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This is a review on theoretical and experimental studies on dielectric microcavities, which play a
significant role in fundamental and applied research. The basic concepts and theories are introduced.
Experimental techniques for fabrication of microcavities and optical characterization are described.
Starting from undeformed cavities, the review moves on to weak deformation, intermediate
deformation with mixed phase space, and then strong deformation with full ray chaos. Non-Hermitian
physics such as avoided resonance crossings and exceptional points are covered along with various
dynamical tunneling phenomena. Some specific topics such as unidirectional output, beam shifts,
wavelength-scale microcavities, and rotating microcavities are discussed. The open microdisk and
microsphere cavities are ideal model systems for the studies on wave chaos and non-Hermitian physics.
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I. INTRODUCTION

A. Motivation

Optical microcavities can greatly enhance light-matter
interactions by storing optical energy in small volumes
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(Chang and Campillo, 1996; Vahala, 2004). The ability to
concentrate light is important not only to fundamental physics
studies, but also to practical device applications (Vahala,
2003). Instead of using metals which are usually lossy at
optical frequencies, most microcavities are made of trans-
parent dielectrics. In vertical cavities with distributed Bragg
mirrors or photonic-crystal defect cavities, optical confine-
ment is achieved through constructive interference of multiply
reflected or scattered light. An alternative scheme is total
internal reflection from a dielectric interface, which occurs
when light is incident from the higher refractive index (n1)
medium to the lower index (n0) one with an angle
χ ≥ arcsinðn0=n1Þ. Consider a light beam propagating in a
circular disk or a sphere via consecutive reflections from the
boundary, the rotational symmetry of the cavity shape keeps
the angle of incidence constant, and the condition for total
internal reflection is maintained. The phase delay for light
traveling one circle along the boundary must be equal to
2πm (m ¼ 1; 2; 3;…), so that the returning field has the same
phase as the original field and a steady state is reached.
Consequently, only light at certain frequencies can be con-
fined in a cavity, and these frequencies are called cavity
resonant frequencies ωm. The corresponding electromagnetic
modes are whispering-gallery modes (WGMs), in analogy
with the acoustic wave propagating along the smooth surface
of a circular gallery (Rayleigh, 1945). They have also been
referred to as “morphology-dependent resonances.” The first
observation of stimulated emission into optical WGMs was
reported soon after the invention of laser in solid spheres
of diameter 1–2 mm (Garrett, Kaiser, and Bond, 1961).
Since then, WGMs have been studied in a range of micron-
sized cavities, from liquid droplets and jets to solid spheres,
cylinders, disks, and rings. The optical confinement is,
however, not perfect. Because of the curvature of the cavity
boundary, light escapes out of the cavity via evanescent
leakage, the optical analog of quantum tunneling. In addition,
the surface roughness introduces scattering loss, and there is
residual absorption in the bulk material and at the surface.
They all contribute to a finite lifetime τ of light in a WGM,
which leads to a spectral width δω ¼ 1=τ. The quality factor is
defined as Q ¼ ωmτ.
Compared to other microcavity resonances, the WGMs

have extraordinarily high Q and small volume, which lead to
diverse applications in linear and nonlinear optics as well as
quantum optics. Ilchenko and Matsko (2006) reviewed the
applications of dielectric whispering-gallery resonators to
optical devices such as filters, modulators, switches, sensors,
lasers, and frequency mixers, as well as to microwave
photonics. Next we will mention a few recent developments.
The extremely long lifetime of light in a WGM makes it
sensitive to the adsorption of a single molecule or virus onto
the cavity surface (Vollmer and Arnold, 2008). Discrete
changes in the resonance frequency have been observed
due to the binding events of individual molecules or virons,
allowing real-time label-free detection (Armani et al., 2007;
Vollmer, Arnold, and Keng, 2008). A further enhancement of
the sensitivity is realized using whispering-gallery microlasers
(He et al., 2011). The Purcell enhancement of the optical
density of states (DOS) by the WGM dramatically increases
light emission and scattering (Chang and Campillo, 1996;

Vahala, 2004). Strong coupling of a single emitter (atom or
quantum dot) to a WGM of a microdisk or a microtoroid has
been achieved (Peter et al., 2005; Aoki et al., 2006; Srinivasan
and Painter, 2007), facilitating the studies of cavity quantum
electrodynamics. The strong buildup of intracavity optical
field greatly enhances nonlinear coupling of light with
matter (Chang and Campillo, 1996). For example, the Kerr-
nonlinearity induced optical parametric oscillation in ultra-
high Q WGMs produces optical frequency combs with high
repetition rate, permitting applications in astronomy, micro-
wave photonics, and telecommunications [see Kippenberg,
Holzwarth, and Diddams (2011) and references therein]. The
whispering-gallery resonators also play a crucial role in the
emerging field of cavity optomechanics (Kippenberg and
Vahala, 2008; Aspelmeyer, Kippenberg, and Marquardt,
2014). As light is reflected from the cavity boundary, it exerts
radiation pressure on the cavity wall, inducing a mechanical
flex of the cavity structure. The intense circulating field of a
WGM produces strong radiation pressure and excites vibra-
tional resonances. An interesting example is the acoustic
WGMs excited via stimulated Brillouin scattering of optical
WGMs in a microsphere (Carmon and Vahala, 2007). The
optomechanical coupling may lead to amplification or cooling
of mechanical motion (Schliesser et al., 2006; Bahl et al.,
2011; Bahl et al., 2012).
Nearly perfect confinement of light also implies the

difficulty of coupling light into or out of a WGM.
Consequently, whispering-gallery microlasers do not provide
adequate output power despite a low lasing threshold.
Moreover, the rotational symmetry of a sphere or a circular
disk leads to isotropic emission to free space, making it
impossible to collect all the output. This is a serious problem
for certain applications, e.g., single photon emitters. To
increase the collection efficiency, a coupler such as a prism,
a waveguide, or a fiber is often placed in close proximity to the
cavity to extract the evanescent field (Matsko and Ilchenko,
2006). High precision is required in positioning the coupler
with respect to the cavity boundary in order to obtain
sufficient output while avoiding a dramatic reduction of the
quality factor (Q spoiling). An alternative way of increasing
the collection efficiency is to make the emission to free space
directional by modifying the cavity boundary. Shortly after the
first realization of semiconductor microdisk lasers, Levi et al.
(1993) achieved directional output by introducing a tab or
patterning a grating on the disk circumference. This kind of
defect, however, also caused a serious Q spoiling. To
minimize this problem, Nöckel and Stone (1997) proposed
smooth deformation of cavity shape to break the rotational
symmetry and achieve anisotropic emission. They called such
cavities “asymmetric resonant cavities.” Even before their
work, lasing in nonspherical liquid droplets was reported by
Chang and co-workers (Qian et al., 1986). The laser emission
was confined to the liquid-air interface, confirming the surface
nature of the lasing modes. Later, Gmachl et al. (1998) used
semiconductor microcylinders with a deformed cross section
as laser resonators and achieved high-power directional out-
put. In the favorable directions of the far field, a power
increase of up to 3 orders of magnitude over the conventional
circularly symmetric lasers was obtained. Following these
works, various shapes of deformed cavities were studied and
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fabricated (some examples are shown in Fig. 1), most of them
either produce multidirectional output beams or have rela-
tively low Q factor (Wiersig, Unterhinninghofen et al., 2011).
The goal of combining unidirectional emission with high Q
has been reached recently with a deformed microdisk whose
boundary is described by the limaçon of Pascal (Wiersig and
Hentschel, 2008; Shinohara et al., 2009; Song, Fang et al.,
2009; Yan et al., 2009; Yi, Kim, and Kim, 2009; Albert et al.,
2012). In addition, the reverse process, i.e., free-space
excitation of directional high-Q modes in a deformed cavity,
is made efficient with an appropriate choice of the pump beam
direction and impact position. This has been utilized for
nonresonant optical pumping of microcavity lasers (Lee et al.,
2007a; Yang et al., 2008) and cryogenic cooling of opto-
mechanical resonators (Park and Wang, 2009).
From the fundamental physics perspective, deformed

microcavities have become a model system for the studies
of nonlinear dynamics, quantum chaos, and non-Hermitian
physics (Stone, 2001; Tureci et al., 2005). For a classical
chaotic system, the particle’s trajectory depends with expo-
nential sensitivity on the initial conditions. A common
example is a two-dimensional (2D) billiard with reflecting
walls and negligible friction, in which a point mass moves in a
straight line until it hits the boundary and bounces back with
the angle of reflection equal to the angle of incidence. Chaotic
motion can be induced by proper shaping of the billiard;
physicists and mathematicians have learned a great deal about

chaotic motion and its onset by studying dynamical billiards
with varied shapes. If the billiard becomes very small and the
point mass is a quantum particle, the dynamics is governed by
quantum mechanics. The quantum billiard has been a focus of
theoretical study on the quantum manifestation of classical
chaos, but it is difficult to realize experimentally. For example,
quantum dots were investigated as chaotic quantum systems,
but the interactions of electrons complicate the dynamics. A
breakthrough came in the 1990s when the microwave cavities
were used as quantum billiards, with the recognition of the
formal analogy between the wave properties of quantum
particles and classical electromagnetism. The electromagnetic
fields of Maxwell’s equations are the analog of the wave
functions of the Schrödinger equation; thus quantum chaos
can be studied in the context of wave chaos for electromagnetic
fields. The “classical limit” corresponds to the limit of geo-
metric optics where the wavelength is much smaller than the
cavity size. Statistical analysis of the eigenfrequencies and
eigenfunctions in 2D microwave cavities of varied shapes
illustrated the differences between classical chaotic and non-
chaotic systems. Reviews on microwave billiards can be found
in the book of Stöckmann (2000) and the review of Richter
(1999). Interesting effects studied in quantum billiards are, for
example, dynamical localization and dynamical tunneling.
Dynamical localization is the suppression of chaotic diffusion
by destructive interference (Fishmann, Grempel, and Prange,
1982; Frahm and Shepelyansky, 1997). Dynamical tunneling is
a generalization of conventional tunneling which allows pas-
sage not only through an energy barrier but also through other
kinds of dynamical barriers in phase space (Davis and Heller,
1981). While most microwave billiards are closed systems with
reflecting boundaries, dielectric cavities have open boundaries
through which waves may escape. The openness makes the
effective Hamiltonian of the system non-Hermitian. This leads
to various interesting phenomena such as an increase of the
quality factor at avoided resonance crossings (Persson et al.,
2000), chirality of mode pairs (Wiersig, Kim, and Hentschel,
2008) and exceptional points (Heiss, 2000), which are branch
point singularities of eigenvalues and eigenvectors of a non-
Hermitian matrix. Therefore, deformed dielectric microcavities
are ideal models for the fundamental studies of open chaotic
systems (Nöckel and Stone, 1997) and non-Hermitian quantum
physics (Lee et al., 2009a).

B. Scope

We review the experimental and theoretical studies of
dielectric microcavities as open chaotic systems in the past
two decades. There are previous short reviews on this topic
(Stone, 2001; Tureci et al., 2005; Xiao et al., 2010; Harayama
and Shinohara, 2011), which focus on either specific cavity
shapes [e.g., quadrupolar deformation in Stone (2001) and
Tureci et al. (2005)] or certain features [e.g., output direction-
ality in Xiao et al. (2010)]. Here we will cover a variety of
cavity shapes, from smooth deformations of circle or sphere to
polygons and cavities with boundary defects. We explain how
the shape of the cavity boundary determines the intracavity ray
dynamics and how light escapes out of the cavity. Depending
on the type and degree of shape deformation, the intracavity
ray dynamics can be regular, chaotic, or partial chaotic.

FIG. 1 (color online). A few examples of deformed dielectric
cavities. (a) Side-view and top-view scanning electron micro-
scope (SEM) images of a quantum cascade laser made of a
flattened quadrupolar-shaped GaAs cylinder. From Gmachl et al.,
1998. (b) Optical image of a liquid microjet which traps light
on one cross section by total internal reflection from the liquid-
air interface. Courtesy of Kyungwon An, Seoul National
University. (c) Optical image of a deformed fused-silica sphere
with the long axis equal to 200 μm. From Lacey and Wang, 2001.
(d) A microwave cavity made of a Teflon disk on a brass ground
plate with dimensions 380 × 260 mm2. From Schäfer, Kuhl, and
Stöckmann, 2006.
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Correspondingly, there is a diversity of cavity modes with rich
spatial structures, e.g., whispering-gallery modes, chaotic
modes, scar modes (localized on unstable periodic ray
trajectories), etc. We discuss how these modes are formed
and explore their characteristics such as quality factor and far-
field pattern.
In this review we will not cover the nonlinear interactions of

light with gain materials or the interactions of multiple lasing
modes via the active media, which have been reviewed by
Harayama and Shinohara (2011). Instead we will focus on
linear wave optics and (nonlinear) ray optics in the following
three regimes: (i) the “classical” regime nkR > 103 (n is the
intracavity index of refraction k ¼ 2π=λ, and λ is the vacuum
wavelength), where the ray dynamics rules; (ii) the “semi-
classical” regime nkR ∼ 102 − 103, where wave corrections
emerge; and (iii) the “quantum” regime nkR ∼ 10 − 102,
where wave effects become dominant. We will explore the
ray-wave correspondence and emphasize the consequence of
cavity openness, e.g., the nonorthogonality of cavity modes
which leads to excess quantum noise. In addition to stationary
cavities, we will review wave chaos in rotating microcavities
and explain how the rotation will affect the resonance
frequency, quality factor, and far-field pattern.

II. THEORETICAL MODEL AND EXPERIMENTAL
TECHNIQUES

A. Mode equation and wave simulations

The aim of this section is to give the definition of
electromagnetic (optical) modes in passive dielectric cavities,
to introduce the corresponding mode equation with emphasis
on the deformed disk, and to review the numerical schemes to
solve it.
The geometry of a dielectric cavity is determined by the

spatial profile of the refractive index nð~rÞ. For a given profile
an electromagnetic mode is defined as a time-harmonic
solution of Maxwell’s equations with frequency ω, in the
same way as a quantum mechanical energy eigenfunction is a
solution of the Schrödinger equation with fixed eigenenergy.
However, dielectric cavities are open systems as light leaks
out of the cavity. Hence, a mode in a dielectric cavity is a
quasibound state or quasinormal mode (Gamow, 1928; Kapur
and Peierls, 1938) decaying exponentially in time with life-
time τ. This can be conveniently expressed by a complex-
valued frequency ω, where the imaginary part is related to the
lifetime via τ ¼ −1=ð2ImðωÞÞ with ImðωÞ < 0. The quality
factor Q compares the lifetime τ with the oscillation period of
the light T ¼ 2π=ReðωÞ,

Q ¼ 2π
τ

T
¼ −

ReðωÞ
2ImðωÞ : ð1Þ

The quasibound states are connected to the peak structure
in scattering spectra [see, e.g., Landau (1996)] as illustrated
in Fig. 2.
To derive the mode equation one has to substitute the

complex representation of time-harmonic electric field
~Eð~r; tÞ ¼ ~Eð~rÞ exp ð−iωtÞ and magnetic field ~Hð~r; tÞ ¼
~Hð~rÞ exp ð−iωtÞ into Maxwell’s equations for nonmagnetic,

dielectric materials in the absence of free charges and currents.
As most dielectric cavities consist of one or several homo-
geneous regions the refractive index nð~rÞ is often a piecewise
constant function. In that case one arrives at

�
∇2 þ n2ð~rÞω

2

c2

��
~Eð~rÞ
~Hð~rÞ

�
¼ 0 ð2Þ

provided that ~r is not a boundary point. If ~r is on a boundary
separating two regions 1 and 2 with constant refractive indices
n1 and n2, the fields are subject to the continuity relations

~νð~rÞ × ½~E1ð~rÞ − ~E2ð~rÞ� ¼ 0; ð3Þ

~νð~rÞ · ½n21 ~E1ð~rÞ − n22 ~E2ð~rÞ� ¼ 0; ð4Þ

~νð~rÞ × ½ ~H1ð~rÞ − ~H2ð~rÞ� ¼ 0; ð5Þ

~νð~rÞ · ½ ~H1ð~rÞ − ~H2ð~rÞ� ¼ 0; ð6Þ

where ~νð~rÞ is the local normal vector. The appropriate
boundary condition at infinity is the “outgoing wave” con-
dition (Sommerfeld radiation condition). Together with this
boundary condition, Eqs. (2)–(6) define the modes in a
dielectric cavity.
In the case of a (deformed) disk cavity, the mode equation

and the boundary conditions can be significantly simplified by
replacing the disk by an infinite dielectric cylinder with an
arbitrary cross section. The translation symmetry along the
z axis of this idealized geometry allows the ansatz (Jackson,
1962; Tureci et al., 2005)

FIG. 2. Resonances and long-lived optical modes. The back
panel shows the intensity scattered off a dielectric circular disk of
radius R and refractive index n ¼ 1.5 at 170° with respect to the
incoming plane wave with wave number k ¼ ω=c, where c is the
speed of light in vacuum. The scattering intensity shows narrow
peaks (resonances) at the scaled complex frequencies Ω ¼
ωR=c ¼ kR which are closest to the real axis. These are the
frequencies of the long-lived modes; the short-lived modes
contribute to broader peaks and the scattering background. From
Tureci et al., 2005.
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~Eð~rÞ ¼ ~Eðx; yÞ exp ðinkzzÞ ð7Þ

and analog for ~H. The particular case of kz ¼ 0 corresponds to
light propagation in the ðx; yÞ plane only. For this case the
mode equation can be written as the scalar Helmholtz equation

�
∇2 þ n2ðx; yÞω

2

c2

�
ψðx; yÞ ¼ 0; ð8Þ

with ∇ now restricted to the x and y coordinates. The
complex-valued wave function ψ equals Ez in the case of
transverse magnetic (TM) polarization (Hz ¼ 0). For trans-
verse electric (TE) polarization (Ez ¼ 0) the wave function ψ
equals Hz. The other electric and magnetic field components
can be computed from Ez and Hz, respectively (Tureci et al.,
2005). Admissible solutions of the mode equation in Eq. (8)
are those which remain finite everywhere inside the cavity.
The continuity relations (3)–(6) in the ðx; yÞ plane simplify to

ψ1 ¼ ψ2; ∂νψ1 ¼ ∂νψ2 TMpolarization; ð9Þ

ψ1 ¼ ψ2;
∂νψ1

n21
¼ ∂νψ2

n22
TE polarization: ð10Þ

∂ν is the normal derivative defined as ∂ν ¼ ~νð~rÞ ·∇. Note the
structural equivalence of mode equation (8) and the stationary
Schrödinger equation of a quantum particle in a piecewise
constant potential. In polar coordinates ðr;φÞ the outgoing
wave condition in two dimensions for large r can be written as

ψ ∼ ψout ¼ hðφ; kÞ exp ðikrÞffiffiffi
r

p : ð11Þ

Because of this boundary condition the solution of the mode
equation has to decay in time. It is therefore a quasibound state
with complex-valued frequency ω; ImðωÞ < 0. Moreover, ψ
diverges as exp ½−ImðkÞr� with ImðkÞ ¼ ImðωÞ=c < 0 as the
radial coordinate r tends to infinity. Hence, the quasibound
state ψ is strictly speaking not normalizable. The divergence
does not affect the angular distribution of the emitted
light hðφ; kÞ.
In practice a microdisk has a finite vertical extension which

is usually taken into account within the effective-index
approximation; see, e.g., Smotrova et al. (2005). The central
assumption is that the separation ansatz (7) is still valid,
ignoring a weak mixing of TM and TE polarizations. The
resulting equation for the z direction leads to a series of
quantized values of kz. Usually it is sufficient to consider the
smallest one. Associated with this value of kz is the mode
equation (8) and the continuity relations (9) and (10) with n
replaced by an effective index of refraction neff ¼
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðkz=kÞ2

p
inside the cavity and neff ¼ 1 outside the

cavity.
The effective-index approximation cannot be justified

rigorously and no error estimates can be given. However,
many publications have confirmed that this approach works
well in terms of eigenfrequencies for different kinds of planar
geometries such as photonic crystals (Qiu, 2002), annular
Bragg cavities (Scheuer et al., 2005), and microdisks

(Michael, 2009). Even microcavities supported by a pedestal
are described in sufficient accuracy (Lozenko et al., 2012).
Moreover, the near-field pattern (Fang, Cao, and Solomon,
2007; Redding, Ge, Song et al., 2012) and far-field pattern
(Schwefel et al., 2004; Shinohara et al., 2009) of deformed
microdisks computed in the effective-index approximation
agree with experimental data. The validity of the effective-
index approximation for dielectric disks was questioned
recently by Bittner et al. (2009). However, the observed
deviations of typically below 1% can be considered as being
small, keeping in mind that the bulk refractive index is often
known with less accuracy.
As most problems in electrodynamics do not allow for an

analytical treatment, much effort has been put into the
development of numerical schemes. The most prominent
one is the finite-difference time-domain (FDTD) method
(Taflove and Hagness, 2000) which is perfectly suited to
simulate the dynamics of light propagation in complex
environments. It can also be used to determine light confine-
ment in dielectric cavities (Kim et al., 2004; Fang, Yamilov,
and Cao, 2005; Srinivasan et al., 2006; Fang, Cao, and
Solomon, 2007), but for long-lived modes in the semiclassical
regime (short-wavelength regime), i.e., when the wavelength
is small compared to the characteristic length scales of the
system, it requires immense computational power. In this case
it is more convenient to work in the frequency domain. This is,
in particular, advantageous if the frequency dependence of the
refractive index has to be included. For the frequency domain
several approaches can be applied to quasi-two-dimensional
geometries, such as the finite-difference frequency-domain
(FDFD) method (Shainline et al., 2009), wave-matching
method (Nöckel and Stone, 1995; Hentschel and Richter,
2002), internal scattering quantization approach (Tureci et al.,
2005), volume element methods (Martin et al., 1999),
boundary element methods (Wiersig, 2003a; Zou et al.,
2011), and related methods based on boundary integral
equations (Boriskina et al., 2004). The FDFD and the volume
element methods are restricted to small structures because of
the limited computational power that is available today. The
wave-matching method based on the expansion of the wave
function into a basis of Bessel and Hankel functions is more
efficient and can be applied to large structures. However,
usually the expansion is around a single point in position
space (single pole method). In this case the method relies on
the Rayleigh hypothesis which fails for strongly deformed
disks (van den Berg and Fokkema, 1979). This same is true for
the highly efficient internal scattering quantization approach.
No such problem exists for the boundary element methods
which are also efficient (Zou et al., 2011), in particular, in
combination with the harmonic inversion technique (Wiersig
and Main, 2008).

B. Ray model

The short-wavelength limit of wave optics is geometrical
(ray) optics. In the semiclassical regime much understanding
about the wave dynamics in dielectric cavities can be gained
by studying the dynamics of rays inside the given structure. In
the following we describe the basic ray model introduced by
Nöckel, Stone, and Chang (1994), Mekis et al. (1995), Nöckel
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and Stone (1995, 1997), and Nöckel et al. (1996), which is
nowadays commonly used for dielectric cavities.
First we address ray dynamics in a closed cavity with

perfectly reflecting walls. This problem is mathematically
equivalent to a classical particle moving freely along straight
lines in a two-dimensional planar domain (billiard) with
specular reflections at the boundary. Figure 3(a) depicts the
elementary aspects of the billiard dynamics. According to the
law of reflection, the incident ray and the reflected ray make
the same angle χ with respect to the inward normal vector ~ν at
the boundary point of the reflection. Clearly, the shape of the
boundary determines the dynamical properties of the billiard.
The real-space trajectories in a typical billiard can be very

complicated, so it is more appropriate to study the trajectories
in phase space. The phase space of a 2D billiard is four
dimensional consisting of 2 spatial degrees of freedom and
two conjugate momenta. However, due to conservation of the
particle’s energy, the motion actually takes place on a three-
dimensional surface. A further reduction of dimensionality
can be achieved by the Poincaré surface of section (SOS)
(Lichtenberg and Lieberman, 1992). For billiards, it is a plot
of the intersection points of a set of trajectories with the
cavity’s boundary. This is illustrated in Fig. 3. When a ray or
particle is reflected at the cavity’s boundary, its position in
terms of the arclength coordinate along the boundary s and
the quantity p ¼ sin χ are recorded. We follow here the
convention that sin χ > 0 means counterclockwise (CCW)
rotation and sin χ < 0 means clockwise (CW) rotation;
cf. Figs. 3(a) and 3(b). The quantity p ∈ ½−1; 1� can be
interpreted as the tangential component of the normalized
momentum with respect to the boundary curve at a given
position s ∈ ½0; smax�. The coordinate s and its canonical
conjugate momentum p are called Birkhoff coordinates.
This pair is the natural set of coordinates since the mapping
from bounce to bounce ðsi; piÞ → ðsiþ1; piþ1Þ is area pre-
serving (Birkhoff, 1927); see also Berry (1981).
In the special case of the circular billiard, the angle of

incidence χ is not changed by the billiard mapping. Hence,
rays are confined to two-dimensional surfaces of constant
sin χ and constant energy. The topology of such invariant

surfaces is that of a two-dimensional torus (Arnol’d, 1978).
In the SOS these tori are lines sin χ ¼ const. The dynamics on
these lines can be periodic or quasiperiodic.
A more complicated example, the mushroom billiard, is

shown in Fig. 4. This exotic class of geometries has attracted
much attention because the phase space of such a system is
sharply divided into regular and chaotic parts (Bunimovich,
2001). In a regular region, the dynamics is similar to the case
of the circular billiard with χ being a constant of motion. In
contrast, the dynamics in a chaotic region exhibit an expo-
nential sensitivity on the initial conditions (Lichtenberg and
Lieberman, 1992). Moreover, the dynamics is ergodic, i.e., a
single trajectory eventually comes arbitrarily close to any
point in the given chaotic region and as a result it covers a
finite fraction of the SOS. The phase space of such a partially
chaotic system is called “mixed phase space.” A mushroom-
shaped optical microcavity has been studied by Andreasen
et al. (2009).
In a generic billiard, the coexistence of regular and chaotic

dynamics in the mixed phase space is much more involved.
Regular regions (called “islands”) embedded in a chaotic
region (which is usually referred to as “sea” to complete the
analogy) are surrounded by a chain of smaller islands which in
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FIG. 3. Ray dynamics in a billiard; s is the arclength coordinate
along the boundary of the cavity and χ is the angle of incidence
with respect to the boundary normal ~ν. (a) The solid line
1 → 2 → 3 is a counterclockwise traveling ray in real space
and the dashed line 10 → 20 → 30 is a clockwise traveling ray.
(b) The same dynamics in the Poincaré surface of section. The
coordinate s is normalized to the total circumference of the
boundary smax. In this representation the angle χ is conventionally
defined negative for clockwise traveling rays.

FIG. 4 (color online). Example of a simple mixed phase space.
Numerically computed Poincaré surface of section for a desym-
metrized mushroom billiard showing regular and chaotic
regions in phase space; the size of the billiard is scaled such
that smax ¼ π=2. From Bäcker, Ketzmerick, Löck, Robnik
et al., 2008.

FIG. 5. Poincaré surface of section of a quadrupole billiard (12)
for ε ¼ 0.072. The boundary is here parametrized by the polar
angle φ. The direction φ ¼ 0 corresponds to the right part of
the horizontal axis in the three real-space plots. From Tureci
et al., 2002.
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turn are surrounded by even smaller islands and so on, leading
to an infinite hierarchy of islands. Figure 5 shows as an
example for a generic case of the SOS of a quadrupole billiard
(Nöckel et al., 1996; Tureci et al., 2002) with boundary given
in polar coordinates by

rðφÞ ¼ Rð1þ ε cos 2φÞ: ð12Þ
The ray dynamics is solely determined by the deformation
parameter ε ≥ 0 and independent on the average radius R.
Only trajectories with positive χ are shown in Fig. 5. The SOS
is symmetric with respect to χ → −χ due to the time-reversal
symmetry of the billiard system. It can be clearly seen that
the ray dynamics can be regular or chaotic depending on the
initial conditions. Figures 5(a)–5(c) depict a quasiperiodic
whispering-gallery ray, a periodic ray from the center of an
island, and a chaotic ray.
A ray in a billiard system never leaves the interior of the

domain enclosed by the boundary. In a dielectric cavity,
however, a ray can leave the cavity via refractive escape.
Figure 6 illustrates the fact that the ray partially leaves the
cavity when the angle of incidence χ is smaller than the critical
angle χc for total internal reflection; sin χc ¼ 1=n assuming
that air surrounds the cavity. Hence, a dielectric cavity
can be considered as an “open billiard” (Nöckel and Stone,
1995, 1997).
In the SOS of such an open billiard the region between the

“critical lines” sin χ ¼ �1=n is called the “leaky” region; see
Fig. 7(a). The size of the leaky region increases with decreas-
ing refractive index n. Chaotic systems with a leaky region in
phase space have been given a lot of attention in recent years;
for a review, see Altmann, Portela, and Tél (2013). When a ray
inside the dielectric cavity hits the leaky region then, in the
crudest approximation, the ray is lost for the internal ray
dynamics and the transmitted ray contributes to the far-field
intensity pattern fðφÞ according to Snell’s law n sin χ ¼ sin η
(Jackson, 1962); cf. Fig. 6. A more sophisticated scheme is to
account for the partial leakage in the leaky region by assigning
an initial intensity I to a given ray. Whenever it hits the cavity’s
boundary the intensity is reduced according to

Ii → Iiþ1 ¼ RTM;TEðsin χiÞIi; ð13Þ

where RTM;TEðsin χÞ ≤ 1 is the polarization-dependent reflec-
tion coefficient (Schwefel et al., 2004). The simplest choice for
RTM;TE is according to Fresnel’s laws for a planar dielectric
interface (Jackson, 1962); see Fig. 7(b). Note that in the case of
TE polarization the reflection coefficient goes down to zero at
Brewster’s angle.
Tracing a single ray is not sufficient for the computation

of the far-field intensity pattern fðφÞ. What is needed is a
properly chosen ensemble of rays which establishes a link to
the modes of the dielectric cavity. There is no general recipe
for constructing these ensembles as it depends on the
geometry of the cavity, so we postpone this issue to Sec. IV.
The reflection coefficient RTM;TE can be used to incorporate

tunneling into the ray model (Nöckel and Stone, 1997).
Tunneling is the main decay channel of the (weakly deformed)
circular cavity as refractive escape is forbidden due to con-
servation of the angle of incidence. In this case, the tunneling
can be related to a modified reflection coefficient at curved
dielectric interfaces (Hentschel and Schomerus, 2002). Other
extensions of the ray model are discussed in Sec. VIII.
Ray tracing has also been performed in deformed dielectric

spheres. In the special case of an axisymmetric deformed
sphere the conservation of angular momentum reduces this
problem effectively to a two-dimensional billiard with cen-
trifugal potential. Such a case has been studied by Nöckel and
Stone (1995). Ray dynamics in a nonaxisymmetric deformed
dielectric sphere has been analyzed by Lacey and Wang
(2001). Here the SOS is four dimensional; therefore the ray
trajectories have to be laboriously visualized and analyzed in a
number of different projections.

C. Husimi functions

In this section we discuss a powerful tool for the compari-
son of ray and wave properties, the Husimi function for
dielectric cavities. The Husimi function is one of the simplest
quasiprobability distributions of a quantum state in phase
space (Husimi, 1940). It is obtained from the overlap of the
wave function with a coherent state that represents a minimal-
uncertainty wave packet.

ν

χ χ
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η
I
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(1−R)I

xn(x,y) = n

n(x,y) = 1

φ

FIG. 6. Refractive escape from a dielectric cavity with refractive
index n > 1. A ray with intensity I is split into a reflected ray
with intensity RTM;TEI and a transmitted ray with intensity
ð1 − RTM;TEÞI. ~ν is the outward normal vector. The angle of
the reflected ray η is related to the angle of the incident ray χ by
Snell’s law. The emission direction can be described by the polar
angle φ which equals asymptotically the angle ϕ between the
x axis and the emitted ray.

(a) (b)

FIG. 7. The leaky region in phase space of a dielectric cavity.
(a) Poincaré surface of section with leaky region j sin χj ≤ 1=n in
which the condition for the total internal reflection is not met.
(b) Reflection coefficient RTM;TEðsin χÞ for a planar dielectric
interface with the incident plane wave coming from the high-
index medium (n ¼ 2). The low-index medium is air with n ¼ 1.
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The Husimi function was adapted to billiards by
Crespi, Perez, and Chang (1993). It can be considered as a
representation of the quantum state on the SOS at the boundary
of the billiard. This approach was applied also quite exten-
sively to dielectric cavities even though the boundary
conditions (9) and (10) are different. For TM boundary
conditions (9) Hentschel, Schomerus, and Schubert (2003)
have derived Husimi functions by using a saddle point
approximation valid in the semiclassical regime. In total four
different Husimi functions have been obtained, two for
incident and emerging waves inside the cavity and two for
those outside the cavity. The Husimi functions for the internal
waves have been widely used, so we focus on them
in the following. The incident and the emerging Husimi
functions are

HincðemÞðs; pÞ ¼ nk
2π

����Fhψðs; pÞ − ðþÞ i
kF

h∂ψðs; pÞ
����
2

ð14Þ

with weighting factor F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − p2

pq
. The function

hgðs; pÞ ¼
Z

smax

0

ds0gðs0Þξðs0; s; pÞ ð15Þ

is the overlap of the wave function (g ¼ ψ) or its normal
derivative (g ¼ ∂νψ) on the cavity’s boundary with the
minimal-uncertainty wave packet

ξðs0; s; pÞ ¼ ðσπÞ−1=4
X∞
l¼−∞

exp
h
−
ðs0 þ smaxl − sÞ2

2σ

− inkpðs0 þ smaxlÞ
i
: ð16Þ

The wave packet ξðs0; s; pÞ is centered around ðs; pÞ. The
relative uncertainty in s and p can be controlled with the
parameter σ.
Figure 8 shows as an example the Husimi function of

a mode in an annular cavity [a microdisk with an internal
disk-shaped area of different refractive index; see, e.g.,
Hentschel and Richter (2002), Schomerus, Wiersig, and
Hentschel (2004), Wiersig and Hentschel (2006), and Preu
et al. (2013)] superimposed on the SOS of the outer boundary.

It can be seen that the mode is localized in the chaotic region
of phase space. The contribution in the leaky region deter-
mines the emission properties.
There is an independently developed approach to visualize

the mode in the leaky region of the SOS, the so-called
intensity flux distribution which is based on a coarse-grained
Poynting vector (Shinohara and Harayama, 2007). It has been
proven that the flux distribution coincides with the difference
between the incident and the emerging Husimi function
(Shinohara and Harayama, 2011).

D. Cavity fabrication

In this section, we introduce various types of dielectric
microcavities and describe briefly how they are fabricated.
For more information, we refer the interested reader to several
reviews (Ilchenko and Matsko, 2006; Chiasera et al., 2010;
Xiao et al., 2010; Righini et al., 2011; He, Özdemir, and
Yang, 2013).

1. Liquid droplets and microjets

Liquid droplets are 3D microcavities formed by surface
tension forces. In the early days they were generated by
Berglund-Liu piezoelectric vibrating-orifice aerosol genera-
tors (Qian et al., 1986). As shown in Fig. 9, immediately

FIG. 8 (color online). Husimi function inphase space. (a) Poincaré
surface of section (dots, horizontal lineswith j sin χj > 0.6), critical
lines (horizontal lines with j sin χj ≈ 0.3), and emerging Husimi
function (shaded regions) of a mode in an annular cavity. (b)Mode
in real space.

FIG. 9 (color online). A series of photographs of laser emission
from the droplet stream within the first few millimeters of the
vibrating orifice. (Left) The upper portion of the stream showing
the periodically perturbed, continuously connected liquid cylin-
der and the development of separate, highly distorted droplets.
(Right) The lower portion of the stream, showing the transition
from oscillating prolate-to-oblate spheroids to a stream of
monodisperse, equally spaced spherical droplets. From Qian
et al., 1986.
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below the vibrating orifice is a periodically perturbed, con-
tinuously connected liquid cylinder, which develops to sep-
arate highly distorted droplets that oscillate between prolate
spheroids and oblate spheroids. Farther away, the stream
transits to monodisperse, equally spaced spherical droplets.
The radii of the droplets, which depend on the size of the
orifice aperture, are typically a few tens of microns. Instead of
flying in air, the droplets may also be suspended in liquids or
placed on solid substrates (He, Özdemir, and Yang, 2013).
The total internal reflection of light at the liquid-air inter-

face leads to the formation of WGMs in the droplet. Despite a
low refractive index contrast (commonly used liquids have
refractive index between 1.3 and 1.4), the droplet has a very
smooth surface, which minimizes the scattering loss. Light
emitting or amplifying materials can be easily incorporated
into the liquid droplets, e.g., by adding dye molecules or
quantum dots to a solution before creating droplets. Lasing
was realized in dye-doped liquid droplets with optical exci-
tation of dye molecules (Tzeng et al., 1984). Microsized liquid
droplets were also used for cavity enhanced spectroscopy
(Symes, Sayer, and Reid, 2004). Liquid microjet can create a
continuous and stationary column of liquid with a precise
control of the hydrodynamics of the jet [see Fig. 1(b)]. Light
propagating perpendicular to the axis of the column may be
trapped in one cross section by total internal reflection at the
liquid-air interface. Thus the microjet was used in the study of
2D microcavities (Moon et al., 1997). Moreover, the cavity
size and shape can be varied continuously along the stream.
By deforming the orifice aperture (Yang et al., 2006) or
applying a lateral gas flow (Moon et al., 1997), the cross
section of the microjet column is distorted from the circle.
The exact surface profile may be deduced from the optical
diffraction pattern (Moon et al., 2008). The typical dimension
of the cross section is a few tens of microns, and the surface
roughness induced scattering is as weak as that in the droplets.

2. Solid microspheres and microtoroids

Solid microspheres have been produced from a large variety
of materials, organic and inorganic, amorphous and crystal-
line. The widely used amorphous microspheres are fabricated
with two techniques based on a melting process and sol-gel
chemistry. A detailed description of these techniques is given
in the reviews of Chiasera et al. (2010) and Righini et al.
(2011). As an example, we next describe a common and
effective method of making a glass microsphere by melting
the end of a glass fiber. The heating source can be an oxygen-
butane torch, a high-power CO2 laser, or an electric arc as in a
commercial fiber splicer. Upon heating the distal tip of a silica
fiber, the glass reflows to form a spherical volume under the
influence of surface tension. Because of high viscosity of
silica, the reflowed structure becomes extremely uniform and
highly spherical (eccentricities < 3%). The sphere diameter
varies from 10 to 100 μm, depending on the original diameter
of the fiber tip. Smaller spheres are produced by first tapering
the fiber to reduce the diameter of the tip. The silica micro-
sphere remains attached to the fiber stem from which it was
formed, making it easy to handle [Fig. 10(a)]. Typically one
excites the WGMs that lie in the equatorial plane and have
very small overlap with the stem; thus the effect of the stem on

the WGMs is negligible. The surface roughness is extremely
low, on the order of 1 nm; thus high quality factors can be
reached for the WGMs.
Asymmetric microspheres [Fig. 1(c)] have also been

fabricated by fusing two silica spheres together with a CO2

laser beam (Lacey and Wang, 2001). Alternatively, a single
spherical microsphere can be deformed by reheating with one
or two laser beams incident on different sides (Xiao et al.,
2007, 2009). Microbottle resonators were made from optical
fibers in a two-step heat-and-pull process by sequentially
tapering the fiber in two adjacent locations to form the bottle
(Poellinger et al., 2009). To facilitate sensing applications,
liquid core resonators were fabricated by blowing a silica
microbubble (Sumetsky, Dulashko, and Windeler, 2010).
The process is similar to the traditional glass blowing, a
gas pressure is applied while a glass capillary is heated.
To achieve on-chip integration, silica microtoroid cavities

were fabricated on silicon wafers (Armani et al., 2003). First,
silica microdisks are made by photolithography and dry
etching. Then the underneath silicon is selectively etched to
form a post that supports the silica disk. Finally, a CO2 laser
beam irradiates a silica disk to melt the silica along the rim, and
a toroidlike structure is formed by surface tension [Fig. 10(b)].
The reflow of silica produces a nearly atomic-scale surface
finish, greatly enhancing the Q factor. The dimension of the
toroid is determined by that of the initial disk and the reflow
process. The toroid diameter is typically between 20 and
100 μm, and the toroid thickness is a few microns.
To make microspheres and microtoroids optically active,

various approaches have been developed, such as fabricating
the resonators from materials doped with active media, coat-
ing the resonators with light emitters, doping the resonators
with gain material by ion implantation, etc. More detail about
these approaches can be found in the review by He, Özdemir,
and Yang (2013).
Single crystals have also been used to make spherical and

toroidal cavities, and they are expected to have less loss
and stronger nonlinear response than amorphous materials

FIG. 10. (a) Scanning electron micrograph (SEM) of a silica
microsphere at the end of the preform wire. Its diameter is
70 μm. No surface defect was observed on a 30 nm scale. From
Collot et al., 1993. (b) SEM of a silica microtoroid. From Armani
et al., 2003.

Hui Cao and Jan Wiersig: Dielectric microcavities: Model systems for … 69

Rev. Mod. Phys., Vol. 87, No. 1, January–March 2015



(Ilchenko and Matsko, 2006). The fabrication of crystalline
spheres and toroids involves mechanical cutting, drilling, and
polishing. The typical diameter exceeds 1 mm. It is extremely
difficult, if not impossible, to make microscale resonators with
crystalline materials.

3. Microdisks and micropillars

Well-developed microfabrication and nanofabrication tech-
nologies, such as photolithography, electron-beam lithogra-
phy, chemical and physical etching, have been adopted to
make microdisk and microcylinder resonators, allowing a
precise control of the cavity shape and size. The commonly
used materials are semiconductor and polymer. The latter
can be either a passive polymer doped or coated with
active material, e.g., dye-doped poly(methyl methacrylate)
(PMMA), or an active polymer such as poly(para-phenylene
vinylene) (PPV) or poly(para-phenylene) (PPP). The polymer
is first dissolved in a solvent and then spin coated on a glass
substrate. The layer thickness is a few hundred nanometers to
1 μm, depending on the spin speed and the concentration of
the solution. To guide light in the polymer layer, its refractive
index must be higher than that of the substrate. In the case the
substrate has a large refractive index, a low-index material is
deposited on the substrate first and then the polymer is spin
coated on top of it (Chern et al., 2004; Lebental et al., 2006).
The disk patterns are written on a resist layer covering the
polymer by photolithography or e-beam lithography and then
transferred to the polymer layer via wet or dry etching.
Alternatively, microdisks may be made by direct photolithog-
raphy or e-beam lithography with polymers or monomers that
are active to UV light or electron beam (Fang and Cao, 2007;
Djellali et al., 2009). An additional bake may follow to reflow
the polymer and smooth the disk edges. Figure 11(a) shows a
dichloromethane (DCM)-doped PMMA disk of spiral shape.
Semiconductor microdisks and microcylinders have been

made with GaAs/AlGaAs, InP/InGaAsP, Si, and GaN/InGaN.
They are single crystals grown by molecular beam epitaxy
(MBE) or metal-organic chemical vapor deposition
(MOCVD). The semiconductor disks have large refractive
index contrast with the surrounding air, leading to strong light
confinement even in small disks. It enables lasing in disks that
are merely a few microns or even submicrons in diameter
(Zhang, Yang, Liu et al., 2007; Song, Cao et al., 2009). The
disk thickness is typically a few hundred nanometers. Gain
materials such as quantum wells (McCall et al., 1992),
quantum dots (Cao et al., 2000), or nanocrystals (Liu et al.,
2004) are embedded in the disk layer or deposited on top of the
disk. To isolate a disk from the high-index substrate, selective
etching of the substrate forms a pedestal underneath the disk
(Liu et al., 2004). If this is not possible, e.g., the substrate is
made of the same material as the disk, another semiconductor
layer is grown between the disk and the substrate, and it is
selectively etched to form a pedestal (McCall et al., 1992), as
shown in Fig. 11(b). The WGMs that are located near the edge
of a disk are barely affected by the presence of the pedestal.
Alternatively, a lower index semiconductor layer is sandwiched
between the higher index disk layer and the substrate, enabling
index guiding of light in the disk layer (Gmachl et al., 1998;
Fukushima and Harayama, 2004).

In addition to the planar cavities, vertical cavities can be
formed by stacking two Bragg mirrors. Standard lithography
and etching have been used to make micropillars that are a few
microns in height. Quantum wells or dots are embedded in the
cavity. Figure 11(d) shows a micropillar with the limaçon-
shaped cross section (Albert et al., 2012). Since the spacing of
the two Bragg mirrors is on the order of one wavelength, only
one longitudinal mode of the cavity falls in the emission
spectra. However, if the cross section of the cavity is large (a
few tens of microns in diameter), multiple transverse modes
exist, and they may produce complex field patterns (Huang
et al., 2002; Gensty et al., 2005).
One advantage of the semiconductor microdisk or micro-

cylinder lasers is that they can be pumped electrically with
current injection [Fig. 11(c)], while previously discussed
microcavities are optically pumped by another laser.
However, their sidewall roughness, which is created during
the fabrication process, is much larger than that of the surface-
tension-formed microcavities. Since the melting temperature
of GaAs/AlGaAs, InP/InGaAsP, or GaN/InGaN is very high,
at which the quantum wells or quantum dots would be
damaged, one cannot reflow the semiconductor to remove
the sidewall roughness. Light scattering due to sidewall
roughness reduces the quality factor, making the lasing
threshold higher. One way of reducing the scattering loss is
to make the sidewall wedge shaped to push the optical modes
away from the rough lithographic edge (Kippenberg et al.,
2006). Another solution is to replace the sidewall with the
atomic-flat facets. This can be done with the bottom-up
approach, e.g., which makes crystalline microdisks or micro-
needles (Zhu et al., 2009; Gargas et al., 2010). The cross

FIG. 11. (a) Optical microscope image of a spiral microcavity
made of a DCM-doped polysmethylmethacrylated film. From
Ben-Messaoud and Zyss, 2005. (b) Side view SEM of a InGaAsP
microdisk on top of an InP pedestal. The disk diameter is 3 μm.
From McCall et al., 1992. (c) SEM of a GaAs/AlGaAs micro-
stadium laser with a metal electrode on the top for current
injection. From Fukushima and Harayama, 2004. (d) SEM of a
limaçon-shaped micropillar with a vertical cavity formed by two
Bragg mirrors. Image courtesy of S. Reitzenstein, TU Berlin.
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sections of these cavities are polygons, so light may diffract
from the sharp corners (Wiersig, 2003b).

E. Optical characterization

In this section, we describe the experimental techniques
used to probe the microcavity resonances, e.g., their frequen-
cies, quality factors, intracavity intensity distributions, and
far-field patterns. The characterization has been done on both
passive cavities and active cavities that contain light emitting
or amplifying media.

1. Passive cavities

To probe the resonances of a passive cavity, light must be
efficiently coupled into the cavity. Several schemes have been
developed. In terms of free-space coupling, a tightly focused
Gaussian light beam passing outside but near a spherical
cavity preferentially excites specific WGMs, depending on
its distance from the cavity center (Lin et al., 1998). For a
deformed cavity, the modes with directional output can be
efficiently excited by external beams in reversed directions. In
addition to free-space coupling, cavity resonances may be
excited with evanescent field couplers such as prisms, wave-
guides, or tapered fibers. Typically, the input light is swept in
frequency and a dip in the transmission spectrum gives the
resonance frequency. The spectral width of the dip reflects the
quality factor of the resonance. By varying the coupling
position and/or direction, the intracavity mode profile may be
inferred or confirmed (Gao et al., 2007).

2. Active cavities

With light emitters embedded inside the microcavity or
coated on its surface, the cavity resonances, especially the
ones with high quality factors, appear as peaks in the
spontaneous emission spectrum. The position and width of
each peak tell the frequency and quality factor of the
corresponding resonance. At a high pump level, stimulated
emission and lasing oscillation may occur.
Pumping can be either electrical or optical. The optical

pumping is usually nonresonant, i.e., the frequency of the
pump light differs from that of the emission. Thus the pump
light and emitted light couple to different cavity modes. The
pump beam may be incident onto the cavity from free space
or coupled evanescently. To enhance the pump efficiency, ray
and wave chaos were used to trap the pump light inside
deformed microcavities (Lee et al., 2007a).
A broadband emission will couple to multiple cavity

modes. The emission is collected either in free space or via
an evanescent field coupler. Near-field imaging of light
scattered at the cavity boundary reveals the locations where
most emission escapes from the cavity. The directions of the
emission can be measured by placing a photodetector in the
far-field zone and moving it around the cavity. A bandpass
filter may be used to select one particular mode. To measure
the spectra of emission into different directions, the detector is
replaced by a fiber or fiber bundle connected to a spectrom-
eter. The angle-resolved emission spectra give the far-field
patterns of individual modes that appear in the spectra.
Alternatively, a large ring may be fabricated around a

microdisk, and the in-plane emission from the disk reaches
the ring and is scattered vertically. By imaging the intensity
of scattered light along the ring from above the sample, one
may infer the output directions (Song, Fang et al., 2009). A
simultaneous measurement of the emission direction and
location on the cavity boundary is possible by imaging the
intensity profile from the sidewall of a micropillar as viewed
from different angles (Schwefel et al., 2004).
Finally we briefly discuss the microwave dielectric cavities.

Most optical processes in passive microcavities can be studied
in microwave cavities with higher precision (Richter, 1999;
Schäfer, Kuhl, and Stöckmann, 2006; Bittner et al., 2009;
Kuhl, Schäfer, and Stöckmann, 2011). The much longer
wavelength makes the microwave cavity much larger [see
Fig. 1(d)] and thus much easier to fabricate. Moreover, both
the amplitude and phase of the electromagnetic field can be
readily measured at the microwave frequency by using
antennas, which are difficult to realize in optics.

III. OVERVIEW OF NONDEFORMED DIELECTRIC
MICROCAVITIES

This section briefly reviews the properties of nondeformed
WGM cavities.

A. Whispering-gallery modes

For a circular microdisk with refractive index n and radius
R the solution of the mode equation (8) with outgoing wave
condition (11) and with the requirement for a finite wave
function inside the cavity is

ψðr;φÞ ¼
� amJmðnkrÞeimφ if r ≤ R;

bmH
ð1Þ
m ðkrÞeimφ otherwise;

ð17Þ

where m ∈ Z is the azimuthal mode number, Jm and Hð1Þ
m are

the mth order Bessel function and first-kind Hankel function.
The boundary conditions (9) and (10) lead to the “quantization
condition”

SmðkRÞ ¼ 0 ð18Þ

with

SmðkrÞ ¼
n
μ

J0mðnkrÞ
JmðnkrÞ

−
Hð1Þ0

m ðkrÞ
Hð1Þ

m ðkrÞ
; ð19Þ

where μ ¼ 1 ð¼ n2Þ for TM (TE) polarization, and the
0 denotes the first derivative with respect to the argument.
For given m Eq. (18) is to be solved numerically for the
discrete values of k ¼ kml ∈ C labeled by the radial mode
number l ∈ N.
Modes with azimuthal mode number m ≠ 0 are twofold

degenerate. The mode with m > 0 (m < 0) is a counterclock-
wise (clockwise) traveling wave in the azimuthal direction.
Linear superpositions of these two modes are also modes of
the cavity. A particular superposition is standing waves in the
azimuthal direction with sinmφ and cosmφ dependence with
m restricted to positive integers.
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Figure 12 shows exemplarily two standing-wave modes in
the circular microdisk. Modes with small radial mode number
l are called whispering-gallery modes. Beside the internal
modes (Feshbach resonances) shown in Fig. 12 there are also
external modes (shape resonances, above-barrier resonances)
with a much lower Q factor which are located mostly outside
the cavity (Nöckel, 1997; Bogomolny, Dubertrand, and
Schmit, 2008; Dubertrand et al., 2008; Dettmann et al.,
2009a). Only the internal modes become bound states in
the small opening limit n → ∞.
A straightforward calculation based on the stationary

phase approximation shows that the Husimi function (14)
of a mode in a circular microdisk (17) is strongly localized
around

sin χ ¼ m
nkR

; ð20Þ

where kR is here understood as the real part of kR. This
relation between ray and wave properties of the dielectric
disk was first derived by Nöckel and Stone (1995) using the
eikonal approximation.
For microspheres analytical solutions of the mode equation

are available in terms of vectorial spherical harmonics; see,
e.g., the review of Chiasera et al. (2010) on spherical WGM
microresonators.

B. Optical losses and quality factors

In the ideal situation the quality factor (1) of an optical
mode is determined solely by its radiation losses through the
curved boundary of the cavity, Q ¼ Qrad. Asymptotic for-
mulas for these losses are given by McCall et al. (1992),
Nöckel (1997), Apalkov and Raikh (2004), and Dubertrand
et al. (2008) for microdisks and by Chiasera et al. (2010) for
microspheres. In practice, however, also absorption and
Rayleigh scattering in the bulk material as well as scattering
upon rough surfaces or contaminants contribute to the decay
of light. According to Slusher et al. (1993) the total quality
factor can be written as

1

Qtotal
¼ 1

Qrad
þ 1

Qmat
þ 1

Qsurf
: ð21Þ

The quantity Qmat is related to the material absorption
coefficient α by

Qmat ¼
2πn
λα

; ð22Þ

where the dispersion of the refractive index n is ignored; λ is
the vacuum wavelength. The coefficient α can also describe
Rayleigh scattering in the bulk material which, however,
can be significantly altered by the modified optical density
of states in the presence of the microcavity (Gorodetsky,
Pryamikov, and Ilchenko, 2000). These internal losses in
the material can be alternatively taken into account by the
mode equation using a complex-valued refractive index
~n ¼ nþ iλα=4π. Also the surface roughness Qsurf can be
directly modeled by the mode equation provided that fluctua-
tions in the boundary function ρ ¼ ρðφÞ are taken explicitly
into account; see, e.g., Rahachou and Zozoulenko (2003).
The maximal total Q factor achievable in microcavities

depends on the size and refractive index (determining the
radiation losses) and the quality of the material (determining
the internal losses and surface scattering). For semiconductor
microdisks the highest Q factors can be achieved for “large”
silicon cavities. Here theQ ranges from 3 × 106 to 6 × 107with
disk radius of 20 − 60 μm (Borselli, Johnson, and Painter,
2005; Kippenberg et al., 2006; Soltani, Yegnanarayanan, and
Adibi, 2007). For AlGaAs disks with much smaller radius
2.25 μm the quality factor is lower but can be still high Q ≈
3.5 × 105 (Srinivasan et al., 2005). For a GaAs disk with a
small radius 361 nm the quality factor is still around 4000
(Song, Cao et al., 2009). For AlN/AlGaN microdisks of radii
2 − 5 μm the quality factor ranges from 5000 to 7300 (Mexis
et al., 2011). For polymer-based microdisks a quality factor
around 6000 has been reported (Lozenko et al., 2012).
The Q factors in microspheres are usually larger. For silica

microspheres the record Q is around 8 × 109 (Gorodetsky,
Savchenkov, and Ilchenko, 1996). For spherical droplets made
of rhodamine 6 G in water solution a quality factor of about
108 has been measured (Lin, 1992). In microtoroid cavities the
quality factors can be also very high, e.g., 108 for a toroid
made of silica (Armani et al., 2003).
Optical gain may be introduced to microcavities to com-

pensate the optical losses mentioned earlier. Coherent ampli-
fication of light via stimulated emission effectively increases
the photon lifetime and reduces the mode linewidth. When
optical amplification fully compensates the total loss, self-
sustained oscillation occurs in the cavity, which corresponds
to the onset of lasing action.

C. Lasing in whispering-gallery cavities

Because of the high quality factors and the small mode
volumes, WGM microcavities are excellent resonators for low
threshold and narrow linewidth lasers. This section briefly
reviews the pioneering works on WGM microlasers. More
details can be found in a recent review on this topic by He,
Özdemir, and Yang (2013).
Lasing in whispering-gallery cavities was first observed in

spheres with diameter between 1 and 2 mm made of CaF2
doped with Smþ2 (Garrett, Kaiser, and Bond, 1961). Later,
stimulated emission in liquid ethanol droplets containing

FIG. 12 (color online). Numerically computed standing-wave
modes in a dielectric microdisk; n ¼ 3.3 (GaAs), TM polariza-
tion. (a) Radial mode number l ¼ 1 and azimuthal mode number
m ¼ 19, scaled frequency Ω¼kR¼7.02783− i2.99188×10−13;
(b) l ¼ 3, m ¼ 12, and Ω ¼ 7.0175 − i6.29188 × 10−5.
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rhodamine 6 G dye as active medium was observed by
Tzeng et al. (1984). Sandoghdar et al. (1996) reported on
the realization of a WGM laser based on neodymium-doped
silica microspheres. A Raman laser with ultralow threshold
based on a microsphere was fabricated by Spillane,
Kippenberg, and Vahala (2002).
Lasing in microdisks was first observed in semiconductor

disks made of InP/InGaAsP with InGaAs quantum wells as
active medium (McCall et al., 1992). Stimulated emission
frommicrodisks with InAs quantum dots as active medium has
been reported by Cao et al. (2000). Liu et al. (2004) fabricated
ultraviolet microdisk lasers on silicon substrates. The first
room-temperature continuous-wave lasing in GaN/InGaN
microdisks was observed by Tamboli et al. (2007). Lasing
in submicron disks was achieved by Zhang, Yang, Hong et al.
(2007), Shainline et al. (2009), and Song, Cao et al., 2009. The
first quantum cascade microdisk laser was demonstrated by
Faist et al. (1996). Kuwata-Gonokami et al. (1995) achieved
laser emission from polymer microdisk lasers.
Microlasers based on microtoroids covered by erbium-

doped sol-gel films was fabricated by Yang, Armani, and
Vahala (2003). WGM lasing in electrically driven quantum-
dot micropillars was achieved by Albert et al. (2010).

D. Evanescent field coupling

To couple light into and out of a WGM, an evanescent field
coupler is often used. It provides efficient energy transfer
through the evanescent field of a guided wave in a fiber or
channel waveguide or the evanescent wave produced by total
internal reflection of light at the surface of a dielectric prism or
side-polished fiber (Matsko and Ilchenko, 2006; Chiasera
et al., 2010).
We consider a waveguide or fiber positioned parallel to the

boundary of a microdisk or microsphere. To couple light from
the waveguide to a WGM in the cavity requires the phase
synchronism, i.e., the tangential component of the wave vector
of the guided wave matches that of the WGM. This can be
achieved by adjusting the waveguide width or orientation.
Complete energy exchange between the waveguide and the
resonator is possible when the coupling strength matches the
intrinsic loss of the resonator (Yariv, 2000). This is called
critical coupling, a notion that was developed earlier in radio
frequency (rf) engineering. By changing the distance from the
waveguide to the cavity, the coupling strength is varied and
the critical coupling may be reached for the lowest-order mode
of the waveguide (Cai, Painter, and Vahala, 2000). Parasitic
coupling to higher-order waveguide modes and radiation
modes is quantified by the “ideality”—the ratio of power
coupled to a desired mode by power coupled or lost to all
modes. An ideality of 99.97% was shown with the coupling of
a tapered fiber to a silica microsphere (Spillane et al., 2003).
Next we discuss the prism coupler by considering a

microsphere placed on the surface of a dielectric prism
(Gorodetsky and Ilchenko, 1994). A laser beam is directed
into the prism and undergoes total internal reflection at the
prism surface. The resulting evanescent optical field at the
prism surface may be coupled to a WGM of the microsphere.
The phase matching is obtained by adjusting the incident
angle of the input light.

The evanescent field coupler has also been used as the
output coupler for the WGMs. A detailed analysis of the
coupling can be found in Gorodetsky and Ilchenko (1999)
and Chiasera et al. (2010).

IV. SMOOTH DEFORMATION

In this section we discuss the properties of smoothly
deformed microdisk cavities. The degree of deformation is
classified here in terms of the chaoticity of the internal ray
dynamics. To illustrate this concept, we consider a specific
boundary curve, the limaçon of Pascal which reads in polar
coordinates ðr;φÞ

rðφÞ ¼ Rð1þ ε cosφÞ: ð23Þ

The limiting case of vanishing deformation parameter ε is the
circle with radius R. An experimental realization is shown in
Fig. 11(d).
For ε < 0.5 the limaçon shape is a smooth convex defor-

mation of the circle. The ray dynamics in billiards with such a
boundary obey the Kolmogorov-Arnol’d-Moser (KAM) theo-
rem (Kolmogorov, 1954;Moser, 1962; Arnol’d, 1963). It states
that for a sufficiently smooth perturbation of an integrable
system some of the invariant tori survive, while others are
destroyed giving rise to partially chaotic dynamics. Figure 13
illustrates this so-called KAM transition to chaos for the
limaçon billiard by varying the deformation parameter ε from
small to large values. For a small but nonzero value of εmost of
the invariant curves survive with their shape sightly distorted.
The others are replaced by chains of stable and unstable
periodic orbits as dictated by the Poincaré-Birkhoff theorem
(Lichtenberg and Lieberman, 1992; Ott, 1993). The stable
periodic orbits are surrounded by new invariant curves which
form small islands; see Fig. 13(a). The unstable periodic orbits
are located in small chaotic layers not visible in Fig. 13(a). A
boundary deformation which leads to such a nearly integrable
ray dynamics is here classified as weak deformation.
Increasing the deformation parameter leads to the disap-

pearance of more invariant curves and to an increase of the
chaotic layers; cf. Fig. 13(b). The remaining invariant curves
prevent rays from exploring the whole SOS. These curves act
as barriers for the ray dynamics and divide the phase space
into disjoint regions. This situation of a mixed phase space is
classified here as moderate deformation. Note that as long
as the billiard boundary is convex and sufficiently smooth,
there is always an infinite family of invariant curves in the
whispering-gallery region j sin χj ≈ 1. This fact is implied by
Lazutkin’s theorem (Lazutkin, 1973).
For large deformation these invariant curves and most of

the others have been broken up and therefore the dynamics is
predominately chaotic as shown in Fig. 13(c). A ray starting in
the region well above the critical line can diffuse to the leaky
region.

A. Weak deformation: Nearly integrable ray dynamics

Considering the ray dynamics in smoothly deformed
microcavities, it seems that the case of weak deformation is
not interesting. A ray starting well above the critical line for
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total internal reflection jpj ¼ j sin χj > 1=n [see the invariant
curve in the upper part of Fig. 13(a)] is not able to enter the
leaky region and therefore no light is emitted. However, this
reasoning is not the full picture for several reasons to be
discussed in this section.
For systems with more than 2 degrees of freedom, e.g.,

deformed microspheres, the KAM invariant curves no longer
divide the phase space into disjoint regions, leading to the
possibility of diffusion over large distances in phase space.
This phenomenon is called Arnol’d diffusion (Arnol’d, 1964).
Lacey and Wang (2001) attempted to explain directional
emission from deformed fused-silica microspheres by
Arnold diffusion [Fig. 1(c)].

In the absence of Arnol’d diffusion the light output of a
weakly deformed cavity is dominated by evanescent leakage
(tunneling) of waves. It came as a surprise to observe
experimentally directed emission even in this situation
(Lacey et al., 2003). This sensitivity to small shape deforma-
tions had been explained by preferential tunneling from the
local minima of the invariant curves jpðsÞj. Later, however,
Creagh (2007) provided a toy model which clearly demon-
strated that the distinctness of the local minima of the invariant
curves is not correlated with the degree of directionality of light
emission. Based on this observation, Creagh and White (2010,
2012) introduced a more sophisticated explanation using
the complex Wentzel-Kramers-Brillouin (WKB) approxima-
tion and canonical perturbation theory for weakly deformed
microcavities.
The sensitivity of the emission directionality to weak

boundary deformations can be further enhanced by a strong
mixing of nearly degenerate modes induced by the deforma-
tion (Ge, Song, Redding, Eberspächer et al., 2013; Ge, Song,
Redding, and Cao, 2013).

B. Moderate deformation: Mixed phase space

1. Adiabatic curves and dynamical eclipsing

In the case of moderate deformation a considerable amount
of rays is still confined by invariant curves; see the upper
part of Fig. 13(b). A ray starting in a sufficiently large chaotic
part of phase space, however, can diffuse toward the leaky
region and escape refractively; see around sin χ ≈ 0.5 in
Fig. 13(b). For moderate deformation the phase-space dif-
fusion can be rather slow, so that the reduction of the Q factor
of the corresponding optical mode (Q spoiling) is not serious
(Nöckel, Stone, and Chang, 1994; Mekis et al., 1995).
Another consequence of the slow diffusion in sin χ is that
refractive escape typically occurs near the border of the leaky
region, i.e., at the critical angle for total internal reflection χc,
implying that the ray is emitted almost tangentially to the
boundary of the cavity.
Later Nöckel et al. (1996) and Nöckel and Stone (1997)

showed that a ray in the diffusive part of phase space of a
moderately deformed cavity follows for some time the
adiabatic curve (see Fig. 14)

sin χðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ακðsÞ2=3

q
; ð24Þ

with α being an adiabatic constant and κðsÞ being the
curvature of the boundary curve at position s.
Equation (24) is based on an adiabatic approximation intro-
duced by Robnik and Berry (1985) for billiards in magnetic
fields. For longer times the chaotic whispering-gallery ray
diffuses to the leaky region by going through a continuous
sequence of adiabatic curves (24) with slowly increasing α.
When the adiabatic curve touches the critical angle χc the ray
can escape tangentially. From Eq. (24) it can be seen that
the mimina of the adiabatic curves occur at the points of
maximum curvature. This is consistent with the intuitive
expectation that the escape of light happens primarily near
the points of maximum curvature. The localization in the
spatial coordinate (at the maximum of the curvature) and in

FIG. 13 (color online). Kolmogorov-Arnol’d-Moser transition
to chaos in the limaçon cavity (23). The left-hand side shows
the Poincaré surface of section for parameter (a) ε ¼ 0.1,
(b) ε ¼ 0.3, and (c) ε ¼ 0.43. The shaded region indicates the
leaky region for n ¼ 3.3. The right-hand side shows the marked
trajectories in real space.
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the angle (light is emitted tangentially) results in strong
emission maxima in the far field in directions tangent to
the highest-curvature points (Nöckel et al., 1996; Nöckel and
Stone, 1997).
Moreover, using the adiabatic curves allows one to derive

an approximate quantization of the system via the semi-
classical Einstein-Brillouin-Keller (EBK) quantization
scheme (Nöckel et al., 1996; Nöckel, 1997; Nöckel and
Stone, 1997). In this way a correspondence is made between a
set of optical modes and a set of initial conditions for the rays
in phase space. This correspondence is needed to set up a ray
model to describe quantitatively the properties of optical
modes, as mentioned in Sec. II.
The prediction based on Eq. (24) concerning the tangential

emission from the highest-curvature points fails if regular
islands are located at the critical angle right at the highest-
curvature points; cf. Fig. 14 for the low refractive index
n ¼ 1.54. As the rays cannot enter the regular islands, they do
not escape at the maximum of the curvature but mainly at two
points separated by roughly the size of the islands. This effect
is called dynamical eclipsing (Nöckel et al., 1996). It leads to
a splitting of the emission peaks in the far field. The first
experimental demonstration of dynamical eclipsing of chaotic
WGMs has been done for prolate-deformed lasing micro-
droplets (Chang et al., 2000), see Fig. 9. Later, dynamical
eclipsing was also observed in moderately deformed cylin-
drical polymer lasers (Schwefel et al., 2004).

2. Gaussian modes based on stable periodic orbits

In moderately deformed microcavities there exist not only
chaotic WGMs but also other types of long-lived modes
depending on boundary shape and refractive index. A par-
ticular important example is the bow tie mode (see Fig. 15),
first observed by Gmachl et al. (1998) in the flattened
quadrupole

rðφÞ ¼ R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ε cos 2φ

p
: ð25Þ

In phase space the bow tie mode is localized inside a regular
island centered around a stable periodic ray with the shape of a
bow tie. The periodic ray is born in a period-doubling

bifurcation as the deformation parameter ε is increased
through the critical value of about 0.1. For sufficiently high
refractive index, n ≈ 3.3, and ε ≈ 0.15 the regular island is
located right on the border of the leaky region which results in
directed emission based on refractive escape (in mainly four
directions; cf. Fig. 15) and moderate Q factors. Gmachl et al.
(1998) demonstrated high-power directional emission from
such a bow tie mode in a semiconductor quantum cascade
microlaser [Fig. 1(a)] with R ¼ 30 − 50 μm at a wavelength
of around 5.2 μm. This experiment can be considered as a
milestone as it allowed for the first time to systematically vary
the shape of a microdisk cavity in a controlled manner.
Optical modes based on regular islands in phase space can

be analytically described in a generalized Gaussian optical
approach based on the parabolic equation approximation
(Tureci et al., 2002).

3. Dynamical tunneling

Dynamical tunneling is a wave phenomenon which couples
two distinct regions of ray-dynamical phase space (Davis
and Heller, 1981); see also Bäcker, Ketzmerick, Löck, and
Schilling (2008) and Löck et al. (2010). An example is the
tunneling from a regular to the chaotic region in the phase
space of the mushroom billiard (see Fig. 4), as studied
theoretically and experimentally in a microwave mushroom
billiard by Bäcker, Ketzmerick, Löck, Robnik et al. (2008).
Tunneling between regular islands that are separated by a

chaotic sea can be enhanced by the presence of the chaotic
part of phase space (Tomsovic and Ullmo, 1994; Doron
and Frischat, 1995; Podolskiy and Narimanov, 2003). This
chaos-assisted tunneling can be considered as a three-step
process: (i) dynamical tunneling from the initial island into the
chaotic sea, (ii) (classical) ray propagation through the chaotic
sea to the border of the other island, and (iii) dynamical
tunneling into the island. Chaos-assisted tunneling was first
experimentally observed in a microwave billiard (Dembowski
et al., 2000).
In open systems such as dielectric microcavities, however,

chaos-assisted tunneling may also appear as a two-step
process (Nöckel and Stone, 1997): (i) dynamical tunneling

FIG. 14. Four chaotic whispering-gallery rays in the phase
space of the quadrupole billiard (12) for ε ¼ 0.072 followed
for 100–200 reflections. Superimposed are the adiabatic curves
(24) for different values of α. The thick lines mark the border
of the leaky region for two different refractive indices n. From
Nöckel et al., 1996.

FIG. 15 (color online). Calculated bow tie mode localized on a
stable periodic orbit in a flattened quadrupole (25) with TM
polarization, refractive index n ¼ 3.3, and deformation parameter
ε ¼ 0.15. Inset: Measured far-field pattern for ε ¼ 0 (triangles),
ε ¼ 0.14 (open circles), and ε ¼ 0.16 (filled circles) compared to
calculated data for ε ¼ 0.15 (dashed line). Adapted from Gmachl
et al., 1998.
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from the initial island into the chaotic sea and (ii) ray
propagation through the chaotic sea into the leaky region
where the ray escapes from the cavity. Effects of this two-step
chaos-assisted tunneling have often been discussed for the
annular microcavity where outside the leaky region a clear
separation of two regular whispering-gallery regions and a
chaotic region can be observed; see Fig. 8(a). While rays in
these whispering-gallery regions stay in the cavity forever, the
rays in the chaotic region can diffuse to the leaky region and
leave the cavity. Hackenbroich and Nöckel (1997) showed that
modes in this kind of cavity can show strong fluctuations of
the quality factor due to dynamical tunneling between the
different phase-space regions; for a general theory of this
effect, see Podolskiy and Narimanov (2005). Moreover,
dynamical tunneling in this cavity can be utilized to achieve
unidirectional light emission from high Q modes (Wiersig
and Hentschel, 2006). For the annular cavity, the quantitative
connection of the quality factors to the dynamical tunneling
was established by Bäcker et al. (2009). Based on the concept
of the fictitious integrable system (Bäcker, Ketzmerick, Löck,
and Schilling, 2008), analytical expressions for the tunneling
rates from the regular whispering-gallery region to the chaotic
sea [see SOS for the annular cavity in Fig. 8(a)] can be
derived. If rays in the chaotic region leave the cavity quickly,
the dynamical tunneling rates approximate the cavity losses
and therefore allow one to compute the Q factors. The
approximation can be improved by including the rates for
direct tunneling along the radial degree of freedom to the
exterior of the cavity; see Fig. 16.
Shinohara et al. (2010, 2011) were the first to provide clear

experimental evidence for dynamical tunneling in optical
microcavities. They used a cavity whose ray-dynamical phase
space consists of a dominant chaotic region and an island
chain, supporting a rectangular-shaped ray orbit fully confined
by total internal reflection. Light emission from the corre-
sponding optical mode happens via dynamical tunneling
from the island chain to the chaotic sea. In such a situation,
measuring the near and far fields of the light emission

unambiguously proves the mechanism of dynamical tunneling
(Podolskiy and Narimanov, 2005).
Another clear experimental demonstration of dynamical

tunneling in optical microcavities has been achieved by free-
space excitation of a liquid-jet cavity [Fig. 1(b)] (Yang et al.,
2010). Here the light couples from outside to the chaotic sea
inside the cavity and from there the light tunnels into regular
islands which supports high Q modes for lasing. This scheme
is of practical use as the pump efficiency of this microcavity
laser is increased by 2 orders of magnitude. The same scheme
has been used to demonstrate experimentally tunneling-
induced transparency in a chaotic microcavity similar to the
case of electromagnetically induced transparency (Xiao
et al., 2013).
Chaos-assisted tunneling as a three-step process has been

discussed to determine the frequency splitting of nearly
degenerate bow tie modes (Fig. 15) in the quadrupole cavity
(Tureci et al., 2002; Podolskiy and Narimanov, 2003).
Another variant of dynamical tunneling is resonance-

assisted tunneling (Ozorio de Almeida, 1984; Brodier,
Schlagheck, and Ullmo, 2001; Löck et al., 2010). Here island
structures in phase space (also called nonlinear resonances)
can enhance dynamical tunneling rates. Kwak et al. (2013)
demonstrated resonance-assisted tunneling in a liquid-jet
microcavity [Fig. 1(b)] by measuring avoided resonance
spectral gaps which are proportional to the square of the
phase-space area associated with the given island chain.
Chaos-assisted tunneling can be exploited for channeling

rays into waveguides for efficient collection of light emission
from microcavity lasers (Song et al., 2012). Figure 17 shows
that an attached waveguide introduces a vertical exit window
in the phase space of the microcavity. This exit window
seriously spoils the quality factor of (chaotic) WGMs but only
mildly influences the quality factor of the modes related to the
island chain around the diamond-shaped period-4 orbit. In a
laser based on this waveguide-cavity system these modes
reach the lasing threshold first. Their emission is efficiently
collected by the waveguide because emission is due to
dynamical tunneling from the island chain into the chaotic
sea from which most chaotic rays diffuse laterally to the exit
window as illustrated in Fig. 17 instead of vertically down to
the critical line. By using this scheme more than 95% of the
emission can be collected by the waveguide.

C. Large deformation: Predominantly chaotic dynamics

In the case of large boundary deformation the ray dynamics
is predominantly chaotic. From a phase-space plot such as in
Fig. 13(c) one could naively expect that modes in a strongly
deformed cavity should be short lived and exhibit a rather
diffuse far-field pattern. This is, however, not necessarily the
case as we see in the following.

1. Chaotic saddle and its unstable manifold

In nonlinear dynamics it has been known for quite some
time that the long-time behavior of an open chaotic system
with time reversible dynamics is governed by the so-called
chaotic saddle and its stable and unstable manifolds; see, e.g.,
Lichtenberg and Lieberman (1992) and Lai and Tél (2010).

FIG. 16 (color online). Quality factors and dynamical tunneling
rates for the annular microcavity. Shown is the theoretical
prediction (solid curve) which is the sum of the direct tunneling
contribution (dotted curve) and the dynamical tunneling contri-
bution (dashed curve) based on the fictitious integrable system,
and numerical data (filled circles) for azimuthal mode number
m ¼ 7;…; 21. From Bäcker et al., 2009.
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The chaotic saddle is the set of points in phase space that never
visits the leaky region in both forward and backward time
evolutions. The stable (unstable) manifold of a chaotic saddle
is the set of points that converges to the saddle in forward
(backward) time evolution. The unstable manifold of the
chaotic saddle therefore describes the route of escape from the
chaotic system. The stable (unstable) manifold of the chaotic
saddle is also called the forward (backward) trapped set. The
intersection of both sets is the chaotic saddle. The concept of
the chaotic saddle and its manifolds had been applied to
several physical systems both classical and quantum mechani-
cal; see, e.g., Gaspard and Rice (1989a, 1989b). In the field of
optics of deformed microcavities this knowledge has been
reinvented to a large part as discussed next.
In experiments on polymer microlasers with various shapes,

Schwefel et al. (2004) demonstrated that light emission from
microcavities with predominately chaotic ray dynamics can be
highly directional. This unexpected finding was explained by
the numerical observation that typical rays escape the cavity
by following the unstable manifolds of short periodic orbits
close to the boundary of the leaky region; see Fig. 18(a).
The stable (unstable) manifold of a periodic orbit is defined

as the set of points in phase space which converge to the
periodic orbit in the forward (backward) time evolution. The
numerical simulation of intensity-weighted ray dynamics (13)
shown in Fig. 18(a) revealed that the asymptotic escape
behavior of initially randomly chosen rays above the critical
line is well approximated by the unstable manifolds of short
periodic orbits. This was nicely confirmed by wave simu-
lations and by a reconstruction of light intensity in the leaky
region of phase space by using experimental far-field data of
multimode fields; cf. Figs. 18(a) and 18(b).
In the same year Lee et al. (2004) introduced the survival

probability distribution (SPD) of intensity of rays inside the
microcavity to explain the spatial localization of optical
modes inside spiral-shaped cavities [an example is shown in
Fig. 11(a)]. The SPD is defined as the probability Pðs; p; tÞ
with which a ray with Birkhoff coordinates ðs; pÞ can survive
in the cavity at time t. In strongly chaotic systems, this
distribution decays exponentially in time, and the dependence

on ðs; pÞ is independent on initial conditions (Ryu
et al., 2006).
The SPD of Lee et al. (2004) and the computed asymptotic

behavior of initially randomly chosen rays by Schwefel et al.
(2004) are equivalent to the unstable manifold of the chaotic
saddle extended by the intensity-weighted ray dynamics (13)
as first noted by Wiersig and Hentschel (2008). A systematic
and clear discussion of this extended version of the chaotic
saddle and its relation to the ergodic theory of transient chaos

FIG. 17 (color online). Using chaos-assisted tunneling for channeling rays into waveguides for efficient collection of light emission
from microcavities. (a) Poincaré surface of section of a quadruple billiard, Eq. (12), at ε ¼ 0.08. Squares mark a period-4 orbit in the
center of an island chain. Dots indicate a typical chaotic trajectory out of the island chain. Vertical lines mark the exit window due to the
attached waveguide. (b) Real-space representation of the period-4 orbit and the chaotic trajectory. Inset: Scanning electron microscope
image of the experimental realization. From Song et al., 2012.

FIG. 18 (color online). Light emission along unstable manifolds
of short periodic orbits. (a) Emitted-ray intensity (color scale)
overlaid on the Poincaré surface of section of the quadruple
cavity for ε ¼ 0.18, Eq. (12), and refractive index n ¼ 1.49. The
curve is the unstable manifold of a rectangular periodic orbit.
(b) Experimental far-field data (color scale) projected onto the
Poincaré surface of section (available data are restricted to
φ ∈ ½−π=2; π=2�). From Schwefel et al., 2004.

Hui Cao and Jan Wiersig: Dielectric microcavities: Model systems for … 77

Rev. Mod. Phys., Vol. 87, No. 1, January–March 2015



can be found in Altmann (2009) and Altmann, Portela, and Tél
(2013). Altmann (2009) pointed out that the unstable mani-
folds of short periodic orbits (which are part of the chaotic
saddle) close to the critical line as discussed by Schwefel et al.
(2004) are parallel to the unstable manifold of the chaotic
saddle and therefore lead to nearly the same far-field emission.
Often the term “chaotic repeller” instead of “chaotic saddle”

is used to describe the light emission from dielectric cavities.
However, as emphasized by Altmann (2009), the term chaotic

saddle is more appropriate as the dynamics is time reversible.
A chaotic repeller appears in noninvertible dynamical systems
and possesses only unstable manifolds (Lai and Tél, 2010).
The emission mechanism along the unstable manifold of

the chaotic saddle indicates that all long-lived modes in a
given strongly deformed microcavity exhibit a similar far-field
pattern; see Fig. 19. This universal output directionality of
single modes was proven without ambiguity in experiments
on a liquid-jet microcavity (Lee et al., 2007b). Using this

FIG. 19 (color online). Light emission along the unstable manifold of the chaotic saddle. (a), (b) Calculated Husimi functions of two
different modes in the quadruple cavity (12) for ε ¼ 0.16 and refractive index n ¼ 1.361. The leaky region below the critical line
sin χc ¼ 1=n (horizontal line) is magnified in (c) and (d), respectively. Superimposed is the unstable manifold of the chaotic saddle.
(e) Measured far-field pattern of individual modes in a liquid-jet cavity of the same shape and refractive index as in (a)–(d). Adapted
from Lee et al., 2007b.
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concept Wiersig and Hentschel (2008) provided numerical
evidence that all long-lived modes in the limaçon cavity (23)
with deformation parameter ε ≈ 0.43 and refractive index
between 2.7 and 3.9 exhibit the universal and unidirectional
light emission. This was confirmed experimentally by a
number of groups (Shinohara et al., 2009; Song, Fang et al.,
2009; Wang et al., 2009; Yan et al., 2009; Yi, Kim, and Kim,
2009; Albert et al., 2012).
In the case of mixed phase space the chaotic saddle is

divided into hyperbolic and nonhyperbolic components
(Altmann, 2009). The mechanism of escape of electromag-
netic radiation along the unstable manifold works also in this
case as demonstrated by experiments on microwave cavities
of quadrupolar shape (Schäfer, Kuhl, and Stöckmann, 2006).
Moreover, a combination with dynamical tunneling is pos-
sible. As discussed in Sec. IV.B.3 Shinohara et al. (2010,
2011) demonstrated experimentally and theoretically that
modes localized in an island chain (a nonhyperbolic compo-
nent) can tunnel into the chaotic sea (the hyperbolic compo-
nent). From there, the rays follow the unstable manifold of the
chaotic saddle.
The details of the relation between optical modes and the

chaotic saddle of the ray dynamics are still not fully understood.
For open quantum maps it has been rigorously proven that in
the semiclassical limit the right eigenvectors of the nonunitary
time evolution matrix U are supported by the corresponding
classical unstablemanifold of the chaotic saddle (Keating et al.,
2006). Long-lived states are localized on the chaotic saddle
(which is part of the unstable manifold). The localization,
however, is not uniform because of quantum fluctuations. In the
case of microcavities these fluctuations can have a significant
impact on the far-field emission pattern (Shinohara,
Fukushima, and Harayama, 2008; Shinohara et al., 2009).

2. Dynamical localization and scar modes

It is natural to expect that modes in chaotic microdisks have
low Q factors. This Q spoiling (Nöckel, Stone, and Chang,
1994; Nöckel and Stone, 1995) would limit the possible
applications of deformed microdisks considerably. However,
wave localization effects discovered in the field of quantum
chaos provide the possibility of high Q modes in chaotic
microcavities. For example, wave packets mimic to some
extent the chaotic ray diffusion in phase space. However,
destructive interference suppresses the chaotic diffusion on
long time scales (Casati et al., 1979; Fishmann, Grempel, and
Prange, 1982; Borgonovi, Casati, and Li, 1996; Frahm and
Shepelyansky, 1997). This dynamical localization in phase
space is closely related to real-space Anderson localization in
disordered solids (Fishmann, Grempel, and Prange, 1982).
The first experimental observation of dynamical localization
was reported by Moore et al. (1994) using ultracold atoms
placed in a modulated standing wave of a near-resonant laser.
Another experimental verification of dynamical localization

used a microwave circular billiard with boundary roughness
(Sirko et al., 2000). In the regime of dynamical localization,
the angular momentum l ∼ sin χ in such a “rough billiard” is
exponentially localized around a mode-dependent value. The
localization in sin χ is of interest for optical microcavities as it
suppresses the diffusion into the leaky region and therefore

allows for modes with a high quality factor even in the regime
of fully chaotic ray dynamics (Frahm and Shepelyansky,
1997). The first theoretical study of dynamical localization
in optical microdisks with boundary roughness has been
performed by Starykh et al. (2000). They showed that the
dynamical localization leads to a log-normal distribution of
the modes’ linewidths and decay rates. The direct observation
of lasing action from dynamically localized modes was
reported by Podolskiy et al. (2004) and Fang et al. (2005)
using GaAs-InAs microdisks with enhanced boundary rough-
ness; see Fig. 20.
Another wave localization phenomenon known from

closed chaotic systems is scarring (Heller, 1984). It refers
to the existence of a small fraction of quantum eigenstates
with strong concentration along unstable periodic orbits of
the underlying classical system. In optical microcavities, the
localization of wave intensity along unstable periodic ray
trajectories has been observed experimentally first in liquid-jet
microlasers (Lee et al., 2002) and shortly after in GaN
microlasers (Rex et al., 2002) and in GaAs/GaInAs/GaInP
quantum well microlasers (Gmachl et al., 2002). The observed
modes, such as the one shown in Fig. 21, can have high quality

FIG. 20. Dynamical localization in optical microcavities
with strong boundary roughness. (a) Scanning electron micro-
scope image of rough microdisk. From Podolskiy et al., 2004.
(b) Computed high Q mode dynamically localized in angular
momentum space.

FIG. 21 (color online). Scarring in optical microcavities. Com-
puted optical mode in the quadruple cavity (12) which is scarred
by the triangular periodic ray trajectories depicted in the inset;
ε ¼ 0.12 and refractive index n ¼ 2.65. From Rex et al., 2002.
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factors since the corresponding short periodic orbit is located
entirely outside the leaky region and is therefore part of the
chaotic saddle.
A well-studied system in the field of quantum chaos is the

stadium billiard given by two semicircles and two parallel
segments. This system is not a smooth deformation of the
circle as the radius of curvature changes discontinuously at the
points of connection. For this billiard it is rigorously proven
that the ray dynamics is fully chaotic, i.e., there are no regular
regions in phase space (Bunimovich, 1974). A microcavity of
stadium shape is shown in Fig. 11(c). Theoretical analyses of
such a microcavity revealed a localization along multiple
periodic orbits (Harayama et al., 2003; Fang, Yamilov, and
Cao, 2005). Associated with this localization is a nonmono-
tonic decrease of the Q factor with increasing deformation
because of interference of waves propagating along different
constituent orbits (Fang, Yamilov, and Cao, 2005). This
interference effect has been discussed in terms of a peri-
odic-orbit-sum formula by Fukushima, Harayama, andWiersig
(2006). These theoretical findings have been confirmed exper-
imentally in GaAs/AlGaAs (Harayama et al., 2003), GaAs
(Fang, Cao, and Solomon, 2007), and polymer microstadia
(Fang and Cao, 2007). The observation of localization along
multiple periodic orbits is consistent with a recent study of an
open three-disk system (Weich et al., 2014) which relates this
phenomenon to the formation and interaction of resonance
chains in the complex frequency plane.
Numerical simulations indicate that scarring in optical

microcavities with strongly chaotic ray dynamics is rather the
rule than the exception; see, e.g., Lee et al. (2002, 2004, 2005,
2007b), Rex et al. (2002), Harayama et al. (2003), Fang,
Yamilov, and Cao (2005), Wiersig (2006), Fang and Cao
(2007), Fang, Cao, and Solomon (2007), Wiersig andHentschel
(2008), and Wiersig et al. (2010). This conclusion can also be
drawn from studies of open quantum maps (Wisniacki and
Carlo, 2008; Ermann, Carlo, and Saraceno, 2009).
An interesting phenomenon not observed in any closed

system is the appearance of quasiscarred modes showing a
strong localization on simple geometric structures with no
underlying periodic ray (Lee et al., 2004; Lee, Rim et al.,
2008). Lasing on quasiscarred modes has been successfully
realized for spiral-shaped InGaAsP microcavity lasers (Kim
et al., 2009). Quasiscars find a natural explanation in terms
of an extended ray dynamics as discussed in Sec. VIII.A.

3. Level statistics

A central topic of quantum chaos is the analysis of the
statistical properties of energy levels in quantum systems
whose classical counterpart is chaotic (Stöckmann, 2000). In
the last decade, the focus has shifted from closed to open
systems. For a review of unsolved problems in this field see
Nonnenmacher (2011).
One particularly interesting aspect is the fractal Weyl law

for long-lived states in open fully chaotic systems. This
conjecture, based on the work of Sjöstrand (1990) and
Zworski (1999), is an extension of the well-known Weyl’s
formula for closed systems. Weyl’s formula states that the
number of energy levels NðkÞ with wave number km ≤ k, or
more precisely the smooth part of it, N̄ðkÞ, behaves

asymptotically as ∼k2 for the particular case of a two-
dimensional system which scales with the energy such as
quantum billiards. For an open system the number of
resonances with complex wave numbers km can be defined as

NCðkÞ ¼ fkm∶ImðkmÞ > −C;ReðkmÞ ≤ kg: ð26Þ

The cutoff constant C > 0 ensures that only long-lived states
are taken into account; fast decaying states are ignored. The
fractal Weyl law for an open chaotic system (which again
scales with the energy) can be written as

N̄CðkÞ ∼ kα: ð27Þ

It is conjectured that the noninteger exponent in Eq. (27) is

α ¼ Dþ 1

2
¼ dþ 2

2
; ð28Þ

where D is the fractal dimension of the chaotic saddle or
repeller (Lin and Zworski, 2002); d ¼ D − 1 is the dimension
of the saddle in a properly chosen SOS.
The fractal Weyl law has been numerically confirmed for a

number of physical model systems: a three-bump scattering
potential (Lin, 2002; Lin and Zworski, 2002), a three-disk
system (Lu, Sridhar, and Zworski, 2003), open quantum maps
(Schomerus and Tworzydlo, 2004; Nonnenmacher, 2006;
Shepelyansky, 2008), a Hénon-Heiles Hamiltonian with
Coriolis term (Ramilowski et al., 2009), and a four-sphere
system (Eberspächer, Main, and Wunner, 2010). The asymp-
totic form (27) has been rigorously proven only for a
simplified variant of the open quantum baker’s map
(Nonnenmacher and Zworski, 2007). Experimental evidence
for the fractal Weyl law has been obtained for a five-disk
microwave system (Potzuweit et al., 2012).
For dielectric cavities the situation is more complicated than

in the above examples. First, a dielectric cavity possesses
internal and external modes (Bogomolny, Dubertrand, and
Schmit, 2008; Dubertrand et al., 2008; Dettmann et al.,
2009a); see the discussion in Sec. III. However, the latter
are extremely short lived and are therefore conveniently
withdrawn from the counting process by the cutoff constant
C. Second, the partial leakage of intensity according to
Fresnel’s laws has an important implication. Consider a
dielectric cavity (n finite) and the corresponding closed billiard
system (n → ∞). The states in the billiard system have zero
decay rate and their number satisfies the conventional Weyl
law. When the openness of the system is gradually increased
by reducing n, each mode acquires a nonzero but finite decay
rate because the transmission through the boundary is not
complete (except at Brewster’s angle for TE polarization).
Therefore, “no mode can disappear to infinity” along the
imaginary direction in complex frequency space. This implies
that the total number of internal modes of a dielectric cavity
fulfills the conventional k2 law as pointed out by Bogomolny,
Dubertrand, and Schmit (2008). This, however, is not in
contradiction with the fractal Weyl law which applies to the
long-lived modes within the set of internal modes.
The fractal Weyl law for dielectric microcavities has been

tested only for the stadium-shaped cavity (Wiersig and
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Main, 2008). The numerically computed spectral data are
consistent with the fractal Weyl law if the concept of the
chaotic saddle is extended to a multifractal by using the
intensity-weighted ray dynamics (13) incorporating Fresnel’s
laws (Wiersig and Main, 2008). However, Nonnenmacher and
Schenk (2008) demonstrated that a damped quantum map
used as a toy model for dielectric cavities shows the conven-
tional Weyl law.
While the Weyl law characterizes the smooth part of the

density of states, the statistical analysis of the energy levels
addresses the fluctuations in the density of states. For closed
chaotic systems random-matrix theory (RMT) has been
applied successfully to describe the universal properties of
the spectral statistics; see, e.g., Stöckmann (2000). Quantum
eigenenergies of open systems are complex valued with the
imaginary part being related to the decay rate and the lifetime
of the state. In the case of open systems much work is devoted
to resonators with small openings (Fyodorov and Sommers,
1997; Misirpashaev and Beenakker, 1998). Dielectric micro-
cavities, however, allow for refractive escape along the entire
boundary and are in this sense far more open than the
resonators considered in standard RMT. It is more related
to microwave billiards with an absorber region extended over
a significant part of the boundary (Kuhl et al., 2008; Poli,
Luna-Acosta, and Stöckmann, 2012).
The first theoretical study of spectral statistics of dielectric

cavities was performed by Starykh et al. (2000) in the context
of dynamical localization. It was demonstrated for a rough
dielectric disk that in the presence of dynamical localization
the decay-rate distribution exhibits a log-normal behavior.
The statistics of frequencies in the ideal dielectric disk

have been studied numerically and analytically by Ryu et al.
(2008). As expected for a system with integrable ray dynamics
the nearest level spacing distribution (of the real part of the
frequencies) is in good agreement with the Poisson distribu-
tion. The decay-rate distribution shows a peak structure in
which details are consistent with the properties of the survival
probability distribution.
A RMT model for deformed dielectric cavities has been

developed by Keating, Novaes, and Schomerus (2008). It
combines the internal wave chaos and the Fresnel laws for
reflection and refraction at the cavity’s boundary. For large
refractive index the spectral properties are consistent with
RMT for systems with small openings. For low refractive
index, the details of the statistics become nonuniversal.
Schomerus, Wiersig, and Main (2009) confirmed that the
model is capable of accurately describing the numerically
obtained data for a dielectric microstadium.
An experimental study of the statistical properties of

dielectric microcavities in the optical regime has not been
done yet. However, an interesting experiment on an optical
microstadium billiard bounded by a two-dimensional pho-
tonic crystal and attached to waveguides shows good agree-
ment with RMT for systems with a small number of openings
(Di Falco, Krauss, and Fratalocchi, 2012).

4. Partial barriers and turnstile transport

In the regime of large deformation all KAM invariant
curves, separatrices, and islands are broken. There are no

longer perfect barriers which prevent classical trajectories or
rays from diffusing across the entire SOS; see, e.g., the
transition circle-oval-stadium studied by Tanaka et al. (2007).
But there are imperfect or partial barriers, remnants of the
broken invariant structures in phase space (Bensimon and
Kadanoff, 1984; MacKay, Percival, and Meiss, 1984); see also
the review by Meiss (1992). On intermediate time scales, a
trajectory first explores one subregion of the chaotic sea
without crossing the partial barrier under consideration. Later,
the trajectory crosses the partial barrier and explores the next
subregion, etc. The transport through such a partial barrier
resembles that through a revolving door or turnstile.
It is well known that these partial barriers to classical

dynamics can act as perfect barriers to quantum wave packet
evolution (Brown and Wyatt, 1986; Geisel, Radons, and
Rubner, 1986). This happens when the action flux Φ (the
phase-space area escaping through the partial barrier per
iteration) is much less than Planck’s constant h (MacKay,
Percival, and Meiss, 1984; MacKay and Meiss, 1988). The
turnstile transport is then suppressed by the quantum mechani-
cal uncertainty principle. The partial barriers therefore lead to
localization of energy eigenstates (Casati and Prosen, 1999).
Experimental evidence for this kind of quantum localization
phenomenon has been found in ultracold cesium atoms in a
standing wave of near-resonant light (Vant et al., 1999). For a
designed quantum map with an isolated partial barrier it has
been shown that the quantum localizing transition is universal
with the scaling parameter Φ=h (Michler et al., 2012). The
width of this transition is rather broad, being 2 orders of
magnitude in Φ=h.
For deformed microcavities the first theoretical and exper-

imental observation of an uncertainty-limited turnstile trans-
port has been reported by Shim et al. (2008). The role of h is
played here by the effective Planck’s constant heff ¼ 1=nkR.
In the experiment a liquid-jet cavity with quadruoctapole
shape

rðφÞ ¼ Rð1þ η0 cos 2φþ εη20 cos 4φÞ ð29Þ

is used; R ¼ 14.8 μm, ε ¼ 0.46, and refractive index n ¼
1.361. As the deformation parameter η0 is varied from 0 to
0.26 the suppression of turnstile transport can be identified by
the behavior of the far-field emission pattern measured
experimentally and compared to ray simulations.
For the same kind of liquid-jet cavity with quadruoctapole

shape (29) it has been demonstrated that the concept of
turnstile transport can be exploited to enhance the efficiency of
optical pumping (Yang et al., 2008) by 1 order of magnitude.
To do so, the pump beam is tightly focused onto the relevant
turnstile in the time-reversed ray dynamics. In this way, it is
ensured that the pump intensity is efficiently transported to the
whispering-gallery regions of phase space where the long-
lived modes are located.
The suppression of chaotic diffusion by partial barriers can

lead to the adiabatic formation of high Q WGMs in strongly
deformed microcavities (Shim, Wiersig, and Cao, 2011; Shim,
Eberspächer, and Wiersig, 2013), in particular, in the ultra-
small regime where the vacuum wavelength λ is of the order of
the average radius R of the cavity. This effect provides a
natural explanation of the observed lasing action from InAs
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quantum dots in strongly deformed GaAs microdisks with R
below 1 μm (Song et al., 2010).
Note that many aspects discussed here for the chaotic phase

space of a strongly deformed cavity apply equally to the
chaotic component of the mixed phase space of a cavity with
moderate boundary deformation.

D. Perturbation theory

In this section we review a powerful perturbation theory
for optical modes in deformed microcavities introduced by
Dubertrand et al. (2008) for TM polarization. The extension
to TE-polarized modes can be found in Ge, Song, Redding,
and Cao (2013). The perturbation theory treats a boundary
deformation of the form

rðφÞ ¼ R½1þ λfðφÞ� ð30Þ
in polar coordinates ðr;φÞ. R is the radius of the unperturbed
disk for which the solutions of the mode equation (8) are
known, and λ is a formal perturbation parameter. The defor-
mation function fðφÞ, which we define here to be dimension-
less in contrast to Dubertrand et al. (2008), is assumed to be
single valued and symmetric: fð−φÞ¼ fðφÞ. The perturbation
theory in its present formulation is restricted to cavities with at
least one mirror-reflection symmetry. Modes in this kind of
cavity can be classified as odd-symmetry and even-symmetry
modes. The formulas given below are restricted to even-
symmetry modes. For odd-symmetry modes all cos functions
have to be replaced by sin functions.
The perturbation theory is valid in the perturbative regime

k2δa ≪ 1; ð31Þ
with k being the wave number and δa being the area where the
perturbation in terms of the refractive index is nonzero; cf.
Fig. 22. For some more, subtle details see Dubertrand et al.
(2008). It is important to emphasize that the perturbation
theory applies also to cavities with large boundary deforma-
tion as long as the wave number k is sufficiently small such
that the validity of the perturbative regime (31) is guaranteed.
A WGM in an ideal circular cavity is characterized by the

azimuthal mode number m and the radial mode number l with

dimensionless frequency Ω0 ¼ k0R given by the quantization
condition (18). For the frequency of the perturbed mode
Ω ¼ kR it is found up to order Oðλ2Þ:

Ω ¼ Ω0

�
1 − λAmm þ λ2

�
3A2

mm − Bmm

2

þ Ω0ðA2
mm − BmmÞ

Hð1Þ0
m ðΩ0Þ

Hð1Þ
m ðΩ0Þ

−ðn2 − 1ÞΩ0

X∞
j≠m
j¼0

Amj
1

SjðΩ0Þ
Ajm

��
ð32Þ

with

Apm ¼ εp
π

Z
π

0

fðφÞ cos ðpφÞ cos ðmφÞdφ; ð33Þ

Bpm ¼ εp
π

Z
π

0

f2ðφÞ cos ðpφÞ cos ðmφÞdφ; ð34Þ

εp ¼
�
2 for p ≠ 0;

1 for p ¼ 0:
ð35Þ

The wave function with azimuthal mode number m inside
and outside the cavity is

ψ inðr;φÞ ¼
JmðnkrÞ
JmðnΩÞ

cos ðmφÞ þ
X∞
p≠m
p¼0

ap
JpðnkrÞ
JpðnΩÞ

cos ðpφÞ;

ð36Þ

ψoutðr;φÞ ¼ ð1þ bmÞ
Hð1Þ

m ðkrÞ
Hð1Þ

m ðΩÞ
cos ðmφÞ

þ
X∞
p≠m
p¼0

ðap þ bpÞ
Hð1Þ

p ðkrÞ
Hð1Þ

p ðΩÞ
cos ðpφÞ ð37Þ

with coefficients up to order Oðλ2Þ:

ap ¼ λΩ0ðn2 − 1Þ 1

SpðΩ0Þ

×

�
Apm þ λ

�
ApmAmm

�
Ω0

SpðΩ0Þ
∂SpðΩ0Þ
∂Ω0

− 1

�

þ Bpm

2

�
1þ Ω0

�
Hð1Þ0
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Hð1Þ

m ðΩ0Þ
þHð1Þ0
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Hð1Þ

p ðΩ0Þ

��

þ Ω0ðn2 − 1Þ
X∞
j≠m
j¼0

Apj
1

SjðΩ0Þ
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	�
; ð38Þ

bp ¼ λ2
Ω2

0

2
ðn2 − 1ÞBpm: ð39Þ

If the frequency Ω0 of the unperturbed mode with azimuthal
mode number m is nearly degenerate with the frequency of
another unperturbed mode with azimuthal mode number

FIG. 22. Illustration for the perturbation theory of deformed
microdisk cavities [circle (solid curve) and a deformed circle
(dashed)]. The horizontal line represents a symmetry axis. Grey
regions mark the area δa where the refractive index of the
deformed cavity differs from the one of the circular cavity.
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j ≠ m, then the term 1=SjðΩ0Þ in Eqs. (32) and (38) becomes
considerably large. In such a case the perturbation treatment
requires modification (Dubertrand et al., 2008).
From Eq. (37) the far-field amplitude FðφÞ can be derived

by exploiting the asymptotical behavior of the Hankel
function for large r to give

FðφÞ ¼ ð1þ bmÞ
e−iπm=2

Hð1Þ
m ðΩÞ

cos ðmφÞ

þ
X∞
p≠m
p¼0

ðap þ bpÞ
e−iπp=2

Hð1Þ
p ðΩÞ

cos ðpφÞ: ð40Þ

This perturbation theory has been applied successfully to
compute frequencies,Q factors and far-field patterns of the cut
disk cavity (Dubertrand et al., 2008), microcavities subjected
to local boundary perturbations (Wiersig, 2012), and the
limaçon cavity (Kraft and Wiersig, 2014). In all cases the
internal ray dynamics is strongly chaotic, i.e., the degree of
deformation can be considered to be large. Nevertheless, the
wave number k is such that the left-hand side of Eq. (31)
is below 1 or close to it. Therefore, the system is in the
perturbative regime.
Moreover, the perturbation theory has been proven to be

very useful for developing an understanding of an extreme
sensitivity of the far-field pattern to subwavelength boundary
deformations (Ge, Song, Redding, and Cao, 2013). Another
application is the description of multimode coupling by
boundary wave scattering (Ge, Song, Redding, Eberspächer
et al., 2013).

V. CAVITY WITH SHARP CORNER OR BOUNDARY
DEFECT

In the previous section, we described the smoothly
deformed cavities. In this section, we will consider cavities
with a discontinuity at the boundary and describe how the
sharp corners or boundary defects influence the optical modes
and ray dynamics.

A. Polygonal cavity

Polygonal cavities differ from the cavities with smooth
boundary in two respects. First, they can be fabricated with the
bottom-up approach, namely, they are self-assembled during
the crystal growth processes, leading to crystal facets with a
high degree of perfection. Second, the ray dynamics in
polygonal billiards is neither chaotic, there is no exponential
divergence of trajectories, nor integrable (apart from the
rectangles, the equilateral triangles, the π=2; π=4; π=4 trian-
gles, and the π=2; π=3; π=6 triangles). The motion inside a
typical polygon is conjectured to be ergodic on the three-
dimensional constant-energy surfaces in phase space (Gutkin,
1996), while the motion inside a rational polygon (all angles
are rationally related to π) is restricted to two-dimensional
invariant surfaces, like in integrable systems, but the genus of
the surfaces is larger than 1; loosely speaking, such a surfaces
is a torus with additional handles. Rational polygonal billiards
are therefore characterized as pseudointegrable (Richens and
Berry, 1981). The dynamics on such a surface of higher genus

is not quasiperiodic, which is reflected by multifractal Fourier
spectra of dynamical variables (Artuso, Guarneri, and
Rebuzzini, 2000; Wiersig, 2000). Moreover, the quantum-
classical correspondence is exotic (Wiersig, 2001; Bogomolny
and Schmit, 2004) and the quantum spectrum obeys
critical statistics (Bogomolny, Gerland, and Schmit, 1999;
Wiersig, 2002).
However, it has turned out that the properties of rays and

modes in dielectric polygons are simpler, in particular, if the
system is strongly open as in the case of low refractive index
contrast (Wiersig, 2003b). Often, it is sufficient to discuss one
or two families of periodic ray trajectories to understand the
basic optical properties.
The most frequently studied polygonal dielectric cavity is

the regular hexagon. The first microcavities with the shape of
a regular hexagon have been zeolitic aluminophosphate
cavities with side length R ranging from 2.6 to 4.6 μm
(Vietze et al., 1998; Braun et al., 2000); see Fig. 23(a).
These cavities have been used for microlasers by putting
organic laser active dye guest molecules into the channel pores
of the zeolitic crystal. Numerical simulations have shown that
in this kind of low-index cavity (n ¼ 1.466 at free-space
wavelength λ ≈ 690 nm) the light is localized on whispering-
gallery-like modes along a family of periodic-6 ray trajecto-
ries, which is the only one confined by total internal reflection
(Braun et al., 2000); see Figs. 23(b) and 23(c). Most of the
features of these modes can be explained by a semiclassical
approximation (R ≫ λ) based on wave interference along
the periodic-6 orbits to determine the resonant frequencies
and pseudointegrable ray dynamics and boundary waves to
determine the quality factors (Wiersig, 2003b).
Hexagonal-shaped cavities have also been realized as a

cross section of ZnO nanoneedles, nanonails, nanodisks, and
microwires. Since the refractive index n ≈ 2 (n ≈ 2.35 in the
ultraviolet) is larger, orbits other than the periodic-6 orbit are
confined by total internal reflection, e.g., periodic-3 orbits
with the shape of an equilateral triangle, which can lead to
higher Q factors (Kouno, Kishino, and Sakai, 2011; Song, Ge

(a)

(c)

(b)

FIG. 23 (color online). Hexagonal-shaped microcavities.
(a) Scanning electron microscope image of a zeolitic alumino-
phosphate microcavity. (b) Computed mode structure. (c) Four
members of the family of periodic-6 ray trajectories. The ray
picture breaks down for the rightmost orbit which hits the corners
of the hexagon. Adapted from Braun et al., 2000.
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et al., 2013). The nanoneedles studied by Nobis et al. (2004)
have a conical shape with diameter varying smoothly from
900 down to 270 nm; λ ≈ 530 nm. This smooth variation of
the diameter permitted a systematic study of the whispering-
gallery-like modes for small azimuthal mode numbers
m in good agreement with the theory by Wiersig (2003b)
even close to the ground state. Explicit numerical
simulations of low-order modes can be found in Nobis and
Grundmann (2005).
WGMs have also been observed in experiments on

hexagonal ZnO nanodisks (Kim et al., 2006) and nanonails
(Liu et al., 2008) and for other material systems, such as
GaN (Peng et al., 2005; Tessarek et al., 2013), GaAs (Paek
et al., 2010), In2O3 (Dong et al., 2009), and Al2O3 (Kudo
et al., 2013).
Optically pumped WGM lasing action in hexagonal nano-

resonators and microresonators has been achieved for ZnO
nanonails (Wang et al., 2006), ZnO nanodisks (Gargas et al.,
2010), ZnO microwires (Czekalla et al., 2008), ZnO micro-
needles (Zhu et al., 2009), ZnO nanodisks (Yu et al., 2007),
GaN microdisks (Kouno, Kishino, and Sakai, 2011), and
InGaAs nanopillars (Chen et al., 2011).
Experiments and simulations on ZnO microwires with a

slightly deformed (elongated, bent) hexagonal cross section
show the appearance of in-plane Fabry-Pérot modes and
WGMs based on periodic-3 orbits (Dietrich et al., 2011;
Dietrich and Grundmann, 2012).
The effect of rounding the corners of hexagonal micro-

cavities has been studied by Wiersig (2003b), Dietrich et al.
(2012), and Kudo et al. (2013). While Wiersig (2003b) and
Kudo et al. (2013) concluded that rounding the corners
increases the Q factor, Dietrich et al. (2012) claimed the
opposite. It is, however, possible that the conclusion of
Dietrich et al. (2012) is spoiled by surface roughness in the
experiment and the peculiar way the corners are rounded in the
numerical simulations.
Other dielectric polygonal cavities have been studied as

well, such as squares (Poon, Courvoisier, and Chang, 2001;
Lohmeyer, 2002; Guo et al., 2003; Chen, Huang, andYu, 2006),
rectangles (Wiersig, 2006), regular pentagons (Lebental et al.,
2007; Bogomolny et al., 2011), equilateral triangles (Wysin,
2005; Lai et al., 2007), regular dodecagons (Nobis et al., 2007),
and octahedrons (Korthout, Smet, and Poelman, 2009).
A deep insight into the structure of optical modes in

polygonal microcavities has been provided by the superscar
model (Lebental et al., 2007), which had been originally
invented for polygonal billiards (Bogomolny and Schmit,
2004) and experimentally confirmed in microwave cavities
(Bogomolny et al., 2006). In brief, the families of periodic ray
trajectories in polygonal cavities are unfolded to fictitious
straight rectangular channels passing through cavity corners.
In the semiclassical limit, wave functions obey simple
boundary conditions on the channel boundaries. One can
therefore consider the wave functions as states confined in the
rectangles, which allows one to derive analytic solutions.

B. Boundary defect

Levi et al. (1993) were the first who demonstrated that a
microdisk with a local boundary defect can show improved

emission directionality. The fabricated defect was a small
deformation of the boundary with the shape of a “tab.” The
same shape and the inverted version (a “notch”) had been used
by Backes et al. (1998) for the same purpose and also for
mode discrimination. Microwave studies of dielectric disks
with a notch were performed by Kuhl, Schäfer, and
Stöckmann (2011). Boriskina et al. (2006) suggested the
possibility to further improve the directionality by using an
ellipse with a notch. This idea has been realized in experi-
ments on elliptical-shaped quantum cascade lasers (Wang
et al., 2010). It has been demonstrated that this geometry
allows for unidirectional light emission with very low diver-
gence angle and high quality factors. The mechanism behind
this observation is roughly (for details see Sec. VII.F) that the
notch acts as a small scatterer that scatters light rays toward
the opposite side of the elliptical cavity, where the outgoing
rays are collimated as a parallel beam by the elliptical
boundary. To achieve this goal for a given refractive index,
the eccentricity of the ellipse has to be adjusted. An alternative
way to direct the scattered rays is to insert a vertical groove at
which the light is reflected back toward the cavity’s boundary
(Cai et al., 2011). The effect of internal pointlike defects on
WGMs has been analyzed by Dettmann et al. (2008, 2009b)
and Deych, Ostroswski, and Yi (2011). A line defect inside the
disk has been studied by Apalkov and Raikh (2004).
A perturbative approach based on the perturbation theory

for deformed disks discussed in Sec. IV.D has been applied to
disks with a local boundary deformation by Wiersig (2012).
This approach allows the efficient and accurate calculation of
frequencies, quality factors, and far-field patterns.
Mode discrimination for single-mode lasing can be

enhanced by considering two or three notches (Schlehahn
et al., 2013). The case of many notches is realized in the
microgear cavity, which is a disk with Bragg grating at the
circumference (Fujita and Baba, 2001, 2002).
A linear increase of the radius of a circle with the polar

angle φ gives the spiral shape with a localized defect, and the
boundary is defined as

rðφÞ ¼ R

�
1 −

ε

2π
φ

�
ð41Þ

with deformation parameter ε ≥ 0 and “radius” R at φ ¼ 0.
The radius jumps back to R at φ ¼ 2π creating a notch as
shown in Fig. 24(a). Chern et al. (2003) have introduced the
spiral-shaped cavity to demonstrate unidirectional light emis-
sion from a microdisk laser [see Fig. 24(b)], which will be
discussed in more detail in Sec. VII. In the spiral cavity Lee
et al. (2004) first observed quasiscarred modes, i.e., modes
localized along simple geometric structures which are not
supported by any periodic ray, as already mentioned in
Sec. IV.C.2. One characteristic feature of the spiral cavity
is the broken chiral symmetry: clockwise rotation is distinct
from the counterclockwise rotation (Chern et al., 2003). This
broken chirality leads to the appearance of copropagating
pairs of almost-degenerate and highly nonorthogonal modes
(Wiersig, 2008; Wiersig, Kim, and Hentschel, 2008); see also
the discussion in Sec. VI.B. The notch of the spiral can be
used to couple a waveguide to the cavity in a nonevanescent
manner (Lee, Luo, and Poon, 2007).
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VI. MODE COUPLING

This section deals with non-Hermitian physics related to
coupling between modes in open dielectric cavities due to,
e.g., the change of cavity shape or introduction of external
scatterers in the vicinity of the cavity boundary.

A. Avoided resonance crossings

To aid the reader this section begins with a brief summary
of the basic knowledge on avoided level crossings (also
known as anticrossings) in closed or conservative systems.
As illustrated in Fig. 25 such avoided crossings occur when

the curves of two energy eigenvalues, as functions of a real-
valued parameter Δ, come close but then repel each other (von
Neumann and Wigner, 1929). This behavior can be under-
stood in terms of a simple toy model, a 2 × 2 Hamiltonian
matrix

H ¼
�
E1 V
W E2

�
: ð42Þ

The eigenvalues and (not normalized) eigenvectors can be
easily computed to

E� ¼ E1 þ E2

2
� r; ð43Þ

~ϕ� ¼
�

V
E2−E1

2
� r

�
ð44Þ

with V ≠ 0 and

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE1 − E2Þ2

4
þ VW

r
: ð45Þ

If the matrix H is Hermitian, describing a closed system,
then the diagonal elements Ej are real and the off-diagonal
elements W ¼ V� are complex valued. Sufficiently far away
from the region of resonant coupling, jE1 − E2j ≫ 2jVj, the
eigenvalues of the coupled system E� equal the energies of the
uncoupled system Ej. Exactly at resonant coupling, E1 ¼ E2,
there is an energy splitting Eþ − E− ¼ 2jVj whenever the
coupling strength jVj is nonzero. Around the region of
resonant coupling, the eigenstates of the coupled system
are hybridized, i.e., the eigenvectors of the matrix (42) are
superpositions of the eigenvectors of the uncoupled system;
cf. Fig. 25. Note the “exchange of identity” between the
eigenstates participating in an anticrossing.
Avoided resonance crossings in open or dissipative systems

can be described by a non-Hermitian matrix (42). The energies
Ej of the uncoupled system are then complex numbers,
with the imaginary part being related to the lifetime τj ∝
−1=ImðEjÞ of the quasibound state. We focus first on the
case W ¼ V� where the internal coupling of states is as in a
closed system but each state is individually coupled to the
continuum. Exactly at resonant coupling ReðE1Þ ¼ ReðE2Þ,
the number r is here either real or purely imaginary which
allows for two different kinds of avoided resonance crossings
(Heiss, 2000). In the weak coupling regime jVj < Vc with
Vc ¼ jImðE1Þ − ImðE2Þj=2, there is a crossing in the real part
of the energy. In the strong coupling regime jVj > Vc, there is
an avoided crossing in the real part and a crossing in the
imaginary part. These two generic cases are depicted in
Fig. 26. The hybridization of modes due to the coupling
can be again seen. Note that in the weak coupling regime the
hybridization is weak.
The more general case W ≠ V� allows external coupling of

states via the continuum. Here the number r can be complex
with nonzero real and imaginary parts which allow for a new
behavior. Figure 27 shows an example in which one of the
states has a significantly increased lifetime at the center of the

FIG. 24 (color online). (a) Calculated optical mode in the
spiral (41) with ε ¼ 0.1, n ¼ 2.6, and nkR ≈ 200. (b) Experimen-
tal (open circles) and calculated (solid and dashed) far-field
pattern. From Chern et al., 2003.

Δ

E

FIG. 25 (color online). An avoided crossing of two energy levels
E�ðΔÞ in a closed system. Equation (43) has been used with E1

being linear dependent on the parameter Δ, whereas E2 and V ¼
W� are kept constant. The arrows visualize the eigenvectors for
certain values of Δ.
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avoided crossing. The lifetime of the other mode has
decreased accordingly. In real physical systems the increased
(decreased) lifetime is due to the reduction (enhancement) of a
major decay channel by destructive (constructive) interfer-
ence. This remarkable effect is essentially the same as
“resonance trapping” where, however, the coupling strength
is the parameter that is varied; see, e.g., Desouter-Lecomte and
Jacquest (1995) and Persson, Gorin, and Rotter (1998).
In the electromagnetic setting one can consider the

Hamiltonian matrix like the one in Eq. (42) as representing
the linear operator describing the dynamics of electromagnetic
modes in the slowly varying envelope approximation in the
time domain (Siegman, 1986). Energies are then translated to
frequencies and energy eigenstates to modes.
Avoided resonance crossings with internal coupling have

been experimentally demonstrated first in a microwave cavity
with absorbing walls (Philipp et al., 2000) and later in
dielectric microcavities in the optical regime (Lee et al.,
2009b). The experimental verification of the external cou-
pling type has been done first with a microwave cavity with
attached waveguide (Persson et al., 2000). Here the avoided
resonance crossings reduce the coupling of some modes to
the waveguide thereby increasing their lifetime. In the optical
domain external coupling has been experimentally demon-
strated in coupled photonic-crystal defect cavities (Atlasov
et al., 2008), coupled microdisk cavities (Benyoucef et al.,

2011), and for a rolled-up microtube bottle cavity (Strelow
et al., 2012).
The formation of a high-quality mode in the case of external

coupling is of particular relevance for optical microcavities as
this may allow one to tailor light-matter interaction in such
devices. The enhancement of the quality factor of modes in
optical microcavities has been theoretically analyzed by
Boriskina (2006, 2007), Wiersig (2006), Yang and Huang
(2007), Yang, Wang, and Huang (2009), Song and Cao
(2010), Song, Ge et al. (2013), and Song, Zeng, and
Xiao (2013).
A theoretical analysis of two coupled microdisks in terms of

periodic orbits in complexified phase space (Shudo and Ikeda,
1995, 2012) has been presented by Shim and Wiersig (2013).
The semiclassical approach leads to an analytical formula
for the frequency splitting originating from the evanescent
coupling.
Another interesting aspect of mode coupling is the modi-

fication of the spatial mode pattern caused by avoided
resonance crossings. In the strong coupling regime one
can observe in the near field of the cavity, beside the
conventional hybridization of modes (Carmon et al., 2008),
a surprising phenomenon, the localization of intensity
along special marginal stable periodic rays (Wiersig, 2006;
Unterhinninghofen, Wiersig, and Hentschel, 2008; Yi et al.,
2011); see Fig. 28. Because of the resemblance to scarred
states in closed systems these modes have been termed
scarlike modes. The relation between avoided resonance
crossings and scarlike modes in the dielectric ellipse finds
a natural explanation in terms of an extended ray dynamics
discussed in Sec. VIII.A.
Even in the weak coupling regime, in which the intracavity

mode pattern is not influenced by the weak hybridization
associated with the avoided crossing, the far-field pattern of
one mode can be strongly modified provided that the other
mode has a significant shorter lifetime. Here the small but
leaky contribution to the hybridized mode dominates the far-
field pattern. This effect has been utilized to weakly couple
high-quality modes with isotropic light emission to low-
quality modes with directional light emission. One of the
hybridized modes then has kept the high Q factor while
acquiring directional light emission (Wiersig and Hentschel,
2006). This scheme to achieve directional light emission from
high-quality modes has been studied for several cavity
geometries (Ryu, Lee, and Kim, 2009; Song et al., 2010;
Redding, Ge, Song et al., 2012) which will be addressed in
Sec. VII.
Moreover, avoided crossings play an important role in the

distribution of resonances in the complex frequency plane
(Dettmann et al., 2009a; Cho, Rim, and Kim, 2011). The
statistics of avoided resonance crossings in open cavities has
been studied by Poli et al. (2009).
There is a considerable amount of literature on chains of

coupled passive cavities, so-called coupled resonator optical
waveguides (CROWs); for a review see, e.g., Morichetti et al.
(2012). However, non-Hermitian effects of the kind discussed
here are often not explicitly studied; a commendable excep-
tion is Grgić et al. (2011) who investigated the impact of the
imaginary part of the frequencies of the uncoupled cavities on
the maximum delay time achievable in CROWs.
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FIG. 26 (color online). Illustration of an avoided resonance
crossing in the weak (left) and strong (right) coupling regimes
in the case of internal coupling. Small (large) jImðEÞj corre-
sponds to a long (short) lifetime. The arrows indicate eigenvec-
tors of the system which hybridize near the region of resonant
coupling.
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FIG. 27. An avoided resonance crossing in the strong coupling
regime for the case of external coupling. The resonant formation
of a long-lived mode moving close to the real energy axis can be
clearly seen.
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B. Exceptional points

A non-Hermitian eigenvalue problem does in general not
have an orthogonal set of eigenvectors. In an extreme case,
two eigenvectors can become even collinear. In our toy
Hamiltonian this happens if the complex number r is vanish-
ing as an inspection of Eq. (44) shows. Simultaneously, the
eigenvalues in Eq. (43) become degenerated. As a result, the
eigenvectors do not form a complete basis of the Hilbert space.
A point in parameter space at which this happens, i.e., at
which at least two eigenvectors and eigenvalues of a non-
Hermitian matrix coalesce is called an exceptional point (EP)
(Kato, 1966; Heiss, 2000). The EP is a non-Hermitian
degeneracy which must be distinguished from a diabolic
point at which only eigenvalues coalesce (Berry and
Wilkinson, 1984).
The EP can also be considered as the critical point where a

transition from weak to strong coupling occurs. In the
language of the toy model in Eq. (42) it would mean that
not only Δ is varied but also another real-valued parameter,
say jVj, is precisely tuned to the intermediate situation
between the left and right panels of Fig. 26 such that both
branches of real and imaginary parts of the eigenvalues touch.
Varying both parameters simultaneously, the real and imagi-
nary parts of the eigenvalues form rather complicated surfaces
as illustrated in Fig. 29. Because of the square root in Eq. (45)
these eigenvalue surfaces exhibit a complex-square-root top-
ology with a branch point at the EP for two eigenvalue sheets.
A consequence of this topology becomes apparent when the
EP is encircled in parameter space. Continuously tracking the
pair of eigenvalues reveals that both the real and imaginary
parts cross from one to the other sheet with the result that
the eigenvalues swap; see black curves in Fig. 29. One has
therefore to encircle the EP twice to recover the original
eigenvalues. The eigenstates acquire a phase of π when the EP
is encircled twice (Heiss, 1999). Hence, to also recover the
original eigenstates one has to encircle the EP even 4 times.
The physical existence of EPs has been demonstrated by

experiments on a number of physical systems as reviewed by

Heiss (2012). The first direct experimental verification of the
topology of eigenvalue surfaces has been done for a micro-
wave cavity (Dembowski et al., 2001, 2004). In these experi-
ments one had full control over the eigenvalues and
eigenstates which allowed one also to show the recovery of
the eigenstates after encircling the EP 4 times.
Figure 30 shows the experimental data for a liquid-jet

microcavity which clearly confirm the complex-square-root
topology of eigenfrequencies also in an optical microcavity

FIG. 28 (color online). Calculated near-field intensity of modes in a dielectric ellipse with refractive index n ¼ 3.3. Modes (a) and (b)
[(e) and (f)] are on the left-hand (right-hand) side of an avoided crossing. The rectangular-shaped mode (c) and the diamond-shaped
mode (d) at the center of the avoided crossing show a localization of intensity along periodic ray trajectories (dashed lines). From
Unterhinninghofen, Wiersig, and Hentschel, 2008.
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FIG. 29 (color online). Complex-square-root topology of eigen-
value surfaces E ¼ E�ðΔ; jVjÞ with a branch point singularity at
the exceptional point (EP). The black curves result from a double
loop in the parameter space ðΔ; jVjÞ.
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(Lee et al., 2009a). The EP is reached by varying a
deformation parameter controlling the cavity shape and a
quasicontinuous parameter labeling different mode families.
Until now, it was not possible to provide experimental
evidence for the expected behavior of the wave functions
in an optical microcavity near an EP. A theoretical study can
be found for a stadium-shaped microcavity in Lee (2010).
The temporal behavior of modes near an EP is discussed in

detail by Heiss (2010). One experimental signature is the
disappearance of Rabi-frequency beats between the two
involved modes when the EP is approached. At the EP a
quadratic time decay of intensity is expected. Both effects
have been experimentally verified by Dietz et al. (2007) with a
microwave billiard.
Consider a physical system which is invariant under time

reversal. Representing the corresponding Hamiltonian in a
basis consisting of standing waves (which are also invariant
under time reversal) leads to a non-Hermitian matrix (42) with
W ¼ V (but in general W ≠ V�). Heiss and Harney (2001)
showed that the single eigenstate of such a symmetric
Hamiltonian at the EP [Eq. (44) for r ¼ 0] is given by

~ϕ ∝
�

1

�i

�
: ð46Þ

The sign in Eq. (46) determines the chirality of the EP. It
depends on the system and can differ from EP to EP. This
intrinsic chirality of EPs has been confirmed by Dembowski
et al. (2003) in an experiment on microwave cavities. If time-
reversal symmetry is violated then the chirality generically
persists, and only one of the components gathers an additional
phase (Harney and Heiss, 2004). This prediction has been
successfully tested for a microwave cavity perturbed by an
internal ferrite (Dietz et al., 2011).

The chirality of EPs plays an important role for the structure
of modes in slightly deformed or perturbed microdisk cavities
which lack mirror symmetries. The chirality of a given mode
has here a clear physical interpretation as a preferred sense of
rotation in real space. Also in the vicinity of the EP the mode
exhibits an unbalanced contribution of clockwise and counter-
clockwise traveling-wave components. This kind of partial
chirality has been predicted by Wiersig (2011), Wiersig, Kim,
and Hentschel (2008), and Wiersig, Eberspächer et al. (2011)
and has been confirmed in experiments by Kim et al. (2014);
see Fig. 31. In such cavities almost all modes appear in highly
nonorthogonal pairs of copropagating modes with a preferred
sense of rotation. Both features, the nonorthogonality and the
chirality, can be related to the EPs. The physical origin of the
chirality and the non-Hermiticity in this kind of cavities is
asymmetric backscattering between counterpropagating trav-
eling waves. In a traveling-wave basis the strong asymmetry
in the backscattering can be well described by the toy
Hamiltonian (42) with jWj ≪ jVj (or jVj ≪ jWj). A deriva-
tion of the matrix (42) for this case can be found in Wiersig
(2011, 2014a).
The nonorthogonality of modes in open cavities has drastic

consequences for lasers. It leads to quantum excess noise and
therefore to an enhancement of the laser linewidth with respect
to the well-known Schawlow-Townes formula (Petermann,
1979; Siegman, 1986; Schomerus et al., 2000; Schomerus,
2009; Chong and Stone, 2012; Pillay et al., 2014). This is
usually quantified by the Petermann factor K. At an EP
the Petermann factor is expected to diverge (Berry, 2003).
Lee, Ryu et al. (2008) have investigated this divergence
with extensive numerical simulations on a stadium-shaped
microcavity.
Exceptional points not only induce interesting effects in the

laser operation, but also the laser operation can induce EPs.
This possibility has been put forward for microcavity lasers
with spatially nonuniform pumping by Liertzer et al. (2012)

FIG. 30 (color online). Measured eigenfrequency surfaces νl −
νref of modes in a smoothly deformed liquid-jet microcavity near
an exceptional point (EP). The two independent parameters
consist of a deformation parameter and a quasicontinuous internal
parameter, the mode number n. From Lee et al., 2009a.

FIG. 31 (color online). Chirality of a mode in a microdisk
perturbed by two small bumps. The disk is optically excited and
the directionality of the light outcoupled to a waveguide is
measured (squares) as a function of the normalized angle between
the bumps. Positive (negative) values mean transmission mainly
to the left (right) indicating a finite chirality of the excited mode.
The calculated chirality shown as circles is positive (negative) for
mainly counterclockwise (clockwise) rotation of the mode. Inset:
SEM of the perturbed microdisk with the coupling waveguide.
From Kim et al., 2014.
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[see also Ge et al. (2011)] and has recently been confirmed
experimentally (Brandstetter et al., 2014). Here the signatures
of the induced EP can be found in the above-threshold
characteristics of the laser.
Like avoided resonance crossings, EPs can play a signifi-

cant role in the organization of resonances in the complex
frequency plane. This has been shown in theoretical works for
a microdisk with a point scatterer (Dettmann et al., 2009b) and
a deformed microdisk (Ryu and Lee, 2011).
One potential application of EPs is in the field of label-free

optical detection at single-particle resolution (Armani et al.,
2007; Vollmer and Arnold, 2008; Vollmer, Arnold, and Keng,
2008; Shao et al., 2013). Nowadays, it is possible to detect
single viruses and nanoparticles by the frequency splitting of a
pair of WGMs induced by near-field coupling of the particle
to a microcavity. A serious problem in this scheme is the
unavoidable finite frequency splitting present already in the
uncoupled case due to fabrication tolerances. In an elaborate
experiment, Zhu et al. (2010) have demonstrated that this
problem can be removed by carefully placing two nanofiber
tips in the evanescent field of a microtoroid cavity. By a
controlled positioning of the nanofiber tips the cavity-tip
system has been tuned to an EP at which the frequency
splitting vanishes. Subsequently, it was shown by analytical
and numerical calculations that the sensitivity of frequency
splitting detection can be significantly enhanced at an EP
(Wiersig, 2014b).
The coalescence of three eigenvalues shows considerable

more involved topologies of eigenvalue surfaces (Demange
and Graefe, 2012). The topological structure of eigenvalue
surfaces for several neighboring EPs has been studied for the
case of two coupled nonidentical microdisks by Ryu, Lee, and
Kim (2012); see also Ryu, Lee, and Kim (2009).
Finally, EPs are related to symmetry breaking in PT -

symmetric systems. Bender and Boettcher (1998) discovered
that non-Hermitian Hamiltonians which are invariant under a
combination of parity (P) and time reversal (T ) can have a
real spectrum. This is the case if the eigenstates of the
Hamiltonian are also symmetric under the PT operation.
When the symmetry is broken for the eigenstates then the
eigenvalues appear in complex conjugate pairs. The point in
parameter space at which this symmetry breaking occurs is an
EP. PT -symmetric systems can be realized by electromag-
netic systems which have a balanced arrangement of absorb-
ing and amplifying regions (El-Ganainy et al., 2007; Guo
et al., 2009; Rüter et al., 2010). The study of electromagnetic
PT symmetry has become a highly active field which cannot
be covered in this review. In the following we therefore focus
on PT -symmetric cavities. The general scattering theory of
PT -symmetric systems has been presented by Schomerus
(2010, 2013) and Chong, Ge, and Stone (2011). Schomerus
(2010) revealed that quantum noise turns PT -symmetric
cavities with stationary states into self-sustained sources of
radiation. The relation of quantum noise and mode non-
orthogonality inPT -symmetric cavities has been theoretically
analyzed by Yoo, Sim, and Schomerus (2011). Longhi (2010)
discovered that a PT -symmetric cavity that acts as a laser
must behave simultaneously as a coherent perfect absorber;
see also Chong, Ge, and Stone (2011). A random-matrix
theory for PT -symmetric cavities has been developed by

Birchall and Schomerus (2012). An experimental realization of
a PT -symmetric cavity in the microwave and in the optical
regime has been reported by Bittner, Dietz, Günther et al.
(2012), Chang et al. (2014), and Peng et al. (2014), respec-
tively. Single-mode lasing based on PT symmetry has been
realized recently by Feng et al. (2014) andHodaei et al. (2014).
In summary, the literature reviewed in this section shows

that dielectric cavities are interesting model systems for many
features of non-Hermitian physics near avoided resonance
crossings and exceptional points.

VII. UNIDIRECTIONAL FREE-SPACE LIGHT EMISSION
FROM DEFORMED MICROLASERS

Shortly after the first fabrication of microdisks, it was
shown experimentally that deforming the disk boundary from
circularity allows for improved directionality of emission and
therefore for more efficient extraction and collection of light
(Levi et al., 1993; Nöckel et al., 1996). Many shapes have
been proposed and realized since then, but only a few lead to
light emission into approximately a single direction. Since
unidirectional emission is essential to many applications such
as lasers and single photon sources, it has been the driving
force behind the development of optical microcavities with
various shapes over the years. Moreover, most deformed
microcavities suffered severe Q spoiling: the Q factor dra-
matically degrades upon deformation (Nöckel, Stone, and
Chang, 1994), in the worst case ruling out any application.
The trade-off between the Q factor and directionality is a
critical issue for deformed microcavities. This section will
provide an overview over different approaches that have been
developed to obtain unidirectional emission while minimizing
Q spoiling. These works illustrate how the cavity shape can be
used effectively as a “control knob” to achieve the desired
performance, which is important to device applications.

A. Spiral-shaped cavity

In the early studies, the asymmetric resonant cavities
retained two discrete reflection symmetry axes and emitted
multiple beams. To obtain emission in a single direction,
cavities with only one symmetry axis, e.g., a rounded isosceles
triangle (Kurdoglyan et al., 2004; Hentschel et al., 2010) or
space capsule (Schwefel, 2004), were proposed. They, how-
ever, suffer severe Q spoiling, making for instance the lasing
threshold too high experimentally.
Another approach to unidirectional emission is to break

the chiral symmetry, the prominent example being the spiral-
shaped microdisk (Chern et al., 2003; Kneissl et al., 2004). As
shown in Sec. V.B, the notch on the disk boundary scatters
light out of the cavity; see Fig. 24. The original idea was that
the CCW propagating mode feels the notch, while the CWone
does not; thus the CCW mode has stronger outcoupling than
the CWone, giving directional emission (Lee, Luo, and Poon,
2007). Experimentally emission in an approximately single
direction was obtained by pumping optically or electrically
only the edge of the cavity (Chern et al., 2003; Kneissl et al.,
2004). Later studies showed that uniform pumping of the
entire cavity does not produce directional output (Audet et al.,
2007; Hentschel et al., 2009). Further analysis revealed that
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pairs of CW and CCW modes do not exist in the spiral
(Wiersig, 2008; Wiersig, Kim, and Hentschel, 2008). Both
modes in a quasidegenerate pair are dominated by the CW
component (in the orientation shown in Fig. 24). Boundary
pumping enables a mode-beating mechanism that leads to
directional emission (Hentschel and Kwon, 2009).
From the numerical simulations, the optimal size of the

notch should be about two wavelengths, so that it is suffi-
ciently large to break the chiral symmetry, but at the same time
small enough to ensure the best possible light confinement.
Nevertheless, the Q factor of the spiral cavity is greatly
reduced from that of a circular cavity with the same area.

B. Interior whispering-gallery modes

Next we discuss a different approach based on the con-
struction of cavities with continuous families of periodic
orbits (Baryshnikov et al., 2004). Such a cavity can support
invariant lines of whispering-gallery type above the critical
line of total internal reflection but below the region of
conventional whispering-gallery trajectories. These interior
WGMs predominately emit by tunneling into the leaky region.
Provided that the invariant line has a sufficient asymmetric
shape in phase space, this mechanism can lead to directional
or even unidirectional emission.
Figure 32 shows that this concept can indeed be used to get

optical modes in a deformed microdisk which has emission
mainly into a single direction. Unfortunately, the quality
factor in this particular case was not reported (Baryshnikov
et al., 2004). For bidirectional emission theoretical (exper-
imental) quality factors around 104 (6000) are reported
(Gao et al., 2007).
One serious problem of such a cavity for laser application is

the coexistence of interior and conventional WGMs. The latter
have higher quality factors as the distance from the leaky
region is larger. In the case of flood (uniform) pumping, the
conventional WGMs lase first due to lower threshold, pro-
ducing nondirectional output. Carrier injection to the cavity
center selects interior WGMs for lasing because they have
better spatial overlap with the gain region (Baryshnikov et al.,

2004). This selective pumping method, however, is difficult to
implement for microcavities of dimension less than 5 μm.
Another way to suppress the lasing of conventional WGMs

is to deliberately introduce surface roughness. As the conven-
tional WGMs are located closer to the boundary of the cavity
than the interior ones, the quality factor of the conventional
WGMs will suffer more strongly from the Q spoiling due to
surface roughness. In this way the quality factors of the
conventional WGMs can be made slightly smaller than those
of the interior ones (Gao et al., 2007). Obviously, this
approach limits the achievable quality factors and is therefore
not favorable.

C. Annular cavity

In this section we describe a scheme which overcomes
the trade-off between a quality factor and directionality by
exploring mode coupling (see Sec. VI) as introduced by
Wiersig and Hentschel (2006). The general idea is to exploit
the weak coupling scenario to slightly hybridize a high Q
mode (HQM) and a directional lowQmode (LQM) to a mode
with a high quality factor and the directed far-field pattern of
the LQM. This scheme can be realized in three steps. First,
take a cavity with HQMs, e.g., a microdisk. Second, introduce
a one-parameter family of perturbations such that at least one
HQM is almost unaffected and at least one HQM turns into a
LQM having directed emission via refractive escape. Third,
vary the parameter such that an avoided resonance crossing
occurs between the HQM and the LQM. This scheme allows
the systematic design of modes with high quality factors and
highly directed emission.
This scheme has been demonstrated first by a theoretical

study of an annular cavity, a GaAs microdisk with a circular
air hole (Wiersig and Hentschel, 2006). Figure 33 shows
for this system an avoided resonance crossing in the weak
coupling regime, i.e., the frequencies cross and the quality
factors repel each other. Both modes involved in this avoided
crossing have even parity with respect to the symmetry axis.
One mode has a high Q factor above 5 × 105, the other one
has a low Q value of ≈300 and unidirectional emission due to

FIG. 32 (color online). (a) Family of interior whispering-gallery-type trajectories. (b) Far-field intensity distribution, showing
unidirectional emission. The index of refraction of the dielectric disk is n ¼ 3. Adapted from Baryshnikov et al., 2004.
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light reflection at the air hole. The hybridization is weak,
which keeps the quality factors and the near-field patterns
almost unaffected while the far-field pattern is in both cases
dominated by the low Q component; cf. the solid and dashed
lines in the lower right panel of Fig. 33. As a result a high Q
mode with unidirectional emission is obtained. This theoreti-
cal prediction has been confirmed in an experiment (Wilde,
2008). Recently, another experiment on an annular cavity
coupled to a waveguide showed unidirectional emission as
well (Preu et al., 2013).
The problem of this particular system is the coexistence of

even- and odd-symmetry modes. Since the scenario of avoided
resonance crossings is in general different for the two
symmetry classes, the respective output directionality may
differ. In most of the practical cases both modes are involved
in the process of light emission which then spoils the
directionality. To avoid this problem of the mode coupling
approach a less symmetric geometry is needed, which will be
discussed in Sec. VIII.B.

D. Limaçon cavity

This section introduces a robust and general mechanism
that combines directional light output and ultralow loss in
deformed microdisks (Wiersig and Hentschel, 2008). The key
idea is to exploit light emission along unstable manifolds of
the chaotic saddle of the ray dynamics (see Sec. IV.C) to
achieve unidirectional emission and to use wave localization
such as scarring (see again Sec. IV.C) to get high Q factors.
When the cavity size is much larger than the wavelength, the
output directionality is universal for all the high Q modes
because the corresponding escape routes of rays are similar.
This property enables one to robustly achieve unidirectional
emission without selective excitation of specific modes in
experiments.

The applicability of this idea was demonstrated for the
limaçon cavity defined as in Eq. (23). In Fig. 34(a), ray
simulations of far-field intensity patterns from the limaçon
cavity with refractive index n ¼ 3.3 and deformation param-
eter ε ¼ 0.43 are plotted for the TE polarization (solid curve)
and TM polarization (dashed curve). The far-field pattern is
determined by the unstable manifold in the leaky region
(j sin χj < 1=n), which can be computed from the survival
probability distribution for an ensemble of rays starting
uniformly in phase space with identical intensity.
Figure 34(b) depicts the resulting Fresnel weighted unstable
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FIG. 33 (color online). Normalized frequencies Ω ¼ ωR=c and quality factors vs d for a highQWGM and a lowQmode with directed
emission in the annular cavity, a microdisk of radius R with an air hole of radius R2 ¼ 0.22R located at the distance d to the disk’s
boundary. The index of refraction for TM polarization is n ¼ 3.3. The coupling of the two modes leads to unidirectional emission in the
far field (lower right).

(a) (b)

FIG. 34 (color online). Ray simulations of unidirectional emis-
sion from a limaçon cavity with refractive index n ¼ 3.3 and
deformation parameter ε ¼ 0.43. (a) Far-field intensity patterns
are normalized so that the integrated intensity is unity. The solid
(dashed) curve is for TE (TM) polarization. (b) Survival prob-
ability distribution for an ensemble of 50 000 rays starting
uniformly in the phase space with identical intensity for TE
polarization. The arclength s is normalized to the cavity’s
perimeter. The Fresnel weighted unstable manifold in the leaky
region (j sin χj < 1=n) is concentrated on very few high-intensity
spots, giving highly directional output. From Wiersig and
Hentschel, 2008.
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manifold of the chaotic saddle for the limaçon cavity,
revealing the fact that the manifold is concentrated on very
few high-intensity spots in the leaky region. Therefore, the
escape routes of rays, regardless of the starting points, are
closely nested in the phase space, leading to highly directional
output. Because of the existence of the Brewster angle for the
TE polarization, the unidirectionality is better in the TE case
than in the TM case (Wiersig and Hentschel, 2008).
Numerical solution to the wave equations confirmed that

the limaçon cavity supports highQmodes of both TE and TM
polarization. As an example, Fig. 35 shows a TE mode
of Q ¼ 185 000 at the normalized frequency Ω ¼ ωR=c ¼
26.0933, which corresponds to a free-space wavelength of
about 900 nm for R ¼ 3.75 μm. The mode is spatially
confined near the boundary of the cavity. The Husimi function
shows the mode intensity is enhanced around an unstable
periodic ray trajectory, which is located well above the critical
line for total internal reflection (j sin χj ¼ 1=n). Hence, the
scarring phenomenon results in exponentially small intensity
in the leaky region that gives the high-Q factor.
Even though the Husimi function has a small contribution

in the leaky region, it is precisely this outgoing light that
determines the far-field pattern. Figure 35 shows that the
Husimi function in the leaky region agrees to the unstable
manifold in Fig. 34, confirming its responsibility for the
directional emission. Owing to the ray-wave correspondence
(Shinohara and Harayama, 2007), all high Q modes exhibit
unidirectional emission patterns closely corresponding to the
ray calculation.

Soon after the theoretical proposal by Wiersig and
Hentschel (2008), several groups fabricated limaçon cavity
lasers (Shinohara et al., 2009; Song, Fang et al., 2009; Yan
et al., 2009; Yi, Kim, and Kim, 2009; Albert et al., 2012).
Song, Fang et al. (2009) studied GaAs limaçon cavities with
R ¼ 2.18 μm (dimensionless size parameter nωR=c ≈ 48)
and measured a Q factor of 22 000, significantly higher than
all the previously reported Q values of deformed micro-
cavities. The high quality factor and small modal volume
results in a very low lasing threshold, allowing continuous-
wave operation. The inhomogeneously broadened gain spec-
trum of InAs quantum dots leads to lasing in multiple modes
well separated in wavelength. All the lasing modes have a
single output beam in the same direction, regardless of their
wavelengths and intracavity mode structures. The unidirec-
tionality is robust against cavity sidewall roughness and small
shape deviation, allowing fabrication by standard photoli-
thography and wet chemical etching. Shinohara et al. (2009)
investigated larger GaAs cavities with R ¼ 20 to 50 μm
(nωR=c ≈ 480 to 1200) and obtained lasing by electric
pumping with pulsed currents. Yi, Kim, and Kim (2009) also
achieved lasing in the InGaAsP cavities with R ¼ 50 μm
(nωR=c ≈ 650) by electric pumping with continuous currents.
In all of these studies, measured light emissions were TE
polarized and unidirectional emissions corresponding to the
ray simulations were confirmed. TM-polarized unidirectional
emission was confirmed by Yan et al. (2009) for quantum
cascade lasers with the limaçon cavities of R ¼ 80 μm
(nωR=c ≈ 161), where again close agreement with the ray
simulations was reported. In addition to dielectric disks,
vertical cavities with limaçon cross section were fabricated,
and directional far-field emission was demonstrated from
electrically driven quantum-dot micropillar lasers (Albert
et al., 2012).
For the GaAs-based microcavities described earlier, the

refractive index is around 3.3 and the optimal deformation
for unidirectional emission is ε ¼ 0.43. A numerically highly
directional far-field pattern and high quality factor were also
found for 0.41 ≤ ε ≤ 0.49 and the refractive index between
2.7 and 3.9 (Wiersig and Hentschel, 2008).

E. “Face” cavity

Since the unidirectional emission of limaçon-shaped
cavities is valid only for high-refractive-index materials
(n ≥ 2.7), the remaining question is how to obtain high Q
and unidirectional emission from low-refractive-index micro-
cavities, such as silica (n ¼ 1.45). Experimentally silica
microspheres can have much higher Q than GaAs microdisks,
and slight deformations of spheres are shown to make the
output directional, but not in a single direction (Lacey and
Wang, 2001; Xiao et al., 2007, 2009).
Recently, Zou et al. (2013) came up with a guideline for the

design of low-refractive-index microcavities with high-Q fac-
tor and unidirectional emission. First, the cavity deformation
must be small, continuous, and smooth in order to support
high Q WGMs. Second, the boundary shape should have no
more than one axis of symmetry. For planar deformed cavities,
two or more lines of symmetry or m-fold rotational symmetry
with m > 1 will lead to at least two emission directions in far
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FIG. 35 (color online). Calculated intensity distribution of an
even-parity TE mode (a) inside and (b) outside a limaçon cavity
with refractive index n ¼ 3.3 and deformation parameter
ε ¼ 0.43. The mode has a normalized frequency Ω ¼ ωR=c ¼
26.0933, and a Q factor of 185 000. The mode is confined
spatially near the cavity boundary and emits predominantly to the
direction φ ¼ 0. (c) Husimi function of the TE mode in (a),
exhibiting enhanced mode intensity around an unstable periodic
ray trajectory illustrated in the inset. The dots mark the bouncing
points of the periodic ray trajectory from the cavity boundary. The
horizontal lines sin χc ¼ 1=n enclosing the leaky region are
indicated. (d) Magnified Husimi function in the leaky region
agrees to the unstable manifold in Fig. 34(b), confirming its
responsibility for the directional emission. Adapted from Wiersig
and Hentschel, 2008.
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field. According to the aforementioned guidelines, the cavity
boundary can be expressed in a general form

rðφÞ ¼
8<
:

R


1 − ε

P
i
aicosiφ

�
; −π=2 < φ ≤ π=2;

R


1 − ε

P
i
bicosiφ

�
; π=2 < φ ≤ 3π=2;

ð47Þ

where φ is the polar angle, ε is the general deformation, and ai
and bi are coefficients with i ≥ 2. With small and continuous
deformation, the cavity is in the regime of mixed phase space
or soft chaos, namely, the phase space has a combination of
chaotic and regular regions. The high Q WGMs stay well
above the critical line for total internal reflection; through
dynamical tunneling light escapes to the chaotic sea and
diffuses to the leaky region (j sin χj < 1=n) along unstable
manifolds. The relative positions of unstable periodic orbits
and regular islands for stable periodic orbits determine the
shapes of manifolds and the regions on the boundary where
rays refract out (called “refraction regions”). Thus the posi-
tions of the refraction regions can be tuned by changing the
cavity shape via ε, ai, and bi.
Zou et al. (2013) found the cavity of highest unidirection-

ality in an ensemble of 1000 cavity shapes, with the
parameters ε ¼ 1.0, a2 ¼ 0.2491, a3 ¼ −0.0520, a4 ¼
−0.0783, b2 ¼ 0.2538, b3 ¼ 0.0446, and b4 ¼ −0.0214.
The refractive index of the cavity is n ¼ 1.45. As shown in
Figs. 36(a) and 36(b), the islands for stable rectangle period-4
orbit in the SOS shape the unstable manifolds, making the far-
field pattern highly unidirectional [Fig. 36(c)]. Because its
SOS assembles a monster face, this cavity is called the face
cavity.

While the results of the ray simulations are impressive,
there are problems with respect to the mode properties. Since
the approach is based on a mixed phase space, there exist
modes located in regular islands which, at least partly, leave
the cavity by directed tunneling. Such modes have high Q but
cannot entirely follow the unstable manifold in the desired
direction. The same is true for modes confined by partial
barriers which play an important rule in mixed phase space.
This mechanism becomes dominant for low to moderately low
kR (Shim, Wiersig, and Cao, 2011). It is therefore to be
expected that the approach of Zou et al. does not provide
universal far-field patterns already for moderately small
cavities.
Recently, shapes of the type in Eq. (47) have been realized

experimentally with microdisks (Liu et al., 2013), microtor-
oids (Jiang et al., 2012), and microspheres (Cui et al., 2013).
In the first case Liu et al. (2013) fabricated polymer
(n ¼ 1.503) microcavities by two-photon polymerization. In
the second case Jiang et al. (2012) fabricated doped silica
microtoroids. In the third case, the equator of a silica micro-
sphere is deformed by shooting CO2 laser pulses to one side of
the microsphere. The deformation can be well controlled by
adjusting the intensity and the number of heating laser pulses.
Using this method, directional emission from WGMs with a
high quality factor of 107 is achieved in these microspheres,
and a transition from two-directional to single-directional
emission is observed for the special case of a traveling-wave
excitation using a fiber taper (Cui et al., 2013).

F. Ellipse with a notch

Although the unstable manifolds can produce emission
predominantly in a single direction, the far-field divergence
angle of the main lobe is relatively large, and side lobes
persist. To obtain an output beam with small divergence angle,
Wang et al. (2010) took a different approach. Instead of
utilizing the unstable manifold, they introduced a defect at the
cavity boundary to scatter light, most of which was then
focused by the cavity boundary to a collimated beam.
Figure 37(a) shows light scattered by a wavelength-size

notch at the edge of an elliptical cavity, then collimated as a
parallel beam in the far field by the right boundary of the
notched ellipse. To achieve optimal collimation, Wang et al.
utilized the well-known focusing property of the ellipse
(auxiliary ellipse in dashed line): for any given refractive
index n > 1, one can find an auxiliary ellipse such that all
incoming parallel rays are collected into one of its foci;
conversely in the reciprocal process light emerging from the
left focus of the auxiliary ellipse in Fig. 37(a) is refracted by its
right half side into parallel rays. Note that the notch is located
at one of the foci of the auxiliary ellipse, but not at the focus
of the elliptical cavity. The long-to-short aspect ratio of the
elliptical cavity is chosen such that its right-side boundary best
(i.e., over the largest possible angle) approximates that of the
auxiliary ellipse. Figure 37(b) presents the ray simulation of
the collimation effect: a number of rays are started at the
position of the notch with different outgoing angles, simulat-
ing a scattering process. They travel inside the cavity until
they hit its boundary, upon which they either are specularly
reflected or, if the angle of incidence at the surface is smaller

FIG. 36 (color online). Ray dynamics in the face cavity made of
silica. (a) The Poincaré SOS. The diamonds mark the unstable
period-4 orbit. Its unstable manifold is shaped by the islands
around the stable periodic-4 orbit. The horizontal line is the
critical line. (b) The cavity boundary and a ray trajectory close to
the stable periodic-4 orbit. (c) The far-field pattern obtained by
ray simulations with modified Fresnel’s law. Adapted from Zou
et al., 2013.
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FIG. 37 (color online). (a) Illustration of the notched-elliptical cavity. The arrows indicate that light is scattered by the notch and
collimated as a parallel beam by the right-side boundary of the cavity. The boundary of the cavity (solid curve) is designed to best
approximate that of the auxiliary ellipse (dashed curve) within the largest possible range. The notch is located at one of the foci of the
auxiliary ellipse. The optimal long-to-short aspect ratio of the elliptical cavity is 1.2 for the refractive index of 3.2. (b) Ray simulation of
the collimation effect: a number of rays are started at the position of the notch with different outgoing angles, simulating a scattering
process. The solid rays leave the notch under relatively smaller outgoing angles; they hit the right boundary of the cavity and get
refracted out. The dash-dotted ray leaves the notch at a high outgoing angle and is relaunched into a whispering-gallery mode. (c) A
single ray is started at some position along the cavity boundary with an initial angle of incidence larger than the critical angle. It is then
specularly reflected many times until at some point it hits the notch and gets reflected to the opposite boundary, refracted out, and leaves
the cavity parallel to the horizontal axis due to the collimation effect. (d) Scanning electron microscope image of the notched-elliptical
cavity. (e) Experimental and simulated far-field intensity profiles. Adapted from Wang et al., 2010.
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than the critical angle for total internal reflection, get refracted
out. The solid rays, which leave the notch under relatively
smaller outgoing angles, get collimated; the collimation is
worse for higher outgoing angles (outermost rays). The dash-
dotted ray leaves the notch at a high outgoing angle and is
relaunched into a WGM. Figure 37(c) shows the ray simu-
lation of whispering-gallery dynamics. A single ray is started
at some position along the resonator boundary with an initial
condition such that the angle of incidence is larger than the
critical angle. It is then specularly reflected many times,
corresponding to a whispering-gallery-like mode, until at
some point it hits the notch. It then gets reflected to the
opposite boundary, and refracted out, leaving the cavity
parallel to the horizontal axis due to the collimation effect.
Experimentally the notched-elliptical cavities were fabri-

cated for the quantum cascade laser operating at the free-space
wavelength of 10 μm (Wang et al., 2010); see Fig. 37(d). The
long axis and short axis were 96 and 80 μm, respectively. The
optimized notch width was 3 μm and depth 2 μm. Wave
simulation of a first-order WGM with TM polarization and
refractive index n ¼ 3.2 gave a Q factor of 590 000.
According to the calculated intracavity intensity distribution,
only the outermost part of the mode had an overlap with the
notch, which explained the high-Q factor. The laser output
was highly unidirectional, with a FWHM (full-width-at-half-
maximum) beam divergence angle of merely 6° as shown in
Fig. 37(e).
For a refractive index below 3 the emission starts to become

more uniform. This is due to the fact that, for a low index,
most of the rays hitting the notch are partially transmitted, and
thus much of the intensity is not reflected to the opposite side
where collimation can take place (Unterhinninghofen, 2011).
Recently, the collimation effect has been exploited in

numerical simulations by coupling a microdisk to a lens-
shaped cavity nearby (Ryu and Hentschel, 2011). By a proper
choice of parameters unidirectional light emission from high-
quality modes is possible even in the low-index regime.

VIII. BEAM SHIFTS AND SEMICLASSICAL APPROACHES

In this section we discuss beam shifts and semiclassical
approaches which are, in particular, relevant for wavelength-
scale microcavities. As explained later, the wavelength-scale
cavities are important not only for practical applications, but
also for fundamental studies on the ray-wave transition in non-
Hermitian systems.

A. Beam shifts

As discussed in Sec. IV, certain modes in microdisk cavities
possess a simple geometric structure, for instance, a Gaussian
mode based on a stable periodic orbit (Fig. 15), a scarred mode
along an unstable periodic orbit (Fig. 21), or a quasiscarred
mode without underlying periodic orbit. In such a case, it is
convenient to describe the mode by a single optical beam
propagating periodically inside the cavity. It is well known
that when a beam of finite angular spread is incident to a
dielectric interface, the reflected and transmitted beams both
undergo spatial and angular shifts. In general, four different
kinds of beam shifts can occur [see the recent review by

Bliokh and Aiello (2013)], but only the two shifts that are
in the plane of incidence are relevant for the quasi-two-
dimensional geometry of a (deformed) microdisk cavity. In the
geometric-optics limit λ → 0, the beam shifts disappear and
the center of the beam follows the prediction of geometric
optics. For finite wavelength λ, however, the effective beam
center dynamics including beam shifts deviate from the
prediction of geometric optics. In this sense, the beam shifts
can be considered as a semiclassical correction to the ray
dynamics (Chowdhury, Leach, and Chang, 1994; Herb et al.,
1999; Hentschel, 2001; Hentschel and Schomerus, 2002).
The beam shift that was discovered first is the spatial Goos-

Hänchen shift (GHS) (Goos and Hänchen, 1947). Upon
reflection of a beam at a dielectric interface near or above
the critical angle of incidence for total internal reflection χc,
the different partial waves in such a beam accumulate different
phases, which leads to a lateral shiftΔs along the interface due
to interference; see Fig. 38(a). The GHS Δs is proportional to
the wavelength λ. At a planar interface between two normal
dielectrics Δs is positive, but it can be negative for an interface
between a normal dielectric and a negative-index metamate-
rial; see, e.g., Berman (2002) and Wiersig et al. (2010). A
simple analytical formula forΔsðχÞ at a planar interface above
the critical angle χ > χc is due to Artmann (1948). Right at the
critical angle the formula exhibits an unphysical singularity.
The same is true at sin χ ¼ 1. For Gaussian beams, there is an
analytical result due to Lai, Cheng, and Tang (1986), which is
valid if the beam width σ is much larger than 1=k, where k is
the wave number. In the regime of kσ ≈ 1, the Lai result
also shows unphysical singularities (Unterhinninghofen and
Wiersig, 2010). Measurements of the GHS in the microwave
regime have been done by Müller et al. (2006) and
Unterhinninghofen et al. (2011).
While the GHS is related to the χ dependence of the phase

of the complex reflectivity r, the other beam shift relevant for
microdisk cavities is associated with the χ dependence of the
absolute value of r. In this case, partial waves with angles of
incidence χ below the critical angle χc are (partially) refracted
out of the cavity, leading to an angular shift Δχ (or Δp, if one
considers the dimensionless momenta p ¼ sin χ of the partial
waves) of the reflected beam—a violation of the law of
reflection—and an angular shift Δη of the transmitted beam—
a violation of Snell’s law; see Fig. 38(b). For the case of

(a)

Δs
Δη(b)

Δχ

FIG. 38. Goos-Hänchen shift and Fresnel filtering at a dielectric
interface. (a) Goos-Hänchen shift near or above the critical angle
of incidence: the center of a beam (solid lines) with finite beam
waist (curve) reflected at a dielectric interface is spatially shifted
by Δs with respect to the geometric-optics prediction (dashed
line). (b) Fresnel filtering near or below the critical angle of
incidence: deviations from the law of reflection (angular shift Δχ
of reflected beam) and Snell’s law (angular shift Δη of trans-
mitted beam).
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reflection the beam shift is called the angular Goos-Hänchen
shift (Ra, Bertoni, and Felsen, 1973; Chan and Tamir, 1985)
and for the case of transmission it is called Fresnel filtering
(FF) (Tureci and Stone, 2002). There are subtle differences in
the precise definition of FF and the angular Goos-Hänchen
shift which are of no relevance for the discussion here; see
Götte, Shinohara, and Hentschel (2013) for a comprehensive
comparison. In the following we use the term FF effect for
both the reflected and the transmitted beam. The FF effect in
transmission has been observed experimentally in the far-field
pattern of a scarred optical mode in a GaN microlaser with
quadrupolar shape (Rex et al., 2002) and of a Gaussian optical
mode in a quasistadium GaAs/AlGaAs microlaser (Shinohara,
Harayama, and Fukushima, 2011). The FF effect in reflection
has been measured in the microwave regime (Müller et al.,
2006) and in the optical regime (Merano et al., 2009).
Studies of beam shifts at curved interfaces have also been

done; see, e.g., Tran et al. (1995), Hentschel and Schomerus
(2002), Schomerus and Hentschel (2006), and Zhou
et al. (2011).
As both beam shifts, GHS and FF, are associated with the

χ dependence of the reflectivity r they can be considered as
two aspects of a unique beam-propagation phenomenon
(Aiello, Merano, and Woerdman, 2009) which becomes
obvious in the mode representation using the Husimi function
in the SOS (Schomerus and Hentschel, 2006).
Extending the ray dynamics by incorporating the

GHS preserves the Hamiltonian character of the dynamical
system (Altmann, Del Magno, and Hentschel, 2008;
Unterhinninghofen, Wiersig, and Hentschel, 2008), whereas
the FF effect leads to non-Hamiltonian features as will be
discussed later. A number of interesting effects on the phase
space and the mode properties have been discovered. For
instance, the GHS increases the round-trip optical path and
thereby modifies the mode spacing. This has been demon-
strated by Mie theory calculations for dielectric spheres
(Chowdhury, Leach, and Chang, 1994).
Foster, Cook, and Nöckel (2007) were the first to show that

the GHS can modify the structure of phase space not only
quantitatively but also qualitatively and can therefore lead to
new types of mode patterns. In their dome-shaped cavity the
GHS creates in phase space a stable periodic orbit surrounded
by a small island. Following the semiclassical eigenfunction
hypothesis (Percival, 1973; Berry, 1977) the island can
support modes which have been indeed observed in the dome
cavity by numerical calculations. Unterhinninghofen, Wiersig,
and Hentschel (2008) have confirmed this GHS-induced
localization for modes in the dielectric ellipse; see Fig. 39.
Moreover, they showed that the GHS applied to integrable
ray dynamics cannot only create stable periodic orbits but
also unstable ones in accordance with the Poincaré-Birkhoff
theorem (Lichtenberg and Lieberman, 1992; Ott, 1993). The
existence of scarred modes localized along such unstable
periodic orbits has been confirmed in numerical simulations
(Unterhinninghofen, Wiersig, and Hentschel, 2008) and
experiments (Yi et al., 2011) on the dielectric ellipse. If the
GHS is sufficiently small, the created stable and unstable
periodic orbits are spatially close to the corresponding geo-
metric-optics orbits; cf. Figs. 39 and 28(c). Hence, the
discussed modes are also localized near these special marginal

stable periodic orbits. Because of this, these modes have been
originally termed scarlike modes as discussed in Sec. VI. The
scarlike modes in the ellipse appear together with avoided
resonance crossings (see Fig. 28) since the GHS breaks the
integrability of the internal ray dynamics in this kind of cavity
(Unterhinninghofen, Wiersig, and Hentschel, 2008).
The dynamical interplay of GHS (calculated for a planar

interface) and boundary curvature of a deformed disk lead
to shifts of phase-space structures in the momentum direc-
tion (Unterhinninghofen and Wiersig, 2010), which had been
misinterpreted as a FF effect before (Lee et al., 2005). Using
the local radius of curvature ρ, one finds the periodic-orbit
shift (POS)

ΔpPOS ¼ Δs
2ρ

cos χ: ð48Þ

Numerical calculations confirm that the modes localize along
the shifted periodic orbits rather than along the periodic orbits
of the conventional ray dynamics. The periodic-orbit shift (48)
has turned out to be important for a quantitative understanding
of resonance-assisted tunneling in deformed microcavities
(Kwak et al., 2013). The extended ray dynamics with GHS
calculated for a curved interface has been studied by Kotik and
Hentschel (2013).
While the GHS is a Hamiltonian correction, the FF renders

the extended ray dynamics non-Hamiltonian (Altmann, Del
Magno, and Hentschel, 2008). This can have dramatic
consequences on the long-time dynamics shown in phase-
space portraits since attractors and repellers may replace
KAM invariant curves, regular islands, and chaotic
regions (Altmann, Del Magno, and Hentschel, 2008;
Arroyo, Markarian, and Sanders, 2009; Unterhinninghofen
and Wiersig, 2010).
The ray dynamics augmented by FF explicitly takes the

openness of the system into account. Because of this the
extended ray dynamics violates time-reversal symmetry
(Altmann, Del Magno, and Hentschel, 2008). One conse-
quence is that time-reversal periodic-orbit partners of the
conventional ray dynamics are distorted differently by the FF

FIG. 39 (color online). Calculated optical mode in a dielectric
ellipse with refractive index n ¼ 3.3. The mode pattern is
localized along an optical beam (beam center is indicated by
the dashed lines) including the spatial Goos-Hänchen shift
(highlighted by the bars); cf. the corresponding geometric-optics
ray in Fig. 28(c).
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and therefore split (Altmann, Del Magno, and Hentschel,
2008; Song et al., 2011; Redding, Ge, Song et al., 2012; Shim
et al., 2012).
The quasiscars (modes localized on simple geometric

structures without underlying geometric-optics rays; see
Sec. IV) observed in spiral-shaped microcavities (Lee et al.,
2004) can be understood as real scars localized along unstable
periodic orbits in a ray dynamics augmented by FF (Altmann,
Del Magno, and Hentschel, 2008).

B. Wavelength-scale microcavities

In recent years there has been a strong push toward further
reduction of microlaser size for applications to nanophotonic
circuits, on-chip optical interconnects, and very local chemical
and biological sensing. The typical microdisk lasers have
diameter over 1 μm to avoid high optical bending losses inside
dielectric disks (Baba, 1997). Zhang, Yang, Liu et al. (2007)
realized submicron disk lasers which operated at room
temperature and emitted in the visible regime. The smallest
disks for which they achieved lasing operation have a diameter
of 645 nm, which is equal to the lasing wavelength in vacuum.
Song, Cao et al. (2009) reported single-mode lasing in
subwavelength GaAs disks at near-IR frequency. The smallest
disk diameter, about twice the wavelength inside the disk, is
30% less than the emission wavelength in free space. These
submicron disks, fabricated by standard photolithography and
wet chemical etching, had good circularity, smooth boundary,
and vertical sidewalls, which facilitated lasing in whispering-

gallery modes of the azimuthal number as small as 4. The
rotational symmetry of the circular microdisk, however,
results in a uniform far-field emission pattern, which is a
considerable disadvantage for most applications. In order to
obtain directional emission, wavelength-scale deformed
microcavities were subsequently investigated.
As elaborated on in Secs. IV and VII, directional output

from cavities of size much larger than the optical wavelength
(kR ≫ 1) has been obtained by manipulating the intracavity
ray dynamics via deliberate deformation of the cavity shape.
As the wavelength approaches the cavity size, the classical ray
model breaks down, and wave phenomena become signifi-
cant. HQMs may be formed by partial barriers in phase space
(Shim, Wiersig, and Cao, 2011), and their emission to free
space is not as directional as from larger cavities. Moreover,
the output directionality is no longer universal, it varies from
mode to mode, in contrast to the prediction of the ray model.
Nevertheless, unidirectional emission can still be generated
from such small cavities by coupling an isotropic HQM to an
anisotropic LQM (Song et al., 2010, 2011). As an example,
we consider a cavity of shape similar to the limaçon cavity
discussed in Sec. VII.D. The intracavity ray dynamics is
predominantly chaotic, the escape of rays is dictated by
the unstable manifolds which give unidirectional emission.
Experimentally, both unidirectional and bidirectional emis-
sions were observed for different lasing modes in the size
regime 5 < kR < 10. Wave simulations revealed that in this
regime there are a set of HQMs and a set of LQMs with
different mode spacing [Fig. 40(a)]. At kR≃ 7, the particular

FIG. 40 (color online). Numerical simulation of a wavelength-scale deformed dielectric cavity of refractive index n ¼ 3.13. The cavity
boundary is given by rðφÞ ¼ Rð1þ ε cosφÞð1 − ε1 cos 2φÞ þ d in polar coordinates, where R ¼ 890 nm, ε ¼ 0.28, ε1 ¼ 0.06, and
d ¼ 60 nm. (a) Calculated Q factor and (b) directionality U vs kR for the high Q modes (HQMs) (dots) and the low Q modes (LQMs)
(squares). The coupling of the HQM and LQM at kR≃ 7 leads to a drop of Q for the HQM and an increase of its U. (c)–(e) Calculated
magnetic field intensity for themodes labeled1, 5, 4 in (a), revealing the fact thatmode4 is a hybridof1 and5.Adapted fromSong et al., 2010.
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pair of modes, one from each set, are nearly degenerate in
frequency and become coupled. The coupling results in a
drop in the Q of the HQM and an increase of its emission
directionality

U ¼
Z

fðφÞ cosφdφ ð49Þ

[with the far-field intensity pattern fðφÞ normalized to unity]
as shown in Fig. 40. Comparison of the intensity distributions
of the HQM and LQM at frequencies away from the coupling
region and near the coupling point reveals a hybridization of
the HQM and the LQM at the coupling point. Such hybridi-
zation makes the HQM possess the directed far-field pattern of
the LQM, which is the same as the mechanism discussed in
Sec. VII.C for the annular cavity.
The directional emission of theLQMis attributed to the beam

shifts (see Sec. VIII.A) in the wavelength-scale cavity. The
Husimi function on the classical Poincaré SOS reveals that the
LQM is concentrated on a periodic orbit of triangle shape with
three bounces from the cavity boundary. The beam shifts, i.e.,
the GHS and the FF, are evident in the incident and emergent
Husimi functions (Song et al., 2010, 2011). Consequently, the
triangle orbit is broken into two distinct CWand CCWperiodic
pseudo-orbits. This split is confirmed by direct calculation of
periodic orbitswith the extended ray dynamics that incorporates
the beam shifts (Song et al., 2011). Figure 41 plots the CWand
CCWorbits of period 3 that correspond to the LQM. In the case
of CCW (CW) motion the angle of incidence is smallest at
bounce point iii (i) leading to the strongest emission there. In
both cases the emitted rays emanate in the same direction
leading to a unidirectional output.
The beam shifts, which are significant for the LQM and

make its emission directional, are negligible for the HQM,
which is concentrated on a period-4 orbit with larger angle of
incidence (Song et al., 2010, 2011). Hence, directional output
for a HQM can be obtained only by accidental coupling to a
LQM. However, with a further reduction of the cavity size, the
underlying orbits for the HQMs have decreasing number of
bounces and the angles of incidence approach the critical
angle for total internal reflection. We take the limaçon cavity
again as an example. In the regime of 2 < kR < 5, the HQMs

correspond to triangle orbits with angle of incidence near the
critical angle; consequently, the beam shifts (FF and GHS)
become much stronger, making the HQM directional without
coupling to a LQM. Figures 42(a) and 42(b) show the
constitute CW and CCW waves in a directional HQM of
kR ¼ 3.2. The CW wave has enhanced amplitude at three
locations on the cavity boundary, which are close to but not
coincident with the bounce points of a triangle orbit predicted
by ray optics. A similar phenomenon is seen for the CCW
wave, with enhanced intensity at different locations. These
locations agree well with the positions of the bounces from the
Husimi function of the HQM. The spatial separation of the
CW and CCW intensity maxima results from the beam shifts,
which produce directional output, as shown in Figs. 42(c)
and 42(d). Experimentally lasing was realized in the HQM of
kR down to 3, and unidirectional emission was observed
(Song et al., 2010, 2011).
The spatial separation of the intensity maxima for the

CW and CCW waves introduces local chirality, defined as
WðθÞ≡ ½ICCWðθÞ − ICWðθÞ�=½ICCWðθÞ þ ICWðθÞ�, where θ
specifies the angle along the cavity boundary (Redding,
Ge, Song et al., 2012). Despite the fact that the cavity shape
possesses chiral symmetry rð−φÞ ¼ rðφÞ, the local balance
between the intensities of CW and CCW waves is broken
by GHS and FF, namely, ICWðθÞ ≠ ICCWðθÞ at the cavity

FIG. 41. Spatial separation of the period-3 orbit for clockwise
(CW) and counterclockwise (CCW) propagating rays in a wave-
length-scale deformed cavity due to beam shifts. The cavity is the
same as that in Fig. 40, and the orbit corresponds to the LQM.
The three bounce points are labeled i, ii, and iii. The arrow
outside the cavity represents the direction of dominant emission
from the bounce point where the angle of incidence is the
smallest. Both CW and CCW rays emit in the same direction.
From Song et al., 2011.

FIG. 42 (color online). Calculated spatial intensity distribution of
the (a) CW and (b) CCW waves that constitute a high Q mode at
kR ¼ 3.2 in a limaçon cavity. The intensity maxima for the CW
and CCWwaves are spatially separated. The solid lines depict the
path for the CW beam in (a) and CCW beam in (b), reconstructed
from the incident and emergent Husimi functions. The split in the
CW and CCW orbits is due to beam shifts. (c) The CW wave
intensity is enhanced outside the cavity to show that the emission
is predominantly from bounce 1. Similarly, the CCW wave (a
mirror image with respect to the horizontal axis) emits from
bounce 3 into the same direction (not shown). (d) A polar plot of
the experimentally measured far-field pattern of laser emission
(thin dotted line) which agrees well with the calculated output of
the high Q mode at the same wavelength (thick solid line). From
Redding, Ge, Song et al., 2012.
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boundary. By placing a waveguide tangentially to the cavity
boundary, either the CW or CCW wave is selectively coupled
out, depending on the coupling position, thus making the
evanescent waveguide coupling directional (Redding, Ge,
Solomon, and Cao, 2012; Redding, Ge, Song et al., 2012).
Figure 43 shows a straight waveguide with the same refractive
index as the deformed disk placed in the near field of the disk
boundary, and the location of the coupling point is specified
by the angle θ. At each θ, JCW (JCCW) represents the intensity
of emission from a cavity resonance to the waveguide
in the CW (CCW) direction. Quantitatively, the directionality
of the coupled emission, defined as VðθÞ≡ ½JCCWðθÞ−
JCWðθÞ�=½JCCWðθÞ þ JCWðθÞ�, was plotted as a function of
the coupling position θ in Fig. 43(b). As the coupling point
moves along the cavity boundary, the sign of VðθÞ changes,
reflecting the switch of the outcoupling direction. The
variation of VðθÞ mirrors that of the local chirality WðθÞ in
Fig. 43(d), confirming that the directional coupling originates
from local chirality. Experimentally local chirality and

directional coupling to a waveguide have been demonstrated
with wavelength-scale semiconductor lasers (Redding, Ge,
Solomon, and Cao, 2012; Redding, Ge, Song et al., 2012).
Selective coupling of CW (CCW) wave reduces its ampli-

tude inside the cavity, making the CCW (CW) wave dominant.
In other words, with this selective coupling scheme, the cavity
resonance is composed mainly of the less coupled CCW (CW)
wave. The standing-wave pattern is thus replaced by a
propagating wave, which produces a more uniform spatial
distribution of the field intensity inside the cavity (Redding,
Ge, Solomon, and Cao, 2012). In the application to laser, the
spatial hole burning effect is reduced, and the lasing mode can
utilize the optical gain at the field nodes of a standing-wave
pattern. This effect is most significant in gain materials with
limited carrier mobility, such as quantum dots.

C. Semiclassical approaches

An important tool of the semiclassical description of
multidimensional wave and quantum systems is trace for-
mulas (Balian and Bloch, 1970, 1971, 1972; Gutzwiller, 1971,
1990; Berry and Tabor, 1976). Such a formula relates the DOS
to the sum of a smooth part given by a series of Weyl terms
and an oscillating part given in the leading order by a sum over
classical periodic orbits.
Bogomolny, Dubertrand, and Schmit (2008) extended this

concept to open dielectric cavities by using the Krein formula.
Their result can be written as

1

π

X
m

−Imkm
ðk − RekmÞ2 þ ðImkmÞ2

¼ d̄ðkÞ þ dðoscÞðkÞ; ð50Þ

with real wave number k ¼ ω=c. On the left-hand side is the
excess DOS which is a sum over Lorentzian terms for all
internal modes (Feshbach resonances) with complex km. On
the right-hand side is the semiclassical approximation of the
DOS consisting of a smooth part d̄ðkÞ and an oscillating part
dðoscÞðkÞ. Note that in contrast to Bogomolny, Dubertrand, and
Schmit (2008) we use the DOS dðkÞ ¼ dN=dk instead of
dðEÞ ¼ dN=dE ¼ dðkÞ=2k with E ¼ k2. The two leading
terms of the smooth part are

d̄ðkÞ ¼ An2

2π
kþ ~rðnÞ L

4π
; ð51Þ

where A and L are the area and the perimeter of the cavity. The
prefactor ~rðnÞ depends on the refractive index n and on the
polarization. Explicit expressions for TM and TE polarization
can be found in Bogomolny, Dubertrand, and Schmit (2008)
and Bogomolny and Dubertrand (2012), respectively. Note
that the smooth part in Eq. (51) is not in contradiction with the
fractal Weyl law discussed in Sec. IV as the latter considers
only a part of the internal modes with small jImkmj.
The oscillating part of the DOS is a sum taken over all

periodic ray trajectories inside the cavity,

dðoscÞðkÞ ¼
X
p

ðcpeinklp þ c:c:Þ: ð52Þ

lp is the length of the periodic ray trajectory. The coefficient
cp can be calculated from the properties of the considered ray

FIG. 43 (color online). A wavelength-scale deformed microdisk
coupled to a waveguide. (a) Calculated intensity distribution in a
waveguide coupled deformed microdisk, showing directional
coupling to a waveguide positioned at polar angle θ ¼ 45°.
(b) Directionality of waveguide coupling V as a function of
the coupling position θ on the cavity boundary. V > 0 (V < 0)
corresponds to stronger coupling in the CCW (CW) direction.
The crosses represent the experimental data points which agree
well with the numerical simulation (solid line). The inset shows
the orbits for the CW and CCW beams for this mode. (c) Top-
view SEM image of a GaAs disk coupled to a waveguide. The
disk is supported on an Al0.7Ga0.3As pedestal at the center, and
the GaAs waveguide is free standing in air and supported by two
Al0.7Ga0.3As pedestals at the ends. The background shows the
residual Al0.7Ga0.3As on the GaAs substrate after selective
etching of the Al0.7Ga0.3As. (d) Local chirality WðθÞ for the
same mode in the absence of waveguide coupling. Locally, the
CW and CCW intensities are not equal, leading to directional
output to the waveguide shown in (b). Only half of the cavity
boundary is plotted in (b) and (d); the other half can be obtained
by mirror symmetry. From Redding, Ge, Song et al., 2012.
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trajectory. cp differs from the closed billiard case only by a
product over Fresnel reflection coefficients (TM or TE)
computed at all reflection points of the given trajectory.
The comparison of measurements, numerical calculations,

and trace formulas can be most conveniently done by a Fourier
transformation of the DOS with respect to the wave number k.
According to Eq. (52) the resulting length spectrum is peaked
at the lengths of the periodic ray trajectories. An example is
shown in Fig. 44.
The trace formulas (50)–(52) have been derived for the

integrable circular cavity but there is numerical and exper-
imental evidence that the formulas apply also to other
geometries. Bogomolny et al. (2011) confirmed the validity
of the trace formula for the square, rectangle, ellipse,
pentagon, and stadium in numerical simulations and in
experiments on organic microlasers [such as in Fig. 11(a)].
Good qualitative agreement between the trace formula and
microwave experiments on dielectric resonators of circular,
square, and stadium shapes has been reported by Bittner et al.
(2010), Bittner, Bogomolny et al. (2012), and Bittner, Dietz,
Dubertrand et al. (2012). However, they emphasized the need
of higher-order corrections of the trace formula and showed
that the application of curvature corrections to the Fresnel
reflection coefficients improves the agreement (Bittner, Dietz,
Dubertrand et al., 2012). Bogomolny, Dubertrand, and Schmit
(2008) showed that higher-order corrections lead to a small
shift of the peak positions in the length spectrum which can be
interpreted as an analog to the Goos-Hänchen shift.
Hales, Sieber, and Waalkens (2011) extended the trace

formula to the case of a dielectric disk with a point scatterer.
In this nonintegrable system, additional contributions appear
stemming from diffractive ray trajectories, which are closed
trajectories that begin and end at the scatterer. Good agree-
ment with full numerical calculations was obtained.
A superficially similar approach is the periodic-orbit-sum

formula introduced by Fukushima, Harayama, and Wiersig
(2006) for the decay rate of modes Γ ¼ −Imω in an elongated
quasistadium laser diode. It is based on a semiclassical

approximation to the extended Fox-Lie mode calculation
method.
A very different semiclassical approach is the one devel-

oped by Narimanov et al. (1999) for the decay rate Γ and far-
field intensity pattern fðφÞ of isolated resonances. These
quantities are expressed in terms of eigenstates of a related
closed billiard, which incorporates the effect of a refractive
index in the boundary conditions. In a semiclassical approxi-
mation this allows one to represent Γ and fðφÞ as sums over
the contribution of ray trajectories which escape the cavity
by refraction (evanescent escape is ignored). This approach
can be considered as a first-order perturbation theory in Γ. It is
not perturbative in the degree of deformation. The original
formulation by Narimanov et al. (1999) suffers from spurious
solutions that correspond to bound states satisfying Neumann
boundary conditions at the boundary. A subsequent formu-
lation by Hackenbroich (2001) avoids any spurious solution.
Because of the requirement that the eigenstates of the closed
billiard have to be known beforehand, this semiclassical
approach seems to be practical only for Gaussian modes
based on stable periodic orbits (Sec. IV, Fig. 15) computed in
the parabolic equation approximation (Tureci et al., 2002). For
this particular case, a full analytic semiclassical solution can
be found.

IX. ROTATING MICROCAVITIES

Sections II–VIII describe stationary microcavities. In this
section, we consider microcavities that rotate. Light propa-
gation in rotating macrocavities has been studied as one of the
most fundamental problems of electromagnetics in arbitrary
accelerated systems (Post, 1967; Chow et al., 1985). Of
particular interest is the rotating ring cavity, due to its
application to the optical gyroscope. Since the cavity size
is typically much larger than the wavelength, the ray-dynami-
cal description has been widely used. What happens in a
microcavity of size comparable to the wavelength? How will
the rotation modify the cavity resonances? Answering these
questions is important not only in terms of the fundamental
physics but also for the realization of ultrasmall optical
gyroscopes.

A. Sagnac effect in microcavities

In 1913 Sagnac pointed out that the path length of CW
propagating light in a rotating ring interferometer for one
round-trip is different from that of CCW propagating light;
the resulting phase difference was later used to detect the
rotation speed (Post, 1967; Chow et al., 1985). In a ring cavity,
the round-trip path-length differences for the CW and CCW
waves lift the degeneracy of resonances; the frequency
splitting has become the operation principle for the ring laser
gyroscope.
In 2006 Harayama and co-workers studied the Sagnac

effect in 2D microcavities of various shapes (Sunada and
Harayama, 2006). The microcavity rotates around a fixed axis
(z axis) perpendicular to the cavity plane (x-y plane). The
rotation angular velocity Ω is assumed to be constant in time,
and the maximal speed v ¼ ΩR is assumed to be small in
magnitude compared to the speed of light. In the reference

FIG. 44. Length spectrum of a circular microwave resonator.
The solid (dashed, dotted) curve shows the measured (numeri-
cally calculated, semiclassical) spectrum. The arrows mark the
lengths of the depicted periodic ray trajectories and the circum-
ference of the boundary. Except for the square-shaped ray
trajectory good agreement can be observed. From Bittner
et al., 2010.
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frame rotating with the cavity, the Maxwell’s equations retain
their forms in the inertial frame, but the constitutive relations
are modified (Shiozawa, 1973). As in an inertial frame,
the electromagnetic fields in a rotating 2D system can be
decomposed to TE modes and TM modes (Sarma, Noh, and
Cao, 2012). Without loss of generality, we consider TM
modes next. To the first order of ΩR=c, the wave equation for
the electric field (parallel to the z axis) can be written in the
polar coordinates as (Sunada and Harayama, 2006)

� ∂2

∂r2þ
1

r
∂
∂rþ

1

r2
∂2

∂φ2
þ2ik

Ω
c

∂
∂φþn2k2

�
Ezðr;φÞ¼ 0; ð53Þ

where n is the refractive index inside the cavity, k ¼ 2π=λ, and
λ is the vacuum wavelength.
In a circular cavity of radius R, the separation of variables

gives Ezðr;φÞ ¼ fðrÞe−imφ, where m is an integer, and
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n2 þ 2m

�
Ω
ω

��
ð55Þ

and ω ¼ ck. Equation (55) implies that rotation induces a
change of the dielectric constant or the refractive index, which
is given by

n2Ω ¼ n2 þ 2mðΩ=ωÞ: ð56Þ

For a given direction of rotation, the CW and CCW waves
inside the cavity experience different nΩ as their azimuthal
numbers m are of opposite sign. The wave traveling in the
same direction of rotation acquires a higher nΩ than that
traveling in the opposite rotation, thus rotation lifts the
degeneracy of WGMs. For a closed cavity, where Dirichlet
boundary conditions are applied at the boundary, the fre-
quency splitting between CW and CCW modes can be
obtained to the first order of Ω (Sunada and Harayama, 2006):

Δω ¼ 2jmj
n2

Ω: ð57Þ

Equation (57) describes the Sagnac effect in a closed cavity.
For an open cavity, nΩ is modified both inside and outside

the cavity. It is difficult, however, to obtain an analytical
expression for the Sagnac effect. Numerical simulation
(Sarma, Noh, and Cao, 2012) shows that the rotation-induced
frequency splitting between CW and CCW modes in an open
microcavity is larger than that in a closed cavity of same R.
This is attributed to the increased mode size in the open cavity,
where the electromagnetic fields extend beyond the cavity
boundary.

B. Wave chaos in rotating cavities

In Sec. IX.A, we consider circular cavities in which the
WGMs consist of CW- and CCW-propagating waves, and the

Sagnac effect is consistent with the original description based
on the path-length difference between the CW and CCW
waves. When the cavity shape is deformed from a circle, the
intracavity ray dynamics may become chaotic or partially
chaotic, and the resonant modes may not localize on well-
defined ray trajectories. What happens to the chaotic micro-
cavities upon rotation? To answer this question, Harayama
and co-workers developed a perturbation theory to analyze the
effects of rotation in deformed microcavities (Sunada and
Harayama, 2006). They treated the rotation term in the wave
equation as a perturbation to the cavity resonances and
calculated the changes in resonance frequencies and wave
functions.
Without rotation, the CW and CCW waves in a circular

cavity have the same frequency, and their superposition forms
the standing waves. In a deformed cavity, the CW and CCW
waves are often coupled, which lift the degeneracy. The
eigenmodes have slightly different frequencies, and the
eigenfunctions are standing waves [assuming that a mirror-
reflection symmetry is present or that the system is closed
(Wiersig, Eberspächer et al., 2011)] approximately described
for small deformation by sine or cosine functions. Because
of their frequency difference, the eigenmodes cannot super-
pose to form CW or CCW modes. The frequency splitting,
caused by cavity shape deformation, leads to a threshold for
the Sagnac effect (Sunada and Harayama, 2007). When the
rotation speed Ω is less than the threshold value Ωth, the
frequency shift due to rotation is negligible.
Figure 45(a) presents an example of the quadrupole cavity.

A pair of quasidegenerate modes localized on a diamond-
shaped periodic orbit is chosen. At low rotation speed, the
frequency difference of the two modes does not increase with

FIG. 45. Sagnac effect in deformed microcavities. The cavity
boundary is closed, and the refractive index inside is equal to
1. The cavity modes under consideration are TM polarized.
(a) A rotating quadrupole cavity (12) with ε ¼ 0.12, and
R ¼ R0 ¼ 6.2866 μm. Calculated frequency difference RΔω=c
of a pair of quasidegenerate modes at nkR≃ 49.338 as a function
of the (dimensionless) angular velocity RΩ=c. The frequency
difference does not change when the angular velocity is below
the threshold RΩth=c ∼ 5 × 10−8; above the threshold the fre-
quency difference increases linearly with the angular velocity.
From Sunada and Harayama, 2007. (b) A rotating microcavity
of symmetry C3ν. The cavity boundary is defined by
rðφÞ ¼ Rð1þ ε cos 3φÞ, where ε ¼ 0.065. Calculated frequency
splitting RΔω=c of a pair of degenerate modes at nkR ¼ 50.220
vs RΩ=c. The frequency splitting increases linearly with the
angular velocity with no threshold. Adapted from Sunada and
Harayama, 2007.
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the angular velocity Ω. Only when Ω exceeds a threshold
(Ωth), the frequency difference increases proportionally to the
angular velocity Ω. Therefore, there exists a dead zone
(jΩj < Ωth) for the Sagnac effect due to intrinsic frequency
splitting from cavity deformation.
The existence of a dead zone is detrimental to the

application of microcavity to optical gyroscope. To eliminate
the dead zone, Sunada and Harayama (2007) designed a
microcavity of symmetry Cpν. The cavity boundary is defined
by rðφÞ ¼ Rð1þ ε cospφÞ, where p is an integer and p ≥ 3.
Despite the fact that its shape is deformed from a circle, such a
cavity supports degenerate modes. Upon rotation, the fre-
quency degeneracy is lifted, and the frequency splitting is
proportional to angular velocity Ω. Figure 45(b) shows an
example of a pair of degenerate modes localized on a triangle-
shaped periodic orbit in a cavity of p ¼ 3 and ε ¼ 0.065. The
absence of a dead zone is evident.
In the above examples, the cavity resonances localize

on periodic ray orbits, so the Sagnac effect is similar to that
in a ring cavity. However, the deformed microcavities also
support wave-chaotic modes, which do not localize on
any ray-dynamical trajectories. The Sagnac effect still exists
for wave-chaotic modes, even though such modes do not
convert to unidirectional-propagating wave modes upon
rotation. Harayama, Sunada, and Miyasaka (2007) showed
numerically that the angular momentum spectra of wave-
chaotic modes contain both CW- and CCW-propagating wave
components even at high rotation speed. Nevertheless, the
frequency splitting of two degenerate modes is proportional to
the angular velocity. This can be explained by the average
angular momentum hmi, which turns positive and negative for
the two modes upon rotation. The frequency splitting is then
given by the difference in their average angular momenta
Δω ¼ 2jhmijΩ=n2, which is a more general expression
than Eq. (57).

C. Rotation-induced changes of quality factors of open
microcavities

In Sec. IX.B, the rotating microcavities have closed
boundary, and the frequency splitting is the only observable
for rotation sensing. The small cavity size, however, dramati-
cally weakens the Sagnac effect, and the frequency shift in a
microcavity is too small to detect. In reality, most micro-
cavities at optical frequency are made of dielectric materials,
as metal is lossy. Such cavities have open boundaries, from
which light may escape. Hence, the cavity resonances have
complex frequencies, the real part representing the oscillation
frequency, the imaginary part reflecting the decay time or the
quality (Q) factor. The Q factor determines the lasing thresh-
old and the emission power above the threshold. According to
Eq. (56), both the refractive indexes inside the cavity ni and
outside the cavity no are modified by rotation. The resulting
change in the refractive index contrast affects the degree of
optical confinement in the cavity. Therefore, in an open
microcavity, rotation not only induces a resonant frequency
shift, but also modifies the lasing threshold and the output
power level. The latter modifications can be more sensitive to
the rotation than the lasing frequencies, because the lasing
threshold is determined by the Q factor which scales

exponentially with the refractive index contrast. For example,
in circular Bragg microlasers, the rotation-induced intensity
modulation has exponential dependence on the rotation
velocity (Scheuer, 2007). Next we see what happens to a
dielectric microdisk where light is confined by total internal
reflection at the disk boundary.
To investigate the change of quality factor by rotation,

Sarma, Noh, and Cao (2012) developed a FDTD algorithm to
simulate microdisk cavities in the rotating frame. Unlike the
previous FDTD model which substitutes the constitutive
relations into the Maxwell’s equations, they solved simulta-
neously and separately the Maxwell’s equations (which is
identical to those in a stationary frame) and the modified
constitutive relations in the rotating frame. In a circular
microdisk, for a WGM traveling in the same direction of
rotation, theQ factor decreases exponentially with the angular
velocity Ω, whereas the Q factor for a WGM traveling in the
opposite direction of rotation increases exponentially (Sarma,
Noh, and Cao, 2012).
The exponential dependence of the Q factor on Ω can be

explained by the rotation-induced change in the refractive
index contrast. Assuming the refractive index outside the
cavity is equal to 1 at Ω ¼ 0, the refractive index difference at
the angular velocity Ω is

niðΩÞ − noðΩÞ≃ ½nið0Þ − 1� þ
�
mΩ
ω

��
1

nið0Þ
− 1

�
: ð58Þ

Equation (58) implies the rotation increases the refractive
index difference for the counterpropagating mode (wave
traveling in the opposite direction of rotation). Thus its Q
factor increases with the rotation speed Ω. For the copropa-
gating mode (wave traveling in the same direction of rotation),
the Q factor decreases with rotation. In a circular microdisk,
the change in the refractive index contrast is symmetric and
opposite for the pair of CWand CCW modes. The Q factor of
the WGM depends exponentially on the difference in the
refractive index inside and outside the cavity. Since the index
difference varies linearly with the rotation speed [Eq. (58)],
the Q factor changes exponentially with Ω.
For the wavelength-scale cavity, Sarma, Noh, and Cao

(2012) found the sensitivity of the Q factor to rotation is more
than 1 order of magnitude higher than that of the resonant
frequency (Fig. 46). The change of Q by rotation would
modify the lasing thresholds for CW and CCW modes and
break the balance between the CW and CCW output power.
The higher sensitivity ofQ to Ω indicates the rotation-induced
changes in lasing threshold and output power can be more
dramatic than the lasing frequency shift in the wavelength-
scale microdisk lasers.
In deformed microcavities, the Q factors for a quasidegen-

erate pair of resonances may cross or anticross with increasing
rotation speed (Ge, Sarma, and Cao, 2014b). While the
standing-wave resonances at Ω ¼ 0 evolve to traveling-wave
resonances at high Ω, either the CW or CCW traveling-wave
resonance can have a lower Q, contrary to the intuitive
expectation from the rotation-dependent effective index of
refraction in a circular cavity. With increasing rotation speed, a
phase locking between the CW and CCW waves in a
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resonance takes place. These phenomena result from the
rotation-induced mode coupling, which is strongly influenced
by the openness of the microcavity. Such coupling can also
make the frequency splitting change nonmonotonically with
rotation (Ge, Sarma, and Cao, 2014b).

D. Far-field patterns from rotating microcavities of deformed
shape

Besides the resonant frequency and Q factor of a dielectric
microcavity, the emission pattern in the far-field zone is also
modified by rotation. A characteristic of deformed micro-
cavities is the directional output. The output directionality can
be dramatically altered due to rotation, which may be useful
for rotation sensing. This is an advantage that deformed
cavities have over circular cavities which have isotropic
output.
Ge, Sarma, and Cao (2014a) used a nonperturbative

approach based on the modified scattering matrix method
to calculate the far-field emission patterns of deformed
microcavities. This method utilizes the analytical form of
the cavity boundary and is free of spatial grids that are used
in the finite-difference or finite-element method. When the
deformed cavity has the chiral symmetry [ρð−φÞ ¼ ρðφÞ],
CW and CCW traveling waves make equal contributions to
each standing-wave resonance. The output directions of CW
and CCW waves may differ, but they are symmetric with
respect to the φ ¼ 0 axis. Consequently, the far-field pattern of
a standing-wave resonance has the mirror symmetry about the
φ ¼ 0 axis. With rotation, the balance between the CW and
CCW waves in a resonance is broken, and the far-field pattern
becomes asymmetric. This asymmetry increases linearly at
low rotation speed, which is free of the “dead zone” that
plagues the Sagnac effect. A coupled-mode theory has been

employed to provide a quantitative explanation and guidance
on the optimization of the far-field sensitivity to rotation
(Ge, Sarma, and Cao, 2014a).
A further increase of the emission sensitivity to rotation can

be achieved by breaking the chiral symmetry of cavity shape
(Sarma et al., 2015). Without rotation, a pair of nearly
degenerate modes in an open microcavity with broken chiral
symmetry [ρð−φÞ ≠ ρðφÞ] have similar far-field patterns,
because they are both dominated by either CW or CCW
traveling waves. With rotation, one of them evolves from
copropagating to counterpropagating wave mode, and its far-
field pattern will change dramatically if the CW and CCW
waves have distinct output directions. This is illustrated in
Fig. 47 for an asymmetric limaçon cavity. The degree of
spatial chirality can be tuned to maximize the difference
between CWand CCW far-field patterns and reach the highest
sensitivity of microcavity emission to rotation (Sarma
et al., 2015).
In summary, the sensitivity of the emission pattern to

rotation can be many orders of magnitude higher than the

FIG. 46. Comparison of rotation-induced changes in frequency
and Q factor of resonant modes in a circular microdisk. The disk
radius is R ¼ 590 nm and refractive index is n ¼ 3. Calculated
relative change in the Q factor ΔQ=Q0 (squares) and the
normalized frequency splitting Δω=ω0 (circles) of a pair of
WGMs with l ¼ 1 and m ¼ �7 as a function of the rotation
speed Ω. The lines are linear fits. The slope for ΔQ=Q0 is
20 times higher than that for Δω=ω0, indicating the Q factor is
20 times more sensitive to rotation than the resonant frequency.
From Sarma, Noh, and Cao, 2012.

FIG. 47 (color online). Numerical simulation of rotation-induced
change in the far-field emission pattern of an asymmetric limaçon
cavity. The cavity boundary is defined in the polar coordinates as
rðφÞ ¼ R½1þ ε1 cosðφÞ þ ε2 cosð2φþ δÞ�, where R ¼ 591 nm,
ε1 ¼ 0.1, ε2 ¼ 0.075, and δ ¼ 1.94 rad. The refractive index
inside the cavity is n ¼ 3.0, and outside the cavity n ¼ 1.0.
Without rotation, a pair of quasidegenerate modes at λ ¼ 598 nm
consists mainly of CW traveling waves. Their near-field patterns
are similar, one of them is shown in (a). The intensity outside
the cavity is enhanced to illustrate the main emission direction.
At the normalized rotation frequency ΩR=c ¼ 0.001, one of the
two modes is converted to CCW traveling waves (c), the other
remains as a CW wave (b). Their emission directions are very
different. (d) Angular distribution of far-field emission intensity
for the two modes in (b) and (c). The rotation causes a dramatic
change in the far-field pattern of the mode in (b). From Sarma
et al., 2015.
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Sagnac effect, providing an alternative mechanism of rotation
sensing for on-chip gyroscopes.

X. SUMMARY AND PROSPECTS

In the past two decades, the quest to achieve directional
radiation from microcavity lasers has stimulated a lot of
activities in the field of optical microresonators and consid-
erably deepened our understanding of them by applying very
different physical principles and mechanisms and by using
theoretical concepts that were originally developed in other
fields. As a result, a number of distinct approaches were found
and investigated, and they comprise a broad range of concepts
from tailoring resonator shapes for directed light emission
(such as in the limaçon microlasers) to mode interactions
occurring at avoided resonance crossings (such as in the
annular resonator) or a pumping-induced mode-beating inter-
action (such as in the spiral cavity). They not only consid-
erably increased our understanding of microlasers, but at the
same time highlighted the role played by wave chaos in such
open systems. The recognition of the importance of the
unstable manifold that explains, e.g., the observed universality
of the far-field patterns, is one prominent example for this. In
turn, based on this knowledge, new resonator shapes can now
be designed and easily (pre-)tested by ray and wave simu-
lations, which is a tremendous help to the application side.
The output directionality of deformed microcavities also

provides alternative schemes for microcavity-based sensors.
In addition to resonance frequency shift, a change of far-field
pattern may be used for high-precision on-chip rotation rate
detection. From the time-reversal point of view, directional
emission implies directional excitation, namely, free-space
propagating beams can be efficiently coupled into micro-
cavities (Lee et al., 2007a; Liu et al., 2012). More recently,
active control of emission directionality of semiconductor
microdisk lasers has been demonstrated by shaping the spatial
profile of the pump (Liew et al., 2014). The adaptive pumping
technique provides an efficient way of tuning the lasing
frequency and the output direction. Such tunability by external
pump after the laser is fabricated will enhance the function-
ality of microcavity lasers.
One important direction for future research on chaotic

microcavities is the study of the details of the localization of
optical modes on the chaotic saddle and its unstable manifold.
In particular, it is still a puzzle why the appearance of scarred
modes in open microcavities is the rule rather than the
exception. Another future direction is three-dimensional
chaotic microcavities. Most of the work that has been done
so far is on two-dimensional microcavities. Three-dimen-
sional cavities have more degrees of freedom and can produce
interesting effects that do not exist in two dimensions.
Although most studies on deformed cavities were focused

on microlasers, single photon sources would also benefit from
the unique characteristic of deformed microcavities, e.g.,
efficient collection of emission and directional coupling to
waveguides. One future direction could be the application of
deformed dielectric microcavities to the cavity quantum
electrodynamics, e.g., to study the influence of wave chaos
on weak or strong coupling of single emitters to cavity
resonances.

For dense on-chip integration, there is an increasing push
for further reduction of cavity size to subwavelength scale.
Although optical diffraction limits the cavity size to the
wavelength (in the dielectric material), recent work aimed
to overcome this limit by utilizing plasmonic effects (Bergman
and Stockman, 2003; Ma et al., 2013). Hybrid metal-dielectric
cavities were fabricated, and surface plasmons at the meta-
dielectric interfaces enable confinement of optical energy in
nanoscale dimension (Hill et al., 2007; Min et al., 2009;
Oulton et al., 2009; Nezhad et al., 2010; Ma et al., 2011).
It would be interesting to extend the concepts and
approaches developed for the dielectric microcavities to
metal-dielectric nanocavities to control the surface plasmon
modal distributions, spectra, lifetimes, and emission character-
istics. Furthermore, the exploration of microcavities made
with novel materials, e.g., metamaterials with negative refrac-
tive index, would lead to unusual phenomena such as negative
refraction and negative Goos-Hänchen shift (Wiersig
et al., 2010).
The existence of exceptional points and related non-

Hermitian effects in optical microcavities is now established.
It would be interesting to study in the future the influence of
the exceptional points on light-matter interaction in micro-
cavities. Further future topics are non-Hermitian effects in
CROWs and the properties of higher-order exceptional points
in optical microcavities.
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