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In this article a detailed review on the development of optical atomic clocks that are based on trapped
single ions and many neutral atoms is provided. Important technical ingredients for optical clocks are
discussed and measurement precision and systematic uncertainty associated with some of the best
clocks to date are presented. An outlook on the exciting prospect for clock applications is given in
conclusion.
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I. INTRODUCTION

An 1879 text written by Thomson (Lord Kelvin) and Tait
(Thomson and Tait, 1879; Kelvin and Tait, 1902; Snyder,
1973) included the following:
“The recent discoveries due to the kinetic theory of gases

and to spectrum analysis (especially when it is applied to the
light of the heavenly bodies) indicate to us natural standard
pieces of matter such as atoms of hydrogen or sodium, ready
made in infinite numbers, all absolutely alike in every physical
property. The time of vibration of a sodium particle corre-
sponding to any one of its modes of vibration is known to be
absolutely independent of its position in the Universe, and it
will probably remain the same so long as the particle itself
exists.”
Although it took a while to realize, this idea attributed to

Maxwell (Thomson and Tait, 1879; Kelvin and Tait, 1902) is
the basic idea behind atomic frequency standards and clocks.
In this review, we focus on frequency standards that are based
on optical transitions, which seems to be implicit in the text
above. Optical frequency references have certain advantages
over their predecessors at microwave frequencies; these
advantages are now starting to be realized.
The need for more accurate and precise frequency standards

and clocks has continued unabated for centuries. Whenever
improvements are made, the performance of existing appli-
cations is enhanced, or new applications are developed.
Historically, the prime application for clocks has been in
navigation (Major, 2007; Grewal, Andrews, and Bartone,
2013), and today we take for granted the benefits of global
navigation satellite systems (GNSS), such as the global
positioning system (GPS) (Kaplan and Hegarty, 2006; Rao,
2010; Grewal, Andrews, and Bartone, 2013). With the GPS,
we can easily navigate well enough to safely find our way
from one location to another. We look forward to navigation
systems that will be precise enough to, for example, measure
small strains of the Earth’s crust for use in such applications as
earthquake prediction. In addition, frequency standards pro-
vide the base unit of time, the second, which is by definition
derived from the electronic ground-state hyperfine transition
frequency in caesium. Eventually the definition of the second

might be based on an optical transition (Gill, 2011), but even
now, accurate optical frequency standards are becoming de
facto secondary standards (CIPM, 2013).
Aside from the benefits of these practical applications, for

scientists there is the additional attraction of being able to
precisely control a simple quantum system so that its
dynamics evolve in its most elemental form. One exciting
possibility is that the evolution may not be as originally
expected. For example, an area of current interest explores the
idea that the relative strengths of the fundamental forces may
change in time; this would indicate new physics (Bize et al.,
2004; Fischer et al., 2004; Blatt et al., 2008; Rosenband et al.,
2008b). Comparing clocks based on different atoms or
molecules may someday make such effects observable.
Another example is the application of clock precision to
the study of many-body quantum systems (Martin et al., 2013;
Rey et al., 2014).

A. Ingredients for an atomic frequency standard and clock

All precise clocks work on the same basic principle. First
we require a system that exhibits a regular periodic event; that
is, its cycles occur at a constant frequency, thereby providing a
stable frequency reference and a basic unit of time. Counting
cycles of this frequency generator produces time intervals; if
we can agree on an origin of time then the device subsequently
generates a corresponding time scale. For centuries, frequency
standards were based on celestial observations, for example,
the Earth’s rotation rate or the duration of one orbit of the
Earth about the Sun (Jespersen and Fitz-Randolph, 1999). For
shorter time scales other frequency standards are desirable;
classic examples include macroscopic mechanical resonators
such as pendulum clocks, John Harrison’s famous spring
based clocks for maritime navigation, and starting in the early
20th century quartz crystal resonators (Walls and Vig, 1995;
Vig, 1999). However, each of these frequency standards had
its limitations; for example, the Earth’s rotation frequency
varies in time, and the frequency stability of macroscopic
mechanical resonators is limited by environmental effects
such as changes in temperature.
As Maxwell realized, an atom can be an ideal frequency

standard because, as far as we know, one atom is exactly
identical to another atom of the same species. Therefore, if we
build a device that registers the frequency of a natural
oscillation of an atom, say the mechanical oscillations of
an electron about the atom’s core, all such devices will run at
exactly the same frequency (except for relativistic effects
discussed later), independent of comparison. Therefore, the
requirement for making an atomic frequency standard is
relatively easy to state: we take a sample of atoms (or
molecules) and build an apparatus that produces an oscillatory
signal that is in resonance with the atoms’ natural oscillations.
Then, to make a clock, we simply count cycles of the
oscillatory signal.
Frequency standards have been realized from masers or

lasers; in the context of clocks perhaps the most important
example is the atomic hydrogen maser (Goldenberg,
Kleppner, and Ramsey, 1960; Kleppner, Goldenberg, and
Ramsey, 1962) which is still a workhorse device in many
standards laboratories. However, the more common method
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for achieving synchronization, and the primary one discussed
here, is based on observing the atoms’ absorption. Typically,
we first prepare the atom in one of the two quantum states
(j1i ¼ lower-energy state, j2i ¼ upper state) associated with
one of its natural oscillations. We then use a “local oscillator”
that produces radiation around this oscillation frequency and
direct the radiation toward the atoms. The device will be
constructed so that we can detect when the atoms change state.
When these state changes occur with maximum probability,
then we know that the oscillator frequency is synchronous
with the atoms’ natural oscillation. The details of this process
are discussed later.

B. Characterization of frequency standards

The degree to which we can synchronize a local oscillator’s
frequency to the atoms’ natural oscillations is always limited
by noise in the measurement protocol we use to establish this
synchronization. In addition, although isolated atoms are in a
sense perfect, their natural frequencies can be shifted from
their unperturbed values by external environmental effects,
typically electric and magnetic fields. Therefore, we must find
a way to calibrate and correct for these “systematic” frequency
shifts. Even then, there will always be errors in this correction
process that we must characterize. It is therefore convenient to
divide the errors into two types: statistical errors that arise
from measurement fluctuations and errors in the systematic-
effect corrections that are applied to the measured frequencies.
We typically characterize these errors in terms of the fractional
frequency errors Δf=f0, where f0 is the reference transition
frequency and Δf is the frequency error.
For statistical errors, we first suppose we have a perfect

local oscillator whose frequency fs is near fc, the frequency of
the clock atoms under test (fc may be shifted from f0 due to
systematic effects). We assume we can measure the fractional
frequency difference y≡ ðfc − fsÞ=f0 and average this quan-
tity over various probe durations τ. A commonly used measure
of the noise performance of clocks is the Allan variance
(Allan, 1966; Riehle, 2004; Riley, 2008)

σ2yðτÞ ¼
1

2ðM − 1Þ
XM−1

i¼1

½hyðτÞiiþ1 − hyðτÞii�2; ð1Þ

where hyðτÞii is the ith measurement of the average fractional
frequency difference over duration τ, and where we ideally
assume there is no dead time between successive measure-
ments i and iþ 1. The quantity σyðτÞ is commonly called the
stability (but is really proportional to the instability). More
efficient use of data uses overlapping samples of shorter-
duration measurements resulting in the “overlapping” Allan
variance. This and more sophisticated measures, which can
reveal the spectrum of the noise, are discussed in Riehle
(2004) and Riley (2008), but the essence of the measure is
contained in Eq. (1). Many sources of noise are well behaved
(stationary) in the sense that if we average the output
frequency of our standard for longer times, our precision
on the measured frequency also improves [σyðτÞ decreases].
However, other sources of noise, such as systematic shifts that
drift over long durations, will cause σyðτÞ to level off or

increase with increased τ. Of course, we do not have perfect
standards to compare to, so we always observe σyðτÞ for
comparison between two imperfect clocks. Nevertheless, if we
can compare three or more clocks, it is possible to extract the
noise performance of each separately (Riley, 2008).
Systematic errors are more challenging to document, in part

because we may not always know their origin, or even be
aware of them. If the measured frequency stability does not
improve or becomes worse as τ increases, this indicates some
systematic effect that we are not properly controlling. Even
worse is that stability may improve with τ but we have not
accounted for a (constant) systematic offset. Eventually such
effects will likely show up when comparing different versions
of the same clock; in the meantime, we must be as careful as
possible to account for systematic shifts.

C. Scope of paper

In this paper we are primarily interested in the physics of
optical clocks, the performance and limitations of existing
devices, and prospects for improvements. The status of the
field has been summarized in various reviews and conference
proceedings (Madej and Bernard, 2001; Gill, 2005, 2011;
Hollberg, Oates et al., 2005; Maleki, 2008; Margolis, 2009;
Derevianko and Katori, 2011; Poli et al., 2013), so that
we will not discuss the details of all experiments. Rather, we
will focus on aspects of a few high-performance clocks to
illustrate the problems and issues that must be faced, as well as
prospects for further advances in the state of the art. Our
review covers optical atomic clocks based on both trapped
single ions and many atoms. For simplicity, we use the term
“atomic” clocks but of course a molecular or even a nuclear
transition might be an equally viable candidate for a frequency
reference.

II. DESIDERATA FOR CLOCKS: QUANTUM SYSTEMS
WITH HIGH-FREQUENCY, NARROW-LINE
RESONANCES

A. Stability

Following the basic idea outlined previously, to stabilize
the frequency of a local oscillator to an atomic transition,
we need to extract a sensitive discriminator signal dS=df,
where S is the signal obtained from the atoms and f is the
frequency of applied radiation. This signal can then be used to
feed back and stabilize the oscillator’s frequency. There
will be fluctuations δS on the measured signal S so that
assuming no additional noise is injected during the
protocol, the corresponding fractional frequency errors of
the stabilized local oscillator during one feedback cycle can be
expressed as

δy1 ¼
�
δf
f0

�
1

¼ δS
f0ðdS=dfÞ

: ð2Þ

From this expression we see that we want f0 and dS=df to be
as large as possible and δS as small as possible. If we denote
the frequency width of the atomic absorption feature by Δf
and the signal strength on resonance as S0, we can reexpress
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Eq. (2) as δy1 ¼ δS=S0QκS, whereQ≡ f0=Δf is theQ factor
of the transition and κS ≡ ðdS=dfÞΔf=S0 is a parameter on
the order of 1 that depends on the line shape. From this
expression for δy1, it appears that the key parameters are
signal-to-noise ratio and Q. However, we must remember that
this is for a single feedback cycle, which, for a given Q,
requires a measurement duration Tm proportional to 1=Δf. If
δS is dominated by white frequency noise we then have for
repeated measurements

σyðτÞ¼
�
δf
f0

�
1

ffiffiffiffiffi
1

M

r
¼ δS
f0ðdS=dfÞ

ffiffiffiffiffiffi
Tm

τ

r
¼ δS
S0QκS

ffiffiffiffiffiffi
Tm

τ

r
; ð3Þ

where τ is the total measurement duration and M ¼ τ=Tm is
the number of successive measurements.
To stabilize the local oscillator to the atomic transition, we

typically first prepare the atoms in one of the two clock states,
here the lower-energy state j1i. We then excite the clock
transition resonance at a frequency near that which gives the
maximum value of ðdS=dfÞ=δS, which is usually near or at
the half-intensity points of the absorption feature. In the
absence of relaxation this leaves the atom in a superposition
state αj1i þ βj2i with jαj2 ≃ 1=2 and jαj2 þ jβj2 ¼ 1.
In most cases discussed in this review, the observed signal is

derived by use of what Hans Dehmelt termed the “electron-
shelving” technique (Dehmelt, 1982). Here one of the two
states of the clock transition, say the lower-energy state j1i, is
excited to a third level by a strongly allowed electric dipole
“cycling” transition where this third level can decay only back
to j1i. (We assume j2i is not excited by the cycling transition
radiation.) By collecting even a relatively small number of
fluorescent photons from this cycling transition, we can
discriminate which clock state the atom is projected into
upon measurement: if the atom is found in the state j1i it
scatters many photons; if its optically active electron is
“shelved” into the upper clock state j2i, fluorescence is
negligible. With this method, we can detect the projected
clock state with nearly 100% efficiency. When applied to N
atoms simultaneously, the atomic signal and its derivative will
increase by a factor of N. Upon repeated measurements
of the state αj1i þ βj2i, there will be quantum fluctuations
in which state the atom is projected into for each atom. These
quantum fluctuations contribute noise δS ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Npð1 − pÞp ¼ffiffiffiffi
N

p jαβj, where p ¼ jβj2 is the transition probability (Itano
et al., 1993). This “projection” noise is the standard quantum
noise limit in the measurements. Added noise, for example,
phase noise from the probe local oscillator, will increase σyðτÞ.
In principle, to stabilize the oscillator to the atomic

reference we would need only to probe one side of the
absorption line, but in practice it is often necessary to
alternately probe both sides of the line and derive an error
signal based on the two different values of p. Doing so
reduces the influence of technical noise to the signal. The
feedback servo is arranged to drive this difference to zero, in
which case the mean of the two probe frequencies is equal to
the atomic resonance frequency. Equation (3) still holds, but
since the absorption feature will be symmetric to a high
degree, probing on both sides of the line makes the

stabilization insensitive to slow variations in probe intensity,
resonance linewidth, and detection efficiency.
A particularly simple expression for σyðτÞ holds if we probe

the resonance using the Ramsey method of separated fields
(Ramsey, 1985) with free-precession time Tm ∼ 1=ð2πΔfÞ
and assume (1) π=2 pulse durations are short compared to Tm,
(2) unity state detection efficiency, (3) relaxation rates are
negligible compared to 1=Tm, (4) the duration required for
state preparation and measurement (dead time) is negligible
compared to Tm, and (5) noise is dominated by quantum
projection noise. In this case (Itano et al., 1993),

σyðτÞ ¼
1

2πf0
ffiffiffiffiffiffiffiffiffiffiffiffi
NTmτ

p : ð4Þ

This expression clearly shows the desirability of high-
frequency, large atom numbers, long probe times (with
corresponding narrow linewidths), and of course long aver-
aging times τ. If N, Tm, and τ can somehow be preserved,
we see that the improvement in σyðτÞ is proportional to f0.
Stated another way, if N and Tm are preserved, the time it
takes to reach a certain measurement precision is proportional
to f−20 , emphasizing the importance of high-frequency
transitions.

B. High-frequency clock candidates

The advantage of high-frequency transitions had been
appreciated for decades during which clock transitions based
on microwave transitions (typically hyperfine transitions)
prevailed. Given the importance of high f0 and narrow
linewidths, one can ask why we do not make the jump to
very high frequencies such as those observed in Mössbauer
spectroscopy. For example, a Mössbauer transition in 109Ag
has f0 ≃ 2.1 × 1019 Hz and a radiative decay time τdecay ≃
60 s corresponding to a naturalQ value≃1.3 × 1022 (Alpatov
et al., 2007; Bayukov et al., 2009). Even with practical
limitations, the performance of actual Mössbauer systems is
still quite impressive. For example, consider the 93 keV
Mössbauer transition in 67Zn (Potzel et al., 1992). HereQ’s of
5.8 × 1014 were observed [see Potzel et al. (1992), Fig. 5] and
a statistical precision of 10−18 was obtained in 5 days. As is
typical in Mössbauer spectroscopy, a convenient local oscil-
lator is obtained by using a Mössbauer emitter of the same
species whose frequency is swept via the first-order Doppler
shift when this source is moved at fixed velocity relative to the
absorber. However, systematic effects in Potzel et al. (1992)
were at a level of around 2 × 10−17 due primarily to pressure
effects in the host material and dispersive line-shape effects.
More importantly in the context of clocks, there is no way to
observe coherence of the local oscillator; that is, there is
currently no means to count cycles of the local oscillator or
compare clocks based on different transitions. Moreover,
comparison of Mössbauer sources over large distances
(≫1 m) is intractable due to the lack of collimation of the
local oscillator radiation. On the other hand, if further
development of extreme ultraviolet frequency combs
(Gohle et al., 2005; Jones et al., 2005; Cingöz et al., 2012)
does produce spectrally narrow radiation sources in the keV
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region, it will be attractive to revisit the idea of Mössbauer
spectroscopy for clock applications.
In the optical region of the spectrum, suitable narrow-

linewidth transitions were known to exist in many atoms;
however, the missing ingredients until relatively recently were
(1) the availability of lasers with sufficiently narrow spectra
that could take advantage of these narrow transitions and (2) a
convenient method to count cycles of the stabilized (laser)
local oscillators. These requirements have now been met with
improved methods to lock lasers to stable reference cavities
(Young et al., 1999; Ludlow et al., 2007; Dubé et al., 2009;
Millo et al., 2009; Jiang et al., 2011; Kessler et al., 2012;
McFerran et al., 2012; Swallows et al., 2012; Bishof et al.,
2013) and the development of optical combs that provide the
counters and convenient means for optical frequency compar-
isons (Udem et al., 1999; Diddams et al., 2000; Stenger et al.,
2002; Cundiff and Ye, 2003; Hollberg, Diddams et al., 2005;
Ye and Cundiff, 2005; Hall, 2006; Hänsch, 2006; Grosche,
Lipphardt, and Schnatz, 2008; Schibli et al., 2008). These
advances mark the beginning of high-precision clocks based
on optical transitions.

C. Systematic effects

To a high degree, the systematic frequency shifts encoun-
tered in optical atomic clocks are the same as for all atomic
clocks. We can divide the shifts into those caused by
environmental perturbations (e.g., electric or magnetic fields)
and those which we might call observational shifts. The latter
include instrumental effects such as servo offsets and fre-
quency chirping in optical switches; these are apparatus
specific and best examined in each experimental realization.
More fundamental and universal observational shifts are those
due to relativity, which we discuss later.

1. Environmental perturbations

In simple terms, we need to examine all the forces of nature
and consider how each might affect the atomic transition
frequencies. As far as we know, we can rule out the effects of
external strong and weak forces primarily because of their
short range. Gravitational effects are important but we include
them when discussing relativistic shifts. The most important
effects are due to electromagnetic fields. It is useful to break
these into various categories, illustrated by some simple
examples. Details will follow in the discussions of the various
clocks.

a. Magnetic fields

Static magnetic fields ~B ¼ Bn̂B are often applied purposely
to define a quantization axis for the atoms. Here we implicitly
assume the field is uniform, but inhomogeneties must be
accounted for in the case of spread atomic samples. Shifts
from these fields often cause the largest shifts that must be
corrected for but these corrections can often be implemented
with high accuracy. We write

f − f0 ¼ ΔfM ¼ CM1Bþ CM2B2 þ CM3B3 þ � � � ; ð5Þ

where, for small B, the first two terms are usually sufficient.
The energies of clock states will depend on the atom’s
magnetic moment; for example, the electron spin Zeeman
effect in the 2S1=2 → 2D5=2 transitions of 88Srþ gives a
relatively large CM1 coefficient on the order of
μB=h≃ 1.4 × 1010 Hz=T, where μB is the Bohr magneton
and h is Planck’s constant. Nevertheless, if the quantizing
magnetic field is sufficiently stable, by measuring pairs of
transitions that occur symmetrically around the unshifted
resonance we can compensate for this shift (Bernard,
Marmet, and Madej, 1998). As another example, 1S0 → 3P0

transitions in 87Sr and Alþ have a much smaller value of
CM1 ∼ μN=h, where μN is the nuclear magneton, thereby
reducing the shifts substantially.
For atoms with nonzero nuclear and electron spin, hyper-

fine structure will be present and both CM1 and CM2 can be
significant. In this case we can often use the traditional
“clock” transitions between lower states jF;mF ¼ 0i and
upper states jF0; mF0 ¼ 0i, where F;F0 and mF;mF0 are the
total angular momenta and the projections of the angular
momenta on the (magnetic field) quantization axis. For these
transitions, CM1 ¼ 0 and for B → 0, ΔfM ¼ CM2B2 can be
very small. We can usually determine B to sufficient accuracy
by measuring a suitable field-dependent Zeeman transition.
Departures of B from its nominal value B0 might also vary in
time. If these variations are slow enough it might be feasible to
intermittantly measure field sensitive transitions, or even the
clock transition itself, to correct for or servo-compensate the
slow variations (Rosenband et al., 2007).
Some isotopes of interest do not possess m ¼ 0 Zeeman

sublevels because of their half-integer total angular momen-
tum. An example is alkali-like ions without nuclear spin,
where the absence of a hyperfine structure facilitates laser
cooling. In this case the linear Zeeman shift of the reference
transition can be compensated by interrogating two Zeeman
components that are symmetrically shifted like m → m0 and
−m → −m0 and determining the average of both transition
frequencies. Consequently, the number of interrogations
required for a frequency determination is doubled.
However, this does not compromise the stability of the
standard if magnetic-field fluctuations are negligible during
the time between interrogations. For the operation of a 87Sr
lattice clock, alternately interrogating opposite nuclear spin
stretched states of �9=2 and taking their averages greatly
suppresses the first-order Zeeman shift. The second-order
Zeeman shifts can be determined by fast modulation of the
bias magnetic field between high and low values. By using a
clock transition to directly sample and stabilize the magnetic
field, the combined magnetic-field related frequency shift can
be measured below 1 × 10−18 (Bloom et al., 2014; Nicholson
et al., 2015).

b. Electric fields

Static electric fields at the site of the atoms can arise from
potential differences in surrounding surfaces caused by, for
example, differences in applied potentials on surrounding
conductors, surface contact potential variations, or charge
buildup on surrounding insulators. Typically, clock states have
well-defined parity so that first-order perturbations vanish and
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shifts can often be calculated with sufficient precision in
second-order perturbation theory. For the case of trapped ions,
the static component of the electric field and corresponding
Stark shifts vanish at the equilibrium position of the ions.
Since they do not move, the static field at their location must
be zero. For neutral atom clocks the static electric field effects
are usually small; however, at the highest levels of accuracy
they must be characterized (Lodewyck et al., 2012; Bloom
et al., 2014) or even stabilized (Nicholson et al., 2015).
Treating the quadratic Stark shift as a small perturbation of

the linear Zeeman splitting, the shift of the state jγJFmi is
given by (Angel and Sandars, 1968; Itano, 2000)

hΔfSðγ;J;F;m;EÞ ¼−½2αSðγ;JÞþαTðγ;J;FÞgðF;m;βÞ� jEj
2

4

gðF;m;βÞ ¼ 3m2−FðFþ1Þ
Fð2F−1Þ ð3cos2β−1Þ; ð6Þ

where β is the angle between the electric field vector and the
orientation of the static magnetic field defining the quantiza-
tion axis. In general, the Stark shift is composed of a scalar
contribution described by polarizability αS and, for levels with
J > 1=2 and F > 1=2, by a tensor part that is proportional
to αT .
In addition to a static electric field, ac electric fields can be

present from several sources. Important shifts for both neutral
atoms and ions can arise from laser beams and background
blackbody radiation. For neutral atoms trapped by laser fields,
the frequency and polarization of light can be chosen (Katori
et al., 2003; Ye, Kimble, and Katori, 2008) so that the ac Stark
shifts are the same for both clock levels to a high degree and
the clock frequency is nearly unshifted (see Sec. VI.D.2). For
sympathetically cooled ions as in the 27Alþ “logic clock,” the
cooling light can impinge on the clock ion(s) causing Stark
shifts that must be accounted for (Rosenband et al., 2008b;
Chou, Hume, Koelemeij, et al., 2010). Ambient blackbody
radiation shifts can be important for both neutral atoms and
ions. The uncertainty in the shift can be caused by uncertainty
in the effective temperature T at the position of the atoms and
by uncertainties in the atomic polarizabilities. In most cases
the wavelengths of electric dipole transitions originating from
one of the levels of the reference transition are significantly
shorter than the peak wavelength of the blackbody radiation
spectrum of 9.7 μm at room temperature. Consequently, a
static approximation can be used and the shift is proportional
to the differential static scalar polarizability Δαs of the two
levels constituting the reference transition and to the fourth
power in temperature. This follows from the integration of
Planck’s radiation law, yielding the mean-squared electric
field hE2ðTÞi ¼ ð831.9 V=mÞ2½TðKÞ=300�4. The dependence
of the shift on the specific transition wavelengths and matrix
elements may be accounted for in a T2-dependent dynamic
correction factor η (Porsev and Derevianko, 2006). With these
approximations, the Stark shift due to blackbody radiation
(BBR) is given by

hΔfBBR ¼ −
ΔαshE2ðTÞi

2
½1þ ηðT2Þ�. ð7Þ

Since blackbody shifts scale as T4, operation at low temper-
atures can be advantageous; by operating near liquid helium
temperatures, the shifts are highly suppressed (Itano, 2000).
Tables I and V list blackbody shifts for some atoms and ions
currently considered for optical clocks.
For ions confined in Paul traps, the trapping rf electric fields

can produce quadratic Stark shifts. These can be significant if
ambient static electric fields push the ions away from the rf
electric field null point in the trap. In this case the ions
experience excess “rf micromotion,” oscillatory motion at the
rf trap drive frequency (Berkeland et al., 1998b). The strength of
the fields can be determined by observing the strength of rf
micromotion induced frequency modulation (FM) sidebands of
an appropriately chosen optical transition (which need not be
the clock transition). As with the case of ac magnetic fields, the
danger for both neutral atoms and ions is that ac electric fields
may be present at the site of the atoms that otherwise go
undetected.
If one or both of the clock states has a quadrupole moment,

shifts can arise due to ambient electric field gradients which
can be strong in ion traps. In several cases of interest, one of
the clock states is an atomic D level which will have such an
atomic quadrupole moment that can give rise to significant
shifts. In the case of atomic ions, atomic quadrupoles can
couple to gradients from the Coulomb field of simultaneously
trapped ions. In strongly binding traps where the ion sepa-
rations are on the order of a few μm, shifts can be as large as
1 kHz (Wineland et al., 1985).
Shifts from collisions are typically dominated by electric

field effects. Since a precise theoretical description of these
shifts is extremely complicated, experimentalists must typi-
cally calibrate them through measurements. This can be
particularly important in neutral atom clocks where multiple
atoms might be held in a common location and the shift is
dominated by collisions between clock atoms. In this situation
scattering cross sections will strongly differ between fer-
mionic and bosonic clock atom species. This is not an issue for
ions, which are well separated in the trap.
Collision shifts from hot background gas atoms in vacuum

can be even more difficult to characterize. At high vacuum,
collisions with background gas atoms occur infrequently and
it may be possible to establish a useful upper limit on
collisional frequency shifts simply from the observed collision
rate. Even tighter bounds can be established by a detailed
analysis of the collision process using model potentials of the
involved species (Gibble, 2013). For example, the largest
residual gas in the ultrahigh vacuum chamber for the Sr clock
is hydrogen. An estimate of the Sr-H2 van der Waals coef-
ficients can be estimated to provide an upper bound of the
background collision shift (Bloom et al., 2014).

2. Relativistic shifts

In addition to environmental effects that perturb an
atom’s internal states and clock frequency, there can be errors
in our determination of the clock atoms’ frequency, even when
atoms are perturbation free. The most fundamental of these
effects is the relativistic shifts, due to the different frames of
reference of the atoms, probing lasers, and other atomic
clocks.
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a. Doppler shifts

Basically, we want to relate an atom’s transition frequency
in its frame of reference to the frequency of the probe laser in
the “laboratory frame,” which we assume is locked to the
atomic transition (Chou, Hume, Rosenband, and Wineland,
2010). The frequency f of the probe laser in the laboratory
frame has a frequency f0 when observed in a moving frame

f0 ¼ fγ

�
1 −

v∥
c

�
; ð8Þ

where γ ¼ ½1 − ðv=cÞ2�−1=2, v is the atom’s velocity relative to
the laboratory frame, v∥ is the atom’s velocity along the probe
laser beam direction, and c is the speed of light. The clock
servo ensures that the frequency of the laser in the atom’s
frame equals the proper atomic resonance frequency f0; that
is, hf0i ¼ f0, where the angle brackets denote the appropriate
average over the laser probe duration. If we assume that f is
constant over this duration, then hfi ¼ f, and we have

δf
f0

¼ f − f0
f0

¼ 1

hγð1 − v∥=cÞi
− 1 ð9Þ

or

f − f0
f0

¼ hv∥i
c

−
hv2i
2c2

þ hv∥i2
c2

þOðv=cÞ3: ð10Þ

The first term in Eq. (10), the first-order Doppler shift, can
easily be the largest for clocks based on single photon
transitions. Historically, the relatively large size of the first-
order Doppler shift was one of the motivations for probing
confined atoms as opposed to atoms in an atomic beam. Early
work on the hydrogen maser (Goldenberg, Kleppner, and
Ramsey, 1960) and high resolution hyperfine spectra of
trapped 3Heþ ions (Fortson, Major, and Dehmelt, 1966)
showed the advantages of confinement. Trapping for long
durations would seem to guarantee hv∥i ¼ 0. However, the
distance between the mean position of the atoms and the
location of the probe laser may be slowly drifting due to, for
example, thermal expansion, or any change in the optical path,
such as that due to a change in the index of refraction in a
transmitting fiber. For example, to reach δf=f0 < 10−17, we
must ensure hv∥i < 3 nm=s. More generally, any effect that
leads to a phase change of laser beam field experienced by the
atoms can be included in this category. Fortunately, many of
these effects can be compensated with Doppler cancellation
schemes discussed in more detail in Sec. III.B. However, even
with these measures, we must be cautious. For example,
during the laser probe and feedback cycle, there might be
periods where the atom’s position is correlated with the laser
probe period and first-order Doppler shifts might occur. To
detect and compensate for this possibility, one can probe in
multiple directions (Rosenband et al., 2008b).
The next two terms in Eq. (10), the so-called second-order

Doppler shifts, are a form of time dilation. Although they are
fairly small for room-temperature atoms, theymaybedifficult to
characterize since the trapped atoms’ velocity distribution may
not be simple. Of course, this was one of the early motivations

for laser cooling and now various forms of cooling are used in
nearly all high-accuracy clocks. Even with laser cooling, in the
case of ion optical clocks, the uncertainty in the second-order
Doppler shift can be the largest systematic uncertainty due to
limitations on characterizing the ions’ thermal and rf micro-
motion (Rosenband et al., 2008b; Chou, Hume, Koelemeij,
et al., 2010). For neutral atoms laser cooled to near themotional
ground state in an optical lattice trap, the primary concern is to
reference the local oscillator and lattice laser beams to a
common laboratory frame.

b. Gravitational redshift

As predicted by relativity and the equivalence principle,
if a gravitational potential difference exists between a source
(one clock) and an observer (another clock, otherwise iden-
tical), the two clocks run at different rates (Vessot et al., 1980).
On the surface of the Earth a clock that is higher by Δh than
another clock runs faster by δf=f0 ¼ gΔh=c2, where g is the
local acceleration of gravity. This phenomenon is regularly
observed and taken into account when comparing various
optical and microwave standards (Wolf and Petit, 1995;
Petit and Wolf, 1997, 2005; Blanchet et al., 2001). For
Δh ¼ 10 cm, δf=f0 ≃ 10−17, and this shift must be
accounted for even when making measurements between
nearby clocks. However, when clocks are separated by large
distances, the differences in gravitational potential are not
always easy to determine and may be uncertain by as much
as an equivalent height uncertainty of 30 cm (3 × 10−17)
(Pavlis and Weiss, 2003). This can be important when
comparing the best clocks over long distances (Kleppner,
2006), but might be turned to an advantage as a tool in
geodesy (Vermeer, 1983; Bjerhammar, 1985; Margolis, 2009;
Chou, Hume, Rosenband, and Wineland, 2010), as discussed
in more detail in Sec. VII.C. The very high measurement
precision afforded by optical standards forms the basis for
proposals of space optical clocks as the most sensitive
measurements of this relativistic effect (Schiller et al.,
2007, 2009; Wolf et al., 2009) and are described in Sec. VII.D.

III. SPECTRALLY PURE AND STABLE OPTICAL
OSCILLATORS

As seen in the previous sections, a key ingredient of the
optical atomic clock is an optical resonance with a high quality
factor. Since the resonance results from light-atom interaction,
both the light used to drive the atomic transition and the
atomic states being driven must be highly coherent to achieve
a high-Q transition. Lasers are traditionally viewed as excep-
tionally coherent sources of optical radiation. However,
relative to the optical coherence afforded by the exceedingly
narrow electronic transitions between metastable states of an
optical clock, most lasers are far too incoherent. For this
reason, a critical component of optical clock development is
laser stabilization for generating highly phase-coherent and
frequency-stable optical sources.

A. Laser stabilization technique

A simple laser consists merely of an optical gain medium
located inside a resonant optical cavity. The frequency of the
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laser is derived from the cavity resonance frequency where the
laser gain is high. The output frequency is susceptible to a
variety of noise processes involving the gain medium, optical
path length changes, other intracavity elements, and amplified
spontaneous emission. Such noise processes limit the tempo-
ral coherence of the laser, typically well below the needed
coherence time required for high resolution spectroscopy of
the optical clock transition. In practice, a much more well-
defined resonant frequency can be realized with a properly
designed passive optical cavity, typically a simple two-mirror
Fabry-Pérot interferometer. A laser’s frequency can be stabi-
lized to such an optical resonance, yielding highly coherent
optical radiation (Young et al., 1999; Webster, Oxborrow, and
Gill, 2004; Notcutt et al., 2005; Stoehr et al., 2006; Ludlow
et al., 2007; Oates et al., 2007; Alnis et al., 2008; Dubé et al.,
2009; Millo et al., 2009; Zhao et al., 2009; Jiang et al., 2011;
Kessler et al., 2011, 2012; Leibrandt, Thorpe, Notcutt et al.,
2011; Bishof et al., 2013). To do so successfully, two
important criteria must be met.
First, the laser output must be tightly stabilized to the cavity

resonance. This requires the ability to detect the cavity
resonance with a large signal-to-noise ratio, together with
the ability to adjust the laser frequency sufficiently fast to
cancel the laser noise processes as they are detected with the
optical cavity. High bandwidth phase and frequency actuation
is achieved using electro-optic and acousto-optic devices,
intralaser piezoelectric transducers, diode laser current control,
and more. Many detection schemes exist, but the most widely
utilized for high performance laser stabilization is the Pound-
Drever-Hall (PDH) technique. The interested reader is referred
to Drever et al. (1983), Day, Gustafson, and Byer (1992), Hall
and Zhu (1992), Zhu and Hall (1993), and Black (2001) for
details on this popular scheme. Here we simply point out that
PDH stabilization utilizes the laser field reflected from the
optical reference cavity to detect resonance. The detection is
performed at rf frequencies, by frequency modulating the
incident laser field, and detecting the heterodyne beat between
the optical carrier, in resonance with the cavity, and the FM
sidebands, which are off resonance and reflected by the cavity.
This rf signal can then be demodulated to yield a signal well
suited for feedback control of the laser frequency to track the
cavity resonance. The modulation frequency can be chosen at
sufficiently high frequencies where technical laser amplitude
noise is below the photon shot noise. The modulation scheme,
frequently employing an electro-optic phase modulator, can be
designed to minimize unwanted residual amplitude modula-
tion that contaminates the cavity resonance signal (Wong and
Hall, 1985; W. Zhang et al., 2014). Intuitively, an optical
cavity with a narrower resonance can more sensitively detect
laser frequency excursions. For this reason, high performance
laser stabilization typically employs mirrors with very high
reflectivity, achieving a cavity finesse approaching 106.
Since PDH stabilization can be used to tightly lock a laser’s

frequency to the resonant frequency of an optical cavity, the
second important criterium for achieving a highly coherent
laser source is to ensure that the cavity resonant frequency is
stable and immune or isolated from noise sources which cause
resonance frequency changes. Since cavity resonance is
achieved for mirror spacing at half-integer multiples of the
laser wavelength, the essential detail is to maintain

exceptionally stable mirror spacing. The mirrors are optically
contacted to a mechanically rigid spacer, whose primary
function is to hold the mirror spacing constant. Highly rigid
spacer materials and mechanical isolation from ambient
vibration sources help limit changes in the cavity length. A
properly chosen design of mechanical support of the cavity
spacer and its shape can limit the effect of cavity length
changes due to acceleration-driven deformation of the cavity
spacer and mirrors (Notcutt et al., 2005; Chen et al., 2006;
Nazarova, Riehle, and Sterr, 2006; Ludlow et al., 2007;
Webster, Oxborrow, and Gill, 2007; Millo et al., 2009;
Zhao et al., 2009; Leibrandt, Thorpe, Bergquist, and
Rosenband, 2011; Leibrandt, Thorpe, Notcutt et al., 2011;
Webster and Gill, 2011). The spacer and mirrors are typically
fabricated with materials (such as ultra-low-expansion glass or
low expansion glass ceramics) to limit thermal drifts of the
cavity length, and sometimes employ a special design or
material selection to further reduce thermally driven drifts
(Alnis et al., 2008; Dubé et al., 2009; Legero, Kessler, and
Sterr, 2010; Jiang et al., 2011). The cavity is held in a
temperature-stabilized, shielded vacuum system, to thermally
isolate the cavity from its environment and to reduce the index
of refraction fluctuations inside the cavity (Saulson, 1994).
Laser power incident on the cavity is typically limited and
stabilized, in order to reduce heating noise from residual
absorption by the mirrors (Young et al., 1999; Ludlow et al.,
2007). The most fundamental noise source stems from
thermomechanical noise of the cavity spacer, the mirror
substrates, and the optical coating (Numata, Kemery, and
Camp, 2004; Notcutt et al., 2006; Kessler et al., 2012; Kessler,
Legero, and Sterr, 2012). To reduce its influence, cavities
sometimes employ special design considerations, including
long spacers (Young et al., 1999; Jiang et al., 2011; Nicholson
et al., 2012; Amairi et al., 2013; Bishof et al., 2013), mirror
substrates made from high mechanical Q materials (Notcutt
et al., 2006; Millo et al., 2009; Jiang et al., 2011), or cryogenic
cooling (Notcutt et al., 1995; Seel et al., 1997; Kessler et al.,
2011). The more recent work has emphasized the use of
crystal materials to construct the cavity spacer and substrates
(Kessler et al., 2012), and even the optical coating (Cole et al.,
2013). An all-crystalline optical cavity has the prospect of
stabilizing laser frequency to a small fraction of 1017, allowing
further advances in clock stability and accuracy. Spectral
analysis for these advanced stable lasers can be directly
accomplished with clock atoms (Bishof et al., 2013).
Laser stabilization to optical cavities exploits narrow optical

resonances detected with a high signal-to-noise ratio. While
cavities have historically been the most successful choice of
optical resonance used for high bandwidth laser stabilization,
other systems can be used, including spectral hole burning in
Strickland et al. (2000), Julsgaard et al. (2007), Chen et al.
(2011), Thorpe et al. (2011), and Thorpe, Leibrandt, and
Rosenband (2013), some atomic or molecular resonances
(Ye, Ma, and Hall, 1998, 2001), and optical-fiber delay lines
(Kefelian et al., 2009).

B. Remote distribution of stable optical sources

Once a coherent optical wave is generated, it must be
transmitted to the atomic system for spectroscopy, to an
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optical frequency comb for counting or linking to other optical
or microwave frequency standards, or to other destinations in
or outside the laboratory. This can be done through free space
or through optical fiber. In either case, a variety of perturbing
effects (e.g., thermal, acoustic, vibrational) can reintroduce
frequency noise with deleterious effects on the laser coherence
that has been so carefully realized. For this reason, techniques
for the transfer of coherent optical (or microwave) signals
without the addition of noise are vital (Ma et al., 1994).
Foreman, Holman et al. (2007) and Newbury, Williams, and
Swann (2007) highlighted optical techniques for the distri-
bution of coherent signals, including microwave signals
modulated on an optical carrier, coherent optical carrier
transfer, and low-jitter transfer of the femtosecond pulses
of an optical frequency comb. A basic feature of these
techniques is measurement of the additional noise introduced
via transfer, followed by noise cancelation by writing the
antinoise onto the transmitted signal. A popular technique for
coherent optical carrier phase transfer exploits a heterodyne
Michelson interferometer to measure the added noise and a
fast-actuating acousto-optic modulator to cancel it (Bergquist,
Itano, and Wineland, 1992; Ma et al., 1994). Noise-canceled
transfer of a cw laser plays a prominent role in optical clock
measurements and comparisons. First realized within the
laboratory at the 10 m scale (Bergquist, Itano, and
Wineland, 1992; Ma et al., 1994), it has now been extended
to much longer distances, from many kilometers to hundreds
of kilometers and beyond (Ye et al., 2003; Foreman, Ludlow
et al., 2007; Williams, Swann, and Newbury, 2008; Grosche
et al., 2009; Kefelian et al., 2009; Lopez et al., 2010;
Pape et al., 2010; Fujieda et al., 2011; Predehl et al.,
2012; Droste et al., 2013). While transfer of an optical
frequency signal through 1 km of fiber would typically limit
the transferred signal instability to worse than 10−14 at 1 s,
proper implementation of noise cancelation techniques can
preserve signal stability to below 10−17 at 1 s (Foreman,
Ludlow et al., 2007; Williams, Swann, and Newbury, 2008).
Transfer is conveniently achieved over fiber networks,
although free-space propagation has been investigated
(Sprenger et al., 2009; Djerroud et al., 2010; Giorgetta et al.,
2013) with promising potential. Fiber network transfer has
been used for high performance comparisons of optical
frequency standards (Ludlow et al., 2008; Pape et al.,
2010; Fujieda et al., 2011), low-noise distribution of micro-
wave signals or for high-accuracy absolute frequency mea-
surements (Ye et al., 2003; Daussy et al., 2005; Narbonneau
et al., 2006; Campbell et al., 2008; Jiang et al., 2008; Lopez
et al., 2008; Hong et al., 2009; Marra et al., 2010), and high
performance remote timing synchronization (Holman et al.,
2005; Kim et al., 2008a; Benedick, Fujimoto, and Kaertner,
2012; Lopez et al., 2013).

C. Spectral distribution of stable optical sources

For many years, the benefits of atomic frequency standards
operating at optical frequencies were outweighed by the
difficulty of measuring the very high optical frequencies.
Except for measurements between optical standards operating
at very similar frequencies, comparison among and measure-
ment of optical standards was difficult, as evidenced by the

complexity of optical frequency chains (Jennings, Evenson,
and Knight, 1986; Schnatz et al., 1996). Within the past
15 years, the development of the optical frequency comb has
made optical frequency measurement relatively straightfor-
ward (Reichert et al., 1999; Diddams et al., 2000; Jones et al.,
2000; Udem, Holzwarth, and Hänsch, 2002; Cundiff and Ye,
2003; Fortier, Jones, and Cundiff, 2003). With two of the
pioneers of this technique rewarded by the 2005 Nobel Prize
in Physics (Hall, 2006; Hänsch, 2006), these optical mea-
surements are now made regularly with amazing precision in
laboratories around the world. Furthermore, these optical
combs have demonstrated the ability to phase coherently
distribute an optical frequency throughout the optical spec-
trum and even to the microwave domain.
The optical frequency comb outputs laser pulses with

temporal widths at the femtosecond time scale and with a
repetition rate of millions or billions of pulses per second. The
advent of few-cycle lasers with a few femtosecond pulse
width, where an ultrafast Kerr-lens mode-locking mechanism
ensures phase locking of all modes in the spectrum, along with
the spectral broadening via microstructured fibers, have
greatly facilitated the development of wide bandwidth optical
frequency combs and their phase stabilization. As in Fig. 1,
the frequency and phase properties of this pulse train are given
by 2 degrees of freedom: the relative phase between the carrier
wave and the pulse envelope (known as the carrier-envelope
offset), and the pulse repetition rate. Applying a Fourier
transform to this pulse train, the laser output consists of a
comb of many single-frequency modes. The mode spacing is
given by the laser repetition rate, and the spectral range
covered by the frequency comb is related to the temporal
width of each pulse. The frequency of each comb mode is
given as a multiple of the mode spacing (frep) plus a frequency
offset (fCEO) which is related to the carrier-envelope phase
offset (Telle et al., 1999; Udem et al., 1999; Jones et al.,
2000). Control of these two rf frequencies yields control over
the frequency of every comb mode (Ye, Hall, and Diddams,
2000; Udem, Holzwarth, and Hänsch, 2002; Ma et al., 2004).
If these frequencies are stabilized to an accurate reference
(caesium), the optical frequency of a cw laser or optical
frequency standard can be determined by measuring the
heteroydne beat between the comb and optical standard. A
coarse, independent measurement of the unknown laser
frequency using a commercially available wavelength meter
allows one to determine which comb mode N makes the
heterodyne beat with the laser. The laser frequency is then
straightforwardly determined by νlaser ¼NfrepþfCEO�fbeat,
where fbeat is the measured heterodyne beat frequency and the
� is determined by whether the comb mode or the unknown
laser is at higher frequency. In this way, optical standards can
be measured against caesium microwave standards.
Furthermore, by stabilizing the comb frequency directly to
an optical standard, the comb allows direct comparison of
optical standards at different frequencies within the spectral
coverage of the comb (Schibli et al., 2008; Nicolodi et al.,
2014). These measurements can be made at the stability of
the optical standards themselves, without being limited by
the lower stability of most microwave standards. The femto-
second comb, using now standard laboratory techniques,
thus enables microwave-to-optical, optical-to-microwave,
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and optical-to-optical phase-coherent measurements and
distribution at a precision level often better than the atomic
clocks (Ma et al., 2004, 2007; Kim et al., 2008b; Lipphardt
et al., 2009; Nakajima et al., 2010; Zhang et al., 2010; Fortier
et al., 2011, 2013; Hagemann et al., 2013; Inaba et al., 2013).

IV. MEASUREMENT TECHNIQUES OF AN OPTICAL
STANDARD

All optical frequency standards that have been realized with
cooled and trapped atoms are of the passive type, i.e., the
oscillator of the standard is not the atomic reference itself, but

a laser source whose output frequency is stabilized to the
atomic signal. A further common feature of these standards is
that the requirements of initial cooling and state preparation of
the atoms lead to an operation in a cyclic sequence of
interrogations and measurements. This is in contrast to
established atomic clocks like caesium clocks with a thermal
atomic beam and hydrogen masers that provide a continuous
signal. In the optical frequency standard, the laser has to serve
as a flywheel that bridges the intervals when no frequency or
phase comparison with the atoms is possible. Its intrinsic
frequency stability, the method for interrogating the atoms,
and the use of the atomic signal for the frequency stabilization
need to be considered together in the overall system design of
the frequency standard. In this section we discuss generic
features of the methods and techniques that are applied for
these purposes.

A. Clock cycles and interrogation schemes

The repetitive operation cycle of an optical frequency
standard with cooled and trapped atoms consists of three
distinct stages during which the following operations are
performed: (i) cooling and state preparation, (ii) interrogation,
and (iii) detection and signal processing.
For a clock with neutral atoms, the first phase comprises

loading of a magneto-optical trap or of an optical dipole trap
from an atomic vapor or from a slow atomic beam. In the case
of trapped ions, the same particles are used for many cycles,
but some Doppler or sideband laser cooling is necessary to
counteract heating from the interaction of the ion with
fluctuating electric fields. The conditions that are applied
during this trapping and cooling phase include inhomogenous
magnetic fields and resonant laser radiation on dipole-
allowed transitions. This leads to frequency shifts of the
reference transition that cannot be tolerated during the
subsequent interrogation phase. The first phase of the clock
cycle is concluded with preparation of the initial lower-
energy state of the clock transition by means of optical
pumping into the selected hyperfine and magnetic sublevel.
Depending on the loading and cooling mechanism, this
phase takes a time ranging from a few milliseconds to a
few hundred milliseconds.
Before starting the interrogation, all auxiliary fields that

would lead to a frequency shift of the reference transition need
to be extinguished. Resonant lasers that are used for cooling or
optical pumping are usually blocked by mechanical shutters
because the use of acousto-optic or electro-optic modulators
alone does not provide the necessary extinction ratio. A time
interval of a few milliseconds is typically required to ensure
the reliable closing of these shutters.
During the interrogation phase, radiation from the reference

laser is applied to the atom. In an optimized system, the
duration of this phase determines the Fourier-limited spectral
resolution or line Q of the frequency standard. Provided that
the duration of the interrogation is not limited by properties of
the atomic system, i.e., decay of the atomic population or
coherence or heating of the atomic motion, it is set to the
maximum value that is possible before frequency or phase
fluctuations of the reference laser start to broaden the detected
line shape. For a reference laser that is stabilized to a cavity

FIG. 1 (color online). (a) In the time domain, the laser output
generates femtosecond pulse-width envelopes separated in time
by 1=frep. Another important degree of freedom is the phase
difference between the envelope maximum and the underlying
electric field oscillating at the carrier optical frequency. (b) By
Fourier transformation to the frequency domain, the correspond-
ing frequency comb spectrum is revealed. Each tooth in the comb,
a particular single-frequency mode, is separated from its neighbor
by frep. The relative carrier-envelope phase in the time domain is
related to the offset frequency fCEO in the frequency domain.
fCEO is given by the frequency of one mode of the comb (e.g., νn)
modulo frep, and can be measured and stabilized with a f-2f
interferometer. In this interferometer, one comb mode νn is
frequency doubled and heterodyne beat with the comb mode
at twice the frequency ν2n. Thus, by stabilizing fCEO and frep to a
well-known frequency reference, each comb mode frequency is
well known. Measurement of the frequency of a poorly known
optical frequency source (e.g., previously measured at the
resolution of a wave meter) can be determined by measuring
the heterodyne beat between the frequency source and the
frequency comb.
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with an instability σy limited by thermal noise to about
5 × 10−16 around 1 s, a suitable duration of the interrogation
interval is several 100 ms up to 1 s, resulting in a Fourier-
limited linewidth of about 1 Hz.
Referring to pioneering work on molecular beams in the

1950s (Ramsey, 1985), one distinguishes between Rabi
excitation with a single laser pulse and Ramsey excitation
with two pulses that are separated by a dark interval. In
Ramsey spectroscopy, the two levels connected by the
reference transition are brought into a coherent superposition
by the first excitation pulse and the atomic coherence is then
allowed to evolve freely. After the second excitation pulse the
population in one of the levels is detected, which shows the
effect of the interference of the second pulse with the time-
evolved superposition state. Assuming that the total pulse
area is set to π on resonance, Rabi excitation possesses the
advantage of working with lower laser intensity, leading to
less light shift during the excitation. Ramsey excitation, on the
other hand, provides a narrower Fourier-limited linewidth for
the same interrogation time. If the duration of the excitation
pulses is much shorter than the dark interval, Ramsey
excitation keeps the atoms in a coherent superposition of
ground and excited states that is most sensitive to laser phase
fluctuations—with the Bloch vector precessing in the equa-
torial plane—for a longer fraction of the interrogation time
than Rabi excitation.
Generalizations of the Ramsey scheme with additional

pulses permit one to reduce shifts and broadening due to
inhomogeneous excitation conditions or shifts that are a result
of the excitation itself. An “echo” π pulse during the dark
period may be used to rephase an ensemble of atoms that
undergoes inhomogoenous dephasing (Warren and Zewail,
1983). An example of such an excitation-related shift is the
light shift and its influence may readily be observed in the
spectrum obtained with Ramsey excitation (Hollberg and
Hall, 1984): The position and shape of the envelope reflects
the excitation spectrum resulting from one of the pulses,
whereas the Ramsey fringes result from coherent excitation
with both pulses and the intermediate dark period. The fringes
are less shifted than the envelope, because their shift is
determined by the time average of the intensity. A sequence
of three excitation pulses with suitably selected frequency and
phase steps can be used to cancel the light shift and to
efficiently suppress the sensitivity of the spectroscopic signal
to variations of the probe light intensity (Zanon-Willette et al.,
2006; Yudin et al., 2010; Huntemann, Lipphardt et al., 2012;
Zanon-Willette et al., 2014). While Rabi excitation is often
used in optical frequency standards because of its experi-
mental simplicity, these examples show that the greater
flexibility of Ramsey excitation may provide specific benefits.
After the application of the reference laser pulses, the clock

cycle is concluded by the detection phase. In most cases, the
atomic population after an excitation attempt is determined by
applying laser radiation to induce resonance fluorescence on a
transition that shares the lower state with the reference
transition. This scheme was proposed by Dehmelt and is
sometimes called electron shelving (Dehmelt, 1982). In the
single-ion case, the absence of fluorescence indicates pop-
ulation of the upper state and the presence of fluorescence
population of the lower state. The method implies an efficient

quantum amplification mechanism, where the absorption
of a single photon can be readout as an absence of many
fluorescence photons. It is therefore also advantageously
used for large atomic ensembles. If the number of photons
detected from each atom is significantly greater than 1, photon
shot noise becomes negligible in comparison to the atomic
projection noise.
A disadvantage of the scattering of multiple fluorescence

photons is that it destroys the induced coherence on the
reference transition and that it even expels trapped neutral
atoms from an optical lattice. In a lattice clock this makes it
necessary to reload the trap with atoms for each cycle. Since
the loading and cooling phase takes a significant fraction of
the total cycle time, reusing the same cold atoms would permit
a faster sequence of interrogations, thereby improving the
frequency stability. This can be realized in a nondestructive
measurement that detects the atomic state not via absorption
but via dispersion as a phase shift induced on a weak off-
resonant laser beam (Lodewyck, Westergaard, and Lemonde,
2009). If in addition to observing the same atoms, as is the
case with trapped ions, the internal coherence could also be
maintained from one interrogation cycle to the next, a gain in
stability can be obtained. If the atomic phase can be monitored
over many cycles without destroying it, the frequency insta-
bility would average with σy ∝ τ−1 like for white phase noise,
instead of σy ∝ τ−1=2 as for white frequency noise in a
conventional atomic clock. Such an atomic phase lock has
been analyzed and an experimental realization proposed based
on a measurement of Faraday rotation with trapped ions
(Shiga and Takeuchi, 2012; Vanderbruggen et al., 2013) and
for a dispersive interaction in a generic clock (Borregaard and
Sørensen, 2013b).

B. Atomic noise processes

In the atomic population measurement described previ-
ously, noise may arise from fluctuations in the absolute atom
number N and in the atomic population distribution. For the
frequency standards with cold trapped ions, N is unity or a
small number that is controlled in the beginning of each cycle,
so that fluctuations are eliminated. If new atoms are loaded for
each cycle from a reservoir, one may expect relative variations
in the atom number δN. Since fluorescence detection permits
one to measure the atom number in each cycle, however,
signals may be normalized to the atom number, so that the
contribution from atom number fluctuations to the instability
of the frequency standard scales as

�
1

Nnph
þ 2δN2

N2

�
1=2

;

where the first term accounts for shot noise during detection of
nph photons and the second term accounts for fluctuations in
the atom number between cycles (Santarelli et al., 1999).
Sometimes the most severe noise contribution comes from

quantum noise in the state measurement: physical measure-
ment of a quantum system can be modeled by a Hermitian
operator acting on the wave function of the system being
measured, and the result of that measurement is an eigenvalue
of the operator. Thus, measurement of a superposition of
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eigenstates yields one of the corresponding eigenvalues, a
statistical outcome given by the superposed weighting of the
eigenstates. This implies measurement fluctuation as the wave
function collapses into a projection along a particular eigen-
basis. We consider the simple case of a single ion. The two
levels that are connected by the reference transition are
denoted as j1i and j2i and it is assumed that the ion is
initially prepared in the lower state j1i. After an excitation
attempt the ion generally will be in a superposition state
αj1i þ βj2i and the measurement with the electron-shelving
scheme is equivalent to determining the eigenvalue P of the
projection operator P̂ ¼ j2ih2j. If no fluorescence is observed
(the probability for this outcome being p ¼ jβj2) the previous
excitation attempt is regarded as successful (P ¼ 1), whereas
the observation of fluorescence indicates that the excited state
was not populated (P ¼ 0). In one measurement cycle only
one binary unit of spectroscopic information is obtained.
Under conditions where the average excitation probability p is
0.5, the result of a sequence of cycles is a random sequence of
zeros and ones and the uncertainty in a prediction on the
outcome of the next cycle is always maximal. These pop-
ulation fluctuations and their relevance in atomic frequency
standards were first discussed by Itano et al. (1993), who
named the phenomenon quantum projection noise (QPN). A
simple calculation shows that the variance of the projection
operator is given by

ðΔP̂Þ2 ¼ pð1 − pÞ: ð11Þ

For N uncorrelated atoms, the variance is N times bigger. For
atoms with correlated state vectors, so-called spin-squeezed
states (Wineland et al., 1992), the variance can be smaller than
this value, allowing for frequency measurements with
improved stability (Bollinger et al., 1996); see Sec. VII.F.
In the servo loop of an atomic clock, quantum projection

appears as white frequency noise, leading to an instability as
given in Eq. (4), and decreasing with the averaging time like
σy ∝ τ−1=2. It imposes the long-term quantum noise limit of
the clock that can be reached if an oscillator of sufficient short-
term stability, i.e., below the quantum projection noise limit
for up to a few cycle times, is stabilized to the atomic signal.

C. Laser stabilization to the atomic resonance

In an optical clock the frequency of the reference laser
needs to be stabilized to the atomic reference transition. In
most cases, the error signal for the frequency lock is derived
by modulating the laser frequency around the atomic reso-
nance and by measuring the resulting modulation of the
frequency-dependent excitation probability p to the upper
atomic level. With a cyclic operation imposed already by the
requirements of laser cooling and state preparation, the
frequency modulation may be realized conveniently by inter-
rogating the atoms with alternating detuning below and above
resonance in subsequent cycles. The value of the detuning will
be chosen in order to obtain the maximum slope of the
excitation spectrum and is typically close to the half linewidth
of the atomic resonance.
Suppose the laser oscillates at a frequency f, close to the

center of the reference line. A sequence of 2z cycles is

performed in which the atoms are interrogated alternately at
the frequency fþ ¼ f þ δm and at f− ¼ f − δm. The sum of
the excited-state populations is recorded as Pþ at fþ and P− at
f−. After an averaging interval of 2z cycles an error signal is
calculated as

e ¼ δm
Pþ − P−

z
; ð12Þ

and a frequency correction ge is applied to the laser frequency
before the next averaging interval is started:

f → f þ ge: ð13Þ

The factor g determines the dynamical response of the servo
system and can be regarded as the servo gain. Since the
frequency correction is added to the previous laser frequency,
this scheme realizes an integrating servo loop (Bernard,
Marmet, and Madej, 1998; Barwood et al., 2001; Peik,
Schneider, and Tamm, 2006).
The time constant and the stability of the servo system are

determined by the choice of the parameters g and z. If the laser
frequency f is initially one-half linewidth below the atomic
resonance and if pmax ¼ 1, the resulting value of ðPþ − P−Þ=z
will also be close to 1. Consequently, with g ≈ 1, the laser
frequency will be corrected in a single step. If g ≪ 1,
approximately 1=g averaging intervals will be required to
bring the frequency close to the atomic resonance and the
demands on the short-term stability of the probe laser become
more stringent. For g ≈ 1 and a small value of z, the short-term
stability of the system may be unnecessarily degraded by
strong fluctuations in the error signal because of quantum
projection noise, especially if only a single ion is interrogated.
For g ≈ 2, one expects unstable servo behavior with the laser
frequency jumping between −δm and þδm.
A servo error may occur if the probe laser frequency is

subject to drift, as it is commonly the case if the short-term
frequency stability is derived from a Fabry-Pérot cavity which
is made from material that shows aging or in the presence of
slow temperature fluctuations. Laser frequency drift rates
jdf=dtj in the range from mHz=s up to Hz=s are typically
observed. For a first-order integrating servo with time constant
tservo, an average drift-induced error ē ¼ tservodf=dt is
expected as the result of a constant linear drift. Since the
minimally achievable servo time constant has to exceed
several cycle times for stable operation, such a drift-induced
error may not be tolerable. An efficient reduction of this servo
error is obtained with the use of a second-order integrating
servo algorithm (Peik, Schneider, and Tamm, 2006), where a
drift correction edr is added to the laser frequency in regular
time intervals tdr

f→
tdr f þ edr: ð14Þ

The drift correction is calculated from the integration of the
error signal Eq. (12) over a longer time interval Tdr ≫ tdr:
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edr →
Tdr edr þ k

X
Tdr

e; ð15Þ

where the two gain coefficients are related by k ≪ g.
In the case of Ramsey excitation, an error signal may also

be obtained by alternately applying phase steps of �π=2 to
one of the excitation pulses while keeping the excitation
frequency constant (Ramsey, 1985; Letchumanan et al., 2004;
Huntemann, Lipphardt et al., 2012). Whether a more precise
lock is achieved with stepwise frequency or phase modulation
depends on specific experimental conditions: While the
former is more sensitive to asymmetry in the line shape or
a correlated power modulation, the latter requires precise
control of the size of the applied phase steps.
Because of the time needed for preparation and readout of

the atoms, a dead time is introduced into each cycle during
which the oscillator frequency or phase cannot be compared to
the atoms. As first pointed out by Dick (1987) and Dick et al.
(1990), this dead time will lead to degraded long-term stability
of the standard because of downconversion of frequency noise
of the interrogation oscillator at Fourier frequencies near the
harmonics of the inverse cycle time 1=tc. The impact of the
effect on clock stability depends on the fraction of dead time,
the interrogation method (Rabi or Ramsey), and the noise
spectrum of the laser (Dick, 1987; Santarelli et al., 1998):

σyðτÞ ¼
1

f0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

τ

X∞
m¼1

�
g2c;m
g20

þ g2s;m
g20

�
Sf

�
m
Tc

�s
: ð16Þ

Here Sfðm=TcÞ is the one-sided frequency noise power
spectral density of the free running probe laser (local oscil-
lator) at the Fourier frequency m=Tc, where m is a positive
integer. The factors gc;m and gs;m correspond to the Fourier
cosine and sine series coefficients giving the sensitivity
spectral content at f ¼ m=Tc (Santarelli et al., 1998) and
contain the physics of the atom laser interaction. For the case
of Ramsey excitation one finds (Santarelli et al., 1998)

σy limðTÞ ≈
σyoscffiffiffiffiffiffiffiffiffiffiffi
2 ln 2

p
���� sinðπt=tcÞπt=tc

����
ffiffiffiffi
tc
T

r
; ð17Þ

where σyosc is the flicker floor instability of the oscillator.
With achieved experimental parameters like t=tc > 0.6 and a
flicker floor σyosc < 5 × 10−16 (Kessler et al., 2012), it can be
seen that the limitation from the Dick effect σy lim ≈
2 × 10−16

ffiffiffiffiffiffiffiffiffi
tc=T

p
is well below the quantum projection noise

limited instability for single-ion clocks, but may impose a
limit on the potentially much lower instability of neutral atom
lattice clocks. For the frequency comparison between two
atomic samples, the Dick effect may be suppressed by
synchronous interrogation with the same laser (Chou et al.,
2011; Takamoto, Takano, and Katori, 2011; Nicholson et al.,
2012), whereas for improved stability of the clock frequency, a
single oscillator may be locked to two atomic ensembles in an
interleaved, dead-time free interrogation (Dick et al., 1990;
Biedermann et al., 2013; Hinkley et al., 2013).

V. TRAPPED-ION OPTICAL FREQUENCY STANDARDS

The invention of electromagnetic traps for charged particles
by Paul and Dehmelt in the 1950s marked an important step
toward realizing the ideal environment for precision spectros-
copy: an unperturbed system with long trapping times. Ion
traps have played an important role in spectroscopy and
precision measurements ever since, which was recognized by
awarding the 1989 Nobel Prize in Physics to Dehmelt, Paul,
and Ramsey (Dehmelt, 1990; Paul, 1990; Ramsey, 1990). The
absence of a magnetic field made Paul traps the preferred
choice over Penning traps for frequency standards, thus
avoiding undesired internal level shifts through the Zeeman
effect. The basic principle behind the simplest form of a three-
dimensional Paul trap is a time-varying electric quadrupole
potential in which the balance between the Coulomb force and
the inertia of the ions keeps the ions trapped (Straubel, 1955;
Paul, Osberghaus, and Fischer, 1958; Paul, 1990). The traps
typically provide several electron volt deep potentials, offering
trap lifetimes that are limited by (photo-)chemical reactions
with background gas atoms and range from several hours to
months, depending on the atomic species and the background
gas pressure. In spherical 3D Paul traps, only a single ion can
be trapped at zero field. Linear Paul traps allow storage of
strings of ions (Raizen et al., 1992), potentially allowing an
improvement in clock stability by interrogating several ions at
once (Herschbach et al., 2012; Pyka et al., 2014). However,
achieving the zero-field condition for many ions is a techno-
logical challenge. As a consequence, all optical single-ion
frequency standards implemented up to now trade stability for
accuracy and use a single clock ion.
The idea of using trapped ions as optical frequency

references dates back to Dehmelt (1973), who proposed
several species and experimental implementations (Dehmelt
and Toschek, 1975; Dehmelt and Walther, 1975), including
the electron-shelving technique (Dehmelt, 1975). Doppler or
sideband laser cooling (Hänsch and Schawlow, 1975;
Wineland and Dehmelt, 1975; Neuhauser et al., 1978a,
1978b, 1980; Wineland, Drullinger, and Walls, 1978;
Wineland and Itano, 1981) localizes the ion in a few
10 nm large wave packet around the zero point of the field.
This strong localization in a nearly trapping-field-free envi-
ronment allows spectroscopy in the recoil-free Lamb-Dicke
regime (Dicke, 1953). The experimental realization of
Dehmelt’s electron-shelving state detection technique by
observing quantum jumps in Baþ (Nagourney, Sandberg,
and Dehmelt, 1986; Sauter et al., 1986) and Hgþ (Bergquist
et al., 1986) was an important prerequisite for spectroscopy of
few particle systems with high signal-to-noise ratio. High
resolution optical spectroscopy of trapped ions was first
accomplished by optical two-photon excitation on the
dipole-forbidden S-D transition in a cloud of Hgþ ions
(Bergquist et al., 1985) and by direct laser excitation on a
single Hgþ ion (Bergquist, Itano, and Wineland, 1987), laying
the foundation for the development of optical ion clocks.
There are a number of excellent previous reviews on

trapped ions and applications to microwave spectroscopy
(Dehmelt, 1968, 1969; Wineland, Itano, and Van Dyck, Jr.,
1983; Blatt, Gill, and Thompson, 1992; Fisk, 1997), early
optical spectroscopy (Dehmelt, 1981, 1982), and optical
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frequency standards (Madej and Bernard, 2001; Riehle, 2004;
Hollberg, Oates et al., 2005; Maleki, 2008; Margolis, 2009;
Gill, 2011; Poli et al., 2013). In the following, we discuss the
principles and operation of trapped-ion optical frequency
standards and focus on the features and limitations of some
of the most developed systems.

A. Trapping ions

According to Earnshaw’s theorem, stable trapping of
charged particles in free space using only dc fields is not
possible. This is a direct consequence of the Laplace equation
for electrostatic fields. Oscillating electromagnetic fields
provide a way around this fundamental limitation. The Paul
trap (Paul, Osberghaus, and Fischer, 1958; Fischer, 1959;
Paul, 1990) is a prime example for the realization of such a
trap. It employs an oscillating quadrupole potential, resulting
in stable confinement of a charged particle for certain
operation parameters (McLachlan, 1947; Meixner and
Schäfke, 1954; Ghosh, 1995). In the most general case, we
consider a superposition of a static quadrupole and an ac
electric quadrupole potential oscillating at an angular fre-
quency Ωrf. The electric fields are generated by two sets of
electrodes with characteristic length scales Rdc and Rrf and
applied voltages Vdc and Vrf , generating the dc and ac
potentials, respectively. The total potential can then be
written as

ϕð~r; tÞ ¼ Vdc
αxx2 þ αyy2 þ αzz2

2Rdc
2

þ Vrf cosΩrf t
~αxx2 þ ~αyy2 þ ~αzz2

2Rrf
2

; ð18Þ

with parameters κ, αj, and ~αj that are determined by the
electrode geometry. Laplace’s equation Δϕð~r; tÞ ¼ 0 imposes
the relations

X
j¼x;y;z

αj ¼ 0 and
X

j¼x;y;z

~αj ¼ 0 ð19Þ

between the geometrical factors. For spherical Paul traps,
αx ¼ αy ¼ −ð1=2Þαz and ~αx ¼ ~αy ¼ −ð1=2Þ ~αz. Three-
dimensional confinement of the charged particle is achieved
solely through dynamical electric forces. Implementations of
these types of traps are discussed in Sec. V.A.1. Another
popular choice of the geometry parameters is αx ¼ αy ¼
−ð1=2Þαz and ~αx ¼ − ~αy, ~αz ¼ 0, corresponding to a linear
Paul trap, discussed in Sec. V.A.2. Radial (x; y) confinement is
provided by the two-dimensional dynamical quadrupole
potential, whereas axial (z) trapping is achieved through a
three-dimensional static quadrupole potential. Deviations
from the cylindrical symmetry can be described by αx ≠ αy
and ~αx ≠ ~αy, while maintaining Eqs. (19).
In this trapping potential, the ion performs slow harmonic

oscillations with secular frequencies ωj and a superimposed
micromotion oscillation at the trap drive frequency.
Micromotion is intrinsic to the trapping concept and thus
unavoidable. Under stable trapping conditions, typically

achieved by choosing Ωrf ≫ ωj, the micromotion amplitude
is smaller by an order of magnitude compared to the amplitude
of secular motion uj. In this regime time scales separate and
the effects of micromotion can be largely neglected. The
dynamic and static trapping potentials can be approximated by
a harmonic pseudopotential of the form (Dehmelt, 1968)

ΦPð~rÞ ¼
1

2

X
j

mω2
ju

2
j : ð20Þ

The trap frequencies are given by

ωj ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QαjVdc

mR2
dc

þ Q2 ~α2jV
2
ac

2Ωrf
2m2Rrf

4

s
; ð21Þ

which are typically on the order of a few 100 kHz to a few
MHz in traps for optical clocks.
In optical clocks, second-order Doppler shifts from residual

motion as further discussed in Sec. V.C.1 are significantly
reduced through laser cooling of the trapped ion (Wineland,
Itano et al., 1987). Doppler cooling typically reduces the
temperature of a single trapped ion to below mK temperatures,
corresponding to a motional amplitude of

uj ∼
ffiffiffiffiffiffiffiffiffi
kBT
mω2

r
∼ 70 nm

for a single Caþ ion in a trap of 1 MHz trap frequency. This
illustrates the fact that the ion is very well localized and probes
only the very bottom of the trap, where it is harmonic.
In the derivation of Eq. (18), we implicitly assumed that the

symmetry axis for the dc and ac electrodes coincides. In
principle, this can be achieved through precision machining of
the electrodes and by nulling any external dc or ac electric
field that pushes the ion away from the trap center. In practice,
however, machining tolerances and insufficiently compen-
sated stray fields push the ion into the rf trapping field, causing
so-called excess micromotion (Berkeland et al., 1998b). Stray
fields are believed to arise from patch charges on the electro-
des and insulators, generated by contact potentials or charge
buildup from ionization via electron bombardment during
loading, or through the photoeffect from UV lasers (Harlander
et al., 2010). Patch fields can be nulled through additional
compensation electrodes. However, they tend to fluctuate on
slow time scales and need to be compensated from time to
time (Tamm et al., 2009). There are several techniques for
micromotion compensation. The simplest technique is based
on the observation of the ion’s position as the trapping
conditions are changed: If patch fields are compensated,
the ion does not move as the rf potential is lowered. In the
nonresolved-sideband regime, a phase-synchronous detection
of fluorescence photons with the trap rf exhibits a modulation
as a function of the relative phase in the presence of micro-
motion (Blümel et al., 1989; Berkeland et al., 1998b). In the
resolved-sideband regime, the Rabi frequency of a micro-
motion sideband of the clock transition scales with the
modulation index of the excess micromotion (Leibfried et al.,
2003). A fourth technique uses parametric heating of the
secular motion through amplitude modulation of the trap rf at
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the secular motional frequencies (Ibaraki, Tanaka, and Urabe,
2011; Narayanan et al., 2011). All techniques require probing
the ion’s micromotion along three noncoplanar directions. For
two-ion crystals with ions having a different mass, the radial
confinement of the two ions differs. Radial stray electric fields
therefore result in a tilting of the ion crystals’ symmetry axis
with respect to the trap axis. As a consequence, radial and
axial two-ion modes become coupled, which leads to addi-
tional motional sidebands when probing the excitation spec-
trum in the resolved-sideband regime along the trap axis.
Nulling of these sidebands provides another means for micro-
motion compensation (Barrett et al., 2003).
The choice of optimum trap electrode and support structure

materials depends on a number of technical and practical
considerations, as well as the dominant systematic shifts of
the considered clock ion species. A careful calibration of the
blackbody radiation shift requires precise knowledge of the
effective temperature seen by the ion. This is most easily
achieved for ion traps at a homogeneous and well-defined
temperature. Ohmic heating of the electrodes can be prevented
by using a nonmagnetic, high-conductivity metal, such as
gold. Similarly, the mounting structure of the electrodes
should be made from a dielectric material with a small rf
loss tangent at the typical rf drive frequencies of 10–100 MHz.
At the same time, the material should have a high thermal
conductivity to ensure a homogeneous temperature. Materials
fulfilling these conditions include diamond, sapphire (Al2O3

crystal), alumina (Al2O3 ceramics), aluminum nitride (AlN
ceramics), and to a lesser extent fused silica. Another aspect
concerns heating of the ions in the trap during interrogation,
which increases the uncertainties in temperature-related shifts,
such as the second-order Doppler shift. Motional heating
arises through electric field noise at the secular frequencies of
the ion (Wineland et al., 1998; Turchette et al., 2000).
Depending on the particular trap implementation there can
be many origins for such heating, ranging from Johnson
noise of drive and filter electronics to electrode surface
contaminants, which are reviewed in detail by Brownnutt
et al. (2014).

1. Paul traps

Figure 2(a) shows the geometry studied by Paul and co-
workers (Paul, Osberghaus, and Fischer, 1958; Fischer, 1959;
Paul, 1990). It consists of cylindrically symmetric ring and
end cap electrodes between which a dc and an ac voltage Vdc
and Vrf , respectively, are applied. The hyperbolic shape of the
electrodes ensures a dominant quadrupole potential, even very
close to the electrodes. However, the Paul trap offers only
restricted optical access for laser cooling, clock interrogation,
and fluorescence detection. Beaty (1987) introduced a quadru-
pole geometry with conical electrodes featuring larger optical
access [see Figs. 2(b) and 2(c)]. This type of trap is used for
the Ybþ and Hgþ ion clocks at Physikalisch-Technische
Bundesanstalt (PTB) and the National Institute of
Standards and Technology (NIST), respectively. A stronger
variation of the original Paul design in which the end cap
electrodes are pulled away from the ring was introduced by
Straubel (1955). It also offers larger optical access and can be
implemented in several variations (Yu, Dehmelt, and
Nagourney, 1989; Yu, Nagourney, and Dehmelt, 1991;
Schrama et al., 1993). An even more open geometry with
good approximation of quadrupole potential is obtained with
the end cap trap (Schrama et al., 1993), where the ring is
replaced by two cylindrical shields that surround the rf-
carrying end cap electrodes [see Fig. 2(d)]. This geometry
is employed in the Srþ ion clocks at the National Physical
Laboratory (NPL) (Margolis et al., 2004) and the National
Research Council Canada (NRC) (Dubé et al., 2010; Madej
et al., 2012). Typical trap frequencies in all ion clock
experiments are on the order of a few megahertz in all
directions.

2. Linear ion traps

In many applications it is desirable to trap more than
one ion in a micromotion-free configuration (Raizen et al.,
1992). It is an important requirement for implementing
quantum logic spectroscopy (see Sec. V.E) and scaling
single-ion to multi-ion optical clocks for improved stability

FIG. 2 (color online). Electrode configurations for spherical Paul traps. (a) Cut through the cylindrically symmetric electrode geometry
used by Paul. The oscillating potential Urf ¼ Vrf cosΩrf t is applied between the ring and the end cap electrodes. (b) Paul trap used for
the Ybþ frequency standard at PTB. From Tamm, Engelke, and Bühner, 2000. (c) Paul trap used for the Hgþ frequency standard at
NIST. From Oskay, Itano, and Bergquist, 2005. (d) End cap trap. From Schrama et al., 1993. The inner end caps are 0.5 mm in diameter
and are separated by 0.56 mm. The oscillating potential Urf is applied to the inner end cap electrodes. The outer electrodes (outer
diameter 2 mm) are normally grounded; however, if required small potentials can be applied to compensate micromotion in the axial
direction.
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(Prestage et al., 1990; Herschbach et al., 2012). Linear Paul
traps provide such a micromotion-free environment along the
zero line of the rf electric field if the radial confinement is
much stronger than the axial. Their design is derived from the
quadrupole mass filter (Paul and Raether, 1955; Drees and
Paul, 1964), which provides radial confinement through an
oscillating 2D quadrupole potential. Trapping in all three
dimensions is accomplished by superimposing a 3D static
quadrupole field, providing mostly axial confinement (Raizen
et al., 1992). This field configuration can be implemented
through a variety of electrode geometries. Figure 3 shows two
designs employed for the Caþ (Chwalla et al., 2009) and Alþ

(Rosenband et al., 2007) optical frequency standards. The
Innsbruck design uses four symmetrically arranged blade
electrodes with an electrode-electrode distance of 1.6 mm
to which an rf voltage of ∼1 kV at a frequency of around
25 MHz is applied to create the 2D rf quadrupole. Two tip
electrodes separated by 5 mm to which a positive dc voltage of
around 2 kV is applied provide axial confinement (Gulde,
2003). The electrodes are made from nonmagnetic steel,
whereas the ceramic support is made from Macor. When this
trap is operated with two of the rf electrodes connected to
ground (asymmetric driving), axial micromotion arises from a
distortion of the 2D quadrupole, since the tip electrodes act as
rf ground, thus removing the radial symmetry. This effect can
be circumvented by applying either additional rf to the tip
electrodes or rf voltages oscillating around rf ground, to all
four rf electrodes (symmetric driving).
The first generation NIST trap for Alþ is made from laser-

structured and gold-coated alumina wafers, separated by
440 μm (Rowe et al., 2002). This microstructured approach
allows for high accuracy in the electrode geometry and
provides a path for scalable quantum information processing

(Kielpinski, Monroe, and Wineland, 2002). An rf voltage of
around 250 Vand a dc voltage of up to 12 V results in secular
frequencies of a single Beþ ion of 8 MHz radially and 5 MHz
axially. The second NIST trap for Alþ uses segmented gold-
coated beryllium-copper electrodes, resembling the electrode
geometry of the first generation NIST trap, but using conven-
tional machining and larger dimensions (0.4 mm distance
between ion and nearest electrode) with the goal of reducing
micromotion and motional heating from fluctuating patch
potentials (Chou, Hume, Koelemeij, et al., 2010). The blade-
shaped electrodes are mounted onto and indexed to alumina
rods that are mounted into a precision machined metal cage.
A linear trap geometry for multi-ion optical clocks has been

designed that combines the precision of laser-machined
wafers with large trap geometries for low motional heating
rates and excellent laser access (Herschbach et al., 2012).
High symmetry of the electrode geometry (e.g., by adding
slots to the rf electrodes to match the gaps between dc
segments) combined with integrated compensation electrodes
allows storing tens of ions in a trap with small excess
micromotion (Herschbach et al., 2012; Pyka et al., 2014).
When two or more ions are stored in a linear Paul trap, their

motion becomes strongly coupled and a normal mode
description for the motion of the ions around their equilibrium
position applies (Wineland, Bergquist et al., 1987; James,
1998; Kielpinski et al., 2000; Morigi and Walther, 2001).
Each normal mode is associated with a mode frequency and
motional amplitudes for the ions. For a two-ion crystal with a
large mass ratio, the mode amplitudes differ significantly. The
Doppler cooling rate scales with the motional amplitude.
When cooling only on one of the ions, as is the case in the Alþ

clock, additional motional heating can thus result in an
elevated temperature of weakly cooled modes (Wübbena
et al., 2012).

FIG. 3 (color online). Linear ion-trap electrode geometries. (a) The Innsbruck trap geometry [upper panel (Gulde, 2003)] is
implemented using elongated blades for the rf and two conical tips for the dc electrodes (lower panel). (b) The NIST trap geometry
[upper panel (Rowe et al., 2002)] is implemented using microstructured segmented electrodes (lower panel). This allows splitting the tip
electrodes and moving them away from the axial symmetry line, enabling improved laser access. Unsegmented electrodes are connected
to rf potential Vrf cosΩrf t, outer-segment electrodes are at a positive dc potential Vdc, and inner-segment electrodes are at ground.
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B. Cooling techniques and Lamb-Dicke regime

Techniques to suppress motion-induced frequency shifts
have long played a central role in optical spectroscopy.
Doppler laser cooling (Hänsch and Schawlow, 1975;
Wineland and Dehmelt, 1975; Neuhauser et al., 1978a,
1978b, 1980; Wineland, Drullinger, and Walls, 1978;
Wineland and Itano, 1981; Stenholm, 1986) on transitions
with linewidth Γ achieves temperatures of

TD ¼ κ
ℏΓ
2kB

;

independent of the atomic mass and the trap frequency. The
parameter κ is of order unity and depends on the laser cooling
geometry (Javanainen, 1980). For a few MHz broad transi-
tions, this corresponds to temperatures in the few hundred μK
regime, thus reducing second-order Doppler shifts to well
below 10−17 fractional frequency uncertainty for heavy clock
ion species, such as Ybþ or Srþ. In contrast to neutral atoms in
free space, trapped ions require only a single cooling laser
with k-vector components along all three trap axes (Wineland
and Itano, 1979). However, one has to ensure that all trap
frequencies are different to spatially fix the normal mode axes
to the geometry of the trap (Itano and Wineland, 1982). The
megahertz fast oscillations of the ion(s) in the trap allow
efficient cooling when the ion(s) are moving toward the laser
beam. This semiclassical picture is valid if the quantized mode
structure of the ion’s motion in the trap can be neglected,
which is the case in the so-called weak binding regime in
which the trap frequency ω is much smaller than the linewidth
of the cooling transition (ω ≪ Γ) (Wineland and Itano, 1979).
The situation changes when considering narrow transitions
(ω ≫ Γ). In this tight binding regime motional sidebands are
spectrally resolved from the carrier and can be individually
addressed, resulting in a simultaneous change in the internal
and motional state. In a simple picture, the spatial gradient of
the laser’s electric field along its propagation direction
(characterized by the wave number k) interacts with the
motional wave packet of the ion in the trap (characterized
by its ground-state size u0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=2mω

p
). The parameter

describing the strength of the interaction is the so-called
Lamb-Dicke parameter η ¼ ku0. Absorption and emission of
photons by an unbound atom are associated with photon
recoil, resulting in an energy shift Erec ¼ ℏ2k2=2m of the
observed line. For trapped ions, this recoil is suppressed if
Erec=ℏω < 1, which is equivalent to η2 < 1, reminiscent of the
Mössbauer effect in nuclear physics. Optical clocks based on
trapped ions are typically deep in this regime, thus eliminating
recoil shifts. If we restrict ourselves to a two-level system with
ground (j↓i) and excited (j↑i) states coupled to a single
motional mode (jni) with excitation n, the resulting system is
described by a Jaynes-Cummings–type model (Wineland
et al., 1998; Leibfried et al., 2003). Particularly simple
expressions for the transition strengths are obtained in the
Lamb-Dicke regime for which the size of the motional wave
function jψmi is small compared to the wavelengthffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hψmjk2û2jψmi

p
≪ 1. In this case three distinct transitions

are dominant: (i) Carrier (CAR) transitions with Rabi fre-
quency Ω change only the electronic state (j↓ijni ↔ j↑ijni);

(ii) red sideband (RSB) transitions with Rabi frequency ηΩ
ffiffiffi
n

p
excite the electronic state and remove a quantum of motion
(j↓ijni ↔ j↑ijn − 1i); (iii) blue sideband (BSB) transitions
with Rabi frequency ηΩ

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
excite the electronic state and

add a quantum of motion (j↓ijni ↔ j↑ijnþ 1i). Outside the
Lamb-Dicke limit, terms of higher order in the Lamb-Dicke
factor need to be considered, changing the Rabi frequencies of
the transitions (Wineland and Itano, 1979; Wineland et al.,
1998) and allowing higher-order motional transitions. In the
tight binding regime, the kinetic energy of the ion can be
further reduced through resolved-sideband cooling (Wineland
and Dehmelt, 1975; Dehmelt, 1976). By continuously driving
the first red sideband transition motional energy is removed
and dissipated through spontaneous emission from the excited
state. The latter step involves scattering of a photon, which
provides the required dissipation and is recoil free with a high
probability in the Lamb-Dicke limit. Residual recoil from the
dissipation step together with off-resonant excitation of CAR
and BSB transitions determines the achievable average
motional quantum number n̄ of

n̄ ≈ CsðΓ=ωÞ2;
where Cs is a numerical factor on the order of 1 depending on
the selection rules of the atomic transition (Neuhauser et al.,
1978a; Wineland and Itano, 1979; Stenholm, 1986; Wineland,
Itano et al., 1987). Although up to now Doppler cooling for
reducing second-order Doppler shifts was sufficient, future
ion clocks operating at or below the 10−18 fractional frequency
uncertainty may require more involved cooling techniques. In
typical ion-trap experiments, the ground state can be popu-
lated with a probability reaching 99.9% (Roos et al., 1999),
reducing this shift to its value in the ground state of the trap
and its uncertainty to well below that. Different implementa-
tions of sideband cooling are further discussed by Eschner
et al. (2003).

C. Systematic frequency shifts for trapped ions

The most important systematic frequency shifts encountered
in trapped-ion frequency standards are Doppler shifts resulting
from the residual motion of the ion and shifts from the
interaction with external electromagnetic fields. For trapped
ions, there is always a connection between the Doppler and
Stark shifts, because an ion with higher kinetic energy will also
be exposed to higher field strength in the confining quadrupole
potential of the trap. The sensitivity to field-induced shifts
depends on the type of the reference transition and on properties
of the specific ion. This has been an important criterion in the
selection of suitable ions. In the following we expand on the
main frequency shifting effects already introduced in Sec. I and
discuss their specific properties in the context of trapped ions
(Itano, 2000;Madej andBernard, 2001;Madej et al., 2004; Lea,
2007; Dubé et al., 2013).

1. Motion-induced shifts

The oscillation frequencies of the ion in the trap are much
higher than the linewidth of the optical reference transition.
Therefore, the linear Doppler effect [first term in Eq. (10)]
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from secular and micromotion leads to sidebands in optical
excitation or emission spectra, but does not shift the carrier.
However, a shift can arise from a displacement of the ion in the
direction of the probe laser beam if it is correlated with the
interrogation cycle or continuous over an appreciable time
scale. Such an effect could be induced by electric fields
correlated with the probe laser, or thermal effects changing the
position between the ion trap and the reference phase of the
probe laser. If the clock interrogation light is in the UV
spectral regime (such as for the Alþ clock), it can eject
photoelectrons when hitting a surface (Harlander et al., 2010).
Depending on the geometry of the trap and laser direction, the
created charges can alter the position of the ion, resulting in a
linear Doppler shift. Some of these effects can be eliminated
by probing the ion from two counterpropagating directions
and averaging the observed transition frequencies (Rosenband
et al., 2008b; Chou, Hume, Koelemeij, et al., 2010).
Residual secular motion at the laser cooling limits deter-

mines the time dilation shift, which is mostly relevant for light
ion species [second term in Eq. (10)]. Moreover, secular
motion results in an increased size of the ion’s time-averaged
wave packet, which extends into the region of a nonzero
oscillating trap field. As a consequence, for typical trap
operation parameters (Wineland, Itano et al., 1987;
Berkeland et al., 1998a; Wübbena et al., 2012) the kinetic
energy from secular motion is doubled through an equal
contribution from micromotion. The total kinetic energy is
thus the sum of the secular kinetic energy Es ¼
ð1=2ÞPαℏωαðn̄α þ 1=2Þ and the micromotion energy
Emm ≈ Eemm þ Es, containing a term from excess micro-
motion and secular-motion-induced micromotion. It is inter-
esting to note that even for an ion in the ground state of the
trap, the kinetic energy contribution from zero-point fluctua-
tions result in a nonvanishing fractional time dilation shift
of the order of −10−18 for Alþ in a single mode with
frequency 5 MHz.

2. Zeeman effect

While a static magnetic field is not required for the
operation of the Paul trap, a weak homogeneous field
(typically in the range of 1 to 100 μT) is applied in order
to separate the Zeeman components of the reference transition
and to provide a controllable quantization axis for the
interaction of the ion with the different laser fields. The
methods for the control or compensation of resulting linear
and quadratic Zeeman shifts are similar to those applied in
other types of atomic clocks (see Sec. II.C).

3. Quadrupole shift

In the case of an atomic state with J > 1=2 (and F > 1=2)
the electronic charge distribution can have multipole moments
that couple to an external electric field gradient, giving rise to
the so-called quadrupole shift of the energy level. A static
electric field gradient is not required for the operation of a Paul
trap, but it turns out that because of the proximity of the ion to
the trap electrodes and due to the presence of patch potentials
on these, the ion may be exposed to an unintentionally applied
field gradient as strong as 1 V=mm2 that will lead to a level
shift on the order of 1 Hz for a quadrupole moment of ea20.

While static electric stray fields can easily be diagnosed via
the induced micromotion and can be nulled by compensation
potentials on extra electrodes, the dynamics of the ion does not
provide a similarly sensitive measure for residual field
gradients and the strength and symmetry of these is initially
unknown. Linear Paul traps require a static electric field
gradient for closure along the trap axis. Since the gradient is
related to the ion’s axial trap frequency, it can be determined
with high accuracy and allows a precision measurement of the
electric quadrupole moment (Roos et al., 2006).
The Hamiltonian describing the interaction of an external

field gradient with the atomic quadrupole moment is
(Itano, 2000)

HQ ¼ ∇Eð2Þ ·Θð2Þ: ð22Þ

Here ∇Eð2Þ is a symmetric traceless second-rank tensor
describing the electric field gradient at the position of the
ion and Θð2Þ is the electric quadrupole operator for the atom.
Transforming to principal axes, the electric potential creating
the gradient can be written as

Φ ¼ A½ð1þ ϵÞx02 þ ð1 − ϵÞy02 − 2z02�. ð23Þ

Treating the quadrupole shift as a small perturbation of the
Zeeman shifts in the basis of states jγJFmFi and applying the
Wigner-Eckart theorem to Θð2Þ, the diagonal matrix elements
of HQ can be written as

HQ ¼ hγJFmFjHQjγJFmFi ð24Þ

¼ −2½3m2
F − FðF þ 1Þ�AhγJFjjΘð2ÞjjγJFi

½ð2F þ 3Þð2F þ 2Þð2F þ 1Þ2Fð2F − 1Þ�1=2
× ½ð3cos2β − 1Þ − ϵsin2βðcos2α − sin2αÞ�; ð25Þ

where α; β are the first two of the Euler angles that relate the
principal axis frame to the laboratory frame where the z axis is
parallel to the magnetic field. The reduced matrix element of
Θð2Þ in the ðIJÞ coupling scheme is

ðγIJF∥Θð2Þ∥γIJFÞ ¼ ð−1ÞIþJþFð2F þ 1Þ
�
J 2 J

F I F

�

×

�
J 2 J

−J 0 J

�−1
Θðγ; JÞ; ð26Þ

where Θðγ; JÞ is the quadrupole moment of the ðγ; JÞ state,
which is defined as

Θðγ; JÞ ¼ hγJJjΘð2Þ
0 jγJJi: ð27Þ

Equation (25) possesses symmetry properties that can be
used for a cancellation of the quadrupole shift without prior
knowledge about strength or orientation of the electric field
gradient. Itano (2000) showed that the sum of the angle-
dependent factor in square brackets (a linear combination of
spherical harmonics) vanishes for any three mutually
perpendicular orientations of the quantization axis z.
Therefore, the average of the transition frequency taken for
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three mutually perpendicular orientations of a magnetic field
of the same magnitude does not contain the quadrupole shift.
The method has been verified experimentally and has been
used in frequency standards with 87Srþ, 171Ybþ, and 199Hgþ

(Margolis et al., 2004; Oskay, Itano, and Bergquist, 2005;
Schneider, Peik, and Tamm, 2005; Oskay et al., 2006). In a
mm-size Paul trap with 171Ybþ, stray field-induced, slowly
variable quadrupole shifts of about 1 Hz have been observed
over a period of 74 days after loading the ion (Tamm et al.,
2009). The suppression of the quadrupole shift that can be
achieved depends on the precision to which the three
magnetic-field orientations are orthogonal. The uncertainty
in the angles between field orientations has to be about �1° to
get a suppression of the shift by a factor of 100. Such a
precision and temporal stability of the magnetic field requires
the use of magnetic shielding around the trap, with a set of
field coils mounted inside the shield.
An alternative option for the cancellation of the quadrupole

shift is based on the mF dependence in Eq. (25): Because

XF
m¼−F

½3m2 − FðF þ 1Þ� ¼ 0; ð28Þ

an average of the transition frequency over all Zeeman
sublevels does not contain the quadrupole shift. For higher
values of F it will be more efficient to measure the transition
frequencies for two values of jmj and to interpolate the linear
dependence of the frequency on m2 to the unperturbed value
obtained at the “virtual” quantum number m2

0 ¼ FðF þ 1Þ=3
(Dubé et al., 2005). Depending on the quantum numbers,
different interrogation sequences may be used to simulta-
neously suppress combinations of m-dependent shifts, like,
for example, the quadrupole shift and the linear-Zeeman shift
(Margolis et al., 2004; Chwalla et al., 2009; Madej et al.,
2012; Dubé et al., 2013). In all the reference transitions
studied today, the ground state fulfills J < 1 so that the
quadrupole shift needs to be considered only for the
excited-state sublevels. Unlike the method of averaging
over three orientations of the quantization axis, averaging
over the Zeeman components also eliminates higher orders of
the quadrupole shift. In comparison to static patch fields, the
oscillating quadrupole potential of the Paul trap generates
much stronger field gradients on the order of 1 kV=mm2.
While the time-averaged first-order quadrupole shift produced
by the oscillating field is zero, it could lead to a contribution
from the second-order quadrupole shift (Cohen and
Reif, 1957).

4. Stark shift

An ion in a Paul trap can be exposed to dc electric fields
introducing excess micromotion and to oscillating electric
fields arising from blackbody radiation, laser fields, or the rf
trap potential. Exposing the atom to a nonvanishing rms
electric field displaces the energy levels via the quadratic Stark
effect [cf. Eq. (6)]. Comparison of the tensor part of the Stark
shift with the expression for the quadrupole shift [see Eq. (25)]
shows that both effects possess identical dependences on the
orientation of the quantization axis and on the m numbers.

Therefore, averaging methods that suppress the quadrupole
shift will also eliminate the tensorial Stark shift.
Since the oscillating trapping electric field drives a motion

of the ion with jEj2 ∝ jvj2, there is a direct connection
between the second-order Stark and Doppler shifts. In cases
such as Caþ and Srþ, where the scalar Stark shift from the
differential polarizability ΔαS increases the transition fre-
quency, a cancellation of both shifts is obtained for a specific
value of the trap radio frequency Ωrf ¼ ðe=mcÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏω0=jΔαSj
p

(Itano, 2000; Dubé et al., 2005, 2014; Madej et al., 2012).
A dynamic Stark effect will be produced by laser light

impinging on the ion and will be described by an expression
like Eq. (6), where the static polarizabilities are replaced by
frequency-dependent dynamic polarizabilities and the rms
electric field strength hE2i ¼ IL=cϵ0 is proportional to the
laser intensity IL. The dynamic polarizability in general is
composed of contributions from several dipole transitions
coupling to the levels of the reference transition. In the case of
a two-level system that is driven by near resonant light
at Rabi frequency ΩR and detuning δ, the shift is
ΔfL ¼ 2δΩ2

R=ð4δ2 þ Γ2Þ. Light from cooling and repumping
lasers that couples resonantly to one of the levels of the
reference transition is therefore usually blocked by mechani-
cal shutters and care is taken to avoid the presence of stray
light during the interrogation period. An exception is the
quantum logic clock (see Sec. V.E), where cooling of the logic
ion of a different species is continued during the clock
interrogation. In the case of a strongly forbidden reference
transition like the electric octupole transition in Ybþ, the light
shift induced by the reference laser itself through the coupling
to other levels needs to be corrected for.

5. Blackbody radiation shift

The electric field associated with thermal radiation emitted
by the trap structure and the inner surface of the vacuum
chamber also gives rise to a quadratic Stark shift of the
reference transition, the so-called blackbody radiation shift
(Itano, Lewis, and Wineland, 1982). If the thermal radiation
field is isotropic, the tensor contribution to the Stark shift
averages to zero. Table V lists the expected shifts at T ¼
300 K for the most important ion reference transitions.
At the present stage, the uncertainty from the blackbody

radiation shift makes an important contribution to the sys-
tematic uncertainty budgets of many of the trapped-ion optical
frequency standards, resulting partly from uncertainty in the
polarizabilities and partly from incomplete knowledge of the
radiation field. The trap structure is subject to heating through
the applied radio-frequency voltage, from Ohmic losses in the
conductors and from dieletric losses in the insulators. The
employed materials possess very different emissivities for
infrared radiation, ranging from 0.02 for a polished metal
surface to 0.9 for ceramics. In an experiment with thermistors
attached to different parts of an ion trap, temperature
differences up to about 25 K have been observed (Dubé et al.,
2013). Attempts to analyze the temperature distribution in ion
traps by finite-element modeling indicate that the use of
materials with low electric losses and the provision of good
thermal contact to a heat sink may constrain the rise of the
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effective radiation temperature seen by the ion due to applied
rf voltages to below 1 K at room temperature.

D. Ionic candidates and their electronic structure

Several different ion species have been considered for
optical clocks. Each of them has advantages and disadvan-
tages concerning systematic shifts and technical complexity.
By definition, the most accurate frequency standard will be the
one with the lowest uncertainties in the systematic shift
evaluation. However, this does not necessarily imply that
the shifts themselves are small. In fact, they can be quite large
if they are known with sufficient precision. This requires a
thorough investigation of all shifts and associated uncertain-
ties. The evaluation will depend on an accurate knowledge of
the atomic shift coefficients and the fluctuations in the shift
inducing effects, e.g., electric and magnetic fields. Without
a priori knowledge of these parameters, it is impossible to
judge which species will offer the most accurate reference
transition. After a brief historical review, we discuss in the
following the order of magnitude of the systematic shifts
introduced in Sec. V.C, concentrating on ion species that have
been brought to a sufficiently high level of accuracy to allow a
comparison of each species’ pros and cons. The discussion is
complemented by Table I which provides a detailed list of
atomic coefficients for each species.
The ideal optical clock ion species has a clock transition

with a high-Q factor that is insensitive to external field
perturbations and auxiliary transitions for laser cooling, state
preparation through optical pumping, and internal state
detection. Historically, the first proposals for a single-ion
optical clock by Dehmelt (1973, 1975) and Wineland and
Dehmelt (1975) were based on Tlþ, since the comparatively
short excited clock state lifetime of 50 ms seemed to allow
fluorescence detection and laser cooling directly on the clock
transition. However, a Tlþ clock was never realized. The
invention of the electron-shelving technique for internal state
detection (Dehmelt, 1975) and laser cooling on fast transitions
(Hänsch and Schawlow, 1975; Wineland and Dehmelt, 1975;

Neuhauser et al., 1978a; Wineland, Drullinger, and Walls,
1978) allowed the investigation of other ion species with
technologically more convenient laser cooling and clock
transitions, featuring higher Q factors and thus improved
stability. Owing to their relatively simple electronic level
structure, singly charged ions with one and two valence
electrons have been studied extensively. Figure 4 shows the
schematic energy level diagram of the alkalinelike one-
valence-electron systems Caþ, Srþ, Hgþ, and Ybþ. The clock
transition is a quadrupole transition from the 2S1=2 ground to
one of the 2D3=2, 2D5=2 excited states with linewidths ranging
between 0.2 and 3 Hz. All of these ions offer a fast, almost
closed 2S1=2 ↔ 2P1=2 cycling transition for laser cooling and
internal state discrimination. For Caþ and Srþ, the excited
2P1=2 state can also decay into the 2D3=2 state, from which a
repumper on the 2D3=2 → 2P1=2 transition brings the electron
back into the cycling transition. For Hgþ, decay from the
2P1=2 to the 2D3=2 and 2D5=2 is strongly suppressed (Bergquist
et al., 1986). After probing the clock transition, the 2D5=2 state
can be repumped through the 2P3=2 state for efficient initial
state preparation. The ytterbium ion is an effective one-
valence electron system belonging to the lanthanoids.
Besides the quadrupole clock transition, it also offers an
octupole transition from the ground 2S1=2 to a low-lying 2F7=2
state with a particularly large Q factor of 1023, corresponding
to a natural linewidth of 10−9 Hz. Repumping back to the
ground state after exciting the clock transitions can be
performed in a number of ways as shown in Fig. 4
(Huntemann, Okhapkin et al., 2012).
Some naturally occurring isotopes of these ions have

nonvanishing half-integer nuclear spin and consequently
hyperfine structure. This can be used to eliminate strong
first-order Zeeman shifts of a few 10 kHz=μT (1 MHz=G)
on the clock transition by choosing mF ¼ 0 → m0

F ¼ 0
transitions, at the expense of a more complex cooling laser
system to address all hyperfine states. This has been imple-
mented for the 171Ybþ and 199Hgþ isotopes. Second-order
Zeeman shifts arising from static and dynamic magnetic fields
are on the order of a few 10 kHz=mT2 and a few 10 Hz=mT2

FIG. 4 (color online). Schematic energy level diagram of clock ions with a single valence electron and Ybþ, together with a table of the
most relevant transition wavelengths and linewidths. Data are from the NIST database (Ralchenko et al., 2012). Energy levels are not to
scale and the term notation follows Martin, Zalubas, and Hagan (1978).
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for isotopes with and without hyperfine structure, respectively
(see Sec. V.C.2). In addition, the 2D3=2, 2D5=2, and 2F7=2 states
have J > 1=2, thus exhibiting an electric quadrupole moment
which couples to electric field gradients as outlined in
Sec. V.C.3, producing shifts on the order of a few hertz in
typical ion traps. Linear-Zeeman and electric quadrupole
shifts can be simultaneously eliminated by averaging over
appropriate Zeeman transitions.
It was realized early on that it is advantageous to have clock

transitions between states with vanishing angular momentum,
such as the 1S0 ↔ 3P0 clock transition in group 13 (formerly
group IIIA) singly charged ions (Dehmelt, 1981, 1982). These
transitions do not suffer from electric quadrupole shifts and
offer smaller (nuclear) linear and quadratic Zeeman shifts of a
few 10 kHz=mT and a few 10 Hz=mT2, respectively. The
common partial electronic level structure of the group 13 ions
is shown in Fig. 5. Single photon transitions between the pure
states 1S0 and 3P0 (J ¼ 0 → J0 ¼ 0) are rigorously forbidden
by angular momentum selection rules. However, hyperfine
interaction couples the 3P0 state to the 3P1 and 1P1 states with
the same F quantum number (Garstang, 1962; Marques,
Parente, and Indelicato, 1993; Peik, Hollemann, and
Walther, 1994; Brage et al., 1998; Itano et al., 2007). As a
consequence, what we label as the 3P0 state actually contains
admixtures of these other states, thus inheriting some of their
properties, such as decay to the ground state, a modified g
factor, and a nonzero but very small electric quadrupole
moment. The ground state is a 1S0 state, connected through a
strong dipole transition to the 1P1 state, which could in
principle be used for Doppler cooling and detection. However,
for the considered ions the wavelength of this transition is in
the VUV regime and not accessible by current laser technol-
ogy. In the case of Inþ, laser cooling has been implemented on
the narrow 1S0 ↔ 3P1 transition (Peik, Hollemann, and
Walther, 1994). The corresponding transitions in Alþ and
Bþ are too narrow to allow efficient laser cooling. This
limitation can be overcome by implementing quantum logic
spectroscopy, described in the next section, where a cotrapped
so-called logic ion provides laser cooling and internal state
readout.

Blackbody radiation shifts the energy of the two clock
states by off-resonant coupling to other states. This effect is
significant for most neutral and singly charged ion species
with typical shifts on the order of hertz at room temperature
(Rosenband et al., 2006). The large energy difference of the
ground and excited clock states to other states connected by
strong transitions results in a significantly reduced blackbody
radiation shift in group 13 ions (Rosenband et al., 2006;
Safronova, Kozlov, and Clark, 2011; Zuhrianda, Safronova,
and Kozlov, 2012). If a single atom contains two clock
transitions with different sensitivity to the blackbody radiation
shift (such as Ybþ), a synthetic frequency can be established
that eliminates the dominant T4-dependent term of the shift
(Yudin et al., 2011).
Table I summarizes the relevant atomic parameters for

determining systematic shifts for themost developed ion clocks.
Wherever available, we provide the experimentally determined
coefficients, otherwise a theoretical prediction is given.

E. Quantum logic spectroscopy of Alþ

1. Quantum logic spectroscopy

Efficient cooling of external motion and internal state
discrimination of the clock atom(s) are indispensable prereq-
uisites for operating a clock. Typically, Doppler cooling and
internal state detection are implemented on dipole-allowed
cycling transitions. This puts severe restrictions on the level
structure of the atomic species considered as clock references.
In trapped-ion systems, this restriction has been lifted by
cotrapping a so-called logic ion together with the clock ion
to provide sympathetic cooling (Larson et al., 1986).
Furthermore, by employing techniques developed for quan-
tum information processing (Wineland et al., 1998; Blatt and
Wineland, 2008; Häffner, Roos, and Blatt, 2008), the internal
state information can be mapped through a series of laser
pulses from the clock ion to the logic ion, where it is detected
with high efficiency (Wineland et al., 2002; Wineland, 2004).
It was first implemented for the Alþ1S0 ↔ 3P1 transition
(Schmidt et al., 2005) and is the readout scheme for the
aluminum clock (Rosenband et al., 2007).

B+ Al+ In+

a: VUV cooling 136.2 nm, 191 MHz 167.1 nm, 233 MHz 159 nm, 1.5 GHz
b: clock 267.8 nm, 37 µHz 267.4 nm, 7.7 mHz 236.5 nm, 0.8 Hz
c: narrow cooling/quantum logic 267.8 nm, 1.66 Hz 266.9 nm, 520 Hz 230.6 nm, 360 kHz

FIG. 5 (color online). Schematic level structure of ion clocks based on group 13 (formerly group IIIA) singly charged ions, together
with a table of the most relevant transition wavelengths and linewidths. Data are from the NIST database (Ralchenko et al., 2012).
Energy levels are not to scale.
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TABLE I. Important atomic parameters of ion clock species. Where available, experimentally measured quantities are given; otherwise, the theoretical predictions are derived either from measured
quantities or from ab initio calculations. The mass, nuclear spin, and the Landée g factors of the ground and excited clock states are labeledm, I, gg, and ge, respectively. The quadratic Zeeman shift
ΔfM2 is given for either the mF ¼ 0 → mF0 ¼ 0 transition, or, where such a transition does not exist, for an average over Zeeman components that mimics such a transition. The static scalar
differential polarizability ΔαS ¼ αe − αg is the difference between the excited- and ground-state polarizability, similarly for the tensor polarizability ΔαT. The dynamic correction factor η accounts
for the frequency dependence of the polarizability (Porsev and Derevianko, 2006) and corrects for the blackbody spectrum around 300 K [Δα300 K ¼ ΔαSð1þ ηÞ]. The blackbody radiation shift for
300 K is given by Δf300 K. The reduced electric quadrupole moments of the excited state are given by Θ. The corresponding coefficients are defined in Sec. V.C.

Caþ Srþ Ybþ E2 Ybþ E3 Hgþ Alþ Inþ

m (u) 39.962 87.905 170.936 170.936 198.968 26.981 114.903

I 0 0 1=2 1=2 1=2 5=2 9=2

Transition 2S1=2 → 2D5=2
2S1=2 → 2D5=2

2S1=2; F ¼ 0 → 2D3=2;

F ¼ 2

2S1=2; F ¼ 0 → 2F7=2;

F ¼ 3

2S1=2; F ¼ 0 → 2D5=2;

F ¼ 2

1S0; F ¼ 5=2 → 3P0;

F ¼ 5=2

1S0; F ¼ 9=2 → 3P0;

F ¼ 9=2

f0 (THz) 411.042 444.779 688.358 642.121 1064.72 1121.02 1267.40

gg 2.002 256 64(9)a 2.002e 1.998(2)i 1.998(2)i 2.003 174 5 (74)n −0.000 792 48ð14Þp −0.000 666 47q

ge 1.200 334 0(3)a 1.2e 0.802(2)i 1.145(2)i 1.1980(7)n −0.001 976 86ð21Þp −0.000 987ð50Þq

ΔfM2 (Hz=mT2) 14.355(17)b 3.122 25f,u 52 096(16)j −2030ð20Þl −18 900ð2 800Þn −71.988ð48Þp 4.09r

ΔαS (10−41 Jm2=V2) −73.0ð1.0Þs −47.938ð71Þg,f,t 69(14)k 13(6)m 15n 0.82(8)s 3.3(3)s

ΔαT (10−41 Jm2=V2) −24.51ð29Þs −78.6ð5Þg −13.6ð2.2Þk ∼1.3m −3n 0 0

η � � � −0.00951ð15Þg,t � � � � � � � � � <10−4s <10−4
s

Δf300 K (Hz) 0.380(13) 0.24799(37) −0.36ð7Þ −0.067ð31Þ −0.079 −0.0043ð4Þ −0.017ð2Þ
Θ (e a20) 1.83(0.01)d 2.6(3)h 2.08(11)k −0.041ð5Þm −0.510ð18Þo 0.0c 0.0c

aTommaseo et al. (2003). bAveraged over six transitions (Chwalla et al., 2009). cOnly negligible contributions from mixing with 3P1 and 1P1 states.
dRoos et al. (2006). eBarwood et al. (2012). fDubé et al. (2013). gJiang et al. (2009). hBarwood et al. (2004). iMeggers (1967). jTamm et al. (2014).
kSchneider, Peik, and Tamm (2005). lHuntemann (2014). mHuntemann, Okhapkin et al. (2012). nItano (2000). oOskay, Itano, and Bergquist (2005).
pRosenband et al. (2007). qTing and Williams (1953) and Becker et al. (2001). rHerschbach et al. (2012). sSafronova, Kozlov, and Clark (2011).
tDubé et al. (2014). uAveraged over all magnetic sublevels.
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Quantum logic spectroscopy allows the selection of a clock
ion species solely based on the features of the clock transition,
since all other requirements are supplied by the logic ion. This
enables spectroscopy of previously intractable ion species,
such as group 13 (see Sec. V.D), highly charged (Berengut,
Dzuba, and Flambaum, 2010; Berengut et al., 2011, 2012;
Derevianko, Dzuba, and Flambaum, 2012; Dzuba,
Derevianko, and Flambaum, 2012a, 2012b), and molecular
ions (Schmidt et al., 2006; Vogelius, Madsen, and Drewsen,
2006; Koelemeij, Roth, and Schiller, 2007; Ding and
Matsukevich, 2012; Leibfried, 2012).

2. Clock operation

A simplified quantum logic spectroscopy scheme for inter-
rogating the Alþ clock is shown in Fig. 6. The system is
initialized in the electronic and motional ground state (we
neglect motional heating for the moment) of a shared axial
normal mode of the two ions (A). After interrogation of the
clock transition 1S0 ↔ 3P0 (B), the internal state information
is mapped through a pair of laser pulses onto the logic ion. The
first pulse is implemented on the 1S0 ↔ 3P1 transition,
allowing faster transfer compared to using the clock transition.
When the ion is in the 1S0 state, the pulse drives a BSB
transition changing the electronic state to 3P1, while adding a
quantum of motion to the motional mode. A similar pulse
tuned to the RSB (removing a quantum of motion while
changing the electronic state) is applied to the logic ion,
reversing the mapping step. The internal state of the logic ion
is then detected using the usual electron-shelving technique on
the logic ion. If the clock ion was in the excited clock state at
the beginning of the pulse sequence, none of the transitions
can be excited since the state mapping laser is not resonant
with any transition. The pulse sequence thus implements a
faithful transfer of the clock ion’s internal state after probing
the clock transition to the logic ion. The term “quantum logic
spectroscopy” is derived from the original proposal for
quantum information processing with trapped ions by Cirac
and Zoller (1995) and many other quantum logic protocols,
relying on internal state dependent (de-)excitation of a
motional state shared among several ions. Figure 7 shows a
scan across the Alþ clock resonance using this quantum logic
spectroscopy technique.

In reality a few more steps are required to implement the
full interrogation sequence. A typical probe cycle is sketched
in Fig. 8.
Imperfections in the transfer sequence and subsequent state

detection on the logic ion results in reduced state detection
fidelity. However, the state mapping [steps (c)–(f)] takes
around 2 ms, which is sufficient for the 3P1 state [lifetime
300 μs (Johnson, Smith, and Parkinson, 1986; Träbert et al.,
1999)] to decay back to the ground state, whereas the excited
clock state [lifetime 20.6 s (Rosenband et al., 2007)] expe-
riences negligible loss of population during this time.
Consequently, the mapping process can be repeated to
improve state detection fidelity. State discrimination with
up to 99.94% fidelity using Bayesian inference has been
demonstrated for ten detection repetitions (Hume, Rosenband,
and Wineland, 2007). Every few seconds, the initial Zeeman
state of the clock is changed via optical pumping using
polarized light on the 1S0 ↔ 3P1 transition. Recording the
center frequencies of both stretched states (1S0,
mF ¼ �5=2 ↔ 3P0, m0

F ¼ �5=2) allows the calculation of
a linear-Zeeman shift free transition frequency from the sum
of both frequencies (Bernard, Marmet, and Madej, 1998). The
difference frequency provides a direct measure of the mag-
netic field, which is then used to compute the dc component of
the quadratic Zeeman shift (Rosenband et al., 2007). The total

(a) (b) (c) (d) (e)

FIG. 6 (color online). Quantum logic spectroscopy sequence. Shown are the clock ground (1S0) and excited (3P0) clock states and an
auxiliary metastable state (3P1) together with the logic ion (qubit states j↓iL, j↑iL). In addition, two vibrational levels (j0in, j1in) of a
common motional mode of the ions in the trap are shown. (a) Initially, both ions are prepared in the electronic and motional ground
states. (b) After clock interrogation, the spectroscopy ion is in an equal superposition of the two clock states. (c) Resolved-sideband
pulse on the blue sideband of the clock ion to the auxiliary state, mapping the ground-state amplitude onto the first excited motional
state. (d) Resolved-sideband pulse on the red sideband of the logic ion, mapping the first excited motional state amplitude to the
electronically excited state of the logic ion. (e) Detection of the logic ion’s internal state via the electron-shelving technique (Dehmelt,
1975). Energy levels are not to scale.
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FIG. 7 (color online). Resonance of the Alþ clock transition
using quantum logic spectroscopy. From Chou, Hume, Rosen-
band, and Wineland, 2010.
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duration of a single interrogation cycle is approximately
120 ms of which 100 ms are used for probing (Rosenband
et al., 2008b). This corresponds to a duty cycle of more than
80%, neglecting so-called service cycles during which slowly
drifting parameters are recalibrated, such as micromotion
compensation. The additional overhead from calibration
effectively reduces the duty cycle to between 45% and
65%, depending on the details of the implementation.
In principle, any ion that can be laser cooled and provides

a pair of qubit states with internal state discrimination is a
suitable candidate for a logic ion. However, the choice of logic
ion influences the systematic effects of the clock. As discussed
in Sec. V.A.2, fluctuating electric fields lead to motional
heating of the ions in the trap and consequently a second-order
Doppler shift which is increasing during probe time. A steady
state with a lower uncertainty in the second-order Doppler
shift can be achieved through laser cooling of the logic ion
during interrogation. This imposes additional Stark shifts on
the clock transition that depend on the cooling laser wave-
length and have to be calibrated. The steady-state kinetic
energy of the Alþ ion in this situation depends on the
achievable minimum laser cooling energy, usually determined
by the linewidth of the cooling transition, and the mass ratio
between clock and cooling ion. For realistic heating rates in
typical ion traps for clocks, Beþ, Mgþ, and Caþ provide a
similar residual second-order Doppler shift of below 10−17

relative frequency uncertainty (Wübbena et al., 2012). In fact,
for small external heating rates the narrow cooling transition
linewidth of Beþ and Caþ lets them outperform Mgþ.
Although the latter’s mass is almost perfectly matched to
Alþ, allowing fast energy transfer and efficient sympathetic
cooling, its Doppler cooling limit is hotter by nearly a factor
of 2.

3. Experimental achievements of the Alþ clocks

Currently, the performance of two Alþ clocks has been
reported. In the following, we call them NIST-Al-1
(Rosenband et al., 2008b) and NIST-Al-2 (Chou, Hume,
Koelemeij, et al., 2010), using Beþ and Mgþ as the
cooling ion, respectively. A number of impressive experimen-
tal results have been achieved with these, demonstrating

the capabilities and future potential of optical clocks in terms
of instability and inaccuracy. An optical frequency ratio
measurement between NIST-Al-1 and a cryogenic single
ion Hgþ clock (see Sec. V.F.4) has been performed
(Rosenband et al., 2008b), resulting in a ratio of νAlþ=νHgþ ¼
1.052 871 833 148 990 438ð55Þ with a statistical uncertainty
of 4.3 × 10−17. To date this is the most precise measurement of
an optical frequency ratio of two different optical clock
species. Combined with a previous measurement of the
absolute frequency of the Hgþ transition (Stalnaker et al.,
2007) this establishes an absolute frequency for the Alþ clock
transition of 112 101 539 320 785 7.4(7) Hz, limited by the
uncertainty of the Cs fountain clock used for the calibration of
the Hgþ clock. The relative systematic uncertainty of the
clocks was estimated to be 1.9×10−17 for Hgþ and 2.3×10−17

for Alþ. A comparison of the two clocks spanning almost a
year yielded the currently lowest upper bound for
a variation of the fine-structure constant from laboratory
measurements (see Sec. VII.E).
The instability of single-ion frequency standards is deter-

mined by the experimentally achievable Q factor (Sec. IV),
feedback strategy, and dead time. Figure 7 shows a Fourier-
limited clock transition linewidth of 2.7 Hz with 80% contrast
for 300 ms probe time, corresponding to a quality factor of
Q ¼ 4.2 × 1014 (Chou, Hume, Rosenband, and Wineland,
2010). Experimentally achieved instabilities are typically
derived from frequency comparisons between two or more
optical clocks. The relative instability in a frequency
comparison between NIST-Al-1 and NIST-Al-2 was
2.8×10−15=

ffiffiffiffiffiffiffi
τ=s

p
(Chou, Hume, Rosenband, and Wineland,

2010) with probe times of 100 and 150 ms, respectively, and a
duty cycle between 40% and 65%. The frequencies of the two
standards agreed to within ð−1.8� 0.7Þ × 10−17, consistent
with the evaluated inaccuracy of 2.3 × 10−17 and 8.0 × 10−18

for NIST-Al-1 and NIST-Al-2, respectively (see Sec. V.E.4).
Phase noise in the probe lasers, as discussed in Sec. III, limits
the stability between two optical frequency standards.
However, this noise source can be eliminated by correlating
the phase noise seen by the atoms (Bize et al., 2000;
Lodewyck et al., 2010). Such a synchronized Ramsey inter-
rogation scheme has been implemented with two Alþ ions
trapped in the same trap and probed by the same probe laser

sympathetic
Doppler
cooling

(S)

600 sμ

clock
probe (S)
+ Doppler
cooling (L)

1-100 ms

optical
pumping

(S)

4 sμ

sympathetic
Doppler
cooling

(S)

600 sμ

ground
state

cooling
(S)

1 ms

clock state
mapping

+ detection
(S+L)

240 sμ

(a) (b) (c) (d) (e) (f)

FIG. 8. Quantum logic clock interrogation cycle. The following sequence describes interrogation of the 1S0mF ¼ 5=2 → 3P0mF ¼
5=2 state. A similar protocol is used for the other (mF ¼ −5=2) stretched state interrogation. (a) Sympathetic Doppler cooling, reaching
n̄ ≈ 3 in all modes with a tilted ion crystal. (b) Probing of the Alþ clock transition 1S0 ↔ 3P0 with simultaneous application of cooling
light to maintain steady-state motional occupation. (c) Optical pumping on the 1S0 ↔ 3P1 transition to 1S0, mF ¼ 5=2 state.
(d) Sympathetic Doppler cooling followed by ground-state cooling of a selected axial mode to a mean motional excitation of
n̄ ≈ 0.05 (e). (f) Quantum logic state detection (see Fig. 6 for details). Steps (c)–(f) are repeated 10 times for improved readout fidelity.
From Rosenband et al., 2007.
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(Chou et al., 2011). The differential signal between the two
ions is free of laser phase noise, since it is common mode
suppressed. By adjusting the distance between the two ions
before the second Ramsey pulse, the relative phase can be
scanned. The relative coherence time was extracted from the
contrast of the observed fringes to be TC ¼ 9.7þ6.9

−3.1 s, corre-
sponding to a relative Q factor of Q ¼ 3.4þ2.4

−1.1 × 1016, and
limited by the excited-state lifetime of T 0 ¼ 20.6� 1.4 s
(Rosenband et al., 2007). While such a suppression of laser
phase noise conflicts with the operation of a clock, it may be
useful for applications such as relativistic geodesy for which
the local frequency of two frequency references operating
in a different gravity potential are compared using length-
stabilized optical fibers (see Sec. VII.C).

4. Systematic shifts of the Alþ clocks

The general physical principles of systematic frequency
shifts in optical clocks have been outlined in Sec. II.C,
whereas the specifics of the shifts for trapped ions have been
discussed in Sec. V.C. In the following, we discuss the
mitigation of systematic shifts and their experimental evalu-
ation in the two Alþ clocks as prototypical systems of high-
accuracy ion clocks. Table II provides a summary of the shifts
and their uncertainty.
The dominant uncertainty of both clocks arises from time

dilation shifts caused by micromotion and residual secular
motion of the ions. Micromotion compensation is limited by
the measurement and control of static electric fields. The
magnitude of this shift is bounded by the error in nulling it.
Micromotion compensation via mode-cross coupling as
described by Barrett et al. (2003) and Sec. V.A was used in
NIST-Al-1 with a resolution of 0� 10 V=m for the residual
electric field. A field of 10 V=m in each of the radial
directions corresponds to a fractional shift on the order of
10−17 (Wineland, Itano et al., 1987; Berkeland et al., 1998a).
The more sensitive micromotion sideband technique
(Berkeland et al., 1998b) was employed for NIST-Al-2,
resulting in a reduced uncertainty in nulling this shift. The
nonvanishing oscillating trap field in the presence of excess
micromotion induces an additional ac-Stark shift. However, in
both standards this effect contributes less than 10% to the total
shift, and it can therefore be neglected (Chou, Hume,
Koelemeij, et al., 2010). Dynamic changes of excess

micromotion, e.g., through charge buildup from the photo-
electric effect, are highly sensitive to the duty cycle of the
clock and need to be compensated while running the clock
through interleaved calibration sequences. Secular motion
arises from insufficient cooling of the clock ion via the logic
ion during the interrogation of 100 and 150 ms for NIST-Al-1
and NIST-Al-2, respectively. As described in Sec. V.E.2, in a
dual-ion quantum logic clock, there is one less efficiently
cooled mode along each trap axis. Additional heating from
fluctuating electric fields raises the steady-state temperature
above the Doppler cooling limit. For NIST-Al-1, the evalu-
ation of the time dilation shift from secular motion is
complicated by the fact that the initial temperature at the
beginning of the probe time is below the steady-state temper-
ature at the end of the probe time. The reason is that initial
Doppler cooling is performed on a tilted ion crystal to provide
better cooling through mode coupling. The tilt is induced by
applying an additional static field of 300 V=m during cooling,
which is adiabatically relaxed before probing the clock
transition. During interrogation, the crystal is aligned with
the rf zero line of the trap, resulting in a reduced cooling rate
for two radial modes. The temperature rise in these modes
during interrogation has been calibrated (Rosenband et al.,
2008b). The expected uncertainty in determining the resulting
shift of −16 × 10−18 is 8 parts in 1018, arising from drifts in
the experimental parameters and angular calibration errors.
The influence of all the other modes to the time dilation shift is
below 10−18 and has been neglected in Table II. The cooling
rate for all modes can be maximized through mass matching
the logic ion to the clock ion. This is the case for NIST-Al-2
with a mass mismatch of only 8%, where the mean vibrational
excitation matches the expected Doppler cooling limit (Chou,
Hume, Koelemeij, et al., 2010). The uncertainty of this shift is
given by the experimental error of 30% in determining it.
Linear Doppler shifts that can potentially arise from

charging of the trap electrodes by the clock laser (see
Sec. V.C.1) have been investigated using independent fre-
quency servos for counterpropagating interrogation beams.
For NIST-Al-1, they were found to be smaller than 1 × 10−18,
whereas in NIST-Al-2 a relative shift between the two probe
directions of ð1.2� 0.7Þ × 10−17 was observed. Imperfect
frequency averaging of the two directions arising from slightly
different gain settings in the servo loops leaves a residual
uncertainty of �0.3 × 10−18 for this shift. Another shift

TABLE II. Systematic shifts and uncertainties for the NIST-Al-1 (Rosenband et al., 2008b) and NIST-Al-2 (Chou, Hume, Koelemeij, et al.,
2010) clocks. The fractional frequency shifts Δf=f and the 1σ uncertainties are given in units of 10−18.

NIST-Al-1 NIST-Al-2
Shift Δf=f σ Δf=f σ Limitation

Micromotion −20 20 −9 6 Static electric fields
Secular motion −16 8 −16.3 5 Doppler cooling
Blackbody radiation −12 5 −9 0.6 dc polarizability
Cooling laser Stark −7 2 −3.6 1.5 Polarizability, intensity
Clock laser Stark � � � � � � 0 0.2 Polarizability, intensity
Quadratic Zeeman −453 1.1 −1079.9 0.7 B-field calibration
First-order Doppler 0 1 0 0.3 Statistical imbalance
Background gas collisions 0 0.5 0 0.5 Collision model
AOM phase chirp 0 0.1 0 0.2 rf power

Total −513 22 −1117.8 8.6
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closely related to the linear Doppler shift arises from phase
chirps of the interrogation laser during the probe time. These
phase chirps can arise from instabilities in the optical setup
that do not average to zero for long times (Falke et al., 2012).
The major contribution originates from ringing and thermal
expansion of acousto-optical modulators (AOMs) used for
switching the probe beam (Degenhardt, Nazarova et al.,
2005). It can be reduced either by combining the AOM with
a mechanical shutter to keep the AOMs duty cycle close to
100% or by applying only a very small rf power (e.g., 1 mW
for NIST-Al-2) (Rosenband et al., 2008a). This way, the
relative frequency uncertainty could be reduced to 0.1 × 10−18

and 0.2 × 10−18 for NIST-Al-1 and NIST-Al-2, respectively.
Several shifts arise from interaction of the clock states

with external electric fields. The most recent value for
the differential polarizability between the two clock states
has been estimated from ab initio calculations to be ΔαS ¼
αðPÞ − αðSÞ ¼ 0.82ð8Þ × 10−41 Jm2=V2 (Mitroy et al., 2009;
Safronova, Kozlov, and Clark, 2011), resulting in a relative
frequency shift of only 3.8ð4Þ × 10−18 at 300 K. This is the
smallest BBR shift of an electronic transition in neutral or
singly charged atoms considered for optical clocks. The
effective BBR environment seen by the ion would need to
be known with an uncertainty of only 15 K to achieve 10−18

relative frequency uncertainty. The values given in Table II are
derived from ΔαS ¼ 1.7ð6Þ × 10−41 Jm2=V2, which was
inferred from a measurement of the dynamic polarizability
at a wavelength of 1126 nm and an extrapolation to zero
frequency via experimental oscillator strengths (Rosenband
et al., 2006). This extrapolation becomes possible, since all
contributing transitions are in the deep UV spectral regime, far
away from the calibration wavelength at 1126 nm, and all
strong transitions lie around 171 nm, compensating each other
to a large degree. Recently, the polarizability of Alþ has been
remeasured using a 976 nm Stark-shifting laser to be ΔαS ¼
0.702ð95Þ × 10−41 Jm2=V2 (Chou, 2014), which is very close
to the theoretical value given previously and in Table V.
Doppler laser cooling of the logic ion during interrogation

with a laser beam illuminating both ions also causes a Stark
shift of the clock ion. For NIST-Al-2 this shift has been
evaluated by calibrating the intensity of the cooling laser beam
through off-resonant excitation of the Mgþ dark state jF ¼
2; mF ¼ −2i and applying the model for the BBR shift
extrapolated to the cooling laser wavelength of 280 nm.
The model yields a shift of ð−3.5� 0.6Þ × 10−17 s, with
saturation parameter s ¼ I=Is and saturation intensity
Is ≈ 2470 W=m2. The measured saturation parameter of s ¼
0.103� 0.04 results in a total shift of ð−3.6� 1.5Þ × 10−18.
This shift can be further reduced by focusing the laser beam
onto the cooling ion, or by using a logic ion species with
smaller saturation intensity and further wavelength detuning,
such as Caþ. Off-resonant coupling of the clock laser to
other levels has been evaluated by significantly increasing
the intensity of the interrogation pulse in NIST-Al-2 and
comparing to NIST-Al-1. No shift has been detected at a
fractional frequency level of 2 × 10−15, corresponding to an
uncertainty of 0.2 × 10−18 when scaled down to the normal
operating power.
The largest shift of the clock transitions stems from the

quadratic Zeeman effect. The shift is proportional to the

average of the square of the magnetic induction
hB2i ¼ hBdci2 þ B2

ac, consisting of a static and dynamic
contribution Bdc and Bac, respectively. The static component
arises from a small applied quantization field of around
Bdc ≈ 0.1 mT. Its slow drifts can directly be deduced
from the difference of the Alþ stretched state frequencies
f1 as described earlier, exhibiting a linear-Zeeman shift
of ΔfM1 ¼ −82 884ð5ÞB Hz=mT (Rosenband et al., 2007).
The corresponding quadratic shift of ΔfM2 ¼ −7.1988ð48Þ ×
107 Hz=T2 has been calibrated by deliberately varying the
static field and measuring the transition frequency against
another frequency standard (Rosenband et al., 2008a).
The dynamic contribution arises mostly from charge or
discharge currents of the rf trap electrodes and can be
calibrated from hyperfine spectroscopy on the logic ion by,
e.g., comparing the clock transition ½ð2S1=2;F¼ 2;mF ¼ 0Þ→
ð2S1=2;F¼ 1;mF ¼ 0Þ� frequency in Beþ to the transition
ð2S1=2;F¼ 2;mF ¼−2Þ→ ð2S1=2;F¼ 1;mF ¼−1Þ with large
linear magnetic-field sensitivity. Similar transitions were used
in Mgþ for NIST-Al-2. The measured magnetic fields were
Bac ¼ 5 × 10−8 T and Bac ¼ 5.2 × 10−6 T for NIST-Al-1 and
NIST-Al-2, respectively. The combined quadratic Zeeman
shifts for NIST-Al-1 and NIST-Al-2 are −453� 1.1 × 10−18

and −1079.9� 0.7 × 10−18, respectively.
Although collision shifts between cold and localized

trapped ions are absent, collisions with background gas can
result in a differential shift between the ground and excited
clock states. Two types of collisions are distinguished by
comparing the impact parameter b to the Langevin radius

rL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4e2α

4πϵ0μv2r

s
≈ 0.5 nm;

where α is the polarizability of the background gas atom
(assumed to be a hydrogen molecule), μ is the reduced mass,
and vr is the mean relative velocity. In glancing collisions
(b > rL), the background gas particle flies by the clock ion at
large distance. The charge of the ion induces a dipole moment
in the background gas particle, resulting in a C4=r4 inter-
action. The fractional resulting shift can be estimated to be
below 10−20 at a pressure of 10−9 Pa for the Alþ ion
(Rosenband et al., 2008a). In Langevin collisions (b ≤ rL)
with thermal background gas, significant phase shifts of the
ion can occur. The short collision time (1 μs) allows one to
model the effect of the collision as an instantaneous phase
shift of up to 2π at arbitrary times during the interrogation
pulse of several ten to hundreds of milliseconds. It has been
shown in a numerical study that a worst case phase shift of π=2
in the middle of a Rabi pulse causes a frequency shift of
0.15Rcoll, where Rcoll is the collision rate (Gioumousis and
Stevenson, 1958; Rosenband et al., 2008a). If a collision can
be detected, e.g., through a drop in fluorescence during laser
cooling from the large energy transfer during the collision,
such events can be discarded and no shift correction has to be
applied. For the Alþ clocks, the mean time between collisions
has been estimated from ion crystal reordering to be on the
order of a few hundred seconds. This results in a fractional
shift of up to 0.5 × 10−18 (Rosenband et al., 2008a).
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F. Other optical ion frequency standards

Here we discuss specific properties of different atomic ions
other than 27Alþ and the main experimental achievements that
have been obtained with these ions in the development of
optical frequency standards. The energy level schemes,
transition wavelengths and linewidths, and sensitivity factors
for the most important systematic frequency shifts are given in
Figs. 4 and 5 and in Table I. Table III lists the results of the
most precise absolute frequency measurements that are
available for these ions.

1. Calcium
40Caþ is an isotope without hyperfine structure and there-

fore convenient for laser cooling. It has found many appli-
cations in experiments on quantum computing (Häffner, Roos,
and Blatt, 2008). The electric quadrupole reference transition
2S1=2 − 2D5=2 has been investigated in single ions (Chwalla
et al., 2009; Huang et al., 2012; Matsubara et al., 2012) and
also in entangled states of two ions that can be designed to
suppress selected frequency shifts like the linear-Zeeman shift
(Roos et al., 2006). The same groups have reported absolute
frequency measurements. The isotope 43Caþ has been inves-
tigated because its half-integer nuclear spin I ¼ 7=2 leads to
the existence of magnetic-field insensitive mF ¼ 0 Zeeman
sublevels (Champenois et al., 2004; Kajita et al., 2005;
Benhelm et al., 2007). The high value of I and the resulting
high number of sublevels, however, makes it difficult to obtain
cyclic excitation for laser cooling and also to efficiently
populate a selected mF ¼ 0 state for interrogation of the
reference transition.

2. Strontium
88Srþ has advantages similar to those of 40Caþ in terms of

simplicity of the level scheme and availability of reliable
solid-state laser sources for cooling and interrogation
(Barwood et al., 1993; Marmet et al., 1997). The methods
of averaging the transition frequency over several Zeeman
components for the elimination of the linear Zeeman, electric
quadrupole, and quadratic Stark shift have been developed
and first applied here on the electric quadrupole reference
transition 2S1=2 − 2D5=2 (Bernard, Marmet, and Madej, 1998;
Margolis et al., 2004; Dubé et al., 2005, 2013; Madej et al.,
2012). A recent evaluation resulted in a systematic uncertainty
of 1.2 × 10−17, dominated by the contribution from the

blackbody radiation shift (Dubé et al., 2014). As in Caþ,
the use of an odd isotope 87Srþ with half-integer nuclear spin
I ¼ 9=2 has been discussed (Boshier et al., 2000). Again, the
high value of I leads to the same difficulties as mentioned for
43Caþ. The 88Srþ optical frequency standard is presently being
investigated in two laboratories, NPL inGreat Britain andNRC
inCanada, and both groups have performed absolute frequency
measurements that show good agreement of the results.

3. Ytterbium

The rare-earth ion Ybþ presents an alkali-like level scheme
with similarities to Caþ and Srþ. Apart from even isotopes
with I ¼ 0, an isotope 171Ybþ with I ¼ 1=2 exists, so that a
magnetic-field insensitive F ¼ 0 hyperfine sublevel of the
ground state becomes available and the problem of state
preparation is reduced to hyperfine pumping. Work on Ybþ

frequency standards therefore concentrates on this isotope.
The relatively high atomic mass of Ybþ leads to a smaller
Doppler shift at a given temperature. Experiments with
trapped Ybþ consistently observe the longest storage times
(Tamm et al., 2009)—exceeding several months—of a single
ion among the elements investigated as optical frequency
standards, facilitating the long-term continuous operation of
the standard. While in other ions chemical reactions with
background gas seem to ultimately limit the storage time, this
loss process is prevented for Ybþ by the near coincidence of
photodissociation resonances for YbHþ with the 370 nm
cooling laser light (Sugiyama and Yoda, 1997). Several
reference transitions in 171Ybþ have been studied, including
the 12.6 GHz microwave frequency standard based on
the ground-state hyperfine splitting (Fisk, 1997) and the
2S1=2 − 2D5=2 electric quadrupole transition (Taylor et al.,
1997). Work has focused on the 2S1=2 − 2D3=2 electric quadru-
pole transition (Tamm, Engelke, and Bühner, 2000) and on the
2S1=2 − 2F7=2 electric octupole transition (Roberts et al.,
1997). Both frequency standards are presently pursued at
PTB in Germany and NPL in Great Britain. The quadrupole
transition has been used in a subhertz optical frequency
comparison between two trapped ions that has also made it
possible to measure the relevant polarizabilities and the
quadrupole moment of the 2D3=2 state (Schneider, Peik, and
Tamm, 2005). The octupole transition between the 2S1=2 ground
state and the lowest excited 2F7=2 state is unusual because of its
extremely small natural linewidth in the nanohertz range.While
allowing for very high resolution, at the limit imposed by noise

TABLE III. Selected absolute frequency measurements of optical clocks with trapped ions.

Ion Transition Absolute frequency and uncertainty (Hz) Reference
27Alþ 1S0 − 3P0 1 121 015 393 207 857.4(7) Rosenband et al. (2008b)
40Caþ 2S1=2 − 2D5=2 411 042 129 776 393.2(1.0) Chwalla et al. (2009)

411 042 129 776 393.0(1.6) Huang et al. (2012)
411 042 129 776 398.4(1.2) Matsubara et al. (2012)

88Srþ 2S1=2 − 2D5=2 444 779 044 095 484.6(1.5) Margolis et al. (2004)
444 779 044 095 485.5(9) Madej et al. (2012)

171Ybþ 2S1=2 − 2D3=2 688 358 979 309 307.82(36) Tamm et al. (2014)
688 358 979 309 308.42(42) Godun et al. (2014)

171Ybþ 2S1=2 − 2F7=2 642 121 496 772 645.36(25) Huntemann et al. (2014)
642 121 496 772 644.91(37) Godun et al. (2014)

199Hgþ 2S1=2 − 2D5=2 1 064 721 609 899 144.94(97) Oskay et al. (2006)
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of the interrogation laser, an associated disadvantage is a
significant light shift of the transition frequency (Webster et al.,
2002). This shift is proportional to the laser intensity so that a
π pulse with Fourier-limited spectral width Δf causes a shift
proportional to ðΔfÞ2. The shift contains both scalar and
tensorial contributions and scales like 0.65ð3Þ Hz−1ðΔfÞ2 if
the polarization and magnetic-field orientation are chosen to
maximize the excitation probability (Huntemann, Okhapkin
et al., 2012). Disregarding the light shift, the sensitivities of the
Ybþ octupole transition frequency to electric field-induced
shifts are significantly lower than those of the quadrupole
transitions in the alkali-like ions, as has been pointed out in
theoretical estimates (Lea, 2007) andmeasured in the frequency
standard (Huntemann, Okhapkin et al., 2012). Qualitatively,
this can be explained by the electronic configuration ð4f136s2Þ
of the 2F7=2 level that consists of a hole in the 4f shell that is
surrounded by the filled 6s shell, and therefore less polarizable
than an outer d electron. PTB and NPL have both reported
absolute frequency measurements of the octupole transition
with respect to primary caesium fountain clocks, obtaining Cs-
limited uncertainties below 1 × 10−15 and excellent agreement
of the values (Huntemann, Okhapkin et al., 2012; King et al.,
2012; Godun et al., 2014; Huntemann et al., 2014). With the
application of a generalized Ramsey interogation method that
suppresses the uncertainty due to the light shift from the
interrogation laser (Huntemann, Lipphardt et al., 2012) and
improved control of the blackbody radiation shift, this system
offers prospects for a systematic uncertainty below 10−17.

4. Mercury
199Hgþ, like 171Ybþ, has also been investigated as a

frequency standard in the microwave (Prestage et al., 1992;
Berkeland et al., 1998a), as well as in the optical frequency
range, based on the 2S1=2 − 2D5=2 electric quadrupole tran-
sition (Bergquist, Itano, and Wineland, 1987). The Hgþ
optical frequency standard developed at NIST in the USA
makes use of a cryogenic ion trap that reduces ion loss due to
reactions with the background gas and the frequency shift
induced by blackbody radiation (Poitzsch et al., 1996). The
suppression of the quadrupole shift through averaging over
three orthogonal orientations of the quantization axis was first
demonstrated in this system (Oskay, Itano, and Bergquist,
2005; Oskay et al., 2006). The total systematic uncertainty has
been evaluated to 1.9 × 10−17 fractional frequency uncer-
tainty. A number of precise absolute frequency measurements
of this transition have been performed at NIST over an
extended time span, so that, together with data on transitions
in 171Ybþ and 27Alþ, it can be used to constrain a temporal
drift of the fine-structure constant (Peik et al., 2004; Fortier
et al., 2007; Rosenband et al., 2008b).

5. Barium
138Baþ was used in the pioneering experiments on laser

cooling of ions in Paul traps (Neuhauser et al., 1980) and
kHz-resolution spectroscopy has been performed on the
2S1=2 − 2D5=2 electric quadrupole transition at 1.76 μm wave-
length (Nagourney, Yu, and Dehmelt, 1990; Yu et al., 1994;
Appasamy et al., 1995) and on the 24-THz fine-structure
transition between the two D levels (Whitford et al., 1994).

In the latter case, an absolute frequency measurement has also
been performed (Whitford et al., 1994). More recently, use of
the 2S1=2 − 2D3=2 electric quadrupole transition at 2.05 μm
wavelength in 137Baþ was proposed (Sherman et al., 2005).
With a nuclear spin I ¼ 3=2, this isotope possesses a hyper-
fine sublevel F ¼ 0 of the 2D3=2 state so that the transition
would be free from the linear quadrupole shift.

6. Indium
115Inþ was the first ion where laser excitation of the

hyperfine-induced 1S0 − 3P0 transition was demonstrated
(Peik, Hollemann, and Walther, 1995). Unlike Alþ, the
intercombination line 1S0 − 3P1 in Inþ is sufficiently fast to
allow for laser sideband cooling that leads to a vibrational
quantum number hni < 1 in a one-stage cooling process (Peik
et al., 1999). Precision laser spectroscopy of the 1S0 − 3P0

transition has led to measurements of the lifetime and g factor
of the excited state (Becker et al., 2001) and to early frequency
measurements using a mode-locked femtosecond laser and a
calibrated, methane-stabilized He-Ne laser as a reference
(Zanthier et al., 2000). Similarly to Alþ, Inþ offers very
low sensitivity to field-induced systematic shifts (Becker
et al., 2001; Safronova, Kozlov, and Clark, 2011). Among
the singly charged ions of the third group of the periodic
system, Inþ is most amenable for laser cooling, but the
relatively small linewidth of the cooling transition results in
a low photon count rate for fluorescence detection, whereas
the reference transition with a natural linewidth of 0.8 Hz
would limit the obtainable spectral resolution and thus the
instability of a Inþ single-ion frequency standard. It has
therefore been proposed to use larger numbers of laser cooled
Inþ ions in a linear Paul trap for a multi-ion optical frequency
standard with improved stability (Herschbach et al., 2012).

VI. NEUTRAL ATOM ENSEMBLE OPTICAL
FREQUENCY STANDARDS

Optical atomic clocks based on neutral atoms possess the
advantage of enhanced clock signals that offer improved clock
stability. However, only recently with improved local oscil-
lators are these benefits being exploited. At the present time,
rapid advances are being made with these systems, and we
foresee continued advances in both stability and accuracy for
neutral atom optical clocks.

A. Atomic candidates: Alkaline earth(-like) elements

The choice of a quantum reference depends on a number of
important factors. As already emphasized earlier, a good
starting point is to find a clock transition that supports a
superior line quality factor Q and whose frequency is
insensitive to external fields. For the long coherence times
demanded by state-of-the-art frequency standards, it is also
crucial that the atoms have well-defined motion—namely, that
they can be efficiently prepared by laser cooling and trapping.
Alkali atoms such as caesium and rubidium have played a
prominent role in atomic clocks. Notably, 133Cs has served as
the primary standard of time and frequency since 1967. At the
same time, these alkali systems have played a pioneering role
in laser cooling and quantum control. Properties such as
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strong laser accessible transitions, ground-state magnetic
moments, and magnetic Feshbach resonances have made this
control possible. The ability to manipulate these atomic
systems also became important for the development of the
most accurate caesium and rubidium standards, relying on
laser cooled samples in an atomic fountain. Yet while the
fractional accuracy of the most advanced Cs clocks is now
approaching the 1 part per 1016 level, improvement in its
fractional stability, and ultimately the accuracy, is hindered by
the relatively small hyperfine transition frequency of 9.2 GHz.
Among possible atomic candidates, alkaline earth(-like)

atoms and ions (Mg, Ca, Sr, Yb, Hg, Alþ; Inþ, etc.) are turning
into increasingly popular choices for frequency standards due
to their narrow intercombination transitions and simple level
structure (Hall, Zhu, and Buch, 1989). A representative
diagram of this level structure is shown in Fig. 9. With two
valence s-shell electrons, the spin of each electron can add
parallel or antiparallel, yielding singlet and triplet states.
Strong transitions exist among the various singlet or triplet
states, while weaker spin-forbidden transitions occur between
them. In many cases the strong 1S0 − 1P1 cycling transition
can be used for cooling, trapping, and sensitive state detection,
while the spin-forbidden 1S0 − 3P1 can be used for cooling to
ultralow temperatures. Transitions from the 3P states to 3S1 or
3D are useful for repumping the 1S0 − 1P1 cooling transition
or for optical pumping used in state detection. The doubly
forbidden 1S0 − 3P0 transition in isotopes with nuclear spin
have attracted the most attention. The low-lying metastable

3P0 excited state has only very weak coupling to 1S0, with a
laser accessible energy interval. The 1S0 − 3P0 transition
linewidth is very small (ranging from 1 Hz to well below
1 mHz) offering a line Q reaching 1018, optimal for optical
clock development. Furthermore, the lack of electronic
angular momentum in these clock states reduces the size of
many potential systematic uncertainties in the system. For
atomic confinement in an optical potential, these group 2
species are ideal due to the existence of Stark cancelation
wavelengths and because of the minimal dependence of the
clock frequency on the light polarization. While each atomic
specie has individual advantages as a frequency standard,
currently Sr, Yb, and Hg are popular choices for standards
under development. Here we discuss optical lattice clocks
with particular emphasis on Sr and Yb, recognizing that many
features of these systems are shared by other alkaline
earth(-like) systems.

B. Laser cooling and trapping of alkaline earth(-like) atoms

The 1S0 − 1P1 transition (Fig. 9) is well suited for laser
cooling and trapping from a thermal source. The transition
typically has natural linewidths of several tens of megahertz or
more, allowing relatively fast photon scattering for efficient
cooling. It is also a nearly closed transition, enabling many
photons to be cycled. In most cases, the transition is not
completely closed: excited 1P1 population weakly decays into
the triplet manifold and eventually makes its way to the lower

FIG. 9 (color online). (a) A simplified energy level diagram representative of many group 2 (-like) atoms. Some of the most relevant
transitions are indicated with arrows, and their wavelengths (in nanometers) and natural linewidths are specified in the adjacent table for
the case of Sr, Yb, and Hg. (b) The importance of gravity on narrow-line cooling dynamics is clearly seen from the in situMOT images
as the laser detuning δ is varied in a narrow line MOT for Sr. The dashed ovals represent the spatial position where the photon scattering
rate is the highest as the laser frequency detuning matches the Zeeman level shift induced by the MOT magnetic field. In the absence of
gravity, the dashed ovals define the MOT region.
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lying metastable 3P states. This decay is particularly weak for
Yb, but even for cases like Sr, it is sufficiently weak so that a
magneto-optic trap (MOT) operation does not require a
repumping laser. Nevertheless, a repumping configuration
can yield longer MOT lifetimes and more trapped atoms, and
some possible repumping configurations are shown in Fig. 9.
Another benefit of the 1S0 − 1P1 transition is that it links a
J ¼ 0 to a J ¼ 1 state, making it a simple one for achieving
MOT spatial confinement.
Some experimental complexity exists with laser cooling

alkaline earth atoms on this transition, and this is one reason
that these systems historically have been studied less exten-
sively than their alkali metal counterparts. The first is that the
1S0 − 1P1 transition tends to lie in the bluer regions of the
optical spectrum, where achieving high laser power has been
more challenging. The broad natural linewidth also dictates
relatively large magnetic-field gradients in a MOT, requiring
MOT coils that are driven with up to 100 A or more. Finally,
the J ¼ 0 ground state is a simple one for laser cooling, but
with a small magnetic moment of a nuclear origin (for
fermionic species), popular magnetic trapping of the
ground-state alkaline earth atoms is essentially prohibited.
All of these experimental complexities can be addressed and
have been overcome in their various applications. Over the
recent decades the number of options for reliable blue laser
sources continues to increase. Work in laser cooling calcium,
magnesium, and strontium began 20 years ago or more
(Beverini et al., 1989; Kurosu and Shimizu, 1990; Witte
et al., 1992; Fox et al., 1993; Sengstock et al., 1993) and more
than 10 years ago in ytterbium (Honda et al., 1999; Loftus
et al., 2000).
The natural linewidth of the 1S0 − 1P1 transition offers the

potential for a strong cooling force, but at the expense of a
relatively high Doppler cooling temperature limit, near the
mK level. A second stage of Doppler cooling on the narrow
1S0 − 3P1 intercombination transition offers a much lower
limit which, depending on the choice of element, can approach
the μK level or below. Second stage cooling (Hall, Zhu, and
Buch, 1989) using this intercombination transition was first
carried out for strontium (Katori et al., 1999; Vogel et al.,
1999), and shortly thereafter on calcium (Binnewies et al.,
2001; Curtis, Oates, and Hollberg, 2001). In the case of
calcium, the 1S0 − 3P1 transition linewidth is so narrow
(400 Hz) that quenching is required to generate an optical
force to exceed that of gravity. The operation of a narrow-line
MOT has been studied extensively for strontium (Mukaiyama
et al., 2003; Loftus, Ido, Boyd et al., 2004; Loftus, Ido,
Ludlow et al., 2004), providing unique insights into narrow-
line cooling dynamics. For the case of Yb, where the
intercombination transition linewidth is 180 kHz, it is possible
to load atoms from a slowed atomic beam directly into a MOT
operating on the 1S0 − 3P1 transition (Kuwamoto et al.,
1999). For the case of Hg, where the intercombination
transition linewidth is 1.3 MHz and generation of the
185 nm light for the 1S0 − 1P1 transition is difficult, atoms
are cooled and loaded directly into a MOT utilizing the
1S0 − 3P1 transition (Hachisu et al., 2008; Petersen et al.,
2008). The convenience of doing so is traded for a higher
Doppler cooling limit on this intercombination transition
(31 μK).

To give more detail to the cooling and trapping as realized
in an optical lattice clock, here we discuss one particular
example—Sr (Ludlow et al., 2006; Boyd, Ludlow et al.,
2007). Sr atoms are first loaded from a slowed atomic beam
into a MOT operating on the strong 1S0 − 1P1 transition,
which is used as a precooling stage to reach mK temperatures.
During this cooling stage, the weak decay path from the 1P1

state results in population buildup in the 3P2 state (Xu, Loftus,
Hall et al., 2003). Repumping lasers are used to drive the
population back to the ground state though the 3P2;0 → 3S1 →
3P1 → 1S0 channel and typically enhance the trap population
by more than an order of magnitude. Atoms are then released
from the blue trap and undergo a brief stage of broadband
1S0 − 3P1 molasses cooling to reduce the temperature to about
10 μK. Next the atoms are loaded into a single-frequency
MOToperating on the 7.4 kHz 3P1 line for direct laser cooling
below 1 μK (Loftus, Ido, Boyd et al., 2004; Loftus, Ido,
Ludlow et al., 2004).
The narrow-line cooling offers a rich system of mechanical

and thermodynamic properties that have been explored
extensively (Loftus, Ido, Boyd et al., 2004; Loftus, Ido,
Ludlow et al., 2004). Here we mention just a couple of
interesting effects. For strong transitions, such as the singlet
line, the maximum scattering force from the cooling beams is
about 5 orders of magnitude larger than the force of gravity.
Conversely, for the narrow 1S0 − 3P1 transition in Sr, the
maximum light scattering force is only about 16 times larger
than gravity. Therefore, gravity, which can be safely ignored
in traditional laser cooling or MOT experiments, becomes a
significant effect for a narrow-line MOT. As noted earlier, for
lighter alkaline earth atoms with weaker intercombination
lines (e.g., Ca), the cooling force is sufficiently weak such that
the force of gravity dominates, making it impossible to realize
a MOT with direct Doppler cooling, and other cooling
schemes are required (Binnewies et al., 2001; Curtis,
Oates, and Hollberg, 2001). The effect of gravity on the
dynamics of a Sr MOT can be easily observed in Fig. 9(b),
where a 1S0 − 3P1

88Sr MOT is imaged in situ for different
frequency detunings under a fixed saturation parameter
s ¼ 250 of the trapping laser. As the detuning is increased,
the gravitational force becomes more important, and the
atomic cloud sags until it reaches a spatial location where
the corresponding magnetic field results in the maximum
scattering rate. This self-adjusting feature results in a constant
scattering rate at the trap boundary that is independent of the
laser detuning. In contrast to standard laser cooling, this effect
leads to a detuning-independent atomic temperature in the
MOT (Loftus, Ido, Boyd et al., 2004; Loftus, Ido, Ludlow
et al., 2004). In this case the temperature is 2 μK and is
unchanged over a range of detunings from 100 to 400 times
the transition linewidth.
Another significant feature of narrow-line cooling is the

importance of the photon recoil on cooling dynamics. For
broad transitions we have the situation in which ΓE=ωR ≫ 1,
where ΓE ¼ Γ

ffiffiffiffiffiffiffiffiffiffiffi
1þ s

p
is the power broadened transition

linewidth and ωR=ð2πÞ ¼ ℏk2=4πM is the photon recoil
frequency. For the Sr intercombination line (ignoring satu-
ration), the ratio Γ=ωR ¼ 1.6. In this case the relevant energy
scale is that of a single photon recoil. Consequently, quantum
(not semiclassical) scattering governs trap dynamics. When
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operating the red MOT at low saturation we observe temper-
atures as low as 250(20) nK, in good agreement with the
predicted half recoil limit in quantum cooling (Castin, Wallis,
and Dalibard, 1989).
The cooling mechanisms described here were studied

systematically with 88Sr. The group 2 atoms offer an abun-
dance of both bosonic and fermionic isotopes. Generally
speaking, due to nucleon spin pairing, the bosonic isotopes of
these group 2 (-like) atoms have even numbered atomic mass
and a nuclear spin equal to zero. The fermionic isotopes have
odd numbered atomic mass, and nonzero nuclear spin.
The nonzero nuclear spin introduces hyperfine splittings into
the level structure shown in Fig. 9. This additional compli-
cation usually makes bosonic isotopes for somewhat simpler
systems for manipulation such as laser cooling. But some-
times a hyperfine structure can bring an unexpected benefit,
such as sub-Doppler cooling for fermionic isotopes (Xu,
Loftus, Dunn et al., 2003). For narrow-line cooling, the
difference for fermionic isotopes is highlighted by the
additional laser requirements for operation of a
1S0ðF ¼ 9=2Þ − 3P1 (F ¼ 11=2) MOT with fermionic 87Sr
(Mukaiyama et al., 2003). The complexity arises due to the
significant difference in the Landé g factors for the ground and
excited states, which are determined by the nuclear spin and
the electronic spin, respectively. This issue is exacerbated by
the small natural linewidth of the transition, which results in a
scattering rate, and even the direction of the force, that
depends strongly on a specific mF sublevel populated. To
achieve stable trapping, a two-color scheme (Mukaiyama
et al., 2003) can be used with additional MOT beams driving
the 1S0ðF ¼ 9=2Þ − 3P0ðF ¼ 9=2Þ transition. The F ¼ 9=2
excited state has a smaller g factor than that of the F ¼ 11=2
state and it enables sufficient optical pumping to keep the
atomic population within the states that are trapped by the
primary MOT beams. For lattice clock experiments, an optical
lattice is typically overlapped with the MOT cloud during the
entire cooling sequence to allow loading. This typically results
in the capture of between 103 and 106 atoms for clock
spectroscopy.

C. Free-space standards

For neutral atoms, lack of a net electric charge precludes a
straightforward method for confining the atoms without
altering the natural electronic structure. Nevertheless, with
advances in laser stabilization, nonlinear spectroscopy, and
other experimental techniques, interest in probing narrow
electronic spectra in dilute thermal samples gained momentum
as early as the 1970s, with particular interests in the inter-
combination transitions in alkaline earth atoms (Barger,
English, and West, 1976; Bergquist, Lee, and Hall, 1977;
Barger et al., 1979). Atomic motion led to significant first- and
second-order Doppler shifts, and consequently laser cooling
played an important role in unlocking the potential of this type
of atomic frequency standard. Researchers explored frequency
standards using untrapped calcium, magnesium (Sengstock
et al., 1994; Friebe et al., 2008; He et al., 2009), and strontium
(Ido et al., 2005). Of considerable note, significant effort
spanning more than a decade explored laser cooled, ballis-
tically expanding calcium (Kurosu, Morinaga, and Shimuzu,

1992; Witte et al., 1992; Kisters et al., 1994; Oates et al.,
1999; Binnewies et al., 2001; Curtis, Oates, and Hollberg,
2001, 2003; Udem et al., 2001; Wilpers et al., 2003, 2007;
Degenhardt et al., 2005; Wilpers, Oates, and Hollberg, 2006).
These cold-calcium systems often employed four-pulse opti-
cal-Ramsey interrogation (Bordé et al., 1984) and the later
implementations benefitted from multiple stages of laser
cooling to reduce Doppler effects, including quenched nar-
row-line cooling to reach 10 μK temperatures or below.
Impressive experimental efforts with these optical frequency
standards achieved total uncertainties of ≤1 × 10−14. While
residual Doppler effects did not dominate the final uncertainty,
they were nevertheless significant. It was anticipated that
another round of improvements could perhaps push the
accuracy of the free-space calcium standard to the 10−15

level. However, at the same time, the neutral atom optical
lattice clock was proposed. If the residual ac-Stark shift from
atomic confinement in an optical lattice could be canceled at
the “magic” wavelength, motional effects could be reduced to
far below the 10−15 level. Consequently, momentum in the
neutral atom optical frequency standard community moved
toward optical lattice clock systems based on the 1S0 − 3P0

transition, in other alkaline earth(-like) elements such as
strontium, ytterbium, and mercury.

D. Strong atomic confinement in an optical lattice

A common feature of the optical lattice and single-ion
clocks is the tight atomic confinement provided by a trap. In
both systems, this confinement accomplishes a critical goal:
decoupling the external (motional) and internal (atomic state)
degrees of freedom, so that a precise measurement of the
internal degree of freedom can be made without troubling
systematics arising from atomic motion. To approach confine-
ment capable of a pure internal state measurement (free of
motional effects), several important criteria must be met and
are described next.

1. Spectroscopy in the well-resolved-sideband and Lamb-Dicke
regimes

The evolution of a resonantly driven, two-level atom (at
rest) is given by the Rabi flopping solution, with population
exchange between the two levels at the Rabi frequency Ω. In
the frequency domain, population is excited with the charac-
teristic sinc2 Rabi line shape, or in the presence of sufficient
decoherence, a Lorentzian line shape whose width is the
decoherence rate Γ divided by 2π. In the presence of atomic
motion, this line shape becomes inhomogeneously broadened
from the Doppler shift across the atomic velocity distribution,
yielding a Gaussian or Voigt line shape. However, for an atom
confined in a harmonic potential, the atomic motion is not a
continuous variable, but is restricted to the quantized motional
states of the system. The excitation of the two-level atom with
an initial motional state jni and final motional state jmi is
given by a modified Rabi rate:

Ωmn ¼ Ωe−η2=2
ffiffiffiffiffiffiffi
n<!
n>!

s
ηjm−njLjm−nj

n< ðη2Þ; ð29Þ

Ludlow et al.: Optical atomic clocks 667

Rev. Mod. Phys., Vol. 87, No. 2, April–June 2015



where Ω is the corresponding Rabi frequency for the atom at
rest, n< (n>) is the lesser (greater) of n andm, and Lα

nðxÞ is the
generalized Laguerre polynomial. η is the so-called Lamb-
Dicke parameter which is roughly the ratio of the spatial
extent of the ground motional state and the wavelength of the
probing radiation (η ¼ kx0=

ffiffiffi
2

p
). The resonant transition

rate is given by the modified Rabi frequency Ωmn and the
transition frequency is determined by the energy difference
between the initial and final states that include both electronic
and motional degrees of freedom. An overly simplified
illustration of the resulting excitation spectrum is shown in
Fig. 10(a). Here the tall central feature corresponds to pure
electronic excitation and to either side is the blue (red)
sideband associated with both electronic excitation and
excitation (deexcitation) of the atomic motion. The relative
size of the decoherence rate Γ and the trap frequency ω
strongly influences the two-level dynamics and the observed
spectroscopic features illustrated in Fig. 10(a). If Γ > ω, the
sideband structure in Fig. 10 would be unresolvable, prevent-
ing a clean discrimination of the purely electronic excitation
(the carrier transition) from a mixed electronic and motional
excitation (sideband transitions). Indeed, in this limit, the
various spectral features blend into each other, leaving
spectroscopic measurements sensitive to motional shifts and
broadening. This is in contrast to the case of Γ ≪ ω, where the
Doppler effects are manifest at high modulation frequencies
far from the carrier transition. Consequently, the influence of
motion on the purely electronic excitation is reduced to line-
pulling effects from the motional sidebands. The ability to
discriminate carrier and sidebands (Γ ≪ ω) is named the
resolved-sideband or strong binding regime and was first
demonstrated in trapped-ion experiments (Wineland and
Itano, 1979; Stenholm, 1986).
Atomic recoil also plays an important role in the

observed spectra and is influenced by the atomic confinement.
Figure 10(b) shows the absorption spectrum for ultracold 87Sr
on the 1S0 − 3P0 clock transition, for three cases of increasing
atomic confinement (decreasing η from the bottom to top

traces). Here the effect of atomic recoil is included, and the
spectrum is integrated over the Boltzmann distribution of
motional states. For the weakest confinement case, the recoil
effect is clear: the transition with largest amplitude is not the
pure electronic excitation at zero detuning, but rather the first
blue-detuned motional sideband. In the absence of any
confinement, the continuous spectrum would be peaked at
the blue-detuned recoil shift value. As confinement becomes
stronger (decreasing η), we move into the Lamb-Dicke regime
where η ≪ 1. In this regime, the recoil effect on the line
intensities is reduced: the carrier transition at zero detuning
emerges as the dominant feature with maximum amplitude,
and the sideband spectra, distributed at harmonics of the trap
frequency on either side of the carrier, have amplitudes that are
significantly suppressed relative to the carrier. The Rabi rate
for motional excitation (deexcitation) in Eq. (29) simplifies to
Ωη

ffiffiffi
n

p
(Ωη

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
) in this regime. The Lamb-Dicke effect is

equivalent to the suppression of sideband excitation (Dicke,
1953), caused by the fact that the optical potential, not the
atom, takes up the recoil momentum from an absorbed photon.
This phenomenon is analogous to the much studied absorption
of γ rays in Mössbauer spectroscopy (Mössbauer, 2000).
Operating in both the resolved-sideband regime (Γ ≪ ω)

and the Lamb-Dicke regime η ≪ 1 provides maximum benefit
to spectroscopically probe the transition virtually free of
Doppler and recoil effects: In the resolved-sideband regime,
motional effects are pushed to sideband frequencies far from
the carrier, and in the Lamb-Dick regime, the motional
sideband amplitudes are suppressed. However, to realize
the full separation between excitation of internal and external
atomic degrees of freedom, one more critical condition must
be met. The confinement experienced by the atom must be the
same regardless of which internal clock state is populated.
This is equivalent to saying that the carrier transitions shown
in Fig. 10 occur at a true zero detuning relative to the
unperturbed atomic transition. For large sample of cold neutral
atoms, this is accomplished by confinement in an optical
lattice operating at the “magic” wavelength.
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FIG. 10 (color online). (a) Sketch of a generic absorption spectrum in the well-resolved-sideband limit. (b) Absorption spectrum of the
1S0 − 3P0 clock transition in ultracold 87Sr under various levels of confinement. Tighter confinement corresponds to higher trap
frequency and smaller η. The spectral lines are well resolved, and the strong confinement curve falls in the Lamb-Dicke regime.
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2. The magic wavelength

The optical lattice confines the atoms by inducing a dipole
moment in the atom and exerting a force on this dipole
through a laser field gradient. In general, the induced polar-
izabilities of the two clock states of the atom will differ such
that the trapping field results in an ac-Stark shift of the clock
transition frequency, substantially deteriorating the clock
accuracy. Furthermore, since the light field is inhomogeneous,
atomic motion within the trap will couple the external and
internal degrees of freedom, degrading the coherence in
spectroscopic measurement. Although the dynamic polar-
izabilities (or equivalently the ac-Stark shift) of the two clock
states will have a different form, they do have a dependence on
the wavelength and polarization of the trapping light. In some
special cases it is possible to tailor the trapping field so
that the polarizabilities are equal and the clock states
experience identical perturbations (Ye, Kimble, and Katori,
2008). In this case the atoms can be measured in a pseudo
Stark-shift-free environment, allowing Lamb-Dicke confine-
ment and clean separation of the atomic motion from the
internal degrees of freedom, similar to a trapped-ion system
but with many more atoms available for spectroscopy
(Katori et al., 2003). The idea that a magic wavelength
lattice could be useful for a high-accuracy optical frequency
standard was first proposed by Katori et al. in literature
(Katori et al., 2003).
The two-electron level structure [see Fig. 9(a)] results in a

nearly independent series of singlet and triplet states such that
the Stark shift of the clock states can be tuned semi-
independently. Consider the case of Sr: the ground state
ð5s2Þ1S0, ignoring weak intercombination transitions, is
coupled predominantly to excited ð5snpÞ1P1 states by an
optical field. For all lattice wavelengths longer than 461 nm
(the lowest-lying excited-state transition wavelength), we
have the situation of a red-detuned far-off-resonance optical
dipole trap, in which the ac-Stark shift will always be negative
and the atoms will be trapped at the antinodes of the standing
wave. The upper clock states ð5s5pÞ3P1;0 are markedly
different as three series of triplet states are coupled by the
trapping laser, specifically the ð5snsÞ3S and ð5sndÞ3D series,
and the ð5p2Þ3P states. The Stark shift for the S and P state
contributions will be negative for all wavelengths above
700 nm. However, the low-lying ð5s4dÞ3D state will contrib-
ute a positive shift for wavelengths below 2600 nm. In the
wavelength range 700–2600 nm there exists a sign change in
the polarizability and Stark shift of the ð5s5pÞ3P state.
However, the ð5s2Þ1S0 polarizability changes very little in
the same wavelength range. Additionally, the presence of
resonances in the 3P polarizability provides sufficient ampli-
tude swings to essentially guarantee a magic crossing point
where the 1S0 and 3P polarizabilities match.
To find this magic wavelength, the dynamic ac-Stark shifts

can be calculated for the clock states of interest. The Stark
shift Δf of an energy level i in the presence of an optical
field with an electric field amplitude E is given by
hΔf ¼ −ð1=2ÞαijEj2. For a 1D optical lattice geometry the
potential is described by a longitudinal standing wave with a
Gaussian distribution in the radial dimension, given by
(Friebel et al., 1998)

Uðr; zÞ ¼ 4Ume−2r
2=wðzÞ2cos2ð2πz=λLÞ: ð30Þ

Here Um ¼ Pαi=½πcϵ0wðzÞ2�, where P is the average laser
power of the incoming beam, wðzÞ is the beam waist (radius)
at a longitudinal distance z from the focus of the beam, r is the
radial distance from the beam center, and λL is the laser
wavelength. The trap depth can be characterized in terms of
the harmonic oscillation frequency as

UT ¼ ν2z
M2λ4L
h2

ER;

where ER ¼ ℏωR, and UT=ER characterizes the lattice inten-
sity. For a complete description of the trap properties, the
polarizability of the relevant atomic states must be evaluated.
In the presence of a laser field of frequency ωL, the dynamic
dipole polarizability of a state i involves the sum over the
dipole interaction between state i and excited states k,

αiðωL; pÞ ¼ 6πϵ0c3
X
k

AikðpÞ
ω2
ikðω2

ik − ω2
LÞ

; ð31Þ

which depends only on the lattice frequency, the atomic
spontaneous decay rates AikðpÞ between states i and k for
polarization p, and the corresponding energy difference ℏωik.
Figure 11 shows the calculated wavelength-dependent light

shifts for these states in Sr under various polarization
configurations using Eqs. (30) and (31), with P ¼ 150 mW
and wðz ¼ 0Þ ¼ 65 μm. The light shift for the 3P1 state shows
a significant dependence on the magnetic sublevel (mJ) and
polarization due to the tensor and vector light shift contribu-
tions. An interesting region occurs at 917 nm, where the
3P1ðmJ ¼ �1Þ states experience the same light shift as the 1S0
state when linearly polarized light is used. This magic
wavelength could be used for development of a lattice clock
based on the 1S0 − 3P1 transition. However, the final accuracy
of such a clock will likely be limited by the polarization
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FIG. 11 (color online). Calculations of the wavelength-
dependent ac-Stark shift for the 1S0, 3P0, and 3P1ðmJ¼0;�1Þ
states in 88Sr. Values are given for linear (π) and circular (σ�)
polarizations. The 1S0 (solid line) and 3P0 (long-dashed line)
states exhibit no polarization dependence and cross at a wave-
length of 815 nm in good agreement with experimental results.
The 3P1 state reveals a significant polarization and mJ depend-
ence due to the tensor and vector nature of the light shifts.
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sensitivity. The 1S0 and 3P0 states show no polarization
dependence since mJ ¼ 0 are the only sublevels present.
Therefore the polarization sensitivity is removed (aside from
the small corrections arising from nuclear spin in 87Sr) and the
transition is more suitable for the highest accuracy spectros-
copy. The calculated crossing point for the two clock states
occurs just below 815 nm, convenient for developing high
power stabilized laser systems. For the parameters used here,
the Stark shift of U0 ∼ h × 125 kHz (or U0 ∼ 35ER) corre-
sponds to a longitudinal trap frequency of νz ∼ 40 kHz such
that η ¼ 0.33. Similarly, the sensitivity of the clock transition
to deviations from the magic wavelength are calculated to be
ð10 Hz=nmÞ=ðUT=ERÞ, such that for this particular trap depth
the lattice laser frequency can deviate by up to 500 kHz from
the cancelation value without degrading the clock accuracy at
the 10−18 level.
An early step toward developing the lattice clock is the

determination of the magic wavelength for the clock tran-
sition. As a first indication, a number of theoretical and
semiempirical calculations of varying complexity have been
made for different atomic species such as Sr, Yb, Hg, Cd, Zn,
Mg, and Ca [see, for example, Katori et al. (2003),
Degenhardt et al. (2004), Porsev, Derevianko, and Fortson
(2004), Ovsiannikov et al. (2007), Hachisu et al. (2008), Ye
and Wang (2008), and Dzuba and Derevianko (2010) and
references therein]. Ultimately, experimental measurement
must be used to sufficiently constrain the value of the magic
wavelength. To determine this experimentally, the transition
frequency is measured for a variety of trap depths and
wavelengths (Ido and Katori, 2003). Table IV lists a number
of such measurements for isotopes of Sr and Yb. A meas-
urement for Hg is reported by Yi et al. (2011).

3. Spectroscopy of lattice confined atoms

Even well into the Lamb-Dicke regime and the well-
resolved-sideband regime, the excitation spectrum shown in
Fig. 10 can be altered by details of the confinement. This is
particularly true for a 1D optical lattice, presently a
common choice of confinement for the lattice clock sys-
tems. Figure 12 shows longitudinal sideband spectra of the
clock transition for (a) Yb and (b) Sr for diverse trapping

conditions in a 1D optical lattice. To make clear observa-
tions of the sideband, the carrier transition was driven
strongly into saturation. Notably the red-detuned and blue-
detuned sidebands are smeared out over a broad range of
frequencies, unlike the motional sidebands observed in
trapped single-ion experiments. Since the atoms are only
tightly confined along the longitudinal axis of the 1D
optical lattice, weak transverse confinement means that
the atomic wave function extends into the Gaussian inten-
sity profile of the lattice laser beam, especially for atoms
occupying the higher transverse motional states. At the
lower intensity regions, the corresponding longitudinal trap
frequency is smaller, and thus the sideband features bleed
into lower frequencies (Blatt et al., 2009). Furthermore, as
the lattice trap depth is usually only a few tens of μK for
these systems, higher longitudinal motional states sample

TABLE IV. Some measured magic wavelength values for the 1S0 − 3P0 clock transition. Bold text indicates the quantity (wavelength or
optical frequency) reported directly in the given reference.

Atomic species Magic wavelength (nm, in vacuum) Magic optical frequency (GHz) Reference
87Sr 813.420ð7Þ 368 558(3) GHz Takamoto et al. (2005)

813.418ð10Þ 368 559(4.5) Ludlow et al. (2006)
813.428ð1Þ 368 554.4(0.5) Brusch et al. (2006)
813.4280ð5Þ 368 554.4(0.2) Boyd (2007)
813.427 35(40) 368 554.68ð18Þ Ludlow et al. (2008)
813.427 270(11) 368 554.718ð5Þ Westergaard et al. (2011)
813.427 746(33) 368 554.502ð15Þ Falke et al. (2011)

88Sr 813.427 57(62) 368 554.58ð28Þ Akatsuka, Takamoto, and Katori (2010)
174Yb 759.35ð2Þ 394 800(10) Barber et al. (2006)

759.353 740(67) 394 799.475ð35Þ Barber et al. (2008)
171Yb 759.355 944(19) 394 798.329ð10Þ Lemke et al. (2009)

759.353ð3Þ 394 800(1.6) Kohno et al. (2009)
759.355 65(15) 394 798.48ð79Þ Park et al. (2013)
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FIG. 12 (color online). Spectroscopy of the clock transition in the
optical lattice. When the clock transition is strongly driven into
saturation, the motional sidebands can be more easily observed.
From these spectra trap parameters such asmotional frequency, trap
depth,Lamb-Dickeparameter, aswell as the atomic temperature can
be extracted. Examples of sideband spectra for (a) Yb and (b) Sr are
shown under trapping conditions described in the text.
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the trap anharmonicity, which also results in lower trap
frequencies for higher motional states.
The sharp edge of the blue sideband gives a good estimate

of the longitudinal trap frequency. If the probe beam is aligned
along the tight trap axis then the amplitude of the radial trap
sidebands is significantly suppressed. Trap frequencies are
most commonly measured with direct spectroscopy of the
motional sidebands, but can also be measured using para-
metric excitation to induce trap heating and loss (Friebel
et al., 1998).
The longitudinal temperature of the atom sample can be

estimated from the relative areas under the blue and red
sidebands. Strong suppression of the red sideband indicates
low atomic temperature as the n ¼ 0 atoms have no lower
motional state to transfer to. For example, in Fig. 12(b), the
relative strengths of the two sidebands are about 5∶1, which
for the relatively low trap frequencies yields hni ¼ 0.25 or a
temperature of ∼1.5 μK.
While the motional sideband spectra, corresponding to both

electronic and motional transitions, are strongly modified by
the atomic confinement, the pure electronic transition for the
central carrier maintains only a weak and indirect dependence.
The Rabi excitation frequency for a given atom depends on the
motional quantum numbers (Wineland and Itano, 1979). This
dependence leads to excitation dephasing between atoms in
different motional states of the Boltzman-distributed ensemble
(Blatt et al., 2009). As a result of this dephasing, Rabi
flopping contrast collapses and eventually revives. For atoms
in a 1D optical lattice, the effect could be strong enough to
reduce excitation from a mean π pulse to 90% or less.

4. Ultrahigh resolution spectroscopy

The narrow central feature in Fig. 12 is the primary interest
for clock development. This carrier transition (Δn ¼ 0)
provides a narrow atomic resonance, minimally affected by
atomic motion in the Lamb-Dicke and resolved-sideband
limits. For saturation intensities below unity, the longitudinal
sidebands’ amplitudes are found to be at the percent level,
while the radial sidebands are estimated to be at least a factor
of 10 smaller. In this case our absorption spectrum is a single
strong feature at the clock transition frequency, with its width
determined by the Fourier limit of the probe laser pulse, when

other broadening mechanisms are negligibly small and the
laser is sufficiently coherent.
Since the narrowest resonances provide higher frequency

resolution, lattice clocks need to operate with the best possible
spectral linewidths for both stability and accuracy. To date, the
ability to observe the narrowest spectra has not been limited
by the lattice-trapped atoms, but rather by the stable lasers
used to probe the transition. The coherence time of these lasers
typically limits the choice of probe time, which gives a
minimum Fourier-resolvable linewidth. Examples of the
narrowest observed features are shown in Fig. 13, for both
Sr (Martin et al., 2013) and Yb (Jiang et al., 2011). We note
that the requirements on the laser coherence are quite
stringent, since the laser frequency must be stable not only
during the spectroscopic probing, but during many such
probings to scan the laser frequency across the spectral line
shape. With a transition frequency of 429 THz for Sr and
518 THz for Yb, the observed spectral features correspond to a
line quality factor approaching 1015, among the narrowest
ever recorded for coherent spectroscopy. We note that high
resolution spectroscopy can also function as an optical
spectrum analyzer to study the noise spectra of ultrastable
laser systems (Bishof et al., 2013).
Ramsey spectroscopy is also used for clock operation. The

Ramsey interrogation scheme benefits from a slightly nar-
rower spectral fringe compared to the one-pulse Rabi case and
can also be useful in some cases to reduce stability limitations
from the Dick effect. It has also been a useful tool for cold
collision studies in the optical lattice clock (Lemke et al.,
2009; Martin et al., 2013). For the lattice bound atoms, there is
no Doppler broadening of the carrier transition, so long as the
Ramsey pulses are sufficiently gentle to avoid excitation to
higher motional states. In comparison to free-space spectros-
copy, this drastically reduces the number of fringes in the
spectral pattern as well as any light shifts from the probe.

E. Systematic effects in lattice clocks

With the obvious advantages in spectroscopic precision of
the 1S0 − 3P0 transition in an optical lattice, the sensitivity of
the clock transition to external fields and operational conditions
becomes a central issue for the lattice clock as an accurate
atomic frequency standard. Here we consider many of the
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FIG. 13 (color online). (a) High resolution spectroscopy of 87Sr yielding a FWHM linewidth of 0.5 Hz. (b) High resolution
spectroscopy of 171Yb, yielding a FWHM linewidth of 1 Hz.
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relevant effects influencing the uncertainty to which these
standards can be operated. The relative importance of these
effects has and will continue to change, as the optical lattice
clocks evolve in both their implementation and their perfor-
mance levels. We start by considering an effect central to the
lattice clock: the Stark effect from the optical lattice.

1. Optical lattice Stark shifts

A neutral atom becomes polarized in the presence of the
electric field of a laser. This effect leads to an ac-Stark shift of
atomic states and enables the atom to be spatially confined by
a laser beam. For an electric field E, the Stark shift is simply
U ¼ −ð1=2ÞEiαijEj, where α is the atomic polarizability
tensor of a particular atomic state for Cartesian dimensions
i and j. This polarizability can be written as the sum of three
irreducible spherical tensors of rank 0, 1, and 2, yielding the
scalar, vector, and tensor polarizabilities (written here as αS,
αV , and αT). We first study each of these three contributions to
the lattice Stark shift.
As each species of optical clocks employs J ¼ 0 “scalar”

clock states, the Stark shift from the scalar polarizability
U ¼ −αsE2

0=4 dominates. While a typical scalar Stark shift
may be as large as δfS ≃ 1 MHz, as described in Sec. VI.D.2,
operation of the optical lattice at the magic wavelength (see
Table IV) constrains αs for each clock state to be equal. By so
doing, this scalar Stark shift of the clock transition is nulled.
As discussed in Sec. VI.D.2, part of the “magic” in a magic
wavelength optical lattice is not simply that a zero crossing in
the scalar Stark shift exists. A critical detail is that the
cancellation of the scalar Stark shift is fairly insensitive to
the precise lattice laser frequency. For example, by operating
within 500 kHz of the magic wavelength, a typical lattice laser
intensity in a Sr lattice clock enables cancellation of the scalar
Stark shift at the 10−18 fractional frequency level.
If the clock states had identically zero total angular

momentum, then the vector and tensor polarizability would
also be zero. However, for fermionic isotopes, state mixing
from hyperfine interaction yields a nonzero vector and tensor
polarizability in the excited clock state (Boyd, Zelevinsky
et al., 2007). The vector light shift is given by

Δfvector ¼ −αV
mF

2F
ξ
E2

2h
; ð32Þ

where ξ is the degree of ellipticity of the light field. For pure
circular (linear) polarization, ξ ¼ �1 (ξ ¼ 0). Here we
assumed that the lattice light propagation wave vector is
aligned along the atomic quantization axis. The vector light
shift can be viewed as a pseudomagnetic field d~B applied
along the light propagation axis, with jd~Bj given by the atomic
properties, light polarization state, and light intensity. If the
quantization axis, typically determined by a bias magnetic
field, is not aligned with the light propagation, then the
combined effect of the Zeeman shift from the bias B field
and the pseudo-B-field vector light shift is given by the
appropriate vector sum of the two.
The vector light shift is nulled for linear polarization of

light. This is readily achieved for a 1D optical lattice, although
care must be taken because of stress-induced birefringence of

the vacuum viewports through which the optical lattice passes.
For a 2D or 3D optical lattice, the electric field in different
dimensions can sum to yield unwanted elliptical polarization
which can vary site to site in the optical lattice. The magnitude
of the vector polarizability has previously been estimated or
calculated (Katori et al., 2003; Porsev, Derevianko, and
Fortson, 2004). Experimentally, an upper limit on the vector
polarizability in Sr was determined by analyzing frequency
measurements of σ and π transitions from different mF states
in the presence of a bias magnetic field (Boyd, Zelevinsky
et al., 2007). Since then, the vector polarizability has been
directly measured, in both Yb (Lemke et al., 2009) and Sr
(Westergaard et al., 2011). In both cases, circular polarization
can lead to significant vector lights (>100 Hz). In practice, a
high degree of linear polarization reduces this effect consid-
erably. Just as significant, the mF dependence of the vector
Stark shift permits cancellation of the effect by averaged
interrogation for equal but opposite mF magnetic sublevels. In
this way, the vector Stark shift does not presently contribute in
a significant way to the measurement uncertainty of lattice
clocks.
The tensor light shift for a given clock state is given by

(Angel and Sandars, 1968; Romalis and Fortson, 1999;
Ovsiannikov et al., 2006)

Δftensor ¼ −αT
3m2

F − FðF þ 1Þ
Fð2F − 1Þ

�
3cos2ϕ0 − 1

2

�
E2

2h
; ð33Þ

where ϕ0 is the angle between the light polarization axis and
the quantization axis. As with the vector light shift, the tensor
light shift induces a polarization sensitive effect to the lattice
clock. Notably, the geometric term in parentheses changes
from 1 to−1=2 as ϕ0 is varied from 0 to π=2. Unlike the vector
Stark shift, the m2

F dependence of the tensor Stark shift
precludes trivial cancellation of the effect through averaging
of transitions from opposite signed magnetic sublevels.
Fortunately, the tensor polarizability is small. In the case of
171Yb, the insufficient angular momentum (F ¼ 1=2) dictates
that the tensor polarizability is zero (Angel and Sandars,
1968). It has been measured in the case of 87Sr (Westergaard
et al., 2011). There it was shown that the tensor shift, under
some conditions, could be as large as the 10−16 clock level, but
could be straightforwardly controlled to much better than the
10−17 level.
The scalar, vector, and tensor Stark shifts discussed earlier

all scale with E2, first order in the optical lattice intensity.
Another critical systematic stems from the hyperpolarizability
γ contributing a shift which scales as E4. The atomic hyper-
polarizability includes both one- and two-photon resonances
(Ovsiannikov et al., 2006), and the differential hyperpolariz-
ability between the clock states remains nonzero at the magic
wavelength. The primary contributions to the hyperpolariz-
ability stem from two-photon resonances connecting to the
3P0 state in the neighborhood of the magic wavelength, for
both Sr (Brusch et al., 2006) and Yb (Porsev, Derevianko, and
Fortson, 2004; Barber et al., 2008). In both cases, the
differential hyperpolarizability leads to a Stark shift around
the magic wavelength of approximately (0.5 μHz)ðU0=ErÞ2,
where U0 gives the lattice depth in units of photon recoil.
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At U0 ¼ 100Er, this leads to a magnitude for the shift of
10−17, but the uncertainty of the shift has been determined to a
fraction of the shift (Barber et al., 2008; Westergaard et al.,
2011). In the case of Yb, warmer atomic temperatures (Poli
et al., 2008; Lemke et al., 2009) (originating from the second
stage of Doppler cooling) have historically required deeper
lattice depths and thus have required somewhat more care in
dealing with the hyperpolarizability shift. This situation can
be mitigated by optimized or additional cooling, perhaps
utilizing quenched sideband cooling on the clock transition
itself. As with the nonscalar Stark shifts described earlier, in
general the hyperpolarizability shift exhibits lattice polariza-
tion dependence. This is additional motivation for good lattice
polarization control, but has also led to a proposal to
cancel the hyperpolarizability shift altogether (Taichenachev
et al., 2006).
The lattice Stark shifts considered are due to electric dipole

allowed (E1) couplings. Higher multipole couplings, via
notably magnetic dipole (M1) and electric quadrupole (E2),
can also lead to lattice Stark shifts. Since these M1=E2
couplings are much weaker than their E1 counterparts, the
resulting Stark effects are much smaller. Nevertheless, they
cannot be ignored when considering the smallest possible
uncertainty for these lattice clocks. Taichenachev et al. (2008)
discussed a subtle M1=E2 effect, stemming from quantized
atomic motion in the optical lattice. For the red-detuned
lattice, atoms are trapped in the antinodes of the electric field
of the optical potential. The optical potential varies along its
axis as cos2 x≃ 1 − x2, leading to two different sources of
Stark shift. The first is an E1 Stark shift common to all atoms
and proportional to optical lattice intensity I. The second,
given by the harmonic confinement of the atom, dictates an
additional shift given by the particular motional state popu-
lated by the atom, and proportional to the lattice trap
frequency, which scales as

ffiffi
I

p
. With only E1 couplings, at

the magic wavelength the total Stark shift is equal for both
clock states, resulting in the expected zero differential shift for
the clock frequency. However, the effect of M1=E2 couplings
is to modify the second shift scaling as

ffiffi
I

p
. In general, the E1

and M1=E2 Stark shifts cannot be simultaneously canceled
for the two clock states, frustrating the existence of a
perfectly magic wavelength. The residual shift is ΔfM1=E2 ∝
ðnþ 1=2Þ ffiffi

I
p

, where n is the motional quantum number of the
atom. While the expectation is that weak M1=E2 couplings
would keep this effect small, Taichenachev et al. (2008) made
an alarming theoretical estimate that the effect could be as
large as 10−16. This effect was directly probed by Westergaard
et al. (2011) in a Sr lattice clock, by searching for a Stark shift
with the appropriate

ffiffi
I

p
dependence. Fortunately, no depend-

ence was observed, constraining this effect to be below 10−17

for a lattice depth of 100Er. Recent work characterizing the
lattice Stark shifts for the JILA Sr clock demonstrated that
statistical analysis of extensive experimental data supports a
purely linear model at the 10−18 level for the dependence of
shift on intensity (Bloom et al., 2014).

2. Zeeman shifts

The sensitivity of a clock transition to magnetic fields has
played a prominent role in nearly all types of atomic frequency

standards. In the case of the optical lattice clock, both first-
and second-order Zeeman shifts can be relevant. The nuclear
spin I of the fermionic lattice clocks provides 2I þ 1magnetic
sublevels for each J ¼ 0 clock state. A magnetic field B gives
a linear shift of the sublevels, which for π transitions
(ΔmF ¼ 0) shifts the clock transition frequency by

ΔfB1 ¼ −mFδgμBB=h; ð34Þ

where μB=h ≅ 14 kHz=μT, and δg is the difference in the
g factors of the 3P0 and 1S0 states. The ground-state g factor is
determined by the nuclear g factor gI ¼ μIð1 − σdÞ=μBjIj,
where μI is the nuclear magnetic moment, and σd is the
diamagnetic correction. For 87Sr, μI ¼ −1.0924ð7ÞμN
(Olschewski, 1972) and σd ¼ 0.00345 (Kopfermann, 1958),
yielding a small Zeeman sensitivity of gIμB=h ¼
−1.850ð1Þ Hz=μT for the ground state. Lacking nuclear
spin-induced state mixing, the 3P0 g factor would be essen-
tially identical to the 1S0 g factor, such that δg ¼ 0. Such is the
case for bosonic isotopes. However, since the hyperfine
interaction modifies the 3P0 wave function, a differential
g factor is introduced between the two states (Boyd et al.,
2006). This can be interpreted as a paramagnetic shift arising
from the distortion of the electronic orbitals in the triplet state,
and hence the magnetic moment (Lahaye and Margerie, 1975;
Becker et al., 2001). If the state mixing in the system is
known, then δg is given by

δg ¼ −ð ~α0 ~α − ~β0 ~βÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8

3IðI þ 1Þ

s
: ð35Þ

Here ~α0, ~β0, ~α, and ~β are state-mixing coefficients resulting
from the hyperfine and spin orbit interactions (Boyd,
Zelevinsky et al., 2007). The mixing increases the magnitude
of the 3P0 g factor by ∼60%. The resulting first-order Zeeman
sensitivity [shown schematically in Fig. 14(b), inset] is an
important systematic effect for the development of lattice
clocks, as stray magnetic fields can deteriorate the spectro-
scopic accuracy of the system.
As seen in Eq. (34), a π transition (δmF ¼ 0) is sensitive

only to δg, not gI which is common to both electronic states.
On the other hand, a σ transition (δmF ¼ �1) is sensitive to
both gI and δg. Measurement of the frequency splittings for
both π and σ transitions can be used together to determine the
value of δg. The added value of the σ-transition measurements
is that, since gI is already well known for the lattice clock
species, the measured splittings can be used to self-calibrate
the value of the B field. An example of this type of
measurement is shown in Fig. 14, for the case of 87Sr.
Here it can be seen that the hyperfine interaction increases
the magnitude of the 3P0 g factor (i.e., δg has the same sign as
gI). Using data like this, δgμB=h has been determined
experimentally to be −1.084ð4Þ Hz=μT (Boyd, Zelevinsky
et al., 2007). Similar measurements have been conducted for
171Yb, yielding δgμB=h ¼ −1.91ð7Þ Hz=μT (Lemke, 2012).
The second-order Zeeman shift must also be considered for

high-accuracy clock operation. The two clock states are both
J ¼ 0 so the shift arises from levels separated in energy by the
fine-structure splitting, as opposed to the more traditional case
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of alkali(-like) atoms where the second-order shift arises from
nearby hyperfine levels. As a result, the fractional frequency
shift from the second-order Zeeman effect for the optical
lattice clock species is significantly smaller than that of clock
transitions present in alkali(-like) atoms and ions. The clock
shift is dominated by the interaction of the 3P0 and 3P1 states
since the ground state is separated from all other energy levels
by optical frequencies. Therefore, the total shift can be
approximated by the repulsion of the two triplet states (which
are separated in energy by hΔν10) as

Δfð2ÞB2 ≅ −
2μ2B

3ðΔν10Þh2
B2: ð36Þ

From Eq. (36) the resulting second-order Zeeman shift for Sr

is Δfð2ÞB2 ≅ −2.33 × 10−5B2 Hz=μT2 (Taichenachev et al.,
2006; Baillard et al., 2007; Boyd, Zelevinsky et al., 2007;

Ludlow et al., 2008), and Δfð2ÞB2 ≅ −6.2 × 10−6B2 Hz=μT2 for

Yb (Taichenachev et al., 2006; Poli et al., 2008; Lemke
et al., 2009).

3. Stark shift from blackbody radiation

We now consider the Stark shift arising from BBR bathing
the lattice-trapped atoms. Because room-temperature BBR
lies at frequencies below the detunings of intermediate states
that contribute to the electric dipole polarizability of the clock
states, as described in Sec. II.C, the BBR Stark shift can be
written as

hΔfBBR ¼ −
ΔαshE2ðTÞi

2
½1þ ηðT2Þ�. ð37Þ

Precise determination of the shift then requires accurate
knowledge of the differential static polarizability Δαs,
the dynamic correction factor η, and the BBR field given
by the radiative temperature bathing the atoms T. The static
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FIG. 14 (color online). (a) Typical experimental field orientation for lattice spectroscopy. The lattice laser propagates along the z axis
and is linearly polarized along the x axis, parallel to the bias magnetic field such that φ ≈ π=2. The probe laser propagates colinearly with
the lattice beam and the linear probe polarization can be rotated relative to the quantization (x) axis by an angle θ. [(b) inset] The large
nuclear spin (I ¼ 9=2 for 87Sr) results in 28 total transitions, and the labels π, σþ, and σ− represent transitions where mF changes by 0,
þ1, and −1, respectively. The hyperfine interaction state mixing modifies the 3P0 g factor, making the magnitude about 60% larger than
that of 1S0. (b) Observation of the 1S0 − 3P0 π transitions when θ ¼ 0 in the presence of a 58 μT magnetic field. (c) Observation of the
18σ transitions when the probe laser polarization is orthogonal to that of the lattice (θ ¼ π=2) when a field of 69 μT is used. (b), (c) Data
are shown in gray and fits are shown as solid lines. The peaks are labeled by the ground-state sublevel of the transition [and the relevant
polarization in (c)]. The relative transition amplitudes for the different sublevels are strongly influenced by the Clebsch-Gordan
coefficients. Here Fourier-limited transition linewidths of 10 Hz are used. (d), (e) Calculations of the 18σ-transition frequencies in the
presence of a 69 μT bias field, including the influence of Clebsch-Gordan coefficients. The solid and dash-dotted curves show the σþ
and σ− transitions, respectively. (d) Spectral pattern for g factors gIμB=h ¼ −1.85 Hz=μT and δgμB=h ¼ −1.09 Hz=μT. (e) Same
pattern as in (d) but with δgμB=h ¼ þ1.09 Hz=μT. The qualitative difference in the relative positions of the transitions allows an
absolute determination of the sign of δg compared to that of gI .
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polarizability can be computed semiempirically from known
values of the relevant E1 transition frequencies, matrix
elements, and lifetimes. However, it is difficult to properly
include contributions from intermediate states with poorly
known matrix elements, including high-lying states and the
continuum. In this regard, sophisticated ab initio calculations
have been implemented to compute these atomic properties
with higher accuracy (Porsev and Derevianko, 2006; Dzuba
and Derevianko, 2010). At room temperature, the BBR shifts
for Sr and Yb are 5.5 × 10−15 and 2.7 × 10−15, respectively.
The BBR shift for Hg, like for its group IIb counterparts Zn
and Cd, is smaller by approximately 1 order of magnitude. For
both Sr and Yb, the room-temperature BBR shift represents
the largest uncanceled systematic shift of the clock transition
frequency. Furthermore, the uncertainty in the BBR shift has
previously limited the overall uncertainty of these clocks for
several years at the 10−16 level (Ludlow et al., 2008; Lemke
et al., 2009).
A significant source of uncertainty originated from calcu-

lation of the polarizability of the clock states. These calculations
approached the 1% level for Sr (Porsev and Derevianko, 2006)
and, complicated by the large number of electrons and core-
excited states, at the 10% level for Yb (Porsev and Derevianko,
2006; Dzuba and Derevianko, 2010). Improved measurements
of the dipole matrix elements to low-lying intermediate
states could provide useful constraints on the polarizability
calculations, as could precise knowledge of the magic
wavelengths (Porsev et al., 2008). But more directly,
the static polarizability can be measured via the Stark shift
under application of known static (Simon, Laurent, and
Clairon, 1998) or even long-wavelength (Rosenband et al.,
2006) electric field. In the case of Yb, the differential static
polarizability for the clock transition has recently been
measured at the 20 ppm level using a static electric field
(Sherman et al., 2012). A high-accuracy measurement of the Sr
differential static polarizability has also been performed
(Middelmann et al., 2012). Furthermore, recent ab initio
calculations of the ytterbium and strontium polarizability using
a coupled-cluster all-order approach have reduced the uncer-
tainties in theoretical calculations and demonstrate very close
agreement to the more precise experimental measurements
(Safronova, Porsev, and Clark, 2012; Safronova et al., 2013).
The second piece contributing to the BBR shift uncertainty

comes from the dynamic correction η. This correction term is
computed for each clock state as a sum over intermediate
states and is most significant for the 3P0 clock state. For both
Yb and Sr, this sum is dominated by the lowest-lying coupled
state 3D1. A recent measurement of this dipole matrix element
allowed determination of η in Yb at the <3% level (Beloy
et al., 2012) and in Sr at the <1% level (Nicholson et al.,
2015). Calculations based on other atomic properties like the
static polarizability and magic wavelength have been used to
determine η in Yb (Beloy et al., 2012) and Sr (Middelmann
et al., 2012) at the few percent level. Additionally, recent
ab initio calculations have provided improved theoretical
values of η for both Yb and Sr (Safronova, Porsev, and
Clark, 2012; Safronova et al., 2013).
The third source contributing to the overall BBR shift

uncertainty is knowledge of the BBR environment bathing the
atoms. This thermal radiation field is complicated by

temperature inhomogeneities of the vacuum system enclosing
the lattice-trapped atoms, by optical and infrared transparency
of viewports typically used on the vacuum system, and by the
complex geometries and nonunit emissivities of the vacuum
apparatus. At 1 K uncertainty in the BBR field, the room-
temperature BBR shift has a frequency uncertainty of
3.5 × 10−17 and 7 × 10−17 for Yb and Sr. A cryogenically
cooled environment benefits from the strong T4 dependence
of the BBR shift and can realize uncertainties at the 10−18

level (Middelmann et al., 2011; Ushijima et al., 2014).
Alternatively, room-temperature solutions also exist. For
example, efforts to maintain temperature uniformity of the
vacuum enclosure around the lattice-trapped atoms has led to a
BBR uncertainty at the 10−17 level (Falke et al., 2013). More
recently, calibrated in situ thermal probes were used to
monitor the radiative thermal environment illuminating the
atoms, leading to a BBR shift uncertainty at the <2 × 10−18

level (Bloom et al., 2014; Nicholson et al., 2015).
Additionally, a room-temperature radiative thermal shield
has been used in a Yb lattice clock to reduce BBR uncertainty
to 1 × 10−18 (Beloy et al., 2014).

4. Cold collision shift

Large ensembles of ultracold atoms offer atomic clocks a
measurement of the atomic state with very high signal-to-
noise ratio, allowing time and frequency measurements with
unprecedented levels of precision and speed. However, large
atom density can give rise to significant atomic interactions.
These interactions can perturb the clock transition frequency,
compromising the accuracy of the atomic frequency standard.
Density-dependent collisional shifts play an important role in
the operation of the highest accuracy Cs fountain standards
(Gibble and Chu, 1993; Leo et al., 2001; Dos Santos et al.,
2002; Wynands and Weyers, 2005; Szymaniec et al., 2007).
In fact, the reduced collisional interaction in Rb fountain
standards was a key motivation for their development
(Kokkelmans et al., 1997; Sortais et al., 2000). For the optical
lattice clock, the density-related frequency shift is the only
source of error that plays a competing role between the clock
stability and accuracy. Keeping this under control thus has a
critical consequence.
In a 3D optical lattice clock, the large number of lattice sites

leads to an atom filling factor of less than unity. In the absence
of tunneling, it is expected that atomic interactions can thus be
minimized (Katori et al., 2003). As the clock accuracy
continues improving, eventually one would need to consider
the long-range dipolar interaction effects in a 3D lattice
(Chang, Ye, and Lukin, 2004). For a 1D optical lattice, the
two-dimensional lattice sites typically have multiple occu-
pancy and the use of fermionic isotopes at ultracold temper-
atures seems advantageous. Antisymmetrization of the wave
functions for identical fermions eliminates collisions from
even partial-wave collision channels, including the lowest
order swave. At the same time, the lowest odd-wave (p-wave)
collisions can be suppressed at sufficiently low temperatures.
This fermionic resistance to cold collisions (and collision
shifts) makes fermions particularly good candidates for atomic
frequency standards (Gibble and Verhaar, 1995). As an
example, suppression of collision shifts for a radio-frequency
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transition has been experimentally observed in ultracold
fermionic lithium atoms (Gupta et al., 2003; Zwierlein et al.,
2003).
Nevertheless, collision shifts were observed in fermionic

optical lattice clocks, first in 87Sr (Ludlow et al., 2008; G. K.
Campbell et al., 2009) and later in 171Yb (Lemke et al., 2009).
The breakdown in collision suppression was considered to be
likely due to one of two mechanisms. One was that finite
atomic temperatures prevented the p-wave collision channel
from being completely suppressed. The second was that, even
though the fermionic atoms were prepared in identical
quantum states, during spectroscopy the atoms evolved into
nonidentical superpositions of the clock states, becoming
distinguishable and able to interact via the s-wave collision
channel (Hazlett et al., 2013). Inhomogeneous evolution of
the population is a residual Doppler effect due to weak
atomic confinement in dimensions orthogonal to the lattice
axis (Wineland and Itano, 1979; Blatt et al., 2009; G. K.
Campbell et al., 2009).
A simple estimate can be made for the relative size of s- and

p-wave collision shifts (G. K. Campbell et al., 2009; Lemke
et al., 2011). The p-wave collision shift scales with b3k2,
where b3 is the p-wave scattering volume, and k is the
de Broglie wave number. Conversely, the s-wave collision
shift scales with the scattering length a. The ratio b3k2=a
estimates the relative contributions of p-wave to s-wave
collisional shifts. However, in the case where the atoms are
largely indistinguishable, the s-wave shift is further sup-
pressed by the degree of indistinguishability (G. K.
Campbell et al., 2009; Gibble, 2009; Rey, Gorshkov, and
Rubbo, 2009; Lemke et al., 2011). As a result, either s- or
p-wave interactions have the potential to contribute to cold
collision shifts, depending on the experimental details and the
case-specific values of a and b.
Following observations of Hz-level cold collision shifts in

Sr and Yb, a number of efforts explored these effects
experimentally (G. K. Campbell et al., 2009; Bishof et al.,
2011; Lemke et al., 2011; Ludlow et al., 2011; Swallows
et al., 2011; Nicholson et al., 2012) and theoretically (Band
and Vardi, 2006; Gibble, 2009; Rey, Gorshkov, and Rubbo,
2009; Yu and Pethick, 2010). In the case of 171Yb, it was
found that the dominant interaction responsible for the cold
collision shift was a p-wave one between ground-state (1S0)
and excited-state (3P0) atoms (Lemke et al., 2011). While the
very existence of a cold collision shift serves as a potential
stumbling block to reaching clock accuracy at the highest
levels, it has been shown that the responsible interactions can
be manipulated to realize cancellation (Ludlow et al., 2011) or
suppression (Swallows et al., 2011) of the cold collision shift.
Together with the strategy of confining the atoms at lower
number densities per lattice site (Brusch et al., 2006; Le Targat
et al., 2013), the uncertainty of the collision shift for the lattice
clock can be controlled below 10−18 (Nicholson et al., 2012;
Bloom et al., 2014). A unified theory treatment for both Sr and
Yb lattice clocks can be found in Rey et al., 2014.

5. Stark shift from interrogation laser

While the two clock states have identical polarizabilities at
the magic wavelength, their polarizabilities differ at the actual

clock transition frequency. Off-resonant couplings to inter-
mediate states other than the clock states, driven by the
interrogation laser, introduce a dynamic Stark shift on the
clock transition. The resulting shift depends on the differential
polarizability for the clock states at the clock transition
frequency, as well as the interrogation laser intensity needed
to drive the transition. The required laser intensity must be
sufficiently high to drive the transition for atoms confined in
the optical lattice [i.e., hnjei~k·~xjni (Wineland and Itano, 1979)].
This Stark shift is present at the 10−17 level (Ludlow et al.,
2008; Kohno et al., 2009; Lemke et al., 2009; Falke et al.,
2011), and recent measurements have placed the uncertainty at
the level of 10−18 (Bloom et al., 2014). As laser coherence
times continue to increase, the required laser intensity will be
reduced, resulting in smaller Stark shifts. Furthermore, tech-
niques have been proposed to further reduce the sensitivity of
the clock transition to the interrogation laser intensity
(Taichenachev et al., 2010; Yudin et al., 2010).

6. Doppler effects

A primary motivation for tightly confining the atoms in the
optical lattice is to perform spectroscopy on the clock
transition without the Doppler and recoil frequency shifts.
However, there are a number of effects that can introduce
residual motional sensitivity. One such effect is quantum
tunneling between sites of the optical lattice, along the axis of
interrogation. This effect has been considered for a 1D optical
lattice (Lemonde and Wolf, 2005) and is notably relevant for
shallow lattices. By aligning the lattice axis along gravity,
gravity-induced nondegeneracy between lattice sites can
further suppress tunneling. In this case, it has been estimated
that for even modest trap depths, tunneling related motional
effects can be straightforwardly kept below the 10−17 level
(Lemonde and Wolf, 2005).
Relative vibration between the lattice field and the clock

laser can also lead to residual Doppler shifts. Any such motion
that is synchronized to the experimental cycle time is notably
problematic, as it does not average away statistically and leads
to a systematic shift. Such effects are a concern for other
types of atomic frequency standards (Wilpers et al., 2007;
Rosenband et al., 2008b). The problem is best minimized in
an optical lattice clock by maintaining a passively quiet
optomechanical environment. The phase of the lattice and/
or clock laser can also be actively stabilized (Ma et al., 1994),
so that no residual vibration occurs in the atomic reference
frame. Detection and cancellation of such residual Doppler
shifts can be made by spectroscopically probing in two,
counterpropagating directions.
One particularly pernicious residual Doppler effect is

associated with switching rf power in an acousto-optic
modulator. The rf power is typically pulsed to switch on
and off the interrogation of the clock transition and is known
to induce phase chirps of the clock laser from both rf ringing
and thermal effects (Degenhardt, Nazarova et al., 2005).
These effects must be carefully characterized and controlled
or can be compensated with active stabilization (Swallows
et al., 2012).
The second-order Doppler shift accounts for relativistic

time dilation. It is simply Δω ¼ ð1=2Þβ2ωL, where β ¼ v=c is
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proportional to the atomic velocity and ωL is the laser
(angular) frequency. The velocity of the ultracold lattice-
trapped atoms is characteristically given by the sample
temperature. For Sr, a temperature of T ¼ 2.5 μK corresponds
to a velocity of ∼1.5 cm=s. This results in a second-order
Doppler shift below 1 μHz (<10−20). Shaking of the trap
results in even smaller atomic velocities, with negligible
second-order Doppler contributions.
Finally, in the well-resolved-sideband limit, the atomic

motion occurs at a modulation frequency far removed from
the carrier. Even at relatively low modulation frequencies
corresponding to weak confinement in the transverse axes of a
1D lattice, the effect of motional line pulling of the transition
frequency is negligible due to the negligible amplitude of the
motional sidebands.

7. dc Stark shifts

Similar to the Stark shifts on the clock transition frequency
produced by the blackbody and probe laser fields, static
electric fields will induce static Stark shifts. Optical lattice
clocks benefit from the fact that the atomic sample is trapped
in optical potentials, which are usually far removed from
physical surfaces of a vacuum chamber where stray charges
may accumulate. Metallic components of the vacuum system
used in optical lattice clocks are electrically grounded, acting
as a Faraday cage for the atoms. However, charge can
potentially accumulate on insulator surfaces, such as glass
optical viewports with or without dielectric optical coatings.
From the typical geometry of lattice clock enclosures and the
ability for stray charges to dissipate to ground, it has been
estimated that stray static electric fields will cause static Stark
shifts below the 10−17 level. However, in one case, it was
shown that a stray charge buildup on an in-vacuum mirror can
lead to a very large Stark shift at the 10−13 level (Lodewyck
et al., 2012). Here electrical discharge was limited by very
high electrical resistive paths to ground, with discharge times
of hundreds of days. Any such effects must be properly
avoided or controlled, especially as lattice clocks are
pushed to the 10−17 performance and better. The dc Stark
shift can be directly measured (Lodewyck et al., 2012), and
recent measurements have pushed this shift uncertainty to
2.1 × 10−18 in Sr (Bloom et al., 2014).

8. Other effects

A number of other systematic effects have been considered
for the optical lattice clock. Among these are line pulling,
servo error, stray laser Stark shift, ac Zeeman shift, and others
(Takamoto et al., 2005; Baillard et al., 2007; Ludlow et al.,
2008; Lemke et al., 2009; Falke et al., 2011; Bloom et al.,
2014). Fortunately, these effects are often small and do not
represent a fundamental limitation to lattice clocks today.

F. Optical lattice clocks based on fermions or bosons

In previous sections we considered the electronic structure
that makes alkaline earth(-like) atoms so attractive as optical
frequency standards. The two clock states (1S0 and 3P0) have
very weak coupling to each other, stemming from the
forbidden dipole transition between these spin states. From

a practical standpoint, only the fermionic isotopes have a
useful level of coupling, originating from the nonzero nuclear
spin and the resulting hyperfine mixing in the 3P0 state. The
bosonic isotopes, with no nuclear spin, lack this state mixing.
Yet even in the bosonic isotopes, the clock states themselves
possess many ideal properties for an optical lattice clock. By
artificially inducing dipole coupling between these states,
their utility can be realized in a clock, as with fermionic
isotopes. The first proposals to drive a weak transition
between these states in a bosonic optical lattice clock
exploited the rich dynamics of multilevel systems (Hong
et al., 2005; Santra et al., 2005). Utilizing coherent population
trapping (CPT) (Arimondo, 1996), as done in electromag-
netically induced transparency, these schemes proposed two
(Santra et al., 2005) or three (Hong et al., 2005) laser fields to
resonantly drive population between the clock states. The
effect shares some characteristics with the CPTapproach to Cs
clocks, where in that case the clock states are separated by
microwave frequencies but driven by two coherent optical
fields (Vanier, 2005). For the optical clock proposals, the
strength and detuning of the laser fields can be chosen to yield
a transition linewidth at the hertz to millihertz level, or less.
The obvious tradeoff in these proposals is controlling the
ac-Stark shifts induced by the laser fields on the clock states.
Such control looked possible to reach accuracies of the 10−17

level, and particularly for proposals involving pulsed,
Ramsey-like interrogation fields (Zanon-Willette et al.,
2006). However, careful control of multiple interrogation
laser fields adds further experimental complexity.
Rather than using multiple laser fields to drive the clock

resonance, another approach (Taichenachev et al., 2006),
referred to as magnetic-induced spectroscopy, proposed using
one laser field nearly resonant with the clock level energy
spacing together with a bias dc magnetic field. The dc
magnetic field induces state mixing of 1P1 and the upper
clock state 3P0, much like what the nuclear spin field does in
the case of fermions. The optical field then probes the weakly
allowed transition. Here again the strengths of the magnetic
and laser fields can be varied to set the resonance linewidth.
The effect was experimentally demonstrated shortly after the
original conception (Barber et al., 2006). A narrow 20 Hz
wide resonance in the ground state was seen employing a bias
magnetic field of about 1 mT. The ability to avoid using extra
lasers as in the CPT schemes makes this implementation more
straightforward. However, the presence of a large bias
magnetic field and a strong laser drive requires careful control
of the second-order Zeeman shift and the Stark shift. Because
the bosonic isotopes have J ¼ F ¼ 0 for both clock states, the
first-order Zeeman shifts are zero. The potential of magnetic-
induced spectroscopy was demonstrated in several frequency
evaluations of the bosonic isotopes of Yb and Sr, where total
frequency uncertainties were controlled at the 30 Hz (Baillard
et al., 2007), 1 Hz (Akatsuka, Takamoto, and Katori, 2008,
2010), and sub-Hz (Poli et al., 2008) levels.
Another proposal for exciting the clock transition in

bosonic isotopes utilized the lattice field itself to couple the
clock states (Ovsiannikov et al., 2007). More specifically, in
addition to the lattice standing wave, an additional running
wave was introduced to induce state mixing. The state-mixing
wave is a relatively intense, circularly polarized field which

Ludlow et al.: Optical atomic clocks 677

Rev. Mod. Phys., Vol. 87, No. 2, April–June 2015



induces mixing between 3P1 and 3P0, making the dipole
transition from 1S0 possible. This approach enjoys the
convenience of using a single laser field at the magic wave-
length to induce state mixing. A major drawback of this
approach is the high optical intensities required to create
sufficient mixing. At these high field amplitudes, higher-order
light shifts become important (Ovsiannikov et al., 2007).
While all of the proposals discussed in this section have

some differences, they share several basic features. Notably,
their shared goal is to enable interrogation of the naturally
forbidden clock transition in bosonic alkaline earth atoms.
There are several reasons why interrogation of the bosonic
isotopes might be attractive. From a practical perspective, the
bosons often have higher isotopic abundance. Combined with
the simpler cooling scheme of bosons (Mukaiyama et al.,
2003; Loftus, Ido, Ludlow et al., 2004), it is usually easier
experimentally to get a large sample of ultracold bosonic
alkaline earth atoms compared to the fermionic case. Perhaps
more significantly, lacking nuclear spin the bare 1S0 and 3P0

bosonic clock states have no angular momenta, and inter-
mediate states that are important for the lattice Stark shifts
have no hyperfine structure (Porsev, Derevianko, and Fortson,
2004). As a result, there is no polarization dependent light
shifts on the clock transition, as the vector and tensor terms of
the polarizability are basically zero. Consequently, control of
the lattice-induced Stark shifts is simplified. The spinless
clock states also have no Zeeman substructure, which means
that there is no first-order Zeeman sensitivity. Furthermore, no
substructure means that no optical pumping for state prepa-
ration is required, as often employed in fermionic isotopes.
The lack of substructure also gives the simplest possible
absorption spectrum.
The primary disadvantage to probing the bosonic isotope is

that, in all cases, at least one extra field is required to induce
the clock transition. More than introducing experimental
complexity, it requires careful control of these fields and
their respective field shifts to achieve high clock accuracy.
Techniques have been proposed to reduce the sensitivity of
these fields on the resulting shifts (Zanon-Willette et al., 2006;
Taichenachev et al., 2010; Yudin et al., 2010; Zanon-Willette
et al., 2014); however, whether the bosonic species can
compete with their fermionic counterpart in the clock accuracy
is still unresolved. While the boson’s lack of first-order
Zeeman sensitivity is usually heralded as an advantage, it
is in some ways a drawback. In the fermionic case, this first-
order sensitivity is easily canceled by averaging the equal but
opposite first-order Zeeman shift for transitions from opposite
spin states �mF. At the same time, measurement of the
transition splitting can be combined with precisely determined
g factors to directly read off the magnetic-field magnitude in
real time. This makes evaluation of the second-order Zeeman
shift straightforward, without any additional measurement.
Finally, as a general rule, bosonic isotopes are expected to
have larger collisional effects on the clock transition than their
fermionic counterparts, due to the inability for two identical
fermions to scatter with a s-wave interaction (G. K. Campbell
et al., 2009; Gibble, 2009; Rey, Gorshkov, and Rubbo, 2009).
However, the cold collision physics of these different quantum
particles is rich and should be studied in detail for both bosons
and fermions.

With these ideas in mind, the future role of bosonic isotopes
in lattice clocks remains open. Both fermionic and bosonic
based lattice clocks have been developed, although fermionic
systems are more commonly employed. As laser coherence
grows and enables longer probing times of the clock tran-
sition, the size of the extra field shifts in the boson case will
shrink, making them more manageable. As multidimensional
lattice confinement effects are characterized more fully, the
spin-free bosonic isotopes might offer simplicity. The higher
isotopic abundance and laser cooling simplicity of bosons
may offer S=N benefits to improve clock stability. As both
types of systems are refined, the pros and cons of each will
become more pronounced. In the meantime, both offer
promise and together they provide greater variety in exploring
optimal clock systems. This variety will perhaps prove even
more useful for exploring other interesting physics, including
ultracold collisions, quantum degeneracy, many-body physics,
and strongly coupled systems.

G. Lattice clock performance

At its core, the idea of trapping many quantum absorbers in
an optical lattice is to realize an optical frequency standard
with both very high stability and very low uncertainty. Here
we discuss both of these figures of merit, highlighting the
performance that lattice clocks have so far demonstrated. We
turn our attention first to the frequency stability and then to the
systematic evaluations of these systems, which provide insight
into their potential accuracy in time and frequency measure-
ment. Finally, we discuss measurements of the absolute
frequency of the clock transitions made by referencing to
the caesium primary standard.

1. Clock stability

In its simplest form, the fractional instability of an atomic
frequency standard at averaging time τ can be written as

σyðτÞ ¼
δf
f0

η

S=N
ffiffiffi
τ

p : ð38Þ

Here we assumed only that the frequency noise process
dominating the instability is white. η is a parameter of order
unity that depends on the details of the spectroscopic line
shape. We discussed in Sec. VI.D.4 that the lattice clock can
resolve very narrow spectral features, achieving a very small
ratio δf=f0. This is the primary strength of optical frequency
standards. The quantity S=N represents the signal-to-noise
ratio at 1 s of measurement. As S=N increases, the resolution
afforded by the narrow line δf=f can be further enhanced. A
number of different noise processes can play a role in limiting
the achievable instability. To highlight several of the most
relevant, we write the fractional instability as (Lemonde et al.,
2000)

σyðτÞ ¼
1

πQ

ffiffiffiffiffi
Tc

τ

r �
1

N
þ 1

Nnph
þ 2σ2N

N2
þ γ

�
1=2

. ð39Þ

Each term in parentheses gives the S=N for different noise
processes. Here Tc is the experimental cycle time (of which a
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useful fraction is spent interrogating the clock transition), N is
the atom number, nph is the number of signal photons detected
for each atom, σN is the uncorrelated rms (root mean squared)
fluctuation of the atom number, γ accounts for the frequency
noise of the probe laser, and two pulse Ramsey spectroscopy
is assumed. The first noise term in Eq. (39) is the most
fundamental limit to instability, the quantum projection noise
(see Sec. IV.B). The lattice clock is typically operated with
N ¼ 103–105, meaning that S=NQPN is on the order of 100. In
terms of potential clock stability, it is this factor that sets the
optical lattice clock apart from the trapped-single-ion stan-
dard. The combination of narrow atomic resonances and
measurement S=N at this level gives lattice clocks the
potential to realize 10−17 fractional frequency instability or
better in just 1 s. QPN is a fundamental stability limitation,
setting the standard quantum limit of measurement. However,
spin squeezing of the atomic sample, which trades fluctuations
between atomic number and phase, can be utilized to improve
upon QPN and beat the standard quantum limit [see, e.g.,
Meyer et al. (2001), Appel et al. (2009), Gross et al. (2010),
Leroux, Schleier-Smith, and Vuletić (2010), and Riedel et al.
(2010), and references therein]. In principle, such strategies
could make measurements at the Heisenberg limit (HL), with
S=N scaling as 1=N.
The second noise term in Eq. (39) is the photon shot noise

for the atomic state readout. The long lifetime of 3P0 and the
very strong laser cooling transition 1S0 − 1P1 from the ground
state facilitate convenient implementation of shelving detec-
tion. After atoms have been excited to 3P0 on the clock
transition, light resonant with 1S0 − 1P1 illuminates the atom.
This transition can be driven many times, and the fluorescence
collected, in order to measure the number of atoms remaining
in 1S0. As a result, many photons can be collected per atom, so
that the photon shot noise is typically well below the QPN
(also termed atom shot noise).
The third noise term in Eq. (39) corresponds to technical

fluctuations in the number of atoms probed during each
experimental cycle. The number of atoms loaded into the
lattice fluctuates for each experimental cycle, contributing
noise in the collected fluorescence signal. This problem is
typically overcome by measuring populations in both the
ground and excited clock states and computing the excitation
fraction which is normalized against atom number fluctua-
tions. Such an approach is readily compatible with the
shelving detection scheme. After detecting 1S0 − 1P1 fluo-
rescence from ground-state atoms, atoms in 3P0 can be
optically pumped to a state with rapid decay to the ground
state, at which point shelving detection can be repeated.
Several suitable intermediate states are available, including
3S1 and 3D1, which exploit cascaded decay to 3P1 and then to
1S0. In order for the normalization to properly work, con-
ditions must be held constant during both shelving detection
pulses (e.g., intensity of laser driving the 1S0 − 1P1 transition)
and the optical pumping and decay to the ground state must be
efficient and stable.
The fourth noise term in Eq. (39) comes from frequency

noise of the interrogation laser. Of considerable concern is
laser frequency noise which is periodic with experimental
cycle time Tc, contributing to clock instability via the Dick
effect (see Sec. IV.C). The problem is exacerbated by “dead

time”where no atomic frequency measurement is being made,
but is rather spent in auxiliary processes such as atomic
cooling, loading the optical lattice, state preparation, or state
readout. All standards that are not continuously interrogated
are susceptible to this noise. While it affects single-trapped-
ion clocks, it is especially pernicious to lattice clocks since it
can prevent them from reaching a much lower QPN instability.
Figure 15 shows the measured fractional instability between

the JILA Sr lattice clock and the NIST Yb lattice clock
[utilizing the optical-fiber link (Foreman, Ludlow et al.,
2007)] as measured in 2009. The instability reached
1 × 10−16 near 1000 s, demonstrating promise by crossing
into the 10−17 decade. Nevertheless, the measured instability
is still nearly 2 orders of magnitude higher than their potential
at 10−17=

ffiffiffi
τ

p
or better. As is the case for many optical

clocks, this limitation was dominated by the Dick effect.
Consequently, recent efforts have targeted improving clock
stability through reduction of the Dick effect (Lodewyck et al.,
2010; Westergaard, Lodewyck, and Lemonde, 2010; Jiang
et al., 2011). In one case (Westergaard, Lodewyck, and
Lemonde, 2010), rather than using a destructive measurement
to readout the atomic population, a nondestructive measure-
ment is employed to enable repeated spectroscopic probings
before a required reloading of the optical lattice due to finite
trap time. In this way, the dead time could be significantly
reduced, reducing the Dick effect. In another case (Jiang et al.,
2011; Nicholson et al., 2012; Bishof et al., 2013), improved
optical local oscillators were employed, aimed at reducing
downsampled frequency noise as well as enabling longer
clock transition probe times to reduce the fractional dead time.
The results of Jiang et al. (2011) are highlighted in Fig. 15.
With the improvements described, the Dick-limited instability
was calculated to be 1.5 × 10−16=

ffiffiffi
τ

p
. In lieu of a direct

comparison between two clocks to measure the clock stability
at all times, a maximum limit on the clock instability at short
times was made using the atomic transition as a discriminator
of the stable laser used to probe the atoms. The atomic
response was measured using the same atomic detection
utilized in clock operation. The measurement indicated a
clock instability of <5 × 10−16 at short times (seconds).
An approach that avoids the pernicious influence of the

Dick effect is to use a synchronous interrogation method (Bize
et al., 2000). Synchronous interrogation allows differential
measurements between two atomic systems free of laser noise.
Such measurements have yielded impressive measurement
instability (Chou et al., 2011; Takamoto, Takano, and Katori,
2011), although it should be noted that this approach does not
measure independent clock stability. With the recent imple-
mentation of an ultrastable optical local oscillator [1 × 10−16

at 1–1000 s (Nicholson et al., 2012; Swallows et al., 2012;
Bishof et al., 2013)], two Sr clocks were independently
compared to demonstrate a frequency instability of a single
clock at 3 × 10−16=

ffiffiffi
τ

p
, approaching the QPN estimated for

1000 atoms with 160 ms coherent probe time. A comparison
between two Yb lattice clocks has demonstrated similar short-
term stability, averaging to 1.6 × 10−18 instability after 7 h
(Hinkley et al., 2013). Figure 15(c) shows a record best
frequency instability for both the Yb (Hinkley et al., 2013)
and Sr (Bloom et al., 2014) optical lattice clocks. While lattice
clocks are now demonstrating stability levels never before
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reached for any type of atomic clocks, they remain far from
their potential. As a result, further development in stable lasers
remains a high priority (Kessler et al., 2012; Cole et al., 2013).

2. Systematic evaluations

In Sec. VI.E, we considered in detail the phenomena
leading to systematic shifts of the clock transition frequency.
Any such shifts, if improperly controlled or compensated for,
lead to frequency error of the standard. To determine the
overall uncertainty to which the natural transition frequency is
being realized, systematic shifts and the ability to control these
shifts must be characterized quantitatively. When the mecha-
nism yielding the shift is known precisely and described
accurately with a sufficiently rigorous model, it is sometimes
justified to measure the experimental parameters of the model
and deduce the shift value and uncertainty. For lattice clocks,
such has previously been the case for the blackbody-radiation-
induced Stark shift. However, the optimal evaluation of a
systemic shift consists of a well-understood model explaining
the shift, as well as a direct measurement of the frequency shift
in the standard being evaluated.
A direct method to measure the shift is to compare the

standard in question to a similar standard. The standards are
operated at different conditions, where the systematic effect
yields different shifts, and the extrapolation to the zero shift
case can be deduced. One example of such an evaluation is
Westergaard et al. (2011), where lattice Stark shifts were
carefully evaluated by comparison of two Sr lattice clocks.
We note that measurement between two systems can be

synchronized to offer measurement stability below limitations
of the local oscillator (Takamoto, Takano, and Katori, 2011).
Often, only one system is being developed in a particular

laboratory, in which case measurement may be made against
another type of standard. The conditions of the standard under
test are varied quickly and controllably in time, and the
resulting frequency variation is measured against the reference
standard. In this way, the reference standard serves predomi-
nantly as a stable frequency source. Examples of such a
measurement include Ludlow et al. (2008) and Lemke et al.
(2009), where both a Sr and Yb lattice clock were evaluated by
comparison with a calcium optical clock. Figures 16(a)
and 16(b) show two such measurements of the lattice Stark
and Zeeman shifts.
In practice, it is sometimes easy to measure many system-

atic effects by varying the standard’s operating conditions and
looking for frequency shifts relative to the local oscillator used
to probe the clock transition. Such a technique is directly
sensitive to local oscillator noise and requires the local
oscillator to be frequency stable on the time scale over which
the conditions are varied. However, this technique requires no
additional atomic standard and thus simplifies the experimen-
tal process. Fortunately for the optical lattice clock, stable
lasers often exhibit sufficient frequency stability for conven-
ient evaluation of many systematic effects in this manner. The
conditions being varied can frequently be changed on a
relatively fast time scale, limiting the frequency wander of
the local oscillator between measurements. Many such
measurements can be repeated to average down the measure-
ment uncertainty. Examples of such a measurement are Boyd,
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FIG. 15 (color online). (a) Frequency stability of the JILA Sr vs NIST Yb lattice clocks as measured in 2009. The total deviation
confirms the predicted stability limit given by the clock laser. (b) Measurements of the improved Yb clock laser instability at one to a few
clock cycles. Circles are measured using atomic excitation as an (out-of-loop) frequency discriminator of the optical LO frequency and
include a contribution to the instability from the Dick effect, atomic detection noise, and the local oscillator (LO) free-running instability.
The Dick-effect-limited instability (black dashed line) is 1.5 × 10−16=

ffiffiffi
τ

p
. (c) Recently improved measurements of the fractional

frequency instability for both the Yb and Sr lattice clocks. From Smart, 2014.
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Ludlow et al. (2007) and Falke et al. (2011), and Fig. 16(c)
shows a density shift measurement of this type.
To highlight recent progress on reducing the uncertainty of

optical lattice clocks, the JILA 87Sr clock achieved an overall
uncertainty of 6.4 × 10−18 by the end of 2013 (see Table V)
(Bloom et al., 2014) and it was further reduced to 2.1 × 10−18

by the end of 2014 (Nicholson et al., 2015). The excellent
lattice clock stability has played an important role in facili-
tating the characterization of this level of low uncertainty for
atomic clocks. Progress is being made in many other labo-
ratories, and we anticipate that soon lattice clock uncertainty
will be pushed to 1 × 10−18 or below. Continued advance-
ments in the clock stability will aid these efforts. Efforts to
measure and control the blackbody Stark shift and lattice Stark
shifts will continue to play an important role.

3. Absolute frequency measurements

Optical clocks have demonstrated systematic uncertainties
which are fractionally smaller than that of the caesium primary
standard. Consequently, they are excellent candidates for
primary time and frequency standards of the future.
However, in the International System of Units (SI), the second

is presently defined relative to the caesium hyperfine clock
transition. By definition, any accurate frequency measurement
must be traceable to a caesium primary reference. Absolute
frequency measurements of the clock transition frequency of
optical lattice clocks are therefore usually made by referencing
the highest performance caesium standards, the caesium
fountain clock (Bauch, 2003; Bize et al., 2004; Heavner
et al., 2005; Wynands and Weyers, 2005). For such a
measurement, the systematic uncertainties of both the lattice
clock and the caesium fountain clock often play an important
role, as does the link between these standards. An optical
frequency comb is inevitably used to make the link between
the optical and microwave frequency domains. The standards
are often spatially separated, requiring careful phase and/or
frequency control of microwave and optical signals bridging
the distance (Foreman, Holman et al., 2007). The spatial
separation between atomic standards is often accompanied by
a change in gravitational potential, requiring the appropriate
correction for the gravitational redshift (approximately 10−16

per meter of height change) (Vessot et al., 1980). Because the
caesium standard operates at microwave frequencies, its
fractional stability can be 100 times lower than that of an
optical lattice clock. As a consequence, measurements
must be made over longer time scales to reach sufficiently
small statistical uncertainties (see, e.g., Fig. 17). To
reach an uncertainty level of 10−15 or below, absolute
frequency measurements are typically made over the course
of many hours or many days. This long averaging time
requires the standards to be operationally robust over these
time scales.
Absolute frequency measurements have been made for

optical lattice clocks utilizing Sr, Yb, and Hg. Table VI lists
many absolute frequency measurements that have been
published in the literature. Figure 18 plots recent measure-
ments for the absolute frequencies of the 87Sr and 171Yb
optical clocks. We emphasize the excellent agreement
between various measurements made in different laboratories
around the world, indicating the ability of the lattice clock to
serve as an accurate optical frequency standard. In fact, as we
see in Sec. VII, the agreement in these measurements has
allowed the international comparison to provide a useful
constraint on variation of fundamental constants. Both the
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FIG. 16 (color online). Measurement of key systematic frequency shifts in a 87Sr optical lattice clock. (a) The lattice Stark shifts as well
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TABLE V. A recent evaluation of systematic frequency shifts in an
87Sr lattice clock. From Bloom et al., 2014.

Systematic effect Correction (10−18) Uncertainty (10−18)

Lattice Stark −461.5 3.7
Residual lattice vector shift 0 <0.1
Probe beam ac Stark 0.8 1.3
BBR Stark (static) −4962.9 1.8
BBR Stark (dynamic) −345.7 3.7
First-order Zeeman −0.2 1.1
Second-order Zeeman −144.5 1.2
Density −4.7 0.6
Line pulling and tunneling 0 <0.1
dc Stark −3.5 2.1
Servo error 0.4 0.6
AOM phase chirp 0.6 0.4
Second-order Doppler 0 <0.1
Background gas collisions 0 0.6

Total correction −5921.2 6.4
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Sr and Yb standards have now been recommended as
secondary representations of the SI second.

VII. APPLICATIONS AND FUTURE PROSPECTS

With the rapid progress and high performance levels of
optical clocks, two natural questions arise. What will the
primary impacts of these advanced timekeepers be, and can
they get even better? We explore these questions, beginning

with the definition of time and frequency itself. We consider
the role of atomic clocks in the measurement of fundamental
physics as an important field that these clocks have benefited
from and will continue to benefit from. We also look at
quantum control techniques which may ultimately benefit the
optical clock, and how these clocks continue to benefit our
study of quantum systems. Finally, we conclude by consid-
ering atomic clocks which operate at the very highest optical
frequencies and beyond.

TABLE VI. Absolute frequency measurements of optical lattice clocks.

Absolute frequency and uncertainty (Hz) Reference
87Sr 429 228 004 235 000 (20 000) SYRTE (Courtillot et al., 2003)

429 228 004 230 000 (15 000) SYRTE (Courtillot et al., 2005)
429 228 004 229 952 (15) U. Tokyo (Takamoto et al., 2005)
429 228 004 229 869 (19) JILA (Ludlow et al., 2006)
429 228 004 229 879 (5) SYRTE (Le Targat et al., 2006)
429 228 004 229 875 (4) U. Tokyo (Takamoto et al., 2006)
429 228 004 229 874 (1.1) JILA (Boyd, Ludlow et al., 2007)
429 228 004 229 873.6 (1.1) SYRTE (Baillard et al., 2008)
429 228 004 229 873.65 (0.37) JILA (Campbell et al., 2008)
429 228 004 229 874.1 (2.4) U. Tokyo (Hong et al., 2009)
429 228 004 229 872.9 (0.5) PTB (Falke et al., 2011)
429 228 004 229 873.9 (1.4) NICT (Yamaguchi et al., 2012)
429 228 004 229 873.1 (0.132) SYRTE (Le Targat et al., 2013)
429 228 004 229 873.13 (0.17) PTB (Falke et al., 2013)
429 228 004 229 872.0 (1.6) NMIJ (Akamatsu et al., 2014)
429 228 004 229 873.60 (0.71) NICT (Hachisu et al., 2014)

88Sr 429 228 066 418 009 (32) SYRTE (Baillard et al., 2007)
62 188 138.4 (1.3) Tokyo 87-88 isotope shift

(Akatsuka, Takamoto, and Katori, 2008)
171Yb 518 295 836 591 600 (4400) NIST (Hoyt et al., 2005)

518 295 836 590 865.2 (0.7) NIST (Lemke et al., 2009)
518 295 836 590 864 (28) NMIJ (Kohno et al., 2009)
518 295 836 590 865.7 (9.2) KRISS (Park et al., 2013)
518 295 836 590 863.1 (2.0) NMIJ (Yasuda et al., 2012)
518 295 836 590 863.5 (8.1) KRISS (Park et al., 2013)

174Yb 518 294 025 309 217.8 (0.9) NIST (Poli et al., 2008)
199Hg 1 128 575 290 808 162 (6.4) SYRTE (McFerran et al., 2012)
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FIG. 17 (color online). Absolute frequency measurement of the 1S0 − 3P0 transition in 87Sr. (a) Histogram of 880 measurements
(without nuclear spin polarization) taken over a 24 h period. The corresponding Gaussian fit (solid curve) and data have a mean value of
71.8(6) Hz. (b) Histogram of the 50 h absolute frequency measurement (with nuclear spin polarization) using a hydrogen maser
calibrated in real time to a caesium fountain. The resulting frequency is 70.88(35) Hz and the distribution is Gaussian as shown by the fit
(solid curve). In (a) and (b) the offset frequency f0 is 429 228 004 229 800 Hz and the data sets are corrected only for the maser offset.
When the Sr systematics are included the frequencies are in excellent agreement. (c) Total deviation of the Sr-maser comparison for the
data set in (b). The line is a fit to the data yielding a stability of 2.64ð8Þ × 10−13τ−0.48ð1Þ and extends out to the entire measurement time.
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A. Primary standards and worldwide coordination of atomic
time

International Atomic Time (TAI) and Coordinated
Universal Time (UTC) are maintained and disseminated by
the Time, Frequency and Gravimetry Section of the Bureau
International des Poids et Mesures (BIPM) in Paris (Guinot
and Arias, 2005). They are the result of worldwide co-
operation of about 70 national metrology laboratories and
astronomical observatories that operate atomic clocks of
different kinds. Each participating laboratory k realizes an
approximation to UTC, denoted UTCðkÞ, which is used as the
reference for local clock comparisons and frequency distri-
bution. Time transfer between the laboratories is performed by
comparing local clocks to the time information received from
the satellites of global navigation systems and via dedicated
two-way links on geostationary telecommunication satellites.
In this way, the differences between the UTCðkÞ time scales
can be established with a transfer uncertainty that reaches less
than 1 ns for well-calibrated links.
A large ensemble of about 400 clocks, mainly commercial

caesium clocks and hydrogen masers, are reported to the
BIPM and are averaged to obtain the free atomic time scale or
Echelle Atomique Libre (EAL). The algorithm used is
designed to provide a reliable scale with optimized frequency
stability for a selected averaging time, assigning statistical
weights to individual clocks based on their performance
during the last 12 months. The frequency instability of
EAL reaches about 4 × 10−16 over 30 to 40 days. In a second
step, measurements of primary caesium clocks made over the
previous 1 yr period are introduced to calculate the relative
departure of the second of the free atomic time scale from the
SI second as realized by the primary clocks. By application of
a gentle frequency steering which should not compromise the
intrinsic stability of EAL, the free scale is transformed into an
accurate atomic time scale TAI (Temps Atomique
International). Presently, 11 atomic fountains in eight labo-
ratories contribute regularly to the calibration of TAI and a
frequency uncertainty of about 3 × 10−16 is obtained. Several
more primary caesium clocks are under development world-
wide. UTC is finally derived from TAI after the addition of
leap seconds. These are introduced at irregular intervals,
following the convention to maintain UTC in agreement to

within 0.9 s with an astronomical time scale defined by the
Earth’s rotation (Nelson et al., 2001) The dissemination
of UTC by the BIPM takes the form of a time series of
[UTC—UTC(k)] for selected dates in the past month.
With the rapid improvement in the development of optical

frequency standards, it has been demonstrated that the
accuracies of a number of systems now surpass those of
primary caesium standards. Direct comparison of two optical
frequency standards can be performed with lower uncertainty
than the SI second is realized. This calls in the long term for a
redefinition of the second in terms of an atomic transition
frequency in the optical range. In order to approach this
change and to introduce novel frequency standards into
metrological use, the concept of “secondary representations
of the second” has been defined (Gill, 2011). A formal
procedure has been established for taking note of measure-
ments of transition frequencies in atoms and ions relative to
the caesium frequency standard and of the pertinent uncer-
tainty evaluations. As the result of an evaluation in 2012,
seven values for optical transition frequencies in the atoms
87Sr and 171Yb and in the ions 27Alþ, 88Srþ, 171Ybþ (two
transitions), and 199Hgþ have been recommended with uncer-
tainties in the range ð1 − 4Þ × 10−15. Obviously, the uncer-
tainty of the recommended SI frequency value can never be
lower than those of the best available primary frequency
standards. In the microwave range, the ground-state hyperfine
transition frequency of 87Rb has been recommended with an
uncertainty of 1.3 × 10−15. Measurements with a rubidium
fountain (Guéna et al., 2012, 2014) are now reported in
comparison to TAI regularly, and in principle data from optical
frequency measurements could also be used, as has been
demonstrated (Wolf et al., 2006). From such comparisons one
can assess whether the reproducibilities of the new standards
between successive periods of operation are in agreement with
their stated uncertainties. If this is verified, they could
constitute valuable sources for the monitoring and steering
of TAI, even if their full intrinsic uncertainty cannot be
immediately used since they realize only secondary repre-
sentations. To benefit fully from performance of optical
frequency standards for the realization of time scales requires
significant improvements in time transfer and in technology
for flywheel frequency standards that are needed to handle
dead time (Parker, 2012). Continuous operations of optical
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FIG. 18 (color online). Absolute frequency measurements of the 1S0 − 3P0 transition in 87Sr and 171Yb (see also Table VI).

Ludlow et al.: Optical atomic clocks 683

Rev. Mod. Phys., Vol. 87, No. 2, April–June 2015



atomic clocks for periods of several days have been estab-
lished in several laboratories. However, since these systems
involve a number of lasers including optical frequency combs,
and laser cooled and trapped atoms and ions, the reliability of
their operations is still being gradually improved.

B. Technological applications

Advances in timekeeping impact a variety of applications.
Atomic clocks are a critical component in GNSS. Mature
advanced atomic clocks based on optical transitions and/or
laser cooled atomic or ionic samples could be used to improve
navigation and timekeeping capabilities. At short time scales
GNSS are not currently limited by the atomic clock stability,
but by atmospheric disturbances which would need to be
mitigated to take full advantage of the performance discussed
here. However, GNSS systems could already benefit from the
superb long-term stability provided by high performance
clocks as the ultralow drift would allow significantly extended
operation between updates or resynchronization, compared to
currently deployed Rb vapor cell clocks. The improved
stability would translate to improved GNSS system integrity,
enabling autonomous operation within given acceptable
position ranging errors for time scales of days or weeks,
instead of hours. Applications which can benefit from
improved system integrity include precision airplane
approaches at airports (Weiss, Shome, and Beard, 2010).
Advanced clocks will also be needed onboard deep space
missions to aid in navigation and timekeeping. Deep space
navigation is usually implemented by Doppler velocimetry
and ranging in a two-way configuration. Stable clocks on
board spacecrafts would allow a down-link-only operation
with significantly better accuracy and coverage of spacecraft
observation (Prestage et al., 2009). Other applications which
are poised to benefit from next generation clocks include
radar, where the improved short-term stability results in
ultralow phase noise microwaves for high resolution and
extended dwell times, as well as radio astronomy using
synthetic aperture techniques, and communication networks.
Optical frequency synthesis using optical clock and comb
architecture will enable on-demand coherent frequency gen-
eration for academic and industry applications.
In addition, the optical clock technology platform parallels

that of emerging inertial sensor technology based on atom
interferometry, and advances in one field can be incorporated
into and benefit the other. Common tools for these systems
include frequency stabilized lasers, ultrahigh vacuum systems,
and low-noise electronics. Atomic sensors using this toolbox
include absolute gravimeters and gravity gradiometers, which
have applications in geophysical monitoring and research, as
well as oil andmineral exploration and gravity aided navigation.
Gyroscope configurations show promise for inertial navigation
systems andmay enable high performance navigation in sea and
space environments where GNSS is not available.

C. Optical clocks for geodetic applications

According to general relativity, a clock ticks slower in a
gravitational potential compared to a clock outside of it. The
corresponding fractional frequency difference between the

clocks is given by Δf=f ¼ −ΔU=c2, where ΔU ¼ U1 − U2

is the gravitational potential difference between the positions
of the clocks and Δf ¼ f1 − f2 is their frequency difference.
On Earth, the gradient of the gravitational potential results in a
fractional frequency change of approximately 10−16 per meter
height difference for a clock at rest. By combining the gravity
potential provided by optical clocks and its derivative (the
gravity field) as measured by gravimeters, one can estimate
the size and location of a density anomaly (Bondarescu et al.,
2012), an important application in Earth exploration.
When comparing two clocks at different locations, relativ-

istic time dilation from the rotation of the Earth and higher-
order general relativistic corrections need to be taken into
account (Petit and Wolf, 2005) and for contributions to
international time scales by referencing the clocks to a
well-defined reference geopotential (Soffel et al., 2003).
The equipotential surface of this geopotential (gravitational
plus centrifugal components) closest to mean sea level is
called the geoid and corresponds to a water surface at rest. The
height above the geoid defines an orthometric height system in
geodesy, closely approximating equipotential surfaces.
Geopotential differences tell us in which direction water
flows. This has important applications in coastal protection,
engineering, and water resource management. Currently,
heights within a country are determined through geometric
leveling with theodolites supported by local gravimetry along
leveling lines. This is performed in loops with a total length of
more than 30 000 km for a country such as Germany with an
area of 360 000 km2. Establishing such a leveling network
with typical single-setup distances of around 50 m is a time-
consuming and costly task. Most importantly, errors in single
measurements accumulate, compromising the overall height
system to an accuracy of a few centimeters within a country.
An alternative approach uses accurate GNSS data together
with gravity field modeling from satellite gravimetry sup-
ported by terrestrial gravimetry, which in principle is capable
of extending height systems across continents (Denker, 2013).
However, it should be noted that GNSS provides geometrical
heights only above an ellipsoid. Different approaches to obtain
the height above the geoid produce height deviations of
several tens of centimeters and disagree with purely terrestrial
measurements (Gruber, Gerlach, and Haagmans, 2012;
Woodworth et al., 2012). A conceptually new and indepen-
dent method to overcome these limitations and simplify the
connection between height systems is “relativistic geodesy” or
“chronometric leveling,” which allows long-distance potential
difference measurements (Vermeer, 1983; Bjerhammar, 1985;
Shen, 2011; Delva and Lodewyck, 2013). It is based on a
frequency comparison between two remote optical clocks via
optical fibers (see Sec. III.B) or free-space microwave
(Salomon et al., 2001Levine, 2008; Piester et al., 2011;
Delva et al., 2012; Fujieda et al., 2014) or optical
(Fujiwara et al., 2007; Djerroud et al., 2010; Exertier et al.,
2013; Giorgetta et al., 2013) satellite links to provide a direct
height difference measurement between two remote locations.
Alternatively, a mobile clock (operating during transport)
together with careful modeling of its speed and geopotential
trajectory can be used. Geodesy and frequency metrology are
inextricably linked: A remote frequency comparison probes
the accuracy of clocks and the geodetic model simultaneously,
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since the height difference between the clocks enters the
systematic uncertainty evaluation of the frequency standard
(Pavlis and Weiss, 2003). Therefore, relativistic geodesy
should be performed using high performance transportable
optical clocks. These can be calibrated through side-by-side
measurementswith the reference clock before being transported
to a remote site for a geopotential comparison. Furthermore, this
approach would relax the requirements of the uncertainty
evaluation of the involved frequency standards and thus
improve the height resolution. Instead of performing an
evaluation of the accuracy of the clock, one would evaluate
its reproducibility. It allows the clock to have a less precisely
known but constant shift from its unperturbed transition
frequency. The frequency uncertainty in terms of reproducibil-
ity is the uncertainty in keeping the shifts constant, without
knowing their exact magnitude. An example is the blackbody
radiation shift discussed in Sec. V.C.5. The uncertainty of the
shift has two contributions: (i) the uncertainty in the differential
atomic polarizability and (ii) the uncertainty in the radiation
field experienced by the atoms, usually characterized by an
effective temperature. If we assume the polarizability (as an
atomic parameter) to have awell-defined and constant value,we
can neglect its uncertainty in the uncertainty evaluation for a
reproducible clock. This is qualitatively different from the
uncertainty in the electric field determination which may
fluctuate between frequency comparisons. The same argument
relaxes the requirements on the evaluation of many other
uncertainty contributions.
Aworld-encompassing network of optical clocks operating

at a level of 10−18 with a suitable infrastructure for high-level
frequency comparison would not only provide a more accurate
time standard, but also form the basis for a unified, long-term
stable geodetic height reference frame (Lehmann, 2000; Soffel
et al., 2003).
Ultimately, the accuracy of clocks on Earth will be limited by

the knowledge of the local gravity potential. A master clock in
space on a sufficiently well-known orbit (Gill et al., 2008;
Duchayne, Mercier, and Wolf, 2009) would eliminate this issue
and provide a gravitationally unperturbed signal. At the same
time, such a “master clock” in space (Schiller et al., 2007; Gill
et al., 2008) would enable high-stability time and frequency
transfer between Earth-bound clocks using microwave to estab-
lish a unified world height system.

D. Optical clocks in space

Optical clocks in space hold the promise of boosting the
significance of tests of fundamental physics such as Einstein’s
theory of relativity, as well as benefitting applications such as
positioning, time and frequency transfer, and the accurate
determination and monitoring of the geoid (Cacciapuoti and
Salomon, 2009). Most of these applications have been dis-
cussed in previous reviews (Maleki and Prestage, 2005; Gill
et al., 2008; Dittus, Lämmerzahl, and Turyshev, 2009) and in
two space mission proposals involving optical clocks, namely,
the search for anomalous gravitation using atomic sensors
(SAGAS) (Wolf et al., 2009) and the Einstein gravity explorer
(EGE) (Schiller et al., 2009) projects. Unfortunately, neither
mission has been selected for implementation. However, they
provide concrete mission scenarios and thus serve as baselines

for space-borne tests with optical clocks. Most importantly, for
such missions to be successful in the future, a continued effort
into the development of space-qualified (trans)portable optical
clocks is essential.
The unification of all fundamental forces including gravity

is a formidable task. Such a quantum field theory of gravity
should at some scale differ in its predictions from general and
special relativity as developed by Einstein. It is therefore
important to devise experiments which probe relativity at
different scales. The foundation of general relativity lies in the
equivalence principle, comprising the weak equivalence prin-
ciple, related to the universality of free fall, local Lorentz
invariance (LLI), related to velocity-dependent effects, and
local position invariance (LPI), related to the universality of
the gravitational redshift. Except for the universality of free
fall, optical clocks on satellites in space can outperform
terrestrial tests of these principles with only modest require-
ments on the clock performance, owing to the long unper-
turbed integration time in a space environment and the strong
modulation in gravitational potential and velocity achievable
on an appropriately chosen orbit.
LPI tests come in two flavors: (i) absolute redshift mea-

surements in which a terrestrial clock is compared to a clock in
a spacecraft, and (ii) null redshift measurements or tests of the
universality of the redshift in which two different types of
clocks on board of the same spacecraft are compared. In both
experiments the clock(s) in the spacecraft are subject to a
strongly varying gravity potential. Any deviation from
Einstein’s theory of relativity should manifest itself in a
modulation of the frequency ratio between the clocks. The
SAGAS project proposes to use an optical clock on board of a
spacecraft on a Solar System escape trajectory which is
compared to a ground clock using an optical carrier link
together with appropriate infrastructure to independently
measure the spacecraft’s velocity and acceleration (Wolf et al.,
2009). It is expected that the much larger variation in
gravitational potential and the long mission duration results
in an improvement by 4 orders of magnitude over the previous
best test by gravity probe A (Vessot et al., 1980). A similar
improvement is expected from the EGE project in which a
satellite hosting an optical and a microwave clock revolves
around the Earth on a highly elliptical orbit (Schiller et al.,
2009). Frequency comparisons between the onboard clocks
and between the onboard and ground clocks using a micro-
wave link provide null and absolute redshift measurements,
respectively. These measurements can also be interpreted as a
coupling of the fine-structure constant to the gravitational
potential (see Sec. VII.E).
LLI tests using clocks can be implemented by measuring

the special relativistic time dilation effect scaling as Δf=f ≈
−ðv21 − v22Þ=2c2 (Ives-Stilwell test) for large velocities in
the absence of strong gravitational potentials. Such a test
could be performed within the SAGAS mission scenario
when the spacecraft will leave the Solar System at high
speed. The expected uncertainty of this test is at 3 × 10−9

almost a factor of 30 smaller than the best terrestrial test to
date (Reinhardt et al., 2007). Assuming a violation of LLI in
the form of a preferred frame of reference (the cosmic
microwave background) through which the Solar System
races with a speed vs, the time dilation effect gets amplified
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to Δf=f ≈ −ðv1 − v2Þvs=2c2 (Reinhardt et al., 2007), which
can be measured by SAGAS to a level of 5 × 10−11 relative
uncertainty, an improvement by almost 2 orders of magnitude
(Wolf et al., 2009). Another test of LLI is performed through
Kennedy-Thorndike–type experiments, in which the inde-
pendence of the outcome of an experiment to the velocity with
respect to a preferred frame is probed. Such experiments probe
the relation between time dilation and spatial Lorentz con-
traction by comparing the frequency of an atomic standard
with the resonance frequency of an optical cavity (Hils and
Hall, 1990). The EGE mission scenario predicts an improve-
ment by a factor of 20 over the best terrestrial measurements
owing to the large velocity changes during the highly elliptical
orbit (Schiller et al., 2009).
Parametrized post-Newtonian gravity describes metric the-

ories of gravitation in the weak field limit using a set of
parameters, which are zero for the case of Newtonian gravity.
One of the most important parameters is γ and describes the
amount of curvature produced by a unit rest mass. A nonzero γ
changes the delay suffered by light traversing a strong
gravitational potential (Shapiro time delay) compared to
Newtonian gravity and results in gravitomagnetic effects
(Will, 2006). This effect can be measured by spacecraft laser
ranging during occultation. Within the SAGAS mission
proposal a measurement uncertainty of uðγÞ ≤ 10−8 is
expected, limited by the onboard clock uncertainty. This
corresponds to a 2 to 4 orders of magnitude improvement
over previous results (Bertotti, Iess, and Tortora, 2003).
Besides these fundamental physics applications, optical

clocks in space could act as stable time and frequency servers
and provide links for time and frequency transfer between
continents to establish improved time scales and a well-defined
height system using relativistic geodesy (see Sec. VII.C).

E. Variation of fundamental constants

Understanding how systems evolve in time is a key goal of
many scientific theories or models, whether that system be a
single atom or the entire Universe. The ticking rate of an atomic
clock is determined by the basic properties of subatomic
particles and how they interact to form an atom. It depends
on the most basic parameters, the fundamental constants of
nature. As their name suggests, these fundamental constants are
typically assumed to be fixed in value throughout space and
time. However, if they varied, as some theories which seek to
unify the fundamental forces predict, then so too does the
ticking rate of an atomic clock. As such, atomic clocks serve as
one of several vital tools to explore this possible variation
through time, space, or coupling to gravitational fields
(Karshenboim, Flambaum, and Peik, 2005; Lea, 2007).
Atomic clocks complement astronomical and other measure-
ments which instead sample possible variation over a large
fraction of the history of the Universe (Reinhold et al., 2006;
Flambaum and Kozlov, 2007). Atomic frequency standards, on
the other hand, are locally operated on Earth and are only useful
for exploring fundamental constant variation during the time
that they are operated for such measurements. Presently, this is
only on the time scale of years. However, meaningful mea-
surements can be made due to the unmatched measurement
precision and accuracy of atomic clocks.

The atomic and molecular transitions at the heart of these
standards can depend on fundamental constants such as the
fine-structure constant (α), the electron-proton mass ratio (μ),
and the light quark mass. As these clocks advance in
measurement precision, their ability to constrain the fluctua-
tions of these constants improves. Optical clock transitions
exhibit dependence on the fine-structure constant through
relativistic corrections to the transition frequency
(Angstmann, Dzuba, and Flambaum, 2004; Karshenboim,
Flambaum, and Peik, 2005; Lea, 2007). The Cs microwave
clock transition, based on hyperfine splitting, is additionally
dependent on the electron-proton mass ratio μ ¼ mp=me.
Thus, absolute frequency measurements of different species
can be used to explore possible temporal variations of α and μ.
For example, the fractional frequency drift rate of the Sr clock
frequency measured against Cs constrains a linear combina-
tion of the variations δα=α and δμ=μ in atomic units as

δðfSr=fCsÞ
fSr=fCs

¼ ðKSr − KCs − 2Þ δα
α
þ δμ

μ
: ð40Þ

Sensitivity coefficients (K) for various species have been
calculated (Angstmann, Dzuba, and Flambaum, 2004;
Flambaum and Dzuba, 2009). The sensitivity of the Cs clock
to α variation is moderate, KCs ¼ 0.83. On the other hand, the
sensitivity for atomic frequency standards based on Sr or Alþ

is low, KSr ¼ 0.06 and KAlþ ¼ 0.008. Standards based on
neutral mercury and ytterbium have larger values KHg ¼ 1.16
and KYb ¼ 0.45. Some atomic species exhibit quite large
sensitivity and thus are particularly well suited to exploring
α variation. Notable among these are ion standards based on
mercury or the octupole transition of ytterbium KHgþ ¼ −3.19
and KYbþ ¼ −5.95 (octupole). Measurements of the transition
frequencies of these clocks can be measured at different times,
ideally over an interval of many years, and require compar-
isons among different clock species, ideally between clocks
with varying sensitivity to fundamental constant variation
(e.g., a clock with high sensitivity measured against one with
low sensitivity, or two clocks with high sensitivity of opposite
signs). Observed drift rates can be extracted by linear fits to
such data. From Eq. (40) it is seen that drift rates for more than
two species are needed to constrain the α and μ dependence.
Figure 19 combines the results of a variety of two-species
comparisons made over time, in order to tightly constrain
both α and μ variation. Data are taken from measurements
and analysis using Ybþ (Huntemann et al., 2014; Tamm
et al., 2014), Hgþ and Alþ (Fortier et al., 2007; Rosenband
et al., 2008b), Sr (Le Targat et al., 2013), and Dy (Leefer et al.,
2013), and often using Cs as the second system. In this case,
overall constraints of δα=α ¼ −2.0ð2.0Þ × 10−17=yr and
δμ=μ ¼ −0.5ð1.6Þ × 10−16=yr resulted. We note other mea-
surements helping to constrain fundamental constant varia-
tion, including hydrogen (Fischer et al., 2004), Srþ (Madej
et al., 2012; Barwood et al., 2014), Sr (Blatt et al., 2008; Falke
et al., 2014), Rb (Guena et al., 2014), and an additional high-
accuracy measurement and analysis using Ybþ (Godun et al.,
2014), among many others. As more species are compared
with increasing accuracy, an improved sensitivity to temporal
variations can be expected.
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Because optical standards have achieved lower measure-
ment instability and systematic uncertainty than Cs standards,
direct optical clock comparisons can be very useful for
studying α variation. In this case, α variation can be directly
measured with only two different standards, as the μ depend-
ence vanishes. A notable example of such a measurement is
the comparison of the Hgþ and Alþ ion clocks at NIST over
approximately a 1 yr interval (Rosenband et al., 2008b).
In addition to independently constraining α variation to
≤2.3 × 10−17 per year, as shown earlier this measurement
could be combined with others versus caesium to aid
μ-variation constraint. Further improvements in the obtained
result can be realized by simply making additional Hgþ-Alþ

ratio measurements, as many years have now elapsed since
those results were published. Furthermore, another exciting
possible measurement involves determining the ratio of two
different optical transitions in Ybþ, one a quadrupole tran-
sition and the other an octupole transition. As mentioned
previously, the octupole transition has large negative sensi-
tivity to α variation, while the quadrupole transition possesses
reasonably sized positive sensitivity. Furthermore, because the
effects of some systematic shifts common to both transitions
are suppressed, such a ratio measurement has significant
potential to explore α variation (Lea, 2007).
Frequency measurements can also be analyzed to search for

couplings of the α and μ values to the gravitational potential,
as the Earth’s elliptical orbit brings the atomic frequency
standards through the annually varying solar gravitational
potential. For example, assuming the coupling of these
constants is given by dimensionless parameters kα and kμ,
the Sr frequency can vary sinusoidally over the course of a
year by the relation

δðfSr=fCsÞ
fSr=fCs

¼ −½ðKSr − KCs − 2Þkα − kμ�
GmSun

ac2
ϵ cosðΩtÞ;

ð41Þ

where G is the gravitational constant, mSun is the solar mass,
a≃ 1 a.u. is the semimajor orbital axis, c is the speed of light,

ϵ≃ 0.0167 is the orbital ellipticity, and Ω≃ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GmSun=a3

p
is

the Earth’s angular velocity around the Sun. The orbit of the
Earth is well known so the frequency data can be fitted to
Eq. (41) using only a single free parameter, which is the total
amplitude of the cosine variation. From a recent analysis
fitting Sr and Cs measurements made over years at diverse
locations around the world, the amplitude of annual variation
is determined to be 1.2ð4.4Þ × 10−16 (Le Targat et al., 2013).
As in the case of linear drift analysis, data from at least one
other species are needed to solve for kα and kμ. Hgþ results
have also been tested for gravitational variance (Fortier et al.,
2007) and the combined Sr-Cs and Hgþ-Cs data can be used
to place independent constraints on kα and kμ (Blatt et al.,
2008). In addition, H-maser frequency measurements have
also been tested for gravitational variation (Ashby et al., 2007)
and can be used in the same analysis. The H maser introduces
a possible gravitational sensitivity to the light quark mass kq
that can be extracted when combined with the Sr and Hgþ data
(Blatt et al., 2008). Together, these results give among the
most stringent limits to date for the gravitational coupling of
fundamental constants.

F. Quantum correlations to improve clock stability

Most applications of optical clocks demand a high stability
to reach a given frequency uncertainty in the shortest time
possible. As outlined previously, fluctuations in the number of
atoms in a lattice clock and quantum projection noise for a
fixed number of trapped ions poses a limit to the measurement
accuracy (Itano et al., 1993). The maximum phase sensitivity
in a Ramsey measurement with uncorrelated input states
containing on average N particles is given by Δϕ ≥ 1=

ffiffiffiffi
N

p
,

also known as the standard quantum limit (SQL). Quantum
mechanically higher resolution is allowed. The ultimate limit
is given by Heisenberg’s uncertainty relation which puts a
lower bound on the measurement uncertainty of two conjugate
variables such as phase and number of particles or energy and
time, leading to the Heisenberg limit Δϕ ≥ 1=N. In the limit
of large N, this limit cannot be further improved by any
measurement strategy or specially designed input states (Ou,
1997; Zwierz, Perez-Delgado, and Kok, 2010, 2011; 2012;
Giovannetti, Lloyd, and Maccone, 2012; Giovannetti and
Maccone, 2012; Hall et al., 2012). Identification of measure-
ment strategies and quantum correlated states that minimize
the uncertainty of a given observable in a measurement,
ideally under realistic noise models is being pursued in the
emerging field of quantum metrology (Giovannetti, Lloyd,
and Maccone, 2004; 2011; Luis, 2010; Escher, de Matos
Filho, and Davidovich, 2011; Dorner, 2012; Gross, 2012).
To be more specific, consider the frequency uncertainty

from a single measurement of N two-level atoms with
collective spin vector ~J ¼ P

N
n
~Jn (Arecchi et al., 1972).

This uncertainty can, in general, be described by

Δω ¼ ðΔĴzÞf
j∂hĴzif=∂ωj

; ð42Þ

where ðΔĴzÞ2f denotes the variance of operator Ĵz with respect
to the final detected state. Evaluated for uncorrelated atoms

FIG. 19 (color online). Measurements between atomic clocks of
different species can constrain possible variation of fundamental
constants. A number of comparisons between distinct atomic-
clock species are used here to constrain time variation of α and μ.
From Huntemann et al., 2014.
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using Ramsey spectroscopy, this relation reproduces the
standard quantum limit in Ramsey spectroscopy (Wineland
et al., 1994) ΔωSQL ∼ 1=

ffiffiffiffi
N

p
. However, this limit can be

overcome by correlating quantum states to reach Heisenberg-
limited frequency uncertainty which scales as ΔωSQL ∼ 1=N.
Equation (42) identifies two pathways to achieve this
improved frequency resolution: (i) reducing the projection
noise ðΔĴzÞf or (ii) increasing the signal slope j∂hĴzif=∂ωj.
Strategy (i) can be implemented by preparing spin-squeezed
atomic states (Wineland et al., 1992, 1994; Kitagawa and
Ueda, 1993) that exhibit reduced quantum projection noise
along the measurement direction at the expense of increased
noise orthogonal to it. For example, imagine that all atoms are
initially prepared in a superposition of two states labeled spin
up and spin down. The number of atoms in each state is
traditionally inferred by measuring the scattering rate of
photons out of a probe laser and into a detector. Because
of the multimode nature of the scattering process (i.e., photons
scatter in all directions), it is, in principle, possible to not only
determine how many atoms are in each state, but also to
determine the state of each individual atom. This additional
information leads to the collapse of each atom into spin up or
down, resulting in complete decoherence of the sample.
Decoherence can be evaded by building a detection system
in which the N atoms uniformly couple more strongly to a
single optical mode than the combined coupling to all other
modes. The uniform coupling ensures that only collective
information is gathered from the detection mode, i.e., how
many total atoms are in spin up, but not which atoms are in
spin up. The collective measurement collapses the collective
atomic wave function into an entangled state—a spin-
squeezed state. The quantum-driven fluctuations of atoms
between spin up and down is reduced, while the noise in an
unused measurement basis (spin pointing left versus right) is
increased. The conditionally prepared entangled state can be
used as an input for clock measurements whose precision
increases faster than the standard quantum limit.
Radio-frequency neutral atom clocks below the SQL have

been demonstrated using quantum nondemolition (QND)
measurements and deterministic, light-mediated interactions
to generate squeezed atomic states (Appel et al., 2009;
Leroux, Schleier-Smith, and Vuletić, 2010; Louchet-
Chauvet et al., 2010; Schleier-Smith, Leroux, and Vuletić,
2010) with a reduction in averaging time of up to a factor of
2.8(3) (Leroux, Schleier-Smith, and Vuletić, 2010). Squeezed
spin states and sub-SQL phase estimation have been exper-
imentally observed for two trapped ions (Meyer et al., 2001)
in the radio-frequency regime. However, so far squeezing has
not been realized on an optical transition. Schemes for
squeezing the collective spin of atoms in a neutral atom
optical lattice clock through a cavity-based QND measure-
ment have been proposed (Meiser, Ye, and Holland, 2008).
Strategy (ii) can be implemented through maximally

entangled states of the form ψGHZ ¼ ðj↓1↓2 � � �↓Ni þ
eiϕj↑1↑2 � � �↑NiÞ=

ffiffiffi
2

p
(Sanders and Milburn, 1995;

Bollinger et al., 1996), known as GHZ, Schrödinger-cat,
N00N, or N-particle Einstein-Podolsky-Rosen (EPR) states
(Greenberger, Horne, and Zeilinger, 1989; Greenberger, 1990;
Bollinger et al., 1996; Monroe et al., 1996; Lee, Kok, and
Dowling, 2002). They can be generated by implementing a

nonlinear Ramsey interferometer using generalized N-atom
π=2 Ramsey pulses, implementing a nonlinear rotation of the
collective spin. The atoms in these states are quantum
mechanically correlated in such a way that they act as a
single, macroscopic quantum system with a phase evolution
between the two components which is N times faster
compared to uncorrelated atoms, allowing Heisenberg-limited
resolution. The largest GHZ states with high fidelity have
been created in trapped ion systems using quantum phase
gates (Mølmer and Sørensen, 1999; Solano, de Matos Filho,
and Zagury, 1999; Milburn, Schneider, and James, 2000;
Roos, 2008). This way, two (Haljan et al., 2005; Home et al.,
2006), three (Leibfried et al., 2004), six (Leibfried et al.,
2005), and 14 (Monz et al., 2011) entangled atoms and
improved phase estimation have been demonstrated. The
latest experiment by the Innsbruck group is particularly
relevant here, since it is implemented on the optical clock
transition of the Caþ ion. Scaling the system to hundreds of
ions in a Penning trap has been proposed (Uys et al., 2011).
Implementation of GHZ Ramsey spectroscopy has also been
proposed for a neutral atom optical lattice clock, where the
GHZ state is created through the on-site interaction of an atom
moving across the lattice (Weinstein, Beloy, and Derevianko,
2010). A disadvantage of the larger signal slope using GHZ
states is the concomitant increased sensitivity to laser phase
noise (Huelga et al., 1997; Wineland et al., 1998), eliminating
any stability enhancement of these maximally entangled
states. By engineering more symmetric states with reduced
ΔĴ2z , such as Gaussian states, André, Sørensen, and Lukin
(2004) showed that a stability improvement by a factor of
1=N1=6 is achieved. Bužek, Derka, and Massar (1999)
analytically optimized measurement basis and input states
to obtain Heisenberg-limited scaling in the limit of large N for
similarly symmetric correlated states. In a numerical optimi-
zation approach, Rosenband (2012) showed that for realistic
1=f local oscillator noise with a flat Allan deviation of 1 Hz,
for up to 15 ions the protocol by André, Sørensen, and Lukin
(2004) and for more ions the Bužek, Derka, and Massar
(1999) approach provides the best improvement over the SQL,
whereas GHZ states perform even slightly worse than a
standard Ramsey experiment.
Short of better clock lasers, improved clock interrogation

schemes can realize sub-SQL instability. Recently, such
optimized measurement strategies based on a hierarchy of
ensembles of clock atoms with increasing interrogation time
have been proposed (Borregaard and Sørensen, 2013a;
Rosenband and Leibrandt, 2013; Kessler et al., 2014). In
these schemes the phase noise of the laser is tracked and
stabilized on time scales approaching the excited-state lifetime
of the clock atom through interrogation of several ensembles
with successively longer probe times. This ensures a well-
defined laser phase for the ensemble with the longest inter-
rogation time and results in an exponential scaling of the
instability with the number of atoms. Quantum correlated spin
states can be used either to reduce the required number of
atoms in each ensemble or to further improve the instability,
approaching Heisenberg-limited scaling for an infinite number
of atoms (Kessler et al., 2014). Current implementations of
single-ion clocks with their limited instability would benefit
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the most from these new schemes, requiring multi-ion traps
tailored for metrological purposes (Pyka et al., 2014).
In summary, Heisenberg scaling for improved clock sta-

bility remains an experimental challenge. Phase noise of the
LO prevents the clock stability from scaling as the HL.
However, in scenarios with realistic noise models and taking
into account the reduced performance of uncorrelated states in
the presence of noise, partially entangled states can still lead to
a significant improvement in stability (Kessler et al., 2014;
Kómár et al., 2014). The full potential of entanglement-
enhanced metrology can be realized only if analytical models
for identifying the optimum states and measurement basis for
complex noise models are developed. This goes hand in hand
with the development of efficient protocols for creating these
metrologically relevant states. From an experimental point of
view entanglement-enhanced metrology is only worth the
effort if either a simple scaling of the number of (uncorrelated)
particles is technologically challenging as is the case for
trapped-ion systems (Pyka et al., 2014), compromises the
accuracy of the clock as is the case for density-related shifts in
neutral atom lattice clocks, or where entanglement offers other
added values, such as reduced systematic shifts.

G. Designer atoms

Entanglement as a resource for spectroscopy and optical
clocks is not limited to improved stability as outlined in the
previous section. Efficient schemes for creating entangled
atomic states and protecting them against environmental
decoherence have been developed in the context of quantum
information processing (Wineland et al., 1998; Blatt and
Wineland, 2008; Häffner, Roos, and Blatt, 2008). These
techniques allow the creation of “designer atoms” consisting
of two or more entangled atoms with engineered properties for
spectroscopy (Roos et al., 2006). In a ground-breaking
experiment, Roos et al. entangled two Caþ ions (wave-
function indices 1 and 2) in a linear Paul trap in first-order
magnetic-field insensitive states of the form

jΨi ¼ 1ffiffiffi
2

p ðjm1i1jm2i2 þ jm3i1jm4i2Þ ð43Þ

with m1 þm2 ¼ m3 þm4, where mi indicates the magnetic
quantum number of the D5=2 state. This construction ensures
that each part of the wave function shifts the same way in a
magnetic field. This idea can be further extended to engineer
first-order magnetic-field- and electric quadrupole-insensitive
entangled states relevant for ion clocks. Currently this goal is
achieved by averaging six transitions to obtain a virtual clock
transition free of these shifts. However, changes in the
magnetic or electric fields between the interrogation of the
different transitions would cause imperfect cancellation.
Using six entangled ions, the equivalent to averaging over
these six transitions could be achieved in a single experiment.
In addition to the insensitivity against external fields, the
differential phase shift between the two parts of the wave
function exhibits GHZ-type scaling with an energy difference
of ΔE ¼ 6ℏω0. However, efficient schemes to produce such
complex maximally entangled states are yet to be developed.

H. Active optical clocks and superradiant lasers

The lasers with the best frequency stability currently have
linewidths of <100 mHz (Bishof et al., 2013) and are limited
by the thermal noise in the optical cavities that provide
frequency stabilization. An alternative solution is to make a
narrow laser using the same high-Q transitions used in optical
lattice clocks. The atoms become spontaneously correlated,
creating a collective atomic dipole that emits light whose
phase stability directly reflects the phase stability of the
atomic dipole (Meiser et al., 2009). We note also that passive
schemes using ultranarrow atomic resonances enhanced with
an optical cavity can take similar advantage of atom corre-
lations to realize excellent laser frequency stabilization
(Martin et al., 2011). The continuous superradiant light source
has never been demonstrated and has the potential to produce
laserlike light with linewidths approaching 1 mHz. The impact
of mHz linewidth frequency references has the same potential
to revolutionize the precision of clocks as has the development
of optical frequency standards during the past decade.
Recently, a proof-of-principle experiment has been carried
out using a Raman transition in Rb (Bohnet et al., 2012).
Instead of relying on the coherence of the photons, the

continuous superradiant sources rely on the atomic coherence.
In this approach, N atoms trapped in an optical cavity
spontaneously form a collective 1D polarization grating
leading to collective and directional emission of photons into
the cavity mode. The superradiant emission grows as N2 and
occurs without the macroscopic buildup of photons within the
cavity (Kuppens, van Exter, and Woerdman, 1994). A key
insight is that the system can be continuously repumped, an
advance akin to moving from pulsed to continuous lasing. The
second key insight is that the emitted light reflects the phase
stability of the atomic polarization grating and that the
coherence of the grating surpasses the single-particle
decoherence rate. The predicted linewidth of the light can
be even less than the atomic linewidth, and the scaling is
fundamentally different from the Schawlow-Townes laser
linewidth. Last, the requirements on the optical cavity are
relaxed since the key parameter that must be made large is
again the cavity-QED collective cooperativity parameter
NC ≫ 1, while the cooperativity parameter is preferably
small C ≪ 1.
The effort using 87Sr atoms has the potential to produce

unprecedentedly narrow light approaching 1 mHz. The atoms
would be trapped in a magic wavelength optical lattice inside
of a high finesse optical cavity (finesse F ∼ 106) resonant with
the clock transition 3P0 to 1S0. For a 1 mm cavity length, and
N ¼ 105, the collective cooperativity is very large NC ∼ 104

so that the superradiance threshold can be easily achieved.
However, the small cooperativity C ∼ 0.1 yields a predicted
linewidth of the emitted light smaller than the 1 mHz
transition linewidth.
Following superradiant decay to 1S0 the atoms would be

continuously repumped back to 3P0 via the intermediate states
3P1;2 and 3S1 that also serves to provide Raman sideband
cooling. The continuous nature of the light emitted from the
cavity would last for several seconds and would be limited
only by losses from the optical lattice. Emission could be
made truly continuous by continuously reloading atoms into
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the optical lattice from the side. The 0.1 pW of generated
optical power would be sufficient to stabilize the current 1 Hz
linewidth laser with a precision of 1 mHz in a feedback
bandwidth of ∼1 Hz. The stability of current Sr optical lattice
clocks would be improved by a factor of >10 should this
proposed scheme succeed.

I. Many-body quantum systems

One of the most exciting research directions for ultracold
matter lies in the exploration of strongly correlated quantum
many-body systems. Optical lattice clocks have emerged as a
surprising new platform for this endeavor. Motivated by the
desire to reduce the clock systematic uncertainty arising from
atomic interactions, high resolution spectroscopy performed
in optical lattice clocks has provided new insight and under-
standing of these effects. This effort in turn makes the lattice
clocks well suited for the study of many-body spin inter-
actions. When the spectral resolving power of the clock laser
advances to be better than atomic interactions in the clock, the
seemingly weakly interacting spin system actually demon-
strates strong correlations with complex excitation spectra
(Martin et al., 2013; Rey et al., 2014), and even SUðNÞ
symmetry (Gorshkov et al., 2010) can now be directly
explored to study complex quantum systems with high
degeneracy (Cappellini, 2014; Scazza et al., 2014; X.
Zhang et al., 2014). This is an exciting new research direction
that builds on the advanced optical clock and will provide
important guidelines for future advances of optical lattice
clocks (Chang, Ye, and Lukin, 2004).
Endowed with a number of attractive properties, ultracold

group 2 atoms provide new opportunities for quantum
simulation and quantum information science (Reichenbach
and Deutsch, 2007; Daley et al., 2008; Gorshkov et al., 2009,
2010; Daley, Ye, and Zoller, 2011), leveraging on the efforts
on optical manipulation, quantum engineering, clock-type
precision measurement, and optical control of interactions
(Yamazaki et al., 2010; Blatt et al., 2011). The clean
separation of internal and external degrees of freedom in an
optical lattice clock system rivals that of ion-trap systems and
is ideal for retaining quantum coherence for many trapped
atoms and for precise quantum measurement and manipu-
lations (Ye, Kimble, and Katori, 2008). In fact, even at the
early stage of the lattice clock development, laser-atom
interaction coherence time has been extended to hundreds
of milliseconds (Boyd et al., 2006) and has been further
improved with more stable lasers (Bishof et al., 2013; Martin
et al., 2013). This high spectral resolution allows us to
precisely control the electronic and nuclear spin configura-
tions and to probe their interactions. Specifically, we can use
both the nuclear spin and long-lived electronic (1S0 and 3P0)
states to represent spins and orbitals in a quantum system. The
two key features are the presence of a metastable excited state
3P0 and the almost perfectly decoupled nuclear spin I from
the electronic angular momentum J in these two states,
because J ¼ 0.
The advantage of using pure nuclear spin states is that their

coherence is largely insensitive to stray magnetic or electric
fields in the laboratory, and yet they can still be effectively
manipulated via strong and deliberately applied laser fields so

that state-specific resonances can be controlled, even in a
spatially resolved manner. In addition, by using the metastable
electronic states to represent orbitals, one gains exceptional
spectral selectivity to impose state-dependent optical forces on
atoms in the lattice. As such, schemes for generating spin-
dependent interactions, similar to those relevant for trapped
ions or in the bilayer lattice, can be implemented (Daley et al.,
2008; Daley, Ye, and Zoller, 2011). In addition, it should also
be possible to develop individual quantum bit addressability
and readout using tomographic and site-resolved imaging
techniques under applied inhomogeneous magnetic fields.
This spatial addressability and control are useful in several
ways: (1) characteristics of the lattice may only be uniform in
a small portion of the system, and this spatial addressing
would allow the simulation to take place specifically and
exclusively in that portion; (2) the nonuniform lattice param-
eters can be compensated for with the spatial addressing; and
(3) we can simulate nonuniform material systems, a capability
of clear technological importance if one aims to simulate
materials for real world devices and that are thus deliberately
shaped and crafted to specific tasks.
A major advantage of the optical lattice clock with many

atoms is the enhanced signal-to-noise ratio for spectroscopy
and hence the improved clock stability. However, with atom-
light coherence times reaching beyond 1 s, even very weak
atomic interactions can give rise to undesired clock frequency
shifts. This systematic uncertainty connects to many-body
physics and is thus different from all other single-atom based
effects. An interesting discovery in our push for ever increas-
ing accuracy of the Sr and Yb lattice clocks is the interaction-
induced frequency shift on the clock transition even with
spin-polarized fermionic atoms prepared under ultralow tem-
peratures, where atoms collide with a single or very few partial
waves. For identical fermionic atoms, antisymmetrization of
the two-particle wave function forbids the s-wave interaction,
and the p wave is suppressed owing to the centrifugal
potential arising from an angular momentum of ℏ. After
intensive research efforts focusing on the atomic density-
related frequency shifts in both Sr and Yb systems, we have
come to a very good understanding of these effects and have
since suppressed the density-dependent frequency shift below
1 × 10−18. The theory model developed by Rey et al. has also
become capable of describing full many-body spin-spin
interaction dynamics well beyond a simple mean-field treat-
ment (Martin et al., 2013; Rey et al., 2014).
The powerful spectroscopy resolution allows us to effec-

tively remove single-particle dephasing effects and reveal the
underlying correlated spin dynamics. The decoupling between
the electronic and nuclear spins implies that atomic scattering
lengths involving states 1S0 and 3P0 are independent of the
nuclear spin to very high precision. Of course the nuclear spin
wave function can be engineered to dictate how the two atoms
interact electronically via antisymmetrization of the overall
wave function for fermions. The resulting SUðNÞ spin
symmetry (where N ¼ 2I þ 1 can be as large as 10) together
with the possibility of combining (nuclear) spin physics with
(electronic) orbital physics opens up an exciting research
direction for rich many-body systems with alkaline earth
atoms (Gorshkov et al., 2010).
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J. Atomic clocks with even higher transition frequencies

Going to higher and higher operating frequencies has been
a recurrent trend in the development of precise clocks, and the
present status of optical clocks shows the benefits in terms of
stability and accuracy that can be obtained in comparison to
atomic clocks operating in the microwave range. It is therefore
evident to consider to carry this development forward and to
enter the domain of vacuum ultraviolet and soft x-ray
radiation. Candidates for suitable reference transitions may
be sought in highly charged ions where the remaining
electrons are tightly bound, and potentially in heavy nuclei
where a few γ transitions are known at energies of 1 keV and
below that are untypically low on the nuclear energy scale. It
has been pointed out that both types of transitions may offer
considerable advantages in terms of field-induced systematic
frequency shifts. Comprehensive proposals have been devel-
oped for clocks based on nuclear transitions (Peik and
Tamm, 2003; Campbell et al., 2012) and on electronic
transitions in highly charged ions (Derevianko, Dzuba, and
Flambaum, 2012).
Nuclear transition frequencies are generally several orders

of magnitude higher than those of transitions in the electron
shell and are also less sensitive to shifts induced by external
electric or magnetic fields because the characteristic nuclear
dimensions and nuclear moments are small compared to those
of the shell. If the interrogation is not performed with a bare
nucleus, one has to consider the coupling of the nuclear and
electronic energy level systems through the hyperfine inter-
actions. Since the primary interest is in the nuclear transition,
the choice of a suitable electronic configuration can be
adapted to the experimental requirements. From general
considerations it can be seen that for every radiative nuclear
transition, an electronic state can be selected based on angular
momentum quantum numbers such that the hyperfine coupled
nuclear transition frequency becomes immune against field-
induced shift to a degree that cannot be obtained for an
electronic transition.
In an LS coupling scheme the eigenstates of the coupled

electronic and nuclear system are characterized by sets of
quantum numbers jα; I; β; L; S; J;F;mFi, where I denotes the
nuclear spin, L; S; J are the orbital, spin, and total electronic
angular momenta, and F and mF are the total atomic angular
momentum and its orientation. α and β label the involved
nuclear and electronic configurations. The choice of an integer
total angular momentum F (so that a Zeeman sublevel mF ¼
0 → 0 is available) together with J < 1 leads to vanishing of
the linear-Zeeman effect, quadratic Stark effect, and quadru-
pole shift (Peik and Tamm, 2003). In this scheme, the optimal
electronic states for the interrogation of the nuclear transition
are those with J ¼ 1=2 in the case of a half-integer nuclear
spin, and J ¼ 0 if the nuclear spin is integer. Alternatively,
and more generally applicable also for higher values of J,
a pair of transitions between stretched hyperfine states
jF ¼ �ðJ þ IÞ; mF ¼ Fi → jF0 ¼ �ðJ þ I0Þ; mF0 ¼ F0i can
be used to realize a nuclear transition that is largely uncoupled
from shifts in the electron shell (Campbell et al., 2012).
Because of its favorably low transition energy of about

7.8 eV, the transition between the nuclear ground state
and an isomeric state in 229Th (Beck et al., 2007) is considered

as the experimentally most accessible system for a nuclear
clock and a number of experimental projects have been
started to investigate this potential. For a high-precision
nuclear clock, the case of trapped 229Th3þ ions seems to be
especially promising because its electronic level structure is
suitable for laser cooling (Peik and Tamm, 2003; C. J.
Campbell et al., 2009). The sensitive detection of excitation
to the isomeric state will be possible using a double resonance
scheme that probes the hyperfine structure of a resonance
transition in the electron shell, in analogy to electron
shelving as applied in single-ion optical clocks on electronic
transitions.
An alternative option for a nuclear optical clock with 229Th

is based on the idea of performing laser Mössbauer spectros-
copy with 229Th embedded in a crystal (Peik and Tamm, 2003;
Rellergert et al., 2010; Kazakov et al., 2012). While the
systematic uncertainty of such a solid-state nuclear clock may
not reach that of a realization with trapped and laser cooled
ions, the potentially much larger number of nuclei may
provide a frequency reference of high stability. The crystal
field shifts of the nuclear resonance frequency will be
dominantly due to electric fields and field gradients. A
diamagnetic host with a lattice of high symmetry should be
used. Thermal motion will lead to a temperature-dependent
broadening and shift of the nuclear line, where the line shape
will depend on phonon frequencies and correlation times. For
a solid-state nuclear clock of high accuracy (beyond 10−15) the
temperature dependence may be eliminated if the crystal is
cryogenically cooled to well below the Debye temperature, so
that the influence of phonons is effectively frozen out.
At higher nuclear transition energies, the methods envis-

aged here for 229Th will not be viable if radiative nuclear
decay competes with the emission of conversion electrons,
leading to changes of the charge state of the ion. In the case of
trapped ions, internal conversion can be suppressed by using a
sufficiently high charge state with an ionization potential that
lies above the nuclear excitation energy. Laser cooling and
state detection will then be performed using the methods
developed for the trapped-ion quantum logic clock.
Electronic transitions in highly charged ions also possess

favorable properties as a reference for a highly accurate clock.
In a positive ion of net charge Ze the binding energy of a
valence electron is proportional to Z2. Within an isoelectronic
sequence, transition energies between bound states can be
expected to follow a similar scaling, modified by contributions
from QED and finite nuclear size. Since the size of the
electron cloud contracts with 1=Z, size-dependent quantities
like polarizabilities or electric quadrupole moments, that
determine the sensitivities to external perturbations from
electric fields, scale down rapidly with increasing Z. From
this point of view, it may be advantageous to study highly
charged ions that show the same types of forbidden transitions
like the neutral atoms or singly charged ions that are used
in optical clocks today. For Z ≈ 20, the hyperfine-induced
1S0 → 3P0 transition in Be-like ions appears at a transition
energy of about 30 eV with a natural linewidth on the order of
1 Hz (Cheng, Chen, and Johnson, 2008). At still higher Z, the
ratio of transition frequency to the natural linewidth decreases
for this type of transition.
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So far, proposals for clocks with highly charged ions have
identified suitable transitions within the ground-state configu-
ration that provide a low sensitivity to field-induced frequency
shifts at a transition frequency in the infrared or visible
spectral range: hyperfine transitions in the electronic ground
state of hydrogenlike ions (Schiller, 2007) and electric
quadrupole transitions within the 4f12 configuration of the
Re17þ sequence (Derevianko, Dzuba, and Flambaum, 2012).
Given the wide choice of positive charge states in different
isoelectronic sequences, it is foreseeable that more opportu-
nities may be discovered.
An important consideration in the pursuit of higher

frequencies is that the development of low-noise coherent
sources of radiation and of the required clockwork for the
counting of periods seems to pose major challenges because
materials for amplifiers or mixers that provide a similar
efficiency as it is now available in the visible spectral range
are not known. Promising results have been obtained with
harmonic generation from near-infrared femtosecond fre-
quency combs in gas jets (Gohle et al., 2005; Jones et al.,
2005; Witte et al., 2005). In this approach, the frequency of
the comb modes can be stabilized, controlled, and measured in
the infrared spectral region, while the conversion of the
original frequency comb into a sequence of odd harmonics
makes the ensuing measurement precision available in the
vacuum ultraviolet. This method has now permitted precision
spectroscopy and frequency measurements of transitions in
rare gases at extreme ultraviolet wavelengths around 50 nm
(Kandula et al., 2010; Cingöz et al., 2012; Benko et al., 2014).
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