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Nearly five decades have elapsed since the seminal 1966 paper of P. W. Anderson on the flow of
superfluid helium, 4He at that time. Some of his “considerations”—the role of the quantum phase as a
dynamical variable, the interplay between the motion of quantized vortices and potential superflow,
its incidence on dissipation in the superfluid and the appearance of critical velocities, the quest for the
hydrodynamic analogs of the Josephson effects in helium—and the way they have evolved over the
past half century are recounted in this review. But it is due to key advances on the experimental front
that phase slippage could be harnessed in the laboratory, leading to a deeper understanding of
superflow, vortex nucleation, the various intrinsic and extrinsic dissipation mechanisms in super-
fluids, macroscopic quantum effects, and the superfluid analog of both ac and dc Josephson effects—
pivotal concepts in superfluid physics—have been performed. Some of the experiments that have
shed light on the more intimate effect of quantum mechanics on the hydrodynamics of the dense
heliums are surveyed, including the nucleation of quantized vortices both by Arrhenius processes and
by macroscopic quantum tunneling, the setting up of vortex mills, and superfluid interferometry.
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Superfluids display quantum properties over large distan-
ces. Superfluid currents may persist indefinitely unlike those
of ordinary fluids (Reppy and Lane, 1965); the circulation of
flow velocity has been found quantized over meter-size paths
(Verbeek et al., 1974). These manifestations of macroscopic
quantum phenomena have constituted one of the early hall-
marks of experimental condensed matter physics as reviewed
over the years by a number of authors.1 They are viewed as
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1Among these reviews, see, in particular, Vinen (1963, 1966,
1968), Khalatnikov (1965), Andronikashvili and Mamaladze (1966),
Putterman and Rudnick (1971), Nozières and Pines (1990), Vollhardt
and Wölfle (1990), Volovik (2003), and Sonin (2015).
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supporting the concept of a macroscopic wave function
extending over the whole superfluid sample as put forward
by London (1954). Together with Landau’s views on the
irrotational nature of superfluid motion (Landau, 1941), these
ideas form the basis of the two-fluid model, summarized in
Sec. I, which not only describes the hydrodynamics of
superfluids (Khalatnikov, 1965) but has been extended to
other fields of physics such as superconductivity, the Bose-
Einstein condensed gases, etc. (Enz, 1974).
Hydrodynamics, and superfluid hydrodynamics in its wake,

is expected to break downat small scalewhen the typical lengths
of the problem at hand are no longer much larger than the
interatomic separation or other microscopic lengths character-
istic of the internal structure of the fluid, the “size” of Cooper
pairs in superfluid 3He, for instance. It has however been known
for a long time, notably from the ion propagationmeasurements
of Rayfield and Reif (1964), that the relevant scale in superfluid
4He is surprisingly small, of the order of angstroms. In these
experiments, the velocity of vortex rings could bemeasured in a
direct way and compared to the usual outcome of classical
hydrodynamics (see Sec. II). Rayfield and Reif found that
hydrodynamics remains valid down to atomic sizes. Their result
holds for 4He, which is a dense fluid of bosons. The relevant
scale is much larger in superfluid 3He, a Bardeen-Cooper-
Schrieffer (BCS)-type p-wave superfluid in which the charac-
teristic length is fixed by the size of the Cooper pair. This article
aims at reviewinghow thehydrodynamics of superfluid 4Heand
3He evolves from large to small scale and ultimately breaks
down at close distance, revealing the more intimate quantum
properties of these fluids. This is nomean feat, as noted long ago
byUhlenbeck, who is quoted to have said “Onemust watch like
a hawk to see Planck’s constant appear in hydrodynamics”
(Putterman, 1974).
The main object of study in the following is the time and

space evolution of the phase of the macroscopic wave function,
often simply referred to as “the phase,” in so-called aperture
flow. This concept of phase with wave-mechanical properties
governing the evolution of macroscopic quantities has become
so well known that its meaning is, wrongly perhaps, taken for
granted. It was put forward by P.W. Anderson in 1966,
following the lead of Feynman (1953a, 1953b, 1954, 1955),
mainly by the recognition of the phase as the quantity
commandeering in superfluids both the putative Josephson-
type effects and dissipation caused by vortex motion. The
dynamics of quantized vortices, central to Anderson’s ideas, is
outlined in Sec. II. A detailed understanding of these phenom-
ena is of fundamental importance as they govern the breakdown
of viscousless flow, the most noteworthy feature of super-
fluidity, and the appearance of an entirely new class of
phenomena, the hydrodynamic analogs of the Josephson
effects, that underpin the sort of interferometry that can be
performed with the superfluid wave function.
These ideas were put forward in themid-1960s, in particular,

at the Sussex Meeting in 1965, by Anderson (1966a), and by a
number of prominent physicists, notably Nozières and Vinen.
Reliable experimental observations were performed 20 years
later only, as recalled in Sec. III, giving a host of new results and
insights on superfluid hydrodynamics, notably an improved
understanding of critical velocities and of the nucleation of
vortices, topics discussed in Secs. IV and V, of possible
mechanisms for formation of vortex tangles, described in

Sec. VI, of the appearance of the Josephson regime of super-
flow through tiny apertures, described in Sec. VII.
Presented here is a coverage of some of the ramifications of

Anderson’s ideas on phase slippage in superfluids. It is
intended to provide a gangway between the many excellent
monographs2 that provide the background material on this
subject and the more specialized research publications in
the literature that give the full, raw, sometimes arcane, cover-
age. As such, it does not constitute a comprehensive review
(space and time constraining) but touches on a few selected
issues that provide the backbone of this subfield of superfluid
hydrodynamics. Reviews with different flavors span over a
quarter of a century and show how this field has evolved.3

Particularly worthy of notice are the reviews of closely
related subjects, Sonin’s description of vortex dynamics
(Sonin, 1987, 2015), the Landau critical velocity in superfluid
4He by McClintock and Bowley (1995) and in superfluid
3He-B by Dobbs (2000), and vortex formation and dynamics
in superfluid 3He by Salomaa and Volovik (1987), Volovik
(2003), and Eltsov, Krusius, and Volovik (2005). The later
references also cover the exciting field of exotic topological
defects in superfluid 3He under rotation, not considered here.

I. THE BASIC SUPERFLUID: He-4

Helium-4 undergoes an ordering transition toward a super-
fluid state at T ∼ 2.17 K under its saturated vapor pressure
(SVP), which is now commonly viewed as a form of Bose-
Einstein condensation. A similar transition occurs in helium-3
at T ≲ 2.7 mK when Cooper pairing in a state with parallel
spin S ¼ 1 and relative orbital momentum l ¼ 1 occurs.

A. The two-fluid hydrodynamics

The flowing superfluid helium must obey some form of
hydrodynamic equations given by the general conservation
laws, Galilean invariance, and the thermodynamic equation of
state that should also include its superfluid properties. These
equations were written down for 4He by Landau (1941)
(Landau and Lifshitz, 1959; Khalatnikov, 1965) who made
the key assumption that in order to describe the viscousless
fluid flow the independent hydrodynamical variables must
include a velocity field vs, to which is associated a fraction
ρs=ρ of the total density of the liquid, ρ ¼ m4=v4 being the
4He atomic mass divided by the volume occupied by one
atom. This ideal inviscid fluid velocity field conforms to the
Euler equation for ideal fluid flow. As a consequence, it also
obeys the Kelvin-Helmholtz theorem, which states that the
vorticity ∇ × vs remains constant along the fluid flow lines.4

2See, for example, Nozières and Pines (1990), Tilley and Tilley
(1990), and Vollhardt and Wölfle (1990).

3The reviews include the work of Avenel and Varoquaux (1987,
1989), Varoquaux, Avenel, and Meisel (1987), Varoquaux,
Zimmermann, and Avenel (1991), Bowley, Kirk, and King (1992),
Varoquaux et al. (1992, 1999, 2001), Avenel, Ihas, and Varoquaux
(1993), Varoquaux and Avenel (1994), Zimmermann (1996), Packard
(1998, 2004), Varoquaux (2001), Davis and Packard (2002), and Sato
and Packard (2012).

4See Landau and Lifshitz (1959), Sec. 8.
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In addition to vorticity conservation, a more stringent con-
dition was assumed by Landau (1941), namely, that the
superfluid velocity field be at any instant irrotational at all
points in the superfluid5:

∇ × vs ¼ 0: ð1Þ

The superfluid fraction velocity therefore derives from a
velocity potential. This property will be shown to be related
to the microscopic description of the superfluid and to have
far-reaching consequences.
The remainder of the fluid, the normal fraction ρn ¼ ρ − ρs,

to which is associated a “normal” velocity vn, obeys an
equation similar to the Navier-Stokes equation of viscous
flow. The total momentum density of the helium liquid is the
sum of the contributions of these two fluids:

j ¼ ρsvs þ ρnvn: ð2Þ

The superfluid part of the flow is assumed to be ideal.
Therefore, it carries no entropy. The fluid entropy is transported
by the normal fluid described by Landau as a gas of thermally
excited elementary excitations, the phonons, or sound quanta, at
long wavelengths and the rotons at wavelengths of the order of
interatomic spacing, as sketched in Fig. 1. Landau attributed the
nonviscous property of 4He flow to the intrinsic shape of this
spectrum. There exists no elementary excitation with a finite
momentump ¼ ℏk and a small enoughenergy ϵðpÞ to couple to
a solid obstacle or a wall at rest while conserving energy and
momentum at least for small enough superflow velocities. This
requirement sets the Landau criterion for dissipationless flow
vs < vL. The intricate problemof critical velocities abovewhich
dissipation arises in superfluid flow is dealt with in Sec. IV.
When ρn and ρs can be assumed incompressible, i.e., for

small flow velocities, the separation between potential flow
for vs and a Poiseuille flow for vn becomes exact.6 In this
approximation, superflow is effectively decoupled from nor-
mal fluid motion. It has become customary to talk somewhat
loosely of the motion of the superfluid as fully distinct from
that of the normal fluid. This simplified view is adopted here
but, occasionally, it fails (Idowu, Kivotides et al., 2000;
Idowu, Willis et al., 2000).
Landau’s two-fluid hydrodynamics, based on early experi-

ments on superfluids and preceded by the original suggestion of
Tisza (1938a, 1938b, 1938c), accounts remarkably well for a
whole class of thermodynamical and hydrodynamical proper-
ties, notably for the existence of second sound and for the
nonclassical rotational inertia in Andronikashvili oscillating-
disks experiments (Andronikashvili and Mamaladze, 1966). It
features full internal consistency; it assumes that the motion of
ρs is pure potential (irrotational) flow and carries no entropy,
and it reaches the conclusion that, below vL, this motion is
indeed fully inviscid. It has been universally adopted.

The two-fluid hydrodynamics has been extended to the
superfluid phases of 3He. A number of new features appear
owing to the anisotropy introduced by the Cooper pairing in a
l ¼ 1 state of orbital momentum. Some of these features are
discussed in Sec. VII.B, but the separation of the hydro-
dynamics between a superfluid component and a normal
component still holds as well as the existence of a Landau
critical velocity.
However, this model has a number of shortcomings as

pointed out by London (1954). In particular, for the purpose of
this review, it does not discuss the roots of the irrotationality
condition, Eq. (1), which are to be found in the existence of a
complex scalar order parameter arising from the transition to a
Bose-condensed state, as recognized at a very early stage of
the study of superfluids by London (1938).7 It gives no clue as
to when the hydrodynamics of the superfluid fails at close
distance as any macroscopic approach to hydrodynamic is
bound to. Namely, it provides no way of estimating the
superfluid coherence length or healing length of the macro-
scopic wave function. It also completely disregards the
existence of quantized vorticity,8 which, as recognized by
Feynman (1953a, 1953b, 1954, 1955), and Anderson (1965),
is responsible for dissipation of the superfluid motion and for
different, and more commonly met in practice, critical velocity
mechanisms than that of vL.
As already noted, the Landau criterion for critical velocities

rests on the fact that the elementary excitation energy
spectrum is sharply defined, that is, it rises linearly as ϵ ¼
cp with no spread in energy: there are no excitations with low
energy and small moment capable of exchanging momentum

momentum

Landau critical velocity

phonon

en
er

gy

roton

FIG. 1. Dispersion curve of the elementary excitations in
superfluid 4He as devised by Landau (1947).

5This fundamental assumption, which sets an important difference
between superfluids and ideal Euler fluids, is discussed later in this
section. It is best justified by its consequences, the subject matter of
the principal part of this review.

6See Landau and Lifshitz (1959), Chap. XVI.

7Landau and Lifshitz (1959), Sec. 128, trace its roots to the
property of the energy spectrum for the low energy excitations of the
superfluid, constituted by sound quanta or phonons. The Landau
school (Khalatnikov, 1965, Chap. 8, and Abrikosov, Gorkov, and
Dzyaloshinski, 1961, Sec. 1.3) merely states the irrotationality
condition as an assumption justified by its experimental implications.
London (1954), Sec. 19, actually derives this condition from a
peculiar variation principle devised by Eckart (1938) but the actual
significance of this principle has not been clarified, nor, as it seems,
that of Eq. (1) [see, for example, the pedagogical review of Essèn and
Fiolhais (2012) and the references therein on the similar problem of
the Meissner effect in superconductivity].

8This question was nonetheless treated by the Landau school
(Khalatnikov, 1965).
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with the superfluid in slow motion, thus causing dissipation.
This sharpness of the energy spectrum ϵðpÞ has been checked
directly by neutron scattering measurements of the dynamic
structure factor as discussed, in particular, by Glyde
(1993, 2013).
It should be pointed out that 3He in the normal Fermi liquid

state displays an elementary excitation spectrum with a
phonon branch and a roton minimum in neutron diffraction
experiments (Stirling et al., 1976; Griffin, 1987). However,
that spectrum is broad; 3He does not exhibit superfluid
properties until Cooper pairs of fermions form and Bose
condense. As stressed by Feynman (1972), it really is the lack,
the “scarcity” in Feynman’s words, of low-lying energy levels
at finite momenta, a property of the N-boson ground state with
a macroscopic number of particles in it and the nonexistence
of particle states with vanishing energy that results in
superfluidity.

B. The superfluid order parameter

A different approach to superfluidity in which a central role
was attributed to the phase of the order parameter (assumed to
describe this superfluidity) was sketched by Onsager in 1948,
as reported by London (1954).9 London himself did not make
much use of this concept of phase; although, on the one hand,
he was the first to propose that superfluidity arises from Bose-
Einstein condensation and the appearance of a “macroscopic
wave function,” and, on the other hand, he had earlier realized
the important significance of the phase factor in quantum-
mechanical wave functions.
Indeed, as soon as wave functions are considered, the

concept of quantum phase becomes relevant. Its early origin
can be found in a formalization of electrodynamics by Weyl
(Yang, 2003), in which a gauge transformation explicitly
introduces a factor eθ in the theory. A change of gauge A0 →
Aþ∇θ combined with a change of the wave function ψ 0 →
ψ expfieθ=ℏcg leaves the Schrödinger equation unchanged.
The application of Weyl’s prescription to quantum-mechanical
systems led London to turn the exponent θ into a purely
imaginary quantity iφ, φ then having the significance of an
actual phase (Yang, 2003). These historical developments
explain the somewhat inadequate terminology that refers to
changes of the phase as gauge transformations (Greiter,
2005).10

But the unifying power of quantum field gauge theories
ultimately carried the day. The fact that a droplet of superfluid
randomly picks up a (well-defined) quantum phase when it
nucleates out of vapor or out of normal fluid in a confined
geometry is referred to as the breaking of gauge symmetry.
The term “Bose broken symmetry” promoted, in particular, by
Griffin (1987) to describe the appearance of a macroscopic
number of particles in the ground state of a Bose system with

the same one-particle wave function exhibiting the same phase
factor gained only limited acceptance.
The ground state wave function of a homogeneous system

of structureless bosons such as superfluid 4He at rest can be
shown quite generally to have no node11; it reduces to a
complex scalar with a constant phase and a modulus that
remains finite at every point in the sample. Atomic motion
results in small-scale, small-amplitude fluctuations of this
complex scalar. Averaging these fluctuations over finite, but
still small, volume elements leaves a “coarse-grained” average
wave function. If the system is inhomogeneous on a scale
much larger than the coarse-graining volume, the modulus and
phase are slowly varying functions of the position r,

ΨðrÞ ¼ fðrÞeiφðrÞ: ð3Þ
This in essence is the macroscopic wave function consid-

ered by London (1938, 1954), Onsager (1949), and Feynman
(1953a, 1953b, 1954, 1955, 1972). The detailed information
on the localization of the bosons at r1; r2;…; rN and on their
short-range correlations is not contained in Eq. (3). This
equation is not an exact many-body ground state wave
function.12 However, considered as a “macroscopic matter
field” in Anderson’s own words, it has provided a lot of
mileage in describing the properties of superfluids.

C. The superfluid velocity

The particle density nðrÞ at point r of theN-boson system is
given in terms of this macroscopic wave function, Eq. (3), by

nðrÞ ¼
Z

d3r1…d3rNΨ⋆ðrÞΨðrÞ
XN
i¼1

δðr − riÞ; ð4Þ

and the particle current density by

jðrÞ ¼
Z

d3r1 � � � d3rN

×
XN
i¼1

ℏ
2im4

½Ψ⋆ðrÞδðr − riÞ∇rΨðrÞ

þΨðrÞ∇rδðr − riÞΨ⋆ðrÞ�

¼
Z

d3r1 � � � d3rN

×
XN
i¼1

ℏ
2im4

δðr − riÞ½Ψ⋆ðrÞ∇rΨðrÞ −ΨðrÞ∇rΨ⋆ðrÞ�

¼ nðrÞ ℏ
m4

∇φðrÞ: ð5Þ

Equation (5) leads as a matter of course to the definition of
the local mean velocity of the bosons as

9As implied in a footnote of a paper by Onsager (1949) and
mentioned in the footnote in page 151 of London’s book.

10In the words of Yang (2003) “Weyl in 1929 came back with an
important paper that really launched what was called, and is still
called, gauge theory of electromagnetism, a misnomer. (It should
have been called phase theory of electromagnetism.)”

11See Feynman (1953a, 1953b, 1954, 1955), Penrose (1951),
Penrose and Onsager (1956), or Landau and Lifshitz (1958), Sec. 61.

12A useful discussion of this topic can be found in Nozières and
Pines (1990), Chap. 5, and also in Feynman (1972). The more
rigorous approach discussed in Sec. I.D, based on the density matrix
formalism, shows how such an exact wave function can be con-
structed.

806 Eric Varoquaux: Anderson’s considerations on the flow of …

Rev. Mod. Phys., Vol. 87, No. 3, July–September 2015



vs ¼
ℏ
m4

∇φðrÞ: ð6Þ

According to this definition, the quantity vs derives from the
velocity potential ðℏ=m4ÞφðrÞ and is identified as the quantity
introduced in the two-fluid hydrodynamics under the same
notation. This identification implies that the quantity nðrÞ
given by Eq. (4) stands for the superfluid number density
ρs=m4. The strong correlations between bosons in the dense
system, in particular, the hard-core interactions, are averaged
out in the coarse-graining procedure.
Equation (6) for the superfluid velocity and the identifica-

tion of fðrÞ in Eq. (3) with ðρs=m4Þ1=2 thus appears as a
necessary formal construction that reproduces, in the classical
limit, the quantity postulated by Landau to set up the two-fluid
hydrodynamic model. At finite temperature, the number of
atoms involved in Eqs. (4) and (5) is simply proportional to
ρsðTÞ=ρ. The macroscopic wave function thus takes the
following form:

ΨðrÞ ¼ nsðrÞ1=2eiφðrÞ: ð7Þ

D. A more microscopic approach

So far, the discussion has been based on the general
properties of the ground state wave function of N-boson
systems, turned into a macroscopic wave function by coarse-
grained averaging. No precise prescription on how this
averaging can be carried out in practice, no clue as to the
suspected relationship between Bose-Einstein condensation
and superfluidity at the microscopic level have been given.
Off-diagonal long-range order (ODLRO) represents the com-
monly acknowledged fundamental concept that achieves this
connection, underlying both superconductivity and super-
fluidity. It defines the kind of order that prevails in a superfluid
or a superconductor as put forward by Yang (1962), extending
earlier work by Penrose (1951) and Penrose and Onsager
(1956) while a parallel route was taken by Bogolyubov and
other representatives of the Russian school,13 and, in particu-
lar, Beliaev (1958) for the system of interacting bosons.14

ODLRO stands for the correlation that exists between
atoms in Bose-Einstein condensates (BEC). In its simplest
form, for a gas of N noninteracting Bose particles in a box of
volume V, it is expressed by the single-particle density matrix

ρ1ðr; r0Þ ¼ ðN=VÞ
Z

dr2 � � � drN Ψ⋆
Nðr; r2;…; rNÞΨN

× ðr0; r2;…; rNÞ; ð8Þ

where ΨN is the eigenfunction of the ground state of the
N-boson system at T ¼ 0 satisfying the boundary conditions
at the box wall (rigid walls or periodic). As the particles of an
ideal gas do not interact, the many-body wave function ΨN is
simply the product of N identical single-particle wave

functions ψðrÞ evaluated at r ¼ ri, the particle locations,
suitably normalized and symmetrized. Upon integration over
the N − 1 particles r2 � � � rN , all that is left is the product

ρ1ðr; r0Þ ¼ ðN=VÞψ⋆ðrÞψðr0Þ ð9Þ

of single-particle wave functions, which is quite simple but
highly anomalous in that it does not vanish when the two
locations r and r0 become far apart as it would do for a
classical ideal gas. This simple remark has startling conse-
quences. Even though the boson particles are assumed not to
interact in the ideal gas, they still show a large degree of
correlation. These correlations of statistical origin15 preclude
the use of the grand canonical ensemble because two widely
separated parts of the system cannot be assumed to behave
independently (Ziff, Uhlenbeck, and Kac, 1977).
The extension of the anomalous result Eq. (9) to nonideal

Bose gases is nontrivial; one may remember for instance that a
minute attractive interaction between bosons destabilizes the
gas. And yet a further extension to nonequilibrium situations
is mandatory to describe superflow.
Such an extension to the weakly repulsive Bose gas is

implicit in the pioneering work of Bogolyubov (1947) who
showed how second quantization techniques could be used to
derive the property of linearity of the energy spectrum at long
wavelengths ϵ ¼ cp as asserted for the dense superfluid
helium by Landau. Further progress was carried out by
Beliaev (1958) using field-theoretical techniques to express
the relationship between the particle number density n, the
chemical potential μ, and the particle number density in the
condensate n0, which differs from n because the interaction
between particles prevents all of them from falling into the
lowest energy state.
Various refinements have led to what now constitutes the

conventional way16 to describe the nearly ideal BEC gas with
a number density of atoms n, the Bose order parameter being
written as a complex number

ffiffiffiffiffi
n0

p
exp ðiφÞ involving the

number density of atoms in the ground state n0, as expounded,
for instance, by Dalfovo et al. (1999). This description is well
grounded only for a small depletion of the condensate, i.e., for
n0=n not too far from unity. For a dense, strongly interacting
Bose system, such as liquid 4He, this condition is not fulfilled.
The zero-momentum ground state is strongly depleted.
The spirit of the definition of the order parameter for helium

was given by Penrose (1951) and Penrose and Onsager
(1956), based on an analysis of the large-scale correlations
in the various terms of the single-particle density matrix.
In a usual fluid, the on-diagonal elements ρ1ðr; rÞ are of the

order of the particle number density nðrÞ. Particle correlations
decrease rapidly as r − r0 increases and so do the off-diagonal
terms with r ≠ r0. By contrast, a superfluid can sustain a
persistent current: large-scale correlations should be strong so
that, when a particle is deflected at r by an obstacle and kicked
out of the condensate, a twin-sister particle is immediately
relocated in the condensate at r0 with no loss of order in

13See Abrikosov, Gorkov, and Dzyaloshinski (1961).
14See Kadanoff (2013) for an account of the historical genesis of

the idea of ODLRO and a discussion of the role of the condensate in
superfluidity and superconductivity.

15Further discussion on these correlations is given in Sec. VIII.B.
16See, for example, Griffin (1993) and his historical note (Griffin,

1999).
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momentum space. Such correlations should be described in
the density matrix by a term embodying the condensate of the
same “structure” as the product in Eq. (9), supplemented by
other terms for the part of the system that cannot be
accommodated in the ground state because of interparticle
collisions. Thus, following Penrose and Onsager, the criterion
for Bose-Einstein condensation must be traced to the existence
of one element of the form (9), namely, a product Φ�ðrÞΦðr0Þ
with a macroscopic size relative to other elements, so that the
density matrix takes the form

ρ1ðr; r0Þ ¼ Φ�ðrÞΦðr0Þ þ
X

ðother matrix elementsÞ:
ð10Þ

The sum on the right-hand side of Eq. (10) is a mixed bag
of terms describing the correlations between particles
outside the condensate as well as terms involving both
condensate and noncondensate particles. The function ΦðrÞ
can be viewed as playing the role of a single-particle wave
function of the interacting particles in the condensate, n0 ¼
ð1=VÞ R jΦðrÞj2dr being the mean number density of those
particles.17 This number density n0 can be orders of magnitude
smaller than the total density n, but is assumed to still remain
macroscopic.
As the ground state wave function for a boson system is

nonzero everywhere, its absolute value for a homogeneous
system jΦðrÞj is equal to ffiffiffiffiffi

n0
p

to the extent that n0 is constant
in space. This reasoning can be extended to situations that are
slightly nonuniform in space. The term Φ�ðrÞΦðr0Þ in Eq. (10)
does not decay as the particle locations r and r0 become far
apart compared to interatomic distances: it describes the long-
range correlations in the condensate, or ODLRO. The excited
states with k ≠ 0 and distribution nk are not macroscopically
populated and have only short-range coherence. The summa-
tion over all these remaining contributions in Eq. (10) may
also amount to a macroscopic term

P
knk, of order N. Each of

these terms decays as jr − r0j becomes large but there are a
large number of them: all of the excited states are also
macroscopically populated.
Needless to say, the single-particle wave function ΦðrÞ in

Eq. (10) bears no relationship to that for free particles in

Eq. (9) for the ideal gas. Neither the Φ�ðrÞΦðr0Þ term in
Eq. (10) nor the incoherent terms have been expressed in full
for the dense helium-4,18 contrary to near-ideal BEC gases and
to the BCS theory (for Cooper pairs and superfluid 3He). But
in superfluid 4He as in these other situations, ODLRO is found
to be present and to constitute a unifying feature sufficient to
ensure flux quantization (BCS superconductors) or velocity
circulation quantization (dense superfluid helium). That the
simple factorization of the coherent part of the density matrix
ensures superfluidity is a remarkable result. It has been
established on general grounds by Yang (1962).
Penrose (1951) and Penrose and Onsager (1956) used

various approximate forms for the ground state wave function
of dense helium-4 at T ¼ 0 to illustrate the splitting of the
density matrix, Eq. (10), and to evaluate the depletion of the
condensate, i.e., the value of n0. They have used, in particular,
Feynman’s simple ansatz for the superfluid wave function
(Feynman, 1953a, 1953b, 1954, 1955), which assumes strong
hard-core repulsion and weak two-body attraction with a
minor role in interparticle correlations. Only the former can be
kept for an approximate evaluation of n0.
Building on this remark, Penrose and Onsager noticed that

the depletion under scrutiny can conveniently be derived from
the known pair distribution for a classical gas of hard spheres
such as the one pictured in Fig. 2. They found that collisions
between hard spheres with diameters 2.6 and 3.6 Å apart leave
only about 8% of the helium atoms in the zero-momentum
state. This value of n0=n in 4He has been confirmed by more
elaborate theories and by experiment.19 While the depletion of
the condensate is a small effect in low density atomic gases
(Dalfovo et al., 1999), it is considerable in liquid helium.
This large depletion raises the following question: how is it

that the condensate fraction is only 8% at T ¼ 0 while the
superfluid fraction in the two-fluid model is 100%? The
answer is simple: these are not the same quantities.20

The superfluid density stands for the inertia of the superfluid
fraction, as measured for instance by a gyroscopic device
sensitive to trapped superfluid currents (Reppy and Lane,
1965) or, less directly, by the decoupling of the superfluid
component in an oscillating disk experiment (Andronikashvili
and Mamaladze, 1966). In these experiments, only the
elementary quasiparticles couple to the transverse oscillations
of the cell walls; the remaining the superfluid is not set into
motion.
The superfluid fraction ρs=ρ is not directly related to the

probability of finding bosons in the k ¼ 0 quantum state. The
occupation of the condensate is seen experimentally as a hump
at zero energy transfer in the dynamic structure factor
measured by neutron inelastic scattering (Glyde, 2013), a
quantity rather well hidden from experimentalists’ view in
helium. When the superfluid is set into motion, the condensate
enforces long-range order and drags the excited states along
through the short-range correlations; there is entrainment of
the atoms in the fluid by the condensate. Microscopic theory is
needed to describe this process in detail.

17Nozières and Pines (1990) give an account of ODLRO using the
notation of field theory, in which the density matrix reads

ρ1ðr; r0Þ ¼
X
n

hϕjψ†ðrÞjϕnihϕnjψðr0Þjϕi;

ψ†ðrÞ and ψðr0Þ being the boson creation and annihilation field
operators, jϕni a complete set of eigenstates of the system, and jϕi
the state in which the average is expressed, which is taken as the
ground state jϕ0i. Among the intermediate states jϕni, those of
special relevance to the kicking out and relocation processes
discussed here connect the ground state with N bosons to the ground
state with N − 1 bosons. So attention must be focused on the
following matrix element:

ΦðrÞ ¼ hϕ0ðN − 1ÞjψðrÞjϕ0ðNÞi;

that is taken to represent the condensate wave function.

18As stated in Nozières and Pines (1990), Sec. 9.4.
19For a recent review, see Glyde (2013).
20This point was discussed by Griffin (1987, 1993).
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Deferring to Sec. VIII.B, further discussion on the merits of,
anddifferences between, themicroscopic approach, theODLRO
concept of Penrose (1951), Penrose and Onsager (1956), and
Yang (1962), and themacroscopic quantum field point of view, a
discussion found in Appendix A1 of Anderson (1966b), the
superfluid order parameter in 4He will be taken in the following
as the macroscopic wave function Eq. (7), namely, ΨðrÞ ¼
fðrÞeiφðrÞ with f ¼ n1=2s , ns being the superfluid number
density. This choice conforms to that of Sec. I.B and leads
straightforwardly to the two-fluid model. The alternate choice to
setf ¼ n1=20 would be less productive: the condensate densityn0
remains half buried in the formalism and is difficult to access
experimentally. This situation differs markedly from that in cold
atomic gases. There the condensate can be imaged directly in
momentum space; it comprisesmost of the particles in the gas so
that n0 ≃ n. The corresponding order parameter emerges
seamlessly from perturbation theory applied to the weakly
interacting Bose gas following Bogolyubov’s prescriptions.
For weakly interacting bosons, the macroscopic wave

function dynamics is governed by the Gross-Pitaevskii
equation.21 The relevance of the Gross-Pitaevskii equation
to the Bose-condensed systems has been put in a new
perspective for ultracold atoms in a trap, for which it
constitutes an excellent description (Dalfovo et al., 1999;
Cohen-Tannoudji and Robilliard, 2001). However, the
approach based on this equation turns out to be less adequate
for the dense superfluid, sometimes not even qualitatively
correct, as found for instance by Pomeau and Rica (1993) in
the context of the breakdown of superflow. It will not be
pursued here, except to mention that it does provide an
estimate of the distance over which the two-fluid hydro-
dynamics needs to be supplemented by quantum corrections,
as discussed in Sec. VII.
In all cases, the phase, a variable of lesser relevance in the

old days of quantum mechanics, is now assigned the role of
governing superfluid dynamics. A fundamental result, estab-
lished early by Beliaev (1958), relates the phase of the
condensate particles to the chemical potential φ ¼ μt=ℏ,
where t is time. The deep significance of this relation only
became apparent later, when the Josephson effects became
apparent.

The role of the phase as a dynamical variable was extended
to superfluid helium by Anderson (1964, 1965, 1966a, 1984)
who noted that phase and particle number are canonically
conjugate variables. This property is well known in quantum
electrodynamics for photons in a cavity. The number of
photons in a given mode and their phase, defined for coherent
electromagnetic fields in the cavity, are noncommuting
operators. As such, they obey an uncertainty relation
(Heitler, 1954) that reads

δNδφ ∼ 1: ð11Þ

As remarked by Heitler, “If the number of quanta of a wave
are given it follows from Eq. (11) that the phase of this wave is
entirely undetermined and vice versa. If for two waves the
phase difference is given (but not the absolute phase) the total
number of light quanta may be determined, but it is uncertain
to which wave they belong.” This remark will bear implica-
tions throughout this review.
Superfluidity is more than simply the absence of viscosity

supplemented by the condition that vortices have quantized
circulation. The urge to observe the role of the phase in a
Josephson-type effect, and the failure to do so for a long
period of time, became quite pressing to confirm the picture
drawn by Anderson of helium as obeying quantum mechanics
in a more profound way than simply as an ideal inviscid fluid
with quantized velocity circulation.

E. Anderson’s phase slippage

Anderson’s famed “considerations” on the flow of super-
fluid 4He (Anderson, 1966a) provided the conceptual basis for
this experimental search for Josephson-type effects in neutral
matter. Their underlying aim was to convey a physical,
laboratory-oriented meaning to the order parameter Eq. (7)
and, in particular, to its phase. These considerations provided
the groundwork for phase-slippage experiments in 4He; they
were gradually fostered in a series of lectures notes
(Anderson, 1964, 1965, 1984) and built upon the ideas of
London (1954), Feynman (1953a, 1953b, 1954, 1955),
Penrose (1951), and Penrose and Onsager (1956), and also
on the quantum field theoretic approach of Beliaev (1958).
In the absence of a fully established microscopic theory of

dense boson systems, these considerations rest on the follow-
ing set of well-argumented conjectures:

(1) By extrapolation of the properties of the coherent
photon fields in quantum electrodynamics, N and φ
are taken in dense liquid helium as canonically
conjugate dynamical (quantum) variables in the sense
that N ↔ ið∂=∂φÞ and φ ↔ −ið∂=∂NÞ.

As such, they obey the uncertainty relation (11). For
a closed system with a fixed number of particles, the
phase is completely undetermined. For the phase to be
determined within δφ ≪ 1,N must be allowed to vary;
that is, the condensate must be able to exchange
particles with other parts of the complete physical
system, which includes the noncondensate fraction of
the bosons and the eventual measuring apparatus.

For the Josephson-effect experiments specifically
considered by Anderson, the two weakly coupled

FIG. 2 (color online). A 3D view of 2.6 Å diameter hard spheres
randomly distributed in a 10 × 10 × 10 Å cube with a 3.6 Å mean
spacing, as for liquid helium-4 at SVP. In helium, atoms are both
strongly confined by hard-core repulsion and dynamically delocal-
ized by the zero-point energymotion. Courtesy ofNelle Varoquaux.

21In the context of superfluids, see Gross (1961), Pitaevskii
(1961), Langer (1968), and Nozières and Pines (1990).
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helium baths also exchange particles. For all these
reasons, N is allowed to fluctuate locally so that δN
takes a nonzero value. It can be shown (Beliaev, 1958)
that δN is of the order of N rather than unity, so that
δφ ∼Oð1=NÞ and φ is well defined.

(2) A Hamiltonian H should therefore exist such that, N
being free to vary,

ℏ
∂N
∂t ¼ ∂H

∂φ ; ð12Þ

ℏ
∂φ
∂t ¼ −

∂H
∂N : ð13Þ

Upon coarse graining, the quantum operators be-
come quasiclassical and their coarse-grained average
obeys equations formerly identical to Eqs. (12) and
(13). Equation (12) defines the particle current J ¼
∂E=ℏ∂φ since ∂H=∂φ ⇒ ∂E=∂φ upon averaging.
Likewise with ∂H=∂N ⇒ ∂E=∂N ¼ μþ ð1=2Þm4v2s ,
where μ is the chemical potential in the fluid at rest,
namely, μ ¼ m4P=ρþm4ghþ s4T with the usual
notations, Eq. (13) becomes

ℏ
∂φ
∂t ¼ −½μþ ð1=2Þm4v2s �: ð14Þ

Equation (14) states that, whenever there exists a
chemical potential difference between points (1) and
(2) in a superfluid (or a superconductor), the phase of
the order parameter varies in time with a rate propor-
tional to μ1 − μ2: this ac effect is quite detectable and
has many applications. It was first discussed by
Josephson (1962, 1964) for the tunneling current
between superconductors coupled through a thin
barrier. A full derivation for superfluid helium can
be found in Nozières and Pines.22

Upon taking the gradient of both the left- and right-
hand sides, Eq. (13) becomes, using the definition (6)
of vs,

∂vs
∂t þ ∇

�
P
ρ
þ v2s

2

�
¼ 0; ð15Þ

which is the Euler equation for an inviscid fluid with
no vorticity (ω ¼ ∇ × vs ¼ 0). Equation (15) is pre-
cisely the same as that for the velocity of the superfluid
component in Landau’s two-fluid hydrodynamics.

(3) Anderson assumed that Eq. (14) for the time variation
of the order parameter phase holds with no solution of
continuity between the classical inviscid fluid case and
the quantum-tunneling one and it has universal appli-
cability. This unifying approach is internally consis-
tent but details are missing of how the normal
component interacts with the superfluid component,
which brings dissipative terms into Eq. (15), and how

the definition of vs as ðℏ=mÞ∇φ breaks down at small
distances where coarse graining cannot be performed.
These points have been raised in Anderson’s commu-
nication at the Sussex Symposium on Quantum Fluids
(Anderson, 1966b). His views are that the phase
equation (14), being more fundamental than
Eq. (15), always holds. This equation describes both
simple superfluid acceleration, expressed by Eq. (15),
the ideal tunneling situation envisioned by Josephson
(see Sec. VII), and when the variation of the phase is
caused by the motion of vorticity.

(4) The last conjecture asserts that the dissipation of the
kinetic energy of a superflow is, when averaged over
time, proportional to the rate at which vorticity crosses
the superflow streamlines. In fact, a stronger statement
was rigorously proved by Huggins (1970), which
governs the detailed transfer of energy between the
potential flow of the superfluid and moving vorticity.
This process is pivotal to the understanding of super-
flow decay and, more generally, of vortex dynamics as
discussed in Sec. II.

Anderson’s ideas on phase slippage, linked to the motion of
vortices, have provided the conceptual framework for the
experiments on the onset of dissipation and the Josephson
effects in superfluids, discussed in Secs. III and VII.B. All
facets of these experiments in superfluid 4He and 3He can be
well accounted for with the help of the macroscopic quantum
phase φ. However, these ideas are still surrounded by an aura
of mystery that lingers on in spite of the facts that (1) the
formal theoretical groundwork has been put on a firmer
basis.23 (2) The implications of the uncertainty relation to
laboratory observations, as well as of the other conjectures of
Anderson, have been clarified by the developments of
the experiments in the past 40 years since they were
formulated.
This review will tackle some of these advances, in par-

ticular, by showing what the phase-slippage experiments
really consist of, how phase slippage proceeds from a
dissipative regime governed by vortex dynamics to a true
dissipationless Josephson regime, and that this truly quantum
behavior manifests itself in matter wave interferometric
measurements.

II. QUANTIZED VORTEX DYNAMICS CLOSE TO T ¼ 0

Vortex filaments are extended quasi-one-dimensional struc-
tures in the superfluid, line vortices. At the core of these

22See Nozières and Pines (1990), Sec. 5.7.

23Following, for instance, Lifshitz and Pitaevskii (1980),
the density operator takes the form ρ̂ðrÞ ¼ P

im4δðri − rÞ and
the current density operator the form ĵðrÞ ¼
1
2

P
ip̂iδðri − rÞ þ δðri − rÞp̂i; cf. Eqs. (4) and (5). The liquid

velocity operator v̂ is in turn defined by ĵðrÞ ¼ 1
2
ðρ̂ v̂þv̂ ρ̂Þ. These

operators obey the commutation rule Φ̂ðrÞρ̂ðr0Þ − ρ̂ðr0ÞΦ̂ðrÞ ¼
−iℏδðr − r0Þ, Φ̂ being the potential for the velocity operator
v̂ ¼ ∇Φ̂. The quantities ρ̂ and Φ̂ are thus canonically conjugate.
Their fluctuations obey an uncertainty relation of the form
δρ̂δΦ̂ ≥ ℏ=2. Using the phase of the macroscopic wave function,
Eq. (6), instead of the velocity potential, the uncertainty relation (11)
is obtained.
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defects, the superfluid order parameter is either zero as in 4He
or heavily distorted as in 3He. They form the prevalent
topological defects in superfluids.24

At distances larger than the core size, superfluid vortices
behave according to the laws of ideal fluid hydrodynamics, that
is, as classical vortices with a given quantized vorticity.
Classical vortices have been studied for many decades
(Lamb, 1945; Saffman, 1992). Their properties have been
the subject of detailed studies in recent years in order to clarify
in a number of standing problems, their mass and impulse, the
Magnus and Iordanski forces, the eigenmodes of isolated
vortices (the Kelvin waves, the collective behavior of vortex
arrays) the Tkachenkowaves, the reconnection of two vortices,
superfluid vortex tangles, and, last, the formation of vortices
and their annihilation. This review is concernedmainlywith the
last topic but use will be made of other properties of vortices,
either single or a few at a time, mostly without consideration to
the normal fluid background. These properties bear a close
resemblance to those of magnetic vortices in superconductors
as discussed by Sonin and Krusius (1994).
At temperatures below 1 K, vortices in superfluid 4He

experience negligible friction from the normal fluid, the
fraction of which becomes very small. If they deform only
little and slowly, they constitute stable fluid eddies: their
velocity circulation is conserved (and, furthermore, quantized)
and they cannot vanish to nothing. Their core radius a0 is
of the order of the superfluid coherence length, a few angstrom
in 4He (Glaberson and Donnelly, 1986; Donnelly, 1991), 1 to
2 orders of magnitude larger in 3He depending on pres-
sure (Vollhardt and Wölfle, 1990). As the temperature
increases, the scattering of phonons and rotons by the vortex
cores causes dissipation. Mutual friction between the super-
fluid vortices and normal fluid sets in. Close to the superfluid
transition temperature, the core size increases and eventually
diverges.
Some of the properties of vortices that are relevant to phase

slippage are summarized below. Extended coverage of this
topic can be found in Donnelly (1991) and Sonin (2015). Here
the dynamical properties of superfluid vortices are derived
directly from the existence of a superfluid order parameter.
Some approximations are made in order to get a simpler
physical description of a vortex element, treated more in the
manner of a quasiparticle with mass, energy, and impulse. The
following discussion then rests on physical concepts such as
energy conservation or the balance of forces. It largely follows
the approach of Sonin (1987). It differs from the more
traditional and rigorous fluid-mechanical approach as can
be found for instance in Saffman (1992). It provides a more
intuitive feel for the behavior of superfluid vortices that will
prove useful in the description of phase slips.

A. Quantization of circulation

Superfluid vortices have quantized circulation. This prop-
erty comes about because their core is nonsuperfluid: it

disrupts the order parameter field and constitutes a topological
defect in the superfluid. The circulation of the superfluid
velocity vs on any path around such a defect

I
vs · dl ¼

ℏ
m4

I
∇φ · dl ð16Þ

amounts25 to κ4 ¼ 2πℏ=m4 because the phase φ of the order
parameter can change only by multiples of 2π along any
closed contour entirely located in the superfluid. This property
holds for the true condensate wave function as a basic
requirement of quantum mechanics. It is not altered in the
coarse-graining average.
Consider the velocity circulation from point 1 to point 2 in

Fig. 3 along a path Γ entirely located in the superfluid:

κ ¼
Z

2

1

vs⋅dl ¼
ℏ
m4

Z
2

1

∇φ⋅dl ¼ ℏ
m4

ðφ2 − φ1Þ: ð17Þ

Along another path Γ0 also going from 1 to 2, as shown in
Fig. 3, the circulation is ðℏ=m4Þðφ2 − φ1 þ 2nπÞ. If Γ0 can be
deformed into Γ continuously while remaining in the super-
fluid, then n ¼ 0. If this cannot be done, n may be a nonzero
integer, 1 in the case under consideration.
Thus, when path Γ crosses the core of a 4He vortex, in

which superfluidity is destroyed and the order parameter
amplitude goes to zero, n changes by 1 because 4He vortices
carry a single quantum of circulation for reasons discussed
next. Conversely, when a vortex crosses a superfluid path from
1 to 2, the circulation along that path changes by one quantum
and the phase difference by 2π. This simple property forms the
basis of the phase-slip phenomenon described in Sec. III.
Experiments have confirmed to a high accuracy the

quantization of hydrodynamic circulation both in 4He
(Vinen, 1961; Whitmore and Zimmermann, 1968; Karn,
Starks, and Zimmermann, 1980) and in 3He (Davis et al.,
1991). This feature constitutes a cornerstone of superfluid
physics and evidence for the reality of the superfluid quan-
tum phase.

B. Vortex flow field and line energy

The flow velocity induced by a straight vortex filament,
chosen along the unit vector ẑ, at a distance r measured in the

(b)

V

Γ´

V

2

Γ

1

(a) Γ´ 2

Γ

1

FIG. 3. Two different situations for the path of integration in
Eq. (17): (a) Γ can be deformed continuously into Γ0; both paths
give the same phase difference between point 1 and point 2.
(b) Vortex V stands between the two paths; the phase differences
along Γ and Γ0 differ by 2π.

24There are a number of different topological defects in superfluid
3He owing to the large number of degrees of freedom of the order
parameter as briefly discussed in Sec. VII.B.

25The quantum of circulation in 4He takes the value 9.97 ×
10−4 cm2 s−1 and in 3He where the boson mass is 2m3,
κ3 ¼ πℏ=m3 ¼ 6.65 × 10−4 cm2 s−1.
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plane perpendicular to ẑ is easily expressed from the quan-
tization of the velocity circulation and the symmetry around
the vortex axis as

I
v · dl ¼ κ4 ⇒ vv ¼

κ4
2π

ẑ ×
r̂
r
; ð18Þ

provided that r is larger than a0. For r≲ a0, the detailed
structure of the core becomes important.26 The quantity vv is
the vortical flow due to the vortex element. The superfluid
velocity vs is the sum of an eventual potential flow vp existing
independently of the vortex, for instance, applied externally,
and of vv. The contribution of vp to the loop integral in
Eq. (18) is nil and leaves the circulation unchanged. Straight
vortex filaments are created by rotating the helium container;
they have been the object of detailed studies.27

Equation (18) can be extended to curved vortices, provided
that their radii of curvature are much larger than the core
radius a0. It bears a direct analogy with Ampère’s law, v
standing for the magnetic field and κ for the electric current
carried by the conductor.28 The velocity at point r induced by a
closed vortex filament lying along the curve s is then given by
the analog of the Biot-Savart law in electrodynamics29:

vvðrÞ ¼
κ4
4π

I
dl ×

r − sðlÞ
jr − sðlÞj3 : ð19Þ

The geometrical representation of the vortex loop by s is such
that dl ¼ ds is a vector oriented along the tangent to the loop t̂
of infinitesimal length dl, l being the arc length of the loop
(see the sketch in Fig. 4). The tangent t̂ is the unit vector
ds=dl ¼ dl=dl. Its derivative with respect to l defines the
normal to the loop n̂ and the radius of curvature
R∶ dt̂=dl ¼ d2s=dl2 ¼ n̂=R. As noted above, the radius of
curvature R should be large, and the change of orientation of
the tangent dt̂=dl small, with respect to the core radius for this
representation of the vortex element as a one-dimensional line
to be valid.
The integrand in Eq. (19) gives the contribution of the

vortex element dl located at s on the loop to the full velocity
field. An integration by parts yields

vvðrÞ ¼
κ4
4π

∇ ×
I

dl
jr − sðlÞj ¼ ∇ ×AðrÞ; ð20Þ

which defines a vector potential for the vortex velocity
field vv ¼ ∇ ×A.
Equation (20) fulfils the mantra of conventional mathemati-

cal physics according to which a vector field can be split into
an irrotational part, which derives from a scalar potential, and
a remainder, the solenoidal part, which is not curl free and
which derives from a vector potential.

While utterly correct in mathematical terms, this point of
view may be slightly misleading for the superfluid velocity
fields. The latter are a subset only of the more general vector
fields in the sense that vorticity is localized in space to the
vortex cores and that the vortex line can be treated as a line
singularity. The Biot-Savart law (19) can then be put in the
following form30 :

vvðrÞ ¼
κ4
4π

∇r

�Z Z
S

r −R
jr −Rj3 · dS

�
¼ ℏ

m4

∇φv; ð21Þ

the infinitesimal surface element dS being located at position
R. Thus the velocity fostered by the vortex derives from a
scalar potential as well as a vector potential. Everywhere in the
superfluid but at the precise location of the vortex cores, the
superfluid velocity vs is indeed irrotational and derives from a
scalar potential, the quantum phase.31

The velocity induced by a vortex loop decreases at large
distance from the loop as that of a dipole in the electromag-
netic analogy, that is as 1=r3, much faster than the 1=r
dependence for straight vortex filaments [see Eq. (18)]. The
1=r dependence can still be expected to hold at a distance
away from the core smaller than the local radius of curvature
of the vortex filament. At distances larger than the loop size,
the velocity field rapidly dies away. This property is well
known for magnetic fields generated by electric current loops.
It means, for practical purposes, that vortex loops far apart
interfere very weakly and that distant boundaries have
negligible effect. These simplifying features will often be
assumed in the following.

b

t n S

Ω

d

dl

r

s

FIG. 4 (color online). The geometrical representation of a vortex
loop, an arbitrary surface S spanning the loop, with element dS,
and the solid angle Ω subtended by the loop from point r, the
tangent t̂, normal n̂, and binormal b̂ at point s. The flow lines of
the vortex velocity field (dashed line) thread surface S where the
phase changes determination by 2π. Solid angle Ω offers a
geometrical representation of the integrand in Eq. (21).

26See Fetter (1976), Sonin (1987), Salomaa and Volovik (1988),
and Dalfovo (1992) for more extended discussions.

27See Hall (1960), Andronikashvili and Mamaladze (1966), Sonin
(1987), Krusius et al. (1993), and Finne et al. (2006).

28See, for example, Lamb (1945), Sec. 147.
29See Saffman (1992), Sec. 2.3.

30Stokes’s theorem can be invoked to transform the line integral in
Eq. (19) into an integral over the surface spanned by the vortex loop

I
dl × a ¼

ZZ
½ð∇aÞ · dS −∇ · adS�

with a ¼ ðr −RÞ=jr −Rj3. Equation (21) then follows.
31The situation in superfluid 3He-A is more complicated, as

discussed in Sec. VII.E.
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1. Vortex line energy

The flow around the core of a vortex element carries kinetic
energy, obtained by integration of

R ð1=2Þρsv2vdτ over the
volume V in which this flow extends. The quantity ρs is the
superfluid density. This integral is evaluated by introducing
the vector potential A, Eq. (20), from which derives the
vortical flow field, as follows:

Ev ¼
ρs
2

Z
V
dτvv · vv ¼

ρs
2

Z
V
dτvv ·∇ ×A

¼ ρs
2

Z
V
dτ∇ · ðA × vvÞ þ

ρs
2

Z
V
dτA · ð∇ × vvÞ:

The last line is obtained with the help of vector identity
∇ · ða × bÞ ¼ b · ð∇ × aÞ − a · ð∇ × bÞ. It consists of the
sum of two volume integrals. The first can be changed into
a surface integral over A × v with the divergence theorem. By
taking the volume boundary sufficiently far from the vortex
element, supposedly isolated in a large volume, the surface
integral can be made negligible. In the second integral, the curl
of vv is zero everywhere but on the vortex core, where it is
singular: ∇ × vv ¼ κ4t̂δ2ðr − sÞ. Integration over the two-
dimensional delta function δ2ðxÞ, defined in the plane normal
to the tangent t̂ to the loop, reduces this volume integral to a
line integral over the vortex element:

Ev ¼
ρsκ4
2

I
dl ·A: ð22Þ

The vortex kinetic energy is the circulation of the vector
potential along the vortex filament.
By substitution of Eq. (20) for the vector potential A into

Eq. (22), the vortex energy can be expressed by a double
contour integral over the vortex loop32:

Ev ¼
ρsκ

2
4

8π

I I
dsðl1Þ
dl1

·
dsðl2Þ
dl2

dl1dl2
jsðl1Þ − sðl2Þj

: ð23Þ

Because Ev in Eq. (23) varies as κ24, loops carrying two
quanta of circulation would have 4 times the line energy of
single charge ones. Vortices with multiple quanta of circu-
lation are thus strongly disfavored on energy grounds com-
pared to separate singly charged vortices with the same total
vorticity charge; they are energetically unstable and decay
spontaneously into several singly charged entities. Only loops
and filaments carrying one quantum of circulation are con-
sidered here.
For a circular ring of radius R the integral can be evaluated

in terms of elliptic functions33 and expanded in terms of the
small parameter a0=R. The kinetic energy associated with the
ring velocity field is then given by

ER ¼ 1

2
ρsκ

2
4R ln

8R
a0

þO
�
a0
R

�
: ð24Þ

For a straight vortex filament, the integral for the kinetic
energy in the volume comprised between two planes
perpendicular to the filament stems out directly from
Eq. (18). For a unit length of vortex the result reads

ϵf ¼
ρsκ

2
4

4π
ln

�
rm
a0

�
: ð25Þ

The logarithmic divergence is cut at short distance to a0, taken
as the definition of the core radius. Its value, of the order of
1 Å at low pressure, is obtained from experiment (Rayfield
and Reif, 1964). The far distance cutoff rm is the minimum
distance over which the vortex flow field is undisturbed: it is
the smallest of (1) the size of the container, (2) the average
radius of curvature of the vortex, and (3) the distance to
neighboring vortices. For ångström-size vortices, taking
rm=a0 ¼ 10, ϵv ∼ 2 K=Å: vortices are high-energy excitations
of the superfluid as compared to thermal excitations, phonons,
or rotons. Changes in rm along the vortex line are disregarded
because they enter logarithmic terms and yield small correc-
tions only for rm ≫ a0: when the vortex deforms, its energy
changes mostly as its length, and little with its shape.
The line energy of the core, usually taken as

ϵsb ¼ −
7

4

ρsκ
2
4

4π
;

for a core rotating as a solid body,34 must be added to Eq. (25)
to obtain the full vortex energy per unit length

ϵv ¼ ϵf þ ϵsb ¼
ρsκ

2
4

4π

�
ln

�
rm
a0

�
−
7

4

�
: ð26Þ

The full energy of a curved vortex line is thus approximated
by ϵv times its total length. For instance, the energy of a vortex
ring, Eq. (24), stems from Eq. (25) if rm is taken to be 8R.
Equation (26) holds for straight vortex lines, rings, curved

filaments, or general loops provided than rm ≫ a0. It can be
viewed as a force developing along the vortex axis, a line
tension that tends to shorten the vortex length. That is, the
vortex line pulls on its ends: if an end becomes loose, it
shrinks to zero. Stable vortices in finite-size containers are
either closed on themselves in loops or connected to the
container walls.

2. Stable vortices

It follows from the existence of a positive line tension that a
vortex loop would tend to spontaneously reduce its length and
minimize the line energy. However, the energy so released by
the vortex loop in its motion can be disposed of into the
surrounding fluid only in certain conditions of flow. The line
tension is opposed by other forces that arise from the vortex
motion in the fluid or from its interaction with the boundaries,
namely, the Magnus force and pinning forces.

32See Lamb (1945), Sec. 153, or Saffman (1992), Sec. 3.11.
33See Lamb (1945), Sec. 163.

34Using the Gross-Pitaevskii equation, Roberts and Grant (1971)
found that the prefactor 7=4 should be replaced by the not-so-
different number 0.615.

Eric Varoquaux: Anderson’s considerations on the flow of … 813

Rev. Mod. Phys., Vol. 87, No. 3, July–September 2015



As stand-alone loops or pinned filaments, their length is
constant as long as they cannot exchange energy with the rest
of the fluid (or the external world). In the presence of hard
walls, their flow field must be such as to satisfy the condition
that no fluid can penetrate into the wall. A convenient way of
satisfying such a boundary condition is to continue the vortex
filament into the wall, forming an imaginary image vortex.
Such a continuation procedure can be shown to be possible
and to yield a unique velocity field.35 Vortices meeting with
walls usually satisfy the condition of no flow through a solid
boundary by standing perpendicular to it.36 Thus, finite length
vortices always close on themselves or end at walls. In this
latter case, they also form closed loops if their image is taken
into account. The opposite view, namely, that vortices are most
of the time infinitely long as, for instance, vortices formed
under rotation in a cylindrical helium bucket, is also held.37

The process of nucleation of vortices considered next requires
that their size be finite (otherwise, the energy involved would
be infinite): the isolated vortex loops dealt with in the
following have a finite size, usually small.

3. Vortex line impulse

If an external potential flow with velocity vp ¼ ðℏ=m4Þ∇φp
imposed by moving boundaries, a piston for instance, or by
nearby vortices, the kinetic energy of the combined flow vp þ
vv in a given volume V is the sum of the kinetic energy of the
remotely applied superflow vp, that of the vortex loop,
obtained from Eq. (23), and the volume integral of the cross
term of the scalar product of vp and vv. This last term reads

EI ¼ ρs

Z
V
vp · vvdτ ¼ ρs

ℏ2

m2
4

Z
V
∇φp ·∇φvdτ; ð27Þ

and represents the energy of interaction between the vortex
and the applied flow. Making use of Green’s first identity,38

the integral in Eq. (27) can be rewritten as

EI ¼ ρs
ℏ
m4

Z
S
φvvp · dS; ð28Þ

where φv is the phase change contributed by the vortex’s own
flow field.
The bounding surface S yields not one but two contribu-

tions to the integral in Eq. (28), the outer surface bounding V
and, quite importantly, the cut spanning the vortex loop over

which φv changes discontinuously by 2π (see Fig. 4). If V can
be chosen large enough, the velocity induced by the vortex on
its surface is negligible and φv is a constant: the contribution
to Eq. (28) of the outer surface reduces to the net flux of vp,
which is zero. The contribution of the cut is 2π times the flux
of vp through the vortex loop. Introducing the mass flux of the
applied potential flow through the vortex loop Jp, the
contribution of the cross term (27) takes the simple form

EI ¼ ρs
2πℏ
m4

Z
loop

vp · dS ¼ κ4Jp: ð29Þ

Thus, an applied flow contributes to the vortex loop energy by
the additional mass flux Jp that it causes through the loop
times the quantum of circulation. This result will be derived in
Sec. II.C from the more general phase-slippage theorem
governing the exchange of energy between potential and
vortical flows.
In the event that vp can be considered as constant over the

surface spanned by the vortex loop, Eq. (29) becomes even
simpler:

EI ¼ ρsκ4S · vp; ð30Þ

in which S is the vectorial area of the loop,R
dS ¼ ð1=2Þ H r × dl, dl being the line element at point s

of the oriented loop.
The total energy of the vortex immersed in an applied flow

field is the sum of its energy in the rest frame E0, given by
Eq. (23), and the energy of interaction with the potential flow
EI. For Eq. (30), this reads

Ev ¼ E0 þ P · vp; with P ¼ ρsκ4S; ð31Þ

where P is defined as the impulse of the vortex loop.
For a circular loop of radius R, a vortex ring, Eq. (31) gives

the well-known result (Lamb, 1945)

PR ¼ πρsκ4R2: ð32Þ

It emerges from this derivation (and the various approx-
imations made along the way) that, under a Galilean boost,
vortex loops do behave as Landau quasiparticles, with an
energy proportional to their length and an impulse propor-
tional to their area. This approach puts some flesh on the bare
bones of the conventional (and exact) fluid-mechanical vortex
dynamics; it gives substance to the intuitive view that they can
be treated as independent elementary entities. This physically
meaningful manner of separating the vortical flow from the
local value of the remotely potential superflow vp will prove
quite useful in the following.

4. Vortex self-velocity

The impulse is not simply a plain geometrical quantity as
Eq. (30) or (31) would let one think. It is the resultant of the
impulsive pressures that must be applied to the fluid at rest to
create the vortex loop from rest.39 It possesses some of the

35See Saffman (1992), Sec. 2.4.
36It is understood here that the boundary does not carry vorticity. A

case to the contrary is discussed by Sonin (1994).
37Such a point of view is discussed by Saffman (1992), Sec. 1.4.
38As expressed by

Z
V
∇Ψ ·∇Φdτ ¼

Z
S
Φ∇Ψ · dS −

Z
V
Φ∇2Ψdτ;

with S being the surface bounding volume V and dS being the
outward pointing surface element, and taking into account mass
conservation of the fluid in incompressible flow [∇2Ψ ¼ 0, Ψ ¼
ðℏ=m4Þφp being the velocity potential of vp].

39See Lamb (1945), Sec. 152.
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properties of a true momentum. For instance, the propagation
velocity of the vortex ring, Eq. (34), can be expressed as the
group velocity associated with the energy (24) and impulse
(32) (Langer and Reppy, 1970; Roberts and Donnelly, 1970):

vR ¼ dER

dPR
¼ κ4

4πR

�
ln
8R
a0

−
3

4

�
. ð33Þ

Equation (33) tends asymptotically to the actual velocity of a
ring with a hollow core as computed directly from the Biot-
Savart law,40 which moves along its symmetry axis n̂ with
velocity

ds
dt

¼ vR ¼ κ4
4πR

�
ln
8R
a0

−
1

4

�
n̂: ð34Þ

However, these simple properties do not imply that a vortex
has actual linear momentum. The vortical impulse is more
elusive. For instance, it can be shown that a vortex ring
moving freely under its own force at velocity vR and
impinging on a wall exerts no force on it (Fetter, 1972).
This somewhat counterintuitive result arises from the distri-
bution of the flow around the vortex loop (Cross, 1974). The
contribution of the flow that goes in the forward direction, and
which causes the ring free motion, does impart a momentum
impulse into the wall equal to PR, but the returning fluid away
from the ring, the backflow, yields an opposite contribution
that leads to full cancellation of the momentum transfer
recorded over an infinitely extended wall for the complete
collision event. This push and pull action constitutes a
reminder that actual momentum is carried by the individual
fluid elements and that a vortex is a hydrodynamical object
made up of many of those elements.
Isolated circular rings propagate undistorted under their

own velocity field in the superfluid at rest for symmetry
reasons. Only a few vortex shapes propagate undistorted in
their own velocity field. Straight vortex pairs and helical
vortices are other examples (Langer and Reppy, 1970).
For an arbitrarily curved vortex, the self-velocity of each

curve element can be approximated by Eq. (34), R being
replaced by the local radius of curvature rm ¼ jd2s=dξ2j−1,
the parameter ξ being the line length of the curve represented
by sðξÞ. The validity of this “local induction” approximation,
which requires that rm be large with respect to the vortex core
radius, has been discussed, in particular, by Schwarz (1978,
1985) who has used it in extensive numerical simulations of
3D vortex motion.

5. The vortex mass

The impulse of a vortex discussed earlier is in no way
related to the vortex self-velocity as the product of this
velocity by an inertial mass. The problem of the mass of a
vortex has been a long lasting riddle, which has now been
resolved in a satisfactory way in superfluid 4He.41

This mass arises from several contributions. If it is assumed
that the vortex has a hollow core of radius a0 and that the
compressibility of the surrounding superfluid in rapid rotation
can be neglected, the vortex mass is simply the mass of the
displaced fluid. For a cylindrical body, this amounts to πρsa20
per unit length, a standard result of classical fluid dynamics
(Lamb, 1945). The minuteness of a0 in 4He, 1 − 2 Å, of the
same order as the interparticle spacing, makes this contribu-
tion very small.
However, compressibility cannot be neglected in the

vicinity of the vortex core because the peripheral velocity
Eq. (18) becomes large. The corresponding pressure drop is
given by the Bernoulli equation

δP
ρs

¼ −
1

2
δðv2s Þ ¼ 0: ð35Þ

The change in density at distance r from the core, where the
velocity is κ4=2πr, is then

δρs ¼
δP
c21

¼ κ24
8π2

ρs
c21

1

r2
; ð36Þ

using the relation between the (first) sound velocity and the
compressibility c1 ¼ ð∂P=∂ρÞ−1=2,42 which is justified when
the normal fluid fraction is small (ρs ≃ ρ). The overall change
of mass about a unit length of vortex filament arising from the
fluid compressibility is obtained by integrating Eq. (36) over
space:

μv ¼
Z

rm

a0

Z
2π

0

Z
1

0

δρsrdrdθdz ¼
κ24
4π

ρs
c21

ln
rm
a0

: ð37Þ

The vortex mass per unit length μv diverges logarithmically
with rm and ranges from negligible for rm ∼ a few core radii
to important for large vortices, rm=a0 ≳ 103. However, in most
cases, the mass of the vortex remains small and can be
neglected except for high frequency phenomena (Baym and
Chandler, 1983; Sonin, 1987) and, possibly, for quantum
tunneling (Volovik, 1997).
The Bernoulli effect, Eq. (36), also causes 3He impurities

and ions to be trapped on the vortex cores because their
chemical potential decreases with the 4He density. They prefer
to sit in low density regions of the fluid. Trapped impurities
add their own inertial massmI to that of the core. In superfluid
3He, the core is large and yields the dominant contribution to
the vortex mass (Kopnin, 1978, 1995; Duan and Leggett,
1992; Volovik, 1997).

C. Energy exchange between potential and vortical flows

Following the insight of Anderson (1966b), the idea that
phase slippage by moving vorticity causes dissipation in
superfluids and superconductors has become conventional
wisdom. If, referring for instance to the situation of Fig. 5,
there is not just one vortex as in Fig. 3 but a constant stream of
vortices crossing the path 1-2 at a rate of n per second, driven40See Lamb (1945), Sec. 163.

41Notably from the work of Baym and Chandler (1983), Duan
(1994), and Sonin et al. (1998). 42See Landau and Lifshitz (1959), Sec. 131.
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by some external force, a pressure difference develops in the
superfluid according to the Josephson ac relation (14). When
the superfluid is free to move, it is accelerated by the cross
stream of vortices: work is done onto the superfluid by the
applied external force, for instance, an electric field acting on
charges trapped in the vortex cores. This section focuses on
the mechanism for this exchange of energy between the purely
potential superflow and vorticity.
Anderson (1966b) noted in an appendix entitled “A

‘new’ corollary in classical hydrodynamics” that, whenever
there exists a steady stream of vortices, for instance at the
mouth of an orifice, the quantum phase in the superfluid
would change there at a constant rate and, according to
Eq. (14), the following chemical potential difference would
build up:

ℏ
dnvortices

dt

����2
1

¼
�
ℏ
dðφ2 − φ1Þ

dt

	
¼ hμ2 − μ1i: ð38Þ

In Eq. (38), the brackets represent time averaging and the
quantity dnvortices=dt for the rate of passage of vortices across
a line joining points 1 and 2, as depicted in Fig. 5.
This result is of no special importance in classical

hydrodynamics because the velocity circulation carried
by each vortex, albeit constant, can take any value, while
in the superfluid it is directly related to the phase of the
macroscopic wave function and quantized. A formal proof
of this conjecture based on the standard decomposition of any
vector field into an irrotational contribution and a solenoidal
one was given by Huggins (1970).43 The following derivation
is based on the more physical approach to vortex dynamics,
which makes use of the concepts of force and energy.

1. The Magnus force

Consider the interaction energy between a vortex loop
and a potential flow vp, Eq. (30). Under an infinitesimal

displacement δx of a small line elementΔl, as shown in Fig. 6,
the energy of the vortex loop changes according to

δðΔEIÞ ¼ κ4ρsδx × Δl · vl ¼ κ4ρsΔl × vl · δx; ð39Þ

where vl is the local superflow velocity as seen by the vortex
element standing still. The local flow velocity vl is the sum of
the applied superflow vp and the flow induced by the other
parts of the vortex loop vv. Equation (39) expresses the
functional derivative δðΔEIÞ=δx of the energy with respect to
an infinitesimal deformation of the vortex line.
If the vortex loop moves along at velocity vloop together

with the element under consideration in the rest frame of the
observer, vl in Eq. (39) becomes vl − vloop and this force takes
the same form as the Magnus force for a line vortex in classical
hydrodynamics44 with a fluid density ρs:

δðΔEIÞ
δx

¼ ΔFM ¼ κ4ρsðvloop − vlÞ × Δl. ð40Þ

The Magnus force, Eq. (40), has a simple physical origin. It
is due to the Bernoulli effect that arises from the rotational
flow around the vortex core. As shown in Fig. 7, this flow adds
to the potential flow in the lower half plane and subtracts from
it in the upper half plane. Integrating the resulting pressure
difference obtained from the Bernoulli equation (35) over the
cylinder yields a downward force expressed by Eq. (40). The
Magnus force on each element of the vortex line arises
ultimately from momentum conservation in the fluid and
comes into play whenever the vortex trajectory differs from
that of the local fluid particles. When no other force acts on the
vortex core (such as an electric field on charges trapped in the
core, or friction from the normal fluid component, etc.), FM
must be zero, hence vloop ¼ vl: the vortex core moves with the
local superfluid velocity. The velocity of the core at point s is
the sum of the velocity of the local potential flow vp at s when
there is no vortex, and of the velocity vv induced at s by the
other parts of the vortex. If no flow is applied, vp ¼ 0, then
vloop ¼ vv: the vortex loop moves under its own flow field in
the superfluid at rest at large distance. The vortex thus appears
to behave as a quasiparticle in its own right although it stands
only for the vortical part of the total flow. The physical picture
that emerges from this approach rings a familiar bell to
condensed matter physicists.

2. Quantized vorticity and the Kelvin-Helmholtz theorem

The fact that free vortex loops move with the local fluid
particles conforms to the Kelvin-Helmholtz theorem. This

1 2

θ1

v1

v
θ3

v3

2

FIG. 5 (color online). Stream of vortices v1; v2; v3;… crossing a
path between points 1 and 2, moving from bottom to top. The
vortices are represented by dots and are assumed perpendicular to
the figure and nearly straight in the vicinity of 1-2. Each
contributes angle θi to the phase difference recorded between
1 and 2. In its travel from far below to far above line 1-2, each
vortex contributes 2π to the phase difference. According to the ac
Josephson effect, a pressure difference develops in the superfluid
due to the stream of vortices [see Eq. (38)].

δ
Δ

x
l

FIG. 6. Virtual displacement by δx of a small line element Δl.

43See also Zimmermann (1996) and Greiter (2005) for alternate
derivations.

44See Sonin (1997) for a complete discussion of the Magnus force
in classical fluids, neutral superfluids, and charged superfluids.
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result has been obtained as a consequence of the quantization
of circulation, Eq. (18). The Kelvin-Helmholtz theorem is
usually derived from the Euler equation and the implicit
assumption that the motion of the fluid is isentropic (Landau
and Lifshitz, 1959).45 A further implicit assumption is that the
velocity field and the loop deformation are well behaved
analytically, that is, continuous in space and time.46 The
relevance of these remarks will become apparent in Sec. V.A
on vortex nucleation, which deals with the spontaneous
appearance of vorticity, in other words, the violation of the
Kelvin-Helmholtz theorem. The derivation given above does
not hide these fine points under the rug; it explicitly rests on
the quantization of circulation, hence its conservation, and
also implies isentropic and continuous superfluid motion.
When this fails new phenomena occur: vortices may be
nucleated.
As the effect of external forces and mutual friction has been

set aside for simplicity, no work is done on the vortex itself
except by the interaction with the local superflow. Thus any
gain or loss of energy by the vortex balances that lost or gained
by the potential flow. The way by which this conservation of
energy proceeds is instructive; the detailed analysis is given in
the following.

3. The phase-slippage theorem

If δx, used in Eq. (39) as a virtual displacement to compute
the forces acting on Δl, becomes a real displacement vloopΔt,
actual work during the time Δt is done by the applied potential
flow on the vortex loop. The energy balance is expressed by
rewriting Eq. (39) as

δðΔEIÞ ¼ κ4ρsΔl× ðvpþ vvÞ · δx
¼ κ4ρsΔl× vp · vloopΔtþ κ4ρsΔl× vv · vloopΔt: ð41Þ

In free motion, disregarding friction of the core on
the normal component and with no force applied externally,
the vortex loop follows the fluid stream vloop ¼ vl ¼ vp þ vv.
The triple products are equal in magnitude and opposite in
sign. The energy increment expressed by Eq. (41) is equal to

zero. Total energy is conserved in the course of the vortex
motion by the balance of the two terms in the last equality (41).
The first, rewritten as

δðΔEIÞ1 ¼ κ4ρsðvloopΔt × ΔlÞ · vp; ð42Þ

is readily seen proportional to the rate at which the potential
flow streamlines are crossed by the vortex element Δl. It
expresses the change of the potential flow kinetic energy when
its streamlines are crossed by the vortex line, causing a change
of the phase difference of 2π along them.
The second term requires a little more formal work to be

recognized as a contribution to the vortex self-energy Ev.
What needs to be shown is that it corresponds to the
energy variation for a small, local deformation of the vortex
loop. This is established in the Appendix with the following
result:

δðΔEIÞ2 ¼ κ4ρsΔl × vv · vloopΔt ¼ ΔEvðδx; vloopÞ; ð43Þ

for the displacement δx ¼ vloopΔt of the loop element Δl.
The energy balance expressed by Eq. (41) between the

potential flow kinetic energy and the vortex self-energy
constitutes the fundamental relation governing phase slippage.
In integral form, it yields Eq. (29). It shows the way by which
a vortex loop of arbitrary shape can form by expanding from
an infinitesimal loop.
The gist of Eq. (43) is that whenever a vortex cuts potential

flow streamlines, it reversibly exchanges energy with the
potential flow and it concurrently changes the velocity
circulation along these streamlines by one quantum unit,
causing slippage of the quantum phase. This process takes
place in real time and locally, not only in a time-averaged
fashion as in Anderson’s conjecture, Eq. (38). If the potential
flow is divergent (for instance outward from the mouth of a
duct where the streamlines flare out), the vortex expands in
length, collects energy from the flow, and slows it down. If the
vortex runs away from that point to a far off distance and never
comes back, this energy is irreversibly lost for the potential
flow: dissipation of superflow energy has occurred. Reversing
the flow direction, which then becomes convergent, results in
the vortex shrinking and the potential flow picking up energy:
a collapsing vortex dumps its energy into the potential flow
and speeds it up.
These processes alter the quantum phase and will be

discussed in Sec. V.E on the phase-slip mechanism. But
before turning to the inner details of the phase slips, their
experimental observations are briefly sketched in the next
section.

III. PHASE-SLIPPAGE EXPERIMENTS

As the dc and ac effects predicted in the early 1960s by
Josephson (1962, 1964, 1965) to take place between two
suitably coupled superconductors were quickly observed
(Anderson and Rowell, 1963; Shapiro, 1963), the search
for analogous effects in superfluids also began, with the goal
of observing unique quantum-mechanical effects in hydro-
dynamics. This search for a long time gave inconclusive

FIG. 7 (color online). Potential streamlines past the cylindrical
vortex core flowing from left to right in thin plain lines. The flow
from the vortex, in dashed lines, subtracts from the potential flow
in the upper half and adds to it in the lower half, inducing a
Bernoulli pressure difference between top and bottom.

45See Sec. 8.
46For a discussion, see Saffman (1992), Sec. 1.6.
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results,47 or led to blind alleys.48 It was only in the mid-1980s
that decisive steps forward were taken.49

A. The Richards-Anderson experiment

In order to observe the Josephson ac effect in superfluid
helium, Richards and Anderson (1965) designed an experi-
ment based on the beat note expected to form between the
sound wave emitted by a quartz transducer immersed in the
superfluid and the internal pressure fluctuation due to the ac
effect. In this historical setup, shown in Fig. 8,50 two identical
coaxial capacitors are suspended over a liquid helium bath
cooled at a temperature below the lambda point (of the order
of 1.15 K). One of the capacitors is fully open ended, the other
is partially closed at the bottom by nickel foil with a very small
aperture. The foil is 25 μm thick, in which a 15 μm aperture
had been punched with a sharp needle: the pinhole thus
manufactured constitutes the “weak link” between the two
superfluid pools.
If a helium level difference Δz between the two coaxial

capacitors is created by lowering and raising the whole
assembly over the liquid helium bath, the return to hydrostatic
equilibrium is impeded by the pressure head of the steady
stream of vortices corresponding to Eq. (38). The level
difference can be precisely monitored by a capacitance bridge.

When an ultrasound wave is shone by a quartz transducer
facing the microaperture as shown in Fig. 8, it can couple to
the stream of vortices and modulate the flow.
Steps in the return to equilibrium were indeed observed at

level differences which were multiples and submultiples of the
fundamental head difference frequency expected from the
Josephson ac relation: Δz ¼ nℏω=n0m4g, where n and n0 are
integers, and g is the acceleration of gravity. Richards and
Anderson’s results were reproduced by other researchers
using similar setups, notably Khorana and Chandrasekhar
(1967), Khorana (1969), and Hulin et al. (1971, 1972).
Different setups, involving rotating or oscillating toroidal
cells (Guernsey, 1971; Gregory, 1972), vortices accelerated
by ions (Carey, Chandrasekhar, and Dahm, 1973), or a two-
orifice flow arrangement (Gamota, 1974), were also tried but
with mixed success at best, suffering from lack of reproduc-
ibility and poised with numerous unexpected features.
It eventually became clear that the early claims of obser-

vation of the Josephson ac effect by synchronization of the
pressure head on the sound frequency did not meet universal
acceptance. On the contrary, an alternate explanation in terms
of acoustic standing waves in the cell was put forward on
experimental grounds by Leiderer and Pobell (1973), as well
as Musinski and Douglass (1972) (Musinski, 1973), and on
theoretical grounds by Rudnick (1973). It was nonetheless
argued by Anderson and Richards (1975) that, although
acoustic resonances in the cell could be a concern, they could
not account for all of the features observed in their
experiments.
These efforts directed toward the demonstration of the

hydrodynamic Josephson effects, together with direct studies
of the critical velocity itself (Trela and Fairbank, 1967;
Gamota, 1973), did bring experimental confirmation of the
views of Feynman and Anderson that vortices were associated
with the appearance of dissipation in superfluid flow.
However, quantitative studies leading to a clear picture of
how these vortices were created and how they interacted with
the superflow were lacking. A consensus grew that somehow
their formation and evolution had a chaotic character, pre-
sumably due to random preexisting vorticity in the superfluid
and to a probable evolution toward some form of turbulent
motion of the quantized vortices, a belief confirmed in part by
the more recent studies described in Sec. VI. The flurry of
activity stirred by the initial reports of observations related to
the Josephson effects in helium receded almost completely.
With the hindsight gained from the experiments described

later, it can now be concluded that the synchronization
envisioned by Richards and Anderson (1965) would be nigh
impossible to achieve. A particularly clear exposition of this
synchronization experiment is given by Anderson, Beecken,
and Zimmermann (1984) in terms of parametric effects due to
the system nonlinearities, of the same kind as frequency
pulling in radio frequency oscillators. These effects require
that energy be stored reversibly in a nonlinear element, here
the Josephson junction or, for rf devices, a nonlinear induct-
ance. In 4He far from the λ point the relation between the
current and the phase difference across the weak link shows no
nonlinearities. The energy that the vortices gather from the
potential flow is carried swiftly away from the orifice and is
irreversibly lost. It can be used to pull or push the flow in

FIG. 8. The Richards-Anderson cell (1965).

47See Richards and Anderson (1965), Khorana and Chandrasekhar
(1967), Khorana (1969), Richards (1970), Guernsey (1971), Gregory
(1972), and Hulin et al. (1972).

48As mentioned by Schofield (1971), Musinski and Douglass
(1972), Musinski (1973), and Gamota (1974).

49The work of Avenel and Varoquaux (1985, 1986b), Varoquaux,
Avenel, and Meisel (1987), Amar et al. (1990, 1992), and
Zimmermann (1993b, 1996) is described later.

50Later refined by Richards (1970).
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synchronism with the sound excitation for a very brief lapse of
time only, much shorter than the period of the audiofrequen-
cies used in these experiments.51 Furthermore, for the com-
paratively large orifices used then, vortices appear in a rather
irregular fashion, not individually but in lumps with varying
numbers, as discussed in Sec. VI.B. These peculiarities
hamper the eventual synchronization to a regular pattern
of steps.

B. The hydromechanical resonator

In the early 1980s, several groups went on striving to
improve the detection techniques used in the search for the
hydrodynamical Josephson effects. The use of a diaphragm-
driven hydromechanical resonator fully immersed in the
superfluid was pioneered by Zimmermann and his students.52

A similar device with two chambers was built by Manninen
and Pekola (1983) for critical velocity measurements in
superfluid 3He, and used by Lounasmaa et al. (1983) for
the search of an ac Josephson effect in superfluid 3He, a topic
that will be covered in Sec. VII.B. The expertise developed at
Cornell on torsional oscillators was put to use in superfluid
3He by Reppy and his students (Crooker, 1984). Again, the
hydrodynamic Josephson effects could not be observed in
these various experiments for one or several of the following
reasons:

• the apertures used as weak links were too large;
• the mass flow rate sensitivity was only marginally
adequate;

• the superfluid motion was driven from current sources
that were too stiff to let the response of the weak link
be seen;

• and, last but not least, the cells were too bulky and too
sensitive to external mechanical vibrations to allow for
noninvasive measurements.

The first reason was clearly perceived as essential. Efforts
shifted from superfluid 4He to the newly discovered superfluid
3He because the coherence length is 2 orders of magnitude
larger, putting the fabrication of a genuinely weak superfluid
link within reach of experimental low-temperature physicists.
Work was carried out in that direction by Wirth and
Zimmermann (1981), who were the first to use submicronic
orifices in freestanding ultrathin foils, and others (Sudraud
et al., 1987; Amar et al., 1990).
The detection of the minute mass currents that would flow

in microapertures improved markedly in the early 1980s as
reliable rf SQUIDs became available.53 Ultrasensitive pressure
and displacement gauges could then be developed (Avenel and
Varoquaux, 1986a).

C. Early phase-slippage experiments

The phase-slippage experiments that were carried out
starting from the mid-1980s using these refined techniques
(Avenel and Varoquaux, 1985; Varoquaux, Avenel, and
Meisel, 1987) confirmed Feynman and Anderson’s views
on dissipation in superflows and brought a large measure of
clarification to the critical velocity problem (Varoquaux,
Zimmermann, and Avenel, 1991) and to the formation of
vortices in superfluid 4He (Avenel, Ihas, and Varoquaux,
1993). These experimental results and their interpretation have
since been largely confirmed by other workers.54

The design of the first weak link in which hydrodynamical
Josephson effects were seen (Sudraud et al., 1987) struck a
compromise between two conflicting requirements that it be
weak enough to effectively depress the wave function ampli-
tude while preserving the macroscopic coherence of the
superfluid and that it be large enough to let a measurable
flow of liquid go through. A slit geometry was chosen for the
microaperture, the smaller dimension of which was compa-
rable with the coherence length in superfluid 3He, ξ0, which is
in the submicron range (see Sec. VII.B). This orifice was
micromachined by ion milling in a freestanding foil the
thickness of which was also comparable to ξ0. The third
dimension of the slit was made large to provide a substantial
cross-sectional area through which the superfluid would flow.
Phase slippage was studied with the help of a miniature

hydromechanical device, represented schematically in Fig. 9,
which is basically a flexible-wall Helmholtz resonator with
two vents, immersed in the superfluid bath.55 The flexible wall
is constituted by a Kapton membrane coated with aluminum.
In the version shown in Fig. 9, there are two openings
connecting the resonator chamber to the main superfluid
bath. One is a microaperture in which the critical velocity
is reached. The critical event consists of a sudden change of
the resonance amplitude corresponding to a departure from
the expected classical hydrodynamics response of the flow
velocity through the microaperture as discussed in the
following. The other opening is an open duct and provides
a parallel path to the superfluid, along which the quantum
phase remains well determined in all circumstances. The
velocity circulation along the superfluid closed loop threading
the two openings shown in Fig. 9 changes by an integral
number of quanta for each critical event.
The operation of these resonators is described in detail in

the literature.56 Flow is driven in and out of the resonator by an
electrostatic ac drive applied to the aluminum-coated Kapton
membrane. The membrane is mounted in such way as to be as
flexible as possible; it provides the restoring elastic force in
the resonator. The “common-mode” flow of liquid in and out

51As will become clear in the discussion of phase-slip mechanism
in Sec. V.E.

52See Wirth and Zimmermann (1981), Anderson, Beecken, and
Zimmermann (1984), and Beecken and Zimmermann (1987a).

53SQUID is an acronym for superconducting quantum interfero-
metric device. The present sensitivity of dc-SQUID based displace-
ment sensors used in the phase slippage described later on is
∼10−15 m=

ffiffiffiffiffiffi
Hz

p
, or 1 F=

ffiffiffiffiffiffi
Hz

p
.

54See Zimmermann (1996) and Packard (1998).
55Calling the device a “Helmholtz” resonator has been criticized as

the compressibility of the fluid inside the chamber has a negligible
effect at the low frequencies of the experiments, hence the little more
convoluted appellation used here. The term “hydromechanical
resonator” is also used in this paper.

56See Avenel and Varoquaux (1987), Beecken and Zimmermann
(1987b), Varoquaux, Avenel, and Meisel (1987), Varoquaux and
Avenel (1994), and Avenel et al. (1995).
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of the cell body through the two vents of the resonator
provides a force of inertia to the hydromechanical device.
These inertial and elastic terms determine the resonance
frequency. The device is usually driven at or close to
resonance in continuous mode. The raw data consist of peak
amplitude charts as represented in Fig. 10. A strong impulsive
force may also be applied to the membrane; the large transient
response of the resonator reveals additional features when it
becomes nonlinear.
In the absence of dissipation, the resonance motion under a

small steady ac drive increases linearly in amplitude under the
action of the drive as energy gradually gets stored in the
resonator. This linear rise on the left of the trace in Fig. 10
proceeds until the flow velocity in the microaperture becomes
critical. Sudden drops of the peak amplitude from one half
cycle to the next then appear. These drops signal that a lump of

resonator energy has been lost between two successive
recordings of the absolute peak amplitude. Quite importantly,
these lumps are identical—to experimental uncertainty—from
event to event.
These events are interpreted as the footprint left by vortices

crossing the potential flow pattern in the vicinity of the
microaperture. In their course, they cut all potential flow
lines, pick up energy at the expense of the potential flow of the
resonator, and change the phase difference along these flow
lines by 2π. Hence the name “phase slips.” These slips of the
phase are sudden and take place at a fairly well-defined
threshold, which defines the phase-slip critical velocity. It will
become apparent in the following that this critical velocity,
while signaling a breakdown of superfluidity, differs from
other quantities also called “critical velocities.” These features
are discussed in detail in Secs. V and V.E.

D. Phase-slippage experimental results

The observation of phase slips in 4He has led to a number of
significant results. They brought a confirmation of Anderson’s
ideas, much welcome in view of the controversies about
previous experiments. And quite importantly, they shed light
on the previously indecipherable problems of the critical
velocity and of vortex nucleation. Their most important
qualitative features and some of their implications are sum-
marized here.

(1) The critical velocity threshold, which can be seen on
time charts such as that shown in Fig. 10, is markedly
temperature dependent down to below 200 mK and
reaches a well-defined plateau below 150 mK. These
features are shown in Fig. 12 and are analyzed in
Sec. V. As the thermodynamic properties of superfluid
4He are very nearly independent of temperature below
1 K, this observation indicates that the critical process
in action is not governed solely by hydrodynamics.
Statistical mechanics may well play the leading role.

(2) Aperture size is not found to be a relevant factor, as
long as it is “small enough,” roughly below a few μm.
This feature and the temperature dependence men-
tioned earlier are in sharp contrast with the Feynman
critical velocity, which, as discussed in Sec. IV.B,
exhibits a well-characterized dependence on size and
none on temperature (except very close to the λ
transition).

(3) The actual velocity threshold for phase slips shows
significant scatter from one slip to the next in a given
sequence, as can be seen in Fig. 23. This scatter lies
much above the instrumental noise level of peak
amplitude detection. It represents a genuine stochastic
property of the physical process at work, which turns
out to display a temperature dependence similar to that
of the critical velocity itself, as shown in Fig. 13.

(4) The phase-slip pattern shows quite reproducible prop-
erties in the course of a given cooldown as long as
the experimental cell is kept at a temperature below
10–15 K. If the temperature is cycled up to liquid
nitrogen temperature and down again, small changes
to the critical threshold and to the pattern itself can
occur. These changes reveal the importance of minute

FIG. 10. Time chart of the peak resonance amplitude of the
resonator membrane, in nm, for positive and for negative
excursions. Each dot represents a measurement. The time interval
between individual measurements is half a period, 177 ms here.
The ticks labeled “in” and “out” indicate whether the jumps occur
when the liquid flows in or out of the cell. The drive power
applied to drive the resonance is very small (2.4 × 10−18 W).
When the peak amplitude is subcritical, its value builds up
linearly with time as seen at the left of the chart. The critical
events are sharply defined and quite reproducible but occur at a
threshold that varies slightly from event to event. The superfluid
4He contained 100 to 300 ppb of 3He and was cooled to about
10 mK under a very small hydrostatic pressure head. From
Avenel and Varoquaux, 1985.

flexible membrane loop

long channelmicro-aperture

FIG. 9. Schematic of the flexible-diaphragm double-hole hydro-
mechanical resonator. The dashed line shows a closed loop
threading the two holes (microaperture and long channel) located
entirely in the superfluid.

820 Eric Varoquaux: Anderson’s considerations on the flow of …

Rev. Mod. Phys., Vol. 87, No. 3, July–September 2015



alterations in the surface state of the cell, e.g.,
contamination of the microaperture walls by solidified
gases during thermal cycling.

(5) Quite importantly, phase slips are the signature that
quantized vortices are created in aperture flow above a
well-defined threshold of flow velocity. This statement
is based on the measured value of the phase change,
found to be 2π to the accuracy of the experiment
(Avenel and Varoquaux, 1985). This amounts to a
change of precisely one quantum of circulation in the
superfluid loop threading the microaperture and
the long parallel channel.57 A detailed scenario for
the occurrence and development of these phase slips
has been described by Burkhart et al. (1994) and is
discussed in Sec. V.E.

Critical velocities and phase slips in the superfluid phases
of 3He show different features that are discussed in Sec. VI.

IV. CRITICAL VELOCITIES IN SUPERFLUIDS

The critical velocity in a superfluid is defined as the
threshold above which the flow of the superfluid component
becomes dissipative, that is, the property of superfluidity is
lost. This rather broad definition encompasses a number of
different physical situations. This section begins with an
overview of the different brands of critical velocities that
comply with this definition. It concludes by focusing on that
which involves the phase-slip phenomenon, namely, the
nucleation of superfluid vortices.
Neither the problem of critical velocities in superfluids nor

that of the nucleation of vortices are new. The former is as old
as the discovery of superfluidity [see Wilks (1967)]. The latter,
first discussed by Vinen (1963), has met an even more
tortuous fate. It was first thought, still in some quarters not
so long ago, to be highly impossible: such an extended
hydrodynamical object as a vortex line with a finite circulation
involving the collective motion of a large number of helium
atoms would have a vanishingly small probability of occurring
spontaneously. More recent experiments probing superflow
on a finer scale of length have shown otherwise.58

A. The Landau criterion

As discussed previously in Sec. I.A, Landau (1941)59

explained the absence of dissipation in the flow of helium-
4 by the existence of a sharply defined dispersion curve for
elementary excitations, the phonons and the rotons. This
property is now associated with the phenomenon of Bose-
Einstein condensation (Griffin, 1987, 1993), as has long been
suspected (London, 1954). Elementary excitation energy
levels ϵðpÞ are well defined. They have a negligible spread
in energy. States with very low energy are thus extremely rare.

This scarcity of low-lying states is held responsible for the
inviscid property of 4He.
An impurity, or a solid obstacle, can exchange only an

energy ϵðpÞ at momentum p that exactly matches the energy
of an elementary excitation of the fluid. If the superfluid
moves at velocity vs, the energy of elementary excitations in
the frame of reference at rest becomes ϵ − vs · p (Wilks, 1967;
Baym, 1969). The same holds for a moving obstacle, by
Galilean invariance. If this energy turns negative, elementary
excitations proliferate and superfluidity is lost. The condition
on the superfluid velocity for this to happen reads

vs ≥ vL ¼ ϵðpÞ
p

����
min

≃ ϵðpÞ
p

����
roton

: ð44Þ

Unless this condition is met, there is no dissipative interaction
between the fluid and its surroundings: the flow is viscousless.
The minimum value of ϵ=p for helium lies very close to the

roton minimum, as shown in Fig. 1. This means that rotons are
created when the Landau critical velocity is reached in 4He. At
low pressure, the roton minimum parameters are such that
vL ≃ 60 m=s. The Landau critical velocity has been observed
under certain conditions in the propagation of ions in which
rotons are created in 4He as reviewed by McClintock and
Bowley (1995). The much less dense Bose-Einstein con-
densed gases sustain a phononlike energy spectrum at low
momentum (Bogolyubov, 1947) and no rotonlike features; the
Landau velocity is the sound velocity c ¼ ϵðpÞ=pjp¼0 and
phonons are emitted. The Landau critical velocity vL in
superfluid 4He is smaller than the sound velocity
(c ¼ 220 m=s at low pressure) but is still much larger than
the critical velocities observed in most experiments.

B. Feynman’s approach

Feynman (1953a, 1953b, 1954, 1955), realized, following
Onsager, that not only would vorticity be quantized in 4He in
units of the quantum of circulation κ4 ¼ 2πℏ=m4 but, preced-
ing Anderson, that these vortices would be responsible for the
onset of dissipation and for a critical velocity in the superfluid.
In Feynman’s views, vortices would be puffed out of the mouth
of orifices much in the way of smoke rings—or von Karmann
alleys past obstacles in classical (Navier-Stokes) fluids.
Such vortex rings can be treated as elementary excitations

of the superfluid, which they rightfully are from the vantage
point taken in Sec. II. Hence Landau’s criterion applies. The
limiting velocity associated with these vortex rings, assumed
to be circular, can be evaluated from the expressions for the
energy ER and impulse PR, Eqs. (24) and (32). The critical
value set by Eq. (44) is reached for a radius R such that ER=PR
is at a minimum, which occurs when R is as large as feasible,
that is, of the order of the orifice size d. This minimum value
sets the lowest velocity at which vortices can start to appear
and defines the Feynman critical velocity:

vF ≃ κ4
2πd

ln

�
d
a0

�
: ð45Þ

As discussed next, vF is much closer to experimental values
than the Landau critical velocity for rotons. Although this

57See Fig. 9 or Fig. 34 for a more realistic cell.
58As reported by Muirhead, Vinen, and Donnelly (1984),

Varoquaux, Avenel, and Meisel (1987), and Varoquaux and Avenel
(2003).

59For complete accounts of Landau’s work, see Khalatnikov
(1965) and Wilks (1967).
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agreement is heartening, it also raises questions: how do these
vortices come about and how do they evolve?

C. Several kinds of critical velocities

The compilation of the critical velocity data in various
apertures and channels from various sources available
at the time of the Exeter Meeting in 1990 (Varoquaux,
Zimmermann, and Avenel, 1991) is shown in Fig. 11 together
with more recent data. Two different critical velocity regimes
appear on this graph, a fast regime for small apertures, of the
phase-slip type, which is temperature dependent, and a slower
regime for larger channels, of the Feynman type, which is
temperature independent. The data points from various
sources for these two different types of critical velocity do
not fall on well-defined lines but merely bunch into clusters of
points. As stated, critical velocities in apertures and capillaries
are not very reproducible from experiment to experiment
indicating that, besides size, temperature, and pressure, some
less-well-controlled parameters also exert an influence. In
some occasions, switching between these two types of critical
velocity has been observed in the course of the same
cooldown (Hulin et al., 1974; Zimmermann, 1993a).
The critical velocity that depends on channel size follows

on average Eq. (45) for the Feynman mechanism. The higher
critical velocities, bunched around 5 to 10 m=s, faster than the
Feynman vF even for the smallest apertures but still consid-
erably slower than Landau’s vL relate to the phase-slip
phenomenon and are discussed later.
As a basis for comparison, it is worthwhile to summarize

the findings of the ion propagation studies in superfluid 4He at
various pressures, which have been reviewed by McClintock

and Bowley (1991, 1995). Ions can be created in liquid helium
and accelerated by electric field until they reach a limiting
velocity. The resulting drift velocities are measured by time-
of-flight techniques. For negative ions, hollow bubbles 30 Å in
diameter with an electron inside, two different behaviors are
observed:

• Below about 10 bars, vortex rings are created, on the core
of which single electrons get trapped: the drift velocity
suddenly drops from that of the negatively charged
bubbles to that of the much slower vortex rings (Rayfield
and Reif, 1964).

• Above 10 bars, the accelerated ion runs into the roton
emission mechanism before vortex rings can be created.
The Landau critical velocity is observed to be ≈ 46 m=s
at 24 bars down from a calculated value of 60 m=s at
SVP as the roton parameters change with pressure while
the vortex creation velocity increases with pressure
(Varoquaux and Avenel, 1996b).

• Around 10 bars, both critical velocities, the Landau
critical velocity for the formation of rotons and that for
the formation of vortex rings, can be observed to occur
simultaneously because ions can be accelerated above
the threshold for roton emission.

These ion propagation measurements provide a vivid
illustration not only of the existence of a critical velocity
obeying the Landau criterion but also that roton creation and
vortex formation constitute different phenomena and can exist
concurrently.60 The vortex emission threshold displays other
noteworthy features. It depends on temperature in a nontrivial
way, comparable to that of the phase slip and also shows the
marked dependence on 3He impurity concentration observed
for phase slips in microaperture flows but not in larger
channels. In both ion propagation and aperture flow mea-
surements, vortex formation displays similar features.
Altogether, a study of the experimental data in superfluid

4He reveals three different, well-defined, types of critical
velocities: one, the celebrated Landau critical velocity vL
observed in 4He only for ion propagation; another, vF, that
appears to follow the Feynman criterion as shown in Fig. 11
with all the uncertainties on the hydrodynamical process of
vortex creation in larger channels; and a third, vc, for phase
slips, in need of an explanation: how are the vortices of phase
slips in aperture flow created, and how does the situation differ
from that in larger channels?
The short answer, based on qualitative evidence, is that the

temperature dependence of vc and its stochastic properties
clearly point toward a process of nucleation by thermal
activation above ∼150 mK or so and by quantum tunneling
below. This conclusion contradicts the common-place daily
observations of the formation of whirlpools and eddies, and
also the widely held belief that large-scale topological defects
with a quantum charge of circulation cannot appear out of
nowhere in the superfluid. It will be seen to hold in 4He only
because the nucleated vortices have nanometric size, a fact
that came to be appreciated because of the detailed analysis of
phase-slippage observations related below.
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FIG. 11 (color online). Critical velocity data vs channel width
(⋄) Wilks (1967); (∘) and (▵) temperature-dependent and
temperature-independent data as compiled by Varoquaux,
Zimmermann, and Avenel (1991); (◂) Shifflett and Hess
(1995); (⋆) Flaten, Lindensmith, and Zimmermann (2006);
(□) Steinhauer et al. (1995) as reanalyzed by Varoquaux and
Avenel (1996a). For the temperature-dependent data, the high-
est value, i.e., that at the lowest temperature, has been retained.
The dashed line is obtained from Eq. (45) for the Feynman
critical velocity.

60A noteworthy attempt to by-pass this experimental finding is that
of Andreev and Melnikovsky (2004).

822 Eric Varoquaux: Anderson’s considerations on the flow of …

Rev. Mod. Phys., Vol. 87, No. 3, July–September 2015



V. PHASE-SLIP CRITICAL VELOCITY: A STOCHASTIC
PROCESS

A more firmly established answer to the question formu-
lated comes from a quantitative analysis of the experimental
data for phase slips. The clues given conclusively show that, in
small apertures, vortices are nucleated by thermal activation
above about 150 mK, and by quantum tunneling below.61

The first piece of evidence for the nucleation of vortices,
that is their creation ex nihilo, rests on the temperature
dependence of the phase-slip critical velocity shown in
Fig. 12. This figure, as Fig. 11 (and Fig. 13 to be discussed
later on), represents an attempt to compare data from different
groups. The data points are scattered but a general trend
emerges. The phase-slip critical velocity increases in a near-
linear manner when the temperature decreases from 2 to
∼0.2 K. That is, the functional dependence of vc upon T goes
as vc ¼ v0ð1 − T=T0Þ. The data depart from this linear
dependence below 200 mK, where they reach a plateau,
and above 2 K because the critical velocity goes to zero at Tλ.
This temperature dependence first observed in 1985 at

Orsay (Varoquaux, Avenel, and Meisel, 1987; Varoquaux
et al., 2001) and now a well-established experimental fact
(Steinhauer et al., 1995; Zimmermann, Lindensmith, and
Flaten, 1998) is very telling. It came as a surprise at first
because the critical velocities observed before were temper-
ature independent below ∼1 K. As the quantum fluid is nearly
fully in its ground state below 1 K, the normal fluid fraction
becomes less than 1%, one is led to suspect that a Arrhenius-
type process must come into play. If such is the case, that is, if
thermal fluctuations in the fluid with an energy of at most a
few kBT can trigger the appearance of fully formed vortex out
of nowhere, the energy of this vortex must also be of the order
of a few kBT: it must be a very small vortex. But very small
vortices require rather large superfluid velocities to sustain
themselves as seen in Eq. (34). That these requirements can be
met emerges from a detailed quantitative analysis of the
experimental data in the framework of the nucleation process.
The nucleation rate for a thermally activated process is

expressed by Arrhenius’s law:

ΓK ¼ ω0

2π
½ð1þ α2Þ1=2 − α� exp

�
−

Ea

kBT

�
; ð46Þ

where ω0=2π is the attempt frequency and Ea is the activation
energy of the process, which depends on the velocity vp and,
more weakly, on the pressure P and the temperature T. The
correction for dissipation in the square brackets was intro-
duced by Kramers (1940) to describe the escape of a particle
trapped in a potential well and interacting with a thermal bath
in its environment. The particle undergoes Brownian motion
fluctuations and experiences dissipation. This dissipation is
characterized by a dimensionless coefficient α ¼ 1=ð2ω0τÞ, τ
being the time of relaxation of the system toward equilibrium.
In superfluid helium, dissipation is small. Although some
dissipation is necessary for the system to reach equilibrium

with its environment, its influence on the thermal activation
rate is very small and will be neglected in the following.
However, this will not be so anymore in the quantum regime,
considered next, because dissipation causes decoherence.
The expression for the critical velocity that stems from the

Arrhenius rate, Eq. (46), is derived as follows. In experiments
such as those shown in Fig. 10, the velocity varies periodically
at the resonance frequency as vp cosðωtÞ, vp being the peak
velocity of the potential flow. The probability that a phase slip
takes place during the half cycle ωti ¼ −π=2, ωtf ¼ π=2 is
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FIG. 12 (color online). Critical velocity, normalized to the zero-
temperature linear extrapolation value v0, vs T, in kelvin: (⋄)
Avenel, Ihas, and Varoquaux (1993), for ultrapure 4He; (▵)
Zimmermann, Lindensmith, and Flaten (1998). The plain curves
are computed from the half-ring model (see Sec. V.E) for
a0 ¼ 2.2, 3.2, 4.5, and 6.0 Å and are normalized to match the
experimental value at 0.5 K. The inset shows the influence of 3He
impurities on vc: (∘) 3 ppb 3He in 4He; (▵) 45 ppb, from
Varoquaux et al. (1993). Adapted from Varoquaux et al., 2001.
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FIG. 13 (color online). Statistical width of the critical velocity
transition, normalized to the linear extrapolation limit at
T ¼ 0, v0, in terms of temperature: (⋄) Avenel, Ihas, and
Varoquaux (1993); (▵) Zimmermann, Lindensmith, and Flaten
(1998); (×) Steinhauer et al. (1995). The plain curves are
computed as in Fig. 12 for four values for a0. Adapted from
Varoquaux et al., 2001.

61This section is based on the work of Varoquaux et al. (2001),
Varoquaux and Avenel (2003), and Varoquaux (2006).
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p ¼ 1 − exp

�
−
Z

tf

ti

ΓK(P; T; vp cosðωt0Þ)
�
dt0

¼ 1 − exp

�
−

ω0

2πω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2πkBT

vp∂Ea=∂vjt¼0

s
exp

�
−

Ea

kBT

��
: ð47Þ

Equation (47) results from an asymptotic evaluation of the
integral at the saddle point t ¼ 0.
The critical velocity vc is defined as the velocity for which

p ¼ 1=2. This definition is independent of the experimental
setup, except for the occurrence in Eq. (47) of the natural
frequency of the hydromechanical resonator ω. The implicit
relation between vc and Ea then reads

ω0

2πω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2πkBT

vc∂Ea=∂vjvc

s
exp

�
−
EaðP; T; vcÞ

kBT

�
¼ ln 2: ð48Þ

In Eq. (48), the attempt frequency is normalized by the
resonator drive frequency: the Brownian particle attempts to
escape from the potential well at rate ω0=2π but an escape
event is likely only in the time window in a given half cycle of
the resonance during which the energy barrier stays close to its
minimum value EaðvcÞ. This time interval is inversely propor-
tional to ω, which explains why an instrumental parameter
gets its way into Eqs. (47) and (48).
The velocity at which each individual critical event takes

place is a stochastic quantity. Its statistical spread can be
characterized by the “width” of the probability distribution
defined (Zimmermann, Avenel, and Varoquaux, 1990; Avenel,
Ihas, and Varoquaux, 1993) as the inverse of the slope of the
distribution at vc, ð∂p=∂vjvcÞ−1. This critical width is found to
be expressed by

Δvc ¼ −
2

ln 2



1

2

�
1

vc
þ ∂2Ea

∂v2
����
vc
=∂Ea

∂v
����
vc

�
þ 1

kBT
∂Ea

∂v
����
vc

�−1
:

ð49Þ

The quantities vc and Δvc are derived from p, itself obtained
by integrating the histograms of the number of nucleation
events ordered in velocity bins. The outcome of this procedure
is illustrated in Fig. 14: p shows an asymmetric-S shape
characteristic of the double exponential dependence of p on v,
Eq. (47), a consequence of Arrhenius’s law, Eq. (46), being
plugged into a Poisson probability distribution. The observa-
tion of this asymmetric-S probability distribution constitutes
an additional experimental clue for the existence of a
nucleation process. The quantities vc and Δvc are easily
extracted from the probability curves pðvÞ, but the inverse
path from vc and Δvc back to EaðvÞ and ω0 by numerical
integration of the differential equation (48) leads to inaccurate
results.
In view of these difficulties Varoquaux and Avenel (2003)

improved the data analysis by obtaining the escape rate ΓðvÞ
directly from the phase-slip data. This rate is the ratio in any
velocity bin of the number of slips that have occurred at
that velocity to the total time spent by the system at that given
velocity. The outcome of this procedure is illustrated in

Fig. 15. The slope of lnΓðvÞ directly yields ∂Ea=∂vjvc ; the
value of lnΓ at vc gives a combination of lnω0 and EaðvcÞ.
The need to solve Eq. (48) has been alleviated but to cleanly

disentangle these two quantities and solve this inverse
problem is still error prone. At this point experiment itself
offers help as will shortly be shown.

A. Vortex nucleation: Thermal versus quantum

Below ∼0.15 K, the phase-slip critical velocity vc suddenly
ceases to vary with T, as seen in Fig. 12 for ultrapure 4He, and
vcðTÞ remains flat down to the lowest temperatures
(∼12 mK). The effect of 3He impurities, shown in the inset,
could mimic the appearance of such a plateau but is ruled out
because of the extreme purity of the 4He sample, which
contains less than 1 part in 109 of 3He impurities. The
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FIG. 14 (color online). Probability p vs phase-slip velocity in
winding number. The plain curve is a nonlinear least squares fit to
the analytic form Eq. (47), which contains two adjustable
parameters vc and Δvc. The critical velocity resulting from this
distribution of the measured values is defined as the fit value for
p ¼ 1=2. The critical velocity distribution width is given by the
slope at p ¼ 1=2. From Varoquaux and Avenel, 2003.
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FIG. 15 (color online). Nucleation rate Γ expressed in s−1 on a
semilogarithmic scale vs slip velocity in winding number in
ultrapure 4He at 17.70 mK and saturated vapor pressure. The line
is a linear fit to the data. From Varoquaux and Avenel, 2003.
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crossover between these two regimes is very sharp. At the
same crossover temperature Tq, Δvc also levels off sharply. It
is believed on experimental grounds that this saturation is
intrinsic and is not due to stray heating or parasitic mechanical
vibrations (Avenel, Ihas, and Varoquaux, 1993).
If the nucleation barrier were undergoing an abrupt change

at Tq, for instance because of a bifurcation toward a vortex
instability of a different nature (Josserand and Pomeau, 1995),
in all likelihood Δvc would jump to a different value
characteristic of the new process (presumably small since
vc reaches a plateau). Such a jump is not observed in Fig. 13.
Furthermore, vc levels off below Tq, which would imply
through Eq. (48) that Ea becomes a very steep function of v,
but Δvc also levels off, which, through Eq. (49), would imply
the contrary. This discussion leads one to investigate the
possibility that, below Tq, thermally assisted escape over the
barrier gives way to quantum tunneling under the barrier (Ihas
et al., 1992). This switch from thermal to quantum does
induce plateaus below Tq for both vc and Δvc.
Independently of these phase-slippage studies, the group of

Peter McClintock at Lancaster had also reached the conclu-
sion from their ion propagation experiments of the existence
of a crossover around 300 mK from a thermal to a quantum
regime for the nucleation of vortices (Hendry et al., 1988), as
predicted by Muirhead, Vinen, and Donnelly (1984). There
certainly are significant differences between the ion limiting
drift velocity and aperture critical flow, in particular, the latter
is nearly 1 order of magnitude smaller, but the qualitative
similarities are strikingly telling. The two completely different
types of experiments indicate that vortices would appear as a
result of a nucleation process on a nanometric scale, both in a
thermal regime above Tq and in a quantum one below.

B. The macroscopic quantum-tunneling rate

Taking this hint at face value, zero-point fluctuations are
now assumed to overtake thermal fluctuations below Tq: the
potential barrier is not surmounted with the assistance of a
large thermal fluctuation, it is tunneled under quantum
mechanically; the quantum-tunneling event is “assisted” by
the zero-point fluctuations (Martinis and Grabert, 1988) in the
same manner as the Arrhenius process is assisted by thermal
fluctuations. What is remarkable here, and not so easy to
admit at first, is that such a tunneling process affects a
macroscopic number of atoms, those necessary to form a
vortex of about 50 Å in length, as turns out to be the case.
These “macroscopic quantum-tunneling” (MQT) processes

have been the object of numerous experimental and theoretical
studies, mainly in superconducting Josephson devices
(Caldeira and Leggett, 1983). The case for vortices in helium
can be worked out in a similar manner.
The quantum-tunneling rate of escape of a particle out of a

potential well VðqÞ is a textbook problem.62 The rate is
proportional to expð−S=ℏÞ, S being, in the Wentzel-Kramers-
Brillouin (WKB) approximation, the action of the escaping
particle along the saddle-point trajectory at the top of the
potential barrier, the so-called “bounce” (Coleman, 1977). For

a particle of mass m and energy E escaping from a one-
dimensional barrier VðqÞ, this action reads

S ¼ 2

Z
q2

q1

dq
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m½VðqÞ − E�

p
: ð50Þ

The determination of the bounce yields the generalized
coordinates q1 and q2 of the points at which the particle
enters and leaves the barrier. A discussion of the quantum
tunneling of vortices in terms of Eq. (50) thus requires a
Lagrangian formulation of vortex dynamics. Such a formu-
lation has been carried out, in particular, by Sonin (1995)63

and Fischer (2000). However, analytic results can be obtained
only at the cost of approximations that yield a less than fair
comparison with experiments as discussed by Varoquaux
et al. (2001).
A simplified and more productive approach can be bor-

rowed from the literature for Josephson devices. Extending the
work of Caldeira and Leggett (1983) and Larkin, Likharev,
and Ovchinnikov (1984) to vortices in helium, Varoquaux
(2006) used for VðqÞ a simple analytic form reduced to a sum
of two terms, respectively, parabolic and cubic in q:

VðqÞ ¼ V0 þ
1

2
mω2

0q
2

�
1 −

2q
3qb

�
; ð51Þ

where ω0 is the angular frequency of the lowest mode of the
trapped particle (that will be found comparable to the attempt
frequency) and qb is the generalized coordinate of the barrier
top location. The barrier height Eb is expressed in terms of
these two parameters by mω2

0q
2
b=6.

Equation (51) expresses the vanishing potential barrier
height when the applied velocity reaches the limiting velocity
vc0 at which the system “runs away,” the so-called “lability”
point.64 At this point where the system becomes labile, the
critical velocity is reached even in the absence of thermal or
quantum fluctuations. Such a hydrodynamic instability thresh-
old at which vortices appear spontaneously has been shown to
occur in numerical simulations of flows past an obstacle using
the Gross-Pitaevskii equation by Frisch, Pomeau, and Rica
(1992) and others.65

The zero-temperature WKB tunneling rate for the phenom-
enological cubic-plus-parabolic potential Eb, Eq. (51), is
found to be (Caldeira and Leggett, 1983)

Γ0 ¼
ω0

2π

�
120π

S0
ℏ

�
1=2

exp

�
−
S0
ℏ

�
; ð52Þ

with the action S0 being equal to 36Eb=5ω0.
From this result, it can be anticipated that the crossover

between the quantum and the thermal regime lies around a
temperature close to that for which the exponents in Eqs. (46)
and (52) are equal, namely, T ¼ 5ω0=36kB—assuming that

62See Landau and Lifshitz (1958), Sec. 50.

63See also Sonin (2015), Sec. 12.2.
64For an illustration, see Fig. 2 in Anderson (1966b) for the “tilted

washboard” model.
65See Nore, Huepe, and Brachet (2000), Berloff and Roberts

(2001), and Rica (2001).
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the activation energy Ea in Eq. (46) reduces to the simple
cubic-plus-parabolic form Eb. A more precise study of the
mathematical properties of the quantum channel for escape
leads to the following relation (Mel’nikov, 1991):

ℏω0 ¼ 2πkBTq: ð53Þ

Thus, from the experimental knowledge of the temperature of
the crossover from thermal to quantal, ω0 is fixed to pinpoint
accuracy by Eq. (53). Its value agrees with that (less precisely
determined) obtained from the analysis of the Arrhenius
regime outlined previously: some degree of self-consistency
has been achieved. The values of the barrier height Eb at each
given velocity then follow easily, using the full expressions for
the rate in terms of Eb, ω0, and, also, for the damping
parameter α as discussed next.

C. Friction in MQT

Damping turns out to matter significantly for quantum
tunneling of semimacroscopic objects, contrary to the thermal
regime. The relevance and applicability of the concept of
quantum tunneling to macroscopic quantities such as the
electric current through a Josephson junction or the flow of
superfluid through a microaperture, although still sometimes
questioned, have been checked in detail for the electrody-
namic Josephson effect (Martinis, Devoret, and Clarke, 1987).
One of the conceptual problems is that, when a macroscopic
quantum system is coupled to an environment that acts as a
thermal bath, the coupling gives rise to a source of classical
fluctuations and friction. The quantum process suffers
decoherence and is profoundly affected.
This issue was tackled by Caldeira and Leggett (1983), and

a number of others.66 For weak frequency-independent damp-
ing (α ≪ 1) and the cubic-plus-parabolic potential, the tun-
neling rate takes the form67

Γqt ¼
ω0

2π

�
864π

Eb

ℏω0

�
1=2

exp

�
−
36
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Eb

ℏω0



1þ 45ζð3Þ

π3
α

�
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π
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�
α2; α

T4

T4
q

��
: ð54Þ

According to Eq. (54), damping depresses the MQT escape
rate at T ¼ 0 (α being a positive quantity) and introduces a
temperature dependence that increases the rate as T increases.
These effects are large, even for weak damping, because they
enter the exponent of the exponential factor in Eq. (54).
Equation (53) between Tq and ω0 is nearly unaffected by
damping: ω0 is simply changed into ω0½ð1þ α2Þ1=2 − α�
according to Eq. (46), a minor modification for α ≪ 1.
Equation (54) is valid up to about Tq=2. From Tq=2 to ∼Tq,

one has to resort to numerical calculations (Grabert,
Olschowski, and Weiss, 1987). In the thermal activation
regime T ≳ Tq quantum corrections affect the Kramers escape

rate up to about 3Tq and can be evaluated analytically. These
high-temperature quantum corrections depend only weakly on
friction. A complete solution of the problem of the influence
of friction, weak, moderate, or strong, has first been worked
out in the classical regime (T ≫ Tq) by Grabert (1988) and
extended to the temperature range T ≳ Tq by Rips and Pollak
(1990) who showed that the rate for arbitrary damping can be
factorized in three terms,

Γ ¼ fqΥΓK; ð55Þ

each term having a well-defined physical meaning: ΓK is the
classical Kramers rate, fq is the quantum correction factor,
and Υ is the depopulation factor. The high-temperature limit
of fq is

fq ¼ exp

�
ℏ2

24

ðω2
0 þ ω2

bÞ
ðkBTÞ2

þOðα=T3; 1=T4Þ
�
; ð56Þ

in which ω0 and ωb are the confining potential parameters
depicted in Fig. 16. Analytic results for fq are known to
slightly below Tq (Grabert, Olschowski, and Weiss, 1987;
Hänggi, Talkner, and Borkovec, 1990).
The depopulation factor Υ arises from the depletion of the

occupancy of the energy levels inside the potential well in
the course of the escape process. This depletion occurs when
the intermediate levels, if they exist, are not replenished fast
enough by the thermal fluctuations. For the nucleation of
vortices, friction turns out to always be both sufficient and not
too large so that depopulation corrections remain small
and Υ ∼ 1.
The escape rate can be calculated over the full temperature

range by piecing together Eqs. (46), (54), (55), and (56). The
results for three values of the damping parameter α are shown
in Fig. 17. A hand-sketched line pictures the escape rate for α
varying from zero at T ¼ 0 to 0.5 above Tq: it is seen to
actually decrease when the temperature increases from

Eb

FIG. 16. Potential well trapping a particle in one dimension. The
particle can escape to the continuum of states to the right. The
lowest mode at the bottom of the well has angular frequency ω0;
ωb would be the corresponding quantity if the potential was
inverted bottom over top. For the simple case of Eq. (51),
ω0 ¼ ωb. There can exist intermediate energy levels within the
well, which are populated according to the Boltzmann factor.
Particle escape can take place by quantum tunneling “under” the
barrier or by thermal activation “over” the barrier. The inter-
mediate energy levels can be used as ladder rungs by the particle
attempting to escape. These processes are embedded in Eq. (55).

66See, for instance, Mel’nikov (1991) and also Varoquaux and
Avenel (2003) for more references and details on this section.

67As explained by Caldeira and Leggett (1983), Waxman and
Leggett (1985), and Grabert, Olschowski, and Weiss (1987).
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absolute zero. This unique situation is found in the nucleation
of vortices in 4He as now described.

D. Experimental energy barrier and damping coefficient

Knowledge of the rate Γ makes it possible to extract from
the measured nucleation rate and crossover temperature the
values of the energy barrier in terms of vc. The value of ω0

given by Eq. (53) (ω0=2π ¼ 2 × 1010 Hz for Tq ¼ 0.147 K)
is consistent with the attempt frequency appropriate to the
thermally activated regime (Varoquaux, Meisel, and Avenel,
1986) and that found directly from the fits to the probability p
as shown in Fig. 14. This agreement was mentioned
previously.
This value of ω0 is comparable to the highest Kelvin mode

eigenfrequency that a vortex filament in 4He can sustain. The
Kelvin modes are helical waves with a dispersion relation
expressed for a straight isolated vortex by

ω� ¼ κ4
πa20



1�

�
1þ ka0



K0ðka0Þ
K1ðka0Þ

��
1=2

�
; ð57Þ

where K0 and K1 are the modified Bessel functions of zeroth
and first orders.68 In the short wavelength limit, k−1 → 0, the
high frequency mode reduces to

ωþ ¼ κ4
πa20

: ð58Þ

Equation (58) sets the shortest time scale on which vortices
can be expected to respond.
By analogy with the 2D motion of point electric charges

subjected to a rf magnetic field (Muirhead, Vinen, and
Donnelly, 1985), this frequency is sometimes called the
“cyclotron” frequency. This frequency is that of the cycloidal

motion taken by a long hollow cylinder impulsively pulled
sideways in an inviscid fluid (Donnelly, 1991). The cylinder
stands for the vortex core, assumed to be hollow and with
radius a0. The displaced mass per unit length of such a
cylinder is ρπa20. For high frequency motions, the vortex mass
is modified as discussed in Sec. II.B.3, and Eq. (58) is
renormalized to ωþ ¼ κ4=πa20 lnðrm=a0Þ, rm being defined
below Eq. (25). With a0 ¼ 2.5 Å and rm=a0 ∼ 10,
ωþ=2π ¼ 3.5 × 1010 Hz, a value comparable to the attempt
frequency given by Eq. (53). The fact that the attempt
frequency be linked to the highest frequency that the nucleat-
ing vortex can sustain makes good physical sense.
With the known value of ω0, the energy barrier Eb can be

extracted from the measured rate with the help of Eqs. (54)
and (55). These values of Eb for the experiments on ultrapure
4He analyzed by Varoquaux and Avenel (2003) are shown in
Fig. 18. The high T and low T analyses are seen to yield
consistent results in the region where they overlap.
The quantitative analysis can be carried out one step further

using the variation of the barrier energy Eb in terms of v to
construct a Arrhenius plot—the logarithm of the escape rate Γ
in terms of the inverse temperature for a fixed potential well—
from the experimental data and directly comparing the out-
come to the results from theory. Arrhenius plots are drawn at
constant Eb and varying temperature but the experimental
results are obtained at velocities that vary with temperature,
hence at varying Eb. The correction can be computed from the
experimentally determined Eb given in Fig. 18. The final
outcome for the nucleation rate data of Varoquaux and Avenel
(2003) in ultrapure 4He is plotted in Fig. 19.
As can be noted in Fig. 19, the raw experimental, velocity-

dependent rates exhibit little variation over the range of
parameters: escape rates are observed only in a certain
window determined by the measuring technique. At low
temperatures T < Tq, the critical velocity is close to its
zero-temperature limit vq and the corrections to Γ are small.
As T increases above Tq, vc decreases and Γ has to be
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FIG. 17. Logarithm of the escape rate normalized to the attempt
frequency in terms of inverse temperature, also normalized to ω0

for various values of the damping parameter α (Grabert,
Olschowski, and Weiss, 1987). The dotted line is a hand sketch
of the situation where α increases with temperature, starting from
zero at T ¼ 0 (see Sec. V.C). From Varoquaux and Avenel, 2003.
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FIG. 18 (color online). The barrier energy Eb in kelvin vs v the
mean velocity in the aperture expressed in phase winding
numbers and obtained from the nucleation rate data of Varoquaux
and Avenel (2003): (▪) low-temperature data transformed using
the numerical tables of Grabert, Olschowski, and Weiss (1987);
(⋄) high-temperature data. From Varoquaux and Avenel, 2003.

68See Fetter (1965), Glaberson and Donnelly (1986), Sonin
(1987), and Donnelly (1991).
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determined by piecewise integration of d lnΓ=dv. The high-
temperature extrapolation for Γ obtained in such a manner
displays the usual 1=T dependence.
In the intermediate-temperature range, the corrected Γ

shows, as can be seen in the inset of Fig. 19, a small but
real drop below its zero-temperature limit as the temperature is
raised. This drop reveals the influence of damping on the
escape rate illustrated in Fig. 17. A damping coefficient α that
increases from 0 at T ¼ 0 to ∼0.1 around Tq and more slowly
above accounts for the observed drop (Varoquaux and Avenel,
2003). This T-dependent dissipation also makes the crossover
between the thermal and quantum regimes even sharper than
for α ¼ 0 and closer to observations. The nucleation of
vortices in 4He thus offers a rare observation of the effect
of damping on MQT.

E. The vortex half-ring model

The case has been put so far for the nucleation of vortices,
thermal or quantal. The nucleation barrier Eb is of the order of
a few kelvins (see Fig. 18) and the attempt frequency
∼2 × 1010 Hz, close to that of the highest Kelvin wave mode.
A simple model accounts for these features. This model, the

nucleation of vortex half rings at a prominent asperity on the
walls, finds its roots in the work of Langer and Fisher (1967),
Langer and Reppy (1970), and Volovik (1972). It was further
developed and put on the firm experimental findings described
above by Avenel, Ihas, and Varoquaux (1993).
The model premises are the following. Consider, as done by

Langer and Reppy (1970), the homogeneous nucleation of a
vortex ring in a homogeneous flow vs extending over large
distances. When the ring has grown to reach radius R in a

plane perpendicular to the flow, its energy in the laboratory
frame, where the observer is at rest and sees the superfluid
moving at velocity vs, is expressed by

Ev ¼ ER − PRvs: ð59Þ

The rest energyER and impulse PR of the vortex ring are given
by Eqs. (24) and (32). The minus sign on the right-hand side
of Eq. (59) arises because the vortex opposes the flow, that is,
its impulse PR points straight against vs: this configuration
minimizes Ev.
The rest energy ER increases with vortex size as R lnR and

the impulse PR as R2: the impulse term becomes dominant at
large radii and causes Ev to become negative. The variation of
Ev in terms of R has the shape of a confining well potential,
which becomes shallower and shallower with increasing vs, as
depicted in Fig. 20. The barrier height can easily be computed
numerically and plugged into the expression for vc, Eq. (48).
An analytic approximation for vc involving the neglect of
logarithmic terms and valid for large vortices (R ≫ a0) has
been given by Langer and Reppy (1970).
This critical process yields a mist of vortices in the bulk of

the superfluid. This sort of vorticity condensation does not
take place for two reasons. First, the velocity of potential
flows, which follows from the Laplace equation, reaches its
maximum value at the boundaries, not in the bulk. Second, the
nucleation of a vortex half ring at the boundary itself involves,
for the same radius hence the same self-induced velocity, one-
half of the energy given by Eq. (59); for that reason alone,
half-ring nucleation at walls is always much more probable at
the same velocity vs than full-ring nucleation in the bulk.
Halving the full-ring energy for the half ring holds for

classical hydrodynamics, the other half being taken care of by
the image in the plane boundary. For a superfluid vortex, the
actual energy of a half ring is smaller than in the classical ideal
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FIG. 19 (color online). Arrhenius plot lnΓðvÞ vs 1=T, Γ being
expressed in s−1 and T in kelvin, as measured at varying T and vc
for two ultrapure 4He samples (⋄) and (▵); (*) and (▴) after
correction for the change of the velocity with T. The solid and the
dotted curves are calculated from the experimental barrier energy
Eb represented in Fig. 18. In the inset, lnΓðvqÞ (▪) has been
obtained with smoothed values of vc. The curves represent the
calculated values of lnΓðvqÞ with α ¼ 0 (dashed) or varying with
T (solid). The latter gives a better representation of the data and
illustrates the influence of damping depicted by the dotted line in
Fig. 17. From Varoquaux and Avenel, 2003.
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FIG. 20. Energy barrier Ev normalized by ρsκ24a0 and expressed
in kelvin vs the vortex radius R=a0 for the vortex half-ring model.
Illustration of various potential forms given by Eq. (59) at various
superfluid flow velocities taken from the data in Fig. 12 at, from
top down, T → Tλ, 1 K, 0.5 K, and at the quantum crossover Tq.
The lowest curve illustrates the situation in which the potential
barrier vanishes and the trapped particle runs away, the so-called
lability point. Adapted from Avenel, Ihas, and Varoquaux, 1993.
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fluid because the superfluid density is depleted at the solid
wall and the core radius increases.
The half-ring model for the nucleation of vortices has been

proposed for ion critical velocity by Muirhead, Vinen, and
Donnelly (1984) and for aperture flows by Burkhart et al.
(1994).69 A variant, based on a different accounting of the
vortex core energy, has been studied by Zimmermann,
Lindensmith, and Flaten (1998). Other mechanisms have
been discussed (Josserand and Pomeau, 1995; Josserand,
Pomeau, and Rica, 1995; Andreev and Melnikovsky, 2004)
for which it is unclear that the end product of the nucleation
process is actually a vortex.
The barrier height for the vortex half-ring nucleation can

easily be computed and plugged into the expressions for vc
and Δvc, Eqs. (48) and (49). Critical velocities vc and
statistical widths Δvc computed in such a manner are shown
as a function of temperature by the solid lines in Figs. 12 and
13 for several values of the vortex core parameter a0. A value
of 4.5 Å gives near-quantitative agreement with the exper-
imental observations over the entire temperature range. This
value exceeds that in the bulk (a0 ≃ 2.5 Å). This is thought to
reflect the proximity of the wall as discussed by Varoquaux
et al. (2001). With this value, the nucleating half ring has a
radius of approximately 15 Å at the top of the barrier and a
self-velocity of vR ¼ 13.5 m=s from Eq. (33); this value
compares well with the values shown by open circles
in Fig. 11.
Once nucleated, the vortex half ring floats away, carried out

by the superfluid stream at the local superfluid velocity and by
its own velocity vR ¼ ∂ER=∂PR. It can be noted that, at the
top of the barrier, ∂Ev=∂R ¼ 0: the vortex self-velocity vR
exactly balances the applied vs; the nucleating vortex is at a
near standstill.
If the flow were uniform, with parallel streamlines, nothing

much would happen. Downstream from the aperture, however,
the flow is divergent, as pictured in Fig. 21. The vortex half
ring tends to follow the local streamlines and grows under the
combined action of the potential flow and its own self-
velocity: it then gains energy at the expense of the potential
flow as explained in Sec. II.C. In such a way, it expands from
nanometric to micrometric sizes and above, and wanders
away. Interaction with the normal fluid, encounters with other
vortices, and friction on the solid boundaries cause a loss of
vortex energy that eventually leads to its disappearance. The
vortex in its motion away from the microaperture takes a given
finite lump of energy to remote places of the cell and never
returns.
This scenario for a phase slip produces a change of the

phase difference between the two sides of the microaperture of
exactly 2π because the vortex ends up crossing all the
streamlines, as pictured in Fig. 21. This crossing causes the
velocity circulation to change by exactly one quantum κ4 on
all the superfluid paths extending from one side of the aperture
to the other. Such a dissipative event gives the signature of
single phase slips that are seen in Fig. 10. Extensive numerical

simulations by Schwarz (1993a, 1993b) and Flaten et al.
(2006) fully confirm the above scenario for phase slips.
The effect of 3He impurities on the phase-slip critical

velocity at low temperature is striking, as seen in the inset
of Fig. 12. It is due to the condensation of these impurities on
the vortex cores, which changes their line energy and the
potential barrier for nucleation. This impurity dependence,
studied by Varoquaux et al. (1993), was used as a local probe
of the superfluid velocity at which vortices nucleate. This
velocity was found to be 22 m=s, in reasonable agree-
ment with the value derived from the vortex half-ring
model.
In all, the model parameters give a physically consistent

picture, showing that specific finer details are probably not
very relevant and that the model simplifications are reasonably
well founded. It nonetheless remains that the nature and
geometry of a typical nucleation site are wholly unspecified
and that the enhancement factor between the mean aperture
velocity and the velocity at the nucleation site is not under
control, as shown by Shifflett and Hess (1995).

VI. VORTEX PINNING, MILLS, AND FLOW COLLAPSE

Single phase slips are observed in experimental situations
that may be loosely characterized as “clean,” broadly speaking
for uncontaminated apertures of relatively small sizes (a few
micrometers at the most), with low background of mechanical
and acoustical interferences, and with probing techniques that
do not manhandle the superfluid, namely, with low frequency
hydromechanical resonators.
When these conditions are not met, flow dissipation occurs

in a more erratic manner in large bursts, multiple phase slips or
“collapses” of the superflow. Such collapses of the superflow
through an orifice were first observed by Sabo and
Zimmermann70 and Hess (1977).
Multiple phase slips and collapses constitute an apparent

disruption of the vortex nucleation mechanism described in
Sec. V. Their properties have been studied by Avenel et al.

FIG. 21. Schematic views in 2D (left) and 3D (right) of the
vortex half-ring trajectory over a pointlike pinhole punched in an
infinite horizontal plane. The dashed lines on the 2D plot are the
potential flow streamlines that emerge from the pinhole. The 3D
view shows the vortex half ring being first pushed by the potential
flow to the right and then flying back over the pinhole to finally
drift away to the upper left. Adapted from Varoquaux, 2006.

69See Zimmermann (1994), Burkhart (1995), and Varoquaux and
Avenel (1996a). 70As quoted by Hess (1977).
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(1995) and are mentioned later, together with possible
mechanisms for their formation. It is likely that these events
provide a bridge between the clean single phase-slip case and
the usual situation of the Feynman-type critical velocities that
are temperature independent below 1 K and dependent on the
channel size. Preexisting vorticity is widely suspected to come
into play in these “extrinsic” critical velocities.

A. Pinned vorticity

Awschalom and Schwarz (1984) directly showed the
existence of remanent vorticity in 4He, which had long been
assumed, and gave an estimate of its background level. They
studied the propagation of ions in the presence of vortex lines.
Ions get trapped in the vortex cores and completely change
course, revealing the presence of these vortex lines. These
vortices, presumably nucleated at the λ transition when the
critical velocity is low and critical fluctuations large, remain
stuck in various places of the superfluid sample container. This
trapped vorticity, according to Adams, Cieplak, and Glaberson
(1985), either is quite loosely bound to the substrate and
disappears rapidly or is strongly pinned and dislodged only by
strong perturbations.
To achieve a stable configuration, a pinned vortex has to

take on a shape such that its local radius of curvature results in
a self-velocity that exactly opposes at each of its points the
local value of the superflow. This dynamic equilibrium is what
is meant here by pinning. A vortex pinning exists in bulk 4He
as discussed here,71 in films,72 in 3He,73 in neutron stars, etc.74

To account for laboratory observations and with the out-
come of extensive numerical simulations of vortex dynamics,
Schwarz proposed the following formula for the velocity at
which such strongly pinned vortices unpin (Schwarz, 1981,
1985),75:

vu ≲ κ4
2πD

ln

�
b
a0

�
; ð60Þ

with D being the size of the pinned vortex and b being a
characteristic size of the pinning asperity. Equation (60)
bears a strong resemblance to that for the Feynman critical
velocity, Eq. (45).
As a rule of thumb, the pinning energy of the vortex line on

such an asperity with radius b is approximately equal to b
times the line tension of the vortex given by Eq. (26). Long
vortices unpin at very low velocities unless they are perched
on a tall pedestal, but very small vortices pinned on micro-
scopic defects can survive a wide range of superflow veloc-
ities; according to Eq. (60), a straight vortex filament pinned at

both ends on 20 Å asperities 200 nm apart resists transverse
flows of velocities up to 20 cm=s.
Such pinned vorticity has long been thought to play a role in

critical velocities. The long-standing suggestion by Glaberson
and Donnelly (1966) of vortex mills had its time of fame
(Amar et al., 1992). In their views, imposing a flow on a
vortex pinned between the opposite lips of an aperture would
induce deformations such that the vortex would twist on itself,
self-reconnect, and mill out fresh vortex loops. Upon scrutiny,
however, vortex mills are not so easy to set up.
The first thing to realize is that such a mill must involve a

pinned vortex of submicrometric size so that it is not washed
away by any flow velocity above a few cm=s. Pinned vorticity
in large channels cannot withstand the Feynman-type critical
velocities shown in Fig. 11.
Less obvious, vortices are not prone to twist on themselves

and foster loops. As shown by numerical simulations of 3D
flows involving few vortices only,76 vortex loops and fila-
ments are found to be stable against large deformations: it
takes the complex flow fields associated with fully developed
vortex tangles to produce small rings (Svistunov, 1995;
Tsubota, Araki, and Nemirovskii, 2000).77 And it takes some
quite special vortex pinning geometry to set up a mill that
actually works.
Schwarz (1990) demonstrated the existence of such a mill

by numerical simulations. Imagine a vortex filament pinned at
one end in a region close to the aperture mouth or the channel
entrance where it bends sharply to withstand the local super-
flow. This end of the vortex is at a near-stagnation point. Its
other end is being carried away by the flow along the
streamlines; it moves freely with its end sliding perpendicular
to the wall. The filament develops a helical instability as
depicted in Fig. 22, a sort of driven Kelvin wave, and
reconnects sporadically to the wall when the amplitude of
the helix grows large enough. The freed bit immediately
stands against the flow and forms a vortex half ring: such a
helical vortex mill, which has to be of submicrometric size to
withstand the near-by flow, churns out fresh vortices.
The occurrence of multiple slips such as those shown in

Fig. 23 is probably caused by such a form of vortex mill on a
microscopic size. Before coming to this topic, a description of
multiple slips in greater detail must be provided.

B. The two types of large slips

Examples of multiple slips are shown on the peak amplitude
charts in Figs. 23 and 24 for two different runs in the same
experimental cell. They display rather different patterns. In
Fig. 23, multiples slips are fairly frequent and their winding
number multiplicity remains moderate. As the probability for
a one-slip event per half cycle is not large, that for a double
slip is small, and it becomes negligible for higher multiples.
A separate mechanism for their formation must be found. The
event shown in Fig. 24 is quite spectacular as it leads to near
extinction of the resonance.

71See Varoquaux et al. (1998), Donev, Hough, and Zieve (2001),
and Neumann and Zieve (2014) for more references.

72See Ellis and Li (1993).
73See, among others, Hakonen et al. (1987) and Zieve et al.

(1992), or Krusius et al. (1993).
74See Packard (1972), Alpar, Nandkumar, and Pines (1985), and

Langlois (2000).
75See Tsubota and Maekawa (1994) and Neumann and Zieve

(2014).

76K.W. Schwarz, private communication to the author (1989).
77See Tsubota and Kobayashi (2009).
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In Figs. 23 and 24 aperture velocities are expressed by the
number of turns δφ=2π by which the quantum-mechanical
phase winds across the aperture. Phase winding numbers are
related to mean flow velocities in cm=s by multiplication by
lh=κ4, the “hydraulic” length lh characterizing the extension
of the aperture along the flow. For a phase slip by 2π, the phase
winding number changes by one unit and the trapped

circulation in the resonator loop by one quantum. The
hydraulic length is defined by lumping the (classical) kinetic
energy of the fluid moving with velocity v inside the aperture
of cross section sh and in its vicinity according to

lh ¼ sh

Z
V
vðrÞ2d3r=

�Z
S
vðrÞ · d2r

�
2

: ð61Þ

The actual flow velocity averaged over the cross section of the
microaperture is proportional to δφ, the multiplying factor
being ℏ=m4lh. The hydraulic length lh of the microaperture is
of the order of 1 μm in the experiments shown in Fig. 10.
Some degree of understanding of the formation of multiple

slips can be gained by plotting the mean value of the phase-
slip multiplicity, expressed in number of quanta, against the
flow velocity at which the slips take place (Varoquaux et al.,
1995). This flow velocity is close to the critical velocity for
single phase slips, i.e., the vortex nucleation velocity; it varies
with temperature, pressure, and resonator drive level. A plot
summarizing these variations is shown in Fig. 25 for hnþi, i.e.,
in the flow direction conventionally chosen as the (þ)
direction. Slips in the opposite (−) direction behave qualita-
tively in the same manner but the phenomenon displays a clear
quantitative asymmetry.
As can be seen in Fig. 25, the mean slip multiplicity

decreases, as does the nucleation velocity, on either side of the
quantum plateau—a 3He impurity effect on the low-T side—a
thermal effect on the high-T side. At 16 bars, hnþi increases
from ≈1 at 12 mK where the velocity is 43.2 in winding
number to 15–20 on the plateau of vwith a winding number of
48; hnþi drops back to 1 at 225 mK and the velocity to ∼46.2.
The same trend is observed at 24 bars, with a lower velocity on
the plateau of 46.4 and a higher mean multiplicity of ∼23.
Rather oddly, the slip multiplicity hnþi increases with
pressure while the mean velocity at which these multiples
occurs decreases. One would have expected that more slips
would be ushered into faster streams. The opposite may show

FIG. 22. Operation of a helical vortex mill: (a) Spiral-helix
configuration of a streamwise vortex filament pinned at the center
of the bottom left section of the channel. The helical vortex self-
velocity opposes the superflow while the vortex filament grows in
size and spirals on itself. (b) End-on view of subsequent
reconnections. The vortex is pinned near the upper left of the
channel cut view. The outwardly growing spiral sporadically
reconnects to the wall and releases a new line segment, which
then moves to the lower right. These numerical simulations are
carried out in the presence of a sizable mutual friction with the
normal component in order to stabilize the numerical algorithms,
which is why the generated half rings rapidly decrease in size.
From Schwarz, 1990.
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FIG. 23. Absolute peak amplitude Ap normalized to the amplitude jump of a single slip ΔA1 during successive half cycles of the
resonance plotted as a function of half-cycle index (time runs from left to right) at 100.7 mK (top) and 201.5 mK (bottom) in nominal
purity helium at SVP. The expanded traces at the very top and bottom of the graph show the slip sizes in signed winding numbers
(according to flow direction, in and out of the resonator chamber). The numerous multiple slips seen on these charts occur at or close to
the critical velocity for single slips. From Varoquaux and Avenel, 2003.
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that the phenomenon under study is not purely ruled by
hydrodynamics in the fluid bulk.
Another important feature of the data shown in Fig. 25

concerns the dependence of the velocity threshold for the
appearance of multiple slips on hydrostatic pressure. The
P dependence of the upturn of hnþi in terms of v exactly
tracks that of vc, the critical velocity for single phase-slip
nucleation: multiple slips occur when single slips occur.
Would multiple slips appear because of an alteration, or as
a consequence, of single slip nucleation?
The very large drops in the resonance amplitude of the

resonator such as the event shown in Fig. 24 and in the inset
sometimes result in a complete collapse of the resonance.
Under the conditions of this particular experiment (Avenel
et al., 1995), these events were rare (1 in 104 to 105 slips). A
striking feature is that they may occur at velocities much
below the vortex nucleation threshold, down to less than one-
third of vc, the critical velocity for phase slips. These
intriguing singular collapses, first studied by Hess (1977),
differ from the multiple slips of Fig. 25. The underlying
mechanisms responsible for each are bound to be different, as
discussed later (Varoquaux et al., 2001).
The pattern of formation of multiple slips and collapses

changes on cycling the cell from room temperature and back
but remains stable during each given cooldown. It depends on
the degree of contamination of the cell, degree which cannot
easily be controlled experimentally. The detailed microscopic
configuration of the aperture wall where nucleation takes
place has a strong influence on multiple slip formation.

C. Extrinsic critical velocities

To try and clarify these matters, a series of experiments was
conducted by Hakonen, Avenel, and Varoquaux (1998) and
Varoquaux et al. (1998), in which the experimental cell was
deliberately heavily contaminated by atomic clusters of air
and of H2 in order to favor the pinning of vortices. Numerous
multiple slips and collapses of the singular type occurred. The
peak amplitude charts of the resonator became very difficult to
interpret except in a few instances. In one of these, two
apparent critical velocities for single phase slips were
observed. The higher critical velocity corresponded to the
one observed in the absence of contamination. The lower
critical velocity was thought to reveal the influence of a vortex
pinned in the immediate vicinity of the prevailing nuclea-
tion site.
Following this interpretation, the pinned vortex induces a

local velocity which adds to that of the applied flow and
causes an apparent decrease in the critical velocity for phase
slips. Because of this change, the presence of the pinned
vortex can be monitored. The lifetime in the pinned state and
the unpinning velocity can be measured, yielding information
on the pinning process, reported by Hakonen, Avenel, and
Varoquaux (1998).78 This observation also brings evidence
that pinned vorticity can alter the vortex nucleation process
responsible for phase slips.
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FIG. 24 (color online). Absolute peak amplitudes at successive
half cycles of the resonator motion, normalized as in Fig. 23, vs
half-cycle index in a 4He sample containing 100 ppb of 3He
impurity, at 24.0 bars and 12.5 mK. The resonance half period is
31.8 ms. The top trace shows a succession of amplitude drops
which correspond, for its main part, to phase slips by 2π of
opposite sign, with occasional larger slips—the multiple slips of
Fig. 23. The large feature around the 1000th half cycle is a
“singular” collapse, as defined in the text. The inset shows the
details of this collapse, (•) being for positive peaks, (∘) for
negative peaks. It is preceded by a slip by −2 ð×2πÞ and followed
by a slow recovery of the peak amplitude caused by the applied
drive, punctuated by single and double slips. The time-resolved
evolution of this collapse has actually been tracked. From Avenel
et al., 1995.
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FIG. 25 (color online). Mean size of (positive) multiple slips vs
velocity in phase winding number in nominal purity 4He (100 ppb
3He): (▵) pressure sweep from 0.4 to 24 bars at 81.5 mK (for all
even values of the pressure P, and 0.4, 1, 3, 5, and 7 bars);
(⋄) temperature sweep at 16 bars; (∘) temperature sweep at
24 bars; (*) drive level sweep at 24 bars, 81.5 mK; (▪) temper-
ature sweep at 0 bar. Lines connect successive data points in the
temperature and pressure sweeps. For the temperature sweeps,
from 14 to 200 mK approximately, v first increases when the 3He
impurities evaporate from the vortex core, reaches the quantum
plateau, and then decreases, following the same pattern as shown
in the inset of Fig. 12 for vc. Adapted from Varoquaux et al.,
2001.

78This topic is also covered by Varoquaux et al. (1998, 2000,
2001) and Varoquaux (2000).

832 Eric Varoquaux: Anderson’s considerations on the flow of …

Rev. Mod. Phys., Vol. 87, No. 3, July–September 2015



With such pinned vortices hanging around, multiple slips
could form according to the following scheme (Varoquaux
et al., 2001). First, a vortex half ring is nucleated at a
prominent nucleation site. It pins shortly after nucleation
when its velocity relative to the boundary is still small and the
capture by a pinning site is easy. A micromill is thus formed,
which remains active as long as the flow is sufficient to
maintain the helical instability. As it is set up to withstand one
flow direction, it is destroyed when the flow velocity reverses
itself in the resonance motion. It eventually reestablishes itself
during a subsequent resonance cycle, causing a new multiple
slip. This process depends on the precise details of the pinning
site configuration and of the primordial vortex trajectory,
factors which allow for the variableness of multiple slips on
contamination and pressure.
In the same experiments by Hakonen, Avenel, and

Varoquaux (1998), a large number of unpinning events were
also observed to take place at an “anomalously low” unpin-
ning velocity. A parallel can be made (Varoquaux et al., 1998)
with the singular collapses that also occur at “subcritical”
velocities and that were also quite frequent in the same
experiments, suggesting that the two effects might have a
common cause. Noting furthermore that pinning and unpin-
ning processes were also quite frequent, releasing a fair
amount of vagrant vorticity, it appears quite plausible that
both singular collapses and low velocity unpinning events are
caused by vagrant vortices hopping from pinning sites to
pinning sites, eventually hovering over a pinned vortex or a
vortex nucleation site. The transient boost to the local velocity
may push the pinned vortex off its perch, or may cause a burst
of vortices to be shed.
These observations have important consequences for the

critical velocity problem: existing vortices, either pinned or
free moving, can contribute to the nucleation of new vortices
at the walls of the experimental cell at apparent velocities
much lower than the critical velocity for phase slips. A
mechanism is thus provided by which superflow dissipation
sets in at large scale for mean velocities much smaller than the
velocity for vortex nucleation on the microscopic scale,
possibly bridging the gap between phase slip and Feynman-
type critical velocities.
To conclude this section, the critical velocities in super-

fluids that are true and proven include the Landau critical
velocity for roton creation in ion propagation (McClintock and
Bowley, 1995), the formation of vortices by a hydrodynamical
instability in BEC gases (Madison et al., 2001) and in 3He
(Eltsov, Krusius, and Volovik, 2005), the nucleation of
vortices by thermal activation and quantum tunneling in
4He, for both ion propagation and aperture flow.
There is also rather compelling experimental evidence for

the interplay on a microscopic scale between vortex nucleation
and pinned vorticity; this evidence points toward the existence
of helical vortex micromills that can generate bursts of
vortices, even, in some cases, at fairly low flow velocities.
Finally, vagrant vortices interacting with these mills or with
the vortex nucleation sites are found to generate enough
vorticity to completely kill the superflow and explain singular
collapses.
How these different events occur is illustrated in detail by

the numerical simulations of the onset and decay of vortex

tangles in large channels (Schwarz, 1983; Schwarz and
Rozen, 1991), of the influence of surface roughness on the
critical velocity for a self-sustaining vortex tangle (Schwarz,
1992), and of the evolution of phase-slip cascades from a
single remnant vortex as a function of channel size (Schwarz,
1993b). These processes depend on the cell geometry but not
on temperature.
A fair degree of understanding of the possible mechanisms

behind the Feynman critical velocity has thus been achieved
by the study of phase-slippage signatures of these various
large slips.

VII. JOSEPHSON-TYPE EFFECTS IN SUPERFLUIDS

Anderson’s conjectures, seen in the previous sections to be
fully confirmed in the hydrodynamic (macroscopic) limit of
quantized vortex dynamics, have also been carried over to the
microscopic limit of quantum tunneling, as described next.
The reasoning goes that Eqs. (12) and (13) are fundamen-

tal79 enough to carry the day at both large and short distances,
namely, when the coherence length is either small or large
with respect to characteristic dimensions of the hydrodynamic
weak link. The former case has been covered in the previous
sections. In the latter case, weak quantum coupling between
two superfluid baths, the contention is that effects analogous
to the famed Josephson effects between two weakly coupled
bits of superconducting material must also exist between two
loosely connected pools of superfluid provided that superfluid
coherence is not entirely lost through the connection. These
Josephson-type effects in superfluids are dealt with next.

A. A simple model

The Hamilton equations (12) and (13) express in a quite
general way the time evolution of φ and N, as discussed in
Sec. I.B. These equations hold in fact for the operators N̂ and
φ̂ but their coarse-grained averages can be treated as c numbers
to a very good approximation because their relative quantum
uncertainties are very small. Averaging over a volume of
superfluid small compared to the size of the sample but still
containing a large number of atoms leads to Eq. (14):

ℏ
∂φ
∂t ¼ −½μþ ð1=2Þm4v2s �:

Equation (14) describes the Josephson ac effect.80 When
applied to the gradient of the phase, it can be cast, using
Eq. (6), into the Euler equation (15):

∂v
∂t þ∇

�
vaPþ 1

2
mav2

�
¼ 0;

with ma being the atomic mass of the effective boson.

79See the discussion following Anderson’s talk at the Sussex
University Symposium in 1965 (Anderson, 1966b).

80The contribution of the entropy to the chemical potential ST
should also be taken into account in Eq. (14) if the temperature is not
very low.
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Equations (14) and (15) look plainly classical enough.
Quantum mechanics hides in the possible multiple determi-
nations of the overall phase φðt; rÞ of the order parameter,
yielding a quantized circulation of the fluid velocity, and when
N̂ cannot be coarse-grained averaged because the amplitude of
the order parameter vanishes or varies too rapidly over short
distances. A quantum mechanism is then provided for φ to
vary discontinuously from one determination to another,
violating the Kelvin-Helmholtz theorem.
The second Heisenberg equation of motion, that for _N,

expresses particle number conservation:

ℏ
∂N
∂t ¼ ∂E

∂φ : ð62Þ

As stressed by Anderson (1966a), the range of validity of
Eqs. (14) and (62) is quite wide. They will still hold when
hydrodynamics breaks down as for tunneling supercurrents. In
this kind of situation, the internal energy E depends in a
nontrivial way on φ, as may be expected from Eq. (62).
When applied between two regions of the superfluid,

Eqs. (14) and (62) describe the supercurrent flowing from
one region to the other. This situation becomes interesting
when the two regions, the two superfluid baths, are suffi-
ciently well separated so that they only weakly couple: a well-
defined phase difference between them δφ can then be
sustained.
Such a situation can be modeled by a potential barrier, as in

Fig. 26. The thin partition separating the two baths presents a
thin elongated slit through which a trickle flow only of
superfluid can leak. If the two smaller dimensions of the slit
are comparable to the superfluid coherence length—the
distance over which its wave function can heal—the ampli-
tude of the wave function is reduced in the narrow passage, as
pictured in the bottom panel of Fig. 26. In superconductivity,
such weak links, or microbridges, are known to lead to the
same kind of effects as tunnel junctions (Likharev, 1979;
Golubov, Kupriyanov, and Il’ichev, 2004).
For superflows through such a microaperture, the problem

can be restricted to one dimension along z and, to simplify
further, the barrier (the weak link) can be taken as a square
potential wall of height U over length lb.

81

In the bulk of the fluid, the wave function corresponding to
a state with energy E is taken as a plane wave with identical
amplitude jΦj ¼ ðρs=maÞ1=2 on both sides of the barrier
(ma ¼ 2m3 for superfluid 3He), but with phases that differ
by δφ: these are the boundary conditions at the weak link
walls at z ¼ 0 and z ¼ lb.
Inside the barrier jΦðzÞj is assumed to be severely

depressed: the interactions within the fluid can be neglected.82

With this approximation of weak coupling, the tenuous fluid
inside the weak link behaves as a simple noninteracting gas
and the equation of motion reduces to a one-particle
Schrödinger equation:

iℏ
∂Φ
∂t ¼ −

ℏ2

2ma
∇2Φþ UΦ; U > E;

and also has a plane wave solution expf−iðEt=ℏ − kzÞg. The
momentum takes two values corresponding to the two
possible directions of (damped) propagation:

k� ¼ �ði=ℏÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2maðU − EÞ

p
:

Let bb ¼ ℏ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2maðU − EÞp

: the barrier height is characterized
by a penetration length. The wave function inside the barrier is
found by standard methods:

ΦðzÞ ¼ jΦj
sinhðlb=bbÞ

�
sinh

�
z
bb

�
eiδφ − sinh

�
z − lb
bb

��
:

The modulus of Φ midway in the barrier is expressed by

Φ�ðlb=2ÞΦðlb=2Þ ¼
ρs=ma

2cosh2ðlb=2bbÞ
½1þ cos δφ�; ð63Þ

and is a 2π-periodic function that vanishes for δφ ¼ π � 2nπ.
The weak coupling condition is satisfied in superfluid helium
for lb ≳ bb.
Knowing the wave function, the current density, Eq. (5), can

be straightforwardly computed. The total current through a
microaperture of effective cross section sb is found to be

J¼ ℏsb
2ibb

ρs=ma

sinh2ðlb=bbÞ
�


sinh

�
z
bb

�
e−iδφ−sinh

�
z− lb
bb

��

×



cosh

�
z
bb

�
eiδφ−cosh

�
z− lb
bb

��
−complexconjugate

�

¼Jc sinðδφÞ; with Jc¼
ℏ
ma

sb
bb

ρs
sinhðlb=bbÞ

: ð64Þ

Equation (64) describes the Josephson dc effect. Although
this equation has been obtained in a drastically simplified
manner, it is nearly identical to the result of more involved
theories, each with its own set of approximations—
the Ginzburg-Landau model (Monien and Tewordt, 1986,

FIG. 26. Schematic representation of a two-dimensional weak
link: (top) cut view of the elongated slit in the partitioning wall;
(bottom) amplitude of the macroscopic wave function Φ in the
region in which it is depleted by the energy barrier of height U
and extent lb due to the constricting walls.

81See Vinen (1968) and also Varoquaux et al. (1992).
82In the framework of the Gross-Pitaevskii equation, the inter-

action term V0ðΦ�ΦÞΦ becomes small in the depleted region and can
be neglected; see Sec. VII.C for superfluid 3He.
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1987), an ideal tunnel junction (Rainer and Lee, 1987), or a
strictly pointlike orifice (Kurkijärvi, 1988).
The supercurrent J is periodic by 2π in δφ as it must be

since changing the phase by 2π on one side of the barrier must
leave the overall physical situation unchanged. It vanishes for
δφ ¼ �π not because the velocity, proportional to δφ, goes to
zero but because the superfluid density which is proportional
to jΦj2 sinðδφÞ=δφ inside the barrier does; the modulus of the
wave function at midpoint in the barrier, Eq. (63), vanishes:
superfluidity is actually destroyed at that point, which is why
the supercurrent goes to zero and the phase can slip by 2π (or
lumps of 2π).
If the coupling is not weak, a more elaborate calculation is

necessary: the sine function is replaced by a general 2π-
periodic function f2πðδφÞ, the current-phase relation (CPR),
for a “nonideal” weak link. Often this relation is not even
single valued and, when the phase is varied, the current may
jump discontinuously from one determination to another: the
weak link is then said to be hysteretic. This behavior is due to
the nucleation of topological defects such as vortices as seen
Sec. VI. It is accompanied by dissipation while the ideal
Josephson case [when f2πðδφÞ is a sine function] is dis-
sipationless (Likharev, 1979; Thuneberg, 2005; Viljas, 2005).
In the transition between the “ideal,” nonhysteretic, purely

sinusoidal CPR’s and the mostly linear CPR seen, for
example, in Fig. 10, a slanted sine function is often observed.
Part of this distortion arises from purely classical fluid flow in
the vicinity of the microaperture. The full phase difference
across the weak link φw includes, besides the phase difference
across the barrier φb, the rather trivial velocity potential drop
in the vicinity of the weak link where the superfluid velocity
vs, and the corresponding phase gradient, behave in accord
with classical ideal fluid dynamics.
In order to account in a simple manner for this classical

contribution, it is convenient to introduce the equivalent
hydraulic length and cross-sectional area of these regions
lh and sh in such a way that the flow is described in a
“rodlike” manner.83 The superfluid velocity is then expressed
simply by vs ¼ ðℏ=maÞδφh=lh and the current by J ¼ ρsshvs.
The total phase difference δφ is the sum of the phase drop

through this hydraulic region and through the barrier acting as
the weak link, assumed ideal, such that

δφ ¼ δφh þ δφb ¼
malh

ρsℏsh
J: ð65Þ

The same mass current also flows through the depletion region
and varies, following Eq. (64), as a sine function of the phase
difference δφb as long as the coupling is weak.
Combining Eqs. (64) and (65), and renaming the hydraulic

part δφh of the phase difference ζ to stress its ancillary role
yields the relation between the current and the phase of a
(slightly more) realistic microaperture:

φ ¼ ζ þ α sin ζ; J ¼ Jc sin ζ; ð66Þ

with α ¼ ðmalh=ρsshℏÞJc and Jc expressed from Eq. (64).84

The nonideality parameter α and the critical current through
the junction Jc are given a meaning in terms the geometrical
details of the microaperture. They can be derived from
experiments and compared with the expected values.85

Since the healing length is of atomic dimensions for 4He, a
near-ideal Josephson effect cannot be expected to be found in
the microapertures that can be manufactured at present, except
very close to the λ transition when this length diverges.
Experiments close to Tλ have been conducted successfully by
Sukhatme et al. (2001) and Hoskinson et al. (2006) and are
described in Sec. VII.F. The experiments that have first shown
the existence of the Josephson dc effect in superfluids have
been carried out in 3He (Avenel and Varoquaux, 1988).

B. Current and phase in superfluid 3He

The helium-3 nucleus is made up of two protons and one
neutron: 3He is a fermion. As for the abundant and heavier
isotope 4He, its zero-point energy in the condensed phase is
large and it remains in the liquid phase down to absolute zero
at pressures below about 35 bars. It thus forms a Fermi liquid
with a Fermi sphere over which Landau quasiparticles float.
Because the interatomic potential is attractive at large dis-
tance, these quasiparticles can form Cooper pairs and 3He
was long suspected to become a BCS superfluid below some
hard-to-predict temperature. The discovery by Osheroff,
Richardson, and Lee of the transition to not one but two
superfluid phases (Osheroff et al., 1972) fixed the transition
temperature to 2.49 mK on the melting curve, at a pressure of
34.34 bars and opened an exciting new chapter of low-
temperature physics.
As the experimental properties of these new superfluid

phases were quickly unraveled (Wheatley, 1975a, 1975b; Lee
and Richardson, 1978), they were identified from their nuclear
susceptibility properties observed by nuclear magnetic reso-
nance (NMR) as resulting from the formation of Cooper pairs
in a spin-triplet state (Leggett, 1975). A new breed of
superfluid was born. The overall antisymmetry of the wave
function under the exchange of two fermions then requires an
odd angular momentum state l ¼ 1; 3;…. The available
experimental data, mainly the phase diagram, the specific
heat, and the nuclear susceptibility, led to the identification of
the A and B phases as p-wave Cooper-pair superfluids with
total spin S ¼ 1 and total angular momentum L ¼ 1.
The formalism describing the properties of these aniso-

tropic superfluid phases was quickly developed.86 It extended
the Bardeen-Cooper-Schrieffer theory of s-wave supercon-
ductivity to the neutral triplet-spin-state superfluid. The most
general pair wave function with three possible substates for
the spin and the orbital parts is an arbitrary superposition of
these 3 × 3 substates, involving nine complex parameters.
Assuming weak coupling between the pairs, a surprisingly

83The hydraulic length lh is defined by Eq. (61). The thickness of
the tunnel barrier is neglected.

84Equations (66) were proposed by Deaver and Pierce (1972) for
superconducting junctions; see also Likharev (1979).

85See Avenel and Varoquaux (1988) for an example of this
procedure and Varoquaux et al. (1992) for a more complete analysis.

86As related by Anderson and Brinkman (1975) and Leggett
(1975); see Vollhardt and Wölfle (1990).
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good assumption at low pressure, this extension of the BCS
theory (Leggett, 1975) leads to a 3 × 3 order parameter for the
B phase of the form

Aμi ¼ Δðk̂ÞeiφRμiðn̂; θÞ: ð67Þ

The gap parameter Δðk̂Þ and the phase factor eiφ have the
same interpretation as for s-wave superconductors. The
B phase contains the Sz ¼ 0, þ1, and −1 pairs
(j↑↓þ ↓↑i, j↑↑i, and j↓↓i) in equal amounts in zero applied
magnetic field; Δðk̂Þ is isotropic and independent of k̂, the
direction on the Fermi sphere.
The matrix Rμiðn̂; θÞ describes the rotation bringing the

spin quantization axis along the orbital quantization axis. This
rotation is characterized by a unit vector n̂ and an angle θ.
Both the gap parameter Δðk̂Þ and the rotation are real
quantities independent of the overall phase φ. Therefore,
the B-phase order parameter (67) takes the same form as that
for 4He, namely, the product of a phase factor expðiφÞ with a
well-defined phase φ and a phase independent modulus. The
same reasoning as for the 4He case applies when performing a
Galilean transformation: mass transport in the pseudoisotropic
B phase is related to the gradient of φ.
The modulus of the order parameter (67), or the gap

parameter Δ, can be thought of as the binding energy of a
Cooper pair at T ¼ 0; it is of the order of kBTc,

87 with Tc
being the superfluid transition temperature. The smallest time
lapse over which this energy can be defined is limited by the
uncertainty relation for time energy: δt≃ ℏ=Δ. During that
time, the pair spreads over a length ξ0 ¼ ℏvF=Δ, where vF is
the velocity of the 3He quasiparticles over the Fermi surface.88

It can be seen from this heuristic argument (Lounasmaa et al.,
1983; Davis and Packard, 2002) that properties of the super-
fluid are well defined only over distances larger than the
coherence length ξ0 of the order of 600 Å at T ¼ 0 and low
pressure −120 Å at melting pressure. The prospect of observ-
ing quantum departures from classical hydrodynamics in 3He
appears much more favorable than in the case89 of 4He: the
coherence length is no longer very small compared to the size
of apertures that can be micromachined; genuine hydrody-
namic Josephson effects can be expected to take place in the
B phase in submicron size apertures, or pinholes.

C. Weak links in p-wave superfluids

Weak links for superfluids come in two breeds, single
microapertures in thin wall partitions and larger scale arrays of
such apertures geometrically arranged a few microns apart,
actual pinholes for the former, a mock-up for tunnel junctions

for the latter. The flow patterns in the vicinity of each kind lead
to different weak link behaviors.
The first successful Josephson-type experiments were

carried out by Avenel and Varoquaux (1988), using the same
microresonator and single aperture as for their experiments on
phase slippage in 4He.90 Their observations spurred intense
theoretical interest in the description of phase slippage in 3He.
Analytic calculations of the current through a pinhole

orifice with all dimensions smaller than ξ0 and with specular
reflection of the quasiparticles on the walls by Kurkijärvi
(1988) in the framework of quasiclassical theory, following
earlier work by Kopnin (1986) and Monien and Tewordt
(1986, 1987), led to the following current-phase relation:

J ¼ ashvFNðEFÞΔðTÞ sin
�
φ

2

�
tanh



b
ΔðTÞ
kBT

cos

�
φ

2

��
;

ð68Þ

where NðEFÞ is the density of states at the Fermi surface, vF is
the Fermi velocity, a ¼ π=2, and b ¼ 1=2 for the B phase.
Equation (68) takes the same form as for a s-wave super-
current through a superconducting microbridge.91 A similar
form also holds approximately for the A phase with a ¼ π=

ffiffiffi
6

p
and b ¼ ð3=8Þ ffiffiffiffiffiffiffiffi

3=2
p

, and for the planar phase, a phase which
may possibly be stabilized within the microaperture by
the walls.
Equation (68) reduces in the limit ΔðTÞ=kBT ≪ 1 to the

sinusoidal dependence of Eq. (64) for the current in terms of
the phase difference across the barrier φb. This result has been
obtained using a variety of techniques.92 It is no surprise that
the details of the structure of the order parameter disappear
when the dimensions of the orifice are small with respect to
the coherence length and that s-wave-like results are found for
both the A and B phases. Superfluid coherence is effectively
weakened by the microorifice because the length over which it
heals becomes larger than the physical size of the connecting
duct; however, if the length of that duct is short enough, a
sizable supercurrent can still exist, sustained by the quantum
tunneling of quasiparticle pairs through the weak link.93

At temperatures such that ΔðTÞ=kBT is no longer a small
quantity, Eq. (68) becomes increasingly slanted with an abrupt
slope close to φ ¼ π when cosφ=2 changes sign while
retaining the periodicity by 2π in the phase difference. It
displays a discontinuity for φ ¼ π at T ¼ 0. This behavior of

87For 3He-B in weak coupling theory, Δð0Þ ¼ akBTc with a ≤
1.75 (Leggett, 1975).

88The zero-temperature coherence length of the B phase is given
by ξ0 ¼ ½7ζð3Þ=48π2�1=2ℏvF=kBTc (Vollhardt and Wölfle, 1990,
Sec. 3.4). The temperature-dependent coherent length diverges as
ξðTÞ ¼ ξ0ð1 − T=TcÞ−1=2 in the Ginzburg-Landau regime.

89The state of the art in aperture manufacturing evolved over time
from submicronic slits (Sudraud et al., 1987) to nanometric holes
(Pereverzev and Eska, 2001).

90See Sudraud et al. (1987) for an account of earlier attempts and
Sato and Packard (2012) for later developments.

91As obtained by Kulik and Omel’yanchuk in 1977, see, for
instance, Likharev (1979) or Golubov, Kupriyanov, and Il’ichev
(2004).

92See Monien and Tewordt (1986, 1987), Hook (1987), Ullah and
Fetter (1989), Kopnin and Salomaa (1990), Thuneberg, Kurkijärvi,
and Sauls (1990), Kopnin, Soininen, and Salomaa (1991), and
Soininen, Kopnin, and Salomaa (1991).

93A different situation was examined by Rainer and Lee (1987),
that of tunneling through a very thin 3He-4He film spanning a
microhole, much like a soap bubble. The barrier parameters lb and
ξbðTÞ can e also be evaluated explicitly in this idealized case as well
as the critical current through the weak link.
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the weak link comes on top of the effect of the hydraulic
inductance of the Deaver-Pierce model: the CPR is bound to
become hysteretic and multivalued even for an extremely
small pinhole in the limit T → 0.
This simple theoretical description accounts well for the

experiments of Avenel and Varoquaux (1988), whose results
are reproduced in Fig. 27. Similar findings have been reached
by Backhaus et al. (1997) in an array of pinholes. Close to the
superfluid transition, weakly coupled reservoirs of superfluid
3He-B exhibit a behavior that involves the direct analogs
of both Josephson ac and dc effects in superconductors.
The relation between the superfluid current and phase, or
CPR, is well represented by a slanted sine function. In the
range of applicability of Eq. (68), single microapertures and
arrays behave alike. The existence in superfluids of the
analogs of the Josephson effects in superconductors was thus
established in 1988 on firm grounds, both experimentally and
theoretically, but more features were soon revealed by further
studies.

D. Multivalued CPR’s, π states, and π defects

While near-ideal Josephson behavior prevails in 3He-B at
low pressure close to Tc, departures from a sinusoidal current-
phase relation were observed by Avenel and Varoquaux (1988,
1989) in a single orifice and later by Backhaus et al. (1997)
and Marchenkov et al. (1999) in an array of 0.1 μm diameter
apertures, evolving to a near-straight line relation below 0.6Tc.
The latter case is reminiscent of the situation in 4He, in which
vortices are nucleated.
As the temperature is lowered further below Tc, the

superfluid coherence length becomes smaller than the aperture
size used in present-day experiments. This trend is even more

pronounced at higher pressure, where Tc is higher (and ξ0
smaller). Room is thus left for a wall dominated order
parameter texture within the weak link or its immediate
proximity: the p-wave nature of superfluid 3He can then
reveal itself.
Detailed numerical simulations based on the time-

dependent Ginzburg-Landau equations have been carried
out by Soininen, Kopnin, and Salomaa (1992a, 1992b)94

for a finite-size aperture quite similar to the one used by
Avenel and Varoquaux (1988). These simulations show the
time evolution, when the 3He superfluid is set to flow through
the microslit, of the components of the superfluid density
tensor parallel to the two short dimensions of the slit. Both the
mass and spin degrees of freedom of the spin-triplet p-wave
order parameter take part in the phase-slippage process. The
various components of the order parameter evolve separately
in space and time and do not go to zero simultaneously at the
same location in the microaperture. The regions of space, in
which the order parameter is depressed and about which the
phase slips, peel off from the walls and traverse the slit at right
angle with the flow direction. Thus, phase slips in the p-wave
superfluid exhibit a fairly complex spatial and temporal
evolution both in the pseudoisotropic B phase and in the
anisotropic A phase. In addition, the A phase may sustain
coreless phase slippage as suggested by Anderson and
Toulouse (1977) and as discussed later. These simulations
also illustrate the details of operation of a vortex mill
(Soininen, Kopnin, and Salomaa, 1992a, 1992b) in which
phase-slip avalanches and multiple vortex creation take place.
The state of sophistication of the microscopic description of
superfluid 3He makes it possible to obtain such detailed
information.
The phase-slippage observations in superfluid 3He reflect

this wealth of riches. While near-ideal Josephson behavior
prevails in 3He-B at low pressure close to Tc, more compli-
cated staircase patterns than those shown in Fig. 27 develop
below 0.7Tc (Avenel and Varoquaux, 1989), which cannot be
described by the Deaver-Pierce model. These patterns are not
even reproducible from one cooldown through Tc, or through
the A to B transition, to the next. It is likely that different order
parameter textures and topological defects are coming
into play.
Among those features, two notable ones were reported by

Backhaus et al. (1998) and Marchenkov et al. (1999) and are
shown in Fig. 28 in 3He-B at saturated vapor pressure. They
used a two-hole microresonator with a weak link made of a
65 × 65 array of 100 nm round holes micromachined in a
50 nm thick silicon nitride freestanding membrane. The 4225
holes in parallel offer a large enough flow path for the mass
flow rate under an applied pressure head to be closely
monitored. They operated the resonator in free ringing mode
and recorded the transient response following a large impul-
sive drive excitation. The phase is derived from the measure-
ment of the pressure head between the two sides of the
weak link by integration of Eq. (14). The current-phase

FIG. 27. Staircase patterns (peak resonance amplitude vs
applied drive level, both in arbitrary units) in 3He-B at a
pressure of about 0.2 bar. The curves at various temperatures
are shifted vertically for readability. Drive frequencies at
the various temperatures are shifted from resonance so as
to set comparable resonance conditions. From Avenel and
Varoquaux, 1988.

94See Kopnin and Salomaa (1990) and Kopnin, Soininen, and
Salomaa (1992).
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relations displayed in Fig. 28 are obtained with this direct
technique.95

The first feature shown in Fig. 28 is the existence of two
possible CPR’s at the same temperature, one with a larger
critical current than the other, the second, the appearance in
the 2π-periodic CPR of an increasingly strong π-periodic
admixture as the temperature is lowered. Avenel, Mukharsky,
and Varoquaux (1999) pointed out that this admixture could
simply arise from the unavoidable dispersion between the
sizes of the microholes in the array.96 This rather trivial
explanation holds in part under all circumstances but is not the
end of the story, as was soon shown by Avenel, Mukharsky,
and Varoquaux (2000) observations using a single micro-
aperture for which there is no scatter in critical currents or
transit times.
Avenel, Mukharsky, and Varoquaux (2000) and

Mukharsky, Avenel, and Varoquaux (2004) took advantage
of the Sagnac effect (see Sec. VIII.A) to ramp up and down in
a precise manner the macroscopic phase difference δφ applied
across the weak link. They reported the observation of several
different CPR branches, usually more than two, most with
π components and with different critical velocities at the same
temperature but in different cooldowns through the superfluid
transition temperature. Each of these several JðφÞ’s was
usually robustly fixed in each run and the general trend
was to go from 2π periodicity to π periodicity as the
temperature is lowered, although, occasionally, no π perio-
dicity was observed even at the lowest temperature. At higher
pressure (10 bars), hysteretic behavior in the single micro-
aperture was prevalent and up to three simultaneous branches
for the CPR were observed. Switching between these different

branches could be triggered by applying strong transient drive
voltage to the resonator, indicating that textural effects were
most likely at play.
Some of these features were actually predicted long before

their observation by Thuneberg (1988) who worked out a
numerical solution for the Ginzburg-Landau equations of the
state of 3He-B confined inside a microaperture. Thuneberg
found two different CPR’s according to whether the n̂ vector
of the B-phase order parameter, assumed to lie perpendicular
to solid walls, is in a parallel or antiparallel configuration on
both sides of the membrane carrying the microaperture. In the
antiparallel configuration, the spin and mass currents are out
of phase, resulting in a lower critical current. Eventually, the
decoupling between mass and spin currents leads to the
admixture of a π-periodic component to the 2π-periodic CPR.
The experimental discovery of these effects by Backhaus

et al. (1998) and Marchenkov et al. (1999) spurred theoretical
interest. Thuneberg’s numerical findings were soon confirmed
and sharpened by the analytic investigations of Viljas and
Thuneberg (1999, 2002b) and Yip (1999) and extended
numerical simulations for two-dimensional geometries by
Viljas and Thuneberg (2002a). The upshots of these studies
are the following97:

• Following Viljas and Thuneberg (1999) and Yip
(1999),98 the π states in 3He-B are due to the interference
of currents carried by quasiparticles with different spins
that acquire different excess phases from the internal spin
structure of the order parameter while traveling through
the weak link. More specifically, the j↑↑i and j↓↓i
Cooper-pair populations may be viewed as independent
superfluids, the phases of which may be slightly shifted
with respect to one another because of a differing

FIG. 28. Current-phase relations in 3He-B observed in an array weak link. CPR’s for the low current state (left panel) and the high
current state (right panel) for temperatures ranging from 0.850T=Tc down to 0.450T=Tc in steps of approximately 0.05T=Tc. The mass
current through the weak link increases as the temperature is lowered. At temperatures close to Tc, the current-phase relations can be
fitted well with the Deaver-Pierce model. As the temperature decreases (and the critical current increases), this model becomes
inadequate as a π-periodic component gradually sets in. From Marchenkov et al., 1999.

95More experimental details and further references can be found in
the reviews by Davis and Packard (2002) and Sato and Packard
(2012).

96An alternate explanation for the existence of π states is offered
by Eska, Gladchenko, and Pereverzev (2010) and is based on the
built-in nonlinearities of the single-hole resonator used in the
experiments of Backhaus et al. (1998) and Marchenkov et al. (1999).

97See Janne Viljas’s Thesis (Espoo 2004) available at http://lib.hut
.fi/Diss/, Smerzi et al. (2001), Zhang and Wang (2001), and Nishida,
Hatakenaka, and Kurihara (2002) and Viljas and Thuneberg (2004b).
A related situation, that of “π junctions,” has been much studied in
electrodynamic junctions (Golubov, Kupriyanov, and Il’ichev, 2004).

98See Zhang and Wang (2001).
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spin-orbit coupling. Summing the corresponding mass
currents, given by Eq. (68), represented by slanted sine
CPR’s shifted in phase by �δφ leads, if the shift is large
enough, to a positive-slope branch in the CPR at π: this
π-state mechanism relies on different spin-orbit orienta-
tions on both sides of the weak link and operates at the
single pinhole level (Viljas and Thuneberg, 2002a).

• The Josephson coupling between two baths of 3He-B
mixes the phase difference to the spin-orbit texture of the
order parameter: the equilibrium configuration of the
texture then depends on the phase bias applied to (hence
on the current carried by) the weak link. The texture is
assumed fixed in the simpler calculations: this is the
isotextural case, which offers only a coarse agreement
with observations. If the texture is allowed to adjust to the
local mass and spin currents by expressing the balance
between its stiffness and its interactions with thewalls and
with the mass current, a π state can also arise: this
anisotextural effect requires a self-adjusting string of
calculations and provides quantitative agreement with
pinhole array experiments (Viljas and Thuneberg, 2002b).

• These refined calculations led to the realization that
multiple Andreev reflections and subgap structures also
played a role in the transmission of the supercurrent
through the weak link (Asano, 2001),99 and that a A-like
phase inside the superfluid junction could also result in
the existence of a π state (Nishida, Hatakenaka, and
Kurihara, 2002).

• Dissipation in pressure-driven dc supercurrents
(Simmonds et al., 2000) could also be explained by
multiple Andreev reflections (Mukharsky, 2004; Viljas,
2005) or by time-dependent anisotextural effects and
spin-wave emission (Viljas and Thuneberg, 2004a;
Viljas, 2005): if a pressure difference is applied across
the weak link, an ac oscillation (at the ac-Josephson
frequency) of the texture ensues, causing dissipation by
spin-wave radiation. The two dissipation mechanisms,
subgap processes and textural losses, can come on top of
one another.100

Observations related to these topics are those of Mukharsky,
Avenel, and Varoquaux (2004) who, in the course of
high-precision CPR measurements using the Sagnac effect
described in Sec. VIII.A, found the signature of a stable
textural defect that sustains a change of the phase by π away
from the weak link. This differs from the π state discussed
previously. “Cosmiclike” solitons, proposed by Salomaa and
Volovik (1988), could constitute such a defect but they are
thought to be unstable in the bulk of the superfluid.
A comprehensive study of the possible planar interfaces

between two domains of superfluid 3He-B has been conducted

by Silveri, Turunen, and Thuneberg (2014). Of all the possible
planar structures allowed by the symmetries of the B-phase
order parameter, only one is found to be energetically stable in
the presence of walls. This particular interface is characterized
by the vanishing of one of the components of the interfacial
order parameter along a gap-node direction contained in the
plane of the domain wall. It sustains a phase change by π and
can appear as a remnant of the A to B interface during
cooldown through the transition.
In the perspective of this article [see also Davis and Packard

(2002)], these complex features of the Josephson super-
currents illustrate the nature of the superfluid order parameter
and of the phase coherence it entails. But their detailed studies
are complicated because they are entangled with order
parameter textures, as mentioned and also because the state
of the superfluid inside the microjunction may not be precisely
accounted for, as discussed in the next section.

E. The peculiarities of the A phase

The A phase takes over from the B phase at the super-
fluid transition temperature above a pressure of 21.2 bars.
Strong coupling effects resulting from atomic localiza-
tion increase with density. Part of these enhanced interactions
is mediated by spin-spin exchange, the so-called paramag-
nons. Because of these effects, the A-phase condensate
consists only of Sz ¼ þ1 and −1 pairs, (j↑↑i and j↓↓i),
and the energy gap above the Fermi surface jΔðk̂Þj is strongly
anisotropic while retaining the L ¼ 1 symmetry: it vanishes at
a node in the direction of l̂, the orbital quantization axis. As for
its spin part, the A phase behaves in some respect as an
antiferromagnet with a spin quantization axis d̂. Its stability
with respect to the B phase is enhanced by an external
magnetic field.
The A-phase order parameter in zero magnetic field is

expressed in terms of three unit vectors, the spin quantization
axis d̂, and the orthonormal vectors m̂ and n̂ forming a triad
with l̂, the direction of the orbital angular momentum of the
pairs. It is written in tensorial notation as

Aμi ¼ ΔAd̂μðm̂i þ in̂iÞ: ð69Þ

In 4He, the Bose order parameter is a simple complex
number and the phase comes in quite naturally as it does for
the BCS order parameter in s-wave superconductors, for
ultracold atoms, and for the B-phase order parameter,
Eq. (67), as discussed.
No single phase factor appears spontaneously in Eq. (69)

for the A-phase order parameter. However, the single-particle
wave function in the condensate still possesses an overall
phase among other components. This phase goes over to the
macroscopic Bose order parameter, which inherits of a global
Uð1Þ phase rotation broken symmetry.
But this is not the entire story: a rotation of the triad l̂; m̂; n̂

about the angular momentum directrix l̂ by angle γ also
contributes an overall phase factor to the A-phase order
parameter. This property can be readily seen by considering
the complex plane perpendicular to l̂ containing the complex
vector m̂þ in̂ that appears in Eq. (69): a rotation by angle γ in
the complex plane transforms m̂þ in̂ into expð−iγÞðm̂þ in̂Þ.

99See Smerzi et al. (2001), Thuneberg (2005), and Viljas (2005).
100A related mechanism governing the vortex dynamics in Fermi

superfluids at temperatures well below Tc, reported by Silaev (2012),
arises from the kinetics of localized excitations bound to the vortex
cores and driven out of equilibrium by vortex motion. The local
heating of the vortex cores results in an energy flux carried by
nonequilibrium quasiparticles and in a dissipation mechanism that
can operate even at zero temperature.
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The Galilean invariance argument as used to derive the two-
fluid model for 4He leads to the following expression for the
velocity of superfluid mass transport101:

vs ¼ −
ℏ

2m3

ð∇γ þ cos β∇αÞ: ð70Þ

The Euler angles α; β; γ fix the orientation of the orbital triad
l̂; n̂; m̂ in the chosen reference frame, γ expressing a rotation
about l̂ as mentioned. Two independent phase gradients
appear in Eq. (70). In one, −∇γ, the angle plays the role
of the usual phase φ. This feature arises because of the Uð1Þ
phase rotation broken symmetry as mentioned. The other
stems from the bending of the l̂ texture. Superflow is not
simply governed by the gradient of the global phase alone.
The velocity field vs is no longer irrotational in general, hence
the circulation of vs over a closed loop is no longer necessarily
quantized.
In the presence of nonuniform l̂ textures, the change of

orientation of l̂ in space may also contribute to the super-
current. The contour integral of Eq. (70) along a closed loop Γ
can be put under the form

I
Γ
vs · dr ¼

ℏ
2m3

½2πnþ σðDÞ�: ð71Þ

The first contribution to the right-hand side of Eq. (71) is
recognized as the quantized velocity circulation around line
singularities, as found in superfluid 4He, and the second is
expressed (Ho, 1978) as the area circumscribed on the unit
sphere by unit vector l̂ when carrying the loop integral along
contour Γ. This last contribution is nil in the trivial case where
l̂ keeps pointing in a fixed direction. There exist other less-
trivial cases with σðDÞ ¼ 0 as discussed by Ho (1978), but, in
general, this contribution is nonzero and the velocity circu-
lation is nonquantized.

The interplay between superflow, vortices, and textures of
the order parameter becomes quite complex.102 In particular,
the A-phase persistent superflow can be relaxed by textural
motion alone without the creation of topological singularities
of the order parameter such as vortices. However, if large-
scale motion of the texture is suppressed, dissipation can be
quenched and persistent currents stabilized, as shown by the
experiments of Gammel, Ho, and Reppy (1985). They
demonstrated the existence of such currents in the annular
space of a torsional oscillator packed with 25 μm silicon
carbide powder. The effect of the powder was to immobilize l̂.
The small supercurrent was detected indirectly through its
effect on the damping of the small amplitude of the torsional
oscillator. This crafty experiment showed that the A-phase
possesses, if to a less convincing extent than the B-phase, the
distinctive attribute of dissipationless flow.
The phase-slippage concept can also be extended to the

A phase, as proposed by Anderson and Toulouse (1977).
Josephson-type experiments can be contemplated with some
uncertainty as to their outcome because of the lack of
quantization of the velocity circulation, and also because of
the large dissipation associated with the motion of the order
parameter gap in the direction of l̂, where its nodes lie.
These experiments were attempted by Avenel and

Varoquaux (1989) with the same resonator as for their B-
phase experiments. They did observe staircase patterns in the
A phase both close to the superfluid transition temperature
with a rather nonideal current-phase relation and farther down
in temperature where new features occurred. The patterns
shown in Fig. 29 obtained in the A phase at T ¼ 0.92Tc at
frequencies slightly above and below the resonance frequency
of the flexible-wall resonator are quite well defined but differ
markedly: they exhibit large dispersive effects, a sharply
peaked resonance, and low dissipation. The outcome of
numerical simulations of the resonator response using the

FIG. 29. Staircase patterns in the A phase at 28.4 bars and T ¼ 0.92Tc (Tc ¼ 2.417 mK). The left and right panels show the patterns
slightly above and below the resonator resonance at ωm ¼ 1.783 Hz, as observed (upper curves) and as computed (lower curve) with the
Deaver-Pierce model. From Avenel and Varoquaux, 1989.

101See Vollhardt and Wölfle (1990), Sec. 7.1.

102For a pointed but still gentle introduction to the intricacies of the
A-phase hydrodynamics, see Cross (1983) and Hall and Hook (1986)
who also covered the effect of magnetic fields not considered here.
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Deaver-Pierce model, Eq. (66), are shown below the exper-
imental data curves. The resonance quality factor is high,
Q ¼ 80. The nonideality parameter α is equal to 5: the phase
slips are hysteretic and weakly dissipative.
Given this observation that the A-phase phase-slip pattern

seems to follow the ubiquitous Deaver-Pierce model at 0.92
Tc, it could be expected to become more and more ideal when
raising the temperature closer to Tc. This trend could
unfortunately not be ascertained in these experiments because
the operating frequencies, which decrease as ρs=ρ, become too
low and the useful signal gets lost in the background 1=f
mechanical noise of the detection device.
Farther down in temperature, an instructive direct compari-

son between the A-phase response and that of the B-phase at
high pressure can be carried out by taking advantage of the
following circumstance: at 28.4 bars, the A to B transition
occurs at about 0.81 Tc; it is signaled by a sudden drop in
resonance frequency caused by the drop in superfluid density
accompanying the first order transition. As the A phase can be
supercooled into the domain of stability of the B phase, both
phases can be studies at comparable frequencies.
The outcome of this comparison is shown in Fig. 30 and

reveals a remarkable similarity between the two phases. The
response of the superfluid in the weak link depends little on
whether the bulk of the liquid is in the A or the B phase. As
discussed by Avenel and Varoquaux (1989), the observed
behavior inside the microslit corresponds well to the situation
described by Kurkijärvi (1988) who found that the current-
phase relations for the A and B phases differ only little [see
Eq. (68)]. It may also happen that the state of the superfluid in
the weak link remains the same irrespective of the state in the
bulk. It was predicted by Fetter and Ullah (1988) and Li and
Ho (1988) that the A-polar phase would be favored by the
depletion of some of the components of the A-phase order
parameter close to the aperture walls.
The subgap structure, shown in Fig. 30, which develops for

resonance amplitudes below the critical threshold at which
dissipative phase slips start to occur, is quite intriguing. It was
interpreted by Avenel and Varoquaux (1989) as arising from

possible (aniso)-textural effects inducing solid friction. It
could also possibly be revealing the existence of subgap
resonant levels.
These experiments establish the fact that phase slippage

takes place in the A phase, that persistent currents can be
trapped in the loop threading the double-hole resonator, and
that the velocity circulation along these trapped currents
changes by multiples of the quantum of circulation in the
same manner as in the B phase: it so turns out, as was the case
in the persistent current experiments by Gammel, Ho, and
Reppy (1985), that the l̂ texture is sufficiently well pinned in
the regions where vs picks up significant speed.
Topological defects, seen to play an important role in phase-

slippage experiments, offer a vast and fascinating domain of
study, in both the A and B phases. The vortex core develops
complex structures, as reviewed by Salomaa and Volovik
(1987). Vortex sheets can form in rotating 3He-A, as observed
by Parts et al. (1994) using very sensitive NMR techniques,
which have brought about a wealth of information on vortices
in superfluids under rotation. This work was reviewed by
Finne et al. (2006). Analogies can be drawn between the
formation of defects in superfluid 3He and that of cosmic
strings in the early Universe because the order parameter
symmetries that can be broken are the same. These prospects
for experimental cosmology were reviewed by Bäuerle,
Fisher, and Godfrin (2000), Eltsov et al. (2000), Volovik
(2003), and Bunkov (2010). Phase slippage is relevant in these
situations and will be used to study this vast new field.

F. 4He close to the λ point

The existence of Josephson-like effects was established in
superfluid 3He for the dc effect and in both 3He and 4He
superfluids for the ac effect by 2000. The remaining problem
was the possible observation of a quasisinusoidal current-
phase relation in 4He. The minuteness of the coherence length
in 4He makes the fabrication of a suitable weak link a tall order
except in the immediate vicinity of the λ point, where it
diverges as ξ ¼ ξ0ð1 − T=TλÞ−2=3 with ξ0 ∼ 1 to 2 Å (Langer

FIG. 30. Staircase patterns in the A and B phases at nearly identical frequencies and temperature. The horizontal ticks mark the
periodicity of the staircase pattern (top) and of the low-level structure (bottom). This low-level structure has been attributed to solid
friction of unknown origin somewhere in the resonator (but may also arise from subgap energy levels). From Avenel and
Varoquaux, 1989.
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and Reppy, 1970). At the λ point, however, superfluidity is
suppressed by thermal fluctuations. Would the hydrodynamic
Josephson effects not be even more readily washed out by the
same token?103

This concern was formalized by Zimmermann (1987)
whose argument runs approximately as follows. The
Josephson coupling energy is obtained from the Josephson
current, Eq. (64), by integration with respect to ðℏ=m4Þδφ. Its
maximum value is therefore ðℏ=m4ÞJc and reads

EJ ¼
�

ℏ
m4

�
2 sb
bb

ρs
sinhðlb=bbÞ

: ð72Þ

In the weak coupling limit for which Eq. (64) holds, the
wave function is strongly depleted within the barrier and the
penetration length is smaller than the length of the barrier
bb ≲ lb. Making use of the scaling relation between ρsðTÞ and
ξðTÞ (Josephson, 1966),104

ρsξ ¼ ðm4=ℏÞ2kBT; ð73Þ

and since sinhðlb=bbÞ > lb=bb it stems from Eq. (72) that

EJ ≲ sb
lb

kBT
ξðTÞ : ð74Þ

For the round pinhole with diameter d considered by
Zimmermann, sb ¼ πd2=4 and lb > lh, the hydraulic length
lh being πd=4 for a circular orifice,

105 so thatEJ < kBTd=ξðTÞ.
Zimmermann concluded from this upper bound for the
Josephson energy that, as ξðTÞ diverges upon approaching
Tλ from below, the Josephson coupling energy will end up
being less than the thermal energy and that the Josephson dc
effect will be washed out by thermal fluctuations.
Similar concerns were spelled out by Ullah and Fetter

(1989) for their calculations of weak link properties in 3He-B
in the Ginzburg-Landau regime: “We do not address the
important problem of thermal fluctuations destroying the
superfluidity in the very small volume of the weak link. To
our knowledge, there is no reliable, quantitative theory of the
stability of the superfluid phase is severely confined geom-
etries. We believe that this question can be convincingly
answered only by experiment.” This remark is even more
relevant to superfluid 4He close to Tλ.
The first hint of a successful experimental observation

was reported by Sukhatme et al. (2001). They used an
array weak link of 24 microslits 3 × 0.17 μm2 about 10 μm
apart in a 0.15 μm thick membrane. Their findings are
summarized in Fig. 31. At 3.72 mK below Tλ—the bottom
curve in the figure, the scale of which is shrunk—the critical
velocity is well marked, as well as the staircase steps,
indicating a dissipative phase-slippage process. A phase-slip
regime has been reached. This was hoped for since the
temperature-dependent coherent length 3.72 mK below Tλ,

ξðTÞ ¼ 24 nm,106 is smaller than the microslit width, but by
less than 1 order of magnitude.
Getting closer to Tλ from below, successively at Tλ − T ¼

154, and 61 μK, the expected trend toward a smoother, less
dissipative staircase pattern is observed, much like in Fig. 27
for 3He, supporting the conclusion that the same hydrodynamic
ideal Josephson effect can be observed in superfluid 4He close
to the superfluid transition temperature Tλ ¼ 2.17 K.
This conclusion raises the following questions:
• Would, for some reason, Zimmermann’s argument be
invalid?

• Why is it that dissipative phase slippage, the mechanism
for which seems to rely on the nucleation of a single
vortex and its crossing of all streamlines of the superfluid
flow through a single microslit, also operates for an
extended array of them?

Zimmermann’s original argument, outlined previously, was
applied to a single round hole. Sukhatme et al. (2001)’s 24
parallel slits yield an estimated enhancement factor of 500 in
the superflow passage area sb that appears in Eq. (74),
provided that the supercurrents in the apertures effectively
sum up. The overall Josephson energy is increased by the
same factor and the disruptive effect of thermal fluctuations is
pushed back much closer to Tλ. This line of reasoning was

FIG. 31 (color online). Staircase patterns in 4He close to Tλ

(amplitude in picometers vs drive, in arbitrary units for
(i) Tλ − T ¼ 61 μK, (ii) 154 μK, and (iii) 3.72 mK. The plots
are shifted vertically by 2 pm with respect to one another for
clarity. The data for (iii) has been divided by 20 along the x axis
and by 10 along the y -axis. As in the case of 3He-B, shown in
Fig. 27, the height of the first step corresponds to the critical
current Jc. Each subsequent step corresponds to an additional
phase difference of 2π. From Sukhatme et al., 2001.

103As already mentioned by Anderson (1964), p. 120.
104See Halperin, Hohenberg, and Siggia (1976) and Hohenberg

and Halperin (1977) for details.
105As derived by Anderson (1966b), p. 305.

106Approaching Tλ from below, ρs is known to vanish as (Langer
and Reppy, 1970)

ρs ≃ 2.4ρλð1 − T=TλÞ2=3;

where ρλ is the density at the λ transition, 0.1459 g=cm3. From
Eq. (73), the temperature-dependent coherence length becomes
ξðTÞ ¼ 0.338=ð1 − T=TλÞ2=3 in nm.
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pursued by Chui, Holmes, and Penanen (2003), but its
soundness depends on the answer to the second question,
which turns out to be trickier.
The Berkeley group carried out a number of studies107 with

aperture arrays similar to those used for 3He-B by Marchenkov
et al. (1999). The size of the round pinholes in these arrays,
90 nm in diameter, is comparable to the coherence length 1 mK
away from the λ point but the distance separating the pinholes,
located on a 3 μm square lattice, is much larger. Two phase-
slippage regimes are identified when the temperature is lowered
below Tλ as reported by Sukhatme et al. (2001). At ∼50 to
100 μK below Tλ [and slightly farther down in temperature in
the experiments by Sato, Hoskinson, and Packard (2006)], a
reversible (nondissipative) Josephson regime is observed. In
this regime, the phase slips occur in a fully synchronousmanner.
Between approximately 0.3 to 15 mK below Tλ, a transition
toward a dissipative phase-slip regime sets in as the synchro-
nization between the apertures gets lost. Farther below Tλ, the
phase-slip regime becomes asynchronous. The amplitude of the
resultant phase-slippage signal from the array does not sum up
to what it should be. It also exhibits large slips and collapses
somewhat similar to those described in Sec. VI.B for a single
orifice (but of a different sort).
It is clear that inhomogeneities in aperture size and surface

properties, the edge effects at the periphery of the array, and
local critical fluctuations introduce a spread in the values of
the critical current in the different apertures. Phase slips occur
at different times during resonator motion. The summation of
the currents through the various apertures, as attempted in the
numerical simulations of arrays of superfluid Josephson
junctions by Avenel, Mukharsky, and Varoquaux (1999),
Pekker, Barankov, and Goldbart (2007), and Sato,
Hoskinson, and Packard (2007), has to be exercised with care.
It can be argued (Chui, Holmes, and Penanen, 2003) that

the Josephson currents in the microapertures are small and
perturb little the quantum phases in the bulk on both sides of
the membrane supporting the weak link array. Phases are well
defined below Tλ (for instance, the quantization of circulation
is enforced) and so should their difference. This reasoning
would appear to leave only 1 degree of freedom to undergo
fluctuations, with a thermal energy of kBT=2 to be shared
among theN apertures of the array: the effect of fluctuations in
each individual aperture would effectively be quenched on
taking the average over the whole array.
This argument has to be stretched to explain the large span

in Tλ − T over which the synchronous phase-slippage regime
subsides both very close to the λ point when quantum
coherence should end up being killed by thermal fluctuations
and quite a way below it where it should be randomized by
array imperfections. In other words, the robustness of the
coherence effect mentioned against dephasing by environ-
mental effects appears quite remarkable. Perron et al. (2013)
pointed out that the superfluid onset in the microslits used by
Sukhatme et al. (2001) is expected to be depressed by size
effects to Tλ − Tc ≃ 430 μK, whereas the Josephson effect

could be tracked to as close as 28 μK below Tλ. Similarly, for
the pinholes used by Sato, Hoskinson, and Packard (2006),
Tλ − Tc ≃ 2.3 mK while the Josephson effect survived up to
possibly 0.5 mK from Tλ. As concluded by Perron et al.
(2013), “In both experiments one obtains superflow in a
temperature region where the helium in the isolated weak links
should be normal. Both of these experiments are thus relying
on proximity effects, due to the surrounding bulk liquid, to
maintain a nonzero order parameter in the weak links.”
They draw their conclusion from studies of the intercon-

nection of an array of 2 × 2 μm2 micropools linked through
the film of superfluid 4He. They found from measurements of
the specific heat and the superfluid fraction in the vicinity of
Tλ that correlation effects are still effective at distances up to
100 times ξðT; LÞ, the finite-size correlation length suitably
renormalized for confinement over the distance L, the size of
the micropool boxes. The unexpectedly large extent of the
correlation observed between micropools can be likened to the
robustness of the coherent behavior of Josephson junction
arrays close to Tλ.
Pekker, Barankov, and Goldbart (2007), besides their

numerical studies referred to previously, also treated the
problem of aperture current summation in an irregular array
as an order-disorder transition in a mean-field approximation
approach. They introduced a distribution of aperture critical
currents and an effective interaperture coupling parameter.
They reported qualitative agreement with the experiments of
Sato, Hoskinson, and Packard (2006) including “system-wide
avalanches,” both in the numerical simulations of the array
behavior and in the ordering transition approach.
Theobserved long rangeof cross-aperture couplingmayarise

from a simple classical hydrodynamics scheme, which is an
extension to arrays of the putative mechanism for single-
aperture large slips discussed in Sec. VI.B. Suppose that, during
the surge of the superflow through the array, a quantum phase
slip occurs early in one of the apertures, releasing a vortex half
ring that starts drifting classically sideways along themembrane
supporting the array. Soon, this vortex half ring runs into the
flow lines emerging from a nearby aperture, gaining energy
from it to proceed in its course and, possibly, triggering the
nucleation of another vortex half ring, and so on. This
multiplication process may die by itself at the ebb of the flow.
Or, if it overcomes the friction on the normal component, it may
trigger 2π slips over all the microholes of the array, or, possibly,
swell to the system-wide avalanches (Pekker, Barankov, and
Goldbart, 2007) observed by Sato, Hoskinson, and Packard
(2006). These mechanisms for avalanches are thus intrinsic to
aperture array dynamics and distinct from flow collapses in
single apertures discussed in Sec. VI.B.
Even more so than in single apertures, “macroscopic

quantum coherence” manifests itself in the aperture array in
a dual manner. First, the condensate acts as an ideal Euler
fluid, maintaining orderly streamlines throughout the super-
flow in accordance to the Kelvin-Helmholtz theorem. Then,
when a nonadiabatic process takes place, violating velocity
circulation conservation, it does so in a quantum manner,
allowing the phase to change by multiples of 2π, for instance
by the nucleation of a quantized vortex or by the current
source or sink provided by Josephson tunneling through a thin
barrier of normal fluid.

107See Hoskinson, Sato, and Packard (2006), Sato, Hoskinson, and
Packard (2006), Sato, Joshi, and Packard (2008), and Narayana and
Sato (2010, 2011).
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VIII. CONCLUDING COMMENTS

A. Matter waves and superfluid interferometry

The single-hole or two-hole hydromechanical resonators
used in the phase-slippage experiments described above have
been presented so far as the analogs of rf or dc superconducting
quantum devices (SQUIDs), a useful analogy to help under-
stand the way they operate. Another analogy is used in this
section to illustrate the concept of coherent matter fields, or
matter waves, introduced for superfluid helium byAnderson in
1965. These devices are now considered as the likes of optical
Sagnac interferometers; as the latter, they can be used to
measure absolute rotations with very high sensitivity.
Consider a pool of superfluid in the shape of a conduit

bending on itself as shown in Figs. 32 or 34. The circulation of
the velocity is quantized in the inertial frame, the reference
frame fixed with respect to the distant stars, along any closed
contour Γ located entirely in the superfluid:

I
Γ
vs · dl ¼

ℏ
ma

I
Γ
∇φ · dl ¼ nκa;

where κa ¼ 2πℏ=2m3 for 3He, 3=2 times that quantity for 4He,
and n is an integer.
If the cryostat housing the pool is set into rotation with

rotation vector Ω, the velocity transforms in the new frame
according to v0s ¼ vs −Ω × r and the quantization of the
circulation condition now reads

I
Γ
v0s · dl ¼ nκa −

I
Γ
Ω × r · dl ¼ nκa − 2Ω · SΓ; ð75Þ

with SΓ being the geometrical (oriented) area of the closed
superfluid contour.
For an actual conduit with finite cross section such as the

one pictured in Figs. 32 and 34, there is a variety of choices for
the contour Γ. The mean circulation of the velocity results
from a suitable average over the various distinct superfluid
contours threading the conduit. Taking the average of Eq. (75)
over all the streamlines threading the conduit amidst stray
thermal currents, pinned vortices, and textures, weighed
according to the (infinitesimal) mass current that they carry,
leads to (Avenel, Hakonen, and Varoquaux, 1997)

�I
Γ
v0s · dl

	
¼ nκa þ κb − 2Ω · hSi; ð76Þ

where hSi is the average of the contour areas over the conduit.
The average of the quanta of circulation carried by the various
streamlines, hniκa has been written as nκa þ κb to explicitly
separate the nonquantized phase bias δφb ¼ 2πκb=κa arising
from pinned vorticity from the strictly quantized contribu-
tion 2πn.
The last term on the right of Eq. (76) also amounts to a

nonquantized contribution to the phase bias, which varies with
the flux of the rotation vector Ω through hSi: the measurement
of the corresponding phase difference with the interferometers
depicted in Fig. 32 or 34, δφS ¼ ðma=ℏÞ2Ω · hSi, gives access
to the rotation velocity. Alternatively, changing the orientation

with respect to the north axis of the superfluid loop picks up
more or less of the rotation flux due to the Earth rotation Ω⊕.
A known phase difference can be coupled to the weak link.
The experimenter is provided with a “gauge wheel” to steer
the phase.108

FIG. 32. Superfluid interferences in a two-aperture resonator.
(a) The hydromechanical resonator. The unshaded regions are
filled with superfluid 4He. The flexible metallized diaphragm at
the top of the upper chamber serves both as a microphone to
detect the resonant oscillations and as a pressure pump to drive
the flow across the two aperture arrays indicated by crosses.
These arrays interrupt the superfluid channel enclosing the sense
area. (b) The resonator equivalent circuit showing the analogy
with the electrodynamic dc SQUID. There are two superposed
currents flowing through the weak links, one corresponding to the
rotation flux picked up by the sensing loop, Eq. (76), the other
being the common-mode readout current from the flexible
diaphragm. Bottom panel: Peak amplitude of the diaphragm
displacement on resonance as a function of the rotation flux 2Ω ·
A picked up by the superfluid loop enclosing the sense area; see
Sec. VIII.A for a description of these interferometer operations
based on the Sagnac effect. The measured data are shown by the
symbols; the solid lines are fits to the data of the equation
modeling the resonator motion as described by Hoskinson, Sato,
and Packard (2006). The modulation curves were taken at
temperatures Tλ − T ¼ 12, 7.0, 4.0, 3.0, 2.0, 1.5, 0.9, 0.6, 0.4,
and 0.3 mK from top to bottom. This temperature span covers the
coherent Josephson regime in the array discussed in Sec. VII F.
From Hoskinson, Sato, and Packard, 2006.

108The original gauge wheel proposal due to Liu was discussed by
Ho and Mermin (1980b).
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Exploiting the properties of superfluids to detect very slow
rotations has been proposed even before the discovery of the
Josephson effects in superfluids, understandably with some
lack of accuracy as to how the experiment could be conducted.
Cerdonio and Vitale clarified in 1984 the way in which inertial
and gravitational fields could be detected with superfluid 4He
analogs of the rf SQUID (Cerdonio and Vitale, 1984; Bonaldi,
Vitale, and Cerdonio, 1990). A number followed suit after-
ward for superfluid 3He and 4He (Hess, 1992; Packard and
Vitale, 1992; Varoquaux et al., 1992), and for the Bose-
Einstein condensed gases (Stringari, 2001).
Detailed schemes for the actual implementation of super-

fluid 4He gyros have been worked out with the help of
numerical simulations (Avenel et al., 1994) and from the
analysis of the operation of existing double-hole hydro-
mechanical resonators.109 The first measurement of Ω⊕ with
a superfluid device was performed using a resonator operating
in hysteretic mode in superfluid 4He with a rotation-sensing
loop of 4.0 cm2 by Avenel and Varoquaux (1996). Soon after,
the Berkeley group reported the observation of the effect of
the rotation of the Earth with a similar device operated in
the staircase mode, in much the same way as conventional
rf-SQUID magnetometers.
We mention for the record that early attempts to measure

Ω⊕ led to disappointing results to the dismay of experimenters
(Schwab, Davis, and Packard, 1996; Schwab et al., 1996;
Avenel, Hakonen, and Varoquaux, 1998). It was however
quickly realized that the currents in the bulk of the cell outside
the resonator (Avenel, Hakonen, and Varoquaux, 1998;
Schwab, Bruckner, and Packard, 1998), simply caused by
the reorientation of the cryostat, were interfering with the
relatively weak Ω⊕-induced Sagnac current in the pickup
loop. The influence of these stray currents can be made
negligible by a proper design of the cell. A sheath on the port
connecting the resonator to the main body of the cell was used
to that effect by Avenel and Varoquaux (1996) and Avenel,
Hakonen, and Varoquaux (1997). The absence of such a
decoupling device between the Sagnac current in the pickup
loop and the stray currents around the cell could cause
uncontrolled inaccuracies of several tens of % (Schwab,
Davis, and Packard, 1996; Schwab, Bruckner, and Packard,
1997, 1998).
The potentialities of superfluid gyros as extremely sensitive

and stable rotation sensors, able to track general relativity
effects, have been considered by Avenel, Hakonen, and
Varoquaux (1998), Chui and Penanen (2005), Sato and
Packard (2012), and Sato (2014). It appears that these gyros
can compete with the most advanced rotation sensors, in
particular, because they are inherently driftless at very low
temperatures.
These gyrometric devices are the direct superfluid analogs

of the well-known Sagnac optical interferometers, as can be
seen by inspection of Fig. 33 and of the superfluid device in
Fig. 34: the light source provides the incident light beam, the
flexible membrane, the supercurrent; counterrotating waves
travel along the square optical path, and along the coiled

capillary, for the corotating part; the waves interfere in the
beam splitter in the optical case, in the Josephson weak link in
the superfluid case. The interferometer shown in Fig. 32 is
closer to a Mach-Zehnder interferometer than to a Sagnac one
but the analogy goes along in the same way.
But is this reasoning by analogy, or the display of clear

fringe patterns such as those shown in Fig. 32, sufficient proof
that the Sagnac effect is involved in the operation of these
superfluid interferometers? Apparently not; superfluid gyros
are still sometimes mistaken for purely inertial devices such as
spinning tops, as discussed by Varoquaux and Varoquaux
(2008). Clearly, the superfluid in a rotating bucket experiment
is a dense medium. It can be weighed on a scale. For large
enough rotation velocities, when enough vortex lines have
been created, the fluid free surface eventually becomes
concave, as in Newton’s rotating water bucket experiment.
For small velocities, however, things are different: the super-
fluid does not even start spinning because of the absence of
viscosity. Hence the common sense reluctance to admit that
the far-fetched analogy between the behavior of this con-
densed matter system and that of massless photons traveling at
the velocity of light, or elementary particles like electrons or
neutrons, or even confined ultracold atomic gases, holds.
A more formal approach is the following. As mentioned,

the Sagnac effect has been observed in a number of different
physical systems, ranging from photon, electron, neutron, and
cold atomic gas interferometers to atomic clocks and the
global positioning system.110 The unifying concept behind
these different situations is provided by the transportation of
Einstein clocks from location A to location B on a rotating
platform (Langevin, 1921, 1935, 1937; Rizzi and Ruggiero,
2003a, 2003b, 2004).
Consider how these clocks can be synchronized, first

when they are infinitely close to one another. The space-time
metric is characterized in the conventional notation by
−ds2 ¼ g00dðx0Þ2 þ 2g0idx0dxi þ giidðxiÞ2. The infinitesi-
mal time interval dt between two nearly simultaneous events

source
splitter

detector

FIG. 33 (color online). Schematics of the optical Sagnac inter-
ferometer. A collimated beam from the source enters the
interferometer through a beam splitter and is separated into
two beams traveling along the optical path defined by the three
mirrors in opposite directions, as indicated by the arrows.
Reentering the beam splitter, they recombine and produce a
fringe pattern on the detector plate.

109See Aarts et al. (1994), Schwab, Davis, and Packard (1996),
Schwab et al. (1996), and Sato and Packard (2012).

110The literature on the Sagnac effect is extremely vast. See
Hasselbach and Niklaus (1993), Stedman (1997), and Neutze and
Hasselbach (1998) for recent reviews on the effect with matter waves.
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taking place at this given location in space is such
that ds2 ¼ g00dðx0Þ2 ¼ −c2dt2, with c being the velocity
of light.
If the clocks are now separated in space by an infinitesimal

amount dxi and the two events taken, say at location A, as the
ticking of clock A for one and as the signal transmitted by
clock B of its ticking a small distance away for the second, the
two ticks occur with a time lag given by cdt ¼ −g0idxi=g00,
the repeated summation being on the space coordinates.
If clock B is now transported over a finite path Γ closing on

itself in a frame rotating with velocity Ω, the total time shift
results from an integration along path Γ111:

Δt ¼ 1

c

I
Γ

g0idxi

−g00
¼

I
Γ

Ω × r · dr
c2 − ðΩ × rÞ2 ≃

2

c2
Ω · S; ð77Þ

with S being the vector area subtended by the loop Γ.
Time delay (77) between the reading of the clock standing

still on the rotating platform and that of the transported clock
lies at the root of the Sagnac effect. As it depends on the
rotation velocity and the actual path Γ, absolute clock
synchronization cannot be achieved. Sagnac corrections,
Eq. (77), must be performed as done routinely for global
positioning systems (Ashby, 2004).112

For helium, a Lorentz invariant two-fluid model can be built
over the usual Landau superfluid hydrodynamics as done by
Carter and Khalatnikov (1992) and Lebedev and Khalatnikov
(1982).113 The invariant velocity circulation, the generaliza-
tion of Eq. (16), reads

Z
Ξ
fv00dx0 þ v0idx

ig ¼ nκ; ð78Þ

where ðv0o; v0iÞ is the four-velocity in the rotating frame
ðc2 þ v0n · v0s;−v0sÞ. The normal fluid velocity v0n and the
superfluid velocity v0s are very small compared to c so that
the timelike component of the four-velocity reduces to c2.
The integration over Ξ is an actual loop integral only for
the spacelike components. The corresponding world line
is not closed because the time for synchronized clocks
varies according to Eq. (77). Upon integration, Eq. (75) is
recovered,

I
Γ
v0idx

i ¼ nκ þ
Z

c2g0idxi=g00 ≃ nκ − 2Ω · S; ð79Þ

which establishes the link between superfluid physics and the
relativistic clock approach: the true and honest Sagnac effect
described by the transported clocks, Eq. (77), and the
circulation quantization condition in the rotating frame lead-
ing to Eq. (76) are one and the same.114

Thus, Einstein-synchronized clocks provide the time stan-
dard by which phase differences can be kept track of all
studied physical systems. As summarized by Greenberger
(1983) for neutron interferometry experiments: “the phase
shift (in the rotating interferometer) is seen to be caused by the
different rates at which a clock ticks along each of the two
beams.” The rate at which that clock ticks for helium depends
on the chemical potential μ, due to the molecular field of the
condensate as shown by Beliaev, and on the Sagnac
phase shift.
The helium Sagnac experiments illustrate the reality of

matter wave interference in the superfluid helium, a substan-
tially massive coherent field. Coherent means coherence of the
quantum phase, giving a wavelike character to a bulky fluid.

B. Landau’s two fluids, ODLRO, and macrorealism

Anderson’s introductory words to the reprint of his 1966
paper in his book of 1994 are the following115: “I feel this is
the clearest discussion of superfluidity available. Note that on
many points this is contradictory or orthogonal to Landau
orthodoxy as pronounced by Khalatnikov. Whether Landau
would have agreed was never clarified because of his

FIG. 34 (color online). Photograph and schematic view of the
cell of Avenel, Mukharsky, and Varoquaux (2004), approximately
to scale for the inner parts, except for the loop, which is made of
two turns of 0.4 mm internal diameter capillary (only one turn is
shown) with total area 5.90� 0.10 cm2. The lower chamber of
the resonator is a cylindrical duct, 1 mm in diameter, and connects
the weak link to the flexible diaphragm (at the bottom) and to one
end of the pickup loop (on the side); the upper chamber, a squat
cylinder, is connected to the other end of the loop and to an inlet
toward the main superfluid bath in which the resonator is
immersed. Two pairs of coils produce fields parallel and
perpendicular to the flow through the weak link to locally control
the order parameter texture in 3He. The cryostat is rotated about
the vertical axis z by angle β from the north, shown by a compass
needle; λ is the latitude, 48°430 at Saclay. This cell has been used
to detect the rotation of the Earth from a “blind” laboratory with a
sensitivity of 5 × 10−3Ω⊕ Hz−1=2.

111As done in Landau and Lifshitz (1971), Sec. 90.

112Note that this clock transportation experiment was actually
performed by Hafele and Keating (1972) who boarded eastward and
westward bound commercial jetliners taking as luggage a portable
atomic clock.

113See Ho and Mermin (1980a).
114See Volovik (2003) for an alternate approach and Varoquaux

and Varoquaux (2008) for additional references. Equation (11) in the
latter reference is misprinted.

115See Anderson (1994), p. 165.
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accident.” This remark poses the problem of the complemen-
tarity between the two-fluid model, the description of Bose
condensation by the nonvanishing off-diagonal terms of the
density matrix over a long range, and the macroscopic wave
function approach.
Two crucial aspects of Landau’s legacy have been invoked

here. The two-fluid model has ruled once and for all on the
separation between normal fluid and superfluid components,
for both the thermodynamics and the hydrodynamics. As used
in this review in its reduced form for incompressible flows,
which treats both components as independent, it has allowed
one to basically disregard the normal component. There are
obviously limits to this high-handed simplification, especially
close to the λ point, but it has provided the backbone of the
simplified vortex dynamics of Sec. II and subsequent sections
on phase-slip processes. The second pillar of Landau’s
contributions to helium superflow is his criterion that many
consider as the genuine intrinsic critical velocity in super-
fluids. This criterion rests on the existence of a sharply defined
phonon-roton excitation spectrum, which allows for no low-
lying elementary excitations as Landau implicitly postulated.
Landau’s foreknowledge was soon put on firm ground by

the work of Bogolyubov, Beliaev, Penrose, Onsager, and
others. The formal description of the Bose condensate
correlations ended up in the concept of off-diagonal long-
range order (Yang, 1962) and a formal definition of the single
wave function shared by the particles in the condensate. For
not-too-complicated superfluids—4He and the B phase of
3He—this wave function, or order parameter, has a definite
overall phase.
The role of this phase actually came to the fore when

Anderson (1966a) gave it dynamical variable status and
universal applicability. In the appendix of his paper,
“ODLRO vs macroscopic particle fields,” he states explicitly
that “recognizing that in principle the relative phase of any
two (superfluid) systems may always be measured by a
Josephson-type experiment, one immediately has a usable
local description” (of those systems).
This local description has been put to good use. It has opened

the way to a full understanding of the interaction of quantized
vortices and superflow, put on firm classical hydrodynamics
footing by Huggins (1970). Sonin (1995) and others further
expanded the vortex velocity field idea into a workable scheme
for vortex dynamics. More importantly, it has bridged the gap
between a predominantly “classical” two-fluid hydrodynamics
and the more intimately quantum Josephson effects. The
experimental observation of these effects, and, in particular,
the detailed way by which dissipative phase slippage, under-
stood first as the nucleation and propagation of vortices, evolves
into the purest brand of Josephson hydrodynamics effects, for
both 3He and 4He superfluids, has brought new ideas.
Detailed numerical simulations of vortex dynamics have

been conducted by Schwarz and others,116 in particular, for the
problems of the vortex in an aperture, or trapped on a thin
wire, or else, pinned. Collision between vortices, and the

resulting reconnection, their multiplication by vortex mills
churning out fresh quantized vorticity, the formation of vortex
tangles, and the several ensuing critical velocities, are exam-
ples of the improved way of dealing with quantized vortices
fostered one way or another by Anderson’s considerations,
which thus appear complementary to Landau’s views.
Experimental observations have fully borne out over the years
this central concept of a macroscopic quantum phase gov-
erning the dynamical behavior of the superfluid.
But this holds for the phase in a single pool of superfluid

only. The idea that a given pool, or bucket, or droplet, of
superfluid has its own phase has become so common place
that the question of knowing if the quantum phase of an
isolated droplet of superfluid has a value of its own as
compared to another one seems out of place. As stated by
Anderson (1986): “Do superfluids that have never seen each
other have a well-defined relative phase”?
Before answering by a qualified “yes,” it may be useful to

consider the new inputs to this problem of the meaning, or
reality, of the phase in Bose condensates that have emerged
after 1996 from investigations in ultracold atomic systems.
This is not the topic of this review, but interference experi-
ments with BEC gases do bear on some aspects of it.
A seemingly curious fact was noted by Javanainen and Yoo

(1996) in their numerical simulations of the setting up of an
interference pattern between two condensates formed in
separate traps and left to overlap with one another.117 The
initial number of particles in each condensate is well defined in
this computer experiment. The phases of the condensate wave
functions are in no instance invoked in the number crunching
sequence describing the interference process. Yet it does
appear: the simple statistical count of bosons in separate bins
suffices.
This finding is a manifestation for the special case of atoms

in cold traps of the well-known tendency of bosons to “bunch”
together. This phenomenon was illustrated by Castin and
Dalibard (1997) who tackled the same problem analytically.
Namely, they studied the evolution of the relative phase of two
separate BE condensates of like species of atoms confined into
separate traps and left at some instant to interact by leaking two
small beams of atoms to a beam splitter. The two outgoing split
beams that have been mixed are read by two atom counters.
Following Castin and Dalibard, consider first that only a

single atom trap leaks atoms to the beam splitter. Assume the
first counting event to occur in counter (þ). The probability
for this event to take place is 1=2. Because of the Bose
statistics, the next event has a probability 3=4 to take place in
counter (þ), in which the first event was recorded, and 1=4 for
counter (−) that has not seen an atom yet (Feynman, Leighton,
and Sands, 1965). Iterating for k such events in a row, Castin
and Dalibard (1997) found that the probability that the k atoms
end up registered by counter (þ), and none by counter (−),
takes the following form:

Pðk; 0Þ ¼ 1

2

3

4
� � � 2k − 1

2k
;

116See the contributions of D. C. Samuels, O. C. Idowu et al., and
M. Tsubota, T. Araki, and S. K. Nemirovskii in Barenghi, Donnelly,
and Vinen (2001).

117Such an experiment was successfully performed soon after by
Andrews et al. (1997) and others.
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which is quite different from the probability of the same final
outcome for atoms with no quantum-statistical correlations,
namely, 1=2k. The latter becomes rapidly negligible for k ≫ 1
while the former decreases only as k−1=2. Bosons have a
strong tendency to crop or bunch together in states where they
can find like bosons.
Castin and Dalibard (1997) proceeded to study the case in

which the two separate BE condensates are now leaking
beams to the beam splitter. If the two incident beams are
described by fields with well-defined phases and identical
amplitudes, jψ0jeiφA and jψ0jeiφB , the mean intensities in the
(þ) and (−) output channels of the beam splitter are given by

Iþ ¼ 2jψ0j2cos2ðδφ=2Þ and I− ¼ 2jψ0j2sin2ðδφ=2Þ
ð80Þ

with δφ ¼ φB − φA. This matter wave interferometry meas-
urement allows as expected the determination of the phase
difference between the two condensates.
What happens now if the phases are not ascribed to the

condensates but instead their particle numbers NA and NB
are? Assuming NB ¼ NA for simplicity [as in the simulations
of Javanainen and Yoo (1996)] the two-condensate system is
now described by a Fock state hNAj; jNAi. Performing the
same interferometry measurement by counting atoms in the
(þ) and (−) counters should end up yielding result (80). It
does, but the interesting thing is how a phase difference arises
from the mere statistical count.
The detailed probability Pðkþ; k−Þ of counting kþ events in

counter (þ) and k− in counter (−) has been worked out
analytically by Castin and Dalibard (1997). The beat pattern
given by Eq. (80) is found to emerge gradually from the
successive counting events in the (þ) and (−) counters. The
phase difference can be obtained from the tallied quantities kþ
and k−: δφ≃ arctanð ffiffiffiffiffiffiffiffiffiffiffiffiffi

k−=kþ
p Þ. The particlelike description

turns into the wavelike description as the counting proceeds.
The sequence of measurements brings a definite quantum
phase to states for which none had been assumed to start with:
In the end, one is left with a state containing 2NA − k atoms
and a phase difference known to an accuracy of order 1=k.
The phase difference is an unpredictable random variable,

which takes a different value for any realization of the
counting experiment. It appears as a mere by-product of
the counting statistics. No direct interaction between the atoms
in the condensates has been assumed at any point. The BEC
gases are taken as perfect gases. The effect purely originates
from the quantum statistics of bosons. As concluded by Castin
and Dalibard, “the notion of phase-broken symmetry is
therefore not indispensable in order to understand the beating
of two condensates.”
This conclusion, which has gained wide acceptance,118 has

been illustrated by the experiments of Saba et al. (2005). They
dropped two condensates of like species out of their traps and,
during the course of their free fall and expansion, gently
pushed with laser beams a few atoms from one to the other.
They dutifully observed the continuous emergence of a fringe
pattern in a quintessential form, without beam splitters and

interferometers nor destruction of the condensate clouds, thus
realizing a nearly noninvasive measurement of their rela-
tive phase.
These cold atom gases constitute model systems. They can

be studied to their minutest details starting from the basic
principles of quantum mechanics. Photons in cavities provide
another such instance. Quantum-statistical correlations
between indistinguishable bosons play the leading role.
Particle interactions play a minor role of decoherence and
are neglected. Particle-wave duality is demonstrated to near
perfection.
Superfluids differ in a number of respects. The macroscopic

wave function introduced by Anderson is defined on the
premise that the particle number N and its possible variation
δN are sufficiently large so that the uncertainty in φ, expressed
by Eq. (11), δNδφ ∼ 1, is small in most instances. It is then
neglected and the operators N̂ and φ̂ are “projected” onto
c numbers. They have acquired a value once and for all: the
phase is forced to “exist” even if its actual value is not
determined by the same token and its absolute meaning
uncertain.
The introduction of the superfluid phase resembles a leap of

faith: it is there because it is needed to reproduce the
hydrodynamics. Leggett and Sols (1991) and Leggett
(1995) paid careful attention to this problem of the “existence”
of the phase. One of the many points raised by them is that, in
order to attribute a well-defined meaning to an absolute phase,
one has first to consider the relative phase of one bucket of
superfluid with respect to another—presumably measured by
performing a Josephson experiment. The various ways and
constraints of such an experiment have been expounded in the
previous sections: the “relative” phase between two weakly
connected superfluid systems (1) and (2) δφ12 ¼
φ2 − φ1 can be measured and indeed possesses a well-defined
meaning. Suppose now that systems (1) and (2) are separated
and a third system brought in. System (3) can be compared to
(1), with the result δφ13 ¼ φ3 − φ1: is it possible to infer that
the phase difference between (2) and (3) is φ3 − φ2 ¼
δφ13 − δφ12? If yes, then phases can be referred to a
“standard” and acquire absolute meaning.
The not-so-trivial answer given by Leggett (1995) is “no” if

the systems are left to settle to equilibrium with the environ-
ment and the two Josephson phase measurements are inde-
pendent, but “yes” if they are done simultaneously. In other
words, maintaining a superfluid phase standard across the
various standards laboratories of the planet would require
connecting them with a continuous superfluid duct. The phase
information would have to be tapped from this standard at the
same time and place, or else a host of corrections, such as that
for local gravity or for the Sagnac effect (the synchronization
of the Einstein clocks) would have to be performed. If the
phase readings are not simultaneous, the correlation between
phase measurements for systems (1) and (2) and then (1) and
(3) is upset by the sole act of measuring, with a part played by
the environment; decoherence takes its toll and phases
ultimately randomize (Sols, 1994; Zapata, Sols, and
Leggett, 2003).
The situation in simple superfluids such as 4He and 3He-B,

in which macroscopic coherence holds over lengths of meters
and more, and in which the Planck constant hides at the118See Horak and Barnett (1999) and Nienhuis (2001).
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nanometric scale provides a quite extreme example of macro-
scopic matter field. The fact that the macroscopic field ΦðrÞ
standing as the single-particle wave function for condensate
atoms possesses quantum properties is indisputable—the
quantization of velocity circulation and the existence of
persistent currents offer concrete examples. However, the sort
of coherence shown by ultracold atom condensates does not
stand out readily for dense superfluids. The description of the
superfluid dynamics in terms of the conjugate variables N and
φ belongs more to thermodynamics than to quantum mechan-
ics. The correlation between atoms in the dense helium fluid
relies more on their hard-core repulsion than on their Bose
statistics.
Yet the quantum interferences by quantum tunneling

between macroscopically distinct states in superfluid
Josephson junctions, the quantum nucleation of vortices
clearly reveals the importance of the latter. In these situations,
the coarse-grained average fails and some other procedure,
more in line with the basic rules of quantum mechanics, and,
in particular, the principle of superposition, is in order. Would
it be possible to envision experiments showing actual macro-
scopic quantum coherence as discussed by Leggett (1980,
2002) and Annett (2003)? The superfluid quantum phase
would then gain a dual acceptance, actual coherence in the
superposition of different states on a very small scale, on
the one hand, and, on the other hand, the “rigidity,” in the
language of F. London, of the velocity potential of the ideal
Euler fluid and the quantizsation of the velocity circulation.
The above remarks bring this “essay on criticism” of

Anderson’s Considerations to a close. At this stage, but
one hard conclusion can be drawn: many offshoots have
already sprung but more are to grow.
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APPENDIX

What needs to be shown is that the second term on the right-
hand side of Eq. (41) corresponds to the variation of the vortex
loop self-energy for the infinitesimal deformation sðlÞ into
sðlÞ þ εδðl − l0Þ. This energy variation can be derived from
the functional derivative of Ev½s�, given by Eq. (23), with
respect to the deformation δs :

δE½s�
δs

����
l0

¼ ρsκ
2
4

8π

�
−
I

dsðl0Þ
dl0

·
dsðl2Þ
dl2

sðl0Þ − sðl2Þ
jsðl0Þ − sðl2Þj3

dl2

þ lim
ε→0

I I
ε ·

dsðl2Þ
dl2

δ0ðl1 − l0Þ
dl1dl2

jsðl1Þ − sðl2Þj

þ l1 ⇔ l2

�
: ðA1Þ

The first term on the right-hand side of Eq. (A1) results from
the differentiation of 1=jsðl1Þ − sðl2Þj with respect to l1 and

integration over the Dirac function representing the deforma-
tion at l1 ¼ l0. The integral over the derivative of the Dirac
δ function, which comes from the differentiation of
dsðl1Þ=dl1, yields the derivative of the integrand evaluated
at l0. The contribution of the integration over l2 over the same
contour with the same deformation is equal to that over l1,
expressed by the first two terms on the right-hand side of
Eq. (A1), and yields a factor of 2 in the final result.
Using the notation t̂ðlÞ ¼ dsðlÞ=dl for the unit vector

tangent to the vortex loop at location sðlÞ, Eq. (A1) can be
written as

δE½s�
δs

����
l0

¼ ρsκ
2
4

4π

I �
t̂ðl0Þ ·

sðl0Þ − sðl2Þ
jsðl0Þ − sðl2Þj3

t̂ðl2Þ

− t̂ðl0Þ · t̂ðl2Þ
sðl0Þ − sðl2Þ
jsðl0Þ − sðl2Þj3

�
dl2

¼ ρsκ
2
4

4π
t̂ðl0Þ ×

I
t̂ðl2Þ ×

sðl0Þ − sðl2Þ
jsðl0Þ − sðl2Þj3

dl2

¼ ρsκ4t̂ðl0Þ × vvðl0Þ: ðA2Þ

The double cross product in the second equality of Eq. (A2)
appears because of the vector relation ða · cÞb − ða · bÞc ¼
a × ðb × cÞ. The last equality is obtained using the Biot-
Savart law, Eq. (19), for vv the velocity induced by the vortex
loop on itself at l0. The logarithmic divergences for l0 ¼ l2 are
cut off at the core radius a0.

119 The change of the vortex self-
energy is then expressed by

ΔEv ¼
Z

lþΔl

l

I
loop

δE½s�
δs

����
l0

· δxδðl − l0Þdldl0

¼
Z

lþΔl

l
ρsκ4t̂ðl0Þ × vv · vpΔtdl0:

Assuming the integrand constant over the small element Δl,
Eq. (43) ensues.
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