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Random walk is a fundamental concept with applications ranging from quantum physics to
econometrics. Remarkably, one specific model of random walks appears to be ubiquitous across
many fields as a tool to analyze transport phenomena in which the dispersal process is faster than
dictated by Brownian diffusion. The Lévy-walk model combines two key features, the ability to
generate anomalously fast diffusion and a finite velocity of a random walker. Recent results in optics,
Hamiltonian chaos, cold atom dynamics, biophysics, and behavioral science demonstrate that this
particular type of random walk provides significant insight into complex transport phenomena. This
review gives a self-consistent introduction to Lévy walks, surveys their existing applications,
including latest advances, and outlines further perspectives.

DOI: 10.1103/RevModPhys.87.483 PACS numbers: 02.50.−r, 05.40.Fb, 87.10.−e, 89.75.−k

CONTENTS

I. Introduction 483
A. Lévy stable laws 485
B. Continuous-time random walks 485

II. Lévy Walks 489
A. Lévy-walk model 489

1. Telegraph equation 489
2. Superdiffusion 490
3. Ballistic diffusion 490
4. Mean squared displacement and other moments 490

B. Lévy walks with rests 492
III. Generalizations of the Lévy-walk Model 493

A. Random walks with random velocities 493
B. Random walks with velocity fluctuations 494
C. Other coupled models 494

IV. Properties of Lévy Walks 495
A. Space-time velocity autocorrelation function 496
B. Exact solutions for ballistic random walks 497
C. Infinite densities of Lévy walks 498
D. Memory effects and ergodicity breaking in

Lévy walks 500
E. Langevin approach and fractional Kramers equation 501

V. Lévy Walks in Physics 502
A. Lévy walks in single-particle Hamiltonian systems 503

B. Lévy walks in many-particle Hamiltonian systems 505
C. Lévy flights of light and Lévy walks of photons 507
D. Blinking quantum dots 509
E. Lévy walks of cold atoms 510

VI. Lévy Walks in Biology 512
A. Motility is a complex issue across many scales 512
B. Soil amoeba 513
C. Run and tumble of bacteria 514
D. Short note on chemotaxis 515
E. T cells 516
F. Humans 517
G. Bumblebees, seabirds, monkeys, and others 519

VII. Lévy Walks and Search Strategies 519
A. Lévy walk as an optimal search strategy 520
B. Intermittent search strategies 521
C. Lévy walks for intelligent robotics: Following suit 521

VIII. Outlook 523
Acknowledgments 524
References 524

I. INTRODUCTION

In this review we demonstrate how a simple idea of giving a
finite velocity to a diffusing particle increases flexibility and
diversity of diffusion models in describing complex transport
phenomena. We consider processes resulting from a motion of
many identical noninteracting particles. There are two key
complimentary approaches to the statistical description of such
motion. The first approach is based on the concept of random
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walks (Weiss, 1994), while the second is based on stochastic
differential equations. Among the latter are the Langevin
equation (Coffey and Kalmykov, 2012) and the concept of
Brownian motion (Mörters and Peres, 2010). Although having
different terminologies and mathematical apparatus, the two
approaches are closely related and their exact equivalence can
be demonstrated in some cases. The framework of our review is
random walks and we start with a historical overview of the
development of the concept, with a special focus on how the
idea of the finite velocity of walking particles was born and
matured over the years.
As if to predict its interdisciplinary future, the theory of

random walks was developed independently in the context of
biology (Brown, 1828), probability theory (Bernoulli, 1713),
finance (Bachelier, 1900), and physics (Rayleigh, 1880;
Pearson, 1905). The seminal works of Einstein (1905) and
von Smoluchowski (1906) marked the start of rigorous and
quantitative approach connecting microscopic dynamics of
particles to the macroscopic process of diffusion [see, e.g.,
Nelson (1967) for more historical background on Brownian
motion]. The diffusion equationwas already known for nearly a
century as it was derived to describe the heat conduction by
Fourier (1822). Despite the success of this equation in various
applications, it had one particular drawback that did not escape
the attention of contemporary scientists. According to the
diffusion equation, when starting with a localized initial
condition, even after an infinitesimally short elapsed time
there will be a nonzero density of diffusing particles at any
arbitrary distance from the staring point. This implies an
infinite propagation speed of some particles and thus contra-
dicts our understanding of how physical objects move [see the
discussion on this issue in the context of relativistic statistical
physics in Dunkel andHänggi (2009) andDunkel, Hänggi, and
Hilbert (2009)]. The infinite speed is also inconsistent with the
original schematization of a random walk process by Pearson
(1905): “A man starts from a point 0 and walks l yards in a
straight line; he then turns through any angle whatever and
walks another l yards in a second straight line. He repeats this
process n times. I require the probability that after these n
stretches he is at a distance between r and rþ dr from his
starting point, 0.” After this drawback was noted, two
approaches to resolve the issue were proposed. In 1920,
G. I. Taylor, concerned with the problem of turbulent transport,
formulated a random walk model in which the motion of a
particle between two turning events was characterized by a
finite velocity (Taylor, 1922). The same year the finiteness of
thevelocitywasmentioned byFürth (1920) in the context of the
so-called persistent Brownian motion. Both these models
assume that there should be no particles outside the ballistic
cone defined by the maximal velocity of the particles. In 1935
Davydov proposed to use the telegraph equation, which
contains an additional second order time derivative, to address
the existence of the ballistic cone (Davydov, 1934; Bakunin,
2003). As with the diffusion equation, the telegraph equation
was discovered much earlier by Kirchhoff and Heaviside in the
context of electric current transmission through a conducting
line. Around 1950 it was demonstrated that the telegraph
equation could be derived from the random walk model
proposed by Taylor (Goldstein, 1951). The next milestone in
the development of the modern randomwalk theory was due to

Montroll and Weiss who introduced the continuous-time
random walk model (CTRW) (Montroll and Weiss, 1965;
Scher and Montroll, 1975). The main innovation of that model
is that a particle has to wait for a random time before moving to
another point. This model provided the framework necessary
for describing anomalous diffusion with the spreading of
particles slower than in the Brownian diffusion, a process that
was named “subdiffusion.”
Richardson (1926) pointed out the possibility of the

anomalous diffusion in turbulent flows, where particles spread
faster than in normal diffusion, and are referred to as “super-
diffusion.” To accommodate for superdiffusive transport, the
random walk model was modified to allow particles to
perform very long excursions. To step beyond the premises
of the central limit theorem (CLT), slow decaying functions
with power-law tails and diverging second moment were used
as the distributions of the excursion lengths. The scaling
properties of the corresponding particle distributions were
found to be different from those of the standard Brownian
diffusion and thus required a new mathematical apparatus. At
this point, a link between the superdiffusion and Lévy stable
distributions (Lévy, 1937; Gnedenko and Kolmogorov, 1954)
was established. The random walk model with walkers
covering long distances instantaneously received the name
of Lévy flight (Mandelbrot, 1982). In its simplest schematiza-
tion, this stochastic process could drive a particle over very
long distance in a single motion event that is called “flight”
(although, in fact, it is a jump), so that the mean squared flight
length is infinite (Shlesinger and Klafter, 1986). Similar to the
concept of Brownian diffusion, Lévy flights served well to
describe different transport phenomena. However, Lévy
flights have the same trait of infinite propagation speed as
the diffusion equation. In addition, the distribution of the
particles performing Lévy flight has a divergent second and all
higher moments. This poses a significant difficulty in relating
Lévy-flight models to experimental data, especially when
analyzing the scaling of the measured moments in time.1 Akin
to the Taylor model, the Lévy-flight model was then equipped
with a finite velocity of moving particles and therefore
produced distributions which are confined to ballistic cones
and thus have finite moments. As a contrast to the flight
process with instantaneous jumps, the name Lévy walk was
coined by Shlesinger, Klafter, and Wong (1982). The aim of
this review is to show how versatile and powerful the concept

1It is not correct, however, to think of the Lévy flight as an abstract
mathematical formalism. Themechanisms leading to the dispersion of
the observable of interest may not be related to a physical motion of an
entity inEuclidean space. For example, itmay be caused by long-range
interactions (Barkai et al., 2003), or by a nontrivial “crumpled”
topology of a phase (or configuration) space of polymer systems
(Sokolov, Mai, and Blumen, 1997; Brockmann and Geisel, 2003) and
small-world networks (Kozma, Hastings, and Korniss, 2005), or by
spectral characteristics of disorderedmedia, amorphousmaterials, and
glasses (Klauder and Anderson, 1962; Zumofen and Klafter, 1994b);
see Bouchaud and Georges (1990) for more information and other
examples where the Lévy flights are of relevance.
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of Lévy walks is in describing a wide spectrum of physical and
biological processes involving stochastic transport.
In order to orient the reader in the existing literature on

random walks in the context of anomalous diffusion, we
mention several monographs which can serve as good
introductory material to continuous-time random walks
(Klafter and Sokolov, 2011), anomalous diffusion, Lévy
flights, and subdiffusion (Montroll and Shlesinger, 1984;
Havlin and Ben-Avraham, 1987; Bouchaud and Georges,
1990; Isichenko, 1992; Metzler and Klafter, 2000, 2004), and
some reviews on particular applications of these formalisms
(Bardou et al., 2001; Balescu, 2005).

A. Lévy stable laws

One of the fundamental theorems in probability theory is
the central limit theorem. It states that the sum of independent
identically distributed random variables with a finite second
moment is a random variable with the distribution tending to a
normal distribution as the number of summands increases. It
has a history of development spanning several hundred years,
from initial considerations by Laplace and Poisson at the end
of the 18th century to the stage of rigorous analysis by
Markov, Chebyshev, Lyapunov, Feller, Lévy, and others in the
beginning of the 20th century; see Fischer (2010) for a
historical overview. Remarkably, the CLT can be cast into
the dynamical problem of a particle hopping at random
distances. The sum of all displacements (independent random
variables) will then determine the final position of a particle
(their sum). As a result, the distribution of a particle’s position
is normal (or Gaussian) if the second moment of the
displacement length distribution is finite. Normal distributions
are also known to be stable distributions meaning that the sum
(or, more generally, a linear combination with positive
weights) of two independent random variables has the same
distribution (up to a scaling factor and shift). Around 1920,
Paul Lévy showed that there are other stable distributions
which now bear the name of Lévy alpha-stable distributions.
In particular, they have power-law tails and diverging second
moments. The generalized central limit theorem (gCLT) was
then formulated to state that the sum of identically distributed
random variables with distributions having power-law tails
converges to one of the Lévy distributions. We now look at the
total displacement of a particle whose individual hops are
distributed as a power law. The position of the particle after
many hops will be described, according to the gCLT, by a
Lévy distribution; see, e.g., Uchaikin (2003). That is why such
random walks are also known as Lévy flights. It has been
found that a large variety of natural and man-made phenomena
exhibit power-law statistics (Bouchaud, 1995; Uchaikin and
Zolotarev, 1999; Clauset, Shalizi, and Newman, 2009). While
relating the empirical data to the theoretical models with Lévy
distributions, it became clear that the model solutions could
not be characterized by the second moment: Like every
individual jump in a sequence, the distribution of particle’s
final positions has an infinite variance.
One of the most straightforward ways to resolve this

inconsistency is to regularize the power-law distributions
by truncating them at large values (Mantegna and Stanley,
1994). That would make the moments of the distribution finite

while still retaining some properties of the power-law dis-
tributions for intermediate values. However, the truncation
introduces a certain arbitrariness and, as a phenomenological
procedure, it cannot always be justified in a particular physical
(or economical, biological, etc.) context.
Importantly, there is an alternative way to remedy the

problem of divergent moments. A fundamental property of
having a finite velocity while moving couples the displace-
ment of a walker and the time it takes to cover the
corresponding distance and puts a larger time cost to a longer
displacement. In the simple picture of a hopping particle that
would mean that at any moment of time the position of the
particle after many hops is bounded by the ballistic cone with
the fronts matching the maximal particle velocity multiplied
by the observation time. In between these fronts, the long
displacements of the particle still exist, as necessary for the
Lévy-like statistics, but all moments of the distribution of the
particle’s position will be finite for any given time (Shlesinger,
Klafter, and West, 1986).
We hope that at this point we have already convinced the

reader that random walks are an appropriate language to
describe the stochastic transport phenomena. We now proceed
to introduce the theoretical framework of continuous-time
random walks (Klafter and Sokolov, 2011) and describe how it
changes when the finite velocity of walkers is taken into
account. Next we mainly focus on one-dimensional systems
(some open problems concerning the generalization to higher
dimensions are mentioned in Sec. VIII).

B. Continuous-time random walks

Consider a random motion of passive particles in homo-
geneous media. We are interested in the macroscopic behavior
of the density of particles Pðx; tÞ as a function of space and
time. Each particle can make instantaneous jumps to the left or
to the right with equal probabilities. The probability density
function (PDF) of the jump lengths x and gðxÞ is chosen to be
symmetric gðxÞ ¼ gð−xÞ and independent of the starting
point. Before making a jump, a particle waits for a time τ
defined by another PDF ψðτÞ; see Fig. 1(a). Both distributions
are normalized:

R∞
−∞ gðxÞdx ¼ 1 and

R∞
0 ψðτÞdτ ¼ 1. These

two functions determine the macroscopic properties of the
transport process. In the standard continuous-time random
walk model, random variables x and τ are independent from
each other. We can define the survival probabilityΨðtÞ, that is,
the probability for a particle not to jump away until time t, as

ΨðtÞ ¼ 1 −
Z

t

0

ψðτÞdτ: ð1Þ

The first transport equation governs the outgoing flow of
particles Qðx; tÞ, which defines how many particles leave the
point x per unit of time. The equation connects the flux at the
current point in space and time to the flux from all neighboring
points in the past (Klafter and Silbey, 1980):

Qðx; tÞ ¼
Z þ∞

−∞
gðyÞ

Z
t

0

ψðτÞQðx − y; t − τÞdydτ

þ P0ðxÞψðtÞ: ð2Þ
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It is time for a particle to leave from point x if its waiting time τ
has elapsed, which is taken care of via the multiplication by
ψðτÞdτ. The particle could arrive to the point x time τ ago
from some other point x − y by making a jump of length y
with probability density gðyÞ. We next integrate over all
possible waiting times and jump distances. The last term
on the right-hand side assumes that at the moment of time
t ¼ 0 particles had an initial distribution P0ðxÞ ¼ Pðx; t ¼ 0Þ.
Particles gradually leave their initial spots according to the
waiting time distribution. We also assume that all particles
were introduced to the system at t ¼ 0 and the probability
density of making the first jump is given by ψðτÞ. The
situation is different if the particles have some prehistory.
In that case, the probability distribution of the first waiting
time is in general different from ψðτÞ (Haus and Kehr, 1987);
see Sec. IV.D for a more detailed discussion.
The next step is to connect the outgoing flux in the past to

the current density of particles at a given point in space and
time,

Pðx;tÞ¼
Z þ∞

−∞
gðyÞ

Z
t

0

ΨðτÞQðx−y;t−τÞdydτþP0ðxÞΨðtÞ:
ð3Þ

The density is a sum of outgoing particles from all other points
at different times, weighted by the jump length probability,
provided the particles survived for a time τ after their arrival to
x at t − τ. The last term on the right-hand side of Eq. (3)
accounts for the particles that stay in their starting points until
the observation time t.
The above set of equations specifies the standard CTRW

process with an arbitrary initial condition. These integral
equations can be solved by using the combination of Fourier
(with respect to space) and Laplace (with respect to time)
integral transforms (Erdélyi, 1954). We exploit the funda-
mental property of these transforms which turns convolution
integrals into products in the Fourier-Laplace space. We use k
and s to denote coordinates in Fourier and Laplace space,

respectively. By explicitly providing the argument of a
function, we distinguish between the normal or transformed
space, for example, ψðτÞ → ψðsÞ and gðxÞ → gðkÞ. As a
result, the solution for the density of particles is given by
the Montroll-Weiss equation (Montroll and Weiss, 1965;
Klafter, Blumen, and Shlesinger, 1987):

Pðk; sÞ ¼ ΨðsÞP0ðkÞ
1 − ψðsÞgðkÞ ; ð4Þ

where ΨðsÞ ¼ ½1 − ψðsÞ�=s. This solution allows us to reduce
the pair of original equations (2) and (3) to a single equation
for the density Pðx; tÞ:

Pðx;tÞ¼
Z þ∞

−∞
gðyÞ

Z
t

0

ψðτÞPðx−y;t−τÞdydτþΨðtÞP0ðxÞ:
ð5Þ

In our derivation, we intentionally used an intermediate step of
introducing the flow of particles Qðx; tÞ. For a more general
initial condition with a nontrivial distribution of particles over
their lifetimes, it provides the proper way to obtain the
corresponding transport equation for the density of particles
(Zaburdaev, 2008). In addition, a very similar set of equations
will be used for the models that incorporate the velocity of
particles.
Below we frequently use the notion of the propagator (and

sometimes, depending on the context, Green’s function). It is
the solution of the transport equation for the deltalike initial
distribution2 P0ðxÞ ¼ δðxÞ. From Eq. (4) the propagator can
be identified as

FIG. 1 (color online). Random walk models of superdiffusion. (a) Lévy flight: A particle performs instantaneous jumps alternated
with waiting pauses. The length of jumps and durations of waiting events are independent random variables. The resulting PDF Pðx; tÞ is
not local in space at any moment of time. (b) Lévy walk: A particle moves with a constant velocity for a random time and then, at a
turning point, instantaneously chooses a new direction and moves again. In this basic model the particle’s velocity can assume two
values �v only. As a result the length and duration of each event of ballistic motion are coupled. There is a ballistic cone xf ¼ �vt
beyond which no particle can go (shaded area). As a result the PDF is bounded in space and its fronts are marked by two delta peaks.
(c) Lévy walk with rests: Ballistic flights of a particle are alternated with pauses during which the particle does not move. At any instant
of time the statistical ensemble consists of two fractions of particles, flying and resting. The total PDF is the sum of the two.

2A biology-oriented definition of the propagator was made by
Ronald Ross, the Nobel laureate for medicine in 1902 (Ross, 1905):
“… suppose a box containing a million gnats were to be opened in the
center of a large plain, and that the insects were allowed to wander
freely in all directions, howmanyof themwould be found after death at
a given distance from the place where the box was opened?”
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Gðk; sÞ ¼ ΨðsÞ
1 − ψðsÞgðkÞ : ð6Þ

Then, for any arbitrary initial distribution, the solution will be
given by the convolution of an initial profile with the
propagator,

Pðx; tÞ ¼
Z

∞

−∞
Gðx − yÞP0ðyÞdy: ð7Þ

The above Eqs. (4) and (6) give a formal solution of the
transport equation. When given functions gðyÞ, ψðτÞ, and
P0ðxÞ, one should find their Fourier and Laplace transforms,
insert them into Eq. (4), and calculate their inverse transform.
Unfortunately, in general it is almost impossible to find this
inverse transform analytically. Instead an asymptotic analysis
for large time and space scales can be employed. To proceed,
we must specify the probability densities gðyÞ and ψðτÞ.
Motivated by applications and also mathematical convenience,
we choose a power-law form of these PDFs. By varying the
exponent of their power-law tails, different regimes of diffusion
can be accessed. Assume the following particular forms:

ψðτÞ ¼ 1

τ0

γ

ð1þ τ=τ0Þ1þγ ; γ > 0; ð8Þ

gðxÞ ¼ Γ½β þ 1=2�
x0

ffiffiffi
π

p
Γ½β�½1þ ðx=x0Þ2�βþ1=2 ; β > 0: ð9Þ

The exact details of these distributions are not qualitatively
important in the asymptotic limit. Crucial are their power-law
tails which determine the behavior of their moments. All other
details will be absorbed into constant prefactors; yet we will
keep track of those for the sake of completeness.
There are two important moments of these PDFs, the mean

squared jump length

hx2i ¼
Z

∞

−∞
x2gðxÞdx; ð10Þ

and the mean waiting time

hτi ¼
Z

∞

0

τψðτÞdτ: ð11Þ

If these moments exist, for the chosen functions in Eqs. (8)
and (9), they are given by simple expressions:

hτi ¼ τ0
γ − 1

; γ > 1; hx2i ¼ x20
2ðβ − 1Þ ; β > 1: ð12Þ

When both quantities are finite, the resulting transport
equation reduces to the standard diffusion equation with a
diffusion coefficient D ¼ hx2i=ð2hτiÞ,

∂P
∂t ¼ DΔPðx; tÞ: ð13Þ

It is easy to demonstrate by assuming that the typical spatial
and temporal scales of interest are significantly larger than

hx2i and hτi, respectively. It is then possible to expand the
expression under the integral in Eq. (5) in a Taylor series with
respect to y and τ yielding the diffusion equation above; its
propagator is the well-known Gaussian distribution:

Pðx; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
4πDt

p e−x
2=4Dt: ð14Þ

The second moment of this distribution is the mean squared
displacement (MSD) which scales linearly with time:

hx2ðtÞi ¼
Z

∞

−∞
x2Pðx; tÞdx ¼ 2Dt: ð15Þ

Another important property of the diffusion process is the
scaling of the density profile. As we will see for different
models and regimes of random walks, in the limit of large
times, the propagator may be represented as

Gðx; tÞ ¼ t−αF

�
x
tα

�
; ð16Þ

where FðξÞ is a scaling function (for example, Gaussian, in
the case of normal diffusion) and α is a model-specific
scaling exponent (with α ¼ 1=2 in the case of normal
diffusion). Such a functional form suggests a scaling variable
ξ ¼ x=tα, meaning that a characteristic spatial scale on which
the density changes x̄ scales with time as x̄ ∝ tα. From the
solution given by Eq. (14), we see that the width of the cloud
of particles grows as x̄ ∝ t1=2.
The asymptotic limit x; t → ∞ corresponds to the dual

transition k; s → 0 in the Fourier-Laplace domain. That is
why, instead of the full Fourier and Laplace transforms of g
and ψ in Eq. (4), their expansion in a Taylor series with respect
to small k and s can be used.3 In the Fourier-Laplace
coordinates, the leading terms of the expansion for the chosen
power-law functions are (Prudnikov, Brychkov, and Marichev,
1986)

gðkÞ ¼ 1 −
x20

β − 1

k2

4
−
x2β0 Γ½1 − β�
22βΓ½1þ β� jkj

2β þOðk2þ2βÞ; ð17Þ

ψðsÞ ¼ 1 −
τ0

γ − 1
s − τγ0Γ½1 − γ�sγ þOðs1þγÞ. ð18Þ

In the marginal cases, when γ or β have values where one of
the moments starts to diverge (for example, γ; β ¼ 1), there are
logarithmic correction terms appearing in this expansion. We
do not consider these cases here [see, e.g., Zumofen and
Klafter (1993) and Chukbar (1995) for more information].
The finite waiting time and the mean squared jump distance
correspond to γ; β > 1. In this case, the first two terms in the
above expansions are dominant for small k and s. The
prefactors in front of k2 and s can be recognized as the mean
squared jump distance and the mean waiting time from

3Taylor series are normally understood as an expansion in integer
powers of the argument. In our case the leading terms of expansionwith
respect to the small k and s may involve fractional powers. We use the
notion of Taylor series in this extended sense.
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Eq. (12), respectively. By substituting them into the formal
solution, Eq. (4), we can rewrite it as the diffusion equation in
the Fourier-Laplace space, or simply compute the inverse
transforms and obtain the Gaussian distribution Eq. (14). For
γ < 1 and β < 1, terms with fractional powers dominate over
linear and quadratic terms in Eqs. (18) and (17), respectively.
By substituting them into Eq. (4) we obtain the following
equation in the Fourier-Laplace space:

sγΓ½1 − γ�Pðk; sÞ ¼ −jkj2βK0Pðk; sÞ þ sγ−1Γ½1 − γ�P0ðkÞ;
ð19Þ

where K0 ¼ ðx0=2Þ2βΓ½1 − β�=τγ0Γ½1þ β�. After returning to
the original space-time domain, we obtain an equation with
integral nonlocal operators:

∂
∂t

Z
t

0

Pðx; τÞ
ðt − τÞγ dτ ¼ K

Z
∞

−∞

Pðy; tÞ
jx − yj2βþ1

dyþ P0ðxÞ
tγ

; ð20Þ

where K ¼ ðx0Þ2βΓ½β þ 1=2�=τγ0
ffiffiffi
π

p
Γ½β�. The integral non-

local operators in the above equation are the fractional
derivatives (the integral on the right-hand side is understood
as the principle value) (Samko, Kilbas, and Marichev, 1993;
Podlubny, 1999; Kilbas, Srivastava, and Trujillo, 2006; West,
2014). The notion of a fractional derivative allows us to
rewrite the asymptotic balance equation in a compact form of
the fractional diffusion equation (Saichev and Zaslavsky,
1997; Metzler and Klafter, 2000; Barkai, 2002):

∂γP
∂tγ ¼ Kβ;γΔβPþ P0ðxÞ

tγ
: ð21Þ

This equation describes the stochastic spreading of a cloud of
particles and besides the case of normal diffusion has several
interesting regimes. If the mean squared jump length is finite
but the waiting times are anomalously long, hτi ¼ ∞, the
resulting dispersal is anomalously slow or subdiffusive. The
typical width of the cloud scales as x̄ ∝ tγ=2, with γ < 1. In
the opposite case, when the average waiting time is finite but
jumps are very long, hx2i ¼ ∞, the equation describes super-
diffusion. The typical width of the distribution of particles
scales as x̄ ∝ t1=2β. Finally, when long waiting times compete
with long jumps, the scaling is defined by both distributions of
waiting times and jump lengths, x̄ ∝ tγ=2β. The stochasticity of
the transport process reveals itself in the “forgetting” of the
initial distribution and the tendency of the particles’ density to
the universal self-similar profile of the corresponding propa-
gator, Eq. (16), with α ¼ γ=2β.
Before closing this section, we take a closer look at the

superdiffusion regime. The jump length distribution has a
diverging second moment (β < 1), whereas the mean waiting
time is finite. Therefore the leading terms in the expansion of
ψðsÞ in Eq. (18) could be written as ψðsÞ≃ 1þ shτi. The
propagator in the Fourier-Laplace space is then given by

Gðk; sÞ ¼ 1

sþ Kβjkj2β
ð22Þ

with Kβ ¼ ðx0=2Þ2βΓ½1 − β�=hτiΓ½1þ β�. By performing the
inverse Laplace transform we obtain

Gðk; tÞ ¼ exp ð−Kβjkj2βtÞ: ð23Þ

This expression is the Fourier transform (a characteristic
function) of the symmetric Lévy distribution Lκ½x; σðtÞ�,
which describes the distribution of the sum of independent
and identically distributed variables with power-law PDFs
(Uchaikin, 2003). Here κ ¼ 2β is the Lévy index and σκ ¼
Kβt is the scaling parameter. For some particular values of κ,
the Lévy distribution has an analytical expression in coor-
dinate space, such as a Cauchy distribution (κ ¼ 1), Lévy-
Smirnov (κ ¼ 1=2), or a Holtsmark distribution (κ ¼ 3=2)
(Uchaikin, 2003; Klafter and Sokolov, 2011). The key feature
of all of these distributions is the asymptotic power-law tail
Gðx; tÞ ∼ t=jxjκþ1 (Chukbar, 1995; Klafter and Sokolov,
2011). In the scaling relation given by Eq. (16), the scaling
function F is also given by the Lévy distribution with
α ¼ 1=κ. Because of this intimate relation of the particles
density to the Lévy distribution, the model of random walks
with instantaneous jumps received the name of Lévy flight4

(Mandelbrot, 1982). We now ask about the behavior of the
second moment of the density profile given by the Lévy
distribution. This and higher moments in the Fourier (or the
Fourier-Laplace) space are

hxni ¼
Z

∞

−∞
xnPðx; tÞdx ¼ ð−iÞn dn

dkn
Pðk; tÞjk¼0: ð24Þ

By substituting Eq. (23) into this formula, we immediately see
that all moments with n ≥ 2 diverge. It is thus impossible to
compute the MSD as a function of time for a particle
performing Lévy flights for a simple reason: it does not exist.
Already after the first jump all particles are distributed as gðxÞ
and this distribution has an infinite second moment. This
feature of Lévy flights is often referred to as a shortcoming of
the model when applied to physical processes, in which one
expects regular behavior of moments (Mantegna and Stanley,
1994). However, as already mentioned, physical intuition
points to the possibility to modify the Lévy-flight model
assuming that longer jumps must have a higher cost; there has
to be a certain coupling between the length of the flight and its
duration. The simplest coupling is the finite velocity of
particles, when the time to accomplish a flight is linearly
proportional to its length. As we show next, the introduction
of the finite velocity of particles into the Lévy-flight model
retains the anomalous character of the transport process while
regularizing the behavior of moments of the particle density.
We believe that the compliance of the new model with
physical intuition and the ability to account for the velocity
of particles explains its success in applications.

4Shlesinger and Klafter (1986) proposed an alternative schema-
tization of Lévy flights: There are no waiting pauses and the duration
of each step is constant so that the velocity of a flight is proportional
to the step length drawn from a Lévy distribution.
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II. LÉVY WALKS

We discuss several ways to introduce a coupling between
the jump length and time in the upcoming sections. Here we
start with the conventional dynamical coupling of the particle
position and current time via a constant velocity of the
particle.
There are two closely related models which incorporate a

finite velocity of random walkers. The first one is a direct
modification of the CTRW model: After spending its waiting
time, a random walker does not jump instantaneously but
instead moves with a constant speed to its destination (Klafter
and Zumofen, 1994; Zaburdaev and Chukbar, 2002); see
Fig. 1(c). Long excursions are still responsible for the anoma-
lously fast diffusion, but now there are well-defined ballistic
fronts and behavior of all moments is regularized. In the second
model, waiting periods are eliminated and the particle is always
on themove (Shlesinger,Klafter, andWest, 1986; Zumofen and
Klafter, 1993; Klafter and Zumofen, 1994); see Fig. 1(b). The
distance of ballistic flights is distributed randomly and each
flight is performed with a finite speed. At the end of the flight,
the particle randomly changes direction. The latter model is
what historically received the name of Lévy walks. Note that
the Lévy-walk model has only one distribution function to
parametrize the motion of the particles as it discards waiting.
This minimalistic setup remains the most popular model in
modern applications.

A. Lévy-walk model

The formulation of the microscopic model is very similar to
that by Pearson cited in the Introduction. A particle moves on
a straight line with a fixed speed for some random time. At the
end of the excursion, the particle randomly chooses a new
direction of motion and moves for another random time with
the same speed; see Fig. 1(b). There are only two character-
istics of this model, that are the PDF of the duration of
movements, which we denote by ψðτÞ, and the speed v of the
particles. Despite its simplicity, this model is able to describe
various regimes of stochastic transport, from classical to
ballistic superdiffusion.
We now derive the transport equations of the Lévy-walk

model. First we introduce the frequency of velocity changes at
a given point (analog of the flux of particles from a given point
in the CTRW model),

νðx; tÞ ¼
Z

∞

−∞
dy

Z
t

0

ϕðy; τÞνðx − y; t − τÞdτ

þ δðtÞP0ðxÞ: ð25Þ

Here we incorporated a coupled transition probability density
ϕðy; tÞ which takes care of the fact that only particles flying
from x − vτ and xþ vτ can reach x in time τ and change the
direction of their velocities after the flight time of τ:

ϕðy; τÞ ¼ 1
2
δðjyj − vτÞψðτÞ. ð26Þ

Therefore, a particle changes its velocity if it is at the end of
the flight of duration τ which originated from x� vτ. We
assume that at t ¼ 0 all particles at once choose new velocities

and hence the second term on the right-hand side of Eq. (25)
contains a delta function [note a difference to a gradual
leaving of particles from their waiting positions for the CTRW
model, Eq. (2)].
To calculate the actual amount of particles at a given point,

we write

Pðx; tÞ ¼
Z

∞

−∞
dy

Z
t

0

Φðy; τÞνðx − y; t − τÞdτ; ð27Þ

where

Φðy; τÞ ¼ 1
2
δðjyj − vτÞΨðτÞ ð28Þ

is the probability density to travel a distance y and remain in
the state of flight [note that with respect to τ Eq. (26) has the
meaning of the probability density whereas Eq. (28) is the
probability]. Therefore, a particle is at the point ðx; tÞ if it has
started some time τ ago at x� vτ and is still in the state of the
flight, taken care of by multiplication with ΨðτÞ, Eq. (1). Note
that in Eq. (27) the influence of the initial condition appears
only indirectly, through the frequency of velocity changes
νðx; tÞ [cf. Eq. (3) for the CTRW model with an extra term
for immobile particles survived from the start]. By taking the
limit t → 0þ we can substitute νðx; tÞ by P0ðxÞδðtÞ and
recover Pðx; tÞ → P0ðxÞ.
The equations can be solved by using the combined

Fourier-Laplace transform, but an additional technical com-
plexity due to the coupling of space and time variables occurs
(Klafter, Blumen, and Shlesinger, 1987; Zumofen and Klafter,
1993). We resolve it by using the shift property of the Laplace
and Fourier transforms; as a result the corresponding Laplace
transformed functions hold a linear combination of Fourier-
Laplace coordinates s� ikv as its argument:

Pðk; sÞ ¼ ½Ψðsþ ikvÞ þΨðs − ikvÞ�P0ðkÞ
2 − ½ψðsþ ikvÞ þ ψðs − ikvÞ� . ð29Þ

This is a formal solution of the problem and, as in the case of
Lévy flights, the next step is to perform the asymptotic
analysis. Because of the simple ballistic coupling x ¼ vτ,
the possible scaling regimes of diffusion are governed by the
power-law tail of the flight-time distribution, which we again
take in the form given by Eq. (8).

1. Telegraph equation

If the mean squared flight distance is finite, γ > 2, the
classical diffusion takes place in the asymptotic limit.
However, the effects of finite velocity can be seen in this
regime too. Consider for a moment an exponentially distrib-
uted flight time ψðτÞ ¼ ð1=τ0Þ expð−τ=τ0Þ. By taking its
Laplace transform and substituting it into Eq. (29), we can
invert the Fourier and Laplace transforms to obtain the
telegraph equation (Goldstein, 1951):

∂P
∂t þ τ0

∂2P
∂t2 ¼ DΔPðx; tÞ; ð30Þ

where D ¼ v2τ0. On very short times, it describes almost
ballistic spreading of particles. As time goes, ballistic fronts
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run away much faster than spreading of the diffusive evolution
(x̄ ∝ t vs x̄ ∝ t1=2, for t ≫ τ0) which starts to dominate the
central part of the density profile. Finite velocity ensures,
however, that there are no particles beyond the ballistic fronts.

2. Superdiffusion

As the flights get longer, 1 < γ < 2, the mean squared flight
length diverges (but the average flight time is still finite) and
we turn to the regime of superdiffusion. By using the
expansion from Eq. (18) for small s and substituting its
leading terms into Eq. (29) we arrive at a similar answer as
Eq. (22) for the propagator

Gðk; sÞ≃ 1

sþ Kvjkjγ
ð31Þ

with Kv ¼ τγ−10 vγ0ðγ − 1ÞΓ½1 − γ� sinðπγ=2Þ. There are several
things to be noted here. After the inverse Fourier-Laplace
transform we get the stable time-parametrized Lévy distribu-
tion with a scaling given by Eq. (16) and FðξÞ ¼ LγðξÞ,
α ¼ 1=γ. For 1 < γ < 2 the cloud of particles spreads faster
than classical diffusion but still slower than the running
ballistic fronts. Therefore, ballistic fronts do not appear in
this analysis and affect (as in Sec. II.A.1) only the far tails of
the particle density distribution. Nevertheless, the existence of
fronts is crucial for the calculation of moments, as we show
next. Now we take a closer look at what is happening at the
ballistic fronts. Assume that at the moment of time t ¼ 0 we
start with all particles initiating their flights at x ¼ 0. Ballistic
fronts are formed mostly by the particles which are still in their
very first flights. The probability to remain in the flight isΨðtÞ
and therefore we can write down the density of particles in the
ballistic peaks or “chubchiks” (Klafter and Sokolov, 2011)

Gfrontðx; tÞ ¼ 1
2
ΨðtÞ½δðx − vtÞ þ δðxþ vtÞ�. ð32Þ

This gives the first approximation of the whole density of
particles as a Lévy distribution sandwiched between two
running ballistic deltalike peaks; see Fig. 2. A more detailed
understanding of the density can be achieved by using the so-
called infinite density measure (Rebenshtok et al., 2014a,
2014b), as discussed in Sec. IV.C.

3. Ballistic diffusion

In case of even longer flights 0 < γ < 1, when the mean
flight time diverges, the diffusion process changes dramati-
cally. In the case of a Lévy flight, the scaling x̄ ∝ t1=γ for small
γ results in spreading which is faster than ballistic, leading to a
conflict with the light front limitation in the Lévy-walk setup.
Clearly, the ballistic front is playing a crucial role here. An
asymptotic expansion of the propagator [obtained from
Eq. (29) with P0ðxÞ ¼ δðxÞ] has the following form:

Gðk; sÞ≃ ðsþ ikvÞγ−1 þ ðs − ikvÞγ−1
ðsþ ikvÞγ þ ðs − ikvÞγ : ð33Þ

Now Fourier and Laplace variables appear in the same scaling
s ∼ k and indicate the ballistic behavior. It was suggested to

call the inverse Fourier-Laplace transform of ðsþ ikvÞγ þ
ðs − ikvÞγ as a fractional generalization of the substantial or
material derivative operator, ðv−1∂=∂t� ∂=∂xÞ1=γ (Sokolov
and Metzler, 2003). In the ballistic regime there is again a
technical difficulty to find the inverse Fourier-Laplace trans-
form. The ballistic case is special in that its analytical solution
can be found by the method discussed in Sec. IV.B. Here we
just illustrate the shape of the propagator on a particular
example γ ¼ 1=2 [for arbitrary γ the answer is given by the
Lamperti distribution (Lamperti, 1958; Bel and Barkai, 2005);
see also Eqs. (61) and (83)]:

Gðx; tÞ ¼ 1

πðv20t2 − x2Þ1=2 : ð34Þ

Figure 3 shows a U-shaped profile [for γ ≳ 0.6 the shape is
W like; see Fig. 6(b)] with a divergent density at the ballistic
fronts (Zumofen and Klafter, 1993). This divergence is,
however, integrable and the total number of particles is
conserved. Although the density profile is very different from
the Gaussian profile of the classical diffusion, the ballistic
diffusion remains a stochastic transport phenomena where the
initial condition is gradually forgotten with time and
the solution approaches the universal self-similar profile of
the corresponding Green’s function.

4. Mean squared displacement and other moments

The PDFs of the Lévy walk in general do not possess a
global scaling where the whole propagator can be repre-
sented in the form of Eq. (16), unlike the case of the
Gaussian profile and normal diffusion. A clear example is
the superdiffusive regime (1 < γ < 2), where the middle
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FIG. 2 (color online). Propagators of the superdiffusive Lévy
walk for different times. The propagators have a central part of
the profile approximated by the Lévy distribution sandwiched
between two ballistic peaks. In the inset, the same curves are
shown in double logarithmic scale after the rescaling as given on
the axis labels. A characteristic linear slope on the log-log plot
illustrates the power-law tails of the density. The propagators
were obtained by numerical simulations with γ ¼ 3=2, τ0 ¼ 1,
and all particles starting their flights at t ¼ 0, x ¼ 0 with
velocities v ¼ �1. The PDFs were sampled at t ¼ 100, 200,
and 300 (the width increases with time).
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part of the profile scales as x̄ ∝ t1=γ , but, at the same time,
the fronts exhibit the ballistic scaling. As a consequence, in
Lévy walks the scaling exponents of the propagator and
MSD are not the same; for a summary of these issues see
Schmiedeberg, Zaburdaev, and Stark (2009), Rebenshtok
et al. (2014a, 2014b).
As discussed, the asymptotic dynamics of propagators can

be analyzed by considering the limits k → 0 and s → 0.
Remarkably, in coupled models these two limits do not
commute (Schmiedeberg, Zaburdaev, and Stark, 2009). In
general, by changing the order of these limits we imply which
effect is dominating: larger distance or longer time, or maybe
the interplay of both. The MSD can be calculated by using
Eq. (24) via the second derivative with respect to k and taking
the limit k → 0. To compute the asymptotic time dependence
of the MSD we can take the second limit s → 0 and then
calculate the inverse Laplace transform. By inverting the order
of limits and first taking s → 0, we can follow the behavior of
the density of particles closer to the origin, from where the
scaling exponent of the propagator α [see Eq. (16)] could be
obtained. Finally, in order to find the shape of the propagator,
both limits have to be taken simultaneously. We first provide
the results for the scaling of the MSD (Zumofen and Klafter,
1993). To compute the MSD for a superdiffusive sub-ballistic
regime (the Lévy-walk processes with the finite mean flight
time hτi, corresponding to 1 < γ < 2), one more term in the
expansion of the nominator has to be included, in order to
capture the effect of the ballistic fronts. This leads to

hx2ðtÞi ∝

8>>>>>>>><
>>>>>>>>:

t2 0 < γ < 1;

t2= ln t γ ¼ 1;

t3−γ 1 < γ < 2;

t ln t γ ¼ 2;

t γ > 2.

ð35Þ

Figure 4 gives a pictorial view of the MSD scaling regimes.
The scaling exponent α is given by Zumofen and Klafter
(1993):

α ¼

8>><
>>:

1 0 < γ < 1;

1=γ 1 < γ < 2;

1=2 γ > 2.

ð36Þ

It is important to note that in the sub-ballistic regimes the
scaling exponent α refers to the central part of the density
profile.
There is an interesting concept to characterize the stochastic

transport phenomena by using a spectrum of fractional
moments (Castiglione et al., 1999; Metzler and Klafter,
2000; Artuso and Cristadoro, 2003; Sanders and Larralde,
2006; de Anna et al., 2013; Rebenshtok et al., 2014b; Seuront
and Stanley, 2014):

hjxjqi ¼
Z

∞

−∞
jxjqPðx; tÞdx≃Mq · tqνðqÞ: ð37Þ

For normal diffusion, because of its self-similar shape and the
unique scaling x̄ ∝ t1=2, Eq. (37) leads to a constant value of
νðqÞ ¼ 1=2. If νðqÞ is not constant, this kind of diffusion
process is referred to as strongly anomalous (Castiglione
et al., 1999). Because of its multiscaling property, sub-ballistic
Lévy walks belong to this class. Figure 5 shows a character-
istic bilinear shape of qνðqÞ as a function of the moment order
q. The linear dependences are q=γ for small q is replaced by
the dependence q − γ þ 1 for higher moments. For small
values of q, the dominating contribution to the averaging
integral comes from the central part of the propagator, where it
can be approximated by the self-similar Lévy distribution. For
1 < γ < 2 the fractional moments of Lévy distribution exist
for q < 2 and qνðqÞ ¼ q=γ. For higher moments, the far tails
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FIG. 3 (color online). PDF of the Lévy-walk model in the
ballistic regime. The density of particles, Eq. (34), at different
moments of time is shown. The parameters are γ ¼ 1=2, v ¼ �1,
τ0 ¼ 1, and P0ðxÞ ¼ δðxÞ. The densities have integrable diver-
gences at the ballistic fronts due to the conservation of the total
amount of particles.

FIG. 4 (color online). Scaling exponent of the mean squared
displacement for Lévy walks, Eq. (35). When the second moment
of the PDF ψðτÞ ∼ t−γ−1 exists, γ > 2, the scaling hx2ðtÞi ∝ tμ is
universal with the exponent μ ¼ 1. When 1 < γ < 2 and the
variance hτ2i diverges, the mean squared displacement scales
with the exponent μ ¼ 3 − γ. Finally, for very heavy tails
0 < γ < 1, the scaling is ballistic μ ¼ 2. Inspired by a sketch
in Bouchaud and Georges, 1990.
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of the propagator are important and this is where the ballistic
cutoff by the running peaks plays a crucial role. The scaling of
the fractional moments for large q can be obtained by
assuming that the PDF has an asymptotic shape Pðx; tÞ ∼
t=jxj1þγ and has to be integrated with jxjq until the cutoff
distance jxj ¼ v0t. That would lead to the q − γ þ 1 result or
νðqÞ ∼ 1. Exact results on the behavior of fractional moments
could be obtained by using the concept of infinite densities
(Rebenshtok et al., 2014b), which is discussed in Sec. IV.C.
For q → 0, the limit νðqÞ → α gives a possible way of

estimating the scaling from the experimental data. Recently
Gal and Weihs (2010) measured the spectrum of exponents
qνðqÞ for the dispersion of polystyrene bead particles inter-
nalized by live human metastatic breast cancer epithelial cells
and found for large q a linear behavior qνðqÞ ∼ cq with
c≃ 0.8 − 0.6. That means that the observed spreading is of
the sub-ballistic superdiffusion type. This is probably related
to the active transport of the beads within a cell.

B. Lévy walks with rests

When performing Lévy walks, a particle always moves [see
Fig. 1(b)], whereas during CTRWevolution it makes instanta-
neous jumps alternated with waiting events [see Fig. 1(a)]. By
combining both of them, we arrive at the model where waiting
periods alternate with periods of ballistic motion [see
Fig. 1(c)]. One can describe this model as a Lévy walk
interrupted by rests (Klafter and Zumofen, 1994; Zaburdaev
and Chukbar, 2002; Klafter and Sokolov, 2011). As in the
standard Lévy-walk model, there cannot be particles beyond
the fronts jxj > vt. Interestingly, there is a natural separation
of particles into two groups: sitting at a given point and
moving somewhere else. The total density of particles at a

given point x is the sum of two fractions (Zaburdaev and
Chukbar, 2002; Uchaikin, 2003). The PDF of resting times we
denote as ψ rðτÞ (Klafter and Sokolov, 2011), and the PDF
ψðτÞ, as before for Lévy walks, is used to describe the
durations of ballistic phases. Both functions are of the same
power-law form but may have different exponents. By ~νðx; tÞ
we denote the flux of particles which finished their rest and
started moving out of a given point x (analogy to the velocity
reorientation points in the standard Lévy-walk model). It
satisfies the following balance equation:

~νðx; tÞ ¼
Z

t

0

ψrðτÞ
Z

t−τ

0

ϕðy; τ1Þ~νðx − y; t − τ − τ1Þdτ1dτ

þ ψ rðtÞP0ðxÞ; ð38Þ

where ϕðy; τÞ is the coupled transition probability of the Lévy-
walk model. The densities of sitting and flying particles are
then given by

Prðx; tÞ ¼
Z

t

0

ΨrðτÞ
Z

t−τ

0

ϕðy; τ1Þ~νðx − y; t − τ − τ1Þdτ1dτ

þΨrðtÞP0ðxÞ; ð39Þ

Pflyðx; tÞ ¼
Z

t

0

Φðy; τÞ~νðx − y; t − τÞdτ; ð40Þ

where Φðx; tÞ is the coupled survival probability of Lévy
walks (28). The total density of particles is the sum of flying
and sitting PDFs PΣ ¼ Pfly þ Pr. In the Fourier-Laplace
space it can be expressed as (Klafter and Sokolov, 2011)

PΣðk; sÞ ¼
½Φðk; sÞψrðsÞ þΨrðsÞ�P0ðkÞ

1 − ψ rðsÞϕðk; sÞ
. ð41Þ

The first and second terms in the brackets of the nominator
correspond to the contributions from the flying and sitting
particles, respectively. As in the case of the CTRW, the long
trapping times can compete with long excursions. If, however,
the mean trapping time is finite, the scaling of the propagator
and the corresponding MSD is the same as in the Lévy-walk
model. It is also easy to see from Eq. (41) that if both mean
resting time and the mean moving time are finite, the
density of the flying particles is locally proportional to
that of the resting particles. The coefficient of proportionality
is the ratio of times a particle spends on average in each
phase (Zaburdaev and Chukbar, 2002), Pflyðx; tÞ ¼ ðhτifly=
hτirÞPrðx; tÞ. In the regime when the mean flight time
diverges, there is an irreversible transition of resting particles
into flying ones (see Fig. 6) and therefore a convergence to the
standard Lévy-walk process. If at t ¼ 0 all particles are
resting, their total population will decrease in time
as

R
∞
−∞ Prðx; tÞdx ∝ tγ−1.

With that we close the discussion of the relatives of the
standard Lévy-walk model. We meet them again in Secs. V
and VI, when discussing their applications in both physics
and biology. We now proceed to the generalizations of the
Lévy-walk model.
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FIG. 5 (color online). Scaling of the fractional moments of the
Lévy-walk process. Scaling exponent qνðqÞ for the qth moment
of the PDF, see Eq. (37), as a function of q for the sub-ballistic
Lévy-walk model, γ ¼ 3=2. It has a characteristic bilinear
behavior qνðqÞ ¼ q=γ for q < γ (solid line) and qνðqÞ ¼ qþ
1 − γ (dashed line) otherwise. The inset shows the prefactors of
fractional moments Mq. Dots correspond to the numerical data
sampled for t ¼ 105, whereas lines diverging at q ¼ γ are
analytical predictions in the limit t → ∞. Adapted from
Rebenshtok et al., 2014a.
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III. GENERALIZATIONS OF THE LÉVY-WALK MODEL

A. Random walks with random velocities

A natural generalization of the Lévy-walk model is the
process in which the velocity of a particle is not fixed but is a
random variable itself (Barkai and Klafter, 1998; Zaburdaev,
Schmiedeberg, and Stark, 2008). A number of examples
where a random walker has a changing velocity is discussed
by Zaburdaev, Schmiedeberg, and Stark (2008). When the
velocity of particles is characterized by a heavy tailed
distribution, the palette of possible diffusion regimes is
defined by the interplay of flight time and velocity distribu-
tions. We denote the velocity PDF by hðvÞ and write down the
corresponding transport equations of random walks with
random velocities (RWRV) (Zaburdaev, Schmiedeberg, and
Stark, 2008):

νðx; tÞ ¼
Z

∞

−∞
dv

Z
t

0

νðx − vτ; t − τÞhðvÞψðτÞdτ

þ δðtÞP0ðxÞ; ð42Þ

Pðx; tÞ ¼
Z

∞

−∞
dv

Z
t

0

νðx − vτ; t − τÞΨðτÞhðvÞdτ: ð43Þ

Despite the fact that the equations now are more complicated
they can still be resolved by using the integral transforms

Pðk; sÞ ¼
Rþ∞
−∞ Ψðsþ ikvÞhðvÞdv

1 −
Rþ∞
−∞ ψðsþ ikvÞhðvÞdv : ð44Þ

It is easy to see that for hðvÞ ¼ ½δðv − u0Þ þ δðvþ u0Þ�=2 we
recover the standard Lévy-walk model result of Eq. (29).
Because of the additional complexity added through velocity

distribution it is even harder to find an example where an exact
analytical solution can be obtained. However, one remarkable
example is the case of the Lorentzian or Cauchy velocity
distribution:

hðvÞ ¼ 1

u0π
1

1þ v2=u20
: ð45Þ

This velocity distribution appears in physical problems of
two-dimensional turbulence (Tong and Goldburg, 1988; Min,
Mezić, and Leonard, 1996; Chukbar, 1999), as a model dis-
tribution of kinetic theory (Ben-Naim, Machta, and Machta,
2005; Trizac, Barrat, and Ernst, 2007), and also as a particular
case of the generalized kappa distributions of plasma physics
applications (Hasegawa, Mima, and Duong-van, 1985; Meng,
Thorne, and Summers, 1992) and statistics (Tsallis, 1988,
1999). It was also reported for the distribution of velocities of
starving amoeba cells (Takagi et al., 2008). In this case the
density of particles does not depend on the flight-time
distribution at all and also has a Lorentzian shape:

Pðx; tÞ ¼ u0t
πðx2 þ u20t

2Þ : ð46Þ

To understand the scaling behavior of the RWRV model, we
use the scaling regimes of the CTRW model as a guideline.
For that we calculate the effective jump length distribution,
which, due to a simple coupling x ¼ vt, can be obtained by
the following integration:

geffðxÞ ¼
Z þ∞

−∞
dv

Z þ∞

0

δðx − vτÞhðvÞψðτÞdτ: ð47Þ

For the velocity distribution we assume a generic power-law
form hðvÞ ∝ jvj−1−2δ. We can now integrate Eq. (47) and find
the exponent of the tail of the effective jump length distri-
bution βðγ; δÞ. The waiting time distribution of the CTRW
model represents the time cost of the flight; therefore we can
use the flight-time distribution exponent. By substituting γ and
βðγ; δÞ into the scaling relation for the CTRW, we find the
scaling exponent α ¼ γ=2β of the RWRV model; see Fig. 7.
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FIG. 6 (color online). Lévy walks with rests. (a) The PDF of the
Lévy-walk model with exponentially distributed resting times
and power-law distribution of flight times with γ ¼ 3=2. Both
average resting hτri and flying times are finite. The total density
of particles (solid line) is the sum of sitting (dashed line) and
flying (dash-dotted line) particles. (b) The PDF for the ballistic
regime with γ ¼ 0.8. Here the number of sitting particles is
greatly reduced. In the asymptotic limit t → ∞ the total PDF and
the PDF of flying particles will coincide. The parameters are
v ¼ τ0 ¼ hτri ¼ 1 and t ¼ 50.

FIG. 7. Scaling regimes of the random walks with random
velocities. By varying the exponents of the power-law tails
of the velocity distribution δ and the flight-time distribution γ,
the model can be tuned into different diffusion regimes,
from classical diffusion to superballistic superdiffusion. From
Zaburdaev, Schmiedeberg, and Stark, 2008.
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Besides the classical diffusive, superdiffusive, and ballistic
transport, superballistic scaling is possible. In the latter case,
the mean absolute velocity has to be infinite (δ < 1=2). As in
the Lévy-walk model, the regime of subdiffusion is inacces-
sible; with nonzero velocities there is no possibility to trap a
particle for a long time. As we see, the introduction of the
velocity distribution significantly increases the flexibility of
the model while still keeping it amenable to the analytical
approach.

B. Random walks with velocity fluctuations

In all previous models we neglected interactions of the
walker with its environment or assumed that it had no effect on
the particle as it moved. In this section we discuss a model of
random walks in active media. We assume that a particle can
interact with its surroundings which results in the weak
fluctuations of the particle’s velocity. The term “active”
emphasizes the fact that particles not simply lose velocity
as a result of passive friction but can gain positive and negative
velocity increments such that on average their velocity
remains constant during a single flight event; see Fig. 8.
This model was applied to reproduce the perturbation spread-
ing in Hamiltonian many-particle systems by Zaburdaev,
Denisov, and Hänggi (2011) and Denisov, Zaburdaev, and
Hänggi (2012); see Sec. V.B. To set up the model accounting
for velocity fluctuations, we modify the Lévy-walk model
(Zaburdaev, Denisov, and Hänggi, 2011).
During each flight of a particle, its position is described by a

simple Langevin equation _x ¼ v0 þ ζðtÞ (Van Kampen,
2011), where ζðtÞ is a delta-correlated Gaussian noise of
zero mean and finite intensity Dv, i.e., hζðtÞζðsÞi ¼
Dvδðt − sÞ. This equation describes the well-known biased
Wiener process with drift v0 (Karatsas and Shreve, 1997).
After an integration over a time interval τ, we obtain

xðtþ τÞ ¼ xðtÞ þ v0τ þ wðτÞ; ð48Þ

where wðτÞ ¼ R
tþτ
t ζðsÞds is characterized by a Gaussian PDF

pðw; τÞ with the dispersion σ2τ ¼ h½xðτÞ − v0τ�2i ¼ Dvτ.
Transport equations for this model can also be written and
solved in the Fourier-Laplace space. When velocity fluctua-
tions are small, ðDvhτiÞ1=2 ≪ v0hτi, the central part of the
density profile of particles is given by the same Lévy
distribution as in the case of the standard model. New

phenomena appear in the ballistic regions, where fronts,
due to fluctuations, now look like humps (see Fig. 9):

Phumpðx; tÞ ¼ ΨðtÞ½pðxþ v0t; tÞ þ pðx − v0t; tÞ�=2. ð49Þ

As before, ΨðtÞ is the probability of not changing the
direction of flight during time t [Eq. (1)] and has a power-law
asymptotic ΨðtÞ ∝ ðt=τ0Þ−γ . Consequently, the area under the
ballistic humps, Eq. (49), also scales as t−γ . During ballistic
flights, the particles undergo random fluctuations caused by
velocity variations. All particles in the hump are in the state of
their first flight of duration t, thus the dispersion of the
Gaussian-like humps grows as t1=2, and we arrive at the
following scaling for the particles density in the humps:

Phumpðx̄; t0Þ≃ u−γ−1=2Phumpðx̄=u−1=2; tÞ; ð50Þ

where u ¼ t0=t and x̄ ¼ x − v0t; see the inset in Fig. 9. From
this result we learn that ballistic humps may carry some
additional information about the interactions between the
random walking particles and their environment.
The two models we discussed are the most frequently used

modifications of the original Lévy-walk setup. In the next
section, we mention two more models of coupled random
walks which introduce higher time cost for longer jumps, but
still have instantaneous jumps as the standard CTRW model.

C. Other coupled models

There are two modifications of the CTRW model which
are very similar to the Lévy-walk model, but still do not
have a well-defined velocity of particles (Kotulski, 1995;
Becker-Kern, Meerschaert, and Scheffler, 2004; Meerschaert
and Scalas, 2006; Straka and Henry, 2011; Jurlewicz et al.,
2012). In both models the waiting time and jump distance are

FIG. 8 (color online). The random walk in active media. Velocity
during flights fluctuates around a fixed averaged value. As a
result the fluctuations accumulate with time and the final position
of the particle, passing through the active medium, will differ
from that produced by an ideal Lévy-walk process. From
Zaburdaev, Denisov, and Hänggi, 2011.

FIG. 9 (color online). Profile of the Lévy-walk model with
velocity fluctuations. The inset shows the scaling of humps.
Please note that the figure is adapted from Zaburdaev, Denisov,
and Hänggi (2011) [see also Zaburdaev, Denisov, and Hänggi
(2012)], where a so-called equilibrated initial condition was used
(see Sec. IV.D for details). As a result the height of the hump
decays slower than discussed in the text, Eq. (50). Independent of
the type of the initial condition, the shape of humps is Gaussian,
with their width growing as t1=2.
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coupled but jumps are instantaneous. There are two possibil-
ities: In the “jump first”model, a random walker first jumps to
a random distance y and then waits at the arrival point for a
time τ ¼ ajyj, where a is a positive coupling constant
(Zaburdaev, 2006). In the “wait first” model, a particle first
waits for a random time τ and then makes a jump of length
jyj ¼ τa−1 (Shlesinger, Klafter, and Wong, 1982; Barkai,
2002). Figure 10 shows trajectories of these two models
compared to the one of the standard Lévy-walk model. We see
that in the ðx; tÞ plane the turning points of all three random
walks are identical, and it is the paths which are different. At
time t the models differ only by their last step. However, this
difference is crucial. The transport equations for jump first and
wait first models can be written down and solved in the
Fourier-Laplace space; see Schmiedeberg, Zaburdaev, and
Stark (2009). The MSD of the jump first model for the
anomalous diffusion regime (long jumps) is diverging, which
is clear if one looks at the distribution after the first jump. The
wait first model resembles a Lévy-walk model in that it also
has a defined light front and therefore finite moments
(Schmiedeberg, Zaburdaev, and Stark, 2009). All three models
have the same scaling properties of their propagators, but the
shapes of propagators are model specific. Figure 11 shows the
density profiles for the three models with similar (leading to
the same scaling) jump, waiting, and flight-time distributions,
and with all remaining proportionality constants set to 1,
a ¼ v ¼ 1.
These two simple coupled models can serve as a starting

point for further generalizations. Here we looked only at linear
couplings but it can be extended to the case when the flight

distance is some power-law function of the flight time
(Metzler and Klafter, 2004); it will then affect the scaling
of the propagator and its moments. One interesting example of
the wait first model assumes that the jump length is distributed
as a Gaussian function with a variance which linearly depends
on the waiting time. In this case, for the power-law distributed
waiting times, the resulting equation contains the diffusion
operator but in a fractional power (Shlesinger, Klafter, and
Wong, 1982; Becker-Kern, Meerschaert, and Scheffler, 2004).
In the spirit of the Lévy-walk model with rests, one can also
add velocity to the above two coupled models. It is interesting
to see how a new effective velocity arises as a combination of
the coupling a−1 and actual velocity of the particles v, veff ¼
v=ð1þ avÞ (Zaburdaev, 2006). In this direction, one could
consider more general models. For example, variation of the
Lévy walk, in which the waiting times are power law
distributed but jump lengths scale nonlinearly with waiting
times ψðxjτÞ ¼ ψðτÞδðjxj − uτβÞ, with β > 0 and β ≠ 1. A
nonlinear coupling provides a way to step beyond a ballistic
scaling regime of Lévy walks. It appears in the description of
anomalous Richardson diffusion (Shlesinger, Klafter, and
West, 1986; Klafter, Blumen, and Shlesinger, 1987;
Shlesinger, West, and Klafter, 1987) with β ¼ 3=2 or, in a
slightly more involved form, in the context of cold atom
dynamics with the same β ¼ 3=2, which we discuss in
Sec. V.E.
With this section we finalize the review of the existing

random walk models which embrace the concept of finite
velocity of particles and the coupled nature of the spatio-
temporal transport process. The following Sec. IV is dedicated
to more sophisticated properties of Lévy walks and more
advanced tools for their analysis.

IV. PROPERTIES OF LÉVY WALKS

While the results of the previous sections can be rated as
basic tools needed for applications of Lévy walks in practice,
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FIG. 11 (color online). Propagators of coupled models. Analyti-
cal solutions for the propagators of the wait first (dashed line) and
jump first (dash-dotted line) models are compared with a Lévy-
walk propagator (solid line) in the ballistic regime with γ ¼ 1=2.
The results are obtained by the method discussed in Sec. IV.B; see
Froemberg et al., (2015).

FIG. 10 (color online). Comparison of trajectories of the Lévy-
walk model and two coupled models, “wait first” and “jump
first.” Trajectories of all three models are passing through the
same points on the ðx; tÞ diagram, but taking different paths. The
positions of particles at time t are determined by their last steps.
From Froemberg et al., 2015.
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the following material goes into more detail and as a result is
more involved. However, it touches upon fundamental con-
cepts of physics, such as aging, ergodicity, and space-time
correlations. Most of these results are very recent thus
indicating that the properties of Lévy walks are still being
explored.

A. Space-time velocity autocorrelation function

Finite velocity of walking particles brings a random walk
model closer to the basic physical principles and makes it
more suitable for the description of real-life phenomena.
However, the presence of the well-defined velocity in random
walks brings additional properties to these stochastic process.
In the realm of the continuous mechanics, the space-time
velocity autocorrelation function is a fundamental quantity
characterizing the dynamics of a fluid or other media. It
reveals the relation between the velocities at two distant points
and two different instants of time. Remarkably, the notion of
continuous theory can be adapted to the single-particle process
of random walks. We can ask how the velocity of a random
walker is correlated to its own velocity at some later moment
of time but also at a certain distance from the starting point. A
naive expectation for a random walk, where each next step is
independent from the previous one, is that the correlations will
be zero at a distances larger than a single flight. It was shown,
however, that even for the regime of classical diffusion, but
with finite velocity, the space-time velocity correlation func-
tion is different from zero and has a nontrivial space-time
dependence (Zaburdaev, Denisov, and Hänggi, 2013).
The space-time velocity autocorrelation function for a

single-particle process can be redefined from the conventional
expression (Monin, Yaglom, and Lumley, 2007)

Cvvðx; tÞ ¼ hvð0; 0Þvðx; tÞi: ð51Þ

We assume that the particle starts its walk with an initial
velocity vðx ¼ 0; t ¼ 0Þ ¼ v0. After a time t the particle is
found at the point x with some velocity vðx; tÞ. To estimate
Cvvðx; tÞ, an observer at time t averages the product of the
actual and the initial velocities of all particles that are located
within a bin ½x; xþ dx�. It can be formalized in the following
way:

Cvvðx; tÞ ¼
Z

∞

−∞

Z
∞

−∞
vv0

Pðv; x; v0; tÞ
Pðx; tÞ dv0dv; ð52Þ

where Pðv; x; v0; tÞ is the joint PDF for a particle to start with
velocity v0 and to be in the point x at time t with velocity v.
The particle has first to arrive at the point x for the
measurement to occur; therefore we use Bayes’ rule
(Grinstead and Snell, 1997) for the conditional probability
to obtain the integral above. The spatial density Pðx; tÞ is
usually a known quantity for a given random walk model. In
contrast, a challenging quantity to tackle is the joint proba-
bility of particles’ positions and velocities. To focus on its
role, the spatial density of the velocity correlation function can
be introduced:

Cðx; tÞ ¼
Z

∞

−∞

Z
∞

−∞
vv0Pðv; x; tjv0Þhðv0Þdv0dv: ð53Þ

Here hðv0Þ is the distribution of the initial velocities, which
also signals that we are using the formulation of the random
walk with random velocities. The integration over x, Eq. (53)
yields the standard temporal velocity autocorrelation function
CðtÞ ¼ hvð0ÞvðtÞi. Normalizing Cðx; tÞ by the particle density
Pðx; tÞ, we return to the original velocity-autocorrelation
function:

Cvvðx; tÞ ¼ Cðx; tÞ=Pðx; tÞ: ð54Þ

As for every model we considered so far, the integral transport
equations can be derived for Pðv; x; tjv0Þ and solved by using
the Fourier-Laplace transforms. The definition of the velocity
autocorrelation function contains two additional integrals
with respect to the final and initial velocities, which makes
the final answer more involved (Zaburdaev, Denisov, and
Hänggi, 2013).
However, the asymptotic analysis of the general answer in

the limit of large time and space scales retrieves some
surprisingly simple results. Consider first the Lévy-walk
regime of the velocity model, hðvÞ ¼ ½δðv − υ0Þþ
δðvþ υ0Þ�=2, with a power-law distributed flight time,
Eq. (8). The density of particles is sandwiched between the
two ballistic peaks. For the peaks we get Cðx ¼ �υ0t; tÞ ¼
υ20ΨðtÞδðx� υ0tÞ=2 and Cv;v ¼ υ20. For the central part of the
propagator, in the regime of classical diffusion, γ > 2, the
density of the correlation function is proportional to the first
time derivative of the particle’s density:

Ccentrðx; tÞ ¼ υ20DhτiΔPðx; tÞ ¼ υ20hτi
∂Pðx; tÞ

∂t : ð55Þ

The above asymptotic result is valid for any flight-
time distribution with a finite second moment; see
Fig. 12(a). We consider this result more closely. As men-
tioned, by integrating the density of the space-time velocity-
autocorrelation function over the coordinate we should obtain
the standard temporal correlation function CðtÞ. In the long
time limit, the integral of the central part is approaching zero
[because of the Laplacian operator in Eq. (55)]. The only
nonzero contribution comes from the ballistic peaks which
lead to CðtÞ ¼ u20ΨðtÞ: velocities of particles remain corre-
lated only during the flight time. If, for example, the flight
time is exponentially distributed, the standard temporal
velocity autocorrelation function decays very fast,
CðtÞ ¼ υ20e

−t=τ0 . If we look at the density of velocity-velocity
autocorrelation at zero x ¼ 0, from Eq. (55) it follows that
Cðx¼ 0; tÞ¼−υ20hτiðπDÞ−1=2t−3=2. First, correlations at x ¼ 0

are negative, and second, they decay in time algebraically like
t−3=2. This decay to zero is faster than that of the density of
particles, Pðx ¼ 0; tÞ ∝ t−1=2, but still much slower than the
exponential decay of the temporal correlation function. It
highlights the fact that the space-time velocity correlation
function provides access to long-lived correlations and there-
fore increases the chance of their detection in experiments.
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For the regime of the superdiffusive Lévy walk 1 < γ < 2,
the formula with the first time derivative remains valid. By
further exploiting the properties of the time derivative we see
that the velocity autocorrelation function is negative near the
point x ¼ 0; see Fig. 13. Upon the departure from the origin
the correlation density becomes positive and produces two
local maxima. These maxima are traveling with the power-law
scaling x�m ∝ �t1=γ , while the height of the maxima decays
as t−1−1=γ .

As we continue to move toward more anomalous behavior,
for example, to the ballistic regime of Lévy walks, the
correlations decay in time even slower (Zaburdaev,
Denisov, and Hänggi, 2013). Finally, an example was given,
when the velocity distribution of the particles was Lorentzian;
see Sec. III.A. In that case the density of the space-time
velocity autocorrelation function was proportional to the
particle density Cðx; tÞ ∼ −Pðx; tÞ; see Fig. 12(b).
In all considered regimes there is a region of negative

correlations at the vicinity of the starting point. This means
that the majority of particles found there are moving in the
direction opposite to that of their initial motion. The shape of
the “echo” region and the time scaling of its width are model-
specific characteristics. Interestingly, simulations of a stochas-
tic process described by a system of Langevin equations
in the regime of classical Brownian diffusion show analogous
results [see Zaburdaev, Denisov, and Hänggi (2013) and its
Supplementary Material for additional plots], thus suggesting
that these findings are applicable to a broad class of stochastic
transport processes characterized by a finite velocity of
moving particles.
Here we considered only a simple initial condition, when all

particles instantly change their velocity at t ¼ 0. As a result,
the temporal correlation function CðtÞ obtained by the
integration of the density of the space-time velocity correla-
tions describes velocity correlations in a specific setting: the
initial velocity is always taken right after the reorientation
event and the second velocity is measured after the lag time t.
In general, the temporal velocity autocorrelation function
depends on two arbitrary times t1 and t2, when the corre-
sponding velocities of particles are measured. Such a two-
point correlation function was considered before in the context
of CTRW (Barkai and Sokolov, 2007; Baule and Friedrich,
2007; Zaburdaev, 2008; Dechant et al., 2014), and also for the
case of Lévy walks [see Sec. VI.C and Froemberg and Barkai
(2013a) and Taktikos, Stark, and Zaburdaev (2013)]. These
results call for the generalization of the space-time velocity
correlation function to a broader class of initial conditions.

B. Exact solutions for ballistic random walks

The asymptotic analysis is useful but in many cases it is still
impossible to analytically obtain the expression for the
propagators in real time and space. Interestingly, for random
walk models which have the ballistic scaling, there is a
particular method to calculate the inverse Fourier-Laplace
transform without performing it directly. It immediately gives
the shape of the scaling function FðξÞ; see Eq. (16). The
method is similar to the one proposed by Godrèche and Luck
(2001) and used for the analysis of the renewal process and the
inversion of the double Laplace transform. The problem of
finding the PDF in ballistic regimes is intimately related to the
problem of time averages (Rebenshtok and Barkai, 2008), as
the scaled position of the particle after time T is given by

x=T ¼ 1

T

Z
T

0

vðtÞdt; ð56Þ

which is a time average of the particle’s velocity. In appli-
cation to the random walk concept, the method of Godrèche

FIG. 12 (color online). Propagators (thin line) and space-time
velocity autocorrelation function (thick line) at time t ¼ 50 for
two extreme cases of the random walk with random velocities
(see Sec. III.A), with the flight-time PDF ψðτÞ ¼ δðτ − 1Þ, for
(a) hðυÞ ¼ ½δðυ − u0Þ þ δðυ − u0Þ�=2 and (b) hðυÞ in the form of
Cauchy distribution, Eq. (45). In the first case, the autocorrelation
function is proportional to the second spatial derivative of the
propagator Cðx; tÞ ∝ ΔPðx; tÞ [see the inset where both functions
are plotted together, with ΔPðx; tÞ weighted as in Eq. (55)], while
in the second case Cðx; tÞ ∼ −Pðx; tÞ. The functions were
sampled with N ¼ 107 realizations. The parameter u0 ¼ 1.

FIG. 13 (color online). Space-time velocity autocorrelation
function of Lévy walks in the superdiffusive regime. The
space-time evolution of correlations shows a negative dip near
x ¼ 0 and two spreading maxima. The integral of the central part
with respect to the coordinate is equal to zero. The ballistic peaks
carry the correlations of the particles which are still in their first
flight. The dashed lines indicate the positions of local maxima x�m
on the x − t plane which follow the power-law scaling
x�m ∝ �t1=γ , while the height of the maxima decays as t−1−1=γ .
The inset depicts spatial profiles of Cðx; tÞ for two different
instants of time, t ¼ 20 (thick line) and 50 (thin line), γ ¼ 3=2.
From Zaburdaev, Denisov, and Hänggi, 2013.
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and Luck has the following formulation. Assume that the
propagator of the random walk model has the following
scaling form:

Gðx; tÞ ¼ 1

t
F

�
x
t

�
: ð57Þ

In the Fourier-Laplace space it can be represented as

Gðk; sÞ ¼ 1

s
f

�
ik
s

�
¼ 1

s
fðζÞ; ζ ¼ ik

s
: ð58Þ

Finally, by using the Sokhotsky-Weierstrass theorem [see
Froemberg et al. (2015) for more details]

FðξÞ ¼ −
1

πξ
lim
ϵ→0

Imf

�
−

1

ξþ iϵ

�
; ð59Þ

where ξ ¼ x=t is the scaling variable. This formula allows us
to compute the shape of the propagator without calculating the
inverse Fourier-Laplace transforms.
We first give an example corresponding to the standard

Lévy-walk model with a constant speed v and set it to unity
for simplicity v ¼ 1. The asymptotic profile of the Green’s
function in the Fourier-Laplace space is given by Eq. (33)
from which we can easily identify

fðζÞ ¼ ð1 − ζÞγ−1 þ ð1þ ζÞγ−1
ð1 − ζÞγ þ ð1þ ζÞγ : ð60Þ

Now by using Eq. (59) we can find the shape of the scaling
function to be

FðξÞ ¼ sin πγ
π

×
jξ − 1jγjξþ 1jγ−1 þ jξþ 1jγjξ − 1jγ−1

jξ − 1j2γ þ jξþ 1j2γ þ 2jξ − 1jγjξþ 1jγ cos πγ ;

ð61Þ

which is the Lamperti distribution (Lamperti, 1958). For
another illustration we ask how the shape of the velocity
distribution of a random walking particle affects the shape of
the corresponding propagator. For that consider the model
with random velocities, Sec. III.A, in the ballistic regime
(γ ¼ 1=2) with four different velocity distributions hðvÞ:
(a) two delta peaks (Lévy-walk regime), (b) Gaussian, (c) uni-
form on a symmetric bounded interval, and (d) Lorentzian
(Cauchy). Equation (59) gives analytical answers for the
scaling function Fðx=tÞ for all four cases. Figure 14 shows
that the velocity distribution has a pronounced effect on the
shape of the particles’ density. Namely, we see the familiar
U-like profile for the standard Lévy-walk model, more of a
bell-shaped profile but still bounded by fronts for the uniform
velocity distribution, and unbounded bell-shaped profile for
the Gaussian velocity distribution. The Lorentzian case is
special as it does not depend on the flight-time distribution
and has diverging moments.
We note here that this approach does not require the finite

velocity of particles, it only relies on the existence of the

ballistic scaling. Therefore it can also be applied to the coupled
setups as wait or jump first models (this is how the plots in
Fig. 11 were obtained). We present these analytical results to
emphasize that even a model of random walks with random
velocities can be thoroughly analyzed with the help of the
combination of asymptotic analysis and elegant mathematical
machinery. It would be challenging to try to extend or find
similar approaches to other scaling regimes of random walks.

C. Infinite densities of Lévy walks

Many statistical properties of a Lévy-walk process can be
evaluated from the corresponding propagator, Eqs. (6) and (7).
For superdiffusive sub-ballistic regimes the central part of the
propagator is subjected to the generalized central limit theorem
and thus it is given by the symmetric Lévy distribution
Lγ½x; σðtÞ�, with σðtÞ ¼ ðKγtÞ1=γ . However, this fundamental
fact does not allow for calculations of the moments, starting
from the second one, simply because they do not exist for Lévy
distributions. The confinement of the process to the ballistic
cone should be taken into account and in order to calculate
higher-order moments one needs to know the behavior of the
propagator at the vicinity of the ballistic fronts. These regions
are out of the validity domain of the gCLTand a complementary
theory is needed. The concept of infinite measure (Aaronson,
1997; Thaler and Zweimüller, 2006) provides us with such
theoretical framework (Rebenshtok et al., 2014a, 2014b).
In the intermediate region t1=γ < jxj < t the Lévy-walk

propagator scales as Pðx; tÞ ∼ t=jxj1þγ . Since a power law is a
scale-free function, there are infinitely many different scaling
transformations which match power-law tails of the propaga-
tors for different times tξPDFPðx=tξx ; tÞ, with linearly related
scaling exponents ξPDF ¼ ξxð1þ γÞ − 1. When ξx¼1=γ we
have the familiar Lévy scaling, Eq. (16), with α ¼ 1=γ, which
matches the central parts of the propagators. For ξx ¼ 1wehave
a “ballistic” scaling tγPðx=t; tÞ, which matches the outmost
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FIG. 14 (color online). Exact solutions of ballistic Lévy walks.
Analytical results obtained from Eq. (59) for the scaling functions
of the random walks with random velocity model in the ballistic
regime (γ ¼ 1=2), for four different velocity distributions: two
delta peaks corresponding to the Lévy walk (solid line), Gaussian
(dash-dotted), uniform on an interval (double dash-dotted), and
Cauchy (dashed). See Froemberg et al. (2015) for details.
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fronts of the propagators. This scaling is suitable for the analysis
of the asymptotic evolutions of the high-order moments
determined by the propagator tails. We next introduce a scaled
ballistic variable ξ ¼ x=t and define a density over this variable
as (Rebenshtok et al., 2014b)

IðξÞ ¼ lim
t→∞

tγPðx=t; tÞ: ð62Þ

This function scales differently from the Lévy distribution
Lγ½x; σðtÞ� and it is non-normalizable,5

R∞
−∞ IðξÞdξ ¼ ∞,

because of the power-law singularity in the limit ξ → 0,
IðξÞ≃ cγKγjξj−1−γ . For the general case of the Lévy walks
with random velocities, the infinite density is given by
(Rebenshtok et al., 2014a)

IðξÞ ¼ B

�
γF γðjξjÞ
jξj1þγ −

ðγ − 1ÞF γ−1ðjξjÞ
jξjγ

�
; ð63Þ

where

F γðξÞ ¼
Z

∞

jξj
dvvγhðvÞ: ð64Þ

It is not surprising that, in contrast to the universal Lévy-like
central part of the Green’s function, the infinite density, which
describes function’s tails, is specific to the velocity distribution
hðvÞ [it is assumed that this PDF is not heavy tailed so the
integral (64) is finite]. It accounts for the particles with highly
correlated flying histories so that the velocity PDF is imprinted
into the tails of the PDF Pðx; tÞ. Two ends meet in the
intermediate region where both functions scale similarly
Lγ½x=σðtÞ� ∼ Iðx=tÞ ∼ x−1−γ . For large t two densities match
nearly perfectly at the point

xcðtÞ ¼
�

cγ
Lγð0Þ

�
1=1þγ

ðKγtÞ1=γ

so that the propagator Pðx; tÞ can be approximated with high
accuracy by gluing two functions (properly scaled beforehand)
at the point xcðtÞ; see Fig. 15.
Now the fractional moments can be calculated as

hjxjqi≃ 2

Z
xcðtÞ

0

Lγ

�
x

ðKγtÞ1=γ
�
ðKγtÞ−1=γxqdx|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

inner region

þ 2

Z
∞

xcðtÞ
I
�
x
t

�
t−γxqdx

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
outer tails

: ð65Þ

In the long-time limit, the lower limit of the second integral
xcðtÞ=t → 0 while the upper limit of the first integral is a
constant. For q > γ the second integral is by far larger than the
first, hence we may neglect the inner region and get

hjxjqi ∼ 2tqþ1−γ
Z

∞

0

IðξÞξqdξ. ð66Þ

When q < γ the contribution from the second integral is
negligible in the limit t → ∞ and the upper limit of the first
integral is taken to infinity; hence, after a change of variables
y ¼ x=σðtÞ, and using the symmetry LγðyÞ ¼ Lγð−yÞ, we are
left with

hjxjqi ∼ ðKγtÞq=γ
Z

∞

−∞
LγðyÞjyjqdy: ð67Þ

These results prove that sub-ballistic Lévy walks belong to the
class of strongly anomalous diffusion processes whose
asymptotic moments satisfy Eq. (37) with qνðqÞ ¼ q=γ for
q < γ and qνðqÞ ¼ qþ 1 − γ for q > γ; see Fig. 5. There is
also a phase-transition-like crossover at the point qc ¼ γ in
terms of the moment prefactors Mq; see the inset in Fig. 5.
Finally, the knowledge of both the Lévy PDF and infinite
density allows one to calculate observables that are not
integrable with respect to either of the two densities, for
example, fðxÞ ¼ 1þ x2 (Rebenshtok et al., 2014a).
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FIG. 15 (color online). Ballistic scaling of the propagators of the
Lévy-walk model with random velocities (see Sec. III.B) for the
velocity distribution hðvÞ uniform on the interval ∈ ½−1; 1� and
α ¼ 3=2. The corresponding infinite density (dashed line),
Eq. (62), matches the tails of the rescaled propagators. The inset
shows the propagator for a shorter time plotted together with a
rescaled Lévy distribution (solid line) and infinite density (dashed
line). The propagator is barely visible due to the perfect matching
of the theoretical curves at the central region near x ¼ 5000. The
propagators were sampled with N ¼ 1010 realizations. Adapted
from Rebenshtok et al., 2014a.

5The non-normalizable density function IðξÞ should not be
thought of as a probability density function (the latter is always
normalizable). The infinite density relates to a mathematical concept
of a spatially varying function, defined on a smooth manifold that is
locally integrable almost everywhere. Non-normalizable densities are
no strangers to physics; check, for example, for non-normalizable
energy densities in black holes and non-normalizable densities of
states in relativistic quantum dynamics.
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D. Memory effects and ergodicity breaking in Lévy walks

In general, a continuous-time random walk model is a non-
Markovian process, meaning that the future of a particle
depends not only on the particle’s current state, namely, its
position and velocity, but also on its prehistory, like how long
it was waiting, or how long it was flying already.
As a result, a CTRW process cannot be fully characterized

by its PDF, but requires the knowledge of all higher-order
correlation functions (Hänggi and Thomas, 1982). However,
CTRWs and Lévy-walk models we considered so far, where
each next step is independent of the previous, represent the so-
called semi-Markov processes. In a semi-Markov process, the
points where jumps or velocity changes occur form a Markov
chain; the renewal events at those points erase all previous
memory. In between the renewal points, to predict the future
of the particle, we need to know how long it was in its current
state. In some cases, the limiting transport equations are
consistent with Markovian dynamics, as in the case of normal
diffusion Eq. (13) or superdiffusion Eqs. (22) and (23), and
preserve the continuity of evolution for the times exceeding
the average waiting times. In other cases, when the mean time
diverges, the asymptotic transport equations are obviously of a
non-Markovian nature, as in the case of CTRW in the
subdiffusive regime, when the corresponding transport equa-
tion has a fractional time derivative. A large body of work
addressing the semi-Markov property and its consequences
for the CTRW models exists and next we will look only at
those which are pertinent to Lévy walks.
In the context of Lévy walks, there are two important

interrelated issues which relate to the power-law distributed
flight times. The first issue concerns the effects of the initial
distribution of particles with respect to their flight times on
future evolution of the PDF Pðx; tÞ (Sokolov, Blumen, and
Klafter, 2001; Barkai, 2003; Barkai and Cheng, 2003;
Zaburdaev and Chukbar, 2003; Aquino et al., 2004;
Zaburdaev and Sokolov, 2009). The second issue is the weak
ergodicity breaking (WEB) and it points to the fact that time
and ensemble averaged quantities can be different from each
other (Bel and Barkai, 2005; Rebenshtok and Barkai,
2007, 2008).
The problem of the initial preparation of the system of

particles is important for all random walk models. So far we
always assumed that all particles were introduced to the
system at t ¼ 0, that is they had no history. In this case, the
probabilities to make the first jump after a certain waiting
time, or to make the first turn after a flight time, are governed
by the same waiting time or flight time PDFs ψðτÞ. However,
if at t ¼ 0 a particle has already collected some “history,” for
example, it was sitting at a given point or it was in the state of
flight for some time τ1, then the PDF for it to make the first
jump (first turn) at time τ is in general different from ψðτÞ.
This case is handled by the so-called renewal theory (in this
simple case, it is just the implementation of the conditional
probability formula) (Tunaley, 1974; Haus and Kehr, 1987):

ψ firstðτjτ1Þ ¼
ψðτ þ τ1Þ
Ψðτ1Þ

: ð68Þ

The only distribution function which is not affected by the
prehistory is the exponential distribution and because of that it
is often called memoryless. In general, the initial distribution
of particles over the flight or waiting times may affect the
following evolution. An approach to incorporate this distri-
bution was developed for the CTRW model and can be
extended to the Lévy-walk case (Zaburdaev and Chukbar,
2003; Zaburdaev, 2008). Here we mention one important
example of the memory effects. Assume that before starting
observation we let the system evolve for time t1 and then
require that t1 → ∞. This is a so-called equilibrated [or
stationary (Klafter and Zumofen, 1993)] setup where we
assume that the system reaches a certain equilibrium before
we start measuring it. In contrast, the setup where all particles
are introduced to the system at t ¼ 0 and do not have
prehistories is called a nonequilibrated [nonstationary
(Klafter and Zumofen, 1993)] setup. For the equilibrated
case, one has to imagine a system with an infinite number of
particles in unbounded domain but with a fixed uniform
density. Particles evolve according to their random walk
model for an infinite time. At some time point which we
denote as t ¼ 0we mark all particles located at x ¼ 0 and then
follow the evolution of marked particles only. It can be shown
that, in the equilibrated setup, the probability of making the
first reorientation event after the observation started is given
by the following PDF [see, e.g., Denisov, Zaburdaev, and
Hänggi (2012) for a simple derivation]:

ψ̄ðtÞ ¼ 1

hτi
Z

∞

0

ψðtþ τÞdτ: ð69Þ

If the flight times are too long, such that the mean flight time
diverges, there is no reason to talk about the equilibrated setup
as it simply does not exist. The prehistory affects only the
probability of the very first reorientation effect to occur; in
terms of the transport equations, it will lead to the new terms
on the right-hand sides of Eqs. (25)–(27):

νðx; tÞ ¼ � � � þ ψ̄ðtÞδðjxj − vtÞP0; ð70Þ

Pðx; tÞ ¼ � � � þ Ψ̄ðtÞδðjxj − vtÞP0; ð71Þ

and consequently to different propagators. Here the corre-
sponding probability of not changing the direction till time t,
Ψ̄ðtÞ, is given by the similar integration as in Eq. (69):
Ψ̄ðtÞ ¼ ð1=hτiÞ R∞

0 Ψðtþ τÞdτ. Finally, the exponent in the
power-law tail of ψ̄ðτÞ ∝ t−γ is smaller in the case of the
equilibrated setup than in the nonequilibrated case
ψðτÞ ∝ t−1−γ , meaning a longer lasting influence of the initial
distribution on the consequent evolution. Understanding of
these memory effects is important for the analysis of exper-
imental data or comparison of theory and simulations, as we
will exemplify when discussing applications.
The problem of WEB (Bouchaud, 1992) is of great interest

in both theoretical and experimental communities (Brokmann
et al., 2003; Margolin and Barkai, 2005; He et al., 2008;
Lubelski, Sokolov, and Klafter, 2008; Jeon et al., 2011;
Weigel et al., 2011). WEB, similarly to memory effects
discussed previously, is found in systems with temporal
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dynamics governed by power-law distributed time variables
with diverging means (Barkai, 2008). Ergodicity breaking is
called weak if the whole phase space of the system can be
explored, but the ergodicity is never reached because the
characteristic times involved in the corresponding process are
always of the order or longer than the total measurement time.
In practice it means that the time average of a certain quantity
itself is random and can be characterized by a nontrivial
distribution. In the case of the fully ergodic system the
distribution of time averages has a shape of the delta function
at the value of the corresponding ensemble average. The most
pronounced effects of WEB can be observed for subdiffusive
systems (Bel and Barkai, 2005; He et al., 2008; Lubelski,
Sokolov, and Klafter, 2008); however, Lévy walks, as they
may involve flight-time distributions with infinite flight times,
also exhibit WEB. In several recent studies (Akimoto, 2012;
Froemberg and Barkai, 2013b; Godec and Metzler, 2013a),
the effects of WEB in Lévy walks were investigated on the
example of the mean squared displacement calculated as time
and ensemble average. The time averaged MSD is defined as

δx2ðτÞ ¼ 1

ðT − τÞ
Z

T−τ

0

½xðtþ τÞ − xðtÞ�2dt; ð72Þ

where T is the measurement time and τ is the lag time. Several
observations were made. In the superdiffusive sub-ballistic
regime, the time averaged MSD for finite measurement time T
shows different apparent scaling for large τ (but τ is still much
smaller than T). Some of the individual trajectories can even
demonstrate the subdiffusive behavior. Godec and Metzler
(2013a) attributed this effect to the finiteness of the trajecto-
ries. Another quantity which can be constructed is the

ensemble average of the time averaged MSD hδx2ðτÞi. This
quantity now can be compared with the ensemble averaged
MSD hx2ðτÞi, namely, by calculating the ratio of the former to
the latter giving the so-called ergodicity breaking parameter

EB ¼ hδx2ðτÞi=hx2ðτÞi. For the superdiffusive Lévy walk in
the limit τ → ∞ it tends to a constant value EB ¼ 1=ðγ − 1Þ.
To draw the connection to the previously discussed memory
effects we note that the ensemble-time averaged MSD

hδx2ðτÞi corresponds to the ensemble averaged MSD of the
equilibrated setup, whereas simple ensemble average MSD is
calculated for the nonequilibrated setup (Klafter and
Zumofen, 1993). Froemberg and Barkai (2013b) considered
the ballistic regime of Lévy walks as well. In that case the
WEB effect is also present, but, surprisingly, is not as
pronounced as in the superdiffusive case. The ensemble-time
average can also be calculated analytically. Its leading term

(assuming τ=T ≪ 1) is given by δx2ðτÞ ∼ ðv0τÞ2. Note that the
ensemble averaged MSD has a different prefactor
hx2ðτÞi ¼ ð1 − γÞðv0τÞ2. Furthermore the fluctuations of the

shifted quantity δx2ðτÞ − ðv0τÞ2 can also be quantified; see
Froemberg and Barkai (2013b) for details.
Ergodicity breaking effects discussed here are essential for

the analysis of the experimental data, particularly in biology,
where due to the limited number of measurements one has to
resort to the time averaging and always deals with trajectories
of finite length. In addition, understanding of the fluctuations

in time averaged observables can help to obtain more
information about the underlying stochastic process
(Dechant et al., 2014; Schulz, Barkai, and Metzler, 2014).
There is also a very recent work on Einstein relation,
fluctuation dissipation, and linear response (Froemberg and
Barkai, 2013b; Godec and Metzler, 2013b). We refer the
interested reader to a recent review by Metzler et al. (2014).

E. Langevin approach and fractional Kramers equation

In the Introduction we mentioned the Langevin equation as
an approach to stochastic transport phenomena complimen-
tary to the random walk paradigm. Random walks have their
strength in the flexibility of the model construction and
amenability of the corresponding transport equations to the
analytical treatment. Langevin equations utilize the machinery
of stochastic differential equations and provide a link to the
Fokker-Planck equation (Risken, 1996). The Langevin equa-
tion was originally proposed in 1908 to describe the Brownian
motion (Lemons and Gythiel, 1997). Since then it has grown
into a powerful tool of modern physics (Coffey and
Kalmykov, 2012). This success was certainly supported by
rigorous mathematical foundations laid by mathematicians,
such as N. Wiener, Itō, and Stratonovich. In many cases, the
equivalence of random walks and the corresponding Langevin
equations can be explicitly demonstrated in a proper limit.
That includes also regimes of normal and anomalous diffu-
sion, with both subdiffusion and superdiffusion. This line of
research led to the formulation of the fractional Fokker-Planck
(Metzler, Barkai, and Klafter, 1999; Barkai, Metzler, and
Klafter, 2000; Barkai, 2001; Chechkin, Klafter, and Sokolov,
2003; Heinsalu et al., 2007) and Klein-Kramers equations
(Barkai and Silbey, 2000; Metzler and Sokolov, 2002;
Friedrich et al., 2006a; Eule et al., 2007; Dieterich et al.,
2008), and it remains an active field of research up to now.
One of the Langevin pathways to Lévy walks was recently

proposed by Kessler and Barkai (2012) (discussed in more
detail in Sec. V.E). In brief, the dynamics of the particle is
governed by the Langevin equation with a standard white
noise term but with a nonlinear friction, Eq. (88). On a
mesoscopic scale the trajectory of the particle fxðtÞ; pðtÞg can
be divided into flights that are events of unidirectional motion.
Time duration of the ith event τi is given by the time lag
between two consecutive “turns” marked by sign alternations
of the momentum pðtÞ. Marksteiner, Ellinger, and Zoller
(1996) showed that, within a certain parameter range, the PDF
of the flight time scales as ψðτÞ ∝ τ−1−γ , with a parameter-
dependent exponent γ. The flight time and flight distance are
coupled in a nontrivial way, such that the corresponding
random walk description of the particle dynamics does not
reduce to the simple Lévy-walk model with linear coupling
between x and t (Kessler and Barkai, 2012; Barkai, Aghion,
and Kessler, 2014).
In an attempt to model real-life continuous trajectories

similar to those of Brownian motion but exhibiting anomalous
diffusion, a Langevin equation with a special form of multi-
plicative noise term was suggested (Lubashevsky, Friedrich,
and Heuer, 2009a, 2009b). A trajectory generated by this
Langevin equation, when sampled at fixed time intervals, will
reproduce the behavior of the Lévy-flight model.
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Finally, to achieve a one-to-one correspondence of the
Langevin picture and the Lévy-walk model one can use the
method of subordination (Fogedby, 1994). In this case an
additional variable is introduced, which is called an opera-
tional time. The dynamics of velocity occurs in this opera-
tional time and can be tuned to produce the desired velocity
distributions hðvÞ. The real time is connected to the opera-
tional time via its own stochastic equation with a noise term
which generates long traps in real time space. Those traps
correspond to the long flight intervals as required for the
Lévy-walk model; see Eule et al. (2012) for more detail. This
phenomenological approach allows one to connect the world
of Langevin equations to Lévy walks where the constant speed
of a particle during a long time interval is crucial, remaining,
at the same time, very different from a standard Brownian
trajectory where the velocity is constantly changing.
A complementary approach to study anomalous stochastic

transport is to generalize the Kramers-Fokker-Planck equa-
tion. Several versions of generalized Kramers-Fokker-Planck
equations were suggested in the literature [summarized in
Eule et al. (2007)]. Here we follow a scheme by Friedrich
et al. (2006a) with a ballistically moving particle subjected to
random kicks which alter its velocity. Provided the times
between consecutive collisions are distributed as a power law,
the fractional Kramers-Fokker-Planck equation for the joint
position-velocity distribution fðr; v; tÞ can be obtained

� ∂
∂tþ v∇r þ FðrÞ∇v

�
fðr; v; tÞ ¼ LFPD

1−γ
t fðr; v; tÞ: ð73Þ

Here LFP is the Fokker-Planck operator LFPf ¼
~γ∇v · ðvfÞ þ κΔvf, and D1−γ

t is the fractional substantial
derivative defined through its Laplace transform as
L½D1−γ

t fðtÞ� ¼ ½sþ v ·∇r þ FðrÞ ·∇v�1−γfðsÞ. Further, FðrÞ
is the external force, ~γ is the generalized friction coefficient,
and κ is related to the amplitude of the noise in the
corresponding Langevin equation for the velocity of the
particle. For rigorous derivation and many technical details
see Friedrich et al. (2006a, 2006b), and Carmi and Barkai
(2011). By appropriate modifications, the above equation can
be simplified to give the equations of the random walk with
random velocity model (Zaburdaev, Schmiedeberg, and Stark,
2008) and of the Lévy-walk model (Eule, Friedrich, and
Jenko, 2008). The genetic link between Lévy walks, Langevin
equations, and fractional Fokker-Planck equations certainly
needs to be investigated further (Lubashevsky, Friedrich, and
Heuer, 2009a, 2009b; Turgeman, Carmi, and Barkai, 2009;
Magdziarz, Szczotka, and Zebrowski, 2012).
At this point it would be timely to mention two relevant

approaches (which, however, fall beyond the scope of this
review). That is the fractional Brownian motion, which is
characterized by a Gaussian but time correlated noise
(Mandelbrot and Ness, 1968), and the generalized
Langevin equation, which contains an integral operator with
a memory kernel on the right-hand side of the equation
governing the velocity increments (Zwanzig, 2001). Both
approaches are useful in describing various transport proc-
esses across disciplines. They possess, however, very distinct

features that are different from those of the random walk
concept; in relation to the questions already discussed in this
review, we direct the interested reader to Magdziarz et al.
(2009), Eliazar and Shlesinger (2013), and Meroz, Sokolov,
and Klafter (2013).

V. LÉVY WALKS IN PHYSICS

Physics is a natural habitat of random walk models (de
Gennes, 1979; Fernandez, Fröhlich, and Sokal, 1992; Weiss,
1994). During the last 25 years, the Lévy-walk model has
found a number of applications, mostly in classical chaos and
nonlinear hydrodynamics (Klafter, Shlesinger, and Zumofen,
1996; Shlesinger, Klafter, and Zumofen, 1999; Klafter and
Sokolov, 2011). Geisel and Thomae (1984) were the first to
consider an intermittent ballistic motion with power-law
flight-time PDFs in the context of deterministic chaos.
Later on, Geisel, Nierwetberg, and Zacherl (1985) studied a
model of the rotational phase dynamics in a Josephson
junction, by using a one-dimensional map

xnþ1 ¼ gðxnÞ; ð74Þ

assuming discrete translational and reflection symmetries,

gðxþ NÞ ¼ gðxÞ þ N; gð−xÞ ¼ −gðxÞ; ð75Þ

where N denotes the number of the unit box ½N − 1; N�. With
this setup, the definition of the map is required only for the
reduced range 0 ≤ x ≤ 1. It can be extended then over x ∈
½−∞;∞� by using symmetries in Eq. (75). Geisel,
Nierwetberg, and Zacherl (1985) used a nonlinear map,

ḡðxÞ ¼
� ð1þ ϵÞxþ axz − 1; 0 ≤ x ≤ 1=2;

2 − ð1þ ϵÞð1 − xÞ − að1 − xÞz; 1=2 ≤ x ≤ 1;

ð76Þ

where ϵ is a small constant and a ¼ 2zð1 − ϵ=2Þ. The profile
of the corresponding extended map gðxÞ for z ¼ 5=3 is shown
in Fig. 16(a). Because of the power-law form of the second
term on the right-hand side of Eq. (76), the reduced variable
xmod1 tends to cluster near the semistable points xN ¼ N.
Once entered into the vicinity of one of these points, a
trajectory performs a unirotational motion with a near constant
rate jxnþ1 − xnj ¼ 1. The rotation direction depends on the
point to which the trajectory stuck, υ ¼ 1 when it stuck to
xþN ¼ N − 0 [x ¼ 1 in the reduced map ḡðxÞ] and υ ¼ −1
when to x−N ¼ N þ 0 [x ¼ 0 in the reduced map ḡðxÞ]. It was
found that a histogram of the numbers of iterations, or the
time, if we set t ¼ n, spent by the system in a rotation state,
yields a long-tailed distribution ψðtÞ ∝ t−z=ðz−1Þ. The results of
a numerical sampling reveal that the MSD hx2ðtÞi scales as in
Eq. (35), with γ ¼ 1=ðz − 1Þ. It was then shown to be a clear-
cut case of a Lévy walk with the constant speed υ ¼ 1 and the
exponent γ (Shlesinger and Klafter, 1985); see Fig. 16(b). A
complete evaluation of the diffusion in the intermittent maps
within the Lévy-walk framework was presented by Zumofen
and Klafter (1993). The next “dynamical” realization of the
Lévy walk was found in Hamiltonian chaotic systems
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(Shlesinger, Zaslavsky, and Klafter, 1993; Klafter and
Zumofen, 1994; Zumofen and Klafter, 1994a). This was a
case when the Lévy-walk concept perfectly matched a
peculiar dynamical effect, in appearance similar to the
intermittency in the dissipative maps with power-law singu-
larities (MacKay, Meiss, and Percival, 1984a; Geisel, Zacherl,
and Radons, 1987). The machinery behind the Hamiltonian
stickiness is related to specific fractal structures living in the
phase space of chaotic Hamiltonian systems (MacKay, Meiss,
and Percival, 1984b; Meiss, 1992). We discuss this issue in
more detail in Sec. V.A.
With this section we are not up to a comprehensive

historical review. We want to present Lévy walks in physics
as something (re)emergent and promising rather than some-
thing residual and completed. In Secs. V.A–V.E we concen-
trate on the most recent advances and results, both theoretical
and experimental, which underline the potential and univer-
sality of the concept.

A. Lévy walks in single-particle Hamiltonian systems

The subject of Lévy walks in low-dimensional Hamiltonian
chaos is already 20 years old (Klafter and Zumofen, 1994;
Zumofen and Klafter, 1994a). We start with a brief outline of it
not because of the historical reason but because it will help
to better understand the recent developments that will be
discussed next.
The phase space of a nonintegrable single-particle

Hamiltonian system is mixed and consists of different
invariant manifolds that are chaotic layers, regular islands,
tori, etc. (Sagdeev, Usikov, and Zaslavsky, 1992). The ith
manifold can be characterized by an averaged value of any
observable, for example, velocity υi ¼ hυiðtÞit→∞. The aver-
age velocity of a manifold might be nonzero and for a regular
island it is determined by the winding number of the elliptic

orbit at the island center. A chaotic layer is well separated
from regular manifolds by Kolmogorov-Arnold-Moser
(KAM) tori (Sagdeev, Usikov, and Zaslavsky, 1992) so that
a trajectory initiated inside the layer cannot enter a regular
island even when the latter is embedded into a chaotic sea. A
“coastal area” near the island is structured by cantori
(MacKay, Meiss, and Percival, 1984b), which form partial
barriers for the trajectories. Once entered into the region
enclosed by a cantorus, a trajectory will be trapped in the
vicinity of the corresponding island for a long time. During
this sticking event (Meiss and Ott, 1986), the trajectory
reproduces the dynamics of the orbits located inside the
island. If the corresponding island is transporting, υi ≠ 0,
the sticking event produces a long ballistic flight with velocity
υi. It has been found that power-law tails of sticking time
PDFs, ψðτÞ ∝ τ−1−γ , are general features of Hamiltonian
chaos which is related to the self-similar hierarchical structure
of cantori (Meiss and Ott, 1986; Geisel, Zacherl, and Radons,
1987; Meiss, 1992). With this finding all needed ingredients
were collected and a link between “strange kinetics” of
Hamiltonian chaos and Lévy walks was established
(Shlesinger, Zaslavsky, and Klafter, 1993).
In a Hamiltonian system possessing the time-reversal

symmetry, ballistic islands always exist in pairs and have
identical sticking time PDFs. If, in addition, the long-time
dynamics of the system is governed by only two symmetry-
related sticky ballistic islands, with a sticking-time exponent
γ, then the system dynamics will realize the standard Lévy
walk; see Fig. 1(b). Zumofen and Klafter (1994a) considered
the kicked-rotor map, an archetypical Hamiltonian model
(Sagdeev, Usikov, and Zaslavsky, 1992),

xnþ1 ¼ xn þ K sinð2πθÞ; θnþ1 ¼ θn þ xnþ1; ð77Þ
whereK is the stochasticity parameter, as an example. ForK ¼
1.03 the system phase space represents a chaotic sea which
extends over thewhole x region. The long-time dynamics of the
system is governed by two symmetry-related islands enclosing
period-five elliptic orbits with velocities υ ¼ �1. The islands
are sticky [see Fig. 17(a)], and the locations of the cantori are
marked by the sudden increase of the sticking times. The
corresponding sticking-time PDF [see the inset in Fig. 17(b)]
for t≳ 102 approximately follows a power law with an
exponent γ ¼ 1.2. Figure 17(b) shows propagators obtained
for different times after they were scaled as in Eq. (16), with
exponent α ¼ 1=γ. The curves fall on top of each other thus
indicating the scaling expected for the propagators of a Lévy
walk; see the inset in Fig. 2.
A Lévy-walk kinetics has also been found in continuous ac-

driven one-dimensional (Glück, Kolovsky, and Korsch, 1998;
Denisov, Klafter, and Urbakh, 2002) and stationary two-
dimensional (Klafter and Zumofen, 1994) Hamiltonian sys-
tems. There the key mechanism responsible for the appearance
of anomalous transport was the cantori-induced stickiness.
There are still ongoing debates on the universality of sticking-
time exponent(s) at the asymptotic limit t → ∞, with a
number of pros and cons for different “universal” values
(Chirikov and Shepelyansky, 1999; Weiss, Hufnagel, and
Ketzmerick, 2002; Cristadoro and Ketzmerick, 2008;
Venegeroles, 2009; Shepelyansky, 2010). The Lévy walk

FIG. 16 (color online). (a) Map gðxÞ, Eqs. (74)–(76), for
z ¼ 5=3. Adapted from Zumofen and Klafter, 1993. (b) A
trajectory xðnÞ obtained by iterating the map from the initial
point xð0Þ ¼ 0.45. The inset shows the reduced map ḡðxÞ,
Eq. (76), with the first ten iterations of the initial point xð0Þ
(•). The branch on the left (right) part is responsible for a
decrement (an increment) of the cell number N ¼ intðxÞ pro-
duced by the extended map gðxÞ. The parameter ϵ ¼ 10−4.
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can stand this uncertainty: If a PDF of sticking times is well
approximated by a power law with a particular exponent γ
over some substantial time interval (for example, over several
decades in t) then the corresponding propagator for these
times will scale as in Eq. (16), with the scaling exponent
α ¼ 1=γ.
It is noteworthy that in Hamiltonian systems only sub-

ballistic superdiffusion (see Sec. II.A.2) is possible in the
asymptotic limit. This follows from the Kac theorem on the
finiteness of recurrence time in Hamiltonian systems (Kac,
1959; Zaslavsky, 2002). Therefore all sticky ballistic mani-
folds should have finite mean sticking times, so that the
corresponding sticking-time PDFs (which are the flight-time
PDFs of the corresponding Lévy walks), ψðτÞ ∝ τ−1−γ , are

characterized by exponents in the range 1 < γ ≤ 2 (Denisov,
Klafter, and Urbakh, 2002).
Two-dimensional chaotic advection is another field where

the chaotic Hamiltonian phase space, with all its trademarks,
including cantori and the stickiness phenomenon, appears
(Aref et al., 2014). On the theory level, the dynamics of a
chaotic flow can be modeled with symplectic equations and
the flow stream function as a Hamiltonian. The path of a
passive tracer in the flow can be seen as a trajectory of the
Hamiltonian system. Periodic flow modulations lead to the
appearance of mixed phase space and regular islands. That
idea was behind the first experimental observation of the Lévy
walk in a real physical system. In their experiment, Solomon,
Weeks, and Swinney (1993) used a rotating annulus tank filed
up with fluid. The flow was generated by pumping the fluid
into and out of the annulus through the holes in its bottom.
This resulted in the appearance of the stable two-dimensional
flow pattern on the surface of the fluid. Rotational motion of
the tracer, monitored by using a tracer’s azimuthal angle,
consisted of ballistic episodes interrupted by trappings of the
tracer by a periodic chain of vortices; see Fig. 18.
It followed from the measurements that ballistic flights had

near constant velocities and the flight-time PDFs followed
power-law asymptotics (Solomon, Weeks, and Swinney,
1994); see Fig. 19. At the same time, the sticking-time
PDFs revealed either an exponential decay or power-law tails
with exponent γst > 1 so that the mean sticking time is finite.
Therefore, following our classification (see Fig. 1), the
process can be taken as a Lévy walk with rests. However,
there was a feature: Because of the annulus rotation, ballistic
motion happened predominantly in one direction, clockwise
or counterclockwise, depending on the rotation direction. This
modification of the walk process can be absorbed into the
theory by introducing bias in the standard Lévy-walk model,

FIG. 17 (color online). Lévy walks in the standard map. (a) The
time texitðx; θÞ it takes for a trajectory initiated at the point ðx; θÞ
to the exit from a vicinity of a regular island around the period-
five orbit (black area on the top of the distribution). Adapted from
Klafter, Shlesinger, and Zumofen, 1996. (b) The rescaled
propagators for different times t ¼ 100, 200, 400, 800, 1600,
and ξ ¼ x=t1=γ . The dashed line is a Gaussian fit and the dash-
dotted line is a power-law fit fðξÞ ∝ ξ−1−γ . The inset shows the
sticking time (solid line), ψðtÞ, and the flight length (dashed line),
ψðxÞ, and PDFs at the vicinity of the period-five island. The dash-
dotted line is a power law with exponent γ ¼ 1.2. The spatial
variable x is denoted r in the original work. The y-axis label in (b)
should read as Pðr; tÞt1=γ . Adapted from Zumofen and
Klafter, 1994a.

FIG. 18 (color online). Tracer dynamics in a chaotic flow. The
flow produces a regular chain of six stable vortices which can trap
the tracer as it circles ballistically around the annulus. Two short-
time trajectories are shown on the left. The corresponding
azimuthal dynamics is presented on the right: while trajectory
(a) (lowest on the graph) was trapped by the chain during all the
observation time, trajectory (b) (upper on the graph) shows that
the tracer produced a long ballistic flight before being trapped.
Figure courtesy of E. R. Weeks.
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e.g., by making ballistic flights in the positive direction less
probable than in the negative one. The corresponding update
was made by Weeks and Swinney (1998) and the model
outcomes were found to be in good agreement with the
experimental measurements. See del Castillo Negrete (1998)
and Isichenko (1992) for a theoretical overview of “anoma-
lous advection” and dynamical mechanisms behind it.
A potential of the Lévy-walk model for generalizations can

be illustrated with Hamiltonian ratchets, ac-driven
Hamiltonian systems which are able to generate a constant
current in the absence of a bias (Denisov and Flach, 2001;
Schanz et al., 2001; Denisov et al., 2002; Schanz, Dittrich,
and Ketzmerick, 2005). A directed chaotic transport appears
due to violation of the time reversal symmetry with a zero-
mean drive (Denisov, Flach, and Hänggi, 2014). The set of
regular islands, submerged into the chaotic layer, becomes
asymmetric, so that there are islands with nonzero velocities
which do not have symmetry-related twins. This leads to the
violation of the balance between ballistic flights in opposite
directions and the appearance of a strong current (Denisov and
Flach, 2001). The asymmetric generalization of the Lévy-
walk process by Weeks and Swinney (1998) is able to capture
many features of the Hamiltonian ratchet dynamics (Denisov
et al., 2002; Denisov, Klafter, and Urbakh, 2004).

B. Lévy walks in many-particle Hamiltonian systems

In many-particle systems with unbounded interaction
potentials, such as nonlinear chains and lattices, it is no
longer reasonable to talk about diffusion of particles. The
individual particle dynamics has an oscillatory character due
to the confinement induced by the interaction with its
neighbors. The collective system dynamics creates a “tissue”
which can react to small perturbations locally affecting its
dynamics. The perturbation transport defines overall energy,
correlation, and information transport through a lattice
(Helfand, 1960; Torcini, Grassberger, and Politi, 1995;
Torcini and Lepri, 1997; Giacomelli et al., 2000; Primo
et al., 2007).
Consider a many-particle system at microcanonical equi-

librium with a Hamiltonian

Htotalðfxi; pigÞ ¼
XN
i¼1

Hi; ð78Þ

where Hi ¼ Hðxi; xi−1; xiþ1; piÞ is the energy of the ith
particle with position xi and momentum pi. It is also assumed
that the Hamiltonian guarantees the preservation of the zero
total momentum of the system P ¼ P

N
i¼1 pi ¼ 0. At the

initial time t ¼ 0 one of the bulk particles receives an external
perturbation. The system gains a small amount of extra energy
EP which is conserved due to the Hamiltonian character of the
system evolution. However, the perturbation does spread as
the perturbation energy is shared by a constantly growing
number of particles. Remarkably, the spreading is universally
limited by a finite velocity, v0 < ∞, that at a given time t the
perturbation is almost completely confined to the interval
½−v0t; v0t� (“almost” means that outside the cone the pertur-
bation is exponentially diminished). The fundamental fact of
the cone’s existence, the so-called “Lieb-Robinson bound” for
classical systems, has a status of a mathematical existence
theorem (Marchioro et al., 1978; Nachtergaele et al., 2009).
Altogether, that was a strong hint to consider the perturbation
spreading as a diffusion process, treat the normalized local
excess of energy △Eði; tÞ, ΣN

i¼1△Eði; tÞ ¼ Ep, as a PDF,

ϱði; tÞ ¼ △Eði; tÞ=Ep (� � � denotes a microcanonical average),
and estimate its second moment.
For a one-dimensional hard-point gas with alternating

masses, a protozoan Hamiltonian many-particle model
(Casati and Ford, 1976), it was found that the mean squared
displacement σ2ðtÞ ¼ ΣN

i¼1i
2ϱði; tÞ scaled as σ2ðtÞ ∝ tμ with

the exponent μ very close to 4=3 (Cipriani, Denisov, and
Politi, 2005). Moreover, a quasi-PDF ϱði; tÞ appeared to be the
exact propagator of a Lévy walk with velocity fluctuations
(Sec. III.B), and exponent γ ¼ 3 − μ ¼ 5=3, if we set i≡ x;
see Fig. 20. Zaburdaev, Denisov, and Hänggi (2011, 2012)
further strengthened this finding by showing that the scaling
of the ballistic peaks is identical to that predicted by the Lévy-
walk model, Eq. (50). Perturbation profiles for different values
of microcanonical “temperature,” energy per particle ε,
perfectly matched each other by assuming that the averaged
velocity of the walk and the fluctuations variance both scale as

FIG. 19. Statistical characteristics of the tracer diffusion in
an ac-driven chaotic flow. (a) Flight- and (b) sticking-time
PDFs obtained for a flow with the six-vortex lattice; see Fig. 18.
The line corresponds to a power law t−1−γ, with γ ¼ 1.5. (c) Flight
length Δθ vs flight duration Δt. The forklike structure reveals
that all flights have near constant velocity. Adapted from
Weeks, 1997.
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υ0; Dυ ∝
ffiffiffi
ε

p
. Similar results were obtained for a Fermi-Pasta-

Ulam (FPU) β chain by using the local energy-energy
correlation function eði; tÞ (Zhao, 2006) instead of a finite
perturbation. This switch was induced by the fact that it is not
feasible to sample the evolution of perturbations in FPU-type
systems due to emerging statistical fluctuations. Although less
sharp than in the case of hard-point gas, the results obtained
for the times t < 104 revealed the correspondence between the
correlation function profiles and the propagators of a Lévy
walk with fluctuating velocity and exponent γ ¼ 5=3
(Zaburdaev, Denisov, and Hänggi, 2011, 2012).
There is a genetic link between the problem of energy

diffusion and the issue of deterministic heat conduction
(Helfand, 1960; Liu et al., 2012, 2014). The latter is typically
anomalous in most of the nonlinear chains, meaning that the
thermal conductivity κT scales with the length of a chain L as
κT ∝ Lη, with η between 0 (normal heat conduction) and 1
(ballistic heat conduction) (Lepri, Livi, and Politi, 2003).
Denisov, Klafter, and Urbakh (2003) built up a model of a
dynamical heat channel in which energy is carried by an
ensemble of noninteracting Lévy walkers. A relatively simple
evaluation led to the linear relation between the exponents,

η ¼ 3 − γ: ð79Þ

There are still ongoing debates on both the (non)universality
of Fourier exponent η and the validity of the single-particle
Lévy-walk approach to the heat conduction by many-particle
chains (Lepri, Livi, and Politi, 2008; Liu et al., 2012).
Meanwhile the Lévy-walk model has been used to reproduce
the temperature profiles of finite chains (Lepri and Politi,
2011; Dhar, Saito, and Derrida, 2013) and analyze heat

fluctuations in conducting rings (Dhar, Saito, and Derrida,
2013). Recently, Vermeersch et al. (2014) proposed an
interpretation of the interfacial thermal transport through
metal-semiconductor interfaces in terms of exponentially
truncated Lévy flights. Similar to the problem of the
light transmission (see Sec. V.C), the setup of the performed
experiments does not allow one to differentiate in a clear-cut
manner between Lévy flights and Lévy walks, yet exper-
imentalists could think about new experiments that can.
The findings presented by Cipriani, Denisov, and Politi

(2005) and Zaburdaev, Denisov, and Hänggi (2011) are
phenomenological. To understand the mechanisms which
sculpt Lévy kinetics out of many-particle dynamics, the
problem should be considered in a broader context. van
Beijeren (2012) used a hydrodynamic approach to build a
mode-coupling theory for the Fourier components of the
densities of conserved quantities, which are the number of
particles, total momentum, and energy. A linear transforma-
tion splits the transport over three channels facilitated by the
three different modes, a heat mode and two sound modes
propagating in opposite directions. Thus, instead of a single
energy-energy correlator curve for a given time, as in Fig. 20,
the hydrodynamic approach produces three profiles (two of
them, for the sound modes, are related by the inversion
x → −x). The key result by van Beijeren (2012) is that the
scaling of the ballistic sound peaks is of the Kardar-Parisi-
Zhang (KPZ) universality class (Kardar, Parisi, and Zhang,
1986). The anomalous scaling of the central heat peak with the
exponent γ ¼ 5=3 was predicted, which corresponds to the
anomalous scaling of the conductivity κT ∝ L1=3 (Lepri, Livi,
and Politi, 2003). Recently Spohn (2014) presented a com-
plete version of the hydrodynamic formalism which addresses
also the dynamics of the heat peak in more detail. Das et al.
(2014) and Mendl and Spohn (2014) found for FPU chains
and the hard-point gas the Lévy scaling for the correlator of
their heat modes (see Fig. 21) and confirmed the KPZ-type
scaling for the correlator of their sound modes. The Lévy-like
profiles for the heat mode exhibit cutoffs at the points
x ¼ �ct, where c is the speed of sound. It is tempting to
think that further progress in this direction can provide one
with a “hydrodynamic” foundation of Lévy walks.

FIG. 20 (color online). Lévy walks in a hard-point gas. Pertur-
bation profiles ϱði; tÞ [denoted by δð2Þði; tÞ in the original
publication] at t ¼ 40, 80, 160, 320, 640, 1280, 2560, and
3840 (the width increases with time) for the energy per particle
ε ¼ 1, rescaled as in Eq. (16) with the exponent α ¼ 1=γ ¼ 3=5.
In the inset, the profile at t ¼ 640 (solid line) is compared with
the propagators of the standard Lévy with the velocity v ¼ 1
(dotted line) and fluctuating velocities with Dv ¼ 0.036 (dashed
line). Adapted from Cipriani, Denisov, and Politi, 2005.

FIG. 21 (color online). Heat peak for a hard-point gas with
alternating masses at time t ¼ 1024. The dashed curve is the
Lévy distribution LγðxÞ with γ ¼ 5=3. Adapted from Mendl and
Spohn, 2014.
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C. Lévy flights of light and Lévy walks of photons

When passing through a medium, light is subjected to
multiple scattering by medium inhomogeneities. Physics of
this process depends on the characteristic size of inhomoge-
neities and different scattering mechanisms can coexist. For
example, scattering by molecules (Rayleigh scattering) and by
water droplets (Mie scattering) work together in a cloudy sky
(Kerker, 1969). In some cases one particular mechanism
dominates and thus specifies characteristic scales of the path
length between consecutive scattering events (for example,
Mie scattering dominates inside a cloud). If a medium is a
fractal (Mandelbrot, 1982), then the structure of its inhomo-
geneities is scale free [a stratocumulus cloud is a good
example (Cahalan et al., 1994)]. The path of a photon inside
a fractal media can be represented as a random walk consisting
of free-path segments connecting subsequent scattering points
with the PDF of the segment length in a power-law form
(Davis and Marshak, 1997). The question now is shall we use
the Lévy flight or Lévy walk to correctly model the process?
If we are interested in the stationary transmission through
the medium only then is the answer “either” (Buldyrev
et al., 2001).
Consider a propagation of a light beam through a slab of

thickness L, with a photon free-path PDF pðlÞ ∼ l−1−γ. A
local stationary transmission on the output surface is defined
by all the trajectories leading to the corresponding point from
the illuminated spot on the entry side. The total transmission is
given by the integral over the local transmission and equals the
probability of the absorption of a photon that starts at the
illuminated spot by the absorption boundary on the opposite
side of the slab.6 Within this setup two approaches are
equivalent. The total path length of a Lévy flight corresponds
to the total traveling time of a Lévy walk, and results obtained
with both models are interchangeable (Buldyrev et al., 2001).
By using a one-dimensional Lévy-flight model7 with
1 < γ ≤ 2, Davis and Marshak (1997) derived the trans-
mission as a function of L,

TðLÞ ¼ 1

1þ ðL=l̄Þγ=2 ; ð80Þ

where l̄ is the mean free path and the unity in the denominator
regularizes the expression at L ¼ 0. In the continuous
limit L ≫ l̄, the problem can be recast in terms of the
fractional diffusion equation, Eq. (21), and, by treating the
particle PDF as the light intensity, the scaling in Eq. (80) can
be obtained. Identically, the scaling could be derived within
the Lévy-walk framework by using the integral equa-
tions (25)–(28) for the PDF of walking photons (Drysdale

and Robinson, 1998). Photons move with finite velocity in any
medium and therefore the Lévy walk is physically more
adequate to model the photon dynamics than the Lévy flight.
However, in the context of the transmission problem and from
the mathematical point of view the difference between the two
approaches is absent. The difference could become tangible
when the problem setup is changed and, for example,
autocorrelation (Sec. IV.A) and/or interference effects are
taken into account. It remains for future work to set up the
corresponding experiments. Next we review the up-to-date
experimental results.
Solar light transmission by cloudy skies.—The first attempt

to gain insight into the morphology of a scattering media by
utilizing the Lévy-flight concept was made by Pfeilsticker
(1999). He used statistical data obtained by measuring the
mean geometrical paths of photons coming from a cloudy sky.
By assuming the fractal cloud morphology and resorting to the
scaling Eq. (80), the flight-length exponent was estimated as
γ ≃ 1.74 − 1.78. Pheilsticker found that the exponent value
depends on the cloud type: it tends to 1.5 for convective clouds
and to 2 for stratiform clouds.
Photon transmission through a Lévy glass.—Modern

technologies provide the possibility to synthesize scattering
materials with a tunable fractal structure (Tsujii, 2008). One of
the recent advances is the creation of Lévy glass, a polymer
matrix with embedded high-refractive-index scattering nano-
particles (Barthelemy, Bertolotti, and Wiersma, 2008). The
matrix also contains a set of glass microspheres with a power-
law diameter distribution, pð∅Þ ∼ ∅−η−1; see Fig. 22(a). The
microspheres do not scatter because their refractive index is
the same as that of the host polymer and therefore scattering
happens on nanoparticles only. The photon transport inside a
Lévy glass is dominated by long “jumps” performed by the
photon when it propagates through the glass spheres; see
Fig. 22(b). When the diameter distribution of the spheres is
sampled exponentially in ∅ space, the jump length PDF scales
as pðlÞ ∼ l−1−γ , with γ ¼ η − 1 (Bertolotti et al., 2010). This
is a clear-cut case of the Lévy walk (flight) of photons.
Measurements performed with a Cauchy glass γ ¼ 1 by
illuminating the slab with a narrow collimated laser beam
corroborated the scaling given by Eq. (80); see Fig. 22(c).
Recently, Savo et al. (2014) reported on an experimental

retrieval of the scaling exponent α, Eqs. (16) and (36), by
analyzing the scaling of the time-resolved transmission
with L. The performed measurements verified the universal
relation between the three exponents α ¼ 1=γ ¼ 1=ðη − 1Þ,
thus strengthening the position of Lévy-walk (flight) formal-
ism as an adequate theoretical approach to the process of
photon (light) diffusion through fractal media.
An interesting aspect of the photon diffusion inside a Lévy

glass is the role of quenched disorder. The distribution of glass
spheres in a matrix does not evolve in time and so there is
room for correlations between flight directions and angles. By
using a one-dimensional chain of barriers with a power-law
spacing distribution, Beenakker, Groth, and Akhmerov (2009)
found that a walk along the chain is not the standard
uncorrelated Lévy walk because of the strong correlations
of subsequent step sizes. Similar results have been obtained by

6The absorption effects are neglected within the framework of the
approach. A photon that entered the slab will appear on the opposite
side almost surely in the asymptotic limit t → ∞.

7The problem setup considered by Davis and Marshak (1997)
assumed the scattering probability peak in the forward x direction. It
was shown that the directional correlations in scattering angles can be
absorbed into a rescaling of the free path within the one-dimensional
framework; see the appendix in the cited work.
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Burioni, Caniparoli, and Vezzani (2010) and Vezzani et al.
(2011). However, by using a two-dimensional model of a
Lévy glass, Barthelemy et al. (2010) demonstrated that the
influence of the quenched disorder can be neglected (in the
sense that it can be accounted for by a simple parameter
tuning) when stepping into higher dimensions. Therefore the
transport of photons in two- and three-dimensional Lévy
glasses is close to an uncorrelated Levy walk [although this
could also change when a scattering media is perfectly self-
similar and represents a regular fractal, as shown by
Buonsante, Burioni, and Vezzani (2011)].
Lévy flights of photons in atomic vapors.—The two

considered realizations of Lévy walks of light assumed the
elastic scattering of photons. The needed power-law distribu-
tions are produced by the fractal spatial inhomogeneity of
scattering media and the corresponding flight-time exponents
are linearly related to characteristic fractal exponents. In the case
of inelastic scattering, the distance traveled by a photon depends
on its frequency, which changes after every scattering event

(which is in fact an absorption or emission). The spatial
inhomogeneity is no longer needed and a power-law dis-
tribution of flight length can be obtained from the spectral
inhomogeneity of the medium (Molisch and Oehry, 1998).
In an atomic vapor (Baudouin, Guerin, and Kaiser, 2014)
the absorption probability of a photon with a frequency ω at
a distance r from its emission point is pðωjrÞ ¼ ΦðωÞ×
exp½−ΦðωÞr�, where ΦðωÞ is the absorption spectrum
of the atoms. The average absorption probability can be
obtained as a frequency average of pðωjrÞ weighted with an
emission spectrum ΘðωÞ (Holstein, 1947; Molisch and Oehry,
1998),

pðrÞ ¼
Z

∞

0

ΘðωÞΦðωÞe−ΦðωÞrdω. ð81Þ

When emission and absorption spectra are identical, the
Doppler spectrum ΦDðωÞ ¼ expð−ω2Þ= ffiffiffi

π
p

leads to
pðrÞ ∼ r−2½lnðrÞ�−1=2, while the Cauchy spectrum ΦCðωÞ ¼
1=½πð1þ ω2Þ� yields pðrÞ ∼ r−3=2. Pereira, Martinho, and
Berberan-Santos (2004) proposed this as a means to realize a
three-dimensional Lévy flight of photons in a hot atomic vapor
where the spectra-equality condition may hold. They have also
raised two important points. First, in a high opacity atomicvapor
many elastic scattering events happen before an inelastic
scattering event occurs. This is a natural call for an extended
intermittent model in which Lévy walks are alternated with
periods of Brownian diffusion (see also Sec. VII.B, where such
processes appear in the context of animal search). Second, they
pointed out that in laboratory vapors the time of flight is
negligible compared to thewaiting time between absorption and
emission events. Therefore the use of a Lévy-flight model
[Fig. 1(a)] is well justified. However, as noted by Pereira,
Martinho, and Berberan-Santos (2004), in interstellar gases the
flight time can be larger than the characteristic absorption or
emission time and the Lévywalkwill bemore appropriate in the
astrophysical context.
By using a specially designed experimental setup,

Mercadier et al. (2009) measured the first step-length dis-
tribution of Doppler-broadened photons which enter a hot
rubidium vapor. The obtained PDF follows a power law with
γ ¼ 1.41. The step-length PDF changes after each scattering
event while remaining a near perfect power law. The depend-
ence of the exponent αðnÞ ¼ γðnÞ þ 1 on the number n of
scattering events saturates to a value close to 2, as expected
from the theory (Pereira, Martinho, and Berberan-Santos,
2004). Recently, Baudouin et al. (2014) measured trans-
mission through a hot rubidium vapor by changing the opacity
of the mediaO ¼ L=l̄ over two decades. This was realized by
controlling the density of atoms (and thus l̄) by adjusting the
temperature inside the vapor chamber. The results fit the
dependence predicted by Eq. (80) with the exponent γ ≃ 1.01;
see Fig. 23(d). The radial profile of the transmitted light has a
power-law tail IðrÞ ∝ r−3−μ as expected from the Lévy-based
theory they developed; see Figs. 23(c) and 23(d). By compar-
ing these results with the single step-length PDFs obtained
before, Baudouin et al. (2014) stated an excellent agreement
with a Lévy-walk approach.

FIG. 22 (color online). Lévy flights of photons in a Lévy glass.
(a) Electron micrograph of a Lévy glass. The gray zones are
interiors of the glass spheres, whereas the darker area corresponds
to the polymer matrix. Scattering nanoparticles are too small to be
resolved. (b) A photon walk inside a two-dimensional version of
a Lévy glass. The inset shows the scale invariance of the glass.
(c) Measured transmission through a Lévy glass slab as a function
of the slab thickness. The gray dashed curve is obtained with
Eq. (80) for γ ¼ 2 (normal diffusion) while the black line is
obtained for γ ¼ 0.948. Note that the exponent γ is denoted α in
the original publications. Adapted from Barthelemy, Bertolotti,
and Wiersma, 2008, and Burresi et al., 2012.
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D. Blinking quantum dots

Blinking quantum dots serve another realization of the
ballistic Lévy walk. Similar to the Lévy flights of light,
photons are again involved but in a different way.
A quantum dot (QD) is a nanocrystal made out of semi-

conducting material and is several nanometers in size

(Alivisatos, 1996). The size is crucial for determining the
specific properties of QDs which are governed by quantum
effects and are on the border between bulk and molecular
behavior. One of the important features of QDs is the so-called
quantum confinement, when the exciton Bohr radius is of the
order of the object size, leading to the discrete energy levels
and a band gap which depends on the size of the object. When
under the laser light with energy above the band gap, QDs can
adsorb light by creating an exciton pair and then reemit a
photon when the exciton decays. The frequency of the emitted
light is increasing with decreasing QD size and can be
accurately tuned in applications. One of the important QD
applications is bioimaging; in addition to their small size, QDs
have higher brightness as compared to organic fluorescent
dyes and show minimal photobleaching. However, there is
one interesting effect: QDs blink (Nirmal et al., 1996).
Experimentally it was found that quantum dots alternate
periods of fluorescence with no emission of photons, and
the durations of these periods are not exponentially distributed
but instead have a fat tailed power-law distribution with
diverging average time. A quantum dot can fluoresce or be
completely dark during the whole measurement time, which
can be on the order of hours. Current experimental results
provide the on and off times statistics spanning 4 orders of
magnitude. In Fig. 24 one realization of the QD fluorescence
intensity track is shown. By defining a certain threshold in the
intensity, a sequence of on and off times can be identified and
characterized. Many experiments with different QD materials
and at different temperatures show power-law distributions of
those times, and in many cases the exponent is nearly the same
for both of them: γ ≃ 0.5 (Margolin et al., 2005). Therefore
the blinking dynamics of a QD can be described as a two state
model, where the durations of phases in each state [on,
IðtÞ ¼ 1, and off, IðtÞ ¼ 0] are distributed as power laws with
diverging means. As discussed in Sec. IV.D, systems with
such distributions exhibit memory effects, aging, and weak

FIG. 23 (color online). Photon transmission through a hot
rubidium vapor. (a) The radial profile of the outcoming light
on the charge-coupled device camera. (b) Crosses show exper-
imentally measured transmission as a function of the opacity. The
power-law fit T ∝ O−0.516 is shown by the solid curve. (c) Ex-
perimental radial profile of the light transmitted through the vapor
chamber (solid line) is compared with a Gaussian distribution
with the same width at half maximum (dashed line). (d) Radial
profile of the transmitted light. The dashed line is a power-law fit
IðrÞ ∝ r−4.03. Adapted from Baudouin et al., 2014.

FIG. 24 (color online). Blinking quantum dots. (a) A sample trace of a quantum dot fluorescence. A zoom in (b) shows how a threshold
is defined, which allows one to identify the periods of on and off times. The PDFs of those times are shown in (c) and have a clear power-
law dependence with the same tail exponent for on and off times. The solid black line indicates a slope of 1.65, i.e., γ ¼ 0.65. Adapted
from Stefani, Hoogenboom, and Barkai, 2009.
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ergodicity breaking. Interestingly, the problem of a blinking
nanodot can be mapped onto the Lévy-walk model. Consider
the fluorescence intensity IðtÞ and define its time average as

Ī ¼
R
T
0 IðtÞdt

T
. ð82Þ

As learned from Sec. IV.D, for the weak ergodicity breaking
problems the time average is itself a random variable with a
certain distribution. It can be shown that the PDF of the time
averaged intensity PðĪÞ is given by the Lamperti distribution
(Lamperti, 1958; Margolin et al., 2005):

PðĪÞ ¼ π−1 sin ðπγÞĪγ−1ð1 − ĪÞγ−1
Ī2γ þ ð1 − ĪÞ2γ þ 2Īγð1 − ĪÞγ cos ðπγÞ . ð83Þ

We know this distribution from the analysis of the ballistic
Lévy-walk model, and it is easy to draw an analogy. In the
ballistic regimeof theLévywalk,we can define a time averaged
position of the particle x=T as an integral from 0 to T of the
particles velocity vðtÞ; see Eq. (56). As in quantum dots, the
time spent in each velocity state has a power-law distribution
with infinite mean. The only difference to the QD blinking
problem is that the velocity of particles can have values of
vðtÞ ¼ �v0, while the intensity switches between 0 and 1. As
a result, in the case of Lévy walks, the PDF Pðx=TÞ is
symmetric around zero, whereas for the time average intensity
it is shifted and has a support from 0 to 1. One particular
example of γ ¼ 1=2 gives a simple particular case of the
Lamperti distribution; see Eq. (34) and Fig. 3. An intuitive
expectation that the QD will be half time on and half time off
appears to be least probable: the corresponding PDF has a
minimum at Ī ¼ 1=2. Instead thePðĪÞ has a divergent behavior
at Ī ¼ 0 and Ī ¼ 1 (similarly to the divergence of the PDFs at
ballistic fronts in the case of Lévy walks). Therefore a quantum
dot is either on or off for most of the observation time.
The particular mechanism responsible for the appearance of

the power-law distributed blinking times in quantum dots
remains unknown. There are several working models which
relate the statistics of on and off times to the dynamics of the
exciton pair including its transport, diffusion, and trapping
[see Stefani, Hoogenboom, and Barkai (2009) for an over-
view], but none of the models are able to describe all available
experimental observations. For the context of this review it is
important that the experimental data on a blinking QD can be
directly mapped to the model of Lévy walks in the ballistic
regime (Margolin et al., 2006). We speculate that the
analytical results available for the Lévy-walk model with
random velocities could be useful for the interpretation of
experiments with QDs with a whole distribution of intensities
and not just two levels. Reciprocally, a possible correlation
between consequent long on (off) times, when a long on (off)
time is followed with higher probability by another long on
(off) time (Stefani, Hoogenboom, and Barkai, 2009) calls for
further generalizations of the Lévy-walk model.

E. Lévy walks of cold atoms

Lévy distributions have been known in the field of cold
atom optics since the 1990s, when Bardou et al. (1994) and

Reichel et al. (1995) discussed the relation between the
process of the so-called subrecoil laser cooling (Aspect et al.,
1988) and anomalous diffusion in terms of Lévy flights. Lévy
walks appeared in cold atom optics in the context of Sisyphus
cooling of atoms loaded into an optical bipotential created by
two counterpropagating linearly polarized laser beams
(Dalibard and Cohen-Tannoudji, 1989). There are two internal
atomic states and atoms with different internal states feel
potentials of different polarizations. The laser-induced tran-
sitions of an atom between its internal states influence
translational motion of the atom along the bipotential.
Elaborated within the Monte Carlo wave function framework,
this connection was shown to be responsible for Lévy-walk-
like dynamics of atoms (Marksteiner, Ellinger, and Zoller,
1996). Katori, Schlipf, and Walther (1997) measured the mean
squared displacement of Mg ions in a bipotential optical
lattice and found the scaling σ2ðtÞ ∝ tμ with the exponent
μ > 1 for potential depths below the critical value. Sagi et al.
(2012) performed more sophisticated experiments and mea-
sured the spreading of a packet of cold Rb atoms in optical
lattices of different depths. The obtained atomic distributions
scaled with the characteristic scaling, Eq. (16), Fig. 25(a),
and their shapes could be nicely fit by Lévy distributions,
Fig. 25(b). However, a Lévy-walk description did not work
well in this case, because in both, experiments and
Monte Carlo wave function simulations, strong correlations
between velocities and durations of atom flights were found.
Marksteiner, Ellinger, and Zoller (1996) derived that on the

semiclassical level the distribution Wðx; p; tÞ of atoms can be
described by the Kramers equation

∂W
∂t þ p

∂W
∂x ¼

�
D

∂2

∂p2
−

∂
∂pFðpÞ

�
W; ð84Þ

with the cooling force (Castin, Dalibard, and Cohen-
Tannoudji, 1991)

FðpÞ ¼ −
p

1þ p2
; ð85Þ

where momentum is expressed in dimensionless units p=pc,
with the capture momentum pc set to unity. For small
momenta the force is of the conventional linear form
FðpÞ ∼ −p, while FðpÞ ∼ −1=p for large p so that the atom
becomes frictionless at the high-momentum limit. The dif-
fusion constantD combines all relevant parameters such as the
depth of the optical potential, recoil energy, see Eq. (87). The
equilibrium momentum-momentum correlation function cor-
responding to Eq. (84) scales as t−λ, with the exponent

λ ¼ ð1=2DÞ − 3=2: ð86Þ

The control parameter

D ¼ cER=U0 ð87Þ

depends on the recoil energy ER and the depth of the optical
lattice potential U0. The constant c is specific to the type of
atom or ion cooled, with the typical value around 10.
Therefore, one could, by tuning the potential depth U0 while
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keeping all other parameters fixed, control the exponent λ and
switch between the regimes of normal and anomalous atom
diffusion.
When λ < 1, the integral of the correlation function over

time diverges and an anomalously fast diffusion appears. The
equilibrium velocity distribution for Eq. (84) has a form of the
Tsallis distribution (Lutz, 2003; Douglas, Bergamini, and
Renzoni, 2006). Although interesting as an indication of a
strong deviation from the Boltzmann-Gibbs thermodynamics
(Lutz and Renzoni, 2013), these distributions themselves do
not provide sufficient insight into the diffusion of atoms in
real space.
By unraveling the Kramers equation (84) into a Langevin

equation with a white Gaussian noise as a drive,

_p ¼ FðpÞ þ
ffiffiffiffiffiffiffi
2D

p
ζðtÞ; ð88Þ

_x ¼ p; ð89Þ

Kessler and Barkai (2012) analyzed the atom diffusion from
the microscopic point of view. The theory developed by
Barkai, Aghion, and Kessler (2014) predicts the existence of
three phases in the dynamics, generated by Eqs. (88) and (89),
depending on the value of D. Namely, it can exhibit normal
diffusion, Lévy-walk superdiffusion, and Richardson’s diffu-
sion (Richardson, 1926), when the MSD scales as σðtÞ ∝ t3.

FIG. 25 (color online). Lévy walks of atoms in optical lattices. (a) Atomic distributions obtained for different times, t ∈ ½10 − 40� ms,
before (left) and after the scaling transformation (16) with exponent α ¼ 0.8 (right). (b) Atomic distributions after 30 ms of spreading
for three different optical potential depths. Lines correspond to Lévy distributions with depth-specific exponents. Adapted from
Sagi et al., 2012.

FIG. 26 (color online). Scaling of the propagators Pðx; tÞ of the
stochastic process, Eqs. (88) and (89), modeling the diffusion of
cold atoms. The scaling exponent γ (denoted by ν in the original
publications) is ð1þDÞ=3D. (a) With the increase of time the
rescaled profiles start to fall onto the Lévy distribution LγðξÞ.
(b) Another scaling reveals the cutoff induced by a nonlinear
space-time coupling, Eq. (90). The parameter D ¼ 2=5. Adapted
from Kessler and Barkai, 2012.
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The existence of the Lévy-walk regime was proved analyti-
cally for the range 1=5 < D < 1. In the asymptotic limit of
large t, the central part of the propagator Pðx; tÞ scales with the
distinctive scaling, Eq. (16), where ΦðξÞ ¼ LγðξÞ, and
γ ¼ ð1þDÞ=3D. The coupled transition probably is different
from that for the standard Lévy walk, Eq. (26), and has the
form (Kessler and Barkai, 2012; Barkai, Aghion, and Kessler,
2014)

ϕðy; τÞ ¼ ψðτÞpðyjτÞ; ð90Þ

with the conditional PDF pðyjτÞ ∼ τ−3=2Bðy=τ3=2Þ. The nor-
malized nonlinear function BðxÞ is responsible for the cutoff
of the propagator tails, so that all moments of the process are
finite; see Fig. 26. Together with the mode-coupling theory of
the energy transport in classical nonlinear chains (Sec. V.B),
these results pave the way toward physical foundations of
Lévy walks.

VI. LÉVY WALKS IN BIOLOGY

From rather complex but objective systems of physics, we
are shifting to the field of biology and biophysics where
effects and phenomena are much harder to quantify because of
their intrinsic diversity and variability. In recent years, the
topic of Lévy walks resonated in research communities
working on motility of living organisms, their foraging,
and search strategies. By the level of debates, the topic
may even be called controversial. Fortunately our review is
preceded by two very recent monographs devoted to these
subjects (Viswanathan et al., 2011; Méndez, Campos, and
Bartumeus, 2014). Here we present our point of view through
the prism of the Lévy-walk framework and point to the
examples that are directly relevant to this model. Before
moving on to particular examples we outline the general
complexity of the problem in question.

A. Motility is a complex issue across many scales

Motility spans many scales, ranging from swimming
micron-sized bacteria to albatrosses which can travel hundreds
of kilometers at a time. Motility involves interactions of
moving animals with their environment and habitats, which in
most cases is hard to quantify or predict. In ecology, the
interest in motility usually does not arise per se but in relation
to some greater issues, for example, questions of how animals
search for food, how they navigate home, how they find each
other to mate or to agglomerate into colonies, and others.
In an interesting twist, Lévy walks are involved in a

particular topic of effectiveness of search and foraging
strategies. Lévy walks are argued to be the most efficient
search strategy under certain conditions imposed on the
distribution and properties of targets. There is a constantly
growing number of accounts where Lévy statistics is reported
for the trajectories of animals. Quite often these results get
criticized or disputed, based on insufficient data, an incon-
sistent analysis, or just out of different beliefs. As a side effect
of these still ongoing discussions, new papers constantly
appear where researchers report the analysis of the motion

patterns of yet another living species and claim that the
patterns do or do not look as Lévy-flight or Lévy-walk
trajectories. There is even a philosophical flavor in this
discussion (Baron, 2014). The possible reasons of this con-
troversy are manifold. Next we summarize them from rather
evident to more complex levels.

(i) Difference in sizes, forms of locomotion, habitats
etc.: All these differences dictate different exper-
imental techniques and also call for different stat-
istical techniques. As pointed out by Méndez,
Campos, and Bartumeus (2014), on the micron
scales of single cells, positional data can be acquired
with high space and time resolution leading to
almost continuous recorded trajectories. Such ob-
servations are common in a laboratory since the
1970s. Tracking of big animals in their habitats is a
much harder task due to complex interactions of the
animals with the environment and large spatial
scales they travel over. This field advanced only
recently, to a greater extent due to the miniaturiza-
tion and growing accuracy of the portable global
positioning system (GPS) devices. Therefore there is
much less and sparser statistical data for big animals.
Still, while it is possible to follow 1500 individual
sperm cells at a time (Su, Xue, and Ozcan, 2012),
this number remains unrealistic for sharks or deer.
There is a data-driven gap in the applied method-
ology. Some researchers are trying to use Langevin-
type equations for continuous tracks while others
prefer more coarse-grained random walk models for
the trajectories recorded with limited resolution.
Currently the gap is narrowing, as there are exam-
ples of random walks used to model the motility of
bacteria and attempts to apply the Langevin machi-
nery to analyze the trajectories of bumblebees and
beetles.

(ii) Complex trajectories: Some trajectories resemble
neither Lévy flights nor Lévy walks but are still
modeled as such. These are usually almost smooth
continuous tracks of cells or other organisms
(Levandowsky, White, and Schuster, 1997; Dieterich
et al., 2008; de Jager et al., 2011). There is often a
problem of how to define a flight or a step of a
random walk for such tracks, to resolve which
several methods were suggested (Turchin, 1998;
Rhee et al., 2011; Humphries, Weimerskirch, and
Sims, 2013; Raichlen et al., 2014). The proposed
random walk models often are of academic interest
only, since most of the information encoded in
continuous trajectories is lost or disregarded. These
approaches provide, however, some statistical char-
acteristics of the foraging patterns that can be
compared with those for the known search strategies.
An alternative approach is to look into the micro-
scopic details of motility patterns by using, for
example, Langevin dynamics (Selmeczi et al.,
2008; Zaburdaev et al., 2011; Lenz, Chechkin,
and Klages, 2013), and then pose a question of
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how it can lead to the appearance of the Lévy-like
behavior on larger spatial scales (Lubashevsky,
Friedrich, and Heuer, 2009b). In a few cases, the
information provided by trajectories was sufficient
to suggest biological mechanisms of the motility as
was demonstrated for some cells and bacteria (Li,
Norrelykke, and Cox, 2008; Gibiansky et al., 2010;
Jin et al., 2011; Marathe et al., 2014; Zaburdaev
et al., 2014).

(iii) Lévy flight versus Lévy walk: Although it is evident
that living organisms can move only with a finite
speed, there is a big subset of studies where the Lévy
flight is used to model the observed trajectories.
Some papers mention both approaches, walks and
flights, interchangeably, but then they mostly con-
sider the statistics of displacements at fixed time
intervals or the MSD. The distribution of displace-
ments at fixed time intervals in fact yields a velocity
distribution (López-López et al., 2013) and therefore
suggests a very different model of random walks
with random velocities; as we have seen already, its
properties are different from both the Lévy-flight
and Lévy-walk models. We also know that the MSD
of a Lévy flight diverges and therefore the corre-
sponding model is not suitable for the analysis of the
MSDs obtained from the experimental data. The
ignorance to the difference between the Lévy-flight
and Lévy-walk concepts does not add positively to
the clarity of the issue.

(iv) Other biological reasons: As mentioned, whether a
bacterium or a deer, both interact with the environ-
ment. The more complex the organism, the more
rich and unpredictable are the effects of this inter-
action. While laboratory conditions for bacteria or
cell experiments can be controlled to a high degree,
the question of how much of a deer’s motion is
influenced by the type of a forest the deer moves in
is much harder to disentangle. Individuals may have
different responses to the same stimuli, because, for
example, they can be at different developmental
stages. Therefore it should not be forgotten that
some effects which look like anomalous behavior for
the ensemble of organisms, may come about only as
a result of variability between the individuals, where
each individual behaves quite normally but on its
own scale; see Méndez, Campos, and Bartumeus
(2014) and original works by Hapca, Crawford, and
Young (2009) and Petrovskii, Mashanova, and
Jansen (2011).

It is certainly beyond our goals and abilities to resolve all
these challenging issues in this review. We can only welcome
attempts to summarize and critically address these points by
Selmeczi et al. (2008) and Méndez, Campos, and Bartumeus
(2014). We hope that the theoretical background provided in
this review will help to introduce the Lévy-walk model (and
its appropriate modifications) to the community of biologists
and biophysicists with more rigor so that it can be applied to
the collected data in a proper way.

B. Soil amoeba

One of the first mentions of the Lévy-walk model in
biological context was made in the work on crawling amoeba
by Levandowsky, White, and Schuster (1997). Amoeba are
unicellular organisms that can move on surfaces and three-
dimensional media by growing cell protrusions called pseudo-
podia. Levandowsky, White, and Schuster (1997) tracked 17
amoeba isolates with the help of a microscope and a video
recorder. Different traces of the overall duration 15–60 min
were recorded with a time step of 1 or 2 min. Considered
species represented a range of sizes 10–100 μm and average
speeds of 0.16–1.3 μm=s. This means that cells roughly
moved about one cell size per one step (one minute); see
Fig. 27. After each step, they measured turning angles,
velocity distribution, and the MSD. For all observed cells
the MSD scaled as hx2i ∝ tμ with μ ∼ 1.5 − 1.9, which led
them to the conclusion that the Lévy walk could be a good
candidate for a model. The obtained histograms of turning
angles indicated little directional change. They also stated that
their tracking was not long enough to check whether cells
switch to the normal diffusion at longer times. Although not a
clear-cut example of the Lévy walk, this was the first and
balanced assessment of the experimental observations. After
two decades of similar research one could suggest that the
Ornstein-Uhlenbeck process, i.e., a Langevin equation for
velocity increments containing friction and random force
(Risken, 1996), could be a reasonable alternative approach.
The corresponding stochastic process is characterized by an
exponentially decaying velocity autocorrelation function, and
if the observation time is less or of the order of the correlation
time the MSD behaves almost ballistically and only at later
times switches to diffusive behavior; see similar results for

FIG. 27. A sample trajectory of soil amoeba showing the outline
of the cell at 1 min intervals. Adapted from Levandowsky, White,
and Schuster, 1997.
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beetles (Reynolds, Leprêtre, and Bohan, 2013). A recent
comprehensive study of Dictyostelium discoideum amoeba
motility considered several possible mechanisms, including
the generalized Langevin equation with a memory kernel,
nontrivial fluctuations, and a more microscopic, zigzag
motion strategy (Li, Norrelykke, and Cox, 2008).

C. Run and tumble of bacteria

Until recently, motion of a swimming E. coli bacteria was
considered as a clear example of the standard diffusion. The
diffusive dynamics naturally follows from the mesoscopic
picture of random walks describing the run-and-tumble
motion (Berg, 1993, 2004). E. coli have multiple flagella,
helical filaments which rotate and thus propel the cell in the
fluid. Because of the microscopic size of the cell, the
swimming occurs at low Reynolds numbers, which has its
implications on the physics of the process (Purcell, 1977;
Lauga and Goldstein, 2012). Molecular motors can rotate
flagella in two opposite directions, clockwise (CW) and
counterclockwise (CCW). In CCW mode multiple flagella
form a bundle and the cell swims following almost a straight
path, which is called a “run.” When one or several motors
switch the direction to CW, the bundle dissolves and the cell
rotates almost on the same spot, the so-called “tumble” phase.
When the bundle forms again in the CCW mode, the cell
begins its next run. The angle between the directions of the
two consequent runs is not completely random but has a
nonuniform distribution with a mean around 70°. E. coli are
rod shaped bacteria of about 2 μm long, the average run time is
1 s, and the corresponding almost constant speed is
∼20 μm=s. Therefore the length of a run is roughly 10 times
the cell body length. Tumbles are approximately 10 times
shorter than the runs and usually neglected in theoretical
models. Since the motion occurs in a fluid, runs are not
entirely straight but are subjected to the effects of the rota-
tional diffusion. If, for a moment, we neglect the rotational
diffusion, the swimming cell can be seen as a biological
realization of the Lévy-walk model: it moves with an almost
constant velocity, then tumbles, and chooses a new swimming
direction. The experimentally measured run time distribution
of E. coli was usually described by an exponential distribution
(Berg, 2004). However, in a recent experiment with individual
tethered cells by Korobkova et al. (2004), it was shown that
the PDFs of durations of CCW rotation of flagella (corre-
sponds to run of the cell) fit the power-law distribution with an
exponent γ ¼ 1.2; see Fig. 28.
It was also shown theoretically that the genetic circuit

responsible for the duration of motor rotation in the CCW
direction can generate power-law distributed times in the
presence of chemical signal fluctuations (Matthäus et al.,
2011). Experiments with tethered cells suggest that power-law
distributed run times could also be observed in individual
swimming cells, but there is no experimental confirmation of
this yet.
To encompass the possibility of the power-law distributed

run times, the Lévy-walk model is the natural choice to
describe the dispersal of idealized E. coli bacteria (by
neglecting the effects of rotational diffusion during the runs)
in two or three dimensions.

Interestingly, many bacteria (and some eukaryotic cells)
swimming in fluid or moving by other means on surfaces
produce similar patterns, reminiscent of the run-and-tumble
motion. Those include, for example, a run-and-reverse pattern,
where the direction of the next run is opposite to the previous
one, or a run-reverse-flick motion, where reversals are
alternated with random turns (Xie et al., 2011; Taktikos,
Stark, and Zaburdaev, 2013); see Fig. 29(c). Experimentally
such trajectories are often observed within the single focal
plane of the microscope or in a confined planar geometry.
These biologically relevant motility patterns suggest an
alternative description of a Lévy-walk process in two dimen-
sions, namely, via the angle determining the orientation of the
cell velocity, ϕðtÞ∶ vðtÞ ¼ v( cosϕðtÞ; sinϕðtÞ). The time
evolution of the angle can be split into two components,
abrupt angular changes during the reorientation events and an
independent component of the noise leading to the rotational

FIG. 28. Distributions of run-and-tumble times of E. coli
bacteria. Counterclockwise (CCW) rotation (black line) corre-
sponds to the run of bacteria, whereas clockwise (CW) rotation
(gray line) corresponds to tumbling. Measurements are presented
for a single bacterium. While tumbling times are shorter and well
described by the exponential distribution, the durations of CCW
rotations exhibit a long nonexponential tail which can be fitted by
a power law. The inset shows the cumulative distribution function
for CCW rotation times and the gray line is the power law with an
exponent ∼2.2. From Korobkova et al., 2004.

FIG. 29 (color online). Different motility patterns of bacteria:
(a) run-and-tumble motion, where straight runs are alternated by
tumbling events; the angle between the consecutive runs can have
a certain preferred value; (b) run reverse, where the next always
has an opposite direction; (c) run reverse and flick, where
reversals strictly alternate with completely randomizing turn,
similar to E. coli, in other words it is an alternation of (a) and
(b) that makes up a more complex pattern of (c). From Taktikos,
Stark, and Zaburdaev, 2013.
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diffusion ϕðtÞ ¼ ϕrwðtÞ þ ϕrotðtÞ. ϕrwðtÞ characterizes a one-
dimensional CTRW in the angle space. The run-and-tumble
motion is characterized by waiting times when the angle does
not change (run) and random jumps according to the turning
angle distribution (tumble). For example, in the case of run
and reverse, the jumps are of the size �π. Therefore the
problem of the Lévy walk in two dimensions can be mapped
onto a one-dimensional CTRW process for the angle. It has
interesting consequences for the calculation of the standard
quantities as, for example, the velocity autocorrelation func-
tion or the MSD. The velocity correlation function of
bacteria’s velocities at times t1 and t2, Cðt1; t2Þ is given by

Cðt1; t2Þ ¼ hvðt1Þvðt2Þi ¼ v2he−i½ϕðt2Þ−ϕðt1Þ�i: ð91Þ

The contribution to correlations coming from the rotational
diffusion is well known and appears as an exponential
prefactor, a more nontrivial part is the random walking
component of the angle. It can be shown that

Crwðt1; t2Þ ¼ v2
Z þ∞

−∞
dϕ1

Z þ∞

−∞
dδϕe−iδϕPðϕ1; t1; δϕ; t2Þ:

ð92Þ

Here Pðϕ1; t1; δϕ; t2Þ is the joint probability density to find a
cell moving in direction ϕ1 at time t1 and direction ϕ1 þ Δϕ at
time t2. It is easy to see that Eq. (92) is the double Fourier
transform with respect to ϕ1 and δϕ, where the corresponding
coordinates in Fourier space are set to k1 ¼ 0 and k2 ¼ 1,
respectively. Therefore, to find the velocity autocorrelation
function one needs to find the two-point PDF for the random
walk of the angle. It is a nontrivial, especially for the case of
power-law distributed waiting times, but exactly solvable
problem (Barkai and Sokolov, 2007; Baule and Friedrich,
2007; Zaburdaev, 2008; Dechant et al., 2014). The MSD can
now be calculated by using the Kubo relation:

h½rðtÞ − rð0Þ�2i ¼
Z

t

0

dt1

Z
t

0

dt2hvðt1Þ · vðt2Þi: ð93Þ

There are two important particular cases of the above general
formulas. For the exponentially distributed run times,
ψ runðτÞ ¼ τ−1run expð−τ=τrunÞ, many things simplify dramati-
cally and yield the following answer for the MSD:

h½rðtÞ − rð0Þ�2irw ¼ 2v2 ~τ2
�
t
~τ
− 1þ e−t=~τ

�
; ð94Þ

where the effective decorrelation time ~τ depends on the
average run time τrun and the average cosine of the turning
angle cosϕ0 (Lovely and Dahlquist, 1975):

~τ ¼ τrun
1 − cosϕ0

: ð95Þ

For E. coli, cosϕ0 ≃ 0.33, whereas for reversing cells it is
equal to −1. Equation (94) is a well-known result for the
Ornstein-Uhlenbeck process (Risken, 1996) which was men-
tioned before, but here it was derived from the Lévy-walk

model and not from the Langevin equation. For short times
t≲ ~τ the MSD scales ballistically and then turns to the
diffusive regime. In the case of the power-law distributed
run times [as in Eq. (8)] with 1 < γ < 2, the MSD scales as
t3−γ , a well-known result. An interesting observation is that in
the superdiffusive regime the turning angle distribution plays
no role (unless the turning angle is not zero) in the asymptotic
regime.
To finalize this section we discuss two more modifications

of the Lévy walk used to model motility of bacteria.
Previously we mentioned the run-reverse and flick motility
pattern which was reported for V. alginolyticus bacteria by
Xie et al. (2011). In this case, the reversals are alternating
with completely randomizing turns with cosϕ0 ¼ 0. In V.
alginolyticus this happens because its single flagellum is
unstable, when switching from CW to CCW rotation. The
durations of runs after flick and reversals may also be
governed by two different distributions. When translated into
a CTRW model for the angle, that means that jumps with two
distributions for the jump amplitude and waiting times are
alternating. As a remarkable difference to the model with a
single turning angle distribution where the velocity correlation
function is always positive, the run-reverse-flick model has an
interval of negative velocity correlations (Taktikos, Stark, and
Zaburdaev, 2013).
For another type of swimming bacteria, P. putida, it was

found that cells predominantly adopted the run-and-reverse
pattern, but, in addition, the speed of a single cell changed
roughly by a factor of 2 between forward and backward
swimming directions (Theves et al., 2013). For the corre-
sponding one-dimensional Lévy-walk model with two alter-
nating speeds that would result in the back and forth motion,
but with the ballistic scaling in the direction of the higher
speed. The cells swimming in a fluid are subjected to
fluctuations and therefore the rotational diffusion regularizes
the ballistic scaling. As a result, bacteria undergoing run-and-
reverse motion with alternating velocities diffuse faster than
bacteria showing run-and-reverse behavior but with a constant
intermediate velocity.
The above examples demonstrate that the class of Lévy-

walk models provides a perspective tool for the mesoscopic
description of the bacterial motility. Whether the involved
times are anomalously long or exponentially distributed,
Lévy-walk framework is flexible and can be adjusted to the
needs of a particular problem—rotational diffusion during
runs, different turning angles and speeds, pausing during
tumbles—while remaining in the domain of analytically
solvable models.

D. Short note on chemotaxis

Bacteria, amoeba, sperms, and many other cells and
microorganisms are known to be able to perform chemotaxis:
they can actively alternate motility in response to the gradients
of certain chemicals, signaling molecules, nutrients, or waste
products. Different organisms adopt different chemotactic
strategies (Eisenbach and Lengeler, 2004). Larger cells, such
as amoeba, can detect the gradients across their own cell body
length via multiple chemoreceptors. Reacting to the occu-
pancy of those receptors, amoeba can preferentially grow the
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pseudopodia in the corresponding direction and therefore
continuously reorient during its motion. Bacteria are too small
to do that and instead use a temporal integration of the
chemical concentration which they experience along the
trajectory. The chemical signal is passed on to the genetic
pathway which regulates the flagella motor reversals [we are
omitting many interesting biological details, which, at least for
E. coli, are well understood (Berg, 2004)]. If a cell swims in
the direction of increasing concentration of the favorable
signal it extends its run phase. The response of the cell to the
pulses of certain chemicals was measured experimentally by
observing the frequency of motor reversals; it revealed a
nontrivial two lobed response function, showing the properties
of adaptation (Segall, Block, and Berg, 1986; Celani and
Vergassola, 2010). By assuming that tumbles follow after an
exponentially distributed run time, the rate of tumbling events
in the presence of the signaling chemical with not too strong
variations can be represented as

λðtÞ ¼ λ0

�
1 −

Z
t

−∞
dt0cðt0ÞRðt − t0Þ

�
; ð96Þ

where λ0 ¼ 1=τrun is the cell’s tumbling rate in a homo-
geneous environment, cðtÞ is the concentration of the chemi-
cal along the path, and RðtÞ is the memory or response
function of bacteria obtained from the experiments. de Gennes
(2004) used this formula and the random walk model of run
and tumble to analytically calculate the resulting average drift
velocity along the small gradients of cðxÞ. This approach can
be generalized to all the above discussed motility patterns of
bacteria and shows the importance of the theoretical modeling
by means of simple random walks. One of the open questions
in this field is how to generalize the de Genes’ approach to a
general distribution of tumbling events, going beyond the
exponential function and including the power laws.

E. T cells

In a recent experimental study by Harris et al. (2012), the
migration of CD8þ T cells in the brain explant of mice was
analyzed. CD8þ T cells are a special type of white blood cells
which are responsible for killing cancer cells, those infected
by viruses, or otherwise damaged or abnormal cells. Direct
contact of the T cell and the target cell is required for killing
the abnormal cell. In this study, T cells were targeting the cells
infected by a parasite T. gondii which invades the cells of the
central nervous system and causes the toxoplasmosis infec-
tion. T cells which produce a fluorescent protein were imaged
in 3D by using two-photon microscopy of the brain explant of
mice with chronic toxoplasmic encephalitis in different
experimental conditions.
As one of the important factors involved in the regulation of

T-cells motility, a small signaling protein, chemokine
CXCL10, was noted. By varying the concentration of this
chemokine they showed that T cells were changing the
average speed but not other statistical characteristics of their
trajectories. Along with the standard MSD measurements,
several additional properties of the acquired trajectories were
analyzed: PDF of displacements at different times and its
scaling properties, correlation function of cell displacements,
and overall shape of the tracks. MSD showed a clear super-
diffusive behavior with the exponent 1.4∶ hr2ðtÞi ∝ t1.4.
Consistent with previous observations of runs and pauses
in lymphocytes they suggested the model of Lévy walks with
rests as the working hypothesis. Indeed by comparing this
model with more than ten other possible random walk models,
it was shown to give the best representation of the exper-
imental data (see the extensive supplementary material to the
original paper). In Fig. 30 we show the representation of 3D
tracks and in Fig. 31 the PDF of cell’ displacements at
different times (corresponds to the control case in Fig. 30).

FIG. 30 (color online). (Top row) Tracks of T cells recorded by two-photon fluorescence microscopy in three different experimental
conditions. (Bottom row) Reconstructed three-dimensional trajectories of individual cells. Adapted from Harris et al., 2012.
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Rescaled profiles convincingly fall onto a single master
curve. In the concluding remarks of the paper, it is mentioned
that the Lévy-walk model for the motility of T cells is
consistent with the idea of more effective search, as compared
to Brownian motion in the case of sparse targets. Overall it is
one of the most thorough trajectory analyses to date which
leads to the Lévy-walk model. Probably because ten other
models were shown to fail to reproduce the experimental data,
it effectively exhausted the arsenal of arguments from the
opponents of the Lévy-walk foraging hypothesis [as a
counterexample, see a trail of publications on the Lévy walk
of mussels (de Jager et al., 2011)].
It is instructive to look at the scales involved in this study. A

typical duration of the recorded trajectories was 15–30 min
with average moving speeds of 3 to 6 μm=min, depending on
the levels of the chemokine. With the size of the T cell about
10 μm, similar to the case of amoeba, cells traveled a couple of
tens of their sizes. For bacteria that would correspond to a
distance of a single run. However, for the case of T cells that
might be the relevant scale for finding the infected cells, and
undoubtedly it is intriguing that Lévy walks can be evoked in
this context.

F. Humans

Humans are the most sophisticated organisms whose
motility is governed by complex environmental, sociological,
technological, and urban factors. The field of human mobility
is an active domain of research because of its evident
connection to real-life applications. Development of trans-
portation systems, design of mobile networks, prevention of
contagious disease spreading, all these issues are linked to the
human mobility. Starting from dollar bill tracking by
Brockmann, Hufnagel, and Geisel (2006) and to mobile
phone tracking by the group of Barabási (Gonzalez,
Hidalgo, and Barabasi, 2008), and to a recent study of
influenza virus spreading by Brockmann and Helbing
(2013), works on this topic gained a lot of attention, in the
public domain and media also. Here we review three empirical

studies with very different settings, in which the Lévy-walk
patterns were found.
An interesting experiment is described by Méndez,

Campos, and Bartumeus (2014) on p. 275 of their book.
Nineteen blindfolded volunteers were ordered to search for
targets randomly distributed over a soccer field. Each searcher
was followed by a person who was recording the moving
times of the searcher between the reorientation events. As an
observed process it is a good example of the standard random
walk with constant velocity. Searchers were not priorly
informed of the purpose of the study and about what was
going to be measured. Each searcher was given ten minutes of
time, and a prize was awarded to the person finding most of
the targets. After a certain target was found on the field, it was
returned to the field but displaced by a 1.5 m distance in a
random direction. In total there were 200 targets with a
characteristic size of 1 m, distributed on a field of the size
100 × 50 m. Interestingly, after the data were analyzed and
pooled according to the number of collected targets,
ð0 − 1; 2 − 4; 5 − 8Þ, and the distribution of run times was
plotted, it appeared that the first two groups had exponentially
distributed run times, whereas the third group had a

FIG. 31 (color online). PDF of T-cells’ displacements for the
control case at different time points. Symbols denote the
experimental data, and lines are fits according to the generalized
Lévy-walk model. The inset shows that the profiles, rescaled
according to ~P ¼ tαP and ρ ¼ r=tα with α ¼ 0.63, collapse on
top of each other. From Harris et al., 2012.

FIG. 32 (color online). Lévy walks of Hadza hunter-gatherers.
(a) A representative trajectory of a Hadza hunter-gatherer bout
obtained by GPS tracking. (b) The PDF of displacements during
outbound parts of bouts, showing Lévy statistics in about one-
half of all cases. Symbols represent the experimental data and
lines correspond to different theoretical approximations to this
distribution. Adapted from Raichlen et al., 2014.
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distribution reminiscent of the power law with an exponent of
the tail μ ¼ 2.3 [that corresponds to γ ¼ 1.3 in our notations
for the flight-time distribution, Eq. (8)]. Certainly, the span of
run times was only about 1 order of magnitude (there could be
no runs longer than ∼2 min because of the size of the field)
and statistical tests could not give a clear preference to the
power-law fit. Nevertheless, it is still remarkable how the
deviation from the exponential distribution arose and how this
deviations correlated with the number of targets found.
While the previous example might look like a fun experi-

ment, some people rely on search for their survival. In another
recent study by Raichlen et al. (2014), human hunters-
gatherers Hadza in northern Tanzania were shown to use
Lévy walks in about one-half of their foraging bouts; see
Fig. 32. The Hadza hunter-gatherers have no modern tools or
developed agriculture, they hunt with bow and arrow, and
collect wild plant food. Forty-four subjects were monitored
with the help of GPS devices during their foraging bouts for
several days and at different seasons. They analyzed the step-
length distribution for outbound bouts (defined as travel
between the camp and the farthest away from the starting
point). The steps were defined either by pauses or by turning
angles, which in turn were analyzed with different threshold
values from 0° to 180° with a step of 10°. The obtained data
were tested against Lévy walks, Brownian motion, or
composite Brownian motion combining up to four exponential
distributions. In around 50% of all bouts the distribution of
step lengths was best described by either a power law or a
truncated power law with tail exponents of 1.9 and 1.5,
respectively. The Lévy-walk behavior appeared in both male
and female subgroups despite the fact that they often had
different goals of their bouts: hunting and searching for wild
honey, or collecting berries and plant foods. The MSD
of the corresponding tracks also showed an anomalous

superdiffusive behavior. Inclusion of round bounds did not
change the results significantly. They argued that the human
foragers, despite their higher cognitive complexity, still
follow the same search pattern as used by other animals.
Furthermore, the similar motion pattern of humans arises in
much more complex urban environments, as discussed next.
In a comprehensive study by Rhee et al., 2011, 226 daily

GPS traces were collected from 101 volunteers in five
different outdoor sites: two university campuses, a state fair,
the theme park Disney World, and the New York metropolitan
area (see sample tracks in Fig. 33).
They acquired data with high space resolution of 3 m and a

time step of 10 s, one of the most precise tracking to date. The
following quantities were extracted from the traces: flight
length, pause time, direction, and velocity. They used three
different methods to define the flights on the smoothed data:
rectangular (when a piece of trajectory between the two end
points does not leave the boundary of a certain width from the
line connecting those two points), based on the turning angle,
and marked by pausing events. For all locations it was found
that a (truncated) power-law distribution fit the data better than
other model distributions. In comparison to previously dis-
cussed examples here the span of flight lengths covers 4 orders
of magnitude. The tail exponents of those distributions were
found to be in the range 1.5–2.8 based on the turning angle
definitions of flights; see Fig. 34.
Only in the case of the state fair, the exponential distribution

was not so different from the power law. They explained this by
the truncation of the step length, as the state fair was indeed the
smallest location of all five. The pausing events were also
power-law distributed with heavy tail exponents in the range of
2.3–3.5. The velocity of displacements was close to constant
for short displacements, but increased steeply for larger travels.
The reason behind this was that longer excursions could be
made by using ground transportation, which was faster than
walking. In terms of developing the appropriate Lévy-walk-
type model that would require one to introduce an additional
coupling between the distance and velocity, which can be read
out from the experimental data. The MSD for all five locations

FIG. 33. GPS data on human movements during their daily
activities in four different locations: (a) a university campus,
(b) the Disney World theme park, (c) a state fair, and (d) New
York City. Figure courtesy of I. Rhee.

FIG. 34. Distribution of human displacements. Step-length
distribution fitted with truncated Pareto distributions using the
pause-based model to define the step lengths: (a) a university
campus, (b) New York City, (c) Disney World, and (d) a state fair.
Figure courtesy of I. Rhee.
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always had two regimes: superdiffusive at short times, less than
30min to 1 h, and subdiffusive afterward. The superdiffusion is
explained by long excursions, whereas the subdiffusive scaling
was caused by the bounded travel domain and also due to the
fact that humans do not do a completely random walk, but
rather travel to certain destinations and often return to the same
points, like home, office, or class. Because of similar factors,
mobility of humans is certainly more complex than just a Lévy
walk, but still this model appears to be one of the best to
describe human relocations as if they were a truly random
process.
To finalize this section we return to one of the first and

influential studies of human travel data approximated by the
dispersal of dollar bank notes. Some fraction of dollar bills in
the U.S. carry a stamp encouraging a person who gets a hold
of it to visit a dedicated Web page, enter the bill number,
current date, and location, and see its past trace. Brockmann,
Hufnagel, and Geisel (2006) used the databank of bank note
traces and proposed a Lévy-flight model combined with
anomalously long traps, leading to a fractional diffusion
equation, Eq. (21). Although one could argue that instanta-
neous jumps might not be the most adequate representation of
human travel, which on the vast scales of North America could
happen by car, bus, train, or air fair, each having its typical
speed, for the data acquired it was practically impossible to
take into account the finite velocity of travelers. Therefore,
formally this study is outside our focus, but certainly deserves
mentioning as one of the first works in this field. As the
techniques of following individuals continue to progress, it is
to be expected that in the near future we will learn more about
the human mobility.

G. Bumblebees, seabirds, monkeys, and others

As mentioned in the beginning of Sec. VI, the amount of
data on animal motions has constantly been growing during
the last decade. Not every new paper reports a Lévy-walk
motion pattern as a result, but at least tries to relate the
observed motion patterns to the Lévy-walk model. Current
research trends in ecology were greatly influenced by the idea
that under some circumstances a superdiffusive Lévy walk can
be an advantageous search strategy when compared to a
classical Brownian-like diffusion pattern. We review the
search problem in Sec. VII, and here we briefly list very
diverse and interesting examples of data on animal tracking.
Insects: Insects can be traced by using different methods,

such as traps, video cameras, entomological radars, or scan-
ning harmonic radars combined with miniature transponders
attached to individual insects. To date, there is an impressive
list of insects which were studied with respect to their motility
patterns: ants (Schultheiss and Cheng, 2013), bumblebees
(Lenz, Chechkin, and Klages, 2013), honeybees (Reynolds
et al., 2007), moths (Cardé, Cardé, and Girling, 2012), beetles
(Reynolds, Leprêtre, and Bohan, 2013), stone flies (Knighton,
Dapkey, and Cruz, 2014), and fruit flies (Cole, 1995;
Reynolds and Frye, 2007).
Sea animals: Underwater creatures are much more difficult

to follow and in general are traced by small, pressure-sensitive
data-logging tags giving the depth information, or by high-
frequency acoustic transmitters in combination with a

directional hydrophone, or with satellite relayed data loggers.
The list of tracked species is also quite long: various sharks,
penguins, tuna (Sims et al., 2008), turtles (Hays et al., 2006;
Dodge et al., 2014), dolphins (Bailey and Thompson, 2006),
mussels (de Jager et al., 2011), cuttlefish, octopus, various
rays, sole, and angler fish (Wearmouth et al., 2014), jelly fish
(Hays et al., 2012), gray seals (Austin, Bowen, and McMillan,
2004), and, finally, fishermen (Bertrand et al., 2007).
Birds: Birds are usually tracked with the help of small GPS

loggers attached to their bodies. One of the first studies in the
field was done on wandering and black-browed albatrosses
(Viswanathan et al., 1996; Edwards et al., 2007; Humphries
et al., 2012) with several more to follow on pelagic seabird
Corys shearwaters (Focardi and Cecere, 2014), frigate birds
(De Monte et al., 2012), and Egyptian vultures (López-López
et al., 2013).
Mammals: Most observations of mammals foraging on

terrain is done via visual contact and approximate GPS
location determined by an observer using range finders.
Several kinds of animals were tracked by this method:
baboons (Schreier and Grove, 2014), spider monkeys
(Ramos-Fernández et al., 2004), fallow deer (Focardi,
Montanaro, and Pecchioli, 2009), jackals (Atkinson et al.,
2002), reindeer (Marell, Ball, and Hofgaard, 2002), langurs
(Vandercone et al., 2013), and bearded sakis (Shaffer, 2014).

VII. LÉVY WALKS AND SEARCH STRATEGIES

Searching and foraging is enormously important in the
ecological context and it is not surprising that more and more
physicists and mathematicians contribute to this field. A
growing database allows one to propose and test various
models with an increasing level of detail and complexity. The
first mentioning of Lévy walks being advantageous in search
as compared to classical random walks belongs to Shlesinger
and Klafter (Shlesinger, Klafter, and West, 1986). Further on,
a Lévy-walk hunting strategy in the context of feeding
behavior in grazing microzooplankton was discussed by
Levandowsky, Klafter, and White (1988). It is widely recog-
nized now that two papers by the group of Stanley, first
on the Lévy flights of albatrosses (Viswanathan et al., 1996),
and three years latter on optimality of the Lévy search
(Viswanathan et al., 1999), lead to the birth of the new
interdisciplinary field dealing with the quantitative analysis of
animal motility patterns and optimality of search. The matu-
rity of the field is marked by several comprehensive mono-
graphs on the topic (Bénichou et al., 2011; Viswanathan et al.,
2011; Méndez, Campos, and Bartumeus, 2014), and the field
itself spreads beyond animals and humans to robotics; see
Sec. VII.C.
The problem of animal search is complex, as well charac-

terized by Shlesinger (2009): “Actual search patterns of
animals will depend on many factors: amount of energy
expended in different modes of travel; the probability of
finding food during various locomotions (flying, running,
walking, hopping, etc); whether a single animal or a group is
executing the search; day or night conditions; topography;
weather; fixed food sources (water and vegetation) or moving
targets (prey); homogeneous or scarce food sources; whether
the animal randomly searches for food or has knowledge of
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food locations.” As an idealization of these features, when
there is no prior information about the location of targets and
complex interactions of a searcher with the environment and
its prey, a so-called random search approach is used, which
assumes that the searcher adopts a certain random motion
pattern. The superdiffusive Lévy walk was proposed as an
optimal search strategy (Viswanathan et al., 1999) in case of
sparse nondestructible targets. However, the validity and the
straightforward use of the Lévy-walk concept for the analysis
of animal search patterns was questioned both experimentally
and theoretically (Bénichou et al., 2006, 2007; Benhamou,
2007; Edwards et al., 2007; Plank and Codling, 2009; Jansen,
Mashanova, and Petrovskii, 2012; Reynolds, Schultheiss, and
Cheng, 2014). For an opinion on “Should foraging animals
really adopt Lévy strategies?”, see the recent review by
Bénichou et al. (2011). The resolution of this issue is out
of our scope. Yet we do believe that there is a balanced middle
point between the two extremes, “Lévy” and “no Lévy,”which
follows from the universal principle: mathematics and physics
cannot take the place of nature but they certainly can help to
understand the former. Indeed, wandering albatrosses “do not
care about math” (Travis, 2007) and it is naive to think that a
bird utilizes a Lévy walk when preying, by independently
drawing a length of the next flight from a PDF with power-law
tails. Lévy-walk-like motion patterns are not necessarily
produced by a Lévy-walk process.8 Moreover, patterns them-
selves—even when they look very similar to those obtained in
theory—could not identify complex mechanisms of animal
locomotion that produced them. This does not contradict the
fact that the Lévy-walk concept represents a powerful tool
for quantification and analysis of statistical data and provides
us with more insight into animal foraging strategies than
the conventional Brownian-based approach (Buchanan,
2008).
In Secs. VII.A, VII.B, and VII.C we overview the current

state of the field. Special emphasis is put on the original paper
by Viswanathan et al. (1999) which greatly promoted the
Lévy-walk model as an advantageous search strategy.

A. Lévy walk as an optimal search strategy

Viswanathan et al. (1999) considered a walker which
performed a Lévy walk in two dimensions and searched
for targets, randomly distributed in space with a density ρ. The
searcher can detect targets at the sight radius r. If a walker sees
a target it proceeds straight to it. If there is no target in sight it
chooses a random direction and moves for a random time with
a fixed speed. If no target is found during a flight a new flight
starts in another random direction. The distribution of flight
distances is chosen in the power-law form gðlÞ ∝ l−μ. Because
of a simple coupling l ¼ vτ we can identify

μ ¼ γ þ 1; ð97Þ

where γ denotes the tail exponent of the flight-time distribu-
tion, Eq. (8). As discussed in Sec. II, μ > 3 will result in the
finite mean squared length of the jump and normal diffusive
dispersal. A regime of 1 < μ < 3 corresponds to the super-
diffusive Lévy walks. In this model, it is important that the
searcher keeps looking for a target while moving and that
the current flight is terminated if the target is found. One of the
ways to define the efficiency of the search is by the ratio of
the number of targets found to the time spent in search or, in
the case of constant speed, to the total distance traveled:

η ¼ 1

hliN ; ð98Þ

where hli is the mean flight distance and N is the average
number of flights between the two successive targets. The only
characteristic scale of the problem is given by an average
distance between two detected targets λ ¼ ð2rρÞ−1. With its
help, the mean flight distance can be given as

hli ¼
R
λ
r l · l

−μdlþ λ
R∞
λ l−μdlR∞

r l−μdl
. ð99Þ

The first term in the nominator arises from the usual definition
of the average flight length, but it has an upper bound of the
typical distance between the two found targets. These flights
do not terminate at the target. The second term counts the
flights which were chosen to be longer than λ but do terminate
after the target encounter. The denominator is a normalizing
factor. Next, the mean number of steps between the two
successive targets needs to be found. At this point it is
important to distinguish between two possible scenarios:
targets can be either destroyed after being found (destructive
case), or they become temporally depleted but can be revisited
at later times (nondestructive). In these two cases, the average
number of steps between two successive destructible and
nondestructible targets can be estimated as [for a detailed
explanation see Viswanathan et al. (1999)]

Nd ≃ ðλ=rÞμ−1; Nn ≃ ðλ=rÞðμ−1Þ=2: ð100Þ

Now the question of optimality may be asked: Is there an
optimal value of μ which leads to a maximal number of found
targets, but keeps the length of excursions sufficiently short? If
targets are plentiful, λ ≲ r, then Nd ≈ Nn ≈ 1 and hli ≈ λ. In
that case the search efficiency does not depend on μ at all. In
the case of sparse resources λ ≫ r, the situation is different.
For destructive foraging the efficiency is maximal for smallest
μ meaning that moving along one straight line is the best
strategy in that case. However, the situation is more interesting
in the case of nondestructive search. By substituting the
expressions for hli, Eq. (99), and for the number of steps
Nn, Eq. (100), into Eq. (98), and equating its derivative with
respect to μ to zero, we obtain the optimal value of the power-
law exponent:

μopt ¼ 2 − 1=½lnðλ=rÞ�2: ð101Þ

8In a recent study of trace fossils, Sims et al. (2014) showed that
the artificial trails produced by following three simple rules, (i) “do
not cross your trail,” (ii) “stay close to it,” and (iii) “make U turns,”
appeared to be Lévy-walk patterns when analyzed with the conven-
tional methods used in the field.
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The second term is a small correction in the case of sparse
targets, so roughly the exponent of μ ≈ 2 (γ ≈ 1) arises as a
solution. This value of a power-law tail of the traveled
distances corresponds to the border regime between super-
diffusive and ballistic Lévy walks. Qualitatively the advantage
of Lévy walks with μ ≈ 2 is explained by a compromise
between diffusive trajectories returning to the same target zone
(μ > 3) and ballistic motion (μ ∼ 1) which is the best strategy
to explore space. This result greatly promoted the notion of
Lévy walks as an optimal search strategy in the case of
randomly distributed, nondestructible, sparse targets.
One could question whether the assumptions made when

formulating the above search model are realistic. An animal,
even a protozoan, is a much more intellectual being than a
pointlike particle driven by a finite-length algorithm. After all,
why should a donkey leave a water pond in the oasis (a
nondestructible target following the nomenclature) he has
once found in a desert? Well, another could answer, the
donkey has other needs also and he will turn to satisfy them
once he has quenched his thirst and appeased his hunger; for
example, he might like to find a mating partner. It is a perfectly
correct argument but it goes far beyond the premises of the
model. Animal search is a multilayered activity determined by
a vast number of external and internal (instincts, etc.) factors
and it is impossible to catch even the most essential of them
with a simple stochastic model. The good point is that the
model introduced by Viswanathan et al. (1999) allows for a
gradual complexification and can absorb new assumptions
and conditions. Since the paper was published, many mod-
ifications were proposed, which include, for example, moving
and/or regenerating, patchy targets (Bénichou et al., 2011;
Palyulin, Chechkin, andMetzler, 2014). It was also found that,
in some situations like searching for a single target in
confinement (Tejedor, Voituriez, and Bénichou, 2012), or
under the presence of a bias (Palyulin, Chechkin, and Metzler,
2014), persistent random walks or Brownian strategies per-
form better than Lévy walks.

B. Intermittent search strategies

A simple assumption that animals or humans have lower
search capabilities when they are moving fast leads to the idea
of the so-called intermittent search, when periods of localized
diffusivelike search activity are altered with ballistic reloca-
tion to a new spot (searching for a lost key in an apartment is a
good example). The intermittence has been detected in motion
patterns of biological species ranging from protists to primates
(Bartumeus, 2007; Bénichou et al., 2011). Different research
fields contributed with different theories, as, for example,
ecologists discussed phases of “tactical habitat utilization”
(local search events) and “strategic displacements” (ballistic
relocations) (Gautestad and Mysterud, 2006), while experts on
random walks served a spectrum of phenomenological models
(Bénichou et al., 2011). For us, further extensions of the
standard Lévy-walk model which are motivated by these
studies are of interest.
Lomholt et al. (2008) suggested that an intermittent search

in which the relocation happens according to the Lévy walk
could lead to a more efficient search than, for example,
exponentially distributed displacements between the diffusive

search phases. From the point of view of modeling, such a
process might be called a composite process. The Lévy walk
is not simply diluted with resting events, when a walker is
immobile, like the process shown in Fig. 1(c), but it is
alternated with periods of different activity, for example,
diffusion. Such processes are not new in the field of random
walks but they experienced a revival of interest because of the
new context. Bartumeus et al. (2003) claimed that precisely
this type of search strategy is realized by Oxyrrhis marina, a
dinoflagellate living in the sea depth, when it preys on a
microzooplankton. Namely, when the prey decreases in
abundance, a predator switches from a slow-rate Brownian
motion, characterized by an exponential PDF of flight time, to
a helical Lévy motion, characterized by an inverse square
power-law PDF.
In addition to the analysis of search patterns of biological

species, the formalism of composite random walks allows one
to find analytic solutions for the density of particles and
calculate the scaling of the corresponding MSD. Recently
Thiel, Schimansky-Geier, and Sokolov (2012) used a
composite random walk to describe the run-and-tumble
dynamics where the durations of the tumbles were explicitly
taken into account and the runs were assumed to have a heavy
tailed flight-time PDF. It was also assumed that during
tumbling events particles perform normal diffusion.
Depending on the interplay between the tail of the flight
times and durations of the tumbling phases (which also could,
in principle, be characterized by a tunable power-law dis-
tribution) the MSD was shown to span the regimes from the
normal diffusion to ballistic superdiffusion.

C. Lévy walks for intelligent robotics: Following suit

Biological systems are a constant source of inspiration for
the robot designers. It is not a surprise then that the wave of
studies on Lévy-walk foraging and animal search strategies
has attracted the attention of the researchers working in the
field of robotics. The current aim of the “Lévy robotics” is
twofold. First, it is a development of new nature-inspired
search algorithms for autonomous mobile robots (Nurzaman
et al., 2009; Pasternak, Bartumeus, and Grasso, 2009; Lenagh
and Dasgupta, 2010; Sutantyo et al., 2010; Keeter et al., 2012;
Fujisawa and Dobata, 2013; Sutantyo, Moslinger, and Read,
2013). A complementary research line aims at the under-
standing of how Lévy-walk motion patterns emerge from
combinations of different external factors and theoretical
assumptions on animal strategies and behavior (Fricke et al.,
2013).
An idea to combine Lévy walks with chemotaxis in order to

produce “Lévy taxis,” a search algorithm for an autonomous
agent to find a source of chemical contamination in a turbulent
aquatic environment, was proposed by Pasternak, Bartumeus,
and Grasso (2009). It is not a typical search task because the
searcher should scan a constantly changing chemical field and
follow plumes in order to find their origin. In the computa-
tional studies, a virtual autonomous underwater vehicle
(AUV), floating in a virtual two-dimensional riverlike turbu-
lent flow, contaminated from a pointlike source, was used.
Events of unidirectional motion, characterized by a power-
law distribution of their lengths and a wrapped Cauchy
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distribution of their direction angles, were intermingled with
short reorientation events. During the latter the vehicle was
randomly choosing a new movement direction along the local
concentration upstream flow. This strategy somehow corre-
sponds to a Lévy walk in a flow-oriented reference frame.
When compared to other strategies, based on a Brownian
walk, a simple Lévy walk, correlated Brownian walk, and a
brute-force zigzag scanning, a Lévy taxis outperformed all of
them, in terms of both detection success rate and detec-
tion speed.
Another searching strategy for a mobile robot, a sequence

of Lévy walks alternated with taxis events, was proposed by
Nurzaman et al. (2009). In computer simulations, the robot
task was to locate a loudspeaker by using the information on
the local sound intensity obtained from a robot-mounted
microphone. The loudspeaker was stationary and the robot’s
speed υwas constant. The robot orientation was defined by the
angle θ. The robot dynamics was governed by three stochastic
equations,

2
64
_xðtÞ
_yðtÞ
_θðtÞ

3
75 ¼ AðtÞ

2
64
υ cos θðtÞ
υ sin θðtÞ

0

3
75þ ½1 − AðtÞ�

2
64

0

0

εθðtÞ

3
75; ð102Þ

where the Cartesian coordinates xðtÞ and yðtÞ specify the
position of the robot at time t. Activity AðtÞ is a dichotomous
function switching between 1 and 0 so that the robot either is
moving forward with velocity υ (activity is “1”) or is randomly
choosing a new direction of motion (activity is “0”). When the
duration of a single 1-event is distributed according to a power
law [see Fig. 35(a)], the robot performs a two-dimensional
version of the Lévy walk with rests shown in Fig. 1(c). A
stochastic sonotaxis strategy, when the robot tries to locate and
move toward the loudspeaker, was also probed. However,
neither of the two strategies was able to accomplish the task
when used alone. The sonotaxis turned out to be effective in a

close vicinity of the speaker only and did not work when the
sound gradient was small; see Fig. 35(a). The Lévy walk did
not care about the sound intensity by default and produced
unbiased wandering only; see Fig. 35(b). The combination of
the two solved the problem: the Lévy walk first brought the
robot to the area where the sound-intensity gradient was high
enough and from there the sonotaxis strategy was able to lead
the robot to the loudspeaker; see Fig. 35(c). A Lévy looped
search algorithm to locate mobile targets with a swarm of
noninteracting robots was proposed by Lenagh and Dasgupta
(2010). The idea was to replace straight ballistic segments with
loops so that each searcher returned to its initial position. The
length of each loop was sampled from a power-law distribu-
tion, whereas the starting angle was sampled from the uniform
distribution in the interval ½0; 2π�. The reported results showed
that the looped search outperformed the standard Lévy search
in tracking mobile targets.
The idea that a search efficiency can be increased by using a

number of autonomous agents is natural and relevant in many
contexts. It is evident, for example, that the search time is
inversely proportional to the number of independent searchers
provided all other conditions remain the same. However, if an
interaction or exchange of information between the searchers
is allowed, the search time can be decreased even further.
Swarm communication is widely used among animals and
insects, and it is known among biologists and roboticists as
“stigmergy” (Beckers, Holland, and Deneubourg, 1994). A
multirobot searching algorithm based on a combination of a
Lévy walk and an artificial potential field inducing repulsion
among robots was proposed and tested by Sutantyo et al.
(2010). The obtained results for up to 20 robots showed that
the repulsion increases search efficiency in terms of the search
time. It is noteworthy that the effect diminishes with an
increase of the robot number, because crowding robots start to
change their directions earlier than expected from the gov-
erning power-law distribution. Experimental results obtained
for two Lévy-swimming AUVs in a 3D aquatic test bed
(Keeter et al., 2012) show that in this case the best perfor-
mance corresponds to a simple divide-and-conquer strategy,
when the tank is divided into two equal volumes and each
submarine scouts only its assigned region. However, this
situation may change when the number of AUVs is larger than
2 so that communication between searchers could be benefi-
cial. Group Lévy foraging with an artificial pheromone
communication between robots was studied recently by
Fujisawa and Dobata (2013). Each robot had a tank filled
with a “pheromone” (alcohol) which was sprayed around by a
micropump. Rovers also carried alcohol and touch sensors and
their motion was controlled by a program which took into
account the local pheromone concentration. The swarm
foraging efficiency peaked when the robots were programmed
beforehand to perform a Lévy walk in the absence of
communication. Multirobot underwater exploration and target
location were studied with a swarm of Lévy-swimming AUVs
by Sutantyo, Moslinger, and Read (2013). Interaction between
the robots was introduced by using a modification of the
firefly optimization, an algorithm popular in the field of
particle swarm optimization (Kennedy and Eberhart, 2001).
The “attractiveness” of each AUV was defined by the time
since the robot last found a target; it increased every time a

FIG. 35 (color online). Performance of a sonotactic robot.
(a) Activity of the robot: Durations T1; T2;… follow a power-
law tail distribution while the duration of reorientation events T is
constant. (b)–(d) Trajectories of the robot using (b) the sonotaxis
strategy, (c) the Lévy walk, and (d) the combination of the two.
The speaker (small solid circle) is located at the center of the
squared test area (box) and the dashed line encircles the area with
sound gradient above a threshold. The starting point is located at
the middle of the left box border. Figure courtesy of S. G.
Nurzaman.
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target was located and then slowly decayed. The task was for
each searcher to find all the targets. The results of the
experiments showed that the interaction substantially
decreased the averaged search time.
Finally, an attempt to get insight into the machinery causing

the emergence of Lévy-walk-like patterns in the motion of
different biological species was made recently by Fricke et al.
(2013). Inspired by the results obtained for T cells (Harris
et al., 2012) (see Sec. VI.E), researchers from the University
of New Mexico and Santa Fe Institute used six small rovers,
equipped with ultrasound sensors, compasses, and cameras.
This navigation set enabled each robot to find patches of
resources distributed over a 2D area. Tunable adaptive
algorithms based on five different search strategies were
tested. It turned out that the algorithm using correlated random
walks, in which correlations between consequent step angles
of a rover depend on the target last observed by the rover,
produces Lévy-like motion patterns.
Lévy robotics is only one example that illustrates the

practical value of the Lévy-walk concept. We do believe that
there are more to come and discuss potential candidates in the
final section of this review.

VIII. OUTLOOK

The Lévy-walk concept is almost 30 years old and now
possibly at the beginning of the most interesting phase of its
life. The gradually developing theoretical framework was
there in time to support the burst of applications across
different fields. As can be seen from the previous sections,
most of the empirical data obtained with cold atoms, nano-
structured media, quantum dots, and ecology emerged only
recently. Lévy walks remain in a stage of active development,
and we now see them being used in robotics and mobile
communication technologies (Lee et al., 2013). In this
concluding section we discuss some open problems in the
field and sketch what we think are the next perspectives and
challenges.
For the physicists, probably one of the central questions is

to understand how the Lévy walk, which is a mathematical
model, emerges in diverse physical phenomena. There is
certain progress in this respect in the fields of classical

many-particle chaos (Mendl and Spohn, 2014) and cold atom
dynamics (Barkai, Aghion, and Kessler, 2014). In the problem
of light diffusion in hot atomic vapors, general principles of
light emission and absorption were suggested to be relevant
mechanisms (Baudouin et al., 2014). In experimental plasma
physics, the anomalous nonlocal transport is regularly
reported in various works, but its origin remains a subject
of ongoing debates. This can be partially explained by the
high complexity of modern plasma experiments which are
often performed in nonequilibrium regimes, involve nonlinear
interactions, the formation of large coherent structures, etc.
We can see that even simple approximations of plasma ion
dynamics by using the Lévy walk immediately call for
nonlinear space-time couplings (Zimbardo, Greco, and
Veltri, 2000; Gustafson and Ricci, 2012).
Most of the analytical results presented in this review are

restricted to one dimension. This reflects the current situation
on the theory front. Although the analysis can be formally
generalized to higher dimensions by replacing the Fourier
coordinate with a Fourier vector k → k, this technical step will
immediately pose a number of questions. For example, a two-
dimensional Lévy walk can be defined in two different
intuitive ways, namely, as a process when (i) the length of
the upcoming flight and its random orientation are both
chosen from continuous PDFs (as in the case of run and
tumble of bacteria, Sec. VI.C) or, alternatively, (ii) a random
displacement is chosen independently but always along one of
the two basis vectors. How do the propagators of these
processes look alike? Evidently, because of the isotropy of
the first process, the corresponding propagator will be circular

symmetric, Pðr; tÞ ¼ Pðr; tÞ, r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
; see Fig. 36(a). It

is tempting to say that in this case the problem can be reduced
to the one-dimensional setup by substituting r instead of jxj in
the propagator. However, it has yet to be clarified which
equation governs the evolution of Pðr; tÞ. A Lévy-walk
process of type (ii) has been observed in numerical studies
of the superdiffusion in two-dimensional chaotic Hamiltonian
systems by Klafter and Zumofen (1994); see Fig. 36(b). It
was shown that at the asymptotic limit and far from the
center r ¼ 0, the corresponding propagator factorizes,
Pðr; tÞ≃ Pðx; t=2ÞPðy; t=2Þ, where r ¼ x · ex þ y · ey and
Pðx; tÞ and Pðy; tÞ are one-dimensional propagators. This

FIG. 36 (color online). Two intuitive generalizations of the Lévy walk to two dimensions. Both models are characterized by power-law
PDFs of the flight time. (a) In an “isotropic” model the direction of a flight is given by a random angle uniformly distributed on the
interval ½0; 2π�. (b) In a “lattice” model ballistic flights happen along one of the two basis vectors of a square lattice. The latter process
was observed when tracking trajectories of a Hamiltonian particle moving over an egg-grate potential; see Klafter and Zumofen (1994).
Adapted from Klafter, Shlesinger, and Zumofen, 1996.
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type of two-dimensional Lévy walks with the exponent γ ¼ 2
is relevant for the description of the diffusion in Sinai billiards
with infinite horizon (Bouchaud and Georges, 1990), as
shown recently by Cristadoro et al. (2014).
For the next step one can consider Lévy walks on lattices of

different geometries and try to elucidate the effects of the
underlying geometry on the corresponding propagators. This
question is particularly motivated by the experimental studies
of light propagation in regular foams, where, due to the
effect of total internal reflection, the light gets trapped in the
liquid phase of the foam (Gittings, Bandyopadhyay, and
Durian, 2004). Theoretically it was shown that, in the case
of a honeycomb foam lattice, the light propagation can be
superdiffusive (Schmiedeberg, Miri, and Stark, 2005;
Schmiedeberg and Stark, 2006).
An issue of correlated Lévy walks not only constitutes a

theoretical challenge but is of relevance in the context of
several recent experiments. One example is the diffusion of
light in Lévy glasses (see Sec. V.C), where the quenched
disorder of scatterers may induce correlations between the
flights. Independently, this question was posed by theoret-
icians some time ago (Kutner and Maass, 1997, 1998; Levitz,
1997; Barkai, Fleurov, and Klafter, 2000) and still requires
further analytical investigation. A correlated ballistic Lévy
walk could also serve as an advanced model to account for the
correlations in blinking times of quantum dots (Stefani,
Hoogenboom, and Barkai, 2009).
A fundamental characteristic of any random walk process is

the so-called first passage time, which defines how soon a
random walker would visit a point located at a certain distance
from the origin; see Redner (2001). The first passage time
problem for Lévy walks naturally occurs in the context of
searching strategies, where it quantifies the time it takes to hit
a target. Many of the results obtained for the first passage time
and related problems for the standard random walks (Redner,
2001) were generalized to subdiffusion and Lévy flights. At
the same time, the problem of the first passage time for Lévy
walks remains largely unexplored (Korabel and Barkai, 2011).
As already mentioned, the origins of Lévy walks in biology

and ecological context are an unsettled issue. Although some
examples exist that show how the power-law distributed run
times emerge from the underlying genetic circuits of bacteria
(Matthäus et al., 2011), it remains to be seen whether similar
evidence can be found for more complex organisms that
exhibit Lévy-walk-like behavior. In the mean time, Lévy-walk
strategies are implemented to construct robots that can assist
humans in finding sources of contamination and to develop
efficient strategies to rescue people from disaster areas
(Akpoyibo, Lakshmi Narayanan, and Ibe, 2014). The concept
of Lévy foraging has made its way into the field of
criminology, potentially leading to implications in predictive
policing. Johnson (2014) used criminal records of more than
1000 offenders who committed a series of crimes and found
that the distribution of distances between the consequent
events was consistent with Lévy-walk dynamics. There is also
an interview with a burglar which corroborates the Lévy-walk
behavior as an optimal evading strategy and relates it to the
perception of risk to be caught. In a recent paper titled “Voles
don’t take taxis,” Pease (2014) comments on the work of

Johnson (2014) and puts it in the context of modern
quantitative criminology research.
To conclude, we provided an overview of the theoretical

aspects of a simple but remarkably flexible model of Lévy
walks. We illustrated theoretical considerations with a variety
of examples, where the model and its offspring served to
quantify the stochastic transport phenomena and help eluci-
date underlying mechanisms. We would like to think that this
review will stimulate researchers from even more distant fields
to use the model in their studies and thus will help to advance
Lévy walks into new unexplored territories.
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