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Recent advances in the generation of well-characterized subfemtosecond laser pulses have opened up
unpredicted opportunities for the real-time observation of ultrafast electronic dynamics in matter.
Such attosecond chronoscopy allows a novel look at a wide range of fundamental photophysical and
photochemical processes in the time domain, including Auger and autoionization processes, as well
as photoemission from atoms, molecules, and surfaces, complementing conventional energy-domain
spectroscopy. Attosecond chronoscopy raises fundamental conceptual and theoretical questions as to
which novel information becomes accessible and which dynamical processes can be controlled and
steered. Several of these questions, currently a matter of lively debate, are addressed in this review.
The focus is placed on one prototypical case, the chronoscopy of the photoelectric effect by
attosecond streaking. Is photoionization instantaneous or is there a finite response time of the
electronic wave function to the photoabsorption event? Answers to this question turn out to be far
more complex and multifaceted than initially thought. They touch upon fundamental issues of time
and time delay as observables in quantum theory. Recent progress of our understanding of time-
resolved photoemission from atoms, molecules, and solids is reviewed. Unresolved and open
questions are highlighted and future directions are discussed addressing the observation and control
of electronic motion in more complex nanoscale structures and in condensed matter.
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I. INTRODUCTION

Following electronic dynamics in real time, watching the
formation or breaking of chemical bonds, the transfer of
electrons from one constituent to another, or the ejection of
electrons from an atom or molecule has been a dream and
challenge of time-resolved quantum physics for a long time.

The extent to which such ultrafast processes are accessible to
measurements at all has remained a matter of debate.
Observing the temporal electronic evolution requires inter-
rogation of the system on ultrafast time scales. Yet such probes
are subject to both time-energy and position-momentum
uncertainty. Moreover, they are prone to distortion of the
very evolution that is to be observed.
On an even more fundamental level, the question is posed

as to whether and how time-domain information, referred to in
the following as chronoscopy, can add to and complement the
information accessible through high-resolution spectroscopy,
i.e., time-integral measurements in the energy domain.
Pioneered by the advances in femtosecond chemistry
(Rosker, Dantus, and Zewail, 1988; Zewail, 1988, 2000a,
2000b) the application of ultrafast laser technology to atoms,
molecules, nanostructures, and solid surfaces has revolution-
ized the time-honored field of photoelectron spectroscopy.
Observation of the motion of atomic constituents on their
natural time scale came into reach. While for resolving the
atomic motion in molecules in time, for example, by creating
and taking snapshots of a vibronic wave packet, laser
pulses with a duration of several femtoseconds (10−15 s)
are sufficient, accomplishing a similar feat for the electronic
motion in atoms, molecules, or condensed matter requires
subfemtosecond, that is attosecond (as), time resolution
(1 as ¼ 10−18 s). Advances during the last decade in the
development of phase-controlled few-cycle infrared (IR) laser
pulses (cycle period TIR ≃ 2.7 fs at λ ¼ 800 nm) and ∼100 as
extreme ultraviolet (XUV) pulses, temporally well correlated
with each other through the underlying high-harmonic gen-
eration (HHG) process (Drescher et al., 2001; Hentschel et al.,
2001; Paul et al., 2001), have opened up the possibility to
observe and to control electronic dynamics in matter in real
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time and have developed into a new field called attosecond
physics [see, e.g., Agostini and DiMauro (2004), Reider
(2004), Scrinzi et al. (2006), Bucksbaum (2007), Corkum
and Krausz (2007), Kling and Vrakking (2008), Krausz and
Ivanov (2009), Chang (2011), Gallmann, Cirelli, and Keller
(2012), Plaja, Torres, and Zaïr (2013), Schultz and Vrakking
(2013), Kim, Villeneuve, and Corkum (2014), Krausz and
Stockman (2014), Lepine, Ivanov, and Vrakking (2014), and
Peng et al. (2015) for reviews of the subject]. Previously, time-
resolved electronic dynamics was accessible only for high-
lying excited states. In such Rydberg states with quantum
numbers n ≫ 1, the intrinsic time scale given by the period of
a Bohr orbit τn ¼ 150 as × n3 reaches picoseconds (for
n ≈ 30) or even nanoseconds (for n ≈ 300) and can be
conveniently interrogated by microwave pulses (Gallagher,
2005) or electric pulses from arbitrary-form pulse generators
(Dunning et al., 2009). Only with the advent of attosecond
pulses, time-resolved dynamics near the ground state (n≃ 1)
and deep into the quantum regime came into reach.
Currently available tools are mostly based on pump-

probe-like settings combining a ∼100 as XUV pulse as a
pump with a phase-controlled IR pulse as a probe. They
include the attosecond streaking technique (Drescher et al.,
2001; Hentschel et al., 2001; Itatani et al., 2002; Kienberger
et al., 2004; Yakovlev, Bammer, and Scrinzi, 2005; Sansone
et al., 2006) and RABBIT (reconstruction of attosecond
harmonic beating by interference of two-photon transitions)
(Véniard, Taïeb, and Maquet, 1996; Paul et al., 2001; Muller,
2002; Toma and Muller, 2002; Haessler et al., 2009; Caillat
et al., 2011; Klünder et al., 2011). The roles of pump and
probe are reversed in attosecond transient absorption (ATA)
(Goulielmakis et al., 2010; Wang et al., 2010; Gaarde et al.,
2011; Holler et al., 2011; Santra et al., 2011; Chen et al.,
2012, 2013; Pabst et al., 2012; Gallmann et al., 2013;
Ott et al., 2013, 2014; Beck, Neumark, and Leone, 2015)
where the IR pulse creates the wave packet while the
modulation of the absorption of the attosecond XUV pulse
probes the time evolution of the electronically excited system.
A promising variant of attosecond streaking is the so-called
attosecond clock (“attoclock”) (Eckle, Pfeiffer et al., 2008;
Eckle, Smolarski et al., 2008; Pfeiffer et al., 2011, Pfeiffer
et al., 2013; Pfeiffer, Cirelli et al., 2011) or angular streaking
which employs a near-circularly rather than a linearly polar-
ized IR field. Up to now, experiments in which the excitation
by an attosecond pump pulse is timed by an attosecond clock
have not yet become available, but promise novel and
complementary insights. These different realizations of atto-
second chronoscopy have in common that they are capable of
delivering real-time information on electronic processes on
ultrafast time scales. Precisely which information is actually
encoded and how it can be retrieved is, however, still a widely
open question and understanding of the emergent chrono-
scopic information is still in its infancy. On the most
fundamental level, it revolves around the lively debated issue
of time and time delays as observables in quantum dynamics
and the linear as well as nonlinear response of quantum
systems to ultrafast perturbations. It, furthermore, is closely
linked to the quantum-to-classical correspondence since tim-
ing, the notion of sequentiality of events and clocks, appears

to be an intrinsically classical concept. For large systems with
many degrees of freedom (open quantum systems) classical
time information is expected to emerge from time-dependent
quantum dynamics via decoherence and dephasing (Zurek,
2003; Gardiner and Zoller, 2004; Weiss, 2012).
In view of an almost explosive growth of the literature in the

field of attosecond physics in recent years (∼1500 articles
with the word “attosecond” in the title have been hitherto
published which have been cited by another 8000 articles), we
focus the discussion in this review article on the insights
gained as well as on the many unresolved issues that have
emerged for a few prototypical examples, most notably the
first time-resolved realization of the photoelectric effect
(Cavalieri et al., 2007; Schultze et al., 2010; Klünder et al.,
2011). Experiments on the photoelectric effect have provided
a first glimpse of timing and time delay in photoemission.
Time delay as a quantum dynamical observable was originally
introduced by Eisenbud (1948) and Wigner (1955) for single-
channel resonant scattering. Later, Smith (1960) generalized
this approach to a multichannel context by the introduction of
a lifetime matrix. This time delay is referred to as the
Eisenbud-Wigner-Smith (EWS) delay. Photoemission repre-
senting a half-scattering process allows the application and
extension of this concept. The corresponding delay tEWS can
be viewed as a finite time shift in the formation of the outgoing
electronic wave packet during the photoemission event.
Photoionization has been found to not be instantaneous as
conventionally thought, but the departure of the outgoing
wave packet is temporally shifted relative to the arrival of the
XUV pulse, typically by a few attoseconds.
We review in the following the theoretical framework

which unambiguously identifies tEWS as an observable
accessible by attosecond chronoscopy. The key is the
determination of phase shifts in the presence of a probing
IR field. We first discuss both one- and two-electron systems
and address the influence of electronic correlation on the
time-resolved photoemission processes. Extension to mole-
cules reveals the influence of the internal geometric structure
of the ionized complex on the formation of the outgoing
wave packet. Photoemission from solid surfaces serves as a
prime example for decoherence due to multiple scattering,
connecting coherent quantum dynamics and classical trans-
port. The recent extension to two-photon ionization reveals
another novel observable: the time elapsed between two
photoabsorption (photoemission) events. We also inquire
into a possible scenario for probing the notion of tunneling
time by attosecond streaking. We conclude by pointing to
future directions. Unless otherwise stated, atomic units (a.u.)
are used.

II. TIME AND TIME DELAY AS OBSERVABLES
IN PHOTOEMISSION

Attempts to observe electronic dynamics or, more gener-
ally, quantum dynamics in the time domain raise many
interesting conceptual questions. Among them are the follow-
ing: What can be learned from the time-dependent wave
function of the electrons ΨðtÞ or from the expectation value of
an observable hOit at a time t that cannot be inferred from
the stationary (i.e., time-independent) final state observed at
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t → ∞ in a conventional spectroscopic measurement? On an
even more fundamental level, is the time of a transition, or are
time intervals Δt between elementary processes (or “quantum
jumps”) physically meaningful observables? As highlighted in
the following, time-resolved photoemission touches upon
many of those aspects.

A. S matrix and reduced density matrix for photoemission

Photoemission is described in first-order perturbation
theory by the transition amplitude

að1Þi→fðtÞ ¼ −i
Z

t

−∞
dt0hΦfjeiH0t0Vðt0Þe−iH0t0 jΦii; ð2:1Þ

where in the dipole approximation the interaction operator
with the electromagnetic field of the ionizing XUV pulse is
given in the so-called velocity gauge in terms of the vector

potential ~A by (Scully and Zubairy, 1997)

VðtÞ ¼
XN
i¼1

~pi⋅~AðtÞ=c ð2:2Þ

or alternatively in the length gauge (Göppert-Mayer, 1931) in

terms of the electric field ~F by

VðtÞ ¼
XN
i¼1

~ri⋅~FðtÞ: ð2:3Þ

Physical observables should be independent of the choice of
the gauge [Eqs. (2.2) and (2.3)]. This holds true if Eq. (2.1) is
evaluated for exact initial and final states jΦi;fi. More
generally, numerically exact solutions of the time-dependent
Schrödinger equation yield gauge-independent transition
probabilities jai→fðt → ∞Þj2. In contrast, in approximate
treatments, notably within the framework of the strong-field
approximation (SFA) for nonperturbative interactions of
matter with strong IR fields, a strong dependence on the
choice of the gauge has been observed (Bauer, Milošević, and
Becker, 2005; Chirilă and Lein, 2006).
In Eq. (2.1) the initial bound state jΦii and the final

continuum state jΦfi are solutions of the stationary
Schrödinger equation

H0jΦi;fi ¼ Ei;fjΦi;fi ð2:4Þ

of the unperturbed system described by the Hamiltonian
H0. In the following examples H0 can represent atoms,
molecules, or solid surfaces. The canonical position and
momentum coordinates of the electrons are denoted by
ð~ri; ~pi∶i ¼ 1;…; NÞ.
An attosecond pulse with carrier frequency ωXUV and

duration τXUV corresponding to a Fourier-limited pulse with
spectral width Δω ∼ 2π=τXUV will generate a coherent super-
position of final states jΦfi ¼ jΦϵjsi, i.e., a wave packet,

jΨðtÞi ¼
X
j;s

Z
dϵe−iEϵjstaϵjsðtÞjΦϵjsi; ð2:5Þ

where ϵ characterizes the energy and j all other quantum
numbers of the emitted electron [e.g., angular momentum l,
spin quantum numbers S;MS, and emission direction
k̂ ¼ ðθ;φÞ] while s stands for all quantum numbers of the
N − 1 electron state of the residual ionic complex I. For later
reference we note that the asymptotic limit t → ∞ of Eq. (2.5)
can be related to the scattering operator S (or S matrix) for the
transition driven by the XUV field,

jΨt→∞i ¼ SXUVjΦii: ð2:6Þ

The photoelectron spectrum corresponds to the expectation
value of the projector Pϵj ¼ jϵjihϵjj onto continuum energy
eigenstates of the emitted electron. After conclusion of the
pulse at τXUV, the Hamiltonian of the entire system eventually
separates into channel Hamiltonians

H0 ¼ He þHðN−1Þ
I ; ð2:7Þ

with

Hejϵji ¼ ϵjjϵji ð2:8Þ

the Schrödinger equation describing the emitted electron, and

HðN−1Þ
I jsi ¼ Esjsi ð2:9Þ

the Schrödinger equation for the residual complex. The one-
electron state jϵji emerging from the interacting N electron
system can be viewed as a Dyson orbital [see, e.g., Nicholson
et al. (1999) and Ortiz (2003) and references therein]. The
energy of the entire system is accordingly given by

Eϵjs ¼ ϵj þ Es: ð2:10Þ

The expectation value,

hΨðtÞjPϵjjΨðtÞi ¼
X0

s

jaϵjsðtÞj2; ð2:11Þ

represents the time-dependent photoionization probability,
where the sum extends over the subset (denoted by the prime)
of ionic states that are energetically accessible

jϵþ Es − Ei − ωXUVj≲ ΔωXUV

2
ð2:12Þ

within the spectral bandwidth [full width at half maximum
(FWHM)] ΔωXUV of the pulse. Time-integral spectroscopy
corresponds to a time average over time intervals Δt large
compared to the pulse duration

hPϵjiΔt ¼
X0

s

hjaϵjsðtÞj2iΔt ð2:13Þ

taken after the conclusion of the pulse. Equations (2.11) and
(2.13) can be rewritten in terms of the asymptotic reduced
one-electron density operator
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ρ ¼ TrI½jΨðtÞihΨðtÞj�; ð2:14Þ

where the trace TrI extends over the Hilbert space of the ionic
N − 1 electron system. The time-integral photoemission
probability Eq. (2.13) reads

hPϵjiΔt ¼ TreðjϵjihϵjjρÞ; ð2:15Þ
where the trace Tre extends now over the unresolved degrees
of freedom of the emitted electron (e.g., spin) and includes the
time average over Δt. In angular-differential photoemission
spectroscopy, the index j refers to the emission direction k̂.
Expansion of Eq. (2.15) in terms of partial-wave amplitudes
l yields

hPϵk̂iΔt ¼
X
lm
l0m0

Ym
l ðΩÞYm0�

l0 ðΩÞ
X0

s

haϵlmsðtÞa�ϵl0m0sðtÞiΔt

¼
X
lm
l0m0

Ym
l ðΩÞYm0�

l0 ðΩÞhϵlmjρjϵl0m0iΔt ð2:16Þ

with the solid angleΩ ¼ ðθ;φÞ. Coherences between different
partial waves (l;l0) at the same energy ϵ are expressed in
terms of off-diagonal elements of the reduced density matrix
hϵlmjρjϵl0m0i. In turn, the angle-integrated spectrum depends
only on the incoherent sum over partial waves

hPϵiΔt ¼
Z

dΩhPϵk̂iΔt ¼
X
lm

X0

s

hjaϵlmsðtÞj2iΔt

¼
X
lm

hϵlmjρjϵlmiΔt: ð2:17Þ

In general, energy-resolved photoemission spectra thus pro-
vide access only to the time-averaged square modulus of the
transition amplitude [Eq. (2.17)]. In the special case of
coherent excitation of degenerate subspaces to fixed energy
ϵ, relative phases between different partial-wave amplitudes
∼eiðδl−δl0 Þ can be observed in angular resolved measure-
ments [Eq. (2.16)].
In contrast, time-resolved measurements promise direct

access to the time-dependent expectation value of dynamical
observables O associated with the degrees of freedom of the
emitted electron observed,

hΨðtÞjOjΨðtÞi ¼
Z

dϵ
Z

dϵ0
X
j;j0

hϵjjOjϵ0j0ihϵ0j0jρðtÞjϵji

¼ Tre½OρðtÞ�; ð2:18Þ

expressed in terms of the time-dependent reduced density
matrix (without averaging over Δt)

hϵjjρðtÞjϵ0j0i ¼
X0

s

aϵjsðtÞa�ϵ0j0sðtÞeiðϵ
0−ϵÞt: ð2:19Þ

Coherences between continuum states of different energies ϵ
present in the wave packet are now in reach and manifest
themselves by “quantum beats” with frequencies jϵ0 − ϵj
(Yudin et al., 2005; Hu and Collins, 2006; Yudin,
Bandrauk, and Corkum, 2006; Morishita, Watanabe, and

Lin, 2007; Kazansky, Kabachnik, and Sazhina, 2008;
Argenti and Lindroth, 2010; Mauritsson et al., 2010; Feist
et al., 2011; Pabst et al., 2011; Tzallas et al., 2011; Bian and
Bandrauk, 2012; Argenti et al., 2013; Klünder et al., 2013;
Wirth, Santra, and Goulielmakis, 2013; Carpeggiani et al.,
2014; Chini et al., 2014; Ott et al., 2014). Comparison
between Eqs. (2.16) and (2.18) indicates that the interrogation
of the photoemission process at any time t promises to
uncover dynamical information not accessible in time-integral
measurements. A proposal for such a direct measurement of
the time-resolved ionization probability near autoionizing
resonances in helium employing attosecond pulses has
recently been discussed (Argenti et al., 2013).
In current realizations of attosecond chronoscopy, the

operator facilitating the in situ interrogation during the
photoemission is another pulse described by the interaction
operator V [Eqs. (2.2) and (2.3)] displaced in time relative to
the ionizing attosecond pulse by a variable delay time τ.
Ideally, the probing pulse would be another attosecond XUV
pulse of comparable duration. While considerable progress
has been made toward developing attosecond XUV sources of
sufficient intensity and timing control (Chang and Corkum,
2010; Gilbertson, Wu et al., 2010; Takahashi et al., 2010;
Lan, Takahashi, and Midorikawa, 2011; Tzallas et al., 2011),
such XUV-pump–XUV-probe settings have not yet been
implemented for attosecond chronoscopy. Instead, IR laser
pulses for which exquisite phase and thus subcycle timing
control has been achieved [see, e.g., Hentschel et al. (2001),
Baltuska et al. (2003), and Chang (2011) and references
therein] are used to interrogate the time evolution. While the
pulse duration of a typical few-cycle pulse is τIR ≃ 5 fs (the
period TIR of an optical cycle for 800 nm radiation is
TIR ¼ 2.7 fs), its oscillating field, controlled to within a small
fraction of 1 rad, offers a convenient route to attosecond time
resolution. The three different approaches utilized so far,
linear momentum attosecond streaking with linearly polarized
IR fields (Drescher et al., 2001; Hentschel et al., 2001;
Kienberger et al., 2004; Sansone et al., 2006; Cavalieri et al.,
2007; Schultze et al., 2010; Sabbar et al., 2015), angular
streaking (attoclock) (Eckle, Pfeiffer et al., 2008; Eckle,
Smolarski et al., 2008; Pfeiffer et al., 2011, 2013; Pfeiffer,
Cirelli et al., 2011) with circularly polarized IR fields, and the
interferometric RABBIT technique (Paul et al., 2001; Toma
and Muller, 2002; Mauritsson, Gaarde, and Schafer, 2005;
Swoboda et al., 2010; Klünder et al., 2011; Guénot et al.,
2012, 2014; Palatchi et al., 2014), have in common that the IR
field probes the evolution during the emission, as implied by
Eq. (2.18), without, however, necessarily performing a pro-
jective measurement which would lead to the “collapse of the
wave packet,” i.e., to the reduction of the density operator.
Instead, the probe pulse maps the time-dependent excited state
jΨðtÞi onto the asymptotic scattering state jΦi, such that
chronoscopic information can eventually be retrieved from
spectral information [Eqs. (2.16) and (2.17)]. The key point is
that the timing information sought can be extracted from the
asymptotic S-matrix element [analogous to Eq. (2.6)],

jΨðt → ∞Þi ¼ SXUVþIRjΦii; ð2:20Þ
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that includes the influence of both the exciting XUV-pump
field and the probing IR field. Details of this mapping differ
for the different approaches and are far from fully understood.
We will analyze this mapping in detail for the example of
attosecond streaking which operates, in certain limiting cases,
like a classical clock.

B. Time-delay operator

Unambiguously recovering timing information from the
asymptotic time-independent scattering state Eq. (2.20)
touches upon the lively debated question whether and to
which extent time or time delay are well-defined quantum
observables at all. It was realized in the early days of quantum
theory by Pauli (1926, 1933) that association of time t with a
Hilbert operator following standard correspondence identities,

t̂ ¼ −i
∂
∂E ; ð2:21Þ

faces fundamental conceptual difficulties. Since the spectrum
of the canonically conjugate operator H of a quantum system
is bounded from below, t̂ cannot be a self-adjoint operator.
This argument originally developed in the context of the
nonrelativistic Schrödinger equation can be extended into the
relativistic domain. Even though the Dirac equation allows for
unbounded negative-energy solutions, the finite excitation gap
½−mc2; mc2� delimits the continuous spectrum of H and thus
prevents the construction of a self-adjoint operator t̂ (Maquet,
Caillat, and Taïeb, 2014; Maquet, 2014). This conceptual
difficulty is directly related to the well-recognized fact that the
quantum-theoretical foundation of the time-energy uncer-
tainty relation ΔtΔE≳ ℏ=2 is fundamentally different from
the uncertainty relation for canonically conjugate variables of
generalized positions and momenta ΔxiΔpi ≥ ℏ=2. While
both relations express the Fourier reciprocity, a self-adjoint
operator t̂, unlike the position operator, does not exist.
Therefore, many standard quantum theory textbooks state
that t is a parameter with which no operator is associated
(Gottfried, 1966; Cohen-Tannoudji, Diu, and Laloë, 1977).
Recent work in mathematical physics clarified the formal
properties of time as a Hilbert space operator. The “arrival
time” operator [Eq. (2.21)] can be shown to be symmetric
rather than self-adjoint. For a recent introduction into the
formal aspects of the time operator in quantum physics, see
Sassoli de Bianchi (2012).
A different scenario emerges, however, when the domain of

the operator is restricted to scattering states. This allows one to
construct a self-adjoint operator describing the time delay.
Based on intuitive physical reasoning, Eisenbud (1948),
Wigner (1955), and Smith (1960) argued already in the
1950s that time delays or lifetimes of resonances should be
expectation values of a bona-fide observable in quantum
scattering, the time-delay operator,

t̂EWS ¼ −iS†ðEÞ ∂
∂ESðEÞ; ð2:22Þ

where SðEÞ is the scattering operator (matrix). Note that the
time-delay operator Eq. (2.22) bears no direct relationship to

the arrival time operator [Eq. (2.21)] and to the time-energy
uncertainty relation.
A prototypical case is resonant scattering where tEWS

describes the “sticking time” of the incoming particle due
to transient trapping in a quasibound state before leaving the
interaction region as an outgoing wave packet. This sticking
time amounts to the time delay of the outgoing wave packet
relative to that of the incoming wave packet passing by the
scattering region in the absence of the interaction potential.
Formally, the subtraction of the travel time of the unperturbed
wave packet is built into Eq. (2.22) by restricting the
application of the differential operator to the energy depend-
ence of the S matrix only and not to the unperturbed
continuum state the S operator acts on. In a multichannel
scattering problem with M open channels ði ¼ 1;…;MÞ, the
time-delay operator becomes anM ×M matrix (Smith, 1960),
hΦijt̂EWSjΦ0

ii. The eigenstates of the self-adjoint t̂EWS matrix
describe the scattering eigenchannels. Their eigenvalues
correspond to the proper time delays associated with the
corresponding scattering channel (Libisch et al., 2008; Rotter,
Ambichl, and Libisch, 2011).
The EWS time-delay operator Eq. (2.22) is well defined

only for S matrices describing scattering at short-ranged
potentials. In the special case of potential scattering with
spherical symmetry, the S matrix is diagonal in the angular
momentum representation Sl,

SlðEÞ ¼ e2iδlðEÞ: ð2:23Þ

The corresponding time delay for a given partial wave l
follows from Eqs. (2.22) and (2.23) as the energy variation of
the partial-wave scattering phase shift δlðEÞ,

tEWSðE;lÞ ¼ 2
d
dE

δlðEÞ: ð2:24Þ

The outgoing wave packet is assumed to reach within a finite
propagation time the asymptotic interaction-free region where
the channel Hamiltonian He [Eq. (2.8)] consists of the kinetic
energy operator only. Extension of the time-delay operator to
Coulomb scattering requires modifications (Martin, 1981;
Bollé, Gesztesy, and Grosse, 1983).
The concept of time delays has found application in many

branches of physics, classical as well as quantum, that deal
with wave propagation and scattering, ranging from the Goos-
Hänchen effect in electromagnetic scattering at dielectric
interfaces (Goos and Hänchen, 1947; Chiu and Quinn,
1972) and resonant photon scattering at ultracold atoms
(Bourgain et al., 2013) to electron transport through meso-
scopic devices (“billiards”) featuring hybrid normal-
conducting and superconducting boundaries (Libisch et al.,
2008). Closely related to time delay is the concept of dwell
time or sojourn time, the time a wave packet remains localized
within a finite domain in coordinate space. The relationship
between dwell time and time delay as well as applications are
discussed in recent reviews (de Carvalho and Nussenzveig,
2002; Kolomeitsev and Voskresensky, 2013). The connections
to the controversial subject of “tunneling time,” the time it
takes a wave packet to penetrate a barrier, have been the
subject of a large number of publications (MacColl, 1932;
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Hartman, 1962; Hauge and Støvneng, 1989; Landauer and
Martin, 1994; Steinberg, 1995; Olkhovsky, Recami, and
Jakiel, 2004; Winful, 2006; Kolomeitsev and Voskresensky,
2013). Attempts to observe tunneling times on the attosecond
scale for strong-field ionization of atoms (Eckle, Smolarski
et al., 2008; Shafir et al., 2012; Klaiber et al., 2013;
McDonald et al., 2013; Pfeiffer et al., 2013; Zhao and
Lein, 2013; Orlando et al., 2014) have so far been incon-
clusive. While outside the main scope of this article on the
time-resolved photoelectric effect, we briefly discuss the
challenge in extracting such timing information in Sec. IX.
Employing the delay operator [Eqs. (2.22)–(2.24)] to atto-

second chronoscopy of photoemission described by first-order
perturbation theory (or lowest-order perturbation theory for
the case of two-photon double ionization discussed in
Sec. VIII) requires several modifications. First, photoemission
is a half-scattering process in which a matter wave packet
resides in the continuum only in the exit channel while in the
entrance channel the wave function jΦii represents a bound
rather than a continuum state. Second, photoemission leaves a
residual charged ionic fragment behind. Consequently, the
outgoing electron is subject to the long-range Coulomb
interaction for which the intrinsic EWS time delay is, strictly
speaking, not well defined (Wigner, 1955; Smith, 1960;
Martin, 1981; Bollé, Gesztesy, and Grosse, 1983). We show
in the following that, with suitable modifications, tEWS can,
indeed, be unambiguously determined for Coulombic exit-
channel interactions. Third, the time information contained in
the scattering operator describing the ionization by the XUV
field alone, SXUV, has to be disentangled from that describing
the simultaneous presence of the probing field, SXUV-IR.
For emission of an electron from a one-electron system with

energy ϵ and in the direction k̂, the SXUV matrix element
describing the transition driven by the XUV field in the
absence of the probing field follows from Eqs. (2.1) and (2.3)
(with t → ∞) as

hϵk̂jSXUVjΦii ¼ −i ~FXUVðω ¼ ϵ − EiÞhϵk̂j~r ê jΦii; ð2:25Þ

where ~FXUVðωÞ is the Fourier transform of the electric field of
the attosecond pulse and ê is its polarization vector (in the
following we set ê ¼ ẑ). Application of Eqs. (2.22) and (2.25)
yields the expectation value of the EWS time delay

tEWSðϵ; k̂Þ ¼
d
dϵ

arghϵk̂jzjΦii: ð2:26Þ

We assume in the following that the temporal structure of the
XUV pulse is Fourier transform limited and chirp free, i.e., its
frequency distribution remains constant during the duration of
the pulse. Otherwise, pulse-induced contributions to the
spectral variation of the photoionization amplitude would
give rise to apparent spectral variations similar to Eq. (2.26)
masking the EWS delay (Cirelli et al., 2015). Controlling and
minimizing the chirp is therefore essential in extracting
accurate time delays (Schultze et al., 2010).
In the special case where only a single partial wave in the

continuum is accessed in a dipole transition, e.g., in an S → P
transition, Eq. (2.26) reduces to

tEWSðϵ;lÞ ¼
d
dϵ

δlðϵÞ: ð2:27Þ

The missing factor of 2 [compared to Eq. (2.24)] indicates that
photoemission is a half-scattering process. Generalization of
Eq. (2.22) to a one-electron emission from a many-electron
system employing Eq. (2.13) reads

htEWSðϵ; k̂Þi ¼ TrIhΦijS†XUV
�
−i

∂
∂ϵ

�
SXUVjΦii

¼ −i
X0

s

hΦijS†XUVjϵk̂si
∂
∂ϵ hϵk̂sjSXUVjΦii

≃
P0

s
∂
∂ϵ arghϵk̂sjzjΦiijhϵk̂sjzjΦiij2P0

sjhϵk̂sjzjΦiij2
; ð2:28Þ

where the energy dependence of the modulus of the dipole
matrix element has been neglected in the last step.
The time delay extracted from SXUV, calculated by first-

order perturbation theory, characterizes the linear response of
the unperturbed system H0 and is, thus, independent of the
properties of the XUV pulse. It is therefore tempting to inquire
into alternative routes to access such time-delay information
without performing attosecond time-resolved measurements.
Since the time delay is determined by the spectral variation of
the partial-wave scattering phase, the energy variation of the
scattering probability or cross section for electron scattering
[σðϵÞ ∼ hPϵi, see Eq. (2.17)]

d
dϵ

σðϵÞ ¼ d
dϵ

�
2π

ϵ

X
l

ð2lþ 1Þ sin2 δlðϵÞ
�

¼ 4π

ϵ

X
l

ð2lþ 1Þ sin δlðϵÞcosδlðϵÞtEWSðϵ;lÞ−
σðϵÞ
ϵ

ð2:29Þ

depends only on the scattering phases δlðϵÞ and on tEWSðϵ;lÞ.
Therefore, in principle, the determination of the time delay
through time-integral cross-section measurements is possible
provided that the energy dependence of individual partial-
wave phase shifts can be accurately determined by angular-
differential scattering [along the lines of Eq. (2.16)]. In
practice, however, the determination of tEWS from
Eq. (2.29) is a considerable challenge, as the number of
partial waves contributing to electron-ion scattering is, in
general, large and therefore the extraction of tEWS from
Eq. (2.29) is hardly feasible. Moreover, averaging over
unobserved degrees of freedom [see, for example,
Eqs. (2.16) and (2.28)] may invalidate such a direct approach.
In special cases, however, partial information on time delay
can be inferred and a connection to attosecond chronoscopy
established. Heinzmann et al. pointed out [for recent reviews,
see Heinzmann and Dil (2012) and Heinzmann (2013)] that
the dynamical spin polarization P⊥ perpendicular to the
scattering plane defined by an incoming circularly polarized
photon and an outgoing electron is a function of the
difference between partial waves accessible by photoioniza-
tion. Emission of spin-polarized photoelectrons originally
predicted by Fano (1969) for circularly polarized light
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(the so-called Fano effect) was later generalized by Cherepkov
(1979) to the case of linearly polarized light in angular
resolved photoemission. Ionizing the 5p shell of xenon, a
net spin polarization P⊥ðθ ¼ 54°; ϵÞ ∝ sin ½δ2ðϵÞ − δ0ðϵÞ� is
observed at the “magic” angle θ ¼ 54.4° [the zero of the
Legendre polynomial P2ðcos θÞ]. Carefully observing the
energy variation of the spin polarization

d
dϵ

P⊥ðθ ¼ 54°; ϵÞ ∝ cos ½δ2ðϵÞ − δ0ðϵÞ�½tl¼2
EWSðϵÞ − tl¼0

EWSðϵÞ�
ð2:30Þ

allows one to extract a relative time delay of ≃76 as between
the d and s electrons near ϵ ¼ 7 eV (Heinzmann, 2013). In the
present case this experimental observation implies that for-
mation of the outgoing wave packet in the d partial wave is
considerably delayed relative to that in the s wave. For later
reference we note that this value is strongly influenced by the
long-range Coulomb interaction.
While for scattering at a potential the reference wave packet

corresponds to the incoming wave packet that travels through
the scattering region unaffected by any interaction potential, in
the half-scattering case of photoemission the reference is the
arrival ta of the peak of the XUV pulse at the target, for which
we frequently use a Gaussian shape

FXUVðtÞ ¼ F0 exp

�
−
ðt − taÞ2

t2g

�
cosðωXUVtþ φXUVÞ ð2:31Þ

with tg ¼ τXUV=
ffiffiffiffiffiffiffi
ln 4

p
. The time delay tEWS is measured

relative to ta and can be positive or negative. We use in
the following the terms “time delay” and “time shift”
interchangeably to express the fact that tEWS can be both
positive and negative. Negative values are constrained by
causality (Wigner, 1955), i.e., photoemission cannot occur
prior to the arrival of the leading edge of the ionizing pulse.
One key feature of tEWS, which we frequently make use of in

the following, is that it can be directly extracted from the
motion of the outgoing wave packet without any explicit
reference to the S matrix or the spectral variation of scattering
phase shifts (de Carvalho and Nussenzveig, 2002). For the
outgoing wave packet formed by a coherent superposition of
energy eigenstates of the electron centered around a central
energy ϵ0, the radial position of its crest rcðtÞ or its firstmoment
hrit eventually follows asymptotically (t → ∞) the motion of a
free particle after thewave packet has left the scattering region,

rcðtÞ ¼ vgðt − tEWSÞ; ð2:32Þ

hrit ¼ vgðt − tEWSÞ; ð2:33Þ

however delayed by the time tEWS (Brenig and Haag, 1959). In
Eqs. (2.32) and (2.33) the group velocity vg is denoted by

vg ¼
�∂ϵ
∂k

�
ϵ¼ϵ0

: ð2:34Þ

A prerequisite for Eqs. (2.32) and (2.33) is that the interaction
potential is short ranged such that thewave packet behaves like
that of a free particle at large distances. The extension to

Coulomb interactions is discussed in Sec. III. The equivalence
of the time delay extracted from the displacement of hrit to the
one extracted from the S matrix plays a key role for photo-
emission from complex systems where the dynamics is, in
general, no longer fully coherent due to averaging over
unresolved degrees of freedom [see Eq. (2.28)]. As
decoherence eventually converts the quantum wave packet
into a classical probability distribution of emitted electrons, a
delay of the first moment hrit of this distribution relative to the
reference pulse can still provide timing information.
Equation (2.33) is therefore well suited to explore the quan-
tum-to-classical correspondence and for application to con-
densed matter where photoelectrons may undergo multiple
dephasing collisions prior to exiting the solid surface (see
Sec. VII).

C. Photoionization from a model atom

We illustrate the temporal evolution of photoionization and
the time delay in photoemission relative to an attosecond
XUV pulse for a one-electron model atom that is designed to
resemble the ion Heþð1sÞ at small distances which has
identical binding energy Ei ¼ ϵ1s but features only short-
ranged interactions, thereby avoiding the complications
caused by the Coulomb field. Such a model could, for
example, mimic photodetachment from negative ions. For
simplicity we use the term ionization also for this process.
Figure 1 illustrates the photoionization by an attosecond XUV
pulse (pulse duration τXUV ¼ 200 as, energy ω ¼ 80 eV,
intensity IXUV ¼ 1013 W=cm2) of an electron initially bound
in an s-like ground state of the Hamiltonian

FIG. 1 (color online). Photoionization of an initial 1s electron in
a Yukawa potential [Eq. (2.36)] with Z ¼ 3.8166 and a ¼ 0.5,
which results in a binding energy of −2 a:u:: (a) Extraction of
tEWS from the linear extrapolation of the time dependence of hrit
[Eq. (2.33)]. The intercept with the t axis (inset) gives tEWS in
excellent agreement with the direct calculation for the S matrix
[Eq. (2.27)]. (b) The temporal profile of the XUV pulse. (c) The
time dependence of the ionization probability hψðtÞjPIjψðtÞi
[from Eqs. (2.18) and (2.37)].

Pazourek, Nagele, and Burgdörfer: Attosecond chronoscopy of photoemission 771

Rev. Mod. Phys., Vol. 87, No. 3, July–September 2015



H0 ¼ He ¼
p2

2
þ VYðrÞ ð2:35Þ

with a Yukawa-type interaction potential

VYðrÞ ¼ −
Z
r
exp

�
−
r
a

�
; ð2:36Þ

and the screening length a. For later comparison with
photoionization of Heþ we choose the charge parameter Z
for given screening length a such that the binding energy of
the ionized electron always coincides with that of the Heþð1sÞ
ion (Ei ¼ −2 a:u:). Here and in the following, the peak of the
XUV-pulse envelope is chosen to arrive at ta ¼ 0, defining the
reference time for the time delay. The radial expectation value
of the wave packet hri [Fig. 1(a)] is at t ¼ 0 already
considerably larger compared to the ground-state expectation
value hrit→−∞ ¼ 0.25 reflecting the onset of emission for
t < 0 initiated by the leading edge of the pulse [Fig. 1(b)].
For positive t the radial expectation value rapidly

approaches the linear distance versus time relation
[Eq. (2.33)] after the conclusion of the XUV pulse
(FWHM) at t ≈ 4 a:u: ð∼100 asÞ. Tracing back the linear
time dependence of hrit to small times allows one to
determine tEWS from the intercept with the t axis [Fig. 1(a),
inset] as tEWS ¼ 6.6 as. Note that the backward extrapolation
to hri ¼ 0 underlying the determination of tEWS according to
Eqs. (2.32) and (2.33) serves to extract information on the
asymptotic rather than the local properties of the outgoing
wave packet. The idea underlying the backward extrapolation
can be most easily visualized by considering classical trajec-
tories along one Cartesian coordinate. An outgoing electron
along, e.g., the positive x axis, starts, on average, from x ¼ 0

since an initial state of well-defined parity has equal proba-
bility being at �xinitial. For a radially symmetric initial state
this holds true for every direction. The value extracted by
Eq. (2.33) agrees with the one extracted from the p wave
(l ¼ 1) phase shift δl¼1 at E ¼ ωþ ϵi [Eq. (2.27)] to within
0.1 as, illustrating the equivalence of Eqs. (2.27) and (2.33) for
photodetachment with subattosecond precision (Pazourek,
Nagele, and Burgdörfer, 2013; Su et al., 2013b; Nagele et al.,
2014).
Alternatively, the timing of the photoionization process can

also be monitored by inspecting the time-dependent norm of
the ionized portion of the electronic wave packet in the
continuum (Kheifets and Ivanov, 2010; Sukiasyan, Ishikawa,
and Ivanov, 2012) given by the expectation value [Eq. (2.18)]
hPIit ¼ hΨðtÞjPIjΨðtÞi with

PI ¼ 1 −
XðboundÞ
i

jiihij: ð2:37Þ

Even though the expectation value hPIit determined from the
numerical solution of the time-dependent Schrödinger equa-
tion (TDSE) solution [Fig. 1(c)] appears to be shifted with
respect to the ionizing XUV pulse, its functional form
strictly follows the prediction by first-order perturbation
theory Eq. (2.1). In this sense the response of the electronic

wave function to the ionizing field is instantaneous.
Consequently, hPIit depends on the temporal shape of the
XUV field and the absolute magnitude of the dipole matrix
element but not on its phase. While hPIit can be easily
extracted from simulations, it does not, however, correspond
to an experimental observable as it is not accessible through
the asymptotic final state. This is underscored by the fact
that the value of hPIit is not unique but depends on the
choice of the projection fjiihijg in Eq. (2.37). The field-free
bound states fjiig chosen in the present example [Fig. 1(c)]
are of no specific physical significance in the presence
of the XUV field FXUVðtÞ. An alternative choice would be
the projection onto the adiabatic bound-state spectrum
fjiiFXUVðtÞg. Moreover, hPIit can be shown to be strongly
dependent on the choice of the gauge [Eqs. (2.2) and (2.3)]
even within an exact solution of the TDSE contradicting the
notion of a physical observable. Both the overall shape of
the turn-on curve of hPIit and the amplitude and phase of
the superimposed small oscillations [Fig. 1(c)] vary with
gauge. Only after the conclusion of the pulse does the
bound-state projection become unique which is, however,
well past the ionization times to be extracted. It is, therefore,
difficult to identify a meaningful ionization time from
calculated hPIit since it carries no direct information on
the scattering phases.
The example of the model atom with short-ranged inter-

actions [Eqs. (2.35) and (2.36)] illustrates that the group delay
tEWS, i.e., the delayed formation of an outgoing wave packet
propagating with group velocity vg toward the detector,
provides temporal information encoded in the asymptotic
wave packet but is unrelated to the time-dependent norm of
the continuum portion of the wave function.

III. COULOMB SCATTERING AND
COULOMB TIME DELAY

Since in photoionization the exit-channel interaction
between the outgoing electron and the residual complex
is Coulombic, suitable generalizations of the time-delay
operator [Eq. (2.26)] are required to account for the infinite
range of the potential. The receding wave packet remains
asymptotically Coulomb distorted and never converges to a
free wave packet. Since this Coulomb distortion is universal,
i.e., independent of any system-specific short-ranged inter-
actions, a general formulation of the modification can be
given (Martin, 1981). A convenient starting point is the
asymptotic expansion of the Coulomb wave ΦC

k̂
ðZ; ~rÞ in the

field of the ionic charge Z with wave vector k̂ and energy
ϵ ¼ k2=2,

ΦC
k̂
ðZ; ~rÞ ¼

X
l

ð2lþ 1ÞileiσCl ðϵÞFlðZ; k; rÞkrPlðcos θÞ:

ð3:1Þ

The asymptotic limit r → ∞ of the amplitude of the partial
wave l is given by
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FlðZ; k; rÞ →
r→∞

sin

�
kr −

lπ
2

þ Z
k
ln 2krþ σCl ðϵÞ

�
ð3:2Þ

with the r-independent Coulomb phase shift

σCl ðϵÞ ¼ argΓ
�
1þ l − i

Z
k

�

¼ Im

�
lnΓ

�
1þ l − i

Z
k

��
: ð3:3Þ

σCl ðϵÞ can be taken as the Coulomb analog of the short-
ranged phase shift δlðϵÞ. Correspondingly, the on-shell
Coulomb partial-wave S matrix is given by

SCl ðϵÞ ¼
Γð1þ l − iZ=kÞ
Γð1þ lþ iZ=kÞ : ð3:4Þ

In analogy to Eq. (2.27), we define a Coulomb time delay
for half scattering (Martin, 1981) through

tCEWSðϵ;lÞ ¼
d
dϵ

σCl ðϵÞ: ð3:5Þ

We refer to this r-independent delay in the following as the
Coulomb-EWS delay. However, the long-range Coulomb
distortion gives rise to the additional r-dependent logarith-
mic phase (∼ ln 2kr) in Eq. (3.2) relative to which the
Coulomb phase shift is now defined. Since both phase
contributions depend on the same Sommerfeld parameter
η ¼ Z=k, a clear-cut separation and interpretation is not
straightforward. As first pointed out by Clark (1979) in a
little known paper it is convenient to include both phase
contributions into the definition of the Coulomb time delay

tCoulðϵ;l; rÞ ¼
∂
∂ϵ

�
Z
k
lnð2krÞ þ σCl ðϵÞ

�
ð3:6Þ

¼ ΔtCoulðϵ; rÞ þ tCEWSðϵ; lÞ ð3:7Þ

containing, in addition to tCEWS, a contribution due to the
logarithmic distortion of the wave front

ΔtCoulðϵ; rÞ ¼
Z

ð2ϵÞ3=2 ½1 − ln ð2
ffiffiffiffiffi
2ϵ

p
rÞ�: ð3:8Þ

We refer to ΔtCoul [Eq. (3.8)] as the Coulomb correction to
the EWS time delay tCEWS [Eq. (3.5)]. The Coulomb time
shift tCoul [Eq. (3.7)] has only recently been investigated
(Zhang and Thumm, 2010, 2011c; Ivanov and Smirnova,
2011; Nagele et al., 2011; Dahlström, L’Huillier, and
Maquet, 2012; Dahlström et al., 2013; Pazourek, Nagele,
and Burgdörfer, 2013; Serov, Derbov, and Sergeeva, 2013;
Su et al., 2013b, 2013c) in the context of attosecond time-
resolved photoemission. It gives the time delay relative to a
free wave packet, however, with the drawback that its value
depends on the radial coordinate and diverges as r → ∞.
The significance of tCoul can be illustrated with the help of a

simulation for the photoionization of Heþð1sÞ performing the
same calculation as for short-ranged potentials (see Sec. II.C)

with identical pulse parameters, however, for diverging
screening lengths a → ∞ [Eq. (2.36)], i.e., VY → VC in
Eq. (2.35). The time evolution of the first moment of the
outgoing wave packet [Fig. 2(a)] appears to closely resemble
that in a short-ranged potential for short times [Fig. 1(a)]. For
large times, the growth of hrit slows down with t and bends
toward the t axis [schematically shown in Fig. 2(a), inset]. The
intercept with the t axis from the linear extrapolation
[Eq. (2.33)] t − hrit=k does not converge to a well-defined
limit but becomes dependent on the time when the temporal
extrapolation is performed. This intercept follows, however,
with remarkable accuracy [Fig. 2(c)], the implicit relation

tCoulðϵ;l; hritÞ ¼ t −
hrit
k

; ð3:9Þ

which can be further simplified to the explicit relation

t −
hrit
k

¼ tCEWSðϵ; lÞ þ
Z

ð2ϵÞ3=2 ½1 − lnð2k2tÞ�; ð3:10Þ

where the locally varying delay time ΔtCoul [Eq. (3.8)] is
evaluated at r ¼ kt for the radial motion of a free particle. The
error introduced by the latter approximation is within the
graphical accuracy of Fig. 2(c). The Coulomb delay time tCoul
[Eq. (3.7)] is therefore the analog to the time shift associated
with the first moment of the wave packet [Eq. (2.33)] while
the Coulomb-EWS time tCEWS is the analog to the time delay
determined by the spectral variation of the phase shift

FIG. 2 (color online). As in Fig. 1 but for Heþð1sÞwith Coulomb
interaction. (a) hrit vs time, the inset schematically indicates the
change in the intercept depending on the distance (or propagation
time) at which the linear slope is determined [Eq. (3.9)] due to the
sublinear growth of hrit. (b) Temporal profile of the XUV pulse.
(c) Comparison between the intercept determined from (a) and
the analytic prediction of tCoul [Eq. (3.7)].
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[Eq. (2.27)]. Unlike for short-ranged potentials, these two
quantities do not coincide. The difference between the two is
precisely given by the additional time shift ΔtCoul [Eq. (3.8)]
induced by the logarithmic distortion of the wave packet.
ΔtCoul is universal as it depends only on the energy ϵ ¼ k2=2
of the electron and the strength of the Coulomb field Z, but is
independent of the partial wave l or the initial state to be
photoionized. It accounts for the “slowing down” of the
outgoing electron by the attractive Coulomb field resulting in
an apparent negative time shift. Note that the Coulomb-EWS
delay is subject to the Wigner causality constraint (Wigner,
1955), i.e., tCEWS ≥ −τXUV, while tCoul is not. In principle, tCoul
can take on arbitrarily large negative values due to the
logarithmic divergence of the Coulomb corrected time
shift ΔtCoul.
The exit-channel Coulomb interaction is not only the cause

of the complications in terms of the modification of the EWS
time delay [Eq. (3.7)] but also provides unprecedented
opportunities to explore in detail the quantum-classical
correspondence for the time delay as an observable. As is
well known for Coulomb scattering (Landau and Lifshitz,
1958; McDowell and Coleman, 1970), the close quantum-
classical correspondence follows from the fact that the
de Broglie wavelength of the scattered particle λdB ¼
2π=

ffiffiffiffiffi
2ϵ

p
is negligibly small compared to the infinite range

(a → ∞) of the Coulomb potential for all energies ϵ. This
allows one to directly and unambiguously relate the expect-
ation value of the quantum observable time delay to travel
times on classical trajectories for all energies of the photo-
ionized electron.
Following Clark (1979), we calculate the classical Coulomb

time shift tclCoul of an electron in the Coulomb field relative to
that of a free electron (Pazourek, Nagele, and Burgdörfer,
2013). Solving the equation of motion for a hyperbolic Kepler
trajectory of fixed classical angular momentum L we find for
r → ∞

tclCoulðϵ; L; r ¼ ktÞ
¼ tðrÞ − r

k

≈
Z

ð2ϵÞ3=2
�
1 − ln

�
4ϵtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 þ L2

p
��

: ð3:11Þ

Decomposing Eq. (3.11) into those contributions that are r (or
t) dependent and those that are r independent leads to

tclCoulðϵ; L; r ¼ ktÞ

¼ Z

ð2ϵÞ3=2 ln
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

η2 þ L2

q �
þ ΔtCoulðϵ; r ¼ ktÞ; ð3:12Þ

where the r- (or time-) dependent ΔtCoul agrees precisely with
the Coulomb correction of the quantum wave packet
[Eqs. (3.8) and (3.10)]. Comparing Eq. (3.12) with
Eq. (3.7) suggests to relate the classical r-independent first
term to the quantum mechanical Coulomb-EWS time
Eq. (3.5). To this end, we investigate the semiclassical limit
of the quantum EWS delay [Eq. (3.5)] expressed in terms of
the digamma function ΨðxÞ:

tCEWSðϵ;lÞ ¼
Z

ð2ϵÞ3=2 Re½Ψð1þ l − iηÞ�: ð3:13Þ

For large arguments jxj of ΨðxÞ, reached for either large l or
large Coulomb-Sommerfeld parameter η, we obtain

tCEWSðϵ;lÞ ¼jxj≫1 Z

ð2ϵÞ3=2 ln
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ lÞ2 þ η2
q �

≃ Z

ð2ϵÞ3=2 ln
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2 þ η2
q �

¼ tC;clEWSðϵ; LÞ; ð3:14Þ

in complete agreement with the first term in Eq. (3.12).
Consequently, we can identify

tC;clEWSðϵ; LÞ ¼
Z

ð2ϵÞ3=2 ln
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

η2 þ L2

q �
ð3:15Þ

as the classical Coulomb-EWS time. In Eq. (3.15) the relation
between the angular momentum L and the l quantum number
is established through the semiclassical Langer connection
(Langer, 1937; Burgdörfer et al., 1995) L≃ lþ 1=2. The
convergence of the quantum Coulomb-EWS time [Eq. (3.13)]
to its (semi)classical counterpart [Eq. (3.15)] is remarkably
fast. Even for modest values of jð1þ lÞ − iηj≳ 1 the agree-
ment is excellent [Fig. 3(a)].
The Coulomb-EWS time delay, both classically [Eq. (3.15)]

and quantum mechanically [Eq. (3.13)], features a nonsepar-
able coupling between contributions due to the Coulomb
potential and the centrifugal potential

Vðl; rÞ ¼ lðlþ 1Þ
2r2

: ð3:16Þ

This differs from short-ranged potentials for which the
asymptotic r−2 tail gives rise to an energy-independent
scattering phase −lπ=2, and, hence, no contribution to the
time delay. At fixed energy, the relative delay between partial
waves l in the Coulomb field

FIG. 3 (color online). Coulomb-EWS times for photoionization
from H (Z ¼ 1) or Heþ (Z ¼ 2) as a function of the final electron
energy ϵ. (a) Comparison of the quantum EWS time delay
Eq. (3.5) with the classical analog Eq. (3.15) (using the semi-
classical mapping of the angular momentum quantum number l
to the classical angular momentum L ¼ lþ 1=2). (b) Relative
EWS delay tΔlEWSðϵ;lÞ between partial waves l and l ¼ 0
[Eq. (3.17)] as a function of ϵ.
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tΔlEWSðϵ;lÞ ¼ tCEWSðϵ;lÞ − tCEWSðϵ; 0Þ

¼
Xl
j¼1

1ffiffiffiffiffi
2ϵ

p Zj
2ϵZj2 þ Z2

ð3:17Þ

monotonically increases with l and scales as ∼ ϵ−3=2

[Fig. 3(b)]. Remarkably, this relative delay has been first
observed in time-integral but angle- and spin-resolved photo-
emission (Heinzmann and Dil, 2012; Heinzmann, 2013).
The close correspondence between the quantum and

classical time shifts for Coulomb-interacting particles has
several important consequences. The quantum EWS time
delay expressed in terms of the energy derivative of a
(quantum) scattering phase [Eqs. (2.27) and (3.5)] can be
unambiguously identified with a bona-fide classical delay
time on a trajectory measured by a classical clock. Moreover,
for time-resolved photoionization, contributions due to long-
range Coulomb interactions in the exit channel can be
accounted for both classically and quantum mechanically to
a high degree of accuracy, thereby allowing one to clearly
disentangle intrinsic short-ranged delay times in complex
systems from Coulomb-induced time shifts. In this context, it
is convenient to exploit the close quantum-classical corre-
spondence one more time to spatially disentangle the two
contributions to the Coulomb time delay [Eq. (3.7)], the
Coulomb-EWS delay tCEWS, and the time shift correction
ΔtCoul, from each other. To this end, we employ the properties
of the Smatrix for a Coulomb potential with a cutoff at a finite
radius r ¼ Rcut (Taylor, 1974) and decompose the Coulomb
potential as

VCðrÞ ¼ −
Z
r
½θðRcut − rÞ þ θðr − RcutÞ�

¼ VshortðrÞ þ VasymðrÞ ð3:18Þ

into a short-ranged potential

VshortðrÞ ¼ −
Z
r
θðRcut − rÞ ð3:19Þ

and an asymptotic tail

VasymðrÞ ¼ −
Z
r
θðr − RcutÞ: ð3:20Þ

For the short-ranged part, standard scattering theory applies
and yields for the S matrix in the partial-wave basis

Sshortl ðϵÞ ¼ e2iδ
short
l ðϵÞ ð3:21Þ

with

δshortl ðϵÞ≃ σCl ðϵÞ þ
Z
k
lnð2kRcutÞ ð3:22Þ

up to corrections to order Zð2kRcutÞ−1 (Taylor, 1974). For
large Rcut → ∞, the Coulomb phase shift is recovered while
for any finite Rcut, the logarithmically divergent phase is now
unambiguously associated with the potential Vasym. The EWS
delay for the short-ranged part follows from Eq. (3.22) as

tshortEWSðϵÞ ¼ tCEWS þ
Z

ð2ϵÞ3=2 ½1 − ln ð2
ffiffiffiffiffi
2ϵ

p
RcutÞ�: ð3:23Þ

If one now chooses the cutoff radius Rcut such that
lnð2 ffiffiffiffiffi

2ϵ
p

RcutÞ ¼ 1, the second term in Eq. (3.23) vanishes
and the proper EWS delay of the short-ranged potential tshortEWS

coincides with the Coulomb-EWS delay tCEWS. In turn, the
Coulomb correction ΔtCoul is now the time shift exclusively
acquired by the motion in the asymptotic potential Eq. (3.20).
For applications to photoionization, the cutoff parameter can
be chosen for a given central frequency ωXUV to be energy
dependent

Rcut ¼
e

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðωXUV þ ϵiÞ

p : ð3:24Þ

A numerical test (Fig. 4) shows that tshortEWSðϵÞ ¼ tCEWSðϵÞ is
fulfilled to a very good degree of approximation. Taking into
account this close quantum-classical correspondence, one can,
to a good degree of approximation, attribute tCEWS to the delay
acquired by the electron on the inner part of the classical
trajectory (r ≲ Rcut), while ΔtCoul is the time shift along the
outer part of the Kepler hyperbola. Alternative decomposi-
tions have been explored in the recent literature (Ivanov and
Smirnova, 2011; Nagele et al., 2011, 2014; Dahlström,
L’Huillier, and Maquet, 2012; Pazourek, Feist et al., 2012;
Dahlström et al., 2013; Pazourek, Nagele, and Burgdörfer,
2013; Su, Ni, Becker, and Jaroń-Becker, 2014).

IV. ATTOSECOND STREAKING OF PHOTOEMISSION

A. Streaking principle

Attosecond streaking (Constant et al., 1997; Itatani et al.,
2002; Kitzler et al., 2002; Kienberger et al., 2004; Yakovlev,
Bammer, and Scrinzi, 2005) has developed into one of the
most important and versatile tools of attosecond science. It is a
pump-probe technique in which the attosecond XUV pulse
(with, typically, τXUV ¼ 100 to 500 as) serves as a
pump creating the photoelectron wave packet while the

FIG. 4 (color online). Comparison between the Coulomb-EWS
delay tCEWSðεÞ [Eq. (3.5)] and the delay due to the short-ranged
cutoff potential [Eq. (3.19)], tshortEWSðε;lÞ [Eq. (3.23)], for a cutoff
RcutðϵÞ given by Eq. (3.24).
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carrier-envelope phase (CEP) controlled moderately strong
(with intensities of the order IIR ≃ 1011 W=cm2) linearly
polarized few-cycle IR pulse streaks, i.e., probes, the wave
packet. In analogy to conventional streaking (Murnane,
Kapteyn, and Falcone, 1990; Shepherd et al., 1995;
Maksimchuk et al., 1996) that maps time onto distance,
attosecond streaking maps time information onto energy
thereby allowing one to extract time information from the
time-integral photoelectron spectrum with attosecond preci-
sion (Drescher et al., 2001, 2002; Hentschel et al., 2001;
Goulielmakis et al., 2004; Kienberger et al., 2004; Mairesse
and Quéré, 2005; Quéré, Mairesse, and Itatani, 2005; Cavalieri
et al., 2007; Gagnon, Goulielmakis, and Yakovlev, 2008;
Schultze et al., 2010; Yakovlev et al., 2010). We illustrate
the opportunities and challenges in extracting attosecond
timing information from spectral information for the example
of attosecond streaking by linearly polarized light. Many of the
results as well as difficulties apply to alternative protocols as
well. The latter include the interferometric RABBIT technique
(Véniard, Taïeb, andMaquet, 1996; Paul et al., 2001; Toma and
Muller, 2002; Klünder et al., 2011; Guénot et al., 2012, 2014;
Palatchi et al., 2014) for ionization by attosecond pulse trains
(APT) and angular attosecond streaking by circularly polarized
IR pulses (Eckle, Pfeiffer et al., 2008; Eckle, Smolarski et al.,
2008; Pfeiffer et al., 2011, 2013; Pfeiffer, Cirelli et al., 2011).
The point of departure for attosecond streaking is that the

momentum of the emitted electron receives in the presence of
a strong IR field a ponderomotive shift

~pfðτÞ ¼ ~p0 − ~AIRðτÞ; ð4:1Þ

given by the value of the (for simplicity rescaled) vector
potential AIR ¼ ~AIRðτÞ=c at the instant of the arrival in the
continuum τ, from which time on the liberated electron is
accelerated by the electric field. In Eq. (4.1), ~p0 is the
asymptotic momentum associated with the energy of the
photoelectron E0 ¼ p2

0=2 ðE0 ¼ ωXUV þ ϵiÞ in the absence
of the streaking field. Following Eq. (4.1) the momentum
~pfðτÞ and the energy EfðτÞ ¼ ~p2

fðτÞ=2 in the presence of the

IR field become functions of τ via ~AIR. Since the temporal

distribution of a CEP controlled IR laser field ~FIRðτÞ and the

associated vector potential ~AIRðτÞ,

~AIRðτÞ ¼
Z

∞

τ

~FIRðtÞdt; ð4:2Þ

can be well controlled with subcycle precision, Eq. (4.1)
amounts to a mapping of the time τ onto the modulation of the
linear momentum ~pfðτÞ or the energy EfðτÞ of the photo-
electron. If ionization were truly instantaneous, τ would be the
delay of the IR pulse relative to the peak of the XUV pulse
(at ta ¼ 0).
One implicit assumption underlying Eq. (4.1) is that the

emitted electron attains instantaneously the asymptotic
momentum ~p0 on a time scale resolvable by attosecond
streaking. Another assumption is that the wave packet
propagation in the continuum is dominated by the electro-
magnetic vector potential rather than by the interaction with

the remaining ionic fragment in the exit channel. We also
require that the kinetic energy of the emitted electron is high
enough so that it is not driven back to the residual complex by
the IR field [see Xu et al. (2011) and Hou et al. (2012) for a
discussion of attosecond streaking in the low-energy region].
This particular variant of a “strong-field” approximation
requires, in fact, a much weaker laser intensity than typically
invoked in the strong-field approximation to ionization [see
Joachain, Kylstra, and Potvliege (2012) and references
therein]. The validity of these assumptions will be explored
in more detail later.
A typical streaking spectrogram [Fig. 5(b)] generated by an

attosecond XUV pulse and a few-cycle IR pulse time delayed
relative to another [Fig. 5(a)] yields a momentum distribution

~pf along the polarization axis of the ~AIR field or, equivalently,
the differential energy distribution in the forward (θ ¼ 0°) or
backward direction (θ ¼ 180°) modulated by the temporal
distribution of the AIR field. Identification of the time
information encoded in such a streaking trace is key to
observe attosecond-time-resolved processes.
The interrogation by the streaking field can be viewed as a

measurement by a clock. For long-lived excitations of
continuum states, e.g., resonances in the continuum
(Drescher et al., 2002; Wickenhauser et al., 2005, 2006;
Ott et al., 2013) or long XUV pulses τXUV ≳ TIR (TIR is the
cycle period of the IR field), the streaking information appears
in the spectral sidebands separated by multiples of the photon

FIG. 5 (color online). Simulation of attosecond streaking:
(a) Typical temporal profile of streaking fields. IR laser field with
λ ¼ 800 nm, a sine-squared envelope and total duration of 6 fs,
and an intensity of IIR ¼ 4 × 1011 W=cm2. The XUV pulse has a
Gaussian envelope, a FWHM duration of 200 as, and an intensity
of IXUV ¼ 1013 W=cm2. (b) Streaking spectrogram for ionization
of a model atom with Yukawa-like short-ranged exit-channel
interaction [Eq. (2.36)]. For reference the vector potentialAIRðτÞ is
also shown (solid line). Comparison with the shift of the
spectrogram (dashed line) yields the streaking time shift (see
the inset).
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energy ωIR [Fig. 6(a)]. The pioneering proof of principle
experiment (Drescher et al., 2002) measuring the lifetime of
8 fs of an Auger resonance in krypton pertained to this regime.
This limit of quantized probe-field interaction is referred to in
the following as a quantum clock. The notion of a quantum
clock was originally introduced by Salecker and Wigner
(1958) treating the system to be interrogated and the meas-
uring device, the “clock,” as a coupled system following the
rules of quantum dynamics. By contrast, a classical clock
refers to (not necessarily macroscopic) decoherent environ-
mental degrees of freedom described by classical dynamics.
Translating this concept to the present scenario where the

system to be clocked is an XUV-pulse excited (many) electron
system and the interaction with the IR-probe pulse represents
the clock, we refer to measurement protocols that exploit the
quantized interaction with the IR field, in particular, inter-
ferometric processes, as quantum clocks while those invoking
only classical electron-IR field interactions as classical clocks.
The recovery of timing information from the quantized
spectral sidebands can therefore be viewed as a realization
of a quantum clock. This limit also applies to the RABBIT
interferometry for APTs (Paul et al., 2001) extending over
many femtoseconds and optical cycles. In the opposite limit
of short-lived excitations (Drescher and Krausz, 2005;

Wickenhauser et al., 2005, 2006) or single attosecond pulses
with τXUV ≪ T (Goulielmakis et al., 2004, 2007, 2008;
Sansone et al., 2006; Gilbertson, Khan et al., 2010; Zhao
et al., 2012), attosecond streaking [Eqs. (4.1) and (4.2)]
approaches the limit of a measurement by a classical clock.
Figure 6 illustrates the transition between the two regimes.
The hallmark for the approach of the classical limit is the
gradual disappearance of the interference modulations, visible
in Fig. 6(a), until only the classical oscillations of the
ponderomotive shift survive [Fig. 6(c)]. We primarily focus
on the latter regime as it facilitates the intuitive, classical
interpretation of time and time delay extracted from quantum
dynamics and illustrates quantum-classical correspondence.
However, as the interrogating field is moderately strong, the
presence of the IR field may distort the timing information to
be extracted. Since for easily resolvable energy shifts IR fields
with intensities of the order of IIR ≈ 1011 to 1012 W=cm2 are
needed, such distortion effects generally cannot be neglected.
The task is, thus, to disentangle probe-field-induced modifi-
cations of the elements of the S matrix, SXUV-IR [Eq. (2.20)],
from properties of the original S matrix (SXUV) for photo-
emission [Eq. (2.6)].

B. Attosecond streaking for short-ranged potentials

The analysis of the time extracted by attosecond streaking
becomes particularly simple when only short-ranged poten-
tials govern the motion of the electronic wave packet in the
exit channel. We expose the model atom with a Yukawa-type
screened potential [Eqs. (2.35) and (2.36)] to both an XUV
pulse and an IR streaking pulse shifted relative to each other
by the delay τ. A fit of the first moment hpf;zi or, equivalently,
the peak of the momentum distribution to the temporal
distribution of the AIR field [Eq. (4.1)], also shown in
Fig. 5(b), reveals a miniscule but unambiguously determined
streaking time shift tS

~pfðτÞ ¼ ~p0 − ~AIRðτ þ tSÞ ð4:3Þ

relative to the XUV-pump IR-probe delay τ. Remarkably, this
streaking time agrees with subattosecond precision [Fig. 7(a)]
with the EWS time delay for this model system (see Sec. II)
over a wide range of energies and different screening lengths
provided the latter are small compared to the de Broglie
wavelength λdB of the outgoing electron 1 a.u., a≲ λdB
(Nagele et al., 2011, 2014). In the case of short-ranged
potentials we can unambiguously identify from the numerical
simulations

tS ¼ tEWS; ð4:4Þ

and, hence,

~pfðτÞ ¼ ~p0 − ~AIRðτ þ tSÞ ¼ ~p0 − ~AIRðτ þ tEWSÞ: ð4:5Þ

It is thus the group delay of the outgoing wave packet that
attosecond streaking measures. This result is expected to hold
for other short-ranged potentials of comparable range as well
(Zhang and Thumm, 2011c; Su et al., 2013c). One important

FIG. 6 (color online). Simulation of streaking spectrograms for
ionization from the Yukawa ground state for different XUV-pulse
durations τXUV, ℏω ¼ 100 eV, and IXUV ¼ 1013 W=cm2. The IR
field had a total duration of 6 fs with a sine-squared envelope
λ ¼ 800 nm and IIR ¼ 1012 W=cm2. The duration of one optical
cycle is 2668 as. The spectra are taken in the forward direction
(p ¼ pz) with an opening angle of 10°.
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caveat is highlighted in Fig. 7(b). For large screening lengths
a ≫ λdB, i.e., when the potential increasingly resembles a
Coulomb potential, the correspondence between tS and tEWS
starts to break down (Nagele et al., 2014). This difficulty
points to the modifications required for attosecond streaking
with long-range Coulomb interactions in the exit channel.

C. Streaking in the presence of a Coulomb field

In photoionization of an initially charge-neutral system
(atom, molecule, or solid surface), the exit-channel inter-
actions of the outgoing electron with the residual ionic system
inevitably feature a Coulombic long-range tail in addition to
channel-specific short-ranged interactions. Understanding the
extraction of timing information by attosecond streaking in a
pure Coulomb field is therefore of central importance.
The full numerical solution of the 3D-TDSE for the

streaking of the prototypical case, ionization of hydrogen
Hð1sÞ, by an attosecond XUV pulse (Fig. 8) clearly shows that
the time shift tS extracted from the streaking diagram strongly
differs from the Coulomb-EWS delay (Nagele et al., 2011).
The difference to the EWS delay

tCLCðZ ¼ 1; E;ωIRÞ ¼ tS½Hð1sÞ� − tCEWSðE;l ¼ 1Þ ð4:6Þ

is often referred to as the Coulomb-laser coupling (CLC) time
shift (Smirnova, Spanner, and Ivanov, 2006; Smirnova et al.,
2007; Zhang and Thumm, 2010). The origin of the CLC
contribution lies in the additional logarithmic phase distortion
[Eqs. (3.6)–(3.8)] present for Coulomb interactions in the exit
channel. The interaction of the outgoing electron with the IR
field maps a finite portion of the Coulomb correction ΔtCoul

[Eq. (3.8)] directly onto the observed streaking time shift.
Remarkably, a simulation based on the classical trajectory
Monte Carlo (CTMC) method (Abrines and Percival, 1966;
Dimitriou et al., 2004) yields tS in close agreement with the
TDSE result (Nagele et al., 2011; Su et al., 2013a). Within a
CTMC treatment an average over themicrocanonical ensemble
of starting positions ~r representing the initial state is taken and,
therefore, the results are independent of a particular choice of
initial conditions. This differs from a semiclassical model by
Ivanov and Smirnova (2011), where r0 is introduced as an
adjustable matching parameter. This approximate model treats
the Coulomb interaction as a perturbative correction to the
IR-field interaction and has been shown to result in deviations
from the exact classical (CTMC) or quantum (TDSE) solution
for moderate streaking fields (Su et al., 2013a). This error can
be partially compensated by adjusting r0.
The close quantum-classical correspondence for the

Coulomb time delay [Eqs. (3.12) and (3.14)] allows for a
simple and intuitive trajectory-based description of tCLC. The
classical asymptotic momentum in the presence of the streak-
ing field ~pfðτÞ as a function of the delay τ between the ionizing
XUV field peak and the peak in the envelope of the streaking
field for a trajectory taking off near the nucleus ~riðτÞ≃ 0 is
given by

~pfðτÞ ¼ ~piðτÞ þ
Z

∞

τ
~aCþIR½~rðtÞ�dt; ð4:7Þ

where ~aCþIR½~rðtÞ� denotes the acceleration along the trajectory
~rðtÞ in the combined Coulomb and IR fields. If only the
Coulomb field were present, Eq. (4.7) reduces to

FIG. 7 (color online). Streaking time shifts tS (dots) extracted
from quantum mechanical simulations and tEWS (lines) deter-
mined from the spectral variation of the scattering phase for the
short-ranged Yukawa potential VY [Eq. (2.36)]. (a) Small screen-
ing length (a≲ λdB): a ¼ 0.5; 1; 2; (b) large screening length
(a ≫ λdB): a ¼ 20 (solid dots and line), a ¼ 200 (open dots and
dashed line). The streaking IR laser field has a wavelength of
800 nm, a total duration of 6 fs, and an intensity of 1012 W=cm2.

FIG. 8 (color online). Comparison between the streaking time
shift tS and the Coulomb-EWS time delay tCEWS for photoioni-
zation of hydrogen as a function of the final kinetic energy ϵ of
the outgoing electron (ϵ ¼ ωþ ϵi). Also shown is the classical
streaking time shift tclS calculated with the CTMC method (open
squares). Classical and quantum tS agree with each other to
within the graphical resolution when the mapping between
classical and quantum angular momentum L ¼ lþ 1=2 is used.
The analytic approximation ΔtCoul [Eq. (4.18)] coincides with the
numerical quantum result for tCLC [Eq. (4.6)] to within a fraction
of an attosecond.
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~pfðτÞ ¼ ~piðτÞ þ
Z

∞

τ
aC½~rðtÞ�dt ¼ ~p0; ð4:8Þ

with ~p0 the asymptoticmomentumof the photoionized electron
with p0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðωXUV þ ϵiÞ

p
. Conversely, if only the IR field

were present, we recover the standard streaking expression
[Eq. (4.1)]

~pfðτÞ ¼ ~piðτÞ þ
Z

∞

τ
aIR½~rðtÞ�dt

¼ ~piðτÞ −
Z

∞

τ

~FIRðtÞdt ¼ ~p0ðτÞ − ~AIRðτÞ. ð4:9Þ

In Eq. (4.9) ~piðτÞ is replaced by ~p0ðτÞ since in the absence of a
long-ranged exit-channel potential the local momentum
coincides with the asymptotic momentum. Note that the
trajectories along which Eqs. (4.7) to (4.9) are integrated will
be different for each of the three cases for identical initial
conditions. Inserting Eqs. (4.8) and (4.9) into Eq. (4.7) yields
the Coulomb-modified streaking equation

~pfðτÞ¼ ~p0− ~AIRðtÞ

þ
Z

∞

τ
faCþIR½~rðtÞ�−aC½~rðtÞ�−aIR½~rðtÞ�gdt: ð4:10Þ

The integral in Eq. (4.10) can now be easily estimated
exploiting the spatial decomposition of the Coulomb potential
into a short-ranged potential and an asymptotic tail [Eq. (3.18)].
For the short-ranged part we find to leading order in the IR-field
induced variations of the trajectory

Z
tðRcutÞ

τ
faCþIR½~rðtÞ� − aC½~rðtÞ� − aIR½~rðtÞ�gdt

¼ cshortðϵ; Z; LÞFIRðτÞ: ð4:11Þ
Analogously,

Z
∞

tðRcutÞ
faCþIR½~rðtÞ� − aC½~rðtÞ� − aIR½~rðtÞ�gdt

¼ casymðϵ; Z;ωIRÞFIRðτÞ: ð4:12Þ

Explicit expressions for cshort and casym will be given below.
Combining Eqs. (4.11) and (4.12) with Eq. (4.10) yields the
Coulomb-streaking equation

~pfðτÞ ¼ ~p0 − ~AIRðτ þ tC;clEWS þ tCLCÞ; ð4:13Þ

with

tC;clEWS ¼ 1

ωIR
tan−1 ½ωIRcshortðϵ; Z; LÞ� ð4:14Þ

and

tCLC ¼ 1

ωIR
tan−1 ½ωIRcasymðϵ; Z;ωIRÞ�: ð4:15Þ

Equation (4.14) is an immediate consequence of the
streaking principle for short-ranged potentials tS ¼ tEWS

[Eq. (4.5)]. The amplitude cshort can be determined by inserting
Eq. (3.14) into Eq. (4.14),

cshortðϵ; Z; LÞ ¼
1

ωIR
tan

�
ωIRZ

ð2ϵÞ3=2 lnð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 þ L2

q
Þ
�
: ð4:16Þ

Analogously, the explicit determination of tCLC makes use of
the fact that the asymptotic tail of the Coulomb potential gives
rise to the logarithmic phase shift and, thus, to the Coulomb
correction to the time shift [Eqs. (3.8) and (3.10)]
ΔtCoulðϵ; r ¼ ktÞ. An ensemble of classical trajectories sam-
ples the temporal average over this correction to the time delay

ΔtCoul ¼
1

ΔT

Z
tðRcutÞþΔT

tðRcutÞ
dtΔtCoulðϵ; r ¼ ktÞ ð4:17Þ

over a finite time intervalΔT. Since this phase shift is sampled
in the streaking field over only a finite time interval, a well-
defined finite contribution to the streaking time shift emerges
(Pazourek, Nagele, and Burgdörfer, 2013; Su et al., 2013a; Su,
Ni, Becker, and Jaroń-Becker, 2014). For interference modu-
lations to disappear and the classical limit of streaking to hold,
the XUV-pulse duration should satisfy τXUV ≲ TIR=4 [see
Fig. 6]. Even slow photoelectrons will escape the Coulomb
field during a fraction of an optical cycle of the IR field. Setting
tðRcutÞ ¼ 0 and ΔT ¼ TIR=4, Eq. (4.17) yields

tCLCðZ; ϵ;ωIRÞ ¼ ΔtCoulðΔT ¼ TIR=4Þ

¼ Z

ð2ϵÞ3=2 ½2 − lnðϵTIRÞ�: ð4:18Þ

For a wide range of electron energies, nuclear charges, and IR
frequencies, this simple analytic estimate agrees remarkably
well with the tCLC from the numerically exact quantum as well
as CTMC simulations with errors typically less than 1 as
(Fig. 8). tCLC [Eq. (4.18)] depends on Z, on ϵ, and on the
streaking-field period TIR (or, equivalently, its frequency
ωIR ¼ 2π=TIR). It is, however, independent of the IR-field
strength. In practice, the IR intensity should beweak enough in
order to prevent field ionization and depletion of the system to
be ionized but it should be strong enough to cause easily
detectable energy modulations of the emitted electron (typical
values are 1010 ≤ IIR ≤ 1012 W=cm2). The remarkable and, at
first glance, counterintuitive independence of IIR is an imme-
diate consequence of the fact that Coulomb-laser coupling

results in a momentum shift proportional to the field ~FIR

[Eq. (4.12)] being π=2 phase shifted relative to the ~AIR field

since ~FIR ¼ −ð∂=∂tÞ~AIR. Consequently, the amplitude of a

contribution ∼~FIR to the unperturbed streaking shift ∼~AIR
[Eq. (4.9)] yields a phase shift, or time shift, that is independent
of the modulus of AIR. The tCLC time shift is also largely
independent of the duration and shape of the IR streaking pulse.
Combining Eqs. (4.15) and (4.18) yields the following
approximate expression for casym:

casymðϵ; Z;ωIRÞ≃ 1

ωIR
tan

�
ωIRZ

ð2ϵÞ3=2 ½2 − lnðϵTIRÞ�
�
: ð4:19Þ
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Within the classical analysis, the strict additivity of the
contributions to the streaking time

tS ¼ tCEWSðϵ;l; ZÞ þ tCLCðϵ; Z;ωIRÞ ð4:20Þ

also observed in the quantum simulations is an immediate
consequence of the spatial separation of the short-ranged and
long-ranged potential contributions along the trajectories
[Eq. (3.18)]. One important consequence of Eq. (4.20) is that
the EWS delay for photoionization in the presence of long-
range Coulomb interactions becomes accessible by attosecond
streaking since the time shift tCLC can be independently
determined either by a numerical streaking simulation for a
Coulomb potential or approximately by Eq. (4.18).
It is of conceptual interest to compare the time information

extracted by streaking for Coulomb-final-state interactions
[Eq. (4.20)] with that extracted by the interferometric method
of RABBIT (Paul et al., 2001; Toma and Muller, 2002;
Mauritsson, Gaarde, and Schafer, 2005; Klünder et al., 2011;
Dahlström, L’Huillier, and Maquet, 2012; Guénot et al.,
2012). The time shift observed by RABBIT tR can also be
written as a sum of an intrinsic atomic delay and an IR field-
induced shift, referred to in this context as continuum-
continuum coupling (Klünder et al., 2011; Dahlström,
L’Huillier, and Maquet, 2012; Dahlström et al., 2013),

tR ¼ tCEWS þ τcc: ð4:21Þ

A quantitative comparison (Fig. 9) between tS [Eq. (4.20)] and
tR [Eq. (4.21)] for photoemission of Heþð1sÞ yields excellent

agreement over a wide range of energies. Small deviations
appear at low kinetic energies. Since RABBIT employs APTs
rather than single attosecond pulses, the frequency range
explored in Fig. 9 is covered by a broad range of harmonics in
the APT ranging from q ¼ 9 to q ¼ 81 of the fundamental ωIR
with λ ¼ 800 nm. This agreement is quite remarkable for
several reasons: RABBIT employs long pulses for which the
quantum path interferences control the interaction of the
interrogating pulse with the system while attosecond streaking
acts as a classical clock. Moreover, RABBIT relies on lowest-
order perturbation theory for a combined ωXUV þ ωIR two-
photon absorption process while streaking involves moder-
ately strong fields. The energy modulations correspond to an
exchange of several ωIR photons (e.g., ∼4 photons in the
example of Fig. 6 with IIR ¼ 1012 W=cm2). Nevertheless, the
time shifts introduced by the probing field tCLC and τcc are in
excellent agreement with each other [Fig. 9(b)]. One key in
understanding this remarkable agreement is the intensity
independence of tCLC [Eq. (4.18)] indicating that the
Coulomb-laser coupling contribution to the time shift is
present in both the single-photon and multiphoton regimes.
This underlines the fact that tEWS can be unambiguously
extracted by conceptually entirely different methods provided
that the additional contributions tCLC or, equivalently, τcc are
accounted for.

D. Dipole-laser coupling

As indicated by the interplay between the Coulomb
potential and the centrifugal potential [Eq. (3.16)] for the
Coulomb-EWS delay tCEWS [Eqs. (3.13) and (3.17)], inter-
actions decaying asymptotically as V ∼ r−2 provide an inter-
esting intermediate case at the borderline between short- and
long-ranged interactions. Another important example is per-
manent dipole interactions also decaying as Vd ∼ r−2. Their
influence on streaking was first discussed by Baggesen and
Madsen (2010a, 2010b). Permanent dipole interactions are
present for molecules, while quasipermanent dipoles (on the
time scale of the laser pulse duration) appear for systems with
near-degenerate manifolds of states with opposite parity. A
particularly simple case is photoionization of degenerate
hydrogenic manifolds where dipolar interactions are present
in the entrance channel and Coulomb interactions in the exit
channel. We consider the substate dependence of the time shift
in photoionization of the n ¼ 2 manifold of Heþðn ¼ 2Þ.
Unlike the states of well-defined parity HeþðnlmÞ, the two
parabolic states Heþðn ¼ 2; k ¼ �1Þ feature a permanent
electric dipolemoment ofdk¼�1 ¼ �3n=2Z (or,more precisely,
a quasipermanent dipole moment oscillating on a ∼100 ps time
scale when relativistic and quantum-electrodynamical correc-
tions are included). The effect of the initial-state polarization on
the photoionization transition matrix element is fully con-
tained in the Coulomb-EWS time [Fig. 10(a)]. However, in the
presence of the IR streaking field, its interaction with the
initial-state dipole prior to photoionization leads to a time-
dependent initial-state energy shift

ΔEðτÞ ¼ −~d⋅~FIRðτÞ ð4:22Þ

FIG. 9 (color online). Comparison between simulations of
streaking and RABBIT: (a) Comparison between the streaking
times tS and RABBIT time shifts tR. For streaking single
attosecond pulses with τXUV ¼ 200 as and variable ωXUV
are used; for RABBIT APTs built of harmonics from q ¼ 9 to
q ¼ 81 of the fundamental ωIR (λ ¼ 800 nm) are employed.
(b) Comparison between the analytic approximation to tCLC
[Eq. (4.18)] and τcc [Eq. (100) from Dahlström, L’Huillier, and
Maquet, 2012].
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and, in turn, to a phase shift

ΦðtÞ ¼ −~d
Z

t

−∞
~FIRðt0Þdt0 ¼ ~d⋅~AIRðtÞ: ð4:23Þ

This additional phase and energy shift is inherited by the
continuum final state giving rise to an additional streaking-
measurement related time shift referred to as a dipole-laser
coupling (dLC) time shift tdLC. Indeed, the streaking time tS
for the Heþðn ¼ 2Þ initial states significantly differs from that
predicted by Eq. (4.20) [Fig. 10(b) (Nagele et al., 2011)]. This
dLC contribution can be easily accounted for by including
the IR field-induced energy shift of the initial state.
Equation (4.22) results in an additional modulation of the
final-state energy

EfðτÞ ¼
p2
fðτÞ
2

¼ E0 − ~p0⋅~AðτÞ − ~d⋅~FIRðτÞ; ð4:24Þ

where terms to second order in the streaking field have been
neglected. In direct analogy with Eqs. (4.10)–(4.15) the dipole

contribution ∼FIRðτÞ being π=2 out of phase with the
streaking momentum ∼AIRðτÞ gives rise to an additional
phase shift (Baggesen and Madsen, 2010b) of the streaking
momentum for emission along the laser polarization axis,

αdLCAIRðτ þ tðiÞdLCÞ ¼ AIRðτÞ þ dkFIRðτÞ=p0; ð4:25Þ

with the dLC time shift

tðiÞdLC ¼ 1

ωIR
tan−1

�
−
dkωIR

p0

�
ð4:26Þ

and a renormalization of the amplitude of the streaking
momentum

αdLC ¼
�
1þ

�
dkωIR

p0

�
2
�
1=2

: ð4:27Þ

Thus, for photoionization of atomic or molecular initial states
(i) with a permanent electric dipole, the relation between the
observable streaking time shift tS and the intrinsic EWS time
delay tEWS [Eq. (4.20)] is modified to

tS ¼ tEWS þ tCLC þ tðiÞdLC: ð4:28Þ

Equation (4.28) can account for the time shifts observed for
the degenerate hydrogenic manifolds with (sub-)attosecond
precision [Fig. 10(c)]. Remarkably, the influence of the
dipole-laser coupling is not restricted to initial states with a
permanent dipole moment. The strong polarizability of (near)
degenerate manifolds also influences substates with well-
defined parity for which dipole effects were expected to be
absent (Baggesen and Madsen, 2010b; Zhang and Thumm,
2010). Since the states 2s and 2p0 are highly polarizable, they
are subject to dLC as well. Expanding j2si and j2p0i in terms
of two parabolic states

jn ¼ 2;l ¼ 0 ðl ¼ 1Þi ¼ 1ffiffiffi
2

p ðjk ¼ 1i þ
ð−Þ jk ¼ −1iÞ; ð4:29Þ

the effective induced dipole moment follows as

hdleffi ¼
1

2jclj2
X
k

dkjckj2; ð4:30Þ

where jc2kj and jclj2 are the square moduli of the dipole
transition matrix elements [Eq. (2.25)] from the initial state k
or l to the continuum with final momentum along the
polarization axis. Using this effective dipole moment in

tðiÞdLC, Eq. (4.26) leads to a drastic change of the predicted
time shift [cf. Figs. 10(b) and 10(c)] and to near-perfect
agreement with the quantum simulation (Pazourek, Nagele
et al., 2012).

V. TIME-RESOLVED PHOTOIONIZATION
OF MANY-ELECTRON ATOMS

Since for hydrogenic atoms and ions or, more generally, for
single-active-electron (SAE) models the attosecond streaking

FIG. 10 (color online). Photoionization from different initial
states of the Heþðn ¼ 2Þ shell as a function of the final kinetic
energy ϵ ¼ ωXUV þ ε1s emitted in the forward direction (θ ¼ 0°):
(a) Coulomb-EWS times. (b) Corresponding streaking time shifts
tS for the full quantum simulation (dots) compared with the
analytic prediction [Eq. (4.20)] without corrections for initial-
state polarization. (c) Same as (b) but compared with the
prediction including the dipole-laser coupling [Eq. (4.28)].
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of photoionization can be numerically simulated with (sub-)
attosecond precision by solving the Schrödinger equation in
its full dimensionality, the extraction of timing information for
photoionization now appears well understood. The situation is
strikingly different for many-electron atoms. First experiments
were performed for rare gas atoms (Schultze et al., 2010;
Klünder et al., 2011; Guénot et al., 2012), the results of which
have led to a flurry of theoretical investigations (Kheifets and
Ivanov, 2010; Schultze et al., 2010; Zhang and Thumm, 2010;
Baggesen and Madsen, 2011; Ivanov and Smirnova, 2011;
Komninos, Mercouris, and Nicolaides, 2011; Moore et al.,
2011; Nagele et al., 2011, 2012, 2014; Dahlström, Carette,
and Lindroth, 2012; Dahlström, L’Huillier, and Maquet, 2012;
Pazourek, Feist et al., 2012; Pazourek, Nagele et al., 2012;
Śpiewanowski and Madsen, 2012; Carette et al., 2013;
Dahlström et al., 2013; Dixit, Chakraborty, and Madjet,
2013; Kheifets, 2013; Pazourek, Nagele, and Burgdörfer,
2013; Feist et al., 2014; Saha et al., 2014; Wätzel et al.,
2015). Yet satisfactory agreement between theory and experi-
ment is still lacking and many open questions remain.
In the pioneering attosecond streaking experiment (Schultze

et al., 2010), the relative delay between photoionization of the
neon 2s and 2p electronsΔtSð2p − 2sÞ ¼ tSð2pÞ − tSð2sÞwas
found to be ΔtSð2p − 2sÞ≃ 21� 5 as (Fig. 11). The positive
sign of the delay implies that the formation of the emitted 2s
electron wave packet precedes that of the 2p electron.
Obviously, this timing information is unrelated to the arrival
time difference at any macroscopic detector as the 2p photo-
electron has a considerably higher kinetic energy than the 2s
electron and will be arriving first. Accompanying first theo-
retical investigations (Mercouris, Komninos, and Nicolaides,
2010; Schultze et al., 2010; Yakovlev et al., 2010) confirmed
the sign of this delay but found values considerably lower by a
factor of 2 to 3. This discrepancy raised conceptual questions as

to the influence of many-electron and correlation effects on the
intrinsic time delay and on streaking measurement related time
shifts. Improvements have been sought along two lines.Within
time-independent approximations more accurate calculations
of the EWS delay have been performed (Kheifets and Ivanov,
2010; Dahlström, Carette, and Lindroth, 2012; Kheifets, 2013)
while the influence of the IR field on the extracted time shift is
either neglected or treated only in lowest-order perturbation
theory. Within the time-dependent R-matrix theory (RMT)
(Moore et al., 2011), on the other hand, the interaction of the IR
field with the fragments of the photoionization process are
included to all orders; however, the degree towhich correlation
effects can be accounted for within a fairly limited basis size
remains unclear. A recent calculation (Feist et al., 2014)
combines from separate calculations accurate values for
tEWS, obtained using the B-spline R-matrix (BSR) method
(Zatsarinny, 2006; Zatsarinny and Froese Fischer, 2009), with
the nonperturbative evaluation of tCLC [see Eqs. (4.6), (4.18),
and (4.20)]. All up-to-date available calculations that approx-
imately account for electron correlation effects and include the
IR-field-induced time shift agree reasonably well with each
other (Fig. 11). For comparison, also a TDSE simulation in the
SAE approximation (Nagele et al., 2012) for a Ne model
potential where the electronic interactions are taken into
account only at a mean-field level is shown. Inclusion of
correlation effects beyond the mean-field level, indeed,
increase the relative EWS delay by ∼4 as near
ωXUV ≃ 100 eV. However, all state-of-the-art calculations
for ΔtS, so far, lie far off the experimental values by
Schultze et al. (2010) and are outside 1 standard deviation
of all measured data points (Fig. 11). Adding to the puzzle is the
observation that all contributions to photoionization time
delays are predicted to decrease with increasing energy while
no clear trend is recognizable in the experimental data.
The influence of unresolved shake-up channels was

recently identified as one possible source of the discrepancy
(Feist et al., 2014). Because the spectral width of the atto-
second XUV pulse ΔωXUV ∼ 2π=τXUV is larger than the
spectral separation between the shakeup lines (“correlation
satellites”) and the main line, the streaking trace of the 2smain
line could be contaminated by spectrally unresolved shakeup
channels. Such a contribution might significantly affect the
experiment. Indeed, in the experimental data [Fig. 2 of
Schultze et al. (2010)] a shoulder, most likely due to shakeup,
is visible. All previous theoretical treatments have addressed
only the 2s and 2p main lines. The potentially strong
influence of shakeup channels could result from the preva-
lence of near-degenerate states in excited-state manifolds of
the residual ion. Consequently, the ionic shakeup final state
can be strongly polarized by the probing IR pulse (Baggesen
and Madsen, 2010b; Pazourek, Feist et al., 2012). Unlike for
the ground state discussed earlier an additional time shift due
to dipole-laser coupling tdLC [Eqs. (4.26) and (4.28)] may
contribute. Currently available estimates yield, indeed, a
correction for the 2s time shift by ∼2 to 3 as, however,
increasing rather than decreasing the discrepancy to the
experiment. Future experimental and theoretical studies, in
particular, exploring the energy and angular dependence,
appear necessary to unravel this puzzle.
Time-resolved photoionization of argon by attosecond

XUV pulses is of conceptual interest as it offers the oppor-
tunity to explore the influence of so-called Cooper minima

FIG. 11 (color online). Relative streaking time shift ΔtS ¼
tSð2pÞ − tSð2sÞ between neon 2p and 2s subshells as a function
of photon energy ωXUV. Comparison between experimental data
by Schultze et al. (2010), diamonds (both mean value and
standard deviation as well as the individual data points as small
dots on or near the error bars are shown), and several calculations.
Solid line: B-spline R-matrix (BSR) method (Feist et al., 2014);
solid circles: time-dependent R-matrix theory (Moore et al.,
2011); open square: random phase approximation with exchange
(RPAE) (Kheifets, 2013); and open triangle: many-body pertur-
bation theory (MBPT) (Dahlström, Carette, and Lindroth, 2012).
For comparison, the SAE mean-field results (dotted line) are also
shown (Nagele et al., 2012).
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(Cooper, 1962) on the temporal evolution of the outgoing
wave packet. Cooper minima result from zeros in the
photoionization dipole matrix element [Eq. (2.25)] as a
function of the kinetic energy of the outgoing electron. The
change of sign of the dipole matrix element near the zero at
ϵ ¼ ϵ0 amounts to a phase jump by�π over a narrow range of
energies (Schoun et al., 2014) and, consequently, to large
EWS time shifts [Eq. (2.27)]. These can have either positive or
negative sign, depending on whether the phase jump is
positive (þπ) or negative (−π). Photoionization of the Ar
3p electron with one radial node features a Cooper minimum
at a photon energy ωXUV ≈ 45 eV already at the Hartree-Fock
(HF) level (Amusia, 1990; Starace, 2006) while strong
3s − 3p intershell correlations are responsible for a deep
Cooper minimum in the Ar 3s photoionization cross section
near 42 eV (Dahlström, Carette, and Lindroth, 2012; Carette
et al., 2013; Dixit, Chakraborty, and Madjet, 2013; Kheifets,
2013; Dahlström and Lindroth, 2014; Saha et al., 2014).
These photon energies are within reach of attosecond XUV
pulses and have been investigated by combining an APTwith
an IR field. Time resolution was achieved by RABBIT
interferometry (Klünder et al., 2011; Guénot et al., 2012).
The harmonic orders 22 to 26 of the Ti:sapphire laser lie in the
vicinity of the Cooper minimum of Arð3sÞ. Remarkably, both
the discrepancies between different calculations and between
experimental and theoretical data are large even when the
large experimental uncertainty of�50 as is taken into account
(note the expanded time scale in Fig. 12 compared to Fig. 11).
The origin of these discrepancies is not yet well understood.

They could possibly be connected with the presence of the
deep Cooper minimum itself. Since the 3s cross section almost
vanishes, small admixtures from otherwise subdominant
channels may significantly contribute and amplify discrepan-
cies. For example, one assumption underlying the RABBIT
chronoscopy is that only two-photon processes coupling
adjacent odd harmonics ð2n − 1ÞωIR and ð2nþ 1ÞωIR con-
tribute by adding or subtracting one IR photon. Near a Cooper
minimum, however, nonperturbative corrections beyond two-
photon processes may become more important.
Recently, several measurements of the relative time delays

between rare gas atoms became available. Guénot et al. (2014)
reported on relative delays for argon, neon, and helium for
photon energies between 31 and 37 eV employing RABBIT
with an active stabilization of the interferometer. Sabbar et al.
(2015) performed streaking measurements of the relative
delay between argon and neon in a photon energy region
between 28 and 38 eV by using a gas mixture. RABBIT
measurements for helium, neon, argon, and krypton over a
wider range of energies were also reported by Palatchi et al.
(2014). Measurements of the relative delays have the potential
of higher accuracy as several error sources related to the
absolute phase determination drop out. Still, large uncertain-
ties and significant discrepancies between different measure-
ments and between experiment and theory remain.
Photoionization of helium is, presently, the only multi-

electron system for which a full ab initio quantum simulation
of time-resolved photoemission in a streaking setting has
become available (Pazourek, Feist et al., 2012). Rigorous tests
of the validity of SAE or mean-field approximations are
possible for this system. Single photoionization of Heð1s2Þ
described by an SAE approximation assumes the residual ion
to be in the state Heþð1sÞ. Inclusion of electron-electron
interactions alters this picture: The “quasisudden” appearance
of the Coulomb hole leads either to a relaxation of the orbital
of the second electron to the true ground state of the ion
Heþð1sÞ, sometimes referred to as a “shakedown,” or to a
“shakeup” to excited states HeþðnlmÞ or even a “shakeoff” to
the continuum. This electronic rearrangement of the residual
ionic complex constitutes the prototypical multielectron
response to photoionization of a many-electron system and
can be studied in detail in He [see, e.g., Sukiasyan, Ishikawa,
and Ivanov (2012) for a recent example].
The streaking spectrogram for an XUV pulse with τXUV ¼

200 as allows one to spectrally resolve the main line
[Heþð1sÞ] from the shakeup channels [HeþðnlmÞ; n ≥ 2].
In general, high-lying shakeup channels are separated from
each other by small energies within the spectral line width
ΔωXUV ∼ 2π=τXUV and cannot be resolved (see Fig. 13). For
the main line, the simulated streaking time shift tS (evaluated
in the direction of the laser polarization axis) is reproduced by
Eq. (4.20) with attosecond accuracy with tEWS given by the
exact dipole transition matrix element and tCLC by Eq. (4.18);
see Fig. 14(a). Note that the initial-state polarizability of the
helium ground state can be safely neglected as confirmed by

the agreement for the main line and, thus, tðiÞdLC ¼ 0 [see
Eq. (4.28)]. Moreover, a SAE simulation employing a HF
model potential that reproduces the first ionization potential
gives nearly identical results for tEWS and, in turn, for tS.

FIG. 12 (color online). (a) Cooper minimum in the Arð3sÞ
photoionization: cross section. From Möbus et al., 1993,
Dixit, Chakraborty, and Madjet, 2013, and Kheifets, 2013].
(b) Comparison between experiment (Klünder et al., 2011;
Guénot et al., 2012) and calculations using RPAE (Kheifets,
2013), time-dependent local density approximation (TDLDA)
(Dixit, Chakraborty, and Madjet, 2013), and RPAE (Dahlström
and Lindroth, 2014) for the relative RABBIT time delay
ΔtR ¼ tRð3sÞ − tRð3pÞ. For the calculations by Kheifets et al.
and Dixit et al. we added the continuum-continuum coupling
according to Eq. (4.21).

Pazourek, Nagele, and Burgdörfer: Attosecond chronoscopy of photoemission 783

Rev. Mod. Phys., Vol. 87, No. 3, July–September 2015



Therefore, correlation effects do not play a significant role
for the direct (main-line) photoionization with Heþð1sÞ as
final state.
An entirely different picture emerges for ionization accom-

panied by shakeup. These correlation-satellite lines represent
the prototypical case of photoionization strongly driven by
electron-electron interactions of two equivalent electrons
(Åberg, 1967; Svensson et al., 1988; Amusia, 1990;
Dalgarno and Sadeghpour, 1992; Samson and Stolte,
2002). We restrict in the following the analysis to the
dominant shakeup to n ¼ 2. The spectrogram (Fig. 13)
reflects the weakness of the shakeup channel (< 5% of the
main channel) and indicates the experimental challenge to
perform a chronoscopic measurement with attosecond pre-
cision. Higher lying channels n ≥ 3 are even weaker.
Unlike for the ground state Heþð1sÞ, for all substates
Heþðn ¼ 2;lmÞ Eqs. (4.20) and (4.28) completely fail to
reproduce the streaking time shift determined by the ab initio
simulations [Fig. 14(b)]. In this case, it is the high polar-
izability of the degenerate hydrogenic Heþðn ¼ 2Þ manifold
of the residual ion that causes the discrepancy between the
extracted streaking time and the prediction Eq. (4.28). The
starting point for unraveling these polarization effects is the
observation that the two parabolic final states Heþðn ¼ 2;
k� 1Þ possess a large permanent dipole moment. The long-
range interaction between the ionized electron and the residual
ion in the exit channel contains now both a Coulombic and a

dipolar interaction Vd ¼ −~d⋅~r=r3. Their direct contributions
to tEWS in the absence of a streaking field is fully included in
the exact calculation of the dipole transition matrix for single
ionization of He employing exterior complex scaling
(McCurdy, Baertschy, and Rescigno, 2004; Palacios,
Rescigno, and McCurdy, 2008, 2009; Liertzer et al., 2012).
In the presence of a streaking field, however, the long-range
portions give additional contributions. While the Coulomb
contribution is contained in tCLC [Eq. (4.18)] the additional
streaking-field induced dipolar interaction between the
bound and ionized electrons is not. This true field-induced

electron-electron interaction effect can be viewed as a dipole-
laser coupling, in analogy to Eq. (4.26), however, as a final-
state rather that initial-state interaction effect. The analytic

derivation for the associated time shift tðfÞdLC ¼ te-edLC can be

directly taken over from that for tðiÞdLC [Eq. (4.26)], apart from
the change of sign relative to the corresponding expression for
the initial-state perturbation of the one-electron problem.
Accordingly, we have now

tðfÞdLC ¼ te-edLC ¼ 1

ωIR
tan−1

�
dkωIR

p0

�
; ð5:1Þ

and Eq. (4.28) becomes

tS ¼ tEWS þ tCLC þ tðiÞdLC þ tðfÞdLC: ð5:2Þ

This additional time shift tðfÞdLC is a true electron-electron
interaction contribution absent on the SAE or mean-field
level. The physical picture underlying the IR field-induced
dipole shift to streaking is illustrated in Fig. 15. The energy
modulation of the parabolic states k ¼ 1 and k ¼ −1 are out of

FIG. 13 (color online). Numerically simulated streaking
spectrogram for helium and emission into a forward cone
(opening angle 10°) around the polarization axis. XUV pulse
with hωXUVi ¼ 100 eV, τXUV ¼ 200 as, IXUV ¼ 1012 W=cm2,
streaking field with IIR ¼ 4 × 1011 W=cm2, and λ ¼ 800 nm.
Top: Main line Heþð1sÞ, bottom: shakeup satellite (predomi-
nantly) to Heþðn ¼ 2Þ.

FIG. 14 (color online). Ab initio simulation of streaking of
photoionization of helium (laser parameters as in Fig. 13).
(a) Main line [final state Heþð1sÞ]. Also shown are the results
for the SAE simulation and the predictions Eqs. (4.20) and (4.28).
(b) Shakeup to n ¼ 2 final state Heþðn ¼ 2;l; mÞ, symbols:
ab initio simulation, lines: prediction Eqs. (4.20) and (4.28).
(c) Same as (b) but with the inclusion of te-edLC [Eq. (5.1)].
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phase by π relative to each other. Adding this additional
contribution to the total time shift [Eq. (5.2)] leads to near-
perfect agreement for all n ¼ 2 shakeup substates [Fig. 14(c)]
confirming, once more, the additivity rule for laser-modified
long-range interactions. As in the one-electron case, not only
ionic final states with a permanent dipole moment jn; k; mi but
also highly polarizable states in degenerate manifolds with
zero static dipole moment jn;l; mi suffer a dipole-laser
induced time shift [see Eq. (4.30)]. Conceptually, Eqs. (5.1)
and (5.2) reflect the entanglement in the exit channel. As a
result, the streaking time shift of the observed ionized electron
depends on the dipole moment of the substate of the residual
ion. In turn, the final quantum state jn;l; mi or jk; n;mi
becomes accessible in a nondestructive measurement, i.e.,
without directly observing it.

VI. TIME-RESOLVED PHOTOIONIZATION
OF MOLECULES

Time-resolved photoionization of more complex systems
with internal geometric structure promises novel insight into
the formation of an outgoing wave packet emerging from the
complex. The time encoded in the wave packet of the receding
electron carries information on the initial localization within
the molecule as well as on the near field of neighboring atomic
constituents. The simplest prototypical case is the photoioni-
zation of a diatomic molecule (Fernández et al., 2007; Hu,
Collins, and Schneider, 2009; Guan, Bartschat, and Schneider,
2011; Bian and Bandrauk, 2012; Ivanov, Kheifets, and Serov,
2012; Serov, Derbov, and Sergeeva, 2013; Carpeggiani et al.,
2014; Chacon, Lein, and Ruiz, 2014; Ning et al., 2014).
Among the fundamental questions to be addressed are the
following: Does it take longer for the electron to escape from
the multicenter molecular core than from the one-center
atomic core? Does the emission time-delay dependence on
the relative orientation of the emission direction and molecular
axis carry information on the geometric arrangement of the
atomic constituents, and, most importantly, are those effects
observable in an attosecond streaking setting?
For the simplest and most fundamental one-electron mol-

ecule H þ
2 , the validity of the additivity of intrinsic EWS delay

and streaking-field-induced time shifts [Eq. (4.28)] for

molecules can be rigorously tested by an ab initio solution
of the time-dependent Schrödinger equation in the presence of
the attosecond XUV and the IR fields. The evolution of the
electronic wave packet is calculated for a fixed internuclear
distance R and orientation R̂ relative to the polarization of the
laser field. The approximation of frozen nuclei is well justified
for attosecond-scale ionization processes. After the conclusion
of the pulse, the emerging wave packet is projected onto the
molecular scattering states Φ−

f with incoming wave boundary
conditions [for details see Hou et al. (2012)]. The EWS time
delay can be separately determined from the dipole matrix
element [cf. Eq. (2.26)]

tEWSðϵ; R; θe; θxÞ ¼
∂
∂ϵ arg ½hψ

−
f ðϵ; R; θeÞj~d · êjϕ0i� ð6:1Þ

for a vertical Franck-Condon-like electronic transition
between Born-Oppenheimer potential surfaces. The dipole
matrix element and the EWS time delay depend on the angles
of the XUV polarization (θx) and the electron emission (θe)
relative to the orientation of the internuclear axis R̂. For small
internuclear distancesR ¼ 0.1 the EWS delay and the resulting
streaking delay are indistinguishable on the attosecond scale
from those of the united atom limit Heþ [Fig. 16(a)]. At larger
internuclear separations [R ¼ 2, Fig. 16(b)], signatures of the
molecular structure become prominently visible. The
Coulomb-laser coupling time shift for the H þ

2 molecule is
equivalent to the pure Coulombic Heþ case and the additivity
of the EWS delay tEWS and CLC time shift tCLC [Eq. (4.20)] is
satisfied with attosecond precision also for molecules. Note
that, in general, the influence of the additional dipole-laser
coupling term tdLC [Eq. (4.28)] is expected to be larger for
molecules than for atoms for two reasons: polar molecules
possess permanent dipole moments and nonpolar molecules
feature larger dipole polarizabilities.

(a) (b)

FIG. 15 (color online). Streaking of helium with the remaining
ion left in a Stark state: (a) Two-electron dipole-laser interaction
in the exit channel; shown is the electron density ρ of the two-
electron state. (b) Resulting dipole-laser induced time shift te-edLC as
a function of the final electron energy.

FIG. 16 (color online). EWS (solid lines) and calculated streak-
ing time shifts tS (symbols) from H þ

2 at different fixed
internuclear distances (Ning et al., 2014). (a) R ¼ 0.1; also
shown is tS for the atomic R ¼ 0 limit, Heþ. (b) R ¼ 2; also
shown are tCLC and tEWS þ tCLC [Eq. (4.20)].
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The molecular origin of the dramatic enhancement of the
time delay near E ¼ 260 eV in Fig. 16(b) can be traced to the
two-center or Cohen-Fano interference effect (Cohen and
Fano, 1966). Destructive interference between emission from
the two centers occurs when the electron momentum ~p and the

internuclear distance vector ~R satisfy

~p · ~R ¼ pR cos θe ¼ ð2nþ 1Þπ: ð6:2Þ

Such two-center interference effects could be unambiguously
identified in the high-harmonic spectra (Lein et al., 2002;
Vozzi et al., 2005, 2006) and contribute to the contrast in
holographic imaging of molecular wave functions (Itatani
et al., 2004). The estimate [Eq. (6.2)] for the location of the
interference minimum is expected to be valid at high electron
energies when the outgoing waves can be approximated by
plane waves. Indeed, the lines in the cos θe − E plane for
which the destructive interference

ffiffiffiffiffiffi
2E

p
R cos θe=2 ¼

ðnþ 1=2Þπ condition is satisfied approximate the minima
in the differential cross section and, in turn, the extrema in
tEWS quite well (Fig. 17). Note that the destructive interference
can give rise to either an enhanced time delay or a time
advance. The pronounced peak in the EWS time delay, more
precisely in magnitude jtEWSj, near the point of destructive
Cohen-Fano interferences can be viewed as a molecular
analog of the enhancement of tEWS near a Cooper minimum
(see Sec. V). Indeed, the suppression of the dipole transition
by the two-center interference can be in some cases directly
associated with zero (or a Cooper minimum) in a single
spheroidal partial-wave amplitude of the Coulomb two-center

problem (Ivanov, Kheifets, and Serov, 2012; Serov, Derbov,
and Sergeeva, 2013). This structural similarity implies, how-
ever, that the experimental observation may face a similar
challenge as peaks in the EWS time shift are associated with
(near) zero emission probability. The first realistic simulations
of an attosecond streaking setting (Ning et al., 2014) indicate
that averaging over the radial distribution WðRÞ of the
molecule to be photoionized

htSiR ¼
R
dRtSðRÞWðRÞσðRÞR

dRWðRÞσðRÞ ð6:3Þ

will strongly suppress the interference enhancement of tS and
tEWS. For a vibrational ground-state distribution of H þ

2

W0ðRÞ the contribution from R far away from the interference
condition carries a much larger cross section and will
overshadow the interference minimum at the equilibrium
distance R ¼ R0 ¼ 2 a:u: thereby rendering the enhancement
of htSiR barely visible (Fig. 18). However, since photoioni-
zation of H þ

2 initiates the Coulomb explosion of the ionic
fragments (Frasinski et al., 1987; Vager, Naaman, and Kanter,
1989; Chelkowski et al., 1995; Stapelfeldt, Constant, and
Corkum, 1995; Staudte et al., 2007), energy-resolved detec-
tion of one outgoing proton coincident with the electron
allows one to experimentally postselect a narrowR distribution
WΔðRÞ within the ground-state vibrational distribution. This
additional “knob” allows one to enhance the interference
contrast in the time shifts by reducing the vibrational averag-
ing. Coincident detection of a proton near the Coulomb
explosion energy corresponding to the equilibrium distance
Ekin ¼ 1=ð2R0Þ with an energy resolution (FWHM) of 0.5 eV
selects a narrow radial distributionWΔðRÞ centered at R0 with
a width of ΔR ¼ 0.15 a:u: The reduced vibrational average
[Eq. (6.3)] now yields clearly visible peaks in the EWS and
streaking time shifts of the order of 10 as (Fig. 18) as
signatures of the destructive interference. The EWS time shift

FIG. 17 (color online). Simulations of (a) differential photo-
emission cross section and (b) EWS time delay in the electron
energy (ϵ) and electron emission angle (cos θe) plane for H þ

2

ðR ¼ 2Þ ionized by a 600 as XUV pulse polarized perpendicular
to the internuclear axis (θx ¼ 90°). (c) Comparison between the
location of the cross-section minima and the interference minima
predicted by Eq. (6.2).

FIG. 18 (color online). Effect of averaging over the distribution
WðRÞ on the observed streaking shift htSiR. The EWS delay at the
interference minimum R0 ¼ 2 a:u: (solid line) is compared with
the observable streaking delay when averaged over the vibra-
tional ground-state distribution W0 (squares) or a narrow dis-
tribution WΔ (triangles) postselected by Coulomb explosion of
the molecular fragments (dashed lines to guide the eye). The
XUV-pulse duration in the streaking simulations is τXUV ¼
600 as (FWHM) and the intensity of the probing 800 nm field
is IIR ¼ 108 W=cm2. From Ning et al., 2014.
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near Cohen-Fano interference minima is found to be not only
sensitively dependent on the internuclear distance R but also
on the alignment angle of the molecular axis relative to the
ionizing XUV pulse and the IR streaking field (Ning et al.,
2014). For its observation, control over the molecular align-
ment is important. Postselecting the subensemble of mole-
cules with a given orientation of the molecular axis by
detecting the Coulomb-exploding fragments provides some
level of control. Impulsive or adiabatic laser alignment of the
molecules enhances the control and is expected to improve
the contrast. The two-center interferences in the molecular
high-harmonic generation have been observed employing
impulsive alignment, i.e., the revivals of impulsively excited
rotational wave packets (Vozzi et al., 2005, 2006).
A more complex and challenging case for the interplay

between the electronic dynamics and the local geometric and
chemical environment is endohedral C60 molecules in which a
guest atom with a well-defined core-level emission line
resides at the center of the C60 cage, referred to in the
following as A@C60 [Fig. 19(a)] (Connerade, Dolmatov,
and Manson, 2000; Dolmatov et al., 2004). Timing of the
photoelectron emission from the central atom offers now to
probe a multitude of environment-specific contributions to the
time shift. For outershell electron emission, e.g., the 3p
electron of argon, hybridization with the valence electrons
of the C60 shell strongly modifies the EWS time delay relative
to that of the free atom (Dixit, Chakraborty, and Madjet,
2013). This time shift reflects the initial-state modification of
the photoionization matrix element [see Eq. (2.26)]. By
contrast, for deeper core levels the initial-state distortion is
of minor importance. However, the continuum final state is
modified by confinement resonances. Detailed spectroscopic
information on confinement resonances for Xe@C60 have
recently become available (Dolmatov and Manson, 2008;
Kilcoyne et al., 2010). The wavelength of the outgoing
electron λdB may match the resonance condition in terms of
the radius of the fullerene shell R0,

λD ¼ 2R0

n
ðn ¼ 1; 2;…Þ; ð6:4Þ

giving rise to a modulation of the photoionization cross
section (Rüdel et al., 2002) as well as of the EWS time delay

(Nagele et al., 2011, 2014; Dixit, Chakraborty, and Madjet,
2013; Pazourek, Nagele, and Burgdörfer, 2013; Deshmukh
et al., 2014). These modulations bear close resemblance to the
extended x-ray absorption fine structure (EXAFS) (Sayers,
Stern, and Lytle, 1971; Stern and Heald, 1983; Ito et al., 2004)
by the local crystallographic environment near an absorption
site in condensed matter.
The point of departure for a simplified model for timing of

photoemission is an effective static potential for the core
electron bound to the center atom VAðrÞ with a long-range
Coulomb tail. As the outgoing electron traverses the cage, it
experiences a short-ranged potential created by the shell of
C60 atoms. A simple model potential for the shell is

VshellðrÞ ¼
	−V0 for R0 ≤ r ≤ R0 þ Δ;
0 otherwise;

ð6:5Þ

with R0 the inner radius of the C60 shell, Δ its width, and V0

the mean potential on a one-electron level. Typical parameters
used are (Dolmatov and Manson, 2008; Dolmatov, King, and
Oglesby, 2012) V0 ¼ 0.3 to 0.42, R0 ¼ 5.9 to 6.0, and Δ ¼
1.25 to 1.9. A more realistic potential VDFT

shellðrÞ can be
determined from density functional theory (DFT) applied to
the C60 molecule. After angular averaging, the radial potential
VDFT
shellðrÞ differs from Eq. (6.5) by an increased depth and

smoothed “edges” of the shell (Wais, 2014; Nagele et al.,
2015) [Fig. 19(b)]. Consequently, the amplitude of the
oscillation in the photoionization cross section as well as
the EWS time shift tEWSðA@C60Þ is drastically reduced
(Fig. 20). Moreover, the EWS time shift becomes increasingly
negative reflecting a time advance caused by the acceleration
of the outgoing electron while traversing the strongly attrac-
tive potential VDFT

shellðrÞ of the C60 shell.
Such a static potential description cannot fully account for

the dynamical response of the many-body system during the
photoionization process. The cage will act as a finite-size bath
with which the photoelectron interacts. The nonadiabatic

FIG. 19 (color online). Photoionization of an endohedral com-
plex: (a) Endohedral complex A@C60, schematically. (b) Radial
exit-channel potentials experienced by the outgoing photoelec-
tron: (dash-dotted) angular-averaged DFT potential VDFT

shellðrÞ,
(dashed) model potential [Eq. (6.5)] with V0 ¼ 0.302 a:u:,
Δ ¼ 1.9 a:u:, R0 ¼ 5.89 a:u:, (solid) VDFT

shellðrÞ þ VAðrÞ with
the atomic potential for Heþ for emission of the 1s electron.

FIG. 20 (color online). Photoionization of the 1s electron of
Heþ@C60, comparison between the model potential VshellðrÞ
[Eq. (6.5)] (dashed line) and the DFT potential VDFT

shellðrÞ (solid
line): (a) cross section σ and (b) EWS time tEWS.
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response of the C60 electrons to the quasisudden appearance of
a Coulomb hole at the center (Cederbaum and Zobeley, 1999;
Breidbach and Cederbaum, 2005) can be viewed as the many-
electron generalization of the formation of shakeup or
correlation satellites accompanying the photoionization of
helium (see Sec. V). Alternatively, it can be viewed as a
prototypical case of inelastic scattering of the outgoing
photoelectron resulting in collective plasmon as well as
particle-hole excitation in the C60 shell. We return to these
alternative points of view when discussing time-resolved
photoemission from solid surfaces. Both approaches equally
predict that electron emission either accompanied by a
shakeup excitation of C60 or undergoing an inelastic scattering
event in the exit channel is energetically well separated from
the “direct” photoelectron emission without concomitant
excitation of the residual complex. Therefore, time-resolved
photoemission observed by attosecond streaking allows one to
disentangle time shifts in photoionization with and without
additional energy exchange with the environment (or bath).
Even in the absence of simultaneous excitations, the collective
response of the valence electrons of the fullerene has a
profound effect on attosecond streaking itself. The 240
quasifree valence electrons in the C60 shell feature a high
dipole polarizability resulting in an effective screening of the
streaking field inside the fullerene and an enhanced streaking
near field outside the “polar caps” of the C60 (Fig. 21) (Nagele
et al., 2014, 2015). The field distribution calculated from a
simple hollow-sphere model for C60 with the same polar-
izability (α≃ 560 a:u:) as experimentally measured for C60

(Jensen and Van Duijnen, 2005) agrees quite well with a

time-dependent density functional theory (TDDFT) calcula-
tion on the adiabatic local density approximation (ALDA)
level (Yabana and Bertsch, 1993; Wachter et al., 2014).
The modification of the streaking field due to the dipole

response alters the readout of timing information twofold: the
photoelectron departing from the central atom is effectively
subject to the streaking field only after passing through the C60

shell. Arrival in the streaking field is thus delayed relative to
the free atom by the travel time to the surface of the shell.
Moreover, while the transport delay time tT ≃ ðr0 þ ΔÞ=v is
accumulated, the time shift by Coulomb-laser coupling is
suppressed for distances from the Coulomb center r ≤ r0.
Both contributions combined lead to an additional time shift
tscr which depends on the degree of screening by the C60 cage.
After leaving the shell, the photoelectron experiences the
residual Coulomb-laser coupling and, more importantly, the
strong dipole-laser coupling in the locally enhanced dipole-
enhanced streaking field. Accordingly, the observed streaking
time tS for core-level photoemission from a central atom of an
endohedral C60 is given by

tS ¼ tEWSðA@C60Þ þ tCLC þ tscrðC60Þ þ tdLCðC60Þ; ð6:6Þ

where tdLCðC60Þ is the dipole-laser coupling due to the local
near field of the polarized fullerene. Remarkably, the large
time advance due to the (negative) tdLC (Fig. 22) is partially,
but not completely, canceled by the (positive) transport delay
tT which is the dominant contribution to the screening delay
tscrðC60Þ. The full TDSE simulations for tS agree remarkably
well with a classical simulation in which tT, tscrðC60Þ, tCLC,
and tdLCðC60Þ can be separately calculated (Wais, 2014).
Despite the presence of these large modifications, the modu-
lation of the EWS time delay due to confinement resonances is
still visible in the resulting tS.
Experimental investigations of streaking of such nano-

plasmonic systems promise novel insights into the interplay
between chemical environment and the nanoplasmonic
response on time-resolved photoemission.

FIG. 21 (color online). Field distribution of the streaking field
near C60 (Wachter, 2014; Wais, 2014): (a) Local distribution in
the x-z plane. The positions of the C atoms are indicated by the
gray circles. (b) Normalized field distribution along the polar (z)
axis FðzÞ=F0 with F0 the amplitude of the streaking field.

FIG. 22 (color online). Comparison between the streaking time
tS from the full TDSE solution for Heþð1sÞ@C60 photoionization
along the laser polarization (θ ¼ 0°) (dots) with the quantum
mechanical EWS delay and results from a classical simulation in
which the transport time tT, the enhanced dipole-laser coupling
tdLCðC60Þ, and the Coulomb-laser coupling tCLC are determined
separately.
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VII. TIME-RESOLVED PHOTOEMISSION
FROM SURFACES

Time-resolved photoemission from solid surfaces (Föhlisch
et al., 2005; Cavalieri et al., 2007) offers a new perspective on
electronic dynamics of condensed matter combining atto-
second time resolution with angstrom spatial resolution. Since
typical inelastic mean free paths (MFP) λi for ∼100 eV
electrons are of the order of λi ∼ 5 Å, typical flight times
λi=vg (vg is the group velocity of the emitted electron) are of
the order of ∼100 as. Time-resolved photoemission thus
probes not only the electronic structure in the topmost layers
but also allows one to probe the electronic response and
electron transport on its natural time scale. Extracting and
interpreting the time information for such a complex many-
body system remains, however, a challenge.
The pioneering attosecond streaking experiment by

Cavalieri et al. (2007) employing XUV pulses with energies
hωXUVi ¼ 91 eV and a linewidth of ΔωXUV ¼ 6 eV revealed
a time delay for the emission of 4f core levels relative to
conduction band (CB) electrons from the W(110) surface of
ΔtSð4f − CBÞ≃ 110� 70 as. This finding stimulated a large
number of theoretical studies (Kazansky and Echenique,
2009; Lemell et al., 2009; Zhang and Thumm, 2009, 2010,
2011a, 2011b, 2011c; Krasovskii et al., 2010; Krasovskii,
2011; Borisov et al., 2013). Additional measurements at
somewhat higher XUV energies hωXUVi ¼ 106 and 120 eV
yielded considerably smaller time delays of ΔtSð4f − CBÞ≃
30 as with smaller error bars (Neppl, 2012). The origin of this
delay as well as its strong variation with energy has remained a
widely open question. An additional piece of the puzzle was
provided by measurements of the delay between the 2p core
and the conduction band of a magnesium (0001) surface,
ΔtSð2p − CBÞ. For this nearly free electron metal, the delay
was found to be near zero to within the experimental
uncertainty ΔtSð2p − CBÞ≃ 5� 20 as (Neppl et al., 2012).
This finding contradicts the notion (Kazansky and Echenique,
2009; Zhang and Thumm, 2009, 2011c) that the different
degrees of localization of the electronic states of the con-
duction band and/or core levels would cause large delays but
could be simply explained by the equality of mean travel times
to the surface of conduction band and core electrons in Mg
(Neppl et al., 2012),

λCB
vgðCBÞ

≈
λ2p

vgð2pÞ
; ð7:1Þ

where λ and vg denote the inelastic MFP and the group
velocity for conduction band and core electrons, respectively.
This explanation relies on a classical transport model
(Cavalieri et al., 2007; Lemell et al., 2009; Liao and
Thumm, 2014) for electron emission from the solid.
Calculation and interpretation of the observed time delays
raise important conceptual questions about photoionization
from such extended many-electron systems (Heinzmann,
2013) for time-integral photoemission.
The starting point of a quantum description of photoemis-

sion in lowest-order perturbation theory in the ionizing XUV
field is the so-called “one-step” or multiple-scattering model

(Mahan, 1970; Feibelman and Eastman, 1974) which is
equivalent to the S-matrix formulation [discussed in Sec. II
and Eq. (2.6)]. Accordingly, the response of the solid to the
photoabsorption is represented by a coherent superposition of
a set of stationary states of the channel Hamiltonian of the
(N − 1)-electron system and a wave packet of Dyson orbitals
jΦeji of the emitted electron emerging from the entangled
N-electron wave packet with components [Eq. (2.6)]

jΦϵjsi⟶
t→∞

Â ðjΦðN−1Þ
s i ⊗ jΦϵjiÞ; ð7:2Þ

where Â denotes the antisymmetrization operator. The one-
electron wave function jΦϵji corresponds to so-called “low-
energy electron diffraction” (LEED) scattering states subject
to incoming boundary conditions (Feibelman and Eastman,
1974). The formal simplicity of this description within the
framework of an S-matrix (or, equivalently, T-matrix) theory

belies the fact that the set of accessible final states jΦðN−1Þ
s i is

large and includes a plethora of complex dynamical processes.
Moreover, in standard photoemission spectroscopy, the
degrees of freedom associated with the residual ionic complex
remain unobserved and are traced out [Eq. (2.13)]. The one-
electron photoelectron spectrum Pϵj thus includes a multitude
of many-body effects (Echenique et al., 1981; Zhang and
Thumm, 2011b) such as core-hole screening (Canright, 1988;
Huber et al., 2001) and relaxation, as well as particle-hole, and
plasmon excitation. To identify and disentangle those proc-
esses, a simplified “three-step model” (or “multistep model”)
of photoemission (Feibelman and Eastman, 1974) is fre-
quently employed in which the response of the full many-

body state jΨðN−1Þ
s i is reduced to few active degrees of

freedom with which the outgoing photoelectron interacts.
Accordingly, the photoemission process by an XUV photon is
broken down into a sequence of separate elementary processes
(Fig. 23): (1) the primary photoabsorption transferring a
localized core electron or valence band electron to a high-
lying state in the conduction band, (2) the transport of this
Bloch wave packet toward the surface undergoing electron-
electron collisions which may lead to additional particle-hole
and collective plasmon excitations, and (3) diffraction at the
surface potential and eventual transmission into the vacuum

leaving the solid with asymptotic momentum ~k. Underlying
such semiclassical multistep models is the implicit assumption
of partial loss of coherence due to dephasing in the presence
of a large number of traced out environmental degrees of
freedom. Such multistep models suggest time ordering of
those elementary processes. It is therefore tempting to inquire
into the possibility to observe in real time the unfolding of
such a multistep scenario by attosecond streaking.
One key feature of attosecond streaking for condensed-

matter systems is that the streaking field clocks the time the
electron arrives in the IR field. Similar to the case of C60 (see
Sec. VI), the crucial input is penetration depth and dielectric
screening of the IR field with angstrom accuracy. In the first
theoretical models (Cavalieri et al., 2007; Kazansky and
Echenique, 2009; Lemell et al., 2009; Zhang and Thumm,
2009) a wide variety of penetration models have been used.
For an accurate determination of the spatiotemporal profile of
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the near-field IR field at the metal-vacuum interface on the
angstrom scale, the commonly used Fresnel equations based
on macroscopic material properties and perfectly sharp
interfaces cannot be applied. A microscopic description for
FIRðz; tÞ is provided by TDDFT (Runge and Gross, 1984;
Liebsch, 1997; Wachter et al., 2012). The streaking field with
the polarization oriented along the surface normal ẑ induces a
polarization charge layer at the metal surface which shields the
interior of the solid against the external electric field.
Screening at metallic surfaces becomes effective near the
so-called image plane zim typically located outside the top-
most atomic layer at zatom ¼ 0 (Fig. 24). A further character-
istic distance for the electronic response is the so-called
“jellium” edge at z0 ¼ zatom þ d=2 (d is the layer spacing
for a given crystallographic direction). In general, the location

and width of the dynamic screening charge layer are expected
to depend on the strength, direction, and frequency of the
applied field as well as on the lattice structure of the target.
Remarkably, the local screening of the streaking field at IR
frequencies ω ¼ ωIR as predicted by TDDFT (Neppl et al.,
2015) is almost identical for pure W, pure Mg, and W=Mg
heterostructures with varying numbers of Mg adlayers when
plotted relative to the position of the jellium edge. The key
observation is that the laser field is already fully screened at
the position of the atoms of the topmost layer. Thus, the
primary XUV photoabsorption and the formation of the Bloch
wave packet takes place fully screened from the streaking field
in close analogy to the core-level emission of a endohedral C60

molecule (Sec. VI). Only upon crossing the metal-vacuum
interface is the photoelectron exposed to the streaking field. Its
turn-on is localized to within the width of the dynamical
screening charge distribution, typically ≲1 Å (Fig. 24) and,
thus, fairly abrupt (Neppl et al., 2015).
We illustrate the potential of time-resolved photoemission

for providing novel conceptual insights with the help of one
example. For XUV energies, photoelectron spectra PðϵÞ map
out the density of states (DOS) of the electronic band
structure. The spectral width of attosecond XUV pulses
ΔωXUV can be comparable to the width of the conduction
band. Time-resolved photoemission is, thus, characterized by
a significant spectral broadening of the photoelectron spec-
trum Pðϵ ¼ ωXUV − ϵiÞ. If now the spectral width is still
smaller than the spacing to so-called satellite peaks at lower
energies, e.g., Pðϵ − ωp;sÞ, the plasmon-loss peaks displaced
by ωp ðωsÞ, the energy of the bulk (or surface) plasmon
excitation, relative timing information on the emission of the
main line, and the satellite lines become accessible. One of the
still widely open issues is to what extent these satellite features
are intrinsic or extrinsic (Aryasetiawan, Hedin, and Karlsson,
1996; Guzzo et al., 2014). The notion of plasmon excitation,
intrinsically linked to the photoemission, can be viewed as the
direct condensed-matter analog to the atomic shakeup corre-
lation satellites (Sec. V). Extrinsic plasmon generation, on the
other hand, is thought to proceed by secondary inelastic
electron scattering of the outgoing photoelectron subsequent
to the primary photoexcitation and is often treated as a
background contribution to the spectrum. Clearly, within a
one-step description such a distinction is anything but clear-
cut: these processes simply represent different coherent super-
positions of the ionic final states of the ðN−1Þ-electron
system, jΨðN−1Þi¼P

aðN−1Þ
s jΦðN−1Þ

s i. By contrast, within
the multistep model intrinsic plasmon excitation is linked
to the vertical transition to the continuum (step 1 in the
multistep model, Fig. 23) while extrinsic plasmon excitation
results from inelastic scattering (step 2, Fig. 23). Such a
semiclassical model suggests that extrinsic and intrinsic
plasmon satellites should feature a distinct time ordering. A
classical transport simulation (Lemell et al., 2009; Lemell,
Tőkési, and Burgdörfer, 2012) within which ingredients of the
multistep model are naturally incorporated suggests that such
delays are, indeed, on the attosecond scale and, thus, acces-
sible by attosecond streaking.
We consider the photoemission from the Mg conduction

band following the absorption of an XUV photon with

FIG. 23 (color online). Multistep model of photoemission by an
XUV pulse from surfaces: 1: primary transition from a core level
to a high-lying continuum level assuming the spectator electrons
remain frozen, 2: transport of a Bloch wave packet toward the
surface accompanied by electron-electron collisions leaving a
particle-hole excitation, and 3: ejection of the photoelectron into
vacuum with asymptotic momentum ~k.

FIG. 24 (color online). TDDFT analysis of the atomic-scale
dipole screening of the streaking field normal to the surface plane.
(a) Snapshot of the streaked field FIRðzÞ and of the charge density
near a W(110) surface taken at the maximum of the streaking
field with intensity 2 × 1011 W=cm2 and duration 4 fs (FWHM of
intensity, cosine-pulse shape). The jellium edge is half a lattice
spacing z0 outside of the first layer, zim marks the (dynamical)
image plane (dashed vertical line; centroid of the induced density)
located even farther out from the first layer. (b) Snapshot of the
local electric field calculated from time-dependent density func-
tional theory simulations for different surfaces, W(110) (dashed)
and Mg(0001) (solid), plotted relative to the jellium edge. The
local field distribution is virtually unaffected by the surface
composition.
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hωXUVi ¼ 130 eV. The direct conduction band spectrum PðϵÞ
extends in the range 120 ≤ ϵ ≤ 126 eV broadened by the
Fourier width of the attosecond pulse τXUV ¼ 450 as,
ΔωXUV ¼ 4 eV. The plasmon satellite line associated with
the excitation of a single bulk plasmon is displaced by 10.5 eV
and thus well separated from both the direct conduction band
spectrum and the Mgð2pÞ core level near ϵ ¼ 80 eV. The
extraction of time delays from a classical transport simulation
(Lemell et al., 2009) employs the correspondence to temporal
shifts of the first moment of the “wave packet” [Eq. (2.33)]
represented here by classical phase space distribution.
Plasmon excitation along classical trajectories is treated in
terms of a stochastic force whose strength and temporal
structure are determined by the optical limit of the energy
loss function Im½−1=ϵðωÞ� (Palik, 1998). The observed
streaking time delay between the plasmon satellite line relative
to the direct conduction band line (Fig. 25), ΔtS ¼ 55 as, is
consistent with the additional travel time through the excess
escape depth Δxi ¼ λi=2 resulting from the convolution of
two escape-probability distributions (Lemell et al., 2015) with
equal escape depth of λi ≈ 5 Å near ϵ ¼ 120 eV (Tanuma,
Powell, and Penn, 2011). This prediction for the streaking
time delay applies to the limit of a purely extrinsic plasmon
excitation during transport. Predictions of the time delay for
the opposite limit of a purely intrinsic, shakeup-like plasmon
excitation for Mg are not yet available. Extrapolating its order
of magnitude from the EWS time delay calculated for atomic
many-electron systems (see Sec. V) we expect such a delay to
be much smaller and of the order of ∼10 as. The first
experimental streaking data indicate a significant time delay
of the plasmon satellite line compared to the main line
allowing the relative ratio of intrinsic to extrinsic plasmon
generation ≈0.1 to be extracted with unprecedented accuracy
(Lemell et al., 2015). Thus, attosecond streaking holds the
promise to disentangle extrinsic from intrinsic plasmon
satellites in photoemission spectra and, on a more fundamen-
tal level, to scrutinize the validity of such a multistep
description of photoemission from condensed matter.
Furthermore, attosecond chronoscopy also offers opportuni-
ties to probe the many-electron response in photoemission

from strongly correlated systems (Lee, 2012, 2013) in
unprecedented detail.

VIII. TIME ORDERING IN TWO-PHOTON
DOUBLE IONIZATION

The idea of probing the time ordering within a sequence
of elementary processes of a many-body system by time-
resolved photoemission suggested above for photoemission
from solid surfaces can be put to a rigorous test in multiphoton
ionization of atoms. Going beyond the elementary photo-
electric effect in this section, we consider now ionization by
the absorption of two XUV photons rather than one. We are
thus exploring time information characterizing the nonlinear
atomic response. Still, such processes remain in the regime of
lowest-order perturbation theory and represent weak field-
atom interactions.
A prototypical case is the two-photon double ionization

(TPDI) of helium. A strongly simplified picture (Fig. 26)
suggests that the helium atom absorbs two photons each
of which ejects one electron. In the energy domain and for
long XUV pulses, it has become customary to distinguish
the so-called sequential (S) regime for ℏωXUV > I2 ¼
54.4 eV from the nonsequential (NS) regime for
ðI1 þ I2Þ=2 ¼ 39.5 ≤ ℏωXUV ≤ 54.4 eV, where I1 and I2
are the first and second ionization potentials of helium,
respectively. Sequential means in this context that the two
ionization events are independent of each other, i.e., correla-
tions between the two ionized electrons in the exit channel can
be neglected and no energy sharing is required to reach the
asymptotic final state. Equivalently, the intermediate state in
this two-step process is a (quasi)stationary on-shell state of the
singly charged helium [HeþðnlmÞ]. The borderline between
the sequential and the nonsequential regime is given by the
binding energy I2 of the most deeply bound electron of the
system Heþð1sÞ. For photon energies above I2 each electron
can be ejected by one photon independent of the proximity to
and energy sharing with the other electron. Signatures of the
sequential and nonsequential character in the energy depend-
ence of the double ionization rate and in the energy sharing
and angular correlations of the emitted electrons have been the
focus of a large number of theoretical [see, e.g., Laulan
and Bachau (2003), Ishikawa and Midorikawa (2005), Horner
et al. (2007), Nikolopoulos and Lambropoulos (2007),

FIG. 25 (color online). Simulation of a streaking spectrogram for
photoemission of Mg(0001) following photoabsorption by an
XUV photon with hωXUVi ¼ 130 eV and ΔωXUV ¼ 3 eV,
streaked by an IR field (λIR ¼ 800 nm, IIR ¼ 4×
1011 W=cm2). The plasmon correlation satellite (pl) of the CB
line is well separated from the main CB line with a relative
streaking delayΔtS ¼ tSðplþ CBÞ − tSðCBÞ ¼ 55 as [for details
see Lemell et al. (2015)].

FIG. 26 (color online). Two-photon double ionization of helium,
schematically. Two photons from a moderately strong XUV pulse
(IXUV ∼ 1015 W=cm2) with duration τXUV ≲1 fs are absorbed
and eject two electrons with momenta ~pi ði ¼ 1; 2Þ. Time-
resolved photoemission allows one to interrogate the timing
t1;2 of the two absorption (ejection) events.
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Feist et al. (2008), Feist, Pazourek et al. (2009), Palacios,
Rescigno, and McCurdy (2009), Foumouo et al. (2010),
Nepstad, Birkeland, and Førre (2010), and Pazourek et al.
(2011) and references therein] and experimental (Nabekawa
et al., 2005; Sorokin et al., 2007; Antoine et al., 2008;
Rudenko et al., 2008; Kurka et al., 2010) studies. However,
the direct observation of the timing of the ionization steps
implied by the notion of (non)sequentiality has not yet been
achieved.
For ultrashort pulses with τXUV in the few-hundred atto-

second regime and spectral width of ΔωXUV ∼ 2π=τXUV of
several eV the distinction between sequential and nonsequen-
tial ionization becomes blurred. The TPDI is now influenced
by strong spatiotemporal correlation of the two-electron wave
packet irrespective of whether the mean frequency hωXUVi of
the pulse is below or above the threshold. Real-time obser-
vation of TPDI monitored by streaking allows one to inquire
into the sequentiality of the emission process and into the time
interval between the two emission events. Moreover, time-
resolved TPDI opens up the opportunity to explore the time
ordering underlying time-dependent quantum dynamics as an
accessible physical observable.
To lowest nonvanishing order perturbation theory, TPDI is

given by the second-order transition matrix element [cf.
Eq. (2.1)]:

að2Þi→f ¼ −
Z

∞

−∞
dt1

Z
t1

−∞
dt2hψfjVIðt1ÞVIðt2Þjψ ii ð8:1Þ

between the initial state jψ ii, taken in the following to be the
fully correlated He ground state, and the final state jΨfi ¼
jΨð ~p1; ~p2Þi of two continuum electrons with asymptotic
momenta ~p1 and ~p2 and energy Etot ¼

P
ip

2
i =2. The pertur-

bation operator [see Eq. (2.3)] is given in the interaction
representation and in length gauge by

VIðtÞ ¼ eiH0t
X2
i¼1

~ri⋅~FXUVðtÞe−iH0t; ð8:2Þ

where ~FXUVðtÞ ¼ F0 exp ð− ln 4t2=τ2XUVÞ cosðωXUVÞẑ is the
linearly polarized attosecond XUV pulse. Second-order per-
turbation theory [Eq. (8.1)] has explicitly built in time
ordering t1 > t2. The formation of the intermediate wave
packet ∼VIðt2ÞjΨii by the single action of the perturbation on
the initial state causing the ejection of the first electron
precedes that of the ejection of the second electron
∼VIðt1ÞVIðt2Þjψ ii forming a two-electron wave packet which
contains a component that eventually converges toward TPDI
as t → ∞. The following question is then posed: Is such a
temporal sequence of events as implied by time-ordered
perturbation theory physically observable even though
Eq. (8.1) represents a coherent superposition of all event
sequences without an intervening projective measurement of
the intermediate state?
A fully nonperturbative treatment of this process by solving

the two-electron Schrödinger equation in the presence of both
the ionizing XUV and the streaking IR field in its full
dimensionality has become available (Pazourek, Nagele,
and Burgdörfer, 2015). Second-order perturbation theory is,

however, a useful guide for analyzing and interpreting the
numerical results.
We consider TPDI by an ultrashort XUV pulse with τXUV ¼

500 as and mean photon energy hωXUVi ¼ 100 eV. For a long
pulse, this energy would be clearly in the spectroscopically
independent “sequential” regime. For an ultrashort pulse, such
a designation is anything but clear-cut. After ∼τXUV=2 even a
“fast” electron has reached a distance of only ≃20 a:u: from
the core when the second electron is about to take off. Thus,
electron-electron interactions in the exit channel cannot be
neglected. The joint energy distribution for double ionization
(DI) PðE1; E2Þ features two distinct peaks [Fig. 27(a)] near the
energies E1;2 ¼ hωXUVi − I1;2 for uncorrelated ionization the
widths of which are governed by the Fourier width of the pulse
but are also influenced by correlation effects as first discussed
by Ishikawa and Midorikawa (2005). We note that at low
energies (E1;2 ≤ 20 eV) the joint energy distribution displays
the contribution from one-photon double ionization (OPDI)
for photon energies above the double ionization threshold
hωXUVi≳ 80 eV. The OPDI and TPDI spectra are energeti-
cally well separated from each other and can independently be
analyzed without the risk of contamination. We concentrate in
the following on the information contained in the TPDI signal.
We note, however, that time-resolved OPDI has also been
recently investigated. Emmanouilidou, Staudte, and Corkum
(2010), Price, Staudte, and Emmanouilidou (2011), and Price
et al. (2012) proposed a classical two-electron streaking
model and first timing measurements employing the
RABBIT technique have been reported for the OPDI of
xenon (Månsson et al., 2014). The TPDI streaking spectro-
gram [Fig. 27(b)] provides a clear example for the simulta-
neous observation for the “absolute” time shift of each
electron relative to the time zero, the time of the peak of
the ionizing field FXUVðtÞ, ta ¼ 0 [Eq. (2.31)], as well as the
relative emission time delay ΔtDIS between the two electrons.
The interelectronic delay is in this case so large (of the order of

FIG. 27 (color online). Simulation of two-photon double ioniza-
tion of helium: (a) Joint two-electron energy distribution
PDIðE1; E2Þ for TPDI with hωXUVi ¼ 100 eV and a pulse
duration τXUV of 500 as, emission back to back along the
polarization direction (θ1 ¼ 0°, θ2 ¼ 180°). The panels above
and on the right show the singly differential energy distribution
PDIðϵÞ after tracing out the energy of the second electron.
(b) Streaking spectrogram from the integrated spectra PDIðϵÞ
in (a) at different delay times τ between the ionizing XUV pulse
and the probing IR field (λIR ¼ 800 nm, IIR ¼ 4 × 1011 W=cm2,
sine-squared envelope with a total duration of 6 fs).
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∼100 as) that it becomes directly visible in the spectrogram
without the need for a sophisticated retrieval algorithm.
Extraction of the relevant dynamical timing information of
the two-electron wave packet is more challenging than for
single electron emission in view of the multidimensional
nature of the final state. Moreover, properties of the atomic
response and of the ionizing pulse become intertwined due to
the nonlinearity of the two-photon process. In analogy to the
photoelectric effect [Eq. (2.1)], EWS-type delays can be
determined for TPDI. However, their extraction in terms of
a spectral derivative of the argument of a transition matrix
element Eq. (2.26) is not directly applicable. Moreover, their
physical significance remains to be explored.
The EWS delay for the electron 1 with energy E1, a fixed

energy of the second electron and fixed emission angles θ1
and θ2 can be extracted numerically from

tDIEWS;1ðE1jE2; θ1; θ2Þ

¼ ∂
∂E0

1

½arg aDIðE0
1; E2; θ1; θ2; tfÞ þ E0

1tf�j
E0
1
¼E1

; ð8:3Þ

where aDI is the double ionization amplitude calculated by
solving the TDSE for TPDI by the XUV pulse in the absence
of the probing IR field. In Eq. (8.3) the propagation phase of a
free reference electron −E0

1tf at the same energy is subtracted.
Equation (8.3) describes the one-electron group delay relative
to the arrival time of the XUV field (ta ¼ 0). From these
absolute one-electron delays tDIEWS;j ði ¼ 1; 2Þ collective two-
electron time delays can be deduced: the relative emission
delay

ΔtDIEWSðΔEÞ ¼ tDIEWS;1ðE1jE2; θ1; θ2Þ
−tDIEWS;2ðE2jE1; θ1; θ2Þ ð8:4Þ

and the joint two-electron emission time delay

TDI
EWSðEtotÞ ¼ 1

2
½tDIEWS;1ðE1jE2; θ1; θ2Þ
þtDIEWS;2ðE2jE1; θ1; θ2Þ�; ð8:5Þ

which are functions of the energy sharing ΔE ¼ E1 − E2

between the two liberated electrons and their total energy
Etot ¼ 2ωXUV − I1 − I2. Delays [Eqs. (8.3)–(8.5)] for this
two-photon process are implicitly also functions of the
temporal and spectral properties of the ionizing XUV pulse
(Pazourek, Nagele, and Burgdörfer, 2015). For example, when
the ionizing XUV pulse features a chirp (i.e., a nonlinear
phase variation with time) not only the absolute time delays
can be modified as is the case in one-electron ionization (see
Sec. II.B) but also time ordering of the TPDI itself can be
altered (Lee, Pindzola, and Robicheaux, 2009). The simu-
lations presented in the following pertain to a chirp-free
XUV pulse.
The relative emission delay ΔtDIEWSðΔEÞ allows a direct

comparison (Fig. 28) with the intuitive “classical” relative
delay hΔtiuc predicted for two uncorrelated (uc) and sta-
tistically independent emission events each of which with a
probability density proportional to the intensity of the XUV
pulse IðtÞ, Eq. (2.31),

hΔtiuc ¼ τXUV=
ffiffiffiffiffiffiffiffiffiffiffi
π ln 4

p
≈ 0.479τXUV: ð8:6Þ

Such linear scaling with the pulse duration is expected for any
on-shell two-photon process [see, e.g., Su, Ni, Jaroń-Becker,
and Becker (2014) for two-photon single ionization]. The
exact emission delay tDIEWSðΔE ¼ I2 − I1Þ, evaluated in
coplanar geometry (ϕ1 ¼ ϕ2 ¼ 0) at the energy difference
ΔE ¼ I2 − I1, corresponding to sequential ionization with the
ionic ground state Heþð1sÞ as the on-shell intermediate state
and for back-to-back emission (θ1 ¼ 0°; θ ¼ 180°), becomes
as large as 350 as exceeding the uncorrelated estimate by more
than 100 as (Fig. 29). This, at first glance, surprising finding
suggests an intuitive interpretation: in order to suppress energy
sharing between the electrons in the exit channel and to
approach the well-defined energy of the sequential intermedi-
ate state as closely as possible consistent with the Heisenberg
uncertainty principle, the two emission events have to be
temporarily as well separated as possible within the confines
of the pulse duration τXUV. The relative emission delay is,
thus, a strongly varying function of the energy sharing. For
example, near ΔE ¼ 0, where the electrons symmetrically
share the energy in the exit channel, ΔtDIEWS is reduced by
2 orders of magnitude to a few attoseconds. In this limit, the
two electrons must take off nearly simultaneously for the
electron-electron interaction in the exit channel to be efficient
in redistributing the energy delivered by the photons. In this
regime, the emission process is strongly nonsequential even
though the photon energy hωXUVi ≈ 100 eV lies in the
spectroscopically sequential regime (> 54.4 eV). It should
be noted that for the pulse duration of τXUV ≃ 500 as the
probability for emission pDIðE1; E2Þ near equal energy shar-
ing is small [see Fig. 27(a)] since the Fourier width of the
pulse ΔωXUV is smaller than the required energy sharing
jI2 − I1j.
Attosecond streaking allows one to observe this relative

emission delay in real time. Extracting ΔtDIEWS from the
streaking spectrogram [Fig. 27(b)] requires a generalization
of the mapping [Eqs. (4.3) and (4.28)] between streaking
times tS, extracted from the fit of the modulation

FIG. 28 (color online). Illustration of time observables for two-
electron emission in TPDI, schematically. The emission times of
the first tDIEWS;1 and second electron t

DI
EWS;2 are measured relative to

the arrival time (peak) ta of the envelope of the attosecond XUV
pulse (ta ¼ 0 in the following) with temporal FWHM (in
intensity) τXUV. The relative emission delay between the two
electrons is given by ΔtDIEWS ¼ tDIEWS;1 − tDIEWS;2. Also shown is the
estimate of the relative emission delay predicted for stochastic
uncorrelated (uc) emission events Δtuc and the joint emission
time of the two-electron wave packet TDI

EWS.
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ΔpðtÞ ¼ −Aðtþ tSÞ, and the intrinsic atomic time delay tEWS
valid for the photoelectric effect. For two-photon absorption
an additional streaking-field-induced correction to the time

shift δtð2γ;2eÞj arises (Pazourek, Nagele, and Burgdörfer, 2015)
which can be determined from the shape function G in second-
order perturbation theory (Palacios, Rescigno, and McCurdy,
2009). Accordingly, the streaking time shift of the jth
electron tDIS;jðj ¼ 1; 2Þ observed in TPDI of the fully
Coulomb-interacting system reads

tDIS;j ¼ tDIEWS;j þ tCLC;j þ δtð2γ;2eÞj ; ð8:7Þ

where tCLC;j is the Coulomb-laser coupling correction of the
jth electron. The accuracy of this relation is demonstrated for
a wide range of XUV energies and pulse durations (Fig. 29).
Equation (8.7) can be tested by determining tDIS;j on the left-
hand side from the ab initio TDSE simulation in the presence
of the IR streaking field and tDIEWS;j on the right-hand side by
an independent TDSE calculation in the absence of the IR
field. tCLC [Eq. (4.18)] and δtð2γ;2eÞ (Pazourek, Nagele, and
Burgdörfer, 2015) are known analytically or numerically. The
good agreement on the ∼10 as level illustrates that two-
electron EWS delays are also accessible through attosecond
streaking with remarkable precision. This example illustrates
the fact that the spatiotemporal correlation of a two-electron
wave packet can be observed in time-resolved two-photon
emission. Moreover, the pulse duration τXUV can serve as a
knob to actively control correlations in the continuum (Feist,

Nagele et al., 2009). With decreasing τXUV, the relative time
delay becomes shorter (Fig. 29) enhancing the temporal
correlation and “nonsequentiality” of the emission process.
Moreover, this example underlines the fact that the notion of
time ordering underlying time-dependent perturbation theory
and the multistep models for photoemission from complex
targets becomes accessible by streaking without destroying
the coherence of the underlying time evolution. With the rapid
progress in the development of more intense attosecond XUV
pulses, experimental exploration of time-resolved two-photon
ionization should soon come into reach.

IX. ATTOSECOND STREAKING OF TUNNELING TIME?

Ever since the discovery of quantum tunneling of particles
through potential barriers the question of whether tunneling is
instantaneous or takes a finite time has been a matter of debate
(MacColl, 1932). Viewed as a temporal evolution of a wave
packet, the speed with which tunneling through the barrier
proceeds has been the subject of a large number of theoretical
investigations. Even the possibility of superluminal speeds for
the traversal through the barrier have been discussed, referred
to as the Hartman effect (Hartman, 1962). Accounts of this
debate can be found in a large number of reviews (Hauge and
Støvneng, 1989; Landauer and Martin, 1994; de Carvalho and
Nussenzveig, 2002; Olkhovsky, Recami, and Jakiel, 2004;
Winful, 2006; Muga, Mayato, and Egusquiza, 2007; Choi and
Jordan, 2013). As a well-defined operator whose eigenvalue
corresponds to the travel time through the classically for-
bidden region could not be identified, unconventional opera-
tional descriptions have been put forward, such as complex
travel time based on a Feynman path integral formulation
(Sokolovski, Brouard, and Connor, 1994) or contextual values
replacing conventional eigenvalues of a self-adjoined oper-
ators for so-called weak measurements (Choi and Jordan,
2013). Closely related is the notion of a Larmor clock (Baz’,
1967a, 1967b; Büttiker, 1983) which yields, in general, two
different precession times which can be interpreted in special
cases as the real and imaginary parts of a complex time
(Sokolovski, Brouard, and Connor, 1994). The Larmor clock
exploiting the expectation value of the spin projection as a
“hand” can be viewed as a realization of a quantum clock
(Landauer and Martin, 1994). For scattering at potential
barriers a consensus appears to have emerged on two
complementary, yet consistent, characteristic times: the dwell
time tD of the wave packet in the scattering region and the
EWS time tEWS [Eqs. (2.22) and (2.24)], in this context often
referred to as the asymptotic phase time or group delay of the
wave packet. The dwell time is related to the expectation value
hPDit of the Hermitian projection operator

PD ¼
Z

ðscattering regionÞ

d3rj~rih~rj; ð9:1Þ

where the integration extends over a finite scattering region
and is, at least in principle, an experimental observable. The
dwell time provides intrinsically local information on where
the wave packet spends its time but is not directly associated
with an observable of a specific asymptotic scattering channel.

FIG. 29 (color online). TPDI time shifts as a function of the pulse
duration τXUV for hωXUVi ¼ 80 eV and back-to-back emission of
the two electrons (θ1 ¼ 0°; θ2 ¼ 180°). Streaking time shifts tDIS
are extracted from a streaking spectrum as in Fig. 27 for IIR ¼
1010 W=cm2 and λIR ¼ 800 nm. Also shown is the comparison
between the intrinsic EWS delays tDIEWS;jðj ¼ 1; 2Þ and the
corresponding streaking delay tDIS;j corrected for the Coulomb-
laser-coupling contribution tCLC;j and the two-photon correction
for the noninteracting reference system [Eq. (8.7)]. The dashed
line indicates the approximately linear scaling of tDIEWS;j with the
pulse duration τXUV. The shaded area indicates the uncorrelated
mean escape delay hΔtiuc [Eq. (8.6)]. The joint two-electron
emission time TDI

EWSðEtotÞ [Eq. (8.5)] is shown by the squares.
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By contrast, the EWS time is unambiguously linked to a
specific scattering channel while providing no local timing
information on the motion of the wave packet in the scattering
region. These two complementary times are related to each
other and, in special cases, e.g., for well-isolated resonances,
they agree with each other,

tD ¼ tEWS; ð9:2Þ

(Smith, 1960; de Carvalho and Nussenzveig, 2002; Winful,
2006) and correspond in this case to the lifetime of the
resonance tres.
The question of tunneling times naturally resurfaced in

attosecond chronoscopy for strong-field ionization by ultra-
short and intense IR pulses (Uiberacker et al., 2007; Eckle,
Pfeiffer et al., 2008; Eckle, Smolarski et al., 2008; Shafir
et al., 2012; McDonald et al., 2013; Landsman et al., 2014;
Orlando et al., 2014; Landsman and Keller, 2015). Following
the semiclassical analysis by Keldysh (1965), an atomic
electron is emitted by tunneling through the potential barrier
formed by the atomic Coulomb potential and the (quasi)static
electric field of the IR pulse (Keldysh, 1965; Ammosov,
Delone, and Krainov, 1986). For small Keldysh parameters
γ ≪ 1 which we write as γ ¼ 4πtK=TIR, where tK is the
Keldysh tunneling time,

tK ¼ R
vT

; ð9:3Þ

tunneling is the dominant ionization mechanism. In Eq. (9.3)
R is the radial position of the tunnel exit (R ≈ jϵij=F0 for
short-ranged binding potentials) and vT is the (imaginary)
speed of the electron traveling inside the barrier. For its
magnitude vT , the characteristic speed of the electronic initial
bound state in the Coulomb field according to the virial
theorem jvT j ¼

ffiffiffiffiffiffiffiffiffi
2jϵij

p
is used here. Tunneling processes

beyond the simple Keldysh picture have been identified for
molecules which originate from the multicenter character of
the binding potential [for a review, see Bandrauk and Légaré
(2012)]. For example, differences in the timing of tunneling
ionization originating from different force centers or different
molecular orbitals have been explored (Takemoto and Becker,
2010; Bian and Bandrauk, 2012).
Applying the tunneling time concepts discussed for

scattering at potential barriers to tunneling ionization is not
straightforward since strong-field ionization is, just as photo-
ionization, a half-scattering process with the initial state being
a bound state. Consequently, the initial state does not satisfy
incoming scattering boundary conditions and the splitting of a
wave packet into a transmitted and a reflected part is not well
defined. More importantly, the potential barrier to be pen-
etrated by tunneling, unlike for potential scattering, is strongly
time dependent, either appearing or disappearing every half
period TIR=2 (for a linearly polarized IR field) or rotating in
space with frequency ωIR (for a circularly polarized field).
Therefore, an alternative view of the Keldysh time [Eq. (9.3)]
is that of a characteristic response time to the time-dependent
strong IR field within which the initial wave function of the
bound electron builds up an outgoing flux component
(Orlando et al., 2014) rather than that of the time it takes a

wave packet to travel through a stationary tunneling barrier. In
this context, the Keldysh time can be identified as the strong-
field version of the Mandelstam-Tamm time (Mandelstam and
Tamm, 1945). As pointed out by Dahlström, L’Huillier, and
Maquet (2012) a difficulty in measuring the tunneling time by
attosecond streaking by the attoclock (Eckle, Pfeiffer et al.,
2008; Eckle, Smolarski et al., 2008; Landsman et al., 2014)
originates from self-referencing: the IR field that causes the
(tunneling) ionization to be clocked acts also as the clock.
Consequently, variation of parameters that control either the
ionization process or the clock independently of each other is
difficult to realize. Disentangling the information on the
timing of the ionization process from that on the ionization
dynamics itself is, thus, a challenge.
In order to inquire into the opportunities to determine

characteristic times related to tunneling by attosecond streak-
ing, we briefly discuss an alternative scenario (Fig. 30) more
closely related to the theme of attosecond time-resolved
photoemission that circumvents many of the conceptual
difficulties mentioned previously. We consider a transition
from a deeply bound atomiclike state in a Yukawa potential
[see Eq. (2.36)] to a resonant state in the continuum confined by
a radial and stationary potential barrier of height V0 and
thickness Δ (“shape resonance”). The attosecond XUV pulse
which drives the transition provides a well-defined start signal
at ta ¼ 0. The shape resonance subsequently decays by
tunneling through the barrier and the emitted electron in the
continuum will be streaked, i.e., “clocked” by the IR field. The
IR field is taken to be sufficiently weak as to avoid any
unwanted IR field-induced tunneling (or multiphoton) ioniza-
tion and to isolate tunneling through the stationary barrier as
the only relevant pathway toward ionization. The stationarity
of the barrier bypasses the influence of the dynamical response
associated with the Mandelstam-Tamm time. The following
question is then posed: what temporal information on the decay
dynamics does the observed streaking time shift tS relative to
the arrival time of the peak of the XUV pulse contain?

FIG. 30 (color online). Model for the excitation of a l ¼ 1 shape
resonance induced by a barrier of width Δ and height V0 ¼ 1 a:u:
superimposed on a short-ranged Yukawa-type potential VYðrÞ ¼
−Zeff=re−r=a [see Eq. (2.36)] with Zeff ¼ 2 and a ¼ 2 from the
ground state at ϵ1s ¼ −1.16 a:u: by an attosecond XUV pulse
with τXUV ¼ 500 as and ΔωXUV ¼ 3.7 eV. Upper right corner:
photoionization cross section near the resonance ER ¼
0.2686 a:u: with width Γ ¼ 0.0134 a:u:
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For attosecond streaking to operate in the regime of a
classical clock (see Sec. IV.A) the lifetime of the decaying
resonance tres must be short compared to the optical cycle time
TIR. Accordingly, we focus on tunneling in the “thin barrier”
regime (Hartman, 1962). Moreover, for optimal time reso-
lution of the decay process, the exciting XUV pulse should be
short compared to tres, i.e., we use

τXUV ≪ tres ≪ TIR: ð9:4Þ

Equation (9.4) translates into the spectral domain as

ωIR ≪ Γ ≪ ΔωXUV: ð9:5Þ

In addition, the spectral width ΔωXUV must be small com-
pared to the barrier height V0, ΔωXUV ≪ V0, in order to
prevent direct overbarrier ionization by the XUV pulse.
Equations (9.4) and (9.5) can be fulfilled for streaking fields
in the midinfrared (λIR ¼ 5 μm in the present simulation) and
an XUV pulse with hωXUVi ¼ 39 eV and τXUV ¼ 500 as
(Fig. 31). Such a scenario with suitable parameters for a
spherical barrier enclosing a Yukawa-like central potential of
height V0 ¼ 1 a:u: extending from RB ¼ 3 a:u: to RB þ Δ ¼
4 a:u: is shown in Fig. 30. This potential landscape features a
single resonance in the p sector (l ¼ 1) with complex energy
Eres ¼ 0.2686 a:u: and Γ ¼ 0.0134 a:u:, determined by
exterior complex scaling (ECS). The corresponding lifetime
of the shape resonance is tres ¼ 903 as. We note that this
potential landscape bears some similarity to the endohedral

C60 (see Sec. VI). The most significant difference is that the
attractive well provided by the C60 shell is replaced by a
repulsive barrier. We emphasize, however, that we are not
aware of any molecular realization of such a landscape.
A full 3D TDSE simulation for the attosecond streaking of

the excitation and delay by tunneling (Fig. 31) yields tS ¼
909 as and to a remarkably good degree of approximation
(≲1%),

tS ≃ tres; ð9:6Þ

where tS is numerically determined from the streaking trace
generated by the solution of the TDSE and tres is independ-
ently determined from the ECS method applied to the sta-
tionary Schrödinger equation. Thus, the streaking time shift
provides direct and accurate information on the lifetime of the
resonance. Furthermore, Eq. (9.6) agrees with the mean EWS
delay htEWSi for the photoexcitation of the resonance averaged
over the spectral width [Fig. 31(a)] tS ≃ htEWSi≃ 926 as to
within ≈5%. This value furthermore agrees with the dwell
time tD of the continuum wave packet (with angular momen-
tum l ¼ 1) within the scattering region restricting the pro-
jection Eq. (9.1) to 0 ≤ r ≤ RB þ Δ (see Fig. 30). The equality
of tEWS and tD [Eq. (9.2)], well known for scattering (Smith,
1960; de Carvalho and Nussenzveig, 2002; Winful, 2006),
therefore applies also to the half-scattering scenario of
photoemission. In the present context, one important conse-
quence is that the experimentally observable streaking time
shift does not provide any specific and separate information on
the tunneling process itself, i.e., is unrelated to the transit time
through the barrier but is identical to the dwell time inside the
scattering region. Clearly, if a well-defined separate tunneling
time were to exist, it would be included in the overall
lifetime tres.
It is now tempting to perform a numerical “gedanken

experiment” in which we alter the streaking scenario such
that more specific information on the transit time through the
barrier rather than through the entire scattering region is
probed. To this end, we first assume, inspired by the streaking
simulations for C60, that the outer surface of the spherical
barrier at RB þ Δ is metallic and provides perfect screening
inside neglecting, however, any near-field enhancement. For
otherwise identical parameters we find now an enhanced
streaking delay

tSðRB þ ΔÞ ¼ tres þ tT ¼ 1039 as: ð9:7Þ

The additional contribution of tT ¼ 130 as agrees to within
≤ 1% with the transport time tT ¼ ðRB þ ΔÞ= ffiffiffiffiffiffiffi

2ϵf
p ¼ 131 as

for the electron traveling with the velocity
ffiffiffiffiffiffiffi
2ϵf

p
(correspond-

ing to the energy ϵf) from its starting position hrii ¼ 0 after
photoexcitation to the outer rim of the potential well. The
close analogy to tT for the endohedral complex [Eq. (6.5)] is
remarkable considering that we have replaced the attractive
well by a potential barrier. The point to be noted is that the
transport time tT includes both the time the wave packet
spends inside the classically allowed and the forbidden region
until it reaches the streaking field. Following up on this
observation we perform in the second step an analogous

FIG. 31 (color online). Time delays of a shape resonance:
(a) Energy-dependent EWS delay tEWS and mean htEWSi aver-
aged over the spectral profile of the XUV pulse (dashed) for
photoexcitation of the resonance at ER ¼ 0.2686 a:u: with width
Γ ¼ 0.0134 a:u: by an XUV pulse with hωXUVi ¼ 39 eV and
τXUV ¼ 500 as. (b) Streaking of resonance by an IR field with
λIR ¼ 5 μm and IIR ¼ 1010 W=cm2 resulting in a streaking time
shift of tS ¼ 909� 11 as.
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simulation assuming now that the perfect screening occurs at
the inner rather than the outer rim. For this scenario we find

tSðRBÞ ¼ tres þ t0T ¼ 1006 as. ð9:8Þ

Consequently, the difference between the two streaking times

tSðRB þ ΔÞ − tSðRBÞ ¼ tT − t0T ¼ 33 as ð9:9Þ

can be interpreted as the transport time through the classically
forbidden region of the barrier. Alternatively, Eq. (9.9) can be
viewed as an estimate for the dwell time inside the barrier. We
emphasize that these two quantities are not equivalent as the
dwell time records both the transmitted and reflected portions
of the wave packet while the transit time refers to the arrival in
the streaking field, i.e., transmission. Equation (9.9) agrees to
a remarkable degree of approximation with a Keldysh-like
“tunneling time” for the transit through the barrier Eq. (9.3):

tT − t0T ¼ Δ
vT

¼ tK ð9:10Þ

evaluated, however, for the (real) final state velocity of the
electron in the continuum vT ¼ ffiffiffiffiffiffiffi

2ϵf
p

. If such a scenario
would be realizable, Eqs. (9.8) and Eq. (9.9) would constitute
a protocol for extracting tunneling times in terms of a transit
time of the wave packet through the barrier. It also would
provide an estimate, most likely a lower bound, for the dwell
time inside the barrier determined by restricting the projection
operator [Eq. (9.1)] to the classically forbidden region.
It should be emphasized, however, that the perfect screen-

ing without accompanying near-field enhancement as
assumed in this gedanken experiment has, to our knowledge,
no immediate correspondence to a realistic physical system. It
may serve only to illustrate the principle of extracting local
dwell time information by attosecond streaking. It comple-
ments the well-defined time information for asymptotic
scattering states in terms of the EWS (or group) delay
tEWS. Whether such a protocol can be implemented for a
physically realizable setting remains an open question.

X. CONCLUDING REMARKS

Within the first decade of the availability of well-controlled
and well-characterized attosecond XUV pulses, the field of
attosecond chronoscopy has made dramatic progress in
observing electronic dynamics in real time. Using photoemis-
sion by absorption of an XUV photon and attosecond
streaking by an IR field as a prototypical example, we
illustrated its potential to provide novel information on
electron correlations and electronic transport complementary
to information accessible by time-integral spectroscopic
techniques. The time delay (or, more precisely, time shift)
of the outgoing wave packet relative to the incident XUV
pulse has emerged as the key observable accessible by
attosecond streaking. This Eisenbud-Wigner-Smith delay
tEWS, often referred to as the group delay, is an observable
associated with the asymptotic scattering state, yet it provides
information on the temporal evolution of the electronic wave
packet on a length scale of angstroms. For atoms and

molecules, tEWS provides critical tests of electron correlation
effects in structured continua. Time-resolved photoemission
from complex targets such as endohedral C60 and solid
surfaces offers new insights into transport and screening
effects on the attosecond scale. Even the time ordering within
a coherent sequence of elementary processes becomes acces-
sible by attosecond streaking, as demonstrated for two-photon
double ionization of helium.
The search for additional observables related to the timing

information accessible by streaking or other attoclocks is still
ongoing. Whether or not attosecond streaking can address the
controversially debated topic of tunneling time is still an open
question. While lifetimes of resonances tres delimited by
tunneling through potential barriers are accessible by streak-
ing, extraction of the local dwell time in classically forbidden
regions remains to be demonstrated. Time-resolved electronic
dynamics holds the promise to eventually go beyond observ-
ing and clocking the temporal evolution. The ultimate goal
will be to actively control and manipulate electrons on the
attosecond time and angstrom length scale (Leone et al.,
2014). Realization of such a vision, called “light-field elec-
tronics” (Goulielmakis et al., 2007; Schiffrin et al., 2012;
Schultze et al., 2012), remains a challenge. Future improve-
ments in our understanding of microscopic observables and
control knobs in the time domain will be a key prerequisite to
meet this challenge.
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