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Carbon nanotubes are a versatile material in which many aspects of condensed matter physics come
together. Recent discoveries have uncovered new phenomena that completely change our under-
standing of transport in these devices, especially the role of the spin and valley degrees of freedom.
This review describes the modern understanding of transport through nanotube devices. Unlike in
conventional semiconductors, electrons in nanotubes have two angular momentum quantum
numbers, arising from spin and valley freedom. The interplay between the two is the focus of
this review. The energy levels associated with each degree of freedom, and the spin-orbit coupling
between them, are explained, together with their consequences for transport measurements through
nanotube quantum dots. In double quantum dots, the combination of quantum numbers modifies the
selection rules of Pauli blockade. This can be exploited to read out spin and valley qubits and to
measure the decay of these states through coupling to nuclear spins and phonons. A second unique
property of carbon nanotubes is that the combination of valley freedom and electron-electron
interactions in one dimension strongly modifies their transport behavior. Interaction between
electrons inside and outside a quantum dot is manifested in SU(4) Kondo behavior and level
renormalization. Interaction within a dot leads to Wigner molecules and more complex correlated
states. This review takes an experimental perspective informed by recent advances in theory. As well
as the well-understood overall picture, open questions for the field are also clearly stated. These
advances position nanotubes as a leading system for the study of spin and valley physics in one
dimension where electronic disorder and hyperfine interaction can both be reduced to a low level.
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I. INTRODUCTION AND MOTIVATION

Carbon nanotubes are exceptional materials in many differ-
ent ways. They are mechanically ultrastrong, the surface is
perfectly clean, electrons move ballistically, and they vibrate
like guitar strings with record-breaking quality factors.
Moreover, by zipping nanotubes open one obtains the other
wonder material, graphene. Together with C60 buckyballs
and diamond, these allotropes of carbon have a central
position in nanotechnology. Many of their properties have
been studied and reviewed in great detail ( Saito, Dresselhaus,
and Dresselhaus, 1998).
Nanotube electronic transport properties have been studied

since the mid-1990s, first in bulk and since 1997 using
individual single-wall nanotubes (Bockrath et al., 1997;
Tans et al., 1997). Many of the basic transport properties
were quickly discovered, including Coulomb blockade,
Fabry-Pérot interference, 1D electronic interactions, Kondo
physics, spintronics effects, and induced superconductivity.
These properties have all been comprehensively reviewed,
with both theoretical (Charlier, Blase, and Roche, 2007) and
experimental focus (Biercuk et al., 2008, Schönenberger,
2006).1 The general understanding in 2008 can be described
as “consistent on a coarse scale.” On a fine scale the specific
properties arising from residual disorder together with the
specific, usually unknown, chirality of the nanotube under
study were hampering a detailed description. On a coarse scale
all nanotubes showed similar transport behavior, but on a fine
scale each experimentally studied nanotube was unique.
An important technical advance was a device

scheme in which the nanotube was not exposed to any

1The early generation of nanotube experiments that established
basic quantum dot behavior was reviewed by Nygård et al. (1999)
and Yao, Dekker, and Avouris (2001). Open devices and early
attempts to analyze the quantum dot shell structure were described by
Liang, Bockrath, and Park (2005) and Sapmaz, Jarillo-Herrero et al.
(2006). Hybrid devices involving superconducting and ferromagnetic
leads have been reviewed by de Franceschi et al. (2010) and Cottet
et al. (2006), respectively, while aspects pertinent to one-dimensional
wires were addressed by Deshpande et al. (2010). Coupled quantum
dots were introduced in Schönenberger (2006) and Biercuk et al.
(2008), whereas only recent reviews introduce spin-orbit interaction
and valley physics (Ilani andMcEuen, 2010; Kuemmeth et al., 2010),
which are the themes of this review.
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fabrication chemicals, thereby retaining pristine material
quality (Cao, Wang, and Dai, 2005). Transport experiments
on such “ultraclean” nanotubes immediately showed more
reproducible detail despite the still unknown chirality. Most
importantly, the role of spin-orbit interaction was strikingly
uncovered (Kuemmeth et al., 2008). Although this spin-orbit
interaction had already been predicted (Ando, 2000), it went
unobserved and was therefore largely ignored until 2008. The
experimental clarity revealed, however, that detailed under-
standing of quantum phenomena in carbon nanotubes has to
include this effect.
The electronic orbits in nanotubes come in two flavors,

known as the K and K0 valleys, that roughly correspond to
clockwise and counterclockwise motion around the nanotube.
The resulting quantum states form interesting superpositions
of spin up and spin down with the K and K0 valleys. Our
central aim is to present a coherent description of spin-orbit
and K − K0 physics in carbon nanotubes. We present the
theory on a conceptual level and make references to detailed
calculations in the literature. More details of the theoretical
background are given in Appendix B. We highlight exper-
imental results that demonstrate the essential concepts most
clearly.
Spin-orbit and K − K0 physics and their experimental

consequences are described in Secs. II and III for nanotubes
confined as single quantum dots. The quantum dot geometry
allows for a precise, straightforward description of energy
eigenstates, which can be probed with well-established
techniques of Coulomb blockade spectroscopy. Double quan-
tum dots increase the complexity, with quantum states
now described by three numbers: spin (up or down), valley
(K or K0), and location (left or right). Since the occupancy of
both quantum dots is so easily controlled by gate voltages, the
double-dot geometry provides for exquisite experimental
control. Section IV describes spin-valley selection rules for
tunneling, probed by Pauli blockade experiments. The exper-
imental control in double dots is utilized further in Sec. V
describing the realization and operation of qubits employing
various choice of basis states.
Sections II–Vmake use of a simplified model with electron-

electron interactions included as a capacitive charging energy.
In Sec. VI we extend this picture to include interactions
between quantum dot states and the continuum in the leads.
Quantum dots strongly coupled to leads show renormalization
of the energy states as well as the formation of macroscopic
coherence in a Kondo state. Section VI focuses on renorm-
alization and Kondo effects in the specific context of spin-
orbit and K − K0 physics. In Sec. VII we consider interaction
effects within quantum dots, which can be extraordinarily
strong in the one-dimensional geometry of nanotubes. In
quantum dots of a somewhat longer length, this leads to the
formation of correlated Wigner molecules.

II. BASICS OF CARBON NANOTUBE DEVICES

A. Structure of carbon nanotubes

Carbon nanotubes consist of one or more concentric
cylinders of graphene (Saito, Dresselhaus, and Dresselhaus,
1998). Both multiwall and single-wall carbon nanotubes

(MWCNTs and SWCNTs) can be synthesized and measured,
but in this review we discuss only SWCNTs. As well as being
simpler, these are the most studied both experimentally and
theoretically.
The structure of nanotubes derives from the structure of

graphene. A SWCNT is equivalent to a rolled-up strip taken
from the two-dimensional honeycomb of carbon atoms that
makes up a graphene sheet [Fig. 1(a)]. Since there are
infinitely many ways of selecting a strip to roll up, there
are correspondingly many different nanotube structures. Each
structure is specified by its chiral vector C, which connects
lattice sites on opposite sides of the strip that are superposed

FIG. 1 (color online). Atomic structure of carbon nanotubes.
(a) Derivation of nanotube structure from graphene. A single-
wall nanotube is equivalent to a rolled-up graphene strip
(shaded, with the direction of rolling chosen so that the printed
pattern faces outward). The chiral vector C spans the nanotube
circumference (inset) and connects lattice sites that are brought
together by rolling up. Chiral indices ðn;mÞ completely define
the nanotube structure. The unit cell of the nanotube (which is
much larger than the unit cell of graphene) is outlined by
dashed lines, and the unit vector T is indicated. Graphene
coordinates ðx; y; zÞ, nanotube coordinates ðt; c; rÞ, and the
chiral angle θ are also marked. In this example, ðn;mÞ ¼ ð6; 2Þ
and θ ¼ 13.9°. (b) Nanotubes are divided into three classes
according to their chiral indices: zigzag, armchair, or chiral.
Zigzag and armchair nanotubes are so called because of the
shape of the edge formed by a cut perpendicular to the
nanotube axis [see highlighted lines in (a)]. These three
nanotubes are (12,0), (6,6), and (6,4). (c), (d) Nanotubes
directly imaged by transmission electron microscopy (TEM)
[(c), a (28,0) zigzag nanotube] and scanning tunneling micros-
copy [(d), an unidentified chiral nanotube]. Adapted from
Venema et al., 1998, Charlier, Blase, and Roche, 2007, Warner
et al., 2011, and Churchill, 2012.

Edward A. Laird et al.: Quantum transport in carbon nanotubes 705

Rev. Mod. Phys., Vol. 87, No. 3, July–September 2015



by rolling up into a nanotube. A given structure is labeled by
its chiral indices ðn;mÞ, which are the coordinates of the chiral
vector C ¼ na1 þma2 in terms of the graphene basis vectors
a1 and a2. From Fig. 1(a), n and m are integers; to ensure that
the same structure is not labeled two different ways, m is
conventionally taken in the range −n=2 < m ≤ n. Instead of
specifying ðn;mÞ, a nanotube can also be described by its
diameter and chiral angle θ, defined as the angle between C
and a1.
Two special cases are zigzag structures (m ¼ 0) and arm-

chair structures (n ¼ m), so called because of the arrangement
of atoms along a cut normal to the nanotube. Structures not in
either category are called chiral [Fig. 1(b)]. Unlike armchair
and zigzag structures, chiral nanotubes lack inversion sym-
metry; the inversion isomer (with θ → −θ) of an ðn;mÞ chiral
structure is an ðnþm;−mÞ structure. From the Onsager-
Casimir relations, the transport properties of isomer pairs are
expected to be similar, but they may differ in their nonlinear
conductance in the presence of electron-electron interactions
and time-reversal symmetry breaking by a magnetic field
(Ivchenko and Spivak, 2002; Sanchez and Büttiker, 2004;
Spivak and Zyuzin, 2004; Wei et al., 2005). The differences
between isomer pairs, well established in optical measure-
ments (Samsonidze et al., 2004; Peng et al., 2007), are not
discussed further here. Some structure parameters and their
dependence on chiral indices are given in Table I.
This structure is confirmed by atomic-resolution micros-

copy. Transmission electron microscopy images the entire
cross section, allowing exact chiral indices to be deduced
[Fig. 1(c)]. Nanotubes on surfaces can be imaged by scanning
tunneling microscopy [Fig. 1(d)], although because of the
poor edge resolution, the precise chirality is usually unde-
termined. Both images confirm the atomic arrangement of
Fig. 1(a), with the same atomic spacing aCC ¼ 0.142 nm as
graphite.
Unfortunately, high-resolution microscopy is usually

incompatible with transport measurements and the chiral
indices of nanotubes in electronic devices are often unknown.
A few experiments have combined transport measurements
with structure determination by electron diffraction (Kociak

et al., 2002; Allen et al., 2011). The structure can also be
determined using optical Raman or Rayleigh spectroscopy,
which is less invasive but does not always give unambiguous
chiral indices (Cao et al., 2004; Huang et al., 2005;
Deshpande et al., 2009). Most of the results in this review
will therefore be from nanotubes of unknown chirality;
however, as discussed in the next section, the electronic
properties of nanotubes are sufficiently independent of the
chiral indices that most of the underlying physics can still be
explored.

B. Quantum dots

A basic carbon nanotube electronic device is shown in
Fig. 2. The purpose is to allow measurement of the electrical
current I through a single nanotube (Bockrath et al., 1997;
Tans et al., 1997). To achieve this, the nanotube is contacted
with metallic source and drain electrodes connected to an
external circuit. A third electrode, the gate, coupled capaci-
tively, allows the electrostatic potential to be tuned. Quantum
dots are usually measured at low temperature (≤ 1 K) to
suppress thermal smearing of transport features.
A nanotube naturally confines electrons to one dimension.

In quantum transport experiments, it is common to add
longitudinal confinement by introducing tunnel barriers.
These barriers can be created by modifying the electrostatic
potential using gate voltages, often taking advantage of
Schottky barriers induced near the metal contacts in the
nanotube (Heinze et al., 2002; Biercuk et al., 2008). The
stretch of nanotube between the barriers where electrons are
trapped is called a quantum dot. By studying the current
through such a quantum dot as a function of bias, gate voltage,
and other parameters such as magnetic field, the energy levels
of electrons in the nanotube can be deduced. Quantum dot
transport spectroscopy has been extensively reviewed by
Kouwenhoven et al. (1997), Kouwenhoven, Austing, and
Tarucha (2001), and Hanson et al. (2007). Basic concepts
needed in this review are explained in Appendix A.

C. Fabrication challenges of gated quantum devices

The realization of clean and tunable quantum dots in carbon
nanotubes is not straightforward. Unlike carriers in III-V

FIG. 2 (color online). Schematic of a basic quantum dot device.
The device consists of a nanotube contacted by source and
drain electrodes and capacitively coupled to a gate. Tunnel
barriers to the source and drain, imposed through the combi-
nation of the gate potential and Schottky barriers, define a
quantum dot. The current I through the device is measured as a
function of bias voltage VSD and gate voltage VG. Both the
number of electrons N on the island and the dot energy levels
can be adjusted by tuning VG.

TABLE I. Summary of structure parameters for an ðn;mÞ nanotube
(Baskin and Meyer, 1955; Saito, Dresselhaus, and Dresselhaus,
1998). Vectors are written with respect to the graphene coordinates
ðx; yÞ defined in Fig. 1.

Name Symbol Value

C-C bond length aCC 0.142 nm

Graphene lattice constant a
ffiffiffi
3

p
acc ¼ 0.246 nm

Graphene basis vectors a1;2 ð
ffiffi
3

p
2
;� 1

2
Þa

Graphene reciprocal lattice
vectors

b1;2 ð 1ffiffi
3

p ;�1Þ 2πa

Graphene Dirac points K;K0 � b2−b1

3
¼ ð0;∓1Þ 4π

3a
Chiral vector C na1 þma2

(m; n integer; n > 0;
−n=2 < m ≤ n)

Chiral angle θ tan−1ð
ffiffi
3

p
m

2nþmÞð− π
6
< θ ≤ π

6
Þ

Nanotube diameter D a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þm2 þ nm

p
=π
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heterostructures, which are separated from the crystal’s sur-
face by an atomically clean buffer layer, the nanotube’s π band
is composed of atomic p orbitals that stick out perpendicular
to the surface (see Sec. III). Patterning of gate oxides,
mechanical deformation, and contamination from fabrication
chemicals can easily induce disorder and irreproducible
device characteristics (Bezryadin et al., 1998; Zhu, Brink,
and McEuen, 2005).
The characteristics of nanotube quantum dots depend on

the band gap, which varies widely between different nano-
tubes (Sec. III.B). Semiconducting nanotubes (band gap
≳0.1 eV) often show poor transport characteristics at low
carrier density and low temperature. Presumably, this arises
from unintentional localization of carriers into disordered
puddles, facilitated by the carriers’ relatively large effective
mass. Conversely, in quasimetallic nanotubes (band gap
≲10 meV), controlled creation of sufficiently opaque bar-
riers by electrostatic potentials is difficult, presumably due to
the small effective mass (Sec. III.B.1). Kinks made by
atomic force microscope (AFM) manipulation or mechanical
templating can be used to locally induce band gaps and
backscattering centers (Yao et al., 1999; Bozovic et al.,
2001; Postma et al., 2001; Park et al., 2002; Biercuk et al.,
2004; Stokes and Khondaker, 2008), resulting in addressable
tunnel barriers and Coulomb blockade even at room temper-
ature. A similar effect can occur unintentionally due to
disordered mechanical deformations induced by fabrication
(Bezryadin et al., 1998).
The largest experimental interest has been attracted by

devices between these extremes (narrow-gap nanotubes).
Tunable tunnel barriers can then be induced rather easily
by electrostatic gates. These nanotubes allow gate-controlled
devices that do not uncontrollably break up into disordered
puddles, yet their tunnel barriers remain tunable over a wide
range, even in the few-charge regime. Most devices can be
classified according to whether gate fabrication occurs after
nanotube growth (top gating), before growth (bottom gating),
or on a separate chip (mechanical transfer method).

1. Top gating

The simplest way to make devices is usually to fabricate
electrodes on top of nanotubes. This allows complex devices
with many kinds of contact material including normal metals,
ferromagnets, and superconductors. After growth or deposi-
tion, suitable nanotubes are imaged, and the electrodes are
patterned by electron-beam lithography and liftoff. Early
single-electron transistors were contacted in this way
(Bockrath et al., 1997), as were the first double quantum
dots (Mason, Biercuk, and Marcus, 2004). Although cleanli-
ness and fabrication-induced disorder are a concern, devices
fabricated this way have demonstrated ambipolar operation
and discrete excited states (Biercuk et al., 2005), as well as
charge sensing and pulsed gate spectroscopy (Biercuk et al.,
2006; Gotz et al., 2008).
Full control of a double quantum dot requires at least five

gate electrodes, necessitating thin, high-dielectric constant
gate oxides (e.g., atomic-layer-deposited aluminum or haf-
nium oxide) and densely packed gate arrays (Churchill,
Bestwick et al., 2009; Churchill, Kuemmeth et al., 2009).

Such a device is shown in Figs. 3(a) and 3(b), consisting
of a fully tunable double quantum dot capacitively coupled
via a floating gate to a charge-sensing single quantum dot
on the same nanotube. Among other applications, these
devices allow measurement of spin relaxation and dephasing
(Sec. V). By selectively etching beneath the nanotube,
suspended devices can also be fabricated (Leturcq
et al., 2009).

2. Bottom gating

A drawback of top gating is that the fabrication process
itself can introduce disorder in the nanotube. An alternative is
to grow or deposit nanotubes over predefined electrodes,
resulting in devices with improved control and cleanliness
(Cao, Wang, and Dai, 2005). Early single quantum dots were
realized by depositing nanotubes across Pt source and drain
electrodes, using the Si=SiO2 substrate as a back gate (Tans
et al., 1997). Similar to graphene devices, where suspending
the layer dramatically improved the mobility (Bolotin et al.,
2008; Du et al., 2008), suspended nanotubes often show near-
ideal transport characteristics, indicating that much of the
disorder arises from interactions with the substrate (Steele,
Gotz, and Kouwenhoven, 2009; Ilani and McEuen, 2010;
Jung et al., 2013).
Motivated by the results of suspended single quantum dots

as in Fig. 3(d), more complex contact and gate arrays were
developed that can be loaded into the nanotube growth furnace
as the last step before cool down and measurements
(Kuemmeth et al., 2008; Steele, Gotz, and Kouwenhoven,
2009). Although these devices were of high quality2 and
resulted in new discoveries, the harsh conditions in the growth
reactor greatly restrict the materials and design. The overall
device yield is low because a nanotube must grow across
contacts and gates by chance.

3. Mechanical transfer

Mechanical transfer attempts to benefit from the best of
both approaches, achieving high gate tunability without
postgrowth processing. The device chip (without nanotubes)
and the growth chip (with nanotubes suspended across
trenches) are fabricated separately. Just before measurement,
a single nanotube is transferred from the growth chip to the
device chip using an aligned stamping process (Wu, Liu, and
Zhong, 2010; Pei et al., 2012). By employing piezocontrolled
scanning probe microscope manipulators, the transfer is
possible in vacuum at cryogenic temperatures (Waissman
et al., 2013), allowing the cleanliness of the nanotube to be
tested in situ. A state-of-the-art example is shown in Figs. 3(e)
and 3(f).

D. Nanotube synthesis and isotopic engineering

For research applications nanotubes are readily synthesized
in desktop furnaces, using chemical-vapor deposition (usually

2Nanotubes that have never been in contact with solvents, resists,
or a substrate are sometimes called “ultraclean” (Deshpande et al.,
2009; Steele, Gotz, and Kouwenhoven, 2009; Pei et al., 2012; Pecker
et al., 2013; Waissman et al., 2013; Benyamini et al., 2014).
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from methane, ethanol, or ethylene) in the presence of suitable
catalysts (Kong et al., 1999; Kuemmeth et al., 2010). Unlike
III-V devices such as GaAs double dots, in which all stable
isotopes possess a nuclear magnetic moment, carbon nano-
tubes allow fabrication of devices with and without nuclear
spins in the host material in a straightforward way.
Nanotubes synthesized from natural hydrocarbons consist

of 99% 12C and ∼1% 13C. By using isotopically purified
13CH4 or 12CH4, the isotopic composition can be tuned during
growth. This not only affects the phonon modes [revealed
by Raman spectroscopy (Liu and Fan, 2001)], but also the
electron spin properties, because 13C possesses a nuclear spin
j~Ij ¼ 1=2, while 12C has j~Ij ¼ 0. As discussed in Sec. IV.D, a
local spin impurity (such as 13C) can flip the spin and/or valley
of an electron.

III. CARBON NANOTUBE BAND STRUCTURE

Just as the atomic structure of carbon nanotubes can be
derived from that of graphene, the electronic band structure
inherits many of its properties from graphene. However, the
simple effect of being rolled up drastically modifies the band
structure, leading to many effects that are not present in
graphene. The most dramatic difference is the introduction of
a band gap, which allows electrons in nanotubes to be
confined using gate voltages, but a variety of other subtle
effects arise.
Briefly, the results are as follows. Although graphene is a

semimetal, the formation of a nanotube leads to a confinement
band gap (a few hundred meV) for two-thirds of the possible
structures. These are known as semiconducting nanotubes.
Most of the remaining nominally metallic nanotubes show
narrow band gaps (∼10 meV) due to a combination of

curvature and strain. If the band gap is undetectibly small,
the nanotube is called quasimetallic, and a metallic nanotube
is defined as one for which the band gap is exactly zero. More
subtle details of the band structure become evident in a
magnetic field, including a magnetic moment associated with
the valley degree of freedom, and spin-orbit coupling that is
much stronger than in graphene and arises from curvature.

A. From atomic carbon to graphene band structure

To understand nanotube band structure, we begin with the
energy levels of atomic carbon. In a free atom, the six
electrons occupy the configuration 1s22s22p2. The outermost
atomic shell includes one spherically symmetric s orbital and
three p orbitals px, py, and pz [Fig. 4(a)]. Because of twofold
spin degeneracy in each orbital, there are therefore eight states
in the outermost shell, of which four are occupied.
The 2s − 2p energy splitting is small enough (less than a

typical bond energy) that all four outermost orbitals can
hybridize to form covalent bonds. For a given structure, the
number of 2p orbitals that hybridize with the 2s orbital is
determined by symmetry. In graphene, the pz orbital, oriented
perpendicular to the plane, is odd under z inversion and
therefore cannot hybridize with the even-parity 2s orbital. No
such symmetry protects the px and py orbitals. This type of
hybridization, in which an s orbital is mixed with two
p orbitals, is known as sp2 hybridization.
In graphene, these three orbitals further hybridize across

neighboring atoms in the crystal, forming a low-energy
(bonding) band σ and a high-energy (antibonding) band σ�

[Fig. 4(b)]. Likewise, hybridization of the pz orbitals forms
bonding and antibonding bands denoted π and π�, although
with smaller bonding energy because the interatomic overlap
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FIG. 3 (color online). (a), (c), and (e) Schematics and (b), (d), and (f) scanning electron micrographs of devices fabricated by different
methods. (a), (b) Top gating: Nanotubes are located on a growth chip, and electrodes fabricated afterward. Here a nanotube (not visible)
is contacted by metal electrodes (▪) and covered by a thin gate oxide. Five gates (•) control a double quantum dot, while a floating
antenna (F) allows charge sensing via a separate dot on the same nanotube. Other electrodes (○) are helper gates. Adapted from
Churchill, Kuemmeth et al., 2009. (c), (d) Bottom gating: Trench, contacts, and gates are fabricated from inert materials before
synthesis, and nanotubes grown across. Adapted from Steele et al., 2009. (e), (f) Mechanical transfer: Suspended nanotubes are
synthesized on a growth chip, while electrodes are patterned on a device chip. By stamping the chips together, a nanotube is transferred
to the device. Electrical current can be used to cut the nanotube at specific places. In this complex two-nanotube device, five gates define
a single or double quantum dot in the upper nanotube, while a pair of dots in the lower nanotube serve as independent charge sensors.
Adapted from Waissman et al., 2013.
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is less. In undoped graphene, the electrons exactly fill the
bonding bands, with three electrons per atom occupying σ and
one occupying π. The σ band remains filled at all times and
does not participate in transport. The electrical behavior of
nanotubes is therefore determined almost entirely by the
properties of the π and π� bands.
Ignoring spin-orbit coupling, the pz orbitals do not hybrid-

ize with any of the lower-lying states, so the structure of the π
and π� bands follows simply from energy levels in the
honeycomb graphene potential. Graphene consists of a rhom-
bus unit cell with a two-atom basis [Fig. 4(c)] and has the
hexagonal Brillouin zone shown in Fig. 4(d). The corners of
this hexagon in k space are alternately labeled K or K0.
Because the three K points are connected by reciprocal lattice
vectors, by Bloch’s theorem they correspond to equivalent
electron states; likewise, the three K0 points are equivalent to
each other, but not to the K points. States close to the K0 point
are time-reversal conjugates of those close to the K point.
The band structure that arises from this potential [Fig. 4(e)]

has quite unusual properties (Wallace, 1947; Saito,
Dresselhaus, and Dresselhaus, 1998; Castro Neto et al.,
2009). Although there is no band gap, the π and π� bands

touch only at K and K0, where the density of states is zero.
Since the available electrons exactly fill the π band, these
points are where the Fermi level EF intersects the band
structure, so that undoped graphene is neither a true metal
nor a true semiconductor, but a semimetal. Close to the
Fermi surface, the dispersion relation is linear, with a slope
that determines the Fermi velocity3 vF ¼ ð1=ℏÞj∇kEj ≈
8 × 105 ms−1. Expanding about the K or K0 points by writing
k ¼ Kþ κ or k ¼ K0 þ κ, and defining EF as the zero of
energy, the dispersion relation for jκj ≪ jKj is simply

E ¼ �ℏvFjκj; ð1Þ

where the þ sign applies to electrons and the − to holes.
Because this dispersion relation also describes massless Dirac
fermions, the points where the bands touch are known as Dirac
points, and the nearby bands as Dirac cones. The correspon-
dence of electron states in a nanotube with solutions of a
Dirac-like equation is explained in Appendix B. Although we
use this correspondence only in a few places in this review, it
is theoretically convenient because it allows many effects on
nanotube band structure to be derived as perturbations to the
Dirac equation.

B. Semiconducting, narrow-gap and metallic nanotubes

1. Theory: The zone-folding approximation

Since the nanotube diameter is usually much larger than the
interatomic spacing, the graphene band structure is to a good
approximation unperturbed by rolling up into a nanotube
except for the imposition of a periodic boundary condition
(Hamada, Sawada, and Oshiyama, 1992; Saito, Fujita, and
Dresselhaus, 1992). This is known as the “zone-folding
approximation.” The boundary condition to ensure single
valuedness is that k ·C ¼ 2πp, where p is an integer, i.e.,
the component of k perpendicular to the nanotube axis is
kc ¼ 2p=D. The allowed k values correspond to a series of
lines in reciprocal space, known as quantization lines, running
at an angle π=3þ θ from the kx axis [Figs. 5(a) and 5(b)].
The one-dimensional dispersion relation Eðκ∥Þ is a cut

along the quantization lines of the two-dimensional graphene
dispersion relation. Since it is the branches closest to EF that
determine transport properties, we neglect the other branches.
The nanotube band gap depends on the minimum separation
of the quantization lines from the Dirac points. There are two
possible situations. If quantization lines run straight through
the Dirac points [Figs. 5(a) and 5(c)], then Eðκ∥Þ is linear near
κ∥ ¼ 0, giving zero band gap and a metallic nanotube.
However, if the lines bypass the Dirac points with separationFIG. 4 (color online). (a) Electron orbitals of atomic carbon.

Lighter (darker) colors denote regions where the p-orbital wave
functions are positive (negative). Bond directions in graphene
are indicated by gray lines. (b) Schematic energy levels of
atomic (left) and sp2 hybridized (right) carbon. Energies are
referenced to EF, approximated as equal to the negative of the
work function. (c) Segment of graphene with the unit cell
shaded and the A and B sublattices marked. (d) First Brillouin
zone of graphene in reciprocal space, showing the six symmetry
points, labeled K or K0. (e) Energy bands (σ bands omitted) of
graphene close to the Fermi level, showing the six Dirac cones
where π and π� bands touch.

3This value is derived from numerical simulations of graphite
(Painter and Ellis, 1970; Tatar and Rabii, 1982; Trickey, Müller-
Plathe, and Diercksen, 1992) and nanotubes (Mintmire, Dunlap, and
White, 1992), which indicate vF ¼ ð7.8 − 9.8Þ × 105 ms−1 [although
interactions may renormalize the value significantly (Kane and Mele,
2004)], as well as nanotube scanning tunneling microscopy (STM)
density-of-state measurements (Odom et al., 1998; Wildoer et al.,
1998) and ballistic electron resonance experiments (Zhong et al.,
2008), which give vF ¼ ð7.9 − 8.7Þ × 105 ms−1.
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jΔκ⊥j, the situation is as shown in Figs. 5(b) and 5(d). The
dispersion relation gives a pair of hyperbolae with band gap
EG ¼ 2ℏvFjΔκ⊥j, and therefore a semiconducting nanotube.
In the zone-folding approximation, the band gap is deter-

mined by a simple rule: If n −m is a multiple of 3, the
nanotube is nominally metallic (Hamada, Sawada, and
Oshiyama, 1992; Saito, Fujita, and Dresselhaus, 1992).
Otherwise, it is semiconducting, with band gap
EG ¼ 4ℏvF=3D ≈ 700 meV=D ½nm�. In a collection of nano-
tubes with random chiral indices, semiconducting nanotubes
will therefore outnumber metallic ones by approximately 2:1.
Figure 5(e) illustrates how the chiral indices determine
whether the quantization lines intersect the Dirac points for
various nanotube structures. Examples of both cases are

shown for the three kinds of structures defined in Fig. 1(b),
with one exception: Zigzag and chiral tubes can be either
semiconducting or metallic, but all armchair nanotubes are
metallic.
The nanotube structure also sets the electron dispersion

relation and hence the effective mass. The equation of the
hyperbola in Fig. 5(d) is (Zhou et al., 2005)

E�ðκ∥Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ2v2Fκ

2
∥ þ E2

G=4
q

: ð2Þ

This low-energy dispersion relation is clearly electron-hole
symmetric. This is a fragile symmetry, because any charge in
the environment oppositely couples to electrons and holes, but
it is sometimes reflected in data (Jarillo-Herrero et al., 2004).
The effective mass arises from the curvature of the

dispersion relation and for low energy (jE�ðκ∥Þj ≪ EG) is

meff ¼ ℏ2

�
d2E
dκ2∥

�−1
≈

EG

7.3 eV
×me; ð3Þ

where me is the free electron mass. A band gap of 100 meV
corresponds to effective mass ∼0.014me, smaller than
that in many conventional semiconductors (e.g., in GaAs
meff ¼ 0.067me). Because small meff leads to larger longi-
tudinal level spacing, nanotubes with small EG are often
preferred for quantum dot experiments.

2. Valley as a robust quantum number

Just as in graphene, the band structure in nanotubes is
characterized by the distinct and time-conjugate valleys K and
K0. In graphene the robustness of the valley quantum number
is linked to the symmetries of the lattice. Mixing between
valleys requires a large transfer of crystal momentum and is
therefore weak in a smoothly varying Coulomb potential. This
is less obvious in metallic nanotubes, because the two Dirac
points sometimes remain well separated in momentum space,
and sometimes they merge at kt ¼ 0. In fact, all metallic
nanotubes (see Fig. 6) can be divided into two classes
(Samsonidze et al., 2003; Marganska et al., 2014): the
Dirac points are either well separated in longitudinal momen-
tum space (such nanotubes are known as armchairlike metals)
or collapse to the origin of the longitudinal Brillouin zone
(zigzaglike metals). For chiral metallic nanotubes, this clas-
sification is possible by introducing a helical translational
basis vector (Lunde, Flensberg, and Jauho, 2005). For the
zigzaglike metals, the two bands at k ¼ 0 are distinct by
having different crystal angular momentum (Lunde,
Flensberg, and Jauho, 2005), where the angular momentum
is defined as the quantum number related to the rotation part of
the helical symmetry (White, Robertson, and Mintmire,
1993). In the armchairlike metals, the angular momenta are
the same, but their longitudinal crystal momenta differ by
4π=3jTj. Consequently, in both cases valley-valley scattering
is suppressed by a difference in crystal angular momenta or
crystal longitudinal momenta. Scattering within a valley may
also require atomically sharp Coulomb scatterers or lattice
imperfections, due to the spinor structure of the solutions to
the Dirac equation, which differs between right movers and
left movers (Ando and Nakanishi, 1998; Ando, Nakanishi,

ky

kx

)b()a(

EG

)d()c(

F

K

EE

0

ky

kx

(e)

S
em

ic
on

du
ct

in
g

M
et

al
lic

Zig-zag Armchair Chiral

(12,0) (6,6) (7,-2)

(6,4)(11,0)

(5,2) (4,2)

SemiconductingMetallic

ky

kx

K

θ 2/D

EF

0

EF

E

⊥

E

⊥

⊥ ⊥

FIG. 5 (color online). The effect of periodic boundary condi-
tions. (a), (b) Requiring that the electron wave function be single
valued constrains k to lie on one of the quantization lines in
reciprocal space corresponding to integer values of kcD=2. If
quantization lines intersect the Dirac points the nanotube is
(a) metallic; otherwise it is (b) semiconducting, with minimum
quantization line offset jΔκ⊥j ¼ 2=3D. The fκ⊥; κ∥g axes in
reciprocal space, corresponding to motion around or along the
nanotube, are indicated. (c), (d) Dispersion relations (in the
lowest-energy one-dimensional band) close to a Dirac point for
the two kinds of nanotubes, showing how the offset gives rise to a
band gap. The Fermi level for undoped nanotubes is indicated.
(e) Examples of quantization lines for several metallic and
semiconducting structures of the three types shown in
Fig. 1(b). Of the six combinations, armchair semiconducting
nanotubes do not exist.
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and Saito, 1998; McEuen et al., 1999; Roche, Triozon, and
Rubio, 2001).
Armchairlike and zigzaglike band structures are exempli-

fied in Fig. 6. The number of subbands equals the number of
carbon atoms in the unit cell of the nanotube, spanned by C
and T in Fig. 1(a). Each subband shown is twofold degenerate
due to spin and arises from a mapping of the quantization lines
in Fig. 5 into the 1D Brillouin zone of the nanotube.
The above discussion applies to narrow-gap nanotubes, i.e.,

those that would be metallic in the zone-folding approxima-
tion but where other perturbations introduce a small band
gap (Sec. III.C). For nanotubes that are semiconducting even
in the zone-folding approximation (White, Robertson, and
Mintmire, 1993; Mintmire and White, 1995), the situation is
similar. This can again be seen using helical quantum numbers
(White, Robertson, and Mintmire, 1993; Mintmire and White,
1995) as follows: All bands can be classified by their crystal
angular momentum, which means that mixing of two bands
with different crystal angular momentum is protected (as for
zigzaglike metallic tubes). Mixing of bands with the same
crystal angular momentum is suppressed by their difference in
wave numbers when folded onto the smaller translational
Brillouin zone.

Local Coulomb scatterers can flip the valley index (Pályi
and Burkard, 2010; Bercioux et al., 2011), and spin-carrying
impurities can flip both spin and valley with comparable rates
(Pályi and Burkard, 2009). One example is hyperfine coupling
to nuclear 13C spins, which can cause both spin and valley
relaxation (Sec. IV.D). Another example is the local part of the
electron-electron interaction, discussed in Sec. VII and
Appendix B. In addition, electrical contacts can induce valley
scattering due to valley mixing during tunneling (Sec. VI.C).

3. Experiment

Nanotubes of different kinds can be distinguished exper-
imentally by measuring the current as a function of VG at fixed
VSD, as in Figs. 7(a)–7(c). The gate potential shifts the energy
levels up or down and therefore tunes the position of the gap
relative to EF. Tuning EF into the band gap suppresses the
current. This can be seen in Fig. 7(a), where the Fermi level is
shifted from the valence band (for VG ≲ 0) to the band gap
(for VG ≳ 0), showing that the nanotube is semiconducting. A
quasimetallic nanotube, by contrast, is one with no depend-
ence on VG [Fig. 7(c)], indicating EG ≪ kBT, where kB is
Boltzmann’s constant and T is temperature.
Experimentally, the fraction of nanotubes showing quasi-

metallic behavior at room temperature is very small (≲1%)
(Cao, Wang, and Dai, 2005; Churchill, 2012). More common

FIG. 6 (color online). Robustness of the valley index in nano-
tubes. All subbands of the 1D dispersion relation (corresponding
to different quantization lines in Fig. 5) are plotted in the first
longitudinal Brillouin zone vs longitudinal wave vector kt. All
nominally metallic nanotubes can be classified as armchairlike or
zigzaglike. For armchairlike nanotubes, the two Dirac points are
separated in kt; for zigzaglike nanotubes, they are separated in
crystal angular momentum. Since all metallic nanotubes fall into
one of these classes, valley is a good quantum number in a slowly
varying potential. (a) Armchairlike (4,1) nanotube. (b) Zigzaglike
(6,3) nanotube. Each spin-degenerate band is calculated using a
graphene tight-binding model taking account of nearest-neighbor
overlap integrals but without spin-orbit coupling. Only states near
E ¼ 0 participate in transport. Note that the Brillouin zone in
(a) has been plotted wider than in (b), to reflect the different
longitudinal length jTj of the unit cell in real space.

FIG. 7 (color online). Signatures of the band gap in transport.
(a)–(c) Room temperature conductance measurements as a
function of gate voltage. (a) A semiconducting nanotube has
EG ≫ kBT and can be tuned between a conducting state (Fermi
level in the valence band) and an insulating state (Fermi level in
the band gap). Transport via the conduction band is not observed,
because it would require a much higher gate voltage. (b) A
narrow-gap nanotube (EG ∼ kBT) shows transport via both
conduction and valence bands. Tuning the Fermi level into the
band gap does not completely suppress current at room temper-
ature. (c) A few nanotube devices (< 1%) show no gate
dependence of conduction. These could be truly metallic,
although it cannot be excluded that this device in fact contains
a bundle of nanotubes that screens the gate. (d) Conductance of a
single narrow-gap nanotube at 300 mK. Transport is now
completely suppressed in the band gap, and the device can be
tuned into electron or hole configurations by tuning VG. Adapted
from Cao, Wang, and Dai, 2005 and Churchill, 2012.
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is “narrow-gap” behavior [Fig. 7(b)], where partial current
suppression indicates a small band gap EG ∼ kBT at room
temperature (Ouyang et al., 2001). This interpretation is
confirmed by low-temperature experiments [Fig. 7(d)], where
precise measurements from Coulomb peak positions fre-
quently give EG ∼ 10 − 100 meV [e.g., in Fig. 7(d),
EG ¼ 60 meV]. To explain such small band gaps from
circumferential quantization alone requires D ¼ 7 − 70 nm,
which might be structurally unstable and is excluded by AFM
topography measurements. More likely, nearly all nanotubes
that the zone-folding model predicts should be metallic
acquire narrow band gaps by perturbations discussed in the
next section.

C. Structural origins of the narrow gap

1. Theory

The zone-folding approximation assumes that the allowed
electron states in nanotubes are exactly the same as their
equivalents in graphene. Perturbations arise if the symmetry of
the carbon bonds is broken by changing the overlap between
adjacent electron orbitals. One unavoidable example is the
curvature of the rolled-up sheet (Blase et al., 1994). This has
two effects on the band structure. First, it leads to a small
renormalization of the Fermi velocity by at most a few
percent, which is insignificant in experiments (Izumida,
Sato, and Saito, 2009). More importantly, it displaces the
Dirac points in reciprocal space away from K and K0 (Kane
and Mele, 1997; Izumida, Sato, and Saito, 2009), because it
breaks the equivalence of the three bond directions. This shift
is parametrized by a displacement vector Δκcv [Fig. 8(a)] and
is opposite for K and K0 because states in the two valleys are
time-reversed conjugates of each other (Castro Neto et al.,
2009). In semiconducting nanotubes, jΔκcvj is much smaller
than the offset jΔκ⊥j arising from quantization and therefore
has only a small effect. However, in nominally metallic
nanotubes, the shift of the Dirac cones relative to the
quantization lines introduces a band gap EG ¼ 2ℏvFjΔκcv⊥ j,
where Δκcv⊥ is the component of Δκcv perpendicular to the
nanotube axis [Fig. 8(b)]. (The component parallel to the axis
Δκcv∥ has no effect.) This curvature-induced band gap is
always much smaller than the quantization energy difference.
Unlike the quantization band gap, it depends on the chiral
angle. As shown in the inset of Fig. 8(a), the vector Δκcv
points at an angle of 3θ from the perpendicular. The curvature-
induced band gap is therefore proportional to cos 3θ; it is
calculated to be (Kane andMele, 1997; Park, Kim, and Chang,
1999; Yang et al., 1999; Yang and Han, 2000; Kleiner and
Eggert, 2001; Izumida, Sato, and Saito, 2009; Klinovaja et al.,
2011a)

Ecv
G ∼

50 meV
D½nm�2 cos 3θ: ð4Þ

For armchair nanotubes θ ¼ π=6 [Fig. 1(b)] and therefore
cos 3θ ¼ 0. These are the only nanotubes expected to be truly
metallic, if no other perturbation is applied (see Appendix B
for more theoretical details).

A gap of similar magnitude can be opened by strain, in a
way that also depends on nanotube chirality (Heyd, Charlier,
and McRae, 1997; Kane and Mele, 1997; Rochefort, Salahub,
and Avouris, 1998; Yang and Han, 2000). A uniaxial strain ϵ
has the same symmetry-breaking effect as curvature (namely,
to break C3), and therefore leads to a Dirac point displacement
in the same direction with magnitude

jΔκϵj ¼ 12ζ

1þ 6ζ
ð1þ λÞϵ=aCC; ð5Þ

where λ ≈ 0.2 is the Poisson ratio and ζ ≈ 0.066 is a parameter
related to the carbon-carbon bond force constants (Nisoli
et al., 2007; Huang et al., 2008). A torsional strain γ displaces
the Dirac points by an amount jΔκγj ≈ γ at an angle π=2 − 3θ
from the perpendicular (Yang and Han, 2000). The uniaxial
band gap is therefore proportional to cos 3θ, while the tor-
sional band gap is proportional to sin 3θ. A third type of strain,
nanotube bending, has no first-order effect on the band gap for
any structure (Kane and Mele, 1997). Numerical estimates of
these effects are given in Table III.

FIG. 8 (color online). Perturbation of the graphene band structure
by the curvature in nanotubes. (a) Displacement of the Dirac
points away from the corners of the Brillouin zone due to
curvature in a (4,1) nanotube. For visibility, the shift has been
exaggerated by a factor of 15. Top inset: Decomposition of the
displacement vector Δκcv near the K point into components
parallel and perpendicular to the nanotube axis. The shift is at an
angle 3θ to the nanotube circumference. Bottom inset: Shift for
an armchair nanotube. Because the shift is along the quantization
lines, curvature does not lead to a gap in these structures.
(b) Dirac cones close to K and K0 valleys with (solid) and
without (dotted) curvature effects, showing how horizontal shifts
by Δκcv⊥ open a band gap in a nominally metallic tube.
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2. Experiment

The existence of a narrow gap in nominally metallic
nanotubes was first shown in density-of-states measure-
ments by scanning tunneling microscopy (Ouyang et al.,
2001). For zigzag nanotubes, a diameter dependence EG ¼
39 meV=D ðnmÞ2 was found in close agreement with theo-
retical expectations. Isolated armchair nanotubes showed no
band gap, consistent with the expected cos 3θ dependence
(and implying negligible torsion for nanotubes lying on a
surface). Many transport experiments have since found band
gaps of this order of magnitude, although usually without
identifying the chirality.
In transport measurements, quasimetallic nanotubes typi-

cally show band gaps a few times larger than expected from
curvature alone, suggesting a significant contribution from
strain. The sensitivity of the band gap to uniaxial strain has
been measured by using an AFM tip to apply tension to
suspended nanotubes (Minot et al., 2003). By varying the
applied force, it was possible both to induce a band gap where
none had been present before and to decrease the band gap in a
semiconducting nanotube (Fig. 9). From the variation of
conductance with strain, it was possible to deduce dEG=dϵ ¼
þ35 meV=% for the metallic and dEG=dϵ ¼ −53 meV=% for
the semiconducting nanotube, both with unknown chirality,
where ϵ is expressed as a percentage elongation of the
nanotube. Both values are comparable with that expected
from Eq. (5), dEG=dϵ ¼ 51 meV=% × cos 3θ. Similar results,
including confirmation of the cos 3θ dependence, have been
obtained by optical methods (Huang et al., 2008).

D. Longitudinal confinement and quantum dot energy shells

Different modes of the longitudinal wave function in a
quantum dot of length L lead to different confinement

energies Econf . The mode spectrum can be complex, depend-
ing on the band gap, boundary conditions, and interactions.
The confinement can be classified as atomically sharp or
nonsharp (McCann and Fal’ko, 2004), with the latter further
subdivided into hard-wall or soft-wall cases depending
whether the potential rises over a shorter or a longer distance
than the dot length. An additional complication arises from the
fact that bound states are formed from right- and left-moving
Dirac particles that do not necessarily have the same group
velocity in the unconfined nanotube. In Fig. 6 right movers
and left movers within a valley travel at different speeds. This
effect arises away from EF due to trigonal warping of flat
graphene. If curvature of the nanotube is also taken into
account (not shown in Fig. 6), a stronger asymmetry arises.
This happens already at EF and directly affects how standing
waves are constructed. For example, if the confinement is
sharp, then the discrete eigenstates of the quantum dot will be
superpositions involving both valleys (Izumida, Vikström,
and Saito, 2012). We mention two simple limiting cases
[Fig. 10(a)]. Electrons (or holes) with low enough energy
sample only the region near the potential minimum where
confinement is parabolic (“soft-wall confinement”). If the
energy is also much less than EG, so that by Eq. (3) the

FIG. 9 (color online). Contribution of strain to the band gap.
(a) Distortion of the lattice by tensile strain. (b) The experimental
setup. An AFM tip is used simultaneously to gate and tension a
suspended nanotube. (c) Conductance of an initially metallic
nanotube as a function of gate voltage measured for several
values of strain ϵ, showing an increasing band gap with ϵ. Inset:
Maximum resistance as a function of ϵ, fitted assuming thermally
activated conductance across a band gap proportional to ϵ. The fit
yields the strain sensitivity dEG=dϵ ¼ 35 meV=%, where ϵ is
expressed as a percentage. (d) Similar data for a semiconducting
nanotube. In this case, the band gap is found to decrease linearly
with ϵ, with fitted dEG=dϵ ¼ −53 meV=%. Adapted from Minot
et al., 2003.

FIG. 10 (color online). (a) Schematic energy levels in the same
quantum dot potential for two limits of dispersion and confine-
ment discussed in the text. (Electron correlations beyond the
constant-interaction model, which change the potential depend-
ing on occupation, are not taken into account.) Superimposed on
the level diagram are wave function envelopes ψðtÞ for several
electron shells. Mode index ν is indicated for the first three shells.
(b) Sequence of Coulomb blockade peaks measured in a quantum
dot of length L ≈ 760 nm. Peaks corresponding to three succes-
sive shells are colored to illustrate the connection to different
wave functions. Although the four electrons that fill each shell
occupy states of similar energy, extra energy ΔE is needed to
populate a higher shell, leading to fourfold periodic peak spacing.
(The connection between colored shells and particular longi-
tudinal modes is only schematic, because absolute shell numbers
cannot be deduced from these data.) Adapted from Sapmaz,
Jarillo-Herrero, Kong et al., 2005.
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electron behaves as a massive particle (e.g., in a sufficiently
large few-electron dot), the spectrum is harmonic with mode
spacing ΔEconf ¼ ℏω0, where ω0 is the harmonic frequency.
Conversely, in a many-electron-quantum dot the kinetic
energy may both be large enough to reach the hard walls
of the potential well and be in the linear part of the dispersion
relation (2), so that the velocity is vF, independent of energy.
The longitudinal modes then take on a sinusoidal form
[Fig. 10(a)]. The modes are again regularly spaced in energy,
but now with ΔEconf ¼ hvF=2L (Tans et al., 1997). This
regular spacing, first observed by Liang, Bockrath, and Park
(2002), suggests that this picture is accurate in at least some
real devices. If neither of these cases applies, or if the potential
is strongly disordered, the mode spacing need not be regular.
For example, when the electrons behave as massive particles
in a hard-wall potential, the confinement energy is given by
Econf ¼ ν2h2=8meffL2, with ν ¼ 1; 2; 3;… .
A set of states with the same mode index ν is called a shell.

As explained in the next section, each state is characterized by
twofold spin and valley quantum numbers, and thus the
number of single-particle states per shell is four. In the so-
called constant-interaction model (Appendix A), the quantum
dot states are filled in order of increasing energy, so that
ΔEconf contributes to the Coulomb peak spacing only for
every fourth electron. This is evident in the ground-state
spectroscopy data of Fig. 10(b). The regular shell spacing
shows that single-particle energy levels, in combination with
the constant-interaction model, are a good approximation.

E. Orbital magnetic moment

Because each state in the K valley has a time-reversed
conjugate in the K0 valley, time-invariant perturbations such as
curvature and strain do not break the degeneracy between
them. This degeneracy can, however, be broken by a magnetic
field. Intuitively, this can be seen by associating each state in
the nanotube with a direction of circulation and hence a valley-
dependent magnetic moment. This section shows how this
orbital magnetic moment arises and is evident in the energy
levels.

1. Theory

The orbital effect of a magnetic field B on an electron with
charge −e is captured by modifying the bare-electron
Schrödinger equation so that the momentum operator p is
replaced by pþ eA, where AðrÞ is the vector potential and
B ¼ ∇ ×A (Merzbacher, 1998). So long as AðrÞ varies
slowly on the scale of the lattice potential, the effect of this
replacement on an electron confined in a closed loop is to add
an Aharonov-Bohm phase to its eigenfunctions: if ψ0ðrÞ is an
eigenstate at A ¼ 0, then

ψA ¼ exp

�
ie
AðrÞ · r

ℏ

�
ψ0 ð6Þ

is an eigenstate at finite A with the same energy (Luttinger,
1951; Hofstadter, 1976). In other words, the finite-field
dispersion relation EAðκÞ is related to the zero-field dispersion
relation E0ðκÞ by

EAðκÞ ¼ E0ðκþ ΔκB⊥Þ: ð7Þ

Here the field-induced shift is ΔκB⊥ ¼ ΔκB⊥Ĉ, with (Ajiki and
Ando, 1993; Lu, 1995)

ΔκB⊥ ¼ eA
ℏ

¼ eD
4ℏ

B∥; ð8Þ

where B∥ is the component of B along the nanotube axis T, A
is the corresponding component ofA, and Ĉ is the direction of
the chiral vector. The quantization condition, however, is
unchanged.
The consequences for the band structure are shown in

Fig. 11. For a true metallic nanotube [Figs. 11(a) and 11(b)],
the Dirac cones are shifted horizontally away from the
quantization lines, opening a band gap EB

G ¼ 2ℏvFjΔκB⊥j ¼
vFeDjB∥j=2. If the nanotube already has a band gap, the
effect of the magnetic field is opposite for the two valleys
[Figs. 11(c) and 11(d)]. In one valley, the electron energy is
initially reduced by vFeDB∥=2; in the other, it is increased by
the same amount. At a field B∥ ¼ BDirac ¼ EG=evFD, one of
the Dirac cones crosses a quantization line and the band gap
vanishes. Increasing B∥ beyond BDirac causes the band gap to
increase again. For a true semiconducting nanotube, BDirac can
be as large as ∼100 T and is usually outside the experimental
range, but for quasimetallic nanotubes BDirac can be just a few
tesla. Because the effective mass depends on a band gap
[Eq. (3)], meff can be tuned by a magnetic field.
The ground-state energies are plotted in Figs. 11(e)–11(g)

as a function of magnetic field. Each zero-field level is twofold
split, with slopes dE=dB∥ ¼ �DevF=4. This linear splitting
allows each state to be assigned a magnetic moment
�μorb, which has a straightforward physical interpretation
[Fig. 11(i)]: Electron states with positive (negative) magnetic
moment correspond to clockwise (counterclockwise) circu-
lation of electrons around the nanotube. In this interpretation,
the direction of circulation for the first electron switches as the
field is swept through BDirac. A similar picture applies in the
valence band. The orbital moment is related to the band
structure by

μorb ≡ dE
dB∥

¼ eD
4ℏ

���� ∂EDiracðκ⊥; κ∥Þ
∂κ⊥

����; ð9Þ

where EDiracðκ⊥;κ∥Þ¼�ℏvF
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2⊥þκ2∥

q
is the two-dimensional

energy function describing the Dirac cone. For a low-energy
electron (κ∥ ≈ 0), this has the value

μ0orb ¼ DevF=4: ð10Þ
To emphasize the analogy with Zeeman spin splitting, an

orbital g factor gorb ≡ μorb=μB is sometimes defined, where μB
is the Bohr magneton. For a nanotube with a band gap, the
magnetic energy in a parallel field B∥ < BDirac is then

Emag ¼ ð∓gorbτ þ 1
2
gssÞμBB∥; ð11Þ

where gs ≈ 2 is the spin g factor, the − ðþÞ sign applies for
electrons (holes), and the valley and spin quantum numbers
are denoted by τ ¼ fþ1;−1g for fK;K0g and s ¼ fþ1;−1g
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for f↑;↓g, with the spin axis, along t, being parallel to the
nanotube.4

2. Experiment

The orbital energy splitting can be seen in Coulomb
ground-state spectroscopy as a function of magnetic field
(Fig. 12), which shows the contribution Emag to the single-
particle energy levels EN (Minot et al., 2004). Ignoring spin-
orbit coupling (to be discussed in Sec. III.F), the first four
electrons fill the four lowest states in order of energy:K↓, K↑,
K0↓, and K0↑. Subsequent electrons must enter a higher shell

of the dot, but repeat the fourfold filling sequence for spin-
valley states. The expected pattern of ground-state energies is
therefore alternating pairs with positive and negative magnetic
moments. Typical data are shown in Fig. 12 for the first three
hole shells. The measured magnetic moments μorb ∼
0.9 meV=T are of the expected magnitude for orbital coupling
with D ≈ 4.5 nm. In terms of orbital g factors, this corre-
sponds to gorb ≈ 16, much larger than gs ¼ 2, qualitatively
confirming the picture in the previous section. For a quanti-
tative comparison with theory, an independent measurement
of D is necessary. This was achieved using an AFM for a
nanotube with D ¼ 2.6� 0.3 nm, for which μorb ¼
0.7� 0.1 meV=T was measured, in fair agreement with the
value μorb ¼ 0.52� 0.06 meV=T expected from Eq. (10)
(Minot et al., 2004).
As seen from Fig. 11, a nanotube that is semiconducting at

zero field becomes metallic in a parallel field with magnitude

(a) K
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(b) K K

B|| > 0

(c) K
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FIG. 11 (color online). Dependence of the band structure on a parallel magnetic field. (a), (b) Left: Dirac cones and quantization
lines for a nanotube that is metallic at zero field, (a) without and (b) with magnetic field. Arrows in (b) mark the shift from zero-
field (dotted) to finite-field (solid) Dirac cones. A field-induced horizontal shift ΔκB⊥ opens a band gap between the conduction band
(darker circles) and valence band (lighter circles). Right: Corresponding one-dimensional electron dispersion relations. (c), (d) The
same plots for a nanotube with zero-field gap EG. A magnetic field shifts one Dirac point toward the quantization line and one
away, lifting valley degeneracy. (e) Conduction-band (darker line) and valence-band (lighter line) edges as a function of magnetic
field for a metallic nanotube. In the conduction band both valleys increase in energy with field, corresponding to a negative
magnetic moment μorb ¼ −DevF=4 or counterclockwise circulation. The valence band decreases in energy, corresponding to a
positive magnetic moment and clockwise circulation. (f) Shift of the Dirac points perpendicular to the quantization lines for a zero-
gap nanotube. (g) Band edges for a gapped nanotube. In the conduction band, K ðK0Þ states move with positive (negative) magnetic
moments. In the valence band, K0 ðKÞ states move with positive (negative) magnetic moments. (h) Shift of the Dirac points for
B∥ ¼ BDirac, showing how one set of Dirac points is shifted onto the quantization lines. (i) Electron circulation directions
corresponding to upmoving and downmoving states in (e) and (g).

4Our convention for assigning valley labels is that conduction-
band states decreasing (increasing) in energy with increasing B∥ are
labeled K ðK0Þ.
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jB∥j ¼ BDirac. This peculiar metal-semiconductor transition is
specific to the cylindrical form of nanotubes and in fact recurs
periodically with every flux quantum Φ0 ¼ h=e that threads
the cross section. For a semiconducting nanotube, the gap
closes twice per period, at flux equal to Φ≡ πD2B∥=4 ¼
Φ0=3 and Φ ¼ 2Φ0=3, where the open and filled circles,
respectively, in Fig. 11(h) cross quantization lines. The
semiconducting gap reopens completely at Φ ¼ Φ0.
Figure 13 shows magnetoconductance of a semiconducting
nanotube for which an AFM determined D ≈ 8 nm. For this
diameter, the expected BDirac is 27 T, which is accessible at
dedicated facilities. The nanotube has low conductance at zero
field when EF is tuned into the gap. At 22 T the conductance is
maximal, likely since the band gap is reduced to a smaller
value. The band gap reopens to a maximum near 37 T before
closing again as expected. The inset curve is calculated for

D ¼ 8.1 nm and predicts gap minima at 27 and 55 T. The
observed conductance maximum, corresponding to the first
gap closing, occurs at a somewhat lower field of 22 T, which is
attributed to strain.
Equation (10) assumed an electron with zero longitudinal

momentum. For electrons confined in a quantum dot, gorb is
reduced, for the following reason (Jespersen, Grove-
Rasmussen, Flensberg et al., 2011). As seen from the insets
of Fig. 14, the partial derivative in Eq. (9) decreases with
increasing κ∥; the larger κ∥, the smaller the fraction of vF
directed around the nanotube and hence the smaller μorb.
Because of confinement the shells participating in transport
consist of superpositions of states with jκ∥j ≠ 0. (This can be
seen for the sequence of shells in Fig. 10.) The total orbital
moment therefore decreases with increasing confinement
energy (Fig. 14), with predicted scaling (Jespersen, Grove-
Rasmussen, Flensberg et al., 2011):

gorb ¼
g0orbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð2Econf=E0
GÞ2

q ; ð12Þ

where g0orb is the unconfined value derived from Eq. (10),

g0orb ¼
evFD
4μB

; ð13Þ

where E0
G is the band gap at zero magnetic field without spin-

orbit coupling. Figure 14 shows a series of measured gorb
values as a quantum dot was tuned across the electron-hole
transition using a gate voltage. As expected from Eq. (12), gorb
is maximized close to the transition, where electrons and holes
can occupy the lowest-energy confined states, but reduced as

FIG. 13 (color online). Magnetoconductance of a semiconduct-
ing nanotube near the charge neutrality point measured at 3.1 K.
The observed maximum is slightly below the expected value
(indicated by the bar labeled B0=3). The inset shows a calculated
energy gap for a (95,15) semiconducting nanotube (D ¼ 8.1 nm)
vs parallel magnetic field. Solid and dashed lines are without and
with Zeeman effect. Adapted from Jhang et al., 2011.

FIG. 14 (color online). Effect of confinement on magnetic
moment. Main plot: Experimentally determined gorb and μorb
(points) as a function of gate voltage, together with a fit by
Eq. (12). The fit assumes a constant dot length and linear
dependence of Econf on VG. Left inset: Dirac cone showing
quantization line and points corresponding to κ∥ values for three
longitudinal energy levels. Right inset: View of the Dirac cone
from above, giving a physical explanation for the reduction of
μorb. Regardless of κ∥; κ⊥, the velocity (black arrow) of the
electron is vF directed away from the origin. Higher energy states,
with larger κ∥, have smaller perpendicular components v⊥
and therefore smaller gorb. From Jespersen, Grove-Rasmussen,
Flensberg et al., 2011.

FIG. 12 (color online). Conductance of a nanotube quantum dot
as a function of gate voltage and magnetic field, allowing ground-
state spectroscopy of the first 12 hole states. (The first two peaks
of the ν ¼ 1 shell are not visible on this color scale.) Occupation
numbers N for holes 1–12 and shell numbers ν are indicated. The
orbital magnetic moment leads to a field-dependent shift of the
conductance peaks, marked by dashed lines. From the slope of
these lines, μorb values of 0.90, 0.80, and 0.88 meV=T for shells
1–3 can be deduced, an order of magnitude larger than the spin
magnetic moment. As well as the linear shift of peak positions,
other features are seen: the complex network of lines above 2 Ton
the right-hand side reflects energy crossings between different
shells, while the barely resolved low-field anticrossing at VG ∼
3 V probably reflects spin-orbit coupling not recognized at the
time (Sec. III.F). Adapted from Jarillo-Herrero et al., 2005a.
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the quantum dot occupation is increased. The data are well
fitted by Eq. (12) assuming Econf ∝ VG − 0.8 V, which is
reasonable if the length of the quantum dot is independent of
gate voltage.
The orbital moment deduced from Fig. 14 corresponds to

Eq. (13) with D ≈ 6 nm. This is surprisingly large for the
chemical-vapor-deposited nanotube used in the experiment,
for which D≲ 3 nm is expected. Other experiments have
measured a range of values for gorb; while some have obtained
similarly large values (Jarillo-Herrero et al., 2005a;
Kuemmeth et al., 2008; Steele et al., 2013), other results
are consistent with smaller-diameter nanotubes (Minot et al.,
2004; Makarovski et al., 2007; Churchill, Bestwick et al.,
2009). Although the discrepancy is not large, it is possible
that expectations for either the nanotube diameter or the
orbital vF need to be revised. Measurements on devices with
independently measured diameters allow the discrepancy to be
explored.

F. Spin-orbit coupling

On first consideration, it might be expected that carbon, as
the second lightest of all semiconductors, should have
negligible spin-orbit coupling. Indeed, spin-orbit coupling
is comparatively weak in free carbon [3P0 − 3P1 splitting
∼2 meV (Kramida, Ralchenko, and Reader, 2013)], and
almost completely suppressed near the Dirac points in flat
graphene (Huertas-Hernando, Guinea, and Brataas, 2006; Min
et al., 2006). However, it was realized by Ando (2000) that the
suppression relies on the symmetry of graphene. In a nano-
tube, this symmetry is broken by curvature, leading to a
coupling up to a few meV between the spin and orbital
moment of electrons. This coupling, first detected by
Kuemmeth et al. (2008), is the key to electrically controlling
spins in nanotubes. This section explains in detail how it arises
and how it is measured.

1. Origin of spin-orbit interaction in nanotubes

In atomic carbon, coupling between the total spin S and
orbital angular momentum L adds a term to the Hamiltonian:

Hatomic
SO ¼ Δatomic

SO L · S; ð14Þ

where Δatomic
SO is the atomic spin-orbit strength (From the

atomic 3P0 − 3P1 splitting quoted above, Δatomic
SO ∼ 4 meV.)

The effect of this coupling is to mix single-particle states with
opposite spin from different orbitals, such as jpz↑i and jpx↓i.
Whether this leads to spin-orbit coupling in the band structure
depends on how it affects hybridization between orbitals in
different atoms, which in turn depends on the crystal structure.
The contrasting situations in flat and curved graphene

are illustrated in Fig. 15, which shows the atomic orbitals
for two adjacent atoms A and B. Any effect on the band
structure arises through the combination of intra-atomic spin-
orbit coupling and interatomic hopping. In flat graphene
[Fig. 15(a)], symmetry forbids direct hopping from a px state
on one atom to a pz state on another because px and pz
orbitals have opposite parity under z inversion. Therefore
atomic spin-orbit coupling between, e.g., jpA

z ↑i and jpA
x↓i

states does not introduce any non-spin-conserving hybridiza-
tion between jpA

z ↑i and jpB
z ↓i, and thus spin-orbit coupling in

the π band is second order and in practice negligible.
This situation is changed in the presence of curvature,

which breaks the z inversion symmetry on which the above
suppression relies [Fig. 15(b)]. To understand this, it is
convenient to work in the curved coordinate basis fr; c; tg
labeling radial, circumferential, and axial directions, so that
the π band is composed predominantly of hybridized pr
orbitals. Since the pA

c and pB
r orbitals are not orthogonal,

hopping between them is allowed, leading to an indirect
hybridization between jpA

r ↑i and jpB
r ↓i and consequently a

spin-orbit coupling in the π band.
As a result of this spin-orbit coupling, the effective hopping

matrix element between pA
r and pB

r now contains both a direct
and a spin-flip term. The interference between these terms
causes a spin precession about the y axis, and a corresponding
splitting of the two spin states within a given valley as though
by a magnetic field BSO directed along the nanotube. The
spin-orbit splitting is defined as the Zeeman splitting due to
this field ΔSO ¼ gsμBBSO.
Figures 16(a) and 16(b) show the consequences of spin-

orbit coupling for the band edges. Without spin-orbit coupling
[Fig. 16(a)], the zero-field levels are fourfold degenerate, but
are split in a magnetic field through a combination of Zeeman

FIG. 15 (color online). How curvature enhances spin-orbit
coupling. (a) Atomic spin-orbit coupling and interatomic hopping
in flat graphene. The pz and px orbitals of two adjacent atoms are
shown, with the sign of the wave function in each lobe marked.
Intra-atomic spin-orbit coupling mixes opposite-spin states
involving different p orbitals in the same atom, e.g., jpA

z ↑i
and jpA

x↓i. However, this does not mix spin states in the band
structure, because hopping between different p orbitals is
forbidden by symmetry. (For example, the hopping contributions
between pA

x and pB
z marked by a double arrow exactly cancel.)

Consequently, there is no coupling between states such as jpA
z ↑i

and jpB
z ↓i and therefore no bulk spin-orbit coupling. (b) In a

nanotube, curvature breaks the up-down symmetry, meaning that
direct hopping between different orbitals on adjacent atoms
becomes possible. The combination of atomic spin-orbit coupling
and interatomic hopping therefore mixes opposite-spin states on
adjacent atoms (e.g., jpA

r ↑i and jpB
r ↓i), leading to a spin-orbit

splitting of the π band.
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and orbital coupling. [This figure differs from Fig. 11(g) by
the inclusion of Zeeman spin splitting.] Spin-orbit coupling
splits each fourfold degenerate level at B ¼ 0 into a pair of
twofold degenerate levels [Fig. 16(b)]; each element of the
pair comprises a Kramers doublet, as required by time-reversal
symmetry. The sign of ΔSO determines whether parallel or
antiparallel alignment of spin and valley magnetic moments is
favored. For ΔSO > 0, the magnetic moments of spin and
valley of the lowest (highest) edge of the conduction (valence)
band add, whereas they subtract for ΔSO < 0 (see Fig. 18 for
examples). For ΔSO > 0, as drawn here, spin-orbit coupling
favors alignment of the spin and valley magnetic moments.
The lower doublet therefore comprises the states fK0↑; K↓g
for which both magnetic moments have the same sign, while
the upper doublet comprises the states fK0↓; K↑g.

2. The discovery of nanotube spin-orbit coupling

Figure 16(c) shows excited-state spectroscopy of the first
electron shell of an ultraclean nanotube as a function of the
magnetic field (Kuemmeth et al., 2008). The positions in gate
voltage of the first four conductance peaks provide a map of
the lowest four energy levels, as explained in Appendix A.2
[which also explains how to convert from gate voltage (left

axis) to energy (right axis)]. The dependence of the energy
levels on magnetic field arises from the combination of valley
and spin magnetic moments in each level, as in Fig. 11(g), but
taking account of the spin magnetic moment. From the line
slopes, valley and spin quantum numbers can be assigned to
each level [as in Figs. 16(a) and 16(b)].
The data are clearly consistent with Fig. 16(b) rather than

with Fig. 16(a). The key signature of spin-orbit coupling is
the separation of the four spin-valley levels at zero field into
two doublets. The magnitude of the splitting gives the spin-
orbit coupling strength ΔSO ¼ 0.37 meV, corresponding to
BSO ¼ 3.1 T. From the spin and valley assignments deduced
from the line slopes, it is clear that in this case spin-orbit
coupling favors states with parallel spin and valley magnetic
moments.

3. Different types of nanotube spin-orbit coupling

Detailed calculations of the spin-orbit coupling reveal that
there are actually two terms in the spin-orbit Hamiltonian,

FIG. 16 (color online). Observation of spin-orbit coupling in a
nanotube. (a), (b) Expected spectra without and with spin-orbit
coupling. (c) Conductance as a function of magnetic field and
gate voltage across the 0-1e transition at VSD ¼ 2 mV, allowing
high-bias spectroscopy of the lowest four one-electron states.
From line slopes (inset), the spin and orbital magnetic moments
can be deduced, allowing assignment of spin and valley quantum
numbers. The data are clearly consistent with (b) rather than (a).
Adapted from Kuemmeth et al., 2008.

FIG. 17 (color online). Two types of spin-orbit coupling.
(a), (b) Zeeman-like coupling (Izumida, Sato, and Saito, 2009)
leads to a spin-dependent vertical shift of the band structure,
equivalent to a Zeeman splitting (a) that is opposite in the two
valleys. (b) Energy levels as a function of B∥. Going beyond
Fig. 18, a residual band gap (induced, for example, by level
quantization) is assumed, leading to rounding of the band
minima. (c), (d) Orbital-like coupling (Ando, 2000) leads to a
horizontal shift of the band structure (c) equivalent to a spin-
dependent magnetic field coupling to μorb. (d) Corresponding
energy levels as a function of B∥. A signature to distinguish these
two couplings comes from the minima in (b) and (d); whereas
Zeeman-like coupling leads to minima in the first and second
energy levels, orbital-like coupling leads to two minima in the first
level. In (a) and (c), thick arrows indicate evolution of the state
energies in the Dirac cones as B∥ is increased. Spectra (b) and (d)
are calculated from Eq. (20) using EG ¼ 4 meV, Econf ¼ 1 meV,
μ0orb ¼ 0.9 meV=T, and Δ0

SO;Δ1
SO ¼ 0 or 2 meV.
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corresponding to Zeeman-like and orbital-like coupling
(Fig. 17). The Zeeman-like contribution, characterized by a
parameterΔ0

SO, can be visualized as a vertical shift of the Dirac
cones that is opposite for the two spin directions [Fig. 17(a)].
This is equivalent to an effective Zeeman shift of each spin
state given by

ΔESO;Zðτ; sÞ ¼ Δ0
SOτs; ð15Þ

where s and τ are defined at the end of Sec. III.E.1.
The orbital-like contribution to the Hamiltonian gives rise

to a horizontal shift of the Dirac cones, similar to the
curvature-induced shift discussed in Sec. III.C, but opposite
for the two spin directions [Fig. 17(c)]. This is equivalent to a
spin-dependent magnetic flux coupling to the orbital moment.
The horizontal shift of each cone is

ΔκSO;orb⊥ ðsÞ ¼ −s
Δ1

SO

ℏvF
; ð16Þ

where Δ1
SO parametrizes the strength of the coupling. In this

case, the hole energy levels are no longer simply the negative
of the electron energy levels at finite field, and the electron-
hole symmetry is broken (Kuemmeth et al., 2008).
Equations (15) and (16) can be combined with the graphene

dispersion relation (1) and the magnetic field response (11) to
give the Hamiltonian in terms of the spin and valley quantum
numbers, including spin-orbit and magnetic coupling:

H ¼
�
ℏvF

�
τΔκ⊥ þ s

Δ1
SO

ℏvF

�
þ μ0orbB∥

�
τσ1

þ ℏvFκ∥σ2 þ τsΔ0
SO þ gsμB

2
s · B; ð17Þ

where s is the spin operator (with eigenvalues s ¼ �1).
Writing this Hamiltonian required the use of the Pauli
operators fσ1; σ2g, which act in a two-dimensional sublattice
space describing the wave function amplitude on the two
sublattices of Fig. 4. These are described in more detail in
Appendix B. In Eq. (17), the horizontal and vertical shifts due
to the two spin-orbit terms are evident.
The existence of two forms of spin-orbit coupling goes

beyond the simple picture of Sec. III.F.1. The orbital-like
contribution can be understood as a Rashba-type coupling,
arising from the broken reflection symmetry about the
graphene plane. A curvature-induced displacement of the
orbitals gives rise to a radial electric field, which circulating
electrons experience as a magnetic field proportional to the
azimuthal component of their momentum. It is similar to the
Rashba coupling predicted by Kane and Mele (2005) for
graphene in an electric field and is equivalent to a horizontal
shift of the dispersion relation of the form in Eq. (16).
The Zeeman-like contribution also comes from a lack of

reflection symmetry through the nanotube surface. In contrast
to the orbital-like contribution, which is caused by the
homogeneous part of the radial electric field, the Zeeman-
like contribution comes from variation of the electric field
within the graphene unit cell. In a tight-binding picture, this
contribution can be thought of as curvature-induced spin-orbit
scattering between next-nearest neighbors (e.g., from one A

site to another), whereas the orbital-like contribution comes
from scattering between nearest neighbors (between an A and
a B site). The perturbation theory leading to these separate
effects is outlined in Appendix B.
The values of the coefficients Δ0

SO and Δ1
SO depend

on the structure of the nanotube. The theoretical values are
estimated as

Δ0
SO ≈ −

0.3 meV
D ðnmÞ cos 3θ ðZeeman-likeÞ; ð18Þ

Δ1
SO ≈ −

0.3 meV
D ðnmÞ ðorbital-likeÞ: ð19Þ

These values are quite sensitive to the method of compu-
tation. The first calculations from Ando (2000), later refined
by Yanik et al. (2004) and Huertas-Hernando, Guinea, and
Brataas (2006)] considered the modification of hopping
amplitudes by atomic spin-orbit coupling which gives rise
to the orbital-like contribution. Later work (Izumida, Sato, and
Saito, 2009) calculated the spin-orbit correction in more detail
using a nonorthogonal tight-binding calculation that incorpo-
rated the spin degree of freedom and used four orbital states
per atom. This work was the first to predict the Zeeman-like
contribution. The parameters Δ0

SO and Δ1
SO were estimated by

Izumida, Sato, and Saito (2009) in two ways: by nearest-
neighbor tight binding using density-functional theory poten-
tials, and by fitting to a full numerical model, from which
Eqs. (18) and (19) are taken. They have also been calculated
by an extended tight-binding Slater-Koster method (Chico,
López-Sancho, and Munoz, 2009) and using density-
functional theory combined with atomic spin-orbit coupling
and tight binding (Zhou, Liang, and Dong, 2009). A similar
calculation to Izumida, Sato, and Saito (2009) was performed
by Jeong and Lee (2009), corroborating these results. The
coefficients have also been estimated by Klinovaja et al.
(2011a), who included the effects of external electric fields.
These different methods differ quantitatively by a factor up to
∼3, but the cos 3θ dependence is dictated by symmetry.

FIG. 18 (color online). Dependence of band edges on B∥ for
different types of spin-orbit coupling for (a) Zeeman-like,
(b) orbital-like, and (c) mixed spin-orbit. At finite field, elec-
tron-hole symmetry is broken by orbital-like but not by Zeeman-
like coupling; at zero field, a combination of both is required.

Edward A. Laird et al.: Quantum transport in carbon nanotubes 719

Rev. Mod. Phys., Vol. 87, No. 3, July–September 2015



Combining Eqs. (2), (8), (15), and (16) shows that both spin
and valley are good quantum numbers in a magnetic field B∥
directed along the nanotube. The corresponding eigenenergies
(Jespersen, Grove-Rasmussen, Paaske et al., 2011) are, again
assuming a flat potential as in Eq. (12),

E�
τ;sðB∥Þ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
−τ

E0
G

2
þ μ0orbB∥ þ sΔ1

SO

�
2

þ E2
conf

s

þ sτΔ0
SO þ sgsμBB∥

2
; ð20Þ

where E0
G is the band gap at zero field without spin-orbit

coupling and the upper (lower) sign refers to the conduction
(valence) band. In the limit E0

G ≫ μ0orbjB∥j; jΔ1
SOj, this gives

for the combined zero-field splitting

ΔSO ¼ 2

�
Δ0

SO∓Δ1
SO

gorb
g0orb

�
: ð21Þ

The sign of ΔSO can be deduced from the spectrum as follows
(Fig. 18): If the two K0 states converge with increasing field
and eventually cross (as in Fig. 16), thenΔSO > 0; if it is theK

states that cross, then ΔSO < 0 (Bulaev, Trauzettel, and Loss,
2008; Kuemmeth et al., 2008).
From Eqs. (18), (19), and (21), four predictions can be

derived:
(1) Spin-orbit coupling depends on chirality and diameter;

hence different devices should display different
coupling.

(2) The different terms lead to different behavior when
fields comparable to BDirac are applied (see Fig. 11).
This can be seen by plotting the first four energy levels
as a function of B∥ across the Dirac point. For orbital
coupling (and assuming a residual band gap remains),
the lowest-energy level has a pair of minima
[Fig. 17(d)], corresponding to the Dirac points cross-
ing the quantization lines for spin up and spin down.
For Zeeman-like coupling, the two minima occur in
the first and second energy levels, as in Fig. 17(b).

(3) The orbital-like term contributes with opposite sign
to ΔSO for electrons and holes, thereby breaking
electron-hole symmetry (because the hole energy
levels are no longer a mirror image of the electron
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FIG. 19 (color online). Experimentally distinguishing orbital-
type and Zeeman-type spin-orbit coupling contributions. (a) Mea-
sured magnetic field dependence of the first 12 electron energy
levels, split across three shells, in a narrow-gap nanotube, derived
from low-bias spectroscopy. (The vertical offsets of each trace,
which this experimental technique leaves undetermined, have
been chosen so that adjacent levels align.) The levels correspond
more closely to Fig. 17(b) than Fig. 17(d) (and the colors have
been chosen accordingly), indicating predominantly Zeeman-like
coupling in this device. (b) ΔSO as a function of VG in a separate
device. The dashed lines are fits to theory taking account of the
different dependence of the two contributions on orbital moment.
Inset: Expected dependence of ΔSO on Econf , showing the
strengths of the two contributions. Δ0

SO and Δ1
SO parametrize

the Zeeman-like and orbital-like contributions, respectively.
Adapted from Jespersen, Grove-Rasmussen, Paaske et al.,
2011 and Steele et al., 2013.

TABLE II. Summary of spin-orbit parameters measured in the
literature, compared with the largest theoretical values predicted by
Eq. (21). Unless otherwise noted, D is measured from the orbital
magnetic moment according to Eq. (12). The spread of ΔSO values is
large, but in many cases the measured values considerably exceed the
largest possible predictions or have the wrong sign. Other measure-
ments (Pei et al., 2012) on the same devices are not included. Also
not included are earlier measurements subsequently reinterpreted as
indicating spin-orbit interaction with ΔSO ∼ ΔKK0 (Jarillo-Herrero
et al., 2005a; Makarovski et al., 2007).

Reference D Δmin
SO Δmax

SO ΔSO

(Theory) (Experiment)
(nm) (μeV) (μeV) (μeV)

Kuemmeth et al. (2008) 5.0 −120 120 370 (1e)
−240 0 −210 (1h)

Churchill,
Kuemmeth et al. (2009)

1.5 −400 400 170 (1e)

Jhang et al. (2010) 1.5a −800 400 �2500
b

Jespersen, Grove-Rasmussen,
Paaske et al. (2011)

2.9c −210 210 150 (Many e)

−410 0 75 (Many h)
Lai, Churchill, and

Marcus (2014)
1.3c −920 460 �220

(Many e=h)
Steele et al. (2013)
Device 1 7.2 −80 80 3400 (1e)
Device 2 6.8 −90 90 1500 (1e)
Device 3 4.1 −150 150 −1700 (1e)

3.7 0 −320 1300 (1h)
Cleuziou et al. (2013)
Device 1 −240

(h, few shells)
Device 2 −340 (1e, 3e)

Schmid et al. (2015) −350 (17e)
aAFM measurement.
bInferred from the magnetoresistance of an open CNT

quantum wire.
cDerived from many-carrier regime but ignoring suppression

of gorb by confinement [Eq. (12)]. These values ofD are therefore
likely to be underestimates.
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levels.) The Zeeman-like term by itself preserves
electron-hole symmetry [Fig. 18(b)].

(4) The orbital contribution leads to a smaller energy shift
for higher energy shells in the same way that an orbital
magnetic field does (Sec. III.E). Thus ΔSO depends on
density in the same way as gorb [Eq. (21)].

Evidence for prediction (1) comes from measurements on
several devices, presumably with a distribution of structures.
The spin-orbit parameters are indeed found to take different
values (Table II), although it has not yet been possible to
determine chiral indices in the same device for comparison.
The spread of ΔSO is in fact larger than expected from
Eqs. (18) and (19), as discussed in Sec. III.H.
Testing prediction (2) experimentally requires a device

where BDirac lies at an accessible field. Figure 19(a) shows
ground-state spectroscopy of the first four Coulomb peaks in a
device where this was achieved (Steele et al., 2013). The
pattern of energy levels clearly resembles Fig. 17(b) more than
Fig. 17(d), suggesting that the coupling in this device is
predominantly Zeeman like.
Prediction (3) was confirmed in the first measurements by

Kuemmeth et al. (2008), who found ΔSO to be different in
both magnitude and sign for the first electron and first hole.
Further confirmation, and a test of prediction (4), was obtained
in a different device where ΔSO could be measured across
several shells of electrons and holes (Jespersen, Grove-
Rasmussen, Paaske et al., 2011). As seen in Fig. 19(b),
ΔSO decreases with higher jEconf j, qualitatively consistent
with Eq. (21) assuming an orbital contribution. For the shells
measured in this device, ΔSO did not change sign between
electron and holes, providing further evidence of a Zeeman-
type contribution.

4. Uniform electric fields

As well as intrinsic spin-orbit coupling from the nanotube
structure, an extrinsic coupling is predicted due to electric
fields (Klinovaja et al., 2011a). This is a form of the Rashba
effect and leads to a shift of the Dirac cones in κ∥ by an
amount

ΔκSO;R∥ ¼ eEξ
ℏvF

τs⊥; ð22Þ

where E is the electric field (perpendicular to the nanotube)
and s⊥ is the spin component perpendicular to both the

nanotube and E. The parameter ξ, which governs the strength
of this effect, is uncertain because it depends on several
numerically calculated band-structure parameters, but is
estimated as ξ≃ 2 × 10−5 nm (Klinovaja et al., 2011a).
This Rashba-like coupling has not yet been observed, but
in principle allows for all-electrical spin manipulation (Bulaev,
Trauzettel, and Loss, 2008; Klinovaja et al., 2011b).

G. Intervalley scattering

In quantum dots (i.e., confined states), magnetospectro-
scopy as in Fig. 16 allows measurement of a phenomeno-
logical parameter ΔKK0 that governs the strength of avoided
level crossings between opposite valley states. This was
observed by Kuemmeth et al. (2008) in a suspended one-
electron quantum dot for which ΔKK0 ¼ 65 μeV was found
[Fig. 20(b)]. Although this splitting indicates scattering
between states in different valleys with the same spin, it does
not reveal a specific mechanism. Experiments performed on
top-contacted nanotubes showed ΔKK0 as small as 25 μeV
(Churchill, Kuemmeth et al., 2009), and Jespersen, Grove-
Rasmussen, Paaske et al. (2011) reported significant fluctua-
tions within a device ΔKK0 ¼ 75 − 700 μeV with no
obvious correlation to gate voltage or occupation number.
Grove-Rasmussen et al. (2012) investigated the suppression
of K − K0 mixing by application of a parallel magnetic field.
Although ΔKK0 has been used in other works as an empirical
fitting parameter (Pei et al., 2012; Lai, Churchill, and Marcus,
2014), the microscopic origin has not been investigated. In
particular, all experiments involved finite tunneling to the
source or drain electrode, and hence the intrinsic valley
coupling in closed quantum dots has yet to be measured.
Historically, we suspect that electrical disorder on the scale

of the interatomic spacing, leading to comparatively large
ΔKK0 , was the main reason for the decade-long delay between
the first nanotube quantum dots and the discovery of spin-
orbit coupling. As evident below, ΔKK0 values larger than ΔSO
obscure the signatures of spin-orbit coupling. It was only the
development of low-disorder fabrication techniques that
allowed such a delicate effect to be identified.

1. Putting it all together

Figure 21 shows calculated spectra in a single-electron shell
as a function of magnetic field in both perpendicular and
parallel directions for a range of values of ΔSO and ΔKK0 . This
calculation proceeds by first working out the eigenenergies
E�
τ;s for a magnetic field directed along the nanotube and in the

absence of disorder. Under the assumption that there is no
mixing of electron and hole shells, i.e., in the limit

E0
G ≫ jΔ1

SOj; μ0orbjB∥j; ð23Þ
Eq. (20) reduces to

E�
τ;s ≈ E�

0 þ sτ
ΔSO

2
þ
�
∓τgorb þ

1

2
sgs

�
μBB∥; ð24Þ

where E�
0 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE0

GÞ2=4þ E2
conf

q
is the energy without

magnetic field or spin-orbit coupling.
Introducing disorder or tilting the field relative to the nano-

tube axis by angle Θ (so that B∥ ¼ B cosΘ) mixes the eigen-
states. In the basis ðK↑; K0↓; K↓; K0↑Þ, the Hamiltonian is

FIG. 20 (color online). (a) Example of a pair of states mixed by
intervalley scattering, which couples states with equal spin in
opposite valleys. (b) Close-up of Fig. 16. Intervalley scattering is
manifest as an anticrossing between jK↑i and jK0↑i levels, with
strength ΔKK0 . Adapted from Kuemmeth et al., 2008.
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H ¼

0
BBB@

E�
1;1 0 0 ΔKK0=2

0 E�
−1;−1 ΔKK0=2 0

0 ΔKK0=2 E�
1;−1 0

ΔKK0=2 0 0 E�
−1;1

1
CCCA

þ gsμBB
2

0
BBB@

0 0 sinΘ 0

0 0 0 sinΘ
sinΘ 0 0 0

0 sinΘ 0 0

1
CCCA: ð25Þ

Figure 21 shows the numerically calculated eigenstates of this
Hamiltonian. With no spin orbit or disorder [Fig. 21(a)], the
four states are degenerate at zero field, being split through a
combination of orbital and Zeeman coupling. Pure spin-orbit
coupling [Fig. 21(b)] splits the zero-field quadruplet into two
doublets; note that in small perpendicular field, Zeeman
coupling is ineffective, because the spin states are locked
to the valley, and valleys are not coupled. Pure disorder
[Fig. 21(c)] suppresses orbital coupling at low field, but
preserves the Zeeman splitting in both field directions. In
cases where both terms are finite but one dominates, the
smaller parameter leads to anticrossings [Figs. 21(d)

and 21(e)). Finally, if the two terms are of comparable finite
magnitude, a complex spectrum emerges showing a mixture of
effects [Fig. 21(f)]. A small misalignment of the nanotube
relative to the field axes, illustrated in the insets, introduces an
anticrossing between the upper two levels. The magnitude of
the anticrossing is ΔΘ ¼ jΔSOj tanΘ.
This picture is confirmed in Fig. 22 for a device

with comparable ΔKK0 and ΔSO. The energy levels were
measured by cotunneling spectroscopy, which maps out
energy differences between ground and excited states [see
Jespersen, Grove-Rasmussen, Paaske et al. (2011) for a
discussion of this experimental technique]. The resonant
transitions appear as peaks or dips in d2I=dV2

SD whenever
eVSD is equal to the difference of energy levels. The measured
transitions [Fig. 22(a)] as a function of perpendicular and
parallel fields agree well with the predicted level differences
[Fig. 22(b)] from the spectrum [Fig. 22(c)], calculated in the
same way as in Fig. 21 assuming ΔKK0 ¼ 3ΔSO. In particular,
the curvature of energy levels in the parallel field due to ΔKK0

mixing and the anticrossing in the perpendicular field due to
ΔSO are seen. From similar data the parameters ΔSO and
ΔKK0 can be precisely measured over a wide range of electron
and hole occupation (Jespersen, Grove-Rasmussen, Paaske
et al., 2011).

FIG. 21 (color online). (a)–(f) Single-particle energy levels as a function of magnetic field in perpendicular and parallel directions for
various strengths of spin-orbit coupling and intervalley scattering, taking μorb ¼ 0.2 meV=T. (a) No spin-orbit or intervalley scattering,
(b) spin-orbit only, (c) intervalley scattering only, and (d)–(f) combined spin-orbit and intervalley scattering. In selected panels,
insets show the same spectra for field axes misaligned byΘ ¼ 10° from the nanotube; this introduces an anticrossing (marked by arrows)
between the two highest levels. Selected energy splittings mentioned in the text are marked. Double-thickness lines indicate
degenerate levels.
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We conclude this section by summarizing, with best
numerical estimates, the various nanotube band-structure
parameters discussed in the text (Table III). Experimentally,
one set of parameters usually suffices to characterize an entire
shell, implying that these parameters are not strongly affected
by the addition of a few extra electrons. This is as expected
from the constant-interaction model, which assumes all
interactions can be parametrized by a single constant capaci-
tance (Appendix A).

H. Open questions

Comparison of theoretical and experimental spin-orbit
coefficients shows serious discrepancies. As shown in
Table II different devices give unexpectedly large variation.
With the diameters inferred from μorb, Eqs. (18) and (19)

predict that jΔSOj should range up to ∼900 μeV. Instead,
values as large as 3.4 meV have been reported, with several
devices yielding results up to 16 times larger than expected
(Jhang et al., 2010; Steele et al., 2013). Other experiments
have found ΔSO within the expected range (Churchill,
Kuemmeth et al., 2009; Cleuziou et al., 2013; Lai,
Churchill, and Marcus, 2014). Furthermore, in some cases
the calculations even predict the wrong sign for both couplings
Δ0

SO and Δ1
SO (Kuemmeth et al., 2008; Jespersen, Grove-

Rasmussen, Paaske et al., 2011).
This is clearly an open question for both theory and

experiment. One explanation might be uncertainty in the
tight-binding overlap integrals, which enter Eqs. (18) and (19)
as empirical input parameters. Alternatively, electron inter-
actions (Sec. VII.B.2) may play a role (Rontani, 2014).
Another possibility is that some other symmetry breaking

TABLE III. Summary of nanotube quantum dot energy parameters. For the numerical values, representative estimates are given, based on
experiments for the last two lines and theory elsewhere. A value vF ¼ 8 × 105 ms−1 is assumed.

Quantity Expression Value Reference

Confinement band gap 4ℏvF=3D 0.70 eV=D (nm) Charlier, Blase, and
Roche (2007)

Curvature band gap ∼ ℏvFaCC
2D2 cos 3θ ∼50 meV=½D ðnmÞ�2 × cos 3θ Izumida, Sato, and

Saito (2009)
Strain band gap 2ℏvF

aCC
12ζ
1þ6ζ ð1þ λÞϵ cos 3θ 51 meV × ϵð%Þ × cos 3θ Huang et al. (2008)

Torsion band gap 2ℏvFγ sin 3θ 0.018 meV × γ ð°=μmÞ × sin 3θ Yang and Han (2000)
Effective mass meff ¼ EG=2v2F. 0.14me × EG (eV)

Orbital magnetic moment μ0orb ¼ DevF=4 0.20 meV=T ×D (nm) Ajiki and Ando (1993)]

g0orb ≡ μ0orb=μB 3.5 ×D (nm)

Zeeman magnetic moment 1
2
gsμB 58 μeV=T

Spin-orbit coupling τsðΔ0
SO þ Δ1

SOσ1Þ Δ0
SO ≈ −0.3 meV

DðnmÞ cos 3θ Izumida, Sato, and
Saito (2009)

(see Appendix B) Δ1
SO ≈ −0.3 meV

DðnmÞ Izumida, Sato, and
Saito (2009)

ΔSO ≡ 2ðΔ0
SO∓Δ1

SOgorb=g
0
orbÞ

Electric field spin splitting eEξ ∼20 μeV × E ðV nm−1Þ Klinovaja et al. (2011a)
Intervalley scattering ΔKK0 ΔKK0 ≥ 60 μeV (typical) Kuemmeth et al. (2008)
Longitudinal mode spacing

(high-energy limit)
ΔEconf ¼ hvF

2L 1.7 meV=L ðμmÞ Tans et al. (1997)
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FIG. 22 (color online). Energy levels for comparable spin-orbit coupling and intervalley scattering. (a) Measurements of the four states
of an electron shell by cotunneling spectroscopy (see text). The second derivative d2I=dV2

SD is plotted as a function of VSD and the
magnetic field. (b) Calculated transition energies to the first three excited states assuming ΔKK0 ¼ 3ΔSO, showing good agreement
with the peaks and dips in (a). (c) Energy levels corresponding to the transitions (marked with arrows) in (b). Adapted from Jespersen,
Grove-Rasmussen, Paaske et al., 2011.
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between inside and outside the nanotube is responsible for the
observed couplings, such as gate dielectric or adsorbates. For
example, hydrogen adsorbed onto graphene is known to
enhance the spin-orbit coupling (Balakrishnan et al., 2013).
In nanotube devices, adsorbed water affects the current-
voltage characteristics (Kim et al., 2003), although it is
uncertain whether this is directly by modifying the band
structure (Na et al., 2005) or through another mechanism such
as gathering ions from the environment (Sung et al., 2006).
A possibly related effect is that diameters inferred from

measured μorb are sometimes unexpectedly large. Whereas
chemical-vapor deposited nanotubes are expected to have
D≲ 3 nm, values of μorb corresponding to D ∼ 5 nm have
been measured (Jarillo-Herrero et al., 2004, 2005a; Minot
et al., 2004; Kuemmeth et al., 2008). However, other devices
yield values in the expected range (Minot et al., 2004;
Makarovski et al., 2007; Deshpande and Bockrath, 2008;
Churchill, Kuemmeth et al., 2009). Measurements on nano-
tubes with known chirality should help clarify these discrep-
ancies. Interestingly, the prediction of complete band closing
at BDirac (Fig. 11) is not borne out by experiments, which
typically find minimal band gaps EG ≈ 10 − 100 meV. This
hints at physics beyond the single-particle picture discussed
here, such as formation of a Mott gap (Deshpande et al., 2009)
or an excitonic insulator (Rontani, 2014).
A separate set of questions addresses how to take advantage

of the spin-orbit interaction. Ideas in this direction such as spin
filtering and detection (Braunecker, Burset, and Levy Yeyati,
2013; Mazza et al., 2013), generation of helical states
(Klinovaja et al., 2011b), and spin-orbit mediated spin control
(Bulaev, Trauzettel, and Loss, 2008; Flensberg and Marcus,
2010) have already emerged (the latter is the topic of
Sec. V.C.3).

IV. DOUBLE QUANTUM DOTS AND PAULI BLOCKADE

Transport through a single quantum dot involves an electron
from the Fermi sea in one lead that tunnels via a discrete
quantum state to an empty state in the other lead. For two dots in
series an additional tunneling event occurs which involves a
transition from one particular initial quantum state to a
particular final state. This dot-to-dot transition is sensitive to
selection rules, which determine the transition probability. The
selection rules for nanotubes are based on the spin and valley
quantum numbers. Whether they are obeyed in an experiment
depends on to what extent spin and valley are good quantum

numbers and how this is affected by spin-orbit coupling,
hyperfine interaction, or disorder. This sensitivity makes
double quantum dots a versatile platform for studying quantum
states and relaxation processes in nanotubes (Fig. 23).

A. Role of band gap and electron-hole symmetry in charge
stability diagrams

1. Theory

A double quantum dot formed by two dots in series defined
within the same nanotube has similarities and differences to
double dots defined in conventional semiconductors reviewed
byWiel et al. (2002) and Ihn (2010). Analogous to Fig. 53, the
device can be modeled by an electric circuit [Fig. 24(a)].
If each of the tunnel barriers is sufficiently opaque,
ΓL;M;R ≪ EC, then the charge within each dot is quantized
and the number of electrons NL;R can change only at specific

FIG. 23. Transport through double quantum dots involves a dot-
to-dot transition with a probability reflecting selection rules. The
strictness of spin and valley selection rules depends on inter-
actions that mix the spin or valley states, e.g., spin-orbit coupling,
hyperfine interactions, and disorder.
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FIG. 24 (color online). Charge stability with electrons and holes
(a) Circuit model of a series double quantum dot. Each of the
three tunnel barriers is characterized by a tunnel rate Γi and a
capacitance Ci. (b) Stability diagram for a weakly tunnel-coupled
double dot. Pairs of triple points define a honeycomb pattern. The
neutral Coulomb valley is largest, which can be understood by
considering the ð1h; 0Þ → ð1e; 0Þ transition: adding two electrons
to the left dot requires lowering its potential by an electrostatic
energy (charging energy) and a kinetic energy (band gap),
ΔVL ∝ 2EC þ EG. Axes of approximate spatial and electron-
hole symmetry are denoted by dashed and dotted lines, respec-
tively. The top right shaded region is most similar to conventional
double dots, in which transport and occupation involve only
electronlike carriers. The dashed circle marks a transition with
particularly strong spin-valley blockade (cf. Figs. 32 and 33).
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gate voltages. A graph of the equilibrium charge configuration
ðNL; NRÞ as a function of gate voltages is called a stability
diagram [Fig. 24(b)]. The size of each region is a measure of
the addition energy [Eq. (A6)], horizontally for adding an
electron in the right dot and vertically for an addition to the
left dot. In most semiconductor dots either the electron or hole
region is accessible. In narrow-gap nanotubes the gate
coupling can be sufficient to cross the band gap, evident as
larger honeycombs, and enter both regions. Because of the
approximate electron-hole symmetry, a similar honeycomb
pattern is expected in all regions of the stability diagram.
Interestingly, the interdot tunnel barrier in the ðp; nÞ and
ðn; pÞ regions is formed by a pn junction.

2. Experiment

The electron-hole stability diagram expected from Fig. 24 is
most easily observed in narrow-gap nanotubes. Full control
over the basic parameters of a double quantum dot, namely,
charge occupation (NL, NR) and tunnel couplings (ΓL, ΓM,
and ΓR), requires at least five gate electrodes, and so the full
charge stability diagram is at least five dimensional. A two-
dimensional cut is shown in Fig. 25. Here the conductance g
through the device is plotted as a function of control
parameters VR and VL. Figure 25 demonstrates that an actual
device can show a stability diagram that is strikingly different
from the diagram of Fig. 24, characteristic of the weak-
coupling regime. In Fig. 25, the middle gate voltage was
intentionally chosen such that electron-hole double dots and
single dots with electron or hole filling were demonstrated
within the same device. In this regime, cotunneling processes
give a significant contribution to transport, and hence boun-
daries between Coulomb valleys as well as triple points show
up as conductance features. Note both the spatial and electron-
hole symmetry displayed by the data (mirror symmetry about

the þ45° and −45° diagonal, respectively), attesting the
cleanliness and tunability of suspended devices as in Fig. 3(f).
If the tunnel rates are too small to measure conductance, the

charge stability diagram can be studied by charge sensing.
Such capacitive sensing techniques are useful for the readout
of pulsed-gate experiments on closed double dots and qubits
(Churchill, Kuemmeth et al., 2009), as well as for investigat-
ing the quantum capacitance associated with electron inter-
actions and correlations (Ilani et al., 2006).
Many other regimes are possible in double quantum

dots. For example, a sizable longitudinal level spacing in
each dot can result in an overall eight-electron shell structure
(Jørgensen et al., 2008), whereas strong interdot tunneling
lifts charge quantization within each dot, which can be
interpreted as the formation of delocalized molecular states
(Gräber et al., 2006). Devices with ambipolar charge stability
and a high degree of tunability have been used to study many
phenomenona, including Wigner crystallization (Pecker et al.,
2013), Klein tunneling (Steele, Gotz, and Kouwenhoven,
2009), and tunable electron-phonon coupling (Benyamini
et al., 2014).

FIG. 25 (color online). Conductance through a narrow-gap
nanotube suspended over five gate electrodes that allow inde-
pendent control over NL, NR, ΓL, ΓM, and ΓR. For the gate
configuration shown, the nanotube is neutral in the center of the
plot ðNL; NRÞ ¼ ð0; 0Þ, forms a double quantum dot in the
heteropolar regions (top left, bottom right), and forms a single
quantum dot in the homopolar regions (top right for electrons,
bottom left for holes). Insets visualize the charge distribution
along the nanotube for electrons and holes. Adapted from
Waissman et al., 2013, device shown in Fig. 3(f).

FIG. 26 (color online). (a)–(c) Dependence of bias triangles on
VSD (assumed negative). Dashed (dotted) lines indicate align-
ment of the electrochemical potential of the right (left) dot with
the Fermi level in the right (left) lead. Sequential tunneling
from source to drain is allowed only in the shaded regions,
which expand with increasing jVSDj. The discrete density of
states within each dot additionally restricts the current (not
shown). (d)–(f) Representative bias triangles for increasing
VSD. Excited-state lines in (e) and (f) identify ΓM as the
rate-limiting tunnel barrier. Adapted from Sapmaz, Meyer et al.,
2006, Churchill, 2012, and Jung et al., 2013.
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B. Spectroscopy of energy levels in bias triangles

Increasing the source-drain bias VSD across a double dot
allows nonlinear conductance to be probed, providing spectro-
scopic information on the energy levels. Applying a bias large
enough to overcome Coulomb blockade expands the triple
points to finite-bias triangles. These triangles serve as a
powerful experimental tool to reveal a variety of quantum
effects in nanotubes. Figures 26(a)–26(c) show their evolution
with increasing VSD. Pairs of bias triangles start to overlap
once VSD becomes larger than the mutual charging energy Em
of the double dot.5 The finite bias breaks the left-right
symmetry of a nominally symmetric device, yielding triangles
pointing along the diagonal with a direction depending on the
sign of VSD. In Figs. 26(a)–26(c) the sign of VSD has been
chosen so that electrons flow from the left contact (source) to
the right contact (drain).
Under appropriate conditions, excited states (in either dot)

are evident as discrete lines within a bias triangle. If interdot
tunneling is the rate-limiting process, these lines appear
parallel to the base of the triangles, but only if both tunnel
rates to the leads remain at the same time smaller than level
spacing and bias (ΓM ≪ ΓL;ΓR < Δls; jeVSDj). From the line
separation, measured from the base of the triangles, the
corresponding excitation energies can be deduced. Examples
from three different devices [Figs. 26(d)–26(f)] show the
expansion of the bias triangles with jVSDj and the appearance
of excited-state lines.6

C. Pauli blockade involving spin and valley

1. Motivation

The dot-to-dot transitions in conventional double dots are
strongly regulated by selection rules. These selection rules
arise from the Pauli exclusion principle and can provide
insight into the robustness of quantum numbers in the two dots
and during interdot tunneling. Since in nanotubes both spin
and valley can form approximate good quantum numbers even
in the presence of spin-orbit coupling, the manifestations of
Pauli blockade and Pauli rectification are more complex than
in conventional semiconductors. In this section, we briefly
review Pauli blockade in conventional semiconductors with
only twofold spin degeneracy to establish useful terminology.
Next, we extend the model by adding twofold valley degen-
eracy to illustrate the persistence of Pauli blockade beyond
spin blockade. In order to make a connection to actual
nanotube experiments, we then discuss the main effects of
spin-orbit coupling and electron-electron interactions on two-
electron states within a quantum dot. Finally, we present
experimental evidence for Pauli blockade in nanotubes and
discuss the roles of spin, valley, and hyperfine coupling.

2. State counting and Pauli blockade

Pauli blockade is well established in conventional quantum
dots containing a total of two electrons (Ono et al., 2002;

Hanson et al., 2007). It relies on the fact that the (0,2) ground
state is nondegenerate (it is a spin singlet) and is well
separated in energy from the lowest spin-triplet states, as
illustrated in Fig. 27(a). The spin-triplet states are antisym-
metric in their orbital degree of freedom with respect to
electron transposition and hence necessarily involve an
excited single-particle state. Therefore, the energy cost

FIG. 27 (color online). Pauli rectification in conventional double
dots and carbon nanotubes (theory). (a) In a conventional double
dot without spin-orbit coupling, the spin-triplet (0,2) state
involves an excited single-particle orbital of the right dot and
hence is higher than the spin-singlet (0,2) state by energy ΔS;T.
Near the (1,1)-(0,2) degeneracy, one of the spin-triplet states
Triplet (1,1) can by chance become occupied. For sufficiently
large bias (μS − μD ≫ kBT), it is long lived, resulting in a
suppression of current compared with under opposite bias (not
shown). (b) If each dot participates with one longitudinal single-
particle shell, then 16 different (1,1) states are possible in carbon
nanotubes, colored here according to their longitudinal symmetry
(S or AS). If the right dot participates with the lowest longitudinal
single-particle shell, then only six different (0,2) states are
possible. Other (0,2) states are higher in energy by ΔS;AS (see
Fig. 28). Similar to (a), sufficiently large bias μS − μD can
populate the long-lived (1,1) states [denoted ASð1; 1Þ], leading
to a suppression of current.

FIG. 28 (color online). Lowest quantum states of (0,2) for
(a) conventional semiconductors and (b) nanotubes in the
presence of interactions (INT) and spin-orbit coupling (SO).
For weak electron interactions (ΔAS;S0 ≪ Δls), the multiplet
splitting ΔS;T or ΔS;AS is approximately the single-particle level
spacing Δls, and Pauli blockade between Triplet (1,1) and
Singlet (0,2) or ASð1; 1Þ and Sð0; 2Þ can be expected. The
states S, AS, and S0 are part of the basis states of the matrix
shown in Fig. 29. Spin-orbit interaction splits the two-electron
multiplets into three. This is shown for S and AS and further
discussed in Fig. 30. Additional effects due to intervalley
exchange are discussed in Fig. 51.

5Details can be found in Wiel et al. (2002) or Ihn (2010).
6Figure 26 uses VDS instead of VSD for data with a different

source-drain or left-right convention from Fig. 24(a).
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ΔS;T to form the Triplet7 (0,2) states is approximately the
single-particle level spacing in the right dot modified by
electron interactions [cf. discussion of ΔAS;S0 in Fig. 28(a)].
This is in contrast to the Triplet (1,1) states, which for small
interdot tunneling are nearly degenerate with the Singlet (1,1).
If the (0,2) splitting ΔS;T is larger than temperature, then a
Triplet (1,1) state cannot easily transition into the (0,2) state.
If the applied source-drain bias is also larger than temperature,
then the Triplet (1,1) is long lived, and its occupation
suppresses current flow due to Coulomb blockade. This effect
is known as spin blockade and manifests itself in current
rectification (Pauli rectification).
In nanotubes, the two-electron spectrum is richer due to the

two valleys. Ignoring spin-orbit coupling for clarity, it is
schematically shown in Fig. 27(b). Anticipating the break-
down of spin-singlet and spin-triplet terminology due to spin-
orbit coupling, we have labeled the states according to the
symmetry of the longitudinal quantum numbers under elec-
tron exchange (S or AS as defined below). As seen, Pauli
blockade is nevertheless possible in nanotubes. Even in the
presence of spin-orbit coupling and small valley scattering, the
projections of spin s and valley τ in Eq. (25) can remain
(approximate) good quantum numbers, for example, in the
presence of a parallel magnetic field.8 As in Fig. 27(a),
interactions alter the spectrum, and the splitting ΔS;AS between
the symmetric ground states and antisymmetric excited states is
given by the level spacing modified by an interaction energy.
Figure 28 shows a simple state-counting argument leading

to the degeneracies indicated in Figs. 27(a) and 27(b) for the
(0,2) states. For conventional semiconductors we consider
two spin-degenerate levels separated by a level spacing Δls.
The nondegenerate ground state, Singlet (0,2), is formed by
two electrons occupying the lower level (lower panel). If each
level is occupied by only one electron, then four degenerate
states are possible (upper panel). Exchange interactions (INT)
result in an energy splitting ΔAS;S0 between the Singlet0

(0,2) and Triplet (0,2) states, thereby reducing ΔS;T slightly
(Kouwenhoven, Austing, and Tarucha, 2001).
The case of two fourfold degenerate nanotube shells is

shown in Fig. 28(b). The lower shell can be occupied by two
electrons in six ways, while 16 different states are possible
with one electron in each shell.9 Analogous to conventional
semiconductor quantum dots and to lowest order, electron
interactions (INT) split the 16 states into 10 longitudinal
antisymmetric (lower energy) and six longitudinal symmetric
states (higher energy). In the framework of first-order pertur-
bation theory, this can be understood by calculating the (long-
range) exchange integral associated with each two-electron
basis state and noticing that it differs between ASð0; 2Þ states
and S0ð0; 2Þ states (Appendix B.8). The complexity of the

nanotube energy spectrum compared to conventional semi-
conductors is further revealed by turning on spin-orbit
coupling within each multiplet (SO), as shown by the right-
most panel of Fig. 28(b) and discussed further.
State-counting arguments similar to those presented for

(0,2) lead to 6þ 10 ¼ 16 symmetric and antisymmetric states
in the (1,1) configuration. Formally, this is accomplished by
redefining the excited shell of the right dot as the lowest shell
in the left dot: ASð0; 2Þ → ASð1; 1Þ, S0ð0; 2Þ → Sð1; 1Þ. In the
limit of vanishing interdot tunneling, interactions in the (1,1)
regime can be neglected (ΔAS;S0 → 0).

3. Symmetric and antisymmetric multiplets in nanotubes: Theory

To gain more insight into the two-electron states in the
presence of spin-orbit interaction,10 we first consider the
quantum numbers relevant for the lowest longitudinal sym-
metric multiplet Sð0; 2Þ, i.e., two electrons occupying the
lowest shell in the right quantum dot. The valley, spin (and
longitudinal) quantum numbers are listed in Table IV with the
states organized according to their energies. The two-electron
energy within the constant-interaction model is found by
adding the single-particle energies and a charging energy EC:

E ¼ Eðν; τ; sÞ þ Eðν0; τ0; s0Þ þ EC; ð26Þ
where ν ¼ ν0 ¼ 1 specifies the lowest shell in the right dot and
τ; τ0 and s; s0 are the valley and spin quantum numbers of the
two electrons. The states are calculated by the method of
Slater determinants, but taking account of the fact that ν, τ,
and s are coupled.
Our conventions for labeling two-electron quantum

states are stated below the three table headers. For example,
consider the Sð0; 2Þ state denoted K↓; K0↑, which is spin and
valley unpolarized. Written out explicitly, the energy and the
state are11

ESð0;2Þ
K↓;K0↑ ¼ −ΔSO þ EC; ð27Þ

jψSð0;2Þ
K↓;K0↑i ¼

1ffiffiffi
2

p ðj1K↓i1j1K0↑i2 − j1K0↑i1j1K↓i2Þ; ð28Þ

where the subscripts on the right of Eq. (28) refer to electron 1
or 2, and the three labels in a single-particle state jντsi are the
longitudinal shell, valley, and spin quantum numbers asso-
ciated with that electron. The states in Table IV are classified
as longitudinally symmetric or antisymmetric according to
whether the wave function remains the same or changes sign
under the interchange ν ↔ ν0. Thus the example in Eq. (28) is
symmetric (ν ¼ ν0). We do not decompose jντsi further into a
product of longitudinal, valley, and spin wave functions, as
this is strictly correct only at B ¼ 0 and in the absence of spin-
orbit coupling.12 In general, the longitudinal wave function
depends on both τ and s (Weiss et al., 2010).7We capitalize Triplet and Singlet whenever we refer to specific

spin-singlet and spin-triplet states indicated in Fig. 27.
8Even in the absence of good quantum numbers Pauli rectification

behavior can still occur, due to Kramers degeneracy. This was
theoretically exemplified for double dots with strong spin-orbit
coupling by Danon and Nazarov (2009).

9The multiplet S00ð0; 2Þ representing two electrons in the upper
shell is not shown in Fig. 28(b).

10Related theoretical treatments are found in Weiss et al. (2010)
von Stecher et al. (2010), and Reynoso and Flensberg (2011, 2012).

11See Appendix B for a more thorough derivation of the basis
used.

12This decomposition can be illustrative [see, e.g., Pei et al. (2012)
and Pecker et al. (2013), but is unsuitable for accurate calculations.
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Next we consider two-electron states with one electron in
the lowest shell (ν ¼ 1) and one electron in the first excited
shell (ν0 ¼ 2). By a similar procedure, sixteen distinct Slater
determinants can be written. However, some of them are
coupled by electron interactions [“INT” in Fig. 28(b)],
resulting in the splitting ΔAS;S0 and modifying ΔS;AS (see
Sec. VII.B). The eigenstates of the electron interactions are the
ten antisymmetric states [ASð0; 2Þ] and six symmetric states
[S0ð0; 2Þ] formed by a linear combination of the Slater
determinants. These eigenstates are listed with their energies
in Table IV.
As for Sð0; 2Þ, the energies at B ¼ 0 are found by adding

the single-particle energies, charging energy, and interaction
energy. However, the expressions for the explicit states now

contain four terms. For the spin and valley polarized states
ðτs; τsÞ, these four terms reduce to a simple two-term Slater
determinant, but for the remaining six ASð0; 2Þ and six
S0ð0; 2Þ states this is not the case due to the interactions
ΔAS;S0 . This tells us that in general Eq. (26) is too simple
to accurately predict the spectrum. In particular, it does not
take magnetic fields into account, nor differences in spin-
orbit coupling and valley scattering between different shells,
not to mention short- or long-range interactions discussed
in Sec. VII. As an example, the energy and quantum state
of the spin-valley-unpolarized ASð0; 2Þ state denoted by
K↓; K0↑ are

EASð0;2Þ
K↓;K0↑ ¼ −ΔSO þ EC þ ΔS;AS; ð29Þ

jψASð0;2Þ
K↓;K0↑i ¼ 1

2
ðj1K↓i1j2K0↑i2 − j2K↓i1j1K0↑i2
þ j1K0↑i1j2K↓i2 − j2K0↑i1j1K↓i2Þ: ð30Þ

The longitudinal antisymmetry of this state is easily seen by
comparing terms in the same row of Eq. (30), while comparing
between rows shows the symmetry of the spin-valley part. The
spin-valley-unpolarized S0ð0; 2Þ state (also denoted K↓; K0↑)
involves the same single-particle states, but is obtained
by changing the longitudinal symmetry, i.e., by changing
the sign on the second and third terms in Eq. (30).
All relevant two-electron states in (1,1) can also be con-

structed from Table IV, simply by identifying Sð1; 1Þ with
S0ð0; 2Þ, and ASð1; 1Þ with ASð0; 2Þ. This works by assigning
ν ¼ 1ð2Þ to the lowest shell in the right (left) dot and setting
level spacing and interactions to zero. We call antisymmetric
(1,1) states “blocked” states, because they vanish formally
when setting ν ¼ ν0 ¼ 1. Physically, this means that these
states cannot be converted into (0,2) charge states without
involving a higher orbital in the right dot or changing their spin
or valley configuration. The (1,1) states generated in this
fashion [along with the (0,2) states] from Table IV are useful
basis states for a tunnel-coupled double dot at B ¼ 0, assuming
that the spin-orbit coupling in the two dots is identical.13

Having introduced all relevant (1,1) and (0,2) multiplets, a
useful overview of the states and their mutual coupling is
obtained by setting out the Hamiltonian in matrix form.
Figure 29(a) shows schematic matrices for a conventional
semiconductor double dot in the spin-singlet or spin-triplet
basis, and Fig. 29(b) shows a nanotube double quantum dot in
the basis of the longitudinal symmetric or antisymmetric
multiplets. These matrices can be divided into submatrices
coupling manifolds of particular symmetry. In conventional
semiconductors all submatrices are diagonal even when
interactions are included. Tunnel coupling between states
of the same singlet or triplet character is reflected (þ symbols)
in the submatrices between (1,1) and (0,2) states. In

TABLE IV. Two-electron states in the right quantum dot (normali-
zation factors omitted). The three sections list quantum numbers for
the three lowest two-electron multiplets (S, AS, and S0) at zero
magnetic field. Explicit expressions for the states corresponding to
particular quantum numbers in this notation are given below the table
headers. Each ket jντsii represents a single-particle longitudinal,
valley, and spin state of the ith electron. The multiplets are classified
as symmetric or antisymmetric according to their behavior under the
interchange ν ↔ ν0. The energy splittings ΔS;AS and ΔAS;S0 are
defined in Fig. 28.

Longitudinally symmetric states Sð0; 2Þ
τs; τ0s0 ≡ j1τsi1j1τ0s0i2 − j1τ0s0i1j1τsi2

Designation τs; τ0s0 Energy

K↓; K0↑ −ΔSO þ EC

K↓; K↑

EC
K↑; K0↑
K↓; K0↓
K0↑; K0↓

K↑; K0↓ ΔSO þ EC

Longitudinally antisymmetric states ASð0; 2Þ
τs; τ0s0 ≡ j1τsi1j2τ0s0i2 − j2τsi1j1τ0s0i2

þ j1τ0s0i1j2τsi2 − j2τ0s0i1j1τsi2
Designation τs; τ0s0 Energy

K↓; K↓
−ΔSO þ EC þ ΔS;ASK↓; K0↑

K0↑; K0↑

K↓; K↑

EC þ ΔS;AS
K↑; K0↑
K↓; K0↓
K0↑; K0↓

K↑; K↑
ΔSO þ EC þ ΔS;ASK↑; K0↓

K0↓; K0↓

Longitudinally symmetric states S0ð0; 2Þ
τs; τ0s0 ≡ j1τsi1j2τ0s0i2 þ j2τsi1j1τ0s0i2

− j1τ0s0i1j2τsi2 − j2τ0s0i1j1τsi2
Designation τs; τ0s0 Energy

K↓; K0↑ −ΔSO þ EC þ ΔS;AS þ ΔAS;S0

K↓; K↑

EC þ ΔS;AS þ ΔAS;S0
K↑; K0↑
K↓; K0↓
K0↑; K0↓

K↑; K0↓ ΔSO þ EC þ ΔS;AS þ ΔAS;S0

13In (1,1), the splitting between symmetric states Sð1; 1Þ and
antisymmetric states ASð1; 1Þ vanishes for small interdot tunneling
ΔAS;S0

ð1;1Þ → 0, and hence a different basis would be used, appro-
priate for the regime jΔleft

SO − Δright
SO j ≫ ΔAS;S0

ð1;1Þ. Similarly, different
orbital moments in left and right dots require a different basis at
sufficiently large magnetic field.
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nanotubes, the overall structure is similar, but the number of
states in each multiplet is increased and the diagonal elements
now include spin-orbit coupling. Again, states with identical
symmetry are coupled by diagonal tunnel matrices, and weak
interactions (denoted ΔAS;S0 ) appear as diagonal elements that
shift the energies of multiplets with respect to each other.
However, off-diagonal elements are allowed in the (0,2)
multiplets (○ symbols), although arguments can be made
that these are small (Appendix B). Interactions within the
Sð0; 2Þmultiplet (not included in Table IV) appear as diagonal
and off-diagonal matrix elements and are further discussed
in Sec. VII.

Plots of energy versus detuning for the low-energy states
(Singlet, Triplet, and S; AS) are shown in Figs. 29(c) and 29(d)
neglecting interactions (ΔAS;S0 → 0). The more complex
spectrum for the nanotube is clearly revealed. Valley mixing
(assumed zero in this figure) would lead to additional avoided
crossings (off-diagonal elements in the matrix) between states
with different valley quantum numbers. The nonavoided
crossings between the ASð1; 1Þ and Sð0; 2Þ states signify
long-lived (1,1) states that give rise to a Pauli blockade.
Tunneling from a blocked ASð1; 1Þ state to a Sð0; 2Þ state

requires a change of the longitudinal symmetry. For some
states this may simply involve dephasing between the left and

FIG. 29 (color online). (a) Matrix representing the two-electron Hamiltonian for a conventional semiconductor double dot, assuming a
single orbital on the left and two orbitals on the right. The basis states are spin-singlet and spin-triplet states as indicated, and symbols
indicate nonzero matrix elements. The submatrices in the (1,1) and (0,2) subspaces are all diagonal, and interdot tunneling (þ) leaves
singlet and triplet states uncoupled. To lowest order, interactions modify the diagonal elements between Triplet (0,2) and Singlet0 (0,2)
eigenstates (▪ and •), corresponding to the interaction energy ΔAS;S0 discussed in the text. For completeness, we include the higher-lying
Singlet00 (0,2). (b) The analogous matrix for a nanotube double quantum dot with spin-orbit interaction, assuming a single longitudinal
shell on the left and two shells on the right. The basis states are those of Table IV; hence longitudinally symmetric Sð1; 1Þ and
antisymmetric ASð0; 2Þ states are uncoupled. Most submatrices are still diagonal, but interactions are expected to result in significant
off-diagonal matrix elements (○) within the (0,2) sectors. For example, Sec. VII shows that valley backscattering leads to off-diagonal
elements between spin-valley-unpolarized states within the Sð0; 2Þ subspace. Without going into details of the interactions, all off-
diagonal elements marked○ are in principle allowed, as drawn here. In some cases, a detailed analysis shows that particular interaction
matrix elements vanish. (c) Energy vs detuning of the shaded states in (a), neglecting interactions. Zero detuning corresponds to the
degeneracy between the ground states of (0,2) and (1,1). Avoided crossings due to interdot tunneling occur for states with the same
symmetry. The degeneracy of the levels is indicated. Numerical parameters in this plot were chosen for illustration and differ in actual
devices. (d) The same plot for a nanotube, assuming identical spin-orbit coupling (ΔSO) in all shells. Interdot tunneling now leads to
anticrossings between states with the same longitudinal symmetry. The effect of interactions on Sð0; 2Þ, and ASð0; 2Þ is neglected in this
plot; see the discussion of Figs. 30, 31, and 51 for details.
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right single-particle states. For other states it also necessitates
a change in quantum numbers of at least one electron. In
particular, we distinguish lifting of Pauli blockade by

• dephasing only,
• valley flips,
• spin flips, and
• spin-and-valley flips.

Inspection of all ten AS states reveals that a single flip in one
of the dots can result in an unblocked double-dot configura-
tion. For some states it involves a spin flip, and for others a
valley flip (see examples in Appendix B.10). However,
these single flip processes do not conserve energy because
of spin-orbit coupling and therefore cannot lift the blockade.
Therefore, simultaneous spin and valley flips can become the
rate-limiting process (“spin-valley blockade”).
To investigate which type of blockade is observed in

experiments, careful identification of the involved states
and quantum numbers is required. This is best facilitated
by application of a magnetic field. In Fig. 30(a), the energies
of the two lowest single-particle shells are plotted against a
parallel magnetic field. The two-electron magnetic moments
are obtained by summing the one-electron magnetic moments
[Fig. 30(b)]. As an example, the filled circles in Fig. 30(a)
indicate the two single-particle energies summed to give the
energy of the Sð0; 2Þ state K↓; K↑ as in Fig. 30(b). Similarly,
the empty circles indicate the two-single-particle energies
combining to give the ASð0; 2Þ state denoted by K↓; K↓. The
field dependence of the remaining states is found in a similar
fashion. The states can be divided into pairs of valley-
polarized, spin-polarized, and spin-valley-unpolarized states.
Although all degeneracies of the two multiplets are lifted at
finite field, and spin and valley quantum numbers can in
principle be assigned based on the observed magnetic

moment,14 the spectroscopic intensity associated with each
state can be very different, depending how exactly the
spectrum is measured. The solid lines in Fig. 30(b) indicate
the available two-electron states within the Sð0; 2Þ and
ASð0; 2Þ multiplets, given that one electron occupies the
K↓ state. These two-electron states are relevant when meas-
uring the addition spectrum given that the first electron is in its
finite-field ground state K↓.

4. Symmetric and antisymmetric multiplets in nanotubes:
Experiment

The two-electron spectrum can be measured by high-bias
spectroscopy near the (0,1)-(0,2) transition. Assuming that the
device starts in the (0,1) ground state (K↓), then exactly three
states of the symmetric two-electron multiplet can be reached
and four states of the antisymmetric multiplet [Fig. 30(a)]). All
other two-electron states require a higher-order process, in
which the incoming electron also promotes the resident
electron to change its spin or valley quantum numbers. The
expected addition spectrum is shown in Fig. 31(b), and the
corresponding data in Fig. 31(c). Although the qualitative
agreement is quite good, the data show a surprisingly small
multiplet splitting ΔS;AS ¼ 0.85 meV, significantly less than
the measured single-particle level spacing of 7.8 meV. This is
due to strong electron-electron correlations (Sec. VII) that
differ drastically from the weak exchange interactions typical
in GaAs dots. This is of practical importance because a small
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FIG. 30 (color online). Magnetic field dependence of the 16
lowest (0,2) states [cf. Fig. 28(b)]. (a) Spectrum of the two lowest
single-particle shells of the right dot, vs parallel magnetic field
B∥. There are six ways to fill the lowest shell with two electrons,
each corresponding to a symmetric state in (b). The magnetic
moment of each combination is simply the sum of the involved
single-particle spin and orbital magnetic moments, shown here
for two examples (colored dots). (b) Magnetic field dependence
of the ten antisymmetric and six symmetric states. States that
involve the ground state of the lowest shell K↓ are plotted with
solid lines.

FIG. 31 (color online). Addition spectroscopy of two-electron
states in a nanotube single quantum dot, assuming that the one-
electron dot starts in its ground state K↓. (a) Two-electron
spectrum Eð2eÞ from Fig. 30(b) as a function of the parallel
magnetic field. States that do not involve K↓ are omitted.
(b) Expected 1e-2e addition spectrum from (a). (c) Measured
addition spectrum, with lines from (b) superimposed. The top-
most conductance feature (w) results from the finite-bias window
of 1.7 mVused during measurement (see Fig. 54). The separation
between solid and dashed lines is surprisingly small (0.85 meV)
compared to the single-particle level spacing (7.8 meV), indicat-
ing that ΔS;AS ≪ Δls due to electron-electron interactions. From
Pecker et al., 2013.

14This requires that interactions have lifted the degeneracy with
the S0ð0; 2Þ multiplet not included in Fig. 30(b).
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splitting ΔS;AS makes it difficult to observe Pauli blockade in
nanotubes.

5. Pauli blockade in nanotubes: Experiment

Generally interdot transitions that are forbidden by spin or
valley selection rules are of particular interest, because
measurements of leakage current or double-dot charge state
then illuminate spin dynamics and spin-valley relaxation
processes. We return to this topic in Sec. V. Although aspects
of Pauli blockade in nanotubes have been observed by
multiple groups, this phenomenon is experimentally less
generic than in GaAs. A detailed understanding of the data
is complicated by the large number of states involved (see
Fig. 29), and often a lack of knowledge of critical device
parameters such as differences in intervalley scattering or
spin-orbit coupling between left and right dots, and the
strength of electron-electron correlations. All these were
neglected in Fig. 29.
Even the simplest manifestation of Pauli blockade, namely,

Pauli rectification in a dc transport experiment, can be
obscured by other effects such as strong electron-electron
correlations. In Fig. 27 we outlined the double-dot energy
levels for the ð1; 1Þ → ð0; 2Þ transition and noted the impor-
tance of sufficiently large ΔS;AS. In the ðn; nÞ and ðp; pÞ
regimes, ΔS;AS is limited by the level spacing from the
longitudinal quantization Δls and likely significantly reduced
by correlation effects ΔAS;S0 . In order to keep ΔS;AS as large as
possible, the band gap of the nanotube can be used as an
effective large “level spacing,” making the observation of
Pauli blockade more robust against interaction effects. The
transition between ð3h; 1eÞ and ð2h; 0Þ [dashed circle in
Fig. 24(b)] is one example where the level spacing is enhanced
by the band-structure gap EG.
As shown in Fig. 32, rectification behavior for such a

transition is observed for detunings as high as the applied bias
voltage (�10 mV). This is larger than the spin-orbit splitting
and estimated level spacing in this device (Pei et al., 2012).
This observation of strong current suppression up to high bias
can be linked to the advantageous use of the band gap [see
Fig. 33(a)].

In the blocked bias triangle of Fig. 32(b), a small increase of
leakage current is observed at a detuning of approximately
2 × ΔSO ¼ 3.2 meV. This can be interpreted as a weak lifting
of Pauli blockade, but a quantitative understanding of this
leakage current, and identification of the corresponding
relaxation rates, has not been reached. We speculate that it
is necessary to include interaction effects beyond the constant-
interaction model to explain such features.

6. Spin-valley blockade

Information about the role of spin and valley quantum
numbers in the Pauli rectification of Fig. 32 can be obtained
by applying a parallel magnetic field. If this induces an
energy-level splitting larger than the interdot tunnel coupling
or the intervalley scattering, we expect orbital and Zeeman
couplings to restore valley and spin quantum numbers within
the two-electron states. In turn we can associate these with the
quantum numbers of single-particle levels.
In Fig. 33(c), the leakage current is measured as a function

of detuning [defined in Fig. 32(b)] and B∥. The base of the
bias triangle (detuning δ ∼ 0) corresponds to the ground-state-
to-ground-state transition between ð3h; 1eÞ and ð2h; 0Þ.
Energy conservation imposes spin and valley selection rules
for this transition, and therefore the leakage current provides
information about the relaxation of these selection rules.
Figure 33(a) shows the assignment of single-particle

quantum numbers to the highest (lowest) longitudinal shell
in the valence (conduction) band of the left (right) quantum
dot. These quantum numbers were inferred from the magnetic
field dependence of the stability diagram.15 Based on the
single-particle picture, the ground state of ð2h; 0Þ is expected
to make a transition fromK0↑; K↓ toK0↑; K0↓ as a function of
the parallel magnetic field.16 This implies that at low field the
ground-state-to-ground-state transition requires a spin flip of
the right electron, whereas at higher magnetic field it requires
a spin flip and a valley flip [compare the two arrows in
Fig. 33(b)]. Therefore, if valley is a good quantum number and
conserved during interdot tunneling, then one expects the
ground-state leakage current at high field to be smaller than at
low field. Indeed, this is seen in Fig. 33(c) by comparing
conductance features marked by line 1 and line 2. We mention
that the ð3h; 1eÞ ground state is not a blocked state in the sense
of Sec. IV.C.3: We can write it as a Slater determinant of one
K0↑ electron in the left (L) orbital and one K↑ electron in the
right (R) orbital, jLK0↑i1jRK↑i2 − jRK↑i1jLK0↑i2, which
does not vanish under the substitution R → L (i.e., ν ¼ ν0).
We therefore expect that relaxation to the (2,0) charge state is
allowed without involvement of higher orbitals or change of

FIG. 32 (color online). Pauli rectification (experiment). Current
in the bias triangles measured in (a) forward and (b) reverse
directions near the ð3h; 1eÞ-ð2h; 0Þ transition. The asymmetry
due to Pauli rectification is clearly observed and persists up to
�10 meV, i.e., detunings much larger than ΔSO (¼ 1.6 meV in
this device). The arrow defines the detuning axis used in
Fig. 33(c). Adapted from Pei et al., 2012.

15To avoid confusion, we show quantum numbers of electronic
states, even for the valence band. Other publications may consider
the absence of a K0↑ electron in the valence band as a K0↓ hole,
due to conservation of angular momentum. Quantum numbers in
Pei et al. (2012) and Steele et al. (2013) are not consistent with our
identification.

16Table IV should not be used to generate these states, because the
conduction band and the valence band differ in their assignment of K
and K0 (Fig. 18).
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spin or valley configuration. The absence of this charge
relaxation [line 3 in (c)] is not understood.
In summary, these data suggest that both spin and valley can

contribute to Pauli blockade, but a quantitative understanding
of the leakage current and relaxation rates has not been
reached. We speculate that several mechanisms contribute,
such as disorder, hyperfine coupling, spin-phonon coupling,
or bend and spin-orbit mediated relaxation.

D. Lifting of Pauli blockade by hyperfine coupling

In this section we investigate double dots where Pauli
blockade is partially lifted due to hyperfine interaction
between the electron spin and the 13C nuclear spins.

1. Theory

Hyperfine interaction with disordered nuclear spins, such as
13C isotopes, couples different spin states by flip-flop proc-
esses and, in addition, different valley states, because of
the atomically sharp length scale. It is therefore expected
that hyperfine coupling generically lifts Pauli blockade and
results in spin relaxation and spin dephasing processes. This

mechanism of spin relaxation was considered by Semenov,
Kim, and Iafrate (2007), whose numerical estimates predicted
a spin relaxation time of ∼1 s. Relevant for quantum dot
experiments in nanotubes, Yazyev (2008) and Fischer,
Trauzettel, and Loss (2009) inspected the role of dipolar
and Fermi contact interaction in sp-hybridized nanostruc-
tures, resulting in an interesting interplay between isotropic
and anisotropic hyperfine interactions.
In the tight-binding picture of Pályi and Burkard (2009), the

hyperfine interaction with 13C is modeled by a matrix element
that arises on the site of each nuclear spin (Fig. 34). Because it
acts locally at each atomic lattice site that contains a 13C, the
hyperfine interaction couples not only to the electron spin, but
also mixes the valley index (cf. discussion of valley scattering
in Fig. 6). The strengths of the valley-conserving and valley-
mixing parts of the effective hyperfine coupling were esti-
mated to have the same order of magnitude. Pauli blockade,
even in its strongest form protected by spin and valley
(Sec. IV.C.6), can therefore be lifted by the presence of
13C atoms. Pályi and Burkard (2009) considered the situation
where valley scattering is dominated by hyperfine coupling.
Ignoring spin-orbit coupling, they showed that the leakage
current in the Pauli blockade regime of a double quantum dot
is only strongly suppressed if both valley and spin splittings
are larger than the hyperfine coupling.
The other limit, where valley scattering is dominated by

disorder-induced valley scattering, was considered subse-
quenctly (Pályi and Burkard, 2010). Ignoring hyperfine
coupling, but assuming strong spin-orbit interaction (larger
than the splittings due to disorder and interdot tunneling), it
was predicted that the current in the Pauli blockade regime can
show a dip at low fields. Although similar to experimental data
discussed in Fig. 35(d), the amplitude of the predicted dip is
orders of magnitude smaller than observed. In the theory, the
low-field dip occurs because a difference in the valley
coupling splittings diminishes the matrix element for tunnel-
ing, while at high fields the valley mixing is suppressed.

FIG. 33 (color online). Different levels of Pauli blockade involving spin and valley quantum numbers for the charge transition
ð3h; 1eÞ → ð2h; 0Þ. (a) Single-particle electron levels vs the magnetic field, sketched for the left and right sides of a pn double dot.
(b) At low field [marked B1 in (a)] the ground-state-to-ground-state transition requires a spin flip. At higher field (marked B2) the
ground-state transition requires a spin flip and a valley flip. The detuning δ between left and right dots is marked. Because of the different
magnetic moments of the single-particle states, the value of δ at which each transition becomes resonant depends on magnetic field.
(c) Measurement of the leakage current vs B∥. Some of the features can be identified within the single-particle representation of (b) (lines
1 and 2). The slight reduction of the ground-state leakage current above 1 T indicates that a spin and valley flip (line 2) is slightly less
frequent than a spin-only flip (line 1), and is evidence for a spin-valley blockade. The absence of a simple charge relaxation ðRK↑Þ →
ðLK↑Þ (line 3) and the onset of leakage current at δ ∼ 2ΔSO (dashed line) are currently not understood. Adapted from Pei et al., 2012.

FIG. 34 (color online). (a) Two localized electronic wave
functions with different valley, longitudinal, and spin quantum
numbers. Hyperfine interaction (HF) with a 13C nuclear spin (fat
arrow) can scatter between them, because of the local nature of
the scattering vertex (b). This mechanism allows lifting of spin-
and/or valley-based Pauli blockade, if conditions of energy
conservation are fulfilled.
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2. Experiment

Figure 35 shows electron transport through weakly tunnel-
coupled, Pauli-blocked double dots. Figures 35(a) and 35(b)
show the asymmetry in forward and reverse bias for a
nanotube enriched with 13C, similar to the Pauli-blocked
12C device discussed in Fig. 32. Figure 35(c) compares the
magnetic field dependence of the reverse-bias leakage current
near the base of the triangle with the forward current in the
same tuning. Whereas the forward current is independent of
applied magnetic field (indicating that the rate-limiting tunnel
barrier ΓM is independent of the magnetic field), the reverse
leakage current is strongly suppressed only above a character-
istic magnetic field scale BC ∼ 6 mT [Fig. 35(c)].
Churchill, Bestwick et al. (2009) attributed the current peak

at B ¼ 0 to spin relaxation via electron-nuclear flip-flops,

similar to the situation in GaAs double dots and InAs
nanowires (Koppens et al., 2005; Nadj-Perge, Frolov, van
Tilburg et al., 2010). Because of the mismatch of electron and
nuclear magnetic moments, these energy-conserving flip-flop
processes are expected to be strongly suppressed once the
difference in Zeeman splitting exceeds the strength of the
hyperfine coupling Bnuc. Estimating the number of nuclei N,
electron g factor ge ∼ 2 ≫ gnuc, and assuming uniform cou-
pling to a Gaussian-distributed Overhauser field gμBBnuc ¼
A=

ffiffiffiffi
N

p
, an effective hyperfine coupling constant A∼ð1−2Þ×

10−4 eV can be estimated. This is 2 orders of magnitude
larger than predicted for nanotubes (Yazyev, 2008; Fischer,
Trauzettel, and Loss, 2009) or measured in fullerenes
(Pennington and Stenger, 1996).
This puzzling result stimulated theoretical work by Coish

and Qassemi (2011), who examined the role of thermally
activated spin-flip cotunneling in lifting spin blockade. Their
theory does not require large hyperfine coupling constants but
predicts a peak width (set by temperature, here approximately
100 mK) that is too large. Matching the width in Fig. 35(c)
would require a temperature below 10 mK for g ¼ 2. This
large value of the hyperfine interaction remains unexplained.
It is, however, consistent with a subsequent measurement of
the dephasing time in a 13C double-dot device (Churchill,
Bestwick et al., 2009), discussed in the next section.
A strikingly different field dependence of the leakage

current through a Pauli-blocked 12C double dot17 is shown
in Fig. 35(d): The current shows a minimum at B ¼ 0, whose
width depends on the interdot tunnel coupling. Such behavior
was seen in both 12C and 13C devices, particularly for stronger
interdot tunneling. This is at first sight consistent with the
predictions of Pályi and Burkard (2010), which give a peak or
a dip depending on specific device parameters. However, the
observed ratio of low and high field currents was 50, rather
than 1.5 as predicted.18

An alternative explanation of the large dip is spin relaxation
mediated by phonon and spin-orbit interaction. Because spin-
orbit coupling is even under time reversal, one-phonon
processes cannot mediate a coupling between time-conjugate
states (so-called Van Vleck cancellation, similar to electric
dipole transitions). This leads to suppressed spin relaxation
near B ¼ 0 as discussed in Sec. V.A (Van Vleck, 1940;
Khaetskii and Nazarov, 2001). However, this theory does not
lead to a good quantitative fit to the observed dips.
Figure 35(e) shows the leakage current of a different device,

namely, the one presented in Fig. 33(c), zoomed in to low
fields and small detuning. At first sight, the magnetic field
dependence resembles that of Fig. 35(c), with a peak width
that is approximately 10 times smaller. Noting that this device
had a natural abundance of 13C (∼1%), and that the effective
hyperfine coupling scales with the square root of the 13C
concentration, these data corroborate with the hyperfine
coupling measured by Churchill, Bestwick et al. (2009).
On second sight, a small splitting in the leakage current is

FIG. 35 (color online). (a) Current through a top-gated multi-
electron double dot formed in a narrow-gap 13C nanotube. Near
the base of the bias triangles (ground-state-to-ground-state
transition) no current is observed for reverse bias. (b) Current
at forward bias. (c) Magnetic field dependence of current in
reverse and forward bias measured near the base of a triangle
[dots in (a) and (b)]. The peak in reverse current at B∥ ¼ 0 is
attributed to hyperfine-mediated relaxation. (d) In a similar
device formed in a predominantly 12C nanotube, the opposite
magnetic field dependence is observed: The reverse current
shows a minimum at B∥ ¼ 0, presumably a consequence of
Van Vleck cancellation. (e) Leakage current in a different device
with natural abundance of 13C vs detuning and B∥. This peak,
measured in the spin-valley blockade regime of Fig. 33(c), is
narrower than in (c), possibly due to the smaller concentration of
13C. (f) Horizontal cut through (e) at location of the arrow,
showing a small dip at B∥ ¼ 0. (a)–(d) Adapted from Churchill,
Bestwick et al., 2009. (e), (f) From Pei et al., 2012.

17That is, with natural abundance 13C.
18The observed peak width in the regime of Fig. 35(c) cannot be

explained by this theory either, because it did not depend on interdot
tunneling, whereas the predicted peak width does.
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evident near B ¼ 0 [Fig. 35(f)], indicating that a full under-
standing of this system has not yet been reached. As discussed
by Pei et al. (2012), the splitting of the peak could arise from
combinations of exchange interaction, spin-orbit coupling,
and hyperfine coupling.
Looking beyond nanotubes, we note that dips and peaks

of the leakage current at B ¼ 0 have been observed and
discussed in InAs nanowires (Pfund et al., 2007; Nadj-Perge,
Frolov, van Tilburg et al., 2010) and silicon quantum dots
(Lai et al., 2011; Yamahata et al., 2012).

E. Open questions

• The reproducibility of quantum properties and the
variability of device characteristics among nanotubes
of identical chirality has yet to be established. It is
experimentally unverified to what extent right-handed
and left-handed species (i.e., inversion isomers of chiral
nanotubes) display the same properties. Similarly, the
robustness of the valley index (isospin) for armchairlike
and zigzaglike nanotubes has not been checked exper-
imentally.

• Although Pauli blockade has been observed in different
device geometries by several groups, it is not as well
established as in III-V double dots. Several nanotube
double dots showed no Pauli blockade,19 which can be
attributed to differences in dielectric surrounding and
interaction effects or disorder.

• Relaxation times associated with valley, spin, or com-
bined spin-valley relaxation in single and double quan-
tum dots have not yet been measured systematically,
including as a function of a magnetic field. Existing
experiments are discussed in Sec. V.

• The type of hyperfine interaction (Fermi contact term
versus dipolar) has not been studied experimentally. The
unexplained strength of hyperfine interaction inferred
from one study by Churchill, Bestwick et al. (2009)
remains to be confirmed. The lifting of Pauli blockade
near B ¼ 0may have alternative explanations, but we are
not aware of any that are consistent with experimental
conditions. The short dephasing time measured in 13C
devices (Churchill, Kuemmeth et al., 2009) is consistent
with a large hyperfine coupling, but may originate from
mechanisms unrelated to a hyperfine coupling. Laird,
Pei, and Kouwenhoven (2013) measured a compara-
tively short dephasing time in predominantly 12C
nanotubes.

• In Appendix B.10 we argue that Pauli blockade protected
by “spin and valley” strictly speaking does not exist.
However, a single spin flip or a valley flip does not
conserve energy due to spin-orbit coupling, possibly
making spin and valley flips the dominant relaxation
process. This underlines the importance of understand-
ing both spin and valley for any quantum device based
on carbon nanotubes.

V. SPIN-VALLEY COHERENCE

By studying the decay of spin and valley states, we can use
them as delicate probes of their environment. In this section,
we discuss different ways for these states to decay and show
how they can be used as quantum bits. We focus especially on
the interactions of electron spins with phonons and with
magnetic nuclei.
We discuss three distinct decay processes of quantum

states, known as relaxation, dephasing, and decoherence.
Relaxation (characterized by time T1) describes the equili-
bration of population between two quantum states. Dephasing
(characterized by time T�

2) describes the loss of phase
information in a quantum superposition. The main mechanism
by which this happens is through fluctuations of the quantum
energy splitting leading to accumulation of random phases.
Decoherence describes the loss of phase information when
slowly varying fluctuations are removed by dynamical decou-
pling. For the simplest decoupling scheme, Hahn echo
(Sec. V.C.4), this is characterized by a time Techo which is
generally longer than T�

2. For a fuller discussion of spin qubits
in single and double quantum dots, see Hanson et al. (2007)
and Ihn (2010), which extensively reference the many experi-
ments in other materials (principally GaAs).

A. Spin and valley coupling to phonons

1. Theory

Because the mechanical motion of nanotubes perturbs the
confining potential of quantum dots, it couples distinct
electron charge states. Through the spin-orbit interaction,
spin-valley states are also coupled to mechanical motion. This
is most clearly evident as a relaxation channel for spin-valley
states; excited states can decay by phonon emission, with a
rate that depends on the coupling strength and the phonon
density of states.
There are four types of phonon mode in nanotubes: radial

breathing, twist, longitudinal, and bending modes (Mariani
and von Oppen, 2009). These couple to spin-valley states
through two general coupling mechanisms. Deformation-
potential coupling perturbs the band structure and, combined
with spin-orbit coupling, induces spin flips (Bulaev,
Trauzettel, and Loss, 2008). Deflection coupling changes
the alignment of the nanotube to the magnetic field, thereby
coupling spin and valley through the anisotropy of the valley
magnetic moment (Borysenko, Semenov, and Kim, 2008;
Rudner and Rashba, 2010). Although deformation-potential
coupling is present for all four mode types, deflection
coupling arises only from bending modes. Nevertheless,
deflection coupling is calculated to be the dominant mecha-
nism for phonon-mediated spin relaxation at low energy
(Rudner and Rashba, 2010).
Considering these mechanisms, several statements can be

made about the expected T1 between different valley-spin
states as a function of magnetic field:

(1) Relaxation between time-conjugate states is sup-
pressed at low magnetic fields due to Van Vleck
cancellation (Khaetskii and Nazarov, 2001). This is
a consequence of time-reversal symmetry and applies
to relaxation within a Kramers doublet.

19See, for example, Mason, Biercuk, and Marcus (2004), Gräber
et al. (2006), Sapmaz, Meyer et al. (2006), Jørgensen et al. (2008),
and Jung et al. (2013).
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(2) Relaxation between non-time-conjugate states occurs
fastest when they are close together in energy. The
reason is that the dispersion relation for bending-
mode phonons ωðkÞ ∝ k2 leads to a density of states
dk=dω ∝ 1=

ffiffiffiffi
ω

p
which is maximal at ω → 0. This is in

contrast to higher-dimensional systems, where the
density of states is constant or increases with energy
(Bulaev, Trauzettel, and Loss, 2008; Rudner and
Rashba, 2010).

(3) The relaxation rate between two states is a nonmono-
tonic function of their energy splitting, owing to
interference between different contributions to the
electron-phonon coupling. Interference is predicted
between contributions from discrete and continuous
phonon modes, as well as due to the match or
mismatch of phonon wavelength with the wavelength
of a confined electron. These interference oscillations
should be evident in the dependence of T1 on a
magnetic field (Bulaev, Trauzettel, and Loss, 2008).

2. Experiment

Spin-valley relaxation has been measured in the device
of Figs. 3(a) and 3(b). This device, fabricated from a 13C

nanotube, incorporates a double quantum dot and a nearby
charge sensor, coupled via a floating antenna, whose con-
ductance is sensitive to the charge occupancy of the double
dot. Relaxation is studied by preparing an AS two-electron
state, Pauli blocked in (1,1), and using the charge sensor to
monitor the time to decay to an unblocked S state (Churchill,
Kuemmeth et al., 2009).
The two-electron state is manipulated using a cycle of gate

voltage pulses applied to gates L and R [Fig. 3(b)], to switch
the dot potentials between different configurations [Figs. 36(a)
and 36(b)]. The cycle (Johnson et al., 2005) begins with the
device configured at point E in gate space, where tunneling to
the leads prepares the (0,1) configuration. The device is then
pulsed to point R in (1,1), where an electron is reloaded into
the left dot. Because ΔS;AS is small in the (1,1) configuration
[left side of Fig. 29(d)]), the two-electron state after reloading
can be either S or AS. For readout, the device is quickly pulsed
to point M, corresponding to the right side of Fig. 29(d),
where the ground-state configuration is Sð0; 2Þ. Here a
symmetry-to-charge conversion occurs; if the prepared two-
electron state was S, the left electron will tunnel to the right
dot, leading to (0,2) occupancy. However, for AS states, Pauli
blockade enforces occupancy (1,1). This persists for a time
∼T1, until spin-valley relaxation

20 causes the AS state to decay
to an S state, whereupon the device relaxes to (0,2) occupancy.
The time-average charge-sensor conductance gC is moni-

tored with this pulse cycle applied continually. The duration
τM of the third step is chosen to be much longer than that of
the others, so that gC predominantly reflects the average
occupancy atM. For τM ≪ T1, relaxation of the blocked states
is negligible, resulting in a large admixture of (1,1) occupancy
and corresponding reduced gC in the “pulse triangle” region of
the stability diagram [Fig. 36(b)]. For τM > T1, this admixture
is reduced. By fitting the pulse triangle visibility [defined as
the difference between measured gC and the value expected for
(0,2), normalized to unity at τM → 0] as a function of τM, the
time T1 can be deduced [Fig. 36(c)].
As a function of the magnetic field directed approximately

along the nanotube, T1 is observed to decrease initially,
consistent with prediction (1) above [Fig. 36(c) inset].
However, T1 shows a minimum at B ≈ 1.4 T [Fig. 36(d)],
where the two K0 states with opposite spin approach each
other [as in Fig. 21(d)]. This is consistent with prediction (2)
above, assuming that during step R an electron is sometimes
loaded into a K0 state. Neglecting substrate interaction, the
relaxation rate is expected to be proportional to the phonon
density of states in the nanotube, giving T1 ∝ 1=

ffiffiffiffiffiffiffi
ΔE

p
, where

ΔE is the energy difference between the two K0 states; taking
the proportionality constant as a fit parameter and using the
measured field misalignment and ΔSO for this device to
calculate ΔE, this prediction is found to be in good agreement
with the data (Churchill, Kuemmeth et al., 2009).
The interference oscillations of prediction (3) have not

yet been reported. One reason may be that they are sensitive to
the confinement potential. Whereas hard-wall confinement

FIG. 36 (color online). Measurement of spin-valley T1. (a) Pulse
cycle for measuring relaxation from AS to S states (see text).
(b) Stability diagram close to the (1,1)-(0,2) transition with
pulse cycle E → R → M → E and τM ¼ 0.5 μs. Color repre-
sents time-average charge-sensor conductance. Inside the “pulse
triangle” (marked), Pauli blockade leads to an occupancy of
(1,1) for metastable AS states, yielding a reduced sensor
conductance. (c) Decay of pulse triangle visibility (points) as
a function of τM, measured for three magnetic field values.
Lines are fits from which T1 values (inset) are extracted.
(d) Points: T1 as a function of B close to the upper spin-orbit
anticrossing (K0↑ − K0↓). Line: fit of the form T1 ∝

ffiffiffiffiffiffiffi
ΔE

p
.

Adapted from Churchill, Kuemmeth et al., 2009.

20We define spin-valley relaxation as relaxation between an AS
and an S state. As discussed in Sec. IV.C.3, this can involve a flip of
spin, valley, both, or neither (i.e., dephasing only).
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should give rise to sharp interference maxima of T1 due to
strongly varying overlap of electron and phonon wave
functions with energy, a soft confinement typical of few-
electron devices is expected to lead to less pronounced
maxima (Bulaev, Trauzettel, and Loss, 2008).

B. Hyperfine mixing of spin states

1. Theory

As well as electron-phonon interaction, a major influence
on spin evolution in semiconductors is hyperfine interaction
with uncontrolled lattice nuclear spins (Hanson et al., 2007).
An electron in a quantum dot interacts with all of the nuclei
with which its wave function overlaps; this is equivalent to an
effective Zeeman field Bnuc that fluctuates slowly about zero
due to nuclear spin diffusion. Approximating an equal overlap
with all nuclei in the quantum dot, each root-mean-square
component of this field is Bnuc ¼

ffiffiffiffiffiffiffiffi
N13

p
A=NΣgsμB, where A

is the hyperfine constant and NΣ is the number of nuclei in the
dot of which N13 are 13C. As discussed in Sec. IV, the local
nature of the hyperfine interaction can cause spin relaxation.
Here we explain that this uncontrolled field also constitutes a
major source of spin dephasing (Taylor et al., 2007), and its
strength can be deduced by measuring T�

2.

2. Experiment

Electron spin dephasing was studied in the same device
of Fig. 3(b). This was synthesized using 99% 13C, making

hyperfine effects particularly strong. Dephasing was detected
through the mixing of S and AS states with the two electrons in
separate quantum dots (Churchill, Kuemmeth et al., 2009).
Because the random hyperfine field is in general different
between the dots, the separated spins precess at different rates,
mixing S and AS states.
The pulse scheme for this experiment [Figs. 37(a)–37(c)]

first configures the device in (0,2) at point P, where large
ΔS;AS causes tunneling to the leads to prepare an S state. By
tilting the potential into (1,1) [point S, corresponding to the
left of Fig. 29(d)], the electrons are separated for a time τS,
during which precession in the hyperfine effective field can
mix S and AS states. Finally, the gate voltages are pulsed back
toward a (0,2) configuration [point M, corresponding to the
right of Fig. 29(d)] for measurement. As in Fig. 36, S states
relax to (0,2) occupancy, whereas AS states remain blocked in
(1,1). From the sensor conductance gC in the measurement
configuration, averaged over many cycles, the probability of
return to (0,2), and hence the degree of S-AS mixing during
the separation step can be deduced (Petta et al., 2005).
As a function of τS, the return probability PðτSÞ decays with

characteristic time T�
2 ¼ 3.2 ns [Fig. 37(d)], saturating at a

value Pð∞Þ ≈ 0.17. Attributing the observed T�
2 solely to the

difference of the hyperfine effective field between dots, the
effective hyperfine field is given by Bnuc¼ℏ=gsμBT�

2¼1.8mT.
This is within a factor 2 of the value deduced from Fig. 35
(Bnuc ¼ 3.5 mT). However, this apparent agreement again
suggests a hyperfine constant A that is 2 orders of magnitude
larger than expected theoretically (Yazyev, 2008; Fischer,
Trauzettel, and Loss, 2009).
The long-τS saturation value of the return probability Pð∞Þ

should reflect the level diagram of Fig. 29(d). Assuming a
large longitudinal level spacing, so that only one shell in each
dot needs to be considered, the (1,1) configuration allows
16 states, but the lowest manifold in the (0,2) configuration
only six. If mixing is fully incoherent, the saturation prob-
ability will then be Pð∞Þ ¼ 6=16 ¼ 0.375. If mixing is
coherent, Pð∞Þ will generally be higher.21 The case of a
clean nanotube (ΔKK0 ¼ 0 but including spin-orbit coupling)
was analyzed by Reynoso and Flensberg (2011), who calcu-
lated the value for a range of specific cases. Depending on
whether the system is prepared in its ground state, whether
passage through the anticrossings in Fig. 29(d) is adiabatic,
and depending on the strength of the magnetic field, Pð∞Þ can
be enhanced as high as unity. Including valley mixing makes
the situation even more complicated because ΔKK0 may differ
between the dots. This gives rise to new avoided crossings in
the level scheme of Fig. 29(d). The speed at which these
crossings are passed, set by the detuning sweep rate, is of
critical importance (Ribeiro et al., 2013; Ribeiro, Petta, and
Burkard, 2013). In the simplest case, where the ground state is
always prepared and the first crossing is adiabatic, a value
Pð∞Þ ¼ 1=3 is predicted, with corrections due to nonadia-
baticity always positive (Reynoso and Flensberg, 2012). The

FIG. 37 (color online). Measurement of T�
2 in a 13C double

quantum dot. (a) Pulse cycle to measure mixing between S and
AS states (see text). (b) Stability diagram close to the (1,1)-(0,2)
transition, measured via time-averaged charge-sensor conduct-
ance. Gate settings at the three steps of the pulse cycle are
indicated P, S, and M. (The step at P0, not discussed here, was
inserted to reduce pulse overshoot.) The triangle marks the region
where AS states are Pauli blocked. (c) Stability diagram with
pulses applied and τS ¼ 50 ns. The triangle of reduced conduct-
ance indicates mixing of S and AS states leading to higher
probability of (1,1) during the measurement part of the cycle.
(d) Points: Return probability as a function of τS, deduced
from gC. Line: Gaussian fit giving T�

2 ¼ 3.2 ns. Adapted from
Churchill, Kuemmeth et al., 2009.

21For example, in conventional semiconductors incoherent mixing
gives Pð∞Þ ¼ 1=4 but coherent mixing in a random Overhauser field
gives Pð∞Þ ¼ 1=3 or 1=2 depending on the magnetic field (Taylor
et al., 2007).
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measured Pð∞Þ ¼ 0.17 is therefore lower than all theoretical
predictions.

C. Qubits

1. Qubit states and the Bloch sphere

A quantum bit, or qubit, is a two-level system that can be
controlled in a quantum coherent way (Nielsen and Chuang,
2000). An intuitive way to represent the state of a qubit is as a
point on the surface of the Bloch sphere [Fig. 38(a)]. With two
orthogonal states of the qubit (for example, two spin states)
assigned as the basis states j0i and j1i, any superposition can
be written

jψi ¼ cos
ϑ

2
j0i þ eiφ sin

ϑ

2
j1i;

where the parameters ϑ and φ are polar coordinates represent-
ing that state. Any unitary single-qubit operation then corre-
sponds to a rotation about the origin.
How can such rotations be achieved? One technique is by

resonant driving at a frequency corresponding to the energy
splitting between qubit states (Hanson et al., 2007). In the case
of a spin qubit with gyromagnetic ratio g in static magnetic
field B0, a time-varying field B1 cosð2πftþ ϕÞ at driving
frequency f ¼ gμBB0=h and perpendicular to B0 induces
transitions with Rabi frequency fR ¼ gμBjB1j=2h. In a refer-
ence frame rotating with frequency f about the Z axis, the
qubit state then precesses at a rate fR about an axis in the XY
plane set by the phase ϕ of the driving field. One can achieve

arbitrary rotations by concatenating bursts with appropriate
phases.

2. Valley, spin, and Kramers qubits

This section identifies various two-level subspaces in the
spectrum of a generic, spin-orbit coupled carbon nanotube that
can serve as qubits and discusses how they differ in terms of
their quantum numbers, ease of operation, and immunity to
electrical or magnetic noise. The reason for focusing on these
particular subspaces is that the splitting can be made small
enough to allow resonant qubit manipulation using microwave
fields with frequencies in the range f ≲ 40 GHz that can
readily be generated experimentally.
At low field, either Kramers doublet can be used as a qubit

subspace, with the two basis states denoted f⇑;⇓g (for one
carrier in the shell) and f⇑�;⇓�g (for two carriers in the shell)
to emphasize the isomorphism with a spin qubit. In a parallel
magnetic field and neglecting disorder, these are the eigen-
states fK0↑; K↓g and fK0↓; K↑g, but for general field
direction or with disorder, they become entangled states of
spin and valley. Experimental manipulation of these qubits,
known as Kramers qubits or valley-spin qubits, is described in
Secs. V.C.3 and V.C.4 (Rohling and Burkard, 2012). Kramers
degeneracy guarantees that by reducing the magnetic field the
qubit splitting can be made as small as desired.
Two other qubits can be defined that have not yet been

realized experimentally. A pure spin qubit can be defined
between the two states that cross at B∥ ¼ BSO, i.e., K0↑ and
K0↓ in Fig. 38. For a magnetic field aligned with the nanotube,
the energy splitting vanishes at the crossing. However,
even quite small misalignment Θ leads to an appreciable
splitting ΔΘ. For example, with ΔSO ¼ 1 meV and Θ ¼ 1°,
the minimum driving frequency is f ¼ ΔΘ=h ≈ 4.2 GHz.
Alternatively a pure valley qubit can be defined at the
anticrossing between states of the same spin (K0↑ and K↑
in Fig. 38). However, the minimum driving frequency, set
by ΔKK0, can again be substantial, with a typical experimental
value ΔKK0 ¼ 60 μeV leading to minimum f ¼ ΔKK0=
h ∼ 15 GHz. More importantly, it may be difficult to control
ΔKK0 experimentally.
These various qubits can be manipulated using time-

varying electric and magnetic fields. Techniques for driving
single-qubit operations have been developed extensively in
GaAs quantum dots and many should be applicable to
nanotubes (Hanson et al., 2007). Several schemes have been
proposed. The conceptually simplest is to use an alternating
magnetic field as in Sec. V.C.1. This should work for the spin
and Kramers qubits, but not for the valley qubit, because it has
no magnetic moment in the perpendicular direction. Since
time-varying magnetic fields are hard to generate in nano-
structures, schemes have been suggested based on time-
varying electric fields. The common principle is that moving
the electron back and forth leads to an effective magnetic field
mediated by spin-orbit coupling. For example, the Rashba-
like coupling discussed in Sec. III.F.4 is equivalent to a
momentum-dependent perpendicular magnetic field and can
be used to manipulate both spin and Kramers qubits
(Klinovaja et al., 2011a). The corresponding Rabi frequency
is however rather low (fR ∼ 5 MHz), making the driving

FIG. 38 (color online). (a) Bloch sphere representation of a
generic qubit. The qubit state jψi is represented by a point with
polar coordinates ðϑ;φÞ, so that north and south poles correspond
to the basis states j0i and j1i. In the rotating frame, with Cartesian
coordinates ðX; Y; ZÞ, the Rabi rotations driven by microwave
bursts with phase ϕ ¼ 0; π=2 are marked. (b) Four possible qubits
in the spin-orbit coupled energy levels. (c) Qubit device, driven
by an oscillating gate voltage. The applied and effective magnetic
fields are indicated. Adapted from Flensberg and Marcus, 2010.
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inefficient in the presence of decoherence. A stronger cou-
pling can be achieved in the presence of a bend, which gives a
position-dependent effective magnetic field (Flensberg and
Marcus, 2010) and mediates the only coherent control so far
clearly achieved in nanotubes (see next section). Similarly,
coupling to a true inhomogeneous magnetic field has been
suggested (Széchenyi and Pályi, 2014). Another proposal
relies on inhomogeneity of the disorder parameter ΔKK0.
Although random, if this inhomogeneity is static it should
allow driving of both Kramers and valley qubits (Pályi and
Burkard, 2011; Széchenyi and Pályi, 2014). These possibil-
ities are summarized in Table V.
As well as the driving mechanism, important considerations

are dephasing and decoherence, which limit the coherence
time and reduce the fidelity of gate operations. In general, a
qubit suffers decoherence through every channel by which it
can be driven. As discussed in Secs. V.A and V.B, the
dominant decoherence sources in nanotubes are expected to
be random time-varying electric fields (e.g., from gate noise
and nearby charge switchers) and hyperfine coupling to 13C
spins, which acts as an effective time-varying magnetic field
on individual lattice sites. The coherence properties depend on
the strength and power spectrum of the various noise sources.

3. Electrically driven spin resonance in nanotubes

We now focus on the Kramers qubit, which has been
experimentally demonstrated. Using bends to mediate qubit
control was proposed by Flensberg and Marcus (2010) and
realized by Laird, Pei, and Kouwenhoven (2013). It relies on
the anisotropic splitting of the Kramers doublets with a
magnetic field [Fig. 21(d)]. Each qubit can be regarded as
an effective spin 1=2, with spin vector s� whose components,
just like those of the real spin, have eigenvalues defined as�1.
Unlike the real spin, the Zeeman splitting of this effective spin
depends on the field angle; the parallel and perpendicular
components of the g tensor are

g∥ ¼ gs∓ gorbΔSOffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

KK0 þ Δ2
SO

q ; ð31Þ

g⊥ ¼ gsΔKK0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

KK0 þ Δ2
SO

q ; ð32Þ

where upper and lower signs correspond to starred and
unstarred doublets, respectively. The effective Zeeman
Hamiltonian is then

Heff ¼ 1
2
μBs� · Beff ; ð33Þ

where Beff is an effective magnetic field, defined as the tensor
productBeff ≡ g ⊗ B, about which s� precesses. A geometric
interpretation of Eq. (33) is shown in Fig. 39(a). When B is
applied perpendicular to the nanotube (right side of the
figure), Beff is parallel to B. However, when B is applied
at an angle because the nanotube is bent (left side of the
figure), the parallel and perpendicular components couple
differently, leading to a tilted Beff .
By applying a microwave electric field, a quantum dot can

be driven back and forth across the bend, experiencing an
effective magnetic field that contains both a static component
and a perpendicular oscillating component.22 Thus the electric
field drives transitions between the two qubit states. Because
these two states do not have the same spin, this is a form of
electrically driven spin resonance (EDSR).
Detection of EDSR is by measuring the current through a

double quantum dot configured in a Pauli-blocked configu-
ration [Fig. 39(c)]. With microwaves applied, a peak in current
is observed at the resonance condition f ¼ gμBB=h, indicat-
ing spin mixing by EDSR. The measured value g ≈ 2

presumably arises because this device was highly disordered
(ΔKK0 ≫ ΔSO) and/or in the many-carrier limit, consistent

TABLE V. Comparison of qubit types from Fig. 38. The expected
resonant driving mechanisms are marked by a ✓; the mechanisms
considered are an oscillating magnetic field and an oscillating electric
field Eac combined with extrinsic Rashba spin-orbit coupling, a bend,
inhomogeneous static disorder, and inhomogeneous static magnetic
field. Only the bend-mediated Kramers qubit (E) has been clearly
demonstrated experimentally (Laird, Pei, and Kouwenhoven, 2013).

Eac combined with
Qubit Bac Rashba Bend Disorder Inhomogeneous B

Kramers ✓ ✓ ✓ðEÞ ✓ ✓

Spin ✓ ✓ ✓ ✓

Valley ✓ ✓
a

aIf B varies on a sublattice length scale, e.g., from magnetic
impurities.
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FIG. 39 (color online). (a) Principle of bend-mediated EDSR. An
electron driven across a bend experiences a time-varying effective
magnetic field which induces coherent qubit precession. (b) Sche-
matic of bent nanotube double quantum dot. Gates G1–G5 define
the confinement potential and carry the time-dependent manipu-
lation voltages. (c) Pauli blockade leakage current in a highly
disordered device (ΔKK0 ≫ ΔSO), showing resonance lines at
g ≈ 2 and at subharmonics. To make the resonance clearer, the
mean current at each frequency is subtracted. Adapted from
Pei et al., 2012 and Laird, Pei, and Kouwenhoven, 2013.

22Because the confinement energy is usually much larger than the
effective Zeeman splitting, to a good approximation the electron
experiences the average Beff over the entire dot.
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with irregular Coulomb spacings seen in transport data (not
shown). As well as the main resonance, a series of sub-
harmonics at integer frequency fractions are seen, due to
anharmonicity of the confinement potential or disorder
(Nowak, Szafran, and Peeters, 2012; Széchenyi and Pályi,
2013). The resonant current increases with field as expected
from Eq. (33) because Beff and hence fR becomes larger.

4. Qubit manipulation and characterization

The data of Fig. 39 show only state mixing. Quantum
coherence is demonstrated by measuring Rabi oscillations
(Hanson et al., 2007). This was achieved in a less disordered
device using a pulsed measurement protocol that shuts off
the current while microwaves are applied [Fig. 40(a)]. The
scheme operates near the ð1;−1Þ → ð0; 0Þ charge transition,

where the qubit states participating in transport are ð⇑;⇓Þ.
Gate voltage pulses are used to adjust the detuning between
two configurations, one Pauli blocked where electron tunnel-
ing is selective on the qubit state, and one Coulomb blocked
where all tunneling is forbidden (Koppens et al., 2006). The
sequence has three stages. An initialization stage at a Pauli
blockade configuration loads with high probability a parallel
two-qubit state (e.g., ⇓⇓). The device is then configured in a
Coulomb blockade, where a qubit manipulation microwave
burst is applied, possibly flipping one of the qubits. During
this step, tunneling is energetically suppressed regardless of
the spin state. Finally the configuration is returned to Pauli
blockade. If no qubit flip occurred during the manipulation
stage, the state remains blocked. However, if a qubit (in either
dot) was flipped, tunneling will occur based on the overlap of
the electron state on the left with the empty state on the right.
Repeating this cycle many times, the time-average current is
proportional to the qubit flip probability during the manipu-
lation stage.
As a function of burst duration, this current is observed to

oscillate [Fig. 40(b)], indicating coherent rotations between
qubit states at Rabi frequency fR. The fitted fR is proportional
to the driving microwave amplitude [Fig. 40(c)], consistent
with a harmonic confinement potential and a smooth bend.
The dependence of fR on field angle Θ is consistent with
bend-mediated EDSR coupling (Flensberg and Marcus, 2010)
but not with, e.g., Rashba-mediated coupling, suggesting that
the bend is indeed the dominant EDSR mechanism in this
device.
The qubit is characterized further by determining the

coherence time Techo (Hanson et al., 2007) which character-
izes how long a superposition can be preserved by the use of a
Hahn echo pulse. The coherence time Techo is measured by
a Ramsey fringe experiment (Fig. 41), which consists of (1) a

FIG. 40 (color online). (a) Pulse sequence used for coherent
qubit manipulation. After initialization in a Pauli-blocked qubit
state, the device is pulsed into Coulomb blockade to allow qubit
manipulation and returned to Pauli blockade for readout. Electron
tunneling occurs only if a qubit was flipped during the manipu-
lation step. Repeated with a period ∼1 μs, this leads to a current
proportional to the qubit flip probability during the manipulation
step. (b) Current (points) as a function of microwave burst
duration for various applied powers, showing coherent Rabi
rotations. The curves are fits to a model assuming a slowly
varying random qubit detuning due to, e.g., charge noise. Traces
are offset for clarity. (c) Rabi frequency as a function of
microwave amplitude, with fit showing the expected proportion-
ality. (d) Rabi frequency at constant microwave amplitude and
power, showing a dependence on field angle Θ consistent
with bend-mediated EDSR. Adapted from Laird, Pei, and
Kouwenhoven, 2013.

FIG. 41 (color online). Hahn echo amplitude (symbols) as a
function of τ plotted for two phases of the central burst, together
with fits (lines) of the form e−ðτ=TechoÞα , yielding Techo ¼ 65 ns.
Inset: example fringes as a function of ϕ. The manipulation
sequence is sketched at bottom right, and Bloch spheres along the
top illustrate the resulting state evolution. Adapted from Laird,
Pei, and Kouwenhoven, 2013.
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π=2 rotation about X to create a state on the equator, (2) a wait
of duration τ, with a π rotation about X or Y inserted half way,
and (3) a π=2 rotation with phase ϕ. Neglecting decoherence,
the three rotations interfere to give a qubit flip probability
proportional to 1� cosϕ (Fig. 41 inset). However, for
τ ≫ Techo, phase information is lost during the wait step,
and the qubit flip probability is 1=2 independent of ϕ. By
fitting the decay of fringe amplitude versus τ, the decay time
Techo ≈ 65 ns is measured (Fig. 41). This coherence time Techo
is distinct from the dephasing time T�

2 discussed in the
previous section because the π rotation during step (2) makes
it insensitive to slow fluctuations of the qubit splitting. The
dephasing time of this qubit was measured by a similar
method (not shown) and found to be T�

2 ≈ 8 ns (Laird, Pei, and
Kouwenhoven, 2013).
Both T�

2 and Techo are quite short compared with some other
semiconductor spin qubits, such as GaAs (Petta et al., 2005;
Greilich et al., 2006; Koppens, Nowack, and Vandersypen,
2008; Bluhm et al., 2011), Si (Maune et al., 2012; Pla et al.,
2012), or diamond (de Lange et al., 2010), but similar to
results in InAs and InSb nanowires (Nadj-Perge, Frolov,
Bakkers, and Kouwenhoven, 2010; van den Berg et al.,
2013). The measured T�

2 is approximately consistent with
hyperfine dephasing, given the unexpectedly large coupling
discussed in Sec. V.B.2 (Churchill, Bestwick et al., 2009), but
for Techo to be limited in the same way, nuclear spin diffusion
would have to be much faster than, e.g., in GaAs. This would
be surprising, given the one-dimensional geometry and low
density of nuclear spins in a nanotube. Fuller consideration of
mechanisms led to the tentative conclusion that Techo and
perhaps T�

2 are limited by charge noise (Laird, Pei, and
Kouwenhoven, 2013). To explain the ineffectiveness of the
echo by extending the coherence time (even with longer
decoupling sequences), this charge noise would need a broad
spectral range, in contrast to the 1=f spectrum expected for
charge switchers in the substrate (Cywiński et al., 2012).

D. Open questions

Although the main results presented in this section are
understood, there are still significant unresolved questions. In
all these experiments, it is hard to convincingly identify the
precise spin-valley states between which transitions occur.
Whereas the experiment of Fig. 36 is sensitive to all forms of
relaxation between AS and S states, which may be expected in
general to have different rates, a single T1 value appears
sufficient to fit each decay curve in Fig. 36(c). Likewise, in the
experiment of Fig. 37, it is not clear how the S and AS state
populations are redistributed by dephasing, and this is
probably reflected in the unexplained Pð∞Þ value discussed
in Sec. V.B.2.
A related mystery comes from the measured EDSR spectra.

Although in a disordered many-carrier device, expected
resonances with g ≈ 2 are observed [Fig. 39(c)], the spectrum
in a cleaner device is complex and not understood (Laird, Pei,
and Kouwenhoven, 2013; Li et al., 2014). Whether the
unexplained features relate to the short Techo is not known.
An exciting area opened by this work is the possibility to

combine the spin degree of freedom with mechanical and
optical degrees in clean, suspended nanotubes. There has

already been progress in engineering quantized phonons in
nanotubes and studying their interactions with the charge on
quantum dots (Sazonova et al., 2004; Sapmaz, Jarillo-Herrero,
Blanter, and van der Zant, 2005; Huttel et al., 2009; Lassagne
et al., 2009; Steele et al., 2009; Benyamini et al., 2014).
Evidence for the discreteness of longitudinal stretching
phonon modes comes from a Frank-Condon blockade in
suspended nanotubes (Sapmaz, Jarillo-Herrero, Blanter, and
van der Zant, 2005; Leturcq et al., 2009), discussed theoreti-
cally by Sapmaz et al. (2003), Flensberg (2006), and Mariani
and von Oppen (2009). By tuning the discrete phonon modes
away from resonance with qubit splittings, long qubit lifetimes
may be achievable. On the other hand, when the qubit splitting
is nearly resonant with a discrete phonon mode, coherent
energy exchange should be possible between them in a solid-
state analog of cavity quantum electrodynamics (Pályi et al.,
2012). Strong spin-phonon coupling in suspended nanotubes
may also enable an enhanced sensing of nanotube motion
(Ohm et al., 2012). Finally, Galland and Imamoğlu (2008) and
Li and Zhu (2012) theoretically investigated spin-based
mechanics and quantum optics. Using a combination of
magnetic fields and optical pumping, they predicted high-
fidelity all-optical control of electron spins, phonon-induced
transparency, and applications in quantum communication.
Finally, we compared this work with the large body of

experiments on spin relaxation, dephasing, and diffusion in
ensembles of single-walled carbon nanotubes measured via
electron spin resonance (ESR) and EDSR spectroscopy at
higher temperatures 4–300 K (Petit et al., 1997). These
techniques focus on resonances that appear within a few
percent of g ¼ 2 at several tesla. These results seem to
contradict the understanding gained from quantum transport
experiments because the g factor is expected to be highly
anisotropic in clean nanotubes. Therefore the debate whether
such resonances reflect intrinsic spin properties of carbon
nanotubes (Dora et al., 2008; Kombarakkaran and Pietraß,
2008) or defects (Rice et al., 2013) has yet to be settled.
Indeed, sufficiently purified nanotubes where removal of the
catalyst was confirmed by TEM were found to not yield an
ESR signal (Zaka et al., 2010). The level structure of Fig. 21
does not provide a reason why randomly oriented assemblies
of nanotubes should yield resonances at g ≈ 2. The only limit
where g ≈ 2may occur is for samples in which jΔKK0 j exceeds
both jΔSOj and the orbital magnetic field splitting, which is not
the case for clean, intrinsic nanotubes.

VI. VALLEY PHYSICS IN OPEN QUANTUM DOTS

A. Transport in open regime

Previous sections focused on closed quantum dots where
low-transparency barriers ensure that transport occurs by
sequential tunneling via strongly confined quantum states.
However, nanotube devices with a range of transparencies can
be fabricated, allowing the transition from closed to open
transport regimes to be studied (Nygård and Cobden, 2001;
Cao, Wang, and Dai, 2005; Liang, Bockrath, and Park, 2005;
Grove-Rasmussen, Jørgensen, and Lindelof, 2007). Valley
and spin physics again play important roles for highly trans-
mitting devices where the quantum dot states are hybridized
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with the Fermi seas in the leads. Here we provide an overview
of transport mechanisms in open devices and then focus on
phenomena involving valley physics: valley and SU(4) Kondo
effects (Sec. VI.B) and level renormalization (Sec. VI.C).
Figures 42(a)–42(d) show transport data from four devices

with varying contact transparency. All devices exhibit metallic
characteristics at room temperature (not shown) with average
conductances ranging from around 0.01e2=h to 3e2=h, i.e.,
approaching the maximum conductance of 4e2=h for a single
nanotube. The first, low-conductance device (a) behaves as a
closed quantum dot. For the second device (b) with average
g ∼ 0.5e2=h, i.e., close to the conductance quantum, the
fourfold periodicity due to valley and spin degeneracy leads
to clusters of four peaks (Sec. III.D). The enhanced back-
ground conductance reflects cotunneling processes enabled by
the stronger coupling. The most extraordinary features are the
horizontal (gate-independent) ridges of high conductance,
e.g., occurring near zero bias in a large fraction of the
Coulomb diamonds. These resonances are due to higher-order
tunneling processes, including Kondo physics, described in
Sec. VI.B.
For the next devices (c) and (d) the quantum dot features

are smeared out as the increased coupling to leads allows
for charge fluctuations on the nanotube. However, gate-
periodic patterns remain and in the highly transmitting
device (d) a distinct pattern of low-conductance lines
dominates the spectroscopy plot. Here, in the simplest
picture, mode reflections at the contacts [Fig. 42(e)] give
rise to interference in transmission, the so-called Fabry-
Pérot resonances (Liang et al., 2001). The interference
pattern appearing in bias spectroscopy plots is similar to
universal conductance fluctuations (UCF) in other meso-
scopic systems (Nazarov and Blanter, 2009; Ihn, 2010).
However, the randomness that usually characterizes UCF is

replaced by nearly perfect periodicity for one-dimensional,
ballistic nanotube resonators.

B. Spin, valley, and SU(4) Kondo effects in nanotubes

1. Theory and background

Transport in nearly closed quantum dots can be described
in terms of first-order sequential tunneling. With stronger
coupling to the leads higher-order processes involving
virtual intermediate states become relevant [Fig. 43(a)].
Initially, the system is in a state of Coulomb blockade
(left). Higher-order fluctuations can permit tunneling of the
trapped electron to the right lead, while a second electron
from the source enters the dot. Effectively, one electron
charge −e has been transferred from source to drain (right
diagram) via an intermediate state (middle) that is classically
forbidden due to energy conservation and Coulomb block-
ade. Such a process is called elastic cotunneling (Averin and
Nazarov, 1992; Pustilnik and Glazman, 2004; Ihn, 2010).
In Fig. 43(a) the spin on the dot is flipped as permitted by
the spin degeneracy of the level at zero field. The nontrivial
result of such higher-order spin-flip transitions is the
appearance of a new correlated ground state for the
combined lead-dot system. This is an effective singlet
state between an unpaired spin and the Fermi sea of
electrons in the leads. It forms a highly transmitting channel
between source and drain at the Fermi energy, known
as a Kondo resonance, leading to the breakdown of the
Coulomb blockade (Nazarov and Blanter, 2009; Ihn, 2010;
Heikkila, 2013).
The Kondo state exists only at low temperatures where

coherence is preserved. The transition temperature from the
Coulomb blockade to transport resonance is denoted as the
Kondo temperature TK. The energy scale kBTK can be
considered as the binding energy of the many-body singlet
state formed from the quantum dot spin and a screening cloud
of electrons in the lead. Kondo resonances appear in Fig. 42(b)
as ridges of high conductance near zero bias. The correspond-
ing charge states can be identified as the odd occupancy states
where the quantum dot holds an unpaired electron. (The
apparent resonances in some of the even diamonds are
discussed later.) Several diagnostics can verify an underlying
Kondo mechanism; the resonance should be suppressed by
increasing temperature, bias voltage, or an external magnetic
field that breaks the necessary level degeneracy.
Quantum dot Kondo resonances were first discovered in

two-dimensional semiconductor devices (Cronenwett,
Oosterkamp, and Kouwenhoven, 1998; Goldhaber-Gordon,
Shtrikman et al., 1998; Simmel et al., 1999) but observed
shortly afterward in carbon nanotubes (Nygård, Cobden, and
Lindelof, 2000; Buitelaar et al., 2002; Liang, Bockrath, and
Park, 2002; Babić, Kontos, and Schönenberger, 2004). For a
more detailed account of Kondo physics and the relation to
quantum dots in general see other reviews (Kouwenhoven and
Glazman, 2001; Pustilnik and Glazman, 2004; Zaránd, 2006;
Grobis et al., 2007) and textbooks (Nazarov and Blanter,
2009; Ihn, 2010; Heikkila, 2013). In all cases, the spin Kondo
effect leads to an enhanced conductance at low temperatures.
For nanotubes TK is typically 1–10 K.

FIG. 42 (color online). Quantum transport from closed to open
devices. (a)–(d) Plots of dI=dVSD as a function of gate voltage VG
and bias VSD for four nanotube devices with average conduc-
tances g ∼ 0.01; 0.5; 1.5; 3e2=h [schematic in (e)]. All data were
taken at 1.5 K and zero field. High (low) conductance is shown by
light (dark) colors. Black bars indicate the gate voltage range for
the addition of four additional electrons. (e) Device schematic.
Dashed paths indicate the origin of Fabry-Pérot resonances
induced by reflections at the contacts. Adapted from Liang,
Bockrath, and Park, 2005.
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Wewill not dwell on the details of the spin Kondo effect but
rather point out that in principle any doubly (or higher)
degenerate localized state with identical quantum numbers in
the leads could mediate Kondo-like resonances. The origin of
the degeneracy does not need to be spin; for example,
transport resonances could be induced by an orbital level
degeneracy on the dot [Fig. 43(b)] (Jarillo-Herrero et al.,
2005b). In the context of nanotubes the valley degree of
freedom comes to mind. Next we discuss such a valley Kondo
effect.
Both the ordinary spin-1=2 Kondo effect and the twofold

valley Kondo effect reflect SU(2) symmetry. However, for
ideal nanotube dots the concomitant existence of valley and
spin freedom leading to an approximate fourfold degen-
eracy could potentially lead to a Kondo effect described by
the higher SU(4) symmetry class (Choi, López, and
Aguado, 2005). This situation is absent in most other
quantum dots, which lack the spatial symmetry that

naturally leads to valley degeneracy in nanotubes.23

Figure 43(c) shows an example of states involved in this
scenario where both the valley and spin quantum numbers
can be exchanged during cotunneling. In order to probe the
SU(4) Kondo effect, it is essential that transitions between
all four states are possible.
Even if valley degeneracy exists in the nanotube, this does

not ensure that the valley quantum number is also present in

FIG. 43 (color online). Kondo physics in nanotubes due to spin and valley degrees of freedom. (a) Schematics of an elastic cotunneling
process resulting in a spin flip on the quantum dot. Such higher-order processes give rise to the spin Kondo effect. (b) The Kondo effect
can also occur if another quantum number is present in the leads and the dot, e.g., the valley quantum number as shown here. (c) In
nanotubes valley and spin quantum numbers may additionally give rise to the SU(4) Kondo effect involving both degrees of freedom.
(d) Device schematic showing valley mixing in the lead ðΔL;R

KK0 Þ and the dot ðΔdisorder
KK0 Þ. For SU(4) Kondo effects to be observed these

should be small and valley-conserving tunneling ðtÞ from nanotube leads is required. (e) Energy vs parallel and perpendicular magnetic
fields for two conduction-band shells with spin-orbit interaction (ΔSO > 0). Dashed ellipses and related B fields indicate degeneracies
resulting in Kondo phenomena, e.g., SU(4) and various SU(2) Kondo effects. The SU(4) Kondo effect can be observed (lower shell)
when the related energy scale is much larger than the zero-field (spin-orbit) splitting. (f) Flow diagram at B ¼ 0 for fillings N ¼ 1 − 3
showing that valley mixing reduces the SU(4) Kondo effect to two-level (2L), singlet-triplet (S-T), or no Kondo effect. Similarly spin-
orbit interaction reduces the SU(4) Kondo effect to SU(2) or no Kondo effect. The intervalley mixing parameter ΔKK0 represents all
relevant mixing terms. (a)–(c) Adapted from Jarillo-Herrero et al., 2005b.

23SU(4) Kondo physics has been studied in vertical quantum dots
(Sasaki et al., 2004), parallel double quantum dots (Wilhelm et al.,
2002; Holleitner et al., 2004; Okazaki, Sasaki, and Muraki, 2011;
Keller et al., 2013), and single dopants (Tettamanzi et al., 2012). In
the vertical quantum dots, an orbital degree of freedom also exists in
both the leads and the dot because they share similar symmetry. To
study SU(4) physics in two parallel dots, however, requires a device
with identical intra-Coulomb and inter-Coulomb energy.
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the leads. Figure 43(d) shows a nanotube quantum dot coupled
to metallic leads. The double arrows indicate that electrons
need to enter a nanotube lead segment (t�) before tunneling
onto the quantum dot (t) to allow for SU(4) Kondo physics
since this effect requires valley-conserving tunneling. As
discussed later, K-K0 mixing during tunneling (Δtunneling

KK0 ),
on the dot (Δdisorder

KK0 ), and in the lead segments (ΔL;R
KK0 ) must all

be weak, as must spin-orbit coupling.
To link the different Kondo phenomena to the nanotube

level structure, the spectrum of two shells is plotted in
Fig. 43(e), including spin-orbit interaction but not valley
mixing. Dashed ellipses indicate degeneracies that can lead to
Kondo physics. When the SU(4) Kondo energy scale is much
larger than the spin-orbit splitting, the SU(4) Kondo effect can
be observed at zero field for occupations N ¼ 1; 2, or 3 as
depicted for the lower shell. The opposite case of small SU(4)
Kondo temperature is shown for the upper shell, resulting in
SU(2) Kondo effects for the two split Kramers doublets
(dashed circles at zero field) (Fang, Zuo, and Luo, 2008,
2010; Galpin et al., 2010).
Figure 43(e) also points to possible Kondo effects in a

parallel magnetic field. Two intrashell SU(2) Kondo effects
are illustrated for the upper shell: a valley SU(2) Kondo effect
at half filling and a spin SU(2) Kondo effect for three electrons
in the shell. Intershell valley Kondo effects can arise from
level crossings between two different shells. Taking account of
valley mixing within the shells modifies the energy diagram
(Fig. 21), but does not qualitatively change the intershell
valley degeneracies (Jarillo-Herrero et al., 2005b; Grove-
Rasmussen et al., 2012). However, the intrashell valley
degeneracies for parallel and perpendicular fields are split,
and when valley mixing dominates, a spin-orbit split degen-
eracy (not shown) emerges at finite perpendicular field giving
rise to a singlet-triplet (S-T−) Kondo effect (Nygård, Cobden,
and Lindelof, 2000; Pustilnik, Avishai, and Kikoin, 2000;
Quay et al., 2007). The zero-field SU(4) Kondo effect survives
as long as the Kramers doublet splitting due to valley mixing
and spin-orbit coupling is much smaller than the Kondo
temperature (Borda et al., 2003; Fang, Zuo, and Luo, 2008;
Galpin et al., 2010).
As shown in Figs. 43(e) and 43(f), the SU(4) Kondo effect

can be observed for filling N ¼ 1 − 3 (Anders et al., 2008),
but only if the valley quantum numbers are conserved during
tunneling, i.e., no valley mixing. If this is not the case, the
SU(4) Kondo effect reduces to two-level (2L) spin SU(2)
(Choi, López, and Aguado, 2005; Lim et al., 2006; Büsser and
Martins, 2007; Büsser et al., 2011) and singlet-triplet (S-T)
(Eto and Nazarov, 2000; Sasaki et al., 2000; Izumida, Sakai,
and Tarucha, 2001) Kondo effects for N ¼ 1; 3 and N ¼ 2,
respectively.24 For the 2L SU(2) Kondo effect, the Kondo
temperature and maximum conductance g ¼ 2e2=h at the
center of the N ¼ 1; 3 Coulomb diamond is the same as in the
case of the SU(4) Kondo effect, and the two effects are
therefore to be distinguished either by magnetic field spec-
troscopy (Choi, López, and Aguado, 2005; Jarillo-Herrero
et al., 2005b) or by the overall shape of the N ¼ 1 − 3

conductance versus gate voltage (Makarovski and Finkelstein,
2008). Similarly, in the center of the N ¼ 2 Coloumb
diamond, both the singlet-triplet and SU(4) Kondo effects
have the same theoretical maximum conductance g ¼ 4e2=h
(Jarillo-Herrero et al., 2005b). However, for sufficiently
strong valley mixing (or spin-orbit interaction), a zero-field
Kondo effect is absent for N ¼ 2, as indicated in Fig. 43(f).

2. Experiment

Unconventional Kondo physics in nanotubes was first
experimentally studied by Jarillo-Herrero et al. (2005b) and
later by Jarillo-Herrero et al. (2005a), Makarovski, Liu, and
Finkelstein (2007), Makarovski et al. (2007), Makarovski
and Finkelstein (2008), Cleuziou et al. (2013), and Schmid
et al. (2015).25 For all but the last two experiments, the
spin-orbit interaction was thought to be negligible and thus

FIG. 44 (color online). Kondo physics near zero field. (a) Con-
ductance vs gate voltage of a narrow-gap nanotube for four
electron shells I–IV. For shells I and II the occupancy in each
diamond is indicated. More positive VG increases the tunnel
couplings, tuning the dot from the Kondo to the mixed-valence
regime. Different traces correspond to temperatures from 1.3 to
15 K. (b) Differential conductance in the same device as a
function of VG and VSD at 3.3 K. (c) Similar data for a different
device showing spin-orbit split SU(2) and SU(4) Kondo physics
at low and high hole fillings, respectively. (d) Magnetic field
splitting of N ¼ 1 Kondo resonance into four peaks, indicating
SU(4) Kondo physics. (a), (b) Adapted from Makarovski, Liu,
and Finkelstein, 2007. (c) From Cleuziou et al. (2013). (d) From
Jarillo-Herrero et al., 2005b.

24The analysis in terms of singlet-triplet physics assumed zero
spin-orbit interaction.

25Other types of unconventional Kondo phenomena such as the
two-impurity Kondo effect have been studied in nanotube systems
(Chang and Chen, 2009; Bomze et al., 2010; Chorley et al., 2012).
Equipping nanotubes with superconducting or ferromagnetic leads
also gives rise to new Kondo systems (Buitelaar, Nussbaumer, and
Schönenberger, 2002; Hauptmann, Paaske, and Lindelof, 2008), but
that is beyond the scope of this review.
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not included in the Kondo analysis (Choi, López, and
Aguado, 2005; Lim et al., 2006; Büsser and Martins,
2007; Anders et al., 2008; Mizuno, Kim, and Martins,
2009). However, more recent theory includes spin-orbit
interaction and reinterprets the early data (Fang, Zuo, and
Luo, 2008, 2010; Galpin et al., 2010). Our aim is to present
data relevant for the spectrum of Fig. 43(e), starting with
zero magnetic field Kondo physics followed by finite-field
phenomena for one and two shells.
The ideal devices for studying an SU(4) Kondo effect are

quantum dots with tunable couplings to the leads. Such
devices can be realized in narrow-gap nanotubes where the
conductance typically increases as carriers are added.
Figures 44(a) and 44(b) show the linear conductance
dI=dVSD versus gate voltage and the corresponding charge
stability diagram. A regular shell structure with zero-bias
Kondo ridges for electron filling one, two, and three is
observed at low gate voltages. At stronger electrode coupling,
the different charge states fully hybridize (Makarovski, Liu,
and Finkelstein, 2007; Makarovski and Finkelstein, 2008)
and a single merged peak is observed for the two rightmost
shells in Fig. 44(a). In this mixed-valence regime the lifetime
broadening is comparable to or larger than the charging energy
and the single-electron transport features of the stability
diagram merge into broad ridges. The observed behavior in
both the Kondo and mixed-valence regimes has been repro-
duced by numerical renormalization group (NRG) calcula-
tions within an SU(4) Anderson model for various lead
couplings, supporting this interpretation (Anders et al., 2008).
Figure 44(c) systematically studies the transition from

SU(4) to SU(2) Kondo physics in a clean narrow-gap device
(Cleuziou et al., 2013). The crossover is measured across
seven shells, thereby varying both the spin-orbit interaction
(decreases with filling, see Fig. 19) and the lead coupling
(increases with filling). A transition from ΔSO > TSUð4Þ

K to
ΔSO < TSUð4Þ

K versus hole filling, i.e., SU(2) to SU(4), can thus
be realized in accordance with the lower arrow in the flow
diagram of Fig. 43(f).
The SU(4) Kondo effect was also reported by Jarillo-

Herrero et al. (2005a, 2005b) studying the N ¼ 1 zero-bias
peak. The temperature dependence (0.3–10 K) of the con-
ductance peaks was consistent with the expected empirical
scaling formula (Goldhaber-Gordon, Göres et al., 1998)
yielding high Kondo temperatures (around 10 K).
Figure 44(d) shows the behavior of the Kondo resonance in
a (parallel) magnetic field. The splitting into four peaks
(ideally six if the Zeeman splittings are fully resolved)
indicates SU(4) Kondo physics, since only two peaks would
emerge if valley mixing induced by tunneling or disorder were
dominant as for the 2L SU(2) Kondo effect (Choi, López, and
Aguado, 2005). A zero-bias ridge observed for N ¼ 2 in the
same work was analyzed in terms of singlet-triplet Kondo
physics, but is also consistent with an SU(4) Kondo effect
(Büsser and Martins, 2007).
Next we turn to Kondo phenomena at finite B∥ within a

single shell [upper part of Fig. 43(e)] (Fang, Zuo, and Luo,
2008, 2010; Galpin et al., 2010). Recent experiments on the
addition of the first four electrons in a device with clearly
identified spin-orbit interaction give hints of the valley and
finite-field spin SU(2) Kondo effects (Cleuziou et al., 2013).

Figure 45(a) shows the linear conductance versus parallel
magnetic field and gate voltage, with the electron filling and
the possible Kondo ridges indicated. Compared to the model
above, the finite-field spin SU(2) Kondo effect at Bs for odd
filling appears for N ¼ 1 instead of N ¼ 3. [Whether it is the
upper or lower two states that crosses at high field depends on
carrier type and the sign of the spin-orbit interaction (see
Fig. 18).] The N ¼ 2 valley Kondo effect at Bo1 is clearly
visible close to the Coulomb peaks, mimicking the behavior of
the Kramers Kondo effect at zero field. Because of small
tunnel coupling in this device, valley or spin Kondo physics
cannot be unambiguously identified from the data.
Similar data with strong Kondo ridges were already

observed before the identification of nanotube spin-orbit
interaction (see Fig. 12, shell around VG ∼ 3 V), but the
Kondo ridge at half filling and finite Bwas interpreted in terms
of singlet-triplet Kondo physics26 (Jarillo-Herrero et al.,
2005a). Later NRG modeling [Fig. 45(b)] suggested that
the data could also be explained in terms of the spin-orbit

FIG. 45 (color online). Kondo physics at finite field. (a) Differ-
ential conductance vs gate voltage and parallel magnetic field for
the first three electrons in the conduction band. Dashed lines
indicate faint Kondo resonances: Kramers (for N ¼ 1; 3 at
B∥ ¼ 0), valley (for N ¼ 2 at B∥ ¼ Bo1), and spin SU(2) (for
N ¼ 1 at B∥ ¼ Bs). (b) Theoretical linear conductance vs gate
voltage filling (expressed as effective filling NG) and normalized
parallel field ~B∥. The calculation assumed jΔSOj > TSUð4Þ

K as in
the top shell of Fig. 43(e). (c) Differential conductance as a
function of gate voltage VG and parallel magnetic field B at
30 mK. Boxed numbers indicate the occupation of the topmost
shell and unboxed numbers indicate the ground-state spin
ð0; 1=2; 1Þ. Solid lines highlight the motion of the Coulomb
blockade peaks. Dashed lines mark valley Kondo effects [com-
pare white arrows to Fig. 43(e)]. (a)–(c) Adapted from Cleuziou
et al., 2013, Galpin et al., 2010, and Jarillo-Herrero et al., 2005b,
respectively.

26Depending on the exchange interaction, the triplet state occupy-
ing two different valleys may become the ground state. In a parallel
magnetic field the singlet state occupying two downmoving valleys
thus crosses the almost degenerate triplet states, giving rise to a
Kondo effect (assuming negligible Zeeman effect).
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energy spectrum27 (Galpin et al., 2010). The calculated color
plot thus represents the ideal Kondo behavior for the upper
shell in Fig. 43(e). Other experiments with dominating valley
mixing (ΔKK0 > ΔSO) also identify the spin SU(2) Kondo
effect at B∥ ¼ Bs (Jespersen, Grove-Rasmussen, Paaske et al.,
2011; Schmid et al., 2015).
Finally we address the (intershell) valley Kondo effect. It

can be found at particular fields (Bo2; Bo3) that induce valley
degeneracy but not spin degeneracy [Fig. 43(e)]. Figure 45(c)
shows the (parallel) magnetic field evolution of the conduct-
ance for a nanotube quantum dot that has strong Kondo
resonances at zero field. At finite fields additional resonances
appear at Bo2 and Bo3, consistent with valley degeneracies
inducing a spinless valley SU(2) Kondo effect. The appear-
ance of this Kondo resonance indicates that tunneling pre-
serves the valley symmetry, which for this device is less
obvious because of the metal deposited on top of the nano-
tube leads.
In several of the experiments above a Kondo effect arising

from inelastic transitions gave rise to conductance peaks at
finite bias. Such Kondo enhancement of inelastic cotunneling
thresholds was observed and modeled in Paaske et al. (2006)
while a recent experiment revealed that certain cotunneling
thresholds are not observed in the strong coupling regime
(Schmid et al., 2015). They identify the two states involved in
the relevant cotunneling processes as particle-hole symmet-
ric28 and show theoretically that these processes do not give
rise to Kondo correlations (even though cotunneling is
allowed).

C. Level renormalization

The most visible consequence of increasing electrode
couplings in Fig. 42 is a broadening of the energy levels,
but this hybridization is also accompanied by level shifts.
These shifts are named tunnel renormalization, since the effect
stems from quantum charge fluctuations (cotunneling events)
that are particularly relevant when the tunnel couplings are
large. Nanotube quantum dots have turned out to be ideal to
observe such level shifts, in particular, when the two doublets
are differently coupled to the leads (Holm et al., 2008).

1. Theory

We consider a spinless nanotube shell model without any
internal couplings and assume metallic leads (no valley
quantum number). Since jKi and jK0i states are time-reversed
partners, the tunnel couplings are equal t ¼ jtK j ¼ jtK0 j.
Introducing a complex valley-mixing term ΔKK0 ¼
jΔKK0 jeiϕ0 results in new eigenstates which have phase
dependent tunnel couplings tð1∓eiϕ0Þ (Grove-Rasmussen
et al., 2012). Figure 46(a) shows the energy versus parallel

magnetic field for the new eigenstates that arise when the
valley states are coupled. The schematic insets show that the
electron probability distributions for the two eigenstates are
different at zero field and thus the tunneling amplitude may be
different depending on the exact site of a microscopic contact.
This picture of tunneling into one particular atomic site with
different probability for the two wave functions is probably
too simple for a real device but is adopted here as a minimal
model. In Fig. 46(b) the lead couplings for the two states are
plotted for the case ϕ0 ¼ π. At zero field the two new
eigenstates have different couplings: the ground state doubles
its coupling to the leads compared to the original states while
the excited state decouples. The model also makes an
important prediction about the magnetic field dependence
of the couplings. At high parallel magnetic fields the
ground- and excited-state couplings become equal, since
the eigenstates are close to the original valley states jKi
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FIG. 46 (color online). Level renormalization. (a) Energy vs
parallel magnetic field of two valley states with coupling ΔKK0

that splits the states at zero field. Insets show the electron
density distributions at zero and high fields. (b) Lead couplings
vs parallel magnetic field of the two eigenstates in (a).
(c)–(f) Cotunneling processes for the two doublets of a singly
occupied shell near the 1 to 0 (c), (d) and 1 to 2 (e), (f) charge
degeneracy points. The thickness of the arrows indicates the
tunnel couplings. (g) Electrochemical potentials μ1g;0 ¼ E1g −
E0 (solid lines) and renormalized versions ~μ (dashed lines).
Here E1g and E0 are the energies of the one-electron ground
state (1g) and the empty-dot state (0). The lead potentials are
set at the threshold for inelastic cotunneling; renormalization
enhances the threshold energy δ0 compared to the original
doublet splitting δ. (h) Schematic charge stability diagram for
the one-electron diamond. The resulting level renormalizations
induce a gate-dependent inelastic cotunneling threshold (dashed
line) in contrast to the single-particle prediction δ (solid line).
Adapted from Grove-Rasmussen et al., 2012.

27While this is a likely interpretation, some caution should be
applied since level crossings with a different shell complicate the
finite-field spin SU(2) identification.

28The work considers a shell with both spin-orbit interaction and
valley mixing. The eigenstates are therefore superpositions of all four
basis states jτσi. A simple example of a particle-hole symmetric pair
is fjK↓i; jK0↑ig.
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and jK0i whose probability distributions are equal at high
fields [Fig. 46(a) inset].
We now examine the effect of the difference in lead

couplings on cotunneling. Consider two states with different
tunnel couplings as shown in Figs. 46(c) and 46(d) for a
singly occupied dot j1i. The ground state experiences stronger
cotunneling charge fluctuations via the zero state (j1ig ↔ j0i)
than the excited state (j1ie ↔ j0i) does. The renormalization
shift increases with the coupling of the levels and thus
the more strongly coupled state has the larger energy shift
[Fig. 46(g)]. Consequently, the threshold for inelastic cotun-
neling transport will increase (from δ to δ0) near the j1i ↔ j0i
charge transition (left side of the diamond). In the stability
diagram Fig. 46(h) the threshold will correspondingly be
shifted to higher bias. In contrast, on the right side of the
one-electron diamond, the dominant cotunneling processes
involve the two-electron state (j1i ↔ j2i). The situation is
opposite here since the excited state j1ie experiences

stronger fluctuations and level shifts than the ground
state j1ig [Figs. 46(e) and 46(f)]. Thus the cotunneling
threshold will be reduced compared to the original level in
this gate range. The resulting stability diagram is sketched
in Fig. 46(h). The models above are easily extended to
include spin and higher fillings, but the conclusion remains
the same: tunneling-induced level renormalization can result
in gate-dependent cotunneling features within the charge
stability diamonds.

2. Experiment

Figure 47(a) shows a stability diagram with shell filling
identified by the characteristic pattern of three small
Coulomb diamonds followed by a large one and Kondo
ridges for odd occupancies. However, Fig. 47(b) shows that
this regular behavior is not observed for all shells. In this
case, the Kondo effect is evident only for one electron, and
the inelastic cotunneling thresholds29 are seen to have a
marked gate dependence for two and three electrons where
arguments similar to the model above hold [compare
Fig. 46(h)]. The absence of the Kondo effect for N ¼ 3

indicates that the ground-state doublet is more strongly
coupled to the leads than the excited-state doublet. The
different behavior for different shells, such as between
Figs. 47(a) and 47(b), can be understood as due to valley
mixing with different phases for each shell and tunnel
renormalization.
The effective doublet splitting is set by both spin-orbit

and valley coupling δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

SO þ Δ2
KK0

q
, while in the lead-

coupling model of Fig. 46(b) the origin of the coupling
asymmetry was the valley coupling alone. The validity of this
model can be tested by examining its prediction for the lead
tunnel couplings in a magnetic field. Figure 47(c) shows a
stability diagram of a shell whose behavior is similar
(Γg > Γe) to that of Fig. 47(b). The corresponding stability
diagram in parallel magnetic field B∥ ¼ 2 T is shown in
Fig. 47(d). As predicted qualitatively by the model, the gate
dependence of the cotunneling threshold disappears at large
field where the lead couplings become equal, consistent with
the observed widths of the Coulomb peaks within the shell
[see cut in Fig. 47(d)]. This observation indicates that the
origin of the asymmetry is related to valley mixing (Grove-
Rasmussen et al., 2012).
Renormalization effects have also been established in

devices with ferromagnetic leads, where the difference in
spin density of states of the electrodes leads to different
effective tunnel coupling (Martinek et al., 2003, 2005;
Pasupathy et al., 2004; Hauptmann, Paaske, and Lindelof,
2008). Furthermore, if valley mixing originates from cotun-
neling (not only disorder as described above) different gate-
dependent shifts are predicted with the possibility of inelastic
cotunneling lines crossing inside the Coulomb diamond
(Kiršanskas, Paaske, and Flensberg, 2012).

FIG. 47 (color online). Tunnel renormalization in nanotube
stability diagrams. (a) Stability diagram for a shell with similar
lead couplings to ground and excited states (Γg ∼ Γe). Kondo
ridges are observed for one and three electrons and inelastic
cotunneling thresholds are gate independent. Occupation num-
bers are marked above the plot. (b) Stability diagram for a
different shell. Unlike in (a), the Kondo ridge appears only for the
N þ 1 diamond, and the cotunneling thresholds in the N þ 2 and
N þ 3 diamonds are gate dependent. This is consistent with
cotunneling provided that the doublet lead couplings are asym-
metric (Γg ≫ Γe deduced from thresholds for N þ 2 and N þ 3).
(c) Diagram at zero field for a different device. Again, a gate-
dependent cotunneling threshold (arrow) indicates asymmetric
couplings. (d) At B∥ ¼ 2 T the threshold is gate independent,
consistent with equalization of the lead couplings by the magnetic
field as discussed in the text. Adapted from Holm et al., 2008 and
Grove-Rasmussen et al., 2012.

29For the one-electron case the inelastic cotunneling threshold is
not visible due to the Kondo effect present at zero bias.
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D. Open questions

Several experiments have found features consistent with
Kondo correlations originating from the additional valley
degree of freedom. A complete study of the SU(4) Kondo
effect would, however, call for control of the valley-mixing
parameters [Fig. 43(d)] to tune the valley Kondo correlations.
Valley mixing also plays a role for the intershell valley Kondo
experiment, where incipient Kondo correlations enhancing
finite-bias features are analyzed (Jarillo-Herrero et al., 2005b;
Paaske et al., 2006). Such correlations are generally more
difficult to quantify. Clearer experimental results may be
possible in tunable gate-defined dots with weak valley mixing,
where the leads are nanotube segments rather than metal.

VII. CORRELATED-ELECTRON EFFECTS

A. Introduction

Electron correlation effects due to Coulomb interaction can
be strong in carbon nanotubes. One reason is the one-
dimensional nature of the confinement: electrons in two or
three dimensions can minimize their Coulomb repulsion by
moving out of each other’s way. Electrons in nanotubes do not
have this freedom and instead tend to develop strong corre-
lations. Electrons in nanotubes also see an environment with
a low dielectric constant, which for suspended nanotubes
approaches the free-space value ε ¼ 1. This is in contrast to
electrons in semiconductors, where electric fields can be
screened by the large dielectric constant of the host material.
These properties suggest that nanotubes are an interesting
system for studying electron correlations.
The strength of Coulomb interactions between particles

with parabolic dispersion is characterized by an interaction
parameter rs, defined as the ratio of the average interparticle
spacing l to the Bohr radius a0:

rs ¼
l
a0

¼ meffe2l
εℏ2

≈
EC

EK
. ð34Þ

Within a numerical constant of order unity, rs is also the ratio
of the Coulomb interaction energy EC ¼ e2=εl to the kinetic
energy EK ¼ ℏ2=ml2. At high densities (small rs), kinetic
energy dominates and the single-particle approximation can
be used for the electronic states. At low densities (large rs),
kinetic energy is quenched and the Coulomb interaction
dominates the physics.
For semiconducting nanotubes at sufficiently low densities,

the Fermi energy lies in the parabolic region of the dispersion
relation (cf. Fig. 5) and rs is a useful characterization of the
strength of electron interactions. A typical Coulomb inter-
action energy in a nanotube for ε ¼ 1 and l ¼ 100 nm is
EC ¼ 13 meV. To estimate the kinetic energy, it is important
to note that the effective mass is strongly dependent on the
band gap. For a semiconducting nanotube with a band gap of
210 meV (meff ¼ 0.029), EK ¼ 260 μeV (Bohr radius
a0 ≈ 2 nm). This implies that two electrons in a 200 nm long
quantum dot in such a nanotube corresponds to very strong
interactions (rs ¼ 50).30

Advances in making clean suspended nanotubes have
enabled the study of quantum dots at very low density with
very low electronic disorder. Using these new devices, the
question of electron interaction and correlation effects in
nanotubes is being revisited from the ground up. In the few-
electron regime in the clean limit, a clear understanding of the
simplest case of two electrons is beginning to emerge.

B. Interactions in two-electron nanotube quantum dots

The Coulomb interaction does not directly exert a force
between spins. For example, a spin-spin exchange coupling
does not arise from a direct interaction between spins, but
instead from a combination of the Pauli exclusion principle
with the Coulomb repulsion between orbital wave functions.
Thus, to approach Coulomb interaction phenomena, it is
important to start by considering the properties of nanotube
electronic wave functions.
The spatial wave function in a nanotube has several degrees

of freedom: the position x along the nanotube axis,31 a
subband index from the quantization around the circum-
ference, and a valley index τ specifying which of the two
valleys ðK;K0Þ is occupied by an electron. In nanotubes, it is
convenient to separate the 1=r Coulomb interaction into long-
range and short-range components. A natural length scale for
this separation is the nanotube diameter. This separation
considerably simplifies the treatment of the Coulomb inter-
action in nanotubes (Wunsch, 2009). A first approximation is
that neither the short-range nor long-range component mixes
states from different subbands: this is justified by the large
subband spacing, on the order of eV. A second approximation
is that only the short-range component of the Coulomb
interaction mixes states from different valleys: this is justified
since intervalley scattering requires a large momentum shift
(Mayrhofer and Grifoni, 2008; Wunsch, 2009; Weiss et al.,
2010; Secchi and Rontani, 2013). The third approximation is
that the envelope function ψðxÞ describing the position of the
electron along the nanotube axis is independent of spin and
valley. Although this is not true in general (cf. Appendix B.6),
it is a reasonable approximation for smooth confinement
potentials and large quantum dots (Wunsch, 2009). Within
these approximations, we can treat the long-range and short-
range components of the Coulomb interaction separately: the
long-range component couples to ψðxÞ, while the short-range
component couples to the valley degree of freedom.
Indications of Wigner correlations in multihole quantum

dots were identified already in early works (Deshpande and
Bockrath, 2008). In this review, we follow a pedagogical
approach to the topic. We start with long-range interactions,
presenting a pedagogical model for the Wigner molecule in
one dimension, reviewing calculations performed for nano-
tubes, and discussing experimental results demonstrating a
two-electron Wigner molecule. We then focus on effects from
the short-range interaction. At the end of the section, we give
an outlook toward interactions in the many-electron and
many-hole regimes.

30Taking l ≈ 100 nm ¼ 200 nm=2 electrons.

31For simplicity, in this section we use notation x for the
longitudinal coordinate instead of t as used elsewhere in the review.
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1. Long-range interactions and Wigner molecules

Our simple model focuses on the spatial two-electron
wave function, assuming that antisymmetry of the total wave
function is provided by appropriate symmetries in the spin and
valley degrees of freedom. Approximating the dispersion
relation of a semiconducting nanotube by a parabola, we
write down a Schrödinger equation with an effective mass
meff ¼ Egap=2v2F:

−
ℏ2

2meff

∂2Ψ
∂x21 −

ℏ2

2meff

∂2Ψ
∂x22

þ V0ðx1ÞΨþ V0ðx2ÞΨþ VCðx1; x2ÞΨ ¼ EΨ; ð35Þ
where Ψðx1; x2Þ is the two-electron spatial wave function,
V0ðxÞ is the external confining potential, and VCðx1; x2Þ is the
Coulomb interaction between electrons. To restrict ourselves
to the long-range component of VC, we include a cutoff in the
1=r Coulomb potential as follows:

VCðx1; x2Þ ¼
1

4πε

e2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 − x2Þ2 þ d2

p ð36Þ

with d chosen as the nanotube diameter. It is instructive to
combine the confinement terms in a two-electron electrostatic
potential Vðx1;x2Þ¼V0ðx1ÞþV0ðx2ÞþVCðx1;x2Þ. The prob-
lem of two interacting electrons in one dimension is then
formally equivalent to that of a single electron confined in a
two-dimensional potential Vðx1; x2Þ.
This problem can be solved on a desktop computer by exact

diagonalization (Jauregui, Häusler, and Kramer, 1993; Szafran
et al., 2004; Balder, 2008). The results are shown in Fig. 48,
taking meff ¼ 0.03 me (corresponding to EG ¼ 210 meV and
D ≈ 3.3 nm) and V0ðxÞ ¼ 1

2
meffω

2x2 with ℏω ¼ 10 meV
(confinement length ≈30 nm). These parameters correspond
to rs ≈ 18 (Balder, 2008). The results with (ε ¼ 1) and without
(ε ¼ ∞) Coulomb interaction are shown in Fig. 48(a).
Including interactions [lower panels in (a)], the Coulomb
repulsion can be seen in Vðx1; x2Þ as a diagonal line along
x1 ¼ x2. With these parameters, typical for nanotubes, the
Coulomb interaction dominates over the confinement poten-
tial. In response, the single lobe of ΨSðx1; x2Þ in the single-
particle model splits into two well-separated lobes, pushing
the two electrons away from each other to minimize Coulomb
repulsion [Figs. 48(c) and 48(d)]. In this state, the two-
electron probability density jΨðx1; x2Þj2 goes rapidly to zero
along the x1 ¼ x2 line, indicating the formation of a Wigner
molecule. The quantity jΨðx;−xÞj2 in Fig. 48(c) can be
viewed as a two-particle correlation density,32 and its sup-
pression near x ¼ 0 corresponds to the formation of a
“correlation hole” [Fig. 48(c)].
An important property of the Wigner molecule state is a

strong suppression of the splitting ΔS;AS between the spatially
symmetric ground state ΨSðx1; x2Þ and the spatially antisym-
metric excited state ΨASðx1; x2Þ. Without interactions,
ΔS;AS ¼ Δls ¼ 10 meV, where Δls ¼ ℏω is the single-particle
level spacing. Including interactions, the splitting drops
dramatically to ΔS;AS ¼ 29 μeV, smaller by a factor ∼300.
An explanation can be seen by plotting the two-electron wave
functionsΨðx1; x2Þ [lower panels of Fig. 48(a)]. In the Wigner
molecule regime, the ground-state wave function ΨSðx1; x2Þ
deforms to minimize the Coulomb energy, gaining kinetic
energy and reducing ΔS;AS until the symmetric ground state
and antisymmetric excited state are nearly degenerate.
Until now, the discussion has been quite general and applies

equally to other one-dimensional systems. The relevance for
carbon nanotubes becomes clear when looking at the magni-
tude of such effects. Exact diagonalization calculations for
nanotubes (Roy and Maksym, 2009, 2012; Secchi and
Rontani, 2009, 2010, 2012, 2013; Wunsch, 2009) arrive at
the same conclusions as our toy model: the two-electron dot is
strongly correlated, forming aWigner molecule. The results of
such a calculation are shown in Fig. 49. The input parameters
are a 100 nm square-well confinement potential with a
50 meV barrier height, a nanotube diameter of 5 nm, a band
gap of 90 meV, and an effective mass of 0.009me. To illustrate
the transition from the single-particle limit to the Wigner
molecule limit, the strength of the Coulomb interaction is
tuned by changing the environmental dielectric constant ε,

(a)

(b) (c)

(d)

FIG. 48 (color online). Toy model for the two-electron Wigner
molecule in one dimension. (a) Two-electron potential Vðx1; x2Þ
(left panels), symmetric ground-state wave function ΨSðx1; x2Þ
(middle panels), and antisymmetric excited-state wave function
ΨASðx1; x2Þ (right panels). Upper panels: no Coulomb interaction
(ε ¼ ∞); lower panels: ε ¼ 1. (b) Line cuts of Vðx1; x2Þ along
x1 ¼ −x2 with (dashed) and without (dotted) Coulomb inter-
actions. (c) Line cut of the ground-state two-electron probability
density jΨðx;−xÞj2 along x1 ¼ −x2 in the single-particle model
(dotted line) and the Wigner molecule (solid line). Dashed line:
Vðx;−xÞ. The suppression of jΨðx;−xÞj2 near x ¼ 0 is an
indication of strong correlations. (d) Electron density ρðxÞ ¼R jψðx; x2Þj2dx2 in the Wigner molecule limit.

32Integrating jΨðx1; x2Þj2 along the diagonal x1 ¼ x2 in Fig. 48(a)
yields the two-particle correlation function gðrÞ ¼ R jΨðr=2þ X;
−r=2þ XÞj2dX.
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parametrized by an effective fine structure constant α ¼
e2=εℏvF ¼ 2.2=ε [so that rs ¼ ðα=2.2Þme2l=ℏ2]. With no
long-range interactions (α ¼ 0), the excited multiplet is 16-
fold degenerate (ΔAS;S0 ¼ 0) and separated from the ground-
state multiplet by the single-particle level spacing
(ΔS;AS ¼ Δls). With strong interactions (α ¼ 1), the antisym-
metric multiplet is pushed down in energy relative to the
ground state, with ΔS;AS becoming exponentially small. The
two-electron state is deep in the Wigner molecule limit for
rs ∼ 7, and already strongly correlated for intermediate rs.

Summarizing these predictions, Wigner correlations in a two-
electron quantum dot cause a collapse of ΔS;AS.
Experiments with clean nanotubes have provided clear

evidence of a Wigner molecule. Specifically, Pecker et al.
(2013) compared a one-electron to a two-electron quantum dot
in the same device (Fig. 50). A crucial step was a careful
analysis of the magnetic field dependence of the excitation
lines (Fig. 31). This allowed them to determine which splitting
in Fig. 50(a) corresponds to Δls, and which splitting in
Fig. 50(b) corresponds to ΔS;AS. They found Δls ¼ 8 meV
and ΔS;AS ¼ 0.85 meV. The tenfold suppression of ΔS;AS
compared to Δls indicates that the two-electron quantum dot
indeed forms a Wigner molecule.

2. Short-range interactions and intervalley exchange

In this section, we consider effects of the short-range
Coulomb interaction on the spectrum of a two-electron
quantum dot. As seen in the toy model, the long-range
interaction distorts the longitudinal wave functions, reducing
the splitting ΔS;AS between the symmetric and antisymmetric
multiplets. Because the long-range interaction does not couple
to valleys, it does not change the spin or valley level structure
inside a multiplet. In contrast, the short-range Coulomb
interaction can induce valley scattering and thus changes
the splitting between different valley and spin states.
Several exact diagonalization calculations have been per-

formed accounting for Wigner molecule effects, spin-orbit
coupling, and short-range Coulomb interactions (Secchi and
Rontani, 2009, 2010, 2012, 2013; Wunsch, 2009). The
resulting spectrum is shown in Fig. 51. In the calculation,
α is set to zero to artificially suppress long-range interactions
while keeping the short-range on-site energy33 U0 constant.

34

Figure 51(a) shows the spectrum as a function of α at zero
magnetic field. The colored (gray) lines represent the S (AS)
multiplet of Fig. 49. For α ¼ 1, the dot is in the Wigner
molecule regime due to long-range interactions, and the gray
lines in Fig. 51(a) become nearly degenerate with the colored
lines. Figures 51(b) and 51(c) show the B∥ dependence of the
spatially symmetric multiplet for α ¼ 0 and α ¼ 1.
The influence of short-range interactions can be most

clearly seen for α ¼ 0 [Fig. 51(b)]. The first effect is to lift
the degeneracy of the spin-polarized and valley-polarized
states. In the single-particle model (and also at α≳ 1, see
below), these four states are degenerate at B ¼ 0. With strong
short-range interactions, the energy of the valley-polarized
doublet is raised with respect to the spin-polarized doublet.
This is because a positive U0 used in the calculation penalizes
double occupancy of atomic sites, which by symmetry
considerations does not occur for spin-polarized states (see
Appendix B.9 for details). This results in a new splitting ΔVBS

FIG. 50 (color online). Observation of a Wigner molecule.
(a) Coulomb blockade spectroscopy of the 0-1 electron transition
from which a single-particle level spacing Δls ¼ 8 meV is
extracted. (b) Spectroscopy of the 1-2 electron transition: analysis
of the magnetic field dependence of the levels allows identi-
fication of the excited state corresponding to splitting ΔS;AS. The
value ΔS;AS ¼ 0.85 meV is extracted, 10 times smaller than Δls,
indicating that the two-electron quantum dot is in the Wigner
molecule regime with rs ≈ 1.6 (α ≈ 0.5 in Fig. 49). Adapted from
Pecker et al., 2013.
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FIG. 49 (color online). Exact calculation for two electrons in a
nanotube quantum dot. Vertical axis: energies of the antisymmetric
and symmetric excited multiplets relative to the symmetric ground
multiplet. Along the horizontal axis, the dielectric constant is
changed to tune the interaction strength. Numbers (6, 10, and 6)
indicate the degeneracy of each multiplet. Spin-orbit coupling is
not included (ΔSO ¼ 0) to illustrate only effects from the long-
range interactions. Increasing α ¼ 2.2=ε, there is a transition from
the single-particle limit (left) to the Wigner molecule limit (right).
In the Wigner molecule, the splitting ΔS;AS becomes exponentially
small. Adapted from Wunsch, 2009.

33The Coulomb potential for the short-range interaction is taken
with the same form as Eq. (36), but with cutoff d chosen such that
VCðx1 ¼ x2Þ ¼ U0, where U0 ¼ 15 eV is the charging energy
associated with putting two electrons on the same pz orbital. Such
a potential is also referred to as the Ohno potential (Mayrhofer and
Grifoni, 2008).

34Physically, this could be achieved by placing the nanotube close
to a metallic gate or dielectric slab, such that the distance to the
surface is large compared to the diameter but small compared to the
nanotube length.
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within the Sð0; 2Þ multiplet, which can be viewed as an
effective intervalley exchange energy.35 For the ASð0; 2Þ

multiplet, the effect of short-range Coulomb interaction is
predicted to be much smaller (Secchi and Rontani, 2013),
indicating that the longitudinal symmetry of the two-electron
wave function plays an important role (Appendix B.9).
The second effect of the short-range interaction is seen in

Fig. 51 as an increase in the splitting between the unpolarized
ground state and the unpolarized excited state. The splitting is
now equal to 2Δ�

SO ≡ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

SO þ Δ2
VBS

p
instead of 2ΔSO. An

important consequence is that the two-electron ground state
becomes valley polarized at a higher magnetic field than
without short-range interactions [the crossing field B�

SO is
higher in Fig. 51(b) than in Fig. 51(c)]. In the Wigner
molecule regime (α ¼ 1) the effects of short-range inter-
actions are suppressed: Because of strong correlations, the
two electrons have little overlap irrespective of their longi-
tudinal symmetry, thereby suppressing double occupancy of
the same atomic site. Similar intervalley exchange effects have
also been seen in other calculations (Mayrhofer and Grifoni,
2008; Secchi and Rontani, 2009, 2010, 2012, 2013; von
Stecher et al., 2010).
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FIG. 51 (color online). Calculated two-electron quantum dot
energies including short-range interactions. (a) Energies relative
to the ground state of the spatially symmetric multiplet (solid
lines) and the spatially antisymmetric multiplet (dashed lines).
The parameter α characterizes the strength of the long-range
interactions: α ¼ 1, Wigner molecule regime; α ¼ 0: no long-
range correlations. The valley-polarized, spin-polarized, and
unpolarized (ground and excited) levels are labeled, and the
degeneracy of each set of lines is indicated. For α ¼ 1, the dashed
lines become degenerate with the solid lines, as in Fig. 49 without
spin-orbit coupling and short-range interactions. For α ¼ 0, long-
range correlations are suppressed, the single-particle wave
functions begin to overlap, and short-range interactions become
stronger. Here new splittings ΔVBS and Δ�

SO appear in the valley-
spin structure of the multiplet. (b), (c) Magnetic field dependence
of the ground-state multiplet for (b) α ¼ 0 and (c) α ¼ 1. Short-
range interactions in (b) break the degeneracy between the valley-
polarized states and spin-polarized states at B ¼ 0. For α ¼ 1, the
valley and spin structure of the multiplet is the same as in the
single-particle model, even though the longitudinal wave func-
tions Ψðx1; x2Þ are highly correlated. States are labeled as in
Table IV, except that the states used in the calculation are
simplified such that they are independent of longitudinal
Ψðx1; x2Þ. (a) Adapted from Wunsch, 2009.

FIG. 52 (color online). Short-range Coulomb interactions in a
many-hole quantum dot (estimated as containing 10–40 holes).
(a)–(c) Cotunneling spectroscopy of different charge configu-
rations. (d)–(f) Expected spectra from a model with short-range
Coulomb scattering. Quantum numbers of occupied electronic
states in the valence band are indicated (cf. Fig. 18). Lines in
(a)–(c) measure length of the arrows in (d)–(f). Colors in
(e) correspond to those used in Fig. 51. The signature of
interactions can be seen by comparing the spectra of different
charge configurations: the valley and spin spectra of the
4N þ 1 and 4N þ 3 configurations are consistent with those
predicted by the single-particle model, while the spectrum of
the 4N þ 2 configuration is modified by short-range Coulomb
interaction. Adapted from Cleuziou et al., 2013.

35Note that Fig. 51 plots the energies with respect to the ground
state, explaining why spin-polarized states appear to be lowered with
respect to valley-polarized states. The abbreviation VBS denotes
“valley backscattering,” a name used for the term in the Coulomb
scattering matrix that gives rise to an intervalley exchange splitting.
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Experiments by Cleuziou et al. demonstrated clear inter-
valley exchange effects in the spectra of clean nanotubes in the
many-hole regime (Fig. 52). The key observation was that the
4N þ 1 and 4N þ 3 charge states showed a spectrum con-
sistent with shell filling of the single-particle valley and spin
levels, whereas a different spectrum was observed for the
4N þ 2 charge state (Cleuziou et al., 2013). This difference
between odd and even filling of the nanotube multiplet is a
clear signature that can only be explained including short-
range interactions.
The spectrum measured for 4N þ 2 filling is similar to that

of Fig. 51(b), except for the sign of the exchange interaction. In
particular, theoretical treatments of intervalley exchange as
outlined above predict that the valley-polarized states are raised
in energy above the spin-polarized states [as in Fig. 51(b)]. In
contrast, the observed spectra (Cleuziou et al., 2013) show the
opposite [Fig. 52(e)]. This may indicate that the exchange
integral implied from the experimental data has the opposite
sign compared to that predicted by theory so far. A similar
observation was also reported for electrons (Pecker et al.,
2013). The reason for this sign difference is not understood, but
suggests that the validity of theoretical approximations, as well
as alternative mechanisms, should be carefully checked.
As discussed previously, intervalley exchange is not

expected to play a significant role in the few-electron regime,
since the long-range Wigner correlations will suppress short-
range Coulomb interactions. The device of Fig. 52 was in the
many-hole regime: a possible explanation of why ΔVBS is so
large is that the long-range Coulomb interaction was screened
by the holes in nearby shells. However, a large ΔVBS was also
reported in the few-electron regime by both Pecker et al.
(2013) (ΔVBS ¼ 0.2 meV) and Cleuziou et al. (2013)
(ΔVBS ¼ 1.56 meV calculated from the observed Δ�

SO).
Estimates for uncorrelated states based on first-order pertur-
bation theory predict ΔVBS to be hundreds of μeV
(Appendix B.7). Taking into account correlations predicts a
much smaller value, 1 − 10 μeV (Secchi and Rontani, 2009,
2010, 2012, 2013; Wunsch, 2009; Pecker et al., 2013). It is an
open question why ΔVBS is so large in these experiments.
Finally, the large ΔVBS splitting seen in excited-state

spectroscopy has important implications for ground-state
spectroscopy, in which the magnetic field dependence of
Coulomb peak position in gate voltage is used to infer the
spin-orbit splitting (Churchill, Kuemmeth et al., 2009; Steele
et al., 2013). In particular, the magnetic field where kinks
occur in the ground-state chemical potentials is now given by
B�
SO ¼ Δ�

SO=2μorb instead of by BSO ¼ ΔSO=2μorb. This raises
the possibility that the large spin-orbit interaction reported by
Steele et al. (2013) extracted from the ground-state energies
could be due to a large Δ�

SO and ΔVBS instead of a large ΔSO.
The intervalley exchange splitting required to match the
experimental data, however, would be ΔVBS ∼ 3 meV, even
larger than the already unexpectedly large values reported
from excitation spectra (Cleuziou et al., 2013; Pecker
et al., 2013).

C. Beyond Wigner molecules: Correlation effects of many
electrons in quantum dots

The search for strong correlation effects with many elec-
trons inspired some of the very first experiments on

nanotubes. These early experiments were motivated by the
predictions of Luttinger-liquid theory (Luttinger, 1963;
Imambekov, Schmidt, and Glazman, 2012) and focused on
power-law behavior of the conductance (Bockrath et al., 1999;
Yao et al., 1999). Detailed understanding of these experiments
was hampered, however, by the large disorder present in these
devices, leading to localization and Coulomb blockade at low
temperatures. Dynamical Coulomb blockade also leads to
power-law dependence on bias and temperature (Ingold and
Nazarov, 1992). A clearer signature for a Luttinger liquid
would be spin-charge separation, giving spin and charge
modes with different velocities. Evidence for such spin-charge
separation has been seen in GaAs wires (Auslaender et al.,
2005), but has not been reported for nanotubes.
Correlation effects for two electrons in a carbon nanotube

quantum dot are now fairly well understood theoretically, and
well established experimentally. A natural question is then:
what happens if more electrons or holes are added to the
quantum dot? One route could be to probe the electron density
itself in the quantum dot using an STM (Ziani, Cavaliere, and
Sassetti, 2013). Another route is detailed spectroscopy of
suspended nanotube quantum dots in the multielectron and
multihole regime. From an experimental point of view, there
have been suggestions of correlation effects in clean many-
hole quantum dots (Deshpande and Bockrath, 2008). Studying
the ground-state spin and valley filling of a quantum dot as a
function of hole number and magnetic field, regions of strong
spin and valley polarization were observed that are not easily
explained by a single-particle picture. A possible explanation
of this strong spin and valley polarization is the formation of a
many-hole Wigner crystal in which the kinetic energy is
quenched by interactions, similar to the suppressed ΔS;AS in
the two-electron Wigner molecule. An exciting next step will
be to use low-disorder nanotubes with multiple gates to
perform detailed spectroscopy with tunable confinement,
exploring the transition from the well-established two-electron
Wigner molecule to the regime where many-electron Wigner
crystals and Luttinger-liquid-like correlations may occur.

D. Open questions

• Why is the observed intervalley exchange splitting ΔVBS
so large? Even with a completely screened long-range
interaction, calculations predict ΔVBS ≲ ΔSO, while the
opposite has been observed in some experiments.

• Why does ΔVBS have the wrong sign in experiments?
A possible scenario is a superexchange mechanism for
the short-range interaction. In superexchange, a net
exchange of two electrons is achieved by two separate
exchange processes with electrons in a third orbital. The
third orbital could correspond to a state in a different
shell, a state in the valence band, or a state in one of the
higher subbands. Superexchange can have the opposite
sign compared to direct exchange.

• Why are not more devices deep in the Wigner molecule
limit? Why is shell-filling theory so effective for describ-
ing so many devices?

• Are there qualitatively new predictions from theories that
take into account the dependence of the spatial wave
function on τ, s, and magnetic field (see Appendix B.6)?
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• How do the well-understood strong correlations of the
two-electron Wigner molecule extend to quantum dots
with more electrons? Are there clear experimental
signatures to look for?

VIII. CONCLUSIONS AND OUTLOOK

The chirality is an unknown parameter in all the experi-
ments discussed in this review. Although optical techniques
have been developed to determine chirality on specially made,
long nanotubes (Amer et al., 2013; Liu et al., 2013), these
characterizations are unfortunately incompatible with the short
length of nanotube devices in the quantum regime. Therefore
the growth of chirality-specific nanotubes remains an impor-
tant challenge, although its realization may not be expected
soon. Of course, several important (band-)structure parameters
can be inferred from transport, such as the gap and the
diameter. Uncertainties nevertheless arise since a measured
gap may be affected by electron-electron interactions, or even
mundane issues like surface coverage with water (Elias et al.,
2009). Such band-gap modifications are interesting subjects
by themselves but then knowledge of the bare band gap, and
thus the chirality, would be an indispensable input parameter.
Fortunately, the general physics discussed in this review

does not depend on the precise numerical values of the band-
structure parameters. Most of this physics is a consequence of
the simple fact that electrons in nanotubes live on a hexagonal
lattice that is confined to a one-dimensional, tubular geometry.
We stress that in this sense nanotubes are unique solid-state
structures. Given this structure the spin and valley phenomena
described in this review represent general physics independent
of the precise chirality.
The inclusion of spin-orbit interaction completes our

picture of the noninteracting, single-particle physics in nano-
tubes. Until 2008, this effect was widely thought to be
negligible, but it has turned out to be highly relevant in many
experiments. It is also important for applications involving
coherent control of quantum states. The emerging picture of
the role of interactions has also become much clearer in recent
years since ultraclean devices have become available. We have
described in detail the case of two interacting electrons. The
study of many interacting electrons (Deshpande and Bockrath,
2008) is a quest full of interesting challenges with its holy
grail being the formation of a long Wigner crystal.
The theoretical understanding of the single-particle physics

has been important to obtain a complete picture of the allowed
spin-orbit terms. There are still theoretical challenges relating
to a quantitative microscopic understanding of the effects
originating from the cylindrical geometry. As part of this,
renormalization by long-range Coulomb interactions of the
curvature-induced gap and the spin-orbit coupling has not
been investigated.
Quantum states are best defined in closed systems and this

review has therefore mainly focused on quantum dots whose
coupling to leads is weak (but large enough to allow a
measurable current). Quantum dot states change when the
coupling is increased, and qualitatively new phenomena can
arise such as various Kondo effects and possibly even
quantum phase transitions (Mebrahtu et al., 2012). Great
potential for new experiments arises when the leads are given
interesting properties. For example, superconducting leads

can induce superconducting correlations that are restricted by
the special spin-valley quantum numbers of nanotubes. One
can imagine Josephson junctions with the junction consisting
of a nanotube with multiple bends. Experiments using super-
conducting contacts performed so far indeed indicate a rich
research direction (de Franceschi et al., 2010). Also in such
hybrid nanotube devices, spin-orbit interactions may play
a role, e.g., leading to modified Josephson currents (Lim,
López, and Aguado, 2011) or new detection schemes
(Braunecker, Burset, and Levy Yeyati, 2013). Super-
conducting contacts to ultraclean nanotubes have also recently
been demonstrated (Schneider et al., 2012), opening the
possibility of studying proximity-induced superconductivity
with exceptionally low electronic disorder. Magnetic materials
could be used as contacts to explore spintronics confined to
one dimension (Sahoo et al., 2005).
The field of quantum computing has been inspirational for

the development of all kinds of qubit devices. This review
discussed various types of nanotubes. The coherent evolution
in qubits can be used as an extremely sensitive probe of the
environment. Nanotube qubits could be used to study in detail
nuclear spins or mechanical vibrations. The holy grail here
could be the realization of a coherent coupling between spin
and motion. Another inspiration from the field of qubits is the
use of nanotubes as on-chip charge sensors (Biercuk et al.,
2006; Gotz et al., 2008; Churchill, Bestwick et al., 2009), or
as a component in circuit quantum electrodynamics (Delbecq
et al., 2011). If long coherence times could be achieved, there
is potential for a dramatically improved charge sensor (Dial
et al., 2013). Nanotubes have the advantage for sensing that
short quantum dots show Coulomb blockade up to room
temperature (Postma et al., 2001).
We hope this review inspires new generations of experi-

ments taking advantage of the unique properties of carbon
nanotubes. Similar to the evolution of quantum Hall physics in
GaAs in the 1980s and 1990s, the remarkable quality of
devices that can now be achieved using ultraclean techniques
indicates that nanotubes will remain an exciting playground
for exploring rich new physics for years to come.
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APPENDIX A: TRANSPORT SPECTROSCOPY IN
QUANTUM DOTS

Here we give a basic overview of quantum dots and
transport spectroscopy, focusing on techniques by which data
in this review are derived.
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1. Coulomb blockade and the constant interaction model

An electrical schematic of a quantum dot as in Fig. 2 is
shown in Fig. 53. If both the tunnel rates to the leads ΓS;D and
the thermal energy kBT are less than the charging energy
EC ¼ e2=C, where C is the total dot capacitance to the outside
world, then the electron occupation becomes constrained to
take an integer value. The equilibrium occupation can be
adjusted by tuning VG.
This quantization of the dot occupation strongly modifies

the transport characteristics of this circuit. With all other
parameters held fixed, any change of the dot occupation away
from equilibrium increases the electrostatic energy of the
system. This causes a suppression of the current known as
Coulomb blockade. However, for particular values of VG,
the suppression can be lifted. This allows the energy levels of
the quantum dot to be mapped out by measuring the device
conductance as a function of VG [for extensive reviews, see
Kouwenhoven et al. (1997), Kouwenhoven, Austing, and
Tarucha (2001), and Hanson et al. (2007)].
Coulomb blockade is lifted whenever each step of electron

tunneling through the device is energetically favorable. To
understand how the observed conductance features relate to
the energy levels of the device, we introduce the electro-
chemical potential μðNÞ of the dot for occupation N, defined
as the difference in energyU between N-electron and (N − 1)-
electron ground states:

μðNÞ ¼ UðNÞ − UðN − 1Þ: ðA1Þ

Correspondingly, the electrochemical potentials of the leads
are defined as the energy to add an additional electron
at the Fermi level; with a bias VSD applied to the source as
in Fig. 2(a),

μS ¼ EF − eVSD; ðA2Þ

μD ¼ EF; ðA3Þ

where EF is the Fermi energy.
The electrochemical potential is in general related in a

complicated way to the single-particle energy levels, because
each electron added electrostatically perturbs the energies of
the electrons already on the dot. However, the relationship
becomes simpler in the constant-interaction model, which
makes two assumptions. First, all Coulomb interactions, both
between electrons on the dot and between the dot and the
environment, are parametrized by a single constant capaci-
tance C, which is the sum of capacitances CS; CD; CG to the

source, drain, and gate.36 Second, the single-particle energy
levels are assumed to be independent of these interactions, and
therefore not changed by adding additional electrons. Under
these assumptions, the dot energy is

UðNÞ ¼ ½−eðN − N0Þ þ CSVS þ CDVD þ CGVG�2
2C

þ
XN
i¼1

Ei;

ðA4Þ

where N0 is the occupancy with no voltages applied (set by
fixed charges in the environment, e.g., substrate charges, and
not necessarily quantized) and Ei are the single-particle
energy levels. The first term is the electrostatic energy stored
in the dot capacitances, while the second is the sum of the
single-particle confinement energies.
In this approximation, the electrochemical potential is

μðNÞ ¼
�
N − N0 −

1

2

�
EC −

EC

e
ðCSVS þ CDVD þ CGVGÞ

þ EN; ðA5Þ

where EC ¼ e2=C is the charging energy. The electrochemical
potential increases for successive values of N, forming a
ladder of levels as shown in Fig. 54. The separation between
adjacent levels is the addition energy:

EaddðNÞ ¼ μðNÞ − μðN − 1Þ
¼ EC þ ΔEðNÞ ðA6Þ

and includes both an electrostatic term EC and the quantum
energy level spacing ΔEðNÞ≡ EN − EN−1. From Eq. (A5),
changing the gate voltage moves the entire ladder of electro-
chemical potentials up or down.

2. Low-bias spectroscopy

The condition that both tunneling events be energetically
favorable is equivalent to saying that the chemical potential
must decrease at each step.37 In other words, some N must
exist for which

μS > μðNÞ > μD: ðA7Þ

Consider first the situation of low bias, where
eVSD ≪ ΔE; Eadd. The corresponding level diagram in the
blockaded case [Fig. 54(a)] shows that no ground-state
chemical potential satisfies Eq. (A7), so no current flows.
However, by increasing VG to lower the ladder of electro-
chemical potentials, the blockade can be lifted [Fig. 54(b)]. As
a function of VG, the current shows a series of Coulomb peaks,
with each valley between the peaks corresponding to the

FIG. 53. Electrical model of a single quantum dot: a conducting
island is coupled with tunnel rates ΓS and ΓD to source and drain,
and with capacitance CS, CD, and CG to source, drain, and gates.

36In devices with more than one gate, additional capacitances must
be added to the model in a straightforward way.

37Thermal excitations in the leads relax this constraint, broadening
the Coulomb peaks. Here this effect is ignored, which is permissible
if the temperature is less than both ΔE and EC.
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Coulomb blockade with a different fixed occupation N
[Fig. 54(c)]. For each N, the peak separation in VG is equal
to EaddðNÞ=eαG, where αG ¼ CG=C is the lever arm that
characterizes the coupling of the gate to the dot. By measuring
the Coulomb peak positions in gate space as a function of
some external parameter, the evolution of energy levels can be
deduced.

3. High-bias spectroscopy

Low-bias transport is sensitive only to the ground-state
energy of the device. With a bias larger than the single-particle
level spacing, ejVSDj > ΔE, the excited states can also be

populated. To interpret the resulting transport features, it is
necessary to consider the corresponding electrochemical
potentials. We define the first excited-state electrochemical
potential as

μ0ðNÞ ¼ U0ðNÞ − UðN − 1Þ ðA8Þ

¼ μðNÞ þ ΔEðN þ 1Þ; ðA9Þ

where U0ðNÞ ¼ UðNÞ þ ΔEðN þ 1Þ is the first excited
state energy of the N-electron dot. Higher excited states
can be defined the same way (Kouwenhoven, Austing, and
Tarucha, 2001).

FIG. 54 (color online). Two techniques of electron transport spectroscopy. In low-bias spectroscopy (a)–(d), at most a single quantum
dot level falls within the bias window set by the lead electrochemical potentials. (a) With no ground-state level in the bias window, levels
are filled up to μD, and the electron number is fixed (in this case, at N − 1) due to Coulomb blockade. (b) With one of the levels μðNÞ in
the bias window, the electron number fluctuates between N and N − 1, leading to conductance through the dot. (c) Sweeping VG moves
each level in turn through the bias window, leading to a series of current peaks. From the peak spacing, the addition energy Eadd for each
electron number can be deduced, allowing the ground-state energy to be studied. (d) Transport peak evolution measured using this
technique, where the energy levels Ei are assumed to vary with magnetic field B as shown in (e). In high-bias spectroscopy (f)–(j), more
than one level can fall within the bias window, allowing excited-state energies to be measured. Sweeping VG through the N − 1 ↔ N
transition, a series of transport peaks appear in dI=dVSD. (f) The current first appears when μðNÞ crosses μS. (g) When μ0ðNÞ crosses μS,
additional current can flow through an excited state of the dot. (h) The last peak in the series occurs when μðNÞ crosses μD, leaving the
bias window. (i) The corresponding series of transport peaks, with the spacings corresponding to ΔE and VSD marked. When
μðNÞ < μD, Coulomb blockade is reestablished with the dot in its N-electron ground state; there are therefore no peaks corresponding to
states with excitation energies larger than eVSD, such as that marked by the dotted line in (d)–(f). (j) Sketch of the peak evolution
measured using this technique for the same underlying energy levels as shown in (e). The VG trace in (i) corresponds to the vertical
dashed line in (j).
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As illustrated in Figs. 54(f)–54(h), transport can proceed via
both the ground state and excited states within the bias
window. As VG is increased from the N − 1 electron valley,
the current first increases when μðNÞ crosses μS [Fig. 54(f)].
With a further increase in VG, μ0ðNÞ enters the bias window
[Fig. 54(g)]. This allows transport via the first excited state,
which continues until μðNÞ crosses μD [Fig. 54(h)]. For more
positive values of VG, Coulomb blockade is reestablished, and
transport is blocked through both ground and excited states.
This series of resonances between dot and lead electro-

chemical potentials is usually seen by plotting the conduct-
ance dI=dVSD as a function of VG, which results in a series of
peaks as each transport channel is opened or closed
[Fig. 54(i)].38 From the peak spacings, the excited-state
energies can be read off as shown. This technique also gives
a convenient way to measure αG; the gate voltage separation of
the first and last peaks corresponds to shifting μðNÞ from μS to
μD, and is therefore equal to VSD=αG, where VSD is set in the
experiment.39 These two complementary spectroscopy meth-
ods allow the energy levels of the quantum dot to be measured
as a function of various experimental parameters.

APPENDIX B: THEORETICAL BACKGROUND

This Appendix introduces the theoretical background of the
review. The focus will be pedagogical and we will not attempt
to refer to relevant theoretical papers. For this see more
theoretical reviews and the main text. We derive the Dirac
equation used extensively in the main text. Physical pictures
of the two types of spin-orbit coupling (orbital- and Zeeman-
like terms) as well as the curvature-induced band gap are
given. Finally, we address the form of the single-particle and
two-particle wave functions.

1. Graphene band structure near the Dirac points

Since we are interested in the behavior close to the Fermi
level, we focus on the band structure near the two Dirac
points. This will be done in two ways: first a simple k · p
calculation is applied to show that the spectrum can be derived
from symmetry arguments alone. This is confirmed using a
tight-binding calculation, which is also easier to generalize to
the case with broken symmetry, as in a nanotube.

a. The k · p derivation

The k · p calculation for graphene (DiVincenzo and Mele,
1984; Marder, 2000) uses the fact that the potential has a unit

cell of two carbon atoms and is invariant under translations
Ta1;2 by lattice vectors a1;2 as well as under rotation R2π=3 by
angle 2π=3 about a lattice symmetry point (C3 symmetry). At
the Dirac points K and K0, we define Bloch states, denoted

ΨKðK0Þ
A ðrÞ and ΨKðK0Þ

B ðrÞ, which are eigenstates of the trans-
lation operator:

Ta1;2Ψ
K
AðBÞðrÞ ¼ eiK·a1;2ΨK

AðBÞðrÞ; ðB1Þ

and likewise for K0. They are degenerate because of the
inversion symmetry (which interchanges A and B and k and
−k). The relative phase between two sites separated by the
unit vector a1 is given by

eiK·a1 ¼ e−i2π=3 ¼ χ�; ðB2Þ

and by χ forK0. Symmetry allows the functions ΨK
A;BðrÞ to be

chosen as eigenstates of the rotations R2π=3 around a center of
a hexagon in the following way:

R2π=3ΨK
A ¼ χΨK

A ; R2π=3ΨK
B ¼ χ�ΨK

B : ðB3Þ

(At the K0 point, one should replace χ by χ�.)
We now derive an effective Hamiltonian using k · p

perturbation theory. Expanding the Bloch Hamiltonian Hk
around the Dirac points, we write k ¼ Kþ κ and

Hk ≈HK þHτ
κ; ðB4Þ

where τ ¼ 1 ð−1Þ for theK ðK0Þ point. AtK the functionsΨK
A

and ΨK
B are degenerate and we define our energy scale so that

hΨK
A jHKjΨK

A i ¼ 0. The correction to the Hamiltonian is

Hτ
κ ≡ ℏ

m
κ · p; ðB5Þ

with p ¼ −iℏ∇ being the momentum operator. In the
fΨK

A ðrÞ;ΨK
B ðrÞg basis, one can now find the matrix elements

of the momentum operator pK
CC0 ¼ hΨK

C jpjΨK
C0 i, where C;C0

both take the values A or B. Each matrix element pK
CC0 is a

vector in the x-y plane of the graphene sheet. The AB
component follows from the rotational symmetry of the wave
functions:

R2π=3pK
AB ¼ χ�pK

AB; R2π=3pK0
AB ¼ χpK0

AB: ðB6Þ

The eigenvectors in Eq. (B6) are

pK
AB ∝

�
1

−i

�
; pK0

AB ∝
�
1

i

�
: ðB7Þ

The diagonal elements pK
AA and p

K
BB vanish, since they obey an

analogous equation to Eq. (B6), but with χ replaced by 1,
which has only zero solutions.
The low-energy Hamiltonian (B5) is thus

Hτ
κ ∝

�
0 τκx− iκy

τκxþ iκy 0

�
¼ℏvFðτκxσ1þ κyσ2Þ; ðB8Þ

38Although the most common situation is for all peaks to have
positive dI=dVSD as drawn, the excited-state peaks can be negative if
there is a strong difference of tunnel coupling between different states
(Weinmann, Häusler, and Kramer, 1995).

39This discussion ignores processes whereby tunneling off the
quantum dot leaves it in anN − 1 electron excited state, which lead to
additional conductance peaks not shown in Fig. 54(g). These addi-
tional peaks, which are not relevant to data discussed in this review,
are clearly distinguished from those in Fig. 54(i) in a two-
dimensional plot of conductance versus VSD and VG and can usually
be eliminated by appropriate tuning of the tunnel barriers. For a full
discussion, see Kouwenhoven, Austing, and Tarucha (2001).
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where the Fermi velocity vF was introduced as a phenom-
enological parameter, to match Eq. (1). Here σ1; σ2 are the
usual Pauli matrices, now working in the A=B sublattice. To
describe the Hilbert space spanned by the valley index τ and
A=B sublattice spinor some authors use the terms isospin and
pseudospin. However, there is no established convention as to
which is which; see opposite definitions, for example, in Kane
and Mele (1997) and McCann et al. (2006).

b. The tight-binding derivation

In the tight-binding approach the starting point is the Bloch
functions of A and B sublattices:

Ψk
A=BðrÞ ¼

X
n

eik·RnφA=Bðr −RnÞ; ðB9Þ

where φA=B are the local basis functions40 for atomic orbitals
at sites A and B, respectively (see Fig. 55). Neighboring
orbitals hybridize via bonds along direction δi with overlap
matrix elements ti, with i ¼ 1; 2; 3. The Hamiltonian overlap
of Ψk

A and Ψk
B is therefore

hΨk
AjHjΨk

Bi ¼
X
i

tieik·ðδi−δ1Þ: ðB10Þ

For graphene, rotational symmetry means all bonds are
equivalent (ti ¼ t), and expanding around the K point gives
(using the definitions in Table I)

hΨk
AjHjΨk

Bi ¼ t
X
i

eik·ðδi−δ1Þ ¼ itffiffiffi
3

p ðκx − iκyÞ: ðB11Þ

To be consistent with the k · p result (B8), we then make a
transformation of the phase of the basis states so that
Ψk

B → −iΨk
B, which recovers the Hamiltonian (B8).

c. Graphene wave functions

Solving for the eigenenergies and eigenstates of the low-
energy Hamiltonian (B8)

Hτ
κψ

τ
κ ¼ Eκψ

τ
κ; ðB12Þ

one finds that the energies are Eκ ¼ �ℏvF
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2x þ κ2y

q
, with the

upper (lower) sign corresponding to the conduction (valence)
band. The corresponding eigenstates are “spinors” in A=B
space:

ψτ
κ ¼

�
Fτ
AðκÞ

Fτ
BðκÞ

�
¼ 1ffiffiffi

2
p

�� τκxþiκyffiffiffiffiffiffiffiffiffi
κ2xþκ2y

p
1

�
: ðB13Þ

The spinor gives the weights of the sublattice Bloch states
(B9). The wave function near K is thus

ΨKþκðrÞ ¼ FK
A ðκÞΨKþκ

A ðrÞ þ FK
B ðκÞΨKþκ

B ðrÞ; ðB14Þ

which can be separated into a fast and a slow part:

ΨKþκðrÞ ≈ eiκ·r½FK
A ðκÞΨK

A ðrÞ þ FK
B ðκÞΨK

B ðrÞ�; ðB15Þ

where the plane wave part eiκ·r is the so-called envelope
function. Of course, a similar relation holds near K0.

2. Nanotubes: Graphene on a cylinder

One must take care when transforming from the graphene
coordinates to the nanotube cylindrical coordinates.
Previously we used the coordinate system defined in
Table I, i.e., the horizontal bonds in Fig. 55 are along our
x direction. When changing to the coordinate system ðk⊥; k∥Þ,
the coordinates are rotated as

�
κx

κy

�
¼

�
cos ϑ sin ϑ

− sin ϑ cos ϑ

��
κ⊥
κ∥

�
; ðB16Þ

where ϑ is the angle between C and x̂, or ϑ ¼ π=6 − θ in
terms of the chiral angle θ. In these coordinates, Eq. (B8)
becomes

Hτ
κ ¼ ℏvF

�
0 eiτϑðτκ⊥ − iκ∥Þ

e−iτϑðτκ⊥ þ iκ∥Þ 0

�
: ðB17Þ

The coordinate rotation thus creates a phase factor eiτϑ, which
can be removed by a unitary transformation. Doing this, we
get the nanotube Hamiltonian in cylindrical coordinates:

Hτ
CNT;κ ¼ UϑHU†

ϑ ¼ ℏvFðτκ⊥σ1 þ κ∥σ2Þ; ðB18Þ

where the unitary operator Uϑ is

Uϑ ¼
�
1 0

0 eiτϑ

�
: ðB19Þ

FIG. 55. Examples of orthonormal spatial eigenfunctions sat-
isfying both Eqs. (B1) and (B3) at the K point for the minimal
tight-binding model. The site coefficients for a one-orbital
description of the eigenfunctions are shown, with χ ¼ ei2π=3.
In the general case, theΨK

A andΨK
B wave functions have the same

rotational symmetry as in the figure. The eigenfunctions at the K0
point are the same but with χ replaced by χ�.

40These functions are not orthogonal. The overlap matrix should
therefore in principle be included when solving Schrödinger’s
equation (B12). However, it turns out to be higher order in κ and
we neglect it here.
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The Hamiltonian (B18) has eigenenergies Eðκ∥; κ⊥Þ ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2∥ þ κ2⊥

q
.

When graphene is rolled up to a nanotube (Fig. 1), the wave
functions are restricted by periodic boundary conditions
[ΨKþκðrÞ ¼ ΨKþκðrþ CÞ], implying that

eiðKþκÞ·C ¼ 1: ðB20Þ

The condition for a metallic nanotube is that the spectrum of
the Hamiltonian (B18) is gapless, i.e., κ⊥ ¼ 0. This happens
when K · C ¼ 2πM, where M is an integer. From the
definitions in Table I, this is equivalent to n−m¼3M (Fig. 5).

3. The curvature-induced gap

Deformation of graphene due to nanotube curvature causes
the overlap matrix elements to depend on direction, breaking
the C3 rotational symmetry. Because the effect on the Dirac
cones is to shift them in momentum space (Kane and Mele,
1997), graphene remains ungapped when curved. However, in
a nominally metallic nanotube, this shift opens a band gap
(Fig. 8). To understand these effects, we return to the
degenerate subspace fΨK

A ;Ψ
K
B g and calculate the correction

to first order in the curvature perturbation Hcv. First, we see
the diagonal matrix elements are equal,41 hΨK

A jHcvjΨK
A i ¼

hΨK
B jHcvjΨK

B i. Next, using the tight-binding wave functions,
we find the off-diagonal elements are

hΨK
A jHcvjΨK

B i ∝ δt1 þ δt2χ þ δt3χ2; ðB21Þ

where δti is the curvature correction to the hopping matrix
elements for the three bonds. Since δt is zero for a bond
parallel to the nanotube axis and maximal for one
perpendicular to it, the leading angular dependence is
δti ∝ cos2 ηi, where ηi is the angle between the bond i and
the chiral vector. Equation (B21) then evaluates to

hΨK
A jHcvjΨK

B i ∝
X1
p¼−1

cos2ðϑþ 2pπ=3Þðχ�Þp ¼ 3

4
e−i2ϑ;

ðB22Þ

with χ replaced by χ� in the K0 valley. Applying the same
transformation that led from Eq. (B11) to Eq. (B8) and
changing the phase as explained below Eq. (B11), we obtain
the curvature correction in cylindrical coordinates:

HCNT;cv ¼ ℏvFΔκcv
�

0 ei3τθ

e−i3τθ 0

�

¼ ℏvFΔκcv½cosð3θÞσ1 − τ sinð3θÞσ2�: ðB23Þ

When this is added to the Hamiltonian (B18), it is clear that
both κ⊥ and κ∥ are shifted. However, the shift in κ∥ is
unimportant and can be absorbed into the longitudinal

momentum, whereas the shift in κ⊥ (the coefficient to σ1)
gives a gap in the nanotube spectrum as shown in Fig. 8.

4. Spin-orbit coupling

We now include the effect of spin-orbit coupling. Special
relativity tells us that an electric field is experienced by a
moving electron as a magnetic field. The resulting spin-orbit
interaction (SOI) Hamiltonian is given by

HSOI ¼ αðE × pÞ · s; ðB24Þ

where E is the electric field and α is a constant derived from
relativistic quantum mechanics. Each carbon ion contributes
to E, giving rise to matrix elements between π orbitals and in-
plane orbitals, which in turn are coupled by curvature. To
describe this based on microscopic parameters, one must start
from the known atomic spin-orbit coupling of carbon and the
sp2 tight-binding parameters. However, since we do not aim
to determine the size of the effect, we use a simpler approach,
namely to introduce phenomenological parameters for the
SOI-induced coupling between π orbitals in curved graphene.
In this approach, the perturbation (B24) gives matrix elements
in the Bloch basis (B14).
As explained in Sec. III.F.1, broken symmetry in the

nanotube allows the first-order matrix elements to be nonzero.
Consider the simplest way to break mirror symmetry, namely
a constant radial electric field Er. We need to calculate the
matrix elements of the spin-orbit Hamiltonian (B24) in the
fΨK

A ðrÞ;ΨK
B ðrÞg basis. Taking the cross product in Eq. (B24)

and projecting to the parallel direction T̂ gives

Erðẑ × pK
ABÞ∥ ¼ ℏvFErT̂ · ðix̂þ ŷÞ ¼ ℏvFEreiϑ; ðB25Þ

where we used the matrix element of p from Eq. (B7) and the
rotation (B16). This also holds for the K0 valley, if eiϑ is
replaced by e−iϑ. After the unitary transformation (B19), we
obtain the form of the orbital-like spin-orbit interaction in
cylindrical coordinates:

HSOI;orbital-like ¼ Δ1
SO

�
0 1

1 0

�
τs ¼ Δ1

SOσ1τs; ðB26Þ

where Δ1
SO is a phenomenological parameter. As mentioned,

this derivation is based only on symmetry and gives no
information about the magnitude of Δ1

SO, except that it is
linear in the atomic SOI and inversely proportional to the
nanotube diameter. Thus the orbital-like SOI has an easy
physical interpretation: it is caused by a Rashba effect,
because it is proportional to the azimuthal momentum and
the (mean) radial electric field. This is the SOI that was
originally derived for graphene (Kane and Mele, 1997) and for
nanotubes (Ando, 2000).
It was realized later that one more term is allowed by the

reduced symmetry (see Sec. III.F.3). This term comes from the
diagonal matrix elements:

BK
AA;∥ ¼ hΨK

A jðE × pÞ∥jΨK
A i; ðB27Þ

41This is because the combination of inversion and time-reversal
symmetries rules out a σz term in the Hamiltonian.
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and the identical expression for the B sublattice. For a constant
electric field (or one obeying the C3 symmetry) BK

AA;∥ is zero.
When the rotational symmetry is broken, it can be nonzero. It
turns out that BK

AA;∥ depends on the chirality. We study two
special cases: armchair and zigzag nanotubes.
Armchair nanotubes have mirror planes perpendicular to

the nanotube axis through an A atom. Therefore the curvature-
induced electric field has the same symmetry and so does
ðE × pÞ∥ ¼ Erp⊥. Using the fact that the wave function
transforms under reflection as ΨK

A → ðΨK
A Þ�, as evident from

Fig. 55, we have for armchair nanotubes

BK
AA;∥ ¼ hðΨK

A Þ�jðE × pÞ∥jðΨK
A Þ�i ¼ −ðBK

AA;∥Þ�; ðB28Þ

and therefore purely imaginary. On the other hand, since the
operator ðE × pÞ∥ is Hermitian, we must also have
BK
AA;∥ ¼ ðBK

AA;∥Þ�. Hence for an armchair nanotube BK
AA;∥ ¼ 0.

Zigzag nanotubes have no mirror plane through an atom
and perpendicular to the axis. Instead, there is a mirror plane
along the axis, and since ðE × pÞ∥ changes sign under this
symmetry, there is no cancellation as for the armchair case.
We conclude that there is a spin-orbit-interaction contribu-

tion diagonal in pseudospin of the form

HSOI;Zeeman-like ¼ Δ0
SOτs; ðB29Þ

where Δ0
SO depends on chirality and therefore has leading

harmonic Δ0
SO ∝ cos 3θ. This is the Zeeman-like term of

Eq. (18), which thus comes from intrasublattice matrix
elements, i.e., from next-nearest neighbor couplings.

5. Final form of the Hamiltonian

The final low-energy Hamiltonian is the sum of the metallic
nanotube Hamiltonian, the curvature term, and the two spin-
orbit terms:

Hκ ¼ ℏvFðκ∥σ2 þ Δκ⊥σ1Þ þ Δ0
SOτsþ Δ1

SOσ1τs; ðB30Þ

where both Δκ⊥ and Δ0
SO are proportional to cos 3θ. In

addition, a magnetic field gives rise to an Aharonov-Bohm
phase, as well as the usual Zeeman term:

HB ¼ ℏvFτΔκB⊥σ1 þ 1
2
gsμBs ·B ðB31Þ

with ΔκB⊥ ¼ eDB∥=4ℏ. The spectrum can be found by simple
diagonalization of the Hamiltonian, giving the expression in
Eq. (20) for E�

τ;sðB∥Þ for the case of B directed along the
nanotube. In that equation the gap is E0

G ¼ −2ℏvFΔκ⊥ and the
confinement energy is Econf ¼ ℏvFκ∥. The convention used
here has for the time-reversal operator T ¼ iτxsyK, where K
denotes complex conjugation. Time reversal therefore trans-
forms s → −s, τ → −τ, σ2 → −σ2, and k∥ → −k∥.

42

6. Single-particle quantum dot states

Next we discuss the single-particle states in a quantum dot.
We assume a parallel magnetic field (making the spin
projection s along the axis a good quantum number) and a
potential that is flat in the middle of the dot. The wave function
is thus a superposition of right-moving and left-moving
waves. In principle, both plane wave solutions close to K
and K0 should be included, because the dot terminations can
mix the two valleys. However, we approximate the valley
index a good quantum number, assuming a smooth confining
potential, and later include mixing via a matrix element
between the valley-polarized states, as explained in
Sec. III.B. The standing wave is then of the form

Ψdot;sðt; cÞ ¼ ðCeiκ∥t þDe−iκ∥tÞuKðt; cÞjsi; ðB32Þ

where uKðt; cÞ is the periodic part of the Bloch wave function,
and where the relation between C and D is determined by
the reflection coefficients rL and rR at the ends of the dot,
because the condition for a bound state is C ¼ rLD ¼ rLrRC.
Importantly, the envelope wave function depends on valley
and spin, because κ∥ depends on both through the energy

ℏvFκ∥ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE − sτΔ0

SO − EZÞ2 − ðsΔ1
SO − τE0

G=2þ EBÞ2
q

:

ðB33Þ

(Here EB ¼ evFDB∥=4.) For B ¼ 0, we thus have two
Kramers doublets separated by an energy ΔSO, as explained
in the main text. We emphasize that because of the spin-orbit
induced difference in κ∥, the two doublets cannot be written as
product states of longitudinal, valley, and spin components.
In the main text, we refer to the single-particle states as

jντsi, where ν is a quantum number that labels the solutions
to the above problem. Two-electron states are then built
from the two-electron Slater determinants: ðjντsi1jν0τ0s0i2 −
jντsi2jν0τ0s0i1Þ=

ffiffiffi
2

p
as in Table IV. These states do not take

into account the fact that the longitudinal wave functions are
easily distorted by Coulomb interactions, resulting in highly
correlated two-electron states (cf. Sec. VII).

7. Two-electron states and exchange interaction

In a two-electron quantum dot the question of interaction
corrections to the simple single-particle filling arises. We
discuss these corrections using first-order perturbation theory.
The two-electron matrix element between four states
ψa;ψb;ψc, and ψd has the form

Vabcd ¼ ha; bjVjc; di ¼
Z

dr
Z

dr0ρadðrÞVðr; r0Þρbcðr0Þ;
ðB34Þ

where

ρabðrÞ ¼ hψajrihrjψbi; ðB35Þ

and Vðr; r0Þ is the Coulomb interaction potential. The
state ja; bi is a simple product state ja; bi ¼ jaijbi and
not an antisymmetrized state as in the headers of Table IV.

42Some use a convention where σi → τσi, i ¼ 1; 2. This is
equivalent to a unitary transformation H → UHU†, with
U ¼ eiπð1−τÞσ3=4. This also changes the definition of the time-reversal
operator to T → is2σ3τ1K, such that time reversal corresponds to a
sign change of σ1; s; τ and k∥.
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This matrix element between two Bloch states in
Eq. (B14) is

ρk1k2
ðrÞ ¼ 1

NA

X
Rn

½jφAðrÞj2 þ jφBðrÞj2�e−iðk1−k2Þ·Rn ; ðB36Þ

where NA is a normalization equal to the number of unit cells
and where we have neglected contributions from the overlap
of neighboring atoms. The Coulomb matrix element obtained
by inserting Eq. (B35) into (B34) naturally separates into a
short- and a long-range part V ¼ VSR þ VLR. The two
contributions are

VSR
k1k2k3k4

≈ VSR
0 δk1þk2−k3−k4

; ðB37aÞ

VLR
k1k2k3k4

≈
1

V

Z
V
dr

Z
V
dr0Vðr − r0Þ

× eiðk1−k4Þ·rþiðk2−k3Þ·r0 ; ðB37bÞ

where VSR
0 ¼ 2U0=NA and V is a normalization area of the

nanotube surface. For a quantum dot of length L and diameter
D, the short-range part is VSR ≈ U0=½60LD=ðnmÞ2�, which
for parameters L ¼ 300 nm, D ¼ 2 nm, and U0 ¼ 10 eV
gives VSR

0 ¼ 0.3 meV.

8. Exchange integrals due to long-range Coulomb interaction

Rotational symmetry can be used to show that
the long-range part vanishes except when ðk1 þ k2−
k3 − k4Þ · C ¼ 0, which in terms of valley index means
τ1 þ τ2 ¼ τ3 þ τ4 (Weiss et al., 2010). This valley selection
rule contrasts with that for spin, which is s1 ¼ s4 and s2 ¼ s3.
Separating both the wave vectors and the coordinates into a
transverse part and a longitudinal part, it becomes evident that
the rapid oscillations of the Bloch wave functions make it a
good approximation to ignore terms off diagonal in valley
indices, because

VLR
τ1;τ2;τ3;τ4 ∝

Z
dφdφ0e−iMðτ1−τ4Þðφ−φÞVðφ − φ0Þ; ðB38Þ

where the condition τ1 þ τ2 ¼ τ3 þ τ4 was used and where
M ¼ K ·C=2π is an integer. Therefore, it is generally true that
for narrow-gap nanotubes, which have M ≠ 0, the Coulomb
matrix element is strongly suppressed.
Turning to the case of two electrons in a single dot,

occupying single-particle states jντsi in symmetric or anti-
symmetric combinations as discussed in Sec. IV, the matrix
elements between such orbitals therefore obey

h1τ1s1; 2τ2s2jVLRj3τ3s3; 4τ4s4i ∝ δs1;s4δs2;s3δτ1;τ4δτ2;τ3 :

ðB39Þ

This equation can be applied to calculate the long-range
interaction energies of the states in Table IV. For the Sð0; 2Þ
states, we get four terms. The cross terms vanish, because they
cannot have τ ¼ τ0 and s ¼ s0 at the same time. We therefore
conclude that there are only diagonal, direct Coulomb
interaction terms, i.e., no exchange corrections. Assuming

the charge distribution of both Kramers pairs to be approx-
imately the same, we thus have

hψ jVLRjψi ¼ EC; where ψ ∈ Sð0; 2Þ: ðB40Þ

Consider now the symmetric states containing different
longitudinal modes S0ð0; 2Þ. There are now eight terms in
the interaction integral. The nonzero terms have the same
valley and spin for the same electron label. If τ ¼ τ0 and
s ≠ s0, there are two positive cross terms. The same is true if
τ ≠ τ and s ¼ s0 [because of the fast oscillations that lead to
Eq. (B39)]. We therefore conclude

hS0ð0; 2ÞjVLRjS0ð0; 2Þi ¼ EC þ 2C; ðB41Þ

where

C ¼ 1
4
h1Ks; 2K0sjVLRj1K0s; 2Ksi ðB42Þ

is an exchangelike Coulomb integral.
The situation is similar for the antisymmetric states

ASð0; 2Þ, except now the sign is opposite, i.e., there is an
energy reduction due to exchange integrals. These energy
shifts can be absorbed into the definition of ΔS;AS and ΔAS;S0 ,
which is what is done in Table IV.

9. Exchange integrals due to short-range Coulomb interaction

For the short-range Coulomb interaction the valley selec-
tion rules in Eq. (B39) do not apply. Within the Sð0; 2Þ
multiplet we find that states with antiparallel spin are raised in
energy, assuming a repulsive short-range interaction U0. This
is because in such a state, two electrons can occupy the same
atomic site, in contrast to the spin-polarized states where
spatial antisymmetry forbids this.
The antisymmetric states ASð0; 2Þ are almost unaltered by

the short-range interaction (Secchi and Rontani, 2013),
because their longitudinal symmetries differ from those in
Sð0; 2Þ. This can be intuitively understood by considering
the limit ΔSO → 0, which allows us to separate each two-
electron wave function into a longitudinal part and a spin-
valley part. In this limit, AS states have zero amplitude to
occupy the same cross section of nanotube and therefore the
same atomic site. As an example, consider the valley-
polarized state K↓; K↑. For ΔSO → 0 it can be rewritten
as ðjν; ν0i − jν0; νiÞjK;Kiðj↓;↑i þ j↑;↓iÞ, with an asym-
metric longitudinal part as expected. In contrast, the
analogous state in Sð0; 2Þ is longitudinally symmetric:
K↓; K↑ → jν; νijK;Kiðj↓;↑i − j↑;↓iÞ.

10. Two-electron states and Pauli blockade

In Sec. IV we discussed Pauli blockade of two-electron
states at zero magnetic field. We noted that for some of the
blocked states Pauli blockade can be lifted by a dephasing
mechanism only, whereas other blocked states require that the
spin or valley quantum number within one of the dots be
flipped. Here we give some examples.
As an example for dephasing, consider the blocked state

ASð1; 1ÞK↓; K0↑. From Table IV we can write out the wave
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function by identifying ν ¼ 1 ð2Þ with the lowest longitudinal
shell in the right (left) dot. After rearranging some terms this
state has the form

ASð1; 1ÞK↓; K0↑ ¼ j1K↓i1j2K0↑i2 − j2K0↑i1j1K↓i2
þ j1K0↑i1j2K↓i2 − j2K↓i1j1K0↑i2:

ðB43Þ
We are interested in the time evolution of this state, and model
dephasing by assuming an effective Kramers splitting in the
left dot that is slightly larger than that in the right dot:
ðE1K0↑−E1K↓Þ¼ðE2K0↑−E2K↓Þþδ. Up to a trivial dynamical
phase, the state evolves with time t to

j1K↓i1j2K0↑i2 − j2K0↑i1j1K↓i2
þ e−2iδtðj1K0↑i1j2K↓i2 − j2K↓i1j1K0↑i2Þ: ðB44Þ

When e−2iδt ¼ −1 the blocked state ASð1; 1ÞK↓; K0↑ has
dephased into the unblocked state S0ð1; 1ÞK↓; K0↑. This is
similar to the rapid dephasing from T0 to S due to an
Overhauser field difference in a conventional double dot.
Next, consider the blocked state ASð1; 1ÞK↓; K↓. We show

that a valley flip in either dot will lift Pauli blockade. We can
write out the state as

ASð1; 1ÞK↓; K↓ ∝ j1K↓i1j2K↓i2 − j2K↓i1j1K↓i2: ðB45Þ

A valley flip in, e.g., the left dot (2K↓ → 2K0↓) leads to the
state

j1K↓i1j2K0↓i2 − j2K0↓i1j1K↓i2; ðB46Þ

which is a superposition of ASð1; 1ÞK↓; K0↓ and the
unblocked state S0ð1; 1ÞK↓; K0↓. Alternatively, a spin flip
in the left dot results in a superposition of ASð1; 1ÞK↓; K↑
and S0ð1; 1ÞK↓; K↑, whereas a combined spin-valley flip
results in a superposition of ASð1; 1ÞK↓; K0↑ and
Sð1; 1ÞK↓; K0↑. In all cases, Pauli blockade is circumvented
by the admixture of unblocked states (i.e., longitudinal
symmetric states). However, because of spin-orbit coupling,
a single flip in one of the dots requires emission or absorption
of energy, whereas a spin and valley flip may be allowed by
energy conservation. Therefore, “spin-valley” blockade can
occur not primarily due to spin and valley conservation, but
due to energy conservation. Thus energy conservation plays a
central role in establishing Pauli blockade, just as in conven-
tional quantum dots (cf. Fig. 27). In nanotubes the relevant
energy scale is the spin-orbit energy rather than the orbital
level spacing. Therefore, Pauli blockade in nanotubes is
generically weaker than a singlet-triplet Pauli blockade in
conventional semiconductors.
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