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In little more than 20 years, the number of applications of the density functional (DF) formalism in
chemistry and materials science has grown in an astonishing fashion. The number of publications
alone shows that DF calculations make up a huge success story, and many younger colleagues are
surprised to learn that the widespread application of density functional methods, particularly in
chemistry, began only after 1990. This is indeed unexpected, because the origins are usually traced to
the papers of Hohenberg, Kohn, and Shammore than a quarter of a century earlier. The DF formalism,
its applications, and prospects were reviewed for this journal in 1989. About the same time, the
combination of DF calculations with molecular dynamics promised to provide an efficient way to
study structures and reactions in molecules and extended systems. This paper reviews the develop-
ment of density-related methods back to the early years of quantum mechanics and follows the
breakthrough in their application after 1990. The two examples from biochemistry and materials
science are among the many current applications that were simply far beyond expectations in 1990.
The reasons why—50 years after its modern formulation and after two decades of rapid expansion—
some of the most cited practitioners in the field are concerned about its future are discussed.
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I. INTRODUCTION

The density functional (DF) formalism shows that ground
state (GS) and other properties of a system of electrons in an
external field can be determined from knowledge of the
electron density distribution nðrÞ alone. Fermi (1927, 1928)
and Thomas (1927) recognized the basic nature of the electron
density and applied it to atoms, and Dirac (1930a) showed
how exchange effects could be incorporated into this picture.
In a far-sighted and largely overlooked observation, Dirac
(1930a) also wrote that a “density function”—today we know
it as the one-particle reduced density matrix—completely
determines the whole state of the atom within the Hartree-
Fock (HF) approximation; “it is not necessary to specify the
individual three-dimensional wave functions.”
Mymain focus here is on a property forwhichDF calculations

are particularly valuable in chemistry and materials science: the
total energy E of a system of electrons in the presence of ions
located at RI. Accurate calculations of the entire energy surface
EðRIÞ are possible with traditional (wave function based)
methods only for systems with few atoms, and EðRIÞ generally
has vast numbers of maxima and minima at unknown locations.*r.jones@fz‑juelich.de
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The lowest energy, however, corresponds to the ground state
structure, and paths between minima are essential to studies of
chemical reactions, including their activation energies. The
observation of Francis Crick in his autobiography (Crick,
1990, p. 150): “If you want to study function, study structure”
may be self-evident to anyone interested in biology or molecules
in general, but it is true in other areas. TheDFapproach allows us
to calculate EðRIÞ and hence the structure and many related
properties, without using experimental input.
Olle Gunnarsson and I reviewed the DF formalism, its

history, and its prospects in 1989 (Jones and Gunnarsson,
1989). A careful reading of the original literature some years
ago suggested an alternative approach, and I trace here the DF
history from the first years after the development of quantum
mechanics. It is a fascinating story with many players, and I
quote in several places from the original texts.
Density functional calculations are now well established in

condensed matter physics and chemistry,1 but they did not (and
do not) find universal acceptance. The choice of 1990 as fixed
point coincides with the publication of the review of Jones and
Gunnarsson (1989), the book of Parr and Yang (1989), and an
article (Jones, 1991) advocating DF calculations for molecules,
particularly when combined with molecular dynamics (MD)
(Car and Parrinello, 1985). Figure 1 (Mavropoulos, 2015)
shows that it also marks the dramatic increase in the number of
publications on the topics “density functional” and density
functional theory “(DFT)” in recent years.2 The relatively small
number of publications before 19903 by no means implies that

important work was not being carried out. Many applications
that today would be denoted “density functional” then used
other designations.
In this article, I revisit the period before 1990 [some

aspects of which are covered in detail by Parr and Yang
(1989)] and focus on developments since then. Perspectives
on density functional theory have been given by Burke
(2012) and Becke (2014), and much more detailed infor-
mation is available in monographs and review articles cited
there. A recent issue of the Journal of Chemical Physics
celebrated 50 years of modern density functional theory, and
the articles range across many topics of current interest
(Yang, 2014). A review of solid state applications of DF
theory is provided by Hasnip et al. (2014), and Zangwill
(2014) discussed the life and work of Walter Kohn,
particularly in this context. I use numerous citations of
participants in (and observers of) this story to illustrate how
perspectives on the approach have changed. The two
applications I discuss are DF simulations of systems that
were unimaginable only a few years ago.
I have several goals in writing this review. The large growth

in the DF literature is possible only if there are many recent
arrivals in the field. This review is written for them and for
those in other areas of science who are curious about the DF
world. I hope that all share my fascination with the formalism
and its history, sense the excitement that being part of a
developing field can bring, and appreciate that scientific
research is carried out by people, not machines. Personal
contacts over the years have shown, however, that it is not only
newcomers who are unfamiliar with the past or the reaction of
different scientific communities as the theory developed.
Density-related methods are also important in other areas,
including classical systems and nuclei, and I encourage
interested readers to look beyond the horizons of their
particular interest. Finally, I note that both Burke (2012)
and Becke (2014) are uneasy about some recent develop-
ments, and I shall raise my own questions about the future.

II. THE DENSITY AS A BASIC VARIABLE

The recent books by Segrè (2007) and Farmelo (2009) give
fascinating accounts of the development of quantum mechan-
ics in the years following 1926. Methods for finding approxi-
mate solutions of the Schrödinger equation followed soon
after the equations were published and have had a profound
effect on chemistry and condensed matter physics ever since.
A method for calculating the wave function of an atom was

developed by Hartree (1928a, 1928b), who introduced the
idea of a “self-consistent field” with particular reference to
valence electrons and groups of core electrons. In this
approach, the wave function of an electron ψ i is determined
from the field of the nucleus and the other electrons in a self-
consistent fashion. One starts with an approximate field [such
as one derived using the Thomas-Fermi (TF) approximation
discussed later] and iterates until input and output fields for all
electrons are the same.
The wave function of the N-electron system can be

approximated by the product of N single-particle functions,

Ψðr1; r2;…Þ ¼ ψ1ðr1Þ � � �ψNðrNÞ; ð1Þ
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FIG. 1 (color online). Number of publications per year (1975–
2014) on topics (“density functional” or “DFT”), according to the
Web of Science Core Collection (February 2015). The inset shows
data near 1990 on an expanded scale. The number of publications
depends on the precise search criteria, but the overall picture is
unchanged. From Mavropoulos, 2015.

1“For periodic solids it is sometimes referred to as the standard
model” (Kohn, 1999).

2A similar plot is given by Burke (2012) for two popular
approximations used in DF calculations.

3In 1985, 20 years after its modern formulation and in the year that
the combined DF and MD approach (Car and Parrinello, 1985) was
formulated, there were less than 90 such publications, and some of
these were for classical density functional theory and unrelated topics.
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where each ψ iðriÞ satisfies a one-electron Schrödinger equa-
tion with a potential term arising from the average field of the
other electrons. Equation (1) is often termed the “Hartree
approximation,” but it is not mentioned in either paper of
Hartree cited previously. Fock (1930) and Slater (1930)
recognized that the product wave function (1) in conjunction
with the variational principle led to a generalization of the
method that would apply to systems more complex than
atoms. Fock (1930) and Slater (1930) also showed that
replacing Eq. (1) by a determinant of such functions led to
equations that were only a little more complicated, while
satisfying the Pauli exclusion principle. These determinantal
functions, which had been used in discussions of atoms
(Slater, 1929) and ferromagnetism (Bloch, 1929), are known
today as “Slater determinants,” and the resulting “Hartree-
Fock equations” have formed the basis of most discussions of
atomic and molecular structure since.
Just three years after the derivation of the Schrödinger

equation, Dirac (1929a) wrote

“The general theory of quantum mechanics is now
almost complete, … . The underlying physical laws
necessary for the mathematical theory of a large part
of physics and the whole of chemistry are thus
completely known, and the difficulty is only that the
exact application of these laws leads to equations
much too complicated to be soluble. It therefore
becomes desirable that approximate practical meth-
ods of applying quantum mechanics should be
developed, which can lead to an explanation of
the main features of complex atomic systems with-
out too much computation.”

Dirac emphasizes the difficulty of solving the equations
of quantum mechanics and the desirability of develop-
ing “approximate practical methods of applying quantum
mechanics” to explain complex systems. I cannot think of
a better short description of the motivation of density
functional theory.
The first “density functional theory” for electronic systems

was given by Thomas (1927) and Fermi (1927, 1928), who
described a model for calculating atomic properties based
purely on the electron density nðrÞ.4 They assumed that
the electrons form a gas satisfying Fermi statistics, with the
electron-electron interaction energy determined from the
classical Coulomb potential. For the kinetic energy they
adopted a local density (LD) approximation, where the
contribution from the point r [where the density is nðrÞ] is
determined from the kinetic energy of a homogeneous
electron gas with this density.5 The TF Euler equation for
the density is

5

3
CknðrÞ2=3 þ e2

Z
dr0

nðr0Þ
jr − r0j þ VextðrÞ þ λ ¼ 0; ð2Þ

where Ck ¼ 3ℏ2ð3π2Þ2=3=ð10mÞ, Vext is the external potential,
and λ is the Lagrange multiplier related to the constraint of
constant particle number.
The Thomas-Fermi method and its extensions approxi-

mately describe the charge density, the electrostatic potential,
and the variation of the total energy with atomic number Z,
and its mathematical properties have attracted considerable
attention (Schwinger, 1980; Lieb, 1981; Spruch, 1991).
Although the charge density is infinite at the nucleus, the
leading term in the expansion of the energy as a function of
atomic number Z is exact for atoms and periodic solids in the
limit of large Z (Lieb and Simon, 1973). This limit describes
the “inner core” and “mantle” regions of an atom, both of
which shrink (as Z−1=3) with increasing Z (Lieb and Simon,
1973). These properties of the TF approach at large Z mean
that it has been applied to stellar and other matter at extremely
high pressures and densities.6

Nevertheless, TF theory has severe deficiencies because of
its poor description of the outer regions of an atom. The charge
density decays as r−6 far from the nucleus, not exponentially
as it should. Teller (1962) showed also that TF theory does not
bind neutral atoms or (with some restrictions) ions to form
molecules or solids, which rules out its use in chemistry or
materials science at normal temperatures and pressures. The
local density approximation for the kinetic energy means
that there is also no shell structure in the TF atom, so that the
periodic variation of many properties with changing atomic
number Z cannot be reproduced. Furthermore, the lowest
energy of a system has zero spin, so that ferromagnetism
cannot occur (Jones and Gunnarsson, 1989). Nordholm
(1987) has traced the inability of the TF approach to describe
bonding to the assumption of ergodicity, i.e., that the electron
density is able to fill all available phase space up to the Fermi
energy, whether or not these parts of phase space are
dynamically connected. This assumption constrains dynami-
cal processes in atoms and molecules.
Dirac (1930a) noted the necessity of incorporating

“exchange” phenomena into the “Thomas atom,” and he
did this by recasting Hartree-Fock theory in terms of a
“density function,” without reference to a single-determinant
many-electron wave function. In the context of the Thomas-
Fermi theory, this function leads to a correction to the energy
derived from the exchange energy for a homogeneous electron
gas of density n.7 The corresponding potential is

VDirac
x ¼ −

�
1

π

�
½3π2nðrÞ�1=3: ð3Þ

The modified TF equation is often referred to as the “Thomas-
Fermi-Dirac” equation.

4The roles of Hartree and Thomas as precursors of modern density
functional theory are discussed by Zangwill (2013).

5Fermi later extended the model to positive ions and spectroscopic
energy levels. It was pointed out (Guerra and Robotti, 2008) that the
extension to positive ions and to Rydberg corrections was described
by Majorana already in 1928 [an English translation is provided in
Guerra and Robotti (2008)].

6See, for example, Spruch (1991). Smith et al. (2014) used TF
theory to analyze data on ramp compressed diamond to 5 TPa.

7The exchange energy in a homogeneous electron gas had already
been derived by Bloch (1929).
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One point made by Dirac (1930a) has been emphasized
by many advocates of the DF method over the years,
even if we were unaware of his words of over 80 years
ago:

“Each three-dimensional wave function will give
rise to a certain electric density. This electric
density is really a matrix, like all dynamical
variables in the quantum theory. By adding the
electric densities from all the wave functions we
can obtain the total electric density for the atom. If
we adopt the equations of the self-consistent field
as amended for exchange, then this total electric
density (the matrix) has one important property,
namely, if the value of the total electric density at
any time is given, then its value at any later time is
determined by the equations of motion. This means
that the whole state of the atom is completely
determined by this electric density; it is not neces-
sary to specify the individual three-dimensional
wave functions that make up the total electric
density. Thus one can deal with any number of
electrons by working with just one matrix density
function.”

The italics are in the original. The term “density function” is
ambiguous,8 but Dirac had defined here what we know today
as the one-particle reduced density matrix γðr; r0Þ, which is
related to the density by nðrÞ ¼ γðr; r0Þjr¼r0 and is discussed
further in Sec. VI.A.6. The observation that the density
follows the equations of motion is much in the spirit of the
theorem of Ehrenfest (1927), who proved what has been
termed the “time-dependent Hellmann-Feynman theorem”
(Hayes and Parr, 1965), namely, that the acceleration of a
quantum wave packet that does not spread satisfies Newton’s
equations of motion.
The central role played by the electron density means

that it is essential to have a clear picture of its nature in
real systems. In Fig. 2, we show the spherically averaged
density in the ground state of the carbon atom. The density
falls monotonically from the nucleus and does not show
the radial oscillations that occur if one were to plot r2nðrÞ.
The charge density in small molecules is also relatively
featureless, with maxima at the nuclei, saddle points
along the bonds, and a generally monotonic decay from
both. Electron densities in molecules and solids also
show relatively small departures from the overlapped
densities of the constituent atoms. Energy differences,
including binding, ionization, and cohesive energies, are
the focus of much DF work and result from subtle changes
in relatively featureless density distributions. It really is
astonishing that these distributions suffice to determine
ground state properties and, in principle, excited state
properties as well.

III. AN “APPROXIMATE PRACTICAL METHOD”

The basis of a quantum theory of atoms, molecules, and
solids was in place at the beginning of the 1930s. Linear
combinations of atomic orbitals formed molecular orbitals,
from which determinantal functions could be constructed, and
linear combinations of determinants (“configuration interac-
tion,” CI) would provide approximations to the complete wave
function. Dirac had noted already, however, that this pro-
cedure could not be implemented in practice, so that approx-
imations are essential. Furthermore, numerical techniques for
solving the Schrödinger equation in extended systems needed
to be developed.

A. Exchange hole and local density approximations

Wigner and Seitz (1933, 1934) developed a method for
treating the wave function in crystals, and the “Wigner-Seitz
cell” construction is known to all condensed matter physi-
cists. The first application to metallic sodium replaced the
nucleus and core electrons by an effective (pseudo)potential,
and calculations of the lattice constant, cohesive energy,
and compressibility gave satisfactory results. Of particular
interest to us is the calculation of the probability of finding
electrons with parallel spin components a distance r apart
(Fig. 3). This function obtains its half value for r ¼ 1.79d0 or
0.460d for a body-centered cubic lattice with cube edge d,
which is close to the radius of the sphere whose volume is the
mean volume per atom of a solid (the “Wigner-Seitz
sphere”), ð3=8πÞ1=3d ¼ 0.492d. The exclusion principle
means then that two electrons with parallel spins will usually
be associated with different ions (Wigner and Seitz, 1933).
The corresponding curves for spin-up and spin-down elec-
trons, as well as for both spins combined, were discussed by
Slater (1934). Similar views of electrons in metals have been
given by Brillouin (1934) and Wigner (1934).
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FIG. 2. Logarithm of the spherical average of density in the
ground state of the C atom as a function of the distance from the
nucleus (atomic units). From Jones and Gunnarsson, 1989.

8See also Dirac (1929b, 1930b). Dirac was not the only one to use
different expressions or even different definitions for the density
matrix. For a discussion, see ter Haar (1960).
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The picture that results is simple and appealing: The
exclusion principle means that an electron with a given spin
produces a surrounding region where there is a deficiency of
charge of the same spin. This region contains unit charge and
is referred to as the Fermi (Wigner and Seitz, 1933) or
exchange hole (Slater, 1951). This hole is of crucial impor-
tance to DF theory and plays a central role in the discussion to
follow. In the Hartree-Fock scheme, the exchange hole is
different for each electronic function, but Slater (1951)
developed a simplified “exchange potential” that depended
only on the density9

VSlater
x ¼ −

�
3

2π

�
½3π2nðrÞ�1=3: ð4Þ

Sharp and Horton (1953) also noted the advantages of an
effective potential that is the same for all electrons. They
constructed an “optimized effective potential” (OEP) by
varying the potential in a one-body Hamiltonian to produce
orbitals for a Slater determinant that minimizes the expect-
ation value of the many-electron Hamiltonian. Talman and
Shadwick (1976) showed that this effective potential has the
correct asymptote far from an atom. The OEP is often
discussed in the context of DF calculations, but it was
originally an independent development.
The Slater approximation [Eq. (4)] was proposed at the

time that electronic computers were becoming available for

electronic structure calculations and proved to be very useful
in practice. Methods for solving the Schrödinger equation
had been developed around this time, including the aug-
mented plane-wave (APW) (Slater, 1937) and Korringa-
Kohn-Rostoker approaches (Korringa, 1947; Kohn and
Rostoker, 1954).
The exchange potential of Slater is 3=2 times that derived

by Bloch (1929) and Dirac (1930a) for a homogeneous
electron gas [Eq. (3)], but Slater (1968) pointed out that an
effective potential proportional to the cube root of the density
could be obtained by arguments based on the exchange hole
that are independent of the homogeneous electron gas argu-
ments used in the original derivation (Slater, 1951). The
exchange hole discussed for a spin-up electron contains a
single electron. If we assume that the hole can be approxi-
mated by a sphere of radius R↑, then�

4π

3

�
R3
↑n↑ ¼ 1; R↑ ¼

�
3

4πn↑

�
1=3

; ð5Þ

where n↑ is the density of spin-up electrons. Since the
electrostatic potential at the center of such a spherical charge
is proportional to 1=R↑, the exchange potential will be
proportional to n1=3↑ . This argument was used by Slater
(1972b) to counter a (still widespread) misconception that
local density approximations are valid only if the electron
density is nearly homogeneous.
Gáspár (1954) questioned the prefactor of the effective

exchange potential [Eq. (4)]. If one varies the spin orbitals to
minimize the total energy in the Thomas-Fermi-Dirac form,
one obtains a coefficient just 2=3 as large. Gáspár applied this
approximation to the Cuþ ion and found good agreement with
Hartree-Fock eigenfunctions and eigenvalues. Slater noted
that Gáspár’s method was “more reasonable than mine”
(Slater, 1974), and he adopted the procedure in his later work
(Slater, 1972a, p. 23):

“There are important advantages in the Gáspár-
Kohn-Sham procedure of using a statistical expres-
sion for total energy and varying the orbital to
minimize the energy, and we shall henceforth adopt
this approach.”

However, the original APW code and its early applications
used the Slater potential, which was modified by an adjustable
parameter α (α ¼ 2=3 gives the exchange energy of a
homogeneous electron gas), and the approximation came to
be known as the “Xα method” (see Sec. IV.B).10

B. Electron density and the chemical bond

Slater and Gáspár were not alone in their focus on the
density. The “Hellmann-Feynman theorem” (Hellmann, 1933,
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FIG. 3. Probability that electrons with parallel spins are r=d0
apart in Na metal (d03 ¼ V0=3π2, V0 is the atomic volume).
Adapted from Wigner and Seitz, 1933.

9Slater wrote in this paper: “The discussion of Wigner and Seitz
was one of the first to show a proper understanding of the main points
taken up in this paper, which must be understood to represent a
generalization and extension of previously suggested ideas, rather
than an entirely new approach. See also Brillouin (1934) for a
discussion similar to the present one.” Slater was more generous to
his predecessors than some were to him later. See, for example,
Anderson (2011), pp. 125–127) and Kohn and Sham (1965).

10In a conference discussion, Kohn (1971) noted: “The correlation
correction has a completely different density dependence (from
exchange), and the rational way to handle it is to do it right. In
the very high density limit it becomes negligible compared to the
exchange. It does not go with the same power of the density, and so
certainly the way not to handle it is to just put a constant in front and
say it is somewhere between 2=3 and 1.”
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1937; Feynman, 1939) (see the Appendix)11 considered forces
in molecules, and Berlin (1951) developed this picture to
separate space near a diatomic molecule into “binding” and
“antibinding” regions according to the sign of the electrostatic
interaction between the nuclei and the local electron charge
distribution. The Hellmann-Feynman equations are exact only
for the exact wave function of the system. In his “electrostatic
method,” however, Hurley (1954a, 1954b, 1954c) showed that
force calculations could be performed with approximate wave
functions if all variable parameters in the wave function for a
molecule were chosen variationally. The procedure is sim-
plified for “floating functions,” where the parameters do not
depend on the nuclear configurations.12 This approach has
proved to be fruitful in many contexts, including dispersion
interactions (Strømsheim et al., 2011). It was around this time
that Bader (1990) began his studies of the topology of the
density distribution that he pursued for many years.
Electrostatic arguments are often presented as the main

cause of chemical bonding: a molecule has a lower potential
energy than its component atoms because the increased
electron density in the interatomic region increases the
effective internuclear attraction. The virial theorem also tells
us that the lowering of the potential energy on moving two
atoms from infinite separation to the equilibrium distance is
twice as much as the increase in kinetic energy. Can the
chemical bond really be viewed in such purely classical terms?
An early argument against this picture was given in the

original paper of Hellmann (1933), who noted that the
delocalization of the valence electron wave functions would
lower the kinetic energy. This argument was extended
by Ruedenberg (1962), who emphasized that electron
sharing (delocalization) lowered the potential energy as
well.13 Calculations of H þ

2 and H2 (Ruedenberg, 1962;
Kutzelnigg and Schwarz, 1982; Bacskay and Nordholm,
2013) enabled different bonding components to be isolated
and showed that bond formation is also accompanied by
orbital contraction. Ruedenberg viewed the formation of a
covalent bond as a two-step process: (1) a contraction of the
atomic density prior to bonding, and (2) a lowering of the
kinetic energy as the atoms are brought to their equilibrium
separation. Kutzelnigg (1973) reversed the order of these
steps in a discussion of H þ

2 , where the latter is significantly
more important than the ultimate contraction of the atomic
densities, which simply adjusts the balance between kinetic
and potential energies to satisfy the virial theorem. This
picture of the physical origin of the chemical bond is
accepted by many theoretical chemists, but it can be found
in few chemistry textbooks.
A variant of the Hellmann-Feynman theorem with a

variable nuclear charge Z was used by Wilson (1962) to
show that the ground state energy of a system of electrons in
the field of a set of fixed nuclei can be calculated if we know
the electron density sufficiently accurately as a function of the

spatial coordinates x, y, z, and the parameter Z from 0
(noninteracting system) to 1 (physical system). He concluded
with the following challenge:

“The important question remains: Does there exist
some procedure for calculating (the density) n
which avoids altogether the use of 3N-dimensional
space? Such a procedure might open the way to an
enormous simplification of molecular calculations.
For example, it would be tremendously simpler
to expand a four-dimensional function than a
3N-dimensional wave function.”

He did not have to wait long for an answer.

IV. MODERN DENSITY FUNCTIONAL FORMALISM

The variational principle on the energy was the basis of the
formulation of the exact density functional formalism given by
Hohenberg and Kohn (1964) (HK). First they showed that
there is a one-to-one relationship between the external
potential VextðrÞ and the (nondegenerate) GS wave function
Ψ, and that there is a one-to-one relationship between Ψ and
the ground state density nðrÞ of an N-electron system,14

nðrÞ ¼ N
Z

dr2 � � � drNΨ�ðr; r2;…; rNÞΨðr; r2;…; rNÞ;
ð6Þ

where the spin coordinates are not shown explicitly.
Knowledge of the density then determines the external
potential to within a constant, so that all terms in the
Hamiltonian are known. Since the Hamiltonian operator
completely determines all states of the system, nðrÞ deter-
mines excited states as well as the ground state.15

These ideas can be applied to the total energy using the
variational principle. For this purpose, HK defined the func-
tional F½nðrÞ�, which is “universal” in the sense that it is valid
for any external potential Vext,

F½n� ¼ hΨnjT þ VeejΨni; ð7Þ

and showed that the energy functional E½n; Vext� satisfies a
variational principle:

EGS ¼ min
nðrÞ

E½n; Vext�; ð8Þ

11An interesting account of the history of the Hellmann-Feynman
theorem and its mathematical complexities is given in Pupyshev
(2000).

12See also Frost (1967).
13For a recent survey see Bacskay and Nordholm (2013).

14The relationship between electron density and Ψ�Ψ was first
discussed by Schrödinger (1926b). Shortly afterward, Born (1926a)
introduced the concept of “probability” in the context of electron-
atom scattering.

15At a conference in 1965, E. B. Wilson noted (Handy, 2009): If
we know the density distribution, we can find its cusps, from which
we can determine [from the electron-nucleus cusp condition (Kato,
1957)] both the location of the nuclei and their atomic numbers.
Integration over the electron density gives the total charge, so that we
have all the terms in the Hamiltonian. This nonrelativistic argument
applies for a system with Coulomb interactions and assumes point
nuclei and the Born-Oppenheimer approximation.
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where

E½n; Vext� ¼
Z

drVextðrÞnðrÞ þ F½n�. ð9Þ

The minimization is performed in HK over all nondegenerate
densities that can be derived from the ground state of
some external potential (V-representable). The generalization
of Levy (1979) to minimizing over all densities, including
degeneracies, is discussed in Sec. V.A.2.

A. Single-particle description of a many-electron system

The task of finding good approximations to the energy
functional E½n; Vext� is greatly simplified if we use the
decomposition introduced by Kohn and Sham (1965)16:

F½n� ¼ Ts½n� þ
1

2

Z
dr nðrÞΦðrÞ þ Exc½n�: ð10Þ

Ts is the kinetic energy that a system with density n would
have in the absence of electron-electron interactions, Φ is the
classical Coulomb potential for electrons, and Exc defines the
exchange-correlation (xc) energy.17 Ts is not the true kinetic
energy T, but it is of comparable magnitude and is treated here
without approximation. This removes many of the deficien-
cies of the Thomas-Fermi approach, such as the lack of a shell
structure of atoms or the absence of chemical bonding in
molecules and solids. All terms in Eq. (10) other than the
exchange-correlation energy Exc can be evaluated exactly, so
that approximations for this term are crucial in density
functional applications.
The variational principle applied to Eq. (10) yields

δE½n; Vext�
δnðrÞ ¼ δTs

δnðrÞ þ VextðrÞ þ ΦðrÞ þ δExc½n�
δnðrÞ ¼ μ; ð11Þ

where μ is the Lagrange multiplier associated with the
requirement of constant particle number. If we compare this
with the corresponding equation for a system with the same
density in an external potential VðrÞ but without electron-
electron interactions,

δE½n�
δnðrÞ ¼

δTs

δnðrÞ þ VðrÞ ¼ μ; ð12Þ

we see that the mathematical problems are identical, provided
that

VðrÞ ¼ VextðrÞ þ ΦðrÞ þ δExc½n�
δnðrÞ : ð13Þ

The solution of Eq. (12) can be found by solving the
Schrödinger equation for noninteracting particles,

½−1
2
∇2 þ VðrÞ�ϕiðrÞ ¼ ϵiϕiðrÞ; ð14Þ

yielding

nðrÞ ¼
XN
i¼1

fijϕiðrÞj2. ð15Þ

The functions ϕi are the Kohn-Sham (KS) orbitals, and the
occupation numbers fi are noninteger at zero temperature
when the orbitals are degenerate at the Fermi level and Fermi-
Dirac occupancies at nonzero temperatures. The condition (13)
can be satisfied in a self-consistent procedure.
The solution of this system of equations leads to the

energy and density of the lowest state and all quantities
derivable from them. The formalism can be generalized to the
lowest state with a given symmetry (Gunnarsson and
Lundqvist, 1976) or other constraints (Dederichs et al.,
1984). Instead of seeking these quantities by determining
the wave function of the system of interacting electrons, the
DF method reduces the problem to the solution of a single-
particle equation of Hartree form. In contrast to the nonlocal
Hartree-Fock potential,

VHFψðrÞ ¼
Z

dr0 VHFðr; r0Þψðr0Þ; ð16Þ

the effective potential VðrÞ is a local (multiplicative)
operator.
The numerical advantages of solving the Kohn-Sham

equations (Kohn and Sham, 1965) are obvious. Efficient
methods exist for solving (self-consistently) single-particle
Schrödinger-like equations with a local effective potential,
and there is no restriction to small systems. With a local
approximation to Exc, the equations can be solved as readily as
the Hartree equations. Unlike the Thomas-Fermi method,
where the large kinetic energy term is computed directly from
the density, this term is computed exactly from orbitals ϕi in
Eq. (14). The core-valence and valence-valence electrostatic
interactions can be directly evaluated, but Exc is the difference
between the exact energy and terms we can accurately
evaluate, and approximations are unavoidable.

B. Exchange-correlation energy Exc

Kohn and Sham (1965) proposed using the LD approxi-
mation

ELD
xc ¼

Z
dr nðrÞεxc½nðrÞ�; ð17Þ

where εxc½n� is the exchange and correlation energy per
particle of a homogeneous electron gas with density n.
This is a good approximation if the density is almost constant
(Hohenberg and Kohn, 1964), as well as at high densities,
where the kinetic energy dominates the exchange and corre-
lation terms (Kohn and Sham, 1965). They noted that this
approximation “has no validity” at the “surface” of atoms and
in the overlap regions of molecules and concluded (Kohn and
Sham, 1965)

16Hartree atomic units.
17In the world of wave functions, the “correlation energy” is

defined as the difference between the exact and Hartree-Fock
(variationally optimized single Slater determinant) energies.
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“We do not expect an accurate description of
chemical bonding.”

The applicability of this comment depends on the definition of
“accurate,” but this view was shared by many and certainly
delayed chemical applications of DF theory by some years. It
was a legacy of the origins of the LD approximation in the
homogeneous electron gas and ignored the exchange-hole
argument of Slater noted in Sec. III.A.
Generalizations to spin-polarized systems were given by

von Barth and Hedin (1972) and Rajagopal and Callaway
(1973). The local spin density (LSD) approximation can be
written

ELSD
xc ¼

Z
dr nðrÞεxc½n↑ðrÞ; n↓ðrÞ�; ð18Þ

where εxc½n↑; n↓� is the exchange and correlation energy per
particle of a homogeneous, spin-polarized electron gas with
spin-up and spin-down densities n↑ and n↓, respectively (von
Barth and Hedin, 1972).18 The Xα approximation

EXα
x ¼ −

3

2
αC

Z
dr f½n↑ðrÞ�4=3 þ ½n↓ðrÞ�4=3g; ð19Þ

where C ¼ 3ð3=4πÞ1=3 was used in numerous calculations in
the late 1960s and 1970s. The α dependence of energy
differences for a given atom or molecule is weak for values
near 2=3, the value of Bloch (1929), Dirac (1930a), Gáspár
(1954), and Kohn and Sham (1965). We noted that the
electron density in molecules and solids is generally far from
that of a homogeneous electron gas and that the validity of
calculations based on properties of a gas of constant density
has often been questioned. We now discuss some general
properties of Exc using arguments closely related to the
“exchange-hole” picture of Wigner and Seitz (1933) and
Slater (1934, 1951, 1968).

C. Exchange-correlation hole and Exc

The crucial simplification in the density functional scheme
is the relationship between the interacting system, whose
energy and density we seek, and the artificial (sometimes
called fictitious), noninteracting system for which we solve
Eqs. (14) and (15). This can be studied by considering the
interaction λ=jr − r0j and varying λ from 0 (noninteracting
system) to 1 (physical system).
Two ways of doing this have proved useful in the DF

context. The first (Harris and Jones, 1974) considered the
Hamiltonian

Hλ ¼ T þ V þ λðVee þ Vext − VÞ; ð20Þ

where V is the (density-dependent) Kohn-Sham effective
potential [Eq. (13)] and Vee is the electron-electron

interaction. The density for λ ¼ 0 is constrained to be that
of the physical system, and the qualitative difference between
the eigenfunctions for λ ¼ 0 and λ ¼ 1 is reduced. This
construction leads to an expression for the total energy E
and its components, including the exchange and correlation
energies, in terms of integrals over λ.19 One term can be related
to the energy due to density fluctuations in the system and the
density response function of a system of electrons described
by Hλ, and all terms were evaluated for a model of a bounded
electron gas (Harris and Jones, 1974).20

This approach, in which the density is constrained to be the
physical density of the system for λ ¼ 0 and 1, but not for
intermediate values, can be implemented in standard programs
for calculating wave functions and provides detailed informa-
tion about the density functional in small systems (Savin,
Colonna, and Teuler, 1998). It is possible, however, to adopt
an external potential Vλ such that the ground state of the
Hamiltonian Hλ has density nðrÞ for all λ (Langreth and
Perdew, 1975; Gunnarsson and Lundqvist, 1976).21 The
exchange-correlation energy of the interacting system can
then be expressed as an integral over the coupling constant λ
(Langreth and Perdew, 1975; Gunnarsson and Lundqvist,
1976):

Exc ¼
1

2

Z
dr nðrÞ

Z
dr0

1

jr − r0j nxcðr; r
0 − rÞ; ð21Þ

with

nxcðr; r0 − rÞ≡ nðr0Þ
Z

1

0

dλ ½gðr; r0; λÞ − 1�: ð22Þ

The form of this expression, with the physical nðrÞ occurring
as a term in the integration over space, is convenient in the DF
context [cf. Eqs. (17) and (18)] and is more widely used.
The function gðr; r0; λÞ is the pair-correlation function of

the system with density nðrÞ and Coulomb interaction λVee.
The exchange-correlation hole nxc describes the fact that an
electron at point r reduces the probability of finding one at r0,
and Exc is simply the energy resulting from the interaction
between an electron and its exchange-correlation hole. This is
a straightforward generalization of the work of Wigner and
Seitz (1933, 1934) and Slater (1934, 1951) discussed in
Sec. III.A.

18The calculation by Bloch (1929) of ferromagnetism in a
homogeneous, spin-polarized electron gas model of a metal was
the first where the exchange energy was expressed as the sum of
terms proportional to n4=3↑ and n4=3↓ .

19This appears to be the first use of “adiabatic connection” in the
DF context. The derivative of the Hamiltonian with respect to a
parameter and the integral form that follows are often attributed to
Pauli (1933) [see Musher (1966) and references therein]. Pauli
(1933), p. 161) gives the credit to his student Güttinger (1931).
See the Appendix.

20This calculation was motivated in part by our expectation that
the LD approximation would not describe well the surface energy of a
bounded electron gas. Our estimates of the exchange and correlation
contributions were individually different from the LD results, but the
sum of the two components was similar for the values of the bulk
densities we calculated. This unexpected success of the LD approxi-
mation (for exchange and correlation) suggested that we try to
understand what was behind it. Quantum Monte Carlo calculations
confirmed the LD results many years later (Wood et al., 2007).

21It has been shown (Colonna and Savin, 1999) that results for the
He and Be series atoms using the two schemes are similar.
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Second, the isotropic nature of the Coulomb interaction
Vee has important consequences. A variable substitution
R≡ r0 − r in Eq. (21) yields

Exc ¼
1

2

Z
dr nðrÞ

Z
∞

0

dRR2
1

R

Z
dΩ nxcðr;RÞ: ð23Þ

Equation (23) shows that the xc energy depends only on the
spherical average (sa) of nxcðr;RÞ, so that approximations for
Exc that describe this average well can give an accurate value
of the xc energy. Third, the definition of the pair-correlation
function leads to a sum rule requiring that the xc hole
corresponds to the removal of one electron,22 i.e., for all r,

Z
dr0 nxcðr; r0 − rÞ ¼ −1: ð24Þ

This means that we can consider −nxcðr; r0 − rÞ as a normal-
ized weight factor, and define the radius of the xc hole locally
for a particular value of r:

�
1

R

�
r
¼ −

Z
dR

nxcðr;RÞ
jRj : ð25Þ

This leads to

Exc ¼ −
1

2

Z
dr nðrÞ

�
1

R

�
r
: ð26Þ

Provided Eq. (24) is satisfied, Exc is determined by the first
moment of a function whose second moment we know exactly
and does not depend on the nonspherical parts of nxc
(Gunnarsson and Lundqvist, 1976). Approximations to Exc
can lead to good total energies (and structures) for density
distributions far from the regions of obvious validity.23 This is
illustrated in Fig. 4, where the exchange hole in a nitrogen
atom is shown for a representative value of r for both the local
density and exact (Hartree-Fock) cases. The holes are

qualitatively different: The LD hole is spherically symmetric
and centered on the electron, while the exact hole has a large
weight at the nucleus and is asymmetric. Nevertheless, the
spherical averages are similar, and this is true for other values
of r. The exchange energies found from Eq. (26) differ by just
over 10% (LSD: −11.79 Ry, exact: −13.19 Ry) (Gunnarsson,
Jonson, and Lundqvist, 1979).

V. ADVANCES TO 1990

A. Theoretical progress

The variation in the number of citations to density func-
tional theory and related topics (Fig. 1) should be interpreted
with caution. The dramatic increase after 1990 hides the fact
that many articles that we associate today with density
functional or DFT (Hartree-Fock-Slater, Xα, electronic band
structure) made no reference to it. It seems that many realized
around this time that they had been doing density functional
calculations all along. However, theoretical and computational
work was already in place by 1990 that has proved to be
crucial to the ultimate acceptance of the method, and I now
outline some of it. More details can be found in Jones and
Gunnarsson (1989), Parr and Yang (1989), and Dreizler and
Gross (1990).

1. Temperature, spin, and time dependence

The generalizations to finite temperatures and to spin
systems were carried out soon after the original work of
Hohenberg and Kohn (1964). The former was provided by
Mermin (1965), who showed that, in a grand canonical
ensemble at given temperature T and chemical potential μ,
the equilibrium density is determined by the external potential
Vext, and the equilibrium density minimizes the grand poten-
tial. Single-particle equations can be derived for an artificial
system with kinetic energy Ts and entropy Ss, with Exc
replaced by the exchange-correlation contribution to the free
energy.
The extension to spin systems (von Barth and Hedin, 1972;

Rajagopal and Callaway, 1973) or an external magnetic
field requires the introduction of the spin indices α of the
one-electron operators ψαðrÞ and replacing Vext by V

αβ
extðrÞ and
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FIG. 4 (color online). Magnitude of exact (solid) and LSD (dashed) exchange holes nxcðr; r0 − rÞ for spin-up electron in nitrogen atom
for r ¼ 0.13 a.u. Upper: Hole along line through nucleus (arrow) and electron (r − r0 ¼ 0). Lower: Spherical averages of holes, and
h1=Ri [Eq. (25)]. From Jones and Gunnarsson, 1989.

22If we associate exchange with the limit λ ¼ 0, separate sum rules
on the exchange nx and correlation holes nc lead to −1 and 0,
respectively. The exchange hole nxðr;RÞ must always be ≤ 0.

23See also Harris (1984).
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the charge density nðrÞ by the density matrix
nαβðrÞ ¼ hΨjψþ

β ðrÞψαðrÞjΨi. All ground state properties
are functionals of nαβ, and E is stationary with respect to
variations in nαβ. The expression for the energy Exc is
analogous to Eqs. (21) and (22). A current and spin density
functional theory of electronic systems in strong magnetic
fields was formulated by Vignale and Rasolt (1988). Time-
dependent density functional theory, which has proved to be
valuable in discussing excited states, was described by Mahan
(1980), Stott and Zaremba (1980), and Zangwill and Soven
(1980), who introduced the adiabatic local density approxi-
mation. Runge and Gross (1984) proved the time-dependent
analog of the Hohenberg-Kohn theorem.

2. Developments of formalism

In the spirit of the definition by Percus (1978) of a universal
kinetic energy functional for noninteracting systems, Levy
(1979) provided a proof that was simpler and more general
than that of Hohenberg and Kohn (1964). The sum of the
kinetic and electron-electron repulsion energies [Eq. (9)] is
written

F½n� ¼ min
Ψ→nðrÞ

hΨjT þ VeejΨi; ð27Þ

where the minimization is performed over all antisymmetric
wave functions Ψ that lead to the density nðrÞ. Harriman
(1981) showed that these functions exist, since all mathemati-
cally well-behaved densities can be obtained from antisym-
metric wave functions. The removal of the Hohenberg-Kohn
restrictions to nondegenerate states and densities that could be
determined from the ground state of some effective potential
was an important development and enabled DF protagonists to
avoid some of the concerns then current. These “constrained
search” arguments were extended by Lieb (1983), who also
introduced the Legendre transform of the energy as the
universal functional.24 The use of the variational principle
in these works goes beyond the insights of Dirac (1930a) and
Wilson (1962).
Important developments during this period included work

on constraints that must be satisfied by exact density func-
tionals and approximations to them. Lieb and Oxford (1981)
showed that there was a lower bound to the exchange-
correlation energy of the form

Exc ≥ −C
Z

dr nðrÞ4=3 ð28Þ

with C ¼ 1.68.25 The Hellmann-Feynman and virial
theorems, and the requirements of coordinate scaling
[nγðrÞ ¼ γ3nðγrÞ with γ > 0], provide tight constraints on
approximate forms of Exc and the corresponding potential vxc
(Levy and Perdew, 1985; Levy, 1991). Asymptotically exact
results for the charge and spin densities and for the effective

potential far from finite systems and surfaces were provided
by Levy, Perdew, and Sahni (1984) and Almbladh and von
Barth (1985).
For decades, chemists have used the energy eigenvalues and

the corresponding orbitals to interpret the results of Hartree-
Fock calculations for atoms, molecules, and molecular frag-
ments, and energy eigenvalues determined in band structure
calculations are essential when condensed matter physicists
discuss electronic properties. It is natural to ask whether the
Kohn-Sham eigenvalues ϵi in Eq. (14) can be used in similar
ways. In the derivation in Sec. IV.A, ϕi and ϵi are auxiliary
variables,26 but they are more than this.
The identification of the Lagrange parameter μ in Eq. (11)

as the chemical potential means that the highest occupied
orbital in exact DF theory should be equal in magnitude to the
first ionization energy (Perdew et al., 1982; Perdew and Levy,
1983; Sham and Schlüter, 1983). However, the energy gap
between highest occupied and lowest unoccupied orbitals in
DF calculations for semiconductors and insulators is usually
significantly [about 40%, (Perdew and Levy, 1983)] less than
the fundamental gap. This is true for the exact exchange-
correlation energy functional as well, since the functional
derivative δExc=δnðrÞ has discontinuities as the number of
electrons passes through integer values (Perdew and Levy,
1983; Sham and Schlüter, 1983).
One development that had a large impact on my own work

was the combination of DF calculations with molecular
dynamics introduced by Car and Parrinello (1985). It made
DF simulations of bulk systems possible at elevated temper-
atures, and I give two examples in Sec. VI.B. Simulated
annealing techniques could also be used to study the energy
surfaces of molecules and clusters, where unexpected struc-
tures resulted (Jones, 1991). An essential part of DF work
prior to 1990 was, of course, the gradual generation of a data
base of results for molecules and clusters, as well as extended
systems.

3. Functional approximations

Most of the early DF calculations on small clusters and
molecules used the LD and/or LSD approximations, often
based on the quantum Monte Carlo (QMC) calculations of the
correlation energy in the homogeneous electron gas by
Ceperley and Alder (1980). Although the results were gen-
erally encouraging, it soon became clear that local density
calculations can lead to unacceptable errors. Examples were
the exchange energy difference between states with different
nodal structures (Gunnarsson and Jones, 1985), including the
s-p promotion energies in first-row atoms, particularly O and
F, s-d promotion energies in transition element atoms, and d-f
promotion energies in rare earth atoms. In general, states
where the orbitals have the minimum number of nodal planes
consistent with the sum rule [Eq. (24)], local density approx-
imations overestimate the interelectronic exchange energy
and contribute to the overestimates of binding energies
common in small molecules. For excitations requiring the
creation of more nodal planes than required by Eq. (24), these24For an introduction to Legendre transforms in this context, see

Kutzelnigg (2006).
25A tighter bound on the exchange-correlation energy was given

by Chan and Handy (1999). See also Odashima and Capelle (2007).

26“… one should expect no simple physical meaning for the Kohn-
Sham orbital energies. There is none.” (Parr and Yang, 1989, p. 149).
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approximations often greatly underestimate the exchange
energy difference, even if the changes in density and spin
density are small (Gunnarsson and Jones, 1985).
Dispersion forces—the weak, nonlocal interactions

between closed shell systems—pose particular problems for
local density approximations. The long-range attraction
between separated atoms or molecules is not described, and
yet the LD approximation overestimates the binding energy
in many such systems, e.g., He2 (Jones, 1979) and crystalline
polyethylene (Montanari and Jones, 1997). However, these
approximations give a reasonable description of cohesive
properties of crystalline Ar, Kr, and Xe (Trickey, Green,
and Averill, 1973).
It is not surprising that better approximations were

developed. Density gradients were considered already by
Hohenberg and Kohn (1964), and an expression for the
correlation energy of an electron gas with high but slowly
varying density was derived by Ma and Brueckner (1968).
Gradient corrections to the local density exchange approxi-
mation were described by Herman, Van Dyke, and
Ortenburger (1969). Analysis of the gradient approximation
for Exc in terms of the wave vectors of the contributing
fluctuations (Langreth and Perdew, 1977, 1980) showed that
the main contribution came from a small region of k space
near the origin. This suggested that the random phase
approximation (RPA), which describes this region well, would
provide a useful generalization of the gradient approximation.
The sum rules on the exchange-correlation hole discussed

above can also be exploited. For example, the spurious
oscillations of the second-order gradient expansion of the
exchange-hole density nxðr;RÞ for largeR could be cut off in
real space to satisfy the sum rules (Perdew, 1985). Corrections
involving density gradients were developed for the correlation
(Perdew, 1986; Lee, Yang, and Parr, 1988) and exchange
energies (Perdew and Wang, 1986; Becke, 1988). The semi-
empirical approximation of Becke was constructed so that the
canonical exchange energy density had the correct asymptotic
behavior (∼r−1) for atoms.27

In the Hartree-Fock approximation, there is no interaction
of an electron with itself, but this self-interaction is canceled
imperfectly by the LSD approximation to Exc. There is a long
history of work in which this unphysical interaction is
canceled explicitly and the remainder approximated [see
Gunnarsson and Jones (1981) and references therein, and
Perdew and Zunger (1981)]. Total energies of atoms and
ions are significantly better, but energy differences
between valence configurations showed less improvement
(Gunnarsson and Jones, 1981). Finally, we note that a
simplification of the Kohn-Sham scheme for calculating the
total energy of weakly interacting fragments was developed
by Harris (1985). The density is approximated by that of the
overlapped fragments, and the absence of spin and the need
for self-consistency resulted in a rapid scheme that has been
useful in numerous contexts.
It may be difficult for newcomers to the field today to

realize just how important these and related developments

were to the continuing progress in and ultimate acceptance
of DF methods. Nevertheless, the actual number of publica-
tions identifying themselves as “density functional” re-
mained small.

B. Condensed matter

Solid state electronic structure theorists were generally
pleased to have justification for the local density calculations
they had been performing for years, and a good many moved
from electronic band structure, Xα, or Hartree-Fock-Slater
calculations into the density functional world. Nevertheless,
the mainstream of condensed matter theory was focused
elsewhere, for example, on superconductivity and other phase
transitions. Figure 1 shows that there the number of DF
publications was surprisingly small up to 1990.28 Heine
(2002), a prominent condensed matter theorist, looked back
on the 1960s in this way:

“Of course at the beginning of the 1960s the big
event was the Kohn Hohenberg Sham reformulation
of quantum mechanics in terms of density func-
tional theory (DFT). Well, we recognize it now as a
big event, but it did not seem so at the time. That
was the second big mistake of my life, not to see its
importance, but then neither did the authors judging
from the talks they gave, nor anyone else. Did you
ever wonder why they never did any calculations
with it?”29

There were also prominent critics of density functional and
related computational techniques, and one of the best known
solid state theoreticians, Anderson (1980) commented:

“There is a school which essentially accepts the idea
that nothing further is to be learned in terms of
genuine fundamentals and all that is left for us to do
is calculate … . One is left, in order to explain any
phenomenon occurring in ordinary matter, only
with the problem of doing sufficiently accurate
calculations. This is then the idea that I call ‘The
Great Solid State Physics Dream Machine’… . This
attitude is closely associated with work in a second
field called quantum chemistry.”

This article “never found a publisher” in the U.S. (Anderson,
2011, p. 126), and the only version in print is a French
translation (Anderson, 1980). Anderson associated the
“Dream Machine” with the name of John Slater (Anderson,
2011, pp. 125 and 126) and described the DF method as a
“simplified rather mechanical kind of apparatus” that “shows
disturbing signs of becoming a victim of the ‘Dream
Machine’ syndrome” (Anderson, 1980). While noting that
DF calculations can be particularly valuable in some contexts,
he continued:

27Although the asymptotic form of the corresponding potential
(∼r−2) did not (van Leeuwen and Baerends, 1994).

28I have noted that there were fewer than 90 as late as 1985, when
DFT meant “discrete Fourier transform.”

29This is an underestimate. See, for example, Tong and Sham
(1966) (atoms) and Lang and Kohn (1970) (jellium surfaces).
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“… a great deal of the physics is concealed inside
the machinery of the technique, and that very often
once one has the answers that these techniques
provide, one is not exactly clear what the source of
these answers is. In other words the better the
machinery, the more likely it is to conceal the
workings of nature, in the sense that it simply gives
you the experimental answer without telling you
why the experimental answer is true.”

These comments seem a little harsh,30 but the increasing
availability of computing resources allowed calculations that
had previously been impossible, and not all users of the
method were critical of the approximations involved.

C. Chemistry

It took many years for DF calculations to be taken seriously
by most chemists,31 and the reasons were often convincing:
(1) Unlike the TF theory, the Kohn-Sham expression for the
energy is not an explicit functional of the density, since the
kinetic energy term is defined by an effective potential that
leads to the density via a set of orbitals, (2) the original
functional of Hohenberg and Kohn is not even defined for all n,
because not all densities can be derived from the ground state of
some single-particle potential (Levy, 1982; Lieb, 1983), and
(3) approximations to the exchange-correlation energy are
unavoidable, and their usefulness can be assessed only by
trying them out. Approximations based on calculations for a
homogeneous electron gas, in particular, were unfamiliar to
users of atomic orbitals and the Hartree-Fock approximation.32

(4) There was no “systematic” (i.e., mechanical) procedure for
refining the results to give the exact solution of the Schrödinger
equation and, of course, the exact energy.
This last point was emphasized by many. In principle, the

Hartree-Fock method could be extended to multiple determi-
nants (“configuration interaction”) and, coupled with a large
basis set, lead to the exact wave function and all properties
obtainable from it. This is an attractive proposition, and the
dramatic improvements in computing power (3 orders of
magnitude per decade) might make the reservations of Dirac
(1929a) less formidable. It was often emphasized that sol-
utions of the Schrödinger equation led to the “right answer for
the right reason.” Nevertheless, obtaining numerically exact
total energies from wave function calculations remains a
major challenge to this day, and it is not surprising that
several groups looked at alternatives.

Hartree-Fock-Slater (Xα) calculations on small molecules
were carried out from the early 1970s. The original motivation
of Evert Jan Baerends and collaborators in Amsterdam
[Heijser, van Kessel, and Baerends (1976) and references
therein] was to find a numerically efficient approximation
to Hartree-Fock calculations. However, calculations with
α ¼ 0.7 generally agreed better with experiment than did
Hartree-Fock calculations, provided that the full potential was
used, not just the “muffin-tin” component then common in
many Xα calculations.
Some of the first DF calculations on small molecules were

performed by Gunnarsson and Johansson (1976), with prom-
ising results. John Harris and I were initially skeptical that
the local density approximations would give useful results
for molecules in general, but we developed a full-potential
linearized muffin-tin orbital code for small molecules and
clusters (Gunnarsson, Harris, and Jones, 1977). These calcu-
lations led to good geometries and reasonable binding
energies in most cases. In spite of the shortcomings of the
local density description of Exc, calculations could be per-
formed without adjustable parameters on families of mole-
cules and small clusters that had previously been inaccessible.
We extended this work over the following 5–6 years to

over 40 molecular systems, including transition metal dimers
(Harris and Jones, 1979b), the group 2 dimers (Jones, 1979,
2012), and the energy surfaces of low-lying states of ozone
and SO2 (Jones, 1984b, 1985), H2O, NH3, and CO2 (Jones,
1983; Müller, Jones, and Harris, 1983). The group 2 dimers,
particularly Be2, and ozone were cases where the results
were qualitatively different from Hartree-Fock theory, but in
better agreement with experiment. The comparison of the
bond strengths in group 14 dimers C2 − Pb2 clearly showed
the correlation with the tails of the s- and p-valence wave
functions, and an argument based on the Hellmann-Feynman
theorem showed why the C-C bond should be strongest and
most versatile, forming single, double, and triple bonds
(Harris and Jones, 1979a). The consequences of the unusually
compact p-valence functions in carbon would not have come
as a surprise to solid state physicists with a pseudopotential
background [see, for example, Austin and Heine (1966)].
There were parallel studies by other groups, including

Baerends and co-workers (Post and Baerends, 1982;
Dunlap, Connolly, and Sabin, 1979a, 1979b; Becke, 1982,
1985; Painter and Averill, 1982). This work helped to provide
a significant database of molecular results that was essential to
convince chemists, in particular, that density functional
methods could be valuable.33 It is important to note, however,
that much of this work was presented as the results of Xα,
Hartree-Fock-Slater, or local density calculations and was
filtered out of the data behind Fig. 1. The results were so
encouraging that I wrote in 1984 that the DF approach
could be the method for calculating bonding properties
(Jones, 1984a).

30He referred later to “the oxymoron ‘computational physics’ ”
(Anderson, 1999) and wrote that “… more recently ‘theoretical
chemistry’ has become more of a service skill” (Anderson, 2011,
pp. 113 and 114).

31Walter Kohn summarizes his own experiences, particularly with
John Pople, in Kohn and Sherrill (2014). For some of my own, see
Jones (2012).

32On the other hand, condensed matter physicists were well aware
of the poor description of metals provided by the Hartree-Fock
approximation, particularly the vanishing density of states at the
Fermi energy.

33Hoffmann (1977) was the first chemist to encourage our DF
work on molecules. He emphasized, however, that we needed more
than a few calculations on small molecules if we wanted to convince
the many skeptics. Calculations on a variety of systems, particularly
organic molecules, would be essential.
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Most condensed matter physicists were either not interested
or not surprised by these developments in molecular calcu-
lations, but theoretical chemists remained skeptical or hostile,
or they ignored the development of density functional meth-
ods completely. A striking exception was Robert Parr, who
wrote (Parr, 1983):

There is an attractive whole alternative theory, the
density functional theory. And there are a whole
set of attractive alternative computational schemes,
of Xα or Kohn-Sham type. Such schemes, at least
potentially, offer hope of the same quantitative
accuracy as the conventional schemes. And they
promise much more as well: a perspicuity, an
economy of description, a simplicity of interpreta-
tion, and a closeness to the classical ideas of
structural chemistry. Much research is needed to
bring density functional theory to maturity, but there
will result a substantially broadened and more
useful quantum chemistry.34

This situation continued throughout the 1980s and into the
1990s. Nevertheless, the number of applications of DF and Xα
methods continued to grow. The unexpected structures found
in our DF-MD calculations of small phosphorus clusters
(Jones and Hohl, 1990) have been confirmed by numerous
other calculations since.

D. Menton, 1991

The Seventh International Congress of Quantum
Chemistry, held in Menton, France, from 2–5 July 1991,
marks for me (and others) a major turning point in the
fortunes of DF methods, particularly in chemistry (Fig. 5).
Density-related methods were discussed in detail, and
communication between their proponents and the skeptics
improved. When I asked John Pople why he did not
like density functional methods, he replied that the total
energies were not good enough. This cannot be denied,
but I noted our focus on energy differences, such as
binding energies, for which there is no variational
principle. All such calculations rely on cancellation of
errors.
Becke (1988) was awarded the Medal of the International

Academy of Quantum Molecular Science for that year, and he
described his development of an approximate exchange
functional that promised improvements over local density
approximations. In his end-of-conference summary, Pople
maintained his distance from density-related methods, but the
subsequent comments of Roald Hoffmann were more encour-
aging. It is certainly no coincidence that Pople and his co-
workers tested this approximation on atomization energies of
small molecules immediately after the meeting. The first

results—energy calculations with the functional of Becke
(1988) and Lee, Yang, and Parr (1988) using Hartree-Fock
densities—were presented at the Sanibel Symposium in
April 1992 (Gill et al., 1992) and marked a shift of the
Pople group in favor of density functional methods. More
results soon followed and surprised many (Johnson, Gill, and
Pople, 1992):

“In summary, these initial results indicate that DFT
is a promising means of obtaining quantum
mechanical atomization energies; here, the DFT
methods B-VWN and B-LYP outperformed corre-
lated ab initio methods, which are computationally
more expensive.”

and (Johnson, Gill, and Pople, 1993)

“The density functional vibration frequencies
compare favorably with the ab initio results,
while for atomization energies two of the DFT
methods give excellent agreement with experi-
ment and are clearly superior to all other meth-
ods considered.”

The ab initio methods mentioned were Hartree-Fock or self-
consistent field (SCF), second-order Møller-Plesset (MP2),
and quadratic configuration interaction with single and double
substitutions. In addition to the growing body of results on
molecules and clusters that were beyond the scope of
calculations of correlated wave functions, this change in
attitude by one of the most prominent theoretical chemists
led to a dramatically new attitude toward the DF method in
chemistry.35

FIG. 5 (color online). Poster of Menton Congress, 1991.

34I used precisely this quote at the end of a talk on density
functional theory given to theoretical chemists in September 1985,
thinking that the similar views of a chemist might add weight to my
arguments. The comments afterward made it clear that our efforts to
convince chemists still had a long way to go.

35Although one of the authors of these papers wrote an obituary on
density functional theory not long afterward (Gill, 2001), noting 1993
as the year of its death.
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VI. AFTER ACCEPTANCE (1990—PRESENT)

There were over 160 000 publications on the topics (density
functional or DFT) between 1990 and February 2015 (Fig. 1).
I leave detailed surveys of this vast and rapidly expanding
literature to others and refer again to the very recent issue of
the Journal of Chemical Physics (Yang, 2014). The aspects I
have chosen should be of general interest, and I give two
examples of the possibilities provided by the combination of
DF calculations with molecular dynamics.

A. Progress and problems

One of the first signs of growing acceptance of DF methods
in chemistry was the incorporation of such calculations into
popular ab initio program packages, with Gaussian leading the
way. Michael Frisch, the first author of that package, seems to
have been a willing convert. At the end of his talk at the ACS
National Meeting in San Francisco (13 April 1997) on
“ab initio calculations of vibrational circular dichroism and
infrared spectra using SCF, MP2, and density functional
theories for a series of molecules,” a member of the audience
asked:

“What about Hartree-Fock?”

The answer was memorable, and I wrote it down immediately:

“It does not matter what you want to calculate, and
it does not matter what functional you use; density
functional results are always better than Hartree-
Fock.”36

The availability of such codes and the possibility of compar-
ing the results of different types of calculation were important
to establishing the credentials of DF calculations in chemistry.
There has been progress in all the above areas. The number

of publications in a year that combine DF calculations with
molecular dynamics37 has grown nearly linearly from almost
zero in 1990 to over 2000 in 2014 (Mavropoulos, 2015).
Many applications now use Born-Oppenheimer molecular
dynamics (Barnett and Landman, 1993), which allow sub-
stantially longer time steps in the simulations. The optimized
effective potential was extended by Krieger, Li, and Iafrate
(1992) and many others, and there are lengthy reviews of
orbital-dependent (including self-interaction corrections) and
other density functionals (Kümmel and Kronik, 2008) and
constrained density functional theory (Dederichs et al., 1984;
Kaduk, Kowalczyk, and Van Voorhis, 2012). The RPA is
widely used for studying correlations in the homogeneous
electron gas. We have noted that it was discussed by Langreth
and Perdew (1980) in the DF context, and its applications have
grown considerably in recent years (Eshuis, Bates, and
Furche, 2012; Ren et al., 2012; Xiao et al., 2013).
The combination of DF calculations for a chemically active

region with classical molecular dynamics for the surrounds

[the quantum mechanics–molecular mechanics (QM-MM)
approach, Carloni, Röthlisberger, and Parrinello (2002)] has
found applications in many systems in biology, organic, and
solid state chemistry (Lin and Truhlar, 2007; Brunk and
Rothlisberger, 2015). Classical force fields that lead to simu-
lations with near-DF accuracy can be developed by a neural
network representation of the results of (extremely many)
DF calculations on small systems (Behler and Parrinello,
2007), and Li, Kermode, andDeVita (2015) presented recently
a scheme where machine learning of forces is used “on the fly”
to accelerate DF-MD calculations. Machine learning has also
been tested in the context of determining approximate density
functionals (Snyder et al., 2012). These and other develop-
ments are naturally very welcome.

1. Approximations for Exc

The LD [Eq. (17)] and LSD [Eq. (18)] approximations lead
to overbinding of many molecules, poor exchange energy
differences if the nodal structures of the orbitals change, and
the corresponding Kohn-Sham eigenvalues often under-
estimate measured optical band gaps. Nevertheless, calcula-
tions that used them provided insight into many physical
problems, and the reasons for the errors (and ways to assess
their magnitude) became clearer. However, if insight is not
enough and reliable numbers are needed, improved approx-
imations are essential. They have proliferated in recent years.
The first generalized gradient approximations (Perdew,

1986; Becke, 1988; Lee, Yang, and Parr, 1988) did lead to
better results, and “hybrid” functionals, which include a
Hartree-Fock–like exchange component, were introduced
by Becke (1993).38 This form of Ex has three parameters,
and its combination with Ec of Lee, Yang, and Parr (1988)
(B3LYP) is still the most common approximation used in
chemical applications (Burke, 2012). Many other empirical
and hybrid functionals have been developed since, with
parameters often fit to thermochemical data for particular
groups of molecules. The use of experimental data for fitting
functional forms may be understandable (Boese and Handy,
2001), but DF theory came to be viewed by some as “semi-
empirical” in nature. The additional parameters led to
improvement over the LD and LSD results, and the use of
“training sets” of atomic and molecular systems to optimize
the parameters improved the calculated results for particular
sets of molecules (Zhao and Truhlar, 2008).
The increased focus on Hartree-Fock–like exchange and its

role in hybrid functionals has been one of the most significant
developments in recent years. The use of the standard
technique of chemists has brought the world of chemistry
and materials science closer, as the need for approximations
that gave satisfactory results in both areas became obvious.39

An example of recent studies of functionals that give broad
accuracy in both fields is that of Peverati and Truhlar (2012).
The implementation of HF-like exchange usually comes with

36This “rule” has exceptions, of course.
37Web of Science Core Collection: “Car-Parrinello” or “ab initio

or first principles MD.”

38The formal justification of hybrid functionals within the exact
DF theory was given by Görling and Levy (1997).

39Slater (1974) noted that one characteristic of his own work “was
the use of the same techniques both for molecular and solid state
problems.”
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a high computational price, especially in calculations using
large plane-wave basis sets. However, new algorithms on
massively parallel computers have reduced or even eliminated
this drawback in some cases (Curioni, 2013).
An alternative path has been followed by others, particu-

larly Perdew and collaborators, who developed a sequence
(“Jacob’s ladder”) of approximations without experimental
input, where each “rung” builds on the experience of lower
levels and satisfies particular physical constraints. The gen-
eralized gradient approximation (GGA) of Perdew, Burke, and
Ernzerhof (1996) (PBE) incorporates the LSD form below it,
and the “meta-GGA” form of Tao et al. (2003) (TPSS), where
n↑ and n↓ are joined by their gradients and the kinetic
energy density of the occupied Kohn-Sham orbitals, builds
on both. The agreement with experiment improves (and the
computational demands increase) as one climbs the “ladder”
(Furche and Perdew, 2006), although the physical interpreta-
tion may be less clear. Models of the exchange-correlation
hole continue to provide a way of developing DF approx-
imations (Giesbertz, van Leeuwen, and von Barth, 2013),
and systematic ways of correcting for the results of DF
calculations are still being pursued. A recent example is the
use of multideterminant wave functions for hybrid functionals
(Savin, 2014).
We noted (Sec. V.A.2) that the functional derivative of the

exact exchange-correlation energy functional has discontinu-
ities as the number of electrons passes through integer values.
Yang and co-workers focused on this property as a way to
study approximate functionals and to find improvements.
This has proved to be valuable in the context of many-electron
self-interaction (Mori-Sánchez, Cohen, and Yang, 2006) and
band gap errors (Cohen, Mori-Sánchez, and Yang, 2008a). It
is particularly interesting that errors in DF theory show up
in the simplest systems, such as atoms and molecules (Cohen,
Mori-Sánchez, and Yang, 2008b).

2. Dispersion interactions

Two areas are particular challenges for DF calculations, the
first of which is weak dispersion or van der Waals forces.
Crystalline polyethylene, where parallel chains of covalently
bonded molecules are bound by such forces (Fig. 6), provides
an example of the problems that arise.
The structures obtained by complete relaxation of all atomic

coordinates are representative for many similar systems. First,
the C-C and C-H bond lengths in the chains are reproduced
well by the LDA, PBE (Perdew, Burke, and Ernzerhof, 1996),
and Becke-Perdew (BP) (Perdew, 1986; Becke, 1988) approx-
imations (Montanari, Ballone, and Jones, 1998). The C-H
bonds are slightly longer than the experimental values for
orthorhombic hexatriacontane C36H74 (Teare, 1959), while the
C-C bond lengths are reproduced within the experimental
uncertainty. The LDA calculations give a bond length ∼1%
shorter than in the PBE and BP calculations, and the C-C-C
bond angle is farthest from the measured value. The shortest
interchain C-C distance, however, depends dramatically on
the choice of functional. The value for the LD approximation
(3.67 Å) is much less than the experimental value (4.15 Å), the
PBE value (4.66 Å) is too large, and the Becke-Perdew
functional results in no binding at all.

The poor results obtained for van der Waals bonds with
“standard” approximations for Exc led to a pronounced
increase in dispersion-corrected DF studies in recent years.
The progress that has resulted (Dobson and Gould, 2012;
Klimeš and Michaelides, 2012; DiStasio, Gobre, and
Tkatchenko, 2014) is seen by many as one of the success
stories in recent DF research.
The development of a functional that changes seamlessly on

going from weakly interacting units to a combined system has
been a common goal, and van der Waals interactions can be
built into the electron gas picture in various ways (Rapcewicz
and Ashcroft, 1991; Dobson and Dinte, 1996; Berland et al.,
2014). We have seen (Sec. IV.C) that the exchange and
correlation energy can be expressed as an integral over the
coupling constant λ ¼ e2, and this is the basis of several
approximations for dispersion (Dobson andWang, 1999; Dion
et al., 2004; Vydrov and Van Voorhis, 2009). The functional
of Langreth and co-workers (Dion et al., 2004) is free of
experimental input, involving results from electron gas slabs
and the electron gas itself, and it has been implemented in
several program packages. An empirical correction to DF
results (DFT-D2) was proposed by Grimme (2006), and an

FIG. 6. View of the orthorhombic structure of polyethylene
along the (a) b and (b) c axes (the axis of the polymer chains).
From Montanari and Jones, 1997.

R. O. Jones: Density functional theory: Its origins, rise … 911

Rev. Mod. Phys., Vol. 87, No. 3, July–September 2015



alternative was suggested by Tkatchenko and Scheffler
(2009). A more recent parametrization by Grimme and co-
workers (DFT-D3) (Grimme et al., 2010) provides a consis-
tent description of dispersion forces for elements up to
plutonium that can be added to DF packages. It is sensitive
to the environment of the atoms involved and has been applied
in a range of contexts.
The failure of local density approximations to describe

dispersion forces has led to numerous studies of the reasons.
One approach has involved the accurate determination of the
wave function and correlation effects in simple systems, e.g.,
He2 (Allen and Tozer, 2002), another uses adiabatic con-
nection [Tkatchenko, Ambrosetti, and DiStasio (2013) and
references therein]. Adiabatic connection is also the basis of a
range separation approach, where short-range density func-
tional and the long-range random phase approximations are
combined (Toulouse et al., 2009). This method describes the
bonds in Be and Ne dimers well.

3. Excitations and eigenvalues

The main focus of this article is on DF theory with occupied
orbitals, the “Kohn-Sham” aspect. Time-dependent DF theory,
based on the theorem of Runge and Gross (1984), has proved
to be valuable in predicting the excited states and optical
properties in molecules (Burke, Werschnik, and Gross, 2005;
Marques et al., 2006; Botti et al., 2007; Isegawa, Peverati, and
Truhlar, 2012) and has become an option in most DF program
packages. In addition, the exact KS potential can be deter-
mined if the exact wave functions are known, and Gritsenko,
Schipper, and Baerends (1997) showed that eigenvalue
differences provide an excellent approximation to excitation
energies in several small molecules when calculated with this
potential.
An approximate Kohn-Sham exchange-correlation poten-

tial was developed by Schipper et al. (2000) and used within
time-dependent DFT to calculate excitation energies and other
optical properties of small molecules. The results are in good
agreement with experiment, and the model potential appears
to approximate the exact KS potential better than the LD,
GGA, or meta-GGA forms. Recently, van Meer, Gritsenko,
and Baerends (2014) showed for the model potential that the
occupied orbital energies are close to ionization energies and
virtual-occupied orbital energy gaps are close to excitation
energies, leading to a simple physical interpretation of most
excitations as single orbital transitions.

4. “Strongly correlated” systems

The term “strongly correlated” is often used in extended
systems as a synonym for cases where standard approxima-
tions in DF calculations give poor answers. They are usually
cases where the potential energy dominates over the kinetic
energy and often involve transition element or rare earth
atoms. The metal-insulator transition of Mott (Mott, 1968;
Imada, Fujimori, and Tokura, 1998) is a well-studied example.
Local density approximations (including semilocal approx-
imations, such as GGA) can give qualitatively incorrect
descriptions of these materials, examples being metallic DF
band structures in insulating transition metal oxides.

The use of model Hamiltonians has been a popular way to
treat strong correlations, and a common way of modifying DF
calculations is the addition of an on-site Coulomb repulsion
(“HubbardU”) in the “LSDþ U” scheme (Anisimov, Zaanen,
and Andersen, 1991; Anisimov, Aryasetiawan, and
Lichtenstein, 1997). The parameter U can be estimated within
a DF framework (Cococcioni and de Gironcoli, 2005), but it is
often fit to experiment. The addition of such Hartree-Fock–
like local correlations has a similar effect to hybrid energy
functionals (Sec. VI.A.1), where part of the LD exchange
energy is replaced by the nonlocal exchange energy. Aras and
Kiliç (2014) proposed recently that a range-separated hybrid
functional (Heyd, Scuseria, and Ernzerhof, 2003) be com-
bined with a value of U adjusted to reproduce the exper-
imental band gap, and they presented results for some metal
chalcogenides. The dominance of the electron-electron inter-
action over the kinetic energy suggests performing a coupling-
constant integration over the latter, and this was formulated by
Gori-Giorgi, Seidl, and Vignale (2009).
The dynamical mean-field theory (DMFT) (Georges et al.,

1996; Kotliar and Vollhardt, 2004) is a mapping of lattice
models onto quantum impurity models subject to a self-
consistency condition, and the “LDAþ DMFT” method
merges the DF theory with a modern many-body approach.
It allows the modeling of structural, electronic, and magnetic
properties of transition metals, their oxides, and other strongly
correlated materials.
In the chemical context, strong correlations are present in

systems that cannot be described well by single-determinant
solutions to the Kohn-Sham equations. The basic DF theorems
tell us that a single symmetry-restricted Slater determinant
should be able, in principle, to describe even molecular
dissociation, which is a well-known deficiency of Hartree-
Fock theory, but the development of appropriate functionals
remains a challenge. The study of two-determinantmixingwith
a recently proposed functional is promising (Becke, 2013).
The adiabatic connection between noninteracting and inter-

acting systems was used [Eqs. (21) and (22)] to show that local
density approximations can give reasonable results for systems
that are far from uniform, but it can also be used to understand
why local density approximations sometimes fail badly. The
integrand leading to Exc must, of course, be well behaved
mathematically for all λ. If it depends approximately linearly on
λ, the “mapping” of the noninteracting to the interacting system
is straightforward, and standard DF prescriptions should
provide a reasonable description. The λ dependence of the
adiabatic coupling integrand has been studied in the context of
hybrid functionals [see, for example, Ernzerhof (1996)] and in
calculations for atoms andmoleculeswith up to ten atoms using
accurate wave functions and DF approximations (Teale,
Coriani, and Helgaker, 2010). If the nature of the system
changes for small values of λ, the linear dependence is a poor
approximation, and standard methods fail. Modeling of the
integrand to reproduce the correlation energies found in
accurate wave function calculations is a promising method
of developing new functional approximations.

5. Developments related to QMC

There are developments in the QMC studies of interacting
electron systems that could be relevant for future DF work.
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The full configuration interaction implementation of QMC
was applied recently to the homogeneous electron gas
(Shepherd, Booth, and Alavi, 2012) and to simple solids
(Booth et al., 2013). Condensed matter scientists have much
experience with periodic boundary conditions and plane-wave
orbital expansions, and this should aid the implementation of
the method in extended systems. Another example is the
reformulation of the constrained search approach in DF theory
(Levy, 1979; Lieb, 1983) in terms of the density and the
ðN − 1Þ-conditional probability density, which can be treated
by ground state path integral QMC (Delle Site, Ghiringhelli,
and Ceperley, 2013). It remains to be seen whether the
computational demands usually associated with QMC can
be reduced.

6. Reduced density matrix functional theory

An active area of research in many-electron systems is
based on the one-particle reduced density matrix (1-RDM)

γðr; r0Þ ¼ N
Z

dr2 � � � drNΨðr; r2;…; rNÞΨðr0; r2;…; rNÞ;
ð29Þ

where Ψðr1; r2;…; rNÞ is the wave function of the N-electron
system and the spin coordinates are suppressed. Gilbert (1975)
extended the Hohenberg-Kohn theorem to cover external
nonlocal potentials and showed that a nondegenerate ground
state wave function ΨGS is a universal functional of γðr; r0Þ.
The total energy E can be expressed as a functional of γ whose
minimum yields the exact γ and the exact ground state energy
for a given external potential [see also Levy (1979)]. In some
sense, Gilbert and Levy proved in the modern DF context the
idea of Dirac (1930a) to use the 1-RDM to avoid calculating
the many-electron wave function. The use of the density
matrix provides a description of static correlation by fractional
occupation numbers for the orbitals and more flexibility than
DF theory. In practice, the exchange-correlation energy is an
unknown functional of γ, and approximations are unavoidable
(Müller, 1984; Buijse and Baerends, 2002). There have been
impressive results for geometries of small molecules
(Gritsenko, Pernal, and Baerends, 2005) and the energy gaps
in bulk semiconductors and transition metal oxides (Sharma
et al., 2008).
The obvious similarities between the DF and 1-RDM

approaches cannot hide two pronounced differences: The
kinetic energy functional in the latter is the exact kinetic
energy, which results in poor basis set convergence. Unlike the
noninteracting γðr; r0Þ, the interacting analog is also not
idempotent,40 so that there is no artificial (Kohn-Sham) system
that reproduces the exact γðr; r0Þ. This may disturb the
advocates of density functional calculations, but it may be
possible to combine the two approaches and have the
advantages of both (Blöchl, Walther, and Pruschke, 2011).
In particular, separation of the short-range density functional
from the long-range density matrix functional is a promising
development (Rohr, Toulouse, and Pernal, 2010).

7. “Missing” topics

A review of this length cannot cover all density functional
topics, even those of current interest and importance. My main
focus has been on the “occupied orbitals only” world of Kohn
and Sham (1965) and calculations of the total energy, but this
has not deterred readers of earlier versions from drawing my
attention to omissions. There have been many improvements
in numerical methods and algorithms, particularly those that
scale linearly with the number of particles N. Examples are
the KKRNANO code (Zeller, 2008), which has been used to
simulate many thousands of particles, and orbital-free
methods [see Karasiev, Sjostrom, and Trickey (2014) and
references therein]. The development of new functional
approximations is essential in the latter case. A glance at
the program of any conference related to density functional
methods immediately shows a large range of applications of
these methods. I encourage interested readers to look again at
the recent volume (Yang, 2014).

8. Terminology

The terms ab initio and “first principles” are used differ-
ently in the “chemical” and “materials” worlds. For most
chemists, these expressions mean solutions of the Schrödinger
equation for the system of interacting electrons (e.g., by
QMC), for many materials scientists it can be a DF calculation
without (or even with) adjustable parameters. I use the term
“density functional” to describe the work I do, and ab initio
for solutions of the Schrödinger equation. I have been told
countless times over the years that the latter give “the right
answer for the right reason,” and I look forward to the day
when the speakers say the same about DF calculations.

B. Two applications

I briefly describe the results of one DF simulation in
biology and one in materials science that indicate the scale
of DF calculations that are possible. They are not standard
applications by any means, requiring very large computing
resources and substantial human effort. In the spirit of
addressing newcomers to the field, I now mention some
practical points about DF calculations.
The ready availability of DF programs does not mean that

they are easy to use or that careful choices of input parameters
can be avoided. Some methods of calculation consider all
electrons, but many focus on the outermost valence electrons
that dominate structural properties and replace the effect of
inner “core” electrons by an effective potential (pseudopo-
tential) or a frozen core density. These must be constructed as
needed and tested. A basis set must be chosen and its
convergence checked, and the final results depend, in par-
ticular, on the approximation adopted for the exchange-
correlation energy functional. This means that numerous test
calculations are essential before the actual calculations of
interest can be carried out. The following applications use the
PBE functional (Perdew, Burke, and Ernzerhof, 1996), which
is used widely in the materials world.
In 1871, Charles Darwin saw the formation of protein

molecules under extreme, prebiotic, conditions as a possible
path of evolution of life on Earth:40There is also no analog to the variational equation δE=δn ¼ 0.
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“But if (and what a big if) we could conceive in
some warm little pond with all sorts of ammonia
and phosphoric salts—light, heat, electricity, &c
present, that a protein compound was chemically
formed, ready to undergo still more complex
changes, at the present day such matter would be
instantly devoured, or absorbed, which would not
have been the case before living creatures were
formed” (Darwin, 1887).

DF simulations can be used to test whether biological
molecules can be produced by chemical processes that do
not require biological synthesis machines like ribosomes.
Schreiner et al. (Nair, Schreiner, and Marx, 2008; Schreiner,
Nair, and Marx, 2008; Schreiner et al., 2011) studied possible
reactions of N-carboxy anhydrides (a form of activated
amino acids) in water under high pressures and temper-
atures in the presence of pyrites FeS2 [the controversial
“iron-sulfur world” of Wächtershäuser (1988)]. The pres-
ence of an FeS2 surface changes the free energetics of the
steps of the carbonyl sulfide (COS)-mediated polymeriza-
tion of glycine carried out under different thermodynamic
conditions (Fig. 7), and it stabilizes the peptide product
against hydrolysis.
The reactions studied are just a few of many possible

scenarios for the production of molecules that are essential to
life on Earth, but they demonstrate the value of simulations
under conditions that are difficult to attain experimentally.
They also show that simulations without adjustable parame-
ters can be performed on biological systems that were
unthinkable with earlier generations of computers. Of course,
there are many such systems for which the simulation sample
sizes currently accessible with DF methods are simply
inadequate. Classical force fields with appropriately chosen
parameters are likely to remain the method of choice for such
systems for some time yet.
Phase change (PC) materials are alloys of chalcogens

(group 16 elements) that are ubiquitous in the world of
rewritable optical storage media, examples being the digital
versatile disk (DVD-RW) and Blu-ray Disc. Nanosized bits
in a thin polycrystalline layer are switched reversibly and
extremely rapidly between amorphous and crystalline states,
and the state can be identified by changes in resistivity or
optical properties. Crystallization of the amorphous bit is
the rate-limiting step in the write or erase cycle, and much
attention has been focused on this process. Alloys of Ge,

Sb, and Te are often used in PC materials, and 460-atom
simulations have been carried out at 600 K on amorphous
Ge2Sb2Te5 (GST) (Kalikka et al., 2012; Kalikka, Akola,
and Jones, 2014) (Fig. 8). Crystallization takes place in just
over 1 ns, and it is possible to monitor changes in the
distribution of the cavities, the diffusion of atoms of the
different elements, and percolation of crystalline units in
the sample. The presence of cavities is essential for rapid
crystallization in these materials (Akola and Jones, 2007,
2008).
These calculations required over 400 000 self-consistent

DF calculations of energies and forces for a 460-atom sample,
and it was exciting to witness the gradual transition from an
amorphous sample to a crystal without driving it in any way. It
is very unusual for a phase transition to be fast enough
(nanoseconds in this case) to be accessible to DF calculations
under the actual conditions of temperature and time scale, and
the details of the structural change should shed light on the
mechanisms of other phase transitions. I emphasize again that
the steady improvement in numerical algorithms has played an
important role in making such calculations possible, but they
also require computers of the highest performance class.
Furthermore, these and almost all other simulations use a
functional approximation developed for T ¼ 0 K. A recent
parametrization of restricted path integral Monte Carlo data
for the homogeneous electron gas for wide temperature and
density ranges (Karasiev et al., 2014) indicates that improved

FIG. 7 (color online). Glycine (left), activated glycine (center),
and the glycine-glycine dipeptide (right) between an FeS2 surface
(below) and water. COS: carbonyl sulfide.

FIG. 8 (color online). Crystallization in GST alloy at 600 K.
(a) Amorphous structure after 215 ps, (b) crystalline structure
after 1045 ps.
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functionals for describing systems at high temperatures should
soon be available.

C. DF theory in other contexts

The dominant role of the electron density functional theory
in materials science and chemistry means that many of its
practitioners identify the term solely with electrons. “DF
calculations” are also performed in other contexts.

1. Classical density functional theory

Work in this area focuses on the thermodynamics of systems
interacting with classical potentials and is based on the
Hohenberg-Kohn-Mermin formulation at finite temperatures
(Sec. V.A). The focus is on the Helmholtz free energy and its
expression as a functional of the density. The systems con-
sidered are very large by electron density functional standards
(I have read about particle numbers “up to Avogadro’s
number”), with particular emphasis on phase transitions.
Early work was performed by Nordholm and co-workers
(Nordholm and Haymet, 1980; Johnson and Nordholm,
1981), who described a “generalized van der Waals theory”
using a free energy functional defined in terms of a coarse-
grained particle density. Surveys of the field show that the
classical and electronic DF worlds have much in common
(Evans, 1979, 1992; Haymet and Oxtoby, 1981; Baus, 1990;
Ashcroft, 1995; Wu and Li, 2007). Electron density functional
theory needs approximations for the exchange-correlation
energy, the classical counterpart an expression for the excess
free energy arising from interactions in the system. The free
energy is written as the sum of terms involving a reference
system (e.g., a liquid) and a second system of interest (such as a
solid), and the “coupling-constant integration” technique can
be used to switch from one density to the other or from a
“noninteracting” to an “interacting” system.
Particularly familiar to me were the weighted density (WD)

approximations for the excess free energy in an inhomo-
geneous liquid (Tarazona, 1984; Curtin and Ashcroft, 1985),
where the free energy density at a given point is taken to be
that of a homogeneous system with a density determined
by weighting over a physically relevant region. This is
precisely the motivation of the “WD approximation” in
electronic systems (Gunnarsson, Jonson, and Lundqvist,
1979; Gunnarsson and Jones, 1980), where the “physically
relevant region” is determined by the exchange-correlation
hole [Eq. (22)]. In the WD approximation, this can be written

nWD
xc ðr; r0 − rÞ≡ nðr0ÞGWD(r; r0; ~nðrÞ); ð30Þ

where GWD is a model pair-correlation function, and ~nðrÞ is
a nonlocal parameter chosen to satisfy the sum rule Eq. (24).
GWD can be chosen to satisfy additional requirements, such
as reproducing the LD result in a homogeneous system or
the correct form of the potential outside a surface. A
particularly simple form has been tested for atoms with
mixed success (Gunnarsson and Jones, 1980; Jones and
Gunnarsson, 1989).

2. Nuclei

The number of nuclides (isotopes) of the elements that
occur or can be synthesized on Earth is approximately 3000
and increases every year. Of these, less than 300 are
considered stable (Erler et al., 2012). The stability of a
nuclide is determined by the amount of energy needed to
remove a single neutron or proton or a pair of neutrons or
protons, and it is natural that the limits of nuclear binding have
received much attention. The microscopic method of choice in
describing weakly bound complex nuclei is the nuclear
density functional theory based on a self-consistent mean-
field approach (Bender, Heenen, and Reinhard, 2003).
There has been significant progress in developing a density

functional theory for schematic nucleon-nucleon interactions
along the lines discussed above for electrons (Drut, Furnstahl,
and Platter, 2010; Drut and Platter, 2011). Nevertheless,
nuclear many-body theories are not yet able to provide input
for effective energy-density functionals, and experimental
input cannot be avoided. Many calculations are based on the
functional form suggested by Skyrme (1956, 1959), and the
optimization of the parameters involved is an ongoing chal-
lenge (Klüpfel et al., 2009; Kortelainen et al., 2010; Carlsson,
Toivanen, and von Barth, 2013). A detailed study of the
“nuclear landscape” using a range of functionals concluded
that the number of bound nuclides with between 2 and 120
protons is 6900� 500 (Erler et al., 2012).
Numerous concepts that one encounters in the nuclear

physics literature [such as Skyrme-Hartree-Fock, mean-field
theory, DFT, Bardeen-Cooper-Schrieffer (BCS) wave func-
tion, superfluidity, spin-orbit coupling, orbital-dependent
functionals, optimized effective potentials, even Thomas-
Fermi] are familiar to many in the condensed matter world.
It is indeed interesting to look beyond familiar pastures, and
perhaps the experience of condensed matter physicists and
chemists with density functional theories can provide impor-
tant insights in other areas.

VII. SUMMARY AND OUTLOOK

A. An “approximate practical method”

The astonishing growth of density functional calculations
since 1990 (Fig. 1) is due in part to the use of this term for
calculations that had previously used the labels electron band
structure, local density, and Hartree-Fock-Slater.41 Such cal-
culations would certainly have continued with a variety of
local density approximations, but the crucial theoretical
justification of the density functional formalism resulted in
Walter Kohn sharing the 1998 Nobel Prize for Chemistry with
John Pople (Kohn, 1999). Anderson noted that, although
“very deep problems” remain, this award may indicate that

“the labors and controversies … in understanding
the chemical binding in materials had finally come
to a resolution in favor of ‘LDA’ and the modern
computer” (Anderson, 2011, p. 109),

i.e., “Dream Machine ↑ Mott ↓” (Anderson, 2011, p. 120).

41Some program names were changed correspondingly.
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The recognition of the basic role of the electron density
goes back to the earliest days of quantum mechanics and the
first density functional of Thomas and Fermi. Dirac (1930a)
incorporated exchange effects into this model and observed
that a matrix density function (we know it as the one-particle
reduced density matrix) could completely determine the state
of an atom within the Hartree-Fock approximation; “it is not
necessary to specify the individual three-dimensional wave
functions that make up the total electric density.” The self-
consistent field of Hartree and the use of determinantal wave
functions by Slater, Bloch, and Fock were followed by the
calculations of Wigner and Seitz, who showed that the
exchange hole of an electron in Na metal was localized to
a single ion. The exchange-hole picture is a central concept in
DF theory and was developed further by Slater in 1951. An
effective exchange potential of the form of Bloch and Dirac
was derived and tested by Gáspár in 1954. Hohenberg and
Kohn (1964) and Kohn and Sham (1965) are two of the most
cited papers in physics.
Kohn and Sham (1965) did not expect the local density

approximation for exchange and correlation to give “an
accurate description of chemical binding,” and this view
was shared by most theoretical chemists for many years.
Nevertheless, we now know that approximations to the
exchange-correlation energy based on the homogeneous
electron gas (LD, LSD) and their modifications provide a
scheme that can give valuable information about large
molecules and extended systems. It was shown later why
approximations to Exc could give good results for density
distributions far from those where they are obviously valid
(Jones and Gunnarsson, 1989). The approach does appear to
satisfy the 80-year-old goal of Dirac (1930a) to find “approxi-
mate practical methods of applying quantum mechanics to
(explain) the main features of complex atomic systems with-
out too much computation.” Those involved in this activity
know that few of us took the last point too seriously.

B. Exchange-correlation approximations

The LD and LSD approximations have well documented
drawbacks, and the resulting numbers (binding energies, band
gaps, etc.) should always be treated with caution. However, the
approximations and their further developments satisfy impor-
tant physical criteria, including sum rules on the exchange and
correlation holes, coordinate scaling properties, and bounds on
Exc, and our long experiencewith themhelps us to predict when
the results may be wrong and by how much. After spending
several years developing functional forms based on ever-
expanding amounts of experimental data, Handy (2002,
2009) noted that some simpler functionals allow us to separate
different types of correlation in molecules and concluded:

“We are returning to the view that the simplest
parameter-free GGA functionals are the best func-
tionals to use with DFT, because they offer the
simplest interpretation and have greater global
predictive power.”

In fact, the bonding patterns are correct in most cases,
which is no doubt one reason why LD approximations and

their extensions are still in widespread use. They make
possible the simultaneous study of numerous related sys-
tems, such as families of molecules or materials, with the
computational resources needed to determine the wave
function of a single much smaller system. Is this pragmatic
approach giving way to the search for schemes that produce
better numbers automatically, as the long list of approximate
functionals and publications comparing their predictions
might suggest?
Thirty years ago, it became obvious (to Olle Gunnarsson

and me, at least) that the LSD approximation could lead
to unacceptably large errors in exchange energy differences
if the nodal structures of the orbitals involved changed.
Some in the chemical world advised us then to go back to
Hartree-Fock calculations and their extensions. Now Becke
(2014) writes

“This is my position, today, on how to proceed into
the future. We have come ‘full circle’ back to exact
exchange or, if you prefer, Hartree-Fock.”

Going around in circles is not usually a sign of progress. Have
we overlooked something?

C. Quo vadis?

Figure 1 shows that density functional theory will be with
us for the foreseeable future, and we can be sure that some
exciting results lie ahead. Why then should two of the most
cited workers in the field have serious reservations about the
future of DF theory? Burke (2012) wrote that “it is clearly
both the best of times and the worst of times for DFT” and
wondered whether it is time for a “paradigm shift.” A
newcomer to the field might indeed despair of understanding
why one of the countless approximations for Exc, even those
with a sound physical basis, should be favored over another, or
the real physical reasons behind a particular result. Are DF
calculations now following the “Dream Machine” scenario
foreseen many years ago by Anderson (1980)? Furthermore,
the identification of the “best” functional may be ambiguous.
A comparison of the band gaps in LiH and four alkali halides,
four oxides, and solid Ne and Ar (gaps between 0.2 and
20 eV) with the predictions of many popular functionals
(Civalleri et al., 2012) showed that finding the best functional
also depends on the choice of statistical measure (mean error,
mean absolute error, variance, etc.).
The concerns of Becke (2014) are just as real. It is obvious

that great progress has been made in applying DF methods to
systems that seemed beyond us only 10 or 15 years ago, and
the use of Hartree-Fock–like exchange in many modern
functionals has helped communication between the different
fields where DF methods are used. However, Becke (and
many others, including me) have focused for years on the
“Kohn-Sham” version of DF theory (“occupied orbitals
only”), which is a major reason for the popularity of the
method. Should we move our focus away from the relatively
featureless electron density with its small and subtle changes?
Can the combination with density matrix functional methods
lead to a new breakthrough? Will the inherent accuracy of
wave-function-based methods prove to be decisive as
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computational resources expand?42 Many years ago, a col-
league predicted that DF methods would ultimately lose out to
solutions of the Schrödinger equation as computer power
increased. He was not impressed by my view that DF
calculations would always be far ahead in the size of system
we could calculate (I think I said 5–10 years, but it is more),
and he moved on. I stayed.
Density functional theory has a long and fascinating history

involving some of the best known names in physics. It
deserves better than to be the basis for developing a vast
array of approximations seeking the “right” numbers. It
cannot be expected to provide precise answers to all questions
when simple descriptions of the exchange-correlation energy
are used, but its ability to outperform methods that seek exact
solutions of the Schrödinger equation is not threatened. We
shall continue to obtain insight into all sorts of problems that
we cannot imagine today.
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APPENDIX: ADIABATIC COUPLING

If we make infinitesimally slow changes to a parameter
describing a system in a stationary state, the system remains in
its original state. This adiabatic principle is familiar from the
earlier quantum theory (Ehrenfest, 1916) and was shown
already in 1926 to be valid in quantum mechanics (Born,
1926b; Born and Fock, 1928). If the Hamiltonian H of a
system depends on some parameter λ, e.g., interatomic
separation, the electron-electron interaction, or the time,
Güttinger (1931) showed that

∂En

∂λ ¼
�∂H
∂λ

�
nn

ðA1Þ

for the diagonal terms, where the right-hand side is an
expectation value for state n, and

Z
dr u�m

∂un
∂λ ¼ 1

En − Em

�∂H
∂λ

�
mn

ðA2Þ

for n ≠ m. En is the energy eigenvalue and un is the
eigenfunction of state n. These results are implicit in first-
order Rayleigh-Schrödinger perturbation theory (Schrödinger,
1926a),43 and Born and Fock (1928) used off-diagonal terms
of Eq. (A2) in their proof of adiabaticity in quantum
mechanics. If λ is an interatomic distance in a molecule,
Eq. (A1) is familiar as the “Hellmann-Feynman theorem” for
forces (Hellmann, 1933, 1937; Feynman, 1939).
The integrated form of Eq. (A1)

EnðλfÞ − Enð0Þ ¼
Z

λf

0

dλ

�∂H
∂λ

�
nn

ðA3Þ

is often attributed to Pauli [see Musher (1966) and references
therein] and described as the “Pauli trick.” However, it is an
obvious extension of Eq. (A1) and is an intermediate result of
Güttinger in the context of the adiabatic principle, where λ is
the time. The “integration over the coupling constant” or
“adiabatic coupling”method is an obvious choice in studies of
the relationship between the noninteracting (λ ¼ 0) and
interacting (λ ¼ e2) electron systems (see Sec. IV.C).
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