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A review is given of the theory and phenomenology of neutrino electromagnetic interactions, which
provide powerful tools to probe the physics beyond the standardmodel. After a derivation of the general
structure of the electromagnetic interactions of Dirac and Majorana neutrinos in the one-photon
approximation, the effects of neutrino electromagnetic interactions in terrestrial experiments and in
astrophysical environments are discussed. The experimental bounds on neutrino electromagnetic
properties are presented and the predictions of theories beyond the standard model are confronted.
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I. INTRODUCTION

The theoretical and experimental investigation of neutrino
properties and interactions is one of the most active fields of
research in current high-energy physics. It brings us impor-
tant information on the physics of the standard model and
provides a powerful window on the physics beyond the
standard model.
The possibility that a neutrino has a magnetic moment was

considered by Pauli in his famous 1930 letter addressed to
“Dear Radioactive Ladies and Gentlemen” (Pauli, 1991), in
which he proposed the existence of the neutrino and he
supposed that its mass could be of the same order of
magnitude as the electron mass. Neutrinos remained elusive
until the detection of reactor neutrinos by Reines and Cowan
around 1956 (Reines et al., 1960). However, there was no sign
of a neutrino mass. After the discovery of parity violation in
1957, Landau (1957), Lee and Yang (1957), and Salam (1957)
proposed the two-component theory of massless neutrinos, in
which a neutrino is described by a Weyl spinor and there are
only left-handed neutrinos and right-handed antineutrinos. It
was, however, clear (Case, 1957; Mclennan, 1957; Radicati
and Touschek, 1957) that two-component neutrinos could
be massive Majorana fermions and that the two-component
theory of a massless neutrino is equivalent to the Majorana
theory in the limit of zero neutrino mass.

*Also at the Department of Physics, Torino University, Via
P. Giuria 1, I-10125 Torino, Italy. giunti@to.infn.it

†studenik@srd.sinp.msu.ru

REVIEWS OF MODERN PHYSICS, VOLUME 87, APRIL–JUNE 2015

0034-6861=2015=87(2)=531(61) 531 © 2015 American Physical Society

http://dx.doi.org/10.1103/RevModPhys.87.531
http://dx.doi.org/10.1103/RevModPhys.87.531
http://dx.doi.org/10.1103/RevModPhys.87.531
http://dx.doi.org/10.1103/RevModPhys.87.531


The two-component theory of massless neutrinos was later
incorporated in the standard model of Glashow (1961),
Weinberg (1967), and Salam (1969), in which neutrinos are
massless and have only weak interactions. In the standard
model Majorana neutrino masses are forbidden by the
SUð2ÞL × Uð1ÞY symmetry. Although in the standard model
neutrinos are electrically neutral and do not possess electric or
magnetic dipole moments, they have a charge radius which is
generated by radiative corrections.
We now know that neutrinos are massive, because many

experiments observed neutrino oscillations (Giunti and Kim,
2007; Bilenky, 2010; Xing and Zhou, 2011; Beringer et al.,
2012; Gonzalez-Garcia et al., 2012; Bellini et al., 2014),
which are generated by neutrino masses and mixing
(Pontecorvo, 1957, 1958, 1968; Maki, Nakagawa, and
Sakata, 1962). Therefore, the standard model must be
extended to account for the neutrino masses. There are many
possible extensions of the standard model that predict different
properties for neutrinos (Ramond, 1999; Mohapatra and Pal,
2004; Xing and Zhou, 2011). Among them, most important is
their fundamental Dirac or Majorana character. In many
extensions of the standard model neutrinos also acquire
electromagnetic properties through quantum loop effects
which allow direct interactions of neutrinos with electromag-
netic fields and electromagnetic interactions of neutrinos with
charged particles.
Hence, the theoretical and experimental study of neutrino

electromagnetic interactions is a powerful tool in the search
for the fundamental theory beyond the standard model.
Moreover, the electromagnetic interactions of neutrinos can
generate important effects, especially in astrophysical envi-
ronments, where neutrinos propagate over long distances in
magnetic fields in vacuum and in matter.
Unfortunately, in spite of many efforts in the search of

neutrino electromagnetic interactions, up to now there is no
positive experimental indication in favor of their existence.
However, it is expected that the standard model neutrino
charge radii should be measured in the near future. This will
be a test of the standard model and of the physics beyond the
standard model which contributes to the neutrino charge radii.
Moreover, the existence of neutrino masses and mixing
implies that neutrinos have magnetic moments. Since their
values depend on the specific theory which extends the
standard model in order to accommodate neutrino masses
and mixing, experimentalists and theorists are eagerly looking
for them.
The structure of this review is as follows. In Sec. II we

summarize the basic theory of neutrino masses and mixing
and the phenomenology of neutrino oscillations, which are
important for the following discussion of theoretical models
and for understanding the connection between neutrino
masses and mixing and neutrino electromagnetic properties.
In Sec. III we derive the general form of the electromagnetic
interactions of Dirac and Majorana neutrinos in the one-
photon approximation, which are expressed in terms of
electromagnetic form factors. In Sec. IV we discuss the
phenomenology of the neutrino magnetic and electric dipole
moments in laboratory experiments. These are the most
studied electromagnetic properties of neutrinos, both

experimentally and theoretically. In Sec. V we discuss
neutrino radiative decay in vacuum and in matter and related
processes which are induced by the neutrino magnetic and
electric dipole moments. These processes could have observ-
able effects in astrophysical environments and could be
detected on Earth by astronomical photon detectors. In
Sec. VI we discuss some important effects due to the
interaction of neutrino magnetic moments with classical
electromagnetic fields. In particular, we derive the effective
potential in a magnetic field and we discuss the corresponding
spin and spin-flavor transitions in astrophysical environments.
In Sec. VII we review the theory and experimental constraints
on the neutrino electric charge (millicharge), the charge
radius, and the anapole moment. In conclusion, in
Sec. VIII we summarize the status of our knowledge of
neutrino electromagnetic properties and we discuss the pros-
pects for future research. This review also has several
appendixes listed in Table I which are contained in an
online Supplemental Material document (Giunti and
Studenikin, 2015).
We also remind one that neutrino electromagnetic proper-

ties and interactions are discussed by Bahcall (1989), Boehm
and Vogel (1992), Kim and Pevsner (1993), Raffelt (1996),
Fukugita and Yanagida (2003), Zuber (2003), Mohapatra and
Pal (2004), Xing and Zhou (2011), Barger, Marfatia, and
Whisnant (2012), and Lesgourgues et al. (2013), and in the
previous reviews by Dolgov and Zeldovich (1981), Bilenky
and Petcov (1987), Raffelt (1990a, 1999a, 1999b, 2000),
Pulido (1992), Salati (1994), Dolgov (2002), Nowakowski,
Paschos, and Rodriguez (2005), Wong and Li (2005), Giunti
and Studenikin (2009), Studenikin (2009), Broggini, Giunti,
and Studenikin (2012), and Akhmedov (2014). In this review
we improved and extended the discussion presented in our
previous reviews in order to cover in detail the most important
aspects of neutrino electromagnetic interactions.

II. NEUTRINO MASSES AND MIXING

In the standard model of electroweak interactions (Glashow,
1961; Weinberg, 1967; Salam, 1969), neutrinos are described
by two-component massless left-handed Weyl spinors (Giunti
and Kim, 2007). The masslessness of neutrinos is due to the
absence of right-handed neutrino fields, without which it is not
possible to have Dirac mass terms, and to the absence of Higgs

TABLE I. Appendixes contained in the online Supplemental
Material document (Giunti and Studenikin, 2015). Page numbers
in the table refer to the Supplemental Material document. References
to equations which start with a capital alphabetic letter refer to the
corresponding appendix in the table.

Appendix title Page

A. Conventions, useful constants and formulae 1
B. Decomposition of Λμ 3
C. Helicity and chirality 4
D. Calculation of atomic-ionization 5
E. Calculation of potentials 8
F. Quasiclassical spin evolution in external fields 9
G. Spin precession in moving matter 10
H. Wave functions in magnetic-field and matter 11
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triplets, without which it is not possible to have Majorana
mass terms. In the following we consider the extension of the
standard model with the introduction of three right-handed
neutrinos. We see that this seemingly innocent addition has the
very powerful effect of introducing not only Dirac mass terms,
but also Majorana mass terms for the right-handed neutrinos,
which can induce Majorana masses for the observable light
neutrinos through the seesaw mechanism.
Table II shows the values of the weak isospin, hypercharge,

and electric charge of the lepton and Higgs doublets and
singlets in the extended standard model under consideration.
We work in the flavor basis in which the mass matrix of the
charged leptons is diagonal. Hence, e, μ, and τ are the physical
charged leptons with definite masses.
In the following subsections we briefly review the theory

of masses and mixing of Dirac (Sec. II.A) and Majorana
(Sec. II.B) neutrinos, the standard framework of three-
neutrino mixing (Sec. II.C), neutrino oscillations in vacuum
and in matter (Sec. II.D), the current phenomenological status
of three-neutrino mixing (Sec. II.E), and the possibility of
additional sterile neutrinos (Sec. II.F).

A. Dirac neutrinos

The fields in Table II allow us to construct the Yukawa
Lagrangian term

LY ¼ −
X

l;l0¼e;μ;τ

Yll0LlL
~Φ νl0R þ H:c:; ð2:1Þ

where Y is a matrix of Yukawa couplings and ~Φ≡ iσ2Φ�. In
the standard model, a nonzero vacuum expectation value of
the Higgs doublet,

hΦi ¼ 1ffiffiffi
2

p
�
0

v

�
; ð2:2Þ

induces the spontaneous symmetry breaking of the standard
model symmetries SUð2ÞL × Uð1ÞY → Uð1ÞQ. From the
Yukawa Lagrangian term in Eq. (2.1), we obtain the neutrino
Dirac mass term

LD ¼ −
X

l;l0¼e;μ;τ

νlL MD
ll0νl0R þ H:c:; ð2:3Þ

with the complex 3 × 3 Dirac mass matrix

MD ¼ vffiffiffi
2

p Y: ð2:4Þ

If the total lepton number is conserved, LD is the only
neutrino mass term and the three massive neutrinos obtained
through the diagonalization of LD are Dirac particles. The
diagonalization of LD is achieved through the transformations

νlL ¼
X3
k¼1

UlkνkL; ð2:5Þ

νl0R ¼
X3
k¼1

Vl0kνkR; ð2:6Þ

with unitary 3 × 3 matrices U and V such that

ðU†MDVÞkj ¼ mkδkj; ð2:7Þ

with real and positive masses mk (Bilenky and Petcov, 1987;
Giunti and Kim, 2007). The resulting diagonal Dirac mass
term is

LD ¼ −
X3
k¼1

mkνkLνkR þ H:c: ¼ −
X3
k¼1

mkνkνk; ð2:8Þ

with the Dirac fields of massive neutrinos

νk ¼ νkL þ νkR: ð2:9Þ

B. Majorana neutrinos

In the above derivation of Dirac neutrino masses we
assumed that the total lepton number is conserved.
However, since there is not any compelling argument which
imposes the conservation of the total lepton number, it is
plausible that the right-handed singlet neutrinos have the
Majorana mass term

LR ¼ 1

2

X
l;l0¼e;μ;τ

νTlRC
†MR

ll0νl0R þ H:c:; ð2:10Þ

which violates the total lepton number by two units. In
Eq. (2.10), C is the charge-conjugation matrix defined by
Eqs. (A34)–(A36) and the mass matrix MR is complex and
symmetric.
The Majorana mass term in Eq. (2.10) is allowed by the

symmetries of the standard model, since right-handed neutrino
fields are invariant. On the other hand, an analogous Majorana
mass term of the left-handed neutrinos,

LL ¼ 1

2

X
l;l0¼e;μ;τ

νTlLC
†ML

ll0νl0L þ H:c:; ð2:11Þ

is forbidden, since it has I3 ¼ 1 and Y ¼ −2, as one can find
easily using Table II. There is no Higgs triplet in the standard
model to compensate these quantum numbers.

TABLE II. Eigenvalues of the weak isospin I of its third component
I3 of the hypercharge Y, and of the charge Q ¼ I3 þ Y=2 of the
lepton and Higgs doublets and singlets in the extension of the
standard model with the introduction of right-handed neutrinos.

(l ¼ e; μ; τ) I I3 Y Q

Left-handed
lepton doublets LlL ≡

� νlL
lL

�
1=2

1=2 −1 0
−1=2 −1

Right-handed
charged-lepton singlets

lR 0 0 −2 −1

Right-handed
neutrino singlets

νlR 0 0 0 0

Higgs doublet Φ≡
�ϕþ

ϕ0

�
1=2 1=2 þ1

1
−1=2 0
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In the extension of the standard model with the introduction
of right-handed neutrinos, the neutrino masses and mixing are
given by the Dirac-Majorana mass term

LDþM ¼ LD þ LR: ð2:12Þ

The neutrino fields with definite masses are obtained through
the diagonalization of LDþM. It is convenient to define the
vector NL of six left-handed fields

NT
L ≡ ðνeL; νμL; ντL; νceR; νcμR; νcτRÞ; ð2:13Þ

with the charge-conjugated fields

νclR ¼ CνlRT: ð2:14Þ

The Dirac-Majorana mass term in Eq. (2.12) can be written
in the compact form

LDþM ¼ 1
2
NT

LC
†MDþMNL þ H:c:; ð2:15Þ

with the 6 × 6 symmetric mass matrix

MDþM ≡
�

0 MDT

MD MR

�
: ð2:16Þ

The order of magnitude of the elements of the Dirac mass
matrixMD in Eq. (2.4) is smaller than v ∼ 102 GeV, since the
Dirac mass term (2.3) is forbidden by the symmetries of the
standard model and can be generated only as a consequence of
symmetry breaking below the electroweak scale v. On the
other hand, since the Majorana mass term in Eq. (2.10) is a
standard model singlet, the elements of the Majorana mass
matrix MR are not related to the electroweak scale. It is
plausible that the Majorana mass term LR is generated by new
physics beyond the standard model and the right-handed
chiral neutrino fields νlR belong to nontrivial multiplets of the
symmetries of the high-energy theory. The corresponding
order of magnitude of the elements of the mass matrix MR is
given by the symmetry-breaking scale of the high-energy
physics beyond the standard model, which may be as large as
the grand unification scale, of the order of 1014–1016 GeV. In
this case, the mass matrix can be diagonalized by blocks, up to
corrections of the order ϵ ¼ ðMRÞ−1MD:

WTMDþMW ≃
�
MM

l 0

0 MM
h

�
; ð2:17Þ

with

W ≃ 1 −
1

2

�
ϵ†ϵ 2ϵ†

−2ϵ ϵϵ†

�
: ð2:18Þ

The light symmetric 3 × 3 Majorana mass matrix MM
l and

the heavy symmetric 3 × 3 Majorana mass matrix MM
h are

given by

MM
l ≃ −MDTðMRÞ−1MD; MM

h ≃MR: ð2:19Þ

There are three heavy masses given by the eigenvalues ofMM
h

and three light masses given by the eigenvalues ofMM
l , whose

elements are suppressed with respect to the elements of the
Dirac mass matrix MD by the very small matrix factor
MDTðMRÞ−1. This is the well-known seesaw mechanism
(Minkowski, 1977; Gell-Mann, Ramond, and Slansky,
1979; Ramond, 1979; Yanagida, 1979; Mohapatra and
Senjanovic, 1980), which naturally explains the smallness
of light neutrino masses. Notice, however, that the values of
the light neutrino masses and their relative sizes can vary over
wide ranges, depending on the specific values of the elements
of MD and MR.
Since the off-diagonal block elements of W are very small,

the three flavor neutrinos are mainly composed by the three
light neutrinos. Therefore, the seesaw mechanism implies the
effective low-energy Majorana mass term

Leff
M ¼ 1

2

X
l;l0¼e;μ;τ

νTlLC
†ðMM

l Þll0νl0L þ H:c:; ð2:20Þ

which involves only the three active left-handed flavor
neutrino fields. The symmetric 3 × 3 Majorana mass matrix
MM

l is diagonalized by the transformation in Eq. (2.5) with a
3 × 3 unitary mixing matrix U such that

ðUTMM
l UÞkj ¼ mkδkj; ð2:21Þ

with real and positive masses mk (Bilenky and Petcov, 1987;
Giunti and Kim, 2007). In this way, the effective Majorana
mass term in Eq. (2.20) can be written in terms of the massive
fields as

Leff
M ¼ 1

2

X3
k¼1

mkν
T
kLC

†νkL þ H:c:

¼ 1

2

X3
k¼1

mkν
T
kC

†νk; ð2:22Þ

with the massive Majorana fields

νk ¼ νkL þ νckL ¼ νkL þ CνkLT; ð2:23Þ

which satisfy the Majorana constraint

νk ¼ νck ¼ CνkT: ð2:24Þ

Hence, a general result of the seesaw mechanism is an
effective low-energy mixing of three massive Majorana
neutrinos.

C. Three-neutrino mixing

In the previous two sections we have seen that an effective
mixing of three light neutrinos is obtained in the Dirac case
assuming the conservation of the total lepton number and in
the Majorana case through the seesaw mechanism. In both
cases the mixing relation between the three left-handed flavor
neutrino fields νeL, νμL, and ντL which partake in weak
interactions and the three left-handed massive neutrino fields
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ν1L, ν2L, and ν3L is given by Eq. (2.5), which depends on a
unitary 3 × 3 mixing matrix U.
The mixing matrix U is observable through its effects in

charged-current weak-interaction processes in which leptons
are described by the current

jρCC ¼ 2
X

l¼e;μ;τ

νlL γ
ρlL ¼ 2

X
l¼e;μ;τ

X3
k¼1

U�
lkνkLγ

ρlL: ð2:25Þ

A unitary 3 × 3 matrix can be parametrized in terms of three
mixing angles and six phases. However, in the mixing matrix
three phases are unphysical, because they can be eliminated by
rephasing the three charged-lepton fields in jρCC. In the case of
Majorana massive neutrinos, no additional phase can be
eliminated, because the Majorana mass term in Eq. (2.22)
is not invariant under rephasing of νkL. On the other hand, in

the case of Dirac massive neutrinos, two additional phases can
be eliminated by rephasing the massive neutrino fields. Hence,
the mixing matrix has three physical phases in the case of
Majorana massive neutrinos or one physical phase in the case
of Dirac massive neutrinos. In general, in the case of Majorana
massive neutrinos U can be written as

U ¼ UDDM; ð2:26Þ

where UD is a Dirac unitary mixing matrix which can be
parametrized in terms of three mixing angles and one physical
phase, called the Dirac phase, and DM is a diagonal unitary
matrix with two physical phases, usually called Majorana
phases. In the case of Dirac neutrinos U ¼ UD.
The standard parametrization of UD is

UD ¼

0
BB@

c12c13 s12c13 s13e−iδ13

−s12c23 − c12s23s13eiδ13 c12c23 − s12s23s13eiδ13 s23c13
s12s23 − c12c23s13eiδ13 −c12s23 − s12c23s13eiδ13 c23c13

1
CCA; ð2:27Þ

where cab ≡ cosϑab and sab ≡ sin ϑab. ϑ12, ϑ13, and ϑ23 are
the three mixing angles (0 ≤ ϑab ≤ π=2) and δ13 is the
Dirac phase (0 ≤ δ13 < 2π). The diagonal unitary matrix
DM can be written as

DM ¼ diagð1; eiλ21 ; eiλ31Þ; ð2:28Þ

in terms of the two Majorana phases λ21 and λ31,
All the phases in the mixing matrix violate the CP

symmetry (Giunti and Kim, 2007; Branco, Felipe, and
Joaquim, 2012).
We also note that in the leptonic weak neutral current,

jρNC ¼
X

l¼e;μ;τ

νlL γ
ρνlL ¼

X3
k¼1

νkL γ
ρνkL; ð2:29Þ

the unitarity of U implies the absence of neutral-current
transitions among different massive neutrinos (GIM mecha-
nism, Glashow, Iliopoulos, and Maiani, 1970).

D. Neutrino oscillations

Flavor neutrinos are produced and detected in charged-
current weak-interaction processes described by the leptonic
current in Eq. (2.25). Hence, a neutrino with flavor l ¼ e; μ; τ
created in a charged-current weak-interaction process from a
charged lepton l− or together with a charged antilepton lþ is
described by the state

jνli ¼
X
k

U�
lkjνki: ð2:30Þ

Since the mixing matrix is unitary, we have the inverted
relation

jνki ¼
X
l

Ulkjνli: ð2:31Þ

The massive neutrino states jνki are eigenstates of the free
Hamiltonian with energy eigenvalues

Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~pkj2 þm2

k

q
; ð2:32Þ

where ~pk are the respective momenta. In the plane-wave
approximation (Giunti and Kim, 2007), the space-time evo-
lution of a massive neutrino is given by

jνkð~L; TÞi ¼ e−iEkTþi~pk·~Ljνki; ð2:33Þ

where ð~L; TÞ is the space-time distance from the production
point. Inserting this equation into Eq. (2.30) and using
Eq. (2.31), we obtain

jνlð~L; TÞi ¼
X
k

U�
lke

−iEkTþi~pk·~Ljνki

¼
X

l0¼e;μ;τ

�X
k

U�
lke

−iEkTþi~pk·~LUl0k

�
jνl0 i: ð2:34Þ

Then the phase differences of different massive neutrinos
generate flavor transitions with probability

Pνl→νl0 ð~L; TÞ ¼ jhνl0 jνlð~L; TÞij2

¼
����X

k

U�
lke

−iEkTþi~pk·~LUl0k

����2: ð2:35Þ

Since the source-detector distance L≡ j~Lj is macroscopic,
we can consider all massive neutrino momenta ~pk aligned
along ~L. Moreover, taking into account the smallness of
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neutrino masses, in oscillation experiments in which the
neutrino propagation time T is not measured it is possible
to approximate T ¼ L (Giunti and Kim, 2007). With these
approximations, the phases in Eq. (2.35) reduce to

−EkT þ pkL ¼ −ðEk − pkÞL ¼ −
E2
k − p2

k

Ek þ pk
L

¼ −
m2

k

Ek þ pk
L≃ −

m2
k

2Eν
L; ð2:36Þ

at lowest order in the neutrino masses. Here pk ≡ j~pkj and Eν

is the neutrino energy neglecting mass contributions.
Equation (2.36) shows that the phases of massive neutrinos
relevant for oscillations are independent of the values of the
energies and momenta of different massive neutrinos, because
of the relativistic dispersion relation in Eq. (2.32). The flavor
transition probabilities are

Pνl→νl0 ðL; EνÞ

¼ δll0 − 4
X
k>j

ReðU�
lkUl0kUljU�

l0jÞsin2
�Δm2

kjL

4Eν

�

− 2
X
k>j

ImðUlkU�
ljU

�
l0kUl0jÞ sin

�Δm2
kjL

2Eν

�
; ð2:37Þ

where Δm2
kj ¼ m2

k −m2
j .

In the approximation of two-neutrino mixing, in which
one of the three massive neutrino components of two flavor
neutrinos is neglected, the mixing matrix reduces to

U ¼
�

cos ϑ sin ϑ

− sin ϑ cosϑ

�
; ð2:38Þ

where ϑ is the mixing angle (0 ≤ ϑ ≤ π=2). In this approxi-
mation, there is only one squared-mass difference Δm2 and
the transition probability is given by

P2ν
νl→νl0 ðL;EνÞ ¼ sin22ϑsin2

�
Δm2L
4Eν

�
ðl ≠ l0Þ: ð2:39Þ

The corresponding survival probabilities are given by

P2ν
νl→νlðL; EνÞ ¼ 1 − sin22ϑsin2

�
Δm2L
4Eν

�
: ð2:40Þ

These simple expressions are often used in the analysis of
experimental data.
When neutrinos propagate in matter, the potential generated

by the coherent forward elastic scattering with the particles in
the medium (electrons and nucleons) modifies mixing and
oscillations (Wolfenstein, 1978). In a medium with varying
density it is possible to have resonant flavor transitions
(Mikheev and Smirnov, 1985). This is the famous MSWeffect.
The effective potentials for νl and ν̄l are, respectively,

Vl ¼ VCCδle þ VNC; V̄l ¼ −Vl; ð2:41Þ

with the charged-current and neutral-current potentials

VCC ¼
ffiffiffi
2

p
GFNe; VNC ¼ −1

2

ffiffiffi
2

p
GFNn; ð2:42Þ

generated, respectively, by the Feynman diagrams in Figs. 1(a)
and 2(a). Here Ne and Nn are the electron and neutron number
densities in the medium (in an electrically neutral medium
the neutral-current potentials of protons and electrons cancel
each other). In normal matter, these potentials are very small,
because

ffiffiffi
2

p
GF ≃ 7.63 × 10−14

eV cm3

NA
; ð2:43Þ

where NA is Avogadro’s number given in Eq. (A1).
We consider, for simplicity, two-neutrino νe − νa mixing,

where νa is a linear combination of νμ and ντ (which can be
pure νμ or ντ as special cases). This is a good approximation
for solar neutrinos. In general, a neutrino produced at x ¼ 0 is
described at a distance x by a state

jνðxÞi ¼ φeðxÞjνei þ φaðxÞjνai: ð2:44Þ

Taking into account the fact that for ultrarelativistic neutrinos
the distance x is approximately equal to the propagation
time t, the evolution of the flavor amplitudes φeðxÞ and φaðxÞ
with the distance x is given by the Schrödinger equation
(Wolfenstein, 1978)

i
d
dx

�
φeðxÞ
φaðxÞ

�
¼ H

�
φeðxÞ
φaðxÞ

�
; ð2:45Þ

with the effective Hamiltonian matrix

H¼ 1

4Eν

�
−Δm2 cos2ϑþACC Δm2 sin2ϑ

Δm2 sin2ϑ Δm2 cos2ϑ−ACC

�
; ð2:46Þ

FIG. 1. Feynman diagrams of the coherent charged-current
forward elastic scattering processes that generate the potentials
(a) VCC and (b) V̄CC.

FIG. 2. Feynman diagram of the coherent neutral-current for-
ward elastic scattering processes that generate the potentials
(a) VNC and (b) V̄NC.
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where ACC ¼ 2EνVCC. In Eq. (2.46) we took into account
only the difference VCC of the potentials of νe and νa, which
affects neutrino oscillations. In the framework of three-
neutrino mixing the neutral-current potential VNC, which is
common to the three neutrino flavors, does not have any
effect. However, one must be aware that the neutral-current
potential VNC must be taken into account in extensions of
three-neutrino mixing involving sterile states (see Sec. II.F)
and/or spin-flavor transitions (see Sec. VI.B).
For an initial νe, as in the case of solar neutrinos, the

boundary condition for the solution of the differential
equation is

�
φeð0Þ
φað0Þ

�
¼

�
1

0

�
; ð2:47Þ

and the probabilities of νe → νa transitions and νe survival are,
respectively,

Pνe→νaðxÞ ¼ jφaðxÞj2; ð2:48Þ

Pνe→νeðxÞ ¼ jφeðxÞj2 ¼ 1 − Pνe→νaðxÞ: ð2:49Þ

The effective Hamiltonian matrix in Eq. (2.46) can be
diagonalized with the transformation

�
φeðxÞ
φaðxÞ

�
¼ UM

�
φM
1 ðxÞ

φM
2 ðxÞ

�
; ð2:50Þ

with the effective orthogonal (UT
M ¼ U−1

M ) mixing matrix in
matter

UM ¼
�

cos ϑM sin ϑM
− sin ϑM cos ϑM

�
; ð2:51Þ

such that

UT
MHUM ¼ diagð−Δm2

M;Δm2
MÞ

4Eν
: ð2:52Þ

The amplitudes φM
1 ðxÞ and φM

2 ðxÞ correspond to the effective
massive neutrinos in matter νM1 ðxÞ and νM2 ðxÞ, which have the
effective squared-mass difference

Δm2
M¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔm2 cos2ϑ−2EνVCCÞ2þðΔm2 sin2ϑÞ2

q
: ð2:53Þ

The effective mixing angle in matter ϑM is given by

tan 2ϑM ¼ tan 2ϑ
1 − 2EνVCC=Δm2 cos 2ϑ

: ð2:54Þ

The most interesting characteristic of this expression is that
there is a resonance (Mikheev and Smirnov, 1985) when

VCC ¼ Δm2

2Eν
cos 2ϑ; ð2:55Þ

which corresponds to the electron number density

NR
e ¼ Δm2 cos 2ϑ

2
ffiffiffi
2

p
EνGF

: ð2:56Þ

At the resonance the effective mixing angle is equal to π=4,
i.e., the mixing is maximal, leading to the possibility of total
transitions between the two flavors if the resonance region is
wide enough.
In general, the evolution equation (2.45) must be solved

numerically or with appropriate approximations. In a constant
matter density, it is easy to derive an analytic solution, leading
to the transition probability

P2ν
νe→νaðxÞ ¼ sin22ϑMsin2

�
Δm2

Mx
4Eν

�
: ð2:57Þ

This expression has the same structure as the two-neutrino
transition probability in vacuum in Eq. (2.39), with the mixing
angle and the squared-mass difference replaced by their
effective values in matter.
The matter effect is especially important for solar neutrinos,

which are created as electron neutrinos by thermonuclear
reactions in the center of the Sun, where the electron number
density Ne is of the order of 102NA cm−3, and propagate out
of the Sun through an electron density which decreases
approximately in an exponential way (Giunti and Kim,
2007). In a first approximation which neglects the small
effects due to ϑ13, νe is mixed only with ν1 and ν2, which are
almost equally mixed with νμ and ντ (see Sec. II.E). In this
approximation, the oscillations of solar neutrinos are well
described by the two-neutrino νe − νa mixing formalism with
ϑ ¼ ϑ12. The oscillations are generated by the solar squared-
mass difference

Δm2
S ≈ 8 × 10−5 eV2; ð2:58Þ

and

jνai≃ cos ϑ23jνμi − sin ϑ23jντi
≈ ðjνμi − jντiÞ=

ffiffiffi
2

p
: ð2:59Þ

An electron neutrino created in the center of the Sun is the
linear combination of effective massive neutrinos

jν0ei ¼ cos ϑ0Mjν01i þ sin ϑ0Mjν02i; ð2:60Þ

where ν01 and ν
0
2 are the effective massive neutrinos at the point

of neutrino production near the center of the Sun and ϑ0M is the
corresponding effective mixing angle. Since the resonance is
crossed adiabatically, there are no transitions between the
effective massive neutrinos during propagation and the state
which emerges from the Sun is

jνSi ¼ cos ϑ0Mjν1i þ sin ϑ0Mjν2i; ð2:61Þ

where ν1 and ν2 are the massive neutrinos in vacuum. Since
the two massive neutrinos lose coherence during the long
propagation from the Sun to the Earth (Dighe, Liu, and
Smirnov, 1999), experiments on Earth measure the average
electron neutrino survival probability (Parke, 1986)
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P̄S;2ν
νe→νe ¼ cos2ϑ0Mjhνejν1ij2 þ sin2ϑ0Mjhνejν2ij2

¼ 1
2
þ 1

2
cos 2ϑ0M cos 2ϑ12: ð2:62Þ

This is a surprisingly simple expression, which depends only
on the mixing angle in vacuum ϑ12 and on the effective mixing
angle in the center of the Sun ϑ0M, which can be easily
calculated using Eq. (2.54). Notice that ϑ0M depends on the
neutrino energy. With the value of Δm2

S in Eq. (2.58), ϑ0M ≃
ϑ12 for Eν ≲ 1 MeV and ϑ0M ≃ π=2 for Eν ≳ 5 MeV (Giunti
and Kim, 2007). Therefore,

P̄S;2ν
νe→νe ≃

�
1 − 0.5sin22ϑ12 for Eν ≲ 1 MeV;

sin2ϑ12 for Eν ≳ 5 MeV:
ð2:63Þ

E. Status of three-neutrino mixing

The results of several solar, atmospheric, and long-baseline
neutrino oscillation experiments have proved that neutrinos
are massive and mixed particles (Giunti and Kim, 2007;
Bilenky, 2010; Xing and Zhou, 2011; Gonzalez-Garcia et al.,
2012; Bellini et al., 2014; Capozzi et al., 2014; Gonzalez-
Garcia, Maltoni, and Schwetz, 2014). There are two groups of
experiments which measured two types of flavor transition
generated by two independent squared-mass differences
(Δm2): the solar squared-mass difference in Eq. (2.58) and
the atmospheric squared-mass difference

Δm2
A ≈ 2 × 10−3 eV2: ð2:64Þ

Since in the framework of three-neutrino mixing described in
Sec. II.C there are just two independent squared-mass
differences, solar, atmospheric, and long-baseline data have
led us to the current three-neutrino mixing paradigm, with the
standard assignments

Δm2
S ¼ Δm2

21 ≪ Δm2
A ¼ 1

2
jΔm2

31 þ Δm2
32j: ð2:65Þ

The absolute value in the definition of Δm2
A is necessary,

because there are the two possible orderings of the neutrino
masses illustrated schematically in the insets of the two
corresponding panels in Fig. 3: the normal ordering (NO)
with m1 < m2 < m3 and Δm2

13;Δm2
23 > 0, and the inverted

ordering (IO) with m3 < m1 < m2 and Δm2
13;Δm2

23 < 0.
The three-neutrino mixing parameters can be determined

with good precision with a global fit of neutrino oscillation
data. In Table III we report the results of the latest global
fit presented by Capozzi et al. (2014), which agree, within
the uncertainties, with the NuFIT-v1.2 (Gonzalez-Garcia,
Maltoni, and Schwetz, 2014) update of the global analysis
presented by Gonzalez-Garcia et al. (2012). One can see that
all the oscillation parameters are determined with precision
between about 3% and 10%. The largest uncertainty is that of
ϑ23, which is known to be close to maximal (π=4), but it is not
known if it is smaller or larger than π=4. For the Dirac CP-
violating phase δ, there is an indication in favor of δ ≈ 3π=2,
which would give maximal CP violation, but at 3σ all the
values of δ are allowed, including the CP-conserving val-
ues δ ¼ 0; π.
An open problem in the framework of three-neutrino

mixing is the determination of the absolute scale of neutrino
masses, which cannot be determined with neutrino oscillation
experiments, because oscillations depend only on the
differences of neutrino masses. However, the measurement
in neutrino oscillation experiments of the neutrino squared-
mass differences allows us to constrain the allowed patterns of
neutrino masses. A convenient way to see the allowed patterns
of neutrino masses is to plot the values of the masses as
functions of the unknown lightest mass, which is m1 in the
normal ordering and m3 in the inverted ordering, as shown in
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FIG. 3 (color online). Values of the neutrino masses as functions of the lightest mass in the two possible cases of (a) normal ordering and
(b) inverted ordering. They have been obtained using the squared-mass differences in Table III.
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Fig. 3. We used the squared-mass differences in Table III.
Figure 3 shows that there are three extreme possibilities:
A normal hierarchy: m1 ≪ m2 ≪ m3. In this case

m2 ≃
ffiffiffiffiffiffiffiffiffiffi
Δm2

S

q
≈ 9 × 10−3 eV; ð2:66Þ

m3 ≃
ffiffiffiffiffiffiffiffiffiffi
Δm2

A

q
≈ 5 × 10−2 eV: ð2:67Þ

An inverted hierarchy: m3 ≪ m1 ≲m2. In this case

m1 ≲m2 ≃
ffiffiffiffiffiffiffiffiffiffi
Δm2

A

q
≈ 5 × 10−2 eV: ð2:68Þ

Quasidegenerate masses: m1 ≲m2 ≲m3 ≃mν in the
normal scheme and m3 ≲m1 ≲m2 ≃mν in the
inverted scheme, with

mν ≫
ffiffiffiffiffiffiffiffiffiffi
Δm2

A

q
≈ 5 × 10−2 eV: ð2:69Þ

There are three main sources of information on the absolute
scale of neutrino masses:
Beta decay: The most robust information on neutrino

masses can be obtained in β-decay experiments
which measure the kinematical effect of neutrino
masses on the energy spectrum of the emitted
electron. Tritium β-decay experiments obtained
the most stringent bounds on the neutrino masses
by limiting the effective electron neutrino mass mβ

given by (Giunti and Kim, 2007; Bilenky, 2010;
Xing and Zhou, 2011)

m2
β ¼

X3
k¼1

jUekj2m2
k: ð2:70Þ

The most stringent 95% C.L. limits obtained in the
Mainz (Kraus et al., 2005) and Troitsk (Aseev et al.,
2011) experiments,

mβ ≤ 2.3 eV ðMainzÞ; ð2:71Þ

mβ ≤ 2.1 eV ðTroitskÞ; ð2:72Þ

are shown in Fig. 3. The KATRIN experiment
(Fraenkle, 2011), which was scheduled to start data
taking in 2014, is expected to have a sensitivity to
mβ of about 0.2 eV (also shown in Fig. 3).

Neutrinoless double-beta decay: This process occurs only
if massive neutrinos are Majorana fermions and
depends on the effective Majorana mass (Giunti and
Kim, 2007; Bilenky, 2010; Xing and Zhou, 2011;
Bilenky and Giunti, 2014)

mββ ¼
����X3
k¼1

U2
ekmk

����: ð2:73Þ

The most stringent 90% C.L. limits have been
obtained combining the results of EXO (Auger et al.,
2012) and KamLAND-Zen (Gando et al., 2013)
experiments with 136Xe,

mββ ≲ 0.12–0.25 eV; ð2:74Þ

and combining the results of Heidelberg-Moscow
(Klapdor-Kleingrothaus et al., 2001), IGEX (Aalseth
et al., 2002), andGERDA (Agostini et al., 2013) with
76Ge,1

mββ ≲ 0.2–0.4 eV: ð2:75Þ

The intervals are caused by nuclear physics uncer-
tainties (Vergados, Ejiri, and Simkovic, 2012).

Cosmology: Since light massive neutrinos are hot dark
matter, cosmological data give information on the
sum of neutrino masses (Giunti and Kim, 2007;

TABLE III. Values of the neutrino mixing parameters obtained with a global analysis of neutrino oscillation data
presented by Capozzi et al. (2014) in the framework of three-neutrino mixing with the normal ordering (NO) and the
inverted ordering (IO). The relative uncertainty has been obtained from the 3σ range divided by 6.

Parameter Ordering Best fit 1σ range 2σ range 3σ range Relative uncertainty

Δm2
S=10

−5 eV2 7.54 7.32–7.80 7.15–8.00 6.99–8.18 3%

sin2 ϑ12=10−1 3.08 2.91–3.25 2.75–3.42 2.59–3.59 5%

Δm2
A=10

−3 eV2
NO 2.43 2.37–2.49 2.30–2.55 2.23–2.61 3%
IO 2.38 2.32–2.44 2.25–2.50 2.19–2.56 3%

sin2 ϑ23=10−1
NO 4.37 4.14–4.70 3.93–5.52 3.74–6.26 10%
IO 4.55 4.24–5.94 4.00–6.20 3.80–6.41 10%

sin2 ϑ13=10−2
NO 2.34 2.15–2.54 1.95–2.74 1.76–2.95 8%
IO 2.40 2.18–2.59 1.98–2.79 1.78–2.98 8%

1The claim of observation of neutrinoless double-beta decay of
76Ge presented by Klapdor-Kleingrothaus et al. (2004) is strongly
disfavored by the recent results of the GERDA experiment (Agostini
et al., 2013) and by the combined bound in Eq. (2.75); see also
Aalseth et al. (2004), Elliott and Engel (2004), Strumia and Vissani
(2006), Schwingenheuer (2013), and Bilenky and Giunti (2014).
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Bilenky, 2010; Xing and Zhou, 2011; Lesgourgues
et al., 2013). The analysis of cosmological data in
the framework of the standard cold dark matter
model with a cosmological constant (ΛCDM) dis-
favors neutrino masses larger than some fraction of
eV, but the value of the upper bound on the sum of
neutrino masses depends on model assumptions and
on the considered data set (Wong, 2011). Figure 3
shows the 95% limit

X3
k¼1

mk < 0.32 eV; ð2:76Þ

obtained recently by the Planck Collaboration (Ade
et al., 2014). See Archidiacono et al. (2013),
Lesgourgues and Pastor (2014), and Abazajian et al.
(2015) for recent reviews of the implications of
cosmological data for neutrino physics.

F. Sterile neutrinos

In the previous sections we considered the standard
framework of three-neutrino mixing which can explain the
numerous existing measurements of neutrino oscillations as
explained in Sec. II.E. However, it is possible that there are
additional massive neutrinos, such as those at the eV scale
suggested by anomalies found in short-baseline oscillation
experiments (Aguilar et al., 2001; Abdurashitov et al., 2006;
Giunti and Laveder, 2011; Kopp, Maltoni, and Schwetz, 2011;
Mention et al., 2011; Giunti et al., 2012, 2013; Conrad et al.,
2013; Kopp et al., 2013) or those at the keV scale, which
could constitute warm dark matter according to the neutrino
minimal standard model (νMSM) (Asaka, Blanchet, and
Shaposhnikov, 2005; Asaka and Shaposhnikov, 2005;
Asaka, Kusenko, and Shaposhnikov, 2006; Asaka, Laine,
and Shaposhnikov, 2006, 2007) [see also the reviews by
Boyarsky, Ruchayskiy, and Shaposhnikov (2009), Kusenko
(2009), Boyarsky, Iakubovskyi, and Ruchayskiy (2012), and
Drewes (2013)]. In the flavor basis, which describes the
interacting neutrino states, the additional neutrinos are sterile,
because we know from the measurement of the invisible width
of the Z boson in the LEP experiments that the number of light
active neutrinos is three (Schael et al., 2006), and the existence
of a heavy fourth generation of active fermions with an active
neutrino heavier than mZ=2 is disfavored by the experimental
data (Lenz, 2013; Vysotsky, 2013). From a theoretical point of
view, it is likely that if there are sterile neutrinos, all neutrinos
are Majorana particles, but the Dirac case is not excluded.
We consider the general case of Ns sterile neutrinos

νs1 ;…; νsNs
. In the mass basis there are N ¼ 3þ Ns massive

neutrino fields ν1;…; νN and the mixing of the left-handed
neutrino fields is given by

νlL ¼
XN
k¼1

UlkνkL ðl ¼ e; μ; τ; s1;…; sNs
Þ; ð2:77Þ

where U is a N × N unitary mixing matrix. The three massive
neutrinos ν1, ν2, and ν3 coincide with those in the standard
three-neutrino mixing framework discussed in Sec. II.C, and

ν4;…; νN are the additional nonstandard Ns massive neutri-
nos. In order to preserve approximately the three-neutrino
mixing explanation of oscillation data described in Sec. II.E,
the mixing of the three active neutrinos νe, νμ, and ντ with the
nonstandard massive neutrinos ν4;…; νN must be very small:

jUlkj ≪ 1 for l ¼ e; μ; τ and k ≥ 4; ð2:78Þ

which implies that

jUsnkj ≪ 1 for n ¼ 1;…; Ns and k ≤ 3: ð2:79Þ

Since the mixing in the sterile sector is arbitrary, it is
convenient to choose

Usnk ¼ 0 for n ≠ k − 3 and k ≥ 4: ð2:80Þ

Then, from Eq. (2.79) we have

1 − jUsk−3kj2 ≪ 1; for k ≥ 4: ð2:81Þ

The numerical values of the inequalities (2.78)–(2.81)
depend on the model and on the experimental data under
consideration. In this review we consider only these generic
inequalities in order to present general results on the neutrino
dipole moments in Secs. IV.A and IV.B and on neutrino
radiative decay in Sec. V.A.

III. ELECTROMAGNETIC FORM FACTORS

The importance of neutrino electromagnetic properties was
first mentioned by Pauli in 1930, when he postulated the
existence of this particle and discussed the possibility that the
neutrino might have a magnetic moment (Pauli, 1991).
Systematic theoretical studies of neutrino electromagnetic
properties started after it was shown that in the extended
standard model with right-handed neutrinos the magnetic
moment of a massive neutrino is, in general, nonvanishing
and that its value is determined by the neutrino mass (Lee and
Shrock, 1977; Marciano and Sanda, 1977; Petcov, 1977;
Fujikawa and Shrock, 1980; Pal and Wolfenstein, 1982;
Shrock, 1982; Bilenky and Petcov, 1987).
Neutrino electromagnetic properties are important because

they are directly connected to fundamentals of particle
physics. For example, neutrino electromagnetic properties
can be used to distinguish Dirac and Majorana neutrinos,
because Dirac neutrinos can have both diagonal and off-
diagonal magnetic and electric dipole moments, whereas only
the off-diagonal ones are allowed for Majorana neutrinos
(Schechter and Valle, 1981; Kayser, 1982, 1984; Nieves,
1982; Pal and Wolfenstein, 1982; Shrock, 1982). This is
shown in detail in Secs. III.A and III.B. Another important
case in which Dirac and Majorana neutrinos have quite
different observable effects is the spin-flavor precession in
an external magnetic field discussed in Sec. VI.B. Neutrino
electromagnetic properties are also probes of new physics
beyond the standard model, because in the standard model
neutrinos can have only a charge radius (see Secs. III.C and
VII.B). The discovery of other neutrino electromagnetic
properties would be a signal of new physics beyond the
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standard model (Bell et al., 2005, 2006; Bell, 2007; Novales-
Sanchez et al., 2008).
In this section we discuss the general form of the electro-

magnetic interactions of Dirac and Majorana neutrinos in the
one-photon approximation. In Sec. III.Awe derive the general
expression of the effective electromagnetic coupling of Dirac
neutrinos in terms of electromagnetic form factors and we
discuss the properties of the form factors under CP and CPT
transformations. In Sec. III.B we consider Majorana neutrinos
and in Sec. III.C we consider the standard model case of
massless Weyl neutrinos.

A. Dirac neutrinos

In the standard model, the interaction of a fermionic field
fðxÞ with the electromagnetic field AμðxÞ is given by the
interaction Hamiltonian

HðfÞ
emðxÞ ¼ jðfÞμ ðxÞAμðxÞ ¼ qff̄ðxÞγμfðxÞAμðxÞ; ð3:1Þ

where qf is the charge of the fermion f. Figure 4(a) shows the
corresponding tree-level Feynman diagram [the photon γ is
the quantum of the electromagnetic field AμðxÞ].
For neutrinos the electric charge is zero and there are no

electromagnetic interactions at tree level.2 However, such
interactions can arise at the quantum level from loop diagrams
at higher order of the perturbative expansion of the interaction.
In the one-photon approximation,3 the electromagnetic inter-
actions of a neutrino field νðxÞ can be described by the
effective interaction Hamiltonian

HðνÞ
emðxÞ ¼ jðνÞμ ðxÞAμðxÞ ¼ ν̄ðxÞΛμνðxÞAμðxÞ; ð3:2Þ

where jðνÞμ ðxÞ is the neutrino effective electromagnetic current
four-vector and Λμ is a 4 × 4 matrix in spinor space which can
contain space-time derivatives, such that jðνÞμ ðxÞ transforms as
a four-vector. Since radiative corrections are generated by
weak interactions which are not invariant under a parity
transformation, jðνÞμ ðxÞ can be a sum of polar and axial parts.
The corresponding diagram for the interaction of a neutrino
with a photon is shown in Fig. 4(b), where the blob represents
the quantum loop contributions.
As we see in the following, the neutrino electromagnetic

properties corresponding to the diagram in Fig. 4(b) include
charge and magnetic form factors. We emphasize that these
neutrino electromagnetic properties can exist even if neutrinos
are elementary particles, without an internal structure, because
they are generated by quantum loop effects. Thus, the neutrino
charge and magnetic form factors have a different origin from
the neutron charge and magnetic form factors (also called
Dirac and Pauli form factors), which are mainly due to its
internal quark structure. For example, the neutrino magnetic
moment [which is the magnetic form factor for interactions
with real photons, i.e., q2 ¼ 0 in Fig. 4(b)] have the same

quantum origin as the anomalous magnetic moment of the
electron ( Greiner and Reinhardt, 2009).
We are interested in the neutrino part of the amplitude

corresponding to the diagram in Fig. 4(b), which is given by
the matrix element

hνðpf; hfÞjjðνÞμ ðxÞjνðpi; hiÞi; ð3:3Þ

where pi (pf) and hi (hf) are the four-momentum and helicity
of the initial (final) neutrino. Taking into account the fact that

∂μjðνÞμ ðxÞ ¼ i½Pμ; jðνÞμ ðxÞ�; ð3:4Þ

where Pμ is the four-momentum operator which generate
translations, the effective current can be written as

jðνÞμ ðxÞ ¼ eiP·xjðνÞμ ð0Þe−iP·x: ð3:5Þ

Since PμjνðpÞi ¼ pμjνðpÞi, we have

hνðpfÞjjðνÞμ ðxÞjνðpiÞi ¼ eiðpf−piÞ·xhνðpfÞjjðνÞμ ð0ÞjνðpiÞi;
ð3:6Þ

where we suppressed for simplicity the helicity labels which
are not of immediate relevance. Here we see that the unknown
quantity which determines the neutrino-photon interaction is
hνðpfÞjjðνÞμ ð0ÞjνðpiÞi. Considering that the incoming and
outgoing neutrinos are free particles which are described
by free Dirac fields with the Fourier expansion in Eq. (A55),
we have

hνðpfÞjjðνÞμ ð0ÞjνðpiÞi ¼ ūðpfÞΛμðpf; piÞuðpiÞ: ð3:7Þ

The electromagnetic properties of neutrinos are embodied by
the vertex function Λμðpf; piÞ, which is a matrix in spinor
space and can be decomposed in terms of linearly independent
products of Dirac γ matrices and the available kinematical
four-vectors pi and pf. As shown in Appendix B, the most
general decomposition can be written as

Λμðpf; piÞ ¼ f1ðq2Þqμ þ f2ðq2Þqμγ5 þ f3ðq2Þγμ
þ f4ðq2Þγμγ5 þ f5ðq2Þσμνqν
þ f6ðq2Þϵμνργqνσργ; ð3:8Þ

FIG. 4. Tree-level coupling of a charged fermion f with (a) a
photon γ and (b) effective one-photon coupling of a neutrino with
a photon.

2However, in some theories beyond the standard model neutrinos
can be millicharged particles (see Sec. VII.A).

3Some cases in which the one-photon approximation breaks down
are discussed in Sec. VII.A.
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where fkðq2Þ are six Lorentz-invariant form factors
(k ¼ 1;…; 6) and q is the four-momentum of the photon,
which is given by

q ¼ pi − pf; ð3:9Þ

from energy-momentum conservation. Notice that the form
factors depend only on q2, which is the only available
Lorentz-invariant kinematical quantity, since ðpi þ pfÞ2 ¼
4m2 − q2. Therefore, Λμðpf; piÞ depends only on q and from
now on we denote it as ΛμðqÞ.
Since the Hamiltonian and the electromagnetic field are

Hermitian (HðνÞ†
em ¼ HðνÞ

em and Aμ† ¼ Aμ), the effective current

must be Hermitian, jðνÞ†μ ¼ jðνÞμ . Hence, we have

hνðpfÞjjðνÞμ ð0ÞjνðpiÞi ¼ hνðpiÞjjðνÞμ ð0ÞjνðpfÞi�; ð3:10Þ

which leads to

ΛμðqÞ ¼ γ0Λ†
μð−qÞγ0: ð3:11Þ

Using the properties of the Dirac matrices (see Appendix A),
one can find that this constraint implies that

f2; f3; f4 are real; ð3:12Þ

and

f1; f5; f6 are imaginary: ð3:13Þ

The number of independent form factors can be reduced

by imposing current conservation ∂μjðνÞμ ðxÞ ¼ 0, which is

required by gauge invariance [i.e., invariance ofHðνÞ
emðxÞ under

the transformation AμðxÞ → AμðxÞ þ ∂μφðxÞ for any φðxÞ,
which leaves invariant the electromagnetic tensor
Fμν ¼ ∂μAν − ∂νAμ]. Using Eq. (3.4), current conservation
implies that

hνðpfÞj½Pμ; jðνÞμ ð0Þ�jνðpiÞi ¼ 0: ð3:14Þ

Hence, in momentum space we have the constraint

qμūðpfÞΛμðqÞuðpiÞ ¼ 0; ð3:15Þ

which implies that

f1ðq2Þq2 þ f2ðq2Þq2γ5 þ 2mf4ðq2Þγ5 ¼ 0: ð3:16Þ

Since γ5 and the unity matrix are linearly independent, we
obtain the constraints

f1ðq2Þ ¼ 0; f4ðq2Þ ¼ −f2ðq2Þq2=2m: ð3:17Þ

Therefore, in the most general case consistent with Lorentz
and electromagnetic gauge invariance, the vertex function
ΛμðqÞ is defined in terms of four form factors (Kayser, 1982,
1984; Nieves, 1982),

ΛμðqÞ ¼ fQðq2Þγμ − fMðq2Þiσμνqν þ fEðq2Þσμνqνγ5
þ fAðq2Þðq2γμ − qμqÞγ5; ð3:18Þ

where fQ ¼ f3, fM ¼ if5, fE ¼ −2if6, and fA ¼ −f2=2m are
the real charge, dipole magnetic and electric, and anapole
neutrino form factors. The term involving the electric form
factor corresponds to the last term in Eq. (3.8), in which we
took into account the identity in Eq. (A26). In the term
involving the anapole form factor we used the identity
ūðpfÞqγ5uðpiÞ ¼ 2mūðpfÞγ5uðpiÞ, which is easily obtained
from Eqs. (A17) and (A42).
The physical meaning of the dipole magnetic and electric

neutrino form factors is discussed in Sec. IV and that of the
charge and anapole in Sec. VII. Here we remark only that for
the coupling with a real photon (q2 ¼ 0)

fQð0Þ ¼ q; fMð0Þ ¼ μ; fEð0Þ ¼ ϵ; fAð0Þ ¼ a;

ð3:19Þ
where q, μ, ϵ, and a are, respectively, the neutrino charge,
magnetic moment, electric moment, and anapole moment.
Although previously we stated that q ¼ 0, here we did not
enforce this equality because in some theories beyond the
standard model neutrinos can be millicharged particles, as
explained in Sec. VII.A.
Now it is interesting to study the properties ofHðνÞ

emðxÞ under
a CP transformation, in order to find which of the terms in
Eq. (3.18) violate CP. The reason is that, whereas it is well
known that weak interactions violate maximally C and P, the
violation of CP is a more exotic phenomenon, which has been
observed so far only in the hadron sector (Bilenky, 2008).
Using the transformation (A66) of a fermion field under an

active CP transformation one can find that for the standard
model electric current jμðxÞ in Eq. (3.1) we have

jμðxÞ!CPUCPjμðxÞU†
CP ¼ −jμðxPÞ: ð3:20Þ

Hence, the standard model electromagnetic interaction
Hamiltonian HðνÞ

emðxÞ is left invariant by4

AμðxÞ!CP − AμðxPÞ: ð3:21Þ

CP is conserved in neutrino electromagnetic interactions (in
the one-photon approximation) if jðνÞμ ðxÞ transforms as jμðxÞ:

CP ⇔ UCPj
ðνÞ
μ ðxÞU†

CP ¼ −jμðνÞðxPÞ: ð3:22Þ

For the matrix element (3.7) we obtain

CP ⇔ ΛμðqÞ!CP − ΛμðqÞ: ð3:23Þ
Using the formulas in Appendix A, one can find that under a
CP transformation we have5

4The transformation x → xP is irrelevant since all amplitudes are
obtained by integrating over d4x, as in Eq. (5.2).

5The operators in jðνÞμ ðxÞ are implicitly assumed to be normally
ordered (Giunti and Kim, 2007).
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ΛμðqÞ!CP γ0CΛT
μ ðqPÞC†γ0; ð3:24Þ

with qμP ¼ qμ. Using the form-factor expansion in Eq. (3.18),
we obtain

ΛμðqÞ!CP − ½fQðq2Þγμ − fMðq2Þiσμνqν
− fEðq2Þσμνqνγ5 þ fAðq2Þðq2γμ − qμqÞγ5�: ð3:25Þ

Therefore, only the electric dipole form factor violates CP:

CP ⇔ fEðq2Þ ¼ 0: ð3:26Þ

So far, in this section we considered only one massive
neutrino field νðxÞ, but from the discussion of neutrino mixing
in Sec. II we know that there are at least three massive neutrino
fields in nature. Therefore, we must generalize the discussion
to the case of N massive neutrino fields νkðxÞ with respective
masses mk (k ¼ 1;…; N). The effective electromagnetic
interaction Hamiltonian in Eq. (3.2) is generalized to

HðνÞ
emðxÞ ¼ jðνÞμ ðxÞAμðxÞ ¼

XN
k;j¼1

νkðxÞΛkj
μ νjðxÞAμðxÞ; ð3:27Þ

where we take into account possible transitions between
different massive neutrinos. The physical effect of HðνÞ

em is
described by the effective electromagnetic vertex in Fig. 5,
with the neutrino matrix element

hνfðpfÞjjðνÞμ ð0ÞjνiðpiÞi ¼ ufðpfÞΛfi
μ ðpf; piÞuiðpiÞ: ð3:28Þ

As in the case of one massive neutrino field (see Appendix B),
Λfi
μ ðpf; piÞ depends only on the four-momentum q transferred

to the photon and can be expressed in terms of six Lorentz-
invariant form factors:

Λfi
μ ðqÞ ¼ ffi1 ðq2Þqμ þ ffi2 ðq2Þqμγ5 þ ffi3 ðq2Þγμ þ ffi4 ðq2Þγμγ5

þ ffi5 ðq2Þσμνqν þ ffi6 ðq2Þϵμνργqνσργ: ð3:29Þ

The Hermitian nature of jðνÞμ implies that

hνfðpfÞjjðνÞμ ð0ÞjνiðpiÞi ¼ hνiðpiÞjjðνÞμ ð0ÞjνfðpfÞi�, leading
to the constraint

Λfi
μ ðqÞ ¼ γ0½Λif

μ ð−qÞ�†γ0: ð3:30Þ

Considering the N × N form-factor matrices fk in the space of
massive neutrinos with components ffik for k ¼ 1;…; 6, we
find that

f2; f3; f4 are Hermitian; ð3:31Þ

and

f1; f5; f6 are anti-Hermitian: ð3:32Þ

Following the same method used in Eqs. (3.4)–(3.16), one
can find that current conservation implies the constraints

ffi1 ðq2Þq2 þ ffi3 ðq2Þðmf −miÞ ¼ 0; ð3:33Þ

ffi2 ðq2Þq2 þ ffi4 ðq2Þðmf þmiÞ ¼ 0: ð3:34Þ

Therefore, we obtain

Λfi
μ ðqÞ ¼ ðγμ − qμq=q2Þ½ffiQ ðq2Þ þ ffiA ðq2Þq2γ5�

− iσμνqν½ffiMðq2Þ þ iffiE ðq2Þγ5�; ð3:35Þ

where ffiQ ¼ ffi3 , ffiM ¼ iffi5 , ffiE ¼ −2iffi6 , and ffiA ¼
−ffi2 =ðmf þmiÞ, with

ffiΩ ¼ ðf ifΩ Þ� ðΩ ¼ Q;M; E; AÞ: ð3:36Þ

Note that since ufðpfÞquiðpiÞ ¼ ðmf −miÞufðpfÞuiðpiÞ, if
f ¼ i Eq. (3.35) correctly reduces to Eq. (3.18).
The form factors with f ¼ i are called “diagonal,” whereas

those with f ≠ i are called “off-diagonal” or “transition form
factors.” This terminology follows from

ΛμðqÞ ¼ ðγμ − qμq=q2Þ½fQðq2Þ þ fAðq2Þq2γ5�
− iσμνqν½fMðq2Þ þ ifEðq2Þγ5�; ð3:37Þ

in which ΛμðqÞ is a N × N matrix in the space of massive
neutrinos expressed in terms of the four Hermitian N × N
matrices of form factors

fΩ ¼ f†Ω ðΩ ¼ Q;M;E; AÞ: ð3:38Þ

For the coupling with a real photon (q2 ¼ 0) we have

ffiQ ð0Þ ¼ qfi; ffiMð0Þ ¼ μfi; ffiE ð0Þ ¼ ϵfi;

ffiA ð0Þ ¼ afi;
ð3:39Þ

where qfi, μfi, ϵfi, and afi are, respectively, the neutrino
charge, magnetic moment, electric moment, and anapole
moment of diagonal (f ¼ i) and transition (f ≠ i) types.
Considering now CP invariance, the transformation (3.22)

of jðνÞμ ðxÞ implies the constraint in Eq. (3.23) for the N × N
matrix ΛμðqÞ in the space of massive neutrinos. Using the
formulas in Appendix A, we obtain

FIG. 5. Effective one-photon coupling of neutrinos with the
electromagnetic field, taking into account possible transitions
between two different initial and final massive neutrinos
νi and νf .
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Λfi
μ ðqÞ!CP ξCPf ξCPi

�γ0C½Λif
μ ðqPÞ�TC†γ0; ð3:40Þ

where ξCPk is the CP phase of νk. Since the massive neutrinos
take part to standard charged-current weak interactions,6 their
CP phases are equal if CP is conserved (Giunti and Kim,
2007). Hence, we have

Λfi
μ ðqÞ!CPγ0C½Λif

μ ðqPÞ�TC†γ0: ð3:41Þ

Using the form-factor expansion in Eq. (3.35), we obtain

Λfi
μ ðqÞ!CP − fðγμ − qμq=q2Þ½f ifQ ðq2Þ þ f ifA ðq2Þq2γ5�
− iσμνqν½f ifMðq2Þ − if ifE ðq2Þγ5�g: ð3:42Þ

Imposing the constraint in Eq. (3.23), for the form factors we
obtain

CP ⇔

�
ffiΩ ¼ f ifΩ ¼ ðffiΩ Þ� ðΩ ¼ Q;M;AÞ;
ffiE ¼ −f ifE ¼ −ðffiE Þ�;

ð3:43Þ

where, in the last equalities, we took into account the
constraints (3.36). Therefore, diagonal electric form factors
violate CP, in agreement with the one-generation constraint
in Eq. (3.26). For the Hermitian N × N form-factor matrices,
we obtain that if CP is conserved fQ, fM, and fA are real and
symmetric and fE is imaginary and antisymmetric:

CP ⇔

�
fΩ ¼ fTΩ ¼ f�Ω ðΩ ¼ Q;M;AÞ;
fE ¼ −fTE ¼ −f�E:

ð3:44Þ

We now consider antineutrinos. Using for the massive
neutrino fields the Fourier expansion in Eq. (A55), the
effective antineutrino matrix element for ν̄iðpiÞ → ν̄fðpfÞ
transitions is given by

hν̄fðpfÞjjðνÞμ ð0Þjν̄iðpiÞi ¼ −v̄iðpiÞΛif
μ ðqÞvfðpfÞ: ð3:45Þ

Using the relation (A47) we can write it as

hν̄fðpfÞjjðνÞμ ð0Þjν̄iðpiÞi ¼ ufðpfÞC½Λif
μ ðqÞ�TC†uiðpiÞ; ð3:46Þ

where transposition operates in spinor space. Therefore, the
effective form-factor matrix in spinor space for antineutrinos
is given by

Λ̄fi
μ ðqÞ ¼ C½Λif

μ ðqÞ�TC†: ð3:47Þ

Using the properties of the charge-conjugation matrix,
Eq. (3.35) for Λif

μ ðqÞ, and the Hermiticity in Eq. (3.36),
we obtain the antineutrino form factors

f̄fiΩ ¼ −f ifΩ ¼ −ðffiΩ Þ� ðΩ ¼ Q;M;EÞ; ð3:48Þ

f̄fiA ¼ f ifA ¼ ðffiA Þ�: ð3:49Þ

Therefore, in particular, the diagonal magnetic and electric
moments of neutrinos and antineutrinos, which are real, have
the same size with opposite signs, as the charge, if it exists. On
the other hand, the real diagonal neutrino and antineutrino
anapole moments are equal.
It is interesting to note that the relations in Eqs. (3.48)

and (3.49) between neutrino and antineutrino form factors are
a consequence of CPT symmetry, which is a fundamental
symmetry of local relativistic quantum field theory
(Greenberg, 2006). In order to prove this statement, we first
consider the CPT transformation of the standard model
electric current jμðxÞ in Eq. (3.1): using Eq. (A68) we
have

jμðxÞ !CPT UCPTjμðxÞU†
CPT ¼ −jμð−xÞ: ð3:50Þ

Therefore, the standard model electromagnetic interaction
Hamiltonian HðνÞ

emðxÞ is left invariant by

AμðxÞ !CPT − Aμð−xÞ: ð3:51Þ

CPT is conserved by the neutrino effective electromagnetic
interaction Hamiltonian in Eq. (3.27) if jðνÞμ ðxÞ transforms as
jμðxÞ:

CPT ⇔ UCPTj
ðνÞ
μ ðxÞU†

CPT ¼ −jðνÞμ ð−xÞ: ð3:52Þ

In order to find the implications of this relation for the
antineutrino matrix element in Eq. (3.45), we need to consider
it taking into account the helicities of the initial and final
neutrinos, because CPT reverses helicities. Thus, assuming
CPT and insertingU†

CPTUCPT ¼ 1 on both sides of jðνÞμ ð0Þ, we
obtain

M̄fi ¼ hν̄fðpf; hfÞjjðνÞμ ð0Þjν̄iðpi; hiÞi
¼ −hν̄fðpf; hfÞjU†

CPTj
ðνÞ
μ ð0ÞUCPT jν̄iðpi; hiÞi: ð3:53Þ

Now we take into account that the application of UCPT to a
neutrino state transforms it into an antineutrino state. Using
the notation and conventions of Giunti and Kim (2007) we
have

UCPT jν̄kðpk; hkÞi ¼ −ζðhÞξCPTk
�jνkðpk;−hkÞi; ð3:54Þ

where ζðhÞ is a phase coming from

γ5vð−hÞðpÞ ¼ ζðhÞuðhÞðpÞ; ð3:55Þ

and ζð−hÞ ¼ −ζðhÞ. For the CPT phases ξCPTk , we assume
that they are all equal, as we have done for the CP phases in

6Here we consider massive neutrinos which are mixed with the
three active flavor neutrinos νe, νμ, and ντ. This is the case in standard
three-neutrino mixing (see Sec. II) and in its extensions with Dirac
sterile neutrinos which mix with the active ones. If there are Dirac
sterile neutrinos which are not mixed with the active ones and have
nonstandard interactions, the CP phases of the corresponding
massive neutrinos could be different from that of the standard
massive neutrinos. However, since the production and detection of
such sterile neutrinos would be very problematic, this case is not
interesting in practice.
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Eq. (3.40). Then, using Eq. (3.54) and taking into account the
antiunitarity of UCPT , Eq. (3.53) becomes

M̄fi¼−ζðhfÞζ�ðhiÞhνiðpi;−hiÞjjðνÞμ ð0Þjνfðpf;−hfÞi: ð3:56Þ

This is the crucial relation between the neutrino and anti-
neutrino matrix elements which follows from CPT invariance.
Using for the neutrino matrix element Eq. (3.28) and
Eq. (3.55), we obtain

M̄fi ¼ vðhiÞi ðpiÞγ5Λif
μ ð−qÞγ5vðhfÞf ðpfÞ: ð3:57Þ

Taking into account the form-factor expression of Λfi
μ ðqÞ in

Eq. (3.35), we have γ5Λif
μ ð−qÞγ5 ¼ −Λif

μ ðqÞ, which leads to

M̄fi ¼ −vðhiÞi ðpiÞΛif
μ ðqÞvðhfÞf ðpfÞ: ð3:58Þ

This expression for the antineutrino matrix element coincides
with Eq. (3.45) and implies Eqs. (3.48) and (3.49) for the form
factors.
Thus, we obtained the expression (3.45) for the antineutrino

matrix element in a complicated way, assuming only CPT
invariance and Eq. (3.28) for the neutrino matrix element. This
result is a tautology in the theoretical framework in which we
are working, because CPT is a fundamental symmetry of any
local relativistic quantum field theory (Greenberg, 2006).
However, in some theories beyond the standard model small
CPT violations can exist (Tsukerman, 2010), which may be
revealed by finding violations of the equalities in Eqs. (3.48)
and (3.49).

B. Majorana neutrinos

A Majorana neutrino is a neutral spin 1=2 particle which
coincides with its antiparticle. The 4 degrees of freedom of a
Dirac field (two helicities and two particle and antiparticle) are
reduced to two (two helicities) by the Majorana constraint in
Eq. (2.24). Since a Majorana field has half the degrees of
freedom of a Dirac field, it is possible that its electromagnetic
properties are reduced. From Eqs. (3.48) and (3.49) between
neutrino and antineutrino form factors in the Dirac case, we
can infer that in the Majorana case the charge, magnetic, and
electric form-factor matrices are antisymmetric and the ana-
pole form-factor matrix is symmetric. In order to confirm this
deduction, we calculate the neutrino matrix element corre-
sponding to the effective electromagnetic vertex in Fig. 5, with
the effective interaction Hamiltonian in Eq. (3.27), which
takes into account possible transitions between two different
initial and final massive Majorana neutrinos νi and νf. Using
the Fourier expansion (A59) for the neutrino Majorana fields
we obtain

hνfðpfÞjjðνÞμ ð0ÞjνiðpiÞi ¼ ufðpfÞΛfi
μ ðpf; piÞuiðpiÞ

−viðpiÞΛif
μ ðpf; piÞvfðpfÞ: ð3:59Þ

Using Eq. (A47), we can write it as

ufðpfÞfΛfi
μ ðpf; piÞ þ C½Λif

μ ðpf; piÞ�TC†guiðpiÞ; ð3:60Þ

where transposition operates in spinor space. Therefore the
effective form-factor matrix in spinor space for Majorana
neutrinos is given by

ΛMfi
μ ðpf; piÞ ¼ Λfi

μ ðpf; piÞ þ C½Λif
μ ðpf; piÞ�TC†: ð3:61Þ

As in the case of Dirac neutrinos, Λfi
μ ðpf; piÞ depends only on

q ¼ pf − pi and can be expressed in terms of six Lorentz-
invariant form factors according to Eq. (3.29). Hence, we can
write the N × N matrix ΛM

μ ðpf; piÞ in the space of massive
Majorana neutrinos as

ΛM
μ ðqÞ ¼ fM1 ðq2Þqμ þ fM2 ðq2Þqμγ5 þ fM3 ðq2Þγμ

þ fM4 ðq2Þγμγ5 þ fM5 ðq2Þσμνqν
þ fM6 ðq2Þϵμνργqνσργ; ð3:62Þ

with

fMk ¼ fk þ fTk ⇒ fMk ¼ ðfMk ÞT for k ¼ 1; 2; 4; ð3:63Þ

fMk ¼ fk − fTk ⇒ fMk ¼ −ðfMk ÞT for k ¼ 3; 5; 6: ð3:64Þ

Now we can follow the discussion in Sec. III.A for Dirac
neutrinos taking into account the additional constraints (3.63)
and (3.64) for Majorana neutrinos. The Hermiticity of jðνÞμ and
current conservation lead to an expression similar to that in
Eq. (3.37):

ΛM
μ ðqÞ ¼ ðγμ − qμq=q2Þ½fMQ ðq2Þ þ fMA ðq2Þq2γ5�

− iσμνqν½fMMðq2Þ þ ifME ðq2Þγ5�; ð3:65Þ

with fMQ ¼ fM3 , fMM ¼ ifM5 , fME ¼ −2ifM6 , and fMA ¼ −fM2 =
ðmf þmiÞ. For the Hermitian N × N form-factor matrices
in the space of massive neutrinos,

fMΩ ¼ ðfMΩ Þ† ðΩ ¼ Q;M;E; AÞ; ð3:66Þ

the Majorana constraints (3.63) and (3.64) imply that

fMΩ ¼ −ðfMΩ ÞT ðΩ ¼ Q;M;EÞ; ð3:67Þ

fMA ¼ ðfMA ÞT: ð3:68Þ

These relations confirm the expectation discussed earlier that
for Majorana neutrinos the charge, magnetic, and electric
form-factor matrices are antisymmetric and the anapole form-
factor matrix is symmetric.
Since fMQ , fMM, and fME are antisymmetric, a Majorana

neutrino does not have diagonal charge and dipole magnetic
and electric form factors (Case, 1957; Radicati and Touschek,
1957). It can have only a diagonal anapole form factor. On the
other hand, Majorana neutrinos can have as many off-diagonal
(transition) form factors as Dirac neutrinos.
Since the form-factor matrices are Hermitian as in the Dirac

case, fMQ , f
M
M, and fME are imaginary, whereas fMA is real:

fMΩ ¼ −ðfMΩ Þ� ðΩ ¼ Q;M; EÞ; ð3:69Þ
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fMA ¼ ðfMA Þ�: ð3:70Þ

Taking into account these properties, in the standard case of
three-neutrino mixing the charge, magnetic, and electric
Majorana form factors can be written as

fMfi
Ω ðq2Þ ¼ i

X3
j¼1

ϵfij ~fMj
Ω ðq2Þ; ð3:71Þ

for Ω ¼ Q;M;E, in terms of three vectors of real form factors

ð~fM1
Ω ; ~fM2

Ω ; ~fM3
Ω Þ ¼ −ið~fM23

Ω ; ~fM31
Ω ; ~fM12

Ω Þ: ð3:72Þ

Considering now CP invariance, the case of Majorana
neutrinos is rather different from that of Dirac neutrinos,
because the CP phases of Majorana neutrinos are constrained
by the CP invariance of the Majorana mass term. In order to
prove this statement, we first notice that since a massive
Majorana neutrino field νk is constrained by the Majorana
relation in Eq. (2.24), only the parity transformation part is
effective in a CP transformation. Indeed, from Eqs. (2.24) and
(A66) we obtain

UCPνkðxÞU†
CP ¼ ξCPk γ0νkðxPÞ: ð3:73Þ

Considering the Majorana mass term in Eq. (2.22), we have

UCPν
T
k C

†νkU
†
CP ¼ −ξCPk 2νTkC

†νk: ð3:74Þ

Therefore,

CP ⇔ ξCPk ¼ ηki; ð3:75Þ

with ηk ¼ �1. These CP signs can be different for the
different massive neutrinos, even if they all take part in the
standard charged-current weak interactions through neutrino
mixing, because they can be compensated by the Majorana
CP phases in the mixing matrix (Giunti and Kim, 2007).
Therefore, from Eq. (3.40) we have

ΛMfi
μ ðqÞ!CP ηfηiγ0C½ΛMif

μ ðqPÞ�TC†γ0: ð3:76Þ

Imposing a CP constraint analogous to that in Eq. (3.23),
we obtain

CP ⇔

�
fMfi
Ω ¼ ηfηif

Mfi
Ω ¼ ηfηiðfMfi

Ω Þ�;
fMfi
E ¼ −ηfηif

Mfi
E ¼ −ηfηiðfMfi

E Þ�;
ð3:77Þ

with Ω ¼ Q;M;A. Taking into account the constraints (3.69)
and (3.70), we have two cases:

CP and ηf ¼ ηi ⇔ fMfi
Q ¼ fMfi

M ¼ 0; ð3:78Þ

and

CP and ηf ¼ −ηi ⇔ fMfi
E ¼ fMfi

A ¼ 0: ð3:79Þ

Therefore, ifCP is conserved two massiveMajorana neutrinos
can have either a transition electric form factor or a transition
magnetic form factor, but not both, and the transition electric
form factor can exist together only with a transition anapole
form factor, whereas the transition magnetic form factor can
exist together only with a transition charge form factor. In the
diagonal case f ¼ i, Eq. (3.78) does not give any constraint,
because only diagonal anapole form factors are allowed for
Majorana neutrinos.
We consider now the CPT symmetry. Following the

method used at the end of Sec. III.A for Dirac neutrinos
and taking into account the particle-antiparticle equality of
Majorana neutrinos, one can show that Eqs. (3.67) and (3.68)
are a consequence of CPT symmetry (Kayser, 1982, 1984;
Nieves, 1982). Therefore, in particular, the existence of
diagonal magnetic or electric moments of Majorana neutrinos
would be a signal of CPT violation.
We finally note that the determination of which are the

allowed form factors for Majorana neutrinos can also be
performed at the field level considering the neutrino electro-
magnetic current jðνÞμ in Eq. (3.27) and taking into account the
chiral decomposition (2.23) of a Majorana field. For example,
the magnetic dipole moment μMkj is generated by

νkσ
μννj ¼ νkLσ

μννcjL þ νckLσ
μννjL: ð3:80Þ

Taking into account the antisymmetry of fermion fields and
the properties of the charge-conjugation matrix, one can find
that

νkσ
μννj ¼ −νjσμννk: ð3:81Þ

Therefore, Majorana neutrinos can have only off-diagonal
(transition) magnetic dipole moments.

C. Massless Weyl neutrinos

In Sec. II we saw that neutrinos are known to be massive
and mixed. However, it is interesting to study the electro-
magnetic properties of neutrinos in the standard model, where
they are described by the two-component massless left-
handed Weyl spinors νlLðxÞ, with l ¼ e; μ; τ. In this case,
taking into account that there is no mixing, the neutrino
effective electromagnetic current is

jðνÞμ ðxÞ ¼
X

l;l0¼e;μ;τ

νlLðxÞΛll0
μ νl0LðxÞ: ð3:82Þ

Since neutrinos are strictly left handed, the effective electro-
magnetic vertex in Fig. 5 is given by the matrix element

hνlðpl;−ÞjjðνÞμ ð0Þjνl0 ðpl0 ;−Þi ¼ uð−Þl ðplÞΛll0
μ ðqÞuð−Þl0 ðpl0 Þ;

ð3:83Þ

with q ¼ pl0 − pl. Since for massless neutrinos Eq. (C6)
leads to the equality

γ5uð−ÞðpÞ ¼ −uð−ÞðpÞ; ð3:84Þ
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we can reduce the general expression of Λμ in Eq. (3.37) to
(Bernstein, Ruderman, and Feinberg, 1963)

ΛμðqÞ ¼ ðγμ − qμq=q2Þfðq2Þ; ð3:85Þ

with

fðq2Þ ¼ fQðq2Þ − fAðq2Þq2: ð3:86Þ

Therefore, massless left-handed Weyl neutrinos have only one
type of form factor given by the difference of the charge form
factor and the anapole form factor multiplied by q2.
It is important that massless left-handed Weyl neutrinos

cannot have diagonal or off-diagonal electric or magnetic
dipole moments, because

νlLσ
μννl0L ¼ νlLσ

μνγ5νl0L ¼ 0: ð3:87Þ

The physical reason is that in the case of massless neutrinos
the interactions generated by electric and magnetic dipole
moments flip helicity, as explained in Appendix C, but the
helicity flip of a massless left-handed Weyl neutrino is not
possible if the corresponding right-handed state does not exist.
In the standard model neutrinos are electrically neutral and

fð0Þ ¼ fQð0Þ ¼ 0. However, radiative corrections generate a
finite fðq2Þ for q2 ≠ 0, as explained in Sec. VII.B, where
dfQðq2Þ=dq2jq2¼0 is interpreted as the neutrino charge radius.
The equivalence between the charge radius and anapole
moment interpretations of fðq2Þ is explained in Sec. VII.C.
We also note that the Lorentz symmetry allows one to write

an effective current of the type

~jðνÞμ ðxÞ ¼
X

l;l0¼e;μ;τ

νlLðxÞ ~Λll0
μ νcl0LðxÞ þ H:c: ð3:88Þ

However, this current violates the total lepton number by two
units and cannot be generated in the framework of the standard
model where the total lepton number is conserved. In theories
beyond the standard model in which the total lepton number is
violated, neutrinos are Majorana particles and the discussion
in Sec. III.B applies. For example, the magnetic moment terms
in Eq. (3.88) are of the form in Eq. (3.80).

IV. MAGNETIC AND ELECTRIC DIPOLE MOMENTS

The magnetic and electric dipole moments are theoretically
the most well-studied electromagnetic properties of neutrinos.
They also attract the interest of experimentalists, although the
magnetic moments of Dirac neutrinos in the simplest exten-
sion of the standard model with the addition of right-handed
neutrinos are proportional to the corresponding neutrino mass
and therefore they are many orders of magnitude smaller than
the present experimental limits. However, if there is new
physics beyond the minimally extended standard model with
right-handed neutrinos, the magnetic and electric dipole
moments of neutrinos can be much larger and observable
by future experiments.
In Sec. IV.A we discuss this prediction for Dirac neutrinos

and in Sec. IV.B we present the predictions for the transition

magnetic moments of Majorana neutrinos in minimal exten-
sions of the standard model. In Sec. IV.C we discuss the
observable effects of electric and magnetic dipole moments in
neutrino-electron elastic scattering and in Sec. IV.D we review
the derivation of the effective dipole moments in scattering
experiments. In Sec. IV.E we present the most relevant
experimental limits on the values of the effective dipole
moments and in Sec. IV.F we conclude with some consid-
erations on the theoretical possibilities to have large magnetic
moments.

A. Theoretical predictions for Dirac neutrinos

The first calculations of the one-loop electromagnetic
vertex of an initial fermion f, a final fermion f0 (with f0 ¼ f
or f0 ≠ f), and a photon γ in the minimal extension of the
standard model with right-handed neutrinos were presented
by Lee and Shrock (1977), Marciano and Sanda (1977), and
Petcov (1977), with applications to μ → eγ and μ → eeē
decays and to the radiative neutrino decay process discussed
in Sec. V.A, which depends on the transition electric and
magnetic moments of the corresponding neutrinos. The
electric and magnetic moments of neutrinos have been
explicitly calculated by Fujikawa and Shrock (1980), Pal
and Wolfenstein (1982), Shrock (1982), and Dvornikov and
Studenikin (2004a, 2004b) by evaluating the one-loop radi-
ative diagrams shown in Fig. 6. The result is (Shrock, 1982)

μDkj

iϵDkj

	
¼ eGF

8
ffiffiffi
2

p
π2

ðmk �mjÞ
X

l¼e;μ;τ

fðalÞU�
lkUlj; ð4:1Þ

where the superscript “D” indicates Dirac neutrinos,

fðalÞ ¼
3

4



1þ 1

1 − al
−

2al
ð1 − alÞ2

−
2a2l ln al
ð1 − alÞ3

�
; ð4:2Þ

and

al ¼ m2
l

m2
W
≤

m2
τ

m2
W
≃ 5 × 10−4; ð4:3Þ

for l ¼ e; μ; τ. Since all the al’s are very small, we can
approximate

fðalÞ≃ 3

2

�
1 −

al
2

�
; ð4:4Þ

and obtain

μDkj

iϵDkj

	
≃ 3eGF

16
ffiffiffi
2

p
π2

ðmk �mjÞ ×
�
δkj −

1

2

X
l¼e;μ;τ

U�
lkUlj

m2
l

m2
W

�
:

ð4:5Þ

It is clear that in this model there are no diagonal electric
dipole moments (ϵDkk ¼ 0). The diagonal magnetic moments
are given by
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μDkk ≃ 3eGFmk

8
ffiffiffi
2

p
π2

: ð4:6Þ

Here we neglected the corrections due to the very small al’s in
Eq. (4.3). Note also that higher-order electromagnetic correc-
tions, which have been neglected in Eq. (4.1), can be of the
same order of magnitude or larger (for example, the ratio of
the contributions of two-loop and one-loop diagrams can be of
the order of α=π ≃ 2 × 10−3).
Equation (4.6) exhibits the following important features.

Each diagonal magnetic moment is proportional to the
corresponding neutrino mass and vanishes in the massless
limit, even if in the extension of the standard model under
consideration there are right-handed neutrinos. This case is
different from that of massless Weyl neutrinos discussed in
Sec. III.C, in which all electric and magnetic, diagonal and
off-diagonal dipole moments are forbidden by the absence of
right-handed states. In this case we have both spinors uð−ÞðpÞ
and uðþÞðpÞ. As shown in Appendix C, in the massless limit
helicity equals chirality, because γ5uð�ÞðpÞ ¼ �uð�ÞðpÞ.
Since uð�ÞðpÞσμνuð�ÞðpÞ ¼ 0 and uð�ÞðpÞσμνuð∓ÞðpÞ ≠ 0,
the existence of a magnetic moment corresponds to the
existence of an helicity and chirality flipping interaction with
the electromagnetic field. However, in the minimal extension
of the standard model with right-handed neutrinos a magnetic
moment is generated by the radiative diagrams in Fig. 6,
which cannot flip chirality, because the weak-interaction
vertices in the diagrams in Fig. 6 involve only left-handed
neutrinos.

At the leading order in the small ratios m2
l=m

2
W , the

diagonal magnetic moments are independent of the neutrino
mixing matrix and of the values of the charged-lepton masses.
Their numerical values are given by

μDkk ≃ 3.2 × 10−19
�
mk

eV

�
μB: ð4:7Þ

Taking into account the existing constraint of the order of 1 eV
on the neutrino masses (see Sec. II.E), these values are several
orders of magnitude smaller than the present experimental
limits, which are discussed in Sec. IV.E.
We consider now the neutrino transition dipole moments,

which are given by Eqs. (4.1) and (4.5) for k ≠ j. Considering
only the leading term fðalÞ≃ 3=2 in the expansion (4.4),
one gets vanishing transition dipole moments, because of the
unitarity relation X

l¼e;μ;τ

U�
lkUlj ¼ δkj: ð4:8Þ

Therefore, the first nonvanishing contribution comes from the
second term in the expansion (4.4) of fðalÞ, which contains
the additional small factor al ¼ m2

l=m
2
W :

μDkj

iϵDkj

	
≃ −

3eGF

32
ffiffiffi
2

p
π2

ðmk �mjÞ
X

l¼e;μ;τ

U�
lkUlj

m2
l

m2
W
; ð4:9Þ

for k ≠ j. Thus, the transition magnetic moment μDkj is sup-
pressed with respect to the largest of the diagonal magnetic
moments of νk and νj, which are given by Eq. (4.6). This
suppression is called the “GIM mechanism,” in analogy with
the suppression of flavor-changing neutral currents in had-
ronic processes discovered by Glashow, Iliopoulos, and
Maiani (1970). Numerically, the transition dipole moments
are given by

μDkj

iϵDkj

	
≃ −3.9 × 10−23μB

�
mk �mj

eV

�

×
X

l¼e;μ;τ

U�
lkUlj

�
ml

mτ

�
2

: ð4:10Þ

Hence, the suppression of μDkj with respect to the numerical
values of the largest of the diagonal magnetic moments of νk
and νj, which are given by Eq. (4.7), is at least a factor of the
order of 10−4. The transition electric moments are even
smaller than the transition magnetic moment because of the
mass difference, and they are the only electric moments in the
extension of the standard model under consideration.
So far in this section we considered the standard framework

of three-neutrino mixing in which the unitarity relation (4.8)
applies. However, it is possible that there are additional
nonstandard sterile neutrinos, as discussed in Sec. II.F. In
this case, the unitarity relation (4.8) becomes

X
l¼e;μ;τ

U�
lkUlj ¼ δkj −

XNs

n¼1

U�
snk

Usnj; ð4:11Þ

FIG. 6. Feynman diagrams of proper vertices contributing to the
neutrino vertex function at one loop in the extended standard
model with right-handed neutrinos. χ is the unphysical would-be
charged scalar boson. From Dvornikov and Studenikin,
2004a, 2004b.
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where Ns is the number of sterile neutrinos, which correspond
in the mass basis to Ns nonstandard massive neutrinos.
From Eqs. (4.1) and (4.4), the diagonal magnetic moments
are given by

μDkk ≃ 3eGFmk

8
ffiffiffi
2

p
π2

�
1 −

XNs

n¼1

jUsnkj2
�
: ð4:12Þ

From the inequality (2.79) it follows that the diagonal
magnetic moments of the three standard massive neutrinos
(k ¼ 1; 2; 3) are practically the same as those in Eq. (4.6). On
the other hand, for the nonstandard massive neutrinos
Eq. (2.80) implies that

μDkk ≃ 3eGFmk

8
ffiffiffi
2

p
π2

ð1 − jUsk−3kj2Þ for k ≥ 4: ð4:13Þ

Hence, the diagonal magnetic moments of the nonstandard
massive neutrinos are suppressed by the inequality (2.81).
The GIM mechanism does not operate for the transition

dipole moments, which are given by

μDkj

iϵDkj

	
≃ −

3eGF

16
ffiffiffi
2

p
π2

ðmk �mjÞ

×

�XNs

n¼1

U�
snk

Usnj þ
1

2

X
l¼e;μ;τ

U�
lkUlj

m2
l

m2
W

�
; ð4:14Þ

for k ≠ j. However, the inequality (2.79) quadratically sup-
presses the additional contribution

P
nU

�
snk

Usnj to the tran-
sition dipole moments between two standard massive
neutrinos (k; j ≤ 3). From Eqs. (2.78) and (2.80), the tran-
sition dipole moments between two nonstandard massive
neutrinos (k; j ≥ 4) are strongly suppressed. On the other
hand, the transition dipole moments between a standard
massive neutrino and a nonstandard massive neutrino
(k ≤ 3 and j ≥ 4 or vice versa) are suppressed only linearly
by the inequality (2.79).

B. Theoretical predictions for Majorana neutrinos

Majorana neutrinos can have only transition magnetic and
electric moments, as discussed in Sec. III.B. The simplest
models with Majorana neutrinos can be obtained by extending
the standard model with the addition of a SUð2ÞL Higgs triplet
(Gelmini and Roncadelli, 1981) or with the addition of right-
handed neutrinos and a SUð2ÞL Higgs singlet (Chikashige,
Mohapatra, and Peccei, 1980; Mohapatra and Pal, 2004).
Neglecting the model-dependent Feynman diagrams which
depend on the details of the scalar sector, the Majorana
magnetic and electric transition moments are given by
(Shrock, 1982)

μMkj ≃ −
3ieGF

16
ffiffiffi
2

p
π2

ðmk þmjÞ
X

l¼e;μ;τ

Im½U�
lkUlj�

m2
l

m2
W
; ð4:15Þ

ϵMkj ≃ 3ieGF

16
ffiffiffi
2

p
π2

ðmk −mjÞ
X

l¼e;μ;τ

Re½U�
lkUlj�

m2
l

m2
W
: ð4:16Þ

Apart from the increase by a factor of 2 of the first coefficient
with respect to the Dirac case in Eq. (4.9), it is difficult to
compare the expressions of the Dirac and Majorana dipole
moments, because the mixing matrices are different in the two
cases, due to the possible presence of additional phases in the
Majorana case [see Eq. (2.26)]. In any case, it is clear that also
the Majorana transition dipole moments are suppressed by the
GIM mechanism and they are expected to have the same order
of magnitude [see Eq. (4.10)] of the Dirac transition dipole
moments. However, the model-dependent contributions of the
scalar sector can enhance the Majorana transition dipole
moments (Pal and Wolfenstein, 1982; Barr, Freire, and Zee,
1990; Pal, 1991).
If CP is conserved, we must distinguish the two cases in

which νk and νj have the same or opposite CP phases, as
explained in Sec. III.B. It can be shown (Giunti and Kim,
2007) that if CP is conserved, the elements of the mixing
matrix can be written as

Ulk ¼ Olkeiλk ; ð4:17Þ

where O is a real orthogonal matrix [e.g., UD in Eq. (2.27)
with δ13 ¼ 0; π] and the Majorana CP phases λk such that

e−2iðλk−λjÞ ¼ ηk=ηj: ð4:18Þ

Here ηk ¼ �1 is the sign of the CP phase in Eq. (3.75) of the
massive Majorana neutrino νk. Then we have

U�
lkUlj ¼ OlkOlje−iðλk−λjÞ ¼ OlkOlj

ffiffiffiffiffiffiffiffiffiffiffi
ηk=ηj

q
: ð4:19Þ

Then if νk and νj have the same CP phase (ηk ¼ ηj), the
products U�

lkUlj ¼ OlkOlj are real and the dipole moments
are given by (Schechter and Valle, 1981; Pal and Wolfenstein,
1982)

μMkj ¼ 0 and ϵMkj ¼ 2ϵDkj; ð4:20Þ

with ϵDkj and μDkj given by Eq. (4.1). On the other hand, if νk
and νj have opposite CP phases (ηk ¼ −ηj), the products
U�

lkUlj ¼ iOlkOlj are imaginary and the dipole moments are
given by (Schechter and Valle, 1981; Pal and Wolfenstein,
1982)

μMkj ¼ 2μDkj and ϵDkj ¼ 0: ð4:21Þ

The vanishing of μMkj in the first case and the vanishing of ϵ
D
kj in

the second case are consistent with the general results in
Eqs. (3.78) and (3.79).
We consider now the case of additional sterile neutrinos

discussed in Sec. II.F. Taking into account the unitarity
relation (4.11), in the Majorana case one can infer from
Shrock (1982) that the transition dipole moments are given by
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μMkj ≃ −
3ieGF

16
ffiffiffi
2

p
π2

ðmk þmjÞ

× Im


XNs

n¼1

U�
snk

Usnj þ
X

l¼e;μ;τ

U�
lkUlj

m2
l

m2
W

�
; ð4:22Þ

ϵMkj ≃ 3ieGF

16
ffiffiffi
2

p
π2

ðmk −mjÞ

× Re


XNs

n¼1

U�
snk

Usnj þ
X

l¼e;μ;τ

U�
lkUlj

m2
l

m2
W

�
: ð4:23Þ

Here the situation is similar to the case of Dirac neutrinos
discussed at the end of Sec. IV.A: the additional contributionP

nU
�
snk

Usnj to the transition dipole moments between two
standard massive neutrinos (k; j ≤ 3) is suppressed quadrati-
cally by the inequality (2.79). The transition dipole moments
between two nonstandard massive neutrinos (k; j ≥ 4) are
strongly suppressed by Eqs. (2.78) and (2.80). The transition
dipole moments between a standard massive neutrino and a
nonstandard massive neutrino (k ≤ 3 and j ≥ 4 or vice versa)
are suppressed only linearly by the inequality (2.79).

C. Neutrino-electron elastic scattering

The most sensitive and widely used method for the
experimental investigation of the neutrino magnetic moment
is provided by direct laboratory measurements of low-energy
elastic scattering of neutrinos and antineutrinos with electrons
in reactor, accelerator, and solar experiments.7 Detailed
descriptions of several experiments can be found in Wong
and Li (2005) and Beda et al. (2007).
Extensive experimental studies of the neutrino magnetic

moment, performed during many years, are stimulated by the
hope to observe a value much larger than the prediction in
Eq. (4.7) of the minimally extended standard model with
right-handed neutrinos. It would be a clear indication of new
physics beyond the extended standard model. For example,
the effective magnetic moment in ν̄e-e elastic scattering in a
class of extra-dimension models can be as large as about
10−10μB (Mohapatra, Ng, and Yu, 2004). Future higher
precision reactor experiments can therefore be used to provide
new constraints on large extra dimensions.
The possibility for neutrino-electron elastic scattering due

to neutrino magnetic moment was first considered by Carlson
and Oppenheimer (1932) and the cross section of this process
was calculated by Bethe (1935) [for related short historical
notes, see Kyuldjiev (1984)]. Here we recall the paper by
Domogatsky and Nadezhin (1970), where the cross section of
Bethe (1935) was corrected and the antineutrino-electron
cross section was considered in the context of the earlier
experiments with reactor antineutrinos of Cowan, Reines, and
Harrison (1954) and Cowan and Reines (1957), which were
aimed to reveal the effects of the neutrino magnetic moment.
Discussions on the derivation of the cross section and the
optimal conditions for bounding the neutrino magnetic

moment, as well as a collection of cross section formulas
for elastic scattering of neutrinos (antineutrinos) on electrons,
nucleons, and nuclei can be found in Kyuldjiev (1984) and
Vogel and Engel (1989).
We consider the elastic scattering

ν
ð−Þ

l þ e− → ν
ð−Þ

l þ e− ð4:24Þ

of a neutrino or antineutrino with flavor l ¼ e; μ; τ and energy
Eν with an electron at rest in the laboratory frame. There are
two observables: the kinetic energy Te of the recoil electron
and the recoil angle χ with respect to the neutrino beam, which
are related by

cos χ ¼ Eν þme

Eν



Te

Te þ 2me

�
1=2

: ð4:25Þ

The electron kinetic energy is constrained from the energy-
momentum conservation by

Te ≤
2E2

ν

2Eν þme
: ð4:26Þ

Since, in the ultrarelativistic limit, the neutrino magnetic
moment interaction changes the neutrino helicity and the
standard model weak interaction conserves the neutrino
helicity (see Appendix C), the two contributions add incoher-
ently in the cross section8 which can be written as (Vogel and
Engel, 1989)

dσνle−

dTe
¼

�
dσνle−

dTe

�
SM

þ
�
dσνle−

dTe

�
mag

: ð4:27Þ

The weak-interaction cross section is given by

�
dσνle−

dTe

�
SM

¼ G2
Fme

2π

�
ðgνlV þ gνlA Þ2

þ ðgνlV − gνlA Þ2
�
1 −

Te

Eν

�
2

þ ½ðgνlA Þ2 − ðgνlV Þ2�meTe

E2
ν

	
; ð4:28Þ

with the standard coupling constants gV and gA given by

gνeV ¼ 2sin2θW þ 1=2; gνeA ¼ 1=2; ð4:29Þ

g
νμ;τ
V ¼ 2sin2θW − 1=2; g

νμ;τ
A ¼ −1=2: ð4:30Þ

For antineutrinos one must substitute gA → −gA.
The neutrino magnetic moment contribution to the cross

section is given by (Vogel and Engel, 1989)

�
dσνle−

dTe

�
mag

¼ πα2

m2
e

�
1

Te
−

1

Eν

��
μνl
μB

�
2

; ð4:31Þ
7The effects of a neutrino magnetic moment in other processes

which can be observed in laboratory experiments have been
discussed by Kim, Mathur, and Okubo (1974), Kim (1978), Dicus
et al. (1979), and Rosado and Zepeda (1982).

8The small interference term due to neutrino masses was derived
by Grimus and Stockinger (1998).
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where μνl is the effective magnetic moment discussed in
Sec. IV.D. It is traditionally called the “magnetic moment,” but
it receives equal contributions from both the electric and
magnetic dipole moments.
The two terms ðdσνle−=dTeÞSM and ðdσνle−=dTeÞmag

exhibit quite different dependencies on the experimentally
observable electron kinetic energy Te, as illustrated in Fig. 7
from Balantekin and Vassh (2014) [see also Vogel and Engel
(1989) and Beda et al. (2007)]. One can see that small values
of the neutrino magnetic moment can be probed by lowering
the electron recoil energy threshold. In fact, considering Te ≪
Eν in Eq. (4.31) and neglecting the coefficients due to gνlV and
gνlA in Eq. (4.28), one can find that ðdσ=dTeÞmag exceeds
ðdσ=dTeÞSM for

Te ≲ π2α2

G2
Fm

3
e

�
μν
μB

�
2

: ð4:32Þ

D. Effective magnetic moment

In scattering experiments the neutrino is created at some
distance from the detector as a flavor neutrino, which is a
superposition of massive neutrinos. Therefore, the magnetic
moment that is measured in these experiment is not that of a
massive neutrino, but it is an effective magnetic moment
which takes into account neutrino mixing and the oscillations
during the propagation between source and detector (Grimus
and Stockinger, 1998; Beacom and Vogel, 1999).
We consider an initial neutrino with flavor l ¼ e; μ; τ,

which is described by the flavor state in Eq. (2.30). The state
of the neutrino which is detected through a scattering process
at a space-time distance ð~L; TÞ from the source is given by
the superposition of massive neutrinos in the first line of
Eq. (2.34). Considering an incoming left-handed neutrino, the

amplitude of νj production in low-q2 electromagnetic scatter-
ing of a neutrino which has traveled a space-time distance
ð~L; TÞ from a source of νl is

Aljð~L; TÞ ∝
X
k

U�
lke

−iEkTþi~pk·~L

×
X
hj

¯
u
ðhjÞ
j σμνqνðμjk þ iϵjkγ5Þuð−Þk : ð4:33Þ

Since for an incoming ultrarelativistic left-handed neutrino the
additional γ5 in the electric dipole term has only the effect of
changing a sign [see Eq. (C6)], the amplitude of νk → νj
transitions is proportional to μjk − iϵjk, leading to

Aljð~L; TÞ ∝
X
k

U�
lke

−iEkTþi~pk·~Lðμjk − iϵjkÞ: ð4:34Þ

The total cross section of electromagnetic scattering with an
electron or a nucleon is given by

σνle−ð~L; TÞ ∝
X
j

jAljð~L; TÞj2: ð4:35Þ

Taking into account that for ultrarelativistic neutrinos T ¼ L,
from the approximation in Eq. (2.36) we obtain the fact that
the cross section is proportional to the squared effective
magnetic moment

μ2νlðL; EνÞ ¼
X
j

����X
k

U�
lke

−iΔm2
kjL=2Eνðμjk − iϵjkÞ

����2: ð4:36Þ

In this expression of the effective μνl one can see that in
general both the magnetic and electric dipole moments
contribute to the elastic scattering. Note also that, as neutrino
oscillations discussed in Sec. II, the effective magnetic
moment μνlðL; EνÞ depends on the neutrino squared-mass
differences, not on the absolute values of neutrino masses.
Considering antineutrinos, the mixing of antineutrinos is

obtained from that of neutrinos in Eq. (2.30) with the
substitution U → U�. From Eq. (3.48) it follows that the
electric and magnetic moments of antineutrinos are obtained
with the substitutions μjk → −μ�jk and ϵjk → −ϵ�jk. Moreover,
we must take into account that incoming antineutrinos are
right handed. Hence, for antineutrinos we have

Āljð~L; TÞ ∝
X
k

Ulke−iEkTþi~pk·~L

×
X
hj

¯
u
ðhjÞ
j σμνqνðμ�jk þ iϵ�jkγ5ÞuðþÞ

k : ð4:37Þ

For an incoming ultrarelativistic right-handed neutrino the
additional γ5 in the electric dipole term has no effect [see
Eq. (C6)] and we obtain

FIG. 7 (color online). Standard model weak and magnetic
moment electromagnetic contributions to the differential cross
section of neutrino-electron scattering averaged over the anti-
neutrino spectrum of fissioning 235U. The inset plot is the weak
correction on the linear scale both with (dashed line) and without
(solid line) radiative corrections (Sarantakos, Sirlin, and
Marciano, 1983). From Balantekin and Vassh, 2014.
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μ2ν̄lðL; EνÞ ¼
X
j

����X
k

Ulke
−iΔm2

kjL=2Eνðμ�jk þ iϵ�jkÞ
����2

¼
X
j

����X
k

U�
lke

iΔm2
kjL=2Eνðμjk − iϵjkÞ

����2: ð4:38Þ

Therefore, there can be only a phase difference between the
terms contributing to μ2νlðL; EνÞ and μ2ν̄lðL; EνÞ, which is
induced by neutrino oscillations.
As discussed in Sec. IV.E, the laboratory experiments

which are most sensitive to small values of the effective
magnetic moment are reactor and accelerator experiments
which detect the elastic scattering of flavor neutrinos on
electrons at a short distance from the neutrino source. In this
case, the value in Eq. (2.64) of the largest squared-mass
difference Δm2

A in the standard case of three-neutrino mixing
is such that Δm2

AL=2Eν ≪ 1. Therefore, it is possible to
approximate all the exponentials in Eqs. (4.36) and (4.38) with
unity and obtain the effective short-baseline magnetic moment
of flavor neutrinos and antineutrinos

μ2νl ≃ μ2ν̄l ≃
X
j

����X
k

U�
lkðμjk − iϵjkÞ

����2
¼ ½Uðμ2 þ ϵ2ÞU† þ 2ImðUμϵU†Þ�ll; ð4:39Þ

where we took into account the fact that μ ¼ μ† and ϵ ¼ ϵ†. In
this approximation the effective magnetic moment is inde-
pendent of the neutrino energy and from the source-detector
distance.
In the following, when we refer to an effective magnetic

moment of a flavor neutrino without indication of a source-
detector distance L it is implicitly understood that L is small
and the effective magnetic moment is given by Eq. (4.39).
It is interesting to note that flavor neutrinos can have

effective magnetic moments even if massive neutrinos are
Majorana particles. In this case, since massive Majorana
neutrinos do not have diagonal magnetic and electric dipole
moments, the effective magnetic moments of flavor neutrinos
receive contributions only from the transition dipole moments.
For example, in the three-generation case, following
Eq. (3.71), we can write μjk and ϵjk as

μjk ¼ i
X3
m¼1

ϵjkm ~μm; ϵjk ¼ i
X3
m¼1

ϵjkm ~ϵm; ð4:40Þ

with real ~μm and ~ϵm. Thus, we obtain

μ2νl ≃
X3
k¼1

ð ~μ2k þ ~ϵ2kÞ −
����X3
k¼1

Ulkð ~μk − i~ϵkÞ
����
2

: ð4:41Þ

Another case in which the effective magnetic moment does
not depend on the neutrino energy and on the source-detector
distance is when the source-detector distance is much larger
than all the oscillation lengths Lkj ¼ 4πEν=jΔm2

kjj. In this
case the interference terms in Eqs. (4.36) and (4.38) are
washed out by the finite energy resolution of the detector,
leading to

μ2νlð∞Þ≃ μ2ν̄lð∞Þ≃X
k

jUlkj2
X
j

jμjk − iϵjkj2

¼
X
k

jUlkj2½ðμ2Þkk þ ðϵ2Þkk þ 2ImðμϵÞkk�: ð4:42Þ

For three generations of Majorana neutrinos, from Eq. (4.40)
we obtain

μ2νlð∞Þ≃ μ2ν̄lð∞Þ≃X3
k¼1

ð1 − jUlkj2Þð ~μ2k þ ~ϵ2kÞ: ð4:43Þ

So far, in this section we considered the effects of neutrino
mixing and oscillations on the effective magnetic moment
for neutrinos propagating in vacuum. In the case of solar
neutrinos, which have been used by the Super-Kamiokande
(Liu et al., 2004) and Borexino (Arpesella et al., 2008)
experiments to search for neutrino magnetic moment effects,
one must take into account the matter effects discussed in
Sec. II.D. The state which describes the neutrinos emerging
from the Sun is the following generalization of the state in
Eq. (2.61) which takes into account three-neutrino mixing and
the squared-mass hierarchy in Eq. (2.65):

jνSi ¼
X3
k¼1

ðUM
ekÞ�jνki; ð4:44Þ

with

UM
e1 ¼ cos ϑ13 cos ϑ0M; ð4:45Þ

UM
e2 ¼ cos ϑ13 sin ϑ0M; ð4:46Þ

UM
e3 ¼ Ue3 ¼ sin ϑ13e−iδ13 ; ð4:47Þ

where ϑ0M is the effective mixing angle at the point of neutrino
production inside the Sun. Following the same reasoning that
led to Eq. (4.36), we obtain that the effective magnetic
moment measured by an experiment on Earth is

μ2SðL; EνÞ ¼
X
j

����X
k

ðUM
ekÞ�e−iΔm

2
kjL=2Eνðμjk − iϵjkÞ

����2;
ð4:48Þ

where L is the Sun-Earth distance. Since the Sun-Earth
distance is much larger than the oscillation lengths, the
interference terms in Eq. (4.48) are washed out by the finite
energy resolution of the detector and we obtain the effective
magnetic moment

μ2SðEνÞ ¼
X
k

jUM
ekj2

X
j

jμjk − iϵjkj2: ð4:49Þ

This expression is similar to that in Eq. (4.42), but takes into
account the effective mixing at the point of neutrino produc-
tion inside the Sun. Note that μS depends on the neutrino
energy through the dependence of ϑ0M on Eν [see Eq. (2.54)].
As remarked before Eq. (2.63), in practice we have ϑ0M ≃ ϑ12
for Eν ≲ 1 MeV and ϑ0M ≃ π=2 for Eν ≳ 5 MeV. Therefore,
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μSðEν ≲ 1 MeVÞ≃ μνeð∞Þ; ð4:50Þ

and

μ2SðEν ≳ 5 MeVÞ≃ cos2ϑ13
X
j

jμj2 − iϵj2j2

þ sin2ϑ13
X
j

jμj3 − iϵj3j2: ð4:51Þ

E. Experimental limits

The constraints on the neutrino magnetic moment in direct
laboratory experiments have been obtained so far from the
lack of any observable distortion of the recoil electron energy
spectrum. Experiments of this type started in the 1950s at the
Savannah River Laboratory where the ν̄e-e− elastic scattering
process was studied (Cowan, Reines, and Harrison, 1954;
Cowan and Reines, 1957; Reines, Gurr, and Sobel, 1976) with
somewhat controversial results, as discussed by Vogel and
Engel (1989). The most significant experimental limits on the
effective magnetic moment μνe which have been obtained in
reactor ν̄e-e− experiments after about 1990 are listed in
Table IV [some details of the different experimental setups
are reviewed by Broggini, Giunti, and Studenikin (2012)].9

The current best limit on μνe was obtained in 2012 in the
GEMMA experiment at the Kalinin Nuclear Power Plant
(Russia) with a 1.5 kg highly pure germanium detector
exposed at a ν̄e flux of 2.7 × 1013 cm−2 s−1 at a distance of
13.9 m from the core of a 3 GWth commercial water-
moderated reactor (Beda et al., 2012). The competitive
TEXONO experiment is based at the Kuo-Sheng Reactor
Neutrino Laboratory (Taiwan), where a 1.06 kg highly pure
germanium detector was exposed to the flux of ν̄e at a distance
of 28 m from the core of a 2.9 GWth commercial reactor
(Wong et al., 2007).10

Searches for effects of neutrino magnetic moments have
also been performed in accelerator experiments. The LAMPF
bounds on μνe in Table IV have been obtained with νe from μþ

decay (Allen et al., 1993). The LAMPF and LSND bounds on
μνμ in Table IV have been obtained with νμ and ν̄μ from πþ and
μþ decay (Allen et al., 1993; Auerbach et al., 2001). The
DONUT Collaboration (Schwienhorst et al., 2001) investi-
gated ντ-e− and ν̄τ-e− elastic scattering, finding the limit on
μντ in Table IV.
Solar neutrino experiments can also search for a neutrino

magnetic moment signal by studying the shape of the
electron spectrum (Beacom and Vogel, 1999). The effective
magnetic moment μS in solar νe-e− scattering experiments is
given in Eq. (4.49). Table IV gives the limits obtained in
the Super-Kamiokande experiment (Liu et al., 2004) for
μSðEν ≳ 5 MeVÞ and those obtained in the Borexino experi-
ment (Arpesella et al., 2008) for μSðEν ≲ 1 MeVÞ [see
Eqs. (4.50) and (4.51)].
Information on neutrino magnetic moments was obtained

also with global fits of solar neutrino data (Joshipura and
Mohanty, 2002; Grimus et al., 2003; Tortola, 2003).
Considering Majorana three-neutrino mixing, Tortola
(2003) obtained, at 90% C.L.,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jμ12j2 þ jμ23j2 þ jμ31j2

q
< 4.0 × 10−10μB; ð4:52Þ

TABLE IV. Experimental limits for different neutrino effective magnetic moments.

Method Experiment Limit C.L. Reference

Reactor ν̄e-e−

Krasnoyarsk μνe < 2.4 × 10−10μB 90% Vidyakin et al. (1992)
Rovno μνe < 1.9 × 10−10μB 95% Derbin et al. (1993)
MUNU μνe < 9 × 10−11μB 90% Daraktchieva et al. (2005)
TEXONO μνe < 7.4 × 10−11μB 90% Wong et al. (2007)
GEMMA μνe < 2.9 × 10−11μB 90% Beda et al. (2012)

Accelerator νe-e− LAMPF μνe < 1.1 × 10−9μB 90% Allen et al. (1993)

Accelerator
ðνμ; ν̄μÞ-e−

BNL-E734 μνμ < 8.5 × 10−10μB 90% Ahrens et al. (1990)
LAMPF μνμ < 7.4 × 10−10μB 90% Allen et al. (1993)
LSND μνμ < 6.8 × 10−10μB 90% Auerbach et al. (2001)

Accelerator
ðντ; ν̄τÞ-e−

DONUT μντ < 3.9 × 10−7μB 90% Schwienhorst et al. (2001)

Solar νe-e−
Super-Kamiokande μSðEν ≳ 5 MeVÞ < 1.1 × 10−10μB 90% Liu et al. (2004)
Borexino μSðEν ≲ 1 MeVÞ < 5.4 × 10−11μB 90% Arpesella et al. (2008)

9An attempt to improve the experimental bound on μνe in reactor
experiments was undertaken by Wong, Li, and Lin (2010), where it
was suggested that in ν̄e interactions on an atomic target the atomic
electron binding (“atomic-ionization effect”) can significantly in-
crease the electromagnetic contribution to the differential cross
section with respect to the free-electron approximation. However,
as explained in Appendix D, the dipole approximation used to derive
the atomic-ionization effect is not valid for the electron antineutrino
cross section in reactor neutrino magnetic moment experiments.
Instead, the free-electron approximation is appropriate for the
interpretation of the data of reactor neutrino experiments and the
current constraints in Table IV cannot be improved by considering
the atomic electron binding (Voloshin, 2010; Kouzakov and Stude-
nikin, 2011a, 2011b; Kouzakov, Studenikin, and Voloshin, 2011a,
2011b, 2012; Chen et al., 2014). The history and present status of the
theory of neutrino-atom collisions is reviewed by Kouzakov and
Studenikin (2014).

10The TEXONO and GEMMA data have also been used by
Barranco et al. (2012) and Healey, Petrov, and Zhuridov (2013) to
constrain neutrino nonstandard interactions.
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from the analysis of solar and KamLAND, and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jμ12j2 þ jμ23j2 þ jμ31j2

q
< 1.8 × 10−10μB; ð4:53Þ

adding the Rovno (Derbin et al., 1993), TEXONO (Li, 2003),
and MUNU (Daraktchieva et al., 2003) constraints.
As seen in Sec. IV.C the neutrino magnetic moment

contribution to the ν
ð−Þ

l-e− elastic scattering process flips
the neutrino helicity. If neutrinos are Dirac particles, this
process transforms active left-handed neutrinos into sterile
right-handed neutrinos, leading to dramatic effects on the
explosion of a core-collapse supernova (Dar, 1987; Nussinov
and Rephaeli, 1987; Barbieri and Mohapatra, 1988; Goldman
et al., 1988; Lattimer and Cooperstein, 1988; Notzold, 1988;
Voloshin, 1988b; Ayala, D’Olivo, and Torres, 1999, 2000;
Balantekin, Volpe, and Welzel, 2007), where there are also

contributions from ν
ð−Þ

l-p and ν
ð−Þ

l-n elastic scattering.
Requiring that the entire energy in a supernova collapse is
not carried away by the escaping sterile right-handed neu-
trinos created in the supernova core, Ayala, D’Olivo, and
Torres (1999, 2000) obtained the following upper limit on a
generic neutrino magnetic moment:

μν ≲ ð0.1–0.4Þ × 10−11μB; ð4:54Þ

which is slightly more stringent than the bound μν ≲
ð0.2–0.8Þ × 10−11μB obtained by Barbieri and Mohapatra
(1988).

F. Theoretical considerations

There is a gap of many orders of magnitude between the
present experimental limits on neutrino magnetic moments of
the order of 10−11μB (discussed in Sec. IV.E) and the
prediction smaller than about 10−19μB in Eq. (4.7) of the
minimal extension of the standard model with right-handed
neutrinos. The hope to reach in the near future an experimental
sensitivity of this order of magnitude is very weak, taking into
account that the experimental sensitivity of reactor ν̄e-e elastic
scattering experiments has improved by only 1 order of
magnitude during a period of about 20 years [see Vogel
and Engel (1989), where a sensitivity of the order of 10−10μB
is discussed]. However, the experimental studies of neutrino
magnetic moments are stimulated by the hope that new
physics beyond the minimally extended standard model
with right-handed neutrinos might give much stronger
contributions.
One of the examples in which it is possible to avoid the

neutrino magnetic moment being proportional to a (small)
neutrino mass, that would in principle make a neutrino
magnetic moment accessible for experimental observations,
is realized in the left-right symmetric model with direct right-
handed neutrino interactions (Shrock, 1974, 1982; Kim, 1976;
Marciano and Sanda, 1977; Beg, Marciano, and Ruderman,
1978; Duncan et al., 1987; Liu, 1987; Rajpoot, 1990; Czakon,
Gluza, and Zralek, 1998; Nemevsek, Senjanovic, and Tello,
2013; Boyarkin and Boyarkina, 2014a). In this model there is
a new charged boson WR which mediates right-handed

charged-current weak interactions and mixes with the standard
model WL boson which mediates left-handed charged-current
weak interactions. The massive gauge boson statesW1 andW2

are given by

W1 ¼ WL cos ξ −WReiφ sin ξ; ð4:55Þ

W2 ¼ WLe−iφ sin ξþWR cos ξ; ð4:56Þ

where ξ is a small mixing angle and φ is a possible CP-
violating phase. Neglecting the contributions of neutrino
masses and the terms suppressed by the small ratio
mW1

=mW2
, the magnetic moments of Dirac neutrinos are

given by (Shrock, 1982; Fukugita and Yanagida, 2003)

μkj ¼
eGF

4
ffiffiffi
2

p
π2

sin 2ξ ×
X

l¼e;μ;τ

ml½eiφU�
lkVlj þ e−iφV�

lkUlj�;

ð4:57Þ

where U is the standard mixing matrix of left-handed
neutrinos and V is the mixing matrix of right-handed
neutrinos. Hence, in this case the neutrino magnetic moments
depend on the values of the charged-lepton masses. However,
one must take into account the coefficient sin 2ξ, which must
be very small in order to have small Dirac neutrino masses
(Czakon, Gluza, and Zralek, 1998). For example, in the model
of Chang and Mohapatra (1987) sin ξ≲ 10−7 for mW2

≳
2.5 TeV (Beall, Bander, and Soni, 1982; Ecker and
Grimus, 1985; Maiezza et al., 2010), which implies that
μkj ≲ 10−16μB. However, larger values of the magnetic
moments have been obtained by Rajpoot (1990) by adding
to the left-right symmetric model a charged scalar singlet,
following the idea of Fukugita and Yanagida (1987).
Other interesting possibilities of obtaining neutrino mag-

netic moments larger than the prediction in Eq. (4.7) of the
minimal extension of the standard model with right-handed
neutrinos have been considered. For example, the analysis
performed by Aboubrahim et al. (2014) of the Dirac neutrino
magnetic moment in the framework of a minimal super-
symmetric standard model11 extension with a vectorlike lepton
generation showed that a neutrino magnetic moment as large
as ð10−12–10−14ÞμB can be obtained. These values lie within
reach of improved laboratory experiments in the future.
Gozdz et al. (2006) obtained Majorana transition magnetic

moments as large as about 10−17μB, significantly larger than
those in Eq. (4.10), in the framework of the minimal super-
symmetric standard model with R-parity violating inter-
actions, constrained by grand unification.
It is possible to estimate a generic relation between the size

of a neutrino magnetic moment μν and the corresponding
neutrino mass mν (Voloshin, 1988a; Barr, Freire, and Zee,
1990; Pal, 1992; Davidson, Gorbahn, and Santamaria, 2005;
Bell et al., 2006; Bell, 2007). Suppose that a large neutrino
magnetic moment is generated by physics beyond a minimal

11Other supersymmetric models have been considered by Biswas,
Goyal, and Passi (1983), Frank (1999), Fukuyama, Kikuchi, and
Okada (2004), and Gozdz and Kaminski (2009).
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extension of the standard model at an energy scale charac-
terized by Λ. This contribution to μν is described by the
Feynman diagram in Fig. 4(b), with the blob representing
the effects of new physics beyond the standard model. The
contribution of this diagram to the magnetic moment is

μν ∼
eG
Λ

; ð4:58Þ

where e is the electric charge and G is a combination of
coupling constants and loop factors (Bell et al., 2006; Bell,
2007). The diagram of Fig. 4(b) without the photon line gives
a new physics contribution to the neutrino mass of the order

δmν ∼GΛ: ð4:59Þ

Combining the estimates (4.58) and (4.59), one can obtain

δmν ∼
Λ2

2me

μν
μB

¼ μν
10−18μB

�
Λ

TeV

�
2

eV ð4:60Þ

between the new physics contribution to the neutrino mass and
the neutrino magnetic moment.
It follows that, generally, in theoretical models that predict

large values for the neutrino magnetic moment, simultane-
ously large contributions to the neutrino mass arise. Therefore,
a particular fine-tuning is needed to get a large value for the
neutrino magnetic moment while keeping the neutrino mass
within experimental bounds, unless the ratio mν=μν is sup-
pressed by a symmetry. Voloshin (1988a) proposed a SUð2Þν
under which the neutrino and antineutrino fields, ν and νc,
transform as a doublet. Taking into account that fermion fields
anticommute, a Dirac mass term can be written as

ν̄ν ¼ −νT ν̄T ¼ −νTC†Cν̄T ¼ −νTC†νc; ð4:61Þ

and a magnetic moment term can be written as

ν̄σαβν ¼ −νTσTαβν̄T ¼ νTC†σαβνc: ð4:62Þ

One can see that the mass term is invariant under the change
ν ⇆ νc, whereas the magnetic moment term changes sign.
Therefore, the magnetic moment term is a singlet under the
SUð2Þν symmetry, whereas the mass term transforms as a
triplet and is forbidden.12 If, as it happens in a realistic model,
the SUð2Þν symmetry is broken and if this breaking is small,
the ratio mν=μν is also small, giving a natural way to obtain a
magnetic moment of the order of ∼10−11μB without contra-
dictions with the neutrino mass experimental constraints.
Several possibilities based on the general idea of Voloshin
(1988a) were considered by Barbieri and Mohapatra (1989),
Ecker, Grimus, and Neufeld (1989), Babu and Mohapatra

(1990a), Georgi and Randall (1990), Leurer and Marcus
(1990), and Chang et al. (1991).
Another idea of neutrino mass suppression without sup-

pression of the neutrino magnetic moment was discussed by
Barr, Freire, and Zee (1990) within the Zee model (Zee, 1980),
which is based on the standard model gauge group SUð2ÞL ×
Uð1ÞY and contains at least three Higgs doublets and a charged
field which is a singlet of SUð2ÞL. For this kind of model there
is a suppression of the neutrino mass diagram, while the
magnetic moment diagram is not suppressed.
Bell et al. (2005, 2006), Davidson, Gorbahn, and

Santamaria (2005), and Bell (2007) derived “natural” upper
bounds for the magnetic moments of Dirac and Majorana
neutrinos generated by new physics above the electroweak
scale. They considered an effective low-energy theory in
which the effects of the new physics above the electroweak
scale are described by high-dimension nonrenormalizable
operators whose coefficients are not fine-tuned. The low-
energy effective Lagrangian must respect the standard model
SUð2ÞL × Uð1ÞY symmetry and is constructed with standard
model fields plus right-handed neutrino fields νR (with
implicit flavor indices), in order to have Dirac neutrino
masses. This low-energy effective Lagrangian can be written
as

Leff ¼
X
n;j

Cnj ðμÞ
Λn−4 OðnÞ

j ðμÞ þ H:c:; ð4:63Þ

where μ is the renormalization scale, n ≥ 4 denotes the operator
dimension, and j runs over independent operators of a given
dimension. For n ¼ 4, a Dirac neutrino mass arises from the

operatorOð4Þ
1 ¼ L̄ ~Φ νR, where ~Φ ¼ iσ2Φ�. For n ¼ 6 there are

two operators which generate, after electroweak symmetry
breaking, the magnetic moment operator ν̄σαβνFαβ. These
operators can generate a contribution to the neutrino mass

operator Oð4Þ
1 through loop diagrams. Using dimensional

analysis, Bell et al. (2005) estimated that the corresponding

contribution δmð4Þ
ν to the Dirac neutrino mass is given by

δmð4Þ
ν ∼

α

16π

Λ2

me

μDν
μB

: ð4:64Þ

Apart from thedifferent coefficient, the dependence onΛ andμB
is the same as in Eq. (4.60). The Λ2 dependence is due to the
quadratic divergence in the renormalization of the dimension-
four neutrino mass operator. Imposing that δmν is smaller than
the neutrino mass mν, we obtain

μDν ≲ 3 × 10−15μB

�
mν

eV

��
TeV
Λ

�
2

: ð4:65Þ

ForΛ ∼ 1 TeV andmν ≲ 1 eV, one obtains μDν ≲ 3 × 10−15μB,
which is some orders of magnitude stronger than the exper-
imental constraints in Table IV.
Bell et al. (2005) noted that if the scale Λ is close to the

electroweak scale, an important contribution to the neutrino
mass can arise also from an n ¼ 6 operator. In order to obtain
a natural upper bound on μDν they assumed that at the scale Λ
the coefficient of the n ¼ 6 mass operator is zero, so that the

12Denoting the doublet as ψT ¼ ð ν νc ÞT and the Pauli matrices
acting in the SUð2Þν space as ~τ ¼ ðτ1; τ2; τ3Þ, we have ν̄ν ¼
−ð1=2ÞψTC†τ1ψ and ν̄σαβν ¼ ð1=2ÞψTC†σαβiτ2ψ . One can verify
that the magnetic moment is invariant under a SUð2Þν transformation
ψ → ψ 0 ¼ ei~λ·~τψ , whereas the mass term is not invariant.
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contribution to the neutrino mass is generated entirely by
radiative corrections involving insertions of the n ¼ 6 mag-
netic moment operators. Solving the renormalization group
equations from the scale Λ to the electroweak scale, they

found the following relation between the contribution δmð6Þ
ν

neutrino mass and the neutrino magnetic moment:

μDν
μB

¼ 16
ffiffiffi
2

p
GFme sin4 θW

9α2jfj ln ðΛ=vÞ δmð6Þ
ν ; ð4:66Þ

where α is the fine structure constant, v is the vacuum
expectation value of the Higgs doublet,

f ¼ 1 − r − 2
3
tan2θW − 1

3
ð1þ rÞtan4θW; ð4:67Þ

and r is a ratio of effective operator coefficients defined at the
scale Λ which is of the order of unity without fine-tuning. If
the neutrino magnetic moment is generated by new physics at
a scale Λ ∼ 1 TeV and the corresponding contribution to the

neutrino mass is δmð6Þ
ν ≲ 1 eV, then μν ≲ 8 × 10−15μB. Also

this bound is some orders of magnitude stronger than the
experimental constraints in Table IV.
Following a similar method, Bell et al. (2006) calculated

natural upper bounds for the transition magnetic moments of
Majorana neutrinos [see also Davidson, Gorbahn, and
Santamaria (2005)]. They found that the most general natu-
ralness upper bounds for the Majorana transition magnetic
moments in the flavor basis are given by

μMll0 ≲ 4 × 10−9μB

�
MM

ll0

eV

��
TeV
Λ

�
2
���� m2

τ

m2
l −m2

l0

����; ð4:68Þ

whereMM
ll0 is the Majorana neutrino mass matrix in the flavor

basis. For Majorana neutrinos the flavor and mass bases are
related by a transformation similar to that in Eq. (2.21):
ðUTMMUÞkj ¼ mkδkj, where U is the neutrino mixing matrix.
For the magnetic moments we have

μMkj ¼
X
l;l0

Ulkμ
M
ll0Ul0j: ð4:69Þ

The limits (4.68) are much weaker than those in the Dirac
case, because for a Majorana neutrino the magnetic moment
contribution to the mass is Yukawa suppressed.13 Hence, if a
neutrino transition magnetic moment larger than about
10−14μB is observed in an experiment, it would indicate that
it is plausible that neutrinos are Majorana rather than Dirac
particles.

We emphasize that the natural upper bounds on neutrino
magnetic moments derived by Bell et al. (2005, 2006),
Davidson, Gorbahn, and Santamaria (2005), and Bell
(2007) apply in models with new physics well above the
electroweak scale, for which only the first terms of the
effective Lagrangian expansion in Eq. (4.63) are not negli-
gible. This is not the case, for example, in the model discussed
by Aboubrahim et al. (2014), in which there is new physics at
the electroweak scale.
An unusual case of a large observable effect of the small

magnetic moments in Eq. (4.7) is that of ν̄e-e− elastic scattering
in large extra-dimension brane-bulk models with three bulk
neutrinos discussed by Mohapatra, Ng, and Yu (2004). They
showed that the magnetic moment contribution to ν̄e-e− elastic
scattering due to the tower of Kaluza-Klein right-handed
neutrino states, each contributionwith amagneticmoment given
by Eq. (4.7), can be comparable with that of a single neutrino in
four-dimensional space-time with a magnetic moment of the
order of 10−10μB and the different shapes of the spectra can
distinguish the two cases. Hence, ν̄e-e− elastic scattering experi-
ments searching for the effects of neutrino magnetic moments
can probe the existence of large extra dimensions.

V. RADIATIVE DECAY AND RELATED PROCESSES

The magnetic and electric (transition) dipole moments of
neutrinos, as well as possible very small electric charges
(millicharges), describe direct couplings of neutrinos with
photons which induce several observable decay processes. In
this section we discuss the decay processes generated by the
diagrams in Fig. 8: Fig. 8(a) generates neutrino radiative decay
νi → νf þ γ and the processes of neutrino Cherenkov radia-
tion and spin light (SLν) of a neutrino propagating in a
medium; Fig. 8(b) generates photon (plasmon) decay to an
neutrino-antineutrino pair in a plasma (γ� → νν̄).
In Secs. V.A and V.B we review neutrino radiative decay in

vacuum and in matter, respectively. In Sec. V.C we discuss
neutrino Cherenkov radiation. In Sec. V.D we consider the
process of plasmon decay into a neutrino-antineutrino pair,
which can be important in dense astrophysical environments
as the interior of stars. In Sec. V.E we review the spin light
process of a neutrino propagating in a medium.

A. Radiative decay

If the masses of neutrinos are nondegenerate, the radiative
decay of a heavier neutrino νi into a lighter neutrino νf (with
mi > mf) with emission of a photon,

FIG. 8. Feynman diagrams for neutrino radiative decay and
(a) Cherenkov radiation and (b) plasmon decay.

13Since in the Majorana case the magnetic moment matrix is
antisymmetric, it is generated by an antisymmetric magnetic moment
operator. On the other hand, the mass matrix and the corresponding
mass operator of Majorana neutrinos are diagonal in the mass basis
and symmetric in the flavor basis. Therefore, with respect to the Dirac
case in which there are no such constraints, additional Yukawa
couplings are needed to convert an antisymmetric magnetic moment
operator into a symmetric mass operator (Davidson, Gorbahn, and
Santamaria, 2005; Bell et al., 2006; Bell, 2007).
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νi → νf þ γ; ð5:1Þ

may proceed in vacuum (Shrock, 1974, 1982; Goldman and
Stephenson, 1977; Lee and Shrock, 1977; Marciano and
Sanda, 1977; Petcov, 1977; Zatsepin and Smirnov, 1978;
Pal and Wolfenstein, 1982). Early discussions of the possible
role of neutrino radiative decay in different astrophysical and
cosmological settings can be found in Dicus, Kolb, and Teplitz
(1977), Sato and Kobayashi (1977), De Rujula and Glashow
(1980a), Stecker (1980), Kimble, Bowyer, and Jakobsen
(1981), and Melott and Sciama (1981).
The neutrino radiative decay process is generated by the

interaction in Fig. 5 with a real photon. The decay amplitude is
given by

hνfðpf; hfÞ; γðq; εÞj
Z

d4xHðνÞ
emðxÞjνiðpi; hiÞi

¼ ð2πÞ4δ4ðq − pi þ pfÞuðhfÞðpfÞΛfi
μ ðqÞuðhiÞðpiÞεμ;

ð5:2Þ

where pi (pf) and hi (hf) are the four-momentum and helicity
of the initial (final) neutrino and q and ε are the four-
momentum and polarization four-vectors of the photon.
The Dirac δ function implements energy-momentum
conservation.
Taking into account that for a real photon

q2 ¼ 0 and εμqμ ¼ 0; ð5:3Þ

from the general expression of ΛμðqÞ for Dirac neutrinos in
Eq. (3.35) and from Eq. (3.39), we obtain

Λfi
μ ðqÞεμ ¼ qfiϵ − iσμνεμqνðμfi þ iϵfiγ5Þ; ð5:4Þ

where qfi ≠ 0 only if neutrinos are millicharged particles (see
Sec. VII.A). Therefore, the radiative decay of a neutrino νi
into a lighter neutrino νf depends on the corresponding
transition charge, magnetic moment, and electric moment.
Assuming qfi ¼ 0, the decay rate in the rest frame (rf) of the
decaying neutrino νi is given by (Raffelt, 1996, 1999a, 1999b)

Γrf
νi→νfþγ ¼

1

8π

�
m2

i −m2
f

mi

�3

ðjμfij2 þ jϵfij2Þ: ð5:5Þ

This expression is valid for both Dirac and Majorana
neutrinos, because both can have transition magnetic and
electric moments and the corresponding expression (3.62) for
ΛμðqÞ in the Majorana case is equivalent to that in Eq. (3.35)
for Dirac neutrinos.
The transition magnetic and electric dipole moments of

Dirac neutrinos in the minimal extension of the standard
model with right-handed neutrinos are given approximately by
Eq. (4.9). In this case, the radiative decay rate is given by
(Shrock, 1982)

Γrf
νDi →νDfþγ

≃ α

2

�
3GF

32π2

�
2
�
m2

i −m2
f

mi

�3

ðm2
i þm2

fÞ

×

���� X
l¼e;μ;τ

U�
liUlf

m2
l

m2
W

����2: ð5:6Þ

The radiative decay rate is suppressed by the small phase
space due to the smallness of neutrino masses, by the
proportionality of the magnetic (electric) transition moment
to the sum (difference) of the masses of the two neutrinos
involved in the decay, and by a coefficient which is smaller
than ðmτ=mWÞ4 ≃ 2 × 10−7. Note, however, that there are
models [see, for instance, Petcov (1982), Aboubrahim,
Ibrahim, and Nath (2013), and Aboubrahim et al. (2014)]
in which the neutrino radiative decay rates (as well as the
magnetic moment discussed in Sec. IV) of a Dirac neutrino are
much larger than those predicted in the minimally extended
standard model.
The expression of the decay rate for Majorana neutrinos in

the simplest extensions of the standard model (without taking
into account model-dependent contributions of the scalar
sector) can be derived from the expressions in Eqs. (4.15)
and (4.16) of the Majorana magnetic and electric transition
moments (Shrock, 1982):

Γrf
νMi →νMf þγ

≃ α

�
3GF

32π2

�
2
�
m2

i −m2
f

mi

�3

×

�
ðmi þmfÞ2

���� X
l¼e;μ;τ

U�
liUlf

m2
l

m2
W

����2

−4mimf

�
Re


 X
l¼e;μ;τ

U�
liUlf

m2
l

m2
W

��
2
	
: ð5:7Þ

In the case of CP conservation, from Eqs. (4.20) and (4.21), it
follows that the decay process is induced purely by the
neutrino electric or magnetic transition dipole moment if
the CP phases of νi and νf are, respectively, equal or opposite.
For numerical estimations it is convenient to express the

lifetime τνi→νfþγ ¼ Γ−1
νi→νfþγ in the following form:

τrfνi→νfþγ ≃ 0.19

�
m2

i

m2
i −m2

f

�
3
�
eV
mi

�
3
�
μB
μefffi

�
2

s; ð5:8Þ

with the neutrino effective magnetic moment

μefffi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jμfij2 þ jϵfij2

q
: ð5:9Þ

Since μefffi is very small, the lifetime in Eq. (5.8) is very long.
Indeed, in the case of Dirac neutrinos in the minimal extension
of the standard model with right-handed neutrinos, consider-
ing only the dominant τ contribution in Eq. (5.6) and
neglecting mf, we obtain

τrf
νDi →νDf þγ

≃ 6.2 × 1043 s
jUτij2jUτfj2

�
eV
mi

�
5

: ð5:10Þ
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For mi ≲ 1 eV, this lifetime is much larger than the age of the
Universe, which is about 4.3 × 1017 s (Beringer et al., 2012).
The neutrino radiative decay can be constrained by the

absence of decay photons in reactor ν̄e and solar νe fluxes. The
limits on μefffi that are obtained from these considerations are
much weaker than those obtained from neutrino scattering
terrestrial experiments. Stronger constraints on μefffi (although
still weaker than those obtained in terrestrial experiments) are
obtained from the neutrino decay limit set by SN 1987A (Kolb
and Turner, 1989; Jaffe and Turner, 1997) and from the

measurements of the diffuse cosmic infrared background and
those of the cosmic microwave background (Cowsik, 1977;
Sato and Kobayashi, 1977; Dicus et al., 1978; De Rujula and
Glashow, 1980b; Stecker, 1980; Dolgov and Zeldovich, 1981;
Kimble, Bowyer, and Jakobsen, 1981; Ressell and Turner,
1990; Biller et al., 1998; Raffelt, 1998; Masso and Toldra,
1999; Mirizzi, Montanino, and Serpico, 2007). These limits,
shown in Fig. 9, can be expressed as (Raffelt, 1996,
1999a, 1999b)

μefffi

μB
<

8>>><
>>>:

0.9 × 10−1 ðeV=mνÞ2 reactor ðν̄eÞ
0.5 × 10−5 ðeV=mνÞ2 Sun ðνeÞ;
1.5 × 10−8 ðeV=mνÞ2 SN 1987A ðall flavorsÞ;
1.0 × 10−11 ðeV=mνÞ9=4 cosmic background ðall flavorsÞ:

ð5:11Þ

We also recall the studies of the effect of neutrino radiative
decay on primordial big-bang nucleosynthesis in Sato and
Kobayashi (1977), Dicus et al. (1978), Miyama and Sato
(1978), Audouze, Lindley, and Silk (1985), and Terasawa,
Kawasaki, and Sato (1988); see also the review by
Dolgov (2002).
Until now in this section we considered the standard

framework of three-neutrino mixing in which there are three
massive neutrinos, but it is possible that additional massive
neutrinos which are mainly sterile exist, as explained in
Sec. II.F. The radiative decay of heavy massive neutrinos is
a topic of current interest in view of the recent indication14 of
an astrophysical monochromatic x-ray line at and energy of
about 3.5 keV (Boyarsky et al., 2014; Bulbul et al., 2014),
which could be due to the radiative decay of a heavy neutrino
with a mass of about 7 keV (Abazajian, 2014; Harada,
Kamada, and Yoshida, 2014; Vincent et al., 2014) in agree-
ment with the prediction of the νMSM (Boyarsky,
Ruchayskiy, and Shaposhnikov, 2009; Kusenko, 2009;
Boyarsky, Iakubovskyi, and Ruchayskiy, 2012; Drewes,
2013). In fact, from energy-momentum conservation in the
two-body decay (5.1) the energy of the emitted photon in the
rest frame of the decaying neutrino νi is given by

Eγ ¼
m2

i −m2
f

2mi
≃mi

2
for mi ≫ mf: ð5:12Þ

We first consider the radiative decay of Dirac neutrinos.
Using Eq. (5.5), the transition dipole moments in Eq. (4.14)
imply the decay rates

Γrf
νDi →νDfþγ

≃ α

2

�
3GF

16π2

�
2
�
m2

i −m2
f

mi

�3

ðm2
i þm2

fÞ

×

����X
Ns

n¼1

U�
sni
Usnf þ

1

2

X
l¼e;μ;τ

U�
liUlf

m2
l

m2
W

����
2

:

ð5:13Þ

The inequality (2.79) suppresses quadratically the sterile
contribution to the decays between two standard massive
neutrinos (k; j ≤ 3) and the decays between two nonstandard
massive neutrinos are strongly suppressed by Eqs. (2.78) and
(2.80). On the other hand, the decay of a nonstandard heavy
massive neutrino νh with h ≥ 4 into a lighter standard massive
neutrino νl with l ≤ 3 can be significant if jUsh−3lj is not too
small. Neglecting the small contributions due to the charged-
lepton masses and considering mh ≫ ml, we have

Γrf
νDh→νDl þγ

≃ α

2

�
3GF

16π2

�
2

m5
hjUsh−3hj2jUsh−3lj2: ð5:14Þ

FIG. 9. Astrophysical limits on neutrino transition moments.
From Raffelt, 1999b.

14See, however, the negative result of the searches in Anderson,
Churazov, and Bregman (2014), Carlson, Jeltema, and Profumo
(2014), Jeltema and Profumo (2014), Malyshev, Neronov, and Eckert
(2014), and Tamura et al. (2014).
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If the mixing of νsh−3 with the three light neutrinos is
dominated by jUsh−3lj2, we can define an approximate effective
mixing angle ϑhl such that

cos2ϑhl ≃ jUsh−3hj2; sin2ϑhl ≃ jUsh−3lj2; ð5:15Þ

and we can write the decay rate as

Γrf
νDh→νDl þγ

≃ α

2

�
3GF

32π2

�
2

m5
h sin

2 2ϑhl: ð5:16Þ

This approximation is convenient for the analysis of exper-
imental data, because the decay rate depends on only two
unknown parameters, the heavy neutrino mass mh and the
effective mixing angle ϑhl.
We consider now the decay of heavy nonstandard

massive neutrinos in the Majorana framework, which
applies to the νMSM explanation of the astrophysical
3.5 keV x-ray line mentioned previously (Boyarsky,
Ruchayskiy, and Shaposhnikov, 2009; Kusenko, 2009;
Boyarsky, Iakubovskyi, and Ruchayskiy, 2012; Drewes,
2013). The decay rates are generalizations of those in
Eq. (5.7) taking into account the transition magnetic and
electric moments in Eqs. (4.22) and (4.23). For simplicity, we
consider only the decay of a heavy neutrino νh with h ≥ 4 into
a light neutrino νl with l ≤ 3. Neglecting the small contribu-
tions due to the charged-lepton masses and considering
mh ≫ ml we obtain

Γrf
νMh →νMl þγ

≃ α

�
3GF

16π2

�
2

m5
hjUsh−3hj2jUsh−3lj2: ð5:17Þ

This expression is twice that in Eq. (5.14) in the Dirac case.
Under the approximation (5.15) we obtain

Γrf
νMh →νMl þγ

≃ α

�
3GF

32π2

�
2

m5
h sin

2 2ϑhl: ð5:18Þ

This expression is typically used in the phenomenological
studies of heavy neutrino radiative decay in the νMSM model
(Boyarsky, Ruchayskiy, and Shaposhnikov, 2009; Kusenko,
2009; Boyarsky, Iakubovskyi, and Ruchayskiy, 2012;
Drewes, 2013).
We finally mention that the radiative decay of heavy

neutrinos may be observable also in hadron collider experi-
ments (Boyarkin and Boyarkina, 2014b).

B. Radiative decay in matter

As explained in Sec. II.D, the evolution of neutrinos
propagating in matter is affected by the potential generated
by the coherent forward elastic scattering with the particles in
the medium. It turns out that the coherent interaction with an
electron background induces the radiative decay in Eq. (5.1)
with a rate that is not suppressed by the GIM mechanism as
the decay rate in vacuum in Eq. (5.6) (D’Olivo, Nieves, and
Pal, 1990). Following the approach of Giunti et al. (1992), the
process of radiative decay in an electron background can be
represented by the two Feynman diagrams in Fig. 10 which
are obtained from the CC potential diagram in Fig. 1(a)

attaching a final photon line at the initial or final electron line.
As in the case of the calculation of the potential (Giunti and
Kim, 2007), the coherent contribution of the electron back-
ground is obtained by considering equal initial and final four-
momenta of the electron. The resulting decay rate in the rest
frame of the electron background is

Γmat
νi→νfþγ ¼

αG2
FN

2
e

2m2
e

�
m2

i −m2
f

mi

�
jUeij2jUefj2FðviÞ; ð5:19Þ

where Ne is the electron number density, vi ¼ j~pij=Ei is the
velocity of the initial neutrino, and

FðviÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2i

q 

2

vi
ln

�
1þ vi
1 − vi

�
− 3þm2

f

m2
i

�
: ð5:20Þ

In the realistic case of ultrarelativistic initial neutrinos, we
have

FðviÞ⟶
vi→1

4mi=Ei: ð5:21Þ

Note that the matter-induced radiative decay is independent
of the Dirac or Majorana nature of neutrinos, because it is
generated by the coherent weak interactions with matter,
which are the same for left-handed neutrinos.
Neglecting the final neutrino mass in Eq. (5.19), the

numerical value of the lifetime τmat
νi→νfþγ ¼ ðΓmat

νi→νfþγÞ−1 for
ultrarelativistic initial neutrinos is given by

τmat
νi→νfþγ ≃ 4.0×1030 s

jUeij2jUefj2
�
eV
mi

�
2
�

Ei

MeV

��
NAcm−3

Ne

�
2

: ð5:22Þ

In order to compare the radiative lifetime in matter in
Eq. (5.22) with the radiative lifetime in vacuum in
Eq. (5.10), obtained in the minimal extension of the standard
model with right-handed neutrinos, we must take into account
the Lorentz boost factor γi ¼ Ei=mi from the rest frame of
the decaying neutrino to the rest frame of the electron
background:

FIG. 10. Feynman diagrams of the coherent contribution of
background electrons to the radiative decay νiðpiÞ → νfðpfÞ þ
γðqÞ in matter.
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τmat
νi→νfþγ

γiτ
rf
νDi →νDfþγ

≃ 1.1 × 10−19
�jUτij2jUτfj2
jUeij2jUefj2

�

×

�
mi

eV

�
4
�
NAcm−3

Ne

�
2

: ð5:23Þ

Therefore, the radiative decay rate in an electron background
is many orders of magnitude larger than the radiative decay
rate in vacuum in the minimal extension of the standard model
with right-handed neutrinos. However, the large value of the
lifetime in Eq. (5.22) indicates that it is very difficult, if not
impossible, to find a realistic application of this effect.
So far we have considered the radiative decay rate in a

background of electrons, assuming that the temperature is not
very high. For a temperature T ≫ me both electrons and
positrons are present in the background and the radiative
decay rate is given by (D’Olivo, Nieves, and Pal, 1990)

ΓðT≫meÞ
νi→νfþγ ¼

αG2
FT

4

72

�
m2

i −m2
f

mi

�
jUeij2jUefj2FðviÞ: ð5:24Þ

Neglecting the final neutrino mass for ultrarelativistic initial
neutrinos we have

τðT≫meÞ
νi→νfþγ ≃ 1.2 × 1016 s

jUeij2jUefj2
�
eV
mi

�
2
�

Ei

MeV

��
MeV
T

�
4

: ð5:25Þ

Therefore, in this case the radiative decay in matter is
enormously faster than that in vacuum in the minimal
extension of the standard model with right-handed neutrinos:

τðT≫meÞ
νi→νfþγ

γiτ
rf
νDi →νDfþγ

≃ 3.3 × 10−34
�jUτij2jUτfj2
jUeij2jUefj2

�

×

�
mi

eV

�
4
�
MeV
T

�
4

: ð5:26Þ

We finally mention that Nieves and Pal (1997) calculated
the radiative decay rate of neutrinos propagating in a thermal
background of electrons and photons, taking into account the
effect of the stimulated emission of photons in the thermal
bath; Grasso and Semikoz (1999) calculated the decay rate of
a neutrino induced by the emission or absorption of a photon
in a plasma taking into account the effective mass of the
photons (plasmons); Skobelev (1995), Zhukovsky, Eminov,
and Grigoruk (1996), and Kachelriess and Wunner (1997)
calculated the radiative decay rate of neutrinos propagating in
magnetic fields; Ternov and Eminov (2003, 2013) calculated
the radiative decay rate of neutrinos propagating in a mag-
netized plasma.

C. Cherenkov radiation

It is well known that a charged particle moving through a
medium at a velocity greater than the speed of light in the
medium v > c=n (n is the medium refractive index) can emit
Cherenkov radiation. In the same way, neutrinos with a
magnetic moment (and/or an electric dipole moment) propa-
gating in a medium with a velocity larger than the velocity of

light in the medium can emit Cherenkov radiation. This
possibility was first discussed by Radomski (1975), who
studied a solution of the solar neutrino problem in which the
rate of solar neutrino detection is lowered by the loss of energy
of the neutrinos due to the emission of Cherenkov radiation
in the solar matter. However, the effect was found to be too
small to significantly reduce the solar neutrino flux.
The Cerenkov radiation is the helicity flip process

νLðpÞ → νRðp0Þ þ γðkÞ; ð5:27Þ

where νLðpÞ and νRðp0Þ denote the initial and final states of
the same neutrino with negative and positive helicities,
respectively. The amplitude of the transition due to a neutrino
magnetic moment μ is given by

M ¼ μ

n
uðþÞðp0Þσμνkμuð−ÞðpÞενðk; λÞ; ð5:28Þ

where p ¼ ðE; ~pÞ and p0 ¼ ðE0; ~p0Þ are the four-momenta of
the initial and final neutrinos and k ¼ ðω; ~kÞ and ενðk; λÞ are
the four-momenta and polarization four-vector of the emitted
photon (λ denotes the photon helicity), with j~kj ¼ nω and
n > 1 in matter. The rate of the Cherenkov process is given
by (Grimus and Neufeld, 1993; Mohanty and Samal, 1996)

Γ ¼ 1

2ð2πÞ2E
Z

d3p0

2E0
d3k
2ω

jMj2δ4ðp − p0 − kÞ: ð5:29Þ

After integration with the use of the δ function, we obtain

Γ ¼ 1

16πE2v

Z
n2dωdðcos θÞjMj2

× δ

�
cos θ −

2ωEþ ðn2 − 1Þω2

2nωEv

�
; ð5:30Þ

where v ¼ j~pj=E is the initial neutrino velocity and θ is the
angle between the emitted photon and the direction of
propagation of the initial neutrino. The remaining δ function
constrains the photon emission angle to have the value

cos θ ¼ 1

nv

�
1þ ðn2 − 1Þ ω

2E

�
: ð5:31Þ

After performing the analytic integrals and taking into account
Eq. (5.31), we obtain

Γ ¼ μ2

4πE2v

Z
ωmax

ωmin

�
ðn2 − 1Þ2
n2

E2 þ ðn2 − 1Þm2
ν

�
ω2

−
ðn2 − 1Þ2

n2
Eω3 −

ðn2 − 1Þ3
4n2

ω4

	
dω: ð5:32Þ

The range of integration from ωmin to ωmax corresponds to the
range of frequencies of the emitted photon which is allowed
by the kinematical condition j cos θj ≤ 1. The determination
of this range is nontrivial, because in general the refractive
index n depends on ω.
The general expression (5.32) of the rate of the Cherenkov

process can be used for analyses of possible
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phenomenological consequences of the neutrino magnetic
moment Cherenkov radiation in different environments. For
example, Grimus and Neufeld (1993) estimated that if solar
neutrinos have an effective magnetic moment of about
3 × 10−11μB, they emit about five Cherenkov photons per
day in a terrestrial 1 km3 water detector.
The Cherenkov mechanism is of interest for astrophysical

applications also because it flips the neutrino helicity. If
neutrinos are Dirac particles, this helicity flip transforms
active left-handed neutrinos into sterile right-handed neutri-
nos. This mechanism can have important consequences, for
instance, for the evolution of a supernova core. Imposing the
fact that the luminosity of the sterile neutrinos is less than the
total energy 1053 ergs s−1 emitted by a typical core-collapse
supernova, Mohanty and Samal (1996) found an upper
bound on the neutrino effective magnetic moment of about
3 × 10−14μB.
Neutrinos can emit Cherenkov radiation also when they

propagate in vacuum in the presence of a magnetic field. This
can occur even if neutrinos are massless with only standard
model couplings, because the magnetic field induces an
effective neutrino-photon vertex and modifies the photon
dispersion relation in such a way that the Cherenkov condition
is fulfilled (Ioannisian and Raffelt, 1997). This mechanism
was discussed by Galtsov and Nikitina (1972), Skobelev
(1976, 1995), Gvozdev, Mikheev, and Vasilevskaya (1992,
1996), Ioannisian and Raffelt (1997), and Kachelriess and
Wunner (1997). However, in order to produce appreciable
effects this mechanism requires an extremely strong magnetic
field. The strongest magnetic fields known in nature are those
near pulsars. Even considering a magnetic field as strong as
the critical fieldBcr ¼ m2

e=e ¼ 4.41 × 1013 G, since its spatial
extension near a pulsar is only of some tens of kilometers, the
Cherenkov radiation emitted by the neutrinos escaping from
the pulsar is too small to be of practical importance for pulsar
physics (Ioannisian and Raffelt, 1997).
There is also another possible mechanism of electromag-

netic radiation of neutrinos in a medium, also called
“Cherenkov radiation” (Sawyer, 1992; D’Olivo, Nieves,
and Pal, 1996). This mechanism is based on the expectation
that neutrinos moving in a medium acquire an electric charge
as a consequence of their weak interaction with the particles of
the background (Oraevsky, Semikoz, and Smorodinsky,
1986). Note that this effect exists even for massless neutrinos
and no physics beyond the standard model is needed. The
magnetic moment Cherenkov radiation estimated by Grimus
and Neufeld (1993) in the optical range is much larger than
the Cherenkov radiation due to the induced charge. However,
the Cherenkov radiation due to the induced neutrino charge
becomes important for photons with higher energies and
might be of interest for applications in astrophysics.
We finally mention the studies of photon emission of a

massive neutrino with a magnetic moment in magnetic fields
and in electromagnetic waves (Skobelev, 1976, 1991; Borisov,
Zhukovsky, and Ternov, 1988, 1989; Chistyakov and
Mikheev, 1999) and that of a neutrino with a magnetic
moment which crosses the interface of two media with
different refractive indices (Sakuda, 1994; Grimus and
Neufeld, 1995; Sakuda and Kurihara, 1995; Ioannisian,
Ioannisian, and Kazarian, 2011; D’Olivo and Loza, 2012).

D. Plasmon decay into a neutrino-antineutrino pair

The most interesting process, for the purpose of con-
straining neutrino electromagnetic properties, is the photon
(plasmon) decay into a neutrino-antineutrino pair γ� → νþ ν̄
(Bernstein, Ruderman, and Feinberg, 1963; Sutherland et al.,
1976). This plasmon process becomes kinematically allowed

in media, because a photon with the dispersion relation ω2
γ −

~k2γ > 0 roughly behaves as a particle with an effective mass.
For example, photons in a nonrelativistic plasma have the

dispersion relation ω2
γ − ~k2γ ¼ ω2

P, where ωP ¼ 4παNe=me is
the plasma frequency (Raffelt, 1996). For ωP > 2mν the
plasmon decay γ� → νþ ν̄ is kinematically possible.
The plasmon-decay rate is (Sutherland et al., 1976; Raffelt,

1996)

Γγ�→νν̄ ¼
μ2ν
24π

Z
ðω2

γ − k2γ Þ2
ωγ

; ð5:33Þ

where μν is the effective magnetic moment

μν ¼
X
k;j

ðjμkjj2 þ jϵkjj2Þ: ð5:34Þ

The quantity Z is a renormalization factor which depends
on the polarization of the plasmon. For transverse plasmons
ω2
γ − k2γ ¼ ω2

P and Z ¼ 1, whereas for longitudinal plasmons
ωγ ≃ ωP and Z≃ ð1 − k2γ=ω2

PÞ−1 (Raffelt, 1996).
The process of plasmon decay into a neutrino-antineutrino

pair was first considered by Bernstein, Ruderman, and
Feinberg (1963) as a new energy-loss channel for the Sun.
In general, a plasmon decay in a star liberates the energy ωγ in
the form of neutrinos that freely escape the stellar environ-
ment. The corresponding energy-loss rate per unit volume is

Qγ�→νν̄ ¼
g

ð2πÞ3
Z

ωγfkγΓγ→νν̄d3kγ; ð5:35Þ

where fkγ is the photon Bose-Einstein distribution function
and g ¼ 2 is the number of polarization states.
The requirement that the plasmon-decay energy-loss chan-

nel does not exceed the standard solar model (SSM) lumi-
nosity leads to the constraint (Raffelt, 1996, 1999a, 1999b)

μν ≲ 4 × 10−10μB: ð5:36Þ

However, the tightest astrophysical bound on μν comes
from the constraints on the possible delay of helium ignition
of a red giant star in globular clusters due to the cooling
induced by the plasmon-decay energy loss. From the lack of
observational evidence of this effect, the following limit has
been found (Raffelt, 1990b, 1990c; Raffelt and Weiss, 1992):

μν ≲ 3 × 10−12μB: ð5:37Þ

See also Castellani and Degl’Innocenti (1993) and Catelan,
Pacheco, and Horvath (1996). Recently the limit was updated
by Viaux et al. (2013) using state-of-the-art astronomical
observations and stellar evolution codes, with the results
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μν <

�
2.6 × 10−12μB ð68% C.L.Þ;
4.5 × 10−12μB ð95% C.L.Þ: ð5:38Þ

This astrophysical constraint on a neutrino magnetic moment
is applicable to both Dirac and Majorana neutrinos and
constrains all diagonal and transition dipole moments accord-
ing to Eq. (5.34).
It was also shown by Heger et al. (2009) that the additional

cooling due to processes induced by neutrino magnetic
moments [plasmon decay γ� → νν̄, photo processes
γe− → e−νν̄, pair processes eþe− → νν̄, bremsstrahlung
e−ðZeÞ → ðZeÞe−νν̄] generate qualitative changes to the
structure and evolution of stars with masses between 7 and
18 solar masses, rather than simply changing the time scales of
their burning. The resulting sensitivity to the neutrino mag-
netic moment was estimated by Heger et al. (2009) to be at the
level of ð2–4Þ × 10−11μB.

E. Spin light

It is known from classical electrodynamics that a system
with zero electric charge but nonzero magnetic (or electric)
moment can produce electromagnetic radiation which is called
“magnetic (or electric) dipole radiation.” It is due to the
rotation of the magnetic (or electric) moment.
A similar mechanism of radiation exists in the case of a

neutrino with a magnetic (or electric) moment propagating in
matter (Lobanov and Studenikin, 2003). This phenomenon,
called “spin light of neutrino” (SLν), is different from the
neutrino Cherenkov radiation in matter discussed in Sec. V.C,
because it can exist even when the emitted photon refractive
index is equal to unity. The SLν is a radiation produced by the
neutrino on its own, rather than a radiation of the background
particles. Since the SLν process is a transition between
neutrino states with equal masses, it can become possible
only because of an external environment influence on the
neutrino states.
The SLν was first studied by Lobanov and Studenikin

(2003, 2004), and Grigoriev, Dvornikov, and Studenikin
(2005a) with a quasiclassical treatment based on a Lorentz-
invariant approach to the neutrino spin evolution that implies
the use of the generalized Bargmann-Michel-Telegdi equation
(Egorov, Lobanov, and Studenikin, 2000; Lobanov and
Studenikin, 2001) (for further details see Appendix F). The
full quantum theory of the SLν has been elaborated on by
Grigoriev, Studenikin, and Ternov (2005a, 2005b, 2006),
Studenikin and Ternov (2005), Studenikin (2007), and
Grigoriev et al. (2012b) [see also Lobanov (2005a, 2005b).
The method is based on the exact solution of the modified
Dirac equation for the neutrino wave function in matter
(Studenikin, 2006a, 2006b, 2008; Grigoriev, Studenikin,
and Ternov, 2009).
The Feynman diagram of the SLν process is shown in

Fig. 11, where the neutrino initial (ψ i) and final (ψf) states
(indicated by broad lines) are exact solutions of the corre-
sponding Dirac equations accounting for the interactions with
matter. The neutrino wave functions and energy spectrum are
given by Eqs. (H16) and (H17) of Appendix F. Here we
consider a generic flavor neutrino with an effective magnetic

moment μν and effective mass mν. The SLν process for a
relativistic neutrino is a transition from an initial neutrino state
to a less energetic final neutrino state with the emission of a
photon and a neutrino helicity flip (Grigoriev, Studenikin, and
Ternov, 2005a; Studenikin and Ternov, 2005).
The amplitude of the SLν process is given by (Studenikin

and Ternov, 2005)

Sfi ¼ −μν
ffiffiffiffiffi
4π

p Z
d4xψ̄fðxÞð~Γ · ~ε�Þ eikxffiffiffiffiffiffiffiffiffiffiffi

2ωL3
p ψ iðxÞ; ð5:39Þ

where L3 is the normalization volume and

~Γ ¼ iωf½~Σ × ~ϰ� þ iγ5~Σg; with ~Σ ¼
�
~σ 0

0 ~σ

�
: ð5:40Þ

Here kμ ¼ ðω; ~kÞ and ~ε are the photon momentum and
polarization vectors, and ~ϰ ¼ ~k=ω is the unit vector pointing
in the direction of propagation of the emitted photon. ψ iðxÞ
and ψfðxÞ are the initial and final neutrino wave functions in
the presence of matter obtained as the exact solutions of the
effective Dirac equation

fiγμ∂μ − 1
2
γμð1þ γ5Þ ~fμ −mνgψ i;fðxÞ ¼ 0 ð5:41Þ

[see Eqs. (H16) and (H17) of Appendix H]. From the energy-
momentum conservation relations

p0 ¼ p0
0 þ ω; ~p ¼ ~p0 þ ~ϰ; ð5:42Þ

where ðp0; ~pÞ and ðp0
0; ~p

0Þ are the initial and final neutrino
energy and momenta, it follows that the photon energy is
given by

ω ¼ 2~αmνp½ðp0 − ~αmνÞ − ðpþ ~αmνÞ cos θ�
ðp0 − ~αmν − p cos θÞ2 − ð ~αmνÞ2

; ð5:43Þ

where p ¼ j~pj and θ is the angle between ~ϰ and the initial
neutrino propagation. For an electron neutrino propagating in
a medium composed of electrons, protons, and neutrons, the
matter density parameter ~α is given by

~α ¼ GF

2
ffiffiffi
2

p
mν

½neð1þ 4 sin2 θWÞ þ npð1 − 4 sin2 θWÞ − nn�;

ð5:44Þ

where ne; np, and nn are the number densities of the back-
ground electrons, protons, and neutrons, respectively. From

FIG. 11. The spin light of a neutrino (SLν) radiation diagram.
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the amplitude (5.39) and the photon energy (5.43) the SLν
transition rate and total radiation power can be obtained

Γ ¼ μ2ν

Z
π

0

ω3

1þ ~β0y
S sin θdθ; ð5:45Þ

I ¼ μ2ν

Z
π

0

ω4

1þ ~β0y
S sin θdθ; ð5:46Þ

where

S ¼ ð ~β ~β0 þ 1Þð1 − y cos θÞ − ð ~β þ ~β0Þðcos θ − yÞ; ð5:47Þ

and

~β ¼ pþ ~αmν

p0 − ~αmν
; ~β0 ¼ p0 − ~αmν

p0
0 − ~αmν

; y ¼ ω − p cos θ
p0 ;

ð5:48Þ

where p0 ¼ j~p0j. For the case of a relativistic neutrino with
p ≫ mν, the total rate and power are given by

Γ ¼

8>>><
>>>:

64
3
μ2ν ~α

3p2mν for ~α ≪ mν
p ;

4μ2ν ~α
2m2

νp for mν
p ≪ ~α ≪ p

mν
;

4μ2ν ~α
3m3

ν for ~α ≫ p
mν
;

ð5:49Þ

I ¼

8>>><
>>>:

128
3
μ2ν ~α

4p4 for ~α ≪ mν
p ;

4
3
μ2ν ~α

2m2
νp2 for mν

p ≪ ~α ≪ p
mν
;

4μ2ν ~α
4m4

ν for ~α ≫ p
mν
:

ð5:50Þ

Since the rate and power of SLν are proportional to μ2ν, they
are in general very small. However, some specific features of
the SLν might be phenomenologically interesting for astro-
physics (Lobanov and Studenikin, 2003, 2004; Studenikin,
2004b, 2006a, 2006b, 2007, 2007, 2008; Grigoriev,
Studenikin, and Ternov, 2005a, 2005b, 2006, 2009;
Grigoriev, Dvornikov, and Studenikin, 2005a; Lobanov,
2005a, 2005b; Studenikin and Ternov, 2005; Kuznetsov
and Mikheev, 2006; Grigoriev et al., 2008, 2012b).
As can be seen from Eqs. (5.49) and (5.50), for a wide range

of matter densities the SLν rate and power increase with
the neutrino momentum. For ultrahigh energy neutrinos
(p0 ∼ 1018 eV) propagating through a dense matter charac-
terized by the value of the density parameter ~αmν ∼ 10 eV
(this value is typical for a neutron star with ne;p;n of the order
of 1038 cm−3), the rate of the SLν process is about 0.7 s−1.
For the average emitted photon energy

hωi ¼ I=Γ; ð5:51Þ

we obtain

hωi≃

8>>><
>>>:

2~αp2=mν for ~α ≪ mν
p ;

1
3
p for mν

p ≪ ~α ≪ p
mν
;

~αmν for ~α ≫ p
mν
:

ð5:52Þ

Therefore, in the most interesting case of astrophysical ultra-
high-energy neutrinos, the average energy of the SLν photons
is one-third of the neutrino momentum and the SLν spectrum
spans the energy range of gamma rays.
Another interesting property of the SLν is its spatial

distribution. As it follows from Eqs. (5.45) and (5.46) the
radiation is collimated along the direction of neutrino propa-
gation. In the case of relativistic neutrinos (p ≫ mν) we have
1 ≪ ~α ≪ p=mν for a wide range of matter densities and the
radiation power is emitted in a narrow cone with thickness
δθ≃mν=p around a very small angle θmax given by
cos θmax ≃ 1 − ð2=3Þ ~αmν=p. The image drawn by the SLν
radiation in the plane perpendicular to the neutrino direction
of motion in dense matter is a narrow ring with a very small
radius centered on the neutrino path.
When neutrinos propagate in a plasma, the SLν radiation is

affected by the influence of the background plasma on the
propagation of the emitted photons. This effect was first
discussed by Grigoriev, Studenikin, and Ternov (2005a,
2005b, 2006), and Studenikin and Ternov (2005), and was
further studied by Kuznetsov and Mikheev (2006, 2007),
where the role of the SLν plasmon mass was taken into
account. In the case of the ultra-high-energy neutrino, the SLν
rate of Kuznetsov and Mikheev (2006, 2007) exactly repro-
duces the results obtained by Grigoriev, Studenikin, and
Ternov (2005a), 2005b, 2006), and Studenikin and Ternov
(2005). For a more detailed discussion on the historical
aspects of this issue, see Grigoriev et al. (2006, 2008),
Kuznetsov and Mikheev (2006), Studenikin (2008), and
Grigoriev, Studenikin, and Ternov (2009). The most complete
and consistent study of the SLν accounting for the plasma
effects can be found in Grigoriev et al. (2012b).
The SLν process with transitions between neutrinos

with different masses was considered by Grigoriev et al.
(2012a) and the SLν mechanism taking into account possible
effects of Lorentz invariance violation was discussed by
Kruglov (2014).

VI. INTERACTIONS WITH ELECTROMAGNETIC FIELDS

If neutrinos have nontrivial electromagnetic properties, they
can interact with classical electromagnetic fields. Significant
effects can occur, in particular, in neutrino astrophysics, since
neutrinos can propagate over very long distances in astro-
physical environments with magnetic fields. In this case even
a very weak interaction can have large cumulative effects.
In Sec. VI.A we derive the effective potential of a neutrino

propagating in a classical electromagnetic field. This potential
can generate spin and spin-flavor transitions, which are
discussed in Sec. VI.B. We also review the limits on the
neutrino effective magnetic moment obtained from analyses of
solar neutrino data. In Sec. VI.C we discuss the modifications
of neutrino magnetic moments in very strong magnetic fields.
In Sec. VI.D we review the effects of a strong magnetic field
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on neutron decay. In Sec. VI.E we review neutrino-antineu-
trino pair production in a magnetic field and in Sec. VI.F we
discuss neutrino-antineutrino pair production due to vacuum
instability in a very strong magnetic field. In Sec. VI.G we
review the energy quantization of neutrinos propagating in
rotating media.

A. Effective potential

The coherent interactions of neutrinos with classical
electromagnetic fields generate potentials which are similar
to the matter potentials in Eq. (2.42) and must be taken into
account in the study of flavor and spin evolution with an
equation analogous to the MSW equation (2.45). This evo-
lution in a magnetic field is discussed in detail in Sec. VI.B.
Here we discuss the derivation of the neutrino effective
potential in a classical electromagnetic field, which corre-
sponds to the amplitude of coherent forward elastic scattering:

Vhi→hf ¼ lim
q→0

hνðpf; hfÞj
R
d3xHðνÞ

emðxÞjνðpi; hiÞi
hνðp; hÞjνðp; hÞi ; ð6:1Þ

where q ¼ pi − pf as above and the denominator enforces the
correct normalization (p ¼ pi ¼ pf in the limit q → 0 and h
is arbitrary). The interaction Hamiltonian HðνÞ

emðxÞ is that in
Eq. (3.2). Here we consider for simplicity only one neutrino
(the generalization to more than one neutrino, with the
possibility of coherent transitions between different massive
neutrinos generated by transition form factors, is discussed
later), allowing for possible helicity transitions (hf ≠ hi),
which are important in magnetic fields (see Sec. VI.B).
Note that the Hermiticity of HðνÞ

emðxÞ implies that

Vhf→hi ¼ V�
hi→hf

: ð6:2Þ

From the normalization of states in Eq. (A58) and
Eqs. (3.2)–(3.8), we obtain

Vhi→hf ¼
1

2EνVT
lim
q→0

uðhfÞðpfÞΛμðqÞuðhiÞðpiÞ ~AμðqÞ; ð6:3Þ

where T is the normalization time, Eν ¼ Ei ¼ Ef in the limit
q → 0, and

~AμðqÞ ¼
Z

d4xe−iq·xAμðxÞ ð6:4Þ

is the Fourier transform of AμðxÞ. Integrating by parts and
neglecting an irrelevant surface term (which vanishes for well-
behaved physical fields which vanish at infinity), we have

qα ~A
μðqÞ ¼ −i

Z
d4xe−iq·x∂αAμðxÞ: ð6:5Þ

Using Eq. (3.18) for ΛμðqÞ, and the Gordon identity (A60) for
the γμ term, we obtain, in the limit q → 0,

Vhi→hf ¼
1

VT

Z
d4x



q
pμ

Eν
AμðxÞδhfhi

þ 1

4Eν
uðhfÞðpÞσμνFμνðxÞ

�
q
2m

þ μþ iϵγ5

�
uðhiÞðpÞ

−
a
2Eν

uðhfÞðpÞjμðxÞγμγ5uðhiÞðpÞ
�
; ð6:6Þ

where pμ ¼ pμ
i ¼ pμ

f. The electromagnetic tensor FμνðxÞ
defined in Eq. (A72) contains the physical electric field
~EðxÞ and magnetic field ~BðxÞ [see Eq. (A74)].
Now we take into account the fact that propagating

neutrinos are described by wave packets whose size is limited
(Giunti and Kim, 2007). Considering fields which are approx-
imately constant over the extension of the neutrino wave
packet, we can extract them from the integral in Eq. (6.6).
Then the integral simplifies with VT, leading to

Vhi→hf ¼ q
pμ

Eν
Aμδhfhi

þ 1

4Eν
uðhfÞðpÞσμνFμν

�
q
2m

þ μþ iϵγ5

�
uðhiÞðpÞ

−
a
2Eν

uðhfÞðpÞjμγμγ5uðhiÞðpÞ: ð6:7Þ

From Eq. (6.7) one can see that Vhi→hf depends on the four
neutrino electromagnetic form factors at q2 ¼ 0, but the
anapole moment contributes only in very special environ-
ments in which the medium is charged. Since we discuss this
special case in Sec. VII.C devoted to the anapole moment, in
the following part of this section we do not consider the
anapole moment, assuming jμðxÞ ¼ 0.
We consider the first term in Eq. (6.7). In an electrostatic

field Aμ ¼ ðA0; 0; 0; 0Þ, we have Vð1Þ
hi→hf

¼ qA0δhfhi . This is
the expected result, taking into account that A0 is the electric
potential. Of course this term can contribute to the neutrino
potential only if neutrinos are millicharged particles (see
Sec. VII.A).
We now consider the more interesting contribution of the

second term in Eq. (6.7), which depends on the dipole
magnetic and electric moments. Note that the charge generates
a magnetic moment

μq ¼ q
2m

¼ gμð1=2Þcl ; with g ¼ 2; ð6:8Þ

where μðsÞcl ¼ qs=2m is the classical magnetic moment of a
spin-s particle (Jackson, 1999). This is the same magnetic
moment obtained from the Dirac equation of a charged
particle, with the well-known gyromagnetic ratio g ¼ 2. For
a normally charged particle the additional contribution μ in
Eq. (6.7) to the magnetic moment would be called an
“anomalous magnetic moment,” which is generated by an
internal structure in the case of nucleons or by quantum loop
corrections in the case of leptons (measured in the famous
g − 2 experiments). Since neutrinos are at most millicharged
particles, the μ in Eq. (6.7) is traditionally called the magnetic
moment, and the possible contribution of μq is neglected.
Moreover, μq does not contribute to helicity transitions,
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because it generates a spin precession which has the same
frequency as the precession of the angular momentum
generated by q (Sakurai, 1967).
In the following, we study the effects of μ and ϵ assuming

q ¼ 0. We also establish the connection of the neutrino
potential with the classical potential for a nonrelativistic
particle (Jackson, 1999),

Vcl ¼ −~μ · ~B − ~ϵ · ~E; ð6:9Þ

and the torque

~Tcl ¼ ~μ × ~Bþ ~ϵ × ~E; ð6:10Þ

which generates the precession of the spin ~S through
d~S=dt ¼ ~Tcl.
We first consider the helicity-conserving potential Vh→h.

Using the method described in Appendix E, we obtain

Vh→h ¼ −
m
Eν

ð~μ · ~Bþ ~ϵ · ~EÞ; ð6:11Þ

with

~μ ¼ h
~p
j~pj μ; ~ϵ ¼ h

~p
j~pj ϵ: ð6:12Þ

Hence, the helicity-conserving potential is proportional to the
longitudinal components of the magnetic and electric fields. In
the nonrelativistic limit (Eν ≃m) we obtain a potential which
corresponds to the classical one in Eq. (6.9). Note, however,
that this potential is strongly suppressed by the small fraction
m=Eν for ultrarelativistic neutrinos in realistic experiments.
Considering now the helicity-flipping potential V−h→h,

using the method described in Appendix E, if there is only
an electric field ~E, we obtain

V−h→hð~EÞ ¼
�
ϵþ ih

j~pj
Eν

μ

�
E⊥; ð6:13Þ

where E⊥ is the transverse component of the electric field,
i.e., orthogonal to ~p. In the case of a pure magnetic field ~B,
we have, with a similar notation,

V−h→hð~BÞ ¼
�
μ − ih

j~pj
Eν

ϵ

�
B⊥; ð6:14Þ

where B⊥ is the transverse component of the magnetic field.
The expression of V−h→h in the general case of an electro-
magnetic field is given in Eq. (E11), from which one can see
that in any case the helicity-flipping potential depends only on
the transverse components of the electric and magnetic fields.
Note that for nonrelativistic neutrinos (j~pj ≪ Eν) in prac-

tice V−h→hð~EÞ depends only on ϵ and V−h→hð~BÞ depends only
on μ, as one may have expected:

Vnr
−h→hð~EÞ≃ ϵE⊥ ¼ j~ϵ × ~Ej; ð6:15Þ

Vnr
−h→hð~BÞ≃ μB⊥ ¼ j~μ × ~Bj: ð6:16Þ

Hence, in the nonrelativistic limit the helicity-flipping poten-
tial corresponds to the classical torque in Eq. (6.10), which
rotates the spin of the particle, causing periodic changes of the
helicity.
The additional dependences of V−h→hð~EÞ on μ and that of

V−h→hð~BÞ on ϵ for relativistic neutrinos are explained in
Appendix E as a consequence of the relativistic transforma-
tions of the electric and magnetic fields and the correspon-
dence of the electric and magnetic dipole moments with their
classical counterparts only in the nonrelativistic limit.
We finally consider the potential between different massive

neutrinos, which is generated by transition electric and
magnetic dipole moments,

V
ν
ðhiÞ
i →ν

ðhf Þ
f

¼ lim
q→0

hνfðpf; hfÞj
R
d3xHðνÞ

emðxÞjνiðpi; hiÞi
hνðp; hÞjνðp; hÞi ;

ð6:17Þ

which is especially interesting for Majorana neutrinos which
do not have diagonal electric and magnetic dipole moments.
Here one can notice that it is impossible to have pi ¼ pf if
mi ≠ mf. However, we must remember that observable
neutrinos are ultrarelativistic and their energy-momentum
uncertainty is much larger than their mass differences
(Giunti and Kim, 2007). In this case, νi → νf transitions
are possible in an electromagnetic field, as well as the coherent
production of different massive neutrinos which is necessary
for the oscillations discussed in Sec. II.D. In practice this
means that in the calculation of Vfi we can approximate the
neutrinos as massless. Under this approximation, the helicity-
flipping potential in a transverse magnetic field in Eq. (6.14)
can be generalized to

V
νð−hÞi →νðhÞf

ð~BÞ ¼
�
μfi − ih

j~pj
Eν

ϵfi

�
B⊥: ð6:18Þ

This potential is interesting because it determines the neutrino
spin-flavor precession in a transverse magnetic field discussed
in Sec. VI.B.

B. Spin-flavor precession

If neutrinos have magnetic moments, the spin can precess
in a transverse magnetic field (Cisneros, 1971; Fujikawa and
Shrock, 1980; Okun, Voloshin, and Vysotsky, 1986; Voloshin
and Vysotsky, 1986).
We first derive the spin precession of an ultrarelativistic

Dirac neutrino generated by its diagonal magnetic moment μ.
We consider a neutrino with four-momentum p which at the
initial time t ¼ 0 has a definite helicity hi and is described by
the state jνðp; hiÞi. After propagation in a magnetic field ~B, at
time t the neutrino is described by a superposition of both
helicities:

jνðtÞi ¼
X
h¼�1

ψhðtÞjνðp; hÞi: ð6:19Þ

The temporal evolution of jνðtÞi is given by the Schrödinger
equation
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i
d
dt

jνðtÞi ¼ HemðtÞjνðtÞi; ð6:20Þ

where jνð0Þi ¼ jνðp; hiÞi and HemðtÞ ¼
R
d3xHðνÞ

emðxÞ is the
effective interaction Hamiltonian, which can depend on time
if the magnetic field is not constant. Here we neglect the
irrelevant contribution of the vacuum Hamiltonian, which
does not cause any change in helicity because the two helicity
states have the same mass.
Multiplying Eq. (6.20) on the left by hνðp; hÞj, we obtain

the evolution equation for the helicity amplitudes

i
dψhðtÞ
dt

¼
X
h0¼�1

ψh0 ðtÞVh0→hðtÞ; ð6:21Þ

with the potential Vh0→hðtÞ given in Eq. (6.1)
and ψhð0Þ ¼ δhhi .
In Eq. (6.11) we have seen that the helicity-conserving

potential, which depends on the longitudinal component of the
magnetic field, is strongly suppressed for ultrarelativistic
neutrinos. Hence, in practice only the transverse component
of the magnetic field contributes through the helicity-flipping
potential in Eq. (6.14). Considering for simplicity only the
contribution of the magnetic moment μ, we have

Vh0→hðtÞ ¼ μB⊥ðtÞδ−hh0 : ð6:22Þ

Then the evolution equation (6.21) can be written in the
standard matrix form

i
d
dx

�
ψLðxÞ
ψRðxÞ

�
¼

�
0 μB⊥ðxÞ

μB⊥ðxÞ 0

��
ψLðxÞ
ψRðxÞ

�
; ð6:23Þ

where we approximated the distance x along the neutrino
trajectory with time t for ultrarelativistic neutrinos, and we
adopted the standard notation ψL ≡ ψ−1 and ψR ≡ ψþ1 for the
negative and positive helicity amplitudes of the left-handed
and right-handed neutrinos, which are described, respectively,
by the states jνLi ¼ jνðp;−1Þi and jνRi ¼ jνðp;þ1Þi. The
differential equation (6.23) can be solved through the trans-
formation

�
ψLðxÞ
ψRðxÞ

�
¼ 1ffiffiffi

2
p

�
1 1

−1 1

��
φ−ðxÞ
φþðxÞ

�
: ð6:24Þ

The amplitudes φ−ðxÞ and φþðxÞ satisfy decoupled differ-
ential equations, whose solutions are

φ∓ðxÞ ¼ exp



�i

Z
x

0

dx0μB⊥ðx0Þ
�
φ∓ð0Þ: ð6:25Þ

If we consider an initial left-handed neutrino, we have

�
ψLð0Þ
ψRð0Þ

�
¼

�
1

0

�
⇒

�
φ−ð0Þ
φþð0Þ

�
¼ 1ffiffiffi

2
p

�
1

1

�
: ð6:26Þ

Then the probability of νL → νR transitions is given by

PνL→νRðxÞ ¼ jψRðxÞj2 ¼ sin2
�Z

x

0

dx0μB⊥ðx0Þ
�
: ð6:27Þ

Note that the transition probability is independent of the
neutrino energy (contrary to the case of flavor oscillations) and
the amplitude of the oscillating probability is unity. Hence,
when the argument of the sine is equal to π=2 there is
complete νL → νR conversion.
The precession νeL → νeR in the magnetic field of the Sun

was considered in 1971 (Cisneros, 1971) as a possible solution
of the solar neutrino problem. If neutrinos are Dirac particles,
right-handed neutrinos are sterile and a νeL → νeR conversion
could explain the disappearance of active solar νeL’s.
In 1986 Okun, Voloshin, and Vysotsky (1986) and Voloshin

and Vysotsky (1986) realized that the matter effect during
neutrino propagation inside of the Sun suppresses νeL → νeR
transition by lifting the degeneracy of νeL and νeR [see also
Barbieri and Fiorentini (1988)]. Indeed, taking into account
matter effects, the evolution equation (6.23) becomes

i
d
dx

�
ψLðxÞ
ψRðxÞ

�
¼

�
VðxÞ μB⊥ðxÞ

μB⊥ðxÞ 0

��
ψLðxÞ
ψRðxÞ

�
; ð6:28Þ

with the appropriate potential V which depends on the
neutrino flavor, according to Eq. (2.41). In the case of a
constant matter density, this differential equation can be
solved analytically with the orthogonal transformation

�
ψLðxÞ
ψRðxÞ

�
¼

�
cos ξ sin ξ

− sin ξ cos ξ

��
φ−ðxÞ
φþðxÞ

�
: ð6:29Þ

The angle ξ is chosen in order to diagonalize the matrix
operator in Eq. (6.28):

sin 2ξ ¼ 2μB⊥
ΔEM

; ð6:30Þ

with the effective energy splitting in matter

ΔEM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2 þ ð2μB⊥Þ2

q
: ð6:31Þ

The decoupled evolution of φ∓ðxÞ is given by

φ∓ðxÞ ¼ exp



−
i
2
ðV ∓ ΔEMÞ

�
φ∓ð0Þ: ð6:32Þ

Considering an initial left-handed neutrino,

�
φ−ð0Þ
φþð0Þ

�
¼

�
cos ξ

sin ξ

�
; ð6:33Þ

we obtain the oscillatory transition probability

PνL→νRðxÞ ¼ jψRðxÞj2 ¼ sin22ξsin2ð1
2
ΔEMxÞ: ð6:34Þ

Since in matter ΔEM > 2μB⊥, the matter effect suppresses
the amplitude of νL → νR transitions. However, these
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transitions are still independent of the neutrino energy, which
does not enter in the evolution equation (6.28).
When it was known in 1986 (Okun, Voloshin, and

Vysotsky, 1986; Voloshin and Vysotsky, 1986) that the matter
potential has the effect of suppressing νL → νR transitions
because it breaks the degeneracy of left-handed and right-
handed states, it did not take long to realize in 1988
(Akhmedov, 1988; Lim and Marciano, 1988) that the matter
potentials can cause resonant spin-flavor precession if differ-
ent flavor neutrinos have transition magnetic moments [spin-
flavor precession in vacuum was previously discussed by
Schechter and Valle (1981)]. The application of this mecha-
nism to solar neutrinos was discussed in the following years
(Akhmedov and Bychuk, 1989; Minakata and Nunokawa,
1989; Balantekin, Hatchell, and Loreti, 1990; Akhmedov,
1991a, 1991b; Raghavan et al., 1991; Balantekin and Loreti,
1992; Pulido, 1992; Akhmedov, Lanza, and Petcov, 1993a,
1995; Akhmedov, Petcov, and Smirnov, 1993b; Shi et al.,
1993; Akhmedov and Pulido, 2000, 2003; Dev and Sharma,
2000; Pulido and Akhmedov, 2000; Barranco et al., 2002;
Chauhan and Pulido, 2002, 2004; Chauhan, Pulido, and
Torrente-Lujan, 2003; Miranda et al., 2004a, 2004b;
Balantekin and Volpe, 2005; Chauhan, Pulido, and
Raghavan, 2005; Friedland, 2005; Guzzo, de Holanda, and
Peres, 2005, 2012; Pulido, Chauhan, and Raghavan, 2005;
Picariello et al., 2007; Chauhan, Pulido, and Picariello, 2007;
Yilmaz, 2008; Das, Pulido, and Picariello, 2009; Raffelt and
Rashba, 2010).
We consider a neutrino state which is a superposition of

different massive neutrinos with both helicities:

jνðtÞi ¼
X
k

X
h¼�1

ψk;hðtÞjνkðp; hÞi; ð6:35Þ

where ψkhðtÞ is the amplitude of the neutrino with mass mk
and helicity h. The temporal evolution of jνðtÞi is given by the
Schrödinger equation

i
d
dt

jνðtÞi ¼ HðtÞjνðtÞi; ð6:36Þ

with the initial condition jνð0Þi ¼ jνiðp; hiÞi. Multiplying the
evolution equation on the left by hνkðp; hÞj, we obtain the
evolution equation for the helicity amplitudes of the different
massive neutrinos

i
dψkhðtÞ

dt
¼

X
j

X
h0¼�1

hνkðp; hÞjHðtÞjνjðp; h0Þi
hνðp; hÞjνðp; hÞi ψ j;h0 ðtÞ;

ð6:37Þ

with ψkhð0Þ ¼ δhhiδki. The effective Hamiltonian HðtÞ is the
sum of a vacuum Hamiltonian H0, a weak-interaction
Hamiltonian HwðtÞ which generates the effective potentials
(2.41) of flavor neutrinos in matter, and the electromagnetic
Hamiltonian HemðtÞ already considered in Eq. (6.20). For
ultrarelativistic neutrinos,

hνkðp; hÞjH0jνjðp; h0Þi
hνðp; hÞjνðp; hÞi ¼

�
Eν þ

m2
k

2Eν

�
δkjδhh0 ; ð6:38Þ

where Eν is the neutrino energy neglecting mass contributions.
In order to calculate the matrix element of HwðtÞ, we must

take into account the mixing of neutrino states in Eq. (2.31),
which applies to left-handed neutrinos:

jνkðp;−Þi ¼
X
l

Ulkjνlðp;−Þi: ð6:39Þ

For right-handed Dirac neutrinos the mixing is arbitrary,
because right-handed Dirac neutrinos are sterile to weak
interactions. On the other hand, since right-handed
Majorana neutrinos interact as right-handed Dirac antineu-
trinos, their mixing is given by

jνMk ðp;þÞi ¼
X
l

U�
lkjνlðp;þÞi: ð6:40Þ

Therefore, we define the generalized mixing relation

jνkðp; hÞi ¼
X
l

UðhÞ
lk jνlðp; hÞi; ð6:41Þ

with Uð−Þ ¼ U and

Dirac∶ UðþÞ ¼ U; ð6:42Þ

Majorana∶ UðþÞ ¼ U�: ð6:43Þ

The arbitrary choice for Dirac neutrinos has been made for
simple convenience. Then for the matrix element of HwðtÞ we
obtain

hνkðp; hÞjHwðtÞjνjðp; h0Þi
hνðp; hÞjνðp; hÞi ¼

X
l

UðhÞ�
lk UðhÞ

lj V
ðhÞ
l ðtÞδhh0 ;

ð6:44Þ

where Vð−Þ
l ¼ Vl, with the potential Vl in Eq. (2.41), and

Dirac∶ VðþÞ
l ¼ 0; ð6:45Þ

Majorana∶ VðþÞ
l ¼ −Vl: ð6:46Þ

As remarked before Eq. (6.22), the helicity-conserving

potential generated by HðνÞ
emðtÞ, which depends on the longi-

tudinal component of the magnetic field, is strongly sup-
pressed for ultrarelativistic neutrinos. Then, from Eq. (6.18),
considering for simplicity only the contribution of the mag-
netic moments, we have

hνkðp; hÞjHðνÞ
emðtÞjνjðp; h0Þi

hνðp; hÞjνðp; hÞi ¼ μkjB⊥ðtÞδ−hh0 : ð6:47Þ

Plugging Eqs. (6.38), (6.44), and (6.47) into Eq. (6.37),
neglecting the irrelevant common energy contribution in
Eq. (6.38) and approximating the distance x along the neutrino
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trajectory with time t for ultrarelativistic neutrinos, one
obtains the evolution equations of the helicity amplitudes
of the different massive neutrinos:

i
dψk;hðxÞ

dx
¼

X
j

X
h0¼�1


�
m2

k

2Eν
δkj þ

X
l

UðhÞ�
lk VðhÞ

l ðxÞUðhÞ
lj

�
δhh0

þ μkjB⊥ðxÞδ−hh0
�
ψ j;h0 ðxÞ. ð6:48Þ

In order to study flavor and helicity transitions, it is more
convenient to work in the flavor basis. Using the mixing of
neutrino states in Eq. (2.30), the state (6.35) with t ¼ x can be
written as

jνðxÞi ¼
X
l

X
h¼�1

ψl;hðxÞjνlðp; hÞi; ð6:49Þ

with the flavor and helicity amplitudes

ψl;hðxÞ ¼
X
k

UðhÞ
lk ψk;hðxÞ; ð6:50Þ

which obey the evolution equation

i
dψl;hðxÞ

dx
¼
X
l0

X
h0¼�1


�X
k

UðhÞ
lk

m2
k

2Eν
UðhÞ�

l0k þVðhÞ
l ðxÞδll0

�
δhh0

þμðh;h
0Þ

ll0 B⊥ðxÞδ−hh0
�
ψl0;h0 ðxÞ; ð6:51Þ

with the effective magnetic moments in the flavor basis

μðh;h
0Þ

ll0 ¼
X
k;j

UðhÞ
lk μkjU

ðh0Þ�
l0j : ð6:52Þ

For Dirac neutrinos, from Eq. (6.42) we have

μð−;þÞ
ll0 ¼ μðþ;−Þ

ll0 ¼
X
k;j

UlkμkjU�
l0j ≡ μll0 : ð6:53Þ

Then, from Eq. (3.36) we obtain

μjk ¼ μkj
� ⇒ μl0l ¼ μ�ll0 : ð6:54Þ

For Majorana neutrinos, from Eq. (6.43) we have

μð−;þÞ
ll0 ¼

X
k;j

UlkμkjUl0j; ð6:55Þ

μðþ;−Þ
ll0 ¼

X
k;j

U�
lkμkjU

�
l0j: ð6:56Þ

From Eqs. (3.67) and (3.69) it follows that for Majorana
neutrinos the matrix of magnetic moments is antisymmetric
and the transition magnetic moments are imaginary:

μjk ¼ −μkj ¼ μ�kj: ð6:57Þ

The antisymmetric property is preserved in the flavor basis:

μð−;þÞ
ll0 ¼ −μð−;þÞ

l0l ; μðþ;−Þ
ll0 ¼ −μðþ;−Þ

l0l : ð6:58Þ

Hence, there are no diagonal magnetic moments in the flavor
basis as in the mass basis. Moreover, we have

μðþ;−Þ
ll0 ¼ −μð−;þÞ�

ll0 : ð6:59Þ

In the following we discuss the spin-flavor evolution
equation in the two-neutrino mixing approximation, which
is interesting for understanding the relevant features of
neutrino spin-flavor precession. Keeping in mind the appli-
cation to solar neutrinos, we consider the νe-νa mixing
discussed in Sec. II.D, where νa is the linear combination
of νμ and ντ in Eq. (2.59). Neglecting the small effects due to
ϑ13, we have

�
ψe;hðxÞ
ψa;hðxÞ

�
¼ R12

�
ψ1;hðxÞ
ψ2;hðxÞ

�
; ð6:60Þ

with

R12 ¼
�

cos ϑ12 sin ϑ12
− sin ϑ12 cos ϑ12

�
: ð6:61Þ

Considering Dirac neutrinos, from Eq. (6.51) it follows
that the generalization of Eq. (6.23) to two-neutrino νe-νa
mixing is, using the analogous notation ψlL ≡ ψl;−1 and
ψlR ≡ ψl;þ1,

i
d
dx

0
BBB@

ψeLðxÞ
ψaLðxÞ
ψeRðxÞ
ψaRðxÞ

1
CCCA ¼ H

0
BBB@

ψeLðxÞ
ψaLðxÞ
ψeRðxÞ
ψaRðxÞ

1
CCCA; ð6:62Þ

with the effective Hamiltonian matrix

H ¼

0
BBBBBB@

− Δm2

4Eν
cos 2ϑ12 þ Ve

Δm2

4Eν
sin 2ϑ12 μeeB⊥ðxÞ μeaB⊥ðxÞ

Δm2

4Eν
sin 2ϑ12 Δm2

4Eν
cos 2ϑ12 þ Va μ�eaB⊥ðxÞ μaaB⊥ðxÞ

μeeB⊥ðxÞ μeaB⊥ðxÞ − Δm2

4Eν
cos 2ϑ12 Δm2

4Eν
sin 2ϑ12

μ�eaB⊥ðxÞ μaaB⊥ðxÞ Δm2

4Eν
sin 2ϑ12 Δm2

4Eν
cos 2ϑ12

1
CCCCCCA
; ð6:63Þ
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with the effective magnetic moments in the flavor basis
given by

�
μee μea

μ�ea μaa

�
¼ R12

�
μ11 μ12

μ�12 μ22

�
RT
12: ð6:64Þ

The matter potential can generate resonances, which occur
when two diagonal elements of H become equal. Besides the
standard MSW resonance in the νeL ⇆ νaL channel discussed
in Sec. II.D, there are two possibilities:

(1) There is a resonance in the νeL ⇆ νaR channel for

Ve ¼
Δm2

2Eν
cos 2ϑ12: ð6:65Þ

The density at which this resonance occurs is not the
same as that of the MSW resonance, given by

Eq. (2.55), because of the neutral-current contribution
to Ve ¼ VCC þ VNC. The location of this resonance
depends on both Ne and Nn.

(2) There is a resonance in the νaL ⇆ νeR channel for

Va ¼ −
Δm2

2Eν
cos 2ϑ12: ð6:66Þ

If cos 2ϑ12 > 0, this resonance is possible in normal
matter, since the sign of Va ¼ VNC is negative, as one
can see from Eq. (2.42).

In practice the effect of these resonances could be the
disappearance of active νeL or νaL into sterile right-handed
states.
We consider now the case of Majorana neutrinos. The

evolution equation of the amplitudes is given by Eq. (6.62)
with the effective Hamiltonian matrix

H¼

0
BBBBBB@

−Δm2

4Eν
cos2ϑ12þVe

Δm2

4Eν
sin2ϑ12 0 μeaB⊥ðxÞ

Δm2

4Eν
sin2ϑ12

Δm2

4Eν
cos2ϑ12þVa −μeaB⊥ðxÞ 0

0 −μ�eaB⊥ðxÞ −Δm2

4Eν
cos2ϑ12−Ve

Δm2

4Eν
sin2ϑ12

μ�eaB⊥ðxÞ 0 Δm2

4Eν
sin2ϑ12

Δm2

4Eν
cos2ϑ12−Va

1
CCCCCCA
; ð6:67Þ

with

μea ≡ μð−;þÞ
ea ¼ μ12eiλ12 ; ð6:68Þ

where λ12 is the Majorana phase in Eq. (2.28).
As in the Dirac case, there are two possible resonances

besides the standard MSW resonance in the νeL ⇆ νaL
channel:

(1) There is a resonance in the νeL ⇆ νaR channel for

VCC þ 2VNC ¼ Δm2

2Eν
cos 2ϑ12: ð6:69Þ

(2) There is a resonance in the νaL ⇆ νeR channel for

VCC þ 2VNC ¼ −
Δm2

2Eν
cos 2ϑ12: ð6:70Þ

The locations of both resonances depend on both Ne and Nn.
If cos 2ϑ12 > 0, only the first resonance can occur in normal
matter, where Nn ≃ Ne=6. A realization of the second
resonance requires a large neutron number density, as that
in a neutron star.
The neutrino spin oscillations in a transverse magnetic field

with a possible rotation of the field-strength vector in a plane
orthogonal to the neutrino propagation direction (such rotating
fields may exist in the convective zone of the Sun) have been
considered by Vidal and Wudka (1990), Smirnov (1991),
Akhmedov, Petcov, and Smirnov (1993a), and Likhachev and
Studenikin (1995). The effect of the magnetic-field rotation
may substantially shift the resonance point of neutrino

oscillations. Neutrino spin oscillations in electromagnetic
fields with other different configurations, including a longi-
tudinal magnetic field and the field of an electromagnetic
wave, were examined by Akhmedov and Khlopov (1988a,
1988b), Egorov, Lobanov, and Studenikin (2000), Dvornikov
and Studenikin (2001, 2004c), Lobanov and Studenikin
(2001), and Studenikin (2004a, 2004b) (see also Appendix F).
It is possible to formulate a criterion (Likhachev and

Studenikin, 1995) for finding out if the neutrino spin and
spin-flavor precession is significant for given neutrino and
background medium properties. The probability of oscillatory
transitions between two neutrino states νlL ⇆ νl0R can be
expressed in terms of the elements of the effective
Hamiltonian matrices (6.63) and (6.67) as

PνlL⇆νl0R ¼ sin2ϑeffsin2
xπ
Leff

; ð6:71Þ

where

sin2ϑeff ¼
4H2

ll0

4H2
ll0 þ ðHl0l0 − HllÞ2

; ð6:72Þ

Leff ¼
2πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4H2
ll0 þ ðHl0l0 − HllÞ2

q : ð6:73Þ

The transition probability can be of the order of unity if the
following two conditions hold simultaneously: (1) the ampli-
tude of the transition probability must be sizable (at least
sin2ϑeff ≳ 1=2), and (2) the neutrino path length in a medium
with a magnetic field should be longer than half the effective
length of oscillations Leff . In accordance with this criterion, it
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is possible to introduce the critical strength of a magnetic field
Bcr which determines the region of field values B⊥ > Bcr at
which the probability amplitude is not small (sin2 ϑeff > 1=2):

Bcr ¼
1

2μl0l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðHl0l0 − HllÞ2

q
: ð6:74Þ

Consider, for instance, the case of νeL ⇆ νaR transitions of
Majorana neutrinos. From Eqs. (6.67) and (6.74), it follows
(Likhachev and Studenikin, 1995) that

Bcr ¼
���� 1

2μae

�
Δm2 cos 2ϑ12

2Eν
−

ffiffiffi
2

p
GFNeff

�����; ð6:75Þ

where Neff ¼ Ne − Nn. For getting numerical estimates of Bcr
it is convenient to rewrite Eq. (6.75) in the following form:

Bcr ≈ 43
μB
μae

����A
�
Δm2

eV2

��
MeV
Eν

�

− 2.5 × 10−31
�
Neff

cm−3

�����G: ð6:76Þ

An interesting feature of the evolution equation (6.62) in
the case of Majorana neutrinos is that the interplay of spin
precession and flavor oscillations can generate νeL → νeR
transitions (Akhmedov, 1991a). Since νeR interacts as right-
handed Dirac antineutrinos, it is often denoted by ν̄eR, or only
ν̄e, and called an “electron antineutrino,” This state can be
detected through the inverse β-decay reaction

ν̄e þ p → nþ eþ; ð6:77Þ

having a threshold Eth ¼ 1.8 MeV.
The possibility of νeL → ν̄eR transitions generated by a

spin-flavor precession of Majorana neutrinos is particularly
interesting for solar neutrinos, which experience matter effects
in the interior of the Sun in the presence of the solar magnetic
field (Pulido, 1992; Shi et al., 1993). Taking into account the
dominant νe → νa transitions due to neutrino oscillations,
with νa given by Eq. (2.59), the probability of solar νeL → ν̄eR
transitions is given by Akhmedov and Pulido (2003)

PνeL→ν̄eR ≃ 1.8 × 10−10sin22ϑ12

×

�
μea

10−12μB

B⊥ð0.05R⊙Þ
10 kG

�
2

; ð6:78Þ

where μea is the transition magnetic moment in Eq. (6.68), R⊙
is the radius of the Sun, and the values of ϑ12 and ϑ23 are given
in Table III.
It is also possible that spin-flavor precession occurs in the

convective zone of the Sun, where there can be random
turbulent magnetic fields (Miranda et al., 2004a, 2004b;
Friedland, 2005). In this case (Raffelt and Rashba, 2010),

PνeL→ν̄eR ≈ 10−7S2
�

μea
10−12μB

�
2
�

B
20 kG

�
2

×

�
3 × 104 km

Lmax

�
p−1�8 × 10−5 eV2

Δm2
S

�p

×

�
Eν

10 MeV

�
p
�
cos2ϑ12
0.7

�
p

; ð6:79Þ

where S is a factor of the order of unity depending on the
spatial configuration of the magnetic field, B is the average
strength of the magnetic field at the spatial scale Lmax, which
is the largest scale of the turbulence, p is the power of the
turbulence scaling, Δm2

S is the solar neutrino squared-mass
difference in Table III, and Eν is the neutrino energy. A
possible value of p is 5=3 (Miranda et al., 2004a, 2004b;
Friedland, 2005), corresponding to Kolmogorov turbulence.
Conservative values for the other parameters are B ¼ 20 kG
and Lmax ¼ 3 × 104 km.
In 2002, the Super-Kamiokande Collaboration established

for the flux of solar ν̄e’s a 90% C.L., an upper limit of 0.8% of
the SSM neutrino flux in the range of energy from 8 to
20 MeV (Gando et al., 2003) by taking as a reference the
BP00 SSM prediction ϕBP00

8B ¼ 5.05 × 106 cm−2 s−1 for the

solar 8B flux (Bahcall, Pinsonneault, and Basu, 2001) and
assuming an undistorted 8B spectrum for the ν̄e’s. This limit
was improved in 2003 by the KamLAND Collaboration
(Eguchi et al., 2004) to 2.8 × 10−4 of the BP00 SSM
prediction at 90% C.L. by measuring ϕν̄e < 370 cm−2 s−1

(90% C.L.) in the energy range 8.3–14.8 MeV, which
corresponds to ϕν̄e < 1250 cm−2 s−1 (90% C.L.) in the entire
8B energy range assuming an undistorted spectrum.
Recently, the Borexino Collaboration established the best

limit on the probability of solar νeL → ν̄eR transitions (Bellini,
2011),

PνeL→ν̄eR < 1.3 × 10−4 ð90% C.L.Þ; ð6:80Þ

by taking as a reference ϕSSM
8B ¼ 5.88 × 106 cm−2 s−1

(Serenelli et al., 2009) and assuming an undistorted 8B
spectrum for the ν̄e’s. They measured ϕν̄e < 320 cm−2 s−1

(90% C.L.) for Eν̄e > 7.3 MeV, which corresponds to ϕν̄e <
760 cm−2 s−1 (90% C.L.) in the entire 8B energy range
assuming an undistorted spectrum
The implications of the limits on the flux of solar ν̄e’s on

Earth for the spin-flavor precession of solar neutrinos have
been studied (Akhmedov and Pulido, 2003; Chauhan, Pulido,
and Torrente-Lujan, 2003; Miranda et al., 2004a, 2004b;
Balantekin and Volpe, 2005; Friedland, 2005; Guzzo, de
Holanda, and Peres, 2005; Yilmaz, 2008), taking into account
the dominant νe → νμ; ντ transitions due to neutrino oscil-
lations (see Sec. II.D). Using Eqs. (6.78) and (6.80), we obtain

μea ≲ 1.3 × 10−12
7 MG

B⊥ð0.05R⊙Þ
μB; ð6:81Þ

with 600 G≲ B⊥ð0.05R⊙Þ≲ 7 MG (Bellini, 2011). In the
case of spin-flavor precession in the convective zone of the
Sun with random turbulent magnetic fields, Eqs. (6.79) and
(6.80) give, assuming p ¼ 5=3,
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μea ≲ 4 × 10−11S−1
20 kG
B

�
Lmax

3 × 104 km

�
1=3

μB: ð6:82Þ

The spin-flavor precession mechanism was also considered
(Pulido, Chauhan, and Raghavan, 2005) in order to describe
time variations of solar neutrino fluxes in gallium experi-
ments. The effect of a nonzero neutrino magnetic moment is
also of interest in connection with the analysis of helio-
seismological observations (Couvidat, Turck-Chieze, and
Kosovichev, 2003).
The idea that the neutrino magnetic moment may solve the

problem of the explosion of core-collapse supernovae, i.e.,
that the neutrino spin-flip transitions in a magnetic field can
provide an efficient mechanism of energy transfer from a
protoneutron star, was discussed by Fujikawa and Shrock
(1980), Dar (1987), Nussinov and Rephaeli (1987), Barbieri
and Mohapatra (1988), Goldman et al. (1988), Lattimer and
Cooperstein (1988), and Voloshin (1988b). The possibility of
a loss of up to one-half of the active left-handed neutrinos
because of their transition to sterile right-handed neutrinos in
strong magnetic fields at the boundary of the neutron star (the
so-called boundary effect) was considered by Likhachev and
Studenikin (1995).
The possibility to observe the effects of neutrino spin-flip

transitions in terrestrial measurements of the neutrino flux of a
core-collapse supernova was studied by Akhmedov and
Fukuyama (2003), Ando and Sato (2003), Cuesta and
Lambiase (2008), and Yoshida et al. (2009, 2011).
Recently de Gouvea and Shalgar (2012, 2013) studied the

effects of spin-flavor precession on the evolution of neutrinos
with Majorana transition magnetic moments inside the core of
a supernova, where the magnetic field can be as large as
1012 G at a radius of about 50 km. The high neutrino density
in the protoneutron star induces neutrino-neutrino interactions
(Notzold and Raffelt, 1988) that lead to collective neutrino
flavor oscillations (Duan and Kneller, 2009; Duan, Fuller, and
Qian, 2010; Volpe, 2013). This effect can swap the spectrum
of different flavor neutrinos and antineutrinos emerging from
the supernova core above a “split” energy. de Gouvea and
Shalgar (2012, 2013) studied the additional effects of spin-
flavor precession by considering a Hamiltonian of the type in
Eq. (6.67) with the addition of neutrino-neutrino interactions.
They found that there can be collective spin-flavor oscillations
in addition to the usual mass-generated collective neutrino
oscillations, which can lead to spectral swaps between
neutrinos and antineutrinos15 for Majorana transition magnetic
moments of the order of 10−21μB. These are extremely small
values for the Majorana transition magnetic moments, which
are only 2 orders of magnitude larger than those predicted by
the simplest extensions of the standard model [see Sec. IV.B,
where it is explained that the Majorana transition magnetic
moments are expected to have the same order of magnitude

(4.10) of the Dirac transition magnetic moments]. This may be
the only potentially observable phenomenon sensitive to such
small values of the Majorana transition magnetic moments.
The neutrino spin (and spin-flavor) procession can be

stimulated in the presence of moving matter when the matter
speed transverse to the neutrino propagation is not zero or
when matter is polarized. A detailed discussion of this
phenomena can be found in Studenikin (2004a, 2004b)
[see also Lobanov and Studenikin (2001)]. Note that these
types of spin procession and the corresponding oscillations in
matter occur without the presence of any electromagnetic
field.

C. Magnetic moment in a strong magnetic field

The discussion of the neutrino electromagnetic properties in
Sec. III is based on the one-photon approximation of the
response of a neutrino to the presence of an electromagnetic
field. This approximation is appropriate when the strength of
the electromagnetic field is not too high. In the case of a very
strong electromagnetic field one must take into account
multiphoton contributions, which can be effectively incorpo-
rated in the neutrino form factors derived in Sec. III by
allowing the form factors to depend on the strength of the
external electromagnetic field. In this section we discuss the
dependence of the effective neutrino magnetic moments on
the strength of an external magnetic field, which was inves-
tigated by Borisov et al. (1985), Borisov, Zhukovsky, and
Ternov (1987, 1988, 1989), and Masood et al. (2002) through
the calculation of the self-energy of a neutrino in the presence
of an arbitrary electromagnetic field. In the following we
generalize the results of Borisov et al. (1985) in order to take
into account neutrino mixing.
The evaluation of the dependence of the neutrino magnetic

moments on the magnetic field is based on the Dirac-
Schwinger equation for the wave function ΨkðxÞ of a neutrino
with mass mk:

ði∂μγ
μ −mkÞΨkðxÞ ¼

Z
Mkðx; x0; ~BÞΨkðx0Þdx0; ð6:83Þ

where Mkðx0; x; ~BÞ is the neutrino mass operator in the
presence of a magnetic field ~B. The diagonal matrix element
calculated on the mass shell (p2

k ¼ m2
k) between the neutrino

vacuum states gives the radiative correction to the mass of the
neutrino in the external field,

Δmk ¼
Ek

mk
ΔEk: ð6:84Þ

The shift of the neutrino energy due to the presence of the
external field is given by

ΔEkð~BÞ ¼
Z

dxdx0ψkðxÞMkðx; x0; ~BÞψkðx0Þ; ð6:85Þ

where ψkðxÞ ¼ ð2EkÞ−1=2uðpkÞe−ipk·x is the neutrino wave
function in vacuum with four-momentum pμ

k ¼ ðEk; ~pÞ and

energy Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2
k þm2

k

q
. The radiative correction Δmk to the

15In the traditional terminology, although strictly speaking in the
Majorana case there is no difference between a neutrino and an
antineutrino, it is common to call neutrinos the left-handed helicity
states and antineutrinos the right-handed helicity states, which have
the same weak interactions of the right-handed helicity states of Dirac
antineutrinos.
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neutrino mass in a constant electromagnetic field described by
the tensor Fμν ¼ ∂μAν − ∂νAμ includes the Lorentz invariant

sμk ~Fμνpν
k that depends on ~Fμν ¼ ð1=2ÞϵμναβFαβ and on the

neutrino polarization vector [see, for instance, Akhiezer and
Berestetskii (1965)]

sμk ¼
�~S · ~p

mk
; ~Sþ ~pð~S · ~pÞ

mkðEk þmkÞ
�
; ð6:86Þ

where ~S is the normalized neutrino spin vector in the
rest frame.
The contribution to Δmk proportional to the Lorentz

invariant sμk ~Fμνpν
k is due to the interaction of the neutrino

magnetic moment with the external field. Following Ritus
(1972), for the real part of Δmk one gets

ReΔmk ¼
μk
mk

sμk ~Fμνpν
k; ð6:87Þ

where μk ¼ μkk are the diagonal magnetic moments of the
massive neutrinos. In the neutrino rest frame we obtain

ReΔmk ¼ −μkð~B · ~SÞ: ð6:88Þ

Using this equation one can extract from Δmk the dependence
of the effective magnetic moment on the field strength
B ¼ j~Bj.
In the framework of the minimal extension of the standard

model with right-handed neutrinos, the virtual one-loop
processes νk → e−Wþ → νk, νk → μ−Wþ → νk, and νk →
τ−Wþ → νk contribute to the mass operator

Mkðx; x0; ~BÞ ¼ −i
g2

8

X
l¼e;μ;τ

jUlkj2ð1 − γ5Þ

× γμSlðx; x0; ~BÞγνð1þ γ5ÞDμν
W ðx; x0; ~BÞ;

ð6:89Þ
where Ulk are the elements of the neutrino mixing matrix,

Slðx; x0; ~BÞ and Dμν
W ðx; x0; ~BÞ are the charged leptons and W

boson propagators in the presence of the external magnetic

field ~B, and g is the SUð2ÞL weak-interaction coupling
constant, which is related to the Fermi coupling constant
by GF ¼ ffiffiffi

2
p

g2=8m2
W. Neglecting terms proportional to

m2
k=m

2
l ≪ 1 and considering a magnetic field B ≪ Be

0 ¼
m2

e=e≃ 4.41 × 1013 G, from a generalization of the results
of Borisov et al. (1985) to the case of neutrino mixing we
obtain

μkðBÞ ¼ μkð0Þ


1þ 4

9

�
B
BW
0

�
2 X
l¼e;μ;τ

jUlkj2 ln
m2

W

m2
l

�
; ð6:90Þ

where BW
0 ¼ m2

W=e≃ 1.1 × 1024 G. In this case the one-loop
correction to the magnetic moment given by the external
magnetic field is very small, because ðB=BW

0 Þ2 ≪ 10−22.
A significant difference of μkðBÞ from μkð0Þ is obtained

when the strength of the magnetic field approaches BW
0 . For

BW
0 − Be

0 ≪ B≲ BW
0 we have (Borisov et al., 1985)

μkðBÞ ¼
2

3
μkð0Þ ln

�
BW
0

BW
0 − B

� X
l¼e;μ;τ

jUlkj2
m2

W

m2
l
: ð6:91Þ

The divergence of this expression for B → BW
0 must be treated

with caution, because when the magnetic field B is close to the
critical value BW

0 the vacuum becomes unstable with respect to
WþW− pair production, giving rise to W boson condensation
(Nielsen and Olesen, 1978; Skalozub, 1985, 1987; Ambjorn
and Olesen, 1989).
We recall that very strong fields are supposed to exist in

some astrophysical domains. For instance, magnetic fields of
the order of 1016 G or even up to 1018 G can be produced in a
supernova explosion or in the vicinity of magnetars, as
discussed by Lai (2001), Akiyama et al. (2003), and
Mereghetti (2008). For magnetar cores made of quark matter
the interior magnetic field can reach values up to about 1020 G
(Paulucci et al., 2011). A more exotic possibility of super-
strong magnetic fields is discussed by Ostriker, Thompson,
and Witten (1986), where it is shown that magnetic fields
stronger than 1030 G can be generated in the vicinity of
superconducting cosmic strings.
Borisov et al. (1985) calculated also the dependence of the

effective neutrino magnetic moment on the energy of a
neutrino. In the case of a magnetic field which is not extremely
strong (B ≪ BW

0 ), a neutrino with transverse momentum
p⊥ ≫ mW with respect to the magnetic field direction and

B
Bl
0

p⊥
ml

≫
�
mW

ml

�
3

; ð6:92Þ

we have

μkðBÞ ¼
35=6Γ4ð1=3Þ

20π
μkð0Þ

×
X

l¼e;μ;τ

jUlkj2
�
Bp⊥
Bl
0ml

�
−2=3

�
mW

ml

�
2

; ð6:93Þ

where Bl
0 ¼ m2

l=e. In this case, the magnetic moment of a
neutrino with very high energy decreases to zero with the
increase of the neutrino energy.
We finally recall the studies of the neutrino self-energy and

electromagnetic vertex in matter without and with a magnetic
field. The neutrino self-energy and the electromagnetic vertex
function in matter without a magnetic field have been studied
by Notzold and Raffelt (1988), D’Olivo, Nieves, and Pal
(1989), and Nieves and Pal (1989). The vacuum dispersion
relation in the presence of a constant magnetic field has been
studied by Erdas and Feldman (1990). Finite-temperature
corrections to the neutrino self-energy in a background
medium without magnetic field have been calculated by
D’Olivo, Nieves, and Torres (1992). Those in the presence
of an electromagnetic field have been calculated by
Zhukovsky, Shoniya, and Eminov (1993), Esposito and
Capone (1996), and Nieves (2003). The general expressions
for the neutrino dispersion relation in a magnetized plasma
with wide ranges of temperature, chemical potential, and
magnetic field strengths have been derived by Elmfors,
Grasso, and Raffelt (1996), and Elizalde, Ferrer, and de la
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Incera (2002, 2004). The one-loop thermal self-energy of a
neutrino in an arbitrary strong magnetic field has been
calculated by Erdas, Kim, and Lee (1998) and Erdas and
Isola (2000). These calculations of the effective neutrino
properties in a magnetized plasma are useful for the study
of the behavior of neutrinos in the early Universe.

D. Beta decay of the neutron in a magnetic field

The first studies of neutrino interactions in the presence of
external electromagnetic fields were performed by Korovina
(1964) and Ternov, Lysov, and Korovina (1965), who con-
sidered the β decay n → pþ e− þ ν̄e of a polarized neutron in
a magnetic field.16 It was shown that the differential rate of the
process exhibits resonance spikes which appear when the final
electron energy is equal to one of the allowed Landau energies
in the magnetic field. It was also shown that the total rate
depends on the initial neutron polarization and that the
neutrino emission is asymmetric. The range of magnetic field
strengths considered in these papers spans up to subcritical
fields B≲ Be

0 ¼ m2
e=e≃ 4.41 × 1013 G. It is worth noting

that these studies were performed before the discovery by
Hewish et al. (1968) of pulsars, where such strong magnetic
fields are believed to exist.
In two papers by Fassio-Canuto (1969) and Matese and

O’Connell (1969), published a few years later, the results of
Korovina (1964) and Ternov, Lysov, and Korovina (1965) for
the neutron decay rate in a magnetic field were rederived, but
there was no discussion of the asymmetry in the neutrino
emission.
Very strong magnetic fields are also supposed to exist in

the early Universe (Grasso and Rubinstein, 2001). As first
discussed by Greenstein (1969) and Matese and O’Connell
(1970), the weak reaction rates of the URCA processes

n → pþ e− þ ν̄e; νe þ n ⇆ e− þ p;

pþ ν̄e ⇆ nþ eþ;
ð6:94Þ

which determine the conversions between neutrons and
protons and set the n=p ratio in various environments, can
be significantly modified under the influence of magnetic
fields. This can be important for big-bang nucleosynthesis and
neutron star cooling (Cheng, Schramm, and Truran, 1993).
The aforementioned studies of neutrino interactions in the

presence of magnetic fields performed by Korovina (1964),
Ternov, Lysov, and Korovina (1965), Fassio-Canuto (1969),
Greenstein (1969), and Matese and O’Connell (1969, 1970)
created neutrino astrophysics in magnetic fields.
The β-decay process can be described by the well-known

four-fermion Lagrangian

L ¼
~Gffiffiffi
2

p ½ψ̄pγμð1þ gAγ5Þψn�½ψ̄eγ
μð1þ γ5Þψν�; ð6:95Þ

where ~G ¼ GF cos θC, θC is the Cabibbo angle, and gA ≃ 1.27
(Beringer et al., 2012) is the axial coupling constants. After
standard calculations one can obtain the neutron decay rate

Γ ¼
X
phase
space

jMj2δðEn − Ep − Ee − EνÞ; ð6:96Þ

where the matrix element

M ¼
~Gffiffiffi
2

p
Z

d4x½ψ̄pγμð1þ gAγ5Þψn�½ψ̄eγ
μð1þ γ5Þψν� ð6:97Þ

accounts for the influence of the magnetic field through the
wave functions of the electron and proton. For the electron
wave function one has to use the exact solutions of the Dirac
equation in the magnetic field given in Appendix H by
Eqs. (H8), (H11), (H12), and (H13). The wave function for
a proton has similar form and is given by Studenikin (1989).
The initial neutron and neutrino are supposed to not be
directly affected by the magnetic field and the plane waves
are used for these particle wave functions.
The argument of the δ function in Eq. (6.96), being equated

with zero, gives the law of energy conservation for the
particles in the process that for the case of the neutron decay
at rest is

mn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

e þ 2eBNe þ p3
e
2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

p þ 2eBNp þ p3
p
2

q
þ Eν;

ð6:98Þ

where Ne and Np are the numbers of Landau levels in the
magnetic field for the electron and proton. The summation in
Eq. (6.96) is performed over the phase space of the final
particles: ~pν; p2

p; p3
p; Np; sp; p2

e; p3
e; Ne; se, where values

se; sp ¼ �1 denote the two possible spin states of the
electron and proton. For not very strong magnetic fields
B<Bcr¼ðΔ2−m2

eÞ=2e≃1.8×1014 G, where Δ¼mp−mn,
the decay rate is

ΓðBÞ ¼ Γð0Þ
2

Z
sinθνdθν

�
1þ 2ðg2A þ gAÞ

1þ 3g2A
sn cosθν

− 4.9
eB
Δ2

�
g2A − 1

1þ 3g2A
cosθν þ

2ðg2A − gAÞ
1þ 3g2A

sn

�	
; ð6:99Þ

where θν is the angle between the neutrino propagation and
the magnetic field vector and Γð0Þ is the decay rate of the
neutron in the absence of the magnetic field, given by

Γð0Þ ¼ 0.47
~G2Δ5

120π3
ð1þ 3g2AÞ; ð6:100Þ

where sn ¼ �1 correspond to the neutron spin polarization
parallel or antiparallel to the magnetic field vector.
From Eq. (6.99) it follows that there is an asymmetry in

the spatial distribution of neutrinos. This asymmetry is due to
the parity violation in weak interactions and it is modified
by the magnetic field presence. In addition, as it is also clear
from Eq. (6.99) the average momentum of antineutrinos on the
magnetic field strength and the direction of propagation with

16This process and the other URCA processes in Eq. (6.94) are
important for the energy loss of stars (Gamow and Schoenberg,
1941). The name URCA was inspired to George Gamow and Mario
Schoenberg by that of the casino in Rio de Janeiro, joking on the
rapidity of energy disappearance in the nucleus of a supernova, which
is as quick as the disappearance of money at a roulette table.
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respect to the magnetic field vector. That is why we consider
the total effect of the antineutrino spatial distribution
asymmetry as the neutrino electromagnetic properties
manifestation.
Note that the same asymmetry appears in the case of much

stronger magnetic fields B > Bcr as well as for other similar
processes (6.94). Recently the relativistic approach to the
inverse β decay of a polarized neutron νe þ n → pþ e− in a
magnetic field was developed by Shinkevich and Studenikin
(2005).17 It was shown that in strong magnetic fields the cross
section can be highly anisotropic with respect to the neutrino
angle. In the particular case of polarized neutrons, matter
becomes even transparent for neutrinos if neutrinos propagate
against the direction of neutrons polarization.
It was first claimed by Chugai (1984), Dorofeev, Rodionov,

and Ternov (1984, 1985), and Zakhartsov and Loskutov
(1985) that asymmetric neutrino (antineutrino) emission in
the direct URCA processes (6.94) during the first seconds
after a magnetized massive star collapse could provide
explanations for the observed pulsar velocities. As shown
by Studenikin (1988), in order to get a correct prediction for
the direction and value of the kick velocity of a pulsar one has
to account not only for the amount of neutrinos radiated in the
processes (6.94) but also for the fact that the values of the
average momentum of neutrinos propagating in the opposite
directions are not the same. More detailed studies of the
neutrino asymmetry in relation to magnetized stars have been
performed by Leinson and Perez (1998), Lai and Qian (1998),
Arras and Lai (1999), Goyal (1999), Gvozdev and Ognev
(1999), Roulet (1998), Duan and Qian (2004), and Kauts,
Savochkin, and Studenikin (2006).
We recall also different other mechanisms for the asym-

metry in the neutrino emission from a magnetized pulsar
studied by Bisnovatyi-Kogan (1993), Kusenko and Segre
(1996), Akhmedov, Lanza, and Sciama (1997), and Lai and
Qian (1998). For more complete references to the performed
studies on the neutrino mechanisms of the pulsar kicks see the
introductions presented by Bhattacharya and Pal (2004) and
Shinkevich and Studenikin (2005). Presently there is no solid
explanation for the observed pulsars kick velocities. Thus, the
origin of pulsar kicks is still an unsolved problem (Tamborra
et al.,2014). The phenomenon seems to be very complicated
and is probably the result of different mechanisms which are
acting simultaneously. One of these mechanisms can be the
neutrino asymmetry considered in this section.

E. Neutrino pair production by an electron

It is well known that in the presence of external electro-
magnetic fields, particle interaction processes, that are for-
bidden in vacuum, become possible. One may consider the
corresponding processes of neutrinos interaction with real
particles that could become possible only under the influence

of external electromagnetic fields as manifestation of neutrino
electromagnetic properties.
One of these processes is the production of a neutrino-

antineutrino pair by an electron moving in a constant magnetic
field

e → eþ νe þ ν̄e: ð6:101Þ

Astrophysical significance of this process, termed the syn-
chrotron radiation of neutrinos, was discussed by Landstreet
(1967). Here it is worth noting that the possibility of νν̄
emission by an electron through the bremsstrahlung process
on a nuclei

eþ A → eþ Aþ νe þ ν̄e ð6:102Þ

was first discussed by Pontecorvo (1959) who also pointed
out that for certain stages of a star evolution the proposed
mechanism of νν̄ emission might be important.
In vacuum, i.e., in the absence of the magnetic field, the

process (6.101) is obviously forbidden. The dependence of the
rate of the process (6.101) on the magnetic field was initially
derived by Baier and Katkov (1966), Loskutov and
Zakhartsov (1969), and Ritus (1969) within the local four-
fermion weak-interaction model of Gell-Mann-Feynman. In
the Weinberg-Salam model this process was considered by
Ternov, Rodionov, and Studenikin (1982, 1983). In the low-
energy approximation of the model for the amplitude of the
process (6.101) we used

M ¼ −
GFffiffiffi
2

p ψ 0
eγμðgV þ gAγ5Þψeψ̄ ν1γ

μð1þ γ5Þψν2 ; ð6:103Þ

where ψe and ψ 0
e are the initial and final electron wave

functions and ψν1 and ψν2 are the two neutrino wave functions.
In the case of the electron νν̄ pair emission in Eq. (6.101),
gV ¼ sin2 θW þ 1=2 and gA ¼ 1=2. The effect of a constant
magnetic field presence is accounted for by the wave functions
of the initial and final electron that are the exact solutions of
the Dirac equation in magnetic field given in Appendix H.
Performing standard calculations accounting for the rotational
symmetry of the problem with respect to the magnetic field ~B
oriented along the z axis one arrives at the rate given by
Ternov, Rodionov, and Studenikin (1982, 1983)

Γ ¼ G2
F

3ð2πÞ2
X
N

Z
j~fj≤f0

d3f½f20H00

− ðf20 − j~fj2ÞðH00 −H11 −H22 −H33Þ
þ j~fj2ðH22sin2θ þH33cos2θÞ
− 2f0j~fjðH20 sin θ þH30 cos θÞ þ 2j~fj2H32 cos θ sin θ�;

ð6:104Þ

where the sum is performed over the Landau quantum number
of the final electron fμ ¼ ðf0; ~fÞ ¼ pμ

ν þ pμ
ν̄ ¼ pμ

e − p0μ
e , and

θ is the angle between ~f and ~B. The matrix elements Hαβ ¼
jαj�β are determined by the electron currents

17This process is also important for the neutrino transport inside
the magnetized pulsar and contributes to the kick velocities, as shown
by Roulet (1998), Bhattacharya and Pal (2004), and Duan and Qian
(2004).
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jα ¼
Z

dxdyψ 0
eγαðgV þ gAγ5Þψe

× exp f−i½ðϰ1 þ η1Þxþ ðϰ2 þ η2Þy�g; ð6:105Þ

where ϰi and ηi are the corresponding neutrino and antineu-
trino momenta components. The functions Hαβ are expressed
in terms of quadratic combinations of Laguerre functions
which depend on the argument ρ ¼ j~fj2sin2θ=ð2eBÞ. In the
case of the ultrarelativistic electron energies the resulting
expressions for the rate depend on the electromagnetic field
dynamical parameter

χ ¼
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðFμνpνÞ2

q
m2

e
¼ B

Be
0

p0

me
: ð6:106Þ

Integration in Eq. (6.104) can be performed analytically. The
final expressions for the rate Γ were obtained by Ternov,
Rodionov, and Studenikin (1982, 1983):

Γ ¼ G2
Fm

6
eχ

5

1152
ffiffiffi
3

p
π3p0

½49g2 þ 437g2A�; ð6:107Þ

for χ ≪ 1 and

Γ ¼ G2
Fm

6
eχ

2

216π3p0

ðg2V þ g2AÞ


ln χ − C −

ln 3
2

−
5

6

�
; ð6:108Þ

for χ ≫ 1, where C ¼ 0.577 is the Euler constant.
From Eqs. (6.107) and (6.108) one can see that the rate is

governed by the value of the parameter χ. It follows that the
rate is significantly dependent on the magnetic field strength
and the initial electron energy. Therefore, for ultrarelativistic
energies and strong enough magnetic fields the νν̄ synchrotron
radiation by an electron can be important for astrophysics.
As demonstrated, for instance, by Kaminker et al. (1992),

more consistent consideration of the process e → eþ νe þ ν̄e
appropriate for astrophysical applications implies account for
the presence of background matter in addition to an external
magnetic field.

F. Neutrino pair production by a strong magnetic field

Over the years, starting from the observation of Klein
(1929), it has been known that the vacuum is not stable under
the influence of an external electric field. Schwinger (1951)
showed that electron-positron pairs can be produced from the
vacuum in the presence of a strong electric field, with a
strength that exceeds the critical value Ecr ¼ m2

e=e. It is also
known that under the influence of a homogeneous magnetic
field the vacuum is stable, because such a field does not
produce work. On the contrary, the presence of a strong
inhomogeneous magnetic field can produce an instability of
the vacuum with respect to neutral fermion-antifermion pair
creation if the fermion has a magnetic moment.
The interest in neutral particle-antiparticle pair creation

from the vacuum through the Pauli interaction of a magnetic
moment with external electromagnetic fields was raised by
Lee and Yoon (2006, 2007), and Lin (1999). Recently Lee and

Yoon (2008) and Lee (2011) discussed the vacuum instability
in a strong magnetic field due to neutrino-antineutrino pair
production through the Pauli interaction. However, their
results are questionable, because they admit the creation of
neutrino-antineutrino pairs from the vacuum in a homo-
geneous magnetic field.
Gavrilov and Gitman (2013) recently presented a non-

perturbative calculation of neutrino-antineutrino pair creation
in a strong inhomogeneous magnetic field in the framework of
quantum field theory. In particular, they showed that in
specific cases (appropriate to typical astrophysical applica-
tions) the problem can be technically reduced to the problem
of charged-particle creation by an electric field.
Considering a generic neutrino ν with mass mν and

magnetic moment μν, the neutrino states in a magnetic field
are described by the Dirac-Pauli equation

�
i∂μγ

μ −mν þ
μν
2
σαβFαβ

	
ΨνðxÞ ¼ 0; ð6:109Þ

where ΨνðxÞ is the neutrino wave function and Fαβ is the
electromagnetic field tensor. Gavrilov and Gitman (2013)
showed that the energy spectrum of a neutrino that interacts
with an inhomogeneous magnetic field through a magnetic
moment consists of two branches separated by a gap.
Considering a magnetic field which is linearly growing on
a given spatial interval L, they demonstrated that the rate of
pair creation is determined by the gradient of the mag-
netic field.
A first condition for neutrino-antineutrino pair production

in a magnetic field B is that the magnetic energy must be
enough to create a neutrino-antineutrino pair, i.e., μνB > 2mν.
Therefore, the minimum value of the magnetic field for which
neutrino-antineutrino pairs are created is

Bcr ¼ 2
mν

μν
≃ 3.4 × 108

�
mν

eV

��
μB
μν

�
G: ð6:110Þ

Magnetic fields generated during a supernova explosion or in
the vicinity of magnetars can be of the order of 1015 − 1016 G
or even stronger, up to about 1018 G. In this extreme case,
neutrino-antineutrino pair production can occur for μν ∼
10−12μB and mν ≲ 10−2 eV. However, it is also necessary
to have a large gradient B0 of the magnetic field. Considering
a magnetic field which is linearly growing in a spatial interval
L, Gavrilov and Gitman (2013) obtained the condition
jμνB0j≳m2

ν, which can be written as jB0j≳mνBcr. Then
for the maximum value Bmax of the magnetic field in the
spatial interval L we have the condition

jBmaxj≳ LmνBcr: ð6:111Þ

Hence, if the magnetic field is larger than Bcr as required by
the first condition above, neutrino-antineutrino pair produc-
tion can occur if the size L over which the magnetic field
raises to such large values is small enough:
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L≲ 10−10
�jBmaxj

Bcr

��
eV
mν

�
km

∼ 10−18
�jBmaxj

G

��
eV
mν

�
2
�
μν
μB

�
km: ð6:112Þ

Even considering the large values jBmaxj ∼ 1018 G and
μν ∼ 10−12μB, we need mν ≲ 10−6 eV in order to obtain a
distance of the order of a kilometer, which may be appropriate
for the spatial size of the magnetic field variations in a
supernova explosion or in the vicinity of magnetars. Figure 3
shows that neutrino oscillation data allow one of the massive
neutrinos to be very light and even massless. Hence, there
can be pair production of the lightest neutrino in extreme
astrophysical environments if its mass is very small and its
magnetic moment is very large. This is a condition which is
contrary to the usual proportionality between the neutrino
mass and the neutrino magnetic moment and requires the
intervention of powerful new physics beyond the standard
model, as explained in Sec. IV.F.

G. Energy quantization in rotating media

In Sec. VII.Awe discuss the possibility of nonzero neutrino
electric charge that is predicted in a set of standard model
extensions. If a neutrino is really a millicharged particle, in the
presence of a constant magnetic field it behaves in a way
similar to an electron. In particular, the energy of a milli-
charged neutrino is quantized in a magnetic field (see
Appendix H)

pν
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ν þ p2
3 þ 2qνBNν

q
; ð6:113Þ

where qν is a millicharge of the neutrino and Nν ¼ 0; 1; 2;…
is the Landau number of the millicharged neutrino energy
levels. The corresponding radius of the neutrino classical
orbits in the magnetic field is given by Balantsev, Popov, and
Studenikin (2011)

hRν
Bi ¼

ffiffiffiffiffiffiffiffi
2Nν

qνB

s
: ð6:114Þ

It is interesting to compare the radius of classical orbits in a
magnetic field of the millicharged neutrino hRν

Bi with that of
the electron hRe

Bi. If the relativistic electron and millicharged
neutrino are moving with the same energy in a constant
magnetic field then the ratio of orbits radiuses is equal to the
inverse ratio of electric charges

hRν
Bi

hRe
Bi

¼ e
qν

; ð6:115Þ

if for both particles the momentum components along the
magnetic field vector are zero. From the obtained estimation
for the ratio of orbits radiuses, taking into account existing
experimental constraints on neutrino millicharge, we conclude
that for the same strength of the external magnetic field the
motion of a charged neutrino is much less localized as
compared with an electron motion.

The same method of wave equation exact solutions that is
used in studies of charged particles under the influence of
external electromagnetic fields (including millicharged neu-
trinos and neutrinos with nonzero magnetic moment, see
previous discussions of this section and Appendix H), as has
been explicitly demonstrated by Studenikin and Ternov
(2005) and Studenikin (2008), can also be used for inves-
tigations of neutrinos moving in the background matter. In
particular, using the method of exact solutions for a neutrino
wave function in the presence of matter it has been shown by
Grigoriev, Savochkin, and Studenikin (2007) and Studenikin
(2008) that the energy spectrum of a neutrino moving in a
rotating media is quantized. This effect is very similar to
charged particles energy quantization in a magnetic field.
The neutrino wave function exactly accounting for the

neutrino interaction with matter can be obtained by solving the
modified Dirac equation given by Studenikin and Ternov
(2005) (see Appendix H),

fiγμ∂μ − 1
2
γμð1þ γ5Þfμ −mνgΨðxÞ ¼ 0: ð6:116Þ

In case an electron neutrino is propagating through a rotating
matter composed of neutrons then the matter potential,
according to Balantsev, Popov, and Studenikin (2009,
2011), is

fμ ¼ −Gðn; n~vÞ; ~v ¼ ð−ωy;ωx; 0Þ; ð6:117Þ

where ω is the angular frequency of matter rotation around
the z axis and G ¼ GF=

ffiffiffi
2

p
. The neutrino energy spectrum

obtained by Balantsev, Popov, and Studenikin (2009, 2011)

p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ν þ p2
3 þ p2⊥

q
− Gn ð6:118Þ

contains the transverse momentum

p⊥ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NGnω

p
; N ¼ 0; 1; 2;… ð6:119Þ

that is quantized (Grigoriev, Savochkin, and Studenikin,
2007). The quantum number N also determines the radius
of classical orbits of neutrino in rotating matter (it is supposed
that N ≫ 1 and p3 ¼ 0),

R ¼
ffiffiffiffiffiffiffiffiffiffi
N

Gnω

r
: ð6:120Þ

It was shown by Studenikin (2008) that for low-energy
neutrinos it can be R ∼ RNS ¼ 10 km that might be thought
to be of interest in applications for neutron stars.
It is interesting to note that within the quasiclassical

approach the neutrino binding on circular orbits is due to
an effective force that is orthogonal to the particle speed. And
an analogy between a charged-particle motion in a magnetic
field and a neutrino motion in a rotating matter can be
established (Studenikin, 2008). It is possible to explain the
neutrino quasiclassical circular orbits as a result of action of
the attractive central force,
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~FðνÞ
m ¼ qðνÞm ~β × ~Bm; ~Bm ¼ ~∇ × ~Am; ~Am ¼ n~v; ð6:121Þ

where the neutrino effective “charge” in matter (composed of

neutrons in the discussed case) is qðνÞm ¼ −G, whereas ~Bm and
~Am play the roles of effective “magnetic” field and the
correspondent “vector potential.” Like the magnetic part of

the Lorentz force, ~FðνÞ
m is orthogonal to the speed ~β of the

neutrino.
For the most general case the “matter-induced Lorentz

force” is given by

~FðνÞ
m ¼ qðνÞm ~Em þ qðνÞm ~β × ~Bm; ð6:122Þ

where the effective electric and magnetic fields are,
respectively,

~Em ¼ − ~∇n − ~v
∂n
∂t − n

∂~v
∂t ; ð6:123Þ

and

~Bm ¼ n ~∇ × ~v − ~v × ~∇n: ð6:124Þ

The force acting on a neutrino, produced by the first term of
the effective electric field in the neutron matter, was consid-
ered also by Loeb (1990) and the quasiclassical treatment of a
neutrino motion in the electron plasma was considered by
Mendonca et al. (1998).
Note that while considering a neutrino effective electro-

magnetic interaction with media an effective electric charge of
the neutrino was introduced by Oraevsky, Semikoz, and
Smorodinsky (1986, 1994), Oraevsky and Semikoz (1987),
Nieves and Pal (1994), Mendonca et al. (1998), Bhattacharya,
Ganguly, and Konar (2001), Nieves (2003), and
Studenikin (2008).
In the most general case the description of the millicharged

neutrino with anomalous magnetic moment motion in the
presence of matter and external electromagnetic fields can be
obtained by solving the modified Dirac equation

�
γμðpμ þ qνAμÞ − 1

2
γμð1þ γ5Þfμ −

i
2
μνσμνFμν −mν

	
ΨðxÞ

¼ 0; ð6:125Þ

where Fμν ¼ ∂μAν − ∂νAμ, Aμ is the electromagnetic
field potential, and μν is the neutrino anomalous magnetic
moment. For several particular cases this equation can be
solved exactly and the neutrino wave functions and the
corresponding energy spectra can be found (Grigoriev,
Savochkin, and Studenikin, 2007; Balantsev, Studenikin,
and Tokarev, 2012, 2013; Studenikin and Tokarev, 2014).
In particular, for a neutrino moving in a rotating matter with
the potential

fμ ¼ −GNnð1;−ϵyω; ϵxω; 0Þ ð6:126Þ

and superimposed constant electric ~E and magnetic field ~B,
ϵ ¼ �1 corresponds to parallel and antiparallel directions of

vectors ~ω and ~B, and for the neutrino energy spectrum we
obtain

p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
3 þ 2Nj2GNnω − ϵqνBj þm2

ν

q
− GNn − qνϕ;

ð6:127Þ

where ϕ is the scalar potential of the electric field. In this
case the generalized effective Lorentz force introduced by
Studenikin (2008) is

~Feff ¼ qeff
~Eeff þ qeff ½~β × ~Beff �: ð6:128Þ

Here ~β is the neutrino speed and

qeff
~Eeff ¼ qm

~Em þ qν
~E;

qeff
~Beff ¼ jqmBm þ ϵqνBj~ez;

ð6:129Þ

where qm; ~Bm; and ~Em are the matter-induced charge,
electric, and magnetic fields correspondingly,

qm ¼ −G; ~Em ¼ − ~∇Nn; ~Bm ¼ −2Nn ~ω: ð6:130Þ

Note that the effective Lorentz force (6.128), that directly
follows from the exact form of the obtained energy spectrum
(6.127), is generated by both weak and electromagnetic
interactions. The effect of the millicharged neutrino energy
quantization in a rotating magnetized matter was discussed by
Grigoriev, Savochkin, and Studenikin (2007) and Studenikin
(2008), where it is shown that the neutrino trapping in circular
orbits exists due to the neutrino millicharge interaction with
the magnetic field and also due to neutrino weak interaction
with the rotating matter.
Under the influence of the effective Lorentz force (6.129)

the neutrino will move with acceleration given by (Studenikin,
2008)

~a¼ 1

mν
ðG~∇Nnþqν

~∇ϕþj2GNnω− ϵqνBj~β× ~ezÞ; ð6:131Þ

where ~ez is a unit vector in the direction of the magnetic field
and matter rotation. The accelerated neutrino should produce
the electromagnetic radiation. In the quasiclassical treatment
the radiation power of induced electromagnetic radiation is
given by

ILCν ¼
2q2

ν

3

�
~a2

ð1 − j~βj2Þ2
þ ð~a · ~βÞ2
ð1 − j~βj2Þ3

�
: ð6:132Þ

Such a mechanism of the neutrino electromagnetic radiation
due to the neutrino millicharge, that can be emitted in the
presence of the nonuniform rotating matter and electromag-
netic fields, is termed in Studenikin and Tokarev (2014) the
“light of (milli)charged neutrino” (LCν). It should be stressed
that the phenomenon exists even in the absence of the
electromagnetic fields, when the acceleration (6.131) is
produced due only to the weak interactions of neutrinos with
the background particles, so that the discussed mechanism is
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of a different nature than that of the cyclotron radiation of a
charged particle in magnetic fields.
The LCν mechanism manifests itself during the neutrino

propagation from the central part of a rotating neutron star
outward through the crust. The gradient of the matter density
(the density variation along the neutrino path) gives the
following contribution to the LCν radiation power [see
Eq. (6.131)]:

ILCν ¼
2q2

ν

3m2
ν
ðG~∇NnÞ2; ð6:133Þ

and the effect of the matter rotation yields

ILCν ¼
2q2

νγ
2

3m2
ν
ð−ϵqνBþ 2GNnωÞ2; ð6:134Þ

where γ ¼ ð1 − j~βj2Þ−1=2. The numerical estimations, that
account for the LCν power for the present limits on the
neutrino millicharge and for a realistic gradient of a neutron

star matter density jG~∇Nnj ∼ 1 eV=1 km and the rotation
frequency ω ∼ 2π × 103 s−1, show that the role of the LCν in
the explosion energetics is negligible with respect to the total
energy of the collapse. However, as discussed in Sec. VII
(Oraevsky, Semikoz, and Smorodinsky, 1994; Nieves, 2003;
Duan and Qian, 2004), in the presence of a dense plasma the
induced neutrino effective electric charge can be reasonably
large. In addition, the phenomenon is of interest for astro-
physics in light of the recently reported measurement of ultra-
high-energy PeV neutrinos in the IceCube experiment
(Aartsen et al., 2013a, 2013b, 2014).

VII. CHARGE AND ANAPOLE FORM FACTORS

The magnetic and electric dipole moments are the most
studied electromagnetic properties in theoretical and exper-
imental works, but some attention has also been devoted to the
possibility that neutrinos have very small electric charges,
usually called “millicharges.” Moreover, even if neutrinos are
exactly neutral, they can have nonzero charge radii, which can
be probed in scattering experiments. In Secs. VII.A and VII.B
we review the theory of electric charge and charge radius,
respectively, and we present the corresponding experimental
limits. In Sec. VII.C we discuss the neutrino anapole moment,
which is the less known neutrino electromagnetic property.

A. Neutrino electric charge

It is usually believed (Bernstein, Ruderman, and Feinberg,
1963) that the neutrino electric charge is exactly zero. This is
true in the standard model, but in extensions of the standard
model neutrinos may be millicharged particles.
In the standard model of SUð2ÞL × Uð1ÞY electroweak

interactions the neutrality of neutrinos is a consequence of
the quantization of electric charge (Babu and Mohapatra,
1989, 1990b; Geng and Marshak, 1989; Foot et al., 1990b;
Minahan, Ramond, and Warner, 1990) [see also the earlier
discussions by Bardeen, Gastmans, and Lautrup (1972), Gross
and Jackiw (1972), and Lee and Shrock (1977) and the

reviews by Foot et al. (1990a) and Foot, Lew, and Volkas
(1993)]. In the standard model the electric charges of the
particles are related to the eigenvalue of the third component
I3 of the weak isospin I and to the eigenvalue Y of the
hypercharge by

Q ¼ I3 þ
Y
2
: ð7:1Þ

The hypercharges of the fermion multiplets are fixed by the
requirement of cancellation of the triangle anomalies, which is
necessary for renormalizability. For each generation, we
denote with YΦ, YL, YQ, Ye, Yu, and Yd the hypercharges
of the Higgs doublet, the left-handed lepton doublet, the left-
handed quark doublet, the right-handed electron singlet, the
right-handed up-quark singlet, and the right-handed down-
quark singlet, respectively. The electric charge can be defined
in units of the charge of the Higgs field ϕþ (see Table II) by
choosing YΦ ¼ þ1. Then the Uð1ÞY gauge invariance of the
Yukawa couplings that generate the charged leptons and
quarks masses requires that

Ye ¼ YL − 1; ð7:2Þ

Yu ¼ YQ þ 1; ð7:3Þ

Yd ¼ YQ − 1: ð7:4Þ

Taking into account the fact that quarks have three colors, the
values of YL and YQ are constrained by the cancellation of the
SUð2ÞL triangle anomaly by

YQ ¼ −YL=3: ð7:5Þ

Finally, the cancellation of the Uð1ÞY triangle anomaly
requires that

0 ¼ Tr½Y3� ¼ 2Y3
L þ 6Y3

Q − Y3
e − 3ðY3

u þ Y3
dÞ; ð7:6Þ

where the right-handed fields enter with a minus sign. Using
Eqs. (7.2)–(7.5) in Eq. (7.6), we obtain

0 ¼ Tr½Y3� ¼ ðYL þ 1Þ3 ⇒ YL ¼ −1: ð7:7Þ

Therefore, the charge is quantized and from Eq. (7.1) neu-
trinos are exactly neutral [see also the explicit calculations by
Bardeen, Gastmans, and Lautrup (1972), Beg, Marciano, and
Ruderman (1978), Marciano and Sirlin (1980), Sakakibara
(1981), Lucio, Rosado, and Zepeda (1984, 1985), and Cabral-
Rosetti et al. (2000).
This proof of charge quantization is spoiled by the

introduction of a right-handed SUð2ÞL singlet neutrino νR
in order to have a Dirac neutrino mass. Denoting with Yν the
hypercharge of νR, the Uð1ÞY gauge invariance of the Yukawa
coupling that generates a Dirac neutrino mass requires that

Yν ¼ YL þ 1: ð7:8Þ

Then, Eq. (7.7) becomes
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Tr½Y3� ¼ ðYL þ 1Þ3 − ðYL þ 1Þ3 ¼ 0: ð7:9Þ

Therefore, there is no Uð1ÞY triangle anomaly for any value of
YL, a right-handed SUð2ÞL singlet neutrino νR which remains
unconstrained. With the definition Yν ¼ 2ε, using the rela-
tions in Eqs. (7.1)–(7.5) and (7.8), we obtain

Qν ¼ ε; ð7:10Þ

Qe ¼ −1þ ε; ð7:11Þ

Qu ¼ 2=3 − ε=3; ð7:12Þ

Qd ¼ −1=3 − ε=3: ð7:13Þ

For the proton and the neutron we have

Qp ¼ 1 − ε; Qn ¼ −ε: ð7:14Þ

Hence, the hydrogen atom is neutral, but all the atoms with
neutrons are not. Obviously, the limits on the non-neutrality of
matter (Marinelli and Morpurgo, 1984; Bressi et al., 2011)
imply that the value of ε must be very small. In this case,
neutrinos may be electrically millicharged particles (Babu and
Mohapatra, 1989, 1990b; Foot et al., 1990b; Minahan,
Ramond, and Warner, 1990); see also the discussions by
Okun, Voloshin, and Zakharov (1984) and Shrock (1996).
From Eqs. (7.10)–(7.13) one can see that the nonstandard

hypercharge proportional to ε is proportional to B − L, where
B and L are the baryon and lepton numbers. With the
introduction of the right-handed neutrino νR the Uð1ÞB−L
symmetry of the standard model becomes anomaly free.
Adopting a notation similar to that used for the hypercharges,
in the standard model the Uð1ÞB−L triangle anomaly is
proportional to

Tr½ðB − LÞ3� ¼ 2ðB − LÞ3L þ 6ðB − LÞ3Q − ðB − LÞ3e
− 3½ðB − LÞ3u þ ðB − LÞ3d�

¼ −1: ð7:15Þ

Hence, in the standard model the Uð1ÞB−L symmetry is not
anomaly free and cannot be gauged. On the other hand, with
the introduction of νR which has ðB − LÞν ¼ −1 we obtain
Tr½ðB − LÞ3� ¼ 0. In this case the Uð1ÞB−L symmetry is
anomaly free and can be gauged. Then there can be a mixing
of the standard model hypercharge YSM and B − L, which
leads to the hypercharge

Y ¼ YSM − 2εðB − LÞ; ð7:16Þ

and the dequantized electric charges in Eqs. (7.10)–(7.13).
Hence, the dequantization of the electric charge is due to the
appearance of an anomaly-free U(1) symmetry which can be
gauged and can mix with the standard hypercharge (Babu and
Mohapatra, 1989, 1990b; Foot et al., 1990b). The addition of
an anomaly-free U(1) symmetry to the symmetries of the
Lagrangian is a general way to obtain charge dequantization
(Holdom, 1986).
A well-known way to recover electric charge quantization

in theories with right-handed SUð2ÞL singlet neutrinos is to
consider grand unified theories (GUT) in which there is no
U(1) symmetry (Georgi and Glashow, 1974; Pati and Salam,
1974). However, there is also the natural possibility to allow
the right-handed neutrino to have a Majorana mass (Babu and
Mohapatra, 1989,1990b). In this case the gauge invariance of
the Majorana mass term νTRC

†νR requires that Yν ¼ 0 and,
from Eq. (7.8), YL ¼ −1, which gives the same charge
quantization as in the standard model. This is consistent with
the violation of the Uð1ÞB−L symmetry by the Majorana mass
term, which forbids the addition of the B − L term to YSM
in Eq. (7.16).
Until now in this section we considered only one gener-

ation, but we know that there are three generations and the
standard model Lagrangian has four global Uð1Þ symmetries:
Uð1ÞB, Uð1ÞLe

, Uð1ÞLμ
, and Uð1ÞLτ

, associated with the
conservation of the baryon number B, the electron lepton
number Le, the muon lepton number Lμ, and the tau lepton
number Lτ. It turns out that there is an infinite number of linear
combinations of these Uð1Þ symmetries which are anomaly
free and lead to electric charge dequantization in the standard
model with three generations (Foot et al., 1990a; Foot, 1991;
Foot, Lew, and Volkas, 1993). Charge quantization can be
recovered by introducing right-handed neutrinos with
Majorana mass terms which violate the conservation of all
lepton numbers (Foot et al., 1990a; Foot, 1991; Sladkowski
and Zralek, 1992; Foot, Lew, and Volkas, 1993).
Some approximate constraints obtained with various

assumptions from reactor, accelerator, and astrophysical data
are listed in Table V (Babu and Volkas, 1992; Davidson,
Hannestad, and Raffelt, 2000; Raffelt, 1996; Beringer
et al., 2012).
The most severe experimental constraint on neutrino

electric charges is that on the effective electron neutrino
charge qνe , which can be obtained from electric charge
conservation in neutron beta decay n → pþ e− þ ν̄e, from
the experimental limits on the non-neutrality of matter which

TABLE V. Approximate limits for different neutrino effective charges. The limits on qν apply to all flavors.

Limit Method Reference

jqντ j≲ 3 × 10−4e SLAC e− beam dump Davidson, Campbell, and Bailey (1991)
jqντ j≲ 4 × 10−4e BEBC beam dump Babu, Gould, and Rothstein (1994)
jqνj ≲ 6 × 10−14e Solar cooling (plasmon decay) Raffelt (1999a)
jqνj ≲ 2 × 10−14e Red giant cooling (plasmon decay) Raffelt (1999a)
jqνe j≲ 3 × 10−21e Neutrality of matter Raffelt (1999a)
jqνe j≲ 3.7 × 10−12e Nuclear reactor Gninenko, Krasnikov, and Rubbia (2007)
jqνe j≲ 1.5 × 10−12e Nuclear reactor Studenikin (2014)
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constrain the sum of the proton and electron charges qp þ qe
and from the experimental limits on the neutron charge qn
(Raffelt, 1996, 1999a). Several experiments which measured
the neutrality of matter give their results in terms of

qmat ¼
Zðqp þ qeÞ þ Nqn

A
; ð7:17Þ

where A ¼ Z þ N is the atomic mass of the substance under
study, Z is its atomic number, and N is its neutron number.
From electric charge conservation in neutron beta decay,
we have

qνe ¼ qn − ðqp þ qeÞ ¼
A
Z
ðqn − qmatÞ: ð7:18Þ

The best recent bound on the non-neutrality of matter (Bressi
et al., 2011),

qmat ¼ ð−0.1� 1.1Þ × 10−21e; ð7:19Þ
has been obtained with SF6, which has A ¼ 146.06 and
Z ¼ 70. Using the independent measurement of the charge
of the free neutron (Baumann et al., 1988)

qn ¼ ð−0.4� 1.1Þ × 10−21e; ð7:20Þ

we obtain

qνe ¼ ð−0.6� 3.2Þ × 10−21e: ð7:21Þ

This value is compatible with the neutrality of the matter limit
in Table V, which has been derived (Raffelt, 1996, 1999a)
from the value of qn in Eq. (7.20) and qmat ¼ ð0.8� 0.8Þ ×
10−21e (Marinelli and Morpurgo, 1984).
It is also interesting that the effective charge of ν̄e can be

constrained by the SN 1987A neutrino measurements taking
into account that galactic and extragalactic magnetic fields can
lengthen the path of millicharged neutrinos and requiring that
neutrinos with different energies arrive on Earth within the
observed time interval of a few seconds (Barbiellini and
Cocconi, 1987):

jqνe j ≲ 3.8 × 10−12
ðEν=10 MeVÞ

ðd=10 kpcÞðB=1 μGÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δt=t

ΔEν=Eν

s
; ð7:22Þ

considering a magnetic field B acting over a distance d and the
corresponding time t ¼ d=c. Eν ≈ 15 MeV is the average
neutrino energy, ΔEν ≈ Eν=2 is the energy spread, and Δt ≈
5 s is the arrival time interval. Barbiellini and Cocconi (1987)
considered two cases:

(1) An intergalactic field B ≈ 10−3 μG acting over the
whole path d≃ 50 kpc, which corresponds to
t≃ 5 × 1012 s, gives

jqνe j≲ 2 × 10−15e: ð7:23Þ

(2) A galactic field B ≈ 1 μG acting over a distance
d≃ 10 kpc, which corresponds to t≃ 1 × 1012 s,
gives

jqνe j≲ 2 × 10−17e: ð7:24Þ

The last two limits in Table V have been obtained
(Gninenko, Krasnikov, and Rubbia, 2007; Studenikin,
2014) considering the results of reactor neutrino magnetic
moment experiments (see Secs. IV.C and IV.E). The differ-
ential cross section of the ν̄e-e− elastic scattering process due
to an neutrino effective charge qνe is given by (Berestetskii,
Lifshitz, and Pitaevskii, 1979)

�
dσ
dTe

�
charge

≃ 2πα
1

meT2
e
q2
νe : ð7:25Þ

In reactor experiments the neutrino magnetic moment is
searched by considering data with Te ≪ Eν, for which the
ratio of the charge cross section (7.25) and the magnetic
moment cross section in Eq. (4.31), for which we consider
only the dominant part proportional to 1=Te, is given by

R ¼ ðdσ=dTeÞcharge
ðdσ=dTeÞmag

≃ 2me

Te

ðqνe=eÞ2
ðμνe=μBÞ2

. ð7:26Þ

Considering an experiment which does not observe any effect
of μνe and obtains a limit on μνe , it is possible to obtain,
following Studenikin (2014), a bound on qνe by demanding
that the effect of qνe is smaller than that of μνe , i.e., that R ≲ 1:

q2
νe ≲

Te

2me

�
μνe
μB

�
2

e2: ð7:27Þ

The last limit in Table V has been obtained from the 2012
results (Beda et al., 2012) of the GEMMA experiment,
considering Te at the experimental threshold of 2.8 keV.
We finally note that a strong limit on a generic neutrino

electric charge qν can be obtained by considering the
influence of millicharged neutrinos on the rotation of a
magnetized star which is undergoing a core-collapse super-
nova explosion (the neutrino star turning mechanism νST)
(Studenikin and Tokarev, 2014). During the supernova explo-
sion, the escaping millicharged neutrinos move along curved
orbits inside the rotating magnetized star and slow down the
rotation of the star. This mechanism could prevent the
generation of a rapidly rotating pulsar in the supernova
explosion. Imposing that the frequency shift of a forming
pulsar due to the neutrino star turning mechanism is less than a
typical observed frequency of 0.1 s−1 and assuming a mag-
netic field of the order of 1014 G, Studenikin and Tokarev
(2014) obtained

jqνj≲ 1.3 × 10−19e: ð7:28Þ

Note that this limit is much stronger than the astrophysical
limits in Table V.

B. Neutrino charge radius

Even if the electric charge of a neutrino is zero, the electric
form factor fQðq2Þ can contain nontrivial information about
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the neutrino electric properties. In fact, a neutral particle can
be characterized by a (real or virtual) superposition of two
different charge distributions of opposite signs, which is
described by a form factor fQðq2Þwhich is nonzero for q2 ≠ 0.
The neutrino charge radius is determined by the second

term in the expansion of the neutrino charge form factor
fQðq2Þ in a series of powers of q2:

fQðq2Þ ¼ fQð0Þ þ q2
dfQðq2Þ
dq2

����
q2¼0

þ � � � : ð7:29Þ

In the so-called “Breit frame,” in which q0 ¼ 0, the charge
form factor fQðq2Þ depends only on j~qj ¼

ffiffiffiffiffiffiffiffi
−q2

p
and can be

interpreted as the Fourier transform of a spherically symmetric
charge distribution ρðrÞ, with r ¼ j~xj:

fQðq2Þ ¼
Z

ρðrÞe−i~q·~xd3x ¼
Z

ρðrÞ sinðj~qjrÞj~qjr d3x: ð7:30Þ

Deriving with respect to q2 ¼ −j~qj2, we obtain

dfQðq2Þ
dq2

¼
Z

ρðrÞ sinðj~qjrÞ − j~qjr cosðj~qjrÞ
2q3r

d3x; ð7:31Þ

and

lim
q2→0

dfQðq2Þ
dq2

¼
Z

ρðrÞ r
2

6
d3x ¼ hr2i

6
: ð7:32Þ

Therefore, the squared neutrino charge radius is given by

hr2i ¼ 6
dfQðq2Þ
dq2

����
q2¼0

: ð7:33Þ

Note that hr2i can be negative, because the charge density ρðrÞ
is not a positively defined quantity.
As seen in Sec. III.C, massless left-handed Weyl neutrinos

have the electromagnetic form factor in Eq. (3.86). This is the
case of the standard model, in which in addition neutrinos
have zero electric charge fQð0Þ ¼ 0 as explained in
Sec. VII.A. Taking into account Eqs. (7.29) and (7.33), in
the standard model the neutrino electromagnetic form factor
for small values of q2 is given by

fðq2Þ≃
�hr2i

6
− a

�
q2; ð7:34Þ

where a is the anapole moment. Hence, in the standard model
the form factor fðq2Þ can be interpreted as a neutrino charge
radius or as an anapole moment (or as a combination of both).
In this section we consider the charge radius interpretation.
The equivalence between the charge radius and anapole
moment interpretations of fðq2Þ is discussed further in
Sec. VII.C.
The standard model theory of the neutrino charge radius has

a long history, with some controversies which are shortly
summarized in the following.
In one of the first studies, Bardeen, Gastmans, and Lautrup

(1972) claimed that in the standard model and in the unitary

gauge the neutrino charge radius is ultraviolet divergent and so
it is not a physical quantity. A direct one-loop calculation
(Dvornikov and Studenikin, 2004a; Dvornikov and
Studenikin, 2004b) of proper vertices (Fig. 6) and γ-Z self-
energy (Figs. 12 and 13) contributions to the neutrino charge
radius performed in a general Rξ gauge for a massive Dirac
neutrino also gave a divergent result. However, it was shown
(Lee, 1972), using the unitary gauge, that by including in
addition to the usual terms also contributions from diagrams
of the neutrino-lepton neutral-current scattering (Z boson
diagrams) it is possible to obtain for the neutrino charge
radius a gauge-dependent but finite quantity. Later on, it was
also shown (Lee and Shrock, 1977) that in order to define the
neutrino charge radius as a physical quantity one has to
consider additional box diagrams and that in combination with
contributions from the proper diagrams it is possible to obtain
a finite and gauge-independent value for the neutrino charge

FIG. 12. Contribution to the neutrino vertex function of γ-Z self-
energy. Figure 13 shows the diagrams contributing to the blob at
one loop in the extended standard model with right-handed
neutrinos.

FIG. 13. γ-Z self-energy diagrams contributing to the neutrino
vertex function at one loop in the extended standard model with
right-handed neutrinos (Dvornikov and Studenikin, 2004a,
2004b). f denotes a generic charged lepton (e, μ, τ) or a
quark (u, c, t, d, s, b). χ is the unphysical would-be charged
scalar boson. The charge of ghosts c is indicated by the symbols
⊕ and ⊖.
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radius. In this way, the neutrino electroweak radius was
defined by Lucio, Rosado, and Zepeda (1984, 1985) and
an additional set of diagrams that give contribution to its
value was discussed by Degrassi, Sirlin, and Marciano (1989).
Finally, Bernabeu et al. (2000), and Bernabeu, Papavassiliou,
and Vidal (2002, 2004) introduced the neutrino electroweak
radius as a physical observable. In the corresponding calcu-
lations, performed in the one-loop approximation including
additional terms from the γ-Z boson mixing and the box
diagrams involving W and Z bosons, the following gauge-
invariant result for the neutrino charge radius was obtained:

hr2νliSM ¼ GF

4
ffiffiffi
2

p
π2



3 − 2 log

�
m2

l

m2
W

��
; ð7:35Þ

where mW and ml are the W boson and lepton masses
(l ¼ e; μ; τ). This result, however, revived the discussion
(Fujikawa and Shrock, 2003, 2004; Papavassiliou et al.,
2004; Bernabeu, Binosi, and Papavassiliou, 2005) on the
definition of the neutrino charge radius. Numerically,
Eq. (7.35) gives (Bernabeu et al., 2000; Bernabeu,
Papavassiliou, and Vidal, 2004)

hr2νeiSM ¼ 4.1 × 10−33 cm2; ð7:36Þ

hr2νμiSM ¼ 2.4 × 10−33 cm2; ð7:37Þ

hr2ντiSM ¼ 1.5 × 10−33 cm2: ð7:38Þ

These values are of the same order of magnitude of the
numerical estimation hr2νli ≈ 10−33 cm2 obtained by Lucio,
Rosado, and Zepeda (1985).
The effects of new physics beyond the standard model can

contribute to the neutrino charge radius. However, Novales-
Sanchez et al. (2008) showed that in the context of an effective
electroweak Yang-Mills theory the anomalous WWγ vertex
contribution to the neutrino effective charge radius is smaller
than about 10−34 cm2, which is 1 order of magnitude smaller
than the standard model values in Eqs. (7.36)–(7.38).
The neutrino charge radius has an effect in the scattering of

neutrinos with charged particles. The most useful process is
the elastic scattering with electrons, which was discussed in
Sec. IV.C in connection with the searches of neutrino
magnetic moments. Since in the ultrarelativistic limit the
charge form factor conserves the neutrino helicity (see
Appendix C), a neutrino charge radius contributes to the

weak-interaction cross section ðdσ=dTeÞSM of νl-e− elastic
scattering through the following shift of the vector coupling
constant gνlV (Grau and Grifols, 1986; Degrassi, Sirlin, and
Marciano, 1989; Vogel and Engel, 1989; Hagiwara et al.,
1994):

gνlV → gνlV þ 2
3
m2

Whr2νlisin2θW: ð7:39Þ

Using this method, experiments which measure neutrino-
electron elastic scattering can probe the neutrino charge
radius. Some experimental results are listed in Table VI. In
addition, Hirsch, Nardi, and Restrepo (2003) obtained the
following 90% C.L. bounds on hr2νμi from a reanalysis of
CHARM-II (Vilain et al., 1995) and CCFR (McFarland et al.,
1998) data:

−0.52 × 10−32 < hr2νμi < 0.68 × 10−32 cm2: ð7:40Þ

Recently, Barranco, Miranda, and Rashba (2008) obtained the
following 90% C.L. bounds on hr2νei from a combined fit of all
available νe-e− and ν̄e-e− data:

−0.26 × 10−32 < hr2νei < 6.64 × 10−32 cm2. ð7:41Þ

The single photon production process eþ þ e− → νþ ν̄þ
γ has been used to get bounds on the effective ντ charge radius,
assuming a negligible contribution of the νe and νμ charge
radii (Altherr and Salati, 1994; Tanimoto, Nakano, and
Sakuda, 2000; Hirsch, Nardi, and Restrepo, 2003). For
Dirac neutrinos, Hirsch, Nardi, and Restrepo (2003) obtained

−5.6 × 10−32 < hr2ντi < 6.2 × 10−32 cm2: ð7:42Þ

Comparing the theoretical standard model values in
Eqs. (7.36)–(7.38) with the experimental limits in Table VI
and those in Eqs. (7.40)–(7.42), one can see that they differ at
most by 1 order of magnitude. Therefore, one may expect that
the experimental accuracy will soon reach the value needed to
probe the standard model predictions for the neutrino charge
radii. This will be an important test of the standard model
calculation of the neutrino charge radii. If the experimental
value of a neutrino charge radius is found to be different from
the standard model prediction in Eqs. (7.36)–(7.38) it will be
necessary to clarify the precision of the theoretical calculation

TABLE VI. Experimental limits for the electron neutrino charge radius.

Method Experiment Limit (cm2) C.L. Reference

Reactor ν̄e-e−
Krasnoyarsk jhr2νeij < 7.3 × 10−32 90% Vidyakin et al. (1992)
TEXONO −4.2 × 10−32 < hr2νei < 6.6 × 10−32 90% Deniz et al. (2010)a

Accelerator νe-e−
LAMPF −7.12 × 10−32 < hr2νei < 10.88 × 10−32 90% Allen et al. (1993)a

LSND −5.94 × 10−32 < hr2νei < 8.28 × 10−32 90% Auerbach et al. (2001)a

Accelerator νμ-e−
BNL-E734 −4.22 × 10−32 < hr2νμi < 0.48 × 10−32 90% Ahrens et al. (1990)a

CHARM-II jhr2νμij < 1.2 × 10−32 90% Vilain et al. (1995)a

aThe published limits are half, because they use a convention which differs by a factor of 2 [see also Hirsch, Nardi, and
Restrepo (2003)].
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in order to understand if the difference is due to new physics
beyond the standard model.
The neutrino charge radius has also some impact on

astrophysical phenomena and on cosmology. The limits on
the cooling of the Sun and white dwarfs due to the plasmon-
decay process discussed in Sec. V.D induced by a neutrino
charge radius led Dolgov and Zeldovich (1981) to estimate the
respective limits jhr2νij≲ 10−28 cm2 and jhr2νij≲ 10−30 cm2

for all neutrino flavors. From the cooling of red giants Altherr
and Salati (1994) inferred the limit jhr2νij≲ 4 × 10−31 cm2.
If neutrinos are Dirac particles, eþ-e− annihilations can

produce right-handed neutrino-antineutrino pairs through the
coupling induced by a neutrino charge radius. This process
would affect primordial big-bang nucleosynthesis and the
energy release of a core-collapse supernova. From the
measured 4He yield in primordial big-bang nucleosynthesis
Grifols and Masso (1987) obtained

jhr2νij≲ 7 × 10−33 cm2; ð7:43Þ

and from SN 1987A data Grifols and Masso (1989) obtained

hr2νi ≲ 2 × 10−33 cm2; ð7:44Þ

for all neutrino flavors.

C. Neutrino anapole moment

The notion of an anapole moment for a Dirac particle was
introduced by Zel’dovich (1958) after the discovery of parity
violation. The anapole form factor was not known before
because it violates P. Indeed, taking into account that

AμðxÞ→P AμðxPÞ; ð7:45Þ

P is conserved if

ΛμðqÞ→P ΛμðqÞ: ð7:46Þ

Using the formulas in Appendix A, one can find that

ΛμðqÞ→P γ0ΛμðqPÞγ0: ð7:47Þ

Using the form-factor expansion in Eq. (3.18), we obtain

ΛμðqÞ→P fQðq2Þγμ − fMðq2Þiσμνqν
− fEðq2Þσμνqνγ5 − fAðq2Þðq2γμ − qμqÞγ5: ð7:48Þ

Hence, parity is violated by the electric and anapole moments.
Since the anapole moment conserves CP (and T, as a
consequence of CPT symmetry), as shown in Sec. III.A, it
follows that the anapole moment also violates C.
In order to understand the physical characteristics of the

anapole moment, we consider its effect in the interactions with
external electromagnetic fields. From the last term in Eq. (6.7)
one can see that the anapole moment describes an interaction
with the current which generates the external electromagnetic
fields.

Using the method described in Appendix E, we obtain the
helicity-conserving potential

Vh→h ¼ −ah
m
E
sμjμ; ð7:49Þ

which is strongly suppressed for ultrarelativistic neutrinos.
In the nonrelativistic limit, we obtain

Vnr
h→h ≃ ~a · ~j; with ~a ¼ h

~p
j~pj a: ð7:50Þ

This is the anapole moment potential that was introduced
by Zel’dovich (1958). It is proportional to the longitudinal
component of the current.
Considering now the helicity-flipping potential, as shown in

Appendix E, we obtain

V−h→h ¼ a
m
E
j⊥; ð7:51Þ

where j⊥ is the component of ~j orthogonal to ~p. For
ultrarelativistic neutrinos, the helicity-flipping potential is
strongly suppressed, but in the nonrelativistic limit we have

Vnr
−h→h ≃ aj⊥ ¼ j~a × ~jj: ð7:52Þ

This potential corresponds to a classical torque (Zel’dovich,
1958) which rotates the spin of the particle, causing periodic
changes of the helicity.
The anapole moment is a quantity which is difficult to

understand, because it does not generate interactions with a
free electromagnetic field, but only contact interactions with
the charge and current density which generates an electro-
magnetic field. A classical model which can help to visualize
the behavior of the anapole moment has been given by
Zel’dovich (1958) [see also Bukina, Dubovik, and
Kuznetsov (1998a)]. In this model the anapole is represented
by a current-carrying rigid toroidal solenoid. The current
generates a magnetic field only inside the toroidal solenoid.
Since the solenoid is rigid, there is no external magnetic field
which can act on the toroidal solenoid as a whole. The only
action on the toroidal solenoid can be generated by a current
which passes through the solenoid and interacts with the
magnetic field inside. For example, the toroidal solenoid can
be immersed in an electrolytic solution which also fills the
space inside the solenoid. If a current flows through the
electrolytic solution, it interacts with the magnetic field inside
the solenoid and generates a torque proportional to the sine of
the angle between the direction of the current and the axis
of the toroid. In this model the axis of the toroid corresponds
to the direction of ~a in Eqs. (7.50) and the torque corresponds
to the helicity-flipping potential in Eq. (7.52).
The neutrino anapole moment contributes to the scattering

of neutrinos with charged particles. In order to discuss its
effects, it is convenient to consider strictly neutral neutrinos
with fQð0Þ ¼ 0 and define a reduced charge form factor
~fQðq2Þ such that

fQðq2Þ ¼ q2 ~fQðq2Þ: ð7:53Þ
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Then, from Eq. (7.33), apart from a factor 1=6, the reduced
charge form factor at q2 ¼ 0 is just the squared neutrino
charge radius:

~fQð0Þ ¼ hr2i=6: ð7:54Þ

We now consider the charge and anapole parts of the neutrino
electromagnetic vertex function in Eq. (3.37), which can be
written as

ΛQ;A
μ ðqÞ ¼ ðγμq2 − qμqÞ½~fQðq2Þ þ fAðq2Þγ5�: ð7:55Þ

Since for ultrarelativistic neutrinos the effect of γ5 is only a
sign which depends on the helicity of the neutrino [see
Eq. (C6)], the phenomenology of neutrino anapole moments
is similar to that of neutrino charge radii. Hence, the limits on
the neutrino charge radii discussed in Sec. VII.B also apply to
the neutrino anapole moments multiplied by 6.
As discussed in Sec. VII.A, in the standard model the

neutrino electric charges are exactly zero. Hence, Eq. (7.55)
applies to the standard model and can be further simplified
taking into account that in the standard model neutrinos are
described by two-component massless left-handed Weyl
spinors. As discussed in Sec. III.C, the γ5 in Eq. (7.55)
becomes a minus sign, leading to

ΛQ;A
SMμðqÞ ¼ ðγμq2 − qμqÞfSMðq2Þ; ð7:56Þ

with

fSMðq2Þ ¼ ~fQðq2Þ − fAðq2Þ⟶
q2→0

hr2i
6

− a: ð7:57Þ

These equations correspond to Eqs. (3.85) and (3.86) for
fQð0Þ ¼ 0. Hence, in the standard model the neutrino charge
radius and the anapole moment are not defined separately and
one can interpret arbitrarily fSMð0Þ as a charge radius or as an
anapole moment. This is the correct interpretation of the
statement often found in the literature that in the standard
model a ¼ −hr2i=6. Therefore, the standard model values for
the neutrino charge radii in Eqs. (7.35)–(7.38) can be
interpreted also as values of the corresponding neutrino
anapole moments.
Some deep insight into an interpretation of the decom-

positions of the vertex function (3.18) and the neutrino form
factors can be obtained in the framework of a multipole
expansion of the corresponding classical electromagnetic
currents (Dubovik and Cheshkov, 1974; Dubovik and
Tosunian, 1983; Dubovik and Kuznetsov, 1998). Since in
this limit the anapole form factor does not correspond to a
certain multipole distribution [that is why the term “anapole”
was introduced by Zel’dovich (1958)], the anapole moment
has a quite intricate classical analog. Therefore, Bukina,
Dubovik, and Kuznetsov (1998a, 1998b), and Dubovik and
Kuznetsov (1998) proposed to consider the toroidal dipole
moment as a characteristic of the neutrino which is more
convenient and transparent than the anapole moment for the
description of T-invariant interactions with nonconservation
of the P and C symmetries. In this case, the electromagnetic

vertex of a neutrino can be rewritten in the alternative
multipole (toroidal) parametrization

ΛμðqÞ ¼ fQðq2Þγμ − fMðq2Þiσμνqν þ fEðq2Þσμνqνγ5
þ ifTðq2ÞϵμνλρPνqλγρ; ð7:58Þ

where fT is the toroidal dipole form factor and P ¼ pi þ pf.
From the following identity:

ūfðpfÞfðmi −mfÞσμνqν þ ðq2γμ − qqμÞ
− iϵμνλρPνqλγργ5gγ5uiðpiÞ ¼ 0; ð7:59Þ

it can be seen that the toroidal and anapole moments coincide
in the static limit when the masses of the initial and final
neutrino states are equal to each other mi ¼ mf (Bukina,
Dubovik, and Kuznetsov, 1998b), i.e., the toroidal and ana-
pole parametrizations coincide in this case.
In some sense the toroidal parametrization has a more

transparent and clear physical interpretation, because it
provides a one-to-one correspondence between the multipole
moments and the corresponding form factors. From the
properties of each term in Eq. (7.58) for the vertex function
under C, P, and T transformations, it follows that in the
Majorana case only the toroidal form factor survives
(Zel’dovich, 1958; Kobzarev and Okun, 1972) and the toroidal
moment of the Dirac neutrino is half of that in the
Majorana case.
In one-loop calculations (Dubovik and Kuznetsov, 1998) of

the toroidal (and anapole) moment of a massive and a massless
Majorana neutrino (the diagrams in Figs. 6, 12, and 13
contribute) it was shown that its value does not significantly
depend on the neutrino mass (through the ratios m2

νi =m
2
W) and

is of the order of

fTðq2 ¼ 0Þ ∼ e × ð10−33 − 10−34Þ cm2; ð7:60Þ

depending on the values of the quark masses that propagate in
the loop diagrams in Fig. 13.
Note that the toroidal form factors can contribute to

the neutrino vertex function in both the diagonal and off-
diagonal cases.
The toroidal (anapole) interactions of a Majorana as well as

a Dirac neutrino are expected to contribute to the total cross
section of neutrino elastic scattering off electrons, quarks, and
nuclei. Because of the fact that the toroidal (anapole)
interactions contribute to the helicity preserving part of the
scattering of neutrinos on electrons, quarks, and nuclei, its
contributions to cross sections are similar to those of the
neutrino charge radius. In principle, these contributions can be
probed and information about toroidal moments can be
extracted in low-energy scattering experiments in the future.
Different effects of the neutrino toroidal moment are

discussed by Ginzburg and Tsytovich (1985), Bukina,
Dubovik, and Kuznetsov (1998a, 1998b), and Dubovik and
Kuznetsov (1998). In particular, it has been shown that the
neutrino toroidal electromagnetic interactions can produce
Cherenkov radiation of neutrinos propagating in a medium.
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VIII. SUMMARY AND PERSPECTIVES

In this review we discussed the theory and phenomenology
of neutrino electromagnetic properties and interactions. We
have seen that most of the theoretical and experimental
research has been devoted to the study of magnetic and
electric dipole moments, but there has also been some interest
in the investigation of neutrino millicharges and of the charge
radii and anapole moments of neutrinos.
Unfortunately, so far there is not any experimental indica-

tion in favor of neutrino electromagnetic interactions and all
neutrino electromagnetic properties are known to be small,
with rather stringent upper bounds obtained in laboratory
experiments or from astrophysical observations.
The most accessible neutrino electromagnetic property may

be the charge radius, discussed in Sec. VII.B, for which the
standard model gives a value which is only about 1 order of
magnitude smaller than the experimental upper bounds. A
measurement of a neutrino charge radius at the level predicted
by the standard model would be another confirmation of the
standard model, after the recent discovery of the Higgs boson
(Ellis, 2013). However, such a measurement would not give
information on new physics beyond the standard model unless
the measured value is shown to be incompatible with the
standard model value in a high-precision experiment.
The strongest current efforts to probe the physics beyond the

standardmodel bymeasuring neutrino electromagnetic proper-
ties is the search for a neutrino magnetic moment effect in
reactor ν̄e-e− scattering experiments. The current upper bounds
reviewed in Sec. IV.E are more than 8 orders of magnitude
larger than the prediction discussed in Sec. IV.A of the Dirac
neutrino magnetic moments in the minimal extension of the
standard model with right-handed neutrinos. Hence, a discov-
ery of a neutrino magnetic moment effect in reactor ν̄e-e−

scattering experiments would be an exciting discovery of
nonminimal new physics beyond the standard model.
In particular, the GEMMA-II Collaboration expects to

reach around the year 2017 a sensitivity to μνe ≈ 1 ×
10−11μB in a new series of measurements at the Kalinin
Nuclear Power Plant with a doubled neutrino flux obtained by
reducing the distance between the reactor and the detector
from 13.9 to 10 m and by reducing the energy threshold from
2.8 to 1.5 keV (Beda et al., 2012, 2013). The corresponding
sensitivity to the neutrino electric millicharge discussed in
Sec. VII.A will reach the level of jqνe j ≈ 3.7 × 10−13e
(Studenikin, 2014).
There is also a GEMMA-III project18 to further lower the

energy threshold to about 350 eV, which may allow the
experimental collaboration to reach a sensitivity of
μνe ≈ 9 × 10−12μB. The corresponding sensitivity to neutrino
millicharge will be jqνe j ≈ 1.8 × 10−13e (Studenikin, 2014).
An interesting possibility for exploring very small values

of μνe in ν̄e-e− scattering experiments was proposed by
Bernabeu, Papavassiliou, and Passera (2005) on the basis
of the observation (Segura et al., 1994) that “dynamical zeros”
induced by a destructive interference between the left-handed

and right-handed chiral couplings of the electron in the
charged and neutral-current amplitudes appear in the standard
model contribution to the scattering cross section. It may be
possible to enhance the sensitivity of an experiment to μνe by
selecting recoil electrons contained in a forward narrow cone
corresponding to a dynamical zero [see Eq. (4.25)].
In the future experimental searches of neutrino electromag-

netic properties may be performed also with new neutrino
sources, as a tritium source (McLaughlin and Volpe, 2004), a
low-energy beta beam (McLaughlin and Volpe, 2004;
de Gouvea and Jenkins, 2006), a stopped-pion neutrino source
(Scholberg, 2006), or a neutrino factory (de Gouvea and
Jenkins, 2006). Recently Coloma, Huber, and Link (2014)
proposed to improve the existing limit on the electron neutrino
magnetic moment with a megacurie 51Cr neutrino source and
a large liquid xenon detector.
Neutrino electromagnetic interactions could have important

effects in astrophysical environments and in the evolution of
the Universe and the current rapid advances of astrophysical
and cosmological observations may lead soon to the exciting
discovery of nonstandard neutrino electromagnetic properties.
In particular, future high-precision observations of supernova
neutrino fluxes may reveal the effects of collective spin-flavor
oscillations due to Majorana transition magnetic moments as
small as 10−21μB (de Gouvea and Shalgar, 2012, 2013).
We finally emphasize the importance of pursuing the

experimental and theoretical studies of electromagnetic neu-
trino interactions, which could open a powerful window to
new physics beyond the standard model.
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