distance above the
Higgs mass itself constrains the kind of Lagrangians we can
write down. We are forced to pause and think of symmetry
reasons, for why particles could have masses far below the
cutoff scale. Unfortunately, the list is short:

* Gauge bosons remain massless due to gauge symmetry.

e Chiral symmetry protects the masses of (tree-level
massless) fermions from additive renormalization.

* Goldstone bosons remain massless because their poten-
tials obey a “shift symmetry”: Parametrizing the Higgs
doublet in terms of the physical Higgs H, its vacuum
expectation v, and the Goldstones 6,,,
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b\ 0
( ¢0) - exp(zean)( . H). (19)

An SU(2); transformation just shifts the €’s by a

constant. This implies that the Lagrangian can have

no term proportional to 62
Most new physics constructions attempt to exploit these
general observations. For example, supersymmetry protects
the scalars by putting them in multiplets with chiral fermions.
In some higher dimensional completions of the standard
model, the scalars are extra gauge degrees of freedom. In
some composite-Higgs models, the Higgs begins life as a
Goldstone boson.

Why do some imagine that some of the new physics is
nonperturbative? I do not have a good answer. It is quite a
contrast with the history of the strong interactions: people
have known that nuclear forces were strong from the moment
that they knew that nuclei were composite. After all, some-
thing had to overcome the protons’ Coulomb repulsion to hold
the nucleus together. Here there is no obvious need for a new
strong force.

When I ask people why new physics is nonperturbative, the
conversations all seem to come back to the hierarchy problem.
In principle, strong interactions could solve it. Suppose that
the Higgs is a bound state of some new fermion and
antifermion, with new gauge interactions that are asymptoti-
cally free. (Clearly this is a special case of our first two special
cases; we need to have gauge fields and massless fermions in
our more-fundamental theory—gauge fields to confine and
massless fermions so that their bound states are light.)
Asymptotic freedom means that the effective interaction
between the fermions grows as one moves to lower energy
scales and becomes strong at some scale O, where it confines
the fermions into bound states. This is precisely what happens
in QCD. Perhaps it is more general. The quadratic dependence
on A of Eq. (9) is transformed into something smoother. This
result comes from the running of the coupling constant from a
value ¢>(A) at the cutoff scale, down to scale Q:

1 )
m—gzm) —i—clogX. (20)

As we run into the infrared, the coupling grows. Suppose Q is
the scale where confinement and chiral symmetry breaking is
triggered in some unknown way. Masses take their values
around this scale. Setting the left-hand side of Eq. (20) to zero,
and setting Q = My, we have

My ~ Aexp (— (21)

1
cgz(/\))'
The fine-tuning of the Higgs system is replaced (hopefully)
by some less-fine-tuning; we need only to have a weakly
interacting system at some high cutoff scale and could take
that scale to infinity while simultaneously tuning the bare
coupling to zero. All masses (except, of course, those of the
Goldstone bosons) would have the same overall scale; all
would be roughly around the scale where the dynamics
became strong. This is what happens in QCD.
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Along the way, these new states are ready for discovery
at the Large Hadron Collider and hence are exciting for
experimentalists.

Having raised the possibility of nonperturbative new
physics, we are back to the lattice. It is easy to understand
why one might want to apply lattice QCD methods to the
study of nonperturbative beyond standard model candidate
models. For many candidates, the field content is similar to
QCD: gauge fields and fermions. Asymptotic freedom is a
QCD-like feature. If a model were known to be confining it
would have a rich spectrum of hadronlike states. A chirally
broken model would have Goldstone bosons ready to be eaten
by W and Z. The physical Higgs would be the analog of the
sigma meson. The pseudoscalar decay constant could be used
to set the scale for all this new physics and might be tied to the
scale of electroweak symmetry breaking. From their experi-
ence with QCD, lattice practitioners might have all the tools to
compute the masses, decay constants, and other low-energy
constants associated with some specific new physics scenario,
starting from the Lagrangian.

Perhaps, after this long general introduction, it is time to
turn to specifics. But I have to make one more introduction to
set the stage. Lattice models are typically built of gauge fields
and fermions. Depending on the gauge group and fermion
content, there is a naive expectation for the vacuum structure
of these systems, given by the renormalization group. It is
useful to pause and, in Sec. II, remind ourselves of this
physics. Then, Sec. III is a “review within a review,” a set of
thumbnail sketches of the many beyond standard model
systems that have been the targets of lattice investigation.
The range of topics in this section is so broad that it is almost
impossible to describe coherently. I then review lattice
methodology, with attention to issues which arise in the
context of beyond standard model candidates. This is done
in Sec. IV. Most lattice work has involved systems with slowly
running couplings. The rest of the review treats this special
case in detail. In Sec. V I describe lattice methods used to
study slowly running systems. The division of subject is by
method, rather than by specific model. This allows me to
illustrate how the generic features of slowly running systems
reveal themselves to lattice probes. Finally, in Sec. VI I
describe the status of particular model systems. A few
tentative conclusions are presented in Sec. VII.

I should finish the introduction with a few caveats: First,
I cut off the literature search on 1 April 2015, but this is an
active area of research, and I expect that many things I say
will become obsolete. Next, the subject of beyond standard
model physics is vast. No one could cover it all in a review.
I have tried to highlight places where there are lattice
stories. And finally, much of the lattice literature appears as
short, unrefereed, and often preliminary contributions to the
annual International Symposium on Lattice Field Theory
series of meetings. I tried to avoid referring to these articles
when a longer, refereed publication is available.

II. A PAUSE FOR CONTEXT: FORMULAS FROM THE
RENORMALIZATION GROUP

Imagine that we have an SU(N.) gauge theory with N,
flavors of massless Dirac fermions in representation R. The
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gauge coupling is scale dependent. At two loops, the beta
function is (Caswell, 1974; Jones, 1974)

dg2 bl 4 b2 6
A dlog yi? 167r2g (léﬂz)zg + (22)
where
by =41Cy(G) —3N(T(R), (23)

by = FIC(G) = NyT(R)FCH(G) +4C,(R)]. (24)

Here C,(R) is the value of the quadratic Casimir operator in
representation R [G denotes the adjoint representation, so
C,(G) = N_], while T(R) is the conventional trace normali-
zation. y is a momentum scale.

When the number of fermionic degrees of freedom,
basically parametrized by N T(R), is small, both b, and b,
are positive (in my conventions). The beta function has a zero,
a fixed point, called the Gaussian fixed point, at g2 = 0. The
fixed point is infrared unstable; the coupling increases as u
decreases, “under flow into the infrared.” It is thought that in
this case the coupling increases without bound under flow to
the infrared, and it is further presumed that this implies that the
vacuum is confining and chirally broken. Examples of such
systems are QCD and its near relatives.

When the number of fermionic degrees of freedom is
sufficiently large, b; changes sign. The scale dependent
coupling falls to zero in the infrared. The Gaussian fixed
point becomes infrared stable. At long distances the system is
believed to be noninteracting, or “trivial,” similar to, for
example, ¢* theory in dimension D > 4.

At an intermediate number of fermionic degrees of freedom,
it could happen that b; > 0 and b, < 0. The system would
have an infrared attractive fixed point (IRFP) where the beta
function vanishes, ﬂ(g%-) = 0. This is often called a “Banks
and Zaks (1982) fixed point.” Under a change of scale from
the ultraviolet to the infrared, the gauge coupling would flow
into the fixed point and remain there. In the particle physics
literature this is often referred to as “conformal” or “infrared
conformal” behavior. We speak of the “conformal window” as
the values of N s for a given representation, for which the
system is neither confining nor trivial.

Inside the conformal window, all correlation functions
show a power law behavior at long distances. There are no
intrinsic mass gaps, and hence no particles. Chiral symmetry
is unbroken. This is the analog of the familiar case of a
statistical system at a second order critical point. This is
certainly nothing like we see in electroweak nature. Thus,
candidate beyond standard model theories must, generally, not
be inside the conformal window.

Of course, unless the zero of the beta function is at a very
small value of gz, it is unlikely that the first two terms in the
beta function would show it. Why should the higher order
terms be small? The smaller the number of fermion degrees of
freedom, the larger the value of g2 becomes, at a place where
the beta function vanishes, and the more uncontrolled would
be a perturbative calculation. And the beta function is only
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scheme independent through two loops. To make sense of the
story we are trying to tell requires recasting it in the more
general language of the renormalization group, outside the
narrow statements of perturbation theory, in terms of relevant
and irrelevant operators. The investigation of the system
needs a better set of tools, perhaps associated with a lattice
calculation.

I return to that point later. For the time being, just carry the
thought: a system might have a quickly running coupling
constant, or a slowly running one.

III. THE LANDSCAPE OF MODELS WITH LATTICE
INVESTIGATIONS

I briefly summarize the particular scenarios for beyond
standard model physics that have either seen or might see
lattice studies. I have rewritten this section multiple times,
trying to describe them in some kind of coherent order. I do
not think I have succeeded in doing this. But I think the
problem is that to ask for coherence is impossible. There are
many unrelated possibilities for physics beyond the standard
model. Instead, what I will do is start with QCD and then
move increasingly farther away from it.

A. QCD

A large fraction of lattice QCD literature has beyond
standard model physics as its back story. The rate for any
hadronic weak interaction process, or for some process driven
by new physics, typically involves a hadronic matrix element
of some operator. These matrix elements are computed on the
lattice. This subject is large; for example, S. Aoki ef al. (2014)
is a 179 page review of it. Most of these tests are associated
with the flavor structure of the standard model, either
checking Eq. (8) or looking for modifications to it. The hope,
of course, is that the standard model rate will show some
disagreement with low-energy experiment, so revealing the
need for new physics.

Some lattice QCD calculations make direct contact with
Higgs physics. Lepage, Mackenzie, and Peskin (2014)
recently emphasized the importance of good quality mea-
surements of the strong coupling constant and of the charm
and bottom quark masses on precision measurements of the
Higgs width.

B. Slightly beyond QCD

A small amount of lattice work has been devoted to systems
that are believed to be like QCD. These are systems that are
almost certainly confining and chirally broken. Examples of
these systems are SU(N,.) gauge theories with N. > 3 and a
small number of fermionic degrees of freedom. Usually the
physics issues discussed in the literature of these systems are
related to QCD rather than beyond standard model dynamics.
For example, most of the qualitative knowledge about QCD
we have comes from the large-N,. expansion of ’t Hooft
(1974). This knowledge can be, and is being, tested by lattice
simulation.

Lucini and Panero (2013) gave a recent review of work on
large-N,. QCD. Studies of physical systems with a particle
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FIG. 1. The vector meson spectrum vs quark mass for different
N.. The data points are crosses for N, = 2, diamonds for N. = 3,
octagons for N, =4, squares for N. =5, fancy crosses for
N. = 6, fancy squares for N. = 7, and bursts for N. = 17. From
Bali et al., 2013.

content similar to QCD include the familiar large-N . limit of
‘t Hooft (where the fermions are in the fundamental repre-
sentation and N f is held fixed and small), or variants such
as SU(N.) gauge theories coupled to a small number of
fermions, not in the fundamental representation. The situation
with these systems is quite simple to state: large-N . scaling
works quite well. A nice example of a comparison, from Bali
et al. (2013), is shown in Fig. 1. This is a plot of the vector
meson mass versus the quark mass, both scaled in units of the
square root of the string tension. They have many more
examples. Large-N,. scaling predicts that meson masses show
little dependence on N.. Decay constants scale as /N, (for
fundamental representation fermions; the scaling is as N, for
two-index representation fermions). At least for N. = 3, and
small Ny = 2-3, the N, dependence of masses and matrix
elements is small, according to S. Aoki et al. (2014).

These studies have a role in beyond standard model
applications. Often, one sees large-N,. arguments quoted in
general discussions of composite-Higgs systems. For exam-
ple, one might have a new physics scenario with SU(N,)
gauge fields. One might be interested in the ratio of scale of
the masses of excitations to the size of chiral symmetry
breaking. This might be parametrized by, say, the pseudo-
scalar decay constant f,, which, in turn, might be related to
some electroweak parameter, such as the Higgs vacuum
expectation value. Often, phenomenological papers just take
the known (QCD, real world) numbers and scale them
appropriately. This is, of course, just an assumption. These
days, one could do a simulation to get the ratio directly. Then,
absent some direct experimental measurement, a comparison
to large-N,. counting is an appropriate way to put the lattice
number into some larger context.
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C. Models with slowly running couplings and the Higgs
as a bound state

The oldest scenarios in which the Higgs is not a funda-
mental scalar date back to Susskind (1979) and Weinberg
(1979). The physics idea for generating gauge boson masses is
elegant: Imagine having some new gauge fields coupled to
massless fermions, whose dynamics is confining and breaks
chiral symmetry. [The original model assumed a doublet of
quarks, like in QCD, so the pattern of chiral symmetry
breaking was SU(2) x SU(2) —» SU(2).] There will be a
set of massless Goldstone bosons. The spontaneously broken
symmetry is associated with axial vector currents

T = gytyitiq (25)

and the matrix element of the axial vector current can be
parametrized as

(01"|z") = if ;p+8™. (26)

where in QCD f, is the pseudoscalar decay constant.

The spontaneous symmetry breaking mechanism that gives
mass to the W and Z when they “eat” a Goldstone boson does
not require that the eaten Goldstone must be fundamental.
Any coupling (L for left handed, now)

Liy = g/" A, 27)

will induce a mixing of the gauge boson with the Goldstone
through the generation of a term in the vacuum polarization
tensor

. afz\? Pul] o,

This is a mass for the vector meson my, = gf,/2. The vacuum
expectation value of the usual Higgs field v in the formula for
the gauge boson’s mass is replaced by the pseudoscalar decay
constant f,. To use this dynamics to generate the standard
model result, we then need to assume that the new dynamics
naturally generates a scale f, = 246 GeV. More complicated
models would scale this equality by an order—unity numeri-
cal value. Such a model is referred to, generically, as
“technicolor.” The new fermions are called “techniquarks.”
This subject has an enormous literature. For a review of it, see
Hill and Simmons (2003).

The Higgs also generates fermion masses. This is generally
awkward to achieve with technicolor. In technicolor models
there are just bound states of techniquarks. To generate masses
for the quarks and leptons, they must be coupled somehow to
the techniquarks. This is commonly done by introducing a
new level of dynamics, at some much higher scale, called
extended technicolor (ETC) interactions (Dimopoulos and
Susskind, 1979; Eichten and Lane, 1980). If the ETC gauge
bosons are very heavy, they induce four fermion interactions
(here between two capital letter techniquarks and two lower
case ordinary standard model fermions)
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_ -1 =
Ly = (gEuLyy Up) — (gEURyy”R)- (29)
MEgTC

Now let the ETC fermions condense. Replacing U, Uy by its
vacuum expectation value X, we generate a fermion mass

m, = —2E_3, (30)
Mgrc

One can guess at the scale mgpc using the known quark
masses. It must be on the order of 1-100 TeV.

This mechanism has a number of phenomenological issues.
The first one is that the same interactions that couple two
quarks to two techniquarks should also couple four quarks
together. This is a problem, because such interactions must be
very weak; they give rise to flavor-changing neutral currents
(FCNC), which are too large to be consistent with observation
if the quarks are to acquire their observed masses. A potential
resolution of this problem is called “walking technicolor”
(Holdom, 1981, 1985; Yamawaki, Bando, and Matumoto,
1986; Appelquist and Wijewardhana, 1987a, 1987b). To
describe it, we have to rewrite Eq. (30) more carefully.

Fermion masses arise from physics at the ETC scale.
Labeling this scale as Agrc, a fermion mass is

u,u
_— ( LAZR)ETQ 31)
ETC

The flavor-changing neutral current term is also ETC scale
physics,

N (f}’sd)(Wsd)_

’CFCN C Az
ETC

(32)

In Eq. (31) the condensate is scale dependent. (U; Ug)tc
ought to be a typical electroweak size, say about »°. Its value
at the ETC scale is related to its value at the TC scale by
renormalization group running,

(UpUg)erc = (U Ug)1c exp (/AETC Ymlgrc(10)] i—ﬂ)» (33)

ATC

where y,, is the anomalous dimension of the technifermion
mass operator. If the gauge coupling runs very slowly as the
energy scale drops from the high ETC scale to the low TC (or
electroweak) scale, then y,, does not change much either, and
the soft running expected for a typical QCD-like theory is
replaced by a power law. We have

_ A Ym _
(UUg)grc = (—AETC) (ULUg)1c- (34)
TC

Slow running is, of course, “walking.” Finally, if y,, is large at
the values of g>’s that run slowly, one might be able to have
one’s cake (generate phenomenologically viable fermion
masses) and eat it too (make Agpc large enough to suppress
flavor-changing neutral currents).

So many “if’s”. But the situation for the lattice simulator is
pretty well laid out: Does a candidate theory exhibit walking?
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Is it confining and chirally broken? If so, is its mass
anomalous dimension large? If the answer to all these
questions is yes, then perhaps it is a viable technicolor
candidate. What is its spectrum and what are its low-energy
constants?

Technicolor candidates lie in the confining phase, but very
close to the conformal window. To search for them, the first
task might be to try to map out the boundary between
confining and chirally broken theories, and ones in the
conformal window. The relevant parameters are of course
the number of colors and the number of flavors of fermions
and their representations. Two-loop perturbation theory might
be suspect. Higher order terms for the beta and gamma
functions have been computed, in the modified minimal
subtraction (MS) scheme. Pica and Sannino (2011) and
Ryttov and Shrock (2011) used these results to explore the
location and properties of the IRFP. My impression of these
results is that when the fixed point coupling becomes strong,
perturbative predictions for the location of a fixed point and of
the value of the critical exponents at the fixed point are not
particularly stable.

Dietrich and Sannino (2007) combined one-loop running
with expectations from solving Schwinger-Dyson relations, to
make a map of the N. — N plane for various representations
of fermions. Figure 2 shows their prediction for a phase
diagram. This figure has served as the target for many lattice
calculations.

A cartoon of the expected coupling constant evolution of a
walking theory is shown in Fig. 3. The beta function starts out
negative, then bends toward zero. Walking occurs at the
coupling where the beta function is smallest. At the inflection
point, something must make the beta function bend over
steeply. What could that be? One possibility (Appelquist,
Terning, and Wijewardhana, 1996; Miransky and Yamawaki,

FIG. 2. Conjectured phase diagram for nonsupersymmetric
theories with fermions in the (i) fundamental representation
(top shaded band, blue), (ii) two-index antisymmetric represen-
tation (next lower one, purple), (iii) two-index symmetric repre-
sentation (next lower one, red), and (iv) adjoint representation
(lowest band, green) as a function of the number of flavors N, and
the number of colors N. The shaded areas depict the correspond-
ing conformal windows from their calculation. The dashed curve
represents the change of sign in the second coefficient of the beta
function. From Dietrich and Sannino, 2007.
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FIG. 3. Artist’s conception of a beta function for a walking
theory—a negative beta function that approaches the origin, then
turns away.

1997) is that chiral symmetry breaking occurs at a coupling
near the cusp. Some of the fermions condense into colorless
pions and decouple from the gauge bosons, reducing the
effective number of fermionic degrees of freedom and letting
the coupling grow. Self-consistent (Schwinger-Dyson) calcu-
lations support this scenario, but can they be trusted?

One can imagine theories whose beta function looks like
Fig. 3. Several toy models of walking theories have been
proposed (Nogradi, 2012; Aoki, Balog, and Weisz, 2014).
Another way to turn the beta function over might involve
introducing extra external scales. (This is different from the
technicolor scenario, where the scale of the turning appears
dynamically.) The simplest possibility is a system with many
flavors of massive fermions. At momentum scales that are
much greater than the fermion masses, the fermions behave as
if they are massless. But as the energy scale falls below the
fermion masses, they decouple from the gauge fields. The
effective number of fermions in the beta function changes.
One might set the number of flavors large enough that, at
sufficiently high energy, the coupling might be arranged to
show an IR flow toward a fixed point. As the energy scale
drops, the fermions decouple, the coupling runs differently
(faster), and the true long-distance behavior would cross over
to some strongly coupled theory—almost certainly confining
and chirally broken. Perhaps parameters could be tuned to
produce walking. [See Brower et al. (2014) for a recent study
of this.]

This description might be too poetic. Recall (Rodrigo
and Santamaria, 1993) that in MS schemes, where coupling
constants are mass independent, one has to treat theories with
different N ;’s as effective field theories and match the running
couplings at a scale y equal to the fermion mass. With an nth
order beta function, this has to be done at order O(n — 1). The
coupling constant steps discontinuously at thresholds, rather
than showing a smooth behavior like Fig. 3.

A more serious issue with Fig. 3 is that it suggests that the
physics of strong coupling is described by a single coupling
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constant. This may not be the case. In QCD, for example, the
coupling constant monotonically strengthens as the momen-
tum scale falls. At long distances, the coupling constant loses
its utility as a useful quantity, in the sense that one cannot use
it to parametrize calculations of interesting observables.

Technicolor has additional issues. Most of them are difficult
to quantify because the dynamics of technicolor is strongly
interacting.

The range of quark masses is wide, from a few MeV for
the up and down quarks to 173 GeV for the top quark.
Complicated constructions seem to be needed to generate all
these masses.

The technipions might be eaten by the W and Z bosons,
but where are the other particles, the technirho and beyond?
One typically imagines that the scale of nonchiral physics is
about 4z f. That value is in the range of LHC searches, and,
so far, they have not been seen (Halkiadakis, Redlinger, and
Shih, 2014).

Technicolor has issues with precision electroweak mea-
surements. Usually, the S parameter is too large. However, is it
really possible to compute the technicolor vacuum polariza-
tion contribution to the gauge bosons in a reliable way?
The literature often falls back on analog QCD calculations,
suitably rescaled. [See, for example, the discussion in Peskin
and Takeuchi (1992) and Contino (2010).]

In technicolor models, electroweak symmetry breaking
does not involve a Higgs boson. If technicolor dynamics
were sufficiently QCD like, one would expect to see a scalar
state in the spectrum, in analogy with the situation in
QCD. There the scalar state is the f((500), a light
(M ~ 400-550 MeV) broad (I' ~ 400-700 MeV) resonance.
The observed Higgs is narrow, so this is an issue for
technicolor phenomenology. But, if the candidate theory is
not very QCD like, can QCD analogies be trusted? All of these
questions could be addressed by lattice simulations.

I think that technicolor is the only beyond standard model
scenario that has enough of a lattice literature to justify a
detailed review. The subject turned out to be filled with
surprises. After completing this survey section, I will return to
a detailed discussion of results for these systems.

D. Composite Higgs: The Higgs as a
pseudo—Nambu-Goldstone boson

In Sec. III.C electroweak symmetry breaking occurs when
the techniquarks form a condensate which transforms non-
trivially under SU(2) x U(1). In such models the condensate
scale is the weak scale, around 246 GeV. Another alternative is
to arrange so that the new physics generates a condensate, but
the condensate preserves SU(2) x U(1). Then, electroweak
symmetry breaking could occur at a scale which is much lower
than the condensate scale. (From my point of view, the new
physics is at a higher scale than the electroweak symmetry
breaking scale.) A scalar excitation present at the high scale
would develop a vacuum expectation value, and some of its
degrees of freedom would be eaten by the W and Z bosons.

The earliest discussions of this approach go back to Banks
(1984), Georgi and Kaplan (1984), Georgi, Kaplan, and
Galison (1984), Kaplan and Georgi (1984), Kaplan, Georgi,
and Dimopoulos (1984), Dugan, Georgi, and Kaplan (1985),
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and Georgi (1986). The idea was to make the Higgs a
Goldstone boson corresponding to a spontaneously broken
global symmetry of a new strongly interacting sector. Gauge
and Yukawa interactions of the Higgs explicitly violate the
global symmetry and generate a potential, including a mass
term, for the Higgs.

We approach the issue in a top-down way: We have some
new dynamics at a scale A. It encodes a global symmetry G
which is spontaneously broken to a subgroup H, and the
Goldstones are described by a G/H nonlinear sigma model.
Some of them are destined to become the real Higgs doublet.
At this point, all of the components are massless. They have
nonrenormalizable interactions parametrized by a scale f,
where 4zf is presumed to roughly equal A (the usual
connection between chiral and nonchiral dynamics).

Electroweak interactions are introduced by gauging an
SUR2) x U(1) subgroup of G. Electroweak gauge inter-
actions, and the interactions of standard model fermions with
the Goldstones, explicitly break the shift symmetry. They
generate a potential for the Goldstones which has a nontrivial
minimum. The task of the model builder is to do this without
reintroducing quadratic divergences along the lines of Eq. (9).
The literature refers to these models as ‘“composite-Higgs
models.”

Avoiding a mass shift like Eq. (9) is a nontrivial task. One
mechanism which could succeed in principle is the idea of
collective symmetry breaking (Arkani-Hamed, Cohen et al.,
2002; Arkani-Hamed et al., 2002). The resulting systems are
called “little Higgs” systems. In these models, electroweak
interactions are introduced by gauging a subgroup which is a
direct product of several factors, G; x G, X --- in such a way
that each G; commutes with a subgroup of G that acts
nonlinearly on the Higgs. This means that if any one G; is
gauged, the unbroken global symmetry insures that the Higgs
remains massless. Only when the full product of G;’s is
gauged does the Higgs cease to be a Goldstone boson. The
consequence of this dynamics is that the induced mass of the
Higgs is proportional to a product of all the gauge coupling
constants corresponding to the different G; factors. The terms
in Eq. (9) are not of this form and so they are absent.

Most of the literature of composite-Higgs models confines
itself to the low-energy effective theory of the would-be
Goldstones. Explicit examples of such actions can be found,
for example, in Giudice et al. (2007), Contino et al. (2010,
2013), Azatov, Contino, and Galloway (2012), and Buchalla,
Cata, and Krause (2015). General surveys, such as Bellazzini,
Csdki, and Serra (2014), organize their discussion in terms of
the ratio £ of two dimensionful parameters f, as described
previously, the scale of the nonlinear sigma model, and the
Higgs vacuum expectation value v = 246 GeV, & = v?/f2.

In partial compositeness scenarios, the top quark and the
Higgs share a common dynamics. One such scenario is due to
Kaplan (1991): the top quark couples linearly to strong-sector
baryons, which, in effect, allows it to couple to the composite
Higgs as well. This scenario is used to generate fermion
masses. Here the interaction involves the coupling of a
standard model fermion y to a composite operator O,

L =2p0 + H.c. (35)

Rev. Mod. Phys., Vol. 88, No. 1, January—March 2016

Thomas DeGrand: Lattice tests of beyond standard model dynamics

In the original Kaplan (1991) version of this idea, the
composite operator O is a three-quark technibaryon so L is
a four-Fermi interaction, whose origin is perhaps some ETC
theory at a yet higher scale. Diagonalizing the resulting mass
matrix gives states which are linear superpositions of the
fermion and the technibaryon—hence the phrase ‘“partial
compositeness.” The mixing of a standard model fermion
with a composite is also used to generate part of the effective
potential for the Goldstones.

This is a large field. However, unlike the systems described
in Sec. III.C, it has a small lattice literature. Why that is so I
will come back to later. What it means is that this section has a
different orientation from the rest of the review. There the
story is “Here is some physics; here is what lattice simulations
showed,” and the intended audience is mostly physicists who
did not do the simulations. For this section, my goal is to try to
convince lattice physicists that there are interesting issues
which can be addressed on the lattice.

A complete technical analysis of the issues facing a lattice
calculation remains to be written. Here is my attempt at an
overview.

First, the standard model gauge group must be a subgroup
of the unbroken group H; otherwise the standard model gauge
fields would develop masses on the scale of gA. Next,
phenomenology needs to know the couplings in an effective
Lagrangian. Given a specific choice of an ultraviolet com-
pletion of a composite-Higgs model, the situation might be
exactly like QCD: Introduce X, the nonlinearly realized field
> ~exp(—it®z?/f) (for generic generators ¢, Goldstone
fields #“, and decay constant f). The goal of a lattice
calculation is to start with the ultraviolet completion and
compute the effective potential of the nonlinear sigma model
Veir(2). It is necessary to specify the electroweak quantum
numbers of the fields in X. For a viable model, four of them
have to self-assemble into a complex SU(2) doublet, the
Higgs. Typically there will be members of other SU(2)
multiplets. The members of other nonsinglet irreducible
representations should not condense. (For lattice QCD practi-
tioners, it is standard to assume that the vacuum can be rotated
into the identity in flavor space.)

Generically, V ;(X) receives contributions from the stan-
dard model gauge bosons and fermions. The gauge boson part
comes from the part of the lowest-order chiral Lagrangian
which is quadratic in the gauge fields, from

2

L= T Tr|D,Z|?, (36)

where D, is a covariant derivative. The Lagrangian includes

a ¢?W2x? vertex, which in turn, generates a quadratically

divergent contribution to the potential. Typically, though, the
energy scale is f, not A:

202
167>

The constant ¢ is calculable on the lattice. The procedure
is similar to that for the zt — z° mass difference in QCD, via
the Das-Guralnik-Mathur-Low-Young sum rule (Das et al.,
1967). It uses the difference of the vector and axial current
correlators

Veff =C 7772 + e (37)
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M, (g) = / g expliqn) (T () IR (0))
= (¢*6 — 9,9)5%(¢%) + q,9,11F% (¢*).  (38)

Ji; and JX are the left and right currents yy, (1 % y5)y, so
the object in the integral is the appropriate difference. The
coefficient ¢ is proportional to the integral

e~ / " dg TR (), (39)
0

Several lattice groups (Shintani er al., 2008; Boyle et al.,
2010; Appelquist et al., 2011) published calculations of the
at —° mass difference using this observable. Contino
(2010) gives an explicit description of what to do for a
composite-Higgs model.

The sign of ¢ can be inferred in advance, without the need
for a lattice calculation. This is the phenomenon of vacuum
alignment, first described by Peskin (1980) and Preskill
(1981), and related to Witten’s inequality (Witten, 1983).
The contribution of gauge bosons is positive, so the gauge
symmetry remains unbroken. Something else must break it.
But sometimes, one can use the calculation as an estimate for
the masses given by electroweak symmetry breaking to the
uneaten, now-pseudo Goldstones.

Typically, the negative term in V. comes from the
fermions. Models vary in details, but many involve partial
compositeness: The standard model fermions mix with new
physics baryons, which in turn can couple to the Higgs.

In published models, the Yukawa couplings are numbers
and so the derived value of v depends on them. I am not sure if
their actual values are accessible to a lattice calculation, or not.
However, they are running couplings, and their anomalous
dimensions are related to those of the technibaryon operators.
For example, Contino (2010) rewrote Eq. (35) as

L= M0|0lx,)qx, + He. (40)

introducing a tower of composite fermions y,. To the lattice
practitioner (0|O|y,) is just a baryon creation amplitude.
Lattice techniques could be adapted to find its anomalous
dimension. There is a recent discussion by Golterman and
Shamir (2015) of lattice issues involved in computing partial
compositeness observables. The subject needs more theoreti-
cal analysis.

Interesting ultraviolet completions require QCD—Iike
theories with different numbers of colors, or quarks in non-
fundamental representations, or both. The littlest Higgs model
(Arkani-Hamed, Cohen et al., 2002) relies on the nonlinear
sigma model SU(5)/SO(5). A possible ultraviolet completion
is any confining gauge theory with five Majorana fermions in
some real representation. The most economical way to realize
this scenario is an SU(4) gauge theory, where the two-index
antisymmetric representation (AS2) is real. The SU(5)/SO(5)
sigma model is also central to the more recent composite-
Higgs models of Vecchi (2013), Ferretti (2014), and Ferretti
and Karateev (2014). In particular, Ferretti and Karateev
(2014) make the case why the SU(4) theory with AS2

Rev. Mod. Phys., Vol. 88, No. 1, January—March 2016

015001-11

fermions is the most attractive candidate within this approach,
whereas Ferretti (2014) elaborates on the phenomenology of
this composite-Higgs model. The models of Ferretti (2014)
and Ferretti and Karateev (2014) require fermions in the
fundamental representation in addition to the AS2 ones, in
order to give the top quark a mass via partial compositeness.

Another ultraviolet completion is Barnard, Gherghetta, and
Ray (2014), with an Sp(2N) gauge group and two represen-
tations of fermions. The global symmetry breaking pattern
is SO(6)/S0(5).

The pattern of chiral symmetry breaking can be different
from QCD. When the fermions in the ultraviolet completion
are Dirac fermions in a complex representation, parity and
charge conjugation are good symmetries, and the Goldstone
bosons associated with chiral symmetry breaking are all
pseudoscalars. The Higgs is a scalar, so there is apparently
no way it can be a Goldstone boson. However, the fermions
associated with the new dynamics could belong to a real or to
a pseudoreal representation. Then there is no a priori dis-
tinction between a scalar bilinear or a pseudoscalar one. The
quantum numbers will be determined after the fact when the
standard model quantum numbers of the appropriate fields are
assigned. For consistency, the condensate must be a scalar.

The situation was first described by Peskin (1980), Preskill
(1981), and Kosower (1984). When the fermions make up a
complex representation of the gauge group, the expected
pattern of chiral symmetry breaking is SU(N,) x SU(Ny) —
SU(N). With N, Dirac fermions (or 2N ; Majoranas) in a real
representation of the gauge group, the symmetry breaking
pattern is SU(2N;) — SO(2N). With a pseudoreal fermion
representation, it is SU(2Ny) — Sp(2Ny).

There is already a small lattice literature on these systems:
see Damgaard ef al. (2002) and references therein. These early
papers observed the pattern of chiral symmetry breaking
through regularities in the spectrum of Dirac eigenvalues.
Lewis, Pica, and Sannino (2012) and Hietanen et al. (2014a)
recently studied the spectroscopy of SU(2) gauge fields and
N; = 2 fundamentals, a pseudoreal representation. DeGrand
et al. (2015) did similar work for SU(4) with N, = 2 two-
index antisymmetric (real representation) fermions. There is
more to do. Direct calculations of the V (X) are a target for
future work.

Finally, why is the lattice literature for this subject so small?
I can think of several reasons.

First, lattice simulations are performed discretizing ultra-
violet complete Lagrangians. Most of the literature of
composite Higgs is concerned with its low-energy effective
theory. Until recently, there were few examples of ultraviolet
completions. For example, the two review articles of
Perelstein (2007) and Bellazzini, Csaki, and Serra (2014)
total about 80 pages of print, but their combined discussion of
ultraviolet completions is only about three pages long.

Second, many of the published ultraviolet completions are
difficult venues for lattice simulations: they involve theories in
more than four dimensions, or supersymmetry, or both.

Third, the ultraviolet completions typically involve gauge
groups with N_.# 3, or fermions in higher dimensional
representations, or Weyl or Majorana fermions rather than
Dirac fermions. New code must be written. This should not be
a barrier, but historically, it has been.
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Fourth, some of the key calculations require lattice fermions
with good chiral properties, at least for the valence quarks. An
example is [T5R(¢?). The matching factors converting lattice
to continuum regularization for the vector and axial vector
currents are different unless the lattice action can support a
Ward identity pinning them together.

And last, particularly for some versions of the partial
compositeness scenario, one needs to simulate several repre-
sentations of fermions at once. (Of course, there are interesting
physics questions for these systems on their own.)

So far, there is not enough lattice work in this area to justify
a review. Perhaps in a few years there will be.

E. Composite dark matter

Not much is known about dark matter other than it exists,
that it is long lived, that its density is about one-quarter of the
mass density needed to close the Universe, and that it is dark,
lacking electromagnetic interactions. In some cases dark
matter candidates naturally arise in other models of beyond
standard model physics: for example, in supersymmetric
extensions of the standard model that have R parity as a
symmetry, the lightest supersymmetric partner is a dark matter
candidate. But there are also many models for dark matter
with no direct extension to other physics issues. There is a
small speculative literature arguing that dark matter could be
strongly interacting, a sort of hidden version of QCD,
coupling somehow weakly to standard model particles.
Early references include Nussinov (1985) and Barr,
Chivukula, and Farhi (1990) and the recent lattice study by
Detmold, McCullough, and Pochinsky (2014a) of one can-
didate system lists about 30 phenomenological papers. Not
surprisingly, there are lattice studies of composite dark matter
models. The literature I know of includes studies of SU(2)
gauge theories coupled to Ny =2 flavors of fundamental
fermions (Lewis, Pica, and Sannino, 2012; Hietanen et al.,
2014a, 2014b; Detmold, McCullough, and Pochinsky, 2014a,
2014b) and SU(4) gauge theory with quenched fundamental
representation fermions (Appelquist et al., 2014b, 2015a).
Most of the work is about the spectroscopy of these systems,
mostly their baryon spectroscopy because one is interested in
knowing what is likely to be the most stable particle. There is
also some discussion about matrix elements appropriate for
dark matter detection. [For examples of such a calculation, see
Appelquist et al. (2013, 2015b).]

In the models which have been studied to date, the
dominant nuclear interaction with a dark matter particle is
through Higgs exchange. The interesting quantity is the matrix
element between a nucleon a through its constituent quarks Q
and the dark matter baryon B through its constituent fermions
q. Schematically, this quantity is proportional to

M, = 223" (Blgq|B)Y (al0Qla).  (41)

Higgs ¢ 0

The factors y, and y, are Yukawa couplings. The expectation
values in the expression are the QCD sigma term and its dark
matter analog. There are several lattice calculations of this
quantity, typically given in terms of
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FIG. 4. The quantity ff,B) defined in Eq. (42) vs the squared
pseudoscalar to vector meson mass ratio (mpg/my ). Data shown
include quenched SU(5) and SU(7) (diamonds, octagons),
quenched and dynamical SU(3) (squares), and dynamical
SU(4) AS2 (crosses). From DeGrand et al., 2015. Also plotted
are results from Appelquist et al. (2014b) for quenched funda-
mental SU(4), for bare gauge coupling f = 11.5 (fancy dia-
monds) and = 12.0 (fancy crosses).
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A recent compilation (DeGrand et al., 2015) is shown in
Fig. 4. [Not shown are data by Detmold, McCullough, and
Pochinsky (2014b) which are for an SU(2) system and are
presented over a small range of fermion masses, with similar

results.] It appears that ff,B) is reasonably independent of the
underlying dynamics.

I believe that dark matter phenomenology does not demand
technicolor—Ilike dynamics (a slowly running coupling con-
stant) and so to the lattice practitioner, these systems are QCD
like and are reasonably easy to study. The issue, of course, is
motivation for any particular model in the absence of an
experimental signal.

F. Dilatonic Higgs

Another possibility to generate a light Higgs is to somehow
tune the ultraviolet theory so that its couplings are close to
some critical value, where its correlation length diverges. A
diverging correlation length is the same thing as a very light
particle, which would be a candidate to replace the Higgs. Of
course, it also brings along new physics at some higher scale.

The “homework example” for these systems is the mean
field behavior of an O(N) spin model with a potential
V(@) = arp” - ¢ + as(@” - p)>. With a, > 0, the O(N) sym-
metry is unbroken and all fields have a squared mass ~a,. The
symmetry is spontaneously broken for a, < 0, the Goldstone
bosons are massless, and the Higgs has a squared mass
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m?% ~ —a,. At criticality, where a, = 0, the Higgs mass also
vanishes. That is the state we are interested in.

Of course, in a better treatment, all masses vanish at
criticality where the system experiences scaling behavior.
But close to criticality, there should be a light state.

I used the O(N) model rather than a Z(2) model, where a
massless state also appears at criticality, in order to make the
point in the symmetry-broken phase there are Goldstone
bosons; the scalar channel will have a two-particle branch
cut in addition to a Higgs pole. A numerical simulation will
have to disentangle the branch cut from the desired signal.

Similar behavior is expected in Ny = 2 QCD with massless
quarks. Precisely at the critical temperature, the system should
exhibit scaling, with power law decay for all correlation
functions. Slightly away from criticality, this branch cut
behavior should dissolve into a set of resonances, one of
which, an isoscalar scalar meson, will be very light.

I have not found any definitive study of such a state in
the finite temperature QCD literature. These calculations are
technically quite demanding. There are two related problems.
The first one is that the state has the quantum numbers of the
vacuum. A mass M is determined by fitting a correlation
function of a source and sink operator separated by a distance ¢
to the functional form

(O()0(0)) ~A + Bexp(—Mt) + ---. (43)

The constant term A is present only when the states created by
O have vacuum quantum numbers, otherwise it vanishes.
When it is nonzero it dominates the mass-dependent term
when 7 becomes large. The second issue is that the calculation
involves disconnected diagrams. Think of the state as a gq
pair. The correlator has a contribution where the source pair
annihilates into gluons, which then reconvert at the sink.
These correlators are intrinsically noisy. There is, however,
one related observation. Cheng er al (2011) published
measurements of the isotriplet scalar screening mass in finite
temperature QCD. It shows a dip near the transition temper-
ature, while always remaining greater than the pseudosca-
lar mass.

The particle physics literature refers to these states as
“dilatons.” A dilaton is a pseudo-Nambu Goldstone boson
associated with scale symmetry breaking. The divergence of
the dilatation current is the trace of the energy-momentum
tensor. This trace is anomalous in a massless gauge theory and
its size is proportional to the beta function. The Goldstone
boson which comes from spontaneously broken dilatation
symmetry (i.e., the scale put in by renormalization) has a mass
proportional to the anomaly, and thus to the beta function. A
walking theory has a small beta function, hence a light dilaton.
When the fermions acquire masses they couple to the dilaton
in proportion to their masses, so the scalar couples to fermions
like a Higgs.

Such states have a long citation trail [early papers include
Gildener and Weinberg (1976) and Yamawaki, Bando, and
Matumoto (1986)] and the idea continues to appear as a
beyond standard model possibility. They have a somewhat
fraught phenomenology. The issue is that our world is not
conformal. If the world of very high energy is conformal, there
must be a crossover to its behavior, and it is quite difficult to
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keep such a Higgs from moving up in mass to the scale
where the crossover begins. [Compare the discussion in
Bellazzini et al. (2013) and Marques Tavares, Schmaltz,
and Skiba (2014).]

In the lattice literature, the words “dilatonic Higgs” are
shorthand for having a confining and chirally broken system
in which there is a scalar particle which is parametrically
lighter than the rest of the spectrum (apart from the
Goldstones, of course). The first question is to determine
whether the system is confining and chirally broken, or not.
Such light states could appear in the symmetry-restored phase
[as in the O(N) example]. They could also appear in a system
which is conformal in the zero fermion mass limit. There all
masses fall to zero as my = Ayml, but the Ay’s can be
different in different channels. Then where does the 0 state
fit into the spectrum, either at nonzero fermion mass or as the
fermion mass is taken to zero? The value at nonzero fermion
mass is what is actually measured in a simulation. The zero
mass case is an extrapolation. Finite simulation volume is
another issue when light particles are involved. It had better be
the case that the Higgs candidate is much lighter than
everything except the would-be Goldstone modes. Even then,
there are other issues: an important one is the ratio of f, to
other mass values. If f, is set by electroweak physics, the
other states must be out of reach of where the LHC has already
scanned, or the model is not viable. And if the light state is
going to replace the Higgs, its branching ratios had better be
close to standard model values. I return to the discussion of
lattice results for these states in Sec. VI.

G. Fundamental scalars on the lattice

Lattice studies of strongly coupled scalar fields have a long
history, going back to the 1980s. There was literature about
self-interacting scalar fields, of scalar fields interacting with
gauge fields, and scalars interacting with fermions. A major
area of research in that era, which extended up to the discovery
of the Higgs, was constructing upper and lower bounds on
the Higgs mass. My discussion of the issues, around
Egs. (12)—(15), was quite naive. When the Higgs gets close
to its upper bound, or to its lower bound, its interactions
(either with itself or with the top quark) become strong. A
perturbative story is suspect. Of course, people were hopeful
that perhaps the Higgs would not be found, or it might have
been pushed to a mass value where new physics could be
nearby. They wanted to make nonperturbative bounds, to get a
better indication of where new physics might be. Two papers
which studied this, from just before the Higgs discovery, are
Fodor et al. (2007) and Gerhold and Jansen (2010).

Now that we have the Higgs, the story might be different:
suppose there are heavier generations of fermions. Does the
observed Higgs mass constrain their masses? Bulava, Jansen,
and Nagy (2013) say yes, and that the maximum allowed mass
of a fourth generation quark is about 300 GeV.

In the late 1990s, several lattice groups studied the scenario
of electroweak baryogenesis (Kuzmin, Rubakov, and
Shaposhnikov, 1985). If the electroweak sector had a strongly
first order transition, the metastability associated with the
transition would lead to thermal nonequilibrium. This is one
of the necessary Sakharov conditions for baryogenesis. The
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other conditions (baryon number violation, C, and CP non-
conservation) also exist in the standard model, so, in principle,
the generation of the baryon asymmetry in the early Universe
could arise from electroweak interactions. A series of beautiful
lattice calculations showed that the transition was a crossover
for Higgs masses above 72 GeV. Even at the time, this was
already inconsistent with experiment, ruling out the scenario.
A recent conference proceedings (Laine, Nardini, and
Rummukainen, 2013) has references to the original literature.
Knowing the Higgs mass allows one to refine the calculations
and perhaps constrain other models of baryogenesis; see
D’Onofrio, Rummukainen, and Tranberg (2014).

Finally, there is a small recent literature of lattice simu-
lations of the gauge-Higgs sector of the standard model itself.
The formal issue is that the standard model is a gauge theory.
Observables must be gauge invariant, gauge invariant observ-
ables are represented by composite operators, and composite
operators can have very different spectral properties than
simple ones. Take QCD as an example. Maas (2013) and Maas
and Mufti (2014, 2015) studied these issues. My interpretation
of their results is that the weakly coupled standard model is
still what we think it is, even on the lattice, but that it could
have been different.

H. Lattice-regulated supersymmetry

Phenomenological supersymmetric extensions of the stan-
dard model are, of course, completely perturbative. No lattice
calculations are needed to make predictions. But there is also a
small literature devoted to lattice-regulated supersymmetry.
These are simulations of A/ = 1 and A/ = 4 supersymmetric
Yang-Mills theory in space-time dimension D =4 and
various models in D = 2. These papers are not about
phenomenology, per se. Rather, the questions are along the
line of “does the Ilattice system exhibit features of
supersymmetry ?”’

Some want to put supersymmetric theories on the lattice
because many of the nonperturbative features which appear in
ordinary (nonsupersymmetric) theories, such as spontaneous
chiral symmetry breaking, confinement, magnetic monopole
condensation,  strong-coupling—to—weak-coupling  duality
were first studied in a supersymmetric context. It would be
useful to have a nonperturbative formulation of these specific
systems, which checks these calculations.

Of course, one has somehow to evade the problem that
supersymmetry is an extension of the usual Poincaré algebra
and is broken completely by naive discretization. However,
this is a problem that has been mostly solved. A good place to
begin a literature search is with the review article by Catterall,
Kaplan, and Unsal (2009), and with citations to it.

N =1 probably has the greater literature. This is a system
of adjoint Majorana fermions coupled to gauge fields. It is
simulated with chiral lattice fermions, such as domain wall
fermions, using the rational hybrid Monte Carlo algorithm
[see Eq. (55)]. The supersymmetric limit is the limit of
vanishing fermion mass. Some representative papers include
Fleming, Kogut, and Vranas (2001), Giedt et al. (2009), Kim
et al. (2011), Endres (2009), and Bergner et al. (2013).

N = 4 is much trickier. The issue is, not surprisingly, the
scalars. An intricate construction allows one to simulate a
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theory with a single scalar supercharge. The other 15 super-
charges of A/ = 4 are broken by the lattice discretization. It is
believed that the situation is like the loss of rotational
invariance in a usual lattice system: the breaking of the
symmetry is due to irrelevant operators. This means that
these supersymmetries are recovered in the continuum limit.
Exactly how to do that in an efficient way is at present a
research problem. A recent paper by Catterall et al. (2014)
discusses this issue, with citations to earlier literature.
Alternative formulations of lattice supersymmetry include
Ishii et al. (2008), Ishiki et al. (2009a, 12009b), Honda et al.
(2011, 2013), and Hanada et al. (2014).

I. Gauge bosons and matter in space-time dimensions D > 4

Higher dimensional extensions of the standard model have
an enormous and rich continuum literature. Lattice studies,
however, are very sparse. The fundamental issue is that gauge
couplings in D > 4 are dimensionful, and hence the systems
are nonrenormalizable. In fact, the extra-dimensional gauge
theory has to be understood only as a low-energy excitation of
some more fundamental theory. At its cutoff scale (A in
energy, or for us on the lattice, the lattice spacing a) the
effective description breaks down and details of the under-
lying theory become important. Typically, the systems of
interest have compact extra dimensions. Calling their scale L,
the effective description makes sense only if the compactifi-
cation length L is large compared to the cutoff, or LA > 1.

Most of the work I know about is in D = 5, with SU(N)
gauge fields and small N (mostly N = 2). The fifth dimension
is compact, sometimes orbifolded (Irges and Knechtli,
2007, 2014; Irges, Knechtli, and Yoneyama, 2013; Knechtli
et al., 2014), sometimes not (de Forcrand, Kurkela, and
Panero, 2010).

Many of the simulations introduce one lattice spacing for
the four large dimensions and a different lattice spacing as for
the fifth dimension. One cannot take both cutoffs to zero;
power divergences appear that cannot be absorbed into a
finite number of counterterms. But one can tune one of the
dimensions to zero, holding the others fixed. Then one can
explore the phase diagram of the system, looking for critical
points or lines. At these places, the correlation length &
diverges, in units of the lattice spacing a, a/é — 0. In that
sense, the lattice spacing is removed, and a four-dimensional
theory is left. Slightly off the critical line, there is a four-
dimensional theory, but with extra irrelevant operators.

As with lattice supersymmetry, the question here seems to
me to be more “Can I make it work?” rather than “What can I
do with it?”

IV. LATTICE METHODOLOGY
A. A lightning introduction to lattice calculations

Before we go on, we have to recall how lattice calculations
are performed. Good textbooks, for example, DeGrand and
DeTar (2006) and Gattringer and Lang (2010), provide a
detailed introduction to the subject. What follows is a
synopsis, the bare minimum the reader who does not do
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lattice simulations of beyond standard model systems needs to
know to have a context for the results.

Imagine that we are interested in studying some quantum
field theory with lattice techniques. We discretize the system,
that is, we replace space and time by a grid of points. We then
define field variables that live on the links or sites of the lattice
and construct an action that couples them together. We do this
in some way that preserves as many symmetries as possible.
Preserving gauge symmetry is vital to maintain current
conservation, so nearly all lattice calculations use gauge
invariant actions and integration measures. Space-time sym-
metries and chiral symmetries may be more problematic to
enforce, so we defer a discussion of them for a while. The
lattice theory is then an effective field theory defined with an
UV cutoff, the lattice spacing a. One can think of this cutoff
as being roughly equivalent to an ultraviolet momentum
cutoff A ~ 1/a.

The lattice path integral is used as a probability measure to
generate configurations of the field variables. For example, the
functional integral (or partition function) for a lattice bosonic
field ¢, has the form

z= / [ expl=S(@)] (44)

where S(¢) is some lattice action and [d¢] = [[,d¢, is an
integration over the values of the field on each lattice site n.
Any physical observable O can be expressed as a function of
the field ¢. Its formal expectation value is

(0) = / [dplO(#) exp[-S(#)]/ / [dplexp[=S(P)].  (45)

This is just the average of the observable with respect to the
measure

P(¢) o exp[-S(¢)]. (46)

Thus, the average value of some observable is an ensemble
average over the configurations of field variables. In a lattice
calculation, the generation of configurations is done numeri-
cally, by some stochastic algorithm. Monte Carlo methods
generate a sequence of N random field configurations ¢®
with a probability distribution given by Eq. (46). The expect-
ation value of the observable is then just the simple average of
the observable over the ensemble of configurations:

N
©) = {306, @)

The uncertainty in the observation typically scales like 1/+/N.
Lattice correlation functions are then compared to some
theoretical model to extract the values of desired observables.

Generic correlation functions measured in a lattice simu-
lation in a finite simulation volume usually show an expo-
nential falloff with distance, characterized by a correlation
length &£. A particle mass m is of course just the inverse of the
correlation length.

All lattice calculations are performed with the cutoff
present. It is clear that the cutoff is unphysical; we want to
remove it from the calculation and present cutoff-independent
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results. Lattice people talk about taking the momentum cutoff
A to infinity, or the lattice spacing a to zero, while fixing some
fiducial mass scale. This is a shorthand for the requirement
that the correlation length measured in units of the cutoff £/a
must diverge. The correlation length will, of course, be a
function of the bare parameters that characterize the simu-
lation. Making the correlation length diverge is done by tuning
the bare parameters of the theory.

A fiducial scale is needed to set against the correlation
length. In lattice simulations, this scale is almost universally
taken, as a first step, to be the lattice spacing a itself. When
this is done, pure numbers come out of the simulation; all
predictions of dimensionful quantities (like masses) appear
with an appropriate power of the cutoff (that is, a calculation
produces the product a x m). Almost all real lattice
Monte Carlo predictions are of dimensionless ratios of
dimensionful quantities, like mass ratios. Lattice people like
to say that one prediction of a mass determines the lattice
spacing, when the value of that mass is fixed by experiment.
This is just the statement that @ = ma/mep,. One then uses
this a to make predictions in energy units for other masses or
dimensionful quantities.

Recall the usual definition that a running coupling is
(infrared) relevant, marginal, or irrelevant with respect to
changes of scale, depending on whether it grows, remains
almost unchanged, or shrinks, as it is evaluated at longer and
longer distance scales. That a coupling is relevant or not can
be empirically determined: can it be varied, so that the
correlation length grows? If so, it is probably relevant. The
increase in the correlation length occurs as the relevant bare
coupling is tuned toward its critical value. Most lattice
simulations are of theories with one or two relevant couplings.
They also have many irrelevant ones, typically arising when
the continuum theory is transferred to the lattice.

While the correlation length is finite, the fact that the lattice
action is an effective field theory becomes important: one’s
answers ought to—and generally do—depend on the value of
cutoff. One would observe this in measured mass ratios, as a
function of the bare parameters in the simulation.

Most lattice simulations are done for asymptotically free
theories. Their one or two relevant couplings are the gauge
coupling g and fermion masses m. The system has a critical
surface in the space of all couplings that encloses a Gaussian
fixed point at g =0 and m = 0. Tuning the two relevant
couplings to zero causes the correlation length, measured in
units of a, to diverge.

Much of the lattice language for understanding cutoff
effects implicitly makes use of the fact that one tunes g
and m to zero to remove them. Focus on the gauge coupling
for a moment. The advantage of having an asymptotically free
theory is that when the bare coupling is taken smaller and
smaller, the short distance behavior of the theory becomes
increasingly perturbative and hence increasingly controlled. In
particular, field dimensions approach their engineering dimen-
sions. This allows us to parametrize the dependence of an
observable on the cutoff scale. It is nearly given by naive
dimensional analysis. In an asymptotically free theory, if the
lattice spacing were small enough, a typical mass ratio would
behave as
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[am(a)]/[am,(a)] = m(0)/m,(0) + O(m;a)
+ Ol(mya)?] + - -- (48)

[modulo powers of log(ma)]. The leading term does not
depend on the value of the UV cutoff. That is our cutoff-
independent prediction. Everything else is an artifact of the
calculation.

This is important because it gives control over the calcu-
lation. Away from weak coupling, scaling dimensions of
operators may be different from their engineering dimensions.
Corrections to scaling may not scale with their expected power
laws. It may not be possible to identify relevant versus
irrelevant operators. Worse, the system may happen to lie
in the basin of attraction of other fixed points, or may be
susceptible to nonuniversal lattice-artifact phase transitions
which depend on the particular choice of discretization.

Running of the gauge coupling to zero in the UV is
generally only observed qualitatively in “spectral” calcu-
lations (of masses or matrix elements), through the obser-
vation that the correlation length increases (“a goes to zero™)
as the bare gauge coupling is decreased. This was not the
case in the earliest days of lattice simulations, where it was
common to attempt to relate a mass to a bare lattice gauge
coupling along the lines of Eq. (21). We now know that
lattice perturbation theory is much dirtier than its continuum
counterpart, and corrections to this naive behavior are large
due to lattice artifacts. Instead of this, almost all lattice data
are extrapolated to the continuum with an analog of Eq. (48).
Nowadays completely separate calculations of nonspectral
observables are used to make quantitative statements about
running couplings.

It is much easier to see that the mass is a relevant coupling;
masses of all multiquark bound states vary strongly as the bare
lattice mass is tuned, and only become small as the bare lattice
mass is tuned to zero.

All lattice gauge theories replace the gauge fields A, (x) by
“link variables” connecting adjacent sites. The link variables
are group elements

U,(x) = expigaA,(x). (49)

The gauge field functional integration measure is a product
of integrals for each link variable over the Haar measure of
the gauge group. All lattice actions are traces over products
of the U’s around some closed path. In the so-called Wilson
or plaquette action, this path is the minimal four-link one
around a unit square. There are many other possibilities, of
course. All these actions, and all fermionic actions, differ
from the expected continuum action of fermions coupled to
gauge fields by the addition of extra irrelevant operators, so
simulations with any of these actions done sufficiently close
to the Gaussian fixed point are expected to produce cutoff-
independent predictions of the continuum theory. In par-
ticular, space-time symmetries are broken by the lattice
discretization, but the operators which break them are
irrelevant ones, and these symmetries (such as rotational
invariance) are expected to be restored in the naive con-
tinuum limit.
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B. What systems can be studied on the lattice?

Technical issues associated with putting fermions on the
lattice strongly affect how easy it is to simulate any particular
theory.

Briefly, there are three generic kinds of lattice fermions. To
summarize a long textbook discussion, the constraint is the
Nielsen-Ninomiya theorem, which says (loosely; this actually
is not precisely correct) that one cannot write down a well-
behaved lattice fermion action that is simultaneously chiral
and undoubled. “Doubling” is a shorthand way to say that the
lattice system has extra, usually unwanted, fermionic degrees
of freedom. These states are the doublers. The three kinds of
fermions are as follows:

e Wilson fermions and their variants (clover or twisted
mass fermions): a four-component spinor sits on each
site of the lattice. Their actions contain terms which,
while formally irrelevant, explicitly break chiral sym-
metry. The benefit of this breaking is that the lattice
theory has the same number of fermionic degrees of
freedom as its continuum analog.

» Staggered fermions maintain some chiral symmetry, but
at the cost of introducing doublers. “A single staggered
fermion corresponds to four degenerate flavors in the
naive continuum limit,” we say.

e Domain wall and overlap fermions, which live in five
dimensions (domain wall fermions), or are the four-
dimensional effective field theories of five-dimensional
fermions (overlap fermions), remain undoubled and replace
the continuum definition of chirality by a more compli-
cated one, called the Ginsparg-Wilson relation. They are
theoretically beautiful, exactly encoding Ward identities
associated with chiral symmetry. From a practical point of
view these fermions are quite expensive to simulate.

A specific fermion action will lie in one of these classses, but
beyond that, it will have a variety of different lattice terms,
typically different ways of discretizing the derivative operator.

All lattice simulations I know of are of vector theories.
Direct simulation of chiral gauge theories, like the standard
model itself, is quite difficult. Luscher (2000) gave a fairly
complete overview of the subject. To even begin, by imag-
ining an ultraviolet regulator for a chiral gauge theory, the
theory must be anomaly free. But the consequence is that any
consistent regulator that preserves gauge invariance must refer
to the fermion representation. This is hard to do; a simple
lattice cutoff will not suffice. Those who want to study chiral
gauge theories on the lattice typically feel that they are forced
to use regulators that break gauge symmetry, and then attempt
to tune their bare parameters to a critical point which will
produce a chiral gauge theory when the correlation length
diverges. Golterman (2001) and Golterman and Shamir (2004)
describe approaches along these lines.

The lattice introduces additional issues. The doublers which
appear in an action with chiral symmetry turn out to have the
opposite chirality to their partners; at the end, there will be
equal numbers of left- and right-handed fermions. Domain
wall or overlap fermions allow one to go farther, and Luscher
(2000) described all-orders perturbative constructions of
chiral gauge theories. I do not know of any numerical studies
of these systems, though.
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The next issue is that P(¢) [see Eq. (46)] has to have a
probability interpretation, in order to perform importance
sampling. One cannot directly simulate dynamical fermions,
because Grassmann variables are not numbers. One must
formally integrate them out, leaving behind a functional
integral for bosons. Being classical, this can be studied
numerically. To see how this is done, consider a system of
gauge fields and a single species of fermion. Its partition
function is

Z= / [dUdidy] expl—So(U) — gM(UYy).  (50)

where M = D + m. After integrating out the fermionic
Grassmann variables, the partition function becomes

Z = /[dU] exp[—Sg(U)]det M(U). (51)

The determinant is nonlocal, so computing its change under a
change in the gauge field is very expensive. The standard way
to deal with this is to simulate the determinant by introducing
a set of scalar “pseudofermion” fields ®. This is done via the
formal identity

det M(U) = / [dD*dP]exp[-D*M~'D].  (52)

Expanding @ in terms of eigenmodes y; of M and the
corresponding eigenvalues 4;:

DM = 3 (Bl ) 5 (|9 (53)
7 j

expose a cascade of problems, all arising from the fact that
the eigenvalues of lattice Dirac operators are complex and
their real parts may not be positive definite. Individual terms in
the exponential can be complex or carry a net negative sign.
Then the exponential in Eq. (52) cannot be interpreted as a
conventional probability measure.

There are often ways to avoid this. With Wilson fermions,
one can show, using lattice symmetries of the action, that
simulations of pairs of degenerate mass fermions (i.e., even
Ny) give a positive-definite determinant. [Basically, DY =
7sDys so (det D)? = det DTD.] Staggered fermions naturally
come in multiples of four flavors, and the four flavor
combination has a positive determinant.

Often, one wants to have a different fermion content than
what is possible in these favorable situations. Odd numbers
of flavors require caution. For example, in QCD, one might
want to simulate a degenerate up and down quark pair, and a
heavier strange quark. One replaces the strange quark’s
determinant by

det M(U) — [det | M(U)|*]/2. (54)

This can be simulated with the “rational hybrid Monte Carlo”
algorithm, with a pseudofermion action
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det H(U)? — / [d@*d@]exp[—cp*z 6

E——Y T
—~H(U) +d, ] (55)

The determinant could try to change sign during the simu-
lation. That would invalidate Eq. (54). This might not be
noticed, nor treated properly, by its approximation, Eq. (55).
There are related issues with staggered fermions, going
from the doubled number of degrees of freedom that staggered
fermions naturally encode to the desired counting for a single
continuum flavor. One must make the replacement

det M(U) = det Mt (U) (56)

to simulate a single continuum flavor. There is a long
controversy in the QCD literature about how to correctly
deal with this replacement. I believe that the situation is well
understood for chirally broken theories simulated in the
vicinity of the Gaussian fixed point. [The conference proceed-
ings by Sharpe (2006) are an excellent overview.] Briefly,
at nonzero lattice spacing, the action associated with Eq. (56)
is nonlocal. Rooted staggered fermions cannot be described
by a local theory corresponding to a single Dirac fermion.
Associated with this nonlocality, there are all kinds of
artifacts, such as negative norm states. However, when chiral
symmetry is broken, a low-energy theory can be constructed
which correctly describes the Goldstone sector of the rooted
theory. This theory has a set of low-energy constants which
include those of the continuum theory, plus additional ones.
Continuum predictions can be made, and are made, using this
more complicated chiral perturbation theory.

Simulations of QCD at nonzero chemical potential are
difficult because the fermionic determinant is complex.

Finally, some vocabulary. To label the bare gauge coupling
g of an SU(N,) gauge theory, lattice people work with the
quantity f = C/g? where C is a constant. For the plaquette
action, C = 2N . The bare quark mass m, in simulations with
Wilson or clover fermions is usually replaced by a hopping
parameter x = 1/2(4 + amg)~', and most of the literature
about Wilson fermions almost always uses « rather than am,.

Patterns of chiral symmetry breaking (“‘vacuum alignment”)
for different numbers of colors and fermionic representation
were first described by Peskin (1980), Preskill (1981), and
Kosower (1984) and are listed in Sec. III.D. Golterman and
Shamir (2014a, 2014b) described the complications of lattice
artifacts for this physics.

C. Lattice issues for beyond standard model calculations
with slowly running couplings

The situation for a lattice practitioner faced with a proposed
nonperturbative extension of the standard model is, at first
sight, similar to the situation of lattice QCD: Given an
ultraviolet complete action that might encode some non-
perturbative low-energy physics, the way to proceed is as
follows:

(1) Write down a lattice discretization and simulate it.

(2) From the simulation, determine the vacuum structure

of the system: does it have a mass gap in the
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infinite-volume limit, is it confining, is it chirally
broken, is it something else?

(3) If the system has a mass gap, compute the spectrum
and perhaps appropriately interesting matrix elements.

(4) Alternatively, use the expectation value of some
operator to define a running coupling constant (typ-
ically, the scale at which the coupling is measured is
set by the size of the simulation volume) and see how
it runs.

(5) From the results of (3) or (4), evaluate the possibility
that the action might be a viable scenario for beyond
standard model physics.

Most lattice studies of beyond standard model dynamics
involved systems with slowly running gauge couplings. As
a result, getting beyond item (2) proved to be very difficult.
The issue was that all the techniques lattice people had at their
disposal were designed for QCD, where the coupling constant
runs quickly. Several years later, I think there is a reasonable
consensus between different groups about the answer to point
(2) for most of the systems that have been studied. However,
agreement is not universal and one can find controversy
throughout the literature of the subject.

This is quite different from the situation in modern lattice
QCD simulation. There, the disagreements are about very
specific points, such as the particular value of some mass or
matrix element. In fact, the flow chart I gave for beyond
standard model candidate theories already differs from its
QCD analog. Lattice QCD simulations never really had to deal
with item (2): the vacuum structure of QCD was, broadly
speaking, noncontroversial before the first simulations were
carried out. Before QCD, experiment showed that strongly
interacting matter was composite and chirally broken. After
the discovery of asymptotic freedom and before lattice gauge
theory was invented, the question was, are asymptotic free-
dom and confinement related? Confinement was the most
important phenomenological feature of the Wilson (1974)
formulation of lattice gauge theory. He showed that essentially
all lattice gauge theories are confining in their strong-coupling
limit. The important question then became, does confinement
persist in the continuum limit? The earliest numerical simu-
lations of lattice gauge theories by Creutz (1980a, 1980b)
showed the coexistence of confinement and asymptotic free-
dom in a single phase for a non-Abelian gauge theory.

Early analytic lattice work (Svetitsky ez al., 1980; Weinstein
et al., 1980; Blairon et al., 1981; Greensite and Primack,
1981; Kluberg-Stern, Morel, and Petersson, 1982) strongly
argued that chiral symmetry was broken in the strong coupled
limit of lattice QCD, and again questions of interest were
about the value of quantities such as the condensate or the pion
decay constant in the continuum limit, not about whether
chiral symmetry was actually broken. Lattice QCD very
quickly became a subject about numbers, not about qualitative
behavior. And so it has remained. Not knowing the answer
ahead of time made lattice studies of beyond standard model
candidates very different from lattice QCD.

The origin of the difficulty in analyzing systems with
slowly running couplings is most easily seen from the formula
for the one-loop beta function: with a scale change of s, the
inverse coupling changes by an amount
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1 1 b,

%—nglogs. (57)

For the SU(3) gauge group with N, flavors of funda-
mental representation Dirac fermions, b; = 11 —-2/3N;.
Consider ordinary QCD, with N = 3, for which b; =9.
We know empirically that a scale change of about s = 10
causes the system to go from weakly coupled to strongly
coupled: this can be seen from the potential between
heavy quarks, which is Coulombic at short distance
(0.1 fm) but confining at long distance (1 fm). A single
lattice simulation with a lattice spacing of say 0.05 fm and
a size of 20-40 lattice spacings can capture both ends of
this behavior, so that the system can be perturbative at the
shortest distance and nonperturbative at the longest dis-
tance. Simulations involve the action at the cutoff scale,
and if the system is weakly interacting at the cutoff scale,
we know what we are doing.

Now consider the case of N, = 12, where by = 3. With
one loop running, we would need a scale change of s = 1000
to make the coupling constant change by the same amount as
the N, = 3 system changed with s = 10. Such a scale factor
cannot be accommodated on any single lattice size which is
capable of simulation today or in the foreseeable future.

At this point, a reader objects: You are telling a one-loop
story. You are a lattice person working in strong coupling.
Why should I believe a one-loop story?

The answer is: Yes, the story could be wrong. But it is
wrong in either a favorable way or an unfavorable way. In a
favorable way, physics evolves more rapidly with scale than
by suggests (this happens in Ny = 3 QCD). This is easy to see
in a simulation; you do not need to know about the story. But
the physical systems I am thinking about are candidates for
walking technicolor. Recall Fig. 3. To the left of the inflection
point, the coupling runs more slowly than the one-loop
formula. b, is effectively smaller. The one-loop result for
how the coupling changes with scale is too optimistic. Instead
of s = 1000, suppose the beta function is half the size of b;.
Then you need s = 10° to see the same change in the
coupling.

There are many equivalent ways to state the consequences
of having a slowly running coupling in a finite-volume lattice
simulation:

¢ In such a theory, if the coupling constant is small at short
distances (that is, at the cutoff scale) in any simulation,
it remains small at long distance. Then, how can non-
perturbative physics appear?

o If the coupling constant is large at long distances, it must
be large at the shortest distance (at the cutoff scale)
on the lattice. Then, how closely does the lattice theory
resemble its continuum analog?

* The coupling constant effectively does not run with scale
in any practical simulation volume.

e If a simulation does show a potential which has both a
Coulomb term and a linear confining piece, it must also
be characterized by a quickly running coupling constant,
over the range of scales present in the simulation.

Nearly all lattice systems with many fermion degrees of
freedom show this generic behavior.
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How to deal with lattice artifacts in QCD is under
reasonable control. However, that is because continuum
QCD is qualitatively well understood. Making sense of the
“quarter root trick” [Eq. (56) for staggered fermions] is done
in the context of chiral perturbation theory. But, suppose that
one is simulating a theory which might not be chirally broken?
One might not be able to distinguish a lattice artifact from real
physics. In particular, little is known about the universality
properties of a rooted theory. Its global symmetries are simply
different from those of an unrooted system.

Since most lattice studies involve slow running, we should
think a bit more about what to expect. We can continue to do
this using perturbation theory. The two-loop beta function can
be integrated exactly to find a relation between scale and
coupling. Defining b, = b,/(16x*) and b, = b,/(167°)?,
it is

= p* 1 1 b, ( by + byg* (u) )

biloghh =~ — g 1!
1 Wy 9w Fuo) by by + byg* (uo)

When the coefficients b; and b, have opposite signs, there
is a fixed point, at g} = —b,/b,. Equation (58) takes the
compact form

w1 (N (9204)—9?-)
hilogo =————— ——log[2—"L). (59
R T R0 P G \P o) - 49

Now we can examine some useful limits. If ¢*(x) and
> (1) are both small, the logarithm is small compared to the
first terms and we have the familiar one-loop running formula.
However, when ¢*(u) — g7 is small, the logarithm is the
dominant term, and the cdupling evolves in a different (but
equally familiar) way:

b g
P — & = [ o) — ] (ﬂﬁo) " (60)

The beta function has a linear zero: f(¢*) ~ —b; (4> — g7). At
ever smaller y, the coupling runs into the fixed point. This is
an infrared attractive fixed point. B,gj% is an example of a
critical exponent. In this case we label it y,,.

Setting u/py = Ly/L, we can define a coupling measured
at a distance scale L. This will be useful to anticipate
definitions of running couplings used in lattice simulations.
We contrast the running of the coupling constant in two cases
in Figs. 5 and 6. The first picture shows the case of N, =3
and N, = 3 fundamental flavors; the second shows the case
for N, =3 and N; = 12. The initial g*(y) is taken to be
equally spaced values 1,2,3, .... The fixed point coupling for
N;=12is at g* = 9.47. We come back to the dotted lines
in Sec. V.B.

This analysis is incomplete, because it leaves out the
fermion mass. Inside the conformal window, the fermion
mass is a relevant coupling. In fact, in most simple systems, it
is the only relevant coupling, and to make the correlation
length diverge, it must be fine-tuned to zero. Its evolution
equation has a linear zero, as does the renormalization group
equation for g2 in the vicinity of gjzc. This is the usual textbook
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In Ly/L

FIG. 5. Running coupling constant from Eq. (58) for a set of
initial couplings: N, = 3, Ny = 3. The dash-dotted line is a line
of constant 1/¢%.

situation for second order criticality, where the correlation
length diverges algebraically,

§~ (amq)_l/ym. (61)

[Cardy (1996) is a good reference.] Systems with this behavior
are often called infrared conformal in the particle physics
literature. The quantity y,, is the leading relevant exponent for
the system in statistical physics language. This exponent is

0.4 — —

O O 1 1 1 1 ‘ 1 1 1 1 ‘ 1 1 1 1

In Ly/L

FIG. 6. Running coupling constant from Eq. (58) for a set of
initial couplings: N, = 3, Ny = 12. The dash-dotted line is a line
of constant 1/¢%.



015001-20

related to the anomalous dimension y,, of the mass operator
py, and determines the running of the mass parameter
according to

W) — (P (62)
u

The relation is y,, = 1 + y,,(¢?).
For future reference, in lowest order in perturbation theory,

L _SCR)
" 167* 7

(63)

The actual exponent is y,, (g?-). In perturbation theory, it grows
as the bottom of the conformal window is approached from
above (say, by decreasing the number of flavors).

Inside the conformal window, all couplings other than m,,
are irrelevant. Note that the gauge coupling (more properly,
the distance of the gauge coupling from its fixed point value)
is one of these couplings. Taking the continuum limit has
nothing to do with tuning the bare gauge coupling, other than
setting it within the basin of attraction of gj%. (The literature is
occasionally confused about this point.) In the two-loop
example, that happens naturally, for any value of g>. In most
cases, 0 < ¢* < g}% is in the basin of attraction of gjzc. Sois a
region ¢* > g%-. This is a curious region, a bit like QED,
because the coupling constant becomes larger at shorter
distances. But again, tuning m, to zero is how we take the
continuum limit of a/& — 0. We expect that values of ¢°
which remain in the basin of attraction of g]% cannot become
too great, because lattice theories generically confine when the
gauge coupling becomes large. Thus, there should be a
strongest coupling, a boundary of the basin of attraction. If
the boundary were marked by another second order transition,
it would be characterized by a UV attractive fixed point, at
some gyy. More complicated possibilities can be imagined
(Kaplan et al., 2009).

The absence of a scale in the conformal window should
not be confused with the presence of a massless state in the
spectrum. In the confining phase, when chiral symmetry is
broken, there is an infinite correlation length, the inverse pion
mass. But in other channels there is a mass gap, and there are
other physical scales, such as f,.

The irrelevance of the gauge coupling has the consequence
that the location of an infrared attractive fixed point is not
physical. Contrast this behavior to that of a relevant coupling,
which marks a real qualitative change in long-distance
physics: m, = 0 for the fermion mass. A change in the
renormalization scheme can shift the location of g?-. This
means that in the scaling limit (§/a > 1) changes in & as the
bare ¢? is varied can only be order unity corrections. (For a
lattice QCD practitioner used to simulating clover fermions,
the situation is similar to what one would find when tuning the
clover coefficient.) There is no good reason for £/a to increase
(or decrease either) versus increasing g>. The scaling limit is
the limit of vanishing quark mass, or more generally, of the
limit that all relevant couplings are taken to their critical
values.

One complicating issue in this discussion is that while the
gauge coupling is irrelevant, the critical exponent associated
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with the gauge coupling is often close to zero. (Dimensional
analysis “predicts” y,, ~ 1, y, ~0.) This has an unfortunate
practical consequence which I already mentioned: In finite-
volume simulations, the gauge coupling will evolve so slowly
with scale toward its fixed point value that the system is
effectively conformal, regardless of the actual value of the
cutoff-scale gauge coupling. One is likely to observe a leading
exponent y,, that shows a slow, smooth dependence on the
bare gauge coupling. This may be very hard to analyze.

Finally, while I discussed the relevant m, and irrelevant el
we cannot forget all the other couplings. To choose a lattice
action is to implicitly fix the initial values of all the irrelevant
couplings, too. But these couplings also run. While they run to
zero in the long-distance limit, it might be that over the range
of length scales accessible in a simulation in finite volume
these couplings could exhibit significant running, which could
contaminate results. (And remember, far away from the
Gaussian fixed point, one may not know what is relevant
and what is not. The flow may even find another fixed point.)
This is a source of systematic error. It is also an important
practical issue which arises when one wants to compare results
from two different simulations which are performed with
different lattice actions.

And of course, one may not know a priori that one is
dealing with a conformal system.

Once the fermion mass becomes large, we expect that the
fermions decouple from long-distance dynamics. The most
likely scenario in that case is that the system becomes
confining, since the fermions no longer screen the gauge
fields. One would expect to see a linear potential reemerge.
Probably the lightest excitations would be gluonic in nature,
glueballs. It is unknown how much of spontaneous chiral
symmetry breaking would remain. Of course, explicit chiral
symmetry breaking by the fermion masses would also be
present.

More direct applications of the statistical literature to
physics in the conformal window can be found in DeGrand
and Hasenfratz (2009), and Del Debbio and Zwicky (2010,
2011, 2014).

V. LATTICE RESULTS FOR SYSTEMS WITH SLOWLY
RUNNING COUPLINGS: BY METHOD

A. Spectroscopy and related observables

Spectroscopy can, in principle, distinguish between sys-
tems which are confining and chirally broken, and systems
which are nearly conformal. So, imagine doing a simulation.
Recall that, at any nonzero my, the system is “ordinary,” not
conformal, with a mass gap, regardless of what happens at
m, = 0. It will have a discrete spectrum.

Collect spectroscopic data (probably one could begin with a
similar set of bare couplings, perhaps one bare gauge coupling
and several fermion masses). Is the spectrum of excitations
QCD like? That is, as the fermion mass is made smaller, does
the pseudoscalar state become much lighter than the vector
state? Does the pseudoscalar mass extrapolate to zero with the
fermion mass, like m2 o m,? Do other masses extrapolate to
nonzero values at m, = 0? Is the vector meson mass different
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from the axial vector mass? Is the static potential linear at
long distance?

If the answer to these questions is yes, then probably the
system is confined and chirally broken and, given the
discussion in the last section, it probably also has a quickly
running coupling constant.

The question “Is the vector meson mass different from the
axial vector mass?” refers to the fact that in a system in which
chiral symmetry is unbroken, opposite parity states are
degenerate, being related to each other by chiral rotations.

Now simulate at weaker bare gauge coupling. Does it seem
that the correlation length grows, while the good features seen
so far appear to maintain themselves? Is it possible to move to
ever weaker coupling without encountering a discontinuity, a
phase transition between the strong-coupling phase and some
new phase? If there is a transition, is it induced by the size
of the lattice? If the answer to these questions is yes, then
confinement and chiral symmetry breaking probably coexist
with asymptotic freedom.

In a system inside the conformal window, spectroscopy
would be qualitatively different. All masses would track
toward zero as the fermion mass is made smaller. The system
would not exhibit spontaneous chiral symmetry breaking; the
vector and pseudoscalar mesons would not behave particu-
larly differently. In a system with only explicit chiral sym-
metry breaking, the spectrum is parity doubled, in the m, — 0
limit, so that one would observe approximate equality of the
vector meson and axial vector meson mass, and of the scalar
and pseudoscalar masses. If there was a nonzero string tension
at nonzero fermion mass, one would expect that it would go to
zero with the fermion mass.

We can illustrate these differences with an example.
Figure 7 shows the pseudoscalar mass and the vector meson
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FIG. 7. Pseudoscalar and vector meson masses, in lattice units,

from quenched SU(3) gauge theory. Octagons and squares are
data from a weaker gauge coupling simulation; crosses and
diamonds from stronger coupling. From DeGrand, 2004.
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mass, as a function of the quark mass, from a typical
calculation in quenched SU(3), at each of two different gauge
couplings. All of the parameters are given in units of the lattice
spacing a. The separation of the pseudoscalar and vector
meson at small quark mass is apparent. The data sets labeled
by octagons and squares are collected at a smaller gauge
coupling than the data sets shown by crosses and diamonds. It
is clear that if one uses the zero fermion mass limit of the
vector mass to define the lattice spacing, then weaker coupling
corresponds to smaller lattice spacing.

Figure 8 is a presentation of spectroscopy which is more
common in the QCD literature. The data are identical to Fig. 7,
but I am plotting the squared pseudoscalar mass. Its approxi-
mate linearity is the qualitative signal that chiral symmetry is
broken, the Gell-Mann—Oakes—Renner formula in action.

Contrast this case with that of a data set from a simulation of
SU(2) gauge theory with Ny = 2 adjoint representation fer-
mions, Fig. 9. I plotted data from Bursa, Del Debbio, Henty et al.
(2011). Many other collaborations including Catterall and
Sannino (2007), Catterall et al. (2009), and Hietanen,
Rantaharju et al. (2009) have similar results. The particular
lattice system that was simulated had a strongly coupled phase
which is chirally broken and a weakly coupled phase which is
almost certainly conformal in the zero quark mass limit. Data
from the strong-coupling phase qualitatively resembles that in
Fig. 7. But in weak coupling, shown in the figure, the
pseudoscalar and vector masses never separate, and while there
is some dependence of the bound state mass on bare gauge
coupling, there is strong dependence on the fermion mass.

Unfortunately, a data set may not be so clean cut.

Recall, that first, at nonzero m g-€VEna would-be conformal
system is ordinary, with a mass gap, regardless of what
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FIG.8. Squared peudoscalar and vector meson masses, in lattice

units, from quenched SU(3) gauge theory. Octagons and squares
are data from a weaker gauge coupling simulation; crosses and
diamonds are from stronger coupling. The data are identical to
what are shown in Fig. 7.



015001-22

happens at m, = 0. In heavy quark systems the pseudoscalar
and vector states are nearly degenerate. If the fermion mass is
too large, it may be impossible to distinguish systems which
are trending conformal in the zero mass limit from confin-
ing ones.

The Gell-Mann—Oakes—Renner dependence of pseudosca-
lar mass on fermion mass m?2 o my, which is a signal of chiral
symmetry breaking, is only the leading behavior in a chiral
expansion. Higher orders might be important. With large N,
one-loop chiral logs can be large. For example, the nonana-
Iytic correction to the pseudoscalar decay constant f [for
symmetry breaking pattern SU(Ny) x SU(Ny) — SU(Ny)] is

ot Nyt
f 2 \4xnf A?

Such terms might overwhelm any analytic expansion of lattice
data to the zero mass limit.

Finite volume affects spectroscopy in many ways. Imagine
first that we do have a confining, chirally broken system in
infinite volume. When the volume is large, in the sense that
M yL for any hadron mass M and system size L is large, the
dominant effect of finite volume is from pion loops. Instead of
returning to the point of emission, the pions scatter “around
the world” or “off image charges.” The typical situation is that
finite-volume effects go as exp(—m,L). When the observable
in question has a chiral logarithm in its expansion, as in the
case of fpg, the coefficient of the logarithm is also the
coefficient of the finite-volume correction. If that coefficient
is large, there will be large finite-volume corrections.

Next, suppose that m, L < 1 but myL > 1 for all other
states, and f,L > 1 as well. This is called the ‘“epsilon
regime.” Symmetries cannot break in finite volume, so the
condensate (V) will fall from its infinite-volume value X to
zero with the quark mass. The relevant dimensionless variable
is { = m, XV with V = L*. If a simulation is known with
certainty to be in this situation, measurements of the con-
densate and of correlators in various channels can be used to
extract chiral observables. For example, the finite-volume
condensate is

S(V) = Zf(Q) ~ m, 22V +---. (65)

But suppose one is not certain? One might interpret the
vanishing of (V) as evidence for infrared conformality.

In between the epsilon regime and the large volume
“p regime” there is another regime, the “delta regime,” where
the pseudoscalar correlator shows a rotor spectrum. Naive
chiral behavior is once again absent.

And notice the repeated use of the words “extrapolate to
m, = 0. Even in QCD, that is a nontrivial task.

Typically, a finite simulation volume can induce phase
transitions in a lattice system. For an asymmetric box, with
N, < N, the short time direction implies a finite temperature
T = 1/aN,. Simulations of confining systems in these asym-
metric volumes will show a phase transition from a strong-
coupling confined phase to a weak-coupling deconfined and
chirally restored phase. The weak-coupling phase is analyti-
cally connected to the Gaussian fixed point, which is where
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we might want to tune, to take the continuum limit. So, is the
continuum limit confined?

One way to test this is to vary N, and see if the transition
moves in bare parameter space. If it moves to weaker
coupling, in a way that 7 remains roughly constant in physical
units, the transition is most likely a finite temperature
transition, and the zero temperature phase is likely to remain
confined, while still analytically connected to the Gaussian
fixed point. If the transition remains fixed in bare coupling as
the lattice volume is varied, and the system is deconfined on
the weak-coupling side, the transition is a “bulk transition.”
The weak-coupling phase is analytically connected to the
Gaussian fixed point and the system has a continuum limit that
is deconfined. So, there is a test: does the deconfinement
transition move appropriately with N,?

The problem with this test is that even a bulk transition
moves when the volume is small. And there is another
problem: how can one tell that the motion is consistent with
a finite temperature transition, anyway? Often, one imagines
analyzing a formula like Eq. (21), where M, is T, and ¢g*>(A)
is the bare lattice gauge coupling. But one is simulating at
strong coupling, and asymptotic freedom does not work well
as a descriptor of physics at strong coupling. One really has to
compute the value of some other observable M with the
dimensions of a mass, typically in a zero temperature
simulation at the same bare parameters, and look for variation
of T/M as N, is varied. It is Eq. (48) all over again. (This is
how the deconfinement or chiral restoration crossover temper-
ature in QCD is determined.) This is rapidly becoming an
expensive proposition.

Inside the conformal window, and in infinite volume, tuning
the fermion mass m, to zero causes the correlation length to
diverge algebraically, as in Eq. (61). One might hope to use
this functional dependence as a diagnostic. However, no
simulation is ever done in infinite volume. The system size
L is also a relevant parameter since the correlation length
diverges only in the 1/L — O limit. When the correlation
length measured in a system of size L (called &;) becomes
comparable to L, &; will saturate at L even as m, vanishes.
Equivalently, bound state masses will become independent of
the fermion mass when it is small. This is what non-Goldstone
excitations are expected to do in a confining system. Again,
the finite volume can induce confusion between “confining”
and infrared conformal behavior. Simulations with the same
bare parameters, but at several volumes, are needed to sort out
this behavior. We return to a detailed description of the
necessary analysis in Sec. V.C.

Regardless of whether the data look confining or look
conformal, for a definitive answer, one needs simulations at
many values of the bare coupling. This is quite similar to the
case in precision QCD, where one has to extrapolate to a = 0
to produce a cutoff-free number. But it is expensive. In QCD,
when one is doing something new, one might attempt to
simulate at one value of a (or perhaps one value of the bare
gauge coupling and several quark masses) and to present
results with the claim that the lattice spacing is small enough,
and the lattice volume is large enough, that at the level of
accuracy, only small quantitative changes in the numbers are
expected. But this is for a system whose gross behavior is
reasonably well understood. When the properties of the
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system are unknown, making inferences based on data from
one bare gauge coupling is risky.

B. Running coupling constants from observables

A running coupling constant is determined in a lattice
simulation by measuring some observable that has a pertur-
bative expansion (that gives the coupling), at some convenient
length scale, such that variation of the observable with the
length scale gives the running.

In QCD, the physical problem whose solution is desired is
“What is a, at the Z pole?” This is a needed ingredient in
precision tests of the standard model. In the lattice calculations
reported in (Olive et al. (2014), the length scale is taken from
some low-energy observable computed on the lattice, and the
running to the Z uses perturbation theory, rather than treating
the running as something to be determined. However, there are
lattice techniques that (at least for QCD) are capable of doing
the running completely nonperturbatively. These are the ones
that have been adapted to beyond standard model systems.

Recall that generic beyond standard model candidates have
two potentially relevant couplings, a fermion mass and the
gauge coupling. Coupling constant evolution takes place in at
least a two-dimensional space. This is difficult to deal with in
a simulation, and so lattice studies typically begin by setting
one of the relevant couplings to zero. This coupling is usually
the fermion mass, and the theorist considers the gauge
coupling in isolation. This is often not an easy place to do
simulations. At a minimum, one must use boundary con-
ditions for which the massless Dirac operator is invertible.

With an action with good chiral properties (staggered,
domain wall, or overlap fermions), the massless limit is
simply achieved by setting the bare fermion mass to zero.
With Wilson fermions, one must tune the bare mass so that a
derived mass is zero. The fermion mass whose vanishing
signals the chiral limit is the so-called axial Ward identity
(AWI) fermion mass, defined through the ratio of correlators

b b
i, = 10400} )
2 (P?(n0”(0))

Here A5(f) = wysystPw is the time component of the local
axial vector current with flavor b, taken at zero spatial
momentum on the time slice #; P”(t) is the local pseudoscalar
density. The operator O?(0) is a source. Any calculation that
must be done at am, = 0 is carried out along a line called the
critical kappa line x.(f) vs .

However the coupling is determined, it must be analyzed.
To contrast the issues encountered while studying slowly
running versus quickly running couplings, it is instructive to
return to Figs. 5 and 6. Figure 5 shows the situation for a
quickly running coupling; Fig. 6 is the situation with 12
fundamentals, and slow running. The two problems in data
analysis are to determine the shape of the 1/¢g*(L) vs In L,/L
curves, and to show that the determination is free of cutoff
effects.

The key to doing this is to take L as the independent
variable. g*(L) is the coupling defined at scale L. Interpret the
Lo in InLy/L as the cutoff. In a lattice calculation, L is the
lattice spacing a. Ly/L = 1/N is the number of lattice points
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the simulation length is divided into. Do a simulation at some
value of the bare parameters. This gives a point in the figure.
Now change L, holding the bare simulation parameters fixed.
In a perfect world, we might imagine doing this infinitesi-
mally. The running coupling will shift along the solid lines in
the figure.

Next, change L to some new value L', and change the bare
parameters. Tune them, until g>(L’) = ¢*>(L). These couplings
are connected by the dash-dotted line in Fig. 5. Now the
question is, how does the slope of the line change as L is
changed. Or, what are the slopes of the two curves? Are they
different? And if they are different, can they be used to
extrapolate to small Ly?

In Fig. 5, the slopes are the same, by construction. But the
figure also shows that when the beta function is large, it is easy
to shift the bare coupling by a large amount and match
renormalized couplings at a dense set of L’s. In a real
simulation, the line is replaced by a set of points at integer
L’s. The slope is typically replaced by measurements at two L
values related by a common scale change: L =6—12,
L = 8 — 16, etc. One would then have a set of measurements
of the slope as a function of g>(L), at many values of L. One
could then proceed to an extrapolation to the continuum limit.

This shifting and matching is reasonably straightforward to
perform when the coupling runs quickly, as in Fig. 5.
However, look at Fig. 6. We sit, say, at InLy,/L =2 and
tune bare parameters so that 1/g?(L) = 0.17 (the right edge of
the dash-dotted line). Now we change the bare parameters by
some amount and try to reacquire the same value of g> at some
other L. When the coupling runs slowly, matching ¢*(L’) to
the fiducial g?>(L) by shifting the bare parameters requires an
enormous change in L; the change diverges as we move to the
fixed point. Computer resources are finite, and at some point
we can no longer support the necessary L'/L ratio in a set of
simulations.

Imagine shrinking the ratio by reducing the size of the shift
in couplings. (That is, the lines in Fig. 6 are spaced Al/g} =
0.2 apart; reduce the shift to 0.1 and try again.) Now the
problem is statistics. In my experience (which is limited to
the Schrodinger functional, described later), the uncertainty in
a 1/¢%(L) measurement is not too dependent on the slope of
the line, or even on N. or Ny, so the intrinsic fractional
uncertainty on the slope, from the difference of two 1/¢*(L)’s,
scales inversely with the slope. This is not a favorable result
for a slowly running theory, for if the slope cannot be
measured, the change in the slope also cannot be measured.
Clearly, a less noisy coupling will allow one to take a smaller
interval of L by reducing A(1/¢%), but approaching the critical
coupling, the slope of the line will vanish regardless of
definition.

Finally, whatever method is used to measure a running
coupling constant, it is important to check it by collecting data
in weak coupling, to validate the method against an analytic
result. The goal is to see one-loop or two-loop running. I do
not know how to evaluate results seen in the literature which
do not have such anchor points.

Two methods dominate in lattice calculations of running
coupling constants. The Schrodinger functional is the older of
the two. More recent calculations tend to use variations on a
method called “Wilson flow.”
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1. Schrodinger functional

The Schrodinger functional (SF) (Luscher et al., 1992,
1994; Sint and Sommer, 1996; Jansen and Sommer, 1998;
Della Morte et al., 2005a) is an implementation of the
background field method that is especially suited for lattice
calculations. It is done by performing simulations in a finite
volume of linear dimension L, while imposing fixed boundary
conditions on the gauge field (at Euclidean times # = 0 and
t = L). The usual partition function Z = Tr exp(—LH) is
replaced by the “Schrodinger functional” Z(¢y,¢p,) =
(¢ exp(=LH)|¢p,). This fixing involves a free parameter
n, so call it the Schrédinger functional Z(n). A coupling
constant is defined through the variation of the effective action
I" [which in turn is defined as I' = —In Z(5)]. The classical
field that minimizes the Yang-Mills action subject to these
boundary conditions is a background color-electric field. By
construction the only distance scale that characterizes the
background field is L, so I" gives the running coupling via

I'=g(L)?SSu. (67)

where S, is the classical action of the background field.
When I' is calculated nonperturbatively, Eq. (67) gives a
nonperturbative definition of the running coupling at scale L.
In a simulation, the coupling constant is determined through
differentiation,

r N 1 D.D
al  _ <aSYM__ftr( _XDrDr) F))> (68)
N |y=o on 2 DpDy  0n =0
K
= (69)
(L)

Dy is the lattice Dirac operator. The constant K is chosen to
match a perturbative evaluation of Eq. (68). In other words,
the expectation value (---) gives g*(L).

By calculating the inverse running coupling on lattices of
sizes L and sL, we obtain the discrete beta function (DBF)

N S .
F(sL) g (L)’ g’

It is necessary to deal with lattice artifacts in B(u, s). This is
often done by comparing data from systems at fixed aspect
ratio s, for example, L = 6 and 12, 8 and 16, and 12 and 24.

With the definition of the beta function for the inverse
coupling in terms of the usual beta function

B(u,s) =

(70)

d(1/4%)
dinL

B(l/$) = =28(g")/g" = 2u?B(1/u),  (71)

the discrete beta function is

sL dL’ u+B(u,s) du'
Ins =/ — =/ au (72)
L L u pu)

The literature is often careful to distinguish between the
DBF and the usual beta function. For a quickly running
system like QCD, it is necessary to do this. But in a slowly
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FIG. 9. Pseudoscalar and vector meson masses, in lattice units,
from SU(2) gauge theory coupled to Ny = 2 adjoint fermions.
Octagons and squares are data from a weaker gauge coupling
simulation; crosses and diamonds are from stronger coupling.
These data are a 123 x 24 volume lattice at weaker coupling and a
243 x 64 volume at stronger coupling. From Bursa, Del Debbio,
Henty et al., 2011.

running system the DBF’s measured are, to high accuracy, just
proportional to the beta function itself. This occurs because
the coupling runs slowly and the values of s accessible in a
simulation are small. In that case the rescaled DBF, defined as

R(u.s) = B(u, s)

. (73)
Ins

will be approximately equal to the beta function ﬁ(u) The
situation for SU(2) with N, = 2 adjoints is illustrated in
Fig. 10. The figure shows the two-loop result,

2b, by, In[l+ (2b,/162%)u~" ns]

2) — _
RO = =162~ Teab, Ins

(74)

for the rescaled DBF for scale factor s =2, 4, and 8,
compared to the one-loop and two-loop beta functions. The
rescaled DBF for s = 2 is hardly distinguishable from the beta
function.

There are two lessons to be drawn from Fig. 10. If the actual
DBF resembles the two-loop result, we can combine the
rescaled DBF’s for many scale factors s onto a single plot to
give a good approximation to the actual beta function.
Furthermore, since any value of s <2 is as good as another,
we can combine the couplings for all lattice volumes studied
to extract the beta function via a fit. Most of the scaling
violations will be at the smallest a/ L, so we can simply look at
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FIG. 10. Rescaled discrete beta function for SU(2) gauge
theory with N, = 2 adjoints, calculated in two loops for various
scaling factors s. Also shown are the one- and two-loop beta
functions; the rescaled DBF approaches the two-loop beta
function when s — 1. Top to bottom, the curves are in the
order shown in the legend. From DeGrand, Shamir, and
Svetitskym 2011.

the largest L data points. With slow running, we are really
asking whether the slope of the 1/¢*(L) vs InL line varies
with L.

An example of a plot of 1/¢g?>(L) vs In L is shown in Fig. 11.
It is for the case of SU(2) gauge theory coupled to Ny =2
adjoint fermions, from DeGrand, Shamir, and Svetitsky
(2011). The slope changes sign. This is the clearest example
of IRFP behavior from a Schrédinger functional analysis that I
know. The picture can also be used to illustrate various ways
of dealing with lattice artifacts: different methods amount to
computing the slope of each line by taking different mixes of
L values. For example, one could compare the slope from L’s
of a fixed ratio, or from the whole line, or by dropping data
points at smaller L’s.

There are studies of alternative choices of boundary
conditions of the Schrodinger functional, with the idea of
finding a set with reduced lattice artifacts (Sint and Vilaseca,
2011; Karavirta, Tuominen, and Rummukainen, 2012; Sint
and Vilaseca, 2012). Typically, this is done using perturbation
theory. The issue with using them for slowly running systems
near the bottom of the conformal window is that the place
where one really wants to simulate (typically, looking for a
zero of a beta function) is at strong coupling. There,
perturbation theory is unreliable. Choosing a functional form
to extrapolate to zero cutoff that includes lattice artifacts is, at
best, phenomenology.

2. “Flow”

The new alternative goes by names such as “gradient flow”
or “Wilson flow.” It is a smoothing method for gauge fields
achieved by diffusion in a fictitious (fifth dimensional) time ¢.
In the continuum version, a smooth gauge field B, , is defined
in terms of the original gauge field A, through an iterative
process
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FIG. 11. SF coupling 1/¢* vs L/a (on a logarithmic scale), for
SU(2) gauge theory coupled to N = 2 adjoint fermions. Data
are at lattice gauge coupling (from the top) f = 3.0, 2.5, 2.0,
1.75, 1.5, and 1.4. The lines through the data points are fits to the
data at each 8 of the form 1/¢*(L) = a + bIn(L/a). The dotted
line has the slope 2b,/(162?) as given by the lowest-order beta
function, Eq. (24). From DeGrand, Shamir, and Svetitsky, 2011.

atBt,u = Dt.ﬂBt,ﬂU’ Bt./ux = aﬂBt,u - auBt.ﬂ + [Bf.w Bt,u]v
(75)
where the smoothed field begins as the original one,
By, (x) = A,(x). (76)

Correlators of the flow field can be used to define a coupling
constant (Fodor et al., 2012). For example, one possibility,
due to Luscher (2010), is

2
(E0) = 4 (Gu0G0) = N5+ 0. (1)

This can be used to define a renormalized coupling at a scale ¢,

E
o) =002, 78)

Simulations in a box of size L set the overall scale, and the
second scale ¢ is taken to be a fixed fraction of L. The method
has many variations. For example, the spatial averaging term
in the diffusion equation could be identical to, or different
from, the discretized gradient term in the action which is
simulated. Flow can be combined with the Schrodinger
functional (Fritzsch and Ramos, 2013), or can be used by
itself to define a coupling constant.

Those who have used it report that they can compute a
coupling constant with much smaller errors than a
Schrodinger functional calculation would give with equivalent
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FIG. 12. Continuum extrapolation of the Schrodinger functional
coupling for SU(2) with N, =2 adjoints. From Rantaharju,
2014.

statistics. Since the choice of ¢ defines its own coupling, it is
possible to collect simultaneous data for different definitions
of couplings g3, (#) and select the best one by some criterion
later. Discretization errors must still be removed along the
lines previously described. Recently, Rantaharju (2014) com-
pared the Schrodinger functional coupling to gradient flow in
SU(2) with N; = 2 adjoints. Here there was an issue with the
simplest version of a flow running coupling: discretization
errors were observed to be larger than for the Schrédinger
functional; see Figs. 12 and 13.

These figures are only the beginning of a presently
ongoing research area, studying how to suppress lattice
artifacts in measurements with flow. Improvement is
described by Fodor er al. (2014) and (in a preliminary
version) by Sint and Ramos (2015). However, as for the
Schrodinger functional, the theoretical analysis assumes
closeness to free field behavior. Fixed points for interesting
slowly running systems occur in strong coupling if at all,
and dealing with lattice artifacts in strong coupling will
always be phenomenological.

3. Monte Carlo renormalization group

Another approach, called the Monte Carlo renormalization
group (MCRG), is an implementation of the real space
renormalization group. Take a system defined with a momen-
tum space cutoff A (or a lattice spacing a) and some set of
dynamical variables U. Introduce some averaging algorithm
which replaces the fine-grained U’s with some coarse-grained
V’s. Now define a system with a smaller A’ or a bigger lattice
spacing, by integrating out the U’s, to give a partition function
expressed in terms of the coarse-grained variables and their
action S'(V):
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FIG. 13. Continuum extrapolation of the gradient flow coupling
for SU(2) with N, = 2 adjoints. From Rantaharju, 2014.

Z = / DUeSW)
= / dvT(U,V) / due=SW)
_ / AVeSW). (79)

Repeat this procedure. The change in the action is encoded in
a set of transformation rules for the coupling constants in the
action {K,K,, K3, ...} = {K|,K,, K5, ...}. In a lattice sys-
tem, the range of the averaging of U to V gives the scale
change s, so that we can speak of the coupling constants
running over a discrete scale s. How the couplings run
depends on the choice of blocking kernel T(U,V); this is
the analog of a renormalization scheme. As the system is
repeatedly blocked, the infrared couplings die away leaving
the marginal and relevant ones. These couplings will approach
a unique renormalized trajectory emanating from the critical
surface. Different bare couplings begin at different places but
end upon the renormalized trajectory.

The issue now is, how to measure the couplings. In the
“two-lattice matching MCRG method” this is done indirectly,
through observables. The idea is that if observables are
measured in two different lattice simulations, and if all the
observables have identical expectation values, than the sys-
tems are identical, so their coupling constants are matched.
Now imagine two systems with different K’s. Take one system
and perform n blocking steps so that the cutoff is reduced by a
factor s”. Measure many observables. Next, suppose that a
second system, with its own set of K’s, is blocked, and
suppose that after n — 1 steps its observables coincide exactly
with those of the first system (and remains identical under
further blocking). We say that when the bare couplings flow
from {K,,K,.Kj,...} = {K|.K},K},...}, long-distance
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FIG. 14. Sketch of the RG flow around a fixed point (FP) with
one relevant operator. The coupling pair (K, K’) indicates
matched couplings whose correlation lengths differ by a factor
of s. The line labeled RT is the renormalized trajectory. From
Hasenfratz, 2009.

physics is unchanged under a scale factor s. This is a
renormalization group equation for the bare parameters.

So, the rubric is as follows:

(1) Generate a first configuration ensemble of size L¢ with
action S(K). Block each configuration n times and
measure a set of expectation values on the resulting
(L/s")? set.

(2) Generate a second ensemble of configurations of size
(L/s)? with action S(K’). Block each configuration
n — 1 times and measure the same expectation values
on the resulting (L/s")¢ set. Compare the results with
those obtained in step (1) and tune the coupling K’
such that the expectation values agree; see Fig. 14.

The method has many good features: one can use smallish
lattices and measurements of local operators usually can be
done accurately. It has some not so good features: the location
of the fixed point, the renormalized trajectory, and the number
of steps needed to reach the renormalized trajectory all depend
on the choice of action and of the blocking kernel. Of course,
it is advantageous to be able to tune 7'(U, V). The analysis is
much easier when there is only one relevant variable (for
example, in pure gauge theory, the gauge coupling) than when
there might be more than one (typically, the mass and perhaps
the gauge coupling).

Early references to these methods for spin models are
Swendsen (1979, 1984) and for QCD, Hasenfratz et al
(1984a, 1984b), and Bowler ef al. (1985). The use of these
methods for slowly running theories was revived by
Hasenfratz (2009, 2010, 2012). Most of her work was on
SU(3) with 8 and 12 flavors of fundamentals. Results will be
discussed later.

A number of other possibilities for renormalized couplings
have been proposed; none has a long citation trail. One worth
mentioning is a technique (de Divitiis et al., 1994) that defines
a coupling through the correlation of Polyakov loops,
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measured over distances that are a fixed fraction of the lattice
size. This has been used by Lin ef al. (2012) for many-flavor
studies in SU(3).

C. Computing the mass anomalous dimension y,,

1. Schrodinger functional

The Schrodinger functional gives y,, through the volume
dependence of the renormalization factor Zp of the isovector
pseudoscalar density P¢ = yys(z¢/2)y. (The pseudoscalar
density is related by a chiral rotation to yy, which is the object
of interest.) It is computed from two correlators via (Capitani
et al., 1999; Sint and Weisz, 1999; Della Morte et al., 2005b;
Bursa et al., 2010)

_ o/

=L (50

fp is the propagator from the + = 0 boundary to a point
pseudoscalar operator at time x,

fr0 =33 [ d3yd3z<u7(xo)y5§w<xo>
<205 <) 81

It is conventional to take x, = L/2. In Eq. (81), ¢ and  are
wall sources at t = a, i.e., one lattice layer away from the
t = 0 boundary. The f, factor is the boundary-to-boundary
correlator, which cancels the normalization of the wall source.
Explicitly, it is

1

J1 =50

Y [ utvisa{wn Gew
<EO) 40 52

and ¢’ and ' are wall sources at t = L — a.

The continuum mass step scaling function (Capitani et al.,
1999; Sint and Weisz, 1999; Della Morte et al., 2005b; Bursa
et al., 2010) is

Zp(sL)
Zp(L)

op(v,s) = (83)

g (L)=v

It is related to the mass anomalous dimension via

op(0,5) = exp [— / S?ym(gz(rm)}. (84)

When the SF coupling ¢?(L) runs slowly, Eq. (84) is well
approximated by

op(P.s) = s, (85)

We can therefore combine many sL values collected at the
same bare parameter values into one fit function giving y,,,
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FIG. 15. Pseudoscalar renormalization constant Zp. From the

top, data are from f = 3.0, 2.5, 2.0, 1.75, 1.5, and 1.4. Lines
are fits to InZp(L) = —y,, In(L/a) + const for each B. From
DeGrand, Shamir, and Svetitsky, 2011.

InZp(L) = —y,,InL + const. (86)

An example of data for Zp is shown in Fig. 15.

As in the case of the running coupling, the question is
whether the slope of the line changes with L, and what its
value is at large L. This can be done either by comparing the
slope from pairs either of points at fixed s or of the whole line.
Again, there are many possibilities.

2. Finite-size scaling

Recall that the correlation length & of an infrared conformal
system diverges as the fermion mass m, is taken to zero, but
the finite system size L prevents it. If the only large length
scales in the problem are & and L, then observables can
involve only the scales £ and L and their ratio. This “finite-size
scaling” argument says that the correlation length in finite
volume &; must scale as

&L =LF(/L), (87)

where F(x) is some unknown function of £/L. A somewhat
more useful version of this relation invokes Eq. (61), to say

§L = Lf(L"my). (83)

This expression can be used to find the exponent y,,. One can
plot & /L vs LY m, for many L’s and vary y,. Under this
variation, data from different L’s will march across the x axis
at different rates. The exponent can be determined by tuning
v,, to collapse the data onto a single curve. An example of
such an analysis is shown in Fig. 16. It is for SU(3) gauge
theory and N, =2 symmetric-representation fermions by
DeGrand (2009).
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FIG. 16. Curve collapse in SU(3) gauge theory with N, =2
symmetric-representation fermions. Plots of &, /L vs m L' at
p =5.2 for four choices of y,: (a) y,, = 1.0, (b) y,, = 1.4,
(©)y,, = 1.8, and (d) y,, = 3.0. Plotting symbols are for different
simulation volumes, diamonds, 123 x6 (L = 6); octagons,
12> x8 (L =8); squares, 163> x8 (L =8); crosses, 12*
(L = 12); and bursts, 16* (L = 16). Curve collapse seems to
be best in (b) and (c¢). From DeGrand, 2009.

Often, it is unknown whether the system under investigation
is infrared conformal, or not. A comparison of its data with
Eq. (88) is used to decide the question. This could be
misleading: a coupling which runs so slowly that it scarcely
changes over the range of available L’s would induce
effectively conformal behavior.

Many finite-size scaling analyses of lattice data replace
curve collapse with a fit to some functional form for F(x). The
shape of F' is known for extreme values of its argument. For
example, in Eq. (87), F(x) ~x for small x and F(x) ~ 1 for
large x. Fitting to a curve allows one to quote a goodness-of-fit
parameter (such as a chi squared) along with the fit value of
VYm- The problem with this is that generally the complete
functional form of F(x) or f(x) is unknown. A poor fit could
occur because the guessed functional dependence of f(x) was
incorrect. Sometimes, one can fit the scaling functions to high
quality Monte Carlo data from one model which is a member
of its universality class, and use those fits to test whether other
systems lie in that class. An example of this analysis is that of
Engels and Karsch (2012), who fit scaling functions of the
three-dimensional O(4) spin model with the aim of making
comparisons with Ny = 2 QCD near its chiral transition. One
should also keep in mind that different quantities have their
own scaling functions. A fit to lattice data for the pseudoscalar
mass, the vector mass, and f, would have to use three
different scaling functions, one for each quantity.

In contrast, it is difficult to assign a goodness-of-fit
parameter to curve collapse.

An issue with this analysis bedevils many of the systems
which have been studied: the gauge coupling g, runs very
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slowly. This means that its exponent y, ~ 0. An analysis that
left it out would produce a leading critical exponent y,, that
appeared to drift with the bare gauge coupling. If the marginal
coupling is included in the scaling analysis, Eq. (88) is
modified to

§L = LfH(x7 gOmm)7 (89)

where @ = -y,/y,,. The scaling function fy(x,gom®) is
analytic even at the fixed point and can be expanded as

&, = LFy(x){1 + gom”Gy(x) + O(ggm*”)}. (90)

The first term is the usual expression while the second
accounts for the leading corrections to scaling.

The first group to go beyond Eq. (88) was Cheng et al.
(2014a). They studied the system with N, = 3 and N, = 12
fundamental fermions. They fit (with 1/&;, = My)

LMy,
— = Fy(x). 91
T oo = P ©1)

They did fits to several dimensionful parameters (pseudoscalar
and vector masses, f,) over a wide range of volumes and
fermion masses. Weaknesses of the calculation are that first,
they assumed some functional form for the scaling function
(to be fair, I do not see how to do curve collapse in a
multidimensional space) and second, the confidence levels
associated with the chi squareds of a number of the fits are
poor. Nevertheless, I find it quite impressive. y,, is nearly
independent of bare gauge coupling over a wide range.
Including the nonleading exponent renders all previous
studies obsolete.

Figure 17 shows the best curve collapse fit for the
pseudoscalar mass from these authors. It uses their data plus
results from two other collaborations, with many L’s and
many f’s. Compare the y,,’s with and without the correction,
Figs. 18 and 19.

3. Mass anomalous dimension from Dirac eigenvalues

Next there are a set of related methods extracting y,, from
the spectral density of eigenvalues A of the Dirac operator. The
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FIG. 17. Cheng et al. (2014a)’s best curve collapse fit, combin-
ing their data and that of the LH and LatKMI Collaborations
(Fodor et al., 2011a; Aoki et al., 2012).
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FIG. 18. Exponent y,, for the pseudoscalar mass, vector mass,

and pseudoscalar decay constant, not including the nonleading
coupling. The abscissa is the bare gauge coupling. From Cheng
et al., 2014a.

physics seems simple: The Banks-Casher relation (Banks and
Casher, 1980) connects the condensate ¥ and the density of
eigenvalues 4 of the Dirac operator p(4). At nonzero mass it is

2
S(m,) = — / p(ﬂ)dﬂﬁ. 92)

If the massless theory is conformal, and if the condensate
X (m,) scales as m{ for small mass, then p(4) also scales as A*.

A finite-size scaling argument (Akemann er al., 1998)
relates the scaling for the density p to the scaling of the value
of individual eigenvalues. If we consider the average value of
the ith eigenvalue of the Dirac operator in a box of volume
V = LP, and if p(1) ~ A%, then we expect

A 1y” 93
i~ (1) ©03)
where
D
= . 94
P 1+ a ©4)
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FIG. 19. Exponent y,, for the pseudoscalar mass, vector mass,
and pseudoscalar decay constant, including the nonleading
coupling. From Cheng et al., 2014a.
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For the case of a theory with an IRFP, p is equal to y,,, the
leading exponent. Thus p(1) ~ AP/¥n=1,

In QCD, or in other chirally broken theories, « = 0 and
p = D. Here the story is rich and involves an interplay of
confinement, chiral symmetry breaking, and random matrix
theory (Damgaard er al., 1999; Osborn, Toublan, and
Verbaarschot, 1999). Even the probability distribution of
individual eigenvalues can be used to determine the con-
densate. It is a universal function of the product AXV with
V = LP. Results obtained build on ones like Eq. (65).

Most of the beyond standard model literature uses the
integrated spectral density or mode number. This technique is
adapted from its original QCD venue, following the discus-
sion by Giusti and Luscher (2009). Their approach has been
applied to near-conformal theories by many. The most-cited
beyond standard model study is Patella (2012), who studied
the integrated spectral density for SU(2) gauge theory coupled
to N = 2 adjoint fermions.

He split up the eigenvalues into three classes:

e Very small ones, which are sensitive to the simulation

volume.

* Intermediate ones, which show the desired power law

scaling behavior.

 Large ones, which (for an asymptotically free system) go

over to free field p(1) ~ 4> behavior.
He integrated over the intermediate eigenvalues to find an
exponent.

An issue with using this method is that the exponent
depends on the range of eigenvalues used to measure it.
Cheng et al. (2013) combined the intermediate and large
eigenvalues to construct a “scale dependent mass anomalous
dimension,” whose scale in energy space is given by A itself,
and whose extrapolation to small A gives the actual y,,
(assuming, of course, that the system studied is truly con-
formal). They are able to compare and contrast a confining
theory [SU(3) with N; =4 fundamentals] with a slowly
running one [SU(3) with N, = 12 fundamentals], which they
identify as conformal. Their prediction for y,, is quoted later.

When I read these papers, I cannot help thinking: are the
smallest eigenvalues, which are the ones most sensitive to the
volume, not also the ones that are sensitive to the longest
distance physics? And if so, is there not some kind of finite-
size scaling or curve collapse story that can be told about
them? No such story exists in the literature, as far as I know.

There is another issue with the use of eigenvalues, which
appears when one thinks about what is actually being
measured.

Briefly, the spectral density of the massless Dirac operator

o) = (o -0 93)
k

is the discontinuity across the imaginary mass axis of the
resolvant,

1 . . .
p(d) = le_{%zval(ll +€) = Za(id —e), (96)
where
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k

is the expectation value (y(0)y(0)) for a fermion of mass m,,.
The resolvant cannot be computed in ordinary field theory.
The ordinary partition function is simply not a generator for it.
We need a generator and that can be found, but in a partially
quenched version of our theory, where the valence fermions
have a different mass from the dynamical fermions (and the
system has additional bosonic degrees of freedom to remove
the valence fermions from the partition function). Only this
extended field theory can probe the spectral density.

So, can a partially quenched theory tell us things about an
unquenched theory? For a chirally broken and confining
theory like QCD, it can, and partial quenching is one of
the standard techniques for computing low-energy constants.
But outside of this framework I know of no precise statement
of the connection. The end result is that if chiral symmetry is
unbroken, the physics of the measured spectral density may
not be quite what people think it is.

VI. LATTICE RESULTS FOR SYSTEMS WITH SLOWLY
RUNNING COUPLINGS: BY SYSTEM

Now we begin a survey of lattice calculations, separated by
specific model properties.

A. Early studies (before about 2007)

There is a long history of lattice studies of systems with
many fermionic degrees of freedom. Most of the early ones
involved thermodynamics. The question was, did the decon-
finement temperature 7', scale appropriately (remain a con-
stant ratio with respect to any other massive observable) as the
lattice spacing was taken away? The data were ambiguous. An
early review by Fleming (2008) contains citations to this
work. There were also a number of simulations of Wilson
fermions with many flavors of fundamentals by Iwasaki ef al.
(1992, 2004). These studies also searched for the loss of
confinement as the number of flavors increased. (They were
actually interested in seeing whether a deconfined phase
persisted all the way to # = 0.) Many of the features of later
simulations with Wilson fermions are first present in these
studies.

Damgaard et al. (1997) studied SU(3) gauge theory
coupled to 16 fundamental flavors and observed that while
the system had a strong-coupling phase, its weak-coupling
phase was chirally restored. They argued that they could
define a running coupling from the string tension, and that its
beta function was positive in the weak-coupling phase.
Looking back, this was the first appearance of the interior
of the conformal window in a simulation. It was followed by
Heller (1998)—the first Schrodinger functional measurement
of a running coupling in a many-flavor system. Heller also
observed a positive beta function. This paper was the
inspiration for the later, beyond standard model
Schrédinger functional work.

The earliest numerical simulation of a system with an
explicit place in beyond standard model phenomenology was
by Catterall and Sannino (2007), who studied what they called
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“minimal walking technicolor” [SU(2) with Ny = 2 adjoint
representation fermions]. “Minimal” refers to the particle
content: with Ny = 2 there are three Goldstones to be eaten
by the W and Z bosons leaving no technipions behind.
“Walking” is, of course, because the beta function is small
in one loop, and the system might be confining according to
the analysis of Sannino and Tuominen (2005) and Dietrich
and Sannino (2007). They carried out spectroscopic measure-
ments and observed what was at the time peculiar behavior
that T already described earlier; recall Fig. 9. This was later
recognized as the spectroscopy of a near-conformal system in
finite volume.

The field then became very active. To go on, we should
separate the discussion of different physical systems into their
own sections.

B. Studies of N, = 3 and many flavors of fundamental fermions

I do not think these systems were ever taken seriously as
true technicolor candidates. They have too many (NJ% -1
Goldstone bosons. Electroweak symmetry breaking eats only
three of them, leaving N} — 4 technipions to be observed in
experiment, or somehow explained away. But, all lattice QCD
people have computer programs to simulate SU(3) gauge
fields and it is easy to modify the code to do many flavors of
fermions. With staggered fermions, multiples of 4 are easy,
with Wilson fermions, multiples of 2. The motivation was just
to see whether walking actually occurred, or not. For these
reasons, I believe it is still the most-studied lattice beyond
standard model sector, both in number of papers written and in
computer hours consumed.

The earliest studies in this area were the large scale
Schrodinger functional simulations of Ny =8 and 12 by
Appelquist, Fleming, and Neil (2008, 2009). They claimed to
observe an IRFP for N = 12, while the beta function for
N, = 8 was everywhere negative. Thus, the boundary for the
conformal window was claimed to be somewhere between 8
and 12 flavors. Their results for Ny = 12, as they presented
them, are shown in Fig. 20.

Figure 20 uses heavily processed lattice data. It comes from
a many-parameter fit to all of their data at many bare couplings
and many volumes, of the form

1 B ﬂ 3 n 9 l
aZ(ﬁ,L/a)‘E[l ;/(ﬂ)} ©8)

I cannot evaluate results from such global fits. Fortunately,
they published their data, and it is possible to look at it
directly. This is shown in Fig. 21. Lines connect data collected
at the same bare gauge couplings. I have drawn a line whose
slope is the one-loop beta function result. As the bare gauge
coupling moves from weak to strong coupling, the slope of the
lines in Fig. 21 flattens slightly. Does it change sign? They
said yes, but the existence of a large literature about this
system indicates that others looked at the figure and
said maybe.

The situation with eight flavors seemed to be much more
clear cut: the beta function was everywhere negative. This can
be seen in a plot of 1/¢?(L) vs In L; see Fig. 22. In fact, all the
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FIG. 20. Continuum running for SU(3) gauge theory coupled to
N; = 12 fundamentals Results shown for running from below the
infrared fixed point (triangles) are based on g*(L,) = 1.6. Also
shown is continuum backward running from above the fixed point
(squares), based on §*(L,) = 9.0. From Appelquist, Fleming, and
Neil, 2009.

lines show nearly the same slope. This is not surprising from a
perturbative viewpoint; b, [recall Eq. (24)] is nearly zero.

LN, =12

The largest set of lattice results concerns N, = 12.

Shortly after the work of Appelquist, Fleming, and Neil
(2009) appeared, Fodor et al. (2009) carried out spectroscopic
studies with Ny = 4, 8, and 9 flavors and argued that even the
larger N, systems were chirally broken. In a conference
proceedings followed by a journal article, Fodor et al. (2011a)
claimed that N = 12 was also confining. Their lattice data
were taken at many volumes and fermion masses, but one bare
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FIG. 21. Raw lattice data for SU(3) gauge theory coupled to

N; = 12 fundamentals. Lines connect data with the same bare
couplings. The line at the bottom is the slope expected from one-
loop running. From Appelquist, Fleming, and Neil, 2009.
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FIG. 22. Raw lattice data for SU(3) gauge theory coupled to
N; = 8 fundamentals. Lines connect data with the same bare
couplings. The line at the bottom is the slope expected from one-
loop running. From Appelquist, Fleming, and Neil, 2009.

gauge coupling. Appelquist, Fleming et al. (2011) and
DeGrand (2011) did finite-size scaling studies to the data
sets of Fodor er al. (2011a) and concluded that they were
consistent with infrared conformality. A later large volume
study by Aoki et al. (2012) contributed data sets at two bare
couplings and concluded that the data favored infrared
conformality. Finally, Cheng er al. (2014a) performed a
finite-size scaling analysis, with the leading irrelevant oper-
ator, on all these data sets, and claimed that all the data were
consistent with infrared conformality, strongly affected by a
nonleading exponent. Figures pertinent to the data are
Figs. 17, 18, and 19.

Besides Appelquist, Fleming, and Neil (2009), several
groups claimed to observe an IRFP. Lin et al. (2012)
computed the renormalized coupling from twisted Polyakov
loops (de Divitiis et al., 1994) and claimed this. Hasenfratz
(2012) used MCRG to observe a positive beta function (in my
conventions) for the bare step scaling function, in strong
coupling. This is evidence for an IRFP since the beta function
is negative in weak coupling. And most recently, Cheng et al.
(2014b) observed a fixed point using a gradient flow definition
of a running coupling.

To summarize, all groups except Fodor et al (2011a)
observed behavior consistent with infrared conformality for
Ny = 12. The mass anomalous dimension y,, is found to be
small by all who report a measurement. There are enough
studies of this system that a table is useful; see Table I. I think
that the evidence in favor of infrared conformality is
overwhelming.

Aoki et al. (2013a) measured the mass of a scalar resonance
in N;=12. They found it is slightly lighter than the
pseudoscalar mass at the nonzero fermion masses where they
simulate. This would be the light state consistent with
incipient criticality described in Sec. IILF.
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TABLE 1. Claims for the phase structure for SU(3), Ny = 12
fundamentals. The “result” column is keyed with a C if claimed to
observe a confined, chirally broken system, and an I if infrared
conformal behavior is claimed or assumed. An * indicates that an
IRFP was observed. Under “method,” FSS refers to finite-size scaling
with “fit” for a fit to a known scaling function and “cc” for curve
collapse. “Spectral” refers to the use of the spectral density of Dirac
eigenvalues. “Spectra” refers to spectroscopy. SF is a Schrodinger
functional. “Flow” refers to some variant of Wilson flow. Predictions
for y,, are given where available.

Reference Method Result Ym
Appelquist, Fleming, SF I*
and Neil (2009)
Fodor et al. (2011a) Spectra C
Appelquist, Fleming FSS (fit) I 0.40(1)
et al. (2011)
DeGrand (2011) FSS (cc) I 0.35(23)
Hasenfratz (2012) MCRG I*
Aoki et al. (2012) FSS (cc) 0.4-0.5
Lin et al. (2012) Other I*
Cheng et al. (2013) Spectral 0.32(3)
Cheng et al. (2014a) FSS (fit) I 0.235(15)

Cheng et al. (2014b) Flow I*
I

Lombardo et al. (2014) FSS (fit) 0.235(46)

This is probably a good place to talk about lattice artifacts in
strong coupling. Recall the situation with these slowly running
theories: if the gauge coupling is strong at long distance, then
it is also strong at the cutoff scale. This is an invitation for
lattice artifacts to appear. Universality should be lost. This is
not just a problem of principle. These days, essentially all
lattice groups simulate with different lattice actions. In the
small lattice spacing limit, all these actions differ by irrelevant
operators, and they all should give identical predictions. But in
strong coupling, one group might see something which
another group does not, just because their actions are different.

However, there are some general features that can be
described. I know the situation for Wilson-type fermions
the best. Recall that the bare Wilson fermion mass is
additively renormalized. Any calculation that must be done
at am, = 0, such as a Schrodinger functional calculation, is
carried out along the critical kappa line «.(f3) vs . The generic
Wilson fermion artifact is that when the number of fermionic
degrees of freedom is large enough, at strong coupling the x,.
line vanishes: there is a line of discontinuity in which the AWI
quark mass jumps abruptly from positive to negative. This was
seen first in Iwasaki er al. (1992, 2004), and nearly every
paper with many Wilson fermion degrees of freedom reports
it. Nagai et al. (2009) is a particularly complete example: they
studied SU(2) and some SU(3) gauge theories coupled to
many flavors of fundamental fermions, at # = 0. A first order
transition appears at around N, = 6 for SU(2).

What is annoying about this transition is that the interesting
region for slowly running theories is at strong coupling, but
if there is no place where the fermion mass vanishes, one
cannot do lattice studies. In particular, running coupling
studies typically chase a running coupling into strong cou-
pling, watch it run ever more slowly, and then the transition
appears just before (or just after) a zero of the beta function is
about to occur.
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The precise location of the transition is not universal, and
it is possible to design (empirically) actions for which the
transition is pushed to stronger coupling. Shamir, Svititsky,
and I found it quite useful to do this.

As far as I can tell, there are no other transitions generically
observed on the weak-coupling side of this transition, so at
least the weak-coupling phase of a Wilson fermion simulation
seems to be analytically connected to the Gaussian fixed point
at ¢> = 0 or infinite f.

Staggered fermions seem to be more complicated, but
maybe that is just because I have no personal experience
with them. Cheng, Hasenfratz, and Schaich (2012) have a
collection of earlier references and a description of their new
strong-coupling phase. It is bracketed by jumps in the
condensate. It is a phase where lattice translational symmetry
is broken: the condensate (yy) is different on even and odd
lattice sites. The phase forms a pocket extending from small
(zero?) quark mass to some maximum value, over a range of
strong values of 4. This is seen for both Ny =12 and 8
fundamentals. The phase is confining but apparently chirally
restored. (Such continuum language may not be appropriate
for a strong-coupling phase.) Other groups (Fodor ef al.,
2011b; Deuzeman et al., 2013; Jin and Mawhinney, 2013)
have reported similar structure.

Of course, other groups are careful to avoid such phases
when they see them. But that may not be good enough. One is
really interested in physics in the basin of attraction either of
the Gaussian fixed point or of an IRFP. A nearby transition
may affect what one is seeing, as much as the IRFP or the
Gaussian fixed point. This was probably an issue for Wilson
fermion Schrodinger functional studies, which were looking
for a fixed point very close to a strong-coupling transition.

2N, =10

Hayakawa ef al. (2011) computed a running coupling in a
Schrédinger functional simulation. Their s = 2 discrete beta
function is shown in Fig. 23. They certainly observed slower
running than the perturbative result. Is there a zero? I am afraid
to say yes, although they have no such fear. This result is
significant with respect to N = 12, because if N r= 10 is
infrared conformal, it is hard to see how N =12 could
not be.
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FIG. 23. N; = 10 beta function for u = g°, along with pertur-
bative expectations. From Hayakawa et al., 2011.

Rev. Mod. Phys., Vol. 88, No. 1, January—March 2016

015001-33

3.Nf=8

N; = 8 is quite curious: The Schrédinger functional beta
function of Appelquist, Fleming, and Neil (2009) is negative.
As Fig. 22 shows, the beta function basically runs at its one-
loop value over the entire observed range.

Early work by Deuzeman, Lombardo, and Pallante (2008)
claimed to see a thermal transition that moved to a weaker bare
coupling as the lattice size increased. So far, so good, for
confinement and chiral symmetry breaking. But recently Aoki
et al. (2013b) studied N, = 8. Most of their data are from
three volumes, but one bare gauge coupling. They described
observing behavior at small fermion mass consistent with
chiral breaking (nonzero pseudoscalar decay constant, non-
7ero vector meson mass, zero pseudoscalar mass all in the
chiral limit). At the same time they found behavior at large
fermion mass consistent with power law scaling and a large
7. ~ 1. This seems strange; if a data set is going to be infrared
conformal, it will be most infrared conformal at the smallest
fermion mass, subject to the caveat that finite-volume effects
are largest there.

Appelquist et al. (2014c) also have data at one gauge
coupling, two large volumes, and several quark masses. They
see separation between the pseudoscalar and vector masses
and lack of parity doubling in the vector and axial vector
channels, all increasing at their smallest fermion masses.
However, simple power law fits [like Eq. (61)] also reproduce
the data with good quality. (Their two volumes did not have
the overlapping region needed for a real finite-size scaling
analysis.) Compare Figs. 24 and 25.

The Dirac eigenvalue study of Cheng et al. (2013) reported
a large y,, ~ 1 from the integrated spectral density. [Recall
Eq. (94).] They did not observe good quality chiral behavior
a la Banks-Casher.

Finally, two recent groups, Fodor et al. (2015a) and
Hasenfratz, Schaich, and Veernala (2015), reported calcula-
tions of a gradient flow running coupling. The beta function is
everywhere negative, smaller than (Hasenfratz, Schaich, and
Veernala, 2015) or consistent with (Fodor et al., 2015a) its
small two-loop value.

I think that lattice calculations of running couplings provide
strong evidence that N, =8 is not inside the conformal
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FIG. 24. Ny = 8 spectroscopy with fits motivated by chiral
symmetry breaking. From Appelquist et al., 2014c.
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From Appelquist ez al., 2014c.

window. I am not sure what can be done with spectroscopy to
support this claim. Simulations at several bare gauge cou-
plings, along with data at enough volumes for a real finite-size
scaling analysis, might help. But it might just be that the
coupling is running so slowly that it can never grow across any
imaginable simulation volume; then the range of accessible
volumes makes the system effectively conformal. One would
have to simulate deep in strong coupling to see signals of
confinement or chiral symmetry breaking. But then, the
system would be strongly interacting at its shortest lattice
distances. Where is a connection to asymptotic freedom?

Y. Aoki et al. (2014) reported a light isoscalar scalar state,
whose mass is roughly equal to that of the pseudoscalar at the
nonzero fermion masses where they collected data. They
argued that its mass extrapolates to a nonzero value at zero
fermion mass, and thus it is a candidate for a dilatonic Higgs. I
am not prepared to believe this claim since where they have
data, the mass of the scalar is degenerate with the mass of the
pseudoscalar state.

4.N;<6

With N = 6 and below, we are back on more familiar
ground. These systems are confining and chirally broken.
At N, = 6, there is a finite temperature transition that moves
with lattice size in a reasonable way (Miura, Lombardo, and
Pallante, 2012). The LSD Collaboration has done several
studies comparing observables with some relation to electro-
weak physics at Ny = 2 and 6. Ny = 6 has a running, not a
walking, coupling, but the collaboratlon was hoping to see
trends that might become stronger closer to the edge of the
conformal window. Their data are from one § value per Ny,
with several fermion masses.

Appelquist et al. (2010) showed that the ratio of the
condensate to the cube of the pseudoscalar decay constant
F, (pw)/F3, increases with increasing N - [They actually
compute (fy) from M2F?/(2m,).] Their plot is shown in
Fig. 26. The larger condensate allows for larger quark masses
while keeping flavor-changing neutral currents small. [Recall
the discussion around Eq. (31).] They state that their Ny = 6
data sets are not at small enough quark mass and big enough
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FIG. 26. The ratio (pw)/F> of Ny;=6 to N;,=2,
R, =[M2/2mF,, ]éf/[Mm/ZmFm]zf, vs the average fermion
mass m. From Appelquist er al., 2010.

volume to be reliably deep into the chiral limit, so their results
are tentative.

Next, Appelquist ef al. (2011) computed the S parameter. It
is proportional to the limiting value of d(¢*T14R(¢%))/dq?
[recall Eq. (38)] at small ¢2, after Goldstone boson effects are
subtracted.

At heavier quark masses, their S parameter scales roughly
linearly with N, (or more simply the N, = 6 value is 3 times
the Ny = 2 value). This is expected behavior, just counting
degrees of freedom. However, at their smallest Ny =6
fermion mass their S parameter plunges to become nearly
equal to the N = 2 value. This is shown in Fig. 27.

This is only one point, but they argued it is a real effect,
with the following cause: If the correlator can be saturated by a
sum of resonances, it can be written as

2002 2
() = Z e 2 Z faMs =3 (99)
+M q + M5 q

and the S parameter is dominated by the difference of vector
and axial vector contributions of this expression. The masses
of the lightest vector and axial vector mesons are relatively
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FIG. 27. S parameter for Ny = 2 (diamonds and band) and

N; =6 (circles and band). For each of the solid points,
MpL > 4. From Appelquist et al., 2011.



Thomas DeGrand: Lattice tests of beyond standard model dynamics

easy to extract from lattice data. They observed that these
states became more degenerate at N, = 6 than they were at
Ny = 2 and at the same time the S parameter decreased. They
took the decrease to be a favorable generic result for a
technicolor solution to beyond standard model physics.

Their third calculation is of WW scattering parameters
(Appelquist et al., 2012). This is done using the Goldstone
equivalence theorem; longitudinal W scattering amplitudes
can be computed in terms of Goldstone boson scattering
amplitudes. The scattering amplitude (more precisely, the low-
energy scattering phase shift) can be computed from the shift
in energy of the two-pion state in finite volume. This is not an
easy calculation even in QCD, and LSD only had one volume.
They could measure a scattering length for the maximal
isospin channel in Ny =2 and 6. It is consistent with the
lowest-order chiral perturbative result.

C. N, = 2 and many fundamental flavors

The cost of a simulation scales as N%, so these systems are
cheaper than N. = 3. This means that, in principle, one can
study a larger range of volumes for an equivalent use of
resources. However, they are less studied than N, = 3.

A Schrodinger functional analysis by Karavirta, Rantaharju
et al. (2012) claimed that Ny = 10 has an IRFP and Ny = 4
has a negative beta function. A conference proceedings by
Ohki ez al. (2010) argued that Ny = 8 has an IRFP. Rantaharju
et al. (2014) recently presented preliminary results of a
gradient flow coupling for Ny = 8. They observed perturba-
tive running in weak coupling with no direct evidence for a
fixed point.

N; = 6 is the most controversial point. The two-loop beta
function has a zero deep in strong coupling. Bursa, Del
Debbio, Keegan et al. (2011) claimed slow running, but could
not tell if there was a fixed point. Hayakawa et al. (2013)
claimed to see an IRFP, with a small y,,, although with large
errors (0.26 < y* < 0.74). Karavirta, Rantaharju et al. (2012)
have inconclusive results for N, = 6. Their y,, for N, =6
ranges from 0.1 to 0.25 over an observed g> range, smaller
than the one-loop perturbative value. The largest statistics
study to date of Ny = 6 is the Schrodinger functional study of
Appelquist ef al. (2014a). They found no evidence of an IRFP.

D. Fermions in higher dimensional representations

An alternative way to achieve slow running is to bundle the
many fermion degrees of freedom into a small number of
higher dimensional representations. This could be phenom-
enologically attractive: with Ny, =2 there are no uneaten
Goldstones to become technipions. On the other hand, this
could be phenomenologically unattractive: technifermions are
in different color representations from standard model fer-
mions, so they cannot be members of the same multiplet.

The most studied of these systems is SU(2) with Ny = 2
adjoints (minimal walking technicolor). Every technique
mentioned, and probably more, has been applied to this
system. I have already shown examples of its spectroscopy,
by Hietanen, Rantaharju ez al. (2009). Interesting Schrodinger
functional studies include Hietanen, Rummukainen, and
Tuominen (2009), Bursa et al. (2010), and DeGrand,
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FIG. 28. Beta function for SU(2) with Ny = 2 adjoints. This is
based on comparisons of two L values related by a scale factor
s = 2. The horizontal dash-dotted line is the one-loop beta
function, and the curved line is the two-loop beta function.
From DeGrand, Shamir, and Svetitsky (2011).

Shamir, and Svetitsky (2011). It is the clearest example of
an IRFP system.

I will show a few more figures from DeGrand, Shamir, and
Svetitsky (2011). Figures 11 and 15 showed raw lattice data
for the running coupling and Schrodinger functional Zp(L).
These data can be turned into plots of the beta function and
coupling-dependent mass anomalous dimension. These are
shown in Figs. 28 and 29.

Many groups have observed that y,, is small. Some
numbers are given in Table II.

Recently Athenodorou et al. (2015) reported that SU(2)
with one adjoint flavor is near conformal with a mass
anomalous dimension near unity. This comes from finite-size
scaling of the spectrum and the integrated spectral density.
Perturbatively, this system is like SU(3) with eight funda-
mentals; b, is small and b, is even smaller.

The other work in this area I know of is mostly by me and
my collaborators, all with Wilson fermions, mostly using a
Schrédinger functional:

e SU(3) with Ny =2 two-index symmetric (S2) repre-
sentation fermions (DeGrand, Shamir, and Svetitsky,
2009, 2010, 2013a), also with spectroscopy (DeGrand,
Shamir, and Svetitsky, 2009) and finite-size scaling
(DeGrand, 2009).

e SU(4) with N, =2 S2 representation fermions (De-
Grand, Shamir, and Svetitsky, 2012).

e SU(3) with Ny =2 adjoints (DeGrand, Shamir, and
Svetitsky, 2013b).

* SU(4) with Ny = 6 AS2 fermions (DeGrand, Shamir,
and Svetitsky, 2013b).

We could not tell if the beta function had a zero for any of
these systems—it either followed or ran more slowly than, the
two-loop formula, deep into strong coupling. At this point we
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FIG. 29. Mass anomalous dimension 7,,(¢%). The horizontal
bar at the top marks our location (with its uncertainty) for the
critical coupling. The crosses are the data of Bursa et al. (2010),
analyzed with the same fit. The diagonal line is the
lowest-order perturbative result. From DeGrand, Shamir, and
Svetitsky, 2011.

lost control of the calculation: either we hit the Wilson fermion
transition where zero quark mass was lost or the calculation
simply became too expensive. Spectral data for SU(3) S2 at
several bare gauge couplings shows curve collapse consistent
with near-conformal behavior distorted by the finite volume.
(That was shown in Fig. 16.) All these systems are claimed to
have small mass anomalous dimension at values of the
coupling constant where the observed beta function is small.
This region dominates the integral in the formula for the
running condensate, Eq. (33), so most of the evolution is at
small y,,. This renders these systems uninteresting for tech-
nicolor, we said, even if the beta function were to become
large and negative at even stronger coupling.

Large-N, scaling is a nice way to present these systems.
Figure 30 shows y,, from our S2 studies and Fig. 31 shows the
beta function with two adjoint flavors.

There is a controversy about SU(3) with N, =2 S2
fermions: Fodor et al. (2012a) claimed that the system is

TABLE II. Mass anomalous dimension y,, in SU(2) with N, =2
adjoint fermions, from publications with reasonably small uncer-
tainties. Under “method,” FSS refers to finite-size scaling, and
“scaling” refers to a fit to Eq. (61). “Spectral” refers to use of the
spectral density of Dirac eigenvalues. SF is a Schrodinger functional.

Reference Method Vm
Del Debbio et al. (2010) Scaling 0.22(6)
DeGrand, Shamir, and Svetitsky (2011) SF 0.31(6)
Patella (2012) Spectral 0.371(20)
Giedt and Weinberg (2012) FSS 0.50(26)
Del Debbio et al. (2013) Spectral 0.38(2)
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FIG. 30. y,, from simulations with two flavors of symmetric-
representation fermions, as a function of 1 = gzN, where g2
is the Schrodinger functional coupling. The line is the
lowest-order large-N prediction. From DeGrand, Shamir, and
Svetitsky, 2012.

confining and chirally broken. Their results have, so far,
mostly only been presented in a long series of conference
proceedings. It is difficult to evaluate such works in progress,
so my description of their results might be incomplete, but let
me try.

Their calculations use staggered fermions with N, =2
flavors achieved by rooting the fermion determinant. The bulk
of their published simulations is almost all at one gauge
coupling, deep in strong coupling, although data at four
couplings are said to exist. Data are collected at many bare
fermion masses and lattice volumes, and the pseudoscalar
mass and chiral condensate are presented after an extrapola-
tion to infinite volume using chiral perturbation theory. The

0.0 0.1 0.2 0.3 0.4
u=1/(g*N)

FIG. 31. The beta function from simulations with two flavors of
adjoint fermions. The lines are the beta functions at one and two
loops. From DeGrand, Shamir, and Svetitsky, 2011, 2013b.
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chiral condensate extrapolates to a nonzero value in the zero
mass limit. The vector and axial vector mesons do not appear
to be degenerate (so that the parity doubling which would
indicate chiral restoration is absent). The pseudoscalar and
vector masses appear to separate; looking at the figures in
Fodor et al. (2012a), at the lightest fermion mass, the
pseudoscalar’s mass is about half the vector’s. They observe
m,/ f ~7in the chiral limit. Fits of different (infinite-volume
extrapolated) quantities to the naive Eq. (61) done in Fodor
et al. (2012a) do not give y,,’s which are consistent with each
other. Finally, Fodor et al. (2015b) and Fodor, Holland et al.
(2014) claimed evidence for a light isoscalar scalar state.
When I compared figures in their two papers, it appeared to be
lighter than their pseudoscalar mass at the lightest recorded
quark mass.

An observable related to the potential and a running
coupling present contrasting pictures. Fodor et al. (2012b)
showed a plot of the static force versus distance r. At
r/a = 4-5, it looks Coulombic to the eye, and by r/a =
10 the force is constant. This says that the potential changes
qualitatively over a scale factor of distance of about two. With
their vector meson masses am, to give a dimensionless
number, the crossover is at a distance where m,r ~ 2. In
QCD, the inflection point is at about r ~ 0.3 fm, so m,r ~ 1.
This comparison plus the spectroscopy reported previously
argues for a QCD-like system with a rapidly varying coupling
constant.

However, Fodor et al. (2015b) presented a calculation of a
flow coupling constant. They showed a figure overlaying their
result on the one- and two-loop perturbative beta function. It
shows a coupling which increases over the observed range,
without a fixed point. The coupling appears to be running at a
much lower rate than that of the one-loop beta function, and at
their largest coupling, it runs more slowly than the two-loop
formula. [Recall that the one loop b; = 13/3 for this system,
as opposed to by =9 for SU(3) with three fundamental
flavors or by = 3 for 12 fundamentals.] I do not know how to
reconcile these results with the previous one. There is
insufficient published data from them to allow further con-
clusions to be drawn.

Over the last few years, Kogut and Sinclair (2010, 2011,
2014) investigated this system, and the Ny =3 S2 system,
using the motion of finite temperature phase transition as a
potential indicator of confining versus infrared conformal
behavior. Their results are ambiguous: with small lattices in
the temporal direction (N, = 4 and 6) the transitions, which
are located at strong coupling, move quickly, while at larger
N, the transition continues to move, but more slowly.
“However, further simulations at larger N,(s) are needed,”
wrote Kogut and Sinclair (2014).

E. An attempt to sum up

I think that nearly all lattice results from systems with many
fermion degrees of freedom show behavior which is consistent
with expectations from the one-loop beta function, as
described around Eq. (57). [The one exception is the work
by one group on SU(3) with N, = 2 S2 fermions.] Nearly all
systems studied have both spectroscopic data and coupling
constant measurements, and more-or-less power law behavior
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for spectra Egs. (61) and (87) is correlated with the presence of
slowly running couplings. What is still unknown is the precise
boundary of the conformal window. This is not surprising:
slow running is not that different from no running.

The plot of Dietrich and Sannino (2007), Fig. 2, has been
frequently mentioned. We try to build our own picture, using
lattice data. Figure 2 shows the boundary of the conformal
window for various representations as lines, as if one could
imagine systems with a fractional flavor number. The situation
for small N r and N_. is more discrete, of course. How to
present things? The relevant variable is something like the
number of fermionic degrees of freedom versus the number of
gluonic ones. Looking at the two-loop beta function, a
reasonable choice is N,T(R)/N,. [Of course, b, includes
C,(R), but it basically scales as N, and it has a small
coefficient compared to 20/3.]

Figure 32 is my best guess at the status. The labels are “C”
for confined and chirally broken, “D” for deconfined, chirally
restored, and probably conformal in the massless limit, and
“?” for unknown. In this figure, the rightmost symbols for
N, =2 and 3 are S2 (equivalent to adjoint for N. = 2) and
the leftmost ones are for fundamentals. The two N, =4
entries are S2 and AS2.

I assigned the following systems question marks: for
N.=2, Ny =06 fundamentals and N, =1 adjoints; for
N.=3, N = 10 fundamentals. I listed all of the higher-
representation systems with N. = 3 and 4 as “unknown.” Yes,
after 7 years of work, there are still question marks. But,
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FIG. 32. My attempt at a synthesis of lattice results for the
vacuum structure of various systems. The labels are “C” for
confined and chirally broken, “D” for deconfined, chirally
restored, and probably conformal in the massless limit, and
“?” for unknown. The rightmost symbols for N, = 2 and 3 are S2
(equivalent to adjoint for N. = 2) and the leftmost ones are for
fundamentals.
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people did not study systems where they knew the answer.
These are all difficult systems.

And did anyone ever publish a plot with the “technicolor
dream” beta function, Fig. 3?7 Not in a simulation of a
four-dimensional system of gauge fields and fermions.

To say once more why slow running was difficult: A dip in
the beta function was not the issue, the problem was the
extremely small value of the one-loop beta function as the
number of fermion degrees of freedom increased. Contrast
Fig. 3 with real two-loop running as in Fig. 33.

I think that generally, when they began studying systems
with slowly running couplings, people did not appreciate how
different they were from QCD. Much of the context QCD
studies used to evaluate results was absent. For example,
dealing with rooted staggered fermions requires knowledge
that the system is chirally broken, plus access to the Gaussian
fixed point, the ability to make the system weakly interacting
at short distance while maintaining strong interactions at long
distance.

Several approaches worked poorly. I do not think that
simulations at finite temperature have been too useful. Large
scale spectroscopic simulations at a single value of the bare
gauge coupling generally proved inadequate for determining
whether a system was confining and chirally broken, or
infrared conformal. Simulations at many volumes were useful.
Simulations at one large volume, hoping to approximate
infinite volume, were less so. Remember Eq. (57). When
the coupling constant runs slowly, no volume is large enough.
I think that the case of N, =12 fundamentals clearly
illustrates this conclusion. Figure 17 is a smoking gun for
infrared conformality, and the authors needed data from many
bare parameters and volumes to build it.

The situation for the mass anomalous dimension is harder
to summarize. The best-determined numbers are for SU(2)
with N, = 2 adjoints, and SU(3) with N, = 12 fundamen-
tals. In both cases y,, is small. Only for the systems SU(3)

B(g®)

FIG. 33. Two-loop beta function for SU(3) with (from the
bottom up) Ny =3, 6, 9, 12, and 15 flavors of fundamental
representation fermions. N = 9 has a zero at g* = 66, far to the
right off the plot.
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with Ny = 8 fundamentals, SU(2) with Ny = 6 fundamen-
tals, and SU(2) with N, = 1 adjoint are there claims of large
Ym'S;

and the claims are presented very cautiously. All other
systems appear to have small mass anomalous dimensions.
Apparently, a large mass anomalous dimension can occur only
for a theory which is right on the sill of the conformal window
(if at all).

VII. CONCLUSIONS

At the time of writing this review, there is no evidence for
any particular beyond standard model scenario in data. The
Higgs exists with near standard model couplings, and evi-
dence for beyond standard model physics (neutrino masses
and mixing, dark matter, etc.) remains a set of disconnected
observations. As an outsider in the beyond standard model
field, it seems to me that the dominant theoretical motivation
for new physics is not so much that there is physics beyond the
standard model, but that there is a theoretical issue with the
standard model itself—the hierarchy problem. This takes us
back to a nonperturbative resolution of the hierarchy problem
as a possibly attractive choice, Eq. (21) and beyond.

This is a niche for the lattice. But it requires an ultraviolet
completion, before any lattice calculation can be envisioned.
The lattice is not about symmetries, it is about low-energy
constants. Phenomenologists who have a favorite beyond
standard model scenario and want lattice people to study it
have to give them a concrete ultraviolet completion.

Most lattice work focused on one particular corner of
beyond standard model dynamics, technicolor, and on one
small area of technicolor, mostly SU(3) and many funda-
mentals. This certainly seems peculiar, given the wide set of
continuum beyond standard model possibilities in the liter-
ature. Why did this happen? I am not sure. It might be because
lattice simulations have to begin with some ultraviolet
completion, and because the framework of candidate ultra-
violet completions was naturally present in the technicolor
literature, in a lattice-friendly way: non-Abelian gauge the-
ories with fermions in four dimensions.

Studies of near-conformal systems tell us that when N, is
small, there are actually only a small number of confining and
chirally broken systems. Most of them are not appropriate for
beyond standard model physics associated with the Higgs: the
coupling constants probably run too fast for technicolor, and
the flavor symmetry groups are often too small for composite-
Higgs scenarios. However, some of them are composite-Higgs
candidates, and some of them could be composite dark matter
candidates. Most of them are also interesting as analog
systems for QCD. Little is known about their mass (and
other) anomalous dimensions. All of them could be explored
with today’s available software and computer power. In
particular, much of the technology for computing QCD matrix
elements can be straightforwardly applied to these systems.
This could be an interesting thing to do. It would check large-
N, counting of matrix elements, and the variation of observ-
ables on N ’ could be probed. Recall how, in Sec. III.C, I said
that if technicolor was like QCD, it would be ruled out by
experiment, but that technicolor might not be QCD like? A
larger version of this question is to ask how much like QCD
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are theories which are nearby it in the space of N, N, and
fermion representation?

Of course, no theoretical calculation by itself is going to
reveal the existence of some particular beyond standard model
scenario. Without new experimental data, all theory can do is
suggest possibilities. In the long term, whether or not the
words “lattice” and “beyond standard model” should, or will,
appear again in the same title is a question only experiment
can decide.
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